N

N

Un environnement cadre pour la gestion de modeles
hétérogenes en ingénierie systeme

David Simon-Zayas

» To cite this version:

David Simon-Zayas. Un environnement cadre pour la gestion de modeéles hétérogenes en ingénierie
systeme. Autre. ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d’Aérotechique - Poitiers,
2012. Francais. NNT: . tel-00740161

HAL Id: tel-00740161
https://theses.hal.science/tel-00740161v1
Submitted on 9 Oct 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00740161v1
https://hal.archives-ouvertes.fr

o) Ecole Nationale Supérieure de Mécanique et d’Astatique ;.
@ . Laboratoire d’Informatique et d’Automatique pous lBystémes .\
Ot b T, A

THESE

pour I'obtention du Grade de

DOCTEUR DE L'ECOLE NATIONALE SUPERIEURE DE
MECANIQUE ET D'AEROTECHNIQUE

(Faculté des Sciences Fondamentales et Appliquées)
(Dipléme National — Arrété du 7 ao(t 2006)

Ecole Doctorale : Sciences et Ingénierie pourdiimfation, Mathématiques
Secteur de Recherche : INFORMATIQUE ET APPLICATION
Présentée par :

David Simon Zayas
kkkkkkkkkkkkkkkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkk

A framework for the management of heterogeneous
models in Systems Engineering

kkk

Directeur de ThéseYamine AIT-AMEUR
Co-directeur de TheseAnne MONCEAUX

kkk

Soutenue le 8 Juin 2012
devant la Commission d’Examen
B R D D D T R T P T P T P T T TS P Y

JURY
Rapporteurs :
Frédéric BONIOL Maitre de recherche, ONERA, Toulowse
Parisa GHODOUS Professeur, Université Claude Bermd Lyon |, Villeurbanne

Examinateurs :

Yamine AIT-AMEUR Professeur, INPT-ENSEEIHT/IRIT, To ulouse
Ladjel BELLATRECHE Professeur, ENSMA, Futuroscope

Anne MONCEAUX Docteur, Chef de Projet, EADS IW, Tailouse
Mourad OUSSALAH Professeur, CNRS, Nantes

Romaric REDON Docteur, Responsable d'Equipe, EAD8V, Toulouse

AAurélie, Matt i la panxeta. Us estimo molt.

Remerciements

En préambule a ce mémoire, je souhaitais adresseremerciements aux personnes qui
m’ont apporté leur aide et qui ont ainsi contriBu&laboration de ces travaux.

Je tiens a remercier sincérement mes directeurthés®e, Yamine Ait-Ameur et Anne
Monceaux, qui se sont toujours montrés a I'écouteligponibles au cours de ces trois
dernieres années. Sans leurs conseils aviséanfes tqu'ils ont bien voulu me consacrer et
leur soutien, cette these n’aurait jamais abouti.

Mes remerciements s’adressent également aux anéedres de mon comité de pilotage,
Christian Benac, Romaric Redon et Christian Tringupour leurs appréciations et leurs sages
recommandations.

Je remercie Frédéric Boniol et Parisa Ghodous puotavoir fait I'honneur d’étre
rapporteurs de cette these ; Ladjel Bellatrechdairad Oussalah pour avoir accepté d'étre
membres du jury en tant qu’examinateurs.

J'exprime ma gratitude a tous mes collegues d’EADfvation Works qui m’ont permis
d’avoir un cadre industriel de travail idéal poua these CIFRE.

J'adresse également un trés grand merci aux mendoréaboratoire LISI, aujourd’hui
LIAS, qui m’ont accueilli et m’ont fourni tout leupport scientifique indispensable pour cette
these.

Je n'oublie pas ma famille et mes amis, mes pil@rotionnels, qui m’ont toujours
soutenu et encouragé au cours de la réalisaticeslgavaux.

Vi

Introduction

L’Ingénierie Systeme est une discipline qui a pobjectifs de concevoir et gérer des
systemes en se basant sur une approche multidhsdipl Elle s’applique sur le cycle de vie
complet d’'un systéme. Les grands systemes mécatresitels que les avions ont un cycle de
développement de plusieurs années. lls sont dgw&opu sein de vastes organisations
généralement trés complexes, qui mettent en scéneorthbreuses équipes de différentes
entreprises qui elles-mémes travaillent avec laéseaux de fournisseurs. Lors de la
modélisation, la coopération entre ces difféerertielas donne lieu a une multiplicité de
probléemes locaux et de points de vue divergents.

Les facteurs les plus importants d’hétérogénéité Bés aux connaissances et au savoir-
faire des ingénieurs qui ne sont pas formalisés mnmodeles mémes. Ainsi les ingénieurs
construisent les modeles d’'un systeme ou d’unéep@etcelui-ci avec un objectif précis. Bien
gu’ils les développent conformément aux standardsux bonnes pratiques, certaines
connaissances nécessaires a leur interprétatiotentegacites. Elles sont appelées
connaissances implicites car elles sont généralemamiues des seuls ingénieurs. Elles
nécessitent donc d’étre explicitées afin de pousoimprendre et valider ces modéles dans un
milieu collaboratif.

Dans ce contexte, le but de notre travail est dpgser une approche permettant de gérer
'hétérogénéité des inter-modeles et de la déplalgers le cadre de I'Ingénierie Systéme
appliguée a I'’Aéronautique.

Notre premier objectif est de réduire I'hétérogénélue aux différentes natures de
modeles et de langages de modélisation. Nous pwapgsour cela I'utilisation d'un langage
unifié et partagé permettant de travailler dansnéme environnement. Grace a 'application
des techniques de méta-modélisation, nous exportbegs modeles source vers un

Vii

environnement commun ou nous pouvons utiliser ledates sans modifier leurs définitions
originales.

Cela nous méne a notre second objectif qui tencadipuler des modéles exportés en
utilisant la connaissance additionnelle normalenmm exprimée. Nous nous proposons
d’enrichir les modéles avec cette information esskata leur compréhension et intégration.
Cette étape est nécessaire a la validation des ig@printer-modeles qui nécessitent
également que les connaissances implicites soiplitieees.

Ainsi, notre approche soutient la gestion des mexiBétérogénes en

= décrivant, modélisant et vérifiant des contrairgiedes relations entre des modeles
hétérogenes existants utilisés dans un procesbwgedierie Systeme;

= explicitant, formalisant et exploitant des connaimges additionnelles
normalement non exprimées par les ingénieurs poarirdéces contraintes et
relations.

D’un point de vue scientifique, les principales tinutions de notre travail au probleme
de 'hétérogénéité de modéles interviennent de dagons. D’une part, la formalisation des
connaissances implicites des ingénieurs pour anndes modeles fonctionnels et
d’architecture. D’autre part, l'utilisation d'un wnonnement commun et partagé pour
exporter les modeles source en les homogénéisatrexayuement sans modifier les éléments
originaux. Ces deux principes s’associent en un¢hodé qui est le noyau de notre
proposition et qui permet aux ingénieurs d'interoecter des modeles de méme niveau du
cycle de vie et de valider des contraintes inter<fexl D’'un point de vue industriel, la
méthode proposée est outillée grace a un protatyaté processus qui peut étre utilisé
comme base pour une future industrialisation dgpfache.

Chapitre |

Les systemes complexes font intervenir de multiglemaines et doivent intégrer des
sources hétérogenes tout au long du cycle de aeniPces sources, les modéles sont
nécessaires pour mieux organiser le développemem systeme et la gestion de sa
complexité intrinséque. Les approches d’ingéniadeielles telles que I'ilngénierie Systeme
Basée sur les Modeles (MBSE en anglais) se focdliser cet aspect. Néanmoins, ces
modeles contribuent au développement d’'un systémiéferents moments de son cycle de

viii

vie. Par conséquence, ils ont différents objeetifprennent en compte une grande variété de
domaines.

De nos jours, la complexité des systemes fait end#ir besoin de disciplines multi-
domaines capables gérer de telles complexités. rhegleures pratiques d’ingénierie
recommandent l'utilisation de modéles pour gérer peocessus de développement. Notre
travail se focalise sur la phase de conceptionatehitecture fonctionnelle et physique du
produit final. Le cycle de vie de développementsiague le travail collaboratif, entre autres
facteurs, entrainent un accroissement de I'hété@gitgé des modeles. Cette derniére devient
un probléme au moment de partager et d’intégrenumeles afin d’en garantir la cohérence.
Bien qu'il existe différentes approches fructueusesant a intégrer les modeles, elles ne
prennent pas en compte les connaissances implicéekes connaissances des ingénieurs que
ne sont pas formalisées dans les modeles mémes quiaisont indispensables pour les
comprendre et les valider. Ainsi, notre travailbsese sur les principes de méta-modélisation
tout en les complétant avec I'explicitation des @ssances implicites.

Chapitre Il

Les modéles sont le résultat d’'un travail d’équgrdre ingénieurs et représentent un
systeme ou partie de celui-ci sous un angle pdigrciNéanmoins, afin de pouvoir analyser
correctement un modeéle, des connaissances addilesinprovenant des ingénieurs
responsables de celui-ci sont nécessaires. lleegistnombreux mécanismes pour formaliser
ces connaissances mais nous pensons que dans rie a@adl’ingénierie Systeme, les
ontologies formelles sont adéquates, principalemgridce a leur nature précise et
consensuelle. Nous défendons la formalisation desassances implicites comme moyen
d’intégrer et de valider des modeles hétérogeneseftet, en explicitant les connaissances
implicites nous pouvons annoter ces modeles afifaciéter leur intégration et de donner un
support a la validation des propriétés inter-masiéle

Dans ce chapitre nous présentons différents asgedts modélisation des connaissances.
Nous discutons des efforts actuels de rapprochedesntnodéles et des ontologies. En effet,
nous pensons qu'il existe un besoin d’approcheintasive qui défend la formalisation de
connaissances implicites pour intégrer des modad¢drogénes. Son but est de valider les
contraintes inter-modéles.

Notre objectif est de décrire, modeéliser et véritles relations et des contraintes entre des
modeles hétérogenes en explicitant, formalisaekploitant les connaissances additionnelles
des ingénieurs. Notre travail se concentre surdiegions inter-modeéles au sein du processus
de développement de I'Ingénierie Systéme appliguig®éronautique.

Chapitre 11l

Dans ce chapitre nous décrivons notre contexte indusl’aéronautique-, et nous
évoquons les bénéfices attendus de notre appr&cheffet, la conformité de la solution de
gestion des modéles hétérogenes que nous propesbriirectement liée a son contexte
industriel ayant ses propres meéthodes et pratiques.

La complexité de conception d’'un modele est direeiat liee au contexte industriel
auquel il est rattaché. Dans l'industrie aéronaigtjda modélisation est trés complexe, tant du
point de vue de l'organisation que des méthodesi € non seulement di a la complexité
du systeme lui-méme mais aussi aux grandes orgamsaet aux multiples fournisseurs
collaborant a la conception. Historiguement, cefficdités ont été surmontées grace a
'application de regles strictes de documentatiorples réecemment grace aux principes
MBSE. Toutefois, le déploiement progressif de MB&ihs 'industrie aéronautique a besoin
de nouvelles méthodes et d’outils de gestion destasdDans ce contexte, nous présentons
dans le chapitre IV une approche dont les bénéfitteadus sont une meilleure cohérence des
modéles, la formalisation des relations inter-mesgieline meilleure réutilisation des modéles
et une réduction du temps de conception.

Chapitre IV

L'utilisation de modeéles dans le processus d’ingéeiest encouragée par le besoin de
gérer les systémes actuels complexes. De nos jeupartage du travail et la maturité des
techniques d’ingénierie collaborative exigent dettraeen relation des modéles hétérogenes
afin d’atteindre les objectives globaux. Nous psipts une méthode permettant d’interopérer
des modeles hétérogenes existants. Notre apprdappuge sur les connaissances pour
annoter ces modéles.

Dans ce chapitre nous décrivons cette approche lsas@ine méthode visant a intégrer et
valider des modeles structurels et fonctionnelsmdene niveau grace a I'explicitation des
connaissances implicites des ingénieurs. L'apprasdteaxée sur un processus qui manipule
ces modeles avec le support de modeéles externgglitférentes activités décrites s’appuient
sur un exemple fil rouge. Ainsi, nous décrivonspeemier lieu I'exportation des modéles
source vers un environnement partagé qui garaminogénéisation syntaxique et l'intégrité
des modeéles source. En deuxieme lieu, nous utdises modéles externes de connaissances
pour annoter les modeles exportés en obtenant bgémeisation sémantique. Cette
homogénéisation permet de mettre en relation leselesdannotés et d’exprimer des
contraintes inter-modeles grace a un modele extediexpressions. Ces modeles

by

d’expressions utilisent a la fois les entités adest et les concepts de la base de

connaissances. Finalement, les contraintes soiatesl grace a I'implémentation du modele
d’expressions.

Chapitre V

Dans ce chapitre nous développons un cas d’étudedaf valider notre approche et
d’illustrer ses différentes étapes. Le scénarituindeux langages de modélisation différents,
SysML et CORE, et une contrainte inter-modele cexgl Ce cas d’étude est utilisé pour
valider formellement notre proposition en utilis&88XPRESS comme langage commun et
partage.

Nous avons choisi EXPRESS pour cette validatiorsdarut : 1) d’exporter les modeles
source en tant qu’instance des méta-modeéles cassemiEXPRESS ; 2) de développer des
modeles de connaissances ; 3) de supporter lauegig premier ordre (FOL en anglais)
comme langage d’expression de propriétés. Ainsidalélisation formelle en EXPRESS
nous a permis de valider I'approche car nous someapables : d'importer des modéles
SysML et CORE ; de concevoir et d’'instancier desléhes de connaissances ; d'utiliser la
base de connaissances pour annoter les modelestémpait’établir des relations inter-
modéles ; d’écrire une contrainte dynamiquementgevalider cette contrainte.

Ces modeles formels EXPRESS ont été validés tparellement d’'un point de vue
scientifique en utilisant I'outil ECCO afin de lésstancier et de valider la contrainte en
s’appuyant sur son veérificateur d’instances.

Chapitre VI

Dans ce chapitre, nous effectuons une évaluationstridlle de notre approche, en
utilisant des modeles simplifies basés sur l'arelgle quatre cas d’étude réels. L’objectif
principal est de valider I'usabilité de I'approche.

La variabilité des cas d'études en termes de nondaremodéles, de langages de
modélisation et de régles de modélisation démomies notre approche est générique. Du
point de vue du cycle de vie des modéles, I'apprqueut étre appliquée a différents niveaux :
avant le développement des modeéles source pouveirodianciens modeles grace aux
annotations ; lors du développement des modelexesqour valider des contraintes inter-
modeles ; et apres le développement des modelesespaur vérifier & nouveau, suite a des
modifications, des contraintes précédemment vadidée

Néanmoins, les modéles et les instances EXPRES&smpant les différents cas d’étude
ont été créés manuellement. De ce fait des amitngsont nécessaires pour atteindre une

Xi

industrialisation réussie : une automatisation mak des activités de I'approche ; des
annotations a priori, i.e. lors du processus de iigad®n ; un niveau intermédiaire
d’abstraction de la sémantique de modélisationréldilisation des contraintes et un support
visuel pour les construire.

Chapitre VII

Un prototype a été développé lors du déploiemesatods d’étude industriels. L'objectif
de ce prototype est de fournir aux ingénieurs uil patmettant la gestion des concepts de
'approche. Le prototype décrit dans ce chapitresnoermet d'illustrer visuellement les cas
industriels et de valider ainsi I'approche avecidggénieurs.

L'outil couvre les besoins identifies et les conaus d'usabilité de I'évaluation
industrielle. La prochaine étape consiste a fourne version du prototype plus adaptée a une
future industrialisation et incluant des améliayas graphiques.

Chapitre VI

L’Ingénierie Systéme Basée sur les Modeles est diseipline qui suscite beaucoup
attention de lindustrie aéronautique. Par cons#u notre approche doit prendre en
considération l'état actuel de déploiement du MB&fih de développer une solution
industrielle adaptée. Cette solution doit étre nebdbgiquement robuste et intégrée dans les
processus de modélisation actuels afin d’obtesibknéfices attendus de l'industrialisation.

Le futur déploiement de notre approche est analgsts ce chapitre de deux points de
vue. En premier lieu, des améliorations, notamnoemicernant la gestion en réseaux des
modéles, sont nécessaires dans les processus MB&Hsasi nous aspirons a une intégration
optimale de notre approche. D’autre part, ces amatlons devront étre accompagnées de
modifications technologiques sur la base de notémentation actuelle de I'approche. Ces
ameliorations sont le sujet de la deuxieme padiealchapitre.

Conclusions et perspectives

Dans le contexte des méthodologies de conceptidtndénierie Systéme, les ingénieurs
travaillent avec des modeles issus de differengegpés, méthodologies et savoir-faire. Ce
travail collaboratif donne lieu a différents typs modeles, de langages de modélisation et de
techniques de modélisation. Ainsi, les modélesrbgénes sont une conséquence logique de
cette variabilité. Cette hétérogénéité devient untalde probleme lorsque les modeles
doivent étre partagés entre différentes équipesdidiffectuer des analyses et des validations
globales. Dans ce contexte, expliciter les conaarsss implicites est essentiel.

Xii

Notre approche propose l'intégration de modele€rbgenes et la modélisation et
validation de contraintes inter-modeles en exg@litit en formalisant et en exploitant ces
connaissances additionnelles qui sont habituellemgglicites pour les concepteurs.

Nos contributions ont été développées a partiritiéreintes lignes directrices :

Méthodologie. Notre travail réunit deux concepts : la modélisatizetérogene et
I'explicitation des connaissances implicites. Noasons défini une méthode
permettant d’utiliser la connaissance et de déftes expressions a l'aide d'un
langage flexible dans le but de vérifier les cantes de relation inter-modéles.

Explicitation de connaissances implicitesL’originalité de notre approche se situe
dans la formalisation de I'explicitation des corasainces implicites et 'annotation de
modeles d’ingénierie hétérogénes. Ces connaissanoegeérees indépendamment des
modéles annotés grace a l'utilisation de modeéldsreas et d’identifiants uniques.
Ainsi, les annotations contiennent le lien entre dwdéles exportés et des concepts
de connaissance agissant comme une couche intaineédie niveau intermédiaire,
et le fait que les modeéles source soient expop&snettent I'évolution des modéles
source indépendamment de I'application de I'approche

Contraintes inter-modéles.Dans nos cas d’étude, nous avons validé des cotasali

pouvant s’exprimer comme expressions FOL. Afin ele implémenter, nous avons
développé un modele formel d’expressions en utitida langage de modélisation
EXPRESS. Ce modeéle est une extension du modélepréesions de PLIB qui

n’inclut pas les expressions FOL.

Outillage. Afin de guider les utilisateurs dans l'appropriatide notre méthodologie,
nous avons développé un prototype. Cet outil emnt& processus et supporte
chacune des activités de modélisation de notreoappr

Déploiement et applicabilité. La validation formelle de la proposition et
implémentation des différents types de cas d'étuthns le prototype démontre
'applicabilité de notre approche. Néanmoins, I'émn du prototype est nécessaire
avant le déploiement industriel de la solution.

Le travail décrit dans ce manuscrit ouvre plusigaispectives :

Evolution de modelesLors du processus de modélisation, les modeéleslifidtents
degrés de maturité. Par conséquence ils évoluel mbuvelles versions apparaissent.

Xiii

Les modéles peuvent également évoluer parce @mgoit$ réutilisés dans un nouveau
programme. Notre approche doit prendre en congidareette évolution des modeles
et gérer la réutilisation des annotations et desraimes inter-modéles.

= Abstraction du langage de modélisation.Nous pensons que la définition des
contraintes devrait s’appuyer sur une ontologieridéot des concepts généraux
d’'Ingénierie Systeme. Cette ontologie permettraik angénieurs d’écrire leurs
contraintes d’une facon plus naturelle et rengrhis facile I'éventuelle génération de
contraintes a partir d’exigences formelles. Finaetn le choix d’autres logiques
différentes de FOL devrait étre considéré au mordertanalyse des caractéristiques
des contraintes a valider.

= Relations inter-modelesNos cas d’étude se sont focalisés sur des relatieréme
niveau et, en tant que perspective, les cas deoredaverticales devraient étre pris en
compte également. Nous défendons que notre appestrepplicable a des relations
verticales mais que l'activité d'intégration et r@ita-modele de relations devraient
étre renforcés. Par conséquent, des cas incluageme de relations inter-modéles
devraient étre étudiés afin d’amplifier notre tihva

= Passage a l'échelleLe prototype nous a permis la validation formelle mbtre
proposition. Désormais, le passage a I'échellead®lution peut étre abordé de deux
manieres. D’'un c6té et afin de permettre son indlisiation, I'implémentation de
notre approche doit étre capable de gérer un grambre de modeles et d’entités. Par
ailleurs, il serait nécessaire d'analyser des doewid’application autres que
I'Ingénierie Systeme (automotivité, espace et augstémes complexes).

Intégration MBSE et servicesEn ce qui concerne MBSE, l'intégration de notrehode
avec les pratiques actuelles devrait étre accompatgjné processus de standardisation. Nous
pensons que l'explicitation des connaissances aigdi et la relation entre modeles
hétérogenes doivent faire partie des standards M@iaEle fournir une meilleure gestion du
cycle de vie des systemes complexes. Une perspectibdieuse consiste a développer une
plate-forme supportant les processus MBSE avecsdesces adéquats et une définition
précise des roles (administration des taches, ogesties connaissances, gestion des
contraintes...). Dans un tel contexte, notre apprdebhat partie des services offerts par la
plate-forme aux réles indiqués.

Xiv

Summary

INTFOAUCTIONccneeeeeecieeeeeitttttceceeeeeeeeeeeennnnseeeeeeeessssnssssssssssssssssnnsssnsssssssssanans 1
@00 11 (=) < JS PP PPRTRIN 1
(O] ({10 lf o] (o [od | [od 1 0000NNN PPNt 2
OUI PIrOPOSAL.....ciiiirriiiiiieeiiiitituieeeeeeeteeeteaeaneeeeeeeessessssssssseesssssssssssssssssssessssssnsssssssssssssnnnes 3
Structure of the dOCUMENL.............. e e annnes 4

Chapter | Heterogeneity of models in Systems Engineering domain...... 5
I.1. [1 e To 11T 1o o FNS U 7
1.2. SYStEM MOAEIINGceeeeereeiiieeecee e e rrre e e e e e e e e e s annae s e e s s aen 7

2.1, NOHON Of SYSTEM ettt et et e et e et tae e aeeaaeeaaeebeebeenseens 7
[.2.2. MOAEIS TYPOIOGY eeintrieeeiieiiieeie ettt eteeetteetee e teestaeetaeetaeesabeestaeesaessseesasasensseasssassssees 8
[.2.3. FUNCHONQAI MOAEING .ottt et et ettt e e ete e teeeaeetaeeaseeabeeaseenneens 9
[.2.4. MOAEING IANQUOGESoovieieeieeteetetterttett ettt ettt e s e s ae s b e ssbeesbe s e eseessaesseesseannes 10
1.3. Systems ENGIN@EIING.....cccooiiiiiiiiiicieeerrrrrrrrrrrrrrce e e e e e e e e e ee s 12
1.3.1. Systems Engineering Life Cycle description and instantiationscccccceeveeiennn.e. 14
RSN @] le] oTe] o) 11Y= K e (ST (o] o HN SRS 15
1.4. 1 (=181 0 g ToTe L= {1 o 1T o 13U 16
4. T, TYPOIOAY ottt ettt ettt e sttt e et e e sbae e tbeesabeesstaeessbeassaessseessaassseesssasenssessseansses 16
[.4.2. Relations in the process deVelOPMENT ... iiiieeieeeee e 16
1.5. [[(=1 feT e =1 4 T=11 3 PPNt 17
1.6. Current approaches to handle heterogeneity............ccoeveeiiiiiiiiiiiiiiiiiiiiiinnnnn. 18
[.6.1. Model-Based Systems ENGINEENNGcoiiiuiiiieceeteeeeteeeeeeee ettt e 18
[.6.2. INtegration QPPIOACNEScuieieeeeeecete ettt et e ae et be e be e beeeaeaees 20
1.7. @00 o Ted [111 1o U 21

Chapterll Knowledge models to integrate and validate heterogeneous
models 23

IL1. Implicit KNOWIEAE.......ccccoieeeeeeeeecccereetttcecsccrreeeee e e se s sssnneeeeeeeesssnnnens 25
1.2. Formalization of knowledge ..., 25
[.2.T. NEed Of ONTOIOIES .uiiiieiieieeteettetet ettt ettt e s s ae s b e et esbeesbeessaesseessaenns 26
1.3. Ontologies and annotation of models............ccoooriiiiiiiiriiiiiiiiieeeeee 27
I.4. Validation of inter-model properties...........coooeviiiiiiiiiiiiiiiiiiieeeeeeeeeeeee, 28
.41, REQUITEMENTS ..ottt ettt ettt e et e e e e et e e teeabeesbebeebeeeseasseanseassnenens 29
[1.4.2. PropPErty IANQUUOGES ...cuviieiee ettt ettt eteeetee it e e s beesvesesaeatveassseesssaeeseesssassnseeenssesnsses 29
II.L5. EXPRESS modeling l[anguage..........coiiiiiiiiiiiirereeeererrrerreereeeeeeeeeeeeeeeeeeeeeeeeens 30

.57, MeETA-MOAEING cicetieeeeeeee ettt et et et e e e be e be e baesseessaanns 30

[1.5.2. EXPressions With EXPRESS ...ttt ettt et e e et 31
[1.5.3. The ChoiCe Of EXPRESS ...ttt ettt ettt sttt 32

| 8- SO @€ 4 Tod 1111 To Y o IR 33
Chapter lll Current practices in Aircraft Systems Engineering 35
1118 RN [£ L1700 1o T o TP 37
.2, Aircraft Systems Modelingcccoiiiiiiiiiiiiiiirrreeeereeeeeeeeeeeeeeeeseeeeeaaaaaees 37
H.3. Current MBSE applicalions.........cccooiiiiiiiiiiiiireerreerreeeeeeeeeeeeeeeeeseessssanaees 39
ll.4. From documents to models............cccooovuiiiiniiiiiiiiiniiiiiiiniiiineecneeecaae 40
lIIL5. MBSE and development ProCESSuuceeiiiiiiieeeeiceieeeeeeeerenrieeeeeeeeeessnnsnsssseeens 41

.. Management of heterogeneous modeling in Aircraft Systems Engineering 41

ll.7. Expected benefits of the proposed approach..........cccceririiiiiiiniiiiiiiiiiiiinnnnnnn, 42
8. CONCIUSIONceeeereeeiieeeecccreeeee e snreeee et e e e s s s s sassseeesesessssssssssssssasssssssnnnnns 44
Chapter IV Knowledge-based inter-model constraint verification.......... 45
AV RN 141 [(oY [T ox 1] o [0 RPPPPPRRRE 47
IV.2. The proposed General integrated models representation............................. 49
IV.3. Manipulated MOAElsiiirecccceeeetteretrereeeeereeeneeeeeeeeeeessansensseeseneeees 51
IV.3.1. SOUMCE MOUELS ...ttt ettt te et e e teete e beebeeseesaessesssesssenssesnsanns 51
IV.3.2. EXDOMEA MOAEIS......eiceeeeceeeeeeeee ettt e ere e e e areeereeenee s 52
IvV.3.3. ANNOTATEA MOTEIS ...ttt ettt et e e s e e etae e abeebaeeeraeseraes 52
IV.3.4. INtEGrated MOAEL ... et ebe e ebreeens 52
IV.3.5. Constraint RelationAl MOAEI ... 53
IV.A. ThE FESOUICEScciiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseesseeseseesessesssssssssssnsssesssssasees 53
V.4.1. SOUICE META-MOTEIS ..ottt ettt et te e et e s ve e ba e eebeesarae s 53
IV.4.2. KNOWIEAGE MOAEIS ...ttt et ettt e ta e e ab e e saba e baeeseraesanee s 53
IV.4.3. Constraint Relational Meta-MOAEIS........ccuioiiecieeiiceceeee e 53
IV.5. The modeling process activities.......ccccccoeiriiiiiiiiiiiiiiiiieereeeeeee 54
IV.5.1. EXIDOT < et e et et e et e e b e e e ba e e baeerbee e baeebae e tbeeaaraeearaaan 54
IvV.5.2. ANNOTATION .ttt ettt et e et e et e e te e be e ba e se e seessasssesssesssennsennsenns 58
IV.5.3. MOAEI INTEGIATION ... ittt ettt e ae et e e s aeesraeees 61
IvV.5.4. General constraint defiNTION ... 63
[V S ©o] 4 Td [1T o] o IO PPt 67
Chapter V. Approdch validationeeeeeeeeeeeeineeeeeennnncccceeeeeeesensnnesssseens 69
"% PR [(oY 1704 1o o RN 71
V.2. Exportation of SysML and CORE models............uuueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeennnnen. 71

XVi

V.3. Annotation using implicit knowledgeuueeeiieeiiiiiriiiiiiieereer———— 73

V.4. Model integration using equivalences...............ceiiiiiiiiirinreeeeieeenccccrrnneeeeeeens 74
V.5. General constraint definition with First Order Logic expressions.................... 75
V.5.1. Contribution to PLIB expressions [ONQUOGEccveeeeeeeeeeeiecieeee et ae e 75
V.5.2. Inter-model constraint VerifiCOtioN ..o 78
V.6. Implementation with ECCO t00lKil............ccooirmeecccccccecccccecceceeeeeeeeee e 79
V.6.1. The COMMON FTAMEWOIK......iiiiieiecieeeeeee ettt ettt et te e et e saessneeane e 81
V.6.2. Step by step IMPIEMENTATION. ... e 81
"% 28 ©C o Tod 173 e o TSRS 86
Chapter VI Industrial evaluQtion.............eeeeeceeeeeiiiiieeennenceceeeeeeeeeennnnessseenns 87
A"/ P RN 141 (o Yo [T] os 11'o o FR P PPUUUUP N 89
VI.2. Water and Waste System modelooeeieiiiiiiiiccrccerreeercceeeeeeeeeeeaeeeee 90
VI.2.1. DESCIIDTION .ttt ettt et e e et e et e eetae e eeteeeetaeeeaseeseeeteseesreeereeeneeen 90
VI1.2.2. The modeling ProCess ACTIVITIES ..ccviiiiiiieiicee ettt 90
VI1.2.3. CONCIUSIONS ...ttt ete ettt ettt et e e et e et e eteetteebeeabeeabeeaaeeateenbeenteeteesssesseesssesasaeseanens 95
VI.3. Hydraulic and Engine systems models..............ccciiiiiiiirnirreeiieiiiicccirnneeeeeeennn. 95
VI.3.1. DESCIIDTION .ttt ettt e et e et e et e eetaeeeeteeeeteeeeareeseeeseeeeareeereeenee s 95
VI1.3.2. The modeling ProCess ACTIVITIES ..ottt e 96
VI1.3.3. CONCIUSIONS ...ttt ettt ettt ettt e et e e te e teesbe e beesbe e seeebeateeessasssasssenseenbsenseenssensean 102
VI.4. Ram Air TUrbine MOdEIseeeeecccccrcecceeeeeeeee e e s ens 103
VI1.4.1. D ESCIIOTION .ttt ettt ettt et e et e et e eateeteebeeateeabeeanesaeasssesaeesananseanens 103
V1.4.2. The modeling ProCess ACTIVITIES ...c.iciuiiiieieeeeeeeeee e 103
V1.4.3. CONCIUSIONS ...ttt ettt ettt ettt e et e e te e teesbe e beesbe e seeebeateeessasssasssenseenbsenseenssensean 110

V4 FTR 0o] 1 Uod [111 1o] o [0SR NuR R RPRPPRPRE 110
Chapter VII Prototyping 10O0L..........cccueieeiiiiiiiiiiieieeteiieiieeieeeeeeeeeeeeeeeeeesseessenens 113
VII.1. A prototype to support the method..............ccorrrrriirccrrerreeee, 115
VIl.2. P -Yos (o] ¢ 3o |1 Te IUET -3 of o [=1 PO PPRUP N 116
V2. T A CT OIS e ceeeeeeceeeee e ee e e et e st e e st e e s tae e tb e e e be e e bb e e teeeabeeebeeetaeesaraeearaean 116
VIL2.2. CoNnfigUratioN USE CASES ..ccvieeieieeieeteeteete ettt ettt este ettt ete e ve e sseesseabeeseensen 116
VIL2.3. OperatiONal USE COSESvieiieiieieeieeteeteeteeeteeteeteesteesteesveesssesseesssesseasssesssensseseenses 117
VIL3. Selected technology and architectureuueeeeeeevevvevieerieiiieeeeeeeeeenanen. 119
VIl.4. Current HCI (Human Computer Interface)eeiiiiiiiiiivneeeeeeeceicccnnne 121
VIL5. [©0eT o Tod (173 1o o ISPt 125
Chapter VIl Deployment in iNAUSHTYuuueeeeeeeeeiiieeennneeceeeeeeeeeeennnnceseeens 127
VII.L1. Industrialization requirements............. .. iriiiiccrcccccccccccccereeeeeeeeeeeeeeeeen 129
VIII.1.1. Model and configuration managemMeNT ... 129

XVii

VIIILT1.2. Knowledge MAONAGEMENT ..ottt ettt ve e aesveenaean 129

VLT3, MOl INTEGIATION ..ottt ettt ettt reesreebeebeenseensean 130
VIIl.1.4. Inter-model constraint MANAgEMENTcci i 130
VIILT.S. CONCIUSIONS ..ttt ettt sttt ettt ettt sa et e b et e eae et e besbesbesaeentensesaeeneenean 131
VIl.2. Needed technology enhancementscccooeoorrrrrrrrriiiiirirriccrccccccccnns 132
VIIL2.T. TEChNOIOGY FEATUIES ...ttt ettt ae e e beenae s 132
VII.2.2. Needed HCI €NNANCEMENTS ..cciiiiiiiieieeeetete ettt n 134
VIL3. CONCIUSION ...ttt e eee e e s snne e s s s nneesesssnessans 138
Conclusion ANA PersSPECHVES.....uuuueeeeeeeeiieeeeenneeeeeeeeteerennnscseeeeeessssnssssssssssans 139
CONIDUHONS....ccoiiieeeeee et are e s e sane e s sane e s s s s snnneesssnnns 139
[T £ oYY o3 1 \V7 XS PRSP PPRPPRPPPPP 142
(=] (=] (=) £ od = ST SPTRPRON 145
Y 0T 1= Q- NN 155
ANNEX B.oaaaeenrnneeeiiiiiiiiiiiinnneetitiississssssesstisssans 189
ANNEX C oaarrnneeiiiiiiiiiiiinneeeettiisssssssssesstessessssssssane 213
1. SIS and CIS message modelsccueeeeeerceeieciiiiieennneecccseensssennennenns 213
2. Water and Waste System modelueeeeeeeecceeeeeeineeennneccececesesennns 217
3. Hydraulic and Engine systems models.............ueueeeeeeeeeeeeeeeeeeeeeeeeeenenees 223
4. Ram Air TUrbin@ MOdEIS..........ueeeeiiiiiiiiiiirnnneiiiiiieciisssssnnnssssssssssssssssnnnans 233
[e o1 [=3e] i [o [1] £ =X 3SRt 243

Xviii

Introduction

Context

Systems Engineering is a discipline whose objegtive manage and design systems with
a multi-disciplinary approach and taking into calesation the entire life cycle of the system.
For what it concerns big mechatronic systems ssdirarafts, their development life cycle is
several years long. They are developed within |largk complicated organizational structures
which involve many teams of large enterprises &ed supplier networks. It is a fact that the
necessary work sharing and collaboration betwedtipteuactors over time always result in a
multiplicity of local problems and viewpoints

Based on Systems Engineering principles, Model-8a8g¢stems Engineering tries to
structure and organize the use of modeling to sugpermain system engineering activities:
Requirement establishment, Design, Analysis anddgabn and Verification (V&V). The
multiplicity of local problems and viewpoints resuih possible heterogeneity in models,
which we want to reduce.

The Aircraft Model Based Systems Engineering (MBBEhe application domain of our
work. During the design phases, the aircraft systemepresented by a number of models,
each bounded to some given sub-system or viewpeamat,each valid at some given stage of
the design progress. Models are developed in diffeworking realities and managed by
several teams, all of this being sources of hetarety in the final result of the design tasks.
Nevertheless, these heterogeneous models existcoll@oration context implying their
sharing and inter-model relations. Even when motielse been built following the same
guidelines and applying the same methods or ubi@g@ame modeling language, one can find
differences between models of different teams. Tibierogeneity is mainly due to the:

1) different objectives of the models;

2) variability in modeling languages and modeling taghas;
3) different applied methodologies;

4) know-how of the involved teams.

Introduction

Thus, the most important factors of heterogenaiyliaked to the knowledge and know-
how of the engineers that are not formalized in thedels themselves. Engineers build
models of a system or part of a system with a @aler objective. Nevertheless, even though
they develop models according to standards and goactices, some of the knowledge
necessary to correctly interpret them remains.t&¢e call it implicit knowledge since it is
usually in engineers’ mind but needs to be madei@xph order to be able to fully
understand and validate the models. It is importardistinguish it from implicit semantics
(A. Sheth, Ramakrishnan, & Thomas, 2005), i.e. khewledge which is intrinsic to data
itself and which is not treated in our work.

Nevertheless, these heterogeneous models existatiadoration context implying their
sharing and inter-model relations. Models are \aifind validated all along the development
life cycle at different stages. At some of theséestones, models that have been developed
by different teams need to be integrated in ordepérform inter-model validations and
analysis, i.e. to check properties that involve smvenodels. Therefore, sharing implicit
knowledge becomes essential to integrate suchrelifeout related models and to validate
them.

In order to achieve this objective we have analyzadent solutions for the use of
implicit knowledge in verification of inter-modebnstraints.

Current practices

The problem of managing heterogeneous models hers &gdressed in different ways.
The standardization of Systems Engineering metlogied and MBSE methods in particular
have this objective. They establish the basis & érganization of work and modeling
principles but they do not offer solutions to theeuof multiple modeling languages.
Nevertheless, having a unique modeling languagetis possibility in the layered design of
complex systems. The development life cycle of saghtems goes from mission-level
requirements elicitation to low-level detailed dgsiof equipments which implies different
objectives and different modeling needs at eadlesta is a multi-modeling environment and
specialized modeling languages are necessary. fonereurrent solutions are oriented to the
integration of heterogeneous models by developaigways between modeling tools based
on mapping or on meta-modeling techniques. Howetlegse solutions do not take into
consideration the implicit knowledge.

In order to make explicit this implicit knowledgeewneed to formalize it. The
formalization of knowledge is the objective of knedge models. One of its possible
implementations are domain ontologies which aren#dr representations of consensual

2

knowledge. Concerning engineering context, the &ramd consensual aspects fit the needs
for the representation of engineering knowledge.sTldomain ontologies can be used to
annotate engineering models, i.e. to enrich theth additional knowledge. There are some
studies regarding the use of ontologies in modediaiyvities and processes but they do not
address the heterogeneity problem of our context.

To sum up, there are multiple works tackling hegereity in models and knowledge
explicitation in a separate way but we found a laick consistent and grouped solution. Thus,
we developed a method to bring together these ctaaistics which are the core of our
proposal.

Our proposal

Having this industrial problem in consideratione thoal of our work is to propose an
approach to support the management of inter-mdaetisrogeneity and to deploy it in an
Aircraft Model Based Systems Engineering setting.

Ouir first objective is to reduce the heterogensdyarding the different nature of models
and modeling languages. We suggest the use ofradshad unified modeling language to
work in the same framework. Thus, applying meta-atiod techniques we export the source
models to a common framework where we can manipula models without modifying
their original definition.

That leads us to a second objective, the manipulatf exported models from a
knowledge point of view. That means making explicg implicit knowledge to annotate the
models. By annotating them we add information whickssential to understand the models
and to correctly integrate them. This integratisrihie necessary step to allow the validation
of inter-model properties which also need the usdooal knowledge to be explicitly
expressed.

As a conclusion, our approach supports the manageoh@eterogeneous models by

= describing, modeling and verifying some inter-moctahstraints and relationships
between pre-existing heterogeneous models use&ysteam Engineering process;

= making explicit, formalizing and exploiting additi@nknowledge usually not
expressed by the engineers to express these datstaad relationships.

From a scientific point of view, the main contrilauts of our work to the problem of
models’ heterogeneity take part in two ways. Onahe hand the formalization of engineers’

3

Introduction

implicit knowledge to annotate architecture andcfional engineering models. On the other
hand the use of a unified and common frameworkxjgoe the source models aiming at
syntactically homogenize them without modifying trgginal elements. These two ideas are
combined in a method which is the core of our psapand which allows engineers to
interconnect heterogeneous models of the sameyite level and to validate inter-model
constraints over them. From an industrial pointiefv, the proposed method is supported by
a process-oriented prototype which can be usedbasia for a future industrialization of the
approach.

Structure of the document

This thesis is organized in 4 parts.

The first part introduces the state of the art matlides chapters I, Il and lll. Chapter |
describes the problem of heterogeneity of modelSystems Engineering and analyzes
current approaches aiming at solving it. Chapterintfoduces the notion of implicit
knowledge and discusses its formalization usinglogtes as a support for the validation of
inter-model constraints. Chapter 1ll presents thdustrial context of our work and the
expected benefits of the proposed approach.

The second part focuses on our contribution. Oop@sal is introduced in Chapter IV
with the description of our knowledge-based interded constraint verification approach.

The third part concerns the formalization and vaiata of our approach. The formal
validation of the proposal using the EXPRESS maodelianguage and the operational
validation which has been carried out with the ECt0OIkit are discussed in Chapter V.
Chapter VI analyzes the four case studies impleeteapplying our approach.

The fourth part discusses the industrial implementeof our proposal. The development
of the case studies has allowed us to implemenbtotygpe which is described in Chapter
VII. Finally, in Chapter VIl we discuss the induslization requirements and the necessary
enhancements to improve the current version opthtype.

Ch apter | Heterogeneity of models in Systems
Engineering domain

Summary
I.1. [[oY« [o {To o SIS 7
1.2. System MOdeliNG ...cccciiiiiiiiiiiccecccccrrrrre eeeeeseseeeeeeeeens 7
72 I (o) 1Y a T) VA 1= 0 4 F T TRRRTR 7
[.2.2. MOEIS TYOIOQY oottt ettt ettt e e e e et e e e e s s e s bbb e e e e s e sssssabaaeeeeesesssnteseeesssans 8
[.2.3. FUNCHONG MOAEING weeiiieeiiiieeiee ettt ettt e e et e e e eat e e s eesatesssasaeesssaseessssanessas 9
[.2.4. MOAEING IANTUODES .ottt ettt ettt ee ettt e eett e e s eeaeeesesatressaateesssssseesssnssesessaseesas 10
1.3. MR (=) 0 3 e [4 T=X=] (10T« N 12
[.3.1. Systems Engineering Life Cycle description and instantiationscccceeeeeeveeiveneenen. 14
[.3.2. COllADOIOIVE AESION .ottt ettt ettt ettt ettt e s et e e s et e e s s eateeesasaeeesssnsseesssaneesas 15
1.4. [0 (= & 0 1Yo Yo (=] I =] Lo | 1T o 1IN 16
I I 1Y/ o Yo) [T | RO RRERRR PR 16
[.4.2. Relations in the process deVEIOPDMENT ...ocueiii ittt eaeee e 16
I.5. [(3 1) (oY e [) 1= | 1A RN 17
L.6. Current approaches to handle heterogeneity........cccoeuvevveericeieieriieveecceeeennnns 18
[.6.1. Model-Based Systems ENCINEEING ...ccuviiiiieeiee ittt eeeetee ettt e st e e e ereesseaeeesesaeeeeas 18
[.6.2. INtEGratioN QPIOTCIES .ooi ittt ettt e et e e et eeseteeesseabeesesaneeeas 20
1.7. [@0o) o [od 11130 o RN 21

Abstract. Complex systems involve multiple domains and néeel integration of
heterogeneous sources all along the life cyclesyfstem. Amongst these sources, models are
necessary to better organize the development yétara and manage its intrinsic complexity.
Current engineering approaches as the Model-Bagst#i8s Engineering (MBSE) focus on
this aspect. Nevertheless, these models contributee development of a system at different
stages of its life cycle. Therefore, they aim #ftedent objectives and take into consideration a
great variety of domains. At the same time theydrnteebe interconnected since they are part
of the overall design of the system and they haviet consistent from the point of view of
general properties and constraints. Thus, modela@rexempt from heterogeneity issues and
proposals are needed to handle them.

Chapter I. Heterogeneity of models in Systems Eging domain

1. Introduction

[.1.Introduction

The complexity of the design of modern systems materessary the use of models in
order to guarantee a good management and the twsscof the system to be built.
Nevertheless, even though models are essentialetigrd such complex systems, the
organization of large enterprises involves workrsigaand collaboration of engineering
teams of different domains and different backgraurid such a context, each team develops
a part of the system using its own models and mayitie different methods and modeling
practices. Our experience shows that even withranoon methodology, very often other
aspects as expertise domain, modeling comprehenarmah particular terms lead to
heterogeneous models and can make difficult theg-miodel validations.

[.2. System modeling

A model of a system “is a description or specifmatof that system and its environment
for some certain purpose” (Mukerji & Miller, 2003\ odels being simplified or abstract
representations of a system, or of a part of ithwa particular objective, should allow
engineers to better master the design of the syst&mmodel represents sub-system context
and interfaces, internal structure and behavior. &odre developed independently on the
basis of specifications and requirements, but franvalidation and verification (V&V)
perspective they might need to be integrated somewat least verified or validated from an
integrative perspective. Depending on the stagd®fdevelopment cycle, which is directly
related to the level of detail, and on the chargtie of the design, we can identify different
types of models.

[.2.1. Notion of system

One of the possible definitions of a system is thas “an integrated set of elements,
subsystems, or assemblies that accomplish a dedinjedtive” (Haskins, Forsberg, Krueger,
Walden, & Hamelin, 2010).

In Systems Engineering context, we use a typoldgystems in order to take in account
the variety of natures of systems:

= A “System of systems” (SaS)a set of different systems which collaborate to
provide more functionality and performance that thean of the individual
systems, a concept called emergent behavior (Kry@#99). For example in a
military context (C2 constellation (Sweet, 2004)}, in air traffic management
(SESAR (Eurocontrol & Commission, 2010)), etc.

Chapter I. Heterogeneity of models in Systems Eging domain

The systemcorresponds to a product, e.g. an aircraft; orstased by system
engineering standards, EIA 632 (EIA & ANSI, 199t will be discussed later
in the document, the system includes both the d¢ipea end product(the
aircraft) and the so-callednabling productqsuch as development, production,
test, etc...).

The sub-systemsompose the previously defined system, for exartidanding
gear, the engine, a guidance system, etc. A subraysan be decomposed into

other sub-systems.

Theequipmentgompose the previously defined sub-system for @kam display,
a calculator, ...

[.2.2. Models Typology

A first typology of models distinguishes betweerygibal and functional modeling.

Physical modeling of a system or equipmentfor understanding the system'’s
physical properties. Physical modeling uses thdtalignockup, geometrical

descriptions, and model physical properties suchmashanics, thermodynamics,
aerodynamics, etc... in order to understand the phlbiehavior of the system in
some experimental conditions.

Functional and structural modeling of a system or quipment: for modeling
the functional behavior of the system, i.e. idécdiion of the systems functions,
their interactions and their structure (architegiuSince in our research we focus
on structural and functional models of a systenequipment we detail this topic
further on.

A second typology distinguishes between typicalsgis intents of the model in the
system engineering process:

Specification or Descriptive models (Gonzalez-perez & Henderson-sellers,
2007): to represent the needs and to validate taathral choices, starting from

the requirements. It is believed that specificatioodels can be the starting point
for design models (see later MBSE approach in @ec¢ib.1). These models are

produced in early phases of the development of stesy (sub-system or

equipment).

Design or Prescriptive modelsthey are the detailed specification of the system

including the detailed and complete definition o interfaces and functions to be
8

[.2. System modeling

implemented. They are often given to the subcotedcapartner as an input for
their development.

= Implementation models for example the software that implements a fuoncti
(exact representation of the function). It is thesmexact representation of the
system énd produdt, showing its dynamic behavior. Used to test aalidate
sub-system or equipment integration into the system

We can also classify models according to their gjoal

= Models for prototyping. They are means of validation and verification.eTh
objective of this type of models is to master tlguirements and the main
architecture choices.

= Models for early integration. They are used to manage the interfaces and the
interactions in order to minimize the time and ¢bst of the physical integration.

= Models for simulation. These models represent and simulate the logiavi@h
and the interactions with external systems andra@ns to validate a specification
and to perform test measurements.

= Models for communication Models are also a formal way of communication, so
some models, usually high-level detail models, lsarused to introduce the main
characteristics of a system to a non-specializelicace.

= Models for generating code They are means of development and their objective
is to reduce the number of iterations between destggand code developers (code,
test cards...).

[.2.3. Functional modeling

Functional analysis is an approach aiming at deswyithe group of functions of a system
and their relations. The main activities of funobanalysis make it possible to:

= identify, group and classify the functions.

= characterize the functions (criteria, performancelgtions...).

= guarantee the validity of a function, i.e. whetliters necessary or not for the
system.

= decompose the functions, i.e. to organize the fonstinto a hierarchy

Chapter I. Heterogeneity of models in Systems Eging domain

Functional analysis is a method to translate tleelea®f the customer into useful functions
but keeping the choice of solutions open. Therefitve objective of the method is to provide
a set of functions and a functional architectuieréirxchy and relations) to designers without
advocating for a particular implementation.

From the beginning, functional analysis has beenpeded by models. Functional
modeling has evolved along with the modeling apghesa; from the early analytical
approaches as FAST (Snodgrass & Kassi, 1986) amir§Marca & McGowan, L., 1987) to
the most recent object-oriented approaches as UMMG, 2011a). Thus, functional
modeling is a discipline with a long history andigh degree of maturity which has been
incorporated to disciplines of wider applicatioreas as Systems Engineering ($&efor
details).

I.2.4. Modeling languages

In order to build models we need appropriate modelianguages. Nowadays two
different approaches emerge concerning modelingulages: domain specific languages
(DSL) and general-purpose languages. DSL (Abouzd&w@aivin, Didonet, Fabro, & Jouault,
2005) are languages focused on a particular dommath have precise semantics whereas
general-purpose languages are not limited to a don#a classical example of general-
purpose language is UML whose semantics ambigsitgotorious (France, Raton, Evans,
Lano, & Rumpe, 1998). In the case of UML, the ugeth® notion ofprofile involves
mechanisms to reduce these semantics problemsobidimmg more specific views of UML,
e.g. ModelicaML (Pop, Akhvlediani, & Fritzson, 2Q07Paredis, Bernard, Koning, &
Friedenthal, 2010) which is used to graphicallyrespnt the Modelica (Fritzson, 2003)
simulation model. In our case studies we have dteatodels expressed with two different
modeling languages which are briefly describedwelo

SysML modeling language

SysML (OMG, 2008) is a modeling language specidlimeSystems Engineering domain
which provides several kinds of abstraction typssu€ture, state, processes) to model a
system. SysML is not a profile of UML but an extemsof UML 2 (OMG, 2009). So
although the aim of SysML is to ease modeling ist&ys Engineering one cannot consider it
a DSL and SysML shares the ambiguity of UML. Thdispending on the applied modeling
rules one element can be represented in quitereiffenanners. An example of modeling
rules in SysML is, for instance, to represent tiifeigent types of aircraft programs as classes.
In contrast, a semantically different approach ddad to use one class nanmfadcraft and an
attribute of it to distinguish the different progra.

10

[.2. System modeling

SysML reuses a subset of UML 2 constructs and estémein by adding new modeling
entities and two new diagram types (see Figurem IOMG). The diagrams provide multiple
views of the same system model. Bwhavior Diagramslescribe the sequence of events and
activities that the system executes. TRequirements Diagramallows the graphical
representation of requirements. Concerning stractliagramsBlock Definition Diagrams
(BDD) are used to illustrate the interconnectionsvieen the system and its external systems
whereas Internal Block Diagrams (IBD) refer to the internal structure and the
interconnections between parts of the system.

SysML Diagram

PP e
Behaviar ! Requirement Struefure
Diagram I Diagram I Dizgram
| — -
Ly
Activity Sequence State Machine Use Case Block Definition Internal Block Fackage
Diagrarm Diagram Diagram Diagram Diagram Diagram Diagram

|

| Pammetric I
| i Diagram

| Same as UML 2

| Modified from UML 2 |

b oo o e o 1
Figure 1. SysML diagrams from OMG

CORE modeling language

CORE is a function-oriented modeling language iratgl in a tool developed by Vitech
(Vitech Corporation, 2011) of the same name. LikeMiL, the CORE application domain is
Systems Engineering but, in contrast, it has peessmantics which place it in the DSL
category. The tool permits the use of differentt&ys Engineering schemas, i.e. different
meta-models depending on the chosen modeling agproBhus, basic CORE schema
consists of a set of structural entities represgnthe most important concepts of Systems
Engineering modeling: Requirements, Functions, Gamepts, Interfaces, Links... Whereas
DoDAF schema, for example, extends it by addingtieatas Mission, Operational Task,
Architecture... Each schema is based on a set ofitpranlanguage concepts containing
elements, relationships, attributes, attributedtr@hships and system control constructs. The
system control constructs are used in the graphigpiesentations which complete the
structural view. Such graphical representations airdescribing the behavior of the system,
being eFFBD (Long, 2000) the central one. Moreow#FBDs (Figure 2 illustrates an
example) allow modelers to simulate the behaviothef system which is an outstanding
feature of the CORE tool.

11

Chapter I. Heterogeneity of models in Systems Eging domain

User Authorization by IMS »

External User Validation Service »

IMS.16.2

kil

IMS.16.1

Request &
Receive User
Credentials

Credentials

L

Receive User

F

IM5.16.5

Known User

Access Rights |7

IM5.16.3

Access Allowed »
Access Allowed

IM5.16.4

Access Not Allowed »
Mo Access

Discontinue User
Access

=

Y

15.4.2

15.4.1

Valdate User
Credentials

Send User ACcess
Rights

15.4.3

Unknown User »

Send Unknown
User

Figure 2. eFFBD diagram illustration (Vitech Corporation, 2011)

[.3.Systems Engineering

New technologies, particularly computer-based tetdgies, have contributed to the

12

development of more efficient and powerful systdmsalso more complex. First significant
attempts to manage such a complexity have a nyilgagin in the 1960s and were the basis
of a new discipline: Systems Engineering (SE). Ascdbed in (NASA, 1999), Systems

engineering is a methodical, disciplined approachn the design, realization, technical

management, operations, and retirement of a systema would also add that it is a

multidisciplinary approach, as opposition to sofvangineering, and that aspect is one of its
major challenges. As seen in Figure 3, several atdsdhave been developed for Systems
Engineering domain and others for Software Engingewhich is a complex domain itself.
Software Engineering is very close to Systems E&ging since nowadays systems cannot
be understood without the participation of compgitimhus, from the eighties, standards of
Software and Systems Engineering have evolvedparallel way and some ideas have been
exchanged from one discipline to the other one.

[.3. Systems Engineering

Concerning Systems Engineering standards, they wérally developed in a military
context since armies (USAF, 1969) were the firgsoto tackle the management of missions
involving complex systems. In 1994 two civilianrsdards emerged (EIA & ANSI, 1994) and
(IEEE, 2005). Particularly the EIA standard gaingdpularity and inspired other new
standards as 1ISO 15288 (ISO, 2008). The EIA stahdefines different processes grouped in
several groups: technical management, acquisitionsufoply, system design, product
realization and technical evaluation. The processesorganized around the concept of
building block A building blockis made up of the system, which is the object hef t
requirements. This system is composed of one orraond products which perform the
operational functions, and o#nabling products(test, training, development, disposal,
production and support). As the development of stesy is quite complex, usually &md
productis decomposed into subsystems each of them bemgiding block Thus,building
blocks support a top-down development. In turn, ISO drdarged the coverage of the EIA
standard in order to take into consideration thiresfife cycle of the system. Thus, the ISO
standard describes agreement, enterprise, prajecteghnical processes but considering the
operation, maintenance and disposal stages as Wate various norms have been updated
during their evolution and currently Software angst8ms Engineering standards are fully
aligned.

2002+

ISO ISQ/IEC
L7 15288 |\ 15288
INCOSE t INCOSE
SE HB 3.1 SEHB 3.2

7 2003+
005 ANSI/EIA

Systems 1994 ANSl [U?Z
Engineering EIA/IS EIA (Updates)
632 632 J*- 1998

1994 / . Eans 731 sE 3
1974 Mil-Std- Capab. Model D
- 499B ~ 1994 ~ s
1969 > Mil-Std- |~ ~.[EEE 100 . =
Mil-Std- 499A {Not Released) ™ . S
. 1220 [[jgee 2000y *
{Tnal Use) 1220 Capability Maturity
Model Integration -
(Rl St | oM (gEJSW)
" CMMIA.2 v
Software SW- b 1995 1998
; ; ISO/IEC ___,| IEEE/EIA
Engineering 1988 CMM SONEC L-----=1 Tiza07 ISO/IEC
DoD-Std- 12207
1987 2167A \ Jffsiz
1994 1 - -
DoD-Std- 198 g 016
1703 Mil-Std- IEEE 1498 | _—"
1988 498 JEIA 640
DoD-Std- st
(From ECBS Systems Engineering (Draft) —— Supersedes
Standards Waorkshop) T935A % Derived Fro

Figure 3. Systems and Software Engineering standascevolution up to 201qMonzén, 2010)

13

Chapter I. Heterogeneity of models in Systems Eerging domain

[.3.1. Systems Engineering Life Cycle description and
instantiations

A System Life Cycle is the description of the diffint stages of the existence of a
system. This description may only refer to the dgwment of the system, from analysis to
integration (e.g., Figure 4 illustrates the proa#sgelopment of an aircraft), but most modern
visions take into consideration a larger cycle. tTineans spanning from the concept of the
system to the retirement or end of use of it. Ithe approach of the ISO 15288 standard
which is described later:A’ life cycle can be described using an abstracttional model
that represents the conceptualization of the nee@ afystem, its realization, utilization,
evolution and disposal

E p Deveiopment process iayer i S A
B/ SN o
B /O [Funotional product integration |\l
—n d -
> lema] Requirements Development | | S
e B | Physical product integration | H
| e 1 ||
"] ||
- —{petiedienesin & prodtiegion__f
|v|c-|ju| UTTTPUVITTID Iu B il Froguct arcniiecture aenniaon Virual progauct integranon = =
Building Blocks ; " | tonctonar spysica) | s o) (]
u] ——————————————]
) e ———x 7 —]
1 IH 1" M — u
Ji=>
;o 0 0 "
[- [n' EE L l - |
" Layer N []|J:> — Product implementation
"
i

Building Blocks [Development process (layer M+1) }

Figure 4. Aircraft Process Development

According to the SE standards introduced in the@iptes section, all of them recommend
starting the development of a system by eliciting tequirements which specify the overall
system. As requirements’ management is a difficask in itself, an entire discipline, the
Requirements Engineering, has been established, Reguirements Engineering is the entry
point of SE and a very important area of interdsgjood management of requirements is the
key for the success of a project (Honour, 2004)vener all the entire system life cycle must
be managed in the end and that is the foundatib8gsiems Engineering.

Based on requirements, the development progre$sesgh distinct stages from the
system concept description to the subsystem angh@oemt detailed description. The system
is refined in an iterative way to progressivelyuee the level of complexity to be managed.

Each refinement step requires a validation witlpees to the expressed requirements. This
14

[.3. Systems Engineering

kind of development approach corresponds to thesidal V-development cycle. In a V-like
image, the cycle begins by performing the descendfimst part of V) activities, which
concern design and construction of the systemigagain), and then the cycle lasts following
the ascending (second part of V) branch, whichelated to the integration and validation
activities. Nevertheless, there is not one only whiynplementing a V-cycle and we can find
different techniques to implement it, some examples theplan driven approacliBoehm &
Turner, 2003), which consists of starting with ateustable set of requirements and of
performing the development activities consecutivethe incremental and iterative
developmen(Larman & Basili, 2003) which applies incrementgtles; ollaborative design
(described in next section) which involves the stamgous distribution of tasks between
multiple teams of a project in order to optimize thme to achieve the overall goal; thgile
approach (Kelly, 2008) which offers flexibility siaa lot of usually hierarchical tasks are
actually performed in a parallel way; abhdanapproach (Oppenheim, 2009), one of the most
successful current trends, which is based on thuegelines: the value (mission assurance in
the context of Systems Engineering), the waste thedprocess of creating value without
waste.

1.3.2. Collaborative design

Actually, nowadays the systems managed are so ewxmplat traditional monolithic
design would be neither sufficient nor efficient egb in a time-to-market perspective.
Teams have to share information and work togetherder to increase productivity.

In despite of its advantages, the advent of workispaechniques such as collaborative
design (Kvan, 2000) can make complex the modelityity. Collaborations (Yoshimura,
2007) involve the simultaneous distribution of detween multiple teams of a project in
order to optimize the time to achieve the overallgin the context of models, it means that
several models of the same system or part of idaweloped by different actors commonly
having a variety of points of view. As described @wdorache, 2006), the collaborative
design process denotes multiple teams, possiblgngelg to different technical domains,
who develop models in a heterogeneous way. Theretloe heterogeneity of models becomes
a problem when engineers need to share them amdiffgsent teams. Due to the complexity
of the concerned systems, both Model Based Systemygmeering (see sectid6.1) and
collaborative design are necessary and complemebtéara new degree of difficulty is added.
Models are consequently distributed and the deigms use different modeling languages
and have different approaches, objectives and widaabs. Thus, the current challenge is the
capability to manage the heterogeneity of modetstarhave a global view of the modeling
results.

15

Chapter I. Heterogeneity of models in Systems Eging domain

[.4. Inter-model relations

1.4.1. Typology

One can also see models as a group of entitieshairdrelations. Relations are central in
modeling activities but contribute to the complgxif models at the same time. There are
different types of relations and depending on tlobiaracteristics we can classify them in
three main groups:

= Intra-model relations. They are the classical et between entities of a model:
association, aggregation, inheritance, instantiatio

= Inter-model relations. They imply more than one nh@atel are relations between
entities of the models, i.e. we connect entities ghodel to the ones of another
model.

= High-level inter-model relations. These are reladidoetween models without
taking into consideration the content of the modéis(D. Kolovos, Paige, &
Polack, 2008) there is an analysis of this kindes@tions where we can find an
exhaustive list containing notions ases extendsrefinesand so on.

However, if we consider the Systems Engineeringetiggment process we can also talk
aboutsame leveandtop-down or bottom-up relations

[.4.2. Relations in the process development

Our main hypothesis is that models are used in edHclthe Systems Engineering
development process descending layers, i.e. fromqtiRements Analysis” to “Detailed
implementation in equipments” of Figure 4. Inter-rabeklationssame leveandtop-down or
bottom-up are an important source of heterogeneity in sudevelopment process. In this
context, advancing from a layer to another onehea process flow, i.e. overcoming a
milestone, implies some kinds of refinement of thedels of the upper layer (top-down) or
composition of models of the lower layer (bottom)-upefining refinement or composition
rules and keeping traceability between models is thgortant for design rationale purpose.
We call that type of inter-model relationt@p-down or bottom-up relatiorsiven two models
M1 and M2 released at successive steps of the $ggpt2 refines M1 if it adds details to it.
For example an UML clasAirframe in model M1 is refined in model M2 as numerous
classes:Wing, Control surfaces Fuselage Drop tank and Vertical sabilizer, linked by
association, inheritance, etc. Nevertheless, befmi@eving a milestone, several domain
specific models usually exist. The models of thenesastage should be validated after
establishing another type of inter-model relaticafied same level relationsin this case,

16

[.4. Inter-model relations

defining relations and constraints is important émsuring that no conflict exists between
models: no inter-model constraint is violated. Alllyaa same level relatiorbetween two
models is induced by the fact that one (or sevdral)l regards them having a particular
objective (for instance, to compare or to validateeature of the two models). If more than
one field is implied, usually they are examining tinodels at the same development step in
the general Model-Based Systems Engineering prese$$ie observers indeed are interested
in the same kind of information. They share a cahpnsion level, but usually they have
different points of view (Auzelle, Garnier, & Poetc2009) on the models according to their
objectives. The modeling point of view is the caesation angle from which observers are
projected over a modeling language.

I.5.Heterogeneity

In a collaboration frame of work, heterogeneity as logical consequence of the
involvement of different engineering groups, modelsmains, modeling languages and
paradigms. Actually, one could consider heteroggras necessary in such a context since a
great variety of points of view and proposals img®whe design and promotes the
innovation. Nevertheless, approaches aiming at regubis heterogeneity are demanded in
the case of heterogeneous models which need todveds

Klein (M. Klein, 2001) identifies four types of gbgeneity or mismatches:
conceptualization (what one wants to model), eapilimn (how one specifies a concept),
terminological (concerning the used words) and dimgp (data formats). In our context,
heterogeneity in design models has diverse origins.

» Data exchanged between applications (encodig)instance, one application uses an
identifier of 9 digits for an engineering data atbther application uses an identifier of 10
digits.

» Objectives of the models (conceptualization):,eoge model is used to discuss with the
customers whereas another model is focused on &iimilttests.

* Models structures (terminological): e.g., one eladescribes th@ower Plantwhich is
calledEngine Unitin a different model although both refer to a saxmecept.

* Modeling languages (explication): e.g., one givdesign model can be formalized
within different modeling languages, like SysML@DRE modeling languages.

* Modeling paradigms (explication): e.g., SysMLais object-oriented language whereas
CORE uses a function-oriented language approach.

17

Chapter I. Heterogeneity of models in Systems Eging domain

In order to go further in this topic, (Silva, 200performs a detailed analysis of
heterogeneity in systems interoperability context.

[.6.Current approaches to handle heterogeneity

Several approaches deal with the problem of heter@ity in the modeling context. One
of them is to establish a common modeling languéddCOSE, 2007) in Systems
Engineering such as SysML. In models of computagiea, (Eker & Janneck, 2003) suggest
an approach which groups locally homogeneous moibgsther using an actor-oriented
architecture. Another example for modeling in aehmgeneous domain environment is
Rosetta (Alexander et al., 2003). It uses facetdltav the re-use of components in different
domains. Some studies are more focused on dateogeteity by enabling the exchange of
product model data between different systems, &PSPratt, 2001) which intends to cover
the data of the product entire life cycle basedngplementable models known as Application
Protocols. Even though this may solve problems data level, this is not the only layer
source of heterogeneity in a Model-Based SystenggnEnring process. In addition, although
that kind of solutions may assist in obtaining asemsus in new models, they cannot bear
with the heterogeneity of existing models.

1.6.1. Model-Based Systems Engineering

A means for reducing the heterogeneity while desigra system is the application of
well-defined methods. This approach is the mainceph of the Model-Based Systems
Engineering (MBSE), also known as Model-Driven 8ystDesign (MDSD) (Estefan, 2008).

MBSE methods

Currently several methods implementing the MBSHE@ples are available. The main
ones in our industrial context are briefly desadilbelow.

INCOSE Object-Oriented Systems Engineering Method

OOSEM (Lykins & Ave, 1999) is a method originalhorceived by the Software
Productivity Consortium in collaboration with Loakéd Martin Corporation. The first
versions of the method were UML focused until tlaetipipation of INCOSE. INCOSE the
main Systems Engineering association in the woedriented it to use the SysML language.
That kind of languages is view/diagram driven wharenodel consists of a group of
diagrams, corresponding to the notion of modeliognis of view, and elements that are
usually accessible from them.

! http://www.incose.org/
18

[.6. Current approaches to handle heterogeneity

CORE System Definition Guide

CORE System Definition Guide (SDG) (Vitech Corpmat 2007a) is a guideline to
perform Systems Engineering activities using theREOlanguage developed by Vitech
Corporation. CORE is driven from a single integdateodel, it is driven by classes and
elements rather than individual diagrams as in SysMUML. A variant or extension of this
guideline is the Architecture Definition Guid@DG) (Vitech Corporation, 2007b), which
provides a structured approach for populatiagCORE project with architectural
definition information wusing the Department obDefense Architecture Framework
(DoDAF) schema (Department Of Defense, 2007). It@ements the CORE SDG by taking
into consideration the DoDAF standard, mainly to #uel operational dimension. The main
objective is to obtain an Operational Architectyfégure 5) in parallel to the System
Architecture (Functional and Physical) output o€ tetructured approach of SDG. As a

consequence, the ADG is consistent with this ambr@and it has to be applied jointly with
the SDG to obtain the Architecture.

Architecture

composed off comprosed off
COMmpOsEs .
f= ™
-
OperationalNode {'(.{:'}'pe‘ %ﬁ;ﬁf
(Type: Operatiousl Symtems, Systems
Architecnme) Architectre, or System

of Systems) J

Figure 5. The Architecture consists of Operationata group of Operational Nodes- and System
Architecture —a hierarchy of Components-

IBM Rational Harmony for Systems Engineering

HARMONY (IBM, 2011a) is a model-based Systems Egsgimg methodology
suggested by IBM which is supported by IBM produdise process is built on UML and
SysML. It consists of a tool chain which followslew of efficient design iterations covering:

= System specification

* Requirements analysis

= System architectural design
= Interface definition

= Validation

19

Chapter I. Heterogeneity of models in Systems Eging domain

Modeling languages issue

All the aforementioned approaches are suitablehferdevelopment of products based on
models. Nevertheless they do not face the probliecombining several modeling languages
which is very common in large enterprises. We ngrdtiple modeling languages since
complex systems involve multiple domains or log{dsossakowski, 2004). Next section
analyses several approaches concerning multi-nmageli

[.6.2. Integration approaches

The problem of distributed autonomous and heteregas sources has been addressed in
several domains such as system interoperabilitydski, 1997)(Curbera et al., 2002)(Cerami,
2002) data integration and model integration.

Distribution, autonomy and heterogeneity are thannreeds which originated data
models like multidatabases and federated datab@seB. Sheth & Larson, 1990)(Pierra,
1992)(Hose, Roth, Zeitz, Sattler, & Naumann, 20@8jterent mapping approaches can be
used to implement these data integration system$iféfevy & Ordille, 2006) (Bakhtouchi,
Chakroun, Bellatreche, & Ait-Ameur, 2011). Schemappings like global-as-view (GaV),
local-as-view (LaV) (Seng & Kong, 2009)(Lenzeria002), GLAV (Generalized local-as-
view) (Friedman, Levy, & Millstein, 1999)(A. Y. Hawy, Arbor, & Yu, 2007) or data
exchange systems (Kolaitis, 2005) specify the imahips between a source schema and a
target schema. In the model integration researeh @aplat, Sourrouille, & Pascal, 2003), a
mapping is a morphism (Antonio, Missikoff, Bottodi,Hahn, 2006) consisting of a set of
functions which transforms a moddllL to a modeM2 and of the set of relations enabling the
traceability (1:1, 1:n, m:1, m:n) between correspog entities of both models. When models
are expressed with the same modeling language Wi @a endogenous mapping, otherwise
it is an exogenous mapping. Some researches onimgappo particular different modeling
languages have already been done, e.g. mapping(D&ta flow diagram) into UML activity
models (Tran, Khan, & Lan, 2004). The main drawbatknapping techniques is that such
solutions are very hard to maintain (Ruzzi, 2004).

