Model of the sky sources

Tolerances on EUCLID/NIS

Cosmological observations with a wide field telescope in space Pixel simulations of EUCLID spectrometer

Julien Zoubian Supervised by: Jean-Paul Kneib and Bruno Milliard

Laboratoire d'Astrophysique de Marseille

May 21° 2012

Model of the sky sources

Tolerances on EUCLID/NIS

Cosmology today : A dark universe

- Galaxy and cluster mass is dominated by a non-luminous component.
- On a large scale, the Universe is isotropic and homogeneous
- The expansion of the Universe is accelerated
- The simplest model which reproduce these observations is the ΛCMD model.

Model of the sky sources

Tolerances on EUCLID/NIS

Cosmology today : The ΛCMD model

- Cosmological principle
- General Relativity
- Cosmological constant
- Cold dark matter
- Flat spatial geometry
- Big Bang

Model of the sky sources

Tolerances on EUCLID/NIS

Cosmology today : History of the universe

Tolerances on EUCLID/NIS

Cosmology today : The key questions

- Dynamical Dark Energy?
- Modification of Gravity?
- Nature of Dark Matter?
- Initial Conditions?

Outline

Explore the dark universe

- Constrain the nature of the universe dark sides
- Scientific requirements to EUCLID mission design
- Purposes and needs of the instrument simulations
- 2 Simulation needs: model of the sky sources
- Simulation purposes: tolerances on EUCLID/NIS

Model of the sky sources

Tolerances on EUCLID/NIS

Constrain the nature of the universe dark sides

- Dynamical Dark Energy? $w(a) = w_p + w_a(a_p a)$
- Modification of Gravity? $f(z) = \Omega_m(z)^{\gamma}$
- Nature of Dark Matter? Neutrino component? m_{ν}
- Initial Conditions? f_{NL}

EUCLID

Definition Study Report

(Redbook)

Explore the dark universe ○●○○○○○○ Model of the sky sources

Tolerances on EUCLID/NIS

Mapping the universe

Weak Lensing

The correlations in the galaxy shapes trace the matter distribution.

Galaxy Clustering

The correlations in the galaxy distance trace the matter distribution.

Model of the sky sources

Tolerances on EUCLID/NIS

The Baryonic Acoustic Oscillations (BAO)

In CMB at z=1100

Correlations in the temperature fluctuations

In Galaxy Distribution

Preferred comoving separation of galaxies of $\sim 100 Mpc/h$

BAO

 Robust Standard Ruler
 Probe the expansion history of the universe

Explore the dark universe ○○○○●○○○ Model of the sky sources

Tolerances on EUCLID/NIS

EUCLID : Survey Requirements

Weak Lensing survey

- \bullet > 15 000 deg²
- \geq 30 gals/arcmin²

•
$$0 < z < 2 \& z_{med} > 0.9$$

Galaxy Clustering

- \bullet > 15 000 deg²
- \geq 3500 gals/deg²

•
$$0.7 < z < 2 \& z_{med} > 1$$

Shape measurement

• down to 0.2 arcsec

Redshift measurement

•
$$\sigma(z)/(1+z) \le 0.05$$

• Catastrophic $\leq 10\%$

Redshift measurement

- $\sigma(z)/(1+z) \le 0.001$
- Purity > 80%
- Purity known to > 1%
- Completeness > 50%

Explore the dark universe ○○○○○●○○ Model of the sky sources

Tolerances on EUCLID/NIS

EUCLID : Instrument Requirements

Space Telescope

- ullet Collecting area $\sim 1.0~m^2$
- $\bullet~FoV \sim 0.5~\text{deg}^2$

Visible instrument (VIS)

- 36 CCD $4k \times 4k$ & 0.1 arcsec/pix
- RIZ & Depth 24.5 @ SNR=10

Near IR Spectro – Photometer (NISP)

- 16 HgCdTe $2k \times 2k \& 0.3 \ arcsec/pix$
- 2 grims (1100 2000 nm)
- Y, J, H & Depth 24 @ SNR=5

