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Abstract

Content-based publish-subscribe is emerging as a communication paradigm able
to meet the demands of highly dynamic distributed applications, such as those
made popular by mobile computing and peer-to-peer networks. Nevertheless, the
available systems implementing this communication model are still unable to cope
efficiently with dynamic changes to the topology of their distributed dispatching
infrastructure. This hampers their applicability in the aforementioned scenarios.

This thesis addresses this problem and presents a complete approach to the
reconfiguration of content-based publish-subscribe systems. In Part I, it proposes
a layered architecture for reconfigurable publish-subscribe middleware consisting
of an overlay, a routing, and an event-recovery layer. This architecture allows
the same routing components to operate in different types of dynamic network
environments, by exploiting different underlying overlays.

Part II addresses the routing layer with new protocols to manage the recon-
figuration of the routing information enabling the correct delivery of events to
subscribers. When the overlay changes as a result of nodes joining or leaving the
network or as a result of mobility, this information is updated so that routing
can adapt to the new environment. Our protocols manage to achieve this with as
little overhead as possible.

Part III addresses the overlay layer and proposes two novel approaches for
building and maintaining a connected topology in highly dynamic network sce-
narios. The protocols we present achieve this goal, while managing node degree
and keeping reconfigurations localized when possible. These properties allow our
overlay managers to be applied not only in the context of publish-subscribe mid-
dleware but also as enabling technologies for other communication paradigms like
application-level multicast.

Finally, the thesis integrates the overlay and routing layers into a single frame-
work and evaluates their combined performance both in wired and in wireless
scenarios. Results show that the optimizations provided by our routing reconfig-
uration protocols allow the middleware to achieve very good performance in such
networks. Moreover, they highlight that our overlay layer is able to optimize this
performance even further, significantly reducing the network traffic generated by
the routing layer.

The protocols presented in this thesis are implemented in the REDS middle-
ware framework developed at Politecnico di Milano. Their use enables REDS to
operate efficiently in dynamic network scenarios ranging from large-scale peer-to-
peer to mobile ad hoc networks.
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Riassunto

I sistemi publish-subscribe con approccio content-based stanno affermando il pro-
prio paradigma di comunicazione come in grado di soddisfare i requisiti di ap-
plicazioni distribuite in scenari altamente dinamici come quelli resi possibili da
reti mobili e peer-to-peer. Ci nonostante, i sistemi esistenti basati sul paradigma
publish-subscribe sono molto spesso ancora incapaci di gestire in modo efficiente
i cambiamenti nella topologia del sistema di distribuzione dei messaggi. Questo
limita la loro applicazione in scenari di rete dinamici.

Questa tesi di dottorato affronta queste problematiche e propone un approc-
cio completo per la realizzazione di middleware publish-subscribe riconfigurabile.
Dapprima viene proposta un’architettura a livelli comprendente uno strato di
overlay, uno strato di routing ed uno strato di event recovery. Quest’architettura
consente al middleware di impiegare gli stessi meccanismi di routing in diversi
scenari applicativi, semplicemente cambiandone lo strato di overlay.

La tesi quindi affronta le problematiche relative allo strato di routing con pro-
tocolli per gestire la riconfigurazione delle informazioni di routing che consentono
la consegna dei messaggi ai componenti applicativi interessati a riceverli. Quando
la struttura dell’overlay cambia in seguito a disconnessioni o alla mobilità dei nodi
della rete, le informazioni di routing vengono aggiornate ed adattatte alla nuova
topologia. I protocolli proposti in questa tesi consentono di effettuare queste
operazioni con un costo minimo.

Il passo successivo affronta lo strato di overlay proponendo due meccanismi
per la costruzione ed il mantenimento di una topologia ad albero in scenari forte-
mente dinamici. I protocolli presentati raggiungono quest’obiettivo, limitando il
numero di vicini di ciascun nodo e localizzando le riconfigurazioni. Queste pro-
prietà consentono l’applicazione dei nostri protocolli non solo nel contesto del
middleware publish-subscribe ma anche come tecnologie base per altri paradigmi
di comunicazione, o per sistemi di multicast a livello applicativo.

La tesi si conclude con un’integrazione degli strati di overlay e routing in un
unico framework. Ci consente di valutarne le prestazioni in scenari peer-to-peer
ed in reti ad hoc. I risultati mostrano che le ottimizzazioni messe in atto dai
nostri protocolli consentono al middleware di ottenere ottime prestazioni. Inoltre
mostrano come i protocolli per la gestione dell’overlay siano in grado di ottimizzare
le prestazioni del middleware, riducendo ulteriormente il traffico generato dallo
strato di routing.

I protocolli presentati in questa tesi sono implementati nel middleware REDS
sviluppato presso il Politecnico di Milano. Il loro impiego consente a REDS di
operare in maniera efficiente in sia scenari peer-to-peer che in reti ad hoc.
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CHAPTER

ONE

Introduction

Recent trends in computing have shown an increase in distributed applications
operating in dynamic environments such as wide area networks involving large
numbers of nodes and multiple service providers. The physical infrastructure
enabling these applications is however inherently different from what it was in
the original design of the Internet. Modern personal computers or even palmtop
devices are several times as powerful as the devices that made up the Internet in
its early days, and broadband connections are rapidly becoming a standard not
only for enterprises but also in most people’s homes.

Problems arising from the unreliability of communication are made worse by
the fact that hosts themselves join and leave the network at unpredictable mo-
ments. The model based on a network of servers whose disconnection is a rare
event almost always due to failures therefore does not hold anymore. Neverthe-
less, a growing set of applications ranging from cycle scavenging to file sharing
challenge these scenarios and seek to form communities out of these dynamic
groups. Middleware researchers and designers have joined this challenge, and seek
to support application developers with abstractions facilitating the development
of distributed computing services.

Publish Subscribe

The publish-subscribe communication paradigm with the strong decoupling it in-
troduces between the components of distributed applications appears as a very
promosing tool to address these new scenarios. In publish-subscribe, application
clients interact by publishing events and by subscribing to the classes of events
they are interested in. Content-based systems provide a higher level of flexibility
by allowing clients to specify these classes using linguistic facilities that match
a pattern against event content. A number of content-based publish-subscribe
systems are available, differing mainly in the design of the event dispatcher, the
middleware component responsible for collecting subscriptions and forwarding
events to subscribers. In particular, since the first successful centralized imple-
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mentations, commercial and academic efforts have brought increased scalability
by realizing the event dispatcher by means of a distributed architecture, composed
of dispatching servers interconnected through an overlay network. Examples of
these systems include Siena [18], Jedi [35], Gryphon [11], and many others.

Despite the extreme flexibility of the paradigm, currently available publish-
subscribe middleware offers only limited support for emerging dynamic scenarios.
Some middleware systems allow client components to move from one broker to
another in different logical or physical locations, while others rely on redundant
topologies or on periodically refreshing routing information. However, the un-
derlying model is very often still based on a stable network of servers whose
disconnection is a rare event. Even systems that support dynamic environments
do so only with basic protocols, characterized by a significant reconfiguration cost.

The next challenge for publish-subscribe middleware is therefore to tolerate
dynamic scenarios by reconfiguring the operation of the distributed dispatching
infrastructure in an efficient way. The motivations are numerous. For exam-
ple, peer-to-peer networks are defining very fluid application-level networks for
information sharing and dissemination, while mobility is increasingly becoming
part of mainstream computing. The very characteristics of the publish-subscribe
model, most prominently the sharp decoupling it introduces between communica-
tion parties, make it amenable to these and other highly dynamic environments.
However, this is true in practice only if the publish-subscribe system is itself ca-
pable of dealing with reconfiguration. Unfortunately, the majority of the systems
available in the literature do not provide such support. Filling this gap is precisely
the goal of the work described in this thesis.

Approach

In the work presented in this thesis, we focus on distributed content-based pu-
blish-subscribe middleware based on a tree dispatching topology. The reason
for this choice is twofold. First, trees represent the most efficient solution for
data dissemination. Second, a large number of existing systems are based on
tree topologies and thus the choice of trees makes our work directly applicable to
existing publish-subscribe middleware.

With our approach, we also confront the one taken by some parallel efforts
for the design of middleware for dynamic environment. The lack of redundant
paths, an essential characteristic of trees, has lead these efforts to focus primar-
ily on mesh topologies, constructing data distribution trees as subgraphs of the
more connected mesh overlays. In this thesis we show that sacrificing efficient
communication for redundant paths is not necessary even in the presence of fre-
quent failures. Specifically, we show that systems based on tree overlays can
be efficiently reconfigured in the face of frequent changes in the set of devices
constituting the network as well as in the interconnections between them.

To achieve this, we address the reconfiguration of the topology of the dis-
tributed event dispatcher at the basis of publish-subscribe middleware. Dealing
with topological reconfiguration is a multi-faceted problem, involving restoring
the connectivity of the overlay network containing the dispatching servers, recov-
ering the events lost during reconfiguration, and restoring the consistency of the
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routing information steering events towards subscribers. In this thesis we address
these issues with a layered middleware architecture consisting of an overlay, a
routing, ad an event-recovery layer.

The overlay layer is responsible for building and maintaining a connected over-
lay topology in highly dynamic network scenarios. The routing layer operates
above the overlay and manages the delivery of information to the correct recipi-
ents. Finally, the event-recovery layer addresses the recovery of events that may
be lost during reconfiguration.

Contribution of the Thesis

The contribution of this thesis covers two of the layers of this middleware archi-
tecture: overlay and routing. At the overlay layer, we designed two protocols for
managing a tree topology in large-scale wired networks. Both provide very good
performance not only in the context of publish-subscribe middleware but also as
enabling technologies for other communication paradigms like application-level
multicast.

At the routing layer, we developed protocols to reconfigure routing when the
underlying overlay topology changes. In such cases the routing layer must recon-
figure its operation to adapt to the new environment with as little overhead as
possible. In this thesis we propose two new solutions that significantly improve
the performance of the basic protocols presented in current literature.

In addition, this thesis provides a contribution in terms of the evaluation of
the reconfiguration protocols at the overlay and routing layers. The protocols
proposed in the thesis are validated by means of extensive simulation studies that
compare them against other solutions described in the literature. The detailed
analysis of the solutions in the literature constitutes by itself a contribution.

The protocols for the routing and overlay layers are first evaluated individu-
ally and then in an integrated simulation framework. This integrated evaluation
highlights the interactions between the protocols we designed and shows how each
can affect the performance of the others. As often happens in engineering complex
systems, results show that protocols providing smaller improvement but wider ap-
plicability are often preferable to protocols performing better in more constrained
situations.

Finally, our analysis shows that efficient publish-subscribe middleware for dy-
namic network environments is a reality. The solutions we present are imple-
mented in the REDS [38] middleware framework developed in our research group.
Our protocols provide REDS with efficient mechanisms to manage content-based
routing in dynamic topologies both in a wired and a wireless setting.

Structure of the Thesis

The thesis is structured in four fundamental parts. Part I places the problem into
context and describes our overall approach to reconfiguration. Part II address
the routing problem and presents a set of optimized solutions for the reconfigu-
ration of the routing information on top of the overlay. Part III addresses the
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overlay management problem and presents two novel protocols for the mainte-
nance of a connected tree-based overlay in a peer-to-peer setting. Finally Part IV
combines these two layers into a single framework and evaluates their combined
performance.



Part I

Problem Definition





CHAPTER

TWO

Background

The increasing availability of network connectivity and of low-cost computing de-
vices has contributed to the development of more and more complex distributed
applications interconnecting large numbers of devices over large-scale heteroge-
neous networks. Web-based applications have become a preferred means to carry
out banking transactions, trade stocks, make travel reservations, or to access mul-
timedia content. Peer-to-peer file sharing has become the standard way to gain
access to music and software. Overall, a number of applications ranging from
telephony to computer gaming benefit from the communication services offered
by today’s Internet.

In a similar manner, the availability of devices equipped with wireless commu-
nication capabilities is fostering the emergence of mobile network scenarios with
hosts that are able to roam freely from one location to another. These mobile
ad hoc networks play a fundamental role whenever a fixed communication infras-
tructure cannot be built, or would be too expensive. Disaster recovery solutions
adopting these technologies enable quick information dissemination between the
operators involved in rescue operations even when fixed communication infras-
tructures have been rendered unusable by fires, hurricanes, and other events. In a
less catastrophic setting, vehicular networks are opening a new frontier for next-
generation intelligent transportation systems assisting drivers with traffic infor-
mation and increasing road safety by allowing vehicles to react to this information
automatically. Similarly, low-cost sensing devices equipped with computing and
wireless communication capabilities can be deployed over vast areas to form wire-
less sensor networks enabling retrieval and processing of data in a dynamic and
constrained environment.

The need to disseminate information efficiently is a common characteristic of
these novel network scenarios and calls for efficient communication paradigms to
facilitate the work of application programmers. Traditional client-server commu-
nication forces too tight a coupling between communication parties and therefore
makes the development of large-scale systems overly complex.

This has led to the development of new communication paradigms that pro-
vide a stronger form of decoupling between the components of distributed ap-
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plications. Explicit dependencies between components can then be masked by
the communication infrastructure, facilitating the ability of the system to scale
to large numbers of communicating actors. In addition, by relieving application
components from group membership and synchronization issues, the middleware
allows application components to communicate with dynamically changing groups
of recipients with ease.

2.1 The Publish-Subscribe Paradigm

Among the communication models implementing this strong decoupling, publish-
subscribe occupies a prominent position. Both academia and industry have ded-
icated significant effort to exploring this kind of paradigm, leading to the imple-
mentation of a large number of successful middleware systems.

Publish-subscribe enables interaction among a set of applications or appli-
cation components normally referred to as the system’s clients. These clients
can publish event notifications to express the occurrence of relevant events, and
they can subscribe to notifications regarding the events in which they are inter-
ested. Although this communication model was defined in the context of event-
notification systems, the contents of notifications can be any kind of messages.
For this reason, in the following we will use the terms event, event notification
and message interchangeably except for cases where this may lead to confusion
and misunderstanding.

Subscriptions can be issued not only for specific events but also for sets of
events defined by some type of filters or for patterns describing the occurrence of
particular sequences of events. Published events are delivered to all the clients
that have issued matching subscriptions by means of an event-notification service
or event dispatcher. Subscriptions are stateful operations in that clients continue
to receive matching events until they revoke the expressed interests by means of
a corresponding unsubscribe operation.

The event dispatcher mediates this communication providing the decoupling
between publishers and subscribers that characterizes the paradigm. Event no-
tifications are delivered in an anonymous multicast fashion: publishers and sub-
scribers need not have any knowledge about each other. Events can be published
regardless of the number of subscribed clients and even regardless of the existence
of subscribers. Similarly, subscriptions for a given pattern of events are issued
independently of the number of publishers in the systems. Also communication
is asynchronous, neither publishers nor subscribers are ever blocked when they
issue event notifications or subscriptions, making the paradigm suitable both for
large-scale and for mobile environments.

2.2 Publish-Subscribe

The many systems available to date have defined several flavors of publish-subscribe
which differ both from a user’s and from a middleware designer’s perspectives.
From the point of view of the user, the first important characteristic is the mech-
anism employed for selecting and filtering event notifications. According to this
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aspect, we can distinguish the basic channel and subject based systems from the
more advanced content-based ones.

Topic/Subject Based The simplest incarnation of the publish-subscribe paradigm
is based on the notion of topics. Each event notification is associated to one par-
ticular topic selected by the publisher, while subscriptions express the interests of
clients in receiving notifications belonging to one or more topics.

The simplicity of the topic-based subscription scheme allows for efficient imple-
mentations based on multicast routing protocols. Topics can easily be associated
to multicast groups so that clients can subscribe to a topic simply by joining the
corresponding group. This allows publish-subscribe middleware to be deployed
wherever multicast is available. For example, application level multicast protocols
can be used in a large-scale peer-to-peer setting, while multicast protocols such
as MAODV or ODMRP can be employed to implement topic-based multicast in
scenarios like mobile ad hoc networks.

This ease of implementation, however, comes at the cost of flexibility. Topics
provide a very limited filtering ability as notifications can only be classified with
respect to a single set of topics. The inclusion of multiple classification dimen-
sions is only possible at the cost of a significant proliferation in the number of
available topics. This makes it very difficult to match topics with the interests
of subscribers, which will generally be forced to issue multiple subscriptions and
possibly discard some of the notifications they receive because they are interested
only in a subset of them. To make things worse, the set of topics must be defined
once for each application. Changing it dynamically requires a new mapping of
notifications to topics and forces subscribers to issue new subscriptions to reflect
the new topic distribution.

A slight improvement over this flat topic-assignment scheme is provided by
systems that organize notifications in a hierarchy of topics, allowing application
programmers to group topics using a containment relationship. In this case,
subscription filters can be specified using a URL-like format that is somewhat
more flexible than the flat subscription scheme available with non-hierarchical
topics. Subscribers can, for example, express their interest in a topic and in all
its descendant topics using a single subscription.

The use of hierarchical topics also gives application developers the ability to
change the set of available topics without needing to rewrite large parts of their
applications. For example, they can easily specialize a topic by introducing a new
a subtopic for a new type of event. The use of multiple classification dimensions,
on the other hand, remains difficult. Adding a new dimension, for example,
requires modification of the code for publishing applications so that all events can
also be classified according to it.

Content-based Flexibility increases when we consider the more advanced case
of content-based systems. In this flavor of publish-subscribe, notifications are
published without making any reference to specific topics, subjects or multicast
channels. Subscription filters are based on predicates over the content of the event
notification. These generally have the form of expressions on the values of a set of
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attributes but they can also consist of regular expressions over a textual content
or of any other application-defined filtering.

The content-based approach maximizes the decoupling between publishers and
subscribers and allows the system to reduce the delivery of uninteresting events to
a minimum, avoiding it in all practical cases. These advantages are particularly
important in large-scale and dynamic scenarios for at least two reasons. On the
one hand, maintaining the common knowledge about topics between publishers
and subscribers becomes impractical if not totally infeasible when the sets of
topics and clients are both dynamic. On the other hand, delivering unnecessary
notification becomes too great a burden in large networks spanning thousands or
millions of nodes or in mobile ad hoc networks where high traffic increases the
chances of losing network packets.

Needless to say, the greater flexibility of content-based systems comes at the
cost of increased implementation challenges. This has motivated significant re-
search to enable the development of scalable content-based publish subscribe sys-
tems in a variety of scenarios.

2.3 Publish-Subscribe Extensions

The flexibility of the publish-subscribe paradigm is directly related to the simplic-
ity of the interface it offers to application programmers. In its purest and most ba-
sic form, this interface consists only of three basic operations: publish, subscribe,
and unsubscribe. Some classes of application, however, require improved mid-
dleware semantics which have to be implemented on top of the publish-subscribe
paradigm.

To address this requirement, research has been conducted to extend the publish-
subscribe interface with new operations. Extensions aim at two primary goals. On
the one hand, an improved interface seeks to facilitate the use of the middleware,
allowing application programmers to delegate more complex operations to it. On
the other hand, it also provides a way for the middleware to perform its func-
tions more efficiently. In the following we review the most important proposed
extensions and provide a brief discussion of each.

Advertisements Advertisements [18] are a mechanism to optimize the man-
agement of subscriptions. In a standard publish-subscribe system, applications
can publish new event notifications simply by invoking the publish operation on
the middleware. Advertisements change this behavior by requiring publishers to
inform the system that they are going to publish events matching a specific filter.

In addition to matching events against subscriptions, systems implementing
this feature match subscriptions against advertisements. If a publisher does not
advertise any event matching a particular subscription, then none of its events
will need to be checked for matching against the subscription. This allows the
publish-subscribe communication middleware to save time and effort when match-
ing events against subscription filters in scenarios where publishers exhibit stable
publishing patterns.
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Replies Event notifications provide a one-way form of communication with in-
formation flowing from publishers to subscribers. Publish-subscribe systems with
replies [55, 35] make this communication bidirectional by allowing the receivers
of notifications to send responses to publishers using the same communication
infrastructure. This allows publish-subscribe systems to be used as a basis for
applications that require some form of request-response semantics.

In principle, the ability to reply to notifications could be built on top of
publish-subscribe middleware possibly using to point-to-point communication to
distribute replies. This, however, requires subscribers to contact publishers di-
rectly, violating the anonymity of the publish-subscribe paradigm.

Incorporating replies in the middleware, on the other hand, allows commu-
nication to retain the same level of decoupling that characterizes the original
paradigm. When replies are sent through the publish-subscribe middleware, sub-
scribers can reply to an event notification without needing to know where the
notification originated.

Location Awareness The ability to subscribe to information generated in a
specific area or to disseminate information only in a specific region of interest
appears as a fairly natural extension to the publish-subscribe communication
paradigm [64]. In a fire monitoring application, for example, the control sys-
tem needs to notify sprinklers and other actuators only if fire is detected inside
the room in which they are deployed. In vehicular applications, drivers want to
be notified of accidents or traffic jams occurring along the route they intend to
follow and not on the opposite side of the city.

Despite the large number of potential applications, however, solutions to
address location awareness have only recently been proposed in the context of
publish-subscribe middleware [7, 41]. This is likely due to the fact that content-
based publish-subscribe systems allow locations to be treated in the same way as
any other attribute allowing clients to constrain it in their subscriptions. Never-
theless while this approach allows location to be evaluated at subscription time,
it cannot allow publishers to direct the distribution of event notifications only to
certain areas, another interesting feature that is often required in location-aware
systems.

Location aware publish-subscribe addresses this issue by incorporating the
concept of location into the middleware interface. When publishing an event
notification, clients can specify the physical regions for which the notification is
relevant. Similarly, when subscribing, they can express their interest in notifica-
tions regarding or generated in specific areas.

In addition to providing more powerful semantics than traditional systems,
location-aware publish-subscribe facilitates application development by providing
a cleaner interface to the programmer. Moreover the explicit representation of
location allows the middleware to optimize the processing and propagation of
notifications and subscriptions by constraining their diffusion to the geographical
areas specified by publishers and subscribers.
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2.4 Implementation of Publish-Subscribe

Up to this point we have focused on the services offered by publish-subscribe mid-
dleware to the application programmer. In this section we continue our analysis
from a different perspective, namely that of the middleware designer. Specifically,
we shift our interest to the middleware component that enables the decoupled
communication style typical of this paradigm: the event dispatcher.

2.4.1 Architecture of the Event Dispatcher

One of the major design choices characterizing available solutions for delivering
event notification in publish-subscribe systems is the architecture of the event
dispatching system.

The simplest solution exploited by the earliest publish-subscribe implemen-
tations is that of a centralized event dispatching component. Clients, i.e. both
publishers and subscribers, are connected to a dispatching server responsible for
collecting and remembering subscriptions. When a notification is published, the
event dispatcher matches it against its subscription table and forwards it to all
the clients with a matching subscription.

Clearly, a centralized solution exhibits problems when scaling the system to
large numbers of clients distributed over a wide area network. For this reason, a
number of distributed dispatching solutions have been proposed, both in research
and in industrial-strength products.

A distributed event dispatching system consists of a network of dispatchers,
often referred to as brokers, which cooperate to collect subscriptions and to deliver
event notifications to interested subscribers. Clients connect to the distributed
event dispatcher by connecting to one of its brokers.

A key aspect in the design of a distributed event dispatcher is the topology of
the overlay network connecting its brokers. A number of different topologies have
been described in the literature, ranging from acyclic trees to more connected
mesh overlays.

Tree-Based Routing

The most common way to interconnect the brokers in a distributed event dis-
patcher is to use an acyclic graph, that is a tree-like topology. The reason is
that an acyclic structure simplifies routing by naturally preventing cycles in the
propagation of notifications. Moreover, the tree can be computed in advance to
minimize the cost of propagating messages. In pure topic-based systems, each
event is associated to one and only one topic. As a result, topic-based event
dispatchers usually maintain multiple distribution trees, one for each topic, as is
done in multicast routing protocols.

In content-based systems, on the other hand, events cannot be associated
to any specific topic. For this reason, content-based dispatchers almost always
exploit a single distribution tree (or graph) to propagate all event notifications. A
number of different message-routing strategies can be used for this propagation:
the most relevant being subscription forwarding, event forwarding, hierarchical
forwarding, and advertisement forwarding [18].
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(a) Event forwarding (b) Subscription forward-
ing

(c) Hierarchical forwarding

Figure 2.1: Publish-subscribe routing schemes. Circles denote dispatchers. Filled
circles represent dispatchers subscribed to a given “color” pattern. Colored arrows
outgoing from a dispatcher denote the content of its subscription table. Thick lines
and arrows show the path followed by the “black” event published by P . Clients
are not shown to avoid cluttering the figure.

Event forwarding In the simplest routing strategy, events received by a dis-
patcher from one of its clients are simply broadcast along the tree connecting
all the dispatchers. The information about a client’s subscriptions, on the other
hand, is never communicated and is stored locally to the dispatcher the client
is attached to. This information, stored in the dispatcher’s subscription table,
is checked whenever an event is received (forwarded by a neighboring dispatcher
or published by another of the attached clients), to determine whether any of
the attached clients should receive a copy of the event. Figure 2.1(a) illustrates
the concept. Two dispatchers, S1 and S2, are subscribed to the same pattern,
represented by the black color, while dispatchers S3, S4, and S5 are subscribed
to a “gray” pattern1. When the dispatcher P publishes an event matching the
black pattern, the corresponding message is forwarded along the thick, directed
lines shown in the figure, i.e., to all the other dispatchers, including the intended
receivers S1 and S2.

Note that in reality only clients are subscribers and/or publishers of events.
However, with some stretch of terminology we say that a dispatcher is a subscriber
(publisher) if at least one of its clients is a subscriber (publisher). For this reason,
clients are omitted from the graphical representations in Figure 2.1.

1In practice, event patterns can be sophisticated expressions, e.g., involving regular expres-
sions as in 〈"Distributed Sys*" OR "Soft?are", 52.0〉.
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Subscription Forwarding Event forwarding inevitably results in high event
traffic as all events are sent to all dispatchers, regardless of the presence of re-
ceiving clients. Subscription forwarding limits this overhead by spreading knowl-
edge about subscriptions beyond the dispatcher the subscribing client is directly
attached to. Specifically, when a client issues a subscription for a given event
pattern, not only is the pattern inserted into the subscription table of the dis-
patcher the client is attached to, together with the identifier of the subscriber (as
in event forwarding), but the subscription message is also forwarded to all the
neighboring dispatchers. During this propagation, each dispatcher behaves as a
subscriber with respect to its neighbors, i.e., it records the event pattern in its
subscription table and re-forwards the subscription to its neighbors, except the
one that sent it. This scheme is usually optimized by avoiding subscription for-
warding of the same pattern in the same direction. This process effectively sets
up the routes that a published event follows in its journey from a publisher to a
subscriber. Requests to unsubscribe are handled and propagated analogously to
subscriptions, although at each hop an entry in the subscription table is removed
rather than inserted. Figure 2.1(b) illustrates the concept graphically.

Hierarchical forwarding The hierarchical forwarding strategy strikes a bal-
ance between the two aforementioned schemes. The strategy assumes that dis-
patchers are organized in a rooted tree. Subscription messages are always for-
warded towards the root of the tree but they are never propagated “downstream”.
Events are similarly always propagated “upstream” towards the root. Neverthe-
less, at each dispatcher, including the root, events can also propagate “down-
stream”, if a matching subscription dictates so. This is shown in Figure 2.1(c),
where the dispatcher R acts as the root. Events published by P are forwarded
up to the root R, but are also steered downstream by the subscriptions issued by
the various subscribers. It is worth noting that an event from P to S1 and S2

will not pass through the root before being redirected to the subscribers. Instead,
at the branch point in the tree, X in figure, the event is copied and sent both
downstream to S1 and S2 and upstream to the root.

Advertisement-based routing In Section 2.3, we discussed advertisements
as a possible extension to the interface of publish-subscribe middleware. From
the point of view of routing protocols, this extension enables a restriction in the
propagation of subscriptions in the same way as subscriptions enable a restriction
in the propagation of event notifications. As a result, advertisement can, in
principle, be managed using any of the above strategies. In practice however, a
strategy that keeps advertisements local as event forwarding does for subscriptions
corresponds to a strategy that does not use advertisements; this leaves the choice
between hierarchical advertisements and advertisement forwarding. To the best of
our knowledge, only advertisement forwarding has been implemented in available
systems [18].

Subscription and Advertisement Coverage A useful optimization that can
be implemented in the aforementioned protocols is based on a relationship, cov-
ering, defined between the patterns (or filters) contained in subscriptions and
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advertisements. In very simple terms, a filter (or pattern) covers another if it
matches all the notifications matched by the latter.

Routing protocols can take advantage from this relationship to limit the prop-
agation of subscriptions (and advertisements) [18]. Dispatchers propagate sub-
scriptions only for patterns that are not completely covered by previously issued
subscriptions. If a subscription for “temperature values over 30 degrees” has been
propagated, there is no need to propagate a new subscription for “temperatures
over 45 degrees”. This relation between patterns allows the system to quench the
propagation of subscriptions but at the same time it complicates the processing
of unsubscriptions issued by different clients.

Non Tree-Based Routing

Organizing a distributed message dispatcher in an acyclic topology is not the only
solution available in the literature. Recent years have seen the development of a
number of routing schemes for content-based publish-subscribe that are not based
on a single tree topology. The idea of a dispatcher operating over a general graph
topology is described in [18], and the same authors have recently proposed two
different approaches [19, 54] that route messages using multiple data distribution
trees.

The approach in [19] exploits a content-based routing protocol resembling
a subscription forwarding strategy with subscription coverage, combined with a
broadcast layer that builds per-source distribution trees. Routing information is
updated with a combination of a receiver-based “push” mechanism and a source-
based “pull” approach. In the first, receivers periodically propagate receiver ad-
vertisements specifying their “subscription information”. In the second, message
sources periodically send Update Request messages to update routing informa-
tion on their data distribution tree. The refresh mechanism allows the protocol
to address some topological changes.

In [54], the same authors describe a protocol for content-based routing in
sensor network. The protocol builds forwarding trees rooted at message receivers
and also maintains alternate paths for routing around network failures. Trees are
refreshed periodically, however the protocol also implements a reactive approach
that attempts to repair trees when failures occur.

A different way to exploit multiple routing trees is instead used in Kyra [16].
Kyra builds several routing trees, each responsible for forwarding a subset of
events. Dispatchers are then organized in a set of server cliques and each dis-
patcher acts a proxy for a subset of the subscriptions generated in its clique. The
work in [88] instead trades off transport cost for reliability and forwards messages
on a mesh topology in which each node is connected to n distinct parents. Fi-
nally, Speccast [80] uses multiple trees to implement a communication paradigm
with predicates associated to messages. Although not directly part of the publi-
sh-subscribe literature, this work presents a general routing service that can be
exploited in publish-subscribe middleware.

As we describe in Chapter 8, topologies like multiple trees, meshes, and even
structure-less systems [34, 7] are often employed to add reliability and load bal-
ancing to publish-subscribe middleware. However in this thesis, we show that
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content-based publish-subscribe middleware can operate reliably on a tree over-
lay that is reconfigured in the presence of node and link failures, thus achieving
greater efficiency with respect to systems based on more connected topologies.

2.4.2 Matching Events against Subscriptions

A second aspect in the implementation of a publish-subscribe dispatching system
is the mechanism used for matching events against subscriptions. While the prob-
lem is trivial in the context of topic-based systems, it becomes a major concern
in the design of content-based ones.

In such systems, the trivial solution that tests each event against each subscrip-
tion often becomes inapplicable for its poor performance. Research has therefore
identified several approaches based on various forms of indexing and decision di-
agrams. These techniques can be grouped in two main categories according to
how they iterate through the predicates and constraints.

The first category uses the data contained in event notifications to move
through the constraints defined by the whole set of subscriptions at a given bro-
ker. This is accomplished by means of matching trees [2, 51] or binary decision
diagrams [15]. More specifically, the matching tree or decision diagram is built
using the various predicates contained in subscriptions. Each node in a given
level in the tree represents the same predicate and has at most three successors
corresponding to the values “true”, “false” and “don’t care”. Subscriptions cor-
respond to the sequence of predicates obtained in a path from the root to a leaf.
A given event is processed starting from the root node and continuing along all
the branches whose predicates are satisfied by the event.

The second category of approaches moves through the predicates contained in
the event consulting the constraints defined by subscriptions [96, 74, 20, 44]. Sub-
scriptions are decomposed in elementary constraints. An event is matched by iter-
ating over its properties: for each event property the matching algorithm records
which subscriptions have a corresponding matching constraint. Once it has iter-
ated over all event properties the algorithm returns to subscriptions. Matching
subscriptions are those for which the number of matching constraints equals the
total number of constraints in the subscription.

2.5 Existing Publish Subscribe Middleware

The body of research in the context of publish-subscribe has led to the develop-
ment of a number of middleware platforms both in academia and industry. In the
following, we provide a brief description of some of the major systems highlighting
their main characteristics.

TIB/Rendezvous TIB/Rendezvous [92] is a commercial publish-subscribe in-
frastructure developed by TIBCO. TIB/Rendezvous events comprise a set of typed
data fields, in a record-based fashion, while the subscription language is subject-
based. Subscription can filter events based on the value of a special field which
acts as the subject.



CHAPTER 2. BACKGROUND 17

The dispatcher exploits a three-level hierarchical architecture. Each network
node running a client must also run a TIB/Rendezvous daemon, responsible for
filtering the events for the clients on that node. The daemons communicate by
means of broadcast messages within the same subnet. Inter-subnet communica-
tion is achieved through two levels of routing daemons: subnet routing daemons
and wide-area routing daemons.

SIENA SIENA [18] is a wide area event notification service developed at Po-
litecnico di Milano and the University of Colorado at Boulder. Its main objective is
to maximize the expressiveness of the subscription mechanism without sacrificing
scalability. SIENA event notifications are defined as sets of attributes character-
ized by a type, a name, and a value. Its subscription language is content-based
and enables the definition of filters on the content of a single notifications or of
patterns of filters matching specific event combinations. The event dispatcher
exploits a distributed architecture and routing is performed using a hierarchical,
a subscription forwarding, or an advertisement forwarding strategy. In all cases
SIENA employs covering relationships between patterns and filters to minimize
the propagation of subscriptions and advertisements.

LeSubscribe Le Subscribe [45] is a content-based publish-subscribe system de-
veloped designed and developed at INRIA. The project aims to support reactive
applications consisting of large numbers of distributed components. Different
from our approach, Le Subscribe’s research group focuses primarily on the fil-
tering problem to enable efficient matching of events with a large number of
subscriptions.

JEDI JEDI [35] (Java Event-based Distributed Infrastructure) is an object-
oriented event-based infrastructure developed at Politecnico di Milano. JEDI
is a tuple-based notification system: its events are defined as ordered sets of
strings, where the first string is the event name and the remaining strings are
the event parameters. Subscriptions contain a set of strings which may optionally
contain wildcards, and they match the events with the specified number of fields
and corresponding values for the strings in their tuples. JEDI provides both a
centralised and a distributed implementation of the event dispatcher, the latter
being based on a hierarchical forwarding strategy.

Hermes Hermes [77, 78] is a scalable and reconfigurable publish-subscribe mid-
dleware platform that uses peer-to-peer techniques to build and maintain its over-
lay routing network. Hermes provides a slightly limited form of content-based
routing, termed “type and attribute based”. Each message type is associated to
a rendezvous point, which takes the same role as the core node in core-based tree
multicast [9].

Gryphon Gryphon [90] is the result of a research project by IBM aiming to
build a robust publish-subscribe message broker. At its core is a distributed
filtering algorithm based on parallel search trees to allow brokers to determine
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where to route messages. The architecture of the event dispatcher is distributed
over a tree topology and replication is used to improve the system’s reliability.

