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Résumé

Situé en Suisse, le LHC a commencé à faire collisionner des protons à une énergie de 7 TeV
au centre de masse en Mars 2010. Il s’agit du plus grand collisionneur de particules du
monde avec une circonférence d’environ 27 km. Le but de cette machine est d’aider la com-
munauté scientifique à resoudre les questions liées aux interactions fondamentales entre les
particules élémentaires.

La téorie décrivant avec une grande précision ces interactions entre particules est con-
nue comme le Modèle Standard (MS). Malgré que le MS explique presque tous les phe-
nomènes observés en-dessous de 200 GeV, il est considéré par les physiciens comme une
théorie valide jusqu’à une énergie d’environ quelques TeV. Et c’est précisement cette gamme
d’énergies que le LHC explore.

Un des plus grands problèmes conceptuels qui doit affronter le MS est le problème de
la hiérarchie. Afin de réussir à expliquer la masse des particules fondamentales, la brisure
expontanée de la symétrie nécessite une nouvelle particule: le boson de Higgs. En tant
que particule scalaire, le boson de higgs reçoit des corrections de masse proportionnelles à
l’échelle d’énergie valide pour le MS.

Deux procédures sont possibles pour découvrir l’origine de la nouvelle physique au-
dèla du Modèle Standard: par de mesures directes et indirectes. Dans la première situation,
on essaie d’observer directement des nouvelles particules à des niveaux d’énergie jamais
envisagés, cependant dans la deuxième on mesure l’effet de nouvelles particules sur des ob-
servables expérimentales, telles les rapports de branchement de désintégrations de hadrons
beaux. Au LHC deux expériences ont eté conçues pour des observations directes: ATLAS
et CMS; et une autre experience designée pour des mesures indirectes: LHCb. Le princi-
pal avantage des mesures indirectes par rapport aux directes est la possibilité d’accéder à
des masses plus élevées. Un exemple de mesure indirecte est la mesure des rapports de
branchement mettant en jeu des des changements de saveurs par courant neutre. Ces pro-
cessus sont interdits au niveau arbre et surviennent, par exemple, au niveau des processus
en boucle. Ils sont aussi trés intéresants car, dans des processus en le cas hypothétique qu’il
y ait de nouvelles particules, elles pourraient intervenir dans le boucle et changer les prédic-
tions attendues dans le modèle standard. La figure 0.1 montre des diagrames de Feynman
pour des transitions b → sll̄ ou b → s f f̄ , avec l lepton et f fermion, dans le modèle standard
et dans un hypothétique nouveau paradigme.

Les rapports de branchement de B0
s → µ+µ− et B0 → µ+µ− (B(B0

(s) → µ+µ−)) sont

1
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(a) SM diagram

  

(b) Hypothetical NP diagram

Figure 0.1: Diagrammes pingouins contribuant à b → sll̄ avec des particules observées (a)
et hypothétiques (b).

prédits avec une bonne précision dans le MS [1]:

B(B0
s → µ+µ−)SM = (3.2± 0.2)× 10−9 (1)

B(B0 → µ+µ−)SM = (1.0± 0.1)× 10−10 (2)

D’autres caractéristiques font de l’étude de B(B0
(s) → µ+µ−) une voie pour la recherche

de nouvelle physique. La première est liée aux posibles déviations prévues dans des nou-
veux modèles, telles que la supersymétrie, par rapport aux valors attendues dans le MS. La
supersymétrie, ou symétrie qui relie les propriétés des fermions avec celles des bosons, est
un bon candidat pour étendre le MS, car elle présente une solution au problème de hiérar-
chie, mais elle prévoit aussi une nouvelle particule stable, qui est un des candidats le plus
important de la matiere sombre. Elle prevoit aussi l’unification des couplages fort, faible et
électromagnétique.

Un autre point d’intért est que ces processus n’ont jamais été observés, seulement des
limites sur les rapports de branchement ont été établis [2]:

B(B0
s → µ+µ−) < 43× 10−9,

B(B0 → µ+µ−) < 76× 10−10.

Le LHCb est une experience spécialement conçue pour l’étude des hadrons beaux au
LHC. Le LHC (Large Hadron Collider) est un accélérateur installé dans le mme tunnel de
26.7 km situé à la frontiere franco-suisse qui hébergé le LEP dans les années 90. Depuis
Mars 2010, le LHC délivre des collisions à 7 TeV (8 TeV depuis 2012) d’énergie au centre de
masse.
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Figure 0.2: Efficacité en la identification des muons en fonction du moment transverse et en
différent gammes de moment transverse.

Les deux principales caractéristiques rendant LHCb trés intéressant pour la mesure des
désintegrations très rares des mesons B avec deux muons dans l’état final sont: une bonne
efficacité du système de déclenchement et une bonne efficacité d’identification des muons.
La figure 0.2 montre cette efficacité d’identification en fonction de l’impulsion et en quatre
intervalles d’impulsion tranverse. L’efficacité, pour des impulsions transverses supérieures
à 1700 GeV/c2, est plus grande que 97%.

L’objectif est de mesurer le rapport de branchement de B0
(s) → µ+µ− à partir d’une

normalisation en utilisant le rapport de branchement de désintegrations connues:

B(B0
(s) → µ+µ−)

B(normalization channel)
= Constant×

NB0
(s)→µ+µ−

Nnormalization channel
.

Avec cette normalisation on évite l’utilisation de la section efficace totale de production des
paires bb̄ et la luminosité absolue.

Les critres pour choisir les désintegrations utilisées pour cette normalisation sont basés
sur l’erreur de son rapport de branchement, des similarités avec le signal: mme efficacite de
déchenchement, nombre similaire et type de particules particules. Devant l’impossibilité
d’avoir des désintégrations répondant à toutes ces exigences, on choisit trois désintegra-
tions ayant des caracteristiques différentes, afin d’annuler les incertitudes systématiques.

La prèmiere étape de l’analyse consiste à selectionner des événements en essayant de
supprimer au maximum le bruit de fond. Ce bruit de fond correspond principalement, à



4 resume

Signal Efficiency [%]
90 92 94 96 98 100

B
a

c
k
g

ro
u

n
d

 R
e

je
c
ti
o

n
 [

%
]

0

10

20

30

40

50

60

70

80

Figure 0.3: Rejet de bruit du fond par rapport à l’efficacité du signal d’une sélection basée
sur BDTS calculé avec événements simulées B0

s → µ+µ− en tant que signal et B0
(s) → h+h′−

bandes latérales de données pour les événements du bruit de fond.

cette étape, à des combinaisons de muons venant du vertex primaire ou la collision a eu
lieu.

L’idee est de définir une sélection similaire pour toutes les désintégrations utilisées: sig-
nal et normalisation. Une partie de mon travail de thèse a consisté à optimizer une selection
multivariée basée sur les arbres de décision boostés. Cette sélection est definie avec les vari-
ables suivants:

• Paramètre d’impact du méson B.

• Significance du paramètre d’impacte du méson B.

• Angle entre l’impulsion du méson B et le vecteur défini par le vertex primaire et le
vertex de désintégration du méson B.

• La distance minimale d’approche entre les muons.

• La qualité du vertex secondaire

• Le plus petit des paramètres d’impact des muons.

La figure 0.3 montre l’efficacité sur le signal B0
s → µ+µ− contre l’efficacité de réjection

du bruit de fond présent dans la selection B0
(s) → h+h′−. Les erreurs liées aux deux efficac-

ités son plus petites que 0.1%. On voit que pour une efficacité du signal de 95% on rejecte
60% du bruit de fond. La séléction basée sur ce classificateur est optimisée par rapport aux
performances obtenues sur un classificateur supplémentaire.

Pour mieux visualizer l’effet de la selection sur le bruit de fond, la figure 0.4 présente
la masse invariante des candidats B0

(s) → h+h′− avant et après deux sélections BDTS.
BDTS>0.03 équivaut à une efficacité en signal de 97%, et BDTS>0.03 à 95%.
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Figure 0.5: Distribution de la masse invariant des événements B0
(s) → h+h′−TIS pour dif-

férents selections en BDTS.

Un autre effet important est la selection en événements surnomes TIS, ou événements
qui passent le système de declenchement alors que les produits de désintegration ne sont
pas responsables de cette sélection. Ces événement sont très importants car ils sont utilisés
pour estimer la distribution du classificateur final en utilisant des données réelles, c’est-à-
dire non-simulées. La figure 0.5 montre la masse invariante des candidates B0

(s) → h+h′−

avant et après deux sélections en BDTS.

Afin d’obtenir NB0
s→µ+µ− il faut encore un autre classificateur maximisant la séparation

entre le signal et le bruit de fond présent après la sélection. Ce bruit de fond est composé
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des combinaisons des muons provenant des différentes désintégrations semi-leptoniques
des hadrons B.

En utilisant des événements simulées, on definit un BDT avec 9 variables:

• paramètre d’impact du meson B;

• temps de vol ou temps propre du méson B;

• l’isolation du méson B;

• l’impulsion transverse du méson B;

• la distance minimale d’approche entre les muons;

• l’impulsion transverse minimale des muons;

• le plus petit des paramètres d’impact en unités de significance des muons;

• l’angle entre l’impulsion du muon chargé positivement, dans le système de référence
du candidat B, avec le vecteur perpendiculaire à l’impulsion du B et du faisceau;

• la somme des isolations des muons

La figure 0.6 montre les distributions attendues pour quatre des variables définies. Les
courbes bleues correspondent aux distributions du signal B0

s → µ+µ−, en rouge le bruit
de fond simulé, et les points noirs sont le bruit de fond issues des données. On voit la
séparation entre signal et bruit de fond, et aussi un bon accord entre événements simulés et
données réelees, pour ce dernier type.

Une partie importante du travail à été dedié à optimiser le BDT. Néanmoins, cette op-
timization est limitée par un la faible quantité de données simulées de bruit de fond. La
figure 0.7 montre les pérformances, en terme de rejection du bruit de fond pour deux BDT:
un avec les variables décrites avant et un autre avec plusieurs. Étant donné que les per-
formances sont similaires, on choisit le classificateur avec neuf variables en raison de sa
simplicité.

Un ajustament de la fonction de vraisemblance attendue permet d’obtenir le nombre
d’événements du signal. La masse invariante et la sortie du BDT optimisée précédenmment
entrent dans la définition de cet ajustement.

Soit la fonction de vraisemblance:

L = e−N × N N

N! ∏ p(xi; α1, ..., αm), (3)

où p(xi; α1, ..., αm) est la fonction de densité de probabilité pd f (par N événements x1, ..., xN

en fonction de m paramètres α1, ..., αm. N est le nombre d’événements attendus en sup-
posant statistique Poissoniene. Les paramètres inconnus αi sont obtenus en minimisant
−2 logL par rapport à chaque αi.

p(xi; α1, ..., αm) a quatre contributions, chacune definie en fonction de sa masse invariant
et son BDT:
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Figure 0.6: Distributions des variables entrant dans le BDT, pour le signal B0
s → µ+µ−(ligne

bleue) et le bruit du fond bb̄ → µµXMC (rouge avec des incertitudes), et des évńements de
données à partir des bandes latérales de la distribution de masse invariante. Toutes les
distributions sont réalisées avec des événements avec BDTS > 0.03.

• B0
s → µ+µ−, défini avec une fonction CrystallBall pour la masse avec des paramètres

issus des données et le BDT obtenu à travers des événements B0
(s) → h+h′− non-

biaisés pour le système de déclenchement;

• B0 → µ+µ−, défini de manière similaire à B0
s → µ+µ− en termes de masse et BDT;

• événements de B0
(s) → h+h′− avec double misidentification des hadrons,

• le bruit de fond combinatoire, défini avec une fonction exponentielle obtenue à travers
des événements dans les bandes latérals de masse pour la masse et avec une combi-
naison de trois exponentielles pour le BDT.

Toutes les pd f sont obtenues à la fin avec des données réelles.

Avec 1 fb−1 de données enregistrées par le LHCb pendant 2011, les résultats obtenus
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Figure 0.7: Les courbes de rejet de bruit de fond par rapport Ã l’efficacitÃ© du signal pour
deux BDT différentes calculés avec des événements après une critère de sÃ©lection BDTS
>0.05: la courbe verte avec l’incertitude associé correspond au BDT des 9 variables. La
courbe noire représente les performances du BDT optimisé dans cette section avec treize
variables.

sont:

NB0
s

= 4.5
(

+5.1
−3.5

)
(stat)

(
+1.7
−2.3

)
(syst)

(4)

NB0 = 3.6
(

+6.3
−4.5

)
(stat)

(
+3.4
−3.6

)
(syst)

(5)

où les erreurs statistiques vient de l’ajustement et les incertitudes systématiques sont détail-
lées dans la suite. La figure 0.8 montre les projections de l’ajustement en BDT et en masse
invariante, à l’exclusion des événements avec une sortie du BDT plus petite que 0.25 pour
une meilleure visualisation.

Les erreurs systématiques ont différentes sources, mais sont principalement liées à la
parametrisation des pd f s. L’évaluation de chaque contribution liée aux différentes com-
posantes de l’ajustement du conclut que l’erreur résultant de la paramétrisation du BDT
pour le bruit de fond combinatoire est la plus importante.

À l’aide des experiences simulées, on peut estimer la compatibilité de ces résultats avec
la valeur prédite pour le Modèle Standard (10.0), pas prenant en compte compte des erreurs
systématiques. La figure 0.9 montre les valeurs obtenues pour le nombre des B0

s → µ+µ−

en simulant 10000 expériences. La fraction des événements au-dessus de 0 et inferieure à
10 est de 83% pour une couverture positive.

Les résultats susmentionnés montrent une absence d’excès de signal. En suite, des lim-
ites d’exclusion sont calculées avec une procédure standard: la méthode CLs. Avec cette
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Figure 0.8: Projections de l’ajustement sur les axes du BDT (en haut) et de la masse invari-
ante (en bas), et avec l’exclusion des événements BDT<0.25. Les zones bleues correspon-
dent au B0

s → µ+µ−, les zones jaunes au B0 → µ+µ− et les zones roses au bruit de fond de
B0

(s) → h+h′− avec double misidentification.



10 resume

 / ndf 2χ  805.2 / 485

Constant  6.6± 625.3 

   σ  0.057± 5.191 

      µ  0.056± 4.469 

  yield-µ+µ→s
0B

-10 0 10 20

E
v
e

n
ts

0

10

20

30

40

50

60

70

80
 / ndf 2χ  805.2 / 485

Constant  6.6± 625.3 

   σ  0.057± 5.191 

      µ  0.056± 4.469 

Figure 0.9: Répartition du nombre d’expériences simulées avec un nombre de B0
s → µ+µ−

égal a 4.5. Le nombre total de simulations générées est 10000.

méthode, on estime la compatibilité des événements observés et attendus, pour chaque
rapport de branchement.

La figure 0.10 montre la distribution de CLs pour B0
s → µ+µ− (gauche) et B0 → µ+µ−

(droite). Les valeurs de CLs=0.05 permettent d’obtenir les limites avec une certitude de
95%: B(B0

s → µ+µ−)< 4.5× 10−9 et B(B0 → µ+µ−)< 10.3× 10−10.

Les limites obtenues ont un fort impact sur modèles au-delà du modèle standard.
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Figure 0.11: B(B0
s → µ+µ−) vs B(B0 → µ+µ−) prédite par l’hypothèse de la violation de

saveur minimale (MFV) et par différentes scénarios de nouvelle physique [3]: modèles
MSSM avec plusieurs contraintes et la quatrième generation avec un seul boson de Higgs
(SM4). Superposé aux prévisions théoriques, la zone ombrée montre les limites d’exclusion
obtenues par LHCb [4]. La valeur du MS est marqué avec une étoile.



Introduction

The Large Hadron Collider (LHC) began its activity with the first collisions of protons at a
a center of mass energy of 7 TeV in March 2010. For the scientific community, this machine
represents an opportunity to unveil the still unanswered questions concerning the basic
laws governing the fundamental interactions between elementary particles.

The Standard Model (SM) of fundamental interactions properly explains almost all ob-
served phenomena below 200 GeV. Nevertheless, physicists tend to consider the SM an
effective theory valid only up to an energy scale around the TeV, which corresponds to the
energies that the LHC is exploring.

With the LHC, we expect to reveal new physics with the discovery of particles at masses
never before explored. The goal of the LHC general-purpose detectors such as ATLAS
and CMS is to observe directly these particles on-shell. An intrinsic drawback of this ap-
proach is that, were the new particles masses larger than a few TeV, their discovery would
be impossible under the initial running conditions of the LHC at 7 TeV. Nonetheless, hav-
ing indications of such particles through indirect detection is also feasible. Flavor Changing
Neutral Currents (FCNC) are transitions between elementary particles which are prohibited
at tree level in the SM, and occur only through loop processes. Several observables, such as
branching fractions, shall serve as indications of new particles entering off-shell the FCNC
loop processes.

The measurement of the branching fractions of the rare decays B0
s → µ+µ− and B0 →

µ+µ− (B(B0
(s) → µ+µ−)), plays a key role in indirect searches for new physics. The small

theoretical uncertainty of the SM predictions for these decays together with their clean ex-
perimental signature make them interesting probes of physics beyond the SM. In such new
scenarios B(B0

(s) → µ+µ−) can have different values than the SM predictions.

The experimental state of the art for such branching fractions in March 2010 was re-
stricted to the exclusion limits set by the CDF collaboration with no indications of signal.
The difference between the SM prediction and these limits was of about one order of mag-
nitude.

Especially conceived to study b-hadron decays given its forward orientation, the LHCb
detector represents the optimal experimental device to discover the B0

s → µ+µ− and B0 →
µ+µ− processes.

One of the main challenges in measuring B(B0
(s) → µ+µ−) is to drastically reduce the

background, as these branching fractions are of order 10−9-10−10. After describing the the-
oretical and experimental frameworks of this thesis in chapters 1 and 2, respectively, chap-
ters 3, 4, and 5 aim to describe the sources of background for these rare decays and propose

13



14 Introduction

methods to reduce it. Chapters 6 and 7 detail the extraction of B(B0
(s) → µ+µ−), as well the

implications of such measurements on new physics models.



Chapter 1

B(B0
s → µ+µ−) as a particle physics

benchmark

This chapter identifies the measurement of the branching fractions of B0
s → µ+µ− and B0 →

µ+µ−, B(B0
(s) → µ+µ−) as benchmark tests of the Standard Model (SM) of fundamental

interactions and its extensions. Sec. 1.1 recapitulates the relevant aspects of the SM and
remarks the necessity of a more complete theory. Sec. 1.2 describes the methodology used
to predict the B(B0

(s) → µ+µ−) in the SM and beyond (BSM).

1.1 Towards a theory of fundamental interactions

Almost all known phenomena from 1 eV up to almost 200 GeV are well described by the
Standard Model. However, experimental evidence and theoretical implications motivate
the study of new models extending the SM description of nature.

The SM is a quantum field theory that includes the symmetry groups of strong (SU(3)C)
and electroweak interactions (SU(2)L ×U(1)Y). The sub-indices C, L, and Y refer to color
charge, left-handed fields, and hypercharge, respectively. The Lagrangian describing the
SM has been developed on the basis of experimental facts and certain invariance principles.

Fermions constitute the basic building blocks of matter (Tabs. 1.1 and 1.2), while the
mediators of the interaction between them arise by requiring invariance of the Lagrangian
under gauge transformations. These intermediate particles are known as bosons (Tabs. 1.3).

Table 1.1: The lepton content of the SM. For each particle it exists a corresponding anti-
particle with opposite charge, for charged particles.

Family 1 electron, e− electron neutrino, νe

Family 2 muon, µ− muon neutrino, νµ

Family 3 tau, τ− tau neutrino, ντ

Electric charge −1 0

15
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Table 1.2: The quark content of the SM. For each particle it exists a corresponding anti-
particle with opposite charge.

Family 1 down, d up, u
Family 2 strange, s charm, c
Family 3 bottom, b top, t

Electric charge −1/3 2/3

Table 1.3: The boson content of the SM.

Interaction Particle

Electromagnetic γ

Weak Z0 and W±

Strong gluons

(a) Muon decay (b) Neutron decay

Figure 1.1: Example of charged currents in the SM.

1.1.1 The electroweak interaction

The electroweak (EW) interactions are divided into charged currents (CC) and neutral cur-
rents (NC). In the first group, quarks and leptons interact with the W± bosons, as in the
decays µ− → e−ν̄eνµ and n → pe−ν̄e (Fig. 1.1). These processes confirmed that left-handed
(right-handed) fermion (anti-fermion) chiralities take part in weak processes. The second
group of EW interactions corresponds to interactions of the photon and Z with a fermion
and its anti-fermion (Fig. 1.2) Transitions such as µ → eγ or Z → eµ have never been
observed.

The two fundamental features of the EW interactions are the mixing of the quark flavor
and the EW symmetry breaking.
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Figure 1.2: Example of a neutral current in the SM corresponding to the decay of a Z boson
into a dimuon pair.