Model of the sky sources

Tolerances on EUCLID/NIS

The instrument simulations

Check performances

- Instrument
- Survey
- Cosmology

Understand the instrument

- Calibration
- Systematics
- Measurement

Needs for instrument performance studies

- Realistic distribution of sky sources
- Quantitative estimations of noise components
- Generic instrument model
- Unbiased and optimum estimators

Explore the dark universe ○○○○○○● Model of the sky sources

Tolerances on EUCLID/NIS

Simulation Principle

Julien Zoubian

Simulation needs: model of the sky sources

Explore the dark universe

2 Simulation needs: model of the sky sources

- Mock the sky
- New calibration of emission line
- The Cosmos Mock Catalog v2.0

3 Simulation purposes: tolerances on EUCLID/NIS

Model of the sky sources

Tolerances on EUCLID/NIS

Mock the COSMOS field

Scoville et al., 2007

- 2 deg^2
- 31 photometric bands (Capak et al., 2008)
- zCOSMOS (Lilly 2010) and MIPS (Kartaltepe 09)

Leauthaud et al. 2007

Measure of galaxy size

llbert et al. 2009 and 2010

Measure of z, SFR, Mstar

Model of the sky sources ○●○○○○○○○ Tolerances on EUCLID/NIS

Mock sky : The COSMOS Mock Catalog v1.0

The mock catalog

- Photo-z best fit
- \Rightarrow SED and extinction law
 - Emission Lines: Kennicutt at al. (1998)
 - Simulated spectra: (SED + EL) * extinction

Validation in Jouvel (2009)

- Color distribution
- Redshift distribution

Model of the sky sources ○○●○○○○○○ Tolerances on EUCLID/NIS

Mock the sky for spectroscopic survey simulation

Julien Zoubian

Calibration of emission lines

Argence et al. 2009 shown with SDSS data

- Used dust from SED fitting to correct emission lines
- \Rightarrow Huge uncertainty in the stellar to gas attenuation ratio
 - Direct calibration still quite poor in terms of dispersion but they show a significant better residual slope

Constrain

- from the real galaxy with zCOSMOS data (Lamareille et al., 2006)
- from luminosity function for [OII] (Zhu et al., 2009) and H_{α} (Geach et al., 2010)
- from emission line ratio with zCOSMOS and VVDS (Le Fèvre et al., 2005)

Model of the sky sources

Tolerances on EUCLID/NIS

Calibration result for H_{α} lines

Model of the sky sources

Tolerances on EUCLID/NIS

The Cosmos Mock Catalog v2.0

CMC galaxies

- RA and DEC from real COSMOS sources
- redshift and SED from photo-z
- SFR, Mstar from SED fitting
- Emission lines: Balmer lines, [OII], [OIII], [NII], [SII]
- Shape measurement from ACS (1.38 *deg*², 500k galaxies)

CMCv2.0 : Applications

- Input sky sources of pixel simulations
- Investigating Emission Line Galaxy Surveys with the Sloan Telescope (Comparat et al. 2012)
- The WFIRST Galaxy Survey Exposure Time Calculator (Hirata et al. 2012)
- ETC-42

Fast simulator of slitless spectroscopy and overlap noise

 Investigating wide survey strategy for BAO measurement with space slitless spectroscopy.

Model of the sky sources

Tolerances on EUCLID/NIS

CMCv2.0 : Analytic simulations of EUCLID BAO survey

Julien Zoubian

Model of the sky sources ○○○○○○○○ Tolerances on EUCLID/NIS

CMCv2.0 : Analytic simulations of EUCLID BAO survey

Discussion : CMCv2.0 Issue for Wide Survey Studies

Is it correct to extrapolate results for a \sim 15000 deg^2 survey from a mock catalog of less than 2 $deg^2?$

NO in absolute

The properties of the COSMOS field is not representative of the whole universe.

