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Abstract

Nowadays, a huge volume of data is collected and stored daily in enterprises. To ef-
�ciently extract and manage this valuable knowledge helpful in the decision-making
process is a hard task. Firstly, because the data can be stored in di�erent ways:
in a very structured way like in databases but also in unstructured repositories.
Moreover the description of a sole object, person or process can be disseminated
in several sources with several structures. Managing these di�erent data models is
di�cult and makes the extraction of information process not very e�cient.
Classical query techniques permit to retrieve the set of data which match with spe-
ci�c criteria under a speci�c model, but richer results could be provided if a uni�ed
representation of the disparate data of the enterprise and of their interactions and
links could be de�ned. Graphs can be used for this uni�ed data model, and facilitate
the information search as well as the extraction of objects interaction.
The present work introduces a set of solutions to extract graphs from enterprise
data and facilitate the process of information search on these graphs. First of all we
have de�ned a new graph model called the SPIDER-Graph, which models complex
objects and permits to de�ne heterogeneous graphs. Furthermore, we have devel-
oped a set of algorithms to extract the content of a database from an enterprise and
to represent it in this new model. This latter representation allows us to discover
relations that exist in the data but are hidden due to their poor compatibility with
the classical relational model. Moreover, in order to unify the representation of all
the data of the enterprise, we have developed a second approach which extracts from
unstructured data an enterprise's ontology containing the most important concepts
and relations that can be found in a given enterprise. Having extracted the graphs
from the relational databases and documents using the enterprise ontology, we pro-
pose an approach which allows the users to extract an interaction graph between
a set of chosen enterprise objects (for example between customers and products or
even the enterprise social network). This approach is based on a set of relations pat-
terns extracted from the graph and the enterprise ontology concepts and relations.
Finally, information retrieval is facilitated using a new visual graph query language
called GraphVQL, which allows users to query graphs by drawing a pattern visually
for the query. This language covers di�erent query types from the simple selection
and aggregation queries to social network analysis queries. All these approaches and
methods have been developed and evaluated using real enterprise data.

Keywords: Graph Model, SPIDER-Graph relational database, entreprise on-
tology, visual query language
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Résumé

La quantité des données stockées et collectées au sein des entreprises ne cessent
d'augmenter, cependant, l'extraction et la gestion des connaissances gisant au sein
de tels puits de données peut savérer di�cile, et ce alors même que ces même con-
naissances sont très précieuses dans les processus de décision de lentreprise. La
première de ces di�cultés vient du fait que ces données peuvent être stockées sous
diverses formes: sous forme structurées, et donc dans des bases de données relation-
nelles, ou sous forme non structurées, cest-à-dire dans des documents, des e-mails,
. En outre, autre di�culté, la description d'une entité, objet, personne ou un pro-
cessus peut être éparpillée dans plusieurs structures. Si les techniques classiques
d'interrogation des données permettent de chercher l'ensemble de données qui cor-
respondent à des critères précis et spéci�ques dans un modèle de données spéci�que,
un résultat plus riche ne peut être obtenu quen modélisant les données dispersées de
l'entreprise d'une façon uni�ée. Un moyen naturel pour représenter et modéliser ces
données disparates en structures est dutiliser les graphes. Ces derniers peuvent être
utilisés comme un modèle uni�é de données et faciliter la recherche d'information. .
L'avantage de ce type de modèle réside dans ses aspects dynamiques et ses capacités
à représenter les relations simples, ainsi que ses facilités d'interrogation de données
appartenant à des sources hétérogènes, mais aussi ses capacités à découvrir des re-
lations et des informations non explicites sur les di�érents objets de l'entreprise
modélisés. La capacité des graphes à modéliser les interactions entre les objets
hétérogènes (ex. clients et produits, produits et des projets, l'interaction entre des
personnes tel que les réseaux sociaux, etc) est aussi un avantage non-négligeable.
Lutilisation de ces représentations en graphes peut grandement aider les entreprises
dans les processus de prise de décision, comme suggérer quelles recommandations
envoyer à un client (en utilisant le graphe des produits et des clients) ou trouver
lexpert le plus adéquat sur un sujet précis (en utilisant le réseau social). Ce travail
introduit un ensemble de solutions pour extraire des graphes à partir des données
de l'entreprise et pour aussi faciliter le processus de recherche d'information dans
ces graphes. Premièrement, nous avons dé�ni un nouveau modèle de données ap-
pelé SPIDER-Graph permettant de modéliser des objets complexes et de dé�nir des
graphs hétérogènes. Puis, nous avons développé un ensemble d'algorithmes pour
extraire le contenu des bases de données de l'entreprise et les transformer suivant
ce nouveau modèle de graphe. Cette représentation permet de mettre à jour des
relations non explicites entre objets, relations existantes mais non visibles dans le
modèle relationnel. Par ailleurs, pour uni�er la représentation de toutes les données
dans l'entreprise, nous avons développé, dans une deuxième approche, une méthode
de constitution d une ontologie d'entreprise contenant les concepts et les relations
les plus importantes d'une entreprise, et ceci, à partir de lextraction des données
non structurés de cette même entreprise.
Ensuite, après le processus d'extraction des di�érents graphes de données
l'entreprise, nous avons proposé une approche qui permettent d'extraire des graphes
d'interactions entre des objets hétérogènes modélisant l'entreprise. Cette approche
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permet d'extraire des graphes de réseaux sociaux ou des graphes d'interactions en se
basant sur le processus suivant : premièrement, l'utilisateur choisit les objets dont
il veut voir les interactions à partir des concepts de l'ontologie, ce qui permet à un
processus d'identi�cation d'objets didenti�er les nuds correspondant à ces concepts
dans le graphe extrait à partir de la base de données relationnelle. Ensuite, en se
basant sur les relations de l'ontologie et un ensemble de patrons de relations con-
struit à partir de la base relationnelle, un processus d'extraction de relations crée
les relations entre ces objets.

Extraire, à partir des données (structurées ou pas) dune entreprise, de la con-
naissance sous forme de graphes est sans grand intérêt si lon ne peut interroger et
interagir cette connaissance. Pour faciliter la recherche d'information, nous avons
proposé un nouveau langage d'interrogation visuel appelé GraphVQL ( Graph Visual
Query Langauge) qui permet aux utilisateurs non experts de poser leurs requêtes
visuellement sous forme de patron de graphe. Ce langage propose plusieurs types
de requêtes de la simple sélection et agrégation jusqu'à l'analyse des réseaux soci-
aux. Il permet aussi d'interroger di�érent type de graphes SPIDER-Graph, RDF ou
GraphML en se basant sur des algorithmes de pattern matching ou de translation
des requêtes sous forme de SPARQL. Lévaluation de toutes ces approches et méth-
odes a été réalisée en utilisant des jeux de données réelles d'entreprises.
Mots clés: base de données, graphe, SPIDER-Graph, Langage d'interrogation vi-
suel, ontologie d'entreprise.
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1.1 Context and Motivation

Decision making is a main task for managing a business at every level, from op-
erational to strategic one. It requires to choose a path among all the alternatives
taking into account all the in�uencing parameters in order to produce the desired
result. To take the good decision, it is important to have the right information at
the right time. Information technologies have contributed on the �eld of transform-
ing data into information and delivering it through technologies and techniques.
The methods, techniques and their application used to provide this kind of sup-
port are included under the term of Business Intelligence. Business intelligence can
be de�ned as "the process of turning data into information and then into knowl-
edge" [Golfarelli 2004].
Historically, Business Intelligence (BI) term is used broadly from early 90s' after it
was coined from Howard Dresner. He proposed this term "as an umbrella term to
describe concepts and methods to improve business decision making by using fact-
based support systems" [Power 2007]. In the 60s', the investigation on the business
intelligence systems has started by computerizing quantitative models to assist in
decision making planning" [Buchanan 2006]. Thus a BI system can be called a
decision support system (DSS).
Until late 80s', Data Warehouse [Inmon 1992] notion was introduced. Data Ware-
houses are large repositories of historical data, organized according to the multidi-
mensional model, that are directly accessed by users (i.e. the managers) through
interfaces that allow them to carry out very detailed analyses. All the resources are
integrated on a Data Warehouse using ETL (Extraction, transformation and load-
ing) processes. In the middle of the 90's, the CUBE operator has been introduced.
Then, it was possible to conduct multidimensional analysis and use OLAP (On-
line Analytical Processing) techniques that seem now essential for every BI Suite.
On that stage, data are collected from di�erent sources which can be relational
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databases and �at �les. Those can be external to the company or internal (feedback
from business processes).
However, the new data streams created under the notion of Web 2.0 [O'Reilly 2005]
(information sharing, interoperability, user-centered design, and collaboration on
the Web) have led enterprises to deal with big data from structured databases and
unstructured content (emails, documents, social networks, etc). Moreover, these
data are often distributed and highly dynamic. Social Media and mobile technolo-
gies have changed the way to access information, facilitating communication and
data exchange. All these evolutions a�ord BI to move to Business Intelligence 2.0
which integrates BI elements with elements from both Web 2.0 and the Semantic
Web (semantic integration through shared ontologies to enable easier exchange of
data). These evolutions of the data sources and the increase of the competitions
have conducted the business users to expect immediate feedback and want to �nd
rather than searching for.
In this context, having the interactions and links between several objects (e.g. prod-
ucts and sites, customers and products, social network...) is a precious mean to
permit a good understanding of a lot of situations in the enterprise context. For
example, by analyzing the interaction between the products and the customers, the
project manager can discover new high-potential products, markets, needs, clients
and features in order to adjust new product development line.
For instance, the enterprise social networks (the interactions between the enter-
prise persons) can be used to improve the productivity and the collaborations inside
the enterprise. By analyzing these interactions using the social network measures
like the centrality measure [Freeman 1977], the importance and in�uence of actors,
groups key actors can be identi�ed. These types of analysis are useful for the in-
ternal enterprise management. Identifying the most central groups helps �nding
groups with a good communication, which are important elements of cohesion. The
similarity between groups can be computed in order to analyze groups with posi-
tive properties, apply observation on a group to a similar one or explain a behavior
within a structure. We can also search persons who are not well integrated, and �nd
the best group for these persons. Another application is to be able to constitute
e�cient teams, in order to enable innovation and to reach group cohesion.
The increasing quantities and the evolution of data in enterprise can also be chal-
lenging to manage. These di�erent data types are complementary. The description
of a sole object, person or process can be disseminated in several sources with sev-
eral structures. For example, the description of a project (start-date, budget, people
and etc.) can be stored in a database and the analysis of its impact can be detailed
in a document. E�ciently extract and manage all this valuable knowledge located
in di�erent sources and helpful in the decision-making process is a very hard task.
Firstly, classical queries techniques are not appropriate to search for information in
di�erent data sources. Information retrieval [Kowalski 2010] or enterprise search
[Balog 2007] approaches can help �nding information on unstructured data. Other
techniques like semantic data search [Tran 2011] and keyword search are useful to
extract information from semi-structured or structured data [Agrawal 2002]. Be-
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cause of this, the user loses important information searching for one type of data
at the same time. Secondly, in order to �nd the right information, the user should
know its location (in a database or a document) and how it is named (for example
a product can be referred too as merchandise). Finally, the user should have the
technical knowledge to use many of these approaches. In fact, to query relational
databases, the user should know the SQL query language. Thus, a uni�ed repre-
sentation of the disparate data of the enterprise and of their interactions and links
could provide richer results than classical queries techniques.
To ful�ll the previous objectives, we need methods to model with uni�ed manner
the heterogeneous enterprise data and enterprise objects interactions, to analyze, to
query them and to visualize results in an e�cient and intuitive way. Graphs can be
used as a uni�ed data model for heterogeneous data source. Graphs are a natural
way of representing and modeling these interactions and to facilitate their querying.
The main advantage of such structure relies on its dynamic aspect and its capability
to represent relations, even multiple ones, between objects. It also facilitates data
query using graph operations and algorithms. On the other hand, extracting and
modeling such heterogeneous graphs, with heterogeneous objects and relations, are
outside of the classical graph models capabilities, moreover when each node contains
a set of values. Whereas, which graph model can be adapted to model heterogeneous
data? How can this graph model improve the information analysis in the enterprise?

1.2 Proposed Approach and Contributions

The present thesis introduces a set of solutions to extract object interaction graphs
from enterprise data and facilitate their querying. We can summarize the main ob-
jectives and propositions in what follows:
Model enterprise data with graph model:
In a business context, important expertise information is stored in �les, databases
and especially relational databases. Relational database pervades almost all busi-
nesses. Many kinds of data, from e-mails and contact information to �nancial data
and sales records, are stored in databases. Thus, it is important to integrate re-
lational database in our process to model enterprise data with graph model and
extract from it object interaction. In this context, we have de�ned a new graph
model called SPIDER-Graph (Structure Providing Information for Data with Edge
or Relations), which models complex objects and permits to de�ne heterogeneous
graphs.
Then, we have developed a set of algorithms to transform the relational database
model to a SPIDER-Graph model. The latter representation allows us to discover
explicitly the existing relations between the objects in the database.
In order to model the unstructured data as graph model, we have developed a sec-
ond approach which extracts from unstructured data enterprise ontology containing
the most important concepts and relations that can be found in the enterprise.
Extract enterprise object interaction graph from heterogeneous data
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sources:
Having the SPIDER-Graph extracted from the relational databases and the enter-
prise ontology from the unstructured data, we propose an approach which allows
the users to extract an interaction graph of a set of chosen enterprise objects (for
example between customers and products or even the enterprise social network).
This approach is based on two main steps: (1) an object identi�cation process of
the chosen objects in the SPIDER-Graph using the enterprise ontology and (2) re-
lations extraction process from both the SPIDER-Graph and the ontology.
Propose an adapted querying approach:
the analysis and the querying of the extracted graphs and the other existing
enterprise graph are facilitated using a new visual graph query language called
GraphVQL, which allows users to query graphs visually by drawing a query. This
language covers di�erent query types from the simple selection and aggregation
queries to social network analysis queries.

Then, the proposed solution can be summarized in the architecture depicted in
Figure 1.1.

Figure 1.1: Architecture of the Proposed Solution.

1.3 Thesis Organization

The thesis is organized in seven chapters: an introduction chapter, a conclusion and
perspectives chapter and �ve chapters for the related works and the main work.
Chapter 2: Graphs and Relational databases: describes the state of the art of graph
models and graph manipulation techniques. It details also the di�erent techniques
used to transform relational database into a graph like data.
Chapter 3: The enterprise Ontology Learning approach: presents some aspects of



1.3. Thesis Organization 5

the ontology learning state of the art. Then, it presents our enterprise ontology
learning approach from semi-structured and unstructured data.
Chapter 4: Object Interaction Graph extraction Approach. This chapter details
the extraction of interaction graphs. It starts by presenting our graph model
SPIDER-Graph. Then, it describes the transformation of the relational database to
a SPIDER-Graph model. Finally, the interaction graph extraction using the enter-
prise ontology and the relation patterns is detailed.
Chapter 5: GraphVQL: Visual Graph Query Language. This chapter presents the
graph visual query language (GraphVQL) for heterogeneous graphs that supports
di�erent type of queries. GraphVQL is a query language for SPIDER-Graph model
and also for heterogeneous graphs modeled with RDF or Graphml.
Chapter 6: Implementation and evaluation. In this chapter, we present the evalua-
tion of the di�erent approaches presented in the previous chapters.
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In this chapter the state of the art techniques related to our proposal are pre-
sented. In the �rst section 2.1, we survey the di�erent graph models: the basic
graphs de�nition, the graph database models and the graph-like structure (XML
and RDF). The di�erent graph data models are manipulated by speci�c techniques
like the graph matching, graph query languages and graph transformation which
are presented in section 2.2.
We then review the di�erent approaches allowing transforming structured data (re-
lational database) to graph models and querying relational databases with graph
techniques (section 2.3).

2.1 Graph Models

2.1.1 Basic De�nitions

Graphs are used in many areas and model with natural way entities interconnectivity
or topology like social network, geographic network, hypertext, etc. Graphs have
the advantage of being able to keep all the information about an entity in a single
node and show related information by arcs connected to it [Paredaens 1995]. In
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this section, we present the di�erent graph de�nitions from basic graphs to more
complex graph models.
A graph is de�ned as follows:

De�nition 1 (Basic Graph) A graph G = (V,E) consists of a set V of vertices
(also called nodes), a set E of edges where E ⊆ V × V .

This de�nition can be extended as in [Ehrig 2006a].

De�nition 2 (Graph) A graph G = (V,E, s, t) consists of a set V of vertices (also
called nodes), a set E of edges, and two functions s,t:E −→V, the source and target
functions.

Adding directions to the graph edges will transform a graph to a directed graph
(see �gure 2.1(a)).

De�nition 3 (Directed and Undirected Graph) Edges are said to be undi-
rected when they have no direction, and a graph G containing only such types of
graphs is called undirected. When all edges have directions and therefore (u, v) and
(v, u) can be distinguished, the graph is said to be directed. Usually, the term arc
is used when the graph is directed, and the term edge is used when it is undirected.
[Chartrand 1985]

Graph vertices and edges can also contain information. When this information
is a simple label the graph is called a labeled graph(see �gure 2.1(b)).

De�nition 4 (Labeled Graph) Given two alphabets ΣV and ΣE a labeled graph is
a triple LG = (V,E, lV ) where V is a �nite set of nodes, E ⊆ V ×ΣE×V is a ternary
relation describing the edges (including the labeling of the edges) and lV : V 7→ ΣV

is a function describing the labeling of the nodes.

Other times, vertices and edges can contain attributes. In this case, the graph
is called an attributed graph(see �gure 2.1(c)).

De�nition 5 (Attributed Graphs ) An attributed graph (over Σ = (S,OP ) with
S is the set of and a set of operation symbols OP ) is a pair AG = 〈G,A〉 of a graph
G and a Σ − algebra A such that |A| ⊆ GV , where |A| is the disjoint union of
the carrier sets As ofA, for all s ∈ S, and such that ∀e ∈ GE : src(e) /∈ |A|.
Let Attr(AG) = {e ∈ GE |tar(e) ∈ |A|} , Graph(AG) = G (|A| + Attr(AG)) and
Alg(AG) =A.

In the �gure 2.1, we present some examples of the presented graphs.
Graphs are related by graph morphisms, which map the nodes and edges of a

graph to those of another one, preserving the source and target of each edge.

De�nition 6 (Graph Morphism) Given graphs G1,G2 whith Gi =

(V i, Ei, si, ti) for i=1,2 a graph morphism f:G1 −→ G2,f = (fv, fE) consists
of two functions fv : V 1 −→ V 2 and fE : E1 −→ E2 that preserve the source and
the target functions, i.e fvos1=s2ofE and fvot1=t2ofE
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Figure 2.1: Examples of the Presented Graphs.

Another important graph type is the typed graph. A typed graph de�nes a
set of types, which can be used to assign a type to the nodes and edges of the
graph [Ehrig 2006a].

De�nition 7 (Typed Graph) A type graph is a distinguished graph TG =

(VTG, ETG, sTG, tTG). VTG and ETG are called the vertex and the edge type al-
phabets,respectivly. A tuple (G,type) of a graph G together with a graph morphism
type:G −→ TG is then called a typed graph.

A graph can be characterized by one or many graph type. Indeed, a graph can be
in the same time typed attributed labeled directed graph.
Simple graphs are not su�cient to model real life applications. Moreover, they
cannot represent heterogeneous graphs based on complex objects. The basic struc-
ture of a graph (nodes and edges) is complemented with the use of hypernodes and
hypergraphs extensions that provide support for nested structures.

De�nition 8 (Hypernode) A hypernode [Levene 1995] is an equation of the form
H = (N,E) where H ∈ L is termed the de�ning label (or simply the label) of
the hypernode and (N, E) is a digraph such that N ⊂ (P ∪ L) (P is the set of
primitive node). (N,E) is termed the digraph of the hypernode (or simply the digraph
corresponding to H).

A hypergraph is a generalized notion of graph where the notion of edge is extended
to hyperedge, which relates to an arbitrary set of nodes.

De�nition 9 (Hypergraph) An hypergraph [Berge 1985] G is a tuple (V,E, µ),
where V is a �nite set of nodes, E is a �nite set of edges, µ : E −→ V ∗ is a
connection function where V ∗ means multiple nodes.
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2.1.2 Graph Database Model

In order to model more complex structures and connections using the di�erent pro-
posed graph aspects, a graph database model has been proposed. A graph database
is de�ned [Angles 2008] as a "database where the data structures for the schema
and/or instances are modeled as a (labeled) (directed) graph, or generalizations of
the graph data structure, where data manipulation is expressed by graph-oriented
operations and type constructors, and has integrity constraints appropriate for the
graph structure". More formally, a graph database is de�ned as follow:

De�nition 10 (Graph Database) Graph database schema is in the form of a
graph Gdb = (V,E, L, ψ, λ) where: V is a set of nodes and E is a set of edges; L
is a set of labels;ψ is a labeling function from V ∪ E into L and λis an incidence
function from E into V × V .

There is a variety of models for a graph database (for more details see
[Angles 2008]). All these models have their formal foundation as variations of the
basic mathematical de�nition of a graph. The structure used for modeling entities
and relations in�uences the way that data is queried and visualized. In this section,
some models are presented and classi�ed according to the data structure used to
model entities and relations.

2.1.2.1 Models based on Simple Node

Data are represented in the models by a (directed or undirected) graph with
simple nodes and edges. Most of the models (GOOD [Gyssens 1990a],
GMOD [Andries 1992], etc.) represent both schema and instance database as a
labeled directed graph. Moreover, LDM [Kuper 1993] represents the graph schema
as a directed graph where leaves represent data and whose internal nodes represent
connections between the data. LDM instances consist of two-column tables, one for
each node of the schema.
Entities in these models are represented by nodes labeled with type name and also
with a type value or an object identi�er (in the case of instance graph). Some mod-
els have nodes for explicit representation of tuples and sets (PaMaL [Gemis 1993],
GDM [Hidders 2002]), and n-ary relations (GDM).
Relations (attributes, relations between entities) are generally represented in these
models by means of labeled edges. LDM and PaMaL use tuple nodes to describe a set
of attributes which are used to de�ne an entity. GOOD de�nes edges to distinguish
between mono-valued (functional edge) and multi-valued attributes (nonfunctional
edge). Nevertheless, these models do not allow the presentation of nested relations
and are not very well suited for complex object modeling.

2.1.2.2 Models based on Complex Node

In models based on complex node, the basic structure of a graph (node and edge)
and the presentation of entities and relations are based on hypernodes or hyper-
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graphs. Hypernodes can be used to represent simple (�at) and complex objects
(hierarchical, composite, and cyclic) as well as mappings and records. The Hypern-
ode Model [Levene 1995] and GGL [Graves 1995] emphasize the use of hypernodes
for representing nested complex objects. GROOVY [Levene 1991] is focused on the
use of hypergraphs. The hypernode model uses nested graphs at the schema and
instance levels. GGL introduces, in addition to its support for hypernodes (called
Master-nodes), the notion of Master-edge for the encapsulation of paths. It uses
hypernodes as an abstraction mechanism consisting in packaging other graphs as an
encapsulated vertex. Whereas, the Hypernode model uses hypernodes to represent
other abstractions like complex objects and relations. Most models have explicit
labels on edges. In the hypernode model and GROOVY, labeling can be obtained
by encapsulating edges that represent the same relation, within one hypernode (or
hyperedge) labeled with the relation name.

2.1.3 Graph-Like Structure

Apart from the reviewed models, there are other proposals that present graph-like
features, although not explicitly designed to model the structure and connectivity
of the information.

2.1.3.1 The Resource Description Framework (RDF)

The Resource Description Framework (RDF) [Klyne 2004] represents the data model
of the Semantic Web. RDF is a recommendation of the W3C, originally designed to
represent metadata. RDF allows structured and semi-structured data to be mixed,
exposed, and shared across di�erent applications.
Formally, RDF is a set of triples. RDF triple is a triple (s, p, o) ∈ (I ∪B)× I × (I ∪
B ∪ L) where I, B, and L are sets that represent IRIs [Duerst 2005], Blank nodes,
and Literals, respectively. In this triple, s is the subject, p the predicate, and o

the object. The subject s can be any resource identi�able by an URI, while the
predicate p de�nes a property of a resource and is identi�ed with an URI itself. The
object o, on the other hand, represents the value of that property and can be either
a Literal or a Resource identi�ed again by an URI.
The RDF triplet can be seen as a graph(see Figure 2.2). The predicate connects the
subject with the object and therefore a triple can as well be represented as a node-
arc-node link. Thus, RDF models information with graph-like structure, where basic
notions of graph theory like node, edge, path, neighborhood, connectivity, distance,
degree, and so on play a central role.

Figure 2.2: An RDF Triple as a Directed Graph.
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2.1.3.2 The Extensible Markup Language (XML)

The Extensible Markup Language (XML) [Bray 1997] is a set of rules for encoding
documents in machine-readable form. The goal is to enable documents to be
served, received, and processed in the Web. XML data are labeled ordered trees
(with labels on nodes), where internal nodes de�ne the structure, and leaves node
de�ne the data (schema and data are mixed). Figure 2.3 shows an XML document
example. The schema of XML document can be described by a schema language
like DTD or XSD.
Compared to graph data, XML has an ordered tree-like structure, which is a
restricted type of graph. Nevertheless, XML additionally provides a referencing
mechanism among elements that allows simulating arbitrary graphs. In this sense
XML can simulate semi-structured data.
In XML, the information about the hierarchical structure of the data is part of
the data (in other words XML is self-describing). In contrast, in graph models
this information is described by the schema graph in a more �exible manner using
relations between entities. From this point of view, graph models use connections
to explicitly represent generalization, compositions, hierarchy, classi�cation, and
any other type of relations. In the literature, many propositions have extended
XML in order to improve the graphs description.

Figure 2.3: XML Document.

A. GraphML (Graph Markup Language)
GraphML (Graph Markup Language) [Brandes 2001] is an XML-based format for
the description of graph structures, designed to improve tool interoperability and
reduce communication overhead. Thanks to its XML syntax, GraphML-aware ap-
plications can take advantage of a growing number of XML-related technologies and
tools, such as parsers and validators.

GraphML is a comprehensive and easy-to-use �le format for graphs. It consists
of a core language used to describe the structural properties of a graph and a �exible
extension mechanism to add application speci�c data. The basic graph model of
GraphML is a labeled mixed multigraph with optional node-ports, hyperedges, and
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nesting. Graph drawing information is intended to be separated into topological
and geometric information, with a graphics layer on top. Like any other associated
data, it will be encapsulated in a special tag. The main features of GraphMl in-
clude support of: directed, undirected, and mixed graphs, hypergraphs, hierarchical
graphs and etc. An example of a GraphML �le is presented in �gure 2.4

Figure 2.4: GraphML Document.

In this GraphML, a graph is presented by a <graph> element. The nodes of
a graph are represented by a list of node elements. Each node must have an id
attribute. The edge set is represented by a list of edge elements.

B. Graph Modelling Language (GML)
Graph Modelling Language (GML) [Himsolt 1996] is a hierarchical ASCII-based
�le format for describing graphs. It has also been named Graph Meta Language.
GML is a text-based �le format and it is the ancestor of GraphML. GML supports
the entire range of possible graph structure constellations. This means that beyond
"�at" graphs, hierarchically organized graphs can be saved, preserving all relevant
hierarchical information. This information includes, e.g., any inter-edges from the
hierarchy, the structure of any inner graphs, and whether a node containing an inner
graph is a group node or a folder node. GML has some key elements:

• A GML �le is made up of key-value pairs. Examples for keys are graph, node
and edge.

• The key idea behind GML is that there are some standard keys like graph, node
and edge, and anybody is free to add its own keys to add speci�c information.

• Values can be integers, �oating point numbers, strings and lists, the latter one
having to be enclosed in square brackets.

Figure 2.5 shows a GML �le containing a graph composed by two labeled nodes.

C. XGML
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Figure 2.5: GML Document.

XGML1 is an XML-like variant of the GML �le format where sections and
attributes as listed in the various tables of section GML File Format are wrapped
in < section > and < attribute > tags, respectively.

D. GXL
GXL (Graph eXchange Language) [Holt 2000] is designed to be a standard exchange
format for graphs. GXL is an XML sublanguage and the syntax is given by a XML
DTD (Document Type De�nition). This exchange format o�ers an adaptable and
�exible means to support interoperability between graph-based tools.
E.XGMML
XGMML (the eXtensible Graph Markup and Modeling Language) [Punin 2001] is
an XML application based on GML which is used for graph description. Technically,
while GML is not related to XML nor SGML, XGMML is an XML application that
is designed in a way where there is a 1 : 1 relation towards GML for trivial conversion
between the two formats.

2.2 Graph Manipulation

sec:GMnp
In order to extract, search or analyze information or transform data into graph

1http://www.yworks.com/products/y�les/doc/developers-guide/xgml.html
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structure, methods for manipulating, querying and transforming graphs are needed.
In this section, we will describe some important techniques to manipulate graphs:
Graph matching, Graph querying and Graph transformation.

2.2.1 Graph Matching

In many applications comparing two objects or an object and a model is an im-
portant task. The process of evaluating such similarity in the context of graph
models is commonly referred to as graph matching. Graph matching has been
used in many research �elds: Bioinformatics [Borgwardt 2005], image analy-
sis [Harchaoui 2007], document processing, web content mining [Schenker 2005],
data mining [Cook 2006]. In this thesis, the interest is primarily on the use of
Graph matching in the �eld of graph querying (which will be presented in the next
section).

Graph matching is the process of �nding a correspondence between the nodes
and the edges of two graphs that satis�es some constraints, ensuring that sim-
ilar substructures in one graph are mapped to similar substructures in another
graph [Conte 2004]. Based on this matching, a dissimilarity or similarity score can
eventually be computed indicating the proximity of two graphs.

The graph matching methods are divided into two categories: The �rst contains
exact matching methods that require a strict correspondence among the two objects
being matched or at least among their subparts. The second category de�nes in-
exact matching methods, where a matching can occur even if the two graphs being
compared are structurally di�erent to some extent. In the following, two types of
matching are described.

2.2.1.1 Exact Graph Matching

The exact matching [Riesen 2010b] aims to determine whether two graphs, or at
least part of them, are identical in terms of structure and labels. More formally,
given two graphs g1 = (Vg1 , Eg1) and g2 = (Vg2 , Eg2), with |Vg1 | = |Vg2 |, the exact
matching is to �nd a one-to-one mapping f : Vg2 → Vg1 such that (u, v) ∈ Eg2 if
(f(u), f(v)) ∈ Eg1 . When such a mapping f exists, this is called an isomorphism,
and g2 is said to be isomorphic to g1 [Bengoetxea 2002]. This isomorphism can
have di�erent strengths:

• Graph isomorphism: The most stringent form of exact matching. A one-
to-one correspondence must be found between each node of the �rst graph and
each node of the second graph such that the edge structure is preserved and
node and edge labels are consistent.

• Subgraph isomorphism is a weaker form of matching. It requires that
an isomorphism stays between one of the two graphs and a node-induced
subgraph between the other. Intuitively, subgraph isomorphism is the problem
to detect if a smaller graph is identically present in a larger graph. Some works
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[Fomin 2005] [Wong 1990]use the term subgraph isomorphism in a slightly
weaker sense. They use what they call a monomorphism. The monomorphism
requires that each node of the �rst graph is mapped to a distinct node of the
second one, and each edge of the �rst graph has a corresponding edge in the
second one. The second graph, however, may have both extra nodes and extra
edges.

• Homomorphism: Each edge/node in the �rst graph is mapped to a
edge/node of the second graph. The correspondence can be many-to-one.

In order to perform the di�erent exact graph matching types, various algorithms
have been proposed. Standard algorithms of exact pattern matching are based on
tree search techniques with backtracking. The basic idea is that a partial match (ini-
tially empty) is iteratively expanded by adding new node-to-node correspondences.
This process is repeated until a constraint imposed by the matching type is violated
(edge structure constraint violated or node or edge label inconsistent). Then, the
backtracking is performed. The algorithm undoes the last node added until a partial
matching is found for which an alternative extension is possible. If all the possible
mappings that satisfy the constraints have already been tried, the algorithm termi-
nates. Several algorithms use this technique, the most popular and the more used
algorithm is the Ullmann algorithm [Ullmann 1976]. In [Larrosa 2002], the tree
search is used with another heuristic which improves the algorithm speed. Other
new algorithm of pattern matching based on tree search is proposed in [He 2008].
However, there are other algorithms of exact pattern matching which are not based
on tree search. For example, Nauty [McKay 1981], which is based on group theory,
or an algorithm based on decision tree [Irniger 2007] [Lazarescu 2000].
Figure 2.6 presents an example of Ullmann exact matching algorithm
[Ullmann 1976]. We take as input the two graphs GA(V A,EA) and
GB(V B,EB)and their adjacency matrices A and B. The �rst step of the Ul-
mamann approach is to de�ne a matrix M to be |VA| X |VB| those elements are 1
and 0 such that each row contains more than one 1. Secondly, B is permuted by M
to compare adjacency. Indeed, a third matrix C = M(MB)T is computed, where T
denotes transposition. If ∀i, j ∈ |VA| (ai,j == 1)⇒ (ci,j == 1) then M speci�es an
isomorphisme between A and a subgraph of B. In this case, if mi,j = 1 , then the
jth point in B corresponds to the ith point in A in this isomorphism.

2.2.1.2 Inexact Graph Matching

The constraints imposed by the exact graph matching are too rigid in some applica-
tions. Two graphs must be completely identical or at least in a large part. Therefore,
the matching process must be more tolerant.