This leads us to another type of morphism: the fommstion of models. The
transformation of models is central in the MDA (Mdbdriven architecture) (Mukerji &
Miller, 2003) approach. In this approach the cqroeglence between models is established by
applying transformation rules to their meta-modglkse Figure 6). Thus, the equivalence is
done at meta-model level as in our proposal. Amglyihis technique (Boronat, Knapp,
Meseguer, & Wirsing, 2008) suggests a unique nmitidel language compliant with several
modeling languages in order to guarantee the demsig of models from the syntactical point
of view. Some other researches have suggestedsthefilcommon meta-models (Hardebolle
& Boulanger, 2008). In weaving modeling (Jean Bégi\Didonet Del Fabro, Jouault, &

20

[.6. Current approaches to handle heterogeneity

Valduriez, 2005) a third meta-model, the weavingtammaodel, is used to represent the
combination of models although it is not suitaldedvolution scenarios (Hessellund, 2009).

J/
N

ianguage used

T
——
e,
—_—

Figure 6. Transformation of models via meta-models

Mapping and meta-modeling are techniques currenibplied to the problem of
integration of models.

[.7.Conclusion

Nowadays, the complexity of systems entails thel rdenulti-domain disciplines such as
Systems Engineering in order to manage such a exitypl Engineering best practices
recommend the use of models during the enginegsnogess. The core of our work is
focused on the design stages of the functional@mdical architecture of thend product
The development life cycle and the collaborative kv@mongst other factors, lead to an
increase of the heterogeneity of these models. fbisrogeneity becomes an issue when
models need to be shared or integrated in ordgu#vantee their consistency. Even though
there are multiple and successful approaches fointegration of models, there is still a gap
to take into consideration implicit knowledge, itee knowledge of engineers that is not in
the models themselves but that is essential foenstanding and validating them. We base
our work on meta-modeling principles, however, proposal complete them with the use of
implicit knowledge made explicit as described ixtreection.

21

Chapter I. Heterogeneity of models in Systems Eging domain

22

Ch apter [l Knowledge models to integrate and
validate heterogeneous models

Summary
1 S0 I [0 01 o] [Ted 1l s VXV (= [TN 25
11.2. Formalization of KNOWIEAQEuueeieeeiieiietiiieeiteeceeeceetneeenneerenneeenneseannsesnnens 25
12 R N [=Y=Yo o) oY a) (o) (oY 1=y SRS 26
II.3. Ontologies and annotation of MOAEIScu.ceveuniremiiieiireiireeceeeeieeeereeeennees 27
11.4. Validation of intfer-model Properti@s.......cuuuueeeeeiieeniiereieenirerieernerereeeeeneeennees 28
4.] . RO GUINEIMIENTS ettt e e e e e e e e e e e e e e e e e e eaa s s aaeeeeeeaassneeeaeeseaaasaneneeens 29
[1.L4.2. PrOPREIMTY [ONGUOGES ceeeeeieeiiiieeiieeteeeteeeeeeeeeeeteeeeereeree—eeree—.————————.eeee 29
I.L5. EXPRESS Modeling [aNQUAQE.....c..ivueiieiereieieeeenneeerneeenneeessireresseerssesesssersanes 30
5.1, METAMNOAEING weeeeeeeeeeeeeeeeee e e e e e e e e e e e e e e e e e eeaeeeeaeaaseeeeaeeeeeesrneeneeeas 30
[1.5.2. EXPressions WITh EXPRESS ...oeee ittt e e e e e e e et e e e e e e e ee e eeeeeeeaseeeneeeas 31
[1.5.3. The CNOICE OF EXPRESS ..eeeeeeee et e et e e e e e e e et eee e e e e e e e s eeeeeeaaasseeneeeas 32
I TR @FeY o Ted (V11 [o 33

Abstract. Models are the result of the work of engineeriegnts which represent a
system or a part of a system from a particular ppoinview. Nevertheless, to correctly
interpret a model, additional knowledge issued fitb engineers in charge of such a model
IS necessary. It is the implicit knowledge whichkispt in engineers’ minds. There are
multiple ways of formalizing that knowledge but wWenk that in the Systems Engineering
context formal ontologies are suitable, mainly tluéheir precise and consensual nature. We
defend the formalization of implicit knowledge asn@eans to integrate and validate
heterogeneous models. Thus, by making explicitrtipicit knowledge we can annotate such
models to ease their integration and to supporvétdation of inter-model properties.

23

Chapter Il. Knowledge models to integrate and \edécheterogeneous models

24

[I.1. Implicit knowledge

I.1. Implicit knowledge

The problem of heterogeneity in the context of MB®&Eincreasingly drawing the
attention of researchers, and several approachaswdtid it. We think that one factor for
heterogeneity may, paradoxically, be used at thmeesame to reduce it. It concerns the
knowledge of engineers which is common in theirteghbut that is usually not included in
models. We call it implicit knowledge and its forimation is a key factor to understand the
models when they are shared or analyzed as a wAolexample of this kind of implicit
knowledge can be found in a scenario such as aweafii engineering team designs the
avionics system, i.e. critical domain systems frma security point of view, whereas a
different team models non-critical aircraft soft@aNone of the teams indicates the domain
of their models since it is obvious for them; nékreless this knowledge is crucial when both
models are checked jointly, since different constsaapply to them. Another case arises
when engineers use different concepts or namatdéosame element using different words in
their respective models. This can be due to inceta@pecifications or to the evolution of the
models themselves -e.g. an interface has changee aad only one team is aware of this
amendment whereas another team still uses the oid-na

Engineers have their own knowledge concerning tloelais they are working with.
Nevertheless, this knowledge is not always maddiaixipn the content of the models.
Therefore we think that using the content of thedate is not enough. Some studies (Vajna,
2002) (Damjanowi, Behrendt, Pléssnig, & Holzapfel, 2007) have shawat design and
particularly models need additional data and kndg#eto be completed and understood.
Consequently, knowledge should be taken into cenaitbn in order to find or establish links
between models. It is an engineering issue andRasKl[ein, 2000) demonstrates in his
description of the MOKA framework, design knowledgfgould be processed in a specific
way.

1.2. Formalization of knowledge

In computer science, the formalization of knowledgean old topic which has been
tackled with different approaches. In our domaie, @an have several models representing
different types and levels of knowledge. (Chen &CRB007) proposes a classification of
engineering knowledge involved in product desigmom® other examples of types of
knowledge can be found below:

* Modeling semantics, e.g.Blockrepresents a component in SysML.
= Terminology, e.g. the same interface named difféyemttwo models.

25

Chapter Il. Knowledge models to integrate and \edécheterogeneous models

= Modeling process semantics, e.g. the checkpoingmsare consistency of external
interfaces.
= Domain semantics, e.g. the phases of the airdigffit f

Translating the concepts that are in the mind girezers is not an easy task but it is a key
activity in domain modeling, in requirement anasyand in computer design. One classical
implementation of knowledge in design is the elation of conceptual models in order to
obtain a consensus in the main concepts one want®rk with. They are relatively simple
models, especially if we compare them with the se@d requirements knowledge
representation. The main objective of this disoliis to formalize the concepts non
ambiguous, so therefore the formalization of knagkeis more complex, including models,
instances of these models known as knowledge lmaseubes or mechanisms to reason and to
produce new knowledge. Therefore, depending ordhgplexity of knowledge to be treated,
different techniques or tools can be applied. Ansbiigem ontologies play a key role.

[1.2.1. Need of ontologies

Ontology (Chandrasekaran, Josephson, & Benjami®89)lis a word borrowed from
philosophy meaning “the study of the kinds of tharigat exist”, nonetheless the most well-
known actual definition is “an explicit specificati of a conceptualization” (Gruber, 1995).

In (Jean, Pierra, & Ait-Ameur, 2007) the authorsgrsj that a domain ontology is a
“formal and consensual dictionary of categories praperties of entities of a domain and the
relationships that hold among them”. They deferad thdomain ontology needs to be formal,
consensual and to have the capability to be refeckrirhese three characteristics are relevant
for our proposal of employing engineering expliaitowledge to reduce the heterogeneity of
models. The formal aspect is important to avoid igoity and to allow reasoning capabilities
in such a computerized environment. Consensualeppfis necessary in the multi-domain
context of Systems Engineering. Finally a genedentifier is essential to allow a correct
knowledge management. Referencing uniquely is thectibe of the Uniform Resource
Identifier (URI). URI is a standard (Berners-Leegl#fing, Irvine, & Masinter, 1998)
identification widely used in ontologies, and inrqaroposal, to precisely identify concepts
(W3C, 2008). We adopt this definition for our work.

To distinguish ontologies from other mechanismsigrat modeling concepts, (Oberle,
2006) suggests that:

1. Primary goal of ontologies is to enable agreementhe@ meaning of vocabulary
terms to ease information integration.

26

[I.2. Formalization of knowledge

Ontologies are formalized in logic-based languagesl have unambiguous
semantics.

Ontology languages have executable calculi enablbjugry and reasoning
services.

Ontologies can be used in different domains bub¥ahg (Pierra, 2008) we classify them
into two big categories:

Linguistic ontologies. They are focused on words, how concepts are reflected
in a particular natural language, we go from wot@sconcepts. Semantic web
(Uschold, 2002) is the natural domain of this graumgl it is the origin of several
formalisms, in particular: RDF (W3C, 2004), DAMLHO(Connolly et al., 2001),
OWL (Bechhofer et al., 2004), SWRL (lan Horrockskt 2004).

Concept ontologies. In this case the areas ofdsteare the concepts and the
properties that are used to represent some paftieofvorld which is described
using natural language, i.e. we go from conceptgdals. This type of ontologies
fits engineering conceptualization. Engineering emts is the core of the STEP
(STandard for the Exchange of Product model and)datoject, where each
engineering domain is represented as a STEP Applicdrotocol (AP), for
example AP233 (Gert & Eckert, 2000) is the AP fgst®ms Engineering and has
a semantic extension specified in OWL (Spiby, 200Yklose relation with STEP
we find PLIB (ISO, 1997a), an ontology model define EXPRESS and used for
component libraries of industrial technical dat&QJontology model (Guizzardi,
2008) is another example of employ of ontologieanrengineering domain.

1.3. Ontologies and annotation of models

We formalize explicit knowledge because we want émage it. One of the most common
applications is to use formal knowledge to complete enrich existing elements like
documents and models. The mechanism allowing tlsecadion of such elements with
concepts of ontologies is called annotation. Forudmnt centric annotations readers can
refer to the article (Uren, Hall, & Keynes, 2006)dathe Edelweiss team work (Mokhtari &
Corby, 2009). Below we analyze related work conicgyontologies and engineering models.

In (K. Oliveira, Breitman, & Oliveira, 2009) autieosuggest the use of ontologies to
compare models. In the petrology and geological nhirmgleeontext, (Mastella, Abel, Ros,
Perrin, & Rainaud, 2007) introduce an ontology wérgs. Tudorache (Tudorache, 2006)

27

Chapter Il. Knowledge models to integrate and \edécheterogeneous models

suggests the transformation of heterogeneous desigiels into an ontology (enrichment) in
order to establish matches at the ontology levelvextheless, our objective is to connect
current models keeping their own nature; we aimtha&t collaboration not at the final
integration. The (Brauer, 2007) software-orientpgraach consists of mapping each meta-
model -automatically- to an ontology and to linkthe ontologies to an upper-level ontology
(USMO). Concerning inter-model relations, (An & Sor#P08) describes a technique for
discovering meaningful associations between desigrdels using complex ontology
mappings. As a conclusion, the Tudorache’s appr@aegkry close to ours, albeit we keep a
clean distinction between the models, and the ogte$ used to annotate them.

Regarding annotation, some works have treatedrtid@gm of annotating models mainly
in the enterprise modeling area. Some of the padpasan be applied to our approach. In
(Zouggar, Vallespir, & Chen, 2008) authors suggeshethod for linking elements of the
models to concepts of an ontology whereas (Bowaj8dPanetto, 2008) describes a more
complex framework with different ways and typesaonotations depending on the kind of
interoperability issue. Therefore, these articlealyze very useful properties to be provided
in the characterization of an annotation predontigatoncerning categories of annotations
according to different points of view (informal, foal, structural, behavior...) and the
accuracy of the annotation itself (exact, partial siflce sometimes the engineer is not able to
find the exact knowledge concept correspondingtdomodeling entity but a similar or a
possible one. (Lin, 2004) presents a proposal &raguirement engineering techniques to
annotate models. Other approaches (Mandutianu, 28068jnmend the annotation of each of
the elements, point-to-point, of the models withiategrating point of view. Concerning
current model annotation frameworks, in general tatiums are written by domain experts,
but some systems like A* (Athena Project, 2006¢muls to provide some semi-automatic
annotations.

As explained, ontologies have all the needed cheniatics to represent engineering
implicit knowledge. The annotation of models usorgological concepts allows engineers to
enrich their heterogeneous models in order to éotamect them. This integration based on
explicit knowledge permits the analysis and valaabf inter-model properties.

1.4, Validation of inter-model properties

So far we have described the problem of heterogersdi models and the lack of
representation of the implicit knowledge comingnir@ngineers. These heterogeneous but
related models are an issue for engineers becaumse properties to be validated involve
more than one model, as a consequence of collahgmigineering. Thus, once the implicit
knowledge is added to the models we need to be tablgse it to validate inter-model
constraints.

28

II.4. Validation of inter-model properties

[1.4.1. Requirements

The main source of inter-model properties are #mirements. Requirements are the
departing point of Systems Engineering procesdesy tlescribe the specification of the
system and they guide its validation. There ariediht categories of requirements but quite a
common categorization divide them between functiand non-functional requirements.

= Functional requirements describe the functionalftthe system.

= Non-functional requirements refer to the charastes of the system that the user
cannot affect. Nevertheless the distinction betwieictional and non-functional
requirements is not always clear and depends onctiméext. Non-functional
requirements are also known aglities” (security, portability, quality,
reliability...). Constraints are commonly included tims category. A constraint
describes limits that the system must respect intbgely of the final solution,
e.g. ‘the aircraft systems shall reduce interferences omtiog to EMC
(electromagnetic compatibility) directives of Eueam Uniori.

This general classification of requirements dendked we can find a large variety of
properties to be validated besides the heterogeméithe models themselves. Thus, the
language or formalism that we choose to check &cpéar requirement must fit the right
typology. Moreover, in our proposal such a propdagguage must be compatible with
ontologies in order to use the formalized implisibwledge.

11.4.2. Property languages

In literature we find several types of languagésvahg the validation of properties. Most
of these languages are optimized for a particutanan or modeling language.

Some property languages envisage a more generalhisas the case of OCL (Warner &
Kleppe, 1998) which is a contribution to expressstaints over UML models. Nevertheless,
the fact that it is a language quite different fraML increases the learning curve for
modelers. On the other hand, OCL is consideredowtenient for more than one model (D.
S. Kolovos, Paige, & Polack, 2006).

As a conclusion, to validate inter-model properties need a language adequate to the
typology of the checked property and able to expm@®perties over more than one model
and using ontologies. For the validation of our rapph, we decide to set up our ad-hoc
constraint language, based on the procedural kuigelenodel of PLIB (ISO, 1997b) and
implemented in EXPRESS modeling language, whichtlfie needs of our case studies.

29

Chapter Il. Knowledge models to integrate and \edécheterogeneous models

1.5. EXPRESS modeling language

For the formalization of our approach, we have ehothe EXPRESS (ISO, 1994)
modeling language. EXPRESS is a normalized langdafjeed in the context of the STEP
project. It was originally defined to representguot data models in the engineering area and
it is now widely used for solving several data modgproblems. The major advantage of
this language is the integration of the structudascriptive and procedural concepts in a
common formalism and a common semantics. Semanititee EXPRESS language is clear
and it has allowed a time-efficient implementatafrthe approach. Furthermore, EXPRESS
eases the modularization of the models and theciated code applying the notion of
schemas. A schema contains a group of entitiegsbutttss and constraints strongly intra-
related. In practice a schema corresponds to almAdedescribed further on, the notion of
meta-model, which does not exist in EXPRESS, has laeded.

[1.5.1. Meta-modeling

EXPRESS is type oriented: entity types are definedompile time and there is no
concept of meta-class. Each entity is described bgt of characteristics or properties called
attributes (see Figure 7).

SCHEMA Example;

ENTITY A; ENTITY B;

att_A: INTEGER; att_1: REAL;

INVERSE att_2: LIST [0:?] OF STRING;
att_I: B FOR att_3; att 3. A;

END_ENTITY; END_ENTITY;
END_SCHEMA,;

Figure 7. Entity and properties in EXPRESS

It is also possible to describe derived attributeshe entity definitions. In Figure 8 a
derived attribute att_3 is calculated as the aolditif att_1 and att_2.

ENTITY B2;

att_1: REAL,;

att_2: REAL,;
DERIVE

att 3: REAL := (SELF.att_1 +SELF.att_2);
END_ENTITY;

Figure 8. Example of a derived attribute in EXPRESS

30

[I.5. EXPRESS modeling language

One of the advantages of using EXPRESS is thatstdme language supports the
expressions of entities constraints and the imphat®n of functions and procedures.
Constraints are introduced thanks to WWHERE clause of EXPRESS that provides for
instance invariant, and thanks to the gldREILE clause that provides for model invariant. In
Figure 9 the value of attributt 1 of entity A must be greater than S3VHERECclause) for
each instance, whereas the addition of attritattel values of the totality of entityA
instances has to be less than 10BWIE clause).QUERY is a built-in instance iterator
function andPLUS_FUNCTIONSs an implemented function.

ENTITY A; RULE Control FOR A;

att_1: INTEGER,; WHERE
WHERE PLUS_FUNCTION(QUERY (inst<*
SELF.att 1>5 A)) < 1000;
END_ENTITY; END_RULE;

Figure 9. Constraints in EXPRESS

As the meta-class concept does not exist in EXPRESS8se a meta-programming (see
(Y Ait-Ameur, Pierra, & Sardet, 1995) (Y Ait-AmeuBesnard, Girard, Pierra, & Potier,
1995) for details) technique. It is the process #ilaws us to represent data and/or programs
by data in a meta-model. In our proposal this teghas been used to represent procedural
knowledge (expressions).

[1.5.2. Expressions with EXPRESS

In our approach the problem of representing pro@diénowledge is solved by
considering programs or procedures as data. Thescam represent expressions like in
functional languages. An expression is modeleceteither a constant (literal), a variable, an
unary, a binary or a multiple arity expressionllasirated in Figure 10.

SCHEMA generic_expressions_schema;
ENTITY generic_expression
ABSTRACT SUPERTYPE OF(ONEOF(
generic_literal,
generic_variable,
unary_generic_expression,
binary_generic_expression,
multiple_arity _generic_expression));
END_ENTITY;

Figure 10. Expressions top entity

31

Chapter Il. Knowledge models to integrate and \edécheterogeneous models

In our work we have extended and interpreted thegeressions for allowing the
validation of inter-model constraints (see detailssectionV.5). We use EXPRESS local
rules to trigger the validation. This cause theeriptetation of expressions via particular
derived attributes belonging to the different irvead entities (an expression is encoded by a
tree of entities). To illustrate with an example, Rigure 11 the comparison between two
elements is triggered by the local rdl¢R1 which implies the calculation of the derived
attribute THE_VALUE This derived attribute calls the function
COMPARISON_GREATER_FCwWhich fulfils the rule by returningtrue whether the
comparison is correct.

ENTITY COMPARISON_GREATER
SUBTYPE OF (COMPARISON_EXPRESSION);
DERIVE
SELF\BOOLEAN_EXPRESSION.THE_VALUE:BOOLEAN:=
COMPARISON_GREATER_ FCT(SELF);
WHERE
WR1 : SELF\BOOLEAN_EXPRESSION.THE_VALUE = TRUE
END_ENTITY;

Figure 11. Interpretation of an expression using ERRESS

[1.5.3. The choice of EXPRESS

We have chosen EXPRESS modeling language for tigatian of our approach mainly
because:
» jtis a language allowing both the constructionnuddels and the validation of
constraints in a homogeneous formalism

= jts object-oriented philosophy and the multipleantance capabilities fitted the
nature of the meta-models we have built

= from the perspective of knowledge, the formal semarof EXPRESS language
permit the implementation of simple knowledge medgle. focused on classes

and without reasoning)

» jt exists tools providing environments to validatenstraints over instances of
EXPRESS models

Thus, these characteristics allowed us to performamd validation of the different
concepts of the approach.

32

I1.6. Conclusion

11.6. Conclusion

In Chapter | we have treated the topic of heterogememadels and integration issues. In
the current chapter we have focused on the negedsihake explicit the implicit knowledge
iS necessary to correctly integrate and validateineeging models. Therefore we have
presented different aspects of the knowledge mieglelenoting the need of ontologies in our
Systems Engineering context. We have discusseculrent efforts for bringing together
models and ontologies. We think there is a needeskarch concerning non-intrusive
approaches which defend the formalization of impknowledge to integrate engineering
heterogeneous models in order to validate inter-inmmestraints.

Our objective is to describe, model and verify iifiteodel constraints and relationships
between existing heterogeneous models by makindicéxgormalizing and exploiting
additional knowledge usually not expressed by tigireeers to express these constraints and
relationships. Our work focuses on same level intedel relations in the Aircraft Systems
Engineering development process (Simon Zayas, Mange% Ait-Ameur, 2011). Thus, we
have to take into consideration our aeronauticdistrial context, which is described in next
chapter.

33

Chapter Il. Knowledge models to integrate and \edécheterogeneous models

34

Ch apter 1 Current practices in Aircraft

Systems Engineering

Summary
HLT. INrOdUCTHIONttt cccnnneeeeesessssssssssnnnnsesssssssssnnns 37
ll.2. Aircraft Systems Modelingccccceevviiiiiiiiiiiiiniiniiiiiniecneeccnnee 37
lI.3. Current MBSE applicAtions.........ccocoveeiiviiiiiuiiiiniininieiiecinecnneeeneeescneeseneees 39
ll.4. From documents to Models...........cccoevuueiiiriiueiiiniiueiiiiiniineceee e 40
I.L5. MBSE and development ProCessccccvviiiiiiiiiiniineeeeeeeneeeemmeeeesemsemissssssssssssssees 41

I1.L6. Management of heterogeneous modeling in Aircraft Systems Engineering 41

l1.7. Expected benefits of the proposed dpproach........eeeeeeeereieernereeerenneeennnenes 42

IIILB. CONCIUSION «.ccueeeetieiiiteiiiettiiereeeeeeeerneresreresssseesseersssessssesesssssrssessssesesseserssesssnenes 44

Abstract. The adaptation of a solution proposal for the mganznt of heterogeneous
models relies on its industrial context. Theref@ach industry has its own applied methods
and practices. In this chapter we describe ourraertical industrial context and we discuss
the expected benefits of our approach.

35

Chapter 1. Current practices in Aircraft SysteErsgineering

36

[11.1.Introduction

M".1. Introduction

The particularity of aeronautics domain concernthg heterogeneity is due to the
complexity of the system itself, the aircraft, lalgo to the complex organization. On the one
hand, there is a great number of internal deparisne@md teams involved in the design of an
aircraft. On the other hand more and more suppéegscollaborating in such design. Thus,
the applied approaches and the different ways akwacrease the collaboration issues.
Moreover, this collaboration is necessary all altimg lifecycle of the aircraft which is very
long. These factors result in interoperability pembs (Figay, 2009) and in modeling
variability and heterogeneity. Consequently, genand multi-view methods are needed, e.g.
(Tenorio, Mavris, Garcia, & Armstrong, 2008).

Even though models have been used for long in aetms domain, their complete
integration in a Model-Based Systems EngineeringB®H) approach is not yet fully
accomplished. In detailed design, i.e. the desigset to the physics of the aircraft where the
semantics of the modeling languages are clear pedif&c, models are historically well
managed. Nevertheless the best practices for uswmdgls in higher levels, operational or
functional, are still an open discussion and MBSEeden as the perfect framework in order to
find an overall solution.

11.2. Aircraft Systems Modeling

Common definitions of a system involve end and énglproducts (seé.3), processes
and people as main elements. According to thisndiefin one can consider an aircraft as a
system. Nevertheless, in aircraft engineering #rentsystemdoes not fit completely this
description. Historically, an aircraft was builbin a set of systems (one of the domains of the
product breakdown) called embedded systems eacbspanding to almost exclusively one
dedicated calculator usually in charge of one fiamctThis is the reason why quite often the
notions of function and system were confused.

Progressively, the architectures have evolved tengercial microprocessor-based
architectures, that meaning more powerful procassabte to perform several functions but
also a stronger dependence of the market prodéista.consequence, the separation between
functional architecture and physical architectures leecome essential. Therefore, one
function is provided by an application, which isxgaosed of one or more software programs
that are loaded, with other programs, on cards slkeéras installed on various equipments on-
board, but also on-ground for some applications.

37

Chapter 1. Current practices in Aircraft SysteErsgineering

Aircraft domain has advanced from describing threraft as a mechatronic system, i.e. a
set of mechanical, electronical and computer compisn@teracting, to considering it more
and more as an internal element of the informasigstem The information system is the
group of domain objects, messages (information)}a dand business rules used or
implemented in order the aircraft to be operatednduits life cycle by actors involved in
different specialties. The information system wydeixceeds the aircraft system since it
includes fleet management and the stakeholdersiegchh the external interactions of an
aircraft. Amongst the sub-systems of the informatgystem, the computer system is
composed of the electronical and computer means tlaadtelecommunication elements
allowing automating and supporting the operatiofiserefore, the computer system is the
structured collection of software and hardware camepts and data enabling the almost total
automation of the information system. It includeghbon-board and on-ground elements as
well as the communication means.

The progression of aircrafts from mechatronic systéo information systems entails a
more complex management of requirements as weéltoHcally requirements have been
managed as a set of documents hierarchically argdnHence, in order to keep traceability,
documents were used not only for eliciting requieats but also to carry out the design. In
this way, the cycle beginning with the requiremeartd finishing with the construction of the
aircraft was document-based. Unfortunately, documare very difficult to handle for such
complex systems because of their textual natueedifierent interpretations of the content
and the exchanging information problems. In thistert, models, already widely used in
computer science, seemed the logical evolutiontiqodarly taking into consideration the
growing impact of the information system in theceaft. Nevertheless, the use of models is
not new in aircraft domain since they were alreaggessary to perform simulations of
physical laws or to represent 3D data at lowestlee(CAD tools). The actual need was to fill
the gap between the requirements and these detaibeléls and to set-up processes which
formalize the use of models at different levelshaf design and all along the aircratft lifecycle,
the aim of the Model-Based Systems Engineering iqoks (seen ih6.1).

In aircraft domain, models are used to build auatrepresentation of the aircraft starting
with a description of the operations linked to thp level requirements. The operations are
then supported by functions that are also describbddnctional models. When a function is
really complex, e.g. to perform maintenance, airemhodel can be reserved to represent it
but it is not necessarily limited to a unique endesti system. Actually, a model describes
often the interactions between various systems. tfamad models are supported by one
physical architecture, after performing trade-offmparisons between other candidate
architectures. This physical architecture is algescdbed by one or several models until
arriving to a level where traditional engineeringpdels (CAD and logical) take part.
Obviously, model-based design it is not a singlecetion of the chain operation-function-

38

[11.1.Introduction

architecture but an iterative activity which detaihe design progressively in a top-down
perspective, in order to use the different modelsuild the aircraft in a bottom-up approach.

1.3. Current MBSE applications

The industrialization of MBSE principles is a diffilt task which has to be carried out in
progressive steps. Therefore, in our aeronautictezd the MBSE approach has been
addressed in different ways throughout the time.

Requirements engineering As a previous but essential step to a correct KBS
implementation the management of requirements isidered a focal point. Currently a
Requirements-based Systems Engineering methodseaist is industrialized. Rules and
techniques are defined to write requirements andhandle their traceability. Thus,
aeronautics industry defends Requirements-Baset@i8gsEngineering as the starting point
of large scale SE applications.

Models with a local perspectiveIn order to improve the modeling skills of engineit

is a good practice to introduce modeling technigues progressive way. Hence, in our
industrial context some models have been develapathg at very precise objectives. They
are models that follow MBSE recommendations butetfa@e not developed within a process
and evolution perspective. The aim of these moddictivities is two-fold: on the one hand
models are used to verify some particular proper(specification validation, executable
specifications, impact analysis...); on the other handillows engineers to learn the
foundations and benefits of applying MBSE approache

MBSE as a processNext logical step in a MBSE deployment tactidasevolve from
current modeling practices, which are varied andetones ad-hoc, into more consistent
MBSE methods. This consistency means that:

= modeling development process has to be organize¢dlaarly described

= most suitable models and modeling languages neled tecommended for each of
the life cycle stages

= Dest practices and recommendations for each modalggage must be available

= relationships between models have to be structured.

As the development of an aircraft is a sensitivevig, these methods have firstly been
applied to a research context in order to redwesrand to get a satisfying maturity status. As
a result, current MBSE methods have demonstrafedesicy enough to exceed the research
boundaries and be implemented in new programs.

These different but complementary experiences gme the necessary background to
contemplate the possibility of applying the MBSEpagach to the entire development cycle

39

Chapter 1. Current practices in Aircraft SysteErsgineering

of new aircrafts. The current challenge is to stadiual development processes in order to
correctly incorporate the MBSE.

1.4, From documents to models

Traditionally modeling was an activity involvingpaece of paper to illustrate the design
diagrams and a huge quantity of documents to desthie system. Progressively computers
have facilitated the design tasks by digitalizingulnents and by providing engineers with
computer-aided design tools. Nevertheless, docwsrieane been the historical central point
in design.

Before the use of digital models, i.e. models depetl by computer, design documents
contained text and formal descriptions. This coptelue to its nature, is error-prone,
ambiguous and difficult to be re-used. Models &rypvercome all these problems by granting
a more consistent design. As described previol&bguirements-Based Engineering (RBE)
has been the first SE domain to be addressed fromathodical point of view. So, as shown
in Figure 12, traditional documents are organized structured in order to correctly manage
requirements.

System Domain Other domains: Structure,
Support...
[ﬁup Level A'C Requirements Documents |
i Genetcac : 90— - 00 :
i Function | Aircraft function ‘Aircraﬁ function | Aircraft function |
i breakdown
Do \ \ ansm,u{s \ \ \

N

Equipment Equipment Equipment

Figure 12. Airbus RBE process

In order to evolve RBE methods towards integratath models, documents incorporate
the modeling diagrams. This may be a manual progess automatic document generation
task depending on the modeling tool solution. Nénetess in most cases these documents
need additional information to complete and to usidad the design. For instance, as SysML
modeling language has not a unique way of buildirfgnctional architecture, engineers are
required to select the most representative diagtanmsovide with this architecture point of
view. This kind of tasks are costly since mostto$ information is already described in the

40

[11.4.From documents to models

models but needs to be reworked in order to hasenaistent design. Thus, MBSE has a lot
of interest for the design documentation and faomplete profit of models in order not to
rerun design activities inefficiently.

l1.5. MBSE and development process

In order to have a successful establishment indéheslopment of new aircrafts, MBSE
principles need to take into consideration theantrdevelopment process. That is, a process
including different levels of design and relatioipshbetween models. As described in section
1.4.2, two categories of inter-model relationshgps identified in modeling process, each one
presenting different difficulties from the MBSE pobf view.

Same level relationship In this case models to be managed have the samkdf detalil.
From the MBSE perspective, boundaries and overl#psnodels are the main issues.
Furthermore, the links between models are not deare even though MBSE recommends
using interfaces as model joint points, it is nbwveys possible due to the way work is
sometimes shared in the collaboration engineenamé. Therefore, in some situations big
models are divided and distributed amongst sevengineering teams following criteria
different from interfaces approach, e.g. chief aegr may decide to decompose a model
according to domains of interest (maintenance, fligh

Top-down or bottom-up relationship. In top-down or bottom-up relationships the
connection between models of one level N to thesafidevel N+1 is better formalized since
they follow the logical design evolution, i.e. mtglef level N+1 detail those of level N.
Nevertheless, in such cases the difficulty oftasesrfrom the different modeling languages
used and from not having a homogeneous way of degldéhese top-down or bottom-up
relationships. For instance, traceability betweegsML high-level models and Scade (E.
Technologies, 2011a) detailed models (in the cantéxockpit display code generation) is
not currently implemented although solutions asd8c8ystem Designer (E. Technologies,
2011b) try to address the problem.

1.6. Management of heterogeneous modeling in Aircraft
Systems Engineering

Currently, there is no formal approach to tackleeregeneity in models in our industrial
context. Nevertheless, some efforts have beenedaont to face this problem.

Concerningsame level relationshipsmeetings between engineering teams are the most
common way of work. Engineering teams put in comrti@ir models and, manually, they
identify common elements and denote the inconsigterthat must be managed. The results

41

Chapter 1. Current practices in Aircraft SysteErsgineering

of these meetings are documents (usually Micrdsedéel files) with a list of inconsistencies
solved after a lot of research and reanalyze warkarder to improve this kind of meetings
some additional resources are added to the modditgity, mainly pre-formatted
documents containing information that allows engimseto have a more homogeneous
understanding of the models (model architecturteriral and external interfaces and so on).
Nonetheless, as described in sectlod, these documents imply additional costs all.we

In thetop-down or bottom-up relationships context, the traceability of requirements is
quite well mastered. Currently, requirements mamegg tools as DOORS (IBM, 2011b) are
correctly connected to the modeling tools in ortdeget a good traceability. This is a solution
for the first stages of the development cycle whaxtus on top level requirements; however
there is not such a consensus for the implementatidop-down or bottom-up relationships
in more detailed design. An industrial researchs d&r solving this aspect is related to the
definition of common meta-models. Such meta-modets at being shared by the different
modeling tools and being the central point to handith the inter-model relationships.
Nevertheless, taking into account the variety amantjty of modeling languages, this sort of
solutions are basically applied in limited scenaand not for the entire development cycle.

The whole development cycle is actually the coreMBSE methods. Aeronautical
industry has used and developed different MBSE aaares, most of them closely related to
particular modeling languages. That is the cadBbf Harmony (IBM, 2011a) and OOSEM
(Lykins & Ave, 1999) for SysML or CORE System Defian Guide for CORE language.
These are solutions that try to cover the entineelbgpment cycle but industry experiences
have shown that the use of a unique modeling laggus not a realistic approach. Thus,
industrials have improved this point of view byraducing different solutions, sometimes in
the form of ad-hoc proposals for a particular cehteut also by proposing more formal
methods as AMISA (AIRBUS, 2008) which are appliedrérious modeling languages. Such
methods solve part of the problem but still there aome lacks concerning: 1) the
heterogeneity management of existing models; 2kiimelltaneous use of different modeling
languages; 3) the management of implicit knowledjgese missing areas are important
assets for the future deployment of our approach.

.7. Expected benefits of the proposed approach

In next chapter we describe a method which alloies éxpression and validation of
constraints over inter-model relations. Our idean(® Zayas, Monceaux, & Ait-Ameur,
2010) is based on the use of knowledge models tkenexplicit the engineers’ implicit
knowledge and on the preservation of the originaldetls by means of meta-modeling
techniques. Concerning the latter, the key issut isvork in a shared framework where

42

[11.7.Expected benefits of the proposed approach

source models are exported in order to be alignetie same universe. Below the expected
benefits of the proposed approach in our aerorautantext are described.

Model consistency Consistency of models is improved thanks to threnalization of
explicit knowledge which can be in that way shammid managed. Formalization of
knowledge is a support not only to get agreemeotgarning concepts of the domain, i.e.
aeronautics, but also concerning Systems Engirgeeniodeling concepts. Due to the native
heterogeneity of modeling languages there are rdiitepossibilities of representation of
equivalent modeling entities. For examglection a key concept in Systems Engineering, is
represented in CORE by an entity callashctionwhereas in languages with open semantics
as SysML a function can be Block an Operation or a State depending on the specific
domain modeling rules applied. Thus, amongst thesM@dge models that can be used with
our approach, one describing such modeling concgiiit®llow engineers to improve their
modeling capabilities.

Model relationships. We have analyzed previously the difficulties &stablishing both
same level and top-down or bottom-up relationships. approach includes a relation meta-
model. Such a model is an advantage of the indligation of our method since it will
provide engineers with a formal representationntérimodel relationships. Thus, a relation
meta-model will be enriched in order to include pbem relationships as redundancy for
same level cases or composition for top-down otolboiup scenarios.

Model reuse The black-box annotation, i.e. the annotationtled models without
analyzing their content from the user point of via® considered in our approach. This
feature in combination with a repository of modeiti allow engineers to perform requests
over previous models in order to ease their reusenwdeveloping a new aircraft program.
Naturally, the black-box annotations have to be gleted by the inner-model annotations and
knowledge concerning modeling concepts to give rieeessary background in order to
guarantee the correct reuse of models.

Non-modeling tasks Currently meetings are organized to validate tomsistency
between models developed by different teams. Bveugh it will not definitely prevent those
meetings, the use of explicit knowledge made byamaroach will help to reduce the number
of issues to treat, e.g. questions found in adoalments such a®Vhich bypass valves are
we referring to? (Cockpit or Humidifiersyvill be answered by ontologies and not considered
an issue anymore. At the same time, annotation ofiats will add information that is
currently contained in textual documents (e.g. deson of model properties as objective of
the model, simulation type, author...) and it willllhgo generate technical documents.
Therefore, the number of documents will be shodeaed, consequently, the global time
devoted to the creation of documents.

43

Chapter 1. Current practices in Aircraft SysteErsgineering

To sum up, optimization of the modeling activitiészrease of the quality of the design
and improvement in the communication between emging teams are expected as the main
benefits of industrializing our approach.

11.8. Conclusion

Modeling in aircraft industry is very complex froapoint of view of organization and
methods due to the complexity of the system bub ats large structures and multiple
suppliers. These difficulties have historically besddressed by using strict documentation
rules and, more recently, by starting the applcaif MBSE principles. Since MBSE in
aircraft industry is still evolving, new methodsdatools are necessary to manage models. In
such context, next chapter presents an approacbhwiocuses on the formalization of
implicit knowledge to integrate heterogeneous m®deld to perform inter-model validations
over them. The main expected benefits of the pregh@gpproach enclose improvements in
model consistency, in formalization of inter-modahtionships, in model reuse and in design
time efficiency.

44

Chapter V' Knowledge-based inter-model

constraint verification

Summary
Y% I 011 (e Yo [V oq 110 o PO 47
IV.2. The proposed General integrated models representationcccceeeveveennneen 49
IV.3. Manipulated MOAEISccuuueeuuieeeriiireiiirneereereetieeeneeenreeeresieersseerssesssseserseesssneces 51
IV.3.1. NYe1U] (=N aaTeTe (=] RO 51
V.3.2. EXDOMEA MIOTEIS.....eeeeieeeeie ettt ettt eeae e e st e e s seaeeesessaeeesenssaesennes 52
V.3.3. ANNOTATEA MIOAEIS ...ttt e et e e e e e e s saaaaeeeas 52
V.3.4. INTEAIATEA MOAE] ittt e e e e e e e eaaaa e e e e eeeans 52
[V.3.5. Constraint REIGHONGAL MOTE .eeeeeeeeeeeeeeeeee e e e e e e e e e e eeaeeseeeas 53
IV.i4. ThE TESOUICES «.vuuereneirerieeenierneernreeerseeerseerssereesssessssessssessssessssssssssessssesessessssseses 53
V.4.1. SOUICE META-TNOAELS ..t e e e e e et e e e s e s e saaaaaeeeas 53
V.4.2. KNOWIEAGE MOUELS ...ttt e ettt e e e e e e s eaaat e e e e e s s e ssnnnes 53
V.4.3. Constraint Relational META-MOUEIScocouviiiieeiieeeeeeeeceee et 53
IV.5. The modeling pProCess ACHVIIESccuuiveuiriuieiitiiieiiitecereeieeeereeeeenneeeeneeeennees 54
IV.5.1. et @ 1o SRR SRR 54
IV.5.2. J N alale) (e 1T TR 58
[V.5.3. MOAEL INTEOIATION ..ottt e st e s ee it e s e eat e e s esnaeeeeeaeeas 61
IV.5.4. General constraint defiNITION c.ovveivieeeiie e 63
Y2 TR @FeY o Ted (V11 [o 67

Abstract. The need to manage the complexity of current systencourages the use of
abstract models in Engineering processes. Nowadkyiging the work and the maturity of
collaborative engineering techniques require contlminaf heterogeneous models in order to
achieve the overall engineering process. In sudordext, we propose a method making
possible to interoperate existing heterogeneoustifumal and structural models. Our
approach is knowledge-based in order to annotaterake the models interoperate.

45

Chapter 1. Current practices in Aircraft SysteErsgineering

46

IV.1. Introduction

V.1. Introduction

Engineers have a very clear understanding of thexnat structures of the models they
develop. Nevertheless, in the case their activitigslve establishing and formalizing links
between elements of several models (classes o), dagy require assistance for handling
inter-model relationships. We present an approasting) such kind of support when
establishingsame leveinter-model relations in order to check constraousr heterogeneous
functional and structural models. Our idea is basedwo main ideas: 1) the preservation of
the original models by means of meta-modeling tepes and 2) the use of explicit
knowledge by means of ontologies.

Nowadays we know how to write constraints for oimgle model since, basically, either
they are part of the modeling language itself, semantics of language, or because an
additional language is provided to add more specifies, e.g. OCL in UML. Nevertheless,
the context of our research involves more than wmoelel usually expressed in different
modeling languages and the expression of inter-modsestraints in such circumstances
needs a different approach.

In next sections we develop our approach usingckample which involves two structural
and functional models, the Cockpit Information 8yst(CIS) and the Shared Information
System (SIS). These two models use different mongddnguagesCISis a model expressed
in SysML representing the management of cockpitsagssSISis a model designed using
the CORE modeling language and whose objective oisdéscribe the treatment of
maintenance messages received friois. At the end,CIS belongs to high-level security
domain ClosedWorldl whereasSISis a medium-level security syste@genWorld.

On one side #&hysical BlockDiagram see Figure 13, describes the internal component
(Maintenance applicationwhich transfers maintenance messadesmg through aLink
(extcomm On the other side BDD diagram shown in Figure 14 represents the sulbmyste
(CIS) generating maintenance messages that are s8ifs tlCSystem This communication
is performed through a linlEektPor) according to an interfac&xternalCommunication

Meszage e exkcanmm o Maintenance
Management Syskem application
Exkernal Sywskem Subsyskem

Figure 13. Physical Block Diagram representing theommunications from a subsystem to an external
system.

47

Chapter IV. Knowledge-based inter-model constragmification

<<block»> @ <<hlocks>
5 MCSystem
TSNS OISR
eperations ExternalComrmunication aperations
pats D ExkPort : ExternalCommunication pats
refeences CISPark = efemnces
vales network ! valres
pTpeties ! propertias

!

v

<Linterfacer»
ExternalCommunication

+in Protocal : String = % 25

+receivelessage (message : Message)

Figure 14. Block Definition Diagram showing externainterfaces of CIS model.

When composing these two models together the @nstrelow must be checked:
“All messages from ClosedWorld to OpenWorld shak tla secure communication
protocol”

As we have mentioned previously, checking such rsttaint requires to address two
problems.

1) Expressing a constraint over two models

This is the first problem we need to tackle. Modaie described using different model
practices and semantics. Moreover, they are alsedban different modeling languages, in
our case SysML and CORE. The proposal to overchimselifficulty is to export both models
in a unique and shared modeling language. As aequesice it becomes possible to apply
MDE techniques when exporting the original modets ia common framework. For instance,
SysML and CORE meta-models are written in suchifednlanguage and the®lSandCIS
models are expressed as instances of these me&lamodhe shared framework according to
the MDE principles. Thus, once the models are desdrin the common framework, the
constraint can be expressed by referencing elenoéittsth models since these models share
the same modeling language. The heterogeneity alleet nature of models and modeling
languages is reduced. Nevertheless, this actiomoissufficient to allow the designer to
express this constraint.

2) Using implicit knowledge
The second problem concerns the semantics cargethd concepts. Each model is
developed in a particular technical domain withagipular team of engineers. In this context,

48

IV.1. Introduction

hidden knowledge shared by the team and is kegngineers’ mind, i.e. it is not made
explicit during the modeling process. Therefore, eledare understandable by the team in
charge of the design only. So, some lacks of cohgm&ion may arise when the model is
shared or combined with other ones. In the comgtdi our example we find some concepts
belonging to this hidden knowledge: 1) the concet©penWorldand ClosedWorldthat
should be added to each model; 2) the concepiessagenot represented in the same way in
both models; 3) the concept eé&curity of protocol, an information that must enrich the
protocols described in the models. Thus, whether we wanvaiidate this inter-model
constraint we have to make explicit such a hiddeawkedge. Consequently, we suggest
formalizing this knowledge by the means of explastde knowledge models: ontologies. The
knowledge models and their instances representdheepts that we need to make explicit,
e.g. domain, messages and communication proto€olally, these instances that form the
domain knowledge base, enable the annotation ofotigtnal models expressed in the
common framework and ergo, the complete representat the inter-model constraint.

Next sections take these two main ideas and deweloppproach in details.

IV.2. The proposed General integrated models
representation

Our approach is a four steps method that lies endgfinition of models in a shared
modeling language and on ontologies for encodirgi@k knowledge bases. The idea of the
method is to export the elements of the models aetwo work with to a unified and shared
modeling language, which handles the meta-modelghef different original modeling
language elements. Secondly, the exported elenartannotated by explicit knowledge
concepts borrowed from the explicit knowledge base,domain ontologies. Then, all this
information is taken into consideration to set lup inter-model relations. Finally, inter-model
constraints are formalized and checked over thetatetbmodels.

49

Chapter IV. Knowledge-based inter-model constragmification

>

—
—

. instance of | 1
—”1 Constraint Relaticnal MM |

=

| f

€~ TCHECKING

o,

SHECING 2>

=3
=
=
—
=
D

Alati~ . s s
ciauGit viivi | | integrated iviodei L m 1W]
)’!‘, %—._J—"[.‘ I _

A . Uses A 7 N
I\ - L I
.y — v P Il
1% | — I MODEL Py — ol Z |
=1 e B P e o aTEAD ATIAR ™ Annotated Modal M2 | e 1%
i5—bm | Annotated iviodei T | 7 INTEGRATION - | HIDASIEU WURE VY) O
(1) Y : : & F izl
151 A e Uses : : e A 10}
11 L) . : .) vl
'\Vi E Annotatedby ... v v ‘ Annotated by E V)

AnimamT A TIAN sl LA [L

ANNUVIATIIVIN - 'I [IASR A |" """""""""""""" ANNUVIATIVIN

A Uses —_ Uses A
A T T N
ol - | . ol
| £ — f "\ | = |
151 X w | Exported Model M1’ | | Exported Model M2 | "W 151
E ey S s A e i
G T Instance of Instance of L b
1°] A N yd A o]
'\vl' = ~, rd = ‘|v:‘
! Lises .r RARAA). (RARATY w. Uses !
e PO L WL
EXPORT 8 ’L J l J* . EXPORT

]
}.ﬂ.’.
}..,..
r

>

I O |

' [Resources| Modeling refatior
~ ' Source Model M1 L) > Source Model M2 g
iy
Resource Inputioutput o
Specific Domain

exploitations
Figure 15. Method to validate inter-model constraits based on knowledge models.

G

¢ CHECKING

et q

Specific Domain

Our goal is to apply this approach to support ateégs Engineering methodology,
specifically when the engineer designing a systemdsido guarantee the correctness of
models before switching from a development stegh&éonext one, e.g. fromRequirement
Analysis step to ‘Detailed System Architecturstep. This approach aims at strengthening
the cross model verification and validation actest During these checkpoints, also known as
maturity gates, the different models, resultindhef concurrent engineering activities, should
be put together to verify the consistency of theigie before continuing the modeling process.

The approach consists of a top-down activity tolyameaand describe the inter-model
constraint that needs to be checked and of a baffpmrocess to check the analyzed
constraint based on the proposed model illustrateBigure 15. Next sections develop the
elements and the activities contributing to thiselo

50

IV.3. Manipulated models

IV.3. Manipulated models

According to the Figure 15 a set of models or etvohs of models are manipulated
throughout the development of the approach. Froensthurce models to the constrained
integrated model, the identified methodologicapstef the process are followed in order to
be able to check inter-model constraints.

Even though our method is presented with an exampi@ving only two models, the
approach is multi-model, i.e. its principles aréuable for one, two or more source models.

IV.3.1. Source models

Systems Engineering models are used all along #weldpment process of a given
system: an aircraft for example. These models araged by different engineering teams
and are constructed using several modeling languagd tools. They are the input of our
method, bottom of Figure 15, and therefore we tiaim source models, i.e. the models
developed by engineers applying their own methaggleland best practices.

We focus on descriptive models according to th& tages of the V-cycle development
process. During this development process diffelevels of details and various engineering
domains are involved as shown in Figure 16. In tbatext of aircraft design, in the
architecture stage where requirements, operatioddumnctions are described at a high level
of detail, we find modeling languages like SysML &@@RE. Nevertheless, when a more
detailed definition is necessary, i.e. at the sstesys level, other languages like
MATLAB/Simulink, or Scade are more appropriated. refaver, subsystems usually imply
the collaboration between different technical damawith the corresponding modeling
practices. These practices depend on the domakgtmacnd and heterogeneity will arise even
when design models are provided in the same modielnguage.

51

Chapter IV. Knowledge-based inter-model constragmification

stomers Expectations and Value Models
expectations

Integration

Functional
Design
Models of
*Requirements
«Missions

*Functions
*AI/CISystem Architecture

[:w\\

System functions
Detailed System

architecture) \

N A H_RBIS)muI];; Medels of

System Detailed
Detailed B sdaoe— L lmplementatton in
definition R ki equipmen

\ Compone@

:developmen

Assembly &
systems V&V

Integration &
assembly

Figure 16. Models in the Aircraft Development V-Cyte.

IvV.3.2. Exported models

The exported modeldl’, M2’), see Figure 15, are the result of exporting therce
models M1, M2 into a shared and common modeling language. Tthesmneta-models (see
IV.4.1) of the source models are written using shene modeling language and the source
models can be exported, as instances of these mutals, to a common framework. The
exported models can be either the whole source Imodgart of them; a projection. Actually
for some inter-model constraint verifications itnigt necessary to take into consideration the
entire source models but only some particular paftthem, e.g. if we need to check the
consistency of messages using a particular interfae do not need to export the whole
interfaces.

IV.3.3. Annotated models

The exported models are enriched or constrainedexplicit knowledge concepts
borrowed from domain ontologies. This processmitig exported models to concepts of the
knowledge models (sel/.4.2) is called annotation. Thus, knowledge medate used to
provide the implicit knowledge and the output of #mnotation process define the annotated
models M1”, M2"”) of Figure 15.

IvV.3.4. Integrated model

After annotating the exported models, the annota&dions M1”, M2”) are integrated
into a new model whose objective is to formalizeinnodel connections. This is the role of
the integrated model in our approach (see Figuje Tite integrated model is an instance of

52

IV.3. Manipulated models

the relation meta-modeRglation MMin Figure 15) which describes different types dérn
model relations. These relations are used to kheidintegrated model in order to connect
M1” etM2”.

IV.3.5. Constraint Relational model

The expression of inter-model constraints is cdraet by the constraint relational model
(see Figure 15). This model is an instance of thestraint relational meta-modeél¢nstraint
Relational MMin Figure 15) which represents the inter-modelppraes which need to be
checked by exploiting the inter-model relationstlud integrated model and the knowledge
described by instances of the explicit knowledgelets

IV.4. The resources

The approach is also supported by a group of ressuhat are used at the different steps.

IV.4.1. Source Meta-models

These resources consist of the meta-modéM i andMM2 in Figure 15) of the different
source models expressed in a common and sharedingptinguage. Thus, our approach
does not consist of a common meta-model in ordenap the source models issued from
different modeling languages, as in (Tolvanen &I¥e&008) for instance, but to translate the
original meta-models in a common and shared maoglédinguage in order to work in a shared
framework. The translation of a meta-model is a-simat action, once a meta-model is
incorporated to the framework we can export anyehodnforming to it.

IV.4.2. Knowledge models

A knowledge model KM in Figure 15) illustrates the concepts of explidibmain
knowledge necessary to understand and to compidte apnstraint the source models in an
inter-model relation perspective. Knowledge modamis the central point of our proposal
since they are used during the annotation of tip@rad models; as a support to integrate the
annotated models; and furthermore to build richégrimodel constraints. Thus, inter-model
constraints in our approach support the combinatbrboth concepts coming from the
knowledge base and elements of the annotated models

IV.4.3. Constraint Relational meta-models

The constraint relational meta-mod€lopstraint Relational MMn Figure 15) is a general
model for expressing constraints. It has to prowatlethe entities which are necessary to
construct the constraints depending on the cordeitte problem. Thus, in the case studies
that we have analyzed the constraint meta-modeWwallus to represent First Order Logic
expressions.

53

Chapter IV. Knowledge-based inter-model constragmification

IV.5. The modeling process activities

Manipulated models and resources are used all dlendpur steps of our approach, i.e.
the modeling process activities. These activitiespgerformed sequentially in order to enable
the evaluation of inter-model constraints after @ypessive integration as shown in Figure 15.
Firstly source models aexported into a common framework; secondly the exported rnsode
are annotated thirdly the annotated models amtegrated; and finally the inter-model
constraint isdescribed over the integrated model. Export is an activagused on modeling
semantics whereas the remaining activities are &t domain semantics (see section
I1.2). Next sections detail these activities.

IV.5.1. Export

Definition

In order to handle different models, the first iduity is the variety of modeling languages
we consider. Our recommendation is to work in aesamodeling universe if we want to add
knowledge and to connect heterogeneous models. &gd a syntactical homogenization.
Thus, taking into consideration the different amgyiof the source models we suggest the
definition of a unified representation in order work in the same modeling universe.
Therefore, the source models can be exported (pontad from the point of view of the
common framework) into a same universe when correfipg meta-models are formalized in
the unified and shared modeling language.

In this case, the exportation process shall presére original modeling semantics of the
source models in the shared modeling language. phisess, not addressed here, is
performed when designing the exportation procedure.

Method

1

| N | Expor‘ted Model M1’ Exported Model M2 | ¥ a |
Instance of Instance of f

Ex,,om uses IVII\/I'I I\/IIVI2 1 o OO0 i

« Modeling relations
. Source Model M1 Resources Source Model M2
Resource
InputiQutput

exploitations

..................... > # E—— ca—
Specific Domain ’ Specific Domain

Figure 17. Focus on Export activity

@m

54

IV.5. The modeling process activities

Considering Figure 17 as a reference, the meta-lsqiMi) of the different source
models are written in the unified and shared modelanguage. Each modeli is exported
as a modeMi', instance oMMi in this modeling universe. Nevertheless, in otdeallow the
definition of the different meta-models we havevirasly defined a meta-meta-model. This
approach fits with the concepts of OMG’s MOF [OMG@8ndard where 4 modeling levels
can be distinguished.

The information layer (MO), contains the data tbaé wishes to model. In our case
this layer corresponds to the source moddig.

In the model layer (M1), one adapts the meta-mumleescribe the data. It is the role
of meta-modelsNIMi) in our approach.

The meta-model layer (M2) defines the structure @ntktraints of the language used
to describe the elements of the model: e.g. in UM haveClassesand Attributes
The meta-meta-models used in our approach to lwddneta-models belong to this
layer. Figure 18 illustrates this layerEntityClassrepresents the basic element of
models. One EntityClass can have multiple attributes represented by the
AttributeClass We can extendittributeClasswith the types considered as necessary.
Figure 18 shows the most basic ones. One partickilad of attribute is the
EntityAttributeClassused to model the association relationship antdaggtyClass

Finally, the meta-meta-model layer (M3) containslibsic elements which handle the

description of the modeling language. The set o$dhgasic components represents
the root modeling language, i.e. the shared moglédinguage in our method.

55

Chapter IV. Knowledge-based inter-model constragmification

EntityClass my_attributes AttributeClass

+name: String +rame: String NumericArrayAttributeClass

+yalue: Nomber[0, . *]

DateArrayattributeClass
+value: Datel0..¥]

StringéttributeClass | | BooleanattributeClass NumerichttributeClass | |EntityAttributeClass | | parentiributeClass ArrayAttributeClass

EntityArrayAttributeClass

v\walue: EntityClass[0. *]

StringArrayAttributeClass

+valug: String +value: Boolean +value: Mumber +value: EntityClass tvalue: Date

+valug: String[d. . *]

BooleanArrayattributeClass

+value: Boolean[d,.¥]

Figure 18. UML diagram of the meta-model layer of ar approach

Checking of source models

Our hypothesis is that source models are locallyect, i.e. they are validated by the
appropriated modeling tools in th&pecific Domairenvironments. Nevertheless, during the
exportation activity we check that source models loa exported, i.e. whether they respect
the abstraction defined by the meta-models defiusdg the shared and common modeling
language.

Example

In order to give an example of the exportation steg according to the models described
in sectionlV.1, let us take the MOF framework again. We digcthe actions implied in the
exportation of the source models following the orafeexecution.

M3 layer
It contains the shared modeling language, necedsadescribe the meta-meta-model
classes, for instance UML.

M2 layer

In this layer, the shared modeling language is usetinplement the classes shown in
Figure 18 for the definition of the meta-models eburce models:EntityClass
AttributeClass..

56

IV.5. The modeling process activities

M1 layer

Considering our example, at this stage we need tld Imvo meta-models using the
elements of M2 layer: the SysML meta-model andG@@RE meta-model. Therefore, in the
CORE meta-modeComponentLink and Item classes instantiate frofntityClassto form
ComponentClass LinkClass and ItemClass respectively. Their attributes instantiate
AttributeClassaccording to their type, for instance the attrbtype of theltemClassis a
StringAttributeClasgalledltemTypeAttributeClasas you can see in Figure 19. On the other
hand and similarly, for the SysML meta-modgttityClassis instantiated to build up the
entities shown in Figure 18Block Port, Interface and their attributes are instances of
AttributeClassas well. Thus, even though we have written twéedd#nt meta-models, CORE
and SysML, they have shared elements thanks tdetyesed approach.

MO layer

Once all the previous models are completed the ¢éxjpam can be carried out. Therefore,
the content of th&ISmodel is exported as instances of the CORE metained.extcomm
in Figure 13 is an instance binkClass and the elements of ti&S model are exported as
instances of the SysML meta-model, for instad@Systemin Figure 14 would be an
instance oBlockClass

ItemMediaTypeAttributeClass

TTe--] EntityAttributeClass

EntityClass

ItemSizeAttributetlass [=

ItemTypeAttributeClass

ItemClass

ItemOutputFromAttributeClass

ItemInputToAttributeClass

ItemTransferredByAttributeclass

ItemTriggersAttributeClass

ItemAccuracyAttributeClass

ItemFormatTypeAttributeClass

ItemSizeUnitsAttributeClass i it 3 \/

"N gtringattributeClass | ...- EntityArrayAttributeClass :
ItemProrityAttributeClass | = —m————— T &

Figure 19. An excerpt of the CORE meta-model, focusn ItemClass.

An important point at this stage of the methodoisidte that source models are kept in
their original design and that the rest of the pescis performed over the exported version.

57

Chapter IV. Knowledge-based inter-model constragmification

IV.5.2. Annotation

Definition

In this phase, the imported models are annotatedthiey are enriched or clarified thanks
to the use of explicit knowledge introducing morema@in semantics. As mentioned
previously, models do not always contain all th@wledge of engineers. Our approach
suggests enriching the descriptive models by expkonowledge borrowed from aside
knowledge models like ontologies. This enrichmest performed by annotation. The
knowledge models formalize the missing informatmmcial to perform such inter-model
relations and checking. Indeed, the use of such ledge models offers a common reference

mechanism to overcome terminology and modeling @ggres differences originated from
the source models.

Method

Uses * " U

: MODEL
Annotated Model M1” ﬁ INTEGRATION ‘ _ Annotated Model M2" | N a |

Uses
Annotatedby ... 7 ¥ .. Annotated by
A
prreeree S, ‘

1 Uses Uses f
Exported Model M1’ Exported Model M2’
A Instance of Instance of A

Figure 20. Focus on Annotation activity

CHECKING
CHECKING

At this stage of our method, see Figure 20, weipuklation (annotate) the exported
models Mi) with the knowledge model&i) in order to harmonize the different modeling
aspects. As a result we obtain the annotated m@deéls.

In the annotation step there are two important aomepts: the knowledge models and the
annotation meta-meta-model. The former formalizegxepts of common domain knowledge
agreed by engineers and can be developed outsidmifiesd and shared modeling language.
The latter is part of the models belonging to tperaach and it is written using the same
language of the meta-models. The only conditidhas instances from the knowledge models
may be uniquely identified. Thus, knowledge ins&mad.e. the knowledge base, must be
precisely distinguished by Uniform Resource Ideets (URIS) in order to use them when
annotating the imported elements. These URIs, shiowigure 21, connect elements of the
imported models to knowledge concepts via the atiwot class. ThereforégntityClassis
connected to one or more pieces of knowledge bynme&AnnotationClassvhereas one

58

IV.5. The modeling process activities

AnnotationClasdinks one or more URIs which is/are also modelgdabmeta-class. The
inverse relationship is of course also possibée,aneKnowledgeClassan be related to more
than oneEntityClass This relatively simple annotation representattan be completed with
some other attributes and properties (like DubliareC (Hillmann, 2005) attributes for
example) as suggested by some other work that s&ietfdhe problem of model annotations.
Reference [ZOUO08] suggests linking elements of niedels to concepts of an ontology
whereas [BOUO8] describes a more complex framewdtk different ways and types of
annotations depending on the kind of interopergbiksue. These contributions analyze
useful properties to be provided in the charackion of an annotation. Some of these
properties are used to categorize the annotationsrding to different criteria (informal,
formal, structural, behavioral...). Other propertggge more precise information about the
annotation, e.g. the accuracy of the annotatiaaifi{exact, partial...) in order to report those
cases when engineers are not able to find the &ragtledge concept to annotate a modeling
entity and, instead, apply a similar or a possilewledge concept.

EntityClass

+name: Skring

my_gnnatations

AnnotationClass

+name: Skring

e _knowledge

URI

KnowledgeClass LRI

+value: String

Figure 21. Annotation class.

Checking of annotated model

At this stage we can perform verification of theacteristics related to the added
knowledge from the point of view of each individaainotated modeMi”). For instance one
can check that the communication protocols reptegen a model belong to an agreed set of
protocols.

Example

Continuing with the illustration, necessary knovgednot available in the sketched
models is: 1) domain of the components, i.e. wirethey are in a critical or a non-critical

59

Chapter IV. Knowledge-based inter-model constragmification

domain; 2) the concept ohessagadepending on the used modeling language; ande3) th
name of the authorizesbmmunication protocol&hich are X.25 and “Encrypted Ethernét
Part of this knowledge is summarized in the modéligtire 22.

Concerning the annotation, a short example illtstrahe use of the annotation meta-
meta-model. Figure 23 shows a graphical representaf the knowledge base, i.e. of the
instances of the knowledge model. In this figuree dype of messages available, the
“Maintenance Messafjeand 3 kinds ofcommunication protocolstwo secure protocols
(“EX28 and “Encrypted Ethern&t and one non-secure (X25). During the annotatbthe
Link of the SIS model and in order to make explicit the type obtpcol, LinkClassis
connected to onénnotationClassinstance which points to onemmunication protocol
(“EX28) of the knowledge base; we can see a detail efréated instances in Figure 24.
This is a one-to-one annotation example, but inesather cases several entities might be
annotated with on@nnotationClassnstance. For example, if sevel@msin a CORE model
compose altogether a message; whereas in a SysMielnfsee Figure 14), solely the
Parameter of the receiveMessageoperation of theExternalCommunicationinterface
corresponds to this message. In such a case,ftaeedtiteminstances will be connected to
one AnnotationClassinstance pointing to the message concept, to wthehParameter
instance is also related.

Message Type

T

Origin of Message

has tvpe

arigin
Destination of Message
destinatio
ey —]
Copy of Message /
fuls

Secret Copy of Message

Message Commwunication Protocol

+isSecure: boolean

Message Parameber pararneker

Figure 22. Knowledge model of messages and commuation protocols

60

IV.5. The modeling process activities

Communication Protocol

Message +isSecure; boolean
Maintenance Message : Message ®25 . Communicakion Protocol

isSecure = False

Ex25 : Communication Protocol

isSecure = true

Encrypted Ethernet : Communication Protocol

IsSecUre = trug

Figure 23. Knowledge base, instances of messagaommunication protocols.

|ntranet : LMK L Protocol @ AMMOTATION CLASS http: ey eads Detthesedsz knovledgeiprotocoliex2s @ LRI

j:\

EX25 © Communication Protocol

Figure 24. Instances of an annotation
IV.5.3. Model integration

Definition
Having the imported models annotated, we obtainrdsmurces to describe relations
between the models. These relations are necessacyrtectly formulate the inter-model
constraint and therefore validate it. Inter-modshtions are the bridge between models and
can involve several entities of the design mateired these links.

Method

E Uses
[W Instance of :

i

Relation MM J' | Integrated Model
...

e, Uses ‘
MODEL
,[Annotated Model M1” | ’ INTEGRATION “ | Annotated Model M2” I

Figure 25. Focus on Model Integration activity

61

CHECKING

Chapter IV. Knowledge-based inter-model constragmification

As illustrated in Figure 25, the inter-model correat activity takes the instances of the
annotated modelsM1”, M2”) as input and produces instances of Redation Modelas
output.

At this step we are able to define our inter-maodéhtions by instantiating a model of
relations and by using the annotated imported eisn&Ve have developed a first version of
model of relations. This model will contain and rf@lize the different types of relations
concerning elements of the design models: compositquivalence, interface, trigger, etc.
Figure 26 shows the inter-model relation UML claglsich models a relation and some
possible specializations but not all of them.

Inter-model Relation

AR

LOGICAL RELATION SET_RELATIONM BEHAYIOR_RELATION
Equivalence Composition Aggregation INTERFACE SPECIFICATION
TRIGGER SENDING RECEPTION

Figure 26. Inter-model relations diagram

Checking of integrated model
During this activity the verification process inves more than one model, i.e. the
integrated model. Guaranteeing that the same tgp@sessages are used in the integrated
model is an example of this kind of checking.

Example
ConcerningCIS andSISmodels, there is one inter-model relation whichnsinstance of
the Equivalence class of the relation model (Figure 26). It is thaation between
ExternalCommunicatiol©ORE Interface in Figure 13 aftCommSysML Interface, which
extcommLink in Figure 14 belongs to. They are the same conuwaptefined differently in

62

IV.5. The modeling process activities

both models. Actually it is the interface betweba systems described in each model, their
joint point.

IV.5.4. General constraint definition

Definition

A constraint is modeled as a property of a systieat must be satisfied. Commonly a
constraint is generated or derived from systemireqents, i.e. it is part of its specification
(e.g. “The maximum duration of an upload/download of tightf ops daily data information
shall be limited to 5 minutes whatever the medieg wr wireless). In our approach, we can
set up constraints implying elements of differemtdels issued from different points of view
thanks to the annotations that carry out thesetpahview depending on the sued domain
ontology. The constraints are formalized using tiens and concepts of the knowledge
model. For instance, we can assert that commuaitatietween two models shall always be
from components belonging to high-level securitgtees to components of lower-level
security sectors.

Method
Common
Modeling Instance of]]
Universe Constraint Relational Model : Constraint Relational MM]

* Uses_‘.--“'“

GENERAL
CONSTRAINT
DESCRIPTION

! Uses

Integrated Model

Figure 27. Focus on General Constraint Descriptioactivity

Instance of

Relation MM 1

ICHECKING

At this level of the approach, we need to expressstraints that involve both model
entities and knowledge. This capacity must be lfillexenough since different kinds of models
and constraints may occur. A model of expressi@msétraint Relational Modeh Figure
27) encoding the properties to be validated needbet defined. It has to support the
formalization of the properties expressed usinghhbmtnotated models and inner models.
Once the property is described by instantiatingdéfned expression model referring to the
annotated elements and to the inter-model relatiims property over the models can be
finally checked.

The expression model we have adopted in our exangoid case studies is based on First
Order Logic (FOL) expressions. On one side, this ehambntains elements representing
implicit semantics (FOL part shown in Figure 28% ¥e can see, FOL expressions have been

63

Chapter IV. Knowledge-based inter-model constragmification

defined as a new type BIOOLEAN_EXPRESSIONhus, one FOL expression consists of a
set of quantified variables oveBOOLEAN_EXPRESSIOfthe predicate).

EXISTS_EXPRESSION

UNARY_BOOLEAN_EXPRESSION BOOLEAN_EXPRESSION AL poresson |
OPERAND, 00LEAN_EXPRESSION] > THE. VALUE. Bulea

A nredicate

NOT_EXPRESSION ; -
expression_vaniables

ALL_EXPRESSION

VARIABLE_DOMAIN

MULTIPLE_ARITY_BOOLEAN_EXPRESSION BINARY_BOOLEAN_EXPRESSION
+0PERANDS: BOOLEAN_EXPRESSION[Z % | | +CPERANDS: BOOLEAN_EXPRESSION[2..2]

% Z% THE_VARIEELE THE_DOMATN
GENERIC_VARIABLE | |EXPRESSION_DOMAIN

AND_EXPRESSION BELONG_BOOLEAN_EXPRESSION

+ientifier String

Figure 28. Excerpt of expressions structure in a UM diagram.

On the other side we need to cover explicit seraanfihis is the role of variables since
their meaning depends on the entity they refeA®illustrated on Figure 29, variables may
be typed by basic types lik&tring (STRING_VARIABLE Boolean(BOOLEAN_VARIABLE
andNumeric(NUMERIC_VARIABLIE or by complex types. For instance, in the FOLdalo
of Figure 29 we define complex variables represgnéi path to entities and to attributes of

models.