• Still very interesting in relative

Solution 1

- Mock bigger surveys
- CFHTLS, Stripe 82

Solution 2

- Numerical simulations
- Derivate the sky sources

Tolerances on EUCLID/NIS

Explore the dark universe

2 Simulation needs: model of the sky sources

Simulation purposes: tolerances on EUCLID/NIS

- Simulate the sky for performance studies
- Simulate the EUCLID/NIS PSF
- Results

Model of the sky sources

Tolerances on EUCLID/NIS

CMCv2.0 as sky model for performance studies

The WISP Survey

- Atek et al. (2010)
- 19 fields, 63 arcmin²
- Photo: F110W, F140W
- Spectro: G₁₀₂
 0.8 1.17 μm, R ~ 210
- Spectro: G₁₄₁
 0.8 1.11 μm, R ~ 130
- Median depths: $5 \times 10^{-17} erg \cdot s^{-1} \cdot cm^{-2}$

Model of the sky sources

Tolerances on EUCLID/NIS

WISP Simulation Results

CMCv2.0 as sky model for performance studies

Summary

- H_{α} lines of simulation is in good agreement with H_{α} lines observed in WISP.
- The errors are dominated by the galaxy distribution variance.
- Over line counts are in the 1σ statistic errors.
- Reshift distribution is in good agreement but it is more sensitive to the variance.

Conclusion

The CMCv2.0 is good tools to simulate the sky, at least for performance studies of slitless spectrometer.

Model of the sky sources

Tolerances on EUCLID/NIS

Simulation Parameters

Detector

- Array: 2k × 2k pixels ; 18 μm ; 0.3 arcsec
- Quantum Efficiency: 0.75
- Dark Current: 0.1 e⁻/s/pixel
- Readout Noise: 6 e⁻/pixel

Model of the sky sources

Tolerances on EUCLID/NIS

Model of PSF

Encircled Energy

$$\textit{EE}(
ho) = c \left(1 - e^{-rac{
ho^2}{2\sigma_1^2}}
ight) + (1 - c) \left(1 - e^{-rac{
ho^2}{2\sigma_2^2}}
ight)$$

Model of the sky sources

Tolerances on EUCLID/NIS

PSF simulation code

Model of the sky sources

Tolerances on EUCLID/NIS

Sensitivity as function of the PSF parameters for Gblue

Julien Zoubian

PhD defense

Model of the sky sources

Tolerances on EUCLID/NIS

H_{α} counts as function of the PSF parameters for Gblue

Julien Zoubian

PhD defense

Discussion : Tolerances on EUCLID/NIS PSF (preliminary)

Tolerance criteria

10% of galaxy lost comparing to the mean PSF

Gblue

•
$$(\textit{EE50})_{\textit{blue}} <$$
 20 μm

•
$$(\textit{EE80})_{\textit{blue}} <$$
 40 μm

$$\bullet \; (\textit{EE80})_{\it blue} < -1.15 \, (\textit{EE50})_{\it blue} + 48.08$$

Gred

$$ullet$$
 (EE80) $_{red}$ $<$ 50 μm

• $(EE80)_{red} < -1.39 (EE50)_{red} + 59.72$

Model of the sky sources

Tolerances on EUCLID/NIS ○○○○○○○○●○

Other Results: Simulation of Detector Noises

 Explore the dark universe
 Model of the sky sources
 Tolerances on EUCLID/NIS

 00000000
 000000000
 000000000

Other Results: Tolerances on Detector Noises (preliminary)

Tolerance criteria

10% of galaxy lost comparing to the required detector

Constrains on median value of detector noises

- *QE* > 0.6
- *Noise* < 15.8
- (*Noise*)² < 500 *QE* + 250

Conclusion : Performance Studies

Needs for instrument performance studies

- Realistic distribution of sky sources
- Quantitative estimations of noise components
- Generic instrument model
- Unbiased and optimum estimators