Quark mixing

Quark flavor mixing emerges from the observational fact that processes like K+(us̄) → µνµ

exist. Since processes arising from the invariance SU(2) × U(1) do not mix quarks from
different families, it is necessary to postulate that the weak interaction couples to a linear
superposition of mass eigenstates. The mixing between families emerges when quark fields
are expressed in the basis that diagonalizes the time evolution operator of the theory. This
change of basis introduces the Cabibbo-Kobayashi-Maskawa matrix VCKM [5], [6], which
depends on three real parameters and one complex phase. This complex phase results in
the violation of charge-parity (CP), for which it is the only source within the SM . The CKM
matrix is written in the standard parameterization as:

VCKM =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



VCKM =

 c12c13 s12c13 s13e−iδ13

−s12c23 − c12s23s13eiδ13 c12c23 − s12s23s13eiδ13 s23c13

s12s23 − c12c23s13eiδ13 −c12s23 − s12c23s13eiδ13 c23c13


where cij = cos(θij) and sij = sin(θij), and i, j the family indices from 1 to 3. The values

in the diagonal of the matrix are close to 1, |Vcd| and |Vus| are of the order of 20%, |Vcb|
and |Vts| of the order of 4%, and |Vtd| and |Vub| of the order of 1%. These values are
obtained via direct measurements of processes like K → lν̄π (|Vus|) or through indirect
measurements such as the oscillation of the B0 (|Vtd|) or B0

s (|Vts|) mesons.

The GIM scheme and flavor changing neutral currents

In 1970, Glashow, Iliopoulos and Maiani ensured to forbid transitions that could change
flavor but not charge (d → sZ) [7] and postulated the existence of the quark c. Several
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(a) SM diagram

  

(b) Hypothetical NP diagram

Figure 1.3: Penguin diagrams contributing to b → sll̄ involving observed particles (a) and
hypothetical particles (b).

reasons supported this hypothesis: the lack of experimental evidence of K0 → µ+µ−; the
unitarity of VCKM that implies that just d → d and s → s transitions are allowed; the part of
the SM Lagrangian corresponding to the Z0 boson (γ) current is proportional to ZµūLγµuL

(−AµūLγµuL), which lacks a term permitting transitions between quarks of different fla-
vors. As a result, the GIM mechanism forces flavor changing neutral currents amplitudes
to be suppressed by ∑i V†

biVid

Why is it interesting to study FCNC?

FCNC transitions are prohibited at tree level and highly suppressed in the SM. It is possible
that, in new physics scenarios, new particles entering a FCNC loop process could alter the
amplitude of such decay.

Fig. 1.3 displays the Feynman diagrams of the FCNC transition b → sll̄ in the SM and
in a possible new physics scenario, where a new particle enters off-shell in the diagram.
By measuring observables such as branching fractions we can infer the presence of new
particles in FCNC processes.

Furthermore, such processes represent a benchmark for new theories as their parameters
must respect the current experimental observables given by such loop processes.

EW symmetry breaking

Experiments have long established that fermions and gauge bosons (excluding the photon
and the gluons) are massive. Introducing mass terms in the SM Lagrangian implies that
gauge invariance is lost and that SU(2)L ×U(1)Y is not a good symmetry of the vacuum,
whereas U(1)em is, given that γ is mass-less.



1.1. Towards a theory of fundamental interactions 19

The gauge symmetry is therefore broken by the vacuum, which triggers the Sponta-
neous Symmetry Breaking (SSB) of the electroweak group to the electromagnetic subgroup:

SU(2)L ×U(1)Y → U(1)em. (1.1)

This constitutes the so-called SSB, which enables fermions and bosons to acquire mass.
As a result of this mechanism, a new particle emerges: the Higgs boson. Until July fourth
2012, this boson remained undiscovered [8] [9] [10]. On this day, the CMS and ATLAS col-
laborations confirmed a formal discovery of a boson of mass between 125 and 127 GeV/c2,
consistent with a Higgs boson. Discovering the Higgs was one of the main reasons to build
the Large Hadron Collider (LHC).

The puzzles in the SM

Despite the confirmation of many SM predictions, this theory has several limitations and is
unable to account for some observational facts.

Dark matter. The content of visible matter in the Universe cannot account for the observed
rotation of galaxies [11] [12] in the context of general relativity. Furthermore, studies of the
fluctuations of the cosmic microwave background indicate the existence of cold dark matter
in the Universe [13] for which there is no SM candidate.

Difference between content of matter and antimatter. There is a large asymmetry be-
tween the quantity of matter and antimatter observed in the Universe. Assuming that both
were equally created in the initial state of the Universe, a condition such as the violation of
the CP symmetry is necessary to account for such observed differences. The problem is that
the magnitude of CP violation possible in the SM is not enough to explain them [14] [15].

Gravity. There is not yet a consistent procedure to introduce gravity in the SM.

Large number of free parameters. The SM lacks predictions for particles’ masses and
mixing patterns which translates into a large number of unpredicted parameters.

The mass hierarchy problem. The mass of a scalar such as the Higgs boson suffers from
quantum corrections of its mass due to the physics above a certain scale Λ, m2

HSM
(phys) '

m2
HSM

+ c
16π2 Λ2. An upper bound for the physical mass at 130 MeV/c2 due to electroweak

precision measurements indicates that Λ should be O(TeV), in order to avoid a fine tuning
of the bare mass term.

Hereafter we describe the main ideas to avoid fine tuning of the bare mass term, which
are mostly based on new mechanisms enabling the EWSB.

Assumption 1. There are new degrees of freedom suppressing the diverging term of the
scalar mass. This represents the main reasoning of supersymmetry, which is a symmetry that
relates properties of bosons and fermions [16] [17].
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Assumption 2. There are no elementary scalars. Instead, there are composite states or
fermions condensates, which introduce new fermions (technifermions) and a new interaction
arising from a non-abelian gauge symmetry: technicolor [18].

Assumption 3. Gravity effects are important at the EW scale, changing the standard four-
dimensional space-time structure by adding extra dimensions [19] [20].

Assumption 4. The quadratic divergences to the Higgs mass appear at two-loop level.
Scenarios including such assumption correspond to Little Higgs models [21].

Technicolor models face serious problems with FCNC constraints in order to generate
fermion mass hierarchies for the SM fermions. In supersymmetry the squarks must be de-
generate in mass in order to avoid FCNC. If supersymmetry exists close to the TeV scale it
could solve the hierarchy problem and accomplish the unification of interactions. Never-
theless, the mentioned degeneracy would indicate signs of fine tuning.

The Minimal Flavor Violation (MFV) hypothesis.

The bounds on physics beyond the Standard Model coming from precise flavor tests con-
clude that new sources of flavor symmetry breaking beyond the SM Yukawa couplings be-
tween the Higgs field and a massless fermion field are excluded for new physics at the TeV
scale. MFV argues that there are no deviations from the SM in flavor changing processes
[22].

In conclusion, taking MFV as valid implies that no other source of flavor symmetry
breaking other than the SM Yukawa couplings are accessible at low energies.

1.2 Theoretical predictions for B(B0
(s) → µ+µ−)

The branching fraction of B0
s → µ+µ− and B0 → µ+µ− predicted by the SM are (3.2 ±

0.2)× 10−9 and (1.0± 0.1)× 10−10 [1]. Secs. 1.2.1 and 1.2.2 introduce the necessary tools
to derive such predictions, and those corresponding to new physics scenarios.

1.2.1 Effective field theory for B decays

In B decays, the momentum exchange between the initial and final states is of the order of
the mass of the decaying meson (∼ 5 GeV). The masses of the intermediate bosons for these
processes are MW,Z ∼ 100 GeV. The key idea behind the Effective Field Theory (EFT) is that
physics at a certain low energy scale should decouple from physics at much higher scales,
which translates into ruling out the heavy fields.

Therefore, we can construct an effective Hamiltonian that does not contain the W and Z
explicitly using the Operator Product Expansion (OPE) approach:

He f f = ∑
i
Ci(µ, Q)Oi(µ), (1.2)

where Ci are the Wilson coefficients that encode the information from the high energy scale,
Oi the local operators that represent the low-energy effective theory, Q the matching scale
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or cutoff and µ the renormalization scale that accounts for the separation of information
between high and low energies. Given an initial B meson state |B〉 and a final state |X〉, the
corresponding contribution to the amplitude can be expressed as:

M≈ 〈|X|He f f |B〉 = ∑
i
Ci〈|X|Oi|B〉. (1.3)

We shall see in the next section that calculating the hadronic matrix elements for B0
(s) →

µ+µ− takes a particularly simple form.

1.2.2 B(B0
(s) → µ+µ−) in the framework of EFT

The EFT approach is applied to describe the four external fields b → ql+l− (q=s,d) transi-
tions with two quarks of different flavor and two charge-conjugated leptons. These pro-
cesses are the basis for the analysis of decays such as B0

(s) → µ+µ− and B0 → K∗0µ+µ−,
and are represented by the following Hamiltonian [23]:

He f f =
10

∑
i=7
CiOi + CSOS + CPOP +

10

∑
i=7
C ′ iO′

i + C ′SO′
S + C ′PO′

P. (1.4)

The operators O1 to O6 are not present in the previous equation as they contribute only
in hadronic decays. Also, O8 does not contribute as represents the gluonic contribution. O7

arises from the photon contribution, while O9 and O10 are the semileptonic operators, and
OS and OP the scalar and pseudo-scalar operators:

O7 = mb(q̄σµνPRb)Fµν,

O9 = (q̄γµPLb)(l̄γµl),

O10 ≡ OA = (q̄γµPLb)(l̄γµγ5l),

OS = mb(q̄PRb)(l̄l),

OP = mb(q̄PRb)(l̄γ5l).

Exchanging the right-handed projection operator PR by the left-handed PL and mb by
mq allows to describe the primed partners of these operators.

The matrix element for the decay B0
(s) → µ+µ− can be expressed as factorization of the

leptonic and the hadronic parts:

M≈ 〈ll̄|He f f |B(p)〉 = ∑
i
〈ll̄|Oi

lept|0〉〈0|O
i
hadr|B(p)〉 (1.5)

where the sum i represents the scalar, pseudo-scalar, the γ loop and semi-leptonic con-
tributions.

The matrix element:

〈0|q̄γµγ5b|B̄(p)〉 = ipµ fBq , (1.6)

where pµ is the four-momentum and fBq the decay factor of the B meson, vanishes when
contracted with l̄γµl. Furthermore, the matrix element 〈0|q̄σµνb|B̄(p)〉 also vanishes as it is



22 B(B0
s → µ+µ−) as a particle physics benchmark

  

Figure 1.4: SM diagrams contributing to B(B0 → µ+µ−). The diagrams are analogous for
B0

s → µ+µ− exchanging d for s.

not possible to construct an antisymmetric combination made up of pµ. Consequently, the
operators O7 and O9 do not contribute to the decay B0

(s) → µ+µ−, which is only governed
by the axial part of O10 and the scalar and pseudo-scalar operators.

We quote the B(B0
(s) → µ+µ−) as obtained in Ref. [23]:

B(B̄q → l+l−) =
G2

Fα2MBq τBq

16π3 |VtbV∗
tq|2
√√√√1−

4m2
l

M2
Bq

[(
1−

4m2
l

M2
Bq

)
|FS|2 + |FP + 2ml FA|2

]
.

(1.7)
The corresponding form factors can be represented as:

FS,P ≡ i fBq MBq

CS,Pmb − C′S,Pms

mb + ms
,

FA ≡ i fBq(C10 − C′10).

B(B0
s → µ+µ−) within the SM

Fig. 1.4 shows the main diagrams contributing to B(B0 → µ+µ−) in the SM associated to C10

as the scalar and pseudo-scalar are suppressed by a factor (mlmb,q/M2
W). These branching

fractions can be obtained computing the Wilson coefficients related with the high-energy
regime of the processes.

Furthermore, there is an intrinsic source of uncertainty due to the experimental knowl-
edge of the decay constant ( fBs = 238.8± 9.5 MeV [24]). A method proposed in Ref. [1]
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translates the dependence on the decay constant into the meson mass difference, available
from experimental observations (∆MBs = 17.77± 0.12 ps−1 [25]). Using this approach the
SM predictions have an uncertainty of 6% for B0

s → µ+µ− and 10% for B0 → µ+µ−:

B(B0
s → µ+µ−)SM = (3.2± 0.2)× 10−9 (1.8)

B(B0 → µ+µ−)SM = (1.0± 0.1)× 10−10 (1.9)

The aforementioned branching fractions are implied through this thesis when men-
tioning a SM prediction. Nevertheless, improvements in lattice calculations predicting
fBs = 227.7± 6.2 MeV, imply slight differences on B(B0

s → µ+µ−) and B(B0 → µ+µ−) pre-
dictions [26]. Furthermore, as suggested in Ref. [27], the experimental observables are time
independent measurements that, to be compared with the theoretical predictions, these
should be enlarged by a 9%.

Contributions to B(B0
(s) → µ+µ−) from NP beyond the SM

The decays B0
(s) → µ+µ− are sensitive probes of new physics given the smallness of their

branching fraction uncertainty. Potential contributions to the branching fraction of these
decays arise from the modification of the Wilson coefficients.

Two Higgs Doublet Model 2HDM [28] is an extension of the SM which contains a larger
Higgs sector: two Higgs doublets both with a vacuum expectation value vev different from
zero. An important parameter of this framework is the ratio of both vev tan β ≡ Vb/Va.
Moreover, it contains two neutral scalars H0 and h0, a neutral pseudoscalar A0, two charged
scalars H±, and three would-be Goldstone bosons G0 and G±. Fig. 1.5 shows the relevant
diagrams contributing to B0

(s) → µ+µ− in 2HDM.
In 2HDM-II, down-type quarks and charged leptons couple to one Higgs doublet, and

up-type quarks and neutrinos couple to the other doublet. In this model, both CS and CP

receive contributions proportional to tan2 β. Fig 1.6 shows the branching fraction prediction
as a function of the parameter MH+ and different tan β values [29]. Values of MH+ below
295 GeV are excluded by the measurement of b → sγ [30]. In spite of these constraints,
enhancements of the branching fraction are possible, especially for low values of MH+ and
large tanβ.

2HDM with MFV Scenarios in which the b-quark Yukawa coupling becomes O(1) (large
tan β) present enhancements with respect to the SM expectations for observables such as
B(B0

(s) → µ+µ−) [31]. Fig. 1.7 shows the correlation of B(B0
s → µ+µ−) and B(B0 →

µ+µ−) in models with Higgs-mediated FCNC respecting the MFV hypothesis (Γ(B0
s →

µ+µ−)/Γ(B0 → µ+µ−) ≈ |Vts/Vtd|2) and reflects that an enhancement of both branching
fractions respecting the MFV hypothesis would be a clear hint of MFV at large tan β.

MSSM. The minimal supersymmetric extension of the Standard Model (MSSM) [32] is
constructed by adding the corresponding partners (super-particles) of the 2HDM particle
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Figure 1.5: 2HDM diagrams contributing to B(B0 → µ+µ−). The diagrams are analogous
for B0

s → µ+µ− exchanging d for s [23].

content. There is no experimental evidence of superparticles, therefore supersymmetry
(SUSY) is supposed to be spontaneously broken. Not requiring SUSY breaking explicitely
translates into more than one hundred parameters in the theory. Nevertheless, this number
is usually constrained by assuming universality within the parameters.

MSSM contains the same diagrams as in the SM and 2HDM-II, although diagrams with
loop exchange of the particles with their super-partners (Fig. 1.8) are also present in the
computation of B(B0

(s) → µ+µ−) within MSSM.

New contributions on the Wilson coefficients appear in the MSSM model, which affect
mainly CA. As a result, a significant enhancement of B(B0

(s) → µ+µ−) is possible at large
values of tan β.

In MSSM, as in 2HDM, CS,P and C′S,P have comparable size which leads to their suppres-
sion. As a result, values of B(B0

(s) → µ+µ−) smaller than the SM are expected in minimal
supersymmetric scenarios.

B(B0
(s) → µ+µ−) is computed in the context of two of such scenarios through a likeli-

hood built according to current electroweak precision measurements, B physics data, cos-
mological observations and recent LHC results [33].

Fig. 1.9 shows that the most probable value of the likelihood gives a B(B0
(s) → µ+µ−)

prediction slightly larger than the SM in the constrained MSSM (CMSSM), which assumes
universality for the mass of the scalar fields, the gaugino masses, and the coupling of the
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Figure 1.6: B(B0
s → µ+µ−) in 2HDM as a function of the parameter MH+ . The horizontal

dotted line represents the experimental limit on B(B0
s → µ+µ−) from Ref. [2].

triple scalar vertices [34]. Including the mass of the Higgs '125 GeV does not alter remark-
ably the minimum of the ∆χ2 distribution if (g− 2)µ is included.

Fig. 1.10 shows that in MSSM with non-universal Higgs masses (MSSM-NUHM1) de-
partures from the SM prediction are compatible with the empirical input of the likelihood.
This model inherits all the universality assumptions of the CMSSM except those related
with the Higgs masses [35]. As a result, two new free parameters arise: the modulus and
the mass of the pseudoscalar Higgs MA. The best fit value reflects that B(B0

s → µ+µ−) in
NUHM1 is significantly larger than the SM prediction. As in the previous case, including
Mh '125 GeV does not alter remarkably the distribution of ∆χ2 if (g− 2)µ is included.

1.3 Conclusions

This chapter described the theoretical framework of B(B0
(s) → µ+µ−), emphasizing the

role to be played by this measurement in constraining the new paradigma of fundamental
intections between elementary particles.

The accurate theoretical predictions in the SM, B(B0
s → µ+µ−)=(3.2± 0.2)× 10−9 and

B(B0 → µ+µ−)=(1.0± 0.1) × 10−10, represent an opportunity to search for contributions
arising from new physics beyond the SM.

Large enhancements from the SM prediction can be possible in several new physics
models, especially for MSSM-NUHM, where the most probable value for B(B0 → µ+µ−) is
about 60% larger than the SM prediction.
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Figure 1.7: Correlation between B(B0
s → µ+µ−) and B(B0 → µ+µ−) in Higgs-mediated

FCNC respecting the MFV hypothesis. The central value (red line) corresponds to Γ(B0
s →

µ+µ−)/Γ(B0 → µ+µ−) ≈ |Vts/Vtd|2, while the green points account for the uncertanties
in |Vts| and |Vtd|. The horizontal dotted line represents the experimental limit on B(B0

s →
µ+µ−) from Ref. [2].

  

Figure 1.8: Feynman diagram contribution to B(B0
s → µ+µ−) within MSSM with super-

partners entering in the loop.
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Figure 1.9: Likelihood functions for B(B0
s → µ+µ−) in the CMSSM. The solid line assumes

a Higgs mass '125 GeV and includes (g− 2)µ, and the dotted line not including (g− 2)µ.
The dashed line does not include Mh in the computation.
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Figure 1.10: Likelihood functions for B(B0
s → µ+µ−) in the NUHM. The solid line assumes

a Higgs mass '125 GeV and includes (g− 2)µ, and the dotted line not including (g− 2)µ.
The dashed line does not include Mh in the computation.



Chapter 2

The LHCb experiment

The B physics era started with the discovery of the b-quark by a fixed target experiment
(FNAL) in 1977. Then, most of the experimental outcome arose from B factories: CLEO
and ARGUS collaborations discovered the b → u + W transitions in 1990; Belle and BaBar
validated the Kobayasha-Maskawa mechanism as major source of CP violation, and ended
their activity with ∼ 1.1 ab−1 of integrated luminosity and ∼ 1.3× 199 BB̄ pairs.

Despite the arduous environment, experiments at the Tevatron hadron collider showed
its competitiveness with B factories, benefiting from a large bb̄ cross-section, and studying
the unknown B0

s system.
This chapter describes the LHCb experiment [36]. Sec. 2.1 summarizes the experimen-

tal conditions of the analysis presented in this thesis. Secs. 2.2 and 2.3 contain a brief de-
scription of each LHCb sub-detector, focusing on their purpose and performances. Sec. 2.4
discusses the LHCb trigger system with special attention to the aspects relevant for the
measurement of B0

(s) → µ+µ−.

2.1 Introduction

The Large Hadron Collider (LHC) [37] is a two ring superconducting accelerator, where
the protons travel in opposite directions. It was installed in the same tunnel of 26,7 km
unearthed for the LEP collider in the 80’s, and it was designed to collide protons at an
energy of 14 TeV at the center of mass. Nevertheless, the experience acquired with the first
tests performed in 2008 showed that new bus bars were necessary in order to avoid magnet
quenches at such energies.

LHC is delivering data until the end of 2012 at an energy of 7 TeV (8 TeV since the be-
ginning of 2012) at the center of mass since March 2010, before a two-year technical stop.
Fig. 2.1 illustrates the acceleration chain allowing to reach such energies.

The colliding bunches at a rate of 40 MHz have ∼ 1011 protons, and the data taking
scheme during the beam lifetime is known as a fill.

2.1.1 LHCb general features

LHCb is an experiment conceived for heavy flavor physics studies at the LHC. Its main
goal is to search for indirect evidence of new physics in CP violation and in rare decays of

29
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Figure 2.1: The CERN acceleration complex. Protons are first accelerated with the LINAC
up to an energy of 50 MeV, then injected in the PS where they reach 26 GeV, and subse-
quently in the SPS. In the last step, the protons enter in the LHC with an energy of 450 GeV.

beauty and charm hadrons.

To be able to exploit the large number of b-hadrons produced at the LHC (Fig. 2.2), an
efficient and flexible trigger is used to cope with the coarse hadronic environment.

b-hadrons arise from bb̄ quark pairs mainly produced through hard QCD interactions
(see Fig. 2.3) which hadronize into a large family of hadrons: B+, B0, B0

s , B+
c , Λb. The

expected angular distribution of the produced bb̄ pair is highly adjacent to the beam axis
(see. Fig. 2.4), which justifies the choice of the LHCb detector layout: a single-arm forward
spectrometer (see Fig. 2.5) build as a compromise between budget and acceptance.

