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Mouvement brownien branchant avec sélection

Résumé

Dans cette thése, le mouvement brownien branchant (MBB) est un systéme aléatoire
de particules, ou celles-ci diffusent sur la droite réelle selon des mouvements browniens et
branchent & taux constant en un nombre aléatoire de particules d’espérance supérieure & 1.
Nous étudions deux modéles de MBB avec sélection : le MBB avec absorption & une droite
espace-temps et le N-MBB, o1, dés que le nombre de particules dépasse un nombre donné
N, seules les N particules les plus & droite sont gardées tandis que les autres sont enlevées
du systéme. Pour le premier modéle, nous étudions la loi du nombre de particules absorbées
dans le cas ol le processus s’éteint presque stirement, en utilisant un lien entre les équations
de Fisher—Kolmogorov—Petrovskii-Piskounov (FKPP) et de Briot-Bouquet. Pour le deuxiéme
modéle, dont I’étude représente la plus grande partie de cette thése, nous donnons des asymp-
totiques précises sur la position du nuage de particules quand N est grand. Plus précisément,
nous montrons qu’elle converge a I’échelle de temps log® N vers un processus de Lévy plus une
dérive linéaire, tous les deux explicites, confirmant des prévisions de Brunet, Derrida, Mueller
et Munier. Cette étude contribue & la compréhension de fronts du type FKPP sous I'influence
de bruit. Enfin, une troisiéme partie montre le lien qui existe entre le MBB et des processus
ponctuels stables.

Mots-clefs

Mouvement brownien branchant, sélection, équation de Fisher—Kolmogorov—Petrovskii—
Piskounov (FKPP) bruitée, équation de Briot—-Bouquet, mesure aléatoire stable.

Branching Brownian motion with selection

Abstract

In this thesis, branching Brownian motion (BBM) is a random particle system where the
particles diffuse on the real line according to Brownian motions and branch at constant rate
into a random number of particles with expectation greater than 1. We study two models of
BBM with selection: BBM with absorption at a space-time line and the N-BBM, where, as
soon as the number of particles exceeds a given number N, only the N right-most particles
are kept, the others being removed from the system. For the first model, we study the
law of the number of absorbed particles in the case where the process gets extinct almost
surely, using a relation between the Fisher-Kolmogorov—Petrovskii-Piskounov (FKPP) and
the Briot—Bouquet equations. For the second model, the study of which represents the biggest
part of the thesis, we give a precise asymptotic on the position of the cloud of particles when N
is large. More precisely, we show that it converges at the timescale log® N to a Lévy process
plus a linear drift, both of them explicit, which confirms a prediction by Brunet, Derrida,



Mueller and Munier. This study contributes to the understanding of travelling waves of
FKPP type under the influence of noise. Finally, in a third part we point at the relation
between the BBM and stable point processes.

Keywords

Branching Brownian motion, selection, Fisher—-Kolmogorov—Petrovskii-Piskounov (FKPP)
equation with noise, Briot—Bouquet equation, stable random measure.
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Introduction

The ancestor of all branching processes is the Galton—Watson process'. A Galton-Watson
process (Z,)n>0 with reproduction law ¢(k)r>o is defined in the following way: Zy = 1 and
Zp41 = Zni + -+ + Zy z,, where the Z,, ; are independent and identically distributed (iid)
according to q(k)r=0. The generating function f(s) = E[s%!] plays an important role in
the study of (Z,)ns0, because of the relation E[s%"] = f(")(s) = fo---o f(s), the n-fold
composition of f with itself. With this basic fact, one can see for example without difficulty
that the probability of extinction (i.e. the probability that Z, = 0 for some n) equals the
smallest fixed point of f in [0, 1]. In particular, the extinction probability is one if and only
if E[L] = f’(1) is less than or equal to one. This motivates the classification of branching
processes into supercritical, critical and subcritical, according to whether E[Z;] is larger
than, equal to or less than one. Furthermore, generating function techniques have been used
extensively in the 1960’s and 1970’s in order to derive several limit theorems, one of the
most famous being the Kesten—Stigum theorem, which says that in the supercritical case, the
martingale Z,,/E[Z,] converges to a non-degenerate limit if and only if E[Z] log Z;] < c0.

The Galton—Watson process has two natural variants: First of all, one can define a branch-
ing process (Z;)i>0 in continuous time, where each individual branches at rate § > 0 into a
random number of individuals, distributed according to ¢(k). The generating function of Z;
then satisfies two differential equations called Kolmogorov’s forward and backward equations
(see and in Chapter . In passing to continuous time one loses generality, because
the discrete skeleton (Z,,)n=>0 for any a > 0 is a Galton—Watson process in the above sense.
In fact, the question under which conditions a (discrete-time) Galton—Watson process can
be embedded into a continuous-time process has been investigated in the literature (see [14,
Section I11.12]).

The second variant is to assign a type to each individual and possibly let the reproduction
of an individual depend on the type. In the simplest case, the case of a finite number of
types, this yields to results which are similar to those of the single-type case. For example,
the classification into supercritical, critical or subcritical processes now depends on the largest
eigenvalue of a certain matrix and even the Kesten—Stigum theorem has an analogue (see [14,
Chapter V]).

Branching Brownian motion and FKPP equation. In this thesis, we study one-dimen-
sional branching Brownian motion (BBM), which is a fundamental example of a multitype
branching processes in a non-compact state space, namely the real numbers 2. Starting with
an initial configuration of particles® located at the positions z1,...,x, € R, the particles
independently diffuse according to Brownian motions and branch at rate one into a random

1. See [I01] for an entertaining historical overview. Note that it should be called the Bienaymé—Galton—
Watson process, but we will stick to the standard name.

2. Strictly speaking, the type space of BBM is the space of continuous real-valued functions, but we ignore
this fact here.

3. We will often, but not always, use the terms “particle” and “individual” interchangeably.



Introduction

number of particles distributed according to the law ¢(k). Starting at the position of their
parent, the newly created particles then repeat this process independently of each other. It is
the continuous counterpart of the branching random walk (BRW), a discrete-time multitype
branching process where the offspring distribution of an individual at the position x is given
by a point process & translated by x. As in the single-type case, the BRW is a more general
object than the BBM, because the discrete skeleton of a branching Brownian motion is itself
a BRW.

In losing generality, one gains in explicitness: When studying BBM one often has more
tools at hand than for the BRW, because of the explicit calculations that are possible due
to the Brownian motion. For example, let u(x,t) denote the probability that there exists a
particle to the right of x at time ¢ in BBM started from a single particle at the origin. The
function wu satisfies the so-called Fisher—Kolmogorov—Petrovskii—Piskounov (FKPP) equation

where the forcing term is F'(u) = (1 —u — f(1 —u)).

Starting with McKean [I18], this fact has been exploited many times to give precise asymp-
totics on the law of the position of the right-most particle when the process is supercritical,
ie. m =, (k—1)q(k) > 0 [44, 45| 62], 63]. Recently, it has also been used for the study
of the whole point process formed by the right-most particles |53, 10, 12, 11, 4]. Many of
these results have later been proven for the branching random walk as well, either through
the study of a functional equation which takes the role of above |71, 131, [16, [46], 141] or
using more probabilistic techniques [T17, 92, 11 [3] [114].

Let us state these results precisely. Fisher [80] and Kolmogorov, Petrovskii, Piskounov
[106], who introduced the equation , already noticed that it admits travelling wave solutions,
i.e. solutions of the form u(z,t) = p.(z — ct) for every ¢ = ¢g = 1/2m. Furthermore, in [106]
it is proved that under the initial condition u(z,0) = 1(,<0), there exists a centring term m(t),
such that u(z —m(t),t) — o, and m(t) ~ cot as t — oo. Together with tail estimates on the
travelling wave, this implies a law of large numbers for the position of the right-most particle in
BBM?®. The next order of the centring term m(t) was then studied first by McKean [118], who
provided the estimate m(t) < cot — 1/(2¢p)logt and then by Bramson [45], who established
almost fifty years after the discoverers of (1)) that one could choose m(t) = cot — 3/(2¢o) log t,
a result which stimulated a wealth of research.

Travelling waves. The fact that (semi-linear) parabolic differential equations could de-
scribe wave-like phenomena has aroused great interest and spurred a lot of research, which is
now a central pillar of the theory of parabolic differential equations (see for example [13], [139])
and has also been discussed to a great extent in the physics literature (see [138] for an ex-
haustive account). The FKPP equation has a central place in this theory and is considered
to be a basic prototype.

Since the beginning of the 1990’s, physicists have been especially interested in the effect
of noise on wave propagation. The types of noise that one considers are mainly multiplicative
white noise and discretisation of the wave profile (for an exhaustive list of references on this
subject, see [124]). The rationale behind the latter is that real-life systems consisting of a
finite number of parts are only approximately described by differential equations such as .
For example, in the original work of Fisher [80], the function u(x,t) describes the proportion of

4. For a,b € R, we say that a is to the right of b if a > b.
5. An equivalent result for the BRW has been proven by Biggins [29] [30], after more restrictive versions by
Hammersley [85] and Kingman [I03].

12



Introduction

an advantageous gene among a population in a one-dimensional habitat (such as a coast-line).
In a population of size N, it can therefore “in reality” only take values which are multiples of
N~!. Discretisation therefore corresponds to “internal” noise of the system. A multiplicative
white noise on the other hand models an external noise [52].

During the 90’s, there were several studies which noticed that such a noise had a tremen-
dous effect on the wave speed, causing a significant slowdown of the wave (see for example
[48]). This was then brilliantly analysed by Brunet and Derrida [50], who introduced the
cutoff equation, which is obtained by multiplying the forcing term F'(u) in by 1(y>n-1).
They found the solutions to this equation to have a wave speed slower than the original one by
a difference of the order of log=2 N and verified this numerically [51] for an N-particle model,
where each particle of generation n + 1 chooses two parents uniformly from level n, takes the
maximum of both positions and adds a noise term. But they did not stop there: In later
works, with coauthors, they studied the fluctuations of such microscopic systems of “FKPP
type” and developed an axiomatic phenomenological theory of fluctuating FKPP fronts which
permits to describe the fluctuations of those systems. Among them, they proposed the par-
ticle system we call the N-BRW [58|: At each time step, the particles reproduce as in the
BRW, but only the N right-most particles are kept, the others being removed from the sys-
tem. This can be seen as a kind of selection mechanism, which has an obvious biological
interpretation: If one interprets the position of an individual as the value of its “fitness” [57],
i.e. a measure of how well the individual is adapted to an environment, then killing all but
the N right-most particles at each step is a toy model for natural selection, a key concept of
Darwinian evolution.

Further applications of BRW and BBM. Besides their role as prototypes of travelling
waves, BRW and BBM have many other applications or interpretations, mainly because of
their tree structure. For example, the BRW can be seen as a directed polymer on a disordered
tree [74] and more generally as an infinite-dimensional version of the Generalised Random
Energy Model (GREM) [72, 43]. It also plays an important role in the study of the Gaussian
Free Field on a 2D lattice box [38] 69} [39, [47]. On a more basic level, BRW and BBM have
been used as models for the ecological spread of a population or of a mutant allele inside a
population [132] 120} 133], especially in the multidimensional setting, which has been studied
at least since [31]. Finally, a fascinating application of the BRW appears in the proof by
Benjamini and Schramm that every graph with positive Cheeger constant contains a tree
with positive Cheeger constant [19] .

Results

We now come to the results obtained in this thesis on branching Brownian motion with
selection. As before, by selection we mean the process of killing particles, which can be
interpreted as the effect of natural selection on a population, but should rather be viewed in
the more global framework of fronts under the effect of noise. We will concentrate on two
selection mechanisms:

BBM with absorption. Here, we absorb the particles at the space-time line y = —x + ct, i.e.
as soon as a particle hits this line (a.k.a. the barrier), it is killed immediately. This
process is studied in Chapter

N-BBM. This is the continuous version of the N-BRW described above: Particles evolve
according to branching Brownian motion and as soon as the number of particles exceeds

N, we Kkill the left-most particles, such that only the N right-most remain. This process
is studied in Chapter

13
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In the next two paragraphs we describe the results we have obtained for those two models
and place them into the context of the existing literature.

Notational convention. We assume from now on that the branching rate satisfies § =
Bo = 1/(2m), such that ¢y = /28m = 1. On can always reduce the situation to this case
by rescaling time and/or space. This choice of parameters will also be made in Chapter
However, in Chapter We will set 3 to 1, the reason being that it is based on the article [115]
which was accepted for publication before the submission of this thesis and where this choice
of parameters was made.

BBM with absorption. The study of branching diffusions with absorption goes back at
least to Sevast’yanov [134], who studied the case of absorption at the border of a bounded
domain. Watanabe [140] considered branching diffusions in arbitrary domains under the
condition that the probability of ultimate survival is positive. Kesten [102] was the first
to consider the special case of one-dimensional BBM with absorption at a linear boundary:
Starting with a single particle at = > 0, he gives a constant drift —c to the particles and kills
them as soon as they hit the origin. He proves that the process gets extinct almost surely
if and only ¢ = 1 and provides detailed asymptotics for the number of particles in a given
interval and for the probability that the system gets extinct before the time ¢ in the critical
case ¢ = 1.

The work of Neveu [123] in the case ¢ > 1, where the process gets extinct almost surely, is
of utmost importance to us. He made the simple but crucial observation that if one starts with
one particle at the origin and absorbs particles at —z, then the process (Z,),>0, where Z,
denotes the number of particles absorbed at —z, is a continuous-time Galton—Watson process
(note that space becomes time for the process (Z;).>0). This fact comes from the strong
branching property, which says that the particles absorbed at —x each spawn independent
branching Brownian motions, a fact that has been formalised and proven by Chauvin [6I]
using the concept of stopping lines.

In the last two decades, there has been renewed interest in BBM and BRW with absorption
and among the many articles on this subject we mention the article [34], in which the criterion
for almost sure extinction is established for the BRW, the articles by Biggins and Kyprianou
[32, 133, [108], who use it to study the system without absorption, the work [87] which studies
“one-sided travelling waves” of the FKPP equation, and the articles [9] 128 [73], 83] 21}, [6], 22]
which study the survival probability at or near the critical drift.

But let us get back to Neveu [123] and to the continuous-time Galton-Watson process
(Zz)z=0. Neveu observed the maybe surprising fact that in the case of critical drift ¢ = 1,
this process does not satisfy the conditions of the Kesten—Stigum theorem and that indeed
xe *Z, converges as r — o0 to a non-degenerate limit W.

This fact has recently aroused interest because of David Aldous’ conjecture [7] that this
result was true for the BRW as well. Specifically, he conjectured that E[Z log Z] = o0, where
Z denotes the number of particles in branching random walk with critical drift that cross the
origin for the first time%. Moreover, Aldous conjectured that in the case ¢ > 1, the variable
Z had a power-law tail.

Aldous formulated its conjecture after Pemantle had already provided an incomplete proof
[127] in the Bernoulli case, based on singularity analysis of the generating function of Z. A
complete proof in the case ¢ = 1 was then given by Addario-Berry and Broutin [I] for general
reproduction laws satisfying a mild integrability assumption. Aidékon [2] further refined the

6. Aldous was actually interested in the total progeny of the process, but this question is equivalent, see
[5, Lemma 2].

14
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results in the case of b-ary trees by showing that there are positive constants p, C1, C5, such
that for every z > 0, we have

Chzel”

n(logn)?

Coxel”

< P(N; S —F——35
(N >n) n(logn)?

for large n.
In Chapter [I} we prove a precise refinement of this result in the case of branching Brownian
motion. Specifically, we prove the following;:

Theorem. Assume that the reproduction law admits exponential moments, i.e. that the radius
of convergence of the power series Y- q(k)s* is greater than 1.

— In the critical speed area (¢ = 1), as n — o0,

ze”

for each x > 0.

— In the subcritical speed area (¢ > 1) there exists a constant K = K(c, f) > 0, such that,

as n — oo,
6)\61‘ .

A
et K
P(Zy=0n+1) ~ e — A, nd+1

for each x > 0,

where Ao < \e are the two roots of the quadratic equation \> —2cA +1 =0, d = )Tc//\c
and § = ged{k : ¢q(k+ 1) > 0} if ¢(0) = 0 and 6 = 1 otherwise.

The proof of this theorem is inspired by Pemantle’s incomplete proof mentioned above, in
that it determines asymptotics on the generating function of Z, near its singularity 1, which
can be exploited to give the above asymptotics. The analysis of the generating function is
made possible through a link between travelling waves of the FKPP equation and a classical
differential equation in the complex domain, the Briot-Bouquet equation. We will not go
further into details here but instead refer to Chapter [}

If the reproduction law does not admit exponential moments, we can nevertheless apply
Tauberian theorems to obtain the following result in the critical case:

Theorem. Let ¢ = 1 and assume that 3. q(k)klog® k < 0. Then we have as n — o0,

ze”r

P(Z, >n)~ for each z > 0.

n(logn)?
We further mention that Aidékon, Hu and Zindy [5] have recently proven these facts
for the BRW without any (complex) analytical arguments and under even better moment

conditions in the case ¢ > 1.

The N-BBM. We now turn to the main part of this thesis: The study of the N-BBM. We
have already outlined before the role that it takes as a prototype of a travelling wave with
noise and will now present the heuristic picture obtained by Brunet, Derrida, Mueller and
Munier [56], 58].

We recall the model: N particles diffuse according to Brownian motions and branch at
rate By into a random number of particles given by the reproduction law ¢(k). As soon as
the number of particles exceeds N, only the N right-most particles are kept and the others
are immediately killed. This gives a cloud of particles, moving to the right with a certain
speed vy < 1 and fluctuating around its mean. See Figure [I] at the end of the introduction
for simulations. The authors of [56] provide detailed quantitative heuristics to describe this
behaviour:
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1. Most of the time, the particles are in a meta-stable state. In this state, the diameter
of the cloud of particles (also called the front) is approximately log N, the empirical
density of the particles proportional to e * sin(nz/log N), and the system moves at a
linear speed veygo = 1 — 72/(21log? N). This is the description provided by the cutoff
approximation from [50] mentioned above.

2. This meta-stable state is perturbed from time to time by particles moving far to the
right and thus spawning a large number of descendants, causing a shift of the front to
the right after a relaxation time which is of the order of log? N. To make this precise,
we fix a point in the bulk, for example the barycentre of the cloud of particles, and shift
our coordinate system such that this point becomes its origin. Playing with the initial
conditions of the FKPP equation with cutoff, the authors of [56] find that a particle
moving up to the point log NV + z causes a shift of the front by

x
A =log (1 + 075),
log® N
for some constant C' > 0. In particular, in order to have an effect on the position of the
front, a particle has to reach a point near log N + 3loglog N.

3. Assuming that such an event where a particle “escapes” to the point log N 4+ x happens
with rate C'e™™, one sees that the time it takes for a particle to come close to log N +
3loglog N (and thus causing shifts of the front) is of the order of log® N » log® N.

4. With this information, the full statistics of the position of the front (i.e. the speed vy
and the cumulants of order n > 2) are found to be

93 loglog N
log® N
[n-th cumulant] m2nl¢(n)
t - log® N’

UN — Ucutoff = T

where ¢ denotes the Riemann zeta-function.

In another paper [57], the same authors introduce a related model, called the ezponential
model. This is a BRW, where an individual at position z has an infinite number of descendants
distributed according to a Poisson process of intensity e*~¥ dy. Again, at every step, only
the NV right-most particles are kept. This model has some translational invariance properties
which render it exactly solvable. Besides asymptotics on the speed of this system and the
fluctuations, the authors of [57] then show that the genealogy of this system converges to the
celebrated Bolthausen-Sznitman coalescent ’. This gives first insight into the fact that the
genealogy of the N-BBM apparently converges to the same coalescent process, a fact that has
been observed by numerical simulations [58, [59].

Despite (or because of) the simplicity of the N-BBM, it is very difficult to analyse it
rigorously, because of the strong interaction between the particles, the impossibility to describe
it exactly through differential equations and the fact that the shifts in the position of the
system do not occur instantaneously but gradually over the fairly large timescale log? N. For
this reason, there have been few rigorous results on the N-BBM or the N-BRW: Bérard and
Gouéré |20] prove the log? N correction of the linear speed of N-BRW in the binary branching
case, thereby showing the validity of the approximation by a deterministic travelling wave
with cutoff. Durrett and Remenik [76] study the empirical distribution of N-BRW and show

7. The Bolthausen—Sznitman coalescent [40] is a process on the partitions of N, in which a proportion p of
the blocks merge to a single one at rate p~2 dp. See [26] and [24] for an introduction to coalescent processes.
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that it converges as N goes to infinity but time is fixed to a system of integro-differential
equations with a moving boundary. Recently, Comets, Quastel and Ramirez [65] studied a
particle system expected to exhibit similar behaviour than the exponential model and show
in particular that its recentred position converges to a totally asymmetric Cauchy process.

In [56], the authors already had the idea of approximating the N-BBM by BBM with
absorption at a linear barrier with the weakly subcritical slope vy. This idea was then used
with success in [20] for the proof of the cutoff-correction to the speed of the N-BRW, relying
on a result [83] about the survival probability of BRW with absorption at such a barrier and
a result by Pemantle about the number of nearly optimal paths in a binary tree [128]. In
the same vein, Berestycki, Berestycki and Schweinsberg [23] studied the genealogy of BBM
with absorption at this barrier and found that it converges at the log® N timescale to the
Bolthausen—Sznitman coalescent, as predicted. In Chapter [2] of this thesis, we build upon
their analysis in order to study the position of the N-BBM itself. The results that we prove
are summarised in the following theorem, which confirms (see Theorem of Chapter
for a complete statement).

Theorem. Let Xy (t) denote the position of the [N /2]-th particle from the right in N-BBM.
Then under “good” initial conditions, the finite-dimensional distributions of the process

(XN(tlog3 N) — ontlog? N)

=0
converge weakly as N — oo to those of the Lévy process (Li)i=0 with

o0
log E[e*1=Lo)] — ixe + sz e 1 — iAT1(p<y A(dT),
0

where A is the image of the measure (x_21(1>0))da: by the map = — log(1l + x) and ce R is
a constant depending only on the reproduction law q(k).

In order to prove this result, we approximate the N-BBM by BBM with absorption at a
random barrier instead of a linear one, a process which we call the B-BBM (“B” stands for
“barrier”). This random barrier has the property that the number of individuals stays almost
constant during a time of order log® N. We then couple the N-BBM with two variants of
the B-BBM, the B’-BBM and the Bf-BBM, which in a certain sense bound the N-BBM from
below and from above, respectively. For further details about the idea of the proof, we refer
to Section [I] in Chapter [2]

Stable point processes occurring in branching Brownian motion. This paragraph
describes the content of Chapter [3] which is independent from the first two and has nothing to
do with selection. It concerns the extremal particles in BBM and BRW without selection, i.e.
the particles which are near the right-most. The study of these particles has been initiated
again by Brunet and Derrida [53], who gave arguments for the following fact: The point
process formed by the particles of BBM at time ¢, shifted to the left by m(t) =t — 3/2logt,
converges as t — o to a point process Z which has the “superposability” property: the
union of Z translated by e® and Z’ translated by e® has the same law as Z, where Z’ is an
independent copy of Z and e® 4+ e = 1. Moreover, they conjectured that this process, and
possibly every process with the previous property, could be represented as a Poisson process
with intensity e~ dx, decorated by an auxiliary point process D, i.e. each point & of the
Poisson process is replaced by an independent copy of D translated by &;.

In Chapter [3| we show that the “superposability” property has a classical interpretation in
terms of stable point processes, pointed out to us by Ilya Molchanov, and the above-mentioned

17



Introduction

representation is known in this field as the LePage series representation of a stable point
process. We furthermore give a short proof of this representation using only the theory of
infinitely divisible random measures. For the BBM and BRW, the convergence of the ex-
tremal particles to such a process was proven by Arguin, Bovier, Kistler |10} 12} [1T], Aidékon,
Berestycki, Brunet, Shi [4] and Madaule [I14]. Kabluchko [98] also has an interesting result
for BRW started with an infinite number of particles distributed with density e™“* da, with
¢ > 1, which corresponds to travelling waves of speed larger than 1.

Conclusion and open problems

In this thesis, we have studied two models of branching Brownian motion with selection:
the BBM with absorption at a linear barrier and the N-BBM. For the first model, we have
given precise asymptotics on the number of absorbed particles in the case where the process
gets extinct almost surely. For the second model, the study of which represents the major part
of the thesis, we have shown that the recentred position of the particle system converges at
the time-scale log® N to a Lévy process which is given explicitly. Finally, in the last chapter,
we have pointed out a relation between the extremal particles of BBM and BRW and stable
point processes.

The study of the N-BBM constitutes an important step in the understanding of general
fluctuating wave fronts, whose phenomenology is believed to be the same in many cases [56].
Furthermore, it is a natural and intricate example of a selection mechanism for BBM and
BRW and an intuitive model of a population under natural selection.

We have not considered models of BBM with selection with density-dependent selection,
i.e. where particles get killed with a rate depending on the number of particles in their neigh-
bourhood. This kind of selection is indeed the most relevant for applications in ecology and
has appeared in the literature mostly as branching-coalescing particle systems (see for exam-
ple [136}, [135] 18| 125, [75] [15]), but also as systems with a continuous self-regulating density
[137, 84]. However, although we have not directly considered this type of selection mecha-
nism, the N-BBM is closely related to a particular case: Suppose particles perform BBM
and furthermore coalesce at rate £ when they meet (i.e. let two particles coalesce when their
intersection local time is equal to an independent exponential variable of parameter ¢). Shiga
[135] showed that this system is in duality with the noisy FKPP equation

2
Y o R RN ®)

where W is space-time white noise. This equation admits “travelling wave” solutions whose
wave speed equals the speed of the right-most particle of the branching-coalescing Brownian
motion (BCBM) [121]. Now, following the argumentation in [I121], the invariant measures of
the BCBM are the Poisson process of intensity e~ and the configuration of no particles, the
first being stable and the second unstable. Hence, if one looks at the right-most particles in
the BCBM, they will ultimately form a wave-like profile with particles to the left of this wave
distributed with a density e~!. We have thus a similar picture than in the N-BBM, in that
when particles get to the left of the front, they get killed quickly, in this case approximately
with rate 1 instead of instantaneously. If € is small, this does not make a difference because
the typical diameter of the front goes to infinity as € — 0. It is therefore plausible that our
results about the N-BBM can be transferred to the BCBM and thus to the noisy FKPP
equation . Indeed, Mueller, Mytnik and Quastel [I12I] have showed that the wave speed of
solutions to (3)) is approximately vy (although they still have an error of O(loglog N /log® N),
where N = ¢71).
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In what follows, we will outline several other open problems, mostly concerning the N-
BBM.

Speed of the N-BBM. If the reproduction law satisfies ¢(0) = 0, then the speed of the
system is the constant v}, such that Xy (t)/t — v} as t — o, where Xy(t) is again the
position of the [N/2]-th particle from the right in N-BBM. It has been shown [20] for the
BRW with binary branching that this speed exists and it is not difficult to extend their proof
to the BBM. Now, although our result about the position of the N-BBM describes quite
precisely the fluctuations at the timescale log® N it tells us nothing about the behaviour of
the system as time gets arbitrarily large. A priori, it could be possible that funny things
happen at larger timescales, which lead to stronger fluctuations or a different speed of the
system. In their proof [20] of the cutoff correction for the speed, Bérard and Gouéré had
to consider in fact timescales up to log® N. It is therefore an open problem to prove that
vy =uon+c+ o(log™3 N) for some constant ¢ € R and that the cumulants scale as in as
t — o0, which we conjecture to be true.

Empirical measure of the N-BBM. Let /)’ (¢) be the empirical measure of the particles
at time ¢ in N-BBM seen from the left-most particle. Durrett and Remenik [76] show (for
BRW) that the process (N~!u{"(t))cr is ergodic and therefore has an invariant probability
7V and furthermore converges as N — o in law to a deterministic measure-valued process
whose density with respect to Lebesgue measure solves a free boundary integro-differential
equation. Our result on the N-BBM and those prior to our work [50] 56l 23] suggest that
the 7V should converge, as N — o0, to the Dirac measure concentrated on the measure
xe Tly>odz. If one was to prove this, the methods of [76], which are essentially based on
Gronwall’s inequality, would not directly apply, since they only work for timescales of at most
log N. On the other hand, our technique of the coupling with BBM with absorption has
fairly restrictive requirements on the initial configuration of the particles. A method of proof
would therefore be to show that these requirements are met after a certain time for any initial
configuration and then couple the processes.

The genealogy of the N-BBM. As mentioned above, the genealogy of the N-BBM is
expected to converge at the timescale log® N to the Bolthausen-Sznitman coalescent as N
goes to infinity. A step towards this conjecture is the article [23], in which the authors show
that this convergence holds for BBM with absorption at a weakly subcritical barrier; it should
be easy to extend their arguments for the B-BBM defined in Section [7]of Chapter [2] However,
this would not be enough, since the monotone coupling we use to couple the N-BBM with
the B-BBM (or rather its variants B’-BBM and Bﬁ—BBM) does not preserve the genealogical
structure of the process. More work is therefore required to prove the conjecture for the
N-BBM.

The N-BRW. It should be possible to transfer the results obtained here for the N-BBM
to the N-BRW, as long as the displacements have exponential right tails and the number
of offspring of a particle has finite variance, say. Naturally, this would require a lot more
work because of the lack of explicit expressions for the density of the particles; one can
wonder whether this work would be worth it. However, it would be interesting to consider
cases where one could get different behaviour than for the N-BBM, such as subexponentially
decaying right tails of the displacements or models where particles have an infinite number of
children, as in the exponential model. Another possible point of attack in the same direction
would be to make rigorous for the N-BBM the findings in [55]. In that article, the authors
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weight the process by an exponential weight e?N () where Ry (t) is the position of the right-
most particle at time ¢, and obtain thus a one-parameter family of coalescent processes as
genealogies.

Superprocesses. If one considers N independent BBMs with weakly supercritical repro-
duction (i.e. m = a/N for some constant a > 0), gives the mass N~! to each individual and
rescales time by N and space by N~!, then one obtains in the limit a (supercritical) superpro-
cess, such as the Dawson—Watanabe process in the case that the variance of the reproduction
law is finite (see [77] for a gentle introduction to superprocesses). One may wonder whether
the results obtained in this thesis have analogues in that setting. This is true for the results
obtained in Chapter |1} as shown in [I10], in which the authors indeed transfer the results di-
rectly via the so-called backbone decomposition of the superprocess [109]. As for an analogue
of the N-BBM: one could consider a similar model of a superprocess whose mass is kept below
N by stripping off some mass to the left as soon as the total mass exceeds N. It is possible
that this process then exhibits similar fluctuations, which could again be related to those of
the N-BBM by the backbone decomposition.
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Figure 1: Simulation of the N-BRW with (from top to bottom) N = 10!, N = 1030 and
N = 10% particles (particles branch at each time step with probability 0.05 into two and jump
one step to the right with probability 0.25). The graphs show the barycentre of the particles
recentred roughly around vyt (because of the slow convergence, small linear correction terms
had to be added in order to fit the graphs into the rectangles). The horizontal axis shows
time (at the scale log® N), the vertical axis shows the position of the barycentre (without
rescaling).
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Chapter 1

The number of absorbed individuals
in branching Brownian motion with a
barrier

This chapter is based on the article [115].

1 Introduction

We recall the definition of branching Brownian motion mentioned already in the intro-
ductory chapter: Starting with an initial individual sitting at the origin of the real line, this
individual moves according to a 1-dimensional Brownian motion with drift ¢ until an inde-
pendent exponentially distributed time with rate 1. At that moment it dies and produces
L (identical) offspring, L being a random variable taking values in the non-negative integers
with P(L = 1) = 0. Starting from the position at which its parent has died, each child repeats
this process, all independently of one another and of their parent. For a rigorous definition of
this process, see for example [94] or [61].

We assume that m = E[L] — 1 € (0,00), which means that the process is supercritical. At
position x > 0, we add an absorbing barrier, i.e. individuals hitting the barrier are instantly
killed without producing offspring. Kesten proved [102] that this process becomes extinct
almost surely if and only if the drift ¢ > cg = v/2m (he actually needed E[L?] < oo for the
“only if” part, but we are going to prove that the statement holds in general). Neveu [123]
showed that the process Z = (Z,).>0 is a continuous-time Galton—Watson process of finite
expectation, but with E[Z,log" Z,] = o for every x > 0, if ¢ = cp.

Let N ={1,2,3,...} and Ny = {0} UN. Define the infinitesimal transition rates (see [14],
p. 104, Equation (6) or [89], p. 95)

1
= lim —P(Z, = n), No\{1}.
q ;wﬂf ( n), mn e No\{l}

We propose a refinement of Neveu’s result:

Theorem 1.1. Let ¢ = ¢y and assume that E[L(log L)?] < o0. Then we have as n — o0,

cox
coxe
for each x > 0.

n(logn)?

o0
Co
E ~— d P(Z, ~
k:n% n(logn)? o (Z: > )

The heavy tail of Z, suggests that its generating function is amenable to singularity
analysis in the sense of [8I]. This is in fact the case in both the critical and subcritical cases if
we impose a stronger condition upon the offspring distribution and leads to the next theorem.
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Define f(s) = E[s”] the generating function of the offspring distribution. Denote by § the
span of L — 1, i.e. the greatest positive integer, such that L —1 is concentrated on ¢6Z. Let

e < A be the two roots of the quadratic equation A2 — 2e)\ + cg = 0 and denote by d = %
the ratio of the two roots. Note that ¢ = cq if and only if A, = ). if and only if d = 1.

Theorem 1.2. Assume that the law of L admits exponential moments, i.e. that the radius of
convergence of the power series E[SL] s greater than 1.

— In the critical speed area (¢ = cp), as n — ©,

0 4 P(Ze—on+1) ~ —25" o cach 2> 0
~N———— an =n ~ ———— for each x > 0.
Gon+1 dn?(logn)? ‘ dn?(logn)?
— In the subcritical speed area (¢ > cq) there exists a constant K = K (c, f) > 0, such that,
as m — oo,
e’\ici — et K

for each © > 0.

K
q5n+1"-‘W and P(szén‘i‘l)’\‘ )\76_)\0 nd+1

Furthermore, qspix = P(Zy =dn+ k) =0 forallneZ and k € {2,...,5}.

Remark 1.3. The idea of using singularity analysis for the study of Z, comes from Robin
Pemantle’s (unfinished) manuscript [I127] about branching random walks with Bernoulli re-
production.

Remark 1.4. Since the coefficients of the power series E[s”] are real and non-negative, Pring-
sheim’s theorem (see e.g. [82], Theorem IV.6, p. 240) entails that the assumption in Theorem
is verified if and only if f(s) is analytic at 1.

Remark 1.5. Let 8 > 0 and ¢ > 0. We consider a more general branching Brownian motion
with branching rate given by 8 and the drift and variance of the Brownian motion given by ¢
and o2, respectively. Call this process the (3, ¢, 0)-BBM (the reproduction is still governed by
the law of L, which is fixed). In this terminology, the process described at the beginning of this
section is the (1,¢,1)-BBM. The (8, ¢,o)-BBM can be obtained from (1,¢/(o+/f),1)-BBM by
rescaling time by a factor 8 and space by a factor o/4/8. Therefore, if we add an absorbing
barrier at the point z > 0, the (8, ¢, 0)-BBM gets extinct a.s. if and only if ¢ = ¢y = 04/28m.

¢,0)

Moreover, if we denote by Z;,(;B 77 the number of particles absorbed at x, we obtain that

(Zéﬁ’c’a))zzo and (Zi%/(g\/’g)’l))xgo are equal in law.

(B,c,0)

5 )azo by a7, for

In particular, if we denote the infinitesimal transition rates of (Z.
n € No\{1}, then we have

gFe)  qipg L P(Z¢e0 —n) - VB P20V ) VB (elavL),
zl0 T o zl0 2+/B z+/B/o o

One therefore easily checks that the statements of Theorems and are_still valid for

arbitrary B > 0 and o > 0, provided that one replaces the constants co, Ae, A, K by co/0?,

Ae/0?, NeJo?, @K(c/(a\/ﬁ), f), respectively.

The content of the paper is organised as follows: In Section [2| we derive some preliminary
results by probabilistic means. In Section [3] we recall a known relation between Z, and the
so-called Fisher-Kolmogorov—Petrovskii-Piskounov (FKPP) equation. Section {4]is devoted
to the proof of Theorem [I.1], which draws on a Tauberian theorem and known asymptotics
of travelling wave solutions to the FKPP equation. In Section [5| we review results about
complex differential equations, singularity analysis of generating functions and continuous-
time Galton—Watson processes. Those are needed for the proof of Theorem which is done
in Section [Gl
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2. First results by probabilistic methods

2 First results by probabilistic methods
The goal of this section is to prove

Proposition 2.1. Assume ¢ > cg and E[L*] < co. There exists a constant C = C(x,c, L) >
0, such that

C
P(Zy>n) > —  for large n.
n
This result is needed to assure that the constant K in Theorem [1.2] is non-zero. It is
independent from Sections [3] and [4] and in particular from Theorem Its proof is entirely

probabilistic and follows closely [2].

2.1 Notation and preliminary remarks

Our notation borrows from [I08|. An individual is an element in the space of Ulam—Harris

labels
U= U N”,

nENO

which is endowed with the ordering relations < and < defined by
u<v << JweU:v=uww and u<v < u<wvandu # .

The space of Galton—-Watson trees is the space of subsets t — U, such that @ € t, v € t if
v < u and u € t and for every u there is a number L, € Ny, such that for all j € N, uj € t if
and only if j < L,. Thus, L, is the number of children of the individual u.

Branching Brownian motion is defined on the filtered probability space (T,.%, (%), P).
Here, T is the space of Galton—Watson trees with each individual u € t having a mark
(Cus Xu) € RT x D(RT,R U {A}), where A is a cemetery symbol and D(RT,R u {A})
denotes the Skorokhod space of cadlag functions from R* to R u {A}. Here, (, denotes the
life length and X, (t) the position of u at time ¢, or of its ancestor that was alive at time ¢.
More precisely, for v € ¢, let d, = > ~» Gw denote the time of death and b, = d, — ¢, the
time of birth of v. Then X, (t) = A for ¢t > d,, and if v < u is such that t € [b,,d,), then
Xu(t) = Xv(t)'

The sigma-field .%; contains all the information up to time ¢, and ¥ = o (Ut20 33,5).

Let y,c € R and L be some random variable taking values in No\{1}. P = P¥%%" is the
unique probability measure, such that, starting with a single individual at the point y,

— each individual moves according to a Brownian motion with drift ¢ until an independent

time (, following an exponential distribution with parameter 1.
— At the time (, the individual dies and leaves L, offspring at the position where it has
died, with L, being an independent copy of L.
— Each child of u repeats this process, all independently of one another and of the past of
the process.
Note that often ¢ and L are regarded as fixed and y as variable. In this case, the notation PY
is used. In the same way, expectation with respect to P is denoted by F or EY.

A common technique in branching processes since [113] is to enhance the space 7 by
selecting an infinite genealogical line of descent from the ancestor &, called the spine. More
precisely, if T € T and t its underlying Galton-Watson tree, then & = (&, &1, &2,...) € UNO is
a spine of T if g = @ and for every n € Ny, &,+1 is a child of &, in t. This gives the space

T = {(T,&) eT x UNo . ¢ is a spine of T'}
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of marked trees with spine and the sigma-fields 7 and f}; Note that if (7,¢) € ’7~', then T is
necessarily infinite.

Assume from now on that m = E[L] —1 € (0,00). Let N; be the set of individuals alive
at time t. Note that every %—measurable function f : 7 — R admits a representation

FT,8) = ) fulT) e,

uENt

where f, is an F;-measurable function for every uw € U. We can therefore define a measure P

on (T,.7,(71) by
J%f dP=e™ L > fu(T)P(AT). (2.1)

uENt

It is known [108] that this definition is sound and that Pis actually a probability measure
with the following properties:

— Under ]3, the individuals on the spine move according to Brownian motion with drift ¢
and die at an accelerated rate m + 1, independent of the motion.

— When an individual on the spine dies, it leaves a random number of offspring at the
point where it has died, this number following the size-biased distribution of L. In other
words, let L be a random variable with E[f(L)] = E[f(L)L/(m+ 1)] for every positive
measurable function f. Then the number of offspring is an independent copy of L.

— Amongst those offspring, the next individual on the spine is chosen uniformly. This
individual repeats the behaviour of its parent.

— The other offspring initiate branching Brownian motions according to the law P.

Seen as an equation rather than a definition, also goes by the name of “many-to-one
lemma’.

2.2 Branching Brownian motion with two barriers

We recall the notation PY from the previous subsection for the law of branching Brownian
motion started at y € R and EY the expectation with respect to PY. Recall the definition of
P and define PY and EY analogously.

Let a,b € R such that y € (a,b). Let 7 = 7, be the (random) set of those individuals
whose paths enter (—o0, a] U [b, ) and all of whose ancestors’ paths have stayed inside (a, b).
For u € 7 we denote by 7(u) the first exit time from (a,b) by u’s path, i.e.

T(u) =inf{t = 0: X, (t) ¢ (a,b)} = min{t = 0: X, (t) € {a,b}},
and set 7(u) = o for u ¢ 7. The random set 7 is an (optional) stopping line in the sense of
[61].

For u € 7, define X, (1) = Xy (7(u)). Denote by Z,; the number of individuals leaving
the interval (a, b) at the point a, i.e.