Conclusion : Performance Studies

Needs for instrument performance studies

- Realistic distribution of sky sources
- Quantitative estimations of noise components
- Generic instrument model
- Unbiased and optimum estimators

The COSMOS Mock Catalog v2.0

- Revisited version of the CMC (Jouvel et al. 2009)
- Estimation of the emission line fluxes based on new calibrations using COSMOS, zCOSMOS and luminosity function (Zhu et al. 2009 and Geach et al. 2010)
- Simulation of the WISP survey (Atek et al. 2010)
- Validation of the CMCv2.0 realism as input for pixel simulation of slitless spectroscopy
- \Rightarrow Zoubian et al. (in prep)

Conclusion : Performance Studies

Needs for instrument performance studies

- Realistic distribution of sky sources
- Quantitative estimations of noise components
- Generic instrument model
- Unbiased and optimum estimators (on going work)

Pixel Simulations

- Modular simulation code with 3 independent blocks: sky, optics and detector
- New PSF model based on double gaussian
- New detector model with different pixels
- Constrain on PSF distribution of EUCLID/NIS
- \Rightarrow EUCL-CPP-NPS-TN-00208 "NISP spectro PSF studies" E. Jullo, A. Ealet and J. Zoubian.
- Constrain on properties of EUCLID/NISP detectors

Model of the sky sources

Tolerances on EUCLID/NIS

Future and Prospect of the instrument simulations

Future and Prospect Needs: science measurement

Instrument Calibration

- Simulation of calibration sources
- High realism of the simulation
- Optimum set of parameters
- Reconstruction method: fit? inversion? bayesian?

Astrophysics Measurement

- On going studies at LAM
- Sky cube tomography and emission detection
- Parametric spectra reconstruction and redshift extraction

Cosmology Measurement

Feasibility?

Thank You

Model of the sky sources

Tolerances on EUCLID/NIS

EUCLID : Cosmology Requirements

- Dynamical Dark Energy? $w(a) = w_p + w_a(a_p a)$
- Modification of Gravity? $f(z) = \Omega_m(z)^{\gamma}$
- Nature of Dark Matter? Neutrino component? m_{ν}
- Initial Conditions? f_{NL}

EUCLID Science Objectives (Redbook)

Parameter	γ	$m_{ u}$	f _{NL}	Wp	Wa
Current accuracy	0.200	0.580	100	0.100	1.500
Euclid accuracy	0.009	0.020	2.0	0.013	0.048
Euclid+Planck	0.007	0.019	2.0	0.007	0.035
Improvement Factor	30	30	50	>10	>50

Model of the sky sources

Tolerances on EUCLID/NIS

The COSMOS survey

Build spectra

Continuum:

- SED (Polleta et al. 2007 and Bruzual et al. 2003)
- Extinction law (Prevot 1984 and Calzetti 2000)

Emission Lines in CMCv2.0

- Kennicutt law SFR \propto L(UV) and SFR \propto L(Ha)
- $\Rightarrow flux(Ha) = -0.4 * (MUV + DM(z)) + 10.81$
 - Other lines ([OII], [OIII] and Hb) are computed assuming constant emission lines ratio (Ilbert et al. 2009)

Simulated Galaxy

Spectra = (SED + Emission lines) * Extinction law

Model of the sky sources

Tolerances on EUCLID/NIS

The Cosmos Mock Catalog v1.0

Jouvel et al. 2009

CMC validation:

- Color distribution comparing CMC to UDF and GOODS surveys
- Redshift distribution comparing CMC to VVDS

Model of the sky sources

Tolerances on EUCLID/NIS

Apply SDSS calibration: [OII]

Model of the sky sources

Tolerances on EUCLID/NIS

Apply SDSS calibration: H_{α}

Julien Zoubian

Model of the sky sources

Line model bases

Emitted luminosity models

$$\left(L_{\textit{line}}
ight)_{\textit{cor}} = \left(L_{\textit{NUV}}^{\textit{zphot}}
ight)_{\textit{cor}} + b_{\textit{line}}^{\textit{NUV}}$$

$$(L_{\textit{line}})_{\textit{cor}} = SFR_{SED}^{\textit{zphot}} + b_{\textit{line}}^{SFR}$$

