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Thesis structure

Introduction + 3 chapters:

1 The number of absorbed individuals in branching Brownian motion
with a barrier

2 Branching Brownian motion with selection of the N right-most
particles

3 A note on stable point processes occurring in branching Brownian
motion

In this presentation: Chapters 1 and 2.
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Introduction

Branching Brownian motion (BBM)

Definition
A particle performs standard
Brownian motion started at a
point x ∈ R.

With rate β, it branches, i.e. it
dies and spawns L offspring
(L being a random variable).
Each offspring repeats this
process independently of the
others.

−→ A Brownian motion indexed
by a tree.

positionx

time
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Introduction

Branching Brownian motion (BBM) (2)

Context
An example of a multitype
branching process (type
space: R)

Discrete counterpart:
branching random walk
Interpretations:

Model for an asexual
population undergoing
mutation (position = fitness)
Spin glass (with infinitely
deep hierarchy)
Directed polymer on a tree
Prototype of a travelling
wave

positionx

time~exp(β)
. . .
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Introduction

Branching Brownian motion (BBM) (3)

We always suppose
m := E[L]− 1 > 0.

Right-most particle
Let Rt be the position of the
right-most particle. Then, as
t →∞, almost surely on the
event of survival,

Rt

t
→
√

2βm.

Convention
We will henceforth set
β = 1/(2m).

Picture by Éric Brunet
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Introduction

BBM←→ FKPP

Let g : R→ [0,1] be measurable. Define

u(t , x) = Ex

[ ∏
u∈Nt

g(Xu(t))
]
.

Then u satisfies the following partial differential equation:

Fisher–Kolmogorov–Petrovskii–Piskunov (FKPP) equation{
∂tu = 1

2∂
2
x u + β(E[uL]− u)

u(0, x) = g(x) (initial condition)

The prototype of a parabolic PDE admitting travelling wave solutions.
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Introduction

Selection

position0

time

. . .

-x

y = -x + ct

Two models of BBM with selection:

1 BBM with absorption: Let f (t) be
a continuous function (the
barrier). Kill an individual as soon
as its position is less than f (t)
(one-sided FKPP).

2 BBM with constant population
size (N-BBM): Fix N ∈ N. As
soon as the number of individuals
exceeds N, kill the left-most
individuals until the population
size equals N (noisy FKPP).
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Introduction

Selection

position0

time

. . .

-x

y = -x + ct

Two models of BBM with selection:

1 BBM with absorption: Let f (t) be
a continuous function (the
barrier). Kill an individual as soon
as its position is less than f (t)
(one-sided FKPP).

2 BBM with constant population
size (N-BBM): Fix N ∈ N. As
soon as the number of individuals
exceeds N, kill the left-most
individuals until the population
size equals N (noisy FKPP).

Pascal MAILLARD Mouvement brownien branchant avec sélection 8 / 33



Branching Brownian motion with absorption

Outline

1 Introduction

2 Branching Brownian motion with absorption
Results
Proof idea

3 BBM with constant population size

4 Perspectives

Pascal MAILLARD Mouvement brownien branchant avec sélection 9 / 33



Branching Brownian motion with absorption Results

Branching Brownian motion with absorption

position0

time

. . .

-x

y = -x + ct

We take f (t) = −x + ct (linear barrier).
Vast literature, known results (sample):

almost sure extinction⇔ c ≥ 1
(c = 1: critical case
c > 1: supercritical case)
growth rates for c < 1.
asymptotics for extinction
probability for c = 1− ε, ε small

We are interested in the number of
absorbed individuals in the case c ≥ 1
(question raised by D. Aldous).
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Branching Brownian motion with absorption Results

Our results (critical case)

Let Zx denote the number of individuals absorbed at the line −x + ct .

Theorem

Assume that c = 1 and that E[L(log L)2] <∞. For each x > 0,

P(Zx > n) ∼ xex

n(log n)2 , as n→∞.

If, furthermore, E[sL] <∞ for some s > 1, then

P(Zx = δn + 1) ∼ xex

δn2(log n)2 as n→∞,

where δ is the span of L− 1.
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Branching Brownian motion with absorption Results

Our results (supercritical case)

Theorem

Assume that c > 1 and that E[sL] <∞ for some s > 1. Let λc < λc be
the roots of the equation λ2 − 2cλ+ 1 = 0 and define d = λc/λc .
There ∃K = K (c,L) > 0, such that for all x > 0,

P(Zx = δn + 1) ∼ K (eλcx−eλcx )

nd+1 as n→∞.
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Branching Brownian motion with absorption Results

Other studies

Addario-Berry and Broutin (2011), Aı̈dékon (2010): Less precise tail
estimates (c = 1).

