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Introduction générale 
 
Les matières particulaires transférées entre le continent et l’océan sont pour l’essentiel le 

résultat du transport par les fleuves et reflètent les processus d’érosion « naturelle modifiés »  

par la pression anthropique à l’échelle des bassins versants (Meybeck, 1988). En effet, la 

quantité et la qualité des matières arrachées au continent et véhiculées par les fleuves 

réduisent le potentiel des terres agricoles, génèrent des pertes de surfaces productives et ont 

un impact sur les processus biogéochimiques se déroulant en milieu aqueux (Meybeck, 1988). 

Il est donc essentiel de comprendre les cycles des apports aux rivières et les processus qui 

affectent les matières qui y sont transportées si l’on veut maintenir une bonne qualité physico-

chimique des eaux de rivières.  

 

Les processus d'érosion, et de transport des matières en suspension (MES) sont des 

composants clés pour la compréhension des phénomènes et des mesures du fonctionnement 

du système Terre. L'érosion et les processus de redistribution de MES conditionnent les 

principaux événements de développement du paysage et jouent un rôle important dans le 

développement de sol. Le transport des MES dans une rivière fournit également, une mesure 

importante de son morpho-dynamisme, de l'hydrologie de son bassin de drainage, et de 

l'érosion ainsi que des processus de transport des MES dans ce bassin. Les changements de 

transfert des MES (terre-océan) aboutiront aux changements des cycles biogéochimiques 

globaux, particulièrement du cycle du carbone, puisque les MES jouent un rôle important 

dans le flux d’éléments et de nutriments clés, y compris le carbone organique. Le transport 

des MES dans la rivière peut aboutir à des taux accélérés de sédimentation dans des 

réservoirs, des problèmes pour le développement de la ressource en eau, des impacts 

défavorables sur des habitats aquatiques et des écosystèmes, provenant notamment de 

substances toxiques tels que les métaux lourds et les pesticides associés aux MES. Des 

nombreuses études ont déjà montré que le carbone organique particulaire fixé sur les MES et 

que les transferts entre les surfaces continentales et les océans doivent être intégrés dans le 

cycle global du carbone (Meybeck et Vörösmarty 1999 ; Ludwig et al. 1996 ; Coynel et al. 

2005 ; Etcheber et al. 2007). La quantification des flux des MES peut donner des informations 

sur la quantité de sols érodés dans le bassin et alerter les gestionnaires de ce bassin pour 

chercher des stratégies afin de lutter contre ces problèmes. De plus, la quantification du flux 

de carbone associé aux MES est importante pour bien comprendre le cycle du carbone des 
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continents vers l’océan (Meybeck, 1993). Le carbone organique total (carbone organique 

particulaire et dissous) est un indicateur important pour la qualité de l’eau mais aussi un 

indice de la contamination organique.  

 

Plusieurs études ont été faites sur des petits bassins versants agricoles inférieurs de 100 km2 

(Gao et al., 2007; Lefrançois et al., 2007; Estrany et al., 2009; Deasy et al., 2009) afin de bien 

étudier la dynamique de transport de MES. D’ailleurs, les études de cas pour le transport du 

carbone organique sont nombreuses pour les bassins versants composés de tourbières (Hope 

et al., 1997; Dawson et al., 2002; Worrall et al., 2003; Pawson et al., 2008) et de forêts 

(Meybeck, 1993; Molot and Dillon, 1996; Kao and Liu, 1997 Meybeck and Vörösmarty, 

1999; Shibata et al., 2001). Par contre, les bassins versants agricoles sont très peu étudiés en 

termes de dynamique de transport avec une forte résolution des données lors des périodes de 

crue. Actuellement, très peu d’études ont été réalisées pour comprendre la dynamique des 

MES et du carbone (particulaire et dissous) pour de grands bassins versants agricoles intensifs 

dans différents contextes climatiques influencés par la région montagneux des Pyrénées, 

l’océan Atlantique et la mer Méditerranée car il y a de fortes variabilités spatio-temporelles du 

climat, de l’occupation des sols et de la texture des sols. Les mesures sur le terrain et les 

échantillonnages sont généralement des tâches difficiles, rarement achevées  sur le long terme 

dans de grands bassins versants. De part ces contraintes de terrain, les modèles jouent un rôle 

essentiel pour caractériser sur le long terme les flux de MES et le transport du carbone 

organique, sur les bassins versants. Beaucoup de modèles ont été développés tels que les 

modèles statistiques, empiriques, conceptuels et déterministes, afin de résoudre ces 

problèmes.  

 
Le travail de thèse présenté dans ce mémoire traite des données acquises sur un bassin versant 

agricole dans la région de Coteaux de Gascogne (Sud-ouest de la France) dans un contexte 

d’agriculture intensive (bassin de la Save, affluent de la Garonne) de Janvier 2007 à Juin 

2009. L’objet de cette étude est la dynamique du transport des MES et du carbone organique, 

parallèlement à une approche de modélisation. Les questions de recherche sont les suivantes:  

 

o Quelles sont les dynamiques de transport et les facteurs influençant le transport des 

MES et du carbone organique (particulaire et dissous) à l’échelle du bassin versant 

dans un contexte d’agriculture intensive ?  

o Quelle part de MES et de carbone organique sont transportées lors des crues ?  
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o Les particules mises en jeu proviennent-t-elles préférentiellement des versants (loin où 

proche par rapport à la station de la mesure), des bas-fonds des cours d’eau et aussi 

quelles sont les origines de ces matières ?   

o Quel sont les flux de MES et de carbone organique à long terme ?  

 
 

Les objectifs de la recherche sont, d’une part, de décrire et analyser la dynamique des MES et 

du carbone organique, particulaire (COP) et dissous (COD), lors des périodes de crue ainsi 

que d’évaluer la contribution des événements de crue sur les flux annuels et, d’autre part, de 

quantifier ces flux sur le long-terme par l’approche de modélisation agro-hydrologique. 

 
La thèse comprend 3 publications (2 acceptée, 1 under review).    

Le chapitre 2 présente un état de l’art sur le transport des MES et du carbone organique et la 

modélisation à l’échelle du bassin versant. Il présente les différents processus et les équations 

qui gouvernent la dynamique. Les différentes méthodes pour mesurer la concentration de 

MES dans la rivière sont présentées. Il décrit le cycle du carbone, la relation entre 

l’hydrologie et le flux du carbone et leurs origines. La synthèse des différents modèles 

existantes utilisées pour reproduire le flux de MES est aussi présentée.   

 

Le chapitre 3 s’attache aux matériels et méthodes utilisés afin d’accomplir les objectifs. Les 

matériels concernent la description du bassin versant étudié (localisation, pédologie, 

occupation du sol et régime hydro-climatique), l’installation et le type de préleveur pour 

l’échantillonnage et les appareils pour déterminer les concentrations de MES et de carbone 

organique (particulaire et dissous). Le choix  et la détail du modèle sont aussi présentés.  

 

Le chapitre 4 concerne l’analyse de la dynamique du transport  des MES à l’échelle d’un 

bassin versant agricole, notamment pendant les crues pour différentes saisons, avec la 

contribution des flux des MES par rapport au flux annuel. Les facteurs hydro-climatiques 

conditionnant le transport de MES vers l’exutoire du bassin versant étudié pendant les 

périodes de crue sont identifiés par analyse des statistiques de corrélations et analyse en 

composante principale (ACP). Cette partie aborde également l’analyse des hystérésis et 

indentifie les sources de MES afin de déterminer ces origines. Cette partie présente la 

publication acceptée à Journal of Earth Surface Processes and Landforms (ESPL). 
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Le chapitre 5 s’attache à décrire le transport fluvial et la relation entre les MES, le carbone 

organique particulaire et dissous dans le contexte d’un bassin versant agricole intensif. Le flux 

est quantifié pour chaque crue étudiée. Leurs relations avec le débit, les variables hydro-

climatiques, et l’origine de ces matières sont étudiés afin de comprendre les facteurs qui 

contrôlent le transport des flux et les sources d’origine de ces matières. L’analyse des 

hystérésis pour différents événements de crue étudiés est aussi discutée. Cette partie était 

écrite sous la forme de publication qui a été acceptée à  Hydrological Processes. 