A large number of inexact graph matching methods have been proposed, dealing
with a more general graph matching problem than the one formulated in terms of
(sub)graph isomorphism. These inexact matching algorithms measure the discrep-
ancy of two graphs in a broader sense, that better re�ects the intuitive understanding
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Figure 2.6: Ullmann Exact Matching Algorithm.

of graph similarity or dissimilarity.

In an inexact graph matching problem, since |Vg1 | < |Vg2 |, the goal is to �nd
a mapping f ′ : Vg2 → Vg1 such that (u, v) ∈ Eg2 i� (f ′(u), f ′(v)) ∈ Eg1 . This
corresponds to the search for a small graph within a big one. An important sub-type
of these problems are sub-graph matching problems, in which we have two graphs
G = (V,E) and G′ = (V ′, E′), where V ′ ⊆ V and E′ ⊆ E, and in this case the aim
if to �nd a mapping f ′ : V ′ → V such that (u, v) ∈ E′ i� (f ′(u), f ′(v)) ∈ E. When
such a mapping exists, this is called a subgraph matching or subgraph isomorphism
[Bengoetxea 2002].
Various approaches to inexact graph matching have been proposed in the literature
[Riesen 2010a]:
Edit distance: Originally, edit distance was developed for string matching and a
considerable amount of extensions have been proposed for graphs. The key idea is
to model structural variation by edit operations re�ecting modi�cations in structure
and labeling [Neuhaus 2007]. Computing the edit distance of two graphs g1 and g2 is
equivalent to �nding a sequence of edit operations transforming graph g1 into graph
g2 (insertions, deletions and substitutions). Such a sequence of edit operations is
also termed an edit path from g1 to g2. The problem of measuring the similarity
of two graphs hence turns into to the problem of �nding the best model of the
structural di�erences of two graphs. The edit operations used to modify the graphs
are evaluated via an edit cost functions. Edit cost functions assigns a cost value to
each edit operation re�ecting the strength of the modi�cation applied to the graph.
To obtain a cost function on edit paths, individual edit operation costs of the edit
path are accumulated. An edit path from g1 to g2 with minimal costs can then be
de�ned as the best model for the structural di�erences of g1 and g2. This minimum
cost edit path assigned to two graphs is called edit distance. In order to compute
graph edit distance and related measures, A* based search techniques using some
heuristics are often employed [Riesen 2007]. A* is a best-�rst search algorithm
[Hart 1968],which always �nds a solution if there is one and it never overestimates
the cost of reaching a goal.
Applying the edit distance on the graph g1 and g2 described in Figure 2.7 means to
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transform the graph g2 into the graph g1. All edit operations are performed on the
data graph. One of the edit operation sequences includes node insertion and edge
insertion (node f and its relative edge), node deletion and edge deletion (node H
and its relative edges), node substitution (node a) and edge substitution (the edge
relative to node e and node c). A cost function is de�ned for each operation and
the cost for this edit operation sequence is the sum of costs for all operations in the
sequence.

Figure 2.7: Graph Edit Distance.

Relaxation Labeling : The basic idea of this particular approach is to
formulate the graph matching problem as a labeling problem [Fischler 1973]. Each
node of one graph is to be assigned to one label out of a discrete set of possible
labels, specifying a matching node of the other graph. During the matching process,
Gaussian probability distributions are used to model compatibility coe�cients
measuring how suitable each candidate label is. The initial labeling, which is
based on the node attributes, node connectivity, or other information available,
is then re�ned in an iterative procedure until a su�ciently accurate labeling,
i.e. a matching of two graphs, is found. This initial idea is extended by using
[Wilson 1997] Bayesian Measure, by taking in account the edge label [Huet 1999].

Spectral methods: Many inexact matching methods are based on the spectral
approach [Umeyama 1988] [Xu 2001] [Wilson 2005]. The basic idea of this
approach is based on the observation of the proper values and if the proper vectors
of the adjacency matrix of a graph are invariant with respect to node permutations.
Hence, if two graphs are isomorphic, their adjacency matrices will have the same
proper values and proper vectors. The reverse is not true in general. The major
problem in this approach is that it is purely structural, in the sense that it is only
applicable for unlabeled graphs, or that it does not exploit node or edge attributes.

Graph Kernel: Numerous inexact graph matching methods have integrated
a graph kernel. The graph Kernel can be divided into three classes: (1) the
convolution kernel [Watkins 2000] which provide general framework for dealing
with complex objects that consist of simpler parts, (2)Kernels based on the
analysis of random walks in graphs (3)Di�usion kernels which are de�ned with
respect to a base similarity measure which is used to construct a valid kernel matrix.

Miscelanous Methods : Several approaches have been proposed in the liter-
ature; approaches based on Arti�cial Neural Networks [Sperduti 1997], decomposi-
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tion methods [Messmer 1998], neural networks [Shonkry 1996], genetic algorithms
[Suganthan 2002], methods based on bipartite matching [Baeza-Yates 2000] and
methods based on local properties [Depiero 1996].

2.2.1.3 Summary

In this section we have given an overview of both exact and inexact graph matching.
The emphasis has been on the fundamental concepts.

In the case of exact graph matching, the conversion of the underlying data
into graphs always proceeds without errors. Otherwise, if distortions are present,
graph and subgraph isomorphism detection are rather unsuitable. It restricts the
applicability of exact graph matching algorithms. Inexact methods, sometimes also
referred to as error-tolerant methods, are characterized by their ability to cope
with errors, or non-corresponding parts, in terms of structure and labels of graphs.
Hence, in order for two graphs to be positively matched, they need not be identical
at all, but only similar. The notion of graph similarity depends on the error-tolerant
matching method that is to be applied.

In addition to the classical approaches, many new approaches have integrated
techniques like ontologies to improve the matching results. Semantic matching ap-
proaches attempt to match graphs based on their meaning by taking into account
vertex and edge types and attributes as well as graph structure [Aleman-Meza 2005]
[Co�man 2004]. However, since graphs can serve as conceptual representations, it
can be useful to match graphs based not strictly on their similarity as graphs, but
on the similarity of their interpretations in some domain of interest.

2.2.2 Graph Querying

E�cient and e�ective graph querying systems are critical to query and mine the
ever growing graph datasets in various applications.

A query language is a collection of operators or inference rules which can be
applied to any valid instance of the model data structure types, with the objective
of manipulating and querying data in those structures in any desired combination
[Codd 1980]. A number of query languages have been proposed for graphs. In
General, a graph query takes a graph pattern as input, retrieves graphs from the
database which contain (or are similar to) the query pattern, and returns the re-
trieved graphs or new graphs composed from the retrieved graphs. The existing
query languages can be classi�ed into visual, semantic, SQL-like and formal query
languages. In the following, the graph in Figure 2.8 will be used to perform some
query examples.

2.2.2.1 Visual Query Languages

Visual query languages aim to provide the functionality of textual query languages
to users who are not technical database experts, and also to improve the produc-
tivity of expert database users (Harel, 1988). In general, these languages allow
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Figure 2.8: Graph Example.

users to draw a query as a graph pattern with the help of a graphical interface.
The result is the collection of all subgraphs of the database matching the desired
pattern [Blau 2002], [Cruz 1987], [Cruz 1988].

A. G, G+ and GraphLog
G [Cruz 1987] is a visual query language based on regular expressions that allow
simple formulation of recursive queries. G enables users to pose queries, including
transitive closure, which relational query languages cannot express. A graphical
query Q (example Figure 2.9) is a set of labeled directed multi-graphs, in which the
node labels of Q may be either variables or constants, and the edge labels are regular
expressions de�ned over n-tuples of variables and constants. A path is expressed on
a G query initially by the means of two types of edges: Dashed edges correspond to
paths of arbitrary length in the graph and solid edges correspond to paths of �xed
length. In G, simple paths are traversed using certain non-Horn clause constructs
available in Prolog. However, it does not support cycles, �nd the shortest path or
calculate node distance. Moreover, G does not support aggregation functions.

Figure 2.9: G query to �nd students and supervisors and query GraphLog query to
�nd all students working on Ontology.

G evolved into a more powerful language called G+ [Cruz 1988], in which
a query graph remains as the basic building block. A simple query in G+ has
two elements; a query graph that speci�es the class of patterns to search, and a
summary graph, which represents how to restructure the answer obtained by the
query graph. G+ provides primitive operators like depth-�rst search, shortest path,
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transitive closure and connected components. It can easily �nd a regular simple
path. The language also contains aggregate operators that allow the path length
and node degree to be found. The graph-based query language G+ provided the
starting point for GraphLog [Consens 1989]. GraphLog di�ers from G+ with a
more general data model, the use of negation, and the computational traceability.
GraphLog queries are graph patterns which ask for patterns that must be present
or absent in the database graph. Edges in queries represent edges or paths in
the database. Each pattern de�nes a set of new edges (i.e., a new relation) that
are added to the graph whenever the pattern is found. An edge used in a query
graph either represents a base relation or is itself de�ned in another query graph.
GraphLog supports computing aggregate functions and summarizing along paths.
Figure 2.9 shows an example of a GraphLog query.

B. Hyperlog
Hyperlog [Levene 1991] is a declarative query and update language for the Hypern-
ode Model (Figure 2.10). It visualizes schema information, data, and query output
as sets of nested graphs, which can be stored, browsed and queried in a uniform
way.

Figure 2.10: Hypernode Model Schema and Instance

A hyperlog query consists of a number of graphs (templates) which are matched
against the hypernodes and which generate graphical output.

Figure 2.11: Template and Query with Hyperlog.

The user chooses which variables in the query, that should have their instantia-
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tions output in the query result. Hyperlog programs contain sets of rules. The body
of a rule is composed of a number of queries, which may contain variables. The
head of a rule is also a query and indicates the updates (if any) to be undertaken
for each match of the graphs in the body. In order to illustrate the template and
the query in the Hyperlog query language, an example is given in Figure 2.11.
The template can �nd the students and their supervisors. The query can �nd
the students working on Ontology. Hyperlog does not o�er a special notation or
expression to express paths. The existing rules can �nd only simple ones. The
absence of aggregation functions explains the absence of answers to a query about
node degree or path lengths.

C. QGRAPH
QGRAPH [Blau 2002] query is a labeled connected graph in which the vertices
correspond to objects and the edges to links with a unique label. The query
speci�es the desired structure of vertices and edges. It may also place Boolean
conditions on the attribute values of matching objects and links, as well as global
constraints. A query consists of match vertices and edges and optional update
vertices and edges. The former determines which subgraphs in the graph database
constitute a match for the query. The latter determine modi�cations made to the
matching subgraphs. A query with both match and update vertices and edges can
be used for attribute calculation and for structural modi�cation of the database.
The query processor �rst �nds the matching subgraphs using the query's match
elements, and then makes changes to those subgraphs as indicated by the query's
update elements. QGRAPH o�ers a good support to express paths by means of

Figure 2.12: Queries with QGRAPH.

sub-queries, conditions and annotations on edges and nodes. However, it does not
o�er an operator for aggregation. Figure 2.11 contains two queries. The right
query �nds all subgraphs with a supervised link between a Student and a Su-
pervisor. The left one �nds just the students that have Ontology as the Thesis-topic.

D. GOOD and Languages based on GOOD
The GOOD [Gyssens 1990b] data transformation language is a database language
with graphical syntax and semantics. This query language is used for the GOOD
graph-based data model (Figure 2.13 ). GOOD query language is based on graph-
pattern matching and allows the user to specify node insertions and deletions in
graphics.

GOOD contains �ve operators. Four of these correspond to elementary manip-
ulation of graphs: Addition of nodes and edges, deletion of nodes and edges. The
�fth operation called "abstraction" is used to group nodes on the basis of common
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Figure 2.13: GOOD Data Model Schema and Instance.

functional or non-functional properties. The speci�cation of all these operations
relies on the notion of a pattern to describe subgraphs in an object-based instance.
GOOD presents other features like macros (for a more succinct expression of frequent
operations), computational-completeness of the query language, and simulation of
object-oriented characteristics like encapsulation and inheritance.

Figure 2.14: GOOD Queries.

A simple path can be discovered by using a pattern. Moreover, GOOD is inca-
pable of �nding a path with no �xed length. Figure 2.14 illustrates two examples
of GOOD query: The �rst to �nd students and their supervisors; The second to
�nd students working on the ontology topic. GOOD was followed by the proposals
GMOD [Andries 1992], PaMaL [Gemis 1993] and GOAL [Hidders 2002]. These
languages use GOOD's principal features and add several new functionalities.

2.2.2.2 SQL-Like Languages

SQL-like languages are declarative rule query languages that extend traditional SQL
and, propose new SQL-like operators for querying graphs and objects [He 2008]
[Abiteboul 1997] [Flesca 2000].

A.Lorel
Lorel [Abiteboul 1997] is implemented as the query language of the Lore prototype



24 Chapter 2. State-of-the Art

database management system at Stanford2. It is used for the OEM (Object
Exchange Model) data model (Figure 2.15). A database conforming to OEM can
be thought of as a graph where Object-IDs represent node-labels and OEM-labels
represent edge-labels. Atomic objects are leaf nodes where the OEM-value is the
node value. Lorel allows �exible path expressions, which allow querying without
precise knowledge of the structure. Path expressions are built from labels and
wildcards (place-holders) using regular expressions, allowing the user to specify
rich patterns that are matched to actual paths in the graph database. Lorel also
includes a declarative update language.

Figure 2.15: Object Exchange Model (OEM). Schema and Instance are Mixed.

B. GraphDB
Güting [Güting 1994] proposes an explicit model named GraphDB, which allows
simple modeling of graphs in an object-oriented environment. A database in
GraphDB is a collection of object classes where objects are composed of identity
and tuple structure; attributes may be data- or object-valued. There are three
di�erent kinds of object classes called simple classes, link classes, and path classes.
Simple objects are just objects, but also play the role of nodes in the database
graph. Link objects are objects with additional distinguished references to source
and target simple objects. Path objects are objects with an additional list of
references to simple and link objects that form a path over the database graph.
GraphDB uses graph algorithms in order to implement graph operations. Both
the shortest path and cycle were implemented using the A* algorithm. Moreover,
nodes, paths and subgraphs are indexed using path classes and index structures like
B-Tree and LSD-Tree. GraphDB allows aggregation by using aggregate functions.

C. GOQL
GOQL [Sheng 1999] is an extension of OQL enriched with constructs to create,
manipulate and query objects of type graph, path and edge. GOQL is applied to
graph databases that use an object-oriented data model. In this data model, they
de�ne, similar to GraphDB, a special type: Node type, edge type, path type and
graph type. GOQL is capable for querying sequences and paths. In addition to
the OQL sequence operators, GOQL uses the temporal operators "Next", "Until"

2http://www.db.stanford.edu/lore
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and �Connected" for queries involving the relative ordering of sequence elements.
For processing, GOQL queries are translated into an operator-based language,
O-Algebra, extended with new operators. O-Algebra is an object algebra designed
for processing object-oriented database (OODB) queries. To deal with GOQL's
extension for path and sequence expressions, O-Algebra is extended with three
temporal operators, corresponding to the temporal operators: �Next", �Until" and
�Connected".

D. SOQL
SoQL (Social networks Query Language), [Ronen 2009] is an SQL-like language for
querying and creating data in social networks. SoQL enables the user to retrieve
paths to other participants in the network, and use a retrieved path in order to
attempt to create a connection with the participant at the end of the path. The
main element of a SoQL query is either a path or a group, with subpaths, subgoups
and paths within a group de�ned in the query. Creation of new data is also based
on the path and group structures. Indeed, SoQL presents four new operators:
-SELECT FROM PATH query which retrieves paths between network participants,
starting at a speci�c node and satisfying conditions in the path predicates.
- SELECT FROM GROUP query which retrieves groups of participants that satisfy
conditions as a set of nodes.
-The CONNECT USING PATH and CONNECT GROUP commands are pre-
sented. These commands automate the process of creating connections between
participants.
The language uses operators which specify conditions on a path or a group. It
also proposes aggregation functionalities, as well as existential and universal quan-
ti�ers on nodes and edges in a path or a group, and on paths within a de�ned group.

B.GraphQL
GraphQL [He 2008] is a graph query language for graphs with arbitrary attributes
and sizes. In GraphQL, graphs are the basic unit of information. Each operator
takes one or more collections of graphs as input and generates a collection of graphs
as output. It is based on graph algebra and the FLWR (For, Let, Where, and
Return) expressions used in Xquery. In the graph algebra, the selection operator is
generalized to graph pattern matching and a composition operator is introduced for
rewriting matched graphs using the idea of neighborhood subgraphs and pro�les,
re�nement of the overall search space, and optimization of the search order.

2.2.2.3 Formal languages

A. LDM
The Logical Database Model [Kuper 1993] presents a logic very much in the spirit
of relational tuple calculus, which uses �xed types of variables and atomic formulas
to represent queries over a schema using the power of full �rst order languages.
Figure 2.16 presents the LDM schema and instances.
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Figure 2.16: Logical Data Model, the schema (on the left) and part of instances (on
the right).

The result of a query is another LDM schema called "query schema", which
consists of those objects over a valid instance, that satisfy the query formula. In
addition, the model presents an alternative algebraic query language proven to be
equivalent to the logical one.

B. Gram
Gram [Amann 1992] is an algebraic language based on regular expression and sup-
porting a restricted form of recursion. Figure 2.17 shows the data model used by

Figure 2.17: Gram Data Model, the schema (on the left) and the instances (on the
right)

Gram. Regular expressions over data types are used to select walks (paths) in a
graph. It uses a data model where walks are the basic objects. A walk expression
is a regular expression without union, whose language contains only alternating se-
quences of node and edge types, starting and ending with a node type. The query
language is based on hyperwalk algebra with operations closed under the set of hy-
perwalks. This hyperwalk facilitates the query of paths and the �nding of adjacent
node and edge. A Gram query example is presented in Figure 2.18.

C. G-Log
G-Log [Paredaens 1995] is a declarative, non-deterministic complete language for
complex objects with identity. The data model of G-Log is (right down to minor
details) the same as that of GOOD (Fig 2.19). The main di�erence between G-Log
and GOOD is that the former is a declarative language, and that the latter is
imperative. In G-Log, the basic entity of a program is a rule. Rules in G-Log are
graph-based and are built up from colored patterns. A G-Log program is de�ned



2.2. Graph Manipulation 27

Figure 2.18: Gram query to �nd students and their supervisors.

Figure 2.19: G-Log Data Model: The schema (on the left) and the instances (on
the right)

as a sequence of sets of G-Log rules.

D. HNQL
HyperNode Query Language (HNQL) is a query and update language for the hypern-
ode model [Levene 1995]. HNQL consists of a basic set of operators for declarative
querying and updating of hypernodes. In addition to the standard deterministic
operators, HNQL provides several non-deterministic operators, which arbitrarily
choose a member from a set. HNQL is further extended in a procedural style by
adding to the said set of operators an assignment construct, a sequential composi-
tion construct, a conditional construct for making inferences and, �nally, loop and
while constructs for providing iteration (or equivalently, recursion) facilities.

2.2.2.4 Semantic Languages

A semantic query language is a query language which is de�ned for querying a
semantic data model.

Figure 2.20: Ontology describing the graph (left) and the pattern to extract students
working on same topic (right).

The semantic query language presented in [Kaplan 2006] provides a foundation
for extracting information from the semantic graph where the possible structure of
the graph is described by ontology (Figure 2.20) that de�nes the vertex types, the



28 Chapter 2. State-of-the Art

edge types and how edges may interconnect vertices to form a directed graph. The
language uses a query with a speci�c format containing a function which speci�es
patterns and conditions for matching graphs in the database. Figure 2.20 shows an
example of a pattern used by Kaplan query language.

2.2.2.5 Query Languages for Graph-Like Data

A. Query Languages for RDF

Several languages for querying RDF data have been suggested, some in the
tradition of database query languages (i.e. SQL, OQL): RQL [Karvounarakis 2002],
SeRQL [Broekstra 2003], RDQL [Seaborne 2004] and SPARQL [Pérez 2009].
Others more closely inspired by rule languages: Triple [Sintek 2002], Versa, N3
and RxPath. The currently available query languages for RDFs support a wide
variety of operations. However, several important features are not well supported,
or not supported at all. RDF query languages support only querying for patterns
of paths which are limited in length and form. Nevertheless, RDF allows the
representation of irregular and incomplete information (e.g the use of blank node).
Of the original approach, only Versa and SeRQL provide a built-in means of dealing
with incomplete information. For example, the SeRQL language provides so-called
optional path expressions (denoted by square brackets) to match paths whose
presence are irregular. Usually, such optional path expressions can be simulated, if
a language provides set union and negation. Others work on RDF query languages
to try to extend the original languages to improve path expressiveness. For
example, Alkhateeb et al., [Alkhateeb 2009] allow an RDF knowledge base to be
queried using graph patterns whose predicates are regular expressions. In RDF
Path, N3 and Graph Path, they try to use speci�cations similar to those in XPATH
to query paths in RDF. Moreover, RDF query languages are not well adapted to
query paths of unknown length or which include multiple propriety on RDF graph.
Neighborhood retrieval cannot be performed well for languages that do not have
a union operator. Many of the existing proposals support very little functionality
for grouping and aggregation. Moreover, aggregated functions like COUNT, MIN,
MAX applied to paths could be used to answer queries in order to analyze data (like
the degree of a node, the distance between nodes, and the diameter of a graph).
Exceptions can be found in Versa, RQL and N3 which support count functionality
aggregation in path and nodes, are not explicitly treated by any languages which
need to be considered as a requirement.

B. Query Languages for XML

The Extensible Markup Language (XML) is a subset of SGML. XML data are
labeled ordered trees (with labels on nodes), where internal nodes de�ne the struc-
ture, and leaves the data (scheme and data are mixed.). XML additionally provides
a referencing mechanism among elements that allows the simulation of arbitrary
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graphs. In this sense, XML can simulate semi-structured data. Also, many new ex-
tensions of XML are designed to represent graphs like GML, GraphML, XGML and
etc. Current query languages [Bonifati 2000] for XML do not support the majority
features for graph-structured XML document. The principal feature supported is
path. For example, XPath [Consortium 2010a] uses path expressions to select nodes
or node-sets in an XML document. Also, the set of axes de�ned in XPath is clearly
designed to allow the set of graph traversal operations that are seen to be atomic
in XML document trees. An XPath axis is fundamentally a mapping from nodes to
nodesets and de�nes a way of traversing the underlying graph. Each axis encapsu-
lates two things: a type of edge to follow (eg. child vs. attribute) and whether it is
followed transitively (e.g. child vs. descendant). Also, XQuery [Consortium 2010b]
uses XPath to express complex paths and supports �exible query semantics. In
XML-QL [Deutsch 1998], path expressions are admitted within the tag speci�-
cation and they permit the alternation, concatenation and Kleene-star operators,
similar to those used in regular expressions. In XML-GL [Ceri 1999], the only path
expressions supported are arbitrary containment, by means of a wildcard* as the
edge label; this allows the traversal of the XML-GL graph, reaching an element at
any level of depth. However, current query languages for XML are designed for tree-
structured XML data and do not support the matching of schema in form of general
graph. Even though XPath can express a node with multiple parents by multiple
constraints with axis "parent", it cannot express a graph with cycles. While XML
will not allow multiple parents, there is nothing in XQuery (or XPath in partic-
ular) which precludes a traversal from parent to child to a di�erent parent. This
insu�ciency does not allow the presentation and the query of all kinds of graphs.

2.2.2.6 Summary

In order to e�ectively handle graph management applications, we need query lan-
guages which allow expressivity for management and manipulation of structural
data. We have detailed in this section the di�erent query languages for graph or
graph like data model. These languages can be compared via the following func-
tionalities:

• Data Selection: all the previous languages o�er operator, function or pattern
that can select data from any graph model. Some query languages are speci�c
to a particular graph data model like Lorel, HNQL which cannot be generalized
to a general graph. Thus, the XML or RDF query languages cannot be applied
to general graph. Some query languages allow the selection of data from
multiple documents (like Lorel and some XML query languages).

• Aggregation and grouping: few graph query languages propose aggrega-
tion operator. For instance, Lorel uses the SQL operators count and Group by
and GraphDB o�ers the count operator. For the RDF query languages Versa,
RQL and N3 support the count functionality. The work in [Chong 2005] is
based on an aggregate approach which does not work for aggregations that
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require graph awareness. The same approach is also employed in [?], in order
to extend the RDQL query language with grouping and aggregation function-
alities. In the LAGAR [Chen 2005] algebra for querying RDF data, grouping
and aggregation are de�ned over graph sets which essentially correspond to
n-ary bindings. For SPARQL, some applications try to extend it by adding
an aggregate function. For example, ARQ implements COUNT() and SUM()
with syntax like (COUNT (∗)AS?c). The various proposals for grouping and
aggregate functions for XML (e.g. [Borkar 2004] [S. Paparizos 2002]) rely
on a nested representation resulting from XML's tree data model where only
nodes are labeled and edges have implicit containment semantics. Aggregation
in path and nodes are not explicitly treated by any language which needs to
be considered as a requirement.

• Graph Features: a Path expression is a central feature to support graph
matching which is typically used to traverse a graph. A path expression can
be decomposed into several joins and is often implemented by joins. Almost
all the previous query languages support simple path queries. Moreover, in
a path query we can distinguish di�erent types: simple path (path with no
repeated vertices), path queries without variables [Cruz 1988] [Consens 1989],
path queries involving uncorrelated paths, parametric regular path queries
[Liu 2004], and universal regular path queries. Many approaches in graph
database languages have proposed solutions to query di�erent kinds of paths.
For example, G+ proposes regular expressions for �nding regular paths in a
graph. As we have mentioned previously path queries are treated partially.
Indeed, paths with unknown length or including multiple properties are not
treated by the existing RDF query languages. In XML query languages, all
languages are able to �nd paths. However, we have also the same problem to
query optional path expressions. XPATH can only handle paths containing
nodes that are descendants of the current node, and this cannot result in non-
terminating processing loops. Also, conditions apply only to the last node on
the path extended from the context node. Other graph features can be treated
by the graph query languages. Adjacent node and adjacent edge are expressed
as a union of two queries: one for outgoing edges and another for ingoing edges.
Thus, only languages which can express union can support these features. The
length of the shortest path and the degree of node need aggregation function
which is not supported by all languages Graph query languages are the most
adapted to support graph features. For example, GraphLog and G+ languages
support all the graph features from adjacent node and edges to the diameter.

2.2.3 Graph Transformation

In this section, another �eld of the graph manipulation is presented which is the
graph transformation.
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2.2.3.1 Graph Transformation Presentation

Graph transformation concerns the technique of creating a new graph out of an
original one using some automatic techniques. It has been used for many �elds such
as: Computational model for term rewriting systems and functional programming
languages [Barendsen 1999], for specifying visual languages and generating associ-
ated editors [Bardohl 1999] [Minas 2002]. Besides speci�c applications of graph
transformation, several programming languages have been developed that are based
on graph transformation rules (Agg [Ermel 1999], Gamma [Banâtre 2001], Grrr
[Rodgers 1998] and Dactl [Glauert 1997].)

In fact, graph transformation has at least three di�erent roots [Ehrig 2006a]

• from Chomsky grammars on strings to graph grammars

• from term rewriting to graph rewriting

• from textual description to visual modeling.

The di�erent approaches of graph transformation can be resumed like in the follow-
ing [Rozenberg 1997]:

• The node label replacement approach: Allows replacing a single node
as left hand side L by an arbitrary graph R. The connection of R with the
context is determined by embedding rules depending on node labels.

• The hyperedge replacement approach: This has as left hand side L
a labeled hyperedge, which is replaced by an arbitrary hypergraph R with
designated attachment nodes corresponding to the nodes of L. The gluing
of R with the context at corresponding attachment nodes leads to the target
graph.

• The algebraic approaches are based on pushout and pullback constructions
in the category of graphs, where pushouts are used to model the gluing of
graphs.

• The logical approach allows expressing graph transformation and graph
properties in modanic second order logic.

• The theory of 2-structures was initiated as a framework for decomposition
and transformation of graphs.

• The programmed graph replacement approach used programs in order
to control the nondeterministic choice of rule applications.
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2.2.3.2 Graph Transformation Formalism

Graph Transformation deals with the manipulation of (labeled, directed) arbitrary
graph shape by rules, combining the strengths of graphs and rules into a single
computational model. It provides a pattern and rule-based manipulation of graph
models. Each rule application transforms a graph by replacing a part of it by another
graph [Varró 2005].
The idea of graph transformation is to consider a rule or production p = (L,R)

where L is the left hand side and R is the right hand side. If the match m found
an occurrence of L in a given graph G, then G

p,m
=⇒ H denotes the direct derivation

where p is applied to G leading to a derived graph H. H is obtained by replacing
the occurrence of L in G by R. A graph transformation [Baresi 2002] from a pre-

state G to a post-state H, denoted by G
p(o)
=⇒ H, is given by a graph homomorphism

o : L ∪R→ G ∪H, called occurrence, such that:
-o(L) ⊆ G and o(R) ⊆ H, i.e., the left-hand side of the rule is embedded into the
pre-state and the right-hand side into the post-state, and
-o(L \ R) = G \ H and o(R \ L) = H \ G, i.e., precisely that part of G is deleted
which is matched by elements of L not belonging to R and, symmetrically, that part
of H is added which is matched by elements new in R.

A simple example of a direct derivation is presented in Figure 2.21.

In order to apply p1 to the graph G1, we should �nd a match m1 between
L1 and G1. The match m1=n1,n2, n3. Applying production p1 to G1 at match
m1 is to delete every object from G1 which matches an element of L1 that has no
corresponding element in R1. In this example, we delete n2. Symmetrically we add
to G1 each element of R1 that has no corresponding element in L1. Thus, e5 is
added. All the other elements of G1 are maintained like the edge e4.

n1
n2

n3

n1

n3

n1
n2

n3

n1

n3

e5

e5
e4e4

m1

p1

m’1

p’1

R1L1

G1 H1

Figure 2.21: Graph Transformation: Direct Derivation.



2.2. Graph Manipulation 33

2.2.3.3 Typed Attributed Graph Transformation

Graph transformation has been applied not only for labeled graph but also for typed
attributed graphs. In [Heckel 2002], an attributed graph is modeled as a graph with
node attributed (as de�ned in de�nition 5). However in [Ehrig 2006b], they model
attributed graph with node and edge attribution. They called this new concept
E-graph. An E-graph is de�ned as follows in [Ehrig 2004]:

De�nition 11 (E-graph ) An E-graph G = (V 1, V 2, E1, E2, E3, (sourcei, targeti)i=1,2,3)

consists of sets

• V1 and V2 called graph resp. data nodes,

• E1, E2, E3 called graph, node attribute and edge attribute edges respectively,

and source and target functions

• source1 :E1 −→ V1, source2 :E2 → V1, source3 :E3 → E1,

• target1 :E1 → V1, target2 :E2 → V2, target3 :E3 → V2.

An E-graph morphism f : G1 → G2 is a tuple (fV1 , fV2 , fE1 , fE2 , fE3) with fVi :

G1,Vi → G2,Vi and fEj : G1,Ej −→ G2,Ej for i = 1, 2, j = 1, 2, 3 such that f
commutes with all source and target functions. E-graphs combined with E-graph
morphisms form the category EGraphs.

Thus, an attributed graph AG consists of an E-graph G and a data type D,
where parts of the data of D are also vertices in G.

For this complex graphs the graph transformation is realized via a typed at-
tributed graph transformation system which is de�ned in [Ehrig 2004] as follows:

De�nition 12 (Typed Attributed Graph Transformation System) A typed
attributed graph transformation system GTS = (DSIG,ATG, S, P ) based on
(AGraphsATG, M) consists of a data type signature DSIG, an attributed type graph
ATG, a typed attributed graph S, called start graph, and a set P of productions,
where:

1. AGraphsATG is a category formed by typed attributed graphs over an attributed
type graph ATG and tyed graph morphisms.

2. a production p = (L←− K −→ R) consists of typed attributed graphs L, K and
R attributed over the term algebra TDSIG(X) with variables X, called left hand
side L, gluing object K and right hand side R respectively, and morphisms l, r ∈
M i.e. l and r are injective and isomorphisms on the data type TDSIG(X),

3. a direct transformation G
p,m→ H via a production p and a morphism m : L,

called match,
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4. a typed attributed graph transformation, short transformation, is a sequence
G0 =⇒ G1 =⇒ ...Gn) of direct transformations, written G0

∗
=⇒ Gn,

5. the language L(GTS) is de�ned by L(GTS) =
{
G|S ∗

=⇒ G
}

An example of the attribute typed graph transformation is depicted in Figure 2.22.
In this example, we modify the input graph G by adding a new relation "A�ected-
to-Project" and deleting an old one "Supervised".

Figure 2.22: Attributed Typed Graph Transformation with Pushout.

2.3 Relational Database and Graph Models

2.3.1 Transforming Relational Database to a Graph Model

2.3.1.1 Transforming RDB to Entity Relationschip Model

The Entity-Relationship (ER) model, originally proposed by Chen in 1976
[Chen 1976], has gained wide acceptance in the area of database design and re-
lated �elds. ER is an abstract and conceptual representation of data which has
been used to produce a type of conceptual schema or semantic data model of a
system. An ER model is composed of entities, relationships and attributes which
can be modeled by a graph where entities and attributes are represented by nodes
and the relationships are represented by labeled edges. Numerous approaches have
been proposed in the past for accomplishing this task. [Fahrner 1995] presents a
survey about these approaches and classifys them in three categories:

• The �rst category is based on the evaluation of the inclusion dependen-
cies [Casanova 1984] (IND) of a given relational schema. Each IND is inter-
preted using the attributes role: �Key", �part of a key", �foreign key" or �non-
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key". These approaches can require the use of all the relations INDs and keys,
key-based INDs [Casanova 1983] [Ji 1991] or general INDs [Mannila 1992].