Za,b = 2 1Xu(7'):a'

UET

Lemma 2.2. Assume |c| > cy and define p = A/c? — c2. Then

ey SIND((b = 1)p)
EY[Zyp) = e y)m'
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2. First results by probabilistic methods

If, furthermore, V.= E[L(L — 1)] < o0, then

[sinh((b —y)p) Jy @) ginh?((b — 7)p) sinh((r — a)p) dr

a

2Vec(av)
EY [Zg,b] = . 1.3
psinl®((b— a)p)

b
+sinh((y — a)p) J @) sinh®((b — 7)p) dr] + EY[Zg ]

Proof. On the space 7 of marked trees with spine, define the random variable I by I = i if
& e 1 and I = oo otherwise. For an event A and a random variable Y write E[Y, A] instead
of E[Y14]. Then

B[ Zos] = B' Y 1x,(mma| = B[, 1 < o0, X, (7) = a]

UeT

by the many-to-one lemma extended to optional stopping lines (see [33], Lemma 14.1 for a
discrete version). But since the spine follows Brownian motion with drift ¢, we have I < oo,
P-a.s. and the above quantity is therefore equal to

Wy’c[emT, Brp = a,

where W¥¢ is the law of standard Brownian motion with drift ¢ started at y, (Bi)i=o the
canonical process and T' = T, the first exit time from (a,b) of B;. By Girsanov’s theorem,
and recalling that m = cg /2, this is equal to

WY[ecBr—u-3(=)T B, _ q],

where WY = WYY, Evaluating this expression (J41], p. 212, Formula 1.3.0.5) gives the first
equality.

For u € U, let ©,, be the operator that maps a tree in 7 to its sub-tree rooted in u. Denote
further by C,, the set of u’s children, i.e. C, = {uk : 1 < k < L,}. Then note that for each
u € T we have

Za,b =1+ Z Z Za,bOGUH

v<u weCy
wXu

hence

EY[Z7,) = Ey[ > 1Xu(7—)=aZa,b]

UET
N (2.2)
= EY[Zop] + PY| ™) 3N Z, 4000, Xe (1) =al.
v<E5 WEL,
wXEr

Define the o-algebras

G = o(Xe, (t);t=0),
H =9 v U(Cv;v < 51)7
I=2vol&I,(Lyv=<£&r)),

such that ¢ contains the information about the path of the spine up to the individual that
quits (a, b) first, 7 adds to ¢ the information about the fission times on the spine and Z adds
to S the information about the individuals of the spine and the number of their children.
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Chapter 1. Number of absorbed individuals in branching Brownian motion with a barrier

Now, conditioning on Z and using the strong branching property, the second term in the last

line of (2.2)) is equal to

pY

e N (Ly = NEX [ Z,,], Xe (1) = a]

U<f[

(recall that d, is the time of death of v). Conditioning on % and noting the fact that L,
follows the size-biased law of L for an individual v on the spine, yields

Py

mT V v
e@H2+#ﬂMM%&XMﬂ=4

v<§1

Finally, since under P the fission times on the spine form a Poisson process of intensity m + 1,
conditioning on ¢ and applying Girsanov’s theorem yields

T
W [€c<BT—y>—;p2T J

VEPZ,,]dt, By = a]
0

b
= Vecla—y) J E"Zgp|WY [e_%PQTng, Br = a] dr,

a

where L, is the local time of (B;) at the time 7" and the point r. The last expression can be
evaluated explicitly ([41], p. 215, Formula 1.3.3.8) and gives the desired equality. O

Corollary 2.3. Under the assumptions of Lemma for each b > 0 there are positive
constants Clgl), CIEQ), such that as a — —0,

a) E°[Zuy] ~ Cylleleror,

b) if ¢ > co, EO[Z(ib] ~ CZSQ)e(”p)“ and

¢) if c < —co, E°[Z%,] ~ 0152)62(C+p)“.
The following result is well known and is only included for completeness. We emphasize
that the only moment assumption here is m = E[L] — 1 € (0,00). Recall that Z, denotes the

number of particles absorbed at x of a BBM started at the origin. For |¢| = ¢, define A to
be the smaller root of A\ — 2¢c\ + c%, thus A\ = ¢ — y/c% — c%.

Lemma 2.4. Let z > 0.
— If |c| = co, then E[Z;] = e*e*.
— If |¢| < co, then E[Z;] = +0.

Proof. We proceed similarly to the first part of Lemma Define the (optional) stopping
line 7 of the individuals whose paths enter [z, 00) and all of whose ancestors’ paths have stayed
inside (—o0,x). Define I as in the proof of Lemma By the stopping line version of the
many-to-one lemma we have

E[Z,] = E[Y 1] = E[e"¢). I < oo].

UET

By Girsanov’s theorem, this equals
Wl 7, < o]

where W is the law of standard Brownian motion started at 0 and T is the first hitting time
of z. The result now follows from [41], p. 198, Formula 1.2.0.1. O
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3. The FKPP equation

2.3 Proof of Proposition 2.1

By hypothesis, ¢ > ¢p, E[L?] < o and the BBM starts at the origin. Let x > 0 and let
T = T, be the stopping line of those individuals hitting the point x for the first time. Then
Zy = |Tgl.

Let a < 0 and n € N. By the strong branching property,

PYZy>n) = PY(Zy > n| Zog = 1)PY(Zyp = 1) = P(Zy > n)PY(Zyp = 1),

If PY denotes the law of branching Brownian motion started at the point 0 with drift —c,
then

PYZy>n) =P°(Zy_p >n) = P°(Zs_u1 >n).

In order to bound this quantity, we choose a = a,, in such a way that n = %EQ [Za,—21]- By
Corollary a), ¢) (applied with drift —c) and the Paley—Zygmund inequality, there is then
a constant C7 > 0, such that

1 EO— [Za'n,fmyl]2
2 P S
4 E°[Z2

> (Cy for large n.
an—ac,l]

P°(Zgp—u1 > )
Furthermore, by Corollary a) (applied with drift —c), we have
1
5051)67/\6(61”735) ~mn, asn — o,

and therefore a,, = —(1/\.)logn + O(1). Again by the Paley-Zygmund inequality and Corol-
lary a), b) (applied with drift ¢), there exists Cy > 0, such that for large n,

EO[Z ]2 (0(1))2 _ Cy
0 _ 0 an,T T Acan
P Zane 21) = Pane > 0) 2 popza™y 2 oy 2

This proves the proposition with C' = C7C5.

3 The FKPP equation

As was already observed by Neveu [123], the translational invariance of Brownian motion
and the strong branching property immediately imply that Z = (Z,).,>0 is a homogeneous
continuous-time Galton—Watson process (for an overview to these processes, see [14], Chap-
ter III or [89], Chapter V). There is therefore an infinitesimal generating function

0
C"(S) =« <Z pnsn - 3) , a>0,p =0, (3.1)
n=0

associated to it. It is a strictly convex function on [0, 1], with a(0) = 0 and a(1) < 0. Its
probabilistic interpretation is

a= lin% iP(Z, #1) and p, = lin% P(Zy =n|Zy # 1),

hence ¢, = ap, for n € No\{1}. Note that with no further conditions on ¢ and L, the sum
Y n=0Pn need not necessarily be 1, i.e. the rate apy, where poy = 1 — >}~ pn, with which
the process jumps to +00, may be positive.
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Chapter 1. Number of absorbed individuals in branching Brownian motion with a barrier

We further define Fj(s) = E[s%¢], which is linked to a(s) by Kolmogorov’s forward and
backward equations ([I4], p. 106 or [89], p. 102):

;Fm(s) = a(s)a—in(s) (forward equation) (3.2)
%Fx(s) = a[F,(s)] (backward equation) (3.3)

The forward equation implies that if a(1) = 0 and ¢(x) = E[Z;] = %Fx(lf), then ¢'(x) =
a’(1)é(z), whence E[Z,] = ¢ (). On the other hand, if a(1) < 0, then the process jumps to
oo with positive rate, hence E[Z,] = o for all x > 0.

The next lemma is an extension of a result which is stated, but not proven, in [123],
Equation (1.1). According to Neveu, it is due to A. Joffe. To the knowledge of the author,
no proof of this result exists in the current literature, which is why we prove it here.

Lemma 3.1. Let (Y3)i=0 be a homogeneous Galton—Watson process started at 1, which may
explode and may jump to +00 with positive rate. Let u(s) be its infinitesimal generating
function and Fy(s) = E[s¥*]. Let q be the smallest zero of u(s) in [0,1].

1. If ¢ < 1, then there exists t— € R U {—o} and a strictly decreasing smooth function
Yo i (t—,40) = (g,1) with imy—;__(t) = 1 and limy_,, Y_(t) = q, such that on
(q,1) we have w =" o=, Fy(s) = _ ("1 (s) + t).

2. If ¢ > 0, then there exists ty € R u {—w} and a strictly increasing smooth function
Pyt (ty,+0) — (0,q) with limy_y, Y4 (t) = 0 and im0 4 (t) = g, such that on
(0,q) we have u = . o, Fy(s) = i (W71 (s) +1).

The functions ¢_ and ¥y are unique up to translation.

Moreover, the following statements are equivalent:

— Forallt>0,Y; <0 a.s.

—q=1o0rt_ = —o0.

Proof. We first note that u(s) > 0 on (0,¢) and u(s) < 0 on (g,1), since u(s) is strictly
convex, u(0) = 0 and u(1) < 0. Since Fy(s) = s, Kolmogorov’s forward equation implies
that Fi(s) is strictly increasing in ¢ for s € (0,¢q) and strictly decreasing in t for s € (g, 1).
The backward equation implies that F}(s) converges to ¢ as t — oo for every s € [0, 1).
Repeated application of yields that Fi(s) is a smooth function of ¢ for every s € [0, 1].

Now assume that ¢ < 1. For n € N set s, = 1 — 27"(1 — q), such that ¢ < s; < 1,
Sn < Sp+1 and s, — 1 as n — . Set t1 = 0 and define t,, recursively by

tny1 =t, —t', where t' > 0 is such that Fy(s,11) = sp-

Then (tp)neN is a decreasing sequence and thus has a limit ¢ € R u {—o0}. We now define
for t € (t_, +0),
w_ (t) = Ft—tn (Sn), if ¢ = tn

The function _ is well defined, since for every n € N and t > t,,,

Fit,(8n) = Fi—t,(Ft—tn 1 (Sn41)) = Fiot,, 1 (Sn41),

by the branching property. The same argument shows us that if s € (¢,1), s, > s and ¢’ > 0
such that Fy(s,) = s, then Fi(s) = Fyip(sp) = _(t +t' +t,,) for all ¢ > 0. In particular,
Y_(t' +t,) = s, hence Fy(s) = ¢_(v="(s) + t). The backward equation (3.3) now gives

0

u(s) = 2

),y = V78,
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3. The FKPP equation

The second part concerning ¢ is proven completely analogously. Uniqueness up to translation
of ¢_ and ¢ is obvious from the requirement v (y)~1(s) +t) = Fi(s), where 1 is either v_
or Y.

For the last statement, note that P(Y; < o0) = 1 for all ¢ > 0 if and only if F;(1-) =1
for all ¢ > 0. But this is the case exactly if ¢ =1 or t_ = —o0. O

The following proposition shows that the functions ¢)_ and 1 corresponding to (Z;)z>0
are so-called travelling wave solutions of a reaction-diffusion equation called the Fisher—Kolmo-
gorov—Petrovskii-Piskounov (FKPP) equation. This should not be regarded as a new result,
since Neveu ([123], Proposition 3) proved it already for the case ¢ = ¢p and L = 2 a.s. (dyadic
branching). However, his proof relied on a path decomposition result for Brownian motion,
whereas we show that it follows from simple renewal argument valid for branching diffusions
in general.

Recall that f(s) = E[s*] denotes the generating function of L. Let ¢’ be the unique fixed
point of f in [0,1) (which exists, since f/(1) = m + 1 > 1), and let ¢ be the smallest zero of
a(s) in [0, 1].

Proposition 3.2. Assume c € R. The functions ¥_ and ¥5 from Lemmal3. 1| corresponding
to (Zy)z=0 are solutions to the following differential equation on (t_,+o0) and (ti,+o0),

respectively.
1

SV - = v —fou. (3.4
Moreover, we have the following three cases:
1. Ifc=co, thenq=¢,t_ = —, a(l) =0, d'(1) = A\, E[Z,] = e** for all z > 0.

2. If |¢| < co, then q=¢', t_ € R, a(1) <0, d’(1) = 2¢, P(Z, = o) > 0 for all x > 0.
8. Ifc< —cp, then g =1, a(l) =0, d’(1) = A\, E[Z;] = % for all x > 0.

Proof. Let s € (0,1) and define the function (z) = Fy(s) = E[s%] for z = 0. By sym-
metry, Z, has the same law as the number of individuals N absorbed at the origin in a
branching Brownian motion started at « and with drift —c. By a standard renewal argument
(Lemmal7.1)), the function v is therefore a solution of on (0,00) with ¥4(04) = s. This
proves the first statement, in view of the representation of F} in terms of ¥»— and 1, given
by Lemma [3.1]

Let s € (0,1)\{g} and let ¢(s) = ¢_(s) if s > ¢ and ¢(s) = ¥4 (s) otherwise. By (3.4),

CWoyti(s) . oy Ns)— fopoul(s) . -
S Woyi(s) 7 o g1(s) BT

whence, by convexity,

a'(s)

a'(s)a(s) = 2ca(s) + 2(s — f(s)), se[0,1]. (3.5)

Assume |¢| = ¢g. By Lemma E[Z;] = €%, hence a(1) = 0 and a'(1) = A, in
particular, a’(1) > 0 for ¢ = ¢y and /(1) < 0 for ¢ < —¢p. By convexity, ¢ < 1 for ¢ = ¢y and
q = 1 for ¢ < —¢g. The last statement of Lemma now implies that {_ = —o0 if ¢ = ¢.

Now assume |c| < ¢g. By Lemma E[Z;] = + for all > 0, hence either a(1) < 0
or a(1) = 0 and a'(1) = +o0, in particular, ¢ < 1 by convexity. However, if a(1) = 0, then
by (3.5), a’'(1) = 2¢ — 2m/d’(1), whence the second case cannot occur. Thus, a(1) < 0 and
d'(1) = 2c by (3.5).

It remains to show that ¢ = ¢’ if ¢ < 1. Assume g # ¢/. Then a(¢’) # 0 by the (strict)
convexity of a and a'(¢') = 2c by (3.5). In particular, a’(¢’) > a’(1), which is a contradiction
to a being strictly convex. d

31



Chapter 1. Number of absorbed individuals in branching Brownian motion with a barrier

4 Proof of Theorem [1.1]

We have ¢ = ¢g by hypothesis. Let ©¥»_ be the travelling wave from Proposition which
is defined on R, since t_ = —c0. Let ¢(z) = 1—¢)_(—x), such that ¢(—0) = 1—¢q, ¢(+0) =0
and

39" (2) + cod/(z) = f(1 - ¢(x)) — (1 - p(2)), (4.1)

by (B.4). Furthermore, a(l —s) = ¢'(¢~(s)) and Fy(1 —s) =1 —¢(¢~!(s) — ).

Under the hypothesis E[L(log L)?] < oo, it is known [143] that there exists K € (0, 0),
such that ¢(z) ~ Kze % ag x — 0. Since a(1) = 0 and a/(1) = ¢y by Proposition this
entails that ¢'(z) = a(l — ¢(z)) ~ —coKze 9% as x — 0.

Set o1 = ¢’ and ¢ = ¢. By (&),

28 (48)- (g 0w,

Setting g(s) = s+ 2[f(1 —s) — (1 —s)] = 2[f'(1)s + f(1 — s) — 1], this gives

i (i) = () (1577) e = (B 50)- o

The Jordan decomposition of M is given by

a1 [ —¢Co 1 [ —¢Co 1—0()
st (9 ) as (), 13

Setting (:‘2) =A (Z), we get with & = (§;>

£(z) = eE(0) + ™ L " <;=‘éf;€$§)) dy. (4.4)
Note that . .
i <€ . f_of) . (4.5)

With the above asymptotic of ¢, the integral SSO e“Yg(o(y)) dy is finite by Theorem B of
[36] (see also Theorem 8.1.8 in [37]). Equations (4.4]) and (4.5) now imply that

(o) ~ e (8200)+ | e o(0(0)) ),
and "
(€14 @)Ma) ~ v ((0) + | eMg(o(0)) ).
0
and since ¢ = & + & and & = ¢ + ¢, this gives
(¢ + cod)(z) ~ ¢(z)/2 ~ Ke " (4.6)
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5. Preliminaries for the proof of Theorem |1.2

With this information, one can now show by elementary calculus (see Section [7.2)), that

€o

Ml— )~ —0 d 47

a ( S) S(log %)2 all ( )
—coT

F'(1— )~ 2% 0. 48

w( S) S(log %)2 as s ( )

By standard Tauberian theorems ([79], Section XIII.5, Theorem 5), (4.7)) implies that
< n
U(n) = Zquk ~ )y, AS M —> 0.
2 (log )
By integration by parts, this entails that

S - * 1 1
= ““U(dzx) ~ 2 dz — )
’;1% La: U(dz) co< L Pog )2 n(logn)2>

But the last integral is equivalent to 1/(n(logn)?) ([79], Section VIIL.9, Theorem 1), which
proves the first part of the theorem. The second part is proven analogously, using (|4.8])
instead.

5 Preliminaries for the proof of Theorem [1.2

In light of Proposition 2.1} one may suggest that under suitable conditions on L one may
extend the proof of Theorem to the subcritical case ¢ > ¢y and prove that as n — oo,
P(Z;>n) ~C' n~% for some constant C’. In order to apply Tauberian theorems, one would
then have to establish asymptotics for the (|d] + 1)-th derivatives of a(s) and Fy(s) as s — 1.
In trying to do this, one quickly sees that the known asymptotics for the travelling wave
(1 — 9(z) ~ const x e as  — —o0, see [I08]) are not precise enough for this method
to work. However, instead of relying on Tauberian theorems, one can analyse the behaviour
of the holomorphic function a(s) near its singular point 1. This method is widely used in
combinatorics at least since the seminal paper by Flajolet and Odlyzko [81] and is the basis
for our proof of Theorem [I.2] Not only does it work in both the critical and subcritical cases,
it even yields asymptotics for the density instead of the tail only.

In the rest of this section, we will define our notation for the complex analytic part of the
proof and review some necessary general complex analytic results.

5.1 Notation

In the course of the paper, we will work in the spaces C and C2, endowed with the
Euclidean topology. An open connected set is called a region, a simply connected region
containing a point zg is also called a neighbourhood of zy. The closure of a set D is denoted
by D, its border by dD. The disk of radius r around zy is denoted by D(zp,r) = {2z € C :
|z — 20| < r}, its closure and border by D(zg,7) and dD(zq,7), respectively. We further use
the abbreviation D = (0, 1) for the unit disk. For 0 < ¢ <7, r > 0 and z € R, we define

Glp,r) ={z e D(L,r)\{1} : |arg(l — 2)| <7 — o}, Si(p,x) = [z,2) x (=, 9),
Alp,r) ={zeD(0,1+r)\{1} : [arg(l — 2)| <7 — ¢}, S_(p,2) = (—0,2] x (=p,¢),
H(p,r) ={zeD(0,r)\{0} : |arg z| < ¢}
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Chapter 1. Number of absorbed individuals in branching Brownian motion with a barrier

Note that H(p,r) = 1—G(m —p,r). Here and during the rest of the paper, arg(z) and log(z)
are the principal values of argument and logarithm, respectively.

Let G be a region in C, zp € G and f and g analytic functions in G with g(z) # 0 for all
z € G. We write

f(z) =0(g(z)) <= Ve>030>0VzeGnD(z0,9):|f(2)] <elg(2)l,
f(z)=0(g(z2)) <= 3JC=030>0VzeGnD(z,9):]|f(2)| <Clg(2)],
f(z)=0(g(z)) < 3KeC:[f(z)=Kg(2)+o(g(2)),

f(2)~g(z) = [f(z) =9(2) +o(g(2)),

specifying that the relations hold as z — zg.

5.2 Complex differential equations

In this section, we review some basics about complex differential equations. We start with
the fundamental existence and uniqueness theorem ([28], p. 1, [90], Theorem 2.2.1, p. 45 or
[95], Section 12.1, p. 281).

Fact 5.1. Let G be a region in C? and (wo, 20) a point in G. Let f : G — C be analytic in G,
1.e. [ is continuous and both partial derivatives exist and are continuous. Then there exists a
neighbourhood U of zg and a unique analytic function w : U — C, such that

1. w(zp) = wy,

2. (w(z),2) € G for all z€ U and

3. w'(z) = f(w(z),z) forall ze U.
In other words, the differential equation w' = f(w, z) with initial condition w(zg) = wo has
exactly one solution w(z) which is analytic at z.

The following standard result is a special case of a theorem by Painlevé ([28], p. 11, [90],
Theorem 3.2.1, p. 82 or [95], Section 12.3, p. 286f).

Fact 5.2. Let H be a region in C and w(z) analytic in H. Let G be a region in C2, such that
(w(z),2) € G for each z € H and suppose that there exists an analytic function f : G — C,
such that w'(z) = f(w(z), z) for each z € H. Let zg € 0H. Suppose that w(z) is continuous at
zo and that (w(z0),20) € G. Then zg is a regular point of w(z), i.e. w(z) admits an analytic
extension at zg.

Let [z1,...,2k]n denote a power series of the variables z1, ..., z;, converging in a neigh-
bourhood of (0,...,0) and which contains only terms of order n or higher. The complex
differential equation

2w’ = w + pz + [w, z]2, A\, peC, (5.1)

was introduced in 1856 by Briot and Bouquet [49] as an example of a complex differential
equation admitting analytic solutions at a singular point of the equation. More precisely, they
obtained ([90], Theorem 11.1.1, p. 402):

Fact 5.3. If A is not a positive integer, then there ezists a unique function w(z) which is
analytic in a neighbourhood of z = 0 and which satisfies (5.1). Furthermore, w(0) = 0.

The singular solutions to this equation were later investigated by Poincaré, Picard and
others (for a full bibliography, see [93]). We are going to need the following result (see [93],
Paragraph I11.9.2° or [90], Theorem 11.1.3, p. 405, but note that the latter reference is without
proof and the statement is slightly incomplete).
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5. Preliminaries for the proof of Theorem |1.2

Fact 5.4. Assume A > 0. There exists a function ¥(z,u) = ij>0pjkzjuk, converging in a
neighbourhood of (0,0) and such that poo = 0 and pp1r = 1, such that the general solution of
which vanishes at the origin is w = (z,u), with

—u=C2" if\¢ N,

— u=2MC+ Klogz), if \e N.
Here, C € C is an arbitrary constant and K € C is a fixed constant depending only on the

right-hand side of (b.1)).

Remark 5.5. The above statement is slightly imprecise, in that the term solution is not
defined, i.e. what a priori knowledge of w(z) (regarding its domain of analyticity, smoothness,
behaviour at z = 0, ...) is required in order to guarantee that it admits the representation
stated in Fact Inspecting the proof (as in [93], for example) shows that it is actually
enough to know that w(z) satisfies (5.1)) on an interval (0,¢) of the real line and that w(0+) =
0. We briefly explain why:

In order to prove Fact one shows that there exists a function 1 of the form stated
above, such that when changing variables by w = v (z, u), the function u(z) formally satisfies
one of the equations

v’ =X u or zu = \u+ Kz,

according to whether A ¢ N or A € N.

Now suppose that w(z) satisfies the above conditions. By the implicit function theorem
([91], Theorem 2.1.2), we can invert ¢ to obtain a function ¢(w,z) = w + gz + [w, z]2,
g € C, such that ¥(z,p(w,2z)) = w in a neighbourhood of (0,0). We may thus define
u(z) = p(w(z), z) for all z € (0,e1) for some €1 > 0. Moreover, u(z) now truly satisfies the
above equations on (0,e1) and u(0+) = 0. Standard theory of ordinary differential equations
on the real line now yields that u is necessarily of the form stated in Fact [5.4

We further remark that since u(z) is analytic in the slit plane C\(—o0, 0] and goes to 0 as
z — 0 in C\(—0, 0], there exists an r > 0, such that (z,u(2)) is in the domain of convergence
of ¥(z,u) for every z € H(m,r). Hence, every solution w(z) can be analytically extended to
H(m,r).

5.3 Singularity analysis

We now summarise results about the singularity analysis of generating functions. The basic
references are [81] and [82], Chapter VI. The results are of two types: those that establish an
asymptotic for the coefficients of functions that are explicitly known, and those that estimate
the coefficients of functions which are dominated by another function. We start with the
results of the first type:

Fact 5.6. Let de (1,0)\N, k€ N, v € Z\{0}, § € Z and the functions fi, fo defined by

1\ 1\’
— (1 — 2 =(1-2)k(1 log 1
A = 0= o) = (-2 (g2 ) (togtog 1)
for z € C\[1,4o). Let (pg)) be the coefficients of the Taylor expansion of f; around the
origin, 1 = 1,2. Then (pgf)) satisfy the following asymptotics as n — o0:

K Ks(logn)"(loglogn)?
1 1 2 2\log glog
i ~ nd+1 and  pY) ~ nk+1 )

for some non-zero constants K1 = K1(d), Ko = Ka(k,v,9). We have Ko(1,—1,0) = 1.
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Proof. For fi, this is Proposition 1 from [81]. For fs this is Remark 3 at the end of Chapter
3 in the same paper. Note that the additional factors % do not change the nature of the
singularities, since % is analytic at 1 (see the footnote on p. 385 in [82]). The last statement
follows from Remark 3 as well. O

The results of the second type are contained in the next theorem. It is identical to
Corollary 4 in [81]. Note that a potential difficulty here is that it requires analytical extension
outside the unit disk.

Fact 5.7. Let 0 < p < m/2, r > 0 and f(z) be analytic in A(p,r). Assume that as z — 1 in
Alp,7),

1) =o (-2 (1

—Z

)) . where L(u) = (logu)”(loglogu)’, a,v,d € R.

Then the coefficients (py) of the Taylor expansion of f around 0 satisfy
L(n)
Pn =0 okl | as n — o0.

5.4 An equation for continuous-time Galton—Watson processes

In this section, let (Y;)i>o be a homogeneous continuous-time Galton—Watson process
starting at 1. Let a(s) be its infinitesimal generating function and Fi(s) = E[s¥*]. Assume
a(l) =0 and a'(1) = XA € (0,00), such that a(s) = 0 has a unique root ¢ in [0, 1).

The following proposition establishes a relation between the infinitesimal generating func-
tion of a Galton—Watson process and its generating function at time ¢. For real s, the formulae
stated in the proposition are well known, but we will need to use them for complex s, which
is why we have to include some (complicated) hypotheses to be sure that the functions and
integrals appearing in the formulae are well defined.

Proposition 5.8. Suppose that a and F; have analytic extensions to some regions D, and
Dp. Let Z, = {s € Dy : a(s) = 0}. Let there be simply connected regions G < D,\Z, and
D c G n Dp with F,(D) € G and D n (0,1) # &. Then the following equations hold for all

seD:
YL 2
L M T—t, (5)

and

Fi(s)
1 — Fy(s) = eM(1 — s)exp <—j f*(r) dr) , (5.3)

where f*(s) is defined for all s € Dy\Z, as

A 1

f*(s) = @ + 11— (5.4)

and the integrals may be evaluated along any path from s to Fy(s) in G.

Proof. For s € (0,1)\{q}, equation follows readily from Kolmogorov’s backward equation
(3-3), when the integral is interpreted as the usual Riemann integral ([I4], p. 106). Now note
that by definition of G, both ﬁ and f* are analytic in the simply connected region G and
therefore possess antiderivatives g and h in GG. Thus, the functions

Fi(s) 1 Fy(s)
s | e —a) and s [ ) dr = W) ~ b
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are analytic in D. By the analytic continuation principle, (5.2) then holds for every s € D,
since D n (0,1) # & by hypothesis. This proves the first equation. For the second equation,
note that —log(1 — s) is an antiderivative of ;&= in G, whence the right-hand side of (5.3)
equals

Fi(s)
M(1— s) exp <log(1 — Fy(s)) — log(1 — s) — )\J 1 dr) 11— By(s),

s a(r)

for all s € D, by (5.2)). This gives (5.3). O

Corollary 5.9. If 1 is a regular point of a(s), then it is a reqular point for Fy(s) for every
t>=0.

Proof. Define G = {s € D : Res > ¢q}. Then G n Z, = &, since ¢ is the only zero of a in
D (every probability generating function g with ¢’(1) > 1 has exactly one fixed point ¢ in D;
this can easily be seen by applying Schwarz’s lemma to 77! o g o 7, where 7 is the Mobius
transformation of the unit disk that maps 0 to ¢). Let s; € (g,1) be such that Fy(s) € G for
every s€ H ={seD:Res > s1}. We can then apply Proposition to conclude that
holds for every s e H.

Since a(s) is analytic in a neighbourhood U of 1 by hypothesis, it is easy to show that f*
is analytic in U as well. Thus, f* has an antiderivative F* in H u U. We define the function
g(s) = (1 —s)exp(F*(s)) on H v U. Since ¢'(1) = —exp(F*(1)) # 0, there exists an inverse
g~ ! of g in a neighbourhood U of g(1) = 0. Let U U be a neighbourhood of 1, such that
eMg(s) € Uy for every s € Uy. Define the analytic function Fy(s) = g(eMg(s)) for s € Us.
Then by (5.3), we have Fy(s) = Fy(s) for every s € H n Uy, hence Fj is an analytic extension
of F} at 1. O

Corollary 5.10. Suppose that a(s) has an analytic extension to G(po,ro) for some 0 <
wo < 7 and ro > 0. Suppose further that there exist ¢ € R, v > 1, such that a(l — s) =
—As + Aes/logs + O(s/|log s|?) as s — 0. Then for every wo < @ < m there exists r > 0,
such that Fy(s) can be analytically extended to G(p,r), mapping G(p,r) into G(pg, o).

Proof. Recall that A > 0. By hypothesis, we can then assume that a(s) # 0 in G(pg,ro) by
choosing rg small enough. Then A/a has an antiderivative A on G(pg, 7). Define B(s) =
A(1 —s) for s € H(m — ¢o,70), such that

1 1 c 1
B'(s) = =—+ — . .
(s) s(1 —c/logs+ O(|logs|=7)) s * slog s O <s| log5|mm(%2)>

We can therefore apply Lemma to B and deduce that there exist ;1 € (¢o, ) and ri,7 €
(0,70), such that A is injective on G(¢1,71) and such that A(s) + At € A(G(p1,71)) for every
s € G(p,r). Hence, Fy(s) = A_l(A(i) + At) is defined and analytic on G(p,7). By (5.2),
Fi(s) = Fy(s) on G(¢,7) n D, hence F; is an analytic extension of F}, mapping G(p,r) into
G(¢1,7m1) < G(po,70) by definition. O

6 Proof of Theorem [1.2

We turn back to branching Brownian motion and to our Galton—Watson process Z =
(Zy)z=0 of the number of individuals absorbed at the point z. Throughout this section, we
place ourselves under the hypotheses of Theorem i.e. we assume that ¢ > ¢y = v/2m and
that the radius of convergence of f(s) = E[s*] is greater than 1. The equation A2—2cA+cZ = 0
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then has the solutions A\ = ¢ —4/c2 — ¢ and A\, = ¢ +4/c2 — ¢, hence A\ = A\c = ¢ if ¢ = ¢
and A, < cg < A otherwise. The ratio d = \./\. is therefore greater than or equal to one,
according to whether ¢ > ¢y or ¢ = ¢y, respectively. Recall further that § € N denotes the
span of L — 1.

Let a(s) = (Y50 prs” — s) be the infinitesimal generating function of Z and let Fj(s) =
E[s%]. We recall the equation from Section |3 For s € [0, 1],

a'(s)a(s) = 2ca(s) + 2(s — f(s)). (6.1)

By the analytic continuation principle, this equation is satisfied on the domain of analyticity
of a(s), in particular, on D.

We now give a quick overview of the proof. Starting point is the equation . We are
going to see that this equation is closely related to the Briot—Bouquet equation (5.1)) with
A = d. The representation of the solution to this equation given by Fact[5.4] will therefore
enable us to derive asymptotics for a(s) near its singular point s = 1 (Theorem. Via the
results in Section[5.4] we will be able to transfer these to the functions F,(s) (Corollary [6.6).
Finally, the theorems of Flajolet and Odlyzko in Section yield the asymptotics for ¢, and
P(Z; =n).

More specifically, we will see that the main singular term in the expansion of a(1 — s) or
Fo(1 —s) near s = 0 is s%, if d ¢ N and s?logs, if d € N. At first sight, this dichotomy
might seem strange, but it becomes evident if one remembers that we expect the coefficients
of F,(s) (i.e. the probabilities P(Z, = n), assume § = 1) to behave like 1/n9*! if d > 1
(see Proposition . In light of Fact a logarithmic factor must therefore appear if d is a
natural number, otherwise F,(s) would be analytic at 1, in which case its coefficients would
decrease at least exponentially.

We start by determining the singular points of a(s) and F(s) on the boundary of the unit
disk, which is the content of the next three lemmas.

Lemma 6.1. Let X be a random variable with law (pr)ken, and let x > 0. Then the spans
of X —1 and of Z, — 1 are equal to §.

Proof. This follows from the fact that the BBM starts with one individual and the number
of individuals increases by | — 1 when an individual gives birth to ! children. O

Lemma 6.2. If § =1, then a(s) and (Fy(s))z>0 are analytic at every sy € OD\{1}. If 6 = 2,
then there exist a function h(s) and a family of functions (hy(8))z=0, all analytic on D, such
that

a(s) = sh(s®)  and  Fu(s) = shay(s%),
for every s € D. Furthermore, h and (hy)z>0 are analytic at every sy € OD\{1}.

Proof. Assume first that § > 2. Define

h(s) = a(EpHgns” —1) and hy(s) = ZP(ZI =1+ dn)s".

n

By Lemma Prton = P(Zy = k4 0n) = 0 for every k € {2,...,} and n € Z, whence
a(s) = sh(s°) and F,(s) = shy(s?) for every s € D.

We now claim that a and F), are analytic at every sg € JID with sg # 1. Note that if § > 2,
this implies that A and h, are analytic at every so € dD\{1}, since the function s — s° has an
analytic inverse in a neighbourhood of any s # 0.
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First note that by [79], Lemma XV.2.3, p. 475, we have | Y} p,sg| < 1 for every sg € 0D,
such that s # 1, whence a(sg) # 0. Now write the differential equation (6.1)) in the form

o — 2ca +2(s — f(s))

" =:¢(a,s).

Since the radius of convergence of f is greater than 1 by hypothesis, g is analytic at (a(so), so).
Furthermore, a is continuous at sg, since Y, p,s" converges absolutely for every s € D.
Fact[5.2] now shows that a is analytic at so.

It remains to show that F), is analytic at sg. Kolmogorov’s forward and backward equations
and imply that a(s)F.(s) = a(Fy(s)) on [0,1], and the analytic continuation
principle implies that this holds on . Now, let sg € dID, such that sg # 1. Then we have
just shown that a is analytic and non-zero at sg. Furthermore, |F,(so)| < 1, by the above
stated lemma in [79] and Lemma Thus, the function f(w,s) = a(w)/a(s) is analytic
at (Fy(so),s0), hence we can apply Fact again to conclude that F} is analytic at sg as
well. O

The next lemma ensures that we can ignore certain degenerate cases appearing in the
course of the analysis of (3.5)). It is the analytic interpretation of the probabilistic results in
Section 21

Lemma 6.3. 1 is a singular point of a(s). If ¢ = ¢y, then a”(1) = +o0.

Proof. If ¢ = ¢g, the second assertion follows from Theorem [I.1] or from Neveu’s result that
E[Z,log" Z,] = o for x > 0 (see the remark before Theorem [1.1)). This implies that 1
is a singular point of a(s). If ¢ > ¢y, Proposition implies that F[s%] = oo for every
s > 1, whence 1 is a singular point of the generating function F,(s) by Pringsheim’s theorem
(|82], Theorem IV.6, p. 240). By Corollary it follows that 1 is a singular point of a(s) as
well. O

The next theorem is the core of the proof of Theorem [1.2]

Theorem 6.4. Under the assumptions of Theorem for every ¢ € (0,m) there exists
r > 0, such that a(s) possesses an analytical extension (denoted by a(s) as well) to G(p,T).
Moreover, as 1 — s — 1 in G(¢, ), the following holds.

— Ifd=1, then
S loglog: ~ S
a(l —s) = —cps + ¢ —cps £+ 0 . (6.2)
log § (log )2 (log 5)?
— Ifd > 1, then there is a K = K(c, f) € C\{0} and a polynomial P(s) = ZLdiQ cns”,
such that
ifd¢N: a(l—s)=—Aes+ P(s) + Ks + o(s?), (6.3)
ifdeN: a(l—s)=—Aes+ P(s)+ Ks?logs + o(s%). (6.4)

Proof of Theorem[6.J} We set b(s) = a(1 —s). By (6.1),
—b'(s)b(s) = 2cb(s) +2(1 —s— f(1 —s)) onD(1,1). (6.5)

Since f is analytic at 1 by hypothesis, there exists 0 < €1 < 1 — ¢ and a function g analytic
on D(0,e1) with g(0) = ¢’(0) = 0, such that f(1—s) =1— (m+1)s+ g(s) for s € D(0,&1).
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As a first step, we analyse (6.5) for real non-negative s. Since €1 < 1 — ¢, b(s) < 0 on
(0,£1), whence we can divide both sides by b(s) to obtain
db  —2cb— cts +2g(s)
ds b

on (0,¢1). (6.6)

Introduce the parameter ¢(s) = {7 _g(r), s € (0,e1], such that t(e1) = 0, t(0+) = 400
and t(s) is strictly decreasing on (0,e1]. There exists then an inverse s(t) on [0,00), which
satisfies s'(t) = b(s(t)). Hence, we have

db dbd
== @d*j — —2¢b(t) — 2s(t) + 29(s(t))  on (0,0),

In matrix form, this becomes

)-8 C0) ()

for ¢t € (0,00). Note that this extends (4.2)) to the subcritical case. This time, the Jordan
decomposition of M is given by

ATTMA = (_OAC _OA) , A= <_1A _1A> if ¢ > ¢, (6.8)
and by , if ¢ = ¢g. Setting
()-4(2)
transforms into
i—f = —\.B +[B,S]2, % = —A\S +[B,S]2, ife>c, (6.10)
(ii—lj = —cpB+ S+ [B, S]s, % = —cpS +[B,S]2, if ¢ = ¢, (6.11)

for t € (0,00). Furthermore, by , we have

s=B+S85, (6.12)
)\70 - )\c -t b Tc ) if d 17
51! )7 b+ Aes), ifd> (6.13)
b+ cps, ifd=1,
Ae = A) b+ Aes),  ifd>1,
B! )70+ Acs), id> (6.14)
—b+ (1 —cp)s, if d = 1.
From now on, let €3, €3, . . . be positive numbers that are as small as necessary. By the strict

convexity of b and the fact that v'(0) = —\. by Lemma equation (6.13) implies that S is
a strictly convex non-negative function of s on [0,e2). This implies that the inverse s = s(.5)
exists and is non-negative and strictly concave on [0, e3). It follows that ¢(S) = t(s(5)) exists

on [0,e4). Equations (6.10) and (6.11)) then yield for S € (0,e4),

dB  dB+[B,S],
dS  S+[B,S]y’
dB B -c;'S+[B,S]2

i if ¢ = co. 1
s S+[B,Sl, =~ "7 (6.16)

if ¢ > ¢, (6.15)
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By and the fact that s(.9) is strictly concave, B is a strictly concave function of S
as well, hence strictly monotone on (0,e5). We claim that B(S)? = o(S) as S — 0. Ford > 1,
one checks by that S(s) ~ s, as s — 0, whence B(S) = o(S5), as S — 0, by (6.12).
If d = 1, then b/(0) = —¢p by Lemma and b”(0) = +o0 by Lemma [6.3] Equation (6.13)
then implies that S(s)/s> — 40 as s — 0, whence s(S) = 0(+/S). The claim now follows by
(6.12]).

Proposition now tells us that there exists a function h(z) = [z]2, such that the function
5(5) = S — h(B(S)) has an inverse S(s) on (0,e6) and b(s) = B(S(s)) satisfies the Briot—
Bouquet equation

ot = {db + 105 rd=1, (6.17)
b—cy s+ [b,slp, ifd=1,

on (0,e6). By Fact[5.4)and Remark [5.5] there exists then a function 1 (z, u) = u+rz+ [z, uls,
r € C, such that b(s) = 1 (s, u(s)), where

u(z) = Cz% ifd¢ N and u(z) = Czllogz, if de N,

for some constant C' = C(c, f) € C (the form of u in the case d € N can be obtained from the
one in Fact by changing 1, C' and K). Moreover, comparing the coefficient of s on both
sides of (6.17)), we get, if d > 1, r = dr, whence r =0 and if d=1: r+ C =1r — cal, whence
C=—c .

Assume now d > 1. Then b = u(s) + [s,u(s)]2. Recall that B =b and S =s + h(b). By
612,

s=B+S=b+s+h(b) =5+ u(s) + [s,u(s)]o,

such that s'(s) = 1 + o(1) and s(s) = s + [s]2 + 0o(s”), as s — 0, where v = (d + |d|)/2, if
d¢ N and v =d—1/2, if d e N. By Lemmas and for every g € (0,7) there exists
ro > 0, such that the inverse s(s) exists and is analytic on H (¢, 7o) and satisfies

s5(s) =s+[s]a+o0(s7), ass—0.

