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Résumé

Dans la présente thèse nous étudions l’extraction d’arbres dans des graphes arêtes-coloriés.

Nous nous concentrons sur la recherche d’arbres couvrants proprement arête-coloriés et faible-

ment arête-coloriés, notée PST et WST.

– Nous montrons que les versions d’optimisation de ces problèmes sont NP-Complete dans

le cas général des graphes arêtes-coloriés, et nous proposons des algorithmes pour trouver

ces arbres dans le cas des graphes arêtes-coloriés sans cycles proprement arêtes-coloriés.

Nous donnons également quelques limites de nonapproximabilité.

– Nous proposons des conditions suffisantes pour l’existence de la PST dans des graphes

arêtes-coloriés (pas forcément propre), en fonction de différents paramètres de graphes,

tels que : nombre total de couleurs, la connectivité et le nombre d’arêtes incidentes de

différentes couleurs pour un sommet.

– Nous nous intéressons aux chemins hamiltoniens proprement arêtes-coloriés dans le cas

des multigraphes arêtes-coloriés. Ils présentent de l’intérêt pour notre étude, car ce sont

également des arbres couvrants proprement arêtes-coloriés. Nous établissons des conditions

suffisantes pour qu’un multigraphe contienne un chemin hamiltonien proprement arêtes-

coloriés, en fonction de plusieurs paramètres tels que le nombre d’arêtes, le degré d’arêtes,

etc.

– Puisque l’une des conditions suffisantes pour l’existence des arbres couvrants proprement

arêtes-coloriés est la connectivité, nous prouvons plusieurs bornes supérieures pour le plus

petit nombre de couleurs nécessaires pour la k-connectivité-propre. Nous énonons plusieurs

conjectures pour les graphes généraux et bipartis, et on arrive á les prouver pour k = 1.

Mots clés : graphes arêtes-coloriés, algorithmes, chemin hamiltonien, arbres proprement arêtes-

coloriées, arbres faiblement arêtes-coloriées, nonapproximabilité, coloration
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Abstract

In this thesis, we investigate the extraction of trees from edge-colored graphs. We focus on

finding trees with properties based on coloring. Namely, we deal with proper and weak proper

spanning trees, denoted PST and WST.

– We show the optimization versions of these problems to be NP-hard in the general case

of edge-colored graphs and we provide algorithms to find these trees in the case of edge-

colored graphs without properly edge-colored cycles. We also provide some nonapproxi-

mability bounds.

– We investigate the existence of a PST in the case of edge-colored graphs under certain

conditions on the graph, both structural and related to the coloration. We consider suf-

ficient conditions that guarantee the existence of a PST in edge-colored (not necessarily

proper) graphs with any number of colors. The conditions we consider are combinations of

various parameters such as : total number of colors, number of vertices, connectivity and

the number of incident edges of different colors to the vertices.

– We then consider properly edge-colored Hamiltonian paths in the edge-colored multi-

graphs, which are relevant to our study since they are also PST. We establish sufficient

conditions for a multigraph to contain a proper edge-colored Hamiltonian path, depending

on several parameters such as the number of edges, the degree of edges, etc.

– Since one of the sufficient conditions for the existence of proper spanning trees is connec-

tivity, we prove several upper bounds for the smallest number of colors needed to color

a graph such that it is k-proper-connected. We state several conjectures for general and

bipartite graphs, and we prove them for k = 1.

Keywords : Edge-colored graphs, algorithms, Hamiltonian paths, proper tree, weak tree, no-

napproximability, coloring
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Chapitre 1

Introduction

Graph Theory is an important research area in mathematics and computer science,

studied for over two hundred years. Graphs are one of the prime objects of study in Discrete

Mathematics, these mathematical structures model pairwise relations between objects. Thus,

a graph is a set of nodes (or “vertices”) and a set of edges, connecting pairs of these nodes.

Graphs are among the most universal structures for modeling various relations and processes in

scientific domains such as physics, chemistry, biology, economics, social systems, as well as in

different areas of Computer Science such as databases, networks, etc.

Furthermore, many problems of practical interest can be represented by graphs. Consider

the example of a city map presented in Figure 1. Imagine a pedestrian interested in finding the

fastest way to go from point A to point B. How does he proceed ? He looks at the map and

chooses the streets he should take in order to reach the desired destination. The same situation

applies for a person who drives a car, however, the latter should take into account that some

streets can be taken in a uni-directional way only.

Clearly, in this example the city map can be represented as a graph, the intersections of the

streets being the nodes and the streets being the oriented edges between these nodes. Each

oriented edge represents a one-way street. This kind of graphs are called directed graphs. And

the problem of finding the best itinerary for reaching the point B starting from the point A

can be modeled as a problem of finding the shortest path connecting the nodes A and B in the

directed graph.

In general, graph theory is divided in two branches : directed graphs and undirected (simple)

graphs. Undirected graphs were studied extensively, then the directed graphs came into focus

due to their theoretical and practical importance. Note, that undirected graphs can be seen as

a subclass of directed graphs, with each undirected edge represented by two oppositely-directed

edges.

Nevertheless, even these two classes of graphs are not powerful enough to model all existing

real-life constraints. For this reason new concepts in graph definitions are required. Going back

to our above example, if one wants to differentiate highways from national roads, and main from

secondary roads, a good idea would be to use colors. When the edges of graphs are colored,

1



2 CHAPITRE 1. INTRODUCTION

Figure 1.1 – The itinerary for a pedestrian and for a car

we talk about edge− colored graphs, which generalize the directed graphs. Such generalization

allows the formulation of a wide range of challenging problems, in addition to those existing

in the case of usual graphs. Namely, suppose that we would also like to find an itinerary that

uses highways exclusively. This problem corresponds to finding a monochromatic path of a given

color between two given nodes.

Thus, one can observe that problems related to edge− colored graphs often consist in finding

(extracting) classical structures (subgraphs) such as paths, cycles and trees, with, in addition,

certain constraints or properties imposed on colors.

Trivial properties of the trees that can be found in edge-colored graphs, are monochromati-

city and heterochromaticity. The former consists in having all the edges colored in same color,

the latter requires distinct colored edges. Heterochromatic structures are also called rainbow,

multicolored, colorful and polychromatic by different authors. Results on subgraphs and trees

with these properties can be found in [61, 21, 44, 66, 5, 26, 39], as well as a recent survey on

heterochromatic (rainbow colored) graphs in [50]. These results are of interest for us, since rain-

bow colored graphs are also proper - a property introduced in the sequel.

The constraint that we focus on in this thesis, is that of properness. The notion of properness

consists in having no two adjacent edges of the same color in the structure we want to find.

In the literature, algorithms are proposed to check the existence of properly edge-colored sub-

graphs of a given type in an edge-colored graph. Corresponding results are presented in [14].

Subgraphs with this property are also studied in [4, 63, 16, 56, 55, 43, 8, 10]. In particular, Y.

Manoussakis et al. [54] investigated the existence, counting and enumeration of properly colored

pairwise internally disjoint paths with common endpoints. They also studied properly colored

subgraphs including Hamiltonian paths and cycles, cycles with a given lower bound on their
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Figure 1.2 – Proper Tree and Weak-proper Tree

length, spanning trees, stars, and cliques in edge− colored complete graphs.

In the present thesis we investigate the extraction of trees from edge-colored graphs. A tree

is a connected acyclic subgraph. In graph theory there exist many important problems related

to trees with different levels of difficulty. The difficulty depends on the properties of the tree

we are trying to find. The properties can be related to the desired degree of each vertex, which

is the number of edges incident to a vertex. For example, for a simple graph, it is difficult to

find a bounded degree spanning tree 1 (see [40, 65] for more details). It is also difficult to find a

spanning tree maximizing the number of vertices of degree one (which are also called leafs).

Since we are interested in edge− colored graphs, we focus on finding trees with properties based

on coloring. Namely, we deal with proper and weak proper spanning trees (see figure 1.2),

denoted PST and WST. A proper tree is a proper subgraph, whose uncolored version is acyclic.

A proper spanning tree is a spanning proper subgraph, whose uncolored version is connected

and acyclic. A weak proper tree is rooted, the root−to−leaf paths are proper and it’s uncolored

version is acyclic.

Let us see an example of application of properly colored structures in edge-colored graphs.

Consider some points that send and receive information. Different frequencies are used for re-

ceiving and for sending.

Suppose now that certain points cannot send information directly to other points since there

exists some natural barrier. Let us represent these points as graph vertices and the possibility

to send and receive data between any two points as graph edges. Let us define a bijective func-

tion for the edges coloring : one color per frequency. Each vertex uses different frequencies for

receiving and for sending operations, thus the corresponding edges have different colors. Various

1. A subgraph that spans all vertices of a graph is said to be a spanning subgraph, and a spanning tree is a
subgraph in which each pair of vertices is connected by exactly one path.
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problems emerge in this context :

(1) Suppose we would like to test if one point can send information to another one. This

problem corresponds to finding a proper colored path between two vertices in the edge-

colored graph.

(2) Suppose we would also like to know if two given vertices can communicate. To discover

that, it is sufficient to find a proper colored cycle or a closed trail.

(3) If we would like to determine how many vertices can communicate in this network simul-

taneously, then we have to find a proper colored subgraph.

If we want to broadcast the information to a maximum number of vertices from a given

vertex, we have to find a maximum weak-proper tree for a given vertex as a root, since

each point can receive on one frequency and send on all the others.

(4) Another possible problem is to find a maximum number of vertices that will always receive

the broadcasted information and any of these vertices can serve as broadcasting point. In

this case the subgraph to find corresponds to a maximum proper tree.

In addition, application areas of finding properly-colored Hamiltonian paths and cycles in

edge-colored graphs include genetics [31, 60], social sciences [28] and VLSI optimization [67].

After studying PST and WST in edge-colored graphs, we consider a similar problem in the

case of edge-colored multigraphs. If we allowed more than one edges (but yet a finite number)

between the same pair of vertices in a graph, the resulting structure is called a multigraph. Such

edges are called parallel edges. If more than one edge is present between two vertices, then the

edges can be of different colors or of the same color. In our case, we assume that parallel edges

are of different colors. Clearly, multigraphs offer new kind of restrictions and possibilities. It is

also clear that real life problems can be modeled more faithfully using such structures.

The class of edge-colored multigraphs generalizes that of directed graphs. Several other genera-

lizations of directed graphs exist, namely : edge-colored digraphs, hypertournaments and star

hypergraphs. However, it is the class of edge-colored multigraphs that has been given the main

attention in graph theory. This because many concepts and results on directed graphs can be

extended to edge-colored multigraphs and also because edge-colored multigraphs have several

important applications. Significant results were obtained concerning these graphs [11, 10]. In

this work we considered proper and weak proper spanning trees in edge-colored multigraphs.

This thesis is organized as follows. In chapter two, we give basic terminology and notations, as

well as some notions of complexity, that are needed for the understanding of the results exposed

in the next chapters.

In chapter three, we present an overview of the current state of the art of proper spanning
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trees (PST) and weak proper spanning trees (WST) problems in edge-colored graphs.

In chapter four, we consider maximum proper edge-colored trees and maximum weak pro-

per trees in edge-colored graphs. We consider these problems from the graph theoretic as well as

from the algorithmic viewpoints. We prove their optimization versions to be NP-hard in general

and provide algorithms for finding such trees in graphs without properly edge-colored cycles.

We also derive some nonapproximability bounds.

In chapter five, we study the existence of PST in edge-colored graphs under certain assumptions

on the graph, both structural and related to the coloring. We consider sufficient conditions that

guarantee the existence of proper spanning trees in graphs with edges colored (not necessarily

properly) with any number of colors. The conditions we consider are the combinations of various

parameters of colored graphs such as : total number of colors, number of vertices, connectivity

and number of differently colored edges incident to a vertex. These particular conditions are

of interest since there exist no good characterizations for the existence of such colored trees in

general edge-colored graphs.

In the chapter six we consider proper Hamiltonian paths in edge-colored multigraphs. A pro-

per Hamiltonian path is a path containing all the vertices of the multigraph such that no two

adjacent edges have the same color. Since proper Hamiltonian paths are also proper spanning

trees, they are of interest for our study. We establish sufficient conditions for a multigraph to

have a proper Hamiltonian path, depending on several parameters such as the number of edges,

the rainbow degree, etc.

In chapter seven, we focus on a problem related to color connectivity. Since one of the sufficient

conditions for proper spanning trees to exist is the connectivity, we prove several upper bounds

for the smallest number of colors needed for k-proper-connectivity. We state several conjectures

for general and bipartite graphs, and prove them for k = 1. Then, some algorithmic results are

proposed.

Finally, in chapter eight, we present the conclusion of our work and some open problems

for future research.
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In this chapter we introduce the main notions, necessary to the understanding of this thesis.

We begin by the terminology and recall the common notions of the graph theory in general

and of edge-colored graphs in particular. Then we introduce the notions of complexity and

approximation.

2.1 Notation and terminology

We use the notation and terminology given by Jean-Claude Fournier in [37]. However, the

reader is warned that there may arise some differences.

6
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(Undirected)
graph

An (undirected) graph G = (V,E) is defined by two finite sets : a non-
empty set V of elements called vertices, a set E (which may be empty)
of elements called edges. Each edge e has two associated vertices, x and
y, (not necessarily distinct), called its endpoints. The graphs considered
in this thesis are finite. The vertex set V and the edge set E of a graph G
can be denoted by V (G) and E(G), respectively. The number of vertices
of a graph, is usually denoted by n. The number of edges of a graph, is
denoted by m. An edge e is simply denoted by xy (or yx) instead of the
customary mathematical notation {x, y} when x 6= y.

Adjacent,
incident,
neighbors,
loop, paral-
lel edges

The endpoints x and y of an edge e are adjacent. An edge e is said to be
incident to each of its endpoints. If the both the endpoints on an edge
are same vertex then this edge is a loop. All adjacent vertices of a vertex
x are the neighbors of this vertex. Edges e and e′ is said to be parallel
or multiple edges if they have the same endpoints. A simple graph is a
graph without loops or multiple edges.

Independent
set

An independent set or stable set is a set of vertices in a graph, no two
of which are adjacent.

Underlying
simple
graph

We call underlying simple graph, of a non-simple graph G, the graph
defined as follows : it has the same set of vertices as G and two vertices
are joined by an edge if and only if they are different and joined by at
least one edge in G.

Isomorphic We say that a graph G=(V, E) is isomorphic to an graph H=(S, F) if
there exists a bijection : φ : V → S such that (u, v) ∈ E if and only if
(φ(u), φ(v)) ∈ F .

Complete
graph

A simple graph G where each two vertices are adjacent is called a com-
plete graph. A complete graph is determined by the number n of its
vertices and it is generally denoted by Kn. The edge set of a complete
graph is equal to

(
n
2

)
= n(n−1)

2 .

Subgraph A subgraph H = (S, F ) of a graph G = (V,E) is the graph where S ⊆ V
and F ⊆ E and where each edge e ∈ F has both its endpoints in S.

Vertex–
induced
subgraph

A vertex-induced subgraph H is induced by a set of vertices S ⊆ V , if it
is a graph of the form H = (S, F ), where F is the set of the edges of E
both of whose endpoints are in S.

Edge-
induced
subgraph

An edge-induced subgraph is induced by a subset of the edges F ⊆ E of
a graph G = (V,E), if it is a graph of the form H = (S, F ), where S is
the set of vertices that are their endpoints.
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Spanning
subgraph

A subgraph H = (S, F ) of G = (V,E) is called a spanning subgraph if
S = V . It can be a spanning subgraph of set of edges F too.

G− x Let G = (V,E) then G − S, where S ⊂ V , is a subgraph of G induced
by V \ S. In other words, it is a subgraph of G obtained by removing
the vertex set S from G and the incident edges. Let G = (V,E) then

G− F , where F ⊂ E, is the subgraph of G induced by E \ F . In other
words, it is the induced subgraph of G obtained by removing the edge
set F from G. In this thesis we use G− x instead of G− {x} for x ∈ S

and G− e instead of G− e for e ∈ F .

Walk A walk of a graph G = (V,E) is a sequence of the form :

(x0, e1, x1, . . . , ek, xk)

where k ≥ 0, xi are vertices of G, such that there exists an edge ei+1 ∈ E
for each xixi+1, and x0 and xk are called the endpoints of the walk. We
say that x0 and xk are linked by the walk.

Length The length of the walk in this case is k. A walk may have zero length,
it consist of one vertex in this case. In the case when G is a simple
graph, we define a walk by the sequence (x0, x1, · · · , xk) of its vertices.
A subwalk of a walk is a walk defined as a subsequence between two
vertices of the initial walk.

Trail A trail is a walk where all the edges are distinct. In other words, when
the walk does not go twice through the same edge.

Path A path is a walk where its vertices are all distinct.

Cycle A cycle is a closed path, ie x0 = xk. A cycle cannot have zero length. A
loop is a cycle of length 1. In the case of simple graphs, a cycle may be
defined by the sequence (x0, x1, · · · , x0) of its vertices. A cycle is called
even or odd, depending on whether its length is even or odd.

Degree The degree of a vertex x in a graph G is the number of edges in G
incident to x. The degree is denoted by d(x).

Isolated
vertex

A vertex of degree zero is called an isolated vertex.

Minimum
degree δ

The minimum degree of a graph G is the smallest degree of its vertices.
The minimum degree is denoted by δ or δ(G). It is clear that any graph
G, has at least one vertex with its degree equal to the minimum degree.
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Maximum
degree △

Similarly the maximum degree of G is the largest degree of its vertices.
The maximum degree of G is denoted by △ or △(G). Any graph G has
at least one vertex with its degree equal to the maximum degree.

Regular
graph –
k-regular
graph

A graph G is called regular if the degrees of its vertices are all equal.
In this case, the graph is called a k-regular graph, if the common vertex
degree is k.

Connected
- discon-
nected
graph

If every pair of vertices of a graph G are linked by a path in G, then
we say that G is connected. If it is not the case, then we say that G is a
disconnected graph.

Connected
component

The maximal connected subgraphs of G are called its components or
connected components. A disconnected graph has at least two connec-
ted components. Similary, a connected graph has only one connected
component. Observe that the connected components of a graph are sub-
graphs with no common vertices and no common edges. It defines the
decomposition of the graph into connected components. Observe that if
a graph has a spanning connected subgraph, then it is itself connected.

Bipartite
graph

A bipartite graph G, is any graph whose vertex set can be partitioned
into two disjoint subsets, such that each edge has an endpoint in each
subset. A bipartite graph is denoted by G = (V, S,E), where V and S
are the two subsets of vertices, and E is the set of edges. Is evident that
V ∪ S is the set of vertices of G.

Complete
bipartite
graph

A complete bipartite graph is the bipartite graph G = (V, S,E) where
the set of its edges is E = {xy|x ∈ V, y ∈ S}, i.e. for each pair of a
vertices one each from V and S is an edge in E(G). We denote it by
Kp,q, where p is the cardinality of V and q the cardinality of S.

Tree A tree is a connected acyclic graph. Here, acyclic means a graph without
a cycle. It follows that a tree is a simple graph. A path is a special type
of tree.

Leaf Any vertex in a tree of degree 1 is called a leaf.

Root, rooted
tree

When we distinguish a special vertex in a tree and call it a root, we get
a rooted tree.

Forest A forest is an acyclic graph. The connected components of a forest are
trees. Forests generalize trees.
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Bridge If a graph G has an edge e such that G − e has one more connected
component than G, then this edge e is called a bridge of G. If x and y
are endpoints of a bridge e then in G− e, x and y are no longer linked
by a path. In fact the edge e separates the vertices x and y. If G is
connected then after removing e, G− e is disconnected.

Spanning
tree

A spanning tree of a graph G is a spanning subgraph of G which is a
tree

Cut vertex A cut vertex of a graph G is a vertex x such that G − x has at least
one more connected component than G. This idea leads to a classic and
useful decomposition of graphs.

Block A block of a graph G is a maximal connected subgraph without a cut
vertex of G.

Block
decomposition

The set of blocks of G constitutes the block decomposition of G.

Connectivity,
κ(G)

The smallest number of vertices whose removal makes G disconnected
or reduces G to one vertex is called connectivity of G. κ(G) denotes the
connectivity of G.

k −
connected

A graph G is k − connected if κ(G) ≥ k.

Edge
connectivity

The edge connectivity k′(G) of a graph G, with more than one vertex,
is the smallest number of edges whose removal disconnects the graph.
κ′(G) denotes the edge connectivity of G.

(Edge) cut Let B be a set of edges whose removal disconnects G, then the set of
edges B is what we call an (edge) cut of G.

k − edge −
connected

A graph G is k − edge− connected if κ′(G) ≥ k.

Matching A matching of a graph G is a set M of edges such that no two edges
share a common endpoint.

Matched or
saturated
vertex

A vertex of the graph is said to be matched (saturated) by a matching
M (or M − saturated), if it is an endpoint of an edge of M . Otherwise
it is said to be unmatched (unsaturated) by M (or M − unsaturated).

Perfect
matching

If every vertex of G is matched, then matching M is said to be perfect.



2.1. NOTATION AND TERMINOLOGY 11

Maximal
matching

A matching is said to be maximal if it is impossible to add an edge to
it.

Maximum
matching

A matching M is said to be maximum if it has the greatest possible
number of edges. It is a matching with the greatest number of edges
among all the possible maximal matchings.

Compatible
(or alterna-
ting) path
relative to a
matching

For a given graph G = (V,E) and a matching M of G, we call a path
P , compatible (or alternating) relative to M , or an M − compatible
(M − alternating), if it is a path alternating between edges in M and
E \M .

Augmenting
path for M

An M -alternating path is said to be an augmenting path for M, or an
M-augmenting path, if its endvertices are unmatched.

Factor A factor of a graph G is a spanning subgraph, i.e., a subgraph that has
the same vertex set as G.

k − factor A k − regular spanning subgraph is called a k − factor. Observe that
1− factor is a graph H on V vertices and the edge set corespond to a
perfect matching.

k-
factorization

A k-factorization partitions the edges of the graph into disjoint k-factors.

Euler trail,
tour, Eule-
rian graph

A Euler trail of a graph G is a trail containing all the edges of G. Is the
trail that goes exactly once through each edge of G. A Euler tour of G
is a closed Euler trail. We call a graph Eulerian graph if it has an Euler
tour.

Hamilton
cycle, Ha-
miltonian
graph

A Hamilton cycle of a graph G is a cycle going through all the vertices
of the graph. A graph G is called Hamiltonian graph if it has a Hamilton
cycle.

Hamilton
path

A Hamilton path of a graph G is a path going through all the vertices
of a graph.

Complement
of a graph

Let G = (V,E), then we call a complement of a graph and denote them
Ḡ the graph on V vertices and the edge set [V ]2 \ E. In other terms let
G = (V,E) and let F be the set of edges in KV , then the complement
of G is Ḡ = (V, F \ E).
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Edge colo-
ring

An edge coloring of a graph G = (V,E) is a map c : E → S with
c(e) 6= c(f) of any adjacent edges e and f . Let k be the minimum
number of colors used for colorings G, called k− edge− colorings of G.
Then k is called the cromatic index or edge cromatic number, and its
denoted by χ′(G).

2-edge-
colored

A graph is 2-edge colored if each edge is colored either red or blue.

Proper or
properly
edge-
colored

An edge-colored graph is properly edge-colored (or proper) if any two
adjacent edges are colored differently.

Proper path A path in an edge-colored graph is said to be properly edge-colored (or
proper), if every two adjacent edges differ in color.

k-proper
connected

An edge-colored graph G is k-proper connected if any two vertices are
connected by k internally pairwise vertex-disjoint proper paths.

k-proper
connected,
pck(G)

We define the k-proper connection number of a k-connected graph G,
denoted by pck(G), as the smallest number of colors that are needed in
order to make G k-proper connected.

Xc{1, 2, · · · , c}We denote by Xc{1, 2, · · · , c} a set of given c ≥ 2 colors.

Gc By Gc is denoted an edge-colored graph, so that each edge is colored
with some color i ∈ Xc and no two parallel edges joining the same pair
of vertices have the same color.

V (Gc), E(Gc) The vertex and edge-sets of Gc are denoted by V (Gc) and E(Gc), respec-
tively. When no confusion arises, is used V,E instead of V (Gc), E(Gc)
respectively.

The order
of Gc

The order of Gc is the number n of its vertices.

Ei(Gc) For a given color i, Ei(Gc) denotes the set of edges of Gc on color i.
When no confusion arises, Ei is used instead of Ei(Gc).

Kc
n A edge-colored complete graphs, is denoted by Kc

n.

N i(x) By N i(x) We denote the neighbors of a vertex x in some color i ∈ Xc,
ie the vertices adjacent to x with edges colored in color i ∈ Xc.

N(x) The neighborhood of a vertex x, is denoted by N(x). The neighborhood
of a vertex x is defined as the union N(x) = ∪iN

i(x).



2.1. NOTATION AND TERMINOLOGY 13

NH(x) The neighborhood of a vertex x in the subgraph H in some color i ∈ Xc,
is denoted by N i

H(x), ie the vertices in H adjacent to x with edges
colored in color i ∈ Xc.

N i
H(x) The neighbors of a vertex x in the subgraph H, is denoted by N(x). The

neighborhood of a vertex x is defined as the union N(x) = ∪iN
i(x).

i − degree,
color
degree,
di(x)

The colored i–degree of x, denoted by di(x) equals |N i(x)|, i.e., the
cardinality of N i(x).

xy, c(xy) The edge between the vertices x and y is denoted by xy, and its color
by c(xy).

Rainbow
degree,
rd(x)

The rainbow degree of x, denoted by rd(x) equals the maximum number
of distinct colors present on edges with endvertex x.

rdH(x) The rainbow degree of x in the subgraph H, denoted by rdH(x), is equals
to the maximum number of distinct colors presented on edges with end-
vertices x and the vertices in H.

Rainbow
degree of
a graph,
rd(Gc)

The rainbow degree of a graph Gc, denoted by rd(Gc) equals the mini-
mum rd(x), ∀x ∈ V (Gc).

Hrs Let Gc be an edge-colored graph. The rainbow spanning subgraph of
Gc, denoted by Hrs, is the subgraph that spann all vertices of Gc and
all edges of H are colored by distinct colors. The E(H) ⊆ E(Gc) and
XH ⊆ XGc .

Proper
cycle

A proper cycle in Gc is a proper subgraph whose underlying non-colored
graph is a cycle.

Acyclic
edge-colored
graph

An edge-colored graph is said to be acyclic if it does not contain proper
cycles. Observe that in this case the underlying non-colored graph can
contain cycles, but any properly colored subgraph is acyclic.

PT, PST,
MPT

A proper edge-colored tree or simply a proper tree, denoted by PT , is
a proper edge-colored subgraph whose underlying non-colored version
is a tree. If the PT spans all the vertices of a Gc then this is a proper
edge-colored spanning tree or simply a proper spanning tree, denoted by
PST . For maximum proper edge-colored tree we use maximum proper
tree as terminology, and denote it MPT .
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WT, WST,
MWT

A weak edge-colored tree or simply a weak tree, denoted WT , is an edge-
colored subgraph whose underlying non-colred version is a rooted tree,
with the property that all root−to−leaf paths are properly edge colored.
If the WT spans all vertices of a Gc then this is a weak edge-colored span-
ning tree or simply a weak spanning tree denoted WST . For maximum
weak edge-colored tree we use maximum weak tree as terminology, and
denote it MWT .

Hetero-
chromatic,
rainbow
subgraph

A heterochromatic subgraph of a edge-colored graph Gc is a subgraph
whose edges are colored with distinct colors, i.e. the color set |χc| is
equal to |V (Gc)| − 1.

k-path-cycle
subgraph

A k-path-cycle subgraph of a graph Gc is a subgraph of G consisting a
disjoint collection of k paths and some cycles.

2.2 Notions and definition of Complexity

In this section we introduce the notion of complexity and some of the complexity classes,

necessary for the understanding of the results of this thesis. The analysis of complexity of a

problem allows to classify it along with other already identified problems, and constitutes one

of the steps to its resolution. Thus, all computational problems are separated into complexity

classes. We focus on two main classes : P and NP, these acronyms mean polynomial class

and non − deterministic polynomial class, respectively. The non-determinism represents our

incapacity (which may be temporary) to find directly, that is without the help of a certificate,

the right answer, in polynomial time.

After briefly presenting the concept of computational complexity, we introduce these two classes,

P and NP, as well as the notion of optimization problem 1.

2.2.1 The notion of Complexity

The concept of time complexity corresponds to the time required to run a program. The

running time depends on several factors, such as the size of the data to be processed, the data

encoding, the machine that executes the program and others. It is clear that processing a graph

of 10 vertices and 1000 will not take the same time. So, the size of the data to be processed is an

important factor that directly influences the running time. In fact we can decide if the running

time is satisfying or not in terms of the data that the program processes, by using the notion of

a complexity function.

When processing the data, a program executes some tasks. These tasks take some processing

time. In order to measure the running time, we use the number of “elementary” operations

1. We use the definitions and the examples from the book of Fournier [36]
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performed by the program. The set of tasks taken together is called an algorithm. A complete

formalization of the notion of an algorithm requires a model capable of describing an auto-

matic process. Alan Turing in 1937, described the “Turing” machine or, as he called it, an

“a(utomatic)-machine”. The Turing machine represents a computing machine, reduced to its

simplest expression. Each task can be done in some “elementary” operations on the “Turing”

machine. The model of this machine is used by the complexity theory in order to formalize the

concept of the algorithm. However, theoretical results on the complexity are independent of the

model of the machine.

The efficiency of the algorithm that solves a given problem on the data of size n is measured by

a function, representing the number of elementary operations it performs in order to process the

data of this size. This function is called the run-time complexity 2. This function is obtained by

calculating the upper bound for the number of operations, necessary to execute the algorithm

on the data of any possible size. In this case we talk about the worst case complexity. We are

only interested in the order of magnitude of this function.

Therefore, the complexity is a good measure for algorithm’s efficiency and is widely employed

for categorizing the problems depending on their theoretical difficulty.

2.2.2 Class P

After this brief introduction, we go to the heart of complexity theory, relevant to this thesis,

that is the polynomiality criterion.

As shown in Table 2.1, the size of the data to be processed is an important factor to take into

consideration for the performance of the algorithm. When the input size increases the difference

between a polynomial function and an exponential growth becomes manifest. The example shows

the running time required for data of size n = 10, 20, . . . , 70, for different complexity functions.

The running times remain reasonable for polynomial functions n and n2. In the case of the ex-

ponential function 2n the time grows for n = 70 to 374 centuries, which is clearly not practical.

It is well known that asymptotically an exponential function (with a positive base) has a faster

growth than any power function.

This polynomial growth criterion of the complexity function was therefore introduced, in

particular by J. Edmonds in 1965. This criterion is pertinent, because of its asymptotic nature

and because of stability of this criterion relative to the composition of algorithms. Since the

composition of polynomial functions is itself a polynomial function.

The classic notation of Landau is used to express the complexity of an algorithm. An algo-

rithm is of complexity O(f(n)) when the number of elementary operations is upper bounded by

2. There exists a complexity in space, that measure the amount of space necessary for processing the data of
a given size. However, usually we are not interested in this complexity, therefore, when saying “complexity”, the
run-time complexity is meant.
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Size of Complexity function
problem n n2 2n

10 0.01µs 0.1µs 1.024µs
20 0.02µs 0.4µs 1.049 ms
30 0.03µs 0.9µs 1.074 s
40 0.04µs 1.6µs 18.3 minutes
50 0.05µs 2.5µs 13.0 days
60 0.06µs 3.6µs 36.6 years
70 0.07µs 4.9µs 374 centuries

Table 2.1 – Comparison of complexity functions

f(n) multiplied by a constant, under the condition that the integer n is greater than a certain

value. If the function f is polynomial, the algorithm is called polynomial. The problems that can

be solved using these algorithms are also called polynomial. The set of all these problems define

the complexity class denoted P .

A polynomial function behaves as its highest degree term, and taking into account the constant

involved in O, f(n) is replaced by an expression of the form O(nk). The case k = 1 is the best

possible, since the algorithm needs at least the time to read the data. This is the case of linear

algorithms.

2.2.3 Class NP

A problem is recognized as class P, when it can be solved algorithmically in polynomial time.

The class P contains a lot of problems, such as finding shortest paths or a spanning tree in a

simple graph. But there exist problems that cannot be solved polynomially.

Take the Hamiltonian cycle problem for instance. It consists in finding a cycle H in a

simple graph G, that contains all the vertices of G, ie V (H) = V (G). Now for a given graph G

and a given cycle H, is it H hamiltonian, ie V (H) = V (G) ? Such a problem with a “yes” or

“no” answer is called a decision problem. One way to solve it is to find all the possible cycles

in G, take the subset with cycles of vertex set equal to V (G), and verify if H is one of these

cycles. If, for a given H, V (H) = V (G) then H is hamiltonian. Verifying the “yes” answer is easy.

The set of all decision problems where the “yes”-answers can be verified in polynomial time

form the NP class. The NP class contains problems for which it is possible to check a “yes”-

answer polynomially without being able to find polynomially this answer. Observe that the

“no”-answers are not required to be easy (or polynomially) to check.

An algorithm that is used to check a “yes”-answer is called verifier or checking-algorithm.

Therefore, another way to define the NP class, is to define the class of all the problems for which
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there exist checking-algorithms that executes in polynomial time.

The input data for a problem is called an instance of a problem. In our example these are

the graph G and the cycle H.

Formally, the class NP is defined as follows.

Definition 2.2.1. Let π be a decision problem. Now π is in NP if there exists a polynomial

algorithm A and a polynomial p such that for any instance x of A the answer is “yes” if and

only if there is a datum y such that |y| ≤ p(|x|) and algorithm A applied to x associated with

y gives the answer “yes” (|x| designates the size of x, likewise for |y|). The algorithm A is the

checking-algorithm and y is a certificate, for instance x of π. The certificate is necessarily of

polynomial size compared to the size of the instance (the converse is not important). In this case

such a certificate is said to be succinct.

Since a polynomial algorithm can be a verifier for the problems of the class P, and the

certificate can be empty, we can conclude that P ⊆ NP . To this point, it has not been proved

that the inclusion is strict.

2.2.4 NP-complete problems

Since P ⊆ NP , it is important to know which problems can be solved in polynomial time.

Since has not been unproved that P = NP , it is natural to look for problems that cannot be

solved in polynomial time under the condition that P 6= NP . Problems, that can not be solved

in polynomial time unless P = NP , are called NP − complete problems.

In order to prove that a problem is NP − complete, one has to show that the problem is at

least as hard as another problem from this class. To do this, the concept of reduction is used.

To check if a problem is NP − complete, the reduction has to be polynomial.

Definition 2.2.2. Polynomial reduction.

A problem π1 can be polynomially reduced to a problem π2 if there is a polynomial algorithm,

called a reduction-algorithm from π1 to π2, which calculates for each instance x1 of π1, an ins-

tance x2 of π2 such that the answer for x1 is “yes” if and only if the answer for x2 is ”yes” (x1

and x2 have the same answer).

This is a very important and strong relation, since if there exists a polynomial algorithm

solving the problem π2, then a polynomial time algorithm can be designed that solves π1.

So if we denote the polynomial reduction by ≤p, then :

Definition 2.2.3. NP-complete problem. A decision problem π1 is NP-complete if π1 is in NP,

and ∀π ∈ NP , π ≤p π1.
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Figure 2.1 – Classes of complexity

A problem to which all the others can be polynomially reduced is, in a way, a “universal”

problem. For the class NP such a problem is called NP-complete. The first NP-complete problem,

found at the beginning of the 1970s, is a problem of logic, called a satisfiability problem denoted

SAT.

2.2.5 Class coNP

For a problem of class NP , the “no”-answer may not have an obvious succinct certificate.

For example, concerning the problem of existence of a Hamiltonian cycle in a graph : if it is

easy to see how to “certify” the answer “yes” (by giving a Hamiltonian cycle), it is not obvious

how to certify the answer “no”. The Class coNP is defined as the class of decision problems for

which the “complement” problem, that is the problem set in order to invert the answers “yes”

and “no”, is in NP .

It is not established if NP = coNP .

Consider the Hamiltonian problem, that is in NP : “Given a graph G, is it Hamiltonian ? 3”.

In order to verify the “yes” answer we provide a Hamiltonian cycle. The complementary problem

is in coNP : “Given a graph G is it non-Hamiltonian ?”. In order to verify the “no” answer we

provide a Hamiltonian cycle.

A possible configuration of the previous classes is shown in Figure 2.1.

2.2.6 Best, worst and average case complexity

The deterministic sorting algorithm quicksort, solves the problem of sorting a list of integers

given as the input. If the input is already sorted, the algorithm takes time O(n logn) to sort. If

the input is sorted in the reverse order, the algorithm takes O(n2) time to sort. If all possible

permutations of the input list are likely, the average time for sorting is O(n logn). The quicksort

algorithm has the average performance of O(n logn).

The best, worst and average case complexity refers to three different ways of measuring the time

complexity. It is clear that some inputs of size n may be faster to solve than the others. For this

reason, the following complexities are defined :

– Best-case complexity is the complexity of solving the problem for the best input of size n.

– Worst-case complexity is the complexity of solving the problem for the worst input of

size n.

3. a Hamiltonian graph is a graph, having a Hamiltonian cycle
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– Average-case complexity is the complexity of solving the problem on an average.

2.2.7 Approximability

To this point, we have seen what a decision problem is, now we introduce the optimization

problems. An optimization problem is the problem of finding the best solution among a collec-

tion of possible solutions.

But how the best solution is defined ? For example, let G be a simple graph where x, y are two

vertices of G. Consider the following decision problem : “Does G have a Hamiltonian path that

starts and ends at x and y respectively ?”. An optimization problem in this case would be : “For

a given graph G and its vertices x, y, what is the longest path between these two vertices ?”.

Another example of an optimization problem is : “Given G and two vertices x and y, what is

the shortest path between these two vertices ?”. Suppose the solution is 1 edge, which means

that x and y are adjacent. Then the corresponding decision problem would be : “Given graph

G and two vertices x and y, is there a path from x to y of length 2 or less ?”

As one can notice, for each optimization problem there exists a corresponding decision problem.

And the best solution, called optimal solution OPT, consists in satisfying the goal function,

i.e. minimum or maximum.

Definition 2.2.4. An optimization problem denoted P is a quadruple (I, f,m, g) where

– I is a set of instances ;

– if n ∈ I, then f(n) is the set of feasible solutions ;

– if, for given n, s ∈ f(n) is a feasible solution, then m(n, s) is the measure of s ;

– g is the goal function, either min or max.

Using this definition we can say that the goal is to find an optimal solution for some instance,

and we denote it m(n, s) = g{m(n, s′)|s′ ∈ f(n)}.
If an optimization problem π has an NP-complete decision version, then π is NP-hard. But if

the corresponding decision problem is in NP, then π is also in NP-optimization problems class.

An NP-optimization problem (NPO) is an optimization problem with additional conditions :

– the size of every feasible solution s ∈ f(n) is polynomially bounded in the size of the given

instance n,

– the languages {n | n ∈ I } and { (n, s) | s ∈ f(n) } can be recognized in polynomial time,

and

– m is polynomial-time computable.