Aı̈dékon, Hu and Zindy (2012+): Similar results for branching random
walk (c ≥ 1), with more explicit K .

In contrast to the above papers, our proofs are entirely analytic.
Strategy: derive asymptotics on the generating function of Zx near its
singularity 1 (following an idea of R. Pemantle’s).
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Branching Brownian motion with absorption Proof idea

The number of absorbed individuals

Theorem (Neveu, 1988)

(Zx )x≥0 is a continuous-time
Galton–Watson process. The
infinitesimal generating function
a(s) = dE[sZx ]/dx admits the
decomposition

a = −ψ′ ◦ ψ−1,

where ψ is an FKPP travelling
wave of speed c, i.e.

1
2ψ
′′(s)− cψ′(s) + β(E[sL]− s) = 0,

and ψ(x) ↑ 1, as x →∞.

position0

time

-x

. . .

. . .

. . .

. . .

-y
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Branching Brownian motion with absorption Proof idea

Tail asymptotics c = 1

Follow from a Tauberian theorem and the following lemma:

Lemma

a′′(1− s) ∼ 1
s log2 s

, s ↓ 0.

Proof of lemma:
Solve two-dimensional ODE satisfied by (ψ′, ψ)

Use known asymptotic: 1− ψ(x) ∼ Cxe−x as x →∞.
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Branching Brownian motion with absorption Proof idea

Asymptotics on density (c ≥ 1)

Derive asymptotics of a(s) near s = 1 in the complex plane and use
transfer theorems by Flajolet and Odlyzko.

To this end,
show that a(s) can be analytically
extended to a region ∆(r , ϕ),
analyse its asymptotic behaviour near
the point s = 1 inside ∆(r , ϕ).

1
φ

r

Δ(r,φ)
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Branching Brownian motion with absorption Proof idea

Asymptotics on a(s) near s = 1

Theorem
For every ϕ ∈ (0, π) there exists r > 1, such that a(s) possesses an
analytical extension to ∆(ϕ, r). Moreover, as 1−s → 1 in ∆(ϕ, r), the
following holds.

If c = 1, then ∃K = K (L), such that

a(1−s) = −s +
s

log 1
s

− s
log log 1

s

(log 1
s )2

+
Ks

(log 1
s )2

+ o

(
s

(log 1
s )2

)
.

If c > 1, then ∃K = K (c,L) 6= 0 and a polynomial h(s), such that
if d /∈ N : a(1−s) = −λcs + h(s) + Ksd + o(sd ),
if d ∈ N : a(1−s) = −λcs + h(s) + Ksd log s + o(sd ).
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Branching Brownian motion with absorption Proof idea

Proof: Main idea

As before, write two-dimensional ODE satisfied by (ψ′, ψ) in a subset
of the complex plane. Changing coordinates leads to the classic

Briot–Bouquet equation

zf ′(z) = λf (z) + pz + . . . , λ,p ∈ C.

The set of solutions to this equation is known explicitly.

Note. Major technical difficulty in the proofs: justifying the coordinate
changes.
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BBM with constant population size

Outline

1 Introduction
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BBM with constant population size Introduction

BBM with constant population size

Picture by Éric Brunet

Recall: Fix N ∈ N. As soon as the
number of individuals exceeds N, kill
the left-most individuals until the
population size equals N. Much harder
than BBM with absorption:

strong interaction between
particles
no exact description through
differential equations

Nevertheless: A fairly detailed
heuristic picture due to physicists:
Brunet and Derrida (1997-2004)
with Mueller and Munier (2006-2007)

Pascal MAILLARD Mouvement brownien branchant avec sélection 20 / 33
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BBM with constant population size Introduction

Heuristic picture of N-BBM (BDMM 06)

Meta-stable state: speed cdet
N =

√
1− π2/ log2 N, empirical

measure seen from the left-most particle approximately
proportional to sin(πx/ log N)e−x1(0,log N)(x), diameter ≈ log N.

After a time of order log3 N, a particle “breaks out” and goes far to
the right (close to aN = log N + 3 log log N), spawning O(N)
descendants.
This leads to a shift (O(1)) of the whole system to the right.
Relaxation time of order log2 N, then process repeats.

Real speed of the system is approximately

cN =

√
1− π2

a2
N

= cdet
N +

3π2 log log N + o(1)

log3 N
,

and O(1/ log3 N) fluctuations.
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BBM with constant population size Results

Main result

Order the individuals according to position: X1(t) > X2(t) > . . .
Define xα by (1 + xα)e−xα = α.

