
����� ���� 	
��
�
���� �� ����� �� �	
��
������ ���������� �� ��������

���� �����	�
� ���
�
�

������� �� �	
��
 �� ������

���������� � ������������

��������� ���

�������� ���	�
� �����
	��

����� ������
�� � �
�
���

�
���
��
�� �
�
�
 � �������

����������	
�������
�
���	���� ����� ���������
������� � ���	������� ��

����������� �������
 ����������

����� �������� �� ! "�#���� �$$

������ �� �	
� �
��
�� �� �

�� ������� 	��
���

�

�����	
 � ����� �� �
��
��� � ����������

��
����� �
�����

�

�����	
 � �������
���� ��� �������� � ����������

�� ������ ���������

�

�����	
 � ����
�� �
�������� 	� �� �
��
��� � 	
���
�����

�� 	�
������ ���
��������

�

�����	
 � �������
���� �� !����� � 	
���
�����

�� �����
 ���������������

����
� �� �
���
����� � �������
���� �� "���� � 	
���
�����

�� �
�� �� �����

�

�����	
 � ��#!�� �� "����� � ��������� �� �����

Contents

1 General Introduction 5

2 Evolving Classification Systems: State Of The Art 14

2.1 Preamble . 15

2.2 Definitions . 15

2.2.1 Batch learning vs. Incremental learning 16

2.2.2 Offline learning vs. Online learning 17

2.2.3 Active learning vs. Incremental learning 17

2.2.4 Instance memory vs. Concept memory 18

2.2.5 Incremental learning criteria 19

2.2.6 Discussion . 20

2.3 Adaptive classification systems . 21

2.3.1 AdaBoost-based learning . 22

2.3.2 Dynamic Time Warping . 23

2.3.3 Adaptive Neuro-Fuzzy Inference Systems (ANFIS) 24

2.3.4 Adaptation by Adjustment of Prototypes (ADAPT) 26

2.3.5 Discussion . 27

2.4 Incremental clustering . 28

2.4.1 Distance-based Incremental clustering 28

2.4.1.1 Adaptive Resonance Theory (ART) Networks 29

2.4.1.2 Vector Quantization 29

2.4.1.3 Evolving Clustering Method (ECM) 30

2.4.2 Density-based Incremental clustering 31

2.4.2.1 Graph-based Incremental clustering methods 31

2.4.2.2 Recursive Density Estimation (eClustering) 32

2.4.3 Discussion . 33

i

2.5 Overview of some evolving systems 34

2.5.1 Evolving Ensemble Systems 35

2.5.1.1 Learn++ . 35

2.5.1.2 Growing Negative Correlation Learning 36

2.5.2 Fuzzy inference systems . 37

2.5.2.1 Fuzzy set theory . 37

2.5.2.2 Fuzzy inference systems structures 38

2.5.2.3 Takagi-Sugeno FIS 40

2.5.2.3.1 Single vs. multiple output 41

2.5.2.3.2 Antecedent structure 41

2.5.2.3.3 Inference process 43

2.5.2.3.4 Consequence variants 44

2.5.3 Evolving Fuzzy inference systems 47

2.5.3.1 FLEXible Fuzzy Inference System (FLEXFIS) 47

2.5.3.2 Evolving Fuzzy Neural Networks (EFuNN) 48

2.5.3.3 Generalized Fuzzy MIN-MAX (GFMM) 49

2.5.3.4 Dynamic Evolving Neural-Fuzzy Inference System

(DENFIS) . 50

2.5.3.5 Evolving Takagi-Sugeno (eTS) 51

2.5.4 Discussion . 52

2.6 Incremental Feature selection . 56

2.6.1 Incremental Principal component analysis 56

2.6.2 Incremental linear discriminant analysis 57

2.7 Conclusion . 58

3 Evolve(+)(+): incremental learning of evolving Takagi-Sugeno clas-

sifiers with enhanced antecedent structure 60

3.1 Introduction . 61

3.2 System architecture . 63

3.3 Evolve: an incremental learning algorithm for evolving TS classifiers . 66

3.3.1 Density-based incremental clustering 68

3.3.2 Antecedent adaptation . 71

3.3.3 Consequent learning . 73

3.3.3.1 Global learning of consequent parameters 73

3.3.3.2 Local learning of consequent parameters 76

ii

3.3.3.3 Learning of zero-order consequences 77

3.3.4 Learning stability using delayed antecedent adaptation 78

3.3.5 Evolve: the complet algorithm 79

3.4 A novel paradigm for stable incremental learning of TS models . . . 81

3.4.1 Evolve+: antecedent learning based on global error feedback . 83

3.4.2 Evolve++: confusion-driven antecedent learning 85

3.5 Open issues . 87

3.5.1 Forgetting strategy . 87

3.5.2 Ordering effect . 89

3.6 Conclusion . 90

4 Experimental Validation 93

4.1 Introduction . 94

4.2 Classification datasets . 95

4.2.1 SIGN dataset . 95

4.2.2 UCI datasets . 96

4.3 Experimental protocol . 97

4.4 Experimental results . 100

4.4.1 Global evaluation of the different learning algorithms 100

4.4.2 Results for different consequent structures and learnings strate-

gies . 107

4.4.3 Correction efforts required by the different algorithms 111

4.4.4 Performance evaluation for unsynchronized incoming classes . 117

4.5 Real applications . 120

4.6 Conclusion . 122

5 Synthetic Data Generation for Evolving Handwriting Classifiers 125

5.1 Introduction . 126

5.2 Related works . 128

5.2.1 Class-dependent geometric deformations 128

5.2.2 Class-independent geometric deformations 131

5.2.3 Motor-based deformations . 134

5.3 Sigma-Lognormal model . 135

5.4 Synthetic handwritten gesture generation using Sigma-Lognormal model139

iii

5.5 Evolving handwriting classifier learning acceleration using synthetic

data . 141

5.6 Experimental results . 142

5.7 Conclusion . 146

6 General Conclusion and Future Work 148

6.1 Conclusion . 149

6.2 Future works . 151

iv

List of Figures

1.1 The life cycle of static classifiers with distinct learning and operation

phases . 7

1.2 Simultaneous operation and learning (incremental) processes in evolv-

ing classification systems . 8

2.1 The point-to-point correspondence of two characters established with

a DTW-algorithm [1] . 24

2.2 Functional equivalence between a traditional fuzzy inference system

and ANFIS [2] . 25

2.3 Principle of the ADAPT compromises between the optimizations of

all classes [3] . 27

2.4 Basic ART structure [4] . 30

2.5 ECM process with consecutive examples x1 to x9 [5] 31

2.6 The relationship between the sparse graph and the representative

sparse graph [6] . 32

2.7 The difference between crisp and fuzzy sets 37

2.8 Different membership functions: (a) Triangular, (b) Trapezoidal, and

(c) Gaussian. 38

2.9 The different steps of the fuzzy inference mechanism for a given toy

example . 39

2.10 (a) Hyper-rectangle zones of influence obtained by the aggregation

of triangular membership functions [5], (b) hyper-spherical (or el-

liptical) zones of influence obtained by the aggregation of Gaussian

membership functions [7]. 42

2.11 Zero-order TS model presented in the form of RBF network 45

2.12 First-order TS model presented as a neural network 46

v

2.13 A rule in EFuNN represents an association of two hyper-spheres from

the fuzzy input space and the fuzzy output space. 48

2.14 The three-layer neural network that implements the GFMM algo-

rithm [8] . 50

3.1 The zone of influence of the prototype is parallel to the axes in (a),

(c) and (e), while the rotated zones in (b), (d) and (f) result in more

accurate data covering. 65

3.2 The different components of Evolve algorithm 68

3.3 An example to illustrate the concept of the potential of data points

[9]. 69

3.4 The new learning paradigm: antecedent adaptation driven by output

feedback . 83

3.5 The difference between stationary and non-stationary averaging. . . . 88

3.6 Order-independent incremental learning system [10] 90

4.1 Handwritten gestures in the dataset SIGN 96

4.2 Learning/test protocols for incremental learning problems 98

4.3 Evolution of classification performance during the incremental learn-

ing process (SIGN) . 101

4.4 (a) Evolution of performance during the incremental learning pro-

cess and (b) Evolution of relative reduction in misclassification rates

compared to the reference model (Sign dataset) 103

4.5 (a) Evolution of performance during the incremental learning pro-

cess and (b) Evolution of relative reduction in misclassification rates

compared to the reference model (CoverType dataset) 104

4.6 (a) Evolution of performance during the incremental learning pro-

cess and (b) Evolution of relative reduction in misclassification rates

compared to the reference model (PenDigits dataset) 105

4.7 (a) Evolution of performance during the incremental learning pro-

cess and (b) Evolution of relative reduction in misclassification rates

compared to the reference model (Segment dataset) 106

4.8 Misclassification rates of eTS, Evolve and Evolve++ models at the

end of the incremental learning process (PenDigits dataset) 109

vi

4.9 Misclassification rates of eTS, Evolve and Evolve++ models at the

end of the incremental learning process (CoverType dataset) 110

4.10 Misclassification rates of eTS, Evolve and Evolve++ models at the

end of the incremental learning process (Segment dataset) 110

4.11 Misclassification rates of eTS, Evolve and Evolve++ models at the

end of the incremental learning process (Letters dataset) 110

4.12 Misclassification rates of eTS, Evolve and Evolve++ models at the

end of the incremental learning process (Sign dataset) 111

4.13 Accumulated number of misclassification errors committed on the

learning samples (SIGN) . 113

4.14 Accumulated number of misclassification errors committed on the

learning samples (CoverType) . 113

4.15 Accumulated number of misclassification errors committed on the

learning samples (PenDigits) . 114

4.16 Accumulated number of misclassification errors committed on the

learning samples (Segment) . 114

4.17 Evolution of misclassification rate according to accumulated number

of corrections (SIGN) . 115

4.18 Evolution of misclassification rate according to accumulated number

of corrections (CoverType) . 116

4.19 Evolution of misclassification rate according to accumulated number

of corrections (PenDigits) . 116

4.20 Evolution of misclassification rate according to accumulated number

of corrections (Segment) . 117

4.21 Performance stability and recovery when introducing new unseen

classes (SIGN) . 119

5.1 Synthetic samples (in bold) generated by deforming the reference pat-

tern according to the first two Eigen-deformations (figure obtained

from [11]) . 129

5.2 Handwriting generation using class-dependent deformation presented

in [12]; (a) samples of letter “d” from training data, (b) synthesized

“d” generated using trained deformation models, (c) samples of “s”

from training data, and (d) synthesized “s” generated using trained

deformation models . 130

vii

5.3 Example of class-dependent geometric deformation, the deformation

observed in (a) for the letter “M” is rarely observed for the letter “H”

as illustrated in (b) (figure obtained from [13]) 130

5.4 Example of class-independent geometric deformation used [14]. Small

random scaling and rotation of each stroke piece are applied to each

stroke. 131

5.5 Examples of synthetic characters generated by the four distortion

techniques proposed in [15] . 133

5.6 Example of the reconstruction of handwriting movements using Sigma-

Lognormal model (figure obtained from [16]) 137

5.7 Some examples of generated gestures 140

5.8 Incorporating lognormal-based data generation in the learning of evolv-

ing handwriting classifiers . 141

5.9 The handwritten gestures used in the handwriting generation exper-

iments (a subset of Sign dataset) . 142

5.10 Performance improvement when using synthetic data generation in

the incremental learning process . 143

5.11 Evaluation of the impact of synthetic samples when adding new gestures144

5.12 Evaluation of distortion combinations presented in Table 5.1 145

viii

List of Tables

2.1 Incremental learning methods categories depending on their used

memories . 19

2.2 Learning steps in ANFIS . 25

2.3 The main characteristics of existing evolving FISs 53

3.1 A case study to illustrate the difference in weighting strategies be-

tween Evolve+ and Evolve++ . 87

4.1 Characteristics of learning datasets 97

4.2 The size of the learning subsets and the test dataset in each experiment100

4.3 Misclassification rates for different consequent types (Evolve algorithm)108

4.4 Misclassification rates for batch and incremental classification systems 109

5.1 The used variation intervals of sigma lognormal parameters and the

different tested distortion combinations 145

ix

x

Acknowledgements

xi

xii

Résumé

Apprentissage incrémental de systèmes d’inférence floue : application

à la reconnaissance de gestes manuscrits

Nous présentons dans cette thèse une nouvelle méthode pour la conception de

moteurs de reconnaissance personnalisables et auto-évolutifs. La contribution ma-

jeure de cette thèse consiste à proposer une approche incrémental pour l’apprentis-

sage de classifieurs basés sur les systèmes d’inférence floue de type Takagi-Sugeno

d’ordre 1. Cette approche comprend, d’une part, une adaptation des paramètres

linéaires associés aux conclusions des règles en utilisant la méthode des moindres

carrés récursive, et, d’autre part, un apprentissage incrémental des prémisses de ces

règles afin de modifier les fonctions d’appartenance suivant l’évolution de la densité

des données dans l’espace de classification. La méthode proposée, Evolve++, résout

les problèmes d’instabilité d’apprentissage incrémental de ce type de systèmes grâce

à un paradigme global d’apprentissage où les prémisses et les conclusions sont ap-

prises en synergie et non de façon indépendante. La performance de ce système a

été démontrée sur des benchmarks connus, en mettant en évidence notamment sa

capacité d’apprentissage à la volée de nouvelles classes. Dans le contexte applicatif

de la reconnaissance de gestes manuscrits, ce système permet de s’adapter en conti-

nue aux styles d’écriture (personnalisation des symboles) et aux nouveaux besoins

des utilisateurs (introduction à la volée des nouveaux symboles). Dans ce domaine,

une autre contribution a été d’accélérer l’apprentissage de nouveaux symboles par la

synthèse automatique de données artificielles. La technique de synthèse repose sur la

théorie Sigma-lognormal qui propose un nouvel espace de représentation des tracés

manuscrits basé sur un modèle neuromusculaire du mécanisme d’écriture. L’appli-

cation de déformations sur le profil Sigma-lognormal permet d’obtenir des tracés

manuscrits synthétiques qui sont réalistes et proches de la déformation humaine.

L’utilisation de ces tracés synthétiques dans notre système accélère l’apprentissage

et améliore de façon significative sa performance globale.

1

2

Abstract

We present in this thesis a new method for the conception of evolving and cus-

tomizable classification systems. The main contribution of this work is represented

by proposing an incremental approach for the learning of classification models based

on first-order Takagi-Sugeno (TS) fuzzy inference systems. This approach includes,

on the one hand, the adaptation of linear consequences of the fuzzy rules using the re-

cursive least-squares method, and, on the other hand, an incremental learning of the

antecedent of these rules in order to modify the membership functions according to

the evolution of data density in the input space. The proposed method, Evolve++,

resolves the instability problems in the incremental learning of TS models thanks

to a global learning paradigm in which antecedent and consequents are learned in

synergy, contrary to the existing approaches where they are learned separately. The

performance of our system had been demonstrated on different well-known bench-

marks, with a special focus on its capacity of learning new classes. In the applicative

context of handwritten gesture recognition, this system can adapt continuously with

the special writing styles (personalization of existing symbols) and the new needs

of the users (adding new symbols). In this specific domain, we propose a second

contribution to accelerate the learning of new symbols by the automatic generation

of artificial data. The generation technique is based on Sigma-lognormal theory,

which proposes a new representation space of handwritten forms based on a neuro-

muscular modeling of writing mechanism. By applying some deformations on the

Sigma-lognormal profile of a given gesture, we can obtain synthetic handwritten

gestures that are realistic and close to human deformation. Integrating this data

generation technique in our systems accelerates the learning process and significantly

improves the overall performance.

3

4

Chapter 1

General Introduction

5

General Introduction A. Almaksour

Machine learning has become during the last decades one of the main fields in

computer science and applied mathematics. More and more focus is being placed on

this domain thanks to the progress in the calculation capacity of the current com-

puters. The learning approaches have been used in wide range of applications like

prediction, simulation, diagnostic and classification problems. All these approaches

aim at providing models that represent the essential aspects of the existing systems.

Machine learning techniques become indispensable solution when the relationship

between system inputs and outputs is difficult to understand and cannot be easily

described using mathematical or knowledge-based models (sometimes referred as

“white-box” models). The conception of machine learning models is based on a set

of real data (pairs of input-output vectors) and not on physical laws of the system.

Models obtained using data-driven learning algorithms are usually considered as

“black-box” models.

Classification techniques represent a very active topic in machine learning. They

appear frequently in many application areas, and become the basic tool for almost

any pattern recognition task. Several structural and statistical approaches have been

proposed to build classification systems from data. Traditionally, the classification

system is trained using a learning dataset under the supervision of an expert that

controls and optimizes the learning process. The system performance is fundamen-

tally related to the learning algorithm and the used learning dataset. The learning

dataset contains labeled samples from the different classes that must be recognized

by the system. In almost all the learning algorithms, the learning dataset is vis-

ited several times in order to improve the classification performance which is usually

measured using a separated test dataset. The expert can modify the parameters and

the setting of the learning algorithm and restart the learning process until obtaining

an acceptable performance. Then, the classification system is delivered to the final

user to be used in real applicative contexts. The role of the classifier is to suggest a

label for each unlabeled sample provided by the application. Typically, no learning

algorithms are available at the user side, as it can be noted from Figure 1.1 that

illustrates the two-phase life cycle of a traditional classification system.

The main weakness in the above-mentioned conception paradigm is that the

knowledge base is constrained by the learning dataset available at the expert side

and cannot be extended based on the data provided at the user side. The static

nature of the classifier at the user side leads to two principal drawbacks:

6

General Introduction A. Almaksour

Figure 1.1: The life cycle of static classifiers with distinct learning and operation

phases

• The first drawback is that the classifier cannot be adapted according to the

data on the user side that represent more accurately the specific real context

than the learning dataset at the expert side. It is usually very difficult to

get an exhaustive learning dataset that can cover all the characteristics of the

real system in all the possible contexts, especially in uncertain and imprecise

environments, like in handwriting, face, or speech recognition systems. Thus,

it can be very useful to enrich the classifier knowledge base by new samples of

the learned classes obtained from the very specific operation environment.

• The second drawback is that the classifier cannot take into consideration new

classes that were not represented in the learning dataset at the expert side.

The set of classes recognizable by the classifier is defined at the expert side

and cannot be modified by the application. Although the learning becomes

impractical if a very large set of classes is used, it is still hard in many applica-

tive contexts to predict all the possible classes required by the user. Moreover,

the user needs may evolve and the classifier must cope with these new needs

and integrate new classes into its knowledge base.

These drawbacks increase the need for new type of classification systems that

can learn, adapt and evolve in lifelong continuous manner. These classification

7

General Introduction A. Almaksour

Figure 1.2: Simultaneous operation and learning (incremental) processes in evolving

classification systems

systems will be referred in this thesis as “evolving classifiers”. As we can see from

Figure 1.2, an incremental learning algorithm is used to learn from the data samples

provided by the user after sending a validation or a correction signal in order to

confirm or change the label suggested by the classifier. Contrary to the traditional

paradigm illustrated in Figure 1.1, there is no separation between the learning (or

the conception) phase and the operation phase in evolving classification systems.

One of the key features in evolving classifiers is that the incoming samples may

bring in new unseen classes that are learned by the classifier without destroying its

knowledge base or forgetting the existing classes.

In evolving classification systems, the learning process may, either, start from

scratch at the user side so that no initial learning phase is required and the system

only learns the classes required by the user, or, an initial learning phase is performed

by an expert as in Figure 1.1 using a learning dataset and an initial set of classes.

In the field of handwriting recognition which is the central activity of our research

group, static classification systems are the dominated approach that had been used

in the handwriting-related applications during the last two decades. However, a

great need for evolving classifiers appears in many of these applications due to the

different handwriting styles and the very diverse and changing user requirements.

8

General Introduction A. Almaksour

Obviously, static classifiers cannot cope with this dynamic, imprecise and open envi-

ronment where the recognition system is fundamentally related to human behaviors

and habits.

Therefore, we have placed a special focus in our research group activity on en-

gaging the final user in the system conception, learning and operation process. Mo-

tivated by this context, the goal of my PhD work has consisted in doing a deep

investigation in the evolving classification techniques that allow an efficient and a

high interactivity with the user. Although few adaptation techniques had been pro-

posed to personalize writer-independent handwriting recognition systems, evolving

classifiers have never been used, to the best of our knowledge, in any published work

related to handwriting recognition. The difference between adaptive and evolving

classifiers is clarified in the next chapter.

We can take, for example, a concrete case of a handwriting related application

where evolving classifiers are indispensable: a handwriting recognition system used

to interpret handwritten gestures that are assigned to commands related to the

operation system or a specific application. These “handwritten shortcuts” replace

the classical keyboard shortcuts in touch screen computers like white-boards, tablet

PCs, PDA... It is very practical to allow the user to choose his own set of gestures

and to add new ones at any moments in order to assign them to new interactive

commands according to the evolving of his needs. Obviously, traditional pre-learned

and static classification systems cannot be used in this applicative context. The

learning process must be online, incremental and lifelong and starts from scratch at

the user side.

The learning of new gestures starts by few samples provided by the user. How-

ever, the learning of the existing gestures continue for each new incoming sample

in order, on the one hand, to improve the knowledge of the classifier about these

gestures since only few samples are used to start learning them, and, on the other

hand, to adapt the classifier to any modifications in the user writing/sketching style.

The global contribution of this work consists in proposing an evolving classifi-

cation system structure and an efficient learning algorithm that allows incremental,

lifelong, stable and fast learning. Our evolving approach outperforms the existing

ones thanks to several improvements on the structure and the learning algorithm.

Our classification approach is based on a Takagi-Sugeno (TS) fuzzy inference sys-

9

General Introduction A. Almaksour

tem. The rule-based structure of this system allows some flexibility in tuning its

knowledge based, which makes it suitable for incremental learning. The classifica-

tion system consists of a set of local linear regression models defined in different

sub-spaces localized by the antecedent part of the rules.

The first contribution that we present in this thesis is a new enhanced antecedent

structure in TS models. This enhanced structure allows more precise data covering

and improves the overall classification performance.

We present a complete incremental learning algorithm for evolving TS classifiers;

it contains three sub-algorithms:

• an incremental clustering algorithm to add new rules when new data clusters

are detected,

• an antecedent adaptation in order to modify the rules’ membership functions

according to the evolution of data distribution in the input space,

• and an adaptation of linear consequences of the rules using the recursive least-

squares method.

The main challenge in the learning algorithm is the stability of the consequent

learning in spite of the continuous modifications on the antecedent structure. This

problem becomes more crucial with the proposed enhanced and more sophisticated

antecedent structure.

As a second principal contribution of this PhD work, we propose two different

strategies to cope with the abovementioned stability problem. The fist one is pre-

sented in a learning algorithm that we call “Evolve”. The instability effects on

the consequent learning are reduced in Evolve by adopting a delayed antecedent

adaptation policy using a partial memory buffer.

The second strategy consists in proposing a new learning paradigm in which

the output error is used to control the antecedent learning and to avoid useless

antecedent modifications. Thus, antecedents and consequences are learned in syn-

ergy in this novel global learning paradigm, contrary to the existing approaches

where they are learned independently. This novel learning paradigm is first imple-

mented for general evolving problems, so that in the new version of the learning

algorithm (Evolve+) the global output error is added to the antecedent leaning for-

mulas. Moreover, this global error is replaced by the risk of misclassification (or the

10

General Introduction A. Almaksour

confusion degree) in the second implementation of the novel paradigm, Evolve++,

which is dedicated to evolving classification problems with more than two classes.

In addition to the theoretical contributions mentioned above that can be used in

any evolving classification problem, we propose a significant contribution related to

our applicative context which is evolving handwritten gesture recognition systems.

Based on our expertise in the handwriting domain, we enhance the incremental

learning process by integrating into the system an efficient handwriting data gener-

ation technique. This domain-specific contribution aims at accelerating the learning

of new handwritten symbols by the automatic generation of artificial data. The

generation technique is based on Sigma-lognormal theory, which proposes a new

representation space of handwritten forms based on a neuromuscular modeling of

writing mechanism. By applying some deformations on the Sigma-lognormal profile

of a given gesture, we can obtain synthetic handwritten gestures that are realis-

tic and close to human deformation. Integrating this data generation technique in

our systems accelerates the learning process and significantly improves the overall

performance.

The rest of the manuscript is organized as follows: the second chapter com-

prises first definitions of some important terms related to incremental learning, and

then a description of the main characteristics of a typical incremental learning ap-

proach and the constraints that should be respected. Next, we give an overview

of the state-of-the-art works related to our problem. This overview includes sev-

eral adaptive classification techniques, several incremental clustering methods, and

some well-known existing evolving classification approaches. After a description of

the general structure of a fuzzy inference system (FIS), a special focus is placed

on the existing evolving approaches that are based on this structure. At the end

of the chapter, we make a general comparison between the presented evolving FIS

approaches and we introduce then the main improvement directions of our proposed

approach.

We present in the third chapter the architecture of our TS FIS evolving system

with a focus on the new antecedent structure. The different elements of our incre-

mental learning algorithm, Evolve, are then explained in details. After that, the

learning instability issue is discussed and the buffer-based solution used in Evolve

is presented.

11

General Introduction A. Almaksour

In the second part of the third chapter, we present a second strategy to cope with

instability effects and to get faster and more stable learning. As mentioned above, a

novel global learning paradigm is proposed in which the antecedent learning is driven

by the output error. A straightforward general implementation of this paradigm

is presented in Evolve+ algorithm. Furthermore, a more efficient implementation

specific to classification problems is explained and its confusion-driven strategy is

used in Evolve++ learning algorithm.

The different learning algorithms presented in the third chapter are experimen-

tally evaluated in the fourth chapter. The tests are essentially carried out on a

handwritten gesture dataset called “Sign” that has been collected as a part of this

PhD work. Besides, some experiments are performed on different famous bench-

marks. The performance of our evolving system using the different algorithms is

compared to a well-known evolving TS model. In addition to the rapidity of incre-

mental learning from scratch, a special focus is placed on the capacity of learning

new classes.

The fifth chapter is dedicated to the motor-based handwriting generation tech-

nique that we propose in this thesis and its integration in the incremental learning

process of an evolving handwriting recognition system. The chapter starts by a

brief description of the existing handwriting generation techniques that are gener-

ally based on geometric deformations, with a special focus on previous related work

performed in the IMADOC research group. The Sigma-lognormal theory is then

concisely explained and two different strategies of handwriting generation based on

this motor representation space are presented. The role of artificial data generation

in accelerating the incremental learning of evolving handwriting classifiers is exper-

imentally demonstrated at the end of the fifth chapter. The proposed handwrit-

ing generation method using motor-based deformations is compared to the existing

IMADOC technique which is based on geometric deformations. The effectiveness of

applying deformations on the motor parameters of handwriting symbols is demon-

strated by the experiments results.

12

General Introduction A. Almaksour

13

Chapter 2

Evolving Classification Systems:

State Of The Art

14

State Of The Art A. Almaksour

2.1 Preamble

This chapter will first focus on several theoretical definitions related to the incremen-

tal learning domain. The role of these definitions is to clarify the general require-

ments that must be satisfied in incremental learning approaches, in addition to some

particular criteria that are directly related to our application. Next, we present some

well-known adaptive classification approaches and we explain the difference between

these dynamic classifiers and the evolving classifier that we are looking for.

As mentioned in the precedent chapter, the classification approach in this thesis

is based on a fuzzy rule-based system. The learning algorithms of these systems

contain usually a clustering step in order to define the zone of influence of each

rule. Obviously, this clustering step must be done in an incremental manner if the

entire learning algorithm is incremental. For this particular reason, we present in

Section 2.4 a brief overview of different incremental clustering methods, including

the e-Clustering method that is used in our algorithm as we will see in the next

chapter.

We present then in Section 2.5 several state-of-the-art evolving systems that

have shown good results in different incremental learning problems. We principally

focus on evolving fuzzy rule-based systems to which our model belongs. In order to

offer the reader an easy understanding of these approaches and the contribution of

our model compared with them, we give a brief description of the basic points of

fuzzy inference systems in Section 2.5.2 before presenting the different approaches.

A global comparison between these systems is then presented and the potential

improvement directions are discussed.

An advanced topic related to the incremental learning theory is briefly presented

at the end of this chapter, although it had not been studied in our work and stands

as future perspective. This topic concernes the idea of evolving representation space

and incremental feature selection or extraction methods. Two of these methods are

mentioned in Section 2.6.

2.2 Definitions

Machine learning is a well-established discipline that had been investigated through

the last four decades by many researchers. A lot of learning schemes and algorithms

15

State Of The Art A. Almaksour

had been proposed and their good performance had been proven in different real-

world application areas.

Nevertheless, the learning algorithm that we are looking for in this thesis has

some new characteristics that make it different from the well-know learning algo-

rithms (like SVM, MLP, HMM, etc.). In this section, we will first define some

important keywords like “incremental”, “online”, “evolving” ... and using these def-

initions we will give a clear description about the learning model that we are looking

for at the end of the chapter.

2.2.1 Batch learning vs. Incremental learning

The difference between these two learning modes is that the learning dataset in

batch mode is predefined and available since the beginning of the learning process.

Thus, the dataset can be visited several times in order to optimize a specific goal

function and to establish the model structure. Most of traditional algorithms use

this type of learning, such as back propagation algorithm for example.

On the other hand, the whole learning dataset is not necessarily available in

an incremental learning mode. The system must learn from each data sample sep-

arately, without knowing either the next learning data samples or the past ones.

After observing each data sample, the system makes decision in order to change its

structure and modify its parameters, based only on the presented sample and the

current system state.

Let’s suppose xi, i = 1, 2, .., n represent the learning data samples, M refers to

the learned system, and f refers to a given learning algorithm. Then, the difference

between batch and incremental learning can be simply defined as follows:

Batch: Mi = f(x1, x2, .., xi), Incremental: Mi = f(Mi−1, xi)

In practice, this learning mode is usually used when the whole learning dataset

is unknown and the samples arrive separately. Nevertheless, an incremental learning

mode is sometimes used to learn huge datasets where it is impractical to propagate

it several times during the learning process.