Observed luminosity models

$$L_{line}^{NUV} = a_{line}^{NUV} \cdot \left(L_{NUV}^{zphot}
ight)_{cor} + b_{line}^{NUV}$$

 $L_{line} = a_{line}^{SFR} \cdot SFR_{SED}^{zphot} + b_{line}^{SFR}$

Model of the sky sources

Line model bases

Additional corrections

$$\mathit{cor}_{\mathit{line}}^{\mathit{par}} = \sum_{\mathit{par}} \mathit{a}_{\mathit{line}}^{\mathit{par}} \cdot \mathit{par} + b_{\mathit{line}}^{\mathit{par}}$$

- Photo-z best fit SED
- Photo-z best fit continuum extinction
- Absolute B magnitude computed from photo-z best fit SED and extinction law
- Redshift
- Stellar mass from Ilbert 2010
- Star Formation Rate from Ilbert 2010

Model of the sky sources

Tolerances on EUCLID/NIS

0.93 < z < 1.10

1.28 < z < 1.45

-2

-3

-4

-5

-6

-2

-3

-4

-5

-6

41424344

41 42 43 44

Calibration : Result for [OII]

Model of the sky sources

Tolerances on EUCLID/NIS

Analytic simulation of EUCLID Wide Survey

Model of the sky sources

Tolerances on EUCLID/NIS

Analytic simulation of EUCLID Wide Survey

Julien Zoubian

Model of the sky sources

Tolerances on EUCLID/NIS

Chose of CMC field

Model of the sky sources

Tolerances on EUCLID/NIS

Simulation Code

Model of the sky sources

Tolerances on EUCLID/NIS

Model of PSF

Double gaussian model

$$PSF(\rho) = c \frac{e^{-\frac{\rho^2}{2\sigma_1^2}}}{2\pi\sigma_1^2} + (1-c) \frac{e^{-\frac{\rho^2}{2\sigma_2^2}}}{2\pi\sigma_2^2}$$

Encircled Energy

$$EE(\rho) = c\left(1 - e^{-rac{
ho^2}{2\sigma_1^2}}
ight) + (1 - c)\left(1 - e^{-rac{
ho^2}{2\sigma_2^2}}
ight)$$

Model of the sky sources

Tolerances on EUCLID/NIS

Analysis of the simulations

Spectra extraction

- Extraction with aXe
- Extraction with the same parameters those used in WISP survey analysis
- Optimal extraction in a gaussian profile

Spectra analysis

- Line positions known
- Fit of the lines and measure of the SNR
- Detection simulation:

$$p = \frac{1}{\sqrt{2\pi}} \int_{\alpha-SNR}^{\infty} e^{\left(\frac{-x^2}{2}\right)} dx$$

Discussion : Suboptimal Extraction Bias

Comparison double gaussian and simple gaussian profile

Until now, no quantitative estimation of the SNR bias

Energy distribution

- Cases c
 ightarrow 0, 1, simple gaussian is a good approximation
- The gap is maximum for c= 0.5 $(\sigma_1/\sigma_2 \text{ fixed})$
- Bigger is σ_1/σ_2 , smaller is the gap (c fixed)

Signal to noise ratio

- SNR profile of double gaussian depends on noise value
- Low noise regime: the component $\sigma_2(>\sigma_1)$ is dominant
- High noise regime: the component $\sigma_1(<\sigma_2)$ is dominant

Model of the sky sources

Tolerances on EUCLID/NIS

Performances as function of the PSF parameters for Gred

Model of the sky sources

Tolerances on EUCLID/NIS

Performances as function of the detector parameters for Gblue

Model of the sky sources

Tolerances on EUCLID/NIS

Performances as function of the detector parameters for Gred