A dipole magnet providing an integrated field of 4 Tm allows for momentum measure-
ment of charged particles. The tracking system consists of a vertex locator, called VELO,
situated close to the interaction point and including a pile-up veto counter. It is followed by
a silicon micro-strip detector and tracking stations, downstream and upstream the magnet,
respectively. Ring Imaging Cherenkov counters (RICH) allow an excellent hadron identi-
fication in the momentum range from 2 to 100 GeV/c. The calorimeter system providing
reconstruction of photons, π0 and identification of electrons comprises a Scintillator Pad
Detector (SPD), a Preshower (PS), and an electromagnetic (ECAL) and hadronic (HCAL)
calorimeters. The muon system providing muon identification and contributing to the trig-
ger comprises five muon chambers.
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Figure 2.2: Production cross-section and number of events per second produced as a func-
tion of energy of the collision at the center of mass. Almost three times more bb̄ pairs are
produced at 7 TeV (first LHC run) compared to 2 TeV (Tevatron’s highest energy) for a given
instantaneous luminosity.
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Figure 2.3: Main b-quark production mechanisms. Flavor excitation (47%) and gluon split-
ting (28%) [38] are the dominant processes at LHC.
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Figure 2.4: (a) : Correlation of the polar angles of B mesons produced in proton-proton
collisions at

√
s = 14 TeV [38]. (b) : as in (a) but in pseudo-rapidity. The plot shows the

complementarity of the Atlas and LHCb experiments for the detection of bb̄ pairs. ATLAS
covers 34.7% of the produced bb̄ pairs, while LHCb covers 15.1%.

2.1.2 Data taking periods

At the end of 2009, LHCb recorded the first pp-collisions at the injection energy of the LHC,√
s = 0.9 TeV.

In 2010, the energy of the LHC beams ramped up to half their nominal value delivering
collisions at

√
s = 7 TeV. These running conditions started with very low instantaneous

luminosities (smaller than 1028 cm−2s−1) and almost no pile-up, to reach 1030 cm−2s−1 with
relatively large pile-up, up to 3 collisions per pp bunch crossing. Fig. 2.6 shows the deliv-
ered luminosity as a function of time that peaks at the end of the 2010 data run.

Although the pile-up had been more than 4 times above the nominal value, the luminos-
ity was two orders of magnitude below the nominal LHCb luminosity (2× 1032cm−2s−1)
due to the low number of pp bunches in the LHC. Nevertheless, the physics output was not
compromised.

During 2011, the number of bunches in the machine continuously increased until about
half of the machine was filled. This larger number of bunches allowed to reduce the pile-up
over the year while running at luminosities close to twice the nominal LHCb luminosity. A
particular feature of the 2011 data taking is the luminosity leveling: adjusting the displace-
ment of the two colliding beams in order to obtain constant luminosity during the normal
lifetime of the beams, as shown in Fig. 2.7. This figure displays the instantaneous luminos-
ity as a function of time delivered to each of the four LHC experiments. Fig. 2.8 shows an
steady increase of the integrated luminosity as a function of the LHC fill number.

The studies presented in Chap. 4 use data taken during 2010. The rest of the studies,
including the detector performances described in the following sections, are based solely
on 2011 data.
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Figure 2.5: General view of the LHCb experiment. It covers an acceptance defined by 0.01
< θxz < 0.25 rad and 0.01 < θyz < 0.30, where θxz and θyz refer to the angles with respect to
xz and yz planes respectively. The collisions take place at the origin of the z horizontal axis,
inside the Vertex Locator.
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Figure 2.6: 2010 delivered luminosity as a function of time.

  

Time

Figure 2.7: Instantaneous luminosity as a function of time delivered to the four LHC exper-
iments during 2011 data taking: ALICE, ATLAS, CMS, and LHCb.
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Figure 2.8: LHCb integrated luminosity through 2011 as a function of LHC fill number.

2.2 LHCb Tracking System

The B meson lifetimes are about 1.5 ps. This, together with the fact that their momenta at
the LHC is much larger than their mass, results in an average separation of the order of
1 cm between decay and production vertices. Therefore, an accurate vertexing is crucial to
distinguish the primary from the decay vertices to be able to identify B hadron decays. Fur-
thermore, good momentum resolution is needed in order to obtain good mass resolutions.

The key elements of the LHCb tracking system are:

2.2.1 The vertex locator (VELO)

The VELO (Fig. 2.9) provides information on the trajectory of charged particles in the re-
gion closest to the interaction point, which is used to determine the primary and secondary
vertices and as input to the track reconstruction. It consists of two-half detectors, each made
out of silicon modules along the beam direction providing both radial and azimuthal infor-
mation. These two halves are retractable to be as close as 8.2 mm to the beam pipe during
data taking. In addition, each half contains two Pile-Up veto stations composed of a sensor
designed to reject events with more than one interaction by the trigger system.

The primary vertex resolution has been estimated to be of about 12 µm in x and y,
and 65 µm in z for 30-35 track vertices, which is the average number of tracks per primary
vertex (see Fig. 2.10 (a)). Another important feature for a B-physics experiment is the impact
parameter resolution which, for the 2011 data sample, we found to be 13.2 + 24.7/pT µm
(see Fig. 2.10 (b)).
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Figure 2.9: Vertex locator VELO layout.

  

(a)

  

(b)

Figure 2.10: Primary vertex resolution in the transverse plane as function of the number of
tracks (a) and impact parameter resolution in the transverse plane as function of 1/pT (b).
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Figure 2.11: Overview of the tracking stations, with the beam pipe represented for reference.
TT and IT are displayed in purple, while OT is shown in blue.

2.2.2 The trackers

The trackers include the tracker turicensis (TT), the inner-tracker (IT) and the outer tracker
(OT). These sub-detectors, based of sillicon sensors layers, are situated upstream and down-
stream of the magnet as displayed in Fig. 2.11 and provide a momentum resolution of 0.3
to 0.5%.

2.2.3 Magnet

Indirectly part of the tracking system, the magnet is used to establish the tracks’ momenta.
Its magnetic field corresponds to 4 Tm and its polarity is regularly reversed in order to
record data in both orientations to evaluate systematic effects.

2.3 Particle identification

Important B physics measurements contain photons, electrons, muons, pions or kaons in
the final state which need to be properly identified. For instance, the determination of
B(B0

(s) → µ+µ−) relies not just on the muon identification but also requires the separa-

tions between kaons and pions to extract the invariant mass resolution and mean of B0
s and

B0 (see Sec. 6). At the LHCb, the identification of particles is achieved by combining the
information furnished by the following sub-detectors:
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(a) RICH 1 (b) RICH 2

Figure 2.12: Lateral view of RICH 1 and view from below of RICH 2.

2.3.1 The RICH detectors

The Ring Imaging Cherenkov detectors (RICH) allow to measure particles’ velocities via the
rings of Cherenkov light produced by their passage through certain radiators such as silicon
aerogel or gaseous C4F10. Two of these detectors, RICH1 and RICH2 (Fig. 2.12), perform
an identification in different ranges of momentum: below 60 GeV for the RICH1 and from
15 GeVup to 100 GeV for the RICH2. Both detectors achieve an angular resolutions of 1.62
and 0.62 mrad with respect to the xz and yz planes.

Hadron separation The information furnished by the RICH detectors is used to separate
between pions, kaons, and protons. The particle identification is performed by an algorithm
based on a log-likelihood approach matching observed patterns to what expected from the
reconstructed tracks under a given set of particle hypothesis. The method, referred as global
pattern-recognition, consists in maximize the likelihood by varying the particle hypothesis
of each track. The log-likelihood difference (∆LL) between a kaon hypothesis and the pion
hypothesis is given by:

∆LL(K− π) = ln
(
LK
Lπ

)

Fig. 2.13 shows the efficiency and the fake rate of π/K identification over the entire
momentum range. The mis-identification of pions into kaons is ∼ 3% over the momentum
range requiring ∆LL(K− π) > 5.
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Figure 2.13: Efficiency and fake rate identification of the Ring Imaging Cherenkov detectors.

2.3.2 Calorimeters

The deposited energy in the calorimeters allows to estimate the energy of charged and neu-
tral particles and provide information for their identification. Together with the momentum
measurement through the tracking system it allows to reject background from low-energy
interactions. Four calorimeters comprise the calorimetry of the LHCb detector, here ordered
according to their z coordinate:

• Scintillator Pad Detector (SPD). Situated in front of the calorimeters, it distinguishes
between photons and electrons. It consists of a single layer of scintillator cells which
provide a binary outcome depending on the deposited energy.

• Pre-shower (PS) detector. A layer of scintillator cells measures the energy of the par-
ticle shower originated through a 15 mm thick lead barrier (2.5 radiation lengths)
downstream the PS. It allows to distinguish photons and electrons from hadrons.

• Electromagnetic calorimeter (ECAL). It consists of stacks of alternating lead-scintillator
plates that represent 25 radiation lengths. In combination with the PS, it provides an
energy measurement with a resolution of σE/E = 9%/

√
E
⊗

0.8%, with E in GeV.

• Hadronic calorimeter (HCAL). It comprises iron and scintillator plates arranged par-
allel to the yz plane (5.6 interaction lengths). The resolution in the estimation of the
shower energy is σE/E = 69%/

√
E
⊗

9%, with E in GeV.

The information recorded by the calorimeters is used during the trigger process.



40 The LHCb experiment

1
6

 m
ra

d

2
5
8
 m

ra
d

M
u

o
n

 filte
r 1

R2

R3

R4

R1

y

z

M
u

o
n

 filte
r 4

 

M
u

o
n

 filte
r 3

M
u

o
n

 filte
r 2

C
A

L
O

R
IM

E
T

E
R

S

M1                                   M2           M3          M4           M5

Figure 2.14: Lateral view of the muon system.

2.3.3 Muon system

The muon system aims to identify muons. This sub-detector consists in five stations placed
along the z axis (M1 to M5) and it plays an important role in the trigger system (next sec-
tion) during data taking. Moreover, the offline muon identification is crucial as muons are
present in many key channels studied in LHCb as B0

(s) → µ+µ−, B0
s → J/ψ(→ µ+µ−)φ(→

K+K−), B0 → K∗0µ+µ−, among others.
The muon stations are furnished with 1368 multi-wired proportional chambers (MWPC)

divided in four regions of different granularities, at the exception of M1 which used gas
electron multiplier technology (GEM), to handle the high flux of particles. Fig. 2.14 shows
a lateral view of the muon system. It gathers 25 926 logical channels that are used by the
trigger system.

2.3.4 Muon identification

Properly identifying muons is crucial for the measurements of B(B0
(s) → µ+µ−). Hits in

the muon stations which match the direction of a track reconstructed in the tracking system
constitute a muon candidate. For each muon candidate, likelihoods for muon and non-
muon hypothesis are computed. This test is based on the average distance of the closest
hits in the muon station to the extrapolation from the track stations.

The performance of the muon identification is estimated using muons from J/ψ →
µ+µ−, protons from Λ → pπ, and kaons and pions from D0 → Kπ decays. Fig. 2.15 shows
the efficiency of the muon candidate selection (IsMuon) as a function of the track momen-
tum in different pT ranges. This efficiency is above 97% for tracks with pT>1700 MeV/c
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Figure 2.15: Efficiency of the muon candidate selection as a function of momentum for
different ranges of transverse momentum.

and above 92% for 800<pT<1700 MeV/c in the interval 2< p <100 GeV/c. Fig. 2.16 shows
the probabilities of incorrect identification of kaons, pions, and protons as muons, being
below 5% in all cases.

2.4 Trigger system

The LHCb trigger system is conceived to select B and D decays with hadrons and leptons
in the final state. It is flexible and redundant, and very efficient for muons. These features
are relevant for the analysis described below.

Reducing the event rate at LHC down to 3 kHz allowed by the storage resources, consti-
tutes the main goal of the trigger. Dedicated electronics processing the information from the
Velo, calorimeters, and muon stations, allow to reduce the rate down to 1 MHz, at which the
detector can be read out. This initial level which reduces the initial rate down to 1 MHz is
called Level-0 (L0) trigger. Consecutively, the High Level Trigger (HLT), a software trigger
running in a computer farm of thousands of CPU nodes, performs the remaining reduction
of the event rate down to 3 kHz, by accessing the information of the entire detector. Fig 2.17
displays a synopsis of the LHCb trigger.

The trigger information is embedded into a trigger configuration key (TCK), an hexadec-
imal key that identifies the set of trigger decisions, algorithms and selections applied. Dif-
ferent configurations allow to fully exploit the trigger infrastructure available for any given
data taking condition.
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Figure 2.16: Probability of incorrect identifications as muons of several hadrons as a func-
tion of momentum, in different pT ranges.

In nominal conditions, the required number of primary interactions per crossing should
be 0.6, while this number peaked to 2 at the end of 2010 and was kept almost constant
around 1 during 2011 data taking. These relatively high pile-up conditions translate into
more particles in the event which imply not only a degradation of the processing time,
but also a reduction of the rejection performances of the trigger system. A selection based
on event quantities, called global event cuts (GEC) intend to suppress events with high-
multiplicity requiring a maximum number of hits in the SPD, VELO, IT, and OT, on top
of the other trigger requirements. Solely the SPD hits requirements changed during 2010
data taking.

2.4.1 Level-0 trigger

The L0 requirements are based on several detector measurements:
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Figure 2.17: LHCb trigger synopsis.

• Transverse energy of the candidates in the calorimeters. With the information pro-
vided by the SPD and the PS, each candidate is classified as either a photon, an elec-
tron or a hadron.

• Transverse momentum of the candidates in the muon system. Muon candidates re-
quire hits in all muon stations.

• Number of primary interactions estimated by the Pile-Up system.

• Multiplicity of charged tracks measured by the SPD.

The L0 requirements (high pT photons, electrons or hadrons, and single or double high
pT muons) that fulfill the presence of a B decays in an event for the 2010 and 2011 data are
reported on Tab. 2.1.

2.4.2 High Level Trigger

HLT algorithms use the information of the full detector in successive steps. In the first step,
HLT1, only the information from the VELO and the tracking stations helps to refine the
L0 candidates. In the second step, HLT2, the full reconstruction of the event is performed,
which enables to either accept or reject events according to several selection requirements.

The HLT1 main decisions, reported in Tab. 2.2, are:

• Hlt1TrackMuon, requires events triggered by the L0 on muons with a muon candidate
satisfying pT and impact parameter significance (IPS) requirements.

• Hlt1SingleMuonNoIP, same as Hlt1TrackMuon without IPS requirement.

• Hlt1DiMuonNoIP, requires events triggered by the L0 on muons with a pair of muons
satisfying selections based on pT and their combination, but not requiring any dis-
placement with respect to the primary vertex.
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Table 2.1: L0 requirements for four different TCK categories used during 2010 (first three
raws) and 2011 (bottom raw). Each TCK is classified according to its L0-µ, L0-diµ, and L0-
hadron criteria: muon candidate or candidates pT (GeV/c) and the maximum number of
SPD hits (nSPD).

TCK L0-µ L0-diµ L0-hadron
pT / nSPD pT1 / pT2 / nSPD pT (GeV/c) / nSPD

xx0030 1.4 / 900 0.56 / 0.48 / 900 2.6 / 900
(∼2 pb−1)

xx002A 1.4 / 900 0.56 / 0.48 / 900 3.6 / 900
(∼14 pb−1)

xx002C 1.4 / 900 0.56 / 0.48 / 900 3.6 / 450
(∼12 pb−1)

xx0032 1.5 / 600
√

pT1 × pT2=1.3 / 900 3.5 / 600
-xx0038

(∼1 fb−1)

Table 2.2: HLT1 requirements for four different TCK categories used during 2010 (first three
raws) and 2011 (bottom raw). Each TCK is classified according to its HLT1 decisions: muon
candidate pT (GeV/c), its impact parameter IP (mm), and its impact parameter significance
IPS, and the combination of transverse momentum of both muon candidates mµµ. (a) stands
for Hlt1SingleMuonNoIP and (b) for Hlt1DiMuonNoIP.

TCK Hlt1TrackMuon (a) (b) Hlt1TrackAllL0
pT mµµ pT / IP / IPS pT / IP / IPS

xx0030 800 / 0.11 / 5 1.8 2.5 1450 / 0.11 /
√

50
xx002A
zz002C

xx0032 1850 / 0.1 / 1.5 1.8 0.5 1850 / 0.1 / 16
-xx0038

• Hlt1TrackAllL0, requires a track in the event satisfying criteria based on pT and IPS,
regardless of the L0 decision.

The HLT2 lines that select channels with J/ψ in the final state require two muons with
invariant mass of 120 MeV/c2 around the J/ψ mass. Similar requirements, although a re-
striction of invariant mass above 4.7 GeV/c2, select B0

(s) → µ+µ− events. To select two-body
b-hadron decays the HLT2 trigger requires two tracks in the invariant mass with good re-
constructed secondary vertex, satisfying IP and pT selection criteria.

Many other HLT2 lines are used but they are not relevant for this study.
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2.4.3 Types of event according to the trigger

The events can be classified according to the information required by the trigger, which
records all the necessary information for such classification. The main difference in the
trigger selection is introduced when the signal products were responsible or not for in the
triggering decision. Three main categories are defined according to the trigger selection:

• trigger on signal (TOS) or events that would be triggered only requiring the selection
criteria on the studied signal B decay products;

• trigger independent of signal (TIS) or events that would be triggered even if the signal B
and its decay products were not present in the event. TIS events constitute a sample
of trigger unbiased events and are commonly used, for instance, to estimate trigger
efficiencies;

• trigger on both (TOB) or events that do not fit in the other categories. Both the signal
and the rest of the event are needed to trigger these events.

2.5 Conclusions

This chapter presents the LHCb detector and summarizes the key features that make it the
optimal experiment to search for rare B meson decays with muons in the final state. Among
this features we distinguish an optimal trigger for B decays, together with a good muon
identification efficiency; a good invariant mass resolution allowing to reduce background;
and good primary and secondary vertex reconstruction, crucial in selecting B decays.





Chapter 3

Analysis challenges to measure
B(B0

(s) → µ+µ−)

The main challenge in determining B(B0
(s) → µ+µ−) is to disentangle the signal from the

background. We shall describe the background sources in Sec. 3.1. Kinematic and geomet-
rical informations allow to discriminate between signal and background.

The idea behind this chapter is twofold: first to familiarize the reader with the analysis
strategy adopted to obtain B(B0

s → µ+µ−) (Sec. 3.1) and then to focus on the characteriza-
tion and removal of the background (Sec. 3.2).

3.1 Analysis overview

Fig. 3.1 displays the typical dimuon invariant mass spectrum for L0-µ triggered events. This
figure shows that in the region close to the B0 and B0

s masses, 5280 MeV and 5365 MeV, re-
spectively, there is a large amount of events. We recall from the first chapter that the values
of the branching fractions of B0

s → µ+µ− or B0 → µ+µ− are very small. Therefore, the num-
ber of signal events embedded in this sample is negligible. The expected number of events
in the 2010 is 0.7 B0

s → µ+µ− and 0.08 B0 → µ+µ−, while 10.0 and 1.2 are expected for the
2011 data taking. In conclusion, understanding and exploiting the properties of signal can-
didates that differ from those of background events represents the most important step of
our analysis. Consequently we require an efficient suppression of such background while
retaining most of signal as well as most events from control channels, which are processes
used to determine certain quantities without relying on simulation. For example, B0 → Kπ

decays are used to extract from data the mean value of the B0 mass (see Chap. 6.1.1), and
B+ → J/ψ(→ µ+µ−)K+, B0

s → J/ψ(→ µ+µ−)φ(→ K+K−), and B0 → Kπ decays are used
in the yield normalization (see Chap. 7). B0

(s) → h+h′−decays are use to estimate in data
the output of the discriminant multivariate classifier between signal and background (see
Chap. 5).

The trigger, already described in Sec. 2.4, constitutes the initial part of this efficient selec-
tion. We stress here the importance of keeping the selection as similar as possible between
different channels, in order to avoid biases on the measured quantities.
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Figure 3.1: Dimuon mass spectrum.

A further offline selection suppresses more background, reducing the data set to man-
ageable levels. This selection is detailed in the next section.

After this selection we are still left with residual background. The separation between
signal and this residual background is accomplished with a multivariate classifier which
combines several kinematic and geometrical properties of the event into a single output.
This output can be converted into a probability for an event of being signal or background.

During the two first years of analysis, three different classifiers have been used to dis-
criminate between signal and background: a combination of decorrelated likelihoods, used
for the 2010 data [39], and two boosted decision tree classifiers [40] [4]. In order to use all
data available and to avoid biases, these multivariate classifiers are trained using simulated
events.

We obtain the number of B0
s → µ+µ− and B0 → µ+µ− from our data sample with a

fit of a two-component (invariant mass of the muon pair and the multivariate classifier)
functional. Given the integrated luminosity (Lint) and the total bb̄ cross-section (σbb̄), we
translate the number of signal events (NB0

(s)→µ+µ− ), extracted from our data sample, into a

branching fraction:

B(B0
(s) → µ+µ−) ∝

1
Lint × σbb̄

× NB0
(s)→µ+µ− .

However, the normalization of the number of B0
(s) → µ+µ−to the number of events for

known decay allows to withdraw, from the previous formula, the terms Lint and σbb̄, which
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are not precisely measured:

B(B0
(s) → µ+µ−)

B(norm)
= Constant×

NB0
(s)→µ+µ−

Nnorm

.
We devote Sec. 7.1 to review the parameters entering in Constant.