 

Le chapitre 6 montre l’approche de modélisation pour caractériser le transport de MES et le 

carbone organique particulaire en utilisant le model agro-hydrologique SWAT (Soil and 

Water Assessment Tool). La simulation de MES est comparée avec les MES observés pour 

les deux années de suivis. Les résultats du modèle en calage sont présentés ainsi que la 

reconstitution de chroniques de flux de MES et COP (simulé par la relation entre le MES et 

COP) non mesurés. Le bilan d’eau du bassin est évalué.  Les flux long-terme de MES et de 

COP sont estimés à partir des résultats de la simulation de concentration des MES et carbone 

organique particulaire. La relation empirique entre le flux annuel de sédiment et le flux d’eau 

est établie. De plus, les zones potentielles d’érosion sont identifiées. Cette partie était écrite 

sous la forme de publication qui a été soumise à Journal of Hydrology (Under Review) 

 

Le chapitre 7 constitue la discussion générale de ce travail de thèse. Il est ainsi discuté 

successivement les résultats scientifiques des chapitres 4, 5 et 6 et le modèle utilisé.  

 

Enfin, le dernier chapitre se termine par une conclusion qui rappelle les principaux résultats 

de ce travail, et les perspectives qu’ils permettent d’envisager.  
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1. Introduction 
 
 
 
This chapter addresses the general context of the research, research problematic and 

questions, the objectives of the thesis and follows by chapter descriptions containing in thesis.    
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1.1. Context and problematic  
 
The processes of erosion, sediment delivery and sediment transport are key components and 

measures of the functioning of the earth system. Erosion and sediment redistribution 

processes are the primary drivers of landscape development and play an important role in soil 

development. Equally, the sediment load of a river provides an important measure of its 

morpho dynamics, the hydrology of its drainage basin, and the erosion and sediment delivery 

processes operating within that basin. The magnitudes of the sediment loads transported by 

rivers have important implications for the functioning of the system; for example through 

their  influence on material fluxes, geochemical cycling, water quality, channel morphology, 

delta development, and the aquatic ecosystems and habitats supported by the river. In addition 

to their key role in the functioning of the natural earth system, erosion and sediment dynamics 

have important implications for human exploitation of that system and the sustainable use of 

natural resources. They must therefore be seen as having a highly significant socio-economic 

dimension. Soil erosion is integrally linked to land degradation, and excessive soil loss 

resulting from poor land management has important implications for crop productivity and 

food security and thus for the sustainable use of the global soil resource (Montgomery, 2007). 

 

Similarly, the sediment loads of rivers can exert an important control on the use of a river for 

water supply, transport and related purposes. High sediment loads can, in particular, result in 

major problems for water resource development, through reservoir sedimentation and the 

siltation of water diversion and irrigation schemes, as well as increasing the cost of treating 

water abstracted from a river. High sediment inputs into lakes and coastal seas can result in 

sedimentation and changes in nutrient cycling. Furthermore, high sediment loads can result in 

pollution and habitat degradation in river systems. Against this background, changes in 

erosion rates and in sediment transport by the world’s rivers can have important repercussions 

at a range of levels. From a global perspective, changes in erosion rates have important 

implications for the global soil resource and its sustainable use for food production. Changes 

in land–ocean sediment transfer will result in changes in global biogeochemical cycles, 

particularly in the carbon cycle, since sediment plays an important role in the flux of many 

key elements and nutrients, including organic carbon. At the regional and local levels, 

changes in erosion rates can have important implications for the sustainability of agricultural 

production and for food security. Equally, changes in the sediment load of a river can give 

rise to numerous problems. For example, increased sediment loads can result in accelerated 
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rates of sedimentation in reservoirs, river channels and water conveyance systems, causing 

problems for water resource development, and adverse impacts on aquatic habitats and 

ecosystems resulting from toxic substances such as heavy metals and pesticides associated 

with the sediments. Conversely, reduced sediment loads can result in the scouring of river 

channels and the erosion of delta shorelines as well as causing reduced nutrient inputs into 

aquatic and riparian ecosystems – particularly lakes, deltas and coastal seas. Because of their 

close links to land cover, land use and the hydrology of a river basin, erosion and sediment 

transport processes are sensitive to changes in climate and land cover and to a wide range of 

human activities. These include forest cutting and land-clearance, the expansion of 

agriculture, land use practices, mineral extraction, urbanization and infrastructural 

development, sand mining, dam and reservoir construction, and programmes for soil 

conservation and sediment control (Walling, 2005). Although recent concern about the impact 

of global change on the earth system has emphasized the impact of climate change resulting 

from the increased emission of greenhouses gases and associated global warming, it is 

important to consider other measures of the functioning of the system. Soil erosion rates and 

the sediment loads transported by the world’s rivers provide an important and sensitive 

indicator of changes in the operation of the earth system and, as indicated above, widespread 

changes in erosion rates and sediment flux can have important repercussions and give rise to 

significant socio-economic and environmental problems.  

 

Organic carbon fluxes and transfer through rivers have been found to have increased in 

relation to both sources and sinks due to large-scale human activities including landuse and 

landcover changes (Tate et al., 2000; Smith et al., 2001). Therefore, accelerated amounts of 

this flux into marine sediments and aquatic ecosystems maybe an important and significant 

net sink for anthropogenic CO2 (Sarin et al., 2002). Some research has recently focused on the 

functional and dynamic nature of terrestrial ecosystems in connection with their role in the 

global carbon, nutrient and hydrological cycles (Kucharik et al., 2000).  The export of organic 

carbon from the land’s surface and terrestrial ecosystems to rivers through surface runoff and 

streamflow is an important gap in the modelling of the global biogeochemical carbon cycle. 

This gap can be addressed by the application of relevant hydrological modelling and organic 

load estimation approaches. The study of the organic carbon transport through World Rivers 

provides information on the rates of erosion of continents, the cycling of carbon on earth and 

the contribution of terrestrial carbon the aquatic systems and oceans (Meybeck, 1982; 

Meybeck, 1983; Sarin et al., 2002; Peel et al., 2003). The transport of organic carbon from 
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terrestrial ecosystems by rivers and hydrological fluxes to the oceans plays important role in 

regional budget of organic carbon entering the continent-ocean interface (Sarin et al., 2002). 

The fluxes of hydrological organic carbon have been found to correlate with environmental 

variables such as edaphic, climatic, topographic, ecologic and hydrological processes 

(Meybeck, 1993; Meybeck and Vorosmarty, 1999; Sarin et al., 2002).  