Xnet XNet [25] is a content-based network developed at Eurecom. The project
focuses on the design of a scalable and reliable system for the distribution of struc-
tured XML content to large populations of consumers. Its routing protocol [24]
exploit aggregation of subscriptions to limit the size of routing tables without
increasing notification traffic.

REBECA Rebeca [47] is a notification service incorporating several routing
strategies based on subscription leasing on top of a rooted tree of brokers. The
leasing approach allows the system to self stabilize without any special mechanism
but it requires consumers to renew their leases at regular intervals. This approach
increases the overhead of the system and may lead to consumers receiving notifi-
cations in which they are not interested any more because subscriptions remain
valid until the corresponding leases have expired.

Elvin Elvin [86] is a publish-subscribe notification service developed at the Dis-
tributed Systems Technology Centre. Elvin provides a content-based subscription
language to filter notifications consisting of multiple fields of several data types.
The system can be distributed over a wide-area network through by intercon-
necting clusters of brokers. Scalability is facilitated by notification-quenching, an
approach allowing publishers to generate only the events to which at least one
subscriber is interested.
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Motivation and Approach

One of the prime characteristics of content-based publish-subscribe is the sharp
decoupling it introduces between communicating parties. Applications can ex-
change messages without worrying about recipient lists or predefined destination
groups. The middleware simply delivers messages to their correct recipients based
on their content and on the interests expressed by communicating parties. This
makes the paradigm naturally suited to the development of applications in scenar-
ios where communication parties change their interests dynamically as the appli-
cation evolves. The middleware hides the complexity of communication aspects
from application components therefore facilitating development and preventing
potential implementation errors.

The dynamic behavior of application components however is only one of the
aspects of modern distributed applications. The increasing availability of low-
cost network connectivity has led to new large-scale collaborative applications
spanning large numbers of user that can connect and disconnect at any time.
Similarly, the widespread diffusion of ubiquitous computing resources has led to
the need to support communities of nomadic users able to roam between different
network domains.

Despite its extreme flexibility, currently available publish-subscribe middle-
ware offers only limited support for these new dynamic scenarios. Some middle-
ware systems allow client applications to join and leave the network dynamically
as they move from one broker to another in different logical or physical locations.
However, the most common underlying model is still that of a platform based
on a stable network of servers whose disconnection is a rare event almost always
due to failures. The event dispatcher, albeit distributed, is usually deployed on a
set of dedicated machines. As a result, even systems that support dynamic dis-
patching topologies, do so only with basic protocols, characterized by a significant
reconfiguration cost.

This calls for new middleware platforms able to provide application developers
with efficient communication in dynamic scenarios, an essential tool for the de-
velopment of complex large-scale distributed applications. This thesis addresses
this issue, with a middleware a solution for content-based publish-subscribe com-
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munication in large-scale networks characterized by frequent disconnections or by
the presence of mobility. In the rest of this chapter, we introduce our approach
and outline its major characteristics. Section 3.1 describes the two main network
scenarios we target in our work. Section 3.2 briefly discusses some existing solu-
tions for publish-subscribe in dynamic networks. Section 3.3 presents the overall
architecture of our middleware solutions and finally Section 3.4 closes this first
part of the thesis with some concluding remarks.

3.1 Targeting Dynamic Scenarios

The design of solutions for middleware in dynamic network environments covers a
broad spectrum of scenarios ranging from small scale corporate networks to large
scale heterogeneous systems; from sensor networks characterized by limited com-
puting and battery power to highly mobile ad hoc networks. Corporate networks
may be subject to occasional administrative and organizational changes. Nodes
in a large-scale heterogeneous systems may be characterized by the most diverse
and unpredictable connectivity patterns. Battery management policies may force
sensor nodes to join and leave the network at frequent intervals, while mobility
may cause frequent topology changes in ad hoc wireless networks.

In this thesis, we develop a middleware solution to address the challenges posed
by these dynamic environments. In doing this we focus primarily on large-scale
peer-to-peer networks. Nevertheless, we also present solutions that enable our
middleware to operate in the context of mobile ad hoc networks. The rest of this
section provides a brief description of these two main scenarios.

Large-scale peer-to-peer networks The last few years have seen a growing
interest in large-scale distributed applications involving large numbers of powerful
edge-nodes and multiple service providers. The availability of computing power
and broad-band network connectivity has enabled the development of decentral-
ized applications in which communication and coordination are managed in a
completely decentralized fashion without relying on stable networks of servers.

On the surface this kind of applications raised public interests as a powerful
solution to prevent centralized control over the distribution of information, music,
and other types of digital content. However, these decentralized architectures have
their major advantages in terms of scalability and reliability. First, they do not
rely on computational entities that constitute single points of failures. Second,
they are inherently self-organizing and do not require the presence of a central
administration authority.

In this work we show that these advantages can be achieved in publish-
subscribe middleware. Specifically we build a decentralized middleware infras-
tructure and allow it to reconfigure its operation as a result of changes in the un-
derlying network. In the case of large-scale peer-to-peer networks these changes
usually define a model in which network nodes can join and leave the network
at arbitrary times without explicit announcements. This type of changes cannot
be handled transparently by the underlying network layers and must be handled
explicitly by the middleware.



CHAPTER 3. MOTIVATION AND APPROACH 21

Mobile ad hoc networks Mobile ad hoc wireless networks (MANET) are self-
configuring sets of mobile nodes that communicate through a wireless medium in
the absence of any fixed infrastructure. The movement of hosts causes network
topology to change unpredictably and the absence of an infrastructure forces the
use of decentralized routing protocols.

In a MANET environment nodes communicate via broadcast communication
over a wireless medium. In the absence of multi-hop routing protocols, a message
reaches all network nodes that are within communication range of the sending
node. Moreover, messages can specify the destination address of a node in this
range, allowing nodes to discard messages not directed to them. This type of
communication is enabled by the 802.11 MAC-level protocol, which is the one we
assume in the deployment of our middleware in MANET scenarios.

This brief description of the MANET environment highlights a fundamental
difference with respect to the peer-to-peer scenario described above. While it is
perfectly possible for a MANET node to disconnect, by switching off its radio
at any time, the most frequent type of change in the structure of the network
results from the ability of nodes to roam from one physical location to another.
This implies that a given network node can communicate directly with a subset
of other nodes that changes dynamically over time.

3.2 Existing Solutions

Although each of the scenarios we just described is characterized by very specific
characteristics, the common theme is that the middleware can no longer assume
to be based on a stable network topology. It is not simply a matter of client
applications roaming from one broker node to another: broker nodes themselves
need to rearrange their interconnections as other broker nodes appear, move in
or out of communication range, or disconnect from the network.

This has motivated the emergence of several solutions for publish subscribe
in dynamic environments. Small-scale wireless networks characterized by a high
degree of mobility have motivated the emergence of dissemination protocols [34, 7]
that do not rely on stable routing information and replace it with a combination
of soft-state information and probabilistic message forwarding. These approaches
achieve good performance in wireless networks characterized by very high mobil-
ity patterns, but they are inherently inconvenient whenever deterministic routing
information can be maintained. This motivates the use of deterministic routing
whenever possible, leaving alternative approaches to those cases in which the sce-
nario does not allow a routing infrastructure to be maintained and used correctly.

Other efforts have instead addressed the problem with resilient determinis-
tic routing approaches. These most often exploit graph overlay topologies in
which senders and receivers are connected by means of multiple communication
paths [25]. The presence of multiple paths allows the system to continue to operate
even in the presence of communication failures, but results in unnecessary over-
head when operating in stable network conditions. For this reason most systems
build data distribution paths over these graph topology to reduce communication
overhead [19]. These distribution paths however must be refreshed periodically
to account for changes in the topology of the underlying network. The refresh
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period must be short enough to allow the system to adapt to topology changes
but also long enough to avoid consuming most bandwidth for refreshing routing
information.

In this thesis, we take a different approach and update routing information
reactively in response to topology changes. Moreover, we do this by directly
maintaining a tree overlay topology on top of a dynamic network infrastructure.
Our results show that the approach is not only able to achieve very good perfor-
mance in large-scale wired networks, but also that it is a valid solution for the
development of middleware for mobile ad hoc networks.

3.3 Reconfigurable Tree-Based Publish-Subscribe

The goal of the work presented in this thesis can be summarized in terms of a
fundamental goal: build a scalable middleware infrastructure to enable content-
based publish-subscribe communication in dynamic networks ranging from large-
scale peer-to-peer to mobile ad hoc networks. With this fundamental goal in mind,
we now describe the main characteristics of our middleware solution. We begin by
stating our two core design choices. Then, we describe our high-level middleware
architecture and finally we discuss its ability to operate in multiple scenarios in a
uniform way.

3.3.1 Key Design Choices

The first of our design choices follows from our target application scenarios: peer-
to-peer and mobile ad hoc networks. As we discussed above, both scenarios
benefit from decentralized middleware architectures. This allows the middleware
to achieve increased reliability by eliminating centralized points of failure and by
avoiding reliance on statically defined subsets of machines that act as coordinators
for the operation of the middleware.

To achieve both of these goals we define our architecture as one in which all,
or at least most, network nodes actively participate in routing messages. That
is all, or most, network nodes act as brokers in a distributed message dispatcher.
This is almost a forced choice in a MANET environment [57] where relying on
a predefined set of brokers is not possible as all nodes may move arbitrarily and
cause brokers to become unreachable. However, it is also a reasonable choice in
peer-to-peer networks in that our goal is to build a system in which we make no
assumptions on the connection time of any network node. In both cases, it would
in principle be possible to elect a subset of brokers dynamically among network
nodes, but this solution would likely result in additional overhead for maintaining
dynamic membership information for the subset of nodes that act as brokers.

The second design choice we face in the design of our middleware is that of
the message routing strategy. As we discussed in Chapter 2, a very common
approach to routing in content-based publish-subscribe systems is to arrange the
set of brokers in an unrooted tree topology. Routes for message propagation are
then laid out on top of this topology to enable the delivery of messages to all
interested subscribers. Nevertheless, the use of a single data-distribution tree is
not the only viable option. As we discussed above, a significant portion of recent
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work on communication middleware for dynamic networks replaces tree topologies
with more connected mesh overlays on the premise that trees are inherently fragile
and thus not suited to scenarios where connectivity changes dynamically.

In our work we confront this assumption and push the limits of tree-based
message routing. In particular we show that not only is it applicable in highly
dynamic scenarios but also it provides very good performance both in terms of
reliability, i.e. percentage of delivered messages, and efficiency of communication.
To achieve this, we extend existing tree-based message routing with a notion of
reconfiguration.

3.3.2 A Reconfigurable Middleware Architecture

As discussed in Chapter 2, routing in content-based publish-subscribe systems is
managed by a network of cooperating dispatchers (or brokers). In a stable network
topology, the interconnections between these brokers are established statically at
deployment time. Only routing information is established dynamically as new
subscriptions, unsubscriptions, and possibly advertisements are issued. When the
network topology is dynamic, on the other hand, the routing infrastructure must
be reconfigured as the system evolves, that is it must adapt to the changes in
the underlying physical network without interrupting the normal operation of the
system.

Our middleware solution addresses this reconfiguration of the routing infras-
tructure in content-based systems as the sum of three subproblems, namely:

1. maintaining the overlay network interconnecting message brokers, repairing
disconnections caused by failures without creating loops;

2. reconciling the subscription information held by each broker and used for
routing messages, to keep it consistent with the topological changes above
without interfering with the normal processing of subscriptions and unsub-
scriptions;

3. recovering messages lost during this reconfiguration process.

To address these subproblems we propose the middleware architecture de-
picted in Figure 3.1. It consists of three fundamental layers: the overlay, the
routing layer and the event-recovery layer. Decomposing the middleware into
these layers facilitates the work of designers as each of each middleware component
can be reused in different situations and scenarios. For example, a middleware
system can exploit the same routing component in peer-to-peer and in mobile ad
hoc networks by combining it with the appropriate overlay layer. In the rest of
this thesis we present a set of protocols for the overlay and routing layers. The
protocols are evaluated by means of extensive simulations and are implemented1

within the REDS middleware framework [38].
Figure 3.1 shows how the protocols occupy the layers of the architecture.

Each protocols is represented by a box with thick contour. Those with a white
background are protocols available in the literature that we use either as building

1With thanks to Alessandro Monguzzi for his implementation effort.
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Figure 3.1: The three layers of reconfigurable publish-subscribe middleware.
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blocks for our middleware or as baselines for comparison. Boxes with shaded
background represent a contribution of this thesis in either of two ways. A light
background indicates that our contribution is in the simulation study, while a
darker background indicates that the contribution is both in the design of the
protocol and in the simulation study.

In the rest of this section we complete our discussion of the middleware archi-
tecture with a description of the overlay, routing and event recovery layer.

Overlay Layer The overlay layer sits at the bottom of our overall architec-
ture and constitutes the interface of our middleware with the underlying network
and operating system. According to the above design choices, this layer provides
an overlay network abstraction that consists of an unrooted tree topology. The
overlay is built and maintained with mechanisms determined by the specific de-
ployment scenario. In a wired setting, the overlay is formed as a subset of the
complete-graph abstraction provided by the underlying IP-routing mechanism.
In a wireless network, on the other hand, it is constrained by the communica-
tion range of wireless hosts and does not rely on any multi-hop routing protocols.
The use of such protocols would in fact duplicate the maintenance effort already
required at the middleware routing layer.

The overlay layer manages all implementation aspects deriving from specific
network environments. Specifically it presents a uniform interface to the routing
layer and thus allows it to be moved from one scenario to another simply by
changing the underlying overlay manager. The interface between routing and
overlay is described in detail in Section 3.3.3.

The separation of the overlay from the routing layer also allows the overlay to
find applicability outside the domain of content-based publish-subscribe middle-
ware. For example, most subject-based publish-subscribe systems generally route
messages using multiple overlay trees for each subject. Similarly, application level
multicast protocols adopt a set of overlay trees rooted at the multicast source.
Both of these types of systems can exploit the overlay managers presented in this
thesis for managing their communication infrastructure.

Part III of this thesis presents two overlay protocols for large-scale wired sce-
narios. The first, described in Chapter 10, builds the overlay directly on top of
the TCP/IP network layer. The second, described in Chapter 11, exploits a Dis-
tributed Hash Table to maintain an overlay conforming to the characteristics of a
reference tree topology. In addition in Chapter 14, we briefly describe WiTree, an
overlay manager for wireless network by others in our research group [67]. These
solutions are finally combined with the routing layer in the evaluation presented
in Part IV.

Routing Layer Built on top of the overlay, the routing layer is the key compo-
nent of content-based publish-subscribe middleware. A routing layer is responsi-
ble for the correct distribution of messages using the routing strategy that mostly
fits the specific application scenario. As we pointed out above, the architecture
presented in this thesis is based on a subscription forwarding routing strategy,
although in Chapter 7 and in Part IV, we briefly consider other routing strategies
as terms of comparison.
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The novel aspect in the routing layer presented in this thesis is its ability to
adapt to changes in the underlying overlay topology. A dynamic overlay man-
ager provides an overlay topology that changes according to the requirements
of the underlying physical network. Maintaining the same overlay topology de-
spite changes in the physical network is not only inefficient but also impossible in
cases in which the set of broker nodes changes dynamically. The routing layer re-
sponds to these changes by reconfiguring its routing information while the system
continues to operate. This part of the reconfiguration problem is addressed in
Part II where we describe several routing reconfiguration protocols characterized
by different trade-offs between requirements and performance.

Event-Recovery Layer The top-level component of our architecture is the
event-recovery layer. This layers aims to make the reconfigurations of the mes-
sage dispatching system totally transparent to the applications built on top of it.
The modifications in message routes determined by dynamic network topologies
necessarily cause some messages to be lost while the overlay and routing layers
perform their reconfigurations. The event recovery layer aims to reduce this ef-
fect by caching and re-propagating messages as needed. Precise details about this
process are outside the scope of this thesis and have been addressed by parallel
work in our research group [33].

3.3.3 Addressing Different Failure Models

The architecture outlined in the previous section allows publish subscribe middle-
ware to operate in dynamic network environments by reacting to changes in the
underlying physical network. This suggests that the reconfiguration mechanisms
employed by the middleware must depend on the characteristics of the specific
application scenario and in particular on the failure model2 it defines. In this
section, we review the failure models associated with our target network scenarios
and discussed how they are managed by our middleware architecture.

Underlying Failure Models: Nodes and Links

As we already pointed out the the work presented in this thesis targets two main
application scenarios: large-scale peer-to-peer and mobile ad hoc networks. The
characteristics of these two scenarios are inherently different. In peer-to-peer, the
dynamic nature of the network results mainly from the ability of hosts to join
and leave at unpredictable moments. In MANETs, on the other hand, topology
changes are almost always the result of mobility. The ability of hosts to roam from
one physical location to another determines the appearance and disappearance of
communication channels between them, and while a host may decide to leave the
network and disconnect, this is not the most frequent case.

The differences between these scenarios are mostly evident at the overlay layer.
An overlay for mobile ad hoc networks inevitably uses different mechanisms from
one designed for a large-scale peer-to-peer environment. However, our layered

2The ability to reconfigure is reminiscent of a form of fault-tolerance except for the fact that
in the scenarios we target network changes constitute the norm rather than the exception.
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middleware architecture still allows us to treat different scenarios in a uniform
way. The overlay layer is in fact able to mask the characteristics of the specific
scenario providing a high-level topology abstraction to the routing layer. Changes
at the network level are translated into changes in this topology abstraction.
This provides a uniform network model to the protocols at the routing layer and
makes them independent of the specific failure model. This allows our middleware
solution to migrate easily from one environment to the other simply by choosing
the most appropriate overlay layer. In the following we define the overlay topology
abstraction by describing the interface between overlay and routing layers.

Abstract Failure Model: Interface between Routing and Overlay

The core characteristic of the interface provided by the overlay layer is that each
node’s routing layer is made aware of the identity of its neighboring nodes in
the overlay. Neighborhood information satisfies a basic symmetry property. If
a node A recognizes another node B as a neighbor then B must also recognizes
A as a neighbor. Similarly if A loses its connection to B, then B also loses its
connection to A. On the other hand, a situation in which the same node A appears
disconnected to a node B but is recognized as a working neighbor by another node
C is perfectly acceptable.

Each middleware node is only aware of the existence of overlay links between
its neighbors. This means that both the peer-to-peer and the MANET scenarios
can be handled in a uniform way by the routing layer. The disconnection or the
joining of a node is in fact visible only to its overlay neighbors and manifests itself
as the appearance or the disappearance of a link to each of them.

The routing layer exploits the information about the identity of its overlay
neighbors to exchange subscriptions, unsubscriptions, and event notifications with
each of them as specified by its routing strategy. Whenever the physical topology
changes, the overlay layer reacts and possibly modifies the overlay topology. When
this happens, it notifies the routing layer of which links to neighboring nodes have
appeared or disappeared. These notifications allow the routing layer to maintain
its routing information consistent with the overlay.

The notification of the appearance and disappearance of links comes in several
flavors. In all cases, the overlay layer informs a node’s routing layer about the
acquisition or the loss of a link to neighbor. However, different routing reconfigu-
ration protocols require different information from the overlay layer. For example,
some protocols require that nodes that lose a link to neighbor be informed about
other new links that have been inserted in the overlay. This is represented in Fig-
ure 3.1 by the three calls made by the overlay to the routing layer. The addLinkTo
call informs the routing layer of the existence of a new neighbor; the removeLinkTo
informs it of the loss of a neighbor; and finally substituteLinkTo informs it that
the link to a neighbor has been lost and will be replaced by another link specified
as a parameter. A detailed discussion of these calls is provided in Part III along
with a description of the corresponding routing reconfiguration protocols.
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3.4 Concluding Remarks

This chapter presented a high level description of the middleware solution pre-
sented in this thesis. Its main features are the ability to operate in different types
of dynamic network environments and to reconfigure its operation in response
to the changes topology of the underlying physical network. In the rest of the
thesis we detail the characteristics of the components of this architecture. Part II
presents our routing reconfiguration protocols and discusses the requirements they
pose on the overlay management layer. Part III addresses overlay management
and describes two protocol for maintaining a tree overlay in peer-to-peer networks.
Finally Part IV integrates these two layers evaluating their performance by means
of simulations.
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CHAPTER

FOUR

Routing Requirements and
Goals

In the previous chapters we described the problem of reconfiguration in content-
based publish-subscribe systems and outlined how it can be addressed with a
middleware solution consisting of the combination of three layers of protocols. In
this part of the thesis we address the middle layer in this solution and present
the work in [40], describing a set of protocols for the reconfiguration of event
routing. Our analysis of the routing reconfiguration layer is motivated by the
fact that maintaining the consistency of subscription information is the defining
problem of content-based routing for publish-subscribe systems. If the information
necessary for event dispatching is misconfigured, or propagated inefficiently, the
whole purpose of a content-based system may be undermined.

The core of the routing layer is constituted by the techniques described in
Chapter 2 to address event dispatching in content-based publish-subscribe. In
this part of the thesis, we augment these techniques with mechanisms for the
reconfiguration of routing information when the underlying topology changes as
a result of a node or a link failure, thus extending their applicability from stable
to dynamic and mobile networks. Among all the strategies presented, we base
our reasoning on subscription forwarding as it is both the most widely used and
the one offering the highest performance in scenarios characterized by significant
event load. Subscription forwarding builds the routes for event distribution by
propagating subscriptions and unsubscriptions issued by clients. The purpose of
reconfiguration protocols is to modify these routes effectively to enable the design
of scalable and efficient middleware in dynamic environments.

The basic requirement for these protocols is the ability to restore a correct
routing of event notifications after an arbitrary sequence of reconfigurations. This
means that events should neither be lost nor propagated unnecessarily unless for
the limited and ideally very short period of time needed by the reconfiguration
process.

In addition to maintaining this basic correctness requirement, reconfiguration



32

protocols should strive to maintain some simple desirable properties. First, routes
should be modified with as little communication effort as possible to minimize the
impact of reconfigurations on the overall performance of the middleware. Second,
the system should return to its stable behavior as quickly as possible: this allows
it to withstand higher rates of reconfiguration without incurring in additional
overhead and event loss caused by interfering reconfigurations. Third, event loss
should be kept to a minimum even during reconfigurations to facilitate the job of
the event-recovery layer.

In the scenarios we target, large-scale wired and mobile ad hoc networks,
sources of reconfiguration can be modelled as the appearance or disappearance of
a node or a link respectively. Nevertheless, as we pointed out in Section 3.3.3,
both cases manifest themselves as the acquisition or loss of a link to a neighboring
broker. For this reason, in this part of our work, we consider the acquisition and
loss of links as our basic building blocks. This allows us to focus on the essence
of the reconfiguration problem and unveil its fundamental characteristics and
tradeoffs. In Part IV, we return to this issue and show how our protocols can also
be successfully employed when brokers leave or join the network unpredictably.

The description of the protocols in the following chapters assumes that the
links connecting the dispatchers are FIFO and transport reliably subscriptions,
unsubscriptions, events, and other control messages. Both assumptions are typical
of mainstream publish-subscribe systems and are easily satisfied, e.g., by using
TCP for communication between dispatchers.

Finally, while the details about how the tree maintenance sub-system operates
are given in Part III, each routing reconfiguration protocol has slightly different
requirements on its interface and functionalities. We will analyze them as part
of the description of the different protocols in Chapter 6. Here we observe that
at a minimum the tree maintenance sub-system must notify each end-point of a
broken or new link, so that it can take appropriate actions. These notifications
are independent (i.e., dispatchers on the old link do not know the identities of
the dispatchers on the new link and vice versa) and can be easily implemented
locally.

Our analysis of the routing reconfiguration problem unfolds as follows. Chap-
ter 5 presents a basic solution found in the literature and suggests possible strate-
gies for improvements; Chapter 6 describes two basic improved protocols as well
as our new contributions. Chapter 7 provides a detailed analysis of the proto-
cols by means of simulation; and finally, Chapter 8 describes some related and
alternative approaches to the routing problem in content-based publish-subscribe.
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FIVE

Baseline and Observations

In this chapter, we initiate our description of routing reconfiguration and set the
basis for the optimized solutions presented in the following chapters. Our starting
point is the Strawman approach, a basic solution found in the literature [18, 98],
which is based on the subscription forwarding strategy described in Section 2.4.1.
The Strawman protocol provides an ideal starting point for our investigation
for three main reasons. First, it serves as a base for understanding reconfigu-
ration and how it can be improved. Second, it serves as a point of comparison
for demonstrating the improvements achieved by the protocols we consider and
particularly by those introduced in this thesis. Finally, it uses only the normal
operations available in the subscription forwarding strategy, allowing us to in-
troduce, in a simple context, the notation that we use later for describing more
complex protocols.

5.1 Baseline: Strawman Protocol

The operation of the Strawman protocol is based on two key observations. First,
when a link breaks, messages can no longer be sent across it and therefore all
subscriptions received previously along that link using subscription forwarding
are useless and should be removed. Second, when a dispatcher is notified that a
new link is to be added, it must ensure that any events that are of interest and
are generated by the other end-point (or by any dispatcher in its sub-tree) are
forwarded properly across the new link. The key to the Strawman protocol is
that the operations above can be accomplished entirely with normal subscription
and unsubscription messages.

Protocol description. When a dispatcher is notified that a link to one of its neigh-
bors is broken, it behaves as if it received unsubscription messages for all previ-
ously received subscriptions. This removes the routes forwarding events across
the broken link. Similarly, when a new link is added, the dispatcher sends sub-
scription messages for all of the patterns in its subscription table to the end-point
of the new link, thus informing its new neighbor of the events that must be sent
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across the new link. These subscriptions and unsubscriptions propagate normally
along the tree, updating subscription information.

Figure 5.1 shows the pseudo-code executed on a dispatcher for these recon-
figuration operations, along with the normal subscription, unsubscription, and
event processing. We assume that each dispatcher holds a subscription table
subTab containing subscriptions in the form 〈n, p〉, to record that the neighboring
dispatcher n is subscribed to pattern p. The behavior of clients is not modeled
explicitly as it does not directly affect our reconfiguration protocols, which instead
focus on inter-dispatcher routing.

Each operation in the pseudo-code executes local to a dispatcher. Moreover,
only one operation at a time can be executed. The operations eventReceived,
subscriptionReceived, and unsubscriptionReceived are triggered by the arrival of the
corresponding messages at the dispatcher, while removeLinkTo and addLinkTo are
called by the tree maintenance sub-system to notify a dispatcher of the removal or
appearance of a link towards one of its neighbors. The identifier of the dispatcher
where an operation is executing is obtained from the variable self .

The figure also introduces a simple graphical notation to represent the protocol
behavior, whose usefulness will be appreciated when we discuss more complex
protocols later on. The picture on the left represents the two end-points of the
broken link (top) and those of the new link (bottom), and shows pictorially which
messages are being sent, where, and how—in this case, unsubscription messages
sent by the end-points of the old link and subscription messages sent by the
end-points of the new link, both propagating on the tree as usual. The schematic
also shows the dependencies between these messages. In this case, the dependence
diagram in the middle shows that the sending of unsubscriptions and subscriptions
(respectively numbered as 1 and 2) can happen concurrently1. In the protocols
introduced later, sequential dependencies (depicted by arrows) will be introduced.

5.2 Understanding Propagation and
Reconfiguration

In this section we highlight a fundamental problem of the Strawman protocol,
and state several observations that are at the core of the reconfiguration protocols
we describe in Chapter 6.

The Fundamental Problem: Subscriptions are removed and immediately re-
inserted. The Strawman protocol is the most natural protocol when reconfig-
uration involves only either an isolated link insertion or removal. However, the
most frequent case in a dynamic network is one where a broken link is shortly re-
placed by a new one. In this case, the Strawman protocol is highly inefficient, as
illustrated in Figure 5.2. If the unsubscriptions propagate throughout one of the
sub-trees before the subscriptions start (which is the most likely case), the effect
is that many of the subscriptions in this sub-tree are removed only to be re-added
shortly after. This phenomenon generates unnecessary overhead, whose negative

1In practice, the overlay sub-system is likely to notify the broken link before the new link,
due to the distributed search of a new route. However, this is not a requirement of the protocol.
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//Process event from neighbor n

eventReceived(n, event)

send event to all matching subscribers ex-
cept n

//Unsubscription received from neighbor n

unsubscriptionReceived(n, unsub(p))

if 〈n, p〉 ∈ subTab then

processUnsubFrom(n, p)

//Subscription received from neighbor n

subscriptionReceived(n, sub(p))

if 〈n, p〉 6∈ subTab then

subTab ← subTab ∪ {〈n, p〉}
if this is first subscription received by
self for p then

send sub(p) to all neighbors except n
else if this is second subscription re-
ceived for p then

send sub(p) to first subscriber

//Remove link to neighbor n

removeLinkTo(n)

for all 〈n, p〉 ∈ subTab do

processUnsubFrom(n, p) [1]
neighbors ← neighbors − {n}

//Add link to new neighbor n

addLinkTo(n)

neighbors ← neighbors ∪ {n}
for all 〈n, p〉 ∈ subTab do

send sub(p) to n [2]

//Process unsub. for pattern p from neighbor n

processUnsubFrom(n, p)

subTab ← subTab − {〈n, p〉}
if no more subscribers for p in subTab

then

send unsub(p) to all neighbors except n
else if only one subscription 〈n′, p〉 in
subTab then

send unsub(p) to n′

1
UnSub
1

UnSub

2Sub

2Sub

21

dependence

sub/unsub forwarding

Legend

Figure 5.1: Pseudo-code and schematic of the Strawman protocol. The pseudo-
code also outlines normal event, subscription and unsubscription processing.
Numbers in square brackets indicate the corresponding messages in the schematic
below. The schematic assumes the top link is removed and the bottom link is
added. To the right of the schematic is a dependence diagram showing implied
(but not strict) dependence among steps with numbering. The legend on the far
right shows that only normal subscription and unsubscription messages are sent
during the execution of the protocol, with the split arrow indicating propagation
of the message along the tree.

impact is proportional to the size of the system and the degree of reconfigura-
tion. Providing alternative protocols that are not affected by the same problem
and therefore achieve a considerable overhead reduction over Strawman is the
purpose of the work described in this part of the thesis. Before delving into the
details of the protocols we make some observations that provide the foundations
of their design.

Observation 1: The higher the density of subscribers, the shorter the propagation
of subscriptions. To understand this observation, it is useful to analyze how
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before during after

Figure 5.2: A dispatching tree of before, during and after a reconfiguration per-
formed using the Strawman approach.

Figure 5.3: Understanding the propagation of subscriptions. In the left figure, the
pattern tree for a gray pattern is shown. In the right figure, when a dispatcher S
issues a subscription for the gray pattern, its subscription is propagated only up
to the closest dispatcher (T ) that is part of the pattern tree.

subscriptions propagate on the dispatching tree. Let us define the pattern tree
for a given pattern p as the (minimal) sub-tree of the dispatching tree connecting
all the dispatchers subscribed to p. The left-hand side of Figure 5.3 visualizes the
concept by showing the pattern tree for a “gray” pattern.

Based on this definition, the following rule holds for systems based on the
subscription forwarding strategy outlined in Section 2.4.1: a subscription for a
pattern p is propagated along the unique route up to the pattern tree for p, if it
exists; to the whole tree, otherwise. Clearly, if the new subscriber for p already
lies on the pattern tree for p no subscription need to be propagated. Similar rule
holds for unsubscriptions: a unsubscription for a pattern p propagates up to the
closest dispatcher that, after having rearranged its subscription table by processing
the unsubscription message, remains still part of the pattern tree.
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To understand the former rule we observe that the routing tables of the dis-
patchers belonging to the pattern tree for p are organized in such a way that
any event matching p that reaches one of these dispatchers is forwarded to all the
others—i.e., it is broadcast along the pattern tree. This is evident in the left-hand
side of Figure 5.3, where each link of the pattern tree has event routes (repre-
sented by arrows) in both directions. Instead, the routing tables of the dispatchers
outside the pattern tree are set so that they route the events matching p towards
the pattern tree but not vice versa, i.e., once events reach the pattern tree they
are never forwarded outside of it. Again, this is visualized in the left-hand side of
Figure 5.3. The mechanics of propagation are easily understood by focusing on
what happens when a new subscriber S appears. Clearly, if no other subscriber
exists, the subscription is simply broadcast to the rest of the tree, as we discussed
in Section 2.4.1. Instead, if a pattern tree has already been established (even with
a single subscriber), as in the right-hand side of Figure 5.3, the subscription is
propagated only up to the closest dispatcher belonging to it, e.g., T in the figure.
Effectively, the propagation of this new subscription establishes the bidirectional
routes that extend the pattern tree and enable the broadcast of matching events
towards the new subscriber. Similar considerations explain how unsubscriptions
are routed.

These rules prompt two considerations. First, the price of adding a subscrip-
tion is limited. In general, it does not involve a propagation along the entire
tree but only along the route to the closest dispatcher in the pattern tree, unless
there are no subscribers. Second, as more subscriptions are added, the size of the
pattern tree increases, thus shortening the path traveled by subsequent subscrip-
tions. Unsubscriptions, on the other hand, decrease the number of dispatchers
in the pattern tree so that subsequent subscriptions and unsubscriptions must
propagate to larger sections of the dispatching tree.

These considerations lead to a criterion for designing reconfiguration protocols:
keep the tree “dense” of subscriptions, and thus reduce the overhead caused by
the propagation of subscriptions. This is naturally accomplished by performing
subscriptions before unsubscriptions, essentially reversing the normal sequence of
operations of the Strawman protocol.

Observation 2: Subscriptions across the old link may not require propagation.
Our second observation comes from analyzing the process of reconfiguration that
involves the new link. In the Strawman protocol, the end-points of the new link
simply send subscriptions for all entries in their subscription table, to ensure that
all the events of interest generated in the other sub-tree are properly forwarded.
While this is sufficient, however, it is not entirely necessary.

Consider, for example, the situation shown in Figure 5.4 in which only one
dispatcher is subscribed to a particular pattern. It may happen that the unsub-
scription issued by dispatcher B (which will eventually remove the arrows between
D and B) propagates slowly, reaching D after the new link opens and after D
has exchanged its subscriptions with C. This causes the insertion of extraneous
subscriptions (the thick arrows in the middle of Figure 5.4), which will be eventu-
ally removed by the slowly propagating unsubscriptions issued by B (right-hand
side of Figure 5.4). Therefore, the protocol still correctly restores the routing
information, but it does so in an inefficient way. This phenomenon can occur in
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before during after

Figure 5.4: Extraneous subscriptions created during reconfiguration when sub-
scriptions precede unsubscriptions.

the Strawman protocol, but it is even more likely to occur if the subscription
and unsubscription operations are reversed, as suggested above.

The key observation is that the link between C and D is not being added
in isolation, but rather in response to the removal of the link between A and
B. By scrutinizing the subscriptions between A and B, we can decide which
subscriptions should be exchanged between C and D and, equally important,
which should not. Specifically, any subscription that is present on the old link
and serves only to route events to the other sub-tree (e.g., the one at B towards
A) should not be propagated across the new link. This is sufficient to prevent the
extraneous subscriptions generated in Figure 5.4.