When an optimization problem is NP-hard, no polynomial time algorithm exists that finds

the best solution, unless P = NP .

Since finding the best solution is not easy, one may be interested in a solution close to the optimal.

In practice, a solution that is nearly optimal may be good enough and may be much easier to

find. Such a solution can be found by using approximation algorithms. When the solution given
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by the approximation algorithm differs from the optimum only by a constant, such an algorithm

is called an absolute approximation algorithm. We use the definition below, given by Korte [52].

Definition 2.2.5. An absolute approximation algorithm for an optimization problem P is

a polynomial-time algorithm A for P for which there exists a constant k such that

|A(I)−OPT (I)| ≤ k,

for all instances I of P .

Unfortunately, very few classical NP-hard optimization problems have an absolute approxi-

mation algorithm to solve them. In most cases one has to be satisfied with relative performance

guarantees. Here we have to restrict ourselves to the problems with nonnegative weights.

Definition 2.2.6. Let P be an optimization problem with nonnegative weights and k ≥ 1. A

k-factor approximation algorithm for P is a polynomial-time algorithm A for P, such that

1
k
OPT (I) ≤ A(I) ≤ kOPT (I)

for all instances I of P. We also say that A has performance ratio k.

The first inequality applies to maximization problems, the second one to minimization pro-

blems. Observe that for instances I where OPT (I) = 0 we require an exact solution. The 1-factor

approximation algorithms are precisely the exact polynomial-time algorithms.

The set of NPO problems, that have an approximation algorithm and a positive real number

r such that k ≤ r, form the APX class.

2.2.8 Non-approximability

When it is NP-hard to approximate some specific optimization problems with a given ap-

proximation ratio, we talk about non-approximabilty. A basic tool for establishing such results

is the so-called “gap-preserving reduction”.

Let P1 and P2 be two optimization problems.

Depending on whether P1 and P2 are minimization or maximization problems, we have

slightly different definitions.

Definition 2.2.7. Let P1 and P2 be the maximization problems. A gap-preserving reduction

from P1 to P2 is a polynomial time algorithm which, given an instance x ∈ P1, produces an

instance y ∈ P2 such that :

– if OPT (x) ≥ h(x), then OPT (y) ≥ h′(y), and

– if OPT (x) < g(|x|)h(x), then OPT (y) < g′(|y|)h′(y)
for some functions h(x), g(|x|), h′(y), g′(|y|) with g(|x|), g′(|y|) ≤ 1.
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Likewise, if P1 is a minimization problem and P2 is the maximization problem, we have :

Definition 2.2.8. Let P1 be a minimization problem and P2 be a maximization problem. A

gap-preserving reduction from P1 to P2 is a polynomial time algorithm which, given an instance

x ∈ P1, produces an instance y ∈ P2 such that :

– if OPT (x) ≤ h(x), then OPT (y) ≥ h′(y), and

– if OPT (x) > g(|x|)h(x), then OPT (y) < g′(|y|)h′(y)
for some functions h(x), g(|x|), h′(y), g′(|y|) with g(|x|) ≥ 1 and g′(|y|) ≤ 1.

If P1 and P2 are minimization problems, we have :

Definition 2.2.9. Let P1 and P2 be minimization problems. A gap-preserving reduction from

P1 to P2 is a polynomial time algorithm which, given an instance x ∈ P1, produces an instance

y ∈ P2, such that :

– if OPT (x) ≤ h(x), then OPT (y) ≤ h′(y), and

– if OPT (x) > g(|x|)h(x), then OPT (y) > g′(|y|)h′(y)
for some functions h(x), g(|x|), h′(y), g′(|y|) with g(|x|), g′(|y|) ≥ 1.

Finally, if P1 is a maximization problem and P2 is a minimization problem, we have :

Definition 2.2.10. Let P1 be a maximization problem and P2 be a minimization problem. A

gap-preserving reduction from P1 to P2 is a polynomial time algorithm which, given an instance

x ∈ P1, produces an instance y ∈ P2 such that :

– if OPT (x) ≥ h(x), then OPT (y) ≤ h′(y), and

– if OPT (x) < g(|x|)h(x), then OPT (y) > g′(|y|)h′(y)
for some functions h(x), g(|x|), h′(y), g′(|y|) with g(|x|) ≤ 1 and g′(|y|) ≥ 1.

As one can see, by using P1 we can found some bounds for approximation ratio of P2.

2.2.9 Conclusion

In this chapter we introduced different concepts, used extensively in the next chapters. These

notions and definitions are commonly used in graph theory and by a majority of researchers in

edge-colored graphs and multigraphs.

Such diversity of tools and notions, used to study the edge-colored graphs, shows the richness

and the complexity of the questions that are addressed by this field.
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In this chapter we present an overview of the prominent results in edge − colored graphs

obtained during the last 20 years. Edge− colored graphs being a relatively new area of research

in Graph Theory, the questions about the existence of the most simple structures such us paths,

cycles, trees, connectivity, edge connectivity, matching as well as others problems, require more

sophisticated techniques, compared to the traditional graphs. In this chapter we present the

important results connected to our topic.

3.1 Proper edge-colored Hamiltonian cycles and paths

It is obvious that from a proper edge − colored Hamiltonian cycle we can find a proper

edge− colored Hamiltonian path, and this path is also a proper spanning tree. So the results on

properly edge-colored Hamiltonian cycles and paths are directly connected to our problem.

The problem of finding a properly edge-colored Hamiltonian cycle and path is NP-Complete

for general graphs. It is NP-Complete for the properly edge-colored graphs as well. It is enough

to color every edge with a different color and this graph will be properly edge-colored, however

it will be Hamiltonian only if the initial graph was Hamiltonian. So the results that have been

obtained to this day deal with special conditions for the edge−colored graphs that have properly

22
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edge-colored Hamiltonian cycles and paths. A properly edge-colored cycle and path is also called

an alternating cycle and path.

The most natural way is to see what happens in edge− colored complete graphs. Bollóbas and

Erdos [18] studied the problem of finding a properly edge-colored Hamiltonian path in Kc
n, - a

complete graph colored with c colors. Let △(Gc) denote the maximum degree in same color in

Gc. The following conjecture is given in [18].

Conjecture 3.1.1. [18] Every Kc
n with △(Kc

n) ≤ ⌊n2 ⌋ − 1 contains an alternating Hamiltonian

cycle.

Clearly, such a graph is not properly edge-colored Hamiltonian if there is an odd number of

vertices and c = 2.

Bollóbas and Erdos proved that if △(Kc
n) < n

69 , then it contains a properly edge-colored

Hamiltonian cycle. This condition was improved by Chen and Daykin [25] to △(Kc
n) ≤ n

17

and later, by Shearer [64] to △(Kc
n) ≤ n

7 and again by Alon and Gutin in [8] stating that

△(Kc
n) ≤ (1 − 1

√
2 − ǫ)n, which is the best improvement until today. It is shown that, for

ǫ > 0 and n > n0(ǫ), any complete graph K on n vertices, whose edges are colored so that

no vertex is incident to more than (1− 1
√
2− ǫ)n edges of the same color, contains a properly

edge-colored Hamilton cycle. Moreover, for every k between 3 and n any such K contains a

properly edge-colored cycle of length k.

Theorem 3.1.2. [8] For every ǫ > 0 there exists an n0 = n0(ǫ) so that, for every n > n0, every

Kc
n satisfying

△(Kc
n) ≤ (1− 1

√
2− ǫ)n [= (0.2928...− ǫ)n]

contains alternating cycles of all lengths between 3 and n.

In the case where n = 2m + 1 they show that every edge of Kc
n is contained in a properly

edge-colored cycle of each desired length between 4 and n (but not necessarily of length 3).

Theorem 3.1.3. [8] For every ǫ > 0 there exists an m0 = m0(ǫ) so thats for every m > m0,

every Kc
m,m satisfying

△(Kc
m,m) ≤ (1− 1

√
2− ǫ)m [= (0.2928...− ǫ)m]

contains an alternating cycle of every even length between 4 and 2m.

Another interesting result was obtained by Barr [13].

Theorem 3.1.4. Every Kc
n without monochromatic triangles contains an alternating Hamilto-

nian path.
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For a set F of connected graphs, a spanning subgraph F of a graph is called an F -factor,

if every component of F is isomorphic to a member of F .

So one properly edge-colored cycle factor with one properly edge-colored cycle is a properly edge-

colored Hamiltonian cycle. Thus finding the sufficient conditions for an edge− colored graph to

have a minimum properly edge-colored cycles factor can help in our quest (of finding PST and

WST). M. Bánkfalvi and Z. Bánkfalvi [12] considered a similar problem for K2
2p.

Theorem 3.1.5. [12] Let K2
2p be a two edge-colored complete graph with vertex-set V (K2

2p) =

{x1, x2, ..., x2p}. Assume that dr(x1) ≤ dr(x2) ≤ ... ≤ dr(x2p). The graph K2
2p contains an

alternating factor with a minimum number m of alternating cycles, if and only if there are m

numbers ki, 2 ≤ ki ≤ p− 2, such that for each i, i = 1, 2, ...,m, we have :

dr(x1) + dr(x2) + · · ·+ dr(xki) + dr(x2p) + dr(x2p−1) + dr(x2p−2) + · · ·+ dr(x2p−ki+1) = k2i .

A.Benkouar, Y.Manoussakis, V.T. Paschos and R.Saad [15] propose an algorithm that can

find the minimum properly edge-colored factor in K2
n in O(n2.5) time. This algorithm is based

on the algorithm of maximum matching in general graphs made by S.Even and O.Kariv [34].

The algorithm for finding the minimum properly edge-colored cycle factor works as follows.

Take a maximum matching induced in one color graph K2
n, and after in the second color. Now

if neither of the matchings is perfect then, it is trivial that there are not properly edge-colored

cycle factor. If they are perfects then the union of these two matchings give us the properly

edge-colored Hamiltonian path.

Theorem 3.1.6. [15] There exists an O(n2.5) algorithm for finding Hamiltonian cycles in a

2-edge-colored complete graph K2
n.

Theorem 3.1.7. [15]

Any 2-edge-colored complete graph K2
n has a Hamiltonian path if and only if the graph K2

n

has :

(i) an alternating factor, or

(ii) an “almost alternating factor”, that is, a spanning subgraph which differs from a factor by

a color of exactly one edge e. Or, finally

(iii) an odd number of vertices and, furthermore, K2
n has a red matching Mr and a blue one Mb,

each one having the cardinality (n−1)
2 .

E. Bampis, Y. Manoussakis, and I. Milis [9] gave a parallel algorithm for the problem of fin-

ding properly edge-colored Hamiltonian cycle, if any, in 2-edge-colored complete graphs. Their

parallel solution uses a perfect matching algorithm putting the alternating Hamiltonian cycle

problem into the RNC class. In addition, a sequential version of the parallel algorithm improves

the computation time of the fastest known sequential algorithm for the alternating Hamiltonian

cycle problem by a factor of O(
√
n).

These are results for complete graphs, but what about general edge− colored graphs ? Can we
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check whether or not there exists a properly edge-colored cycle in the given graph ?

Problem 3.1.8. Given a c-edge-colored graph Gc, check whether Gc contains an alternating

cycle.

The first to study this problem were Grossman and Haggkvist [41]. Grossman and Haggkvist

gave a characterization of two-edge-colored graphs, which have an alternating cycle. The case

c ≥ 3 was proved recently by Yeo [70] :

Theorem 3.1.9. [41, 70] Let G be a c-edge-colored graph, c ≥ 2, such that every vertex of G

is incident to at least two edges of different colors. Then either G has a cut vertex separating

colors, or G has an alternating cycle.

There are three interesting corollaries of the Theorem 3.1.9 (for the case c = 2), all proved

in [41].

Corollary 3.1.10. Let M be a perfect matching in a graph G. If no edge of M is a cut edge of

G, then G has a cycle whose edges are taken alternately from M and G−M .

Corollary 3.1.11. Let G be a 2-edge-colored Eulerian graph so that all monochromatic degrees

are odd. Then G has an alternating cycle.

Corollary 3.1.12. Let G be a 2-edge-colored graph so that both red and blue subgraphs of G are

regular and non-trivial. Then G has an alternating cycle.

A k − path − cycle subgraph of an edge-colored graph Gc is a subgraph of Gc consisting a

disjoint collection of k paths and some cycles. If the number of cycles is zero we call it a k−path

subgraph. A cycle subgraph is a nonempty 0 − path − cycle. subgraph. Feng et al. [35] proved

the following :

Theorem 3.1.13. [35] A Kc
n (c ≥ 2) has a properly edge-colored Hamiltonian path if and only

if Kc
n contains a properly edge-colored spanning 1-path-cycle subgraph.

Working on the following conjecture proposed by Abouelaoualim et al. [3], Gutin [42] proved

that it is false. The conjecture is based on color − degree constraint for the existence of long

properly edge-colored cycles, and in his theorem Gutin proves that this constraint is not relevant.

Conjecture 3.1.14. [3] Let G be a c-edge-colored undirected graph of order n with δmon(G) =

d ≥ 1. Then G has a properly colored cycle of length at least min{n, cd}. Moreover, if c > 2,

then G has a properly colored cycle of length at least min{n, cd+ 1}.

Theorem 3.1.15. [42] For each d ≥ 1 there is an edge-colored graph G with δmon(G) = d and

with no properly colored cycle.
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In the absence of characterization of Kc
n with a properly edge-colored Hamiltonian cycle,

sufficient conditions are of interest. Manoussakis, Spyratos, Tuza and Voigt [56] proved the

following results.

Theorem 3.1.16. [56] If c ≥ 1
2(n − 1)(n − 2) + 2, then every Kc

n has a properly edge-colored

Hamilton cycle.

Theorem 3.1.17. [56] If c ≥ 1
2(n− 3)(n− 4) + 2, then there exists n0 = n0(c) such that for all

n ≥ n0, K
c
n has a properly edge-colored Hamiltonian cycle.

Abouelaoualim et al. [4] studied the s−t properly edge-colored longest paths in c-edge-colored

graph graphs. They propose a polynomial time procedure for finding the longest properly edge-

colored s− t path in graphs with no properly edge-colored cycles.

Theorem 3.1.18. [4] Assume that Gc has no properly edge-colored cycles. Then we can always

find in polynomial time a longest properly edge-colored s− t path or otherwise to conclude that

such a path does not exist in Gc.

Using same techniques they proved the following theorem that deal with a properly edge-

colored path between two given vertices.

Theorem 3.1.19. [4] Let Gc be a c-edge colored graph with no properly edge-colored closed trails

and two vertices s, t ∈ V (Gc). Then, we can always find in polynomial time a longest properly

edge-colored s− t trail in Gc, provided that one exists.

Recently Abouelaoualim et al. [3] gave some sufficient degree conditions for the existence of

properly edge-colored cycles and paths in edge-colored graphs, multigraphs and random graphs.

In particular, they prove that an edge − colored multigraph of order n of at least three colors

and with minimum colored degree greater than or equal to ⌈n+1
2 ⌉, has properly edge-colored

cycles of all possible lengths, including Hamiltonian cycles. Longest properly edge-colored paths

and Hamiltonian paths between given vertices are considered as well.

Theorem 3.1.20. [3] Let Gc be a 2-edge colored graph such that for every vertex x, di(x) ≥
d ≥ 1, i ∈ {1, 2}. Then Gc has a properly edge-colored path of length at least 2d.

In the case where c ≥ 3, the following corollary was proved.

Corollary 3.1.21. [3] Let Gc be an c-edge-colored graph graph, c ≥ 3. If, for every vertex x,

di(x) ≥ d ≥ 1, i ∈ {1, 2, ..., c}, then Gc has a properly edge-colored path of length 2⌊ c2⌋d

For edge − colored multigraphs they give similar theorems. For the following theorem they

give a construction of a graph H1 that is used in the theorem. In fact, the property of the graph

is that any longest properly edge-colored cycle in H1 has a length d.
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Theorem 3.1.22. [3] Let Gc be an c-edge-colored graph multigraph, c ≥ 2. Assume that for

every vertex x, di(x) ≥ d ≥ 1, i ∈ {1, 2, ..., c}. Then Gc has either a properly-edge colored path of

length at least min{n− 1, 2d} or otherwise a properly-edge colored cycle of length d+ 1, unless

Gc is isomorphic to H1, in which case it has a cycle of length d.

Using this theorem 3.1.22 they give some sufficient degree conditions for an edge-colored

multigraph to have a properly edge colored Hamiltonian cycle. This result may be viewed as

a counterpart to Dirac’s well known result for general graphs [30] , insofar as the conditions

involved deal only with degree conditions and with nothing else.

Theorem 3.1.23. [3] Let Gc be a c-edge-colored multigraph of order n with minimum colored

degree greater than or equal to ⌈n+1
2 ⌉.

I)If c = 2, then Gc has a properly edge-colored Hamiltonian cycle when n is even, and a properly

edge-colored cycle of length n− 1, when n is odd.

II) If c ≥ 3, then Gc has a properly edge-colored Hamiltonian cycle.

Based on this theorem they obtained a series of corollaries for properly edge-colored Hamil-

tonian paths, namely :

Corollary 3.1.24. [3] Let Gc be a c-edge colored multigraph, c ≥ 3. Assume that for each color

i ∈ {1, 2, ..., c} and for each vertex x of Gc, di(x) ≥ ⌈n2 ⌉. Then Gc has a properly edge-colored

Hamiltonian path.

In next corollary they give interesting results for properly edge-colored Hamiltonian paths

with fixed end-points.

Corollary 3.1.25. [3] Let x, y be two fixed vertices in Gc, c ≥ 2. Assume that ∀v ∈ V (Gc),

di(v) ≥ ⌈n+3
2 ⌉ for each color i ∈ {1, 2, ..., c}. Then Gc has a properly edge-colored Hamiltonian

path with endpoints x, y.

In next theorem, they go further by showing that under the conditions of Theorem 3.1.23,

Gc has cycles of many lengths. An edge-colored multigraph Gc of order n is called pancyclic if it

contains properly edge-colored cycles of all possible lengths 2, 3, 4, 5, . . . , n. Similarly, Gc is even-

pancyclic if it contains properly edge-colored cycles of all possible even lengths 2, 4, 6, 8, . . . , 2⌊n2 ⌋.

Theorem 3.1.26. [3] Let Gc be a c-edge colored multigraph, c ≥ 2. Assume that ∀x ∈ V (Gc),

di(x) ≥ ⌈n+1
2 ⌉ for each colori ∈ {1, 2, ..., c}.

i)If c = 2, then Gc is even-pancyclic.

ii)If c ≥ 3, then Gc is pancyclic.

Now let us see another interesting result on edge− colored multigraphs. Clearly, it is interes-

ting to find a maximum 1-path-cycle subgraph or maximum cycle subgraph of a c-edge-colored

graph multigraph. Based on the polynomial algorithm for finding a maximum weight perfect

matching in a weighted graph in O(n3) time ([58] Ch. 11), Bang-Jensen and Gutin [10] give the

following theorem.
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Theorem 3.1.27. [10] One can construct a maximum cycle subgraph and a maximum 1-path-

cycle subgraph, respectively in a c-edge-colored multigraph G on n vertices in time O(n3).

In order to explain some of the following results, we introduce the notion of color-connectivity,

proposed by Saad [62].

Definition 3.1.28. A pair of vertices x, y of a c-edge-colored multigraph G is called color-

connected if there exist alternating (x, y)-paths P = xx′, ..., y′y and P ′ = xu′, ..., v′y, such that

c(xx′) 6= c(xu′) and c(y′y′) 6= c(v′y). We define a vertex x to be color-connected to itself. We

say that G is color-connected if every pair of vertices of G is color-connected.

A very useful observation is that every Hamiltonian c-edge-colored graph multigraph is color-

connected. The next logical question is how to check if the given two vertices are or not color-

connected. Bang-Jensen and Gutin [11] show that it is possible to check the color-connectivity

between two given vertices in O(|E|) time.

Lemma 3.1.29. [11] Let G = (V,E) be a connected 2-edge-colored multigraph and let x and

y be distinct vertices of G. For each choice of i, j ∈ {1, 2} we can find an alternating path

P = x1x2...xk with x1 = x, xk = y, c(x1x2) = i and c(xk−1xk) = j in time O(|E|) (if one

exists).

3.2 Bipartite multigraphs

Let us see now some results on properly edge-colored bipartite multigraphs. Hilton [47]

proved the following theorem :

Theorem 3.2.1. [47] Let G be a 2-edge-colored regular bipartite graph such that each of the

partite sets of G has m vertices and let G” be the blue subgraph of G. If the degree d(G) of G

is at least m
2 + 1 and G” is regular of degree at least m

2 and at most d(G) − 1, then G has a

Hamiltonian alternating cycle.

Theorem 3.2.2. [11] A 2-edge-colored complete bipartite multigraph is Hamiltonian iff it is

color-connected and has a spanning cycle subgraph. There is an algorithm for constructing a

Hamiltonian alternating cycle in a color-connected 2-edge-colored complete bipartite multigraph

on n vertices in time O(n2,5) (if one exists).

Another condition for a 2-edge-colored complete multigraph to contain a Hamiltonian alter-

nating cycle was obtained by Chetwynd and Hilton [27] :

Theorem 3.2.3. [27] A 2-edge-colored complete bipartite graph B with partite sets U and W

(|U | = |W | = n) is Hamiltonian iff B has a spanning cycle subgraph and, for every k = 2, ..., n−1

and every pair of k-sets X and Y such that X ⊂ U , Y ⊂ W , d1(X) + d2(Y ) > k2 and d2(X) +

d1(Y ) > k2.
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The longest properly edge-colored cycle problem for 2 − edge − colored complete bipartite

multigraphs is polynomially solvable.

Theorem 3.2.4. [11] The length of the longest alternating cycle in a color-connected 2-edge-

colored complete bipartite multigraph G is equal to the number of vertices in maximum cycle

subgraph of G. There is an algorithm for finding a longest alternating cycle in a color-connected

2-edge-colored complete bipartite multigraph on n vertices in time O(n3).

Let r be a positive integer. The 2-edge-colored complete bipartite graph B(r) has partite sets

{x1, ..., x2} and {y1, ..., y2}. The set of red edges of B(r) is{xiyj : 1 ≤ i ≤ r, 1 ≤ j ≤ r} ∪ {xiyj :
r + 1 ≤ i ≤ 2r, r + 1 ≤ j ≤ 2r}.

Theorem 3.2.5. [11] A 2-edge-colored complete bipartite multigraph is vertex evenpancyclic iff

it is Hamiltonian and not isomorphic to one of the graphs B(r) (r = 2, 3, ...).

Corollary 3.2.6. [11] A 2-edge-colored complete bipartite multigraph is evenpancyclic if and

only if it is Hamiltonian and not isomorphic to one of the graphs B(r) (r = 2, 3, ...).

3.3 Heterochromatic subgraphs

In this section, we present some important results on heterochromatic subgraphs in edge-

colored graphs. More details can be found in a survey by Kano and Li [50].

As mentioned before, heterochromatic subgraph is also called multicolored, rainbow colored,

colorful or polychromatic subgraph. As one can easily understand from its name, a heterochro-

matic subgraph is a subgraph where each edge is of a distinct color, i.e. there is as many colors

as edges in the subgraph.

One of the problems on heterochromatic subgraphs is the Partition problem. There are two

natural ways to make a partition, one is vertex partition and the second one is edge partition.

We present some existing results on special types of heterochromatic subgraphs such that hetero-

chromatic trees, cycles and paths. Clearly the heterochromatic spanning subgraphs are important

as well car they are properly edge-colored and we can use classical algorithms i order to find

properly edge-colored spanning trees for the initial graph.

3.3.1 Vertex Partitions

The vertex partition problem is the problem of partition by heterochromatic subgraphs, the

initial c-edge-colored graph. In fact the goal is to find the minimum number of vertex-disjoint

heterochromatic subgraphs. If the minimum is equal to one, then the heterochromatic trees,

cycles and paths becomes spanning heterochromatic subgraphs.

If the c-edge-colored graph is monochromatic, i.e. all it’s edges are colored in same color, then
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the minimum heterochromatic tree partition problem is equivalent to finding a maximum mat-

ching.

Li and Zhang [53] studied the complexity of the heterochromatic tree, cycle and path partition

problems.

Theorem 3.3.1. [53] The minimum heterochromatic tree (cycle) partition problem is NP-

Complete, and there does not exist a constant factor approximation algorithm for it. Actually,

the minimum heterochromatic tree partition problem is NP-Complete for bipartite graphs.

Theorem 3.3.2. [53] The minimum heterochromatic path partition problem is NP-Complete

for 2-edge-colored graphs, and therefore, it is NP-Complete for general graphs.

Another result for complete bipartite graphs is due to Chen et al. [26]. They gave an explicit

formula for the heterochromatic tree partition number (hetetreer) of an r-edge-colored complete

bipartite graph Km,n.

Theorem 3.3.3. [26] Let n, m and r be integers such that 2 ≤ m ≤ n, 1 ≤ r ≤ mn. Then the

heterochromatic tree partition number of an r -edge-colored complete bipartite graph Km,n is

hetetreer(Km,n) =





n if 1 ≤ r ≤ n;

1 if m(n− 1) + 1 ≤ r ≤ mn;

2 if m = n and r = n2 − 2n+ 2;

n− ⌊ n
m
⌋ if m+ 1 ≤ r ≤ m(n− 1), and r ≡ 0, 1 (mod m);

n− ⌊ n
m
⌋ − 1 otherwise.

Jin and Li [49] give the heterochromatic tree partition number of an r-edge-colored complete

graph.

Theorem 3.3.4. [49] Let 3 ≤ n, 2 ≤ r ≤
(
n
2

)
and

(
t
2

)
+ 2 ≤ r ≤

(
t+1
2

)
+ 1. Then hetetreer (Kn) =

⌈ (n−t)
2 ⌉.

3.3.2 Edge Partitions

The next results concern a heterochromatic tree partition of the edge set of a properly edge

colored complete graph. Constantine [29] gave a result on the existence of a proper edge coloring

of complete graphs, such that their edges can be partitioned into heterochromatic spanning

trees.

Theorem 3.3.5. [29] For n 6= 1, 3, K2n can be properly edge-colored with 2n− 1 colors in such

a way that the edges can be partitioned into edge-disjoint heterochromatic isomorphic spanning

trees.
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In graph theory, a factor of a graph G is a spanning subgraph, i.e., a subgraph that has

the same vertex set as G. A k-factor of a graph is a spanning k-regular subgraph, and a k −
factorization partitions the edges of the graph into disjoint k-factors. A graph G is said to be

k − factorable if it admits a k-factorization. In particular, a 1− factor is a perfect matching,

and a 1− factorization of a k-regular graph is an edge coloring with k colors.

The degree condition for a properly edge-colored graph to have a heterochromatic H-factor,

was studied by Yuster [71]. He found the following result.

Theorem 3.3.6. [71] Let H be a graph and n ≥ 2 be an integer such that |H| divides n. Then

there exists an integer k = k(H) such that every properly edge-colored graph of order n and with

minimum degree at least (1− 1
χ(H))n+ k has a heterochromatic H − factor.

Suppose that the edges of the complete K2n are colored with 2n−1 colors in such a way that

the edges of any single color form a perfect matching. Such a coloring is called a coloring of

factorization. It is easy to see that every complete graph K2n with a coloring of factorization

contains a heterochromatic spanning tree : namely, the star K1,2n−1 at any vertex.

A complete graph on 2n vertices K2n can be partitioned into n spanning trees. So Brualdi

and Hollingsworth [21] formulated the following conjecture.

Conjecture 3.3.7. [21] If the complete graph K2n has a coloring of factorization, then the edges

of K2n can be partitioned into n heterochromatic spanning trees.

And they proved the following.

Theorem 3.3.8. [21] If the complete graph K2n (n ≥ 3) has a coloring of factorization, then

there exist two edge-disjoint heterochromatic spanning trees.

Kaneko, Kano and Suzuki [1] extended the theorem 3.3.8 to properly edge-colored complete

graphs and gave the following theorem and conjecture.

Theorem 3.3.9. [1] Every properly edge-colored complete graph Kn (n ≥ 6) has three edge-

disjoint heterochromatic spanning trees.

Conjecture 3.3.10. [1] Every properly edge-colored complete graph Kn (n ≥ 6) has ⌊n2 ⌋ edge-

disjoint heterochromatic spanning trees. In particular, if n is even then the edges of Kn can be

partitioned into n
2 heterochromatic spanning trees.

Akbari and Alipourn [5] generalized the theorem 3.3.8 for a graph colored by r colors with

colorsdistribution (a1, a2, · · · , ar) there ai is the number of edges colored in color i , 1 ≤ i ≤ r,

as follows.

Theorem 3.3.11. [5] If the r -edge-colored complete graph Kn has a color distribution (a1, · · · , ar)
with 1 ≤ a1 ≤ · · · ≤ ar ≤ (n+3)/2 and r ≥ n− 1, then Kn has a heterochromatic spanning tree.
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Theorem 3.3.12. [5] Suppose that the r-edge-colored complete graph Kn has a color distribution

(a1, · · · , ar) with 2 ≤ a1 ≤ · · · ≤ ar ≤ (n + 1)/2. If T is a non-star heterochromatic spanning

tree of Kn, then Kn − T has a heterochromatic spanning tree, where T is regarded as an edge

subset.

Theorem 3.3.13. [5] If the complete graph Kn is r -edge-colored so that its color distribution

(a1, · · · , ar) satisfies 1 ≤ a1 ≤ · · · ≤ ar ≤ (n)/2 and r ≥ n − 1, then Kn has two edge-disjoint

heterochromatic spanning trees.

Theorem 3.3.14. [5] If the complete graph Kn, n ≥ 3, is r-edge-colored and r ≥
(
n−2
2

)
+ 2,

then Kn has a heterochromatic spanning tree.

Theorem 3.3.15. [5] If the complete graph Kn, n ≥ 6, is r-edge-colored and r ≥
(
n−2
2

)
+ 3,

then Kn has two edge-disjoint heterochromatic spanning trees.

Brualdi and Hollingsworth [22] obtained a necessary and sufficient condition using color

distribution for an r-edge-colored complete bipartite graph to have a heterochromatic spanning

tree.

Theorem 3.3.16. [22] Every (2n − 1)-edge-colored complete bipartite graph Kn,n with color

distribution (a1, · · · , a2n−1) such that 1 ≤ a1 ≤ · · · ≤ a2n−1 has a heterochromatic spanning tree

if and only if for every integer k with k ≤ 2n− 1, it follows
∑k

i=1(ai) >
k2

4 .

3.3.3 Heterochromatic Hamiltonian Cycle

A k−bounded edge−colored graph is a graph there the edges are colored using no color more

than k times. The problem to find a large bound k = k(n) such that every k − bounded edge−
colored complete graph Kn contains a heterochromatic Hamiltonian cycle was mentioned by

Erdos, Nesetril and Rodl [33]. They addressed it as an Erdos-Stein problem and showed that k

can be any constant.

Hahn and Thomassen [45] obtained that k could grow as fast as n
1

3 to guarantee that a k-

bounded edge-colored Kn contains a heterochromatic Hamiltonian cycle. They conjectured that

the growth rate of k could in fact be linear.

Theorem 3.3.17. [45] There exists a constant number c such that if n ≥ ck3 then every k-

bounded edge-colored complete graph Kn has a heterochromatic Hamiltonian cycle.

Frieze and Reed [38] made further progress.

Theorem 3.3.18. [38] There exists a constant number c such that if n is sufficiently large and

k ≤ n
c ln(n) , then every k-bounded edge-colored complete graph Kn contains a heterochromatic

Hamiltonian cycle.
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In [6], Albert, Frieze and Reed proved the conjecture of [45].

Theorem 3.3.19. [6] Let c < 1
32 . If n is sufficiently large and k ≤ ⌈cn⌉, then every k-bounded

edge-colored complete graph Kn contains a heterochromatic Hamiltonian cycle.

Albert, Frieze and Reed also obtained a similar result in the case of directed graphs.

Theorem 3.3.20. [6] Let c < 1
64 . If n is sufficiently large and k ≤ ⌈cn⌉, then every k-bounded

edge-colored complete digraph
−→
Kn contains a heterochromatic Hamiltonian directed cycle.

Hahn and Thomassen [45] considered the heterochromatic Hamiltonian path in infinite com-

plete graphs Kw. Since we are not dealing with infinite graphs in this thesis, we are not giving

further details about these results.

Corollary 3.3.21. [45] If Kw is edge-colored so that no color is used more than k times for a

fixed k, then it contains a heterochromatic Hamiltonian path.

3.3.4 Heterochromatic Spanning Tree

In the previous section we gave some results on the heterochromatic spanning trees. We

continue with different results.

An edge coloring of a graph G is called an edge coloring with complete bipartite

decomposition if each color class form a complete bipartite subgraph of G.

In unpublished work, Caen conjectured that if a complete graphKn is edge-colored with complete

bipartite decomposition using n− 1 colors, then Kn has a heterochromatic spanning tree.

Alon, Brualdi and Shader[7] proved the following stronger result.

Theorem 3.3.22. [7] Every complete graph Kn having an edge coloring with complete bipartite

decomposition contains a heterochromatic spanning tree.

Suzuki [66] studied necessary and sufficient conditions for the existence of a heterochromatic

spanning tree in an edge-colored graph.

Theorem 3.3.23. [66] An edge-colored connected graph G of order n has a heterochromatic

spanning tree, if and only if, for any k colors (1 ≤ k ≤ n − 2), the removal of all the edges

colored with these k colors from G results in a graph having at most k + 1 components.

Using this Theorem 3.3.23 Suzuki proved the following.

Theorem 3.3.24. [66] The (n2 )-bounded edge-colored complete graph Kn has a heterochromatic

spanning tree.

Jin and Li [48] generalized Theorem 3.3.23 to the following theorem.

Theorem 3.3.25. [48] Let Gc be an edge-colored connected graph and 1 ≤ k ≤ |G| − 1 be an

integer. Then G has a spanning tree with at least k colors if and only if for any color subset

S ⊆ c(e) : e ∈ E(G), it holds that
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w(G− ES) ≤ n− k + |S|,

where ES is the set of edges with colors in S, and w(G−ES) denotes the number of components

in G− ES.

Akbari and Alipour [5] gave another necessary and sufficient condition for the existence of a

heterochromatic spanning tree in an edge-colored connected graph.

Theorem 3.3.26. [5] An edge-colored connected graph G has a heterochromatic spanning tree

if and only if for every partition of V (G) into t parts, where 1 ≤ t ≤ |V (G)|, there exist at least

t− 1 edges with distinct colors that join different partition sets.

Broersma and Li[20] obtained some results on the complexity problem of finding a spanning

tree with as many different colors as possible, and of finding one with as few different colors as

possible .

Theorem 3.3.27. [20] Finding a spanning tree with as many different colors as possible is

equivalent to finding a common independent set of maximum cardinality in two matroids, in

particular, there is a polynomial time algorithm.

Theorem 3.3.28. [20] Finding a spanning tree with as few different colors as possible is NP-

hard.

Later, Chang and Leu [24] showed that finding a spanning tree with as few different colors as

possible is NP-Complete even for the complete graphs by using set cover problem, which implies

that there is no constant factor approximation algorithm unless P = NP.

3.3.5 Proper trees and weak proper trees in edge colored graphs

Abouelaoualim, Manoussakis et al. [2] defined for the first time a proper spanning tree (PST)

and the PST problem. They gave some results on that using the m-tree-cycle-proper-edge-colored

subgraph.

Definition 3.3.29. Let Gc be a c−edge−colored graph, a m-tree-cycle-proper-edge-colored

subgraph of Cc is a subgraph composed by m proper edge colored trees and a collection of proper

edge colored cycles, all vertex disjoint.

Using this definition they prove the following lemma :

Lemma 3.3.30. Let Kc
n be an c-edge-colored complete graph, T a proper-colored tree and C a

proper colored cycle, such that T and C a vertex disjoint and V (kcn) = V (T ) ∪ V (C). If at least

one of two following conditions holds, then Kc
n has a PST.

(i) It exist x ∈ V (C) and t, t′ ∈ V (T ) such that tt′ ∈ E(T ) is an edge of T and (c(tx) 6= c(tt′),

where t is a leaf of T) or (c(t′x) 6= c(tt′), t′ is a leaf of T).

(ii) It exist x ∈ V (C) and t ∈ V (T ) such that c(tx) 6= c(tt′), ∀t′ ∈ NT (t).
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(iii) It exist t, t′ ∈ V (T ) such that tt′ ∈ E(T ) is an edge of T and c(tC) = c(tt′) = c(t′C).

They also gave an algorithm that uses the fact of existence of a tree and of a cycle that spans

the graph, and proved the following lemma.

Lemma 3.3.31. Let Kc
n be an c-edge-colored complete graph, T a proper-edge-colored tree and

C a proper edge colored cycle, such that C and T are vertex disjoint and V (kcn) = V (T )∪V (C).

Then Kc
n has a PST, and its can be found in O(|V (T )||V (C)|) time.

The following theorem is a generalization of the lemma.

Theorem 3.3.32. Let Kc
n be a c-edge-colored complete graph, T a proper-edge-colored tree and

C1, C2 · · · , Ck proper edge colored cycles , such that C1, C2 · · · , Ck and T are pairwise vertex

disjoint and V (Kc
n) = V (T ) ∪ V (C1) ∪ V (C2) · · · ∪ V (Ck). Then Kc

n has a PST and it can be

found in O((k − 1)2s2) where s = max{V (T ), V (Ci) i : 1, · · · , k}.

Theorem 3.3.33. Let p be an even integer, and Gc a c-edge-colored graph, where c = n
p
. If the

monochromatic subgraph Gi in color ∀i ∈ {1, 2, · · · , c} is p
2 − edge − connected, then Gc has a

PST.

3.4 Conclusion

As we have seen in this chapter, there is a lot of results concerning Hamiltonian paths,

Hamiltonian cycles, heterochromatic subgraphs and trees. The authors give necessary and suffi-

cient conditions for the existence of proper Hamiltonian paths, cycles, heterochromatic spanning

trees in an edge-colored connected graph. The proper spanning tree and the weak spanning tree

problems have first been defined by A. Abouelaoualim, Y. Manoussakis et al. [2]. They provided

some results by using the m-tree-cycle-proper-edge-colored subgraphs. However, both problems

are relatively new and have not been much investigated. Therefore, in this thesis our aim is to

contribute to the study of these problems, and we begin with the maximum proper and weak

proper trees in edge-colored graphs, in the next chapter.
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In this chapter we introduce the optimization version of the two problems PST and WST 1.

Also in this chapter are studied the maximum proper colored tree (MPT) and the maximum

weak-proper tree (MWT) problems, in a general edge-colored graph.

4.1 NP-completeness and non-approximability results

Definition 4.1.1. Let Gc be a c − edge − colored graph. T is a proper spanning tree of Gc if

and only if V (T ) = V (Gc) and any two adjacent edges in E(T ) have different colors.

Definition 4.1.2. Let Gc be a c− edge− colored graph. T is a weak proper spanning tree of Gc

if and only if T is rooted, V (T ) = V (Gc) and all root-to-leaf paths are proper colored.