 

So far, many studies  have been conducted in small-scale agricultural catchments of less than 

100 km2 (Gao et al., 2007; Lefrançois et al., 2007; Estrany et al., 2009; Deasy et al., 2009) in 

order to understand the suspended sediment transport dynamics. Moreover, there is a wide 

range of literature investigating fluvial transport of organic carbon from peatland 

environments (Hope et al., 1997; Dawson et al., 2002; Worrall et al., 2003; Pawson et al., 

2008). Such large investigations have been also conducted in forest environment (Meybeck, 

1993; Molot and Dillon, 1996; Kao and Liu, 1997 Meybeck and Vörösmarty, 1999; Shibata et 

al., 2001). However, very few works have been investigated to study transport dynamics of 

suspended sediment and organic carbon with high resolution of extensive dataset within large 

agricultural catchments where intensive agriculture has been adopted and the climate is 

influenced by different conditions (the mountain regions of Pyrenees, Atlantic Ocean and 

Mediterranean regions. This lack was due to many difficulties such as spatiotemporal 

variability in climatic conditions, landuse and soil texture. Furthermore, field measurements 

and data collection are generally difficult tasks, rarely achieved over long timescales in large 

catchments. Due to these constraints, the application of models plays a vital role to 

characterize long-term sediment and organic carbon transport from the catchments. Lots of 

models have been developed such as statistical, empirical, conceptual and deterministic 

models to solve these problems.   

 

The research was based on the data collection from January 2007 through June 2009 in the 

Save agricultural catchment, tributary of the Garonne River, located in Coteau Gascogne 

Region in Southwest France where intensive agriculture has been practiced. This work 

focuses on transport dynamics of suspended sediment and organic carbon together with 

modelling approach. The research questions are as following:  

 

- How are their transport dynamics and what factors influencing the transport at 

catchment scale within the context of intensive agriculture?  

- How are their loads transported during floods?  
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- Where are they come from? The distant sources such as hill slope erosion, river 

deposited sediment etc. and what are their origins? 

- What are their long-term fluxes?    

1.2. Objectives  
 
The objectives of the research are, on the one hand, to describe and analyse the transport 

dynamics of suspended sediment (SS), and dissolved and particulate organic carbon (DOC 

and POC) during flood events with assessment of flood load contribution and, on the other 

hand, to quantify the long term fluxes by agro-hydrological modelling approach. 

1.3. Thesis structure   
 
The thesis consists of 3 publications (2 accepted and 1 under review).  

 

Chapter 2 starts with the state-of-the art on suspended sediment, organic carbon transport and 

modelling at catchment scale. This also presents different processes and equations that govern 

its dynamics. Different methods of suspended sediment measurement in river were presented. 

The carbon cycle, relationship with hydrological processes and their origins were described. 

At the end of the chapter, a review of existing sediment transport models was raised.       

  

Chapter 3 describes the materials and methods used to accomplish the objectives. The 

materials concern with the description of the study area (localisation, soil, landuse and hydro-

climatic regime), installation of automatic water sampler and Sonde, and instruments to 

determine suspended sediment, dissolved and particulate organic carbon. The model selection 

and description were also attributed.    

 

Chapter 4 involves the analysis of suspended sediment transport dynamics in the studied 

agricultural catchment with the assessment of flood load contribution. The hydro-climatic 

factors influencing the mobilisation of sediment load from the catchment outlet during flood 

events were identified by means of statistical analysis of correlations and Principle 

Component Analysis (PCA). This part details hysteresis patterns of each flood and identifies 

their suspended sediment sources in order to determine their origins. This chapter presented 

the publication accepted in Journal of Earth Surfaces Processes and Landforms (ESPL).     
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Chapter 5 describes the fluvial transport and relationship between suspended sediment and 

organic carbon (DOC and POC) within the agricultural catchment context. The fluxes were 

estimated during each flood events. Their relationship with discharge and hydro-climatic 

variables, and their origins were studied in order to comprehend the hydrological processes 

controlling the transport and their sources of origins. The analysis of each hysteresis pattern 

during different seasonal floods was discussed. This chapter was written in the form of 

publication accepted in Journal of Hydrological Processes.     

  

Chapter 6 is concerned with modelling approach to characterise the transport of suspended 

sediment and particulate organic carbon using agro-hydrological model, the SWAT model 

(Soil and Water Assessment Tool). The simulation of suspended sediment was compared with 

observed sediment data from the two year observation. The catchment water balance was also 

evaluated. The fluxes of sediment and POC were estimated via long-term simulation of 

suspended sediment and POC concentrations. An empirical correlation between annual water 

yield and annual sediment yield was established and potential source areas of erosion were 

also identified for the studied catchment. This chapter was written in the form of publication 

which has been under review in Journal of Hydrology.  

 

Chapter 7 provides the general discussion of the whole results and the model.  

The last chapter is ended by the conclusion that reviewed the main researching findings of the 

study and perspectives from this research.  
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Chapter 2                                           
 

Suspended sediment, organic carbon transport 
and modelling  

 
 

The chapter starts with the state-of-the art on suspended sediment, organic carbon transport 

and modelling at catchment scale. This also presents different processes and equations that 

govern its dynamics. Different methods of suspended sediment measurement in river were 

presented. The carbon cycle, relationship with hydrological processes and their origins were 

described. At the end of the chapter, a review of existing sediment transport models was 

introduced.       
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2.1. Origins of suspended sediment  
 
Suspended Sediment can be described as the motion of sediment particles during which the 

particles are surrounded by fluid (Chanson, 2004). The grains are maintained within the mass 

of fluid by turbulent agitation without (frequent) bed contact. Sediment suspension takes 

place when the flow turbulence is strong enough to balance the particle weight. The 

suspended sediment that we observed at the catchment outlet could originate from the 

contribution of three main processes: hillslope erosion, gully erosion, and channel bank 

erosion (Figure 2-1).   

 

 

       

(A) 
 

  

(B) 



Chapter 2. Suspended sediment, organic carbon transport and modelling 

 - 13 - 

 

(C) 

Figure 2-1 : Different types of soil erosion: (A) gully erosion, (B) rill erosion, (C) channel 
erosion 

 
In our study, we focus on agricultural catchment; therefore, urban waste water and industrial 

emission were dismissed. The factor influencing erosion taken into account to study the 

erosion phenomenon can be grouped: soil erodibility, rainfall erosivity, soil occupation, 

topography and climate.  

2.2. Anthropogenic activities  
 
The erosion within the catchment can be the natural processes and anthropogenic activities.  

The modification of soil practices and intensification of agriculture, urbanization, could 

increase the soil erosion within the catchment. Walling (1999) showed that through 

geographical surface, the soil erosion rates under cultivation are 16 to 900 times higher than 

soil under natural conditions. Many authors have studied the impacts of agriculture on 

sediment to the river networks (Svoray & Ben-Said., 2009; Abaci et al., 2009; Outeiro et al., 

2010). The changes of landuse resulted in soil loss when agricultural practices are not 

properly undertaken. Regarding the urbanization, the increasing of impermeable surface area 

(road, parking, and building) has decreased the infiltration surface and led the augmentation 

of surface runoff which drives up streamflow in the river, by affecting the bank erosion from 

the rapid velocity. Moreover, the barrage construction also has major impact on the sediment 

stocking at upstream part where it is located; for instance, the Assouan barrage on Nil River 

which decreased sediment flux of 100. 106 t year-1 to zero and the barrage on Mississippi 

River in 1950s reducing nearly 70% of sediment load, while soil erosion from surface runoff 

remained constant (Walling and Fang, 2003).    
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2.3. Processes and mechanics of soil erosion  
 
Soil erosion is a two-phase process consisting of the detachment of individual soil particles 

from the soil mass and their transport by erosive agents such as running water and wind 

(Morgan, 2005). When sufficient energy is no longer available to transport the particles, a 

third phase, deposition, occurs. Rainsplash is the most important detaching agent. As a result 

of raindrops striking a bare soil surface, soil particles may be thrown through the air over 

distances of several centimetres (Figure 2-2). Continuous exposure to intense rainstorms 

considerably weakens the soil. The soil is also broken up by weathering processes, both 

mechanical, by alternate wetting and drying, freezing and thawing and frost action, and 

biochemical. Soil is disturbed by tillage operations and by the trampling of people and 

livestock. Running water and wind are further contributors to the detachment of soil particles. 