In some learning approaches, the learning dataset is introduced to the model

as several sequential subsets. Traditional batch algorithm can be applied on each

subset of data, but the whole learning process is often considered as incremental.

16

State Of The Art A. Almaksour

We call this in-between mode “incremental batch learning”, while the incremental

mode is sometimes called “sample-wise” or “sample-per-sample” learning.

Our classification problem requires an incremental learning approach because

the classes are not predefined and there is no fixed learning dataset. It must also be

“sample-wise” in order to learn using few samples.

2.2.2 Offline learning vs. Online learning

In the offline learning mode, the learning and operating phases are completely sepa-

rated in the model life-cycle. The model is trained on a specific dataset, in batch or

incremental mode, and then implemented to operate in a real environment without

any further learning activities during operation. While in the online mode the model

learns from any new available data as it operates, and the data might exist only for

a short time.

Using the aforementioned definitions, we can distinguish different possible com-

binations:

• Offline and batch learning: all training data are available throughout the learn-

ing process, and it is possible to revisit the entire dataset as times as necessary.

In addition, the system will not be put into use before the end of learning phase.

This represents the learning mode used in most classification problems.

• Offline and incremental learning: This learning mode is used when the size of

the training set is very important and it is very expensive to keep and revisit

all the data. Again, the system will not be used before the end of learning.

• Online and incremental learning: the specificity of this mode is that in addition

to the incremental aspect, the system is used during learning. Our learning

algorithm belongs to this category.

2.2.3 Active learning vs. Incremental learning

In active learning approaches, a pool of unlabeled samples is available since the

beginning of the learning process. The question is to choose the most representative

samples in order to get them labeled by the user. Then, based on these manually

labeled samples, other samples can be labeled automatically in an intelligent way

17

State Of The Art A. Almaksour

using some heuristics, and both labeled and unlabeled samples are used in the

learning process.

In some active learning methods, the learning is done in an incremental mode

where the labeled samples are introduced to the system incrementally, and the crite-

rion used to choose the next samples to be labeled is based on system performance.

On the other hand, in sample-per-sample incremental learning methods, the

system does not choose the next data and the global data distribution is not a priori

known as in active learning. Thus, the main question in active learning approaches is

“how to choose the best sample to be labeled?”, whereas the question in incremental

learning is “how to deal with the received sample?”. Some interesting works on active

learning can be found in [17], [18] and [19].

It had been mentioned that in our application context the upcoming learning

samples are completely unknown and are progressively provided by the user, which

makes active learning approaches not relevant to our work.

2.2.4 Instance memory vs. Concept memory

As mentioned in [20], incremental learning systems can have two types of memory:

• Concept memory: a memory for storing concept descriptions and knowledge

extracted from data;

• Instance memory: a memory for storing data instances.

In an online incremental learning algorithm, the training set is not available a

priori because the learning examples arrive over time. Although online learning

systems can continuously update and improve their models, not all of them are

necessarily based on a real incremental approach. For some systems the model is

completely rebuilt at each step of learning using all available data, they are systems

with “full instance memory” [21]. On the other hand, if the learning algorithm

modifies the model using only the last available learning example, it is called a

system with “no instance memory” [22]. A third category is that of systems with

“partial instance memory”, which select and maintain a reduced subset of learning

examples to use them in the next learning step [23].

Therefor, an incremental learning system must be based on an instance memory,

a concept memory, or both of them. Thus, we obtain three different types of systems

18

State Of The Art A. Almaksour

Concept Instance Incremental Classification Memory

memory memory learning cost cost cost

Yes No Medium Low Low

Yes Yes (full or partial) High Low High

No Yes (full or partial) Low High High

Table 2.1: Incremental learning methods categories depending on their used mem-

ories

as shown in Table 2.2.4. This table shows the characteristics of these systems in

term of incremental learning cost (time required to learn new sample), classification

or recall cost (time required to recognize new sample), and memory space cost.

For the second family (with concept memory and instance memory), any tradi-

tional batch learning algorithm can be used in an incremental mode by storing all

past training data samples, adding them to new ones, and re-applying the algorithm.

One example of the third family is a basic incremental K-Nearest Neighbor

(KNN) classifier. The incremental learning process of a new sample consists in

adding this sample to the data set (low incremental learning cost); an exhaustive

search is required to recognize a give sample (high classification cost); and obviously

the memory space needed is relatively big (high memory cost).

In our lifelong incremental learning approach, the use of full instance memory is

not practical for three reasons:

• The accumulated dataset can attain a very big size after a long period of

operation of the system.

• The system is designed to be used on personal computers that may not have

the required large memory space.

• The incremental learning process using full instance memory will be low and

not practical after a period of operation, especially on personal computers

2.2.5 Incremental learning criteria

An incremental learning algorithm is defined in [24] as being one that meets the

following criteria:

• it should be able to learn additional information from new data;

19

State Of The Art A. Almaksour

• it should not require access to the original data (i.e. data used to train the

existing classifier);

• it should preserve previously acquired knowledge (it should not suffer from

catastrophic forgetting, significant loss of original learned knowledge);

• and it should be able to accommodate new classes that may be introduced

with new data.

Many of the existing “incremental learning” algorithms are not truly incremental

because at least one of the mentioned criteria is violated. These criteria can be

briefly expressed by the so called “plasticity-stability dilemma”[25], which is that a

system must be able to learn in order to adapt to a changing environment but that

constant change can lead to an unstable system that can learn new information only

by forgetting everything it has so far learned.

2.2.6 Discussion

As mentioned in the introduction, the applicative context on which we are focusing

in this thesis is a handwritten gesture recognition system that can evolve to include

new classes (gestures). The final user must have the possibility of adding new

gestures at any moment, and with few provided samples, the classifier must learn

the new classes and enhance its performance using the future data.

It is obvious that the learning mode required for this need must be incremental

and not batch. Even “incremental batch learning” (see Section 2.2.1) is not suitable,

and the learning must be “sample-wise” in order to make the classifier evolve (new

class, more accuracy) after each single sample.

Moreover, online learning (see Section 2.2.2) is required in this context because

the learning is done with the final user and the classifier must be operational (with

acceptable accuracy degree) during the lifelong incremental learning. However, the

learning process does not have to run in real-time, a parallel thread can be used and

the updates on the classifier can be committed upon the end of the current learning

step.

Learning is supposed to be supervised and all data samples will be labeled in our

application. One manner to do the labeling task automatically and with no explicit

questions is to observe the user actions and validate the last classifier response to

20

State Of The Art A. Almaksour

the last input sample if no “undo” action is raised by the user. After this automatic

validation, the sample-wise incremental learning algorithm can be applied.

While the learning here is lifelong and new classes can be added to the classifier

after years of operation, a full instance memory (see Section 2.2.4) is not practical

and should be avoided. The incremental learning approach proposed in this thesis

is based on a full concept memory and no instance memory. Nevertheless, a short

partial memory has been experimented in a modified version in order to deal with

some stability issues, as we will see in the next chapter.

Thus, any incremental learning method proposed to meet the application re-

quirements must satisfy the criteria mentioned in Section 2.2.5. However, further

recommendations must also be considered. For example, problem-dependent pa-

rameters must be avoided as much as possible, since the learning is done by the user

without the presence of an expert, and learning must start from scratch.

Hence, the main characteristics required in our learning algorithm can be sum-

marized by the following points:

• to be incremental and sample-wise;

• to be online;

• not to be based on full instance memory;

• to be able to learn from scratch and with few data;

• to be able to add new classes;

• to avoid problem-depended parameters.

These points will be respected and considered in the decisions of the choices of

the system and the algorithms on which our approached will be based, as we will

note in the rest of this chapter.

2.3 Adaptive classification systems

As explained before, some classification systems can be designed to be dynamic

so that it can be automatically modified during its operation phase, contrary to

traditional classifiers that remain intact during its use. However, these dynamic

21

State Of The Art A. Almaksour

classifiers may either only change their parameters and tune them to get better

performance, or change their structure as well in order to add new outputs (classes).

We can distinguish two main types of incremental learning algorithms: algo-

rithms for parameter incremental learning and algorithms for structure incremental

learning. The incremental learning of parameters can be considered as “adaptation”

algorithm. The structure in such systems is fixed and initialized at the beginning of

the learning process, and the system parameters are learned incrementally accord-

ing to newly available data. For the rest of this thesis, classifier with incremental

parameter learning will be called “adaptive classifiers”, and those with incremental

learning of parameters and structures will be called “evolving classifiers”.

The set of classes that can be recognized by adaptive classification systems does

not evolve, neither by adding new needed classes, nor by deleting useless ones. Nev-

ertheless, some internal adjustment can be continuously made in order to improve

the system performance using the new data samples obtained by using the system.

Although offline batch learning can be used to train these classifiers given that

the classification problem is predefined, the continuous adaptation capability is still

very important for two reasons:

• the adaptation data samples are related to the very end user or the specific

real-world context and they can specialize the classifier and improve it,

• given the difficulty of building large learning datasets in several application

areas, the adaptive classifier can be initialized by a small dataset, and be then

improved thanks to data received during the operation phase.

We give in the remainder of this section some examples of adaptation approaches

that have been used in several application areas, with a special focus on handwriting

recognition systems.

2.3.1 AdaBoost-based learning

In the context of handwriting recognition systems, the authors of [26] proposed to

replace the static writer-independent system by a writer-dependent one in order to

get higher recognition accuracy without requiring extensive training time on the part

of the user. They propose to bootstrap the writer-dependent training process with a

pre-trained writer-independent recognition system. Contrary to other methods that

22

State Of The Art A. Almaksour

adapt writer-independent systems to a specific writing style, the authors of [26] do

not modify the writer-independent system but incorporate it (their scores) into the

writer-dependent learning process. The classification scheme is based on Pairwise

AdaBoost framework that uses a weighted linear combination of weak classifiers to

make a strong one. Generally, a weak classifier can be learned on a subset of training

samples, a subset of classes, a subset of features or any combination of these three

choices. In [26], each weak classifier is learned on a pair of classes (binary classifier)

and on one single feature and all the available training samples. The classification

of a given symbol depends on the class that wins the most Pairwise comparisons.

The writer-independent recognizers can be then used in two ways:

• their scores for the given symbol are introduced as additional features, and a

weak classifier is associated with each one;

• or as pre-recognition step in order to prune symbol pairs (so their associated

weak classifiers) so that only symbols that are present in the n-best list given by

the writer-independent recognize are kept. This pre-recognition step increases

the accuracy of the final recognizer by providing a reduced list of candidate

symbols and reduces the number of Pairwise weak classifiers.

Experiments in [26] showed that for 48 different symbols, it took user about 45 min-

utes to enter 10 instances per symbol, and then an writer-dependent AdaBoost clas-

sifier is learned with integrating Microsoft recognizer for this list of symbols. Recog-

nition accuracy had been increased from 91.3% using Microsoft writer-independent

recognizer to 95.8% using the writer-dependent one. It is important to mention that

several epochs are required by AdaBoost in order to estimate the weak classifiers

weights, which makes it unsuitable for sample-wise incremental learning.

2.3.2 Dynamic Time Warping

In [1], the authors propose a handwriting recognition system based on Dynamic

Time Warping (DTW) distance. The training phase is done by the selection of a

prototype set that represents all the characters using some clustering methods. In

order to recognize a given symbol, the point-to-point correspondences between the

symbol and all the prototypes are calculated and the symbol is classified according

to K-nearest neighbor principal (see Figure 2.1).

23

State Of The Art A. Almaksour

Figure 2.1: The point-to-point correspondence of two characters established with a

DTW-algorithm [1]

An adaptation mechanism is adopted in this approach in order to turn the writer-

independent system into a writer-dependent one to increase the recognition accuracy.

The proposed adaptation strategy includes:

• adding new prototypes,

• inactivating confusing prototypes that are more harmful than useful,

• and reshaping existing prototypes.

The reshaping method is based on a modified version of Learning Vector Quanti-

zation (LVQ). If the nearest prototype belongs to the same class as the input symbol,

the data points of the prototype are moved towards the corresponding points of the

input symbol. Results showed that this simple mechanism can significantly reduce

the misclassification rate. However, it is clear that this method is specific for the

adaptation of handwriting recognition classifiers and cannot be applied to any clas-

sification problem.

2.3.3 Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

The authors of [2] proposed an extension of the classic neural networks error back-

propagation method based on the gradient descent. In this extension, a hybrid

learning method that combines the gradient method and the least squares method

is used. Each epoch of this hybrid learning procedure is composed of a forward

pass and a backward pass. In the forward pass, the parameters (weights) in the

output layer are identified using the least squares estimation. Then, the error rates

24

State Of The Art A. Almaksour

Figure 2.2: Functional equivalence between a traditional fuzzy inference system and

ANFIS [2]

propagate from the output toward the input end and the parameters in the hidden

layer(s) are updated by the gradient descent method.

Based on the functional equivalence between adaptive networks and fuzzy infer-

ence systems (as demonstrated in Figure 2.2), the hybrid learning method is used

to learn a fuzzy inference system of Takagi Sugeno’s type. Thus, consequent pa-

rameters are first estimated using least squares, and premise parameters are then

updated using error-propagation gradient descent (as shown in Table 2.2).

Despite the wide use of ANFIS in different applications, we can note that it can-

not be used in an evolving learning context because of its fixed structure. However,

it is still a robust learning algorithm for adaptive classification systems.

Forward Pass Backward Pass

Premise Parameters Fixed Gradient Descent

Consequent Parameters Least Squares Estimate Fixed

Signals Node Outputs Error Rates

Table 2.2: Learning steps in ANFIS

25

State Of The Art A. Almaksour

2.3.4 Adaptation by Adjustment of Prototypes (ADAPT)

The ADAPT method [3] has been used as an automatic online adaptation mechanism

to the handwriting style of the writer for the recognition of isolated handwritten

characters. The classifier that is based on a fuzzy inference system is first trained

on a multi-writer dataset, and then adapted to fit to the handwriting style of the

specific writer that uses the system.

The system in ADAPT is based on a zero-order Takagi-Sugeno fuzzy inference

system. It consists of a set of fuzzy rules, each fuzzy rule makes a link between

an intrinsic model in the feature space and the corresponding label. Each intrinsic

model is defined by a of fuzzy prototype Pi in n dimensions.

IF ~X is Pi THEN si
1 = ai1 and ... and si

c = aic and ... and si
K = aiK ,

where ~X is the feature vector of the handwritten character. As each prototype can

participate to the description of each class, the rule Ri has numeric conclusions

connecting Pi with each class c = 1..K by a prototype score si
c. The aic is a weight

that expresses the participation of Pi in the description of the class c.

The ADaptation by Adjustment of ProtoTypes (ADAPT) method allows to

modify all the prototypes of the FIS by re-centering and re-shaping them for each

new example that is inputted. This is done according to their participation in the

recognition process. Conclusions adaptation is done using back-propagation algo-

rithm over the examples stored in a specific buffer (i.e. Incremental batch learning).

Thus, the two adaptation processes that are applied on the premise of an FIS are:

• Prototype re-centering: the principle is inspired by the Learning Vector

Quantization (LVQ) algorithm. In ADAPT, all prototype’s centers are up-

dated for each new example, and the update of each center µi of the prototype

Pi must improve the score of each class. In this way, there are three reasons

to have a significant displacement ~∆µi: the class score sc is different from

the one expected; the participation si
c of the prototype to the final decision is

high; and the activation of the premise is high. Equations (2.1, 2.2) gives the

prototype updating with the proposed method:

~µi ⇐ ~µi + λ ∗ δ′ ∗ (~X − ~µr) (2.1)

δ
′

= βi ∗
(

C∑

c=1

(bc − sc) ∗ si
c

)
, (2.2)

26

State Of The Art A. Almaksour

Figure 2.3: Principle of the ADAPT compromises between the optimizations of all

classes [3]

with bc the expected class score for sc : 1 if c is the example class and 0

otherwise.

The adaptation parameter λ lies between 0 and 1. It controls the amplitude

of the displacement and thus the adaptation rate.

• Prototype re-shaping: The re-centering of the prototypes allows to fit the

new localization of the data in the input space. To better represent the repar-

tition of these new data, the shape of the prototypes must also be adapted.

ADAPT proposes an iterative formula to estimate the inverse covariance ma-

trix that is used to calculate the activation degree of the prototype by a given

data sample (so it represents the zone of influence of the prototype):

Q−1
i ⇐ Q−1

i

1 − αδ′
− αδ

′

1 − αδ′
· (Q−1

i ~m) · (Q−1
i ~m)T

1 + αδ′(~mTQ−1
i ~m)

, (2.3)

with ~m = ~X − ~µr and α is the learning rate.

2.3.5 Discussion

The aforementioned techniques were useful in their contexts, but the incremental

learning approach that we are looking for must be able to learn new classes in an in-

cremental lifelong learning mode. Nevertheless, when a new available example from

an existing class is introduced to the system, an adaptation method can be adopted.

In our incremental learning approach presented in this thesis, the adaptation of the

premise (or antecedent) of the used fuzzy inference system architecture is inspired

by ADAPT method.

27

State Of The Art A. Almaksour

2.4 Incremental clustering

Here we will focus on incremental clustering because our classifier is based on fuzzy

rule-based system, in which the rule creation is usually considered as a clustering

problem as we will see later.

The clustering process aims at extracting some statistical knowledge from a set

of data and eventually dividing it into subsets (clusters) so that data points that

belongs to the same cluster share similar characteristics in some sense. The result

of this process is essentially finding cluster centers, and the zone of influence of each

cluster. The membership value of a given data point to a cluster can be either crisp

(1 or 0) or fuzzy (between 0 and 1). Clusters are allowed to overlap in many cases,

especially when fuzzy membership values are used.

In the traditional clustering methods, where the process is done in an offline

batch mode, the entire dataset is visited several times in order to find the optimal

clustering, either by optimizing an objective function or by using some clustering

validity criteria. Examples of these methods are K-means clustering, hierarchical

clustering, fuzzy C-means clustering, Gath-Geva clustering, etc [27].

In an incremental clustering mode, a decision must be taken for each new data

point. So each new point may either reinforce an existing cluster, and eventually

changes its characteristics (i.e. its center and zone of influence), or trigger the cre-

ation of a new cluster. The main difference between incremental clustering methods

is the criterion that is used to make the decision between these two choices. In the

rest of this section, we will give some incremental clustering methods that belong

to different families according to this criterion.

2.4.1 Distance-based Incremental clustering

Most of published incremental clustering methods can be considered as distance-

based. In these methods, a threshold value is directly or indirectly defined and used

to decide whether a new cluster must be created or not depending on the minimum

distance between the new data point and the existing cluster centers. Some examples

of these methods are detailed below.

28

State Of The Art A. Almaksour

2.4.1.1 Adaptive Resonance Theory (ART) Networks

The ART paradigm [28] can be described as a type of incremental clustering. It is a

self-organizing network that had been designed in respect to the stability-plasticity

dilemma, so that the weights change according to new knowledge without forgetting

the old one. Moreover, the structure of ART evolves in order to add new categories

(classes) when they are needed. As explained above, the mechanism of ART is based

on measuring the matching (the distance) between the input vector and the category

vectors (cluster centers). A typical ART network (see Figure 2.4) consists of:

• A comparison layer (or field): that receives the input signal and transfers it

to the recognition layer;

• A recognition layer: each neuron in this layer passes back to the comparison

layer a negative signal proportional to the category match with the input

signal;

• A reset module: that in its turn compares the strength of the recognition

match to a specific threshold value called “the vigilance parameter”. If this

threshold is met, the winner category vector is modified according to the input

signal (adaptation). Otherwise, the next neuron in the recognition layer is

considered. Thus, the search procedure continues until the vigilance parameter

is satisfied by a recognition match. Finally, if no match can meet the threshold,

a new neuron in the recognition layer is assigned and adjusted to match the

input signal creating a new category. In other words, the reset module works

like a novelty detector.

2.4.1.2 Vector Quantization

The concept of vector quantization had been proposed in signal processing field in

order to as a data compression technique. However, it can be used as a clustering

method as it finds a set of “centroids” that optimally represents all the data points.

Vector quantization algorithm is equivalent to k-means method implemented in an

incremental mode. It starts by selecting the first C data points as cluster centers

(it is important to mention that the number of clusters is defined a-priori in the

algorithm). Then, for each new data point, the distances between this point and all

29

State Of The Art A. Almaksour

Figure 2.4: Basic ART structure [4]

the centers are calculated and the closest center is selected as the winner neuron.

Thus, the winner neuron is updated using the following formula:

~vwin = ~vwin + η (~x− ~vwin)

where η is a learning parameter, and ~x is the new data point.

Some extension of VQ use a modified version of this formula with a specific term

that considers the neighborhood between the winner neuron and the other neurons,

like SOM [29] and Neural Gas [30]. The ability of creating new clusters in ART can

be combined to the adaptation ability of these methods in order to obtain a hybrid

incremental clustering techniques like VQ-ART [31], SOM-ART, etc.

2.4.1.3 Evolving Clustering Method (ECM)

ECM [5] is defined as a fast, one-pass, maximum distance-based clustering method.

ECM is used for dynamic estimation of the number of clusters in a set of data,

and to find their centers in the input data space. ECM depends strongly on a

specific value Dthr that defines the maximum allowed distance between an example

point in a cluster and the cluster center. Obviously, the clustering parameter Dthr

affects the number of clusters to be estimated. Existing clusters are updated with

new examples through changing their centers’ positions and increasing their cluster

radius. ECM algorithm in 2D space is illustrated in Figure 2.4.1.3.

30

State Of The Art A. Almaksour

Figure 2.5: ECM process with consecutive examples x1 to x9 [5]

2.4.2 Density-based Incremental clustering

2.4.2.1 Graph-based Incremental clustering methods

Some clustering methods are based on a graph representation of data points where

each node is associated to a sample in the feature space, while to each edge is

associated the distance between nodes connected under a suitably defined neighbor-

hood relationship. A cluster is thus defined to be a connected sub-graph, obtained

according to particular criteria for each specific algorithm [32]. The advantage of

graph-based clustering methods is the capability of modeling the spatio-temporal

relationship between data points in a more precise manner comparing to statistical

and distributions estimations.

One of the most known graph-based incremental clustering approaches is the

RepStream algorithm [6]. RepSteram is one-pass incremental clustering algorithm

that uses two sparse graphs of k-nearest neighbor vertices (data points). The first

graph, also called sparse graph, contains the last data points introduced to the

algorithm and represents the closeness between these points. The second graph, the

representative sparse graph, contains representative vertices that have been chosen

31

State Of The Art A. Almaksour

Figure 2.6: The relationship between the sparse graph and the representative sparse

graph [6]

so far from the sparse graph using density-based criteria. These two graphs and

the relationship between them are illustrated in Figure 2.6. Representative sparse

graph is used to make decisions at higher level in an efficient way without requiring

access to the all the data points. The representative vertices can be merged and

they give the shape of clusters. More details about Repstream can be found in [6].

Similar algorithms of density-graph-based incremental clusters have been proposed,

like MOSAIC [33] and Chameleon [34].

2.4.2.2 Recursive Density Estimation (eClustering)

In general, when introducing a new training sample in an online learning mode, it will

either reinforce the information contained in the previous data and represented by

the current clustering, or bring enough information to form a new cluster or modify

an existing one. The importance of a given sample in the clustering process can be

evaluated by its potential value. The potential of a sample is defined as inverse of

the sum of distances between a data sample and all the other data samples [35]:

Pot(~x(t)) =
1

1 +
∑t−1

i=1 ‖x(t) − x(i)‖2 (2.4)

A recursive method for the calculation of the potential of a new sample was

introduced in [36] under the name of eClustering method. The recursive formula

32

State Of The Art A. Almaksour

avoids memorizing the whole previous data but keeps - using few variables - the

density distribution in the feature space based on the previous data:

Pot(~x(t)) =
t− 1

(t− 1)α(t) + γ(t) − 2ζ(t) + t− 1
(2.5)

where

α(t) =
n∑

j=1

x2
j(t) (2.6)

γ(t) = γ(t− 1) + α(t− 1), γ(1) = 0 (2.7)

ζ(t) =
n∑

j=1

xj(t)ηj(t), ηj(t) = ηj(t− 1) + xj(t− 1), ηj(1) = 0 (2.8)

Introducing a new sample affects the potential values of the centers of the existing

clusters, which can be recursively updated by the following equation:

Pot(µi) =
(t− 1)Pot(µi)

t− 2 + Pot(µi) + Pot(µi)
∑n

j=1 ‖µi − x(t− 1)‖2
j

(2.9)

If the potential of the new sample is higher than the potential of the existing

centers then this sample will be a center of a new cluster.

2.4.3 Discussion

The common drawback in three aforementioned distance-based incremental cluster-

ing methods is the strong dependence on the minimum inter-clusters threshold value.

All these method require a precise setting of this value which is not always possible

given that the learning is performed at the user side in one-pass mode and trial-

and-error methods cannot be used to optimize this threshold value. It is difficult

to have a problem-independent optimal minimum inter-clusters distance since the

dimensions of the data space can be very different depending on the given problem.

A bad setting of this threshold may lead to either over-clustering, a data cluster is

divided into several small ones, or under-clustering, different clusters are erroneously

merged to form one big cluster. Another major disadvantage of distance-based in-

cremental clustering is the sensibility to noise and outlier points. Many false clusters

can be created because of these points that do not belong a real new cluster but

sufficiently distant from the existing ones so that they wrongly trigger the cluster

creating process.

33

State Of The Art A. Almaksour

Therefore, we believe that density-based techniques are much more suitable for

incremental clustering. Contrary to distance-based one, density-based do not depen-

dent on an absolute threshold distance to create new cluster. They rely on density

measures to make a global judgment on the relative data distribution.

Incremental learning problems can be divided into two categories: stationary

and non-stationary. In non-stationary problems, the environment is considered very

dynamic and the data points progressively lose their significance so that the learning

process should principally focus on newly incoming points and ignoring old ones. In

stationary problems, old and new points are equitably considered in the learning

process. Therefore, only the spatial information of the data points is relevant to the

incremental learning process and the temporal information can generally be ignored.

While the applicative principal motivation of this work, evolving handwriting

recognition systems, can be more or less seen as stationary problem, the spatio-

temporal representation used in graph-based incremental clustering techniques is not

preferred. Moreover, the growing graph of data points can lead to serious memory

issues in a lifelong learning process.

For all the above-mentioned reasons, the eClustering density-based approach

represents the most favorable choice to be used as a part of our evolving system.

We can sum up the advantages of this technique as by the following three points:

• it does not require a user setting of a problem-dependent threshold value,

• as a density-based approach, it is very less sensitive to noise and outliers,

• and all the density measures are recursively estimated using few variables and

without requiring access to precedent data points.

More details about eClustring method and its role in our evolving TS fuzzy

inference system are presented in the next chapter.

2.5 Overview of some evolving systems

After wide investigation and analysis of the evolving classification systems proposed

during the last decade, we found out that most of them can be classified in two

categories:

• Ensemble Systems

34

State Of The Art A. Almaksour

• Fuzzy Rule-based Systems

The evolving process in the former, where the system is represented by a synergy

of several classifiers using different combination mechanisms, consists in the addition

of new classifiers for new incoming data. While the manageable structure of the

latter allows the learning algorithm to add new rules to the system in order to add

new classes.

We give in this section a brief description about some approaches from both

categories, with more focus on the second one to which the system proposed in this

thesis belongs.

2.5.1 Evolving Ensemble Systems

The goal of ensemble system is to generate a divers set of classifiers so that each

of which realizes different decision boundaries. The class decision of the ensemble

for a given instance can be taken using different majority voting strategies. Using

ensemble systems in incremental learning mode can be straightforward by training

new classifier(s) for each incoming dataset. However, special efforts are usually

done in order to guarantee a minimum level of diversity between the classifiers of

the ensemble, either in the manner of selecting the instances to be learned by each

classifier, or by explicitly considering this diversity in the learning of new classifiers.

Two representative examples of incremental ensemble learning are presented below.

2.5.1.1 Learn++

Learn++ [24] by inspired on AdaBoost method where instead of creating new clus-

ters for unseen data, it creates a set of “weak” classifiers. The prediction capacity

of Learn++ is based on the synergistic performance of the ensemble of classifiers

obtained using a specific voting strategy. Each new available learning dataset is

sampled into several learning subsets according to a specific distribution of proba-

bility, and each learning subset is used independently to train a weak classifier. The

sampling process in Learn++ is done in a sequential manner, and the distribution of

probability is built in a way that instances that are difficult to classify receive higher

weights to increase their chance of being selected into the next learning subset. As

other ensemble of classifiers methods, Learn++ requires each weak learner to gen-

erate only a rough estimate of the decision boundary. Learn++ is implemented in

35

State Of The Art A. Almaksour

[24] using MLP as the base classifier.

2.5.1.2 Growing Negative Correlation Learning

Negative Correlation Learning (NCL) [37] of neural network-based ensemble classi-

fier aimes at producing diverse neural networks in an ensemble by inserting a penalty

term into the error function of each individual neural network in the ensemble. This

term is called “negative correlation penalty term”, and its role is to make the en-

semble as diverse as possible so that the difference among its neural networks make

them adapt in different ways to new data. NCL can be used in incremental learning

in two ways:

• Fixed NCL: In this method, for any new data subset, the whole ensemble

is retrained with this subset using the weights obtained from the previous

training as initial weights. The advantage of this method is that some neural

networks can adapt fast and better than others, but the problem is that the

neural networks may suffer from catastrophic forgetting.

• Growing NCL: Similar to Learn++, for each new incoming data subset, a

new neural network is trained and inserted in the ensemble. Only the new

neural network is trained with the new data subset. The old NNs do not

receive any new training on the new data, but their outputs for the new data

are calculated in order to learn the new NN using negative correlation learning

method.

We can note that negative correlation is indirectly used in Learn++ when it

creates new classifier using a data subset that is sampled according to a probability

of distribution related to the scores of the other classifiers. However, the construction

of a new classifier to new data does not have interaction with the classifiers created to

previous data as in Growing NCL. However, these methods of incremental ensemble

learning that generate new classifiers for new data suffer from an essential problem

when introducing new unseen classes that is the “outvoting” problem. The problem

is due to old classifiers voting for instances of new classes on which there were not

trained, and this may result in incorrect and unstable final scores. This specific

drawback had been discussed in [38].