This entails that

u(s) = Cs? = C(s + o(s))? = Cs? + o(s%), if d¢ N,
u(s) = Cslogs = C(s + o(s*?))%log(s + o(s)) = Cs?logs + o(s?), if d e N\{1},
5" = [s]y + o(s71) + 0(s7") = [s]2 + o(s?), for all n > 2.

It follows that
b(s) = b(s(s)) = u(s) + [s]2 + o(s?), ass— 0.

We finally get by ,
b=-XB— XS =—=Xes+ (Ao — Ae)b = —Aes + (Ao — Ao)u(s) + [s]2 + o(s9),
which proves (6.3]) and (6.4)).

If d = 1, recall that u(z) = c;'zlog L and b = u(s) + rs + [s, u(s)]2 for some r € C. By

©.12),

s=B+S=0b+s5+h(b) =u(s)+ (r+1)s+ [s,u(s)]2,

such that s(s) = ¢y * log(1) + O(1) and s(s) = ¢y 'slog L + (r + 1)s + o(s). Lemmanow
implies that for every g € (0,7) there exists 79 > 0, such that the inverse s(s) exists and is
analytic on H(pp,r9). Now, by ,

b= —cos + S = —cos + 6+ h(b) = —cos + 5 + O(s7?).
Lemma now yields (6.2]). O]
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Remark 6.5. The reason why we cannot explicitly determine the constant K in Theorem [6.4]
is that we are analysing only locally around the point 1. Since the solution of
with boundary conditions a(q) = a(1) = 0 is unique (this follows from the uniqueness of the
travelling wave solutions to the FKPP equation), a global analysis of this equation should be
able to exhibit the value of K. But it is probably easier to refine the probabilistic arguments
of Section [2, which already give a lower bound that can be easily made explicit.

The asymptotics established in Theorem for the infinitesimal generating function can
now be readily transferred to the generating functions F,(s).

Corollary 6.6. Under the assumptions of Theorem for every x > 0 and ¢ € (0,7) there
exists 1 > 0, such that F(s) = E[s?=] can be analytically extended to G(gp,r). Furthermore,
the following holds as 1 —s — 1 in G(¢p, 7).

— Ifd=1, then

S sloglog & ~ S
Fr(1—s)=1—¢e"%s+ cor - 21 +0 | —= |- 6.18
(1—y5) e"s + core (logi (log 1)2 (log 1)2 (6.18)

— Ifd > 1, then there is a polynomial Py(s) = Zhdiz cns™, such that

ifd¢gN: Fy(l—s)=1—e"%s+ Py(s) + Kpds? + o(s%), (6.19)
ifdeN: Fy(l—s)=1-e"+ Py(s) + K,s%logs + o(s%), (6.20)

where K = K (X% — e ?)/(A. — \.), with K being the constant from Theorem .

Proof. Let 0 < g < . By Theorem there exists ro > 0, such that a(s) can be analytically
extended to G(pg,70) and satisfies the hypothesis of Corollary . It follows that there
exists r > 0, such that Fj(s) can be analytically extended to G(¢,r) and maps G(¢,r) into
G(vo0,70). Hence, the functions

w(s)
w(s)=1—F,(1—s) and I(s) :J (1 —=r)dr,

S

where f*(s) is defined as in (5.4)), are analytic in H(m — ¢, 7). In what follows, we always
assume that s € H(w — ¢, r). Appearance of the symbols ~, O, 5, o means that we let s go to
0in H(m — @, 7).

First of all, we note that by Proposition |5.8] we have

0 k
1
w(s) = se*® exp(I(s)) = se’® (1 +I(s) + Z (]:') > (6.21)
k=2 ’
Now assume d > 1. By Theorem a(l—8) = —Aes + [s]2 +u(s) + o(s?), where u(s) = Ks?
or u(s) = Ks%log s, according to whether d ¢ N or d € N, respectively. It follows that

Ae 1 1 u(s) a1\ o1
®(1 _ e - _ = o B =
Fr1=s) a(l —s) + s S (1 [sh Aes T ofs )> + S
= [s]o — 125 + o(s772).
Now, S:}(s) o(r?=2)dr = o(s%71), since w(s) ~ se’<® by Lemma Thus,
w(s) w(s) u(r) p
I(s) = J ffA—=r)dr = [w(s),s]1 — J 2 dr + o(s%71). (6.22)
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Since S;"(s) r~2u(r) dr = O(s% ! log s), equations (6.21)) and ([6.22) now give

w(s) y(r
w(s) = ser® (1 + [w(s), s]1 — f )\57“3 dr + 0(5d1)> . (6.23)

S

If d > 2, we deduce that w(s) = se*® + o(s%?). Straightforward calculus now shows that

W) u(r u(s
[ e G s ket 620

and (6.23) and (/6.24]) now yield

w(s) = s’ + [w(s), s]z — Kyu(s) + o(s?).
Repeated application of this equation shows that w(s) = se*<® + [s]a — K, u(s) + o(s%), which

yields (6.19) and (6.20).
In the critical case d = 1, Theorem [6.4] tells us that

1 1 loglogt ~ 1
M—s)=~|— + 5 +0| ——— . 6.25
fra=s) s ( logl  (log1)? (log 1)2 (6.25)

Write A = A\; = ¢g. For our first approximation of w(s), we note that

Az Az

se 1 1 se 1 )\
o~ [T e [T
s rlog log < Js T log <

- Az 1
w(s) = se* (1 " iogl +o0 <log 1>> . (6.26)

To obtain a finer approximation, we decompose I(s) into

hence, by (6:21),

Az

se w(s)
1(s) :f f*(l—r)errf P50 = 1) dr = I(s) + Io(s).
s se T
We then have .
Az loglog =  ~ 1
I = A £+0 ,
1) =TT T M g 12 <<1og i)?)

and, because of (6.26)),

sekx(l+'§xs) 1
_JQ(S)NJ 1 g

sehe rlog (log 1)2°

Plugging this back into (6.21)) finishes the proof. O

Proof of Theorem[I.3. Let x > 0. We want to apply the methods from singularity analysis
reviewed in Section to the functions a and Fj, if § = 1, or the functions h and h, from
Lemma if 0 > 2. Let ¢ € (0,7/2). By Theorem and Corollary there exists
ro > 0, such that a and F, can be analytically extended to G(p,rg), which implies that
for some ¢; € (p,7/2) and r; € (0,r), h and h; can be extended to G(p1,r1), as well.
Moreover, by Lemma [6.2] each of these functions is analytic in a neighbourhood of every
point of C' = {s € dD : |1 — s| > r1/2}, which is a compact set. Hence, there exists a finite
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number of neighbourhoods which cover C'. It is then easy to show that there exists » > 0,
such that the functions are analytic in A(pq, 7).

If 6 = 1, we can then immediately apply Facts[5.6 and together with the asymptotics
on a and F), established in Theorem and Corollary to prove Theorem

If § > 2, let ¢(s) be the inverse of s — s° in a neighbourhood of 1, then h(s) = a(q(s))/q(s)
near 1, by Lemma But since ¢/(1) = 1/§, we have

1
h(l—s):a(l—(55—1—0232—1—0333—I—---))(l—i—c’ls—i-c'zs—i--'-),

for some constants ¢, c,,, and so equations , and transfer to A with the
coefficient of the main singular term divided by ¢%. We can therefore use Facts and
for the function h to obtain the asymptotic for (psn+1)nen in Theorem In the same way,
equations (6.18]), (6.19) and (6.20) yield asymptotics for h,, such that we can use again Facts

and [5.7) to prove the second part of Theorem [1.2] O

7 Appendix

7.1 A renewal argument for branching diffusions

Let W = (W})i=0 be a diffusion on an interval with endpoints ¢’ < 0 < a, such that
limg o P*[Ty < t] = 1 for every t > 0, where Ty = inf{t > 0 : W; = 0} and Wy = z, P*-almost
surely. For x € (0,a), and only in the scope of this section, we define P* to be the law of
the branching diffusion starting with a single particle at position & where the particles move
according to the diffusion W and branch with rate 8 according to the reproduction law with
generating function f(s). Moreover, particles hitting the point 0 are absorbed at that point.
Denote by Z the number of particles absorbed during the lifetime of the process and define
us(z) = P?[s?] for s € [0,1) and z € (0, a).

Lemma 7.1. Let s € [0,1) and & be the generator of the diffusion W. Then
Gus = B(us — fous) on (0,a), withus(0+) = s.

Proof. The proof proceeds by a renewal argument similar to the one in [118]. As for the BBM,
for an individual u, we denote by (, its time of death, X, (t) its position at time ¢ and L,
the number of u’s children. Define the event A = {3t € [0,(z) : Xx(t) = 0}. For s € [0,1) we
have by the strong branching property

us(x) = E*[s?] = sP*(A) + E® {(EX‘Z’(CE_)[SZDLZ ,AC]

e SPx(TO < f) + Ex[f(us(WE))vg < TO]?

where W = (W,)>0 is a diffusion with generator ¢ starting at x under P*, Ty = inf{t > 0 :
W = 0} and the random variable £ is exponentially distributed with rate 8 and independent
from W. Setting v(z) = P*(T) < &) we get by integration by parts

v(z) = JOOO Be PP (Ty < t)dt = foo

0

and therefore ¥v = fv on (0,a) (J41], Paragraph I1.1.10, p. 18).
Denote the -resolvent of the diffusion by Rg. By the strong Markov property,

e PU(Ty € dt) = BF [ 1]

B s (We)), < Tol = B[ [ e plasmyae] B[ [ e fus(omi)) ]
0 To
= BR(f o us)(w) — BE (=T Ry (f 0 us)(0),
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hence us = Cs gv + BR3(f o us), with Cs 5 = s — BR3(f o us)(0). It follows that

Gus = BCs pv + ﬁQRB(fOUS) — B(fous) = B(us — fous) on (0,a).

By the above hypothesis on W, P*(Ty < &) — 1 as x | 0, whence us(0+) = s. O]

7.2 Addendum to the proof of Theorem

With the notation used in the proof of Theorem [I.]] recall that for some constant K > 0
we have

(¢ + cod)(x) ~ p(x)/x ~ Ke™ ™% as z — 0.

In what follows, formulae containing the symbols ~ and o() are meant to hold as s | 0. The
above equation yields

a(l—s) = ¢'(¢71(s)) = —cos + (¢ + o) (97" (5)) = —cos + 5 (7.1)

Now, by ({3.5)), we have
d'(1—s)a(l — ) = 2coa(1 — 5) + s — g(s),

where we recall that g(s) was defined as g(s) = 2(f(1 —s) — 1+ f’(1)s). From the above
equation, one gets

a’(1—5)=—(a(l — s))_3<(coa(1 —5) + ks — g(s))2 —d'(s)a(l — 5)2).

By definition, g(s) = o(s) and ¢'(s) = o(1). The previous equation together with (7.1 then

yields (4.7)).
Kolmogorov’s forward and backward equations (3.2)) and (3.3) give

O]

a(s)

and taking the derivative on both sides of this equation gives
Fl(s) = o (@ (o) ' (9) (7.2)

By (4.7) and F.(1) = E[Z,] = %, we get
1—-Fyz(1-s) 2
(Bl —5)) — a'(1—s) — —L (1= r)dr ~
This equation, together with ([7.2]) now yields

_ COT g 02:E
F'(1 — - Co€ B 0
z(1=9) cts? (logs)? )’

which is (4.8)).
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7.3 Reduction to Briot—Bouquet equations

In this section, we show how one can reduce differential equations as those obtained in the
proof of Theorem to the canonical form ([5.1]). It is mostly based on pp. 64 and 65 of [2§].

Lemma 7.2. Let A € (0,1] and p € C. Then the equation

W — Aw + [w, z]2 . (73)
z 4+ pw + [w, z]2

has an analytic solution w(z) = [z]2 in a neighbourhood of the origin.
Proof. We choose the ansatz w = z - wy. This transforms ([7.3)) into

, Azwy + 22[w1, 2]o Awy + z[wr, z]o
2wy + wy = 5 = .
z + pzwy + 22wy, z]o 1+ [wy, 2]

Writing the inverse of the denominator as a power series in wy and z, this equals
(Awy + z[wi, z]o) (1 + w1, 2]1) = Awy + 12z + [wy, ]2,
for some r € C. This finally yields
2wy = (A — Dwy +rz + [wy, z]a.

Since A — 1 is not a positive integer, this equation now has an analytic solution wy(z) = [2]1

by Fact [5.3] whence w(z) = 2w (z) = [2]2 solves (7.3). O

Remark 7.3. The important point in Lemma [7.2]is that the coefficient of z in the numerator
of (7.3) is 0, which is why w'(z) = 0.

Proposition 7.4. Let A = 1 and p € R. Suppose w(z) is a strictly monotone real-valued
function on (0,¢), € > 0, with w(z)? = o(z) as z — 0 and satisfying

) _ At pz+[w, 2]

w2l on (0,¢). (7.4)

Then there exists h(z) = [z]2 and e1 > 0, such that 3 = z — h(w) has an inverse z = z(3) on
(0,e1) and such that

dw
iq; Mt p el on (0e). (7.5)
Proof. By hypothesis, w(z) is monotone on (0,¢) and therefore possesses an inverse z = z(w)
on (0,6), 6 > 0, which satisfies

dz Az [w, 2] (76)
dw — w+pAlz+[w, 2]y '

By Lemma there exists then an analytic solution z = g(w) = [w]2 to (7.6]), since A~! €
(0,1] by hypothesis. Setting 3 = z — g(w) transforms (7.6) into a differential equation, which
has 3 = 0 as a solution, hence it is of the form

d3 Al +5[wsh

dw  w+pA 13+ [w,3]2
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We have d3/dz = 1+ ¢'(w(z))w'(2) = 1 + O(w(2)w'(z)). By (7.4),
Wz () = O(w(2)/2 + w(z)) = o(1),

by hypothesis. Hence, there exists e > 0, such that 3(z) is strictly increasing on (0,e;1) and
therefore has an inverse. Thus, w(3) = w(z(3)) satisfies

dw _w+pAl+fwsl (0.22)
d; A1+ [w,5]1) o2

for some g9 > 0. Expanding (1 + [w, 3]1)~! as a power series at (w,3) = (0,0) gives (7.5). O

7.4 Inversion of some analytic functions

The results in this section are needed in the proofs of Corollary and Theorem

Lemma 7.5. Let ¢ € (0,7), r > 0 and h be an analytic function on H(p,r) with h(z) = o(2)
as z — 0. Then there exists 11 > 0, such that for all z1,z2 € H(p,r1),

21
log z1 — log z9 + f h(z)dz # 0.

22

Proof. Let z1, 20 € H(p,7). Write z; = a;e’¥, with a; > 0, ¢; € (—p,¢), i = 1,2. Define the
paths

Y1 (t) = age @1 H1=092) and  ~y(t) = (tay + (1 — t)az)e™?, tel0,1],

such that their concatenation forms a path from 29 to z; in H(p,r). Then
f h(s)ds = @1 — ¢2| - az0(1/az) and f h(s)ds = |loga; — logas|o(1).
0! 72

As a consequence,

JZI h(s)ds

22

= (|1 — 2| + |loga; —logasz])o(1) < \/5] log z1 — log za]o(1).

This proves the statement. O

Lemma 7.6. Let r > 0 and ¢ € (0,7]. Let g and h be analytic functions on H(p,r) with
g (z) =1+o0(1), W(z) =log 2 + O(1), g(z) > 0 and h(z) — 0 as z — 0 in H(p,r). Then
for each o € (0,¢) and p1 € (o, p) there exist ro,r1 > 0, such that g and h are injective on
H(py,7r1) and the images of H(p1,71) by g and h contain H(pg, o).

Proof. By hypothesis, g(z) = z + o(z) as z — 0 in H(p,r), whence arg g(z) = argz + o(1).
Thus, there exists 71 > 0, such that g(H (¢1,71)) < C\(—00,0].

Suppose that there exist z1, 29 € H(p1,71), such that g(z1) = g(z2). Let v be a path from
29 to 21 in H(p1,71). Then g o~ is a loop in C\(—o0, 0], whence

1 /
O—J dz_fg(z)dz_logzl_logz2—|—fO(i)dz
goy 2 v 9(2) 1

By Lemma (7.5 we can choose r1 so small, that this equality cannot hold, whence g is injective
on H(p1,r1).
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Since g(z) — 0 and argg(z) = argz + o(1) as z — 0, there exists 79 > 0, such that
9(0H (p1,71)) encloses H(pp,r9). Now, since g is injective on H(p1,71), H(p1,71) and
g(H(p1,71)) are conformally equivalent, whence g(H (y1,71)) is simply connected. It follows

that g(H(¢1,71)) > H(e0,70)-
Exactly the same arguments hold for h, since h(z) = z(log 1 +O(1)) by hypothesis, whence
argh(z) = argz + o(1) and h'(2)/h(z) = 1/2 4+ o(1/z) as z — 0. O

Lemma 7.7. Let r > 0, p € (0,7] and t € R. Let g be an analytic function on H(p,r) with

1 c 1
()=-F——t0(— —0in H
g (2) z+zlogz+ <z|logz\7>’ as z in H(p,7),

for some ce R and v > 1. Then for each 0 < g < 1 < @ there exist ro,71 > 0, such that g
is injective on H(p1,m1) and g(z) +t € g(H(p1,71)) for every z € H(po,70).

Proof. By the hypothesis on g, we have for 21, 20 € H(p, 1),

Z1

9(z1) — g(22) = log z1 — log z3 + J o(1/z)dz.

22

By Lemma there exists therefore 1 > 0, such that g is injective on H(p1,71).
Since 1/(x|logz|7) is integrable near 0, we have

g(z) =logz + clog(log 1) + o(1), asz—0,
where we assume without loss of generalisation that the constant of integration is 0. It follows
that Reg(z) — —o0 and Img(z) = argz + o(1) as z — 0, since ¢ € R. Hence, there exists an
R € R, such that g(0H (¢1,71)) encloses the strip S = S_(R, 1). As in the proof of Lemma
it follows that S < g(H(p1,71)). Furthermore, again by the asymptotics of Reg and
Im g, there exists rg > 0, such that g(s) + ¢ € S for every s € G(pg,79). This concludes the
proof. O

Lemma 7.8. Let w(z) be an analytic function on an open subset of C\(—00,0], such that
w(z) > 0 as z — 0 and

z=w+ aw? + - 4 apuw" +o(w?), asz—0,
for somene N, v>n and as,...,a, € C. Then there exist ba,...,b, € C, such that
w(z) = 2+ ba2® + -+ + 02" +0(27), asz— 0.
Proof. For every i € N, we have by hypothesis
2= w' + a1 g w™ + o(w?),
for some a;i41,...,a;n € C. For 2 < k < n, define recursively (with b; = 1)
by = —(a1k + baagy + - + bp_1ap_11).

Then, z + bp2? + --- + b"2" = w + o(w?). The statement now follows from the fact that
w(z) ~ z as z — 0 by hypothesis, whence o(w?) = o(27). O
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Lemma 7.9. Let w(z) be an analytic function on an open subset of C\(—00,0], such that
w(z) > 0 as z — 0 and

cz=wlogZ + Cw+o(w), asz—0,

for some constants ¢ > 0, C' € C. Then

w

cz loglog 1 + C —logc + o(1)
= T 1= T , asz—0.
log log =

Proof. Set f(z) = w(z)/z. By hypothesis, logz ~ logw = log z + log f(z), whence log f(z) =
o(log z). Now define g(z) by
cz

w(z) = —9(2),

10g 2
such that log g(z) = log f(z) — log log% = o(log z). By hypothesis,

cz ~ wlog % = lc—zlg(z) (10g Iog% + log% —logc — log g(z)) ~ czg(z),
og >

whence g(z) ~ 1, which implies log g(z) = o(1). It now follows from the hypothesis that

Ccz

cz g(z)(log log 2 —logez + C + 0(1)),

B log%

whence

log L

z

~1
loglog X + C —logc + o(1
g(z):<1+ glog 1 g ()) .
The statement now follows from the series representation of (1 + z)~! at z = 0. O
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Chapter 2

Branching Brownian motion with
selection of the N right-most particles

1 Introduction

In this chapter, we consider the N-BBM, whose definition we recall: Given a reproduction
law (q(k))x=0 with m = > (k—1)g(k) > 0 and finite second moment, particles diffuse according
to standard Brownian motion and branch at rate Sy = 1/(2m) into k particles with probability
q(k). Furthermore, we fix a (large) parameter NV and as soon as the number of particles exceeds
N, we keep the N right-most particles and instantaneously kill the others.

For a finite counting measure v on R, define for a € (0,1) and N € N,

qul¥(v) = inf{z e R : v([z,0)) < aN}.

Furthermore, set
o6}

ZTo =1inf{z =0: f ye Ydy < a}.
x

For N € N large enough, we then define ay = log N + 3loglog N and

2 2 372 loglog N 1
Iy = = N T T o 0<1 3N>'
2 og og og

and set

M (8) = quif (1) — pnt,
where v}V is the counting measure formed by the positions of the particles of N-BBM at
time ¢. Our main theorem is then the following:

Theorem 1.1. Suppose that at time 0 there are N particles distributed independently accord-
ing to the density proportional to sin(mz/an)e” "1 qy)(x). Then for every a € (0,1), the
finite-dimensional distributions of the process

(M (tlog® N)) -
converge weakly as N — oo to those of the Lévy process (Lt + x4)i=0 with Ly = 0 and
log E[e?F1] = ide + 7T2J e 1 — iAT1(p<1) A(d). (1.1)
0

Here, A is the image of the measure (:p_21(1>0))dx by the map = — log(l + x) and c € R is
a constant depending on the reproduction law q(k).

For a motivation of why this process is interesting, we refer to the introductory chapter.
In the next subsection, we present a detailed sketch of the ideas in the proof of Theorem [1.1}
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1.1 Heuristic ideas and overview of the results

In the introductory chapter of this thesis, we have outlined the semi-deterministic de-
scription of the N-BBM from [56]: Most of the time the system is in a meta-stable state,
where the particles are approximately distributed according to the density proportional to
e~ *sin(rx/log N)1( 10 5y (7). From time to time (with a rate of order log™3 N), a particle
goes far to the right and reaches a point near ay defined above. This particle then spawns a
large number of descendants (of the order of N), which leads to a shift of the front. Our proof
of Theorem is inspired by this description and by the article by Berestycki, Berestycki and
Schweinsberg [23], who made some of these ideas rigorous. We briefly recall their results and
arguments.

They consider BBM with absorption at the origin and with drift —uy. Their starting
point is to introduce a second barrier at the point ay 4 = ay — A for some large positive
constant A and divide the particles at time ¢ into two parts; on the one hand those that have
stayed inside the interval (0, an, 4), on the other hand those that have hit the point ay, 4 before
hitting 0. This corresponds roughly to the division of the process into a deterministic and a
stochastic part. Indeed, killing the particles at ay 4 prevents the number of particles from
growing fast and thus permits to calculate expectations and variances of various quantities.
For example, if at time 0 we have N particles distributed according to the meta-stable density,
then the variance of the number of particles at the time log® N is of order of e=4N?2. For
large A, the particles inside the interval (0, an a) therefore behave almost deterministically at
the timescale log® N. Moreover, the leading term in the Fourier expansion of the transition
density of Brownian motion (with drift —pn and killed at the border of the interval (0, an, 1))
is proportional to e #N¥sin(rz/an, 4), which explains the meta-stable density predicted by
the physicists.

As for the particles that hit an 4, the authors of [23] find that 1) the number of descendants
at a later time of such a particle is of the order of e”*NW, where W is a random variable
with tail P(W > z) ~ 1/x, as © — o and 2) the rate at which particles hit the right barrier
is of the order of eA/ log® N. Putting the pieces together, they then show that the process
which counts the number of particles of the system converges in the log® N timescale to
Neveu’s continuous-state branching process! and its genealogy to the Bolthausen-Sznitman
coalescent.

Our proof of Theorem builds upon the ideas of [23] presented above. The basic idea is
to approximate the N-BBM by a BBM with absorption at a random barrier, which is chosen
in such a way that it keeps the number of particles almost constant. We call the resulting
system the “B-BBM” (B stands for “barrier”). The B-BBM takes two (large) parameters a
and A, which have similar purposes than ay 4 and A above. We then set © = 4/1 — 72 /a? and
start with BBM with drift —u and an absorbing barrier at the origin. Now, at the beginning,
this barrier stays at the origin and does not move. When and only when a particle hits a
and spawns a lot of descendants do we increase the drift to the left. This increase is in order
to Kkill particles and thus make the population size stay almost constant. Note that moving
the barrier to the right is an equivalent operation, but increasing the drift is technically more
convenient. After the system has relaxed (which takes a time of order a?) the drift is set to
—u again and the process is repeated.

1. A continuous-state branching process (CSBP) (Z¢)¢>0 is a time-changed Lévy process without negative
jumps: at time t, time is sped up by the factor Z;—. CSBPs are scaling limits of Galton—Watson processes
and thus have an inherent notion of genealogy. Neveu’s CSBP is the CSBP with Lévy measure x_zl(x>0) dz,
whose genealogy is given by the Bolthausen—Sznitman coalescent [27]. As a wise reader, you have read the
introductory chapter, such that you know what this coalescent is.
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As in [23], an important quantity is

Zy = EwZ(Xu(t)), where wz(z) = ae"®~ sin %x.

Here, we sum over all the particles u alive at time ¢ and X, (¢) denotes the position of the
particle u at time ¢t. The process (Z;);>0 is important because it is a martingale for BBM
with absorption at 0 and a and drift —u. Furthermore, it gives the approximate number
of particles at a time t » a?. More precisely, set N = [2reda"3e#%] and suppose we kill
particles at 0 and a. The expected number of particles at a time ¢, with a® « t « a3, is then
approximately Ne~4Z,. Moreover, the variance is of the order of N2e=24Z,. Therefore, if
Zo ~ e” then the number of particles is concentrated around its expectation for large A.

When a particle hits the right barrier at the time 7, say, we absorb its descendants at the
space-time line .Z; : x = a—y+ (1—p)(t—7), where y is a large constant depending on A only
(this idea comes from [23]). In doing so, the number of particles absorbed at the barrier has
the same law as in BBM with drift —1 and absorption at —y, starting from a single particle at
the origin. Moreover, the time it takes for all the particles to be absorbed depends only on v,
not on a. Now, if z1,..., 2, are the positions of the absorbed particles and Z" = >}, wz(x;),
then the number of descendants of this particle at a later time is of the order of e 4NZ/,
provided that the drift stays constant. Consequently, we say that a breakout occurs, whenever
Z' > ee?, where € will be chosen such that ¢ « 1/A.

In order to define a breakout properly, we classify the particles into tiers. Particles that
have never hit the point a form the particles of tier 0. As soon as a particle hits a (at the
time 7, say) it advances to tier 1. Its descendants then belong to tier 1 as well, but whenever
a descendant hits ¢ and has an ancestor which has hit the line %, after 7, it advances to
tier 2 and so on. Whenever a particle advances to the next tier, it has a chance to break
out. We can then define the time T of the first breakout and will indeed show that T is
approximately exponentially distributed with rate proportional to e ta=3. Interestingly, we
will see that with high probability breakouts only occur from particles which are of tier 0 or 1.
In fact, the number of breakouts occuring from particles of tier 1 between the times 0 and a3
is approximately proportional to A (and the remaining ~ ¢! breakouts occur from particles
of tier 0).

After the breakout, we will then increase the drift to the left slightly, in order to kill more
particles than usual (remember that increasing the drift to the left corresponds to moving
the barrier to the right). For this, we first choose a family of increasing smooth functions
(fz)z=0 with f,(0) = 0 and f,(4+00) = x for all x > 0. Such a function will be called a barrier
function. The drift after a breakout is then set to u; = p + (d/dt) fa(t/a?), where A is the
total amount by which we have to move the barrier. Thus, the only randomness in the choice
of the barrier is in its total shift, not in its shape. Looking at the definition of Z; and the
fact that Zy ~ e, one easily guesses that we have to choose A = log(1 + e~4Z’) in order
to get Z; ultimately back to its initial value. This already explains the convergence of the
barrier to the Lévy process given by : On the one hand, we have Z' ~ W, where W
is the random variable mentioned above. This implies that the law of e=4Z’ conditioned on
Z' > ee? is approximately 5:1:_21(125) dx for large A and a.? On the other hand, we will
show that breakouts occur at a rate proportional to e 'a™3. Together with the definition of
A, this explains the Lévy measure A(dz) in . One easily checks that the cumulants of
this Lévy process coincide with .

As for the shape of the barrier, it is determined by the fact that we want the number of
particles at each time to be approximately V. By first-moment estimates, it will become clear

2. The statement “for large A and a” means that we let first a, then A go to infinity, see Section
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in Section that the correct barrier function to choose is

Fa(t) = log (1 + (A - 1)7r2@”2f/2%9(1,t)),
where the theta function 0(z,t) is defined in (2.1).

We remark that in order to study the B-BBM up to the time T of the first breakout, we
need to study it conditioned to break out at time t for every ¢ = 0. We will see in Section [6.4]
that this will lead to a decomposition of the particles into 1) a fugitive, which is conditioned
to break out at ¢ and which will effectively be a spine, and 2) the other particles conditioned
not to break out before t. This is essentially a Doob transform of the process, which we will
introduce in Section[3.:4] Furthermore, we will see that the tier 1 particles will have an essential
role: At the timescale a? they will lead to an additional shift of the barrier by an amount of
the order of A. This term will play the role of the linear compensation that is necessary in
order to obtain in the limit the Lévy process of infinite variation stated in Theorem

We now describe how we use the results on the B-BBM in order to prove Theorem
Initially, our plan was to couple the N-BBM and the B-BBM, i.e. construct them on the same
probability space. We would then assign a colour to each particle: blue to the particles which
appear in the N-BBM but not in the B-BBM, red to those that appear in the B-BBM but
not in the N-BBM, and white to the particles that appear in both processes. Our aim was
then to show that the number of blue and red particles was negligible after a time of order
a3. This, unfortunately, did not work out, because we were not able to handle the intricate
dependence between the red and blue particles.

Instead, we couple the N-BBM with two different processes, the B’- and the Bf-BBM,
which are variants of the B-BBM and which bound the position of the N-BBM in a certain
sense from below and above, respectively. The B’-BBM is defined as follows: Initially, all
particles are coloured white and evolve as in the B-BBM. A white particle is coloured red as
soon as it has N or more white particles to its right. Children inherit the colour of their parent.
After a breakout and the subsequent relaxation, all the red particles are killed immediately
and the process restarts with the remaining particles. It is intuitive that the collection of
white particles then bounds the N-BBM from below (in some sense) because we kill “more”
particles than in the N-BBM. Indeed, in Section [I0.1 we show by a coupling method that
the empirical measure of the white particles in B’-BBM is stochastically dominated by the
one of the N-BBM with respect to the usual stochastic ordering of measures. It then remains
to show that the number of red particles in B’-BBM is negligible when A and a are large. We
do this through precise estimates on the number of particles in the interval [r,c0) for every
r = 0. These allow us to estimate the expected number of particles which turn red at the
point r. It turns out that this expectation is small enough, which permits to conclude.

The definition of the B-BBM, which is used to bound the N-BBM from above, is more
intricate than the one of B’-BBM. Again, we colour all initial particles white and particles
evolve as in B-BBM with the following change: Whenever a white particle hits 0 and has less
than N particles to its right, instead of killing it immediately, we colour it blue and let it
survive for a time of order a?. More precisely, we cut time into intervals I, = [t,, 1), With
tn, = Kna? for some large constant K. A particle which gets coloured blue during I,, then
survives until the time t¢,.9. At this time, all of its descendants to the left of the origin are
killed and the others survive. It will turn out that this system bounds the N-BBM from above
with high probability and that the number of blue particles will remain negligible during a
time of order a?, as long as A and a are large.

We note that although our technique of bounding the N-BBM from below and from
above works well for the position of the particles, it does not give us information about the
genealogy; the reason being that the coupling deforms the genealogical tree of the process.
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1. Introduction

Thus, although it should not be difficult to show that the genealogy of the B-BBM (and of
the B’- and B:-BBM) converges to the Bolthausen-Sznitman coalescent we do not know at
present how one could transfer this information to the N-BBM.

1.2 Notation guide

This chapter is quite long and therefore also uses a lot of different notation. Below is a
list of recurrent symbols, roughly in the order of their first appearance. Following this list are
some further remarks about notational conventions.

Symbol
q(k)

m

Bo_

6,0

WZE

pi(z,y)
By

I%(x,S), J*(z,5)
Wz,t,y

taboo’ "7 taboo

Wﬁ?

Meaning

Reproduction law

m = Y (k — 1a(k)

Branching rate, 5y = 1/(2m)

Theta functions

Law of Brownian motion started at x

Transition density of Brownian motion killed outside [0, a]
Error term

Integrals related to Brownian motion killed outside [0, a]
Law of Brownian taboo process and its bridge

The set of natural numbers including and excluding 0, resp.
The space of individuals

A realisation of a branching Markov process

Lifetime, birth and death times of an individual u

Set of individuals alive at time ¢

Position of the individual u at the time ¢

Law of and expectation w.r.t. a branching Markov process
(later: BBM) started at = or with particles distributed ac-
cording to a finite counting measure v

o-algebra with information up to time ¢

o-algebra with information up to the stopping line .Z
Stopping line generated by a stopping time T

A random variable with law ¢(k)

mo = E[L(L — 1)]

Seneta-Heyde martingale limit of BBM with absorption
p=4/1—m2/a?

Density of BBM killed outside an interval

Law of and expectation w.r.t. BBM with varying drift
wyz(x) = asin(wx/a)e“(‘”*a)I(IE[Oya])

wy (z) = e“(%a)l(azzo)

Sums of wz(x),wy (z) over the positions of time ¢ particles
Number of particles at time ¢

Number of particles hitting a up to time ¢

Law /expectation of BBM weakly conditioned not to hit a
Parameters of BBM before a breakout and B-BBM

Stopping line of tier [ particles at time ¢
Stopping line of tier [ particles hitting the critical line before ¢

Stopping line of tier [ particles hitting a before ¢
Stopping line of descendants of (u,t) hitting the critical line
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

@

Zt(l) Sum of wz(z) over particles from .4 6.1
Zy, Yy, Ry, Ny Zy = Zt(0+) (from Section|§|0n). Same for Y;, R; and Ny 6.1
DB Probability of a breakout 6.1
Q° P? conditioned not to break out 6.1}
7O Time of first breakout from tier [ 6.1
P.E (also P A,]’E\IA) Law /expectation of BBM conditioned not to break out before 6.3
some fixed time L
Z%) Sum of wz(x) over particles from Z(l) 6.3
w The fugitive (the particle which breaks out) 6.4
N, ,/I\/t/ The descendants of the fugitive at time ¢, whose most recent 6.4
common ancestor with the fugitive is/is not a regular particle .
Zy, 7 Sum of wz(x) over particles from .4{ and % respectively 6.4
Zy, Zt Value of Z; restricted to particles from .4{ and Jl\/t/, resp. 6.4
Z Value of Z; restricted to particles not related to the fugitive :E
A The total shift of the barrier after a breakout 7.1]
Xt[n] The position of the first n pieces of the barrier at time ¢ (barrier 7.1
process)
O, Beginning of the n+ 1-th piece of B-BBM (i.e. time of the n-th 71
breakout plus relaxation time)
Gn “Good event” related to the first n pieces of B-BBM 71
Y0 ~ 0 = (mppet) 1. E
Cv;g)/ » Grug, G, Several good sets related to a piece of B-BBM 7.2
G,Ga, Gupab

From Section [5| on, the symbol C' stands for a positive constant, which may only depend
on the reproduction law ¢ and the value of which may change from line to line. Furthermore,
if X is any mathematical expression, then the symbol O(X) stands for a possibly random
term whose absolute value is bounded by C|X].

In Section [6 we introduce two parameters A and a and will first let a then A go to
infinity. This will be expressed by the statements “for large A and a we have...” or “as A
and a go to infinity...” (see Section for a precise definition). These phrases will become
so common that in Sections [7] to 0] they will often be used implicitly, although they will
always be explicitly stated in the theorems, propositions, lemmas etc. Section [] furthermore
introduces the notation o(1), which stands for a (non-random) term that only depends on the
reproduction law ¢ and the parameters A, a, ¢, n, y and ¢ and which goes to 0 as A and a go
to infinity.

Sections [§] and [J] each use special notation which only appears in those sections. This
notation is defined at the beginning of both sections. Moreover, in both sections, we sometimes
denote quantities which refer to descendants of the fugitive after a breakout by the superscript
“fug”.

2 Brownian motion in an interval

In this section, we recall some explicit formulae concerning real-valued Brownian motion
killed upon exiting an interval. These formulae naturally involve Jacobi theta functions, since
these are fundamental solutions of the heat equation with periodic boundary conditions. We
will therefore first review their definition and some of their properties.
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2. Brownian motion in an interval

2.1 A function of Jacobi theta-type

We define for x € R and t > 0 the following function of Jacobi theta-type:

o8] 7r2
O(z,t) = - + 2 677n2tcos(7rnx). (2.1)
n=1

DO | —

The definition (2.1)) is a representation of # as a Fourier series, which is particularly well
suited for large ¢, but which does not reveal its behaviour as ¢ — 0. This is where the following
representation comes in, which is related to (2.1)) by the Poisson summation formula (see [17],

§9): )
1 (x —2n)
O(x,t) = exp| — ——).
( ) T;\/Qﬂ't p( 2t )

One recognises immediately that for real = and ¢, 6(x,t) is the probability density at time
t of Brownian motion on the circle R/2Z started at 0. In other words, 6(x,t) is the unique
solution to the PDE

(2.2)

2u(x,t) = 1 (2)’u(z,t) (PDE)
u(z,t) = u(z + 2,t) (BC) (2.3)
w(z,04) = >,z 0(x —2n) (IC),

where §(x) denotes the Dirac delta-function. This is the heat equation with periodic boundary
condition and the Dirac comb as initial condition. Note that (PDE) and (BC) also follow
directly from ({2.1)).

We define 1
_ 2 2,
Q(t) = pe 2 59(1,t),

which is a smooth function on R. By (2.1) and (2.2)), one can show that 6 is stricly increas-
ing?® with 6(0) = 0 and §(+0) = 1.

2.2 Brownian motion killed upon exiting an interval

Various quantities of Brownian motion killed upon exiting an interval can be expressed by
theta functions. For z € R, let W*¥ be the law of Brownian motion started at x, let (X;)¢=0
be the canonical process and let H, = inf{t > 0: X; = y}. For a > 0 and z € [0, a], denote by
Wiiied o the law of Brownian motion started at x and killed upon leaving the interval (0, a).
Let pf’(a:, y) be its transition density, i.e.

Pt (7, y)dy = Wigneq o (Xe € dy) = WH(Xy e dy, Ho A Hy > t), z,y€[0,a]. (2.4)
Then p§(z,y) is the fundamental solution to the heat equation (PDE) with boundary condition
u(0,t) = u(a,t) =0, t=0.

Hence (see also [96], Problem 1.7.8 or [41], formula 1.1.15.8),

Pz, y) =a! <9(x— i i) _9(.@ —i—y’Cth)) ) (2.5)

a a? a

3. More precisely, by elementary computations, 2-1)) gives to € Ry, such that 6 is strictly increasing on
(to,00) and (2.2)) gives t1 > to, such that 6 is strictly increasing on [0, ¢1).
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

Equation (2.1) then yields

2 2

a0
pi(z,y) = Z e 22" ' sin(mn2) sin(mn¥). (2.6)

This representation is particularly useful for large t: Define
o0
By =72 ) nPemm (D2, (2.7)
n=2

By (2.6 and the inequality |sinnz| < nsinz, z € [0, 7], one sees that

772 2

€242 pt ¢ (z,y) — *Sin(ﬂ'ﬂ?/a) sin(my/a)| < Et/azgsin(ﬂx/a) sin(my/a). (2.8)

Note that the Green function (see e.g. [I00], Lemma 20.10, p379) is given by

o0 HO/\Ha 1
fo pi(x,y)dt = Wx<f0 1(x,edy) dt)/dy =24 (zAry)la—2xVvYy). (2.9)

Set H = Hy A H, and define
ri(x) = W*(H edt, Xy = a)/dt. (2.10)

Then (see [41], formula 1.3.0.6),

r(z) = (729’ <a ~1, a2) (2.11)

where 6’ denotes the derivative of # with respect to x.
The following two integrals are going to appear several times throughout the article, which
is why we give some useful estimates here. For a measurable subset S R, define

I%(xz,S) =W* <€%72H“1(H0>Hae5)> = f e2a2°r?(z)ds, (2.12)
Sn(0,00)
and -
FleS)= [ s, (213)
5n(0,00)
which satisfy the scaling relations
a (T S a zy S
19z, §) = I(a,a—2>, J(z,y,S) = aJ(— 2, ﬁ) (2.14)

with I = I' and J = J'. The following lemma provides estimates on I(x,S) and J(z,y, S).