1. This is the joint work done with Wenceslas Fernandez de La Vega, Yannis Manoussakis, Carlos Martinhon,
Rahul Muthu, and Rachid Saad.

36
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Figure 4.1 – Graph with Ω(n2) colors

Let formally define the optimization version of the problems.

Problem : maximum proper colored tree problem (MPT)

Input : Edge-colored graph and a constant k ∈ N.
Question : Is there a proper tree of order k ?

Problem : maximum weak-proper tree problem (MWT)

Input : Edge-colored graph and a constant k ∈ N.
Question : Is there a weak-proper tree of order k ?

Consider initially a 2-edge colored graph Gc on n vertices. It is evident that a PST in this

case corresponds to Hamiltonian path. But the maximum proper tree (MPT) corresponds to the

Longest path in the graph. The PST and MPT problems obviously belong to NP. As you can

see for 2-edge colored graph both problems are NP-Complete.

Now consider a c-edge colored graph Gc on n vertices. If the number of colors c is constant,

we proved that the MPT problem is NP-Complete.

The next result shows that the proper tree problem remains NP-hard even for graphs with

c = Ω(n2) colors. The proof is based in the example in Figure 4.1.
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Figure 4.2 – Redution 3-SAT formula B = (x1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x3 ∨ x4) to wst (fig.(a)) and
pst (fig.(b)).

Theorem 4.1.3. The maximum proper tree problem on Gc is NP-hard even for c = Ω(n2).

Démonstration. Let Gc be an instance of the mpt problem with n nodes and c colors. Construct

a complete graph Kc′

n with n nodes and color each of its edges with a different color. Add new

edges between some fixed vertex of Kc′

n and all vertices of Gc and give them all the same color

different from those used on Gc and Kc′

n . Clearly, this new graph has c = Ω(n2) colors and

contains a proper tree on n+ t nodes if and only if Gc has one on t nodes.

Before giving some nonapproximability results on MPT Problem we will present the proof

of the NP-Completness of the mwt problem.

Theorem 4.1.4. Given a vertex r in Gc, c ≥ 2, the wst problem rooted at r is NP-complete.

Démonstration. The wst problem obviously belongs to NP. To show that wst is NP-hard we

construct a reduction from the 3-SAT problem as follows. Consider a boolean expression B

in conjunctive normal form (CNF) with variables x1, . . . , xs and clauses c1, . . . , ct. In addition,

suppose that B constains exactly 3 literals per clause (actually, we may also consider clauses of

arbitrary size). We show how to construct a 2-edge-colored graph Gc such that, B is true if and

only if G contains a wst with root r.

The vertex set V (Gc) consists of 2s+ t+ 1 nodes and is defined as :

V = {r, a11, a12, a21, a22, . . . , as1, as2, c′1, . . . , c′t}.
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The vertex r is the root, vertices ai1, ai2 for i = 1, . . . , s are associated respectively with

variables xi of B, and all vertices c′j (for j = 1, . . . , t) are associated with the clauses cj of B.

The edge set E(Gc) is constructed in the following way. All edges between the root r and

the vertices ai1, ai2, for each i ∈ {1, . . . , s}, are added with color blue. Each pair ai1, ai2, for

each i ∈ {1, . . . , s}, is connected by a red edge. For each occurrence of xi in the positive form

in the clause cj we add a blue edge ai2c
′
j . Analogously, for each ocurrence of xi in the negative

form in the clause cj we add a red edge ai2c
′
j . See the example of Figure 4.2 (a).

Therefore given a truth assignment for B, we obtain a Weak Spanning Tree T in Gc as

follows. For each variable xi which is true, we select edges rai1, ai1ai2 and all blue incident to

ai2. Similarly, for each variable xi which is false, we select edges rai2 and all red edges incident

to ai2.

Conversely, if T is a Weak Spanning Tree, an assigment for all variables of B is obtained as

follows. If the last edge on the path from the root r to some c′j , namely ai2c
′
j is colored blue,

then the corresponding variable xi is set to true, otherwise it is set to false.

In the rest of this section, we present nonapproximability results for the mwt and mpt

problems. Recall that in the mwt, the objective is to maximize the number of nodes covered

by a tree T with root r. Initially, consider the following auxiliary result relating the maximum

number of covered vertices Opt(G) and the maximum number of satisfied clauses Opt(B).

Lemma 4.1.5. Opt(G) = Opt(B) + 2s+ 1.

Démonstration. Consider the construction described in the proof of the previous theorem, cor-

relating a 3-CNF-formula and a corresponding graph. As in that proof, for every assignment

of values to the variables of the formula, we have a weak tree rooted at r, covering all the

a11, a12, . . . , as1, as2 and all c′j associated with the set of satisfied clauses of B. Conversely, gi-

ven any weak tree rooted at r, we obtain an assignment of values to the variables in B, such

that we satisfy at least as many clauses as the number of paths from r to c′j . It follows that

Opt(G) = Opt(B) + 2s+ 1.

Now lets look to the following nonapproximabilty results for mwt problem. To prove the

nonapproximability bounds we are using a classical negative result for the Max-3-Sat problem.

As proved in Hastad [46], the Max-3-Sat cannot be approximated within 7/8+ ǫ, unless P=NP.

Theorem 4.1.6. The mwt problem is nonapproximable within 63/64 + ǫ, for ǫ > 0, unless

P = NP .

Démonstration. Again, consider a boolean expression B with s variables and t clauses. In addi-

tion, suppose that B constains exactly 3 literals per clause. Then, by the gap reduction technique

we prove that :

1) if Opt(B) ≥ t then Opt(G) ≥ f(s, t), where f(s, t) = 2s+ t+ 1 and,
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2) if Opt(B) < (7/8 + ǫ)t then Opt(G) < (63/64 + ǫ)f(s, t), for ǫ > 0.

The first condition follows directly since Opt(G) = Opt(B) + 2s + 1 by Lemma 4.1.5.

Thus, consider Opt(B) < (7/8 + ǫ)t. From this inequality, and Lemma 4.1.5, it follows that

Opt(G) < (7/8 + ǫ)t+ 2s+ 1 = (7/8 + ǫ)t+ f(s, t)− t. Therefore Opt(G) < (ǫ− 1/8)t+ f(s, t).

Now, from the definition of the 3-SAT problem it follows that 3 ≤ s ≤ 3t. Therefore,

f(s, t) ≤ 2s + t + s/3 = 7s/3 + t ≤ 8t. Thus, for 0 < ǫ < 1/8, it follows that Opt(G) <

(ǫ− 1/8)f(s, t)/8+ f(s, t) = (ǫ/8− 1/64+ 1)f(s, t). Finally, Opt(G) < (63/64+ ǫ′)f(s, t) where

ǫ′ = ǫ/8.

Now, we deal with the mst problem.

Lemma 4.1.7. Opt(G) = Opt(B) + 2s

Démonstration. We construct a tree associated with any formula in 3-CNF as follows. We have

three vertices yi, ai1, ai2, for each variable xi, 1 ≤ i ≤ s, in the formula. We also have vertices

c′1, . . . , c
′
t corresponding to each of the t clauses in the formula. We have a red edge between ai1

and c′i if variable xj occurs in positive form in the clause Cj . In case the variable xi occurs in the

negative form in clause Cj , we put a red edge between ai2 and c′j . We have blue edges between

yi and ai1 and yi and ai2, for each i ∈ {1, . . . , s}. The vertex pairs yi and yi+1 are connected

each by different colors other than red and blue for each i ∈ {1, . . . , s− 1}.
It can be easily deduced by looking at Figure 4.2 (b), that for any i ∈ {1, . . . , s}, at most

two of yi, ai1, ai2 can be covered by a proper tree. The vertices corresponding to the satisfiied

clauses can always be covered. Thus, clearly Opt(G) ≥ Opt(B) + 2s.

Now suppose that we are able to also cover a vertex corresponding to an unsatisfied clause.

This implies that the vertex, say c′j is connected to some ai1 or ai2, only one of which is present

in the tree. Also, every satisfied clause is covered, and this is independent of the assignment

made to the variable xi. This means we can satisfy an extra clause contradicting the optimality

of the assignment. Thus Opt(G) ≤ Opt(B) + 2s.

Theorem 4.1.8. The mst problem is non approximable within 55/56 + ǫ, for ǫ > 0, unless

P = NP .

Démonstration. Consider a boolean expression B with s variables, t clauses and exactly 3 lite-

rals per clause. We want to show that :

1) if Opt(B) ≥ t, then Opt(G) ≥ f(s, t), where f(s, t) = 2s+ t and,

2) if Opt(B) < (7/8 + ǫ)t, then Opt(G) < (53/54 + ǫ)f(s, t), for ǫ > 0.

Case (1) follows immediately from Lemma 4.1.7.

For case (2), we again apply the gap reduction technique using the Max-3-Sat problem.

Clearly, Opt(G) = Opt(B)+2s < (7/8+ ǫ)t+2s = (7/8+ ǫ)t+(f(s, t)− t) = (ǫ−1/8)t+f(s, t).

Now, from the definition of the 3-SAT problem it follows that 3 ≤ s ≤ 3t. Therefore, f(s, t) ≤
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Figure 4.3 – A Complete graph on 3 colors

2s+ t ≤ 6t+ t = 7t. Thus, for 0 < ǫ < 1/8, it follows that Opt(G) ≤ (ǫ−1/8)f(s, t)/7+f(s, t) =

(ǫ/7− 1/56)f(s, t) + f(s, t). Finally, Opt(G) < (55/56 + ǫ′)f(s, t) where ǫ′ = ǫ/7.

It is known that it exist a polynomial algorithm to find Hamiltonian path in 2 edge-colored

complete graphs [15]. Looking for PST Problem for complete edge-colored graphs with at least

3 colors, we have the following result.

Theorem 4.1.9. The pst is NP-complete for complete graphs Kc
n, colored with c ≥ 3 colors.

Démonstration. Let Gc = (V,E) be an instance of the pst problem with n nodes and c ≥ 2

colors. Construct a new colored complete graph Hc+1 on 2n vertices and (c+1)-colors, as follows.

Add all edges in the complement graph Gc using a new color, and retain the edges of Gc with

their original color. Also, use the extra color to form a complete graph on a new set of n vertices

as well as a complete bipartite graph between the old vertices and new vertices.

Observe, that all the new vertices, being monochromatic, are necessarily leaves in any pst.

Additionally, no two of them may be adjacent to the same vertex, since all edges incident to the

entire set of new vertices are of the same color. Thus, it is necessary for the original graph Gc

to have a pst. It is also a sufficient condition, since a pst of Gc does not use any edges of the

new color, and hence the set of new vertices can be attached as leaves to such a tree to get a

pst of Hc+1.

Since the pst problem is NP-complete for arbitrary graphs colored with two or more colors,

it is also NP-complete for complete graphs colored with three or more colors.
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4.1.1 Conclusion

In this section we has proved that the problem of determining whether an edge-colored graph

has a PST or a WST is NP-Complete for general edge-colored graphs. We proved that the proper

tree problem remains NP-hard even for graphs with c = Ω(n2) colors. We proved that the proper

tree problem remains NP-complete for complete edge-colored graphs with at least 3 colors. It is

evident that in the case of properly edge-colored graphs both problems are polinomialy solvable,

since we can use Prim’s or Kruskal’s algorithm to solve this problems. In the rest of this thesis

we study same problems in the case of special families of edge-colored graphs.
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4.2 Maximum colored trees in acyclic edge-colored graphs

As mentioned and proved in an earlier section, the problem of determining whether an edge-

colored graph has a pst is NP-Complete. This is also the case with the wst problem. In this

section, we prove that these problems can be solved efficiently when we restrict our attention

to the class of colored acyclic graphs. When there is no spanning tree, our algorithms can be

directly adapted to find a tree of maximum cardinality.

While some ideas are common, the proofs and conditions for the pst and wst problems on

acyclic edge-colored graphs, differ significantly. Consequently, we have divided the presentation

into two seperate subsections, for the sake of clarity.

4.2.1 pst

We begin with a very simple theorem which shows, when a given acyclic graph has a pst. The

algorithm which results from this proof has complexity O(cn2.5). Subsequently, we present an

alternative, more complicated, proof but with a much better algorithmic complexity of O(n2.5).

Since that proof is more involved, we divide it into two parts. We prove the result first for acyclic

complete graphs and then generalize it to all acyclic graphs. In addition to the superior running

time, in case the graph does not contain a pst this latter algorithm can be modified to produce

a mpt. Finally, it is possible that the ideas used in the latter results can be adapted to develop

approximation algorithms for the mpt problem on general graphs.

Theorem 4.2.1. An acyclic graph Gc has a pst iff the union of maximum matchings of each

of the colors in χc contains exactly (n− 1) edges.

Démonstration. We use, here, Mi to denote a maximum matching in color i and Ti to denote

the edge set of color i in a pst. Any subgraph induced by
⋃c

i=1Mi is clearly a proper one. Thus

if |⋃c
i=1Mi| ≥ n, then the subgraph contains a proper cycle, contradicting the acyclicity of Gc.

Now suppose |⋃c
i=1Mi| < (n − 1). Clearly, if Gc has a pst then for some color i, |Mi| < |Ti|,

since |⋃c
i=1Mi| < (n− 1) = |⋃c

i=1 Ti|. This is a contradiction of the maximality of Mi.

We now provide alternative results specifying conditions under which an acyclic graph has a

pst. We also develop an efficient algorithm to construct one if it exists. If the given graph does

not have an pst, then our algorithm can be adapted in a straightforward manner to produce

a proper spanning forest (psf) with the smallest possible number of components (trees). This

adaptation is just a greedy procedure, which finds a tree of largest size, and then repeats the

procedure on the subgraph induced by the residual vertices. We first prove all these results

for acyclic edge-colored complete graphs and then extend them for general acyclic edge-colored

graphs.

Let G1, . . . , Gp, p ≥ 1 be the components of Gc \ {u}. By Theorem 3.1.9 if Gc is acyclic,

for some u, the edges between u and Gi are monochromatic, for all i ∈ {1, . . . , p}. We call such

a vertex u, a yeo-vertex. We refer to a yeo-vertex which uses different colors for the edges to
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different components as a rainbow-yeo-vertex. We call any other yeo-vertex non-rainbow-yeo, if

the need arises to distinguish them.

We first prove an elementary result on colored acyclic graphs, which we use in Section 4.3.

Lemma 4.2.2. For any colored acyclic graph Gc, c ≤ n− 1.

Démonstration. Assume, Gc is an acyclic colored graph with c ≥ n. Consider a subgraph induced

by a set of n edges of distinct colors. Since, this subgraph has at most n vertices, the presence

of n edges implies a cycle. It is a properly colored cycle as the set of selected edges are all of

distinct colors. This contradicts the assumption that Gc is acyclic.

Based on Theorem 3.1.9, we state below an easy lemma.

Lemma 4.2.3. If an acyclic edge-colored graph contains a non-rainbow-yeo vertex, then it has

no pst.

Démonstration. This is because there are at least two components in the graph obtained by

deleting this vertex which must be connected to each other in a potential pst by a path of

length two through this vertex. These edges are necessarily of the same color and hence the

resulting spanning tree is not a proper one.

In Theorem 4.2.5 we characterize acyclic edge-colored complete graphs having proper span-

ning trees. With a view to proving that result, we first give a structural characterization of

acyclic edge colored complete graphs.

Proposition 4.2.4. An acyclic edge-colored complete graph consists of a unique sequence of

induced cliques (called blocks) B1, . . . ,Bk such that :

i) each Bi is a maximal monochromatic clique in the subgraph induced by
⋃k

j=i Bj,

ii) all edges between each Bi and
⋃k

j=i+1 Bj are monochromatic in the same color as the edges

of Bi.

Démonstration. For a complete graph, the induced subgraph obtained by deleting any vertex

has exactly one component, because it is again a complete graph with one fewer vertex. Thus

for any such graph which is acyclic, a yeo-vertex is necessarily a rainbow-yeo-vertex. In other

words it is a monochromatic vertex (all edges incident to it are of the same color). Thus if there

is more than one yeo-vertex in the given graph, then they are monochromatic in the same color,

since they also have a direct edge between themselves (as the graph is complete).

Thus, the entire set of yeo-vertices of an acyclic edge-colored complete graph induce a mo-

nochromatic clique, and additionally, they are all connected to every other vertex in the graph

by edges of this same color.

Note that if we remove this entire clique of vertices, the resultant smaller graph is also an

acyclic edge-colored complete graph on fewer vertices.
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Figure 4.4 – Acyclic Complete graph decomposition

Thus, it follows, that there exists a similar clique (of a color distinct from the one just

removed) in the remainder of the graph. We delete this clique and place the constituent vertices

in a second group. We repeat this procedure of collecting vertices in this type of groups and

obtaining a smaller graph until all the vertices have been removed. The partial order we use in

finding a pst, is precisely the order determined by these groupings.

We now state a theorem, which given an acyclic edge-colored complete graph, determines

whether or not it contains a pst. The decision is made on the basis of the cardinalities of the

blocks B1, . . . ,Bk in the ordering described in Proposition 4.2.4. To facilitate the description

of our results we let the color of the ith block be denoted ci. For any fixed i, 1 ≤ i ≤ k,

we let ti denote the total number of vertices in the set of blocks from Bi to Bk, i.e., ti =

|V (Bi)|+ . . .+ |V (Bk)|. We define Si = {Bj |i ≤ j ≤ k; cj = ci}. Define Si
′

=
⋃
x ∈ Si. Now, we

define tcii =
∣∣∣Si

′

∣∣∣
With the terminology above, we may state the following.

Theorem 4.2.5. An acyclic edge-colored complete graph has a pst if and only if :

i) The last block Bk has two vertices, and

ii) for each i < k, if block Bi has the same color as the last one Bk, then tcii ≤ ti
2 + 2. Else

tcii ≤ ti
2 .
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Démonstration. First assume that the given graph has a pst, and let T represent any such

possible pst. Notice that in the partial ordering of the vertices according to Proposition 4.2.4,

the group of vertices in block Bi are necessarily leaves in the subtree induced by the vertices of⋃k
j=i Bj . Moreover, each of these vertices are attached to distinct internal vertices of the subtree

(since all edges incident to these vertices in the subgraph induced by
⋃k

j=i Bj are of the same

color). A necessary condition is, thus, that there is a proper tree Ti spanning
⋃k

j=i Bj for each

i ∈ {1, . . . , k}.
Thus, in order to add the vertices of Bi+1 as leaves to the subtree Ti, to construct Ti+1, there

must be at least |Bi+1| vertices not having any edge of color ci incident to them in Ti. However,
all vertices, in blocks i, . . . , k whose color is ci+1 necessarily use an edge of this color in the tree.

Additionally, each of them (except if they are in the last block Bk), are also appended to some

other vertex in the tree Ti, with color ci. The vertices of Bi+1 must therefore be attached as

leaves to |Bi+1| distinct vertices different from the vertices accounted for above. This proves the

second condition of the theorem.

The first condition states that the last block Bk must be of size exactly two. From the

earlier arguments, these vertices must contain a proper tree spanning them. Since they induce

a monochromatic clique, it is possible only if there are exactly two vertices.

Conversely, if the conditions are on the cardinalities are satisfied, we show that a pst exists.

We construct a partial tree consisting of the edge between the two vertices of the last block Bk.

Subsequently, we consider in order the vertices of the blocks Bk−1, . . . ,B1 and at each stage, we

pick a set of vertices of size |Bi| in the partial tree Ti−1, which are free of the color ci and attach

the vertices of Bi as leaves to distinct vertices in this set, to augment the tree to Ti.

Now based on Theorem 4.2.5 we describe, an algorithm which computes a pst for any acyclic

edge-colored complete graph, if one exists. If one does not exist then the algorithm can easily

be adapted to produce a psf with the minimum possible number of components.

We now describe our algorithm to construct the pst.

The running time of the above algorithm is O(n2). This is the cost using Breadth-First-

Search (BFS), to compute the order in Step 1. The rest of the algorithm consists in finding for

each new block of vertices, a certain type of matching saturating them, which enables them to

be attached as leaves of the partial tree. If there is no pst, our algorithm finds a maximum size

proper tree, and then repeats the procedure on the subgraph induced by the residual vertices,

resulting in an ssf with the fewest possible number of trees.

We now show how Theorem 4.2.5 as well as the algorithm can be extended to find a pst

in a general acyclic graph, if one exists. We define a canonical auxiliary tree associated with

any acyclic edge-colored graph. It is similar to the linear order for acyclic edge-colored complete

graphs. We assume that the graph has no non-rainbow-yeo-vertex. The root of the auxiliary tree

is any yeo-vertex of the graph. The number of children of the root is the number of components

resulting from the deletion of this vertex from the graph. The root of the auxiliary tree is

connected to each subtree using an edge of the same color as the edge between the original
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Algorithm 1 pst for Kc
n-acyclic

1: compute the order described above
2: if last block Bk has more than two vertices then return “No pst”
3: if last block Bk has two vertices then connect the two vertices of Bk to get an initial Proper

Tree
4: for i = k − 1 to 1 do
5: if condition 2 of Lemma 4.2.5 is true then
6: join the vertices of Bi as leaves, to distinct vertices already incorporated in the tree

which have not used an edge of color ci in the partial proper tree obtained in the
previous iteration.

7: else
8: return ”no pst”
9: end if

10: end for
11: return the pst

yeo-vertex and the corresponding component. The root of the subtrees are likewise computed

recursively. Thus we get an auxiliary rooted edge-colored tree T .

First we need to define some associated auxiliary graphs, which we use to characterize acyclic

edge-colored graphs that have a pst.

Definition 4.2.6 (auxiliary tree). Given an acyclic edge-colored graph Gc, we define an asso-

ciated auxiliary tree T as follows.

i) n(T ) = n(Gc).

ii) The root r(T ) is associated with a yeo-vertex v0 of Gc.

iii) There is one subtree corresponding to each component Gc \ {v0}.
iv) The roots of these subtrees are computed recursively and are attached as children of v0.

v) The color of the edge between two nodes of T is the same as the color of the edges between

the corresponding component and yeo-vertex in Gc.

vi) Note that the presence of an edge between two nodes in T does not imply the presence of an

edge between the corresponding vertices in Gc.

We now define a set of bipartite graphs one for each color in {1, . . . , c}.

Definition 4.2.7. Associated with each color l ∈ {1, . . . , c} we have a bipartite graph as follows.

i)If a node in the auxiliary tree (of Definition 4.2.6) corresponding to a vertex has a child of

color l then it is placed in the left part of the bipartite graph corresponding to color l.

ii) Any other vertex with an edge of color l incident to it in the graph Gc is placed in the right

part.

iii) The edges are all those in the original graph of the color l, crossing this partition.

Theorem 4.2.8. An acyclic edge-colored graph has a pst iff for each color in {1, . . . , c} the

corresponding bipartite graph has a matching saturating the vertices of the left partite set.
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Démonstration. By Lemma 4.2.3, if there exists a non-rainbow-yeo-vertex, then we immediately

conclude that the given graph has no pst. It follows that we need only consider the case where all

the yeo-vertices are of the rainbow type. Assume that v0 is one such vertex. Let the components

of Gc \ {v0} be C1, . . . , Ct. It is straightforward to verify that Gc has a pst iff the subgraph of

Gc induced by the vertex set V (Ci) ∪ {v0} has a pst for each i ∈ {1, . . . , t}.
We are in effect able to use a rainbow-yeo-vertex to divide the problem into smaller and

independent subproblems. This immediately suggests a recursive appproach to solving the pro-

blem. We use the recursion tree of Definition 4.2.6 and the corresponding bipartite graphs of

Definition 4.2.7 to divide the problem.

In fact, if any Ci does not have a pst then Gc also does not have a pst. We conclude that Gc

has a pst iff each Ci has a pst which can be extended to include the vertex v0. The connection

of component Ci to v0 must be by an edge of color i. The feasibility of this is checked using

cardinalities, like in the case of complete acyclic graphs. We do not have a simple linear structure

here, unlike in that case, and hence check the condidions using matching in the auxiliary bipartite

graph instead. The existence and computation of the matching can be done using any of the

standard algorithms. The subtrees rooted at the children of v0 are computed recursively in the

same way.

Thus, using the recursion tree obtained, we construct the bipartite graphs described above

and then solve the pst problem by transforming it to a series of matching problems.

Suppose the graph Gc does not have a pst. This either means that there is no rainbow

yeo-vertex, or the cardinality conditions fail.

In the former case, let us denote the components of Gc \ v0, by C1, . . . , Ct. We find the

maximum proper trees for each Ci. We also compute the maximum proper trees for each Gi∪v0,

which use touch vertex v0. From the latter set of trees, we pick the ones of largest cardinality

corresponding to distinct colors of the edge incident to v0 and take their union. A maximum

proper tree is the largest among the first set of trees and the tree obtained by combining the

second set as described above.

The second case is merely a special case of the previous one, wherein, when we compute the

tree combining the second sequence, we consider all the components.

The next theorem follows easily from the preceeding analysis and results.

Theorem 4.2.9. Given an acyclic edge-colored graph Gc, a pst, if any, can be found in Gc in

time O(n2.5).

Démonstration. This cost is dominated by the time to compute matchings in graphs bipartite

graphs, which we use in the algorithm for spt.

4.2.2 wst

We now show how to construct a wst, if one exists, in an acyclic edge-colored graph Gc, with

a given root vertex r. Like we did for the case of the pst, we define here as well, an associated
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auxiliary tree.

Definition 4.2.10 (auxiliary tree). Given an acyclic edge-colored graph Gc, and a specified

vertex r, we define an associated auxiliary tree T ′ as follows.

i) The tree T is computed according to the Definition 4.2.6.

ii) The tree T ′ is then obtained by re-rooting T at the node R, corresponding to the vertex r in

Gc.

Theorem 4.2.11. An acyclic edge-colored graph Gc, has a wst iff in the auxiliary tree T ′ every

path from the root R to any leaf is properly colored.

Démonstration. The above auxiliary tree T ′, obtained by re-rooting at the vertex corresponding

to the specified root of the wst provides a direct way to compute a wst if one exists. A wst

rooted at r is computed for each subgraph induced by {r} ∪ Ci, i ∈ {1, . . . , t}. Here, C1, . . . , Ct

are the components of Gc\{r}. These trees are then merely fused together at their only common

vertex r, to get a wst. Such a tree is a weak one rooted at r, because in the auxiliary tree any

path from R to any leaf is a properly colored one.

Theorem 4.2.12. Given an acyclic edge-colored graph Gc, a wst, if any, can be found in Gc

in time O(n2.5).

Démonstration. It is almost identical to the proof of Theorem 4.2.9.

4.3 Proper spanning forests in acyclic graphs

In this section, we show how to find in polynomial time, a maximum proper spanning forest

(mpsf) in Gc, the maximality being in terms of the number of edges. If the graph has a pst,

then naturally, one is produced by our algorithm for maximum forest. This section differs from

the previous one, for graphs which do not contain a pst. In the previous section, the algorithm

we describe produces a largest possible tree, whereas, here the algorithm produces a forest with,

possibly, many trees, in such a way that the total number of edges is maximized. We conclude the

section by showing how to decide, in polynomial time, whether Gc contains a proper spanning

forest (psf), satisfying given degree constraints on each vertex. We also show how to construct

the forest if one exists in this latter case.

Basically, for the mpsf problem, the idea is to construct a new colored multigraph Gc′ , with

color set χc′ = χc ∪ {0} (where 0 is a new color) and an associated non-colored weighted graph

G, which always contains a perfect matching. The multigraph Gc′ , has multiplicity at most two.

Moreover, the color of two edges between the same pair of vertices always differ. If there are two

edges between a pair of vertices, then one of them is always colored 0. We prove that a maximum

weight perfect matching in G, whose construction is described below, is associated with a set of

properly edge-colored closed trails in Gc′ , such that the number of edges with a color from χc is
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Figure 4.5 – Construction of a Maximum Proper Spanning Forest

maximized. As a result, deleting all edges colored 0 in this set, we directly produces a maximum

proper spanning forest in Gc.

Gc′ is constructed by taking the union of Gc with a complete monochromatic graph (in color

0) on the same vertex set. Let K0
n denote the resulting monochromatic complete subgraph of Gc′

with the edges of color 0. Thus, we have V (Gc′) = V (Gc) = V (K0
n) and E(Gc′) = E(Gc)∪E(K0

n).

Before we describe the construction of G, we first define gadgets Gi associated with each ver-

tex vi of G
c′ , as depicted in the sequel (see Figure 4.5). We use these gadgets in our construction

of G. Formally :

– V (Gi) = (
⋃

γ∈χc′
{vi,γ , v′i,γ : Nγ

Gc′
(vi) 6= ∅}) ∪ (

⋃
α,β∈χc′

{piα,β , qiα,β : α < β, Nα
Gc′

(vi) 6= ∅

and Nβ

Gc′
(vi) 6= ∅})

– E(Gi) = (
⋃

γ∈χc′
{vi,γv′i,γ : Nγ

Gc′
(vi) 6= ∅}) ∪ (

⋃
α,β∈χc′

{v′i,αpiα,β , piα,βqiα,β ,
qiα,βv

′
i,β : α < β})

Now, the weighted non-colored graph G = (V ′, E′) with w : E′ → {0, 1} is constructed as

follows :

– V ′ =
⋃

vi∈V (Gc′ ) V (Gi), and

– E′ = (
⋃

vi∈V (Gc′ )E(Gi)) ∪ (
⋃

γ∈χc′
{vi,γvj,γ : vivj ∈ Eγ(Gc′)})

– w(vi,γvj,γ) = 1, for every vi,γvj,γ ∈ E′ with γ ∈ χc. The remaining edge weights of E′

will be settled to 0, i.e., w(vi,0vj,0) = 0 for every vi,0vj,0 ∈ E′ and w(xy) = 0, for every

xy ∈ E(Gi).

After constructing Gc′ and G as above, we solve the maximum perfect matching problem
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over G (see [34]). Observe that graph G always contains a perfect matching. To see that, it

suffices to exhibit a perfect matching (with cost 0) by only choosing edges of E(Gi). Thus, if Mi

denotes a perfect matching in Gi (which is unique in this case), the subset M =
⋃

vi∈V (Gc′ )Mi

obviously defines a perfect matching in G. Therefore, we can establish the following result :

Theorem 4.3.1. Let Gc be an acyclic c-edge-colored graph. Then, the maximum proper spanning

forest problem can be solved in polynomial time in the order of Gc.

Démonstration. Basically, the idea is to prove that maximum proper spanning forests in Gc are

associated with maximum perfect matchings in G, and vice-versa. Initially, suppose we have a

proper spanning forest T ∗ in Gc with the maximum number of edges. Let T ∗
1 , T

∗
2 , . . . , T

∗
k (for

k ≥ 1) be the subtrees of T ∗. Note that, for every subtree T ∗
i of T ∗, the number of vertices of T ∗

i

with odd degree is even. As a consequence of that, the total number of vertices with odd degrees

in T ∗ is also even. Let PT ∗ be this subset of vertices. Now, consider the multigraph Gc′ as above,

obtained after the addition of edges with color 0 to Gc. Further, consider H0 (with all edges

colored 0) the complete subgraph of Gc′ induced by the vertices of PT ∗ . Let M0 ⊆ E(H0) be an

arbitrary perfect matching of H0 and Hc′ = (V ,E) with V = V (Gc′) and E = M0 ∪E(T ∗), the

associated subgraph. Note that subgraph Hc′ is not necessarily connected and all edges incident

to v ∈ V have a different color. Further, notice that all vertices of Hc′ have an even degree and

each connected component, say CTi (for 1 ≤ i ≤ k′ and k′ ≤ k), contains a properly edge-colored

closed trail, i.e., each CTi defines an eulerian trail.

Now, given E, we construct a perfect matching M∗ in G = (V ′, E′) as described in the sequel.

Initially, we set M∗ = ∅ and add to M∗ all edges vi,0vj,0 of E′ with vivj ∈ M0. Now, we increase

M∗ by choosing all edges vi,γvj,γ of E′ with vivj ∈ Eγ(T ∗) and γ ∈ χc. The remaining edges

in the gadgets Gi (with cost 0) are now directly obtained. Note that c(M∗) = |E(T ∗)|. Finally,
we prove that M∗ is a maximum perfect matching in G. Suppose, by contradiction, we have

some new perfect matching M ′ with cost c(M ′) > c(M∗) and an associated proper edge-colored

subgraph H ′ of Gc with c(H ′) > |E(T ∗)|. In this case, there are two possibilities : a) If H ′ defines

a new proper spanning forest, this contradicts the fact that T ∗ is a maximum proper forest in

Gc ; b) If H ′ does not define a proper spanning forest, we would have some properly edge-colored

cycle in H ′, contradicting the fact that Gc is acyclic.

Conversely, consider the weighted graph G = (V ′, E′) associated to Gc as above, and M∗

a maximum perfect matching with cost c(M∗) in G. Let M = (E′ \ E(Gi)) ∩ M∗ be a subset

of M∗. Now, to obtain Gc′ from G it suffices to color edges vi,γvj,γ of G with γ ∈ χc′ and

contract all gadgets Gi to vertex vi. Note that all edges of Gc′ associated to M define a subset

of proper spanning closed trails in Gc (denoted by CT1, . . . , CTk′) with the maximum number

of edges with colors in χc. Hence, since G
c is acyclic, all properly edge-colored cycles in CTi (for

i ∈ {1, . . . , k′}) contain at least one edge-colored 0. After deleting all these edges, one directly

obtains a proper spanning forest T ∗ =
⋃k

ℓ=1 Tℓ in Gc with cost c(T ∗) = c(M∗) and k ≥ k′.

Finally, note that T ∗ contains a maximum number of edges since no edges with unitary costs in

G were eliminated in the process.
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Now, we show that the algorithm above has a polynomial time complexity in the order of

Gc. Initially, observe that each gadget Gi of G (with c ≥ 2) contains at most c(c + 1) vertices.

From Lemma 4.2.2, we know that c = Ø(n). Thus, the non-colored graph G contains Θ(n3)

vertices, in the worst-case. However, note that a maximum perfect matching in any graph G can

be obtained in time O(|V (G)|2.5) (see [34] for details). Therefore, the algorithm for the proper

spanning forest has total complexity equal to O(n7.5).

Now, we conclude with the following result regarding proper spanning forests with given

degrees.

Theorem 4.3.2. Let Gc be a c-edge-colored acyclic graph and d : V (Gc) → {0, 1, . . . , n− 1}, an
integer function. In addition, consider 0 ≤ d(vi) ≤ |{γ ∈ χc : N

γ
Gc(vi) 6= ∅}|. Then we can find

in polynomial time, provided that one exists, a proper spanning forest in Gc satisfying d.

Démonstration. Initially, given an acyclic edge-colored graph Gc, we construct a non-colored

graph G, as described in the sequel. For each vi ∈ V (Gc) with d(vi) > 0 we define gadgets Gi in

the following manner :

• V (Gi) = (
⋃

γ∈χc
{vi,γ , v′i,γ : Nγ

Gc(vi) 6= ∅}) ∪ {vi1, . . . , vid(vi)}
• E(Gi) = (

⋃
γ∈χc

{vi,γv′i,γ : Nγ
Gc(vi) 6= ∅}) ∪ (

⋃
γ∈χc

{v′i,γvij : j = 1, . . . , d(vi)}
Above, if d(vi) = 0 for some vi ∈ V (Gc), we just set V (Gi) = (

⋃
γ∈χc

{vi,γ , v′i,γ : Nγ
Gc(vi) 6=

∅}) and E(Gi) = (
⋃

γ∈χc
{vi,γv′i,γ : Nγ

Gc(vi) 6= ∅}).
Now, a non-colored graph G = (V ′, E′) is constructed as follows :

• V ′ =
⋃

vi∈V (Gc) V (Gi), and

• E′ = (
⋃

vi∈V (Gc)E(Gi)) ∪ (
⋃

γ∈χc
{vi,γvj,γ : vivj ∈ Eγ(Gc))

We show that Gc contains a proper spanning forest T satisfying the degree constraint d, if

and only if, G = (V ′, E′) contains a perfect matching. Hence, our result follows since the perfect

matching problem can be solved polynomial time.

Initially, consider M∗, a perfect matching in G, if any. In this case, we can obtain a proper

spanning forestHc′ in Gc (for c′ ≤ c) in the following manner. Initially, letM = (E′\E(Gi))∩M∗

be a subset ofM∗. Now, we color all edges vi,γvj,γ ∈ E′ with color γ ∈ χc and contract all gadgets

Gi to vertex vi. Finally, we construct H
c′ by choosing all edges of Gc associated to M . Notice by

the construction of Gi, that we have exactly d(vi) > 0 edges incident to vi in the resulting edge-

colored subgraph Hc′ . Further, all edges incident to vi have a different color and vi is isolated

if d(vi) = 0. Therefore, since Gc is an acyclic edge-colored graph, the subgraph Hc′ contains no

properly colored cycles and defines a proper spanning forest in Gc satisfying d.

Conversely, consider Hc′ a proper spanning forest in Gc, and the graph G as above. Initially,

set M∗ = Ø in G. Now, we obtain the associated matching M∗ in two steps :

(1) For every edge vivj ∈ Eγ(Hc′) with γ ∈ χc we add edges vi,γvj,γ to M∗ ;

(2) The remaining edges of M∗ present in the gadgets Gi are now directly obtained.

It is easy to see that M∗ constructed as above defines a perfect matching in G.
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4.4 Random graphs

Let c ≥ 3 be a fixed integer and let G(n, p) be the random graph on n vertices where each

edge is present with independent probability p. We define G(c)(n, p) as the edge union of c

independent copies of G(n, p
c
) where for each j ∈ {1, . . . , c}, the edges of the jth copy are colored

by j.

Theorem 4.4.1. If p = λ logn
n

, where λ is a sufficiently large constant, then with probability

tending to 1 as n tends to infinity, G(c)(n, p) contains a proper spanning tree.

Démonstration. Let G = G(c)(n, p) and let c0 be a fixed color. We describe an algorithm to pros-

pectively construct a proper spanning tree in our graph and prove that it works with probability

close to 1. The algorithm proceeds in two stages.

(1) Construct a sequence of proper trees T0, T1, T2, ...Tt. Here, T0 is a star with an arbitrary

root and with ν edges with colors pairwise distinct and different from c0. We define t and

ν later. For each i ∈ {1, . . . , t}, Ti is obtained from Ti−1 by expanding a pendant vertex

with edges of all the colours distinct from c0, and also distinct from the color of the edge

incident to this vertex in Ti−1.

(2) From Tt obtain a proper spanning tree by adding a pairing of the internal vertices of Tt

other than the root with the remaining vertices of G using edges of color c0.

This concludes the description of the algorithm.

Note that Tt has a total of t(c−2)+ν+1 vertices among which exactly t are internal vertices,

distinct from the root. We want to match these t vertices with the remaining vertices of G, that

is, we want

t = n− t(c− 2)− ν − 1

or, t =
n− ν − 1

c− 1
,

and this will be an integer for precisely one value of ν with 1 ≤ ν ≤ c− 1. We fix this value for

ν.