Observation 3: The impact of reconfiguration is limited to a well-defined path.
While the previous observations may help in reducing unnecessary subscriptions,
our next observation focuses on narrowing the scope of the reconfiguration in
terms of dispatchers involved, and therefore helps in designing protocols that
limit the impact of reconfiguration. To find which dispatchers are affected we
note that, from the perspective of event routing, the events that were intended
to traverse the vanished link must be re-routed across the new link to reach the
other part of the tree. We therefore observe that only the subscription tables of
the dispatchers on the path between the old and new link need to be changed. All
the other dispatchers simply forward events to this path, and remain unchanged
during reconfiguration. We refer to this path as the reconfiguration path and
define it as the concatenation of two sequences of dispatchers:

• the head path begins with the first end-point of the removed link (e.g., the
end-point with the lowest identifier) and contains the sequence of dispatchers
connecting it to the end-point of the new link that lies in the same sub-tree,
which is included as the last dispatcher of the head path;

• the tail path begins with the other end-point of the new link, and contains
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Figure 5.5: A dispatching tree before and after a reconfiguration, showing explic-
itly the subscriptions that replace the broken link.

the dispatchers connecting it to the second end-point of the removed link,
inclusive.

Figure 5.5 shows a reconfiguration example where the link (A,B) is being
substituted with the link (C,D). In this case, (A,E, F,C) is the head path and
(D,G, B) is the tail path, yielding the reconfiguration path (A,E, F,C,D,G,B).
As a result of the reconfiguration, the subscription ab, which was exploiting the
vanished link (A,B) to route events towards B’s sub-tree, is removed by the
reconfiguration and it is replaced by subscriptions ab1, ab2, ab3, and ab4. Similarly,
the effect formerly achieved by ba is obtained by ba1, ba2, and ba3.

From the example, we can derive two considerations that help in understanding
the mechanics of reconfiguration. First, a subscriber’s sub-tree always contains
complete routing information to allow events to reach the subscriber from any of
its dispatchers. Second, some of the subscriptions necessary to allow events to
reach the other sub-tree may already be present due to other subscribers. In this
example, in fact, only ab2, ab3, and ab4 need to be added in A’s sub-tree: ab1 was
already present to route events from A towards the subscriber E. Similarly, in
the other sub-tree, only ba3 needs to be added towards A, since ba1 and ba2 were
already present because of D.

These considerations allow us to derive a general principle: the subscriptions
replacing those on the first end-point of the old link (e.g., from A to B in Fig-
ure 5.5) are needed only on the head path. Similarly, the subscriptions replacing
those on the other end-point of the old link (e.g., from B to A) are needed only
on the tail path. No other dispatcher is affected by reconfiguration.
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SIX

Optimized Protocols

Based on the observations made in Chapter 5, we now describe three optimized
reconfiguration protocols: Deferred Unsubscription (in two variants Timed

Deferred Unsubscription and Notified Deferred Unsubscription), In-

formed Link Activation, and Reconfiguration Path. Each protocol makes
different assumptions about the underlying tree maintenance sub-system. For ex-
ample, the Timed Deferred Unsubscription protocol retains the assumptions
of Strawman, while the Reconfiguration Path protocol assumes that the
notification sent by the tree maintenance sub-system to the routing sub-system
contains the list of dispatchers on the reconfiguration path. The protocols also
differ in terms of complexity and of the performance improvement they achieve
with respect to the Strawman protocol. The combination of the assumptions
about the tree maintenance sub-system, overhead reduction capability, and pro-
tocol complexity provide the evaluation criteria to decide which protocol to use
in a particular environment.

The contribution of this part of the thesis is twofold. We define two new
protocols: Reconfiguration Path [36, 40] and Informed Link Activation

and we extend previous work [39, 76] by our research group in two different ways.
First, we present all the protocols in an integrated and detailed way, with a
uniform description in terms of informal pseudo-code. Second we exhaustively
compare the protocols against one another through simulation in Chapter 7, and
qualitatively in Chapter 8.

6.1 Deferred Unsubscription

As discussed in Chapter 5, the main drawbacks of the Strawman protocol re-
sult from the fact that the unsubscription process initiated by a link removal
and the subscription process handling link insertion proceed completely in paral-
lel. The Deferred Unsubscription protocol is based on Observation 1 from
Section 5.2: keeping the tree dense of subscribers can reduce the overhead of sub-
scription propagation. The protocol leverages off the conventional subscription
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and unsubscription operations as in the Strawman protocol, but performs them
in the inverse order: the subscriptions triggered by the appearance of a link are
issued immediately, while the unsubscriptions due to a link break are deferred.
This strategy do not introduce any special mechanism to limit its scope to the
reconfiguration path and therefore it may add subscriptions that must be removed
immediately after. However, these subscriptions propagate only up to the cor-
responding pattern tree—a distance likely to be short when the tree is dense of
subscriptions. It is worth noting that the reconfiguration described by this proto-
col does not interfere with the normal processing of events and (un)subscriptions.
In fact, it relies on the standard processing that, by design, deals with the con-
current publishing of events and issuing of (un)subscriptions.

In the following we describe two variants of this protocol, which differ in the
mechanism used to defer unsubscriptions.

6.1.1 Timed Deferred Unsubscription

In the first and simplest variant of the Deferred Unsubscription protocol,
shown in Figure 6.1, the delay is provided by a timeout, which is initialized
on each end-point dispatcher when a link breaks. The expiration of this timer
triggers the propagation of unsubscriptions, therefore we refer to this protocol
as Timed Deferred Unsubscription. Ideally, this delay should coincide with
the time needed by the underlying tree maintenance sub-system to restore the
connectivity of the tree, plus the time required to propagate subscriptions. As
in the Strawman protocol, the only assumption required is that the underlying
tree maintenance sub-system notifies the end-points of the old and new links.

About Links Sharing a Dispatcher. This protocol enables significant advantages
over Strawman. However, from Observation 2 in Section 5.2 we know that the
delay of unsubscriptions may lead to unnecessary propagation of subscriptions
across the new link. Unfortunately, in this Timed Deferred Unsubscription

protocol, we assume that the underlying tree maintenance sub-system does not
provide any association between the old and new links, making the optimization
outlined in Section 5.2 impossible.

However, in the case where one end-point of the new link coincides with an
end-point of the old link (e.g., if in Figure 5.4 dispatchers A and C are the same)
we do have sufficient information to prevent unnecessary subscription forwarding.
While this may at first seem to be a special case, it is actually quite common for
overlay management protocols to make this choice. One of the end-points of a
removed link is usually responsible for actively repairing the tree and very often
also becomes an end-point of the link added during this process.

To handle this case effectively, we simply prevent the reconfiguration from
forwarding subscriptions directed only towards dispatchers connected through
links that are now broken. All other subscriptions, i.e., those coming from
clients attached to the shared dispatcher and those associated to intact links,
are propagated as usual. This behavior is evident by looking at the operation
manageBrokenLink(n, rId) in Figure 6.1, which is invoked when the link between
the current dispatching server and n breaks. When this happens, the filters associ-
ated to the neighbor n (i.e., the set of filters subTab[n]) are immediately removed
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//Remove link to neighbor n

removeLinkTo(n)

rId ← newRId()
manageBrokenLink(n, rId)

//Add link to new neighbor n

addLinkTo(n)

neighbors ← neighbors ∪ {n}
for all 〈n′, p〉 ∈ subTab, n′ 6= n do

send sub(p) to n [2]

//Unsubscription timer expires, n is old neighbor,

//rId is the reconfiguration identifier

unsubTimerExpires(n, rId)

for all 〈n, p〉 ∈ pending[rId] do

processUnsubFrom(n, p) [3]
pending ← pending − pending[rId]

//Manage Broken Link to n for reconfiguration rId

manageBrokenLink(n, rId)

if |neighbors| ≥ 1 then

// self is a non-leaf dispatcher

pending[rId]← subTab[n]
subTab ← subTab − subTab[n]
neighbors ← neighbors − {n}
start unsubTimer(n, rId) [1]

else

// self is a leaf dispatcher

subTab ← subTab − subTab[n]
neighbors ← neighbors − {n}
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Figure 6.1: Timed Deferred Unsubscription pseudo-code and schematic.
Arrows in the dependence diagram show strict dependence. Here and after we
use the notation protocol.operation (e.g., strawman.removeLinkTo in the figure) to
reuse operations defined in a protocol we already presented.

from the local subscription table and stored in a separate pending table. This
way they are ignored both when processing other concurrent (un)subscriptions
and when propagating subscriptions to newly added links. On the other hand,
when the timeout expires, the filters in the pending table are propagated, thus
enabling the core idea of the protocol, namely deferring the propagation of the
unsubscriptions resulting from the reconfiguration.

About the Reconfiguration of Leaf Dispatchers. A special case in which the new and
old links share an end-point is when a leaf dispatcher is detached and re-attached
to a different dispatcher. This case is fairly frequent because leaf dispatchers are
usually a large fraction of the total number of dispatchers and, since they are at
the fringe of the system, they are more subject to reconfiguration.

The peculiarity of this case is that deferring unsubscriptions becomes super-
fluous in the case of a detached leaf dispatcher. A detached leaf dispatcher has,
by definition, no neighbors to which to send messages. As a result it can unsub-
scribe locally without updating its pending table and without setting timeouts.
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//Remove link to neighbor n,

//rId is the reconfiguration identifier

removeLinkTo(n, rId)

TimedDefUnsub.manageBrokenLink(n, rId)
[1]

//Add link to new neighbor n

addLinkTo(n, rId)

TimedDefUnsub.addLinkTo(n) [2]
send flush(rId) to n [3]

//Unsubscription timer expires, n is old neighbor,

//rId is the reconfiguration identifier

unsubTimerExpires(n, rId)

TimedDefUnsub.unsubTimerExpires(n, rId) [4]

//Flush received from neighbor n

flushReceived(n, flush(rId))

if self has unsubTimer(n′, rId) then

//n
′ is other end-point of old link

cancel unsubTimer(n′, rId)
TimedDefUnsub.unsubTimerExpires(n′, rId)
[4]

else

//self is not end-point of old link

send flush(rId) to all neighbors except n
[3]
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Figure 6.2: Notified Deferred Unsubscription pseudo-code and schematic.
In the dependence diagram, a step with more than one incoming arrow indicates
it can be triggered by either of the previous steps.

This optimization not only simplifies processing when a leaf dispatcher is involved
in a reconfiguration, but it also allows the protocol to avoid the propagation of
unnecessary unsubscriptions across the new link when the timeout expires.

6.1.2 Reducing the Dependence on Timers: Notified De-
ferred Unsubscription

In the Timed Deferred Unsubscription protocol the timeout plays a cru-
cial role. If it is too small, the overhead of the protocol approaches that of
Strawman because unsubscriptions are triggered too early, before subscriptions
have been restored. If it is too large, obsolete routes remain in place and steer
events where there are no subscribers, thus increasing overhead.

Although it is possible to determine an appropriate timer value experimen-
tally for a specific system (as we did in the experiments presented in Chapter 7),
we target a dynamic environment where reliance on a statically set timer is in-
herently approximate. Rather than trying to dynamically adjust the timer, the
next protocol introduces a minor modification that complements the timer with a
deterministic notification process while still maintaining the benefits of deferring
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unsubscriptions. For this modification, which we refer to as Notified Deferred

Unsubscription, we assume that the tree reconfiguration sub-system is able to
associate the removed link with the inserted link by assigning a unique identifier
to each reconfiguration. We also assume that the calls to removeLinkTo are made
before the calls to addLinkTo, thus ensuring the proper tagging of links as bro-
ken prior to start forwarding subscriptions1. These assumptions enable the use
of a flush message, which is sent by the end-points of the new link toward the
end-points of the old link, just after they finish propagating subscriptions. Since
we assumed all links to be FIFO, when the end-points of the old link receive the
flush message, they can correctly assume that the subscriptions from the new
link have propagated all the way to the old link, and therefore they can start the
unsubscription process. This behavior is outlined in Figure 6.2.

The remainder of the processing is identical to the Timed Deferred Un-

subscription protocol—including the presence of the unsubscription timer. In
fact, although the flush message serves the same purpose of the timer, namely to
start the propagation of the unsubscriptions, it is possible that due to concurrent
reconfigurations the flush message does not reach the end-points of the old link.
In this case, the unsubscriptions begin propagating when the timer expires.

It is worth noting that, for simplicity, the flush message is broadcast along
the entire tree, although it only needs to propagate along the reconfiguration
path to reach the end-points of the old link. There are two ways to optimize
this propagation. One is to exploit information bout the reconfiguration path if
it is provided by the tree maintenance sub-system. The other is to exploit the
propagation of the subscriptions sent by end-points of the new link to guide the
propagation of the flush. More specifically, the flush can be piggybacked on
these subscriptions as they propagate towards the removed link; this way, the
flush only needs to be broadcast from the point where the last subscription
stops propagating. The benefits arising from these optimizations should, never-
theless, be weighed against the complexity they introduce and against the fact
that broadcasting the flush message along the whole tree is likely to be more
resilient to concurrent reconfigurations.

6.2 Informed Link Activation

In Section 5.2, we pointed out that unnecessary reconfiguration overhead comes
primarily from two sources. First, according to Observation 1, unsubscriptions
from the old link may propagate unnecessarily and temporarily remove routes
that are needed even after the reconfiguration. Second, according to Observation
2, subscriptions from the new link may propagate unnecessary routing informa-
tion that was only needed before the reconfiguration occurred. Both Deferred

Unsubscription protocols address the first problem by postponing the propa-
gation of unsubscriptions until the subscriptions from the new link have finished
propagating. However, they only address the second problem when the new and
old links share an end-point. The shared end-point identifies the subscriptions
that are directed only along the vanished link and avoids propagating them.

1Both assumptions are satisfied by the overlay maintenance protocol presented in Chapter 10
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//Substitute link (self , o) with (n1, n2)

//rId is the reconfiguration identifier

substituteLinkTo(o, n1, n2, rId)

//n1 is in same sub-tree as self

P ← {p|only o is subscribed to p}
neighbors ← neighbors − {o}
start unsubTimer(o, rId) [1]
send activate(rId, P, n2) to n1 [2]

//Unsubscription Timer expires, n is old neighbor,

//rId is the reconfiguration identifier

unsubTimerExpires(n, rId)

for all 〈n, p〉 ∈ subTab do

processUnsubFrom(n, p) [6]

//Subscription Timer expires

subTimerExpires(n, rId)

for all p ∈ taggedSubs[rId] do

if 〈p, n′〉 ∈ subTab and n′ 6= n then

send sub(p) to n [7]
cancel subTimer(n, rId)
taggedSubs[rId] = ∅

//flush received

flushReceived(n, flush(rId))

if self has unsubTimer(n′, rId) then

//n
′ is other end-point of old link

cancel unsubTimer(n′, rId)
unsubTimerExpires(n′, rId) [6]

else

//self is not end-point of old link

send flush(rId) to all neighbors except n
[5]

//activate received

activateReceived(activate(rId, P, n))

neighbors ← neighbors ∪ {n}
start subTimer(n, rId) [3]
for all p ∈ subTab do

if p 6∈ P then

send sub(p) to n [4]
else

taggedSubs[rId]← taggedSubs[rId]∪{p}
send flush(rId) to n [5]
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Figure 6.3: Informed Link Activation pseudo-code and schematic.

Our new Informed Link Activation protocol extends the behavior of the
Deferred Unsubscription protocols by addressing Observation 2 even when
the end-points of the new and old links are not shared. To accomplish this it
propagates information about unnecessary subscriptions from the old link to the
new one, allowing the end-points of the new link to recognize these subscriptions
and avoid their propagation. The protocol is based on the same assumption as
Notified Deferred Unsubscription, namely, that the tree maintenance sub-
system is able to associate the new link with the old one. Moreover, the communi-
cation between the end-points of the old and new link can occur either by sending
a direct, out-of-band activate message or by piggybacking this information on
messages sent by the tree maintenance sub-system.

Figure 6.3 shows the pseudo-code and schematics for the protocol. We assume
that the tree maintenance sub-system invokes the operation substituteLinkTo on
each of the old link end-points when a reconfiguration occurs. Through this
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(a) Activating a link. (b) Concurrent subscrip-
tions.

Figure 6.4: Two scenarios in the Informed Link Activation protocol.

operation the tree maintenance sub-system informs the end-points of the old link
about the identity of the end-points of the new link. In this operation, each end-
point determines the set of patterns P that are used to route events only toward
the other sub-tree and propagates it to the corresponding end-point (i.e., in the
same sub-tree) of the new link by means of an activate message (step 2 in the
pseudo-code). Upon receiving the activate message, the end-points of the new
link propagate their subscriptions across the new link (step 4). The processing is
similar to the addLinkTo operation found in the previous protocols, except here
a subscription is propagated across the new link only if it is local or it does not
belong to the set of patterns P contained in the activate message. For instance,
Figure 6.4(a) shows a situation similar to the one depicted in Figure 5.4 where,
upon breakage of the link (A,B), B sends to D an activate message where P
contains the pattern for B’s subscription towards A. Upon receiving this message,
D does not propagate the subscription across the new link, therefore avoiding the
generation of the extraneous subscriptions shown in Figure 5.4.

Unsubscriptions can be dealt with as in one of the Deferred Unsubscrip-

tion protocols. In Figure 6.3 (and later in the simulations of Chapter 7) we use
the technique described in Notified Deferred Unsubscription, where un-
subscriptions are triggered at the broken link by the receipt of a flush message
sent by the end-points of the new link (step 5) or, if this does not propagate fast
enough, by the expiration of a timeout (set in step 1).

The previously outlined processing is sufficient under stable conditions; that
is, when the only subscriptions and unsubscriptions being propagated are those
determined by the current reconfiguration. In reality, however, new subscriptions
can be generated concurrently with reconfiguration and multiple reconfigurations
can occur in parallel. In such cases, some of the subscriptions that have been
deemed unnecessary may still need to be propagated. For instance, looking at
Figure 6.4(b), dispatcher T may decide to subscribe to the same “gray” pattern
as S concurrently to the replacement of link (A,B) with link (C,D). In this case,
contrary to what we stated above, D should forward the subscription even if it
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is contained in P . Interestingly, D has no way to know whether a subscription
is used only by B or also by some other dispatcher in its sub-tree: this becomes
evident only after the unsubscriptions eventually issued by B have propagated to
D, and have purged unnecessary entries from its subscription table. To address
these situations, the Informed Link Activation protocol uses an additional
subscription timer, which is started upon receipt of the activate message (step
3). The expiration of this timer (step 7) causes the propagation of those subscrip-
tions in P that were not propagated in step 4 but that are still in the subscription
table (i.e., taggedSubs in Figure 6.4(b)). To guarantee the right behavior in the
presence of multiple reconfigurations, both the timer and the subscriptions not
propagated in step 4 are tagged with the reconfiguration identifier rId . In our
previous example, this leads to the propagation of the subscription issued by T
because it has not been removed by the unsubscriptions propagated by B.

Clearly, the value of the subscription timer must be large enough to allow the
unsubscriptions generated at the old link to be propagated to the new link before
it expires. If trep is the sum of the time required by the tree maintenance layer
to locate a new route plus the time required for the propagation of the activate

messages, and tprop is the time required for the propagation of unsubscriptions
from the old to the new link, then to maximize performance the values of the
unsubscription and subscription timers, Tu and Ts, should satisfy the following
condition:

Tu + tprop < Ts + trep (6.1)

It is worth observing that the use of the subscription timer may increase
the delay experienced by clients before receiving events after a new subscription.
However this is only a small price to pay with respect to the great reduction in
overhead achieved by the protocol.

6.3 Reconfiguration Path

Although the previous protocols keep the tree dense of subscriptions to limit
the scope of the reconfiguration, it is possible that the subscriptions (and possibly
the unsubscriptions) propagate beyond the reconfiguration path, introducing un-
necessary overhead. Our next protocol focuses explicitly on the dispatchers on the
reconfiguration path, which we assume being computed by the tree maintenance
sub-system and communicated to the content-based routing sub-system. The
protocol operates in a strictly sequential way by propagating a special reconfigu-
ration message along the reconfiguration path, from one end-point of the broken
link to the other. On receiving such reconfiguration message, dispatching servers
rearrange their subscription table to take into account the changes in the overlay
topology. This sequential way of operating reduces the overhead at a minimum,
but is also the source of the main weakness of the protocol, i.e., the inability to
withstand multiple overlapping reconfigurations. Some of the complexity of the
protocol also come from the fact that processing is different on the head and tail
paths as well as across the new link, which is coherent with the considerations
made at the end of Section 5.2. Moreover, the normal subscription and unsub-
scription operations must be allowed to continue during reconfiguration, further
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//External operation to replace a link to dispatcher n

substituteLinkTo(n, RP, rId)

Padd ← patterns n was subscribed to along
old link
Pdel ← Padd

neighbors ← neighbors − {n}
//emulate reconfiguration message from n:

send rec(rId, Padd , Pdel , RP) to self [1a]

//Receive a control message from a neighbor n

recAckReceived(n, recAck(rId))

ignore ← ignore − {〈rId, ∗, n〉} [1d]

//Receive a flush message from a neighbor n

flushReceived(n, flush(rId, RP))

if self = first(tail(RP)) then

for all p ∈ subTab s.t.
p 6∈ storedPadd [rId] and
prev(RP) is not the only subscriber

to p do

send sub(p) to prev(RP) [8]
storedPadd [rId]← ∅

else

send flush to all neighbors except n [7]

//Unsubscription received from neighbor n

unsubscriptionReceived(n, unsub(p))

if 〈p, n〉 ∈ subTab and ∄〈∗, p, n〉 ∈ ignore

then

processUnsubFrom(n, p)

//Receive a rec message from a neighbor n

recReceived(n, rec(rId, Padd , Pdel , RP))

if self ∈ head(RP) then

subTab[n]← subTab[n]− Pdel

if self 6= last(head(RP)) then

for all p ∈ Padd do

ignore ← ignore ∪
{〈rId, p, next(RP)〉}

P ′

del ← patterns to be removed at next
hop
send rec(rId, Padd , P ′

del , RP)
to next(RP) [1b]

else

TimedDefUnsub.addLinkTo(next(RP))
[2]
send rec(rId, Padd , ∅, RP) to
next(RP) [3]

add Padd to subscriptions of next(RP)
if self 6= first(RP) then

send recAck(rId) to n [1c]
if self ∈ tail(RP) then

if self = first(tail(RP)) then

neighbors ← neighbors ∪ {n}
for all p in Padd with no subscriber ex-
cept n do

send unsub(p) to n [4]
storedPadd [rId]← Padd

if self 6= last(RP) then

send rec(rId, ∅, ∅, RP) to next(RP)
[5]

else

Strawman.removeLinkTo(first(RP)) [6]
send flush(rId, RP) to self [7]

The following functions apply to a sequence
of dispatchers Seq:

first(Seq) the first dispatcher in Seq

last(Seq) the last dispatcher in Seq

next(Seq) the dispatcher following self in Seq

prev(Seq) the dispatcher preceding self in Seq

The following functions apply to the
reconfiguration path RP :

head(RP) the head path
tail(RP) the tail path
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Figure 6.5: Reconfiguration Path pseudo-code and schematic.

complicating the protocol.
For the sake of clarity, the description of the Reconfiguration Path pro-

tocol is split in two parts, first describing its basic operations, then continuing
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with the details of the management of the (un)subscriptions issued during the
reconfiguration. The pseudo-code and schematic for the complete protocol are
presented in Figure 6.5.

6.3.1 Basic Operation

This section steps through a single reconfiguration distinguishing the operations
done on the head path from those made on the new link, and on the tail path.

Starting the Reconfiguration. The reconfiguration process is started by the ini-
tiator, i.e., the first dispatcher on the reconfiguration path, when a call to the
operation substituteLinkTo(rId , n,RP ) of Figure 6.5 is made by the tree mainte-
nance sub-system2. It removes the other end-point of the old link from the set
of neighbors and computes the two set of patterns Padd and Pdel that are rele-
vant for the protocol. The former includes the patterns for which subscriptions
need to be added along the head path, while the set Pdel includes the patterns
for which subscriptions need to be removed along the head path. With reference
to Figure 5.5, Padd enables the insertion of the missing abi subscriptions, on the
path from A to C, while Pdel enables the removal of the unnecessary subscrip-
tions on the path from C to A. Both Padd and Pdel are initialized by the initiator
with the same patterns: those belonging to subscriptions previously issued by the
other end-point of the vanished link (ab in Figure 5.5). Afterwards, the initiator
proceeds by simulating the receipt of a rec message (step 1a in the pseudo-code).

The message is processed by the recReceived action. For each event pattern
in Padd, a new entry is inserted in the initiator’s subscription table as if it were
a subscription coming from the next dispatcher in the reconfiguration path (E
in Figure 5.5), thus enabling events to be routed in the direction of the new
link. Similarly, all the entries in Pdel are deleted from the subscription table. In
Figure 5.5, these actions cause respectively the insertion of ab1 and the deletion
of ab.

Reconfiguring the Head Path. After reconfiguring its subscription table, the ini-
tiator propagates the rec message containing rId , Padd, Pdel, and the list RP
to its neighbor along the reconfiguration path. All along the head path, each
dispatcher receiving the rec performs the same operations performed by the ini-
tiator, updating its subscription table and propagating a new rec (step 1b).

The contents of Padd remain the same as the rec message propagates along
the head path establishing the forwarding chain to route events across the new
link. The contents of Pdel, on the other hand, are recomputed by each dispatcher
(including the initiator) before propagating rec. Pdel contains exclusively sub-
scriptions that formerly routed events only towards the removed link. Therefore,
if a dispatcher’s subscription table contains a subscription for a pattern P to any
dispatcher other than the next one on the reconfiguration path, P is not included
in the Pdel propagated to the next dispatcher.

Reconciling Subscriptions Across the New Link. The propagation of the rec

2Note that differently from the previous protocols the tree maintenance sub-system provides
the entire reconfiguration path to the content-based routing sub-system through the parameter
RP .
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message continues along the head path until it reaches the first end-point of
the new link (C in Figure 5.5). This dispatcher behaves differently from the
others along the head path because it must take the necessary steps to activate
routing across the new link. In particular, it updates its subscription table as
described earlier but also adds the other end-point as a new neighbor and sends it
a subscription message for each pattern in its subscription table(step 2), followed
by a rec message (step 3).

Completing the Reconfiguration. The other end-point of the new link processes the
subscriptions sent in step 2 normally. Consequently, these subscriptions propagate
throughout the second sub-tree as necessary to enable the correct routing of events
across the new link and on the tail path. Observe that since these subscriptions are
generated after the removal of those on the head path and before unsubscriptions
have been processed on the tail path, their propagation is naturally confined to
the tail path.

After processing the subscriptions coming from the first end-point of the new
link, the second end-point processes the rec message propagating it to the next
dispatcher along the tail path. Propagation of the rec message continues along
the tail path (step 5) with each dispatcher simply forwarding it until it arrives
at the last dispatcher. This dispatcher, which is also the second end-point of the
removed link, reacts to the rec message by behaving as if it had received an
unsubscription message for each subscription associated with the other end-point
of the removed link. It processes these unsubscriptions and propagates them
normally, completing the reconfiguration (step 6).

It is worth noting how these unsubscriptions are generated only after the sub-
scriptions sent in step 2 have finished propagating on the tail path. This naturally
limits their propagation to the reconfiguration path, removing subscriptions that
were used only to route events to the first sub-tree via the removed link (e.g., the
subscriptions from G to B and from D to G in Figure 5.5).

6.3.2 Dealing with Concurrent (Un)Subscriptions

Thus far we have ignored the details related to subscriptions and unsubscriptions
issued during the reconfiguration. Different from the other protocols, Recon-

figuration Path demands that these be treated in a special way to avoid race
conditions arising from its sequential approach to reconfiguration.

Avoiding Race Conditions on the Head Path. The first issue arises in the head
path. The rec message flows along the head path from the initiator to the
first end-point of the new link, while part of its behavior is to add subscriptions
that route events towards the next dispatcher in the head path, i.e., towards a
dispatcher that has not yet received the rec message. This processing proceeds
in the opposite direction w.r.t. the processing of normal subscriptions, activating
a subscription before the event recipient is aware of it.

This is normally acceptable, but it can cause problems when a dispatcher
D is already a subscriber for a pattern p and issues an unsubscription for p
after the dispatcher D′ that precedes D on the head path has inserted p in its
subscription table and before the rec message has reached D. The propagation
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of the unsubscription from D to D′ has the effect of removing the subscription
just established by the reconfiguration at D′, interrupting the future propagation
of events along the reconfiguration path to the second sub-tree.

The solution we adopt requires the sender of the rec message (i.e., D′ in the
previous example) to remember the subscriptions just added by a reconfiguration,
until the rec message has been acknowledged. This allows it to discern between
an unsubscription that would disrupt event propagation along the reconfiguration
path, and one that should instead be processed. Specifically, a dispatcher forward-
ing a rec message along the head path ignores the unsubscriptions coming from
the next dispatcher along the reconfiguration path before the acknowledgement if
they correspond to subscriptions just added by the reconfiguration, while it pro-
cesses the other subscriptions and unsubscriptions normally. In Figure 6.5 this is
obtained by using the ignore table (ignore) that holds the unsubscriptions that
should not be processed, and by adding the acknowledgment message recAck

that has the effect of clearing the ignore data structure (steps 1c and 1d).

Reconciling Subscriptions Across the New Link. The second issue arises because
the contents of the rec message and thus the reconfiguration carried out on the
head path are solely determined by the state of the initiator when the link is
removed. In particular, while the rec message is on the head path, the second
sub-tree is unaffected by the reconfiguration, and normal subscriptions and unsub-
scriptions can be issued without the possibility to reach the initiator’s sub-tree.

This requires a reconciliation mechanism to remove inconsistencies generated
before the two sub-trees are joined. This reconciliation is carried out by the
second end-point of the new link, which compares its own subscription table with
the Padd carried by the rec message, checking if some subscriptions added in the
head path are no longer necessary because the corresponding subscribers in the
second sub-tree have unsubscribed. For each subscription found in Padd but not
in the local table, an unsubscription message is sent across the new link (step 4).

Similarly, the second end-point of the new link should check if there are sub-
scriptions generated in the tail path during the first part of the reconfiguration,
which should be added on the head path. However, this check cannot be done
until the last dispatcher on the tail path receives the rec message and propa-
gates its unsubscriptions (step 6). Therefore, the second end-point of the new
link saves the patterns in Padd received with the rec message into a temporary
variable storedPadd , while the last dispatcher in the reconfiguration path sends
a flush message (step 7) after the unsubscription messages generated in step 6.
By receiving this flush the second end-point of the new link can determine when
the reconfiguration has completed. When this happens, it compares the patterns
saved in storedPadd against its current subscription table and propagates to the
first sub-tree all the subscriptions in its table that are not placed exclusively on
the new link and are not contained in storedPadd (step 8).



CHAPTER

SEVEN

Evaluation of Routing
Reconfiguration

Chapter 6 described in detail the behavior of the optimized protocols considered
in this thesis. This chapter complements it by focusing on a numerical evalua-
tion of their performance in several candidate scenarios, using OMNeT++ [95],
a popular, open source, discrete event simulation tool. Results highlight the im-
provements achieved by the two novel solutions Reconfiguration Path and
Informed Link Activation, thanks to their ability to restrict changes to the
reconfiguration path.

Section 7.1 introduces the simulation environment and the parameters charac-
terizing the scenarios we evaluated. Section 7.2 analyzes the ability of the proto-
cols to restore the correct event routing after reconfigurations, while maintaining
reasonable event delivery. Finally, Section 7.3 presents a detailed evaluation of
the cost of dealing with reconfiguration for each of the protocols we analyze.

7.1 Simulation Setting

Due to the limited availability of reference scenarios for the application of content-
based publish-subscribe middleware, we extended the simulation setting used
in [76] and [37]. Clients are not modeled explicitly, as their activity affects only the
dispatcher they are attached to and, in addition, in the scenarios we target (e.g.,
peer-to-peer networks and MANET) the publish-subscribe system is likely to be
deployed so that clients and dispatchers coincide, as we pointed out in Chapter 3.
The parameters of our simulations and corresponding default values are shown in
Table 7.1, and briefly described below.

Events, subscriptions, and matching. Events are modeled as strings containing
µ = 9 random characters. Subscriptions are represented as a single character.
An event matches a subscription if it contains the character specified by the
subscription. Each dispatcher is allowed to subscribe to π = 7 subscriptions
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Parameter Default value

number of dispatchers N = 100
dispatcher degree δ = 4

available patterns in the system Π = 96
patterns per dispatcher π = 7

patterns matched by each event µ = 9
density of subscribers σs = 0.2
density of publishers σp = 1

publish frequency at each dispatcher ε = 1 pub/s
frequency of reconfiguration ρ = 3 rec/s

time required to repair the tree trep = 0.1 s
unsubscription timeout Tu = 0.15 s

subscription timeout Ts = 0.15 s

Table 7.1: Default simulation parameters. Those in italics remain constant
throughout our simulations.

drawn randomly from the Π available. In most simulations we use Π = 96,
limiting ourselves to the printable characters.

Publish frequency. The behavior of each dispatcher is governed by the frequency
at which publish, subscribe, and unsubscribe operations are invoked by each dis-
patcher. The most relevant is the publish frequency ε, which essentially deter-
mines the system load in terms of event messages that need to be routed: its
impact is evaluated in Section 7.3.3. In our simulations, the density of publishers
is σp = 1, i.e., every dispatcher is a publisher. This parameter is not changed
across our simulations since it affects primarily the event load, which is already
controlled through the publish frequency ε.

Density of subscribers and receivers. As discussed in Section 5.2, the extent
to which (un)subscriptions are propagated is determined by the density of sub-
scribers in the tree, the impact of which is analyzed in Section 7.3.2. Nevertheless,
the choice of σs = 0.2 as the default value is motivated by the fact that this value
causes an event to be received by approximately 10% of the dispatchers in the
system—a commonly accepted “rule of thumb” for content-based systems (see,
e.g., [19]).

In fact, given our event model, the density of receivers for a given event can
be computed as

σr = σs × p = σs

(

1 −

(

Π − π

Π

)µ)

(7.1)

where p is the probability that a given event matches at least one of a subscriber’s
patterns. Using the default values in Table 7.1 indeed yields σr = 0.0988 ∼ 0.1.

Network size and topology. The results we present are obtained with tree config-
urations consisting of up to 500 dispatchers, with most of our plots derived with
N = 100. The links connecting dispatchers are assumed to behave as error-free
10 Mbit/s links. The maximum degree of the dispatchers in the network limits
each dispatcher to at most δ = 4 neighbors. Simulation runs with different degrees
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showed that the influence of this parameter is negligible. In the following, we as-
sume that the initial configuration is a balanced tree, although in Section 7.3.2
we analyze also the case of an unbalanced initial configuration.

Tree reconfiguration. The aim of our simulations is to compare the performance
of the protocols described in this part of the thesis in a situation where the
dispatching tree is modified through the replacement of one link with another. The
cases where the dispatching tree is partitioned into two sub-trees or two sub-trees
merge are in fact treated in the same way by all the protocols we consider, and
are also arguably less frequent. The selection of the links breaking or appearing
is done randomly. However, the same random sequences were applied to all the
protocols in order to obtain consistent results. To retain some degree of control
about when a reconfiguration occurs, we assume that each broken link is replaced
by a new one after trep = 0.1s.

Each simulation is run for an interval of eight seconds. During the first three
seconds, dispatchers operate normally, generating subscriptions, unsubscriptions
and events in the absence of topological reconfigurations. These occur in the
interval between 3s and 7s, at a regular frequency determined by the parameter
ρ, whose impact is assessed in Section 7.3.2. The last second is used to allow
reconfigurations to complete.

Timers. Some of the considered protocols make use of timers to coordinate their
actions. The choice of the best timer values depends on the specific scenario being
considered. In the scenario we analyzed, however, we set both the subscription
and the unsubscription timers to 0.15s, as these values yield average performance.
An analysis of the impact of timer values is provided in Sections 7.3.2 and 7.3.3.