Lemma 2.1. There exists a universal constant C, such that for every x € [0,1] and every
measurable S < R, we have

I(z, S) — TA(S) sin(rz)| < C(m A Einrs(1 A A(S)) sin(wx)), and
|J(z,y,S) —2A(S) sin(7z) sin(my)| < C([(:L’ AY)(1 = (z v y))] A Eintssin(rx) sin(ﬂy)),

where \(S) denotes the Lebesque measure of S and Finsg is defined in ([2.7]).
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2. Brownian motion in an interval

Proof. First note that I(x,-) is a positive measure on R, for every x € [0, 1], such that we
2

have by ,
0< (2,5 A [0.1]) < 2. [0.1]) < W (€3 L o oy ) < es
since the scale function of Brownian motion is s(x) = W*(H; < Hp) = x. Furthermore,
decomposing I(x,S) into
I(z,8) =I(z,S n[0,1]) + I(x,S n (1,00)),

it is enough to prove that |I(z,S) —7A(S)sin(rz)| < C(1 A A(S))Eint s sin(nz) for all S with
inf S > 0. Now, by and ,

I(z,8) = f

ez (x,s)ds = Wf Z e~ (= Ds(_1)" Ly gin(rna)ds
s Sn=1

2

0
= 7wA(S)sin(mx) + 7 Z (J e_%(n2_1)5ds)n(—1)"_1 sin(mnz),
n=2 S

where the exchange of integral and sum is justified by the uniform convergence of the sum for
s = inf .S. We now have for n > 2,

=2, 2 °© 2/ 2 2 a2 2 3
Q_T(n —1)sd8 < Q_T(n —1)sd8 = — G_T(n —1)1nfS7
s inf § m(n? —1)

as well as ,

J e*gi("Qfl)Sds < /\(S)e*%("Ll)infS
S
Furthermore, we have for n > 2,
In(—1)""Lsin(rnz)| < n?sin(rz) < 2(n? — 1) sin(rz).

It follows that 4
|[I(z,S) — wA(S)sin(mx)| < (= A wA(S))Eint s sin(mz).
T

This proves the statement about I. The proof of the statement about J is similar, drawing
on ([2.6) instead and on the following estimate:

™

1 2 22 [P 2
J(UC,Z/, [07 1]) = J €7tpt($,y) dt <ez J pt(x7y> dt = 67('%' A y)(l - ({L‘ \ y)):
0 0

by . O

2.3 The Brownian taboo process

The Markov process on (0, a) with infinitesimal generator

1/d)\? N T oot TE d

2 \dz a a dx
is called the Brownian taboo process on (0,a). It is a diffusion with scale function s(x) and
speed measure m(dx), where

s T 2a? T
= = cot — d dz) = == sin? == dz. 2.15
s(z) aco . an m(dz) = sin . x ( )
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

The singular points 0 and a are therefore entrance-not-exit. For x € [0, a] we denote the law
of the Brownian taboo process on (0, a) started from x by Wiaboo.a: Often we will drop the a
if its value is clear from the context.

The name of this process was coined by F. Knight [104] who showed that it can be
interpreted as Brownian motion conditioned to stay inside the interval (0,a) (hence, 0 and
a are taboo states). The Brownian taboo process is also known as the three-dimensional
Legendre process, because of its relation to Brownian motion on the 3-sphere (see [96], p270).
The 3-dimensional Bessel process is obtained by taking the limit in law as a — 0. Note that
the normalisation of the scale function and speed measure in was chosen in such a way
that they converge, respectively, to the scale function and speed measure of the 3-dimensional
Bessel process, as a — 0.

Below we list some useful properties of the Brownian taboo process:

1. Tt satisfies the following scaling relation: If X; is a Brownian taboo process on (0,1),

then aX, /2 is a Brownian taboo process on (0, a).

2. It is the Doob transform of Brownian motion killed at 0 and a, with respect to the
space-time harmonic function h(x,t) = sin(nz/a)exp(n?t/(2a?)). In other words, for
xz € (0,a), W2, is obtained from W2, 4 by a Cameron-Martin-Girsanov change of
measure with the martingale

AN T 0. € 2
Z; = |sin — sin — exp —t.
a a a

3. As a consequence, its transition probabilities are given by

taboo(0,a T Sin(ﬂ-y/a) 2 a
A0 @) = Wioo (Xe € dy) fdy = 00 Sem pi@y). (216)
Equation (2.8) now implies that
a 2 .
p:aboo(o’ )(a:,y) = 551n2(7ry/a)(1 + O(1)Eyq2), for all z,y € [0, al, (2.17)

4. As can be seen from above or directly, it admits the stationary probability measure
(m(0,a)) " 'm(dz) = 2/asin®(rz/a) dz.
5. If W5 denotes the taboo bridge from x to y of length ¢, then WEbY — Wéﬁ’e% by the

taboo taboo
second property.
6. As a consequence, the taboo process is self-dual in the sense that for a measurable

functional F and t > 0, we have

WELL [F((X,0 < 5 < )] = Wi [F((Xi-0 < s < )]

taboo taboo

The following lemma will be needed in Sections [6] and [7]

Lemma 2.2. Let ¢ > 0 and define k(x)

= %
on ¢, such that we have for every x,y € [0, al,

. There exists a constant C, depending only

t
tg;boo[f k(XS) d3:| < C<t/a3 + err($)>7 (218)
0
and for t = a?,
t
Wéiﬁ’ﬁ’o” B(X,)ds| < O(t/a® + err(x) + ern(y) ). (2.19)
0
with err(z) = 1 A 271 If t < a®, we still have,
t
Wtﬂ’é’ﬁ'o”o k‘(Xs)dS] <C. (2.20)
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2. Brownian motion in an interval

Note: one could probably show by induction that the law of the integral is dominated by
an exponential law, by showing that its moments are bounded by C"nl.

Proof. We first show that (2.18) implies (2.19)). By the self-duality of the taboo process, we
have

weta] [ wexgas] = waa [ [ woca] w w7 e as)

It therefore remains to prove that

taboo

t/2
E(x,y) = Wiyt [ f k(Xs) ds] < C(t/a® + err(z)).
0
Conditioning on o(Xs;0 < ¢t < ¢/2), this integral equals

Py (X2, y) Jt/ 2

taboo (JJ, y)

- k(X,) ds].

E(xvy) = ta;boo[ 0

By (2.17)), there exists a universal constant C, such that for ¢ > a2,
t/2
B(2.5) < O Wiipeo J K(X.) ds].
0

Equation (2.18]) therefore implies (2.19).
Heuristically, one can estimate the left side of (2.18)) in the following way: Since k(z) is

decreasing very fast, only the times at which X is of order 1 contribute to the integral. When
started from the stationary distribution, the process takes a time of order a® to reach a point
at distance O(1) from 0 [I11I] and it stays there for a time of order 1, hence the integral is of
order t/a®. When started from the point x, an additional error is added, which is of order 1,
when z is at distance of order 1 away from 0. Adding both terms gives the bound appearing
in the statement of the lemma.

The exact calculations are most easily performed in the following way. Let Y be a random
variable with values in (0,a) distributed according to m(dz) := 2/asin?(7z/a) dz, which is
the stationary probability measure of the taboo process. Let Hy = inf{t > 0: X, =Y}. We
then have

Wil [ 1050 a8] = Wt [ w0005+ [ k005

By the inequality sinz < x for = = 0,

a Q0
I, = tf m(dy) k(y) dy < 27T2t/agf eV +y)y*dy < CT/a?,
0 0

for some constant C' depending only on c.
Recall the definition of scale function and speed measure in (2.15). Define the Green
functions

Gya(z,z) =s(x A z)—s(y) and Goylx,2) =s(y) — sz v 2).
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

We then have (see e.g. [129], Chapter 3, Corollary 3.8),

L - fm(dy) L " (d2) Gy () k() + f " (dy) Lym(dz)co,y(x,z)k(z)

=: 111 + Lo.

(2.21)

By Fubini’s theorem, the first term in (2.21)) is easily bounded by

<m<fmwwafm@m@—mn

and noticing that sign(s(2)) = —1.<q/2) + L(z>a/2), We get

m<Lﬁwmmem@+mem%mwxmm

<CJla® ( LC:Q 2k(2)dz + La 21k(2) dz)

< CJa,

where again we made use of the inequality sinz < x for > 0.
For the term I a little bit more care is needed. Using the fact that S m(dy) < 1, we
have

T a/2
Ly < f m(dy)s J m(dz)k (—s(z) v O)J0 m(dz)k(z) +f m(dz)|s(2)|k(z)
=: Ino1 + To2 + Th2s.

To estimate the first two terms, note that

Ly m(dz)k(z) < C(1 A y°) f m(dy)s(y) < C/a.
such that
Tio1 + T1o2 < C’(l/a + (1 Az (=s(z) v 0)) < C(l/a + (1A x_l)),

because —s(z) < 1/z for z € [0,a]. The third term is seen to be bounded by

I3 < CJ (1 +l‘) e

Altogether, we get

tzaboo|:Jt k(Xs) dS] < C'(t/a3 +1/a+ err(:c)).

0

This proves (2.19)) and therefore (2.18)).
In order to prove (2.20), a different method is needed. We may assume that z,y < a/2,

otherwise we decompose the path at the first and/or last time it hits a/2 and bound the parts
above a/2 trivially by a?e=°¥? = O(1). The transition density of the taboo bridge can be
written . .
Ps (xv Z)ptfs(zﬂ y) d
= zZ.
pi(z,y)

WLy [Xs e dz] —

taboo
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3. Preliminaries on branching Markov processes

If we denote by p)(z,y) = (2mt)~ Y2 exp(—(2% + x2)/2t)2sinh(zz/t) the transition density
of Brownian motion killed at 0, then we have the trivial inequality p¢(z,y) < pY(z,y) and
furthermore p¢(z,y) = CpY(x,y) for 7,y < a/2 and t < a? by Brownian scaling. It follows

that
t

Wt:;’éfo [ Lt k(Xs) ds] < OR%WY [ f

0 k(Xs)ds],

where R®"Y denotes the law of the Bessel bridge of dimension 3. This Bessel bridge is the
Doob transform of the Bessel process started at x with respect to the space-time harmonic

function hy(z, s) = pd_.(z,9)/p)(x,y). By the standard theory of Doob transforms, this is the
Bessel process with additional drift

2 d 2
& —i——logsinhtzy == + i cothtzy
S

d
—(loghy(z,s)):—t_s dz —s t—s t—

dz

This in an increasing function in y and standard comparison theorems for diffusions (see e.g.
[129], Theorem IX.3.7) now yield that for y; < yo2, we have

RES[k(X,)] < R k(X )],

since k is a decreasing function. This is true in particular for y; = 0. Using the self-duality
of the Bessel bridge, we can repeat the same reasoning with x. We thus have altogether

t t
Wé’é’é’o[J k:(Xs)ds] < CRO,t,o[J k‘(Xs)ds],
0 0
for any x,y < a/2. This calculation can be done explicitly and yields (2.20). 0

3 Preliminaries on branching Markov processes

In this section we recall some known results about branching Brownian motion and branch-
ing Markov processes in general.

3.1 Definition and notation

Branching Brownian motion can be formally defined using Neveu’s marked trees [122] as
in [62] and [61]. We will follow this path here, but with slight differences, because we will
need to consider more general branching Markov processes and the definition of branching
Brownian motion in [6I] formally relied on the translational invariance of Brownian motion.

We first define the space of Ulam—Harris labels, or individuals,

U={g}u N,

n=1

where we use the notation N* = {1,2,3,...} and N = {0} u N*. Hence, an element u € U is
a word over the alphabet N* with ¢J being the empty word. For u,w € U, we denote by uw
the concatenation of u and w. The space U is endowed with the ordering relations < and <
defined by

u<v < JweU:v=uww and u<v < u<0vandu # 0.

A tree is by definition a subset t U, such that 1) J e t, 2) u €t and v < u imply v € t and
3) for every u € t there is a number k,, € N, such that for all j € N* we have uj € t if and only
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

if j < ky. Thus, k, is the number of children of the individual u. We denote the space of trees
by .7 and endow it with the sigma-field &7 generated by the subsets .7, = {t€ .7 : u € t}.
For a tree te 7 and u € t, we define the subtree rooted at u by

tW —fvel :wet)
Given a measurable space .#, a marked tree (with space of marks .#) is a pair
7 = (t (s u € 1)),

where t € 7 and n, € # for all u € t. The space of marked trees is denoted by .74
and is endowed with the sigma-field &7 = 7—!(&/), where 7 : ¥ — 7 is the canonical
projection. Accordingly, we also define 7,7 = n=(.7,). The definition of a subtree extends
as well to marked trees: For u € t, we define

(t//[)(u) = (t(u)7 (Nuvsv € t(u)))-

For our purposes, the space of marks .# is always going to be a function space, namely,
for a Polish space & and a cemetary symbol A ¢ &, we define the Skorokhod space D(&) of
functions E : [0,00) — & U {A} which are right-continuous with left limits, with Z(0) # A
and for which =(¢) = A implies =(s) = A for all s > ¢t. Then we define ((Z) = inf{t > 0 :
=(t) = A}. For an individual u € U, its mark is denoted by =, and we define ¢, = ((=Z,).
The branching Markov process will then be defined on the space (we suppress the superscript

D(¢))
Q={w=(tEuuect) e TP VuelU V1l <i<ky:( <0=Eu(Cu—) =Eui(0)},

endowed with the sigma-field .Z = Q n &P generated by the sets Q, = Q T . We
define for v € U the random variables

bu:ZCw du:bu+Cu:ZCvu

v<u v<u

which are the birth and death times of the individual u, respectively. We then define the set
of individuals alive at time ¢ by

N (t) ={uet:b, <t <dy}

The position of u at time ¢ is defined for u € t with d,, > t by X, (¢t) = Z,(t — b,), where v € U
is such that v e A(¢) and v < u. If d, <, then we set X, (t) = A.

Now suppose we are given a defective strong Markov process X = (X;);=0 on &, with
paths in D(&). The law of X started in x € & will be denoted by P”. For simplicity, we
will assume that for every x € &, we have ((X) < oo, P’-almost surely. Furthermore, let
((q(z, k))keN)zee be a family of probability measures on N, measurable with respect to z.
Then we define the branching Markov process with particle motion X and reproduction law
q as the (unique) family of probability measures (P?),cs on Q which satisfies

k
P?(dw) = P (dXg)q(Xg(Cp) k) ﬁ P2 (o) (dw). (3.1)
i=1

Note that by looking at the space-time process (X¢,t)¢=0, we can (and will) extend this
definition to the time-inhomogeneous case.
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3. Preliminaries on branching Markov processes

3.2 Stopping lines

The analogue to stopping times for branching Markov processes are (optional) stopping
lines, for which several definitions exist. For branching Brownian motion, they have first
been defined by Chauvin [61], the definition there is however too restricted for our purposes.
Jagers [97] has given a definition of more general stopping lines for discrete-time branching
processes; our definition will in fact mix both approaches. Note also that Biggins and Kypri-
anou [33] build up on Jagers’ definition of stopping lines and define the subclasses of simple
and very simple stopping lines (again for discrete-time processes). Chauvin’s definition then
corresponds to the class of very simple stopping lines.

We first define a (random) line (called “stopping line” in [97]) to be a set £ = ¢(w) <
U x [0,00), such that

1. we A (t) for all (u,t) € £ and

2. (u,t) € £ implies (v,s) ¢ ¢ for all v < u and s < t.

Note that a line is at most a countable set. For a pair (u,t) € U x [0,00) and a line ¢, we write
¢ < (u,t) if there exists (v, s) € £, such that v < u and s < t. For a subset A ¢ U x [0,0), we
write ¢ < A if £ < (u,t) for all (u,t) € A. If ¢; and {5 are two lines, we define the line 1 A lo
to be the maximal line (with respect to <), which is smaller than both lines.

We now define for each u € U two filtrations on €2, by

Fu(t) = (0 o(Bu(s);0< s <t—by) v \/(Qno(E))
v<u
FP(t) = (Quno(Eu(s);0<s<t—by,)) v \/(Qv N o(Zy)).
vFu
Informally, .%,(t) contains the information on the path from w to the root between the times
0 and ¢, and %} °(t) contains this information and of all the other particles ezcluding the
descendants of u. In particular, we have Z#,(t) ¢ Zy °(t) The filtration Z,(t) is denoted
by ,(t) in Chauvin’s paper [61] and .y (t) corresponds to the pre-(u,t)-sigma-algebra as
defined by Jagers [97].
We can now define a stopping line (“optional line” in [97]) £ to be a random line with
the additional property
3a. V(u,t) e U x [0,00) : {w e Qy : &L < (u,t)} € ZL().
The sigma-algebra .Z ¢ of the past of % is defined to be the set of events E € %, such that
for all (u,t) € U x [0, 0),

En{weQ: L < (ut)}e Fre).

For example, for any ¢ > 0, the set 47 (t) x {t} is a stopping line. This permits us to define
the filtration (%#;)¢=0 by
Tt =F y)x{t}-

Following Biggins and Kyprianou [33|, we now say that .Z is a simple stopping line or a very
simple stopping line, if it satisfies the property 3b or 3c below, respectively:

3b. Y(u,t) e U x [0,0) : {w e Qy : Z < (u,t)} € Qy N F.

3c. Y(u,t) e U x [0,00) : {we Dy : L < (u,t)} € Fylt).
Then A/ (t) x {t} is obviously a very simple stopping line. Furthermore, if T': D(&) — Ry is
a stopping time 4, then

L ={(u,t) e U x [0,00) s ue A (t) and t = T(X,)}}

4. In other words, {T'(E) < t} € 0(E(s); s € [0, t]) for every t = 0.
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

is a very simple stopping line as well. We recall that the definition of stopping lines in [61] is
equivalent to the definition of very simple stopping lines given here.
The first important property of stopping lines is the strong branching property. In order
to state it, we define for ¢t > 0, u e A(1),
w®t) = (W (v e tW)),

—uv’

with Z/,(-) = Eu(-+t—b,) and =/, = Z,, for v € t\{F}. The strong branching property (|61,
Proposition 2.1], [97, Theorem 4.14]) then states that for every stopping line ., conditioned

on Zy, the subtrees w(®?) for (u,t) € £, are independent with respective distributions
pXu(®),

3.3 Many-to-few lemmas and spines

Another important tool in the theory of branching processes is the so-called Many-to-one
lemma and its recently published extension, the Many-to-few lemma [88] along with the spine
decomposition technique which comes along with it and has its origins in [I13], although it
appeared implicitly in the literature before that, see e.g. the references in the same paper.
Here we state stopping line versions of these lemmas, which to the knowledge of the author
have not yet been stated in this generality in the literature, although they belong to the
common folklore. We will therefore only sketch how they can be derived from the existing
literature.

We assume for simplicity that the strong Markov process X admits a representation as
a conservative strong Markov process X with paths in D(&"), which is killed at a rate R(x),
where R : & — [0,00) is measurable. The law of X started at x is denoted by P* and the
time of killing by ¢. Given a stopping time T for X, we can then define a stopping time T'
for X by setting T = T, if T < ¢ and T = o otherwise. For simplicity, we write #¢ for
. Finally, for every x € &, define m(x) = >, o(k — 1)q(z, k), m1(x) = X5 kq(x, k) and
ma(x) = Xpso k(k — 1)g(z, k).

We are now going to present the spine decomposition technique, following [86]. They
assume that g(x,0) = 0, but this restriction is actually not necessary, as noted in [88]. Given
a tree t, a spine of t is an element of the boundary of t, i.e. it is a line of descent & = (§ =
,&1,&,...) from the tree, which is finite if and only if the last element is a leaf of the tree.
We augment our space €2 to the space Q* by

0% = {(w,§) :weQ, £is a spine of the tree underlying w}

We are going to denote by & the individual w € U that satisfies u € A(¢) and u € £ if it
exists, and & = (& otherwise. Instead of the redundant X¢, (t), we write X¢(t). We also note
that the definition of stopping lines can be extended to Q* by projection.

Now, for every x € &, one can define a probability measure P*% on Q* in the following
way:

— Initially, X¢(0) = .

— The individuals on the spine move according to the strong Markov process X and die
at the rate mi(y)R(y), when at the point y € &.

— When an individual on the spine dies at the point y € &, it leaves k offspring at the point
where it has died, with probability (my(z))~*kq(z,-) (this is also called the size-biased
distribution of ¢(z,-)®).

— Amongst those offspring, the next individual on the spine is chosen uniformly. This
individual repeats the behaviour of its parent (started at the point y).

5. The size-biased distribution of the Dirac-mass at 0 is again the Dirac-mass at 0.
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3. Preliminaries on branching Markov processes

— The other offspring initiate independent branching Markov processes according to the
law PY, independently of the spine.
This decomposition first appeared in [62].

If we start with n initial particles 1,...,n at positions z1,...,x,, we can extend this
definition by defining a (non-probability) measure P*, which is the sum of n probability
measures P} +---+P} where under P, the particle 7 follows the law P*%i and the remaining
particles j # i follow the law P%i.

We now have the important

Lemma 3.1 (Many-to-one). Let £ be a simple stopping line. Define T by (&7,T) € £ if it
exists, and T = oo otherwise. Let' Y be a random variable of the form

Y= > Viliue),
(u,t)e.?

where Yy, an F.y-measurable random variable for every uw € U. Then

E[ Z yu] - E* [yeﬁ R(Xg(t))m(Xf(t))dtl(T<Oo)]_ (3.2)
(u,t)e

Proofs of this result can be found for fixed time in [108], [86] or [88]. With simple stopping
lines, it has been proven in the discrete setting |33 Lemma 14.1] and their arguments can be
used to adapt the proofs in [86] and [88] to yield the result stated here.

Often, we will use a simpler version of the Many-to-one lemma, which is the following

Lemma 3.2 (Simple Many-to-one). Let T = T(X) be a stopping time for the strong Markov
process X which satisfies P*(T < o) =1 for every x € &. Let f : & — [0,00) be measurable.

Then we have
D FX(D)] = B [el REXOmEEdtp )|

(u,t)efr

The next lemma tells us about second moments of sums of the previous type. To state
it, we define for a stopping time 7" for X the density of the branching Markov process before
XT, by

pr(r,dy,t) = Ex[ D Lix,t)edy, t<T(Xu))]' (3:3)
ueN (t)

Lemma 3.3. Let H be the hitting time functional of a closed set F < & on D(&) which
satisfies P*(H < o) =1 for every x € &. Let f : & — [0,0) be measurable. Then we have

5 f(Xu(t))Q]—Ez[ > X))

(u,t)E.,fH u t EXH

# [ [ rmm (] 3 seam]) e 6o
(u,t)eLy

Remark 3.4. This lemma can be proven using the Many-to-few lemma from [88] (which is
valid for stopping lines as well by the same argument as the one above) or with Lemma
by noting that

YAE) = N G Y ()Y Ae):

(u,t)eLy (u,t)eZLH (u,t)eZLH (v,8)€ZLy, v#u
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

It also has an intuitive explanation (see, e.g. the proof of Proposition 18 in [23]): Write the
above sum slightly differently as

o) = Y Gt Y T, (35)

(u,t)eLm (u,t)eZu (u,t),(v,8)eLH , uFv

Now, a particle at the point y spawns an expected number of R(y)ms(y)ds of ordered pairs
of particles during the time interval [s, s + ds], and by the strong branching property, the two
particles in a pair evolve independently. This yields . Note that this heuristic argument
can be seen as a decomposition of the ordered pairs of particles in the second sum in
according to their most recent common ancestor, an approach which can be made rigorous in
a discrete setting.

Taking for X the space-time process (Y;,t);>0 of a possibly non-homogeneous strong
Markov process (Y;)i>0 with paths in D(&) and the closed set F' = & x {t}, for some ¢ > 0,
we obtain the following useful corollary, which appeared already in [140] and [132] in the
homogeneous case.

Lemma 3.5. Let f: & x Ry — [0,00) be measurable and let t = 0. Then we have

oy S 0.:0) ] =B S (v, 1))

ueN (t ueN (t)

+ jo | pledy ) R a0 (809 3 0 0.0]) as 39

ueN (t

3.4 Doob transforms

As in the previous subsection, we assume for simplicity that the strong Markov process
X admits a representation as a conservative strong Markov process X with paths in D(&),
which is killed at a rate R(z), where R : & — [0,0) is measurable. Let H be the hitting time
functional of a closed set F' < & on D(&). Furthermore, let h : F — [0, 1] be a measurable
function. We extend the function h(z) to & by setting

[T nexuen]
(u,t)eLm

We are going to assume that h(x) > 0 for all x € &\F. Then for all such x we can define a
law P} on € by
P7 (dw) = VT X)) x PP (dw),
(u,t)eZLu

where the multiplication is in the sense of a Radon—Nikodym derivative. Now define

N o 1 o

By 7 we now have (dropping the symbol ¢F for better reading and setting H = H (X))
k
B()P(dw) = P (dX) (1120 h(X (H))a(X (¢=), k) [ [P (aw®
i=1
k .
Leemh(X (=D a(X(¢), ) [TPY @™ [T axu).

i=1 (u,t)eLrr (W)
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4. BBM with absorption at a critical line

If we denote by X ¥ the process X stopped at H, and the law of X under P* by (P")¥,
then the last equation and the strong Markov property give

h(z)Pj(dw) = (PI)H(dXH)<1(H<¢)h(X(H)) + 1(<<H)h(X(C—))Q(X(C—)))
k 3.7
X (1(H<§)PX(H) (dw( @)y + Lie<myan(X(¢—), k) HPi{(Cf)(dw(i))) &0
=1

3
In particular, integrating over k, w®, i =1,2,..., and X(t) for t € [H, (), we get that

€T

Aw) = (B (L h(X (H)) + Lieamh(X (C-)QX ().
We can therefore define a law Pi on the paths in D(&) stopped at H by

Pr(dX) = (b)) ™ (100 <0 MK ) + Leaniaph(X C-DQX () ) x (P71 (dX),

where the multiplication is again in the sense of a Radon—Nikodym derivative. Then
yields the following decomposition of the law Pj:

— As long as a particle has not hit the set F' yet, it moves according to the law FZ. If
it gets killed at the point y, it spawns k offspring according to the law ¢ (y,-), which
initiate independent branching Markov processes according to the law P%.

— When a particle hits the set F' at the point y, it continues as a branching Markov process
according to the law PY.

If R(z) = R, one gets a simpler characterisation of the law P} : In this case, h(x) is a harmonic
function for the law of the stopped process X under P?, whence we can define the Doob
transform

PE(AX) = ()™ (L) + Lar<ony (X () ) P*(aX ™).

Then the law Pﬁ is obtained from the law P} by killing the process at the time-dependent
rate RQ(7)1q<p)-

4 BBM with absorption at a critical line

From this section on, ¢(k) will denote a law on {0, 1,2,...} and L a random variable with
law q(k). We define m = E[L — 1] and mg = E[L(L — 1)] and suppose that m > 0 and
mo < 00. We study the branching Markov process where, starting with a single particle at
the origin, particles move according to standard Brownian motion with drift —1 and branch
at rate By = 1/(2m) into k particles according to the reproduction law ¢(k). At the point
—y, we add an absorbing barrier to the process, i.e. particles hitting this barrier are instantly
killed. Formally, we are considering the process up to the stopping line Zx_,, where H_,
is the hitting time functional of the point —y. It is well-known since Kesten [102] that this
process gets extinct almost surely. As a consequence, the number of particles absorbed at the
barrier, i.e. the random variable

Ny = #$H7y7

is almost surely finite. By the strong branching property and the translational invariance
of Brownian motion, one sees that the process (Ny)y>0 is a continuous-time Galton-Watson
process, a fact which was first noticed by Neveu [123] (see [14], Chapter III or [89], Chapter V
for an introduction to continuous-time Galton-Watson processes). Let u(s) be its infinitesimal
generating function. Neveu stated that u = 1’ 0 ¢~!, where 1 is a so-called travelling wave
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

of the FKPP (Fisher—Kolmogorov—Petrovskii-Piskounov) equation: Write f(s) = >}, s¥q(k).
Then 1 is a solution of the equation

S = olap — F o), (11)

with ¢(—00) = 1 and 1(400) is the extinction probability of the process, i.e. the smaller root
of f(s) = s. For a proof of these results, see Section |3| of Chapter

In the same paper [123], Neveu introduced his multiplicative martingales, which he used
to derive the Seneta-Heyde norming for the martingale e”¥N,,. He proved that in the case of
binary branching, one has

Wy :=ye YN, — W almost surely as y — o0, (4.2)

where W > 0 almost surely. His proof relied on a known asymptotic for the travelling wave
1, namely that

1—¢(—z) ~ Kze ™, asxz— o, (4.3)

for some constant K > 0. It was recently shown [143] that this asymptotic is true if and only
if E[Llog? L] < oo and the proof of (#.2) works in this case as well. We also still have in this
case, for every x € R,

Ble "] = (), (4.4)

a fact which was already proven by Neveu [123] for dyadic branching.
In 23], further properties of the limit W have been established under the hypothesis of
dyadic branching, namely

1
PW >z) ~ — asT— o, (4.5)
and
E[W1lgw<y)] —logz — qgm, asx — o, (4.6)

for some constant qrg € R. Equation has been proven in Propositions 27 and 40 of [23],
and appears in the proof of Proposition 39 of the same paper. Their arguments were
very ingenious but indirect and although they could be extended to general reproduction laws
with finite variance, we will reprove them here directly under (probably) minimal assumptions,
based on methods of [I15]. The main result in this section is

Proposition 4.1. If E[Llog? L] < oo, then ({@.5)) holds. If E[Llog® L] < oo, then (&.6)) holds.

See also [60] for a proof of (4.5)) in the case of branching random walk. Before proving
this result in the next subsection, we state a lemma which is immediate from (4.2]) and the
fact that NV, is almost surely finite (see also Corollary 25 in [23]):

Lemma 4.2. Suppose E[Llog? L] < 0. For anyn > 0, there exist y and , such thaty ="

and

P([Wy = W[>n)+P(Ny > () +P(Lu_, $ U x[1,{])
+P(sup #{ue A (t): (u,t) < Ly_,} >() <n.

0<t<¢
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4.1 Proof of Proposition 4.1
Define x()\) = E[e=*W] for A > 0. Our first result is:

Lemma 4.3. Suppose E[Llog? L] < . Then X"(A) ~ A~! as A\ — 0+. Furthermore,
E[Llog® L] < o if and only if r(A) = A" — x"(A\) = 0 for X\ = 0, with Sé r(A)dA < 0.

Proof. Define ¢(x) = 1 —¢(—x), such that u(s) = ¢'(¢~*(s)). By (#.3) and the hypothesis
E[Llog? L] < oo,
¢(x) ~ Kxe ™, asx — . (4.7)

Furthermore, by (4.1)), we have

56" @) + @) = BolF(1 — 6(x)) — (1~ $(a)) (49)

Setting g(s) = 2Bo[f(1 —s) =1+ f/(1)s] = 0 and p = ¢ + ¢/, we get from ({.8), and the fact
that fp = 1/(2m) and f’(1) = m + 1 by definition,

(@) = —p() + g(6()). (4.9)

As in the proof of Theorem from Chapter [T, we will study the function p through the
integral equation corresponding to (4.9), namely

T

Sgt(w) ) = (50) + | LD ) )

pla) = (o(0) + | P

0

Now, by Theorem B of [36] (see also Theorem 8.1.8 in [37]) we have for every d > 0,

1] d 1l
8 Sg(s)ds <o <« E[Llog?L] <. (4.11)

1] d1l
f o8 g(s)ds <0 <«

032 o S

Furthermore, by Proposition from Chapter [I} we have —u(s) ~ s as s — 0, and by (£.7),
we have e (5) ~ (log1/s)/s as s — 0. By the hypothesis E[Llog? L] < o, this gives

$(0) b~ (s)
f 679(8) ds < 0,
0 —u(s)
whence, by (4.10]),
p(x) ~Ke ™™  asz — o, (4.12)

where the constant K is actually the same as the one in (4.7]), see again the proof of Theo-
remfrom Chapter Now, from (4.4]), we get x(\) = 1 — ¢(—log \), whence, by (4.9) and
(#.10),

X0 =~ g ) = Sk 55 (=3 [ @ty ol 1o )
o 0 (4.13)
= % + i(j_ oo ’¢'(y)g'(6(y)) dy),

where the last equation follows from integration by parts. This proves the first statement,
with the constant K instead of 1, since the last integral vanishes as A — 0. Now, setting

=3[ e em) ).
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we first remark that 7(A) > 0, since the integrand is negative for y € R. By the Fubini-Tonelli
theorem, we then have

1 1 1 (™ / /
L r(A)dA = fo DY f e e'¢'(y)g' (d(y)) dy dA
- fo —ye’¢' (y)g'(d(y)) dy

WO a1
=f0 ™ W g (y)g/ () dy,

which is finite if and only if E[Llog3 L] < oo, by and the fact that e¢71(y)¢_1(y) ~
(log?1/s)/s. This proves the second statement, again with the constant K instead of 1.

The previous arguments worked for every travelling wave 1. In order to show that that
the constant K is equal to 1 in our case, we use Neveu’s multiplicative martingale (this idea
was also used in [112], Theorem 2.5). It was observed by Neveu [123] (see also [61] for a

rigorous proof), that ((1 — ¢(x + y))™¥),>0 is a martingale for every z € R with values in
[0,1]. By (4.2)) and (4.7), we then get by dominated convergence, for every z € R,

X(Ke®) = lim E[e”" v "N = lim E[(1 - ¢(y — 2))"] = 1 - ¢(—z) = x(e").
Yy—0 Yy—0
This yields K = 1. O
Remark 4.4. Choosing arbitrary initial points zg,z; € R instead of 0 in (4.10]), one sees that

0 Q0

€™ p(izo) + f Yg(3(y)) dy = ¥ pla1) + f g(6(y)) dy.

Zo z1

In particular, since p is bounded, letting £ — —o0 and 1 — +0 yields

0
f e’g(o(y))dy = 1.
)

One could hope (see the proof of Proposition below) that this helps in determining the
constant qrg, but apparently this does not seem to be the case.

Proof of Proposition[{.1 For n € N, we define the function

Valo) = [ POV e dy) = BV 10r2),
such that with x(™ denoting the n-th derivative of x, we have for A > 0,
a0
OO = 1 [ a),

If E[Llog? L] < oo, Proposition and Karamata’s Tauberian theorem (|79], Theorem
XIIL.5.2 or [37], Theorem 1.7.1) now yields

Vo(x) ~ 2z, asz — . (4.14)

By an integration by parts argument (see also [79], Theorem VIII1.9.2 or [37], Theorem 8.1.2),
we get (.5). Now suppose that E[Llog® L] < 0. By Lemma we have x'(\) — log A —
ce R, as A > 0. By Theorem 3.9.1 from [37] (with ¢(x) = 1), this yields

Vi(x) —logz - v—¢, asz— o,

where v is the Euler-Mascheroni constant. This is exactly (4.6]).
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5 BBM in an interval

In this section we study branching Brownian motion killed upon exiting an interval. Many
ideas in this section (except for Sectionand parts of Section stem from Sections 2 and 3
of [23] and for completeness, we will reprove some of their results with streamlined proofs.
However, we will also extend their results to the case of Brownian motion with variable drift.

5.1 Notation

During the rest of the paper, the symbol C stands for a positive constant, which may only
depend on the reproduction law ¢. Its value may change from line to line. If a subscript is
present, then this subscript is the number of the equation where this constant appears for the
first time (example: Cgzg). In this case, this constant is fixed after its value has been chosen
in the corresponding equation. If X is any mathematical expression, then the symbol O(X)
stands for a possibly random term whose absolute value is bounded by C|X].

Recall the definition of ¢(k), m, my and By from Section 4| and the hypotheses on m and
my. In this section, we let a > 7 and set

2
v
=47/1—-—. 5.1
[ 2 (5.1)
From ([5.1)), one easily gets the basic estimate

2

T
0<1—p<—. 5.2
S g (5.2)

We then denote by P® the law of the branching Markov process where, starting with a
single particle at the point x € R, particles move according to Brownian motion with variance
1 and drift —p and branch at rate 1 into k particles according to the reproduction law ¢(k).
Expectation with respect to P? is denoted by E*. On the space of continuous functions from
R, to R, we define Hy and H, to be the hitting time functionals of 0 and a. We further
set H = Hy A H;. Then note that the density of the branching Brownian motion before
2Ly, as defined in , has a density with respect to Lebesgue measure given for ¢ > 0 and
z,y € (0,a) by )

pe(e,y) = TR (), (5.3)
where p§ was defined in (2.4).

Now, let f : R4 — R, be non-decreasing, with f(0) = 0, continuous and such that the
left-derivative f’ exists everywhere and is of bounded variation. Such a function will be called
a barrier function. We define

11 = s {1 o 12 | 1001} (5.4)

where || - |4 is the usual supremum norm. Furthermore, we set Err(f,t) = || f| (% + a%) Now
define

o=+ SH(a) = g (e, (5.5)

such that pug = p and py = p for all t = 0. We denote by P the law of the branching
Brownian motion described above, but with infinitesimal drift —u;. Expectation with respect
to P? is denoted by E? and the density of the process is denoted by p{(:c, Y).

The above definitions can be extended to arbitrary initial configurations of particles dis-
tributed according to a counting measure v on (0, a). In this case the superscript z is replaced
by v or simply omitted if v is known from the context.
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5.2 The processes Z; and Y,

Recall from Section [3| that the set of particles alive at time ¢ is denoted by .A7(t). We
define
N,a(t) ={ue N(t): HX,) > t},
where H was defined in the previous subsection. Now set wyz(x) = ae*(*=®) sin(7z/a)1(zef0,q])
and wy (x) = e“(x_“)l(w>0) and define

Zy= Y wz(Xu(t)) and Yi= > wy(Xu()).
UEN,a(t) UEN, o (t)

Then Z; is a martingale under P¥, the proof of which is standard and relies on the branching
property, the Many-to-one lemma (Lemma and the fact that e’/ 2wz(By) is a martingale
for a Brownian motion with drift —u killed at 0 and a, which is easily seen by Ito’s formula,
for example. Furthermore, it is easy to see as well that Z; is a supermartingale under Pji.

The following lemma relates the density of BBM with variable drift to BBM with fixed
drift.

Lemma 5.1. For all xz,y € [0,a], t =0,

p{(m, y) = pe(x, y)e*f(t/GQ)JrO(Err(f,t)).

Proof. By the Many-to-one lemma and Girsanov’s theorem, we have

p/(z,y) = oMW (B, e dy, H > t)

b2 g2 ¢
= exp (t/2—f S2ds> qu <exp(—f ,us—,udBS>, Btedy,H>t>.

0 0
(5.6)
By integration by parts, we have
t t
J ps dBs = py By — uBo — j B dpus. (5.7)
0 0
Since By € (0,a) for all ¢ > 0, we have
t t Cdf (s
[ Bran] <[ lap < 0 17CN 5:8)
0 0 a
Furthermore,
2 2 1017 2)2
A N PP N K L)
A z t i S A
y =g Tl W)
such that A ) 12
Hs H 2 ‘ F 5t
—Zds——t— t < —. 5.9
R (59)
Finally,
R £ llo0
/LtBt - [LBt = a2f (t/a )Bt < o . (510)
Equations (5:3), (5:8), (57), (-3), (-9) and (5.10) now give
— 2 IrT
p{(x,y) = pulz,y)e I Ha)+OEn(f1)
and the lemma now follows from ([5.2)). O
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5. BBM in an interval

Proposition 5.2. Under any initial configuration of particles, for every t = 0, we have
E/[Z] = Zoe*f(t/tﬁ)+O(Err(f,t))7 (5.11)
and if in addition p = 1/2, then

Var(Z;) < Ce !/ t/a")+OEn(f.0) (%ZO + YO). (5.12)

Furthermore, we have for every t = 0 (without hypothesis on ),

E;[Y;] < Ce=f(t/a*)+OErx(f.1)y; (5.13)
and for t = a?,
Z
E;[Y;] < Ce/(t/e)+0En(f ¢>>;0. (5.14)

Moreover, for every a®> <t < a®, we have

Yy

Var(Y;) < Ce—f(t/a®)+O(Brr(f,1))
a

(5.15)

Proof. Equation (j5.11)) follows from Lemma and the fact that Z; is a martingale under
P*. In order to show ((5.13) and ([5.14)), it suffices by Lemma 5.1/ to consider the case without
variable drift. We first suppose that ¢ > a?. By (5.3) and (2.8)), we get

a 7'r2 a 2
E*[Y;] < e“(x“)f e2a?'p;(z,y) dy < Cet=9) sin(ﬂx/a)f —sin(my/a) dy.
0 0@

The last integral is independent of a. Summing over x yields (5.14) as well as ((5.13]) in the
case t = a®. Now, if t < a2, by the Many-to-one lemma and Girsanov’s theorem, we have

EJ:[}/;] _ eﬁothfu [eM(Xt_a), Ho A H, < t:l _ e7r2t/(2a2)Wx[H0 AH, < t]eu(x—a)'

Summing over z yields (5.13)).
In order to prove (5.12)), we have by Lemma

Bj(27] = B | ;()wz(Xu(t))Q]JrﬁomQ [ ] plen@pizzas. G

By Lemma [5.1] and the fact that Z; is a martingale with respect to the law P®, this yields

a rt
?[ZE] < Ce—f(t/aQ)-‘rO(Err(f,t)) Ecc|: Z wZ(Xu(t))Q] + J f ps(;U’ y)wZ(y)2 ds dy
0 JO

UEN, a(t)
(5.17)
Now we have for z € (0,a),
wy(x)? = (asin(rz/a)e )2 < 72 (a — x)2e 2D < Cwy (2),
because p > 1/2 by hypothesis. This yields
S=E Y wa(Xu(t)?| < CE[Y] < Cuy (w), (5.18)

UEN, (t)
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

by (5.13]). Now, by (5.3) and (2.13)), we have

a t a
Sy 1= f f pa(@, y)wz(y)? ds dy = aet=) f ae™ V=) sin? (ry/a) J%(z, y, 1) dy.
0 JO 0

Lemma [2.I] now gives

a

Sy < Caetr=a) f

e M sin? (my/a) (t sin(mwz/a) sin(my/a) + ay) dy
0

t 1\ [ (5.19)
< Caett*=) (sin(mc/a)—3 + 7) J e Hy3 dy,
a a 0

the last line following again from the change of variables y — a—y and the inequality sinz < .
Using again the fact that p > 1/2, equations (5.17)), (5.18]) and (5.19) now imply

_ 2 t
E?[Zf] < Qe f(/a)+O(Er (1)) <$wz(x) + wy(a;)). (5.20)
If we write the positions of the initial particles as x1,...,x,, then by the independence of
their contributions to Z;,
Vary(Zy) = ZVar?(Zt) < ZE? [Z7]. (5.21)
1 1

Equations (5.20)) and (5.21)) now prove (5.12)). Equation (5.15) is proven similarly. O

5.3 The number of particles

In this subsection, we establish precise first and second moment estimates for the number
of particles alive at a time ¢. These estimates extend those of [23|, which are effective only
when t » a?. For r € [0,a] and t > 0, we denote by N;(r) the number of particles in [r, a] at
time ¢.