• The second category is based on the use of keys and attribute names
[Fonkam 1992] [Navathe 1988]. The transformation in these approaches is
done using the classi�cation of keys construction (e.g. whether the primary
key of a relation is the concatenation of the primary keys of other relations)
and the keys name (since relationships between keys are identi�ed through
their names which impose a proper name assignment).

• Some approaches use the techniques adopted in the two previous categories
like the approaches of Chiang et al. [Chiang 1994] [Chiang 1995]

The RDB transformation of to an ER model can be a �rst step for another model
transformation. The conceptual description o�ered by the ER model can help to
extract the RDB semantics and transform it to other models.

2.3.1.2 Transforming RDB to RDF

Mapping Relational Databases to an RDF graph is an active �eld of research. The
majority of data in the current Web is stored in RDBs. In order to make these
data available to semantic web applications, it is necessary to transform them to
RDF. Many surveys have been presented to classify the existing work on this �eld
[Sahoo 2009] [Hert 2011] [Beckett 2003]. The existing approaches can be compared
using a technique to create a mapping between the relational database and the RDF
graph. The mapping can be done with three approaches: automatic direct map-
ping, automatic mapping using an existing ontology and Manual/semi-automatic
mapping.
Automatic direct Mapping: These approaches allow to directly transform a RDB
to an RDF graph. [Berners-Lee 1998] presents a direct mapping where relational
tables are transformed to classes in an RDF vocabulary, and the attributes of the
tables are transformed to properties in the vocabulary. The URIs of the instances
as well as those of the vocabulary classes are generated automatically based on the
RDB schema and data. This direct mapping has been adopted by many approaches.
For example, the Virtuoso RDF View [Blakeley 2007] uses the unique identi�er of
a record (primary key) as the RDF object, the column of a table as RDF predicate
and the column value as the RDF subject. In D2RQ [Bizer 2007] (D2RQ also allows
users to de�ne customized mappings) and SquirrelRDF [Seaborne 2007].
Automatic mapping using an existing ontology: These approaches automatically
generates the RDB to RDF mappings where an existing ontology is used to en-
hance the quality of the mappings [Hu 2007]. For example, Dragut and Lawrence
[Dragut 2004] transform relational schemas and the RDF ontologies into directed la-
beled graphs respectively, and reuse the schema matching tool COMA [hai Do 2002]
to exploit simple mappings. The approach Ronto [Petros Papapanagiotou 2006], in-
troduces six di�erent strategies to discover mappings by distinguishing the types of
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entities in relational schemas.
Manualsemi-automatic mapping: These approaches use also domain ontology to
generate the mapping from RDB to RDF but the process of matching is done man-
ually or semi-automatically. The domain ontology may be preexisting and sourced
from public or may be bootstrapped from local ontologies created by automatic
mapping tools. Green et al. [Green 2008] presented an approach of mapping spa-
tial data to RDF using a hydrology ontology [Hart 2007] as the reference knowledge
model. Sahoo et al. [Sahoo 2008] proposed an approach to generate mappings
using the Entrez Knowledge Model (EKoM). This approach is also called Domain
ontology mapping and the process is the same as an ontology population technique
where the transformed data are instances of the concepts de�ned in the ontology
schema. Many mapping tools such as D2RQ [Bizer 2007] allow the users to create
customized mapping rules in addition to the automatically generated rules.

2.3.1.3 Transforming RDB to XML

XML has been extended to allow graph data modeling. Many approaches in
the literature have ben proposed to transform a relational database to a XML
document. None of them explicitly transform the RDB to a GML, GraphXML,
GXL or GraphML. However, these approaches can be extended to support the
graph in XML. The proposed approaches can be classi�ed in two principal categories:

Direct translation: These approaches use a set of rules to direct transform a RDB
to a XML document. In XPERANTO [Carey 2000] and Agora [Manolescu 2000],
the XML schema is obtained by performing a set of SQL queries against the
XML view. The mapping from the relational schema to the XML schema is done
manually by experts. In XML Extender [Cheng 2000], The users have as input
the relational schema and the XML target. Users of this tool need to manually
supply the mapping between the relational and the XML schema. The tool has the
feature to convert operations from XML to relational and obtain the results as XML.

Indirect Translation: These approaches use an intermediate structure to extract
the semantic of the relational database, and to then translate it to the XML model.
The intermediate models allow acquiring more information about the existing ob-
jects and their relationships. Such conversions are generally speci�ed by rules which
describe how to transform RDB elements (e.g., relations, attributes, data depen-
dencies, keys) into a conceptual model such as the ER model, etc. In this category,
other researchers started by transforming the relational model to a ER model then
the ER model was transformed into a XML document. The Wang research can be
cited here. In [Wang 2005], as a �rst step the ER model were extracted from the
relational model using the reverse engineering technique in [Alhajj 2003], which re-
sulted in a RID graph. Then, the RID graph is mapped into an XML Schema. After
the schema is translated, a XML document is generated from the RDB data. In
[Fong 2005] an extended ER model was extracted from the RDB schema and then it
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was mapped to a XSD graph which captured the relationships and constraints. The
XSD graph is mapped to a XML schema. This mapping transforms the foreign keys
into a hierarchy of element/sub-elements, which in some cases produces redundancy
when an element has a relationship with more than one element. In [Fong 2006], an
extended ER model was used to translate a RDB to an XML document according
to a DTD schema.

In [Du 2001], they developed a method that employed an ORA-SS model to
support the translation of a RDB schema into a XML Schema RDB-to-ORA-SS -to-
XML Schema. They proposed translation rules for mapping a semantically enriched
RDB schema into an ORA-SS model [Dobbie 2001]. In the literature, other algo-
rithms can be found which transform an ER model to XML [Alhajj 2003], relational
model to DTD [Laforest 2003], UML-to-XML [Conrad 2000].

2.3.2 Searching Information from Relational Database using
Graph Techniques: Keyword Search in Relational Database

The keyword search approaches allow naive users to acquire information from the
relational database without any knowledge about the schema or query languages.
They allow a user to submit a query using a �nite set of keywords to �nd the
data that satis�es his/her information needs [Park 2011]. In this section, we will
describe how the keyword search system transforms and uses the relational database
as a graph to �nd the solution. With SQL, in order to search the relation between
two objects, for example between an Employee and a Project: we need to specify the
particular attributes, and generate complex queries with many joins and unions (if
the two objects are not directly linked by a foreign key). In keyword search, stating
two keywords, i.e., Employee and Project, is enough for the user. The keyword
search system will compute the most meaningful answers on behalf of the user. Most
of the recent studies in this domain have viewed a relational database as a graph,
which represents a relational model easily. Actually, Keyword search systems with
graph-based approach �rst build a materialized graph over the database. The values
in tables or tuples can be modeled as nodes in the graph; or instead, the schema
itself, such as the tables and their relationships, can be modeled in the graph.
More precisely, graphs have been modeled in two ways: data graph models and
schema graph models. In a data graph, nodes represent tuples and edges represent
the foreign key relationships between pairs of tuples. [He 2007] [Kacholia 2005]
[Din 2007] [Li 2008]. Once the data graph is constructed, the search system does
not need to access the underlying database because the data graph keeps the values
in redundant schema elements. Therefore, internal queries for a data-graph are used
to get the seed nodes for graph traversing. Searching with a data-graph performs
better than searching with a schema-graph because schema-graph searching requires
the additional task of querying the underlying database after the graph traversing.
It may be suitable to cite some approaches based on data-graph.
BANKS [Kacholia 2005] models tuples as nodes in a graph, connected by links
induced by foreign key and other relationships. It introduces a backward edge to
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enable the search system to traverse backward, so that a few nodes or edges with
very large weights do not skew the answers. Answers to a query are modeled as
rooted trees connecting tuples that match individual keywords in the query. BANKS
employs the backward expanding search algorithm, which is based on Dijkstra's
single source shortest path algorithm. It expands node clusters by visiting nodes
backward until the rooted tree is completed.

DataSpot [Dar 1998] is based on a novel representation of data in the form of
a schema-less semi-structured graph called a hyperbase. The DataSpot Publisher
takes one or more possibly heterogeneous databases, prede�ned knowledge banks
such as a thesaurus, and user-de�ned associations, and creates the hyperbase. To
�nd query answers, the system performs a weighted best-�rst search using all of the
nodes that contain the keywords (i.e., query source) until it �nds nodes connected to
all the query sources. The query answer is a connected sub-hyperbase that contains
the keywords in the query. The answers are ordered according to the score, which
can be computed by counting edges.
BLINKS [He 2007] system proposes a bi-level indexing and query processing scheme
for top-k keyword search on a data graph. It introduces a cost-balanced expansion
technique that optimizes the backward search by balancing the number of accessed
nodes for expanding each cluster. In a schema-graph, nodes represent tables and
edges represent the foreign key relationships between pairs of tables. [Agrawal 2002]
and [Hristidis 2002] use a schema graph as their data representation method. A
schema-graph exploits only the schema of the underlying database itself, and it has
a smaller size than a data graph. A system based on schema-graph produces internal
queries, such as SQL joins queries to retrieve values from the database.
DBxplorer [Agrawal 2002] and Discover [Hristidis 2002] are two examples of key-
word search approaches based on a schema-graph. Given a set of query keywords,
DBXplorer returns all rows (either from single tables, or by joining tables connected
by foreign-key joins) such that each row contains all keywords. As a �rst step,
DBXplorer performs a preprocessing step called "Publish", that enables databases
for keyword search by building the symbol table, which locates the query keywords
in the relational entities, and associated structures. The symbol table is the key
data structure used to look up the respective locations of query keywords in the
database. Many location granularities have been taken into consideration, where for
every keyword the symbol table maintains the list of this granularity that contains
it: Column level, cell level and hybrid. In order to remove the duplicate values from
the database, compression algorithms have been proposed FK-Comp and CP-Comp.
The duplicate values are for foreign key entry and common keywords. Secondly, all
potential subsets of tables (Join tree) in the database that might contain tuples
having all keywords are identi�ed and enumerated. A subset of tables can be joined
only if they are connected in the schema. Finally, each Join tree is then mapped to
a SQL statement that joins the tables as speci�ed in the tree. The enumerated Join
trees are ranked by the number of connections.

DISCOVER is like DBXplorer in the sense that it also �nding all Join trees which
it calls candidate networks, by constructing Join expressions. For each candidate
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Join tree, an SQL statement is generated. The generated SQL statement may
contain many common Join structures that are due the fact that the trees may
have many common components. DISCOVER uses an algorithm that maximizes
the reusability and minimizes the size of the intermediate result. A new extension
of Discover was proposed in [Hristidis 2003] which adopts the IR-style document-
relevance ranking strategies.

2.4 Summary and Discussion

In this chapter, we study the di�erent approaches related to our work. Firstly, we
give an overview of the graph models and their manipulation techniques. Then, we
present some relational database transformation to graph like model approaches.
Now, we will present the important observations from each part.

Graph data models
Graphs provide a powerful primitive for modeling data in a variety of applications. A
variety of real-world objects and relationships can easily be represented by nodes and
edges in the graph for example social networks, technological networks, etc. In this
work, the graph model will be used to model data extracted from multiple resources
and representing heterogeneous objects. The presented models can be compared
according to their abilities to model complex graphs with heterogeneous nodes,
multiple attributes and multiple relations. Therefore, we have compared the basic
foundation of the graph model (graph, hypernode or hypergraph), the attributes
and edges type, the existence of the schema and instance level, the di�erent support
(inheritance, grouping, nested relation and complex object) by the models and �nally
examined whether it is adapted for a clear visualization of big graph. Using the result
of the table 2.1, we can notice that models based on hypernode or hypergraph present
a good model for complex graphs. Indeed, by using the grouping, each object will
have its attributes encapsulated in the object node. Also, the encapsulation will
facilitate the visualization of the graph in the case of multiple attributes.

Relational databases and graphs
In a business context, important expertise information is often stored in relational
databases. Relational databases pervade almost all businesses. Many kinds of data,
from e-mails and contact information to �nancial data and sales records, are stored
in databases. Also, databases used in business contain information about all people,
objects and processes related to the enterprise. In order to transform this relational
model into a graph model, and also obtain from it graphs describing the interaction
between enterprise objects (like social networks), we have studied the approaches
allowing transforming relational database to graph-like data or to extract graphs.
In other terms, our purpose is not only to transform the relational model into a
graph model, but also to obtain graphs of the enterprise objects.
In the context of transformation approaches, we have presented the transforma-
tion to the entity relation model, RDF and XML. We have started by studying
the transformation to ER model techniques. This transformation facilitates the
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transformation of the relational model to another model. Indeed, it detectes all
the existing entities and relations in the database. These techniques are based only
on the relational database information (keys, attributes name, etc). Using the ER
model, we can then obtain the important information to get a graph model.However,
the ER model does not model data as a real object graph (the nodes are objects
and links relations between these objects). For instance, we can found entities that
do not represent an object but a relation between two other entities.
The transformation to RDF or XML data model is performed directly or indirectly.
The direct approaches allow to directly transform a relational database to the target
model. These approaches use an intermediate structure to extract the semantic of
the relational database, then to translate it to the target model.
The query techniques can be query languages based on prede�ned and formal queries
and key word queries. The �rst one is by using directly the query languages such
as SQL [ISO9075:1999 1999]. However, in order to query such data, the user must
master a complex query language and understand the underlying data schema. In re-
lational databases, information about an object is often scattered in multiple tables
due to normalization considerations. In the case of a complex schema the queries
will be very complexe with many joins and unions. The keyword search techniques
presented in the section can extract the relation between speci�c objects. In these
approaches a relational database can be viewed as a graph where tuples are modeled
as vertices connected via foreign-key relationships. Using that, a query containing
the name of two objects can extract if there is a relation between two objects.
Other techniques can be used to extract speci�c graphs from relational database.
As we can consider the relational database as graph where table are nodes and re-
lated by the foreign keys which are the link, we can use the graph transformation
presented in section 2.2.3. This transformation can be processed only if the user
has an idea about the resulting graph that he would like to extract. However, in
many cases this graph is not feasible to extract (e.g objects not connected or not
existing). All these di�erent approaches are resumed in the table presented in the
Figure 2.23.

However, the approaches present some inconveniences:
-The transformation approaches can only transform the relational model to a graph
like model. It does not allow extracting speci�c graphs which describe the relations
between speci�c objects.
-The search approaches can only detect the links between two objects.
-The algebraic transformation needs a well de�ned right graph (desired graph).
-All these approaches cannot automatically discover hidden relations between ob-
jects or detect all the nodes that present the some object.
We can say that there is no approach which extracts interaction graphs from rela-
tional databases.
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Technique Input Output Process Can extract interaction
graph like social network?

RDF
[Sahoo2
009]

Direct RDB RDF Transform  the RDB directly to 
RDF with predefined rules

There is no relation or 
objects detection

Indirect RDB, ontology RDF Create a mapping between the 
RDF and RDB using the ontology

Detect only the concepts 
and the relations defined 
on the ontology

XML 
[Carey
2000]
[Wang
2005]

Direct RDB XML Transform  the RDB directly to 
XML with predefined rules

no

Indirect RDB, intermediate 
structure

XML Transform the RDB to the 
intermediate structure then to 
the  XML

no

ER [Fahrner1995] RDB ER Use the RDB metadata 
information to create the ER 
model

no

Language:
SQL

RDB data Execute SQL queries Select the objects and 
theirs relations with 
complexes queries

Key word search
[Park2011]

Data graph or 
schema graph

Tree, graphs or 
data

graph traverse or SQL queries Find the objects in the key 
words and if there are links 
between them

Graph algebraic 
transformation
[Ehrig2006]

Schema graph, 
desired graph

Desired graph The graph transformation rules 
should be applied to the schema 
graph

The desired graph can not 
be feasible all the time
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Figure 2.23: Di�erent Approaches to Extract Graphs from RDB.

2.5 Issues and Solution description

From the studied states-of-the art, we can enumerate the following problems from
each part:

- Absence of an adapted graph model for the graphs extracted
from relational databases: From the presented study we can notice that
the graph model based on simple graph model (like (GOOD [Gyssens 1990a],
GMOD [Andries 1992], etc.) is unsuited for heterogeneous graph with complex
objects. For instance, in these models the attributes are presented as separated
nodes which complicates the visualization and the treatment of these graphs.
The graph model based on complex nodes can resolve these problems. However,
these models do not o�er explicit labeled edges. They use hyperedges or node
encapsulation. In the relational databases, objects are related by the mean of
foreign keys. Thus, the graph model used for modeling the extracted graph should
maintain this information.
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-Absence of an interaction graph extraction approach from relational
database Transformation: The proposed approaches to transform a relational
database to a graph like model RDF or XML or even ER only translate the
relational model to a target model. Relational databases querying approaches
facilitate the information search on relational database and permit to detect if there
is a link between speci�c objects. However, all the previous techniques do not allow
to identify similar objects or to discover hidden or new relations between these
objects. For instance, with these approaches we cannot extract a social network.

-Absence of a "simple" graph querying method containing advanced
graph features and various graph models: Many approaches are proposed in
the literature allowing to manage graphs as described in section ??. The graph
query languages are the �rst tool that users use to query and extract information
from graphs. The majority of the languages are based on speci�c syntax which
needs advanced knowledge in computer science. In this context, visual query lan-
guages can be a good alternative for inexperienced users. However, the existing one
treats speci�c data model (XML, RDF or Hypernode) or does not support advanced
functionalities like path search or aggregation. Thus, business users need an e�-
cient visual query language which is easy to manipulate, treat di�erent graph types
and support advanced features (aggregation and graph analysis) in order to better
analyze their data.

In order to resolve these issues, we have proposed new approaches, which are
presented in Figure 2.24:
- An enterprise ontology learning approach : which extracts a personalized
enterprise ontology using a generic enterprise ontology and lexico-syntactic patterns
from the enterprise unstructured data. The resulting ontology will bridge the gap
between the structured and unstructured data. It will play the role of the enterprise
concepts reference. This approach will be detailed in chapter 3.
- An object interaction graph extraction approach : which allows users to
extract speci�c objects and their relations from relational database (or not) using
the enterprise ontology. As a �rst step, the relational database is transformed to a
graph model called the SPIDER-Graph, a new graph model adapted to this kind
of graph. Then, the user can select the enterprise concepts that he would like
to see their interactions. In this case, object identi�cation and ontology relation
enrichment processes are performed before the relation extraction step. The user
can also select directly the desired objects from the input graph. In this case only
a relation extraction process is performed. All this details will be detailed in the
chapter 4.
- A visual query language : the proposed visual query language can query both
extracted graph from relational databases and existing graph in the enterprise stored
in RDF , XML or GraphML �les. This language covers di�erent query types from
simple selection query to social network analysis queries. It is based on a pattern
matching process to extract sub-graphs from input graphs. This language is detailed
in the chapter 5.
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Relational database Enterprise Documents

Enterprise Data

Graph Model Extraction Enterprise Ontology Building

Enterprise ontologySPIDER-Graph model

Visual Query Language Object Interaction Graph Extraction

Graph Pattern Matching

Pattern Extraction

Relation Extraction from Graph model

Object Identification

Relation Extraction from Ontology

Select nodes or conceptsVisual Query

Figure 2.24: The Proposed Approach.
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Enterprises daily manipulate unstructured data (documents, emails, web pages,
contacts, blog posts) as well as structured data. These di�erent data types are
complementary. The description of an object, person or process can be disseminated
in several sources with several structures. For example, the description of a project
(start-date, budget, people and etc.) can be stored in a database and the analysis
of its results and other characteristics can be detailed in a document.
Using a uni�ed graph model can facilitate querying and integrating heterogeneous
data sources. In order to extract graphs from relational databases and unstructured
data, we need a reference of all the enterprise objects and process. Enterprise
ontology has been used for describing enterprise objects and processes in order to
represent a common semantic layer of enterprise resources. It can be a good reference
of all the existing objects and processes of a particular enterprise. Furthermore, it
can describe the characteristics of each enterprise element, their relations and their
various names and connotations.
The prede�ned concepts and relations in the enterprise ontology can help to extract
from unstructured data a graph model. In this context, we have de�ned an approach
for enterprise ontology learning coping with both generic and speci�c aspects of
enterprise information. Our approach is based on two main steps. First, general
enterprise ontology is semi-automatically built in order to represent general aspects
(core ontology); Then, an ontology learning method from enterprise unstructured
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data is applied to enrich and populate this latter with speci�c aspects.
The resulting enterprise ontology, which represents a graph model of the enterprise
unstructured data, will be used to extract graph from relation databases and to
enrich them.
We start by presenting the basic concepts related to the ontology domain and the
related work on ontology learning. After this, we detail the di�erent aspect of our
approach.

3.1 Theoretical Basis

3.1.1 Ontology De�nition

The notion of ontology is old and stems from philosophy. Ontologies have been
widely used in various domains like arti�cial intelligence, knowledge engineering and
management, information retrieval etc. The importance of ontologies has reemerged
with the proposal of semantic web [Berners-lee 2001] by Tim Berners Lee.
Ontology has been de�ned using di�erent de�nitions as it was presented in
[Guarino 1998]. The most used de�nition comes from Gruber [Gruber 1993] where
an ontology is described as an "explicit speci�cation of a conceptualization". In this
de�nition, Conceptualization refers to an abstract model of an object in the world by
having identi�ed the relevant concepts referring to it. Explicit means that the type
of concepts used, and their constraints of use, are explicitly de�ned. The de�nition
by Gruber was later developed further by Studer et al. [Studer 1998] who stated
that "an ontology is a formal, explicit speci�cation of a shared conceptualization",
which means that an ontology should also be shared within some group of people
or agents within a domain.

In addition, there is a variety of other ontological de�nitions, which share the
following set of components:

• Concepts of a domain are abstract or concrete entities derived from speci�c
instances or occurrences.

• Attributes are characteristics of the concepts which may or may not be con-
cepts by themselves.

• Taxonomy provides hierarchical relations between the concepts.

• Non-taxonomic Relations specify non-hierarchical semantic relationships be-
tween the concepts.

• Instances are used to represent elements or individuals in ontology.

More formally, an ontology is de�ned as follows:

De�nition 13 (Ontology) An ontology is de�ned by the set O :=

{C,Hc, OP,DP,A} where
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• C is the set of concepts where C := c |c =< cl, I > where cl is the c label and
I is its set of instances.

• Hc is the set of directed relations Hc ⊂ C which is called concept hierarchy or
taxonomy.Hc(C1, C2) means that C1 is a subconcept of C2.

• OP is the set of object properties op ∈ OP with op := 〈n, c1, c2〉 where n is
the name of the object property, c1 , c2 ∈ C with c1 is the range of op and c2
is the domain of op.

• DP is the set of datatype properties dp ∈ DP then dp := 〈n, c1, t〉 where n is
the name of the datatype property, c1 ∈ C with c1 is the range of op and t is
the type of the relation.

• A is the set of axioms.

Several categorizations of ontologies have been de�ned [Guarino 1998]according to
their level of dependence of a particular task or a point of view [Gomez-Perez 2004]
(see Figure 3.1):

• Top-level ontology or upper-level ontology: is a generic ontology and domain
independent. It describes very general concepts

• Domain ontology: describes the vocabulary related to a generic domain by
specializing the concepts introduced in the top-level ontology. e.g. medicine,
agriculture, politics, etc.

• Task ontology: describes the vocabulary related to a generic task or activity
by specializing the top-level ontologies.

• Application ontology: concepts in application ontologies often correspond to
roles played by domain entities.

• Domain-task ontology : de�nes domain-level ontologies of domain-speci�c
tasks and activities.

• Method ontology: gives de�nitions of the relevant concepts and relations ap-
plied to specify a reasoning process, so as to achieve a particular task.

The following section focus on ontologies building methods and tools.

3.1.2 Ontology Building

Ontology building is a process that aims to produce ontology. It is a complex process
covering the complete life-cycle of ontologies, from requirements engineering to usage
and maintenance of the ontologies. The ontology life-cycle can be summarized by
these principal steps [Suarez-Figueroa 2008]:
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Figure 3.1: Guarino's types of ontologies.

• Speci�cation: identify the purpose and scope of the ontology. The pur-
pose answers the question: "Why is the ontology being built?" and the scope
answers the question: "What are its intended uses and end users?"

• Conceptualization: describe, in a conceptual model, the ontology to be
built. The conceptual model of an ontology consists of concepts in the domain
and relationships among those concepts.

• Formalization: transform the conceptual description into a formal model,
that is, the description of the domain found in the previous step is written
in a more formal form, although not yet its �nal form. Concepts are usually
de�ned through axioms that restrict the possible interpretations for the mean-
ing of those concepts. Concepts are usually hierarchically organized through
a structuring relation, such as is-a (class-superclass, instance-class) or part-of.

• Implementation: implement the formalized ontology in a knowledge repre-
sentation language. For that, one commits to representation ontology, chooses
a representation language and writes the formal model in the representation
language using the representation ontology.

• Maintenance: update and correct the implemented ontology.

There are also other activities that should be performed during the entire life-cycle:

• Knowledge acquisition: acquire knowledge about the subject either by
using elicitation techniques on domain experts or by referring to relevant bib-
liography. Several techniques can be used to acquire knowledge, such as brain-
storming, interviews, questionnaires, text analysis, and inductive techniques.

• Evaluation: judge the quality of the ontology technically.

• Documentation: report what was done, how it was done and why it was
done.
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This life-cycle plays the role of guideline for building ontology. The existing tools
and methodology can modify the ontology life-cycle or ignore some steps. The
existing ontology building approaches can be divided in two categories: Manual
approaches and semi-automatic or automatic, called learning approaches. These
di�erent approaches are described below.

3.1.2.1 Manual Building

In the literature, many methodologies have been proposed in order to guide the
manual ontology building or the building from scratch. These methodologies are
guidelines describe each step of the building process. A comparative and detailed
study of these methods and methodologies can be found in Jones et al. [Jones 1998],
Fernandz Lopez [Lopez 1999], Ohgren [Ohgren 2005] and Suarz-Figueroa et al.

[Suarez-Figueroa 2007]. Some examples of these methods are described in order to
show how an ontology building methodology works.
[Lenat 1989] presented a methodology based on three phases. The �rst phase
consists in the manual codi�cation of articles and pieces of knowledge in which
common sense knowledge, that is implicit in di�erent sources, is extracted by hand.
The second and third phases consist in acquiring new common sense knowledge
using natural language or machine learning tools. The di�erence between them
is that in the second phase this common sense knowledge acquisition is aided by
tools, but mainly performed by humans, while in the third phase the acquisition is
mainly performed by tools.
METHONTOLOGY [Gomez-Perez 1996] is a more general methodology used to
build ontologies. They are either built from scratch, reusing other ontologies as they
are, or by a process of reengineering. The METHONTOLOGY framework enables
the construction of ontologies at knowledge level. The �rst step is to specify the
purpose of the ontology, the level of formality and the scope. Next, all knowledge
needs to be collected. Then, a conceptualization phase is performed. In this step,
Fernandz et al. [Lopez 1999] �rst propose to build a glossary of terms with all
possibly useful knowledge in the given domain. Terms are grouped according to
concepts and verbs, and these are gathered together to form tables of formulas and
rules. The next task to perform is to check whether there are any already existing
ontologies that can be used. After that, the ontology is implemented using a formal
language, that can be evaluated according to some references. The �nal part is the
documentation.
A more recent methodology is proposed by Noy and McGuinness [Noy 2001]. Their
methodology is iterative, starting with a rough concept and then revising and
�lling in the details. The �rst step consists of determining the domain and the
scope of the ontology. It is important to think of whether to use already existing
ontologies, and if so, how to use them. A list of all the terms that could be needed
or used is then produced. The class hierarchy should represent an "is-a" relation,
cycles should be avoided, siblings should have the same level of generality, multiple
inheritance could lead to some problems; guidelines regarding when to introduce
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new classes or instances are given. When the classes are de�ned, i.e. the terms and
the relations, then the properties of the classes need to be speci�ed (attributes).
Here it is important to check whether some relations are inverse or not, and whether
a default value for an attribute could be useful. After this the value type of both
classes and class properties are de�ned, including cardinality, domain and range.
Finally, the individual instances are created.
In the context of the Enterprise project, Uschold and King [Uschold 1995] proposed
a methodology to build a top level enterprise ontology. Their methodology is
based on four phases: (1) Identify the purpose of the ontology, (2) build it, (3)
evaluate it, and (4) document it. During the building step, the authors propose
capturing knowledge, coding it and integrating other ontologies inside the current
one. They also propose three strategies for identifying the main concepts in the
ontology: A top-down approach, in which the most abstract concepts are identi�ed
�rst, and then, specialized into more speci�c concepts; a bottom-up approach, in
which the most speci�c concepts are identi�ed �rst and then generalized into more
abstract concepts; and �nally they propose a middle-out approach, in which the
most important concepts are identi�ed �rst, then generalized and specialized into
other concepts.

The manual approach can be useful to model relevant ontologies. However, the
manual approaches are time-consuming and not well adapted to construct various
ontologies for various domains/applications.

3.1.2.2 Ontology Learning

The term ontology learning was originally coined by Alexander Madche and Ste�en
Staab [Maedche 2001] and can be described as the acquisition of a domain model
from data. The term ontology learning refers to the automatic or semi-automatic
support for the construction of ontology [Buitelaar 2005]. Ontology learning uses
di�erent data sources to learn the concepts relevant for a given domain, their def-
initions as well as the relations holding between them. The used data source can
be:

• Structured data such as database schema, XML-DTDs and UML diagrams.
In this case, ontology learning mainly consists in mapping de�nitions from the
schema to corresponding ontological de�nitions.

• Semi-structured data such as dictionaries like WordNet [Miller 1995], XML or
HTML documents or tabular structures.

• Unstructured data: natural language text documents, like the majority of
the HTML based web pages; for extracting knowledge from these sources,
statistical and linguistic approaches are often used.

In this work, the focus is on ontology learning from unstructured data. According
to Maedche [Maedche 2002] and Cimiano [Cimiano 2006] the �eld of ontology
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Figure 3.2: Ontology "Layer Cake".

learning from text can be divided into a "layer cake" of methods and algorithms.
The layer shows the di�erent subtasks of learning ontology: (see �gure 3.2)

• Acquisition of the relevant terminology,

• Identi�cation of synonym terms/linguistic variants (possibly across languages),

• Formation of concepts,

• Hierarchical organization of the concepts (concept hierarchy),

• Learning relations, properties or attributes, together with the appropriate do-
main and range,

• Hierarchical organization of the relations (relation hierarchy),

• Instantiation of axiom schemata,

• De�nition of arbitrary axioms.

The ontology learning process needs techniques from other domains to realize the
tasks of the "layer cake". Techniques from Natural Language Processing, compu-
tational linguistics, and text mining are used for extracting di�erent elements from
the text. The ontology learning from text techniques can be classi�ed as presented
in [Gomez-Perez 2003]:

• Pattern-based extraction [Morin 1999] [Hearst 1992]. These approaches
are based on the use of templates or patterns to extract various ontology
elements. Patterns are in the form of regular expressions. [Hearst 1992] is a
primary work on pattern based extraction. In her work, she uses six lexico-
syntactic patterns in order to extract hyponymy/ hyperonymy relations from
English texts.

• Association rules were initially de�ned by [Agrawal 1994]. The association
rules method for ontology learning have been originally described and evalu-
ated in [Maedche 2000]. They have also been used to discover non-taxonomic
relations between concepts, using a concept hierarchy as background knowl-
edge [Maedche 2001].
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• Conceptual clustering [Faure 2000]. Concepts are grouped according to
the semantic distance between each other to make up hierarchies. Formal
Concept Analysis (FCA) can be seen as a conceptual clustering technique as
it also provides intentional descriptions for the abstract concepts or data units
it produces. The FCA has been used to learn new concepts [Cimiano 2005b]
[Coulet 2008].

• Ontology pruning [Kietz 2000]. The objective of ontology pruning is to
build a domain ontology based on di�erent heterogeneous sources. It is based
on the following steps: Firstly, generic core ontology is used as a top level
structure for the domain-speci�c ontology. Secondly, a dictionary which con-
tains important domain terms described in natural language is used to acquire
domain concepts. These concepts are classi�ed based on the generic core ontol-
ogy. Thirdly, domain-speci�c and general corpora of texts are used to remove
concepts that were not domain speci�c. Concept removal follows the heuristic
that domain-speci�c concepts should be more frequent in a domain-speci�c
corpus than in generic texts.

• Concept learning [Hahn 2000]. A given taxonomy is incrementally updated
when new concepts are acquired from texts.

These approaches have been used separately or combined in many ontology learning
frameworks. In the literature, several tools have been proposed to learn ontology
using the previous approaches. An overview is proposed in [Shamsfard 2003]. Some
examples are cited below:

• The Mo'K workbench [Bisson 2000], basically relies on unsupervised machine
learning methods to induce concept hierarchies from text collections. In partic-
ular, the framework focuses on agglomerative clustering techniques and allows
ontology engineers to easily experiment with di�erent parameters.

• The ASium [Faure 2000] framework learns verb frames and taxonomic knowl-
edge, based on statistical analysis of syntactic parsing of French texts. It uses
a conceptual clustering algorithm to generate the structure of the ontology.

• OntoLT [Buitelaar 2004] is an ontology learning plug-in for the Proté gé
ontology editor. It is targeted more at end users and heavily relies on linguistic
analysis. It basically makes use of the internal structure of noun phrases to
derive ontological knowledge from texts.