It is important to mention that even though these methods satisfy the main cri-

teria incremental learning by not requiring access to old data and not suffering from

36

State Of The Art A. Almaksour

Figure 2.7: The difference between crisp and fuzzy sets

catastrophic forgetting, they can be only used in incremental batch learning where

data is introduced in small sequential batches and not in sample-wise incremental

learning mode.

2.5.2 Fuzzy inference systems

In the rest of this section, we give a detailed description of fuzzy inference systems,

before presenting some well-known evolving FIS and analyzing their drawbacks.

2.5.2.1 Fuzzy set theory

The difference between fuzzy sets and classic sets is that values can belong to a fuzzy

set with various degrees, whereas they either belong or not to a classical set. Based

on this definition, each fuzzy set is represented by a membership function that is

used to determine the membership degree (between 0 and 1) of any given value to

that set (see Figure 2.7). Different mathematical functions are used to represent

the membership function. The characteristics of the membership function might

significantly change the behavior of the fuzzy systems. The most used membership

functions are (see Figure 2.8) :

1. Triangular function: which is defined by three values (a,b,m);

2. Trapezoidal function: this membership function is defined by four values

(a,b,c,d);

3. Gaussian function: is the most used type and defined by a center value m and

a spread value k.

37

State Of The Art A. Almaksour

(a) (b) (c)

Figure 2.8: Different membership functions: (a) Triangular, (b) Trapezoidal, and

(c) Gaussian.

Other possible membership functions are cited in [39]. In addition to the defini-

tion of a fuzzy set, the other important part of the fuzzy theory proposed by Zadeh

is the fuzzy operations between fuzzy sets, such as union, intersection, complement

operations. More details about this point can be found in [40].

2.5.2.2 Fuzzy inference systems structures

The first Fuzzy Inference System (FIS) (or fuzzy rule-based system) has been pro-

posed by Zadeh [41]. It is composed of a set of rules written as in the following

form:

IF (antecedent) THEN (consequence)

The difference between the fuzzy IF-THEN rules and the “crisp” rules used in

traditional expert systems is that the antecedent part and eventually the conse-

quence part in the former are represented by membership degrees to some fuzzy

sets and not by exact values as in the latter. Thanks to this important feature the

input signal in FISs can activate several rules with different degrees instead of one

rule with full activation as in the classic rules. The parameters of the membership

functions in the antecedent or the consequence can be estimated using some au-

tomatic data-driven mechanisms, which makes FISs able to achieve high precision

degrees while preserving an acceptable transparency level due to the open rule-based

structure. For this reason, FISs are usually categorized as gray-box models.

The structure and the mechanism of FISs can be illustrated by the toy example

in Figure 2.9 (from Matlab’s tutorial). We can divide the fuzzy inference mechanism

of an FIS into three steps:

38

State Of The Art A. Almaksour

Figure 2.9: The different steps of the fuzzy inference mechanism for a given toy

example

1. Fuzzify crisp inputs to get the fuzzy inputs.

2. Apply the fuzzy rules to get fuzzy outputs (this can be divided into two sub-

steps: implication and aggregation).

3. Defuzzify the fuzzy outputs to get crisp outputs.

Two basic groups of FISs had been used during the last decades. These two

groups differ by the type of the consequent part.

• Mamdani models

This type is similar to the original FIS proposed by Zadeh and presented

before, but Mamdani [42] has introduced some enhancement on it. A fuzzy

rule in Mamdani FIS is written as follows:

IF (x1 is A1) AND (x2 is A2) ... Then (y is B)

39

State Of The Art A. Almaksour

where x1, x2, ... are the input variables, A1, A2, ... are the input fuzzy sets, and

B is the output fuzzy set.

The Mamdani model represents a mapping between input fuzzy sets and out-

put fuzzy sets. The main advantage of this model is the high transparency and

interpretability capabilities. However, Mamdani models generally achieves less

accuracy compared to Takagi-Sugeno models. The learning of Mamdani model

consists in finding the best fuzzy partitioning or fuzzy clustering of the input

and the output space.

• Takagi-Sugeno models

The fuzzy rules in Takagi-Sugeno (TS) models are defined as follows:

IF (x1 is A1) AND (x2 is A2) ... Then y = l(x1, x2..) (2.10)

where l(x1, x2..) is the consequent function which represents the main differ-

ence between Mamdani and TS models. The fuzzy output sets in the conse-

quent part of the former are replaced by a polynomial function l of the input

variables in the latter. Different type of functions (linear, non-linear, singleton

... etc) can be used, this point will be discussed later in this chapter.

Generally, the rule activation degree (the aggregation of the membership de-

grees) is added as an additional term in the consequence function of that rule

in order to estimated the output crisp value. It is worth mentioning that no

defuzzification step is needed in the fuzzy inference mechanism of TS models.

A hybrid Mamdani-Takagi-Sugeno model had been presented in a recent study

[43], in the motivation of having a new model that meets the precision and the

interpretability criteria.

2.5.2.3 Takagi-Sugeno FIS

As explained above, a Takagi-Sugeno FIS is defined by a set of fuzzy rules in which

the antecedent part represents a fuzzy partitioning or clustering of the input space,

and the output is calculated using a regression polynomial model over the input vec-

tor weighted by the antecedent activation degree. However, different architectures

of TS models have been adopted in previous works, so that each of which can be

40

State Of The Art A. Almaksour

used for a specific problem and has different characteristics. Some of these variants

are briefly presented in this section.

2.5.2.3.1 Single vs. multiple output Since TS models have been used in

wide variety of applications, the type of system output was adapted to the class of

application. Generally, Multi-Input-Single-Output (MISO) TS models are used for

regression, prediction or approximation problems. In this architecture, a single real

output value is considered and can represent the function value for the given input

vector, or the system state at the instant t, where the input vector represent the

systems states (values) at previous instances (t − 1, t − 2, ... , t − k). The fuzzy

rules of this architecture are similar to Equation 2.10 .

Nevertheless, MISO TS models are not suitable for classification problems espe-

cially problems with more than two classes, which is the case of the target application

of this thesis. For classification problems, TS models with Multi-Input-Multi-Output

(MIMO) architecture are generally used. The fuzzy rules of this architecture are de-

fines as follows:

IF (x1 is A1) AND (x2 is A2) ... THEN y1 = l1(x1, x2..), ..., yk = lk(x1, x2..)

(2.11)

where k represents the number of classes (outputs).

For the learning of MIMO TS models, learning pairs (~x, ~̄y) are introduced to

the learning algorithm, where ~x is the input vector, and ~̄y represents the real label

vector so that it contains 1 for the real class of ~x, and 0 for the rest.

2.5.2.3.2 Antecedent structure Let ~x = {x1, x2, ..., xn} be the input vector

of a TS model that consists of n features, each of which describes a specific aspect

of the observed samples. The antecedent part of a TS models’ rule consists then of

an aggregation of at most n fuzzy sets or membership functions. The membership

function Ai is defined on the axis corresponding to the input variable or the feature

xi.

As one can notice from Equation 2.11, the input membership functions of the

antecedent part are aggregated using the logical AND operation in order to calculate

the overall activation (or firing) degree of the fuzzy rule. The AND operation can be

implemented using a conjunction operation between the fuzzy sets. Several t-norm

41

State Of The Art A. Almaksour

(a) (b)

Figure 2.10: (a) Hyper-rectangle zones of influence obtained by the aggregation

of triangular membership functions [5], (b) hyper-spherical (or elliptical) zones of

influence obtained by the aggregation of Gaussian membership functions [7].

functions are usually used to implement the AND operation in TS models, such as

minimum t-norm or product t-norm.

Different types of membership functions can be used in TS models as shown in

Section 2.5.2.1. The conjunction of the membership functions that are defined on the

axes (features) of the input space results in a hyper fuzzy zone of influence associated

to the fuzzy rule. The form of this fuzzy zone is related to the used membership

function of the antecedent part. Figure 2.10 illustrates two different types of the

fuzzy zone: the hyper-rectangular zones used in DENFIS system (Section 2.5.3.4),

and hyper-spherical ones used in FLEXFIS system (Section 2.5.3.1).

If we consider the case of Gaussian functions, we can rewrite the fuzzy rules of TS

models so that the antecedent part can be represented by a fuzzy zone of influence

with hyper-spherical shape. This zone of influence can be characterized by a center

and a radius value. In the rest of this thesis, we will use the word “prototype” to

refer to the fuzzy zone of influence of a fuzzy rule.

In data-driven design of TS models, the antecedents of the fuzzy rules are formed

using batch or incremental fuzzy clustering methods over a learning data set. These

clustering methods aim at finding the prototypes’ centers and estimating the radius

value in order to optimally cover the input data cloud(s).

We can express the firing degree of the antecedent part via a specific distance that

represents the closeness degree between the input vector and the fuzzy prototype

(equation 2.12).

42

State Of The Art A. Almaksour

Rulei : IF ~x is close to Pi THEN y1
i = l1i (~x), ..., y

k
i = lki (~x) (2.12)

where Pi represents the fuzzy prototype associated to the rule i.

In the existing systems, the zone of influence has often a hyper-spherical form.

It has then the same radius for all the feature space dimensions. More sophisticated

form allows the zone radius to have different values for different dimensions, which

results in hyper-elliptical zones so that the ellipses’ main axes are parallel to the

feature space axes.

For hyper-spherical or axes-parallel hyper-elliptical prototypes, the firing degree

can be computed depending on the prototype center ~µi and the radius value σi

(the same value in all the dimensions for the former, and different values for the

latter).The value of the firing degree βi(~x) of the rule i can then be computed as

follows:

βi(~x) =
n∏

j=1

exp(−
‖x− µi‖2

j

2σ2
ij

) (2.13)

This prototype structure will be the adopted as the basis of the antecedent

structure in our model as we will see later.

2.5.2.3.3 Inference process When using TS models in a classification problem,

the inference process, applied to get the class of a given input vector ~x, consists of

three steps:

• The activation (or firing) degree of each rule βi(~x) in the model is calculated

(using equation 2.13, for example). It must then be normalized as follows:

β̄i(~x) =
βi(~x)∑r

j=1 βj(~x)
(2.14)

where r represents the number of rules in the model.

• the sum-product inference is used to compute the system output for each class:

ym(~x) =
r∑

i=1

β̄i(~x)y
m
i (2.15)

where ym
i = lmi (~x) in the consequence part of the rule i related to the class m.

43

State Of The Art A. Almaksour

• The winning class label is given by finding the maximal output and taking the

corresponding class label as response:

class(~x) = y = argmax ym(~x) m = 1, .., k (2.16)

2.5.2.3.4 Consequence variants The polynomial functions l in the consequent

part of TS models can have different forms according to the requirements of the

application, that may sometimes favor light models with less parameters, more in-

terpretability, and thus less accuracy.

We can distinguish three different consequence structures that can be used in

TS models (ordered from the less to the more sophisticated):

• Binary consequences

The consequence function here is reduced to a binary value, so that ym
i equals

1 if the prototype Pi represents the class m, and 0 otherwise. This very

simple structure makes the TS model functionally equivalent to a mixture

of Gaussians. Each fuzzy prototype is crisply associated to a specific class,

and the same class can be represented by several prototypes. In order to get

the class label of a given input vector ~x, either a max-product inference is

used so that the prototype with the highest firing degree is considered winner

and its corresponding class is chosen as answer, or the sum-product inference

(equation 2.15) is used so that the score of each class is simply the sum of the

firing degrees of its prototypes.

• Singleton consequences

TS models with this type of consequences are usually called “zero-order TS

models”. The polynomial consequence functions here are defined by constant

values ym
i = sm

i ∈ [0, 1]. These values represent the participation degree of

the prototype Pi in the recognition of the class m. In this manner, each input

vector ~x activates all the fuzzy prototypes with different degrees, and each

prototype participates in the overall score of each class score with a specific

degree (sometimes called “weight”). Data-driven learning algorithms can be

used to adjust these weights as it will be mentioned later.

It is notable that zero-order TS models are functionally equivalent to the well-

know Radial Basis Function Networks (RBFN) [44] [45].The structures of these

two models can be compared as illustrated in Figure 2.11, so that :

44

State Of The Art A. Almaksour

Figure 2.11: Zero-order TS model presented in the form of RBF network

– The fuzzy prototypes in TS models are equivalent to the hidden neurons

in RBFN, which are multidimensional Gaussian radial basis functions.

– The singleton consequences in TS models are equivalent to the weights

in RBFN between the hidden and the output layer.

• Linear consequences

More sophisticated forms of consequences can be used in TS models in order to

achieve higher precision. We will focus on the case where these consequence

functions are represented by first-degree polynomial functions of the input

vector. Model with such consequences structure are called “First-order TS

models”. Thus, the linear consequence function is written as follows:

lmi (~x) = ~πm
i ~x = am

i0 + am
i1x1 + am

i2x2 + ...+ am
inxn (2.17)

where lmi (~x) is the linear consequent function of the rule i for the class m.

For the purpose of comparison between first-order and zero-order TS, Fig-

ure 2.12 shows a first-order TS model in the form of neural network, similar

to the representation in Figure 2.11.

The learning of consequences in first-order TS models consists in the estima-

tion of the coefficients of the linear functions. The learning process aims at

45

State Of The Art A. Almaksour

Figure 2.12: First-order TS model presented as a neural network

minimizing the error between the estimated values yk and the real values ȳk

for each learning pair (~x, ~̄y). This minimization problem can be represented

by the following error function:

E =
m∑

c=1

‖ ȳc −
r∑

i=1

β̄i(~x) l
m
i (~x) ‖ (2.18)

We can note that each output is calculated as the aggregation of local sub-

models represented by hyper-planes. Based on the error term in equation 2.18,

we note that these hyper-planes make a regression on the function f : ~x 7→ ~̄y.

Equation 2.18 shows that input samples that barley activates the antecedent

part of a specific rule, will be barley considered in the estimation of the param-

eters of the consequence of this rule. This local nature of the linear sub-model

makes its learning possible and efficient. However, this local region in the

hyper-space, defined by the activation value, may contain data points from

more than one class. Thus, the advantage of the consequence sub-models is

to approximate the function f for the points of different classes in this local

region.

Moreover, multiplying the consequence function with the activation value β̄i(~x)

participates in the “linearization” of the (~x, ~̄y) pairs in the hyper-space, based

on the fact that inputs with the same label will get similar activations.

Our model will be based on first-order consequent functions in order to achieve

46

State Of The Art A. Almaksour

high precision levels. However, zero-order TS will be also considered in the experi-

mental study.

2.5.3 Evolving Fuzzy inference systems

After a brief explanation the principals of FISs and their different structure types,

we preset some approaches that use FISs in evolving environments and incremental

learning mode. The batch learning of FISs is beyond the interest of this thesis. A

global comparison is drawn between the presented approaches at the end of this

section and the outlines of our proposed approach are introduced.

2.5.3.1 FLEXible Fuzzy Inference System (FLEXFIS)

FLEXFIS [7] [46] is based on a first-order TS system. The core idea is to extend

the vector quantization method and to use it in an incremental manner to learn the

antecedent part of an evolving fuzzy inference system. The proposed incremental

clustering method can be considered as distance-based clustering and inspired by

ART networks, but it is enhanced by three techniques:

• the incorporation of the sphere of influence of clusters and proposing a distance

measurement that estimates the distance of a data point to the surface of the

clusters;

• the incremental update of the winner cluster center by moving it toward the

input data point;

• the removal of satellites clusters and online split-and-merge strategy based

on incremental cluster validation index estimation in order to enhance and

simplify the premise structure.

The hyper-spheres that represent the zones of influence in FLEXFIS are created

using an incremental variance estimation formula in each dimension, which leads

to multidimensional ellipsoid clusters in main positions (parallel to the main axes).

We can note (and it is confirmed in [47]) that FLEXFIS suffers from the problem

of any distance-based incremental clustering method, which is the dependence on a

vigilance parameter. This parameter is one of the key points of the whole algorithm,

as it steers the tradeoff between updating already existing clusters and creating new

47

State Of The Art A. Almaksour

Figure 2.13: A rule in EFuNN represents an association of two hyper-spheres from

the fuzzy input space and the fuzzy output space.

ones. As mentioned before, an inappropriate setting of this parameter may lead

to over- or under-partitioning of data clusters. In FLEXFIS, the author proposes

a heuristic estimation of this parameter according to the number of data space

dimensions P (considering normalized data inputs) as follows:

ρ = 0.3
√

P√
2

This formula was found using trial-and-error tuning phases with several datasets

with no theoretical proof. However, the author proposes some corrections techniques

like deletion and split-and-merge and apply it continuously in order to keep a cor-

rect premise structure in spite of a potential inappropriate setting of the vigilance

parameter.

This learning strategy for the antecedent (premise) part is combined with the

recursive least squares estimation of consequent parameters to form a complete

incremental learning algorithm of an evolving classification system.

2.5.3.2 Evolving Fuzzy Neural Networks (EFuNN)

EFuNN [48] is a fuzzy rule-based classification system in which each rule represents

an association between a hypersphere from the fuzzy input space and a hypersphere

from the fuzzy output space (see Figure 2.13) [48].

48

State Of The Art A. Almaksour

The pair of fuzzy input-output data vectors (xf , yf) is allocated to a rule ri if xf

falls in the input hypersphere and yf falls in the output hypersphere. The former

condition is directly verified using a local normalized fuzzy distance, whereas the

latter is indirectly verified by calculating the global output error. EFuNN algorithm

starts by evaluating the local normalized fuzzy distance between the input vector

and the existing rules in order to calculate the activations of the rule layer. If all the

activations are below a specific sensitivity threshold, a new rule is created. Other-

wise, the activation of the fuzzy output layer is calculated based on the activations

of input layer and the centers of hyperspheres in output layer. The error between the

system output and the real output yf is calculated and if it is higher than a specific

threshold, a new rule is created. Otherwise, the centers of input hyperspheres are

adjusted depending on the distance between the input vector and rule nodes, and

centers of output hyperspheres are also adapted using a gradient descent as follows:

W1(rt+1
j) = W1(rt

j) + l(xf −W1(rt
j))

W2(rt+1
j) = W2(rt

j) + l(yf − A2)A1(rt
j)

The above adjustment formulas define the standard EFuNN that has the first

part updated in an unsupervised mode, and the second part is a supervised mode.

However, a supervised adaptation of the input hyperspheres centers is also possible

based on a one-step gradient descent method as follows:

W1(rt+1
j) = W1(rt

j) + l(xf −W1(rt
j))(yf − A2)A1(rt

j)W2(rt
j)

We can note that although EFuNN structure has been presented differently,

it is functionally equivalent to Mamdani fuzzy inference system. The distance-

based incremental clustering method used in EFuNN in both input and output

space depends strongly on the sensitivity threshold.

2.5.3.3 Generalized Fuzzy MIN-MAX (GFMM)

GFMM [8] had been presented as a kind of neural network (Figure 2.14) in which the

mapping between inputs nodes and class nodes is done using hyperboxes defined in

the feature space. Each hyperbox (or hyper-rectangle) is represented by two vectors

Vi and Wi that hold the min-max points of the hyperbox. A hyperbox defines then

a region of the n-dimensional pattern space, and all patterns contained within the

hyperbox have full membership value. Nevertheless, for patterns located outside

49

State Of The Art A. Almaksour

Figure 2.14: The three-layer neural network that implements the GFMM algorithm

[8]

the hyperbox, a specific fuzzy membership function is used to decide whether the

presented input pattern belongs to a particular class, thus whether the hyperbox is

to be expanded. Incremental learning of GFMM consists of three steps: hyperbox

expansion, hyperbox overlap test, and hyperbox contraction if overlap exists. An

important user-defined parameter Θ is used in GFMM in order to impose a bound on

the maximum size of a hyperbox. Overlaps between hyperboxes of the same class

are allowed, but not between hyperboxes from different classes. The connections

between the second and the third layer U are represented by binary values: ujk = 1

if the hyperbox j belongs to the class ck, 0 otherwise.

The main drawback in GFMM is that the prototypes are build according to a

covering strategy and not a density strategy, which make it very sensible to outliers.

The second weakness is that the simple connections between the hyperboxes and the

class labels do not allow a fuzzy participation of each hyperbox to the recognition

of each class. Similar incremental learning systems based on hyperbox prototypes

had been proposed in [49] and [50].

2.5.3.4 Dynamic Evolving Neural-Fuzzy Inference System (DENFIS)

The DENFIS system [5] uses Takagi-Sugeno type fuzzy inference engine where

all fuzzy membership functions are triangular functions. The antecedent part in

DENFIS is learned in online manner using the aforementioned Evolving Cluster-

ing Method (ECM), which is a distance-based clustering method with a predefined

50

State Of The Art A. Almaksour

cluster size parameter as explained in Section 2.4.1.3. The membership function in

DENFIS is given by the following equation:

µ(x) =





0, x ≤ a

x−a
b−a

, a ≤ x ≤ b

c−x
c−b

, b ≤ x ≤ c

0, c ≤ x

where b is the value of the cluster on the x dimension, a = b − d ∗ Dthr and

c = b+d∗Dthr, d ∈ [1.2, 2], and Dthr is the predefined cluster size parameter. The

activation of the rule Ri is calculated as follows:

βi(~x) =
∏q

j=1 µRij
(xj)

Linear consequent functions in DENFIS are learned using Recursive Least Squares

(RLS) method.

2.5.3.5 Evolving Takagi-Sugeno (eTS)

The structure of eTS [36] is similar to the fuzzy inference system structure presented

in Section 2.5.2.2. It is defined by fuzzy rules, and each rule has two parts:

Rulei : IF (x1 is Xi1) AND...AND (xn is Xin) THEN (y =

ai0 + ai1x1 + ...+ ainxn)

• Antecedent part, defined by fuzzy sets connected Logical operator AND. A

membership function is defined for each set in order to determine the degree

of membership of any value to the set. Gaussian membership function, char-

acterized by a center and a spread value, is usually used in eTS.

• Consequent part of linear form (singleton consequents are sometimes used).

The main idea in eTS is that the rule-base evolves to track changes in the data

stream. The evolving process in eTS can be done via several actions:

• Adding new rules

• Adjusting the antecedent part of existing rules (modified centers and spreads)

• Updating consequent linear parameters.

51

State Of The Art A. Almaksour

New rule creation in eTS is based on the recursive density estimation method

(eClustering) presented in Section 2.4.2.2. When a given data point is judge to have

a relatively important density degree, a new rule is added to the system using this

point as center with a predefined initial spread value. Adjustments in antecedent

part of existing rules can be done using basic statistical formulas usually used for

recursive calculation of mean and standard deviation in an incremental single-pass

manner. Finally, consequent linear parameters are updated using Recursive Least

Squares (RLS) method, as for DENFIS systems.

ETS model had been extended to meet with classification problems. The new

approach is called “eClass”. The performance of this evolving classifier had been

experimentally proved in [9] to be superior to other well-known incremental systems.

eClass will be used as a reference model in our experiments presented in the fourth

chapter.

It is worth mentioning that our evolving approach presented in the next chapter

can be seen as a significant extension of eTS (or eClass) system.

2.5.4 Discussion

By revising the recent relevant publications concerning evolving systems, we can

note that evolving FISs can generally achieve very good results. Contrary to evolving

ensemble systems, evolving FISs can be learned in sample-wise incremental learning

mode, thanks to its rule-based structure. This is an important feature in the evolving

handwriting classifier that we are looking for, as explained in Section 2.2.

However, it is worth mentioning that most of the evolving systems proposed

during the last years had been experimented on prediction or regression problems.

There was no significant focus on the performance of these systems in classification

problems. Therefore, one of the contributions of this work is to study the perfor-

mance of these systems in a classification problem with more than two classes, with

a special attention on the behavior of the system when adding new classes.

The transparent nature of evolving FISs had been proven in different works,

allowing the integration of some useful options to the systems, like rejection and

confidence measures.

We sum up the main features of the evolving FISs presented in this section in

Table 2.3.

52

FLEXFIS DENFIS EFuNN GFMM eTS

FIS structure TS TS Mamdani TS simplified TS

Consequent type 1-order 1-order - 0-order (binary) 1-order or singleton

Consequent learning RLS RLS clustering - RLS

Membership function Univariate Gaussian Triangular Univariate Gaussian Triangular Univariate Gaussia

Antecedent Distance-based Distance-based Distance-based Distance-based Density-based

learning clustering clustering clustering clustering clustering

Prototype adaptation Yes No Yes Yes Yes

Prototype shape hyper-spherical hyper-boxes hyper-elliptical hyper-boxes hyper-elliptical

Table 2.3: The main characteristics of existing evolving FISs

State Of The Art A. Almaksour

Takagi-Sugeno model will be preferred in our work to Mamdani model for the

next motivations:

• The high output accuracies that can be achieved using TS models compared

with Mamdani models, which has been proved through different studies [51],

[52].

• The fuzzy output sets in Mamdani models have no meaning in our handwriting

recognition classification problem. Each handwritten symbol belongs in fact

to one class, contrary to other problems where each input data can belong to

different classes with different degrees. Thus, the interpretability nature of the

consequent part using Mamdani models does not represent a priority in our

problem.

As mentioned in Section 2.4, the drawback of distance-based clustering methods

is the predefined thresholds that controls the clustering. An inconvenient setting of

these thresholds results in an under- or an over-clustering. It is important in any

general incremental learning algorithm to avoid problem-dependent parameters, be-

cause trial-and-error techniques cannot be used in order to find the optimal values of

these parameters. For this reason, eClustering density-based incremental clustering

method will be used in the incremental learning algorithm presented in this thesis

in order to control the new rules (new prototypes) creation process.

The shape of the prototypes in the antecedent of FISs plays an important role in

the overall performance, even when using a high degree consequent function. Gen-

erally, Gaussian membership functions fit better most of real data distributions. In

some of the aforementioned evolving FISs, a fixed spread value is used to define the

zone of influence of each prototype, and this same value is used for all the dimen-

sions which results in hyper-spherical prototypes. Other approaches, like eTS and

FLEXFIS, use different spread values and yet hyper-elliptical prototypes. Moreover,

these values are continuously adjusted according to new incoming data. However,

the activation of the antecedent part in these systems is calculated as the aggre-

gation of one-dimensional (univariate) Gaussian distribution like in equation 2.13,

and the correlations or the covariance between the different dimensions (features)

are not represented in this modeling.

In this thesis, we go a step ahead in the structure of the fuzzy prototypes in TS

models by allowing them to have a hyper-elliptical form non-parallel to the feature

54

State Of The Art A. Almaksour

space axes. This form enables the model to take into consideration the correlations

that can exist between the features, and is represented by a covariance matrix asso-

ciated to each prototype. The membership functions in this enhanced structure are

represented by multi-dimensional (multivariate) probability distribution functions,

as we will see in the next chapter.

Prototype adaptation is done in the existing systems either by moving the pro-

totypes centers as in EFuNN, or by the re-estimation of the spread values as in

FLEXFIS and eTS. In either distance-based or density-based incremental cluster-

ing, a new prototype is created around the incoming sample that meets the creation

criterion (sufficiently far from existing prototypes, or relatively dense region). The

initial position of the prototype center may not be optimal and must be updated

according to future data samples. Thus, the continuous displacements of the pro-

totype center along with the continuous updates of variance/covariance values are

essential for maintaining the antecedent structure in any evolving FIS.

Therefore, the improvement in the antecedent structure of TS FIS systems pre-

sented in this thesis is coupled with recursive formulas that allow the re-estimation

of the covariance matrices of the prototypes in addition to the centers’ displacements

formulas. All these formulas have no problem-dependent parameters. The fact of

using density-based incremental clustering method to create new prototypes and

parameter-free prototype adaptation formulas makes the application of our method

on any new evolving classification problem is straightforward, with no need for a

parameter tuning phase.

It can be noted by studying the existing evolving FISs is that the incremental

learning of the antecedent part and the consequent part are completely independent.

The recursive least squares (RLS) method is used in most of them for estimating

the coefficients of the linear consequent functions. RLS is an optimization method

that is designed to tune the parameters of linear systems under the assumption that

input and output vectors characterize a specific model.

As mentioned in Section 2.5.2.3, and will be detailed in the next chapter, the

input of RLS in our TS FIS is the input vector ~x weighted by the vector of antecedent

activations. Therefore, the ideal solution to keep the exactitude of RLS learning is

to use a fixed antecedent structure. Any modification performed on the antecedents

during consequent learning by RLS will perturb the learning and may cause major

instability problems.

55

State Of The Art A. Almaksour

Thus, the fundamental challenge in our work is to solve this contradiction be-

tween, on the one hand, adopting an improved and sophisticated antecedent struc-

ture in order to boost the overall system performance, and, on the other hand,

avoiding the instability in consequent learning using RLS method.

Our learning algorithm presented in the next chapter will propose two different

solutions for this problem; the first one is based on a partial memory buffer associated

to the incremental learning process, whereas the second is based on minimizing the

modifications on the antecedent structure by integrating the output error in the

antecedent adaptation process as we will see in the next chapter.

2.6 Incremental Feature selection

In order to cover the different aspects related to incremental leaning and evolv-

ing classification systems, we give a brief insight into the concept of evolving data

representation space. We present below the two main existing incremental feature

selection and extraction approached. These approaches can be integrated to any in-

cremental learning algorithm of an evolving classification system in order to obtain

more efficient systems. It is important to mention that incremental feature selection

had not been one of the centers of interest of this PhD work; it stands as important

future perspective and very interesting research area.

2.6.1 Incremental Principal component analysis

Principal Component Analysis (PCA) is a manner of expressing the data in such

a way as to highlight their similarities and differences. It transforms the original

data space into a new space such that the greatest variance by any projection of the

data comes to lie on the first coordinate (called the first principal component), the

second greatest variance on the second coordinate, and so on, under the constraint

that it must be orthogonal to (uncorrelated with) the preceding component. The new

space dimensions can be found by calculating the eigenvectors of the data covariance

matrix. It is possible to discard less significant components (eigenvectors) with low

eigenvalues. Thus, the new data space will have fewer dimensions.