Theorem

Suppose E[L2] <∞ and at time 0, there are N particles distributed
independently in (0,aN) according to density proportional to
sin(πx/aN)e−x . Then, for every α ∈ (0,1),(

XαN(t log3 N)− cN t log3 N
)

t≥0
fidis
=⇒ (Lt + xα)t≥0.

Here, (Lt )t≥0 is a (pure-jump) Lévy process with L0 = 0 and Lévy
measure the image of π2x−21x>0 dx by the map x 7→ log(1 + x).

Proof idea: Approximate the N-BBM by BBM with a certain (random)
absorbing barrier, called the B-BBM.
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XαN(t log3 N)− cN t log3 N
)

t≥0
fidis
=⇒ (Lt + xα)t≥0.

Here, (Lt )t≥0 is a (pure-jump) Lévy process with L0 = 0 and Lévy
measure the image of π2x−21x>0 dx by the map x 7→ log(1 + x).

Proof idea: Approximate the N-BBM by BBM with a certain (random)
absorbing barrier, called the B-BBM.
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BBM with constant population size Results

The B-BBM

a: Position of a second barrier
(idea from BBS (2010)).
Add drift −c, with c =

√
1− π2/a2.

A: Determines number of particles
(N ≈ 2πeA+a/a3).
Let first a, then A go to∞.

When particle hits a, it will create
�WN descendants, where
P(W > x) ∼ x−1 (BBS (2010)).
Breakout when W > εeA, ε small.

After breakout, move barrier
smoothly by random amount ∆.

a0
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BBM with constant population size Results

The B-BBM (continued)

Three details:
1 Particles that hit a and have

few descendants are
important: compensator for
the limiting Lévy process.

2 B-BBM until the first breakout
= spine + BBM (weakly)
conditioned not to hit a (Doob
transform of BBM).

3 Shape of barrier given by a
family (f∆)∆≥0 of explicitly
given, smooth, increasing
functions with f∆(0) = 0 and
f∆(+∞) = ∆.

a0

� a3

� 1

� a2

∆

breakout!
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BBM with constant population size Results

B-BBM↔ N-BBM

First idea: couple both
processes.

black particles: present
in B-BBM and N-BBM,
red particles: present in
B-BBM but not in
N-BBM,
blue particles: present
in N-BBM but not in
B-BBM.

Problem
Dependencies between
particles too difficult to
handle.

0
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BBM with constant population size Results

The solution

B]-BBM

N-BBMB-BBM

B[-BBM

Introduce two auxiliary particle systems: The B[-BBM and the B]-BBM
(stochastically) bound the N-BBM (and the B-BBM) from below and
above (in the sense of stochastic order on the empirical measures).
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BBM with constant population size Results

Bounding the N-BBM from below: The B[-BBM

Kill a particle
whenever it hits 0 or
whenever it has N
particles to its right
(red particles).

=⇒ more particles are
being killed than in N-BBM.

At timescale log3 N, number
of red particles stays
negligible.

0
N = 6
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BBM with constant population size Results

Bounding the N-BBM from above: The B]-BBM

Kill a particle
whenever it (at the
same time)

hits 0 and
has N particles
to its right.

A particle survives
temporarily
(blue particles) if it
has less than N
particles to its right
the moment it hits 0.

0

O(log2 N)

N = 3

< N particles!

< N particles!
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Perspectives

N-BBM←→ noisy FKPP

Noisy FKPP equation
u(t , x) : R+ × R→ [0,1]

∂tu = ∂2
x u + u(1− u) +

√
εu(1− u)Ẇ

u(0, x) = 1(x<0) (IC)

Admits travelling wave solutions with same phenomenology as
N-BBM (N ' ε−1), cf Mueller, Mytnik and Quastel (2010)
Dual to BBM with particles coalescing at rate ε.
−→ density-dependent selection
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Perspectives

Empirical measure

Known: Empirical measure of N-BBM seen from the left-most particle
is an ergodic Markov process.

Open problem
Show that stationary probability converges as N →∞ to the
Dirac-measure in xe−x dx .

−→ ongoing work with J. Berestycki and M. Jonckheere.
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Perspectives

Varying displacement

Q: What changes if one replaces BBM by BRW (or, equivalently, by
branching Lévy process)?

A: Depends on the right tail of the jump distribution.

Ongoing work joint with Jean Bérard: Consider N-BRW where at each
time step, particles split into two and children jump according to the
law of a random variable X ≥ 0, with P(X > x) ∼ x−α, α > 0. Keep
only the N right-most particles at every time step.

Right scaling: space by (N log N)1/α, time by log N.
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Perspectives

Varying displacement

Q: What changes if one replaces BBM by BRW (or, equivalently, by
branching Lévy process)?
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Perspectives

Other open questions

Speed of the system
Genealogy
Inhomogeneous media
...
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