• The framework by Velardi et al., OntoLearn [Navigli 2004], mainly focuses
on the problem of word sense disambiguation, i.e. of �nding the correct sense
of a word with respect to a general ontology or lexical database. In particu-
lar, they present a novel algorithm called SSI relying on the structure of the
general ontology for this purpose. Furthermore, they include an explanation
component for users consisting of a gloss generation component which gener-
ates de�nitions for concepts, which were found relevant in a certain domain.
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• TEXT-TO-ONTO [Maedche 2001] is an ontology learning environment, based
on a general architecture for discovering conceptual structures and engineering
ontologies from text. It also supports the acquisition of conceptual structures
as mapping linguistic resources to the acquired structures. It makes an envi-
ronment to discover conceptual relations to build ontologies. The new version
Text2Onto [Cimiano 2005a] which supports learning ontologies from web doc-
uments, allows the import of semi-structured and structured data as input as
well as texts. It also has a library of learning methods which use each one
on demand. Their learning method is a multi-strategy method, combining
di�erent methods, for various inputs and tasks.

The task of ontology learning is in general followed by an ontology population task
which allows the automatic or semi-automatic instantiation of a given ontology.
This task is presented in the next section.

3.1.3 Ontology Population

Ontology population can be seen as an ontology enrichment process that inserts
concepts instances and relations instances into an existing ontology. The pro-
cess of ontology population does not change the structure of ontology (as the
concept hierarchy and non-taxonomic relations are not modi�ed). As mentioned
in [Cimiano 2006], ontology population is related to the named entity recognition
(NER) and information extraction tasks. The existing approaches of ontology pop-
ulation can be divided in two categories:

• Approaches based on natural languages processing (NLP) tech-
niques: there are a number of approaches that use NLP-based techniques
for ontology population. The �rst category are pattern-based approaches
relying on Hearst patterns [Hearst 1992] [Schlobach 2004] [Zouaq 2009]
[Etzioni 2004] or on the structure of words [Velardi 2005]. These approaches
try to �nd explicitly stated "is-a" relationships.
Other linguistic approaches are based on the de�nition or the acquisition of
rules. For example, Amardeilh [Amardeilh 2005] proposes a rules acquisition
approach that uses linguistic tags on text. These tags are mapped to
concepts, attributes and relationships from the ontology and enable to �nd
their instances.

• Statistical and machine learning techniques: these approaches can
be divided into supervised and weakly supervised approaches [Tanev 2006].
Among the weakly supervised approaches, Cimiano proposed an approach in
[Cimiano 2005a] which uses a vector-feature similarity between each concept
c and a term to be categorized. Cimiano and Volker evaluated di�erent con-
text features (word windows, dependencies) and proved that syntactic features
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work best. Their algorithm assigned a concept to a given instance by com-
puting the similarity of this instance feature vector and the concept feature
vector. In [Tanev 2006], they used syntactic features extracted from depen-
dency parse trees. This algorithm requires only a list of terms for each class
under consideration as training data.
Supervised approaches for ontology population reach higher accuracy. How-
ever, they require the manual construction of a training set, which is not
scalable [Tanev 2006]. An example of a supervised approach is the work of
[Fleischman 2001] [Fleischman 2004] who designed a machine learning algo-
rithm for �ne-grained Named Entity categorization. Web→KB [Craven 2000]
relies also on a set of training data, which consists of annotated regions of
hypertext that represent instances of classes and relations, in order to extract
named entities. Based on the ontology and the training data, the system learns
to classify arbitrary Web pages and hyperlink paths.

3.1.4 Enterprise Ontology

Enterprise ontology is an ontology used to describe the domain, or parts of the
domain of an enterprise [Blomqvist 2007]. It was de�ned in [Uschold 1995] as
a top level ontology containing basic concepts, that concern enterprises and their
activities, such as Project, Strategy and People. Even though enterprise ontology
has been used in many areas of research [Maedche 2003] [Billig 2008] the number of
existing enterprise ontology is too restricted. As a �rst example, we can mention the
TOVE ontologies which were developed as a part of the TOVE Enterprise Modeling
project [Fox 1995] and built from scratch. The goal of the TOVE project was to
develop a set of integrated ontologies for the modeling of both commercial and public
enterprises. The following ontologies have been developed to model Enterprises:

• Foundational Ontologies:

� Activity

� Resource

• Business Ontologies

� Organization

� Product and Requirements

� ISO9000 Quality

� Activity-Based Costing

The organization ontology describes the set of constraints on the activities
performed by agents. In this ontology, the concepts are grouped into thematic
sections. The ontology contains generic concepts, like time, causality, activity
and constraint. For each concept, properties and relations are also de�ned. The
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concepts are structured into taxonomies and are represented by constants and
variables, while the attributes and relations are represented with predicates, giving
rise to micro-theories.

Another example of enterprise ontology is The Enterprise Ontology
(EO) [Uschold 1995] which was developed manually to support and enable commu-
nication between di�erent people, people and computational systems, and among
di�erent computational systems. The proposed enterprise ontology is presented in
[Uschold 1998]. This ontology is based on the following main content:

• Meta-Ontology: Terms used to de�ne the terms of the Ontology. e.g. Entity,
Relationship, Role.

• Activity, Plan, Capability and Resource: Terms related to the process and
planning .e.g. Activity, Planning, Authority, Resource Allocation.

• Organization: Terms related to how Organizations are structured e.g. Person,
Legal Entity, Organizational Unit, Manage, Ownership.

• Strategy: Terms related to high level planning for an enterprise e.g. Purpose,
Mission, Decision, Critical Success Factor.

• Marketing: Terms related to marketing and selling goods and services Sale,
Customer, Price, Brand, Promotion.

• Time: Terms related to Time e.g. Duration, Date.

In the SEMCO Project [Blomqvist 2006], a semi-automatically method was pro-
posed for building enterprise ontology using ontology design patterns with the aim
of the creation of enterprise ontologies in small-scale application contexts. The re-
sulting ontology was an enterprise ontology which was build for a speci�c enterprise
and a speci�c application.

The main purpose of enterprise ontology is to promote the common understand-
ing between people across enterprises, as well as to serve as a communication medium
between people and applications, and between di�erent applications. However, in
this thesis, the main object of creating the enterprise ontology is to collect the
characteristics of objects and processes of a speci�c organization. The role of this
ontology is to allow other applications to identify of a speci�c enterprise object using
its characteristics and di�erent names used in this enterprise. The enterprise ontol-
ogy used here should not just be a top level ontology (like Tove ontology) or merely
describe a speci�c task like in [Blomqvist 2006], it should contain each existing
detail of all the enterprise concepts to facilitate its detection. In the next section,
we describe the proposed enterprise ontology building approach.
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3.2 Building the Enterprise Ontology

The general purpose of building the enterprise ontology is to model the unstructured
data as graphs. This ontology should model all the enterprise concepts, which de�ne
the di�erent objects and process, and their shared relations. Also, for a speci�c
object, the ontology should de�ne all its characteristics, synonyms and its di�erent
names used at the enterprise. The built ontology represents the reference of the
objects and their characteristics in an enterprise.
In the enterprise context, there are two types of concepts: General concepts of
the business domain and speci�c concepts and terminology related to a particular
enterprise. We propose an enterprise ontology learning approach which takes general
ontology as input and adapts it to speci�c enterprise.

The proposed approach is based on two main phases (see Figure 3.3):

1. Building the generic part of the ontology: Generic ontology is minimal enter-
prise ontology built manually using existing enterprise models and patterns;

2. Building the speci�c part of the ontology: Speci�c enterprise ontology is
learned and populated using the enterprise documents (web sites, wiki, emails
and etc.) and the generic ontology.

In what follows, we describe the di�erent steps of the our approach. First, we
present the manual building of the top level part of the ontology. Then, the learning
process, which enriches the generic ontology by learning new concepts and relations
using the enterprise documents, is presented. In order to obtain the �nal enter-
prise ontology, a population method is additionally performed using the enterprise
documents.

3.2.1 Building the Generic Part of the Ontology

The generic part of the enterprise ontology aims to outline the common processes and
elements that enterprises share. For example, all the organizations have employees,
products and customers and a production process as activity. In the literature, sev-
eral existing resources can be useful to build the generic ontology. Before describing
the approach of building, the used resources are shown.

3.2.1.1 The Used Resources

In order to collect the common concepts of enterprises, we have used several existing
resources: Enterprise ontologies and enterprise data models. Below, the resourced
are described in detail:
Existing Enterprise Ontologies. as it mentioned in the previous section some
enterprise ontologies have been designed in the literature: The Enterprise Ontology
EO [Uschold 1995] and the TOVE ontology [Gruninger 1995]. Uschold presents a
uni�ed methodology by combining the "best" parts of EO and TOVE into a uni�ed
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Figure 3.3: Enterprise Ontology Building Approach.

method. The resulting enterprise ontology is presented in [Uschold 1998]. An
expert of this ontology is presented in the Figure 3.4.

We have used this latter ontology as one of the input resources.

Enterprise Data Model: An Enterprise Data Model is an integrated view
of the data produced and consumed across an enterprise. It can describe in a
formal and a generic way the enterprise function and active objects. In general, it is
designed to bene�t many di�erent industries and enterprises, representing common
data constructs that appear in most organizations. Indeed, this data model can be
a good starting point to extract the generic concepts to enter into the enterprise
ontology.
The data model pattern proposed by [Silverston 2001] have also been used. These
patterns are designed for the database domain. The database schemas share many
properties with ontologies. Schemas can even be considered to be ontologies, from
which to extend data instances. Furthermore, it facilitates the use of this pattern to
build ontology. The Silverston data model models di�erent part of an enterprise and
describes in details each element in this part, i.e. the attributes and the relations of
the element are detailed. This data model is based on the following main contents:

• People and organizations: Elements related to how Organizations are struc-
tured and how people are modeled, how they communicate within an organi-
zation e.g. Person, Party roles, Party relationships, Party contact, etc.

• Products: Elements related to common product information e.g. Product
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Figure 3.4: The Uschold Ontology.

de�nition, Product category, Suppliers and manufacturers, etc.

• Ordering Products: Elements related how an enterprise obtains a products
e.g. Requirements, Requests, Quotes, Agreements, etc.

• Shipments: Elements deal with the shipment of items that are scheduled to
be or have been delivered e.g. Shipment document, Shipment method, etc.

• Work e�ort: Elements deal with the e�orts made within organizations to
accomplish tasks such as completing a project or producing e.g. work require-
ments, �xed asset assignment and etc.

• Invoicing: Elements related to invoices �ow e.g. Invoices roles, billing for order
items and billing for shipment items, etc.

• Accounting and Budgeting: Related to �nancial information e.g. Budget,
Accounts and etc.

• Human resources: Contains elements related to the employment process within
an organization e.g. Employment, Position, Employee and etc.

In this data model an organization (see Figure 3.5) is modeled via an entity
called Organization that stores information about a group of people with common
purpose such as corporation, department, division, government agency or nonpro�t
organization. An organization is designed by its name and its federal tax. Other
information, which can change on time, is putted in other entities; for instance, the
address is putted in the entity Postal Address Information. An organization may
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Figure 3.5: Data Model Describing Organization [Silverston 2001].

be Legal organization such as a Corporation or Government Agency, or an informal
organization, such as Family, Team or other informal organization.

This data model, which is based on quite similar foundations as the entity
relationship (ER) model, is translated into the ontology formalism. By transforming
entity to a concept, attribute to attribute on concept, relationship to relations and
so on.

These di�erent resources represent the input for the manual ontology building
process which is described in the next section.

3.2.1.2 The Building Approach

In order to build our minimal enterprise ontology from scratch, we have used a
methodology similar to the one proposed by [Noy 2001] (see section 3.1.2.1). To
begin with, the common concepts from the di�erent resources have been regrouped.
Secondly, the relations between the concepts were de�ned. In this last step, the
hierarchical relation was de�ned: De�ning the synonyms, the super class, and sub
class. Moreover, resolving contradictory relations, the other existing relations were
sorted to avoid cycles and multiple inheritance.

The third step consisted of specifying the concept properties by merging
existing ones and adding new ones. For this generic part of the ontology, individual
instances were not added.

We take the example of the concept "Person". In the enterprise data model, this
entity is a sub-concept of the concept "Party" and has the relation "Acting_as" with
the concept "Person_Role". In the Ushold ontology, "Person" is a sub-concept of the
concept "Legal_Entity". First, we regroup the two concepts having the same label
"Person". Secondly, the "Person" concept has two super class "Legal_Entity" and
"Party". In order to resolve this multi inheritance problem, we analyze the other
concepts. We found that "Legal_Entity" is a synonym of "Legal_Organization"
which is sub-concept of "Organization". Then, we put "Party" as super-class of
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"Person" and we add "Legal_Entity" as synonym to "Legal_Organization". The
other relations are added automatically and we verify in each time if there is a
con�ict of synonyms or multiple inheritance. Finally, the "Person" attributes found
in the enterprise data model and the Ushold enterprise ontology are merged.

Figure 3.6: The "Legal_Entity" Concept in the
Ushold Ontology.

Figure 3.7: The Entity "Person".

The resulting part containing the Person concept is presented in the Figure 3.8.

The resulting ontology contains 90 concepts about the enterprise actors (Person,
Team and etc), their role (Employee, Customer, Agent and etc), the production
(Product, Requirement, Order , Price, etc), the communication and the work e�ort.

3.2.2 Learning and Populating the Speci�c Enterprise Ontology
Using the Enterprise Data

In the previous section, we have built a generic enterprise ontology containing the
common concepts of the business domain. Apart from the common concepts, an
enterprise can use local terminology to describe e.g the employees or products. In
order to collect this local information and make the generic ontology adapted to the
speci�c enterprise, we have used a learning process to add this speci�c part using
the enterprise documents such as web sites, wikis and e-mails. The learning process
is followed by a population process using the same document in order to add new
instances to the ontology. In what follow, we detail these steps to create the speci�c
enterprise ontology.
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Figure 3.8: The Person concept in the generic enterprise ontology.

3.2.2.1 Phase1: Documents Treatment

In order to facilitate the learning and populating process, the documents were �rst
processed using linguistic method. Linguistic preprocessing starts by the tokeniza-
tion process, which divides the text into tokens, and a sentence splitting process,
which divides the text into sentences.
The resulting annotation set serves as an input for a Part-of-speech (POS) tagger
which assigns appropriate syntactic categories to all tokens. Then, lemmatizing or
stemming process is done by a morphological analyzer or a stemmer, respectively.
After that, the sentences are divided into noun phrase chunks using a noun phrase
NP chunker.
After the linguistic preprocessing of the documents, a semantic analysis is performed
which consists in identifying the named entity and the concepts of the generic on-
tology. Named entity recognition process allows to locate and to classify atomic
elements in text into prede�ned categories such as the names of persons, organiza-
tions, locations, expressions of times, quantities, monetary values, percentages, etc.
In the input documents, we are interested to identify named entities related to cities,
organizations, person names, enterprise names and software products names. These
named entities will be used to identify new instances in the population process. In
this context, we have used di�erent gazetteers, which are sets of lists containing
names of entities, in order to detect named entities related to cities, organizations,
person names, enterprise names and software products names.
After that, we annotate the documents using the input ontology. The existing con-
cepts of the treated documents are searched. This di�erent treatment performed on
the input documents produce the annotation which are the inputs on the learning
and the population algorithms.
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Figure 3.9: The Learning Process.

3.2.2.2 Phase 2: Learning Process

This learning process aims to add new elements (concepts, relations and proper-
ties) to the generic enterprise ontology. It is based on two steps: (1) Detection of
candidate elements by using lexico-syntaxic patterns and (2) �ltering the candidate
elements by using similarities measures.
The learning process is described in �gure 3.9. The steps are detailed in the follow-
ing.
A. Candidate concepts, attributes and relations detection. The document
processing step has allowed to annotate the input documents with named entities
and the generic ontology concepts. Using the annotated documents, a candidate
detection algorithm is performed. First, the algorithm matches each document with
the set of prede�ned lexico-syntaxic patterns. Then, each document is analyzed sen-
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tence by sentence. For each sentence containing a known concept or named entity, a
new element can be annotated as a candidate. The type of new element, which can
be concept, relation or attribute, depends on the detected pattern. In this context,
di�erent sets of patterns were identi�ed, which are classi�ed by the type of element
that it can detect. In the following, NPC designs the noun phrase containing a
concept from the initial ontology and NP is another noun phrase which contains a
candidate element.
Pattern for Taxonomic relations. These patterns are used to extract new con-
cepts which share a hyponymy or a meronymy relation with an existing concept.
They include the Hearst patterns and the Lexico-Syntactic Patterns taken from the
Ontology Design Patterns. Hearst de�ned six patterns which can be reduced to the
set in Table 3.1.

Table 3.1: Hearst Patterns

Pattern Detected Relation Example

NPC such as {NP,}*
{and|or} NP

hyponym(NPC, NP) Online business, such
as web design and
programming⇒ hy-
ponym(Business,web
design), hy-
ponym(business, pro-
gramming).

Such NPC as {NP,}*
{and|or} NP

hyponym(NPC, NP) such good as fourni-
ture or equipment ⇒
hyponym(good, fourni-
ture), hyponym(good,
equipment).

NP {NP,}* {,}
{and|or} other NPC

hyponym(NPC, NP) Engineers, technicians
and other IT Employee
⇒ hyponym(Employee,
Engineers)

NPC {,}
(including|especially)
{NP,}* {and|or} NP

hyponym(NPC, NP) Employee in-
cluding CEO or
Manager ⇒ hyp-
nym(Employee,CEO),
hyponym(Employee,
Manager).

The second type of patterns investigated was the lexico-syntactic patterns
corresponding to Ontology Design Patterns. For example the: NP be (the same

as|equivalent to|equal to|like) NPC. If we detect one of these patterns containing
one of the generic ontology concepts (here designed by NPC ), the NP will be added
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to the candidate concept set.

For instance in the sentence "Other forms of company, such as the cooperative",
we detect the Hearst pattern "NPC suchas {NP, } ∗ {and|or} NP", and the
concept "Company". In this case the name "Cooperative" is added to the candidate
concepts set.

Pattern for non hierarchical relation. The verbal sentences can reveal
semantic relations between two terms. In the sentence "Organization provides ser-
vices", the verb "provides" indicates the type of the relation between an organization
and a service. Based on this kind of observation, Cimiano [Cimiano 2006] de�ned
the verbal patterns. The two verbal patterns are resumed in Table 3.2, where P

represents a proposition. In the previous sentence, if "Organization" is a concept
in the generic enterprise ontology and using the verbal pattern we can detect the
relation: Provide (Organization, service). Then "Service" is a candidate concept to
be added in the ontology with the relation "Provide".

Table 3.2: Verbal Patterns

Pattern Detected Relation Example

NPC [P] V NP [P] V (NPC,NP) Organization pro-
vides services. ⇒
Provide(Organization,
Services)

NP [P] V NPC [P] V (NP,NPC) Products are manu-
factured by an enter-
prise. ⇒ Manufactured
by(Products, Enterprise)

Pattern for attributes. Attributes are de�ned as relations with a datatype
as range. Typical attributes are, for example, name or color with a string as range,
date with a date as range or size with an integer or real as range. For example, in
the sentence "Company has a capital" by using the pattern "NPC have NP", we
add capital as an attribute to the concept "Company". The attribute patterns are
resumed in Table 3.3

Table 3.3: Attribute Patterns.

Pattern Detected Relation

NPC have NP (ODP pattern) Datatype :name=NP; Range=NPC
Adjective NPC Datatype :name=Adjective;Range=NPC
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B. Candidate elements processing. The previous patterns allow the iden-
ti�cation of candidate elements to add to the enterprise ontology. Each candidate
element is in the form of CR :=≺ t, ce, c, r � where:

• t : The type of relation which can be an object property or a data property
depending on type of the pattern.

• ce: The candidate element, a new data property where t is a data property
or a new concept where t is a new object property (obtained from the NP
element).

• c: The existing concept of the ontology (obtained from the NPC ).

• r : The name of the relation between the concept c and the candidate element
ce. In the case of the detection with taxonomic pattern r="Is-A", verbal
pattern r= verb and for the attribute r=" ".

For each candidate relation, the similarity sim(ce, c) is computed between the
concept c and the candidate element ce. For the similarity, we have used the We-
bOverlap measure [Bollegala 2007]which is based on the web co-occurrence. This
measure exploits page counts returned by a Web search engine to measure the se-
mantic similarity between words. WebOverlap is de�ned depending on the value of
r. In the case of r="Is-A" or r="'"':

WebOverlap(c, ce) :=
hits(C and ce)

Min(hits(c), htis(ce))

where the notation hits(P) denotes the page counts for the query P in a search
engine. If sim(ce, c) ≥ α (where α is a threshold value) then ce is added to the
ontology as synonym to c if r="IS-A" and as datatype of c if r="'"'.

In the case of r=verb,

WebOverlap(c, ce) :=
hits(C verb ce)

Min(hits(c), htis(ce))

If sim(ce, c) ≥ α then a new concept ce is added to the ontology and a new object
property having the name of the verb between the concepts c and ce is also added
to the ontology.

We present an example of the candidate elements evaluation using the We-
bOverlap measure in the table 3.4 and using the Google results. By analyzing
the obtained results, the similarity between "company" and "cooperative" is too
high (more than 1) which reveal the importance of this relation. Then the relation
Hyponym(company, ccoperative) is added to the ontology. When a new element ap-
pears in more than patterns, the pattern having the highest score is added to the
ontology. In the example of "portfolio" the relation Has(company, portfolio) is the
relation selected to add in the enterprise ontology.
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Table 3.4: Example of the patterns evaluation.

Example Detected Pattern Candidate
relation

Candidate Evauation

Other forms of com-
pany, such as cooper-
ative

NPCsuchas {NP, }∗
{and|or} NP

c=company Hits(company)=9.070.000.000

ce=cooperative Hits(cooperative)=42.200.000
Hits(company AND coopera-
tive)=74.300.000
Score=1,769

Company may create
a portfolio

NPC [P] V NP c=company Hits(company)=9.070.000.000

ce=portfolio Hits(potfolio)=693,000,000
Hits (company create portfo-
lio)= 200.000.000
score=0,288

Company has portfo-
lio

NPC [P] V NP c=company Hits(company)=9.070.000.000

ce=portfolio Hits(potfolio)=693,000,000
Hits (company has portfo-
lio)= 473,000,000
Score=0,682

C. New pattern identi�cation Using the enterprise documents, the set of
prede�ned lexico-syntactic patterns are sought to be enriched with new ones. These
new patterns will be used in the population process. On the annotated document,
the ontology concepts can be detected in many sentences which do not verify a
pattern. Then, we use these sentences to discover new patterns in order to enhance
the set of patterns. For each sentence containing one of the generic ontology concept
and does not verifying an existing pattern:

1. The regular expression is extracted from the sentence.

2. The pattern is pruned and selected manually.

3. A type of relation is added to the identi�ed pattern.

For example, from the text:
"the most common forms of company are:

• A company limited by guarantee

• A company limited by shares."'

We detect the new pattern: NPbe : .NP∗
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3.2.2.3 Phase3: Population Process

In the previous step, we have described the learning process which enriches the
generic ontology with new concepts and relations. In order to build more speci�c
enterprise ontology dedicated to a particular enterprise and useful in its local appli-
cation, the learning concepts are enriched, from the enterprise document instances
using an ontology population process. The population process contains three main
steps: Document treatment, Instance identi�cation and Instance Treatment.
Step 1. Document treatment: In phase 1, the enterprise documents have been an-
notated linguistically. Also some named entities and the concepts of the generic
ontology have been detected. However, in the learning steps, new concepts have
been identi�ed, for this the process of searching the ontology concepts is performed
in order to detect the new added elements.
Step 2. Instance identi�cation: In order to identify the concept instances, we use
the set of lexico-syntaxic patterns:
-Instances extracted from taxonomic relations: These instances are extracted using
the pattern presented in the section pattern for hierarchical relations. If the iden-
ti�ed pattern contains an existing concept, (designed in the pattern by NPC) and
the hypernyms are proper nouns, these hypernyms will be added as candidates to
be a concept instances.
Example: in the sentence "Product such as Phone-7", a Hearst's pattern is identi�ed
and the concept "Product", the proper noun "Phone-7" is added as a candidate to
be an instance of the concept "Product".
-Instances extracted from non taxonomic relations: These instances are extracted
using the pattern presented in the section pattern for non hierarchical relations. The
patterns have the form NP [P ]V NPC or NPC [P] V NP. To search instance using
these patterns, the following conditions are veri�ed:
If NPC is a concept and [P] V is the name of one of its relation R(NPC, C2), then
NP is a candidate to be an instance of C2.
For example, in the sentence "Products bought by ECP", "ECP" is an instance
added to the concept "Client" because we have the relation "Product buy by client"
in the ontology.
Step3. Candidate instance treatment :

The previous patterns allow the identi�cation of candidate instance to add to the
enterprise ontology. However, some instances can be applied to many concepts. In
order to resolve this problem, a similarity measure has been used which calculates the
similarity between the candidate instance and the other concepts. Each candidate
instance Ci is applied to a concept C using this notation CI :=< Ci,C >. If Ci is
applied to more than one CI, the similarity is searched between this instance and
the set of the concepts. For each CI, the similarity sim(Ci,C) is computed between
the concept C and the candidate element.
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3.3 Summary

In this chapter, we have presented an enterprise ontology learning approach which
extracts enterprise ontology from the enterprise unstructured data. Before the de-
scription of our approach, we have presented in the section 3.1 the basic concepts
related to the ontology domain and the related works on ontology building, which
can be manual or semi-automatic (called in this case ontology learning), and ontol-
ogy population which can be seen as an ontology enrichment process. In the section
3.1.4, we have presented the de�nition and the approaches to build an Enterprise on-
tology. The existing enterprise ontology building approaches are manual, which pro-
duces generic ontology [Uschold 1998], or semi-automatic [Blomqvist 2006] which
produces very speci�c ontology for a particular enterprise. However, the generic ap-
proaches do not integrate the speci�c concepts related to a particular enterprise. For
example, a generic ontology does not specify the di�erent products in an enterprise.
In the other hand, a speci�c ontology contains only a part of the local enterprise
concepts which exist on the input documents used for the learning process. How-
ever, many interesting concepts can be found in the enterprise but does not �gure
in these documents. In our work, the enterprise ontology will be used to detect
enterprise objects from the relational database and to enrich the extracted graphs
from these databases by adding other objects relations. Thus, this ontology should
integrate the generic concepts of the enterprise domain and the concepts related to
a particular enterprise. Therefore, we propose in section 3.2 an enterprise ontology
learning approach which is based on a generic ontology built from the existing enter-
prise ontology and the enterprise models. The learning process enriches the generic
part with new concepts, instances and relations from the enterprise unstructured
data. The evaluation of the building ontology is performed manually.
In the next chapter, the integration of the resulting ontology in the objects interac-
tions graph extraction process, will be presented. The ontology concepts will play
the role of enterprise objects reference.



Chapter 4

Object Interaction Graph

Extraction from Relational

Database

Contents

4.1 The Approach Overview . . . . . . . . . . . . . . . . . . . . . 70

4.2 The SPIDER-Graph Model . . . . . . . . . . . . . . . . . . . 70

4.3 Transforming the Relational Database to a SPIDER-Graph 74

4.3.1 Process1: Schema Translation . . . . . . . . . . . . . . . . . . 74

4.3.2 Process2: Data Conversion . . . . . . . . . . . . . . . . . . . 78

4.3.3 Process Performance . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Graph Transformation According to the User . . . . . . . . 82

4.4.1 Object Interaction Graph Extraction Process . . . . . . . . . 82

4.4.2 Object Identi�cation . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.3 Relation Construction . . . . . . . . . . . . . . . . . . . . . . 86

4.4.4 The Process Performance . . . . . . . . . . . . . . . . . . . . 95

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

In the enterprise, business objects like employees, projects, products and so on
can share di�erent relations or interactions. We can name these graphs objects
interactions graphs. In this chapter, we propose a new approach to extract these
graphs. The proposed approach is based mainly on two steps: (1) The Conversion
of the relational database model to a Graph model; and (2) the extraction of the
interactions graphs, with the chosen objects, from the graph model.
In order to facilitate the treatment of these processes and to improve the visualiza-
tion and the manipulation of the extracted graphs, we propose a new graph model
called SPIDER-Graph (Structure Providing Information for Data within Edge or
Relations). This graph data model, which is inspired from an existing model, allows
to model complex graphs with heterogeneous objects and multiple relations.
We then give an overview of the proposed approach in section 4.1. The used graph
model is detailed in section 4.2. Section 4.3 presents the relational database
transformation to a graph model. Finally, the interaction graph extraction process
is detailed in section 4.4.1.
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Figure 4.1: The Approach Overview.

4.1 The Approach Overview

In the enterprise context, the most important data are stored in relational databases.
A heterogeneous object graph, which describes the interactions between di�erent ob-
jects like social network graph, products and custumers graph, project and employee,
will facilitate the analysis of the interactions and will help make better decisions.
The object graph extraction approach is based essentially on two main steps (see
�gure 4.1):
(1)Relational database transforming into a graph model: This transformation allows
the extraction of all the objects in the relational database in the form of nodes and
outlines the relations between them, which in further step facilitate the selection of
the desired one. Also, nodes in SPIDER-Graph are more complex than a simple
graph. A SPIDER-Graph node can encapsulate all the attributes of an object.
(2) Objects interaction graph extraction. This contains two sub steps: objects iden-
ti�cation and relations extraction. After transforming the relational database into
a graph model, the object identi�cation process is performed. In order to make
this identi�cation automatic a priori knowledge should be used. Here, we use the
enterprise ontology built with the enterprise documents (described in the previous
chapter). Then, having the set of desired object a relation detection algorithm based
on a set of patterns and the ontology relations is applied.

4.2 The SPIDER-Graph Model

In section 2.1.2, we have presented a variety of models for graph databases. All
these models have their formal foundation as a variation of the basic mathematical
de�nition of a graph. The structure, used for modeling entities and relations, in�u-
ences the way that data are queried and visualized. These models can be divided
in two categories:

1. Models based on simple nodes data being represented by a (directed or undi-
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Figure 4.2: SPIDER-Graph Model VS Hypernode Model.

rected) graph with simple nodes and edges (like GOOD [Gyssens 1990c],
GMOD [Andries 1992], etc.).

2. Models based on hypernode: in these models, the basic structure
of a graph (node and edge) and the presentation of entities and
relations are based on hypernodes and hypergraphs (like Hypernode
Model [Levene 1995],GGL [Graves 1995],etc.).

From this comparison, models based on a simple graph are unsuitable for complex
networks where entities have many attributes and multiple relations. However,
models based on hypernodes can be very appropriate to represent complex and
dynamic objects. In particular, the hypernode model with its nested graphs can
provide an e�cient support to represent every real-world object as a separate entity.
Hypernode also encapsulates all the attributes related to each object in a same node,
thus facilitating the visualization of objects with di�erent and multiples attributes.
However, the hypernode model does not o�er an explicit representation of labeled
edges and with the multiple encapsulations the relation representation can be lost.

In order to have a better suited model to represent complex heterogeneous
graphs, we propose a graph model based on complex-nodes which have a structure
similar to a hypernode. The data model we propose here contains some characteris-
tics of the hypernode model. Indeed, both models encapsulate the object attributes,
inside the complex-nodes or the hypernode. Attributes can also be multi-valuated.
The di�erences between a hypernode and our model are the following (see Fig-
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ure 4.2):

1. Our model proposes an explicit representation of labeled edges between nodes
to describe objects relations instead of encapsulating two hypernodes within
a further hypernode in the case of the hypernode.

2. Attributes type can be a reference to another node instead of using the encap-
sulation in the hypernode model in order not to have a multiple encapsulation
leading to hidden interactions between objects.

3. SPIDER-Graph separatee between the schema level and the instance level:
this separation can help in the graph treatment. Indeed, the schema level
represents the meta-model or the global view of how the instance level should
follow.

The di�erences between the SPIDER-Graph model and the hypernode model are
summarized in table 4.1.

Table 4.1: The di�erence between the SPIDER-Graph model and the hypernode
model

Hypernode model SPIDER-Graph model

Node labeled supported supported
Edge labeled By encapsulation Explicit labeled edge
Nested relation supported supported
Complex object supported supported
Schema graph Not supported supported
Instance graph supported supported
Attribute Node Encapsulated in the node Encapsulated in the node
Simple Attribute type supported supported
Complex Attribute type Encapsulate the object Reference the object
Encapsulation depth With no limit One level

SPIDER-Graph, our model is built on the traditional graph-based model. This
model is designed to explicitly represent the interaction between objects having mul-
tiple attributes. The underlying data structure of the SPIDER-Graph model is the
complex-node, which is used to represent objects. A schema graph in the SPIDER-
Graph model is schematized by an attributed labeled graph: objects are represented
by means of typed complex-nodes which may carry attributes. Attributes can be
atomic, multi-valued, or a reference to another object (another complex-node). Re-
lations between objects are modeled by labeled edges without attributes. Our model
is de�ned as follows:

De�nition 14 (Complex-node) A Complex-node CN is de�ned by CN :=

(cn,Acn) where:
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• cn denotes the name of CN

• Acndenotes a set of attributes Acn := { acn| acn := 〈n, type, kf, kp〉 }where

� n is the attribute name.

� type is the attribute type. it can be a basic type (such as: Integer,
String,...) or a reference to another CN.

� kf mentions if the attribute is extracted from a foreign key.

� kp mentions if the attribute is extracted from a primary key.