STRING_PATH_YARIABLE

PATH_YARIABLE
+ittribike_name: String 4_—_—_—_

BDOLEAN_PATH_YARIABLE

SRS

VARIABLE
ENTITY_PATH_VARIABLE NUMERIC_PATH_VARIABLE

47

STRING_VARIABLE ENTITY_ARRAY_YARIABLE ENTITY_YARIABLE source _variatle

+THE_VALLE: ENTITY_CLASS
+THE _YALLE: 3tring = =
HUMERIC_VARIABLE Z%

1 +THE_WALUE: Mumeric

URI VARIABLE_SEMANTICS variable GENERIC_VARIABLE

semantics

+value: Etrin
4 +idertifier: String

ENTITY_ARRAY_PATH_YARIABLE

BOOLEAH_VARIABLE

L{ +THE_vALUE: Boolzan

Figure 29. View of variables model in UML.

64

IV.5. The modeling process activities

Checking of constraint

Once the constraint to be validated is expressddrins of instances of an expression
model, taking into consideration both imported edets and annotations, the final activity of
the approach consists of the validation of the esgion and the analysis of the results. For
the validation aspect, the expressions must beuated, i.e. the framework supporting the
approach has to provide the capacity of interpgetirte instances of the expression models.
With regard to the analysis of the results, we nieede able to keep the traceability of the
constraint evaluation in the source models. Tlasdability is guaranteed by the importation
process and the shared and unified concepts aedtabgntifiers. Thus, observing the output
of the validation of a constraint an engineer aantify the erroneous elements of the source
models and perform the required actions to fulfié broken requirement.

Example

In order to describe the use of expressions, weptaimthe message communication case.
As we have mentioned, we need to check évatry communication from a critical domain
system to a non-critical domain one shall implengptotocol considered as secufgom a
logical point of view, we can express this constrdor the elements of the case as a First
Order Logic expression:

(I 0Y.comprised _of) O {Di . Item

(i O I .transfer)
ad (i{represents } = Z)
(o0 X .owned _ operation) 0O
O 0o : Operation _ UML

(p O o.owned _ parameter)
Up : Parameter _ UML

O (p{represents } = Z)

Ol : Link | =

Ocp : Communicat ion _ Pr otocol

cp.isSecure = TRUE
0 1{protocol } = cp O X{ protocol } = cp

Figure 30. First Order Logic expression.

Figure 30 expresses the constraint to be checKed. a variable referring to CORE
Interface X is the variable referring to the related (equinakeinter-model relation) SysML
Interface and Z is the variable linked to the knowledge concepireésenting a message.
Concerning the variables:

= |is a variable containing the instances of the CQRIEs belonging toy .

65

Chapter IV. Knowledge-based inter-model constragmification

= | is avariable denoting the instances of the CQBEstransferred by .

= 0is a variable defining the instances of the SysBfierationsowned byX.

= pis avariable referring to the SysMlarameterf o.

= cpis a variable containing the instances of the campation protocols defined in
our knowledge base.

Below, the different parts of the expression artaitk.

(i Ol transfer)
[D (i{represent} = Z)j

Figure 31. Messages in the CORE model.

(I Y.comprised _of) D(Ei :ltem

The expression of Figure 31 characterizes all tiséances oftem CORE class that are
transferring the message with URIvia the interfaceY. Here thei{represents}notation
defines the annotation nameepresentsconnected to the entitgem represented by the
variablel.

(o0 X .owned _ operation) 0O

o : Operation _ UML
Op : Parameter _ UML

(p O o.owned _ parameter)
0 (p{represents } = 7)

Figure 32. Messages in the SysML model

The expression of Figure 32 defines the fact tbatesParameter _UMLinstances of the
SysML model are annotated as the message of ZJ&hd belong to a®peration of the
interfaceX.

Ocp : Communicat ion _ Pr otocol

cp securised = TRUE
0 1{protocol } = cp O X{ protocol } = cp

Figure 33. Communication protocol must be secure

Finally, Figure 33 means that the same protocakexd in both models by comparing the
annotation{protocol} of the Link instance in CORE and the annotatigmmotocol} of the
InterfaceX in SysML. It also asserts that it is a securequoit (attributeisSecurehas value
“true” in the knowledge base).

As shown in the first part of the expression ofufey30, validation is performed for all
the Link instances of the CORE model belongingrtterface Y Thus, in order to permit its
automatic and dynamical evaluation, this logicgbression is implemented as instances of
the expression model. As an illustration of theultssof such an evaluation, below two
different instances of CORIEnNk class are defined to identify two checking sitoiasi.

66

IV.5. The modeling process activities

exkcamrm
e e e S e S Interface
' |comprised of] |comprised af - ligins ; ' |iins
Extranst Inkranet Maint_enqnce i Message
application ¢ |Management Sy, ..
Lirik;, B Link. | Component I Component

Figure 34. Instances of CORE Link class in SIS modie

1) Fulfilled constraint. In this scenario, a COREnNk (Intranetin Figure 34) has been
annotated to indicate that its protocol i€£X25, the same of the SysML
ExternalCommunicatiomterfaceof Figure 14. According to the knowledge base (see
Figure 23) EX258 is a secure protocol, i.&ooleanattributeisSecurevalue is true’.
Therefore evaluation of the constraint retutnse, i.e. every communication from
Intranet to ExternalCommunicatiomplements a protocol considered as secure

2) Incorrect relation. Another scenario involves a different COREk (Extranetin
Figure 34) pointing to theX25' communication protocol, which is not secure asd i
different to the EX25' protocol of the SysMLExternalCommunicatiointerface As
a result, the verification of the constraint failsthis casei.e. communication from
Extranet to ExternalCommunicatiotioes not implement a protocol considered as
secure In this situation, the engineer in charge ofdesign can exploit the links from
the annotated models to the exported models t& ttee erroneous elements, i.e. the
Extranet Link of the source models in order to correct them.

IV.6. Conclusion

In this chapter we have described our approachhwikia method to integrate and validate
same levestructural and functional models based on makingi@k the implicit knowledge
of engineers. The approach consists of a procegshwmanipulates models with the support
of some aside models as resources. The differénttess of the method are presented around
an example. Thus, we firstly describe the expoithefsource models to a shared framework
which guarantees both the syntactical homogenizatiahthe integrity of original models.
Secondly, we use aside knowledge models to anntitateexported models obtaining the
semantics homogenization. Next, this homogenizatibows us to relate the annotated
models and to express inter-model constraints thaokan aside expression model. The

67

Chapter IV. Knowledge-based inter-model constragmification

expression model permits references to both arewttities and concepts of the knowledge
base. Finally, such constraints are validatedhaaiinplementation of the expression model.

68

Ch apter V Approach

validation
Summary

Y2 IR [i (Yo [V o 1T o [N 71
V.2. Exportation of SysML and CORE MOEIScccueevurirreniirmniierneernrerenneeerenereneeneens 71
V.3. Annotation using implicit KNOWIEAQEuuueerrveeniiriieiieereceeerceeereceeeeeeeaee 73
V.4. Modelintegration using @qQUIVAIENCEScuuuueereiireniireiiereiereerenneeeeneeeenneens 74
V.5. General constraint definition with First Order Logic expressions 75
V.5.1. Contribution 1o PLIB expressions [ANQUOGEeeeeeeveeeieieeeeeeieeee e eeieeeeeeee e 75
V.5.2. Intfer-model conStraint VENfICOTON ...vveiieieeeeeeeeeeeee e e 78
V.6. Implementation wWith ECCO T0OIKIE.......ceiueiiuiiiuieinirinerenereneressessrsessssesssssssssasses 79
V.6.1. The COMMON FTAMEWOIK ..ttt ettt e e e e e e e e e e e eeeeseeeeseanneeeas 81
V.6.2. Step by SteR IMPIEMENTATION. ...eeeiiiee e e aaaeeeas 81
Y2 2R @< o Ted [11T o PN 86

Abstract. In this chapter we develop a case study in omeatidate our approach and to
illustrate their different steps. The scenario inesl two different modeling languages,
SysML and CORE, and a complex inter-model constrdinis case study is used to formally
validate our proposal using EXPRESS as the sharddcammon modeling language. In the
end, we describe the implementation of models,uress and activities of our approach in
the ECCO toolkit framework in order to perform thgerational validation from a scientific
point of view.

69

Chapter V. Approach validation

70

V.1. Introduction

V.1. Introduction

In this chapter we develop the formal modeling amglementation of the approach
introduced inChapter IV. The objective of this modeling is torf@ily validate the approach
in a priori process.

We implement the case introduced in sectigril. This case involves models of two
systems that belong to different domains of thataligystems architecture determined by
distinct security, integrity, and availability regaeiments. We call those domains tBmsed
World, and theOpen worldrespectively. One SysML model illustrates ilwsed World
Cockpit Information System (CIS), and one CORE nhaldscribes th®©pen World Shared
Information System (SIS). Amongst the functionsf@ened by SIS we find maintenance
supporting functions. Therefore, in these models ierface is set to represent the
communications between the cockpit and the mainmnaubsystem which is part of the
Open World This interface is used to send messages fronCthsed Worldto the Open
World. The objective of this case study is to verifycuerall requirement, i.e. a requirement
implying both models: All messages from Closed World to Open World sisdl a secure
communication protocbl

Next sections depict the implementation of the cstsely along with the manipulated
models and the resources and in accordance wittigeling process activities described in
sectionlV.5.

V.2 Exportation of SysML and CORE models

In order to permit the exportation of the CIS a8 &odels we build the SysML and
CORE meta-models respectively. Each meta-modelmiglemented once as a distinct
EXPRESS schema enclosing the entities, attribute$ @onstraints of each particular
modeling language. As an example, Figure 35 shoK lentity of the CORE meta-model
in EXPRESS format.

71

Chapter V. Approach validation

SCHEMA CORE_SCHEMA;

--THIS ENTITY REPRESENTS THE LINKS OF CORE META-MOD EL
ENTITY LINK

SUBTYPE OF (ENTITY_CORE);

CAPACITY: OPTIONAL CALCULATION_KIND:;

CAPACITY_UNITS: OPTIONAL STRING;

DELAI: OPTIONAL CALCULATION_KIND;

DELAI_UNITS: OPTIONAL STRING;

PROTOCOL: OPTIONAL STRING;

SPECIFIED_BY: SET[0:?] OF REQUIREMENT;

TRANSFERS: SET[0:?] OF ITEM_CORE;
DERIVE

SELF\ENTITY_CLASS.NAME:STRING := 'LINK’;
INVERSE

CONNECTS_THROUGH: SET[0:?] OF COMPONENT FOR
CONNECTED_THROUGH;

CONNECTS_TO: SET[0:?] OF COMPONENT FOR CONNECTED_TO;

SERVICED_BY: SET[0:?] OF FUNCTION_CORE FOR SERVICE ~_ S;

COMPRISES: SET[0:?] OF INTERFACE_CORE FOR COMPRISE D_OF;
END_ENTITY:;

END_SCHEMA :

Figure 35. Meta-model of CORE language implementeith EXPRESS

The original modeling tools allow modelers to expgbe SysML and CORE models into
XMI-compliant format (OMG, 2011b). The exportatiai the source models is done by
interpreting the content of the XMl files in term6the EXPRESS meta-models, i.e. they are
converted into instances of the meta-models and riiegpan this way into the framework.
Thus, the result of the exportation activity isea af instances in EXPRESS format according
to CORE (see Figure 36 for an example of instanaed)SysML meta-models.

DATA ('CORE_SCHEMA', ('CORE_SCHEMAY);

/********** Creation Stamp date ****************/

#1=T DATE(2, 2010, 11, 13, 0, 0);

/********** Items representlng a message *kkkkkkkkk ******/
#13=ITEM_COREC(*, $, $, #1, 'dsz', $, #1, 'ITEMO0001' 5,8, 8,9, 3,
$,%$,% 0,000\

#26=ITEM_CORE(*, $, $, #1, 'dsz', $, #1, 'ITEM0O002' , 5,8, %, 9%, 3,
$%%0,0.0.0)

#39=ITEM_CORE(*, $, $, #1, 'dsz', $, #1, 'ITEMO003' 5,8, 8,9, 3,
$,%% 0,00, 00

/********** L|nk transferring the items *kkkkkhkkkkk *****/
#50=LINK(*, $, $, #1, 'dsz', $, #1, 'ExtComm’, $, $ 5, %, %0,
(#39,#26,#13));

[rrxfxrxxxk Interface comprising the link x*x*xxxxx ek |
#247=INTERFACE_CORE(*, $, $, #1, 'dsz', $, #1, 'ext comm’, (#50),
0)

ENDSEC;

Figure 36. Instances of CORE in ISO-10303-21 format

72

V.3. Annotation using implicit knowledge

V.3. Annotation using implicit knowledge

The property to be validatedAll messages from Closed World to Open World skssla
secure communication protocglinvolves several concepts that are not explidalynalized
in the models: the concept ofiessagethe securitydomain notion Closed World/Open
World) and the list of encrypted protocols. These corscepe represented by EXPRESS
classes and their instances form the knowledge. lfédigere 37 shows thenessageand
communication protocatoncepts. Amessages composed of attributes indicating the origin
of the messagepérson_frony its addressespérson_to, person_cc, person_xand its
content (nessage parameder A communication_protocolis composed of a name
(protocol_namgand an attributeig_securg indicating whether it is a secure communication
protocol or not. Each instance is identified by @RI. For example, in Figure 38 the
communication protocol named EX25 IS uniquely identified by
“http://www.eads.net/thesedsz/knowledge/protocollex25

--This entity represents a Message

ENTITY MESSAGE

SUBTYPE OF (KNOWLEDGE_CLASS);
PERSON_FROM: SET [0:?] OF ORIGIN_OF_MESSAGE;
PERSON_TO: SET [0:?] OF DESTINATION_OF_MESSAGE;
PERSON_CC: SET [0:?] OF COPY_OF_MESSAGE;
PERSON_CCO: SET [0:?] OF SECRET_COPY_OF_MESSAGE;
MESSAGE_PARAMETER: SET [1:?] OF STRING;

END_ENTITY;

--This entity represents the communication protocol S
ENTITY COMMUNICATION_PROTOCOL
SUBTYPE OF (KNOWLEDGE_CLASS);

PROTOCOL_NAME: STRING;

IS_SECURE: BOOLEAN;

END_ENTITY;

Figure 37. Knowledge model implemented in EXPRESS
#115=URI(http://www.eads.net/thesedsz/knowledge/pr otocol/ex25");
#116=URI(http://www.eads.net/thesedsz/knowledge/pr otocol/ethernet');
#117=URI(http://www.eads.net/thesedsz/knowledge/pr otocol/x25");
#112=COMMUNICATION_PROTOCOL(*, *, $, #115, 'EX25', T,
#113=COMMUNICATION_PROTOCOL(*, *, $, #116, 'ETHERNE T',.T.);
#114=COMMUNICATION_PROTOCOL(*, *, $, #117, 'X25', . F.);

Figure 38. EXPRESS instances representing part ohé knowledge base

The instances of the knowledge model are usedriotate the exported model, i.e. to link
entities of the exported models to instances of theowledge base using the
ANNOTATION_CLASSntity of Figure 39.

73

Chapter V. Approach validation

ENTITY ANNOTATION_CLASS;
NAME: T_DOMAINE;
MY_KNOWLEDGE: LIST OF URI,
MY_ENTITIES: LIST OF ENTITY_CLASS,;
END_ENTITY;

Figure 39. Annotation class implemented in EXPRESS

Figure 40 illustrates several possibilities of aation:

= A concept represented differently depending on thenodeling language The
annotation#118 indicates that the URI identified B§115 (EX25 communication
protocol) is theprotocol used in entity#50, which is aLink of the SIS model
(CORE). The annotatio#119 indicates that the same URI is also tiretocol
applied in entity#78 which is aninterfaceof the CIS model (SysML).

= A concept represented by a group of entities in thexported models The
annotation#59 says that anessageURI identified by#60, is representedy the
COREltems #13#26 and#39.

#105=ANNOTATION_CLASS (‘represents', (#60), (#100)) ;
#59=ANNOTATION_CLASS (‘represents’, (#60), (#13,#26 #39));
#118=ANNOTATION_CLASS (‘protocol’, (#115), (#50));
#119=ANNOTATION CLASS (‘protocol’, (#115), (#78));

Figure 40. EXPRESS instances representing the anraied model

V.4. Model integration using equivalences

The integrated model in this case study is simple iacludes only one instance of the
Equivalenceclass (see Figure 41) from the relation meta-modbis instance, shown in
Figure 42, indicates that the entity8 of the CIS model (a SysMlnterface and the entity
#247 of the SIS model (a CORIgGterface are equivalent. Therefore, this equivalence aan b
used to build the constraint about the communicatiotocol between the connected entities.

--This entity represents relations of type Equivale nce
ENTITY EQUIVALENCE

SUBTYPE OF(LOGICAL_RELATION);
END_ENTITY;

Figure 41. Equivalence class implemented in EXPRESS

74

V.4. Model integration using equivalences

#300=EQUIVALENCE('Interface Equivalence’, (#78) , (# 247), 9%);

Figure 42. EXPRESS instance of an equivalence reiah

V.5. General constraint definition with First Order Logic
expressions

The constraint All messages from Closed World to Open World sha# a secure
communication protocblcan be translated into a logical expression, irstFOrder Logic.
Therefore, for this case study we need an expnessdel allowing the instantiation of such
expressions. Next sections detail its charactesisti

V.5.1. Contribution to PLIB expressions language

First of all, we build a grammar in order to clgadkfine the variety of formal expressions
to be verified. The grammar, expressed in the Baddaur Form (BNF (Naur, Backus, Bauer,
& Green, 1963)) is inspired on the PLIB (ISO, 19p&kpressions language proposal. Even
though the problem we deal with is not the compahantd parts library modeling which is
the core of PLIB (sedl.2.1), its approach to build expressions in aigtired and easily
extendible way fits our expressivity needs. Thus,extend the original PLIB proposal with
First Order Logic concepts in order to fulfill okmgical constraint expressions needs.

For clarity purpose, the structure of the modebriganized into several basic concepts.
This organization is described below.

Type

Some elements of the model are used to distinghishype of an expression. The main
types are:String Boolean and Numeric They are combined with other elements of
expressions, as cardinality which is explainedcariext paragraph.

Cardinality
According to the number of operands, an expressamary, binary or multiple The
model reflects these cardinalities and the coml@natith other structures:
= NOT true; is an example ofumaryBooleanexpression.
= 4 DIV 2; is a sample of hinary Numericexpression.

= 4+ 3+ 1; shows multiple Numeriexpression.

Functions

75

Chapter V. Approach validation

Functions are elements used to represent the @iagesf input providing an output as a
result. They are built-in functions or defined (amk) functions. Thdength function is an
example of a built-in function: given a string eggsion it returns the length of the string.

Variables
The model allows the inclusion of variables in egsions. They are replaced by a value
during the evaluation of expressions. Variablesugexl to manipulate entities of the models.

Literals

Literals are the basic elements to build expressitm a tree-modeling perspective they
are the leaves. We havetring Numeric and Boolean literals as: X.25, 5 and false
respectively.

Expressions

Finally, all the aforementioned principles are cosgd to build the expressions, for
exampleODD(* <NUMERIC_EXPRESSION>")is a binary Numeric expression whereas
BELONG_BOOLEAN_EXPRESSION(“<OPERANDS:3s)aBooleanfunction expression.

From grammar to model

We developed the FOL model in EXPRESS. The firsp sionsists in describing a FOL
meta-model in terms of entities and attributes.illistrate this idea let's take FOEXISTS
expression.

Grammar definition
In the grammar thEXISTSexpression is represented as:

<EXISTS_EXPRESSION> ::=“ EXISTS " {<GENERIC_VARIAB LE>} Y (7
<BOOLEAN_EXPRESSION>)"

Figure 43. Exist expression in BNF form

EXISTSs a type oFOL expressiomwhich is a derivation odBoolean expressiont means
that the result of the expression isBaolean The two operands are a set of variables
containing the elements to be validated arigbalean expressiorepresenting the property,
predicate that at least one of the values of the variahlstrfulfill.

Model translation

The previous grammar elements are represented rimodel with two corresponding
entities:

76

V.5. General constraint definition with First Ordargic expressions

--THIS ENTITY REPRESENTS THE FOL (FIRST ORDER LOGIC) EXPRESSIONS
ENTITY FOL_EXPRESSION
SUBTYPE OF (BOOLEAN_EXPRESSION);
CONTEXT_VARIABLES: OPTIONAL SET OF GENERIC_VARIABL E; --CONTEXT
EXPRESSION_VARIABLES: SET OF VARIABLE_DOMAIN; --VA RIABLES
PREDICATE: BOOLEAN_EXPRESSION;--THE PREDICATE TO B E EVALUATED
END_ENTITY;

--THIS ENTITY REPRESENTS THE EXISTS FOL ASSERTION
ENTITY EXISTS_EXPRESSION
SUBTYPE OF (FOL_EXPRESSION);
DERIVE
SELF\BOOLEAN_EXPRESSION.THE_VALUE: BOOLEAN:=EXISTS FUNCTION
(SELF);
END_ENTITY;

Figure 44. Exist expression in the EXPRESS model

As shown in the previous figure each node of tlemgnar is translated into an entity. For
modeling reasons we need to dEMPRESSION_VARIABLEStribute to store the values to
be replaced in the variables. The semantics oéxipeession are carried and calculated by the
EXISTS _FUNCTIONunction as we explain in the next sub-section.

Modeling the semantics

To complete our model we add semantics with a phaed approach, i.e. implementing
the semantics using EXPRESS functions. For instatieeexists_functionof the example
interprets the attributes of the expression ancaoes the variable by the different values until
one of them satisfies th&ooleanexpressiongredicatg.

exists_function(arg:EXISTS_EXPRESSION): BOOLEAN;

Figure 45. EXPRESS function implementing the interpetation of the expression

77

Chapter V. Approach validation

V.5.2. Inter-model constraint verification

Once the FOL model is built according to the rulescribed in previous section, next
step translates the inter-model constraill('messages from ClosedWorld to OpenWorld
shall use a secure communication protdcoito a set of instances forming a FOL expression
(evoked in Figure 30), i.e. a group of sub-exprssiand variables as shown in Figure 46.

#157=ENTITY_DOMAIN((#50));

#362=ENTITY_VARIABLE(*, I;

#158=VARIABLE_DOMAIN(#157, #362);

#159=ALL_EXPRESSION(*, (), (#158), #352);
#351=NOT_EXPRESSION(*, #356);

#352=0OR_EXPRESSION(*, (#351,#348));
#348=EXISTS_EXPRESSION(*, (), (#350), #347);
#350=VARIABLE_DOMAIN(#349, #339);

#347=AND_EXPRESSION(*, (#344,#345 #346));
#344=COMPARISON_EQUAL_CONTEXT_EXPRESSION(*, (#340,#343));
#345=COMPARISON_EQUAL_CONTEXT_EXPRESSION(*, (#341,#339));
#346=COMPARISON_EQUAL_CONTEXT_EXPRESSION(*, (#342,#339));

#340=BOOLEAN_ARRAY_PATH_VARIABLE($, ‘cp.securised’, #339,
''S_SECURE/, .F.);

#341=ENTITY_PATH_VARIABLE($, '\\{protocol\\}', #36 2, 'protocol’,
TD);

#342=ENTITY_PATH_VARIABLE($, 'X\\{protocol\}', #33 1, 'protocol’,
TD);

Figure 46. Excerpt of the instances implementing #hinter-model constraint

Finally, we are ready to effectively perform theéemmodel constraint verification. For
that, two EXPRESS features are exploited in ordezvialuate of the constraint: tderived
attributesand thelocal rules A derived attributeis a kind of attribute in EXPRESS whose
value is calculated whenever it is used. In ouragenal validation, all FOL classes that may
build up an expression havelarived attributecalledTHE_VALUE A local ruleis a property
which must betrue for all the instances of a class, e.glidmeter>3. Hence, taking
advantage of the instances checking engine, thHeati@n of a constraint starts by defining a
local rule at the higher level, i.e. the root of a FOL expi@s (which is instanc&159,
ALL_EXPRESSIOND our case study) saying thBHE_VALUEattribute must bé&ue. Since
this attribute is a derived one, the evaluatiothefrule triggers a concatenation of calculation
of THE_VALUEAattributes following the tree structure of a FOtpeession, e.g. in order to
calculate#159the instancét352 (an OR_EXPRESSIONNust be evaluated previously (i.e.,

78

V.5. General constraint definition with First Ordargic expressions

code in Figure 47 is executed to calculate thevddrattribute value) and so on. In the end,
the constraint is completely analyzed and the EXBPREstances checker provides the result.

--This function implements OR_EXPRESSION
FUNCTION or_fct (ARG: BOOLEAN_EXPRESSION): BOOLEAN;
--Local variables
LOCAL
I: INTEGER;
END_LOCAL;
--We treat each operand
REPEAT I:=1 TO SIZEOF (ARG\MULTIPLE_ARITY_BOOLEAN_E XPRESSION.OPERANDS);
--The operand must be of type BOOLEAN_EXPRESSION
IF (TOP_SCHEMA.BOOLEAN_EXPRESSION' IN TYPEOF
(ARG\MULTIPLE_ARITY_BOOLEAN_EXPRESSION.OPERANDSJI])) THEN
--We read the value of the operand.

--This action triggers the calculation of derived a ttribute the_value
IF (ARG\MULTIPLE_ARITY_BOOLEAN_EXPRESSION.OPERA NDS][l].the_value) THEN
--When one of the operands is TRUE we finish and return TRUE
RETURN(TRUE);
END_IF;
ELSE
--Otherwise we return FALSE (operand is not a BOOL EAN_EXPRESSION)
RETURN(FALSE);
END_IF;
END_REPEAT,;
--Otherwise we return FALSE (none of the operands i s TRUE)

RETURN (FALSE);
END_FUNCTION; -- OR_FUNCTION

Figure 47. Derivation of the value of attribute "the_value" for OR_EXPRESSION entity

V.6. Implementation with ECCO toolkit

Previous sections have introduced the models ofirsa €ase study formalized in
EXPRESS modeling language. These models have bg#amented in a tool which covers
the main functions of our approach. Concerning fthections needed for our process we
identify:

= Exportation. To instantiate the source models by the use admedels in the
common framework. TheExportation module (shown in the functional
architecture of Figure 48) manages the exportatimction which exports the
source models to the common framework

= Annotation. To provide the mechanism to link the imported eisdwith the
knowledge models. According to the functional aestture of Figure 48, the
Knowledgemodule provides the interface to the knowledge rsotlet are used

79

Chapter V. Approach validation

by the annotation module whereas Amnotationmodule supports the annotation
function and puts in relation the knowledge modeith the exported models to
obtain the annotated models.

= Integration. To enable the connection between elements ddithetated models.
The Integration module (Figure 48) corresponds to the integratimttion and it
allows the construction of the integrated model.

= Constraint expression To provide a flexible way for building expresssom
order to declare the properties to be checked tiverintegrated model. The
Expressionmodule (Figure 48) is in charge of the definitioh dynamical
expressions which formalize the inter-model comstsa

= Constraint validation. To validate the constraints by interpreting thetéances of
expressions. TheExpression validatichmodule (Figure 48) contains the code
that interprets and executes the expressions beeintegrated model in order to
validate the inter-model constraints.

Source models
L. inputs
T Expartation module
oukputs i [Knowvledge models]
Expotted models i i
) precedes :
S _|n|:|uts inputs |
o M}-Li i uses :
Annaotation module Knowledge module
outputs - -
PP -
Annotsted models) precedes
| inputs
Deas -b(IMtegration module j
outputs -
- =
Intecrated model _ precedes
| inputs
I :}@
E outputs, .-
VoD
Expression] precedes
executes
T _prressiun walidation mudu5

inpuks

Figure 48. Functional architecture of the operatioml validation

80

V.6. Implementation with ECCO toolkit

V.6.1. The common framework

The previous analysis leads us to take some desisibout an adequate implementation
in order to perform a consistent operational vaiafafrom a scientific point of view.

One of the most robust EXPRESS environments isEGBEO toolkit (PDTec GmbH,
1998). It offers a set of tools which provides anoeon user interface allowing mainly: the
construction of EXPRESS models; the management XPRESS instances; and the
evaluation of constraints. Thus, in this commormkesvork we can operate the different
models of our approach and use the instances clgeakigine to verify the inter-model
constraints.

The models are organized in schemas. Figure 49 shiogv architecture regarding the
schemas used in our operational validatib®P_SCHEMAIncludes some common entities
and types, e.g. the type DATE; the objectives & thst of schemas are detailed in the
following sections along with the implementatiorB@CO of the modeling process activities.

TOP_SCHEMA META_SCHEMA

references

references

references

AHHOTATION_SCHEMA references

RELATIOH_SCHEMA

;
references FEIBTEnCES EXPRESSION_SCHEMA

Figure 49. Schemas in EXPRESS

V.6.2. Step by step implementation

This section describes the implementation of thesiies of the approach in the ECCO
toolkit.

81

Chapter V. Approach validation

Prior to the execution of the activities, we prepéne environment according to the
architecture defined iW.6.1, by creating a project including all the neeédchemas as seen in

Figure 50.

Froject Files

Project Options for Methode_test.prj [x]

Global Compilation Options

CORE_MMaodelexp
Spshil_Mbdodel exp
Commonschema. exp
Constraint_MMkodel exp
Relationz_kMkodel exp
Fhodel exp
E=presszion_Mbodel exp

Add Ltility File ‘

Syntax and Semantic Checking

 Mowarmings Momal ¢ Pedantic

<l

Dizable EXPRESS-C Extensions

<l

Enable Debugging

Enable O ptimization

<1 7]

Llze Static P21 Parser Library

9

Enable Feposzitory Mechanizm

[+ Enable Dynamic Loading
Application Mame: prog
Errar Lirnit: a0
C++ File Size: 100000
C++ Link Flags: -linterp

C++ Compile Flags:

C++ Source Files:

ecco Options: -e 30 -G -q 100000 -c -g

Create source file | Cancel ‘

Add Source File ‘

Femowe File | Ok ‘

Figure 50. Creation of a project with ECCO toolkit

Building up the framework

continues with the creatof entities, attributes and

constraints of the different schemas using the nhedigon properties of the tool. Figure 51
shows an example widETA_SCHEMA

ECCO Toolkit ¥3.1.5

File Edit Application Schema Instances Windows Help
B @ BB 8Ty R

El)

File: . \meta_schema.exp

TYFE type_category = ENUMERATION OF |
no_type, nuwber type, real type,
logical type, boolean type, Array Lype,
aggregate type, generic type,

END_TYPE:

ENTITY application info;

OPERATIONS
nae @ ZTRING: e
schemas SET OF schema_info; o

END_EWTITY:

ENTITY schema info;
name : ITRING:

OPERATICHNS
entity types
defined types

END_ENTITY:

SET OF entity info:
SET OF named info;

ENTITY type_ info

PRIVATE (obj, auto_extend):
ok] INTEGER:;
DERIVE
id : INTEGER := obj:
OPERATICHNS
CALEgOry @ LYpPEe_Category; = Fheshasie

auto_extend;
END ENTITY:

integer type, sString type, binary type,

enum type, select type,

list_type, bag type, Set_type,
entity type):

name of the application
schemas of the application

name of the schema (readonly!)

entity types of the schema
defined types of the schema

category of the type

Figure 51. Edition of schema using ECCO toolkit

82

V.6. Implementation with ECCO toolkit

Taking into consideration the involved schemas wae start the inter-model constraints
verification process.

Export

Source Meta-models

The meta-models are the means to export the saurdels into ECCO toolkit. Therefore,
for each meta-model we implement a schema refargniheTOP_SCHEMAor the common
types and entities. Furthermore, in order to maaijgumeta-models, i.e. to work with classes
and attributes without knowing the content of thetammodel below, ECCO dispenses the
schemaMETA_SCHEMA This module makes it possible to apply meta-mebaleling
techniques, thus it is a layer over the implementeth-models.

Source and exported models

The source models are exported into the ECCO tobakkiinstances of the appropriate
meta-model schema. A mapping is done between tih@medel in its exchange format, e.qg.
XMI, and the meta-model defined in EXPRESS. Thenijnstance file compatible with one
of the EXPRESS’ standard (e.g. 1SO-10303-21) isegmed applying meta-modeling
techniques. Thus, the source model is now expraasedms of instances of the meta-model
written in the EXPRESS language.

ECCO toolkit execution

The instances of the meta-models are uploaded itothighrough the Read Instancés
action. This action allows the user to look for flie containing the instances and to load it
into the framework. By performing this simple actioar source models are now loaded in
our shared and common framework.

Annotation

Knowledge models

Even though our approach admits the use of diffedi@malisms for the implementation
of knowledge models, we have implemented the kndgdemodels in the EXPRESS
modeling language in order to accelerate the ojpaatvalidation. These knowledge models
have only, for reuse reasons, a reference torte_SCHEMAsince they are independent
from the rest of modules.

Annotated models
Once the source models are exported as instanaes finamework, we need to complete
them with annotations. As we are in the universeEXPRESS instances, the annotation

consists of adding new instances to form the amedtanodel. They are instances of the
83

Chapter V. Approach validation

ANNOTATION_SCHEMAf Figure 49. This annotation puts in relation éxported models
with the instances of the knowledge schema, ieekttowledge base.

ECCO toolkit execution

As described before, we have decided to implemantknowledge models in the same
environment; therefore before starting the annmbatprocess we read the instances
corresponding to our knowledge models in orderoeIthem in the tool. Next, we execute
the “Open Entity Typésaction of the Instancesmenu and we add instances of the
ANNOTATION_SCHEM# order to connect the instances loaded duriedettport activity
and those forming our knowledge base. Figure 52vshan illustration of the creation of
instances via the ECCO toolkit interface.

--THIS ENTITY REPRESENTS AN UNIQUE IDENTIFIER (URI)
ENTITY URI:

URI_WALUE: 3TRING:
INVERSE

THE_CLASS: ENOULEDGE CLAZS FOR MY URI:
THIQUE

URI: ORI VALUE;
END_ENTITY;

-THIZ ENTITY REFPRESENTS AN ANNOTATICN
ENTITY ANMNOTATION CLASS:

WANE: T DOMAINE;

MY _KNOWLEDGE: LIST OF URI;

MY _ENTITIES: LIST OF ENTITY CLASH;
END_ENTITY;

-THIS ENTITY IS THE SUPER CLASS OF FNOWLEDGE CONCEPTS
ENTITY EMOWLEDGE CLASS

ABSTRACT SUPERTYPE

SUBTYPE OF [(ENTITY CLASS):

MY URI: URI:
DERIVE

SELFV\ENTITY_CLASS.NAME:3TRING := 'KNOWLEDGE_CLAZZ':
END ENTITY:

Instances of Type ANNOTATION_CLASS

File Instance Options Attributes

1118 pratocol’ [#115] [#50)
5119 [protocal’ [#115] [#78]
H248 ‘pratocal] ? ?

Figure 52. Creation of instances using ECCO toolkit

Model integration

Integrated model

The integrated model consists of instances of R ATION SCHEMAwhich allow
interconnecting entities of the annotated modelse RELATION_SCHEMAcontains the
definition of the relation concept, i.e. an entitfiich has attributes awigin anddestination
to point to other entities, amongst other attriButRELATION_SCHEMAnNeeds the
TOP_SCHEMAO process some general concepts.

ECCO toolkit execution

84

V.6. Implementation with ECCO toolkit

In this case we use theOpen Entity Typésaction to create the instances of the
RELATION_SCHEMA.e. we interconnect the annotated instances.

General constraint description and validation

Constraint relational meta-model

The EXPRESSION_SCHEM#ontains the entities and attributes used forctrestruction
of expressions. These expressions translate taenmidel constraints to an executable form
for validation over the annotated models. Sincdias to manage both concepts from
knowledge and entities from the exported modEXPRESSION_ SCHEM#efers to the
ANNOTATION_SCHEMAand to the META_SCHEMA respectively, besides to the
TOP_SCHEMAor the general elements.

Constraint Relational model

We instantiate theeXPRESSION_SCHEM# order to describe the expressions that
implement the inter-model constraints that we yerfiherefore, we complete the EXPRESS
instances of the integrated model with the instartbat build up the expression. From this
point, the instances cover all the necessary irdtion to validate the inter-model constraints.

ECCO toolkit execution

First of all, the instances needed to form the esgions that translate the inter-model
constraints are created through theOpén Entity Typés action onto the
EXPRESSION_SCHEMAlext and final step is to check the expressiorss Thecking is
performed by the instances checker of the ECCOKitodlhis checker is called from the
“ChecK action and analyzes each instance in order tdyv#rat constraints are observed.
The result of the checking is a list of errors thah be browsed as seen in Figure 53. The
details of the implementation of the instances kbedn our inter-model expressions are
explained in sectiol.5.2 with a concrete example.

Errors in Schemas (all constraints) E]@le

integrity congtraint violation: where rule INTER_MODEL_CONSTRAINT.ENCRYFTED15Y' evaluates to FALSE
Ingtance: O1D: #3933

Type: IMTER_MODEL_SCHEMAINTER_MODEL_COMSTRAINT

References: SELF

in file d:\dzzMtempZ i messagesiconstrainty#1534expinstancestmp. exp at ine 8

Mext Cloze

Figure 53. Check of instances with ECCO toolkit

85

V.7. Conclusion

In order to validate our approach we have choseREESS as the shared and common
modeling language. In this case study we have B¥RRESS mainly to: 1) export the source
models as instances of meta-models in an EXPRES8®I@nt format; 2) develop
knowledge models and 3) support FOL as propertgdage. The formal modeling using
EXPRESS modeling language has enabled the fornhdhtian of the approach since verifies
that we are able: to import SysML and CORE modelsglesign and populate knowledge
models; to use the knowledge base to annotate tegbonodels; to establish inter-model
relations; to dynamically write a constraint; anccheck such a constraint.

These formal models have been operationally viddlasing the ECCO toolkit as the
framework of implementation. EXPRESS standard sires the models into different
schemas. We have used this feature to better ag#me different modules. Thus, a common
schema describes basic elements of our method dslsnalasses and knowledge items. This
schema is extended by other schemas in order tposugach of the activities of our
approach. A schema is written for each meta-mddetels are imported as instances of the
classes of the meta-model schemas. Furthermoreinttemodel constraints are verified
thanks to the instance checker implemented in t8€@& toolkit. However, the proposed
method chain is generic enough, it could have kmreloped with other tools as JSDAI
(GmbH, 2012) or Topcased (Topcased.org, 2011). Mae we have developed a prototype
in order to provide users with an ad-hoc HCI ancbading to the activities of our method.
The industrial evaluation described @hapter VI is the guideline to define the main
characteristics of the prototype.

86

Chapter VI Industrial

evaluation
Summary

A7 50 I [i (Yo [V 1T o RN 89
VI.2. Water and Waste System MoOdeluuueeiiuiiiiiiiiiiiitiiiecerceeeeneernersernsernnens 90
VI.2.1. D ESCIIDTION ettt ettt ettt e et e et e e st e s s e ateeseeaaeeesentaeesssaaeesesteessenaaeesannns 90
VI.2.2. The Modeling ProCESS ACTIVITIES w..ovivueiiiieeieeeeee et 90
VI.2.3. (©Te] 1o (UL o] LSRR 95
VI.3. Hydraulic and Engine systems MOdEIlScceuueeeuireuireeierenerreniereeceeeneeeeenneens 95
VI.3.1. B ISIY e g) 1T PR 95
VI.3.2. The Modeling ProCESS ACTIVITIES w..evivueiiiieiieeeeee et 96
VI.3.3. [©Te] 11 (UL o] LTS 102

A I T Lo T o W AN T KVT d Y10 V=30 0 0 oY [=] F R 103
VI.4.1. B ISI o g) 1T PR 103
VI.4.2. The Modeling ProCESS ACTIVITIES w.vviiieeeieieeeie et 103
VI.4.3. CONCIUSIONS ..ttt ettt ettt e et e e e et e e s s et e e seeateeeseateeseassaeesssasseesssnasessnnseeesanseees 110
V5. CONCIUSION c.cveeiiieeiiriieteiieetieerneeenrererseersseeeesssersssssrssesssssesssessssesesseserssesasseses 110

Abstract. In this chapter we carry out a validation of ouopgmsal, using simplified
models based on the analysis of four real industases. The main objective of these cases is
to validate the usability of the considered apphoakhe conclusions of this validation are
used for the specification of the pre-industriatptype described further on.

87

Chapter VI. Industrial evaluation

88

VI.1.Introduction

VI.1. Introduction

In a first stage we have carried out an exploratlmough a case study involving two
modeling languages and a complex constraint expres$he goal is to have a proof of
concept of the entire process. In order to incrahsecoverage and validate the industrial
usability of the proposed approach we analyze sévether cases. In each case, the
complexity depends on the number of models, thebmunof modeling languages and the
variations in modeling principles applied by thgieeers. The particularities of each case are
synthesized in order to give an idea of the main ehong scenarios that we want to
implement in our approach. These scenarios are suined in Figure 54 and listed below.

1 model 1 standard Knowledge and annotations
2 models 1 standard Same modeling rules

2 models 1 standard Different modeling rules

2 models 2 standards Heterogeneity

Figure 54. Industrial validation strategy

= Firstly, in sectionVl.2 we consider a case implying only one modebrder to
focus on the use of knowledge and annotations.

*= In the second case described in sectid3, a scenario implying two models is
studied where the modeling standard is the sange §/sML) and the models
have been developed using the same modeling approacthe same modeling
rules.

= Precisely, the third case (detailed in sect3.2) uses two models built with the
same modeling language but using different modelihes.

= Finally, the last case (sectidfl.4) has the largest variety in terms of heteraggn

since we worked with two models expressed in diffierstandards, SysML and
CORE, and with a rich knowledge model.

89

Chapter VI. Industrial evaluation

VI.2. Water and Waste System model

VI.2.1. Description

One first scenario concerns the retrieval andahdassessment of an existing Water and
Waste System (WWS) architecture model that an eegimtends to reuse for the design of
the Water and Waste System of a new aircraft. $henario is based on a real situation
where a team of A380 engineers checked the relevaiprevious existing WWS models for
their current program during the functional desstege. WWS is the system in charge of:

= supplying potable water to the lavatories and galle

= draining of waste water from the lavatory washb&gnerboard through drain
mast

= vacuum of waste from the toilet and galley wastpdsal

= draining of the waste tanks in waste vehicle orugd

General Metadata

Extrapolating on this real situation, we make tesuaption that system models from all
previous aircraft programs could be managed, desgnvith some annotations stored in some
repositories and then searched for reuse.

General characteristics may help the engineer tineveng models relevant to a new
context. For instance, one would searchAaohitecture model, preferably modeled using
SysML language, of the Water and Waste System alodidiag to anAircraft Programwith
more than one deck. Therefore, we introduce in gpecification of our prototype the
possibility to edit and manage such model annatatepplied to models considered as black
boxes. Amongst other possible scenarios, it igstalkenough to think that systems’ models
can be annotated with this kind of general infororast the time they are built. This general
information can easily be represented in the forimvkmowledge models. We use these
knowledge models to annotate the exported WWS miodefder to indicate its scope and
applicableAircraft Program The advantage of having knowledge models is thatnstance,
we can obtain the number of decks directly from phneperties of theAircraft Program
instead of repeating this information as a spedimotation. Thus, knowledge models
provide general metadata with more consistency.

VI.2.2. The modeling process activities

Next sections develop the implementation of thsecstudy according to the models and
activities represented in Figure 55.

90

VI.2.Water and Waste System model

Common Fa
Common N
Mlﬂ"'lﬂ“'\" Iol o Instance of { A
o 1 Z — N e i _inana |
llr‘ll\lpr‘:ﬂ 'g' —~ . L,Dnstra“’]t He|at|0na[|V|0del | 'l LONSLUAlnt merauornal vl |
T 121 » z A J
11 r .
A= - Uses .
\J n ’
v GENEBAI
CONSTRAINT
DESCRIPTION
i s AN
A i Uses I
o fol
I(—\l Instance of | | : _ | E !
— . i Y - o = ! - M 5
| Keldgnon Vi r | Integrated Model | X w_ 1ol
| le Y———— | I |
~ A -
I\ | \YJ
11 p—— >
1z} ;
1<l [
I o
Izl
1e1
\J
\VJ
N
1.\
ggl - u N
| S Tg— Rl
15 I_LI Exported WWS Modei|
| L p——) IS o .
‘6' . ‘ \ Instance or
\/J g ~
hd i e\
———— Uses 1 Qvghl MM
EXPORT yrewereveeseree 5 DY SVIL VIV
A .
=
=~ |
[0\ (RPoco oo Modeling relati
odeling relations
’é\ L | WWS Model | [Resources| ? .
1 & | 1 B
w]- P\ _
\5’ Resource I b rle i1 114
U exploitations puusurpuat
..................... > q
Specific Domain

Figure 55. Approach applied to the WWS case study

Export

In this context we consider a SysML model of thet&®and Waste System. Figure 56
shows aninternal Block Definition (IBD)representing a subpart of the WWS system
comprised of fourToilet Unitswhich areSysML Propertiesand are connected toFRush
Control Unit (FCU) represented by a SysMBlock The FCU is an element of the WWS
managing the synchronization of the different watasste flushes in order to avoid flushes
going from aToilet Unitto another one instead of being ejected through\tasteline This
characteristic is very important in aircraft havimgpre than one deck as we will see in the
constraints section.

91

Chapter VI. Industrial evaluation

it [ock] w5 [urnamed])

Fhish vale 2

Flhash vaboa 1

T1 : Toile1 Lk

Fstrt

=
|. ek wakea £ : i

TZ : Toilel Lk

whstaling : Wiastaling |

]

Fluzh 4

Fhash wshes 4
T4 : Toded]

Figure 56. Internal Block Diagram of the WWS SysMLmodel

This model is exported into the common frameworkitgtantiating the SysML meta-

model. Part of the instances of this meta-mod&XPRESS are shown in Figure 57.
#47=PROPERTY_UML(*, $, $, (), $, 'T3'", $, .PRIVATE. Rk
#48=PROPERTY_UML(*, $, $, (), $, 'T4", $, .PRIVATE. Ok
#49=PROPERTY_UML(*, $, $, (), $, 'fcu’, $, .PRIVATE o)
#50=BLOCK(*, $, $, (), $, 'Toilet Unit, $, .PRIVAT E.,

(#92,#91 #94,#93 #96 #95), ...);

Figure 57. Instances representing the WWS model iEXPRESS modeling language

Annotation
In our context, knowledge is either technical ongral knowledge. Te

chnical knowledge

is often formalized by standards. The ATA chapted3A, 2011) % are an example of

common and shared knowledge in Aircraft Systemsirieaging domain.

This is the reason

for us to choose them as a basis to build ontodoigi¢he frame of some of our case studies.

2 The Air Transport Association (ATA) is an Americaitline trade association, founded in 1936, whose

fundamental purpose is to improve the safety ofraimsportation. Pursuing this objective ATA hagamized an

aircraft into a series of systems with general abi@ristics trough what aircraft engineer
some examples: ATA 09 references TmWing and Taxingin Aircraft General domain;

s callAi&\ chapters,

ATA 29 describes the

“Hydraulic Power System"ATA 52 discusses about the doors belonging tosthecture of the aircraft; and

concerning thePower Plant” ATA 79 gives a description @il.

92

VI.2.Water and Waste System model

Concerning the WWS case, we use the descripti@Véater and Waste Systagiven by
ATA 38 standard and introduced by the knowledge ehda UML class diagram) of Figure
58.

ATA

+chapter_number

describes

Lavatory \

+deck_number Galley

. ntains
contains

Toilet ‘Wash Basin

has flush

Flush Valve flush

managl%s Waste Line circuit | Waste Tank | #=500 | Drain Valve

FCU

connecks

capacity

Capacity Unit Capacity

unik

Figure 58. Knowledge model according to ATA 38 arakecture

According to this knowledge modalyWSconsists of someavatories someGalleys a
Flush Control Unitand aWaste TankEachLavatory is installed in a specific deck and
contains aroilet and awash BasinTheWash Basins directly connected to th&aste Ling
whereas a toilet hasFEush Valvethat is managed by tHeCU in synchronization with the
rest of Flush Valves The Waste Linedrives wasted water to Waste Tankwhich has a
particularCapacity In the end the wasted flush is ejected fromWheste Tankia theDrain
Valve

ATA 38 provides a general overview of the architeetof WWS system which is
formalized in the above figure. That kind of knodde model, architecture-oriented, eases
the communication with engineers in order to clatife comprehension of their models. Yet,
to construct the constraints introduced in the joev section only some concepts and
relations, the ones related to theilets are required. Thus, depending on the contexisef u
the knowledge model may be more or less complegejfehe knowledge model is not going
to be shared by other design teams a model dasgribe concepts without the architecture

aspects could be enough.
93

Chapter VI. Industrial evaluation

In our implementation, the instances of the ATAKB®wledge model (see Figure 59) are
used to identify th& oiletsand theFlush Control Unitof thelBD in Figure 56. These more
fine-grained annotations (see Figure 60) enablevdiliglation of the assessment questions
regarding flush control.

#115=URI('http://www.eads.net/systems/wws/wastetank 1Y;

#116=URI('http://www.eads.net/systems/wws/fcu');
#117=URI(http://www.eads.net/systems/wws/flushvalv el);
#119=FCU(*, $, $, #116, #264, (#111,#146,#136,#156))i

#121=WASTE_TANK(*, $, $, #115, $, $);
#123=CAPACITY_CLASS(*, $, $, 50., .LITER.);

Figure 59. Instances of ATA 38 knowledge model inXd@?RESS modeling language

#163=ANNOTATION_CLASS(is', (#128),(#46));
#164=ANNOTATION_CLASS(is', (#149),(#48));
#165=ANNOTATION_CLASS(is', (#139),(#47));
#166=ANNOTATION_CLASS(is', (#116),(#98));

Figure 60. Instances of annotations using ATA 38 lawledge model

Model Integration

For this case study the model integration actisdtgiot necessary since only one model is
involved. Nevertheless, our approach is still veabince, as seen in the previous passage, the
model is annotated and we use these annotatiomspiement the constraints described in
next section.

General Constraint Definition

Once the engineer has retrieved one or severalidatedmodels through the global
search, he or she still has more detailed questaassess how much this model fits with the
expressed needs. It is a first assessment of atirexmodel. Concerning the WWS case, one
needs to verify properties such as: AreTalllet Units connected to &lush Control Unit
(FCU)? At this point, our approach allows performing somore flexible, ad-hoc, annotation
of the model internal entities in order to check elogroperties, which requires that the
model is no more a black box and that the modelargguage question is considered.
Concerning the FCU property we annotate €kaifet Unit with its corresponding instance of

94

VI.2.Water and Waste System model

Toilet of the knowledge model and tikéush Control UnitBlock with the instance ofFCU.
Then, a constraint expresses that all Tledet Units (i.e., all thePropertiesof the model
annotated by the instan@®iletin our knowledge model) are connected to the sderaent
which is aBlock annotated byFCU of our knowledge model. This expression combines
elements issued from the SysML meta-mod&operties, Block and from the knowledge
base Toilet, FCU), which means that a good understanding of botiecgessary. In particular,
the SysML meta-model must be explored (our pro®igtows it, as it will be presented later
on) in order to find and annotate the right elemmdRtoperties, BlocKs Figure 61 shows
some instances of tl@onstraint Relational Modewhich implement such constraint.

/*** Are all Toilet Units connected to a Flush Cont rol Unit? ***/
#176=ALL_EXPRESSION(*, (#167), (#171), #177);

#177=OR_EXPRESSION(*, (#178,#179));

#178=NOT_EXPRESSION(*, #168);

#179=EXISTS_EXPRESSION(*, (#180), (#182), #184);

Figure 61. Instances of constraints in EXPRESS motiag language

VI.2.3. Conclusions

In this case study, in first place we enrich thedeidrom a black-box point of view.
Therefore, we annotate the model linking it to fyeaticular Aircraft Program involved.
Amongst the properties of thircraft Programwe find the number of decks, which is the
first verification to be carried out; we look forraodel describing the Water and Waste
System of an aircraft having more than one deckeQhis first filter is applied, we check the
most fine-grained properties analyzing the contéihe chosen model.

As the constraints of this case study involve amig model they could also have been
verified using the features of the source modeiomjs. However, this is not an easy task. For
instance, in the case of SysML modeling with the jloay tool (IBM, 2012), to express this
kind of constraints implies coding Visual Basic fépplications (IBM, 2009) macros.
Nevertheless, we mainly implement this case stymghyying our approach in order to explore
the different annotation aspects, i.e. black-boxahide-box.

VI.3. Hydraulic and Engine systems models

VI1.3.1. Description

Our second case is built upon a real detailed desigenario where two models,
respectively, of the Hydraulic system and the Engsystem shall be coupled and co-

95

Chapter VI. Industrial evaluation

simulated. The Hydraulic Power system has to predaied carry any type of hydraulic
energy up to its consumers. The Engine system change of the mechanical power of an
aircraft but it generates the hydraulic flow asIw&he hydraulic flow is produced by the
means of pumps calldéhgine Driven PumpéDP).

From this starting point we could identify, basedioterviews, the following properties
that shall be verified prior to co-simulation intation tasks: 1) to identify in the models the
points of connection (interfaces) between the sysie?) the consistency of the units of
measurement of the hydraulic flow involving bothdats.

VI1.3.2.

Next sections describe the implementation of tasecstudy according to the approach in
Figure 62.

The modeling process activities

Common

Universe

>

[P Y o
msance or |

Constraint Relational Model '

GENERAL
CONSTRAINT

UESURIFITIUN

A

A .
Integrated Model

MODEL
INTEGRATION

3
Constraint Relational MM

CHECKING

N

Uses .

o
l

Lt

>

] o
: WUSES

-

CHECKING
-

Instance of

Relation MM

Uses
nnotated Hydrauﬁc Model l

Annotated by i i .'-""...Annotated by
ANNOTATION eeeermmsmenenens KM (ATA 29)

ﬁAn notated Engine Mode

->

ANNOTATION

EXPORT

| N | Exported Hydraulic Model]
1 w‘tance of

,[SysML MM] {SysML MP\/I]J{S_??......

t

Exported Engine Model | X |
Instance of

=

EXPORT

Specific Domain

Hydraulic Model

Resources

Modeling relations

Resource
exploitations

Engine Model

Specific Domain

Input/Output

Figure 62. Approach applied to the Hydraulic and Emine case studies

96

VI1.3.Hydraulic and Engine systems models

Export

Homogeneous modeling choices

Both models have been re-designed in SysML (ondefavailable meta-models in our
current framework), while the original models welesigned using the Simulink modeling
language (for which meta-models are not yet avashabl

We built a first sub-case where the applied modepninciples are identical for both
models, which means that subtypesBbéfcks applying the parts concept are used in both
cases to represent subsystems and that Sy&Mis are consistently employed.

Concerning the SysML models, the engineer co-siteslthem by previously connecting
points of the Engine to points of the Block whi@presents the exchange with the Hydraulic
system; the Distribution sub-system. Then engipeeforms a high level simulation in order
to check that the exchanged data is correct. Imtbéels shown in Figure 63 and Figure 64,
the connection points are represented by SysMitsin both cases, therefore _edplhas to
be connected tout_pumpland so on.

ibd [block] Enging Syskem [unnamed])
flowe in
in_edpl : Distribukion swstem
flowe_out
— in engine_power
out_edpl : Distribukion syskem de : EDF[I]
m IvJLl'.".'l:p'I | Edpl
Engi : Enging
] out g ID g
flow_in in ENgine_power |:|
in_edp2 : Distribution systemn deg -EDA | power edpz
flowe_out []
out_edpz : Distribukion syskem ouk

Figure 63. Engine model in SysML

97

Chapter VI. Industrial evaluation

bdd [package] Hydraulic [Model Hydraulic])

ouk_pumpl

1 <<block=> e~
Distribution system
CATRTEATES

AErEHang

|:| Aty
references
walues in_pumpl
propertier
+ACPhase

in_pumpz

1| +distribution systerm

1 | +accumulator

<<block>>

Accumulator
ARSI

ApEratians

[ty
references
walies
progerties

Figure 64. Hydraulic model in SysML

These models are exported into the common framea®ikstances of the SysML meta-
model which are illustrated in Figure 65

/** Hydraulic model ***/

#142=BLOCK(*, $, $, (), $, 'Distribution system’, .)
#145=PORT(*, $, $, (), $, 'out_pump1', $, .PRIVATE. L)
#146=PORT(*, $, $, (), $, 'in_pump1', $, .PRIVATE..);

/** Engine model ***/

#58=PROPERTY_UML(*, $, $, (), $, 'enginel’, $, .PRI VATE., $,$, 8, (),

0,.F.,0,.F, F.$$$ $ #158 F. $.C OMPOSITE., ...);
#60=PORT(*, $, $, (), $, 'Portl’, $, .PRIVATE., ...):
$, (0,9, 'in_edpl’, $, .PRIVATE., . L)

#62=PORT(*, $:

Figure 65. Instances representing Hydraulic and Enige models in EXPRESS modeling language

Heterogeneous modeling choices

Keeping the same context and for demonstration pa;pwe built a second sub-case
where different modeling rules are applied for tve models. As we already outlined, such
situations actually arise in real practices. Kegphe Hydraulic System model unchanged, we
introduce an alternative representation of the Esmgnodel as shown in Figure 66. The
connection points are designedBiscks VALVE_INandVALVE_OUT These valves belong
to one of the tw&DPsof eachEngine represented asiplandedp2connections.

98

VI1.3.Hydraulic and Engine systems models

bdd [package] alternative Engine [Engine EDP as Blu:u:k])

z<hlock== <=hlock=>

1
EDP /\ Engine Systam
CATEETLE

aperatians +ed P 1

parts

canshraints

apersHans

garts

references
+edp + walies
prapeties

1 + 1 +
“<hlock=> <<hlocks==
WALWE [N WALWE OUT

B cansraints
areraiang aperstians
L N parts
referenres S
valies ot
A mherties properties

Figure 66. Alternative SysML Engine model

Thus, some modeling heterogeneity arises from dle that on one hand the Hydraulic
model describes the connection points as Sy$Mits and on the other hand the alternative
Engine model represents them in terms of SysBlacks Figure 67 shows part of the
instances of this alternative SysML Engine model.

#16=BLOCK(*, $, $, $, $, 'EDP", ...);
#17=BLOCK(*, $, $, $, $, 'VALVE_IN, ...);
#18=BLOCK(*, $, $, $, $, 'VALVE_OUT", ...);
#19=BLOCK(*, $, $, $, $, 'Engine System’, ...);

Figure 67. Instances of the alternative Engine modién EXPRESS modeling language

Annotation

For the need of verifying the constraints, an arggldescribing the kind of ports (in/out),
and another one for the related pump and its hyidrlow (value, units, pressure...) are
necessary. Main elements of the ontology are eemlafrom the ATA 28 documentation.
Figure 68 represents the knowledge model of the mwamcepts of this chapter.

3 ATA 29 is the chapter which describes the Hydr&@wver System, i.e. the system that have to produce
and carry any type of energy up to its consumeirsgguseveral means such as: mechanical mediumdrietéc
mediums and fluid mediums. Aeronautic industriemgpally use hydraulic fluid under pressure to \pde
energy from a power source to consumers.

99

Chapter VI. Industrial evaluation

For the interest of our cases the important corscapg theEngine Driven PumpgEDP)
located in theEngine EachPumpis connected to the Hydraulic System via two vslve
“Valve IN” and ‘Valve OUT”. One Pump provides the Hydraulic System with Flow
produced in some particular conditionsRséssureandFrequency

Aircraft Program

+nurmber_of_decks
+number_of_engines

pragram balance

Flight Phase Hydraulic Balance
+oansumption: Flow
ravailable: Flow L. = Flow uriit Flow Unit

+the_value
contributes generate:
nder
ATA describes | gydraulic System
Pump .
+chapter_number -—— i at Pressure urit Pressure Unit
+identifier: String

+he_value

\ Frequency unit Frecuency Unit
+the_value
EMP

Valve

N

Valve IH Valve OUT

N

Hydraulic Cireuit

EDP

Engine

+engine_number | location

Figure 68. Knowledge model according to ATA 29

The instances (see part of them in Figure 69) sfkhbwledge model are used as follows:

= Hydraulic model. Eachd?t is linked to an instance Malvedepending whether it
is an input or an output.

= Engine model with same modeling semantics. EVeoyt having flow_in or
flow_outconnections corresponds to a kind/alve

= Engine model with different modeling rules. In tluase the link is carried out
betweenVALVE_IN and VALVE_OUT Blocksand, respectively, the concepts
“Valve IN' and “Valve OUT of the knowledge base. This annotation takes into
consideration the instance BDP owner of the valves.

100

VI1.3.Hydraulic and Engine systems models

#372=URI('http://www.eads.net/systems/hydraulic/val vell);
#373=URI('http://www.eads.net/systems/hydraulic/val vel?");
#374=VALVE_IN(*, $, $, #372);

#375=VALVE_OUT(*, $, $, #373);

#376=EDP(*, $, $, #382, #328, (#375,#374), 'edpl’, $);

Figure 69. Instances of the ATA 29 knowledge modei EXPRESS modeling language

Thus, the annotations shown in Figure 70 suppaet itdentification of equivalences
between elements of the models, &grtin_edpl (or the instance Bfock VALVE_INusing
edpl connection in the alternative model) in the Engmedel andPort in_Pump1l in the
Hydraulic model are equivalent because they are tatetb by the same instance of
VALVE_IN Furthermore, in the knowledge modePamp generates &low with specific
properties and units of measurement that we usgutvantee that flow data units are
consistent with the content of the models.

/*inl %

#370=ANNOTATION_CLASS(valve', (#372), (#146));
#371=ANNOTATION_CLASS('valve', (#372), (#17,#4));
/* outl */

#390=ANNOTATION_CLASS('valve', (#373), (#18,#4));
#391=ANNOTATION_CLASS('valve', (#373), (#145));

Figure 70. Instances of the annotations using theTs 29 knowledge model

Model Integration

The integration in this case study is guaranteethbyannotation of the connection points,
as explained in next section. Thus, we identify poots as equivalent when they are linked to
the same knowledge concept.

General Constraint Definition

The goal of the verifications in this scenariov®told:
= To identify the connection points in order to cethg connect them. This
identification is done by means of the annotations.
= To guarantee that the linked ports are compatibéne flow unit and same
conditions of flow production, i.e. frequency anegsure units. This verification
is implemented as a constraint whose instanceshangn in Figure 71.

101

Chapter VI. Industrial evaluation

[* linked elements are compatible: same flow unit a nd same
conditions of flow production */

[* all ports from hydraulic */

#400=ENTITY_VARIABLE(#146, 'p";

#401=VARIABLE_DOMAIN(#402, #400);

#402=ENTITY_DOMAIN((#145,#146,#147 #148));

#403=ALL_EXPRESSION(*, (#400), (#401), #407);

Figure 71. Instances implementing the constraintiiEXPRESS modeling language

VI1.3.3. Conclusions

This combination of cases allows us to demonstitzé the applied knowledge model
depends on the constraint to be validated evenhghdhe models representing the same
system, i.e. Engine, are expressed using differeotieling semantics, i.€?orts versus
Blocks Actually, the application of knowledge models oy@s the heterogeneity related to
the chosen modeling rules.

In this case study, we identify the connection pimetween the systems by annotating
elements of the models with the commdalve concept of the knowledge base. In this way,
departing from the concept of the knowledge base,can found which elements of the
exported models are annotated by the same piekeoafledge, i.e. they are equivalent. This
feature originates a new requirement for our py@®t users must be able to navigate the
knowledge model and its annotations.

At the same time, we must check that the flow betwé&hese equivalent interfaces is
using the same units of measurement. Our knowldage contains information of the
attended units of measurement for few associated to a particulBumpand we need to
guarantee the consistency regarding the models tocobeected during the co-simulation.
Thus we annotate thBistribution System Blockf the Hydraulic model and thedpland
edp2Ports of the Engine modeEDP Blockfor the alternative one) with their corresponding
flow characteristics (units, pressure and frequenéyally, our constraint solver checks that
this information is consistent, i.e. that the umitdlow, pressure and frequency are the same
than the ones declared in the knowledge base éPumpscorresponding tedplandedp?2
(EDP in the alternative model).

102

VI.4.Ram Air Turbine models

VI.4. Ram Air Turbine models

Vi.4.1. Description

The Ram Air Turbine (RAT) system provides power dther systems in case of
emergency. The RAT is an aircraft electrical getenasystem which powers the essential
bus bar when there is a total loss of hydraulic elegtric power or a total loss of electric
power in flight. Therefore, the RAT has to provielectricity to a minimum set of systems
that are absolutely necessary to land the airaradtnly: Slats, Fuel Pumps, Windshield Anti-
Ice and Probes Anti-Ice.

These consumer systems have different power congarmmpteds depending on the flight
characteristics, mainly related to the speed of dhveraft. Thus, different configuration
scenarios are needed to estimate the power neesixbfsystem and the requirement for the
RAT. For instance, when aircraft speed is less th#0kts, the sum of systems’ consumption
is 29kVA, that means that RAT must provide at |¢hst value.

Native heterogeneity of models

The RAT and the aforementioned related systems hlag® own functional design
models, each one describing the emergency scerartbthe power generation (in the case of
the RAT) or the power consumption (for the systemsgvery situation. However, some
models explicitly refer to the speed of the aircvalfiereas other models refer to flight phases
(which are implicitly characterized by speed valagsngst other properties).

Starting from these real modeling circumstancesfogas on two models describing the
RAT and the Slats systems respectively, in ordahtxk that for any configuration scenario
the power provided by the RAT is greater than thergy value demanded by the Slats. Based
on their specifications we develop two simplifiedsiens of these systems’ models to be
imported into our platform using two different mdédg languages. To reflect the
heterogeneity of models, the case study RAT maldeveloped using CORE language and
the Slats model uses SysML.

VI1.4.2. The modeling process activities

Next sections develop the implementation of thsecstudy according to the models and
activities shown in Figure 72.

103

Chapter VI. Industrial evaluation

Common Fa
Common N
Madeling Iol nstance of N
e U 1z — - o oy e i ge o _inana |
Universe | £ |l | CONSTraint Relational Model | 7| Lonstraint meiauonai vivi |
RS 12 = . 4 £
1z1
1~
\J
v
n
I
fol
(Y 121
!!_‘._I_L:_._ .‘..'..'--'-l‘ — ﬁ!
I Keiation iivi 7 ted v fm}
| Je.. o |
~ A - N
I\ am \J I
lol — P - lol
12 lo— . MODEL B —) Z |
IS1 N o [Apnotated Slote Moda! [9 INTEG ", SN | Annotated RAT Model |_S m IX1
I H _L L ASLCALT U IS AT J LhJ —":' 7' ‘_\ ;q‘ m I
[| Lt A - : : A]
ioi A Uses : - Y (]
\J [] Annotated by A - & 2" Annotated by [] \J
\VJ | | ’ —_— 7 B v
e —— NI e —
ANNOTATION -5 KM (Flight Cycie) = ANNOTATION
a0 Uses lleas A -
A A e A A
I\ L L I\
1.\ [| [| 1.1
12] - u N u _ 121
1S "= — et [_ o)
1S Lt | Exporied Siats Modei | | Exported RAT Model L~ m [0
15— _ AN — - — - g — J—]
‘6' - ‘ \ Instance or Instance or / ‘ Ll la'
\/J B = » A \/
vV i I N S i v
1 __ uses | SysML MM | |CORE Mm | Uses A
EXPORT yreerreeeesess » DYSIVIL VIV LURE ViV EXPORT
A ' g ' A
= =
~ | | ~
o\ <@ (Resources| Modeling relati o |
odeling relations
[Sl = o vodel | [Resources| i 1 RATMoser [
1 5 | 1 | | —]
. I— — Y
I I
o I e T e T 3 (&)
\°/ Input/Cutput 1o}
vV ____'. \V
Specific Domain Specific Domain

Figure 72. Approach applied to the RAT case study

Export

Figure 73 shows aeFFBD of the CORE model of the RAT. It describes tHRAT
extensioh operation, by means of foltunctions each one representing an alternative flight
scenario and, in consequence, a different powerrgtoe. The value of the provided power
is modeled as Resourcecalled ‘Load Capability to which eachFunctiongives a different

amount, e.g. Landing Power Generatidnfunction produces the resource with

a value of

9,5kVA as shown in Figure 74. An extract of theamees of the CORE meta-model, result of

the export of the model in the common frameworlshiswn in Figure 75.

104

VI.4.Ram Air Turbine models

effbd RAT Extension)

175kts < YT < 140kts 140 175 Power
Generation

YT = 175kEs 175 Power
Generation

Ernergency —
Ref. situation L GR Ref.
m Y

Wi < 140kts 140 Poweer
Genetation

Landing Gear Deployment Landing Power
Generation

Project: Crganization: Dake:
RAT Moy 2011

Figure 73. eFFBD diagram of RAT power generation factions

Relationships Targets & Attribukes
inpuks # | [=-Resource Load Capabilicy

w_:'”t uts &mount: 9,5

relates to
reported by
result of
services
specified by & | Sork: |Numeric by class

= rroperties |'EE ER] & Hierarchy] o FFBDI afffe EFFBDI g .ﬁ.ctivity] [5equence] =3 NZI T IDEFEII

Figure 74. Relationship with the Resource and itsalue

#44=FUNCTION_CORE(*,$,$, #70, 'MS', 'Landing Power Generation'...);

#45=FUNCTION_CORE(*,$,$, #70, 'MS', '140 Power Gene ration'...);
#46=FUNCTION_CORE(*,$,$, #70, 'MS', '175 Power Gene ration'...);

#47=PRODUCES_RELATION($, $, $, #41, CONSTANT_CORE(4 2)));

Figure 75. Instances representing the RAT model iEXPRESS modeling language

One of the impacted systems during the RAT extensaihe Slats system. Figure 76
shows a SysMlIState Machinalescribing the load needed by Slats in differeght phases.
In each state ad\ctivity called ‘power consumptidnis performed. ThisActivity has an

105

Chapter VI. Industrial evaluation

attribute which is &low Property containing the related load quantity, e.g. dur@@gnb
subphase the load is 33kVA. Figure 77 shows anrpkoé the instances of the SysML meta-
model as a result of the export activity.

state machine J

taxirout

engine TD power

i Take-Off ™)
do [power consumpkion
. i
Wt
i Clirnb 7
do [/ power consumption
. .
cruise\Eltitude
i Cruige

do [power consumption J

ATC Cldarance
Approach

do J power consumption

Final agproach

{" Landing Gear deployment Y

do J power consummption

Landing Gears Cprmpressed

{ Landing 1

do [power consumption

exit rupianway

Figure 76. State machine of Slats consumption durinflight

#17=ACTIVITY(*, $, $, $, $, 'power consumption’,...);
#18=ACTIVITY(*, $, $, $, $, ‘power consumption’,...);
#19=STATE(*, $, $, $, $, 'Take-Off' ...);

#20=STATE(*, $, $, $, $, 'Climb", ...);

Figure 77. Instances representing the Slats model EXPRESS modeling language

106

VI.4.Ram Air Turbine models

Annotation

To validate these models, we must be able to dtyratentify the flight scenarios in each
model. That is the objective of the knowledge matb=icribed below.