All these processes loosen the soil so that it is easily removed by the agents of transport. The 

transporting agents comprise those that act areally and contribute to the removal of a 

relatively uniform thickness of soil, and those that concentrate their action in channels. The 

first group consists of rainsplash, surface runoff in the form of shallow flows of infinite width, 

sometimes termed sheet flow but more correctly called overland flow, and wind. The second 

group covers water in small channels, known as rills, which can be obliterated by weathering 

and ploughing, or in the larger more permanent features of gullies and rivers. A distinction is 

commonly made for water erosion between rill erosion and erosion on the land between the 

rills by the combined action of raindrop impact and overland flow, so called interrill erosion.  

 
 

              
 
 

Figure 2-2 :  Shear stress of soil and water through the impact of raindrop or splash effect 
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2.4. Detachment of soil particles by flow 
 
The important factor in the hydraulic relationships is the flow velocity. Because of an inherent 

resistance of the soil, velocity must attain a threshold value before erosion commences. 

Basically, the detachment of an individual soil particle from the soil mass occurs when the 

forces exerted by the flow exceed the forces keeping the particle at rest. Shields (1936) made 

a fundamental analysis of the processes involved and the forces at work to determine the 

critical conditions for initiating particle movement over relatively gentle slopes in rivers in 

terms of the dimensionless shear stress (θ) of the flow and the particle roughness Reynolds 

number (Re*), defined respectively by: 

 
 

(2-1) 

 
Where,  
 

- θ  is known as the Shields number, 

  - wρ  is the density of water,  

- U* is the shear velocity of the flow 

- g is the acceleration of gravity, 

- sρ  is the density of the sediment,  

- D is the diameter of the particle and u* is the shear velocity of the flow.  

2.5. Factors influencing soil erosion 

2.5.1. Rainfall erosivity 

 
Soil loss is closely related to rainfall partly through the detaching power of raindrops striking 

the soil surface and partly through the contribution of rain to runoff. This applies particularly 

to erosion by overland flow and rills, for which intensity is generally considered to be the 

most important characteristic.  

2.5.2. Soil erodibility 

 
Erodibility defines the resistance of the soil the forces of detachment, entrapment and 

transport resulting from raindrop impact and shear of surface flow. Although a soil resistance 

to erosion depends in part on topographic position, slope steepness and the amount of 

disturbance, such as during tillage, the properties of the soil are the most important 
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determinants. Erodibility varies with soil texture, aggregate stability, shear strength, 

infiltration capacity and organic chemical content. The large soil particles are resistant to 

transport because of the greater force required to entrain them and that fine particles are 

resistant to detachment because of their cohesiveness. The least resistant particles are silts and 

fine sands.  

 

The shear strength of the soil is a measure of its cohesiveness and resistance to shearing 

forces exerted by gravity, moving fluids and mechanical loads. Its strength is derived from the 

frictional resistance met by its constituent particles when they are forced to slide over one 

another or to move out of interlocking positions, the extent to which stresses or forces are 

absorbed by solid-to-solid contact among the particles, cohesive forces related to chemical 

bonding of the clay minerals and surface tension forces within the moisture films in 

unsaturated soils. These controls over shear strength are only understood qualitatively, so that, 

for practical purposes, shear strength is expressed by an empirical equation: 

 
                         

       (2-2) 
 
 
Where, 

 - τ  is the shear stress required for failure to take place, 

   - c is a measure of cohesion,  

 - σ  is the stress normal to the shear plane (all in units of force per unit area), 

 - φ is the angle of internal friction. 

Both c and φ are best regarded as empirical parameters rather than as physical properties of 

the soil. 

2.5.3. Soil occupation 

 
Vegetation acts as a protective layer or buffer between the atmosphere and the soil. It serves 

as the obstacle to runoff which influences particle transport. The effectiveness of plant cover 

in reducing erosion by raindrop impact depends upon the height and continuity of the canopy 

and the density of ground cover. A plant cover dissipates the energy of running water by 

imparting roughness to the flow, thereby reducing its velocity.  

 

φσ+=τ tanc
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2.5.4. Topography 

 
Erosion would normally be expected to increase with increases in slope steepness and slope 

length as a result of respective increases in velocity and volume of surface runoff. Slope is the 

main factor in determine flow velocity, which transport the soil particles from the catchment. 

The catchment with steepness slope always produces more erosion and sediment transport to 

the stream networks. Further, while on a flat surface raindrops splash soil particles randomly 

in all directions, on sloping ground more soil is splashed downslope than upslope, the 

proportion increasing as the slope steepens 

2.6. Channel erosion  
 
Stream bank erosion occurs under natural conditions, particularly during peak storm flows 

and is part of an on-going cycle of sediment erosion and deposition within the stream system. 

The factors controlling river and stream formation are complex and interrelated. These factors 

include the amount and rate of supply of water and sediment into stream systems, catchment 

geology, and the type and extent of vegetation in the catchment. As these factors change over 

time, river systems respond by altering their shape, form and/or location. In stable streams, 

the rate of these changes is generally slow and imperceptible. 

 
Some significant events which we always observe like flooding can trigger dramatic and 

sudden changes in rivers and streams. However, land use and stream management can also 

trigger erosion responses. The responses can be complex, often resulting in accelerated rates 

of erosion and sometimes affecting stability for decades. Over-clearing of catchment and 

stream bank vegetation, poorly managed sand and gravel extraction, and stream straightening 

works are examples of management practices which result in accelerated rates of bank 

erosion. Bank erosion can also be accelerated by factors such as: 

 
• Stream bed lowering or infill, 

• Inundation of bank soils followed by rapid drops in flow after flooding, 

• Saturation of banks from off-stream sources, 

• Redirection and acceleration of flow around infrastructure, obstructions, debris or 

vegetation within the stream channel, 

• Removal or disturbance of protective vegetation from stream banks as a result of 

trees falling from banks or through poorly managed stock grazing, clearing or fire, 
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• Bank soil characteristics such as poor drainage or seams of readily erodible material 

within the bank profile, 

• Wave action generated by wind or boat wash, 

• Excessive or inappropriate sand and gravel extraction, 

• Intense rainfall events.  

2.7. Sediment delivery and transport processes in river 

2.7.1. Concept of sediment delivery ratio 

 

The Sediment Delivery Ratio (SDR) is the ratio between the rate of the sediment export from 

a tributary catchment and the rate of sediment production to channels within that catchment       

(Kasai et al., 2001). The SDR of a drainage catchment consists of two parts. The percentage 

of the material that reaches the stream is called the hillslope SDR (HSDR). The second part of 

the SDR of a drainage catchment is determined by the percentage of the sediment that is 

supplied to the stream and that reaches the catchment outlet. This is called the Channel SDR 

(CSDR). SDR is very different from a catchment to another (Figure 2-3) 

 

 

 

Figure 2-3: Relation between Sediment Delivery Ratio and the catchment sizes (From Lu et 
al. (2006), modified from Ferro and Minacapilli (1995) and Walling (1983). 