Reducing the effect of randomization. Since topology, subscriptions, events, and
reconfigurations are determined randomly, our results had a significant degree of
variability. To reduce the bias induced by randomization, we ran each configura-
tion 30 times using different seeds, and then averaged the results. The same set
of seeds is used for all the protocols evaluated in each configuration. Instead, in
the case of unbalanced tree configurations the initial tree is random and different
for each run.

7.2 Event Delivery

The first property we need to evaluate in routing reconfiguration protocols is their
ability to restore correct event delivery regardless of the temporary disruption
caused by reconfigurations. If the protocols behave correctly, the percentage of
events delivered should drop temporarily as a consequence of reconfiguration, and
then go back to exactly 100%. This is exactly the case in Figure 7.1, where we show
the results obtained by the Timed Deferred Unsubscription protocol under
different reconfiguration rates. We report only the results obtained with one of
the protocols, as simulation of the others did not evidence significant differences.

The measurements were performed by relying on a subset of the dispatch-
ers belonging to a stable core. Core dispatchers are prevented from issuing
(un)subscriptions after a given time threshold, set to 2s in our tests. The pres-



56 7.3. OVERHEAD

 0

 20

 40

 60

 80

 100

 3  4  5  6  7

%
 o

f e
ve

nt
s 

de
liv

er
ed

time (s)

(a) ρ = 3 reconfiguration/s

 0

 20

 40

 60

 80

 100

 3  4  5  6  7

%
 o

f e
ve

nt
s 

de
liv

er
ed

time (s)

(b) ρ = 30 reconfiguration/s

Figure 7.1: Event delivery for the Timed Deferred Unsubscription protocol;
results obtained with the other optimized protocol do not evidence significant
differences.

ence of the stable core focuses our measurements on the events lost as a result
of reconfigurations, eliminating events missed during the propagation of new sub-
scriptions. Nevertheless, only the stable core is subject to this limitation: as a
result, the protocols are validated not only against the reconfiguration coming
from changes in the topology, but also against the reconfiguration of routing in-
formation determined by the (un)subscriptions coming from dispatchers not in
the core.

The plots of Figure 7.1 represent a configuration with N = 100 dispatchers,
50% of which belong to the core. Moreover, 50% of the dispatchers inside the
core and 50% of those outside the core are subscribers, and a high event load of
ε = 50 publish/s is assumed. The reconfiguration rate ρ in Figure 7.1(a) allows
each reconfiguration to complete before the next one starts. In this case, event
delivery is only marginally affected by reconfiguration. Instead, the higher rate
of Figure 7.1(b) leads to a situation where reconfigurations overlap in time and
space, therefore negatively affecting event delivery.

Figure 7.1 shows how, independently of the reconfiguration scenario, all of the
considered protocols always restore correct routes. Indeed, event delivery goes
back to exactly 100% after the network topology stabilizes at t = 7. Moreover,
we verified on our simulation traces that no misrouted events are generated after
the routes stabilize.

7.3 Overhead

The simulation results for event delivery indicate that all the protocols we con-
sider correctly restore the routing of events in the presence of topological recon-
figurations, but do not provide insights about the efficiency of the process. Here,
we evaluate this aspect by focusing on the communication overhead, while Sec-
tion 7.3.5 analyzes also the number of nodes involved in (i.e., triggering some
processing as a consequence of) a reconfiguration, as an indirect measure of the
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Message Weight

sub 1
unsub 1
event 1

flush 0.1
activate #patterns
rec #patterns
recAck 0.1

Table 7.2: Modeling the different costs of publish-subscribe messages and control
messages.

computational overhead induced in the dispatching network.

In the plots we present in this section, the main quantity under evaluation
is the (average) cost of a single reconfiguration, computed by taking the number
of overhead messages generated during the simulation run and dividing it by the
number of reconfigurations occurred. This quantity represents the most basic
“building block” necessary to assess the behavior of the considered protocols, and
in the rest of this section we show how it varies according to a change in the
simulation parameters in Table 7.1. Each plot reports the original data points
together with their Bezier interpolation, to help visualize trends. Also, note that
the overhead is measured by making all dispatchers part of the stable core. This
way, the only (un)subscription messages exchanged in the system are those caused
by reconfiguration.

Before delving into the analysis, however, we detail further how we modeled
the various overhead components.

7.3.1 Modeling the Cost of Publish-Subscribe and Control
Messages

Throughout the analysis, the communication overhead is computed as the number
of messages that the protocols generate to restore correct event routing in the
presence of reconfigurations. More precisely, the overhead is the sum of: i) the
(un)subscription messages exchanged because of reconfiguration; ii) the control
messages of the protocols that manage the reconfiguration process; and iii) the
event messages misrouted along obsolete subscription paths and therefore reaching
uninterested dispatchers. Obviously, based on what we presented in Chapter 6,
not all of these overhead components are necessarily present in all of the protocols.

The overhead generated by a message depends both on the number of hops it
travels and on its size. Nevertheless, the actual size of event and (un)subscription
messages is ultimately determined by the application, while the size of control
messages is determined by the middleware implementation. Simply counting the
number of messages generated is misleading, since the difference in size among
these messages is significant. For instance, a flush message is likely to be very
small since it only carries an identifier, while a rec message contains a set of
patterns and therefore its cost is roughly equivalent to the sum of the sizes of the
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Figure 7.2: Absolute number of messages vs. normalized cost, in a scenario
defined by the parameters in Table 7.1 and by ε = 0. For each protocol, the
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normalized cost obtained using the weights in Table 7.2.

messages issued to subscribe to those patterns.

In our evaluation we assigned different weights to the various messages, to
account for their different sizes. We assume that a subscription, unsubscription,
or event message have the same size c, analogously to other researchers in the field
(e.g., [93]). This value, which we leave undefined as it depends on the implemen-
tation, is used as the base to derive the cost of control messages as w × c, where
w is a weight associated to the message type, according to Table 7.2. We used
w = 1 for the aforementioned standard publish-subscribe messages, w = 0.1 for
control messages that do not carry patterns, and a value of w equal to the num-
ber of patterns contained in the message for the remaining ones. The normalized
cost generated by each message is then computed by multiplying its weight by
the number of hops it travels, and dividing it by c. Note that each out-of-band
message is considered to travel for one hop, since we assume that TCP or some
other point-to-point communication protocol is available between dispatchers.

The bias introduced by this modeling of overhead can be appreciated by look-
ing at Figure 7.2, which reports simulation results obtained in the reference sce-
nario defined by Table 7.1. The figure shows, for each protocol containing control
messages, the absolute number of overhead messages exchanged on the left-hand
side and the normalized cost on the right-hand side. It is worth noting how our
modeling choice is a conservative one, in that it actually lowers the performance
figures of our protocols. In fact, while the impact of flush and recAck messages
is in any case negligible when compared to that of (un)subscriptions, the absolute
cost of rec and activate messages is instead much lower than the normalized
one (e.g., going from 3.44 to 90.9 for rec messages).

All the simulation plots we illustrate in the remainder of this section show the
normalized cost, unless otherwise stated.
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Figure 7.3: Cost of reconfiguration vs. system scale.

7.3.2 Evaluating the Cost of Reconfiguring Subscription
Tables

Our evaluation begins by investigating the cost of restoring the consistency of
subscription tables after topological reconfigurations. We analyze this major com-
ponent of overhead in isolation, i.e., when no events are being published in the
system (ε = 0). Therefore, overhead is solely determined by (un)subscriptions and
control messages. The impact of misrouted events, which is nonetheless negligible
in the reference scenario, is analyzed in Section 7.3.3 and following.

System Scale We begin by analyzing the performance of the protocols against
the system scale, by ranging the network size N from 50 to 500 dispatchers and
keeping the other parameters of Table 7.1 unaltered. Note how this really rep-
resents an increase in system scale and not just in the network size. Indeed, an
increase of N causes a corresponding increase in the number of subscribers, which
is defined in terms of the density σs. Moreover, we also increase the number of
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Figure 7.4: Cost of reconfiguration vs. system scale, with unbalanced initial tree
configurations.
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available patterns to Π = 200 to account for the increased scale. The impact of
this latter parameter is analyzed in more detail in Section 7.3.2.

Figure 7.3 shows our simulation results. Figure 7.3(a) shows the average cost
of a reconfiguration for each protocol, including Strawman. The plot evidences
how this cost increases along with the size of the network, as the distance between
the subscribers on the pattern tree becomes longer. Nevertheless, as indicated
by the percentage improvement over Strawman plotted in Figure 7.3(b), all of
the considered protocols consistently and remarkably outperform the Strawman

protocol, reducing overhead by up to 75%. Also, it can be noted how the solutions
based on deferred unsubscriptions are less effective than the others, with a gap in
performance of about 20%.

The plots in Figure 7.3 also evidence how the performance of the two vari-
ants of Deferred Unsubscription is virtually indistinguishable. This is not
surprising, as they have the same fundamental behavior, and differ only in the
mechanism used to trigger the unsubscriptions previously deferred. Moreover,
since the flush messages used by Notified Deferred Unsubscription are
small in size and few in number, as discussed in Section 7.3.1, their impact on
overhead is negligible. Analogously, the similarity between Informed Link Ac-

tivation and Reconfiguration Path can be explained by observing that both
limit the scope of the reconfiguration to the reconfiguration path. The similarity
between the protocols is also a result of the specific scenario we considered, one
without event load and with non-overlapping reconfigurations. Later on in our
analysis, we show that when these dimensions are considered the various protocols
exhibit different performance and tradeoffs.

The results in Figure 7.3 were obtained by starting each simulation with a
balanced tree topology. This choice allows us to remove an additional source of
randomness from our results, and for this reason we retain it throughout this
section. Nevertheless, here we evaluate the impact of the initial configuration.

In general, a tree with a random topology has a larger diameter (depth) than
the corresponding balanced tree. As a result, we expect a random initial con-
figuration1 to amplify the differences among the various protocols because the
overhead messages, on average, travel longer than in the balanced case.

This is confirmed by comparing Figure 7.4(a) against Figure 7.3(a). In par-
ticular, Reconfiguration Path and Informed Link Activation improve
an additional 10% against Strawman with respect to the balanced case, while
the relative performance of the Deferred Unsubscription protocols drops by
about the same quantity. The explanation is straightforward: the Strawman

and the Deferred Unsubscription protocols are affected by the increase in
the distance between dispatchers on the pattern tree causing overhead messages
to travel longer. Instead, Reconfiguration Path and Informed Link Ac-

tivation are less affected by the increased diameter of the network because the
overhead messages they generate remain confined to the reconfiguration path.
Indeed, Reconfiguration Path performs best, since it fully enforces this prop-
erty. Finally, it is worth noting that since the overhead in this unbalanced scenario
is higher for all the protocols, the absolute savings provided by our protocols over

1The unbalanced configuration is random, but the maximum number of neighbors is still
fixed, δ = 4 in our simulations.
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Figure 7.5: Impact of the number Π of available patterns on the reconfiguration
overhead.

Strawman are bigger.

Number of Available Event Patterns In our simulations, each subscriber
holds π subscriptions, each for a pattern randomly drawn from the Π patterns
available in the system. In this section, we analyze how varying Π in the system
affects the performance of the various protocols. In real systems, as the scale of the
system increases, Π increases as well, albeit not necessarily at the same rate, since
there are new subscribers with potentially unique subscriptions. The charts in
Figure 7.5, derived for N = 100, show that our optimized protocols improve w.r.t.
strawman as the number of available patterns increases, therefore confirming that
our choice of a default Π = 96 patterns is actually rather conservative.

Indeed, the Strawman protocol is negatively affected by a larger number
of available patterns. An increase in the number of patterns results in a lower
density of subscribers per pattern, therefore increasing the distance travelled by
subscriptions and unsubscriptions to join the pattern tree. Different from Straw-

man, the optimized protocols manage to limit this distance by either deferring
unsubscriptions, (i.e., temporarily increasing the density of subscribers) or by ex-
plicitly enforcing reconfiguration messages to remain on the reconfiguration path.
Figure 7.5(b) confirms this intuition by showing that the improvement of all the
optimized protocols increases with the number of available patterns.

The arguments we put forth in this section justify our choice of Π = 200 in
Section 7.3.2, to accommodate for the increased scale. Moreover, they also explain
why the improvement curve in Figure 7.3(b) exhibits a small decrease when the
size of dispatching network increases. This trend is a consequence of our choice of
a fixed number of available patterns. When the density of subscribers increases,
since the π subscriptions for each subscriber are drawn from the same, fixed set of
Π patterns, the tree becomes dense of subscriptions, reducing the total number of
hops traveled by subscription and unsubscription messages, and correspondingly
reducing the gap between Strawman and the optimized protocols. In a true
content-based system this saturation phenomenon is unlikely to occur, since an
increase in scale is usually mirrored by some increase in the number of available
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Figure 7.6: Impact of subscriber density σs on reconfiguration overhead.

patterns.
In the rest of this section we focus on a network of N = 100 dispatchers and

retain the default value Π = 96, unless otherwise stated.

Density of Subscribers The average cost of a reconfiguration clearly depends
on the density of subscribers in the dispatching network, as we discussed in Sec-
tion 5.2. The higher the density of subscribers the shorter the distance travelled
by (un)subscription messages caused by reconfiguration, and consequently the
smaller the improvement achieved by the optimized protocols. Figure 7.6 con-
firms this intuition by showing the results of simulations in the reference scenario
of Table 7.1, changing the density of subscribers in the range 3% ≤ σs ≤ 100%,
which according to Equation (7.1) yields a number of receivers per event in the
range 1.48% ≤ σr ≤ 49.40%.

Two things are also worth noting about Figure 7.6. First, even with a tree
where all dispatchers are also subscribers, our protocols are still able to signif-
icantly improve over Strawman, from the 20% improvement achieved by the
Deferred Unsubscription protocols to the 40% achieved by Informed Link

Activation. Second, the higher the density of subscribers the less the scenario
faithfully represents a content-based system. In content-based systems, patterns
are usually highly selective, and the number of receivers per event is usually as-
sumed to be reasonably low (about 10% for σs = 0.2, as discussed in Section 7.1),
as this is one of the aspects differentiating content-based communication from
multicast and broadcast communication. Instead, here σr is well beyond the val-
ues commonly assumed. Additionally, while a high subscriber density conflicts
with the sheer notion of content-based publish-subscribe, very small values of σs

(and therefore σr) are meaningful in some application scenarios where a small
number of devices is responsible for collecting data published by a large number
of data sources. For instance, this situation is typical of monitoring and sensing
applications, like those recently made popular by wireless sensor networks [3].
Interestingly, in these applications reducing the communication overhead induced
by the monitoring infrastructure is of paramount importance.
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Figure 7.7: Impact of reconfiguration rate on reconfiguration overhead.

Frequency of Reconfiguration Thus far, we considered a reconfiguration rate
ρ = 3 rec/s. In our reference scenario with N = 100 dispatchers and a time to
reconnect the tree trep = 0.1 s, this leads to reconfigurations that complete before
a new one starts, and therefore can be considered as occurring in isolation. Higher
reconfiguration rates, instead, are likely to generate reconfigurations that overlap
not only in time (i.e., occurring in parallel) but also in space (i.e., involving a
common portion of the dispatching tree). Our choice for the default value of ρ was
indeed motivated by the desire to reduce interference from different phenomena
and to enable the evaluation of the Reconfiguration Path protocol, which does
not tolerate overlapping reconfigurations. Here, we analyze the impact of a change
in this parameter, and we do so without considering the Reconfiguration Path

protocol, due to its limitations.

Figure 7.7 reports the simulation results obtained by changing the reconfigu-
ration rate in the range 1 ≤ ρ ≤ 400 rec/s. With N = 100, the upper bound leads
to each link experiencing about 4 breakages per second. Once more, this value
is not necessarily meant to mirror a realistic reconfiguration rate, rather to elicit
the behavior of the protocols in extreme conditions2.

The charts depict a number of interesting phenomenons, of which the most
prominent is the fact that the average cost of a reconfiguration does not remain
constant with the reconfiguration rate. Therefore, reconfigurations cannot be con-
sidered independent: multiple reconfigurations occurring in parallel do interfere
with each other. At reasonable reconfiguration rates an increase of ρ corresponds
to an increase in the average cost of a reconfiguration. This is caused by recon-
figurations occurring in parallel and “partially undoing” each others operations,
i.e., removing subscriptions that are immediately restored by a new reconfigu-
ration, or vice versa. The more a protocol relies on standard propagation of
(un)subscriptions the more evident is the phenomenon: indeed, Strawman ex-
periences the biggest increase, while Informed Link Activation experiences
only a limited, albeit steady, increase. On the other hand, after a given point—
different for all protocols—an increase of the reconfiguration rate causes a decrease

2We actually experimented with even higher rates, without finding significant differences
beyond 400 rec/s.
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Figure 7.8: Impact of the unsubscription timer on reconfiguration overhead, at
ρ = 30 rec/s. The Strawman protocol is shown as a term of comparison.

in the average cost of a reconfiguration. The reason is that the dispatching tree
becomes so disrupted that the reconfiguration cost becomes more and more dom-
inated by the exchange of subscriptions (or unsubscriptions) occurring when a
link appears (or vanishes). Indeed, as the reconfiguration rate increases the dif-
ferences between the various protocols become less and less significant, although
the optimized solutions always improve over Strawman. Also, note how the per-
formance of the Notified Deferred Unsubscription protocol becomes worse
than Timed Deferred Unsubscription as the reconfiguration rate increases.
The difference between the two protocols is that the former triggers unsubscrip-
tions earlier than the latter. As the reconfiguration rate increases, by leaving
stale subscriptions in place for longer Timed Deferred Unsubscription ben-
efits from the greater chance that it will be established by another, concurrent
reconfiguration, removing the need for an unsubscription.

As we mentioned, however, these behaviors are found only in extreme recon-
figuration scenarios that are unlikely to occur in practice. In real world settings,
the reconfiguration rate is likely to fall to the very left of the charts in Figure 7.7,
where the benefits of the optimized protocols are higher.

Timers Some of the considered protocols make use of the timers Tu and Ts

to synchronize the propagation of subscriptions with the removal of stale ones.
In this section, we analyze their effect on the reconfiguration of routes in the
subscription tables, therefore still assuming ε = 0. In Section 7.3.3 we instead
evaluate their impact on misrouted events when the publish rate is ε 6= 0.

Unsubscription Timer. Figure 7.8 illustrates the effects of variations to Tu. To
amplify these effects, which would otherwise be negligible in our reference scenario,
we increased the reconfiguration rate by an order of magnitude, bringing it to
ρ = 30 rec/s.

Figure 7.8(a) evidences the presence of a marked discontinuity around Tu =
trep, as expected3. This discontinuity is always present regardless of the value

3More precisely, according to equation (6.1), the discontinuity occurs around Tu = trep +
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of ρ. If the timer value is too small, the optimized protocols tend to behave
in the same way as Strawman because unsubscriptions are triggered too early.
Indeed, Strawman is equivalent to either Deferred Unsubscription proto-
cols when Tu = 0. Therefore, the timer should be set large enough to allow the
propagation of subscriptions to complete before the propagation of unsubscrip-
tions starts. Interestingly, the Timed Deferred Unsubscription protocol is
positively affected by large timer values as they allow the protocol to reduce the
number of unnecessary (un)subscriptions and hence to reduce the overhead. The
phenomenon is due to the same effect observed in Section 7.3.2: the removal of
a stale route may become unnecessary if another reconfiguration requires estab-
lishing the same subscription, and increasing the timer increases the chance that
this situation happens. Notified Deferred Unsubscription experiences a
similar, albeit smaller, improvement, since the influence of Tu is diminished by
the presence of the notification mechanism, which is usually triggered before Tu

expires. Similar reasoning holds for Informed Link Activation, as long as
the constraint Tu < Ts + trep we introduced in Section 6.2 holds. If not, i.e., for
Tu > 0.25 s in our reference scenario, the overhead of Informed Link Acti-

vation increases, since the unnecessary subscriptions that have been “held” at
the end-points of the new link are released before unsubscriptions finished prop-
agating, and therefore cause unnecessary overhead. Therefore, we can conclude
that for what concerns the cost of reconfiguring subscription tables, as long as
Tu > trep (trep < Tu < Ts + trep for Informed Link Activation) the optimized
protocols always improve over Strawman, and they do not bear significant de-
pendency over the value of the unsubscription timer. Nevertheless, the tradeoffs
may be different in the presence of event traffic, as we discuss in Section 7.3.3.

Subscription Timer. Similar considerations hold for the subscription timer Ts

employed only by the Informed Link Activation protocol. This second timer

tprop. However, since the unsubscription propagation time tprop is negligible in our simulations,
we do not consider it hereafter.
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Figure 7.9: Impact of the subscription timer on reconfiguration overhead. The
Strawman, Deferred Unsubscription and Reconfiguration Path proto-
cols are shown as terms of comparison.
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Figure 7.10: Impact of publish frequency on reconfiguration overhead.

is used to delay the propagation of those subscriptions that were used only to route
events across the broken link when the break occurred. The timer should therefore
be set to a large enough value (Ts > Tu − Trep, as discussed in Section 6.2) to
allow the unsubscriptions to propagate from the broken link to its replacement.
Too small of a value allows for some unnecessary subscriptions to propagate,
therefore making the Informed Link Activation protocol behave similarly to
the Deferred Unsubscription protocols. These considerations are mirrored in
the charts in Figure 7.9, derived with the default reconfiguration rate ρ = 3 rec/s.

Differently from the unsubscription timer Tu, a large value for Ts is always ben-
eficial, or in the worst case irrelevant, to the overhead. Nonetheless, it can cause
a significant decrease in the event delivery, since setting the timer too large delays
the subscriptions issued during a reconfiguration until Ts expires, and therefore
affects the delivery of events towards the corresponding subscribers.

7.3.3 Evaluating the Impact of Misrouted Events

We now investigate the performance of the protocols when event traffic is injected
in the system, that is, ε 6= 0. In this case, inconsistencies in the subscription tables
lead to misrouted events, which increase the overhead.

Publish Frequency At the publish frequency of ε = 1 pub/s we selected for
our reference scenario, the impact of misrouted events is negligible. Nevertheless,
their impact becomes significant at higher publish frequencies. Here, we analyze
the performance of the protocols with a publish frequency varying in the range
0.1 ≤ ε ≤ 51.2 pub/s, where the distance among data points follows a geometric
progression. To put these values in context, the publish rate of applications dom-
inated by human interaction, such as collaborative work in mobile environments,
is arguably comparable to—and, more likely, much lower than—1 publish/s per
dispatcher, which is in fact the default value we chose in Table 7.1. This is es-
pecially true in applications where the most natural design involves co-locating
each client with a dedicated dispatcher on a network host, as in peer-to-peer or
MANET applications [57]. The upper bound of more than 50 pub/s is instead al-
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most equivalent to a streaming application. Therefore, the high publish frequency
in the chart should be regarded mostly as a way to evaluate the protocols in an
extreme, and almost unrealistic situation.

Figure 7.10 shows the reconfiguration overhead, while Figure 7.11 reports the
absolute number of misrouted events per reconfiguration for each protocol. A
different view is provided in Figure 7.12, which exemplifies the relative impact of
misrouted events w.r.t. the other components as the publish frequency increases.
Interestingly, Strawman generates a negligible number of misrouted events even
at a high publish rate, as it removes immediately stale routes and does not propa-
gate unnecessary subscriptions. Instead, all of the optimized protocols suffer from
the presence of misrouted events, although the performance drop they induce is
somewhat limited. The Deferred Unsubscription protocols perform the worst
since they base their operation on propagating subscriptions (possibly including
some unnecessary ones) before unsubscriptions. This generates a larger number of
misrouted events with respect to the other protocols because stale routes remain
active for longer periods. Nevertheless, Notified Deferred Unsubscription

performs better than Timed Deferred Unsubscription, since the notification
mechanism enables the triggering of unsubscriptions without waiting for the ex-
piration of the timer Tu. The other two protocols perform better as they allow
inconsistent routing tables only on the reconfiguration path; Informed Link

Activation performs a little worse than Reconfiguration Path, as it waits
for longer before removing stale routes.

As we mentioned, it is worth noting, however, that we push the publish fre-
quency to such an unrealistic high event load mostly to stress the performance of
the optimized protocols and elicit the various constituents of overhead. Provided
that an application with such a high event load exists, the optimization provided
by any protocol is likely to be dwarfed by the sheer number of published events.
Figure 7.13 plots on the same chart the “goodput” generated by events delivered
to the intended receivers (i.e., the total number of events minus the misrouted
ones) and the traffic generated by reconfiguration, both with ε varying in the
reference scenario defined by Table 7.1. As it can be seen, in Figure 7.13(a), at
ε = 1 pub/s the overhead generated by Strawman is in a ratio of about 1:2 with
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Figure 7.13: “Good” event traffic vs. reconfiguration overhead.

the traffic generated by events, while Informed Link Activation brings this
ratio down to 1:10. Smaller values of ε show how the optimized protocols yield
even more remarkable improvements. In addition, it is true that the overhead
depends not only on ε but also on ρ: as shown in Figure 7.13(b), a higher recon-
figuration rate shifts the overhead curves higher, therefore changing significantly
the tradeoffs, making our optimizations more relevant.

Timers The subscription timer Ts may prevent events from reaching subscribers
by delaying the establishment of the corresponding routes, but it bears no effect
on misrouted events, and therefore it is not considered here.

On the other hand, the presence of misrouted events may significantly affect
the considerations we made in Section 7.3.2 for the unsubscription timer, as a
large value for Tu may misroute events through stale routes towards areas of
the network with no subscribers. As our analysis in previous section has shown,
however, a very small number of misrouted events is generated at ε = 1 pub/s in
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Figure 7.14: Impact of the unsubscription timer on reconfiguration overhead.
The Strawman, and Reconfiguration Path protocols are shown as terms of
comparison.
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Figure 7.15: A comparison against event forwarding. The charts show the total
message traffic generated, with a density of subscribers σs = 0.8.

our reference scenario. As a consequence, the differences obtained by changing
the value of the unsubscription timer Tu are minimal. Therefore, once more, for
the sake of eliciting the behavior of the optimized protocols by amplifying the
effects of timers, we use a very high publish frequency ε = 50 pub/s.

Figure 7.14 confirms the above reasoning. As in Figure 7.8, there is a discon-
tinuity around Tu = trep. Differently from Figure 7.8, however, before and after
this value the performance penalty the protocols incur is determined by misrouted
events flowing along broken (Tu < trep) or stale (Tu > trep) routes. Moreover, at
the high publish rate we chose, it is evident even with the default reconfiguration
rate of ρ = 3 rec/s. Clearly, the Timed Deferred Unsubscription protocol is
the most negatively affected, as its behavior depends heavily on the value of Tu.
Notified Deferred Unsubscription and Informed Link Activation are
less affected, since they resort to Tu only when their main mechanism to trigger
unsubscriptions (flush messages) fails.

7.3.4 A Note About Event Forwarding

One could claim that the overhead caused by the reconciliation of subscription
tables could be eliminated by avoiding keeping routes altogether, and therefore
resorting to the event forwarding strategy outlined in Section 2.4.1. If events
are rarely published, or more generally subscriptions are changed much more
frequently than events are published, then clearly event forwarding is preferable.
However, this is a well-known tradeoff that exists regardless of reconfiguration, as
discussed in Section 2.4.1. The question we investigate here, instead, is whether
reconfiguration narrows the gap between the event forwarding and subscription
forwarding strategies, and therefore makes the former preferable.

Figure 7.15(a) crisply illustrates the tradeoffs at stake by showing the total
traffic generated by event forwarding and subscription forwarding, the latter ex-
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tended with our Informed Link Activation protocol. The chart shows the
traffic generated in a time interval between 2.5 and 8 seconds, with a burst of re-
configurations (ρ = 30 rec/s) that occurs in the interval 5s ≤ t ≤ 5.5s. This yields
15 reconfigurations occurring in the aforementioned interval, which at N = 100
causes a significant disruption affecting most of the system. Moreover, to place
event forwarding in a favorable scenario we assumed a high density of subscribers,
i.e., σs = 0.8 and the standard publish frequency of ε = 1 pub/s. All the other pa-
rameters are unchanged from Table 7.1. The horizontal lines represent the average
total number of messages generated by each protocol outside the reconfiguration
burst. As shown in the chart, in a stable system the average traffic is much higher
for event forwarding, about twice as large as the one generated by subscription
forwarding. However, during the reconfiguration burst in the plot, the overhead
of the latter (albeit enhanced with the best of our protocols) becomes higher than
for event forwarding.

The answer to our question above is therefore ultimately determined by the
ratio between the reconfiguration rate ρ and the publish frequency ε. As an
example, Figure 7.15(b) plots the overall message traffic against ρ for ε = 1 pub/s,
i.e., in the same conditions of Figure 7.15(a). If the value of ρ is a reasonable
one (unlike those we used in the reconfiguration burst above or in Section 7.3.2)
then subscription forwarding is always preferable over event forwarding, with our
protocols providing significant additional enhancements.

7.3.5 Computational Overhead: Dispatchers Involved in a
Reconfiguration

Thus far, we considered only the overall communication overhead induced by re-
configuration. Nevertheless, another way to look at the burden reconfiguration
places on the system is to examine the computational overhead induced on the
dispatchers. Our simulations do not capture this directly, and in any case the re-
sults would be too biased by the choice of the format of events and subscriptions.
However, an indirect measure of the stress placed on the system is the (aver-
age) number of dispatchers involved in a single reconfiguration. In this section,
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Figure 7.16: Dispatchers involved in a reconfiguration vs. system scale.
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Figure 7.17: Dispatchers involved in a reconfiguration vs. number of available
event patterns.

we consider a dispatcher as involved in a reconfiguration if it performs process-
ing related to the reconstruction of routes disrupted by it. This clearly includes
the end-points of the old and new link, as well as any other dispatcher process-
ing subscriptions and unsubscriptions triggered by the reconfiguration, as well as
rec messages. Instead, we do not consider dispatchers that process only flush

messages, as the amount of processing they incur (rebroadcasting the message) is
negligible if compared with the one for the aforementioned messages (manipula-
tion of subscription tables, generation of new messages). Also, we do not include
dispatchers that process misrouted events, as we want to characterize the overhead
determined solely by the rebuilding of routes.

The value of this metric can be easily derived for each of the simulation traces
presented thus far. In the following, for each chart we show on the left the ab-
solute percentage of dispatchers involved in the reconfiguration, and on the right
the percentage of improvement w.r.t. Strawman. The results support the qual-
itative arguments put forth in Chapter 6, confirming that our protocols are able
to significantly limit the portion of the system involved in a reconfiguration. For
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Figure 7.18: Dispatchers involved in a reconfiguration vs. subscriber density.
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instance, the fraction of dispatchers involved is shown against system scale in Fig-
ure 7.16 using the same parameters of Figure 7.3. All of the optimized protocols
use less than half of the dispatchers used by Strawman, with Reconfiguration

Path and Informed Link Activation using 90% less than Strawman. Note
how the absolute percentage of dispatchers involved gets smaller as the scale is
increased. This is a consequence of assuming a reconfiguration rate independent
of the system scale (ρ = 3 rec/s in this case): as the scale increases, the disruption
caused by each reconfiguration is amortized over a smaller fraction of the system.
Moreover, similarly to what we discussed in Section 7.3.2, an unbalanced initial
configuration amplifies the differences among the approaches.

Another interesting perspective is provided by Figure 7.17 and 7.18, which
plot the dispatchers involved against the density of subscribers and number of
available patterns, respectively, with the same setting of Figure 7.5 and 7.6. These
charts not only provide additional support for the ability of our protocols to limit
reconfiguration, but also show how Informed Link Activation and even more
Reconfiguration Path are largely independent of these two parameters.



CHAPTER

EIGHT

Discussion and Related
Work

The previous chapter characterized the performance of routing reconfiguration
protocols along several dimensions, therefore providing a useful and immediate
way to compare quantitatively the various solutions. Nevertheless, each protocol
bears strengths and weaknesses, determined by the assumptions it relies upon and
by the very mechanics of its operations. As a consequence, it would be misleading
to elect a single protocol as the best solution based uniquely on the simulation
results of Chapter 7.

In this chapter, we address this problem and analyze the differences between
the optimized protocols from a qualitative standpoint. In addition, we consider
existing alternative approaches to address content-based routing in dynamic net-
work scenarios and discuss their strengths and weaknesses with respect to our
own. Finally we close our analysis of routing with some concluding remarks.

8.1 Applicability Versus Performance

In this section we complement our quantitative simulation results with qualitative
observations about the applicability and complexity of the solutions we presented.
Together, these considerations enable one to choose the most appropriate protocol
for a given deployment scenario.

Figure 8.1 and 8.2 show the main differences among the protocols we ana-
lyzed in this part of the thesis. Figure 8.1 plots the improvement achieved over
Strawman against the supported application scenarios and against the require-
ments on the overlay, while Figure 8.2 shows the differences in a tabular form.
The first column in the table refers to the ability of the protocols to tolerate
multiple, concurrent reconfigurations, whose reconfiguration paths may or may
not overlap. All protocols but Reconfiguration Path have this capability.
The second column characterizes the amount of knowledge each protocol assumes
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(a) (b)

Figure 8.1: Performance of the protocols with respect to applicability.

about the operation of the underlying overlay network sub-system. The Timed

Deferred Unsubscription protocol, like Strawman, only assumes that this
sub-system is able to notify a dispatcher when one of its links disappears or when
a new neighbor appears. The Notified Deferred Unsubscription and In-

formed Link Activation assume that the overlay network sub-system is also
able to determine and properly report whether the appearance of a new link is
effectively a replacement of a given previously vanished link. This information
is provided by most overlay management protocols, such as the one presented in
Chapter 10, and the one we will use in Chapter 16 for deploying our middleware in
mobile ad hoc networks [67]. Finally, the Reconfiguration Path protocol re-
quires knowledge of the whole sequence of nodes belonging to the reconfiguration
path. This requires either dedicated protocols (e.g., straightforward variants of
our aforementioned protocols) or more stringent assumptions on the deployment
scenario (e.g., manual reconfiguration performed by a system administrator).

Arbitrary
Changes?

Knowledge of
Topology

Additional
Messages

Complexity

Strawman Yes A link appears or
disappears

None Low

Deferred

Unsubscription

Timed Yes A link appears or
disappears

None Low

Notified Yes A link replaces
a given vanished
link

flush Low/Medium

Informed Link Activation Yes A link replaces
a given vanished
link

activate,
flush

Medium

Reconfiguration Path No Nodes on the
reconfiguration
path

rec, recAck High

Figure 8.2: Comparing the applicability and complexity of reconfiguration proto-
cols.
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Together, these two columns are a qualitative indicator of the applicability of
the protocols to different scenarios. This is clear with respect to the ability to
tolerate arbitrary reconfigurations: as we already mentioned in Section 6.3, this
is a precondition for applicability in highly dynamic environments, e.g., mobile
computing and peer-to-peer networks, which are therefore precluded to the Re-

configuration Path protocol. Nevertheless, the amount of required knowledge
about the changes in the underlying overlay network is also an indirect measure
of applicability, in that it poses deployment constraints (i.e., the availability of an
overlay management module with given characteristics) that may not be satisfied
by a given system architecture.