To prove the correctness of the first stage of the algorithm it suffices to prove that at each

point in the construction we can find with probability 1 − o(1/n) an edge with any particular

fixed colour linking a point v, say, already in the current tree and the external set which has size

at least t. Now, when we look for such an edge of colour j, say, we have not looked previously

at the edges of colour j linking v to the remaining vertices. Hence, the conditional distribution

of these edges given the previous steps of the algorithm is the same as their unconditional

distribution, namely, each is present with probability λ logn
cn

and they are independent. Therefore

the probability that at least one is present is at least

1− (1− λ log n

cn
)t ≥ 1− exp(− λ log n

c(c− 1)
)

= 1− o(1/n)
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if λ ≥ c2.

We turn now to the second stage. Since we have not looked yet at the edges of colour c0, we

just have to check that with high probability there exist in a random graph with edge probability

p a pairing between to given disjoint sets with sizes t. (We have not looked before at the edges

with color c.) This amounts to asking for a perfect matching in the random bipartite graph

B(t, p). Now p = λ logn
cn

≥ θ logn
t

with θ = 2λ
3c(c−1) . This graph is known to have, almost surely, a

perfect matching for any fixed θ greater than 1/2 and thus for λ ≥ c(c− 1)/2 (see Corollary 13,

page 159 in [17]). Putting together this estimate with the bound already found, we infer that

the theorem holds for λ ≥ c2. On the other direction, the theorem does not hold for λ ≤ c by

connectivity considerations.

4.5 Conclusions

In this chapter we recapitulate the notion of various types of colored trees in edge-colored

graphs. We obtain results reflecting the computational difficulties involved in their solution and

provide efficient algorithms for the specific family of acyclic graphs. We give a mathematical

characterization of complete graphs which contain a pst. We study the trends of random graphs

with reference to the problem of pst.

We list here some possible future directions for research in this area.

(1) Algorithms to solve the pst and wst problems on other special classes of graphs like

planar graphs or hypercubes.

(2) Approximation algorithms with performance guarantee of at least logarithm of the optimal

solution.

(3) The minimum number of edges whose colors need to be changed in order to render the

graph acyclic. This is closely related to the feedback arc set problem.
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In this chapter, we consider sufficient conditions that guarantee the existence of proper

spanning trees in graphs whose edges are colored (not necessarily properly) with any number

of colors. The conditions we impose are relationships between various parameters of colored

graphs, such as total number of colors, number of vertices, connectivity and number of differently

colored edges incident to a vertex. These special conditions are of interest because there are no

good characterizations for the existence of such colored trees in general edge-colored graphs.

We state some general results about rainbow spanning subgraphs using all colors in the edge-

coloredgraph. After that, we give sufficient conditions on the total number of colors of the

graph which guarantee the existence of proper spanning trees in Gc. The number of colors

depends on the connectivity. In next section, we obtain conditions on the number of colors

and the rainbow degree of the graph for the existence of proper spanning trees. All the above

results hold for graphs with a lower bound on the number of vertices, which are specified in the

theorems’statements.

5.1 Some general results

Before explaining the main results of this section we present some general results for edge-

colored connected graphs 1. We consider here a rainbow spanning subgraph using all colors in Gc

which gives us a tool to construct proper spanning trees. In the following lemmas we consider the

largest component of such a rainbow spanning subgraph and study its order and connectivity.

1. This is a joint work with Raquel Agueda, Yannis Manoussakis, Gervais Mendy and Rahul Muthu.

55
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Figure 5.1 – Rainbow partition

Lemma 5.1.1. Let Gc be a c-edge-colored connected graph such that |V (Gc)| = n. If n ≥
k2 + 3k + 4

2
, for some k ∈ N, and c ≥ (n− k − 1) (n− k − 2)

2
+ k + 1, then the size of the

largest component in any rainbow spanning subgraph using all colors is at least n− k − 1.

Démonstration. Consider a rainbow spanning subgraph Hrs in Gc using all the colors. We shall

use H0 to denote its largest component and H1 to denote the subgraph induced on the rest of

the vertices.

Let p ≥ 0 represent |V (H1)|. Thus, |V (H0)| = n−p. As the subgraph Hrs is a rainbow using

all the colors which are present in the graph, the number of edges in such a subgraph is equal to

the number of colors in the original graph, whose lower bound is
(n− k − 1) (n− k − 2)

2
+k+1.

Further, the number of edges in the subgraph must be at most
p (p− 1)

2
+

(n− p) (n− p− 1)

2
,

assuming all possible edges within the vertices of each part of the partition are present.

Combining these two facts, we get

p (p− 1)

2
+

(n− p) (n− p− 1)

2
≥ (n− k − 1) (n− k − 2)

2
+ k + 1,

which reduces to the following inequality

2p2 − 2np+ 2n+ 2nk − k2 − 5k − 4 ≥ 0

Solving this inequality on p, we get that

p ∈ {0, . . . , k + 1} ∪ {n− k − 1, . . . , n} .
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Moreover, since |V (H1)| = p, we have p ≤ k+1. Otherwise, let us suppose that p ≥ n−k−1,

then the size of the largest component H0 - and hence the size of each component in Hrs - is at

most k+1. In this case the total number of edges in the subgraph is at most
n

k + 1

(k + 1) k

2
=

nk

2
,

which is strictly less than
(n− k − 1) (n− k − 2)

2
+k+1, a lower bound on the number of colors

for n ≥ k2 + 3k + 4

2
. This proves the lemma.

Lemma 5.1.2. Let Gc be a c-edge-colored connected graph such that |V (Gc)| = n with n >
k2 + 3k + 4

2
and c ≥ (n− k − 1) (n− k − 2)

2
+ k + 1. Let us denote by Hrs a rainbow spanning

subgraph using all colors in Gc and by H0 its largest component, where |H0| = n−p ≥ n−k−1.

Then the number of bridges in H0 is less or equal to k − p+ 1.

Démonstration. Recall that the number of edges inHrs is exactly c, which is at least
(n− k − 1)(n− k − 2)

2
+

k+1. As in the previous lemma,H1 denotes the subgraph induced on the vertices V (Gc)−V (H0),

so |V (H1)| = p and the number of edges in H1 is at most
p(p− 1)

2
. Suppose that the number

of bridges in E (H0) is k − p+ 2 or greater, thus the number of edges in Hrs is less or equal to
(n− k − 2)(n− k − 3)

2
+ k − p+ 2+

p(p− 1)

2
, corresponding to the case where the deletion of

the k − p+ 2 bridges decomposes H0 into a ”big” component and k − p+ 2 singletons.

The following inequality holds :

(n− k − 1)(n− k − 2)

2
+ k + 1 ≤ (n− k − 2)(n− k − 3)

2
+ k − p+ 2 +

p(p− 1)

2

This inequality reduces to

n− k − 2 ≤ (p− 1) (p− 2)

2
,

and since p ≤ k + 1, implies that

n− k − 2 ≤ k(k − 1)

2

which contradicts the hypothesis n >
k2 + 3k + 4

2
.

Lemma 5.1.3. Let Gc be a c-edge-colored connected graph such that |V (Gc)| = n with n >
k2 + 3k + 4

2
and c ≥ (n− k − 1) (n− k − 2)

2
+ k + 1. Let us denote by Hrs a rainbow spanning

subgraph using all colors in Gc and by H0 its largest component. If the deletion of the bridges

in H0 disconnects H0 into a component H̃0 and m singletons, then H̃0 is at least (k −m+ 2)-

edge-connected.

Démonstration. Recall that the number of edges inHrs is exactly c, which is at least
(n− k − 1)(n− k − 2)

2
+

k+1. As in the previous results H1 denotes the subgraph induced on the vertices V (Gc)−V (H0).
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The number of edges in H1 is at most
(k + 1)k

2
since |H1| ≤ k + 1 by Lemma 5.1.1. We have

m bridges in E (H0) connecting m singletons to the ”big” component H̃0, so that the number

of edges in H̃0 is at least
(n− k − 1)(n− k − 2)

2
+ k + 1 − (k + 1)k

2
− m. Therefore at least

(n− k − 1)(n− k − 2)

2
− k(k + 1)

2
edges remain after the removal of any k −m+ 1 edges from

that component, i.e., since
(n− k − 1)(n− k − 2)

2
precisely corresponds to the number of edges

in a complete graph on n − k − 1 vertices, the former deletion results in a deficit of at most
(k + 1)k

2
edges. Since n >

k2 + 3k + 4

2
, we have

k(k + 1)

2
=

k2 + 3k + 4

2
− (k + 2) < n− k − 2,

the edge-connectivity of a complete graph on n− k − 1 vertices.

5.2 Minimum number of colors in terms of the connectivity

In this section we consider Gc to be a c -edge-colored simple k-connected graph. Our main

theorem of this section, Theorem 5.2.3, is stated at the end. It follows as a direct consequence

of two propositions which consider different cases depending on the number of bridges that can

appear in the largest component of a rainbow spanning subgraph using all colors in Gc.

Proposition 5.2.1. Let Gc be a c -edge-colored simple k-connected graph such that |V (Gc)| = n

with n ≥ k2 + 3k + 4

2
and c ≥ (n− k − 1) (n− k − 2)

2
+ k + 1. Let Hrs be a rainbow spanning

subgraph using all colors in Gc and H0 its largest component, where |H0| = n−p and the number

of bridges in H0 is m ≤ k − p. Then Gc has a properly edge-colored spanning tree.

Démonstration. By Lemma (5.1.1) H0 has at least n − k − 1 vertices. In this case we set the

parameter k to be the connectivity of the graph and, since the subgraph is rainbow, every

spanning tree of its components is proper.

Let H1 denote, again, the subgraph induced on the vertices V (Gc)−V (H0). Since |V (H1)| =
p and Gc is k-connected, then |NH0

(x)| ≥ k− p+1 for all x ∈ H1. Let B̃0 be the set of vertices

of H0 that have neighbors both in H0 and in H1 and let B̃ be the set of all vertices in B̃0 is the

following set :

{
x ∈ B̃0, such that E(x,H0) = B(x,H0) and c(E(x,H0)) = c(E(x,H1))

}
.

Let us now consider the bipartite graph

G̃ :=
(
V (Gc) , E(Gc)−

(
E(H0) ∪ E(H1) ∪ E

(
B̃,H1

)))
.

Let us apply Hall’s theorem (see [19]) to the subgraph G̃. This subgraph contains a matching

of size k crossing the cut (H0,H1) if and only if |S| ≤
∣∣∣N G̃

H0
(S)

∣∣∣ for all subsets S of H1where

N G̃
H0

(S) denotes the neighbors of S in H0 joined by edges in E
(
G̃
)
, i.e.,

N G̃
H0

(S) =
{
x ∈ H0 such that xy ∈ E

(
G̃
)

for some y ∈ S
}
.
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Figure 5.2 – K-connected case

To see this, let us assume that such a matching does not exist. Then there is some subset S

of H1 such that
∣∣∣N G̃

H0
(S)

∣∣∣ < |S| = s. Under this assumption, let us study the order of NG (S).

This number is given by :

|NG (S)| = |NH0
(S)|+ |NH1

(S)| =
∣∣∣N G̃

H0
(S)

∣∣∣+
∣∣∣NG−G̃

H0
(S)

∣∣∣+ |NH1
(S)| < s+ k− p+ p− s = k,

since
∣∣∣NG−G̃

H0
(S)

∣∣∣ is bounded by the number of bridges in H0.

This contradicts the fact that G is k-connected, since there is a subset S of G that can be

disconnected from the rest of the graph by removing a number of vertices strictly smaller than

k. Therefore we have proved that G̃ contains a matching of H0 into H1 and therefore G contains

a matching of size k crossing the cut (H0,H1) where all the problems to attach the vertices in

H1 to H0 have been avoided and the result holds.

Proposition 5.2.2. Let Gc be a c -edge-colored simple k-connected graph such that |V (Gc)| = n

with n ≥ k2 + 3k + 4

2
and c ≥ (n− k − 1) (n− k − 2)

2
+ k + 1. Let Hrs be a rainbow spanning

subgraph using all colors in Gc and H0 its largest component, where |H0| = n−p and the number

of bridges in H0 is m = k − p+ 1. Then Gc has a properly edge-colored spanning tree.

Démonstration. We shall denote Y0 = {y1, . . . , ym} the set of vertices in H0, such that for every

i ∈ {1, . . . ,m} there exists a unique xi ∈ NH0
(yi) and bi = xiyi is a bridge. The deletion of

{b1, . . . , bm} divides H0 in a total of m+ 1 components where m of them are singletons.
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Let us denote H̃0 := (V (H0)− Y0, E (H0)− {b1, . . . , bm}). By Lemma (5.1.3) H̃0 is at least

(k −m+ 2)-edge-connected.

Since the graphGc is k-connected, there is a matching of size k crossing the cut
(
H̃0, Y0 ∪H1

)
.

Denote the edges of this matching by EM = {b1, . . . , bm, em+1, . . . , ek}. Let the endpoints of

these edges in H̃0 be respectively X = {x1, . . . , xk} and the corresponding ones in H̃1 be

Y1 = {ym+1, . . . , yk}. Let Y be Y0 ∪ Y1 and z be the unmatched vertex in H1, then H̃1 :=

(V (H1) ∪ Y0, E (H1)) where V (H1) ∪ Y0 = Y ∪ {z}, and we shall distinguish two cases accor-

ding to N(z).

Case 1 : N(z) * X ∪ Y.

Let z′ ∈ NH̃0
(z) − X. In this case, we add zz′ and b1, . . . , bm, em+1, . . . , ek to Hrs deleting

any edge in Hrs incident at z
′ with color c(zz′), and also any edge incident to ei with color c(ei)

for all i ∈ {m+ 1, . . . , k}. Any such deletion on account of ei happens at exactly one of xi or yi,

but not both. Observe that there is no edge in H̃0 incident to bi for i ∈ {1, . . . ,m} with color

c(bi) since bi was the unique edge in Hrs colored in c(bi). So this entire process leads to the

deletion of at most k −m+ 1 edges from H̃0, which thus remains connected.

All the vertices of H̃1 have been connected to H̃0 to get a connected spanning properly

colored subgraph. Hence this subgraph, and also Gc, has a proper spanning tree.

Case 2 : N(z) ⊆ X ∪Y

If there is a vertex xi0 ∈ NX(z) such that c(z, xi0) 6= c(bi0) if i0 ∈ {1, . . . ,m} (respectively,

c(z, xi0) 6= c(ei0) if i0 ∈ {m+ 1, . . . , k}), then we simply add all the edges in EM and (z, xi0),

deleting any edge incident to xi of the same color for i ∈ {m+ 1, . . . , k} (recall again that there

is no edge in H̃0 incident to bi0 for i ∈ {1, . . . ,m} with color c(bi) since bi0 was the unique edge

in Hrs colored in c(bi)). Similarly, if there is an edge of the form (z, yi0) with c(z, yi0) 6= c(ei0)

if i0 ∈ {1, . . . ,m} (respectively, c(z, xi0) 6= c(bi0) if i0 ∈ {m+ 1, . . . , k}). In either case, this

connects all the vertices of H̃1 to the rest of the graph, while preserving the connectedness of

H̃0. This yields a spanning connected properly edge colored subgraph implying the existence of

a proper spanning tree for this subgraph and Gc.

We now consider the scenario where for every edge (z, xi) and (z, yj) we have c(z, xi) = c(ei)

and c(z, yj) = c(ej) for all i ∈ {1, . . . , k} such that (z, xi) , (z, yj) ∈ E (Gc). Since the number

of edges in Hrs is exactly c, which is at least
(n− k − 1)(n− k − 2)

2
+ k + 1 and

∣∣∣V
(
H̃0

)∣∣∣ ≤
(n− k − 1)(n− k − 2)

2
, there are at least k+1 differently colored edges in H̃1. Thus one of these

edges must be of the form (yi, yj) in E
(
H̃1

)
where c (yi, yj) /∈ c (E (z, Y1)). We may assume, by

relabeling the edges in EM, if necessary, along with their endpoints in X and Y2, that this edge

is indeed (ym+1, ym+2).

If there exists a vertex z′ ∈ N (z) ∩ {xm+1, xm+2, ym+1, ym+2}, we connect z using e = zz′

and add up (ym+1, ym+2) and all edges in EM except for the one which is incident to e in order

to connect all the points in Y1. We again must delete all the edges in H̃0 which are incident to

any ei colored with c(ei) for all i ∈ {m+ 1, . . . , k}. This preserves the connectedness of H̃0, the
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properness and the resultant subgraph is spanning and connected.

If N (z) ∩ {xm+1, xm+2, ym+1, ym+2} is the empty set, then NG (H1) ⊆ {x3, . . . , xk}. Then
we disconnect H1 by deleting k − 2 vertices from original graph Gc, which contradicts the k-

connectivity of Gc.

Theorem 5.2.3. Let Gc be a c -edge-colored simple k-connected graph such that |V (Gc)| = n.

If n ≥ k2 + 3k + 4

2
and c ≥ (n− k − 1) (n− k − 2)

2
+ k+1, then Gc has a properly edge-colored

spanning tree.

Démonstration. By Lemma 5.1.2 the number of bridges on E (H0) is less or equal to k − p+ 1.

The result then holds directly from Proposition 5.2.1 and Proposition 5.2.2.

This bound is the best possible, in the sense that there exist edge-colored simple k-connected

graphs colored with (n−k−1)(n−k−2)
2 + k colors and without a proper spanning tree. More preci-

sely, consider a rainbow complete edge-colored simple graph on n − k − 1 vertices. Add k + 1

new vertices x1, . . . , xk+1. Consider, also, k new colors, say c1, . . . , ck, not already used in the

rainbow complete graph. Pick now k vertices y1, . . . , yk in the complete graph and then add all

monochromatic edges on color ci, between each xi and all yj , 1 ≤ j ≤ k, i = 1, . . . , k. Finally

add edges xk+1xi each on color ci, for i = 1, . . . , k. The resulting graph, although colored with
(n−k−1)(n−k−2)

2 + k colors, has no proper spanning tree as vertex xk+1 cannot be appended to

each component of any proper spanning forest of the rest of the graph.

5.3 Minimum number of colors in terms of the rainbow degree

In this section we consider Gc to be a connected graph with rainbow degree rd (Gc) = k.

As in the previous section, the main result, Theorem 5.3.3, is presented as a corollary of two

propositions which consider different cases depending on the order of the largest component of

a rainbow spanning subgraph using all colors in Gc.

Proposition 5.3.1. Let Gc be a c-edge-colored connected graph with rainbow degree rd (Gc) = k

such that |V (Gc)| = n with n ≥ k2 + 3k + 4

2
and c ≥ (n− k − 1) (n− k − 2)

2
+k+1. Let Hrs be

a rainbow spanning subgraph using all colors in Gc such that the order of its largest component

is n− k − 1, then Gc has a properly edge-colored spanning tree.

Démonstration. Let H0 the largest component of Hrs and H1 the subgraph induced on the rest

of the vertices. Since |V (H0)| = n − k − 1, |V (H1)| = k + 1. Let X be the set {x1, x2, . . . , xk}
and V (H1) = {x} ∪X.

We shall consider two different cases depending on rdH1
(H1).

Case 1 : rdH1
(H1) = k.

The graph Gc is connected, then NH0
(H1) 6= ∅. Suppose without loss of generality that

there exists NH0
(x) 6= ∅. Since rdH1

(x) = k, then xxi ∈ E (Gc) and c (xxi) 6= c (xxj) for all

i, j ∈ {1, . . . , k} such that i 6= j.
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Figure 5.3 – Rainbow degree case

Let y ∈ NH0
(x) and e = xy. In this case we can consider H0 ∪ e ∪ E (x, X) unless there is

an edge b ∈ E (Hrs), adjacent to e, such that c(b) = c(e).

1.A. : If b ∈ E (H0), considerH0∪e∪E (x, X)−b. The subgraph H0 remains connected after

the deletion of the edge b since it is (k + 2)-edge-connected (see Lemma 5.1.3). We then have a

connected, spanning and properly colored subgraph and we can extract a properly edge-colored

spanning tree.

1.B. : If b ∈ E (H1), i.e., b is of the form xxi for some i ∈ {1, 2, . . . , k}, say i = 1. We consider

NH1
(x2), the neighborhood of x2 in H1. Since NH1

(x2) = V (H1), necessarily x1 ∈ NH1
(x2).

We also know that c (x1x2) 6= c (xx2) since rdH1
(x2) = k, then we join x1 to H0 via the path

yxx2x1.

Case 2 : rdH1
(H1) < k.

We shall consider two cases :

2.A. : There is a (k + 1)-matching M between H0 and H1.

Let us denote EM = {e, e1, . . . , ek} the set of edges running between H0 and H1. We shall

use this matching in order to join every vertex in V (H1) to H0 and delete any edge b, bi ∈ E (H0)

adjacent to e and ei, respectively, such that c(e) = c(b) and c (ei) = c (bi). There are at most

k+ 1 such edges, therefore the deletion of all of them preserves the connectivity of H0 since H0

is (k + 2)-edge-connected.

2.B. : There is no (k + 1)-matching M between H0 and H1.

Let l ∈ N such that k − l is the maximum rainbow degree in H1 for all vertices in V (H1).

Suppose again without loss of generality that k − l = rdH1
(x) and {x1, . . . , xk−l} = NH1

(x).
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Since rd (x) ≥ k, there also exist at least l vertices, y1, . . . , yl, in NH0
(x) such that all edges xxi

and xyj are pairwise differently colored. Let Y be {y1, . . . , yl}. Our aim is to connect the vertices

of the set V (H1)− (NH1
(x) ∪ {x}) = {xk−l+1, . . . , xk} to H0. For the sake of readability, let us

rename this set as Z = {z1, z2, . . . , zl}. Since rdH1
(zi) ≤ k−l and rd(zi) ≥ k for all i ∈ {1, . . . , l},

thus all these vertices must have at least l neighbors inH0 and therefore we can always find a

l-matching (Z, NH0
(Z)). If for some i ∈ {1, . . . , l}, there exists yl+1 ∈ NH0

(zi)− Y , then there

is a (l + 1)-matching (Z ∪ x, NH0
(Z ∪ x)) and by deleting, if necessary, all edges adjacent to

the extreme vertices of the matching in H0 colored the same way, we get the desired result.

Otherwise Y = NH0
(zi) = NH0

(x) for all i ∈ {1, . . . , l}, and all but one vertex in Z, say z1,

are connected via the edges yizi for all i ∈ {2, . . . , l} and y1x. We have to find a new way to

connect z1 to H0.

Since the number of colors in c (E (H1)) is greater or equal to k + 1, there is at least one

extra color apart from the ones in E (x,X). We shall study different cases depending on where

this new colored edge lies, i.e., the new colored edge is of the form :

zizj or zixj . Then we can add the edge z1yi, delete the edge of the matching yizi and use the

path yjzjzi or y1xxjzi, respectively to connect back zi.

xixj , for some i, j ∈ {1, . . . , k − l}. In this case, as |NH1
(z1)| = k − l, we simply change the

roles that x and z1 play and we will be back to the previous case.

Proposition 5.3.2. Let Gc be a c-edge-colored connected graph with rainbow degree rd (Gc) = k

such that |V (Gc)| = n with n ≥ k2 + 3k + 4

2
and c ≥ (n− k − 1) (n− k − 2)

2
+k+1. Let Hrs be

a rainbow spanning subgraph using all colors in Gc such that the order of its largest component

is greater than n− k − 1, then Gc has a properly edge-colored spanning tree.

Démonstration. Let H0 the largest component of Hrs and H1 the subgraph induced on the rest

of the vertices. Let p ∈ N represent |V (H1)|, so that |V (H0)| = n − p and let l ∈ N such that

p − l is the maximum rainbow degree in H1 for all vertices in V (H1). Let x ∈ V (H1) be a

vertex such that rdH1
(x) = p− l, then |rdH0

(x)| ≥ k− p+ l. This number is greater or equal to

k− p+1, which is the maximum number of bridges that can appear in E (H0) as it was proved

in Lemma (5.1.2).

We shall study two different cases depending on the value of l.

Case 1 : l = 1.

Since rdH1
(x) = p − 1, x is adjacent to every point in V (H1) and the edges of type xxi

are pairwise differently colored. Additionally, |rdH0
(x)| ≥ k − p+ 1 ≥ 1 since p ≤ k. Therefore,

there exists y ∈ NH0
(x) such that c(xy) /∈ c (x,H1). The subgraph H0 remains connected after

removing a possible edge in E (H0) adjacent to xy and colored in c(xy), so we get the desired

result.

Case 2 : l > 1.
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Let us set NH1
(x) = {x1, x2, . . . , xp−l}, since rdH0

(x) ≥ k− p+ l and the number of bridges

in H0 is less or equal than k− p− 1, there are at least l− 1 vertices, y1, y2, . . . , yl−1, in NH0
(x)

such that all edges xyi are pairwise differently colored and such that there is no bridge in E (H0)

incident to them. Let Y be {y1, . . . , yl−1} (|Y | = l−1). Consider Z = V (H1)−(NH1
(x) ∪ {x}) =

{ z1, z2, . . . , zl−1}. Our aim is again to connect the vertices of the set Z to H0. Since rdH0
(zi)

are greater or equal to k − p+ l for all i ∈ {1, 2, . . . , l − 1}, there is a (l − 1)-matching between

NH0
({x} ∪ Z) and H0 so that none of the adjacent edges in E (H0) is a bridge. Then only one

vertex, say z1, is left to be joined. Since rd(z1) ≥ k and rdH1
(z1) ≤ p−l, then rdH0

(z1) ≥ k−p+l

which is greater or equal to l since k ≥ p. Thus there exists a vertex y ∈ V (H0)− Y such that

yz1 ∈ E (Gc) and c(yz1) /∈ c (z1, V (H1) ∪ Y ) and we obtain a l-matching between NH0
({x} ∪ Z)

and H0. Hence the proof is finished.

Theorem 5.3.3. Let Gc be a c-edge-colored connected graph with rainbow degree rd (Gc) = k

and n ≥ k2 + 3k + 4

2
. If c ≥ (n− k − 1) (n− k − 2)

2
+k+1, then Gc has a properly edge-colored

spanning tree.

Démonstration. Let us consider Hrs, a rainbow spanning subgraph in Gc using all colors and

denote H0 its largest component and H1 the subgraph induced on the rest of the vertices. By

Lemma (5.1.1), we know that |H0| ≥ n − k − 1, so the proof of the Theorem follows directly

from Proposition 5.3.1 and Proposition 5.3.2.

5.4 Conclusion

In this chapter, we considered sufficient conditions that guarantee the existence of proper

spanning trees in edge-colored graphs. The conditions that we imposed are relationships bet-

ween various parameters of colored graphs, such as total number of colors, number of vertices,

connectivity and number of differently colored edges incident to a vertex.

In the next chapter we will consider edge-colored multigraps. Since proper Hamiltonian

paths are also proper spanning trees, we give sufficient conditions in relationships between total

number of edges, number of colors and number of vertices, guarantee the existence of proper

Hamiltonian paths in edge-colored multigraphs.
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6.1 Introduction

In this chapter we focus on edge-colored multigraphs 1. Since we try to find proper and weak

proper trees, there is no interest to suppose that the parallel edges are colored with the same

color. We give sufficient conditions involving various parameters, such as the number of edges,

rainbow degree, etc., in order to guarantee the existence of properly edge-colored hamiltonian

paths in edge-colored multigraphs. Results involving only degree conditions can be found in [3].

In this chapter all multigraphs are assumed to be connected.

We consider two families of multigraphs Hk,k+3 and Hk,k+2 without proper hamiltonian paths :

(1) Hk,k+3 denotes a 2-edge-colored multigraph on 2k + 3 vertices, k ≥ 1, defined as follows :

consider a complete red graph on k vertices joined with red edges to an independent set

of k + 3 vertices. Finally, superpose it with a complete blue graph on 2k + 3 vertices.

(2) Hk,k+2 denotes a c-edge-colored multigraph on 2k + 2 vertices, k ≥ 1 and c ≥ 3. Consider

a rainbow complete graph on k vertices joined with edges of all possible colors to an

independent set of k + 2 vertices.

Before presenting the main results of this chapter, we introduce some of our preliminary

results for connected graphs, that can be of independent interest.

1. This is a joint work with Raquel Agueda Mate, Yannis Manoussakis, Gervais Mendy and Leandro Montero.

65
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6.2 Preliminary results

Lemma 6.2.1. Let G be a simple non-colored graph on n ≥ 14 vertices. If m ≥ (n−3)(n−4)
2 + 4,

then G has a matching M of size |M | ≥ ⌈n−2
2 ⌉.

Démonstration. We can assume that the graph is connected, otherwise it is easy to see that the

only possible case is when G has two components, the first one having two adjacent vertices

and the second one having n − 2 vertices and at least (n−3)(n−4)
2 + 3 edges. Then, the result

immediately follows from the well known Theorem in [23].

Therefore, let G be a graph of order n. Let M be a maximum matching in G and let U be the

set of unmatched vertices. We shall prove that |U | ≤ 2 by contradiction.

Assume that |U | ≥ 3. In fact, it is enough to prove it for |U | = 3. Set U = {u1, u2, u3}.
Since M is a maximum matching, neither we can add any new edge to M nor we can replace a

set of edges in M , in order to obtain a new matching in G which is larger than M . Necessarily,

U is an independent set, otherwise we could add a new edge to M .

Let us denote the complement of G by G. We will count the number of edges in E(G), i.e.

those edges which cannot be present in E(G) because otherwise the matching M would not be

maximum.

Since m = |E(G)| ≥ (n−3)(n−4)
2 + 4, then

∣∣E(G)
∣∣ ≤ 3n− 10. In the sequel we will prove this

lemma for n odd, the case even being very similar.

Since the graph is connected, we shall prove the result depending on the size of a maximum

matching M̃ between U and G− U .

We distinguish three cases, depending on the cardinality of |M̃ |.

Case 1 :
∣∣∣M̃

∣∣∣ = 1. There is a unique vertex in N (U) and therefore there are at least three

vertices of degree 1 in V (G). This leads to a contradiction, since the number of edges in E(G)

would be at most
(n− 3)(n− 4)

2
+ 3 (the edges which are present in a complete graph on n− 3

vertices, and three more, which connect the vertices of degree one to the complete graph), which

contradicts the hypothesis of the lemma.

Case 2 :
∣∣∣M̃

∣∣∣ = 2. In this case, there are two vertices v1, v2 ∈ G − U , v1 6= v2, such that

u1v1, u2v2, u3v2 ∈ E(G) and N ({u2, u3}) ⊆ {v1, v2}, otherwise we would have a larger mat-

ching between the sets U and G − U . Therefore, all edges of the type u2v and u3v, for any

v ∈ G− U − {v1, v2}, are in E(G).

Also, {u1, u2, u3} is an independent set, there are at least three more edges in E(G).

Since M is a perfect matching in G−U , the vertices v1 and v2 are the extremities of some edge

in M . If v1v2 ∈ M , then we can replace v1v2 by u1v1 and u2v2, contradicting the fact that M is

maximum. Thus, there exist w1, w2 ∈ G− U − {v1, v2}, w1 6= w2, such that v1w1, v2w2 ∈ M .

Necessarily, w1w2 ∈ E(G). Otherwise we can replace {v1w1, v2w2} by {u1v1, u2v2, w1w2} and
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obtain a larger matching. The edge u1w2 is also in E(G), otherwise we can replace v2w2 in M

by u1w2 and u2v2 in order to get a larger matching.

So far we have at least 2(n− 5) + 3 + 1 + 1 = 2n− 5 edges in E(G).

There are
n− 7

2
edges, e1, e2, ..., en−7

2
, in M − {v1w1, v2w2}. We shall study the conditions

given by the possible connections between the edges ei, for i = 1, ...,
n− 7

2
, and the set {w1, w2}.

Necessarily, |Nei ({w1, w2})| ≤ 2, ∀ i = 1, 2, ...,
n− 7

2
. Otherwise we can find a matching of

size two, say {fi1, fi2}, connecting ei and {w1, w2} and we can replace {ei, v1w1, v2w2} by

{u1v1, u2v2, fi1, fi2}. We can assure then, that there are at least n − 7 new edges in E(G).

By adding these edges to the 2n− 5 edges obtained before, we conclude that there are at least

3n− 12 edges in E(G).

We shall study two different subcases.

(1) N({v1}) ∩ {u2, u3, w2} = ∅. Then 3 new edges belong to E(G). By adding these new edges

to those we have counted previously, we have 3n− 12+ 3 = 3n− 9 edges in E(G). This number

is larger than 3n− 10, the result follows.

(2) N(v1) ∩ {u2, u3, w2} 6= ∅. Then u1w1 ∈ E(G). In fact, if for example, u2v1 ∈ E(G), then we

can replace v1w1 in M by {u1w1, u2v1}, so one more edge is in E(G). Now, if u2v1 or u3v1 are

in E(G) then all edges of the type u1v, for any v ∈ G−U −{v1, v2}, are in E(G) since
∣∣∣M̃

∣∣∣ = 2.

Therefore both u2v1 and u3v1 are missing, or n − 5 − 2 = n − 7 edges are missing (since we

have already counted u1w1 and u1w2). In the first case we arrive to 3n−9, which is a contradic-

tion. In the second case we have 3n−11+n−7 = 4n−18 > 3n−10, which is again a contradiction.

Case 3 :
∣∣∣M̃

∣∣∣ = 3. In this case there are three distinct vertices v1, v2, v3 ∈ G − U , such

that uivi ∈ E(G), for i = 1, 2, 3. Since there is a perfect matching in G − U , the vertices

v1, v2 and v3 are the extremities of some edge in M . If vivj ∈ M , then we can replace vivj

by uivi and ujvj contradicting that M is maximum. Thus, there exist three distinct vertices

w1, w2, w3 ∈ G− U − {v1, v2, v3}, such that v1w1, v2w2, v3w3 ∈ M .

Necessarily, wiwj ∈ E(G) for all i, j = 1, 2, 3. Otherwise we can replace viwi and vjwj by

uivi, ujvj and wiwj and obtain a larger matching. In the same way, uiwj ∈ E(G) for all

i, j = 1, 2, 3, i 6= j, otherwise we can replace vjwj by {ujvj , ujvj}. Since U is an independent

set, there are at least 3 + 3 + 6 = 12 edges in E(G).

If uiwi ∈ E(G) then N (vi) ∩ {uj , wj} = ∅ for j 6= i. Otherwise, if for example ujvi ∈ E(G), we

can replace viwi in M by uiwi and ujvi. Thus, there are 3 more edges in E(G).

Now, there are
n− 9

2
edges, e1, e2, ..., en−9

2
, in M−{v1w1, v2w2, v3w3}. We shall study the condi-

tions given by the possible connections between the edges ei, for i = 1, ...,
n− 9

2
, and the sets
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U = {u1, u2, u3} and W = {w1, w2, w3}.
Necessarily, |Nei (W )| ≤ 3, for all i = 1, 2, ...,

n− 9

2
. Otherwise, we can find a matching of size

two, say {fij , fik}, j, k ∈ {1, 2, 3}, connecting ei and {wj , wk}, and we can replace {ei, vjwj , vkwk}
by {ujvj , ukvk, fij , fik}.
Also |Nei (U)| ≤ 3, for all i = 1, 2, ...,

n− 9

2
. Otherwise, we can find a matching of size two, say

{gij , gik}, j, k ∈ {1, 2, 3}, connecting ei and {uj , uk}, and we can replace ei by { gij , gik}. We

can assure then, that there are at least 2(3
n− 9

2
) = 3n− 27 new edges in E(G).

By adding up these edges to the 15 edges considered before, we obtain 3n− 12 edges in E(G).

Recall that we have denoted the extremities of the edge ei by pi and qi. Without loss of generality,

let us assume that if |Nei (uj)| = 1, for all i = 1, 2, ...,
n− 9

2
and j = 1, 2, 3 , then Nei (uj) = pi.

Thus, either |Nei (U)| ≤ 1 or Nqi (U) = ∅, i = 1, 2, 3. Otherwise we can find a matching of size

2 between U and ei and again, we can define a larger matching.

Now, for n ≥ 15, there are at least 3 edges in M − {v1w1, v2w2, v3w3}. If Nei (U) = ∅, then 3

more edges are in E(G) and, by adding these new edges to the 3n − 12 that we have already

found, the result follows.

If |Nei (U)| = 1, then either there exists j 6= i such that Nei (U) 6= Nej (U) or Nei (U) = Nej (U)

for all i 6= j. In the first case qiqj ∈ E(G) and either p1u1 or p1q2 is in E(G). We again have 3

new edges in E(G) and the proof is finished. In the latter case all edges connecting the edges in

M − {v1w1, v2w2, v3w3} and U have a common vertex, say u1. Again, at least 3 more edges are

in E(G).

Only one case is left : if Nqi (U) = ∅, then qiqj ∈ E(G) for all i = 1, 2, 3 and we also get

3 new edges in E(G).

This completes the proof.

Lemma 6.2.2. Suppose that for every vertex x in Gc, c = 2, rd(x) = 2 and n ≥ 14. If

m ≥ (n−3)(n−4)+3n−2, then Gc has two matchings M r and M b in colors, say red and blue,

such that |M r| = ⌊n2 ⌋ and |M b| ≥ ⌈n−2
2 ⌉.

Démonstration. Let us denote by Er(Gc) and Eb(Gc) the set of edges colored in red and blue,

of sizes |Er(Gc)| = mr and |Eb(Gc)| = mb, respectively. Observe that, since for every vertex x

in Gc, rd(x) = 2, we have di(x) ≥ 1 for i ∈ {r, b}. Observe also that mi ≥ (n− 3)(n− 4)

2
+ 4

for i ∈ {r, b}, since this threshold is tight when the multigraph is complete on one of the colors.

Let us see the case where n is odd. By Lemma 6.2.1, there exist two matchings M r and M b each

of the size
n− 1

2
, so the result is straightforward.

Let us see now the case where n is even. Then, again by Lemma 6.2.1, there exist two mat-

chings, M r and M b, each of the size at least n−2
2 . We shall prove the result by contradiction.
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Let us consider monochromatic subgraphs in colors r and b respectively, and suppose that

|M r| = |M b| = n− 2

2
.

Let U = {u1, u2} denote the independent set of unmatched vertices in M r. The vertices u1 and

u2 are connected to the extremities of the edges in M r.

We claim that there exist two distinct vertices v1, v2 in V (G)− {u1, u2}, such that u1v1, u2v2 ∈
Er(Gc). Otherwise, if N r ({u1, u2}) = v1, this vertex is the extremity of some edge v1w1 in M r

and then we distinguish two cases.

First, if N r (w1) = v1, then we have three distinct vertices of degree one which leads us to a

contradiction with the total number of edges.

Second, there exist w2 ∈ N r (w1) − {v1} and v2, such that v2w2 ∈ M r. Then we can replace

{v1w1, v2w2} by {u1v1, w1w2}. After this permutation, we have a new matching of same size but

u1 is replaced by v2.

So, as we claimed, there always exist two distinct vertices v1, v2 in V (G) − {u1, u2} such that

u1v1, u2v2 ∈ Er(Gc) (u2 and v2 are those vertices in the case we have just seen).

Now, the edge v1v2 is not in M r, otherwise we can replace it by {u1v1, u2v2} and get a larger

matching in color r, contradicting that M r is maximum.