Proposition 5.3. Suppose p = 1/2. Lett = 0, z,r € [0,a) and suppose that x > (r +
a/20)11<q2). Then

72t/ (2a2) . 1 ,
E[N:(r)] = &) [_2(1 + pr)e 9,<:v i> o ((1 . T3)s1n(7ra:/a) V 1< ))] '

a? a’ a? a*

(5.22)
In particular, if a/20 + Tl(1<q2) < @ < a, then
. 2m(1 + pr)er(e=r) —(t
E*[Ny(r)] = | wz (@)

_ 2 1 2
L0 <(a z)+ (1+79) (wz(:v) va(x)l(t<a2)>> ] (5.23)
a a
Moreover, for every x € (0,a) and t > 0, we have
. 2m(1 + pr)et (=)
E*[Ny(r)] = ( /;3) wz(x) (1 + error), (5.24)

with |error| < Ey 2 (1 4+ O(1/a?)).
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5. BBM in an interval

Proof. Let t > 0 and 0 < z < 1. By (b.3) and Brownian scaling, we have
1
E*[Ny2(r)] = e“’am+”2t/2f ““Zp% (z,2)dz. (5.25)
r/a

Note that (0/02)pf(x,2)|.—0 = —20'(x,t), by ([2.5). Taylor’s formula then implies that there
exists & € [0, z], such that

52
pi(x, 2) = =220 (x,t) + 22@19% (x, z)‘zzg. (5.26)

L 1] and t < 1, one has by (2.1))

We first note that for all € (0,1) and ¢ > 1, or for all z € [,

and ,

0" (z,t)] < C(sin(mz) v 1<qy). (5.27)
Furthermore, if t = 1, we have
82

‘aZQP%(x, Z)’z=§‘ = 772‘ i e 22 sin(mnx) sin(ﬂnf)‘

= (5.28)

e @]
7€ sin(rz) 2 nle ™2 < O sin(mc)e*”%m,
oy

-1
by the inequality |sinnz| < nsinz, x € [0, 7]. Equations (5.26)), (5.27) and (5.28)) now give

1 / .

20" (x,t

J e Hpl(z, 2)dz = —7233’2 )(1 + pr)e M+ O((l + r%eiWLn(ﬂm) e~
r/a wea

Now suppose that t < 1, z,7 € [0,a) and x > r + a/20. By (2.5) and the mean value theorem,

we have (02/02%)p;(z,2) = 220" (x + &', t) for some & € [0, z] With (2.2)), one then easily

sees that for z < z — a/40, one has

”2t/2). (5.29)

at

0? _
’a _pl(x, )‘ < Cre~ B, (5.30)
Equations ([5.26} and ( now give, for 2’ = x — a/40,
z /a 29’(ac t) _ (14 r3)e Hr
L/a e MZpl(z, 2)dz = 242 (14 pr)e M + O(T). (5.31)
Furthermore, we have
1 1
f e M pl(z, 2)dz < €_Mxlf pi(z,2)dz < e M (5.32)
:I:’/a z'/a

Equations ([5.25), (]5.29 (|5 31), (5.32) and the hypothesis on p now imply (5.22).
In order to prove 3), let =z € [1/20,1]. By (2.3) and Taylor’s formula, there exists
¢ € [z, 1], such that

—0'(z,t) =2(1 — x)jt (1,t) — (1 —2)%0" (&, 1). (5.33)

With (2.1) and (2.2), one now easily sees that |0”(¢,t)| < C(e ™ "2 sin(mz) v 1u<1y). Equa-

tions (5.2), (5.22)) and (5.33) now readily imply (5.23)). For the last equation, by (5.3) and

(2.8]), we have for every x € (0,a) and t > 0,

2eHa ra
E*[N(ta®)] = (1 + err)wz(z) c f e M sin(my/a) dy, (5.34)
a” Jo
with |err| < E;. Evaluating this integral and using (5.2) and the hypothesis on p yields
(5.24). 0
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

We will often use the following handier upper bounds on E*[N;(r)]:
Lemma 5.4. Suppose pp > 1/2. Lett > 0, z,r € [0,a] and suppose that x = (r+a/20)1;<q2).-

eta=r) 1+ 72

BY[Ni(r)] < C(1+7) = (wz(:z) + wy(a:)l(tgaz)). (5.35)
Furthermore, we have for all x,r € [0,a] and t = 0,
E”[Ny(r)] < Cet@m), (5.36)

Proof. One sees from (2.1 and (2.2)) that 0" (x,t) < C for (z,t) € [0,1] x [1,00) U [1/20,1] x
[0,1]. Equation (5.35) now follows from (/5.22)) and the mean value theorem. For ({5.36)), we
have by (5.13),

E*[Ny(r)] < e*urEm[ Z e,uXu(t)] < Cella=1)
ueN (t)

O

Lemma 5.5. Suppose p = 1/2 and r < 9a/10. For every t = 0 and x € [0, a], we have for
large a,

et

E%[N,(r)?] < Qe /e +0Er(f1) (

ad

)2 (1+ r2)<1 i er4>€2w (wZ(x)% * wY(w))
(5.37)

Proof. As in the proof of (5.12)), we have by Lemmas and

a rt
E$[Nt(7“)2] < e—f(t/a2)+O(Err(f,t)) (ECE[Nt(T)] + BOmQJ j p5($,2)(Ez[Nt73(T‘)])2 ds dZ).
0 JO

(5.38)
By (5.3), Lemma and the hypotheses on = and r, we have after a change of variables
z — a — z in the integral,

eHe

2
3) e,u(ac—a—?r)-ﬂrzs/(ZaQ)
a

(. 2) (B [Np_o(r)])? dz < C
J <

0

a 1 4 a
() | pila—m2)e (24 ) de v | plla— w2 dz). (5.30)
0 a a/20

Integrating ((5.39)) over s from 0 to ¢ and splitting the interval at t A a?, we have by (2.9)) (for
the first piece) and ([2.8]) (for the second),

I L Pz, ) (B [Np—s(r)])? dsdz < O (3>

@) (147 ;”4)6—2w"(1 Fae ) (w @)+ wy (@) (5.40)

Equations (5.36]), (5.38) and (5.40) and the hypotheses on p and 7 now imply the lemma. O
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5. BBM in an interval

5.4 The particles hitting the right border

In this section we recall some formulae from [23] about the number of particles hitting the
right border of the interval. We reprove these formulae here for completeness and because
Lemma makes their proofs straightforward. For most formulae we will assume that f = 0,
i.e. that we are working under the measure P. Only Lemma contains an upper bound on
the expected number of particles for general f, which will be useful in Section [7]

For a measurable subset S © R, define Rg to be the number of particles killed at the right
border during the (time) interval S, i.e.

Rg = #{(u,t) : ue A(t) and Hy(X,) > Hy(X,) =t e S}.
The following lemma gives exact formulae of the expectation and the second moment of Rg.
Lemma 5.6. For every z € (0,a), we have
E°[Rg] = "=z, 5), (5.41)

a o0 7r2
B[R] = B[R] + macte ) | dy er-) fo dt 5t pl(z, ) [y, S — 1)} (5.42)

0

We will first prove a more general result, which will be needed in Section [6.4]
Lemma 5.7. For every x € (0,a) and any measurable function f: Ry — R, we have
¢
3 O] = [ F @),
(u,t)eLy 0

Proof. Recall that Hy and H, denote the hitting time functionals of 0 and a and H = HygA H,,.
Then note that W2 (H < o) = 1 for all x € [0,a]. We then have

Z f Xu(t ] = qu [eﬁomHaf(Ha)l(HO>Hagt)] by Lemma
(u,t)eZLy

71_2
— eMz—a) w§ [eQTQHaf(Ha)l(HPHagt)] by Girsanov’s transform

— eHl@—a) ftf(s)fa(x,ds) by (2.12)).
0

Note that in the second line we used the fact that Som = 1/2 by definition. O

Proof of Lemma[5.6, Equation (5.41) follows from Lemma and (2.14) by taking f = 1g.

Equation (5.42)) follows from Lemma (3.3 and (5.41]). O
Lemma 5.8. For any initial configuration v and any 0 < s < t, we have
m(t —s) 3

(R ] — 552 Zol < Gama(Yo A Eojaa(1 A (8= 5)/a*) Z0), (5.43)

where Ey is defined in (2.7). Furthermore, if p = 1/2 and 0 < t < a3, then for each z € (0, a),
t
B[R] < G 5wz (@) + wy (@), (5.44)
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

Proof. We have E[R;] = {v(dz)E”[R;], such that (5.43)) follows from (5.41)) and Lemma
For the second moment, we have by (5.42]),

a t 2
E"[R} — Ry] = fmaet®™® L dy erv=a) JO ds e2a? 'pl(z, y)[*(y, t — )

< Cet@=0) f dy =D (y, )27 (z, y, t)
0

a

< Cetle=a) j dy e"V=9 (t/a? sin(ry/a) + 1)
xo(at/a2 sin(rz/a) sin(my/a) + a” (z A y)(a — (z v y)))
Performing the change of variables y — a—y in the integral and making use of the inequalities
a Yz Ary)a—(zvy) <a—yandsinz <z, we get
E”[R? — R;] < CeM*= 9 (sin(nz/a)t/a® + 1) f:o dy e " (y + y*t/a® + 412 /ab)
< Cet@= (sin(rx/a)t/a® + 1)(1 + t2/a®),

where we used the hypothesis p > 1/2. The last inequality, together with (5.43) and the
hypothesis t < a? yields ([5.44]). O

Lemma 5.9. Let f be a function as in Section . Then for every z € (0,a), we have
Ef[Rs] < E*[Rs].
Proof. As in the proof of Lemma [5.6] we have

_ (Ha _(Ha 2
E?[Rs] — me [eﬂomHal(H0>HaeS)] — Wg[e §o @ e dBs—§, “t/zdt+Ha/21(H0>HaES):|7

by Girsanov’s theorem and the definition of 8y. Now, we have by , on the event {Hy >

Ha},
Hq

H,
f pe dBy = p(a — ) + alpn, — p) — f By dpy = p(a — ),
0 0

since By € [0, a] for t € [0, H,]. This gives
T T—a T — 2 z
E[Rs] < "W [6(1 a )Ha/21(Ho>HaeS)] = E*[Rs],
by the proof of Lemma, [5.6] O

We finish this section with a lemma which links BBM with absorption at a critical line to
our BBM with selection model.

Lemma 5.10. Let ¢ > 1,y > 1, p > 1/2 and f be a barrier function (defined in Section[5.1]).
Suppose that \/a >y + ¢ and |f| < +/a. Let (x;,t;)¥, be a collection of space-time points
with

aj’Z:a—y—F(l—,U,)tZ—f(S/az), izlv"'an
and t; < ¢ for all i. Define Z = Y, wz(x;), Y =, wy(x;) and W, = ye Y N. Then,

Z =W, (1+ o(%)) and Y = ;Wy<1 + 0(2))

In particular, for large a, we have
Y < Z/y.
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5. BBM in an interval

Proof. By (5.2) and the hypotheses © > 1/2 and ¢ > 1, we have for all i,

a:iza—ijO(C(l';“f”))‘

Hence, by (5.2)) and the hypotheses p > 1/2, || f| < v/a and \/a =y + (,

EHTL — eha=y (1 v 0(2)) (5.45)

Furthermore, since z — 22/3 < sinz < x for z > 0 and by the hypotheses y > 1 and a > y+¢,

; ) = si — eV a) = F y
sin(mx;/a) = sin(mw(a — z;)/a) ay(l + O(a))' (5.46)
The lemma now follows by summing over (5.45)) and (5.46]). O

5.5 Penalizing the particles hitting the right border

In this section, let (U, )uer be iid random variables, uniformly distributed on (0, 1), inde-
pendent of the branching Brownian motion. Furthermore, let p : R4 € (0, 1] be measurable
and such that p(t) = 0 for large enough t. Recall that H = Hy A H,. We define the event

E = {}(u,t) € Ly : Xy(t) =aand U, < p(t)}.

Our goal in this section is to describe the law P% = P3(-|E). We first note that

PH(dw, B) = P5(dw) ] (Lixurea + POLx0)=0))- (5.47)
(u,t)GLt

In order to apply the results from Section [3.4] we define

h(z,t) = P (E) (5.48)

Q(z,t) = Y q(k)h(x, )" (5.49)
k=0

gz, k) = q(k)h(z, )" /Q(,1) (5.50)

By the results from Section under the law 1335, the BBM stopped at Z; is the branching
Markov process where
— particles move according to the Doob transform of Brownian motion with drift —pu;
(stopped at 0 and a) by the space-time harmonic function h(z,t) and
— a particle located at the point x € (0,a) at time ¢ branches at rate SoQ(z,?)1.e(0,a),
throwing k offspring with probability ¢(z,t, k).
We have the following useful Many-to-one lemma for the conditioned process stopped at
the stopping line .%; = LA+ Define the function

e(x,t) = Bo Y k(1 —h(z, ) Nq(k) < Boma(1 — h(z,1)). (5.51)
k=0

Lemma 5.11. For any measurable function g : [0,a] - Ry, € (0,a) and t = 0, we have

T _ T h(XH/\t7H A t) (Hat)/2—§77 e(Xs,5) ds
Ef[u;% 90X )] = W2, [9(Xin0) oo 0 | 652
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

In particular, if we denote by fi{(x, y) the density of the f’fc—BBM, then

h(y,1)
h(z,0)

Bi(z,y) = (7, )Wtiéoyo[e Joe Xs’)d]<(h(w,0))‘1pt(ar,y)7 (5.53)

and for general f,
b/ (z,y) < (h(,0))"'p{ (2,y). (5.54)

Proof. By Lemma and the description of the law Pji given above, we have

Ef‘[ >, 9(Xult ))] wz [ (XHAt)h(XHAt’H i t)esgAtﬂoﬁl(Xs,s)Q(Xs,s)ds]’

—u
ueﬂ ‘ h’(x? O)

where m(z,t) = ¥, (k — 1)§(z, t, k), which yields (5.52). Equation (5.53) follows from (5.52)

applied to the Dirac Delta-function g = d,, y € (0,a), together with ) O]

The previous lemma immediately gives an upper bound for the quantities we are interested
in:

Corollary 5.12. Letx € (0,a),t = 0 and g : [0,a] — R4 be measurable with g(0) = g(a) = 0.
Define Sy = X e0, 9(Xu(t)). Then,
E$[S)] < (h(,0)) B[S, (5.55)
E[57] < (h(,0)) ' Ef[SF]. (5.56)

Proof. Equation ([5.55)) immediately follow from (/5.53)). In order to prove the second-moment
estimates, we note that by Lemma [3.5] and the description of the conditioned process,

Bi157) = B[ 3 000 07] + [ [ Btr.ito . ) (B 7150)” dyas

ue.s

where ma(z,t) = X5 0k(k — 1)g (a: t k). By (6-50), we have ma(z,t)Q(z,t) < h(z,t)ma.

Equation then follows from ([5.16} , and (| - O

The following lemma gives a good lower bound on the first-moment estimates in the case
where f = 0.

Lemma 5.13. Suppose p = 1/2, t < a® and p(s) = 0 for all s = a3. Let S; be as in Corollary
[5.72. We have

E*[$] = E°[S,](1 — Czmlplo). (5.57)
This follows from the following estimate on h(z,0), which will be sharpened in Lemmal6.3]

Lemma 5.14. Suppose p(s) = 0 for all s = a®. Then for all x € (0,a), we have

1—h(a—2,0) < C|p|o(z + 1)e™#*.
Proof. By Markov’s inequality, we have

p(s)} = 1)

1= h(z,0) = PE(#{(u, s) € L3 : Xu(s) = a, Uy
» Uu < lplo})

Ef(#{(u,s) € L3 : Xu(s) =
IploEF (Rys),

The lemma now follows from Lemmas and and the inequality sinz < z, x € [0,7]. O

//\ //\

<
<
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5. BBM in an interval

Proof of Lemma[5.13. By (5.53)),

E[S,] = E*[S,] inf (h(y,t)ngg’go[e—SédstS)dS]). (5.58)
yE(O,a)

By Lemma and the hypothesis on u, we have for every y € (0,a),

h(a—y,t) > h(a—1y,0) =1 — C|p|ce /> (5.59)
This gives
+ t
Wi e e 21— | | e 9ds] 2 1= Clale, (560

by (5.51)), (5.59), Lemma the inequality e™ > 1 — x for z > 0 and the fact that the law

of the Brownian taboo process is preserved under the map y — a —y. The lemma now follows

from (59, (50) and (E50) 0

Finally, we study the law of R; under the new probability.

Lemma 5.15. We have for every x € [0, a,
BE[R,] — [l B3 (2] < BH(R] < (h(z,0)) ES[Ry), (5.61)
and if there is a p € [0,1], such that p(s) = p for s < t, then we even have
Ej[R] < Ef[Ry]. (5.62)
Proof. Let %; be the stopping line
Ky = {(u,s) € Ly, : s <t}
We have by definition of the law f’,

o - P e, (1 = p(5ule))
S B Mgen (1 X))

(5.63)

Now the denominator is h(x,0) by (5.48)), which yields the right-hand side of (5.61). The
left-hand side follows by noticing that

Bf| & [ (1=p(Xu(s)| > BHR( = Iplo)™] > Ef[R)] - [plEF[R7).
(u,8)e%4

For (5.62)), we note that if p(s) = p for s < ¢, then by (5.63)),

B[ Ri(1 — p)"]

E4[R] = :
A (B
Since (1 — p)* is decreasing in k, this yields (5.62). O
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

6 BBM with absorption before a breakout

In this section, we are studying branching Brownian motion with drift —u and absorption
at 0 until a breakout occurs, an event which will be defined in Section [6.1] and which corre-
sponds to a particle going far to the right and spawning a large number of descendants. In
, we decompose the system into a particle conditioned to break out at a specific time T
(this particle will be called the fugitive) and the remaining particles, which are conditioned
not to break out before time 7. These two parts will be studied separately, the former in
Section and the latter in Section [6.3] Before that, in Section [6.2] we study the law of the
time of the first breakout, showing that it is approximately exponentially distributed. First
of all, however, we start with the necessary definitions:

6.1 Definitions

We will introduce several parameters which will be used during the rest of the paper. The
two most important parameters are a and A, which are both large positive constants. The
meaning of a is as in the previous sections: It is the right border of an interval in which
the particles are staying most of the time. The parameter A has a more subtle meaning and
controls the number of particles of the system and with it the intensity at which particles hit
the point a. In Section [7| we will indeed choose the initial conditions such that Zy ~ e?.

When we study the system for large A and a, we first let a go to infinity, then A. Thus, the
statement “For large A and a we have...” means: “There exist Ay and a function ag(A), both
depending on the reproduction law ¢ only, such that for A > Ay and a = ap(A) we have...”.
Likewise, the statement “As A and a go to infinity...” means “For all A there exists ag(A),
depending on the reproduction law ¢ only, such that as A goes to infinity and a = ag(A)...".
These phrases will become so common that in Sections[7]to[9]they will often be used implicitly,
although they will always be explicitly stated in the theorems, propositions, lemmas etc. We
further introduce the notation o(1), which stands for a (non-random) term that only depends
on the reproduction law ¢ and the parameters A, a, €, 1, y and ¢ and which goes to 0 as A
and a go to infinity.

The remaining parameters we introduce are all going to depend on A, but not on a.
First of all, there is the small parameter €, which controls the intensity of the breakouts.
Indeed, when Zy ~ e, the mean time one has to wait for a breakout will be approximately
proportional in e. Morally, one could choose € such that e=4/2 « ¢ « A~!, but for technical
reasons we will require that

A

€ ~17 and (6.1)

e = Ogge™ /0. (6.2)

Another protagonist is 1, which we will choose as small as we need and which will be used to
bound the probability of very improbable events, as well as the contribution of the variable
Y. It will be enough to require that

n<e 4, (6.3)

which, by , implies
n < Ce'?. (6.4)
The last parameters are y and ¢, which are defined as in Lemma with n there being the
n defined above. Note that the parameters 7, y and ¢ appeared already in [23] and had the
same meaning there.
We can now proceed to the definition of the process. Recall the definition of p in (5.1)).
As in Section [5.1] we denote by P? and E” the law and expectation of branching Brownian
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6. BBM with absorption before a breakout

\/

To(u) /_5 |

o1(u)

71(u) )

oo (u)

Figure 2.1: Left picture: A graphical view of the tiers. The trajectory of one particle u is
singled out (thick line) and the times 7;(u) and o;(u) are shown. The tier 0 particles are
drawn with straight lines, the tier 1 particles with dashed and the tier 2 particles with dotted
lines. Right picture: The stopping line .47 (encircled particles).

motion with drift —pu starting from a particle at the point = € R; we extend this definition
to general initial distributions of particles according to a counting measure v. Recall from
Section that .4(t) denotes the set of individuals alive at time ¢. We want to absorb the
particles at 0 and do this formally by setting

No(t) = {ue N (1) : Ho(Xy) > t},

where Hy is again the hitting time functional of 0.

Instead of absorbing particles at a, we are now going to classify them into tiers as described
in the introduction. Let u e U, t = 0. We define two sequences of random times (7,,(%))n>—1
and (o, (u))n=0 by 7-1(u) = 0, op(u) = 0 and for n > 0:

Tn(u) = inf{s > o, (u) : Xu(s) = a}, (6.5)
> T

ont1(u) = inf{s > 7, (u) : Xu(s) = a =y + (1 = p)(s — 7a(u))},

where we set inf (J = 0. See Figure for a graphical description. We now define for ¢ > 0
the stopping lines

%t(l) = {(u,s) €U x [0,¢t] : s = 7y(u) and u € A5(s)}, | = —1, and (6.6)
ZU) = {(u,s) e U x [0,t] : s = oy(u) and u € Ap(s)}, 1 = 0. (6.7)

That means, %t(l) contains the particles of tier [ at the moment at which they touch the
right barrier and LS”t(l) contains the particles of tier [ at the moment at which they come back to

the critical line. Note that the sets %t(l) and %(l) are increasing in ¢ and %t(l_l) < 5”15(1) < %t(l)
for every [ = 0. We also set
l l
RY = #50.
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

In order to extend the definitions of the variables Z; and Y; to the current setup, we could
simply replace 40 q(t) by A6(t) in their definition (see Section [5.1)). However, it will be more
useful to take special care of the individuals u for which 7;(u) < ¢t < 0741 (u) for some [ > 0,
since these are in some kind of “intermediary” state which is difficult to analyse. We therefore
define the stopping lines

AV = {(u,5) e U x Ry 1 ue Ao(s), moa(u) < s < n(w),
and either t < oj(u) = sor oj(u) <t=s}, 1 >0, (6.8)
and

A=A (6.9)

=0

In other words, the stopping line e/lé(l) contains the particles of tier [ that have already come
back to the critical line at time ¢, as well as the descendants of those that haven’t, at the
moment at which they hit the critical line. We then define for [ > 0 (recall the definitions of
wyz and wy from Section ,

l l
zP = 3 wrXu(®), Y= Y wy (X)),
ue,/Vt(l) ue/i/t(l)

Furthermore, for any symbol S and 0 < k <1 < o0, we write,
l
Skl — Z s® gl — glhw) g - g0+),
i=k

For a particle (u, s) € %151)’ we now define the stopping line
L) — {(v,r) e U x Ry s v e M(r), (u,t) < (v,r) and r = o741 (v)}.

This stopping line yields a collection (X, (r),r — s)(w)ey(u,s) of space-time points and we
denote by Z®s) Y (®s) and Wéu’s) the quantities from Lemma corresponding to this
collection of points (in particular, Wé%s) = ye‘y#y(“’s)). Of course, we have chosen the

stopping line in such a way that the variable Wéu’s) follows the same law as the variable W,
defined in (4.2). We also define s max(, e (s (1 — $). We then define the “good”

event
G = {#.7) < (Y n {7 S U x [1,¢]}
A {sup #{ve () (u,s) < (v,r) < L@} < ¢} (6.10)

s<r<(
and the event of a breakout,
BWs) — (7(w9) 5 geA} U (G9)e, (6.11)

(the inclusion of the “bad” event (G(%%))¢ is for technical reasons). If the event B(**) occurs,
the particle u is then also called the fugitive. We set

ps = P*(B@0), (6.12)
and define the law of BBM started at a with the first particle conditioned not to break out:
P(, B°)

Q') =PU(|BY) =

9
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6. BBM with absorption before a breakout

where we set B = B(@9) . We further set Z = Z(@9 and W, = Wy(g’o) and note that by
Lemmas [5.10] and [£.2] we have for large a,

PY(|Z — W[ > 2n) + P ((G@)°) <y, (6.13)
where W is defined as in (4.2). Hence, by (6.3)), (4.5) and Lemma we get
1
pB = (7‘(‘ + 0(1))

—,
ge
which goes to 0 as A and a go to infinity, by (6.2]). Furthermore, (6.13)) yields for large A and

a,

(6.14)

Q"[Z] = (B[mW 1 mw<cer o) romyl + Onee))(1 + O(pp))

= 7m(A +loge + aqgry + o(1)), (6.15)
by , , and . In particular, we have for A > 1 and large a,
Q'[Z] < CA. (6.16)
Moreover, by , and , we have for A > 1 and large a,
Q%[Z%] < Cee?. (6.17)

Finally, note that by Lemma [5.10, we have ¥ < nZ, Q%almost surely, a fact that will often
be used without further reference.
We now define for every [ € N the time of the first breakout of a particle of tier I,

TO@W) =inf{t >0:we | ] B9}, (6.18)
(u,s)a%t(l)
and set
TOD = min 7O, with T = 7%*) = min 7O, (6.19)
o<l 7=0

Now fix t > 0 and [ € N U {c0}. We want to describe the system conditioned on 70 = ¢,
For this, suppose that at time 0 the particles are distributed according to a counting measure
v =", 0z. We denote by % the fugitive of the breakout that happened at time T and
define p; = P¥(i < % | T = t). This yields a law (pi)?_, on the initial particles, depending
on v and t. Since the variable 7% the time of the first breakout, is the minimum of the
variables Tl(O;l), i =1,...,n, the times of the first breakout of the BBM descending from the

K2
particle 7, we can decompose the process into

e ( ﬁ dw®
i=1

That is, we first choose according to the law (p;);’_; the initial particle that is going to cause
the breakout. This particle spawns a BBM conditioned to break out at time t. The remaining
particles spawn independent BBM conditioned not to break out before time £.

TOD = t) = > pi x Pi(dw® [ TOD = 1) x [ [P (dw [ TOD > 1). (6.20)
i=1 G

Remark 6.1. Note that many results in this section can be done for BBM with varying drift
given by a barrier function f. For example, with Lemma [5.9] one gets immediately that
P/(T© > ) > P(T® > t) for all t > 0 and it will be clear from the next section that in
fact Py(T > t) > P(T > t) as well. However, in order to simplify notation and because we
will not need the results often in this generality, we state them here only for BBM with fixed
drift.
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

6.2 The time of the first breakout

For large A and a, define
o = 5aga°- (6.21)

We want to prove that the random variable T' defined in the previous section is approx-
imately exponentially distributed with parameter ppmZy/a®, which is the statement of the
following proposition:

Proposition 6.2. Let 0 <t < fgzy. For A and a large enough, we have
t
P(T > t) = exp ( ~ mpnZo— (1 + O(At/a® + pB)> + O(pBYO)>. (6.22)
The proof proceeds by a sequence of lemmas. Lemma gives a estimate on P(T(O) > t).

This is used in Lemma in order to obtain an estimate on Q*(7" > t), using a recursive
argument. Finally, Proposition [6.2] is proven by combining Lemmas and [6.4]

Lemma 6.3. Let 0 <t < a3. Suppose that pp < 1/2. Then,
t
P(1") > 1) = exp ( = mppZo— (1+ Opw)) + OpY) ). (6.23)

Proof. Let x1,...,x, be the positions of the initial particles. Since the initial particles spawn
independent branching Brownian motions, we have

P10 > 1) = [[P" (T > 1). (6.24)
We have for every x € (0, a),
GREDES o B | P S o [ —pB)REO)], (6.25)
(u,s)eﬁt(o)

since by the strong branchiroperty, the random variables Z(*%) are independent condi-

tioned on %,5(0). By Lemma and the assumption ¢ < a®, we have
B[R] — rwz(2)t/d®] < Cwy (2), (6.26)
E*[(R\")?] < C(wy(z)t/a® + wy (z)). (6.27)

By Jensen’s inequality, (6.26]) and the inequality |log(1 — 2)| < z + 22 for z < 1/2,
(0) t
Ew[(l —pp)ft ] > exp ( — Wpsz(x)E(l + Cpg) — C’pBwy(x)). (6.28)

Furthermore, the inequality (1 —p)® < 1—np+n(n—1)p?/2 and Equations (6.26)) and (6.27))

give

(0) t
EI[(l —pp) ] <1-— Fpsz(x)$(1 — Cpg) + Cppwy (z). (6.29)
The lemma now follows from ((6.25]), (6.28]) and (6.29)) together with the inequality 1+ 2z < e*
for z € R. O

In the following lemma, note that according to the definition of the tiers, a particle starting
at a starts immediately in tier 1.
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6. BBM with absorption before a breakout

Lemma 6.4. Let 0 <t < tgzn. Then, for large A and a,

QYT > 1) = exp ( — CppA(L + n)). (6.30)
Proof. We have
QYT > t) = Qa[ [T PO @>t- s)] > Q°[PY(T > t)], (6.31)
(u,s)eyt(l)

where v = )| . Since T > t implies T©) > ¢, we have

(u,s)e%(l) 6Xu(3)
PY(T > t) = PY(T > t|T® > )P*(T© > ¢). (6.32)

Let Z = Z80) and Y = V(@9 such that Y < nZ, Q% almost surely, by Lemma and
the definition of the “bad” event B(Z9). By Lemma we have for large A,

PY(T© > t) > exp ( — CppZ (& +1) ) (6.33)
Furthermore, with the notation from Section with p(s) = pg,

PY(T > |7 > t) = PY(T > 1) = fw[ [T Qr>t- s)] > ﬁV[Qa(T > t)RiO)].
(u,s)eﬂt(o)
By Jensen’s inequality and Lemmas and this implies
PY(T > 1T > ) > QT > )P [1") > Qo(T > ¢)r2(t/a*+0m), (6.34)

Equations (6.31)), (6.32)), (6.33)) and (6.34)), together with Jensen’s inequality and (6.15]), now
yield for large A and a,

QYT > t) = QYT > t)™ A/a>+0m)  exp ( — CppA (L +1) ) (6.35)

By the hypothesis on ¢ and (6.3)), the exponent of Q%(T" > t) in (6.35) is smaller than 1/2 for
large A and a. This yields the statement. O

Proof of Proposition[6.2 The upper bound follows from Lemmal6.3]and the trivial inequality
T < TO. For the lower bound, we note that as in the proof of Lemma we have by Jensen’s
inequality and Lemma [5.15]

P(T> 1) =P(T > t|TO > hP(T® > 1) > QT > t)EFTp(7© = ). (6.36)

By Lemmas [6.4] and [5.8] we have
QT > PR > exp (= CppAlh +m) (70 + V), (6.37)
The lower bound in now follows from , and Lemma together with the
hypothesis on ¢, and . O

Lemma 6.5. Define v = (mppZy)~*. Suppose that Yo < C and let « = 0 and n € N. Then,
for large A, for every l € N u {0},

. & nlak(2y)n*
E[(T /a® + )" pon <gn] < C D) % (6.38)
= k!
Furthermore, if 0 = § = A7'o(1), then for large A and a,
E[(T/a*)Lir<san)] = 7(1 + O(AS + pp)) + O((8 + 7)e~ /) (6.39)
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

Proof. We first note that we have, for n > 1 and p > 0,

@ " (n—1)lak
f (t + a)n—le—pt dt = Z W (640)
0 k=0
Now, we have
1

E[(T/a® + a)"L10) <4)] = f (t+a)"P(TON /a? e dt)
0

1
< nf (t+ )" P P(TO) > ta®) dt + o
0

The inequality (6.38) now follows from Lemma and ((6.40)) and the hypothesis on Yj. For
the second part, we note that
6
E[(T/a®)1(r<s0%)] = f P(T > ta®)dt — 6P(T > éa®),
0

and by Proposition and the hypothesis on Yy, we have for t < ¢ and large A and a,
P(T > ta®) = (1+ O(pg)) exp(—y't(1 + O(AS + pp))).
Equation (6.39)) now follows from the last two equations. O

We now show how we can couple the variable T with an exponentially distributed variable:

Lemma 6.6. Suppose that e 47y = 1 + 0(63/2) and that Yy < nZy. Then there exists
a coupling (T,V'), such that V is a random variable which is exponentially distributed with
parameter Tppe?, T is o(V)-measurable and P(|T/a® — V| > £3/2) < Ce? for large A and a.

Proof. For brevity, set p := mpge?. Let F be the tail distribution function of T i.e. F(t) :=
P(T > t). The number of individuals in a BBM tree being at most countable, 7" has no atoms
except 00. We can therefore define a random variable U which is uniformly distributed on
(0,1) by setting

U= F(T)I(T<oo) + U/F(OO)]'(T=OO)7

where U’ is a uniformly distributed random variable on (0, 1), independent of T. Now we
define V.= —p~llogU. Then V is exponentially distributed with parameter p and T =
F~1(e7*V), where F~! denotes the generalised right-continuous inverse of F. Hence, T is
o(V)-measurable. On {T" < w0}, we have by Proposition for a large enough,

V= —pfl(ﬂ'pBeAefAZoT/a?’(l + O(AT/a3 +pB))) + O(peYo)
= T/a3(1 + 0(63/2 + AT/a3 +pB)) + O(pBeAn),

by the hypotheses on Zy and Yj. Hence, by (6.2), (6.4) and (6.14)), we have for a large enough,

IT/a® — V| = O(E32T Ja® + A(T/a®)?) + O(£2).

(6.41)

But now we have by Lemma for large A and a,

P(T/a? > c/8) < P(T0) /a3 > c7/8) < Ce O < 22, (6.42)
The statement now follows from (6.41]) and (6.42) together with (6.1 O
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6. BBM with absorption before a breakout

6.3 The particles that do not participate in the breakout

In this section, we fix 7 < gz We define the law of BBM conditioned not to break out
before 7 in the tiers 0,...,[ by

Bi() = P(-|TOD > 1), with P = P,

Expectation w.r.t. f’l is denoted by El. Under the law 131, the process stopped at £ then
follows the law P from Section with

p(t) = pBl(th) + (1 —pB)Qa(T(O;Z) <T— t), (6.43)

such that by Lemma (6.3), (6.16) and the trivial inequality 7% > T' we have for large
A and a,

Iplleo < Cpp. (6.44)
In particular, by Lemma (5.2) and (6.44]), we have for large A and a,
(h(z,0))"' <1+ Cpg. (6.45)

Lemmas [5.11]and together with (6.44) and (6.45) now immediately imply the following:
Corollary 6.7. Let x € (0,a), 0 < t < 7 < tgzy and g : [0,a] — Ry be measurable with
g(0) = g(a) = 0. Define St(o) =2y 9(Xu(t)) or St(o) = Rio). Then, with By, as above,
ue. t
oty 0 x 0 v 0 z 0
Bi[S;"] = (1+0ws)E*(S"] and EF[(5,")"] < (1 + O(ps))E"[(5,")*).
Moreover, as in the proof of Lemma [5.15] one can show that
Qi[Z] = (1+0(pp)Q"[2] and Qf[Z%] < (1+ O(pp))Q"[2%). (6.46)
We define two filtrations (4);>0 and (J4);>0 by
G =70, H=7,0,

such that ¢ c 74 < 441 for every . Now define for measurable I c [0, 7],

Z5, = > Ze9, Y3, = > e,
(u,t)e s ~(UXI) (u,t)e sV ~(UXT)
- o _ -0 ) _ O - s
with ZQ Z 25,0,7] and YQ YQ [0,7]° Furthermore, recall from Section [6.1| the definition
of Z g ;l), Z(Q ) and Zg and the corresponding quantities for Y.

I+
Lemma 6.8. We have for all 0 < k <1, x € (0,a) and large A and a,
E[ZS) |9 < (7 + Cpp)QUZ) (52 + OYS)). (6.47)
In particular, for large A and a,
B[24) < CA(Z 2 + OY0) (A + Czzm)) (6.48)
In the case k = 0, we also have for large A and a,

2] > (v - Cpp) Q[ Z)(5 %o — CYo). (6.49)
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

Proof. We have for 0 < k <,

Blzg V4] =B Y 200 |4 - QplZIRY, (6.50)
(u,t)e2™

since conditioned on 74, the random variables Z(®! are iid under f’l of the same law as Z
under Qf ;. and independent of 7, by the strong branching property. Now, we have

B[R %] = Y ENORY|T>7-1,

(u,t)e. s
such that by Lemma [5.8] and Corollary [6.7]
EZ[R“f %] < (1+0pe)) (7525 + Gz ). (6.51)

Equations and (6.51) together with (6.46) glve (|6 47)). Equation (|6.48)) follows easily
from (6.47 by and the fact that Y(k) Z (k) Pl almost surely for 1 < k: [. Now, in
the case k =0, we have % = %o by deﬁnltlon Denote the positions of the initial particles

by z1,...,z,. By Lemmas@ m and m,
O] = 3B RS Z B (R)] - ] B (R)]
i=1

7T;Zo — Cszg¥o — Pl Cram (5 20 + Vo) ,
which yields (6.49). B

Lemma 6.9. Suppose that t < 7. Then for large A and a, we have
B[Z] = Z (1 +7Q 2] 4 + O (pB + (A;—3)2)> +O0(AYy), EBV]<C (Yo+nAkZ).
If moreover t = 2a?, then
E[m(R[F 2 =0 < C(ZO +AYy)  and  P(Rp_q2q # 0) < Cn(Yo + Zo).

Proof. First note that we have inf,c[g 41 h(z,0) = 1/2 for large A, by (6.45). Furthermore, by
the hypothesis 7 < #gy and (6.3), we have 72 A(% + Cn) < 1/2 for large A and a. The ﬁrst
two inequalities now follow from Proposition E Corollary -, Lemma . and
by summing over k. In particular, if ¢ > 242, then for large A and a, E[Z,_,2] < C(Zo + AYO)
and E[Y,_,2] < Cn(Zo + Yp). Together w1th Proposition H Lemma [5.8 and Corollary |6
this proves the other two inequalities. D

In order to estimate second moments, we will make use of the following extension to the
Many-to-two lemma (Lemma [3.5). For x,z € (0,a) and 0 < t < 7, we define ma(z,t) to
be the quantity m(z,t) from Section corresponding to the penalisation from (6.43]) and
~(0)

p; ' (z, z) to be the density of tier [ particles at position z and time ¢ under the law 13‘”, not

counting the particles u with ¢t < oy(u). Then set p; = (0+).