The third column shows how many control messages are necessary in each
protocol, in addition to the messages normally used to deal with publish and
(un)subscribe operations. As such it can be regarded as an indicator of the ease
of implementation. The Timed Deferred Unsubscription protocol affects
only the order of the operations performed by Strawman, and as such it does
not introduce any new control messages, while all the other protocols introduce at
least one. Finally, the fourth column summarizes the findings, by informally and
qualitatively classifying the protocols according to their overall complexity. The
Timed Deferred Unsubscription protocol is by far the simplest, in that it
makes simple (and yet effective) variations to Strawman. At the other extreme,
Reconfiguration Path is by far the most complex, as evidenced by comparing
its code and description to the other protocols in Chapter 6.

These qualitative considerations, together with the quantitative evaluation we
presented in Chapter 7, enable us to distill some conclusions. To begin with,
Timed Deferred Unsubscription is the least efficient of the protocols we an-
alyzed. Nevertheless, it still improves considerably over Strawman and, like this
protocol, it is applicable in virtually any environment. Moreover, its implemen-
tation is extremely simple. Therefore, Timed Deferred Unsubscription is
a viable solution when it is not necessary to fully optimize the reconfiguration
traffic, but instead code footprint and applicability are more of a concern. The
middle ground in terms of performance is occupied by the Notified Deferred

Unsubscription alternative. This comes at the expense of a small increase in
complexity and slightly more stringent assumptions about the overlay network,
namely the ability to associate each new link with one that disappeared previ-
ously. The protocol generally provides a small and yet significant improvement
over Timed Deferred Unsubscription particularly in the presence of high
event traffic. The best performance among the four alternatives to Strawman is
provided by Reconfiguration Path and Informed Link Activation. The
performance of the former, however, comes at a significant cost, which makes its
value more theoretical than practical. The protocol is, in fact, characterized by
a very high implementation complexity, is unable to withstand multiple overlap-
ping reconfigurations, and poses significant requirements on the underlying tree
maintenance protocols. The latter protocol, on the other hand, is able to achieve
a comparable performance in arbitrary reconfiguration scenarios, and with lower
requirements on the tree maintenance sub-system. These requirements are the
same as those posed by the Notified Deferred Unsubscription protocol; as
a result Informed Link Activation strikes the best tradeoff between perfor-
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mance and applicability.

8.2 Related Work

The considerations we made in Section 8.1 show that our reconfiguration protocols
cover a broad range of reconfiguration scenarios, ranging from human-controlled
reconfigurations to very dynamic network environments.

In this respect, the work presented in these chapters fills a fundamental gap
in content-based publish-subscribe research. Existing middleware addresses re-
configuration only to a limited extent. To the best of our knowledge, no previous
work has described and analyzed a variety of reconfiguration techniques such as
those presented in this part of the thesis and evaluated in Chapter 7.

Nonetheless, some existing work has partially addressed the problem of content-
based routing in dynamic network scenarios either with techniques similar to ours
or using completely different approaches such as those based on epidemic infor-
mation dissemination. Moreover our work on content-based routing is related to
other research area such as multicast and more in general group communication,
even though the need to route messages based on their content makes content-
based routing a more challenging problem. In this section we discuss these related
approaches and highlight their differences with respect to the solutions presented
in this part of the thesis.

8.2.1 Distributed publish-subscribe systems

After the first experiences, which mostly focused on local area networks and
adopted a centralized dispatcher, recent years have seen the development of a
number of content-based publish-subscribe systems that exploit a distributed
dispatcher. Among the most widely known are Siena [18], Gryphon [11], Her-
mes [77, 78], Xnet [25], REBECA [47], Jedi [35], Joram [10], NaradaBrokering [73],
Le Subscribe [45], READY [52], Elvin [86], and TIBCO Rendezvous [92].

Most of these systems do not provide any explicit mechanism to reconfigure
the dispatching infrastructure in reaction to changes in the underlying network. A
first exception to this situation is provided by Siena [18] and the system described
in [98], which briefly mention the use of the Strawman solution to allow sub-trees
of brokers to be merged or trees to be split. Both these works neither provide
details about the design of this facility, nor validate it through simulation.

A more efficient solution to the problem of rearranging the dispatching net-
work is provided by Hermes [77, 78], which provides a slightly limited form of
content-based routing, termed “type and attribute based” routing [43]. Her-
mes uses techniques developed in the area of peer-to-peer systems to organize
its dispatchers as a distributed hash table, where keys represent event types and
key-based routing techniques are used to build the dispatching tree associated to
each event type. The self-organization and stabilization features of the Hermes
peer-to-peer substrate handle dynamic addition, removal, and failure of brokers.
However, the overhead involved in the Hermes approach to reconfiguration has
not been analyzed.
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While in our research we adopted a reactive approach, based on the idea of
rearranging content-based routing each time a change occurs at the networking
layer that could impact the routing layer, the solutions described in [68] and [19]
adopt a proactive approach, based on the idea of periodically refreshing subscrip-
tions. More specifically, in [68] an explicit lease time is associated to subscriptions.
Clients are required to refresh their subscriptions once per leasing period, while
dispatchers discard routing entries that have not been renewed in time. Similarly,
in [19] subscriptions are periodically renewed and re-propagated, while an appro-
priate protocol is periodically run to remove stale subscriptions that may result
from changes in the networking topology. Both approaches provide resilience to
changes in the underlying network at the cost of requiring continuous refresh of
subscriptions, a cost that can be very high. Also, the time required for the sys-
tem to reach a stable situation after a perturbation depends on the frequency
of refresh, which cannot be shortened below a certain value to keep the over-
head under control. A reactive approach like the one we adopted is not affected
by these problems and should provide better performance in all those scenarios
where reconfigurations are not too frequent.

In addition to the systems above, which explicitly consider the same reconfigu-
ration problem we focus on, other systems focus on fault-tolerance and reliability.
In particular, Xnet [25] provides several mechanisms, including the use of redun-
dant routes, to reduce the impact of dispatcher crashes. Similarly, Joram 4.2 [10]
and the extension to Gryphon described in [100] allow a set of dispatchers to
operate as a single redundant cluster to deal with link failures and dispatcher
crashes. Both approaches provide a limited form of reconfigurability with respect
to that offered by the protocols studied here.

Finally, Jedi [35], the extended version of Siena presented in [17], Elvin [91],
REBECA [69, 46], and the work described in [79] support a different scenario
where clients are enabled to roam freely by detaching from one dispatcher and
attaching to another. However, none of these works address the reconfiguration
of the dispatching network itself.

8.2.2 Publish-subscribe on MANETs

Recently, the problem of rearranging the dispatching infrastructure of a publish-
subscribe system has been addressed by different research groups in the context
of MANETs.

Most solutions in this area, like [101, 65, 97, 34, 7] do not even try to build
and maintain an overlay network for content-based routing, so they cannot be
directly compared with the protocols described in this paper.

Other solutions, like [58, 87], focus on replication of dispatchers to overcome
the challenges stemming from nodes’ mobility. As in the case of the distributed
publish-subscribe systems described above this provides a fairly limited form of
reconfigurability with respect to that offered by the protocols studied here.

Finally, JEcho [27] takes advantage of an underlying unicast protocol to build
a tree shaped overlay for routing on a MANET without caring about topology
changes due to mobility. To overcome the limitations of this layered approach,
which could easily result in an overlay network whose topology does not reflect
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that of the physical network, JEcho dispatchers periodically run a link state pro-
tocol to build a global view of the physical network, rearranging the overlay
accordingly. Apparently, JEcho does not provide explicit mechanisms to manage
node partitions and node failures, which could require a rearrangement of routing
tables, like in the cases we focus on.

8.2.3 Other research areas

In addition to publish-subscribe middleware, our work is related with IP multicast
routing protocols and group communication middleware.

The purpose of IP multicast is to provide efficient datagram communication
services for applications that need to send the same data to a group of recipients.
Typical examples are audio and video streaming. This goal results in routing
strategies that largely differ from the one adopted in publish-subscribe systems.
In particular, applications based on multicast exploit a finite number of statically
known groups, while in content-based publish-subscribe systems the “groups”
(i.e., the event patterns) are potentially infinite and not statically known. More-
over, IP multicast groups are disjoint and each packet is explicitly addressed to
a single group, while in the systems we are interested in addressing is based on
event content, therefore a event can match (and be routed based on) multiple
subscriptions. Finally, publish-subscribe usually assumes the number of sources
to be comparable to (if not much greater than) the number of recipients, while
multicast protocols are often devised to satisfy a small set of sources communi-
cating with a large set of recipients. As a consequence of these differences, it
is not practical to generalize IP multicast routing protocols to route events in a
content-based publish-subscribe system. For similar reasons, it is hard to imple-
ment a content-based publish-subscribe system on top of an existing IP multicast
protocol. This issue is discussed in detail in [71], where several alternatives are
compared.

The term “group communication” identifies a body of research whose goal
is to provide mechanisms for reliable communication among a group of possibly
remote processes, and in addition to guarantee some degree of ordering among
events and an atomic behavior [29]. Under this umbrella fall systems provid-
ing reliable multicast facilities [62, 70] as well as more complex systems such as
Isis [14] and Horus [94], which provide several communication primitives to co-
ordinate a set of distributed components. In contrast to the goals provided by
group communication systems, the main purpose of content-based publish-sub-
scribe systems is to distribute events to all the interested parties based on their
content and to do so in a scalable and efficient way. This difference has a strong
impact on the underlying protocols and mechanisms adopted. For example, the
implementation of most group communication systems distributes information
by using either point-to-point connections from each source to each of the group
members or IP multicast. Both of these approaches have drawbacks when applied
to content-based publish-subscribe middleware. The former because it does not
scale well, and the latter because, as already mentioned, it is very difficult to use
IP multicast strategies to efficiently route events based on content.



CHAPTER 8. DISCUSSION AND RELATED WORK 79

8.3 Concluding Remarks

Content-based publish-subscribe systems have become increasingly popular in re-
cent years thanks to the high level of flexibility they bring in the development of
distributed applications. Although much effort has been devoted to the design of
scalable solutions supporting publish-subscribe middleware in large-scale scenar-
ios, existing systems still lack efficient ways to address changes in the topology of
their distributed dispatching infrastructure.

Supporting this functionality requires addressing different problems. In this
part of the thesis, we focused on the issue that is peculiar to content-based sys-
tems: how to efficiently reconcile the information used to route events to sub-
scribers in the presence of topological reconfigurations. We presented our overall
approach to the reconfiguration problem and described four protocols, of which
two constitute contributions of this thesis, that extend the common subscription
forwarding strategy with the ability to tolerate topology changes in a number
of application scenarios. These protocols were thoroughly compared with exten-
sive simulation experiments. These results allowed us to assess the advantages
and drawbacks of each solution, providing valuable information to middleware
designers. Depending on the specific scenarios, our protocols manage to reduce
the overhead of the reconfiguration process by up to 75% without hampering the
ability to deliver event notifications to interested parties.

As mentioned in Chapter 3, the protocols we presented are designed to be
integrated with an overlay management layer. In the remaining parts of this thesis
we first present our solutions for maintaining the overlay and then address the
combination of the two layers in a single middleware framework. The results we
obtain integrate the detailed treatment we provided in this chapters, evidencing
additional tradeoffs and further opportunities for optimization.
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Part III

Overlay Layer





CHAPTER

NINE

Overlay Requirements and
Goals

In this part of the thesis we address the lower layer of our middleware architecture:
the overlay manager. Overlay topologies are prominent in large scale distributed
computing as they abstract the low-level network into an application-level entity,
under the control of the application or middleware. This allows developers to build
their systems over a higher-level abstraction ignoring details like node discovery
or connection management.

The management of an overlay topology above the network stack does not
allow network layers to intervene and address changes resulting for example from
node or link failures. Rather, the overlay manager must be ready to address
these events directly, maintaining a topology that satisfies the requirements of
the upper middleware layers. The focus of this part of the thesis is therefore the
maintenance of a tree-based overlay for content-based publish-subscribe middle-
ware. Specifically, we present two novel approaches to maintain the network of
brokers connected in a large scale peer-to-peer setting.

From the previous discussion on routing in publish-subscribe middleware we
can derive two properties of the mechanisms built on top of the overlay layer.
First, on a publish-subscribe tree, events are not sent individually from the source
to every destination (e.g., events are not multiply-unicast). Instead, they are
sent one time by the source and follow the links of the tree to reach interested
subscribers. In the worst case, events traverse every link in the tree one time. In
general, though, destination nodes are clustered on the tree so the middleware
can save transmission overhead by sending messages once on the links toward
the cluster and copying and forking them only when a tree branch is reached
with destinations along both branches. This ability to save communication cost
is similar to that of routing on a multicast tree, except that in our case routing
is further complicated by the need to filter messages according to their content.
Second, all event routing information is maintained locally in all the strategies
discussed to this point. Each node only knows to which of its neighbors it should



84

forward events. Beyond this, it does not know which nodes are subscribed for
what patterns, or even which nodes are in the tree.

As our goal is the maintenance of the tree, we must pay attention to these
properties and the demands they place on the maintenance process. For this
reason, we define a set of requirements which must be kept in mind during the
design of an overlay protocol for publish-subscribe.

Connectedness and Acyclicity The first requirement is clearly the main-
tenance of a connected and acyclic topology in spite of arbitrary changes in the
underlying physical network. Both the protocols we present exploit mechanisms to
prevent the formation of cycles, thereby avoiding the use of expensive distributed
cycle detection algorithms. To address connectedness, on the other hand, each
protocol exploits a specific approach. The one in Chapter 10 maintains a set
of node caches which allow it to replace failed neighbors in all practical cases.
The one in Chapter 11, exploits the redundancy characterizing Distributed Hash
Tables to replace failed interconnections.

Clearly, maintaining connectivity in the presence of failures is only feasible if
a sufficiently large number of nodes remain alive. When this does not happen,
partitions may occur; nevertheless the protocols must be able to return to a
connected topology as soon as possible.

Management of Node Degree The second requirement descends from the
properties of event routing described above. Specifically the cost to a dispatcher
for forwarding an event notification is proportional to the number of its neighbor-
ing dispatchers. Thus to minimize this cost, the overlay topology should not have
nodes with too large a degree. If this happens, nodes with too many neighbors
risk to be burdened by the computational cost associated to forwarding messages,
while those with a few neighbors such as leaf nodes incur very low cost. The
maximum degree of each node should therefore be limited by taking into account
its processing power.

Localized Recovery The third requirement aims to minimize the cost of re-
configurations at the routing layer. The routing information maintained at each
node needs to be modified whenever the underlying overlay topology changes. As
a result, changes determined by the disconnection of a node should be localized to
a small region in the vicinity of the disconnected node. This restriction reduces the
effort for reconfiguring routing information in publish-subscribe systems, thereby
making the middleware significantly more efficient.

Quick Recovery The need to continue message propagation even when topol-
ogy changes occur requires that the overlay layer be able to reconnect the overlay
quickly after a disconnection or a failure. A short reconfiguration period limits
the number of event notifications that may be lost due to reconfiguration and
thus greatly simplifies the job of the event-recovery layer.



CHAPTER 9. OVERLAY REQUIREMENTS AND GOALS 85

Following these requirements we designed two overlay management protocols
that offer good performance not only in combination with the content-based pu-
blish-subscribe routing mechanism, but also as a basis for subject-based publish-
subscribe, application-level multicast, and other middleware paradigms. In the
following we describe these protocols: Chapter 10 presents LSTree, a protocol
explicitly designed for the efficient maintenance of large-scale overlay trees, while
Chapter 11 presents DHTree, a DHT-based solutions that can reproduce a ref-
erence topology on the network using a DHT as a mapping mechanism. Finally,
Chapter 12 discusses the differences between the two protocols and their relation
with existing work.
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CHAPTER

TEN

Large-Scale Tree
Maintenance

In this chapter we propose LSTree, a novel strategy to address the requirements
described in Chapter 9 by keeping a network of nodes connected in environments
characterized by a high frequency of node failures. The key aspect of the protocol,
presented in [49], is the ability to provide middleware with an overlay topology
that guarantees both efficiency and reliability. This is achieved with a quick
and communication efficient reconfiguration process that allows nodes to respond
to the disconnection of their neighbors. The protocol is particularly suited for
application in the context of publish-subscribe middleware due to its ability to
manage node degree and to keep reconfigurations localized to small regions around
failed nodes. This is confirmed by simulations results that also show its increased
performance with respect to other solutions presented in the literature.

The chapter is organized as follows: Section 10.1 provides a high-level descrip-
tion of our tree maintenance protocol. Section 10.2 describes the mechanisms
used by nodes to ensure that the overlay remains an acyclic structure with the
desired properties. Section 10.3 details the strategies used by nodes to reconnect
the tree after a failure. Section 10.4 provides an in-depth analysis of the proposed
approach through simulation, and finally Section 10.5 concludes the chapter with
some remarks about possible future developments.

10.1 High Level Maintenance Protocol

With the LSTree overlay maintenance protocol, we aim to organize network nodes
in a rooted tree structure while promptly reacting to the connection and discon-
nection of nodes. The root node is selected during the protocol operation and all
nodes, including the root, are allowed to join and leave the overlay at any time
without any explicit departure announcements. The choice of a rooted struc-
ture does not limit the applicability of LSTree. Rather it makes it suitable for
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Figure 10.1: High level protocol to locate a new parent after the current parent
fails.

middleware requiring either a rooted or an unrooted tree topology.

The protocol operates in a fully distributed manner. Each node records the
identities of its one-hop neighbors (parent and children) in the overlay in a neigh-
bor set. Application-level beacons are used to monitor the members of this set to
detect disconnections. When a node with one parent and n children leaves the
overlay, the protocol repairs the tree through the insertion of n new links. The
children of the disconnected node take an active role and each of them locates a
new parent. Similarly, when a new node joins the overlay, it searches for a parent
and establishes a single new link.

The search for a new parent constitutes the core of the maintenance protocol
and is outlined in Figure 10.1. A node detecting the failure of its parent determines
the identity of a node that might serve as a replacement (step 2) and sends it
a ParentRequest message (step 3). The candidate parent is responsible for
deciding whether it can safely accept the request without creating cycles and
without violating other requirements of the overlay. If the request is accepted
(step 5), the two nodes update their neighbor sets and the process terminates
successfully. Otherwise, the candidate parent sends a refusal message specifying
the reason for the refusal to the requesting node, which reacts by selecting another
candidate and restarting the process.

These steps are iterated either until a request is accepted or until the requesting
node is unable to locate any new candidates. In the latter case, the node assumes
that no suitable parent exists and it elects itself the new root (step 6). This
can happen in two cases. The first and most common is the disconnection of a
root node. The children of the failed root cooperate to repair the tree with one
declaring itself as the new root. The second case arises in scenarios with failures
of large sets of nodes, leading to temporary partitions of the overlay. The LSTree
protocol merges such partitions by having root nodes periodically search for nodes
in a different tree. More details about the declaration of new root nodes and the
merging of trees are provided in Section 10.3.3.

The two key aspects of the protocol just outlined are the strategies used by
requesting nodes to locate new candidates in step 2 and the ability of candi-
date parents to accept and refuse connection requests in step 4. In the following
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sections we consider each of these aspects and describe how they determine the
characteristics of the overlay and the performance of the reconfiguration process.
First, in Section 10.2, we describe the mechanisms used by candidate parents to
determine whether connection requests should be accepted. Then, in Section 10.3,
we discuss several strategies to locate a new candidate parent and describe how
they are exploited by the LSTree protocol.

10.2 Determining Parent Viability

Candidate parents play an important role in step 2 of the protocol because their
decision to accept or reject ultimately affects the properties of the overlay. In the
following we describe these properties distinguishing between a hard requirement,
which must always be satisfied, and a soft requirement, which, although desirable,
may be overridden to allow reconnection.

10.2.1 Hard Requirement: single acyclic tree

The primary purpose of a tree maintenance protocol is to organize network nodes
in a single, acyclic tree. To ensure cycle freedom, we define a partial ordering
relationship n → p (read can-connect-to) that expresses the correctness of n to
be a child of p, based only on information known to n and p. This property is
always guaranteed between all parent/child pairs, and thus transitively for the
entire tree. In fact, a candidate parent p will reject a ParentRequest from
another node n in step 4 of the protocol if n → p is not true.

A viable definition of → is based on an integer value maintained at each node
representing its current distance (hop count) from the root. A node without
a parent can connect to any node with a hop count less than its own. Such
a connection is based only on information known at the two nodes and cannot
introduce cycles.

This approach is used, for example, in the mobile ad hoc wireless network
protocol MAODV to prevent the creation of cycles in multicast trees [84]. Nev-
ertheless, it suffers from two main drawbacks that make it unsuitable for the
large-scale scenarios we target. First the use of integer hop counts from the root
prevents nodes from connecting to candidates that are at the same distance from
the root even though this would not necessarily create a cycle. Second, it forces
nodes that change their distance from the root to propagate their new distance to
their descendants, thus incurring significant global communication overhead on
each topology change.

To address these concerns, our cycle-prevention mechanism exploits real-valued
depth instead of integer hop count. Moreover, our LSTree protocol integrates the
prevention of cycles, with the ability to merge previously partitioned trees with
limited overhead. For this, in addition to depth each node is assigned a color,
both of which are described in the following.

Real-valued depth. We define the depth of a node as a real number that represents
a relative distance to the root. The depth of a child must always be greater
than that of its parent, as shown in Figure 10.2. Introducing real numbers yields
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Figure 10.2: Sample depth levels (unique to dual as identifiers). Caches are shown for
node 3, whose parent has just failed. All nodes in this example have the same color.

a flexibility over integer hop counts. Specifically, the relationship between the
depth of a parent and that of its children is not restricted to plus-one; but it must
still retain the → relationship.

With real-valued depths we address the two requirements outlined above: (i)
allowing connections that are not possible with the use of hop-counts, and (ii)
preventing the frequent propagation of new depth values to large portions of the
tree. To illustrate this, consider a node that attempts to repair the failure of
its parent by connecting to one of its former siblings. With integer hop count
this connection would be forbidden even if it does not create cycles because the
requesting node is at the same distance from the root as the candidate parent.
Instead, with real-number depth, the candidate parent may already have suitable
depth, e.g., node 2.6 in Figure 10.2. Moreover, if its depth is too large, it may
be able to decrease it, making it less than that of the requesting node but still
greater than that of its own parent. The figure illustrates the same option applied
to a non-sibling node. In this case, node 3.1 can decrease its value to 2.9, making
itself a valid parent for 3. In general, decreasing depth allows candidate parents
to accept connection requests that would have otherwise been rejected.

To guarantee the → relationship remains consistent with the partial order-
ing defined by the tree structure, we allow nodes to decrease their depth val-
ues, but never to increase them.1 This has two important consequences. First
nodes need not coordinate with their existing child nodes when decreasing their
depth. Second, nodes need not have perfect information about the latest depth
of their parent, but instead can safely compare their own depth against a pre-
viously cached parent depth. If their depth is greater than the cached value,
then it is also greater than the parent’s current depth. This guarantees that the
protocol behaves correctly even when two neighboring nodes modify their depths
concurrently.

A node learns the depth of its parent when it first connects to it. In addition
parent nodes piggyback their depth information on all control messages sent to
their children.

Tree Color. Depth provides a simple mechanism to determine whether a candidate
parent can accept a node from the same tree as one of its children. Color allows
nodes to identify that they are members of separate trees (i.e. trees with different

1Depth may only be increased when changing color as we discuss later.
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roots), triggering tree merging by making the root of one tree the child of a node
in the other tree.

Our goals for merging trees are to prevent cycles and to avoid requiring coor-
dination among all nodes in the overlay network. We achieve this by exploiting
a relationship between colors, denoted →. This defines a total order between
different trees, which we use to define that the root of one tree can connect to any
of the nodes in the other tree, but not vice versa. Establishing this connection
involves only the root of one tree and a single node in the other tree.

The color of a tree is established by its root, and we guarantee that if the
root changes, the color also changes. Color values are propagated from parent
to child, and must remain consistent with respect to the → relation. Satisfying
this constraint drives two aspects of the LSTree protocol. First candidate parents
evaluate whether to accept connection requests by using a combination of color
and depth. Second, because color changes propagate from the root node to the
rest of the tree and → must always hold between a parent and a child, a node
with color C1 can only change its color to a new value C2 such that C1 → C2.

To allow these parent to child updates, we express a color as a sequence of
node identifiers and define the → relationship as follows: C1 → C2 if and only
if either (i) C2 is a longer sequence than C1; or (ii) C1 and C2 are sequences
of the same length and C1 > C2 according to standard string comparison. We
also define a set of rules for the creation and propagation of color values. First,
the initial color of a detached node is an empty sequence, allowing it to become
a child of any node with a non-empty color. Second, root nodes generate new
colors by appending their identifiers to their current color. This always happens
when a node becomes the new root of a tree, but can also be done spontaneously
as we discuss later. Third, each time a node updates it color, it must propagate
the new color to all descendants, allowing the entire tree to eventually acquire
the same color. Finally, a node connecting to a new parent with a different color
accepts the color of that parent and propagates it to its descendants.

Exploiting Color and Depth. The LSTree protocol exploits both color and depth
to prevent the creation of cycles when adding a link between two nodes. To
accomplish this, we extend the → to include both components: given two pairs,
(CA, DA) and (CB , DB), (CA, DA) → (CB , DB) holds if and only if (CA → CB)∨
(CA = CB ∧ DA > DB). Further, we enforce the following invariant:

For every parent(Cp, Dp)and child node(Cc, Dc), (Cc, Dc) → (Cp, Dp).

This invariant is considered when a candidate parent evaluates a ParentRequest.
If the invariant is satisfied, the request is accepted. If not, but the colors are the
same and the candidate can safely decrease its depth to satisfy the invariant, it
does so and accepts the request. Otherwise the request is rejected.

Decreasing depth is safe except when the candidate is itself searching for a
new parent. In this case, the candidate replies with a special refusal message
with a busy flag set, informing the requesting node that it may later resubmit its
request.

One negative consequence of decreasing depth values is that node depths tend
to converge to that of the root. To limit this phenomenon, we periodically allow
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trees to redistribute their depth values. This is done with the root selecting and
propagating a new color C ′ such that C → C ′. Upon receipt, each node updates
its color and sets its depth to that of its parent plus a random number. Such an
update is possible because the → definition involving both color and depth gives
higher priority to colors. Therefore by properly selecting C ′, the propagation
maintains the → relation. It should be noted that this update involves all nodes
in the overlay; however redistributing depth values is a rare event.

10.2.2 Soft Requirements on Node Degree

In addition to strictly enforcing cycle freedom, candidate parents also try to man-
age their node degree, preventing too few or to many neighbors. This is impor-
tant, for example, when applying the LSTree overlay manager in the context of
our publish-subscribe middleware. In this case, the costs to deliver a message in-
clude the total number of hops it travels (a value that increases if nodes have low
degree) and the per-node cost proportional to the number of neighbors to which
the message can be forwarded (a value that increases if node have high degree).

One step to manage this requirement is the introduction of a maxDegree

limit, expressing the desired maximum number of neighbors for a network node.
This value can be defined independently for each node according to its computa-
tional capacity. If a candidate parent has already reached its limit, it can refuse a
connection request, forcing the would-be child to choose a new candidate parent.

A second limit, instead, aims to avoid the opposite situation in which a large
number of nodes have few neighbors. Such a situation can result because low-
degree leaf nodes represent a large percentage of the nodes in the overlay and
are therefore likely to be chosen as candidate parents. Therefore, we introduce
a minimum degree limit, minDegree, to actively discourage connection to low-
degree nodes. In our experiments we set the value of this limit to 2, meaning that
a candidate parent can accept a ParentRequest if its degree is greater than or
equal to two; that is, it is not a leaf node.

Even though reasonable node degree is desirable, it is more important to
maintain a single, acyclic tree. Therefore, unlike cycle-freedom, minDegree and
maxDegree are considered soft requirements, meaning that users of the LSTree
overlay protocol can choose whether or not to enforce them and to override them
when they would conflict with other more important requirements.

10.3 Identifying Candidate Parents

The key component of the LSTree protocol that has not yet been defined is the
identification of candidate parents. References to candidates are stored in a set
of caches maintained at each node. This section describes these caches and a
corresponding set of strategies that exploit their contents to repair the tree. We
also show how these strategies are combined to form protocol instances with
different properties, and we conclude with the role of the strategies in recovery
from root failures and merging separate trees.
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Cache Update Policy

Regional Updated by parent when regional nodes change
Downstream Updated with data from candidate parent refusing due to maxDegree

Upstream Updated with data from candidate parent refusing due to minDegree

BreakMaxDegree Updated with reference to candidate parent refusing due to maxDegree

BreakMinDegree Updated with reference to candidate parent refusing due to minDegree

Global Proactively maintained by each node

Table 10.1: Caches and their update policies.

10.3.1 Repair Strategies

The policies for updating the caches are related to the functionality of the tree
repair strategies. Table 10.1 outlines the caches and their update policies and the
remainder of this section provides additional detail including the desirable tree
properties each strategy is designed to achieve.

Although the information held in the caches ages, the decision to accept or
reject a connection request lies with the candidate parent. Therefore, because
the ParentRequest contains the color and depth information of the requesting
node, out of date information in the cache of the requester cannot affect protocol
correctness. Further, no bandwidth must be spent to maintain consistency.

Repairing Failures Locally: Regional Strategy. The first repair strategy we con-
sider aims to limit the impact of overlay maintenance on the middleware and ap-
plications deployed at higher layers. This involves localizing the topology changes
resulting from the disconnection of a node to a small region of the overlay. In the
case of content-based publish-subscribe, for example, topology changes force the
middleware to rebuild part of its routing information. If changes are localized,
they affect only a small fraction of this information and thus reduce the overall
cost of the reconfiguration process.

Therefore, the Regional strategy proposes new candidate parents in the im-
mediate vicinity of the failed node. The strategy extracts candidate parents from
two caches: the Ancestor Chain and the Sibling Set , collectively referred to as the
Regional cache. The Ancestor Chain contains n nodes starting with the parent
and continuing toward the root while the Sibling Set contains all nodes that are
also children of the parent node. Whenever this information changes as a result
of reconfiguration, the parent sends an update to its children.

The regional strategy faces two options for selecting a candidate parent: a
sibling or an ancestor. If all nodes use only the Ancestor Chain, the resulting
topology tends to converge towards a star topology in which a few nodes have
a high node degree. Conversely, if all nodes (except one) choose to connect to
siblings, the resulting topology tends to resemble a line. To avoid these extremes,
we opt for a compromise that selects either the star or line option with a specified
probability, having some nodes connect to a sibling and others to an ancestor.

Locating Nodes with a Low Degree: Downstream Strategy. As previously discussed,
preventing nodes from reaching high degree is often desirable. However, both the
use of Ancestor Chain nodes and the need to find nodes with low depth tend to
select parents close to the root, which therefore tend to increase in node degree
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and eventually refuse connection requests due to maxDegree. This motivated
the development of a strategy to search in the opposite direction, namely farther
from the root, to nodes more likely to have smaller degree. It is worth noting that
we verified this supposition through simulation.

The Downstream strategy achieves this by exploiting a Downstream cache
populated with the downstream neighbors of candidate parents that have refused
a new link due to high node degree. The number of downstream neighbors sent
with each refusal and the total size of the cache are tunable. Clearly, this strategy
is only applicable if the maxDegree limit is enabled, as it is the maxDegree

refusal message that contains data to populate the Downstream cache.

Locating Non-Leaf Nodes: Upstream Strategy. Our LSTree protocol complements
the maximum degree limit with a corresponding minimum degree limit. If a
candidate parent refuses a connection request because this minimum limit (i.e. it
is a leaf node), the requesting node is likely to find a better candidate by searching
higher.

The Upstream recovery strategy provides a way to locate such a new can-
didate by collecting in an Upstream cache the parents of the nodes refusing a
ParentRequest due to the minimum degree limit. Analogously to the previ-
ous strategy, the use of the Upstream strategy is only possible possible if the
minDegree limit is enabled.

Softening Degree Constraints: BreakMaxDegree and BreakMinDegree Strategies..
Even though maintaining a reasonable degree is desirable, there may be cases in
which it is less important than other properties such as the locality of reconfigu-
ration. In such cases, a local connection that overrides the minimum or maximum
limits may be preferred to a non-local connection that satisfies the limits.

The BreakMaxDegree and BreakMinDegree strategies make this possible and
force a candidate parent to accept a ParentRequest even if the limits are
broken. Nodes that refuse a request because of degree are added to the Break-
MaxDegree or BreakMinDegree caches. When the corresponding strategies are
activated, requests are sent to candidates with flags set to require acceptance re-
gardless of current degree. Clearly, candidate parents may still refuse requests if
their color-depth pairs are incompatible.

Recovering from Catastrophic Failures: Global Strategy. The repair strategies
described thus far require first contacting at least one node in the regional cache
to bootstrap the process and begin filling the other caches. However, there may be
cases in which all the candidates in a node’s regional cache become unreachable.
To handle such cases, we exploit a Global cache that keeps references to a selection
of nodes in the overlay that are not necessarily close.

Clearly, a trade-off exists between the size of the Global cache, the possibility
that the cache contains stale references to nodes that are no longer in the overlay,
and the overhead for updating the cache. Ultimately the choice is middleware
and application specific, and the population of the Global cache may be done
with information from these higher layers. Within this thesis, we strike a balance
among the requirements with a simple Global cache update mechanism in which
nodes exchange messages containing a random subset set of references extracted
from their caches. Each update message is sent to a subset of nodes extracted from
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the same caches. A node receiving an update inserts the references in its Global
caches and optionally re-propagates the update. In addition, nodes periodically
ping the nodes in their Global caches to verify if they are reachable, purging those
who do not respond.

It should be noted that, as with the other caches, the Global cache does
not need to contain up-to-date information about candidate parents. As a re-
sult the frequency of updates and ping probes can remain low as discussed in
Section 10.4.1, thus limiting bandwidth consumption.

10.3.2 Combining Recovery Techniques

Clearly, each of the strategies we described targets a particular desirable charac-
teristic for the tree, however the behavior of the protocol as a whole depends on
the ways in which the strategies are combined. Specifically, we define a protocol as
a sequence of strategies. When selecting a candidate parent, the first strategy in
the sequence whose cache is non-empty provides a candidate. A ParentRequest

is sent and if this node accepts, the protocol completes, however if it rejects, the
caches are updated and the selection repeats.

In theory, the strategies can be combined in arbitrary ways, however some
combinations make more sense. For example, in most applications, nodes over
the maxDegree limit are less desirable than low-degree nodes, hence Break-
MaxDegree should be applied only after BreakMinDegree has failed. Also, be-
cause locality is important, Global should only be applied after all local repair
attempts have failed, that is after Regional, Upstream, and Downstream.

A protocol instance is completely defined as a sequence of strategies by and
whether or not the degree constraints are enabled. In the instances studied in
Section 10.4, the minimum degree limit is enabled only if the protocol instance
contains the BreakMinDegree strategy. Moreover, all of our instances include the
Regional, the Global, and BreakMaxDegree strategies.

10.3.3 Declaring New Roots and Merging Trees

The recovery strategies of the LSTree protocol provide nodes with references to
candidate parents. However, the failure of a root node, a physical partition in
the network, or a very high failure rate may cause all strategies to fail, leaving
a node without a parent. When this happens, the node declares itself as a new
root, defines a new color and propagates it to its descendants as described in
Section 10.2.1.

This same mechanism allows LSTree to recover from root failures. In this
case, the children of the failed root connect to each other using their Sibling Sets;
however, one of them will fail. Therefore, it terminates its recovery process by
declaring itself as a new root.