 
Analysis of the SDR for a tributary catchment would provide information needed to 

understand the linkage between the three stages of sediment production to main-stem 

channels. Calculation of SDRs is particularly important when sediment budget are being 
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constructed to explore relationships between hillslope and channel processes (Kasai et al., 

2001). A procedure for calculating SDR would thus be very useful for constructing sediment 

budgets. However, a generally applicable prediction equation for this ratio seems difficult to 

obtain for several reasons (Walling, 1983). Firstly, Walling points out that this is because 

‘assessments that have been undertaken are themselves primarily based on a comparison of 

measured sediment yield with an estimate of gross erosion’. As catchment sizes increases, 

direct measurement of sediment produced from sources within catchment becomes 

increasingly difficult and the use of erosion equations become more unreliable. Valid 

estimates must account for the highly episodic nature of mass movement erosion, which often 

dominates sediment production in steepland catchments, and this generally requires field 

assessment or locally calibrated predictive equations for each erosion type (e.g. gully, 

landslide, and earth flow). Secondly, SDRs often vary widely between individual events 

(Trustrum et al., 1999). Marutani et al. (1999) have reported SDRs less than 1 for individual 

events within catchments where net channel degradation (SDR>1) dominated in the longer 

term.  In a review of SDRs, Richards (1993) concluded that the direct comparison between 

results of different studies is impossible because different degrees of temporal averaging were 

used. Despite the above analysis problems, Walling (1983) outlined some studies (Table 2-1) 

which have shown that SDRs can be influenced by morphological variables.  

 

Table 2-1: Examples of proposed relationships between sediment delivery ration and 
catchment characteristics 

 
Reference                                                                                Equation 

 

Maner (1958) 

 

log SDR = 2.962 + 0.869 logR – 0.854 logL 

Roehl (1962)  log SDR = 4.5 – 0.23 log 10A – 0.510 colog R/L – 2.786 log 
BR 

Williams and Berndt (1972) SDR = 0.627 Sd0.403  

Williams (1977) SDR = 1.366 x 10-11 A-0.100 R/L0.363 CN-5.444 

Mou and Meng (1980) 

 

SDR = 1.29 + 1.37 lnRc 0.025 lnA 

 

R=catchment relief; L= catchment length; A=catchment area; R/L=relief ratio; 
BR=bifurcation ratio; Sd= slope of main stem channel (%); CN=SCS curve number (an index  
number to express the relationship between rainfall and runoff for wet conditions of the 
catchment, based on the Soil Conservation Service curve number technique (US Department 
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of Agriculture, Soil Conservation Service, 1972); Rc = gully density (units vary between 
equations). (After Walling, 1983).  
 

Equations that incorporate geomorphological variables relating the process of sediment 

movement from source to delivery in the main channel can thus help to improve the 

prediction of SDRs.   

2.7.2. Mechanisms of suspended sediment transport  

 
The transport of suspended sediment occurs by a combination of advective turbulent diffusion 

and convection. Advective diffusion characterizes the random motion and mixing of particles 

through the water depth superimposed to the longitudinal flow motion (Chanson, 2004). In a 

stream with particles heavier than water, the sediment concentration is larger next to the 

bottom and turbulent diffusion induces an upward migration of the grains to region of lower 

concentrations. A time-averaged balance between settling and diffusive flux derives from the 

continuity equation for sediment matter: 

 

   so
s

s cw
dy

dc
D −=                                                      (2-3)                             

 
Where, 

- cs : the local sediment concentration at a distance y measured normal to the channel 

bed (mg l-1),  

- Ds : the sediment diffusivity  

- wo : the particle settling velocity (m s-1) 

 

Sediment motion by convection occurs when the turbulent mixing length is large compared to 

the sediment distribution length scale. Convective transport may be described as the 

entrainment of sediments by very-large scale vortices: e.g. at bed drops, in stilling basins and 

hydraulic jumps (Figure 2-4). 
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Figure 2-4: Suspended sediment motion by convection and diffusion processes               
(Huber Chanson, 2004) 

 

2.7.3. Movement and particle deposition  
 

Yalin (1977) indicated that for particle with diameter (d), there is a critical traction force in 

which the particle is in movement. This force has to be sufficient to compensate a weight and 

friction force exercised by other sediments in contact with particle. The diagram of Yalin-

Shields (Figure 2-5) gives the value of parameter *τ (quantifying the critical traction force) in 

function with the value of d* and allows to distinguish the phase of movement of repos. *τ  

and d* are two dimensionless values defined as following:  
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Where,  

- sρ : density of particle (kg m-3) 

- eρ : water density (kg m-3) 

- g: gravity (m s-2) 

- ν : viscosity of water (10-6 m2 s-1) 

- R: hydraulic radius (m) 

- i: slope of water surface (%) 

- d: particle diameter (m) 



Chapter 2. Suspended sediment, organic carbon transport and modelling 

 - 22 - 

 

Figure 2-5: Diagram of Shields – Yalin (1977) 
 

The particle alternates between phase of transport and phase of deposition according to their 

particle size, flow velocity within the environment (Figure 2-6) (Hjulstrom, 1935), shear 

stress, turbulence, flow movement, density and bed cohesion (Goodwin et al., 2003).   

 

 

 

Figure 2-6: Diagram de Hjulstrom (1935): relationship between the water velocity and 
particle size to determine the context of erosion and sedimentation 
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Once the particle is in movement, it can have several modes of displacement: bedload 

transport, siltation and suspension.  The transport mode depends on the flow velocity and 

particle size.  

 

o Bedload transport concerns with gravel materials which displace by rolling or slipping 

on bed layer. This mode takes place when the flow increases within the flooding 

period or high topographic gradient.  

o Siltation is concerned with the sufficiently light materials to be lifted from bed but too 

heavy to be suspended.  

o Suspension is concerned with the fine materials such as clay, silt, or microorganism 

which can be in suspension due to the flow turbulence without contacting with river 

bed.  

 

The particles in suspension can depose and then re-suspend or mobilize in another mode of 

transport depending on the energetic context.       

2.7.4. Empirical relationship between suspended sediment and discharge 

 
Suspended sediment is originated from process of soil erosion and transport, which can vary 

through hydrological conditions. The flow variability results in the different dynamics. The 

first consequence is the increase of suspended sediment with discharge. The empirical relation 

“rating curve” between suspended sediment concentrations and discharge was established by 

Van Rijn (1984) and used by lots of authors (Fenn et al., 1985; Crawford, 1991; Asselman, 

1999; Syviski et al., 2000; Horowitz, 2003). The relation is a power function as below:  

 

baQC =                                                                              (2-5) 
Where,  

- C: suspended sediment concentration (mg l-1) 

- Q: water discharge m3 s-1 

- a and b are regression parameters 

 

The precision of this relation is always weak because of strong dispersion. The inaccuracy is 

that the flux could be underestimated 50% (Ferguson, 1986). Lots of studies have been carried 

out in order to reduce the data dispersion, to characterize the term of empirical relation, or to 
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determine the causes of this dispersion. To decrease the dispersion, the authors proposed to 

modify the time step of integration of measurement. For instance, Haritashaya et al. (2005) 

reduced the variance of data by using the monthly mean instead of daily data. Morehead et al. 

(2003) directly integrate the variability of concentrations in dimensionless expression of 

empirical relation by considering the long-term mean: 
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Where,  
 

- Qs : daily sediment discharge (kg s-1) 

- Q  :  daily water discharge (m3 s-1)  

- Qsl : long-term mean of Qs (kg s-1) 

- C&Ψ : correlation parameters 

 

The other authors searched for understanding the signification of this empirical relation but 

their interpretations were different according to explicative factors used. Syvitski et al. (2000) 

tried to characterize the parameters a & b through the geographical factors from the data of 

many catchments. Kazama et al. (2005) reached to propose an equation issued from the 

equation of Itakura-Kishi (1980), in which the sediment flux can be estimated from three 

factors: particle size, riverbed roughness and slope. However, this kind of equation is valid for 

only some types of rivers. The behaviour of suspended sediment and changes in suspended 

sediment concentration (SSC) during flood events are not only a function of energy 

conditions, i.e. sediment is stored at low flow and transported under high flow conditions, but 

are also related to variations in sediment supply and sediment depletion. These changes in 

sediment availability result in so-called hysteresis effects (Asselman, 1999).   