Now we can formally represent the graph schema (Example in Figure 4.3) by:

De�nition 15 (SPIDER-Graph schema) The schema of SPIDER-Graph model
is de�ned by S = (Ncn, R) where:

• Ncn is the set of complex nodes,

• R is the set of relations between Ncn de�ned by R := {rcn |rcn = 〈r, CNs, CNd〉
,CNs,CNd ∈ NCN} with :

� r denotes the name of rcn

� CNs denotes the node source name

� CNddenotes the node destination name

In the SPIDER-Graph model, an instance graph is schematized by an attributed
graph: concrete objects represented by an instance complex-node where values are
added to the attributes and relations represented as edges labeled with the corre-
sponding relation name according to the schema. The instance of a complex node
is de�ned by:

De�nition 16 (Complex-node instance) A Complex-node instance CNI of CN
is de�ned by CNI := (cni, cn,Acni) where:

cni denotes the name of the instance,

cn denotes the name of CN ,

Acni denotes a set of valuated attributes Acni:={ acni| acni := 〈n, V 〉 }with:

• n is the attribute name (according to the schema)

• V is the set of values which can be atomic values or a CNI (having the same
type mentioned in the schema).

De�nition 17 (SPIDER-Graph instance) The SPIDER-Graph instance is de-
�ned by IS := (NI cn, RI) where:

• NIcn is a the set of instance complex-nodes,
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Figure 4.3: Complex-node Schema.

• RI is the set of relations between NIcn de�ned by RI := {〈r, CNIs, CNId〉
r∈ R, andCNIs, CNId ∈ Ncn }

the SPIDER-Graph model is used in our graph extraction approach to model
the input data and the �nal extracted graph.

4.3 Transforming the Relational Database to a SPIDER-

Graph

Having a SPIDER-Graph model instead of a relational model can provide a clear
view of the existing objects in the initial database, show explicitly the implicit re-
lations (expressed by keys in the relational schema) and discover hidden ones.
Using this graph can facilitate the selection of the desired objects and their interac-
tions at a further step.
In this section, we detail the process of transforming the relational data model into
a SPIDER-Graph data model. The transformation of a relational model into a tar-
get model includes schema translation and data conversion [Maatuk 2008]. The
schema translation can turn the source schema into the target schema by applying
a set of mapping rules. In our work, we propose a translation process which directly
transforms the relational schema into a SPIDER-Graph schema.
Once the schema level is extracted, data contained in the relational schema are used
in order to get the instance level.

4.3.1 Process1: Schema Translation

The schema translation process is based on two main steps:(1) extracting the rela-
tional database schema, and (2) transforming it into the SPIDER-Graph schema.
The �rst step is to extract the schema of the relational database by using the schema
metadata of the relational database management system (it contains information
about tables and columns). The idea is to identify the primary key, composite
key(s) and foreign key(s) of each relation. This information is then used to de-
sign the new schema (complex-nodes and relations within and between them). This
process is performed along the following steps.
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Figure 4.4: The Relational Database.

4.3.1.1 Step1 : Relational Schema Extraction

The Relational schema extraction process extracts the schema of the relational
database using the schema metadata of the relational database management system
(it contains information about tables and columns). It identi�es the primary keys,
composite key(s) and foreign key(s) of each table. This information is extracted
using SQL queries. The extracted relational schema is represented as follow:

De�nition 18 (Relational database schema) Relational database schema is
de�ned by RS : {T |T := 〈tn, A,KP,F 〉} , where:

• tn denotes the name of T .

• A denotes a set of attributes of T; A := {a = 〈< an, t, kf, kp >〉}, with:

� an is an attribute name,

� t is its type

� kf mentions if a is a foreign key or not,

� kp mentions if a is a primary key or not

• KP,F denotes a set of keys of T; KP,F := {β |β := 〈kr, kf, kp, re, fa〉} , with:

� β represents a key ( an attribute which can a part of a composed key),

� kr is the name of the attribute containing the key,

� kf mentions if β is a foreign key or not

� kp mentions if β is a primary key or not,

� re the table that contains the exported primary key,

� fa is the attribute name of the foreign key.

This schema provides an image of metadata obtained from an existing relational
database. It provides more information than traditional schema. Indeed, it gives
information about primary and foreign keys to facilitate relations extraction in fur-
ther steps.
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Consider the database shown in Figure 4.4. For example for the Table "Employee",
the relation Employee(Enum, Name,LastName, address,DNO#) was extracted,
where primary key is stressed and written in bold (here is Enum) and the foreign
key is marked with # and written with bold (here is DNO). In table 4.2, we expose
an excerpt of the relational database schema extracted from the relational database
in Figure 4.4.

Table 4.2: An Excerpt of the Extracted Relational Database schema

tn A Kp,f

an t kf kp kr kf kp re fa
T1 Employee Enum Integer false true Enum false true - -

Name String false false - - - - -
LastName String false false - - - - -
Adress String false false - - - - -
DNO Integer true false DNO true false Department DNO

T2 Project Pnum String false true Pnum false true - -
Pname String false false - - - - -
Startdate Date false false - - - - -
Dnum Integer true false - - - - -

T3 Works_On Enum Integer true true Enum true true Employee Enum
Pnum Integer true true Pnum true true Project Pnum

4.3.1.2 Step 2: Mapping the Relational Schema to the SPIDER-Graph
Schema

In order to transform a relational schema into a SPIDER-Graph schema, two steps
are performed: First, the extraction of the complex-nodes then the identi�cation of
their relations.
A. Complex-nodes Extraction
Using the relational schema, algorithm 1 is used to extract the complex-nodes. The
proposed algorithm creates from each table T a complex-node CN . CN takes the
attributes of T . However, the algorithm changes the attributes types if the attribute
is a foreign key. In this case, the attribute type will be a reference to the table that
contains the exported key.

From the relational database tables (Figure 4.4), the proposed algorithm ex-
tracts six complex-nodes (objects) (Figure 4.6): Employee, Manager, Department,
Product, Project, Project-Product.
The complex-node Employee = ("Employee",{〈Enum, Integer〉 ,〈Name, String〉,〈
LastName, String>, 〈 address, String>,〈 DNO, Department >); has four
attributes ( Enum, Name, LastName, address) with prede�ned types and one
attribute DNO having Department as type because it represents a foreign key
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Algorithm 1: Complex-nodes Extraction
Data: RS the relational database schema.
Result: the set of the complex-node Ncn.

1 begin
2 foreach T ∈ RS do
3 CreatComplexNode(T )

4 CN.cn = T.tn
5 create the CN.Acn
6 foreach a ∈ T do
7 create acn ← a

8 if a.ce = true then
9 acn.type =Table that contains the exported key

10 else
11 acn.type = a.type

exported from the table Department.

B. Relation Identi�cation
The second step of the SPIDER-Graph schema transformation is the relation iden-
ti�cation which is performed using algorithm 2.
The proposed algorithm uses the set of identi�ed complex-nodes and the keys ex-
tracted from the relational database. Indeed, for each complex-node CN in the
SPIDER-Graph schema, the algorithm analyzes its set of attributes ACN . The
detected relations can be classi�ed in four categories:

• Association relations (line 3→6): as a �rst step, the algorithm checks if all
the existing attributes on the complex-node are at the same time foreign keys
and primary keys. In this case, CN is deleted and transformed into relations
between the complex-nodes referenced by the attributes. In each complex-
node mentioned on the foreign keys reference, new attributes containing the
others foreign keys are added.
For example, Works-on is composed only by two attributes which are refer-
encing other complex-nodes. Then, it is transformed into a relation between
Employee and Project having the name "Works-on". Also, two new at-
tributes < Enum,Employee > and < Pnum,Project > are added to the
complex-nodes Project and Employee ,respectively.

• Dependence relations (line 8→ 6): if ACN contains an attribute acn which
is a foreign key (acn.kf = true) and not a primary key (acn.kp = false), then
the current complex-node CN is in relation with the complex-node which is
referenced by acn (which is mentioned by acn.type). We cannot add a name
for this relation because we only know the existence of a dependency between
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the two tables.
For example, the relation r :=< ””, Employee,Department > is created be-
tween the complex-nodes Employee and Department because Employee con-
tains the attribute DNO which references the complex-node Department.

• "IS-A" relations (line 13 → 17): if ACN contains only one attribute acn
which is a foreign key (acn.kf = true) and also a primary key (acn.kp = true),
then the current complex-node CN has the relation �IS-A" with the complex-
node the name of which is mentioned in acn.type. In the relational database to
design an inheritance relation between a table A and B, we put the A primary
key as a foreign primary key in B.
For example, the relation r :=< “IS − A”,Manager,Employee > is created
between the complex-nodes Employee and Manager because Manager con-
tains the attribute Mid which a primary key and also a foreign key referencing
Employee.

• "Part-of" relations (line 18 → 21): if the complex-node CN has more than
one attribute which is a foreign key and also primary keys and has other at-
tributes which do not verify this condition, then the algorithm builds a relation
"Part-of" with the current complex-node CN and with the complex-node ref-
erenced by acn.
For example, the complex-node Product − Project has the attributes Pnum
and NumP which are primary keys and also foreign keys referencing
Project and Product, respectively. Then, the algorithm creates the rela-
tions r1 :=< “Part − of”, P roduct, Product − Project > and r2 :=<

“Part− of”, P roject, Product− Project > .

A summary of the previous relations is presented in Figure 4.5.
Applying the complex-nodes extraction and the relation extraction processes

to the relational database presented in Figure 4.4, we obtain the SPIDER-graph
schema depicted in Figure 4.6.

In the next section, the process to populate the extracted schema is described.

4.3.2 Process2: Data Conversion

In order to populate the pattern already identi�ed, we propose an approach of data
conversion that uses the relational database tuples to create the SPIDER-Graph
instance graph. This process is based on three steps.
First, the relational database relations tuples are extracted using SQL queries. Sec-
ond, for each complex-node in the SPIDER-Graph schema, a complex-node instance
set (see de�nition 16) is extracted from the corresponding tuples.
For example, from the relational database in �gure 4.4, the table Employee con-
tains three tuples. Then, the process creates three instances for the complex-node
Employee: Employee_ 1, Employee_2 and Employee_3. The value of the in-
stances follows the SPIDER-Graph schema. Indeed, Employee_3 is de�ned by
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Relation Transformation
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Figure 4.5: The Set of the Identi�ed Relations.

Figure 4.6: The SPIDER-Graph Schema.

Employee_3:=("Employee_3","Employee",AEmployee_3)where :

AEmployee_3:={〈Enum, 03〉 ,〈Name, Smith〉,〈LastName, Y an〉, 〈address, Paris〉,
〈DNO,Department_1〉 }
Finally, for each relation in the SPIDER-Graph schema, a set of instance relations
is extracted using the value of keys on the relational tables. Transformed data are
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Algorithm 2: Relation Extraction
Data: RS the relational database schema,the set of the complex-node

Ncn

Result: the set of relations R.
1 begin
2 foreach CN ∈ Ncn do
3 if number(kp) = number(kf) then
4 foreach (aicn, ajcn) ∈ Acn ∩ i 6= j do
5 create r := 〈< cn, aicn.type, ajcn.type >〉
6 Delete CN from R

7 else
8 foreach acn ∈ Acn do
9 if (acn.kf = true) and (acn.kp = false) then

10 CNkf = acn.type

11 create r := 〈<, ””, CN,CNkf >〉
12 add r to R
13 if (acn.kf = true) and (acn.kp = true) then

14 if (number(kp) == 1) and (number(kf) == 1) then
15 CNkf = acn.type

16 create r := 〈< ”IS −A”, CN,CNkf >〉
17 add r to R

18 if
(number(kp ∩ kf)〉 0and (number(kf ∩ kp) < number(kp))

then
19 CNkf = acn.type

20 create r := 〈< ”Part−Of”, CNkf , CN >〉
21 add r to R

loaded into the SPIDER-Graph schema. An excerpt of the SPIDER-Graph instance
extracted from the relational database in �gure 4.4 and following the SPIDER-Graph
Schema in �gure 4.6 is shown in 4.7. The extracted SPIDER-Graph contains the
same information found in the input relational database. It represents a graph view
of the database which models explicitly the relations between the existing objects.

4.3.3 Process Performance

The relational database transformation into a SPIDER-Graph process is based on
the set of algorithms executed sequentially:
-The relational schema mapping to a SPIDER-Graph (see section4.3.1.2): complex-
node extraction (algorithm 1) and relation extraction (algorithm 2).
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Figure 4.7: An Excerpt of the SPIDER-Graph Instance.

- The data migration (see section 4.3.2): Instance complex-nodes extraction and
relations building.
Then, the time complexity of the whole process is the sum of these algorithms time
complexity, that we detail in the following of this section. The schema translation
process time complexity depends on the database size (number of tables and of
the attributes of each table) and the complexity of the used SQL queries. The
used queries are simple select queries which are created to extract the relational
database meta-data. For example to extract the table names from the PostgreSQL
database, the following SQL query is used:
"Select tablename from pg_tables where schemaname="public";"
Another example, to extract the attribute information related to each table, the
following SQL query is used:
"SELECT column_name,data_type,is_nullable FROM INFORMA-
TION_SCHEMA.COLUMNS where table_name=name";

The time complexity of these queries can be considered as an elementary instruc-
tion. Then, the schema translation complexity is in the order of O(n ×m) where
n the number of tables and m the average of attributes in the relational database
tables.
The relation extraction algorithm has the same time complexity which is O(n×m)

where n is the number of complex-nodes and m the average of attributes related to
each complex-nodes. The relation extraction is accelerated by using a HashMap to
store the complex-nodes that have been extracted.
The data Migration process has the complexity of O(n2). Indeed, for each complex-
node, the algorithm searches the values of its attributes from the relational database.
In the case of attributes referencing other complex-node (for example in the attribute
<Lab_id, Laboratory, Laboratory_1>), the algorithm should search for the corre-
sponding reference in the set of the instance complex-nodes.
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This complexity depends on the relational database management system used. For
instance, the maximum column per table1 is 1000 for Oracle, 4096 for MySQL and
250-1600 for PostgreSQL. Thus, the O(n2) is generally not reached.

4.4 Graph Transformation According to the User

From the graph depicted in the previous section, we apply extraction rules according
to the user's interest (the set of objects interactions of which the user would like
to see). Extracting the graph leads to cope with two main problems: objects of
interest (named objects in the following) identi�cation and relations extraction and
transformation.

4.4.1 Object Interaction Graph Extraction Process

The object interaction graph is a graph describing the di�erent possible relations
between heterogeneous objects. From the graph depicted in the previous section, we
apply extraction rules according to the interest ofthe user (the set of objects inter-
actions which the user would like to see) in order to extract the object interaction
graph. This graph is de�ned as following.

De�nition 19 (The objects graph) The object interaction graph is the graph de-
�ned by GO := (OI , RO) where:

• OI is a �nite set of objects such OI := {oI |oI ∈ Ncn} .

• RO is a �nite set of relations between objects such RO :={r |r := 〈l, o1I , o2I〉
o1I , o2I ∈ OI }where l is the relation name.

The extracted graph is also a SPIDER-Graph.

4.4.2 Object Identi�cation

Object identi�cation is the process used to identify complex-nodes that contain the
objects of interest for the user (for example Employee or Project). These objects
constitute the nodes of the extracted graph.
Many problems may occur during this step. First, an object can be described by the
means of di�erent tables in the initial relational database, so many complex-nodes
on the SPIDER-Graph can represent the same object (for example Manager and
Employee represent Person). Second, the names of the complex-nodes may not be
signi�cant (for example a complex-node describing an employee can have the name
"TB-Emp"). Each object has a number of characteristics which help to identify it.
Then, in order to identify the desired objects on the SPIDER-Graph, we have pro-
posed an approach that analyzes not only the name of each complex-node but also
the attributes related to each one. For this, we have used the enterprise ontology in

1http://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
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the identi�cation process as an external reference containing the basic characteris-
tics of each enterprise elements.
The process of object identi�cation takes place as follows. Firstly, the user selects
the concepts, representing the objects which he wants to see in the graph, from
the enterprise ontology. Then, the SPIDER-Graph schema is analyzed, considering
the chosen concepts. If the complex-node contains some characteristics related to
the desired object (represented by the selected concept) or bears the same name, it
will be selected to be one of the objects in the extracted graph. After identifying
the complex-nodes that contain the chosen objects, we add their complex-nodes in-
stances to the set of identi�ed objects OI .
This process is carried out via the algorithm 3. The proposed algorithm takes as
input the set of chosen concepts and the SPIDER-Graph schema and it produces as
an output the set of corresponding objects to the chosen concepts. Algorithm 3 is
based on the following steps:

Step 1.Names treatment. In this step, the name of each complex-node
CN in the input SPIDER-Graph is treated by the following process (2 −→ 5). First,
the algorithm cuts the labels into a set of tokens e.g. if a complex-node CN has the
name �Projects-Products�, the set of extracted tokens is {Projects, and, Products}.
The tokenizer recognizes punctuation, blank characters, digits, etc.
Then, the algorithm extracts the corresponding lemmas to each token in order
to �nd its basic form (e.g., Projects 7→Project). The tokens such as articles,
prepositions, conjunctions, and so on, are marked to be discarded. At the end of
this process, each name of CN is designed by its set of tokens TCN :={ti | ti ⊆ cn }
e.g. for the name �Projects-Products�, the corresponding set of tokens is {Project,
Product}. We name the set of TCN TCN .
The same process is applied to the labels of each selected concept (6 −→ 9). Then,
each label of a concept c ∈ C is composed by a set of tokens Tc := {tci | tci ⊆ c }.
The set of Tc is named TC.

Step 2. String matching between the name of CN and the concept
label. (10 −→ 22) In order to compare the CN name cn and the label of a concept
c ∈ C, the algorithm uses the two sets TCN and Tc. This comparison is summarized
by the following cases:

1. If TCN is exactly equal to Tc, then CN is added to the set of objects OI .

2. If the TCN elements are sub-concepts or synonyms of c then, CN is added to
OI . Example: if c=Enterprise and cn = Organization then CN is an object
to add in the �nal graph because cn is synonym of c.

3. If one of the TCN elements has one of the Tc elements as a su�x or pre�x
then CN is candidate to be an object to add in the �nal graph. Example
c=Enterprise−→ Tc={Enterprise} , cn=TBEnterprise −→ TCN ={TBEn-
terprise}. In this case, �TBEnterprise� contains �Enterprise� then �TBEnter-
prise� is candidate to represent the concept �Enterprise�.
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Algorithm 3: Object Identi�cation Algorithm
Data: Cuser, SPIDER-Graph schema S := (Ncn, R), SPIDER-Graph

instance IS := (NIcn, RI)

Result: The chosen objects OI
1 begin
2 foreach CNi := (cn,Acn) ∈ Ncn do
3 Extract tokens and extract lemmas from each token
4 TCNi := {ti |ti ⊂ cn}
5 add TCNi to TCN ;

6 foreach Ci := (cl, I) ∈ Cuser do
7 Extract tokens and extract lemmas from each token
8 TCi := {ti |ti ⊂ cl}
9 add TCi to to TC;

10 foreach TCNi ∈ TCN do
11 foreach TCi ∈ TC do
12 if TCNi == TCi then
13 Add CNi in OI ;

14 else if TCNi .containsSynonyms(TC) ‖TCNi .containssubC(TC)

then
15 Add CNi in OI ;
16

17 else if TCNi .containsSuffix(TC)||TCNi .containsPreffix(TC)

then
18 Add CNi in CAND;
19

20 else
21 if Sim(TCNi , TCi) > α then
22 Add CNi in CAND;

23 foreach CNi ∈ CAND do
24 foreach Ci ∈ C do
25 if Simatt(CNi, Ci) > β then
26 Add CNi in OI ;

27 foreach CNi ∈ OI do
28 Remove CNi from OI ;
29 Add CNi instances in OI ;

30 return OI ;

if c=Employee then Tc={Employee} and cn=TB_Emp then TCN
={TB,Emp}, Emp is a su�x of Employee then this complex-node is a candi-
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date to be an object in the �nal graph and it is added in the set of candidates
CAND.

4. In the other cases, we calculate the similarity between Tc and TCN using the
name similarity measure proposed in [Madhavan 2001]:

Sim(Tc, TCN ) =

∑
t1∈Tc

[
max sim(t1, t2)

t2∈TCN

]
+
∑

t2∈TCN

[
max sim(t1, t2)

t1∈Tc

]
|Tc| × |TCN |

where sim(t1,t2) is calculated using the Jiang and Conrath measure [Jiang 1997]
and WordNet as reference.

The CN is added as a candidate object if Sim(Tc,TCN ) exceeds a given
threshold value α.

Step 3. Candidate object treatment. (10 −→ 22) In this step, the algorithm
analyzes the set of candidate complex-nodes by using their attributes. For each
chosen concept C, it compares its datatype properties (DP) with each candidate
CN attributes by using a similarity measure. The similarity between a concept
C and a complex-node CN , based on their attributes similarities, is calculated as
follows:

Simatt(C,CN) =

∑
dp∈DP

∑
acn∈Acn

sim(dp.n, acn.n)

|DP |+ |Acn|
where dp is a datatype property of C having the name dp.n and acn is an attribute
in Acn having the name acn.n . If simatt (C,CN) > β (where β is a threshold value)
then CN is added to the objects set.

In order to calculate the similarity sim(dp.n, acn.n) between the name of an at-
tribute and the name of datatype property, we use the following process.
Firstly, the name of attribute and the name of datatype property is preprocessed
by tokenizing and producing Tacn and Tdp. Then, the attributes similarities
are calculated using a string matching measure. We use the Jaro-Winkler mea-
sure [Winkler 1999] which is based on the number and order of the common charac-
ters between two strings and which gives good result with short string [Cohen 2003].
We combine this measure with the Monge and Elkan measure one, a hybrid measure
based on the use of tokens [Cohen 2003]:

sim(dp.n, acn.n) =
1

k

i=1∑
k

maxj=1
l simJaro−Winkler(ai, bj)

where ai ∈ Tacn , bj ∈ Tdp, i the number of elements in Tacn and l the number
of elements in Tdp .

For instance, we perform the object identi�cation process to identify from the
SPIDER-Graph the related complex-nodes to the concept "Project".

Step 1. From each complex-node a set of tokens is extracted:
TCN :Project={Project},TCN :Manager={Manager}, TCN :Employee={Employee},
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TCN :Product−Project={Product, Project}, TCN :Product={Product},
TCN :Facility={Facility},
TC:Project={Project}
Step2. We compare each complex-node TCN with the tokens set of the concept
TC:Project:

• TCN :Project is exactly equal to TC:Project then the complex-node Project is
added to the set of object OI

• TCN :Product−Project contains the TC:Project elements then the complex-node
Product− Project is a candidate to represent a Project.

• For the other complex-nodes, we calculate the Sim(Tc, TCN):
Sim(Project,Manager)=0,0694, Sim(Project,Employee)=0,0760,
Sim(Project,Product)=0,117, Sim(Project,Facility)=0,1551. The calcu-
lated similarities do not exceed the value of α ( α=0,4) ( see in the evaluation
presented in chapter 6). Then, we do not add them to the candidates set.

Thus, in the candidates set we put the complex-node Product− Project.
Step3. We calculate the similarity Simatt between CN=Product − Project

and c=Project, we found that simatt(CN,C)=0,557 which is not enough to add
Product− Project in the objects set OI (less than β=0,7).

4.4.3 Relation Construction

After the objects identi�cation step, we de�ne the set of relations between the
identi�ed objects. These relations are obtained from two di�erent sources: the
ontology relations and the SPIDER-Graph extracted from the relational database.
For each data source, a speci�c process is performed.

4.4.3.1 Relations Construction from the Relational Database

The identi�ed objects can already share relations in the SPIDER-Graph. The ob-
jective here is to put these relations in the object interaction graph and �nd hidden
ones. In our process to transform the relational database into a graph database
model, we have de�ned four types of relations: IS-A, Part-of, dependency with
known name (using the initial relational tables containing only foreign keys), de-
pendency with unknown name. Then, in order to detect all the relations, we have
proposed an approach based on these existing relations. From the di�erent existing
relations and by using the SPIDER-Graph schema, the proposed approach creates
a set of pattern relations. After that, it seeks these patterns in the SPIDER-Graph
instance and creates the set of relations between the identi�ed objects. A pattern
relation Pr is de�ned formally as follows:

De�nition 20 (Pattern Relation) A pattern relation Pr is de�ned by Pr
=〈n, oI1 , oI2, om〉 such as:
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• n is the name of the relation,

• oI1 and oI2 are the two types of the two objects that share a relation. oI1 and
oI2 ∈ OI

• om is a complex-node mediator (a connector) for the relation. In other word,
this complex-node is used to build this relation.

The relation pattern is able not only to �nd the existing relations between the
objects that should be added to the �nal graph but also to add new attributes on the
objects and �nd new objects that cannot be identi�ed using the previous process.
In order to create these patterns, we use the SPIDER-Graph schema which mentions
the type of complex-nodes and all the relations between them. Then, these patterns
are searched for the SPIDER-Graph instance. In the following part, we describe the
extraction process of each pattern and how it is used to �nd the relations between
the objects.
Patterns to identify new objects. The relation �IS-A� allows to �nd hidden ob-
jects which may not be identi�ed with the objects identi�cation process (Table 4.3).
In the relation construction process, we start by analyzing this kind of relations to
�nd in the next steps the relations related to the hidden objects.

Table 4.3: Patterns to identify new objects.

Initial Relation Process and description

De�nition R1 :=〈“IS −A′′, CNs, CNd〉
where CNs or CNd
instances∈OI

CNs or CNd instances are
added to OI

Example R :=<�IS-A�, Employee,
Manager>

Manager instances are added
to OI

Patterns based on relation between chosen objects. The objects on OI
can be directly linked by an existing relation in the SPIDER-Graph. If two objects
CNs and CNd exist in OI and share a relation R2 then two patterns are created
(see table 4.4):
-Pr1 �nds all the instances of CNs and CNd which share the relation R2.
- Pr2 creates a new relation between all the instances of CNs that have the relation
R2 with the CNd instance.

In some cases, the chosen objects are not directly linked. Then, we search
whether there is a path between them or not. The relations between the complex-
nodes are directed or bidirectional relations and we assume that each edge has a
weight of 1. Then, we can apply the Dijkstra's Algorithm [Dijkstra 1959]. By
applying this algorithm, we distinguish three cases:

• There is no path between the two objects,
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Table 4.4: Patterns based on relations between chosen objects.

Initial Relation Pattern Process and description

R2 :=〈r, CNs, CNd〉
where CNs and CNd
instances∈OI

Pr1 :=< r,CNsi

, CNdi, null > where CNsi
and CNdi are CNS and CNd
instances.

Find all the existing re-
lations between CNs and
CNd instances then add them
to RO

Pr2 :=〈Same_(CNd.name)

, CNSIi, CNSIj , CNd > where
CNSIi and CNSIj are CNs in-
stances and i!=j

Find all the CNs instances
which have relations with a
same CNd instances and link
them with a new relation
�Same_(CNd.name)�

CNs and CNd
instances∈OIthere is
no relation between
them

Prpath:=<��,CNsi, CNdi, P>
where P is a semi-path or a
path between CNs and CNd

See description below.

• There is a direct path and it is denoted by the path :< CNs, CN j,. . . ,CNd>
where {CNj} is the set of complex-nodes between the two chosen objects CNs
and CNd

• There is a semi-directed path. The semi directed path is denoted by the semi-
path :< CNs, CNj. . .CNk,CNd> where {CNj}is the set of complex-nodes
between the �rst chosen objects CNs and CNk and ∃Ri ∈ R such as Ri :=

〈“Part− of ′′, CNd, CNk〉. This kind of relation is represented by a dotted
edge in the graph depicted in Figure 4.10.

An example of the previous patterns,where the chosen objects are Employee,
Project and Product, is shown in table 4.7.

Patterns based on relations between a chosen object and another
complex-node (Table 4.6). Naturally, chosen objects may also have relations with
other complex-nodes (which are not chosen to be added on the object graph). These
relations can reveal hidden relations between objects or enrich the attributes of a
complex-node. If an object CNs has the relation R3 := 〈r, CNs, CNd〉 with a
complex-node CNd which is not in OI , then two patterns can be extracted:
- The pattern Pr3 �nds the object instances which are in relation with the same
CNd instance.
- The pattern Pr4 is more complex and corresponds to the following case: if an object
has a "part-of" relation with another complex-node CNd and other complex-nodes
have a �part-of � relation with CNd, then the chosen object has a relation with this
complex-node. Pr4 detects these relations.
In the case where the shared relation is R4 := 〈r, CNd, CNd〉, only the pattern Pr5
can be created. Pr5 creates a new relation between all the instances of CNd that
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Relation and identi�ed pattern Example of extracted relations

Relation:
R1:=< “Works_on”, Employee, Project >

Patterns:
Pr1 :=< “Works_on”, Employee,

Project, null >

Pr2 :=< Same_Project, Employee_i,
Employee_j, Project >

Relation:
Path between Employee and Product
Patterns:
semi-path:〈Employee, Project, Product-

Project, Product>

Table 4.5: Example of Patterns based on relations between chosen objects.

have the relation R4 with the same CNs instance.
These di�erent patterns are created and applied using algorithm 4. Firstly, the

algorithm extracts from the SPIDER-Graph schema all the relations in which the
complex-node source or destination are on OI (line 2 → 3). Then, each pattern is
searched for and applied on the SPIDER-Graph instance. The function Treat −
UnlinkedObject() is called to search if there is a path between unlinked objects.
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Table 4.6: Patterns based on relations between a chosen object and another complex-
node

Initial Relation Pattern Process and descrip-
tion

R3 :=〈r, CNs, CNd〉
where CNs ∈OI and
CNd /∈OI

Pr3:=<Same_(CNd.name),
CNSIi, CNSIj, CNd > where
CNSIi, CNSIj are CNS in-
stances, i!=j and r != �Part-of�

Find all the CNs instances
which have relations with
a same CNd instances and
link them with a new re-
lation

Pr4:=<Same_CNk.name,
CNSIi, CNSIj, CNk > where
CNSIi, CNSIj are CNS in-
stances, i!=j, r=�Part-of �
and CNk ∈{CN\CN has the
relation R:=<�Part-of �, CN,
CNd>}

1.Find all the complex-
nodes CNk having a
"Part-of" relation with
CNd such as R:= <�Part-
of�, CNk, CNd >
2. add a new attribute to
CNs containing the name
of CNk
3.Then the pattern Pr4
is applied : �nd all the
CNs instances which have
relations with a same
CNk instances and link
them with a new relation

R4 := 〈r, CNs, CNd〉
where CNs /∈OI and
CNd ∈OI

Pr5:=<Same_CNs.name,
CNdI , CNjI , CNs > where
CNdI is CNd instance and
CNjI is instance of CNjwhere
CNj ∈ OI

⋂
{CN\CN has the

relation R:=<�", CN, CNs>}.

1. add a new attributes
in CNdcontaining CNs
reference.
2. Then the pattern Pr5
is applied : if CNshas
relations with other
objects,link each object
instance with a CNd
instance if they are in
relation with the same
CNs instance.
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Relation and identi�ed pattern Example of extracted relations

Relation:
R3:=< “′′, Employee,Department >

Patterns:
Pr3 :=< “Same_Department′′, Employeei,
Employeej , Department >

Relation:
R′3:=< “Part − of ′′, P roject, Product −
Project >

Patterns:
Pr2 :=< Same_Product, Project_i,
Project_j, Product >
-Add the attribute n:=<
Product, Producti > to each instance
of Project.

Relation:
R4:=< “′′, Facility, Project >

Patterns:
-Facility has no relation with other object
then no pattern detected.
-Add the attribute n:=<
Facility, Facilityi > to each instance
of Project.

Table 4.7: Example of Patterns based on relations between chosen objects and other
complex-nodes.



92
Chapter 4. Object Interaction Graph Extraction from Relational

Database

Algorithm 4: Relation Construction Algorithm.
Data: S := (Ncn, R), IS := (NIcn, RI)

Result: Relation set for the object graph Ro
1 begin
2 Create the set Φ;
3 Φ =

{r |r := 〈rn, CNs, CNd〉 , r ∈ R ∩ ((CNs ∪ CNd ∈ OI) ∩ (CNs ∪ CNd /∈ OI))} ;

4 foreach r ∈ Φ and rn == ”IS −A” do
5 Add CN /∈ OI in OI ;
6 foreach r ∈ R do
7 if CNs ∈ OI∩CNd ∈ OI then
8 Mark(r);
9 foreach ri ∈ RI do

10 if ri.isinstance(r) then
11 add ri to Ro;

12 SearchSameRelation(r);

13 if r ∈ Φ then
14 if CNs ∈ OI then
15 if rn == “Part− of ′′ then
16 create Γ and Ψ;
17 Γ =

{CN |CN has the relation R :=< “Part− of ′′, CN,CNd >}

18 Ψ = {r| r :=< Same_(CNk.name), CNis, CNjs, CNk >

, i 6= j, CNk ∈ Γ

19 add Ψ to Ro;
20 else
21 AddAttribute(CNs, CNk); SearchSameRelation(r, CNs, CNd);

22 if CNd ∈ OI then
23 AddAttribute(CNd, CNs); SearchSameRelation(r, CNd, CNs);

24 Treat-UnlinkedObject();
25 SearchSameRelation(r,CNs, CNd) begin
26 foreach ri := 〈rin, CNis, CNid〉 instance of r do
27 Mark(ri);
28 foreach rj instance of r and rj.unmarked do
29 if CNid == CNjd then
30 create rsame :=

〈
Same_(CNd.name), CNis, CNjs

〉
;

31 add rsame to Ro;
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4.4.3.2 Relations Construction from the Enterprise Ontology

The enterprise ontology includes relations between the enterprise objects which are
extracted from enterprise data. These relations between the concepts can re�ect real
relations between the enterprise objects which are not described on the relational
database.
For example, in Figure 4.8, the relation "Leader-of" between the concepts Employee

and Project is not speci�ed on the GO (SPIDER-Graph on the right of the �gure).
Also, the Employee �Alain� which is an instance of the concept Employee and the
project "Trans-2" which is an instance of the concept Project have inherited this
relation.
However, these two instances exist on theGO (Project_1 and Employee_1). Indeed,
the relation R := 〈”Leader − of”, Employee_1, P roject_1〉 can be added to the
graph GO and can enrich it.
In this section we describe the process to add relations from the enterprise ontology
O to the object graph GO.