In the Incremental PCA [53], the feature space is updated in two manners:

• The rotation of eigenaxes;

56

State Of The Art A. Almaksour

• Dimensional augmentation by adding new eigenaxes.

Assume that an eigenspace (x̄, U, A,N) model is constructed based on the covari-

ance matrix of N training samples, where x̄ is a mean vector, U is a matrix whose

columns represent the eigenvectors, and A is a matrix whose diagonal elements cor-

respond to eigenvalues. In an incremental learning context, the addition of a new

training sample xnew will change the mean vector and the covariance matrix and

the eigenvectors have to be recalculated. For each new example, the mean vector is

first updated as follows:

x̄ = 1
N+1

(Nx̄+ xnew)

Then, a residue vector h is calculated:

h = (xnew − x̄)[1 − UUT]

When the norm of the residue vector is larger than a threshold, the number of

dimensions is increased by expanding the eigenspace in the direction of h. However,

the existing eigenaxes are updated (rotated) after introducing a new example. The

update formula can be found in [53].

2.6.2 Incremental linear discriminant analysis

Linear Discriminant Analysis (LDA) is related to principal component analysis

(PCA) in that both look for linear combinations of variables which best explain

the data. Nevertheless, LDA looks for components that model the difference be-

tween the classes of data and make an efficient discrimination. Whereas, PCA does

not take into account any difference in classes between data and looks for the best

representation. Thus, PCA can be considered as unsupervised feature selection

and extraction method, and LDA is a supervised one. The core idea of LDA is

to find a transformation U over the input data in order to maximize the ratio of

the within-class scatter matrix over the between-class scatter matrix. The trans-

formation matrix U can be calculated by an eigenvalue decomposition of S−1
w Sb,

where

Sw =
∑M

c=1

∑
x∈{xc}(x− x̄c)(x− x̄c)

T

is the within-class scatter matrix, and

57

State Of The Art A. Almaksour

Sb =
∑M

c=1 nc(x̄c − x̄)(x̄c − x̄)T

is the between-class scatter matrix, nc is the number of samples of class c, x̄ is

the overall mean vector of X, and x̄c is the mean vector in class c.

In the incremental version of LDA, Sw, Sb, x̄ and x̄c must be updated for each new

training sample xnew with class label k. If x is a new class sample, the within-class

matrix Sw does not change. Otherwise, it must be updated as follows:

Sw = Sw + nk

nk+1
(xnew − x̄k)(xnew − x̄k)

T

On the other hand, the between-class scatter matrix Sb can be easily re-estimated

after updating the overall mean vector x̄, and the mean vector of class k as follows:

x̄ = Nx̄+xnew

N+1
, x̄k = nkx̄k+xnew

nc+1

Where N represents the overall sample number. More details about Incremental

LDA can be found in [54].

2.7 Conclusion

After some theatrical definitions related to incremental learning field, we have pre-

sented in this chapter a quick overview of the different existing approaches that

deal with this kind of problems. Several adaptive classification systems and differ-

ent incremental clustering methods have been visited. Then, some well-established

evolving classification systems have been cited and briefly explained, with a partic-

ular focus on rule-based approaches. We present in the next chapter our proposed

evolving classification architecture that contained an important enhancement com-

pared to the systems presented in this chapter. Moreover, different versions of our

incremental learning algorithms will be presented to cope with the learning insta-

bility issues and to offer a fast and efficient incremental learning.

58

State Of The Art A. Almaksour

59

Chapter 3

Evolve(+)(+): incremental

learning of evolving Takagi-Sugeno

classifiers with enhanced

antecedent structure

60

Evolve(+)(+) Algorithms A. Almaksour

3.1 Introduction

In the precedent chapter, we defined the main characteristics that must be satisfied

by the incremental learning algorithms of the evolving classification system that we

are looking for. As we have seen, this learning algorithm must be recursive, with no

or limited access to old data, and able to add new classes without suffering from the

“catastrophic forgetting” problem. After a brief review of the existing well-known

evolving classification approaches, we found out that Takagi-Sugeno fuzzy inference

system is one of the classification architecture that proved a high flexibility and

ability for incremental learning, while achieving acceptable precision levels.

We have seen as well that several evolving classifiers based on Takagi-Sugeno

fuzzy inference system (TS FIS) have been recently proposed. They differ either by

the structure of the antecedent or the consequences part of the system, or by the

learning algorithm that are used to incrementally learn these two parts.

In this work, we propose an evolving classification system based on a TS fuzzy

inference system. In order to get a high classification performance, we use a con-

sequent structure represented by first-order linear functions (already used in some

existing models like eTS, FlexFIS ...). The main originality in the structure of our

model compared to the existing ones is the fact of using an enhanced antecedent

structure so that the each prototype is represented by a center and a covariance

matrix as we will see in Section 3.2. The covariance matrices are estimated in

sample-wise incremental mode. The purpose of using this structure is to get a high-

performing classifier thanks to the more precise modeling of data by the proposed

antecedent structure. We describe in Section 3.2 the multi-output architecture of

our fuzzy system, and then we present the enhanced antecedent structure.

The learning of TS FISs is generally divided into two independent learning pro-

cesses: antecedent learning and consequent learning. For evolving TS FISs, these

two learning algorithms must be incremental as explained in the precedent chapter.

In our learning algorithm, the antecedent incremental learning is based, on the one

hand, on a well-known incremental clustering technique to create new rules whenever

it is necessary, and, on the other hand, on an adaptation technique to progressively

give the prototypes their optimal position (represented by the centers), and their

forms (represented by the covariance matrices).

The consequent parameters in TS FISs are traditionally learned using the recur-

61

Evolve(+)(+) Algorithms A. Almaksour

sive least squares (RLS) method. This single-pass method is suitable for incremental

learning mode.

As mentioned in the precedent chapter, RLS method requires a fixed antecedent

structure in order to converge toward the optimal solution after each incoming sam-

ple. The more the antecedent structure is modified during the incremental learning

process, the more the consequent learning will be perturbed and get instable.

Thus, the main challenge in the incremental learning of evolving TS FISs is

to find a compromise between the antecedent structure and learning on one hand,

and consequent structure and learning on the other hand. For this reason, many

approaches adopt simple antecedent structures that may offer stable consequent

learning, but in the same time they do not offer an exact modeling of the distribution

of points in the data space, which reduces the overall system precision.

We will see in this chapter the difficulties of this challenge. In a beta version of

our learning algorithm, in spite of the using of an enhanced antecedent structure,

the overall performance cannot outperform other models with simpler antecedent

structure (like eTS) because of the instability consequent learning problem explained

above.

In order to overcome this problem, we present a first incremental learning al-

gorithm that we call “Evolve”, based on a memory buffer that contains the more

recent incoming data. Using this buffer, the antecedent learning can be performed

in incremental batch mode (see Section 2.2), so that the antecedent structure keeps

unchanged for a specific period of time which allows a stable consequent learning.

When the memory buffer gets full, the antecedent learning process is applied on

the stored data samples. The different components of Evolve and the complete

algorithm are presented in detail in Section 3.3.

Looking for a better solution to address the contradiction between having a

sophisticated and efficient antecedent structure on the one hand, and allowing a

stable consequent learning using RLS method on the other hand, we have devel-

oped a novel incremental learning paradigm for evolving TS FISs. Our purpose was

to find a manner for minimizing as much as possible the modifications carried out

on the antecedent during the incremental learning process, without sacrificing the

possibility of having an efficient antecedent structure that can improve the overall

performance. The core idea of this paradigm is to learn the antecedent and the

consequent part in correlated manner so that the output error is used to supervise

62

Evolve(+)(+) Algorithms A. Almaksour

the antecedent learning process. The goal of this supervision is to reduce as much

as possible the antecedent modification for samples with low output error, and to

focus instead on samples with high output error. The importance of this solution

comes from the fact that in addition to reducing antecedent modifications, it ac-

celerates the learning of “difficult” classes and confused samples so that it reduces

the misclassification errors. The incremental learning algorithms “Evolve+” and

“Evolve++” presented in Section 3.4 represent two different implementations of the

proposed learning paradigm.

It is important to mention that, to the best of our knowledge, this is the first

homogeneous incremental learning algorithm for evolving TS FISs in which the an-

tecedent is learned in synergy with the consequences by integrating the output error

in the antecedent learning. As mentioned before, the antecedent and the conse-

quences are learned independently in all the other similar models (eTS, FlexFIS,

DENFIS ...).

3.2 System architecture

Our system is based on first-order Takagi-Sugeno (TS) fuzzy inference system. It

consists of a set of fuzzy rules of the following form:

Rulei : IF ~x is close to Pi THEN y1
i = l1i (~x), ..., y

k
i = lki (~x) (3.1)

where ~x = {x1, x2, ..., xn} is the input vector, k is the number of classes(outputs),

and lmi (~x) is the linear consequence function of the rule i for the class m:

lmi (~x) = ~πm
i ~x = am

i0 + am
i1x1 + am

i2x2 + ...+ am
inxn (3.2)

Singleton consequences (lmi (~x) = am
i) are sometimes used instead of linear func-

tions in order to get simpler models that are called zero-order TS models. The

prototype Pi is defined by a center and a fuzzy zone of influence. A membership

function must be defined in order to calculate the “closeness” degree between ~x and

P (considering its center and its fuzzy zone of influence). Thus, in order to find the

class of ~x, its membership degree βi(~x) to each fuzzy prototype is first computed.

After normalizing these membership degrees, the sum-product inference is used to

compute the system output for each class:

ym(~x) =
r∑

i=1

β̄i(~x) l
m
i (~x) (3.3)

63

Evolve(+)(+) Algorithms A. Almaksour

where r is the number of fuzzy rules in the system. The winning class label is given

by finding the maximal output and taking the corresponding class label as response:

class(~x) = y = argmax ym(~x) m = 1, .., k (3.4)

The membership degree can be calculated in many ways. For hyper-spherical or

axes-parallel hyper-elliptical prototypes, the membership degree can be computed

depending on the prototype center ~µi and the radius value σi (the same value in all

the dimensions for the former, and different values for the later). In this case, the

Gaussian membership function is generally used. The value of βi(~x) can then be

computed as follows:

βi(~x) =
n∏

j=1

exp(−
‖x− µi‖2

j

2σ2
ij

) (3.5)

It must then be normalized as follows:

β̄i(~x) =
βi(~x)∑r

j=1 βj(~x)
(3.6)

In our model, we go a step ahead in the structure of the antecedent part of

TS models. In addition to the use of different variance values in the definition

of the fuzzy prototypes in the input data space, we take into consideration the

covariance between the features. Therefore, the fuzzy influence zone of each rule

is represented by a prototype with a rotated hyper-elliptical form. For most of

classification problems, especially with high dimensional input space, the covariance

between the features cannot be ignored and it is difficult to cover the clouds of data

points using axes-parallel hyper-elliptical prototypes. As a result, this improvement

of the antecedent structure of TS models can play an important role in the overall

achieved accuracy, as we will see in the results. The difference between the two types

of antecedent is illustrated in figure 3.1 (data obtained from “Iris” dataset [55]).

Each fuzzy prototype in our system is yet represented by a center ~µi and a

covariance matrix Ai:

Ai =




σ2
1 c12 ... c1n

c21 σ2
2 ... c2n

...

cn1 cn2 ... σ2
n




i

(3.7)

64

Evolve(+)(+) Algorithms A. Almaksour

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.5

0

0.5

1

1.5

(a)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.5

0

0.5

1

1.5

(b)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.5

0

0.5

1

1.5

(c)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.5

0

0.5

1

1.5

(d)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.5

0

0.5

1

1.5

(e)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.5

0

0.5

1

1.5

(f)

Figure 3.1: The zone of influence of the prototype is parallel to the axes in (a), (c)

and (e), while the rotated zones in (b), (d) and (f) result in more accurate data

covering.

65

Evolve(+)(+) Algorithms A. Almaksour

where c12(= c21) is the covariance between x1 and x2, and so on.

The three main points that must be solved in order to implement this enhanced

antecedent structure in the evolving FIS are:

• how to measure the membership degree of a given input to the fuzzy prototype

considering the variance/covariance matrix?

• how to incrementally (recursively) and efficiently calculate the variance/covariance

matrix?

To address the first point, different multi-dimensional (multivariate) probability

density functions can be used to measure the activation degree of each prototype.

We can mention two of them:

• Multivariate normal distribution: the activation is calculated according to this

distribution as follows

βi(~x) =
1

(2π)n/2 |Ai|1/2
exp

(
−1

2
(~x− ~µi)

tA−1
i (~x− ~µi)

)
(3.8)

• Multivariate Cauchy distribution: the activation here is defined as follows

βi(~x) =
1

2π
√
|Ai|

[
1 + (~x− ~µi)

tA−1
i (~x− ~µi)

]−n+1
2 (3.9)

After an experimental comparative study on different benchmark datasets, we

found out that multivariate Cauchy distribution slightly outperforms the Normal dis-

tribution. However, the presented learning algorithm is independent of this choice,

and the applied distribution has no effect on the manner of the estimation of the

variance/covariance matrices.

The second point, about the recursive estimation of the variance/covariance ma-

trices, will be answered in the next section under the name of “antecedent adapta-

tion”.

3.3 Evolve: an incremental learning algorithm for

evolving TS classifiers

By analyzing the structure of TS FISs described in the Section 3.2, we note that it

consists of a set of local linear sub-models represented by the linear hyper planes at

66

Evolve(+)(+) Algorithms A. Almaksour

the consequent part of each rule. The zone of influence of each sub-model is defined

by the antecedent of the fuzzy rule represented by a fuzzy prototype as described

before. This structure can be illustrated as a three-layer neural network model like

in Figure 3.2 (already presented in Section 2.5.2.3).

Any learning algorithm of an evolving TS FIS must address the following points:

• when and how new rules must be added to the system?

• how the antecedent part of the existing rules is adapted according to new

samples?

• how the consequence parameters are updated according to new samples?

• how to guarantee a stable consequent learning in spite of the continuous an-

tecedent adaptation?

The first three tasks must be done in an online incremental mode and all the

needed calculation must be completely recursive. For the incremental rule creation,

we use in our system a density-based incremental clustering method. Coupling this

technique with the incremental adaptation of the antecedent of the rules is a part

of the originality of our learning model. We use the recursive least squares method

for estimating the linear consequent parameters in incremental manner.

Thus, “Evolve” learning algorithm consists of three distinct parts: rule creation

(incremental clustering), antecedent adaptation and consequences learning. These

three components are represented in Figure 3.2 by three different blocks. We describe

in this section these three components in details, and we summarize the complete

learning algorithm at the end of the section.

We note from Figure 3.2 that the input signal of the linear consequent learning

process is the input vector ~x weighted by the vector of prototype activations. The

modifications applied on the antecedent structure results in perturbations in the

optimization of the parameters of the linear consequent functions.

The stability of consequent learning is one of the principal issues that need to

be addressed. Although the enhanced antecedent structure presented in Section 3.2

offers more precise modeling of the clouds of data and thus improves the overall

performance, the antecedent adaptation represented by the shifting of the centers of

67

Evolve(+)(+) Algorithms A. Almaksour

Figure 3.2: The different components of Evolve algorithm

the prototypes and updating their zones of influence produces an important pertur-

bation on the consequent learning. This problem will be discussed in more details

at the last of this section.

3.3.1 Density-based incremental clustering

As mentioned in the precedent chapter, the incremental clustering methods can

be classified into distance-based methods and density-based methods. The major

shortcoming in distance-based methods is the setting of the vigilance threshold that

is a problem-dependent parameter. For this reason, we use in our algorithm a

density-based method that does not depend on a threshold distance: the eClustering

method.

In incremental clustering methods, each new incoming point will either belong

to an existing cluster of points, or a new cluster will be detected and created. In

distance-based incremental clustering methods, a new cluster is created if the new

incoming point is sufficiently far from the existing focal points. In addition to the

difficulty of setting of the threshold value that defines the minimum distance to

create new cluster, these methods are sensitive to outliers and useless clusters may

be created. In density-based methods, a new cluster is created only if the new

incoming point sufficiently increases the density of its local region in the data space.

68

Evolve(+)(+) Algorithms A. Almaksour

Figure 3.3: An example to illustrate the concept of the potential of data points [9].

The minimum density value to create a new cluster can be relative to the density

of other clusters, as in eClustering, and no predefined threshold is needed. The

eClustring method had been briefly presented in the precedent chapter. We give

below a more detailed explanation about this method and the manner in which it

is used in our system.

Yager and Filev proposed in [35] a batch (non-incremental) density-based clus-

tering method, called “mountain clustering”. In mountain clustering, a specific

value, called “potential”, is calculated for each data point as the inverse of the sum

of distances between this point and all the other points (see figure 3.3):

Pot(~xi) =
1

1 + (s− 1)−1
∑s

j=1,j 6=i ‖~xi − ~xj‖2 (3.10)

where s represents the size of the dataset.

The algorithm of mountain clustering can be briefly summarized as follows:

• Step 1: the point with the highest potential value is chosen as a cluster center.

• Step 2: for the rest, the potential value of each point is reduced in a manner

inversely proportional to the distance between this point and the selected

center.

• Step 3: go to step 1 if the number of desired clusters is not yet reached, go to

end otherwise.

69

Evolve(+)(+) Algorithms A. Almaksour

In order to adapt the potential concept to be used in an incremental clustering, we

need a recursive formula that can be used to calculate the potential of a new incoming

point ~xt without requiring access to the t − 1 precedent points as in the original

formula. Angelov has deduced in [36] a recursive potential calculation starting from

the original formula (Equation 3.10) that can be rewritten as follows:

Pot(~xt) =
1

1 + (t− 1)−1
∑t−1

i=1

∑n
j=1(x

j
t − xj

i)
2

Pot(~xt) =
(t− 1)

(t− 1) +
∑t−1

i=1

∑n
j=1{(x

j
t)

2 − 2xj
tx

j
i + (xj

i)
2}

Pot(~xt) =
(t− 1)

(t− 1) + (t− 1)
∑n

j=1(x
j
t)

2 +
∑t−1

i=1

∑n
j=1(x

j
i)

2 − 2
∑t−1

i=1

∑n
j=1(x

j
t)(x

j
i)

For simplification, we define the following terms:

α(t) =
n∑

j=1

(xj
t)

2 , γ(t) =
t−1∑

i=1

n∑

j=1

(xj
i)

2 , ζ(t) =
t−1∑

i=1

n∑

j=1

(xj
t)(x

j
i)

Using these terms, the potential equation for a new incoming point ~xt can be

rewritten as follows:

Pot(~xt) =
(t− 1)

(t− 1) + (t− 1)α(t) + γ(t) − 2ζ(t)
(3.11)

The calculation of α(t) is straightforward. γ(t) can be recursively estimated as

follows :

γ(t) = γ(t− 1) + α(t− 1), γ(1) = 0

We can rewrite ζ(t) as follows:

ζ(t) =
n∑

j=1

(
xj

t .
t−1∑

i=1

(xj
i)

)

Thus, ζ(t) can be recursively estimated using the following recurrence equations:

ζ(t) =
n∑

j=1

xj
t η

j(t) , ηj(t) = ηj(t− 1) + xj
t−1 , ηj(1) = 0

70

Evolve(+)(+) Algorithms A. Almaksour

In the same way, the potential of an existing focal point ~µi is recursively updated

according to incoming point using the next equation:

Pot(~µi) =
(t− 1)Pot(~µi)

(t− 2) + Pot(~µi) + Pot(~µi)
∑n

j=1 ‖µi − xt−1‖2
j

(3.12)

The mathematical reasoning of this recursive equation staring from the original

one is given in [36].

The eClustering algorithm can then be summarized as follows:

• Step 1: The first sample is considered as the focal point and it potential is

initialized by 1.

• Step 2: For each new incoming sample, its potential is calculated using Equa-

tion 3.11.

• Step 3: The potential of the existing focal points is updated by Equation 3.12.

• Step 4: If the potential of the new point is comparable to the potential of the

existing focal points, it is considered as new focal point and its potential is

initialized by 1.

• Go to Step 2.

This incremental clustering method is used in our learning algorithm in order

to detect the necessity of adding new rules to the FIS. The data point ~xt that gets

a high potential and triggers a new rule creation will be considered as the center

of a new prototype (~µr+1 = ~xt). An initial diagonal variance/covariance matrix is

associated to the new prototype; Ar+1 = ǫI, where I is the identity matrix of size n

and ǫ is a problem-independent parameter and can be generally set to 10−2.

Therefore, a new fuzzy rule is added to the system so that its antecedent part

is represented by the new prototype, and we will see later in this chapter how the

consequence parameters are initialized.

3.3.2 Antecedent adaptation

As it can be noted in the previous section, the condition of having a high potential is

hard and inversely proportional to the growing number of data. Thus, we can have

a cluster center which is not really in the optimal position according to the data

71

Evolve(+)(+) Algorithms A. Almaksour

history, but it keeps being center because it still has the highest potential value.

Therefore, incremental clustering process of the antecedent part of the FIS will not

be able to take advantage of the data points that do not have a very high potential

to move (or reshape) the existing clusters.

We enhance the incremental clustering process by an adaptation algorithm which

allows to incrementally update the prototype center coordinations according to each

new available learning data, and to recursively compute the prototype covariance

matrices in order to give them the rotated hyper-elliptical form. For each new

sample ~xt, the center and the covariance matrix of the prototype that has the highest

activation degree are updated.

The recursive estimation of the center can be found as follows:

~µt =
1

t

t∑

i=1

~xi

=
1

t
(

t−1∑

i=1

~xi + ~xt)

=
1

t
((t− 1)~µt−1 + ~xt)

=
t− 1

t
~µt−1 +

1

t
~xt (3.13)

where t represents the number of updates that have been applied so far on this

prototype.

As mentioned in the last section, when the potential of the new sample is higher

than the potential of the existing centers this sample will be a center of a new proto-

type, and the covariance matrix that defines the influence zone will be initialized by

a matrix proportional to identity matrix (which results in a hyper-spherical shape).

In order to represent the repartition of the data cloud represented by the pro-

totype, the shape of the prototype (its covariance matrix) must be adapted and

updated according to each new data sample associated to this protoype.

We can prove that the covariance matrix can be recursively computed as follows:

At =
t− 1

t
At−1 +

1

t
(~xt − ~µt)(~xt − ~µt)

T (3.14)

For practical issues, since the membership degree is calculated using A−1(|A| =
1

|A−1|), and in order to avoid any matrix inversion, we use an updating rule for A−1

directly:

72

Evolve(+)(+) Algorithms A. Almaksour

A−1
t =

t

t− 1
A−1

t−1 −
1

t− 1
· (A−1

t−1(~xt − ~µi)) · (A−1
t−1(~xt − ~µi))

T

1 + 1
t
((~xt − ~µi)TA−1

t−1(~xt − ~µi))
(3.15)

It is worth mentioning that Equations 3.13 and 3.14 are used in stationary incre-

mental learning problems, in which all samples have the same importance regardless

their time of arrival; i.e. later samples are as important as first ones. We consider

our evolving handwriting classifier as a stationary problem, so that old data are as

important as new ones.

For non-stationary problems, where the recent samples have more importance

than old ones, the term 1
t

is replaced by a constant value a.

3.3.3 Consequent learning

The coefficients of the consequent functions in our FIS must be adjusted after each

new incoming data point. As we can understand from figure 3.2, the input vector

~x is weighted by the activation of each rule and used to optimize the consequence

parameters of this rule in supervised manner (considering that the ground truth

output vector ~̂y(~x) is available).

The consequent parameters of the fuzzy rules can be learned by global or local

optimization. In the former, the consequences of all the rules are learned together

and the learning aims at minimizing the global error achieved by the entire system.

Whereas the consequences of the fuzzy rules in the latter is optimized separately and

the error signal is measured on each rule and used to learn its consequent parameters.

In the rest of this section, we present first the global incremental learning of

the consequent parameters. Then, the local learning formulas are as well presented.

The application of the learning algorithm on the special case of zero-order TS FIS

is briefly discussed at the end of the section.

3.3.3.1 Global learning of consequent parameters

The problem of coefficients estimation of the linear consequences functions of a FIS

can be seen as the problem of resolving a system of linear equations expressed as

follows:

Ψi Π = Yi i = 1, 2, ..., t (3.16)

73

Evolve(+)(+) Algorithms A. Almaksour

where Π is the matrix of all the parameters of the linear consequences of the system.

Π =




~π1
1 ~π2

1 ... ~πm
1

~π1
2 ~π2

2 ... ~πm
2

...

~π1
r ~π2

r ... ~πm
r




m represents the number of classes, r is the number of fuzzy rules,

Ψi = [β1(~xi)~xi, β2(~xi)~xi, ..., βr(~xi)~xi] is the input vector weighted by the activation

degrees of the prototypes, and Yi is the ground truth output vector.

Solving this system of linear equations by the least squares method consiste in

minimizing the next cost function:

E =
t∑

i=1

‖Ψi Π − Yi‖2 (3.17)

When using linear regression to solve physical or industrial problems, the input signal

may contain a noise. In order to stabilize the solving of the system and to smooth

the found solution, a regularization term (known as Tychonoff regularization) is

added to the equation. The system is then expressed as follows:

(Ψi + δI)Π = Yi i = 1, 2, ..., t (3.18)

We can rewrite the cost function as follows:

E =
t∑

i=1

‖Ψi Π − Yi‖2 + ω ‖Π‖2 (3.19)

where ω = δ2 is a positive number called the regularization parameter, and I is the

identity matrix.

The regularization parameter is important in our FIS because the antecedent

adaptation produces a noise on the input Ψ (We may have Ψt1 6= Ψt2 for ~xt1 = ~xt2

because of the evolution of the antecedents).

The solution that minimizes the cost fonction of Equation 3.19 is:

Πt = (
t∑

i=1

ΨiΨ
T
i + ωI)−1 .

t∑

i=1

ΨiYi (3.20)

We rewrite Equation 3.20 by replacing (
∑t

i=1 ΨiΨ
T
i + ωI) and (

∑t
i=1 ΨiYi) by

Φt et Zt, respectively:

Πt = Φ−1
t .Zt (3.21)

74

Evolve(+)(+) Algorithms A. Almaksour

By isolating the term corresponding to i = t, we can rewrite Φt as follows:

Φt =

[
t−1∑

i=1

ΨiΨ
T
i + ωI

]
+ ΨtΨ

T
t (3.22)

Thus, we can update the matrix Φ using the following recursive formula:

Φt = Φt−1 + ΨtΨ
T
t (3.23)

In the same way, we can deduce a recursive formula to update the matrix Z :

Zt = Zt−1 + ΨtYt (3.24)

In order to calculate Πt using Equation 3.21, we need to calculate the inverse of

Φ. In practice, we generally try to avoid the matrix inversion operation because it

requires a lot of calculation time and may be the origin of instabilities. Moreover,

we prefer to have a recursive equation for the calculation of Π in incremental and

efficient manner. We can realize these two goals thanks to the following lemma of

matrix inversion:

Lemma 1 : Let A = B−1 + CD−1CT , we can write the inverse of A as follows:

A−1 = B −BC(D + CTBC)−1CTB (3.25)

To apply Lemma 1 on Equation 3.23, we make the following substitutions:

A = Φt, B
−1 = Φt−1, C = Ψt, D = 1

Thus, we can obtain the recursive formula of the inverse of the matrix Φ:

Φ−1
t = Φ−1

t−1 −
Φ−1

t−1 Ψt ΨT
t Φ−1

t−1

1 + ΨT
t Φ−1

t−1 Ψt

(3.26)

Then, in order to obtain a recursive equation to calculate Π, we write:

Πt = Φ−1
t Zt = Φ−1

t (Zt−1 + ΨtYt) = Φ−1
t (Φt−1Πt−1 + ΨtYt)

= Φ−1
t ((Φt − ΨtΨ

T
t)Πt−1 + ΨtYt) = Πt−1 − Φ−1

t ΨtΨ
T
t Πt−1 + Φ−1

t ΨtYt

= Πt−1 − Φ−1
t Ψt (Yt − ΨT

t Πt−1) (3.27)

The initialization of the algorithm consists in determine two quantities:

• Π0 : In practice, and when no prior knowledge is available, Π0 is initialized by

0.

75

Evolve(+)(+) Algorithms A. Almaksour

• Φ−1
0 : Given Φt =

∑t
i=1 ΨiΨ

T
i + ωI and by putting t equals 0, we find that

Φ−1
0 = ω−1I, where ω is the regularization parameter.

Large values of ω−1 (between 102 and 104) are generally adopted when the noise-

to-signal ratio on the input vector is high, which is the case in our FIS especially

in the beginning of the learning where significant modifications are done on the

prototypes. The impact of the value of ω−1 on the performance of the algorithm

according to the input noise level is discussed in [56].

When a new rule is added to the system, its parameters are initialized by the

average of the parameters of the other rules:

Πt =




~π1
1(t−1) ~π2

1(t−1) ... ~πm
1(t−1)

~π1
2(t−1) ~π2

2(t−1) ... ~πm
2(t−1)

...

~π1
r(t−1) ~π2

r(t−1) ... ~πm
r(t−1)

~π1
(r+1)t ~π2

(r+1)t ... ~πm
(r+1)




(3.28)

where

~πc
(r+1)t =

r∑

i=1

βi(~xt)~π
c
i(t−1) (3.29)

The matrix Φ−1 is extended as follows:

Φ−1
t =




ρ
[

Φ−1
t−1

] [
0
]

[
0
]




Ω−1 ... 0

...

0 ... Ω−1







(3.30)

where ρ = (r2 + 1)/r2.

3.3.3.2 Local learning of consequent parameters

Contrary to global learning, the local learning consists in estimating the conse-

quences of each rule independently, so that the local error of each rule is considered

and the optimization is carried out for each local region (defined by the rule an-

tecedent). Similar to global learning, local learning can be performed in incremental

mode by extending the weighted least squares method to a recursive formula.