Flight phasesnclude in fact botlFlight andGround phasesEven though anybody could
say that an aircraft takes-off, flies and landgsitctually not easy to find a common and
agreed definition of the different phases. Cleaglery discipline involved in the design of an
aircraft makes use of information relatedRigght phase:for example the Hydraulic System
regulates the flow according to the phase; thetgthobommunications are not the same when
the aircraft is on ground or in flight, etc. Notrgusingly, we find different ways to represent
this information into models. In some cases, a @limsepresented as a combination of speed,
altitude and some other parameters, whereas im o#ises it is represented by a simple code
identifying it. Thus, this is a source of heterogiéyn and difficulties for sharing the models.
An ontology giving an agreed understanding offhght phaseconcepts is then necessary.

Figure 78 below, describes general knowledge abligiit phasesilt is inspired from an
internal document of the aircraft manufacturer whgapproved to be shared. The aim of this
knowledge model is to homogenize the different wafydescribing the emergency scenarios
in our source models.

107

Chapter VI. Industrial evaluation

Flight Cycle

Aireraft Configuration
Slat /Flap Configuration

+nanme: String

Hiight Phase Ground Phase

E subphase

+previous| Operation
P Phase ends Event ¥

configuratior

0.1 |+name Mﬁx—“‘ “+description
+oescrigtion F——— " |4id [}
Performance Parameter| |20 |+id starts ﬂ\
et ﬂ Operator Event
unusual transition System Event
covered phase distance
Distance Speed unit Speed Unit Altitude unit | Atitude Unit Landing Gear Position [~ Engine rating AC Power
+rom unik; Distance Unit +the value +the_valug
o
+the_value / % K %
Deceleration Point Vief Vi VR V2 Safely Aborted TO | | En Route Climb | | Optimum Cruise
Environment Parameter /
Aircraft Program

+number_of_decks
+number_of_engines

Figure 78. Knowledge model of the Flight Cycle

A Flight Cycleis composed oPhases Ground or Flight, which start and end at the
triggering of some events. These events can @pemator Eventi.e. with human (operator)
participation, or aSystem EventSystem Eventare related tdPerformance Parameters
Aircraft Configuration and Environment ParametersActually, some of these system
properties, as for example thanding Gear Positioncomplete the specification ofRhase
as well. Moreover, most of thPerformance Parametergsalues depend on the aircraft
program, e.g. the categories of speed. Some iregainé this knowledge model are
represented in Figure 79.

#312=URI('http://www.eads.net/A350/FlightCycle/Dero t);

#313=URI('http://www.eads.net/A350/FlightCycle/Brak e";
#334=FLIGHT_PHASE(*, $, $, #312, 'derot’, 'derot su bphase’, ...);
#335=FLIGHT_PHASE(*, $, $, #313, 'brake’, 'brake su bphase’, ...);

Figure 79. Instances of the Flight Cycle knowledgmodel in EXPRESS modeling language

Using the instances of this knowledge model, theotation procedure (see annotation
instances in Figure 80) varies for each model:

108

VI.4.Ram Air Turbine models

= RAT model. By interpreting the information containii the conditional exit
branches of theeFFBD, a mapping between the CORE Function and the
correspondingPhaseof the knowledge base is defined. For instancetHer
conditional exit branch namedvC > 175kt§ the function ‘175 Power
Generatiori is assigned to the instanceRlfiasecalledCruise

= Slats model. In this case the annotation is moréoolvsince thé&tatesof the
SysML StateChartin Figure 76 represent phases. Nevertheless tme @ad
the granularity of suclbtatesare slightly different to the representation of
phases in our knowledge base. Thus, for exampbnding Stateis assigned
to the ‘Final Approach Phaseknowledge instance.

[* taxi-out */

#370=ANNOTATION_CLASS('phase’, (#314), (#45,#25));
/* take-off */

#371=ANNOTATION_CLASS('phase’, (#305), (#45,#19));
/* Initial Climb */

#372=ANNOTATION_CLASS('phase’, (#303), (#43,#20));
/* En route climb */
#373=ANNOTATION_CLASS('phase’, (#304), (#43,#20));

Figure 80. Instances of annotations using the FliglCycle knowledge model

In this way both models refer to the same phasesinstances of the sarféight Cycle
knowledge model. The validation of the consumptionstraint can then be carried out.

Model Integration

In this case study, the equivalent flight phases amotated with the same knowledge
concepts. This permits the integration of both nodehich is necessary to implement the
constraint described in next section

General Constraint Definition

Using the above described models of RAT and otystems, we want to verify thaRAT
load capability > (Slats power consumption + othsystems consumptidnfor each
significant flight configuration. Some of the instas implementing such a constraint are
shown in Figure 81. As explained Vh5, our expressions model is an extension of thi& P
expressions language proposal incorporating FOLesgons. That means that besides the
FOL expressions and other boolean expressions, nuraed string expressions are also
available. For example, in the case of the RAT taim® numeric expressions are used to
calculate the (Slats power consumption + other systems consumptjzart.

109

Chapter VI. Industrial evaluation

/* “RAT load capability > (Slats power consumption + other systems
consumption)” for each significant flight configura tion */

[*for all functions*/

#500=ENTITY_VARIABLE(S, 'f");

#501=VARIABLE_DOMAIN(#502, #500);

#502=ENTITY_DOMAIN((#42,#43,#44 #45 #46));

#503=ALL_EXPRESSION(*, (#500), (#501), #507);

[*for all states*/

#504=ENTITY_VARIABLE(S, 's");

#505=VARIABLE_DOMAIN(#506, #504);

#506=ENTITY_DOMAIN((#19,#20,#21,#22 #23 #24,#25,#26));

#507=ALL_EXPRESSION(*, (#504), (#505), #508);

Figure 81. Instances implementing the constraint iEXPRESS modeling language

VI1.4.3. Conclusions

The native heterogeneity is surpassed thanks tdaittethat SysML and CORE meta-
models are written in the same shared modelinguiage. This allows us to use the meta-
meta-models features to browse the different meddets in a common framework and to
annotate them independently of their heterogeneatise.

The annotations are done based on a more complewlédge model. By linking the
phases to th&unctionsin the RAT model and th8tatesin the Slats model we homogenize
the description of scenarios to be taken into accoline constraint is represented by an
expression the exactness of which can be verif@dting that for eactPhase of the
knowledge model, the power provided by the corredpa Functionin CORE is greater
than the energy demanded by the equivattiate in SysML. Once again the content of
models is analyzed in detail before annotating;etloeless, such a rich knowledge model as
the one described here may be completed with domiées in order to support and ease the
annotation process, e.g. a domain rule that gihangange of speeds ([175kts, 140kts])
suggests the appropriatBtight Phaseto be used in the annotation.

VI.5. Conclusion

In this chapter we have described the applicatibmu approach with different case
studies. The variability of these case studieserms of number of models, modeling
languages and modeling rules demonstrates thatpproach is generic. From a modeling life
cycle point of view, the proposed approach candsel at different stages:

110

VI.4.Ram Air Turbine models

= Before the development of source models. For examysing the annotations to
search for previous models when starting a newadtrprogram as in the case of
WWS black-box perspective.

= During the development of source models. For examp check inter-model
constraints in order to correct inconsistency issugproving models quality and
contributing to their maturity. That is the scepaof Hydraulic and Engine and
RAT case studies.

= After the development of source models. For exampleen an existing program
Is modified and the inter-model constraints neetldae-verified. This scenario is
connected to the needed improvements in the maregemf inter-model
constraints (reuse) listed further on.

Nevertheless, EXPRESS models and instances repiregséme different case studies have
been built manually, which is time-demanding. @uatly, the time needed to validate a
constraint with the approach is greater than time #mployed in actual consistency checking
meetings. On the one hand, annotations are donsterjooi, i.e. after the construction of the
source models. Together with the fact that thedngl of ontologies is a difficult task since a
lot of information needs to be gathered and a amse about the formalization of the
knowledge is necessary but complicated. On ther ¢thwed the implemented constraints refer
to both domain and modeling semantics, which méaettsa good knowledge of the involved
source modeling languages is needed to be ablgptess a constraint.

Thus, the approach has demonstrated its valudéaamal method to:

1) make explicit the implicit knowledge in order to ataie the source models

2) use this explicit knowledge to integrate heterogesemodels and to validate inter-
model constraints

3) maintain the independence of source models by érgahem using EXPRESS as an
unified and shared modeling language

Nevertheless, to reach a successful industriatizatome improvements are needed

1) Maximal automation of the approach activities (expotegration...)

2) Annotations coordinated with the modeling procespr{ori)

3) Intermediate abstraction level for modeling sent@nith order to get focus on domain
semantics for the expression of constraints

4) Reuse and visual supporting to efficiently buileshstraints

These improvements are discusse@lvapter VIII.

111

Chapter VI. Industrial evaluation

112

Ch apter VI Prototyping tool

Summary
VIL.1. A prototype to support the method.......ccuvveiveiieiiieiiiiieiieiieieeieeeeeeeneenns 115
VII.2. ACTOIS AN USE CUSES ...vvuuereriiierierrierereeerneeerseersseressesersssessssesessssssssssssseces 116
VIL2.1. A CTOTS ettt ettt eae e e e e e e e e e e e et et e ettt e ettt et et et et e aa e e e aaaaateaataat et aaaaaaaraaaaa 116
VII.2.2. CONTIGUIOTION USE COSES ettt ee e e e e e eeeeeeeaeeeeeeeaaseereeeeseeaasseaeeeeas 116
VII.2.3. O EIATIONA USE CUSES ettt ee e e e eeeeeereereeeeeeeaasereeeesaeaasneaeeaeas 117
VIL.3. Selected technology adnd ArChit@CIUreeeueevveeiveniieiieeeieeeeeeeeeennes 119
VIil.4. Current HCI (Human Computer Interface)uuvveeevevecirnirennieerneeenneeennnes 121
VILS. (©Ce] 1 Led [111 1] o [T 125

Abstract. A prototyping tool has been developed during teplayment of the industrial
case studies. The objective of this prototype igrtvide engineers with a tool supporting the
management of the concepts of the approach froraaegs point of view. The tool covers the
identified needs and the usability conclusionshefindustrial evaluation. Next step is to lead
this beta version of the prototype to a more rolmession adapted to industrialization and
including some improvements in the graphical ustarface.

113

Chapter VII. Prototyping tool

114

VII.1.A prototype to support the method

VIl.L1. A prototype to support the method

During the industrial evaluation of the approacle have developed a prototype. The
prototype takes into consideration the engineessitpof view, supports the proposed process
and is in line with the conclusions issued from diféerent industrial cases. The users’ needs
for this tool are summarized below.

* The prototype must assist the user in the applicatn of the approach This is
the main objective of building such a prototypeuger must be able: to create a
meta-model; to import a model; to define and pojguka knowledge model; to
annotate entities of the models with concepts efkhowledge models; to build
constraints using expressions; and to check thstnts and get their results.

* The prototype must be user friendly The user must be guided during the
manipulation of the prototype which must be inugtiand easy-to-use with a
graphical environment and support. It shall alsdude the construction of the
expression associated to a constraint.

* The prototype must allow users to navigate througlthe entities and concepts
of the different involved models The content of meta-models, the instances of
these meta-models, the knowledge models and thatatrons shall be accessible
and navigable.

» The prototype must allow users to easily analyze éhresults of a constraint
evaluation. Traceability of the execution performed for therifigation of a
constraint is required in order to enable the idieation of the entities which do
not fulfill a particular constraint.

* The prototype must be modular and extendible The architecture of the
prototype must anticipate the possibility of addimgw functions or replacing
some of the modules, e.g. the case of requirentente verified which need a
specific expression model and constraint solves, ékpression module will be
replaced.

* The prototype must be a light application The tool has to be powerful enough
in terms of computation, besides of being eas#yalable in computers of users.

» Atrace of the checked constraints and the resultsf their evaluations must be
recorded. Each execution of a requirement checking needi tstored in order to

115

Chapter VII. Prototyping tool

be able to compare results and to provide an omenaf the evolution of the

models. Concerning this latest point, storing thsults allows the users to know
either that a previous checking error is conneatedhat a formerly correct

property is no longer fulfilled (regression probEm

* Request over meta-data or data of the models shoulde supported The
prototype must allow users to provide relevant ruletia (See next section) about
the imported models, the knowledge models, the t@atinos and the constraints in
order to enable requests over it. These requestararther aspect of the validation
since they give additional information and definirst filter of validations before
writing a complex constraint.

VIl.2. Actors and use cases

The user requirements analysis derives in a sefiasse cases and actors which are
described in next sections.

VIl.2.1. Actors

Several user profiles are defined taking into adersition the skills needed to perform the
different use cases.

* The tool expert It is the user expert in technical details of firetotype who
gives support to other users and manages the ppetebnfiguration.

* The engineer in charge of designThis user manages the modeling process and is
the person in charge of ensuring the constraintisfaetion involving various
models. He is the main user of the prototype.

» The knowledge engineer The actor providing the knowledge models or
formalizing them. He is the person in charge ofdealge management and of the
establishment of the rules to create new knowledgeepts.

* The engineer in charge of a modelHe or she is the expert of one particular
model, imported into the tool. He provides the aaton of this model or assists
the engineer in charge of design to perform thisotation.

VII.2.2. Configuration use cases
Concerning the use cases, firstly, the tool mllisivasome configuration tasks.

116

VIl.2.Actors and use cases

» Construction of meta-models

* Load of models

» Construction of knowledge models

» Definition of relation meta-model

* Formalization of the expression to validate thest@int

Figure 82 shows these configuration use caseshaidaissociations with actors.

Construction of meta-models
Load of models

Engineer in charge of design
Definition of relation meta-models

=—
Formalization of the expression to validate the constraint Tool expert

i Construction of knowledge models

Knowledge engineer

Figure 82. Configuration use cases

VII.2.3. Operational use cases

Once all the configuration pieces are set, useee (Bigure 83) can complete the
operational tasks.

117

Chapter VII. Prototyping tool

Specification of the constraint
Annotation of entities E ?

% ,///? Engineer in charge of a model

Integration of models
Engineer in charge of design \
Havigation of elements

Black-box requests

Inter-maodel constraint validation

Figure 83. Operational use cases

Specification of the constraints

The specification of the property to be validatedhe starting point of the process. This
specification contains some of the meta-data desdrpreviously (origin, category, model
level and property language) which is used to gulue designer during the properties
verification process.

Annotation of entities

The engineer in charge of designwith the assistance of threngineers in charge of
models enriches the exported models using the knowleelg@icitly described in the
knowledge models.

Integration of models

The engineer in charge of desigruses the relation meta-model to interconnect the
annotated models.

Navigation of elements

The fact of working in the same universe enablesrtavigability of models elements,

annotations and knowledge concepts.

Inter-model constraint validation

118

VIl.2.Actors and use cases

The main operational task is to alldive engineer in charge of designo validate an
inter-model property over the instances of the nedmd to show the results of this
validation in order to be analyzed.

Black-box requests

Furthermore, other complementary tasks can be ipeeid thanks to all the information
gathered by our method: to perform requests olotgiall the constraints of a category; to get
the history of validated constraints; to show tlaeeability of inter-model constraints to the
source models and requirements and so on.

VII.3. Selected technology and architecture

In the context of a preliminary design, a prototypeeveloped in order to implement the
use cases that fulfill the user needs. The framlewafr development is Eclipse IDE
(Eclipse.org, 2011a) since its architecture is ataxd It supports the development of light
applications and it is open source.

Two user interface technologies were evaluated bdfeginning the construction of the
prototype. Firstly, we considered the developmérihe prototype as an Eclipse plug-in that
uses the internal graphical elements of the Eclipse The main drawbacks of this solution
are the lack of graphical support for the constomcof the screens and, mainly, the heavy
load of dependencies. Actually, a plug-in Eclipseds a lot of additional libraries which are
useless in our context. Considering this situatem,alternative graphical-oriented solution
was evaluated and finally accepted as the basiheofdevelopment. We chose the SWT
toolkit (Eclipse.org, 2011b) in order to impleméme different screens of the prototype. SWT
is a complete graphical library of Java and inctudn Eclipse plug-in allowing the
management of the different graphical widgets.slteasy to use and it enables a quick
development of the screens.

From our point of view, the right selection of #lements to build the user interface is the
first step to carry out when developing a prototypee main purpose of such a tool is to
validate the approach with the users and they hed@ guided in a user-friendly way. The
rest of technological bricks come from the operatioralidation described iW.6 completed
with some integration tests with Eclipse. In orttebetter manage all the architecture choices
and according to the specified needs, the protatypeilt around a modular architecture with
the following components.

* User interface module This module contains the packages controlling uber
interface. As described previously, this moduledatered in the SWT toolkit and
the screens developed using this technology.

119

Chapter VII. Prototyping tool

* Meta-model module The aim of this module is to provide the functibty
concerning the meta-models. The packages of thisultaeddad and manage the
meta-models necessary for the approach.

 Model module. The main goal of this group of packages is tob&nahe
importation of the models according to their metadeis and to browse of their
entities, their attributes and their relations.

» Knowledge module This module is the interface to the knowledge agament
feature. It targets both manipulating the knowledagedels and instances and
performing the reasoning (not implemented in theanirversion of the prototype
but conceivable in cases of complex knowledge jules

* Annotation module. As the annotation is the relation between thewkaedge
concepts and the entities of the imported elemaemtshave decided to promote
this link as an independent module. Actually, ireatthe annotation as an
independent part is consistent with the idea ofpkee the traceability to the
source models and we wanted to reflect this separat

* Integration module. This module is in charge of the functions relatedthe
integration of the annotated models. It managestiegrated model.

* Constraint module. This module manages the expression models (FOhes
implementation in the version of the prototype) amahtains the engine for
validating the constraints. Following the resultdlad operational validation stage
and in order to rapidly obtain a beta version @f pnototype, we use EXPRESS as
a constraint solver. Nevertheless, in the case dipg&e a new plug-in called
JSDAI (GmbH, 2012) seemed to be a good candidatbetoncluded in this
module. JSDAI is an Eclipse plug-in which suppoBXPRESS models and
validation of their instances (as the ECCO ToolKkit)e main advantage of JSDAI
is that it is already integrated in Eclipse dueiti nature. Unfortunately, the
maturity of the plug-in did not entirely satisfy roneeds. There was an important
gap in the area of integrated validation of comstsawhich is one of our main
reasons for using EXPRESS. Actually, at the moroétihe evaluation, there was
not any mean of obtaining the result of the chegkiha constraint. Our prototype
would have been useless. Therefore, the final isolub this problem is to develop
an API to integrate Eclipse with the ECCO toolkita flexible way so that a future
more evolved version of JSDAI can replace it.

120

VII.4.Current HCI (Human Computer Interface)

VIl.4. Current HCI (Human Computer Interface)

The prototype is process-oriented, i.e. it guides @ser in the implementation of the
different steps of our approach. Moreover, the gsenpletes these stages by adding relevant
characteristics (meta-data) that may be valueddigiining a property issued from the
requirements analysis or from general consistenesifieations not directly related to
requirements (e.g. consistency of external interfaputs with internal items). We formalize
these characteristics (Simon Zayas, Monceaux, &#Aieur, 2011) to guide the transition
from the requirements or general verifications cfassical specification to the verification of
a constraint in our approach. Next paragraphs givexplanation with some examples for
each characteristic.

Description and origin of the property. Requirements guide the specification,
the design and the management of the developmeess. In our method

requirements are the starting point for formalizingpst of the properties

(constraints) to be checked. Therefore, the prgpertist be described and its
origin identified.

Source models Concerning the formalization of the source modsisd to check
the expressed property, i.e. that contain the ressuand concepts involved in the
property definition, they are given a unique ideetiand a brief description. A
simple schema is proposed for models metadata.ekample, since different
modeling languages can be used modeling language isetadata. The
identification of the modeling languages enablesdtect the meta-models to be
used during the exportation. On the other hand,atsodan be seen as entities
themselves and some requests can be performedhever(black-box perspective)
whether the adequate data is available. Amongshtbanation to be provided for
that kind of requests, we suggest the level ofidetahe models, which can be
related to the aircraft, to a system of the aitcréd a sub-system or to a
component, and program applicability. In additiorthese general characteristics,
some more specific domain ontology may be useesartbe some other metadata
and to request source models, for instance, pnoyidome available properties of
the aircraft program -number of engines, doorstleengineering parameters.

Model or meta-model level Our approach can be used to check properties
involving different modeling levels. For instandewe want to check a modeling
property such as that the interfaces defined ifeidiht models are consistent
(same operations, same types, same parametersaamg implementation) to
guarantee the compatibility of the subsystems tddxeloped, the corresponding
constraint can be formalized by referring only tetaamodel elements. That is
possible because only non-specific domain knowledgeeeded. On the other

121

Chapter VII. Prototyping tool

side, a requirement liketlfe communication between system S1 and system S2
must use the network A or the networknBeds to be worked at a model level
since there are entities of the domain in the fangdression.

» Category. To better manage the properties, they shouldrtvepgd by categories.
We use a current requirement categorization borddnen (Verries, 2010) which
consists of the next categories: functional, pentmce, operational, architectural,
gualitative safety, quantitative safety, maintaifighi interchangeability,
environment, weight, evolution and behavior. Thiegary of a requirement is an
important piece of information which may be usedrécommend a suitable
property language (see next) to check the relatepepty.

» Property languages Depending on the type of property to be validatedneed
different languages to formalize the property egpi@n. The appropriate property
languages must be identified. In our case studieshewve based our property
expressions on first order logic (FOL). This kind pybperty language makes it
possible to express a large variety of propertigsbt always in the most efficient
way. For instance, if we need to express a comstralated to some time sequence
events, a language to describe scenarios coulddoe apportune. Therefore, the
recommended property language must be indicateddgjoved from the category)
to complete the specification. The characterizatbthe property formalizes the
expression which validates the inter-model constrai

In order to better understand the handling of tleegtype and the relevant characteristics,
let us take a classical application scenario ofaghygroach consisting of a process where:

1) atool expert prepares the meta-models needed to export theesooodels. Since
these meta-models are limited to modeling standaeds. CORE (Vitech Corporation,
2007a), this action has only to be done the firsetwe need a particular meta-model. This
meta-model is charged in the tool as illustrateéigure 84. Area 1 shows the CORE meta-
model in the tree-view browser and area 2 illusgdhe related meta-data.

122

VII.4.Current HCI (Human Computer Interface)

Metadata | EXPRESS | (Graphical) |

=l messages
=+ Metatadels Identifier | CORE |
CORE
o SyshL Description | CORE Metalodel |
(- Models

#- Knowledge
B Annotations
Relations
(4] Constraints

Figure 84. Load of meta-model screen

2) theengineer in charge of desigmcreates a project of validation and loads the @®our
models. After selecting the appropriate meta-mathelse models are imported. Then, as
shown in Figure 85, area 1, the meta-data desgribhi@ models are completed.

KATMI

Metadata | EXPRESS | (Graphical) |

= messages
i Iekatlools Tenifier | Cockpit Information Sy | Tvpe [Descriptive |
[=-Models
- Shared Information System Subject 3__C_n_n_c_k_ggig_lﬂf_n_rr_r@;|__ng_§ 1 @ Title i__C_I_S_ |
[+ Cockpit Information System)
[Knowledge Description | CI5 sends messaaes tc Format B |
[# Annotations e I e e -
Relations Language | SystL Source | Ditdszitemp2!sourceFi |
[#- Constraints - ;
Dele L01/oari0 Caniburcy l45seL06l |
Coverage [] Crestor [esorore |
Publisher [Relation [|
Aircraft Level | &Eaft Program | [§!§t§m§En jneering Level |
A380 A Stakehalde ements Definition Process
Subsystem Architectural Desig
Equiprnent
Component

Figure 85. Model meta-data screen

3) aknowledge engineercreates the knowledge models which are loadedti@dool.
The concepts of the knowledge models can then deded as shown in the area 1 of
Figure 86.

123

Chapter VII. Prototyping tool

. shell FBEX

KAIML

| Metadata | Eupress (Graphical)

adels

dge
ssages and Communication Probocals
ANNOTATION_CLASS_MEW
ATTRIBUTE_CLASS
(= COMMUNICATION_PROTOCOL
(= [#115] http: /v, eads.netfthesedsz
=) K-Attributes
name = KNOWLEDGE_CLASS
my_attributes
-y _annokations
-my_uri = URI #115
protocal_name = EX25
is_secure = TRLE
[#- Annotations
] [#116] http: /v, eads.net fthesedsz
[[#117] http: /v eads.netjthesedsz v

FADY AE MESSACE

¥ 2

Figure 86. Knowledge browsing feature

4) theengineer in charge of desigmuses the knowledge models to annotate the imported
models. One model entity can be annotated by sevenaepts of the ontologies and
on the other way round one concept of the ontotgybe linked to several modeling
entities. Therefore, the annotation stores botaresices to models (area 1 of Figure
87) and ontologies (area 2 of Figure 87) in ordezdse traceability. One annotation is

an important element of information by itself whialso needs to be characterized as
shown in area 3 of Figure 87.

EAIML
| Metadata | ExPRESS || (Graphical) |
= messages = L - ~
[MetaMadels Marne | #59 |
[#- Models -
#- Knowledge Description This annotation denotes a maintenance
= Annotations message as a CORE Ikem
#105

#59
#1185 @
#119
Relations
[#- Constraints

Type [simple v Accuracy Exact v|

Knowledge inst httpef v, eads netithesedsz/knowledge/message/maintenance @
Model instance ITEM_CORE #26

ITEM_CORE #13

ITEM_CORE #39

Figure 87. Annotation description screen

5) the engineer in charge of desigmrelates the elements of the models allowing the
cross-model checking validations. In order to shesé links, our current

124

VII.4.Current HCI (Human Computer Interface)

implementation includes equivalence relations araptige type of annotations since
our relations do not need to be directly exploiiedthe actual context. These
equivalences are considered as a type of annofdidtch4 -type in Figure 87).

6)

In the end, thengineer in charge of desigrtan build the expression to be checked

taking into consideration the characteristics of toastraint to be verified. These
characteristics, provided previously by the enginaee displayed in Figure 88 (area
1), a screenshot of the beta prototype.

KAIML
: Metadata | ExPRESS | (Graphical)
=) messages
¥ MetaModels
[Models
#- Knowledge
[#- Annotations

Identifier :_{{1_5__9 Marne

Qrigin
Relations
[=- Constrainks
#159

Categories
Operational
Performance
Architectural

FOL
Scenarios

~

Functional
Gualitative Safety
Quantitative Safety
Qualitative Relisbility %

Save

o eprors Found

Description

Property Language:

[encrypted

A message from Closedworld
tp OpenWorld must be
encrypted

Level

MetaModel

Figure 88. Constraint meta-data screen

VII.5. Conclusion

The beta prototype described in this chapter allagv$o visually illustrate the industrial
cases and, in this way, to validate the approath @ngineers from a process point of view.

The table of Figure 89 sums up the tool co

veragbefiisers’ needs.

Need description

Coverage

The prototype must assist the user in
application of the approach

thaplemented

The prototype must be user friendly

models are not currently supported

Graphical viigadion and manipulation g

—

The prototype must allow users to navig
through the entities and concepts of
different involved models

ateplemented as a tree-view navigation
the

The prototype must allow users to eas
inspect the results of a constraint evaluatia

5iljo be implemented along with the graphi
renhancements

cal

The prototype must be modular a1nd Covered by tbpgsed architecture and t

125

Chapter VII. Prototyping tool

extendible

chosen platform (Eclipse)

The prototype must be a light application

Covered the chosen platform (Eclips
and graphical technology (SWT)

D
~—

A trace of the checked constraints and

thaplemented

results of their evaluations must be recorded

Request over meta-data and data of
prototype must be supported

theta-data is managed

Figure 89. Coverage of needs in beta prototype

As seen in this figure, some important enhancemientee HCI have to be applied to
provide engineers with a final platform. Nevertlsslethey are not the only changes needed in
order to enable an industrial deployment. Thergfoext chapter analyses current industrial
deployment scenarios and describes technologicaH&idmprovements required in such an

industrialization path.

126

Chapter VI Deployment in

industry
Summary

VIIL1. [[aYe [VES i Te 4ot TeY oW (Yo [V11 =] 0 0 T=) 01 £-F 129
VIILT.1 Model and configuration MANAGEMENT ... 129
VII.1.2 Knowledge MONAGEMENT ...t e e e e eeeraeee e e e e eeeenaanes 129
V41| RS T V. Yo Yo [=Y M a Y (=Y @ L 11 o T PR RRRRRN 130
VII.1.4 Inter-model constraint MAONAQEMENTooiieeeieieeeeeeeee e 130
VII.1.5 CONCIUSIONS ettt ettt ettt e et e e e et e e s et e e seeatteesesateeseasteeessnsseesssassessnnseessasnes 131
VIIL.2. Needed technology enhanCementsceuueeeeeeiiirniierniieennerernieeeneeenneeens 132
VIL2.1. TECHNOIOQY FEATUIES ...t ettt eeae e s eaae e e s eaaeeeeenes 132
VII.2.2. Needed HCl ENNANCEMIENTS .eeeeeeeeeeeee e 134
VIIL3. CONCIUSION «ceuueieiiieretiietiiiereeereeeernieersreresseressssessssesesssssssessssesessesssssessssesessnns 138

Abstract. Model-Based Systems Engineering (MBSE) is a dis@pwhich is strongly
drawing aeronautical industry’s attention. Thus; approach has to take into consideration
the actual efforts related to MBSE in order to appiately deploy an industrial solution.
Such a solution needs to provide robustness framebhnology point of view but also to be
integrated in current modeling processes in ordergét the expected benefits of the
industrialization. A successful deployment will dedo enhancements concerning the
consistency of models, modeling reuse capabilgresthe shared knowledge formalization in
order to improve the global collaborative enginegmexperience.

127

Chapter VIII. Deployment in industry

128

VIIl.1.Industrialization requirements

VIII.1. Industrialization requirements

In order to efficiently obtain the expected bersefit the industrialization of the approach
as described in sectidil.7, some changes are required in the current MB8cess. They
are analyzed below.

VIIL1.1. Model and configuration management

The amount of models used in the development dimmaft is huge enough to demand
some means to store and find them. Engineers nestdbdied means of managing such
models and this is the aim of the model reposisoriéhe notion of model repositories is a
current research topic. Recent European projekeés Qiesar (EADS, 2010a) or Crescendo
(Coleman, 2011) demonstrate the importance ofkimat of solution for nowadays industry.
Concerning our approach, model repositories shbeldompleted with black box annotations
in order to support queries on models involvingaapis from the domain knowledge models,
e.g. to find all models regarding a certain lifeleylevel for an aircraft program.

Besides the model repositories, a correct managemwemodels should include the
evolution aspects. Configuration management isaastrerse discipline which should be
expanded in order to master the different versadmaodels released all along the aircraft life
cycle. Thus, our approach needs to be enclosetidogdnfiguration management processes
not only concerning the source models but alsontla@ipulated models and the resources
necessary for the implementation of the approaet ¢ectionV.2).

VIIIL1.2. Knowledge management

Concerning the knowledge management two possdsliiave emerged from discussions
with engineers and experts.

Soft knowledge

In this case the knowledge model is built in anhad-manner to check a particular
property involving several models. Annotations described outside the MBSE process.
From the knowledge management point of view suctd lof models do not need to be
managed due to their deciduous nature. Neverthelrskling knowledge models, even
simple ones, is a costly task. For this reasomasolutions should be only considered when
non appropriate general knowledge is availablevaimeh the checking of the constraint is too
complex to be performed manually.

129

Chapter VIII. Deployment in industry

Shared knowledge

Ontologies are the result of consensus between idogmperts in order to formalize their
common knowledge. It is difficult to get a consendut once it is reached, ontologies could
be incorporated to the modeling process. This iesplhat such a kind of implementation of
knowledge models are available during the MBSE e@gs@nd that appropriate guidelines are
added. These guidelines could recommend the typeanmiotations expected in each
development stage. Such guidelines can be burlinftance, from existing documents such
as, for example, current nomenclature rule docusnekitthe same time knowledge models
can be built from existing documentation both fdrite-box annotations, e.g. ATA chapters
(see sectioV1.2.2), and for black-box annotations, for instararrentModel Specification
documents demand properties suchrasdel development tool naimémodeling languagde
and so on.

Besides the consensus needed to build an ontokngyther difficulty in the aircraft
domain context is the evolution of processes andaslorknowledge. Thus, configuration
management needs also to be applied to ontologgsmanotations in order to manage their
progress. The correct storage and identificationeséions of models and of their contents
along with their annotations will allow the reusetloése annotations in an evolutionary spirit
of mind and, consequently, an improvement of theS#Bprocess.

VIII.1.3. Model integration

Amongst the models available via a repository wel fthe relation meta-model. The
distributed access to this meta-model would alloedeters to formalize these kinds of
relations during the modeling process. This shdddaccompanied by new modeling rules
concerning inter-model relations. For instance, mvaenodeler is refining a component of an
upper-level model in a new model decomposing tlepament into subcomponents he or she
will denote a composition relation, instance of theeta-model relation, between the
component and its subcomponents. In this way, tierdonnection of models would be
integrated in the MBSE process and the tracealhéwveen models improved. Moreover,
having in mind a homogenizing perspective, thetimianeta-model should be represented in
a format usable by the different modeling tools.

VIIl.1.4. Inter-model constraint management

Along with the annotation activity, the general swaint definition is the task requiring
more human participation and, consequently, tinter&fore, knowledge models should also
be used during the requirements definition phasessaich requirements should be formal
enough to, at least partially, generate the comssrdo be validated or some templates to be
easily completed by the engineers. CESAR (EADSOBDis a European project that focuses

130

VIIl.1.Industrialization requirements

on the concept of requirements formalization and sghesults may complement our own
work in a constraint generation perspective. Funtioee, during the activity of definition of a
general constraint, an industrial solution shoulloMaengineers to re-use previously declared
expressions or sub-expressions.

Thus, the management of inter-model constraintstivasmain objectives. On the one
hand, constraints should be stored in order tolerthb reuse of the expression or a part of it,
necessary for an efficient MBSE process. Their agfer would allow the research of
constraints according to their characteristics, #hg category of the property to be verified
(see sectiorVll.4). On the other hand the different executiasfsa constraint validation
should be accessible and integrated in the cordtgur management process since constraints
should be re-verified with new versions of the mede avoid regression problems.

VIII.1.5. Conclusions

The centralized management of models is one ofutuge MBSE challenges. Currently,
this aspect is not covered by the MBSE process miralustrial context. Nevertheless we
defend that it should be implemented in future raitc programs, along with all the
requirements presented in above sections, in eoderprove the actual MBSE process and to
allow the industrialization of our approach.

During the implementation of our approach, we hdeected that some tasks can be

time-demanding, mainly the annotation phase. Fisrrdason a successful deployment of a
solution would depend on its capacity of integmnatiath the industrial MBSE process.

131

Chapter VIII. Deployment in industry

VII.2. Needed technology enhancements

The industrial deployment of the approach has teldgical and methodological
outlooks. The implementation of an industrial st should be able to support the
manipulation of big models but the success of sudvlution depends on the capacity of
integration with MBSE methods. Next subsections cdbe the proposed prototype
enhancements. These enhancements are issued fra@onttiasions of the different meetings
that introduced the current version of the protetygpexperts and engineers.

VIIIL.2.1. Technology features

For the implementation of the prototype, we havesenoEXPRESS modeling language
for validation reasons since EXPRESS has all tltepeties we needed to develop our
approach efficiently and consistently. Nevertheletbgs solution is not suitable for an
industrial environment for several reasons, mait)ycurrent EXPRESS implementations do
not allow the management of big models due to aéntemory limitations; 2) there is not an
associated performing request language; 3) EXPRESS very low success as a modeling
language in industry. Thus, the different packagfabe current architecture could be adapted
to the industrial context as detailed next.

User interface module The enhancements of this module are describedetnil in
sectionVIIl.2.2.

Meta-model module The ECCO toolkit has been used in a validatiomted to
implement the common framework where the modelsaperted into. Nevertheless, ECCO
is a proprietary solution working with central memaoA central memory implementation has
limits regarding the number of instances that castbeed and the reuse features. Therefore,
an industrial solution has to be provided with gabase in order to store and manage the
models. As the context of our work is collaborateegineering this database has to be
remotely accessible to act as a repository of nsodewell. This database is the base pillar of
a large-scale solution. For this reason an altemmathich can be easily integrated in a
database is necessary. The Eclipse Modeling Franke{lgdlF) (Eclipse.org, 2011c) which
includes a meta-model called Ecore is a good catelidonsidering its maturity and the
multiple existing tools around Eclipse. In the @atof our approach Ecore would be the
meta-meta-model used to define the different metdeats needed for the export activity.
Although the development of some meta-models wdadstill necessary, the open source
nature of Ecore eases the possibility of reusingtiey meta-models, e.g. the SysML meta-
model implemented with Ecore in Topcased (Topcasgd2011).

132

VIII.2. Needed technology enhancements

Model module. Once the meta-models are created or importedxpertation mechanism
can be automated by using Model-Driven Engineetaads able to handle Ecore semantics,
e.g. ATL (Eclipse Foundation, 2011). Moreover, theseta-models should include some
intra-model constraints in order to guarantee thasistency of the export from the point of
view of the source modeling language, e.g. in SysMLFlowProperty is typed by a
ValueType DataType Block or Signal” (OMG, 2008). These constraints should be already
validated in the source modeling tools but we némdeplicate them (along with the
performance of some more general validations lieentumber of instances) in order to verify
the result of the export. Even though we have iniced pure exportation cases, i.e. the
source models are exported without modifying themgur case studies, the exportation step
can also be seen as a transformation. These trarafons span from the simple need of the
export of a subgroup of entities of a model to tbenplex need of targeting a meta-model
different from the original one. Actually, the firype of transformation has been implicitly
used in our case studies since we have worked witly the entities that were strictly
necessary to validate the inter-model constrairts. goal of this simplification is to improve
the efficiency of the approach. Concerning the sédgpe, an example of a different target
meta-model are SysML entities that are converteal MARTE (Gerard, 2009) elements in
order to add real-time features needed for thedatbin of certain inter-model constraints.
The industrial tool should consider both types bgwang the plugging of filters to manage
such transformations in a transparent way. Thelersi would be plugged in different
moments of the export activity.

= Before the export of the source model as instan€dise target meta-model. The
aforementioned choice of a subgroup of instandestibites that kind of filter.

= During the export for replacing the default exgorplementation, which reads the
source meta-class and instantiates the same nassiol the common framework.
It is the kind of filter necessary when targetingnata-model different to the
source meta-model.

= After the export to add information to the exporeégdities. The added information
could consist of some computations or even someseckuor automated
annotations.

Knowledge module During the implementation of the case studieshaee developed
knowledge models in the EXPRESS modeling langudbpes language allows modelers to
build simple models representing the implicit knedde. Nevertheless, as the industrial
environment will logically lead to an increase ofolriedge models’ complexity and to the
need of some reasoning features (e.g. giving amadtirspeed to get the related flight phases

133

Chapter VIII. Deployment in industry

thanks to ontological relationships), some spemaliontological languages could be used in
combination with reasoning engines, e.g. OWL witalld®® (Sirin & Parsia, 2004) or
framework solutions as Jena (Team, 2011).

Annotation module. The point of the implementation is that, indepenrtlye of the
ontological language applied, during the annotatotivity the reference to the knowledge
concepts will be done via URIs. In an industrialiemnment engineers would be able to
choose the most adequate language to make theliciimgnowledge explicit. Thus, in
relation with the knowledge scenarios describedseéction VIII.1.2, the soft knowledge
models could be represented using general mod&imguages as UML. These modeling
languages are well-known by engineers and allownthie easily collaborate in the
construction of simple ad-hoc models. On the otiend, ontological languages as OWL
could fit better the consensual and complex nattitbe shared knowledge models.

Integration module. In our prototype we have integrated models bygigquivalence
relationships but, as we have described in prevsaaesions, an industrial deployment would
imply other inter-model relationships. This inclsdée top-down or bottom-up scenarios that
have not been treated in our work but that haveetsupported in a final solution. Thus,
integration model should incorporate ontologieoider to describe complex relations, e.g.
composition. Furthermore, in the purpose of levieigghe workload of our approach, rules
and reasoning characteristics could be added totegration model in order to identify and
suggest inter-model relationships in a more autmnvedy. For example, if in the modeling
process an element of an upper level is decomposedeveral entities of the lower level, the
reasoner could recommend interconnecting them dtinmgntegration activity.

Constraint module. Depending on the nature of the inter-model cansts to be verified,
the expression model to use will vary. Thus, amugtdal solution should provide engineers
with recommendations about the most adequate esipredanguages according to the
characterization of the constraint. In our case istudFOL expressions implemented in
EXPRESS are well fitted but in other cases diffetanguages could be recommended, e.g.
PSL (Accellera, 2004) for hardware-related constgaiFinally, the expression language has
to be interpreted by an engine enabling the evialuadf constraints, as in the case of the
instance checking in ECCO, and providing tracegbieatures in order to correctly identify
the cause of a failure in the validation of a coaist.

VIIl.2.2. Needed HCI enhancements

The graphical user interface of the prototype wdudde to be improved in order to be
usable by the engineers. Currently the different eloadf the approach can be graphically
browsed but such a graphical support is missinthécreation or modification of models

134

VIII.2. Needed technology enhancements

themselves and it implies a lot of costly work whiwould have to be reduced in an
industrialized version. Therefore, in general tetives future HCI should provide users with
graphical model features such as boxes to mangaldities and attributes; lines to represent
relationships anddrag and drop facilities to interconnect elements. These needed
enhancements are detailed below for each of theoapp activities.

Exportation. Meta-models would have to be developed using $drerepresent the
entities and their attributes and lines to illusréhe different possibilities of relationships
(e.g. an arrow is used to denot@eneralizationrelationship in area 1 of Figure 90). This
graphical solution should also be applied for tiealization of the exported models without
allowing their modification since we consider thia¢ source models have to be modified in
their original modeling tools and re-imported.

I Shell @@@

KAIMI

Metadata | EXPRESS | (Graphical)
= wws2
= MetaModels
SysML
4 Models PROPERTY

Knowledge +AGGREGATION: AGGREGATION_KIND
: +IS_DERIVED: BOOLEAN
+- Annotations +IS_DERIVED_UNION: BOOLEAN
Relations +ASSOCIATION: ASSOCIATION
OVNING _ASSOCIATION: ASSOCIATION
Constraints +DATA_TVPE: DATA_TVPI
+DEFAULT_VALUE: VALUE_SPECIFICATION
+REDEFINED_PROPERTY: PROPERTYIO.]
+SUBSETTED_PROPERTY: PROPERTV[0. %]
+OPPOSITE: PROPERTY
CLASS_UMLIO. *]

+DEFAULT: STRING
+I5_COMPOSITE: BOOLEAN
+SUPER_CLASS: CLASS_UMLIO.."]

+getDefautt(y: STRING

+getisComposite(): BOOLEAN
+getSuperClass(): CLASS_UML

g1

PORT
¢ |SOE] g — 7 2

1=

Figure 90. Future meta-model HCI with a SysML examfe

Annotation. As in the case of source models, knowledge maostedsild be managed in
the corresponding knowledge modeling tools. Theeamrof the knowledge models could be
presented using the same box/lines interface tather models. This would allow the tool
to have a homogeneous way of manipulating entaigd concepts which is important to
reduce the learning time needed by the users ierda master the tool. Concerning the
annotation, an industrial version would have tovmte users withdrag and dropfeatures
which, as illustrated in Figure 91, shall allow rssto: 1) drag a concept from the tree-view
representation of a knowledge model and to drap tihe annotation area in order to create a
new annotation; 2) to drag entities from the tremmof models’ content (area 1 of Figure 91)
and to drop it in the new annotation area (trajgctitustrated by the dotted line 2 of Figure
91) to put these entities in relation with the kiexdge concept, i.e. to annotate it.

135

Chapter VIII. Deployment in industry

. Shell FBEX

KAIML
Metadats | EXPRESS | (Graphical)
PRIMITIVE_TYPE_UML ~ | =
=)- PROPERTY_UML | Name #161
#28 '

#35 Description
D s

#46 .
#47 3
#48

s
~
<
S
#49 s
#91 Sy
I

#9z
#93
#94
#95 5,
#96 | Knowledgerinst htto:ijwww.eads.net) Jwwsitollet!
#100 T
#101 Model instance \\PROPERTV_UML #45
#102 :
#103
#104

v

DEFI INAETATE
< > Save

Type simple v Accuracy Exact v
g

Figure 91. Drag and drop of an instance to annotati

Integration. The future HCI would enable wrag and dropentities from the different
exported models tree-views to the relation arearder to interconnect them. Furthermore the
adequate entity denoting the kind of relationshegufvalence, composition ...) could be
selected from a list containing the entities of thlation meta-model as illustrated in area 1 of
Figure 92.

I Shell (=113

KAIMI

Metadata | EXPRESS | (Graphical) |
% FEATURE al | :
GENERALIZATION
= INTERFACE_UML
v &
% KNOWLEDGE_CLASS- - _ _ _

MESSAGE_EVENT T
& MULTIPLICITY _ELEMENT ool

B NAPED ELEMENT ~*| INTERFACE (SYSML) INTERFACE (CORE)
- NAMESPACE i ¥
& OPERATION_ LML +oid = #78 +oid = #247
PACKAGE
) PACKAGEABLE _ELEMENT
i PARAMETER_UML
PORT
PRIMITIVE _TYPE_UML
PROPERTY_UIML
PSEUDOSTATE
REALIZATION
/- REDEFINABLE_ELEMENT
REGION
DF1 ATIAKNSHID

Figure 92. Equivalence relationship between instams from CORE and SysML models

136

VIII.2. Needed technology enhancements

Constraint description. The expression representing the inter-model cainstto be
checked would better be supported in a graphical War instance, Figure 93 illustrates a
calculator-style support (area 1) for the FOL egpiens. Finally, the different executions of a

constraint checking would be listed in the formaohavigable table as shown in area 1 of
Figure 94.

. Shell BEEX
KAIMI
| Metadata | EXPRESS | (Graphical)
= wws2
ji_ MetaModels
& oot (s) J(>)& JC~ Jv JC]
) AnnoFat\ons
L Coneass CHOICEICEI)CIEE)C-] I 0]
#175
[Variable...] [Knowledge concept...]
Iey ced o (i € Liransfer)
(I €Y .comprised _of)~ | 3i: Item A (represents }= 7)
Figure 93. Graphical construction of a FOL expressin
. Shell 9(=1E3]
KAIMI
Metadata | EXPRESS | (Graphical)
= wWws2
#- MetaModels
% Models
Knowledge
#- Annotations
Relations
= Constraints
#175
Execution date Result m Observations
16/09/2011 Fail N Model analysis
1311/2011 Ok

Figure 94. Traceability of the executions of a cotrmint validation

137

Chapter VIII. Deployment in industry

VII.3. Conclusion

The expected deployment of our approach is analyzis chapter from two points of
view. First of all, some improvements, mainly camieg the centralized management of
models, are needed in current MBSE processes &r ¢odpermit an optimal integration of
our approach. Moreover, these improvements shoellddoompanied by some technological
and graphical enhancements according to the custatis of the approach implementation.
These enhancements are the topic of the secondfghg chapter.

138

Conclusion and perspectives

In the context of Systems Engineering design metlogies, engineers need to work with
models from different teams, methodologies and khow. This collaborative work results
in different types of models, modeling languagesd amodeling techniques. Thus,
heterogeneous models are a logical consequenceichf wariability. This heterogeneity
becomes a problem when models need to be shardgdobg different teams in order to
perform overall analysis and validations. In suabes making explicit the implicit knowledge
is essential.

Our approach proposes to integrate heterogeneouslsnaad to model and check inter-

model constraints validation by making explicitrrf@lizing and exploiting such additional
knowledge that is usually implicitly assumed byigesrs.

Contributions
Our contributions have been developed accordirdifterent directives.
Methodology

Our work puts together two concepts: heterogenaoosleling and explicitation of
implicit knowledge.

We have defined a layered method to use knowledgdet@ define expressions with a
flexible language in order to check constraints rowger-model relations. We suggest

139

Conclusions and Perspectives

applying our approach as part of the validationgpéoform inside Systems Engineering
methodologies. Particularly, our work has demonstiahat the method is suitable in a
collaborative context when we put together anddeaé some of the models of the current
design stage to guarantee the quality of the ifgpuhe next design stage.

Meta-models are built using the shared and commodeling language concept of our
proposal. Thus, for each exported model its metaainsdwritten in such a language. This
makes it possible to export of the source modedragistance of the meta-model written in
the common language. Our approach does not pretefidd a unique meta-model able to
replace the source meta-models but to keep suclh-medels expressed in a common
environment. Therefore, we can work in a shared etiogl semantics with different meta-
classes allowing the interconnection of entitiesddferent modeling languages since the
language to describe such meta-classes is commashaned.

The exported models are annotated and integratéuisrframework in order to support
the validation of inter-model constraints using litip knowledge. The particularity of this
solution is that source models are kept outsideldlop and are not modified since our
approach is non-intrusive. In this way we can traaek the origin of a non-fulfilled inter-
model constraint to identify the original sourcdites implied in the fail. Next, engineers in
charge of the source models perform the actionsssaey to correct the problem.

This method has been validated with different csisdies. The used examples permit to
have a large variability of modeling cases and 8ina: one modeling language, one
modeling language with different modeling rulesptmodeling languages. Along with the
fact that the presented case studies represerdrahff domains and types of implicit
knowledge.

Explicitation of implicit knowledge

The originality of our approach is the formalizatioh the explicitation of implicit
knowledge and the annotation of heterogeneous eeagny models. This knowledge is
managed independently of the annotated models shantke use of aside models and unique
identifiers. Thus, annotations contain the linkwen exported models and knowledge
concepts acting as an intermediate layer. Thignmadiate layer and the fact that source
models are exported permit the evolution of sounoeels independently of the application of
the approach.

Ontologies are recommended for the explicit modetihtpe implicit knowledge since the
engineering context fits their formal and consehswaation besides the fact of providing
precise identification concepts like URIs.

140

Inter-model constraints

During the design of a system several propertiestroe verified. Amongst them, the
inter-model constraints verification involves mpld models simultaneously. Thus, our
approach allows engineers to integrate models uherorto validate such inter-model
constraints over them. These constraints are esgueby referencing both entities of the
exported models and concepts of the implicit knogkemade explicit. The definition of the
constraints is based on expression models.

In our case studies we have validated constrainég tan be expressed by FOL
expressions. In order to implement them we havesldped a formal model of expressions
using the EXPRESS modeling language. This modahigxtension to the PLIB expression
model which does not include FOL expressions.

Tool support

In order to guide users in the use of our methagiglove have developed a prototyping
tool. This prototype is process-oriented and sugspeach of the modeling activities of our
approach.

= Export. It provides access to the meta-models and it petime loading of source
models by instantiating these meta-models.

= Annotation. It allows users to manage knowledge models angéothe concepts
of such models to annotate the exported models.

= Integration. It permits to set up relations between entitiéstre annotated
models.

= General constraint definition and verification. The prototype enables the
construction of the inter-model constraint to beifiel and their operational
verification.

This prototyping tool has allowed us to demonstthgeusability of the approach from a
user and process perspective.

Deployment and applicability

The formal validation of the proposal and the impéaitation of different types of case
studies in the prototype demonstrate the applitgtwf our approach. Nevertheless, an
industrial deployment requires the evolution of phetotype. These aspects are discussed
in our perspectives.

141

Conclusions and Perspectives

Perspectives

The work described in this thesis opens severapgetives. Some of them are described
below.

Scientific perspectives

Evolution of models

In the course of the modeling process, models hiliferent degrees of maturity. As a
consequence they evolve and new versions appeatelsioan also evolve because they are
reused in a new program. In any case, evolutianadels should be part of the configuration
management activities. Logically, our approach toatake into consideration this evolution
of models and to handle reuse of annotations (Lu®&rgieng-Kuntz, 2007) and of inter-
model constraints.

Abstraction of modeling language

In the current description of inter-model consttsjrentities from the annotated models
and concepts of the knowledge models are used. rifieless, the access to entities and
attributes needs a quite well comprehension ofciveesponding meta-models. That is a
problem for the use of multiple modeling languagese the learning curve can become too
big. Therefore, we think that the definition of straints should rely on a modeling ontology
describing general Systems Engineering conceptd Satlogy would allow engineers to
write their constraints in a more natural way anduld ease the eventual generation of
constraints from formal requirements. Finally, tieice of other logics different from FOL
should be taken into consideration when analyziveg dharacteristics of a constraint to be
verified.

Inter-model relationships

In the thesis we have described two categoriesitef-imodel relations from a process
point of view: same level and top-down or bottom-Qpir case studies have focused on same
level relations and, as a perspective, top-dowiaitom-up relation cases should be also
taken into consideration. We defend that our apgros also applicable to bottom-up or top-
down relations but that the integration activitydahe relation meta-model would need to be
empowered. This integration step is still valid tag-down or bottom-up relations contribute
with new scenarios, i.e. design refinement, modmmposition and model abstraction
respectively. Thus, cases including such kind ¢érimodel relations should be studied in

142

order to extend our work. On the other hand, framrelation meta-model point of view, the
impact of the integration of more than two modd&iswdd be studied. In this context the work
described in (Delmas, 2004) can be a good support.

Industrial perspectives

Scalability

The prototype has allowed us to functionally vakdtne proposal. Now the scalability of
the solution has to be addressed in 2 ways. Oorkehand and in order to be industrialized,
the implementation of our proposal has to be ablméanage a great number of models and
entities. This implies that an industrial versidrosld be built upon model repositories and
remote databases in order to be able to work iollaborative engineering context. On the
other hand, other Systems Engineering domains rfaitee, space and other complex
systems) should be considered from a domain st¢iyapoint of view. Moreover, the
different modeling activities described in our aggh (exportation, annotation, integration
and constraint definition) should be automated asihas possible to ease its integration with
current Systems Engineering methods. Concernin@uib@mation of annotations some work
already exists in the semantic web domain whichlza@a good point of depart (Handschuh,
Staab, & Ciravegna, 2005)(Dill et al., 2003)(Hammadaketh, & Kochut, 2002).

MBSE integration and services

Concerning MBSE, the integration of our method wahrrent practices should be
accompanied by a procedure of standardization. M tthat the explicitation of implicit
knowledge and the relation between heterogeneowselsimmeed to form part of current
MBSE standards in order to provide a better managéwf complex systems life cycle. One
challenging perspective is to develop a businessgss platform supporting MBSE processes
with adequate services and a well definition ofesol(administration tasks, knowledge
management, constraint management,...). In suchxipmig approach would be part of the
services offered by the platform to the specifietks. Amongst these services, request
services based on the annotations should be alsideved in the perspectives.

143

Conclusions and Perspectives

144

References

AIRBUS. (2008) AMISA Method
Toulouse, France.

ATA. (2011). Air Transport Association of
America.Association Web Page
Retrieved from
http://www.airlines.org/About/About
ATA/Pages_Admin/AboutATA.aspx

Abouzahra, A., Bézivin, J., Didonet, M.,
Fabro, D., & Jouault, F. (2005). A
Practical Approach to Bridging
Domain Specific Languages with
UML profiles. Workshop on Best
Practices for Model Driven
Development, OOPSL/Aan Diego.

Accellera. (2004)Property Specification
Language Reference Manual
Languageg(pp. 1-123). Napa, CA.
Retrieved from
http://www.eda.org/vfv

Ait-Ameur, Y, Besnard, F., Girard, P.,
Pierra, G., & Potier, J. C. (1995).
Formal specification and
metaprogramming in the EXPRESS
languageConference on Software
Engineering and Knowledge
Engineering(pp. 181-189).

Ait-Ameur, Y, Pierra, G., & Sardet, E.
(1995). Using the EXPRESS
language for metaprogramming.
Proceedings of the 3rd International
Conference of EXPRESS User Group
EUG’95. Grenoble.

Alexander, P., Kong, C., Ashenden, P.,
Systems, A., Barton, D., & Menon, C.
(2003).Rosetta Strawman Version
0.3 Distribution (pp. 1-150). Kansas.

An, Y., & Song, |.-Y. (2008). Discovering
Semantically Similar Associations
(SeSA) for Complex Mappings
between Conceptual Models.
Conceptual Modeling - ER 2008: 27th
International Conference on
Conceptual Modellingpp. 369-382).
Springer. Retrieved from
http://books.google.com/books?id=Y
17926rdid4C&pg=PA369&Ipg=PA3
69&dg=semantically+similar+associa
tions+an+song&source=bl&ots=xaba
0GLboa&sig=tbACOUISEzm5IR3ee
NJvr_aWpHgé&hl=fr&ei=0OsyoS_fol
MKSjAf224DoAQ&sa=X&0i=book
result&ct=result&resnum=1&ved=0C
AsQG6AEWAA#vV=0Nnepage&qg=seman
tically similar associations an
song&f=false

Antonio, F. D., Missikoff, M., Bottoni, P.,
& Hahn, A. (2006). An ontology for
describing model mapping /
transformation tools and
methodologies: the MoMo ontology.
Proceedings of EMOI-INTEROP
CEUR.

Athena Project. (20065emantic
Annotation language and tool for
Information and Business Processes
Apendix F: User Manuapp. 1-26).

Auzelle, J.-P., Garnier, J.-L., & Pourcel, C.
(2009). Architecture et Ingenierie des
Systeme de Systemes. AFIS.

Bakhtouchi, A., Chakroun, C., Bellatreche,
L., & Ait-Ameur, Y. (2011).
Mediated Data Integration Systems
using Functional Dependencies
Embedded in OntologieRecent
Trends in Information Reuse and

145

Integration(pp. 227-256). Springer.
doi:10.1007/978-3-7091-0738-6_11

Bechhofer, S., Harmelen, F. van, Hendler,
J., .Horrocks, McGuinness, D., Patel-

Schneider, P., & Stein, L. (2004).
OWL Web Ontology Language
ReferenceW3C Retrieved from
http://www.w3.org/TR/owl-ref/

Berners-Lee, T., Fielding, R., Irvine, U., &
Masinter, L. (1998). Uniform
Resource Identifier (URI): Generic
Syntax.Request for Comments 2396
Retrieved from
http://tools.ietf.org/html/rfc2396

Boehm, B., & Turner, R. (2003).
Balancing Agility and Discipline: A
Guide for the PerplexedP.
Education, Ed.) (pp. 1-272).
Crawfordsville, Indiana: Addison-
Wesley.

Boronat, A., Knapp, A., Meseguer, J., &
Wirsing, M. (2008). What is a Multi-
Modeling Language? In U. M.
Andrea Corradini (Ed.WADT (pp.
71-87). Pisa, ltaly: Springer.

Boudjlida, N., & Panetto, H. (2008).
Annotation of Enterprise Models for
Interoperability Purposes. In IEEE
(Ed.),IWAISE’2008 IEEE.

Bréauer, M. (2007)Design of a Semantic
Connector Model for Composition of
Metamodels in the Context of
Software Variability Technisque
Universitat Dresden.

Caplat, G., Sourrouille, J. L., & Pascal, B.
B. (2003). Considerations about
Model MappingINSA Lyon, France.

Cerami, B. E. (2002)Web Services
Essential{p. 304). O’Reilly. doi:0-
596-00224-6

Chandrasekaran, B., Josephson, J. R., &
Benjamins, V. R. (1999). What are
ontologies, and Why Do We Need
Them?IEEE Intelligent Systems
1(January/February 1999), 20-26.
doi:1094-7167/99

Chen, Y., & Chu, H. (2007). Enabling
collaborative product design through
distributed engineering knowledge
managementComputers in Industry
59, 395-409.
doi:10.1016/j.compind.2007.10.001

Coleman, P. (2011Peveloping the
Behavioural Digital Aircraft(pp. 1-
16). Madrid, Spain. Retrieved from
http://www.cdti.es/recursos/doc/event
0sCDTI/Aerodays2011/3D1.pdf

Connolly, D., Harmelen, F. van, Horrocks,
l., McGuinness, D. L., Patel-
Schneider P. F., & L.Stein. (2001).
DAML+OIL Reference Description.
W3C NoteRetrieved from
http://www.w3.org/TR/daml+oil-
reference

Curbera, F., Duftler, M., Khalaf, R., Nagy,
W., Mukhi, N., & Weerawarana, S.
(2002). Unraveling the Web Services
Web. An Introduction to SOAP,
WSDL, and UDDLIEEE Internet
Computing 6(2), 86-93.
doi:10.1109/4236.991449

Damjanow¢, V., Behrendt, W., Plossnig,
M., & Holzapfel, M. (2007).
Developing Ontologies for
Collaborative Engineering in
Mechatronics. Salzburg, Austria.

Delmas, R. (2004)Jn Cadre Formel pour
la Modélisation Hétérogene et la
Veérification Compositionnelle des
Systemes Avioniques Modulaires
Intégrés ENSAE-SUPAERO.

Department Of Defense. (200DoD
Architecture Framework Volume I:

146

Definitions and Guidelinefetrieved
from
http://dodcio.defense.gov/docs/dodaf
volume_i.pdf

Dill, S., Eiron, N., Gibson, D., Gruhl, D.,
Guha, R., Jhingran, A., Kanungo, T.,
et al. (2003). SemTag and Seeker
Bootstrapping the semantic web via
automated semantic annotatid2th
International Conference on World
Wide Wel{pp. 178-186). ACM Press.

EADS. (2010a). Overview CESAR 2010
Cost-efficient methods and processes

for safety relevant embedded systems.

EADS. (2010b)CESAR: Definition and
exemplification of RSL and RMM
Distribution.

EIA, & ANSI. (1994). EIA 632, Standard

— Processes for Engineering a System.

Eclipse Foundation. (2011). ATL - a model
transformation technology. Retrieved
from
http://eclipse.org/atl/documentation

Eclipse.org. (2011a). Eclipse IDE.
Retrieved a from
http://www.eclipse.org/org/

Eclipse.org. (2011b). The Standard Widget
Toolkit. Retrieved b from
http://eclipse.org/swt/

Eclipse.org. (2011c). Eclipse Modeling.
Retrieved c from
http://eclipse.org/emf/

Eker, J., & Janneck, J. W. (2003). Taming
Heterogeneity - the Ptolemy
Approach.lIEEE (pp. 127-144). IEEE.
doi:10.1109/JPROC.2002.805829

Estefan, J. A. (2008%5urvey of Model-
Based Systems Engineering (MBSE)
MethodologiesINCOSE MBSE.
Retrieved from

http://www.omgsys.org/MBSE_Meth
odology_Survey_ RevB.pdf

Eurocontrol, & Commission, E. (2010).
SESAR The future of flying.
European Commission. Retrieved
from
http://ec.europa.eu/transport/air/sesar/
doc/2010_the_future_of flying_en.pd
f

Figay, N. (2009)Interopérabilité des
applications d’entreprises dans le
domaine technique “Interoperability
of technical enterprise applications.”
GenesisUNIVERSITE CLAUDE
BERNARD - LYON 1.

France, R., Raton, B., Evans, A., Lano, K.,
& Rumpe, B. (1998). The UML as a
Formal Modeling NotationComputer
Standards Interfaced 9th ed., pp.
325-334). Springer.

Friedman, M., Levy, A., & Millstein, T.
(1999). Navigational Plans For Data
Integration AAAI-99 AAAI.

Fritzson, P. (2003Principles of Object-
Oriented Modeling and Simulation
with Modelica 2.1Engineering(p.
939). Wiley-IEEE Press.

Gerard, S. (2009). MARTE: Outlines and
added values for SysML 1. Toulouse:
CEA.

Gert, J., & Eckert, R. (2000). Experiences
from the use and development of ISO
10303-AP 233 Interfaces in the
Systems Engineering domain.
Retrieved from
http://www.ap233.org/ap233-public-
information/reference/PAPER _eckert
_johansson-SEDRES-Lessons-
Learned.pdf

GmbH, Lks. (2012). JSDAI. Retrieved
from http://www.jsdai.net/

147

Gonzalez-perez, C., & Henderson-sellers,
B. (2007). Modelling software
development methodologies: A
conceptual foundatio.he Journal of
Systems and Softwa&d, 1778-1796.
doi:10.1016/j.jss.2007.02.048

Gruber, T. (1995). Toward Principles for
the Design of Ontologies Used for
Knowledge SharingComputer
Studieg43rd ed.).

Guizzardi, G. (2008)0Ontology-Driven
Conceptual Modeling with
Applications Gramado, Brazil.
Retrieved from
http://www.inf.ufes.br/~gguizzardi/S
BSI2008CR.pdf

Halevy, A. Y., Arbor, A., & Yu, C. (2007).
Data Integration with Uncertainty.
VLDB ’'07 Porceeedings of the 33rd
international conference on Very
Large Data Basefpp. 687-698).
VLDB Endowment.

Halevy, A., & Ordille, J. (2006). Data
Integration : The Teenage Years.
VLDB ’'06 Porceeedings of the 32nd
international conference on Very
Large Data Basefpp. 9-16). VLDB
Endowment.

Hammond, B., Sheth, A., & Kochut, K.
(2002). Semantic Enhancement
Engine: A Modular Document
Enhancement Platform for Semantic
Applications over Heterogeneous
Content. In &V. K. & L. Shklar
(Eds.),Real-world Semantic Web
applications(pp. 29-49). IOS Press.

Handschuh, S., Staab, S., & Ciravegna, F.

(2005). S-CREAM — Semi-
automatic CREAtion of Metadata.
Int'l Journal on Semantic Web &
Information System4(1), 1-18.

Hardebolle, C., & Boulanger, F. (2008).
ModHel * X: A Component-Oriented

Approach to Multi-Formalism
Modeling. In H. Giese (Ed.Models
in Software Engineerinpp. 247-
258). Springer Berlin / Heidelberg.
doi:10.1007/978-3-540-69073-3_26

Haskins, C., Forsberg, K., Krueger, M.,
Walden, D., & Hamelin, R. D. (2010).
Systems Engineering Handbook
INCOSE.

Hessellund, A. (2009Pomain-Specific
Multimodeling IT University of
Copenhagen, Denmark.

Hillmann, D. (2005). Using Dublin Core.
Retrieved from
http://dublincore.org/documents/2005
/11/07/usageguide/

Honour, E. C. (2004). Understanding the
Value of Systems Engineering.
Proceedings of the 14th Annual
INCOSE International Symposium

Horrocks, lan, Inference, N., Patel-
schneider, P. F., Technologies, L.,
Boley, H., Tabet, S., Grosof, B., et al.
(2004). SWRL: A Semantic Web
Rule Language Combining OWL and
RuleML. W3C Member Submission
Retrieved from
http://www.w3.org/Submission/2004/
SUBM-SWRL-20040521/

Hose, K., Roth, A., Zeitz, A., Sattler, K.-
uwe, & Naumann, F. (2008). A
Research Agenda for Query
Processing in Large-Scale Peer Data
Management Systemisiformation
Systems33(7-8), 597-610.
doi:10.1016/j.is.2008.01.012

IBM. (2009).Rational Rhpasody API
Reference ManuaRetrieved from
publib.boulder.ibm.com/infocenter/rs
dp/v1rOmO/topic/com.ibm.help.downl
oad.rhapsody.doc/pdf75/rhapsody_api
pdf

148

IBM. (2011a). The Harmony Process.
Rational HarmonyRetrieved a from
http://www-
01.ibm.com/software/rational/services
/harmony/

IBM. (2011b). DOORS family. Retrieved
b from www-
01.ibm.com/software/awdtools/doors/
productline/

IBM. (2012). Rational Rhapsody Designer
for Systems Engineers. Retrieved
from www-
01.ibm.com/software/rational/product
s/rhapsody/designer/

IEEE. (2005). IEEE Std 1220-2005 IEEE
Standard for Application and
Management of the Systems
Engineering Process.

INCOSE. (2007)SYSTEMS
ENGINEERING VISION 2020
Retrieved from
http://www.incose.org/ProductsPubs/
pdf/SEVision2020 20071003 v2_03.
pdf

ISO. (1994). 1ISO 10303-11 Industrial
automation systems and integration -
Product data representation and
exchange - Part 11: Description
methods. International Organization
for Standardization.

ISO. (1997a). ISO 13584 Industrial
automation systems and integration -
Parts library PLIB. International
Organization for Standardization.

ISO. (1997b). ISO 13584-20 Industrial
automation systems and integration -
Parts library PLIB - Logical model of
expressions. International
Organization for Standardization.

ISO. (2008). ISO/IEC 15288:2008 Systems

and Software Engineering.

International Organization for
Standardization.

Jean Bézivin, Didonet Del Fabro, M.,
Jouault, F., & Valduriez, P. (2005).
Combining Preoccupations with
Models.Proceedings of the First
Workshop on Models and Aspects -
Handling Crosscutting Concerns in
Model-Driven Software Development
- MDSD. Glasgow.

Jean, S., Pierra, G., & Ait-Ameur, Y.
(2007). Domain Ontologies: A
Database-Oriented Analysi/eb
Information Systems and
Technologies. Lecture Notes in
Business Information Processigp.
238-254). Springer. doi:10.1007/978-
3-540-74063-6_19

Kelly, A. (2008).Changing Software
Development: Learning to Become
Agile (p. 258). Wiley.

Klein, M. (2001). Combining and relating
ontologies: an analysis of problems
and solutions. In Gomez- & M. Perez,
A., Gruninger, M., Stuckenschmidt,
H., et Uschold (Eds.)Vorkshop on
Ontologies and Information Sharing,
IJCAI'01. Seattle.