 

A typology with three classes, inspired by Williams (1989) is presented in Figure (2-7). In the 

first class, peaks of SSC and discharge arrive simultaneously. The SSC-discharge plot is 

symmetrical between rising and falling limbs, with little or no hysteresis. This class is 

classically interpreted as the mobilization and transport of particles (Jansson, 2002), whose 

availability is not restricted during the flood for the concerned range of discharge. At low 

discharge, particles are coming from fine deposited sediment (Hudson, 2003) or maybe from 

bank materials. At high discharge, particles are coming from coarser deposited sediment 
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and/or from bank and channel hydrological erosion. Particles can also come from more 

remote sources, such as surface soil erosion, when discharge is principally linked to surface 

runoff. In the second class, the SSC peak arrives before the discharge peak and the 

relationship between SSC and discharge describes a clockwise hysteretic loop. This class is 

classically interpreted as the mobilization of particles whose availability is restricted during 

the event for the concerned range of discharge. Particles are believed to come from the 

removal of sediment deposited in the channel, with a decreasing availability during the event 

(Lenzi and Lorenzo, 2000; Steegen et al., 2000; Jansson, 2002; Goodwin et al., 2003). Particle 

production by erosion cannot resupply the deposited sediment stock decrease. The hypothesis 

of an important contribution of hillslope soils can be dismissed. In the third class, the SSC 

peak arrives later than the discharge peak and the SSC-discharge relationship describes an 

anticlockwise hysteretic loop (Williams, 1989). This class is classically interpreted as the 

arrival of more distant particles, coming from hillslope soil erosion or the upstream channel 

(Brasington and Richards, 2000; Lenzi and Lorenzo, 2000; Goodwin et al., 2003; Orwin and 

Smart, 2004). Particles can also come from processes with slow dynamics (slower than the 

discharge rise), e.g. bank collapse may happen when bank material is sufficiently saturated. 

However, when there are multiple peaks of discharges during a flood event, the hysteresis 

patterns are mixed between clockwise and anti-clockwise with the form of eight shapes.  

 

 

Figure 2-7: Typology of relationship between suspended sediment concentration (SSC) and 
discharge (Q) (From Lefrançois et al. (2007), modified from Williams (1989))   

         SSC 

S
S
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 Q 

Class 1: Simultaneous peak of SSC and discharge  

Class 2: (Clockwise): SSC peaking before 
discharge 

Class 3: (anticlockwise): Discharge peaking before SSC 
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2.7.5. Sediment dynamics linked to particle availability  

 

The availability of particle is defined as the quantity which can mobilize from sediment 

sources such as soil erosion from the catchment and channel erosion. The availability is 

susceptible to vary throughout the year and seasonal floods. The variability in event sediment 

transport during successive peaks of similar magnitude is influenced by sediment exhaustion 

effects. An example is the progressive reduction in suspended load at different temporal 

scales (within floods and within multiple-peak events, during a succession of events, and 

seasonally) related to the exhaustion of sediment availability. Alexandrov et al. (2003) 

observed that due to a sediment exhaustion effect, SSC levels during secondary floods in the 

Nahal Eshtemoa basin (Israel) were lower than those observed during a primary flood. The 

role of in-channel sediment storage, which controls suspended sediment transport during 

inter-flood periods of stable flow (Smith and Dragovich, 2008) is taken into account. 

Therefore, after a period of relatively high sediment transport (supply-rich floods), sediment 

becomes less and less available from the channel (exhaustion phenomenon) and sediment 

concentrations recorded during successive floods events are consequently lower (Walling, 

1978). Lots of studies used the variability of the relationship between suspended sediment and 

discharge to identify the particle sources. The form of the curve is function of flow velocity 

and distance of sediment sources compared with a sampling point (sampling station).  

2.8. Measurement of suspended sediment concentrations in rivers 
 
There are many different techniques of suspended sediment concentration presented by Wren 

et al. (2000) such as acoustic, bottle sampling, pump sampling, focused beam reflectance, 

laser diffraction, nuclear, optical and remote spectral reflectance methods. Only some 

methods from existing literature are presented as following:  

2.8.1. Water sampling 

 
This method is very simple and direct. We conduct the sampling manually or by automatic 

sampling then we filter the water through filter paper such as nitrocellulose filter (GF 0.45 

µm) or glass microfiber filter paper (Whatman GF/F 0.7 µm). After that, the filter is dried in 

an oven and then weight in order to determine suspended sediment concentration (SSC). 

Glass microfiber filter can be burnt to analyse other particulate matters such as particulate 

organic carbon etc.    
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2.8.2. Turbidity measurement  

 
This method is mostly preferred to measure continuously the suspended sediment in the 

streams (Gippel 1995; Sadar 2002; Downing 2005). Continuous records of SSC can be 

obtained simply and conveniently by monitoring the turbidity of the river water, provided 

there is a close relationship between fluctuations in sediment concentration and turbidity. 

Thus, it needs sampling of SSC for a large range of hydrological conditions (high flow and 

low flow). Turbidity can be defined as an optical property of a water sample, which measures 

the degree to which a beam of light passing through the water is absorbed or scattered. 

Turbidity can be measured by turbidimetry or nephelometry (Minella et al., 2008). The former 

measures the attenuation or absorption or a ray of light as it passes through a liquid medium 

and the latter measures the degree of scattering that the light undergoes. Scattering refers to 

the light that is reflected or refracted by the surface of a particle, and absorption refers to light 

that is transformed into other forms of energy (such as heat) upon collision with a particle.  

2.8.3. Acoustic method  

 
Short bursts (≈10µs) of high frequency sound (1 to 5 MHz) emitted from a transducer are 

directed toward the measurement volume. Sediment in suspension will direct a portion of this 

sound back to the transducer (Thorne et al., 1991). When the sediment is of uniform size, the 

strength of the back scattered signal allows the calculation of sediment concentration. The 

water column is sampled in discrete increments based on the return time of the echo. The 

backscattered strength is dependent on particle size as well as concentration. This method is 

advantageous for good spatial and temporal resolution and measures over wide vertical range 

and nonintrusive. However, backscattered acoustic signal is difficult to translate and the 

signal attenuates at high particle concentration.  

2.8.4.  Acoustic Doppler Current Profiler (ADCP) method 

 
Various authors (Holdaway et al., 1999; Hoitink et Hoekstra, 2005; Dinehart et Burau 2005; 

Kostaschuk et al., 2005) have used ADCP method in their studies. This method is based on 

the same principle as acoustic method but used the profiler Doppler, dedicated initially to 

flow measurement. Indeed, the signal intensity gives information on suspended sediment 

concentration in water column by the sonar equation. This method is importantly 

advantageous to be capable of measuring the complete profile within the river cross-section 

rapidly. Yet, the calibration through sampling method is necessary to inverse the intensity 
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signal in concentrations. The measurement can carry out continuously by using a senor type 

H-ADCP, installed permanently on the river bank.      