In the absence of signal evidence, we set limits on B(B0
(s) → µ+µ−) (see Sec. 7.3). The

procedure followed in this case is:

• The two-dimensional plane defined by the multivariate classifier and the invariant
mass is divided in bins.

• For each bin, the expected number of background events is estimated. Then, for a
given branching fraction hypothesis, the compatibility between the observed and ex-
pected number of events is computed with the CLs method [41].

We perform a so-called ‘blind analysis’. The events with invariant mass around (±60
MeV/c2) the B0

s and B0 masses are excluded from the analysis until all the necessary quan-
tities are ready.

3.2 B0
(s) → µ+µ− background rejection

This section describes the main sources of background and the methods used for their re-
moval.

3.2.1 Prompt background

Muons coming directly from the primary vertex (PV) or collision vertex, are the main con-
stituents of what we call prompt background.

The B mesons produced at 7 TeV collisions travel, in average, about one centimeter be-
fore decaying. This relatively large decay length is due to the boost of the produced bb̄ pair.
This means that the tracks originated in a B decay are displaced from the PV. The decay
vertex is called secondary vertex (SV).

The impact parameter (IP) of a track with respect to a certain primary vertex, is the
distance between the track and the vertex at the point of closest approach. Hence, requiring
a relatively large IP of the tracks with respect to the PV allows the removal of most prompt
background. For illustration, Fig. 3.2 represents a B0

s → µ+µ− candidate. This graphic
shows how the projections of the muon tracks are displaced from the PV.

Removing the prompt background and other unphysical events constitutes the first step
in our analysis. After the online selection performed at the trigger level, we reduce offline
the data size (summarized in Tabs 3.1, 3.2) by enforcing well reconstructed tracks (track-
χ2/n.d. f ), with a minimum transverse momentum (pT) and a minimum impact parameter
χ2 (IPχ2). In order to remove unphysical events, tracks are selected up to a maximum
momentum (p), maximum transverse momentum, and by imposing the proper time of the
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Figure 3.2: Event display of a B0
s → µ+µ− candidate at the LHCb detector. The region close

to the collision point is zoomed on the bottom left of the image.

B candidate (t) to be lower than nine times the lifetime of the B0
s . We select tracks with an

invariant mass within a mass window around the B0
s mass. The distance of closest approach

between the tracks (DOCA) and the χ2 of the SV fit allow to suppress tracks that do not
make a good vertex. The separation between primary and secondary vertices χ2 (VDS)
allows to select well displaced decay vertices. Finally, by requiring a transverse momentum
of the B candidate higher than 500 MeV/c we reduce the exclusive dimuon production
(pp → pµ+µ−p). An important fraction of such processes have a dimuon invariant mass
which is in the B0

s /B0 search region. Moreover, these events can have a large separation
between primary and secondary vertices. The efficiency for signal of this selection criteria
is ∼ 50%.

The criteria to select signal (and B0
(s) → h+h′−) or B+ → J/ψ(→ µ+µ−)K+ and B0

s →
J/ψ(→ µ+µ−)φ(→ K+K−) differ only by the selection of the extra kaon or kaons. DOCA
and vertex χ2 correspond to the J/ψ candidate for B+ → J/ψ(→ µ+µ−)K+ and B0

s →
J/ψ(→ µ+µ−)φ(→ K+K−).

In Chap. 5 we present a more efficient selection method developed throught this thesis
work.
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3.2.2 B hadron cascade decays

Another source of background are B → D(→ µX)µX decays. In these processes, a B meson
decays semileptonically into a D meson, a muon and other decay products. Thereupon, the
D meson decays semileptonically into an another muon of opposite charge with respect to
that of the previous muon. The geometrical features of these processes, so called cascade
decays, can be similar to those of a B0

(s) → µ+µ− decay. For instance, the muon tracks
are displaced from the primary vertex. Due to the unreconstructed decay products, the
invariant mass of the dimuon pair of these decays is lower than the B0

s or B0 masses. Nev-
ertheless, we need to remove this background to properly extrapolate, using the sidebands
of the invariant mass distribution, the amount of expected background in the signal region
(see Sec. 6.1.1). We present a detailed classification of these processes in Sec. 4.4.

3.2.3 Peaking background

B0
(s) → h+h′− decays in which each hadron decays into a muon represents the most dan-

gerous type of peaking background. In order to reduce this background, we require tight
particle identification requirements.

The invariant mass and the expected yields in our data sample of such processes are
described in Chap. 6.

3.2.4 Combinatoric from semileptonic B decays

After applying the selection criteria described in the previous sections we are mostly left
with another kind of background: randomly selected pairs of muons coming from different
semileptonic B decays.

Table 3.1: Selection criteria for B0
(s) → µ+µ− and B0

(s) → h+h′− channels.

Variable Requirement
B0

(s) → µ+µ− and B0
(s) → h+h′−

µ / h track χ2/nd f <4
IPχ2 >25
pT > 0.25 and < 40 GeV/c
p < 500 GeV/c

B0
(s) |Mhh − M(B(s))| <600 MeV/c

DOCA <0.3 mm
vertex χ2 <9
VDS > 15
IPχ2 < 25
t < 9 ·τ(B0

s )
pT > 500 MeV/c2
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Table 3.2: Selection criteria for B+ → J/ψ(→ µ+µ−)K+and B0
s → J/ψ(→ µ+µ−)φ(→

K+K−) normalization channels.

B+ → J/ψ(→ µ+µ−)K+ B0
s → J/ψ(→ µ+µ−)φ(→ K+K−)

Variable Requirement Variable Requirement
µ track χ2/nd f <4 µ track χ2/nd f <4

IPχ2 >25 IPχ2 >25
J/ψ DOCA <0.3 mm DOCA <0.3 mm

vertex χ2 <9 vertex χ2 <9
∆m <60 Mev ∆m <60 Mev
VDS >15 VDS >15

K± track χ2/nd f <5 K± track χ2/nd f <5
IPχ2 >25 IPχ2 [K+, K−] [> 4, > 4]

φ ∆m <10 Mev
IPχ2 > 25

B+ IPχ2 <25 B0
s IPχ2 <25

∆m <100 Mev ∆m <100 Mev
vertex χ2 < 45 vertex χ2 <75
pT > 500 MeV/c2

Monte Carlo methods are used to generate a sample of events that have two muons and
a b-quark within the 400 mrad acceptance. We refer to this sample in the following as bb̄ →
µµX, where X stands for any other decay product. The total number of bb̄ → µµX events
corresponds to ∼ 570 pb−1 of integrated luminosity, assuming σbb̄ = 288± 4± 48 µb [42]
measured by LHCb.

Fig. 3.3 shows the distributions of several variables after applying the selection de-
scribed in Sec. 3.2.1. We denote the impact parameter significance ( IP

σ(IP) ) as IPS. For each

variable, we show the distributions of signal B0
s → µ+µ− and bb̄ → µµX background, both

obtained from simulation, and data sidebands excluding the region [5000 MeV - 5418 MeV],
to avoid the presence of signal and most of the peaking background. In Fig. 3.3, the vari-
ables on the top (left) are more discriminant than those placed on the bottom (right). Data
sidebands and bb̄ → µµX simulation are in agreement with the exception of the pT of the
B candidate. Even though we optimize and train the multivariate classifier (see Chap. 5)
using simulation, the final distribution of this classifier for background is extracted from
data events in the invariant mass sidebands (see Sec. 6.1.1).

We devote the next two chapters to describe the multivariate techniques that combine
some of these variables to improve the separation between signal and background.

3.2.5 Other exclusive background

We do not discuss in detail other sources of background, such as B+
c → J/ψ(→ µ+µ−)µ+ν,

B+ → π+µ+µ− and B0
s → µ+µ−γ, which represent other types of peaking background.
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Figure 3.3: Distributions, for signal B0
s → µ+µ− MC (blue line) and background bb̄ →

µµX MC (red segments), of several geometric and kinematic Al variables. Overlaid, data
sidebands with IsMuon requirement (black points).
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Nevertheless, as Ref. [43] shows, their impact on the final conclusions of this document
is negligible. Using simulation it has been estimated that the number of the first type of
events per fb−1 is of 0.123± 0.073 in the B0 region and 0.259± 0.141 in the B0

s region. For
the second case, the expected number of events is 2.87 in the sensitive region of the analysis.
The expected number of events of the third type, assuming a B(B0

s → µ+µ−γ)=3.2× 10−8,
is smaller than 0.058 and 0.096 candidates in the B0

s and B0 regions.

3.3 Conclusions

We have described some of the main steps of the analysis. Then we classified the different
sources of background for B0

(s) → µ+µ− and presented some of the procedures adopted to
reduce them. The separation between signal and combinatorial background from semilep-
tonic B decays is accomplished with multivariate techniques, for which we refer the reader
to Chaps 4 and 5. Furthermore, we shall review the cascade background in the next chapter.



Chapter 4

Validation studies using the Geometrical
Likelihood classifier

The Geometrical Likelihood (GL) method combines several variables, related with the ge-
ometry of an event, into one single variable. In the analyses presented in Ref. [39], the GL
was used to separate the signal from the combinatorial background. However, Chap. 5
presents a different multivariate technique that improves the GL’s capability in discrimi-
nating the background from the signal. We dedicate this chapter to summarize the studies
performed during 2010 using the GL. These results are used in the analysis presented in
this thesis.

Sec. 4.1 introduces the method used to combine correlated variables, while Sec. 4.2 sum-
marizes the method to extract the GL distribution from data. We devote Sec. 4.3 to study
the effect of the global event cuts (GEC) (see Sec. 2) on the GL distribution. Finally, Sec. 4.4
describes the cascade background according to its characteristic GL.

4.1 Mathematical method to combine correlated variables

To exploit the background discrimination power of several variables it is useful to combine
them. In this section we describe the method applied to combine correlated information.

Given a sample of events, N variables are transformed into Gaussian distributed vari-
ables (centered at zero and width equal to one) to easily compute probabilities and treat the
correlations. Then, the new set of variables is rotated in order to be linearly independent.
The new set of rotated variables is transformed into Gaussian distributed variables.

The procedure described is applied to a signal and a background samples as the cor-
relations between the variables can be different. Thereupon, for each event we compute
χ2

s = ∑ s2
i and χ2

b = ∑ b2
i , where si and bi represent the distance to the mean value of the

ith Gaussian variable, for signal and background, respectively. The discriminant variable is
defined as ∆χ2 = χ2

b − χ2
s .

Finally, this variable is transformed to be uniformly distributed between 0 and 1 for
signal. Due to this transformation, the background peaks at zero.

55
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Table 4.1: List of selection criteria for D0 → Kπ decays.

D0 IPχ2 < 30 D0FDχ2 > 40
DOCA < 0.07mm DIRA > 0.999
χ2

SV < 10 D0P > 5000 MeV
D PT > 1500 MeV K PT > 1100 MeV
K P > 5000 MeV DaughTrackχ2 < 3
K DLL(K− π) > 10

The variables included in the definition of the GL are: the IP and the decay time of the
B candidate, the DOCA, the minimum IPS and the isolations of both muon candidates. The
isolation of a muon candidate corresponds to the number of tracks displaced from the PV,
that make a good vertex with the muon: the angle between the candidate and the track
is lower than 0.27 rad, their DOCA is lower than 130 µm and they make a vertex whose
distances to the primary and secondary vertices remain between 0.5 cm < dPV < 4 cm and
−0.15 cm < dSV < 30 cm in the z direction, respectively. The other muon candidate in
the event is not considered in the computation. Hence, the isolation of the muons from
B0

s → µ+µ− or B0 → µ+µ− decays peaks at zero, while it has larger values for background
(see Fig. 5.16).

4.2 GL calibration using the low mass resonance decay D0 → Kπ

In this section we derive the expected GL distribution for data D0 → Kπ TIS events (see
Sec. 2.4), to compare it with what obtained from MC D0 → Kπ events. Ideally, the B0

(s) →
µ+µ− distribution is calibrated with B0

(s) → h+h′− events triggered by hadronic triggered
lines. Being these different from the muon lines, there is a bias due to the trigger different
for both types of decays. Using TIS events allows to avoid this problem, at the price of
a very low efficiency. At the beginning of the data taking period, the TIS B0

(s) → h+h′−

statistics was extremely low that rendered D0 → Kπ events an interesting decay to study
the GL performances. Although having a much larger sample, these decays have different
geometrical and kinematic properties than B0

s → µ+µ− due to the lower mass and decay
time of the D meson.

Samples of D0 → Kπ

The data sample that we employ corresponds to about 20 pb−1 of data collected during
2010. To select D0 → Kπ decays we apply the requirements listed in Tab. 4.1. The direction
angle (DIRA) is the angle between the reconstructed momentum of the meson candidate
(D0 in this case) and the vector defined by the PV and the SV. We require particle identifi-
cation of the kaon.

We apply the same selection to simulated events. After the selection, we require the
events to be TIS and triggered with TCK x0030 which is then emulated on the simulated
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Figure 4.1: Invariant mass distribution for MC D0 → Kπ triggered unbiased events selected
using the requirements listed in Tab. 4.1.

Figure 4.2: Invariant mass distribution for data D0 → Kπ triggered unbiased events se-
lected using the requirements listed in Tab. 4.1.

sample. Figs. 4.1 and Fig. 4.2 show the invariant mass distributions obtained for simulated
and data events after this selection.

By fitting the invariant mass we estimate that the yield of signal events is 91300± 400
for the data sample.
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Figure 4.3: Signal GL distributions for simulation (red) and data (blue with black squares)
obtained from D0 → Kπ triggered unbiased decays.

Method to extract the GL distributions

The training is the procedure in which we compute the GL variable using a signal and a
background samples.

The signal training sample corresponds to truth matched MC events, while as back-
ground sample we employ data from the higher sideband of the invariant mass distribu-
tion [1900-1960] MeV/c2. We are forced to use the higher sideband in order to avoid the
D physical background that can mimic the signal properties of D0 → Kπ. This type of
background consists mainly of D0 → K+K− with one of the kaons reconstructed as a pion.
Consequently, these events present a lower invariant mass than D0 → Kπ. In Figs. 4.1 and
4.2, the D physical background are the bump in the lower sideband of the peak.

In order to extract the GL distribution for signal we perform a background subtraction
method. First, the GL distribution is computed for a signal plus background sample (from
events in the mass peak region), and then subtracted the background component (obtained
from events in the invariant mass sidebands). To estimate the number of background events
in the signal plus background sample, we fit the invariant mass distribution in the higher
sideband range [1900-1960] MeV/c2. The model used for this fit corresponds to a linear
function (dotted green line in Figs. 4.1 and 4.2).

Fig. 4.3 shows the GL distributions which are flat for MC, hence no bias is present after
background subtraction, while for data a downward slope as a function of GL is visible.
Fig. 4.4 shows that the distributions obtained for background peak at zero as expected.

The reason for this discrepancy in signal is mainly due to the differences between data
and simulation of two variables: the impact parameter of the D and the degree of isolation
(see Fig. 4.6). To prove this we scale the IP distribution in MC in order to correspond with
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Figure 4.4: Background GL distributions for simulation (red) and data (blue with black
squares) obtained from D0 → Kπ triggered unbiased decays.
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Figure 4.5: Signal GL distributions for simulation (red) and data (blue with black squares)
obtained from D0 → Kπ triggered unbiased decays after scaling the impact parameter of
the D and removing the isolation.
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Figure 4.6: Data (blue, black squares) and simulation (red) comparisons for the distributions
of impact parameter of the D0 (left) and the isolation of the tracks (right). The plots are
obtained using D0 → Kπ TIS decays.
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Figure 4.7: Background GL distributions for simulation (red) and data (blue with black
squares) obtained from D0 → Kπ triggered unbiased decays after scaling the impact pa-
rameter of the D and removing the isolation.

data, and remove the isolation from the input variables. Fig. 4.5 shows that the distributions
for MC and data agree for signal, and Fig. 4.7 shows that the agreement between data and
MC distributions for background improves after the aforementioned changes.

This study gave an indication of the GL shape expected for B0
s → µ+µ− events extracted

from B0
(s) → h+h′− TIS events. The discrepancy in the impact parameter between data and

MC observed in D0 → Kπ decays, and expected on two-body B decays, lead to the intro-
duction of the smearing technique (see Sec. 5.1). The isolation variable in simulation does
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Table 4.2: L0 requirements according to the TCK.

TCK SPD hits

x002A 900
x002C 450

not properly describe data for D0 → Kπ decays, nevertheless this variable was conceived
for B decays. Sec. 5.1 shows a good agreement between data and simulation in B decays.

4.3 Estimation of the GEC impact on the GL distribution

In this section we study the effect of the global event cuts on the GL distribution.
During the 2010 data taking, the number of collisions per crossing was approximately

two, while in nominal conditions it should be 0.6. In this data taking conditions, the L0 rate
was too high. The adopted solution to reduce this rate relied on applying GEC to select
events with lower multiplicity. Among these requirements, the maximum number of SPD
hits at the L0 decision changed during the data taking. We aim to study the influence of the
SPD requirement on the geometrical properties of the event by directly comparing the GL
distributions of events triggered in different conditions.

The following study employs two samples triggered by different TCK configurations,
which differ only by the number of SPD hits required: x002A and x002C (see Tab. 4.2)

Fig. 4.8 shows the GL distributions obtained for the two different TCKs. These distri-
butions are obtained following the same procedure of background subtraction presented
in the previous section. Their agreement reflects the negligible effect of the GEC. Further-
more, as the SPD requirements are modified just for the L0-hadron decision, we attempt
also to check whether the hadronic TIS lines introduce any quantifiable bias on the GL dis-
tributions. Thus, we split both samples, one with events selected with TCK=x002A and the
other with TCK=x002C, in events that are TIS for muonic and for hadronic lines. Fig. 4.9
shows the results obtained for TCK=x002A and Fig. 4.10 for TCK=x002C: in both the two
distributions are in agreement which translates in lack of bias originating from SPD require-
ments on events that are TIS for hadron lines.

The outcome of this study allows to use of the whole data sample without any compul-
sory separation into samples where different GEC were applied.

4.4 Geometrical properties of B cascade decays

In Sec. 3.2.2 we described the B cascade background. Here we aim to study the geometrical
properties of this type of events.

We use a sample of simulated events with at least one b-quark in the event (inclusive
bb̄ MC), which corresponds to about 130 pb−1 of integrated luminosity. Then, using MC
truth matched events we require one of the muons to be a decay product of a B meson and
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Figure 4.8: Signal GL distributions obtained from D0 → Kπ triggered unbiased decays for
events triggered with the configuration TCK=x002C (red) and TCK=x002A (blue with black
squares).

Geometry Likelihood
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

x002A muon

x002A rest

Figure 4.9: Signal GL distributions obtained from D0 → Kπ events triggered with the
configuration TCK=x002A that are triggered unbiased for muonic lines (red) and for the
rest of lines (blue with black squares).



4.5. Conclusions 63

Geometry Likelihood
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

x002C muon

x002C rest

Figure 4.10: Signal GL distributions obtained from D0 → Kπ events triggered with the
configuration TCK=x002C that are triggered unbiased for muonic lines (red) and for the
rest of lines (blue with black squares).

another muon to be the decay product of a D meson from the same B. Fig 4.11 shows the
invariant mass and the GL (for GL values above 0.1) for this type of events. In the GL plot
we display as well the distribution for the bb̄ MC sample. In spite of the small number
of events it is clear that most of the B cascade background has an invariant mass lower
than 4900 MeV. Furthermore, the GL distribution of such events has signal-like behavior,
as the events spread along the x axis. From a total yield of 19 B → D(→ µX)µX events, 10
populate the GL region above 0.1. The fraction of B → D(→ µX)µX events in this region
is much larger than the 6% computed for bb̄ background.

In order to remove most of this background, we require the dimuon invariant mass to
be higher than 4900 MeV/c2 in the next steps of the analysis.

4.5 Conclusions

This chapter describes the method used to separate signal from combinatorial background
for the analysis published in Ref. [39]. The classifier employed in this publication includes
a non-geometrical discriminant variable, the pT of the B candidate. In the next chapter we
shall describe the improvements achieved to increase the rejection power of such classifier.

Using the low mass resonance decay D0 → Kπ, we have found a discrepancy in the
impact parameter between data and MC that lead to the introduction of a track smearing
technique (see Sec. 5.1). Furthermore, we have characterized the cascade decays in terms of
their geometrical properties and established a method to suppress them. Finally, we have
used the GL classifier to study the possible effects of the GEC applied at the L0 trigger level.
The outcome of these studies proved a lack of bias on the geometrical properties of signal
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Figure 4.11: Invariant mass of the dimuon pairs from B → D(→ µX)µX decays (left). On
the GL distribution (right) the blue circles represent B → D(→ µX)µX decays while in red
we show bb̄ background distribution.

events due to different SPD requirements at the L0 level.



Chapter 5

Optimization of the discriminant
classifier for B0

(s) → µ+µ−

This chapter presents a new multivariate classifier: the boosted decision trees (BDT). Firstly,
Sec. 5.1 shows a comparison of data and simulation signal distributions for some of the vari-
ables used to define the multivariate classifiers presented in this thesis. Sec. 5.2 introduces
the idea behind decision trees. Then, in Sec. 5.3, we describe the implementation of this type
of classifier in the selection process of B0

(s) → µ+µ−. We devote Secs. 5.4 and 5.5 to identify
the discriminant classifier used to separate signal from combinatorial background. We shall
compare the performances of the GL with those obtained with BDT. Finally, Sec. 5.6 details
the final step of the optimization and presents the final classifier for the analysis.