The declaration of a new root node may occasionally result in the creation of
multiple trees, however LSTree also takes care of merging these separate trees with
the same mechanism it uses to locate new parents. Each root node periodically
attempts to locate a new parent by sending ParentRequest messages to the
nodes in its Global cache.
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A node N receiving a ParentRequest from a root R reacts as it would with
any other request. Let CN and CR be their respective colors. If CR = CN , then
the nodes are or have recently been (if a new color is still propagating) in the
same subtree. Thus, N will certainly have a higher depth than R and will simply
reject the request. On the other hand, if the two nodes are in different trees, two
cases may arise. If CR → CN , then N accepts the request and merges the two
trees by becoming the new parent of R. Otherwise, if CN → CR, N rejects the
request and informs its own root, which then continues the merging process by
contacting a node in R’s tree.

10.4 Simulation Study

This section complements the description of the LSTree protocol with a detailed
simulation study using OmNet++ [95]. Our analysis verified that LSTree main-
tains a single acyclic tree in the face of arbitrary disconnections. Additionally, it
compares different combinations of recovery strategies with respect to their abil-
ity to manage node degree, localize changes, and provide a quick reconfiguration
process.

10.4.1 Simulation Setting

We evaluated the LSTree protocol in two different scenarios: the first to test
the approach under normal operations, Gnutella, and the second to evaluate the
system under extreme stress, Catastrophic. The former is generated from real
trace data indicating the online time of nodes in a Gnutella network [85]2. The
latter consists of an artificial network of 10,000 nodes in which, once the topology
has stabilized, 2500 nodes simultaneously fail. To reduce the effects of random
parameters we ran 10 simulations in each scenario and averaged the results. As we
discuss in the following, LSTree correctly maintains an overlay with the desired
properties both in Gnutella and Catastrophic.

Our tests use the following default parameters. The maxDegree limit is set
to 5, whereas minDegree, when used, is set to 2. Nodes can retry connecting
to a previously contacted candidate that was busy searching for its own parent a
maximum of 3 times. The length of the Ancestor Chain is 3 and the probability
of choosing a regional candidate from the Ancestor Chain or the Sibling Set is
0.5. We experimented with other values, however the use of a longer Ancestor
Chain or of different probabilities did not significantly affect performance. The
Global cache contains at most 10 entries, while the number of references in refusal
messages used to update the Downstream cache is 3. Nodes periodically purge
their Global caches from failed nodes by sending ping messages every 250s, and
they update its content by exchanging messages with their neighbors with the
same interval. We chose these values to strike a balance between the sizes of
caches and messages and the need to reconnect the overlay effectively.

Part of our analysis was devoted to identifying the combinations of repair
strategies that provide the best performance in terms of our protocol’s soft re-

2We gratefully thank Stefan Saroiu and Krishna Gummadi for providing the data trace.
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Abbreviation Sequence of caches

RMG Regional, BreakMaxDegree, Global
RDGM Regional, Downstream,Global, BreakMaxDegree
DRGM Downstream, Regional, Global, BreakMaxDegree
RUmDGM Regional, Upstream, BreakMinDegree, Downstream, Global, BreakMaxDegree
DUmRGM Downstream, Upstream, BreakMinDegree, Regional, Global, then BreakMaxDegree

Overcast+G Ancestor Chain, Global— no degree constraints

Table 10.2: Combinations of recovery strategies. Strategies without BreakMin-
Degree do not enforce minDegree.

quirements. This has led to the selection of the protocol instances summarized
in Table 10.2. The first three involve only a subset of repair strategies and evalu-
ate our LSTree protocol without the minDegree limit (but with maxDegree).
The next two, instead, enforce the minDegree limit and also exploit the Up-
stream and BreakMinDegree strategies. Finally Overcast+G simulates a similar
approach found in the literature [59]. Overcast is a system for reliable multicast
that maintains an overlay tree using a strategy similar to our Ancestor Chain and
with no node degree constraints. Because Overcast alone was unable to main-
tain a connected overlay in the scenarios we evaluated, we augmented it with our
Global strategy.

10.4.2 Results

Our simulation results confirm the ability of our LSTree protocol to keep the over-
lay connected, while effectively managing node degree and limiting the extent of
topological changes induced by failures. In addition they highlight its efficiency
both in terms of the time it requires to repair failures and in terms of its com-
munication cost. In the following, we discuss each of these aspects, and highlight
how each repair strategy contributes to LSTree’s performance.

Ability to Recover Failures. The key feature of a tree maintenance protocol is
the ability to maintain the overlay network as an acyclic, connected structure.
Our first simulation results confirm that these goals are met in both the Gnutella
and Catastrophic scenarios. To gain a better understanding of the failure recov-
ery process, we analyzed how reconnection is achieved by each of the considered
protocol instances. In particular, we measured the percentage of failures repaired
with each of the strategies described in Section 10.3.

Both plots in Figure 10.3 show that all protocol instances recover the majority
of failures using the Regional strategy, whereas the use of the Global strategy is
very infrequent. This is a very positive result because the Regional strategy
represents the best option both in terms of delay to reconnect and in terms of
locality of the reconfiguration process, as we show in the following sections.

More specifically, in the Gnutella scenario (left plot of Figure 10.3), all the
selected protocol instances are able to recover all failures. Moreover Global is
used in less than 0.01% of the cases. This is reasonable because in the instances
shown in Figure 10.3, the Global strategy is only exploited as one of the last repair
options. We also experimented with instances in which Global is activated imme-
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Figure 10.3: Percentage of reconnections achieved by each strategy with several
protocol instances in the Gnutella (left) and Catastrophic (right) scenarios.

diately after Regional and even then its use remains limited without significantly
hampering the ability of the protocol to repair failures locally.

The use of the Global strategy is instead more important in the Catastrophic
scenario. The use of this strategy allows the LSTree protocol instances to respond
to the failure of one quarter of the network, restoring a connected topology in all
but a few simulation runs. RMG split the overlay into two subtrees in only 2 out of
10 Catastrophic runs, whereas the other instances resulted into two separate trees
in only 1 Catastrophic run out of 10.3 Moreover, these results are obtained with
a fairly small Global cache containing only 10 references in a network of 10,000
nodes. Larger caches and more aggressive update mechanisms can significantly
improve these performance figures.

The ability of our LSTree protocol to reconnect the overlay is in sharp contrast
with the results obtained by the Overcast instances we simulated. The Overcast
protocol alone (not shown in the figure) was unable to achieve reconnection even
in the Gnutella scenario. An average run resulted in the creation of as many as
430 trees containing a total of 1400 nodes at the end of 60 hours of simulated time.
When augmented with our Global cache, “Overcast+G” achieved reconnection in
Gnutella, but resulted in either two or three separate trees in 5 out of 10 runs of
the Catastrophic scenario.

Evaluating Node Degree. Next we analyze the ability of the LSTree protocol to
control node degree. For this, Figure 10.4 shows the distribution of node-degrees
at the end of a sequence of reconfigurations in both of the considered scenarios
for our reference protocol instances as well as “Overcast+G”.

From this plot, it can clearly be seen that although “Overcast+G” is able to
achieve reconnection, it does so at the cost of very high node degrees. The node
with the highest degree has an average (over all simulation runs) of 675 neighbors
in the Gnutella scenario and 99 in Catastrophic.

On the other hand, all of our protocol instances effectively manage node de-
gree while keeping the overlay connected at all times. Even RMG, which forces
the maxDegree limit to be broken early in the recovery process without even
attempting to use the Downstream strategy, yields a degree distribution in which
only small fraction of nodes exceed the degree limit and in which the top degree
node has an average of 20.8 neighbors in Gnutella and 18 in Catastrophic. These
are reasonable values for most overlay applications.

3None of the instances exhibited partitions in any of the Gnutella runs.
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Figure 10.4: Degree of highest-degree node and degree distributions with several
protocol instances in the Gnutella (left) and Catastrophic (right) scenarios.

Degree distribution improves further for the RDGM and DRGM instances,
which exploit the Downstream strategy and postpone BreakMaxDegree until after
Global. Downstream and Global together allow these instances to always achieve
reconnection without exceeding the degree limit in Gnutella and exceeding it in
1 of 10 runs in Catastrophic (an average of 5.1 in the figure).

Keeping node degree below the maxDegree limit is, however, only half of the
picture. As we discussed in Section 10.3.1, LSTree also has the ability to shift the
degree distribution towards nodes with full degree (i.e. close to maxDegree) by
enforcing the minDegree constraint. This has the beneficial effect of reducing
the average distance between nodes in the overlay, thereby reducing the latency
incurred by messages forwarded along the tree.

The two rightmost protocol instances in Figure 10.4 show the results obtained
when the minDegree limit is enforced. In both cases, degree distribution signif-
icantly improves, reducing the number of nodes with only two neighbors in both
the Gnutella and Catastrophic scenarios. Moreover, DUmRGM achieves a better
degree-distribution than RUmDGM; this is due to its more frequent use of the
Upstream strategy as evidenced by Figure 10.3.

Finally, as another point of comparison, we tested protocol instances using
integer-valued depth instead of real numbers. As expected, results show that
the introduction of real-numbers significantly improves the management of node
degrees. With integer depth, DUmRGM reaches a top degree of 9 (instead of the
5 obtained with real numbers), while RMG behaves almost as Overcast+G and
reaches a top degree of 520 (instead of the 20.8 reached with real numbers).

Recovery Locality. The third aspect we examine is the area of the overlay affected
by a reconfiguration. Specifically, we consider a reconfiguration area defined as
the union of all the paths in the new tree from all children of a failed node to their
former grandparents. Smaller area implies better locality. The relevance of this
measure comes from the application of LSTree in our middleware architecture.
The reconfiguration area is an extension of the reconfiguration path defined in
Section 5.2 and represents the area in which brokers in a publish-subscribe system
need to update their routing information to adapt to the new topology. Moreover,
the metric is general enough to give an idea of the impact of topology changes on
other types of middleware and applications. Because the size of the area depends
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Figure 10.5: Cumulative distributions of the time to recover a failure and of the
size of the reconfiguration area with Gnutella.

on the number of children of the failed node, we divide the size by this number,
obtaining a specific reconfiguration-area size.

Results depicted in Figure 10.5(a) highlight LSTree’s ability of to localize
changes. In four out of five protocol instances, over 85% of recoveries have a spe-
cific reconfiguration-area size of 1, meaning nodes always find a new parent among
the neighbors of a failed node. More precisely, RMG yields the best performance
since nodes are almost always able to reconnect to their grandparents or to their
siblings at the cost of increasing their node degree. On the other hand, RDGM,
DRGM, and RUmDGM effectively keep all nodes within the degree limit with
only slightly lower locality. For RDGM, the size of the specific reconfiguration
area is 1 in 95% of the cases, while for DRGM and RUmDGM it is smaller than 1.5
in 95% of the cases. The curves associated to these last two instances are almost
equivalent, albeit for two different reasons. In the case of DRGM, the Down-
stream strategy is given a higher priority than Regional. This means that as soon
as a Regional node refuses a request because of its maxDegree limit, the search
for the new parent continues downstream and thus farther away from the failed
node. In the case of RUmDGM, on the other hand, the reason for the decreased
locality is related to the presence of the minDegree limit. The relative worst
performance among the five selected instances is achieved by DUmRGM, where
the non-local effects associated to the Downstream strategy and the minDegree

limit combine with each other. Nevertheless, its specific reconfiguration area is
still smaller than 2 in 95% of the cases. Finally, as in the case of node degree, we
tested the performance of instances based on integer depth. Results show that
the use of real numbers also improves the performance of LSTree with respect
to locality: DUmRGM recovers failures with specific reconfiguration area of 1 in
65% of the cases with real numbers but only in 50% of the cases with integer
depth.

Recovery Delay. Next we evaluate the time required to reconnect the overlay after
the failure of one or more nodes. This is measured as the time required by the
children of failed nodes to locate and connect to new parents.

Figure 10.5(b) shows the cumulative distribution of recovery delays obtained
in Gnutella. Results show that the protocol is able to recover failures promptly.
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In four out of five protocol instances, 95% of recoveries complete within 1 second,
whereas RUmDGM still manages to recover the same in under 2 seconds.

Interestingly the best performance in terms of latency is achieved by DRMG.
The use of the Downstream strategy provides a quick and efficient way to react
to connection refusals determined by the maxDegree limit. More precisely with
DRMG all repairs require only a few message exchanges and complete within 1
second in the worst case. Only slightly worse is the performance of RDMG: in
this case the Downstream strategy is activated only after all regional candidates
have been contacted, yielding better locality at the cost of a longer repair process.

Similar observations can be made for the RMG strategy. In this case the
protocol does not look for downstream candidates; yet, it still exhausts the Re-
gional strategy before attempting to override the degree limit. Moreover, the use
of BreakMaxDegree increases the chances that nodes remain over maxDegree,
thereby refusing subsequent connection attempts issued with the Regional strat-
egy. This results in the higher latency exhibited by RMG in Figure 10.5(b).

The worst performance in terms of latency is exhibited by the RUmDGM
instance, which nevertheless takes at most 3.5 seconds. This is due primarily to the
minDegree limit. Together with the Upstream and BreakMinDegree strategies,
this limit reduces the number of 2-degree nodes at the expense of a less local and
longer reconfiguration process. It is worth observing that the cost associated to
the use of the minDegree limit depends on the placement of the BreakMinDegree
strategy in the priority sequence: the lower the priority, the longer and less local
the recovery process. To confirm this, we also experimented with other protocol
instances (RDUmGM and RDGUmM) which waited even longer before overriding
the minDegree limit. These instances show longer time to recovery, but improve
the distribution of node degrees with respect to RUmDGM.

Our LSTree protocol, however, is also able to improve degree distribution
without increasing latency. In the previous discussion, we noted that the DUm-
RGM instance achieves very good performance in terms of node degree, and Fig-
ure 10.5(b) shows that its latency is comparable to that of instances that do not
enforce minDegree. The reason is that the repairs with a high latency caused by
the presence of the minDegree limit are balanced by the quick repairs resulting
from the high priority given to the Downstream strategy.

The above considerations suggest that DUmRGM is likely to have the widest
applicability because it effectively balances a very good degree distribution and
a quick reconfiguration with a specific reconfiguration area which, albeit not as
small as with other instances, is smaller than 3 hops in practically all cases.

These results are confirmed in the Catastrophic scenario: the latency of all
instances increases slightly, but DUmRGM still achieves its good degree distribu-
tion and recovers 95% of failures within 3 seconds, with a specific reconfiguration
area smaller than 3 hops in all cases.

Finally, it is worth noting that the use of real-number depth is again beneficial
for our LSTree protocol as instances based on integer depth generally result in
longer reconfiguration delays. In particular, in Gnutella, DUmRGM recovers 95%
of failures within 1 second with real-number depths, whereas it requires almost 2
seconds when integers are used.

Cost of Tree Maintenance. The final piece of our performance evaluation ad-
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Figure 10.6: Number of messages per node per second in the Gnutella (left) and
Catastrophic (right) scenarios.

dresses cost in terms of messages per node per second. We include beacons used
to purge failed nodes from the Global cache, but exclude those used to check
for failed neighbors since these are redundant when neighboring nodes exchange
application-level traffic.

Results show that LSTree is efficient in all the instances we evaluated. Fig-
ure 10.6 presents those obtained with RMG, but equivalent results are obtained
with the other instances. The left plot in the figure shows that in Gnutella, the
traffic generated by LSTree always remains well below 0.1 messages per node per
second, with only minor fluctuations, determined by fluctuations in the frequency
of node connections and disconnections.

In the Catastrophic scenario, shown in the right plot of the figure, the result
is even more interesting. In a stable topology, the protocol requires less than
0.01 messages per node per second for refreshing the contents of Global caches.
When the failure of 2500 nodes occurs, the number of messages exhibits a spike.
However, even at its peak, traffic remains below 5 messages per node per second.

These results are particularly interesting because they represent a significant

Figure 10.7: Results obtained by the protocol in [21], in situations resembling our
Gnutella (left) and Catastrophic (right) scenarios.
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improvement with respect to protocols that build trees as subsets of more con-
nected mesh overlays. As a term of comparison, Figure 10.7 shows two plots taken
from a paper describing SplitStream [21], an application-level multicast system
built over the mesh overlay provided by the Pastry [63] DHT. The results shown
in the left plot were obtained using the same data trace as the one we used in
our Gnutella scenario, while those in the right plot were obtained in a network of
10,000 nodes, in which 2500 nodes crash after 10 seconds of simulation similarly
to our Catastrophic scenario.

The plots from [21] show that the maintenance cost for the Pastry overlay is
generally higher than that associated to the maintenance of our own (Figure 10.6).
Moreover, the right plot shows that the traffic generated by the Pastry overlay
takes fairly long to stabilize. Nodes crash after 10 seconds of simulation, and after
200 seconds, traffic is still higher than 5 messages per node per second, including
beacons. Our protocols on the other hand stabilize much more quickly.

The absolute numbers cannot be compared exactly because Figure 10.6 as-
sumes a lower beacon interval for the LSTree protocol (failures are detected within
150ms-200ms) and does not count the cost of beacons. On the other hand, Fig-
ure 10.7 includes the cost of the beacons sent by Pastry every 30 seconds in the
absence of application level traffic. Although using such a beacon interval in
our LSTree protocol would delay the detection of failures, it would not increase
stabilization time. Moreover, adding the communication cost of beacons would
increase LSTree’s overhead by a constant factor, bringing its cost close to the
overhead of Pastry before the crash. However, LSTree returns quickly to this
initial cost, staying well below the 5 messages per node per second incurred by
Pastry following the crash and before stabilization.

10.5 Concluding Remarks

Overlay trees are among the most common topologies for data distribution sys-
tems designed for large-scale networks. However they have often been regarded
as unable to deal with dynamic environments due to their inherent fragility. In
this chapter, we confronted this assumption with a novel protocol for maintaining
a tree overlay in a highly dynamic environment while at the same time managing
node degree and limiting the impact of changes in the overlay. Our simulation
results demonstrate the effectiveness of the LSTree protocol to achieve these goals
through a quick and communication efficient repair process.

The work presented in this chapter is also open to future developments. Our
most immediate plans include extending the protocol with additional soft con-
straints and repair strategies. Soft constraints may take into account bandwidth
or communication latency between nodes, thereby obtaining trees that have a
closer match with the underlying physical topology. Repair strategies may instead
consider application-specific forms of locality: in the case of publish-subscribe this
would allow the overlay to group nodes with similar interests thereby improving
the overall performance of the middleware.

Finally, we also aim to apply the work outside the large-scale, wired domain,
exploring the possibility to use ideas such as real-number depth to improve wireless
multicast protocols.
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CHAPTER

ELEVEN

A DHT-based Overlay

In this chapter we present a different approach to the maintenance of a tree overlay
topology. In the LSTree protocol we addressed at the same time the problem of
maintaining a connected topology and that of satisfying the requirements of the
middleware on its top. In the protocol presented in this chapter, DHTree, we
separate these two concerns by exploiting a Distributed Hash Table to replicate the
characteristics of a given reference topology on the overlay network. Our DHTree
protocol, whose original description can be found in [32], supports arbitrary tree
topologies, and the use of a DHT allows it to deal with the dynamicity of network
scenarios with only a limited impact on the routing reconfiguration carried out
on top of the overlay.

These results are confirmed by simulations that validate the applicability of
our approach in reconfigurable publish-subscribe middleware. As with the LSTree
protocol, however, applicability goes well beyond the context of content-based
publish-subscribe, as the protocol provides a general way to maintain an overlay
network with a controlled topology in dynamic environments.

The chapter is structured as follows. Section 11.1 introduces distributed hash
tables. Section 11.2 describes the DHTree protocol, while Section 11.3 comple-
ments this description with an evaluation through simulations.

11.1 Distributed Hash Tables

Our DHTree protocol addresses the requirements described in Chapter 9 by main-
taining a tree topology with minimal impact on the protocols responsible for re-
arranging subscription information. At the basis of this approach, is the use of
Distributed Hash Tables [89, 99, 83, 82].

These systems offer a distributed lookup functionality in large scale network
environments. Like a traditional hash table, they provide a mapping function
between a set of keys and a set of stored objects. The distribution aspect lies in
the fact that objects are stored at various locations in the network.
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Distributed hash table implement the mapping between keys and objects by
first mapping each key to a host that is designed as its owner. To accomplish
this hosts are also associated to a hashed identifier value. Moreover, a distance
function is defined over the set of hashed values. An object’s key is assigned to the
host whose hashed identifier is closest according to the defined distance function
to hashed key value. This process, known as key-space partitioning, yields a
possibly uniform distribution of keys (and hence of objects) among the hosts in
the network.

DHTs manage this distribution of key values with an efficient lookup oper-
ation. The hosts in a DHT are organized in an overlay network consisting of a
mesh topology. The fundamental property enabling routing in this topology is
that given a key k, each host either owns k or it can identify one of its neighbors
which is closer to k according to the predefined distance. This yields a lookup
protocol characterized by a communication complexity on the order of the loga-
rithm of the number of hosts. Moreover, the use of a mesh topology allows this
protocols to operate without significant performance problems even in scenarios
characterized by host failures and disconnections.

Several DHTs have been presented in recent years, the most relevant being
Chord [89], Tapestry [99], Pastry [83], and CAN [82].

Chord is a DHT based on a ring network topology augmented with “shortcuts”
between hosts that are a-power-of-2 hops apart in the ring. Hosts in the ring
are ordered according to the values of their identifiers. Moreover, each host is
designated as the owner of those keys whose values are greater than or equal to
its own identifier, but less than that of the peer immediately following along the
circle.

Pastry and Tapestry, on the other hand organize the hosts in a hypercube-like
topology. Keys and host identifiers are managed as sequences of n digits of m
bits. Each messages is routed between host so that the host reached at the nth
hop has an identifier sharing the first n digits with the message destination key.

The Content Addressable Network (CAN) takes a different approach and or-
ganizes keys and hosts in an n-dimensional cartesian space. Each host is assigned
an n-dimensional area of this search space. When the first host enters in the
system, it is initially assigned the entire space. Subsequently, when new a host
joins, it contacts an existing host and receives a portion of its own area. Keys are
associated to a location in this cartesian space; messages for a given key are then
forwarded towards the host that owns the area containing the key’s location.

11.2 Protocol Description

The flexibility of distributed hash tables, combined with their ability to withstand
topological changes such as node failures, motivate the design and development
of an overlay maintenance protocol for reconfigurable publish-subscribe systems
on their top. In the rest of this chapter, we present the results of our efforts in
this direction: DHTree, a protocol that exploits a DHT to build and maintain
a tree-shaped overlay network satisfying the requirements of publish-subscribe
middleware.
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(a) A binary tree structure. (b) A tree structure with a node
degree of four.

Figure 11.1:

The protocol is based on a very simple idea. We construct a predefined refer-
ence tree structure and distribute it to the hosts in the network, either before the
system is deployed or exploiting the routing abilities of the DHT. This predefined
tree structure is simply a picture of what the desired overlay topology should look
like. Our DHTree protocol exploits the DHT to translate this reference topology
into an actual overlay network.

In the following we assume the use of DHT satisfying the following two prop-
erties on the mapping between keys and hosts. First each key must be assigned
to one and only one host. Second, each host must be aware of the keys it has
been assigned. The first is a very basic property satisfied by all DHTs whenever
their data replication mechanisms are not considered. The second only requires
the interface of the DHT to expose to each host the information about the keys
in its own keyset and can therefore be easily implemented even in DHTs that do
not natively offer this functionality.

These two properties allow us to implement a mapping between the hosts in
the network and the nodes in the reference topology. First the DHT maps a host
onto its set of available keys; then our DHTree protocol maps this set of keys onto
a specific node in the reference tree structure.

To simplify the description of the protocol we will try to avoid confusion
between the terms referring to the elements of the reference tree structure and to
those referring to the overlay. Specifically, we will use the term node to refer to the
nodes in the common tree structure and the term host to refer to the elements of
the overlay. In addition we will use the term key to refer to the possible identifier
values stored by the DHT.

11.2.1 Reference Tree Structure

Figure 11.1(a) depicts an example of a binary reference tree structure. Each
node in the structure is associated to a numerical value taken from the set of
all possible key values. The size of the structure is configured so that it covers
the entire keyset managed by the DHT. A consequence of this fact is that the
reference tree structure must have at least as many nodes as the number of hosts
participating in the overlay.

Hosts operate by associating the keys in this reference structure to the keys
they own according to the keyspace partitioning scheme implemented by the DHT.
More precisely, each host chooses a representative node in the structure in the



108 11.2. PROTOCOL DESCRIPTION

following way. It first obtains its own set of keys by querying the DHT; then
it uses this keyset to select a single node in the reference tree. Specifically it
traverses the reference tree in breadth-first order until it reaches a node that is
labelled with one of the keys in the keyset.

This can be summarized by the following definitions:

Definition 1 Let h be a host, we define the keyset of h, Kh, as the set of keys
assigned to h by the DHT.

Definition 2 Let K be a set of keys, the topmost key in K, K, is the first key
value in K encountered in a breadth first traversal of the reference tree structure,
starting from the root node.
We also define the topmost key h of a host h to be the topmost key of its keyset
Kh, that is h = Kh.

This concept of topmost key is what enables the mapping between hosts and
the reference tree structure. Each host is associated to the node in the reference
tree structure labelled with its own topmost key.

11.2.2 Determining a Node’s Neighborhood

This above process associates each host with a uniquely determined node of the
tree structure: its topmost key. Nevertheless, it does not specify how hosts can
determine the identity of their neighbors. The general idea is that a host with
topmost key k will be the neighbor of another host with topmost key k′ if k is a
neighbor of k′ in the reference tree. In practice, however, each host owns more
than a single key: therefore only a subset of the keys in the reference tree can be
designated as topmost. For this reason, the neighborhood relation between nodes
in the reference structure is not enough to define neighborhood between hosts.

Hosts must therefore use a recursive mechanism to traverse the reference tree
structure starting from their own topmost keys until they find a topmost key that
can serve as a neighbor. In the following we describe this recursive search process
distinguishing the case in which a host is locating its parent from the case in
which it is locating its child nodes.

Determining the parent host To facilitate the description of the neighbor
search algorithm, it is convenient to define the parent key of a topmost key as
follows.

Definition 3 Let k be a topmost key, we define the parent key par(k) of k as
the closest key to k along the path from k to the root key, such that par(k) is the
topmost key of some host and par(k) 6= k.

Exploiting this definition, we can easily define the parent of a host with top-
most key k as the owner of par(k). To determine the owner of par(k), however,
a host must first determine par(k). To accomplish this, it simply traverses the
reference tree structure starting from its topmost key k and continuing towards
the root node until it finds a node labelled with a topmost key. More precisely,
it first determines the parent node of its topmost key in the reference structure,
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kp. Then it queries the DHT to determine the whether kp is the topmost key of
some host hp. If this is the case, then par(k) := kp and hp is chosen as the parent,
otherwise the process is iterated with the host visiting the parent node of kp.

Determining child hosts The children of a host are determined in a similar
way. A host h willing to determine its children first checks whether the child
nodes of its topmost key are themselves topmost keys of some hosts. If this is the
case, the host takes the corresponding hosts as its neighbors.

In addition, the host carries out a depth-first traversal in each of the subtrees
rooted at the child nodes that are not topmost keys of any host. Each of these
traversal backtracks either when reaching a leaf node in the reference tree or when
reaching the topmost key of some host. This process allows the host to locate the
set of all topmost keys kc such that the path from kc to the topmost key of the
host, h, contains no other topmost keys. The host collects this set and records
the owners of the keys in the set as its children.

Mutual Parent-Child Agreement The two search algorithms outlined above
allow a host and its parent to retrieve each other’s identities by means of two
independent search processes. Moreover, the search for a child host retrieves all
the closest topmost keys in the subtree rooted at the host. This guarantees that
the search for a parent and the search for children agree in their findings. In other
words, if a node n determines that another node m should be its neighbor, then
m, in turn, determines that it should connect to n.

Managing Neighborhood Changes The neighbor search process is initiated
either by a host detecting the disconnection of one of its neighbors or by a host
that joins the overlay for the first time. In both cases the host computes the
identities of its parent and child hosts and then compares these identities with
those of its former neighbors; none in case the node is joining.

The result of this comparison allows the host to notify a neighborhood change
to all the hosts in the symmetric difference of the two sets, that is to all the new
neighbors as well as to all the former neighbors that are not in its new neighbor
set. Each host receiving a neighborhood change notification executes the neighbor
search algorithm. Clearly, no notifications are sent by hosts that do not record
changes in their neighbor set, allowing the protocol to terminate in a finite number
of steps.

For example, a host joining the network determines which other nodes should
become its neighbors and establishes a connection with them. These hosts, in
turn, recompute their own sets of neighbors and modify their connections. All
the hosts that are added to or removed from some other host’s neighbor set are
forced to recompute their own neighbor sets and operate accordingly.

This iterative process seems to suggest that the joining or leaving of a single
node may modify significantly the interconnections between hosts. However, our
empirical evaluation shows, as discussed in Section 11.3.2, that these changes
remain confined to a restricted area.
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11.2.3 Maintaining Overlay Properties

The protocol described up to this point correctly maintains a tree overlay topology
starting from the reference tree structure provided as input. In addition, when
the number of hosts equals (or is close to) the number of available keys, the shape
of the overlay coincides (or is close to) that of the reference tree structure.

Our purpose, however, is to obtain a topology that is always “close to” that
of the reference tree structure, even if the number of hosts is much less than the
number of available keys. To achieve this purpose, we establish some additional
requirements on the reference tree structure and on the DHT implementation.

Properties of the reference tree structure The first of these requirements
is that the assignment of key values to the nodes in the reference tree structure
must satisfy the following property.
Let n be a node in the tree structure and p its parent and let k(n) and k(p) denote
their keys. Let km = min(k(n), k(p)) and kM = max(k(n), k(p)), then node n
has at most one child node c whose key kc does not lie in the interval between km

and kM .
Additionally, kc < k(n) if k(n) < k(p) and kc > k(n) otherwise.

In the case of binary trees (with node degree equal to three), the property is
satisfied by a binary search tree like the one shown in Figure 11.1(a). For larger
values of node degree, it is possible to define tree structures similar to the one
in Figure 11.1(b). It should be noted that satisfying this property is not overly
restrictive as it only constrains the way in which key values are mapped on to
the nodes in the reference tree. Any reference tree can therefore be used and care
need only be taken when assigning key values to its nodes.

Properties of the DHT The additional requirement on the DHT, on the other
hand, specifies how key values must be mapped onto network hosts. Specifically,
we require that the DHT satisfy the following property.

• If k1 and k2 are mapped onto the same node n, then either all the keys
between k1 and k2 or all the keys between k2 and k1 are also mapped onto
n.

Chord [89] is probably the DHT which most naturally satisfies this property
as well as the previously mentioned requirements. However most other DHTs can
be used for this purpose.

Properties of the Overlay The two requirements we just outlined allow our
DHTree approach to control the number of neighbors of each host in the overlay
network. As mentioned in Chapter 9, this property helps guarantee the scalability
of the middleware by preventing resource-constrained hosts from having too many
neighbors.

In the case of a binary reference tree structure, DHTree guarantees that the
number of neighbors of each host is at most as large as the degree of the nodes
in the reference tree structure. In the case of more general reference trees, this
property holds with high probability as shown by our simulation results.
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(a) Initial state. (b) Host 4 joins the network. (c) Host 13 disappears.

Figure 11.2: Sample reconfigurations with nodes being added and removed.

11.2.4 Example

An example of the behavior of the algorithm is provided in Figure 11.2. The
figure shows a reconfiguration with hosts joining and leaving the overlay network.

The reference tree structure for this example is the one depicted in Fig-
ure 11.1(a). Let us consider the set of hosts {h5, h9, h11, h13, h15}

1. Exploiting
the service offered by the DHT, each host determines its position in the over-
lay network autonomously without further communication with the other hosts.
This yields the topology depicted in Figure 11.2(a): the network configuration is
sketched together with the keyset of each host and its topmost key, shown with a
bar on top. Host h9 discovers it is designated to act as the root since its topmost
key h9 is equal to 8, which is the root key in the reference tree structure. It then
determines its children by querying the DHT for the owners of keys 4 and 12
(hosts h5 and h13) and creates a link with them.

Analogously, h5 and h13 realize their topmost keys are, respectively, 4 and 12
and that their parent hp is h9, since par(k) = 8 for both. Besides, h5 tries to
detect its children, starting from its left child. It does not find any topmost key
exploring its left subtree (keys 1, 2 and 3 belong to h5’s keyset) and continues by
checking whether a right child is available. The first key it encounters is 6, which
falls inside Kh9 , but is not h9’s topmost key. Therefore, h5 considers the next
keys occurring in depth-first order, namely 5 and 7. Again, these keys are not
topmost keys (key 5 is owned by h5 itself and key 7 is in Kh9 but, as described
above, h9 = 8) and so they are discarded. As no other key is available in this
sub-tree, h5 terminates its procedure by connecting only to its parent h9.

Exploring its sub-tree, h13 discovers that keys 10 and 14 are the topmost keys
of h11 and h15 and establishes a connection with them. Similarly, h11 and h15

connect to h13, the owner of their par(k). None of them connects to other nodes
as no topmost keys are present in their sub-trees.

Connection of a Host Now suppose that h4 decides to join the network: it
notifies the DHT of its presence and retrieves its keyset Kh4 = {1, 2, 3, 4} (note
that Kh5 changes accordingly and now contains only key 5). Its topmost key is
4 and its parent is the owner of key 8, i.e. h9. As for its children, it cannot find
any left child since keys 1, 2, 3 belong to Kh4 , while it uses h5 as right child, since

1For the sake of clarity we adopt the key distribution scheme of Chord [89] according to
which each host is responsible for all the keys ranging from its predecessor (excluded) to itself
(included). Nevertheless, as mentioned above, all the schemes satisfying the aforementioned
properties can also be used.
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h5’s topmost key is now 6. When contacted, h9 and h5 realize that the topology
has changed and consequently check whether they have to modify their neighbor
sets. In this case, no further modifications are needed (other than the connection
to h4), so no action is performed. The final result is depicted in Figure 11.2(b).
Note that hosts h11, h13 and h15 are unaffected by the reconfiguration and no
computation or message exchange is required by them.

Disconnection of a host Now let us consider what happens when host h13

fails. Host h9 detects a disconnection and updates its neighborhood adopting
the usual strategy, finally connecting to h15 (whose topmost key is now 12). In
turn, h15 is notified of the topology change and initiates an update procedure that
eventually connects it to h9 as its parent and to h11 as its child. Host h11 is also
made aware of the topology change and updates its neighbors analogously. This
process results in the final topology depicted in Figure 11.2(c).

11.3 Evaluation

Similarly to what we did in the previous chapters, we implemented the protocol
using OMNet++ [95], a discrete event simulation system. In addition, we de-
veloped a test application in Java to improve our understanding of the mapping
between key sets and topmost keys. The purpose of our evaluation is twofold.
Firstly, they serve as a test to verify that the protocol is indeed able to maintain
the desired overlay in a network with hosts that join and/or leave at arbitrary
times. Secondly, they provide a measure of its impact on the reconfiguration of
routing information in a distributed publish-subscribe system.

11.3.1 Simulation Setting

The scenario we adopted in our simulations consists of a network of hosts which
connect and disconnect at random intervals. The number of hosts in the network,
N , is kept approximately constant by equating the rates at which connections
and disconnections occur. This setting is built incrementally, starting from an
empty network and having new hosts join the existing overlay using the protocol
described in Section 11.2. As soon as the network reaches a size of N hosts, the
system evolves to a state in which each connection is followed by a disconnection
after a specified interval Tadd,remove. Measurements are taken for a time interval
Tmeas from the moment in which the network reaches its size.