Figure 4.8: Example of Relations Added From the Ontology.
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Algorithm 5: Ontology relations extraction
Data: Cuser, the set of the relation in the ontology OP , the set of

identi�ed object OI
Result: relations to add in Ro

1 begin
2 foreach ci ∈ Cuser do
3 if ∃ro ∈ OP ∩ i 6= j |ro(ci, cj) then
4 search_instance_relation (ro)
5 if ∃ro ∈ OP |ro(cii , cji) then
6 CNi = search− instance− CN(cii ,MOS)

7 CNj = search− instance− CN(cji ,MOS)

8 if CNi 6= null ∩ CNj 6= null then
9 Create r = ro

10 Add r ∈ Ro

The proposed algorithm 5 can be described by these steps.
Step 1. Search for the existing relations between the chosen concepts. As a �rst step,
the user has chosen a set of concepts to search the input graph from the enterprise
ontology O. This process can be described as a matching between the ontology and
the SPIDER-Graph This matching between the ontology and the SPIDER-Graph
is denoted by MOS where MOS := {m |m := (c, CN), c ∈ C,CN ∈ S} . With c is a
chosen concept and CN is a complex-node
If a concept c is matched against at least one complex-node then it is added to the
set of identi�ed concepts Cuser. The set of identi�ed concepts Cuser can already
share relations among them on the ontology. Then these relations are searched
(line 3). If there is a relation r ∈ OP between two concepts of Cuser, we go to the
next step.
For instance, if the Cuser={ Employee, Project }, then the match-
ing between the ontology and the SPIDER-Graph is MOS :=

{|m1 := (Employee, Employee),m2 := (Project, Project)} In Figure 4.7,
the two concepts Employee and Project share the relation "Leader-of". In this
case, the algorithm goes to the step2.

Step 2. Search the existence of instance relations. (line 4) Each concept
c ∈ Cuser can have a set of instances I on the ontology. If two concepts share a
relation on the ontology, we search for the instances of these two concepts which
share the same relation.
For the concept Employee, we detect two instances I1 := Alain and I2 := Will

and only one instance I1 := Trans− 2 for the concept Project.
Step 3. Search the instance relations on the GO (Line 5 −→ 7). In order
to �nd the corresponding complex-nodes instances to a concept instance we use the
set MOS .
If Ri =: 〈n, cii, cjj〉 is an instance relation of the relation R := 〈n, ci, cj〉 where
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ci, cj ∈ Cuser, we search for the corresponding complex-node instances to cii and
cjj .
Indeed, for each mk := (ck, CNk) ∈MOS where ck = ci or ck = cj , we calculate the
similarity between cii or cjj and the CNk instances.
The similarity between a complex-node instance and a concept instance is calculated
via this formula:

sim(CNI , ci) =

∑
ac∈DPc

∑
acn∈Acni

sim(ac, acn)

|DPc| × |Acni|

where:

• DPc is the set of datatype properties related to the instance c1i,

• Acni is the set of attributes related to the complex-node instance CNIj ,

• sim(ac, acn) =
1
2(sim(ac.name, acn.name) + sim(ac.value, acn.value)) =
1
2(SimJaroWinkler(ac.name, acn.name)+SimJaroWinkler(ac.value, acn.value)),

The used string similarity measure is the Jaro-Winklere measure
[Cohen 2003].

If sim(CNI , ci) is greater than a threshold value δ then CNI is the correspond-
ing complex-node instance to ci.
The used similarity takes in consideration both the value and the name of an at-
tribute. Thus, in sim(CNI , ci), we use Jaro-Winklere. It calculates the similarity
between two attributes by calculating the average of similarities between their names
and their value.
Step 4. Add new relations to the object graph GO (link 8 −→ 10). If we
�nd the corresponding complex- nodes instance to the two instance concepts , we
link the two complex-node by this new relation.

4.4.4 The Process Performance

The graph extraction process depends on the sequential execution of three algo-
rithms: the object identi�cation (the algorithm 3), the relation extraction from the
relation database (the algorithm 4) and the relations extraction from the ontology
(the algorithm 5).
The object identi�cation process depends on the SPIDER-Graph size and the
number of chosen concepts. The �rst step (which is the name treatment) is executed
(N + M) times , where N the number of complex-nodes and M the number of
concepts.
The string matching process (candidate extraction), which is the second step, is
executed in the worst case N ∗ M ∗ Complexity(sim(TCN , Tc)) (where TCN and
Tc are the set of tokens of a complex-node CN and a concept c, respectively) .
However, the complexity time of sim(Tcn, Tc) is based on the extracted tokens
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numbers which in general cases cannot exceed 10 tokens. Then, the complexity of
this step can be o(N ∗M).
Finally, in order to analyze the candidate complex-nodes (the CAND set), the
algorithm traverses all the complex-nodes N times and for each concept (M times),
calculates the Simatt. Simatt measure depends on the complex-nodes attributes
size and the concept attributes size. The complex-node attributes number have
a maximum size depending on the relational database management systems:
PostgreSQL 250-1600, Oracle 1000, Acess 250. Also the concept attribute does not
exceed 30 attributes. Then, the algorithm complexity is in the range of o(N ∗M).
The object identi�cation can have the complexity time o(N) because in general a
user prefers to search for the interaction between two or three objects.
The relation extraction using the patterns depends on the SPIDER-Graph relations
number on the schema graph n and the instance graph m. In the worst case,
this algorithm can be executed on n ∗ m2 time. However, the process of Search-
SameRelation can be accelerated if we store the input SPIDER-Graph relation on
a HashMAP having a double key (MultiKeyMap).

The relations extraction from the ontology process depends on the chosen con-
cepts instances n and the identi�ed object instances m. Then, the complexity of
this process can be considered n∗m∗C(sim(CNi, cni)). The time complexity of the
similarity measure sim(CNi, cni) depends on the attribute numbers of the complex-
nodes and the concept (the same case as in the object identi�cation process which
allows to consider that the process complexity is n ∗m.
Finally, we can consider the graph extraction process is in the worst case n∗m2 and
n ∗m by using the MultiKeyMap.

4.4.4.1 Examples of Extracted Graph

In this section, we present two examples of extracted graph from the SPIDER-Graph
presented in Figure 4.6: the �rst interaction graph is between Project and Employee

and the second between Employee and Product. Each extracted graph represents
a new user view of the input SPIDER-Graph.
A. The interaction graph between Project and Employee

First, the object identi�cation process is performed. In this case, the identi�cation
is simple because we can detect the chosen objects directly from their names. Then
all the instances of the complex-nodes Employee and Project are added to the set
OI (OI = Employee_1, Employee_2, Employee_3, Project_1, Project_2 ).
The relation construction process is then performed using the OI set. We apply the
patterns on the set of existing complex-nodes relations using the following steps:
Step 1. Identify new objects using the �IS-A" relation. In our example, the pro-
cess identi�es �Manager" as a new object to add in the set OI due the relation
R =< “IS −A”,Manager,Employee >.
Step 2. Add the existing relations between identi�ed objects by applying
Pr1. In the database schema, Employee and Project share the relation R1 :=<
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“”, Employee, Project >. Then, R1 is added to the set RIO.
Step 3. Create new relations and new attributes using the prede�ned patterns.
From the existing relations between Project, Employee and other complex-nodes,
we have detected many new relations which are summarized in table 4.8.
Step 4. Enrich the graph with the enterprise ontology. In this step, we use the
ontology described in Figure 4.8. Using the same steps in the section 4.4.3.2 , the
relation R =< Leader − of,Employee1, P roject1 > is added to the graph. The
result graph is presented in Figure 4.9.

Table 4.8: Relations between Projects and Employee

Initial Relation Pattern Created relation

R=〈 �works-on", Em-
ployee, Project>

Pr2:=〈 Same_Project, Em-
ployee_i , Employee_j> and
i 6= j

RO:=〈 Same_Project, Em-
ployee_3 , Employee_1 >
RO:=〈 Same_Project, Em-
ployee_3, Employee_2 >

R=〈 � ", Employee,
Department>

Pr3:=〈 Same_Department,
Employee_i,Employee_j>
and i 6= j

RO:=〈 Same_Department, Em-
ployee_3, Employee_1>

R=〈 �Part-of",
Project, Project-
Product >

Pr4:=〈Same_Product,
Project_i, Project_j> and
i 6= j

-add the attribute 〈 Product,
Product_i> to Project

RO:=〈Same_Product,Project_2,
Project_1 >
-new attribute 〈
Product,Product_1> in
Project_2.
-new attribute
<Product,{Product_1, P roduct_2}>
in Project_1

R=〈 � ",Facility,
Project>

Facility is not related with
other object then we have no
pattern.
- the attribute
〈Facility, Facility_i〉 is
added to Project

-new attribute
〈Facility, Facility_1〉 in
Project_1

B. The interaction graph between Product and Employee

The previous steps are repeated and the extracted relations are summarized in
table 4.9. However, in this example, the two objects are not directly connected
in the initial graph. The dotted edge means that the two objects are indirectly
related. Indeed, Employee and Product are related by the semi-path:〈Employee,

Project, Product-Project, Product>, then the Prpath can be applied. The result
graph is presented in Figure 4.10.
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Figure 4.9: The Employee-Project Graph.

Figure 4.10: The Employee-Product graph.

4.5 Summary

In this section, we discuss our interaction object graph extraction against the graph
extraction approach described in the chapter 2:
-Attributed Typed Graph transformation Approach : the graph transfor-
mation approaches can transform an input graph to a new graph by following
a set of prede�ned rules. For example, in Figure 4.11, we can add the relation
same_product by applying a Pushout technique (detailed in section 2.2.3.2).
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Table 4.9: Relations between Product and Employee.

Initial Relation Pattern Created relation
R= 〈 �works-on",
Employee, Project>

Pr2:=〈Same_Project, Em-
ployee_i, Employee_j> and
i 6= j

RO:=〈Same_Project, Em-
ployee_3 , Employee_1>
RO:=〈Same_Project, Em-
ployee_3, Employee_2>

R= 〈 � ",Employee,
Department>

Pr3:=〈Same_Department,
Employee_i,Employee_j>
and i 6= j

RO:=〈Same_Department,
Employee_3, Employee_1 >

R= 〈 �Part-of",
Product, Project-
Product>

Pr4:=〈Same_Project,
Project_i, Project_j> and
i 6= j

-the attribute <

Project, Project_i > is
added to Product

-no Products are from the
same Project.
-a new attribute
〈Project, Project_1〉 is
added to Product_2

-a new attribute 〈Project,
{Project_1, P roject_2}> is
added to Product_1

Project

Product-
Project

Project

Product-
Project

Product

Project Project

Same_Product

Project1

Product-
Project2

Project2

Product-
Project1

Product3

Facility8

Project1 Project2

Same_Product

Facility8

Figure 4.11: Attributed Typed Graph Transformation : rule to add a new relation.

However, this technique is based on prede�ned rules that control the graph trans-
formation. Indeed, these rules specify all the elements to change or to add. The task
of rule de�nition is manually and the user may not detect all the important relations.
For instance, to obtain the interaction graph between Product and Employee, we
should write manually a rule for each new relations or attributes. Nevertheless, the
path relation cannot be obtained with the graph transformation because it is based



100
Chapter 4. Object Interaction Graph Extraction from Relational

Database

on a shortest path algorithm. Another important point is that these approaches
cannot transform directly the relational schema to a graph schema. It can only
process homogeneous schema.
-Keyword search : In order to search a relation between objects, these approaches
can transform the relational database to a simple graph. For example, the relational
database presented in Figure 4.4 can be transformed to the simple graph shown in
Figure 4.12.

Employee

Department

Product

Facility

Works-on

Manager

Project

Project-
Product

Figure 4.12: Graph in Keyword Search Approach.

However, these approaches can only detect if there is a relation between objects
and cannot create new relations between them. For instance, we cannot �nd explic-
itly the relation "Same_Product"' but we can �nd that there is a link between two
projects.

4.6 Conclusion

In this chapter, we have presented a new approach to extract object interaction
graphs from relational databases. Object interaction graph can represent the enter-
prise objects with a dynamic way and highlight the shared relations between and
within objects. In order to model these extracted graphs, we have proposed a new
graph model SPIDER-Graph which is presented in section 4.2. The SPIDER-Graph
is based on these:

• Separation between the instance graph and the schema graph: A SPIDER-
Graph is composed of two graphs. The schema SPIDER-Graph, which can
be considered like a meta-model or a DTD for the graph, describes the types
of the nodes, their relations, the attributes in each node and their types.
The instance SPIDER-Graph contains the concrete elements (nodes labeled
by object identi�er, attributes with values and their relations) according to
the schema.
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• Heterogeneous elements: SPIDER-Graph allows to have complex-nodes with
heterogeneous types and attributes.

• Complex-nodes and objects referencing: the SPIDER-Graph represents the
objects via the complex-nodes. A complex-node encapsulates all the object
attributes in the same node. An attribute in a complex-node can reference
another complex-node.

Thereby, the SPIDER-Graph can preserve the relational database speci�cities:
the heterogeneous relational database tables can be modeled as separated complex-
nodes and the foreign keys can be mentioned by the use of complex attributes
(attributes that reference other complex-node).
In the section 4.3, we have detailed the approach to transform the relational
database into a SPIDER-Graph. This transformation has presented the relational
data as a set of enterprise objects related by a variety of relations. In this level, all
the objects are extracted and the detected relations can be classi�ed in four cate-
gories (Association relations, Dependence relation, "IS-A", "Part-of" relation). In
the section 4.4, the object interaction graph extraction approach is described. This
approach used as input the extracted SPIDER-Graph from the relational database
and the enterprise ontology described in the previous chapter. Firstly, based on
the enterprise concepts that the user selects from the enterprise ontology, an object
identi�cation process is performed in order to detect all the complex-nodes that
correspond to this choice. Secondly, we have described the relation between the
selected objects extracted process in 4 . Indeed, we have used a set of relation
patterns to extract the hidden and existing relations on the input SPIDER-Graph.
This step allows to discover additional information between the selected objects; e.g.
the employees who work in the same project via the relation "Same-project". Then,
we have added additional relations from the enterprise ontology using a schema
mapping process.

The extracted graph is a SPIDER-Graph containing information about the in-
teractions between user's selected object from the structured and unstructured en-
terprise data. We reckon that the extracted graph is rich enough to help business
user in their analysis. For example, the graph of Employee and Product in the
Figure 4.10 can help to �nd the team to put in a new project. Then, we need an
e�cient way to analyze and query this kind of graph in order to have the good
result. Thus, in the next chapter, we present a new visual query language adapted
to query and analyze the SPIDER-Graph and other enterprise graphs.
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Querying graphs is an important task which allows accessing and analyzing graph
data. Visual query languages are the most intuitive and easy way to query graph
for a non-expert user. In this chapter, our graph visual query language is presented
(GraphVQL), dedicated to heterogeneous graphs that supports di�erent types of
queries. GraphVQL is a query language for a SPIDER-Graph model and also for
heterogeneous graphs modeled with RDF or Graphml. In the �rst section, we present
a global view of GraphVQL. Then, we describe the di�erent processes performed by
the language: query treatment (section 5.2), SPARQL conversion (section 5.3) and
SPIDER-Graph query treatment (section 5.4).

5.1 GraphVQL Description

In the literature, di�erent visual query languages have been proposed (see sec-
tion 2.2.2.1). However, these languages are speci�c to a particular graph data model
(graph database model, RDF or simple graph). Also, several queries types are not
treated or treated partially, for example: The aggregation queries, social network



104 Chapter 5. GraphVQL: Graph Visual Query Language

analysis queries and path queries. In this context, we propose a visual query lan-
guage which permits to query the SPIDER-Graph model, RDF or GraphML graphs,
called GraphVQL (Graph Visual Query Language). The user can query not only
the extracted graph from the relational database but also the other existing graphs
modeled with various graph data model. This language covers di�erent query types
from simple selection query to social network analysis queries.
GraphVQL is based on a pattern matching process to extract subgraphs from input
graphs. Indeed, the user draws a query using a set of prede�ned symbols. This
drawn graph is transformed into a graph-pattern query used to search the result in
the input graph. The visual query language result is a set of sub-graphs extracted
from the input graph. The graph search process changes with the input graph type.
In the case of a SPIDER-Graph, GraphVQL uses a pattern matching algorithm to
�nd the sub-graphs corresponding to the select query drawn by the user, and uses
a shortest path algorithm to �nd a response to a path query. In the case of RDF or
GraphML graph, GraphVQL uses a set of mapping rules to transform a graph pat-
tern query to a SPARQL query which is then executed to �nd the result. Figure 5.1
depicts an overview of GraphVQL main processes.

Figure 5.1: GraphVQL Architecture.

The details in each process is described below.

5.2 GraphVQL Visual Notation and Grammar

GraphVQL allows the user to draw di�erent kind of queries using prede�ned symbols.
These queries can be:

• Selection query: This type of query can contain condition on nodes, on at-
tributes and/or on edges. It allows to select all the data that correspond to
the drawn pattern.
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• Aggregation query: Select the data, then apply an aggregate function
(MAX,MIN,AVG,...) on a speci�c object or attribute.

• Path search query: This type of query can �nd a path between two speci�ed
objects.

• Analyze query: This type of query analyzes the position of a speci�c object
on a graph using the social network metrics.

In this section, we describe how the user can perform queries using GraphVQL.
First, the basic visual notation of the language is introduced, then the syntax of
GraphVQL is detailed, as well as the process of graph pattern extraction.

5.2.1 Basic Visual Notation

The basic elements of GraphVQL can be divided into four categories (see table
depicted in Figure 5.2) :

• Simple graph elements: These symbols represent nodes of simple graphs (here-
after, RDF and GraphML graphs will be called simple graph). Attributes of
each node are represented using the diamond symbol.

• SPIDER-Graph elements: contain the complex-nodes that compose a
SPIDER-Graph.

• The Links category regroups all the di�erent links that a graph can contain:
link between two objects (complex-node or simple node), link between objects
and their attributes (for simple graph), aggregation operator link which can
link an operator to an object or an operator to an attribute, condition link
which links an attribute or an object to a condition. Finally, a path link which
links the objects which the user would like to search the path.

• The operator category contains the operators symbols: aggregation, condition,
union and intersection to explicit more complex queries.

The GraphVQL queries are composed by the previous symbols following prede-
�ned rules.

5.2.2 GraphVQL Syntax

In the following, we present the grammar rules designed with the help of
EBNF [Scowen 1998]. The used meta symbols on our grammar are the following:
(. . .): Grouping
|: alternative
{. . .}: repetition zero or more time

The grammar rules are the following:
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Figure 5.2: GraphVQL Symbols.

1. Query ::=(SPIDERQuery|GraphQuery)

2. SPIDERQuery ::=(SelectSPIDERQuery |PathSPIDERQuery |GraphAggregation)

3. SelectSPIDERQuery ::= Complex-node {Relation Complex− node}
4.PathSPIDERQuery::= Complex-node PathLink Complex-node
5. GraphQuery ::= (SelectQuery|AggregationQuery|AnalyseQuery)
6. SelectQuery::= Object {Relation Object} {OPERATOR SelectQuery}
7. AggregationQuery::= Aggregation SelectQuery
8. AnalyseQuery::=( PathQuery |SNAQuery)
9. PathQuery::= Object PathLink Object
10.SNAQuery::= Metric Object
11. Complex-node::= Type {AttributeName AttributeV alue2}
12. Object::=Type {AttributeName AttributeV alue {Condition}}
13. Condition::= ConditionOperator ConditionValue Conditionlink
14. ConditionOperator::=( DIFFERENT|GREAT_THAN|GREAT_EQUAL|LESS_THAN
|LESS_EQUAL | EQUAL|CONTAINS |GROUPBY|LIMIT|OFFSET)
15. ConditionValue::= String
16. Conditionlink::="condition"
17. Aggregation::= AggregationOperator Aggregationlink
18. AggregationOperator::=(MIN|MAX|AVG|SUM|COUNT)
19. Aggregationlink::="aggregation"
20. AttributeName::=String
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21. AttributeValue::=String
22. AttributeValue2::= Type|String
23. Type::=String
24. OPERATOR::= (OPERATORlink) (OPERATORFUNCTION) (OPERA-
TORlink)
25. OPERATORFUNCTION::=( UNION| INTERSECTION)
26. OPERATORlink::="operator"
27. Metric::=(Degree |Betweenness |Closeness)
28. Relation::=RelationName
29.RelationName::=String
30.GraphAggregation::=Complex-node {Relation} {AttributeName}

Now, we detail each rule of the grammar. By its �rst rule, GraphVQL queries
can only be a query for SPIDER-Graph or for simple graphs.

Query ::= (SPIDERQuery|GraphQuery)

5.2.2.1 Simple Graphs Queries Syntax

In the case of a simple query, GraphVQL proposes various query types.

GraphQuery ::= (SelectQuery |AggregationQuery |AnalyseQuery)

-The selection query for simple graph is speci�ed by the sixth rule :

SelectQuery ::= Object {Relation Object} {OPERATOR SelectQuery}

The selection query can contain conditions on the objects and the attributes to
search; such as the query in Figure 5.3 where the user add a condition to the project
name.
The query on simple graphs can be composed by two sub-queries linked by an

Figure 5.3: Selection query using condition on attribute.

operator UNION or INTERSECTION ; such as the query in Figure 5.4.
The Aggregation query (Figure 5.5) on GraphVQL can apply an aggregation

operator to an attribute or to an object.

AggregationQuery::= Aggregation SelectQuery
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Figure 5.4: Composed selection query

Figure 5.5: Aggregation query

The analysis query can be a path query or a social analysis query. The Path
query can �nd a path between two de�ned objects.

PathQuery::= Object PathLink Object

The analysis query applies a social network measure to a de�ned object.

SNAQuery::= Metric Object

5.2.2.2 SPIDER-Graph Queries Syntax

GraphVQL queries for SPIDER-Graphs can be select, path or aggregation queries :

SPIDERQuery ::=

(SelectSPIDERQuery |PathSPIDERQuery |GraphAggregation)

In the selection queries the query should contain at least one complex-node with a
de�ned type:

SelectSPIDERQuery ::= Complex− node {Relation Complex− node}
Complex− node ::= Type {AttributeName AttributeV alue2}
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The same rule mentions that the query can contain relations between a set of
complex-nodes. For example, in Figure 5.6 the user search for all employees working
in the same project. This query contains three complex-nodes (two Employees and
a Project) linked by two relations:

SelectSPIDERQuery ::= Employee1 (works-on Project1) (same-Project
Employee2)
Employee1::=Employee
Employee2::= Employee
Project1::= Project

Figure 5.6: Selection queries on SPIDER-Graph.

By the fourth rule, GraphVQL allows to �nd paths between complex-nodes on
the SPIDER-Graph. The path can be a simple path, which is a path between a start
complex-node and an end complex-node, or a path indicating the set of complex-
nodes that should be found in the �nal path:

PathSPIDERQuery::= Complex-node {PathLinkComplex− node}

For example in Figure 5.7, the query is a path query between two speci�c objects:
Employee and Product.
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Figure 5.7: Path query on SPIDER-Graph.

GraphVQL allows to aggregate SPIDER-Graph by using an aggregation algo-
rithm K-SNAP [Tian 2008]. The aggregation takes in input a complex-node type
and the relations and attributes with which the summarization algorithm will de-
compose the graph in groups.

GraphAggregation::=Complex-node {Relation} {AttributeName}

5.3 Simple Graph Queries Treatment

The simple graph uploaded by a user can be a RDF or a GraphML graph. These
graphs are queried with queries composed by simple graph elements. In this section,
we detail the process of simple graph queries treatment. The process starts by
extracting the pattern graph query from the drawn graph (section 5.3.1). Then, the
extracted graph pattern query is transformed to a SPARQL query (section 5.3.2).
The query pattern translation process to SPARQL query di�ers from query type to
another.

5.3.1 Graph Pattern Query Extraction

A GraphVQL query drawn by the user is a graph composed by nodes and edges
having di�erent types and roles. This graph query can be de�ned formally by the
de�nition:

De�nition 21 (Graph Query) A graph query GQ, in GraphVQL, is de�ned by
GQ := (V,E) where:

• V is the nodes set such as V := {v |v := (t, n,A)} , where:
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� t is the node type which can be: Object, Attribute, Aggregation, Condition,
Operator;

� n is the value of the node;

� A is the the attributes set attached to the node. The attributes set A is
taken in consideration only if t is an Object. A := {a |a = (na, va)} where
na is the attribute name, va is the attribute value.

• E is the edges set such as E := {e |e := (t, en, vstart, vEnd)} where:

� t is the link type which can be: object relation (relation between two ob-
jects), Attribute link (between object and attribute) , Aggregation link,
Condition link, Operator link;

� en the name of the link;

� vstart and vend are respectively the start node and the end node which
share the link.

For example, the graph query GQ1 extracted from the drawn query in Figure
5.3 is composed by the following elements:

• V={v1 := (Object, ”Project”, AProject), v2 := (Attribute, null), v3 :=

(Condition, ”OTC”)}AProject = {a := (”name”, null)}

•• E={e1 := (Attributelink, ”name”, v2, v1), e2 := (Conditionlink, Contains, v3, v2)}

From this graph query, our approach extracts the corresponding graph-pattern query
from the drawn query following the de�ned grammar. The graph-pattern query
speci�es the query type and elements (the di�erent objects, the applied conditions
and aggregations and the used operators). It facilitates the work of query processing.
A graph query pattern is de�ned recursively by:

De�nition 22 (Graph Pattern Query) (1) A graph query pattern P can be a:
-Basic graph query pattern de�ned by BP := (G,C,AG)

- Group graph query pattern de�ned by GP := {P op P | P = BP ∪ GP where
op ∈ {AND,UNION,PATH}
(2) If P1 and P2 are graph query patterns, then the expressions (P1 AND P2), (P1
PATH P2), and (P1 UNION P2) are graph queries patterns.

The graph pattern query can be presented in the following grammar:

P ::= T BP |”(”GP”)”

GP ::= P”AND”P |P”UNION”P |P”PATH”P

T is the query type which can be Select, Aggregation, Path or Analyze. Now, we
de�ne the basic pattern query by the following de�nition.
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De�nition 23 (Basic Pattern Query) A basic pattern query BP is de�ned by
BP := (G,C,AG) where:

• G is the pattern graph G := (O,R) where:

� O is the objects set which the user would like to see in the result O ⊆ V ;
O := {o |o := (u, n,A)} with u is a Boolean attribute which mentions if
o is a known object or an unknown one, n is the object name, A is the
attributes set attached to the object.

� R is the set of object relations where R := {r |r := (rname, ostart, oend)}
with ostart and oend ∈ O

• C is the conditions set; C := {c |c := (a, cop, s)} where a is the at-
tribute of the condition, cop is the used operator (which can be DIFFER-
ENT, GREAT_THAN, GREAT_EQUAL, LESS_THAN, LESS_EQUAL,
EQUAL, CONTAIN) and s is the value of the condition.

• AG is the set of aggregations where: AG := {ag |ag := (tag, o, a)} where tag
is the aggregation name (which can be SUM, AVG, MIN, MAX, COUNT,
GROUPBY), o the object on which the aggregation is applied, a the attribute
to aggregate

We take the previous example of Figure 5.3. The graph pattern query process
can extract from its graph query GQ1 the following graph pattern query: P1:=Select
BP1. Where BP1:=(G1,C1,AG1)=

• G1 = {O := {o1 = (true, project, AProject)}}

• C1={c=( a,CONTAIN,"OTC")}

• AG1=null

Indeed, the input query contains one objet o1 ,which is "Project" having the
attribute "name" designed by a, and the condition c1.
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In order to extract these patterns, we have proposed a graph query pattern
extraction process which is performed by algorithm 6.

Algorithm 6: ExtractionPattern
Data: The user query GQ := (V,E)

Result: The pattern query P
1 begin
2 if GQ.containsPathObject() then
3 P.Tp = “Path”

4 else if GQ.containsAggregationObject() then
5 P.Tp = “Aggregation”

6 else if This.SNA = True then
7 P.Tp = “SNA”

8

9 else
10 P.Tp = “Select”

11 if GQ. contains(UNION) or GQ. contains(AND) or GQ.
containsPathObject() then

12 OP = ExtractOperator(GQ)

13 left_graph = Extractleftgraph(GQ)

14 right_graph = Extractrightgraph(GQ)

15 left_pattern = ExtractionPattern(left_graph)

16 right_pattern = ExtractionPattern(right_graph)

17 P = left_pattern+OP + right_pattern

18 else
19 P = ExtractionBasicPattern(GQ)

20 return P

The proposed algorithm 6 takes the graph query GQ as input and returns a
query pattern P .
In the beginning, the query type is detected by analyzing the used objects inGQ (line
2→10). If the GQ contains an edge having the type path (i.e. ∃e ∈ E |e.t = Path)
then the query has the type "Path" or if it contains an aggregation link the query
has the type "Aggregation". If the user wants to analyze an object the query type
will be "SNA". Indeed, the "SNA" query is a special query which is performed not
by putting a special symbol on the GQ but by forming a selection query. The result
will be analyzed by the mean of a social network analysis metrics. Finally, in all the
other cases, the query is a select query and its type is "SELECT".
For example, if the query in Figure 5.3 does not contain an aggregation or a path
link then it has the type "SELECT".
After the query type detection, the extraction process algorithm extracts the corre-
spondent pattern to the input query (line 10→18). Second, the extraction process
is performed (line 10→18). In the case of composed query (query containing an
UNION or AND operator) or a path query, the initial query GQ is divided, recur-
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sively, in multiple basic graph queries which do not contain operators. The methods
Extractleftgraph() and Exractrightgraph() allow to extract the left part and the
right part of a graph query, each containing an operator. Each basic graph query
is treated independently in order to extract its correspondent basic graph query
pattern. For example, the query in Figure 5.4 is an "UNION" query. The proposed
algorithm divides this graph query to two sub-graphs: The left part which is com-
posed by (Car, used-in, Project) and the right part which is composed by (Project,
managed_by, Manager) .
The pattern extraction process analyzes each simple graph query pattern using the
algorithm 7.
The nodes set in the GQ is analyzed in order to build the objects set O of the
pattern P (line 2 → 9). In this step, each node v with the type object (known or
unknown) is transformed to an object o having the same attributes and type as v.
The algorithm then analyzes the di�erent edges existing in GQ in order to detect
the other elements in the query (line 10 → 22). An edge e ∈ E in the query can
have di�erent types which are treated di�erently:

• If e has the type relation (line 12), a new relation r is added to the set R(R ∈
G). r has all the characteristics of e. Indeed, if e := (t, en, vstart, vEnd), then
r := 〈en, vstart, vend〉.

• If e has the type aggregation (line 15), a new aggregation function ag is added
to the set AG. If e := 〈t, en, vstart, vend〉. then ag := (tag, o, a) where tag :=

vstart ,o =: vend and a is the attribute related to vend (if it exists).

• If e has the type condition (line 19), a new condition c is added to the condition
set C. If e := 〈t, en, vstart, vend〉 then c := (a, cop, s) where a = vend , cop =

vstart.t and s = vstart.n.
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Algorithm 7: ExtractionBasicPattern()

Data: Graph query GQ := (V,E)

Result: Basic pattern query BP = (G,C,AG)

1 begin
2 foreach v ∈ V do
3 if v.t == object then
4 o=CreateObject(v)
5 G.o = V.v

6 if v.isDefined then
7 o.u = True

8 else
9 o.u = False

10 foreach e ∈ E do
11 switch e.t do
12 case relation
13 r=RelationExtraction()
14 R.add(r)
15 case aggregation
16 a=AggregationExtraction()
17 AG.add(a)
18

19 case condition
20 c=ConditionExtraction()
21 C.add(r)
22

23 return BP

5.3.2 Graph Pattern Query Translation to SPARQL

In this section, we will start by describing SPARQL query syntax. Moreover, we
will detail the graph pattern query translation to SPARQL process corresponding
to each query type.

5.3.2.1 SPARQL query Syntax

SPARQL is a graph matching query language for RDF. A SPARQL query is of the
form H ←− B, where:
-B is the body of the query: an RDF graph pattern expression that may include RDF
triples with variables, conjunctions, disjunctions, optional parts, and constraints
over the values of the variables. The WHERE clause contains the body part B
which should be matched against the triples/graphs of RDF.
-H is the head of the query: an expression that indicates how to construct the
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answer to the query. It is called the result form of the query which can be:

• SELECT: "Returns all, or a subset of, the variables bound in a query pattern
match".

• CONSTRUCT: "Returns an RDF graph constructed by substituting variables
in a set of triple templates".

• ASK : "Returns a boolean indicating whether a query pattern matches or
not".

• DESCRIBE: "Returns a RDF graph that describes the resources found".

In this work, the used SPARQL queries are "SELECT" queries and the used RDF
graph pattern on the body should cover the characteristics of a GraphVQL query.
Now, the principal concepts and de�nitions related to SPARQL query will be de-
scribed.

De�nition 24 (RDF Triple) A triple (s, p, o) ∈ (I ∪B)×I× (I ∪B∪L)is called
an RDF triple where s is the subject, p the predicate, o the object and I , B, and
L (IRIs [Duerst 2005], Blank nodes, and Literals, respectively) are disjoint in�nite
sets.