5.1 Extraction of the signal distributions for some variables using data
events

As shown in the last chapter, the combinatorial background in data and the simulated bb̄ →
µµX background are in agreement. All the multivariate classifiers described in this thesis
are defined using simulated events. In order to guarantee that the performances of such
classifiers hold after calibrating them with data, we verify whether the simulated signal
also describes the data signal.

Ideally we should compare simulated B0
s → µ+µ− with B0

(s) → h+h′− TIS data events,
as the hadronic trigger biases the distributions. Nevertheless, this approach is not feasi-
ble given the small available statistics for data TIS events. In order to compare data and
MC selected by the same trigger lines, we use B0 → Kπ simulated decays as a proxy of
B0

s → µ+µ−, and assume that the geometrical and kinematic properties of such decays are
compatible. The distributions for each variable are extracted using a fit of the inclusive
B0

(s) → h+h′− data sample. Then, each distribution is compared with simulated B0 → Kπ

decays. Both data and MC events are required to be triggered by the same TCK (x0032) and
to have a selection based on a classifier described in Sec. 5.3.

The B0
(s) → h+h′− data has a pion-pion mass hypothesis and the model used to fit the

invariant mass distribution is described in Ref. [43]. Here we highlight the main features of

65
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Figure 5.1: Invariant mass distribution of B0
(s) → h+h′− simulated events in the ππ mass

hypothesis extracted from a b inclusive sample.

such a model:

• The signal B0
(s) → h+h′− component is described by means of a Crystal Ball (CB)

function. This parameterization is broadly used in HEP and comprises a core Gaus-
sian portion that describes the detector response and a power-law low-end tail that
accounts for the presence of radiative decays. The Crystall Ball function notes as:

S(x; µ, σ, α, n) =

e−
(x−µ)2

2σ2 , x−µ
σ > −α

f (x; µ, σ, α, n)−α, x−µ
σ ≤ −α,

where f (x; µ, σ, α, n) =
(

n
|α|

)n
e−

−|α|2
2

(
n
|α| − |α| −

x−µ
σ

)
. The parameters α and n are

extracted from the simulation, while the mean and the resolution of the Gaussian are
extracted from data. This CB function has no physical meaning as the sample we
intend to fit is a superposition of 4 exclusive modes with a wrong mass hypothesis.
Nevertheless, it is a good approximation as shown in Fig. 5.1 for simulated events.

• We parameterize Λb decays, which peak at a higher mass than the B mesons, with a
Gaussian fixing its yield with respect to the B meson yield. The fraction of produced
B mesons with respect to Λb baryons is 0.9469, according to the PDG.

• One of the background components is the physical background which consists of par-
tially reconstructed three-body B meson decays, like B0 → ρ±π∓. The reconstructed
π+π− invariant mass fall in the lower region of the B0

(s) → h+h′− invariant mass

distribution due to the missing π0. The model used to describe such background, a
modified Argus function, is described in Ref. [43].
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Figure 5.2: B0
(s) → h+h′−events with smallest IPS of the muons (min IPS) [15-22.5] (a) and

[22.5-30] (b) fit with the model described in Sec. 5.1

• Finally, the last component of the fit describes the combinatorial background for B0
(s) →

h+h′− decays, that we model with an exponential function.

As an example, we detail the extraction of the distribution of the smallest impact pa-
rameter significance of the tracks (min IPS): the B0

(s) → h+h′− sample is divided into 10
different sub-samples according to an equally spaced binned min IPS distribution between
0 and 75. Then, each sub-sample is fit using the model previously described. Fig. 5.2 dis-
plays the result of the fit for the third and fourth bin. The parameters describing the signal
are fixed when fitting the distributions in each bin. In the upper right box we identify the
obtained yields for the combinatorial background (Nbkgc), the physical background (Nbkgp)
and the signal plus Λ decays (Nsig). These components correspond to the dotted yellow,
dotted blue and red distributions respectively. We show the rest of fits performed for the
other bins of min IPS in Fig. 5.3.

For each one of the bins we extract the number of B0
(s) → h+h′− decays and compare it

with the yields of B0 → Kπ events in each bin. Fig. 5.4 shows the agreement between data
and simulation for min IPS. These simulated events have been modified using the smearing
technique that we review in the following. The uncertainties displayed in this figure are the
uncertainties associated with the fit method.

Smearing of the track parameters

The smearing technique aims to account for observed differences between data and sim-
ulation impact parameter resolution by manipulating the track parameters so that the IP
resolutions in x and y in simulation correspond with data.

Fig. 5.5 shows the IP distribution obtained with the procedure described in the previous
section compared with B0 → Kπ simulated events with no smearing applied (a); and after
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Figure 5.3: B0
(s) → h+h′−events, in bins of min IPS of the muons, fit with the model de-

scribed in Sec. 5.1
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Figure 5.4: A comparison of the min IP of the tracks for B0 → Kπ simulated events (blue
line) and data B0

(s) → h+h′− events (black points).
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(a) Non-smeared simulation.
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Figure 5.5: Comparisons of data and simulation before the smearing of the track parameters
(left) and after (right).

applying the smearing (b). The agreement between distributions is more visible in (b),
reflecting the good performance of the smearing procedure.

The same approach is used to extract the rest of the fits of some other variables used to
define the classifier. Figs. 5.6 shows that data and simulation signals are in relatively good
agreement. The uncertainties in all figures are the errors of the signal yield obtained with
the fit.
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Figure 5.6: Comparisons of four variables that define classifiers presented in this document
for B0 → Kπ simulated events (blue line) and data B0

(s) → h+h′− events (black points).

5.2 Introduction to boosted decision trees

A decision tree is a machine learning technique developed in the context of data mining and
pattern recognition [44]. Its basic principle consists in extending a cut-based analysis into
a multivariate technique by consecutively analyzing a sample of events that fail a certain
hypothesis. The concept behind decision trees is not to reject events that miscarry a criterion
but instead to explore other criteria that may properly classify such events.

The analysis presented in this thesis is based on binary trees in which each node or data
sample recursively splits into two branches: enriched in signal or in background. The main
steps of a decision tree algorithm are:

1. Consider a sample composed of signal and background. Fig. 5.7 represents an exam-
ple of tree in which the starting sample contains 35 signal and 65 background events.

2. Start with a set of n variables to classify the events. In our example we use α, β, γ.

3. Choose the most discriminating variable between signal and background (α in Fig. 5.7)
and set a certain splitting criterion. This requirement separates the original node into
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Figure 5.7: A decision tree diagram example.

two nodes: one whose events fulfill α < a and contains a large number of background
events (background node 1); and another in which the events have α ≥ a. We denote
this last node as ‘signal node 1’ as it contains a large number of signal events.

4. If the signal purity (number of signal events divided by the total events) in a node
can be improved, split previous node again. Based on the variable that discriminates
better the signal from the background left in the node, two new nodes are generated
through a splitting of signal node 1. Background node 1 remains as it is since no
further division leads to an increase of signal purity.

5. Once the tree is created (training process), the output of the tree can be evaluated for
another set of events (testing process). The output for such set of events will depend
on how its variables behave in the tree.

Furthermore, the algorithm can impose several constraints on the tree’s characteristics.
For instance, to assure a statistical significance of the purity measurement in each node,
we can require a minimum number of events in each leaf (node in a tree). Also, to avoid
large computing time one can require a maximum number of layers. This last parameter is
strongly related with the concept of boosting described later.

A drawback inherent to the decision tree classifier is that a small change in the train-
ing sample can lead to large differences in the tree structure. Moreover, the output of the
tree is discrete as it depends on the purities of signal and background in each node. This
demands an increase of the tree size which reduces the significance of the purity measure-
ment. Furthermore, decision trees have an inherent problem related with the number of
misclassified events. These are background events misclassified in the final signal nodes
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and signal events misclassified in the background nodes. For instance, in Fig. 5.7, signal
node 2 contains two misclassified events, while background node 1 contains three misclas-
sified signal events.

For this reasons, the idea of boosting emerged to improve the performances of decision
trees (and other types of classifiers). It relies on the combination of different decision trees
into a new one, more stable and with improved performances in terms of significance.

The boosting technique used for the work performed in this document, AdaBoost, uses
the misclassification rate in order to assign a certain weight to a given tree. The misclassified
events in the tree Tk are weighted with a factor eαk in the next tree Tk+1. Consequently, the
factor αk = βln 1−εk

εk
forces the algorithm to concentrate harder on the misclassified events.

β is the boosting parameter and εk the misclassification rate.

The final output of the boosted decision tree corresponds to a weighted average of the
single responses of each of the trees (Ntrees):

T(i) =
1

∑Ntrees
k=1 αk

Ntrees

∑
k=1

αkTk(i). (5.1)

All the boosted decision trees classifiers reported in this thesis have been constructed
using the TMVA package [45].

5.3 Implementation of a selection BDT classifier (BDTS)

Sec. 3.1 mentions that B0
(s) → µ+µ− and B0

(s) → h+h′− decays have the same selection

criteria. We do not require particle identification to the tracks, collecting B0
(s) → µ+µ− and

B0
(s) → h+h′− candidates at the same time. This translates into a large event data sample as

the background for B0
(s) → h+h′− is abundant.

We shall illustrate this by requiring the same selection as described in 3.2 to a sample of
about 800 pb−1. Fig. 5.8 shows the B0

(s) → h+h′− distributions for all the events and those
that are trigger unbiased (TIS). Using these types of events is crucial for the calibration of
the final discriminant classifier. The previous figure reflects the large amount of background
in both cases and the negligible signal over background ratio for TIS events in the region of
invariant mass of [5100-5400] MeV/c2.

In this section we review the strategy to accomplish an efficient reduction of the B0
(s) →

h+h′− background using the boosted decision trees technique.

The definition of the BDT for the selection starts with an optimization of the variables
used, following two steps: the training process, in which the output of the BDT is generated,
and the testing process, in which its performances are quantified. Both steps rely on the
utilization of different samples: B0

s → µ+µ− as signal and 6% of the events in the sidebands
of the B0

(s) → h+h′− invariant mass distributions as background. The ranges that define

these sidebands are [4800-5000] and [5500-6000] MeV/c to avoid B0
(s) → h+h′− decays.
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Figure 5.8: Invariant mass distribution of B0
(s) → h+h′− events obtained with about

800 pb−1.

5.3.1 Definition of the BDT for the selection

The optimization process of the BDT starts considering nine variables, commonly used in
many offline selections: the separation between primary and secondary vertices (VD) and
its significance (VDS), B IP, B IPS, DOCA, the direction angle (dira), χ2(SV), min IPS and
min IP.

Firstly, the background rejection versus the signal efficiency curve is computed using
the set of nine variables. Then, one variable at the time is removed from the original set
and for each new set we compute the background rejection versus signal efficiency. At
this point, we compare the receiver operating characteristic (ROC) curves obtained with
each set of variables. Being interested in keeping a high signal efficiency, we choose the
set giving the best performance for signal efficiencies above 90%. Only as pedagogical
purposes, Fig. 5.9 shows the ROC curves of four different BDT trained with different sets
of variables. In this figure, the black and the red curves show the best performances above
90% signal efficiency. For this example, we imagine that the black curve was obtained with
all the original variables, and the red curve with all the variables removing min IPS. Hence,
as the performances are very similar, and the latter curve has less variables we would keep
the variables that define this BDT as a starting set for a further step.

The process of removing a variable at a time is repeated until a decrease in performance
observed between the new set and the original one is larger than 5-6%. At the end of the
optimization, the final set of variables is: BIP, BIPS, DOCA, DIRA, χ2 (SV), minIP.

Fig. 5.10 represents the receiver operating characteristic (ROC) curve for the defined
BDT, hereafter called BDTS, which shows the signal efficiency versus the background rejec-
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Figure 5.9: Background rejection versus signal efficiency for four hypothetical BDT com-
puted with different input variables.
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Figure 5.10: Background rejection versus signal efficiency of a BDTS-based selection com-
puted with simulated B0

s → µ+µ− as signal and B0
(s) → h+h′− data sidebands as back-

ground events.

tion. The uncertainties in both background rejection and signal efficiency are smaller than
0.1%.

In order to stress the discriminant power of this classifier we compare it with a dif-
ferent approach consisting in a tighter selection than in Sec. 3.2.1. This tighter selection,
developed initially in our working group, has the following requirements: DOCA<0.08,
DIRA>0.9997, min IPS>6 and B IP<0.08, which translated in 50% of background rejection
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Figure 5.11: B0
(s) → h+h′− invariant mass distributions with different BDTS requirements.

at a signal efficiency of 92%. The BDTS rejects 40% more background for the same signal
efficiency.

As the GL, the BDTS output for signal B0
s → µ+µ− is constructed to be uniformly dis-

tributed between 0 and 1 and peaking at 0 for background. Fig. 5.11 shows the effect of
different BDTS requirements on the B0

(s) → h+h′− sample mentioned at the beginning of
this section. We can see how the signal over background ratio in the mass window im-
proves from 0.08 for no requirement to 0.19 for BDTS>0.05, which corresponds to a signal
efficiency of 95% for B0

s → µ+µ−. As shown in Fig. 5.10 the background rejection that
corresponds to this selection criterion is of about 60% Another important aspect, shown in
Fig. 5.12, is that the ratio signal over background is highly enhanced for the TIS sample.

5.3.2 Effect of the BDTS selection on combinatorial background

Fig. 5.13 presents the distributions for smeared (see Sec. 5.1) signal B0
s → µ+µ− and bb̄ →

µµX simulated events, compared with data sidebands (with Ismuon requirement). The
signal distribution for signal is not flat, as the training is performed with non-smeared MC.
The fact that the B0

s → µ+µ− smeared events peak more at zero than the non-smeared, flat
by construction, reflects that the former are more background-like than the latter sample.
Data and simulation backgrounds distributions are in excellent agreement.

The BDTS bb̄ → µµX background rejection, visible in Fig. 5.14, is 51.9 ± 0.3 % and
76.4 ± 0.2 % for BDTS>0.01 and BDTS>0.05, respectively. Fig. 5.15 demonstrates that the
correlation between the BDTS output and the µµ invariant mass is negligible.

5.3.3 Effect of the BDTS selection on normalization channels

Using smeared simulated events, the efficiencies computed for different BDTS selection
requirements on B0

s → µ+µ−, B+ → J/ψ(→ µ+µ−)K+, B0
s → J/ψ(→ µ+µ−)φ(→ K+K−),
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Table 5.1: Efficiencies for different BDTS selection requirements for B0
s → µ+µ−(a), B+ →

J/ψ(→ µ+µ−)K+(b) and B0
s → J/ψ(→ µ+µ−)φ(→ K+K−)(c) smeared Monte Carlo sam-

ples. The efficiency ratios between B+ → J/ψ(→ µ+µ−)K+, B0
s → J/ψ(→ µ+µ−)φ(→

K+K−), B0 → Kπ (d) and B0
s → µ+µ− are reported in the third, fifth and seventh row

respectively, with their uncertainties quoted in parenthesis.

BDTS requirement 0.01 0.03 0.05 0.08 0.1

ε(a) 0.9828 0.9501 0.9210 0.8815 0.8570
ε(b) 0.9834 0.9516 0.9228 0.8833 0.8587

ratio 1.0006(5) 1.0010(6) 1.002(1) 1.002(1) 1.002(1)
ε(c) 0.9830 0.9487 0.9170 0.8750 0.8495

ratio 1.0001(5) 0.9985(8) 0.996(1) 0.993(1) 0.991(1)
ε(d) 0.9825 0.9497 0.9200 0.8794 0.8538

ratio 0.9996(4) 0.9995(7) 0.9989(9) 0.998(1) 0.996(1)

and B0 → Kπ are summarized in Tab. 5.1. This table shows that the ratios of efficiencies
between each normalization channel and the B0

s → µ+µ− signal (εchannel/εsignal) are equal
to one within 0.4% for any BDTS requirement.

5.4 BDT classifier as a background discriminant

In the previous chapter we mentioned that the GL method was adopted to discriminate
signal from background for the analysis presented in Ref. [39]. This section describes the
definition of a new classifier, based on a BDT framework, adopted to improve the rejection
of the combinatorial background.

The following discriminant variables, in addition to those used to define the published
GL, are used to optimize a BDT classifier:

• ‘B isolation’, the isolation of the B candidate (CDF definition [46]):

ICDF =
pT(B)

pT(B) + ∑tracks pT(tracks)

where pT(B) is the B transverse momentum and ∑tracks pT(tracks) is the sum of trans-
verse momentum of tracks, excluding the muon candidates, satisfying

√
δη2 + δφ2,

with δη and δφ denoting the difference in pseudorapidity and in φ coordinate be-
tween the track and the B candidate, respectively;

• ‘min(µ+
pT

, µ−pT
)’, the smallest of the muon candidates’ pT ;

• ‘polarization angle’, the cosine of the angle between the muon momentum in the B
candidate rest frame and the vector perpendicular to the B candidate momentum and
the beam axis.
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Figure 5.16: Distributions of variables entering the BDT, for signal B0
s → µ+µ−(blue line)

and background bb̄ → µµXMC (red with uncertainties), and data events from the side-
bands of the invariant mass distribution. All plots are performed with events requiring
BDTS>0.03.

Fig. 5.16 displays these three variables, and the sum of the isolations of the muons. Once
again the simulation describes quite well the combinatorial background.

The green curve in Fig. 5.17 shows the background rejection in terms of signal efficiency
computed for the following set of six variables: the IP, the pT and the decay time of the B
candidate, the smallest IPS, the sum of the isolations and the DOCA of the muon candidates.

In order to understand what is the effect of introducing these new variables (B isolation,
the smallest of the pT of the muons and the ’polarization angle’), we first add one of them at
a time and compute the ROC curves for these three new sets of variables, displayed in blue,
black and red, respectively, in Fig. 5.17. Every new variable improves the performances
of the first set. The largest improvement comes from adding the smallest of the pT of the
muons.

In a second step, we add two variables at the time to the original set, while the final
step corresponds to adding all three. Fig. 5.18 shows four ROC curves: one corresponds to
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Figure 5.17: ROC curves for BDT defined with different input variables. StartSet stands
for the starting set of variables: the IP, the pT and the decay time of the B candidate, the
smallest IPS, the sum of the isolations and the DOCA of the muon candidates.

the set with all variables, one to the set when just ’min(µ+
pT

, µ+
pT

)’ is added to the starting
set and two curves that represent the best sets when adding two variables. The errors on
the curves, not reported in the figures, are smaller than ∼ 0.04%. The samples used for
the training and testing contained about 9500 background events and 84000 signal events,
respectively.

The criterion to decide the most suitable set of variables is the maximum background
rejection at a signal efficiency at 50%, the best set being the one containing all variables.
The background in this region of signal efficiency, known as sensitive region, is highly
suppressed.

The BDT classifier optimized in the previous paragraph increases the discriminating
power of the GL, as defined in Ref. [39], as shown in Fig 5.19. The uncertainty associated
to the background rejection for the GL (correlated with the uncertainty for the BDT) is of
0.15% for the low signal efficiency plot. This uncertainty is larger than the one reported for
Figs. 5.17 and 5.18 as the background samples used in this case are smaller: about 1000
events for training and testing respectively. The reason to use such a reduced sample is
because the GL was previously computed for an old sample with lower statistics. Therefore,
in order to compare performances in similar conditions, we use the same number of events
to train and test the BDT.

5.5 Further optimization of the discriminant BDT

Aiming to improve the rejection of background for B0
(s) → µ+µ−, new discriminant vari-

ables were under study [47] after the publication of Ref. [39]. An important feature desired
in such variables is a low correlation with the former variables, which translates into bring-
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Figure 5.19: ROC curves for the GL [39] (blue line) and the BDT with nine variables defined
in this section (red line).
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ing new information to the classifier. This new information arises from the different angular
distributions between the muon candidates, and between a muon candidate and the mo-
mentum of the other B in the event, expected for signal and background processes. We give
a brief description of four variables (shown in Fig. 5.20) for which we study the possibility
of defining a new BDT with:

• ‘other B angle’: the angle between the B candidate’s momentum and the trust mo-
mentum. The trust momentum is defined as the sum of momenta of all long tracks,
excluding those associated to primary vertices different the one associated to the B
candidate and tracks from long lived particles. If the lack of tracks impedes the defi-
nition of the trust momentum this variable is set to 1 in order to simplify a selection
criterion separating signal and background;

• ‘|∆η|’: the absolute value of the difference of pseudo-rapidity of the muon candi-
dates;

• ‘angle wrt ptr (boosted RF)’: the angle between the direction of the positive muon can-
didate in the rest frame of the B candidate and the trust momentum in the same frame.
If the lack of tracks impedes the definition of the trust momentum this variable is set
to π/2 in order to simplify a selection criterion separating signal and background;

• ‘abs(φ)’: absolute value of the difference of the spherical φ coordinate of the muon
candidates.

The process of optimization is similar as for the BDT for the selection. With the idea of
estimating the combination of variables that has the highest rejection of background power,
we start computing the background rejection versus the signal efficiency for a BDT defined
with a set of seventeen variables: the nine variables that define the previous BDT, all the
variables that entered in the optimization of BDTS and the aforementioned four new vari-
ables.