76

Evolve(+)(+) Algorithms A. Almaksour

Let Πi be the linear consequent parameters of the rule i:

Πi =
[
~π1

i ~π2
i ... ~πm

i

]T
(3.31)

The deduction of these formulas is quite similar to that presented in the prece-

dent section. Therefore, the matrix of consequences parameters of each rule can be

recursively estimated as follows:

Πi(t) = Πi(t−1) + Ci(t) β̄i(~xt) ~xt (Yt − ~xtΠi(t−1)), Πinit = ~0 (3.32)

Ci = Ci −
β̄i(~xk)Ci~xk~x

t
kCi

1 + β̄i(~xk)~xt
kCi~xk

, Cinit = ΩI (3.33)

where Ω is a large positive number, and I is the identity matrix.

It is important to mention that the main advantage of local learning is to avoid

the large size of the matrix Φ when the number of rules in the systems increases.

It will be demonstrated in the experimental results that the accuracy achieved by

the system when local learning is used can be comparable to global learning perfor-

mance. Therefore, local consequent learning must be preferred when the incremental

learning is done in an online and interactive mode and a fast learning process is re-

quired.

3.3.3.3 Learning of zero-order consequences

The solutions for incremental consequent learning (global or local) that we presented

above can be applied in straightforward manner for either higher-degree linear func-

tions or even for consequences of zero degree, that we call singleton consequences.

Singleton consequences are used in the so called zero-order TS FISs as mentioned in

the precedent chapter and result in less sophisticated models but with less precision.

A fuzzy rule in zero-order TS FISs is defined as follows:

Rulei : IF ~x is Pi THEN y1
i = s1

i AND . . . AND yk
i = sk

i (3.34)

To apply the RLS method on a zero-order TS FIS, the matrix of consequences

parameters is written as follows:

77

Evolve(+)(+) Algorithms A. Almaksour

S =




s1
1 s2

1 ... sm
1

s1
2 s2

2 ... sm
2

...

s1
r s2

r ... sm
r




(3.35)

where m is the number of classes, and r is the number of fuzzy rules.

Similar to first-order consequences, the matrix S can be globally and incremen-

tally estimated by:

Sk = Sk−1 + Ckψk(Yk − ψT
k Sk−1) ; S1 = 0 (3.36)

Ck = Ck−1 −
Ck−1ψkψ

T
k Ck−1

1 + ψT
k Ck−1ψk

; C1 = ΩI (3.37)

Obviously, the low number of consequent parameters in zero-order TS models

makes the learning process much faster compared to first-order models. However, it

will be demonstrated in the experimental results that the performance of first-order

models generally outperforms that of zero-order ones. The functional equivalence

between zero-order TS FISs and radial basis function networks had been mentioned

in the precedent chapter.

3.3.4 Learning stability using delayed antecedent adapta-

tion

One of the favorable properties of the weighted recursive least squares method is

that it converges to the optimal solution for each learning step. But, this property is

only true when the weights (antecedent activations in our case) which are associated

to the previous data points keep unchanged. In our system, the fuzzy prototypes

that form the antecedent part are dynamic, they can be re-centered, shifted or

reshaped according to the new data sample by the incremental clustering method

(Section 3.3.1) and the adaptation algorithm (Section 3.3.2). Therefore, the older

activations that have participated in the learning of the consequent parameters for

the previous data are no longer the same. This makes the prior estimated linear

consequent parameters non-optimal for the current antecedent model.

Although the existent evolving TS models like eTS and FlexFIS suffer from the

same problem, the improvement of the antecedent structure in our model increases

78

Evolve(+)(+) Algorithms A. Almaksour

this effect because the antecedent learning become more sophisticated and they will

be continuously modified in a considerable manner.

In [7], the author points out this stability problem. He theoretically proposes

to introduce, after each antecedent modification, a correction vector for the linear

parameters and a correction matrix for their covariance matrix in order to balance

out the current non-optimal solution toward the optimal one according to the degree

of change in the premise part. To the best of our knowledge, there is not yet any

proposed solution to estimate these correction vectors and matrices, it is still an

open and sophisticated issue.

One first solution that we present to cope with the consequent learning stability

problem in our FIS is to apply the antecedent adaptation in an incremental batch

mode instead of a sample-wise mode. In this way, we keep on applying the conse-

quent incremental learning algorithm in a sample-wise mode with fixed antecedent

structure. In addition, we keep the data samples in a memory buffer with size F .

Thus, after introducing F data samples, the antecedent adaptation is applied for

each sample in the buffer. Then, a readjustment of the consequent parameters is

done by applying the RLS method on the samples in the buffer (with the modified

antecedent structure). After this readjustment process, the buffer is emptied out

and the antecedent structure “freezes” while the consequent parameters updating

process continues in a sample-wise mode.

The advantage of this strategy is that the antecedent optimization is not scarified

for the sake of stable consequent learning, but it is instead applied in temporal

batches from time to time. However, as mentioned above this strategy requires

a partial memory to temporary hold the data samples until the next antecedent

adaptation.

The important role of using this delayed antecedent adaptation on the overall

performance will be experimentally proved in the next chapter. However, the main

drawback of this solution is the a-priori setting of the buffer size, which represents

the only predefined parameter in the whole algorithm.

3.3.5 Evolve: the complet algorithm

The complete learning algorithm Evolve is summarized in Algorithm 1.

79

Evolve(+)(+) Algorithms A. Almaksour

Algorithm 1: Evolve algorithm
Initialisation:

F , ω−1;

foreach new sample ~x do

if ~x is the first sample of a new class then

create a new fuzzy prototype based at ~x;

initialize its potential by 1;

add a new fuzzy rule to the system;

extend the consequent parameters matrix as in [3.28] and [3.29];

update and extend the covariance matrix as in [3.30];

else

calculate the activations of the fuzzy rules by [3.9];

determine the winning class label by [3.40];

get the true class label;

calculate the potential of ~x by [3.11];

update the potentials of the existing prototypes centers using [3.12];

if P (~x) > Pk(~µi) ∀i ∈ [1, R] then

create a new fuzzy prototype based at ~x;

initialize its potential by 1;

add a new fuzzy rule to the system;

extend the consequent parameters matrix as in [3.28] and [3.29];

update and extend the covariance matrix as in [3.30];

end

update the consequents parameters using [3.36] and [3.37];

add ~x to the memory buffer;

if memory buffer is full then

foreach sample ~xb in the buffer do

Apply antecedent adaptation according to ~xb by [3.13] and [3.15];

end

foreach sample ~xb in the buffer do

update the consequents parameters according to ~xb by [3.36];

end

dump the memory buffer;

end

end

end

80

Evolve(+)(+) Algorithms A. Almaksour

3.4 A novel paradigm for stable incremental learn-

ing of TS models

It had been already mentioned that the main challenge in the incremental learning of

evolving TS FIS is keeping as much as possible the coherence between the antecedent

structure and the consequent parameters in order to get a high overall precision.

Static TS models do not suffer from this problem because the antecedent structure

is first learned using some clustering methods, then the consequent parameters are

optimized while the antecedent structure keeps unchanged. This two-phase learning

strategy cannot be used in an incremental learning of evolving TS models. As

explained before, the learning of evolving TS models should be a lifelong process,

and both the antecedent and the consequent part evolve according to new incoming

data samples. The evolution of the antecedents is translated by either adding new

prototypes or by adjusting the exiting prototypes. When a sophisticated antecedent

structure is used to improve the system precision, the antecedent evolution becomes

more important and the consequent learning process will be constantly perturbed

because of that. For this reason, other approaches use often a simple antecedent

structure with a limited evolution. In Evolve method, the learning of the enhanced

antecedent structure is delayed and performed in incremental batch mode, using a

partial memory buffer. This strategy provides some stability in the learning process

and thus improves the overall performance.

However, and although the delayed antecedent adaptation represents a relatively

efficient solution, it will be much better if some useless or not important antecedent

modifications be completely avoided or minimized instead of being delayed. It can be

noted from Section 3.3.2 that the re-estimation of prototypes’ centers and covariance

matrices takes place for each new incoming data points, and all the data points are

considered in the same way. In order to minimize the antecedent modifications, we

tried to find an intelligent strategy to distinguish between the dispensable and the

indispensable antecedent modifications. The source of this information in this novel

paradigm is the output error signal.

As mentioned in the precedent chapter, the ground truth label of each incoming

data point is supposed to be available before using this point in the incremental

learning process. The true label can be obtained in some applications by analyzing

the reaction of the user on the label suggested by the system, which can be either

81

Evolve(+)(+) Algorithms A. Almaksour

a direct or an indirect validation/correction action. More details about this process

are given in the next chapter.

The true label is used to measure the error signal and then to supervise the

consequent learning process (either global or local error is used as we have seen in

the precedent section).

The fundamental idea of the novel approach is to use this error signal in the

antecedent adaptation as well, contrary to existing approaches where the antecedent

is learned independently from the consequent learning and the overall output.

The purpose of integrating the output signal in the antecedent learning is to bias

it towards the incoming points with high output error; so that the more the error

is high the more will be the influence of this point on the antecedent adaptation.

The statistical antecedent adaptation used in Evolve algorithm does not take into

consideration the output error committed for the incoming data point. All the

data points are equally used in the adaptation recursive calculations regardless their

output errors.

Thus, the main difference between the traditional learning paradigm used in

Evolve and this novel paradigm is the fact that the antecedent adaptation is driven

by an output error feedback as illustrated in Figure 3.4 (compared to Figure 3.2).

Thanks to this improvement, it becomes possible in the antecedent adaptation to

focus on the data points that are misclassified by the system or correctly but hardly

well-classified, and to put less focus on non-problematic points. This concept offers

in same time two important advantages that can improve the overall performance

of the evolving classifiers:

• reducing the antecedent modification for points with low output error, which

enhances the stability of consequent learning,

• accelerating the learning by focusing on difficult points so that future misclas-

sification errors can be avoided, especially at the beginning of the incremental

learning process where only few learning data are available.

To formulate this concept, we rewrite the antecedent adaptation formulas (Sec-

tion 3.3.2) as follows :

~µt =
t− w

t
~µt−1 +

w

t
~xt (3.38)

82

Evolve(+)(+) Algorithms A. Almaksour

Figure 3.4: The new learning paradigm: antecedent adaptation driven by output

feedback

At =
t− w

t
At−1 +

w

t
(~xt − ~µt)(~xt − ~µt)

T (3.39)

where w represents the “weight” associated to the data point ~xt. The value of w is

related to the output error committed by the system for the current point ~xt.

We have studied two different manners for integrating the output error signal in

the antecedent adaptation formulas. In the first one, the error is represented by the

difference between the ground truth and the current output for each class. Whereas

in the second method, the error is estimated by the difference between the score of

the true class of the incoming point and the highest score between the other classes.

This difference will be called the confusion degree of this point. These two strategies

are presented in the next two sections.

3.4.1 Evolve+: antecedent learning based on global error

feedback

It is useful to remind the reader that the output of our FIS is a vector of scores each

of which corresponds to a specific class (a gesture in our application), and within

the range [0,1]. Ideally, the score of the real class of ~x equals one, and the other

83

Evolve(+)(+) Algorithms A. Almaksour

scores are zeros. This is how the ground truth output vector is set in the incremental

learning of ~x, while to recognize a new sample the winning class label is given by

finding the maximal output and taking the corresponding class label as response:

class(~x) = y = argmax yc(~x) c = 1, .., k (3.40)

The global error is measure by the distance between the system output vector

~y and the ground truth vector ~̂y (contains 1 for the true class and 0s for the rest).

Thus, the value of w can be estimated as follows:

w =
1

2

k∑

c=1

| ŷc − yc | (3.41)

where k is the number of classes.

The system outputs yc are normalized so that their sum equals 1. The value of

w is therefore between 0 and 1. Completely misclassified points will have a weight

close to 1, while the weight of well-classified points will be close to 0.

Using this solution, the antecedent structure will not be modified to cover new

incoming points if they are correctly classified and their output scores are close to

ideal values (one for the true class, and zero for other classes). In the same time,

the prototypes will move faster towards the data points that produce high output

error, and the effect of these points on the covariance matrix will be reinforced. As

explained above, the relative ignorance of “easy” points in the antecedent learning

reduces the perturbation on consequent learning. The antecedent structure will

not correspond to an exact representation of the distribution of data points in the

feature space, as in Evolve method and the other existing approaches, like eTS,

FlexFIS and DENFIS. The antecedent structure will be instead learned in harmony

with the consequences. This is very important in an online incremental learning

when the system performance must be improved as fast as possible using few data

points. This new learning paradigm will be experimentally validated in the next

chapter through the improvement on the accuracy of the system using Evolve+

algorithm, compared to Evolve algorithm.

Evolve+ is a general implementation of the novel learning paradigm, and can

be used to incrementally learn any evolving TS FIS, independently from the type

of application. Most of existing evolving approaches (eTS, FlexFIS, Denfes) had

84

Evolve(+)(+) Algorithms A. Almaksour

been widely used in time-series modeling and prediction problems. In addition to

classification problems, Evolve+ can perfectly replace the existing approaches for

prediction problems. System performance in this type of problems is estimated by

measuring the prediction error, which can be implemented using different quality

measure, like R-squared adjusted [7], non-dimensional error index (NDEI) [5], or

normalized RMSE [36].

For classification problems, the quality of the system is measure by its recognition

rate. The output vector represents generally the scores for all the considered classes.

The class with the largest score is considered as winner (Winner-take-all principal),

regardless the absolute score value.

As explained before, the purpose of extending Evolve to Evolve+ is to reduce

the antecedent modification by focusing on “difficult” points and ignoring “easy”

ones. Following the same idea, the novel paradigm can be implemented for classifi-

cation problem using a different weight estimation formula. The global error used

in Equation 3.41 can be replaced in classification problems by a specific measure

that represents the risk of misclassification associated to the input sample. This

concept represents the core idea of Evolve++, a different implementation of the

novel learning paradigm, dedicated for evolving classification problems.

3.4.2 Evolve++: confusion-driven antecedent learning

As mentioned in the precedent section, the system quality in time-series prediction

problems is generally related to the difference (the distance) between system out-

put vector and real output vector, and can be measures using different indications.

In classification problem, the quality is perceived by the user from the number of

misclassification errors committed by the system.

We have seen that the principal of the proposed learning paradigm is to give

a special priority in the antecedent learning process for some data points, and less

priority for others, in order to get stable and high overall performance. This priority

is calculated in Evolve+ based on the global output error committed by the system

for the given input vector (Equation 3.41). In the case of classification problems,

where the purpose is to avoid misclassification errors, the priority can be calculated

so that it becomes higher for points with a high risk of misclassification, regardless

their global output error. Obviously, minimizing the global error will lead to less

misclassification, but the idea of Evolve++ is to reduce the weights of points with

85

Evolve(+)(+) Algorithms A. Almaksour

relatively low risk of misclassification, even if their global output error is still consid-

erable. In this manner, we reduce the antecedent modifications that may not have a

clear and direct impact on the system quality as perceived by the user in classifica-

tion problems, which results in more stable consequent learning and more efficient

antecedent structure. By focusing on the samples with high risk of misclassification,

the improvement of the recognition rate of the classifier will goes faster during the

incremental learning process, which is very important for the user especially at the

beginning of the learning process or when adding new classes.

In Evolve++, we estimate the risk of misclassification of each sample by its

confusion degree. The confusion degree is inversely proportional to the difference

between the score of the true class of ~x, and the highest score within the other

(wrong) classes. The confusion-driven antecedent learning in Evolve++ is then

implemented by calculating the weight w of each incoming sample as follows:

w = (1 − [yĉ − ync])/2 w ∈ [0, 1] (3.42)

where yĉ is the system output corresponding to ĉ that represents the true class of

~xt, and

ync = argmax yc ; c = 1...k & c 6= ĉ (3.43)

Similar to Equation 3.41, the value of w tends toward 0 when ~xt is “strongly”

recognized, and toward 1 when it is misrecognized. The risk of misclassification

associated to ~xt is proportional to the confusion degree estimated by the value of w.

Therefore, measuring the confusion degree in Evolve++ instead of the overall

output error used in Evolve+ improves the discrimination capacity of the system and

reduces the misclassification rate. By focusing the learning on data points with high

misclassification risk, potential future misclassification errors can be avoided. This

idea is translated by giving a relatively high weight for the corresponding data points

in the antecedent adaptation. We present below a simple case study to illustrate

the difference between the two methods.

In Table 3.4.2, let ~xt1, ~xt3, ~xt3, ~xt4 four data points from the same class ĉ, yĉ the

output score for this class, ync(i) i=1...5 the scores of the other classe, w1 the weight

associated to the point in Evolve+ based on global error (Equation 3.41), and w2

its weight in Evolve++ based on the confusion degree (Equation 3.42).

86

Evolve(+)(+) Algorithms A. Almaksour

yĉ ync1 ync2 ync3 ync4 ync5 w1 w2

~xt1 0.5 0.1 0.1 0.1 0.1 0.1 0.5 0.3

~xt2 0.5 0.5 0 0 0 0 0.5 0.5

~xt3 0.3 0.3 0.1 0.1 0.1 0.1 0.7 0.5

~xt4 0.3 0.7 0 0 0 0 0.7 0.7

Table 3.1: A case study to illustrate the difference in weighting strategies between

Evolve+ and Evolve++

Although ~xt1 and ~xt2 have the same true class score (0.5), we note clearly that

there is more risk of misclassification for ~xt2 than ~xt1. The global error strategy of

Evolve+ gives these two samples the same weight in the antecedent adaptation, while

the confusion-driven strategy in Evolve++ gives more importance for the learning

~xt2; i.e. ~xt2 will have more impact on the adaptation than ~xt1. The same conclusion

can be made for ~xt3 and ~xt4 that are not correctly classified by the system.

We present in the next chapter an experimental demonstration of the superiority

of Evolve++ compare to Evolve+, in evolving classification problems.

3.5 Open issues

We discuss in this section two important topics related to incremental learning.

The first one concerns incremental unlearning (or forgetting) strategies that can be

sometimes used in the evolving approaches depending on the applicative context.

The second important topic is related to the potential effect of data ordering on the

performance of the incremental algorithms. A brief analysis of the sensitivity of our

algorithm to this effect is presented. However, it is worth mentioning that these two

aspects represent interesting future tracks that require more in-depth investigation.

3.5.1 Forgetting strategy

One of the interesting issues in evolving approaches is their capacity, if any, of

forgetting and unlearning old data. In many application areas, significant drifts

in the characteristics of the physical system may occur, and an efficient forgetting

strategy must be used in the evolving system to allow faster adjustment in such

87

Evolve(+)(+) Algorithms A. Almaksour

Stationary averaging

 α = 1 / t

Non-stationary averaging

 α = constant

Figure 3.5: The difference between stationary and non-stationary averaging.

cases. This kind of problems, where new data is more significant than old one, is

sometimes referred to as “non-stationary”.

In the context of evolving handwriting recognition systems, the problem is sup-

posed to be “stationary”. Although new classes can be added, but there is generally

no significant drifts in the nature of the learned classes. Given that the recognition

system is designed to be used by the same user, there is no reason for radical and

brutal modification in the learned gestures that may make old instances invalids and

must be forgotten. Generally, the knowledge extracted from new samples from an

existing class is accumulated to the existing knowledge in an incremental stationary

manner.

As mentioned in Section 3.3.2, the antecedent adaptation formulas of Evolve

algorithm can be modified to cope with non-stationary problems by replacing the

variable term 1
t

by a constant value α ∈ [0, 1], as in Equations 3.44 and 3.45.

When a constat value α is used in the adaptation formulas, the newer samples will

have a higher weight that the old ones, whereas all samples have the same weight

independent on the time of occurrence when the term 1
t

is used as in Equations 3.13

and 3.14, so that later samples are considered as important as first ones (Figure 3.5

illustrates this difference).

~µt = (1 − α) ~µt−1 + α ~xt (3.44)

At = (1 − α) At−1 + α (~xt − ~µt)(~xt − ~µt)
T (3.45)

An exponential forgetting factor can be added to the cost function of the least

88

Evolve(+)(+) Algorithms A. Almaksour

squares method (Equation 3.17) so that it can be rewritten as follows:

E =
t∑

i=1

λt−i ‖Ψi Π − Yi‖2 (3.46)

where λ ∈ [0, 1].

Based on this cost function, the forgetting factor appears in the calculation of

the matrix Φ−1
t in the formulas of recursive least squares (Equation 3.26), as follows:

Φ−1
t =

1

λ
[Φ−1

t−1 −
Φ−1

t−1 Ψt ΨT
t Φ−1

t−1

λ+ ΨT
t Φ−1

t−1 Ψt

] (3.47)

Small values of λ lead to small contribution of old samples. This makes the

method more sensitive to recent samples. The λ = 1 case is referred to as the

growing window RLS algorithm, so that all the samples have the same weight in the

optimization process.

Although our problem is considered as quasi-stationary as mentioned above,

the forgetting factor can be used in the consequent learning by RLS method in

order to focus on recent samples when significant antecedent modifications occur.

It might be an interesting perspective to overcome the instability problems in the

consequent learning, and it can be compared to the solution proposed in Evolve+ and

Evolve++. However, a dynamic value of λ must be used in an intelligent manner;

our preliminary experiments have not shown very good results using simple constant

value of λ.

3.5.2 Ordering effect

It is known that most incremental learning approaches are order dependent. The

performance of the system may demand on the order of data presentation, and dif-

ferent ordered sequences of these data lead to different learning results [10]. An

order-independent incremental learning system must not be sensitive to this phe-

nomenon. If it is incrementally learned using n data point, it must give the same

results at the end of the learning process for the n! possible orders (Figure 3.6).

The consequent learning by RLS method is by definition order-independent,

because it converges to the optimal solution after each data point. The statistical

antecedent adaptation in Evolve is order-independent as well. However, it is obvious

that these two calculations become order-dependent when a forgetting strategy is

adopted.

89

Evolve(+)(+) Algorithms A. Almaksour

Figure 3.6: Order-independent incremental learning system [10]

The density-based incremental clustering method can be affected by the data

ordering. The number of clusters ,i.e. the number of rules in our system, may vary

according to the data ordering. Overcoming this drawback and thus making the

whole system order-independent is one of the perspectives of this work.

3.6 Conclusion

In the context of dynamic classification problems, we have presented in this chapter

an evolving classification system based on a Takagi-Sugeno fuzzy inference system.

Contrary to other approaches, we define the antecedent structure using multidi-

mensional membership functions, which leads to more precise data covering. We

have proposed a learning algorithm, called Evolve, to incrementally train the sys-

tem. It comprises a density-based incremental clustering technique, a prototype

adaptation (shifting and reshaping) formulas and a consequent optimization using

recursive least squares method. The stability issue in consequent learning had been

addressed, and a partial memory-based solution had been proposed in Evolve to

cope with this problem.

Furthermore, we have proposed a new learning paradigm that deals with the

stability problem by integrating an output error feedback in the antecedent adap-

tation formulas. The role of this feedback signal is to avoid unnecessary antecedent

modification and thus to reduce consequent perturbations. Therefore, the main

advantages of the new paradigm consists in:

• moving the prototypes faster toward the data points that are not yet suffi-

ciently learned by the system. The covariance matrix is also updated with

more impact for these points than the others.

90

Evolve(+)(+) Algorithms A. Almaksour

• avoiding the useless antecedent modification according to the points with low

output error, which enhances the stability of consequent learning and improves

the overall system precision.

Two learning algorithms that implement this new paradigm have been presented.

The first one, Evolve+, considers the global output error and can be used for ei-

ther classification or prediction problems and single-output or multi-outputs Takagi-

Sugeno models. The second algorithm, Evolve++, only takes into consideration the

risk of misclassification of the input data point, regardless the absolute committed

error. On the one hand, the capacity of misclassification anticipation of Evolve++

helps at accelerating the learning, and, on the other hand, it offers more significant

reduction of less important antecedent modifications and thus more stable conse-

quent learning. Obviously, Evolve++ can only be valuable in classification problems

with more than two classes.

In the next chapter, we present an experimental validation of the performance

of the different incremental learning algorithm proposed in this chapter. A compar-

ison with a well-known evolving approach will be presented, and several benchmark

datasets will be considered in the tests.

91

Evolve(+)(+) Algorithms A. Almaksour

92

Chapter 4

Experimental Validation

93

Experimental Validation A. Almaksour

4.1 Introduction

We have presented in the precedent chapter an evolving classification approach based

on a Takagi-Sugeno fuzzy inference system. We have proposed a new antecedent

structure in order to improve the global system accuracy. An appropriate adaptation

technique is used to incrementally learning the new antecedent structure, along

with a well-known incremental clustering method. A complete incremental learning

algorithm, called “Evolve”, has been explained. In Evolve algorithm, the antecedent

learning is carried out in an incremental batch mode in order to improve the stability

of the consequent learning, which is performed using recursive least squares method.

Moreover, we have proposed a new learning paradigm that differs from the tradi-

tional one by the synergy between antecedent and consequent learning. The output

error is used to control the antecedent learning process in order to get more stable

and higher performance. Evolve algorithm has been extended to “Evolve+” accord-

ing to the new learning paradigm. Additionally, the proposed learning paradigm is

implemented in a second manner (based on confusion-driven antecedent learning)

especially dedicated to classification problems. This third version of the learning

algorithm has been called “Evolve++”.

In this chapter, we present an experimental study in order to validate our propo-

sitions and to evaluate the performance of the different algorithms. The results

of the proposed algorithms are compared to the results of a well-know evolving

classification system called “eTS” (Section 2.5.3.5), and to two batch classification

methods (K-NN and MLP). In this experimental evaluation, we aimed at covering

the different points that has been mentioned in the precedent chapter, for example:

• the difference between global and local consequent learning,

• the difference between zero-order and first-order consequences,

• the impact of the enhanced antecedent structure, by comparing our system

with Evolve algorithm to the well-known eTS system (a similar evolving TS

model with a simpler antecedent structure),

• the impact of using the memory buffer in Evolve algorithm,

• the efficiency of the new learning paradigm, by comparing Evolve and Evolve+

algorithms,

94

Experimental Validation A. Almaksour

• and the gain obtained thanks to Evolve++, a confusion-based implementation

of the new learning paradigm, compared to Evolve+, a global error-based

implementation.

The experiments are essentially carried out on a dataset of handwritten gestures,

which represents the application area of our work. However, other well-known bench-

mark datasets are also used in some experiments in order to facilitate future com-

parisons.

The chapter is organized as follows: the datasets used in our experiments are pre-

sented in Section 4.2, then, we explain our experimental protocol in Section 4.3. The

experimental results are presented in details in Section 4.4. Finally, we present in

Section 4.5 the mechanism of integrating our evolving classifier in real applications.

Three examples of these applications are briefly presented.

4.2 Classification datasets

It is useful to remind that the motivation of this research work is to find an evolving

handwriting classifier that can be integrated in any pen-based application as we will

see in Section 4.5. Therefore, we use in our tests a handwritten gesture dataset to

prove the efficiency of the system before applying it in real applications.

Moreover, we test the model on several well-known classification benchmarks

to validate the obtained results on larger scale and to allow other incremental ap-

proaches to compare with our model, in a dynamic classification context.

4.2.1 SIGN dataset

We led the experiments on “SIGN” dataset, which is a dataset of on-line handwritten

gestures (Figure 4.1). It is composed of 25 different gestures drawn by 11 different

writers on Tablet PCs. Each writer has drawn 100 samples of each gesture, i.e. 2,500

gestures in each writer-specific dataset. The data collection sessions were performed

at Synchromedia laboratory, and Imadoc team. For any comparison purpose, the

dataset (and additional information on the data collection protocol) can be freely

downloaded [57].

In our experiments, each gesture is described by a set of 10 features. The pre-

sented results are the average of results of 11 different tests for the 11 writers.

95

Experimental Validation A. Almaksour

Figure 4.1: Handwritten gestures in the dataset SIGN

4.2.2 UCI datasets

Besides the SIGN dataset, we evaluate our algorithms on some benchmark problems

form the UCI machine learning repository [55]. We followed two criteria in selecting

the datasets :

• They should represent multi-class problems. Our learning algorithms (spe-

cially Evolve++) are optimized for classification problem with more than two

classes. Thus, the two-class dataset are not preferred in our tests.

• The number of samples per class in each dataset should be large enough for

two reasons. The first is to have a large learning dataset that allows continuing

the incremental learning as far as possible and to examine the behavior of the

algorithms in the long term. The second reason is to have a large test dataset

to be able to correctly evaluate the classifier during the incremental learning

process as we will see later. The large size of the test dataset helps as well to

neutralize as much as possible the order effect on the results.

Respecting the last two criteria, we have chosen from UCI machine learning

repository the next datasets to use them in our experiments:

• CoverType: The aim of this problem is to predict forest cover type from 12

cartographical variables. Seven classes of forest cover types are considered in

this dataset. We use in our experiment a subset of 2100 instances.

96

Experimental Validation A. Almaksour

Dataset name Nb. of classes Nb. of features Nb. of instances

Sign 10 25 2500

CoverType 7 54 2100

PenDigits 10 16 10992

Segment 7 19 2310

Letters 26 16 20000

Table 4.1: Characteristics of learning datasets

• PenDigits: The objective is to classify the ten digits represented by their

handwriting information from pressure sensitive tablet PC. Each digits is rep-

resented by 16 features. The dataset contains about 11000 instances.

• Segment: Each instance in the dataset represents a 3x3 region from 7 outdoor

images. The aim is to find the image from which the region was taken. Each

region is characterized by 19 numerical attributes. There are 2310 instances

in the dataset.

• Letters: The objective is to identify each of a large number of black-and-

white rectangular pixel displays as one of the 26 capital letters in the English

alphabet. Each letter is represented by 16 primitive numerical attributes. The

dataset contains 20000 instances.

The characteristics of the five datasets are summarized in Table 4.1. The five

dataset used in our experiments varies by both the number of features (number

of data space dimensions), and the number of classes, which allows testing our

algorithms on different multi-class problems.