Lemma 6.10. Let w : [0,a] — Ry be measurable and define Sy = 35, e 5 w(Xu(t)). Then

BIs?] = BT Y w(Xu(s)] + o fo fnﬁa(z,s)f)S(m,z)Ew[st]?dzds

(u,8)eM

e S semmes) oo
(u,5)€t (v1,51),(v2,52)€7 (1:5) vy #vo
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Proof. For (v1,s1), (v2,s2) € A we write (v1,51) A (vg,s2) for their most recent common
ancestor. Then define for [ > 1

,Q%l(l) = {((v1, 81), (v2,82)) € L/VtQ : 01 # vg and if (v1,s1) A (v2,82) = (v, S0),
then 7’171(’00) <50 < O'l(vo)},
and for [ >0
4272(“ = {((v1,51), (v2, 82)) € A2 1 vy # v and if (v1,51) A (v2,52) = (vo, 50),
then oy(vo) < so < 7i(vo)},
We then have

Ez[ Z w(Xy, (s1))w(Xv,(52)) ‘%]
((v1 ,81),(’02,52))6:@71(”

- X 2 B () [§ BN (2)2)[5], - (6.53)
(u,s)eZ() (v1,51),(v2,52)€7 (%:5) w1 vy

and by Lemma (see also Remark [3.4)),

B0 wXus)u(Xe ()]

((v1,51),(v2,52)) e

t ra
= 5OJ f ma(z, S)f)g)(:n,Z)E(Z’S)[ASE]2 dzds. (6.54)
0 Jo

Equations (6.53)) and (6.54)), together with (3.5)) and the tower property of conditional expec-
tation yield the lemma. O

Remark 6.11. An analogous result holds for R;.
Lemma 6.12. We have for every t < T

@(Zt) < CaeA(%Zg + Yo) and \/fa\r(Rt) < Ceet (%Zo + Yo).
Proof. By Lemma and the hypothesis t < 7 < #gzq, we have for every x € (0,a) and s < t,
E®9)[z,] < CA (wz( )— b by )) < CAem1le2), (6.55)
Now, as in the proof of | m, we have by (6.55)) and Corollary

f f (2, B2 dz s < CA( () + wy (), (6.56)

which yields

J J M3 (2, 8)Ps(z, 2)EG9[ 2,2 dz ds

t a
<cB| Y [ [ B0 (o) B2 dzds
sg JO

(u,80)€% (657)

t ~ A~
< CA? (EEx[Z@,[O,t]] + Ex[YQ,[O,t]D
ca’(

A? %wz(ﬂz) + wy(m)>,
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by Lemmaand the hypothesis t < 7 < fgzg. Furthermore, by (6.55)), (6.3) and Lemmal5.10)|

we have

ﬁm[ Z Z E(XUI(51)’51)[Zt]E(XW(”)’”) [Zt]]
(u,8)€%t (v1,51),(v2,52)€ (4:5) vy £va

< CQUZ2|B[Ry] < ceeA(in(x) fuy (@), (6.59)

a3

by (6.17) and Lemmas and Corollary Lemma together with (6.57)) and (6.58)

as well as Lemma and the inequality w% < Cwy gives
— A~ t
Var (Z,) < B*[(2)?] < CeeA(EwZ(x) + ’wy(a:)>. (6.59)

Summing over the initial particles yields the inequality for \//'a\r(Zt). The proof of the second
inequality is analogous, relying on Lemma and Remark O

We finish the section by a corollary which will be useful in the next section.

Corollary 6.13. SuppoAse that t < 7 and = € (O,a). Then for large A and a, we have
E*[Z;] < CAe= (=22 E*[72] < Ceete™ (092 gnd E*[YV;] < Ce(@=)/2,

Proof. Immediate from Lemmas and and ((5.2)). O

6.4 The fugitive and its family

We now describe the BBM conditioned to break out at a given time. Recall that %
denotes the fugitive. For simplicity, we write 7, and oy for 7(% ) and o;(% ), respectively,
l € N. On the event T = T®, we define %; to be the ancestor of % alive at the time o3,
j=0,...,1. By the strong branching property, we have the following decomposition:

Lemma 6.14. Let k€ N, l € N U {0} with | > k and t = 0. Conditioned on Fy, TV =
T®) — ¢, 79 and %, the BBM admits the following recursive decomposition:
1. The initial particles u # U, spawn independent BBM conditioned on TV > ¢,
2. independently, the particle %y spawns BBM conditioned on a particle (call it %) hit-
ting a for the first time at the time 79, all the children of which born before 1y being
conditioned on TOD > t.

(a) If k = 0, this particle %, spawns BBM conditioned on the event B of a breakout.

(b) If k > 0, it spawns BBM starting at the space-time point (a,Ty) conditioned on
TOD — 7W®) = ¢t In particular, if we write ¥ = %) then conditioned
on Fo, the particles in 7 spawn BBM starting from the collection of space-time
points ., conditioned on T(04—1) = Tk=1) — ¢,

Note that in the case 2b above, the subtree spawned by (%, 7o) follows the law Q con-
ditioned on TOD = T®) = ¢ hence the law of (%4> is not the same as under Q. In
particular, E[Z (% ’TO)] £ CA. Indeed, conditioning on one of its descendants breaking out at
a later time corresponds to a kind of size-bias on the number of particles. However, it is still
true that Z(%70) < g, by the definition of a breakout.

Lemma gives a decomposition of the BBM conditioned on T*) into k + 1 pieces.
In order to describe what happens in a single piece, define % to be the o-field generated
by the family of events ({700 = T" ), . and by %, (X (8))o;<s<r;> (duybu)u<a and
SU75) for j =0,...,k, on the event {T(%) = T(* )} Note that in particular, on the event
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6. BBM with absorption before a breakout

{T(O;l) = T(k)}, 7j, (%;,0;) are Fy-measurable, j = 0,...,k. It is plain that conditioned on
Fa, the subtrees spawned by the children of the ancestors of % during the intervals [0}, 75)
are independent BBM conditioned not to break out before ¢.

It remains to describe the trajectory of the fugitive and its reproduction. By a decom-
position at the first time of branching as in Section [3.4] we could describe the law of BBM
starting from a single particle at position x at time 0 and conditioned on a particle hitting a
for the first time at a time s < t, all the children of which born before s being conditioned
on T > t. However, it is faster to use the Many-to-one lemma instead, which is the method
of proof of the following lemma, which we state for general penalisations p(s). This result is
essentially [64, Theorem 1].

Lemma 6.15. Lett > 0, z € (0,a) and p : Ry — [0, 1] be measurable with p(s) = 0 for s

large enough. Denote by P the law associated to p(s) as in Section . Recall the definition of

e(z,t) from (5.51)). Then, given a family of F 0 -measurable non-negative random variables
“t

(Yu)uer, we have

E*,x [vat e~ S(t) e(&s,s)ds
E*,x [6_ Sé e(&s,s)ds

Ho(¢) > Ha(€) = ]
Ho(€) > Hal€) = 1]

B [Yu

JueU: (u,t)e %(O’] =

where under f’*’x, the spine follows standard Brownian motion and spawns particles with rate
m1(z,t)BoQ(x, 8) according to the reproduction law ((M7(x,t)) " kq(z,t, k) k=0, which start
independent P-BBM. In particular, conditioned on (X, (s))o<s<t and (dy, ky)y<u, the children
of the ancestors of u follow independent P-BBM.

Proof. We have

~

E* [ Z(u,s)eﬂt(o) 1(Ha (Xu)edt) YU:|

B [Yu

JueU: (u,t) e gz’t(‘))] - , (6.60)

~

E* [ Z(u,s)eﬁ?ﬁo) 1(Ha(Xu)€dt)]

and by Lemma (3.1

' T, T i ssS 5,5)ds
EJU [ Z 1(Ha (X, )edt) Yu] = E":M |:Y§t GSO (€5,5)BoQ(Es,5) d 1(H0 (©)>H. (g)edt)] ) (661)
(u,s)ez”)

According to the description of the conditioned process in Section[5.5]and the description of the
spine in Section [3.3] the particles on the spine follow the Doob transform of Brownian motion
with drift —u by the harmonic function h(z,t) and spawn particles with rate my (x,t) 80 Q(z, s)
according to the reproduction law ((m1(z,t)) 'kg(x,t,k))r=0. With Girsanov’s transform,

(6:61) yields,

EI |: 2 1(Ha (Xu)Edt) Yu:| — e_M(a—I) h E*,CE |:)/'£te_ SO e(fs ,S) ds]-(HO (§)>Ha (&)edt)] )

0
(u,s)e%t( )

(6.62)
Equations (6.60]) and (6.62)) yield the first statement. The second statement follows by taking
appropriate test functionals (Y3,)yuer- O]

Corollary 6.16. In addition to the assumptions in Lemma suppose t € [0,a®] and
Iplleo < ¢p, where ¢, s some universal constant implicitly defined below. Then,

B [Yu

JuelU: (u,t)e %t(o)] < CE™* [th

Ho(€) > Ho(€) € dt]. (6.63)
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

Figure 2.2: A visualization of the bar- and check-particles: The path of the fugitive until the
breakout (depicted by a cross) is drawn with a solid line, the bar-particles (spawned between
the times o; and 7;) with dashed lines and the check-particles (spawned between the times 7;
and o741) with dotted lines.

Proof. By Lemma the inequality e™® > 1 — x and the hypothesis on ¢, we have
E*,x [e— Sé e(&s,s) ds

taboo

Ho(€) > Ha(€) = t| = Wi [ e Xe9] > (1 - Clplo).  (6.64)
The statement now follows from (6.64) and Lemma [6.15] O

We come back to the BBM conditioned to break out at a given time and set up the
important definitions. Recall that % denotes the fugitive. We will denote by a bar the
quantities referring to the particles spawned between the times 0;(%) and 7(% ) for some
[ >0, and by a check those referring to the particles spawned between the times 7;(%) and
01+1(%). See Figure for a visualization. Formally, we set

Ny ={ue N :(u,t) A (%,T)eU x U[Ul(%)ﬁz(@/))}?

=0

Ty = {(u,5) € 2" (w.s) n (2. T) e U x |l @), 1(%)))}

=0 =0
and _
N={ue N (u,t) A (%, T)eU x| JIna(%),01(%))}.
=1

We then define

and
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6. BBM with absorption before a breakout

Note that on the event 7' = T(®), we have jf(T) = & by definition.
By Corollary the following .#4-measurable functional will be of use in the study of
the bar-quantities.

l
Z D Loydy<r) by — 1)em @7 Ful@)2 - on {7 = 70, (6.65)
i=0 u<%
where we recall that d,, and k, are respectively the time of death and the number of children
of the individual wu.
Lemma 6.17. For large A and a, we have for every l € N,
E[6y | T =TV < tgom] < C(1+1).

Proof. By Lemma and Corollary (which can be applied because of (6.44])), we have
for every [ € N,

! Ti—03
E[&y | T =10 Z [ ” ¢~ (a=B1)/2 dt] ’T - 70 < tm:]
where W is the law of a Brownian bridge of length 7; — o; from Xy (0;) to X4 (7;). The
statement now follows readily from Lemma [2.2] O

We can now study the probability that the fugitive stems from a given tier.

Lemma 6.18. Suppose that Ciet < Zy < Che? and Yy < nZy. Then for large A and a, we
have for 1€ {1,2},
P(TUH) < 70Dy < O(eA),

Proof. By (6.2)), (6.14) and (6.46]), we have for large A and a,

P(T” > tgoy) < exp(—CA/e) < exp(—C/+/e). (6.66)
Now for the rest of the proof, let t < fgogand let v = > | d,,. We have by the decomposition
of the process conditioned on 7041 = ¢,

PY(TU) > | 70D = gy = 3P0 (1) > ¢ | 701 > )

x Po(TE) > ¢ 7O — 4y (6.67)

Define ¢; = w2 A(t/a® + Ggzgn), which is less than 1/2 for large A and a by the hypothesis on
t. By Lemma [6.8] and the hypothesis, we have for every j < I,

B 1[25 7 < CZod, 7, (6.68)

and moreover for every (z,s) € (0,a) x [0,¢],

B (2577 < cAemlemo2dT (6.69)

For every k <1 — 1, (6.68) applied to the particles in %j), j=1,...,k yields

l
E[Zg) |T(k) — Ol-1) _ t] < Cee? Z C’geA =k, (6.70)
j=1
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Moreover, by (6.69), Corollary and Lemma we have

E[ZY) |T® = 70D — 4] < cAd. (6.71)
In total, we get by (/6.68]), and (6.70]), the hypothesis on Zy and (6.2)),
O ORI g _
E[ZY) + 23 + 23 1T = 10D — 4] < Ce?(d + e 7). (6.72)

Jensen’s inequality and Proposition together with (6.72)) and the inequality 1 —e™ < z
give
P(T) < ¢|7® — 7O — 3y < Cep(e el + F). (6.73)

Summing (6.73]) over k, the law of total expectation gives
P(T") < | T — 1) < Cey(e7Ve + ). (6.74)

The lemma now follows by integrating (6.74]) over ¢ from 0 to #gzy and using Lemma and
(6.66). O

Remark 6.19. One may wonder whether one can simply calculate P(T®) e dt | (%=1 > ¢)
for every [ > 1 and t < g3y, using only the tools from Section [6.3] This would require fine
estimates on the density of the point process formed by the particles from tier [ — 1 hitting
a just before t. These estimates can be most easily obtained if one stops descendants of the
particles hitting a at a (large) fixed time ( instead of the line from Lemma , with which
the results in this paper would hold as well. However, in order not to lose generality, we stick
to Lemma [6.18] which is enough for our purposes.

7 The B-BBM

We will now define properly the BBM with the moving barrier, also called the B-BBM
(the “B” stands for “barrier”), which will be used in the subsequent sections to approximate
the N-BBM. We will still use all the definitions from Section with one notational change:
Recall that by , we can decompose the process into two parts; the first part consisting
of the particles spawned by the ancestor of the fugitive and the second part consisting of the
remaining particles. As in Section the quantities which refer to the particles of the first
part will be denoted by a bar (e.g. Z) or check (e.g. Z). The quantities of the second part
will be denoted with a hat in this section (e.g. 2), in reference to the law P from Sectionh

7.1 Definition of the model

Suppose that we are given a family (f;)z>0 of non-decreasing functions f, € €*(R,R.),
such that for each z > 0, f,(t) = 0 for t < 0, fy(4+0o0) = = and for each 6 > 0 small enough
there exist xg = x¢(0), tg = to(d), such that

1. 2¢(d) > o0 as § — 0,

2. | fel < 671 for all z € [0, z0],

3. fz(t) = (1 —0)x for all t > tp and

4. t < 5_1.
where | f| is defined in . A family of functions with the above properties exists, for
example the following, which we will choose in Sections [§ and [0

fz(t) = log (1 + (e* — 1)5(1&)) . (7.1)
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breakout!

s T

\ _ a2
O

L

e

Figure 2.3: A caricatural graphical description of the B-BBM until the time ©1. The fugitive
and its descendants are drawn with thick lines, the other particles with thin lines. A breakout
happens at time T and the barrier is moved from the time 7" on. Note that technically we
increase the drift to the left instead of moving the barrier. The three important timescales
(1, a® and a®) are shown as well.

For every A and a, let vy = 1/64 ““ be a (possibly random) finite counting measure. We now
define the B-BBM with initial configuration of particles vg. Starting from BBM with constant
drift —p with initial configuration 1y, we define for each n € N a stopping time ©,, and for

each n € N* the barrier process (Xt[n])te[@%l’@n] as follows:

1.
2.

We set ©p = 0.
Denote by T' = T3 the time of the first breakout of the BBM absorbed at 0 and by %
the fugitive, as in Section ﬂ We set Xt[l] =0 for t € [0,T].

. Define T~ = (T — e“a?) A 0 and

A =log (e_A(ETf + Egva + Z(%’T))) v 0. (7.2)

where ngT, = Z_(Fl_) if 77 = 70(%) and = Zg) otherwise. The above quantities are

defined in Section after Corollary
%%

. Define T+ =T, =T + Tmé;(T) and ©1 = (T + e“a®) v T*. Note that T* and therefore

also O is a stopping time for the BBM. Now define
t— +

xM = fA( ),te [T+, 01].

a?
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We then give to the particles an additional drift —(d/dt)Xt[l] for t € [T*,04], in the
meaning of Section [5.1]

5. We have now defined 17, T 1+ , ©1 and X (1], We further define 1 to be the measure
formed by the particles at time ©;, which have never hit 0. To define Tz, T,5, O
and X2 we repeat the above steps with the process formed by the BBM started from
those particles, with the definitions changed such that the barrier process starts at
X[@21] = Xg}, time starts at ©1 etc.

6. We now construct the barrier process Xt[oo] from the pieces by Xt[oo] = t[n], if t e
[©n-1,0n].

Define the event Gy = {supp vy < (0,a), |Zo—e?| < €%/2e?, Yy < n}. Recall the definition

of the phrase “As A and a go to infinity” from Section Define the predicate
(HB) (The law of) vy is such that P(Gy) — 1 as A and a go to infinity.
(HBy) vy is deterministic and such that Gy is verified.

Furthermore, if for some n > 0, (t?’a)}l:l e R for all A and a, then define the predicate
t ere exists 0 <1 < --- <y, such that tor all e {1,...,n, &7 — t¢; as A and a go
Ht) There exists 0 < ¢ tn, such that for all j € {1 t/"* — t; as A and
to infinity, with tf’a =0ift; =0.

Theorem 7.1. Suppose (HB). Letn > 1 and (t?’a)?:l e R} such that (Ht) is verified. Define
the process

(Xe)iz0 = (X13) — 72 At) 0.

a’t
Then, as A and a go to infinity, the law of the vector (Xt,g,a)?:l converges to the law of
(Lt;)7_1, where (Lt)i=o is the Lévy process from Theorem .
A stronger convergence than convergence in the sense of finite-dimensional distributions is
convergence in law with respect to Skorokhod’s (J1-)topology (see [78, Chapter 3]). Obviously,
the convergence in Theorem [7.1] does not hold in this stronger sense, because the barrier

is continuous but the Lévy process is not and the set of continuous functions is closed in
Skorokhod’s Ji-topology 6. However, if we create artificial jumps, we can rectify this:

Theorem 7.2. Suppose (HB). Define J; = Xg):], if t € [04,0n4+1), forn € N. Then as A
and a go to infinity, the process (X})i=0 = (Ju3; — T2 At)i=0 converges in law with respect to
Skorokhod’s topology to the Lévy process defined in the statement of Theorem [7.1]

For each n > 1, we define the event G,, to be the intersection of G,_1 with the following
events (see Section for the definition of .4;):

— suppv, < (0,a),

- N, cU x{0,} and ©,, > T)F (for n > 0),

~ le=4Zo, — 1| < €%? and Yo, <.
Note that G,, € Zg,, for every n > 0.

The core of the proof of Theorems and will be the following proposition:

Proposition 7.3. Fiz A € R and define vo = (mpge?)~'. There exists a numerical constant
€ > 0, such that for large A and a, we have P(GS | Fo)1g, < ne'*c for every n = 0 and

. [o0]
logE [e”‘X@n

%] 1g, = (mo(ﬁ(x) +iAT2A + o(1) + 0(56))) 1g,. (7.3)

where k() is the cumulant from (1.1)) and where o(1) and O(e®) may depend on X.

6. One could prove convergence in the Mi-topology (cf. [142] Section 3.3]), but the use of this less standard
topology would lead us away from our real goal: the proof of Theorem
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7.2 Proof of Proposition

First note that conditioning on .%, we can and will assume without loss of generality that
the hypothesis (HBg) holds and will only state it again in the lemmas. In the same vein, we
will always assume that A and a are large and will omit stating this fact, except again in the
statements of the lemmas.

Furthermore, it is only necessary to treat the case n = 1, since the rest can be ob-
tained by induction: Suppose that we have shown the result for n = 1. Since the pro-
cess starts afresh at the stopping time ©,,, we then have P(G,\Gn11|%o,) < e'™1g, for
every n > 0, which implies the statement on the probability of G,,. Similarly, if we set
&' (A) =70 (K(A) + iAm?A + o(1)), where o(1) is the term from (7.3)), then

ixel _xlel , .
Bl o o)1 | Fe, | = (XD £ 0/(P(Ga\Grin | Fo,)) ) 16,
_ (1 + O(€1+e)) 6;@’(>\)+O(55)1G

because v9 = (1 + o(1)) by (6.14). It follows that

n?

i\ x L] , 6 . 0
E[ezAX@n+11Gn+1] _ ' (NFO0(e )E[e“Xén] (1+0(1*9) 1Gn]

_ H VO R [ euxgi] 1Gn]
By induction, and the fact that P(G¢, ) < nel™ < 9" we then obtain (7.3).
Throughout the proof, we will work on several “good sets”, which we all define here for
easy reference, since they will be reused in the following sections. For this reason, some of
them (for example G) are actually more restrictive than what would be necessary for the

proof of Proposition
— Gy ={e?a®> < T < +fea®, T =TOY, &, < /3.
~ Gy = (ZT) < eAJe} n GT) (the event G%T) was defined in (6.10)).

— G ={|Zp- — et < eMheA, Voo <a1e34?)
-G = {EQVTf < el/ted, )V/'@VTf < e=4/?} (we define l\//'@VTf analogously to ZQVTf).

- GA:G%meungA}mé.
— Ghbap (“nbab” stands for “no breakout after breakout”) is the event that no bar-particle

breaks out between T and ©; + e?a? and that no hat-, fug- or check-particle (fug-
particles = descendants of .(#°T)) hits a between T~ and ©; + e?a?.

Recall the definition of %4 from Section and set Fa = Fy v %7 % %7, such
that G NS Za and the random variable A is measurable with respect to #a. Define further
In = Zp- + 2T 4 Zg., - and YA analogously. Finally, define Pppar, = P(-| Gupab)-
The probability of Ga.

Lemma 7.4. Suppose (HBy). For large A and a, we have P(Ga) = 1 — Ce™/4.
Proof. By Proposition [6.2] and Lemma [6.18], we have
P(eta® < T < ved®, T = TOV) > 1 - cA%2 (7.4)

Since /¢ < tgzy for large A by (6.1), Equation (7.4) and Markov’s inequality applied to
Lemma [6.17] yield
P(Gy)=1—CA%% (7.5)
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Furthermore, by (6.13]), we have,
P(Ggug) <pg' (P (7W > et/e —2n) + 1) < C2, (7.6)

by (@.5), (6.2). (6-3) and (6.14)

In order to estlrnate the probablhty of G we will calculate first- and second moments of
the quantities in the definition of G. These estimates will be needed again later on, when we
calculate the Fourier transform of the variable A.

By Lemma - and the hypotheses, together with , and ,
Ele 27~ | F4]lc, = 1+7Q (2] + 0 (=72 + (45)%), (7.7)
which together with Lemma [6.12] gives
E[(e *Zp- — 1| Fy1c,, < Var(e 4 Zp- |9@)1G% +0((A5)? + &%)
<C((AL)y +eL +&%),
by the hypotheses on the initial configuration. Lemma and , together with ,

(6.4) and (6.15)), now give

(7.8)

E[e “Zr- |Gy] =1+ 7270(A + loge + agrg + o(1)). (7.9)
Similarly, (7.7)) and (7.8)) and Lemma give
E[(e 4 Zp- —1)?|Gy] = O(A%?). (7.10)

Furthermore, by Lemma and Markov’s inequality, together with (6.3]) and the hypotheses,
we have

P[Vr- > Y2 /a| Gy < Ce 2. (7.11)

By the same arguments, and since ég) < €€A1(T:T(1)) by the definition of a breakout, we
have

Ele *Zy. 1 | Fulla, < Celip_ro) (7.12)

El(e *Zgur-)* | Falla, < Ce g (7.13)

E[Yg.r | Zallc, <e'n<e™, (7.14)

be (6.3]). Equations (7.11]) and (|7.14)) and Chebychev’s inequality applied to (7.10]) and ( -
together with (6.1) now give

P(GuUG|Gy) <1—e4 (7.15)
The lemma now follows from (7.5)), (7.6 and ((7.15)). O]

The probability of G pap-
Lemma 7.5. We have P((Gupap)©| Fa)lc, < Ce? for large A and a.

Proof. Define Ry = R[T*,@H—eAaQ] + R?:f@ +eda?]

Lemmas [5.8] and [5.9 and Corollary [6.7 we have
P(R; > 0].Za)1g, < C(Zaet/a+Ya) < Ce?,
by the definition of Ga, and . Now, by Corollary
E[Zr | Zalla, < CA&y < CAe®  and  E[Yr|Zalla, < C&y < Cet3,

+ R[T*,Gh +eAa?]- By Markov’s inequality,

where we used the fact that Z g) < ee? by the definition of a breakout. By Proposition
and the inequality 1 — e < z, the probability conditioned on %A and on Ga that a check-
or bar-particle breaks out between T and ©; is now bounded by pge?/3 < Ce2 by (6.14) and

O

(6.2]). This yields the lemma.
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The particles at the time ©;. The probability of G;. Recall that from the time

T =T + TI(rZXT) on, we move the barrier according to the function fa, which is equivalent

to having the variable drift —u; = —p — fa(t/a?)/a®. On Giyg, we have TT < T + ¢ and
01 = T + e?a®. Furthermore, 0 < A < Clog(1/¢) on Ga and by the hypotheses on the
functions (f,) and (6.2)) it follows,

onGa:|fal<va and A- x5 =0 ), (7.16)
where || - | is defined in ([5.4]).
Lemma 7.6. Suppose (HBy). Then P(Gy) =1 — Ce%* for large A and a.

Proof. By Proposition Lemmas and [7.5] Corollaries and and ([7.16)),

]1—3nbab[<3_AZ®1 | Zalla, = e_A_A(ZA + A&y )(1 + O(e—A/Q)) =1+ O(e—A/Q)
Vara (€™ Zo, | Za)la, < Cee 4 (Zaet fa+ Ya + &) < Cee 43,

such that by Chebychev’s inequality and (6.2]),
Pubab(le ™ Zo, — 1] = £3/?) < C&2. (7.17)

Furthermore, by Lemma [6.9, Corollary [6.13] and Markov’s inequality, we have

Pobab(suppre, < (0,a), Yo, < 1| Fa)la, < e?/(an) + Cne < €&, (7.18)
by (6.3) and (6.2). The lemma now follows from (7.17) and (7.18) together with Lemmas [7.4]
and O

Remark 7.7. Lemmaobviously still holds if one replaces G by G1n{le™4Zg, —1| < 3%/}
This will be needed in Sections [§ and 0

The Fourier transform of the barrier process. Define Ay = e*A(éTf + ngTf) -1
and Ajymp = e~ AZ 1) which are independent random variables. Recall that A > 0 on GAa.

By (7.12)) and Lemmas and [7.4] we have
E[e*AZQVTf |Gy ] < CeP(T = TW | Gy) < CAL2,
such that with (7.9)), we get,

E At | G ] = 7r270(A +loge + ¢+ o(1)). (7.19)

Furthermore, (7.10) and (7.13) and the inequality (z + y)? < 2(2? + y?) yield

E [(Aarin)? | G | = O(e*A%). (7.20)
Equation ([7.20]) and (6.1]) imply
P(|Agire| = €3, Gy) = O3 A%) = O(£7/9). (7.21)

Fix A € R. Since log(1 + z + y) = log(1 + z) + log((1 + y)/(1 + z)), we have by (7.16)),

and Lemma

irx i
E[e”701] = B[, 1ccslaa] + O("®)
(7.22)

— E[ei)‘ log(1+Adrift) | ”\IOg(lJr 1+]Au;npft )] + 0(89/8),

([Aauise|<c1/3)1GaC
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

for any A € R. We will first study the term concerning Ajymp. Write Z = Z (%.T) and let p
be a real-valued constant with |p| < /3. Then,

E[eiAlog(1+Aiufn;p)] _ E[ei)\log(l-&-%) | 7> €€A] + O(Pa((G(Q,O))C))

) foo (7.23)

g(x)Ple ™ Z e dx| Z > eet) + O(e?),

)

where

g(x) = exp (i)\log (1 + %p))

By definition of pp and 7, we have

1
J tP(e 2 Z edx|Z > eet) = (pp + O(’I’]))71E[67AZ1(56A<Z<6A)]
3

= W2'yo(— loge + o(1)),

by (@6), 6-2). (E3), (1) and ([GI3). It follows that

o0
f g(x)P(e A Z e dx| Z > ce?)
0

=1+ idm%yo(1 + p) H(—loge + o(1)) + f h(z)Ple 2 Z e dx | Z > eet), (7.24)

€

Denote by h™(z) its left-hand

where we define h(z) = g(z) —1—iA(1+p) "ol (1) for z = 0.
| < C(z7! A2?) for x > 0. By integration

derivative. Note that |h(z)] < C(1 A 2?) and |h™(x)
by parts, (4.5) and (6.13]), we have

Q0
J h(z)Ple 2 Z e dx| Z > ee?)

£

— h(e) + pg'(1+ 0(1))(ro h™(2)P(Z > ze?) dz + (h(1+) — h(1))P(Z > eA)>
. e (7.25)
= 72 (x l T — 0
= o |0 @) de o+ (1) = h(D) + o)
= 12y0(1 + o(1)) J h(m)i2 dz.
0 T

Now, one readily sees that

o]

J h(m)ﬁ dz =i\ +o(1) + O(p)) + J e 1 — i\t (z<1) A(dw), (7.26)
0 0

where A(dz) is as in the statement of Proposition[7.3|and ¢’ is a numerical constant. Equations
(7.23), (7.24), (7.25) and (7.26]) and the Taylor expansion of e~ at x = 0 now yield

E[eiklog(1+Ai“Trzp)]

0

— exp [fyo <i)\7r2(— loge + ¢ +o(1) + 7r2f

er 1 — iIAT1(z<1) A(dx)) + O(e|log 5]p)].
0

(7.27)
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Coming back to (7.22)), we have by the Taylor expansion of (1 + z)™ at z = 0,

E[eiA(log(1+Adrift)+O(5|logamdrm))1(\Adrift|<€l/3)1GA]

= E[(1 + i Agyigs + O(A?irift))l( r<yzat)] T O(e 9/8) by Lemma [7.4] and (
=14 idt2y(A + loge + ¢+ o(1)) + P(T > vea®) + O(e”/®) byand-

— expidm?yo(A +loge + ¢ + o(1) + O(e'/®)),

where the last equation follows from Lemma and the Taylor expansion of e* at x = 0.
This equation, together with (7.22) and (7.27) and the fact that Ajump is independent from
Agritt, T and Gy, yields (7.3) in the case n = 1.

7.3 Proof of Theorems [7.1] and [7.2]
We define the process (X} )i=0 by

X/ = xR
! Oleng ta3) "
Proposition 7.8. Suppose (HB). Then, as A and a go to infinity, the process (X} )i=o0 con-

verges in law (with respect to Skorokhod’s topology) to the Lévy process (Li)i=o defined in
Theorem [11l.

Proof. Conditioning on %, we can assume without loss of generality that the initial config-
uration v is deterministic and that Gy is verified. Denote by (%#/)i>0 the natural filtration

of the process X/ and note that %, = Z ;’ 1] © ﬁTLt e In order to show convergence
0 0 0

of the finite-dimensional distributions, it is enough to show (see Proposition 3.1 in [107] or
Lemma 8.1 in [78], p. 225), that for every A € R and ¢,s > 0,

”E [PXiee | Z1] — ei,\X;/esn(,\)H -0, (7.28)

as A and a go to infinity. Now, define n := |tyy '] and m := |(t+s)yy '], such that (m—n)yo =

s+ A71o(1), by (6.1) and (6.14)). Then we have by Proposition
B[N XX | 2o 116, — efi)\AsE[ei)\(X(gﬂfxgﬁ]) |\ Fo. 1o
= exp (3(/1()\) +o(1) + O(€€>))]_Gn.

In total, we get for A and a large enough,
B[P} ] < A 1) (G,

By Proposition this goes to 0 as A and a go to infinity, which proves .

In order to show tightness in Skorokhod’s topology, we use Aldous’ famous criterion [§]
(see also [35], Theorem 16.10): If for every M > 0, every family of (.%#/)-stopping times
T = 7(A, a) taking only finitely many values, all of which in [0, M] and every h = h(A,a) = 0
with h(A,a) — 0 as A and a go to infinity, we have

Yon— X7 —0, in probability as A and a go to infinity, (7.30)

then tightness follows for the processes X/ (note that the second point in the criterion,
namely tightness of X/ for every fixed ¢, follows from the convergence in finite-dimensional
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

distributions proved above). Now let 7 be such a stopping time and let V; be the (finite) set
of values it takes. We first note that since G,, D G,41 for every n € N, we have for every
t € V; and every A and a large enough,

by Proposition [7.3, Moreover, since .%#, < .%p _, for every t = 0, we have for every A > 0,
t vl
/’\/0

E[eN X7 4n=XD)] = Z E[ei/\(xﬁh—Xél)l(T:t)]

teV,

- Z E[E[ei)\(Xé;hiXél) | ﬁT[t —11]1(T:t)1G[z —IJ] +O(Me) by (31
teVr 7o 7o

_ eh(n(A)+o(1)+O(€€))(1 _ O(M€6)) + 0(1\456)7 by ‘ ’

which converges to 1 as A and a go to infinity. This implies (7.30)) and therefore proves
tightness in Skorokhod’s topology, since M was arbitrary. Together with the convergence in
finite-dimensional distributions proved above, the lemma follows. O

A coupling with a Poisson process. Let (V},),>0 be a sequence of independent exponen-
tially distributed random variable with mean ~y. In order to prove convergence of the processes
X/ and X}, we are going to couple the BBM with the sequence (V},) in the following way: Sup-
pose we have constructed the BBM until time ©,,_1. Now, on the event G,,_1, by Lemma
the strong Markov property of BBM and the transfer theorem ([100], Theorem 5.10), we can
construct the BBM up to time ©,, such that P(|(T), — ©,_1)/a® — V,,| > £%/2) = O(e?) (recall
that T,, denotes the time of the first breakout after ©,_1). On the event G¢_,, we simply let
the BBM evolve independently of (V;)j=n. Setting G}, = Gnn{Vj <n:|(T;—0,_1)/a®-V;| <
g3/ 21| there is by Lemma and Proposition a € > 0, such that for large A and a,

P(G)) = P(Gp) — nO(e' 1) (7.32)
Furthermore, we have ©,, = T, + a%? on G!,, whence for large A and a,
on G 1 [(©, — Op_1)/a® — V| < 2652 (7.33)
This construction now permits us to do the

Proof of Theorem[7.3. Let d denote the Skorokhod metric on the space of cadlag functions
D([0,0)) (see [78], Section 3.5). Let ® be the space of strictly increasing, continuous, maps
of [0,0) onto itself. Let x, 1, z9, ... be elements of D([0,0)). Then (|78], Proposition 3.5.3),
d(zp,x) — 0 as n — oo if and only if for every M > 0 there exists a sequence (p,) in ®, such
that

sup |pn(t) —t| — 0, (7.34)
te[0,M]
and
sup |zn(pn(t)) —x(t)| — 0. (7.35)
te[0,M]

If (2,)nen is another sequence of functions in D([0,0)), with d(x},,2) — 0, then by the tri-
angle inequality and the fact that ® is stable under the operations of inverse and convolution,
we have d(zp,x) — 0 if and only if there exists a sequence (¢,,) in @, such that (7.34]) holds
and

sup |zn(on(t)) — 2, (t)] — 0. (7.36)
te[0,M]
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7. The B-BBM

For every A and a, we define the (random) map ¢4, € ® by
vaa(ro(n+7)) = ((1=7)0, +7r60,41)a™?, withne N, re[0,1].

Let M > 0 and define ny; = [M~p]. Then we have by the monotonicity of (Xt[oo])go,

sup |paq(t) —t < max |a_3@n - 70n| , (7.37)
te[0,M] ne{0,...,nar}
and
sup | X7 - X’ < max Ala30, —vonl. 7.38
te[07%] ‘ t @A,a(t)| TLE{O,...,TLM} | n ’)/O | ( )

By Doob’s L? inequality and the fact that 7o = E[V1], we get

D Vi— 0

P( max
=1

ne{0,...,nar}

> 51/3) < Ce~Bpy Var(Vy) = O(13).

!/
Furthermore, on the set 7, , we have for every n < nyy,

< O(npe®?) = 0(e'?).

®n_iv;

i=0
In total, we get with ([7.37) and (7.38)), as A and a go to infinity,
VM >0: sup |paa(t)—tl v |X/ — X;Aa(t)| — 0, in probability, (7.39)

te[0,M]

which is equivalent to

2_M[1 A < sup |paa(t) —t v I|X) — X;A,a(t)|>:| — 0, in probability. (7.40)
1 tE[O,M]

TP

Now, suppose that A and a go to infinity along a sequence (4, a,)nen and denote by X ;1”, 4y
X', a,, @0d 94, q, the processes corresponding to these parameters. By Proposition and
Skorokhod’s representation theorem ([35], Theorem 6.7), there exists a probability space, on
which the sequence (X Zln, an) converges almost surely as n — oo to the limiting Lévy process
L = (Lt)t=0 stated in the theorem. Applying again the representation theorem as well as
the transfer theorem, we can transfer the processes X iln,an and ¢4, 4, to this probability
space in such a way that the convergence in holds almost surely, which implies that
the convergence in holds almost surely as well. By the remarks at the beginning of the
proof, it follows that on this new probability space,

(X’ L) <d(X)y

An,an>

Xxlﬁlln,an) + d(leélxn,anu L) - O>

n,an’?

almost surely, as n — co. This proves the theorem. O

Proof of Theorem[7.1 Let (tfl’“)?:l be as in the statement of the theorem. By the virtue of
Theorem [7.2] it suffices to show that

P(vi: X = Jpneg) = 1. (7.41)

k3
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

Suppose for simplicity that t?’a = t; for all 7; the proof works exactly the same in the general
case. Let n := [2(t; + 2)/v0], such that n = O(e~!), by (6.14). By Chebychev’s inequality,
we then have

n

270) = O(n Var(V3)) = O(c) (7.42)

P(Y Vi<t +2) <P (Vi—10) < -
=1 =1

Furthermore, define the intervals I; = t; 4+ [—2ne®2 —e? /a, 2ne%?], i = 1,..., k and denote by
& the point process on the real line with points at the positions V1, Vi + Vo, Vi + Vo + V3, .. ..
Then &2 is a Poisson process with intensity 70_1 = O(e™!) and thus,

k
P(2n| ]I+ 2)=06E"). (7.43)
=1
We now have
P(W:Xﬁﬂ::ﬁﬂg;BP(ﬂLﬁ:mﬁe[@f—ﬂ;h@ﬂ) by definition
n k
2P@%Z%>m+%@mUh:@ by definition of G,

i=1 1=1
> P(Go) — O(9) by (7-32), (7.42), (7-43).

Letting A and a go to infinity and using the hypothesis (HB) yields (7.41) and thus proves
the theorem. O

8 The B’-BBM

In this section, we define and study the B’-BBM, which is obtained from the B-BBM by
killing some of its particles. It will be used in Section [I0] to bound the N-BBM from below.

8.1 Definition of the model

We will use throughout the notation from Section |7} Furthermore, we fix 6 € (0,1/2) and
K > 1 such that Ex < 6/10, where Ex was defined in (2.7). Define N = [2me+oq3ere],
where p = /1 — 72 /a?. We will then use interchangeably the phrases “as A and a go to infin-
ity” and “as N go to infinity”. Furthermore, in the definition of these phrases (see Section
Ap and the function ag(A) may now also depend on §. The symbols Cs and Cs, have the
same meaning as C' (see Section , except that they may depend on § or § and « as well,
a being defined later.

The B”-BBM is then defined as follows: Given a possibly random initial configuration 1
of particles in (0, a), we let particles evolve according to B-BBM with barrier function given
by , where, in addition, we colour the particles white and red as follows: Initially, all
particles are coloured white. As soon as a white particle has N or more white particles to
its right, it is coloured red”. Children inherit the colour of their parent. At each time ©,,
n = 1, all the red particles are killed immediately and the process goes on with the remaining
particles. See Figure for a graphical description.

7. This can be ambiguous if there are more than one of the particles at the same position, for example
when the left-most particle branches. In order to eliminate this ambiguity, induce for every ¢t > 0 a total order
on the particles in A (t) by u < v iff X, (¢) < X, (¢) or Xu(t) = X,(¢) and u precedes v in the lezicographical
order on U. Whenever there are more than N white particles, we then colour the particles in this order, which
is well defined.
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8. The B-BBM

Figure 2.4: The B’-BBM with parameter N = 6 (no breakout is shown). White and red
particles are drawn with solid and dotted lines, respectively. The blobs indicate when a white
particle is colored red, the circles show the six white particles living at that time.

For an interval I < R, we define the stopping line fgc} by (u,t) € fgc} if and only if

the particle u gets coloured red at the time ¢ and has been white up to the time ¢, with ¢t € I.
We then set ngij and Yéef} by summing respectively wz and wy over the particles of this
stopping line. Furthermore, we define .4;"4 and .4;"h* to be the subsets of .4; formed by
the red and white particles, respectively, and define Z[*d, Y;ed, zwhite and y;vhite accordingly.
Let I/tb be the configuration of white particles at the time ¢ and abuse notation by setting
= I/ben. We set G” | = Q and for each n € N, we define the event G?, to be the intersection

v

of G” _, with the following events (we omit the braces).
supp;, < (0, a),
— Aghite < U x {©,} and ©, > T, (for n > 0),

le=AZghite — 1| < %2 and YZhite <.

red red 1/ )
- P<Z®eﬂ[@m@n+Ka2] - Y@i[@n,@ﬁf(ﬁ] <a ‘96%) =>1—¢€”

The last event is of course uniquely defined up to a set of probability zero. Note that G?L € Fo,
for each n € N. Furthermore, we define the predicates

(HB”) (The law of) 1 is such that P(G%) — 1 as A and a go to infinity.
(HB?) v is deterministic and such that G2 holds.

(HBi_) v is obtained from |e® N| particles distributed independently according to the density
proportional to sin(rx/a)e™"* 1 4y (z).

We now state the important results on the B’-BBM.

Lemma 8.1. (HB)) implies (HB’) for large A and a.
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

Proposition 8.2. Proposition n stzll holds for the B’-BBM, with G,, replaced by Gb The
same is true for Theoremsn cmd. with (HB) replaced by (HB).

Recall the definition of quY¥ and z, from the introduction and of (Ht) from Section

Proposition 8.3. Suppose (HB’, ). Let (t?’a) satisfy (Ht) and let a € (0,e720). As A and a
go to infinity,
P(Vj : qu) ()

t a) = xaeza) — 1.