Then, we compute the background rejections removing one variable at a time and com-
pare them with the performances of the original set. If the background rejection of one of
the new sets is similar as the original one, we start a new iteration from this last set of vari-
ables, removing again one variable at a time. After having removed several variables, if
in the next step we observe a large reduction of the performances when trying to remove
another variable, we proceed adding one by one those variables already discarded. The
reason to do this relies on the fact that some variables might improve the performances, or
not, depending on the other variables entering the BDT, due to correlations between them.

After the optimization the best set of variables is: the decay time, IP, isolation, direction
angle, VDS and pT of the B candidate, the smallest pT DOCA, and isolation of the muon
candidates, and the ‘polarization angle’ and the χ2 (SV).

Fig. 5.21 shows the ROC curves corresponding to the BDT trained with nine variables
and the optimized BDT with 13 variables. These curves were obtained using all the statis-
tics available: ∼ 32,000 background and 160,000 signal events. This was possible with the
following procedure: split both B0

s → µ+µ− signal and bb̄ → µµX background samples
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Figure 5.20: Variables included in the optimization of the BDT classifier. All the samples
have a BDTS>0.05 requirement.
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Figure 5.21: ROC curves for two different BDT: the green curve with the associated uncer-
tainty corresponds to the BDT defined in the previous section which has nine variables. The
black curve represents the performances of the BDT optimized in this section with thirteen
variables.

into two, namely subsample signal A and subsample signal B, and subsample background
A and sub-sample background B. Then, the sub-samples A are used to train a BDT that
classifies the sub-samples B. On the other hand, the sub-samples B are used to train another
BDT that classifies the sub-samples A. Finally, the curves shown in Fig. 5.21 are computed
considering together sub-samples A and B.

The aforementioned procedure allows to optimize the variables entering the BDT. The
final classifier is trained with all the available simulated events, and then calibrated on data.

In conclusion, the optimized BDT rejects (33± 7)% more background for a signal effi-
ciency of 50%.

5.6 Optimization of the BDTS-based selection

In principle, the BDTS was conceived to exploit multivariate techniques in order to reduce
the background of two-body B decays, keeping a high efficiency in signal and control chan-
nels. In this section we propose a study of the performances of various BDT classifiers
trained with different samples in terms of BDTS requirements. The BDTS mostly rejects
background at low values of BDT (see Fig. 5.22).

We use a bb̄ → µµX simulated background sample of about 32,000 events. Requiring
BDTS>0.1 reduces the yield to about 5,000 events, as the background rejection is 85%. A
tighter criterion would not be appropriate as we need to split the sample into two: one for
training and one for testing.

We display in Fig. 5.23 the ROC curves obtained after applying five different BDTS se-
lections. Both training and testing samples are reduced by the same BDTS prerequisite. The



5.6. Optimization of the BDTS-based selection 85

BDT
0 0.2 0.4 0.6 0.8 1

N
u
m

b
e
r 

o
f 
e
v
e
n
ts

1

10

210

310

410 no BDTS cut

BDTS>0.01

BDTS>0.05

Figure 5.22: BDT distribution for bb̄ → µµX events with different BDTS requirements.

plot on the top shows the high signal efficiency region and the bottom one the low signal
efficiency. The computation of the signal and background efficiencies of all the curves is
performed considering that the total number of events is the same as when not requiring
any BDTS selection. This allows a fair comparison of the background rejection in the low
efficiency region. As a result, we can see how each curve starts at the background rejection
point corresponding to the background rejection of the BDTS selection.

In conclusion, the BDT trained with BDTS>0.05 rejects more background in the region
of signal efficiency below 50%. In this region, the improvement with respect to the curve
with no BDTS requirement is of about 40%. The uncertainty associated to the background
rejection for this last curve at signal efficiency of 50% is of 0.02%. Therefore, considering the
errors correlated, the curve with the BDTS>0.05 requirement is 2.5σ above the curve with
no BDTS selection, which indicates a significant improvement.

The fact that the performance of the BDT diminish for higher BDTS requirements (i.e.
0.08 and 0.1) than BDTS>0.05 is due to the fact that these requirements reduce the bb̄ →
µµX background yield below 50% signal efficiency, hence there is not enough statistics for
the training process.

After requiring BDTS>0.05, we perform a new study of the different BDT (with nine
and thirteen variables). Fig. 5.25 shows the compatibility of the background rejection of
both classifiers. The reason that the BDT with 9 variables improves in terms of rejection
after the BDTS requirement, but not the BDT with 13 is due to the fact that some of variables
defining this last classifier are the same as those already used to define the BDTS. Fig. 5.24
shows four variables shared by both BDTS and the BDT described in this section. The plots
on the left are obtained with no BDTS selection, while for those on the right a BDTS>0.05
is enforced. It is clear that the rejection power of the variables after the BDTS requirement
is much lower than before the selection.
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Figure 5.23: ROC for different BDT (nine variables) after several BDTS selections.
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Figure 5.24: Variables shared by BDTS and the optimized BDT with nine variables. The
plots on the left have no BDTS selection, while those on the right are required to have
BDTS>0.05.
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Figure 5.25: ROC curves for two different BDT computed with events after a BDTS>0.05
selection requirement: the green curve with the associated uncertainty corresponds to the
BDT (9 variables). The black curve shows the performances of the BDT optimized in this
section with thirteen variables.
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Figure 5.26: Scatter plots of invariant mass and BDT for signal B0
s → µ+µ− (left) and back-

ground bb̄ → µµX (right) simulated events. The red points are the average profile between
both variables.

BDT and invariant mass correlation

In Chap. 6 we perform a two-dimensional unbinned likelihood fit in invariant mass and
BDT. In order to allow the product of their probability functions, mass and BDT need to be
uncorrelated.

Fig. 5.26 (left) reflects an small correlation of 6% between the invariant mass and the
BDT for B0

s → µ+µ− simulated events. This correlation is due to the radiative decays in the
lower edge of the mass peak. The correlation in bb̄ → µµX simulated events (right plot) is
negligible.
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Optimization of the BDT parameters

The classifier optimized in the previous section has a good background power. In this
section we introduce another possibility to improve the classifier based on the optimization
of the parameters that define such BDT.

We recall that the lack of a large bb̄ → µµX sample limits a further significant improve-
ment of the classifier as it is almost 100% efficient in rejecting the background in the low
signal efficiency region.

Four parameters, presented in Sec. 5.2, define the BDT: the number of trees used (Ntrees),
the boosting parameter (β), the minimum number of events in each node (Nmin

events), and
the maximum number of layers of each tree (Nmax

depth). The BDT presented in the previous

sections have: Ntrees = 250, β = 1, Nmin
events = 400, and Nmax

depth = 3. The idea behind the
following study is to search for the combination of these parameters that more efficiently
discriminates the background in the sensitive region.

We perform a scan of the parameter space (Ntrees ∈ (100, 250, 400, 550); β ∈ (0.8, 0.9, 1, 1.1);
Nmin

events ∈ (200, 400, 600); Nmax
depth ∈ (2, 3, 4)) and compute a figure of merit (FOM) that

indicates the rejection power of each classifier. This FOM is the integral over the ROC
curve below a signal efficiency of 60%, weighting more the region below 50%: FOM ≡
0.75×

∫
sig.e f f .50% ROC + 0.25×

∫
sig.e f f .60% ROC. Although the main goal is to suppress the

background below 50% signal efficiency, we account for an improvement a bit above this
value searching for more stable trend in the ROC curve.

Fig. 5.27 shows the improvement in performance of the classifier varying the parame-
ters. The new optimized BDT has: Ntrees = 400, β = 1, Nmin

events = 400, and Nmax
depth = 3.

Despite this visible improvement, these new settings where not used to define the final
classifier as all the necessary parallel studies such as the calibration of the BDT with data
(see Sec. 6.1.1) or the computation of the normalization factor (see Sec. 7.1) were finalized
with the aforementioned settings.

In conclusion, the classifier that we use for the rest of the analysis corresponds to a BDT
trained with the aforementioned nine variables, original parameters (Ntrees = 250, β = 1,
Nmin

events = 400, and Nmax
depth = 3), and after requiring BDTS>0.05 in our samples.

5.7 Further signal data and simulation comparisons

Fig. 5.28 shows a comparison between data and simulation for signal for each of the other
eight variables that define the BDT classifier. As for those comparisons already presented
in 5.1, data and simulation are in relatively good agreement.

5.8 Conclusions

This chapter describes the boosted decision trees (BDT) classifier. This technique, used as
a selection criterion, allows to reduce the background of two-body B decays by 60%, while
keeping an efficiency of 92% in smeared B0

s → µ+µ− signal events. The reduction of bb̄ →
µµX simulated background is of (76.4± 0.2)% for the same signal efficiency. Furthermore,
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Figure 5.27: ROC for different BDT with same nine input variables and different number of
trees: 250 trees (blue with grey error band) and 400 trees (dashed red).

the signal efficiency for such selection requirement in the sensitive region (BDT>0.5) is 99%
according to simulation.

A second BDT classifier is optimized to separate signal from background in the low sig-
nal efficiency region. According to simulation, this BDT allows to suppress a further 99.9%
of background after the selection process, removing half of the remaining signal events.

Finally, we present a method to extract the signal distributions from data. The obtained
data distributions for the variables used to define the BDT classifiers are in good agreement
with simulation.
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Chapter 6

Extraction of the signal yields using an
extended maximum likelihood fit

The technique we use to estimate the signal yields from our data sample is an extended
maximum likelihood fit in two dimensions: the invariant mass and BDT output (see Chap. 5).

Sec. 6.1 briefly describes the extended maximum likelihood fit procedure. Then, Sec. 6.2
presents the method followed to extract the yields and to estimate the uncertainties and
Sec. 6.3 summarizes the results obtained.

6.1 Overview of the fit procedure

The extended maximum likelihood (EML) fit method [48] assumes the knowledge of the
probability density function (pdf ) for N data events x1, ..., xN in terms of a set of m parame-
ters α1, ..., αm: p(xi; α1, ..., αm). If N is the expected number of events, the observed number
N is given by Poisson statistics, and the likelihood, L, for this particular data values is:

L = e−N × N N

N! ∏ p(xi; α1, ..., αm). (6.1)

The factor multiplying the product in the extended likelihood is the Poisson term. The
unknown parameters are obtained by minimizing −2 logL with respect to all αi.

The general idea behind EML fits is to extend the normalization condition not constrain-
ing it to be normalized to 1. The new probability density function does not just describe the
shape of the expected distribution but also the size of the sample.

The p(xi; α1, ..., αm) that represents our domain of interest is the sum of four contribu-
tions, each one depending on the mass (M) and the BDT:

p =
NsS(M, BDT) + NdD(M, BDT) + NpP(M, BDT) + NcC(M, BDT)

N
, (6.2)

where N = Ns + Nd + Np + Nc is the sum of the number of B0
s → µ+µ−, B0 → µ+µ−,

peaking background, and combinatorial background events, while S(M, BDT),D(M, BDT),
P(M, BDT) and C(M, BDT) are their respective pdf s. Each of these pdf s factorizes into a
term that depends on the invariant mass and another that depends on the BDT, assuming
no correlation between these two variables. For instance S(M, BDT) = S1(M)×S2(BDT).

93
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6.1.1 Description of the pd f s needed for the analysis

We report the methods used to obtain the parameters defining each pdf for the four types of
events and both components (invariant mass and BDT). These methods have the advantage
to rely mainly on data.

The reader shall find in Ref. [43] a more detailed description of the procedure to extract
such pdf s.

B0
(s) → µ+µ− invariant mass pdf

The model used to describe the invariant mass pdf for signal is a Crystall Ball function (see
5.1).

The exclusive B0 → K+π−, B0 → π+K−, B0 → π+π− and B0
s → K+K− decays allow

to derive from data the mean of the masses for B0
s and B0. The four exclusive B decays

come from the B0
(s) → h+h′− TIS sample with four different mass hypotheses and particle

identification requirements. For each exclusive decay, a fit of its invariant mass distribution
allows to extract the mean values of the B0 and B0

s masses:

m(B0) = 5284.63± 0.20(stat) ± 0.27(syst)MeV/c2,

m(B0
s ) = 5372.96± 0.32(stat) ± 0.28(syst)MeV/c2.

The quoted m(B0) corresponds to a combination of the values obtained for the three B0

channels. Both measured m(B0
s ) and m(B0) are about 0.1% above the PDG mass values and

the systematic uncertainties take into account variations of particle identification and BDTS
requirements. These shifts of the measured masses with respect to the PDG values do not
spoil the final results as they are taken into account in the analysis.

The resolution of the Gaussian core of the Crystal Ball is extracted by interpolating the
values of the resolutions obtained for the five different dimuon resonances (J/ψ, Ψ(2S),
Υ(1S), Υ(2S), Υ(3S)). The interpolation by a power-law function (power=1.37±0.08) has been
validated up to the Z0 mass within 0.75σ and the systematic uncertainties estimated by
fitting with a linear function. The resolutions obtained with this method are:

σB0 = 24.3± 0.3(stat) ± 0.7(syst)MeV/c2,

σB0
s

= 24.8± 0.3(stat) ± 0.6(syst)MeV/c2.

The transition point α and the exponent n are obtained by fitting the B0
s → µ+µ− MC

distribution requiring the resolution to match what measured on data:

α = 2.094± 0.024(stat) ± 0.015(syst),

n = 0.993± 0.009(stat) ± 0.012(syst).
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Figure 6.1: Invariant mass pdf for B0
(s) → h+h′− decays in which both hadrons decay in

flight, which constitutes the main peaking background.

Peaking background invariant mass pdf

The invariant mass line-shape of B0
(s) → h+h′− decays in which both hadrons decay in

flight is obtained from B0
(s) → h+h′− decays correcting the momentum of both hadrons by

a factor that accounts for the loss of momentum due to their decay. This factor is extracted
from simulation. Fig 6.1 shows the pdf for the invariant mass of the peaking background
after such condition (nominal). Two different scenarios are considered: assuming no kink
at all (optimistic) and accounting for a kink as large as the one present in the decay in flight
of kaons (pessimistic).

The number of peaking background events in the whole invariant mass range is eval-
uated to be 5.4± 0.7 events for our data sample [43]. This number is obtained taking into
account the double mis-identification rate (ε(hh → µµ)) obtained by convoluting the kaon
and pion fake rates, measured on data, with the momentum and pT spectrums of the two
hadrons of B0

(s) → h+h′− simulated events. The fraction of peaking background events that

are in the B0
s and B0 mass windows are (8.8+3.0

−2.1)% and (48.0+20
−8 )%, respectively.

Combinatorial background invariant mass pdf

To extract the invariant mass pdf for the combinatorial background we fit with an exponen-
tial function the µµ invariant mass distribution in the ranges [4900-5000] and [5418-5950]
MeV/c2. The lower edge of the first range excludes most of the cascade background stud-
ied in Ref. 4.4, while the higher edge avoids misidentified B0

(s) → h+h′− decays. Fig. 6.2
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Figure 6.2: Invariant mass distribution of µµ events in the ranges [4900-5000] and [5418-
5950] MeV/c2 fit with an exponential function.

shows the invariant mass fit.

B0
(s) → µ+µ− BDT pdf

The BDT pdf for signal is obtained via data B0
(s) → h+h′− TIS events. This sample is divided

in different bins in BDT in which the invariant mass distribution is fit to extract the signal
yield.

In an analysis presented with a reduced dataset [40], the number of B0
(s) → h+h′− TIS

events in the first BDT bin could not be determined directly because of a too low S/B ratio.
Instead, we did a subtraction to the total yield the events in the rest of the bins. After
introducing the BDT-based selection, the yield of TIS B0

(s) → h+h′− can be independently
fit in all bins.

Fig. 6.3 shows the BDT pdfs for B0
(s) → µ+µ− decays, in which each bins is obtained from

the B0
(s) → h+h′−TIS yields corrected with a factor to take into account the muon trigger

bias on B0
s → µ+µ−.

Peaking background BDT pdf

The distribution of the BDT of the peaking background is also obtained from the number of
B0

(s) → h+h′− TIS events in each BDT bin as for the signal BDT. In this case, the correction
factor applied to the number of TIS events in each bin takes into account the double mis-
identification rate ε(hh → µµ) in the different BDT bins.

Fig. 6.4 shows the BDT peaking background distribution.The higher value of the first
bin indicates that these processes are not perfectly signal-like due to the decays in flight.
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each BDT bin. The bins are normalized to their size.
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Figure 6.5: BDT distribution for candidates with invariant mass in the ranges [4900-5000]
and [5418-5950] MeV/c2 fit using a sum of three exponentials. The pulls of the fit are
displayed at the bottom.

Combinatorial background BDT pdf

To extract the pdf for the BDT of the combinatorial background we fit the BDT distribution
of events in the sidebands of the invariant mass distribution. The model used to fit the
distribution is a sum of three exponentials:

f (background; BDT) = c0e−κ0x + c1e−κ1x + c2e−κ2x.

Fig. 6.5 shows the result of the fit, with the pulls (
Nbin(i)−N f it(bin(i))

σNbin(i)
) displayed on the bot-

tom of the figure and the parameters of the fit on the right box. This figure reflects an overall
good agreement between model and data, although it does not properly succeed fitting the
first bin, whose pull value, 9, falls out of the range of the plot. For this reason, we will
cross-check the results with another fit excluding the first bin in BDT. As shown in Fig. 6.6,
excluding the region of BDT∈(0-0.25) most of the pull values remain between -1 and 1.

The model with the exponential functions (in all BDT range) is used as a baseline to
describe the BDT background, as it allows a well defined treatment of the systematic uncer-
tainties by fluctuating the parameters with a Gaussian constraint.
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Figure 6.6: BDT distribution for candidates with invariant mass in the ranges [4900-5000]
and [5418-5950] MeV/c2, excluding BDT<0.25 events, fit using a sum of three exponentials.
The pulls of the fit are displayed at the bottom.

We use two other models to describe the background BDT, to account for different
sources of systematic uncertainty: a binned pdf with the same binning as the BDT for the
signal and a kernel estimator [49] which provides an unbinned and non-parametric esti-
mate of the pdf from a given data sample. We use the RooKeysPdf implementation in RooFit
to obtain the kernel estimator from our data. Fig. 6.7 displays the fit performed using this
last model which has a pull distribution mostly between -1 and 1. In this case, the first bin
is properly fit.

Invariant mass correlation with BDT

The fit performed to extract the final yields uses two variables that are a priori uncorrelated
(see right plot in Fig. 5.26): the invariant mass and the BDT. We study the possibility of a
correlation of the exponent of the fit of the combinatorial background mass and the BDT by
dividing the sample in different BDT ranges. The invariant mass distributions in each bin
are fit with an exponential function, and the obtained exponents are displayed in Fig. 6.8
and reported in Tab. 6.1. All exponents agree within errors with the exponent obtained
fitting the whole sample. At high BDT the errors increase due to the lack of statistics.
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Figure 6.7: BDT distribution for candidates with invariant mass in the ranges [4900-5000]
and [5418-5950] MeV/c2 fit using a kernel estimator. The pulls of the fit are displayed at
the bottom.

6.2 Validation of the fit method using simulated data

Considering a B(B0
s → µ+µ−) as predicted by the SM, the expected number of events in the

data sample after the selection process is of about 10.0 B0
s → µ+µ− and 1.2 B0 → µ+µ−.

To quantify the sensitivity of our method and to verify possible biases in the estimation of
the uncertainties we fit a generated data sample. This sample is the result of merging data
events in the sidebands of the invariant mass with events generated in the range [5000-
5418] MeV/c2 of mass according to their pdf. The number of generated events in this mass
range correspond to: 10 B0

s → µ+µ−, 0 B0 → µ+µ−, 5 peaking background and 8371
combinatorial background. This background yield is estimated through the integration of
the exponential function that models the background invariant mass distribution in the
mass range[5000-5418] MeV/c2.

Before analyzing the previous sample, we perform a toy study based on simulated
events to check for biases in the uncertainty estimates.
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Figure 6.8: Values of the exponents extracted by fitting the invariant mass distribution in
the ranges [4900-5000] and [5418-5950] MeV/c2 with an exponential function, as a function
of the BDT range. The horizontal red line shows the value obtained fitting the whole range,
being the dashed black lines its uncertainty.

Table 6.1: Values of the exponents extracted by fitting the invariant mass distribution in the
ranges [4900-5000] and [5418-5950] MeV/c2 with an exponential function, as a function of
the BDT range.

BDT range - exponent (×10−4)

0.000-0.025 8.2 ± 0.4
0.025-0.070 6.3 ± 0.6
0.070-0.125 5.4 ± 1.0
0.125-0.200 5.2 ± 1.3
0.200-0.300 6.5 ± 1.7
0.300-0.500 8.9 ± 2.2
0.500-1.000 13.4 ± 6.7
0.000-1.000 7.1 ± 0.3
0.250-1.000 9.8 ± 1.7

MC toy validation

We simulate 1000 data samples generating a number of events corresponding to the pre-
viously described sample: 10 B0

s → µ+µ−, 0 B0 → µ+µ−, 5 peaking background, and
17235 (this number accounts for the events in the whole invariant mass range) combinato-
rial background.

Each sample is fit and the yields and the uncertainties for each type of events extracted.
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Fig. 6.9 shows the distribution of fit yields, uncertainties, and pull values (
N f it−Ngenerated)

σNf it
),

for each type of event.