De�nition 25 (SPARQL graph pattern) A SPARQL graph pattern expression
is de�ned recursively as follows:
(1) A triple pattern is a graph pattern.
(2) If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 OPT P2),
and (P1 UNION P2) are graph patterns.
(3) If P is a graph pattern and R is a SPARQL built-in condition, then the expression
(P FILTER R) is a graph pattern. A built-in condition is constructed using elements
of the set Variable ∪I ∪ L and constants, logical connectives (¬,∧,∨), inequality
symbols (≺,≤,�,≥), the equality symbol (=), unary predicates like bound, isBlank,
and isIRI, plus other features.

A Filter is a restriction on solutions over the whole group in which the �lter
appears.

De�nition 26 (Filter Condition) Let ?x, ?y ∈ variables and c, d ∈ L ∪ U . We
de�ne �lter conditions inductively as follows:

• The expressions ?x = c, ?x =?y, and c = d are �lter conditions.

• The expression bound(?x) (abbreviated as bnd(?x)) is a �lter condition.

• If R1 and R2 are �lter conditions, then ¬R1, R1∧R2, and R1∨R2 are �lter
conditions.

The used SPARQL query has the following de�nition:
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De�nition 27 (SPARQL Query) A SPARQL query SpQ is de�ned by
SpQ:=(PRF, VR, GPspr, FI, AG) where:

• PRF is the pre�xes set. A pre�x prf ∈ PRF declares the schemas used in the
query. It is designed by the PREFIX keyword which associates a pre�x label
with an IRI.

• VR is the variables set which mentions the object to see in the result. Vari-
ables are distinguished by a leading question mark symbol, e.g. ?name denotes
variable names.

• GPspr is the graph pattern of the SPARQL query. In this work, GPspr can be,
a basic graph pattern or an union graph pattern. A basic graph pattern BP is
a set of triples where BP := {(s, p, o)}. Union graph pattern is a set of basic
graph patterns combined by the operator "UNION".

• FI is the set of �lters on the query.

• AG is the set of aggregation operators. An ag ∈ AG is applied on variable
v ∈ V r where ag := COUNT, SUM,MIN,MAX,AV G,GROUPBY

Example of a SPARQL query that allows to select the cars number by project
�ltered by the car used time:

PREFIXcar :< http : //example.org/car/ >

PREFIXproject :< http : //example.org/project/ >

PREFIXrdf :< http : //www.w3.org/1999/02/22− rdf − syntax− ns >
SELECTcount(?v0car)as?count, ?v3projectWHERE

?v0carcar : usedin?v3project.

?v0carcar : used_times?v0used_times.
?v0carcar : id?car1.

?v3projectproject : name?project2.

F ILTER(?v0used_times > 2).

It is composed by:

• The set of pre�xes: PRF= http://example.org/car/ ,
http://example.org/project/, http://www.w3.org/1999/02/22-rdf-syntax-ns

• The variables set VR=?v0car, ?v3project, ?v0used_times, ?project2

• The patterns set: GPspr= ?v0car car : used_in ?v3project;
?v0car car : used_times ?v0used_times.
?v0car car : id ?car1. ?v3project project : name ?project2.

• The �lters set: FI=?v0used_times > 2

• the aggregations set: AG= count(?v0car)
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5.3.2.2 The Translation Process

Translating the graph query pattern to a SPARQL query varies with the query
type. Three translation processes are described in this section: Selection and
aggregation query, Path query and SNA query.
A. Selection and aggregation queries
The selection and aggregation graph queries pattern can be a basic graph pattern
query or a group graph pattern query. If the graph pattern query contains an
operator "AND" or "UNION", the pattern is divided into two parts treated
separately as basic graph pattern. The basic graph pattern query translation to a
SPARQL query algorithm 8 is based on the following steps:
Step 1. The algorithm starts by extracting the pre�xes existing on the RDF graph
(line 3).

Step 2. From each existing relation r := (rn, ostart, oend) in the input graph
query pattern, the algorithm extracts the corresponding triple (s, p, ot) (line 4→ 15).
The triple is extracted with the method CreateTriplefromrelation() which takes
as input two variables var1 and var2 and the relation name rn. These variables are
extracted from the objects ostart and oend as follows: var = ?+(ostart.n.tostring()).
Then, the corresponding triple (s, p, ot) to this relation is built in this way: s

takes the value of the variable var1 extracted from the ostart and ot is the variable
var2 extracted from oend . In order to build p, the pre�x label corresponding to
the relation is extracted from the pre�x list PRF. The value attributed to p is:
(prefix label : rn).

Step 3. For each object o := (u, n,A) in the input graph query pattern with
the attributes (A 6= null), the algorithm extracts the corresponding triple (s, p, ot)

using the method CreateTriplefromattribute(line 16→ 25). In this way, s takes
the value of the variable var1 extracted from the object name o, the ot takes the
value of variable extracted from the attribute name var2 and the predicate p which
is composed of the pre�x label of the pre�x corresponding to the object URI and
the attribute name (p = prefix label : attribute name). Then, (s, p, ot)=(variable
of o, (prefix label : attribute name), variable of attribute ).
If the attribute of the object o has a value, an additional triple is created where
triple=(variable of o, (prefix label : attribute name), attribute value)

Step 4. The conditions set are transformed to a set of �lters (line 26→ 28). A
�lter f , in this work , has two formats:
(1)FILTER regex(variable, value) used to search pattern on string. For example, to
search all the projects having in their names the string "Water", the �lter FILTER
regex(?name, "Water") is used.
(2)FILTER (condition) used to directly apply a condition to an attribute.
For example, to search all the car having a price more than 10.000, the �lter
FILTER(?price > 10000) is applied.
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For each condition c := (a, cop, s), a �lterf is created. If the attribute a has the
type string and the operator is "CONTAIN" then the �rst type of �lter are used.
In other cases, the second �lter type is adopted.
Step 5. In the case of aggregation query (line 29→ 31), the graph pattern query
contains a set of aggregations applied to objects or objects attributes. Then,
for each aggregation ag := (tag, o, a), a new aggregation ags is added to the
SPARQL query. ags = (f, var, varn) is composed of f , the aggregate function
(SUM,MAX,MIN, or COUNT) which has the value of tag, var is the variable name
extracted from the attribute a or from the object o, if a is null.
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Algorithm 8: Selection and aggregation graph pattern query SPARQL-
Transformation

Data: Basic pattern query P = (G,C,AG),the RDF Graph RDFG
Result: SpQ := (PRF, V R,GPspr, FI,AG)

1 begin
2 SparqlQuery SpQ = new SparqlQuery();
3 PRF = extractPre�x(RDFG);
4 foreach relation r := (rn, ostart, oend) ∈ G do
5 Var1=CreateVariable(ostart);
6

7 VR.add(Var1);
8

9 Var2=CreateVariable(oend);
10

11 VR.add(Var2);
12

13 Triple t=CreateTriplefromrelation(rn, V ar1, V ar2);

14

15 SpQ.GPspr.add(t);

16 foreach Object o := (u, n,A) ∈ G do
17 if A 6= null then
18 Var1=CreateVariable(o);
19 foreach a ∈ A do
20 Var2=CreateVariable(a);
21 VR.add(Var2);
22 Triple t= CreateTriplefromattribute(Var1,Var2);
23 SpQ.GPspr.add(t);
24 if a.value 6= null then
25 Triple t= CreateTriplefromattributeValue(Var1,Var2);
26 SpQ.GPspr.add(t);

27 foreach condition c ∈ C do
28 Filtre f=CreateFilter(c);
29 SpQ.FI.add(f)

30 foreach aggregation a ∈ AG do
31 Aggregation ag=CreateAggregation(a);
32 SpQ.AG.add(ag);

33 return SpQ;

The �nal SPARQL query is built by regrouping the di�erent sets using the
following grammar:

SPARQLQUERY:="SELECT" ( VAR|AG) (,VAR) * (,AG)*
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"WHERE{" TRIPLE (TRIPLE)*
(FILTER)* ""

If the graph pattern query is a group pattern query containing an UNION
operator, an analyze step is performed to detect the similar variables and the
di�erent detected �lters. The resulting SPARQL follows this grammar:

SPARQLQUERY:="SELECT" ( VAR|AG) (,VAR) * (,AG)*
"WHERE{{ " TRIPLE (TRIPLE)* ""
"UNION {" TRIPLE (TRIPLE)* ""
(FILTER)* ""

Examples of selection and aggregation queries transformation are shown in Table 5.8.
From each drawn query in the �rst column, a graph query pattern is extracted then
transformed to a SPARQL query. For instance, in the �rst query, the graph query
pattern contains two objects and a relation. The two objects (object1 and object2)
are transformed to two variables in the SPARQL query (?x and ?y) and the relation
is putted in the Where condition.

Figure 5.8: Selection and Aggregation Queries on Simple Graph.

B. Path Query

Using a path query, a user speci�es two objects where he would like to search the
possible links between them. The path pattern query contains information about
the start object and the end object of the path. The approach to treat this query
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uses a path search algorithm in order to �nd the links between the two objects.
In this context, we use the A* algorithm [Hart 1972]. A* is based on a heuristic
function to increase the rapidity of the search process. The used heuristic function
has the form: F (n) = d(n) + h(n) where d(n) is the distance from node n to root
node and h(n) is the depth of node n.
The algorithm 9 transforms a path graph pattern query to a SPARQL query. As
the path query can be seen as two simple select queries related by the link Path, the
algorithm treats each part separately in order to �nd the start and the end nodes
for the path (line 1 → 5). Then, the path is searched using the A* algorithm (line
5→ 6).

Algorithm 9: Path pattern query tronsformation to SPARQL
Data: pattern query P ,the RDF Graph RDFG
Result: SpQ := (PRF, V R,GPspr, FI,AG)

1 begin
2 SparqlQuery q_left =SPARQLTransformation (p.left_pattern);
3 SparqlQuery q_right = SPARQLTransformation (p.right_pattern);
4 RDFNode start_node = executeQuery(q_left);
5 RDFNode end_node = executeQuery(q_right);
6 GraphRDFNode graph = getGraph();
7 GraphRDFNode path = retrievePath(graph,start_node,end_node);
8 return path;

This algorithm is based on a retrieve function (see algorithm 10) which repre-
sents the application of the A∗ algorithm.

An Example of the path query is shown by Figure 5.9: Find the path between
Hyundai49 and Ford77.

Figure 5.9: Path Query.
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Algorithm 10: RetrievePath()
Data: the RDF Graph g , RDFNode start, RDFNode end
Result: path

1 begin
2 Queue queue = new Queue();
3 List list_visited_nodes;
4 queue.push(start);
5 while queue 6= null do
6 RDFNode node = queue.pop();
7 list_expanded_nodes = expand(node);
8 if list_nodes_expanded.constain(end) then
9 break;

10 queue.push(list_expanded_nodes);

11 //update the weight of node by using F(n) = d(n) + h(n)
12 updateWeightFunction(queue)
13 list_visited_nodes(list_expanded_nodes)
14 // get back the found path.
15 GraphRDFNode path = traceBack(list_visited_nodes,start,end)
16 return path

The coresponding graph pattern query is:

Pattern PATH P{
Pattern Left{
Object1.type=Car
Object1.attribute={id = ”Hyundai49”}
Pattern Right{
Object1.type=Car
Object1.attribute={id = ”Ford77”}

The coresponding SPARQL query for this pattern is: SELECT * WHERE {
(SELECT * WHERE {
?v0Car ?p ?o.
?v0Car car:id ?v0id.
FILTER regex (?v0id, ”Hyundai49”) .

UNION
(SELECT * WHERE {
?v1Car ?p ?o.
?v1Car car:id ?v1id.
FILTER regex(?v1id, ”Ford77”) .

C. SNA query
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SNA is a query that analyzes the position of a particular object in the input
graph. This analysis is performed using the centrality measure which gives a
"rough indication of the social power of a node based on how well it "connect" the
Network"'. There are three measures of centrality that are widely used in social
network analysis: degree, betweenness and closeness.

(1)The Degree centrality of a node refers to the number of edges attached to
the node.

If the graph is directed, then we usually de�ne two separate measures of degree
centrality, namely indegree and outdegree. Indegree is a count of the number of
edges directed to the node, and outdegree is the number of edges that the node
directs to others. For positive relations such as friendship or advice, we normally
interpret indegree as a form of popularity, and outdegree as gregariousness.

For a graph G := (V,E) having n vertex, the degree centrality of a vertex v:

Dc(v) := Degree(v)
(n−1)

(2)Betweenness centrality is a centrality measure of a vertex within a
graph. Vertices that occur on many short paths between other vertices have higher
betweenness than those that do not. Betweenness re�ects the number of nodes
which a node is connecting indirectly through their direct links.

For a graph G , the betweenness for vertex is computed as follows:
1. For each pair of vertices (s,t), compute all shortest paths between them.
2. For each pair of vertices (s,t), determine the fraction of shortest paths that pass
through the vertex in question (here, vertex v).
3. Sum this fraction over all pairs of vertices (s,t).

Bc(v) :=
∑

vi 6=vj 6=v∈V
Pathvivj (v)

Pathvivj
, where Pathvivj : the number of shortest path

from vi to vj

Pathvivj (v):the number of shortest path from vi to vj pass through a vertex v.

(3)Closeness centrality is the number of links that a person must go through
in order to reach everyone else in the network. The closeness centrality of a node
is measured as the inverse of the sum of distances from this node to all the other
nodes [Freeman 1977].

Cc(v) := 1∑
vi∈G

1
length(PATH(v,vi))

where PATH(v, vi) is the shortest path between

v and vi and length(PATH(v, vi)) is the length of such a shortest path.

These di�erent measures have been implemented with the use of SPARQL
queries. An example of SNA query applied to the object "Project OTC HOT"
is presented in Figure 5.10.
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Figure 5.10: Analyse Query.

5.4 SPIDER-Graph Queries Treatment

In order to query SPIDER-Graph, GraphVQL proposes for the users to draw
SPIDER-Graph queries. These queries can be selection or path queries. For this,
a graph pattern matching algorithm is used in the case of selection query and a
shortest path algorithm is used in the case of a path query. In what follows, we
start by de�ning the graph pattern query for a SPIDER-Graph query. Thereafter,
the process to treat the selection query and then the path query, will be described
thoroughly.

5.4.1 Graph Pattern Query for the SPIDER-Graph

The SPIDER-Graph queries are composed by complex-nodes which can be linked
with relation links or path links in the case of a path query. The basic pattern query
will be a particular case from the one de�ned in de�nition 23. Actually, the objects
in the graph pattern are simply complex-nodes. Also, there are no aggregation
operators. The graph pattern query is de�ned as follows:

De�nition 28 (Basic SPIDER-Graph Pattern Query) A basic pattern query
for a SPIDER-Graph S := (Ncn, R) is de�ned by BPS := (G,C) where:

G is the SPIDER-Graph pattern G := (O,R):

• O is the complex-nodes set which the user would like to see in the result;O :=

{o |o := (u,CN), CN ∈ Ncn} with

� u is a Boolean attribute which mentions if o is a known or an unknown
object.

� CN is the complex-node de�ned CN := (cn,Acni) (see the de�nition 16).

• R is the set of object relations where R :=

{r |r := (rname, ostart, oend), ostart and oend ∈ O}
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C is the set of conditions; C := {c |c := (a, cop, s)} where a is the attribute of the
condition, cop is the used operator (which can be DIFFERENT, GREAT_THAN,
GREAT_EQUAL, LESS_THAN, LESS_EQUAL, EQUAL,CONTAIN) and s is
the value of the condition.

The extracted pattern from the GraphVQL query can be a set of BPS or a set
of BPS related by the link PATH. Now, we start by detailing the selection query
process.

5.4.2 Selection Query: Graph Pattern Matching

The graph pattern matching algorithm takes the graph pattern extracted from the
drawn query and the SPIDER-Graph as input; retrieves sub-graphs from the input
graph matching the graph pattern query and returns the retrieved graphs.
We have used the pattern matching algorithm proposed in [He 2008] and we have
modi�ed it to support a SPIDER-Graph data model. This algorithm supports
typed, attributed nodes and labeled edges; and its standard allows us to include
other pruning techniques easily.

It takes the SPIDER-Graph Pattern Query and a SPIDER-Graph as input, and
produces one or all feasible mappings as output. This process is based on two
phases:
(1)The �rst phase retrieves the feasible matches for each node in the graph pat-
tern and builds search space with the resulting products. The feasible matches
of a node u is the set of nodes in graph G that satis�es a predicate Fu: φ(u) =

{v |v ∈ V (G), Fu(v) = true} .
The search space is the product of feasible matches for each node of graph pattern.
In the query in Figure 5.11a, there are two complex nodes: CN1 and CN2, with
the types �Employee" and �Project", respectively. The feasible matches for each
complex-node are: φ(CN1) = {v |v ∈ V (G), FCN1(v) = true}where FCN1(v) =

{v.type = “Employee”}
φ(CN2) = {v |v ∈ V (G), FCN2(v) = true}where FCN2(v) = {v.type = “Project”}
(2)The second phase consists in searching the matching between the graph pattern
query and the SPIDER-Graph using the search space. Now, we detail the adopted
algorithm 11.

Step 1: The algorithm searches all the feasible matches of each complex-node
in the pattern in the input graph (line 2-4). The used predicate on this matching
is the following:
Fu (v) (nodes): Gathers all the complex-nodes having the same type and the same
attributes values than those de�ned in the graph pattern query. If no attribute
is de�ned in the pattern complex-nodes, all complex-nodes of the same type are
accepted.
The feasible matches of the graph pattern on the SPIDER-graph depicted in
Figure 5.11 are the following:
φ(Employee) = {Employee_1, Employee_2, Employee_3}
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φ(Project) = {Project_1, P roject_2}
Step 2: The detected feasible matches are pruned (line 6 → 10). The algorithm
compares the neighborhood sub-graphs pro�les of each complex-node on the graph
query pattern and its feasible complex-node neighborhoods pro�les in order to
reduce the size of φ(u). By de�nition in [He 2008], the neighborhood sub-graph
of node v consists of all nodes within distance 1 from v and all edges between the
nodes. The pro�le is a sequence of the node labels in lexicographic order. Then,
node v is a feasible match of node ui if they have the same pro�le. In the graph
in Figure 5.11, for the complex-node Employee_1, the neighborhood sub-graphs
of radius 1 are {Employee_1, Project_2, Employee_3} and the corresponding
pro�le is �Employee Employee Project". This pro�le contains the pro�le of the
complex-node "Employee" which is "Employee Project". Then Employee_1 is
maintained in the search space.
Step 3: The search process searches the matching between the input graph pattern
query and the SPIDER-Graph (line 12→ 26). The procedure Search(i) iterates on
the ith node to �nd feasible mappings for that node. The procedure Check(ui, v)

examines if ui can be mapped to v by considering their edges.
Fe(e

′)(edges): Compares the labels of the SPIDER-Graph edge and the pattern
edge. If no label is speci�ed in the pattern, all corresponding edges of the
SPIDER-Graph are accepted.
Fφ(G)(match): Considering the analyzed criteria, there was no other relevant
criteria to be added to this function, which means that it will always return true.
However, it was considered anyway in the structure in case of a de�nition of a
better parameter.
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Algorithm 11: Graph Pattern Matching
Data: Basic pattern query BPS ,SPIDER-Graph S
Result: one or set of feasible graphs

1 begin
2 //�nd all the feasible matches
3 foreach complex-node u ∈ BPS do
4 φ(u) = {v |v ∈ S, Fu(v)(nodes)}
5

6 //Local pruning of the feasible mates
7 foreach complex-node u ∈ BPS do
8 foreach complex-node v ∈ φ(u) do
9 if ¬Feasable(Profile(u), P rofile(v)) then

10 Remove v from φ(u);

11 Search(1);
12 void Search(i)
13 begin
14 foreach complex-node v ∈ φ(ui), v is free do
15 if ¬Check(ui, v) then continue;
16 φ(ui) = v;

17 if i < |V (BPS | then Search(i+1);
18 else if Fφ(S) then
19 Report φ;
20 if ¬exhaustive then Stop;
21

22 boolean Check(ui, v) begin
23 foreach edge e(ui, uj) ∈ BPS , j < i do
24 if edge e′(v, φ(uj)) /∈ Sor¬Fe(e′) then
25 return false ;

26 return true;

Now, we present an application example. Figure 5.11 shows the sample graph
pattern and the SPIDER-Graph.
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(a) Pattern

(b) SPIDER-Graph

Figure 5.11: A sample graph pattern and SPIDER-Graph

In the previous example, the matched sub-graphs are: (Employee_1, Works-
on, Project_2) , (Employee_2, Works-on, Project_1) ,(Employee_3, Works-on,
Project_1) ,(Employee_3, Works-on, Project_2)

5.4.3 Path Query

The purpose of the path query is to discover if a set of complex-nodes are connected
or not. This query is composed by two or more complex-nodes related by path
links. In order to process a path query, we have proposed an algorithm based on
three main steps:
Step 1: The algorithm analyzes the path pattern query in order to extract the set
of paths to �nd. Each path is de�ned by its start node and end node. For example,
if the path query is: CN1 PathLink CN2 PathLink CN3, then there are two paths
to search path1 between ( CN1 , CN2) and path2 between ( CN2 , CN3).
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In the query depicted in Figure 5.7, we have only one path to search path1 between
CNstart = Manager and CNend = Project

Figure 5.12: Path Query.

Step 2: For each path between two complex-nodes, we have chosen to �nd
the shortest path between them. In order to �nd the shortest paths between the
complex-nodes, we have used the algorithm proposed in [Newman 2001] which is a
modi�ed form of the traditional graph traversal algorithm breadth-�rst search. The
algorithm �nds the path between a node ni and a node nj by stepping from ni to its
predecessor and then to the predecessor of each successive node until nj is reached.
The algorithm can �nd one or multiple path between two well de�ned nodes if it
exists. We have integrated two adaptations to this algorithm:
(1) Support path queries between nodes in which attributes are partially speci�ed;
(2) Take into account that an attribute in a complex-node can reference another
complex-node, which means, that it considers the "implicit edges" provided by the
SPIDER-Graph model.
The algorithm 12 is made to �nd the node candidates for the two nodes and, for
each pair of them, calculate the shortest path. Firstly, for the two complex-nodes
CNstart and CNend, the algorithm found their correspondent complex-nodes in the



5.4. SPIDER-Graph Queries Treatment 131

input SPIDER-Graph (line 3−→11).

Algorithm 12: Path query processing
Data: Complex-node CNi, CNj ,SPIDER-Graph S
Result: set of paths between CNi and CNj

1 begin
2 //�nd all the complex-nodes which can match CNi and CNj

3 if CNi.A 6= null then
4 cand(CNi) = {v |v ∈ S, v.type = CNi.type and v.A = CNi.A} ;
5 else
6 cand(CNi) = {v |v ∈ S, v.type = CNi.type} ;

7 if CNj .A 6= null then
8 cand(CNj) = {v |v ∈ S, v.type = CNj .type and v.A = CNj .A} ;
9 else

10 cand(CNj) = {v |v ∈ S, v.type = CNj .type} ;
11 //Research of paths
12 List < SPIDER−Graph > result;
13 foreach complex-node u ∈ cand(CNi) do
14 foreach complex-node v ∈ cand(CNj) do
15 if u 6= v then
16 SPIDER-Graph path=FindShortestPath(S,u,v);

17 if path 6= null then
18 result.add(path);

19 return result ;

Then, for each couple of matched, complex-nodes the shortest path is searched
(line 14−→20) using an extension of the algorithm presented in [Newman 2001].
One important aspect of SPIDER-Graph is that an attribute in a complex-node can
refer to another complex-node. While [Newman 2001] expands only the edges of
a node while setting the predecessors in the breadth-�rst search, the search is ex-
panded additionally to the attributes of the node. In the next interaction, the edges
of the node that was an attribute will be expanded as well, revealing the implicit
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relation that BFS cannot �nd. The shortest path is calculated with procedure 13:

Algorithm 13: FindShortestPath()
Data: Complex-node CNi, CNj ,SPIDER-Graph S
Result: set of paths between Ni and Nj

1 begin
2 Assign CNj distance zero;
3 d←− 0;
4 foreach complex-node CNk whose assigned distance is d do
5 follow each attached edge to CNl at its other end;
6 follow each attribute of CNk that points to another node l;
7 if l has not already assigned distance then
8 CNl.setDistance(d+1);
9 declare CNl as predecessor of CNk;

10 d=d+1;

Step 3: The set of found paths are regrouped and returned as the �nal result.

The result is displayed to the user as a set of sub-graphs.

For example, if the previous path query is searched in the SPIDER-Graph
described in Figure 5.11. Firstly, the algorithm searches for the complex-nodes
that match with CNstart = Manager and CNend = Project: cand(Manager)={
Manager1} and cand(Project) = {Project1, P roject2}. Then, all the possi-
ble shortest paths between (Manager1, P roject1) and (Manager1, P roject2) are
searched via the shortest path algorithm. The displayed result is the all the paths
between these complex-node instances (see Figure 5.13).

Figure 5.13: Path Query Result.
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5.4.4 Aggregation Query

When the input graphs are large, e�ective graph aggregation methods are helpful
for the user to understand the underlying information and structure. Graph aggre-
gations produce small and understandable summaries and can highlights groups or
even communities in the graph, which greatly facilitates the interpretation. Thus,
adding an aggregation operator in GraphVQL will help the user to divide the in-
put graphs in a signi�cant groups. The existing algorithms like partitional algo-
rithms [MacQueen 1967], Hierarchical clustering algorithms [Rodrigues Jr. 2006]
or spectral algorithms [Luxburg 2007], use only links between nodes of the graph
of the network, and do not take into account the internal values contained in each
node, while classical clustering algorithms applied on tables of values, work only on
these values ignoring completely the possible link between individual.

An algorithm which can take into account both kind of information would be
very valuable. Designed for graphical graph aggregation the k-SNAP algorithm
[Tian 2008], in its divisive version, begins with a grouping based on attributes of
the nodes, and then tries to divide the existing groups thanks to their neighbours
groups, trying minimizing a loss information measure.

The K-SNAP algorithm produces a summary graph through a homogeneous
grouping of the input graph's nodes, based on user-selected node attributes and
relationships. The K-SNAP controls the number of resulting groups. Indeed, a user
can give as input the K-group to see as result. All the details of this algorithm is
speci�ed in the the paper [Rania Soussi 2012].

In GraphVQL, the aggregation is performed as follows. The user draws the ob-
ject to see and speci�es the attributes and the relations with which the algorithm
will obtains the groups. For example, if the user would like to dived the Employee
in four groups. First, the algorithm starts by extracting the employees graph (with
attribute gender and address) and the relation between them (Same_Department
and Same_Project). Then, the algorithm produces a summary graph shown in Fig-
ure :ksnap. This summary contains four groups of employees and the relationships
between these groups. Employees in each group have the same gender and are in the
same address (enterprise agency address), and they relate to employees belonging
to the same set of groups with Same_Department and Same_Project relationships.
For instance, each employee in group G1 has at least another employee that work
with him in the Same_Department and the Same_Project in the in groupG2.

5.5 Summary and Conclusion

In this chapter, we have presented GraphVQL which is a visual query language for
a SPIDER-Graph model and graphs modeled with RDF or GraphML. GraphVQL
allows to query:

• Simple graphs (RDF or GraphML) via selection, aggregation or analysis
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Figure 5.14: Aggregation of the Employee Graph.

queries. Here, the queries are modeled as graphs from which graph pattern
queries are extracted and transformed to a SPARQL query.

• SPIDER-Graph via selection, path or aggregation queries. In this case, the
queries are model as SPIDER-Graphs model from which pattern queries are
extracted. Then, for the selection queries, we use a pattern matching algo-
rithm, which �nds the corresponding part of the input graph to the pattern.
In the path query case, we use a path query algorithm to �nd the response.
Finally, to aggregate the input query a graph aggregation algorithm is used.

In the section 5.2, we have described the visual notation and the grammar rules
of GraphVQL. GraphVQL visual symbols allow inexperienced users to draw their
queries as graph patterns. These patterns are treated with two di�erent methods
depending on the input graph. Then, we have detailed in the section 5.3 the
query treatment in the case of RDF or GraphML graphs. The graph pattern query
is transformed to a SPARQL query taking in consideration the di�erent types of
symbols drawn. For instance, if the initial query contains the aggregation operator
count, then the SPARQL query will contain in the SELECT part the operator count.
In the case of the SNA query, GraphVQL can for the moment calculate the degree,
betweenness and closeness for a speci�c object in the input graph. Then, in the
future work, adding other metrics like the cohesion or the density can help users to
improve their decision making.

In the section 5.4, we have explained the di�erent SPIDER-Graph queries treat-
ment which can be summarized in three di�erent process:

• The selection queries are treated via an exact pattern matching (section
5.4.2). The used algorithm treats the input graph pattern in three main steps:
(1)search all the feasible matches of each complex-node in the input pattern,
(2) the feasible matches are pruned in order to minimize the search space and
(3) a search process is performed on the built search space. The result will be
all the sub- graphs that match the input pattern.

• The path queries are treated via a two steps algorithm. First, the algorithm
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will search all the existing path in the input graph pattern query. Then, each
path is searched with our extension of the Newmann algorithm that takes in
consideration the attributes in the complex-nodes source and destination.

• The aggregation queries can only be performed on a part of the input SPIDER-
Graph that contains homogeneous complex-nodes. Then, the aggregation al-
gorithm will take as input this homogeneous sub-graph, the user selected at-
tributes and edges related to the complex-node in the graph. The result will
be di�erent groups of complex-nodes grouped by their attributes and relation
similarities.

We have not made a social analyze query on the SPIDER-Graph for instance but
we are working on this. For this, we need to create an adapted algorithms that take
in consideration the structure of the complex-nodes. In the section 6.4 of the next
chapter, we will present the implementation and the evaluation of GraphVQL.
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Up to this point we have presented the contributions of our work. In order to
test their viability in a real world environment, a prototype has been developed. It
includes the three main approaches: The enterprise ontology building, the object
graph extraction and the visual query language. The system has been designed
to contain three sub-systems which work independently. The performance of each
sub-system is evaluated separately. In the �rst section we present the implemented
architecture. The data sets used in the evaluation are presented in section 6.2.
In section 6.3, we have applied the objects interactions graph extraction from the
relational database to extract social network. After this, we have evaluated the
performance of this approach. Finally, the GraphVQL performance is evaluated as
well.

6.1 System Implementation

The di�erent approaches presented in the previous chapters have been implemented
and evaluated using JAVA. The prototype architecture is depicted in Figure 6.1.
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Figure 6.1: The System Implementation Architecture.

The prototype contains three main functionalities presented as three independent
sub-systems: ontology extraction, object graph extraction and the visual query lan-
guage.
The ontology extraction system provides the speci�c enterprise ontology to the ob-
jects graph extraction module. This latter, which is modulated as a SPIDER-Graph,
can be queried and visualized by the visual query language module. In what follows,
the functionalities and the used API of each module is shown.

6.1.1 The Ontology Extraction Module

The ontology extraction module is a sub-system, which can be described as the im-
plementation of the enterprise ontology learning process. It is charged to build the
enterprise ontology by taking as input a generic enterprise ontology, which is built
manually using Protégé 3.7.4, and the enterprise unstructured and semi-structured
data (websites and wiki). It uses the Protégé JAVA API [Knublauch 2004] to load,
edit and save ontologies.
The architecture of this sub system is depicted in Figure 6.2. As a �rst step the en-
terprise documents are treated with GATE components. GATE [Cunningham 2002]
is an open source architecture and infrastructure for the building and deployment
of Human Language Technology applications. GATE can be used to process doc-
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uments in di�erent formats including plain text, HTML, XML, RTF, and SGML.
The following components were used to process documents:

• The Tokeniser divides the text into tokens (such as numbers, punctuation,
symbols, and words of di�erent types),

• The Sentence Splitter divides the text into sentences. This module is required
for the tagger,

• Pos-Tagger adds part-of-speech information to tokens,

• Lemmatizer reduces each token to its lemma, i.e. base form,

• NP chunker divides the text into noun phrase chunks,

• OntoRootGazetteer looks up items from the ontology and matches them with
the text, based on root forms,

• JAPE transducers annotates text and adds new items to the ontology.

Based on the previous GATE components, the documents are treated and analyzed
to extract the candidate concepts, relations, and attributes to enrich the generic
enterprise ontology. Then, the new detected concepts and attributes (Datatype) are
used in the learning process to enrich the generic ontology and the new instances in
the population process. The produced ontology is modeled and stored with OWL1.0.

Figure 6.2: The ontology Extraction Module.
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6.1.2 Object Graph Extraction

The object graph extraction is a sub-system based on two modules(see Figure 6.4):
)

-The SPIDER-Graph extraction module: this module takes the relational database
as input, and then processes it to extract a SPIDER-Graph. The connection
between the system and the relational database is allowed by the use of a JDBC
API. As a

Figure 6.3: Graphml for the SPIDER-Graph Instance.

-Object Graph extraction: From the extracted graph and by using the user
chosen concepts, this module extracts the objects interactions graph. The resulting
graph is saved as a speci�c GraphML �le which is modi�ed in order to store a
SPIDER-Graph model. The GraphML for the SPIDER-Graph model, which is
presented in Figure 6.3, contains the following elements:

• A complex-node is represented by a node < node > having two elements
"complex-node-name" and "complex-node-type" putted on the tag < data >.

• Each complex-node contains one nested < graph > including its set of at-
tributes.

• A complex-node attribute is represented by a node which has three elements:
"name", "value" and "type" putted in three < data > tags.

We choose to store the resulting graphs in GraphML due the fact that GraphML
is an extension of XML and it is supported by many graph visualization API like
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Figure 6.4: Object Graph Extraction Module.