8.2 Preparatory lemmas

In this section, we will establish some fine estimates for the number of particles of the
process, which will be used later to bound the number of creations of red particles. If a
particle u € A)(t) satisfies 77(u) < t < o741(u) for some [ > 1, we call it an “in between”
particle (because it is in some kind of intermediary stage) and otherwise a “regular” particle.
We then define

Nir) = 23 Lo
(u,8)eMN

The main lemma in this section is the following:

Lemma 8.4. Suppose (HBy). Let Ka? <t < tgoy. Then, for 0 < r < 9a/10 and every o > 0
there exists Cs o, such that for large A and a,

P(Ny(r) > e O BN | T > t) < Cs 4 A2 ( n) ~(§=a)r

Furthermore, conditioned on Fa, fort < O + eta?, for large A and a,
Popan (N (r) = e OVHBIN | Fa) g, < CsoA2e2e GO,
The following lemma about BBM conditioned not to break out will be used many times
in the proof:

Lemma 8.5. Let f be a barrier function, 0 < t <ty < tgzy and suppose that Err(f,t) < C
For z € (0,a), define P =P%(-|T > to). Then, for all r < (9/10)a and for large A and a,

BN (1)] < CAeAN(L + pr)e ™ (1 + (7 /a)) (at wyz(z) + wy(x)) (8.1)

~ _ t

BA[(N:(r)?] < C(1 + r)e 2 A%ee A N2 (a wy(@) + wy(@). (8.2)
Proof. By Lemma the upper bound of Lemma is still valid with varying drift (see also
Remark . This gives,

oty t x x
B2, <CA<$wZ(x) +wy(3:)), and B[y <aBsz00 ) (83)

where the second inequality follows from Lemma . Equation then follows from
Lemma and , noting that a —y — f(¢/a?) = r + a/20 for large a, by the hypotheses
on r and f.

For the second equation, suppose for simplicity that f = 0. By Lemma [6.10] we have for
all x € (0,a),

E”[(Ny(r))?] <

~

+ E*

“[Ne(r)] + Boma J J EC*)[Ny(r)]? dzds

E(le(sl),sl)[ ()]E(X”2(52)’52)[Nt(r)]]. (8.4)

‘v m

EXt (v1,s1), (U2782)€y<u ), vy #v2
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Now, for large A we have by (5.54) and Lemma

jj 5500 (2, 2)BE9 [N, (r)]? dz ds

Z j j Ps—so (Xu(50), 2) B [Ny ()] dzds] (8.5)

(v,50)€-S%

With Lemmas |5.4 H and [6.8] - and (| , we have as in the proof of Lemma, , for any so < t,
t
f f Da o, JBEIN()]? dzds € CA% AN (142 (L (@) +uy (1)) (86)
50
Equations (8.5)) and ({8.6]) together with Lemma now give

t ra
J J L) (2, 2)ECS) [Ny (r)? dz ds < CA%e 2AN2(1 + rh)e= 200 (%wz(a:) + Awy(x)>.
0 Jo

(8.7)
Moreover, we have
Be| 3 2 B0 CO[N, ()] B [N ()]
(u,8)ERt (v1,51),(va,52)e. 7 (W8) 51 <s9

~ ~ 2

# 3 (5 Bl
(u,8)eR:  (v,50)€. (%) (8.8)

<C(+ r4)e—2wA2€—2AN2EJ;[ Z (Z(u,s))Q]
(u,8)e%:

o t
<O +rhe Hree AA2N2($’LU2(JI) + wy(x)),
by (6.17) and Lemma Equation (8.2) now follows from (6.2), (8.1)), (8.4), (8.7) and
£3). O
Corollary 8.6. With the hypotheses from Lemma[8.5, we have for large A and a,
ES[N;(r)] < CAe AN (1 + 12)e e (002,
Proof. This follows immediately from Lemmas [5.1], [5.4] and [8:5] and Corollary [6.7} O

Lemma 8.7. Suppose (HBy). Let o > 0. For large A and a, we have for every 0 < r < 9a/10
and t < ©1 + eta?,

Popan(Ny(r) > e~ A6=1/3 | Za)lg, < C’aA256_2A/3e_(%_O‘)T. (8.9)
Proof. Conditioned on .Za, define P = P(-|T > ©; + e4a?). Then,

Varbay (Ni(r) | Za) 16, < 022 1o cdu<r)(ku — DEQH ™ N()?],  (8.10)

=0 u<%

and Lemma now implies

Vargpab(Ni(r) | Za)lgy < C(1+7)e 2 A2ee ™ AN28y, . (8.11)

Furthermore, by Corollary [8.6]
Eubab [N (1) | Zalla, < CAe N1+ r2)e M &y. (8.12)
Equation now follows from @ and together with the conditional Chebychev
inequality and the fact that & < e?/® on Gy < GAa. O
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Proof of Lemma[84 Assume Ka? <t < tgzy. By the hypothesis on Zj, the definition of K,
Proposition [5.3] and Corollary [6.7], we have for large A and a,

E[N ()| T > t] < (1 —75/8)(1 + pur)e "N, (8.13)

Moreover, we have by Lemma (8.5

BN () 1T > 1] < O+ pr)e ™ N(1L+ ) Ae (520 + )

(8.14)
< CVeA(L +1r?)e ™ N,

by the hypotheses on Zy and Y. Equations (8.13]) and (8.14) now give for large A and a, for
all r € [0, al,
E[N;(r)|T > t] < (e™%% = §/8)e™"/3N, (8.15)

Furthermore, by Lemma [8.5 and the hypotheses on Zy and Yj, we have
Var(N;(r) | T > t) < CA%(1 + e 2 (t/a® + 1), (8.16)

Chebychev’s inequality, (8.15)) and yield the first equation of the lemma.

Conditioned on .Za, let T < t < O + e?a?. Define NP"(r) to be the number of hat- and
check-particles to the right of r at time ¢ that have not hit a between T~ and ¢ and likewise
Ntfug(r) the number of fug-particles with the same properties. Set M; = e_Xt[l] = (1+Ay)71,
where A; = 0((t — T*)/a?)A. Note that we have on Ga: |A — e AZ#T)| < £1/8,

Define o, = (1 + pr)e . By Lemma and Proposition we have for large A and a,

E[NPU(r) | Zalle, < are®DINM,(1 + Ex)e ™ (Zp- + Zgr-)1es

(8.17)
aTNMt(l — 35/4),

by the definition of G and (. Furthermore, we have by Proposition and Lemma for
large a,

E[Jvtfug(r) | Zalla, < are® VN M, @ ((t —T)/a®) + O ((y + A +7)?n/a)) e Az,
< @ NM; (B +O( +a72)) 164,

(8.18)
Equations and now give,
E[NPU5(r) + N"8(r) | Zalls < arN (1—6/2+ O(a™'r?)) . (8.19)
Similarly, one has by Lemma [5.5]
Var(NPU(r) + NU8(r) | Za)la, < Ce (1 + rh)e 20, (8.20)

Equations (8.19)) and (8.20) and the conditional Chebychev inequality now yield for large A
and a,

P(NPUE(r) + N"8(r) = e 25BN | Za)la, < C5(1+rt)e A0,

This, together with Lemma [8.7 and the fact that the hat-, fug- and check-particles do not hit
a on Gppap finishes the proof of the lemma. O

We finish this section with a result which fills the gap in Lemma 8.4 under the hypothesis
(HB).
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Lemma 8.8. Suppose (HB,). Then P(le=4Zy — 1| < €32, Yy < n) < o(1). Moreover, let
a > 0. Then for large A and a, we have for every t < Ka? and 0 < r < 9a/10,

P(N¢(r) = e—(6/2+r/3)N, Rpg2 =0) < Ca,ée_(g_a)r/a,
and P(Rg,2 =0) > 1— CgeA/a

Proof. Recall that initially, there are |e ®N| particles distributed independently according
to the density ¢(z) proportional to sin(mz/a)e™*1( q)(z). An elementary calculation yields
that

E[Z] = e*(1+0(1)), Var(Zy) < Cet/a®, E[Yy] < Ce?/a. (8.21)

This immediately yields the first statement, by Chebychev’s and Markov’s inequalities. More-

over, (8.21)) with Lemmas and [5.9| yields

E[Z] + E[Yy]) < CK;A, (8.22)

K
P(RKa2 >1) < E[RKCL2] S C(;

which gives the last statement. Note that on the event {R,2 = 0}, the B>-BBM equals BBM
with absorption at 0 and a. Since the density ¢(x) is stationary w.r.t. this process, a quick
calculation shows that

E[N"(r)] = E[N ()] = |e°N| J ¢(x N1+ pr)e ™. (8.23)
Furthermore, by the independence of the initial particles and the law of total variance,
0 — 0 0
Var(N(r)) = [ N} ( Var(BX [NV (1)) + B[Var* (N (r))]), (8.24)

where X is a random variable distributed according to the density ¢ and the outer variance
and expectation are with respect to X. By Lemma , we have for every x € [0, a],

Var® (N (r)) < B* [N (r)?] < Ce 2AN2(1 + r¥)e 27 ((t/aP)wy (z) + wy (z)),

and a simple calculation then yields for ¢t < Ka?,
E[VarX (N”(r))] = f Var® (N” (r))é(z) dz < C(K Ja)e ™ N(1 + rh)e 2" (8.25)
0
Moreover, by Lemma and the hypothesis on r, we have for every x € [0, a],

B[NV ()] < OO+ 12)e (€971 sy + € AN (w2 (@) + wy (@)1 or0s) ),

19a
20 20

which yields

19a

E [(EX [N (7“)])2] <O + e f aeh® dz + e~ 2AN? J BRCEERS dx)
< Ca3e ™ AN(1 + rh)e 2, )
(8.26)
Equations , and now yield for large a,
Var(NV(r)) < O(K/a)e AN (1 + r¥)e~2". (8.27)

The lemma now follows from (8.23) and ({8.27)), together with Chebychev’s inequality. O

113
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8.3 The probability of G’

Most of the work in this section will be devoted to bounding the number of creations of
red particles. For this, we will discretize time: We set ¢, = Ka? +nd/4 and I, = [tn,tny1) for
all n € N. Furthermore, define the %7 -measurable random variables n; := max{n : t,, < T’}
and ny := max{n : t,, < O + e /a?}.

For an interval I < R and r € [0, a], we now define

Ur(r) = #{(u,t) € L5 : Xu(t) >},

the number of red particles created to the right of r during the time interval I and set
Un(r) = Ug,(r). Furthermore, we denote by NPt (r) the number of white particles with
positions > r at time t, including the “in between particles”.

Lemma 8.9. Suppose (HBy). Let I = [t;,t,], with d:=t, —t; < /4. Then for every a > 0,
for sufficiently small 6, there exists Cs, such that for large A and a, for every r € [0,9a/10],
if Ka? <t < tgom,

¢
E[U;(r)|T > t] < CMA%(G—Q + n)e_(%_a)TN, (8.28)

i t —(2—o)r
PAtel: NMUe(r) > N|T > ) < C’(;,QA%(a—é + 77)6 (G-or, (8.29)

2 _(t —(4—a)r
E[U1() sy, =0 | T > 1] < CadAe( = +1)e” G0N, (8.30)
Likewise, conditioned on Fa, we have for T < t; < 01 + e?a?,

Enpan U7 (1) | Zalla, < Csad?e?e G N, (8.31)
Popab(3t € T NPVe(r) > N | Fa)lg, < CaAe2e G, (8.32)

Finally, suppose (HBbL). Then
E[U[O,Ka?](r)l(RKaQ:O)] < C&,aaei(gia)rN- (833)

Proof. Define the stopping time 7 = inf{t € I : Nyhite(r)y > N} with inf & = +o0. Define
further the law P = P(-|T > t;) and the event E = {N; (') < e %/277/3N}, where ' =
r —4/r v 0. Then e '3 < CLe (4379 for every a > 0, such that by Lemma , we have

P(r <o) < P(r < w0, E) + P(E)
o N 4 (8.34)
<SP(r<o|E)+Cs,A 5(5 + n)e_(ﬁ_“)r.

For t € I, we can bound N;"®*(r) by the sum of
1. Nt[l]: the number of descendants at time ¢ of {the particles in .47, which are to the right
of r'},
2. N the number of descendants of {the particles in .4, which are to the left of 7/} and
which reach the point r before the time ¢, and
3. Nt[B]: the number of “in between” particles at time ¢.
Conditioned on .%;, and the event FE, Nt[l] is stochastically bounded by the number of in-
dividuals at time ¢t — ¢; in a Galton—Watson process with reproduction law ¢ and branch-
ing rate By, starting from [e~%2~""/3N| individuals. Let (GW{);=o be such a process, then
e PomtGW, = ¢ ¥/2GW, is a martingale and by Doob’s L%-inequality, we get

E[ sup (e 72GW, — GW()?] < 4 Var(e"¥2GW,) < CdNe "3, (8.35)
te[0,d]
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By (8.35)), Chebychev’s inequality and the hypothesis on d, we get,
P(sup Nt[l] > Ne 9% < P(sup GW, = Ne 9%)
tel te[0,d]
< P(sup e 2GW; — GWq = Ne ¥/8(1 — ¢79/8)) (8.36)
te[0,d]
< Csde™#/N.

Now, if 7 < 1, we have N2l = 0, so suppose that r > 1. Let the random variable T, denote
the number of particles in BBM which reach r before the time d. Since there are at most N
white particles to the left of " at time ¢;, we have by Lemma ,

E[N?|.Z,] < N sup E*[[,] <CNW(sup B, >+/r) <CNd Y2e7/Cd)  (8.37)
z€[0,77] t€[0,d]

where (B;) follows standard Brownian motion under W. For each (u,t) € A4, let N be the
contribution of the descendants of u to N2/, By Lemma

Var[N2 | 7,1 < Y B[V <N sup E[r?]
(u,t)el/%l I‘G 0 NS ]
(8.38)

<N( sup E*[l’ +C'prt:vz Zt[r]dedt).
z€[0,77]

Trivially, E*[T,] < e%? and Sg pi(z, z)dz < e¥? for any x € R, t < d. Together with (8.37)

and (§8.38)), this yields,

Var[NP|.2,] < CN sup E?[I',] < CNd~ Y277/, (8.39)
z€[0,77]

Chebychev’s inequality and the inequality t=1/2e=Y/(4) < C't now yields
P(NP > N(1 - 98 |.#,) < Csde /DN, (8.40)

As for NI, we have E[Rt%] = Var(Ry,) + E[Rtl]Q < Ce?4 by Lemma as well as Lem-
mas [5.8] [6-§ and Corollary [6.7] such that by the definition of a breakout event,

E[sup(Nt[g])2] < e
tel

Markov’s inequality then gives

f’(sup Nt[g] > (e70/1 — 6_6/8)N) < C5e*4¢2 /N2, (8.41)
tel

Equations (8.34), (8.36), (8.40) and (8.41) now yield (8.29). As for and (8.30)), we

first note that the expected number of individuals created until time t in a Galton Watson
process with reproduction law (q(k))x=0 is bounded by the number of individuals at time ¢
of a Galton-Watson process with reproduction law (1 —¢(0))~*q(k)r>1, whose expectation is
bounded by Ct. This gives,

E[U(r1,1| 7 < 0] < C(dN + Ce). (8.42)

because there are at most N white particles at the time ¢; and the total number of in-between
particles is bounded by (E[R;,] < CCe? by Lemmas and and Corollary As for
the overshoot, i.e. the particles that have been coloured red at the time 7, we first note that

E[Ur1(r<c0)) < BlUr 1 (r<on, v, 0] + NP(7 < ). (8.43)
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

Now,
U{T} (r1<0,U7y=N) S max{k tu € U, dy € I, ky N Xu ( ) r} (8.44)

By the definition of a breakout event, the set on the right-hand side of (8.44]) contains no
“in between” particles for N > (. Furthermore, the expected number of branching events of
“regular” particles to the right of r is bounded by

tr
C| E[N(r)]dt < CAN(1 +1%)e™", (8.45)

t

where the inequality follows from (8.13). This yields,
E[U{T}1(T<OO7U{T}2N)] < CAN(1+7?)e "E[L1lzsn)] < Cd(1 +17)e ", (8.46)

where the last inequality follows from the Cauchy—Schwarz and Chebychev inqualities. By
(8.29), (8.42)), (8.43)) and (8.46) we finally get for large A and a,

BIUI(r)] = Bl(Ugry (1) + Ut ()L rcop)] < CraN A% 4 )e oo (8.47)

For the proof of , we note that on the set Ry, _¢ 1 = 0 there are no in-between particles
during I. Taking away the corresponding terms in the above proof yields .

The proof of the other three equations is very similar. The proof of and uses
the second half of Lemma instead of the first and in addition to for the proof
of . The proof of the last equation draws on Lemma instead of Lemma and
requires covering the interval [0, Ka?] by pieces of length d. O

Corollary 8.10. Suppose (HBy). For an interval I < Ry, let Gqjo 1 be the event that no
particle is coloured red during the time interval I and to the right of a/2. Then,

P(Gy\Gopo[ka2,m7) < Cs0(1)  and  Pupap ((Ga/Z,[T,®1+eAa2])c | ﬁA) 1g, < Cso(1).

Proof. Follows immediately from (8.29) and (8.32) by summing over the intervals I, (note
that T < y/ea® on Gy). O

Lemma 8.11. Suppose (HBy). Set T' = T A y/ea® and define the intervals I = [Ka?,T']
and J = [T, 01 + ea?] For large A and a,

E[(Z5% + Y5 D1a,,,] < CsA%Pe!
Euwbab[(Z5% + Y516, | Zallas < Cse*/a.

Now suppose (HB’_). Then
E[(Z5 10 k02) + Yoo, ka2 LBy 0-0)] < Coefa?.

Proof. By Lemma , we have for every r € [0,a/2] and n < ng := |(vea® — Ka?)/(t1 —to)],

0
Z r) | T > t,|P(T > ty,)
8 A (n
A%ce™ 7N 2 (ﬁ + 77>P(T > ty) (8.48)
n=0

<C’5A2se 7"e E[(WJrn)z] < C5A%3e™ 7T
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8. The B-BBM

by Lemma and (6.3). Now, by integration by parts, we have for every (possibly random)
interval I,

a

Zréfil = J wh (r)Ur(r)dr  and Yg’dl =Ur(0) + J wi (1)U (r) dr. (8.49)
0 0

The first equation in the statement of the lemma now follows from ({8.48]) and (8.49)), since
wh(z) < C(1 + x)e"* and wy () < Ce®  for x € [0,a]. The remaining equations follow
similarly. O

The following lemma will only be needed in the proof of Proposition [8:3]

Lemma 8.12. Suppose (HBY). Let r € [0,9a/10] and (K + 1)a® < t < tgzm. Then, for every
a >0, for large A and a,

r - _ t
PN () > aN, T > 1] < G (a L1+ pr)e MA25<$ N n) N €2>.

Proof. For an interval I, denote by N, red, (0 )(T, I) the number of red particles to the right of r
at time ¢ which have turned red during I. Define the event

G =Gop o N {Rt—a2—c) =0} 0 {ngl[o,Kﬁ] yr o Ka?] < a_1/2},

and note that P(G¢, T > t) < Ce? for large A and a, by Corollary Lemma and the
hypothesis.

Write E = E[[|T > t]. If ]:J(x’s)[Nt(O)(r)] < f(xz,s) for some function f with f(0,s) =
f(a,s) =0, then by integration by parts,

= red, d
E[N, d (0) N1g] < f f E[Uqs(x R[t—c,t]=0)]£f(x’ s)dx ds.

Define I; = [0,t — a?] and Iy = [t — a?,t]. By (5.24), (5.25) and Corollary we have for
x € [0,a/2],

O + pr)e " Ne-tug(x), i se I,
Cere (P e 1epl (z,2), if se b,

BN ()] < {

Similarly to the proof of Lemma we now have by the inequality w/,(z) < C'(1 + z)e*?,
for large A and a,

~ 4.0 a/2

E[N;° o )(r, I)1g] < Ce N (1 + ,ur)e’“”f E[Ur, (2)1¢](1 + x)e* *dx

0
< CsA%e((t/a®) +n)(t/a®)(1 + pr)e ™ N,
by Lemma and the definition of G. As for the particles created during I>, we have by
Lemma [8.9] the definition of G and the hypothesis on ¢, for all s € Iy,
E[Ug(2)16] < C5A% ( + n) Ne~i2ds.

Now, with (2.6]), one easily sees that for large a, (d/dz)(e"*p%(x, z)) = 0 for all z < a/2 and
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s = a?, whence, by (2.9) and Fubini’s theorem, we get

0
BN el < € [ j BlUs(0)le] | e (@ pi(a, 2) dedods
A

T

CJ B[Una(z ]Jwe de (#a (& A 2)(a— 2 v 2)) dede

05A2 —+n Nf f w@/A+2) (] 4 g) da dz
< C5A%((t/a®) +n)e M N.

In total, we have
n red,(0) 2 t —pr
B[N (14] < 054 E(; + n) (14 pr)e ™" N.

An application of Markov’s inequality finishes the proof. O

Lemma 8.13. Suppose (HB%). Let Gieq be the event that the fugitive does not get coloured
red. Then, for large A and a,

P(Gu N Gop ka2 1)\Gired) < Cse”.

Proof. Set Gya = G [ka2,1)- Let Po be the law of BBM with absorption at zero from
Section |§| (i.e. we do not move the barrier when a breakout occurs). Let Tieq be the first
breakout of a red particle. Then

P(G”Z/ N Ga/Q\Gfred) PO<T Tredv g”?/ N Ga/Z) ( red X \fa Ga/2) (850)

Define 77 = T' A y/ea®. Then, since .Z 1”ET, is a stopping line, we have by Proposition [6.2[ and

Corollary [8.10}

Po(Treq < ved® \fﬂd g, , < Ce e~ Z5% + YD) (8.51)

Recall that P(Z]“Qd[0 Ka?) Yre%o a2

of conditional expectation and (8. 51‘ this gives

( red X \/>CL a/2) E[PO( red S \/>(l3 | ‘/,,Ef“’d )]-G /2] + 5 + 0(1)

< CE[Ce™ e N Z5 a2 + Y (ka2 1) 1G] + CE2.

< a_1/2) > 1 — &2 by hypothesis. By the tower property

The lemma now follows from (8.50) together with Lemma (6.1) and the hypothesis. [

Lemma 8.14. Suppose (HB%). There exists a numerical constant € > 0, such that for large
A and a,
P(G)) =1 —¢el*

Proof. Recall the event G from Section [ and change its definition slightly by requiring that
le=4Zg, — 1] < £%2/2, call the new event Gj. Define the random variable

red T —1/2
X = P(Z3l6, 011 x02 + Y lorerika) <@ 7| F6,).
By Proposition [7-3] and Remark [7.7] it suffices to show that

P (G {250 <, X > 1-22)) <&,
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for some numerical constant e.
Let T, I and J as in Lemma We then have by Markov’s inequality, Lemma
and Corollary [8:10]
Enpap[l — X | yA]lGA < Cso(1). (8.52)

Markov’s inequality applied to (8.52) then yields

P(X >1-— 8 , GA N anab) 050(1). (8.53)
Now define Greq = {T' < /ea?, 0 [0,/ a2] —I—Y 75.[0.Ka?] < _1/2} NGy, 1 N Grreq. Conditioned

on T and & Zyed.» ON the set Gred, the particles from the stopping line ng then all spawn

BBM condltloned not to break out before T' (because the neither the fugitive nor any in-
between particles are on the stopping line). By Lemma [8.11] u Lemma [6.9 - and the tower
property of conditional expectation, we then have

E[Z5Mg,,) < C(Aa 2 + BI(Z5) + AVED1G,, 1) < Cs(Ae)’e?
E[Yi*16,.,] < C(Aa™ 2 + B(Z5% + V56, ,,]) < Cra%e’e
By Lemma we now have
Eubab] Zred | Fa v Frllc, < Ca( gred | Zred + A(yed Yred )>7
and Lemma and the tower property of conditional expectation give
E[Z8' 164 GupannGrea] < Ca(Ae)’e. (8.54)
Furthermore, by the hypothesis, Corollary [8.10] and Lemmas [7.4] [7.5 and [8.13] we have
P(Ga N Gypab 0 Grea) = 1 — ' (8.55)
The lemma now follows from , and Markov’s inequality applied to , together
with . O
8.4 Proofs of the main results

Proof of Lemma 8.1 By Lemma it remains to estimate the probability of the last event in
the definition of Gb Define the random variable X = P(Z]fe S0, Kka2] T YE‘EO’KGQ] <a 12 | Z0).
By Lemma [8.8] and Markov’s inequality applied to the last equation of Lemma [8.11] we have
E[(1 - X)l(RKa2 —o)l < Cse? Ja. By Markov’s inequality, we then have

Ka2:0)] < 050(1)‘
Together with (8.22)), this finishes the proof. O]

P(X <1-¢% Ry, =0)<e ’E[(1- X)L

Proof of Proposition[8.4 Let n > 0. Conditioned on Fg,, the barrier process until 0,41 is
by definition the same in B’-BBM and B-BBM. Furthermore, G,, = G%, and G”, € Fo,. The
first statement then follows by induction from Lemma as in the beginning of the proof
of Proposition

As for the second statement, inspection of the proofs of Theorems and [7.2) shows that
they only rely on Proposition and on the existence of the coupling with a Poisson process
constructed in Section [7.3] But this construction only relied on the law of 75,41 conditioned
on Ze, and G, and thus readily transfers to the B>-BBM. O
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Proof of Proposition[8.3 Define p = .25, such that (1 + up)e™ > ae? (1 + o(1)). Recall
from Section the coupling of the process (©,/a3),>o with a Poisson process (Vj,)n=0 of
intensity -y, ! = ppe?n. As indicated above, this coupling can be constructed for the B’-BBM
as well. In particular, setting G? = G? ~ {Vj < n : (T — ©;-1)/a® — Vj| < €32}, we have as

in ([7.32)), for every n > 0,
P(G?) = P(Q) — nO(e?) = P(G}) — nO(e'*), (8.56)

by Proposition (where € > 0 is a numerical constant). Now let (t?’a) satisfy (Ht). For
simplicity, suppose that t?’a = t; for all 7, the proof of the general case is exactly the same.
We want to show that P(V1 < i < k: Ntv:gte(/)) > aN) —> 1 as A and a go to infinity. By
, the probability that there exists (i, j), such that ¢; and ¢;11 are in the same interval
[©;,0;4+1] is bounded by O(+/¢) for large A and a. We can therefore suppose that k = 1, the
general case is a straightforward extension.

It thus remains to show that for every ¢ > 0, P(NY}*°(p) > aN) — 1 as A and a go to

infinity (the case ¢t = 0 is a straightforward calculation). Let ¢ > 0 and n := [y, (¢t + 1)].
Then E[V,,] =t + 1 and Var(V,,) < 2yo(t + 1), such that P(V,, <t +1/2) < Cvyy = O(e) (for
this proof, we allow the constants C' and the expression O(+) depend on t). Defining the event

En(s) = {0, > s} n{#j€{0,...,n} :s€ [Tj_1,0; + e*a®]} n G,

(define T_1 = 0) we then have by (7.43) and (8.56), P(E,) =1 — O(e'*).
We now prove by induction that there exists a numerical constant € > 0, such that for
every 1 < j <mn,

Sj=sup sup PY(N;™M(p) < aN, Ej(s)) < Csaje' ™,
I/EG% s€[0,ta?]

as A and a go to infinity (we accept the abuse of notation v € G%). By definition, Sy = 0.
Now, suppose the statement is true for some j > 0. We then have for every v € G(b) and
s € [0,ta?],
PY(NYM®(p) < aN, Ejy1(s)) < PY(NYMC(p) < aN, Ejy1(s), s > O1)
+PY(N™M(p) < aN, Ej11(s), s < ©1) = P + P,.

We first have, by the definition of Ej;1(s) and the fact that the process starts afresh at the
stopping time O,
P V[P(NM(p) < aN, Ej(s)| 991)1G§m{@1<5}]

<E
< EY[ sup P" (Nswfgf(p) < aN, Ej(s— @1))1(91<5)] < 5.

I/1€G%
Second, we have again by the definition of E;;1(s),
Py S PY(NY™(p) < aN, T > 8)1 (s ca02).- (8.57)

Write P¥ = PY(-|T > s). For e?a® < s < fgzy, we now have by Proposition and
Corollary [6.7] for the first inequality and Lemma [5.5] and Corollary [6.7] for the second,

E'[NO(p)] = (1 - OE¥*)eXaeN = (1 - 0(=*?))(1 + 6)a,
Var (N)(p)) < Caa?e 2AN?,

S
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such that

PY(NYite0) (o) < aN, T > s)
<PY(NO(p) < (1+5/2)aN) + P/ (NIHO(p) > (6/2)aN, T > s)
< Csa (6_2A + A%e(s/a® + 1)) .

by Chebychev’s inequality applied to the first term and Lemma[8.12]to the second. Altogether,
this gives,

P, < Cé,a (P(T > \/ga3> +€72A +A253/2> < Cg,aA2€3/2,

for large A and a. Finally, we get S;j411 < S; + C57aA253/ 2 for all 0 < j < n, which yields
S; < C(;yoéjzf‘:’/‘1 for large A and a, by (6.1). This gives
P(NS%(p) < aN) < S + P(Vy, <t +1/2) + (1 — P(E,(s))) — 0,

a3

as A and a go to infinity. The statement follows. O

9 The B:-BBM

In this section, we define and study the B:-BBM, a model which will be used in Section
to bound the N-BBM from above.

9.1 Definition of the model

As in the previous section, we will use throughout the notation from Section [7]and further-
more fix § € (0,1/2) and define K to be the smallest number, such that K < 1 and Ex < §/10.
We now define however N = [2meA~%a73e#?|. Again, we will use interchangeably the phrases
“as A and a go to infinity” and “as N go to infinity” and Ay and the function ag(A) in the
definition of these phrases may now also depend on 4. The symbols Cs and Cjs, have the
same meaning as in the last section.

The B-BBM is then defined as follows: Given a possibly random initial configuration
vy of particles in (0,a), we let particles evolve according to B-BBM with barrier function
given by and with the following changes: Define t,, = n(K + 3)a® and I, = [tn,tni1)
(note that these definitions differ from those of Section . Colour all initial particles white.
When a white particle hits 0 during the time interval I,, and has at least N particles to its
right, it is killed immediately. If less than N particles are to its right, it is coloured blue and
survives until the time ¢,,9 A ©1, where all of its descendants to the left of 0 are killed and
the remaining survive and are coloured white again. At the time ©1, the process starts afresh.
See Figure 2.5 for a graphical description.

For bookkeeping, we add a shade of grey to the white particles which have hit 0 at least
once (and call them hence the grey particles). We then add the superscripts “nw”, “gr”, “blue”
or “tot” to the quantities referring respectively to the non-white, grey, blue or all the particles.
Quantities without this superscript refer to the white particles.

In particular, we define By and BY" to be the number of white, respectively, white and
grey particles touching the left barrier during the time interval I with less than N particles
to their right (i.e. those which are coloured blue). We set B,, = By, and B! = B}zt.

n

Let Vf be the configuration of (all) the particles at the time ¢ and abuse notation by setting
1/2 = I/%n. We set Gﬁq = ) and for each n € N, we define the event GQL to be the intersection

of Gi_l with the following events (we omit the braces).
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................. < N particles!

.................................. < N particles!

Figure 2.5: The B:-BBM with parameter N = 3 (no breakout is shown). White, blue and
grey particles are drawn with solid, dotted and dashed lines, respectively. A cross indicates
that a blue particle is killed.

— supp vk (0,a),

~ Mg < U x {©,} and ©, > T,  (for n > 0),

- |6_AZ8J: -1 < £%/2 and Yg)‘:f <,

~ N(©;) = N and for all j >0 with ©,_; +t; < ©O,: N(©,_1 +1t;) = N,
~P(BiE o, < ¢ 0| Fo, ) 212

The last event is of course uniquely defined up to a set of probability zero. Note that Ggl € Yo,
for each n € N. Furthermore, we define the predicates

(HB*) (The law of) vg is such that P(Gg) — 1 as A and a go to infinity.
(HB%) v is deterministic and such that Gg holds.

(HBﬁL) v is obtained from [e? N particles distributed independently according to the density
proportional to sin(rx/a)e™**1 4 (z).

We now state the important results on the Bf:-BBM.
Lemma 9.1. (HBﬁL) implies (HB*) for large A and a.

Proposition 9.2. Proposition still holds for the B'-BBM, with G,, replaced by G%. The
same is true for Theorems and with (HB) replaced by (HB).

Recall the definition of qu) and z, from the introduction and of (Ht) from Section

Proposition 9.3. Suppose (HBﬁl). Let (t;"a) satisfy (Ht). Let a € (0,1). As A and a go to
mfinity,

adt

P(Vj:qul (v, 4.) < 30-20) > 1.
J

Lemma 9.4. Define a variant called C*-BBM of the B*-BBM by killing blue particles only

if there are at least N particles to their right. Then Propositions and [9-3 hold for the
CE-BBM as well.
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9. The B:-BBM

9.2 Preparatory lemmas

We first derive upper bounds on the probability that the number of white particles is
less than N at a given time ¢t. We do not impose any particular condition on the initial
configuration..

Lemma 9.5. Let P = P(-|T > s) with s < tgzn and let Ka?> <t < s. We have for small &
and for A and a large enough,

PN < N|Z0)1 22152104 < Cée—A(g + e ).
Proof. By , Corollary and the definition of K, we have for A and a large enough,
EINO | Z) = (1 — Cpp)E[NY | Zo] = (1 + 6/4)Ne A 2.
By the conditional Chebychev inequality, we then have

TAIN()
S0 Var(N, " | %)
PN < NI Z0)Lzoz01-s120%) < O Zang 707

The lemma now follows from Lemma [5.5] and Corollary O

Corollary 9.6. Under the conditions of Lemma suppose furthermore that t > (K +1)a?.
Then, for small § and for A and a large enough,

PN <N, z¥

i ka2 = (1= 5/2)e | Fo) < Cse (1 + e " 20)/a.

Proof. First condition on %, .2 and apply Lemma Then condition on %y and apply

(5.14) and Corollary O

For s = 0, define the event

Gz = { sup

0<t<s

e=4z{® _ 1‘ < 5/4} ,

and set Gz, = Gz4,. In using the last two results, the following lemma will be crucial:

Lemma 9.7. Suppose le=4Zy — 1| < 6/8. Let s < tgzy and set P - P(-|T > s). Then
P(G%,) < Cse* for large A and a.

Proof. Let h(z,t) = P@Y(T > s) and note that h(z,t) = 1 — Cpp by (6.45). Define
Zh =3 70 (R(Xu(t), t)) " lwz (X, (t)), which is a supermartingale under P by Lemma/5.11
Uuey

with E[Z"] = (1 + O(pp))ZE by Corollary For large A and a, we then have by Doob’s
L? inequality,

P(GY,) < P(sup |2} —E[Z"]| = ¢16/16) < Cse 2 AVar(Zh).

0<t<s
The lemma now follows from the previous equation, Proposition and Corollary O
The following lemma is the analogue of Lemma for the system after the breakout.

Lemma 9.8. Lett € [T,01] and let (u,t,) € ,/1//;, o S %T)  Then, for large A and a,

AT— fug,— _
Pobab(N, Y + N7 < N | Za)lg, < Csne /e
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

Proof. As in the proof of Lemma set M; = e Xt = (1 + Ay)~L, where Ay = 0((t —

T%)/a*)A. Recall that on Ga: |[A—e A Z(%T)| < /8. For a particle (u,t,) € 5/1//;7 oAU,
we define ]Vt/ﬁ“ and Nt/fug’ﬁu to be the number of hat-, respectively, fug-particles which are
not descendants of v and which have not hit a after the time 7.

Now, by Lemma and Proposition [5.3] we have for large A and a,

E[N, ™| Zallcy = Ne A My(Zp- — |wz]w)(1 — 6/8)1as = NMy(1 +6/2)1c,.
Moreover, by Lemma we have for large A and a,
B[N | Zalley = Ne M2 D (@((t - T)/a?) + Oly/a))1cs
> NMi(Ay(146) —6/8)1g,-
In total, this gives for large A and a,
E[N; ™+ N"® 7" | Zallg, = N(1+6/4)1c,. 9.1)
Moreover, by Lemma [5.5] we have for large A and a,
Var(N] ™ + N7 | Zp)
<C(Ne ™ ((Zp- + 27Nt —T7)/a* + (T + Y# D)) < CN*pe /e, (9.2)

by the definition of Ga. Lemma (9.1]) and (9.2) and the conditional Chebychev inequality
now yield the lemma. O

For a barrier function f, let Pg)c denote the law of BBM with drift —us defined in (/5.5
starting from a single particle at 0. Let R; be the number of particles hitting a before the
time ¢t and define Z;, Y; by summing wy, respectively wy over the particles at time ¢.

Lemma 9.9. Lett = 0 and f be a barrier function. Then,

7"2 7r2 7\,2
E(}[Zt] < aemtfua’ E(}[Yt] <ezaZiTRT ond E?[Rt] < eazthHe,

Proof. By Lemma [3.2] and Girsanov’s theorem, we have
E?‘[Yt] = e’Bome*“aW%S [e“th(tho)] < eﬂomte’““WBH [e“(Xt*f(t/“Q))] < 6%15_“@7

which implies the first two inequalities, since Z; < aY;. As for the third one, by Lemma [3.1]
and again Girsanov’s theorem,

a2

7r2
EO[Rt] — WBM [eﬁomHa l(Haﬁt)] < e—MQWo [emHa 1(Ha<t)] < 62a2 t*ﬂa‘

Furthermore, we have E?[Rt] < E°[R;] as in Lemma . This finishes the proof of the
lemma. O
9.3 The probability of G}

For an interval I, we define the random variable L; counting the number of particles
hitting the origin during the time interval I:

L= Z l(seI)a

(’LhS)EgHO

and set L,, = L

n
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9. The B:-BBM

Lemma 9.10. Let n > < tgzm I = [t,tr] < [0,s] and = € [0,a]. Furthermore, let f be
a barrier function with Err(f, t,) < C. Then, for large A and a, we have

Ceta=3(t, — t))(Awy (7) + wz(x)), ift; = a® orx > a/2
Cet(wy (z) + a3 (t, — t))wz(x)), for any t,x.

E’;[LI\T>3]<{

Proof. Write E[] = E[-|T > s]. Define Lgo) = Z(u,s)efHO 1(#,(x.)>ser)- As in the proof of
Lemma we have for every interval I, x € [0,a] and t < s,

1o} [LE,O)] < OB R [Lf,”’] < Ce'[%(a — x,1), (9.3)

by (2.12]) and Corollary Lemma and ((9.3) now give,

T T x =~ (Xu(s),s
B(L = BL) + By Y RO
(u,s)e,ﬂ(rl_")

(9.4)
< Ceta <wy(x) I“(a—z,1) + I;A?[ng&tr]o .
Lemma [2.1] now gives for large a,
Ia—a,1) < C (a3 (tr — ) sin(rx/a) + 1,202 and v<a/2)) - (9.5)
and by Lemmas , and Corollary and , we have
B5[207), 11 < CAwy () <1 + % sin(mc/a)) . (9.6)

The lemma now follows from (9.4)), (9.5) and , together with the hypothesis ¢, < s <
tgom < Ca’/A. O

The following lemma is crucial. It will permit to estimate the number of particles turning
blue upon hitting the origin.

Lemma 9.11. Suppose that vy is deterministic with Zo > (1 — §/4)e?. Let s < tgzq and
I = [t;,t,] c [Ka?,s]. Write P =P(-|T > s). Then, for large A and a,

E[ > 1<tez,N§°><N)] < Cse Ma™t + e YY) E[Lg].
(u,t)effHo

Proof. For an individual v € U and t > 0, define N}O)ﬁ“ = 2iw5)en© 1(y3ug)s Where ug is

s)eN;
the ancestor of u at the time 0. By the trivial inequality Nt( ) > N, 0.~
the independence of the initial particles,

E[ 3 1(tez,N§°><N>] < E[ S 1PN < N)].
(u,t)eZLu, (u,t)eZLu,

“ for every u and by

The lemma now follows from Lemmal[9.5] since for every u € 47(0), we have Zo—wz(Xu(0))
Zy— C = (1 —6/2)e? for large A, by hypothesis.

0w
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

2 o t'=t— (K + 1)a?

Figure 2.6: The key step in the proof of Lemma Conditioned on %y, the descendants of
u are independent of the descendants of the other particles by the strong branching property.

Furthermore, conditioned on %, the probability that at time ¢ there are less than N particles

not descending from u is bounded by C(a=! + Ytso)’ﬁu). These facts imply that the expected

proportion of white particles turning blue upon hitting a is bounded by Cse~4 /a.

Before the breakout. For every n > 0, define the (sub-probability) measure P, =
P(, T > ty41). The following lemma gives an estimate on the number of white particles
(not counting the grey ones) turning blue during the interval I,,.

Lemma 9.12. For every n = 1 with t,+1 < tgzy, we have for large A and a,

eHa

Proof. Let By(LO) be the number of particles turning blue during I,, and which have not hit a
before ¢ = t, — (K + 1)a? = t,_1 + 2a® and let BT(ZH) =B, — Bflo). Lemmas and
now yield,

E.[B"16,, | 7] < C'(;e_A<% e Ng,, Y EFOIL(g,s)]
(w,5)e, ")
< Cae’“_AGYtgo) + e—A(Ytgo))2> 1a,,,
Proposition [5.2| now gives
BBV 16,,] < Coer (a7 + e 2 B, a1y, ) < Coetfa®. (0.7
As for the remaining particles, by the strong branching property,

En[Br(zlJr)le,n |$Ha,/\t/] = Z E7(1a78) [L[r,rerr)]Pn(Nr(o) <N, GZ,n ’f/%’)
I,
(u,s)e%t(,o) "

< Cole™ )Ry (" /) Q[ 2],
by Corollary and Lemma Lemma and ((6.46)) then give

E,[B{"1¢,,] < Cs(e!/a?) Aty 11 /a® < Cse'® a?, (9.8)
by the hypothesis on t,,4+1. The lemma now follows from (9.7]) and . O
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9. The B:-BBM

Up to now, we have only considered the white particles turning blue and will now turn to
B,tft > 0. Forn > 0and 0 <k <n— 2, we define By, to be the number of particles that
turn blue at a time t € I,,, have an ancestor that turned blue at a time ¢’ € I}, have none that
has hit 0 between ty, o and t,, and have never hit a between ¢ and t.