The DHT is simulated as an abstract component with the ability to map
keys onto hosts and conversely. In particular, we assume that the DHT offers
the same consistent view to all the hosts participating in our DHTree protocol.
This corresponds to DHTree’s being invoked only after the DHT has stabilized
subsequently to the connection or disconnection of a host. We ran simulations
for the binary case using a key-space of 255 identifiers, which also determines the
size of the reference tree structure, and an actual number of hosts ranging from
10 to 120. In addition, we ran tests using a quaternary reference tree structure
to evaluate the resulting degree distribution.
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Figure 11.3: Degree distributions for a binary tree with 100 nodes (left) and for
a quaternary tree with 10000 nodes (right)

11.3.2 Results

Our experiments suggest that our DHTree approach is a valuable candidate when
choosing a topology maintenance algorithm for a distributed publish-subscribe
system. Our results are presented as follows. In Section 11.3.2 we evaluate
the characteristics of the topology maintained by the algorithm, while in Sec-
tion 11.3.2 we analyze the impact of the DHTree approach on a publish-subscribe
system built on top of it.

Correctness and overlay properties

In order to asses the protocol’s ability to maintain the desired overlay network,
we ran simulations for a time interval Tmeas and evaluated the characteristics
of the resulting overlay after a period of reconfigurations. More precisely, we
first checked that the desired topology was indeed a tree, that is an acyclic and
connected graph, and then evaluated the number of neighbors of each host to
verify that the resulting node degree was bounded by that of the reference tree
structure. As mentioned previously, the bound is strict in the binary case, while
it holds with high probability in general.

Figure 11.3 shows the average distribution of node-degree obtained with ran-
dom sets of nodes both in the binary and quaternary cases. The left plot shows
that the degree of nodes never exceeds the value of 2 in the binary case. The right
plot instead shows that only a minimal portion exceed the degree of the reference
tree structure in the non-binary case even when the number of hosts is only half
the number of available keys.

Figure 11.4 shows the same measurements taken on quaternary trees with
16000 and 20000 hosts. The plots clearly show that the resulting topology becomes
closer to an ideal balanced topology as the number of hosts approaches the number
of available keys.
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Figure 11.4: Degree distributions for a quaternary trees with 16000 (left) and
20000 (right) nodes.

Recovery Locality

The other measurement we consider is the locality of the reconfiguration process
resulting from the joining or leaving of a node. Similarly to what we did in
Chapter 10, we consider the size of the reconfiguration area by computing the
size of the subtree interconnecting the endpoints of the links removed or created
as a result of topology changes.

The results obtained in our simulations, depicted in Figure 11.5, show that
the size of the reconfiguration area remains very low even when the number of
hosts becomes large. The size of the reconfiguration area can be compared with
the number of hosts which are directly involved in the topology change. In the
ideal case, the reconfiguration area should only consists of the appearing or disap-
pearing host and its neighbors. Although DHTree is not as close to this ideal case
as the LSTree protocol, the average number of links added or removed during a
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Figure 11.5: Size of the reconfiguration area in the case of host connections (top)
and disconnections (bottom).
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reconfiguration remains between two and three.

11.4 Concluding Remarks

This chapter presented a protocol for maintenance of the overlay tree topology at
the basis of distributed publish-subscribe middleware, exploiting the potentialities
of distributed hash tables. The protocol exhibits interesting properties such as
the ability to control the node degree of the resulting overlay network, and a
low impact on the reconfiguration process dictated by topology changes. These
properties are validated through simulations that confirm the validity and the
potentiality of the proposed approach. Finally, although this thesis describes the
protocol in the context of publish-subscribe middleware, this work can be applied
to other group communication middleware as well as to any system requiring the
maintenance of application-level tree overlays.

The work on this protocol is continuing with further investigation of its char-
acteristics, both from an empirical and from a theoretical point of view. In addi-
tion we are analyzing protocol extensions for the maintenance of arbitrary graph
topologies.
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CHAPTER

TWELVE

Discussion and Related
Work

The two overlay protocols presented in the previous chapters exemplify two op-
posite approaches to the maintenance of an overlay network for publish-subscribe
middleware. Both protocols seek to satisfy the requirements posed by the routing
layer on the overlay structure as well as on its maintenance process. Nevertheless,
their approaches to maintaining these properties are inherently different.

In this chapter, we analyze these differences and we compare our protocols with
existing work, highlighting their potentiality not only in the area of content-based
publish-subscribe middleware but also in broader contexts such as application-
level multicast. The chapter is structured as follows. First we compare the
approaches taken by our protocols and highlight their differences both at the
interface and implementation levels. Second, we analyze their potentiality in
the context of content-based publish-subscribe middleware. Third, we present
related solutions both in the context of publish-subscribe and in other applica-
tion domains; and finally we present some concluding remarks on our results and
immediate plans.

12.1 Two opposite approaches

The two protocols we presented differ along two main dimensions. From an in-
terface perspective, each protocol allows the middleware designer to specify the
characteristics of the desired topology in different ways. Likewise, at the imple-
mentation level, the two protocols use totally different approaches to maintaining
these properties.

Specifying Overlay Properties The DHTree protocol focuses on replicating
the shape of a reference tree provided as input using a distributed hash table as
a mapping function. LSTree, on the other hand, allows the user to specifically
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address each overlay property individually with different reconfiguration strategies
that can be combined in a single recovery process.

On the one hand, the use of a reference topology provides a simpler interface
allowing the overlay to be tuned according to a single topology model. On the
other hand, the mechanisms provided by LSTree allow the middleware designer to
manage performance tradeoffs explicitly by giving a higher priority to properties
that are more relevant to the middleware and application layers deployed on its
top.

Moreover, in the DHTree protocol, properties cannot be easily managed on a
per-node basis; each network node can in fact be mapped onto different nodes in
the reference topology as the system evolves. The LSTree protocol, on the other
hand, manages the overlay properties in a completely decentralized fashion guar-
anteeing better scalability in large dynamic networks consisting of heterogeneous
devices.

Property Management Approaches The second set of differences is related
to the mechanisms used by the protocols to maintain an overlay with the desired
characteristics. The DHTree protocol decouples the management of the overlay
properties from the problem of maintaining the overlay in the presence of failures
and disconnections. The problem of locating a new neighbor for a node when
a former neighbor fails is delegated to the DHT so that different techniques for
connection management can be easily integrated by changing the underlying DHT
implementation.

The LSTree protocol, on the other hand, sacrifices this decoupling to favor the
efficiency of the reconfiguration process. The mechanisms used by nodes to locate
new neighbors in case of failures are embodied in the protocol. When nodes look
for a new parent, they specifically look for nodes that allow the overlay to satisfy
its requirements. This allows the protocol to maintain only the connections that
are effectively needed, as opposed to the mesh maintained by a DHT implemen-
tation, without sacrificing the ability to maintain connectivity even in the most
demanding scenarios.

These differences allow the middleware designer to choose the most effective
protocol according to the application scenario. If the middleware is being de-
ployed in a network where a DHT is already operating, the decoupled design that
characterizes the DHTree protocol simplifies the implementation of the middle-
ware. Moreover, the protocol allows the DHT and its reconfiguration strategies to
be easily shared between different overlays deployed in the same network scenario
and not only with other DHT-based applications.

On the other hand, in the case of applications deployed on large scale dynamic
environments where the efficiency of communication is relevant, our LSTree pro-
tocol provides a more effective topology management mechanism. Moreover, it
does not require any type of global common knowledge as is the case with the
reference tree structure in DHTree. Simulation results confirm this reasoning and
show that the communication cost of the LSTree protocol is even lower than that
associated to a DHT [21] operating in the same reconfiguration scenario.
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12.2 Overlay in Publish Subscribe

Similar considerations hold with respect to the combination of these protocols
with the routing reconfiguration techniques presented in Part II. As we discussed
in Chapter 8, each of the protocol poses different requirements on the overlay
maintenance layer. At one extreme, Timed Deferred Unsubscription enjoys
the widest applicability, while, at the opposite side of the spectrum, Reconfig-

uration Path is only able to operate if the overlay layer provides information
about the entire reconfiguration path.

The overlay protocols we just described respond in different ways to these
requirements. The DHTree protocol reacts to disconnections and new connections
by having each node recompute its set of neighbors on the basis of the mapping
provided by the DHT. Consequently, the endpoints of broken links have no general
and easy way to determine which nodes are the endpoints of corresponding new
links. In the LSTree protocol, on the other hand, each downstream neighbor of
a failed node repairs the overlay by explicitly searching for a new neighbor and
therefore for a new link to replace the one that was lost.

The first observation we can make is that the Timed Deferred Unsub-

scription protocol can be used directly on top of both overlay managers with-
out modifications. In this protocol, network nodes only need to be notified of the
appearance or disappearance of communication links and do not need to know
which link is replacing which other.

The Notified Deferred Unsubscription and Informed Link Activa-

tion protocols, on the other hand, must be able to make this association between
appearing and disappearing links in order to propagate their activate messages.
While this requirement poses some problems in the case of DHTree, it is very easy
to satisfy using the LSTree protocol. The reason is that, in the LSTree protocol,
each downstream neighbor of a failed node acts as an endpoint of both the new
and the old links, resulting in a simplification of the two protocols. In Part IV
we return to this problem in greater detail when describing the integration of our
routing reconfiguration protocols with the LSTree layer.

The last observation worth making regards the inherent difficulty of integrating
the Reconfiguration Path protocol with either of our overlay managers. This
is not unexpected: satisfying the requirements of the Reconfiguration Path

protocol would complicate the design and implementation of the overlay layer
and consequently limit its applicability. Moreover, Reconfiguration Path is
unable to operate correctly in the presence of arbitrarily overlapping reconfigura-
tions, a situation that may well occur in a highly dynamic peer-to-peer setting.
Nevertheless, it is worth noting that the inability to exploit the Reconfigura-

tion Path protocol does not hamper our goal to build a highly reconfigurable
event dispatching framework. The optimal performance of this protocol can in
fact be obtained using the novel Informed Link Activation protocol, which
poses significantly looser requirements on the overlay layer.
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12.3 Related Approaches

Together, the considerations we made encourage the integration of these overlay
protocols with the routing reconfiguration protocols described in Part II. Nev-
ertheless, the applicability of LSTree and DHTree is not limited to the context
of content-based publish-subscribe. Both overlays can be exploited in all large-
scale network contexts where a tree overlay network is needed, as is the case
in application-level multicast protocols. In addition, some of the techniques from
the LSTree protocol can be used outside the wired domain: ideas like real-number
depth can be used to improve wireless multicast protocols in mobile ad hoc and
sensor network scenarios.

To gain a better understanding of these further application areas, as well as
to compare our protocols with existing systems, we provide a brief description of
the main solutions for tree-based overlay maintenance in three different contexts:
application-level multicast, multicast for mobile ad hoc networks, and publish-
subscribe systems. Finally, we also briefly consider theoretical work on the subject
and discuss its relationship with our overlay protocols.

12.3.1 Application-Level Multicast

Research in the area of application level multicast has often investigated the
problem building efficient data distribution overlays in large scale systems.

One of the first application-level multicast protocols, Narada [30] exploits a
two-phase mechanism to build a tree over a mesh structure. Differently from both
our protocols, however, Narada is most suited for small groups of machines as it
assumes that all nodes in the mesh know about each other.

Bayeux [102], SCAN [28], Scribe [22, 23], SplitStream [21], and I3 [61] are
instead related to our DHTree protocol in that they construct data distribution
trees on top of DHT infrastructures [99, 83, 89]. Bayeux requires a rendezvous
node (root) to handle all join requests by new group members. Scribe uses a more
scalable approach and controls the degree of nodes using a mechanism similar to
our downstream cache, while SplitStream extends Scribe’s behavior to manage
the overall degree resulting from a node’s participation in multiple trees. Finally,
I3 exploits a distributed algorithm to build trees with controlled node degree and
low latency.

The way these protocols exploit the DHT is however very different from what
we do in our DHTree protocol. First, they tie their resulting topology to the
mesh structure constructed by the DHT: this implies that the resulting topol-
ogy depends on the specific DHT they rely on. Second, approaches based on
a rendezvous node require all the hosts in the network to reconfigure when the
rendezvous node fails. Moreover, we believe that the optimizations employed by
some of these DHT-based approaches are more meaningful in a context without
DHT as in our LSTree protocol. Evaluations of these protocols [21] show that
the DHT plays a significant role in the overall cost of topology maintenance. Our
LSTree protocol, on the other hand, achieve the same level of resilience to failures
by exploiting simple structures such as the Regional and Global caches without
relying on a separate protocol to manage references to other nodes. This results
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in a reduction of the overall cost of the protocol as shown by our simulation study.

Protocols which are more closely related to LSTree are Yoid [48] and Over-
cast [59]. Yoid reacts to failures by creating separate trees which are then rejoined
using a complex distributed cycle-detection mechanism, while Overcast builds an
overlay out of a set of dedicated servers and exploits a mechanism similar to our
Ancestor Chain. Distributed cycle detection naturally increases the cost of the
recovery process, while the approach taken by Overcast causes the topology to
reach very high node degrees. Moreover, Overcast is designed for fairly stable
conditions, not involving the unexpected failure of the root or of a cluster of
nodes, whereas our protocols, particularly LSTree, build an overlay out of hosts
exhibiting very dynamic behaviors.

Some other systems, such as CoopNet [72], PeerCast [13], and NICE [12],
use a rendezvous node to coordinate the construction of data distribution trees
for streaming applications. CoopNet exploits a server to build balanced distri-
bution trees using something resembling our Downstream technique. The server
chooses the parents of new nodes by traversing the tree until it finds a node with
enough spare capacity. PeerCast adopts a similar approach: nodes first contact
the media source and then proceed downstream along the tree until they find an
unsaturated member. Albeit interesting, these approaches share the main disad-
vantage of rendezvous-based solutions based on a DHT-tree. In both cases, the
need for a well-known node to handle connection requests by clients makes these
protocols unsuitable for systems characterized by a large number of data sources
and receivers as is the case in content-based publish-subscribe.

12.3.2 Mobile Ad Hoc Multicast

Establishing multicast communication in a mobile ad hoc network poses similar
challenges to building a resilient overlay due to the transient connectivity resulting
from the mobility of nodes. The approach that bears the closest resemblance to
the domain of overlay networks and to our LSTree protocol is MAODV [84].

As already discussed, one of the main core differences is the use in MAODV
of integers to indicate hop count from the root. Because LSTree is especially
designed for large scale systems, we avoid flooding the network with depth updates
by representing the depth of each node as a real number that is kept consistent
as the tree changes.

In addition, MAODV operates in a mobile ad hoc network environment and
does not rely on an underlying IP-routing layer. As a result, it is restricted by
the physical topology to select links that are currently active. Therefore, instead
of caching other nodes in the network, it broadcasts a message to find candidate
links.

12.3.3 Overlays for Publish-Subscribe Systems

The final piece of related work we consider is specifically related to the content-
based publish-subscribe domain. In addition to our efforts, other research groups
have investigated the problem of building publish-subscribe middleware in dy-
namic environments.
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The work in [8] proposes a tree maintenance protocol for publish-subscribe
systems that bears some similarities to our LSTree protocol. Specifically, they do
not exploit any underlying mesh-based overlays such as DHTs and maintain the
overlay connected by having nodes cache the identities of their “grand parents”
in the overlay tree. However, while both of our protocols are designed to operate
in networks with frequent failures of an arbitrary number of nodes, the authors
of [8] assume a failure model with at most one node failure at a time.

The work in [67], on the other hand, is an overlay for mobile publish-subscribe
middleware developed in our research group. The protocol is an extension of the
MAODV protocol mentioned above, and improves its operation with mechanisms
to maximize its performance in the context of content-based publish-subscribe.
A brief description of this protocol is provided in Part IV, where we present its
integration with the routing reconfiguration protocols developed in this thesis.

12.3.4 Distributed Tree and Spanning Tree Construction

Distributed algorithms for spanning tree construction and maintenance have also
been studied from the theoretical perspective. Perlman [75] describes an algo-
rithm used IEEE 802.1 that supports bridge coordination to compute a spanning
tree. The protocol exploits a self-stabilizing approach based on periodic broadcast
HELLO messages that allow nodes to choose their designated neighbors according
to the current state of the network. This would be impractical in our case, due
to the overhead generated by broadcast messages and because of the absence of
control over the extent of topological changes.

The same algorithm [75] was later used as a basis for the development of an
algorithm [66] designed for IEEE 1394.1. This algorithm removes the need for
periodic beaconing messages and addresses failures by using a node cache, or by
having nodes elect themselves as roots of subtrees that will later be joined. This
approach does not handle locality, and can therefore cause far reaching modifica-
tions in the overlay topology.

Self stabilizing algorithms have also been studied for maintaining a spanning
tree in a dynamic network [42, 31]. In these solutions, nodes exchange information
about each other and use this information to agree on a tree topology that satisfies
some constraints. When the state of the network changes, the nodes agree on a
new topology which can be completely different from the previous one. Two
major differences exist from the requirements we set for our work. First, Our
work targets large scale networks in which it would be infeasible to have each
node know about all other nodes in the network. Second, we specifically try
to perform local reconfigurations, avoiding far-reaching changes in the overlay
information.

Another algorithm [1] exploits the ordering among node identifiers to construct
the spanning tree. Again, this algorithm is better suited to local-area or mobile
ad hoc networks because it relies on the ability of nodes to detect the appearance
of new nodes in the vicinity. Other approaches [6, 26, 56, 4] are also based on the
presence of node identifiers but rely on a bound on the number of nodes in the
network to detect cycles and operate correctly.

Finally, existing work has also carefully studied distributed algorithms for the
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construction and maintenance of shortest path trees [50, 81]. These algorithms,
however, often require precise information about the underlying network topology
and are not designed to localize topology changes. Moreover they also introduce
the possibility of creating temporary routing loops. Our protocols, instead, op-
erates at a higher level and avoid cycles at all times without requiring precise
knowledge of the underlying network topology. Moreover, such network knowl-
edge can easily be integrated in our LSTree protocol with new soft constraints
concerning path latency, bandwidth, etc.

12.4 Concluding Remarks

Overlay trees are among the most common topologies for data distribution sys-
tems designed for large-scale networks. These overlays are often utilized in dy-
namic environments that make it difficult to keep the nodes of a tree connected.
This part of the thesis addressed this problem with two protocols for maintaining
a tree overlay in dynamic environments. Our simulation results demonstrate the
effectiveness of both protocols to achieve this goal. Moreover they highlight the
efficiency of the LSTree protocol in managing node degree and keeping reconfigu-
ration localized when possible through a quick and communication-efficient repair
process.
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Part IV

Putting It All Together





CHAPTER

THIRTEEN

Integration Requirements
and Goals

In Parts II and III, we examined solutions enabling the overlay and routing layer
to play their fundamental role in reconfigurable content-based publish-subscribe.
In this last part of the thesis, we make a further step and integrate the overlay
and routing layers to form a complete system designed to work in large scale wired
networks as well as in MANETs.

The evaluations presented in Parts II and III highlight the good results ob-
tained by our approaches when considered in isolation. The protocols for the over-
lay layer are able to maintain a connected and acyclic topology in the presence of
nodes that join and leave the network arbitrarily. Similarly, the reconfiguration
protocols proposed for the routing layer are able to adapt routing information to
topology changes with minimal communication cost, achieving a significant over-
head reduction with respect to the strawman approach available in the literature.

These good results suggest that the combination of these layers can provide
successful content-based information dissemination in large-scale dynamic net-
work environments. The goal of this integrated evaluation is to confirm this
expectation and to evaluate the interactions between the two layers. For exam-
ple, LSTree maintains the overlay connected while minimizing the size of the area
affected by reconfigurations. This aspect is likely to have a beneficial impact on
our routing reconfiguration protocols by minimizing the number of hops travelled
by subscriptions and unsubscriptions during reconfigurations. To an extreme, we
can expect the improvements provided by this overlay to dwarf those provided
by our optimized routing protocols. Our goal is to understand these interactions,
enabling middleware designers to choose the simplest protocol among a those
performing well in a given scenario.

In order to carry out an integrated analysis we developed a simulation frame-
work comprising the protocols described so far. The framework is designed using
a component-based architecture to enable the integration of different simulation
modules depending on the specific protocols being simulated as well as on the spe-
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cific simulation scenario. This allows us to integrate the various routing protocols
and evaluate their relative performance incorporating different overlay modules
on wired and wireless networks.



CHAPTER

FOURTEEN

Towards an Integrated
Evaluation

Integrating the protocols for overlay management with those responsible for the
maintenance of correct routing information is the last fundamental step in this
research. The integration of the overlay and routing layer provides new insights
on the operation of the protocols and serves as a guidance for the deployment of
scalable middleware platforms in a real-world setting.

In this chapter we pose the basis for this last step. First we detail the choice
of the most suitable overlay layers for deploying our middleware in peer-to-peer
and mobile ad hoc networks. In particular, we provide a description of an overlay
protocol for the latter scenario described in [67]. Then we consider the integra-
tion of the routing layer and discuss how our routing reconfiguration protocols
can be combined with the selected overlay managers. Specifically, we extract
a representative subset of routing reconfiguration protocols and discuss whether
their requirements are satisfied by the overlay managers. Finally, we introduce
the tool for our integrated evaluation: a simulation framework developed using
OmNet++ [95].

14.1 Integrating the Overlay Layer

The first step in the deployment of a middleware solution is the choice of a suitable
overlay layer for the target application scenario. In this section, we address this
choice in the context of peer-to-peer and mobile ad hoc networks. In the first case,
the choice is between the two protocols presented in Part III, while in the second
it falls on WiTree, an overlay management protocol for mobile ad hoc networks
developed by our research group.
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14.1.1 Choice of the Wired Overlay

In the third part of this thesis we presented two overlay management protocols
for large scale peer-to-peer networks: LSTree and DHTree. While both proto-
cols can be applied in the design of reconfigurable publish-subscribe middleware,
the LSTree protocol was designed with reconfigurable middleware as its primary
application scenario. Its characteristics, and primarily its ability to localize topol-
ogy changes to a small region of the overlay, make it particularly suited for the
integration with the routing reconfiguration protocols presented in Part II.

As we already mentioned in Chapter 12, the overlay management techniques
of the LSTree protocol integrate seamlessly with the routing reconfiguration of
Timed Deferred Unsubscription and can also be easily interfaced with the
slightly more complex Notified Deferred Unsubscription and Informed

Link Activation protocols. The DHTree protocol, on the other hand, can be
integrated only with Timed Deferred Unsubscription, and it requires sig-
nificant modifications to be used with the remaining protocols. In addition, the
LSTree protocol was shown to be very efficient even in demanding reconfiguration
scenarios. For these reasons, our choice for an integrated evaluation in large scale
peer-to-peer scenarios falls solely on the LSTree protocol.

14.1.2 Choice of the Wireless Overlay

The choice of an overlay for wireless network falls inevitably outside the solutions
presented in this thesis. Neither of the overlay protocols we presented is in fact
designed to operate in a MANET environment, even though DHTree could in
principle be deployed on top of the available DHT implementations for ad hoc
wireless networks [5].

WiTree The problem of maintaining a tree overlay in ad hoc wireless networks
has been successfully addressed by others in our research group [67]. The protocol
they propose builds and manages a connected overlay in a MANET environment
through an evolution and adaptation of the techniques used in the MAODV rout-
ing protocol [84].

As we mentioned in Chapter 10, MAODV maintains trees consisting of a set
of multicast member nodes and a multicast group leader. The group leader sends
periodic group hello messages (GRPH) to disseminate information about group
membership to all group members as well as to detect and reconnect partitioned
trees. This includes the information about the distance from the group leader
used by the protocol to prevent cycles with a mechanism similar to that of our
LSTree protocol.

When a link between two nodes fails as a result of mobility, the protocol
designates the downstream node (the one farther from the leader) as the node
responsible for reconnecting the tree by locating a new parent. Differently from
our LSTree protocol, however, the nodes in MAODV cannot exploit node caches
to locate new candidate parents as no underlying routing protocol is available.
Therefore, they find their new parents using a route discovery procedure that
consists of three phases. A node searching for a parent first request a new route
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to the multicast tree. Then it collects a number of replies; and finally it selects
one of these replies and reconnects to the tree.

Using three phases is necessary because requests are not unicast to one node
at a time as in our LSTree protocol. Rather, a node that has lost the link to
its parent broadcast a route request message (RREQ) to its direct neighbors. A
node receiving this request can react in three different ways. If it is not a member
of the multicast tree, it simply rebroadcasts the message and stores the identifier
of the sending node to establish a path for the propagation of reply messages. If,
on the other hand, it is a member of the multicast tree and its distance from the
group leader is less than that of the requesting node, it replies by sending a route
reply message (RREP) to the node from which it received the request. Finally,
if neither of the above conditions holds, the receiving node simply discards the
request without taking any action.

RREP messages follow the reverse path established by the propagation of the
corresponding RREQ messages up to the requesting node. During this propaga-
tion, they establish a forward path to be used if the route is activated.

The requesting node waits for a specified timeout and collects all incoming
replies. When this timeout elapses, it selects one of them and activates the cor-
responding route. To accomplish this, it sends a MACT, multicast activation
message, along the forward path established by the selected reply.

A requesting node may fail to locate a suitable parent. In this case, it infers
that the network has become partitioned and elects itself as a new group leader.
The periodic GRPH messages broadcast by leaders allow nodes to detect such
partitions and to take proper action to merge them again as soon as possible.

WiTree’s improvements WiTree improves the behavior of the MAODV pro-
tocol with a set of extensions to optimize its use as an overlay network for publish-
subscribe in mobile network environments. In the following, we provide a brief
description of two of the most relevant extensions.

A first improvement of WiTree over MAODV regards the ability of the proto-
cols to reconnect the tree without requiring the requesting node to be an endpoint
of the newly located link. This increases the chances to reconnect in cases where
MAODV would declare a partition even when connectivity is available. A second
improvement allows the protocol to limit the cost of reconnection by shortening
the path travelled by multicast activation messages. These two improvements al-
low WiTree to simplify the mechanism used by MAODV to reconnect partitioned
subtrees by effectively using the same strategy used when repairing a link failure.

14.2 Integrating the Routing Layer

The routing reconfiguration protocols presented in Part II were designed on top
of an abstract topology management system whose only task was to replace one
communication link with another in a tree-based overlay network. This allowed
us to design these protocols in a general way making minimal assumptions on
the overlay management layer. The purpose of this section is to review these
assumptions and to map them onto the characteristics of the overlay managers
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we exploit in our integrated evaluation. The section is structured as follows. First
we review the routing reconfiguration protocols described in Part II and select a
subset of them for our integrated evaluation. Then we address their integration
with the WiTree overlay manager and with LSTree.

14.2.1 Choice of the Routing Reconfiguration Protocols

The routing reconfiguration protocols described in Part II differ both in terms of
performance and requirements on the overlay layer. Nevertheless the analysis we
presented in Chapter 7 allows us to reduce the number of reconfiguration protocols
for our integrated evaluation.

Specifically, simulation results showed that the performances of the two De-

ferred Unsubscription protocols are in most cases comparable and that dif-
ferences are only visible in scenarios characterized by a very high event load. This
drives our choice towards the Timed Deferred Unsubscription protocol, as
it combines a simpler implementation with looser requirements on the overlay
management layer.

Similar reasoning holds for the choice between Reconfiguration Path and
Informed Link Activation. Both protocols have the ability to confine the
changes resulting from reconfiguration to the reconfiguration path and thus achieve
similar performance improvements over Strawman. However, Informed Link

Activation is applicable in a wider range of scenarios thanks to its ability to oper-
ate correctly in the presence of concurrent overlapping reconfigurations. Moreover
its requirements on the overlay layer are looser than those of Reconfiguration

Path as the endpoints of a broken link only need to be notified about the identity
of the endpoints of the new one and do not need to know the entire reconfiguration
path.

These considerations determine the choice of the protocols we consider in our
integrated evaluation: Strawman, Timed Deferred Unsubscription, and
Informed Link Activation.

14.2.2 Integrating Strawman and Timed Deferred Unsub-
scription

The discussion in Chapter 8 pointed out that Timed Deferred Unsubscrip-

tion is the protocol that can most easily integrated with the underlying overlay
layer. Its interface with the overlay is in fact identical to the interface of the
Strawman protocol. Both only require the overlay to notify each dispatcher of
the appearance or disappearance of links to neighboring dispatchers by means of
the addLinkTo and removeLinkTo calls.

Both WiTree and LSTree provide these notifications as part of their normal
behavior. In either protocol, a node detecting the disappearance of a link to a
neighbors, either a parent or a child, makes a removeLinkTo call on its routing
layer thus triggering the corresponding reconfiguration protocol. Similarly, an
addLinkTo call is made by the protocol as soon as a connection request is accepted.
In WiTree this happens when a MACT is generated or received by either of the
endpoints of a new link. In LSTree, it happens when a ParentRequest is
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accepted by a candidate parent as well as when the corresponding acceptance
message is received by the requesting node.

14.2.3 Integrating Informed Link Activation

The integration of the Informed Link Activation protocol, on the other hand,
is more complex. In this protocol, each of the endpoints of a removed link must
be notified of the identity of the corresponding endpoint of the replacement link.
This gives the protocol a symmetric structure in which each of the endpoints of
the old link sends its own activate message.

However, both WiTree and LSTree operate in an asymmetric fashion. In both
cases only the endpoint(s) that are farther from the root node take an active part
in the reconfiguration process and, in general, only these endpoints are notified
of which new link has been chosen. This seems to make the integration of these
protocols with Informed Link Activation particularly complex; however, a
quick analysis of the Informed Link Activation protocol reveals that the two
activate can be replaced by a single message sent by only one of the endpoints
of the removed link.

In the following we describe how this leads to a simple integration of In-

formed Link Activation with both of the considered overlay managers. For
clarity, we first address the integration with WiTree, and then define the addi-
tional details required for the integration with LSTree.

Deployment of Informed Link Activation over WiTree Let us consider
the situation in Figure 14.1(a) in which the link between dispatchers A and B
is replaced by a new one between C and D. According to the description of
Section 6.2, dispatcher A sends send an activate to dispatcher C containing
all the patterns in its subscription tables to which only B was subscribed, P =
S2 ∪ S3. Similarly, dispatcher B informs D of the patterns to which only A was
subscribed with another activate containing P = S1.

However, the content of either activate can easily be computed by dispatcher
A using only the information stored in its own subscription table. Let us consider
the patterns contained in B’s activate, P = S1 in the figure. These corre-
spond to patterns that were used only to route events across the removed link to
dispatcher A and possibly beyond it. In other words, they correspond either to
subscriptions issued by A itself or to subscriptions used by A to route events to
one of its neighboring dispatchers other than B. A can therefore easily compute
the contents of B’s activate by considering the patterns in its table that to
which B is not subscribed.

This reasoning leads to an asymmetric version of the Informed Link Acti-

vation protocol whose operation is summarized in Figure 14.1(b). One of the two
endpoints of the broken link, the one responsible for controlling the reconnection
process, A in this case, computes both sets of unnecessary subscriptions, P1 and
P2. P1 contains the patterns used by A only to route events across the removed
link, while P2 contains all the subscriptions in A’s subscription table that are not
associated to the removed link. It’s important to observe that these two sets do
not represent a partition of A’s subscription table, although this is the case in
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Figure 14.1: Integrating the Informed Link Activation protocol with the over-
lay manager. The figure shows that the two activate’s used by the protocol can
be substituted by a single message containing all necessary information. This
makes the protocol asymmetric and simplifies its integration with the WiTree
overlay manager. For clarity the figure shows only the subscription tables asso-
ciated to the nodes involved in the reconfiguration. If a node has recorded two
subscriptions S1 and S2, they are shown in the figure as S1 ∪ S2.

the figure. If the removed link part of the pattern tree for some subscription s,
then A subscription table will contain at least two entries for s: one associated
to B and the other associated to some other dispatcher, possibly A itself. This
subscription is not included in either of the two sets P1 or P2.

Once A has computed P1 and P2 it sends them in a single activate to the
endpoint of the new link it’s own subtree, C in the figure. This dispatcher uses
P1 for its reconfiguration and propagates the activate to D, this propagated
message can contain only P2. Dispatcher D takes the content of P2 and uses it in
its reconfiguration process exactly as it would have done with the set of pattern
in B’s activate.

The only remaining steps in the Informed Link Activation protocol are
the two timeouts and flush messages. These are handled exactly as in the original
version. An unsubscription timeout is triggered at each of the endpoints of the
removed link, while a subscription timeout is triggered at the endpoints of the
new link. In the evaluation presented in the following chapters we consider an
implementation of Informed Link Activation without flush messages. Never-
theless, flush messages can be propagated by the endpoint of new links exactly as
in the symmetric case.

It is worth observing that this asymmetric version of Informed Link Acti-

vation does not define a new protocol. Rather it simply provides a different way
to implement the same underlying mechanism, providing for a simpler deployment
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(b) Scenario with one ancestor and one sibling
connection.

Figure 14.2: Integrating the Informed Link Activation protocol with the
LSTree overlay manager. The figure shows that one of the two activate’s is
always “sent” by a child of a failed node to itself. The other is instead propagated
to the new parent and contains the set of patterns which were not on the link
from the child to the failed node.

over the WiTree overlay manager.

Deployment of Informed Link Activation over LSTree The integration
of the protocol is analogous in the case of LSTree. At first sight, this case might
appear more complex because multiple links are being replaced and because one
of the endpoints of these links disconnects from the overlay. However, a quick
analysis shows that we can apply the same reasoning we applied in the case of
WiTree.

Let us consider the situation in Figure 14.2(a). The disconnection of a node
leads to the disappearance of the 3 links to nodes A, B, and C, while the overlay
manager re-establishes connectivity by adding 2 new links: from C to D, and from
B to A. Because a node left the overlay only 2 of the 3 links are replaced, and
the other is simply lost. Thus, to integrate the Informed Link Activation

protocol, it is sufficient to select two of the removed links and associate each of
them with one of the new ones.

In principle, any pairing of new and old links can be used. However, the use
of the LSTree protocol naturally suggests one such pairing. The link from the
failed node to its parent is the one that is lost. Each of the links to its children
is instead associated to the new link found by the corresponding child using the
LSTree protocol. With reference to Figure 14.2(a), the link from the failed node
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to C is replaced by the new C −D link, while the link to B is replaced by B −A.
Once new links have been associated to removed ones, reconfiguration can

be performed using the asymmetric version of the Informed Link Activation

protocol. Each of the children of the failed node computes the sets P1 and P2 as
discussed above. However, the propagation of the activate messages is simplified
with respect to the WiTree case. The first hop of the activate is, in fact, not
necessary as the message would be sent from each of the failed node’s children to
itself. Consequently, each of the failed node’s children only forwards an activate

message containing the set P2 to the other endpoint of the new link. It then uses
the set P1 locally to avoid propagating unnecessary unsubscriptions to the other
endpoint.

With reference to the figure, the set P1 allows node C to prevent the propaga-
tion of the subscriptions S1 and S2 to dispatcher D, while the corresponding set
P2, allows D to prevent the propagation of S3 to dispatcher C. As a final note,
we observe that timeouts and flush messages are managed as they would in the
normal operation of the Informed Link Activation protocol except that no
timeout is clearly triggered at the failed node.

The outlined reasoning allows the Informed Link Activation protocol to
be integrated with LSTree without modifying the overlay. However, it is worth
pointing out that the association between new and old links suggested by the
LSTree protocol is not always perfect. Figure 14.2(b) shows a situation in which
the link to dispatcher B is replaced by a new one from B to C. In this case, the
set P2 contained in the activate sent from C to D allows D to propagate an
unnecessary subscription along the new link. Subscription S2 is not contained
in P2, and is therefore unnecessarily propagated to C and then removed at the
expiration of the timeout.