So, there are two vertices w1 and w2 in V (G) − {u1, u2, v1, v2} such that v1w1, v2w2 ∈ M r.

Observe that there can be at most two edges connecting the endpoints of any edge in M r to

the set {u1, u2}, i.e. there are at least two missing edges for each edge in M r, in total 2(n−2
2 ).

Similarly, for w1 and w2, we have the same constraints and therefore, this also means two edges

are missing for each edge in M r − {v1w1, v2w2}, which gives the total of 2(n−6
2 ). Otherwise,

suppose that there is an edge v3w3 with three edges between its endpoints to the vertices w1

and w2. So we can replace v1w1 and v2w2 by say w1v3, w2w3, v1u1 and v2u2 to obtain a perfect

matching.

Finally, as u1 and u2 are independent, the edge u1u2 is missing. If we sum up these numbers,

we conclude that there are at least (n− 2) + (n− 6) + 1 = 2n− 7 edges missing in color red.

The same reasoning can be done with the matching M b to obtain 2n− 7 blue missing edges. So,

the total number of missing edges in colors red and blue is 4n − 14. Since the complement of

Gc has the edge set of the size less than or equal to 3n− 10, for n ≥ 6 we have a contradiction.

Therefore, the result holds.

Lemma 6.2.3. Let Gc, c ≥ 2 be a connected c-edge-colored multigraph. Suppose that Gc contains

a proper path P = x1y1x2y2 . . . xpyp, p ≥ 2, such that each edge xiyi is red. If G
c does not contain

a proper cycle C with vertex set {x1, y1, x2, y2, . . . , xp, yp}, then there are at least (c− 1)(2p− 2)

missing edges in Gc.

Démonstration. Let P = x1y1x2y2 . . . xpyp be a proper path, p ≥ 2, such that each edge xiyi is

red. Let blue be the second color. The blue edge x1yp cannot be in Gc, otherwise C = x1yp . . . x1

is a proper cycle.

Suppose that the blue edges x1xi are present in Gc, for i = 2, . . . , p. Then, the blue edges yi−1yp
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can not be in Gc, otherwise we have the proper cycle C = x1xi . . . ypyi−1 . . . x1, that contradicts

our hypothesis. Therefore, for each edge yi−1xi in the path, either the blue edge x1xi or the blue

edge yi−1yp is missing. So there are 2p−2
2 missing blue edges.

Now, suppose that the blue edges x1yi are present in Gc, for i = 3, . . . , p − 2. Then, the blue

edges xi+1yp cannot be in Gc at the same time as xiyi+1, yi−1xi+2 or yi−1yi+1, xixi+2, other-

wise we have the proper cycles C = x1yixiyi+1xi+1yp . . . xi+2yi−1 . . . x1 or C = x1yixixi+2

. . . ypxi+1yi+1yi−1 . . . x1. The minimum in this case corresponds to one missing edge xi+1yp for

each edge yi−1xi in the path, for i = 2, . . . , p− 1. Therefore, there are 2p−6
2 missing blue edges.

For the moment we have 2p − 3 missing blue edges. To obtain the last missing edge, sup-

pose that the blue edge x2yp is present in Gc. Then, it cannot be at same time with x1y2,

y1x3 or x1x3, y1y2, otherwise we obtain the proper cycles C = x1y2 . . . x2yp . . . x3y1x1 or C =

x1x3 . . . ypx2 . . . y2y1x1. The minimum in this case corresponds to one missing edge x2yp. We

remark that the blue edges x2yp, y1y2 and y1x3 were not counted before. The edges x1x3 and

x1y2 were supposed to exist, otherwise in order to obtain the last missing edge we consider the

symmetric case, i.e. using the blue edge yp−1x1 (if exists).

In total, there are 2p−2
2 + 2p−6

2 + 2 = (2p − 2) missing blue edges in Gc. As we have c − 1

colors different from red, that gives us (c− 1)(2p− 2) missing edges, as desired.

Note that this number of missing edges is the same as in the simplest case, this is, if all edges

different from red x1xi and x1yi, for i = 2, . . . , p are not present in Gc.

Lemma 6.2.4. Let Gc be a connected c-edge-colored multigraph, c ≥ 2. Let M be a matching of

Gc in one color, say red, of size |M | ≥ ⌈n−2
2 ⌉. Let P = x1y1x2y2 . . . xpyp, p ≥ 2, be a maximum

proper path compatible with M . Then, the following cases are possible :

– (1) n is even, |M | = n
2 and 2p < n

– (1a) If P is not a proper cycle, then there are at least (n− 2+ pn− 2p2)(c− 1) missing

edges in Gc different from red and the minimum value of this function is (2n− 4)(c− 1)

for p = n−2
2 .

– (1b) If P is a proper cycle, then there are at least (2pn − 4p2)(c − 1) missing edges

in Gc different from red and the minimum value of this function is (2n − 4)(c − 1) for

p = n−2
2 .

– (2) n is odd, |M | = n−1
2 and 2p < n− 1

– (2a) If P is not a proper cycle, then there are at least (n−3−p+pn−2p2)(c−1) missing

edges in Gc different from red and the minimum value of this function is (2n− 6)(c− 1)

for p = n−3
2 .

– (2b) If P is a proper cycle, then there are at least (2pn− 2p− 4p2)(c− 1) missing edges

in Gc different from red and the minimum value of this function is (2n − 6)(c − 1) for

p = n−3
2 .

– (3) n is even, |M | = n−2
2 and 2p < n− 2
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– (3a) If P is not a proper cycle, then there are at least (n−4−2p+pn−2p2)(c−1) missing

edges in Gc different from red and the minimum value of this function is (2n− 8)(c− 1)

for p = n−4
2 .

– (3b) If P is a proper cycle, then there are at least (2pn− 4p− 4p2)(c− 1) missing edges

in Gc different from red and the minimum value of this function is (2n − 8)(c − 1) for

p = n−4
2 .

Démonstration. Before starting the proof, we remark that the edges x1y1 and xpyp are red.

Otherwise we can easily extend the path by adding an edge of the matching to P .

First, suppose that n is even and 2p < n. Since M is of the size n
2 , there are

n−2p
2 red edges out-

side P . Let us denote these edges by ei for i = 1, . . . , n−2p
2 . Suppose that P is not a proper cycle.

Let blue be the second color. By Lemma 6.2.3 there are (2p−2) missing blue edges. As the path

is maximum, we cannot extend P having an edge ei neither at the beginning nor at the end of

it, thus there are no blue edges between the vertices x1, yp and the edges ei. Therefore, there are

4n−2p
2 blue missing edges. Finally, as we cannot add any edge ei in between the path, then there

at most 2 blue edges between the edges ei and the edges yixi+1, i = 1, . . . , p − 1. So, there are

2n−2p
2

2p−2
2 missing blue edges different from red. By summarizing and simplifying all these num-

bers and having c−1 colors different from red, we obtain that there are (n−2+pn−2p2)(c−1)

missing edges in Gc different from red. If we calculate the minimum value of this function, we

obtain (2n− 4)(c− 1) for p = n−2
2 and case (1a) holds.

Now, if P is also a proper cycle, then there cannot exist any edge, different from red between

all vertices of P and the edges ei, and, therefore there are 2n−2p
2 2p(c− 1) = (2pn− 4p2)(c− 1)

missing edges different from red. Again, minimizing the function we obtain the same result as

above and the case (1b) holds.

Suppose now that n is odd, M = n−1
2 and 2p < n − 1, or n is even, M = n−2

2 and 2p < n − 2.

In both cases, same arguments as before apply, just by replacing n with n− 1 or n− 2 respec-

tively, in the number of missing edges. This, because we have n − 1 matched vertices and one

non-matched vertex for the first case and n− 2 matched vertices and two non-matched vertices

for the second case.

Lemma 6.2.5. Let G be a connected non-colored simple graph on n vertices, n ≥ 9. If m ≥
(n−2)(n−3)

2 + 3, then G has a matching M of the size |M | = ⌊n2 ⌋.

Démonstration. By a theorem of [23], a 2-connected graph on n ≥ 10 vertices and m ≥
(n−2)(n−3)

2 + 5 edges, has a hamiltonian cycle. So, if we add a new vertex v to G, joined to

all its vertices, we obtain that G + {v} has m ≥ (n−2)(n−3)
2 + 3 + n = (n−1)(n−2)

2 + 5 edges.

Therefore, G+ {v} has a hamiltonian cycle, i.e. G has a hamiltonian path and this implies that

there exists a matching M in G of the size |M | = ⌊n2 ⌋.
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Definition 6.2.6. A path P is compatible with a matching M if its edges belong alternatively

to M and not to M .

Definition 6.2.7. A vertex is called monochromatic if all its incident edges are colored by the

same color.

6.3 Main results

Theorem 6.3.1. Let Gc be a c-edge-colored multigraph, c = 2. Suppose that for every vertex x

in Gc, rd(x) = 2 and n ≥ 14. If m ≥ (n− 3)(n− 4) + 3n− 2, then Gc has a proper hamiltonian

path.

Démonstration. Let us suppose that Gc has not a proper hamiltonian path. We will show that

E(Gc) has more than 3n − 10 edges, i.e., Gc has less than (n − 3)(n − 4) + 3n − 2 edges, a

contradiction to the hypothesis of the theorem.

– n even : By Lemma 6.2.2, Gc has two matchings M r, M b, such that |M r| = n
2 and

|M b| ≥ n−2
2 . Take the longest proper path P = x1y1x2y2 . . . xpyp compatible with the

matching M r and the longest proper path P ′ = x′1y
′
1x

′
2y

′
2 . . . x

′
p′y

′
p′ compatible with the

matching M b. Suppose 2p < n and 2p′ < n − 2. Since |M r| = n
2 , c(x1y1) = c(xpyp) = r.

Otherwise, we can easily extend the path by adding an edge of the matching to P . Suppose

also that c(x′1y
′
1) = c(x′p′y

′
p′) = b. So, as P (resp. P ′) is properly colored, the edges xiyi

(resp. x′iy
′
i) are red (resp. blue) for i = 1, . . . , p (resp. p′) and the edges yixi+1 (resp. y

′
ix

′
i+1)

are blue (resp. red) for i = 1, . . . , p− 1 (resp. p′ − 1). We have the following possibilites :

– Neither P nor P ′ are proper cycles.

– P ′ is a proper cycle but P is not.

– P is a proper cycle but P ′ is not.

– Both P and P ′ are proper cycles.

First, observe that in any case, by Lemma 6.2.4, there are at least 2n − 4 blue missing

edges and 2n− 8 red ones. We obtain 4n− 12 > 3n− 10 missing edges. A contradiction.

Therefore we conclude that 2p = 2p′ = n− 2.

Now suppose that P is not a proper cycle, then again by Lemma 6.2.4, there are at least

2n − 4 blue missing edges. Now, let v1, w1 be the vertices in Gc − P ′. It is clear that if

there exists a blue edge joining v1 and w1, we are under the same conditions of the red

matching, and therefore in contradiction with the number of edges. Otherwise we count

red missing edges if we cannot extend P ′ to a proper hamiltonian path. First, if we have

3 or more red edges between v1, w1 and x′1,y
′
p′ , we have a hamiltonian path and we are

done. So, there are at least 2 red missing edges. Second, if the path P ′ is not a proper

cycle again by Lemma 6.2.3 there are 2p′ − 2 = n− 4 red missing edges. Now we combine

and sum up all these number and we arrive to 2n − 4 + n − 4 + 2 = 3n − 6 > 3n − 10

missing edges. Again a contradiction. Finally, if the path P ′ is a proper cycle we have

that, if there are 3 or more red edges between v1, w1 and the endpoints of the red edges
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of the cycle, we can add v1 and w1 to the path P ′ as following. Suppose without losing

generality that v1 is adjacent to y′i and w1 to x′i+1, both with red edges and the red edge

y′ix
′
i+1 is present in the proper cycle. So we form the proper hamiltonian path starting

with the red edge v1y
′
i then following the proper cycle in the direction of x′i until we arrive

to x′i+1 and finally we take the red edge x′i+1w1. Therefore if there are not these 3 or more

red edges, they are missing 22p′−2
2 = n − 4 red edges. If we sum up again we arrive to

2n− 4 + n− 4 + 2 = 3n− 6 > 3n− 10 missing edges. Again a contradiction.

Suppose now, that P is a proper cycle. Let e be the red edge of the matching outside the

path P . If there existe a blue edge between any endpoint of e to the cycle, we easily obtain

a proper hamiltonian path, taking the edge e, any blue edge going to the cycle and then

following it in the appropriate direction. Otherwise, as the graph is connected, all edges

between the endpoints of e to the path are blue. Now, as rd(Gc) = 2, we have that there

must exist a blue edge parallel to e and therefore we obtain the proper hamiltonian path

just as before but starting with the blue edge parallel to e. So, we covered all the cases for

n even.

– n odd : Again by Lemma 6.2.2, Gc has two matchings M r, M b, such that |M r| = |M b| =
n−1
2 . We take the longest proper paths P and P ′ compatibles with the matching just as

before. Suppose now that 2pn− 1 and 2p′ < n− 1. As the even case, we have exactly the

same four possibilities.

Observe that in any case, by Lemma 6.2.4, there are at least 2n−6 blue missing edges and

2n − 6 red ones. We obtain 4n − 12 > 3n − 10 missing edges. A contradiction. Therefore

we have that 2p = 2p′ = n − 1. We will count blue missing edges if we cannot extend P

to a proper hamiltonian path. Same argument holds for red edges since we are under the

same conditions. Now, let v be vertex outside the path P . It is clear that is P is also a

proper cycle we trivially obtain a proper hamiltonian path since the graph is connected

and rd(v) = 2. So, as P is not a proper cycle we have by Lemma 6.2.3, that there are

2p− 2 = n− 3 blue missing edges. If we have blue edges between v and x1 or yp, we have

a hamiltonian path and we are done. So, there are 2 blue missing edges. Finally, if there

exists a blue edge between x1 and xi (i = 2, . . . , p), then it cannot exist the blue edge

vyi−1 (i = 2, . . . , p), otherwise we form the proper hamiltonian path vyi−1 . . . x1xi . . . yp.

Similar, if we have the blue edges yp and yi, with vxi+1 (i = 1, . . . , p− 1). Note that since

P is not also a proper cycle we cannot have at the same time the blue edges x1xi and

ypyi−1 (i = 2, . . . , p). Therefore, there are 2p−2
2 = n−3

2 blue missing edges. Concluding, if

we make the sum and multiply it by two, since the same number of red missing edges is

obtained with P ′ we obtain that there are 2(n− 3 + 2 + n−3
2 ) = 3n− 5 missing edges. A

contradiction.

Since we covered all the cases, the theorem is proved.

Theorem 6.3.1 is the best possible for n odd, n ≥ 14, consider a complete blue graph, say

A, on n − 3 vertices. Add 3 new vertices v1, v2, v3 and join them to a vertex v in A with blue
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edges. Finally, superpose the obtained graph with a complete red graph on n vertices. Although

the resulting 2-edge-colored multigraph has (n − 3)(n − 4) + 3n − 3 edges, it has no proper

hamiltonian path since one of the vertices v1, v2, v3 cannot belong to such a path.

The two lemmas below will be useful in view of Theorem 6.3.4.

Lemma 6.3.2. Let Gc be a 2-edge-colored multigraph. Assume that Gc, contains a proper cycle

C, of length at most n− 2 and that there exists a red edge xy in Gc−C. If dbC(x)+dbC(y) > |C|,
then Gc has a proper cycle of length |C|+ 2 containing xy.

Démonstration. Set C = x1y1x2y2 . . . xsysx1, where xiyi are the red edges of C, i = 1, 2, . . . , s.

Then db{xi,yi}(x)+db{xi,yi}(y) ≤ 2, otherwise if db{xi,yi}(x)+db{xi,yi}(y) ≥ 3, then the cycle x1y1x2y2

. . . xixyyi . . . xsysx1 is the desired one. It follows that
∑

i d
b
{xi,yi}(x) + db{xi,yi}(y) ≤ 2 |C|

2 = |C|,
a contradiction to the hypothesis of the lemma. This completes the proof.

Lemma below is established in view of Theorem 6.3.4

Lemma 6.3.3. If m ≥ f0(n) = (n− 1)(n− 2) + n, then Gc has a proper hamiltonian cycle if n

is even, and a proper cycle of length n− 1 otherwise.

Démonstration. Let red and blue be the two colors of Gc. The proof is by induction on n. The

theorem is true for small values of n, say n = 2, 3, 4. Let us suppose that n ≥ 5 and that

the theorem is true until n − 1. We will prove it for n. By a Theorem of [3], if for any vertex

dr(x) ≥
⌈
n+1
2

⌉
and db(x) ≥

⌈
n+1
2

⌉
, then Gc has a proper hamiltonian cycle for n even and a

proper cycle of length n − 1 for n odd. Let us suppose therefore that for some vertex, say x,

and for some color, say red, dr(x) ≤
⌈
n+1
2

⌉
− 1. Notice now that dr(x) > 0 and db(x) > 0,

otherwise, for example if dr(x) = 0, then m ≤ n(n − 1) − (n − 1) = (n − 1)2 < (n − 1)(n −
2) + n, a contradiction. Similarly dr(x) + db(x) ≥ 3, otherwise, if dr(x) + db(x) ≤ 2, then

m ≤ n(n − 1) − 2n + 4 = n2 − 3n + 4 < (n − 1)(n − 2) + n, again a contradiction. Thus we

may conclude that there are two distinct neighbors, say y and z, of x such that c(xy) = r

and c(xz) = b in Gc. Replace now the vertices x, y, z by a new vertex s such that N b(s) =

N b
Gc−{x,y,z}(y) and N r(s) = N r

Gc−{x,y,z}(z). The obtained graph, say G′, has n− 2 vertices and

at least (n−1)(n−2)+n− [(n−1)+
⌈
n+1
2

⌉
−1+2(n−2)] = n2− 11n

2 +8 > f0(n−2) = n2−6n+8

edges. By the induction hypothesis, G′ has a proper hamiltonian cycle for n−2 even and a proper

cycle of length n − 3 otherwise. If G′ has a proper hamiltonian cycle then coming back to Gc

we may easily find a proper hamiltonian cycle in Gc. Assume now that n − 2 (and thus n) is

odd. Let C be a proper cycle of length n− 3 in G′. If s belongs to C, then as previously we may

easily find a proper cycle of length n− 1 in Gc. Assume therefore that s does not belong to C.

By Lemma 6.3.2, if dbC(x) + dbC(y) > |C| or drC(x) + drC(z) > |C|) then we may integrate the

edge xy (respectively xz) in C in order to obtain a cycle of length n− 1. Assume therefore that

dbCb(x) + dbC(y) ≤ |C| and drC(x) + drC(z) ≤ |C|. But then the number of edges of Gc is at most

n(n− 1)− (n− 3)− (n− 3) = n2 − 3n+ 6 < f0(n) = n2 − 2n+ 2, again a contradiction. This

completes the argument and the proof.
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Theorem 6.3.4. Let Gc be a 2-edge-colored multigraph. For n ≥ 14, if m ≥ f1(n) = n2−3n+4,

then Gc has a proper hamiltonian path.

Démonstration. By Theorem 6.3.1, as n2 − 3n + 4 ≥ (n − 3)(n − 4) + 3n − 2, it suffices to

prove that for every vertex x of Gc, rd(x) = 2, i.e., dr(x) 6= 0 and db(x) 6= 0. Assume therefore

that either dr(x) = 0 or db(x) = 0 but not both, as dr(x) = 0 and db(x) = 0 can be easily

checked as not possible. In that case Gc − x has at least n2 − 3n+ 4− (n− 1) = n2 − 4n+ 5 =

[(n−1)−1][(n−1)−2]+(n−1) edges. By Lemma 6.3.3, Gc−x has either a proper hamiltonian

cycle or a cycle of length n− 2. If Gc − x has a proper hamiltonian cycle then in a trivial maner

we join x and the cycle in order to obtain a proper hamiltonian path. Assume therefore that

n − 1 is odd and that Gc − x has a proper cycle, say C, of length n − 2. Let y be the vertex

outside C in Gc − x. By using arguments similar to those of Lemma 6.3.2 we may show that

dr(x)+dr(y) ≤ |C| and db(x)+db(y) ≤ |C|. It follows that the number of edges of Gc is at most

n(n−1)−2(n−2)+2 = n2−3n+4 which again is a contradiction unless all inequalities become

strict equalities. In particular there is a red and a blue edge between x and y. In that case find

a proper path starting at, say x, containing all the vertices of C. Then join y to x by using one

edge xy with the appropriate color. The obtained proper path is a hamiltonian one.

Theorem 6.3.4 is the best possible for n ≥ 14. In fact, consider a rainbow complete 2-edge-

colored multigraph on n− 2 vertices for n odd. Add two new vertices x1 and x2. Then add the

red edge x1x2 and all red edges between {x1, x2} and the complete graph. Although the resulting

graph has n2−3n+3 edges, it has no proper hamiltonian path, since at least one of the vertices

x1 or x2 cannot be attached to any such path. Indeed, for n odd, the two extremal edges of any

proper hamiltonian path must differ in colors. If n = 5, 7, Theorem 6.3.4 does not hold for the

graphs Hk,k+3, k = 1, 2.

In the rest of this chapter we will deal with c-edge-colored multigraphs, for c ≥ 3. Now, we

will present a result that allows us to consider just the case c = 3.

Lemma 6.3.5. Let Gc be a c-edge-colored connected multigraph on n vertices, c ≥ 3 and m ≥
cf(n) + 1 edges. There exists one color cj such that if we color its edges with another used color

and we delete parallel edges with same color, then the resulting (c − 1)-edge-colored multigraph

is connected and has m′ ≥ (c − 1)f(n) + 1 edges, such that if Gc−1 has a proper hamiltonian

path then Gc has one too. Moreover, if rd(Gc) = k, 1 ≤ k ≤ c, then rd(Gc−1) = k − 1.

Démonstration. Let ci denote the color i, for i = 1, . . . , c, in Gc, and denote by |ci| the number

of edges with color i. Let cj be the color with less number of edges. Color the edges on color

cj with another used color, say cl, and delete (if necessary) parallel edges with that color. Call

this graph Gc−1. By this, we delete at most |cj | edges. It is clear that this graph is connected

since we delete just parallel edges. Also, if is Gc−1 has a proper hamiltonian path, then, this

path is also proper hamiltonian in Gc but maybe with some edges on color cj (in the case that

they have been recolored with cl). Observe also that if rd(Gc) = k then rd = (Gc−1) = k − 1
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since only the color cj disappeared. We will show now that m′ ≥ (c− 1)f(n) + 1. We have two

cases. First, if |cj | > f(n), then clearly m′ ≥ (c − 1)f(n) + 1 edges since for all i, |ci| > f(n).

For the second case, we have that |cj | ≤ f(n). Now, m =
∑c

i=1 |ci| ≥ cf(n) + 1 and therefore∑c
i=1,i 6=j |ci| ≥ cf(n)− |cj |+ 1 = (c− 1)f(n) + f(n)− |cj |+ 1. This last expression is greater or

equal than (c−1)f(n)+1 since f(n)−|cj | ≥ 0. Finally, we have that Gc−1 hasm′ ≥ (c−1)f(n)+1

edges as desired.

Theorem 6.3.6. Let Gc be a c-edge-colored multigraph on n vertices, n ≥ 3 and c ≥ 3. If

m ≥ c(n−1)(n−2)
2 + 1, then Gc has a proper hamiltonian path.

Démonstration. First of all by Lemma 6.3.5 we can assume that c = 3 and m ≥ 3(n−1)(n−2)
2 +1.

Since there exists one color, say red, such that the number of edges are at least (n−1)(n−2)
2 + 1

then by a theorem in [23], there is a hamiltonian red path and therefore a perfect or almost

perfect matching. Also, as m ≥ 3(n−1)(n−2)
2 +1 we have that |E(Gc)| is at most 3n− 4. Now, we

will split our proof in the even and odd case.

– n even. Let M r be the perfect matching in color red, i.e. |M r| = n
2 . Take the longest

proper path P = x1y1x2y2 . . . xpyp compatible with the matching M r. Set 2p = |P |. Since
|M r| = n

2 , c(x1y1) = c(xpyp) = r. Otherwise, we can easily extend the path by adding an

edge of the matching to P . So, as P is properly colored, the edges xiyi are red (i = 1, . . . , p)

and the edges yixi+1 are in colors different from red (i = 1, . . . , p−1). Now, by Lemma 6.2.4,

if 2p < n (i.e. P not hamiltonian) then there are at least 2(n− 2+ pn− 2p2) missing edges

in Gc different from red if P is not also a proper cycle and 2(2pn − 4p2) otherwise. We

start with the first case.

– P is not a proper cycle. Since there are at least 2(n−2+pn−2p2) missing edges different

from red the folllowing inequality must be satisfied : 2(n− 2 + pn− 2p2) ≤ 3n− 4. So,

if we solve it, we can observe that it is only satisfied for n = 4 and p = n−2
2 . Therefore,

for all other values we have a contradiction with the number of edges of Gc. The case

n = 4 and p = n−2
2 is easy to check. So, P must be a proper hamiltonian path.

– P is a proper cycle. As before, 2(2pn − 4p2) ≤ 3n − 4 must be satisfied, and this only

happens, again, if n = 4 and p = n−2
2 . Finally P must be a proper hamiltonian path.

– n odd. We will prove the result by induction. Cases n = 3, 5 are easy to check. Now,

let M r be the almost perfect matching in color red, i.e. |M r| = n−1
2 . Take the longest

proper path P = x1y1x2y2 . . . xpyp compatible with the matching M r. As in the even

case, c(x1y1) = c(xpyp) = r. By Lemma 6.2.4, if 2p < n − 1 then there are at least

2(n − 3 − p + pn − 2p2) missing edges in Gc different from red if P is not also a proper

cycle and 2(2pn− 2p− 4p2) otherwise. We start with the first case.

– P is not a proper cycle. Since there are at least 2(n − 3 − p + pn − 2p2) missing edges

different from red the folllowing inequality must be satisfied : 2(n−2+pn−2p2) ≤ 3n−4.

If we solve it, we have that is true for n = 5, 7 and p = n−3
2 . We will show first the case

where 2p = n− 1, this is, we have just one vertex, say v, not in the proper path P . We
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have the following cases depending on the degree and neighbors of v.

– v has at least two neighbors, say x and y, in two different colors, say c1 and c2

respectively. If we cannot attach v to the path P we have that there are 4 missing

edges in colors different from red between v and the vertices x1, yp. Also, we have at

most 2 edges different from red between v and the edges yi, xi+1 of the path. Therefore

there are 2n−3
2 missing edges. Adding up all this, we conclude that the degree of v in

colors different from red is at most n− 3. So, if we contract the three vertices v, x, y

to a new one, say v′, we will delete n− 3 edges different from red and n− 1 red edges

from v. At most n−3 edges of color c1 from x, n−3 of color c2 from y, 3 parallel edges

between x and y. And finally all the edges in color c3 from x but from y, we just delete

the edges of color c3 that are not incident to a common neighbor of x with color c3. All

this is at most n−3. Adding up all these numbers we arrive that, after the contraction,

we deleted 5n − 10 edges. Now, it is easy to the new 3-edge-colored multigraph on

n − 2 vertices, say G′c, has at least (n−1)(n−2)
2 + 1 − (5n − 10) ≥ (n−3)(n−4)

2 + 1, for

n ≥ 5, therefore, by inductive hyphotesis, we have a proper hamiltonian path P ′ in

G′c. To build the proper hamiltonian path for Gc, we have the following situations.

If v′ is an endpoint of the path P ′, this is v′P ′′, and the edge in the path incident

to v′ has color c1 (c2), this means that, because of the edges that we have deleted,

this edge must be incident to y (x) in the graph Gc. Therefore, we obtain the proper

hamiltonian path in Gc, xvyP ′′ (yvxP ′′) with c(xv) = c1, c(vy) = c2 and c(yP ′′) = c1

(with c(yv) = c2, c(vx) = c1 and c(xP ′′) = c2). If the edge in the path P ′ incident

to v′ has color c3, we have the proper hamiltonian path xvyP ′′ or yvxP ′′ in Gc, since

the endpoint was a common neighbor with color c3 to x and y. Now, it the path P ′

is of the form P1v
′P2 and let v1, v2 be the vertices in P1, P2 respectively adjacent to

v′ we have the following situations. If c(v1v
′) = c1 and c(v′v2) = c2, or c(v1v

′) = c1

and c(v′v2) = c3 we have, by the way we deleted the edges for the contraction, the

proper hamiltonian path in Gc, P1yvxP2 with c(v1y) = c1, c(yv) = c2, c(vx) = c1 and

c(xv2) = c2, or P1yvxP2 with c(v1y) = c1, c(yv) = c2, c(vx) = c1 and c(xv2) = c3.

The other cases are just symmetric or analog.

– v is monochromatic in red. We have these situations. First, d(v) ≤ n− 2, consider the

Gc − {v} and delete from a neighbor of v, say w, all edges in two colors in order to

have w monochromatic not in red. Call this graph G′c. Observe that we can always

do this since, it is impossible to have 2 monochromatic vertices. So, by this, we delete

at most n− 2 + n− 2 + n− 2 = 3n− 6 edges. It is easy to see that the graph G′c on

n − 1 vertices has at least (n−1)(n−2)
2 + 1 − (3n − 6) = (n−2)(n−3)

2 + 1, then, by even

case, we have a proper hamiltonian path P ′ in G′c. Since w is monochromatic not in

red, w is either in the beggining or in the end of P ′ and therefore it is trivial to add

v to P ′ in order to find a proper hamiltonian path in Gc. If this does not hold, we

have that d(v) = n − 1. Therefore the graph Gc − {v} on n − 1 vertices has at least
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(n−1)(n−2)
2 + 1− (n− 1) ≥ (n−2)(n−3)

2 + 1, then, again, we have a proper hamiltonian

path P ′ in G′c. Now, if the path either starts or ends with a color different from red,

we trivially add v to the path. If not, both of them finish with red. Now, if we can

take any parallel edge of these without losing the property of being properly colored

we have again that it is easy to add v to the path. Otherwise, we have, without losing

generality, the degree in some color, say c1 of the first vertex of the path, say w, is

at most n − 3. So, we are in the same case as the first one, since we take the graph

Gc−{v} and we delete from w the edges in that color c1 and in another color in order

to have w monochromatic not in red. By this, we delete n−1+n−2+n−3 = 3n−6

edges and finally, the result follows exactly as in the first situation.

– v has one neighbor, say w, in at least two colors. This case is analog to the last one

just taking the graph Gc − {v} and deleting from w edges in the appropriate two

colors in order to have it monochromatic. By this we delete 3 + 2(n − 2) = 2n + 1

edges and we have that (n−1)(n−2)
2 +1− (2n+1) ≥ (n−2)(n−3)

2 +1 for n ≥ 7. As n = 5

was proved the case is finished.

To finish the case that P is not a proper cycle, we have just to check when n = 7 and

p = n−3
2 . So, let P = x1y1x2y2 be the path compatible with the matching, let uv be the

edge of the matching not in the path and let w be the non-matched vertex. Since P is

maximum with the compatibility property, we cannot add the edge uv to it and since

P is not a proper cycle we can check that either the degree of x1 is at most 10 or the

degree of y2 is at most 10. So, if we contract without losing generality x1, y1 and one

neighbor of x1 or y1 we will delete as most 25 edges. We can check that the new graph

satisfy the hyphotesis of the theorem for n = 5 and the result will hold with the same

argument for the contraction as before.

– P is a proper cycle. As before, 2(2pn − 2p − 4p2) ≤ 3n − 4 must be satisfied, and this

only happens, again, if n = 5, 7 and p = n−3
2 . The case where 2p = n − 1 it is trivial,

since as the graph is connected, the only vertex outside the path, must be connected

to it, and therefore, as the path is also a cycle, we can obtain a proper hamiltonian

path just taking this vertex connected to the path and the following the cycle in the

appropriate direction. For the case n = 7 and p = n−3
2 , let P = x1y1x2y2 be the path

compatible with the matching (that is also a proper cycle), let uv be the edge of the

matching not in the path and let w be the non-matched vertex. Now, as P is maximum,

we cannot add the edge uv to it, so we have just red edges between the vertices u, v and

the vertices in the path, meaning that the degree of u and v is at most 10. So, we will

contract the vertices u, v and one neighbor of u or v, as we did before. By this, we will

delete at most 25 edges. The result will hold with the same argument as last case.

Theorem 6.3.6 is the best possible. Indeed, consider a rainbow complete graph on n − 1

vertices with c colors and add a new isolated vertex x. The resulting graph, although it has
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c (n−1)(n−2)
2 edges, contains no proper hamiltonian path, as x cannot belong to such a path.

Notice that in the above theorem there is no condition guaranting the connectivity of the

underling graph.

Theorem 6.3.7. Let Gc be a connected 3-edge-colored multigraph on 9 vertices. If m ≥ 72, then

Gc has a proper hamiltonian path.

Démonstration. Before starting the proof, we will show that if there is no almost perfect mat-

ching in some color, then there are at least 15 missing edges in that color. We will use this result

through the proof.

CLAIM : If there exist a maximum matching M i such that |M i| ≤ 3 then there are at least 15

missing edges.

Proof of the CLAIM : So, suppose that there is a maximum matching M in some color of size

less than or equal to n−3
2 = 3 and just consider the subgraph of Gc in that color. We distinguish

two cases.

– There exist 2 isolated vertices. Then, clearly, there are at least n−1+n−2 = 2n−3 = 15

missing edges.

– There are no 2 isolated vertices. We consider that M is maximum. Let q be the number of

edges of M , then M = {e1, · · · , eq} with 1 ≤ q ≤ 3. So, there are n− 2q vertices without

incident edges between them. Let I be the set of those vertices. Since any arbitrary couple

of vertices in I can not have more than two incident edges with ej 1 ≤ j ≤ q, then the

number of missing edges between M and I is at least
2q(n−2q

2
)

n−2q−1 = q(n − 2q). This number

is justified by the number of combinations of 2 among |I| = n− 2q and each vertex of I in

this number is counted n− 2q− 1 times. Inside of I, the number of missing edges of color

r and b is (n− 2q)(n− 2q− 1). Since I is an independent set, the number of missing edges

is (n−2q)(n−2q−1)
2 . Adding up both numbers, we have at least (n−1)(n−2q)

2 = 8(9−2q)
2 missing

edges. For q = 1, 2, we have 8(9−2q)
2 ≥ 20 missing edges and for q = 3, just 12. Therefore,

we will study the case q = 3. Observe the subgraph induced by the vertices of M . Let us

assume first that there are two edges of M such that the underlying subgraph is a clique.

Otherwise we have 3 missing edges to add to Ḡ. We distinguish now the following cases :

– One vertex of I has 2 neighbors in the clique.

That implies that there is no edge between the others 2 vertices of I and the clique, so

the number of missing edges grows up to 4. In same time, since at least one vertex from

2 vertices of I are connected to the edge not in the clique then the second extremity is

not connected to the clique and results in 4 more missing edges. The total number in

this case is 8(9−2q)
2 + 4 + 4 = 12 + 8 = 20 missing edges.

– No vertex has more than one neighbor in the clique.

Then, for any vertex of I, we have 1 more missing edge and that give us 3 more edges.
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In same time if the 3 vertices in I are connected to the edge not in the clique then

the second extremity is not connected to the clique and results in 4 more missing edges,

otherwise if not, then 3 more edges are missing. That give us 8(9−2q)
2 +3+4 = 12+7 = 19

or 8(9−2q)
2 + 3 + 3 = 12 + 6 = 18 missing edges. So we can conclude that the minimum

number of missing edges is when M has no clique of size 4, and therefore there are at

least 8(9−2q)
2 + 3 = 15 missing edges if M = 3.

Since there are no more cases to observe we conclude that if there is no almost perfect matching,

there are always 15 missing edges.

This completes the proof of the CLAIM.

Through the proof, if M i,j is a matching in colors i and j, we will denote the path compatible

with it as Pi,j = x1y1, . . . , xpyp Also, suppose now that |M i,j | = n−1
2 and v is the unmatched

vertex. Let vkwk be the edges in M i,j for k = 1, . . . , n−1
2 . If we have an edge vvk in color i (or

j) from v to some vertex vk in the matching and the color of the edge vkwk is j (i) we will use

the set M ′
i,j = M i,j ∪ {vvk}.

Since m ≥ 72 we have that E(Ḡc) ≤ 36, so we will count the number of missing edges if Gc

has no proper hamiltonian path or it if has no matchings in different sizes. If we arrive to 37

missing edges we will have a contradiction.

We have then, the following cases :

– There exist two colors, say i and j, such that ∄M ′
i,j =

n+1
2 .

Take the matching M i,j such that ∄M ′
i,j = n+1

2 . Let v be the unmatched vertex. Since

it is not possible to create M ′
i,j there are no edges with color i from v to the edges with

color j of the matching, and vice-versa. Another situation is when v has no incident edges

at all with colors i and j. Otherwise observe that if it exist an edge in color j from v to

an edge in color j (or both in color i) of the matching then, we can replace that edges of

the matching by the edge incident to v and restart the operation. Observe that we can

continue to find new vertices with bad connections until we return to the same vertices.

So if we can not create M ′
i,j , is because it exists a set of vertices S, such that there are no

edges in color i between S and the edges in color j of the matching, and vice-versa.

Observe that for each edge in M i,j , if v has an edge in color j connecting v with an edge

in color j also, of M i,j in one extremity say v′, then the second one, say v′′, can take his

place. Let us suppose vv′ is in color j. So at this step |S| = 2 and there are 2 edges going

to same vertex v′. We have three possibilities :

– There is one more edge from v going to v′′ in color j in this case S = {v, v′, v′′} and

suppose there are no more edges in color j and i from vertices in S to the rest of edges

in M i,j . In this case there are 2(3(n− 3)) = 36 edges in color i and j missing between S

and V (Gc) \ S, and 3 more in color i inside S. That makes 39 in total, a contradiction

with the number of edges in Gc.
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– There is one more edge from v or v′′ going to another edge of the matching with extre-

mities w and w′. In this case S = {v, v′′, w}. Then there are 2(3(n − 5)) = 24 missing

edges between S and V (Gc)\ (S∪{v′, w}), 6 missing edges inside S and 6 missing edges

parallel to those that can exist between S and {v′, w}. That gives us the total of 36

missing edges. Since, we can suppose that the rest V (Gc)\S are complete in color i and

j, there is a cycle in two colors i and j of order n− 3. Now, using edges in color k and j

we can insert say v in this cycle, after that using color k we can add the rest of vertices

w and v′′ to some edge in color i or j not incident to the edge of color k used to insert

v. Unless there is at least one more missing edge that will give us a contradiction.

– There are no more edges at v and v′′. Then in this case there are 2(2(n − 3)) = 24

edges in color i and j missing and 2 more edges in color i parallel to vv′ and v′v′′ plus

2 between them, that give us 28 missing edges. Therefore the maximum matching in

color i has size at most n−3
2 . Suppose now that M j = n−1

2 . Take the longest proper path

Pj = x1y1, . . . , xpyp compatible with M j using just the edges in colors j and k. The

worst case is when |Pj | = n − 1. Let x be the vertex outside the path. If this path is

also a proper cycle then we can find a proper hamiltonian path since Gc is connected.