4.3 Experimental protocol

Each learning dataset is split into a learning set and test set. The learning set rep-

resents in our experiments 75% of the entire dataset, and is used in the incremental

learning process. The test set is used to estimate the performance during and at

the end of the learning process. The learning/test protocol that we used in our

experiments is shown in Figure 4.2(a). The instances of the learning dataset are

sequentially introduced to the system in sample-wise mode. However, we used the

97

Experimental Validation A. Almaksour

(a)

(b)

Figure 4.2: Learning/test protocols for incremental learning problems

term “learning subset” to identify the group of instances learned by the system be-

tween each two consecutive tests. Each learning subset Si contains the same number

of instances per class.

An alternative learning/test protocol is shown in Figure 4.2(b). It can be noted

from Algorithm 1 in the precedent chapter that a forward recognition step is per-

formed for each learning instance. Although this step is required by the incremental

learning process to get the output error, it can be further used to evaluate the clas-

sifier performance. There is no need in this second protocol for an independent test

dataset Stest as for the first one, which makes it suitable when only a small amount

of data samples is available. It is useful to mention that the obtained recognition

rate does not correspond to the traditional learning error rate mentioned sometimes

in classic learning problems, which represents the error rate for the learning dataset.

This is because the recognition of a new incoming sample is considered before in-

cluding it in the learning process, as mentioned in Algorithm 1.

When the misclassification rate obtained on Si+1 is used to evaluate the perfor-

mance of the classifier after the learning of Si, the evolution of the classifier due to

the learning of Si+1 is neglected. This neglecting may produce biased results when

98

Experimental Validation A. Almaksour

the size of Si+1 is considerable. The best solution is to let the size of each subset

equals one, so that the performance of the classifier after the learning of sample xt

is measured by the capacity of recognizing xt+1. Thus, the experiments must be

sufficiently repeated in order to estimate the misclassification rate, similar to the

principal of Leave-one-out evaluation protocol.

In order to get the results unbiased by the data order effect, we repeat the

experiment for each dataset 40 times with different random data orders and the

mean results and standard deviations are presented in the figures and the tables.

We show in all the results the recognition rate achieved on each dataset using

two traditional batch classification methods. The first one is based on a multi-

layer perceptron with one hidden layer, and the second is a K-nearest neighbor

with optimized value of k. The well-know WEKA workbench [58] had been used to

perform the tests related to these two traditional classification techniques.

The main difficulty that we faced in our experiments is the comparison with

other evolving approaches. Most of them have been tested on problems related

to dynamic time-series prediction and modeling in different fields like control, di-

agnostic, etc. A small number of existing evolving approaches have been used in

multi-class classification problems. The second difficulty is the absence of incremen-

tal learning competition or standard evaluation scenarios. The benchmark datasets

must be associated with specific incremental learning protocols in order to allow

comparison between approaches. Some works about evolving approaches that have

been tested on benchmark data present only the final obtained recognition rate with

no information about intermediate results [9] [59]. For these reasons, implementing

other evolving approaches becomes mandatory in order to be able to compare with

their results.

In our experimental study, we have chosen to implement a well-known evolving

system called “eTS” [36], and to use it as a reference model. As mentioned in Sec-

tion 2.5.3.5, eTS model is based on an evolving first-order Takagi-Sugeno model.

The antecedent structure in eTS is based on axes-parallel hyper-elliptical proto-

types. The spreads of the membership functions are recursively calculated using the

recursive variance estimation formulas.

Different publications have proved the superiority of eTS over other evolving

systems like DENFIS and FLEXFIS approaches [9] [59].

The main difference between eTS and Evolve is the antecedent structure. The

99

Experimental Validation A. Almaksour

univariate membership functions used in eTS are replaced by multivariate ones in

Evolve, and a variance/covariance matrix is recursively estimated for each prototype.

4.4 Experimental results

4.4.1 Global evaluation of the different learning algorithms

We have used the first experimental protocol explained in the precedent Section

(Figure 4.2 (a)). The size of the learning subsets for each experiment is given in

Table 4.2.

Dataset name |Si| Nb. of samples per class in Si

∑
i |Si| |Stest|

Sign 50 2 1500 1000

CoverType 56 8 1470 630

PenDigits 360 36 6700 4300

Segment 77 11 1785 525

Table 4.2: The size of the learning subsets and the test dataset in each experiment

We present first in Figure 4.3 the results of a global experiment carried out on

the handwritten gesture dataset, Sign, in order to give an exhaustive comparison

between the different algorithms presented in the precedent chapter. Five evolving

approaches are compared in this experiment:

• eTS: a state-of-the-art evolving system used as reference model in our results

(described in Section 2.5.3.5).

• Evolve-noBuffer: our evolving TS system with enhanced antecedent structure,

but no memory buffer is used in the incremental learning algorithm and the

antecedent adaptation is performed after each new incoming sample. (see

Section 3.3.4)

• Evolve: our evolving TS model with Evolve algorithm. The use of delayed

antecedent adaptation based on a memory buffer makes the difference between

Evolve and Evolve-noBuffer. Applying the antecedent adaptation in partial

temporal batches is supposed to result in a more stable consequent learning

and thus a higher recognition performance. The size of the memory buffer is

empirically set to 30 samples in this experiment. (see Section 3.3.4)

100

Experimental Validation A. Almaksour

 3

 4

 5

 6

 7

 8

 9

 10 20 30 40 50 60

M
is

cl
as

si
fic

at
io

n
ra

te
 (

%
)

Number of learning samples per class

eTS
Evolve-noBuffer

Evolve
Evolve+

Evolve++

Figure 4.3: Evolution of classification performance during the incremental learning

process (SIGN)

• Evolve+: a first implementation of the new global learning paradigm that we

have proposed in which the antecedent adaptation is guided (and limited) by

the output error feedback. This error is estimated in Evolve+ as the global

absolute error (see Section 3.4.1).

• Evolve++: a second implementation of the new learning paradigm. It is based

on a confusion-driven antecedent adaptation and supposed to be more suit-

able for the special case of multi-class classification problems than Evolve+.

As explained in Section 3.4.2, Evolve++ aims at reducing the number of mis-

classification errors instead of minimizing the global error as in Evolve+.

We note globally from Figure 4.3 that our four models outperform (by different

degrees) the eTS model thanks in the first place to the antecedent structure with

multivariate membership functions.

However, the continuous perturbation on consequent learning produced by the

sample-wise antecedent adaptation results in less efficient consequent and thus less

overall recognition rate, in spite of the enhanced antecedent structure. This nega-

tive effect can be noted from Figure 4.3 by comparing Evolve-noBuffer results with

101

Experimental Validation A. Almaksour

Evolve results. We note that the technique proposed in Evolve to deal with the

instability in consequent learning offers a considerable amelioration in the system

performance.

On the other hand, we can notice from the same figure that the algorithms of our

proposed global learning paradigm (Evolve+ and Evolve++) outperform those of the

traditional learning paradigm with independent antecedent learning (eTS, Evolve).

Furthermore, we note that the confusion-driven algorithm, Evolve++, gives better

results (lower misclassification rates) compared to the global error-based algorithm,

Evolve+.

In the rest of this section, we will omit in the presented results the methods

Evolve-noBuffer and Evolve+. The focus will be placed on three models: eTS (as

reference model), Evolve, and Evolve++.

As mentioned before, our models have been tested on several benchmark datasets

that are widely used in the field of machine learning. We present in Figures 4.4,

4.5, 4.6 and 4.7, the results of the three models mentioned above for three different

benchmark datasets, in addition to Sign dataset (Figure 4.4 is a repetition of Figure

4.3 after omitting two curves). In each one of these figures, the evolution of the

generalization misclassification rate of the three models is presented, from the very

beginning of the incremental learning process (few samples per class), until a rela-

tively advanced learning state (limited by the size of the used datasets). We show

in the same figures the relative reduction of misclassification rate that is achieved

using Evolve and Evolve++ compared to the reference model, eTS.

We can generally note from these results that both Evolve and Evolve++ out-

perform the eTS reference model. We note also the stability of the performance

of these two models. Considering the average for the four problems, the rate of

misclassification errors generally decreases by almost 35% by Evolve++ compared

to results of eTS.

From the relative error reduction curves, we see that the difference between eTS

and our model at the beginning of the incremental learning process is not as large

as it becomes later in the learning process. The reason of this phenomenon is that

the more sophisticated antecedent structure requires more time (i.e. more learning

samples) in order to get relatively stable and thus causing less perturbation to the

consequent learning. Therefore, as it can be told from the figures, the relative error

reduction increases when the number of learned instances increases.

102

Experimental Validation A. Almaksour

 3

 4

 5

 6

 7

 8

 9

 10

 10 20 30 40 50 60

M
is

cl
as

si
fic

at
io

n
ra

te
 (

%
)

Number of learning samples per class

eTS
Evolve

Evolve++

(a)

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60

E
rr

or
 r

ed
uc

tio
n

(%
)

Number of learning samples per class

Evolve vs. eTS
Evolve++ vs. eTS

(b)

Figure 4.4: (a) Evolution of performance during the incremental learning process

and (b) Evolution of relative reduction in misclassification rates compared to the

reference model (Sign dataset)

103

Experimental Validation A. Almaksour

 14

 16

 18

 20

 22

 24

 26

 28

 40 60 80 100 120 140 160 180 200

M
is

cl
as

si
fic

at
io

n
ra

te
 (

%
)

Number of learning samples per class

eTS
Evolve

Evolve++

(a)

 0

 10

 20

 30

 40

 50

 50 100 150 200

E
rr

or
 r

ed
uc

tio
n

(%
)

Number of learning samples per class

Evolve vs. eTS
Evolve++ vs. eTS

(b)

Figure 4.5: (a) Evolution of performance during the incremental learning process

and (b) Evolution of relative reduction in misclassification rates compared to the

reference model (CoverType dataset)

104

Experimental Validation A. Almaksour

 1

 2

 3

 4

 5

 6

 7

 100 200 300 400 500 600

M
is

cl
as

si
fic

at
io

n
ra

te
 (

%
)

Number of learning samples per class

eTS
Evolve

Evolve++

(a)

 0

 10

 20

 30

 40

 50

 100 200 300 400 500 600

E
rr

or
 r

ed
uc

tio
n

(%
)

Number of learning samples per class

Evolve vs. eTS
Evolve++ vs. eTS

(b)

Figure 4.6: (a) Evolution of performance during the incremental learning process

and (b) Evolution of relative reduction in misclassification rates compared to the

reference model (PenDigits dataset)

105

Experimental Validation A. Almaksour

 4

 6

 8

 10

 12

 14

 16

 50 100 150 200 250

M
is

cl
as

si
fic

at
io

n
ra

te
 (

%
)

Number of learning samples per class

eTS
Evolve

Evolve++

(a)

 0

 10

 20

 30

 40

 50

 50 100 150 200 250

E
rr

or
 r

ed
uc

tio
n

(%
)

Number of learning samples per class

Evolve vs. eTS
Evolve++ vs. eTS

(b)

Figure 4.7: (a) Evolution of performance during the incremental learning process

and (b) Evolution of relative reduction in misclassification rates compared to the

reference model (Segment dataset)

106

Experimental Validation A. Almaksour

It can be noted that Evolve++ does obviously better than Evolve for the four

problems thanks to the confusion-driven antecedent adaptation. As explained in

the precedent chapter, avoiding useless modification on the antecedent structure

results in more stability in the consequent learning, and thus a better overall preci-

sion. This difference makes Evolve++ goes generally faster and higher in the error

reduction curves compared to Evolve. On the other hand, the fact of focusing on

confusion classes in the antecedent adaptation of Evolve++ reduces considerably

the misclassification rate for the four classification problems.

4.4.2 Results for different consequent structures and learn-

ings strategies

Several variants of consequent functions and their learning algorithm can be used in

our evolving models as mentioned in the precedent chapter. We have measured the

impact of these variants on the classification performance for the different datasets.

Table 4.3 shows a comparison between zero-order and first-order model and be-

tween local consequent optimization and global consequent optimization (see Sec-

tion 3.3.3). For simplification, we only show the results related to Evolve model.

A brief summary of the characteristics (number of classes, features and instances,

respectively) of each dataset is given in the first line of the table.

We can note that first-order models are more performant than zero-order ones,

but with the price of having more parameters. On the other hand, we note that

both local and global consequents optimization give almost the same results, with the

advantage of having less parameter using the local optimization. Thus, we choose in

the next experiment (Table 4.4) a local consequent optimization algorithm. (Local

consequent learning had been also used in the results presented in Section 4.4.1)

We sum up in Table 4.4 the misclassification rates achieved by eTS, Evolve and

Evolve++ at the end of the incremental learning process in our experiments for the

two types of consequences.

We present also the results of the two traditional batch classifiers (MLP and

K-NN) on the same datasets. To be comparable with the incremental protocol, 75%

of each dataset is used to train these classifiers and the rest is used in the evaluation.

As aforesaid, the algorithms provided by the open source WEKA workbench have

been used for the batch tests. For the K-NN classifier, the tests have been repeated

107

Experimental Validation A. Almaksour

Table 4.3: Misclassification rates for different consequent types (Evolve algorithm)

for different values of k and the best results are selected. One hidden layer had been

used in the MLP neural network. The number of neurons of the hidden layer had

been optimized in each experiment.

We note from table 4.4 that the superiority of our two algorithms, and especially

Evolve++, is even more considerable for zero-order models. The enhanced an-

tecedent structure and then the confusion-driven antecedent learning allows Takagi-

Sugeno models to achieve high precision even with simple consequent structure.

For example, for Letters dataset, we notice that the misclassification rate achieved

by zero-order version of eTS , 36.64%, is reduced to 10.05% using Evlove++ model

with zero-order consequences.

Considering the results of MLP and K-NN classifiers, we note that the perfor-

mance obtained by our first-order evolving TS models is completely comparable to

that of some well-known batch classifiers.

The same results summarized in Table 4.4 are illustrated as charts in Figures

4.8, 4.9, 4.10, 4.11 and 4.12.

108

Experimental Validation A. Almaksour

Table 4.4: Misclassification rates for batch and incremental classification systems

Figure 4.8: Misclassification rates of eTS, Evolve and Evolve++ models at the end

of the incremental learning process (PenDigits dataset)

109

Experimental Validation A. Almaksour

Figure 4.9: Misclassification rates of eTS, Evolve and Evolve++ models at the end

of the incremental learning process (CoverType dataset)

Figure 4.10: Misclassification rates of eTS, Evolve and Evolve++ models at the end

of the incremental learning process (Segment dataset)

Figure 4.11: Misclassification rates of eTS, Evolve and Evolve++ models at the end

of the incremental learning process (Letters dataset)

110

Experimental Validation A. Almaksour

Figure 4.12: Misclassification rates of eTS, Evolve and Evolve++ models at the end

of the incremental learning process (Sign dataset)

4.4.3 Correction efforts required by the different algorithms

All the above-mentioned recognition rates have been calculated using a separated

test dataset to measure the evolution of performance of the classification systems

during the incremental learning process, and more importantly, the difference be-

tween these generalization rates after a significant period of learning (summarized

in Table 4.4). Obviously, the first learn/test protocol (Figure 4.2 (a)) presented in

Section 4.3 has been used in the presented results.

While the incremental learning process is supposed to be supervised, a validation

mechanism must be coupled to the system in order to correct the potential misclas-

sification errors during the learning. This validation mechanism can be implemented

in different manners depending on the application. In some applicative contexts, the

correction action is manually performed by the user when observing a misclassifica-

tion error. Therefore, it is useful to measure the number of misclassification errors

committed on the incoming learning instances, and must be corrected by the vali-

dation mechanisms. This information shows the number of correction interventions

required by each evolving classifier in order to achieve the misclassification rates

presented in Table 4.4. The second learn/test protocol (Figure 4.2 (b)) presented

in Section 4.3 is designed to provide this statistic. As mentioned in Section 4.3, the

second protocol is essentially adopted when dealing with a small dataset that is en-

tirely used for the learning process, so no test dataset is available. In this case, this

protocol can give a rough idea about the generalization performance of the classifier.

In our experiments, we have used the first protocol in order to get a precise

111

Experimental Validation A. Almaksour

evaluation using a relatively large test dataset. However, the number of errors

committed on the learning instances can be estimated even when using the first

protocol, which makes it more general than the second one.

Using the first protocol (Figure 4.2(a)), and by applying the misclassification rate

estimated on the test dataset Stest at the moment testi on the next learning subset

Si+1, we can estimated the number of recognition errors on this learning subset:

NbErr(Si+1) = Rate(testi) ∗ |Si+1| (4.1)

It is important to mention that we neglect here the evolution of the classifier

during the learning of Si+1. The estimated number of errors represents then the

upper bound of errors, since the learning of Si+1 improves generally the performance

as it can be noted from testi+1.

Generally speaking, the accumulated number of learning errors between the

learning samples xt1 and xt2 equals the area under the evaluation curve between

testt1 and testt2 . The upper bound of this area can be estimated as follows:

AccNbErr(t1, t2) =

t2−1∑

i=t1

Rate(testi) ∗ (Ni+1 −Ni) (4.2)

where Ni represents the accumulated number of learning samples at the moment i.

Using this equation, we show in Figures 4.13, 4.14, 4.15 and 4.16 the accumulated

number of errors and thus the correction interactions during the incremental learning

process for the four classification problems.

112

Experimental Validation A. Almaksour

20

40

60

80

100

120

200 400 600 800 1000 1200 1400

A
c
c
u

m
u

la
te

d
 n

u
m

b
e

r
o
f

e
rr

o
rs

Number of learning samples

eTS
Evolve++

Figure 4.13: Accumulated number of misclassification errors committed on the learn-

ing samples (SIGN)

50

100

150

200

250

300

350

200 400 600 800 1000 1200 1400

A
c
c
u

m
u

la
te

d
 n

u
m

b
e

r
o
f

e
rr

o
rs

Number of learning samples

eTS
Evolve++

Figure 4.14: Accumulated number of misclassification errors committed on the learn-

ing samples (CoverType)

113

Experimental Validation A. Almaksour

30

40

50

60

70

80

90

100

110

120

130

1000 2000 3000 4000 5000 6000

A
c
c
u

m
u

la
te

d
 n

u
m

b
e

r
o
f

e
rr

o
rs

Number of learning samples

eTS
Evolve++

Figure 4.15: Accumulated number of misclassification errors committed on the learn-

ing samples (PenDigits)

20

40

60

80

100

120

140

160

180

200 400 600 800 1000 1200 1400 1600

A
c
c
u
m

u
la

te
d
 n

u
m

b
e
r

o
f
e
rr

o
rs

Number of learning samples

eTS
Evolve++

Figure 4.16: Accumulated number of misclassification errors committed on the learn-

ing samples (Segment)

114

Experimental Validation A. Almaksour

For example, the number of required corrections during the incremental learning

of Sign dataset is reduced from 122 using eTS to 88 using Evolve++, where the total

number of learning samples is 1500. Hence, in addition to the better performance

obtained at the end of the incremental learning process as shown in Table 4.4, the

correction efforts required by the user during the learning is reduced. We can notice

the same reduction for the other dataset.

The same results can be presented with different viewpoint if we show the perfor-

mance of the classifier according to the number of required correction (the number

of learning errors).

Figures 4.17, 4.18, 4.19 and 4.20 demonstrate the evolution of the misclassifi-

cation rate - always obtained on an external test dataset Stest - according to the

number of corrections. We note, for example, that for Sign dataset, a misclassifi-

cation rate of 7% requires about 32 corrections when using Evolve++, whereas 70

corrections are needed to achieve this rate by eTS.

3

4

5

6

7

8

9

10

30 40 50 60 70 80

M
is

c
la

s
s
fi
c
a
ti
o
n
 r

a
te

 (
%

)

Accumulated number of corrections

eTS
Evolve++

Figure 4.17: Evolution of misclassification rate according to accumulated number of

corrections (SIGN)

115

Experimental Validation A. Almaksour

15

20

25

30

50 100 150 200 250 300

M
is

c
la

s
s
fi
c
a

ti
o

n
 r

a
te

 (
%

)

Accumulated number of corrections

eTS
Evolve++

Figure 4.18: Evolution of misclassification rate according to accumulated number of

corrections (CoverType)

1

2

3

4

5

6

7

55 60 65 70 75 80

M
is

c
la

s
s
fi
c
a

ti
o

n
 r

a
te

 (
%

)

Accumulated number of corrections

eTS
Evolve++

Figure 4.19: Evolution of misclassification rate according to accumulated number of

corrections (PenDigits)

116

Experimental Validation A. Almaksour

4

6

8

10

12

14

16

20 40 60 80 100 120

M
is

c
la

s
s
fi
c
a

ti
o

n
 r

a
te

 (
%

)

Accumulated number of corrections

eTS
Evolve++

Figure 4.20: Evolution of misclassification rate according to accumulated number of

corrections (Segment)

4.4.4 Performance evaluation for unsynchronized incoming

classes

The experiments presented so far represents a simple and straightforward incremen-

tal learning scenario, in which all the classes are presented to the classifier together

from the beginning of the incremental learning process. As explained before, an

equitable number of samples from each class are progressively introduced to the

system. The classification efficiency is repeatedly measured to evaluate the learning

progress of the classifier. Evidently, a quite continuous decreasing of the misclas-

sification error rate is expected during the incremental learning process using this

scenario. The difference in the efficiency of several approached is related to the

rapidity of decreasing in the misclassification rate curves and the final obtained rate

(it is important to remind that the learning process is lifelong and the world “final”

means here the end of the available learning dataset). We have chosen this simple

scenario in the precedent experiments in order to facilitate any comparison with our

algorithms by future concurrent approaches.

In addition to the continuous refinement of its knowledge base, one of the main

features of an evolving classification system is the capacity of learning new un-

117

Experimental Validation A. Almaksour

seen classes without suffering from the “catastrophic forgetting” phenomenon. This

feature might be mandatory in several real application areas. If we consider, for

example, the case of using a classification system to recognize a customizable set

of handwritten shortcuts, although the incremental learning process may begin by

asking the user to choose his own set of gestures, it is important to enable him to

add new shortcuts at any moment.

Therefore, we present an additional experiment that imitates this real context so

that the learning starts with a subset of classes, and the other classes are progres-

sively introduced. We aim at studying the behavior of the different evolving systems

and their ability to learn new class of data without fully destroying the knowledge

learned from old data.

The experiment is carried out on the dataset Sign. We divide the classes in

Sign into three subsets: A, B and C with 10, 7 and 8 classes, respectively. The

incremental learning process starts by introducing learning samples from the classes

of A. The evaluation is done during this phase using a subset from that test dataset;

this subset only contains samples from the classes of A.

Then, we add in two times the classes of B followed by the classes of C. The

evaluation dataset is extended at each time by adding test samples from the new

learned classes.

Figure 4.21 shows the results of the experiment (It is useful to remind that these

results represent the average of the results of 11 different writers, as mentioned in

Section 4.2.1).

We note that our two algorithms (Evolve and Evolve++) resist better than eTS

when introducing new classes thanks to the enhanced antecedent structure. More-

over, we note that Evolve++ shows faster performance recovery after introducing

new classes, compared to Evolve algorithm. Concentrating the antecedent learning

on the confused samples in Evolve++ results in faster fall in the misclassification

curve, as it can be noted from Figure 4.21. When introducing new classes, the so-

phisticated forms of the new added prototypes will suffer considerable modifications

for a while. Although these modifications are important in order to get the best data

covering, they produce high instability in consequent learning as explained before.

Here, the advantage of Evolve++ is that these significant antecedent modifications

go slower for the new classes that are not confused by other classes and can be

considered as “easy-to-learn” classes.

118

Experimental Validation A. Almaksour

0

2

4

6

8

10

12

14

16

200 400 600 800 1000 1200 1400

M
is

c
la

s
s
if
ic

a
ti
o
n
 r

a
te

 (
%

)

Number of learning samples

eTS
Evolve

Evolve++

A A & B A & B & C

10

20

30

40

50

60

70

80

200 400 600 800 1000 1200 1400

E
rr

o
r

re
d
u
c
ti
o
n
 (

%
)

Number of learning samples

Evolve vs. eTS
Evolve++ vs. eTS

A A & B A & B & C

Figure 4.21: Performance stability and recovery when introducing new unseen classes

(SIGN)

119

Experimental Validation A. Almaksour

4.5 Real applications

It is important to mention that in some real applicative contexts where the human

is engaged in the learning/operation process like in evolving handwritten recogni-

tion systems, in addition to the continuous adaptation of the classification system,

some natural adaptation can be observed in the user behavior. For example, he

may slightly change his manner of sketching some handwritten gestures to avoid

misclassification errors committed so far. This phenomenon does not appear in our

experiments because the collection of Sign dataset had been performed in passive

mode, so that the writer does not have any feedback during the data collection ses-

sion. Therefore, we can expect that the number of misclassification errors goes down

in real contexts faster than the presented experimental results thanks to the natural

user adaptation. A high recognition rate can be reached in handwriting recognition

systems after a significant period of operation thanks to the continuous classifier

learning combined with the potential user adaptation.

An experimental study in real contexts is needed in order to evaluate, on the one

hand, the effect of continuous classifier learning on the user behavior, and, on the

other hand, the effect of natural user adaptation on the classifier performance. We

have achieved a first step in this direction by integrating our evolving classification

system in different real applications related to handwriting recognition.

The first application deals with the pen-based interactive design of architectural

plans. The application can interpret the handwritten sketches to walls, doors or

windows based on some grammatical inference techniques. In addition, different

handwritten gestures can be used to add some specific symbols to the plan, like

furniture (tables, douches, sinks, etc), or external objects as trees, pools, etc. Our

evolving handwritten gesture classifier is used in this application to recognize these

gestures. The classifier is completely customizable; it allows each user to choose his

group of gestures and assign each one to a specific symbol. He can, at any moment,

add to the system a new symbol and define the corresponding handwritten gesture.

The validation/correction mechanism is implemented in this application as fol-

lows: after the recognition of a given handwritten gesture and interpreting it to the

corresponding symbol which is displayed on the plan, the classifier will wait for ei-

ther confirmation or correction signal. The confirmation signal is automatically sent

if no “cancellation” action is performed by the user. An assumption of correct recog-

120

Experimental Validation A. Almaksour

nition of the precedent received gesture will be adopted by the classifier at the next

recognition request if no cancellation action has been observed. If the user rejects

the classifier answer and the recognized symbol, a user-friendly interface appears to

enable him to correct the error and give the true label. Even with the automatic

confirmation concept, some efforts are still needed from the user to correct the erro-

neous responses; however, the number of errors decreases rapidly using our evolving

system as we have seen in the results. The first user feedbacks had been very pos-

itive in term of the perceived classification performance and the facility of learning

new gesture from very few samples. A demonstration video of this application is

available at the following address: www.irisa.fr/imadoc/videos/evolve.html

Given that conducting user-centered experiments is a sensitive and sophisticated

task and requires special expertise, we have created a collaboration with the re-

search group CRPCC from LOUSTIC laboratory had taken place as a part of an

ANR project called “mobisketch” (mobisketch.irisa.fr). The CRPCC group is spe-

cialized in experimental psychology and ergonomics of conception of human-machine

interfaces. Thus, one of the perspectives of this work is an experimental study in

real context of our evolving classifier and the user behavior and acceptability in

collaboration with CRPCC research group.

We have integrated our evolving classifier in a second application that aims

at mapping technical paper documents, like architectural floor plans, to numerical

ones. To avoid the a posteriori verification phase and error accumulation during

the analysis, the application is based on an interactive method of analysis of offline

structured document where the decision process solicits the user if necessary. When

an offline handwritten image of symbols is rejected by our evolving classification

system, a user-intervention is raised to either give the true label of this symbol or to

declare it as new class of symbols. Many correction actions can be performs and new

symbols can be adding during the semi-automatic analysis process, which reduces

considerably the errors in the final converted numeric document. More details about

the role of our evolving classifier in this specific applicative context can be found in

[60].

A third collaboration project is in progress with the Synchromedia research group

(www.synchromedia.ca). One of the main research themes of Synchromedia is the

development of intelligent adaptive interfaces for multi-user distributed collaborative

applications. The goal of the cooperation is incorporating our evolving handwritten

121

Experimental Validation A. Almaksour

gesture classifier in an online handwriting collaborative annotation platform.

4.6 Conclusion

We have presented in this chapter an experimental validation of the efficiency of our

evolving Takagi-Sugeno system and the different learning algorithms. The experi-

ments had been carried out on a special dataset related to the applicative context

of this thesis; handwritten gesture recognition systems. Moreover, the proposed

systems had been also evaluated on several well-know benchmark datasets.

It has been proven by the experimental results that improving the antecedent

structure in a Takagi-Sugeno model can lead to better performance, especially if

the incremental learning algorithm addresses the problem of stability in consequent

learning.

We conclude from the results that the Evolve++ algorithm represents the most

efficient solution for classification problems. It offers a fast incremental learning (fast

fall of misclassification rate) and reduces considerably the number of classification

errors during the incremental learning process, so that less external correction efforts

are required.

Furthermore, we have also tested the behavior of our system when introducing

new unseen classes. We have noticed that our evolving system show more stability

and faster recovery compared to a well-known evolving Takagi-Sugeno system.

In spite of the very acceptable obtained performance, the main difficulty that

we face when using an evolving classifier in real applications is the lack of learning

samples at the beginning of the learning process and also when new classes are added.

Although our system, especially with Evolve++ algorithm, learns in a fast and

efficient way, it still requires a minimum number of learning samples before reaching

a high classification performance. This problem also appears when introducing

new classes, where a temporary but considerable rise in the misclassification rate is

generally observed, as we have seen in the presented results.

In the special case of handwriting recognition, which is the main applicative

motivation of this thesis, we have addressed the problem of lack of learning data

in a specific manner based on our expertise in this field. In order to increase, on

the one hand, the rapidity of learning at the beginning of the incremental learning

process, and, on the other hand, the recovery speed after introducing new classes,

122

Experimental Validation A. Almaksour

we generate artificial learning samples by applying some realistic and significant

deformations on the real sample. The synthetic samples are introduced to the clas-

sifier along with the real ones and accelerate the incremental learning process. The

used handwriting generation method is explained in the next chapter, with an ex-

perimental demonstration of the effect of integrating it in our evolving handwriting

classification system.