Klein, R. (2000). Knowledge Modeling in
Design - The MOKA framework.
Artificial Intelligence in Design - The
MOKA framework(pp. 77-102).
Kluwer Academic. Retrieved from
http://books.google.com/books?hl=fr
&Ir=&id=qtxKlI-
jaXg8C&oi=fnd&pg=PA77&dg=Kno
wledge+Modeling+in+Design+?+the
+MOKA+framework&ots=zns5vS;C
E_&sig=H-
gD_FmNGW1ViPYRu9IX-
hO5KKc#v=onepage&q=Knowledge
Modeling in Design!? the MOKA
framework&f=false

149

Kolaitis, P. G. (2005). Schema Mappings ,
Data Exchange , and Metadata
ManagementPODS ’'05 Proceedings
of the twenty-fourth ACM SIGMOD-
SIGACT-SIGART symposium on
Principles of databse systen#sCM.
doi:10.1145/1065167.1065176

Kolovos, D. S., Paige, R. F., & Polack, F.
A. C. (2006). The Epsilon Object
Language (EOL).ecture Notes in
Computer Scienc@p. 128-142).
Springer. doi:10.1007/11787044_11

Kolovos, D., Paige, R., & Polack, F.
(2008). Detecting and Repairing

Inconsistencies across Heterogeneous

Models.2008 International
Conference on Software Testing,
Verification, and Validation356-364.
leee. doi:10.1109/ICST.2008.23

Krygiel, A. (1999).Behind the Wizard ’'s
Curtain. An Integration Environment
for a System of Systenf@etrieved
from
http://www.dodccrp.org/files/Krygiel
_Wizards.pdf

Kvan, T. (2000). Collaborative design:
what is it?Automation in
Construction9(4), 409-415.
doi:10.1016/S0926-5805(99)00025-4

Larman, C., & Basili, V. R. (2003).
Iterative and incremental
development: a brief history.
Computer 36(6), 47-56.
doi:10.1109/MC.2003.1204375

Lenzerini, M. (2002). Data Integration
A Theoretical Perspective.
Proceeding of 21st ACM SIGMOD-
SIGACT-SIGART symposium on
Principles of databse systeni¢Y:
ACM. doi:10.1145/543613.543644

Lin, Y. (2004). Model annotations using
requirements engineering techniques
for model reuse and model

integration. Trondheim, Norway.
Retrieved from
http://caise04dc.idi.ntnu.no/CRC_Cai
seDC/YunLin.pdf

Long, J. (2000)Relationships between
Common Graphical Representations
in System Engineeringretrieved
from http://www.ap233.org/ap233-
public-
information/reference/PAPER_J-
Long-CommonGraphical-Notation-in-
SE-2002.pdf

Luong, P.-H., & Dieng-Kuntz, R. (2007).
A Rule-Based Approach for Semantic
Evolution.Computational
Intelligence 23(3), 320-338.
doi:10.1111/j.1467-
8640.2007.00308.x

Lykins, H., & Ave, N. F. (1999). Adapting
UML for an Object Oriented Systems
Engineering Method (OOSEM).
Proceedings of the 10'th International
INCOSE SymposiuniDockerill).

Mandutianu, S. (2009). Modeling Pilot for
Early Design Space Missionéh
Annual Conference on Systems
Engineering Research (CSER 2009)

Marca, D. A., & McGowan, L., C. (1987).
SADT: structured analysis and design
technique McGraw-Hill.

Mastella, L. S., Abel, M., Ros, L. F. D.,
Perrin, M., & Rainaud, J.-francois.
(2007). Event Ordering Reasoning
Ontology applied to Petrology and
Geological ModellingAdvances in
Soft Computingd2(Theoretical
Advances and Applications of Fuzzy
Logic and Soft Computing), 465-475.
doi:10.1007/978-3-540-72434-6_46

Mokhtari, N., & Corby, O. (2009).
Contextual Semantic Annotatians
Modelling and Automatic Extraction.
K-CAP’09 Redondo Beach: ACM.

150

Monzon, A. (2010). Bi-directional
Mapping between CMMI and
INCOSE SE HandboolERTS,
Toulouse.

Mossakowski, T. (2004). Heterogeneous
Specification and the Heterogeneous
Tool Set. In W. Carnielli, F. M.
Dionisio, & P. Mateus (Eds.),
Proceedings of CombLog’04
Workshop on Combination of Logics:
Theory and Applicationfp. 129-
140). Departamento de Matematica -
Instituto Superior Tecnico.

Mukerji, J., & Miller, J. (2003). MDA
Guide Version 1.0.1. Retrieved from
http://www.enterprise-
architecture.info/Images/MDA/MDA
Guide v1-0-1.pdf

NASA. (1999). NASA Systems
Engineering Handbook. NASA.
Retrieved from
http://www.ap233.org/ap233-public-
information/reference/20080008301
2008008500.pdf

Naur, P., Backus, J. W., Bauer, F. L., &
Green, J. (1963Report on the
algorithmic language ALGOL 60

OMG. (2008). OMG Systems Modeling
Language (OMG SysMI™) 1.1.
Source OMG. Retrieved from
http://www.omg.org/spec/SysML/1.1

OMG. (2009). OMG Unified Modeling
Language TM (OMG UML),
Superstructure. OMG. Retrieved from
http://www.omg.org/spec/UML/2.2/S
uperstructure/PDF/

OMG. (2011a). OMG Unified Modeling
Language (OMG UML),
Infrastructure. Retrieved from
http://www.omg.org/spec/UML/2.2/In
frastructure/PDF/

OMG. (2011b). MOF 2.0/XMI Mapping
Specification. OMG. Retrieved from
http://www.omg.org/spec/XMl/2.4.1/

Oberle, D. (2006). Semantic Management
of Middleware.Semantic Web and
Beyond: Computing for Human
Experiencg1st ed.).

Oliveira, K., Breitman, K., & Oliveira, T.
(2009). Ontology Aided Model
Comparisonl4th IEEE International
Conference on Engineering of
Complex Computer Systems

Oppenheim, B. W. (2009). Lean enablers
for systems engineerin@rosstalk
Defense JournalJuly/August 2009),
n/a-n/a. doi:10.1002/sys.20161

PDTec GmbH. (1998, March). ECCO
Toolkit. Strategic Analysis
Karlsruhe: PDTec GmbH.
doi:10.1080/09700168109428631

Paredis, C. J. J., Bernard, Y., Koning, R.
M. B. H.-peter D., & Friedenthal, S.
(2010). An Overview of the SysML-
Modelica Transformation
SpecificationJet Propulsion

Pierra, Guy. (1992). Modelling Classes of
Pre-existing Components in a CIM
Perspective: the ISO 13584
Approach Revue International de
CFAO et d’'Infographig9(3), 435-
454,

Pierra, Guy. (2008). Context
Representation in Domain Ontologies.
Journal on Data Semantics X
1(4900), 174-211.

Pop, A., Akhvlediani, D., & Fritzson, P.
(2007). Towards Unified System
Modeling with the ModelicaML UML
Profile.In Proceedings of the 1st
International Workshop on
EquationBased ObjectOriented
Languages and Tools EOOLT'0F3-

151

24. Retrieved from
http://www.ep.liu.se/ecp/024/002/ecp
2407002.pdf

Pratt, M. J. (2001)ntroduction to 1ISO
10303—the STEP Standard for
Product Data Exchangdournal of
Computing and Information Science
in Engineering(Vol. 1, p. 102).
doi:10.1115/1.1354995

Ruzzi, M. (2004)Data Integration Issues
in Research Supporting Sustainable
Natural Resource Management
Geographical ReseargYol. 24, pp.
230-386). Roma. doi:10.1111/j.1745-
5871.2007.00476.x

Seng, J.-lang, & Kong, I. L. (2009). A
schema and ontology-aided intelligent
information integrationExpert
Systems With Application36(7),
10538-10550. Elsevier Ltd.
doi:10.1016/j.eswa.2009.02.067

Sheth, A. P., & Larson, J. A. (1990).
Federated Database Systems for
Managing Distributed ,
Heterogeneous , and Autonomous
DatabasesACM Computing Surveys
22(3).

Sheth, A., Ramakrishnan, C., & Thomas,
C. (2005). Semantics for the Semantic
Web: The Implicit, the Formal and
the Powerfullnternational Journal
on Semantic Web & Information
Systemsl(1), 1-18.

Silva, C. D. A. F. D. (2007Découverte
de correspondances sémantiques
entre ressources hétérogenes dans un
environnement coopératif
UNIVERSITE CLAUDE BERNARD
- LYON 1.

Simon Zayas, D., Monceaux, A., & Ait-
Ameur, Y. (2010). Knowledge
models to reduce the gap between
heterogeneous models Application to

aircraft systems engineerintpbth
IEEE International Conference on
Engineering of Complex Computer
Systems - UML&AADL Workshop
Oxford: IEEE Computer Society.

Simon Zayas, D., Monceaux, A., & Ait-
Ameur, Y. (2011). Using knowledge
and expressions to validate inter-
model constraintsl8th World
Congress IFAC 2011FAC.

Simon Zayas, D., Monceaux, A., & Ait-
ameur, Y. (2011). Knowledge Based
Characterization Of Cross-Models
Constraints To Check Design And
Modeling Requirement®ASIA
2011 San Anton, Malta:
EUROSPACE.

Sirin, E., & Parsia, B. (2004). Pellet: An
OWL DL Reasoner. In V. Haarslev &
Ralf Moller (Eds.) Description
Logics CEUR-WS.org.

Snodgrass, T., & Kassi, M. (1986).
Function Analysis The Stepping
Stones to Good Value. University of
Wisconsin-Madison.

Spiby, P. (2007). STEP AP233 Systems
EngineeringSystems Engineering
Eurostep Group. Retrieved from
http://www2.pdteurope.com/media/54
159/1b. step ap233 systems
engineering.pdf

Sweet, C. N. (2004). The C2 Constellation
A US Air Force Network Centric
Warfare Program Network Centric
Applications and C4ISR Architecture.
Info, 1-31.

Team, J. (2011). Jena - A Semantic Web
Framework for Java. Retrieved from
http://jena.sourceforge.net/index.htmi

Technologies, E. (2011a). SCADE Suite.
Retrieved a from http://www.esterel-

152

technologies.com/products/scade-
suite/

Technologies, E. (2011b). SCADE System.

Retrieved b from http://www.esterel-
technologies.com/products/scade-
system

Tenorio, C. D., Mavris, D., Garcia, E., &
Armstrong, M. (2008). Methodology
for Aircraft System Architecture
Sizing.ICAS ICAS.

Tolvanen, J.-P., & Kelly, S. (2008).
Domain-Specific modeling: Enabling
Full Code Generatioffp. 254). New
Jersey, USA: Wiley-IEEE Press.

Topcased.org. (2011). TOPCASED The
Open-Source Toolkit for Critical
Systems. Retrieved from
http://www.topcased.org

Tran, T. N., Khan, K. M., & Lan, Y.-C.
(2004). A Framework for
Transforming Artifacts from Data
Flow Diagrams to UMLProceeding
of the IASTED International
Conference on Software Engineering
(SE 2004)ACTA Press.

Tudorache, T. (2006Employing
Ontologies for an Improved
Development Process in
Collaborative Engineering
Elektrotechnik und Informatik at
Berlin.

USAF. (1969). MIL-STD-499 System
Engineering Management. USAF.

Uren, V., Hall, W., & Keynes, M. (2006).
Semantic Annotation for Knowledge
Management: Requirements and a
Survey of the State of the AMveb
Semantics: Science, Services and
Agents on the World Wide Welfl),
14-28.
doi:10.1016/j.websem.2005.10.002

Uschold, M. (2002). Where are the
Semantics in the Semantic WebAl
Magazine

Vajna, S. (2002). Approaches of
Knowledge-based Design.
Proceedings of the International
Design Conference

Verries, J. (2010)Approche pour la
Conception de Systemes
Aéronautiques Innovants en Vue
d’Optimiser I'Architecture
Application au Systeme Portes
PassagersUniversité de Toulouse.

Vinoski, S. (1997). CORBA: Integrating
Diverse Applications Within
Distributed Heterogeneous
EnvironmentsCommunications
Magazine 3%(2), 46-55.
doi:10.1109/35.565655

Vitech Corporation. (2007a). System
Definition Guide. Vitech Corporation.

Vitech Corporation. (2007b). Architecture
Definition Guide (DoDAV v1.5).
Vitech Corporation.

Vitech Corporation. (2011). A Primer for
Model-Based Systems Engineering.
Vitech Corporation.

W3C. (2004). RDF Vocabulary
Description Language 1.0: RDF
SchemaW3C Recommendation
Retrieved from
http://mwww.w3.org/TR/rdf-schema/

W3C. (2008). Cool URIs for the Semantic
Web.Wa3C Interest Group Note
Retrieved from
http://www.w3.org/TR/cooluris/#hash
uri

Warner, J. B., & Kleppe, A. G. (1998)he
Object Constraint Language: Precise
Modeling with UML(p. 144).
Addison-Wesley.

153

Yoshimura, M. (2007). System Design
Optimization for Product
ManufacturingConcurrent
Engineering 15(4), 329-343.
doi:10.1177/1063293X07083087

Zouggar, N., Vallespir, B., & Chen, D.
(2008). Semantic Enrichment of

Enterprise ModeldWEI 2008 IEEE.

154

Annex A

This annex contains the general approach modelsrided in Chapter V. They are
formalized in EXPRESS modeling language.

TOP_SCHEMA

--THIS SCHEMA CONTAINS THE ELEMENTS IN COMMON TO THREST OF SCHEMAS
SCHEMA TOP_SCHEMA;

ENTITY T_DATE;
DAY: INTEGER; --BETWEEN 1 AND 31
MONTH: INTEGER; --BETWEEN 1 AND 12
YEAR: INTEGER; --BETWEEN -9999 AND 9999
HOUR: OPTIONAL INTEGER; --BETWEEN 0 AND 23
MINUTE: OPTIONAL INTEGER;-- BETWEEN 0 AND 59
SECOND: OPTIONAL INTEGER; --BETWEEN 0 AND 59
END_ENTITY;

--THE MAIN ELEMENT, AN ENTITY
ENTITY ENTITY_CLASS

ABSTRACT SUPERTYPE;

NAME: OPTIONAL STRING; --IDENTIFIER OF THE ENTITY
END_ENTITY;

-- TYPES
TYPE T_NUMBER = NUMBER;
END_TYPE;

TYPE T_BOOLEAN = BOOLEAN,;
END_TYPE;

TYPE T_STRING = STRING;
END_TYPE;

-- TYPE DOMAINE
TYPE T_DOMAINE = SELECT (T_NUMBER,T_BOOLEAN,T_STRING,T_DATE,ENTITY_CLASS) ;
END_TYPE;

--THIS ENTITY REPRESENTS A MODEL LANGUAGE
ENTITY MODELING_LANGUAGE

ABSTRACT SUPERTYPE;
END_ENTITY;

--THIS ENTITY REPRESENTS ONE MODEL
ENTITY MODEL
ABSTRACT SUPERTYPE
SUBTYPE OF (ENTITY_CLASS);
DESCRIPTION: OPTIONAL STRING;
CREATION: T_DATE;
LAST_MODIFICATION: OPTIONAL T_DATE;
MODELING_LANGUAGE: MODELING_LANGUAGE;
END_ENTITY;

END_SCHEMA,;
155

ANNOTATION_SCHEMA

--THIS SCHEMA CONTAINS THE ENTITIES NEEDED FOR THENNOTATION
SCHEMA ANNOTATION_SCHEMA;
(* *kk * **% * KNOWLEDGE *kkkkkkkkkkkkkk ************)

—-THIS ENTITY REPRESENTS AN UNIQUE IDENTIFIER (URI)
ENTITY URI;

URI_VALUE: STRING;
INVERSE

THE_CLASS: KNOWLEDGE_CLASS FOR MY_URI:
UNIQUE

URI: URI_VALUE;
END_ENTITY;

ENTITY ANNOTATION_CLASS;
NAME: STRING,;
MY_KNOWLEDGE: LIST OF URI,
MY_ENTITIES: LIST OF ENTITY_CLASS,;
END_ENTITY;

ENTITY KNOWLEDGE_CLASS

ABSTRACT SUPERTYPE

SUBTYPE OF (ENTITY_CLASS);

MY_URI: URI;
DERIVE

SELF\ENTITY_CLASS.NAME:STRING := 'KNOWLEDGE_CLASS' ;
END_ENTITY;

ENTITY KNOWLEDGE_LITERAL_CLASS
ABSTRACT SUPERTYPE
SUBTYPE OF (KNOWLEDGE_CLASS);
THE_VALUE: T_DOMAINE;
END_ENTITY;

ENTITY KNOWLEDGE_LITERAL_STRING
SUBTYPE OF (KNOWLEDGE_LITERAL_CLASS);
SELF\KNOWLEDGE_LITERAL_CLASS.THE_VALUE:STRING;
DERIVE
SELF\ENTITY_CLASS.NAME:STRING := 'KNOWLEDGE_LITERA L_STRING";
END_ENTITY;

ENTITY KNOWLEDGE_LITERAL_NUMERIC
SUBTYPE OF (KNOWLEDGE_LITERAL_CLASS);
SELF\KNOWLEDGE_LITERAL_CLASS.THE_VALUE:NUMBER,;
DERIVE
SELF\ENTITY_CLASS.NAME:STRING := 'KNOWLEDGE_LITERA L_NUMERIC;
END_ENTITY;

ENTITY KNOWLEDGE_LITERAL_BOOLEAN
SUBTYPE OF (KNOWLEDGE_LITERAL_CLASS);
SELF\KNOWLEDGE_LITERAL_CLASS.THE_VALUE:BOOLEAN;
DERIVE
SELF\ENTITY_CLASS.NAME:STRING := 'KNOWLEDGE_LITERA L_BOOLEAN';
END_ENTITY;

END_SCHEMA,;

156

RELATION_SCHEMA

--THIS SCHEMA CONTAINS THE ENTITIES REPRESENTING BEANTER-MODEL RELATIONS
SCHEMA RELATION_SCHEMA,

(* * *% * *% * *k% * *% * *% * *k% * aa)

* * *% * *% R E LAT I O N S *kkkkhkkkhkkkkkk ***********)
* *

(* * *% * *% *k% *% * *% * *k% * aa)

--THIS ENTITY REPRESENTS THE ATTRIBUTS WHICH CAN BEDDED TO A RELATION
ENTITY ATTRIBUTE_RELATION;
NAME: STRING,;
REPRESENTATION_ENTITY: OPTIONAL ENTITY_CLASS;
REPRESENTATION_STRING: OPTIONAL STRING;
REPRESENTATION_INTEGER: OPTIONAL INTEGER;
REPRESENTATION_REAL: OPTIONAL REAL,;
REPRESENTATION_BOOLEAN: OPTIONAL BOOLEAN,;
REPRESENTATION_DATE: OPTIONAL T_DATE;
--CONSTRAINTS
--ONLY ONE OF THE REPRESENTATION ITEMS CAN HAVE A VALUE
END_ENTITY;

--THIS ENTITY REPRESENTS A RELATION BETWEEN 2 OR MRE ELEMENTS OF DIFFERENT
MODELS
ENTITY RELATION
ABSTRACT SUPERTYPE
SUBTYPE OF (ENTITY_CLASS); --WE ALLOW RELATIONS BE TWEEN RELATIONS!
ENTITY_ORIGIN: SET [1:?] OF ENTITY_CLASS;
ENTITY_DESTINATION: SET [1:?] OF ENTITY_CLASS;
ATTRIBUTS: SET[0:?] OF ATTRIBUTE_RELATION;
END_ENTITY;

--THIS ENTITY GROUPS THE RELATIONS OF KIND SET
ENTITY SET_RELATION

ABSTRACT SUPERTYPE

SUBTYPE OF(RELATION);
END_ENTITY;

--THIS ENTITY GROUPS THE RELATIONS OF KIND LOGICAL
ENTITY LOGICAL_RELATION

ABSTRACT SUPERTYPE

SUBTYPE OF(RELATION);
END_ENTITY;

--THIS ENTITY GROUPS THE RELATIONS CONCERNING THEEBHAVIOR
ENTITY BEHAVIOR_RELATION

ABSTRACT SUPERTYPE

SUBTYPE OF(RELATION);
END_ENTITY;

--THIS ENTITY GROUPS THE RELATIONS DERIVED FROM THEESIGN PROCESS
ENTITY DESIGN_RELATION

ABSTRACT SUPERTYPE

SUBTYPE OF(RELATION);
END_ENTITY;

157

--ENTITY_ORIGIN IS COMPOSED OF ENTITY_DESTINATION
ENTITY COMPOSITION

SUBTYPE OF(SET_RELATION);
END_ENTITY;

~-ENTITY_ORIGIN GROUPS ENTITY_DESTINATION
ENTITY AGGREGATION

SUBTYPE OF(SET_RELATION);
END_ENTITY;

—ENTITY_ORIGIN SAME AS ENTITY_DESTINATION
ENTITY EQUIVALENCE

SUBTYPE OF(LOGICAL_RELATION);
END_ENTITY;

--ENTITY_ORIGIN INTERFACES WITH ENTITY_DESTINATION
ENTITY INTERFACE

SUBTYPE OF(BEHAVIOR_RELATION);
END_ENTITY;

--ENTITY_ORIGIN TRIGGERS ENTITY_DESTINATION
ENTITY TRIGGER

SUBTYPE OF(INTERFACE);
END_ENTITY;

--ENTITY_ORIGIN INPUTS ENTITY_DESTINATION
ENTITY SENDING

SUBTYPE OF(INTERFACE);
END_ENTITY;

--ENTITY_ORIGIN RECEIVES FROM ENTITY_DESTINATION
ENTITY RECEPTION

SUBTYPE OF(INTERFACE);
END_ENTITY;

--ENTITY_ORIGIN SPECIFIES WITH ENTITY_DESTINATION
ENTITY SPECIFICATION

SUBTYPE OF(BEHAVIOR_RELATION);
END_ENTITY;

END_SCHEMA,;

158

EXPRESSION_SCHEMA

--THIS SCHEMA CONTAINS THE ENTITIES USED TO BUILD XPRESSIONS
SCHEMA EXPRESSION_SCHEMA,

REFERENCE FROM TOP_SCHEMA,
REFERENCE FROM META_SCHEMA,;

(** **********************)
(*********************** EX P R ESS I O N S Kkkkkkkkkkkkkkk *************)
(** **********************)

--THIS ENTITY IS THE MAIN ENTRY TO REPRESENT CONSTRNTS, BASED ON ISO
TC184/SC4/WG2 N 375
ENTITY GENERIC_EXPRESSION
ABSTRACT SUPERTYPE
OF(ONEOF(SIMPLE_GENERIC_EXPRESSION,UNARY_GENERIC FRESSION,BINARY_GENERIC_
EXPRESSION,MULTIPLE_ARITY_GENERIC_EXPRESSION)):
WHERE
WR1: IS_ACYCLIC(SELF);
END_ENTITY;

ENTITY SIMPLE_GENERIC_EXPRESSION

ABSTRACT SUPERTYPE OF (ONEOF(GENERIC_LITERAL, GENERC_VARIABLE))
SUBTYPE OF (GENERIC_EXPRESSION);

END_ENTITY;

ENTITY GENERIC_LITERAL

ABSTRACT SUPERTYPE

SUBTYPE OF (SIMPLE_GENERIC_EXPRESSION);
END_ENTITY;

ENTITY GENERIC_VARIABLE
ABSTRACT SUPERTYPE
SUBTYPE OF (SIMPLE_GENERIC_EXPRESSION);
IDENTIFIER: STRING;
INVERSE
INTERPRETATION : ENVIRONMENT FOR SYNTACTIC_REPRESENTATION;
END_ENTITY;

--A VARIABLE_SEMANTICS ENTITY IS USED TO REPRESENTHE MEANING OF A
GENERIC_VARIABLE.

--IT IS AN ABSTRACT SUPERTYPE THAT SHALL BE SUBTYAEWHEREVER A
VARIABLE_SEMANTICS IS USED.

--A VARIABLE_SEMANTICS SHALL SPECIFY THE CONTEXT WIHIN WHICH THE VARIABLE
SHALL BE USED TOGETHER WITH THE INTERPRETATION

--FUNCTION THAT ASSOCIATES A VALUE WITH THIS VARIABLE

ENTITY VARIABLE_SEMANTICS
ABSTRACT SUPERTYPE;
END_ENTITY;

ENTITY ENVIRONMENT_VAR,;
SYNTACTIC_REPRESENTATION: OPTIONAL GENERIC_VARIABIE;
SEMANTICS: OPTIONAL VARIABLE_SEMANTICS;

END_ENTITY;

159

ENTITY UNARY_GENERIC_EXPRESSION

ABSTRACT SUPERTYPE

SUBTYPE OF(GENERIC_EXPRESSION);
OPERAND: GENERIC_EXPRESSION,;

END_ENTITY;

ENTITY BINARY_GENERIC_EXPRESSION
ABSTRACT SUPERTYPE
SUBTYPE OF(GENERIC_EXPRESSION);
OPERANDS: LIST [2:2] OF GENERIC_EXPRESSION;
END_ENTITY;

ENTITY MULTIPLE_ARITY_GENERIC_EXPRESSION
ABSTRACT SUPERTYPE
SUBTYPE OF(GENERIC_EXPRESSION);

OPERANDS: LIST [2:?] OF GENERIC_EXPRESSION;
END_ENTITY;

ENTITY EXPRESSION

ABSTRACT SUPERTYPE OF (ONEOF
(NUMERIC_EXPRESSION,BOOLEAN_EXPRESSION,STRING_EXPRHON))
SUBTYPE OF (GENERIC_EXPRESSION):

END_ENTITY;

ENTITY VARIABLE

ABSTRACT SUPERTYPE OF (ONEOF
(NUMERIC_VARIABLE,BOOLEAN_VARIABLE,STRING_VARIABLE)
SUBTYPE OF(GENERIC_VARIABLE);

END_ENTITY;

ENTITY DEFINED_FUNCTION

ABSTRACT SUPERTYPE OF ((ONEOF (NUMERIC_DEFINED_FUNTION,
STRING_DEFINED_FUNCTION,
BOOLEAN_DEFINED_FUNCTION)
)
);

END_ENTITY;

--NUMERIC SECTION

ENTITY NUMERIC_EXPRESSION
ABSTRACT SUPERTYPE OF (ONEOF
(SIMPLE_NUMERIC_EXPRESSION,UNARY_NUMERIC_EXPRESSIBMARY_NUMERIC_EXPRESSI
ON,MULTIPLE_ARITY_NUMERIC_EXPRESSION,
LENGTH_FUNCTION, VALUE_FUNCTION,

NUMERIC_DEFINED_FUNCTION))
SUBTYPE OF (EXPRESSION);

THE_VALUE: OPTIONAL NUMBER;
DERIVE

IS_INT: BOOLEAN := IS_INT_EXPR (SELF);
END_ENTITY;

ENTITY SIMPLE_NUMERIC_EXPRESSION

ABSTRACT SUPERTYPE OF (ONEOF (LITERAL_NUMBER, NUMEFC_VARIABLE))
SUBTYPE OF (NUMERIC_EXPRESSION, SIMPLE_GENERIC_EXPESSION);
END_ENTITY;

ENTITY LITERAL_NUMBER

ABSTRACT SUPERTYPE OF (ONEOF (INT_LITERAL, REAL_LIT ERAL))

SUBTYPE OF (SIMPLE_NUMERIC_EXPRESSION, GENERIC_LITERAL);
SELF\NUMERIC_EXPRESSION.THE_VALUE: NUMBER,;

160

END_ENTITY;

ENTITY INT_LITERAL

SUBTYPE OF (LITERAL_NUMBERY);
SELF\LITERAL_NUMBER.THE_VALUE: INTEGER,;

END_ENTITY;

ENTITY REAL_LITERAL

SUBTYPE OF (LITERAL_NUMBERY);
SELF\LITERAL_NUMBER.THE_VALUE: REAL;

END_ENTITY;

ENTITY NUMERIC_VARIABLE
SUPERTYPE OF (ONEOF (INT_NUMERIC_VARIABLE, REAL_NUMERIC_VARIABLE))
SUBTYPE OF (SIMPLE_NUMERIC_EXPRESSION, VARIABLE);
WHERE
WR1: (EXPRESSION_SCHEMA.INT_NUMERIC_VARIABLE'
IN TYPEOF(SELF)) OR
(EXPRESSION_SCHEMA.REAL_NUMERIC_VARIABLE'
IN TYPEOF(SELF));
END_ENTITY;

ENTITY INT_NUMERIC_VARIABLE
SUBTYPE OF (NUMERIC_VARIABLE);
END_ENTITY;

ENTITY REAL_NUMERIC_VARIABLE
SUBTYPE OF (NUMERIC_VARIABLE);
END_ENTITY;

ENTITY UNARY_NUMERIC_EXPRESSION

ABSTRACT SUPERTYPE OF (ONEOF (UNARY_FUNCTION_CALL))

SUBTYPE OF (NUMERIC_EXPRESSION, UNARY_GENERIC_EXPRISION);
SELF\UNARY_GENERIC_EXPRESSION.OPERAND : NUMERIC_ERRESSION;

END_ENTITY;

ENTITY BINARY_NUMERIC_EXPRESSION

ABSTRACT SUPERTYPE OF (ONEOF

(MINUS_EXPRESSION,DIV_EXPRESSION,MOD_EXPRESSION,SL$H_EXPRESSION,POWER_EXPR

ESSION))

SUBTYPE OF (NUMERIC_EXPRESSION, BINARY_GENERIC_EXPRSSION);
SELF\BINARY_GENERIC_EXPRESSION.OPERANDS : LIST[2: 2] OF

NUMERIC_EXPRESSION;

END_ENTITY;

ENTITY MULTIPLE_ARITY_NUMERIC_EXPRESSION

ABSTRACT SUPERTYPE OF (ONEOF (PLUS_EXPRESSION,

MULT_EXPRESSION,MULTIPLE_ARITY_FUNCTION_CALL))

SUBTYPE OF (NUMERIC_EXPRESSION, MULTIPLE_ARITY_GENRIC_EXPRESSION);
SELF\MULTIPLE_ARITY_GENERIC_EXPRESSION.OPERANDS LIST [2:?] OF

NUMERIC_EXPRESSION;

END_ENTITY;

ENTITY LENGTH_FUNCTION
SUBTYPE OF (NUMERIC_EXPRESSION, UNARY_GENERIC_EXPSION);
SELF\UNARY_GENERIC_EXPRESSION.OPERAND: STRING_EXHESSION;
DERIVE
SELFANUMERIC_EXPRESSION.THE_VALUE: INTEGER := LENG TH_FCT(SELF);
END_ENTITY;

ENTITY VALUE_FUNCTION

161

SUPERTYPE OF (INT_VALUE_FUNCTION)
SUBTYPE OF (NUMERIC_EXPRESSION, UNARY_GENERIC_EXPRSION);
SELF\UNARY_GENERIC_EXPRESSION.OPERAND: STRING_EXHAESSION;
DERIVE
SELF\NUMERIC_EXPRESSION.THE_VALUE: NUMBER := VALUE _FCT(SELF);
END_ENTITY;

ENTITY INT_VALUE_FUNCTION
SUBTYPE OF (VALUE_FUNCTION);
DERIVE
SELF\NUMERIC_EXPRESSION.THE_VALUE: INTEGER := INT_ VALUE_FCT(SELF);
END_ENTITY;

ENTITY NUMERIC_DEFINED_FUNCTION

ABSTRACT SUPERTYPE OF (ONEOF (INTEGER_DEFINED_FUNQADN,
REAL_DEFINED_FUNCTION))

SUBTYPE OF (NUMERIC_EXPRESSION, DEFINED_FUNCTION);

END_ENTITY;

ENTITY PLUS_EXPRESSION
SUBTYPE OF (MULTIPLE_ARITY_NUMERIC_EXPRESSION);
DERIVE
SELFANUMERIC_EXPRESSION.THE_VALUE: NUMBER := PLUS_ FUNCTION(SELF);
END_ENTITY;

ENTITY MULT_EXPRESSION
SUBTYPE OF (MULTIPLE_ARITY_NUMERIC_EXPRESSION);
DERIVE
SELF\NUMERIC_EXPRESSION.THE_VALUE: NUMBER := MULT_FUNCTION(SELF);
END_ENTITY;

ENTITY MINUS_EXPRESSION
SUBTYPE OF (BINARY_NUMERIC_EXPRESSION);
DERIVE
SELF\NUMERIC_EXPRESSION.THE_VALUE: NUMBER := MINUS _FCT(SELF);
END_ENTITY;

ENTITY DIV_EXPRESSION
SUBTYPE OF (BINARY_NUMERIC_EXPRESSION);
DERIVE
SELF\NUMERIC_EXPRESSION.THE_VALUE: NUMBER := DIV_F CT(SELF);
END_ENTITY;

ENTITY MOD_EXPRESSION
SUBTYPE OF (BINARY_NUMERIC_EXPRESSION);
DERIVE
SELF\NUMERIC_EXPRESSION.THE_VALUE: NUMBER := MOD_FCT(SELF);
END_ENTITY;

ENTITY SLASH_EXPRESSION
SUBTYPE OF (BINARY_NUMERIC_EXPRESSION);
DERIVE
SELF\NUMERIC_EXPRESSION.THE_VALUE: NUMBER := SLASH_FCT(SELF);
END_ENTITY;

ENTITY POWER_EXPRESSION
SUBTYPE OF (BINARY_NUMERIC_EXPRESSION);
DERIVE
SELF\NUMERIC_EXPRESSION.THE_VALUE: NUMBER := POWER FCT(SELF);
END_ENTITY;

162

ENTITY UNARY_FUNCTION_CALL
ABSTRACT SUPERTYPE
OF (ONEOF (
ABS_FUNCTION,
MINUS_FUNCTION,
SQUARE_ROOT_FUNCTION

SUBTYPE OF (UNARY_NUMERIC_EXPRESSION);
END_ENTITY;

ENTITY BINARY_FUNCTION_CALL

ABSTRACT SUPERTYPE

SUBTYPE OF (BINARY_NUMERIC_EXPRESSION);
END_ENTITY;

ENTITY MULTIPLE_ARITY_FUNCTION_CALL

ABSTRACT SUPERTYPE OF (ONEOF (MAXIMUM_FUNCTION,
MINIMUM_FUNCTION))

SUBTYPE OF (MULTIPLE_ARITY_NUMERIC_EXPRESSION);

END_ENTITY;

ENTITY ABS_FUNCTION
SUBTYPE OF (UNARY_FUNCTION_CALL);
DERIVE
SELF\NUMERIC_EXPRESSION.THE_VALUE: NUMBER := ABS_F CT(SELF);
END_ENTITY;

ENTITY SQUARE_ROOT_FUNCTION
SUBTYPE OF (UNARY_FUNCTION_CALL);
DERIVE

SELF\NUMERIC_EXPRESSION.THE_VALUE: NUMBER := SQUARE_FCT(SELF);
END_ENTITY;

ENTITY MINUS_FUNCTION
SUBTYPE OF (UNARY_FUNCTION_CALL);
DERIVE
SELF\NUMERIC_EXPRESSION.THE_VALUE: NUMBER := MINUS _UNARY_FCT(SELF);
END_ENTITY;

ENTITY MAXIMUM_FUNCTION
SUBTYPE OF (MULTIPLE_ARITY_FUNCTION_CALL);
DERIVE
SELF\NUMERIC_EXPRESSION.THE_VALUE: NUMBER := MAXIMUM_FCT(SELF);
END_ENTITY;

ENTITY MINIMUM_FUNCTION
SUBTYPE OF (MULTIPLE_ARITY_FUNCTION_CALL);
DERIVE
SELF\NUMERIC_EXPRESSION.THE_VALUE: NUMBER := MINIM UM_FCT(SELF);
END_ENTITY;

ENTITY INTEGER_DEFINED_FUNCTION
ABSTRACT SUPERTYPE

SUBTYPE OF (NUMERIC_DEFINED_FUNCTION);
END_ENTITY ;

ENTITY REAL_DEFINED_FUNCTION

ABSTRACT SUPERTYPE

SUBTYPE OF (NUMERIC_DEFINED_FUNCTION);
END_ENTITY ;

163

--BOOLEAN SECTION

ENTITY BOOLEAN_EXPRESSION
ABSTRACT SUPERTYPE OF (ONEOF
(SIMPLE_BOOLEAN_EXPRESSION,UNARY_BOOLEAN_EXPRESSEINARY_BOOLEAN_EXPRESSI
ON,MULTIPLE_ARITY_BOOLEAN_EXPRESSION,COMPARISON_EBR&SSION,
INTERVAL_EXPRESSION,BOOLEAN_DEFINED_FUNCTION}))

SUBTYPE OF (EXPRESSION);

THE_VALUE: OPTIONAL BOOLEAN;
END_ENTITY;

ENTITY SIMPLE_BOOLEAN_EXPRESSION

ABSTRACT SUPERTYPE OF (ONEOF (BOOLEAN_LITERAL,
BOOLEAN_VARIABLE))

SUBTYPE OF (BOOLEAN_EXPRESSION, SIMPLE_GENERIC_EXPESSION);

END_ENTITY;

ENTITY BOOLEAN_LITERAL

SUBTYPE OF (SIMPLE_BOOLEAN_EXPRESSION, GENERIC_LITERAL);
SELF\BOOLEAN_EXPRESSION.THE_VALUE: BOOLEAN;

END_ENTITY;

ENTITY BOOLEAN_VARIABLE
SUBTYPE OF (SIMPLE_BOOLEAN_EXPRESSION, VARIABLE);
END_ENTITY;

ENTITY UNARY_BOOLEAN_EXPRESSION

ABSTRACT SUPERTYPE OF (ONEOF (NOT_EXPRESSION, ODD_BNCTION))
SUBTYPE OF (BOOLEAN_EXPRESSION, UNARY_GENERIC_EXPREION);
END_ENTITY;

ENTITY NOT_EXPRESSION
SUBTYPE OF (UNARY_BOOLEAN_EXPRESSION);
SELFAUNARY_GENERIC_EXPRESSION.OPERAND: BOOLEAN_EXSSION;
DERIVE

SELF\BOOLEAN_EXPRESSION.THE_VALUE: BOOLEAN := NOT_FCT(SELF);
END_ENTITY;

ENTITY ODD_FUNCTION
SUBTYPE OF (UNARY_BOOLEAN_EXPRESSION);
SELF\UNARY_GENERIC_EXPRESSION.OPERAND: NUMERIC_EXPESION;
DERIVE

SELF\BOOLEAN_EXPRESSION.THE_VALUE: BOOLEAN := ODD_FCT(SELF);
END_ENTITY;

ENTITY BINARY_BOOLEAN_EXPRESSION

ABSTRACT SUPERTYPE OF (ONEOF (XOR_EXPRESSION, EQUAE_EXPRESSION))
SUBTYPE OF (BOOLEAN_EXPRESSION, BINARY_GENERIC_EXPESSION);
END_ENTITY;

ENTITY MULTIPLE_ARITY_BOOLEAN_EXPRESSION

ABSTRACT SUPERTYPE OF (ONEOF (AND_EXPRESSION, OR_ERRESSION))

SUBTYPE OF (BOOLEAN_EXPRESSION, MULTIPLE_ARITY_GENRIC_EXPRESSION);
SELF\MULTIPLE_ARITY_GENERIC_EXPRESSION.OPERANDS LIST [2:?] OF

BOOLEAN_EXPRESSION;

END_ENTITY;

ENTITY XOR_EXPRESSION

SUBTYPE OF (BINARY_BOOLEAN_EXPRESSION);
SELF\BINARY_GENERIC_EXPRESSION.OPERANDS: LIST [2:2]OF

BOOLEAN_EXPRESSION;

164

DERIVE
SELF\BOOLEAN_EXPRESSION.THE_VALUE: BOOLEAN := XOR_FCT(SELF);
END_ENTITY;

ENTITY EQUALS_EXPRESSION
SUBTYPE OF (BINARY_BOOLEAN_EXPRESSION);
DERIVE
SELF\BOOLEAN_EXPRESSION.THE_VALUE: BOOLEAN := EQUALS_FCT(SELF);
END_ENTITY;

ENTITY AND_EXPRESSION
SUBTYPE OF (MULTIPLE_ARITY_BOOLEAN_EXPRESSION);
DERIVE
SELF\BOOLEAN_EXPRESSION.THE_VALUE: BOOLEAN := AND_FCT(SELF);
END_ENTITY;

ENTITY OR_EXPRESSION
SUBTYPE OF (MULTIPLE_ARITY_BOOLEAN_EXPRESSION);
DERIVE
SELF\BOOLEAN_EXPRESSION.THE_VALUE: BOOLEAN := OR_FCT(SELF);
END_ENTITY;

ENTITY COMPARISON_EXPRESSION

ABSTRACT SUPERTYPE OF (ONEOF

(COMPARISON_EQUAL,COMPARISON_GREATER,COMPARISONATRE EQUAL,COMPARISON_LE

SS,COMPARISON_LESS_EQUAL,COMPARISON_NOT_EQUAL,LIKEXPRESSION))

SUBTYPE OF (BOOLEAN_EXPRESSION, BINARY_GENERIC_EXPESSION);
SELF\BINARY_GENERIC_EXPRESSION.OPERANDS : LIST[2: 2] OF EXPRESSION:;

END_ENTITY;

ENTITY COMPARISON_EQUAL
SUBTYPE OF (COMPARISON_EXPRESSION);
DERIVE
SELF\BOOLEAN_EXPRESSION.THE_VALUE: BOOLEAN :
COMPARISON_EQUAL_FCT(SELF);
END_ENTITY;

ENTITY COMPARISON_GREATER
SUBTYPE OF (COMPARISON_EXPRESSION);
DERIVE
SELF\BOOLEAN_EXPRESSION.THE_VALUE: BOOLEAN :
COMPARISON_GREATER_FCT(SELF);
END_ENTITY;

ENTITY COMPARISON_GREATER_EQUAL
SUBTYPE OF (COMPARISON_EXPRESSION);
DERIVE
SELF\BOOLEAN_EXPRESSION.THE_VALUE: BOOLEAN :
COMPARISON_GREATER_EQUAL_FCT(SELF);
END_ENTITY;

ENTITY COMPARISON_LESS
SUBTYPE OF (COMPARISON_EXPRESSION);
DERIVE

SELF\BOOLEAN_EXPRESSION.THE_VALUE: BOOLEAN :
COMPARISON_LESS_FCT(SELF);
END_ENTITY;

ENTITY COMPARISON_LESS_EQUAL
SUBTYPE OF (COMPARISON_EXPRESSION);
DERIVE

165

SELF\BOOLEAN_EXPRESSION.THE_VALUE: BOOLEAN :
COMPARISON_LESS_EQUAL_FCT(SELF);
END_ENTITY;

ENTITY COMPARISON_NOT_EQUAL
SUBTYPE OF (COMPARISON_EXPRESSION);
DERIVE
SELF\BOOLEAN_EXPRESSION.THE_VALUE: BOOLEAN :
COMPARISON_NOT_EQUAL_FCT(SELF);
END_ENTITY;

ENTITY LIKE_EXPRESSION
SUBTYPE OF (COMPARISON_EXPRESSION);
DERIVE
SELF\BOOLEAN_EXPRESSION.THE_VALUE: BOOLEAN := LIKE _FCT(SELF);
WHERE
WR1: (EXPRESSION_SCHEMA.STRING_EXPRESSION'
IN TYPEOF(SELF\COMPARISON_EXPRESSION.OPERANDS[1])) AND
(EXPRESSION_SCHEMA.STRING_EXPRESSION'
IN TYPEOF(SELF\COMPARISON_EXPRESSION.OPERANDS[2]));
END_ENTITY;

ENTITY INTERVAL_EXPRESSION
SUBTYPE OF (BOOLEAN_EXPRESSION, MULTIPLE_ARITY_BOOEAN_EXPRESSION) ;
DERIVE
INTERVAL_LOW: GENERIC_EXPRESSION
= SELF\MULTIPLE_ARITY_BOOLEAN_EXPRESSION.OPERAN DS[1];
INTERVAL_ITEM: GENERIC_EXPRESSION
:= SELF\MULTIPLE_ARITY_BOOLEAN_EXPRESSION.OPERAN DS[2];
INTERVAL_HIGH: GENERIC_EXPRESSION
:= SELF\MULTIPLE_ARITY_BOOLEAN_EXPRESSION.OPERAN DS[3];
SELF\BOOLEAN_EXPRESSION.THE_VALUE: BOOLEAN := INTE RVAL_FCT(SELF);
WHERE
WR1:(EXPRESSION_SCHEMA.EXPRESSION'
IN TYPEOF(INTERVAL_LOW))
AND (EXPRESSION_SCHEMA.EXPRESSION'
IN TYPEOF(INTERVAL_ITEM))
AND (EXPRESSION_SCHEMA.EXPRESSION'
IN TYPEOF(INTERVAL_HIGH));
WR2:((EXPRESSION_SCHEMA.STRING_EXPRESSION'
IN TYPEOF (SELF.INTERVAL_LOW))
AND (EXPRESSION_SCHEMA.STRING_EXPRESSION'
IN TYPEOF (SELF.INTERVAL_HIGH))
AND (EXPRESSION_SCHEMA.STRING_EXPRESSION'
IN TYPEOF (SELF.INTERVAL_ITEM)))
OR
((EXPRESSION_SCHEMA.NUMERIC_EXPRESSION'
IN TYPEOF(SELF.INTERVAL_LOW))
AND (EXPRESSION_SCHEMA.NUMERIC_EXPRESSION'
IN TYPEOF(SELF.INTERVAL_ITEM))
AND (EXPRESSION_SCHEMA.NUMERIC_EXPRESSION'
IN TYPEOF(SELF.INTERVAL_HIGH))):
END_ENTITY;

ENTITY BOOLEAN_DEFINED_FUNCTION

ABSTRACT SUPERTYPE

SUBTYPE OF (DEFINED_FUNCTION, BOOLEAN_EXPRESSION);
END_ENTITY ;

--STRING SECTION

166

ENTITY STRING_EXPRESSION
ABSTRACT SUPERTYPE OF (ONEOF
(SIMPLE_STRING_EXPRESSION,INDEX_EXPRESSION,SUBSTRINs_EXPRESSION,CONCAT_EXPR
ESSION,FORMAT_FUNCTION,STRING_DEFINED_FUNCTION))
SUBTYPE OF (EXPRESSION):;

THE_VALUE: OPTIONAL STRING;
END_ENTITY;

ENTITY SIMPLE_STRING_EXPRESSION

ABSTRACT SUPERTYPE OF (ONEOF (STRING_LITERAL, STRIN G_VARIABLE))
SUBTYPE OF (STRING_EXPRESSION, SIMPLE_GENERIC_EXPRISSION);
END_ENTITY;

ENTITY STRING_LITERAL

SUBTYPE OF (SIMPLE_STRING_EXPRESSION, GENERIC_LITERAL);
SELR\STRING_EXPRESSION.THE_VALUE: STRING;

END_ENTITY;

ENTITY STRING_VARIABLE
SUBTYPE OF (SIMPLE_STRING_EXPRESSION, VARIABLE);
END_ENTITY;

ENTITY INDEX_EXPRESSION
SUBTYPE OF (STRING_EXPRESSION, BINARY_GENERIC_EXPRESION);
DERIVE

OPERAND:GENERIC_EXPRESSION:=
SELF\BINARY_GENERIC_EXPRESSION.OPERANDSIL];

INDEX:GENERIC_EXPRESSION:=
SELF\BINARY_GENERIC_EXPRESSION.OPERANDS[2];

SELF\STRING_EXPRESSION.THE_VALUE: STRING := INDEX_ FCT(SELF);
WHERE

WR1: (EXPRESSION_SCHEMA.STRING_EXPRESSION' IN TYP EOF(OPERAND))

AND (EXPRESSION_SCHEMA.NUMERIC_EXPRESSION'
IN TYPEOF(INDEX));

WR2: IS_INT_EXPR (INDEX);

END_ENTITY;

ENTITY SUBSTRING_EXPRESSION
SUBTYPE OF (STRING_EXPRESSION, MULTIPLE_ARITY_GENERC_EXPRESSION);
DERIVE
OPERAND:GENERIC_EXPRESSION:=SELF\MULTIPLE_ARITY_GEERIC_EXPRESSION.OP
ERANDSI1];
INDEX1:GENERIC_EXPRESSION:=
SELF\MULTIPLE_ARITY_GENERIC_EXPRESSION.OPERANDS[Z];
INDEX2:GENERIC_EXPRESSION:=
SELF\MULTIPLE_ARITY_GENERIC_EXPRESSION.OPERANDS[3];
SELF\STRING_EXPRESSION.THE_VALUE: STRING := SUBSTR ING_FCT(SELF);
WHERE
WR1: (EXPRESSION_SCHEMA.STRING_EXPRESSION' IN TYP EOF(OPERAND))
AND (EXPRESSION_SCHEMA.NUMERIC_EXPRESSION' IN
TYPEOF(INDEXL1))
AND (EXPRESSION_SCHEMA.EXPRESSIONS_SCHEMA' IN
TYPEOF(INDEX2));
WR2: SIZEOF(SELF\MULTIPLE_ARITY_GENERIC_EXPRESSION .OPERANDS)=3;
WR3: IS_INT_EXPR (INDEXL);
WR4: IS_INT_EXPR (INDEX2);
END_ENTITY;

ENTITY CONCAT_EXPRESSION
SUBTYPE OF (STRING_EXPRESSION, MULTIPLE_ARITY_GENERC_EXPRESSION);

167

SELF\MULTIPLE_ARITY_GENERIC_EXPRESSION.OPERANDS: LIST [2 : ?] OF
STRING_EXPRESSION,;
DERIVE

SELR\STRING_EXPRESSION.THE_VALUE: STRING := CONCAT _FCT(SELF);
END_ENTITY;

ENTITY FORMAT_FUNCTION
SUBTYPE OF (STRING_EXPRESSION, BINARY_GENERIC_EXPRESION);
DERIVE

VALUE_TO_FORMAT: GENERIC_EXPRESSION:=
SELF\BINARY_GENERIC_EXPRESSION.OPERANDSIL];

FORMAT_STRING: GENERIC_EXPRESSION:=
SELF\BINARY_GENERIC_EXPRESSION.OPERANDS[2];

SELF\STRING_EXPRESSION.THE_VALUE: STRING := FORMAT _FCT(SELF);
WHERE

WR1: ((EXPRESSION_SCHEMA.NUMERIC_EXPRESSION') IN
TYPEOF(VALUE_TO_FORMAT))

AND ((EXPRESSION_SCHEMA.STRING_EXPRESSION') IN

TYPEOF(FORMAT_STRING));
END_ENTITY;

ENTITY STRING_DEFINED_FUNCTION
ABSTRACT SUPERTYPE
SUBTYPE OF (DEFINED_FUNCTION, STRING_EXPRESSION);

END_ENTITY ;

(** *********************)
(***** GENERAL FUNCTIONS *****)
(** *********************)

FUNCTION IS_INT_EXPR (ARG: NUMERIC_EXPRESSION) : BO OLEAN;

LOCAL
I INTEGER;
END_LOCAL;

IF 'EXPRESSION_SCHEMA.INT_LITERAL' IN TYPEOF(ARG)
THEN
RETURN (TRUE);
END_IF;
IF 'EXPRESSION_SCHEMA.REAL_LITERAL' INTYPEOF(AR G)
THEN
RETURN (FALSE);
END_IF;
IF 'EXPRESSION_SCHEMA.INT_NUMERIC_VARIABLE' INT YPEOF(ARG)
THEN
RETURN (TRUE);
END_IF;
IF 'EXPRESSION_SCHEMA.REAL_NUMERIC_VARIABLE' IN TYPEOF(ARG)
THEN
RETURN (FALSE);
END_IF;
IF 'EXPRESSION_SCHEMA.ABS_FUNCTION' IN TYPEOF(AR G)
THEN
RETURN (IS_INT_EXPR(ARG\UNARY_NUMERIC_EXPRESSION.®ERAND));
END_IF;
IF 'EXPRESSION_SCHEMA.MINUS_FUNCTION' IN TYPEOF(ARG)
THEN
RETURN (IS_INT_EXPR(ARG\UNARY_NUMERIC_EXPRESSION.®ERAND));
END_IF;

168

IF ('EXPRESSION_SCHEMA.PLUS_EXPRESSION' INTYPE OF(ARG))

THEN

OR ('EXPRESSION_SCHEMA.MULT_EXPRESSION'

IN TYPEOF(ARG))
OR ('EXPRESSION_SCHEMA.MAXIMUM_FUNCTION'

IN TYPEOF(ARG))
OR ('EXPRESSION_SCHEMA.MINIMUM_FUNCTION'

IN TYPEOF(ARG))

REPEAT | :=1 TO SIZEOF (
ARG\MULTIPLE_ARITY_NUMERIC_EXPRESSION.OPERANDS);
IF NOT
IS_INT_EXPR(ARG\MULTIPLE_ARITY_NUMERIC_EXPRESSION .OPERANDS]I])
THEN
RETURN (FALSE);
END_IF;
END_REPEAT;
RETURN (TRUE);

END_IF;
IF ~('EXPRESSION_SCHEMA.MINUS_EXPRESSION' INTYP EOF(ARG))

THEN

OR ('EXPRESSION_SCHEMA.POWER_EXPRESSION'
IN TYPEOF(ARG))

RETURN (IS_INT_EXPR(ARG\BINARY_NUMERIC_EXPRESSION.OPERANDS[1])
AND IS_INT_EXPR(ARG\BINARY_NUMERIC_EXPRESSION.OPE RANDS[2])):;

END_IF;

IF

THEN

('EXPRESSION_SCHEMA.DIV_EXPRESSION' IN TYPEOF (ARG))

OR ('EXPRESSION_SCHEMA.MOD_EXPRESSION' INTYPE OF(ARG))

RETURN(TRUE); (*ALWAYS DELIVER AN INTEGER RESULT *)

END_IF;
IF 'EXPRESSION_SCHEMA.SLASH_EXPRESSION' IN TYPEO F(ARG)

THEN

RETURN (FALSE); (* ALWAYS DELIVERS A REAL RESULT)

END_IF;
IF 'EXPRESSION_SCHEMA.LENGTH_FUNCTION' IN TYPEOF (ARG)

THEN

RETURN (TRUE);

END_IF;
IF 'EXPRESSION_SCHEMA.VALUE_FUNCTION' IN TYPEOF(ARG)

THEN

IF 'EXPRESSION_SCHEMA.INT_VALUE_FUNCTION
IN TYPEOF(ARG)
THEN
RETURN (TRUE);
ELSE
RETURN (FALSE);
END_IF;

END_IF;
IF 'EXPRESSION_SCHEMA.INTEGER_DEFINED_FUNCTION'

THEN

IN TYPEOF(ARG)

RETURN(TRUE) ;

END_IF;
IF 'EXPRESSION_SCHEMA.REAL_DEFINED_FUNCTION' INT YPEOF(ARG)

THEN

RETURN(FALSE) ;

END_IF ;
IF 'EXPRESSION_SCHEMA.BOOLEAN_DEFINED_FUNCTION'

THEN

IN TYPEOF(ARG)
RETURN(FALSE) ;

169

END_IF;
IF 'EXPRESSION_SCHEMA.STRING_DEFINED_FUNCTION'
IN TYPEOF(ARG)

THEN

RETURN (FALSE) ;
END_IF ;
(* IF ANOTHER GENERIC_EXPRESSION IS INVOLVED THAT | S NOT A SUBTYPE OF
INTEGER_DEFINED_FUNCTION THEN ITS RESULT IS NOT INT EGER. *)
RETURN (FALSE);

END_FUNCTION; -- IS_INT_EXPR

FUNCTION IS_ACYCLIC (ARG: GENERIC_EXPRESSION): BOOL EAN
RETURN (ACYCLIC (ARG, []));
END_FUNCTION ; -- IS_ACYCLIC

FUNCTION ACYCLIC (ARG1: GENERIC_EXPRESSION;
ARG2: SET OF GENERIC_EXPRESSION): BOOLEAN;

LOCAL
RESULT: BOOLEAN = TRUE;
END_LOCAL,

IF (EXPRESSION_SCHEMA.SIMPLE_GENERIC_EXPRESSION'
IN TYPEOF (ARG1))

THEN
RETURN (TRUE);

END_IF;

IF ARG1 IN ARG2
THEN

RETURN (FALSE);
END_IF;

IF 'EXPRESSION_SCHEMA.UNARY_GENERIC_EXPRESSION'
IN TYPEOF (ARG1)
THEN
RETURN
(ACYCLIC(ARG1\UNARY_GENERIC_EXPRESSION.OPERAND,ARG[ARG1)));
END_IF;

IF 'EXPRESSION_SCHEMA.BINARY_GENERIC_EXPRESSION'
IN TYPEOF (ARG1)
THEN
RETURN
(ACYCLIC(ARG1\BINARY_GENERIC_EXPRESSION.OPERANDS[],ARG2+[ARG1])
AND
ACYCLIC(ARG1\BINARY_GENERIC_EXPRESSION.OPERANDS[2]ARG2+[ARG1]));
END_IF;

IF
'EXPRESSION_SCHEMA.MULTIPLE_ARITY_GENERIC_EXPRESSND
IN TYPEOF (ARG1)
THEN
RESULT := TRUE;
REPEAT |:=1TO
SIZEOF (ARG1\MULTIPLE_ARITY_GENERIC_EXPRESSION.O PERANDS);
RESULT := RESULT AND
ACYCLIC(ARG1\MULTIPLE_ARITY_GENERIC_EXPRESSION.OP ERANDS]I],
ARG2+[ARG1]);
END_REPEAT

170

RETURN (RESULT);
END_IF;

RETURN (RESULT);
END_FUNCTION; -- ACYCLIC

FUNCTION PLUS_FUNCTION (ARG: NUMERIC_EXPRESSION) : NUMBER,;

LOCAL

I: INTEGER;

SUM: NUMBER :=0;
END_LOCAL;

--HYP: THE OPERANDS ARE CORRECT NUMBERS THAT CAN BE
EVALUATED/OBTAINED

REPEAT | :=1 TO SIZEOF
(ARG\MULTIPLE_ARITY_NUMERIC_EXPRESSION.OPERANDS);

SUM := SUM +

ARG\MULTIPLE_ARITY_NUMERIC_EXPRESSION.OPERANDSII]. THE_VALUE;

END_REPEAT;

RETURN (SUM);

END_FUNCTION; -- PLUS_FUNCTION
FUNCTION MULT_FUNCTION (ARG: NUMERIC_EXPRESSION) : NUMBER,;

LOCAL

I INTEGER;

MULT: NUMBER :=1;
END_LOCAL;

-HYP: THE OPERANDS ARE CORRECT NUMBERS THAT CAN BE
EVALUATED/OBTAINED

REPEAT | :=1 TO SIZEOF
(ARG\MULTIPLE_ARITY_NUMERIC_EXPRESSION.OPERANDS);

MULT := MULT *

ARG\MULTIPLE_ARITY_NUMERIC_EXPRESSION.OPERANDSI].THE_VALUE;

END_REPEAT;

RETURN (MULT);

END_FUNCTION; -- MULT_FUNCTION

FUNCTION MINUS_FCT (ARG: NUMERIC_EXPRESSION) : NUMB ER;
--HYP: THE OPERANDS ARE CORRECT NUMBERS THAT CANEEEVALUATED/OBTAINED
RETURN (ARG\BINARY_NUMERIC_EXPRESSION.OPERANDS[1]THE_VALUE-
ARG\BINARY_NUMERIC_EXPRESSION.OPERANDS[2]. THE_VALUE

END_FUNCTION; -- MINUS_FCT

FUNCTION DIV_FCT (ARG: NUMERIC_EXPRESSION) : NUMBER ;
--HYP: THE OPERANDS ARE CORRECT NUMBERS THAT CANEEEVALUATED/OBTAINED
RETURN (ARG\BINARY_NUMERIC_EXPRESSION.OPERANDS[1]THE_VALUE DIV
ARG\BINARY_NUMERIC_EXPRESSION.OPERANDS[2]. THE_VALUE

END_FUNCTION; -- DIV_FUNCTION
FUNCTION MOD_FCT (ARG: NUMERIC_EXPRESSION) : NUMBER
--HYP: THE OPERANDS ARE CORRECT NUMBERS THAT CANEEEVALUATED/OBTAINED

RETURN (ARG\BINARY_NUMERIC_EXPRESSION.OPERANDS[1]THE_VALUE MOD
ARG\BINARY_NUMERIC_EXPRESSION.OPERANDS[2]. THE_VALUE

171

END_FUNCTION; -- MOD_FUNCTION

FUNCTION SLASH_FCT (ARG: NUMERIC_EXPRESSION) : NUMB ER;
--HYP: THE OPERANDS ARE CORRECT NUMBERS THAT CANEEEVALUATED/OBTAINED
RETURN (ARG\BINARY_NUMERIC_EXPRESSION.OPERANDS[1]THE_VALUE /
ARG\BINARY_NUMERIC_EXPRESSION.OPERANDS[2]. THE_VALUE
END_FUNCTION; -- SLASH_FUNCTION

FUNCTION POWER_FCT (ARG: NUMERIC_EXPRESSION) : NUMEER;
—-HYP: THE OPERANDS ARE CORRECT NUMBERS THAT CANEEEVALUATED/OBTAINED
RETURN (ARG\BINARY_NUMERIC_EXPRESSION.OPERANDS[1]THE_VALUE **
ARG\BINARY_NUMERIC_EXPRESSION.OPERANDS[2]. THE_VALUE
END_FUNCTION; -- POWER_FUNCTION

FUNCTION MINUS_UNARY_FCT (ARG: NUMERIC_EXPRESSION): NUMBER;
--HYP: THE OPERANDS ARE CORRECT NUMBERS THAT CANEEEVALUATED/OBTAINED
RETURN (-ARG\UNARY_NUMERIC_EXPRESSION.OPERAND.THEALUE);
END_FUNCTION; -- MINUS_UNARY_FUNCTION

FUNCTION MAXIMUM_FCT (ARG: NUMERIC_EXPRESSION) : NUMBER;
LOCAL
I INTEGER;
RES: NUMBER := 0;
END_LOCAL;
--HYP: THE OPERANDS ARE CORRECT NUMBERS THAT CANEEEVALUATED/OBTAINED
REPEAT | :=1 TO SIZEOF
(ARG\MULTIPLE_ARITY_NUMERIC_EXPRESSION.OPERANDS);

IF (I=1) THEN RES :=
ARG\MULTIPLE_ARITY_NUMERIC_EXPRESSION.OPERANDSI].THE_VALUE;

END_IF;

IF
(ARG\MULTIPLE_ARITY_NUMERIC_EXPRESSION.OPERANDSJI]. THE_VALUE>RES) THEN RES
= ARG\MULTIPLE_ARITY_NUMERIC_EXPRESSION.OPERANDS][I.THE_VALUE;

END_IF;

END_REPEAT;
RETURN (RES);
END_FUNCTION; -- MAXIMUM_FUNCTION

FUNCTION MINIMUM_FCT (ARG: NUMERIC_EXPRESSION) : NU MBER;
LOCAL

I INTEGER;

RES: NUMBER := 0;
END_LOCAL;

-HYP: THE OPERANDS ARE CORRECT NUMBERS THAT CAN BE
EVALUATED/OBTAINED

REPEAT | :=1 TO SIZEOF
(ARG\MULTIPLE_ARITY_NUMERIC_EXPRESSION.OPERANDS);

IF (I=1) THEN RES :=
ARG\MULTIPLE_ARITY_NUMERIC_EXPRESSION.OPERANDSI].THE_VALUE;

END_IF;

IF
(ARG\MULTIPLE_ARITY_NUMERIC_EXPRESSION.OPERANDSJI]. THE_VALUE<RES) THEN RES
‘= ARG\MULTIPLE_ARITY_NUMERIC_EXPRESSION.OPERANDS][I.THE_VALUE;

END_IF;

END_REPEAT;
RETURN (RES);
END_FUNCTION; -- MINIMUM_FUNCTION

FUNCTION LENGTH_FCT (ARG: LENGTH_FUNCTION) : INTEGE R;
LOCAL
STR: STRING;

172

END_LOCAL;
STR := ARG.OPERAND.THE_VALUE;
RETURN (LENGTH(STR));
END_FUNCTION; -- LENGTH_FUNCTION

FUNCTION VALUE_FCT (ARG: NUMERIC_EXPRESSION) : NUMB ER;
--HYP: THE OPERANDS ARE CORRECT NUMBERS THAT CANEEEVALUATED/OBTAINED
RETURN (VALUE(ARG\VALUE_FUNCTION.OPERAND.THE_VALUJE

END_FUNCTION; -- VALUE_FUNCTION

FUNCTION INT_VALUE_FCT (ARG: NUMERIC_EXPRESSION) : INTEGER,;
--HYP: THE OPERANDS ARE CORRECT NUMBERS THAT CANEEEVALUATED/OBTAINED
RETURN (VALUE(ARG\VALUE_FUNCTION.OPERAND.THE_VALUJ;

END_FUNCTION; -- INT_VALUE_FUNCTION

FUNCTION ABS_FCT (ARG: NUMERIC_EXPRESSION) : NUMBER;
--HYP: THE OPERANDS ARE CORRECT NUMBERS THAT CANEEEVALUATED/OBTAINED
RETURN (ABS(ARG\UNARY_NUMERIC_EXPRESSION.OPERANCHE_VALUE));
END_FUNCTION; -- ABS_FUNCTION

FUNCTION NOT_FCT (ARG: BOOLEAN_EXPRESSION) : BOOLEAN;
RETURN (NOT(ARG\NOT_EXPRESSION.OPERAND.THE_VALUE))
END_FUNCTION; -- NOT_FUNCTION

FUNCTION ODD_FCT (ARG: BOOLEAN_EXPRESSION) : BOOLEAN;
RETURN (ODD(ARG\ODD_FUNCTION.OPERAND.THE_VALUE));
END_FUNCTION; -- ODD_FUNCTION

FUNCTION XOR_FCT (ARG: BOOLEAN_EXPRESSION) : BOOLEAN;
RETURN (ARG\XOR_EXPRESSION.OPERANDS[1].THE_VALUE XOR

ARG\XOR_EXPRESSION.OPERANDS[2].THE_VALUE);

END_FUNCTION; -- XOR_FUNCTION

FUNCTION EQUALS_FCT (ARG: BOOLEAN_EXPRESSION) : BOOLEAN;

RETURN (ARG\BINARY_GENERIC_EXPRESSION.OPERANDS[1].THE_VALUE :=:
ARG\BINARY_GENERIC_EXPRESSION.OPERANDS[2].THE_VALUE
END_FUNCTION; -- EQUALS_FUNCTION

FUNCTION AND_FCT (ARG: BOOLEAN_EXPRESSION) : BOOLEAN,;

LOCAL
I INTEGER;
END_LOCAL;
REPEAT | :=1 TO SIZEOF
(ARG\MULTIPLE_ARITY_BOOLEAN_EXPRESSION.OPERANDS);
IF (EXPRESSION_SCHEMA.BOOLEAN_EXPRESSION' IN TYP EOF
(ARG\MULTIPLE_ARITY_BOOLEAN_EXPRESSION.OPERANDSII])) THEN
IF
(NOT(ARG\MULTIPLE_ARITY_BOOLEAN_EXPRESSION.OPERANPISTHE_VALUE)) THEN
RETURN(FALSE):
END_IF;
ELSE
RETURN(FALSE);
END_IF;
END_REPEAT;
RETURN (TRUE);
END_FUNCTION; -- AND_FUNCTION

FUNCTION OR_FCT (ARG: BOOLEAN_EXPRESSION) : BOOLEAN;

173

LOCAL
I INTEGER;
END_LOCAL;
REPEAT | :=1 TO SIZEOF
(ARG\MULTIPLE_ARITY_BOOLEAN_EXPRESSION.OPERANDS);
IF (EXPRESSION_SCHEMA.BOOLEAN_EXPRESSION' IN TYP EOF
(ARG\MULTIPLE_ARITY_BOOLEAN_EXPRESSION.OPERANDSJI])) THEN
IF
(ARG\MULTIPLE_ARITY_BOOLEAN_EXPRESSION.OPERANDS][I].THE_VALUE) THEN
RETURN(TRUE);
END_IF;
ELSE
RETURN(FALSE);
END_IF;
END_REPEAT;
RETURN (FALSE);
END_FUNCTION; -- OR_FUNCTION

FUNCTION COMPARISON_EQUAL_FCT (ARG: BOOLEAN_EXPRHSSI) : BOOLEAN;
LOCAL
COMPARE: BOOLEAN;
END_LOCAL;
COMPARE := (ARG\BINARY_GENERIC_EXPRESSION.OPERANDR].THE_VALUE =
ARG\BINARY_GENERIC_EXPRESSION.OPERANDS[2].THE_VALUE
IF (COMPARE) THEN
TRACE_FUNCTION(ARG, EQUAL TRUE);
ELSE
TRACE_FUNCTION(ARG, EQUAL FALSE);
END_IF;
RETURN(COMPARE);
END_FUNCTION; -- COMPARISON_EQUAL_FUNCTION

FUNCTION COMPARISON_GREATER_FCT (ARG: BOOLEAN_EXPSSON) : BOOLEAN;
LOCAL
COMPARE: BOOLEAN;
END_LOCAL;
COMPARE := (ARG\BINARY_GENERIC_EXPRESSION.OPERANDR].THE_VALUE >
ARG\BINARY_GENERIC_EXPRESSION.OPERANDS[2].THE_VALUE
IF (COMPARE) THEN
TRACE_FUNCTION(ARG, GREATER TRUE));
ELSE
TRACE_FUNCTION(ARG, GREATER FALSE');
END_IF;
RETURN(COMPARE);
END_FUNCTION; -- COMPARISON_GREATER_FUNCTION

FUNCTION COMPARISON_GREATER_EQUAL_FCT (ARG: BOOLEAXPRESSION) : BOOLEAN;
LOCAL
COMPARE: BOOLEAN;
END_LOCAL;
COMPARE := (ARG\BINARY_GENERIC_EXPRESSION.OPERANDR].THE_VALUE >=
ARG\BINARY _GENERIC_EXPRESSION.OPERANDS[2].THE_VALUE
IF (COMPARE) THEN
TRACE_FUNCTION(ARG, EQUAL GREATER TRUE));
ELSE
TRACE_FUNCTION(ARG, EQUAL GREATER FALSE));
END_IF;
RETURN(COMPARE);
END_FUNCTION; -- COMPARISON_GREATER_EQUAL_FUNCTION

174

FUNCTION COMPARISON_LESS_FCT (ARG: BOOLEAN_EXPRESON) : BOOLEAN;
LOCAL
COMPARE: BOOLEAN;
END_LOCAL;
COMPARE := (ARG\BINARY_GENERIC_EXPRESSION.OPERANDR].THE_VALUE <
ARG\BINARY_GENERIC_EXPRESSION.OPERANDS[2].THE_VALUE
IF (COMPARE) THEN
TRACE_FUNCTION(ARG,'LESS TRUE'):
ELSE
TRACE_FUNCTION(ARG,'LESS FALSE));
END_IF;
RETURN(COMPARE):
END_FUNCTION; -- COMPARISON_LESS_FUNCTION

FUNCTION COMPARISON_LESS_EQUAL_FCT (ARG: BOOLEAN_PRESSION) : BOOLEAN;
LOCAL
COMPARE: BOOLEAN;
END_LOCAL;
COMPARE := (ARG\BINARY_GENERIC_EXPRESSION.OPERANDR].THE_VALUE <=
ARG\BINARY_GENERIC_EXPRESSION.OPERANDS[2].THE_VALUE
IF (COMPARE) THEN
TRACE_FUNCTION(ARG,'LESS EQUAL TRUE');
ELSE
TRACE_FUNCTION(ARG,'LESS EQUAL FALSE);
END_IF;
RETURN(COMPARE);
END_FUNCTION; -- COMPARISON_LESS_EQUAL_FUNCTION