• Yields. The B0
s → µ+µ− and background yields are well described by Gaussian dis-

tributions. On the other hand, the B0 → µ+µ− yield distribution is non-Gaussian
and it has a tail towards negative values. This tail is caused by an overestimation of
one of the other components, mainly the combinatorial background, due to an statis-
tical fluctuation that forces the B0 → µ+µ− yield to large negative values in order to
recover the stability of the fit.

• Uncertainties. A Gaussian model describes properly the B0
s → µ+µ− and the back-

ground uncertainties, but not the B0 → µ+µ− uncertainty.

• Pulls. The B0
s → µ+µ− and background pulls are Gaussian. The plots shown in

Fig. 6.9 reflect a 5% overestimation of the statistical uncertainty of the B0
s yield that

is compatible with zero. Hence, no correction is applied to the final uncertainty. The
distribution of B0 → µ+µ− pulls is clearly non-Gaussian, and mostly between -2 and
2.

Generated data validation

We test several fit strategies before unblinding the data and choose the one giving the small-
est relative error in measuring the B0

s → µ+µ− yield of the simulated data while giving an
unbiased result. These approaches consist in fixing or letting free the parameters defining
each pdf and requiring or not a positive B0

s → µ+µ− and B0 → µ+µ− yields. In all cases,
the parameters defining the signal BDT, and the peaking background BDT and mass pdf s
are fixed.

On one hand, not fixing the parameters results into a larger statistical uncertainty, on
the other hand, no systematic uncertainty needs to be accounted for in this case, which can
result into smaller total uncertainty. For this reason we test all the possibilities.

Tabs. 6.2 and 6.3 show the results obtained by fixing and letting free the parameters,
and using different background BDT models, respectively. On both tables we report the
results obtained fitting the BDT distributions with three exponentials including or not the
first BDT bin. Furthermore, we apply positive prior requirements on the B0

s → µ+µ− and
B0 → µ+µ− yields.

The results obtained using the background model with three exponentials (first rows in
Tabs. 6.2 and 6.3) are consistent with each other at 7%, reflecting unbiased results. The re-
sults obtained using the other three approaches (no first BDT bin, kernel estimator and
binned BDT background distribution) are consistent with the baseline method of using
three exponentials at 10%, which also indicates the robustness of the fit method.

In the next paragraph we describe the method used to estimate the systematic uncer-
tainty.
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Figure 6.9: Distributions of B0
s → µ+µ− and B0 → µ+µ− yields, their uncertainties and

their pulls. The total number of toys generated is 1000.
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Figure 6.10: Distributions background yields, uncertainties and pulls. The total number of
toys generated is 1000.

Table 6.2: B0
s → µ+µ− yields obtained fitting the simulated data fixing the nuisance param-

eters to their mean values using different BDT background model.

Model Positive prior No prior

3 exponentials 12.4+6.9
−5.4 13.3+7.1

−5.7

3 exp. (no 1st bin) 11.3+6.8
−5.5 12.1+7.1

−5.6
Rookeyspdf 9.5+7.0

−5.6 10.6+7.3
−5.9

Binned histogram 10.4+7.1
−5.6 11.4+7.4

−6.0
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Table 6.3: B0
s → µ+µ− yields obtained fitting the simulated data letting free the nuisance

parameters of the invariant mass signal and background, and the BDT background using
different BDT background model.

Model Positive prior No prior

3 exponentials 13.1+7.2
−5.6 13.3+7.2

−5.8

3 exp. (no 1st bin) 11.2+7.0
−5.6 10.8+7.2

−5.7
Rookeyspdf 9.5+7.0

−5.6 10.5+7.4
−6.0

Binned histogram 10.37+7.1
−5.6 11.2+7.4

−5.9

Systematic uncertainties

Each pdf model has an intrinsic source of systematic uncertainty related to the knowledge of
the nuisance parameters that define it. In the following we describe the method employed
to estimate the systematic uncertainties associated to the parameterization of each pdf.

The parameters characterizing a given pdf are generated 500 times according to a Gaus-
sian distribution centered at its mean value and width equal to its uncertainty. Then, using
each of the new 500 generated pdf, we fit the simulated data sample described above and
extract the yields.

In a first step, only the parameters defining the pdf of one type of event and compo-
nent (mass or BDT) are generated, fixing the rest of parameters. This procedure allows to
estimate the systematic uncertainty arising from each source. Fig. 6.11 shows the yield for
B0

s → µ+µ− events obtained by varying the parameters that define the BDT background
and signal pdfs. The distribution of events is fit with two Gaussian distributions to account
for asymmetric uncertainties. The positive and negative systematic errors are the widths of
the Gaussians that fit the lower and the higher region with respect to the peak, respectively.

Accounting for a systematic due to the nuisance parameters that define the BDT back-
ground pdf and a further systematic due to the difference of yields observed when using
different models might translate into double counting the uncertainties. In order to avoid
this, we estimate which contribution is larger, and, if the negative uncertainty associated
to the background BDT nuisance parameters is larger than the difference between models,
only the former is accounted for in the final systematic uncertainty. In an opposite scenario,
we estimate a systematic uncertainty due to all the parameters but those defining the back-
ground BDT pdf. Then, the obtained value is added in quadrature with the contribution
arising from the difference observed among BDT background models.

Tab. 6.4 reports the yields obtained with the four different approaches already shown in
Tabs. 6.2 and 6.3. For each of this yields we report the statistic and the systematic uncer-
tainties. The latter is separated in four contributions. The total uncertainty is the sum in
quadrature of all the contributions listed in Tab. 6.4.

Finally, the relative uncertainties corresponding to the total negative errors are reported
on the third column in Tab. 6.4. These values measure the sensitivity of each approach in
distinguishing an SM-like yield over the background only hypothesis. The smallest of these
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Figure 6.11: Distribution of B0
s → µ+µ− yield obtained generating the nuisance parame-

ters of different components of the fit according to Gaussian distributions. The plots on
the top show the systematic uncertainty arising from the nuisance parameters defining the
BDT background component, while the plots on the bottom are obtained by varying the
parameters defining the B0

(s) → µ+µ− BDT component. Both contributions are fit with
two Gaussian distributions (one for the lower and one for the upper edge of the peak) to
estimate asymmetric uncertainties.
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Table 6.4: Yields and related uncertainties obtained with four different fit strategies: (a)
fixing all the nuisance parameters and requiring a positive prior on the yields of B0

(s) →
µ+µ−; (b) fixing the parameters and not requiring a prior; (c) letting free the parameters and
requiring a prior; and (d) letting free the parameters and not requiring any prior constraint.
The systematic uncertainty is divided in different sources: nuisance parameters variation
excluding the BDT background (syst1); BDT background nuisance parameters only (syst2);
different BDT background model (syst3); and BDT range [0.25-1] (syst4). The third column
gives the total systematic uncertainties, and the forth column reports the relative errors on
the total negative uncertainties obtained with each fitting strategy.

Results Total syst
σ−(NB0

s
)

NB0
s

(a) 12.4
(

+6.9
−5.4

)
stat

(
+3.0
−2.4

)
syst1

(
+1.2
−1.7

)
syst2

(
+0.0
−2.9

)
syst3

(
+0.0
−1.1

)
syst4

(
+3.0
−3.9

)
0.537

(b) 13.3
(

+7.1
−5.7

)
stat

(
+3.2
−2.5

)
syst1

(
+2.8
−1.4

)
syst2

(
+0.0
−2.7

)
syst3

(
+0.0
−1.3

)
syst4

(
+3.2
−3.9

)
0.519

(c) 13.1
(

+7.2
−5.6

)
stat

(
+2.4
−1.8

)
syst1

(
+0.0
−0.0

)
syst2

(
+0.0
−2.9

)
syst3

(
+0.0
−1.9

)
syst4

(
+2.4
−3.9

)
0.524

(d) 13.3
(

+7.2
−5.8

)
stat

(
+2.2
−1.2

)
syst1

(
+0.0
−0.0

)
syst2

(
+0.0
−2.7

)
syst3

(
+0.0
−2.5

)
syst4

(
+2.2
−3.9

)
0.523

numbers corresponds to strategy (b), not requiring any prior and fixing the parameters, and
consequently this is the strategy that we follow to fit our data sample. This decision was
taken before un-blinding the events in the region±60 MeV/c2 around the B0

s and B0 masses.

Moreover, we estimate a possible systematic uncertainty due to the small correlation of
the BDT and the invariant mass in signal. For the performed study, based on fitting a sample
of purely B0

s → µ+µ− signal events where the parameters defining the signal invariant mass
are extracted directly from simulated events, we obtain a shift in the yield smaller than 1%.
This shift is negligible and hence not accounted for as a systematic uncertainty.

In order to visualize the results of the fit for the generated sample, Fig. 6.12 shows the
projections of the fit in the BDT and invariant mass axes, excluding the first BDT bin for a
better visualization of the fit yields.

6.3 Yields from 1 fb−1 of data

The procedure described in the previous section allows to extract the signal yields in our
data sample and account for all systematic uncertainties. Tab. 6.5 shows the B0

s → µ+µ−

and B0 → µ+µ− yields obtained with the three aforementioned background BDT mod-
els and fitting the range BDT∈(0.25-1). The largest discrepancy between the results ob-
tained with the baseline procedure and the other procedures arises when modeling the
background BDT with a kernel estimator (syst3).

In Fig. 6.13 we display the projections of the fit in the BDT and invariant mass axes,
excluding the first BDT bin for a better visualization of the fit yields.
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Figure 6.12: Projections of the fit on the BDT (top) and invariant mass (bottom) axes, ex-
cluding BDT<0.25, obtained with the generated data sample. The blue areas corresponds
to the B0

s → µ+µ− yield, the yellow areas to the B0 → µ+µ− yield and the pink areas to the
peaking background yield.
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Figure 6.13: Projections of the fit on the BDT (top) and invariant mass (bottom) axes, ex-
cluding BDT<0.25. The blue areas corresponds to the B0

s → µ+µ− yield, the yellow areas
to the B0 → µ+µ− yield and the pink areas to the peaking background yield.
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Table 6.5: Fit yields obtained for 1 fb−1 of data obtained with different BDT background
models: in the first row, we report the results obtained with the baseline model defined
with three exponentials; in the second row, three exponentials excluding the first BDT bin;
in the third row, kernel estimator; and in the fourth row, binned pdf with the same 8 bins as
signal BDT.

Yield B0
s → µ+µ− Yield B0 → µ+µ−

3 exponentials 4.5+5.1
−3.5 3.6+6.3

−4.5

3 exp. (no 1st BDT bin) 4.6+5.4
−3.7 3.1+6.6

−4.6
RooKeysPdf 2.2+5.1

−3.5 0.1+5.9
−4.0

Binned 4.1+5.2
−3.6 0.9+6.3

−4.6

Tab. 6.6 reports, in the first five rows, the systematic uncertainties due to each pdf model
obtained fitting 500 generated event samples with Gaussian-distributed nuisance param-
eters. For the numbers given in these first five rows, only the parameters related to each
component vary, the others are fixed to their mean values. Then, the same table gives the
systematic uncertainty associated to all the nuisance parameters (seventh row) and to all
the parameters, fixing those defining the BDT background (sixth row).

Although, the uncertainty associated to the background BDT parameters (syst2) is again
the dominant among them, it is smaller than the contribution due to the difference between
models (syst3) (see Tab 6.5). For this reason we estimate the uncertainty due to all param-
eters except those defining the background BDT pdf (syst1), and then add these results in
quadrature with the systematic uncertainty arising from the difference between models:

NB0
s

= 4.5
(

+5.1
−3.5

)
(stat)

(
+1.7
−2.3

)
(syst)

(6.3)

NB0 = 3.6
(

+6.3
−4.5

)
(stat)

(
+3.4
−3.6

)
(syst)

(6.4)

Figs. 6.14 and 6.15 display the B0
s → µ+µ− and B0 → µ+µ− yields obtained by varying

the parameters related to different sources of systematic uncertainty. These figures contain
the same information as Tab. 6.6.

A number of 1000 simulated samples were generated according to the same yields ex-
tracted from data. Fig. 6.16 shows the number of fits giving a particular yield, uncertainty
and pull distribution for B0

(s) → µ+µ−. The plots in the figure show that the errors and the
pulls are almost Gaussian. From the pulls distributions we estimate an small overestimate
of the statistical uncertainties of 5% and 7%, and no correction is applied to the final results.

6.4 Conclusions

This chapter describes the extended maximum likelihood fit used to obtain the signal yields.
The validation of the fit method using simulated data proved the lack of significant biases
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Table 6.6: Systematic uncertainties associated to each component of the fit. The third
row shows the contribution to the systematic uncertainty coming from the number of
B0

(s) → h+h′− TIS events for all BDT bins. This contribution enters the uncertainty related
to the signal and peaking background BDT. The sixth row gives the systematic uncertain-
ties related to all components, and the seventh the systematic arising from all components,
excluding those defining the BDT background component.

Model B0
s → µ+µ− B0 → µ+µ−

Signal mass +0.10
−0.07

+0.23
−0.17

Background mass +0.02
−0.01

+0.15
−0.06

Number of TIS +0.38
−0.40

+0.50
−0.62

Background BDT +1.6
−1.4

+3.4
−2.2

Peaking background mass +0.09
−0.00

+0.00
−0.09

All +1.7
−1.4

+3.4
−2.3

All-(Backg BDT) +0.36
−0.41

+0.57
−0.65

in the statistical uncertainty estimation, and the BDT background modeling as the main
contributor to the systematic uncertainty.

The final result for the B0
s → µ+µ− yield is less than half the predicted SM B value,

although compatible with the SM as reported in the next section.
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Figure 6.14: Distribution of B0
s → µ+µ− yields, obtained generating the nuisance param-

eters of different components of the fit according to Gaussian distributions. From top to
bottom: signal mass component; signal BDT; background BDT; and all the parameters but
those defining the background BDT. All contributions are fit with two Gaussian distribu-
tions (one for the lower and one for the upper edge of the peak) to estimate asymmetric
uncertainties.
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Figure 6.15: Distribution of B0 → µ+µ− yields, obtained generating the nuisance param-
eters of different components of the fit according to Gaussian distributions. From top to
bottom: signal mass component; signal BDT; background BDT; and all the parameters but
those defining the background BDT. All contributions are fit with two Gaussian distribu-
tions (one for the lower and one for the upper edge of the peak) to estimate asymmetric
uncertainties.
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Figure 6.16: Distributions of signal yields, uncertainties and pulls from 1000 toy experi-
ments.



Chapter 7

The measurement of B(B0
(s) → µ+µ−)

Sec. 3.1 describes the approach used to normalize the number of signal B0
(s) → µ+µ−

events. The decays used for this normalization are: B+ → J/ψ(→ µ+µ−)K+, B0
s → J/ψ(→

µ+µ−)φ(→ K+K−), and B0 → Kπ (including charged conjugated processes). In order to
translate the number of observed events into a B we need to compute the factor multiply-
ing the signal yield. In Sec. 7.1 we analyze the different contributions entering such factor,
while Sec. 7.2 reports the values of B(B0

(s) → µ+µ−) we obtain with our 2011 data sample.

7.1 Normalization of B(B0
(s) → µ+µ−)

The signal (sig) branching fraction can be extracted using the following formula:

B = Bnc ×
εrec

nc ε
sel|rec
nc ε

trig|sel
nc

εrec
sigε

sel|rec
sig ε

trig|sel
sig

× fnc

fsig
×

Nsig

Nnc
= α× Nsig, (7.1)

where α denotes the normalization factor and nc normalization channel. fsig and fnc re-
fer to the probabilities that a b-quark hadronizes into a B0

s (B0) or into the b-meson of the
normalization channel. The overall efficiencies are separated in different factors: εrec is
the reconstruction efficiency of all the final state particles of the decay in the acceptance
of the detector; εsel|rec the efficiency of selecting reconstructed candidates; and εtrig|sel the
efficiency of triggering reconstructed and selected candidates.

The criteria desired in a normalization channels are:

• low branching fraction uncertainty;

• similar trigger efficiency as signal;

• same number and type of final particles as signal;

• same fragmentation factor ( f ).

All possible normalization samples fail in fulfilling all these requirements, hence we use
the three channels mentioned at the beginning of the chapter in order to decrease systematic
uncertainties.
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In the following paragraphs we give a brief overview of all the elements defining α

(Eq. 7.1). For more details we refer the reader to Ref. [43].

Normalization channels’ branching fractions The first column in Tab. 7.1 reports the
branching fractions of the decays used in the normalization. The largest uncertainty cor-
responds to the decay B0

s → J/ψ(→ µ+µ−)φ(→ K+K−).

Ratio of production fractions LHCb determines the fragmentation fraction fs
fd

in two

different ways: using the relative abundance of B0
s → D−

s π+, B0 → D−K+, and B0 →
D−π+ [50] and using semileptonic B → DX decays [51]. The average of the two LHCb
results is:

fs

fd
=

fs

fu
= 0.267+0.021

−0.020. (7.2)

Ratio of reconstruction efficiencies The reconstruction efficiency comprises not only the
efficiency to reconstruct all the tracks in the final state, but also the detector acceptance
efficiency, or fraction of tracks in the LHCb geometrical acceptance. The reconstruction
efficiency is obtained using simulation and then validated in data.

The ratio of reconstruction efficiencies depends on the reconstruction efficiency of an
extra track (kaon) when the normalization is performed using B+ → J/ψ(→ µ+µ−)K+ de-
cays, of two extra tracks when using B0

s → J/ψ(→ µ+µ−)φ(→ K+K−), and of the different
phase space of the muons from J/ψ → µ+µ− and signal.

The acceptance and reconstruction efficiency for the extra track in B+ → J/ψ(→ µ+µ−)K+

can be probed using the ratio of events of B+ → J/ψ(→ µ+µ−)K+ with respect to B0 →
J/ψK∗0 which contains four tracks in the final state:

εREC(B+ → J/ψK+)
εREC(B0

s → µ+µ−)
' εREC(B0 → J/ψK∗0)

εREC(B+ → J/ψK+)
. (7.3)

The ratio data/MC reconstruction efficiencies has been estimated:

εREC
data (B+ → J/ψK+)/εREC

data (B0 → J/ψK∗0)
εREC

MC (B+ → J/ψK+)/εREC
MC (B0 → J/ψK∗0

= 1.03± 0.04± 0.06, (7.4)

where the first error is due to statistics and it is dominated by the number of simulated
events, the second is the uncertainty related to the branching fraction of B0 → J/ψK∗0 and
B+ → J/ψ(→ µ+µ−)K+. This result validates the use of simulation for the reconstruction
efficiency.

Ratio of selection efficiencies The ratio of selection efficiencies is extracted using simula-
tion and then cross-checked in data.

The main differences between signal and normalization channels are related with the
IPχ2 requirement on the extra tracks and the different kinematic properties for the muons
from J/ψ and B0

s or B0.
The selection efficiencies have been computed using simulation in three different scenar-

ios: unsmeared, smeared, and oversmeared by 50% samples to estimate possible residual
effects.
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The ratio of selection efficiencies for the three normalization channels is determined
from the smeared MC:

ε
SEL|REC
B+→J/ψK+ /ε

SEL|REC
B0

s→µ+µ−
= 0.84± 0.01, (7.5)

ε
SEL|REC
B0

s→J/ψφ
/ε

SEL|REC
B0

s→µ+µ−
= 0.59± 0.02, (7.6)

ε
SEL|REC
B0→Kπ

/ε
SEL|REC
B0

s→µ+µ−
= 1.11± 0.01, (7.7)

where the errors are from MC statistics.
Even though the absolute selection efficiencies between unsmeared and smeared simu-

lated events vary between 5 and 7%, the ratio between signal and all three normalization
channels stays constant within 1% because the efficiency change in the signal goes in the
same direction as in the corresponding normalization channel, and therefore cancels in the
ratio.

The second column of Tab. 7.1 gives the ratio of the product of reconstruction and selec-
tion efficiencies between signal and normalization channels.

Ratio of trigger efficiencies Data driven techniques are used to to determine the trigger
efficiencies. Detached J/ψ → µ+µ− decays in data, after re-weighting the momentum and
the pT of muons to match the expected distributions of B0

s → µ+µ−, allow to extract the
signal efficiency. We use the trigger unbiased B0

(s) → h+h′− events to estimate ε
trig|sel
B0→Kπ

, with

the assumption that all B0
(s) → h+h′− modes have the same trigger efficiency.

To obtain the trigger efficiency from data we use:

εtrig =
Ntrig

Nsel =
NTIS

Nsel
Ntrig

NTIS = εTIS Ntrig

NTIS . (7.8)

Both Ntrig and NTIS are observables and εTIS is the efficiency to trigger with no informa-
tion from the signal. This last quantity can be obtained directly from data B+ → J/ψ(→
µ+µ−)K+:

εTIS = (5.1± 0.9± 0.4)%, (7.9)

where the first error is statistical and it is dominated by the number of TIS events. The
second error is the systematic uncertainty which is evaluated using simulation from the
difference of the trigger efficiencies between the true value and the one obtained using
Eq. 7.8.

To estimate the trigger efficiency for the signal, an efficiency map as a function of the
largest pT and largest IP of the muons from B+ → J/ψ(→ µ+µ−)K+ is computed. Ap-
plying this efficiency map to the muon spectrum of B0

s → µ+µ− simulated sample leads
to:

ε
TRIG|SEL
B0

s→µ+µ−
= (91.4± 0.4± 3.9)% (7.10)
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Table 7.1: Summary of the components and their uncertainties entering in the normalization
factors for the three considered channels.