Let Gy, the event that no blue particle hits a before ¢,, and Gy, the event that among
the descendants of the particles counted by By, £ = 0,...,n — 2, no grey particle breaks
out before #goy (i.e. that no particle that turned blue before ¢, has a grey descendent that
breaks out before fgzy). Then set

Glot = Gzn N Gpn N Gern N {By < eAe“a/az, Yo < n}.
Lemma 9.13. For every n = 0 with t,+1 < tgog and k < n — 2, we have for large A and a,

e—A

E, [Bk,an%Ot] < C5Eg [B]E:Otlaiot]

Proof. Let %y, be the stopping line consisting of the particles that turn blue during I, at the
moment at which they turn blue (hence, Bf°" = #%;;). Note that %, A c/%ffi) B, A

tn—1?
such that the descendants of %, and of 4] 7(10)1 are independent, given their past, by the strong

branching property. Note also that GI°* € since by definition this o-field contains

Tl
all the information about the descendents of the particles in %;, j < k. By Corollary we
then have

[Bkn].Gtot |Jj /\/V( ) ]

—A

e
<0571G;§t1(T>tk+1) Z E%O’S)[ Z 1(Ha(X,U)>tk+2,Xv(tk+2)e(o,a),te1n)], (9.9)
(u,8)EBx (v,t)efH§+2

where here H¥™?(X) = inf{t > t3,2 : X; = 0}. By Lemmas and each summand
in the right-hand side of the above inequality is bounded by C’ae”aE%[Ytk ro—s] < Cs. The
lemma follows. O

Lemma 9.14. For alln > 1 with t,+1 < tgzy, we have for large A and a,

tot 6“(1
E.[B, ]_G’Elot] C(; (9.10)

Proof. By Lemma the statement is true for n = 1, because B{°® = B; by definition.
Now we have for every n, by Lemmas and and the fact that B! < e=4et?/a on
G%Ot,

n—2
En[B;/Oth%Ot] = Z ETL[Bk,n]-G%Ot] + En[Bn]-G%Ot]
h=0 (9.11)
,A n—2 eha
<C ( BB gl + ).
5 Z k k LGt t] a2
The lemma now follows easily by induction over n, since n < a by hypothesis. O

Lemma 9.15. Suppose (HB%). For large A and a, we have P, ((G*%)°) < Cse=243(n/a) + €2
for every n = 0.
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

Proof. Let n > 1. By definition, the event G!°*,\G}, ,, implies that a descendant of a particle
in %,_» hits a before t,. Markov’s inequality and Lemma [9.9] then imply,

P (G2 \Gbn) < En[B;OEﬂG%oﬁl](SUp EO[R,:D < Csa™2, (9.12)

t<ta

by Lemma Furthermore, by Proposition [6.2] and Lemmas and [9.14] we have

P, (G} A Gp)\Gen) < [B;ﬂﬁQlG;Oﬁl](fEFpBEO[mZt -I-Yo]> < Cse24B3¢™1 (9.13)
xUl2

by and . By and , we have for large A and a,
P, (Gzn\GP) < P (Gr,\GP)) + Cse 24807 < Py (Gpn1\GPY,) + Cse 243071
By induction over n and the hypothesis, this gives for every n,
P (Gz,\GYY) < Cse 3 (n/a) + &2
Together with Lemma [0.7] the statement follows. O

Define the random variable ng := |T'/t1| and note that ¢,,—1 > T~ for large A. Define the
events Gy = {Ztgjo < e, Ygr < e??/a, By | <nett/a} and Gi¥ = |, (G n{no = n}).

Lemma 9.16. We have for large A and a,
P((G'Y' A Gy)\Gaw) < Cse™ 2.

Proof. By definition, ¥y < Zg, . Lemmas and then give

E[Ztno 1G£f6°mG%] CSUPE [Zt + A}/t ( Z E[ Bt 1th |ﬁgH ]IG%]>

i<tz n=0
|VEa /] (9.14)
< Csaet® 2 En[B;LOt]_G%ot] < Cs.
n=0

Similarly, we have

P(RY >0, G

no ?

Gu) <Cem, and  E[YF 1pe  _glawing, ] < Cs/a.  (9.15)

Ing—1

Finally, we have as in (9.14)), by Lemmas and [9.14]

ng—2
E[BL 11l nGy] = E[ 2. ElBun—1lge | !9’31{0]1(1%]
lvEa? ft:]
<Cs(e¥/a) Y, Ex[Bilge] < Cse 1/a. (9.16)
k=0

The lemma now follows from ((9.14)), (9.15)) and (9.16)), together with Markov’s inequality. [
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9. The B:-BBM

After the breakout. We study now the system after the breakout. Recall that ng = |7/t
by definition and define ny := |©1/t; +1]|. We define 9’2 = FanT gz gz, , and the event
’VLO

GﬁA = Ga N Guy € 332. We denote by the superscript “gr<" the quantities relative to

particles the descending from those that were grey before or at time t,,. Then let Gibab be
the intersection of Gppap With the event that none of these particles hits a between ¢,, and
©1 + e4a? before hitting 0. Define then the (sub-probability) measure Pﬁnbab =P(, Gﬁbab).

Lemma 9.17. For large A and a, P(G’ﬁA) >1—Ce%* and P((Gibab)c | fg)lGuA < Ce2.

Proof. On G, we have t,, < tgoy for large A and a, in particular, ng < a. By Lemmas [9.15|
and and ((6.2]), we then have for large A and a,

P(Ga\GY) < P(Ga\Gi) + P((Ga 0 Gio)\Grw) < O,
With Lemma [7.4] this yields the first statement. For the second statement, we have by

Lemmas [5.8) and [5.9]

PR oysanan = 01 Py, < CUZE, + V8 ey < et
Together with Lemma [7.5] this implies the lemma. .

We change the notation of B, a bit: it is defined to be the number of particles hitting 0
during I,, for the first time after t,,—1. In particular, we also count the descendants of the
grey particles at that time.

Lemma 9.18. For large A and a, we have for every n = ng — 1,
—5a/3¢""
Eibab[Bn ’ 9&]1@2 < Cse / —

Proof. Define & := Ji//;— U L% T) We have for t € I,,, as in Lemma
<0 Y BUHOVILAPN 4 N < N | Fa)
(u,t)eZ
< Com(ee™)™ )] E X“(t Ln]1 A
(u,t)e”

by Lemma By Lemma (6.1]) and the definition of G and G'yg, this gives for large A
and a,

B B + B | A1

By [Br + BYE | ZA1 < Coetn(eeta)™ (Zp- + AVp + 201 (9.17)
A A
< Cselne™?/a.

Furthermore, by the independence of the check- and bar particles from the others, we have
by Lemmas (9.8 and and by the inequality wy (z) < a~'e=(¢=2)/2 valid for every z < a/2
and a large enough,

Eﬁnbab [én + Bn ’ yi]lgﬁ
< Caeuaﬁ(%A)_la_l(E@va + AV - + A&y + Zy, + AV )1 < Cseln/a, (9.18)
A
by (6.1) and the definition of Gﬁ Similarly, we have for n = ny,
B [BE= | FAl1 e < Coetnlee®) ™' YE s < Coen/a, (9.19)

and BE'=, < ne®/a on the event G% .. The lemma now follows from (9.17), (9.18) and (9.19)),

together with (6.3]) and (6.2)). O
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

For n > ng — 1, define G/*°* to be the event that no descendant of a particle which has
been coloured blue between ¢,,,_1 and ¢, hits a before ©1 + ela?.

Lemma 9.19. We have for every n = ng and for large A and a,
- et?
Ef o B Lior | AN i < Cse 5A/37'

Proof. The proof is similar to the proof of Lemmal[9.14} Substituting Lemma[0.5by Lemmal[9.8|
one first shows that for every ng — 1 < k < n — 2, one has

Ef o[ Brnlgper | T2 )1 < C5n67AE§1bab[BlE:Ot1G;§°t Ifﬁ]lguA : (9.20)
which, by a recurrence similar to (9.11)), yields the lemma. O

Lemma 9.20. For large A and a, Pibab((G’tOt) | 7 A1l < 1/a.

€N
Proof. Similarly to the proof of Lemma[9.15] but using Lemmas [5.8| and [5.9] instead of Propo-
sition [6.2], we have for large A and a,

nbab( GItot \ Gt | g7 it O e < C()‘Eﬁbab[BZO_tQ]_G;’fgtl |§‘\£]1Giez‘l—ua/a < Csa™2,

where the last inequality follows from Lemma and (6.3). The lemma now follows by
induction over n. 0

Lemma 9.21. Suppose (HB%). Then P(Gg) >1—¢e*? for large A and a.
Proof. By Lemma Corollary [9.6] and the union bound we have

P(An <ng: N(tp) < N, Gzn, Gz) < Cse™ . (9.21)
Furthermore, by Lemma we have

P(Ing <n <ny : N(t,) < N or N(©;) < N, Ga) < Csn/e < Cse™4, (9.22)
by (6.3) and (6.2)). Now, by Proposition and Lemmas and [9.17],
ny—1
Bl [ 28 anee | FAI1 s < C(Z00 + Coaer® N Bl B g | 741 )16 92
n=ng—1 :

< Ce?? 4+ C5 < Cet?,
by Lemma Similarly, we get
B [Y8 Lage | PR]1 e < Ce/a (9.24)
Moreover, we have by Lemma [9.19

Eflbab[(BtOt 1 + BtOt)lG/tot |'/A] Gu < C eha— 5A/3/CL

Setting X = P<BE(3t1 Or4t] S e~ Aet/q ‘ f@l), we then have E[(1 — X)1

el G’;gg’tmGﬁA] S
Cse=24/3 by Markov’s inequality. Applying the Markov inequality once more to X as in the

proof of Lemma [8.1] yields

nbab

P(X <1-e G, nGrotn GY) < Cse 267248 < Cpe?, (9.25)

by . The lemma now follows from and ( -, Lemmas [9.17] m 7| and [9.20) m and

Markov’s inequality applied to - and -
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9. The B:-BBM

9.4 Proofs of the main results

Proof of Lemma[9.1 The property about Z, and Yy follows as in the proof of Lemma [8.§|
from (8.21). Moreover, again as in the proof of Lemma we have by (8.21)), (8.23) and
(8:25), for every i < [e’N],

P(N;" <N, Ry, =0)<Cse “/a and P(Ry, >0) < Cse?/a,

where we denote the initial particles by 1,..., [651\7 |. By the independence of the particles,
we now have,

[e’ N
=) < Y PN <N, Ry, = 0)EXO[Lolp, _g)]
=1

< Cs(e™*/a)e" E[Yy] < Cse!®/a?,

E[Bolg

by (8.21). Setting X = P(BO < e_Ae““/a‘ﬁo), we then have E[l — X] < Cset/a
by Markov’s inequality. Applying Markov’s inequality once more to X as in the proof of
Lemma [8.] yields the lemma. O

Proof of Proposition[9.2 Exactly the same reasoning as in the proof of Proposition [8:2] but
using Lemma [9.21] instead of Lemma [8.14] O

Proof of Proposition [9.3, Define p = x,,-2s, such that (1 + up)e ™" < ae™2°(1+0(1)). As in
the proof of Proposition (see (8.57)), it is enough to show that

sup sup PY(NP%(p) > aN, T >t) < Cse/4, (9.26)

ueGg t=efa?

for large A and a. Let v € Gg and t > eda®. If t > y/za®, then the above probability is
bounded by Ce? by Proposition Suppose therefore that e4a? < t < (/za® and write
P = P(-|T > t). By definition, we have (1 + z4)e % = a. Let n be the largest integer
such that t,41 < t; note that n > 1 for large A. By Lemmas and together with
Chebychev’s and Markov’s inequalities, and , we have for large A and a,

P(le 7, —1| <e'? Y, <e*3/a) =1 - Cse™/™. (9.27)
And as in the proof of Lemma the same holds for Z7" and Y as well, which yields
P(le ™28 — 1] < V8, V"8 < '3 /a) > 1 — G54, (9.28)

Lemmas [5.8 and [9.9| and Corollary [6.7| then show that P(R'[fz > 0) <o(l).
Let N{Wg(r) be the white and grey particles to the right of » at time ¢ which descend
from the white and grey particles at time ¢,, and which have not hit a between t,, and t. By

Proposition and Corollary we have for large A and a,

E[N"8(p)| F1,] < e PaNe 128, (9.29)
Var(N;"8(p) | 71,) < Csa0®N%e 2 (07125 + V,"5), (9.30)

Chebychev’s inequality and (9.28)) then give for large A and a,
P(N/"8(p) > e %*aN) < Ce”/4. (9.31)
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

Furthermore, denote by N/P™¢(r) the number of blue particles to the right of r at time ¢
which have turned blue after ¢, + a® and which have not hit a between ¢, and t. Then by

Lemma and (9.3, we have

E[N/(p) | 7]

<O St D Y [ Bl BN )
(u,s)eM 8 nta (932)
d
< Cse MKja+e YY) Y el j I%(a — Xy(s), d7)E° [N, (p)],
(s)e Ay @

where we set d = t—t,,. Note that (K +3)a? < d < 2(K +3)a®. By Lemma and Girsanov’s
theorem, we have now for every 7 = 0,

2 = 0
E°[N, (p)] = 2™ WO (X, > p) = €32 TWOe ML x -] = €37 f g (2) dz,

P

(9.33)
where g-(z) = (277)"Y2e7**/(27) is the Gaussian density with variance 7. If 7 > a2, then
sup, g-(z) < C/a, such that for every z € [0,a] and z > p,

d—a
J I(a — x,d7)gq_+(2) < Ca™'I%a — x,[a®, d — a*]) < CKa™ ' sin(rz/a), (9.34)

a2

by Lemma Moreover, by Lemma we have I%(a—x,d7) < Ca~?sin(rz/a) dr for every
7 > a?, such that

d a?
J I(a — 2,d7)gq_-(2) < Ca™%sin(rx/a) J 71247 < Ca'sin(rz/a). (9.35)
d—a? 0

Equations (9.32), (9.33)), (9.34) and (9.35) now yield

B[N/ (p) | 1,] < Cemrers~Aa=2(Ka™ + e 4Y,") 2,8

<
< t

" (9.36
< Csoe ?AN(1 + ae_AY;‘;Vg)Z;;g. )

Furthermore, if NJ**(p) denotes the particles to the right of r at time ¢ descending from those
turning blue between t,, 1 and t, + a2, then by (9.33) and the supremum bound on g, (2),
]:E[NtreSt(p)fot] < Csa™le ™ MPE[(B' + B:L()_tl)lg%ot] < Csae N, (9.37)

by Lemma Markov’s inequality applied to (9.37) and (9.36]) together with (9.28)), Lem-
mas and give

P(Net 4 NP > e N) < Cse?, (9.38)
by (6.2). The statement now follows from (9.31)), (9.38) and the above-mentioned bound on
P(RIT > 0). 0

Proof of Lemma[9] B deﬁnition, the B:-BBM and C!-BBM coincide until ©,, on the set
Gh. By Proposition we have P(GE«L) > 1 — nel*e for some numerical constant ¢ > 0
and by the coupling of (@n)n>0 with a Poisson process of intensity pgedm ~ ¢!, we have
PO, 1 > e=9%) - 1, as A and a go to infinity. Propositions and then readily

transfer to the Cf-BBM. O
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10 The N-BBM: proof of Theorem [1.1

We will first establish a monotone coupling between the N-BBM and a class of slightly
more general BBM with selection which includes the B>-BBM from Section and the C--BBM
from Lemma In a second part, Theorem [I.1]is proven.

10.1 A monotone coupling between N-BBM and more general particle
systems

A selection mechanism for branching Brownian motion is by definition a stopping line .Z,
which has the interpretation that if (u, s) € £, we think of u being killed at the time ¢. The
set of particles in the system at time ¢ then consists of all the particles u € .47(t), which do
not have an ancestor which has been killed at a time s < ¢, i.e. all the particles u € A(t)
with & < (u,t).

Now suppose we have two systems of BBM with selection, the N*-BBM and the N~-BBM,
whose selection mechanisms satisfy the following rules.

1. Only left-most particles are killed.

2. NT-BBM: Whenever a particle gets killed, there are at least N particles to its right
(but not necessarily all the particles which have N particles to their right get killed).
N~-BBM: Whenever at least N particles are to the right of a particle, it gets killed (but
possibly more particles get killed).

Let v;t, ;7 and v}¥ be the counting measures of the particles at time t in NT-BBM, N~-
BBM and N-BBM, respectively. On the space of (finite) counting measures on R we denote
by < the usual stochastic ordering: For two counting measures v, and o, we write vy < 19
if and only if v ([x,0)) < va([x,0)) for every z € R. If z1,...,x, and y1,...,y, denote
the atoms of 11 and 15 respectively, then this is equivalent to the existence of an injective
map® ¢ : [n] — [m] with ; < y,(;) for all i € [n]. Furthermore, for two families of counting
measures (v1(t))i=0 and (v2(t))i=0, we write (v1(t))i=0 < (v2(t))i=0 if v1(t) < va(t) for every

t
t = 0. If (v1(t))i=0 and (v2(t))t=0 are random, then we write (v1(t))i=0 < (v2(t))e=o if there
exists a coupling between the two (i.e. a realisation of both on the same probability space),
such that (v1(t))i=0 < (v2(t))=0.

¢ St ¢ ¢
Lemma 10.1. Suppose that vy < vy < vl Then (v )e=0 < (vM)i=o < (v )e=o0-

t
Proof. We only prove the second inequality ;¥ X v;", the proof of the first one is similar. By

a coupling argument and conditioning on % it is enough to show it for deterministic l/év and

vy . Let n™ =y (R) and let IT = @, o®, ... ,H(”+)) be a forest of independent BBM trees
with the atoms of v as initial positions. We denote by .41 (t) the set of individuals alive®
at time ¢ and by X!(¢) the position of an individual u € .#!(¢). Denote by A *(t) = A 1(¢)
the subset of individuals which form the N*-BBM (i.e. those which have not been killed by
the selection mechanism of the NT™-BBM). We set v, = Zue,/V+(t) OxI(s)-

From the forest II we will construct a family of forests <ET = (E(Tl ), e ,E(TN) ))T . (not
>

necessarily comprised of independent BBM trees), such that
— if Th < T3, then the forests Z1, and =7, agree on the time interval [0, 71],
— the initial positions in the forest Zy are the atoms of v,
— for every T' = 0, the N-BBM is embedded in Z¢ up to the time 7', i.e. for 0 < t <
T, if A4 =(t) denotes the set of individuals'® from Z7 alive at time ¢ and X=(t) the

8. We use the notation [n] = {1,...,n}.
9. The term “alive” has the same meaning here as in Section
10. Note that this does not depend on T
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Chapter 2. Branching Brownian motion with selection of the N right-most particles

position of the individual u € .#=(t), then there is a subset AN (t) = A=(t) such
that (v )o<t<r = (ZUEE/VN(t) 5X§(t))0<t<T is equal in law to the empirical measure of
N-BBM,
— for every t > 0, there exists a (random) injective map ¢; : AN (t) — A *(t), such that
XE(t) < th(u) (t) for every ue A N(t).
We will say that the individuals u and ¢:(u) are connected. If at a time ¢ an individual
v € A F(t) is not connected to another individual (i.e. v ¢ ¢¢(A N (t))), we say that v is free.
The construction of the coupling goes as follows: Since V(J)V < V(}L , we can construct Z,
AN(0) and ¢y, such that for every u e A4V (0) we have XZ(0) < X(I;O(u) (0) and the subtrees

E(()u’o) and I1(%(®):0) are the same up to translation. We now define a sequence of random
times (t,)n>0 recursively by to = 0 and for each n, we define ¢, to be the first time after ¢,
at which either

1. a particle of the N-BBM branches, or

2. the left-most particle of the N*T-BBM dies without a particle of the N-BBM branching.
We then set =, = Zg and ¢, = ¢g for all t € [0,¢1). Now, let n € N and suppose that

a) Z¢ and ¢, have been defined for all ¢ < t,,+1 and are equal to Z;, and ¢, , respectively,

b) for each u € A N(t,), the subtrees Eﬁ:’t") and Hgft"(u)’tn) are the same, up to translation.
Note that this is the case for n = 0. We now distinguish between the two cases above, starting
with the second:

Case 2: The left-most particle w’ of the NT-BBM gets killed without a particle of the N-
BBM branching. If w’ is free, nothing has to be done. Suppose therefore that w’ is connected
to a particle w of the N-BBM. Then, since there are at most N — 1 remaining particles in the
N-BBM and there are at least N particles to the right of w’ in the N*-BBM (otherwise it
would not have been killed), at least one of those particles is free. Denote this particle by v’.
We then “rewire” the particle w to v" by setting ¢y, ., (w) := v and define Z,,, by replacing

the subtree Egﬁ)’t”“) in =, by HE: ’t”“), properly translated. Note that we then have

X5y (tng1) = X (tna1—) = Xy (tap1—) = X (tns1—),

¢tn+1

where the first inequality follows from the fact that w’ is the left-most individual in N T-BBM
at time t,41 and the second inequality holds by hypothesis. See Figure [2.7] for a picture.

w
N-BBM Q.

N*-BBM X
w’ v

Figure 2.7: The connection between the particles w of the N-BBM and w’ of the N*-BBM
breaks. By definition of the NT-BBM, there exists a free particle v’ to the right of w’ and w
is rewired to that particle.

If more than one particle of the N*-BBM gets killed at the time ¢,,,1, we repeat the above
for every particle, starting from the left-most.

Case 1: A particle u of the N-BBM branches at time ¢,4;. By the hypothesis b), the
particle ¢y, (u) then branches as well into the same number of children. We then define
o1, (uk) = ¢y, (u)k for each k € [C,] (recall that C, denotes the number of children of u),
i.e. we connect each child of u to the corresponding child of ¢y, (u). Now first define ¢;
to be the restriction of ¢, to the surviving particles. Then continue as in Case 2, i.e. for
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10. The N-BBM: proof of Theorem

each particle w' of the N*-BBM which gets killed and which is connected through ¢} . to a
particle w of the N-BBM, rewire w to a free particle v’. In the end, we get ¢, .

In both cases, we then set 2y = =, ,, and ¢; = ¢4, for each t € [tn+1,tn+2). Note that
each time we are rewiring a particle, we rewire it to a particle whose subtree is independent
of the others by the strong branching property, whence the particles from .4 (t) and .4 *(¢)
still follow the law of N-BBM and NT-BBM, respectively. Furthermore, we have for every
we Qv (w) < v (w) for every t = 0. This finishes the proof. O

10.2 Proof of Theorem [1.1]

Let (¥}¥)i=0 be measure-valued N-BBM starting from the initial condition

(HO) at time 0, there are N particles independently distributed according to the density
proportional to sin(mz/an)e™"1(ze(0,ay)), Where ay = (log N + 3loglog V).
Recall the definitions from the introduction. Let o € (0,1). We wish to show that the
finite-dimensional distributions of the process
(M) (tlog® N))

¢=0 (10.1)

converge weakly as N — o0 to those of the Lévy process (L;);>0 stated in Theorem with
Ly = x,. We will do this by proving seperately a lower and an upper bound and show that
in the limit these bounds coincide and equal the Lévy process (L)¢>o.

Lower bound. Fixa e (0,1) and § > 0. We will let N and in parallel A and a go to infinity
(in the meaning of Section [7)) in such a way that N = 2me49a73e#® and such that A goes
to infinity sufficiently slowly such that the results from Section [§ hold. We then have with
¢ = log(27),
2
a=any—(A+d+c+o(l)), and pu=py-— g(A +0+c+o(1)). (10.2)

Let (10)i=0 be the measure-valued B’-BBM starting from the initial configuration (HB” ),

ie. 1/8 is obtained from |e~®N| particles distributed independently according to the density

t
proportional to sin(rx/a)e™#*1(g 4 (7). An easy calculation now shows that v < v for

large N, by (10.2). Now, if th denotes the barrier process of the B’-BBM, then (v, )i=0 =
(12 + ut + X])i=0 is by definition an instance of the N~-BBM. Lemma now gives for

St . . . . .
large N, (v )i=0 < (v})¢=0, which by definition implies

(@ (/™ ))is0 = (qu () )iso. (10.3)

Given 0 < t1 < ... < t,, we now define tf-v — a7 3t;log® N, such that tfv — t; for every i, as
N — o0. We then have

(Mév (ti log® N)) )
i=1,..,n
= (quév(yglog3N) — pntilog? N)i:l,...,n by definition
st _
- (qug\’(uzp,tf_v) + Xgay — A+ 8+ e+ o),y by (10.2)

Toe2s + Li, — O(0) + ¢) for large N,

i=1,...,n
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where the last inequality follows from Propositions and with (L;)¢=0 being the Lévy
process from the statement of Theorem starting from 0. Letting first N — oo, then § — 0
yields the proof of the lower bound.

Upper bound. The proof is analogous to the previous case, relying on Propositions[9.2and
[0.3] instead of Propositions and There are only two differences to notice: First, the
Bf-BBM is not a realisation of the N*-BBM. However, the C*-BBM (defined in Lemma
is such a realisation and by that lemma, Propositions and hold for the C#-BBM as

t
well. Second, if I/g is distributed according to (HBﬁL), we do not have v}’ < l/g. However, if

7Y is obtained from v by killing the particles in the interval [ax — A%, ay], then by (10.2)),

t
a quick calculation shows that 7' = y¥ with high probability and DY < yg as IN goes to

infinity. This finishes the proof of the upper bound and of Theorem [L.1]
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Chapter 3

A note on stable point processes
occurring in branching Brownian
motion

1 Introduction

Brunet and Derrida [54, p. 18] asked the following question, which arose during the study
of the extremal particles in branching Brownian motion: Let Z be a point process on R, with
the following property they called “superposability”: Z is equal in law to To,Z + TgZ’, where
Z' is an independent copy of Z, e* + €8 = 1 and T, is the translation by z. Is it true that Z
can be obtained from a Poisson process of intensity e dx on R by replacing each point by
independent copies of an auxiliary point process D (they called D the “decoration”)? More
precisely, can Z be written as

e¢]
Z =\ TeD;, (1.1)
i=1
where (§;);>1 are the atoms of the above-mentioned Poisson process and Dy, Da, ... are inde-

pendent copies of D and independent of £7 This question was answered in the affirmative by
the author [116], and independently in the special case arising in branching Brownian motion
by Arguin, Bovier, Kistler [10, 1] and Aidékon, Berestycki, Brunet, Shi [4]. The represen-
tation was also shown for the branching random walk by Madaule [114], relying on the
author’s result. See also [98] for a related result concerning branching random walks.

Immediately after the article [I16] was published on the arXiv, the author was informed
by Ilya Molchanov that the superposability property had a classical interpretation in terms
of stable point processes, and the representation was known in this field as the LePage
series representation of a stable point process.

The purpose of this note is two-fold: First, we want to outline how can be obtained
via the theory of stability in convex cones. Second, we give a succinct and complete proof of
(1.1) and an extension to random measures for easy reference.

2 Stability in convex cones

Let Y be the image (in the sense of measures) of Z by the map x +— e (this was suggested
by Ilya Molchanov), such that Y is a point process on Ry = (0,00). By the superposability
of Z, Y has the following stability property: Y is equal in law to aY + bY’, where Y’ is
an independent copy of Y, a,b = 0 with a + b = 1 and aY is the image of Y by the map
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x — azx. If Y is a simple point process, one can see the collection of points of the point
process Y as a random closed subset of R, and the stability property is then also known as
the union-stability for random closed sets (see e.g. [119, Ch. 4.1]).

Davydov, Molchanov and Zuyev [70] have introduced a very general framework for study-
ing stable distributions in convex cones, where a convex cone K is a topological space equipped
with two continuous operations: addition (i.e. a commutative and associative binary operation
+ with neutral element e) and multiplication by positive real numbers. Furthermore, the two
operations must distribute and K\{e} be a complete separable metric space. For example, the
space of compact subsets of R¢ containing the origin is a convex cone, where the addition is
the union of sets and the multiplication by a > 0 is the image of the set by the map z — ax
(see Example 8.11 in [70]). Furthermore, it is a pointed cone, in the sense that there exists a
unique origin 0, such that for each compact set K = R%, aK — 0 as a — 0 (the origin is of
course 0 = {0}). The existence of the origin permits to define a norm by | K| = d(0, K), with
d the Hausdorff distance in R?. An example of a convex cone without origin (Example 8.23
in [70]) is the space of measures on R%\ {0} equipped with the usual addition of measures and
multiplication by a > 0 being defined as the image of the measure by the map =z — ax, as
above.

A random variable Z with values in K is now called a-stable if a'/*Z + bY/*Z’ is equal
in law to (a + b)l/a for every a,b > 0, where Z’ is an independent copy of Z and a € R.
With the theory of Laplace transforms and infinitely divisible distributions on semigroups (the
main reference to this subject is [25]), the authors of [70] then show that to every a-stable
random variable Z there corresponds a Lévy measure A which is homogeneous of order «,
i.e. A(aB) = a®A(B) for any Borel set B. Actually, A is a priori only defined on a certain
dual of K, and a considerable part of the work in [70] is to give conditions under which A is
supported by K itself. These conditions are satisfied for the first example given above, but
not for the second, since they require in particular that the cone be pointed. Moreover, and
this is their most important result, under some conditions satisfied by the first example, Z
can be expressed as its LePage series, i.e. the sum over the points of the Poisson process with
intensity measure A.

In order to get to the decomposition , one must then disintegrate the homogeneous
Lévy measure A into a radial and an angular component, such that A = ¢r=*dr x o for ¢ > 0
and some measure o on the unit sphere S = {x € K : |z| = 1}. This is also called the spectral
decomposition and o is called the spectral measure. If o has mass 1, then the LePage series
can be written as

Z = Zfz’Xu

where £1, &9, . .. are the atoms of a Poisson process of intensity cr~*dr and X1, Xo, ... are iid
according to o, independent of the &;. This is exactly the decomposition (1.1).

3 A succinct proof of the decomposition ([1.1])

As mentioned in the introduction, we will give here a short proof of the decomposition
(1.1) and its extension to random measures. We hope that this proof will be more accessible
to probabilists who are not familiar with the methods used in [70]. Furthermore, the results
in [70] cannot be directly applied to give the extension of to random measures, such
that it may be of interest to give a rigorous proof in that setting.
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3.1 Definitions and notation

We denote by M the space of boundedly finite measures on R, i.e. measures, which
assign finite mass to every bounded Borel set in R, and by N the subspace of counting
measures. It is known (see e.g. [66], p. 403ff) that there exists a metric d on M which
induces the vague topology and under which (M, d) is complete and separable (but not locally
compact). We further set M* = M\{0}, which is an open subset and hence a complete
separable metric space as well ([42], IX.6.1, Proposition 2), when endowed with the metric
d*(u,v) = d(p,v) + |d(u,0)"t — d(v,0)7!], equivalent to d on M*. The spaces N and
N* = N\{0} are closed subsets of M and M*, and therefore complete separable metric
spaces as well ([42], IX.6.1, Proposition 1).

For every x € R, we define the translation operator T, : M — M, by (Tyu)(A) = u(A—=zx)
for every Borel set A < R. Furthermore, we define the function M : M* — R by

M(p) =inf{x e R: p((z,0)) < min(1, u(R)/2)}.

Note that if 4 € N, then M(u) is the position of the right-most atom of p, i.e. M(u) =
supsupp u. It is easy to show that the maps (z,u) — Tyu and M are continuous, hence
measurable.

A random measure Z on R is a random variable taking values in M™*. If Z takes values in
N, we also call Z a point process. For every non-negative measurable function f: R — R,
we define the cumulant

K(f) = Kz(f) = —log E [exp(—(Z, f))] € [0, ],
where (i, f) = §g f(#)pu(dz). The cumulant uniquely characterises Z ([66], p. 161).

Theorem 3.1. Let Z be a random measure and let K(f) be its cumulant. Then Z is super-
posable if and only if for every measurable non-negative function f: R — R4,

K(f)= CJR e " f(x)dx + JR e JM* [1 — exp(—{p, )] TxA(dp) dz, (3.1)

for some constant ¢ = 0 and some measure A on M™*, such that

J e’ Joo(l —e NA(u(A+ z) e dy) de < o, (3.2)
R Jo

for every bounded Borel set A < R. Moreover, A can be chosen such that A(M(u) # 0) = 0,
and as such, it 1s unique unless Z = 0 almost surely.

Corollary 3.2. A point process Z is superposable if and only if it has the representation (|1.1))
for some point process D satisfying

0¢]
f P(D(A +2) > 0)e" dz < 0. (3.3)
If P(Z # 0) > 0, then there exists a unique pair (m, D), such that P(M(D) =m) = 1.

3.2 Infinitely divisible random measures

Our proof is based on the theory of infinitely divisible random measures as exposed in
Kallenberg [99]. A random measure Z is said to be infinitely divisible if for every n € N there
exist iid random measures Z(M, ..., Z(™ such that Z is equal in law to Z(M) + ...+ Z(W) | Tt is
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said to be infinitely divisible as a point process, if Z(!) can be chosen to be a point process.
Note that a (deterministic) counting measure is infinitely divisible as a random measure but
not as a point process.

The main result about infinitely divisible random measures is the following (see [99],
Theorem 6.1 or [67], Proposition 10.2.IX, however, note the error in the theorem statement
of the latter reference: F; may be infinite as it is defined).

Fact 3.3. The random measure Z is infinitely divisible if and only if

K1) = Oufy+ [T exp(=Ge DA,

where A € M and A is a measure on M* satisfying

f(l — e ™)A(u(A) € dz) < o, (3.4)

for every bounded Borel set A c R.

The probabilistic interpretation ([99], Lemma 6.5) of this fact is that Z is the superposition
of the non-random measure A\ and of the atoms of a Poisson process on M* with intensity A,
which is exactly the representation of Z as the LePage series mentioned in Section [2] It has
the following analogous result in the case of point processes ([67], Proposition 10.2.V), where
the measure A is also called the KLM measure.

Fact 3.4. A point process Z is infinitely divisible as a point process if and only if X = 0
and A is concentrated on N*, where X\ and A are the measures from Fact , Then, (3.4) is
equivalent to A(u(A) > 0) < o for every bounded Borel set A < R.

In particular, the Lévy/KLM measure of a Poisson process on R with intensity measure
v(dz) is the image of v by the map x — §,.

3.3 Proof of Theorem [3.1]

We can now prove Theorem and Corollary For the “if” part, we note that
implies for the measure A = Se‘xTxA dx, such that the process with cumulant given by
exists. The superposability is readily verified. Further note that for point processes the
condition (3.3 is equivalent to .

It remains to prove the “only if” parts. Let Z be a superposable random measure. Then,
for a, B € R, such that e® + ¢® = 1, we have

K(f) = —logE[exp(—(Z, f))] = —log E[exp(—TwZ, f))] — log E[exp(—(T3Z, f))]
K(f(-+a)) + K(f(- + B)).

Setting p(z) = K(f(- +logz)) for z € R4 (with ¢(0) = 0) and replacing f by f(- + logx) in
the above equation, we get p(x) = @(ze®) 4+ p(ze?) for all z € Ry, or p(x) + ¢(y) = p(z +v)
for all z,y € R. This is the famous Cauchy functional equation and since ¢ is by definition
non-negative on R, it is known and easy to show [68] that ¢(x) = ¢(1)z for all x € R;. As
a consequence, we obtain the following corollary:

Corollary 3.5. K(f(-+x)) = e*K(f) for all x € R.

Furthermore, it is easy to show that superposability implies infinite divisibility. We then
have the following lemma.
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Lemma 3.6. Let A\, A be the measures corresponding to Z by Fact[3.3.
1. There exists a constant ¢ = 0, such that A = ce™* dx.
2. For every x € R, we have dT,A = e*dA in the sense of Radon-Nikodym derivatives.
3. p(Ry) =0 for A-almost every p.

Proof. The measures T, A, T,A are the measures corresponding to the infinitely divisible
random measure 1, Z by Fact But by Corollary [3.5] the measures e”\ and e* A correspond
to T, Z, as well. Since these measures are unique, we have T, A = e*\ and T, A = e*A. The
second statement follows immediately. For the first statement, note that ¢; = A([0,1)) < o0,
since [0, 1) is a bounded set. It follows that

cl€

A([0,0)) = Z M[n,n+1)) = Z ce "t = =:¢,

n=0 n=0 e—1

hence A([z,00)) = ce™® for every x € R. The first statement of the lemma follows. For the
third statement, let I, = [n,n + 1) and I = [0,1). By (3.4), we have

1 1
f Ap(l) > z)dx = J xA(u(I) € dz) < oo.
0 0

By monotonicity, the first integral is greater than or equal to zA(u(I) > x) for every x € [0, 1],
hence A(u(I) > z) < C/x for some constant 0 < C' < c0. By the second statement, it follows
that

Ap(L,) > e™™?) = e "A(u(l) > e ™?) < Ce™™?,

for every n € N. Hence, 3 . A (u(In) > e™™?) < 0. By the Borel-Cantelli lemma,

A <1im sup {M(In) > e_"/2}> —0,

n—0o0
which implies A(u((0,0)) = o) = 0. O

Lemma 3.7. The measure A admits the decomposition A = { e *T, A dx, where A is a unique
measure on M* with A(M (p) # 0) = 0 which satisfies (3.2)).

Proof. We follow the proof of Proposition 4.2 in [I30]. Set M§ := {u e M* : M(u) = 0},
which is a closed subset of M*, and therefore a complete seperable metric space ([42], 1X.6.1,
Proposition 1). By the continuity of (z, ) — Typ, the map ¢ : M* — M{ x R defined
by é(p) = (T-preu), M (1)) is a Borel isomorphism, i.e. it is bijective and ¢ and ¢~ are
measurable. The translation operator T, then acts on M§ x R by T,(u,m) = (u, m + x).
If A, = {p € M§ : p([—2n,2n]) < 1/n}, then A(A, x [-n,n]) < o« for every n € N by
(3.4). By the theorem on the existence of conditional probability distributions (see e.g. [100],
Theorems 5.3 and 5.4) there exists then a measure Ay on Mf with Ag(A4,) < o for every
n € N and a measurable kernel K (u,dm), with K(u, [—n,n]) < oo for every n € N, such that

A(dys, dm) = JM* Ao(dp) K (1, dm).

Moreover, we can assume in the above construction that K(u,[0,1]) = K(u/,[0,1]) = 1 for
every p, ' € M and n € N, and with this normalization, Ag is unique. By Lemma we
now have T, K (u,dm) = e*K (u,dm) for every x € R and p € M§. As in the proof of the first
statement of Lemma we then conclude that K (u,dm) = c¢(u)e™™ dm for some constant
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c(p) = 0, and by the above normalization, ¢(p) = ¢ := e/(e — 1). Setting A(dm) = cAg(dm)
then gives
A(dp,dm) = A(dp)e ™ dm,
MG
which finishes the proof. O

The “only if” part of Theorem now follows from the previous lemmas. If Z is a point
process, then Fact implies that A\ = 0 and that A is concentrated on N*, hence A as
well. Equation then implies that A(u(A) > 0) < oo for any bounded Borel set A < R.
In particular, this holds for A = [—1,1]. But since p € N implies u([—1,1]) > 0 and
since A is concentrated on A, it has finite mass. If A has mass zero, then Z = 0 almost
surely. If A has positive mass, set m = log A(N*). The measure A’ = e~™T,,A is then a
probability measure and A = (e *T,A’dz. Furthermore, Z satisfies , where D follows
the law A’. Uniqueness of the pair (m, D) follows from Lemma This finishes the proof
of Corollary [3.2]

3.4 Finiteness of the intensity

If Z is a superposable point process and has finite intensity (i.e. F[Z(A)] < oo for every
bounded Borel set A © R), then it is easy to show that the intensity is proportional to e™* dz.
However, in the process which occurs in the extremal particles of branching Brownian motion
or branching random walk, the intensity of the decoration grows with |z|el*l, as 2 — —oo |54,
Section 4.3]. The following simple result shows that in these cases, Z does not have finite
intensity.

Proposition 3.8. Let Z be defined as in (1.1). Then Z has finite intensity if and only if
E[(D,e")] < .

Proof. By Tonelli’s theorem,

E[Z(A)] = E [Z E[T;, D(A) [£]

ieEN

- [ oG- peay -k [ [ pa-ype dy] ,
R R
for every bounded Borel set A < R. Again by Tonelli’s theorem we have

| Pea=neray = | | Lay@erdyDa) = . [ 10,007 dn,

For z € R, z € A—y implies y € [min A — z, max A — x]. Since e ¥ is decreasing, we therefore
have

|A|€—maerz <j 1Afy(x)6_y dy < |A|6_minA€$,
R

where |A| denotes the Lebesgue measure of A. We conclude that E[Z(A)] < o if and only if
E[(D,e")] < . O
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