FUNCTION COMPARISON_NOT_EQUAL_FCT (ARG: BOOLEAN_ERESSION) : BOOLEAN;
LOCAL
COMPARE: BOOLEAN;
END_LOCAL;
COMPARE := (ARG\BINARY_GENERIC_EXPRESSION.OPERANDR].THE_VALUE <>
ARG\BINARY_GENERIC_EXPRESSION.OPERANDS[2].THE_VALUE
IF (COMPARE) THEN
TRACE_FUNCTION(ARG,'NOT EQUAL TRUEY);
ELSE
TRACE_FUNCTION(ARG,NOT EQUAL FALSE');
END_IF;
RETURN(COMPARE);
END_FUNCTION; -- COMPARISON_NOT_EQUAL_FUNCTION

FUNCTION LIKE_FCT (ARG: BOOLEAN_EXPRESSION) : BOOLE AN;

RETURN (ARG\BINARY_GENERIC_EXPRESSION.OPERANDS[1].THE_VALUE LIKE
ARG\BINARY_GENERIC_EXPRESSION.OPERANDS[2].THE_VALUE
END_FUNCTION; -- LIKE_FUNCTION

FUNCTION INTERVAL_FCT (ARG: BOOLEAN_EXPRESSION) : B OOLEAN;
RETURN ((ARGAINTERVAL_EXPRESSION.INTERVAL_LOW.THE_VALUE <=

ARG\INTERVAL_EXPRESSION.INTERVAL_ITEM.THE_VALUE) AND

(ARGAINTERVAL_EXPRESSION.INTERVAL_ITEM.THE_VALUE <=

ARG\AINTERVAL_EXPRESSION.INTERVAL_HIGH.THE_VALUE));

END_FUNCTION; -- INTERVAL_FUNCTION

FUNCTION INDEX_FCT (ARG: STRING_EXPRESSION) : STRIN G;

RETURN
(ARG\INDEX_EXPRESSION.OPERAND.THE_VALUE[ARG\INDEX_KPRESSION.INDEX.THE_VALU
ED;

END_FUNCTION; -- INDEX_FUNCTION

FUNCTION SUBSTRING_FCT (ARG: STRING_EXPRESSION) : S TRING;

175

RETURN
(ARG\SUBSTRING_EXPRESSION.OPERAND.THE_VALUE[ARG\SI3BRING_EXPRESSION.INDEX1
.THE_VALUE:ARG\SUBSTRING_EXPRESSION.INDEX2.THE_VALLE]);

END_FUNCTION; -- SUBSTRING_FUNCTION

FUNCTION CONCAT_FCT (ARG: STRING_EXPRESSION) : STRI NG;

LOCAL

I INTEGER;

STR_CONCAT: STRING :=";
END_LOCAL;

REPEAT | :=1 TO SIZEOF
(ARG\MULTIPLE_ARITY_GENERIC_EXPRESSION.OPERANDS);
STR_CONCAT := STR_CONCAT +
ARG\MULTIPLE_ARITY_GENERIC_EXPRESSION.OPERANDSII]. THE_VALUE;

END_REPEAT;
RETURN (STR_CONCAT);
END_FUNCTION; -- CONCAT_FUNCTION

FUNCTION FORMAT_FCT (ARG: STRING_EXPRESSION) : STRI NG;
RETURN
(FORMAT(ARG\FORMAT_FUNCTION.VALUE_TO_FORMAT.THE_WH ARG\FORMAT_FUNCTION.F
ORMAT_STRING.THE_VALUE));
END_FUNCTION; -- SUBSTRING_FUNCTION

FUNCTION SQUARE_FCT (ARG: NUMERIC_EXPRESSION) : NUMBER;

-HYP: THE OPERANDS ARE CORRECT NUMBERS THAT CAN BE
EVALUATED/OBTAINED

RETURN (SQRT(ARG\UNARY_NUMERIC_EXPRESSION.OPERANIHE_VALUE));
END_FUNCTION; -- SQUARE_FUNCTION

(** ***********************)

~-THIS ENTITY IS THE MAIN ENTRY TO REPRESENT CONSTR AINTS OF INTER MODEL
-RELATIONS (THIS IS AN EXAMPLE SINCE IT IS A GENER ATED ENTITY IN OUR
--FRAMEWORK)
~-ENTITY INTER_MODEL_CONSTRAINT
--SUBTYPE OF (BOOLEAN_EXPRESSION);
~-NAME : STRING;
--CONSTRAINED_RELATION: OPTIONAL RELATION;
~INITIAL_CONTEXT: SET OF GENERIC_VARIABLE;
--PROPERTIES: SET OF EXPRESSION;
--PROPERTY1: EXPRESSION;
--PROPERTY2: EXPRESSION;
--DERIVE
--SELF\BOOLEAN_EXPRESSION.THE_VALUE: BOOLEAN :=
EVALUATE_INTER_MODEL_CONSTRAINTS(SELF);
- THE_VALUE1: BOOLEAN := SELF.PROPERTY1.THE_VALUE;
- THE_VALUE2: BOOLEAN := PROPERTY2.THE_VALUE;
-IT RETURNS TRUE IF ALL PROPERTIES ARE RESPECTED, FALSE THE FIRST
TIME ONE PROPERTY EVALUTES TO FALSE
--WHERE
--PROPERTIES : THE_VALUE = TRUE ;
~-PROPERTY1 : THE_VALUE1 = TRUE ;
~-PROPERTY2 : THE_VALUE2 = TRUE ;
-END_ENTITY;

* * *% * *% * *kk * *% a)

(*** VARIAB LES *******)

176

--IT REPRESENTS A SET OF VALUES TO BE TREATED IN ARXPRESSION
ENTITY EXPRESSION_DOMAIN

ABSTRACT,

END_ENTITY;

--UNDER THIS CLASS WE FIND THE PRIMITIVE TYPES
ENTITY PRIMITIVE_DOMAIN

ABSTRACT

SUBTYPE OF (EXPRESSION_DOMAIN);

END_ENTITY;

--IT CONTAINS STRINGS

ENTITY STRING_DOMAIN

SUBTYPE OF (PRIMITIVE_DOMAIN);
THE_VALUE: SET OF STRING;

END_ENTITY;

--IT CONTAINS NUMERICS

ENTITY NUMERIC_DOMAIN

SUBTYPE OF (PRIMITIVE_DOMAIN);
THE_VALUE: SET OF NUMBER;

END_ENTITY;

--IT CONTAINS BOOLEANS

ENTITY BOOLEAN_DOMAIN

SUBTYPE OF (PRIMITIVE_DOMAIN);
THE_VALUE: SET OF BOOLEAN;

END_ENTITY;

--UNDER THIS CLASS WE FIND THE OBJECT TYPES
ENTITY OBJECT_DOMAIN

ABSTRACT

SUBTYPE OF (EXPRESSION_DOMAIN);
END_ENTITY;

--IT CONTAINS INSTANCES OF ENTITY_CLASS

ENTITY ENTITY_DOMAIN

SUBTYPE OF (OBJECT_DOMAIN);
THE_VALUE: SET OF ENTITY_CLASS;

END_ENTITY;

--IT PUTS IN RELATION A VARIABLE WITH ITS DOMAIN
ENTITY VARIABLE_DOMAIN;
THE_DOMAIN: EXPRESSION_DOMAIN;
THE_VARIABLE: GENERIC_VARIABLE;
END_ENTITY;

--ONE EXPRESSION WHICH RETURNS AN ENTITY_CLASS
ENTITY ENTITY_EXPRESSION
ABSTRACT
SUBTYPE OF (EXPRESSION);

THE_VALUE: OPTIONAL ENTITY_CLASS;
END_ENTITY;

--ONE EXPRESSION WHICH RETURNS AN ARRAY OF SOMETHING
ENTITY ARRAY_EXPRESSION
ABSTRACT
SUBTYPE OF (GENERIC_EXPRESSION);
THE_VALUE: OPTIONAL SET OF T_DOMAINE;

177

END_ENTITY;

--ONE EXPRESSION WHICH RETURNS AN ARRAY OF STRING

ENTITY STRING_ARRAY_EXPRESSION

ABSTRACT

SUBTYPE OF (ARRAY_EXPRESSION);
SELF\ARRAY_EXPRESSION.THE_VALUE: OPTIONAL SET OF S TRING;

END_ENTITY;

--ONE EXPRESSION WHICH RETURNS AN ARRAY OF NUMERIC

ENTITY NUMERIC_ARRAY_EXPRESSION

ABSTRACT

SUBTYPE OF (ARRAY_EXPRESSION);
SELF\ARRAY_EXPRESSION.THE_VALUE: OPTIONAL SET OF N UMBER,;

END_ENTITY;

--ONE EXPRESSION WHICH RETURNS AN ARRAY OF BOOLEAN

ENTITY BOOLEAN_ARRAY_EXPRESSION

ABSTRACT

SUBTYPE OF (ARRAY_EXPRESSION);
SELF\ARRAY_EXPRESSION.THE_VALUE: OPTIONAL SET OF B OOLEAN,;

END_ENTITY;

--ONE EXPRESSION WHICH RETURNS AN ARRAY OF ENTITY L@&SS
ENTITY ENTITY_ARRAY_EXPRESSION
ABSTRACT
SUBTYPE OF (ARRAY_EXPRESSION);
SELF\ARRAY_EXPRESSION.THE_VALUE: OPTIONAL SET OF E NTITY_CLASS;
END_ENTITY;

--ONE SIMPLE EXPRESSION WHICH RETURNS AN ENTITY_CIFS

ENTITY SIMPLE_ENTITY_EXPRESSION

ABSTRACT SUPERTYPE OF (ONEOF (ENTITY_LITERAL, ENTIT Y_VARIABLE))
SUBTYPE OF (ENTITY_EXPRESSION, SIMPLE_GENERIC_EXPRESSION);
END_ENTITY;

--LITERAL REPRESENTING AN ENTITY_CLASS

ENTITY ENTITY_LITERAL

SUBTYPE OF (SIMPLE_ENTITY_EXPRESSION, GENERIC_LITER AL);
SELF\ENTITY_EXPRESSION.THE_VALUE: ENTITY_CLASS;

END_ENTITY;

--IT REPRESENTS A VARIABLE CONTAINING AN INSTANCE & AN OBJECT
ENTITY OBJECT_VARIABLE

ABSTRACT

SUBTYPE OF (VARIABLE);

END_ENTITY;

--VARIABLE POINTING TO AN ENTITY_CLASS

ENTITY ENTITY_VARIABLE

SUBTYPE OF (SIMPLE_ENTITY_EXPRESSION, OBJECT_VARIABLE);
END_ENTITY;

--ONE SIMPLE EXPRESSION WHICH RETURNS A SET OF SN

ENTITY SIMPLE_STRING_ARRAY_EXPRESSION

ABSTRACT SUPERTYPE OF (ONEOF (STRING_ARRAY_LITERAL,STRING_ARRAY_VARIABLE))
SUBTYPE OF (STRING_ARRAY_EXPRESSION, SIMPLE_GENERICEXPRESSION);
END_ENTITY;

--LITERAL REPRESENTING A SET OF STRING
178

ENTITY STRING_ARRAY_LITERAL
SUBTYPE OF (SIMPLE_STRING_ARRAY_EXPRESSION, GENERICLITERAL);
END_ENTITY;

--VARIABLE POINTING TO A SET OF STRING

ENTITY STRING_ARRAY_VARIABLE

SUBTYPE OF (SIMPLE_STRING_ARRAY_EXPRESSION, VARIABLE);
END_ENTITY;

--ONE SIMPLE EXPRESSION WHICH RETURNS A SET OF NURE
ENTITY SIMPLE_NUMERIC_ARRAY_EXPRESSION

ABSTRACT SUPERTYPE OF (ONEOF (NUMERIC_ARRAY_LITERAL
NUMERIC_ARRAY_VARIABLE))

SUBTYPE OF (NUMERIC_ARRAY_EXPRESSION, SIMPLE_GENERI_EXPRESSION);
END_ENTITY;

--LITERAL REPRESENTING A SET OF NUMERIC

ENTITY NUMERIC_ARRAY_LITERAL

SUBTYPE OF (SIMPLE_NUMERIC_ARRAY_EXPRESSION, GENER3_LITERAL);
END_ENTITY;

--VARIABLE POINTING TO A SET OF NUMERIC

ENTITY NUMERIC_ARRAY_VARIABLE

SUBTYPE OF (SIMPLE_NUMERIC_ARRAY_EXPRESSION, VARIABE);
END_ENTITY;

--ONE SIMPLE EXPRESSION WHICH RETURNS A SET OF BOBEAN

ENTITY SIMPLE_BOOLEAN_ARRAY_EXPRESSION

ABSTRACT SUPERTYPE OF (ONEOF (BOOLEAN_ARRAY_LITERAL
BOOLEAN_ARRAY_VARIABLE))

SUBTYPE OF (BOOLEAN_ARRAY_EXPRESSION, SIMPLE_GENERI_EXPRESSION);
END_ENTITY;

--LITERAL REPRESENTING A SET OF BOOLEAN

ENTITY BOOLEAN_ARRAY_LITERAL

SUBTYPE OF (SIMPLE_BOOLEAN_ARRAY_EXPRESSION, GENERI_LITERAL);
END_ENTITY;

--VARIABLE POINTING TO A SET OF BOOLEAN

ENTITY BOOLEAN_ARRAY_VARIABLE

SUBTYPE OF (SIMPLE_BOOLEAN_ARRAY_EXPRESSION, VARIABE);
END_ENTITY;

--ONE SIMPLE EXPRESSION WHICH RETURNS A SET OF ENW_CLASS

ENTITY SIMPLE_ENTITY_ARRAY_EXPRESSION

ABSTRACT SUPERTYPE OF (ONEOF (ENTITY_ARRAY_LITERAL, ENTITY_ARRAY_VARIABLE))
SUBTYPE OF (ENTITY_ARRAY_EXPRESSION, SIMPLE_GENERIC EXPRESSION);
END_ENTITY;

LITERAL REPRESENTING A SET OF ENTITY
ENTITY ENTITY_ARRAY_LITERAL

SUBTYPE OF (SIMPLE_ENTITY_ARRAY_EXPRESSION);
END_ENTITY;

--VARIABLE POINTING TO A SET OF ENTITY

ENTITY ENTITY_ARRAY_VARIABLE

SUBTYPE OF (SIMPLE_ENTITY_ARRAY_EXPRESSION, VARIABLE);
END_ENTITY;

--THIS ENTITY REPRESENTS THE ACCESS TO ONE ENTITYRATTRIBUTE OF AN ENTITY
ENTITY PATH_VARIABLE

179

ABSTRACT
SUBTYPE OF (GENERIC_VARIABLE);
SOURCE_VARIABLE: ENTITY_VARIABLE; --VARIABLE POINT
FROM WHICH WE WANT TO GET THE ATTRIBUTE/ANNOTATION
ATTRIBUTE_NAME: OPTIONAL STRING; --ATTRIBUTE OF TH
NAME OF THE ANNOTATION IF IS_ANNOTATION=TRUE
IS_ANNOTATION: BOOLEAN; --TRUE IF ATTRIBUTE NAME C
ONE ANNOTATION
END_ENTITY;

--PATH VARIABLE POINTING TO AN ENTITY_CLASS
ENTITY ENTITY_PATH_VARIABLE

SUBTYPE OF (ENTITY_VARIABLE, PATH_VARIABLE);
END_ENTITY;

--PATH VARIABLE POINTING TO A STRING

ENTITY STRING_PATH_VARIABLE

SUBTYPE OF (STRING_VARIABLE, PATH_VARIABLE);
END_ENTITY;

--PATH VARIABLE POINTING TO A NUMERIC

ENTITY NUMERIC_PATH_VARIABLE

SUBTYPE OF (NUMERIC_VARIABLE, PATH_VARIABLE);
END_ENTITY;

--PATH VARIABLE POINTING TO A BOOLEAN

ENTITY BOOLEAN_PATH_VARIABLE

SUBTYPE OF (BOOLEAN_VARIABLE, PATH_VARIABLE);
END_ENTITY;

--PATH VARIABLE POINTING TO AN ENTITY_CLASS

ENTITY ENTITY_ARRAY_PATH_VARIABLE

SUBTYPE OF (ENTITY_ARRAY_VARIABLE, PATH_VARIABLE);
END_ENTITY;

--PATH VARIABLE POINTING TO A STRING

ENTITY STRING_ARRAY_PATH_VARIABLE

SUBTYPE OF (STRING_ARRAY_VARIABLE, PATH_VARIABLE);
END_ENTITY;

--PATH VARIABLE POINTING TO A NUMERIC

ENTITY NUMERIC_ARRAY_PATH_VARIABLE

SUBTYPE OF (NUMERIC_ARRAY_VARIABLE, PATH_VARIABLE);
END_ENTITY;

--PATH VARIABLE POINTING TO A BOOLEAN

ENTITY BOOLEAN_ARRAY_PATH_VARIABLE

SUBTYPE OF (BOOLEAN_ARRAY_VARIABLE, PATH_VARIABLE);
END_ENTITY;

(*** LOGICAL EXPRESSIONS ***)

ING TO THE ENTITY
E ENTITY_NAME OR

ONTAINS THE NAME OF

--THIS ENTITY REPRESENTS THE FOL (FIRST ORDER LOGIEXPRESSIONS

ENTITY FOL_EXPRESSION
SUBTYPE OF (BOOLEAN_EXPRESSION);

CONTEXT_VARIABLES: OPTIONAL SET OF GENERIC_VARIABL E; --THE CONTEXT OF

EVALUATION (BRACKETED VARIABLES)

EXPRESSION_VARIABLES: SET OF VARIABLE_DOMAIN; --TH E VARIABLES
DIRECTED LINKED TO THE EXPRESSION AND THEIR DOMAINS (EVALUATED ELEMENTS)
PREDICATE: BOOLEAN_EXPRESSION;--THE PREDICATE TO B E EVALUATED

END_ENTITY;
180

--THIS ENTITY REPRESENTS THE EXISTS FOL ASSERTION
ENTITY EXISTS_EXPRESSION
SUBTYPE OF (FOL_EXPRESSION);
DERIVE
SELF\BOOLEAN_EXPRESSION.THE_VALUE: BOOLEAN :=EXISTS_FUNCTION(SELF);
END_ENTITY;

--THIS ENTITY REPRESENTS THE ALL FOL ASSERTION
ENTITY ALL_EXPRESSION
SUBTYPE OF (FOL_EXPRESSION);
DERIVE
SELF\BOOLEAN_EXPRESSION.THE_VALUE: BOOLEAN :=ALL_FUNCTION(SELF);
END_ENTITY;

--THIS ENTITY REPRESENTS THE ALL SUM FOL ASSERTION
ENTITY ALL_SUM_EXPRESSION
SUBTYPE OF (NUMERIC_EXPRESSION);

CONTEXT_VARIABLES: OPTIONAL SET OF GENERIC_VARIABL E; --THE CONTEXT OF
EVALUATION (BRACKETED VARIABLES)

EXPRESSION_VARIABLES: SET OF VARIABLE_DOMAIN; --TH E VARIABLES
DIRECTED LINKED TO THE EXPRESSION AND THEIR DOMAINS (EVALUATED ELEMENTS)

PREDICATE: BOOLEAN_EXPRESSION;--THE PREDICATE TO B E EVALUATED
DERIVE

SELFANUMERIC_EXPRESSION.THE_VALUE: INTEGER :=ALL_S UM_FUNCTION(SELF);
END_ENTITY;

--THIS ENTITY REPRESENTS THE BELONGING TO A SET
--THE FIRST OPERAND IS THE VALUE TO SEARCH IN THEEE®OND OPERAND (A SET)
ENTITY BELONG_BOOLEAN_EXPRESSION
SUBTYPE OF (BINARY_BOOLEAN_EXPRESSION);
DERIVE

SELF\BOOLEAN_EXPRESSION.THE_VALUE:BOOLEAN := BELONG_FUNCTION(SELF);
END_ENTITY;

--THIS ENTITY ALLOWS COMPARING 2 VALUES WHICH MUSTBE EQUAL
ENTITY COMPARISON_EQUAL_CONTEXT_EXPRESSION
SUBTYPE OF (COMPARISON_EQUAL);
DERIVE
SELF\COMPARISON_EQUAL.THE_VALUE: BOOLEAN :=EQUAL_RINCTION(SELF);
END_ENTITY;

(**** DEPRECATED: REPLACE WITH (NOT(EXPRESSION1) OREXPRESSION2)) ****)
--THIS ENTITY REPRESENTS THE IMPLICATION FOL ASSERON

ENTITY IMPLICATION_EXPRESSION

SUBTYPE OF (FOL_EXPRESSION);

END_ENTITY;

ENTITY TRACE;
INSTANCE_ID: STRING;
DESCRIPTION: OPTIONAL STRING;
END_ENTITY;

--THIS ENTITY STORES THE EXECUTION OF A FOL EXPREREIN
ENTITY FOL_TRACE;

ID: OPTIONAL SET OF INTEGER,;

DESC: OPTIONAL SET OF STRING;
END_ENTITY;

(* * *% * *% * *k% a)

181

(*** FOL FUNCTIONS ***)

(* * *% * *% * *kk a)

FUNCTION TRACE_FUNCTION(INST:GENERIC; DESCRIPTION:S TRING): STRING;
LOCAL

CURRENT_TRACE: STRING;

ALL_TRACES : SET OF FOL_TRACE;

CURRENT_FOL_TRACE : FOL_TRACE;

LAST_TRACE : INTEGER;

einfo: entity_info;

ID: INTEGER,;
NUMBER_OF_TRACES : INTEGER,;
END_LOCAL;
einfo ;= get_type_info(INST);
ID := einfo.id;
CURRENT_TRACE := FORMAT(id,'2I") +":'+descripti on+';';

ALL_TRACES := POPULATION('EXPRESSION_SCHEMA.FOL_TRACE;
LAST_TRACE := SIZEOF(ALL_TRACES);
IF (LAST_TRACE > 0) THEN
CURRENT_FOL_TRACE := ALL_TRACES[LAST_TRACE];
--Treatment of first VALUE (null)
CURRENT_FOL_TRACE.id := NVL(CURRENT_FOL_TRACE.id, []);
CURRENT_FOL_TRACE.desc := NVL(CURRENT_FOL_TRACE.d esc,[]);
CURRENT_FOL_TRACE.id := CURRENT_FOL_TRACE.id+ID ;
CURRENT_FOL_TRACE.desc := CURRENT_FOL_TRACE.desc + description;
END_IF;

RETURN (CURRENT_TRACE);
END_FUNCTION;

--THIS FUNCTION EVALUATES ALL AND EXISTS EXPRESSION DEPENDING ON THE VALUE OF
WHEN_STOP PARAMETER
FUNCTION QUANTIFIER_FUNCTION(ARG:FOL_EXPRESSION; WEN_STOP:BOOLEAN):
BOOLEAN;
LOCAL
SIZE : INTEGER := 0;
| : INTEGER := 1;
BOOL_EXP : BOOLEAN_EXPRESSION;
VAR_DOM: VARIABLE_DOMAIN;
DOM: EXPRESSION_DOMAIN;
VARI: GENERIC_VARIABLE; --EXPRESSION; --VAR IABLE
VALEUR : T_DOMAINE;
LIST_VALEURS: SET OF T_DOMAINE;
BOOLEAN_VALUE: BOOLEAN:
END_LOCAL;
~-NUMBER OF VALUES TO CHECK
VAR_DOM := ARG.EXPRESSION_VARIABLES[1];
SIZE := SIZEOF (VAR_DOM.THE_DOMAIN.THE_VALUE);
—EXPRESSION TO CHECK, IT SHOULD ACCESS TO THE VA®BLE
BOOL_EXP := ARG.PREDICATE;
—WE ASSIGN EACH VALUE TO THE VARIABLE
REPEAT I:= 1 TO SIZE;
--WE ASSIGN THE CURRENT CONCEPT OF THE DOMAIO THE RELATED
VARIABLE (THEY HAVE TO BE TYPE CONSISTENT)
DOM := VAR_DOM.THE_DOMAIN:
VARI := VAR_DOM.THE_VARIABLE;
LIST_VALEURS := DOM.THE_VALUE;
VALEUR := LIST_VALEURSI[I];
VARI.THE_VALUE := VALEUR;
--THE BOOLEAN_EXPRESSION RELATED TO THE EXIST8UST BE TRUE FOR AT
LEAST ONE CONCEPT OF DOMAIN

182

BOOLEAN_VALUE := BOOL_EXP.THE_VALUE;
IF (BOOLEAN_VALUE = WHEN_STOP) THEN
RETURN(WHEN_STOP);
END_IF;
END_REPEAT;
RETURN (NOT(WHEN_STOP));
END_FUNCTION;

--IMPLEMENTATION OF EXISTS EXPRESSION
FUNCTION EXISTS_FUNCTION(ARG:EXISTS_EXPRESSION): BO OLEAN;
LOCAL
BOOLEAN_VALUE: BOOLEAN;
END_LOCAL;
—WE FINISH WHEN 1 VARIABLE FULFILLS THE PREDICATESECOND PARAMETER
TRUE)
BOOLEAN_VALUE := QUANTIFIER_FUNCTION(ARG, TRUE):
IF (BOOLEAN_VALUE) THEN
TRACE_FUNCTION(ARG, EXISTS TRUE');
ELSE
TRACE_FUNCTION(ARG,'EXISTS FALSE):;
END_IF;
RETURN(BOOLEAN_VALUE);
END_FUNCTION;

--IMPLEMENTATION OF ALL EXPRESSION
FUNCTION ALL_FUNCTION(ARG:ALL_EXPRESSION): BOOLEAN;
LOCAL
BOOLEAN_VALUE: BOOLEAN:
END_LOCAL;
BOOLEAN_VALUE := QUANTIFIER_FUNCTION(ARG,FALSE);
IF (BOOLEAN_VALUE) THEN
TRACE_FUNCTION(ARG,'ALL TRUE));
ELSE
TRACE_FUNCTION(ARG, ALL FALSE');
END_IF;
--WE FINISH WHEN ALL VARIABLES FULFILLS THE PREDI@TE (SECOND PARAMETER
FALSE)
RETURN(BOOLEAN_VALUE);
END_FUNCTION;

--IMPLEMENTATION OF ALL EXPRESSION
FUNCTION ALL_SUM_FUNCTION(ARG:ALL_SUM_EXPRESSION)INTEGER,;
LOCAL
SIZE : INTEGER := 0;
| - INTEGER := 1,
BOOL_EXP : BOOLEAN_EXPRESSION;
VAR_DOM: VARIABLE_DOMAIN;
DOM: EXPRESSION_DOMAIN,;
VARI: GENERIC_VARIABLE; --EXPRESSION; --VAR IABLE
VALEUR : T_DOMAINE;
LIST_VALEURS: SET OF T_DOMAINE;
SUM_OK : INTEGER :=0;
END_LOCAL,

~-NUMBER OF VALUES TO CHECK
VAR_DOM := ARG.EXPRESSION_VARIABLES[1];
SIZE := SIZEOF (VAR_DOM.THE_DOMAIN.THE_VALUE);
—EXPRESSION TO CHECK, IT SHOULD ACCESS TO THE VA®BLE
BOOL_EXP := ARG.PREDICATE;
—WE ASSIGN EACH VALUE TO THE VARIABLE

REPEAT I:= 1 TO SIZE;

183

--WE ASSIGN THE CURRENT CONCEPT OF THE DOMAMD THE RELATED
VARIABLE (THEY HAVE TO BE TYPE CONSISTENT)
DOM := VAR_DOM.THE_DOMAIN;
VARI := VAR_DOM.THE_VARIABLE;
LIST_VALEURS := DOM.THE_VALUE;
VALEUR := LIST_VALEURSII];
VARI.THE_VALUE := VALEUR;
--THE BOOLEAN_EXPRESSION RELATED TO THE EXIST8UST BE TRUE FORAT
LEAST ONE CONCEPT OF DOMAIN
IF (BOOL_EXP.THE_VALUE = TRUE) THEN
SUM_OK := SUM_OK + 1;
END_IF;
END_REPEAT;
RETURN (SUM_OK);
END_FUNCTION;

FUNCTION FIND_ATTRIBUTE_VALUE(ARG:GENERIC;ATT_NAMESTRING): T_DOMAINE;
LOCAL
einfo: entity_info;
atts: LIST OF attribute;
SIZE_ATTRIBUTES : INTEGER :=0;
END_LOCAL;
einfo := get_type_info(ARG);
--FIRST WE LOOK FOR THE EXPLICIT ATTRIBUTES
atts := einfo.explicit;
SIZE_ATTRIBUTES := SIZEOF (atts);
--WE LOOK FOR THE ATTRIBUTE
REPEAT I:= 1 TO SIZE_ATTRIBUTES;
IF (atts[l].name = ATT_NAME) THEN
RETURN(atts[l].access(ARG));
END_IF;
END_REPEAT,;

--NEXT WE LOOK FOR THE DERIVED ATTRIBUTES
atts := einfo.derived;
SIZE_ATTRIBUTES := SIZEOF (atts);
--WE LOOK FOR THE ATTRIBUTE
REPEAT I:= 1 TO SIZE_ATTRIBUTES;
IF (atts[l].name = ATT_NAME) THEN
RETURN(atts[l].access(ARG));
END_IF;
END_REPEAT,;

--FINALLY WE LOOK FOR THE INVERSE ATTRIBUTES
atts := einfo.inv;
SIZE_ATTRIBUTES := SIZEOF (atts);
--WE LOOK FOR THE ATTRIBUTE
REPEAT I:=1 TO SIZE_ATTRIBUTES;
IF (atts[l].name = ATT_NAME) THEN
RETURN(atts[l].access(ARG));
END_IF;
END_REPEAT;

RETURN (ERROR: ATTRIBUTE NOT FOUND);
END_FUNCTION,;

--THIS FUNCTION GET A VALUE FROM A VARIABLE OR FROMAN EXPRESSION
FUNCTION GET_INDIVIDUAL_VALUE(ARG:GENERIC_EXPRESSI®I): T_DOMAINE;
LOCAL
ENTITY_OF_ATTRIBUTES: ENTITY_CLASS;
SIZE_ATTRIBUTES : INTEGER := 0;

184

SIZE_ANNOTATIONS : INTEGER := 0;
ALL_ANNOTATIONS: SET OF ANNOTATION_CLASS;
FILTERED_ANNOTATIONS: SET OF ANNOTATION_CLA SS;

END_LOCAL;
~FIRSTLY WE TREAT THE ATTRIBUTES OF AN ENTITY
IF (EXPRESSION_SCHEMA.PATH_VARIABLE' IN TYPEOF (A RG)) THEN
ENTITY_OF_ATTRIBUTES := ARG.SOURCE_VARIABLE.THE_V ALUE;
IF (ARG.IS_ANNOTATION) THEN --CASE ANNOTATION
ALL_ANNOTATIONS :=
POPULATION(ANNOTATION_SCHEMA.ANNOTATION_CLASS));
FILTERED_ANNOTATIONS := QUERY(x <* ALL_ANNOTATIO NS |
VALUE_IN(x.MY_ENTITIES,ENTITY_OF ATTRIBUTES) AND (x .NAME =
ARG.ATTRIBUTE_NAME));
IF (SIZEOF(FILTERED_ANNOTATIONS)>0) THEN

RETURN(FILTERED_ANNOTATIONS[1].MY_KNOWLEDGE[1].THE_CLASS);
ELSE
RETURN(NOT ANNOTATIONY);
END_IF;
END_IF;
--CASE IS NOT AN ANNOTATION

RETURN(FIND_ATTRIBUTE_VALUE(ENTITY_OF ATTRIBUTES,ARG.ATTRIBUTE_NAME))

END_IF;
-IF NOT, WE TRY WITH ANOTHER KIND OF VARIABLE
IF (EXPRESSION_SCHEMA.VARIABLE' IN TYPEOF (ARG)) THEN
RETURN (ARG.THE_VALUE);
END_IF;
-IF NOT, WE GET DIRECTLY THE VALUE
RETURN (ARG.THE_VALUE);
END_FUNCTION;

FUNCTION FIND_ATTRIBUTE_VALUES(ARG:GENERIC;ATT_NAMESTRING): SET OF
T_DOMAINE;
LOCAL
einfo: entity_info;
atts: LIST OF attribute;
SIZE_ATTRIBUTES : INTEGER := 0;
END_LOCAL;
einfo := get_type_info(ARG);
--FIRST WE LOOK FOR THE EXPLICIT ATTRIBUTES
atts := einfo.explicit;
SIZE_ATTRIBUTES := SIZEOF (atts);
--WE LOOK FOR THE ATTRIBUTE
REPEAT I:= 1 TO SIZE_ATTRIBUTES;
IF (atts[l].name = ATT_NAME) THEN
RETURN(atts[l].access(ARG));
END_IF;
END_REPEAT,;

--NEXT WE LOOK FOR THE DERIVED ATTRIBUTES
atts := einfo.derived;
SIZE_ATTRIBUTES := SIZEOF (atts);
--WE LOOK FOR THE ATTRIBUTE
REPEAT I:= 1 TO SIZE_ATTRIBUTES;
IF (atts[l].name = ATT_NAME) THEN
RETURN(atts[l].access(ARG));
END_IF;

185

END_REPEAT,;

--FINALLY WE LOOK FOR THE INVERSE ATTRIBUTES
atts := einfo.inv;
SIZE_ATTRIBUTES := SIZEOF (atts);
--WE LOOK FOR THE ATTRIBUTE
REPEAT I:=1 TO SIZE_ATTRIBUTES;
IF (atts[l].name = ATT_NAME) THEN
RETURN(atts[l].access(ARG));
END_IF;
END_REPEAT;

RETURN ([]);
END_FUNCTION;

--THIS FUNCTION GET A SET OF VALUES FROM A VARIABLEOR FROM AN EXPRESSION
FUNCTION GET_SET_OF_VALUES(ARG:GENERIC_EXPRESSIONBET OF T_DOMAINE;
LOCAL
ENTITY_OF_ATTRIBUTES: ENTITY_CLASS;
SIZE_ATTRIBUTES : INTEGER := 0;
SIZE_ANNOTATIONS : INTEGER :=0;
ARG_ARRAY : GENERIC_EXPRESSION; --ARRAY_EXPRESSION,;
ALL_ANNOTATIONS: SET OF ANNOTATION_CLASS;
FILTERED_ANNOTATIONS: SET OF ANNOTATION_CLA SS;

END_LOCAL;
—FIRSTLY WE TREAT THE ATTRIBUTES OF AN ENTITY
IF ((EXPRESSION_SCHEMA.ENTITY_ARRAY_PATH_VARIABLE ' IN TYPEOF (ARG))
OR (EXPRESSION_SCHEMA.STRING_ARRAY_PATH_VARIABLE'IN TYPEOF (ARG)) OR
(EXPRESSION_SCHEMA.NUMERIC_ARRAY_PATH_VARIABLE' INTYPEOF (ARG)) OR
(EXPRESSION_SCHEMA.BOOLEAN_ARRAY_PATH_VARIABLE' INT'YPEOF (ARG))) THEN
ENTITY_OF_ATTRIBUTES := ARG.SOURCE_VARIABLE.THE_V ALUE;
IF (ARG.IS_ANNOTATION) THEN --CASE ANNOTATION

ALL_ANNOTATIONS :=
POPULATION(ANNOTATION_SCHEMA.ANNOTATION_CLASS)):;

FILTERED_ANNOTATIONS := QUERY(x <* ALL_ANNOTATIO NS |
VALUE_IN(x.MY_ENTITIES,ENTITY_OF ATTRIBUTES) AND (x .NAME =
ARG.ATTRIBUTE_NAME));

IF (SIZEOF(FILTERED_ANNOTATIONS)>0) THEN

RETURN([):;
RETURN(FILTERED_ANNOTATIONS[1].MY_KNOWLEDGE[1]. THE CLASS.MY_ATTRIBUTES);
ELSE
RETURN('NOT ANNOTATION'):
END_IF;

END_IF;
-CASE IS NOT AN ANNOTATION

RETURN(FIND_ATTRIBUTE_VALUES(ENTITY_OF_ATTRIBUTES,ARG.ATTRIBUTE_NAME)

END_IF;
-IF NOT, WE TRY WITH ANOTHER KIND OF VARIABLE
IF (EXPRESSION_SCHEMA.ARRAY_EXPRESSION' IN TYPEOF (ARG)) THEN
ARG_ARRAY := ARG;
RETURN (ARG_ARRAY.THE_VALUE);
END_IF;
-IF NOT, WE GET DIRECTLY THE VALUE
RETURN (ARG.THE_VALUE);
END_FUNCTION;

186

--THIS FUNCTION EVALUATES WHETHER ARG.OPERANDS[1E CONTAINED IN
ARG.OPERANDSI[2]
FUNCTION BELONG_FUNCTION(ARG:BELONG_BOOLEAN_EXPRES8$ BOOLEAN;
LOCAL
GENERIC_VALUE_TO_LOOK_FOR: T_DOMAINE;
LIST_OF _GENERIC: SET OF T_DOMAINE;
BOOLEAN_VALUE : BOOLEAN;
END_LOCAL;
GENERIC_VALUE_TO_LOOK_FOR := GET_INDIVIDUAL_VALUE(ARG.OPERANDSI[1]);
—-PRE: THE LIST MUST BE OF THE SAME TYPE
LIST_OF _GENERIC := GET_SET_OF_VALUES(ARG.OPERANDS[2]);
~-WE LOOK FOR THE VALUE
BOOLEAN_VALUE := VALUE_IN(LIST_OF _GENERIC,GENERIC_ VALUE_TO_LOOK_FORY);

IF (BOOLEAN_VALUE) THEN
TRACE_FUNCTION(ARG, BELONG TRUEY);
ELSE
TRACE_FUNCTION(ARG, BELONG FALSE);
END_IF;

RETURN (BOOLEAN_VALUE);
END_FUNCTION,;

--THIS FUNCTION COMPARES 2 VALUES WHICH MUST BE EQAL
FUNCTION EQUAL_FUNCTION(ARG:COMPARISON_EQUAL_CONITEXPRESSION): BOOLEAN;
LOCAL
VALUE1: T_DOMAINE;
VALUE2: T_DOMAINE;
END_LOCAL;
VALUEL1 := GET_INDIVIDUAL_VALUE(ARG.OPERANDS[1]);
VALUE2 := GET_INDIVIDUAL_VALUE(ARG.OPERANDS[2]);
IF (TYPEOF(VALUE1)=TYPEOF(VALUE2)) THEN
IF (VALUE1=VALUE2) THEN
TRACE_FUNCTION(ARG, EQUAL TRUE)):;
RETURN (TRUE);
ELSE
TRACE_FUNCTION(ARG, EQUAL FALSE));
RETURN (FALSE);
END_IF;
ELSE
TRACE_FUNCTION(ARG, EQUAL FALSE);
RETURN (FALSE);
END_IF;
END_FUNCTION;

END_SCHEMA,;

187

188

Annex B

This annex introduces the CORE and SysML meta-nsotteimalized in EXPRESS
modeling language and used in our case studies.

CORE Meta-Model

--THIS SCHEMA CONTAINS THE ENTITIES DESCRIBING THEORE METAMODEL
SCHEMA CORE_SCHEMA,

REFERENCE FROM TOP_SCHEMA,;

(* * *% * *% * *kk * *% * *% * *k% * aa)

* * *% * *% CORE M ETAMODEL *kkkkkkkhkkk ****************)

(* *% * *% *k% *% *% * *k% * aa)

--THIS TYPE REPRESENTS DIFFERENT TYPES OF DURATION
TYPE CALCULATION_KIND = SELECT (CONSTANT_CORE,RAND®I_CORE, SCRIPT_CORE);
END_TYPE;

--THIS TYPE REPRESENTS DIFFERENT TYPES OF AMOUNTS
TYPE AMOUNT_KIND = ENUMERATION OF (FLOATS,INTEGERS);
END_TYPE;

--TYPES AND ENTITIES OF CALCULATION

TYPE CONSTANT_CORE = REAL; END_TYPE;

TYPE SCRIPT_CORE = STRING; END_TYPE;

TYPE DISTRIBUTION_KIND = ENUMERATION OF
(BERNOULLI,BETA,BINOMIAL,CHISQUARED,DISCRETEUNFIROMERLANG,EXPONENTIAL,F,GA
MMA,GEOMETRIC,LAPLACE,LOGNORMAL,NEGATIVEBINOMIAL,R®IAL,POISSON, T, TRIANGULA
R,UNIFORMM,WEIBULL); END_TYPE;

(** *********)

(** *********)

ENTITY RANDOM_CORE;
DISTRIBUTION : DISTRIBUTION_KIND;
MEAN: REAL,;
STANDARD_DEVIATION: REAL;
RANDOM_NUMBER_STREAM: INTEGER,; -- >0
RESULT: REAL;

END_ENTITY;

--THIS ENTITY REPRESENTS CORE MODELING LANGUAGE
ENTITY CORE_MODELING_LANGUAGE
SUBTYPE OF (MODELING_LANGUAGE);
VERSION: OPTIONAL STRING;
DERIVE
NAME:STRING :='CORE";
END_ENTITY;

--THIS ENTITY REPRESENTS ONE PARTIAL CORE MODEL

189

ENTITY MODEL_CORE
SUBTYPE OF (MODEL);
ITS_ENTITIES: OPTIONAL SET[0:?] OF ENTITY_CORE;
ITS_FLOWS: OPTIONAL SET[0:?] OF FLOW_CORE;
SELF\MODEL.MODELING_LANGUAGE:CORE_MODELING_LANGBHAG
END_ENTITY;

--THIS ENTITY REPRESENTS THE COMMON ATTRIBUTS OF RE ENTITIES
ENTITY ENTITY_CORE

ABSTRACT SUPERTYPE

SUBTYPE OF (ENTITY_CLASS);

CREATION_STAMP: T_DATE;

CREATOR: STRING;

DESCRIPTION: OPTIONAL STRING;

MODIFICATION_STAMP: T_DATE;

NUMBER_ATT: OPTIONAL STRING;
END_ENTITY;

--THIS ENTITY REPRESENTS THE DIFFERENT TYPES OF REREMENTS
ENTITY REQ_TYPE;

NAME: STRING,;
END_ENTITY;

--THIS ENTITY REPRESENTS THE DIFFERENT TYPES OF @RNS FOR A REQUIREMENT
ENTITY ORIGIN_TYPE,;

NAME: STRING;
END_ENTITY;

--THIS ENTITY REPRESENTS THE DIFFERENT TYPES OF QUES
ENTITY QUEUE_TYPE;

NAME: STRING;
END_ENTITY;

--THIS ENTITY REPRESENTS THE REQUIREMENTS OF THE NDELLED SYSTEM
ENTITY REQUIREMENT

SUBTYPE OF (ENTITY_CORE);

REQ_LIST: OPTIONAL REQ_TYPE;

ORIGIN_LIST: OPTIONAL ORIGIN_TYPE;

RATIONALE: OPTIONAL STRING;

BASIS_OF: SET[0:?] OF ENTITY_CORE;

RESULT_OF: SET[0:?] OF ENTITY_CORE;

REFINES: SET[0:?] OF REQUIREMENT;

DERIVE

SELF\ENTITY_CLASS.NAME:STRING := 'REQUIREMENT;
INVERSE

REFINED : SET[0:?] OF REQUIREMENT FOR REFINES;
END_ENTITY;

--THIS ENTITY REPRESENTS THE RELATIONS OF CORE: USEVHEN ATTRIBUTS ARENEEDED
(ASSOCIATION CLASS)
ENTITY CORE_RELATION
SUBTYPE OF (ENTITY_CLASS);
DESTINATION: ENTITY_CORE;
END_ENTITY;

--THIS ENTITY REPRESENTS THE DIFFERENT TYPES OF BEYIORS FOR
ALLOCATED_TO_RELATION
ENTITY BEHAVIOR_TYPE;
NAME: STRING;
END_ENTITY;

190

--THIS ENTITY REPRESENTS THE RELATION BETWEEN ONBJNCTION_CORE AND ONE
COMPONENT
ENTITY ALLOCATED_TO_RELATION
SUBTYPE OF (CORE_RELATION);
SELF\CORE_RELATION.DESTINATION: COMPONENT;
BEHAVIOR_TYPE: BEHAVIOR_TYPE;
END_ENTITY;

--THIS ENTITY REPRESENTS THE RELATION BETWEEN ONE
OPERATIONAL_INFORMATION/ITEM_CORE AND ONE OPERATIORRUNCTION
ENTITY TRIGGERED_BY_RELATION
SUBTYPE OF (CORE_RELATION);
SELF\CORE_RELATION.DESTINATION: ITEM_CORE;
QUEUE_TYPE: QUEUE_TYPE;
END_ENTITY;

--THIS ENTITY REPRESENTS THE DIFFERENT TYPES OF BM
ENTITY EXIT_TYPE;

NAME: STRING;
END_ENTITY;

--THIS ENTITY REPRESENTS THE RELATION BETWEEN ONEURICTION AND ONE EXIT ELEMENT
ENTITY EXIT_RELATION
SUBTYPE OF (CORE_RELATION);
SELF\CORE_RELATION.DESTINATION: EXIT;
SELECTION_PROBABILITY: OPTIONAL REAL; --PROBABILIT Y TO USE THE EXIT
EXIT_TYPE: EXIT_TYPE;
END_ENTITY;

--THIS ENTITY REPRESENTS THE FUNCTIONS SUPPORTIN®ERATIONS
ENTITY FUNCTION_CORE
SUBTYPE OF (ENTITY_CORE);
DURATION: OPTIONAL CALCULATION_KIND;
SCRIPT: OPTIONAL STRING;
TIME_OUT: OPTIONAL CALCULATION_KIND;
EXECUTE_DECOMPOSITION: OPTIONAL BOOLEAN;
DECOMPOSES: OPTIONAL SET[0:?] OF FUNCTION_CORE;
SERVICES: OPTIONAL SET[0:?] OF LINK;
SPECIFIED_BY: OPTIONAL SET[0:?] OF REQUIREMENT;
ALLOCATED_TO: OPTIONAL ALLOCATED_TO_RELATION;
INPUTS: OPTIONAL SET[0:?] OF ITEM_CORE;
OUTPUTS: OPTIONAL SET[0:?] OF ITEM_CORE;
TRIGGERED_BY: OPTIONAL SET[0:?] OF TRIGGERED_BY_RE LATION;--ITEM_CORE;
EXITS_BY: OPTIONAL SET[0:?] OF EXIT_RELATION:--EXI T
PRODUCES: OPTIONAL SET[0:?] OF PRODUCES_RELATION;
CAPTURES: OPTIONAL SET[0:?] OF CAPTURES_RELATION;
CONSUMES: OPTIONAL SET[0:?] OF CONSUMES_RELATION;
DERIVE
SELF\ENTITY_CLASS.NAME:STRING := 'FUNCTION’;
INVERSE
BASEDON: SET[0:?] OF REQUIREMENT FOR BASIS_OF;
DECOMPOSED_BY: SET[0:?] OF FUNCTION_CORE FOR DECOMPOSES;
END_ENTITY;

--THIS ENTITY REPRESENTS THE RELATION BETWEEN ONEFSOURCE AND ONE
FUNCTION_CORE
ENTITY PRODUCES_RELATION

SUBTYPE OF (CORE_RELATION);

SELF\CORE_RELATION.DESTINATION: RESOURCE;

AMOUNT: OPTIONAL CALCULATION_KIND;

191

END_ENTITY;

--THIS ENTITY REPRESENTS THE RELATION BETWEEN ONEFSOURCE AND ONE
FUNCTION_CORE
ENTITY CAPTURES_RELATION
SUBTYPE OF (CORE_RELATION);
SELF\CORE_RELATION.DESTINATION: RESOURCE;
AMOUNT: OPTIONAL CALCULATION_KIND;
END_ENTITY;

--THIS ENTITY REPRESENTS THE RELATION BETWEEN ONEESOURCE AND ONE
FUNCTION_CORE
ENTITY CONSUMES_RELATION
SUBTYPE OF (CORE_RELATION);
SELF\CORE_RELATION.DESTINATION: RESOURCE;
AMOUNT: OPTIONAL CALCULATION_KIND;
END_ENTITY;

--THIS ENTITY REPRESENTS THE FUNCTIONS SUPPORTIN®ERATIONS
ENTITY RESOURCE

SUBTYPE OF (ENTITY_CORE);

INITIAL_AMOUNT: OPTIONAL REAL,;

MAXIMUM_AMOUNT: OPTIONAL REAL,;

AMOUNT_TYPE: OPTIONAL AMOUNT_KIND;

UNITS: OPTIONAL REAL;

PRODUCED_BY: OPTIONAL SET[0:?] OF PRODUCED_RELATIO N;

CAPTURED_BY: OPTIONAL SET[0:?] OF CAPTURED_RELATIO N;

CONSUMED_BY: OPTIONAL SET[0:?] OF CONSUMED_RELATION;
DERIVE

SELF\ENTITY_CLASS.NAME:STRING := 'RESOURCE;
END_ENTITY;

--THIS ENTITY REPRESENTS THE RELATION BETWEEN ONEESOURCE AND ONE
FUNCTION_CORE
ENTITY PRODUCED_RELATION
SUBTYPE OF (CORE_RELATION);
SELF\CORE_RELATION.DESTINATION: FUNCTION_CORE;
AMOUNT: OPTIONAL CALCULATION_KIND;
END_ENTITY;

--THIS ENTITY REPRESENTS THE RELATION BETWEEN ONEEFSOURCE AND ONE
FUNCTION_CORE
ENTITY CAPTURED_RELATION
SUBTYPE OF (CORE_RELATION);
SELF\CORE_RELATION.DESTINATION: RESOURCE;
AMOUNT: OPTIONAL CALCULATION_KIND;
END_ENTITY;

--THIS ENTITY REPRESENTS THE RELATION BETWEEN ONEEFSOURCE AND ONE
FUNCTION_CORE
ENTITY CONSUMED_RELATION
SUBTYPE OF (CORE_RELATION);
SELF\CORE_RELATION.DESTINATION: RESOURCE;
AMOUNT: OPTIONAL CALCULATION_KIND;
END_ENTITY;

--THIS ENTITY REPRESENTS THE DIFFERENT TYPES OF COMNENTS
ENTITY COMPONENT_TYPE;

NAME: STRING,;
END_ENTITY;

192

--THIS ENTITY REPRESENTS THE RELATION BETWEEN ONEJBMPONENT AND ONE
FUNCTION_CORE
ENTITY PERFORMS_RELATION
SUBTYPE OF (CORE_RELATION);
SELF\CORE_RELATION.DESTINATION: FUNCTION_CORE;
BEHAVIOR_TYPE: BEHAVIOR_TYPE;
END_ENTITY;

--THIS ENTITY REPRESENTS A PHYSICAL COMPONENT OF B-MODELLED SYSTEM
ENTITY COMPONENT

SUBTYPE OF (ENTITY_CORE);

ABBREVIATION: OPTIONAL STRING;

COMP_TYPE: OPTIONAL COMPONENT_TYPE;

PURPOSE: OPTIONAL STRING;

MISSION: OPTIONAL STRING;

BUILT_IN: SET[0:?] OF COMPONENT;

CONNECTED_TO: SET[0:?] OF LINK;

CONNECTED_THROUGH: SET[0:?] OF LINK; --DERIVED: TH E LINKS ALLOCATED
TO A COMPONENT ARE ALSO ALLOCATED TO AN UPPER COMRENT (BUILT FROM
RELATION)

JOINED_TO: SET[0:?] OF INTERFACE_CORE;

JOINED_THROUGH: SET[0:?] OF INTERFACE_CORE; --DERI VED: THE INTERFACES
ALLOCATED TO A COMPONENT ARE ALSO ALLOCATED TO AN PPER COMPONENT (BUILT
FROM RELATION)

PERFORMS: SET[0:?] OF PERFORMS_RELATION; --COMPLEM ENT OF ALLOCATED_TO

SPECIFIED_BY: SET[0:?] OF REQUIREMENT;

DERIVE

SELF\ENTITY_CLASS.NAME:STRING := 'COMPONENT;
INVERSE

BUILT_FROM: SET[0:?] OF COMPONENT FOR BUILT_IN;
END_ENTITY;

--THIS ENTITY REPRESENTS THE INTERFACES OF THE MODEED SYSTEM
ENTITY INTERFACE_CORE
SUBTYPE OF (ENTITY_CORE);
COMPRISED_OF: SET[0:?] OF LINK;
SPECIFIED_BY: SET[0:?] OF REQUIREMENT;
--CONSTRAINTS
-IT SHOULD BE CONSISTENT WITH COMPRISES RELATION OF LINK (IF A LINK
CONNECTS 2 COMPONENTS:
~-THEN THE COMPONENTS JOINED BY AN INTERFACE COMPRISED BY THE LINK
SHOULD INCLUDE THEM)
DERIVE
SELF\ENTITY_CLASS.NAME:STRING := 'INTERFACE_CORE;
INVERSE
JOINS_THROUGH: SET[0:?] OF COMPONENT FOR JOINED_TH ROUGH:;
JOINS_TO: SET[0:?] OF COMPONENT FOR JOINED_TO;
END_ENTITY;

--THIS ENTITY REPRESENTS THE LINKS OF THE MODELLEBYSTEM
ENTITY LINK

SUBTYPE OF (ENTITY_CORE);

CAPACITY: OPTIONAL CALCULATION_KIND;

CAPACITY_UNITS: OPTIONAL STRING;

DELAI: OPTIONAL CALCULATION_KIND;

DELAI_UNITS: OPTIONAL STRING;

PROTOCOL: OPTIONAL STRING;

SPECIFIED_BY: SET[0:?] OF REQUIREMENT;

193

TRANSFERS: SET[0:?] OF ITEM_CORE; --NOT NECESSARI LY RELATED TO A
SERVICED_BY FUNCTION: BUT THE TRANSFERRED ITEM_CORS SHOULD BE THE INPUT OF
ONE OF THE FUNCTIONS OF SERVICED_BY RELATIONSHIP

--CONSTRAINTS

--THE TRANSFERRED ITEM_CORES SHOULD BE THE INPUT O F ONE OF THE
FUNCTIONS OF SERVICED_BY RELATIONSHIP
DERIVE

SELF\ENTITY_CLASS.NAME:STRING := 'LINK’;

INVERSE

CONNECTS_THROUGH: SET[0:?] OF COMPONENT FOR CONNETED_THROUGH;

CONNECTS_TO: SET[0:?] OF COMPONENT FOR CONNECTED_TO;

SERVICED_BY: SET[0:?] OF FUNCTION_CORE FOR SERVICE ~_ S;

COMPRISES: SET[0:?] OF INTERFACE_CORE FOR COMPRISE D_OF;
END_ENTITY;

--THIS ENTITY REPRESENTS THE RELATION BETWEEN ONERERATIONAL_INFORMATION AND
ONE OPERATION
ENTITY TRIGGERS_OPERATION_RELATION
SUBTYPE OF (CORE_RELATION);
QUEUE_TYPE: QUEUE_TYPE;
END_ENTITY;

--THIS ENTITY REPRESENTS THE DIFFERENT TYPES OF IMECORES
ENTITY ITEM_CORE_TYPE;

NAME: STRING,;
END_ENTITY;

--THIS ENTITY REPRESENTS THE DIFFERENT TYPES OF MEAS SUPPORTED BY AN ITEM_CORE
ENTITY MEDIA_TYPE;

NAME: STRING,;
END_ENTITY;

--THIS ENTITY REPRESENTS THE RELATION BETWEEN ONE
OPERATIONAL_INFORMATION/ITEM_CORE AND ONE OPERATIORRUNCTION
ENTITY TRIGGERS_FUNCTION_RELATION
SUBTYPE OF (CORE_RELATION);
SELF\CORE_RELATION.DESTINATION: FUNCTION_CORE;
QUEUE_TYPE: QUEUE_TYPE;
END_ENTITY;

--THIS ENTITY DESCRIBES THE ITEM_CORES PROCESSED BWE FUNCTIONS
ENTITY ITEM_CORE
SUBTYPE OF (ENTITY_CORE);
ITEM_CORE_TYPE: OPTIONAL ITEM_CORE_TYPE;
SIZE: OPTIONAL CALCULATION_KIND;
SIZE_UNITS: OPTIONAL STRING;
MEDIA_TYPE: OPTIONAL MEDIA_TYPE;
PRIORITY: OPTIONAL STRING;
ACCURACY: OPTIONAL STRING;
TIMELINESS: OPTIONAL STRING;
FORMAT_TYPE: OPTIONAL STRING;
FIELDS: SET[0:?] OF STRING;
DECOMPOSES: SET[0:?] OF ITEM_CORE;
TRIGGERS: SET[0:?] OF TRIGGERS_FUNCTION_RELATION;
SPECIFIED_BY: SET[0:?] OF REQUIREMENT;
DERIVE
SELF\ENTITY_CLASS.NAME:STRING := 'I'TEM;
INVERSE
DECOMPOSED_BY: SET[0:?] OF ITEM_CORE FOR DECOMPOSES;
INPUT_TO: SET[0:?] OF FUNCTION_CORE FOR INPUTS;
OUTPUT_FROM: SET[0:?] OF FUNCTION_CORE FOR OUTPUTS ;

194

TRANSFERRED_BY: SET[0:?] OF LINK FOR TRANSFERS;
END_ENTITY;

--THIS ENTITY REPRESENTS THE RELATION BETWEEN ONEURICTION AND ONE EXIT
ELEMENT
ENTITY EXIT_FOR_RELATION
SUBTYPE OF (CORE_RELATION);
SELF\CORE_RELATION.DESTINATION: FUNCTION_CORE;
SELECTION_PROBABILITY: OPTIONAL REAL; --PROBABILIT Y TO USE THE EXIT
EXIT_TYPE: EXIT_TYPE;
END_ENTITY;

--THIS ENTITY REPRESENTS THE CONDITIONS TO EXIT (RISH) A FUNCTION
ENTITY EXIT
SUBTYPE OF (ENTITY_CORE);

EXIT_FOR: SET[0:?] OF EXIT_FOR_RELATION; --FUNCTIO N_CORE;
DERIVE

SELF\ENTITY_CLASS.NAME:STRING := 'EXIT";
END_ENTITY;

--THIS ENTITY DESCRIBES THE BEHAVIOUR OF THE MODELED SYSTEM: TO BE COMPLETED
ENTITY FLOW_CORE

ABSTRACT SUPERTYPE

SUBTYPE OF (ENTITY_CORE);
END_ENTITY;

--THIS ENTITY REPRESENTS AN EFFBD DIAGRAM

ENTITY EFFBD
SUBTYPE OF (FLOW_CORE);
ITS_CONSTRUCTS: SET[0:?] OF EFFBD_CONSTRUCT;
REPRESENTS: FUNCTION_CORE;

END_ENTITY;

--THIS ENTITY REPRESENTS AN EFFBD CONSTRUCT
ENTITY EFFBD_CONSTRUCT

ABSTRACT SUPERTYPE ;
END_ENTITY;

--THIS ENTITY REPRESENTS A REPLICATE CONSTRUCT
ENTITY REPLICATE_CONSTRUCT

SUBTYPE OF (EFFBD_CONSTRUCT);

CONTAINS: SET[0:?] OF EFFBD_CONSTRUCT;
END_ENTITY;

--THIS ENTITY REPRESENTS A LOOP
ENTITY LOOP_CONSTRUCT

SUBTYPE OF (REPLICATE_CONSTRUCT);
END_ENTITY;

--THIS ENTITY REPRESENTS AN ITERATION
ENTITY ITERATE_CONSTRUCT

SUBTYPE OF (REPLICATE_CONSTRUCT);
END_ENTITY;

-- TYPE REPRESENTING POSSIBLE INPUTS/OUTPUTS OF RANCH
TYPE T_BRANCH_TARGET = SELECT (PARALLEL_CONSTRUCT BNCTION_CORE) ;
END_TYPE;

--THIS ENTITY REPRESENTS A BRANCH
ENTITY BRANCH_CONSTRUCT
SUBTYPE OF (EFFBD_CONSTRUCT);

195

INPUTS: T_BRANCH_TARGET;

OUTPUTS: T_BRANCH_TARGET,

EXITS_BY: OPTIONAL EXIT,;

ANNOTATION: OPTIONAL STRING,;
END_ENTITY;

--THIS ENTITY REPRESENTS A PARALLEL CONSTRUCT
ENTITY PARALLEL_CONSTRUCT

ABSTRACT SUPERTYPE

SUBTYPE OF (EFFBD_CONSTRUCT);
END_ENTITY;

--THIS ENTITY REPRESENTS AN AND
ENTITY AND_CONSTRUCT

SUBTYPE OF (PARALLEL_CONSTRUCT);
END_ENTITY;

--THIS ENTITY REPRESENTS AN OR
ENTITY OR_CONSTRUCT

SUBTYPE OF (PARALLEL_CONSTRUCT);
END_ENTITY;

END_SCHEMA,;

196

SysML Meta-Model

--THIS SCHEMA CONTAINS THE ENTITIES DESCRIBING THEYSML METAMODEL
SCHEMA SYSML_SCHEMA,

REFERENCE FROM TOP_SCHEMA,

--THIS ENTITY REPRESENTS SYSML MODELING LANGUAGE
ENTITY SYSML_MODELING_LANGUAGE
SUBTYPE OF (MODELING_LANGUAGE);
VERSION: OPTIONAL STRING;
DERIVE
NAME:STRING := 'SYSML',
END_ENTITY;

--THIS ENTITY REPRESENTS ONE SYSML MODEL, A MODEISIAN ABSTRACTION OF A
PHYSICAL SYSTEM (UML SPECIFICATION)
ENTITY SYSML_MODEL
SUBTYPE OF (MODEL);
ITS_PACKAGES: OPTIONAL SET[0:?] OF PACKAGE;
ITS_ELEMENTS: OPTIONAL SET[0:?] OF ELEMENT;
SELF\MODEL.MODELING_LANGUAGE:SYSML_MODELING_LANGIEA
END_ENTITY;

(** ***********************)

(rrmrersmsessmones ML 2.0 METAMODEL *oxsx e edaan)

(* * *% * *% *k% *% *% * *k% * aa)

ENTITY ELEMENT
SUBTYPE OF (ENTITY_CLASS);
OWNED_ELEMENT: OPTIONAL SET[0:?] OF ELEMENT;
OWNER: OPTIONAL ELEMENT;
DERIVE
SELF\ENTITY_CLASS.NAME:STRING :="'ELEMENT
END_ENTITY;

(* * *% * *% * *k% * *%)

--THIS ENTITY REPRESENTS AN ELEMENT IN A MODEL THAMAY HAVE A NAME (PAGE 98 OF
UML SPEC)
ENTITY NAMED_ELEMENT

ABSTRACT SUPERTYPE

SUBTYPE OF (ELEMENT);

NAME_ELEMENT: OPTIONAL STRING;

QUALIFIED_NAME: OPTIONAL STRING; --DERIVED

VISIBILITY: OPTIONAL VISIBILITY_KIND;

CLIENT_DEPENDENCY: OPTIONAL DEPENDENCY; --INDICATE S THE DEPENDENCIES
THAT REFERENCE THE CLIENT

NAMESPACE: OPTIONAL NAMESPACE,; --DERIVED
DERIVE

SELF\ELEMENT.NAME:STRING :='NAMED_ELEMENT";
END_ENTITY;

(* * *% * *% * *k% * *%)

--THIS ENTITY REPRESENTS AN ELEMENT THAT CAN BE EXPSED AS A FORMAL TEMPLATE
PARAMETER FOR A TEMPLATE, OR SPECIFIED AS

197

--AN ACTUAL PARAMETER IN A BINDING OF A TEMPLATE (FAGE 623 OF UML SPEC)
ENTITY PACKAGEABLE_ELEMENT
ABSTRACT SUPERTYPE
SUBTYPE OF (ELEMENT);
DERIVE
SELF\ELEMENT.NAME:STRING := 'PACKAGEABLE_ELEMENT
END_ENTITY;

(***)

--IT IS A KIND OF CLASSIFIER THAT REPRESENTS A DEGRATION OF A SET OF COHERENT
PUBLIC FEATURES AND OBLIGATIONS (UML SPEC, PAGE 86)
ENTITY INTERFACE_UML
SUBTYPE OF (CLASSIFIER);
OWNED_ATTRIBUTE: OPTIONAL SET[0:?] OF PROPERTY_UML ;
OWNED_OPERATION: OPTIONAL SET[0:?] OF OPERATION_UM L;
NESTED_CLASSIFIER: OPTIONAL SET[0:?] OF CLASSIFIER ;
REDEFINED_INTERFACE: OPTIONAL SET[0:?] OF INTERFAC E_UML;
DERIVE
SELF\CLASSIFIER.NAME:STRING :="INTERFACE_UML',
END_ENTITY;

(***)

--A BEHAVIORAL FEATURE IS IMPLEMENTED (REALIZED) BYA BEHAVIOR (PAGE 432 OF UML
SPEC)
ENTITY BEHAVIORAL_FEATURE

ABSTRACT SUPERTYPE

SUBTYPE OF (FEATURE);

OWNED_PARAMETER: SET OF PARAMETER_UML;

IS_ABSTRACT: OPTIONAL BOOLEAN;

METHOD: OPTIONAL SET[0:?] OF BEHAVIOR;

RAISED_EXCEPTION: OPTIONAL SET[0:?] OF CLASSIFIER;
DERIVE

SELF\FEATURE.NAME:STRING := 'BEHAVIORAL_FEATURE";
END_ENTITY;

(***)

--THIS ENTITY IS A IS A BEHAVIORAL FEATURE OF A CLASSIFIER THAT SPECIFIES THE NAME,
TYPE, PARAMETERS, AND CONSTRAINTS FOR INVOKING
--AN ASSOCIATED BEHAVIOR (FROM UML SPEC, PAGE 103)
ENTITY OPERATION_UML
SUBTYPE OF (BEHAVIORAL_FEATURE);
IS_ORDERED : OPTIONAL BOOLEAN; --DERIVED.
IS_QUERY : OPTIONAL BOOLEAN;
IS_UNIQUE : OPTIONAL BOOLEAN; --DERIVED.
LOWER : OPTIONAL INTEGER; --DERIVED.
UPPER : OPTIONAL INTEGER; -- >=0, DERIVED.
CLASS : OPTIONAL CLASS_UML;
BODY_CONDITION: OPTIONAL CONSTRAINT_UML; --AN OPTI ONAL CONSTRAINT ON
THE RESULT VALUES OF AN INVOCATION OF THIS OPERATIO N.
POST_CONDITION: SET [0:?] OF CONSTRAINT_UML;
PRE_CONDITION: SET [0:?] OF CONSTRAINT_UML;
REDEFINED_OOPERATION: SET [0:?] OF OPERATION_UML;
RETURN_TYPE: OPTIONAL TYPE_UML; --DERIVED
OWNER_INTERFACE: OPTIONAL INTERFACE_UML;
DERIVE
SELF\BEHAVIORAL_FEATURE.NAME:STRING := 'OPERATION_ UML;
END_ENTITY;

198

(***)

--THIS ENTITY IS A SPECIFICATION OF AN ARGUMENT UBD TO PASS INFORMATION INTO OR
OUT OF AN INVOCATION OF A BEHAVIORAL
--FEATURE. (PAGE 120 OF UML SPEC)
ENTITY PARAMETER_UML
SUBTYPE OF (MULTIPLICITY_ELEMENT, TYPED_ELEMENT, CO NNECTABLE_ELEMENT);
DEFAULT: OPTIONAL STRING; --DERIVED
DIRECTION: OPTIONAL PARAMETER_DIRECTION_KIND;
OPERATION: OPTIONAL OPERATION_UML,; --DERIVED
DEFAULT_VALUE: OPTIONAL VALUE_SPECIFICATION;

DERIVE
SELF\AELEMENT.NAME:STRING := 'PARAMETER_UML;
END_ENTITY;
(** kkkkkhkkkkhkkkkhkkkhkkkkkkhkkhkkkhkkkkhkkkhkkkx
******)

--THIS ENTITY REPRESENTS AN ELEMENT THAT CONTAINS SET OF NAMED ELEMENTS THAT
CAN BE IDENTIFIED BY NAME (PAGE 100 OF UML SPEC)
ENTITY NAMESPACE
ABSTRACT SUPERTYPE
SUBTYPE OF (NAMED_ELEMENT);
OWNED_MEMBER: OPTIONAL SET[0:?] OF NAMED_ELEMENT,; --DERIVED
MEMBER: OPTIONAL NAMED_ELEMENT; --DERIVED
DERIVE
SELF\NAMED_ELEMENT.NAME:STRING := 'NAMESPACE,
END_ENTITY;

--IT REPRESENTS THE DIFFERENT TYPES OF PARAMETERRECTION
TYPE VISIBILITY_KIND = ENUMERATION OF (PUBLIC,PRIVA TE,PROTECTED,PACKAGE);
END_TYPE;

--IT REPRESENTS THE DIFFERENT TYPES OF AGGREGATION
TYPE AGGREGATION_KIND = ENUMERATION OF (NONE,SHAREZOMPOSITE);
END_TYPE;

--THIS ENTITY IS THE SPECIFICATION OF A (POSSIBLYMPTY) SET OF INSTANCES, INCLUDING
BOTH OBJECTS AND DATA VALUES (PAGE 137 OF UML SPEC)
ENTITY VALUE_SPECIFICATION
SUBTYPE OF (PACKAGEABLE_ELEMENT,TYPED_ELEMENT);
END_ENTITY;

--A LITERAL SPECIFICATION IDENTIFIES A LITERAL CONSANT BEING MODELED(PAGE 92 OF
UML SPEC)
ENTITY LITERAL_SPECIFICATION
SUBTYPE OF (VALUE_SPECIFICATION);
END_ENTITY;

--THIS ENTITY IS A SPECIFICATION OF A BOOLEAN VALUEPAGE 89 OF UML SPEC)
ENTITY LITERAL_BOOLEAN

SUBTYPE OF (LITERAL_SPECIFICATION);

THE_VALUE: BOOLEAN;
END_ENTITY;

--THIS ENTITY IS A SPECIFICATION OF A INTEGER VALUEPAGE 89 OF UML SPEC)
199

ENTITY LITERAL_INTEGER
SUBTYPE OF (LITERAL_SPECIFICATION);
THE_VALUE: NUMBER;

END_ENTITY;

--THIS ENTITY IS A SPECIFICATION OF A STRING VALUERAGE 92 OF UML SPEC)
ENTITY LITERAL_STRING

SUBTYPE OF (LITERAL_SPECIFICATION);