B εREC
cal ε

SEL|REC
cal

εREC
sig ε

SEL|REC
sig

ε
TRIG|SEL
cal

ε
TRIG|SEL
sig

Ncal αcal
Bd→µ+µ− αcal

Bs→µ+µ−

(×10−5) (×10−11) (×10−10)

B+ → J/ψK+ 6.0± 0.2 0.50± 0.01 0.95± 0.02 340 100± 4500 8.5± 0.4 3.2± 0.3
B0

s → J/ψφ 3.4± 0.9 0.24± 0.01 0.95± 0.02 19 000± 160 11± 3 4.2± 1.1
B0 → Kπ 1.9± 0.1 0.86± 0.03 0.047± 0.003 10 100± 920 8.0± 1.0 2.9± 0.4

The systematic uncertainty arises from the combination of two errors: one associated to
the method used in Eq. 7.8 applied to B0

s → µ+µ− (3%) and the second due to 2.5% of
B0

s → µ+µ− events that are triggered not using the muon triggers.

The third column of Tab. 7.1 gives the values of the trigger efficiency ratios.

In the the fourth column of Tab. 7.1 we also report the yields obtained for each normal-
ization channel. The B+ → J/ψ(→ µ+µ−)K+ invariant mass is modeled with a double
Gaussian function for signal, while the background is empirically modeled with two func-
tions: an exponential for the combinatorial background, and a Gaussian on the left-hand
part of the invariant mass distribution for the physical background. The quoted number
of signal events in Tab. 7.1 has a 1.3% systematic uncertainty associated to the difference of
yields obtained when applying a background subtraction method.

The B0
s → J/ψ(→ µ+µ−)φ(→ K+K−) signal is modeled with a double Gaussian func-

tion and an exponential function for the background as well. In this case, the associated
systematic uncertainty due to the background subtraction method is 0.4%.

Normalization factors Tab. 7.1 summarizes all different parameters defining the normal-
ization factors.

The final normalization factors used to estimate the B(B0
(s) → µ+µ−) are a weighted

average of those shown in Tab. 7.1:

αB0
s→µ+µ− = (3.19± 0.28)× 10−10, (7.11)

αB0→µ+µ− = (8.38± 0.39)× 10−11. (7.12)

7.2 B(B0
(s) → µ+µ−) obtained for 1 fb−1

Chap. 6 and Sec. 7.1 present all the necessary ingredients to extract B(B0
(s) → µ+µ−) in the

1 fb−1 data sample:

B(B0
s → µ+µ−) = (1.44+1.64

−1.14)× 10−9, (7.13)

B(B0
d → µ+µ−) = (0.30+0.53

−0.38)× 10−9, (7.14)
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where the errors are statistical only.

7.2.1 Estimate of the systematic uncertainties

In Sec. 6.2 we introduced a technique, based on the generation of Gaussian-distributed
nuisance parameters, to estimate the systematic uncertainties due to the parameterization
of the different pdfs and described all possible sources of systematic uncertainties.

We utilize the aforementioned technique to estimate the uncertainty due to all parame-
ters; and to all the parameters but those related with the BDT background parameterization
(see previous chapter). Now we include αB0

s→µ+µ− and αB0→µ+µ− , and their uncertainties,
in both computations.

Figs. 7.1 and 7.2 display the number of toy experiments as a function of B(B0
s → µ+µ−)

and B(B0 → µ+µ−) compatible with Gaussian-distributed nuisance parameters. As de-
scribed in the previous chapter, the systematic uncertainties arise from the widths of the
Gaussians used to fit the lower and the upper edges of the distributions, also reported in
Tab. 7.2. In this table, the quoted values on the first column corresponds to the systematic
uncertainty when all the nuisance parameters are free; the second column gives the results
when all the parameters but those that define the BDT for the background are left free; the
third column specifies the systematic uncertainty associated with the implementation of a
different model for the background BDT; the fourth column quotes the systematic uncer-
tainty given the different peaking background mass shapes; and the last column reports
the systematic uncertainty due to the BDT range fit. As explained through the last chapter,
these are the main ingredients to estimate the final systematic uncertainty.

The positive systematic uncertainty arises from the first, forth and the fifth columns in
Tabs. 7.2 added in quadrature. For the negative uncertainty estimation, we account that
the difference between the fit result using 3 exponentials and the kernel estimator exceeds
the systematic estimate from varying the background BDT nuisance parameters. For this
reason, we use the values on the second, third and fifth columns added in quadrature.

The final results including the systematic uncertainty are:

B(B0
s → µ+µ−) = (1.4+1.7

−1.4)× 10−9, (7.15)

B(B0 → µ+µ−) = (0.3+0.6
−0.5)× 10−9. (7.16)

7.3 Comparison of the measured B(B0
(s) → µ+µ−) with the exclusion

limits

The results in the previous section (and last chapter) conclude that there is no evidence
of B0

s → µ+µ− nor B0 → µ+µ− events. Therefore, the exclusion limits using a standard
procedure such as the CLs method [41] were computed and published in Ref. [4]. The
classifier described in Chap. 5 is used to extract such limits.

In the aforementioned publication, the quoted most probable value for B(B0
s → µ+µ−),

(0.8+1.8
−1.3) × 10−9, is obtained via a different approach as described in this section. This
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Figure 7.1: Distribution of the number of toy experiments in terms of B(B0
s → µ+µ−) (top)

and B(B0 → µ+µ−) (bottom) obtained generating the nuisance parameters of all the com-
ponents of the fit according to Gaussian distributions. The total number of toy experiments
performed is 500.

method consists in a simultaneous unbinned fit in the usual eight bins of BDT in which
the signal yields are constrained to the fractions of BDT reported in Fig. 6.3. One differ-
ence between this method and the presented extended maximum likelihood fit is that the
background BDT is parameterized for the latter, allowing to take into consideration more
information related to it. On the other hand, the simultaneous fit approach is more similar
to the CLs method (see next section) as the BDT is binned likewise. One advantage of the
two-dimensional fit is that the systematic uncertainties related to each component can be
studied separately. The results obtained with both methods agree within the uncertainties,
as referred in Ref. [4].

Sec. 7.3.1 briefly recapitulates the method used to obtain the published limits, and Sec. 7.3.2
compares the results of the extended maximum likelihood fit with the exclusion limits.
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Figure 7.2: Distribution of the number of toy experiments in terms of B(B0
s → µ+µ−) (top)

and B(B0 → µ+µ−) (bottom) obtained generating the nuisance parameters of all the com-
ponents, excluding the background BDT component, according to Gaussian distributions.
The total number of toy experiments performed is 500.

Table 7.2: Contributions to the final systematic uncertainties of B(B0
s → µ+µ−) and

B(B0 → µ+µ−). In column (1) we report the systematic uncertainty due to all contribu-
tions, including α. In (2) the computation is as in (1), but fixing the parameters that define
the background BDT. (3), (4) and (5) show the contributions due to the different BDT back-
ground model, the peaking background mass and the BDT range, respectively.

(1) (2) (3) (4) (5)

B(B0
s → µ+µ−) +0.52

−0.45
+0.16
−0.18

+0.00
−0.73

+0.01
−0.03

+0.03
−0.00

B(B0 → µ+µ−) +0.29
−0.21

+0.05
−0.05

+0.00
−0.29

+0.03
−0.01

+0.00
−0.04
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Figure 7.4: Invariant mass binning in the B0
s mass region. The correspondent binning for B0

is shifted by 88 MeV/c2 towards lower mass values.

7.3.1 Exclusion limits

The BDT classifier output described in Chap. 5 and the invariant mass for the B0
s → µ+µ−

and B0 → µ+µ− candidates are binned according to the ranges presented in Figs 7.3 and
7.4, in order to maximize the sensitivity of the analysis Refs. [43] and [52]. The binning for
the BDT output is the same as in Chap. 5.

The compatibility of the observed events in each of the previous seventy-two bins, given
a B(B0

(s) → µ+µ−) hypothesis, is evaluated with the CLs method [41] . This procedure,
originally used in Higgs searches at LEP, accounts for the compatibility of a data sample
with a signal plus background (CLs+b) and background only hypothesis (CLb).

Before detailing the results of the limits, we briefly describe the method followed to
obtain them.

For a given branching fraction hypothesis, and for each bin, a large number of two types
of pseudo-experiments is generated: one in which the data is background; and another
containing background and signal. The number of signal events corresponds to the given
branching fraction hypothesis (B = α× Nsignal). Each pseudo-experiment has its own test
statistic Q = ∏P(di, si + bi)/P(di, si + bi), where P(di, x) denotes the probability that the
expected number of events of signal and background (x) fluctuates to give the observed di

in a given bin i.
Fig. 7.5 [52] shows the distributions of −2lnQ for the signal plus background pseudo-

experiments (blue) and background only (green). The red vertical line is the −2lnQ value
for a particular data sample. This figure allows to visualize the values of CLs+b (area under
the blue curve at the right of the red line) and CLb (area under the green distribution at
the right of the red line). The CLs for a particular data sample, and for a given branching
fraction, is extracted with the CLs+b and the CLb : CLs=CLs+b/CLb.

B(B0
(s) → µ+µ−) limits

Fig. 7.6 displays the CLs distribution for B0
s → µ+µ− obtained with the method described

above for different branching fraction hypothesis for the unblinded 1 fb−1 data sample
(solid blue curve). The yellow band constitutes the CLs region compatible with 68% of per-
formed toy experiments with a background plus SM signal hypothesis. The dashed black
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Figure 7.5: Distribution of the test statistics for a set of generated pseudo-experiments with
a background only hypothesis (green) and signal plus background hypothesis (blue) for an
assumed B(B0

s → µ+µ−). The vertical line corresponds to the value of the test statistic for a
certain data sample; the green area is the CLb and the blue area CLs+b [52].

line is the median of the CLs extracted from such toy experiments. The measured limits at
95% CL (CLs=0.05) and 90% CL (CLs=0.1) correspond to B(B0

s → µ+µ−)< 4.5× 10−9 and
B(B0

s → µ+µ−)< 3.8× 10−9, respectively.
Moreover, Fig. 7.7 shows the CLs distribution for B0 → µ+µ−. Here, the yellow band

corresponds with the CLs region compatible with 68% of toy experiments with a back-
ground only hypothesis. The measured limits at 95% CL and 90% are B(B0 → µ+µ−)<
10.3× 10−10 and BR(B0 → µ+µ−)< 8.1× 10−10.

7.3.2 Comparison of the measured B(B0
s → µ+µ−) with the exclusion limit

We use a study based on simulated toy experiments to cross-check the compatibility of the
fit results with the exclusion limits obtained with the CLs method. The procedure is exactly
the same as in Sec. 6.3 where we generated 1000 toys with the expected yields found in
data. Here we generate 10000 toys instead. The reason to do this is clarified below.

Fig. 7.8 shows the distribution of toy experiments as a function of the number of B0
s →

µ+µ− compatible with the yields observed in data. We compute the fractional coverage,
from yields above zero up to the expected SM value 10, to be of 83%. The yields corre-
sponding to 90% and 95% confidence levels are also computed and reported in Tab. 7.3,
after translating the yields into branching fractions. All above confidence levels have an
associated uncertainty of 2%, whereas for the toy experiments in Chap. 6 the uncertainties
were of about 6%.

The reported confidence levels in Tab. 7.3 have no systematic uncertainty associated.
The comparison is therefore performed with the expected limits with no systematic uncer-
tainties. Fig. 7.9 displays the CLs as a function of branching fraction without considering
systematic uncertainties for the unblinded data sample. The branching fractions corre-
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Figure 7.6: CLs as a function of B(B0
s → µ+µ−). The dashed black line is the median of the

expected CLs value, while the yellow area covers the region of 68% compatibility with the
mean value. The solid blue line corresponds to the observed CLs. The 90% and 95% CL are
given by the horizontal dashed and solid red lines, respectively.
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Figure 7.7: CLs as a function of B(B0 → µ+µ−). The dashed black line is the median of the
expected CLs value, while the yellow area covers the region of 68% compatibility with the
mean value. The solid blue line corresponds to the observed CLs. The 90% and 95% CL are
given by the horizontal dashed and solid red lines, respectively.
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Figure 7.8: Distribution of number of toy experiments giving a certain B0
s → µ+µ− yield.

The total number of generated toys is 10000.

sponding to 83%, 90% and 95% CL are reported in Tab. 7.3, and are consistent with the
confidence levels computed from the toy experiments.

7.4 Implications of B(B0
s → µ+µ−) on NP models

This section covers the impact of the measured B(B0
s → µ+µ−) on few physics models

beyond the SM.

Sec. 7.4.1 describes the computation of the allowed parameter space for the CMSSM (see
Chap. 1) given the current exclusion limit, and under certain constraints. In Sec. 7.4.2 we
present the impact on several BSM models.

7.4.1 Implications on CMSSM

The results presented in this section are obtained with SuperIso [53] which employs exper-
imental flavor observables as input to extract predictions for several new physics scenarios.
Here we focus on the constrained version of the MSSM, the CMSSM, which has five free
parameters.

Fixing tan β, the sign of µ and A0, we scan m0 and m1/2 in the range [0-2] TeV. The light-
est supersymmetric particle LSP is forced to be neutral in the computation scan. Fig. 7.10
(a) shows in blue the allowed parameter space for tan β = 10, while in grey we represent
the direct constrain arising from B(B0

s → µ+µ−). In the same figure, the white region rep-
resents the region excluded by current experimental data and by requiring a neutral LSP.
We require B(B0

s → µ+µ−) < 5× 10−9, corresponding to the observed limit (4.5× 10−9)
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Figure 7.9: CLs as a function of B(B0
s → µ+µ−). The dashed black line is the median of the

expected CLs value, while the yellow area covers the region of 68% compatibility with the
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given by the horizontal dashed and solid red lines, respectively.

Table 7.3: Exclusion limits extracted from the CLs method and B(B0
s → µ+µ−) values aris-

ing from the fit at different confidence levels. All values do not take into account any sys-
tematic uncertainty.

C.L. 2D fit CLs

(83± 2)% 3.2× 10−9 3.2× 10−9

(90± 2)% 3.8× 10−9 3.7× 10−9

(95± 2)% 4.4× 10−9 4.3× 10−9

plus an 11% contribution to take into account systematic uncertainties due to theoretical
calculations, mostly driven by the uncertainty in fs.

The exclusion due to this observable, although negligible at low tan β (a), is significant
for larger tan β values as shown in Fig 7.10 (b) for tan β = 50.

7.4.2 Implications on general models

Fig. 7.11 shows B(B0
s → µ+µ−) vs B(B0 → µ+µ−) predicted by the Minimal Flavor Viola-

tion hypothesis and by different NP scenarios: several MSSM constrained models and the
minimal fourth generation framework with a single Higgs (so called SM4). This last model
considers a sequential fourth generation of quarks and (t’, b’, τ’, and ν’) which introduces
new CP sources and may introduce a dynamical electroweak symmetry breaking.
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(a) tan β = 10

(b) tan β = 50

Figure 7.10: Parameter space in CMSSM for tan β = 10 (a) and tan β = 50 (b), for A0 = 0
and sign of µ positive. The white areas are excluded by a charged lightest supersymmetric
particle and by the Higgs boundaries. The grey areas correspond to the excluded areas
giving the obtained B(B0

s → µ+µ−) limit [4] and computed using Refs. [53], [54], and [55].
The blue areas represent the remaining allowed regions.
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Figure 7.11: B(B0
s → µ+µ−) vs B(B0 → µ+µ−) predicted by the Minimal Flavor Violation

(MFV) hypothesis and by different NP framework with a single Higgs (SM4). Superim-
posed to the theoretical predictions, the shade area corresponds to the LHCb exclusion
limits [4]. The SM value is marked with a star.

In the same figure, we find superimposed the constraint directly arising from the LHCb
limits. These limits drastically reduce the allowed region, and exclude most of the pre-
dicted values by the different MSSM models. Being close to the SM prediction, represented
with a star in said figure, the allowed region predicted by SM4 is not as constrained as the
supersymmetric scenarios.

7.5 Conclusions

This chapter represents the final step in the measurements of B(B0
(s) → µ+µ−). The ob-

tained results are:

B(B0
s → µ+µ−) = (1.4+1.7

−1.4)× 10−9, (7.17)

B(B0 → µ+µ−) = (0.3+0.6
−0.5)× 10−9. (7.18)

Although compatible with the SM values at a 83% CL without systematic uncertainties,
the most probable B(B0

s → µ+µ−) value extracted with the extended maximum likelihood
is slightly (∼ 1σ) lower than the SM.

Given the lack of signal evidence, the computed exclusion limits represent the most
restrictive limit for these decays [4]. Such limits strongly constrain MSSM models.



Conclusion

At the end of my thesis work the LHCb collaboration has published the world best limits
on B(B0

(s) → µ+µ−) [4]. The improvement on the exclusion limit between the 2010 D0’s

public note [56] and the current limit is of almost one order of magnitude for B(B0
s → µ+µ−)

and B(B0 → µ+µ−). Tab. 7.4 reports the exclusion limits obtained by different experiments
since 2010.

Table 7.4: Compilation of the different exclusion limits at 95% CL for B(B0
s → µ+µ−) and

B(B0 → µ+µ−), before and after the work presented in this document.

Publication B(B0
s → µ+µ−) B(B0 → µ+µ−)

D0 (2010) [56] 51× 10−9 -
CDF (2011) [57]1 43× 10−9 76× 10−10

LHCb (2011) [39] 56× 10−9 15× 10−9

ATLAS (2012) [58] 22× 10−9 -
LHCb (2012) [40] 15× 10−9 38× 10−10

CMS (2012) [59] 7.7× 10−9 18× 10−10

LHCb (2012) [40] 4.5× 10−9 10× 10−10

Not only the measurements of B(B0
(s) → µ+µ−) represent a complement to the searches

performed at the LHC multi-purpose experiments, ATLAS and CMS , but they are also a
benchmark of new physics models beyond the SM. For instance, the limit on B(B0

s → µ+µ−)
strongly constraints the m0 and m1/2 CMSSM parameter space below 2 TeV for tanβ = 50.

The core of this thesis comprises two main topics: the background rejection with multi-
variate analysis techniques and the B0

s → µ+µ− and B0 → µ+µ− signal yields extraction.
This document describes the main sources of background expected for B0

(s) → µ+µ−,
and presents the procedure for their reduction. An optimized multivariate classifier based
on the boosted decision trees technique, and used in the selection phase of the analysis,
allows to drastically reduce the B0

(s) → h+h′− background, and also rejects about 76% of the

combinatorial bb̄ → µµX background keeping a signal efficiency of about 92%.
After the selection process, a further step in discriminating the signal from the back-

ground explores another BDT multivariate classifier, optimized to have a large background

1In the same publication an excess of B0
s → µ+µ− candidates is reported. For such excess, B(B0

s →
µ+µ−)=1.8+1.1

−0.9 is determined.

129



130 The measurement of B(B0
(s) → µ+µ−)

rejection in the low signal efficiency region, namely below 50%. This final classifier leads to
a background rejection of 99.9%, after the aforementioned selection, for a signal efficiency
of 50% according to simulation.

We estimate the signal yields present in our data sample with an extended maximum
likelihood fit in invariant mass and BDT output. The validation of the fit using simula-
tion reflects the proper estimation of the statistical uncertainties. Systematic uncertainties,
mainly dominated by the parametrization of the background BDT classifier output, have
been carefully studied and taken into account in the final results with 1 fb−1 of data:

B(B0
s → µ+µ−) = (1.4

(
+1.6
−1.1

)
(stat)

(
+0.5
−0.8

)
(syst)

)× 10−9, (7.19)

B(B0 → µ+µ−) = (0.3
(

+0.5
−0.4

)
(stat)

(
+0.4
−0.3

)
(syst)

)× 10−9. (7.20)

The probability for the measured B(B0
s → µ+µ−) to fall between zero and the expected

SM value is 83%, according to simulation.

Perspectives concerning the analysis of B(B0
(s) → µ+µ−)

The acquired experience through the work presented in this document serves to summarize
the main topics upon which we can improve in future analyses:

• the multivariate selection (mvs), in principle developed with the intention of finding a
better way to suppress the large B0

(s) → h+h′− background, helped in ameliorating
the performances of the final discriminant classifier BDT. Therefore, an improvement
of this mvs, together with a tighter selection requirement would potentially improve
the trend of the analysis performances. Furthermore, a tighter selection requirement
allows a better parameterization of the background BDT, reducing the systematic un-
certainties associated with it, and, consequently, the uncertainty of the final branching
fractions.

• The optimization of the discriminant BDT in the low signal efficiency region had an
unavoidable drawback, which was the lack of simulated events in this region. During
the preparation of this document, a large sample of simulated bb̄ → µµX events with
high BDT output is under production. This sample will allow to study a new opti-
mization of the classifier which could translate into a higher background rejection;

• The performances of the discriminant classifier are related with the number of events
used in the training process. If limited by simulated statistics, a possible solution
would be to train the BDT with data background events.

Assuming the same sensitivity as for the presented analysis, the probability of a 3σ

observation of an SM-like B(B0
s → µ+µ−) has been computed as a function of luminosity.

Assuming an integrated luminosity of 2.5 fb−1 collected at the end of 2012, the probability of
a 3σ observation is 50%. Moreover, the LHCb upgrade [60] will allow to reach uncertainties
on B(B0

s → µ+µ−) of 0.15× 10−9 with 50 fb−1, smaller than the current SM prediction.
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