Otherwise, there are, by Lemma 6.2.3, 2p− 2 = n− 3 = 6 missing edges in color k, and

since we can not add x to Pj there are 2 more missing edges in color k. Now, if we have

the edge xy1 with color k we can not have the edge x1x2 in color k, otherwise we would

have a proper hamiltonian path. Therefore there is one more missing edges and with it,

we arrive to 37, a contradiction. The case when M i ≤ n−3
2 and M j ≤ n−3

2 as it is the

same when the set S has size 1, will be analyzed later.

As we have just showed, it remains to study just the case |S| = 1. Suppose that colors i

and j are colors red and blue (r and b respectively) and suppose that given a matching

M r,b, we have that ∄M ′
r,b =

n+1
2 . Let v be the vertex outside M r,b. It is clear that there are

16 missing edges in colors r and b from v. Now we have the following situations depending

on the size of maximum matchings in colors r and b.

– |M r| = |M b| = n−1
2 . Let Pr and Pb the longest proper paths compatibles with matchings

M r and M b. Clearly v is outside both paths.

Now, if |Pr| < n − 1 (analog if |Pb| < n − 1) then by Lemma 6.2.4 there are at least

2(2n − 6) missing edges in colors b and g. Therefore, adding this number with the 16

missing edges from v we have 24 + 16 = 40 missing edges. A contradiction.

If |Pr| = |Pb| = n− 1 we have two situations. If any of them is also a proper cycle, it is

clear that G3 has a proper hamiltonian path, since it is connected therefore there exists

at least one edge from v to the cycle. Otherwise, if neither Pr nor Pb are proper cycles,

by Lemma 6.2.3, there are at least 3(n− 3) = 18 missing edges in colors r, b and g. Also

there are no edges in color g from v to the extremities of the paths. This adds two more

missing edges (because the extremities of both paths can be the same vertices). Adding

up all these numbers with the 16 missing edges in colors r and b from v, we arrive to
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36 missing edges. Finally, for finding the last missing edge to get a contradiction, take

for example the path Pr. If we have the green edge vy1 then we cannot have the green

edge x1x2 otherwise we obtain the proper hamiltonian path vy1x1x2, . . . , yp. Also, if we

have the green edge vx2 then we cannot have the green edge ypy1 otherwise we obtain

the proper hamiltonian path vx2, . . . , ypy1x1. Now, since in Lemma 6.2.3, just one of

the green edges x1x2, ypy1 were counted, we have at least one more missing edge, giving

us 37 missing edges in total. Again a contradiction.

– |M r| = n−1
2 and |M b| ≤ n−3

2 (the symmetric case is analog). For this case we will observe

the size of the maximum green matching Mg. If |Mg| ≤ n−3
2 we have that there area

at least 15 green missing edges and the same for M r. Also since we have 8 red missing

edges from v (the blue ones might be already counted) we arrive to 38 missing edges. A

contradiction. Now, consider when |Mg| = n−1
2 . Let Pr and Pg the longest proper paths

compatibles with matchings M r and Mg. Clearly v is outside Pr. If |Pr| < n−1 we have

by Lemma 6.2.4 that there are at least 24 missing edges in colors b and g. Adding these

edges with the 16 missing edges from v we arrive to 40 missing edges. A contradiction.

Now if |Pr| = n − 1 we have, as before, that clearly Pr is not also a proper cycle. We

obtain by Lemma 6.2.3 that there are 12 missing edges in colors b and g. Moreover, there

are two green missing edges between v and the extremities of the path Pr. Now, if we

have the green edge vy1 then we cannot have the green edge x1x2 otherwise we obtain

the proper hamiltonian path vy1x1x2, . . . , yp. Also, if we have the green edge vx2 then

we cannot have the green edge ypy1 otherwise we obtain the proper hamiltonian path

vx2, . . . , ypy1x1. Now, since in Lemma 6.2.3, just one of the green edges x1x2, ypy1 were

counted, we have at least one more missing edge. As same argument applies for green

edges vy2 or vx3, and vy3 or vx4, we have at least 3 more missing edges. If |Pg| < n− 1,

we have, by Lemma 6.2.4, that there are at least 12 edges in color red. Finally, we have

8 more missing edges from v in color b (red ones might be already counted). Adding

up all these numbers we arrive to 37 missing edges, therefore, a contradiction. The last

case to observe is when |Pg| = n − 1. We have already counted from Pr, 17 missing

edges in colors b and g. Now, same arguments apply to Pg counting red missing edges.

That give us 6 missing edges if Pg is not a proper cycle, 2 more missing edges between

the non-matched vertex and the extremities of Pg and 3 more between the non-matched

vertex and the interior vertices of Pg. So we have 17 + 11 missing edges from the paths

and 8 more edges in blue color from v (again red ones might be already counted). This

gives us 37 missing edges. For the last one, observe that, since |M b| ≤ n−3
2 we have that

at least one blue edge is not parallel to the edges in the matching M r, otherwise we

have that |M b| = n−1
2 . Finally, we have 37 missing edges. A contradiction.

– |M r| ≤ n−3
2 and |M b| ≤ n−3

2 . Since both matchings are of size lower or equal than n−3
2

we have that there are at least 15 red missing edges and 15 blue ones. Suppose now

that there exists a matching in two colors r and b of size n−1
2 . Take the longest proper
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path Pr,b compatible with this matching. If |Pr,b| < n− 1 we have by Lemma 6.2.4 that

there are 12 green missing edges therefore 42, a contradiction. If |Pr,b| = n − 1, it can

not be a proper cycle, so by Lemma 6.2.3 there are 6 green missing edges and 2 more

between v and the extremities of the path, therefore 38. Again a contradiction. Now,

it does not exist a matching in two colors r and b of size n−1
2 . As colors r and b have

at least 15 missing edges there are at most 21 edges in color r and 21 edges in color b.

Therefore, there are at least 30 edges in color g where the maximum number is 36, so

the green subgraph is almost complete. Let Sr be the set of unmatched vertices by the

red matching and let Sb be the set of unmatched vertices by the blue matching. Clearly,

Sr and Sb are independent sets in colors r and b respectively. So, if there are not blue

edges between Sr and M r, and no edges between Sb and M b we have 42 missing edges.

A contradiction. Then, there must be at least 6 edges between any of them. Suppose

that we have a blue edge between Sr and M r. Since the green color is almost complete,

it is easy to find a proper hamiltonian path using those 6 edges alternating with the

matching edges and the green ones.

– For all colors r, b, g we have that M ′
r,b = M ′

r,g = M ′
b,g = n+1

2 . Let ei, fj the adjacent edges

that complete the sets M ′
i,j for i 6= j, i, j ∈ {r, b, g}. Take the longest proper paths Pi,j ,

compatibles with these matchings, where the edges ei, fj are taken as a single one. Clearly,

for all colors i, j, |Pi,j | < n− 1. Now, by Lemma 6.2.4 we have that if each path Pi,j is not

a proper cycle, then there 12 are missing edges in color k, where i 6= j 6= k. If at least one

of them is a proper cycle, it is trivial to find a proper hamiltonian path. That gives us 36

missing edges.

Suposse that we have two colors say i, j such that we can find a proper path compatible

with M ′
i,j of size 5, without using the edges ei, fj . Denote the endpoints of the edge ei

by x and z, and the second endpoint of the edge fj by w. Then we will find one more

missing edge in color k by the following observation. If eifj (vzw) has an edge in color

k from x1 to z and an edge in color k from v to w, we can find the proper hamiltonian

path P = wvzx1y1 . . . xpyp. Otherwise, there is one more missing edge and therefore a

contradiction.

Otherwise suppose that for all colors we can not find such a paths. Then suppose |Pi,j | = 3

and there the double edge vzw and the edge e3 outside the path. We will count again the

missing edges in color k. As we have so far 24 missing edges in colors i and j, we need at

least 13 in color k to arrive to a contradiction. We distinguish two situations :

– Pi,j is a cycle. Then there are no edges in color k between Pi,j and e3. This give us 8

missing edges. Suppose the case that there are no edges in color k between the extremities

of e3 and v, and between the extremities of e3 and w. In this case there are 4 missing

edges more in color k. Observe that Pi,j and vzw form a cycle, otherwise there is at

least one more missing edge. If there is no cycle Pi,j with vzw, then we have 13 missing

edges in color k, a contradiction. If there is a cycle Pi,j with vzw then we can use the
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edges in color k from the extremities of e3 and z to create a hamiltonian path, unless

they are missing. In this case we arrive to 14 missing edges and again a contradiction.

– Pi,j is not a cycle. In this case, by Lemma 6.2.4, there are 8 missing edges in color k in

interior of Pi,j and from e3 to the extremities of Pi,j . There are at most 2 edges in color

k from e3 to the edge y1x2. We have now the possible situations :

(1) Suppose that both extremities of e3 are connected with edges in color k to y1. And

suppose that there are 2 edges connecting e3 to v. In this case there are 2 missing

edges from e3 to w. Since we can not add e3 and vzw directly to Pi,j there are 3

missing edges more from w to x1, y2 and x2. That give us 13 missing edges in color

k. A contradiction.

(2) Suppose that both extremities of e3 are connected with edges in color k to y1. And

suppose that there are 4 edges connecting e3 to v, and w. In this case there are 3

missing edges from w to x1, y2 and x2, We have the same situation at v. That give

us 14 missing edges in color k. A contradiction.

(3) Suppose that both extremities of e3 are connected with edges in color k to y1. And

suppose that there are no edges in color k connecting e3 to v, and w. In this case

there are 4 missing edges more. Denote the endpoints of e3 by x3 and y3. Suppose

that there is and edge from any of them in color k to z. Suppose without losing

generality that we have the edge y3z. Also suppose that there are the edges vx2

and y2w, in color k. Then we have the hamiltonian path P = x1y1x3y3zvx2y2w,

otherwise there is at least one more missing edge. A contradiction.

(4) suppose e3 are not connected to Pi,j . Then there are 2 more missing edges that

give us a total of 10 missing edges in color k. If we suppose that there is no edges

from e3 to vzw then we have contradiction since there are 4 more missing edges.

Suppose there is edges from extremities of e3 to v. Since there is no to w there are 2

missing edges more in color k. There are 2 more missing edges from w to x1 and y2.

Suppose now that there are edges from e3 to v and w then there can not be edges

from v and w to x1 and y2, that give us 4 more missing edges in color k. By this a

contradiction.

(5) Suppose that one extremity of e3, say x3, is connected to y1 and x2 with edges in

color k. We restart to count the missing edges in color k. There 3 missing edges in

Pi,j , 4 more missing from y3 to Pi,j , and 2 more from x3 to x1 and y2. This give us

in total 9 missing edges in color k. If we suppose that there are no edges from e3 to

vzw then we have contradiction, since 4 missing edges more are added. Otherwise,

if there are edges only to v, then there are no edges wx1 and wy2 in color k, or if

there are edges from e3 to w and v, then there can not be edge from wx1, wy2, vx1

and vy2. Therefore a contradiction.

Suppose now that |Pi,j | = 1 for all i 6= j, i, j ∈ {r, b, g}. This can arrive when the matchings
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are parallel. Therefore there are no edges between the edges of the matchings in any color.

Now, we can see that these edges are fully connected to the vertices v, z and w. Then we

can take alternatively the edges in colors i, j and k to make a hamiltonian path.

Since we covered all cases, the proof is completed.
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Theorem 6.3.8. Let Gc be a connected 3-edge-colored multigraph on 10 vertices. If m ≥ 94,

then Gc has a proper hamiltonian path.

Proof. Before beginning the proof we state the following.

CLAIM : For any two colors, say r and b, |M r,b| ≥ 4

Let us assume |M r,b| < 4. We consider that M r,b is maximum. Let q be the number of

edges of M r,b, then M r,b = {e1, · · · , eq} with 1 ≤ q ≤ 3. So there are 10 − 2q vertices without

edge of color r and b between them. Let I be the set of those vertices. Now we are going to

count the number of missing edges of Gc. Since any arbitrary couple of vertices in I can not

have more than two incident edges with color r and b with ei, then the number of missing

edges of color r or b between M r,b and I is at least
4q
(
10−2q

2

)

10− 2q − 1
= 2q(10− 2q). This number is

justified by the number of combinations of 2 among |I| = 10 − 2q and each vertex of I in this

number is counted 10 − 2q − 1 times. Inside of I, the number of missing edges of color r and

b is (10 − 2q)(10 − 2q − 1). By addition, we have at least 9(10 − 2q) missing edges. Getting a

contradiction about the number of edges, means to have the number of missing edges greater

than 41 which the maximum number of edges of Ḡc. For q = 1, 2, we have 9(10 − 2q) > 41.

Then we have to study the particular case of q = 3. We shall focus our attention on the induced

subgraph of M r,b. Let assume there are two edges of M r,b such that the underlying subgraph is

a clique. Otherwise we add at least 6 more missing edges and by this we arrive to contradiction.

We distinguish now the following cases :

– Case 1 : One vertex of I has 2 neighbors in the clique

That implies there no edge of color r or b between the others 3 vertices of I and the clique,

so the number of missing edges is 24. The number of missing edges of color r and b inside

of I is 12. We know also that the minimum number of missing edges between I and an

edge of M r,b (we consider the no used edge of the clique) is 8. Then at least the total

number of missing edges is 44.

– Case 2 : No vertex of I has more than one neighbor in the clique

Then, for any vertex of I, the number of missing edges with the clique is at least 6. Then

between the clique and I, the number of missing edges is at least 24. By adding the missing

edges inside of I and since any arbitrary couple of vertices in I can not have more than

two incident edges with color r and b with the edge of M r,b not considered in the clique,

we obtain at least 44 missing edges.

In both cases, the number of missing edges is greater than 41.

In conclusion, we say that |M i,j | ≥ 4, ∀i, j ∈ {r, b, g}, j 6= i. Therefore the claim is proved.

Now let prove by contradiction that Gc has no proper hamiltonian path.

– Let us assume that there is a perfect monochromatic matching in some color

We will prove that Gc has a proper hamiltonian path. Without loss of generality, let set
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|M r| = n
2 and |M b,g| ≥ n−2

2 and let us consider the longest compatible paths Pr and Pb,g

with M r and M b,g. Let us set Pr = x1y1x2y2 · · ·xpyp and Pb,g = s1t1s2t2 · · · sp′tp′ such

that c(xiyi) = r , c(sjtj) = b or g. Let us assume that there is no proper hamiltonian path

in Gc. We are going to count the missing edges into the two following cases :

Let us first suppose that |M r| = n
2 and |M b,g| = n

2 .

(1) No one of the paths Pr or Pb,g is a cycle

Since Pr is not a cycle, by lemma 6.2.4, there are at least 2(n− 2+ pn− 2p2) missing

edges in Gc in color b and g. There are also at least n− 2 + p′n− 2p′2 missing edges

in color r because Pb,g is a not cycle. By addition the missing edges are at least

f(p, p′) = −4p2 + 2np− 2p′2 + np′ + 3n− 6

Now we compare f(p, p′) with 5n− 9 witch is the maximum number of Ḡc. It suffices

to have the minimum value of f(p, p′) greater than 5n− 9 for to conclude that there

is a proper hamiltonian path. We also know that 1 ≤ p, p′ ≤ n−2
2

By studying the optimum of the function f(p, p′), we find the minimum value for

(1, 1) and (n−2
2 , n−2

2 ).

f(1, 1) = f(
n− 2

2
,
n− 2

2
) = 6n− 12

Since 6n− 12 ≥ 5n− 9 for n = 10, then we say Gc has a proper hamiltonian path in

this case.

(2) At least one of the paths Pr or Pb,g is a cycle

we have to solve the three following combinations :

– Pr is a cycle and Pb,g is not a cycle

– Pr is a not a cycle and Pb,g is a cycle

– Pr is a cycle and Pb,g is a cycle

We apply the lemma 6.2.4 to obtain, the functions g1(p, p
′), g2(p, p′) and g3(p, p

′),

1 ≤ p, p′ ≤ n−2
2 , for the different combinations.

g1(p, p
′) = 2(2pn− 4p2) + n+ np′ − 2p′2 − 2

g2(p, p
′) = 2n+ 2np− 4p2 − 4 + 2p′n− 4p′2

g3(p, p
′) = 2(2pn− 4p2) + 2p′n− 4p′2

we have g1(p, p
′) − f(p, p′) = 2(g2(p, p

′) − f(p, p′)) = 2np − 2n − 4p2 + 4 ≥ 0 if

p ∈ {1, · · · , n2 −1}. we have also g3(p, p
′)−f(p, p′) = (g1(p, p

′)−f(p, p′))+(g2(p, p
′)−

f(p, p′)) ≥ 0.

We conclude that in this case Gc has a hamiltonian path.
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Let us now suppose that |M r| = n
2 and |M b,g| = n−2

2 .

(1) So, in the case that Pr and Pb,g are not cycles, we use again lemma 6.2.4 to get

missing edges

f(p, p′) = −4p2+2np+2n−4−2p′2+np′−2p′+n−4 = −4p2+2np−2p′2+np′−2p′+3n−8

for 1 ≤ p ≤ n−2
2 , 1 ≤ p′ ≤ n−4

2 . The minimum value of this function is 6n− 16 and is

greater than 5n− 9 for all n ≥ 8. Since Gc has no hamiltonian path, then p′ = n−2
2 .

Since Pr is a not a cycle, there is at least 2(n− 2 + pn− 2p2) missing edges in Gc in

color b and g. By lemma 6.2.3 there are also at least n − 4 missing edges of color r.

By considering the matching M r, we know there are at least 2 missing edges of color

b and g, parallel to the edges of the matching . Finally by considering the matching

M b,g, we add 2 missing edges of color r at the extremities of Pb,g, otherwise it will

be a proper hamiltonian path. By addition, we obtain a function with one variable

f(p) = −4p2 + 2np+ 3n− 4

For all p = 1, · · · , n2 , the latter function is greater than 5n− 9 because its minimum

value is 5n− 8.

(2) Pr is a cycle and Pb,g is a not a cycle. By lemma 6.2.4, we have g1(p, p
′) = 2(2pn −

4p2)+(n−4+np′−2p′−2p′2), for 1 ≤ p ≤ n−2
2 , 1 ≤ p′ ≤ n−4

2 and g1(p, p
′)−f(p, p′) =

2np− 2n− 4p2 + 4 ≥ 0. For p′ = n−2
2 , we add n− 4 (n− 4 from the lemma 6.2.3) to

2(2pn−4p2) There are also 2 missing parallel edges of color r and b for the extremities.

In total we n − 2 for the color r and b for the extremities to 2(2pn − 4p2) and the

minimum value is 5n− 8.

(3) Pr is a not a cycle and Pb,g is a cycle. Then g2(p, p
′) = 2(n− 2 + pn− 2p2) + (2p′n−

4p′ − 4p′2), for 1 ≤ p ≤ n−2
2 , 1 ≤ p′ ≤ n−4

2 and g1(p, p
′)− f(p, p′) ≥ 0. For p′ = n−2

2 ,

when we consider the cycle Pb,g, for each edge of color r of Pb,g, there are 2 missing

edges of color r between this edge and the 2 vertices out of Pb,g. In total there are

n− 2 missing edges in color r in which we add 2 missing parallel edges of color b and

g from M r. The resultant function is 2(n− 2+ pn− 2p2) + n and its minimum value

is 5n− 8.

(4) Pr is a cycle and Pb,g is a cycle. g3(p, p
′) = 2(2pn − 4p2) + (2p′n − 4p′ − 4p′2) for

1 ≤ p ≤ n−2
2 , 1 ≤ p′ ≤ n−4

2 and we have g3(p, p
′) − f(p, p′) = (g1(p, p

′) − f(p, p′)) +

(g2(p, p
′)− f(p, p′)) ≥ 0. For p′ = n−2

2 ,as previous, we add n to 2(2pn− 4p2) and the

total has 5n − 8 as minimum value. The contradiction about the number of edges

means that Gc has a proper hamiltonian path in this case.
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– Now we deal with the case that there is no monochromatic perfect matching

Let say that the color r is the dominating color in Gc. It verifies the number of edges of

the conditions of lemma 6.2.5. It means that the underlying subgraph on color r is not

connected. It will be easy to verify this subgraph contains a big component of size n−1 and

an isolated vertex z. Since Gc is connected, it is trivial that there is an edge in some color

on z, such that this edge and the component have by lemma 6.2.5, a perfect matching.

In this matching, all edges are in color r except one. We cannot have at the same time

|M b| ≤ 3 and |Mg| ≤ 3, otherwise we have a contradiction about the number of missing

edges. To see this, we have to analyze and calculate like the first step. Let us assume that

|M r,b| = n
2 . If |M r,g| = n

2 , then the missing edges in color g are 2n− 4 obtained from the

lemma 6.2.4, and one edge more not parallel to the edges of M r,b since Mg is not perfect.

By |M r,g| = n
2 , the missing edges in color b are 2n− 3 and the missing edges in color r are

n− 1 since dr(z) = 0. Adding all these numbers lead to 5n− 7 missing edges.

Let us now suppose that |M r,g| < n
2 . Then it implies that dg(z) = 0.

Now we are going to distinguish to cases : first we consider that |Mg| = n−2
2 and second

|Mg| < n−2
2

Case 1 : |Mg| = n−2
2 .

Let us consider the longest compatible path Pg = x1y1x2y2 · · ·xpyp using edges from

Mg and edge of color r. From |M r,b| = n
2 , the missing edges in color g are 2n − 4

in which we add one parallel edge to M r,b. Since M b is not perfect, there are n − 1

missing edges in color b. There are n − 1 missing edges in color r, since dr(z) = 0.

Let assume that the order of Pg is smaller than n− 2. It means that there is at least

one edge of color g out of the path Pg and two vertices among which z. The missing

edges in color r from Pg are at least 2n− 8 since we cannot add the last edge. So the

total number of these missing edges is 6n− 13 which 47 for n = 10. Now let suppose

that the order of Pg is exactly n− 2. So, the vertex z and an other vertex, say z′ are

out of the path Pg. Clearly, there is no edge in color b between z and z′ , otherwise

|M b,g| = n
2 which is not possible.

Now let us suppose that Pg is a cycle

Let assume that z′ cannot be inserted in Pg so as to obtain a new proper cycle

containing all the vertices of Gc except z. Otherwise we get a proper hamiltonian path

because Gc is connected and we easily link z and choose an appropriate direction.

Since we cannot insert z′ to Pg , then z′ is incident to some edges yixi+1 (if any) of

Pg in only color r or only b , or z′ is adjacent on 2 colors (parallel edges) to only one

extremity of some edges yixi+1.

Let’s denote the set of edges in color r that has monochromatic edges to z′ by Z

and the rest by (Pb \M b) \Z. There is no edge from z to Z otherwise we get proper

hamiltonian path with z and z′ as extremities and there is one edge from z to each

edge of (Pb \ M b) \ Z to same extremity. So in total there are 4 edges missing for
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each edge in Z ( 2 since z′ can not be inserted and 2 since there is no edges from z

to this edges, otherwise we can brake the cycle) and 3 for each in (Pb \M b) \ Z ( 2

since z′ can not be inserted and 1 since there is no edges from z to second extremity

of the edges, otherwise we can brake the cycle). The minimum correspond to at least

3n−2
2 = 12 missing edges, where |Z| = 0.

Let us now consider the two following subcases :

– There is edge zxi in color b and edges z′xi−1 in color b and r

Then we can make a new path almost alternating in color g in one edge P =

z′xi−1yi−2 . . . xiz such that yi−1 is outside the path. If now we can insert the vertex

yi−1 in place of an edges in color r from the path, where are |(Pb\M b)\{yi−1xi}| =
n−2
2 −1 = n−4

2 edges in color r to consider, then we have a hamiltonian path. Since

is not the case there are at least 2 edges missing in color r and b at yi−1 for each

edge in (Pb \M b) \ {yi−1xi}, that give us n − 4 edges more. So 2n − 3 in color g

plus n− 1 in color r at z, plus 12 plus n− 4, give us 4n+4 that is a contradiction

with number of edges in Gc.

– There is edge zxi in color b and edges z′xi−1 in color b or r

Suppose that we cannot make a new path almost alternating in color k in one

edge P = z′xi−1yi−2 . . . xiz such that yi−1 is outside the path. So there are n−2
2

possibilities we miss one edge per each possibility. Then we have 2n − 3 in color

k plus n − 1 in color r at z, plus 3n−2
2 + n−2

2 give us 5n − 8 missing edges, result

contradiction.

Let us suppose that Pg is a not cycle.

In this case by Lemma 6.2.3 there is (2p − 2) = n − 4 missing edges in color r,

between the vertices of Pg.

Let consider the longest compatible path P ′
g using edges from Mg and edges of

color b . Suppose that P ′
g is not a cycle of order n − 2, otherwise we return to

previous case.

By the same lemma, there are n− 4 edges missing in color b between the vertices

of P ′
g, otherwise we return to the previous case. There are also 2 missing edges

between z and z′ and the two endpoints of P ′
g because we can not have more than

2 edges in color b between them, otherwise we will get a proper hamiltonian path.

Then we distinguish two cases :

– The missing edges in color b with the extremities of P ′
g are only at z

Then observe that z′ has parallel edges in color r and b connected to both

extremities that allow to make a proper cycle of order n − 1. Hence it will be

easy to connect z so as to get a proper hamiltonian path. Then there are 2 more

missing edges at z′ for not to have a such path.

– The missing edges in color b with the extremities of P ′
g are on z and z′

Then there are two edges in color b going in one of the extremities of P ′
g. So it
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is not allowed to have an edge of color r between the other extremity and the

vertex z′ Otherwise, we will have a proper hamiltonian path.

In total, there are 2n − 3 edges in color g , n − 1 at z in color r, n − 4 between

vertices of Pg in color r, n − 4 in color b between vertices of Pg and at least 3

between z, z′ and the extremities of Pg, plus the edge between z and z′ in color b ,

and we arrive to 5n− 8 missing edges that contradicts the number of edges in Gc.

Case 2 : |Mg| < n−2
2

Since the matchings M r and M b are not perfect, there are at least (n − 1) = 9

edges missing in color r and (n − 1) = 9 in color b . This correspond to 18 edges

in Ḡc. For |Mg| = n−4
2 there are several situations but only one doesn’t give direct

contradiction. It is the case that there is no clique in color g using 2 edges from Mg.

Following the same reasoning presented above there are only one situation that don’t

give a contradiction, is in the case then we miss 21 edges in color g, but this case

suppose that all vertices has at least 3 incident edges in color g . Since in our case

now it exist a vertex v without color g incident to it we conclude that there are 3

edges more missed in color g , that give us 24 missing edges in color g . In total, there

are 42 missing edges that contradicts the number of edges in Gc.

Theorem 6.3.9. Let Gc be a connected c-edge-colored multigraph on n vertices, n ≥ 9 and

c ≥ 3. If m ≥ c(n−2)(n−3)
2 + n, then Gc has a proper hamiltonian path.

Démonstration. By Lemma 6.3.5 it is enough to prove the theorem for c = 3.

The proof is by induction on n. For n = 9, 10 the theorem is true, by Theorems 6.3.7

and 6.3.8, respectively. We distinguish 2 cases, depending if the multigraph contains or not a

monochromatic vertex.

(1) There exists a monochromatic vertex in Gc. Let us denote this vertex by x. Clearly, there

exists a vertex y ∈ N(x), such that y is not monochromatic, otherwise there is no enough

edges in Gc. Suppose that the edge xy is of color b. Replace the vertices x and y by a new

vertex, say z, such that N b(z) = N r(z) = ∅ and Ng(z) = Ng(y) (or N b(z) = Ng(z) = ∅
and N r(z) = Ng(y)). This process is called the contraction.

Observe that, if the resulting multigraph on n − 1 vertices is connected (as we will show

later) it has a proper hamiltonian path, then, since s is monochromatic, it can only be the

endpoint of the path. We can replace back s with x and y using the edge xy in color b and

find the proper hamiltonian path for the initial multigraph.

We now count the edges that are deleted by contraction process. We check the maximum

number of edges that are deleted by the contraction process. We delete all the edges
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incident to x, at most n − 1, and the edges in color b and say g (or r) incident to y,

at most 2(n − 2). This gives us a total of 3n − 5 edges. We shall choose x, y for the

contraction process, such that we can guarantee that we delete at most f(n) − f(n − 1)

= 3 (n−2)(n−3)
2 +n−3 (n−3)(n−4)

2 −n+1 = 3n−8 edges needed for the induction hypothesis

to hold.

Let us study the different cases, depending on the degree in color b at x.

– db(x) = n− 1. Consider the subgraph Gc −{x}. By a Theorem of [3], if for every vertex

z ∈ V (Gc−{x}) , di(z) ≥
⌈
n
2

⌉
, where i ∈ {r, b, g} , thenGc−{x} has a proper hamiltonian

cycle. We can conclude that in Gc −{x} exists a vertex such that di(z) <
⌈
n
2

⌉
. Without

loss of generality let us suppose that say dr(z) <
⌈
n
2

⌉
. Then in the contraction process

we delete at most n − 1 edges in color b at x and n − 2 in color b at z and n
2 at z in

color r. In total we have (5n−6)
2 deleted edges that is less than 3n− 8 for n > 10.

– db(x) = n − 2. Using the same arguments as in the previous case we can conclude

that in Gc − {x} there exists a vertex such that di(w) <
⌈
n
2

⌉
, w ∈ V (Gc − {x}) and

i ∈ {r, b, g}. If we suppose that there exists the edge xw in color b then we return to

the previous case, otherwise suppose there is no edge xw in color b. Then there exists a

vertex z ∈ N b(x), such that there is no edge zw in color say r. Consider the subgraph

V (Gc)−{x,w} vertices with the edge set in color r and b. By a Theorem of [3], if for any

vertex z ∈ Gc − {x,w}, di(z) ≥
⌈
n−1
2

⌉
, where i ∈ {r, b} , then Gc − {x,w} has a proper

hamiltonian cycle, alternating in color b. Let us see now the two possible situations :

– There is an alternating cycle in color b of order n − 2. Since x is connected to all

vertices of the cycle we can use edges in color g and b at w to break the cycle at one

end point of some edge in color b and add x and w to the extremities of this edge.

Since Gc has no hamiltonian path we conclude that there is no edges in color b and g

at w. Then we can use any vertex from the cycle for the contraction process as vertex

x, such that we delete at most n − 2 edges in color b at x and at most 2(n − 3) in

color b and g at the vertex in the cycle. Therefore there are 3n− 8 deleted edges and

the contraction process can be done.

– There is no alternating cycle in color b of order n− 2. If such is the case, then there

exists a vertex z′ such that the degree in color say r : dr(z′) <
⌈
n−1
2

⌉
. If we suppose

that there are the edges in color r, z′w then dr(z) <
⌈
n+1
2

⌉
. Then in the contraction

process we delete n − 2 edges in color b at x and n − 2 in color b at z′ and n+1
2 at z

in color r. In total we have (5n−7)
2 deleted edges that is less than 3n− 8 for n > 9.

– db(x) ≤ n − 3 Let us suppose that db(x) = n − 3. Otherwise we can use any vertex

z ∈ N(x) for the contraction process, since we delete at most n− 4 edges in color b at x

and 2n− 4 in color b and say r at z, that is enough to respect the induction hypothesis.

Using the same arguments as in the previous case, we can conclude that in Gc − {x}
exists a vertex such that di(w) <

⌈
n
2

⌉
, w ∈ V (Gc − {x}) and i ∈ {r, b, g}. If we suppose
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that there exists the edge xw in color b then we return to the previous case. Otherwise

suppose that there is no edge xw. Then there exists a vertex z ∈ N b(x), such that there

is no edge zw in color say r. Then we delete n − 3 edges in color b of x and n − 2 in

color b of z plus n− 3 in color r of z, which gives us the total of 3n− 8 that is enough

for the contraction process.

(2) There is no monochromatic vertex in Gc. First suppose that there exists a vertex x such

that N(x) = 1. Take then x and y, where y ∈ N(x), for the contraction process. We delete

at most 3 edges at x and at most 2n− 4 in color say r and b at y. So in total 2n− 1 edges

will be deleted, which guarantees the induction hypothesis for n ≥ 8.

In what follows, we suppose that N(x) ≥ 2 for all x ∈ Gc. We describe now a new

contraction process, between 3 vertices.

Let us take a vertex x, y and z, where y, z ∈ N(x). Suppose that the edge xy is in

color b and the edge xz in color r. Replace x, y and z by a new vertex say s, such that

N r(s) = N r(y), N b(s) = N b(z) and Ng(s) = (Ng(y) ∩Ng(z)).

Suppose now that the contraction of 3 vertices has been done and the resulting multigraph

is connected (we will show this later). So, as the multigraph on n− 2 vertices has a proper

hamiltonian path, then s can be replaced back with x, y and z using the initial edges

as follows. Suppose that s is neither at the beggining nor at the end of the path and

suppose that usv is part of the path with c(us) = r and c(sv) = b. To obtain the proper

hamiltonian path for the initial graph we replace usv in the path with uyxzv such that

c(uy) = r, c(yx) = b, c(xz) = r and c(zv) = b. Now, if we have usv with c(us) = g and

c(sv) = r (the case that c(sv) = b is similar) then we replace it with uzxyv such that

c(uz) = g, c(zx) = r, c(xy) = b and c(yv) = r. The case that s is either at the beggining

or at the end of the path is easy to observe.

Let us count now the maximum number of edges that are deleted in the contraction process.

In general, we would delete at most 3(n− 1) edges at x and (n− 3) at y in color b, (n− 3)

at z in color r and (n− 3) in color g at z and y, plus 3 edges between z and y. This gives

a total of 6n− 9 deleted edges at x, z and y.

First of all we shall find a triplet of vertices, x, z and y. We shall furthermore choose x, z

and y so that we guarantee that we delete at most 3 (n−2)(n−3)
2 + n− (3 (n−4)(n−5)

2 + n− 2)

= 6n− 19 edges, necessary for the induction hypothesis.

So we need to find some particular vertices, x, z and y, so that we can guarantee that the

number of edges that have been deleted is at most 6n−19. We should prove that there exist

a vertex in Gc, such that its total color degree is less than or equal to 6n− 19− (3n− 6) =

3n − 13 and use this vertex as x, or that exist x y and z such that the total number of

deleted edges in the contraction process is less than or equal to 6n− 19.

The proof is split in two cases, depending on the parity of n. In what follows we show how

to find this triplet.

Let Eb be the set of edges in color b and let’s suppose that the color b is the dominating
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color. The monochromatic subgraph in color b has at least mb ≥ (n−2)(n−3)
2 + ⌈n3 ⌉. We

distinguish two possibilities.

If this subgraph is connected, then by Lemma 6.2.5 there is a perfect matching in color b

of the size n
2 for n even and n−1

2 if n is odd. Otherwise, if the subgraph is disconnected,

then there is a matching of size n−2
2 for n even and n−1

2 if n is odd.

Let M b denote the maximum matching in Eb. We deal with the longest proper com-

patible path P with M b.

– n is even, and M b ≥ n−2
2 .

Let P = x1y1x2y2 . . . xpyp be the longest proper compatible path with M b. It is easy to

check that |P | ≥ 4, otherwise there is no enough edges in Cc.

Suppose now that P is also a proper cycle. Then we distinguish 2 cases :

(a) |P | ≤ n− 8. Let us suppose that M b = n
2 . Observe that between the vertices in the

cycle and the vertices in Gc \ P there are no edges in color r and g, otherwise a

longest proper path can be found. Take the triplet x, y and z from the vertices of

the cycle (consecutive). We count the edges incident to x. There is at most n − 1

edges in color b. Observe that the maximum number of edges in color r and color

g, is when the vertices of the cycle form a complete multigraph in color r and g. In

the worst case we delete at x at most 2(n− 9) edges in color r and g and n− 1 in

color b. We can see that there is at most 2n− 18 + n− 1 = 3n− 19 edges incident

at x in this case. Using this triplet we can do the contraction.

Let us suppose that M b = (n−2)
2 . In this case as in the previous one, between the

vertices in the cycle and the vertices in M b \ (P ∩ M b), there is no edges in color

r and g. As before, we take x, y and z from the vertices of the cycle. Observe that

the maximum number of edges in color r and color g is when the vertices of the

cycle form a complete multigraph in color r and g and then there are edges in both

colors to the two unmatched vertices in Gc \M b. Then we delete at x as previous

at most n − 1 edges in color b plus 2(n − 9) + 4 = 2n − 14 edges in color r and g.

Using this triplet we can do the contraction.

(b) n− 8 < |P | < n− 2. Let us suppose that M b = n
2 . As previously, there is no edges

in color r and g between the vertices in cycle and the vertices in Gc \ P . Let us

take the triplet x, y and z from the vertices of M b \ (P ∩M b). We count the edges

incident to x. There is at most n − 1 edges in color b. Observe that the maximum

number of edges in color r and color g, is when the vertices of M b \ (P ∩M b) form

a complete multigraph in color r and g. Since |P | ≥ n − 6, there are 6 vertices in

Gc \ P , therefore in the worst case we delete at x at most 2(5) edges in color r and

g and n− 1 in color b. We can see that there is at most n− 9 edges incident to x in

this case. Using this triplet we can do the contraction.
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Let us suppose that M b = (n−2)
2 . In this case, between the vertices in the cycle and

the vertices in M b \ (P ∩M b), there is no edges in color r and g. Suppose that there

is at least 1 edge in M b \ (P ∩ M b). Take one vertex of the edges as x. Observe

that the maximum number of edges in color r and color g is when the vertices

(M b \ (P ∩M b))∪ (Gc \M b) form a complete multigraph in color r and g. Then we

delete at x at most n− 1 edges in color b plus 2(5) edges in color r and g. So using

this triplet we can do the contraction.

(c) |P | = n−2 Let us suppose that M b = n
2 . By the same observations as above we can

use one vertex in M b \ (P ∩M b) as x for the contraction process. Let us suppose

that M b = (n−2)
2 . Since there is a cycle of order n− 2 we can use the edges in color

r and b at vertices in (Gc \M b) to add them to the cycle using the extremities of

some edge yi−1xi. Observe that one vertex is enough to add to the cycle, since Gc is

connected, we can then construct a hamiltonian path. Therefore, there are at least
(n−2)

2 missing edges in color r and g. Using this vertex as x we respect the induction

hypothesis.

Let us suppose the case when P is not a proper cycle.

(a) Let us suppose that M b = n
2 . Since P is not hamiltonian there is at least one edge

in M b \ (P ∩M b). Clearly, there are no edges in color r and g at the extremities of

P to the edges in M b \ (P ∩M b). By Lemma 6.2.4 we can check that |P | ≥ n − 4

for n ≥ 11.

Let us suppose that |P | = n − 4. Since we can not add one more edge from

M b \ (P ∩ M b) to P there are at most 4 missing edges in color r and g from

xp+1 and yp+1, to each edge yi−1xi in P . There are (n−6)
2 edges yi−1xi, this implies

that there are 4 (n−6)
2 edges from xp+1 and yp+1 to the vertices in P .

Suppose that xp+1 is the vertex with minimum degree in r and g. Then, there can

be at most (n− 6) + 4 = n− 2 edges incident in color r and g at xp+1. We can use

this vertex as x for the contraction process for n ≥ 9.