123

Experimental Validation A. Almaksour

124

Chapter 5

Synthetic Data Generation for

Evolving Handwriting Classifiers

125

Synthetic Data Generation A. Almaksour

5.1 Introduction

As we have seen in the precedent chapter, our evolving system can cope with dynamic

classification problems and start the learning of a new problem from scratch with

few samples per class. It continuously improves its performances using new incoming

learning samples indirectly provided by the user during the system operation (the

samples are labeled using a semi-automatic validation/correction mechanism of the

recognition responses).

Moreover, we have seen that it is possible to add new classes to the initial

set of classes at any moment during the lifelong learning process; this property

represents a very practical feature and leads to classification systems with high

degree of dynamicity and adaptation capacity to the final user needs.

Although the dynamic nature of evolving classifiers offers many important ad-

vantages, the learning of these systems suffers from the lack of learning data. The

learning process is done directly by the final user in online and interactive man-

ner, so the quantity of learning samples is limited because it is impractical to ask

the user to enter a large number of samples before obtaining a functional classifier.

Therefore, the main challenge in the conception of incremental learning algorithms

of evolving classification systems consists in reaching high recognition performance

as fast as possible; i.e. after minimum number of learning samples.

Besides the beginning of the incremental learning from scratch, the problem of

lack of data samples appears again during the learning process when new classes are

added to the classifier. The evolving system is supposed to be able to learn these new

classes without forgetting the old ones. However, it is difficult to completely avoid

perturbations on the global performance of the classifier when adding new classes

and the efforts must be focused on reducing as much as possible these perturbations.

The essential solution of the problem of incremental learning with few data

consists in proposing efficient learning algorithms. For example, our algorithm

Evolve++ deals with this problem by focusing on samples with high misclassifi-

cation risk in order to reach high classification performance as fast as possible. We

have seen in the experimental results that this algorithm does better than other

approaches at the beginning of the learning process, when adding new classes, and

after considerable period of learning.

In addition to the efforts of improving the classification systems and the learning

126

Synthetic Data Generation A. Almaksour

algorithms, the incremental learning process can be further accelerated and enhanced

in a different manner by generating artificial learning data based on some knowledge

related to the application domain.

For handwritten gesture recognition problems, this idea can be implemented by

generating synthetic gestures from the available real ones after applying on them

some deformations in a realistic and significant manner. Thus, when a new class of

gestures is introduced to the system with few samples provided by the user, many

artificial samples can be generated. They can accelerate the learning of the new

gesture if the two following conditions are met:

• the generated samples are sufficiently deformed so that they bring additional

information to the system;

• the generated samples are not over-deformed; they must still represent a

human-like deformation of the original real gesture.

Generating artificial samples by applying human-like distortions on the real ones

provided by the user represents somehow a kind of prediction of the future real

samples. Obviously, this prediction cannot be exhaustive, but even partial prediction

can be very helpful at the beginning of learning new gestures from very few real

samples.

In this chapter, we present first in Section 5.2 a brief description of the existing

handwriting generation techniques. Geometric deformations are usually applied on

real handwritten symbols in order to generate synthetic ones. These deformations

can be either based on class-dependent deformation models and require a learn-

ing phase, or on class-independent general deformation strategies without specific

deformation models.

Then, we present a new handwriting generation technique that can be used in

our evolving handwriting classification system. The proposed method does not rely

on direct application of geometric deformation as the existing techniques. The de-

formation is instead applied on the motor representation space of the handwriting

symbols. This motor representation is based on the well-known Sigma-Lognormal

theory. More details about this handwriting modeling theory are provided in Sec-

tion 5.3, and our handwriting generation technique based on this theory is presented

in Section 5.4. Finally, we show in Section 5.5 an experimental evaluation of the pro-

127

Synthetic Data Generation A. Almaksour

posed handwriting generation technique and its impact on the incremental learning

of evolving handwriting classification systems.

5.2 Related works

Many research works related to handwriting generation had been published during

the last years. However, to the best of our knowledge, there is no previous work

about the impact of using this technique in an incremental learning context.

In most of exiting approaches, artificial handwriting is generating by applying

deformation on the x-y representation of the handwritten symbol, these techniques

are generally called “geometric deformations”.

The handwriting generation approaches based on geometric deformation can be

divided into two categories: class-dependent and class-independent techniques. The

two categories are explained below with some examples on each of which.

5.2.1 Class-dependent geometric deformations

In these approaches, a deformation model is assigned to each class of symbols, and

then used to generate artificial instances of this symbol. A learning phase is required

to build this deformation model.

The learning of the deformation model starts generally by the alignment of a set

of samples of each symbol, then the distribution of the aligned vectors is modeled

by extracting the eigenvectors and eigenvalues from the covariance matrices using

Principal Component Analysis (PCA) technique, as in [11] and [12].

Different alignment techniques are used in the existing methods. In [11], the

alignment is performed by elastic matching. A specific sample from each class of

symbols is chosen as reference, then Dynamic Time Warping (DTW) is used to align

all the x-y points of all the samples by one-to-one alignment of each of which with

the reference. The principal axes of the distribution of the difference vectors are

then extracted, they are referred in [11] as “Eigen-deformations of symbol”. Then,

synthetic instances can be generated by deforming the reference instance according

to the first Eigen-deformations, as illustrated in Figure 5.1. More details about this

elastic-matching based class-dependent deformation modeling can be found in [11],

[61] and [13].

128

Synthetic Data Generation A. Almaksour

Figure 5.1: Synthetic samples (in bold) generated by deforming the reference pattern

according to the first two Eigen-deformations (figure obtained from [11])

A hierarchical handwriting alignment technique is used in [12]. The handwrit-

ing trajectory is first decomposed into a sequence of pieces by landmark points,

and these pieces are then matches with each other. Landmark points are mainly

represented by the local extrema of curvature and the inflection points of curva-

ture. Figure 5.2 shows some synthetic samples generated by the class-dependent

deformation technique presented in [12].

The main drawback of these class-dependent deformation methods is that they

require a considerable amount of samples of each class in order to create the defor-

mation model. So they cannot be used to generate artificial instances of a new class

of gestures where only few real instances are available. The two above-mentioned

works are not related to incremental learning. The class-dependent deformation

modeling in [11] is used to improve the performance of a static batch classifier by

integrating the deformation models in the DTW-based distances. The deformation

modeling in [12] is used in the context of synthesizing cursive handwriting from

ASCII transcriptions. New artificial letters are generated based on the learned de-

formation models in order to offer some variation in the generated cursive texts.

Obviously, there is no problem of lack of data in the two contexts, which makes

129

Synthetic Data Generation A. Almaksour

Figure 5.2: Handwriting generation using class-dependent deformation presented in

[12]; (a) samples of letter “d” from training data, (b) synthesized “d” generated

using trained deformation models, (c) samples of “s” from training data, and (d)

synthesized “s” generated using trained deformation models

Figure 5.3: Example of class-dependent geometric deformation, the deformation

observed in (a) for the letter “M” is rarely observed for the letter “H” as illustrated

in (b) (figure obtained from [13])

class-dependent deformations practical for them.

Therefore, learning-based class-dependent geometric deformation cannot be used

in incremental learning contexts. As mentioned above, the role of the data gener-

ation is more important at the beginning of the learning of new gestures where

only few data are provided, so the deformation technique must not require a class-

dependent learning phase.

Evidently, a deformation model learned using instances from a specific handwrit-

ing form cannot be applied to another one (see Figure 5.3).

130

Synthetic Data Generation A. Almaksour

Figure 5.4: Example of class-independent geometric deformation used [14]. Small

random scaling and rotation of each stroke piece are applied to each stroke.

5.2.2 Class-independent geometric deformations

As we have seen in Section 5.2.1, the main drawback of class-dependent handwriting

deformation is the need of a learning phase, which may not be practical in some ap-

plications, like incremental learning of evolving handwriting classifiers. The second

category of the existing geometric deformation techniques is the class-independent

deformations. Synthetic handwritten symbols can be generated based on class-

independent deformation by applying general distortions on the real symbols. The

same deformation strategies are generally applied regardless the class of the symbol.

In [14], some shape distortions are applied on the letters to simulate handwriting

variation in the synthetic handwriting texts. As illustrated in Figure 5.4, the strokes

of each symbol are first delimited by high curvature points, then slight random

rotation and scaling are applied to them. The distortion is performed at a small

scale and the deformed symbol looks slightly different from the original one.

The goal of the deformation in [14] is not the prediction of human-like deforma-

tions; it only aims at slightly adding a touch of variability on the stored handwritten

models of letters. However, noticeably different cursive texts can be generated by

coupling this slight deformation on the letter level with other variations in letters

spacing and words spacing.

More sophisticated class-independent deformation techniques have been devel-

oped by IMADOC research group during the last years [15] [62]. The deformation

strategy includes two image distortions (scaling and slanting) and two online dis-

tortions based on the specificities of the online handwriting (speed and curvature).

131

Synthetic Data Generation A. Almaksour

Each distortion depends on one or more parameters. To generate a synthetic symbol

from the original one, random values of these parameters are first drawn, and then

the different distortions are successively applied to obtain the synthetic symbol. We

explain below in some detail this class-independent geometric deformation because

it is used in the experiments presented in Section 5.5 and compared to our new

motor-based deformation.

The four distortions used in the above-mentioned deformation approach are as

follows:

• Uncorrelated x-y scaling: the x-y coordinates of the points of the hand-

written symbol are scaled based on two parameters αx and αy. αx represents

the coefficient of scaling on the x axis, whereas αy represents the coefficient of

scaling on the y axis. The coordinates of the points are modified according to

the following equations:

x′(t) = αx x(t), (5.1)

y′(t) = αy y(t). (5.2)

Obviously, αx and αy should have different values; only simple and useless

zooming effects will be obtained otherwise.

• Slant modification: this distortion allows generating inclined handwriting.

It depends on a parameter αs which represents the tangent of the slant. The

y coordinates are not modified but the variation of x(t) depends on the value

of y(t), as follows:

x′(t) = x(t) + αs ∗ y(t), (5.3)

y′(t) = y(t). (5.4)

• Speed variation: the aim of this distortion is to modify the size of ver-

tical and horizontal parts of the symbol depending of a random parame-

ter αv. These straight parts of the writing can vary without changing the

global shape of the symbol. The magnitude of the speed vector ~V (t− 1) =

(x(t) − x(t− 1), y(t) − y(t− 1)) is modified at each point depending on its

132

Synthetic Data Generation A. Almaksour

direction. If this vector is close to one of the axes then it is increased or de-

creased by the ratio αv. The coordinates of the points of the synthetic symbol

are defined as follows:

x′(t) = x′(t−1) + β ∗ (x(t) − x(t−1)), (5.5)

y′(t) = y′(t−1) + β ∗ (y(t) − y(t−1)) (5.6)

β =
1 if arg(~V(t−1))

[
π
2

]
∈ [π

8
, 3π

8
]

αv otherwise

• Curvature modification: This distortion modifies the curvature of the

strokes of the handwritten symbol. The curvature modification uses a ran-

dom parameter αc. The curvature at the point p(t− 1) is defined by the angle

θ̂(t− 1) = ̂(p(t− 2), p(t− 1), p(t)) in] − π, π]. The following equation gives

the position of the point p′(t) depending on the two previous points and on

the original curvature θ̂(t− 1) modified by αc:

̂(p′(t− 2), p′(t− 1), p′(t)) = θ̂(t− 1)−αc∗4∗

∣∣∣θ̂(t− 1)
∣∣∣

π
∗(1−

∣∣∣θ̂(t− 1)
∣∣∣

π
) (5.7)

The four aforementioned distortion techniques are complementary; i.e. they do

not generate the same deformations. They are applied in succession on the real

handwritten symbol to generate synthetic ones. The distortion parameters (αx, αy,

αs, αv et αc) are drawn randomly in the range of possible values. These ranges are

experimentally determined in order not to generate over- or under-deformed symbols.

Figure 5.5 shows examples of handwritten letters generated by each distortion.

Original Scale Slant Speed Curvature

Figure 5.5: Examples of synthetic characters generated by the four distortion tech-

niques proposed in [15]

The latter data generation approach had been used in the adaptation of multi-

writer handwritten character recognition systems for specific writing style of final

133

Synthetic Data Generation A. Almaksour

users. Synthetic samples are generated from the samples provided by the final writer

to adjust the classifier. Faster adaptation had been observed thanks to the synthetic

samples. However, the technique had been particularly designed for the handwriting

characters, and had not been used for other handwritten forms.

Setting the variation ranges of the distortion parameters (αx, αy, αs, αv et αc) is

very difficult if the deformations have to be applied on unknown type of handwritten

gestures. Using the ranges optimized for handwritten characters on a completely

different type of gestures had led to unrealistic and over-deformed shapes. The main

reason of this weakness is that the four distortions work in the x-y representation

space of the handwritten symbols (including the speed variation distortion which is

directly induced from the x-y coordinates and does not rely on a specific writing

speed model). Many studies have shown that handwriting control is a vectorial pro-

cess rooted in differential geometry. Therefore, movement modeling of handwriting

is believed to be more accurate and realistic than shape modeling.

5.2.3 Motor-based deformations

Several models have been proposed to study the human mechanism of handwriting

production [63] [64] [65] [66] [67]. Different models had suggested that the produc-

tion of complex handwritten forms can be considered as a vectorial superimposition

in time of different strokes. The temporal overlap of these strokes is the source of

smooth feature of handwriting. It had been supposed that all these sub-movements

(strokes) have a stereotypical velocity pattern that can be generalized for any rapid

human movement. Different models of velocity profile of a handwritten stroke had

been proposed [68] [69] [70]. One of the models that had received very large accep-

tance and been the subject of several theoretical proofs and experimental validations

is the Kinematic Theory of rapid human movements [67] [71]. It suggests that the

impulse response of neuromuscular networks (the origin of rapid movements such

handwriting) can be characterized with lognormal functions. The highest level of

representation in the family of lognormal models supported by the Kinematic The-

ory is the Sigma-Lognormal model [72]. Based on the Sigma-lognormal model, each

sub-movement in a handwritten trajectory can be represented by a set of six pa-

rameters (t0, D, σ, µ, θs, θe).

Based on the abovementioned motor modeling, the variability observed in hand-

writing can be interpreted (and thus generated) by, on the one hand, the intrinsic

134

Synthetic Data Generation A. Almaksour

variability of the individual (virtual) strokes, and, on the other hand, the variation

occurring in the time plan of superimposition of these strokes [73]. Using the Sigma-

lognormal model, the former source of variability can be simulated by applying some

variation on the peripheral parameters (σ, µ) and the control parameters (D, θs, θe),

while the latter one can be reproduced by slightly varying the parameter t0 of each

stroke.

We present in this chapter an automatic handwritten gesture generation method

based on the Sigma-lognormal parameters. This class-independent motor-based de-

formation is integrated in the incremental learning process of our evolving hand-

writing classification system to improve the learning of new classes from few real

samples.

5.3 Sigma-Lognormal model

The Sigma-Lognormal [70] model consider the neuromuscular system as a cascaded

network of a large number of subsystems coupled through a proportionality law.

Applying the central limit theorem to this representation shows that such a system

will produce elementary movement units having a lognormal speed profile. Such a

unit, referred to as a neuromuscular component, is scaled and time-shifted by values

labeled respectively as D and t0, and has a lognormal shape characterized by the

time delay (µ) and the response time (σ) of the neuromuscular system involved in its

production. Moreover, for planar motions, it is hypothesized that each neuromus-

cular component is made along a fixed pivot and hence, has a circle-arc trajectory

starting at an angle θs and ending at an angle θe.

The speed profile and the angular variation of a component are described by

(5.8) and (5.9) where Pj is the vector of Sigma-Lognormal parameters of the jth

component (i.e. Pj = [t0j Dj σj µj θsj θej]).

vt(t;Pj) =
Dj

σj(t− t0j)
√

2π
e
− [ln(t−t0j)−µj]

2

2σ2
j (5.8)

φ(t;Pj) = θsj +
θej − θsj

Dj

∫ t

0

vt(τ ;Pj)dτ (5.9)

The Sigma-Lognormal model generates complex motions by a vectorial sum-

mation of time overlapping neuromuscular components. Once a parameter set is

135

Synthetic Data Generation A. Almaksour

defined, velocity in Cartesian space can be computed using (5.10).

vx(t;P) =
∑

j

vtj(t;Pj)cos(φj(t;Pj)) , vy(t;P) =
∑

j

vtj(t;Pj)sin(φj(t;Pj))

(5.10)

The x-y coordinates of the trajectory of the handwritten symbol can be obtained

from the global velocity profile given in Equation 5.10 in a straightforward manner

as follows:

x(t;P) =

∫ t

0

vx(τ ;P) dτ (5.11)

y(t;P) =

∫ t

0

vy(τ ;P) dτ (5.12)

To sum up, any handwritten gesture is considered as the result of the superimpo-

sition of several strokes. Each stroke is described according to the Sigma-lognormal

model by six parameters (t0, D, σ, µ, θs, θe). These parameters reflect the motor con-

trol process and the neuromuscular response. As explained in [73], each stroke is

produced by a volitional Dirac-Impulse signal occurring at a time stamp t0 and sent

to the input of the neuromuscular network that controls the arm movement. The

impulse signal embeds the geometrical features of the stroke, which are the length

D, the starting directional angel θs and the ending directional angel θe of the stroke.

The velocity lognormal profile produced by the neuromuscular system is affected by

the logtime delay σ and the logresponse time µ. The latter two parameters are rel-

atively independent from the specific performed handwriting movement, but rather

related to the writer (muscle conditions, age, stress ...).

Figure 5.6 shows two examples of the reconstruction of handwriting movements

using the Sigma-Lognormal modeling. We see from Figure 5.6(a) and Figure 5.6(b)

that the original velocity profile had been precisely approximated by the superim-

position of a set of time-shifted lognormal functions.

Handwriting modeling by the Sigma-lognormal theory had been widely accepted

thanks to its neuromuscular basis and the several experimental studies that have

shown high accuracies of handwriting reconstruction. However, the main next chal-

lenge had been the development of an automatic and efficient algorithm that can

extract from a given handwriting trajectory the parameters of the lognormal profiles

that can reproduce this trajectory.

136

Synthetic Data Generation A. Almaksour

(a) (b)

(c) (d)

Figure 5.6: Example of the reconstruction of handwriting movements using Sigma-

Lognormal model (figure obtained from [16])

137

Synthetic Data Generation A. Almaksour

A robust and automatic algorithm had been recently proposed for the abovemen-

tioned purpose [74]. It extends the principals of XZERO algorithm - that had been

designed for simple strokes - to deal with complex handwriting trajectories. This

automatic parameter extraction algorithm offered the possibility of using the Sigma-

lognormal modeling in handwriting-related automatic systems, such as automatic

handwriting generation.

Realistic and human-like deformations can be applied on a handwritten symbol

by first extracting its sigma-lognormal parameters, then introducing some varia-

tions on these parameters, and finally regenerate a new symbol from the modified

parameters.

Handwriting generating based on Sigma-lognormal modeling had been studied

in [75]. It had been demonstrated that handwriting datasets of unlimited size can

be generated from few specimens by applying variations on the Sigma-lognormal

parameters as mentioned above. However, this generation technique had not been

integrated in a global handwriting system and the quality of the generated data had

only been visually evaluated.

In our work, we incorporate a handwriting generation technique using class-

independent lognormal-based deformations in the incremental learning of evolving

handwritten gesture classifiers. Thanks to the automatic parameter extraction al-

gorithm, the data generation is performed in an automatic manner as a part of

the learning process. Deformations rooted in the motor representation space of the

handwritten gestures are supposed to be more realistic than geometric deformations

and thus more valuable in the learning process.

In addition to the great advantage of integrating the lognormal-based handwrit-

ing generation technique in our evolving handwriting classifier, an objective and

numerical evaluation of the quality of generated data is provided for the first time,

to the best of our knowledge. It replaces the visual subjective evaluation used so

for in several works [75] [12]. The generated handwritten samples are considered

realistic as much as they help the classifier to predict future real samples from the

same class of gestures. The capacity of prediction is translated by the improve-

ment of recognition performance of the classifier, which can be measured using an

independent dataset as we have seen in the precedent chapter.

138

Synthetic Data Generation A. Almaksour

5.4 Synthetic handwritten gesture generation us-

ing Sigma-Lognormal model

Synthetic handwritten symbols can be generated by applying some distortions on

real ones. Most of the existing approaches apply these distortions on the x-y coor-

dinates of the symbol, as we have seen in Section 5.1. Since this kind of distortion

does not rely on a handwriting generative model, one can obtain unrealistic forms

that do not correspond to natural human handwriting sketching.

We have seen in the precedent section that any handwriting trajectory can be

modeled and reconstructed by a set of lognormal functions (profiles). Each profile is

defined by six parameters according to the Sigma-Lognormal theory. Thus, besides

the geometrical x-y representation, each handwritten symbol can be represented in

a motor representation space by a number of parameters proportional to the number

of lognormal profiles used to produce the symbol. For example, a symbol produced

by four lognormal profiles can be characterized and regenerated by a set of 24 pa-

rameters. A one-to-one map can be defined between the geometric x-y space and

the Sigma-lognormal parameters space. The lognormal profiles of a given handwrit-

ten symbol can be automatically extracted by the extraction algorithm mentioned

above, whereas the corresponding handwriting trajectory can be generated from a

give set of lognormal profiles in straightforward manner using Equations 5.11 and

5.12.

Given that the transformation between the two representation spaces can be

automatically performed in the two directions, an automatic synthetic handwrit-

ing generation can be defined by applying distortions on the Sigma-lognormal rep-

resentation of the given real symbol instead of the traditional direct geometrical

distortions. We believe that distortions obtained by applying some variations on

lognormal parameters are more realistic that those obtained using direct geometri-

cal distortions.

The lognormal-based generation mechanism can be simply described as follows:

• the lognormal parameters of the real handwriting gesture are first extracted;

• then, these parameters (or some of them) are randomly modified within specific

variation intervals;

• a synthetic gesture is then generated from the modified lognormal parameters.

139

Synthetic Data Generation A. Almaksour

The resemblance between the synthetic and the real gestures is controlled by the

variation intervals. Thus, a suitable setting of these intervals is required in order to

avoid over-deformed gestures.

(a)

(b)

Figure 5.7: Some examples of generated gestures

We show in Figure 5.7 some examples of the artificial gestures that can be gen-

erated by applying modifications on the Sigma-lognormal parameters. We can note

that the real gestures can be almost predicted from the synthetic ones.

140

Synthetic Data Generation A. Almaksour

5.5 Evolving handwriting classifier learning accel-

eration using synthetic data

As mentioned in Section 5.1, in the context of incremental learning of evolving sys-

tems, one can somewhat overcome the problem of lack of learning samples at the

beginning of learning a new class by generating in an “intelligent” manner a number

of synthetic samples. For an evolving handwriting classifier, the abovementioned

Sigma-lognormal based technique for synthetic gesture generation can be incorpo-

rated into the incremental learning process. The handwriting generation is auto-

matically performed in transparent manner with no user intervention. Figure 5.8

shows the different steps of the generation method. For each incoming sample, its

Sigma-lognormal parameters are first extracted. These parameters are modified and

a number of synthetic samples are generated. The original sample along with the

synthetic ones are then introducing to the incremental learning algorithm.

Figure 5.8: Incorporating lognormal-based data generation in the learning of evolv-

ing handwriting classifiers

Using a visualization interface developed by Scribens laboratory that allows an

interactive modification of Sigma-lognormal parameters of a given handwritten ges-

ture, we have experimentally studied the valid variation intervals of the six param-

eters within which the generated gesture is generally considered similar (from a

human viewpoint) to the original one. The optimal variation intervals (relative or

141

Synthetic Data Generation A. Almaksour

absolute) that we have found are presented in the next section. The impact of the

synthetic gestures on the classifier recognition performance is also presented in the

next section.

5.6 Experimental results

Before presenting the experimental results, we would like to thank Scribens labo-

ratory to offer us access to some of their algorithms and programs including: the

Sigma-lognormal parameter extraction algorithm, the algorithm of handwriting tra-

jectory generation from Sigma-lognormal profiles, and an interactive visualization

software. The following experimental work could not be achieved without these

indispensable components and tools.

Figure 5.9: The handwritten gestures used in the handwriting generation experi-

ments (a subset of Sign dataset)

The experiments are carried out on a subset of Sign dataset that contains the

more complex gestures. It is composed of 11 classes of gesture illustrated in Fig-

ure 5.9. We have followed the same experimental protocol used in the precedent

section.

We compare the lognormal-based handwriting generation method to the one

based on geometric distortions explained in Section 5.2.2. Therefore, three perfor-

mance curves are presented in the figures:

• Evolve++: our evolving classification approach with Evolve++ algorithm pre-

sented in the precedent chapter. Only real samples are considered (no synthetic

data);

142

Synthetic Data Generation A. Almaksour

• Evolve++&Geo: synthetic samples are generated by geometric distortions (see

Section 5.2.2) and used along with real ones to train Evolve++ system;

• Evolve++&Sigma: here, the synthetic samples are generated by the lognormal-

based method.

For the last two approaches, 10 synthetic samples (gestures) are generated for each

real learning sample.

We present the results for two different experimental scenarios: the 11 gestures

are introduced together in the first scenario, while the gestures are progressively

introduced in the second one. We measure in the former the impact of the synthetic

samples at the beginning of the process of learning from scratch, while the latter

scenario aims at showing the impact of these synthetic samples when introducing

new gestures. The results of the first scenario are presented in Figure 5.10, and

those of the second one in Figure 5.11.

0

2

4

6

8

10

��

4 6 8 10 15 20 25 30 35

M
is

c
la

s
s
if
ic

a
ti
o

n
 r

a
te

 (
%

)

Nb. of learning samples per class

Evolve++
Evolve++&Geo
Evolve++&Sigma

Figure 5.10: Performance improvement when using synthetic data generation in the

incremental learning process

We note from Figure 5.10 the important impact of the synthetic gestures at the

beginning of the incremental learning process. For example, the misclassification

rate is reduced by 50% after 10 real samples per class when the learning process

is enriched by synthetic samples. We note also from the same figure that applying

distortions on the Sigma-lognormal parameters produces realistic variability in the

143

Synthetic Data Generation A. Almaksour

synthetic gestures compared to direct geometrical distortions. Thanks to the realistic

human-like distortions, the synthetic samples have considerable energy of predicting

the future real samples, which significantly accelerates the learning process.

0

2

4

6

8

10

��20

20 50 100 150 200 250 300 350 400

M
is

c
la

s
s
if
ic

a
ti
o

n
 r

a
te

 (
%

)

Nb. of learning samples

Evolve++
Evolve++&Geo
Evolve++&Sigma

Figure 5.11: Evaluation of the impact of synthetic samples when adding new gestures

Figure 5.11 shows that using synthetic samples, the classifier resists much better

when introducing new classes. It is able to rapidly re-estimate all its parameters and

to improve the recognition performance for the old and the new gestures. Again, we

notice the superiority of lognormal-based deformations over the traditional geomet-

rical ones.

As mentioned before, one advantage of incorporating the lognormal-based gen-

eration in the incremental learning process is to obtain an objective numerical eval-

uation of this handwriting generation technique, instead of the subjective visual

evaluation used in precedent works. Therefore, geometrical handwriting generation

and motor-based handwriting generation have been compared in the presented fig-

ures in a numerical manner that represents the impact of the generated data on the

learning process.

In the lognormal-based generation technique that have been used to obtain the

results presented in Figures 5.10 and 5.11, random variations are applied on all

the sigma-lognormal parameters of each profile (except t0). The variation intervals

that we have used are given in Table 5.1 at the last row (strategy E). Nevertheless,

we have experimented other strategies in which only some of these parameters are

144

Synthetic Data Generation A. Almaksour

modified and the others keep unchanged. The five different combinations are listed

in Table 5.1. Figure 5.12 shows the corresponding performance obtained by the

different combinations of Table 5.1.

We can see that by only applying distortions on the amplitude of each profile D

may not be enough to generate realistic and variable gestures. We notice that better

results are obtained when coupling D variation with some modifications on the start

and the end angle of each stroke. Slight variations of the peripheral parameters σ

and µ can introduce useful distortions on the handwritten gesture, as we can note

from the curve A in Figure 5.12.

µ σ D θs θe

Strategy A [−5%, 5%] [−5%, 5%] - - -

Strategy B - - [−5%, 5%] - -

Strategy C [−5%, 5%] [−5%, 5%] [−5%, 5%] - -

Strategy D - - [−5%, 5%] [−20◦, 20◦] [−20◦, 20◦]

Strategy E [−5%, 5%] [−5%, 5%] [−5%, 5%] [−20◦, 20◦] [−20◦, 20◦]

Table 5.1: The used variation intervals of sigma lognormal parameters and the

different tested distortion combinations

 2

 4

 6

 8

 10

 15

 2 4 6 8 10 15 20 25 30 35

M
is

cl
as

si
fic

at
io

n
ra

te
 (

%
)

Nb. of learning samples per class

Strategy A
Strategy B
Strategy C
Strategy D
Strategy E

Figure 5.12: Evaluation of distortion combinations presented in Table 5.1

145

Synthetic Data Generation A. Almaksour

5.7 Conclusion

In an online incremental learning of handwriting classifier, the lack of learning data

represents an important challenge that can sometime lead to unacceptable perfor-

mance and make the application difficult to use by the user. Thanks to the Sigma-

lognormal representation of handwritten gestures, we incorporated synthetic ges-

tures into the incremental learning process of our evolving handwriting classifier to

enhance its prediction capacity. Experimental results show that synthetic samples

play a considerable role in improving the classification performance and accelerat-

ing the learning process when it starts from scratch and also when new gestures are

introduced.

One of our perspectives is to replace the predefined static variation ranges that

we used to generate artificial samples by an automatic mechanism that can incre-

mentally estimate an optimal variation interval for each parameter and for each class

of gesture. The impact of the variation of the parameter t0 will also be the subject

of our near future works.