2.8.5. Nuclear Method 

 
Nuclear measurement utilizes the attenuation or backscatter of radiation. There are three basic 

types of nuclear sediment gauges: (1) those that measure backscattered radiation from an 

artificial source; (2) those that measure transmission of radiation from an artificial source; and 

(3) those that measure radiation emitted naturally by sediments (McHenry et al., 1967; Welch 

et Allen., 1973; Tazioli 1981). The first two have the broadest applicability. In backscattered 

gauges, radiation is directed into the measurement volume with the radioactive source isolated 

from the detector by lead. A sensor in the same plane as the emitter measures radiation 

backscattered from the sediment. In transmission gauges, the detector is opposed to the 

emitter and the attenuation of the radiation caused by the sediment is measured and compared 

to the attenuation of the rays caused by passage through distilled water. The ratio between 

these measurements allows calculation of sediment concentration. This method has low power 

consumption and can measure wide particle size and concentration range but the sensitivity is 

low.  

2.8.6. Optical measurement  

 
In this method, backscatter or transmission of visible or infrared light through water-sediment 

sample is measured. It is simple with good temporal resolution and allows remote deployment 

and data logging, relatively inexpensive. However, this method exhibits strong particle-size 

dependency, flow intrusive, point measurement only and instrument fouling.  

2.8.7. Laser measurement  
 

This method is based on the refraction angle of laser incident on sediment particles to be 

measure. There is no particle dependency but this method is unreliable, expensive, flow 

intrusive, point measurement only with limited particle-size range. Phillips & Walling (1995) 

used laser backscatter probe to measure the particle size characteristics of fluvial suspended 

sediment.  
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2.9. Organic carbon transport 

2.9.1. Global carbon and water cycle 
 

The increase in atmospheric CO2 concentrations and the associated effects on the global 

climate have catalyzed the need for improved understanding of the carbon cycle (Robertson et 

al., 1996; Aumont et al., 2001). The role of hydrology in the carbon budget in terms of carbon 

fluxes at the catchment scale is focused. Carbon is stored on our planet in several major sinks: 

(1) as the gas carbon dioxide (CO2) in the atmosphere; (2) in terrestrial ecosystems (living-

dead biomass and soil); (3) fossil fuels and sedimentary rocks in the lithosphere; (4) the ocean 

carbon stocks and calcium carbonate in the marine organisms (Pidwirny; 2000). Soil carbon is 

a major component of the global inventory and exerts significant influence on carbon 

dynamics in connection with changes in climate and landuse (Sheimel et al., 1994). Soil 

organic carbon comprises approximately two-thirds of terrestrial carbon storage (Schimel et 

al., 1990; Townsend et al., 1992) or sink (Tans et al., 1990; Harrison et al., 1993) of carbon 

dynamics in response to climate changes and atmospheric CO2. Water, organic carbon and 

other chemical substances in hydrological processes are connected through ecosystem 

processes and are strongly influenced by climate. Human activities have also significantly 

affected hydrological processes and nutrient cycling in terrestrial and freshwater aquatic 

ecosystems (Galloway et al., 1995). Land cover changes affect hydrological processes and 

these changes interact with organic carbon and nutrients in many significant ways. For 

example, landuse and land management activities affect the hydrological response of a system 

and thus nutrient fluxes through changes in land cover, evapotranspiration, and soil 

characteristics. These changes are followed by feedback mechanisms among water, carbon, 

and other chemical substances that bring further changes in these linked processes (Alexander 

and Smith, 1990). Recent studies on river ecosystems have shown that streamflow, primary 

production and litter pool sizes in catchment and the development of agriculture in 

catchments are major processes which influence the fluxes of organic carbon in river 

(Robertson et al., 1996). A review by Robertson et al. (1996) revealed three main categories 

of factors which govern organic carbon fluxes in catchments: streamflow, land management 

and quality of carbon.  

2.9.2. Significance of organic carbon in rivers  

 
The hydrological flux of organic carbon in rivers is a significant and essential element of river 

ecosystem (Robertson et al., 1996).  Previous studies and findings on river ecosystems have 
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shown that hydrology, vegetation productivity, litter pool size and soil organic carbon in the 

catchment are the major agents which affect the fluxes of organic carbon in streams and rivers 

(Meybeck and Varosmarty, 1999; Neff and Asner, 2001; Raymond and Bauer, 2001; 

McDowell, 2002).  Sarin et al. (2002) suggested that the hydrological flux of organic carbon 

is a minor but important component of the global carbon cycle. The transfer of organic carbon 

from terrestrial environments to the oceans and marine ecosystems may present a significant 

flux of organic carbon at a regional landscape scale (Meybeck and Varosmarty, 1999; Sarin et 

al. 2002).  

 
The global system of river is increasingly being recognized as a major component of the 

carbon cycle. This is because of the important role of rivers in the terrestrial water cycle, 

regulating the mobilization and transfer of components from the land to the oceans. The 

erosion and transport of riverine organic carbon by rivers through surface runoff and 

streamflow from terrestrial ecosystems to the oceans provide a fundamental link in the global 

carbon cycle. This hydrological flux of organic carbon is correlated with the environmental 

properties of catchments in terms of climate (rainfall, temperature, evaporation, 

evapotranspiration) and hydrological processes (runoff coefficient, streamflow, unit 

hydrograph, flow duration curve) (Seitzinger and Kroeze, 1998; Meybeck and Vorosmarty, 

1999). 

 
Although anthropogenic activities have been altering these links for a long time, their impacts 

have accelerated in the past few decades causing significant regional and global changes 

(Robertson et al., 1996). Human activities including landuse and land cover changes affect 

hydrological processes and that these processes interact with carbon in many significant ways 

(Potter, 1991), certainly having major effects on; for example, rates of dissolved and 

particulate organic carbon (DOC and POC) that are leached or flushed from the land surface 

to river networks (Shlesinger, 1986). In spite of the considerable number of research activities 

over the past decades in relation to the global carbon cycle, the hydrological fluxes of organic 

carbon (DOC and POC) in rivers are still poorly understood (wood et al., 2002). The failure 

by the modelling to recognize the significance of the hydrological flux of organic carbon is 

not because water sampling data are inadequate. It is more oversight in the modelling.  

Regardless of the role of hydrological and terrestrial organic carbon fluxes in the global 

carbon cycle, terrestrial organic carbon inputs provide the energy that drives aquatic food 

webs, particularly in forested rivers with low in-stream productivity. Organic carbon is a 
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carrier of energy flow through environmental systems (Rosenfeld and Roff, 1992; Galloway 

et al., 1995). The more reactive constituents of organic carbon make a significant contribution 

to heterotrophic metabolism in rivers (Kieber et al., 1989). These compounds of organic 

carbon also interact with other organic components and are absorbed by the surfaces of 

mineral solids, thus affecting the surface chemistry (pH, Alkalinity) and rate of aggregation    

(Raymond, 2005). Organic carbon especially DOC is an importance source of food for 

heterotrophic bacterial production, stimulating the bioavailability of iron to phytoplankton 

and providing some protection for aquatic organisms (McDowell, 2002). DOC also affects the 

complexity, solubility and mobility of metals, thus reducing the toxicity of these metals in 

rivers. Organic carbon input of DOC and POC play a central role in stream chemistry because 

they affect pH, and alkalinity, and acts as a substrate for microbial production (Dillon and 

Molot, 1997). As a result, the importance of the role of organic carbon in rivers can be 

productivity and significant impacts on food webs and bioavailability and toxicity of metals.  