Suppose now that |P | = n − 2. In this case doing the same observations as below

we conclude that there is a vertex with minimum degree in color r and g that has

at most n edges.

(b) Let us suppose that M b = (n−2)
2 For |P | = n− 4 the proof is analog. Then, suppose

that |P | = n−2. There are two vertices, w and s in Gc \M b. We insert both vertices

into the path at vertices yi−1 and xi if it is possible. We distinguish two situations :

– Suppose we add s to P . But we cannot add w to P ∪ {s}. Since, there are now
(n−6)

2 edges yi−1xi (since one edge was used to insert s) we can conclude that at

w there are at most (n−6) edges in color r and g plus 6 possible edges to s and 2
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of its neighbors in P . This implies that the degree in color r and g is n, therefore

we can use this vertex as x for the contraction process if n ≥ 11.

– If we cannot add any vertex to P , then there are at most 2 (n−4)
2 edges in color

r and g from each vertex to the internal vertices in P and at most 2 to the

extremities of P . Observe that there can not be more than 2 edges from one

vertex to the extremities of P without having a cycle of order n − 1, that will

contradict the hypothesis of the nonexistence of a proper hamiltonian path in Gc.

By this observations we have that at, for example, w there are at most n−2 edges

in color r and g and so we can use this vertex as x for our contraction process.

– Let us suppose that n is odd, and M b ≥ n−1
2 .

Clearly there are no edges in color r and g at the extremities of P to the edges in

M b \ (P ∩M b). By Lemma 6.2.4 we can check that |P | ≥ n− 7 for n ≥ 11. Then let us

distinguish two cases :

– P is also a proper cycle. In this case, as for the case of n even, we can observe

that if |P | = n − 7 we can use a vertex from P as x for our contraction process. If

n − 5 ≤ |P | ≤ n − 3 there are at most 5 vertices in Gc \ P , therefore there can be a

vertex w in M b \ (P ∩M b) with maximum degree in color r and g at most 2(4). This

vertex can be used for the contraction process if n ≥ 10.

– P is not a cycle. Since P is not cycle we will analyze the degree in color r and g at x1

and yp. There since there are no crossing edges x1xi and yi−1yp we can suppose that

there are 2p − 2 missing edges in both colors at xi and yp. There is 2 more missing

edges between x1 and yp. We can say that there exists a vertex with minimum degree

in color r and g between x1 and yp. This vertex has the missing degree in color r and g

at most (2p−2)
2 +2. Then we distinguish two cases depending on size of M b \ (P ∩M b)

(a) (M b \ (P ∩ M b)) 6= ∅. Then, since p ≤ (n−3)
2 , there can be 2 more edges in

color r and g to the vertex in Gc \ M b. Let suppose without loosing generality

that x1 is the vertex with the minimum degree. Then the total degree at x1 is

2(2p − 1) + 2 − (2p−2)
2 − 2 = (6p−2)

2 . For the maximum value of p ≤ (n−5)
2 , (6p−2)

2

is less than or equal to 2n− 12 and it is for n ≥ 11.

Suppose now that p = (n−3)
2 then we use the fact that where can be at most 4

edges to each edge yi−1xi from xp+1yp+1 we can affirm that there are at most

n−5 edges in color r and g at the vertex with minimum degree between xp+1 and

yp+1 to the vertices in P and 2(2) to the rest of vertices in Gc − P . Then since

n− 1 ≤ 2n− 12 for n ≥ 11 we can use this vertex for the contraction process.

(b) (M b \ (P ∩M b)) = ∅. In this case p = (n−1)
2 . If we cannot add the last vertex to

P , it is because its degree in color r and g is at most n − 3, so we can use this

vertex for the contraction process.

We now check the connectivity of the resulting multigraph after the contraction of 2

and of 3 vertices.
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Let us see first the case when we contract 2 vertices, v and his neighbor, say y. In

this case let us suppose that after the contraction of v and y a set of vertices S is

disconnected. Taking in consideration the total number of edges that has the resulting

multigraph |S| is equal to one. Denote the vertex in S by q. Then there can be at most

two parallel edges incidents to q. Take then q and contract with y, there is another vertex

disconnected q′. This implies that Gc has at most 3 (n−2)(n−3)
2 +4 edges. A contradiction.

Let us suppose that after the contraction of v, y and z, where v is connected to y and

to z by edges in different colors, there is set of |S| vertices disconnected from the rest of

the multigraph. Taking in consideration the total number of edges that has the resulting

multigraph |S| is equal to one.

Denote by w the vertex in S. Clearly, there can be at most 3 edges between w and

vertices y and z, there can be at most 3 edges between w and v. Since 1 < dr,g,b(w) ≤ 6

and 1 < N r,g,b(w) ≤ 3, we can take the triplet w, y′ and z′ (where y′ and z′ in {v, y, z})
and contract it. Suppose there is one disconnected vertex w′. Then if w′ 6= z 6= y 6= v

then there are at most 3 incident edges to w′. Otherwise there can be at most 6 incident

edges to w′ but there are 3 of them connected to w. In conclusion the multigraph Gc

can have at most 3 (n−2)(n−3)
2 + 6 + 3 edges. A contradiction.

Now as the connectivity is proved the theorem holds.

Theorem 6.3.10. Let Gc be a c-edge-colored multigraph on n vertices, n ≥ 11 and c ≥ 3.

Assume that for every vertex x of Gc, rd(x) = c. If m ≥ f(n) = c(n−2)(n−3)
2 + 2c + 1, then Gc

has a proper hamiltonian path.

Proof. By Lemma 6.3.5 it is enough to prove the theorem for c = 3. Asm ≥ f(n) = 3(n−2)(n−3)
2 +

7 then E(Ḡc) ≤ 6n−16. The proof will be done by construction of a proper hamiltonian path or

if it is not possible, by reduction to Theorem 6.3.9, i.e., a connected c-edge-colored multigraph

on n′ ≥ 9 and m′ ≥ g(n′) = 3(n′−2)(n′−3)
2 + n′ has a proper hamiltonian path. We will do this

reduction by contracting 2 or 3 vertices depending if there exists a vertex x in Gc, such that

|N r,g,b(x)| = 1 or not.

– There exist x ∈ Gc such that N r,g,b(x) = 1. Let denote the neighbor of x by y. We will

replace x and y by a new vertex s, such that N r(s) = N r(y) and N b(s) = Ng(s) = ∅.
Clearly, we will delete 3 edges between x and y and at most 2(n− 2) edges in color b and

g incident to y. This gives us a total of 2n− 1 deleted edges. For the reduction hypothesis

we can delete at most f(n) − g(n − 1) = 3(n−2)(n−3)
2 + 7 − 3(n−3)(n−4)

2 − n + 1 = 2n − 1

edges, where n′ = n − 1. Since we delete exactly 2n − 1 edges the reduction hypothesis

holds.
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Observe that, if the resulting multigraph on n − 1 vertices is connected (as we will show

later) it has a proper hamiltonian path by Theorem 6.3.9, then, since s is monochromatic,

it can only be the endpoint of the path. We can replace back s with x and y using the

edge xy in color b and find the proper hamiltonian path for the initial multigraph.

– There is no vertex x in Gc, such that N r,g,b(x) = 1.

Let us suppose that there are 3 vertices x, y and z, such that xy is in color, say b, and xz in

color, say r. Then we will replace x, y and z by a new vertex s, such that N r(s) = N r(y),

N b(s) = N b(z) and Ng(s) = Ng(y)∩Ng(z). Clearly, we will delete at most 3(n− 1) edges

incident to x, n − 3 edges in b incident to y, n − 3 edges in r incident to z, and n − 3 in

color g incident to y and z, plus 3 edges between y and z. In total we will delete at most

6n− 9 edges. But only f(n)− g(n− 2) = 3(n−2)(n−3)
2 + 7− 3(n−4)(n−5)

2 − n+ 2 = 5n− 12

edges can be deleted to make the reduction. Therefore, we need to find a vertex such that

its total degree is less than or equal to 2n− 6.

Suppose now that the contraction of 3 vertices has been done and the resulting multigraph

is connected (we will show this later). So, as the multigraph on n−2 vertices has a proper

hamiltonian path, then s can be replaced back with x, y and z using the initial edges

as follows. Suppose that s is neither at the beggining nor at the end of the path and

suppose that usv is part of the path with c(us) = r and c(sv) = b. To obtain the proper

hamiltonian path for the initial graph we replace usv in the path with uyxzv such that

c(uy) = r, c(yx) = b, c(xz) = r and c(zv) = b. Now, if we have usv with c(us) = g and

c(sv) = r (the case that c(sv) = b is similar) then we replace it with uzxyv such that

c(uz) = g, c(zx) = r, c(xy) = b and c(yv) = r. The case that s is either at the beggining

or at the end of the path is easy to observe.

Suppose without losing generality that |Eb| ≥ |Er| ≥ |Eg|, then |Eb| ≥ 3(n−2)(n−3)
2 + 3,

otherwise we have contradiction with the number of edges in Gc. Since the subgraph in

color b is connected because of the rainbow degree of the vertices, we have by Lemma 6.2.5

that there is a matching |M b| = n
2 for n even and |M b| = (n−1)

2 for n odd.

The proof is divided in two cases depending on the parity of n. We will distinguish two

sub-cases depending if the longest proper path P = x1y1x2y2 . . . xiyi . . . xpyp compatible

with M b is also a proper cycle or not. Let us suppose that we take M b such that the

resulting P is the longest possible. Suppose that Gc has no proper hamiltonian path. And

suppose that the vertex xp+1 is the vertex with minimum degree (between xp+1 and yp+1),

where xp+1 and yp+1 extremities of an edge in M b \ (M b ∩ P ).

(1) n is even.

– P is a proper cycle.

By Lemma 6.2.4 we can check that |P | ≥ n−6. Clearly that there can not be edges

in color r and g between M b \ (M b ∩ P ) and P . Since there are at most 3 edges in

M b \ (M b ∩ P ) the degree in color r and g of any vertex is at most 2(n− 2p− 1).
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Suppose now that there is one edge in color say r (resp. g) between xp+1yp+1, then

using edges xp+1xi , yp+1yi or yp+1xi , xp+1yi in color b, we can insert the edge

xp+1yp+1 in color r into the cycle. Since this will contradict our hypothesis we

can conclude that there are 2 missing edges in color b from xp+1yp+1 to each edge

xiyi in P . In the worst case there will be one edge missing in color b for xp+1 and

one for yp+1, for each edge xiyi. Since there are (2p)
2 edges xiyi we conclude that

vertex xp+1 has dr,g,b(xp+1) ≤ 3(n − 2p − 1) + (2p)
2 . As p ≥ n−6

2 , then for n ≥ 12,

3(n− 2p− 1) + (2p)
2 is less than or equal to 2n− 6.

Suppose that there are no edges in color r and g between xp+1yp+1. Clearly p ≤
(n−4)

2 , otherwise for p = (n−2)
2 by rainbow degree condition we have both edges and

we are in the previous case.

Then in the worst case dr,g,b(xp+1) ≤ 2(n− 2p− 2) + n− 1. If db(xp+1) < n− 1, as

p ≥ (n−6)
2 then dr,g,b(xp+1) ≤ 2(n−2p−2)+n−2 is less than or equal to 2n−6 for

n ≥ 12. If db(xp+1) = n− 1 we can choose a different matching replacing xp+1yp+1

and xp+2yp+2 by xp+1xp+2 and yp+1yp+2. Since there are no edges in color r and

g between xp+1xp+2 (otherwise previous case applies) we conclude that the degree

in all the colors of dr,g,b(xp+1) ≤ 2(n− 2p− 3)+n− 1 and this is less than or equal

to 2n− 6 for n ≥ 11.

– P is not a proper cycle

By Lemma 6.2.4 we can check that |P | ≥ n− 6. Clearly, there can not be edges in

color r and g between M b \ (M b ∩ P ) and the extremities of P . Also, there can be

at most 4 edges in color r and g from each edge in M b \ (M b ∩P ) and edges yi−1xi

in P . Then we can conclude that in the worst case there are at most 2 (2p−2)
2 edges

in color r and g, between xp+1 and vertices in P .

Suppose now that there is one edge in color say r (resp. g) between xp+1 and

yp+1, then using edges xp+1xi , yp+1yi or yp+1xi , xp+1yi in color b, we can insert

the edge xp+1yp+1 in color r into P . Since this will contradict our hypothesis we

can conclude that there are 2 missing edges in color b from xp+1yp+1 to each edge

xiyi in P . There will be one edge missing in color b between each vertex xp+1,

yp+1 and each edge xiyi. For |P | = n − 6 and |P | = n − 4 we already have a

contradiction with the number of edges. Now, since there are (2p)
2 edges xiyi we

conclude that the vertex xp+1 has db(xp+1) ≤ (2p)
2 + (n− 2p− 1). In total we have

that dr,g,b(xp+1) ≤ 3(n− 2p− 1) + (2p)
2 + (2p− 2) = 3n− 3p− 5, and for p = (n−2)

2

this is less than or equal to 2n− 6.

Suppose there are no edges in color r and g between xp+1 and yp+1. Then the degree

in color r and g at xp+1 is dr,g(xp+1) = 2(n − 2p − 2) + (2p − 2). For |P | = n − 6

we have already contradiction as before.

If |P | = n− 4 there are 6n− 20 missing edges in color r and g. Since there are no

edges in color r and g between xp+1 and yp+1, xp+2 and yp+2 we conclude 4 missing
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edges more in color r and g. Observe that if we can replace the edges xp+1yp+1 and

xp+2yp+2 in M b by xp+1xp+2 and yp+1yp+2, then there are missing the 4 parallel

edges in color r and g. A contradiction. Otherwise if not, there are 2 more missing

edges and again a contradiction.

If |P | = n−2, since there are no parallel edges xp+1yp+1 we have that d
r,g,b(xp+1) ≤

2n − 5 and dr,g,b(yp+1) ≤ 2n − 5. We can use one of these vertices unless both

inequalities become equalities. In this case we will try to replace the edges xiyi in

P by xixp+1yi and xjyp+1yj , i 6= j. Suppose that we have the edges xp+1xi in color

r and g, xp+1yi in color b, yp+1xj in color r and g, and yp+1yj in color b. Then

we have a proper hamiltonian path P ′ = x1y1 . . . xixp+1yixi+1 . . . xjyp+1yj . . . xpyp.

Otherwise at least one of those edges is missing and therefore either dr,g,b(xp+1) ≤
2n− 6 or dr,g,b(yp+1) ≤ 2n− 6.

(2) n is odd.

– P is a proper cycle.

By Lemma 6.2.4 we can check that |P | ≥ n − 5. The case |P | = n − 1 is trivial.

Clearly, there are no edges in colors r and g between M b \ (M b ∩ P ) and P . As

before we can see that dr,g(xp+1) ≤ 2(n− 2p− 1).

If there is an edge xp+1yp+1 in color r or g, then we can use the edges in color b

between xp+1yp+1 and xiyi to extend P . Since it is not possible there are at most
2p
2 + (n − 2p − 1) edges in color b incident at xp+1. Then the degree in all colors

of xp+1 is less than or equal 2p
2 + 3(n − 2p − 1) = 3n − 5p − 3. As p ≥ (n−5)

2 ,

3n− 5 (n−5)
2 − 3 ≤ 2n− 6 for n ≥ 11.

– P is not a proper cycle.

By Lemma 6.2.4 we can check that |P | ≥ n− 7.

Suppose |P | < n − 1. There can not be edges in colors r and g to the extremities

of P and there can be only 4 edges in colors r and g between M b \ (M b ∩ P ) and

yi−1xi in P . Suppose now that there exists an edge xp+1yp+1 in color r or g, then

we can use edges in color b between xp+1yp+1 and xiyi to extend P . Since it is not

possible we conclude that there are only 2p
2 + (n− 2p− 1) edges in color b at xp+1.

For |P | = n− 7 and |P | = n− 5 we already have a contradiction. Now, as p = n−3
2

then dr,g,b(xp+1) ≤ 2p
2 + (2p− 2) + 3(n− 2p− 1) = 3n− 3p− 5 ≤ 2n− 6.

Suppose there are no parallel edges in color r and g to the edges in M b \ (M b ∩P ).

If |P | = n−7 then there are 6 missing edges. Now, if we can replace the three edges

in M b \ (M b ∩ P ) we are either in the previous case or there are 6 more parallel

missing edges and by Lemma 6.2.4 there are 8n − 48 − 6 − 6 = 8n − 36 missing

edges. A contradiction. Otherwise there are at least 5 missing edges in color b and

again by Lemma 6.2.4 there are 8n− 48− 6− 5 = 8n− 37 missing edges. Again a

contradiction.

If |P | = n− 5 there are 4 parallel missing edges to the edges in M b \ (M b ∩P ) and
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by Lemma 6.2.4 there are 6n− 26 more missing edges in color r and g.

Now, since there are no 2 independent edges to those in M b \ (M b ∩ P ) there are

at least 2 missing edges in color b, otherwise we will miss more parallel edges. Also

there are 4 edges in color b between the extremities of the edges in M b \ (M b ∩ P )

and the unmatched vertex, since otherwise we can construct 4 different matchings

and therefore 8 more missing edges. In conclusion we have at least 6 missing edges

in color b and 6n−22 in color r and g, that give us a total of 6n−16 missing edges.

Now suppose that there are parallel edges x1y1 and xpyp in color r and g, then

we can make a proper cycle of order n− 1, C = x1y1 . . . xpypyp+2yp+1xp+1xp+2x1,

if we have the edges xpyp and x1y1 in color r or g, ypyp+2 and xp+2x1 in color b,

xp+1xp+2 and yp+1yp+2 in color r or g and xp+1yp+1 in color b. Now as it is trivial

to attach the unmatched vertex to the proper cycle there is at least one of those

edges missing and therefore a contradiction.

If |P | = n − 3, we have as before that dr,gP (xp+1) ≤ n − 5. As always there are no

parallel edges in color r and g to the edge xp+1yp+1. Now, if there are no edges

between xp+1yp+1 and the unmatched vertex z in color r and g, then dr,g,b(xp+1) ≤
2n − 6. Otherwise if there are edges in color r and g to the vertex z then there

can not be the edges in color b parallel to them since we could replace xp+1yp+1 by

one of these and therefore, the previous case. By rainbow degree there is an edge

between z and some edge xiyi in color b. Suppose that the edge is zxi, then there

can not be the edge xp+1yi in color b, otherwise a longest proper path exists. We

can conclude then that the degree in all colors of xp+1 are less than or equal to

n− 5 + 2 + n− 3 = 2n− 6.

Let us suppose that |P | = n−1. Then for the same reasons as before dr,g(z) ≤ n−3.

If we suppose that there are edges in color r and g between z and yi, then there

can not be the edges xiz in color b, otherwise a hamiltonian path can be found.

Suppose there is no such edges then either x1 or yp have degree in colors r and

g at most n − 3 and all parallel. If there are at least one of the edges zy1 or zxp

in color b, then we can replace z by either x1 or yp. In both cases we arrive that

dr,g,b(x1) ≤ 2n− 6 or dr,g,b(yp) ≤ 2n− 6, otherwise dr,g,b(z) ≤ 2n− 6.

Since all cases were covered, there always exists a vertex x such that dr,g,b(x) ≤ 2n− 6.

We will check now the connectivity of the resulting multigraph after the contraction of 2 or

3 vertices.

We start with the case when v has only one neighbor, say y. Let us suppose that after the

deletion of two colors at y a vertex w is disconnected. This means that the rainbow degree of w

is at most 2, contradicting the hypothesis of the theorem.

We continue with the case of 3 vertices.

Let us suppose that after the contraction of v, y and z, with dr,g,b(v) ≤ 2n − 6, c(vy) = r
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and c(vz) = b there is set X of vertices disconnected from the rest of the multigraph. Since the

resulting multigraph on n′ = n − 2 vertices has m′ ≥ 3 (n′−2)(n′−3)
2 + n′ edges, we can verify

|X| = 1.

Denote by w the vertex in X. Clearly, there can be at most 3 edges between w and vertices y

and z, there can be at most 3 edges between w and v. We will distinguish 3 cases :

(1) Let us suppose that there exist 2 new triplets v, y′, z′ and v, y′′, z′′, where y 6= y′ 6= y′′

and z 6= z′ 6= z′′. Then suppose that after each contraction there is a vertex w′ and w′′

disconnected respectively. Clearly w 6= w′ 6= w′′, otherwise we contradict the fact that the

resulting multigraph after the contraction was disconnected. Since there can be at most 6

edges incident at each vertex w, w′ and w′′, we have a contradiction with the number of

edges in Gc.

(2) Let us suppose that there exists only 1 new triplet v, y′, z′. This case can appear when

say N r(v) ≤ n − 1 and N b,g(v) ≤ 2 or when N r,g,b(v) ≤ 5 that implies that there are at

most n− 1+4 = n+3 or 15 incident edges to v. For each triplet there exist w and w′ and

there can be at most 6 edges between w, w′ and y, z and y′, z′. Take now the triplet v, y

and z′′, such that z′′ 6= z 6= z′, this is always possible if 6 ≤ N r(v) ≤ n − 1. Then there

exist a third vertex w′′ with at most 6 incident edges to it. We conclude that Gc has at

most 3 (n−3)(n−4)
2 + 6 + 4 + 6 or 3 (n−4)(n−5)

2 + n+ 14 edges. A contradiction.

(3) Suppose there are no new triplets. Then N r(v) ≤ n−1 and Ng,b = 1 or N r,g,b(v) ≤ 3, that

implies that there are at most n−1+2 = n+1 or 9 edges incident to v. Suppose N r(v) ≥ 4.

Then after the contraction of v, y and z there is vertex w that is disconnected and there

can be at most 4 edges between w and the vertices of the triplet. Take then the triplet

v, y and z′, where z 6= z′. Suppose there is another vertex w′ 6= w what is disconnected

with at most 4 incident edges at it. This implies that Gc has 3 (n−3)(n−4)
2 + n+ 9 edges. A

contradiction.

Suppose that N r,g,b(v) = 3. Then take the triplet v, y and z′ 6= z and make the contraction.

There is one more vertex w′ disconnected. If w,w′ ∈ N r,g,b(v) then there are at most 6

edges incident to each vertex, otherwise there are at most 3 edges incident to each of them

if w,w′ /∈ N r,g,b(v). This implies that Gc can have at most 3 (n−3)(n−4)
2 + 9 + 3 + 3 edges.

A contradiction.

There is one more case to study when N r,g,b(v) ≤ 2. Then w /∈ N r,g,b(v) and since

dr,g,b(w) = 3 we can use the triplet w, z and y for the contraction. If there is one vertex

more disconnected, then there can be 2 possibilities first w′ = v and second w′ 6= v. If

w′ = v then there are at most 3 edges incident to v and this implies that Gc can have

at most 3 (n−2)(n−3)
2 + 6 edges. A contradiction. If w′ 6= v then Gc can have at most

3 (n−3)(n−4)
2 + 6 + 3 + 3 edges. A contradiction.

Now as the connectivity is proved the theorem holds.
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The Theorem 6.3.10 is the best possible for n ≥ 9. In fact, consider a rainbow complete

multigraph, say A, on n − 2 vertices. Add 2 new vertices v1, v2 and then join them to a vertex

v of A with all possible colors. The resulting c-edge-colored multigraph has c(n−2)(n−3)
2 + 2c

edges and clearly has no proper hamiltonian path. If n = 6, 8, the graphs Hk,k+2, k = 2, 3, are

exceptions for Theorem 6.3.10.

6.4 Summary and remarks

In this chapter, we studied the existence of proper hamiltonian paths in edge colored multi-

graphs with bounded number of edges and fixed rainbow degree.

Here, the notable fact is that the proofs were sometimes long and tedious, despite the lower

bounds for the edges in the considered multigraphs were really high.

It should be also interesting to study similar conditions for other patterns such as cycles,

trees, etc.
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Clearly, if a graph is k-proper connected, then it is also k-connected. Conversely, any k-

connected graph has an edge coloring that makes it k-proper connected ; the number of colors

is easily bounded by the edge chromatic number which is well known to be at most ∆(G) or

∆(G) + 1 by Vizing’s Theorem [68] (where ∆(G), or simply ∆, is the maximum degree of a

vertex in G over all its vertices). Thus pck(G) ≤ ∆+ 1 for any k-connected graph G.

An edge-colored graph is connected if the underlying non-colored graph is connected. We

denote the connection number of a graph by κ(G). Throughout this chapter, all edge-colored

graphs are considered to be connected unless otherwise specified. Given a colored path P =

v1v2 . . . vs−1vs between any two vertices v1, vs, we denote by start(P ) the color of the first edge

in the path, i.e. c(v1, v2), and by end(P ) the last color, i.e. c(vs−1, vs). If P is just the edge v1vs

then start(P ) = end(P ) = c(v1, vs).

This chapter is organized as follows : In Section 7.1 we study pck(G) for bipartite graphs. We

state a conjecture, prove several small results and finally we prove the conjecture for k = 1, that

is, for pc(G). In Section 7.2, we study pc(G) for general graphs and prove non-trivial bounds,

improving Vizing’s trivial bound of ∆+1. Then, motivated by both of these sections, we state a

conjecture regarding pck(G) for general graphs. In Section 7.3 we prove a bound concerning the

minimum degree of G. Finally we present the conclusions of our work 1 and some open problems.

1. This is a joint work with Shinya Fujita, Aydin Gerek, Colton Magnant, Yannis Manoussakis, Leandro
Montero, Zsolt Tuza.
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7.1 Bipartite graphs

In this section, we study proper connection numbers in bipartite graphs. We state a general

conjecture for pck(G) where G is a bipartite graph with some specific connectivity that depends

on k. Following that, we show that this conjecture is best possible in the sense of connectivity.

Later, we prove some results for specific classes of graphs such as complete bipartite graphs with

lower connectivity assumptions than that which is required for the conjecture. Then, we prove

that the conjecture is true for complete bipartite graphs. Finally, we study the case k = 1 and

obtain results for trees and other graphs depending on their connectivity. We end the section

by obtaining, as main result, the proof of the conjecture for the special case k = 1 and some

corollaries stemming from it.

Conjecture 7.1.1. If G is a 2k-connected bipartite graph with k ≥ 1, then pck(G) = 2.

If true, Conjecture 7.1.1 is the best possible in the sense of connectivity. In the following

we present a family of bipartite graphs which are (2k − 1)-connected with the property that

pck(G) > 2. It is also clear that we cannot exchange the vertex connectivity for edge connectivity

since it is easy to find graphs with connectivity 1 which have edge connectivity 2k.

Consider the complete bipartite graph G = Kp,q with p = 2k − 1 (k ≥ 1) and q > 2p where

G = V ∪W , V = {v1, v2, . . . , vp} and W = {w1, w2, . . . , wq}. Clearly, G is (2k − 1)-connected.

We will show that pck(G) > 2.

Proposition 7.1.2. Let p = 2k − 1 (k ≥ 1) and q > 2p. Then pck(Kp,q) > 2.

Démonstration. Suppose that pck(G) = 2 and consider a k-proper connected coloring of G with

2 colors. For each vertex wi ∈ W , there exists a p-tuple Ci = (c1, c2, . . . , cp) so that c(vj , wi) = cj

for 1 ≤ j ≤ p. Therefore, each vertex wi ∈ W has 2p different ways of coloring its incident edges

using 2 colors. Since q > 2p, there exist at least two vertices wi, wj ∈ W such that Ci = Cj .

As pck(G) = 2, there exist k internally disjoint proper paths in G between wi, wj . Using this,

we will arrive to a contradiction. First, observe that one of these paths between wi, wj (say P )

must have only one intermediate vertex vl ∈ V since otherwise, if all the paths have at least

two intermediate vertices in V , we would have |V | ≥ 2k, which is a contradiction. Hence, as

Ci = Cj we have c(vl, wi) = c(vl, wj) and therefore the path P is not properly colored, leading

to a contradiction.

Based on the previous result we prove the following.

Theorem 7.1.3. Let G = Kn,3 then

pc2(G) =





2 if 3 ≤ n ≤ 6
3 if 7 ≤ n ≤ 8

⌈ 3
√
n⌉ if n ≥ 9

Démonstration. It is easy to check that pc2(G) = 2 for 3 ≤ n ≤ 6 and pc2(G) = 3 for 7 ≤ n ≤ 8.

Now let n ≥ 9. We will give a 2-proper coloring of G using c = ⌈ 3
√
n⌉ colors and we will also
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show that this is the best possible. Consider the bipartition of G = V ∪W such that |V | = n

and |W | = 3. Let V = {v1, ..., vn} and W = {w1, w2, w3}. For each vertex vi ∈ V , we consider a

3-tuple Ci = (c1, c2, c3) so that c(vi, wj) = cj for 1 ≤ j ≤ 3. Therefore, each vertex vi ∈ V has

c3 different ways of coloring its incident edges using c colors. We then color the edges of G as

follows. If c ≥ 4 then we color the edges of (c − 1)3 vertices of V with all the different triples

of c − 1 colors and, for the remaining vertices, we choose different triples but this time using

the cth color. If c = 3, we just choose different triples of colors but starting with the c! colorings

with all three colors different. By this coloring we have that for each pair of vertices vi, vj ∈ V

we have that Ci 6= Cj for all 1 ≤ i 6= j ≤ n.

Before proving that this coloring is 2-proper, it is easy to see that G cannot be colored to

make it 2-proper connected using fewer than c colors by following the same argument as in

Proposition 7.1.2. That is, if we use fewer than c colors, there must exist at least two vertices

vi, vj ∈ V such that Ci = Cj , a contradiction.

Now consider two vertices vi, vj ∈ V and we would like show the existence of 2-proper paths

between them. Since Ci 6= Cj , we know that at least one of the three colors is different. If two

or three are different, then we have 2-proper paths of the form vi, wk, vj and vi, wl, vj such that

c(vi, wk) 6= c(vj , wk) and c(vi, wl) 6= c(vj , wl). Suppose now that exactly one of the three colors

is different, say c1 without losing generality, then vi, w1, vj is a proper path. For the second path,

there exists a vertex vk ∈ V such that, by construction of the coloring, c(vi, w2) 6= c(vk, w2),

c(vj , w3) 6= c(vk, w3) and c(vk, w2) 6= c(vk, w3). Therefore vi, w2, vk, w3, vj is a proper path

between vi and vj .

Next consider wi, wj ∈ W , it is clear that there exist two vertices vk, vl ∈ V such that Ck

and Cl have both colors different to wi, wj . Therefore wi, vk, wj and wi, vl, wj are proper paths.

Finally, we consider the case where vi ∈ V and wj ∈ W . The edge viwj provides a trivial proper

path. For the second path, simply choose other appropriate vertices vk ∈ V and wl ∈ W such

that vi, wl, vk, wk results in a proper path. These vertices exist by the constructed coloring of G.

As no cases are left, the theorem holds.

Now we prove the conjecture for complete bipartite graphs.

Theorem 7.1.4. Let G = Kn,m, m ≥ n ≥ 2k for k ≥ 1. Then pck(G) = 2

Démonstration. Take the bipartition of G = A ∪ B. Then split each set A and B into the sets

A1, A2, B1, B2 such that |Ai|, |Bi| ≥ k for i = 1, 2. This is clearly possible since |A|, |B| ≥ 2k.

Now color the graph in the following way. Put c(v, w) = 1 for all v ∈ A1 and w ∈ B1, and for

all v ∈ A2 and w ∈ B2. Finally put color 2 to the rest of the edges, that is, c(v, w) = 2 for all

v ∈ A1 and w ∈ B2, and for all v ∈ A2 and w ∈ B1 (see Figure 7.1). Now we prove that this

coloring produces k proper paths between each pair of vertices of G. First, consider two vertices

v, w ∈ A1 (an identical argument holds for pairs in other sets). Since the cardinality of each set

is at least k, we form k proper paths v, b1, a2, b2, w choosing b1 ∈ B1, a2 ∈ A2 and b2 ∈ B2. If

v ∈ A1 and w ∈ A2 (similarly for v ∈ B1 and w ∈ B2) we have at least 2k proper paths formed
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as v, b, w for each choice of b ∈ B. The final case is when v ∈ A1 and w ∈ B1 (that is, v and w

are adjacent). Here we have at least k+1 proper paths, as follows. One path is simply the edge

vw while the k that remain are of the form v, b2, a2, w for each choice of b2 ∈ B2 and a2 ∈ A2.

This completes the proof.

Figure 7.1 – Coloring of K4,5. Normal edges represent color 1 and bold edges color 2.

Now we will study the case k = 1, that is pc(G). By König’s Bipartite Theorem [51] we have

that the edge chromatic number is ∆ for bipartite graphs and therefore ∆ is a trivial upper

bound for pc(G) for any bipartite graph G. Then, we obtain this trivial corollary.

Corollary 7.1.5. If G is a tree then pc(G) = ∆.

We present now the following proposition.

Proposition 7.1.6. If pc(G) = 2 then pc(G ∪ v) = 2 as long as d(v) ≥ 2.

Démonstration. Let u,w be two neighbors of v in G. Since we have assumed there is a 2-coloring

of G so that G is properly connected, there is a properly colored path P from u to w in G. Color

the edge uv so that c(u, v) 6= start(P ) and color vw so that c(v, w) 6= end(P ). Since every vertex

of G has a properly colored path to a vertex of P , every vertex has a properly colored path to

v through either u or w, thereby completing the proof.

The following theorem is the main result of the section. It improves upon the upper bound

of ∆ by König to the best possible whenever the graph is bipartite and 2-edge-connected.

Theorem 7.1.7. Let G be a graph. If G is bipartite and 2-connected then pc(G) = 2 and there

exists a 2-coloring of G that makes it proper connected with the following strong property. For

any pair of vertices v, w there exists two paths P1, P2 between them (not necessarily disjoint)

such that start(P1) 6= start(P2) and end(P1) 6= end(P2).
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An ear of a graph G is a maximal path whose internal vertices have degree 2 in G. An ear

decomposition of G is a decomposition P0, P1, . . . , Pk such that P0 is a cycle and Pi for i ≥ 1 is

an ear of P0 ∪ . . . ∪ Pk. A graph is 2-connected if and only if it has an ear decomposition. An

close ear in a graph G is a cycle C such that all vertices of C expect one have degree 2 in G. An

close− ear decomposition of G is a decomposition P0, P1, . . . , Pk such that P0 is a cycle and Pi

for i ≥ 1 is either an (open) ear or a closed ear in P0 ∪ . . . ∪ Pk. A graph is 2-edge-connected if

and only if it has an closed-ear decomposition.

Given a 2-connected graph G, let G1 be an instance of the graph G \ P where P is the

set of internal vertices of the last ear of an ear decomposition of a G. Similarly, if the graph

is 2-edge-connected, there is a (closed) ear decomposition in which an ear may attach to the

previous structure at a single vertex. Therefore, using the same argument, one could easily show

the result also holds for a 2-edge-connected graph G.

Démonstration. Suppose G is 2-connected and bipartite and consider a spanning minimally 2-

connected subgraph (meaning that the removal of any edge would leave G 1-connected). For the

sake of simplicity, we call this subgraph G. This proof is by induction on the number of ears in

an ear decomposition of G. The base case of this induction is when G is simply an even cycle

and we alternate colors on the edges.

Let P be the last ear added where the ends u and v of P are in G1 and all internal vertices

of P are in G \G1. Since G is minimally 2-edge-connected, we know that the length of P is at

least 2. By induction on the number of ears, we obtain a 2-coloring of G1 so that G1 has the

strong property. Color P with alternating colors.

Finally we show that this coloring of G is proper connected with the strong property. Every

pair of vertices in C has the strong property since C is an alternating even cycle. Also, by

induction, every pair of vertices in G1 has the strong property. Let x ∈ G\C and let y ∈ P . The

pair xu has the strong property so there exists a path Qu from x to u so that xQuuPy forms

a proper path Q′
u. Similarly the pair xv has the strong property so there exists a path Qv from

x to v so that xQvvPy is a proper path Q′
v. Since C is a proper cycle, Q′

u and Q′
v must have

different colors on the edges incident to y. Note also that, since G is bipartite, the parity of the

length of Q′
u is the same as the parity of the length of Q′

v. Hence, Q
′
u and Q′

v must also have

different colors on the edges incident to x. This shows that x and y have the strong property,

thereby completing the proof.

As a result of Theorem 7.1.7 we obtain the following corollaries.

Corollary 7.1.8. Let G be a graph. If G is 3-connected, then pc(G) = 2 and there exists a

2-edge-coloring of G that makes it proper connected with the following strong property. For any

pair of vertices v, w there exist two paths P1, P2 between them (not necessarily disjoint) such that

start(P1) 6= start(P2) and end(P1) 6= end(P2).

Démonstration. By [59], any 3-connected graph has a spanning 2-connected bipartite subgraph.

Then the result holds by Theorem 7.1.7
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7.2 General graphs

We begin this section by studying pc(G) for a general graph G. We show some easy results for

specific classes such as complete graphs and cycles. Following this, we prove a result analogous to

that obtained in the previous section for 2-connected graphs but using 3 colors instead of 2. We

also show that this bound is sharp by presenting a 2-connected graph for which 2 colors are not

enough to make it proper connected. As a main result of the section, we state an upper bound

for pc(G) for general graphs that can be possibly reached as we saw in the previous section.

Based on the results of 2-connected graphs we extend Conjecture 7.1.1 to general graphs and

finally we prove this for complete graphs.

By Vizing’s Theorem [68], we have that the edge chromatic number of any graph is at most

∆+ 1 and therefore ∆+ 1 is a trivial upper bound for pc(G) for any graph G. First we present

some easy results.

Fact 7.2.0.1. A graph G has pc(G) = 1 if and only if G is complete.

By using alternating colors, it is easy to see that any path of length at least 2 and any cycle

of length at least 4 has proper connection number 2. Also it is clear that the addition of an edge

to G cannot increase pck(G).

Fact 7.2.0.2. For n ≥ 3, pc(Pn) = 2 and if n ≥ 4, pc(Cn) = 2. Furthermore, pck is monotone

decreasing with respect to edge addition.

The following theorem improves the Vizing’s ∆ + 1 upper bound whenever the graph is

2-connected. This result is a natural extension of Theorem 7.1.7.

Theorem 7.2.1. Let G be a graph. If G is 2-connected, then pc(G) ≤ 3 and there exists a

3-edge-coloring of G that makes it proper connected with the following strong property. For any

pair of vertices v, w there exist two paths P1, P2 between them (not necessarily disjoint) such that

start(P1) 6= start(P2) and end(P1) 6= end(P2).

As in Theorem 7.1.7, we note that an edge-connected version of this result is immediate from

the proof.

Démonstration. SupposeG is a 2-connected graph and consider a spanning minimally 2-connected

subgraph (meaning that the removal of any edge would leave G 1-connected). For the sake of

simplicity, we call this subgraph G. This proof is by induction on the number of ears in an ear

decomposition of G. The base case of this induction is when G is simply a cycle and we properly

color the edges with at most 3 colors.

Let P be the last ear added in an ear decomposition of G and let G1 be the graph after

removal of the internal vertices of P . Since G is assumed to be minimally 2-connected, we know

that P has at least one internal vertex. Let u and v be the vertices of P∩G1 so P = uu1u2 . . . upv.