6.1.3 The Visual Query Language

The visual query language is a sub-system, which is known to be the implementation
of GraphVQL. It allows users to visualize di�erent kind of graphs and to query
them. This sub-system is divided in four modules (see Figure 6.5):
File treatment: This module contains all the classes that treat the input �les.
For the GraphML �les containing SPIDER-Graph model a speci�c parser is
implemented to extract information about the graph. For other �le-formats (XML,
GraphML), we transform them to RDF in order to facilitate the extraction of
information using the SPARQL queries.
The RDF parser is based on the Jena API which can be used to create and
manipulate RDF graphs.
Drawing query treatment: Using the Jung API3, this module provides the draw
functionalities and treats the input drawn graph query to extract a pattern graph
query.

1http://prefuse.org/
2http://gephi.org/
3http://jung.sourceforge.net/
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Query mapping: This module transforms the graph pattern query to the
corresponding query and �nds the result. It uses the ARQ component of the Jena
API for the SPARQL translation. ARQ is an implementation of the SPARQL query
language for Jena. It allows executing the SPARQL query with the expansions. For
the SPIDER-Graph query, the graph pattern are treated via the pattern matching
algorithm or the shortest path algorithm.
Graph drawing: Based on the Perfuse API, this module visualizes the resulting
and the input graphs.
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Figure 6.5: The Visual Query Language.

The visual interface of this sub-system is presented in the following screenshots.
The screenshot in Figure 6.6 shows the interface where the user can draw queries.
Figure 6.7 and Figure 6.8 show a visualization of an RDF graph and a SPIDER-

Graph, respectively.

6.2 Experiment Data Sets and Evaluation Context

In the following experiments, we have used two sources of data:
(1) The ADEME database:
The used relational database is a real enterprise database which describes the thesis
funded by the ADEME. The database contains 30 tables about students, their thesis,
their directors and their laboratories, as well as the engineers and the co-�nancers.
The database contains the theses of 1788 students. Each table contains in average 20
attributes. This database is used to evaluate the objects interaction graph extraction
approach applied to a social network case. In order to simplify the process, we detail
the process using a simpli�ed part of the database which is exposed in Figure 6.9.

(2) Data provided from the ARSA project:
The ARSA project (Analyses des Réseaux Sociaux pour Administrations, i.e. Social
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Figure 6.6: A snapshot of the query language interface.
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Figure 6.7: A Snapshot of a RDF Graph Visualization.
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Figure 6.8: A Snapshot of a SPIDER-Graph Visualization.
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Figure 6.9: The PhD Students Database.

Networks Analysis for Administrations) is dedicated to the promotion of the trans-
parency in administrations using social networks. In the context of this project, we
have been concerned to carry out a visual query language for novice user. Then,
in order to evaluate the performance of the realized query language GraphVQL,
two �les from the ARSA project were used. One �le was a RDF one, the other
GraphML one, containing information about the Antibe town hall: agents, projects
and materials. The �les contain 2500 objects.

6.3 Evaluation of the Relational Database Transforma-

tion to an Object Graph: The Social Network Use

Case

In this section, we apply the di�erent processes of the object graph extraction ap-
proach from the relational database on the ADEME database in order to extract
a social network. This social network describes all the interactions between the
persons existing in the database. The object graph GO := (OI , RO) extracted from
the relational database (de�ned by the de�nition 19) will be a social network where
OI is the set of complex-nodes instances representing persons and RO the relations
between these persons. The extraction approach is based on two main steps:

• The relational database model transformation to a SPIDER-Graph model.

• Graph extraction according to the user chosen objects: in the case of social
network the chosen objects should have the type "Person".

The obtained results are presented along with the input dataset. Then, the
process results and performances are evaluated.
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6.3.1 Mapping the Relational Model to the SPIDER-Graph
Model

6.3.1.1 The Obtained Result from the Dataset

The process of mapping the relational model to a SPIDER-Graph is based on two
main processes (see section 4.3):

• The schema translation which is start by extracting the relational database
schema; then, transforming it into a SPIDER-Graph schema.

• The data conversion which uses the relational database tuples and the
SPIDER-Graph schema to create the SPIDER-Graph instance.

As a �rst step of the transformation, the SPIDER-Graph schema is extracted
from the relational database schema. The extracted SPIDER-Graph schema is the
following: S = (Ncn ∪R) where:
− The set of complex-nodes Ncn = { Thesis, Laboratory, Thesis_hasStudent, Stu-

dent, Director_thesis, Foreign_Student, Engineer, Sector,Theses_has_Engineer }
− R :={〈“IS −A”, Foreign_Student, Student〉 ,
〈“Part− of”, Student, Thesis_hasStudent〉 ,
〈“”, Director_thesis, Student〉 ,
〈“”, Director_thesis, Laboratory〉 ,
〈“”, Thesis,Director_thesis〉 ,
〈“”, These_has_Engineer, Laboratory〉 ,
〈“Thesis_hasLab”, These, Laboratory〉 ,
〈“Part− of”, Thesis, Thesis_hasStudent〉 ,
〈“Part− of”, Thesis, These_has_Engineer〉 ,
〈“Part− of”, Engineer, These_has_Engineer〉 ,
〈“”, Engineer, Sector〉}
In the extracted schema, the relation 〈“Thesis_hasLab”, These, Laboratory〉
is provided from the table "Thesis_hasLab" which is constructed only with a
primary key composed with two foreign keys Lab_id and th_id. Then, the
complex-node "Thesis_hasLab" is deleted and the attributes < Th_id, Thesis >
and < Lab_id, Laboratory > are added to the complex-nodes Laboratory and
Thesis, respectively.
The resulting SPIDER-Graph schema is depicted in Figure 6.10.

The second step is the data migration which consists in populating the extracted
schema by using the table tuples.
By using the set of relational tuples, we instantiate each complex-node in the
SPIDER-Graph schema.
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For example, from the complex-node Thesis:

Thesis = (“Thesis” , { < Th_id, Integer >,

< Th_name, String >,

< Topic, String >,

< Dir_id,Director_thesis >,

< Lab_id, Laboratory >})

By using the set of tuples related to the table Thesis and the value of the foreign
keys, this complex-node has two instances: Thesis_1 and Thesis_2.

Figure 6.10: SPIDER-Graph Schema.

For example, Thesis_1 is an instance of Thesis and is de�ned by:

Thesis_1 = 〈Thesis, Thesis_1 , { < Th_id, Integer, 102 >,

< Th_name, String, “Logic′′ >,

< Topic, String, “Electronic′′ >,

< Dir − id,Director_thesis,Director_thesis_1 >,

< Lab_id, Laboratory, Laboratory_1 >})〉

For each relation in R in the SPIDER-Graph schema, a set of instances relations
RI is extracted using the value of keys on the relational tables.
Finally, transformed data are loaded into the SPIDER-Graph schema. An excerpt
of the SPIDER-Graph instance is shown in Figure 6.11.

From the ADEME database, the following data were obtained:
-A schema SPIDER-Graph containing 30 complex-nodes and 48 relations.
-An instance SPIDER-Graph containing 12213 instance complex-nodes and 13282
instance relations.
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Figure 6.11: SPIDER-Graph Instance.
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6.3.1.2 Evaluation

The relevance of the previous process is evaluated by using the database migration
evaluation method proposed in [Maatuk 2008]. This method uses a set of queries
which have been designed to observe any di�erences between the source database
and the target database. If the same result is obtained, it means that the
transformation method is correct, and no data is lost by using it.
In our case, the input database is a relational database and the resulting SPIDER-
Graph is stored in a GraphML �le. For this evaluation, we have stored the resulting
graph in a relational database in order to perform some SQL queries in the two
data models and to evaluate the approach.
For this, we have modeled the SPIDER-Graph model using a relational model. The
proposed schema is composed by four tables:
-A complex-node table for the complex-nodes in the SPIDER-Graph schema.
-A complex-node_IN table for the complex-nodes instances relatives to each
complex-node.
-Relation and Relation_IN tables store information about the relations between
complex-nodes and complex-nodes instances, respectively.
For the purpose of securing a better modeling of the SPIDER-Graph, the database
schema is incremented by two new types: Node and Node_IN to facilitate the
storage of the complex-nodes attributes. This an example of the used queries:

Query1: Find the Thesis id of the student having the st_id=03;
RD: Select th_id from Student where st_id='03';
SGD: Select listn[2].value from complex-node_ins where
complex-node_name='Student' and listn[1].value='03';
Query2: Find the engineer name working on the th_id='102';
RD: Select E.Eng_name from thesis_has_Engineer T, Engineer E where
T.Eng_id=E.Eng_id;
SGD: Select T1. listn[2] from complex-node_ins T,complex-node_ins T1 where
T.complex-node_name ='theses_has_ingenieurs' and T1.complex-node_name
='ingenieurs' and T.listn[7]=T1.listn[10];

After comparing the results between the two databases, the SPIDER-Graph
schema and instance are generated without loss (the same result is found ) or re-
dundancy (the result is not duplicated) of data. It proves the correctness of this
transformation.

6.3.2 Evaluation of the Object Graph Extraction from the SPI-
DER_Graph: The Social Network Case

6.3.2.1 The Resulting Social Network

In order to evaluate the object graph extraction process, we have chosen to transform
the extracted SPIDER-Graph (instance in Figure 6.11 and schema in Figure 6.10)
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to a Social network. The object Graph extraction approach is based on two main
steps:

1. Object identi�cation

2. Relation construction

A. Result of the object identi�cation process
The chosen objects in this case are the complex-nodes representing the persons.
These objects are identi�ed using the object identi�cation process (see section
4.4.2). The SPIDER-Graph schema is used as an input to extract the type of
candidate complex-nodes (those which may represent persons). Then, the instances
of these complex-nodes are put in set OI .
The algorithm proposed in section 4.4.2 is composed of three main steps:

1. Complex-nodes and concepts Names treatment,

2. String matching between the complex-nodes names and the chosen concepts
labels.

3. Candidates objects treatment.

In the social network case the selected concept is �Person". In this particular case,
we won't compare the label of the concept "Person" with the name of the existing
complex-nodes in the SPIDER-Graph schema instead we proceed directly to the
third step. Indeed, "Person" is a generic concept and it is unusual to �nd table
with the name "Person". The complex-nodes attributes are compared with the at-
tributes (Datatype properties) of the concept �Person". A person has a number
of characteristics like name, surname, birthday, address, email and etc. The en-
terprise ontology already built (see the enterprise ontology chapter) contains the
concept "Person" (see Figure 6.12) with its di�erent characteristics (described by
the datatype properties ).

In order to compare each complex-node CN, attributes are compared with the
datatype properties of the concept "Person", using the following similarity measure
presented in the section 4.4.2:

Simatt(CPerson, CN) =

∑
nCPerson

∈DP
∑

acn∈Anc
sim(nCPerson

, nacn)

|DP |+ |Anc|
Where nCPerson

is the name of a datatype property related to the concept Person
and acn is the name of an attribute of the complex-node CN.

The proposed similarity is based on the name similarity sim(nCPerson
, nacn) of

each attribute of the complex-node and each datatype of the concept person. The
result is the average of these similarities.

If simatt(CPerson, CN) > β (where β is a threshold value that we will specify
in the next section) then CN is added to the objects set.
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Figure 6.12: The Concept "Person".

By applying this process to the SPIDER-Graph schema presented in Figure
6.10, the complex-nodes representing a person detected are: "Student", "Direc-
tor_thesis" and "Engineer". Then, all their instances are added to the object set OI .

B. Result of the Relations Construction Process
Here, we apply the relation construction process presented in section 4.3.1.1. The
relation construction process is performed using the identi�ed objects set OI and
the prede�ned relation patterns. The extracted relations for each kind of pattern is
described below.
B.1. Identi�cation of New Objects

By using the �IS-A" relation pattern and the relation r =< “IS − A”, Foreign −
Student, Student > , the process identi�es �Foreign-Student" as an object. Then,
the instances of the complex-node Foreign-Student are added to the set OI .
B.2. Relations between Chosen Objects

By using the set of patterns already de�ned in section 4.4.3, we detect the hidden
relations between the OI objects. This process uses each existing relation in the
input SPIDER-Graph schema.
From the relation Rcn1 :=< “”, Director_thesis, Student >, two patterns are iden-
ti�ed (Table 6.1):

• Pr1 :< “”, Director_thesis, Student, null >: In the SPIDER-Graph schema,
Student and Director_thesis share the relation Rcn1. Pr1 indicates that the
Rcn1 instances that exists in the SPIDER-Graph instance relations should be
added to Ro.

• Pr2 :=< “Same_Student”, Director_thesis_i,Director_thesis_j, Student >:
Two thesis directors may have the same Student (same value of St−id). Then,
the SPIDER-Graph is then searched for all instances of Director_thesis
which have the same Student (mediator for this pattern) in order to add
between them the relation Same_ Student.
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Relation and identi�ed pattern Example of extracted rela-
tions

Relation:
Rcn1:=< “”, Director_thesis, Student,>
Patterns:
Pr1 :=<

“”, Director_thesis, Student, null >

Pr2 :=< Same_Student,
Director_thesis_i,
Director_thesis_j, Student >

Table 6.1: Relation Rcn1 Pattern.

In the case when no relations exist between the identi�ed objects, we try to search
the path or the semi-path between these objects. Afterwards, it is investigated if
there is a path between ( �Student", �Engineer") and (�Engineer",�Director_thesis")
by applying the Dijkstra algorithm.

• For (�Student", �Engineer"): The semi-path
Prpath :=< “”, Engineer , Thesis_has_Engineer,
Laboratory, Thesis, Thesis_has_student, Student > is detected.

• For (�Director_thesis",�Engineer"): The semi-path Prpath :=< “”, Engineer,

Thesis_has_Engineer, Thesis,Director_thesis, > is detected.

B.3. Relations between Chosen Objects and Other Complex-Nodes

In this step, we use the prede�ned patterns in Table 4.3 to discover new relations be-
tween the detected objects using their relations with other complex-nodes (complex-
nodes that are not in the set OI).

From the relation Rcn2 :=< ””, Director_thesis, Laboratory >, one pattern
is identi�ed (Table 6.2): Laboratory is not an identi�ed object and therefore its
instances are not included in the �nal graph:

• Pr3 :=< Same_Laboratory,Director_thesis_i, Director_thesis_j,
Laboratory >: using the value of the foreign key Lab_id in each complex-
node instance of the object Director_thesis, we will link those having the
same value of Lab_id by the relation Same_Laboratory.

From the relation Rcn3 :=< “”, Engineer, Sector >, one pattern is identi�ed
(Table 6.3):
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Relation and identi�ed pattern Example of extracted rela-
tions

Relation:
Rcn2 :=< “”,

Director_thesis, Laboratory >
Pattern:
Pr3 :=< Same_Laboratory,
Director_thesis_i,
Director_thesis_j, Laboratory >

Table 6.2: Relation Rcn2 Pattern

• Pr3 :=< Same_Sector, Engineer_i, Engineer_j, Sector >: using the value
of the foreign key Sect_id in each complex-node instance of the object
Director_thesis, we will link those having the same value of Sect_id by
the relation Same_Sector.

Relation and identi�ed pattern Example of extracted rela-
tions

Relation:
Rcn3 :=< “′′, Engineer, Sector >

Pattern:
Pr3 :=< Same_Sector,
Engineer_i, Engineer_j, Sector >

Table 6.3: Relation Rcn3 Pattern

From the relation Rcn4 :=< “Part − of”, Student, thesis_hasStudent >, we
identify one pattern (Table 6.4) and we add some information:

• Thesis_hasStudent shares two relations "Part-of" with Student and Thesis.
We add a new attribute on the complex-node Student < Thesis, Thesis_i >,
corresponding to his Thesis. Then, we can apply the pattern Pr4.

• Pr4 :=< Same_Thesis, Student_i, Student_j, Thesis_hasStudent >, by
this pattern all the students who share the same thesis are searched. No
semantically inexact relation is found.
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Relation and identi�ed Pattern Example of extracted rela-
tion

Relation:
Rcn4 :=< “Part− of”, Student,
thesis_hasStudent >
Pattern:
- Thesis_hasStudent shares two rela-
tions �Part-of� with Student an Thesis
- Add the attribute n :<

Thesis, Thesis_i > to each instance of
Student
- Pr4 :=<

Same_Thesis, Student_i, Student_j,
Thesis_hasStudent >

Table 6.4: Relation Rcn4 Pattern.

From the relation Rcn5 :=< “Part − of”, Engineer, thesis_has_Engineer >,
we identify one pattern (Table 6.5) and we add some information:

• thesis_has_Engineer shares two relations �Part-of" with Engineer and
Thesis. An attribute is added to the the complex-node Engineer <

Thesis, Thesis_i >, corresponding to his Thesis. Then the pattern Pr4 can
be applied.

• Pr4 :=< Same_Thesis, Engineeri, Engineerj , thesis_has_Engineer >,
with all the engineers sharing the same thesis are searched.

From the relation Rcn6 :=< “′′, Thesis,Director_thesis >, there are no identi-
�ed patterns because Thesis is not related to other objects (Table 6.6).

Finally, the schema of the resulting social network is depicted in Figure 6.13 and
the corresponding social network in Figure 6.14.

The resulting social network contains: 1788 complex-nodes �Student" instances,
1735 complex-nodes �Directeur-thesis" instances and has 303 complex-nodes �Engi-
neer" instances. The approach built 47844 relations between these instances.The
number of relations is higher than the number of relation in the relational database.
This is due the fact that from each detected relation in the database, the relation
extraction process can extract one or two new relation. We can reduce the relation
number by adding a �lter to the relation extraction process which calculate the
importance of the relation to add to the user.
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Relation and identi�ed Pattern Example of extracted rela-
tion

Relation:
Rcn5 :=< “Part− of ′′, Engineer,
thesis_has_Engineer >
Pattern:
- Tthesis_has_Engineer shares two
relations �Part-of� with Engineer an
Thesis
- Add the attribute n :<

Thesis, Thesis_i > to each instance of
Student
- Pr4 :=<

Same_Thesis, Engineeri, Engineerj,
Thesis_hasStudent >

Table 6.5: Relation Rcn5 Pattern.

Relation and identi�ed Pattern Example of extracted rela-
tion

Relation:
Rcn4 :=<

“”, Thesis,Director_thesis >
Pattern:
- Thesis has no relations with other
objects then no pattern detected.
- Add the node n :<

Thesis, Thesis_i > to each instance of
Student

Table 6.6: Relation Rcn4 Pattern
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Figure 6.13: The Schema of the Social Network.

6.3.2.2 Evaluation

The pertinence of the previous process was evaluated in two steps. First, the object
identi�cation was evaluated using the recall and precision measures:

Precision= (number of identi�ed objects correctly)/(total of identi�ed objects)
Recall=(number of identi�ed objects correctly)/( total of objects to identify)

In the case of the ADEME database, the application detected all the tables contain-
ing persons because the attributes tables were well designed.
However, the precision and the recall of the approach depend on the α value (thresh-
old of the name similarity) and β value (threshold of the attributes similarity,
simatt). The value variations of the precision are represented by the schema in
Figure 6.15 and for the recall are presented in Figure 6.16.

From the graphic, we can notice that when α and β have a high values the result
precision increase and the recall decrease.
α has more in�uence on the recall value. α controls the similarity measure to select
the candidate complex-nodes to be �ltered. Then, when α has a high value, the
number of candidates increases and the recall increases. However, this can decrease
the candidate number and then we can lose some objects. Thus, from the evaluation
we take a high value of β = 0.7 and α = 0.4 in order to guaranty a good recall and
high precision.
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Figure 6.14: The Extracted Social Network.
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Figure 6.15: Variation of the Precision Depending on β and α Value.

Figure 6.16: Variation of the Recall Depending on β and α Value.
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In order to evaluate the relation construction process, we have de�ned a set of
SQL queries in order to verify the correctness of the extracted data. These queries
are used to search the existence of the extracted relations on the initial relational
database. We summarized some examples of these queries in table 6.17.

Figure 6.17: SQL queries for the relation extraction process evaluation.

The SQL test queries, presented on the second column, are generated automat-
ically from the new extracted relations. This is feasible because the complex-nodes
names preserve the tables' names. The queries model the extracted relations and
their results should identify the objects of the graph relations. For example, for the
relation R =< “”, Director_thesis, Student >, the query should �nd all the couple
of Director_thesis and Student which share this relation and it should be veri�ed
that is the same couple of objects having this relation in the social network.
In table 6.17, In the �rst rows, a1 is the �rst attribute related to CNs and it cor-
responds to the primary key of the table from which CNs is extracted. a2 is the
attribute of CNs which references CNd.
In the third row, in the case of i < n: ai is the primary key of Ti (the �rst attribute
of CNi which is extracted from Ti) and ai is the reference of Ti in Ti+ 1.
if i = n, an is the primary key of Tn and an is the reference of Tn in Tn− 1.
The evaluation of the queries has shown the pertinence of the process. However, the
extraction of the SQL query becomes more and more complicated especially where
the complex-nodes are not directly connected. For instance, to evaluate a relation
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based on a path, we need multiple joins that sometimes are hard to �nd in the
relational database.

6.4 GraphVQL Evaluation

In order to evaluate the performance of the query language GraphVQL, we have
calculated the time response according to the input graph size. The evaluation will
be divided into two parts: queries on the RDF �les and queries on the SPIDER-
Graph model.

6.4.1 Queries on Simple Graph

In the case of simple graphs, the input graphs in GraphVQL system are transformed
to a RDF model. Then, in order to evaluate the time response of GraphVQL, we
have used di�erent query types to query RDF graphs with various sizes. The �rst
graph is a synthetic graph about projects and employees, the second graph is a sub-
graph from the ARSA data and the third one is the graph of the ARSA data (12213
nodes and 13282 edges). The evaluation results are presented in Figure 6.18. The
presented performance values are the average values founded with a set of di�erent
queries.
For the select queries, a query that contains many constraints are executed faster
than a select all query. Also, for the path query, the length of the path in�uences the
time response. The select queries used for the evaluation cantain many constraints.
In this case, the path query can be more faster than a select query. For the social

Figure 6.18: Performance of the GraphVQL Queries on a RDF Graphs.
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network analysis query, the system gives the user a table containing the information
about the closeness, degree and betweenness. Figure 6.19 shows an example of a
SNA query which calculates the di�erent measures for a speci�c project. This query
is executed on the synthetic graph.
The high value of betweenness shows the greater amount of the project in�uence
over what happens in a network. The positive degree value shows that this project is
active in the network. The closeness is near to zero because the �rst graph is divided
in two unconnected graphs, which means that this project can not be reached by
other objects from the second graph.

Figure 6.19: Social Network Analysis Query on a RDF Graph.

6.4.2 Queries on SPIDER-Graph Evaluation

The SPIDER-Graph queries are based on two algorithms: The graph pattern match-
ing algorithm for the selection queries and the shortest path algorithm for the path
queries. Below, the performance of each query type is given.

6.4.2.1 Selection Queries

We have evaluated these queries by varying the input queries size (number of nodes
used on the query) and the graph size. The �rst chart 6.20 represents the time
of response of the graph pattern matching algorithm according to the number of
nodes used in the query, the use or not of the pruning by pro�les on the algorithm
presented in the section 5.4.2 and if the graph query pattern contains attributes.
This evaluation is made on the SPIDER-Graph instance extracted from the ADEME
database (12213 nodes and 13282 edges). The results show that for a graph pattern
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Figure 6.20: Performance of the Graph Pattern Matching: Pruning Technique and
Attributes In�uence.
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query without attributes or with few attributes (one attribute for each node), the
use of the pruning techniques accelerates the time response when the graph contains
attributes. When the pattern query contains more nodes, the use of attributes
decrease the candidate number and it accelerates the search process.
The second analysis concerns the size of the input graphs. We have used three
graphs. The �rst one is a social network composed of 21 nodes, 94 edges and with
no attributes in the nodes. In this case, the performance obtained is represented in
Figure 6.21.

Figure 6.21: Performance of the Graph Pattern Matching with the Social Network.

The second graph is composed of 135 nodes and 642 edges, representing the rela-
tions between Computer Science researchers and their publications (see Figure 6.22).
Each node has attributes attached. The third one is the SPIDER-Graph instance
extracted from the ADEME database (12213 nodes and 13282 edges).

Comparing all the graphs together (see Figure 6.23), we obtained the following
result:

The time response used in each case is the average of the results presented before.
It is noticeable that when it comes to a very large graph, the time of response
increases considerably, though, it can be considered as implement complementary
techniques to reduce the time, once any small perceptual decrease in the time spent
represents a sensitive di�erence for the �nal user.
Finally, considering the results presented, we can conclude that the presence of
attributes in the graph makes the search much slower, but, the use of this attributes
in the pattern makes the number of candidates decrease substantially.



6.4. GraphVQL Evaluation 165

Figure 6.22: Performance of the Graph Pattern Matching with the Second Graph.

Figure 6.23: Performance of the Graph Pattern Matching: Graph Size In�uence.
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6.4.2.2 Path Queries

We have evaluated the performance of the path query process by varying the size
and the type of the searched path using the ADEME graph. We have used di�erent
path queries size: Queries containing between two or �ve nodes that are with or
without attributes.

In Figure 6.24, we present two examples of the used path queries.

Figure 6.24: Example of the Used Path Queries.

Figure 6.25: Performance of the Shortest Path Algorithm: Path Query Size In�uence

The results shown in Figure 6.25 show that a query path without attributes
is faster to �nd. In the case of the path without attributes, the algorithm does
not have constraint to search then it will return all the paths that match with the
query. In other cases, the algorithm should �lter the result.
When queries have four or �ve nodes, the algorithm �nds the results faster than
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otherwise. This is due to the fact that the numbers of nodes limits the number of
possible paths to �nd.

6.5 Summary and Conclusion

In this chapter, we have presented the implementation of the di�erent proposed
approaches in this thesis. Then, we elaborated on various experimentations
realized thanks to object interaction graph extraction approach and the GraphVQL
language, previously introduced in Chapters 4 and 5.

We �rst detailed the three main sub system implemented to evaluate the work:
the ontology learning, the object interaction graph extraction and the visual query
language. Then, we applied the object graph extraction approach to build a social
network from the ADEME database. As a �rst step, we have transformed the input
relational database to a SPIDER-Graph. Despite that the resulting graph is stored
in a GraphML, we have stored it in a relational database to evaluate it via a set
of SQL queries. In the section 6.3.2.1, we have detailed the process to transform
the obtained SPIDER-Graph to a social network. The resulting social network,
which describes the relations between three objects: student, thesis directors,
and engineers, is modeled also as SPIDER-Graph stored in a GraphML �le. The
relevance of the results has been evaluated using SQL queries.

In the section 6.4, we have presented the evaluation of GraphVQL using the
ARSA project data. This evaluation is divided in two parts. Firstly, we have also
evaluated the time responding of GraphVQL in the case of the simple graph (stored
in RDF, GraphML or XML). This evaluation shows an accepted timing with medium
graphs (2500 nodes). However, the time responding of the aggregation query can be
improved for example by using a graph aggregation algorithm instead of the adap-
tation of the SPARQL operators. Secondly, we have evaluated GraphVQL time
responding in the case of SPIDER-Graph (stored in a modi�ed GraphML). The
pattern matching algorithm used for the selection queries has been evaluated by
varying the input graph size, the input query size and the technique used. The re-
sults have shown an improvement of the time response by using a pattern matching
algorithm based on a pruning step and taking in consideration the complex-node
attributes (see Figure 6.20). Indeed, a pruning step reduces the space of search
and accelerates the matching process. For the path queries, we have evaluated the
performance of the shortest path algorithm by varying the input query size.
For the moment, we use medium or small graphs (e.g. the ADEME SPIDER-Graph
contains 12213 nodes). Then, we plan to process large and very large graph. We
will optimize the process of pattern matching by improving the pruning technique
and reducing as possible the search space. Another possible solution is by dividing
the input graph and processing it using distributed solution like using the MAPRe-
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duce [Lin 2010].



Chapter 7

Conclusion and future work

7.1 Summary of Contributions

The aim of this thesis, as indicated in the beginning, was to model enterprise data as
graph model in order to facilitate the information search and analysis. The objective
is also to provide a cartographi of data manipulated in an enterprise, and to bridge
the gap between structured data and unstructured content. The main research
questions were how to extract graphs from the di�erent enterprise data (structured
and unstructured) and facilitate the use of these graphs in the information search
process. In order to answer these questions, we have proposed:

• An approach to extract graphs from relational database and a new graph data
model to model these graphs.

• An approach to extract a speci�c enterprise ontology using the unstructured
and semi-structured enterprise data.

• An approach to extract objects interaction graphs using the graphs extracted
from the relational database and the knowledge learnt from the enterprise
ontology.

• A visual query language allowing querying the di�erent graphs types existing
on the enterprise for non expert user.

Now, we will summarize the di�erent contributions for each proposed approach.
1. Extracting graphs models from the di�erent enterprise data source:
Graphs are a natural way to model data. Indeed, having all the data modeled as
graphs allows the users querying and analyzing them using the same techniques and
using the powerful graph manipulation and access techniques. As the enterprise data
can be structured, semi-structured and unstructured, we have adopted a speci�c
approach for each data type. However, the semi-structured data as XML and RDF
can be modeled directly as a graph.
For the relational database, we have proposed a new approach based on two steps:
(1) transform the relational schema to, a graph database schema and (2) Migrate
the data to graph instance.
In order to preserve the relational data characteristics (dependency between tuples
with foreign keys, etc) and improve the visualization and the comprehension of the
resulting graph, we have de�ned the SPIDER-Graph data model. The SPIDER-
Graph allows to model data having multiple attributes and multiple relations. The
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attributes in this model can refer to other nodes which can model foreign keys.
In the case of unstructured data, the way to extract a graph model is not intuitive.
For this we have choosen to extract the enterprise objects and their relations with
the help of an enterprise ontology. This ontology plays the role of a guide to extract
the important concepts and relations of the business domain in the enterprise data.

Then, we have proposed an enterprise ontology learning approach from the en-
terprise data. The input of this process is a generic enterprise ontology containing all
the important concepts about the business domain. The advantage of this approach,
which is based on adapted patterns for the business context, is that it provides new
enterprise ontology for each company.
2. Extracting objects interaction graphs from multiples resources:
The graphs describing the interactions between heterogeneous objects, like social
networks, facilitate complex data analysis. In this context, we have proposed a
new approach that allows the extraction of the interaction graphs from the graph
extracted from the relational database and enriched with the enterprise ontology.
This approach based on two main steps:
First, the objects identi�cation: the user selects the enterprise objects, he is inter-
ested by, represented by the ontology concepts then the process identify from the
graph the corresponding objects.
Second, the relations extraction: this step is based on a set of relation patterns ex-
tracted from the relational database which detect explicit and create new relations
between the chosen objects from the relational database. Then, other relations are
added from the ontology relations. The use of the graph extracted from the re-
lational database combined with the ontology extracted from the other enterprise
data, makes this approach original. The proposed approach has been applied to
extract social network.
3. The visual query language
We have proposed a visual query language (GraphVQL) which allows querying dif-
ferent graph models: SPIDER-Graph, RDF and GraphML. This language cover
di�erent query types from the simple selection query to social network analysis
query and use:

• Graph pattern matching process to extract subgraphs from input graphs.

• Set of mapping rules to transform a graph pattern query to a SPARQL query.

GraphVQL can be seen as a query language related to the new graph data model
SPIDER-Graph which uses a new extensions of the pattern matching algorithm
proposed in [He 2008] and the shortest path algorithm proposed in [Newman 2001].
It is also a new visual query language for RDF which extends SPARQL to add new
query types as the analysis or the shortest path query.
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7.2 Future Work

In this section, we describe several future lines of research and present some
preliminary ideas on how they can be tackled. Regarding the graphs extraction
process, some issues can be addressed in order to improve the �nal results.

1. In the enterprise some existing social networks can be found on the social
websites such as LinkedIn, Facebook or Tweeter among others. These social
networks can be used to enrich the extracted interaction graphs. This
enrichment can be performed by using merging graph techniques.

2. In this thesis, we have focused, on the graph extraction from one relational
database. However, in the real enterprise context, we can �nd multiple
databases created for di�erent contexts and applications. Then, merging
the di�erent extracted graphs from the di�erent databases can improve the
quality of the resulting graphs.

3. The identi�ed relation patterns from the relational database can be improved
by using not only the schema but also the relational database tuple to learn
new relations types. For example, these tuples , using the data mining
techniques, allows to discover objects having the same characteristics.

4. In order to extract graph model from the unstructured and semi structured
data, we have used an enterprise ontology with a prede�ned concept. How-
ever, in the case of building interaction graphs with known objects, we can
use machine learning techniques to �nd these objects in the text and extract
their relations. Some of these techniques have been applied in the social
network extraction context.

5. The implementation of the proposed approach has revealed that we cannot
do it on line. Then, in our future work we will try to adopt new techniques
such as parallel computing algorithm to increase the time complexity of the
used algorithms.

Regarding the visual query language some issues can be addressed in order to im-
prove the �nal results.

1. In order to query the SPIDER-Graph graph model, the GraphVQL language
uses a pattern matching algorithms to �nd select query and a shortest path
query algorithm to �nd the links between two objects. In our future work, we
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will improve the pattern matching algorithm to realize aggregation queries on
the SPIDER-Graph data model. The enterprise ontology can be integrated in
this algorithm to improve the matching result. Indeed, we can search for the
existing objects on the graph semantically similar to the object on the query.

2. In addition to the visual query, we can add a keyword search module to �nd
information on the di�erent input graph: RDF, Graphml.

3. The queries drawn by the user are stored. Then, the history of theses queries
can be used to recommend new queries for the user. Also, these queries can
be used to detect communities and to analyze the users behavior.
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