THE_VALUE: STRING;
END_ENTITY;

--THIS ENTITY IS A SPECIFICATION OF AN UNLIMITED NA'URAL VALUE(PAGE 93 OF UML
SPEC)
ENTITY LITERAL_UNLIMITED_NATURAL
SUBTYPE OF (LITERAL_SPECIFICATION);
THE_VALUE: NUMBER;
END_ENTITY;

--THIS ENTITY IS A SPECIFICATION OF A LACK VALUE(PASE 91 OF UML SPEC)
ENTITY LITERAL_NULL

SUBTYPE OF (LITERAL_SPECIFICATION);
END_ENTITY;

--A CONSTRAINT IS A CONDITION OR RESTRICTION EXPREEXD IN NATURAL LANGUAGE TEXT
OR IN A MACHINE READABLE LANGUAGE FOR THE
--PURPOSE OF DECLARING SOME OF THE SEMANTICS OF AMEMENT (PAGE 58 OF UML SPEC)
ENTITY CONSTRAINT_UML

ABSTRACT SUPERTYPE

SUBTYPE OF (PACKAGEABLE_ELEMENT);

CONSTRAINED_ELEMENT: OPTIONAL SET[0:?] OF ELEMENT,;

CONTEXT_UML: OPTIONAL NAMESPACE; --DERIVED

SPECIFICATION: VALUE_SPECIFICATION;
END_ENTITY;

--THIS ENTITY CONSTRAINS THE VALUES REPRESENTED BX TYPED ELEMENT (PAGE 135 OF
UML SPEC)
ENTITY TYPE_UML
ABSTRACT SUPERTYPE
SUBTYPE OF (PACKAGEABLE_ELEMENT);
DERIVE
SELF\PACKAGEABLE_ELEMENT.NAME:STRING := 'TYPE_UML' ;
END_ENTITY;

--THIS ENTITY IS AN ELEMENT THAT, WHEN DEFINED IN HE CONTEXT OF A CLASSIFIER, CAN
BE REDEFINED MORE SPECIFICALLY OR
--DIFFERENTLY IN THE CONTEXT OF ANOTHER CLASSIFIERHAT SPECIALIZES (DIRECTLY OR
INDIRECTLY) THE CONTEXT CLASSIFIER (PAGE 130 OF UMBPEC)
ENTITY REDEFINABLE_ELEMENT
ABSTRACT SUPERTYPE
SUBTYPE OF (NAMED_ELEMENT);
IS_LEAF: OPTIONAL BOOLEAN,;
REDEFINED_ELEMENT: OPTIONAL SET[0:?] OF REDEFINABL E_ELEMENT,; --
DERIVED (THE REDEFINABLE ELEMENT THAT IS BEING REDE FINED BY THIS ELEMENT)
REDEFINED_CONTEXT: OPTIONAL SET[0:?] OF CLASSIFIER ; --DERIVED
DERIVE
SELFANAMED_ELEMENT.NAME:STRING := 'REDEFINABLE_ELE MENT;
END_ENTITY;

--THIS ENTITY REPRESENTS A LINK BETWEEN TWO OR MOREONNECTABLE ELEMENTS
(FROM UML SPEC, PAGE 175)

200

ENTITY CONNECTOR
SUBTYPE OF (FEATURE);
END_CONNECTOR: SET[2:?] OF CONNECTOR_END;
TYPE_CONNECTOR: OPTIONAL ASSOCIATION,;
REDEFINED_CONNECTOR: OPTIONAL SET[0:?] OF CONNECTOR;
DERIVE
SELF\FEATURE.NAME:STRING := 'CONNECTOR;
END_ENTITY;

(* * * * * *kkkkkkkkkkk * * * * * * *kkkkkkk *

**********************)

--THIS ENTITY IS A CLASSIFICATION OF INSTANCES, IDESCRIBES A SET OF INSTANCES THAT
HAVE FEATURES IN COMMON (FROM UML SPEC, PAGE 52)
ENTITY CLASSIFIER
ABSTRACT SUPERTYPE
SUBTYPE OF (NAMESPACE,REDEFINABLE_ELEMENT,TYPE_UNL
IS_ENCAPSULATED: OPTIONAL BOOLEAN,;
ATTRIBUTE: OPTIONAL SET[0:?] OF PROPERTY_UML,; --DE RIVED
FEATURE: OPTIONAL SET[0:?] OF FEATURE; --DERIVED
GENERAL: OPTIONAL SET[0:?] OF CLASSIFIER; --DERIVE D
GENERALIZATION: OPTIONAL SET[0:?] OF GENERALIZATIO N;
INHERITED_ELEMENT: OPTIONAL SET[0:?] OF NAMED_ELEM ENT; --DERIVED
REDEFINED_CLASSIFIER: OPTIONAL SET[0:?] OF CLASSIF IER; --DERIVED
(REFERENCES THE CLASSIFIERS THAT ARE REDEFINED BY T HIS CLASSIFIER)
COLLABORATION_USE: OPTIONAL COLLABORATION_USE;
REPRESENTATION: OPTIONAL COLLABORATION_USE;

DERIVE
SELF\NAMESPACE.NAME:STRING := '‘CLASSIFIER’;
END_ENTITY;
(** kkkkkkkkkhkkkhkkkkhkkkkkkhkkhkkkkhkkkhkhkkkhkkkx
******)

--THIS ENTITY REPRESENTS A PACKAGE (FROM UML 2 SPEHRAGE 108)

ENTITY PACKAGE
SUBTYPE OF (NAMED_ELEMENT,PACKAGEABLE_ELEMENT);
NESTED_PACKAGE: OPTIONAL SET[0:?] OF PACKAGE;
PACKAGED_ELEMENT: OPTIONAL SET[0:?] OF PACKAGEABLE _ELEMENT;
NESTING_PACKAGE: OPTIONAL PACKAGE;

DERIVE
SELF\PACKAGEABLE_ELEMENT.NAME:STRING := 'PACKAGE';

END_ENTITY;

(* *% * *% * *kk * *% * *% * *kk * *% * *% *

******)

-THIS ENTITY IS AN ABSTRACT METACLASS THAT REPRESETS ANY CLASSIFIER WHOSE
BEHAVIOR CAN BE FULLY OR PARTLY
--DESCRIBED BY THE COLLABORATION OF OWNED OR REFEREED INSTANCES. (FROM UML
SPEC, PAGE 186)
ENTITY STRUCTURED_CLASSIFIER
ABSTRACT SUPERTYPE
SUBTYPE OF (CLASSIFIER);
ROLE: OPTIONAL SET[0:?] OF CONNECTABLE_ELEMENT; -- DERIVED
OWNED_ATTRIBUTE: OPTIONAL SET[0:?] OF PROPERTY_UML ;
PART: OPTIONAL SET[0:?] OF PROPERTY_UML; --DERIVED
OWNED_CONNECTOR: OPTIONAL SET[0:?] OF CONNECTOR;

201

DERIVE
SELF\CLASSIFIER.NAME:STRING := 'STRUCTURED_CLASSIF IER}
END_ENTITY;

(* * *% * *% * *kk * *% * *% * *kk * *% * *% *

******)

--THIS ENTITY IS AN ENDPOINT OF A CONNECTOR, WHICATTACHES THE CONNECTOR TO A
CONNECTABLE ELEMENT. EACH CONNECTOR
--END IS PART OF ONE CONNECTOR. (FROM UML SPEC, PEG76)
ENTITY CONNECTOR_END

SUBTYPE OF (MULTIPLICITY_ELEMENT);

ROLE: CONNECTABLE_ELEMENT,;

DEFINING_END: OPTIONAL PROPERTY_UML,;

PART_WITH_PORT: OPTIONAL PROPERTY_UML;
DERIVE

SELF\MULTIPLICITY_ELEMENT.NAME:STRING :='CONNECTO R_END
END_ENTITY;

(** kkkkkhkkkkhkkkkkkkhkkkkkkhkkhkkkkhkkkkhkkkhkkkx

******)

--THIS ENTITY IS AN ABSTRACT METACLASS REPRESENTIN® SET OF INSTANCES THAT PLAY
ROLES OF A CLASSIFIER. (FROM UML SPEC, PAGE 174)
ENTITY CONNECTABLE_ELEMENT
ABSTRACT SUPERTYPE
SUBTYPE OF (TYPED_ELEMENT);
END_CONNECTOR: OPTIONAL CONNECTOR_END;
END_ENTITY;

--THIS ENTITY DESCRIBES A STRUCTURE OF COLLABORATIBI ELEMENTS (ROLES), EACH
PERFORMING A SPECIALIZED FUNCTION, WHICH
--COLLECTIVELY ACCOMPLISH SOME DESIRED FUNCTIONALIY. (FROM UML SPEC, PAGE 168)
ENTITY COLLABORATION
ABSTRACT SUPERTYPE
SUBTYPE OF (BEHAVIORED_CLASSIFIER,STRUCTURED_CLASS-IER);
COLLABORATION_ROLE: OPTIONAL SET[0:?] OF CONNECTAB LE_ELEMENT;
END_ENTITY;

--THIS ENTITY REPRESENTS THE APPLICATION OF THE PAERN DESCRIBED BY A
COLLABORATION TO A SPECIFIC SITUATION INVOLVING
--SPECIFIC CLASSES OR INSTANCES PLAYING THE ROLE$OHE COLLABORATION (FROM
UML SPEC, PAGE 171)
ENTITY COLLABORATION_USE

ABSTRACT SUPERTYPE

SUBTYPE OF (NAMED_ELEMENT);

TYPE_COLLABORATION: COLLABORATION;

ROLE_BINDING: OPTIONAL SET[0:?] OF DEPENDENCY;
END_ENTITY;

* * *% * *% * *%k%k * *% * *% * *k%k * *% * *% *

******)

--THIS EXTENDS A CLASSIFIER WITH THE ABILITY TO OWNPORTS AS SPECIFIC AND TYPE
CHECKED INTERACTION POINTS (FROM UML SPEC, PAGE 178
ENTITY ENCAPSULATED_CLASSIFIER

ABSTRACT SUPERTYPE

SUBTYPE OF (STRUCTURED_CLASSIFIER);

OWNED_PORT: OPTIONAL SET[0:?] OF PORT;
DERIVE

SELF\STRUCTURED_CLASSIFIER.NAME:STRING :='ENCAPSU LATED_CLASSIFIER’;
END_ENTITY;

202

******)

--THIS ENTITY DESCRIBES A SET OF OBJECTS THAT SHARHE SAME SPECIFICATIONS OF
FEATURES, CONSTRAINTS, AND SEMANTICS (FROM UML SPEAGE 49)
ENTITY CLASS_UML

ABSTRACT SUPERTYPE

SUBTYPE OF (CLASSIFIER, ENCAPSULATED_CLASSIFIER);

IS_ABSTRACT: OPTIONAL BOOLEAN;

NESTED_CLASSIFIER: OPTIONAL SET[0:?] OF CLASSIFIER ;

SUPER_CLASS: OPTIONAL SET[0:?] OF CLASS_UML,; --DER IVED
DERIVE

SELF\ENCAPSULATED_CLASSIFIER.NAME:STRING :='CLASS _UML
END_ENTITY;

(** kkkkkkkkkhkkkkkkkhkkkkkkhkkhkkkhkkkkhkkkhkkkx

******)

--THIS ENTITY IS A DEFINITION OF AN INCLUSIVE INTER/AL OF NON-NEGATIVE INTEGERS
BEGINNING WITH A LOWER BOUND AND ENDING
--WITH A (POSSIBLY INFINITE) UPPER BOUND. A MULTIPICITY ELEMENT EMBEDS THIS
INFORMATION TO SPECIFY THE ALLOWABLE
--CARDINALITIES FOR AN INSTANTIATION OF THIS ELEMEN'. (FROM UML SPEC, PAGE 94)
ENTITY MULTIPLICITY_ELEMENT

ABSTRACT SUPERTYPE

SUBTYPE OF (NAMED_ELEMENT);

IS_ORDERED: OPTIONAL BOOLEAN;

IS_UNIQUE: OPTIONAL BOOLEAN;

LOWER: OPTIONAL INTEGER; --DERIVED

UPPER: OPTIONAL INTEGER; --DERIVED, UNLIMITED NATU RAL >=0

LOWER_VALUE: OPTIONAL VALUE_SPECIFICATION;

UPPER_VALUE: OPTIONAL VALUE_SPECIFICATION,;
DERIVE

SELF\NAMED_ELEMENT.NAME:STRING :='MULTIPLICITY_EL EMENT
END_ENTITY;

(** kkkkkkkkkhkkkhkkkkhkkkhkkkhkkhkkkhkkkkhkkkhkkkx

******)

--THIS ENTITY HAS A TYPE (FROM UML SPEC, PAGE 136)
ENTITY TYPED_ELEMENT

SUBTYPE OF (NAMED_ELEMENT);

TYPE_UML: OPTIONAL TYPE_UML,;

DERIVE
SELF\NAMED_ELEMENT.NAME:STRING := 'TYPED_ELEMENT
END_ENTITY;
(** kkkkkkkkkhkkkhkhkkkhkkkkkkhkkhkkkkhkkkkhkkkhkkk
******)

--THIS ENTITY DECLARES A BEHAVIORAL OR STRUCTURAL GARACTERISTIC OF INSTANCES
OF CLASSIFIERS (FROM UML SPEC, PAGE 70)
ENTITY FEATURE
ABSTRACT SUPERTYPE
SUBTYPE OF (REDEFINABLE_ELEMENT);
IS_STATIC: OPTIONAL BOOLEAN,;
FEATURING_CLASSIFIER: OPTIONAL SET[0:?] OF CLASSIF IER; --DERIVED
DERIVE
SELF\REDEFINABLE_ELEMENT.NAME:STRING :='FEATURE
END_ENTITY;

203

******)

--THIS ENTITY IS AIS ATYPED FEATURE OF A CLASSIHR THAT SPECIFIES THE STRUCTURE OF
INSTANCES OF THE CLASSIFIER (FROM UML SPEC, PAGE3)3
ENTITY STRUCTURAL_FEATURE

ABSTRACT SUPERTYPE

SUBTYPE OF (FEATURE,MULTIPLICITY_ELEMENT,TYPED_ELE MENT);

IS_READ_ONLY: OPTIONAL BOOLEAN,;

DERIVE
SELF\FEATURE.NAME:STRING := 'STRUCTURAL_FEATURE
END_ENTITY;
(** kkkkkkkkkhkkkkkkkhkkkkkkhkkhkkkhkkkkhkkkhkkk
******)

--THIS ENTITY IS AN ABSTRACT CONCEPT THAT SPECIFIESOME KIND OF RELATIONSHIP
BETWEEN ELEMENTS (FROM UML SPEC, PAGE 131)
ENTITY RELATIONSHIP

ABSTRACT SUPERTYPE

SUBTYPE OF (ELEMENT);

RELATED_ELEMENT: OPTIONAL SET [1:?] OF ELEMENT,; -- DERIVED
DERIVE

SELF\ELEMENT.NAME:STRING := 'RELATIONSHIP*;
END_ENTITY;
(** B

******)

--THIS ENTITY DESCRIBES A SET OF TUPLES WHOSE VAL\S$EREFER TO TYPED INSTANCES
(FROM UML SPEC, PAGE 39)
ENTITY ASSOCIATION

SUBTYPE OF (CLASSIFIER,RELATIONSHIP);

IS_DERIVED: OPTIONAL BOOLEAN:

MEMBER_END: SET [2:?] OF PROPERTY_UML;

OWNED_END: OPTIONAL SET [0:?] OF PROPERTY_UML;

NAVIGABLE_OWNED_END: OPTIONAL SET [0:?] OF PROPERT Y_UML;

ENDTYPE: OPTIONAL SET [1:?] OF TYPE_UML;

DERIVE
SELF\RELATIONSHIP.NAME:STRING :='ASSOCIATION';
END_ENTITY;
(** kkkkkhkkkkhkkkkkkkhkkkkkkhkkhkkkkhkkkkhkkkhkkk
******)

--THIS ENTITY IS REFERENCES ONE OR MORE SOURCE ELEMTS AND ONE OR MORE TARGET
ELEMENTS (FROM UML SPEC, PAGE 63)
ENTITY DIRECTED_RELATIONSHIP
ABSTRACT SUPERTYPE
SUBTYPE OF (RELATIONSHIP);
SOURCE: SET [1:?] OF ELEMENT; --DERIVED
TARGET: SET [1:?] OF ELEMENT,; --DERIVED
DERIVE
SELF\RELATIONSHIP.NAME:STRING := 'DIRECTED_RELATIO NSHIP';
END_ENTITY;

(* * *% * *% * *kk * *% * *% * *kk * *% * *% *

******)

--THIS ENTITY IS A RELATIONSHIP THAT SIGNIFIES THATA SINGLE OR A SET OF MODEL
ELEMENTS REQUIRES OTHER MODEL ELEMENTS FOR
--THEIR SPECIFICATION OR IMPLEMENTATION (FROM UML BEC, PAGE 62)
ENTITY DEPENDENCY
SUBTYPE OF (DIRECTED_RELATIONSHIP,PACKAGEABLE_ELEMENT);
CLIENT: SET [1:?] OF NAMED_ELEMENT;

204

SUPPLIER: SET [1:?] OF NAMED_ELEMENT;
DERIVE

SELF\DIRECTED_RELATIONSHIP.NAME:STRING :='DEPENDE NCY"
END_ENTITY;

(* * *% * *% * *kk * *% * *% * *kk * *% * *% *

******)

--THIS ENTITY IS A TAXONOMIC RELATIONSHIP BETWEEN AMORE GENERAL CLASSIFIER AND
A MORE SPECIFIC CLASSIFIER. EACH
--INSTANCE OF THE SPECIFIC CLASSIFIER IS ALSO AN INRECT INSTANCE OF THE GENERAL
CLASSIFIER. (UML SPEC., PAGE 71)
ENTITY GENERALIZATION

SUBTYPE OF (DIRECTED_RELATIONSHIP);

IS_SUBSTITUTABLE: OPTIONAL BOOLEAN;

GENERAL: CLASSIFIER;

SPECIFIC: CLASSIFIER;

GENERALIZATION_SET: OPTIONAL SET[0:?] OF GENERALIZ ATION; --DESIGNATES
A SET IN WHICH INSTANCES OF GENERALIZATION ARE CONS IDERED MEMBERS
END_ENTITY;

(** kkkkkhkkkkhkkkkkkkhkkkkkkhkkhkkkhkkkkhkkkhkkk

******)

--THIS ENTITY IS A RELATIONSHIP THAT RELATES TWO EEMENTS OR SETS OF ELEMENTS
THAT REPRESENT THE SAME CONCEPT AT DIFFERENT
--LEVELS OF ABSTRACTION OR FROM DIFFERENT VIEWPOINS. IN THE METAMODEL, AN
ABSTRACTION IS A DEPENDENCY IN WHICH THERE IS A
--MAPPING BETWEEN THE SUPPLIER AND THE CLIENT (UMBPEC., PAGE 38)
ENTITY ABSTRACTION
ABSTRACT SUPERTYPE
SUBTYPE OF (DEPENDENCY);
END_ENTITY;

--THIS ENTITY IS A SPECIALIZED ABSTRACTION RELATIONHIP BETWEEN TWO SETS OF
MODEL ELEMENTS, ONE REPRESENTING A SPECIFICATION
--(THE SUPPLIER) AND THE OTHER REPRESENTS AN IMPLEWTATION OF THE LATTER (THE
CLIENT). REALIZATION CAN BE USED TO MODEL
--STEPWISE REFINEMENT, OPTIMIZATIONS, TRANSFORMATINS, TEMPLATES, MODEL
SYNTHESIS, FRAMEWORK COMPOSITION, ETC.. (UML SPE®AGE 129)
ENTITY REALIZATION

SUBTYPE OF (ABSTRACTION);
END_ENTITY;

--IT REPRESENTS THE DIFFERENT TYPES OF PARAMETERRECTION

TYPE PARAMETER_DIRECTION_KIND=ENUMERATION OF
(IN_UML,OUT,INOUT,RETURN_UML);--IN AND RETURN EXIST IN EXPRESS --YAMINE
END_TYPE;

--A CLASSIFIER CAN HAVE BEHAVIOR SPECIFICATIONS DERED IN ITS NAMESPACE (PAGE 434
OF UML SPEC)
ENTITY BEHAVIORED_CLASSIFIER
ABSTRACT SUPERTYPE
SUBTYPE OF (CLASSIFIER);
OWNED_BEHAVIOR: OPTIONAL SET[0:?] OF BEHAVIOR;
CLASSIFIER_BEHAVIOR: OPTIONAL BEHAVIOR;
OWNED_TRIGGER: OPTIONAL SET[0:?] OF TRIGGER_UML;
END_ENTITY;

--THIS ENTITY IS A SPECIFICATION OF HOW ITS CONTEXTLASSIFIER CHANGES STATE OVER
TIME (PAGE 430 OF UML SPEC)

205

ENTITY BEHAVIOR
ABSTRACT SUPERTYPE
SUBTYPE OF (CLASS_UML);
IS_REENTRANT: OPTIONAL BOOLEAN;
SPECIFICATION: OPTIONAL BEHAVIORAL_FEATURE;
CONTEXT_UML: OPTIONAL BEHAVIORED_CLASSIFIER; --DER IVED
OWNED_PARAMETER: OPTIONAL SET[0:?] OF PARAMETER_UM,;
REDEFINED_BEHAVIOR: OPTIONAL BEHAVIOR,;
PRECONDITION: OPTIONAL SET[0:?] OF CONSTRAINT_UML;
POSTCONDITION: OPTIONAL SET[0:?] OF CONSTRAINT_UML ;
END_ENTITY;

(** kkkkkkkkkhkkkkkkkhkkkkkkhkkhkkkkhkkkkhkkkhkkk

******)

--THIS ENTITY DESCRIBES A TYPE WHOSE INSTANCES ARBENTIFIED ONLY BY THEIR
VALUE. A DATATYPE MAY CONTAIN ATTRIBUTES TO SUPPORTTHE
--MODELING OF STRUCTURED DATA TYPES. (UML SPEC., BF& 60)
ENTITY DATA_TYPE_UML
SUBTYPE OF (CLASSIFIER);
OWNED_ATTRIBUTE: LIST OF PROPERTY_UML;--THE ATTRIB UTES OWNED BY THE
DATATYPE. THIS IS AN ORDERED COLLECTION.
OWNED_OPERATION: LIST OF OPERATION_UML;
DERIVE
SELF\CLASSIFIER.NAME:STRING := 'DATA_TYPE';
END_ENTITY;

* *% * *% * *%k%k * *% * *% * *k%k * *% * *% *

******)

--THIS ENTITY DEFINES A PREDEFINED DATA TYPE, WITHOT ANY RELEVANT
SUBSTRUCTURE (l.E., IT HAS NO PARTS IN THE CONTEXOF
--UML)(PAGE 122 OF UML SPEC)
ENTITY PRIMITIVE_TYPE_UML
SUBTYPE OF (DATA_TYPE_UML);
END_ENTITY;

(** kkkkkhkkkkhkkkkhkkkhkkkkkkhkkhkkkkhkkkkhkkkhkkkx

******)

--THIS ENTITY IS A STRUCTURAL FEATURE (FROM UML SPE, PAGE 122)
ENTITY PROPERTY_UML
SUBTYPE OF (STRUCTURAL_FEATURE, CONNECTABLE_ELEMEN
AGGREGATION: OPTIONAL AGGREGATION_KIND:;
DEFAULT: OPTIONAL STRING; --DERIVED
IS_COMPOSITE: OPTIONAL BOOLEAN; --DERIVED
IS_DERIVED: OPTIONAL BOOLEAN;
IS_DERIVED_UNION: OPTIONAL BOOLEAN;
SUPER_CLASS: OPTIONAL SET[0:?] OF CLASS_UML; --DER IVED
ASSOCIATION: OPTIONAL ASSOCIATION;
OWNING_ASSOCIATION: OPTIONAL ASSOCIATION;
DATA_TYPE: OPTIONAL DATA_TYPE_UML;
DEFAULT_VALUE: OPTIONAL VALUE_SPECIFICATION;
REDEFINED_PROPERTY: OPTIONAL SET[0:?] OF PROPERTY_ UML;
SUBSETTED_PROPERTY: OPTIONAL SET[0:?] OF PROPERTY_ UML;
OPPOSITE: OPTIONAL PROPERTY_UML;
CLASS_UML: OPTIONAL SET[0:?] OF CLASS_UML;
ASSOCIATION_END: OPTIONAL PROPERTY_UML;

206

QUALIFIER: OPTIONAL LIST OF PROPERTY_UML,; --AN OPT IONAL LIST OF
ORDERED QUALIFIER ATTRIBUTES FOR THE END. IF THE LI ~ ST IS EMPTY, THEN THE
ASSOCIATION IS NOT QUALIFIED
DERIVE

SELR\STRUCTURAL_FEATURE.NAME:STRING := 'PROPERTY_UML";

END_ENTITY;

(** kkkkkkkkkhkkkhkhkkkhkkkkkkhkkhkkkhkkkkhkkkhkkk

******)

--THIS ENTITY IS THE SPECIFICATION OF SOME OCCURRENE THAT MAY POTENTIALLY
TRIGGER EFFECTS BY AN OBJECT (SPEC. UML, PAGE 442)
ENTITY EVENT
ABSTRACT SUPERTYPE
SUBTYPE OF (PACKAGEABLE_ELEMENT);
END_ENTITY;

(* * *% * *% * *kk * *% * *% * *kk * *% * *% *

******)

--THIS ENTITY REPRESENTS A PORT, FOR DATA AND CONTR. FLOW
ENTITY PORT

SUBTYPE OF (PROPERTY_UML);

IS_SERVICE: OPTIONAL BOOLEAN;

IS_BEHAVIOR: OPTIONAL BOOLEAN:

REQUIRED: OPTIONAL SET[0:?] OF INTERFACE_UML; -DE RIVED

PROVIDED: OPTIONAL SET[0:?] OF INTERFACE_UML; --DE RIVED

REDEFINED_PORT: OPTIONAL PORT;

--CONSTRAINTS

--THE REQUIRED INTERFACES OF A PORT MUST BE PROVID ED BY ELEMENTS TO
WHICH THE PORT IS CONNECTED.

--PORT.AGGREGATION MUST BE COMPOSITE.

-WHEN A PORT IS DESTROYED, ALL CONNECTORS ATTACHE D TO THIS PORT WILL
BE DESTROYED ALSO.

--A DEFAULTVALUE FOR PORT CANNOT BE SPECIFIED WHEN THE TYPE OF THE
PORT IS AN INTERFACE.

DERIVE
SELF\PROPERTY_UML.NAME:STRING :='PORT
END_ENTITY;
(** kkkkkkkkkhkkkhkkkkhkkkkkkhkkhkkkkhkkkkhkkkhkkk
******)

--THIS ENTITY RELATES AN EVENT TO A BEHAVIOR THAT MAY AFFECT AN INSTANCE OF THE
CLASSIFIER (PAGE 456 OF UML SPEC)
ENTITY TRIGGER_UML
ABSTRACT SUPERTYPE
SUBTYPE OF (NAMED_ELEMENT);
EVENT : EVENT,;
PORT: OPTIONAL SET[0:?] OF PORT;
END_ENTITY;

--IT IS A SPECIFICATION OF SEND REQUEST INSTANCESXMMUNICATED BETWEEN OBJECTS
(UML SPEC, PAGE 449)
ENTITY SIGNAL
SUBTYPE OF (CLASSIFIER);
OWNED_ATTRIBUTE: OPTIONAL SET[0:?] OF PROPERTY_UML ;
END_ENTITY;

207

(* * *% * *% * *kk * *% * *% * *kk * *% * *% *

(* * *% * *% SYSM L PART *kkkkkkkkkkkkkk ************)
* *

(* * *% * *% *kk *% * *% * *kk * *% * *% *

* *% * *% *

)
TYPE ENVIRONMENT_TYPE = SELECT(PACKAGE,ENVIRONMENTEND_TYPE;

--AN ACTOR SPECIFIES A ROLE PLAYED BY A USER OR AN®THER SYSTEM THAT INTERACTS
WITH THE SUBJECT (UML SPEC, PAGE 588)
ENTITY ACTOR
SUBTYPE OF (BEHAVIORED_CLASSIFIER);
END_ENTITY;

--THIS ENTITY REPRESENTS THE ENVIRONMENT OF THE SYEM (TYPICALLY ACTOR WITH
THEIR INTERRELATIONSHIPS
ENTITY ENVIRONMENT
SUBTYPE OF (ELEMENT);
ACTORS: OPTIONAL SET[0:?] OF ACTOR,;
DEPENDENCIES: OPTIONAL SET[0:?] OF DEPENDENCY;
ASSOCIATIONS: OPTIONAL SET[0:?] OF ASSOCIATION;
END_ENTITY;

--THIS ENTITY REPRESENTS A BLOCK, THE MAIN SYSML UN (FROM SYSML SPEC PAGE 46)
ENTITY BLOCK

SUBTYPE OF (CLASS_UML);
END_ENTITY;

--THIS ENTITY DESCRIBES A STATE MACHINE
ENTITY STATE_MACHINE

SUBTYPE OF (BEHAVIOR);

REGION: SET[1:?] OF REGION;
END_ENTITY;

--THIS ENTITY MODELS A SITUATION DURING WHICH SOMEUSUALLY IMPLICIT) INVARIANT
CONDITION HOLD (UML SPEC., PAGE 550)
ENTITY STATE

SUBTYPE OF (NAMESPACE,REDEFINABLE_ELEMENT,VERTEX);

IS_COMPOSITE : OPTIONAL BOOLEAN,;

IS_ORTHOGONAL: OPTIONAL BOOLEAN;

IS_SIMPLE: OPTIONAL BOOLEAN;

IS_SUBMACHINE_STATE: OPTIONAL BOOLEAN;

CONNECTION: OPTIONAL SET[0:?] OF CONNECTION_POINT_ REFERENCE;

DEFERRABLE_TRIGGER: OPTIONAL SET[0:?] OF TRIGGER_U ML; --A LIST OF
TRIGGERS THAT ARE CANDIDATES TO BE RETAINED BY THE STATE MACHINE IF THEY
TRIGGER NO TRANSITIONS OUT OF THE STATE (NOT

--CONSUMED). A DEFERRED TRIGGER IS RETAINED UNTIL THE STATE MACHINE
REACHES A STATE CONFIGURATION WHERE IT IS NO LONGER

--DEFERRED.

DO_ACTIVITY: OPTIONAL BEHAVIOR,;

ENTRY:OPTIONAL BEHAVIOR;

EXIT: OPTIONAL BEHAVIOR;

REGION: OPTIONAL SET[0:?] OF REGION;

SUBMACHINE: OPTIONAL STATE_MACHINE;

REDEFINITION_CONTEXT: OPTIONAL CLASSIFIER;
END_ENTITY;

--IT SPECIFIES A SPECIAL KIND OF STATE SIGNIFYINGHAT THE ENCLOSING REGION IS
COMPLETED. (UML SPEC, PAGE 532)
ENTITY FINAL_STATE

208

SUBTYPE OF (STATE);
END_ENTITY;

-IT SPECIFIES THE RECEIPT BY AN OBJECT OF EITHERGALL OR A SIGNAL. (UML SPEC, PAGE
445)
ENTITY MESSAGE_EVENT
SUBTYPE OF (EVENT);
END_ENTITY;

--THIS ENTITY MODELS THE RECEIPT BY AN OBJECT OF MESSAGE INVOKING A CALL OF AN
OPERATION (UML SPEC., PAGE 436)
ENTITY CALL_EVENT
SUBTYPE OF (MESSAGE_EVENT);
OPERATION: OPERATION_UML;
END_ENTITY;

-IT REPRESENTS THE RECEIPT OF AN ASYNCHRONOUS SISININSTANCE (UML SPEC, PAGE
450)
ENTITY SIGNAL_EVENT
SUBTYPE OF (MESSAGE_EVENT);
SIGNAL: SIGNAL;
END_ENTITY;

--IT REPRESENTS THE DIFFERENT TYPES OF TRANSITION

TYPE TRANSITION_KIND=ENUMERATION OF (EXTERNAL,INTERNAL,LOCAL_UML); --LOCAL
EXISTS IN EXPRESS

END_TYPE;

--THIS ENTITY REPRESENTS A DIRECTED RELATIONSHIPEHWEEN A SOURCE VERTEXAND A
TARGET VERTEX (PAGE 572 OF UML SPEC)
ENTITY TRANSITION

SUBTYPE OF (NAMESPACE,REDEFINABLE_ELEMENT);

KIND: TRANSITION_KIND;

TRIGGER: OPTIONAL SET[0:?] OF TRIGGER_UML,; --SPECI FIES THE TRIGGERS
THAT MAY FIRE THE TRANSITION, I.E. AN EVENT

GUARD: OPTIONAL CONSTRAINT_UML;

EFFECT: OPTIONAL BEHAVIOR; --E.G. TO CALL A METHOD

SOURCE: VERTEX; --E.G. A STATE

TARGET: VERTEX;, --E.G. A STATE

REDEFINED_TRANSITION: OPTIONAL TRANSITION,;

REDEFINITION_CONTEXT: OPTIONAL CLASSIFIER;--DERIVE D

CONTAINER: OPTIONAL REGION,;
END_ENTITY;

--IT GROUPS THE DIFFERENT TYPES OF SYSML DIAGRAM$DO BE COMPLETED
ENTITY DIAGRAM_SYSML

ABSTRACT SUPERTYPE

SUBTYPE OF (ENTITY_CLASS);

--NAME: STRING,;
END_ENTITY;

--THIS ENTITY REPRESENTS A USAGE (AS PART OF A SVBCHINE STATE) OF AN ENTRY/EXIT
POINT DEFINED IN THE
--STATEMACHINE REFERENCE BY THE SUBMACHINE STATEPAGE 529 OF UML SPEC)
ENTITY CONNECTION_POINT_REFERENCE
SUBTYPE OF (VERTEX);
ENTRY: OPTIONAL SET[0:?] OF PSEUDOSTATE;
EXIT: OPTIONAL SET[0:?] OF PSEUDOSTATE;
STATE: OPTIONAL STATE;
END_ENTITY;

209

--THIS ENTITY IS AN ABSTRACTION THAT ENCOMPASSES IPFERENT TYPES OF TRANSIENT
VERTICES IN THE STATE MACHINE GRAPH. (PAGE 540 ORMIL SPEC)
ENTITY PSEUDOSTATE
SUBTYPE OF (VERTEX);
KIND: OPTIONAL PSEUDOSTATE_KIND;
STATE_MACHINE: OPTIONAL STATE_MACHINE;
STATE: OPTIONAL STATE;
END_ENTITY;

--THIS ENTITY REPRESENTS A REGION, IT IS AN ORTHO®AL PART OF EITHER A COMPOSITE
STATE OR A STATE MACHINE. IT CONTAINS STATES AND TRNSITIONS
ENTITY REGION

SUBTYPE OF (NAMESPACE, REDEFINABLE_ELEMENT);

STATE_MACHINE: OPTIONAL STATE_MACHINE;

STATE: OPTIONAL STATE ;

TRANSITION: OPTIONAL SET[0:?] OF TRANSITION;

SUBVERTEX: OPTIONAL SET[0:?] OF VERTEX;

EXTENDED_REGION: OPTIONAL SET[0:?] OF REGION; --TH E REGION OF WHICH
THIS REGION IS AN EXTENSION

REDEFINITON_CONTEXT: OPTIONAL CLASSIFIER; --DERIVE D, REFERENCES THE
CLASSIFIER IN WHICH CONTEXT THIS ELEMENT MAY BE RED EFINED
END_ENTITY;

--THIS ENTITY IS AN ENUMERATION OF TYPES OF PSEULETATES

TYPE PSEUDOSTATE_KIND=ENUMERATION OF
(INITIAL,DEEPHISTORY,SHALLOWHISTORY,JOIN,FORK,JUNCION,CHOICE ,ENTRYPOINT,EXITPO
INT,TERMINATE);

END_TYPE;

--THIS ENTITY SPECIFIES THE COORDINATION OF EXECUDNS OF SUBORDINATE BEHAVIORS,
USING A CONTROL AND DATA FLOW MODEL ((PAGE 316 OF ML SPEC))
ENTITY ACTIVITY
SUBTYPE OF (BEHAVIOR);
IS_READ_ONLY: OPTIONAL BOOLEAN,;
IS_SINGLE_EXECUTION: OPTIONAL BOOLEAN;
GROUP: OPTIONAL SET[0:?] OF ACTIVITY_GROUP;
NODE: OPTIONAL SET[0:?] OF ACTIVITY_NODE;
EDGE: OPTIONAL SET[0:?] OF ACTIVITY_EDGE;
PARTITION: OPTIONAL SET[0:?] OF ACTIVITY_PARTITION ;
STRUCTURED_NODE: OPTIONAL SET[0:?] OF STRUCTURED_ACTIVITY_NODE;
VARIABLE: OPTIONAL SET[0:?] OF VARIABLE_UML,;
END_ENTITY;

--THIS ENTITY IS AN ABSTRACT CLASS FOR DEFINING SET OF NODES AND EDGES IN AN
ACTIVITY (PAGE 348 OF UML SPEC)
ENTITY ACTIVITY_GROUP
ABSTRACT SUPERTYPE
SUBTYPE OF (ELEMENT);
IN_ACTIVITY: OPTIONAL ACTIVITY;
CONTAINED_NODE: OPTIONAL SET[0:?] OF ACTIVITY_NODE ;
CONTAINED_EDGE: OPTIONAL SET[0:?] OF ACTIVITY_EDGE ;
SUPER_GROUP: OPTIONAL SET[0:1] OF ACTIVITY_GROUP;
SUB_GROUP: OPTIONAL SET[0:?] OF ACTIVITY_GROUP;
END_ENTITY;

--THIS ENTITY IS AN ABSTRACT CLASS FOR POINTS IN THFLOW OF AN ACTIVITY
CONNECTED BY EDGES (PAGE 349 OF UML SPEC)
ENTITY ACTIVITY_NODE

ABSTRACT SUPERTYPE

SUBTYPE OF (NAMED_ELEMENT, REDEFINABLE_ELEMENT);

ACTIVITY: OPTIONAL ACTIVITY;

210

IN_GROUP: OPTIONAL SET[0:?] OF ACTIVITY_GROUP;

INCOMING: OPTIONAL SET[0:?] OF ACTIVITY_EDGE;

OUTGOING: OPTIONAL SET[0:?] OF ACTIVITY_EDGE;

REDEFINED_NODE: OPTIONAL SET[0:?] OF ACTIVITY_NODE ;
END_ENTITY;

--THIS ENTITY IS AN ABSTRACT CLASS FOR THE CONNECODNS ALONG WHICH TOKENS FLOW
BETWEEN ACTIVITY NODES (PAGE 341 OF UML SPEC)
ENTITY ACTIVITY_EDGE
ABSTRACT SUPERTYPE
SUBTYPE OF (REDEFINABLE_ELEMENT);
ACTIVITY: OPTIONAL ACTIVITY;
IN_GROUP: OPTIONAL SET[0:?] OF ACTIVITY_GROUP;
REDEFINED_EDGE: OPTIONAL SET[0:?] OF ACTIVITY_EDGE ;
SOURCE: ACTIVITY_NODE;
TARGET: ACTIVITY_NODE;
END_ENTITY;

--THIS ENTITY IS A KIND OF ACTIVITY GROUP FOR IDENTFYING ACTIONS THAT HAVE SOME
CHARACTERISTIC IN COMMON (PAGE 356 OF UML SPEC)
ENTITY ACTIVITY_PARTITION
SUBTYPE OF (ACTIVITY_GROUP, NAMED_ELEMENT);
IS_DIMENSION: BOOLEAN,;
IS_EXTERNAL: BOOLEAN,;
SUPER_PARTITION: OPTIONAL ACTIVITY_PARTITION,;
REPRESENTS: OPTIONAL ELEMENT,;
SUB_PARTITION: OPTIONAL SET[0:?] OF ACTIVITY_GROUP ;
NODE: OPTIONAL SET[0:?] OF ACTIVITY_NODE;
EDGE: OPTIONAL SET[0:?] OF ACTIVITY_EDGE;
END_ENTITY;

--THIS ENTITY IS AN EXECUTABLE ACTIVITY NODE THAT MAY HAVE AN EXPANSION INTO
SUBORDINATE NODES AS AN ACTIVITYGROUP (PAGE 425 OQBML SPEC))
ENTITY STRUCTURED_ACTIVITY_NODE
SUBTYPE OF (ACTIVITY_GROUP, NAMESPACE);
MUST_ISOLATE: OPTIONAL BOOLEAN;
ACTIVITY: OPTIONAL ACTIVITY;
VARIABLE: OPTIONAL SET[0:?] OF VARIABLE_UML,;
NODE: OPTIONAL SET[0:?] OF ACTIVITY_NODE;
EDGE: OPTIONAL SET[0:?] OF ACTIVITY_EDGE;
END_ENTITY;

--VARIABLES ARE ELEMENTS FOR PASSING DATA BETWEEN GTIONS INDIRECTLY (PAGE 430
OF UML SPEC)
ENTITY VARIABLE_UML
SUBTYPE OF (MULTIPLICITY_ELEMENT, TYPED_ELEMENT);
SCOPE: OPTIONAL STRUCTURED_ACTIVITY_NODE;
ACTIVITY: OPTIONAL ACTIVITY;
END_ENTITY;

--THIS ENTITY IS AN ABSTRACTION OF A NODE IN A STAE MACHINE GRAPH. IN GENERAL, IT
CAN BE THE SOURCE OR DESTINATION OF ANY NUMBEROF PRISITIONS. (PAGE 582 OF UML
SPEC)
ENTITY VERTEX

SUBTYPE OF (NAMED_ELEMENT);

OUTGOING: OPTIONAL SET[0:?] OF TRANSITION; --DERIV ED

INCOMING: OPTIONAL SET[0:?] OF TRANSITION; --DERIV ED

CONTAINER: OPTIONAL REGION;
END_ENTITY;

211

--THIS ENTITY IS AN ABSTRACTION OF A NODE IN A STAE MACHINE GRAPH. IN GENERAL, IT
CAN BE THE SOURCE OR DESTINATION OF ANY NUMBEROF PRISITIONS. (PAGE 582 OF UML
SPEC)
ENTITY REQUIREMENT_SYSML

SUBTYPE OF (NAMED_ELEMENT);
END_ENTITY;

~-THIS ENTITY IS A SINGLE FLOW ELEMENT TO/FROM A BDCK (PAGE 65 SYSML SPEC)
ENTITY FLOW_PROPERTY

SUBTYPE OF (PROPERTY_UML);

DIRECTION: OPTIONAL PARAMETER_DIRECTION_KIND;
END_ENTITY;

END_SCHEMA;

212

Annex C

This annex presents the meta-models and instandbe &S and CIS messages case and
of the different case studies describe€hapter VI.

1. SIS and CIS message models

Knowledge model

-- THIS SCHEMA CONTAINS THE ENTITIES MAKING EXPLICT THE KNOWLEDGE RELATED TO
THE MESSAGES CASE
SCHEMA KMODEL_SCHEMA,;

REFERENCE FROM TOP_SCHEMA,;
REFERENCE FROM ANNOTATION_SCHEMA,;

--This entity represents the origin of a message
ENTITY ORIGIN_OF _MESSAGE
SUBTYPE OF (KNOWLEDGE_CLASS);
ID: STRING;
END_ENTITY;

--This entity represents the destination of a ngssa
ENTITY DESTINATION_OF_MESSAGE
SUBTYPE OF (KNOWLEDGE_CLASS);

ID: STRING;
END_ENTITY;

--This entity represents the copy destination nfessage
ENTITY COPY_OF_MESSAGE
SUBTYPE OF (KNOWLEDGE_CLASS);
ID: STRING;
END_ENTITY;

--This entity represents the hidden copy destimatibthe message
ENTITY SECRET_COPY_OF_MESSAGE
SUBTYPE OF (KNOWLEDGE_CLASS);
ID: STRING;
END_ENTITY;

--This entity represents a Message

ENTITY MESSAGE

SUBTYPE OF (KNOWLEDGE_CLASS);
PERSON_FROM: SET [0:?] OF ORIGIN_OF_MESSAGE;
PERSON_TO: SET [0:?] OF DESTINATION_OF_MESSAGE;
PERSON_CC: SET [0:?] OF COPY_OF_MESSAGE;
PERSON_CCO: SET [0:?] OF SECRET_COPY_OF_MESSAGE;
MESSAGE_PARAMETER: SET [1:?] OF STRING;

END_ENTITY;

213

--This entity represents the different type of cammication protocols
ENTITY COMMUNICATION_PROTOCOL
SUBTYPE OF (KNOWLEDGE_CLASS);
PROTOCOL_NAME: STRING;
IS_SECURE: BOOLEAN;
END_ENTITY;

END_SCHEMA;

CORE SIS model instances

#1=T_DATE(2, 2010, 11, 13, 0, 0);

#2=CORE_MODELING_LANGUAGE('7";

#3=MODEL_CORE($, $, $, 'SIS', #1, #1, #2, (#13,#26, #39,#50,#247), $);
#13=ITEM_CORE(*, $, $, #1, 'dsz', $, #1, 'ITEM0001" 5,555 3,3,
$,%0,0,0,0)

#26=ITEM_CORE(*, $, $, #1, 'dsz', $, #1, 'ITEM0002' 5,555 33,
$,%0,0,0,0)

#39=ITEM_CORE(*, $, $, #1, 'dsz', $, #1, 'ITEM0003' 5,555 3 3,
$%0,0.0.0)

#50=LINK(*, $, $, #1, 'dsz, $, #1, 'ExtComm’, $, $. $,%, %0,
(#39,#26,#13));

#247=INTERFACE_CORE(*, $, $, #1, 'dsz', $, #1, 'ext comm', (#50), ());

SysML CIS model instances

#70=T_DATE(16, 09, 2007, $, $, $);

#71=SYSML_MODELING_LANGUAGE('1.1";

#72=SYSML_MODEL(S$, $, $, 'CIS', #70, $, #71, $, (#7 8,#93,#100));
#78=INTERFACE_UML(*, $, $, (), $, 'External Communi cation’, $,
PRIVATE., $,$,(,$.%,0.0.%. 0. 0, 0. (). 0.0, %8,

0, (#93), (), 0);

#93=OPERATION_UML(*, $, $, (), $, $, 'receiveMessag e', .PRIVATE., $,
$, % 0,0, .F., 0, #100),.F, 0,0, .F.,.F ..F.8% 89
0. 0.0, % #78);

#100=PARAMETER_UML(*, $, $, (), $, $, 'message’, .P RIVATE., $, $, .T.,
T,5,%$%5 %% 3% $.IN_UML., #93, $);

214

Knowledge model instances

#115=URI('http://www.eads.net/thesedsz/knowledge/pr otocol/ex25™);
#116=URI('http://www.eads.net/thesedsz/knowledge/pr otocol/ethernet');
#117=URI(http://www.eads.net/thesedsz/knowledge/pr otocol/x25™);
#60=URI('http://www.eads.net/thesedsz/knowledge/mes sage/maintenance’);
#6=URI('http://www.eads.net/thesedsz/knowledge/pers ons/0001Y;
#7=URI('http://www.eads.net/thesedsz/knowledge/pers ons/0002%;
#8=URI('http://www.eads.net/thesedsz/knowledge/pers ons/0003";
#9=URI('http://www.eads.net/thesedsz/knowledge/pers ons/0004Y;

#51=ORIGIN_OF_MESSAGE(*, *, $, #6, '0001');

#52=DESTINATION_OF _MESSAGE(*, *, $, #7 , '0002);

#53=COPY_OF MESSAGE(*, *, $, #8, '0003');

#54=SECRET_COPY_OF MESSAGE(*, *, $, #9, '0004'):

#57=MESSAGE(*, *, $, #60, (#51), (#52), (#53), (#54), (Test)):
#112=COMMUNICATION_PROTOCOL(*, *, $, #115, 'EX25', T);
#113=COMMUNICATION_PROTOCOL(*, *, $, #116, 'ETHERNE T, .T.);
#114=COMMUNICATION_PROTOCOL(*, *, $, #117, 'X25', . F);

Annotation instances

#105=ANNOTATION_CLASS('represents', (#60), (#100));
#59=ANNOTATION_CLASS('represents', (#60), (#13,#26, #39));
#118=ANNOTATION_CLASS('protocol’, (#115), (#50));
#119=ANNOTATION_CLASS('protocol’, (#115), (#78));

Expression model instances

#157=ENTITY_DOMAIN((#50));

#158=VARIABLE_DOMAIN(#157, #362);

#159=ALL_EXPRESSION(*, (), (#158), #352);
#320=ENTITY_VARIABLE(#100, 'p";

#321=ENTITY_VARIABLE(#93, '0');
#322=ENTITY_ARRAY_PATH_VARIABLE($, '0.owned_paramet er', #321,
‘owned_parameter’, .F.);

#323=ENTITY_PATH_VARIABLE($, 'p\\{represents\\}', # 320, 'represents’,
TD);

#324=ENTITY_LITERAL(#57);
#325=COMPARISON_EQUAL_CONTEXT_EXPRESSION(*, (#323,#324));
#326=BELONG_BOOLEAN_EXPRESSION(*, (#320,#322));
#327=AND_EXPRESSION(*, (#325,#326));

#329=ENTITY_DOMAIN((#100));

#330=VARIABLE_DOMAIN(#329, #320);

#331=ENTITY_VARIABLE(#78, 'X);
#332=ENTITY_ARRAY_PATH_VARIABLE($, 'X.owned_operati on', #331,
‘owned_operation’, .F.);

215

#333=BELONG_BOOLEAN_EXPRESSION(*, (#321,#332));
#334=AND_EXPRESSION(*, (#333,#338));
#335=EXISTS_EXPRESSION(*, (#321), (#337), #334);
#336=ENTITY_DOMAIN((#93));
#337=VARIABLE_DOMAIN(#336, #321);
#338=EXISTS_EXPRESSION(*, (#321), (#330), #327);
#339=ENTITY_VARIABLE(#112, 'cp’);

#340=BOOLEAN_ARRAY_PATH_VARIABLE(S, 'cp.securised’, #339, 'is_secure’,
FD;

#341=ENTITY_PATH_VARIABLE($, '\{protocol\\}', #36 2, 'protocol’,

T);

#342=ENTITY_PATH_VARIABLE(S$, "X\\{protocol\\}', #33 1, 'protocol’,

T.);

#343=BOOLEAN_LITERAL(.T.);
#344=COMPARISON_EQUAL_CONTEXT_EXPRESSION(*, (#340,#343));
#345=COMPARISON_EQUAL_CONTEXT_EXPRESSION(*, (#341,#339));
#346=COMPARISON_EQUAL_CONTEXT_EXPRESSION(*, (#342,#339));
#347=AND_EXPRESSION(*, (#344,#345,#346));
#348=EXISTS_EXPRESSIONC(*, (), (#350), #347);
#349=ENTITY_DOMAIN((#114,#113,#112));
#350=VARIABLE_DOMAIN(#349, #339);

#351=NOT_EXPRESSION(*, #356);

#352=0OR_EXPRESSION(*, (#351,#348));
#353=ENTITY_VARIABLE(#247, 'Y"),
#354=ENTITY_ARRAY_PATH_VARIABLE($, 'Y.comprised_of' , #353,
‘comprised_of", .F.);

#355=BELONG_BOOLEAN_EXPRESSION(*, (#362,#354));
#356=AND_EXPRESSION(*, (#355,#369,#335));
#361=ENTITY_VARIABLE(#26, 'I');

#362=ENTITY_VARIABLE(#50, 'I);

#363=ENTITY_ARRAY_PATH_VARIABLE(S, 'l.transfer', #3 62, 'transfers’,
FD;

#364=ENTITY_PATH_VARIABLE(S, 'i\\{represents\\}', # 361, 'represents’,
TD);

#365=ENTITY_LITERAL(#57);
#366=COMPARISON_EQUAL_CONTEXT_EXPRESSION(*, (#364,#365));
#367=BELONG_BOOLEAN_EXPRESSION(*, (#361,#363));
#368=AND_EXPRESSION(*, (#367,#366));
#369=EXISTS_EXPRESSION(*, (#362), (#371), #368);
#370=ENTITY_DOMAIN((#39,#26,#13));
#371=VARIABLE_DOMAIN(#370, #361);

216

2. Water and Waste System model

Knowledge model

-- THIS SCHEMA CONTAINS THE ENTITIES MAKING EXPLICT THE KNOWLEDGE RELATED TO
THE WATER AND WASTE SYSTEM CASE STUDY
SCHEMA KMODEL_SCHEMA,;

REFERENCE FROM TOP_SCHEMA,
REFERENCE FROM ANNOTATION_SCHEMA,;

(* * *% * *% WWS Example *kkkkkkkkkkkkk *************)
--This entity represents an aircraft
ENTITY AIRCRAFT_PROGRAM
SUBTYPE OF (KNOWLEDGE_CLASS);
NUMBER_OF_DECKS: NUMBER;
NUMBER_OF_ENGINES: NUMBER,;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :='AIRCRAFT_PROGRAM;
END_ENTITY;

--This entity represents an ATA chapter
ENTITY ATA
SUBTYPE OF (KNOWLEDGE_CLASS);
CHAPTER_NUMBER: STRING;
DESCRIBES: ATA_SYSTEM,;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :="'ATA’;
END_ENTITY;

--This entity represents an ATA System
ENTITY ATA_SYSTEM
ABSTRACT SUPERTYPE
SUBTYPE OF (KNOWLEDGE_CLASS);
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :='ATA_SYSTEM;
END_ENTITY;

--This entity represents WWS
ENTITY WWS
SUBTYPE OF (ATA_SYSTEM);
HAS_LAVATORY: SET[0:?] OF LAVATORY;
HAS_GALLEY: SET[0:?] OF GALLEY;
HAS_WASTE_TANK: WASTE_TANK;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING := '"WWS;
END_ENTITY;

--This entity represents a lavatory
ENTITY LAVATORY
SUBTYPE OF (KNOWLEDGE_CLASS);
HAS_TOILET: TOILET;
DECK_NUMBER: NUMBER,;
HAS_WASH_BASIN: WASH_BASIN;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING := 'LAVATORY";
END_ENTITY;

217

--This entity represents a toilet
ENTITY TOILET
SUBTYPE OF (KNOWLEDGE_CLASS);
HAS_FLUSH_VALVE: FLUSH_VALVE;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING := 'TOILET";
END_ENTITY;

--This entity represents a flush valve
ENTITY FLUSH_VALVE
SUBTYPE OF (KNOWLEDGE_CLASS);
CONNECTS_TO_FCU: OPTIONAL FCU;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :='FLUSH_VALVE;
END_ENTITY;

--This entity represents a flush control unit
ENTITY FCU
SUBTYPE OF (KNOWLEDGE_CLASS);

CONNECTS: OPTIONAL WASTE_LINE;

MANAGES: OPTIONAL SET [0:?] OF FLUSH_VALVE;
DERIVE

SELF\KNOWLEDGE_CLASS.NAME:STRING :="'FCU";
END_ENTITY;

TYPE CAPACITY_UNIT = ENUMERATION OF (Liter,m3);
END_TYPE;

ENTITY CAPACITY_CLASS

SUBTYPE OF (ENTITY_CLASS);

THE_VALUE: NUMBER;

UNIT: CAPACITY_UNIT;
DERIVE

SELF\ENTITY_CLASS.NAME:STRING :="'CAPACITY",
END_ENTITY;

--This entity represents a waste line
ENTITY WASTE_LINE
SUBTYPE OF (KNOWLEDGE_CLASS);
CIRCUIT: WASTE_TANK;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING := 'WASTE_LINE";
END_ENTITY;

--This entity represents a waste tank
ENTITY WASTE_TANK
SUBTYPE OF (KNOWLEDGE_CLASS);
CAPACITY: OPTIONAL CAPACITY_CLASS;
EJECTION: OPTIONAL DRAIN_VALVE;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :='WASTE_TANK;
END_ENTITY;

--This entity represents a galley
ENTITY GALLEY
SUBTYPE OF (KNOWLEDGE_CLASS);
FLUSH: WASTE_LINE;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :='GALLEY";
END_ENTITY;

218

--This entity represents a wash basin
ENTITY WASH_BASIN
SUBTYPE OF (KNOWLEDGE_CLASS);
FLUSH: WASTE_LINE;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :
END_ENTITY;

--This entity represents a drain valve

ENTITY DRAIN_VALVE

SUBTYPE OF (KNOWLEDGE_CLASS);

DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :

END_ENTITY;

END_SCHEMA,

SysML model instances

'WASH_BASIN';

'DRAIN_VALVE";

#20=T_DATE(16, 9, 2009, $, $, $);
#21=SYSML_MODELING_LANGUAGE('1.1";
#22=SYSML_MODEL($, $, $, $, #20, $, #21, $,
(#28,#31,#33,#35,#41 #42 #45 #46 #47 #48,#49 #50,#5
70,#73,#75,#78,#81,#83,#86,#89,#91,#92 #93,#94,#95,
102,#103,#104));
#28=PORT(*, $, $, (), $, 'waste in', $, .PRIVATE.,
F.0,..F,.F . $%$%%% .F . $3%83 F
$$%0.0%0%0 F,.F.009
#31=BLOCK(*, $, $, (). $, $. $, .PRIVATE., $, $, ()
0.0.0.0.0.0.% 8 0, (#28), 0. 0. 0
#33=CONNECTOR_END(*, $, $, (), $. $, $, .PRIVATE.,
$, %, %, #28, $, #35);
#35=PROPERTY_UML(*, $, $, (), $, 'wasteline’, $, .P
0,0,.F,0,.F,.F.,.$% % 8% #31, .F.,$,
F, FLoFL0,.88.$%0,.0.%0.%0
#41=CONNECTOR(*, $, $, (), $, 'waste water', $, .PR
0. 0, -F., 0, (#33,#56), $, ());
#42=BLOCK(*, $, $, (), $, 'WWS', $, .PRIVATE., $, $
$0.0.0.0.0.0.$ 8, 0, (#35), (), (#4
#45=PROPERTY_UML(*, $, $, (), $, 'T1'", $, .PRIVATE.
F.,0,.F., . F.,$ 8% 8% 9 #50, .F., $, .COMPOS
F.0.%%%$%00%0%0)
#46=PROPERTY_UML(*, $, $, (), $, 'T2", $, .PRIVATE.
F.,0,.F.,.F,$ %8 % #50, .F.,$, .COMPOS
F.0.$%8$%00%0%0)
#47=PROPERTY_UML(*, $, $, (), $, ‘T3, $, .PRIVATE.
F.,0,.F., . F.,$ 8% 8% 9 #50, .F., $, .COMPOS
F.0.$%8$%00%08%0)
#48=PROPERTY_UML(*, $, $, (), $, 'T4", $, .PRIVATE.
F.0, .F.,.F.,$%$ % #50, F.,$.COMPOS
F.0.%%8$%00%0%0)
#49=PROPERTY_UML(*, $, $, (), $, 'fcu’, $, .PRIVATE
F.,0,.F.,.F,$ % 8% % #50, .F.,$, .COMPOS
F.0.%$%%$%00%08%0)
#50=BLOCK(*, $, $, (), $, 'Toilet Unit', $, .PRIVAT
0.0.%0.0.0.0,0.0. %8, 0, (#92,#

#95), (0, 0, 0, $, 0, 0);

6,#59,#62,#65,#67 #
#96,#98,#100,#101,#

$3%8 0.0
,.Fo FL 0,8,

'$,%0,0, %,

»$, 0, 0);
$ % .F,.F. 8

RIVATE., $, $, $,
.COMPOSITE., $,

);
IVATE., $, $, $,

0.$,$, 0,0,
1.0.% 0. 0%
.$,$.%, 0.0,
ITE., $, .F., .F.,

. $,$,8 0,0,
ITE., $, F., .F.,

. $,$,8 0,0,
ITE., $, .F., .F.,

. $,$, 8 0,0,
ITE., $, F., .F.,

+$.$,$ 0,0
ITE., $, F., .F.,

E.8 (8% 8,
91,#94,#93,#96,

219

#56=CONNECTOR_END(+, $, $, (), $, $, $, .
$,$, $, #104, $, #49):
#59=CONNECTOR_END(*, $, $, (), $, $,
$, $, $, #93, $, #45);
#62=CONNECTOR_END(*, $, $, (), $, $,
$,$, $, #100, $, #49):
#65=CONNECTOR(*, $, $, (), $, 'flush 1,
0, -F., O, (#59,#62), $, ());
#67=CONNECTOR_END(*, $, $, (), $, $,
$, $, S, #94, $, #46);
#70=CONNECTOR_END(*, $, $, (), $, $,
$,$, $, #101, $, #49):
#73=CONNECTOR(*, $, $, (), $, 'flush 2!,
0, .F., O, #70,#67), $, ());
#75=CONNECTOR_END(*, $, $, (), $, $,
$,$, $, #95, $, #47);
#78=CONNECTOR_END(*, $, $, (), $, $,
$,$, $, #102, $, #49);
#81=CONNECTOR(*, $, $, (), $, 'flush 3,
0, -F., O, #78,#75), $, ());
#83=CONNECTOR_END(*, $, $, (), $, $,
$,$, $, #96, $, #48);
#86=CONNECTOR_END(*, $, $, (), $, $,
$,$, $, #103, $, #49);
#89=CONNECTOR(*, $, $, (), $, 'flush 4',
0, .F., 0, (#86,#83), $, ());

o B 8L o B B n B B e B S

PRIVATE.,
.PRIVATE.,
.PRIVATE.,
.PRIVAT
.PRIVATE.,,
.PRIVATE.,,
.PRIVAT
.PRIVATE.,,
.PRIVATE.,
.PRIVAT

.PRIVATE.,
.PRIVATE.,,

.PRIVAT

#91=PROPERTY_UML(*, $, $, (), $, ‘capacity’, $, .PR

0,.0,.F.,0,.F, F.$%$%$%%$.F.S$.
FoF 0.888$,%$0.0.%0.% 0)

#92=PROPERTY_UML(*, $, $, (), $, 'deck’, $, .PRIVAT

0,.F.0 F, F,$%$%$%8F,$.COMP
FlFl0,85%%0 0.8 0% 0);
#93=PORT(*, $, $, (), $, 'F

0..F.,0, F, F,$%$8%88$ F,$.COMP
F,F 0.$$%%005%0%0, F
#94=PORT(*, $,$, (), $, F
0..F.,0, F, F,$$8%883.F,$.COMP
F,F. 0.$$%%005%0%0 F
#95=PORT(*, $, $, (), $, 'F

0..F.,0, F, F,$$8%88$F,$.COMP
F,oF0,.8%%$%00.%0.8%0 F
#96=PORT(*, $, $,

0..F.,0, F, F,$%$8%88$ F,$.COMP
F,F 0.$$5%005%05%0,F

lush Valve 1', $, .PRIVA
lush Valve 2', $, .PRIVA
lush Valve 3', $, .PRIVA

0, $, 'Flush Valve 4', $, .PRIVA
$1

#98=BLOCK(*, $, $, (), $, 'Flush Control Unit', $,

0.%$%003%00 0 00,0, % $,

(#104,#102,#101,#100,#103), (),), 0. $, 0, 0);

#100=PORT(*, $, $, (), $, 'In1", $, .PRIVATE.,
0, F, F.$%$8%8 F.,$.COMPOSITE.,

0.$.%$%%0.0.%0.% 0. .F., .F,0

#101=PORT(*, $, $, (), $, 'In2", $, .PRIVATE.,
0, .F.,.F.,$%%$8$ F.,$.COMPOSITE.,
0.$%%$5%00%0%0 F, F,0
#102=PORT(*, $, $, (), $, 'In3", $, .PRIVATE.,
0, F, F.$%$8%8$8$ F.,$.COMPOSITE.,
0.$%%%00%05%0F, F,0
#103=PORT(*, $, $, (), $, 'In4", $, .PRIVATE.,
0,.F, F.$%$%8$8$ F.,$.COMPOSITE.,
0.$%$%$5%00%08%0 F, F,0

» & »

B B L O
©»

$ %, F, .F.8$,
$. %, F, .F., 8,
$. 8, F, .F., 8,
E.$ %83, 0,
$. 8%, F, .F., 8,
$ %, F, .F.8$,
E.8 89 (.
$. %, F, .F., 8,
$ %, F, .F.8$,
E.8 890,
$ 8, F, .F.8$,
$. 8, F, .F., 8,
E.8 890

IVATE., $, $, $,

COMPOSITE., $, .F.,

E.8 89 (.
OSITE,, $, .F.,

TE., $,$, 8, (),
OSITE., $, .F.,
F. 0,0, 9);
TE., $, %, %, (),
OSITE., $, .F,
F. 0,0, 9);
TE., $,$, 8, (),
OSITE., $, .F.,
FL 0,0, %)
TE., $, %, %, (),
OSITE., $, .F.,
-F., 0,0,9);
PRIVATE., $, $,

0.

&* A &*
< < <
Ea P Ea
mm mm mm

&
[
2
o

220

Knowledge model instances

#105=LAVATORY(*, $, $, #108, #109, 1., #265);
#108=URI('http://www.eads.net/systems/wws/lavatory1
#109=TOILET(*, $, $, #110, #111);
#110=URI('http://www.eads.net/systems/wws/toilet1")
#111=FLUSH_VALVE(*, $, $, #117, #119);
#113=URI(http://www.eads.net/systems/wws/a330");
#114=URI('http://www.eads.net/systems/wws/a380");
#115=URI('http://www.eads.net/systems/wws/wastetank
#116=URI('http://www.eads.net/systems/wws/fcu’);
#117=URI(http://www.eads.net/systems/wws/flushvalv
#119=FCU(*, $, $, #116, #264, (#111,#146,#136,#156)
#121=WASTE_TANK(*, $, $, #115, $, $);
#123=CAPACITY_CLASS(*, $, $, 50., .LITER.);
#124=AIRCRAFT_PROGRAM(*, $, $, #114, 2., 4.);
#127=URI('http://www.eads.net/systems/wws/lavatory2
#128=URI('http://www.eads.net/systems/wws/toilet2")
#129=URI('http://www.eads.net/systems/wws/flushvalv
#131=LAVATORY(*, $, $, #127, #134, 1., #266);
#134=TOILET(*, $, $, #128, #136);
#136=FLUSH_VALVE(*, $, $, #129, #119);
#138=URI('http://www.eads.net/systems/wws/lavatory3
#139=URI('http://www.eads.net/systems/wws/toilet3")
#140=URI(http://www.eads.net/systems/wws/flushvalv
#141=LAVATORY(*, $, $, #138, #144, 2., #267);
#144=TOILET(*, $, $, #139, #146);
#146=FLUSH_VALVE(*, $, $, #140, #119);
#148=URI('http://www.eads.net/systems/wws/lavatory4
#149=URI('http://www.eads.net/systems/wws/toilet4")
#150=URI('http://www.eads.net/systems/wws/flushvalv
#151=LAVATORY(*, $, $, #148, #154, 2., #268);
#154=TOILET(*, $, $, #149, #156);
#156=FLUSH_VALVE(*, $, $, #150, #119);
#158=AIRCRAFT_PROGRAM(*, $, $, #113, 1., 4.);
#259=URI('http://www.eads.net/systems/wws/wasteline
#260=URI('http://www.eads.net/systems/wws/washbasin
#261=URI('http://www.eads.net/systems/wws/washbasin
#262=URI('http://www.eads.net/systems/wws/washbasin
#263=URI('http://www.eads.net/systems/wws/washbasin
#264=WASTE_LINE(*, $, $, #2509, #121);
#265=WASH_BASIN(*, $, $, #260, #264);
#266=WASH_BASIN(*, $, $, #261, #264);
#267=WASH_BASIN(*, $, $, #262, #264);
#268=WASH_BASIN(*, $, $, #263, #264);

1Y;

el);
);

Annotation instances

#161=ANNOTATION_CLASS(is', (#110),(#45));
#162=ANNOTATION_CLASS(belongs', (#114),(#42));
#163=ANNOTATION_CLASS(is', (#128),(#46)):
#164=ANNOTATION_CLASS(iis', (#149),(#48)):
#165=ANNOTATION_CLASS(is', (#139),(#47));
#166=ANNOTATION_CLASS(is', (#116),(#98));

221

Expression model instances

/********** More than 1 tOI|et ****************/
#167=ENTITY_VARIABLE(#48, 'p");
#168=BELONG_BOOLEAN_EXPRESSION(*, (#172,#169));
/* not for commercial use */
#169=ENTITY_ARRAY_LITERAL((#109,#154,#144 #134));
#170=ENTITY_DOMAIN((#47,#46,#45 #48));
#171=VARIABLE_DOMAIN(#170, #167);
#172=ENTITY_PATH_VARIABLE(S, 'p\\{is\\}', #167, 'is LT,
#173=ALL_SUM_EXPRESSION(*, (#167), (#171), #168);
#174=INT_LITERAL(1.);
#175=COMPARISON_GREATER(*, (#173,#174));

[rexerrrxxk Al toilets connected to a Flush Contro [Unit? (FCU)
****************/

#176=ALL_EXPRESSION(*, (#167), (#171), #177);
#177=OR_EXPRESSION(*, (#178,#179));

#178=NOT_EXPRESSION(*, #168);

#179=EXISTS_EXPRESSION(*, (#180), (#182), #184);
#180=ENTITY_VARIABLE(*, 'c);
#181=ENTITY_DOMAIN((#41,#65,#73,#81,#89));
#182=VARIABLE_DOMAIN(#181, #180);

#184=EXISTS_EXPRESSION(*, (#185), (#187), #188);
#185=ENTITY_VARIABLE(*, 'el";
#186=ENTITY_DOMAIN((#33,#56,#59,#62,#67,#70,#75,#78 #83,#86));
#187=VARIABLE_DOMAIN(#186, #185);

#188=AND_EXPRESSION(*, (#189,#191,#193));
#189=BELONG_BOOLEAN_EXPRESSION(*, (#185,#190));
#190=ENTITY_ARRAY_PATH_VARIABLE($, ‘c.end_connector ', #180,
'END_CONNECTORY, .F.);

#191=BELONG_BOOLEAN_EXPRESSION(*, (#167,#192));
#192=ENTITY_ARRAY_PATH_VARIABLE(S, 'e1.PART_WITH_PO RT', #185,
'PART_WITH_PORT', .F.);

#193=EXISTS_EXPRESSION(*, (#194), (#195), #196);
#194=ENTITY_VARIABLE(*, 'e2;

#195=VARIABLE_DOMAIN(#186, #194);

#196=AND_EXPRESSION(*, (#197,#198));
#197=BELONG_BOOLEAN_EXPRESSION(*, (#194,#190));
#198=EXISTS_EXPRESSION(*, (#199), (#200), #202);
#199=ENTITY_VARIABLE(*, 'b");

#200=VARIABLE_DOMAIN(#201, #199);
#201=ENTITY_DOMAIN((#31,#42,#50,#98));

#202=AND_EXPRESSION(*, (#203,#206));
#203=COMPARISON_EQUAL_CONTEXT_EXPRESSION(*, (#204,#205));
#204=ENTITY_PATH_VARIABLE(S, 'b\\{is\\}', #199, 'is LT,
#205=ENTITY_LITERAL(#119);

#206=BELONG_BOOLEAN_EXPRESSION(*, (#207,#208));
#207=ENTITY_PATH_VARIABLE($, 'e2.ROLE', #194, 'ROLE " .F);
#208=ENTITY_ARRAY_PATH_VARIABLE($, 'b.OWNED_ATTRIBU TE', #199,
'OWNED_ATTRIBUTE!, .F.);

222

3. Hydraulic and Engine systems models

Knowledge model

-- THIS SCHEMA CONTAINS THE ENTITIES MAKING EXPLICT THE KNOWLEDGE RELATED -- TO
THE HYDRAULIC AND ENGINE SYSTEMS CASE STUDIES
SCHEMA KMODELATA_SCHEMA;

REFERENCE FROM TOP_SCHEMA,;
REFERENCE FROM ANNOTATION_SCHEMA,;

kkkkkkkkkkkkkkkkkkkkkkk i *kkkkkkk *kkkkkkkkkkhkhkhhkkk
(Hydraulic Example)

--This entity represents an aircraft
ENTITY AIRCRAFT_PROGRAM
SUBTYPE OF (KNOWLEDGE_CLASS);
NUMBER_OF_DECKS: NUMBER;
NUMBER_OF_ENGINES: NUMBER,;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :='AIRCRAFT_PROGRAM;
END_ENTITY;

--This entity represents an ATA chapter
ENTITY ATA
SUBTYPE OF (KNOWLEDGE_CLASS);
CHAPTER_NUMBER: STRING;
DESCRIBES: ATA_SYSTEM,;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :="'ATA";
END_ENTITY;

--This entity represents an ATA System
ENTITY ATA_SYSTEM
ABSTRACT SUPERTYPE
SUBTYPE OF (KNOWLEDGE_CLASS);
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :='ATA_SYSTEM;,
END_ENTITY;

--This entity represents HYDRAULIC_SYSTEM
ENTITY HYDRAULIC_SYSTEM
SUBTYPE OF (ATA_SYSTEM);
ITS_PUMPS: SET[0:?] OF PUMP;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :="'HYDRAULIC_SYSTEM
END_ENTITY;

--This entity represents an hydraulic flow
ENTITY PUMP
SUBTYPE OF (KNOWLEDGE_CLASS);
GENERATES: FLOW;
ITS_VALVES: SET[0:?] OF VALVE;
IDENTIFIER: STRING;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING := 'PUMP";
END_ENTITY;

223

--This entity represents an hydraulic flow

ENTITY VALVE

SUBTYPE OF (KNOWLEDGE_CLASS);

DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :

END_ENTITY;

VALVE';

--This entity represents an hydraulic flow
ENTITY VALVE_IN
SUBTYPE OF (VALVE);
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING := 'VALVE_IN';
END_ENTITY;

--This entity represents an hydraulic flow

ENTITY VALVE_OUT

SUBTYPE OF (VALVE);

DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :

END_ENTITY;

'VALVE_OUT

--This entity represents an hydraulic flow
ENTITY EDP
SUBTYPE OF (PUMP);
LOCATION: OPTIONAL ENGINE;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :="'EDP";
END_ENTITY;

--This entity represents an hydraulic flow
ENTITY FLOW
SUBTYPE OF (KNOWLEDGE_CLASS);
THE_VALUE: NUMBER;
UNIT: FLOW_UNIT;
PRESSURE_UNDER: PRESSURE;
FREQUENCY_AT: FREQUENCY;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :='HYDRAULIC_FLOW
END_ENTITY;

--This entity represents a flow unit
ENTITY FLOW_UNIT
SUBTYPE OF (KNOWLEDGE_CLASS);
ID: STRING;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :="'FLOW_UNIT"
END_ENTITY;

--This entity represents an hydraulic pressure
ENTITY PRESSURE
SUBTYPE OF (KNOWLEDGE_CLASS);
THE_VALUE: NUMBER;
UNIT: PRESSURE_UNIT;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :='PRESSURE;
END_ENTITY;

--This entity represents a pressure unit
ENTITY PRESSURE_UNIT

224

SUBTYPE OF (KNOWLEDGE_CLASS);
ID: STRING;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :
END_ENTITY;

'PRESSURE_UNIT,

--This entity represents an hydraulic frequency
ENTITY FREQUENCY
SUBTYPE OF (KNOWLEDGE_CLASS);
THE_VALUE: NUMBER;
UNIT: FREQUENCY_UNIT;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :
END_ENTITY;

'FREQUENCY?