146

Synthetic Data Generation A. Almaksour

147

Chapter 6

General Conclusion and Future

Work

148

General Conclusion and Future Work A. Almaksour

6.1 Conclusion

The purpose of this research work is to go beyond the traditional classification

systems in which the set of recognizable categories is predefined at the conception

phase and keeps unchanged during its operation. Motivated by the increasing needs

of flexible classifiers that can be continuously adapted to cope with its dynamic

working environment, we propose in this thesis an evolving classification system

and different incremental learning algorithms. The most important characteristic of

this system is the ability of learning new classes from few data during the operation

phase. Contrary to the traditional batch ones, the lifecycle of evolving classifiers

does not comprise independent conception (learning) and operation phases. The

learning process of these evolving approaches is performed in an incremental and

lifelong manner. They continuously profit from any available data to adjust its

knowledge base, and more importantly, to learn new unseen classes.

Evolving classifiers are very useful in many application areas, such as face recog-

nition, customer profiling, etc. In these applications, new classes (categories) can

either be discovered from the incoming data, or explicitly added by the user. How-

ever, our principal applicative motivation is related to online handwritten gesture

recognition systems. These systems must be able to deal with the changing user-

specific needs and behavior. The user must be allowed to extend the functionalities

of the recognition system by adding new classes (gestures), and the system must

offer continuous adaptation to the manner in which the user draws the gestures.

Therefore, motivated by the high interaction between the user and the system in

this context, and the increasing needs for dynamic and adaptive classification ap-

proaches, we have focused our research on the online incremental learning of evolving

classification systems.

Our classification approach is based on Takagi-Sugeno (TS) fuzzy rule-based

architecture. A TS model consists of two parts: non-linear antecedents and linear

consequent functions. We propose in our system a new antecedent structure that

takes into consideration the correlations between the axes of the input space (the

features). We present the recursive estimation formulas required to incrementally

learn this new structure.

We have placed a special focus in the learning algorithms on the stability of con-

sequent learning in spite of the evolving antecedent structure. We have dealt with

149

General Conclusion and Future Work A. Almaksour

this issue in two different manners. A memory buffer is used in the first solution to

allow a temporary stability in the antecedent structure and thus better consequent

estimation. As a second solution, we have proposed a novel learning paradigm in

which the antecedent learning is controlled (and minimized) based on a feedback

signal from the system output. More precisely, the antecedent modifications are

reinforced for the data samples that show a high risk of misclassification, and con-

siderably reduced for the other samples. Based on this concept, we have proposed

the Evolve++ algorithm: a confusion-driven incremental learning for evolving TS

classification systems.

Our evolving classifier with the enhanced antecedent structure and the two learn-

ing methods has shown very good results in the experiments that have been con-

ducted on several benchmarks. It has been compared to a well-known evolving TS

model that had been the object of many significant publications. As we have seen

in the fourth chapter (experimental validation), our system can rapidly achieve high

recognition rates when learning from scratch a set of classes in synchronized man-

ner. Moreover, it shows high resistance and fast recovery when adding new classes

in progressive (unsynchronized) scenario.

Although our evolving classification approach can be applied to many applica-

tive contexts, we have placed a particular focus on the field of online handwriting

recognition which had been the original applicative motivation of the abovemen-

tioned theoretical contribution. The goal is to obtain customizable handwritten

gesture recognition systems that can be used, for example, to interpret handwritten

shortcuts in touch screen computers. Using theses evolving handwriting classifiers,

the user will be able to add new gestures to the recognition systems by only pro-

vided few samples. Even though our evolving classifier had shown good results when

tested on a dataset of handwritten gestures, we have taken a step ahead in perfor-

mance improvement by integrating synthetic gesture generation technique in the

incremental learning process. We aim by this generation technique at overcoming

the problem of lack of data at the beginning of learning new gestures. The gener-

ation is performed by applying some deformations on the real samples in realistic

and human-like manner. Instead of the traditional geometrical deformations used in

related works, we applied distortions on the motor representation space of the hand-

written gestures. Encouraged by its numerous theoretical and experimental proofs,

we have chosen the Sigma-lognormal modeling as a new representation space of the

150

General Conclusion and Future Work A. Almaksour

handwritten gestures. It has been experimentally demonstrated in the fifth chapter

that the learning of evolving handwriting classifiers can be considerably acceler-

ated thanks to synthetic data. The results have also shown that samples generated

by lognormal-based distortions have more positive impact on the learning, which

strongly suggests that the lognormal-based introduced variability is wider and more

realistic than direct geometrical one.

6.2 Future works

Similar to the contributions presented in this thesis, our perspectives can be divided

into two categories: theoretical perspectives and application-related perspectives.

As theoretical (application-independent) future works, we present below the di-

rect important tracks that we will examine to improve our approach:

• A new solution to cope with consequent learning stability in evolving TS mod-

els is to incorporate after each antecedent modification an adjustment term

into the Recursive Least Squares process. This adjustment term must af-

fect the autocorrelation matrix Φ−1 in order to keep, as much as possible, a

correct accumulated cost function in the consequent optimization. The ad-

justment vector must be defined based on formal mathematical relationship

between antecedent modifications and the knowledge accumulated in the re-

cursive consequent learning. A deep investigation of this formal solution is one

of our perspectives.

• One of the important topics that we will study is the capacity of deleting

existing classes. This functionality should be available in the evolving classifier

in order to get rid of unused classes. The deletion must be done in an efficient

and transport manner.

• In addition to the first two points, one of the interesting topics that we would

like to approach is the Incremental feature selection and extraction methods

(see Section 2.6). Evolving data representation space can be coupled to evolv-

ing classification systems to obtain powerful dynamic systems.

• Besides the abovementioned technical ideas, we are planning to do some efforts

to facilitate comparisons between evolving classifiers and incremental learning

151

General Conclusion and Future Work A. Almaksour

algorithms. Due to the absence of benchmarks in the field of evolving classifi-

cation systems, we contemplate proposing a public benchmark that covers the

different aspects in this domain. In addition to public multi-class datasets, we

will propose a number of tasks that represent different experimental scenar-

ios in which the classes are learned in either synchronized or unsynchronized

manner. A complete description of these scenarios should be presented in or-

der to facilitate easy and precise comparisons between evolving classification

approaches. Moreover, official competitions can be organized based on these

benchmark tasks.

• A special focus can be placed in the medium-term on a more sophisticated

antecedent structure using membership functions of type-2 fuzzy sets [76].

This new concept can lead to more powerful antecedent structure by handling

more uncertainty than that of traditional type-1 sets. The recursive estimation

of type-2 membership functions and the impact of this antecedent structure

on the system performance represent two interesting research topic that will

be considered in future works.

In addition to the above-mentioned perspectives that are not related to a specific

application area, we would like to take new steps ahead in the development of

evolving handwriting classifiers. Several points stand as future working tracks in

the short and the medium-term. We present here the most important points:

• We will continue our interesting joint work with Scribens laboratory concern-

ing handwriting generation based on Sigma-lognormal modeling. The near

future work will be focused on proposing an incremental learning mechanism

of the parameter variation intervals. The handwriting generation approach

presented in the precedent chapter is class-independent; i.e. the applied dis-

tortions (and the predefined variation intervals) are general and not related to

specific gestures. Our idea is to keep applying these general variation inter-

vals for the first few samples of a new introduced gesture, but with adjusting

them for each class of gesture according to the nature deformation observed

between the real samples of this specific gesture. A variance/covariance ma-

trix of sigma-lognormal parameters can be incrementally estimated for each

gesture and then replaces the predefined intervals in synthetic data generation.

152

General Conclusion and Future Work A. Almaksour

Moreover, statistical analysis (such as principal component analysis) of the

estimated matrices can be carried out in order to discover potential relation-

ships between the variations in the Sigma-lognormal parameters and the writer

physical and health conditions.

• We will carry out more investigations about the incorporation of our evolving

handwritten gesture classifier in real contexts. A first track consists in working

with Synchromedia laboratory for the incorporation of our evolving recognition

system in sensitive collaborative annotation interfaces. We would like to study

the different challenges the might appear in this new applicative contexts.

Another important aspect that must be studied is the user interaction with

the recognition systems. In the experiments conducted in this thesis, the

tests had been performed on a gesture dataset that had been collected in

passive mode (no real interactions with the user). In real systems, the user

usually makes some adjustments on his behavior (or data) in order to favorite

correct classification response and to avoid potential errors. Therefore, mutual

adaptation phenomena must be studied when using evolving systems in online

and interactive manner, which is the case of evolving handwritten gesture

classifier. Although this mutual adaptation is generally supposed to have

positive effects on the global system performance, we have to verify that the

continuous system learning and adaption are performed in suitable manner to

avoid potential perturbations at the user side.

To lead an accurate study about the abovementioned mutual adaptation as-

pect, we will work in collaboration with CRPCC research group from LOUS-

TIC laboratory. CRPCC members are specialized in experimental psychology

and ergonomics of conception of human-machine interfaces. The experiments

will be conducted in real-context using the different applications (Section 4.5)

into which we have incorporated our evolving classification system.

153

General Conclusion and Future Work A. Almaksour

154

Bibliography

[1] V. Vuori, J. Laaksonen, E. Oja, and J. Kangas, “Experiments with adapta-

tion strategies for a prototype-based recognition system for isolated handwrit-

ten characters,” International Journal on Document Analysis and Recognition,

vol. 3, pp. 150–159, 2001.

[2] J. S. R. Jang, “Anfis: adaptive-network-based fuzzy inference system,” IEE

Transactions On Systems Man And Cybernetics, vol. 23, no. 3, pp. 665–685,

1993.

[3] H. Mouchere, E. Anquetil, and N. Ragot, “Writer style adaptation in on-

line handwriting recognizers by a fuzzy mechanism approach : The adapt

method,” International Journal of Pattern Recognition and Artificial Intelli-

gence (IJPRAI), vol. 21, no. 1, pp. 99–116, 2007.

[4] R. C. Chakraborty, “Adaptive resonance theory: Soft computing course lec-

ture,” Decembre 2010.

[5] N. Kasabov and Q. Song, “Denfis: dynamic evolving neural-fuzzy inference

system and its application for time-series prediction,” IEEE Transactions on

Fuzzy Systems, vol. 10, no. 2, pp. 144 –154, Apr. 2002.

[6] S. Lühr and M. Lazarescu, “Incremental clustering of dynamic data streams

using connectivity based representative points,” Data and Knowledge Engi-

neering, vol. 68, no. 1, pp. 1 – 27, 2009.

[7] E. Lughofer, “Flexfis: A robust incremental learning approach for evolving

takagi-sugeno fuzzy models,” IEEE Transactions On Fuzzy Systems, vol. 16,

no. 6, pp. 1393–1410, 2008.

155

General Conclusion and Future Work A. Almaksour

[8] B. Gabrys and A. Bargiela, “General fuzzy min-max neural network for cluster-

ing and classification,” IEEE Transactions on Neural Networks, vol. 11, no. 3,

pp. 769 –783, 2000.

[9] P. Angelov and X. Zhou, “Evolving fuzzy-rule-based classifiers from data

streams,” Fuzzy Systems, IEEE Transactions on, vol. 16, no. 6, pp. 1462 –1475,

dec. 2008.

[10] A. Cornuéjols, “Getting order independence in incremental learning,” in Proc.

European Conference on Machine Learning 1993, (P.B. Brazdil, Ed.), Lecture

Notes in Artificial Intelligence 667. Springer-Verlag, 1993, pp. 196–212.

[11] H. Mitoma, S. Uchida, and H. Sakoe, “Online character recognition based on

elastic matching and quadratic discrimination,” in Proceedings of the Eighth

International Conference on Document Analysis and Recognition, ser. ICDAR

’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 36–40.

[Online]. Available: http://dx.doi.org/10.1109/ICDAR.2005.178

[12] J. Wang, C. Wu, Y.-Q. Xu, and H.-Y. Shum, “Combining shape and physical

modelsfor online cursive handwriting synthesis,” International Journal on

Document Analysis and Recognition, vol. 7, pp. 219–227, September 2005.

[Online]. Available: http://portal.acm.org/citation.cfm?id=1102243.1102244

[13] S. Uchida and H. Sakoe, “A Survey of Elastic Matching Techniques for Hand-

written Character Recognition,” IEICE Transactions on Information and Sys-

tems, vol. E88-D, no. 8, pp. 1781–1790, 2005.

[14] Z. Lin and L. Wan, “Style-preserving english handwriting synthesis,” Pattern

Recognition, vol. 40, pp. 2097–2109, 2007.

[15] H. Mouchère, S. Bayoudh, E. Anquetil, and L. Miclet, “Synthetic on-line hand-

writing generation by distortions and analogy,” in 13th Conference of the In-

ternational Graphonomics Society (IGS2007), November 2007, pp. 10–13.

[16] R. Plamondon, M. Djioua, and C. O’Reilly, “La théorie cinématique des mouve-

ments humains rapides: développements récents,” Traitement du signal, no. 5,

2009.

156

General Conclusion and Future Work A. Almaksour

[17] P. Mitra, S. Member, C. A. Murthy, and S. K. Pal, “A probabilistic active

support vector learning algorithm,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 26, p. 2004, 2004.

[18] L. Zhang, C. Chen, J. Bu, D. Cai, X. He, and T. S. Huang, “Active learning

based on locally linear reconstruction,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 99, no. PrePrints, 2011.

[19] P.-H. Gosselin and M. Cord, “Active learning methods for Interactive Image

Retrieval.” IEEE Transactions on Image Processing., vol. 17, no. 7, pp. 1200–

1211, 2008.

[20] M. A. Maloof and R. S. Michalski, “Incremental learning with partial instance

memory,” Artif. Intell., vol. 154, pp. 95–126, April 2004.

[21] R. E. Reinke and R. S. Michalski, Incremental learning of concept

descriptions: A method and experimental results. New York, NY, USA:

Oxford University Press, Inc., 1988, pp. 263–288. [Online]. Available:

http://portal.acm.org/citation.cfm?id=60769.60780

[22] N. Littlestone, “Redundant noisy attributes, attribute errors, and linear-

threshold learning using winnow,” in COLT ’91: Proceedings of the fourth an-

nual workshop on Computational learning theory. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 1991, pp. 147–156.

[23] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning algorithms,”

Machine Learning, vol. 6, no. 1, pp. 37–66, 1991.

[24] R. Polikar, L. Udpa, S. Udpa, S. Member, S. Member, and V. Honavar,

“Learn++: An incremental learning algorithm for supervised neural networks,”

IEEE Transactions on System, Man and Cybernetics, vol. 31, pp. 497–508,

2001.

[25] J. Zwickel and A. J. Wills, New Directions in Human Associative Learning.

Psychology Press, 2005, ch. Integrating associative models of supervised and

unsupervised categorization, p. 118.

157

General Conclusion and Future Work A. Almaksour

[26] J. J. L. Jr. and R. C. Zeleznik, “A practical approach for writer-dependent sym-

bol recognition using a writer-independent symbol recognizer,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, vol. 29, pp. 1917–1926,

2007.

[27] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification

(2nd Edition), 2nd ed. Wiley-Interscience, Nov. 2001. [Online]. Available:

http://www.worldcat.org/isbn/0471056693

[28] G. A. Carpenter, S. Grossberg, and D. B. Rosen, “Art 2-a: An adaptive reso-

nance algorithm for rapid category learning and recognition,” Neural Networks,

vol. 4, pp. 493–504, 1991.

[29] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE, vol. 78, no. 9,

pp. 1464 –1480, Sep. 1990.

[30] T. M. Martinetz and K. J. Shulten, “A ”neural-gas” network learns topolo-

gies”,” in Artificial Neural Networks, T. Kohonen, K. Mäkisara, O. Simula,

and J. Kangas, Eds., 1991, pp. 397–402.

[31] E. Lughofer, Evolving fuzzy models: incremental learning, interpretability, and

stability issues, applications. VDM Verlag Dr. M

”uller, 2008.

[32] P. Foggia, G. Percannella, C. Sansone, and M. Vento, “A graph-based cluster-

ing method and its applications,” in Advances in Brain, Vision, and Artificial

Intelligence, ser. Lecture Notes in Computer Science, F. Mele, G. Ramella,

S. Santillo, and F. Ventriglia, Eds. Springer Berlin / Heidelberg, 2007, vol.

4729, pp. 277–287.

[33] J. Choo, R. Jiamthapthaksin, C. sheng Chen, O. U. Celepcikay, C. Giusti, and

C. F. Eick, “Mosaic: A proximity graph approach for agglomerative clustering,”

in In: The 9th Intl. Conf. on Data Warehousing and Knowledge Discovery,

2007.

[34] G. Karypis, E.-H. Han, and V. Kumar, “Chameleon: hierarchical clustering

using dynamic modeling,” Computer, vol. 32, no. 8, pp. 68 –75, Aug. 1999.

158

General Conclusion and Future Work A. Almaksour

[35] R. R. Yager and D. P. Fileu, “Learning of fuzzy rules by mountain clustering,” in

Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,

ser. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference

Series, B. Bosacchi & J. C. Bezdek, Ed., vol. 2061, Dec. 1993, pp. 246–254.

[36] P. Angelov and D. Filev, “An approach to online identification of takagi-sugeno

fuzzy models,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 34,

no. 1, pp. 484–498, Feb. 2004.

[37] F. Minku, H. Inoue, and X. Yao, “Negative correlation in incremental learning,”

Natural Computing, vol. 8, pp. 289–320, 2009.

[38] M. D. Muhlbaier, A. Topalis, and R. Polikar, “Learn++.nc: Combining en-

semble of classifiers with dynamically weighted consult-and-vote for efficient

incremental learning of new classes.” IEEE Transactions on Neural Networks,

vol. 20, no. 1, pp. 152–168, 2009.

[39] S. Mitaim and B. Kosko, “The shape of fuzzy sets in adaptive function approx-

imation,” Fuzzy Systems, IEEE Transactions on, vol. 9, no. 4, pp. 637 –656,

aug 2001.

[40] L. Zadeh, “Fuzzy sets,” Information and Control, vol. 8,

no. 3, pp. 338 – 353, 1965. [Online]. Avail-

able: http://www.sciencedirect.com/science/article/B7MFM-4DX43MN-

W3/2/f244f7a33f31015e819042700cd83047

[41] L. A. Zadeh, “Outline of a new approach to the analysis of complex systems

and decision processes,” Systems, Man and Cybernetics, IEEE Transactions

on, vol. SMC-3, no. 1, pp. 28 –44, jan. 1973.

[42] E. Mamdani, “Application of fuzzy logic to approximate reasoning using lin-

guistic synthesis,” IEEE Transactions on Computers, vol. 26, pp. 1182–1191,

1977.

[43] W. L. Ho, W. L. Tung, and C. Quek, “An evolving mamdani-takagi-sugeno

based neural-fuzzy inference system with improved interpretability-accuracy,”

in Fuzzy Systems (FUZZ), 2010 IEEE International Conference on, july 2010,

pp. 1 –8.

159

General Conclusion and Future Work A. Almaksour

[44] J.-S. Jang and C.-T. Sun, “Functional equivalence between radial basis function

networks and fuzzy inference systems,” Neural Networks, IEEE Transactions

on, vol. 4, no. 1, pp. 156 –159, jan 1993.

[45] K. Hunt, R. Haas, and R. Murray-Smith, “Extending the functional

equivalence of radial basis functionnetworks and fuzzy inference systems,”

IEEE Transactions on Neural Networks, vol. 7, no. 3, pp. 776–781, May 1996.

[Online]. Available: http://eprints.gla.ac.uk/2927/

[46] E. Lughofer, “Extensions of vector quantization for incremental clustering,”

Pattern Recognition, vol. 41, no. 3, pp. 995–1011, 2008.

[47] P. Angelov and E. Lughofer, “Data-driven evolving fuzzy systems using ets

and flexfis: comparative analysis,” International Journal of General Systems,

vol. 37, pp. 45–67, 2008.

[48] N. Kasabov, “Evolving fuzzy neural networks: Theory and applications for on-

line adaptive prediction, decision making and control,” in Control. Australian

Journal of Intelligent Information Processing Systems 5, 1998, pp. 154–160.

[49] S. Salzberg, “A nearest hyperrectangle learning method,” Machine Learning,

vol. 6, pp. 251–276, 1991.

[50] F. Ferrer-Troyano, J. Aguilar-Ruiz, and J. Riquelme, “Incremental rule learn-

ing and border examples selection from numerical data streams,” Journal of

Universal Computer Science, vol. 11, no. 8, pp. 1426–1439, 2005.

[51] W. Tung and C. Quek, “A mamdani-takagi-sugeno based linguistic neural-

fuzzy inference system for improved interpretability-accuracy representation,”

in Fuzzy Systems, 2009. FUZZ-IEEE 2009. IEEE International Conference on,

aug. 2009, pp. 367 –372.

[52] H. Ying, Y. Ding, S. Li, and S. Shao, “Typical takagi-sugeno and mamdani fuzzy

systems as universal approximators: necessary conditions and comparison,”

in Fuzzy Systems Proceedings, 1998. IEEE World Congress on Computational

Intelligence., The 1998 IEEE International Conference on, vol. 1, may 1998,

pp. 824 –828 vol.1.

160

General Conclusion and Future Work A. Almaksour

[53] S. Ozawa, S. L. Toh, S. Abe, S. Pang, and N. Kasabov, “Incremental

learning of feature space and classifier for face recognition,” Neural

Networks, vol. 18, no. 5-6, pp. 575 – 584, 2005, iJCNN 2005. [Online].

Available: http://www.sciencedirect.com/science/article/B6T08-4GX1J0V-

3/2/f67bae3b2576ae7c809e0b462b26394e

[54] S. Pang, S. Ozawa, and N. Kasabov, “Incremental linear discriminant analysis

for classification of data streams,” Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions on, vol. 35, no. 5, pp. 905 –914, 2005.

[55] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010. [Online].

Available: http://archive.ics.uci.edu/ml

[56] G. Moustakides, “Study of the transient phase of the forgetting factor rls,”

Signal Processing, IEEE Transactions on, vol. 45, no. 10, pp. 2468 –2476, Oct.

1997.

[57] “http://www.synchromedia.ca/web/ets/gesturedataset,” 2010.

[58] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and

I. H. Witten, “The weka data mining software: an update,” SIGKDD

Explor. Newsl., vol. 11, no. 1, pp. 10–18, 2009. [Online]. Available:

http://dx.doi.org/10.1145/1656274.1656278

[59] P. Angelov, E. Lughofer, and X. Zhou, “Evolving fuzzy classifiers

using different model architectures,” Fuzzy Sets and Systems, vol. 159,

no. 23, pp. 3160 – 3182, 2008, theme: Modeling. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0165011408003333

[60] A. Ghorbel, A. Almaksour, A. Lemaitre, and E. Anquetil, “Incremental learning

for interactive sketch recognition,” in Nineth IAPR International Workshop on

Graphics RECognition (GREC 2011), 2011.

[61] S. Uchida and H. Sakoe, “Eigen-Deformations for Elastic Matching based Hand-

written Character Recognition,” Pattern Recognition, vol. 36, no. 9, pp. 2031–

2040, Sep. 2003.

[62] S. Bayoudh, L. Miclet, H. Mouchère, and E. Anquetil, “Learning a classifier

with very few examples: Analogy based and knowledge based generation of new

161

General Conclusion and Future Work A. Almaksour

examples for character recognition,” in 18th European Conference on Machine

Learning (ECML), Warsaw, Poland, September 2007.

[63] H. Bezine, M. Kefi, and A. M. Alimi, “On the beta-elliptic model for the control

of the human arm movement,” IJPRAI, vol. 21, no. 1, pp. 5–19, 2007.

[64] P. Morasso and F. Mussa-Ivaldi, “Trajectory formation and handwriting: A

computational model,” Biological Cybernetics, vol. 45, no. 2, pp. 131–142, 1982.

[65] F. Leclerc, R. Plamondon, and L. G., “Gaussian curves for signature modeliza-

tion and word segmentation,” Traitement du signal, vol. 9, no. 4, pp. 347–358,

1992.

[66] G. Gangadhar, D. Joseph, and V. S. Chakravarthy, “An oscillatory neuromotor

model of handwriting generation,” International Journal on Document Analysis

and Recognition, vol. 10, pp. 69–84, November 2007. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1327266.1327270

[67] R. Plamondon, “A kinematic theory of rapid human movements,” Biological

Cybernetics, vol. 72, no. 4, pp. 295–307, 1995.

[68] F. Lacquaniti, C. Terzuolo, and P. Viviani, “The law relating the kinematic and

figural aspects of drawing movements,” Acta Psychologica, vol. 54, pp. 115–130,

1983.

[69] P. Morasso, F. Ivaldi, and C. Ruggiero, “How a discontinuous mechanism

can produce continuous patterns in trajectory formation and handwriting,”

Acta Psychologica, vol. 54, no. 1-3, pp. 83 – 98, 1983. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/0001691883900252

[70] R. Plamondon, A. M. Alimi, P. Yergeau, and F. Leclerc, “Modelling veloc-

ity profiles of rapid movements: a comparative study,” Biological Cybernetics,

vol. 69, no. 2, pp. 119–128, 1993.

[71] R. Plamondon, “A kinematic theory of rapid human movements: Part iii. ki-

netic outcomes,” Biological Cybernetics, vol. 78, no. 2, pp. 133–145, 1998.

[72] R. Plamondon and M. Djioua, “A multi-level representation paradigm

for handwriting stroke generation,” Human Movement Science, vol. 25,

162

General Conclusion and Future Work A. Almaksour

no. 4-5, pp. 586 – 607, 2006, advances in Graphonomics: Studies on

Fine Motor Control, Its Development and Disorders. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167945706000613

[73] M. Djioua and R. Plamondon, “Studying the variability of handwriting patterns

using the kinematic theory,” Human Movement Science, vol. 28, no. 5, pp. 588–

601, 2009.

[74] C. O’Reilly and R. Plamondon, “Development of a sigma-lognormal representa-

tion for on-line signatures,” Pattern Recognition, vol. 42, no. 12, pp. 3324–3337,

2009.

[75] M. Djioua and R. Plamondon, “An interactive system for the automatic gen-

eration of huge handwriting databases from a few specimens,” in ICPR, 2008,

pp. 1–4.

[76] H. Wu and J. Mendel, “Uncertainty bounds and their use in the design of

interval type-2 fuzzy logic systems,” Fuzzy Systems, IEEE Transactions on,

vol. 10, no. 5, pp. 622 – 639, oct 2002.

163

Author bibliography

[AA11b] Abdullah Almaksour and Eric Anquetil. Improving premise structure in
evolving Takagi-Sugeno neuro-fuzzy classifiers. Evolving Systems Journal,
2(1):25–33, 2011.

[AA11a] A. Almaksour and E. Anquetil. Systèmes dinférence floue auto-évolutifs :
applications sur lapprentissage incrémental de systèmes de reconnaissance de
gestes manuscrits. Revue Document Numérique, 14(2), 2011.

[AMA09] A. Almaksour, H. Mouchère, and E. Anquetil. Apprentissage incrémental
avec peu de données pour la reconnaissance de caractères manuscrits en-ligne.
Revue Traitement du Signal, 26(5):323–338, 2009.

[AEPO11] Abdullah Almaksour, Anquetil Eric, Réjean Plamondon, and Christian
O’Reilly. Synthetic handwritten gesture generation using sigma-lognormal
model for evolving handwriting classifiers. In Proceedings of 15th Biennial

Conference of the International Graphonomics Society (IGS 2011), 2011.

[AA10a] Abdullah Almaksour and Eric Anquetil. Improving premise structure in
evolving takagi-sugeno neuro-fuzzy classifiers. In Proceedings of the Ninth

International Conference on Machine Learning and Applications (ICMLA

2010), 2010.

[AAQC10b] Abdullah Almaksour, Eric Anquetil, Solen Quiniou, and Mohammed Cheriet.
Personalizable pen-based interface using lifelong learning. In Proceedings of

the Twelfth International Conference on Frontiers in Handwriting Recogni-

tion (ICFHR’10), pages 188–193, 2010.

[AAQC10a] Abdullah Almaksour, Eric Anquetil, Solen Quiniou, and Mohammed Cheriet.
Evolving fuzzy classifiers: Application to incremental learning of handwritten
gesture recognition systems. In International Conference on Pattern Recog-

nition (ICPR 2010), 2010.

[AA09] Abdullah Almaksour and Eric Anquetil. Fast incremental learning strategy
driven by confusion reject for online handwriting recognition. In Tenth Inter-

national Conference on Document Analysis and Recognition (ICDAR 2009),
pages 81–85, 2009.

[AMA08b] Abdullah Almaksour, Harold Mouchère, and Eric Anquetil. Fast online in-
cremental learning with few examples for online handwritten character recog-
nition. In Proceedings of the Eleventh International Conference on Frontiers

2

in Handwriting Recognition (ICFHR’08), pages 623–628, Montréal, Québec,
Canada, August 2008.

[AA10b] Abdullah Almaksour and Eric Anquetil. A robust learning algorithm for
evolving first-order takagi-sugeno fuzzy classifiers. In Conférence Francophone

sur l’Apprentissage Automatique (CAP 2010), pages 33–48, 2010.

[AA10c] Abdullah Almaksour and Eric Anquetil. Systèmes dinférence floue auto-
évolutifs : applications sur lapprentissage incréèmental de systèmes de recon-
naissance de gestes manuscrits. In Actes du XIème Colloque International

Francophone sur l’Ecrit et le Document (CIFED’10), pages 233–247, 2010.

[AMA08a] Abdullah Almaksour, Harold Mouchère, and Eric Anquetil. Apprentissage
incrémental et synthèse de données pour la reconnaissance de caractères
manuscrits en-ligne. In Actes du Xème Colloque International Francophone

sur l’Ecrit et le Document (CIFED’08), volume 1, pages 55–60, 2008.

[GALA11] Achraf Ghorbel, Abdullah Almaksour, Aurélie Lemaitre, and Eric Anquetil.
Incremental learning for interactive sketch recognition. In Nineth IAPR In-

ternational Workshop on Graphics RECognition (GREC 2011), 2011.

	thesis
	PhD_Thesis_Almaksour.pdf
	Frontpage.pdf
	thesisReview
	mybib