By induction, there is a 3-coloring of G1 which is proper connected with the strong property.

Color the edges of G1 as such.
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Within this coloring, there exist two paths P1 and P2 from u to v such that start(P1) 6=
start(P2) and end(P1) 6= end(P2). If possible, properly color P so that c(u, u1) /∈ {start(P1), start(P2)}
and c(up, v) /∈ {end(P1), end(P2)}. Note that this is always possible if either P has at least 2

internal vertices or {start(P1), start(P2)} ∪ {end(P1), end(P2)} = {1, 2, 3}. It will become clear

that this is the easier case so will assume this is not the case, namely that P has only one internal

vertex x and {start(P1), start(P2)} ∪ {end(P1), end(P2)} = {1, 2}.
Color the edge xu with color 3 and xv with color 2 (supposing that end(P2) = 2). We will

show that this coloring of G is proper connected with the strong property. For any pair of vertices

in G1, there is a pair of proper paths connecting them with the strong property by induction.

Since P ∪ P1 forms a proper cycle, any pair of vertices in this cycle also have the desired paths.

Let y ∈ G1 \ P1 and note that our goal is to find two proper paths from x to y with the strong

property.

Since y and u are both in G1, there exist a pair of paths Pu1
and Pu2

starting at y and

ending at u with the strong property. Similarly, there exist two paths Pv1 and Pv2 starting at y

and ending at v with the strong property. Since these paths have the strong property, we know

that Q1 = xuPui
y (note that the implied orientation on Pui

is reversed when traversing the path

from u to y) is a proper path for some i ∈ {1, 2} (suppose i = 1) and similarly Q2 = xvPvjy

is a proper path for some j ∈ {1, 2} (suppose j = 1). These paths form the desired pair if

end(Q1) 6= end(Q2) so suppose start(Pv1) = start(Pu1
).

Next consider walk R1 = xuP1vPv2y and the path R2 = Q2. If R1 is a path, then R1 and R2

are the desired pair of paths since end(P1) 6= c(x, v) = end(Pv2), meaning that R1 is a proper

walk. Hence, suppose R1 is not a path and let z be the vertex closest to y on Pv2 which is in

P1 ∩ Pv2 . Now if the path R′
1 = xuP1zPv2y is a proper path, then R′

1 and R2 are the desired

pair of paths so we may assume that end(uP1z) = start(zPv2y).

Finally we show that the paths S1 = xvP1zPv2y and S2 = Q1 = xuPu1
y are proper paths

from x to y with the strong property. Certainly, as noted above, S2 is a proper path. Also, S1

is a proper path since P1 is proper so end(vP1z) 6= end(uP1z) = start(zPv2y). Finally since

end(zPv2y) = start(Pv2) 6= start(Pv1) = start(Pu1
), we see that S1 and S2 have the strong

property.

It is important to mention that there exist 2-connected graphs with pc(G) = 3 and therefore

the bound obtained by Theorem 7.2.1 is reached. Now we give an example (see Fig. 7.2) of such

a graph and prove why two colors are not enough.

Proposition 7.2.2. Any graph G consisting of an even cycle with the addition of three ears crea-

ting disjoint odd cycles such that each uninterupted segment has at least 4 edges has pc(G) = 3.

The assumption that each uninterupted segment has length at least 4 is mostly for conve-

nience. Note that the graph G (in Figure 7.2) does not satisfy this condition but it can still be

shown that pc(G) = 3 by a similar argument.

Démonstration. By Theorem 7.2.1, we know that pc(G) ≤ 3 so it suffices to show that pc(G) 6= 2.
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Figure 7.2 – Smallest 2-connected graph with pc(G) = 3

Suppose we have a 2-coloring of G which is properly connected. Label the segments of G as in

Figure 7.2. Note that we may assume there are no three edges in a row of the same color

within an uninterupted segment since we could switch the color of the middle edge (making that

subsegment alternating) without disturbing the proper connectivity.

We would first like to show the segments A, B and C are all alternating. If two of these

segments are not alternating, suppose A and B, then any vertex in D cannot be properly

connected to any vertex of C so this is clearly not the case. This means that at most one

segment, suppose A, is non-alternating. Suppose the edges uv and vw have the same color for

some u, v, w ∈ A (see Figure 7.3). There must exist a proper path from u to w so suppose there

is such a path using the segments FCEBD. Since the following argument does not rely on the

parity of this path, this assumption, as opposed to using any of D′, E′ or F ′, does not lose any

generality.

Let x be a vertex in the interior of B. We already know there is a proper path from x to v

using D. Since D ∪D′ forms an odd cycle, there can be no proper path from x to v through D′.

Let y ∈ E′. In order for y to have a proper path to w, it must use the segments BD (as opposed

to BD′) and similarly to reach u, it must use CF (as opposed to CF ′). Since E ∪ E′ forms an

odd cycle, and yet y can reach both u and w, we know that the edges on either side of y must

have the same color. This holds for all y ∈ E′, clearly a contradiction. Therefore we know that

A,B and C are all alternating segments.

Next we would like to show that at least one of D or D′ must be alternating (and similarly
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Figure 7.3 – Placement of vertices.

at least one of E or E′ and one of F or F ′). Suppose D and D′ are both non-alternating. Let v

be an interior vertex in D which has two edges of the same color and let y be a vertex of D′ with

two edges of the same color. Let u and w be the neighbors of v and let x and z be the neighbors

of y (see Figure 7.4). Clearly there can be at most one pair (in this case D and D′) in which

neither segment is alternating since there must be an alternating path from u to w and it must

pass through the other segments. Also, there can be no other pairs of adjacent monochromatic

edges within D and D′ since u, v and w (likewise x, y and z) must have alternating paths out

of the segment and we have assumed that there are no three edges of the same color in a row.

Note that, in the figure, possibly x = a, u = a, z = b or w = b.

Figure 7.4 – Placement of vertices.

Let Q = D ∪D′ and let a and b be the vertices in D ∩D′ ∩A and D ∩D′ ∩B respectively.

If we let c ∈ C, then each of u,w, x and z must have an alternating path to c. Suppose the

edge of A incident to a has color 1. Then both edges incident to a in Q must have color 2. This
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means that both edges of Q which are incident to a must be the same color (and similarly both

edges of Q incident to b must have the same color). Therefore, there are exactly 4 vertices in

Q for which both edges of Q have the same color. Unless x = a (or possibly z = b, u = a or

w = b), this means that Q is even, a contradiction. Suppose x = a so, in order for z 6= b to have

a proper path to w, we must also have w = b, meaning that u 6= a and z so again Q is even for

a contradiction. Hence, we know that at least one of D or D′ must be alternating (and similarly

for the other odd ears). Without loss of generality, suppose D,E and F are all alternating.

Our next goal is to show that Q = A∪B∪C∪D∪E∪F forms an alternating cycle (with the

possible replacement of D with D′, E with E′ or F with F ′). As we have shown, the only places

where we can have a problem is at the intersections so let a and b be (as before) the end-vertices

of D (the same argument may be applied for E or F ) and suppose a is between two edges of

the same colors (suppose color 1) on Q. Let u, v, w be the neighbors of a with u ∈ A, v ∈ D′

and w ∈ D so we have assumed the edges au and aw both have color 1 (see Figure 7.5 where

the darker edges represent edges that must have color 1). In order for an alternating path to

get from u to w, we must either use D′ ∪D or Q (with the possible replacements noted above).

If the path uses D′, then D ∪D′ forms an alternating (and hence even) cycle, a contradiction.

Hence, we may assume there is an alternating path from u to w through BECFA (recall again

that E may be replaced with E′ or F with F ′ in this argument).

Figure 7.5 – Placement of vertices.

Let x ∈ E′. There is an alternating path from u to x and from w to x. Since E ∪ E′ forms

an odd cycle but x has an alternating path through B (to get to w) and through C and A (to

get to u), we know that x must have two edges of the same color within E′. Since x was chosen

arbitrarily, this is clearly a contradiction. This means that Q is an alternating (and hence even)

cycle.

Now we simply consider one vertex in each of D′, E′ and F ′. Since these ears form odd

cycles, there exists a vertex in each segment from which (and to which) an alternating path

can only go one direction on Q. By the pigeon hole principle, at least two of them must go the

same direction, meaning there is no alternating path between them. This completes the proof
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of Proposition 7.2.2.

If the diameter is small, then the proper connection number is also small. More formally, we

get the following result.

Theorem 7.2.3. If diam(G) = 2 and G is 2-connected, then pc(G) = 2.

Démonstration. If G is 3-connected, Corollary 7.1.8 implies that pc(G) = 2 so we may assume

κ(G) = 2. Let C = {c1, c2} be a (minimum) 2-cut of G and let H1, . . . , Ht be the components

of G \ C. Order components so that there is an integer 0 ≤ s ≤ t such that every vertex of

Hi is adjacent to both c1 and c2 for i > s. Note that if s = 0, we have all edges from C to

G \ C so G contains a spanning 2-connected bipartite graph and by Theorem 7.1.7, pc(G) = 2.

For each component Hi with i ≤ s, define subsets Hi,1 = N(c1) ∩ Hi and Hi,2 = N(c2) ∩ Hi.

Since each component is connected and C is a minimum cut, there must be an edge from Hi,1

to Hi,2. Let ei = vi,1vi,2 be one such edge in each component Hi. Define the graph G0 =

G[C ∪ (
⋃s

i=1{vi,1, vi,2})]. This graph is 2-connected and bipartite so pc(G0) = 2 and notice that

|G0| = 2+ 2s. Let G1 be a subgraph of G obtained by adding a vertex to G0 which has at least

2 edges into G0. Furthermore, let Gi be a subgraph of G obtained by adding a vertex to Gi−1

which has at least 2 edges into Gi−1. By Proposition 7.1.6, pc(Gi) = 2 for all i. We claim that

there exists such a sequence of subgraphs of G such that Gn−(2+2s) is a spanning subgraph of

G. In order to prove this, suppose that Gi is the largest such subgraph of G and suppose there

exists a vertex v ∈ G \Gi. Certainly every vertex which is adjacent to both c1 and c2 is in Gi.

This means v ∈ Hj for some 1 ≤ j ≤ s. Since Hj is connected, there exists a path from vi,1 to

v within Hj . Let w be the first vertex on this path which is not in Gi. Since diam(G) = 2, we

know that w must be adjacent to at least one vertex of C. This means that dGi
(w) ≥ 2 so we

may set Gi+1 = Gi ∪ w for a contradiction. This completes the proof.

Finally we prove an upper bound for pc(G) for general graphs which is best possible as we

saw before.

Theorem 7.2.4. Let G be a connected graph. Consider ∆̃(G) as the maximum degree of a

vertex which is an endpoint of a bridge in G. Then pc(G) ≤ ∆̃(G) if ∆̃(G) ≥ 3 and pc(G) ≤ 3

otherwise.

Démonstration. Let B1, B2, . . . Bs be the blocks of G with at least 3 vertices. For each block of

Bi we have the following cases.

– Bi is bipartite or 3-connected : Then by Theorem 7.1.7 and Corollary 7.1.8, Bi can be

colored with 2 colors having the strong property. We color Bi in such a way.

– κ(Bi) = 2 : Then by Theorem 7.2.1, Bi can be colored with 3 colors having the strong

property. We color Bi in such a way.

It is easy to see that G is proper connected if there are no more uncolored edges in G since

each Bi has the strong property. Thus, suppose that there remain uncolored edges in G. It is

clear that these edges induce a forest F in G. We color them as follows. Take one of the blocks,
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say B1, which contains a vertex v ∈ B1 which is incident with some uncolored edges. Clearly,

v is an endpoint of a bridge in G. We color these uncolored edges incident to v with different

colors starting with color rdB1
(v) + 1. Then, we have that rdG(v) ≤ ∆̃(G). We do the same for

the rest of the vertices incident to bridges in B1. Then, we extend our coloring for each tree

going out from B1 in a Breadth First Search (BFS) way, coloring its edges with different colors

(observe from Corollary 7.1.5 that rdG(w) ≤ ∆̃(G) ≤ ∆ for each vertex w in the interior of a

tree) until we reach the rest of the blocks. And finally, for each of these blocks (in this order),

we repeat the previous step. Before proving that this coloring makes G proper connected, it is

important to mention that, if we reach a block Bi with some color c ≥ rdBi
(w) + 1, and the

corresponding vertex, say w, of Bi has more than c − rdBi
(w) uncolored incident edges, then,

when we color these edges, we do not repeat color c. Also, it is important to remark that, by

coloring F in this way, we have that in any path that traverses some block from one tree in F to

another, at least one of the colors before or after traversing the block is not used in the block.

We now prove that G is proper connected. Let v, w be vertices of G. It is clear that if both

belong to the same block Bi, then there exists a proper path between them and the same happens

if they belong to the same tree outside the blocks. If v ∈ Bi, w ∈ Bj and Bi ∩ Bj = {u}, then
there exist two paths P1, P2 between v and u in Bi, and two paths P3, P4 between u and w in

Bj with the strong property. Suppose without losing generality that end(P1) 6= start(P3) and

end(P2) 6= start(P4), then we obtain the paths P1P3 and P2P4 between v and w. It is clear

that start(P1P3) 6= start(P2P4) and end(P1P3) 6= end(P2P4) since start(P1P3) = start(P1) 6=
start(P2) = start(P2P4) and end(P1P3) = end(P3) 6= end(P4) = end(P2P4). Therefore, these

paths are proper. Now, if Bi ∩ Bj = ∅ and there is a tree T in F such that Bi ∩ T = {u1} and

Bj∩T = {u2}, we form a proper path between v and w as follows. Let P1 be the unique (proper)

path in the tree T between u1 and u2. Let P2 be the proper path in Bi between v and u1 such

that end(P2) 6= start(P1). This path exists since we have the strong property in each block.

Analogously, let P3 be the proper path in Bj between u2 and w such that end(P1) 6= start(P3).

Finally the path P = P2P1P3 is proper between v and w. The same idea applies if v is in a block

Bi and w is in a tree T in F such that Bi ∩ T = {u}. The idea also applies in the case that

v is in a tree Ti in F , w is in a tree Tj in F and there is a block B such that Ti ∩ B = {u1}
and Tj ∩ B = {u2}. Finally, the result holds by induction on the number of trees and blocks

between vertices v and w using the remark stated before to guarantee the paths always traverse

the blocks. Therefore, pc(G) ≤ ∆̃(G) if ∆̃(G) ≥ 3 and pc(G) ≤ 3 otherwise.

To end the section, based on the Theorem 7.2.1 and the previous section, we extend the

Conjecture 7.1.1 to general graphs.

Conjecture 7.2.5. If G is a 2k-connected graph with k ≥ 1, then pck(G) ≤ 3.

This conjecture is proved for k = 1 in Theorem 7.2.1. Now we prove a stronger result for

complete graphs.
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Theorem 7.2.6. Let G = Kn, n ≥ 4, and k > 1. If n ≥ 2k then pck(G) = 2

Démonstration. – Case n = 2p for p ≥ 2 :

Take a hamiltonian cycle C = v1, v2, . . . , v2p of G and alternate colors on the edges using

colors 1 and 2 starting with color 1. Color the rest of the edges using color 1. It is clear

that there are p ≥ k edges with color 2. We will prove that this coloring gives us k proper

paths between each pair of vertices of G. Take two vertices v, w such that c(v, w) = 2.

This edge colored with color 2 is one proper path between v and w. Now, since there are

at least other p−1 ≥ k−1 edges colored with color 2 and the rest of the edges are colored

with color 1, we have at least k− 1 proper paths between v and w using these edges. That

is, for each vertices v′, w′ such that c(v′, w′) = 2 we form the proper path v, v′, w′, w. The

case where c(v, w) = 1 is similar.

Figure 7.6 – Coloring of K13. Normal edges represent color 1 and bold edges color 2.

– Case n = 2p− 1 for p ≥ 2 :

Take a hamiltonian cycle C = v1, v2, . . . , v2p−1 of G and alternate colors on the edges

using colors 1 and 2 starting with color 1. We have p edges with color 1 and p − 1 edges

with color 2 so far since c(v1, v2) = 1 and c(v1, v2p−1) = 1. Now, put c(v2, v2p−1) = 2,

c(v1, v3) = 2, c(v1, v2p−2) = 2 and for each edge with color 2, different from v2, v3 and

v2p−2, v2p−1, choose one of the endpoints, say v′, and put c(v1, v
′) = 2 (see Fig. 7.6).
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Finally, color the rest of the edges with color 1. We now show that this coloring gives k

proper paths between each pair of vertices v and w of G. First, take v = v1 and w = v2

(or similarly taking w = v2p−1). We have the edge v1v2 and the path v1, v2p−1, v2. Now

since n = 2p− 1 ≥ 2k we have at least (p− 1)− 2 ≥ k− 2 edges in the cycle C with color

2 different from v2, v3 and v2p−2, v2p−1 and therefore we form the following k − 2 proper

paths between v1 and v2 of the form v1, v
′, v2 where v′ is an endpoint of each of these edges

such that c(v1, v
′) = 2. Now take v = v1 and w = v3 (analog taking w = v2p−2). This case

is similar to the previous except changing the second formed path to v1, v2, v3. Suppose

now that v = v1 and w = w′ with w′ /∈ {v2, v3, v2p−2, v2p−1}. We take the edge v1w
′ and

now, since there are at least i(p − 1) − 1 ≥ k − 1 edges in the cycle C with color 2 with

endpoints different from v′, we form the following k − 1 proper paths between v1 and w′

of the form v1, v
′, w′ where v′ is an endpoint of each of these edges such that c(v1, v

′) = 2.

The rest of the cases are similar to those described before in the case n = 2p forming most

of the proper paths with length 3.

7.3 Minimum degree

In this section, we prove the following result concerning minimum degrees.

Theorem 7.3.1. If G is a connected non-complete graph with n ≥ 68 vertices and δ(G) ≥ n/4,

then pc(G) = 2.

The minimum degree condition is best possible. To see this, we construct the following graph.

Let Gi be a complete graph with n/4 vertices for i = 1, 2, 3, 4, and take a vertex vi ∈ Gi for

each 1 ≤ i ≤ 4. Let G be a graph obtained from G1 ∪ G2 ∪ G3 ∪ G4 by joining v1 and vj with

an edge for each 2 ≤ j ≤ 4. Then the resulting graph G is connected and it has δ(G) = n/4− 1

and pc(G) = 3. To prove Theorem 7.3.1, we will make use of the following theorems.

Theorem 7.3.2 ([30]). Let G be a graph with n vertices. If δ(G) ≥ n−1
2 , then G has a hamilto-

nian path. Moreover, if δ(G) ≥ n/2, then G has a hamiltonian cycle. Also, if δ(G) ≥ n+1
2 , then

G is hamilton-connected.

Theorem 7.3.3 ([69]). Let G be a graph with n vertices. If δ(G) ≥ n+2
2 then G is panconnected

meaning that, between any pair of vertices in G, there is a path of every length from 2 up to

n− 1.

Theorem 7.3.4 ([57]). Let G be a 3-connected graph with n vertices and δ(G) ≥ n/4+2. Then,

for any longest cycle C in G, every component of G− C has at most two vertices.

Theorem 7.3.5 ([32]). Let G be a connected graph with n vertices and δ(G) ≥ n/3. Then one

of the following holds :

(i) G contains a hamiltonian path.
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(ii) For any longest cycle C of G, G− C has no edge.

Also we use the following easy fact as a matter of course.

Fact 7.3.5.1. Every 2-connected graph G with δ(G) ≥ 2 is either hamiltonian or contains a

cycle C with at least 2δ(G) vertices.

For this statement, we use the following notation. For a path P = v1v2 · · · vℓ, we let endpoints(P ) =

{v1, vℓ}.

Lemma 7.3.6. The following graphs Hi, for (i = 1, 2, . . . , 6), have pc(Hi) = 2.

(1) The graph H1 obtained from a path P with |P | ≥ 2 and m ≥ 0 isolated vertices v1, . . . , vm

by joining each vi for (i ≤ m) within P with at least two edges.

(2) The graph H2 obtained from a path P with |P | ≥ 1 and even cycle C by identifying exactly

one vertex (i.e., |P ∩ C| = 1).

(3) The graph H3 obtained from H2 and m ≥ 0 isolated vertices v1, . . . , vm by joining each vi

for (i ≤ m) with at least two edges to either P − C or C − P in H2.

(4) The graph H4 obtained from an even cycle C and two paths P1 and P2 by identifying an

end of each path to a vertex of C. As in H3, we may also join vertices each with at least

2 edges to either a path Pi or C.

(5) The graph H5 obtained from the union of two disjoint cycles which are connected by two

disjoint paths to form a 2-connected graph. Furthermore, we may also add vertices each

with at least 2 edges to this structure.

(6) The graph H6 obtained from H5 by removing an edge from one of the cycles. Again we may

add vertices each with at least 2 edges to this structure.

Démonstration. One can easily get a 2-coloring of Hi which forces pc(Hi) = 2 for i = 1, 2, . . . , 6.

For example, as for H1, by Fact 7.2.0.2 and Proposition 7.1.6, there is a 2-coloring of H1 that is

properly connected.

Proof of Theorem 7.3.1: If κ(G) ≥ 3, then by Corollary 7.1.8, we have pc(G) = 2. So

we may assume that κ(G) = 1 or 2. We divide the proof into two cases according to the value

of κ(G).

Case 1 : κ(G) = 1.

Let v be a cutvertex ofG and let C1, . . . , Cℓ be the components ofG\v such that |C1| ≤ . . . ≤ |Cℓ|.
By the minimum degree condition, we see that ℓ = 2 or 3 and |C1| ≥ n/4. We further divide the

proof into two subcases :

Subcase 1.1 : ℓ = 2.

In this case note that |C1| ≤ (n− 1)/2 and, by the minimum degree condition, |C2| ≤ 3n/4− 1.

Utilizing Theorem 7.3.2 and the minimum degree condition, it is easy to check that 〈{v} ∪ C1〉
contains a hamiltonian path P1 such that v ∈ endpoints(P1). If κ(C2) ≥ 3, then let C be a

longest cycle of C2. Since G is connected, there is a path P ′ from v to C. Now H = P1 ∪P ′ ∪C
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satisfies the conditions of H2 in Lemma 7.3.6. This means that pc(H) = 2. By Theorem 7.3.4,

every component of C2\C has at most 2 vertices. By the minimum degree condition and since we

assume n ≥ 12, for each x ∈ C2\H, we have |E(x,H)| ≥ n
4−1 ≥ 2. Hence, G contains a spanning

subgraph which satisfies the properties of H3 in Lemma 7.3.6 so pc(G) = 2. Thus we may assume

that κ(C2) = 1 or 2. Let S be a cutset in C2 with 1 ≤ |S| ≤ 2. By the minimum degree condition,

it is easy to check that there are exactly two components C21, C22 with |C21| ≤ |C22| in C2 − S.

Note that n/4−|S| ≤ |C21| ≤ |C22| ≤ (3n/4−1)−|S|−(n/4−|S|) = n/2−1 because δ(G) ≥ n/4

and |C21| ≤ (3n/4− 1− |S|)/2 = 3n/8− (|S|+ 1)/2 ≤ 3n/8− 1. Hence by Theorem 7.3.2, C21

contains a hamiltonian cycle C ′
21. Since δ(C22) ≥ n/4− 3, C22 is either hamiltonian or contains

a cycle C ′
22 with |C ′

22| ≥ n/2− 6. Now take a path P2 with v ∈ endpoints(P2) so that

(1) P2 contains a longer segment of C ′
2j for each j = 1, 2, and subject to condition (1),

(2) |P2| is as large as possible.

By the choice of P2, note that P2 ∩ S 6= ∅. Let P be a path joining P1 and P2 at the common

vertex v. Then, utilizing P and the assumption δ(G) ≥ n/4, we will find a spanning subgraph

which has a property of H1 in Lemma 7.3.6. In order to show this, we need only show that each

vertex in G \ P has at least 2 edges to P . As previously discussed, we know that all vertices

in C1 have at least 2 edges to P1 so we need only check vertices x ∈ C2 \ P2. If x ∈ C21 then

since |P ∩C21| ≥ |C21|/2 and |C21| ≤ 3n/8− 1, by the minimum degree condition, x has at least

n/4− 3n/16 ≥ 2 edges to P since n ≥ 32. For x ∈ C22, we know |C22| ≤ n/2− 2 and either C22

is hamiltonian or contains a cycle of length at least n/2− 6. In either case, the same arguments

easily show that x has at least 2 edges to P , meaning that pc(G) = 2.

Subcase 1.2 : ℓ = 3.

In this case, by the minimum degree condition, we see that n/4 ≤ |C1| ≤ (n−1)/3 ≤ |C3| ≤ n/2−
1, and |C2| ≤ 3n/8− 1/2. Hence by Theorem 7.3.2, each Ci with i = 1, 2 is hamilton-connected.

Also, by the minimum degree condition and since n ≥ 36, we see that δ(Ci) ≥ (|Ci| + 2)/2

for i = 1, 2 so for any vertex z ∈ Ci, Ci − z is hamilton-connected. By Theorem 7.3.2, C3 is

hamiltonian so it contains a spanning path P with v ∈ endpoints(P ). If |E(v, Ci)| ≥ 2 holds for

i = 1 or 2 (suppose i = 1), then we can find an even cycle C in C1 ∪ v such that v ∈ C and

|C1| ≤ |C| ≤ |C1|+1. Using a hamiltonian path of C2 ending at v, together with the path P and

the even cycle C, we can easily find a spanning subgraph which satisfies the property of H3 in

Lemma 7.3.6, and hence pc(G) = 2. Thus we may assume that |E(v, C1)| = |E(v, C2)| = 1. This

implies |C1| ≥ n/4 + 1, because there is a vertex of C1 which is not adjacent to v. Then we get

|C3| ≤ n/2 − 3 so δ(C3) ≥ n/4 − 1 ≥ (|C3| + 1)/2. If |C3| is odd, then by Theorem 7.3.2, C3 is

hamiltonian connected. Hence, we can find an even cycle using all of C3 and v and a single path

through v using all of C1 and C2. This provides a spanning subgraph satisfying the properties

of H3 in Lemma 7.3.6. If |C3| is even, then δ(C3) ≥ ⌈ |C3|+1
2 ⌉ = |C3|+2

2 so, by Theorem 7.3.3, C3

is panconnected. Thus we can find an even cycle through v ∪ C3 which avoids exactly 1 vertex

of C3 again easily providing a subgraph satisfying the conditions of H3 in Lemma 7.3.6. This
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shows that pc(G) = 2 and completes the proof of this case.

Case 2 : κ(G) = 2.

Let u and v be a minimum cutset of G. Again we let C1, C2, . . . , Cℓ be the components of

G \ {u, v} with |Ci| ≤ |Cj | for i ≤ j and break the rest of the argument into cases based on the

value of ℓ. Note that, since δ(G) ≥ n/4, we have 2 ≤ ℓ ≤ 4.

Subcase 2.1 : ℓ = 4

Since δ(G) ≥ n/4, we know that n/4 − 1 ≤ |C1| ≤ (n − 2)/4 ≤ |C4| ≤ n/4 + 1. This means

that δ(Ci) ≥ |Ci| − 2 for all i. The graph G is 2-connected so there are two independent edges

from {u, v} to each component Ci. With n ≥ 26, we see that |Ci| ≥ 6 so the minimum degree

condition δ(Ci) ≥ |Ci| − 2 implies, by Theorem 7.3.3, that each component Ci is panconnected.

This means that, if |C3 ∪C4| is even, we may find a cycle through {u, v} ∪C3 ∪C4 using all the

vertices, and if |C3 ∪ C4| is odd, we may find a similar cycle which misses exactly one vertex

w ∈ C4. This cycle, along with a spanning path of u∪C1∪C2 and possibly w provides a spanning

subgraph of G satisfying the properties of H3 from Lemma 7.3.6, meaning that pc(G) = 2.

Subcase 2.2 : ℓ = 3

Since δ(G) ≥ n/4, we have n/4 − 1 ≤ |C1| ≤ |C2| ≤ (5n − 4)/12 and δ(Ci) ≥ n/4 − 2 so

δ(Ci) ≥ 3|Ci|+1
5 − 2 for i = 1, 2. Since n ≥ 23, this implies that δ(Ci) ≥ |Ci|+1

2 for i = 1, 2

so C1 and C2 are both hamiltonian-connected by Theorem 7.3.2. This means we may create a

single cycle D12 using all of C1 ∪ C2. If κ(C3) ≥ 2, then let D3 be a longest cycle in C3. Since

δ(C3) ≥ n
4 − 2, we know |D3| ≥ min{|C3|, n2 − 4}. In either case every vertex of C3 has at least 2

edges to H3. Now since G is 2-connected, there exist two disjoint paths from D12 to D3 meaning

there is a spanning subgraph of G satisfying the conditions of the graph H5. By Lemma 7.3.6,

we have pc(G) = 2. If κ(C3) = 1, then by Theorem 7.3.5, there is a spanning path P of C3. The

vertices u and v must each have at least one edge to P so P ∪D12 forms a spanning subgraph

of G satisfying the conditions of the graph H6 in Lemma 7.3.6. Hence, pc(G) = 2.

Subcase 2.3 : ℓ = 2

If C1 and C2 are both 3-connected, then by Corollary 7.1.8, there is a 2-coloring of each with

that strong property. Along with these colorings, we also color all edges between {u, v} and Ci

with color i. This coloring clearly shows that PC(G) = 2 so we may assume that at least one

component Ci has 1 ≤ κ(Ci) ≤ 2. Next we will suppose that 1 ≤ κ(Ci) ≤ 2 for both i = 1, 2. In

this case, by the minimum degree condition and the fact that G is 2-connected, we may easily

show that each component is hamiltonian connected (since n is large) so G is hamiltonian. This

means pc(G) = 2.

Finally, if we suppose C1 is 3-connected while 1 ≤ κ(C2) ≤ 2, each possible case contains a

large (almost spanning) subgraph with the properties of H4 from Lemma7.3.6, meaning that

pc(G) = 2. This completes the proof of Theorem 7.3.1.
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7.4 Conclusion

From Theorem 7.3.1, it is clear that if G is 2-connected and δ(G) ≥ n
4 , then pc(G) = 2. We

believe that this degree condition can be greatly improved in the 2-connected case. In particular,

we propose the following conjecture.

Conjecture 7.4.1. If κ(G) = 2 and δ(G) ≥ 3, then pc(G) = 2.

By the proof of Theorem 7.2.1 and the standard ear decomposition of a 2-connected graph,

it is easy to produce a linear-time algorithm to 3-color any 2-connected graph to be proper

connected with the strong property. Also since there is an O(n + m) algorithm for finding a

block decomposition of a graph G with κ(G) = 1 on n vertices with m edges, we can find

an O(n + m) algorithm to produce a proper connected coloring of such graphs. Therefore, in

practice, these colorings are not difficult to find.
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In the present thesis, we studied proper spanning trees and weak-proper spanning trees in

edge-colored graphs and multigraphs. Our main objective was to focus on particular families of

edge-colored graphs, and to contribute in the following aspects :

(1) Demonstrate the NP-completeness and give some nonapproximability bounds for both

PST and WST problems,

(2) Focus on the edge-colored complete graphs and show that the problem remains NP-

complete,

(3) Provide methods to solve the PST and WST problems, and devise algorithms for a more

general problem of finding Maximum Proper Tree and Maximum Weak Proper tree in the

case of edge-colored acyclic graphs.

(4) Give sufficient conditions for edge-colored graphs and multigraphs to have PST.

We believe that the results presented in the thesis contribute significantly to the understanding of

the PST and WST problem in edge-colored graphs. In what follows, we recall briefly the results

presented in this thesis and conclude with a few remarks on the future work and perspectives.

8.1 Contribution summary

As we have seen in Chapter 4, both problems PST and WST as well as their optimization

versions are NP-Complete. We gave some nonapproximability bounds for both problems. For

this reason we have studied these problems for some particular families of edge-colored graphs.

We have seen that in the case of the edge-colored complete graphs the PST Problem (PSTP)

remains NP-Complete. However, in the case of WST Problem (WSTP), it becomes trivial. We

have also seen that in the case of the edge-colored graphs with many colors of order Ω(n2), the

122
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PSTP remains NP-Complete.

Next, we focused on the PSTP and WSTP in the acyclic edge-colored graphs. We gave three

different ways to solve the problem if any, PST or WST, exists, and a polynomial time algorithm

that finds a Maximum Proper Tree (MPT) and Maximum Weak Proper Tree (MWT) in a given

acyclic edge-colored graph.

The first approach consists in finding the maximum matchings for each monochromatic sub-

graph, and then in taking the union of edges in all the matchings and as a result we find a

PST, if any. It is obvious that a PST is also a WST. However, if no PST exists in a given

edge-colored graph, we can not determine whether a WST exists. As we have shown, such an

easy and intuitive approach doesn’t apply in the case of WST.

The second approach uses an algorithm based on the Breadth-First-Search. This algorithm

finds a PST in a complete acyclic edge-colored graph. In the case of general acyclic edge-colored

graphs, we presented similar algorithms based on the maximum matching algorithm for edge-

colored graphs. These algorithms return the MPT and MWT in case where neither PST nor

WST exist in the graph.

The third approach is an algorithm based again on the maximum matching algorithm, though

it returns the maximum proper forest (maximum in terms of edges). This can be interesting for

designing an approximation algorithm for MSTP.

We also studied sufficient conditions for edge-colored graphs to have PST. We gave some suf-

ficient conditions related to the number of vertices, number of colors and the connectivity. We

also gave a similar relation between the minimum rainbow degree of a graph, the number of

colors and the order of the graph.

Next, we studied the same problem in the case of the edge-colored multigraphs. Since for 2-

edge-colored multigraphs PST are equivalent to Hamiltonian proper paths, we give sufficient

conditions based on the number of edges and of vertices for a 2-edge-colored multigraph to have

a Hamiltonian path. We have done the same work for c-edge-colored multigraphs.

Finally, other parallel results were presented on the coloring of simple graphs in order to gua-

rantee some proper connectivity.

8.2 Perspectives for future work

In order to complete the study of pst and wst problems, we would like to pursue our work

in the following directions.

First, we would like to develop algorithms for solving the pst and the wst problems in other

special classes of graphs, such as planar graphs.

Second, concerning the existence of pst andwst, we would like to propose sufficient conditions in

the case of edge-colored multigraphs, and to give more sufficient conditions for the wst problem

in edge-colored graphs. Also, we would like to find such conditions for Proper Hamiltonian cycles
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in edge-colored multigraphs, as well as for cycles partition and 1-tree-cycles partition in edge-

colored graphs and multigraphs.

Finally, the following are conjectures we formulated and we believe we can prove, which would

allow to provide necessary conditions for the wst problem.

Conjecture 8.2.1. Let Gc be be a k-connected edge-colored graph such that n ≥ (k+j)2+3(k+j)−2
2

and

c ≥ (n−k−j)(n−k−j−1)
2 + 2, with j = ⌈1+

√
1+4k
2 ⌉. Then Gc has a weak spanning tree.

Conjecture 8.2.1, if true, is the best possible. Indeed, consider a rainbow complete graph on

n − k − j with suppose k = 1 and j = 2, and c ≥ (n−k−j)(n−k−j−1)
2 + 1. Since k = 1 the three

vertices say v, w and z such that v are connected to the complete graph on n − k − j vertices

and to w and z only to w by edges in one color. Then the resulting graph has no WST since

if you choose as root a vertex in the complete graph you can not connect w and z, if you will

choose as root v you can not connect z and if you will choose w as root you can not connect the

complete graph.

Conjecture 8.2.2. Let Gc be a c-edge-colored connected graph with rainbow degree rd (Gc) = k

and n ≥ 4k + 2. If c ≥ (n−3k−1)(n−3k−2)
2 + k(k − 1) + k(k+1)

2 + 2, then Gc has a weakly proper

edge-colored spanning tree.

Conjecture 8.2.2, if true, is the best possible. Indeed, consider a rainbow complete graphs

on n− 3k− 1 ≥ k+1 vertices, one on k+1 and 2 on k. Choose a vertex x and y in the graph on

n− 3k − 1 and k + 1 vertices. Connect now the x with all vertices of one graph in k vertices, y

with vertices of the second one and x and y between them by edges in new color. The resulting

graph has c ≥ (n−3k−1)(n−3k−2)
2 + k(k − 1) + k(k+1)

2 + 1, and the rainbow degree equal k. This

graph has no WST since no matter in what of the 4 graphs we will choose the root, one of the

4 graphs can not be added to the WT.

In addition, the following Conjectures 8.2.3, 8.2.4, 8.2.5 have already been mentioned pre-

viously, concern the coloring of the graph in order to guarantee the proper connectivity.

Conjecture 8.2.3. If κ(G) = 2 and δ(G) ≥ 3, then pc(G) = 2.

Conjecture 8.2.4. If G is a 2k-connected bipartite graph with k ≥ 1, then pck(G) = 2.

Conjecture 8.2.5. If G is a 2k-connected graph with k ≥ 1, then pck(G) ≤ 3.

In conclusion, our future work and long term objective is to provide a complete study of

the pst and wst problems in different kinds of graphs and multigraphs, including sufficient

and necessary conditions for pst and wst to exist, as well as approximation algorithms with

performance guarantee of at least logarithm of the optimal solution.
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[41] J. W. Grossman and R. Häggkvist. Alternating cycles in edge-partitioned graphs. J.

Combin. Theory Ser. B, 34(1) :77–81, 1983.

[42] G. Gutin. Note on edge-colored graphs and digraphs without properly colored cycles.

Australas. J. Combin., 42 :137–140, 2008.

[43] G. Gutin and E. Jung Kim. Properly coloured cycles and paths : Results and open problems.

In M. Lipshteyn, V. Levit, and R. McConnell, editors, Graph Theory, Computational In-

telligence and Thought, volume 5420 of Lecture Notes in Computer Science, pages 200–208.

Springer Berlin / Heidelberg, 2009.

[44] A. Gyairfais and G. Simony. Edge colorings of complete graphs without tricolored triangles.

Journal of Graph Theory, 46(3) :211–216, 2004.



128 BIBLIOGRAPHIE

[45] G. Hahn and C. Thomassen. Path and cycle sub-Ramsey numbers and an edge-colouring

conjecture. Discrete Math., 62(1) :29–33, 1986.

[46] J. H̊astad. Some optimal inapproximability results. In STOC ’97 (El Paso, TX), pages

1–10 (electronic). ACM, New York, 1999.

[47] A. J. W. Hilton. Alternating Hamiltonian circuits in edge-coloured bipartite graphs. Dis-

crete Appl. Math., 35(3) :271–273, 1992.

[48] Z. Jin and X. Li. Spanning trees with many colors in edge-colored graphs. J. Xinjiang

University 23(Supp.), page 1214, 2006.

[49] Z. Jin and X. Li. Partitioning complete graphs by heterochromatic trees. ArXiv e-prints,

Nov. 2007.

[50] M. Kano and X. Li. Monochromatic and heterochromatic subgraphs in edge-colored

graphs—a survey. Graphs Combin., 24(4) :237–263, 2008.
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