--This entity represents a frequency unit
ENTITY FREQUENCY_UNIT
SUBTYPE OF (KNOWLEDGE_CLASS);
ID: STRING;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :
END_ENTITY;

'FREQUENCY_UNIT";

--This entity represents an engine

ENTITY ENGINE

SUBTYPE OF (KNOWLEDGE_CLASS);
ENGINE_NUMBER: STRING;

DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :

END_ENTITY;

'ENGINE';

END_SCHEMA,;

SysML Hydraulic model instances

#190=T_DATE(15, 09, 2008, $, $, $);

#191=SYSML_MODELING_LANGUAGE('1.1";

#192=SYSML_MODEL($, $, $, 'Hydraulic', #190, $, #19 1,$,

(#142 #145 #146 #147 #148 #163,#164 #167, #171,#172, #174,#175,#177 #181
#182));

#142=BLOCK(*, $, $, (), $, 'Distribution system', $, .PRIVATE., $, $,
0.$%0.0.%0.0.0.0.0,0. 8 8, 0,

(#145,#148 #146,#147), 0, 0, 0, $, 0, O);

#145=PORT(*, $, $, (), $, 'out_pump1l', $, .PRIVATE. . $,.%,% 0,0,
F.,0,.F, F.,$%$%$%%$.F, $3%$%.F ,.F.,.F., 0,8,
$%$%008%0%0 F,.F,0.09 ;

#146=PORT(*, $, $, (), $, 'in_pump1', $, .PRIVATE., $%3 0 0.
F,0,.F, . F . $%%$%69% F. %389, .F ,F, FL 0,8,
$,%$%00%0%0 F, .F,009% ;

#147=PORT(*, $, $, (), $, 'out_pump2', $, .PRIVATE. . $,.%,% 0,0,
F.,(0,.F, F.,$%$%$%$%$.F,3%.F ,.F., . F., 0,8,
$,%%0,.0.%$0.%0 .F,.F,0,.0,9 ;

#148=PORT(*, $, $, (), $, 'in_pump2', $, .PRIVATE., $.%.% 0,0,
F.,0,.F, F.,$%$%$%%$.F, $3%$%,.F ,.F.,.F., 0,8,
$,%%0,.0.$0.%0 F,.F,0,.0,9 ;

225

#163=BLOCK(*, $, $, (), $, 'Accumulator’, $, .PRIVA
?5),)'(), 0.%.0.0.0.0.0.0.$%0. 0,
$,

#164=ASSOCIATION(*, $, $, (), $, prowdes $, PR

$%0.0.%0.000.00.%8%3%
0, #177), $);

TE.. $, %, 0, $
0.0.0.% 0,

IVATE., $, $, (),
F., (#177,#167),

#167=PROPERTY_UML(*, $, $, (), $, 'accumulator', $, PRIVATE., $, $,
$,0,0,.F., 0, .F., .F.,$ $ #172, #171, #16 3, .F.,$,
.COMPOSITE., $, .F., .F., .F., (), #164, $, $, $, (0,8 0,9,
0)
#171=VALUE_SPECIFICATION(*, $,$, (), $, $, $, .PRI VATE., $, $, $);
#172=VALUE_SPECIFICATION(*, $,$, (), $, $, $, .PRI VATE., $, $, $);
#174=TYPED_ELEMENT(*, $, $, (), $, $, $, .PRIVATE., $, %, 9);
#175=TYPED_ELEMENT(*, $, $, (), $, $, $, .PRIVATE., $, %, 9);
#177=PROPERTY_UML(*, $, $, (), $, 'distribution sys tem', $, .PRIVATE.,
$,%$%0,0,.F., 0, .F., .F. $$ #172, #17 1,% .F.,$,
.COMPOSITE., $, .F., .F., .F., (), #164, $, $, $, (0,8 0, %,
0);
#181=VALUE_SPECIFICATION(*, $, $, (), $, $, $, .PRI VATE., $, $, $);
#182=TYPED_ELEMENT(*, $, $, (), $, $, $, .PRIVATE., $, % 9);

SysML Engine model instances
#1=T DATE(16, 04, 2007, $, $, $);
#2=SYSML_MODELING_LANGUAGE('1.1");
#3=SYSML_MODEL($, $, $, 'Engine’, #1, $, #2, $,
(#50,#51,#52 #53,#54,#56 #58,#60,#62 #64,#66 #68 #7 0,872 #74 #76 #78 #
80,#82,#84,#86,#88,#90,#92,#94 #96 #99 #102 #104 #1 07,#110,#112 #115#
118,#120,#123,#126,#128 #131,#134,#136,#139,#149 #1 52 #153,#154 #155 #
156,#157,#158,#161,#162));
#50=PORT(*, $, $, (), $, in_pumpA', $, .PRIVATE., $.%$.% 0.0,
F., 0, F, F.$%%%%$ F.$%8%.F ,.E.,.F. 0,8
$,$%0,.0.$0.%0, F,.F,0,.0,.9 ;
#51=PORT(*, $, $, (), $, out _pumpA', $, .PRIVATE., $,%5% 0,0,
F,0,.F, . F . $%%$%69% F. %339, .F ,.Fo.F., 0,9,
$$$()()$()$()F ()()$) ;
#52=PORT(*, $, $, (), $, out_p mpB', $, .PRIVATE., $%$% 0,0,
F., 0, .F., F$$$$$F$$$F ,.F, . F., 0,8
$$$()()$()$()FF()()) ;
#53=PORT(*, $, $, (), $, in_pumpB', $, .PRIVATE., $.%$.% 0.0,
F., 0, .F., F$$$$$F$$$F ,.Fo,.F., 0,9,
$$$()()$()$()FF()()$) ;
#54=PROPERTY_UML(*, $, $, (), $, 'edpl’, $, .PRIVAT E.$$ %0,
0,.F.,0,.F,.F.$%%S3, #149 F.$.C OMPOSITE., $, .F.,
F.,.F, (),$,$,$,$, 0,.0,.% 0,% 0)
#56=PROPERTY _UML(*, $, %, 0, $, 'edp2', $, .PRIVAT E.$$ 890,
0,.F.0,.F,.F.$%$% % #149 F.,$, .C OMPOSITE., $, .F.,
F., F ().$,$,$,$,() 0.%,0,% 0
#58= PROPERTY_UML(* $, %, 0,$, 'enginel’, $, .PRI VATE., $,$, $, (),
0,.F.,0,.F.,.F.$%$ $ #158, .F.,$, .C OMPOSITE., $, .F.,
FoFL 0,885,535 0,08 0,8, ());
#60=PORT(*, $, $, (), $, 'Portl’, $, .PRIVATE., $, $.% 0,0, .F.,
0,.F,.F . $%%%$%9% .F.$%83 .F, .F FL 0,5 8,8,

$0.0.%0.8% 0, F.,.F. 0,0, %)

226

#62=PORT(*, $, $, (), $, 'in_edp1’, $, .PRIVATE., $
F,0,.F,.F . $%$%%% .F . $8%83 F

$,$,$, 0, 0, s, 0.%0,.F,.F. 00,9
#64=PORT(*, $, $, (), $, 'out_edp1’, $, .PRIVATE.,
F.,0, .F, F.$%%3%S, .F.,$,$,$, .F.

$,$,9, 0. 0, s, 0.%.0,.F.,.F. 0,09
#66=PORT(*, $, $, (), $, 'in_edp2', $, PRIVATE.,$
F., 0, .F.,.F, $$$$$ F.$$89.

$,$,5, 0, 0, s, 0.% 0, .F, F-,(),() $)
#68=PORT(*, $, $, (), $, 'out_edp2', $, . RIVATE.,
F,0,.F,.F.$%%3%3.F, $$$
$$$()()$()$() F..F, ()()$)
#70=CONNECTOR(*, $, $, (), $ 'in_pressureB', $, .P

0. 0, .F., 0, (#74#72), $, ();
#72=CONNECTOR_END(%, $, $,), $, $, $, .PRIVATE.,
$, %, 8 #53, %, 9);

#74=CONNECTOR_END(*, $, $, (), $, $, $, .PRIVATE.,
$, %, $,#145, %, 9);

#76=CONNECTOR(*, $, $, (), $, 'out_pressureB', $, .
0.0, .F.. (), (#80,#78), $, ());
#78=CONNECTOR_END(*, $, $, (), $, $, $, .PRIVATE.,
$, %, %, #52, %, %);

#80=CONNECTOR_END(*, $, $, (), $, $, $, .PRIVATE.,
$, %, $,#146, $, 9);

#82=CONNECTOR(*, $, $, (), $, 'out_pressureA', $, .
0. 0. .F.. (), (#86,#84), $, ());
#84=CONNECTOR_END(*, $, $, (), $, $, $, .PRIVATE.,
$, %, % #51, %, %);

#86=CONNECTOR_END(*, $, $, (), $, $, $, .PRIVATE.,
$, $, 8, #148, $, $);

#88=CONNECTOR(*, $, $, (), $, 'in_pressureA’, $, .P
0, 0, -F., 0, (#92,#90), $, ());
#90=CONNECTOR_END(*, $, $, (), $, $, $, .PRIVATE.,
$, %, %, #50, $, $);

#92=CONNECTOR_END(*, $, $, (), $, $, $, .PRIVATE.,
$, 8,8, #147, $, $);

#94=CONNECTOR(*, $, $, (), $, 'power’, $, .PRIVATE.
F., (), (#96,#99), $, ());

#96=CONNECTOR_END(*, $, $, (), $, $, $, .PRIVATE.,
$,$, %, #152, $, #54);

#99=CONNECTOR_END(*, $, $, (), $, $, $, .PRIVATE.,
$, %, %, #161, $, #58);

#102=CONNECTOR(*, $, $, (), $, 'power', $, .PRIVATE
F., 0, (#107,#104), $,));

#104=CONNECTOR_END(*, $, $, (), $, $, $, .PRIVATE,,

$, $, $, #153, $, #56);

#107=CONNECTOR_END(*, $, $, (), $, $, $, .PRIVATE.,

$, %, 8, #162, $, #58);
#110=CONNECTOR(*, $, $, (), $, 'pressure_in', $, .P
0.0, -F., 0, (#115#112), $, ());

#112=CONNECTOR_END(*, $, $, (), $, $, $, .PRIVATE.,

$ % 8 #62, %, 9);

#115=CONNECTOR_END(*, $, $, (), $, $, $, .PRIVATE.,

$, $, $, #154, $, #54);

%%, 0.0,
F..F, 08

%3 0,0,
,Fo FL 0,8,

'$.8, 0,0,
,F, FL 0,8,

55,80, 0,
,Fo FL 0,8,

RIVATE., $, $, $,
$, %, .F,.F.,$,
$, %, .F,.F.,S$
PRIVATE., $, $, $,
$, %, .F,.F.,$,
$, %, .F,.F.,S$
PRIVATE., $, $, $,
$, %, .F,.F.,S$
$, %, .F,.F.,S$
RIVATE., $, $, $,
$, %, .F,.F.,S$
$, %, .F,.F.,$
,$,%.% 0.0,

$, %, .F,.F.,S$
$, %, .F,.F.,$,
+$,%$,% 0,0,

$, %, .F., .F,8$,
$, %, .F., . F,8$,
RIVATE., $, $, $,
$, %, .F., .F,$,
$, %, .F., .F., 8,

227

#118=CONNECTOR(*, $, $, (), $, '‘pressure_out', $, .
0,0, .F., 0, #120,#123), $, ());

#120=CONNECTOR_END(*, $, $, (), $, $, $, .PRIVATE.,

$, %, 5 #64, 9, 9);

#123=CONNECTOR_END(*, $, $, (), $. $, $, .PRIVATE.,

$, $, $, #155, $, #54);
#126=CONNECTOR(*, $, $, (), $, 'pressure_in', $, .P
0,0, .F., 0, #128,#131), $, ());

#128=CONNECTOR_END(*, $, $, (), $, $, $, .PRIVATE.,

$, 8, 9% #66, $, 9);

#131=CONNECTOR_END(*, $, $, (), $. $, $, .PRIVATE.,

$,$, %, #161, $, #58);
#134=CONNECTOR(*, $, $, (), $, 'pressure_out', $, .
0,0, .F., 0, (#139,#136), $, ());

#136=CONNECTOR_END(*, $, $, (), $, $, $, .PRIVATE.,

$, %, 9% #68, %, 9);

#139=CONNECTOR_END(*, $, $, (), $, $, $, .PRIVATE.,

$, %, 8, #157, $, #54);
#149=BLOCK(*, $, $, (), $, 'EDP', $, .PRIVATE., $,
0.%0.0.0.0.0.0. % 8, (), (#152,#153

#156), (), 0. 0. $, 0, 0);
#152=PORT(*, $, $, (), $, 'engine_power', $, .PRIVA
0,.F.0,.F, F.$%$%%$%$.F.%$5%S8S,
$$%$%00%0%0 F, F, 00
#153=PORT(*, $, $, (), $, 'engine_power', $, .PRIVA
0,.F.0 .F, F.$%$%%$8%$ F.$%3%

$$$$()()$()$), -Fo . FL 0, 0,
#154=PORT(*, $, $, (), $, 'in", $, .PRIVATE., $, $,
0,.F,F.$%$%%% F. $$8%.F,F
$0,0.$0.%0 .F,.F,0 0, 9);
#155=PORT(*, $, $, (), $, 'out’, $, .PRIVATE., $, $
0,.F,F.$%$%%8%.F.$%$8%.F,.F
$0.0.%$0.%0,.F,.F., 0,0, %)
#156=PORT(*, $, $, (), $, 'in", $, .PRIVATE., $, $
0,.F,.F . $%%%$%9% .F. $%3S3 .F,.F
$0,.0.$0.% 0 .F,.F,0 0, 9%);
#157=PORT(*, $, $, (), $, 'out, $, .PRIVATE., $, $
0,.F,.F . $%$%%$89% F.$%$383 .F,.F
$()()$()$() F FL 0,09
#158=BLOCK(*, $, $, (), $, 'Engine’, $, .PRIVATE.,
8 g)() 0,0,0,0,0, % %, (), (#161,#162
#161=PORT(*, $, $, (), $, 'edpl’, $, .PRIVATE., $,
0,.F,.F.$%$%%$83% .F. $%$83% F, .F

$, 0. () $0.%0, F,.F, 0,0 %)
#162=PORT(*, $, $, (), $, 'edp2’, $, .PRIVATE., $,
0,.F,.F.$%$%%$83% .F. $%$83% .F, .F

$ 0, () $0.%0,.F.,.F, 0,0, 9%);

PRIVATE., $, $, $,
$ % .F,.F. 8

$ % .F,.F. 8
RIVATE. $, $, $.
$ % .F,.F. 8

$ % .F,.F. 8
PRIVATE., $, $, $,
$ % .F,.F. 8

$ % .F,.F. 8

$0.%30,
#155,#154,#157,

TE., $,$, %, 0,
F., .F.,.F., 0,
$);

TE., $, %, $, (),
F.,.F.,.F. 0,
$);

$.0.0. .F,

W Fo 0,8 8,8,

%, 0,0, -F.,
Fu 0,8 8,8,

$.0.0. F.,
,F. 0,888,

%0, 0, -F.,
Fl 0,888,

$,%09%%0,
), 0.0, 0. 8,

L
N
oo
PO

F.,
' 3, 8,

R
R
oo
»o

F.,
$, 8,

228

SysML Alternative Engine model instances

#1=PROPERTY_UML(*, $,$,$,$.$,$,$,$, $
$$$#16$$$$$$$$#11$,$,$,
#2=PROPERTY_UML(*, $,$,$,$.$.$,.$.$ $, $, $,
$ 8, $, #16, $, $, .COMPOSITE., $, $, $, $, $, #12
$, 9% 9);
#3=PROPERTY_UML(*, $, $, $, $, VALVE_IN', $, $, $,
$.$9$ % 9 #17,$ $, .COMPOSITE., $, $, $,

, 5,5 8%, 8%, 9);

4=PROPERTY_UML(*, $, $,$, $, 'edp1’, $, $, $, $,

,$,$, $, #16, $, $, .COMPOSITE., $, $, $, $,

$ 3% 9%);

ROPERTY_UML(*, $,$,$.$,".$, 5 $ $, % $
#19, $, $, .COMPOSITE., $, $, $, $, $, #14

5=p

.3,
$).

6=PROPERTY_UML(*, $,$,$, $, 'edp2. $, $, $, $,
$, $, #16, $, $, .COMPOSITE., $, $, $, $,

$, 3);

OPERTY_UML(*, $,$,.%$,$,".$,.$.$,$,$. $
#19, %, $, .COMPOSITE., $, $, $, $, $, #15

7=pP

R
$
. 8,
R
$,
$).
PROPERTY _UML(*, $,$,$.$.".$,$,$ $ % $
#17,$, $, .COMPOSITE., $,$, $, $, $, #11

PERTY_UML(*, $, %, %$,$,",.$,$,$,$, %, %
18, $,$, . COMPOSITE., $, $. $, $, $, #12

(o)
T
Al
"# O

RO

<

ERTY_UML(*, $,$, $, $, 'edp’, $, $, $, $,
#16,$,$, COMPOSITE. $,$,$, 3,

Ov

SSOCIATION(*, $, $, $, $,'A_eDP_VALVE_IN, $,
,$,$,$,$,$, %%, 8 #1,#8), $,

CIATION(* $,%$ % % 'A_eDP_VALVE_OUT', $
$$$$$$$$(#2#9)$

ClATlON(* $,%$ % % "A_VALVE_IN', $, $

. $,.85,% %, %, 8 9% (#3#10), $, $,

CIATION(, $, $, $, $, 'edpl’, $, $, $, $,

, 5,5, 85,5, (#4,45), $, %, 9);

CIATION(* $. %, %, %, 'A_edp_engine_system
 $,5.$,$5%$,$ 8% 9% 8 #6,4#7

, 5,5, %% 'EDP,$,$,%$,$,%$. %%

, (#9.#8), $, 8, $, $ $, 9);

SS

SS

LY
PSS

$ % 3% VALVE_IN', $, %, %, $, $,
$, (#10), $,$, %, $,. $, 9);

$,$, 8 VALVE_OUT, $,$,%, %, $
$0.$%%%%39),

$, $, $, 'Engine System', $, $, $,
$$%(0%$%$%%$3$9)

#20= PACKAGE(* . $, $, , 'Alternative Engine’, $,
(#12,#11,#13,#16,#17,

#15 #14,#19,#18), $);
#21=SYSML_MODELING_LANGUAGE('1.1";
#22=T DATE(15, 9, 2007, $, $, $);
#23=SYSML_MODEL($, $, $, $, #22, $, #21, (#20), $);

AT AN
TP

$
#
$
$
#
$
$
#
$
$
#
$
$
#
$
$
#
$
$,
#1:
$,
$,
#
$,
#
$,
#
$,
#
$,
#
$,
#
$,
#
$,
#
$,
#
$,

wmwmwmwmw>w>w>w>w>wwn

mgmgmgmgm ®»

mOmOeOeOmOmO%O@O@O%@
©

. $,
'3,
. $,
3,
. $,
3,

©

® &8ss

Lo oo
Lo proe

e P Leee
PP P Lo

&

A & -
BB Py Lees
@

He o

=
;&

» &

)$$$)
5, 5,$,8$ 8%, 9,

$.5,$.99 8,
$.5.5.5.9, 9,
$.$.5 598,

$.5.9, 8.

229

Knowledge model instances

#300=URI('http://www.eads.net/aircraftprogram/a330'
#301=URI('http://www.eads.net/aircraftprogram/a380'
#307=URI('http://www.eads.net/systems/hydraulic/flo
#308=URI('http://www.eads.net/systems/hydraulic/flo
#309=URI('http://www.eads.net/systems/hydraulic/flo
#310=URI('http://www.eads.net/systems/hydraulic/flo
#311=URI('http://www.eads.net/systems/hydraulic/flo
#312=URI('http://www.eads.net/systems/hydraulic/pre
#313=URI('http://www.eads.net/systems/hydraulic/pre
#314=URI('http://www.eads.net/systems/hydraulic/fre
#315=URI('http://www.eads.net/systems/hydraulic/fre
#316=AIRCRAFT_PROGRAM(*, $, $, #301, 2., 4.);
#327=FLOW(*, $, $, #307, 30., #331, #335, #336);
#328=FLOW(*, $, $, #308, 70., #331, #335, #336);
#331=FLOW_UNIT(*, $, $, #311, 'L/MN’);
#335=PRESSURE(*, $, $, #312, 206., #339);
#336=FREQUENCY(*, $, $, #314, 400., #343);
#339=PRESSURE_UNIT(*, $, $, #313, 'Bar);
#343=FREQUENCY_UNIT(*, $, $, #315, 'Hz');
#357=FLOW(*, $, $, #309, 35., #331, #335, #336);
#362=FLOW(*, $, $, #310, 150., #331, #335, #336);
#367=AIRCRAFT_PROGRAM(*, $, $, #300, 1., 4.);
#372=URI('http://www.eads.net/systems/hydraulic/val
#373=URI('http://www.eads.net/systems/hydraulic/val
#374=VALVE_IN(*, $, $, #372);
#375=VALVE_OUT(*, $, $, #373);

#376=EDP(*, $, $, #382, #328, (#375,#374), 'edpl’,
#377=URI('http://www.eads.net/systems/hydraulic/val
#378=URI('http://www.eads.net/systems/hydraulic/val
#379=VALVE_IN(*, $, $, #377);
#380=VALVE_OUT(*, $, $, #378);

#381=EDP(*, $, $, #383, #328, (#380,#379), 'edp2’,
#382=URI('http://www.eads.net/systems/hydraulic/edp
#383=URI('http://www.eads.net/systems/hydraulic/edp

);

);

w30Y;
w70";
w35";
w150%;
w_unit);
ssure’);
ssure_unit");
quency’);
guency_unit);

vell);
vel2));

$);
ve2l’);
ve22Y);
$);

2);

Annotation instances

/%inl */

#370=ANNOTATION_CLASS('valve', (#372), (#146));
#371=ANNOTATION_CLASS('valve', (#372), (#62));
/* outl */

#390=ANNOTATION_CLASS('valve', (#373), (#64));
#391=ANNOTATION_CLASS('valve', (#373), (#145));
/*in2 */

#392=ANNOTATION_CLASS('valve', (#377), (#66));
#393=ANNOTATION_CLASS('valve', (#377), (#148));
/* out2 */

#394=ANNOTATION_CLASS('valve', (#378), (#68));
#395=ANNOTATION_CLASS('valve', (#378), (#147));

/* flows */

#396=ANNOTATION_CLASS('flow', (#308), (#145,#146,#1
#397=ANNOTATION_CLASS('flow', (#308), (#62,#64,#66,

47 #148));
#68));

230

Annotation instances (alternative Engine)

[*annotations*/

[%inl */

#370=ANNOTATION_CLASS('valve', (#372), (#146));
#371=ANNOTATION_CLASS('valve', (#372), (#17,#4));
/* outl */

#390=ANNOTATION_CLASS('valve', (#373), (#18,#4));
#391=ANNOTATION_CLASS('valve', (#373), (#145));
[*in2 */

#392=ANNOTATION_CLASS('valve', (#377), (#17,#6));
#393=ANNOTATION_CLASS('valve', (#377), (#148));
/* out2 */

#394=ANNOTATION_CLASS('valve', (#378), (#18,#6));
#395=ANNOTATION_CLASS('valve', (#378), (#147));

/* flows */

#389=ANNOTATION_CLASS(flow', (#308), (#17,#4));
#396=ANNOTATION_CLASS(flow', (#308), (#145,#146,#1 47 ,#148));
#397=ANNOTATION_CLASS(flow', (#308), (#18,#4));
#398=ANNOTATION_CLASS('flow', (#308), (#17,#6));
#399=ANNOTATION_CLASS('flow', (#308), (#18,#6));

Expression model instances

/* linked ports are compatible: same flow unit and same conditions of
flow production */

/* all ports from hydraulic */

#400=ENTITY_VARIABLE(#146, 'p1");

#401=VARIABLE_DOMAIN(#402, #400);
#402=ENTITY_DOMAIN((#145,#146,#147 ,#148));

#403=ALL_EXPRESSION(*, (#400), (#401), #407);

/* all ports from engine */

#404=ENTITY_VARIABLE(#60, 'p2";
#406=ENTITY_DOMAIN((#60,#62,#68,#64,#66,#152,#153,# 154 #155,#156,#157)
);

#405=VARIABLE_DOMAIN(#406, #404);

#407=ALL_EXPRESSION(*, (#404), (#405), #413);

[* or expression */

#408=0OR_EXPRESSION(*, (#409,#413));

/* they are not the same valve */

#409=NOT_EXPRESSION(*, #410);
#410=COMPARISON_EQUAL_CONTEXT_EXPRESSION(*, (#411,#412));
#411=ENTITY_PATH_VARIABLE($, 'p1\\{valve\\}', #400, 'valve', .T.);
#412=ENTITY_PATH_VARIABLE($, 'p2\\{valve\\}', #404, ‘valve', .T.);
/* or they have the same flow */
#413=COMPARISON_EQUAL_CONTEXT_EXPRESSION(*, (#414,#415));
#414=ENTITY_PATH_VARIABLE($, 'p1\\{flow\\}', #400, 'valve', .T.);
#415=ENTITY_PATH_VARIABLE($, 'p2\\{flow\\}', #404, 'valve', .T.);

231

Expression model instances (alternative Engine)

/* linked elements are compatible: same flow unit a nd same conditions
of flow production */

/* all ports from hydraulic */

#400=ENTITY_VARIABLE(#146, 'p";

#401=VARIABLE_DOMAIN(#402, #400);
#402=ENTITY_DOMAIN((#145,#146,#147 #148));

#403=ALL_EXPRESSION(*, (#400), (#401), #407);

/* all blocks from engine */

#404=ENTITY_VARIABLE(#16, 'b");

#405=VARIABLE_DOMAIN(#406, #404);
#406=ENTITY_DOMAIN((#16,#17,#18,#19));

#407=ALL_EXPRESSION(*, (#404), (#405), #413);

/* or expression */

#408=0OR_EXPRESSION(*, (#409,#413));

/* they are not the same valve */

#409=NOT_EXPRESSION(*, #410);
#410=COMPARISON_EQUAL_CONTEXT_EXPRESSION(*, (#411,#412));
#411=ENTITY_PATH_VARIABLE($, 'p\\{valve\\}', #400, 'valve', .T.);
#412=ENTITY_PATH_VARIABLE(S, 'b\\{valve\\}', #404, ‘valve', .T.);
/* or they have the same flow */
#413=COMPARISON_EQUAL_CONTEXT_EXPRESSION(*, (#414,#415));
#414=ENTITY_PATH_VARIABLE(S, 'p\\{flow\\}', #400, ' valve', .T.);
#415=ENTITY_PATH_VARIABLE($, 'b\\{flow\\}', #404, * valve', .T.);

232

4. Ram Air Turbine models

Knowledge model

-- THIS SCHEMA CONTAINS THE ENTITIES MAKING EXPLICT THE KNOWLEDGE RELATED -- TO
THE RAT CASE STUDY
SCHEMA KMODELAC_SCHEMA;

REFERENCE FROM TOP_SCHEMA,;
REFERENCE FROM ANNOTATION_SCHEMA,;

(*********************** F L I G HT CYC LE K N OWL E DG E *kk *******************)

--This entity represents a Flight Cycle
ENTITY FLIGHT_CYCLE
SUBTYPE OF (KNOWLEDGE_CLASS);
ITS_FLIGHT_PHASES: SET [0:?] OF FLIGHT_PHASE;
ITS_GROUND_PHASES: SET [0:?] OF GROUND_PHASE;
DERIVE
SELF\AKNOWLEDGE_CLASS.NAME:STRING :='FLIGHT_CYCLE' ;
END_ENTITY;

--This entity represents an Aircraft Phase
ENTITY PHASE
ABSTRACT SUPERTYPE
SUBTYPE OF (KNOWLEDGE_CLASS);
ID: OPTIONAL STRING;
PHASE_NAME: STRING;
DESCRIPTION: OPTIONAL STRING;
SUBPHASE: OPTIONAL PHASE;
PREVIOUS: OPTIONAL PHASE;
NEXT: OPTIONAL PHASE;
UNUSUAL_TRANSITION: OPTIONAL PHASE;
CONFIGURATION: OPTIONAL SET [0:?] OF AIRCRAFT_CONF IGURATION;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :='PHASE";
END_ENTITY;

--This entity represents a Flight Phase
ENTITY FLIGHT_PHASE
SUBTYPE OF (PHASE);
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :='FLIGHT PHASE' ;
END_ENTITY;

--This entity represents a Ground Phase
ENTITY GROUND_PHASE
SUBTYPE OF (PHASE);
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :='GROUND PHASE';
END_ENTITY;

--This entity represents an Aircraft Configuration
ENTITY AIRCRAFT_CONFIGURATION
ABSTRACT SUPERTYPE

233

SUBTYPE OF (KNOWLEDGE_CLASS);
DERIVE

SELF\KNOWLEDGE_CLASS.NAME:STRING := 'AIRCRAFT CONF IGURATION’;
END_ENTITY;

--This entity represents an aircraft Event
ENTITY EVENT
ABSTRACT SUPERTYPE
SUBTYPE OF (KNOWLEDGE_CLASS);
STARTS: OPTIONAL PHASE;
ENDS: OPTIONAL PHASE;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :
END_ENTITY;

'EVENT?";

--This entity represents a Performance Parameter
ENTITY PERFORMANCE_PARAMETER
ABSTRACT SUPERTYPE
SUBTYPE OF (KNOWLEDGE_CLASS);
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING := 'PERFORMANCE FARAMETER';
END_ENTITY;

--This entity represents a Environment Parameter

ENTITY ENVIRONMENT_PARAMETER

SUBTYPE OF (KNOWLEDGE_CLASS);

DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :

END_ENTITY;

'ENVIRONMENT PARAMETER;

--This entity represents an operator Event

ENTITY OPERATOR_EVENT

SUBTYPE OF (EVENT);

DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :

END_ENTITY;

'OPERATOR EVENT";

--This entity represents a system Event
ENTITY SYSTEM_EVENT
SUBTYPE OF (EVENT);
DERIVE
SELF\AKNOWLEDGE_CLASS.NAME:STRING :='SYSTEM EVENT" ;
END_ENTITY;

--This entity represents one human operation

ENTITY AIRCRAFT_OPERATION

SUBTYPE OF (OPERATOR_EVENT);

DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :

END_ENTITY;

'AIRCRAFT OPER ATION,

--This entity represents a distance
ENTITY DISTANCE
SUBTYPE OF (SYSTEM_EVENT, PERFORMANCE_PARAMETER);
DFROM: STRING;
DTO: STRING;
THE_VALUE: NUMBER;
UNIT: DISTANCE_UNIT;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :="'DISTANCE;
END_ENTITY;

234

--This entity represents a distance unit
ENTITY DISTANCE_UNIT
SUBTYPE OF (KNOWLEDGE_CLASS);
ID: STRING;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :='DISTANCE UNIT
END_ENTITY;

--This entity represents a speed
ENTITY SPEED
SUBTYPE OF (SYSTEM_EVENT, PERFORMANCE_PARAMETER);
THE_VALUE: NUMBER;
UNIT: SPEED_UNIT;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :='SPEED";
END_ENTITY;

--This entity represents a speed unit
ENTITY SPEED_UNIT
SUBTYPE OF (KNOWLEDGE_CLASS);
ID: STRING;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :='SPEED UNIT";
END_ENTITY;

--This entity represents an ALTITUDE
ENTITY ALTITUDE
SUBTYPE OF (SYSTEM_EVENT, PERFORMANCE_PARAMETER);
THE_VALUE: NUMBER;
UNIT: ALTITUDE_UNIT;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :="ALTITUDE"
END_ENTITY;

--This entity represents an ALTITUDE unit
ENTITY ALTITUDE_UNIT
SUBTYPE OF (KNOWLEDGE_CLASS);
ID: STRING;
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :='ALTITUDE UNIT
END_ENTITY;

--This entity represents a Landing Gear Position
ENTITY LANDING_GEAR_POSITION
SUBTYPE OF (SYSTEM_EVENT, AIRCRAFT_CONFIGURATION);
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING := 'LANDING GEAR POSITION';
END_ENTITY;

--This entity represents an engine rating
ENTITY ENGINE_RATING
SUBTYPE OF (SYSTEM_EVENT, AIRCRAFT_CONFIGURATION);
DERIVE

SELF\KNOWLEDGE_CLASS.NAME:STRING :='ENGINE_RATING *;
END_ENTITY;

--This entity represents the AC power

ENTITY AC_POWER

SUBTYPE OF (SYSTEM_EVENT, AIRCRAFT_CONFIGURATION);
DERIVE

235

SELF\KNOWLEDGE_CLASS.NAME:STRING
END_ENTITY;

--This entity represents the slat flap configunatio

ENTITY SLAT_FLAP_CONFIGURATION

SUBTYPE OF (AIRCRAFT_CONFIGURATIONY);
SLAT_FLAP_NAME: STRING;

DERIVE

SELF\KNOWLEDGE_CLASS.NAME:STRING :

END_ENTITY;

--This entity represents the deceleration point
ENTITY DECELERATION_POINT
SUBTYPE OF (DISTANCE);

DERIVE

SELF\KNOWLEDGE_CLASS.NAME:STRING :

END_ENTITY;

--This entity represents the Vlof speed
ENTITY VLOF

SUBTYPE OF (SPEED);

DERIVE

SELF\KNOWLEDGE_CLASS.NAME:STRING :

END_ENTITY;

--This entity represents the V1 speed
ENTITY V1

SUBTYPE OF (SPEED);

DERIVE

SELF\KNOWLEDGE_CLASS.NAME:STRING :

END_ENTITY;

--This entity represents the VR speed
ENTITY VR

SUBTYPE OF (SPEED);

DERIVE

SELF\KNOWLEDGE_CLASS.NAME:STRING :

END_ENTITY;

--This entity represents the V2 speed
ENTITY V2

SUBTYPE OF (SPEED);

DERIVE

SELF\KNOWLEDGE_CLASS.NAME:STRING :

END_ENTITY;

--This entity represents the Safely aborted speed
ENTITY SAFELY_ABORTED_TO

SUBTYPE OF (SPEED);

DERIVE

SELF\KNOWLEDGE_CLASS.NAME:STRING :

END_ENTITY;

--This entity represents the en route climb alétud
ENTITY EN_ROUTE_CLIMB

SUBTYPE OF (ALTITUDE);

DERIVE

SELF\KNOWLEDGE_CLASS.NAME:STRING :=

END_ENTITY;

236

'AC POWER;

'SLAT FLAP CON FIGURATION;

'DECELERATION POINT"

'VLOF',

V1

VR,

V2

'SAFELY ABORTED TO,

'EN ROUTE CLIM B/,

--This entity represents the optimum cruise alétud
ENTITY OPTIMUM_CRUISE
SUBTYPE OF (ALTITUDE);
DERIVE
SELF\KNOWLEDGE_CLASS.NAME:STRING :="'OPTIMUM CRUIS E;
END_ENTITY;

END_SCHEMA;

RAT CORE model instances

#70=T_DATE(13, 11, 2009, $, $, $);

#41=RESOURCE(*, $, $, #70, 'MS', 'Load Capability’, #70, %, $, $,
.FLOATS,, 0.0, (#51,#53,#55,#54), $, $);

#42=FUNCTION_CORE(* $, $, #70, 'MS', 'RAT Extensio n', #70, $, $, $,
$%5%5%$%3%$%$%$%9%%9)

#43=FUNCTION_CORE(*, $, $, #70, 'MS', '140 175 Powe r Generation', #70,
$$,%$%5%$%$%553$%3%3$ 8% #47),%9) ;
#44=FUNCTION_CORE(*, $, $, #70, 'MS', 'Landing Powe r Generation', #70,
$5%5%$%$3$5$%$%5%59%9%9% #48),%,9) ;
#45=FUNCTION_CORE(*, $, $, #70, 'MS', '140 Power Ge neration', #70, $,
$$,%5%5%$%$%59%$ 9% 3$9% 83 #49),3,9),

#46=FUNCTION_CORE(*, $, $, #70, 'MS', '175 Power Ge neration', #70, $,

$5$3553$35%53$353% 3% 8 #50),%,9),;
#47=PRODUCES_RELATION($, $, $, #41, CONSTANT_CORE(4 2.));
#48=PRODUCES_RELATION($, $, $, #41, CONSTANT_CORE(9 .5));
#49=PRODUCES_RELATION($, $, $, #41, CONSTANT_CORE(3 0.));
#50=PRODUCES_RELATION($, $, $, #41, CONSTANT_CORE(5 0.));
#51=PRODUCED_RELATION(S$, $, $, #43, $):

#52=EFFBD($, $, $, #70, 'MS', 'RAT Extension’, #70, $,
(#60,#59,#58 #65,#64,#63,#62 #61 #57 #56), #42);
#53=PRODUCED_RELATION(S$, $, $, #44, $);
#54=PRODUCED_RELATION(S$, $, $, #45, $):
#55=PRODUCED_RELATION(S$, $, $, #46, $):
#56=OR_CONSTRUCT();

#57=OR_CONSTRUCT();

#58=BRANCH_CONSTRUCT(#43, #56, $, '175kts <VC < 14 0 kts";
#59=BRANCH_CONSTRUCT (#44, #56, $, 'Landing Gear Dep loyment");
#60=BRANCH_CONSTRUCT (#45, #56, $, '140 Power Genera tion');

#61=BRANCH_CONSTRUCT(#46, #56, $, 'VC > 175kts);
#62=BRANCH_CONSTRUCT(#57, #43, $, ");
#63=BRANCH_CONSTRUCT(#57, #44, $, ");
#64=BRANCH_CONSTRUCT(#57, #45, $, ");
#65=BRANCH_CONSTRUCT(#57, #46, $, ");
#66=CORE_MODELING_LANGUAGE('7");
#67=MODEL_CORE($, $, $, 'RAT', #70, #70, #66,

(H45 #44,#43 #42 #41,#46), (#52)):

237

Slats SysML model instances

S FP [P BH BB BB 5 - S B BE BE BS
FP FB Fh By Py Py HH HH HH

- - $. - R - -
& B & & B
Lo T U - &
HE FH G BB BB BB [Fy By S FH HHE BF B P F 45 F F
FB HFE FH BH BB BH [By By BH FH SHE S H P F 5 F F
LB g B BB BB BN [Fy By BH BH B B HF P HF 4 B #
AR s s cf BB BH BB T A O P D R S+ s T g e
SEaEEReS 6% 69 G889 Gy Gy Gg 66 G666 G @& G 6 5 6
NNOANNO gL FY SR BB PR FL by Sy By 6 H6 6 & & P & 5 #P94
& 6 & 2 2 @ =
$$$$$$$ & & Py Py Py 12 & 12 &+ %3 &+ S &
HOHOHHHH - - o o 12} = = = = = = N - s B . E &
,,,,,, & & 1% - - - o o o o o) & - >
OO HH - - 17y 17y @ = = = = = = & - g N o &
daseaa? B 0% g o g B E. E. ES ES E¥ & o & S 0 59
$$$$$$d$ TH TH T T To w$ w$ w$ 26 26 & . ® s & ® Q&3
sesss8e 8¢ 8¢ v o ¢ L6 L6 L6 £0 L0 L0 0 4 T 4 6 s
BHSAFBGH 55 56 P& $& By 068 08 O o O . O - ARG o N:&:%&m
SSS3S3S3SEF 48 g9 Lo P8 “e 0T B 85 3 O 4 §59% . GPohosg
FHFAFAFEP S99 P PoF Pa Oy 0@ 8& BE BE BE FE S 0BFPROFSHSHG
FEEEEE ST FF B P Foa Ay $®p$®/p$®p$®/p$®/p$m¢vwﬂammW,M$,M$.$,
S A W& W$ W$ $$$$$$$$$$$$$$$$$$TC FSLFdFF g
WWWWWWY$ > > [e o $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$*
COOOoores ke ke T T T $$$$$$$$$$$$$$$$$$$H$$$$$m$ﬂ$$m
EEEEEE%$ %& %& W& W& W& $$$$$$$$$$$$$$$$$$$#Mﬁ$#$#$$M
22222208 0¥ 0O g¥ g&¥& g& W$$W$$W$$W$$W$$W&$$&$#$#$$$$$$S
s Fe T 06 06 O T$$T$$T$$T$$T$$T$$GUGUUcm
mmmmmm%ﬁ Wﬁ Wﬁ 26 26 26 SHE>FE>Fs s >si>Fs sl sl sl sl sl g5
DUUUuwLgy 348 Z¥F Q4 Q6 Q« C$$U$$U$$U$$U$$U$$AAAAAA%
EEEEEE g & 2P .LF LF I I 81068068 I40IFF60FNATNSNDSNSDSQ
4411 1L LW ~~ 1l ~ 1 =1 -~ |l 11 - - -l - [| e | e T | | - |l
kkkk&&h$$&$$%$$0$$n$$2$$3$$4$$5$$6$$7$$8$$9$%$ﬂ$ﬂ$%$%$5
T IR R v R s RS s S S R S S RS S RS S RS RSB RSP RS S RS SRS NSRS IS RS ISR D

238

#26=FINAL_STATE(*, $, $, $, $, 'taxi-in’, $, $, $,
$,$5553$535%$53$3%$53% 3% 9);
#27=REGION(*, $, $, $, $, 'Flight', $, $, $, $, $,
(#31,#32,#33,#34,#35,

#36,#37), (#22,#21,#20,#19,#26,

#25 #24,#23), $, $);
#28=STATE_MACHINE(*, $,$,.$. 5, $,. 5, $. $, $, $,
$5%533$53%555%55%$%53$3$9%, 95,
(#27)),

$,%8%8$9 3,
$,$8%83$8$ 83,

$,%8%8$8$ 3,
$,9$8%83,8S,

#29=BLOCK(*, $, $, (#28), $, 'Slats', $, $,$, $, $,$5,.$5,85, 8, $. %,
0.$,$$5555%5%5%5%$%83%9%),

#30=PACKAGE(*, $, $, $, $, 'Slats System', $, $, $, $, 8, (#29), $);
#31=TRANSITION(*, $, $, $, $, 'engine To power', $, $,5,%$8% %93
$,$, .LOCAL_UML., $, $, $, #25, #19, $, $, $);

#32=TRANSITION(*, $, $,$, $, VI, $,$, $, $, 3, $$ 95,
.LOCAL_UML., $, $, $, #19, #20, $, $, $);

#33=TRANSITION(*, $, $, $, $, 'cruise altitude', $, $$%% 3% 9,
$,$, .LOCAL_UML., $, $, $, #20, #21, $, $, $);

#34=TRANSITION(*, $, $, $, $, 'ATC clearance’, $, $,$5,$,$ 8%, 8%, 9,
$, LOCAL_UML., $, $, $, #21, #22, $, $, $);

#35=TRANSITION(*, $, $, $, $, 'Final approach’, $, $$ %% 383,
$,$, LOCAL_UML,, $, $, $, #22, #23, %, $, $);

#36=TRANSITION(*, $, $, $, $, 'Landing Gears Compre ssed, $, $, $, $,
$ %5 % % % LOCAL_UML., $, $, $, #23,#24, %, % . 3);
#37=TRANSITION(*, $, $, $, $, 'exit runaway', $, $, $5%8% %93,
$, LOCAL_UML., $, $, $, #24, #26, $, $, $);
#38=SYSML_MODELING_LANGUAGE('1.1";

#39=SYSML_MODEL($, $, $, 'Slats System’, #40, $, #3 8, (#30), $);
#40=T DATE(13, 11, 2009, $, $, $);

Knowledge model instances
#303=URI('http://www.eads.net/A350/FlightCycle/Init ial_Climb");
#304=URI('http://www.eads.net/A350/FlightCycle/En_R oute_Climb");
#305=URI(http://www.eads.net/A350/FlightCycle/Take _off");
#306=URI('http://www.eads.net/A350/FlightCycle/Crui se');
#307=URI(http://www.eads.net/A350/FlightCycle/Desc ent’);

#308=URI('http://www.eads.net/A350/FlightCycle/Appr
#309=URI('http://www.eads.net/A350/FlightCycle/Land
#314=URI(http://www.eads.net/A350/FlightCycle/Taxi
#315=URI(http://www.eads.net/A350/FlightCycle/Taxi
#316=URI('http://www.eads.net/A350/FlightCycle/Push
#317=URI('http://www.eads.net/A350/FlightCycle/Engi
#318=URI('http://www.eads.net/A350/FlightCycle/Cabi

#319=URI(http://www.eads.net/A350/FlightCycle/Roll
#320=URI('http://www.eads.net/A350/FlightCycle/Roll
#321=URI('http://www.eads.net/A350/FlightCycle/Park
#322=FLIGHT_PHASE(*, $, $, #303, 'initialclimb’, 'i
phase', $, $, #324, #323, $, $);
#323=FLIGHT_PHASE(*, $, $, #304, 'enrouteclimb’, ‘e
phase', $, $, #322, #325, $, $);
#324=FLIGHT_PHASE(*, $, $, #3005, 'takeoff', 'takeof
#336, #322, $, $);

oach_to_Land");
ing’);

_out’);

_inY);

_back");

ne_start");
n_safety briefing")

ing_taxi_out");

ing_taxi_in");
ing’);
nitial climb

n route climb

f phase', $, $,

239

#325=FLIGHT_PHASE(*, $, $, #3086, 'cruise’, ‘cruise
#326, $, $);

#326=FLIGHT_PHASE(*, $, $, #307, 'descent’, 'descen
#325, #327, %, $);

#327=FLIGHT_PHASE(*, $, $, #308, 'approachtoland',
phase', $, $, #326, #328, $, $);
#328=FLIGHT_PHASE(*, $, $, #309, 'landing’, 'landin
#327, #337, %, $);
#329=URI('http://www.eads.net/A350/FlightCycle/TO_s
#330=URI('http://www.eads.net/A350/FlightCycle/TO_s
#331=URI('http://www.eads.net/A350/FlightCycle/TO_c
#310=URI('http://www.eads.net/A350/FlightCycle/Appr
#311=URI('http://www.eads.net/A350/FlightCycle/Fina
#332=FLIGHT_PHASE(*, $, $, #310, 'approach’, ‘appro
#327, #326, #333, $, $);

#333=FLIGHT_PHASE(*, $, $, #311, ‘final_approach’,
subphase', $, #327, #332, #334, $, $);
#312=URI('http://www.eads.net/A350/FlightCycle/Dero
#313=URI('http://www.eads.net/A350/FlightCycle/Brak
#334=FLIGHT_PHASE(*, $, $, #312, 'derot’, 'derot su
#333, #335, $, $);

#335=FLIGHT_PHASE(*, $, $, #313, 'brake’, 'brake su
#334, #342, $, $);

#336=FLIGHT_PHASE(*, $, $, #314, 'taxi_out', 'taxi-

$, #324, $, 3);

#337=FLIGHT_PHASE(*, $, $, #315, 'taxi_in', 'taxi-i
#328, $, $, 9);

#338=FLIGHT_PHASE(*, $, $, #316, 'push_back’, 'push
#336, $, #341, $, $);

#339=FLIGHT_PHASE(*, $, $, #317, 'engine_start', 'e
subphase', $, #336, $, #341, $, $);
#340=FLIGHT_PHASE(*, $, $, #318, 'Cabin_safety_brie
safety briefing subphase’, $, #336, $, #324, $, $);
#341=FLIGHT_PHASE(*, $, $, #319, 'Rolling_taxi_out'
subphase’, $, #336, $, #324, $, $);
#342=FLIGHT_PHASE(*, $, $, #320, 'Rolling_taxi_in",
subphase', $, #337, #335, #343, $, $);
#343=FLIGHT_PHASE(*, $, $, #321, 'parking’, 'parkin
#337, #342, $, $, $);

#344=FLIGHT_PHASE(*, $, $, #329, 'TO_step1’, 'TO st
#324, #336, #345, $, 3);

#345=FLIGHT_PHASE(*, $, $, #330, 'TO_step2', 'TO st
#324, #344, #346, $, $);

#346=FLIGHT_PHASE(*, $, $, #331, 'TO_step_confirmed
confirmed subphase’, $, #324, #345, #322, $, $);

phase', $, $, #323,
t phase', $, $,
‘approach to land
g phase', $, $,
tepl’);

tep2’);

onfirmed);

oach");
|_Approach");

ach subphase', $,

'final approach

t);

e’);

bphase', $, #328,
bphase’, $, #328,
out phase', $, $,
n phase', $, $,
-back subphase’, $,
ngine start

fing', '‘Cabin

, 'Rolling taxi out
'Rolling taxi in

g subphase’, $,
epl subphase’, $,
ep2 subphase', $,

', 'TO step

240

Annotation instances

/* taxi-out */

#370=ANNOTATION_CLASS('phase’, (#314), (#45,#25));
/* take-off */

#371=ANNOTATION_CLASS('phase’, (#305), (#45,#19));
/* Initial Climb */

#372=ANNOTATION_CLASS('phase’, (#303), (#43,#20));
/* En route climb */
#373=ANNOTATION_CLASS('phase’, (#304), (#43,#20));
/* Cruise */

#374=ANNOTATION_CLASS('phase’, (#306), (#46,#21));
/* Descent */

#375=ANNOTATION_CLASS('phase’, (#307), (#43,#22));
/* Approach */

#376=ANNOTATION_CLASS('phase’, (#310), (#43,#22));
/* Final approach */
#377=ANNOTATION_CLASS('phase’, (#311), (#43,#44,#24));
/* Landing */

#378=ANNOTATION_CLASS('phase’, (#309), (#45,#23));
[* Taxi-in */

#379=ANNOTATION_CLASS('phase’, (#315), (#45,#26));

Expression model instances

/* “RAT load capability > (Slats power consumption + other systems
consumption)” for each significant flight configura tion */

[*for all functions*/

#500=ENTITY_VARIABLE(S, 'f");

#501=VARIABLE_DOMAIN(#502, #500);
#502=ENTITY_DOMAIN((#42,#43 #44 #45 #46));

#503=ALL_EXPRESSION(*, (#500), (#501), #507);

[*for all states*/

#504=ENTITY_VARIABLE(S, 's");

#505=VARIABLE_DOMAIN(#506, #504);

#506=ENTITY_DOMAIN((#19,#20,#21 #22 #23 #24,#25,#26));
#507=ALL_EXPRESSION(*, (#504), (#505), #508);

/* or expression */

#508=0OR_EXPRESSION(*, (#509,#516));

/* they are not the same valve */

#509=NOT_EXPRESSION(*, #510);
#510=COMPARISON_EQUAL_CONTEXT_EXPRESSION(*, (#511,#512));
#511=ENTITY_PATH_VARIABLE($, '\\{phase\\}, #500, '‘phase’, .T.);
#512=ENTITY_PATH_VARIABLE($, 's\\{phase\\}', #504, 'phase’, .T.);
[* or exists a produces relation */

#513=ENTITY_VARIABLE(S, 'pr);

#514=ENTITY_DOMAIN((#47,#48,#49,#50));

#515=VARIABLE_DOMAIN(#514, #513);

#516=EXISTS_EXPRESSION(*, (#513), (#515), #517);

[*and expression*/

#517=AND_EXPRESSION(*, (#519,#523));

[*relation belongs to function*/

#518=ENTITY_ARRAY_PATH_VARIABLE($, 'f.produces', #5 00, 'PRODUCES',
FD;

#519=BELONG_BOOLEAN_EXPRESSION(*, (#513,#518));

241

[*exists activity*/

#520=ENTITY_VARIABLE(S, 'a);
#521=ENTITY_DOMAIN((#13,#14,#15,#16,#17,#18));
#522=VARIABLE_DOMAIN(#521, #520);
#523=EXISTS_EXPRESSION(*, (#520), (#522), #527);
[*and expression*/

#527=AND_EXPRESSION(*, (#529,#533));

/*a belongs to state.do_activity*/
#528=ENTITY_ARRAY_PATH_VARIABLE(S$, 's.do_activity',
'DO_ACTIVITY', .F.);
#529=BELONG_BOOLEAN_EXPRESSION(*, (#520,#528));
[*exists flow property*/

#530=ENTITY_VARIABLE(S, 'fp’);
#531=ENTITY_DOMAIN((#7,#8,#9,#10,#11,#12));
#532=VARIABLE_DOMAIN(#531, #530);
#533=EXISTS_EXPRESSION(*, (#530), (#532), #534);
/*and expression*/

#534=AND_EXPRESSION(*, (#536,#540));

[*fp belongs to activity.owned_attribute*/
#535=ENTITY_ARRAY_PATH_VARIABLE($, 'a.owned_attribu
'OWNED_ATTRIBUTE!, .F.);
#536=BELONG_BOOLEAN_EXPRESSION(*, (#530,#535));
[*exists literal integer*/

#537=ENTITY_VARIABLE(S, 'li");
#538=ENTITY_DOMAIN((#1,#2,#3,#4 #5,#6));
#539=VARIABLE_DOMAIN(#538, #537);
#540=EXISTS_EXPRESSION(*, (#537), (#539), #541);
/*and expression*/

#541=AND_EXPRESSION(*, (#543,#546));

/*li belongs to flow_property.default_value*/
#542=ENTITY_ARRAY_PATH_VARIABLE(S$, 'fp.default_valu
'DEFAULT_VALUE', .F.);
#543=BELONG_BOOLEAN_EXPRESSION(*, (#537,#542));
/* rat produces more than slats needs*/
#544=ENTITY_ARRAY_PATH_VARIABLE(S$, 'li.the_value',
FD;

#545=ENTITY_ARRAY_PATH_VARIABLE(S$, 'pr.amount’, #53
#546=COMPARISON_GREATER(*, (#545,#544));

#504,

te', #520,

e', #530,

#537, "'THE_VALUE',

0, 'AMOUNT, .F.);

242

Table of figures

Figure 1. SysML diagrams from OMGcoeceeiiiiieeeeeerere e eeeeeee e
Figure 2. eFFBD diagram illustration (Vitech Corgtoon, 2011)..........c.ccccceeeiieeeeeeeeenennnn.
Figure 3. Systems and Software Engineering stasdavdlution up to 2010 (Monzodn,

Figure 13.
oL L= 0 F= IS} A] (= o 1RSSR 47
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.

2000 ettt —————— 1414441ttt t 1ttt £ttt e e e e e R bbbttt t ettt et aaaaeeeeeas 13
Figure 4. Aircraft Process DevelOpmEeNt oo 14
Figure 5. The Architecture consists of Operatioralgroup of Operational Nodes- and

System Architecture —a hierarchy of COMPONENTSa o veveviiiiiiiiiiiiiieee e 19
Figure 6. Transformation of models via meta-modelS...........ccooovveeeiiiiiiiiiiiiiiiiiiiees 21
Figure 7. Entity and properties in EXPRESS........cccoooii i 30
Figure 8. Example of a derived attribute in EXPRESS...........cccoooooiiiiiiiiiiiiiiiiee 30
Figure 9. Constraints in EXPRESSuucceeieeiiiiiiiiiies e e e e ee e e e e eeeeveeesenenneeennnees 31
Figure 10. EXPresSionSs tOP €NLILYcocmm e eeeeeetiiiiiiiiiss e e e s eeeeeeeeeeesessseeeeneeeeennnnnes 31
Figure 11. Interpretation of an expression USINGPRESS..............ccccevvviviiiiiiinnnenn. 32.
Figure 12. Airbus RBE PrOCESS......cccciviiitcmmmmmm ettt enaa e e 40

Physical Block Diagram representingdbemunications from a subsystem to

Block Definition Diagram showing extdrirdaerfaces of CIS model. 48

Method to validate inter-model constalmdsed on knowledge models. 50
Models in the Aircraft Development V-G3/C...........ccoovvveverievevnniiiieeeeenn. 52
FOCUS 0N EXPOrt aCtiVILYccoviiieeieiieie e 54
UML diagram of the meta-model layer of approach..............ccccevvviiiiinnnnns 56
An excerpt of the CORE meta-model, fanustemClass.ccceuvveieeeenens 57
Focus on ANNOtatioN aCtIVILYuuueeiiiiieieeceeeeeee e 58
ANNOLALION CIASS. ...uvviiiiiiiiiii it 59
Knowledge model of messages and commatioicprotocols......................... 60
Knowledge base, instances of messagasmunication protocols. 61
Instances of an aNNOTATION....... o e eeeeeieeeee e e e e 61
Focus on Model Integration aCtiVity...........coooeiiiiiiiiiiiiiiiciie e 61
Inter-model relations diagram.... ..o 62
Focus on General Constraint DeSCriIiVityuuveeiiiiiinieieeeeeeeeen 63
Excerpt of expressions structure in aLlNAgram.ccceeeeeeiiiiiiiiineeeens 64
View of variables model in UML. ... 64
First Order LOQIC ©XPreSSION. ... eeeeeeeeeereeerireersnsnnnnnnnseessenaaeasseeens 65
Messages in the CORE MOdel.cccoeeeiiiiiiiiiiiiii e, 66
Messages in the SySML model i 66
Communication protocol Must De SECULE...........covveerviiiiiiiieeeeiiieee e eeen) 66
Instances of CORE Link class in SIS mode.............ccceeiiiiiiiiiiieeieiieeee 67
Meta-model of CORE language implememedeXPRESS 72

243

Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
language
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.

Instances of CORE in ISO-10303-21 format........ccccoveuveveieiiieieeeieennn. 12

Knowledge model implemented in EXPRESS.............cccociiiiiiiiieee, 73
EXPRESS instances representing paleotiowledge base........................ 73
Annotation class implemented in EXPRESS..............cccco i, 4.
EXPRESS instances representing the ateaotmodel..............ccccooeeeeieeennn. 74
Equivalence class implemented in EXPRESS.........ccccooovvvviviviiniiinn 47
EXPRESS instance of an equivalenceioalat................ccccceevvvvvvvvvnnnnnnnn. 75
Exist expression in BNF fOrm.........ccoiiiiii e 76
Exist expression in the EXPRESS model..........cccooiiiiiiiiiiiiiees 1’7
EXPRESS function implementing the intetgtion of the expression........... 77
Excerpt of the instances implementingrter-model constraint................... 78
Derivation of the value of attributeétivalue" for OR_EXPRESSION entity
... 79
Functional architecture of the operatia@lidationcccceeeevieieenenn.n 80
Schemas in EXPRESS ... oo 81
Creation of a project with ECCO tOOIKituvvueeiiiiiiiiiiieeeiieieeeeeiiieeee 82
Edition of schema using ECCO toOIKitooo.........cooviiiiiiiiiiiiiiiee e 82
Creation of instances using ECCO tO0IKIL...........ccoovviiiiiiiiiiiiiiiiiiiiiieeee 84
Check of instances with ECCO tOOIKIt..........cccooveiiiiiiiiiiiiiiee 85
Industrial validation Strategy....cccccceeieeeeeeiiiiiieeeeecrr e ere e e e 89
Approach applied to the WWS case study..........ccoevvvvvvviiiiiiiiieeeeeeeen, 91
Internal Block Diagram of the WWS SysKhbdel..............ccoooevivvvviiiiiinnnnnns 92
Instances representing the WWS modeXRRESS modeling language 92
Knowledge model according to ATA 38 @axtiureccovveeeeeveiinininnnen, 93
Instances of ATA 38 knowledge model XPRESS modeling language....... 94
Instances of annotations using ATA 38Wedge modelccceevvvennnnnnn. 94
Instances of constraints in EXPRESS Maglanguagecccooevveeeeieinienee. 95
Approach applied to the Hydraulic angjiBe case studies.............cccccccnnnn. 96
ENngine model iN SYSMLuuuuiiieei e e e eeeve e eeaeees 97
Hydraulic model in SYSML..........vuceeemreiiieeie e 98

Instances representing Hydraulic andirienghodels in EXPRESS modeling

Alternative SysML Engine model
Instances of the alternative Engine miodeXPRESS modeling language .. 99

Knowledge model according to ATA 29 100
Instances of the ATA 29 knowledge maddEXPRESS modeling language
... 101

Instances of the annotations using tha 29 knowledge model.................
Instances implementing the constramBXPRESS modeling language 102
Approach applied to the RAT case StUdY .cee...uuueeiiiiiiieieeeiiieeeeeeiiiiiines 104

244

Figure 73. eFFBD diagram of RAT power generatiancfions.............ccccceevieeeiineeeeennen. 105
Figure 74. Relationship with the Resource andatge..................cccooeiiiiiiiiiiiiim 105
Figure 75. Instances representing the RAT modeXREESS modeling language 105
Figure 76. State machine of Slats consumption gutight................cceeiiiiiiiiicnnn. 04
Figure 77. Instances representing the Slats moadeKPRESS modeling language 106
Figure 78. Knowledge model of the Flight Cycle.........cccoovvvriiiiiiiiiii e, 108

Figure 79. Instances of the Flight Cycle knowledgedel in EXPRESS modeling

= o 11 = Vo T 108
Figure 80. Instances of annotations using the Flityltle knowledge model................ 109
Figure 81. Instances implementing the constraiEX®®RESS modeling language....... 110
Figure 82. Configuration USE CASEScewummmennaieeeeeeeeaaieeeeeeierinnnnnnnn s 117
Figure 83. Operational USE CASES.........cuuuuuuuuuruiiiiiaaeeeeeeeeeeeeeeeeeeaeeesnnn s s 118
Figure 84. Load of meta-model SCreEN ... 123
Figure 85. Model meta-data SCreENcccceemeevrieiiiie e ee e e e e ee e e e e enanaeeneees 123
Figure 86. Knowledge browsing fEatUre o .eeeeiiiiiiiieeeeeeeeeeeeeeeeiiiiiesnnnneens 124
Figure 87. Annotation deSCrPLiON SCIEEM........cceiiiiiiiiiiiiiiiiiierer e eeeee e 124
Figure 88. Constraint meta-data SCreeNccceeeeiiiiiiiiiiiiiiiiiir e 125
Figure 89. Coverage of needs in beta prototyPe........coovvvveieiiiiiiiiiiiiiiieeeee e eeeeeeenn 126
Figure 90. Future meta-model HCI with a SysML exBmp...........cccevvviviiiniiiinnnneenn. 135
Figure 91. Drag and drop of an instance to ann@tate.................cccceeeeiiieeeeeeeeee oo 136
Figure 92. Equivalence relationship between ingarfom CORE and SysML models

.. 136
Figure 93. Graphical construction of @ FOL eXPI@SSi..............cevvrrriiiiiieeeeeeereeennnn 137
Figure 94. Traceability of the executions of a ¢aaat validation................ccccceevvvneens a3

245

246

Summary

Nowadays, complexity of systems frequently implidgferent engineering teams handling various
descriptive models. Each team having a variety xgfegtise backgrounds, domain knowledge and modeling
practices, the heterogeneity of the models therasels a logical consequence. Therefore, even ihaiviy
models are well managed; their diversity becomgsablem when engineers need to share their models t
perform some overall validations.

We defend the use of implicit knowledge as an irtgdr way of reducing the heterogeneity. This
knowledge is implicit since it is in engineers’ mbut has not been formalized in the models eveugh it is
cardinal to understand them.

After the analysis of current approaches concernimadel integration and formalization of implicit
knowledge we propose a methodology permitting tmgete (annotate) the functional and design modebs
system using domain shared knowledge formalizednbgins of ontologies. These annotations ease thelmod
integration and the cross-model checks. Moreovés,a non-intrusive approach since the source fsa@te not
directly modified. Thus, they are exported intordgfied framework by expressing their meta-models ishared
modeling language that permits the syntactical hgan@zation.

The approach has been formally validated by udiegBXPRESS modeling language as shared language.
Then, in order to validate it from an industrialifoof view, three aircraft domain case studiesehfeen
implemented by applying the approach. This indaktaispect has been completed by the developmeat of
prototype allowing engineers to work from a progassspective.

Keywords: Aeronautics, Ontologies (Information retrievaljeams in the workplace--Data processing,
Computer systems, Heterogeneous modeling, Metadmggdénter-model relations, Implicit knowledge.

Résumé

De nos jours, la complexité des systemes impligagguemment la participation des différentes équipes
d’'ingénierie dans la gestion des modéles desaiptthaque équipe ayant une diversité d'expériendes,
connaissances du domaine et de pratiques de matiEis I'hétérogénéité des modeéles mémes est une
conséquence logique. Ainsi, malgré la bonne gestemmodeéles d’un point de vue individuel, leuriataitité
devient un probléme quand les ingénieurs nécesgtmager leurs modeéles afin d’'effectuer des wadilichs
globales.

Nous défendons ['utilisation des connaissances igitgg comme un moyen important de réduction de
I'hétérogénéité. Ces connaissances sont implicéeslles sont dans la téte des ingénieurs mais rlbnt pas
été formalisées dans les modéles bien qu’ellemessentielles pour les comprendre.

Aprés avoir analysé les approches actuelles coanerfintégration de modeéles et I'explicitation de
connaissances implicites nous proposons une mdtgdoqui permet de compléter (annoter) les modéles
fonctionnels et de conception d’'un systéme aveccdesaissances partagées du domaine formalisésslaou
forme d’ontologies. Ces annotations facilitent téigration des modéles et la validation de conteainnter-
modeles. En outre, il s’agit d'une approche nomusive car les modeéles originaux ne sont pas né&dlifi
directement. En effet, ils sont exportés dans wirennement unifié en exprimant leurs méta-moddiass un
langage de modélisation partagé qui permet I'hnoméigation syntactique.

L'approche a été validée formellement en utilisEntlangage de modélisation EXPRESS en tant que
langage partagé. Ensuite, afin de la valider d'winjpde vue industriel, trois cas d'étude du domaain
aéronautique ont été implémentés en appliquanpitaghe. Cet aspect industriel a été complété par le
développement d'un prototype permettant de traadliec les ingénieurs depuis une perspective gsase

Mots-clés: Aéronautique, Ontologies (informatique), Groupds travail—Informatique, Systémes
informatiques, Modélisation hétérogene, Méta-maa@¢éion, Relations inter-modéles, Connaissancesditgd.

247

248