This situation arises when the LSTree protocol recovers a failure starting from
the Sibling Set. However, as we pointed out in Section 10.4, candidate parents are
often chosen among the ancestors of failed nodes or among their (downstream)
neighbors. As a result, the propagation of unnecessary subscription generally
remains limited. Nevertheless we are currently investigating smarter ways to
associate new and old links thus increasing the performance of Informed Link

Activation over the LSTree protocol.

14.3 Integrated Simulation Framework

A significant part of our research efforts was devoted to a careful simulation of
the behavior of our protocols, both to evaluate their individual performance and
to understand their interaction when applied together. The product of our work,
however, is not limited to the performance results we obtained but it also includes
a simulation framework that can be exploited to evaluate the performance of our
middleware in a broad range of scenarios. Middleware designers can exploit this
framework to evaluate the performance of protocols for the overlay, routing and
also for the event-recovery layer, integrating the work presented in this thesis.
Similarly, application developers can evaluate the performance of applications
built on top of our middleware without deploying them into a real large-scale
test-bed.
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Figure 14.3: Architecture of the integrated simulation environment.

The basis for our simulation framework is OmNet++ [95], an open-source
discrete-event simulation environment, successfully used by several researcher
to model communication networks, complex IT systems, queueing networks and
hardware architectures. An OmNet++ simulation consists of set of interacting
components called modules. These components can be programmed in C++ and
assembled together into larger components to facilitate the reuse of previously
programmed modules in new simulation studies.

According to OmNet++’s philosophy our simulation framework also exhibits
a component-based architecture. Each of the protocols presented in the thesis is
implemented as an independent module or as a combination of modules. In both
cases, protocol modules specialize abstract module components. This allows us
to define two generic components representing a wired or a wireless mobile host.

Figure 14.3 depicts a high-level architectural view of the simulation frame-
work. The lowest level consists of the OmNet++ core library and the Mobility
Framework used in the simulations of mobile ad hoc networks. The three layers
on its top, instead, constitute our integrated simulation architecture. The small
boxes within each layer represent the protocols implemented in the simulator,
while the big vertical boxes spanning all the layers show the components used
in the wired and wireless versions of the simulator. In the following, we provide
a brief description of the layers in this architecture, pointing out which of the
modules are used in wired and/or in wireless simulations.

Transport and Network Layer The lowest level of our simulation architec-
ture enables communication between the hosts in our distributed application. The
simulator includes two version of this communication layer: one for wired and one
for wireless networks. The version for wired networks consists of a simple com-
munication module that simulates transmission and propagation delays between
the hosts in the network. The version for wireless networks, on the other hand,
is based on Omnet++ Mobility Framework.
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In both cases, the communication layer implements a reliable communication
primitive. In the wired case, all messages are exchanged using reliable TCP
channels, while in wireless networks communication is achieved with a mixture of
reliable and unreliable communication. Subscriptions, unsubscriptions and some
of the overlay messages are propagated using reliable one-hop communication,1

while events are propagated with unreliable one-hop broadcast.

The Overlay Layer The overlay layer is responsible for maintaining connec-
tivity among the components of the distributed event dispatcher. Each of the
modules in this layer implements a specific topology maintenance protocol. In
the current version, the simulator incorporates an implementation of LSTree, as
well as an implementation of WiTree, the topology maintenance protocol for Mo-
bile Ad Hoc wireless Networks presented in [67] and described in Section 14.1.2.

The routing layer The routing layer consists of an abstract routing compo-
nent, the Event Dispatcher, specialized according to the routing and reconfigu-
ration strategy adopted in the simulation. The use of this abstract component
representing a node of a generic distributed event dispatcher enables the integra-
tion of different routing strategies without recompiling the simulation code.

In its current version, the framework includes two direct specializations of
this component: a subscription forwarding dispatcher that can be used both in a
wired and in a wireless setting and a broadcast-based structure-less event-flooding
dispatcher that serves as a baseline for comparison in the wireless setting. The
subscription forwarding dispatcher is further specialized in three reconfigurable
solutions corresponding to the three reconfiguration protocols we consider in this
and the following chapters: Strawman, Timed Deferred Unsubscription,
and Informed Link Activation.

Observer Modules Alongside the protocol stack described above, the simula-
tor incorporates a set of modules responsible for recording relevant data during
the simulation. These monitoring components provide the basic mechanism to
evaluate the performance of our protocols by measuring overhead, event delivery,
latency and so on. In addition, they constitute a useful tool during the devel-
opment of new protocol modules. Possible uses include checking the system for
inconsistencies, performance bottlenecks, and other potential problems.

1We assume no underlying routing protocol in the wireless case.
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FIFTEEN

Evaluation in P2P Scenarios

In this chapter we present the first part of our integrated evaluation carried out
using the framework described in Section 14.3. We consider a large scale peer-to-
peer scenario with nodes that join and leave the network at arbitrary times and
assess the performance of our routing reconfiguration and overlay maintenance
protocols. The chapter is structured as follows. Section 15.1 introduces our simu-
lation setting and motivates our choices for the simulation scenarios. Section 15.2
presents the results we obtained, and Section 15.3 concludes the chapter with
some concluding remarks.

15.1 Simulation Setting

The scenarios used in the simulations presented in this chapter are obtained from
a combination of the scenarios we considered in Chapter 7 for our routing re-
configuration protocols, with the Gnutella scenario [53] we used in Section 10.4
to evaluate our LSTree protocol. As a result, the configuration of the LSTree
protocol is the same as that used in Chapter 10.4, while the configuration of our
routing protocols has been adapted to match the time required by the LSTree
protocol to reconnect a broken overlay.

In the following we first report a summary of the most relevant overlay pa-
rameters, and then presents the parameters we used for our overlay protocols.
Finally, we describe the set of scenarios we considered in our simulation study.

Overlay Configuration The overlay maintenance protocol is configured to
maintain a connected overlay topology characterized by a maximum node degree
of 5 and without any limit on the minimum node degree (RDGM instance). The
length of the upstream chain is set to 3, while the probability of choosing an
ancestor versus a sibling from the Regional cache is set to 0.5. The size of the
Global Cache is set to a maximum of 10 references to nodes, while the number
of references for the Downstream cache in refusal messages is set to 3. Periodic
updates to the global cache are done every 250s, with nodes propagating the
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contents of their cache to 2 neighbors at random. Nodes receiving these cache
updates re-propagate them with a probability of 0.3.

Routing Configuration According to what we mentioned in Chapter 14 both
our optimized protocols are configured to operate without flush messages. This
means that they rely only on timeouts to trigger the propagation of unsubscrip-
tions as well as of tagged subscriptions in the case of Informed Link Activa-

tion. Clearly, the values of these timeouts must be configured according to time
required by the overlay protocol to reconnect the tree after a failure.

In Chapter 7, reconnection is always achieved within 0.1s and both timeouts
are configured to the value of .15s. For the simulations in this chapter, we mea-
sured that the LSTree protocol is able to reconnect the overlay within 1s in 85% of
the cases; as a result, we opted for timeout values of 1.5s both for the Subscription
and the Unsubscription timers.

Simulation Scenarios As previously mentioned, the simulation scenario con-
sist of a combination of the Gnutella scenario of Section 10.4, with an adaptation
of the routing scenarios used in Chapter 7. In the following we describe the
characteristics of this aggregate scenario and motivate the most relevant choices.

The peer-to-peer network is built by extracting a random subset of nodes from
the trace files provided by the authors of [53]. This allows us to vary the scale of
the system from a minimum of 100 to a maximum of 2700 nodes simultaneously
awake in the system. As a reference point when varying the other parameters,
we consider networks with approximately 270 nodes corresponding to 10% of the
nodes in the Gnutella trace.

Unless otherwise specified 20% of the nodes in the system express interest
in receiving events. To maintain a fairly constant number of subscribers despite
nodes joining and leaving, each node is allowed to subscribe with a probability
corresponding to the desired percentage of subscribers. Each subscriber subscribes
exactly to 7 patterns chosen from a set of 400. This allows us to simulate large-
scale systems without saturating the set of patterns too soon.

All the nodes in the system are allowed to publish events with frequencies
ranging from a 15 to 3000 published events per minute in the whole system.
Each events is configured to match a maximum of 40 patterns. This, combined
with a subscriber density of 20%, results an average of 10% of the nodes being
interested in each event. Finally each measured simulation interval consists of
7200 simulated seconds.

15.2 Simulation Results

We present our simulation results in three steps. First we analyze the performance
of our routing reconfiguration protocols on top of the LSTree overlay. Second,
we relate their performance improvements to the cost of overlay maintenance.
Finally, we relate these improvements with event notifications, comparing the
advantages obtained by the optimized protocols with the fixed cost for the delivery
of events to interested subscribers.
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15.2.1 Routing Reconfiguration

The first step in our integrated evaluation is the analysis of the performance of our
routing protocols. While this may seem a repetition of the analysis presented in
Chapter 7, our evaluation highlights significant differences from the data gathered
in such setting. The results in Chapter 7 are obtained using random topology
changes that replace a link between two nodes with a new link between two other
nodes chosen at random. The results in this section, on the other hand, consider
the behavior of the reconfiguration protocols in response to the topology changes
induced by the LSTree overlay management mechanisms.

The relevance of these differences is twofold. First, they confirm that the
performance of our protocols is dependent on the specific overlay maintenance
strategies. Second, they validate the efficacy of LSTree and show its ability to
enhance the performance of our reconfiguration protocols.

Our analysis is presented in three steps. First we evaluate the protocols’
performance with a variable system scale. Second we assess the impact of the
density of subscribers and finally we observe how the protocols are affected by
different rates of publications.

Throughout this Section 15.2.1, the results shown in the plots include subscrip-
tions unsubscriptions and control messages exchanged by routing reconfiguration
protocols. However they do not include the control messages exchanged at the
overlay layer as these are examined later, in Section 15.2.2.

Performance with Variable System Scale

Figure 15.1 shows the results obtained when the scale of the system varies between
100 and 2300 nodes. The left plot shows the percentage improvement obtained
by Timed Deferred Unsubscription and Informed Link Activation over
Strawman, while the right plot shows the unit cost of each reconfiguration ex-
pressed as the number of messages exchanged to reconfigure routing information.

The first observation we can make by examining the plot in Figure 15.1(a)
is the difference in the relative performance of the two optimized protocols with
respect to the data presented in Chapter 7. In our evaluation of routing pro-
tocols, Informed Link Activation achieved a 70% performance improvement
over Strawman in a scenario with sparse subscribers and a low event load corre-
sponding to the one in Figure 15.1(a), while the performance of Timed Deferred

Unsubscription was lower, with only a 50% improvement in the same scenario.
The plot in Figure 15.1(a), however, shows a very different behavior. The

performance of the Timed Deferred Unsubscription protocol is higher with
a 60% improvement over Strawman, but most notably the Informed Link

Activation protocol is almost unable to go over the performance of Timed

Deferred Unsubscription. The reason for this seemingly weird behavior lies
in the combination of the two protocols with our overlay manager.

The improvements obtained by Informed Link Activation over Timed

Deferred Unsubscription in Chapter 7 derive from its ability to avoid the
propagation of unnecessary subscriptions by recognizing the patterns used only
to route events over removed links. This mechanism is a generalization of the opti-
mization carried out by all the optimized protocols, including Timed Deferred
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Figure 15.1: Improvement over Strawman and cost per reconfiguration as system
size increases.

Unsubscription, whenever a dispatcher is an endpoint of both a new link and
the corresponding vanished link. In such cases, all the optimized protocols behave
in the same manner and avoid propagating the subscriptions directed towards a
broken link.

The optimization applied by Informed Link Activation is therefore only
relevant in cases where the endpoints of new and old links differ, a rare situation
when the LSTree protocol is used. This protocol, in fact, explicitly chooses the
new links to repair a failure with the objective of minimizing reconfiguration cost.

Specifically, LSTree always tries to repair failures regionally by connecting the
downstream neighbors of a failed node to the failed node’s ancestors or to each
other. This means that the first endpoint of a newly added link always coincides
with one of the endpoints of a vanished link. Moreover, even the second endpoint
of a new link is likely to be a neighbor of the failed node and thus an endpoint of a
corresponding vanished link. The net effect, therefore, is that Timed Deferred

Unsubscription is able to apply its “shared dispatcher” optimization in the
vast majority of the cases, operating exactly as the Informed Link Activation

protocol in terms of propagated subscriptions and unsubscriptions.

When connections are made to nodes that are not among the failed node’s
neighbors, the Informed Link Activation protocol is able to carry out its
optimization and to reduce the number of unnecessary subscriptions. However, it
does so by propagating an activate message containing a potentially very large
number of event patterns. In the scenarios of Chapter 7, this activation message
prevents the propagation of a large number of subscriptions for a large number
of hops. In the present setting, however, the resulting improvement is insufficient
to outweigh the cost of the activate message.

The reason is that the LSTree protocol is able to minimize the length of the
reconfiguration path1 in a vast majority of cases. As a result the unnecessary
subscriptions of Timed Deferred Unsubscription propagate only for a shorter
distance, making the improvements achieved by Informed Link Activation

1More properly, the size of the reconfiguration area.
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Figure 15.2: Improvement over Strawman and cost per reconfiguration as density
of subscribers increases.

almost negligible.
The net effect of these interactions is an increase in the overall performance

of Timed Deferred Unsubscription and a corresponding decrease in the per-
formance of Informed Link Activation due to the higher relative cost of its
activate messages. These results confirm that we achieved our goals in the de-
sign of the LSTree protocol, improving the overall efficiency of the reconfiguration
process.

Effect of Subscriber Density

The second aspect we consider in our integrated evaluation is the effect of the
density of subscribers on the relative performance of our routing reconfiguration
protocols. In Figure 15.2, we present the results obtained with a fixed network
size of 270 nodes and a variable density of subscribers ranging from 5% to 100%.

The data depicted in Figure 15.2(a) confirms the behavior already outlined
in the observations we made in Chapter 7. The improvement achieved by our
optimized protocols over Strawman is greatest when subscribers are sparse be-
cause subscriptions and unsubscriptions propagate for longer distances on the
tree. The optimized protocols manage to limit this propagation by anticipating
the subscription phase, while Strawman incurs in a very high cost associated to
the propagation of unsubscriptions followed by subscriptions to very large portions
of the tree.

In addition, the plot in Figure 15.2(b) shows another very interesting aspect.
The unit cost of reconfiguration has a maximum when the density of subscribers
is around 40%. When the density of subscribers is low, the total number of
patterns in the system increases with the density of subscribers. The maximum
is reached when the tree starts becoming dense with subscriptions for the same
pattern. When this happens, adding a new subscriber has the effect of reducing
the propagation of subscription messages as pointed out in the observations in
Section 5.2.

Interestingly, the concavity of the unit cost of reconfiguration is most evident
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Figure 15.3: Improvement over Strawman and cost per reconfiguration as the
frequency of publications increases.

in the Strawman protocol. This is because the optimized solutions already
benefit from the increased density of subscribers resulting from the propagation
of subscriptions before to unsubscriptions.

Impact of Publish Rate

The next parameter we consider is the frequency of event publications and its
effect on the reconfiguration of routing. In Chapter 7, we observed that the
Timed Deferred Unsubscription protocol was negatively affected by very
high event loads due to the impact of misrouted events.

In this section we set the size of the system to approximately 270 nodes, the
density of subscribers to 20%, and we vary the event load from a minimum of
15 publish operations per minute in the overall system to a maximum of 500.
These rates are obtained with all the nodes in the system acting as publishers;
nevertheless the same values can be obtained with fewer publishers each with a
higher publish frequency. It is worth observing that while these values are lower
than the extreme ones considered in Chapter 7, they represent realistic situations
in peer-to-peer environments.

The plots in Figures 15.3(a) and 15.3(b) show that at the considered publish
rates, the cost of reconfiguration is almost unaffected by the frequency of publi-
cations. The cost for forwarding misrouted events is much lower than the cost
for forwarding subscriptions, unsubscriptions and control messages. For exam-
ple, with 500 publish operations per minute in the system, Timed Deferred

Unsubscription propagates less than 5 misrouted events per reconfiguration.
This is primarily due to the event load considered in Figure 15.3, but is also a
consequence of the short reconfiguration path determined by the LSTree protocol.

15.2.2 Routing Reconfiguration Versus Overlay Maintenance

Up to this point we have concentrated on the performance of our routing reconfig-
uration protocols to understand their behavior when deployed on top of LSTree.
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Figure 15.4: Routing versus overlay cost with increasing network size and sub-
scriber density.

However, the traffic generated by these protocols is not the only relevant compo-
nent in determining the cost of reconfiguration. The LSTree protocol itself must
exchange messages to maintain a connected overlay in the presence of failures.

In this section, we address this issue and relate the cost of reconfiguring routing
information with the cost associated to the LSTree protocol. In this comparison,
however, we cannot directly relate the number of messages exchanged by the two
protocols. The messages exchanged by LSTree are in fact very diverse and can
range from empty ICMP packets to digests containing information on possibly
large sets of nodes.

As a result, in the following, we assign a cost to each message according to
the size of the data it contains. For example, a message containing four node
identifiers is assumed to be 16 bytes large plus the size of TCP headers, assuming
that each node identifier consist of an IP address.

While this evaluation is easy for overlay messages, the size of the messages
exchanged by the routing protocols is dependent on the specific application using
the middleware. In the following, we adopt a size of 30 bytes plus headers for
events, subscriptions and unsubscriptions.

Figure 15.4 depicts the composition of overhead in two of the situations con-
sidered in the previous section: variable scale, and variable density of subscribers;
variable publish rate is not shown due to the negligible impact of misrouted events.
In all cases, the cost for the maintenance of routing information is a lot larger
than the cost associated to overlay maintenance. On the one hand, this con-
firms the efficiency of our LSTree protocol; on the other hand, it motivates the
optimizations carried out by the routing reconfiguration layer.

15.2.3 Impact of Optimized Protocols

The data we just presented confirms the results described in the first two parts of
this thesis. Both the optimized routing reconfiguration protocols and the LSTree
overlay maintenance layer effectively manage to reduce the overall traffic gener-
ated by reconfigurations by a significant amount. In this section, we compare
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Figure 15.5: Reconfiguration cost versus event traffic in a simulation run.

the improvements achieved by our protocols with the total cost of disseminating
events.

The first observation we can make is that our protocols will most likely have
a greater impact in situations with very restrictive event patterns. In such cases,
event traffic is reduced to a minimum and the reconfiguration of routing infor-
mation, if not carried out properly, may significantly increase the cost of the
system. Our optimizations, however, are also relevant in scenarios characterized
by a higher event traffic even when the total number of event notifications is much
larger than the total number of subscriptions and unsubscriptions.

To assess this relevance, we must compare the cost of routing reconfigurations
and the cost of event delivery in a meaningful way. If we were to consider the total
number of messages exchanged in an arbitrarily long period of time, we would
wrongly conclude that the impact of reconfiguration over the traffic generated
by the system is minimal. One could argue that the cost of event routing is
generally larger than the cost of a single reconfiguration, also by virtue of the short
reconfiguration path determined by the LSTree protocol. However, the traffic
associated to events is generally a constant component that is always present
while the system is operating. Reconfiguration, on the other hand, occurs in
bursts and generates traffic only when the topology changes as a result of a node
joining or leaving the system. As a result, the total number of messages in a given
time period provides a misleading measure.

A better way to measure the impact of our protocols is to evaluate how traffic
varies with time. In Figure 15.5 we compare the traffic associated to reconfigu-
ration, i.e. routing plus overlay, with the traffic associated to the dissemination
of event notifications at several publish rates in a network of 270 nodes with
10% receivers per event. Clearly the cost of event dissemination increases as the
frequency of publications increases. Nevertheless, the spikes associated to the
Strawman solution correspond an even higher traffic, albeit for a limited period
of time, with publish rates up to 3200 events per minute in the system.

Figure 15.6 shows a closeup view of the same situation. The plots clearly
show that our optimized solutions can significantly improve the performance of
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Figure 15.6: Reconfiguration cost versus event traffic in a 5 minute period.

the middleware in large-scale peer-to-peer scenarios. In a peer-to-peer setting,
middleware nodes are likely to be deployed on home users’ computers equipped
with large but not unbounded bandwidth. A solution like Timed Deferred

Unsubscription, allows these systems to achieve reconfiguration with only a
minimal impact on the overall traffic, thereby enhancing the overall performance
of the middleware.
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15.3 Concluding Remarks

In this chapter we presented an integrated evaluation of our LSTree and routing
reconfiguration protocols. Results confirm the ability of the LSTree protocol
to reduce the cost of reconfiguration by localizing topology changes to a very
small region of the overlay. This allows the Timed Deferred Unsubscription

protocol to improve its performance to the point of being preferable to the more
complex Informed Link Activation solution.

Overall, the two optimized protocols achieve significant improvements over
Strawman by reducing the traffic associated to the reconfiguration. In the near
future, we plan to confirm these promising results with a real test-bed implemen-
tation to be deployed on standard personal computers and even on bandwidth-
constrained devices in a peer-to-peer setting.



CHAPTER

SIXTEEN

Evaluation in MANETs

In this chapter we present the second of our integrated evaluations. We consider
the deployment of content-based publish-subscribe middleware in a MANET en-
vironment by combining our routing reconfiguration protocols with the WiTree
overlay manager.

The characteristics of mobile ad hoc networks represent a challenge for the
development of effective communication middleware. The mobility of hosts and
the unreliability of the wireless medium clash with the assumptions made in tra-
ditional middleware development. For this reason, most solutions for communi-
cation in MANET’s depart from a traditional routing approaches and propose
a communication based on epidemic algorithms or other unstructured routing
strategies.

The protocols presented in this thesis, however, enable an efficient reconfigu-
ration of routing information even in networks characterized by frequent topology
changes. This motivates our study of mobile wireless networks as a scenario that
can greatly benefit from the solutions presented in this thesis.

The goal of the evaluation presented in this chapter is twofold. On the one
hand we aim to validate our optimized routing reconfiguration protocols in a
further scenario. On the other hand, we aim to assess the effectiveness of tree
based content-based routing in the context of wireless network.

The chapter is structured as follows. Section 16.1 introduces our simula-
tion setting and motivates our choices for the simulation scenarios. Section 16.2
presents the results we obtained, and Section 16.3 concludes the chapter with
some concluding remarks.

16.1 Simulation Setting

Our reference simulation scenario consists of a network of mobile nodes arranged
in a square area of 1 square kilometer. We assume a free space radio propagation
model. Nodes have a communication range of 200m obtained from standard values
for carrier sense and receiving thresholds. They move according to a random
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waypoint mobility model [60], with a pause time of 5 seconds and a speed of
1m/s unless otherwise specified.

The wireless network consists of 50 nodes, all acting as event publishers. In
addition, 20% of the nodes issue subscriptions to 7 event patterns chosen from
a set of 96 available patterns. Each generated event matches a maximum of 9
patterns yielding an average number of receivers per event corresponding to 10%
of the nodes in the network.

In our tests we vary this scenario by individually changing each of the above
parameters. First we vary the number of nodes from 10 to 100; then we vary
the percentage of subscribers from 5% (2% of nodes receiving each event) to
100% (50% of nodes receiving each event); then we vary node speed from 0.2 to
2m/s; and finally we vary the frequency of publications from a minimum of 1
to a maximum of 300 publish operations per second in the entire system. Each
simulation run consists of 400 simulated seconds comprising 200s of setup time
and a 200s measured interval.

Our reconfiguration protocols are configured according to the characteristics
of the WiTree overlay manager. Specifically, WiTree requires a minimum time of
1s to reconnect the overlay and generally requires less than 1.5 seconds: conse-
quently, we set both the Subscription and Unsubscription timeouts to 2s for both
reconfiguration protocols.

16.2 Simulation Results

Similarly to what we did in Chapter 15, we present our simulation results in three
steps. First we analyze the performance of our routing reconfiguration protocols
on top of the WiTree overlay. Second, we relate their performance improvements
to the cost of overlay maintenance. Finally, we address the performance of our
approach as a whole and compare it to the performance of Event Flooding.

16.2.1 Routing Reconfiguration

The first step in our integrated evaluation is the analysis of the performance of
our routing protocols. Our results are presented in two steps. First we address
the performance of our protocols with a variable number of network nodes and
then we analyze their behavior with variable node speed.

Varying the Number of Nodes

Our first set of measurements examines the behavior of our routing reconfiguration
protocols as the number of nodes in the simulation area varies from a minimum
of 10 nodes to a maximum of 100.

The results depicted in Figure 16.1 show that differently from the wired case
(Chapter 15), the improvements of Informed Link Activation play a more
significant role and the protocol is able to outperform Timed Deferred Unsub-

scription although by a less significant amount than in the results of Chapter 7.
The reason for this behavior lies in the approach to reconfiguration adopted

by WiTree, which causes it to repair the tree with a longer reconfiguration path
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Figure 16.1: Improvement over Strawman and cost per reconfiguration as the
number of nodes in the system increases.

than the LSTree protocol used in the wired setting. Moreover in WiTree, the
endpoints of old and new links coincide much more rarely than in the case of
the LSTree protocol. This prevents Timed Deferred Unsubscription from
applying its “shared dispatcher” optimization and increases the importance of
the improvements provided by the Informed Link Activation solution.

The plot in Figure 16.1(a) shows that both our optimized protocols perform
consistently better than Strawman, except in the case of very small networks
where only Informed Link Activation is able to perform better. In addition,
the improvement of both protocols increases with the number of nodes in the
network because the unnecessary subscriptions and unsubscriptions propagated
by Strawman can travel for longer distances.

Figure 16.1(b) highlights this aspect even better by showing the different ways
in which Strawman and our optimized protocols scale with an increasing number
of nodes. While the overhead of Strawman increases steadily, the cost of our
optimized protocols remains almost constant due to their ability to limit the
propagation of unnecessary messages.

Varying the Speed of Nodes

Our second set of measurements evaluates the performance of our protocols with
variable node speed. The result of an increase in node speed is clearly an increase
in the frequency of reconfiguration as well as in the difficulty of reconnecting the
topology when a link fails.

The results in Figure 16.2 show that the improvement achieved by our pro-
tocols over Strawman remains almost constant as node speed varies. At very
low speeds, Timed Deferred Unsubscription performs better because of the
WiTree protocol manages to reduce the length of the reconfiguration path; as
speed increases up to 1.8m/s, however, the optimizations exploited by Informed

Link Activation allow it to achieve a better overall performance. Finally, at
2m/s, the two protocols tend to converge to the same performance. In this case,
the overlay manager may take longer to reconnect the tree, causing the subscrip-
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Figure 16.2: Improvement over Strawman and cost per reconfiguration as node
speed increases.

tion timeout of Informed Link Activation to elapse too soon. We believe that
additional improvements can be achieved by enabling the protocol to adjust its
timeouts dynamically according to the characteristics of the scenarios.

A final observation results from the analysis of the plot in Figure 16.2(b).
The unit cost of reconfiguration tends to decrease as speed increases. This is
because the higher frequency of reconfiguration causes several links to break si-
multaneously, thereby limiting the propagation of unnecessary subscriptions and
unsubscriptions.

16.2.2 Routing Reconfiguration versus Overlay Maintenance

The second piece of our wireless evaluation compares the cost of reconfiguring
routing information with the cost for the maintenance of the overlay. In Chap-
ter 15, we showed that in the wired case, the cost of routing reconfiguration is by
far more significant than that associated to overlay maintenance. In this section,
we show that the situation is different in a wireless setting.

Similarly to what we did in the wired case, we compare the costs of the two
protocols by weighting their messages according to their sizes. In the case of
overlay messages we determine size according to message content, while in the case
of routing messages we assume a size of 30 bytes plus headers for subscriptions,
unsubscriptions and events.

The plots in Figure 16.3 show how the cost for each reconfiguration varies
as the number of nodes in the network (left), or their speed (right), increases.
Results show that mobility and the need to discover routes by flooding the network
with request messages make the maintenance of a connected overlay in wireless
networks a challenging and demanding task. With reference to the left plot, we can
observe that the costs per reconfiguration of both overlay maintenance and routing
reconfiguration are almost unaffected by the scale of the system. On the other
hand, maintaining the overlay is more expensive when mobility is low as shown
in Figure 16.3(b). The reason is that a significant portion of the traffic generated
by the WiTree protocol is determined by the group hello messages broadcast by
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Figure 16.3: Routing versus overlay cost for a single reconfiguration with an
increasing number of nodes and with increasing node speed.

group leaders to keep group membership information up to date. When speed
is high, this traffic is amortized over a large number of reconfigurations, whereas
when speed is low, this traffic almost becomes a useless burden.

This suggests two ways to improve the WiTree protocol. On the one hand, the
frequency of GRPH messages could be varied according to the mobility patterns
of nodes. On the other hand, techniques from the LSTree protocol such as real-
valued depth could be used to limit the need to propagate GRPH messages,
thereby reducing the overall cost of overlay maintenance.

16.2.3 Comparison with Flooding

The final step in our evaluation aims to assess the validity of our approach to
content-based routing in mobile ad hoc networks. As we mentioned previously,
most communication solutions for MANETs exploit an unstructured approach to
routing due to the inherent difficulty of maintaining correct routing information.

In this section, however, we show that a structured approach can achieve good
results in wireless scenarios characterized by a low degree of mobility. Our speeds
of 0.2m/s to 2m/s may correspond to the speed of people walking or to the speed
of robots moving in a disaster recovery scenarios. In such cases, a tree-based
routing approach results in a good delivery ratio with only a small fraction of the
cost of flooding.

In the following, we present our measurements obtained in three different
scenarios: with a variable number of nodes, with variable node speed and with a
variable event load. In all three cases, we plot the delivery rate of our approach as
well as its cost and compare it to the delivery and cost of broadcast-based event
flooding.

Variable Number of Nodes

Figure 16.4 shows the results obtained with a varying number of nodes. Again,
the plots show that the cost associated to our tree-based approach is significantly
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Figure 16.4: Delivery rate and total cost of the protocols with an increasing
number of nodes.

better than that cost associated to flooding. This more and more evident as the
number of nodes increases.

In addition, the plots show that the optimized reconfiguration protocols also
achieve a significant improvement with respect to Strawman both in terms of
delivery rate and cost. While Strawman, reaches a top delivery rate of 70%, both
Timed Deferred Unsubscription and Informed Link Activation manage
to deliver up 85% of events to the correct recipients.

The reason for the better delivery rate is again related to the propagation
of subscriptions before unsubscriptions. The unnecessary unsubscriptions propa-
gated by strawman cause a temporary disruption of event routes that are instead
kept in place by both optimized solutions. Clearly, none of the protocols is able
to reach the performance of flooding in terms of delivery; nevertheless, the appli-
cability of the flooding approach is limited by its inherent communication cost.

Variable Node Speed

Our next set of measurements evaluates the performance of our protocols with in-
creasing node speed. According to intuition, the ability to delivery events is nega-
tively affected by increased node mobility. Nevertheless, our Informed Link Ac-

tivation and Timed Deferred Unsubscription protocols are able to achieve
an 80% delivery rate even with nodes moving at 2m/s.

The delivery of Strawman, on the other hand, drops at a faster rate and is
associated to a higher communication cost. While the traffic generated by In-

formed Link Activation and Timed Deferred Unsubscription remains
almost constant with increasing speeds, the traffic generated by Strawman in-
creases more rapidly, with the protocol generating half the messages of flooding
at only 1.4m/s
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Figure 16.5: Delivery rate and total cost of the protocols with increasing node
speed.
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Figure 16.6: Delivery rate and total cost of the protocols with increasing event
loads.

Variable Event Load

The final set of measurements we present is carried out with fixed speed and
number of nodes and with a variable event load. According to expectations, a
higher event load limits the ability of our protocols to deliver events correctly
because of the higher number of collisions between packets.

The impact of collisions is visible from the fact that even the delivery of event
flooding is negatively affected by high publish rates. Indeed, the difference in
performance between our protocols and flooding remains almost constant. This
suggests that the lower delivery associated to our protocols is more related to
the inherent fragility of a tree-based routing approach than to the disruption of
event routes during reconfigurations. For this reason, we are planning to improve
our protocols by integrating epidemic dissemination strategies to increase their
ability to route around temporary route failures resulting from the unreliability
of wireless communication.
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The plot in Figure 16.6(b) motivates these improvements even further by show-
ing that the savings of our protocols in terms of total traffic increase significantly
as the number of published events increases. While event flooding delivers all
events to all network nodes, our protocols effectively manage to reduce traffic by
contacting only a small number of nodes in addition to the intended recipients.

16.3 Concluding Remarks

The results presented in this chapter confirm the validity of the routing reconfigu-
ration protocols developed and presented in this thesis. Both Timed Deferred

Unsubscription and Informed Link Activation significantly reduce the cost
of event delivery both with respect to flooding and with respect to the naive
Strawman solution.

Moreover, our optimized protocols significantly improve the delivery rate of
Strawman, showing that tree-based routing is an effective solution in mobile ad
hoc networks when the speed of nodes remains within reasonable limits. Clearly,
we aim to investigate this solution to content-based routing in MANET to a
further extent both to improve its delivery rate and to reduce its cost in terms of
communication.



Conclusions

The publish-subscribe communication model is enjoying increasing popularity,
both in research and in industry. In this model, application clients interact by
publishing events and by subscribing to the classes of events they are interested
in. Content-based systems provide a higher level of flexibility by allowing clients
to specify these classes using linguistic facilities to match a pattern against event
content.

While a number of content-based publish-subscribe systems are available, ex-
isting research efforts have mainly focused on scalability realizing the event dis-
patcher by means of a distributed architecture, composed of dispatching servers
interconnected through an overlay network. These implementations, however, al-
most always fail to address issues like the dynamicity of the underlying network
infrastructure.

In this thesis, we addressed this problem and presented a complete approach
to the reconfiguration of content-based publish-subscribe systems. We defined an
architecture for reconfigurable publish-subscribe middleware and proposed a set
of new protocols for the management of the overlay and routing layers in scenarios
characterized by highly dynamic topologies.

In our work, we first addressed the routing layer as routing is the defining
problem in content-based publish-subscribe. Specifically, we presented a set of
new reconfiguration protocols to manage the routing information enabling correct
delivery of events to subscribers. When the overlay changes as a result of nodes
joining or leaving the network or as a result of mobility, this information must
be updated so that routing can adapt to the new environment. Our protocols
manage to achieve this with as little overhead as possible.

We then addressed the overlay layer and proposed two novel approaches for
building and maintaining a connected topology in highly dynamic network scenar-
ios. Our protocols correctly achieve this goal, while at the same time managing
node degree and keeping reconfigurations localized when possible. These prop-
erties make our overlay managers promising solutions not only in the context of
publish-subscribe middleware but also as enabling technologies for other commu-
nication paradigms like application-level multicast.

The final part of our work consisted of an integrated evaluation of the overlay
and routing layers both in wired and in wireless scenarios. Our results first show
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that the optimizations provided by our routing reconfiguration protocols allow
the middleware to achieve very good performance in such dynamic networks. In
addition, they show that our overlay layer is able to optimize this performance
even further by significantly reducing the network traffic generated by the routing
layer.

The final outcome of our evaluation is therefore that efficient publish-subscri-
be middleware for dynamic network environments is achievable. The protocols
presented in this thesis are implemented in the REDS middleware framework de-
veloped by our research group. The good performance achieved in our simulations
suggests that REDS can be used to implement scalable distributed applications
in large scale dynamic environments. Further research is ongoing to evaluate its
performance in this type of real-world applications.
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