2.9.3. The link between hydrological flow and organic carbon fluxes 

 
Variations in hydrological flow through terrestrial ecosystems have significant impacts 

including on the rates of dissolved and particulate substances. Predicting these changes 

requires an understanding of the relationship between organic carbon and its hydrological 

fluxes in terrestrial and riverine systems. Measurement of organic carbon concentrations 

(DOC and POC) and corresponding hydrological variables such as rainfall, and streamflow at 

comparable temporal and spatial scales must primarily be obtained. No full estimation is 

possible of organic carbon transported by rivers if there is no appropriate monitoring data 

such as climate, hydrological, and organic carbon data (Fuhrer et al., 1999). Variation in 

streamflow is the major controlling factor in the supply of carbon from catchments to the river 

networks. It is also a key factor controlling the rates, forms and distribution of primary 

production in the catchment and river. However, the relationship between discharge 

variations, and the transport of dissolved organic carbon (DOC) and particulate organic 

carbon (POC) through the river networks is still lacking.   

2.9.4. Sources and origins of organic carbon 

 
A major source of organic carbon (DOC and POC) is the carbon pools of terrestrial biosphere 

(Esser and Kohlmaire, 1989; Bauer and Druffel, 1998). These pools consist of living biomass 

(above ground biomass), dead biomass (litter) and soil organic carbon (SOC) largely resulting 
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from litter (WBGU, 1998). Figure (2-8) shows the carbon compartments of a terrestrial 

ecosystem (carbon dynamics).  

 

 
 

Figure 2-8: The carbon compartments of a terrestrial ecosystem (carbon dynamics) source: 
WBGU, 1998 

 

Organic carbon in rivers can be classified into three size-classes of particles, in two main 

categories (Wotton, 1994): 

- Particulate organic carbon or POC which includes: coarse particulate organic carbon 

(CPOC) (diameter >1mm) and fine particulate organic carbon (FPOC) (0.45µm to 1 mm) 

- Dissolved organic carbon (DOC) (<0.45µm) 

 

POC mainly originates from soil and riparian/litter environments. The main sources of coarse 

particulate organic carbon are fallen leaves, woody debris from the catchment and water plant 

(Maltby, 1992; Walker et al., 1994; Allan, 1995). FPOC includes the products of CPOC 

breakdown, and aggregation of DOC, litter and soil material (Meybeck, 1982; Ward et al., 
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1994; Robertson et al., 1996). DOC is leached through catchment litter and soil organic 

carbon, which is imported in groundwater and produced by algae and water plants (Wotton, 

1994; Robertson et al., 1996). DOC derives mainly from recent organic matter from topsoils 

in the catchment (Hélie and Hillaire-Marcel, 2006).  

 

CPOC and FPOC can be consolidated into particulate organic carbon (POC). The total pool of 

instream organic carbon (TOC) therefore consists POC and DOC. This consolidated pool 

(TOC=POC + DOC) contains organic carbon from autochthonous (in-stream) sources and 

allochthonous (off-stream) sources (Robertson et al., 1996). An input of carbon through land 

or allochthonous sources is usually greater in amount than the input of organic carbon 

generated through aquatic plants within the stream channel (Lovett and Price, 1999).  

2.10. Overview of soil erosion and sediment transport models  
 
There are many existing sediment transport models which have been developed in recent 

decades. These models are based on statistical, empirical, conceptual or distributed approach.  

Aksoy et Kavvas (2005) have done a review of hillslope and catchment scale erosion and 

sediment transport models.  

2.10.1. Statistical models   

 
The simple relation between discharge and suspended sediment concentration ( bQ.aC = ) was 

also frequently used to generate suspended sediment concentrations (Serrat, 1999; Asselman, 

2000; Horowitz, 2003; Smith, 2008, Picouet et al. 2009). This type of relation can be defined 

by different temporal variability (hourly, daily, seasonal or annually). The performance is 

extremely variable in accordance with many controlling factors such as river discharge, 

catchment physiographic conditions, deposition/transport phenomenon, management practices 

within the catchment and seasons. For instance, Smith (2008) presented a sediment-discharge 

rating curve to estimate sediment load in an upland headwater catchment (53.5 km2) of the 

Lachlan River in south-eastern Australia based on seasonal rating curve (Figure 2-9).   
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Figure 2-9: Catchment seasonal rating curves showing long discharge (Q) and log suspended 
sediment concentrations (SSC) with 95% confidence intervals for (a) summer-autumn and (b) 

winter-spring period (From Smith 2008) 
 

Picouet et al. (2009) established two SSC-discharges relationship based on the rising stage of 

the flood and the falling stage of the flood to simulate SSC in Upper Niger River Basin. The 

two statistical equations were presented as following:  

- For rising stage, the equation is a power function   C=a1 Q
b1 

- For falling stage, the equation is a linear function C= a2 + b2 Q  

 

The variability of the relation could be explained by hysteresis effects during strong sediment 

transport event and deposition along the river within the catchment. The variability could be 

linked to the sediment stock which is easily mobilized during flood events reaching the 

sufficient capacity to transport those sediments.   
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2.10.2. Empirical models  

 
These models were established from many empirical experiments from lots of catchments or 

agricultural plots (Universal Soil Loss Equation).  

 

o Universal Soil Loss Equation (USLE) 

The Universal Soil Loss Equation (Wischmeier et Smith 1978) is given by: 

 

PSLCKRE ×××××=                                                          (2-7) 
Where,  

E: average annual soil loss (t ha-1 year-1) 

R: rainfall erosivity factor (MJ mm ha-1 year-1)  

K: soil erobility factor ( t ha h ha-1 year-1) 

C: cropping management factor 

L: length of the slope 

S: slope 

P: supporting conservation practice factor 

 

This equation is based on the huge amount of data from the United States. This equation was 

established originally to estimate the soil loss from agricultural plot and nowadays it is used 

to assess specific sediment flux at catchment scale by using calibrating parameters in the 

model. Its modified version (MUSLE) has been an attempt to compute soil loss for a single 

storm event. The USLE was revised (RUSLE) (Renard et al., 1991) and revisited (Renard et 

al., 1994) for improvement. A revised version of the USLE (RUSLE, Revised USLE) has 

been proposed by Renard et al. (1997) to replace the empirical model with a more conceptual 

one. However, the original model is still used in many countries since it represents an 

appropriate method for combining acceptable accuracy with relative simplicity and the ability 

to use quite basic data (Risse et al., 1993; Kinnell and Risse, 1998; Hann and Morgan, 2006). 

 

o Modified Universal Soil Loss Equation (MUSLE)                                         

Williams (1995) developed the MUSLE by replacing the rainfall energy factor in the USLE 

with a runoff energy factor. The equation was developed using individual storm data from 18 

basins in Texas and Nebraska and subsequently validated on 102 basins throughout the 
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United States using runoff data generated by the hydrologic component of the SWRRB model 

(Williams, 1982). The MUSLE is: 

 
                        ( ) PSLCKQq8.11E p ×××××=                                                    (2-8) 

 
Where, 
 

- E: sediment yield (metric tonnes) 

- Q: runoff volume (m3) 

- Qp : peak runoff rate (m3 s-1) 

- K, C, LS and P are the standard USLE factors for soil erodibility, crop management 

(cover), slope length-gradient, and erosion control practice. 

 
The main advantages of MUSLE are its simplicity, the direct conceptual and physical 

relevance of its factors, the large data base upon which the empirical relationship was 

developed, and the capability to insert management considerations into factor selection. The 

main disadvantages are that the model is empirical and does not consider all physical factors 

affecting sediment yield, and generally there are fairly large errors associated with both soil 

loss (USLE) and runoff estimates. 

 

o Ludwig and Probst empirical equation 
 

In 1998, Ludwig and Probst proposed an empirical relation to estimate specific sediment 

fluxes. This empirical equation was established from 58 catchments. The equation was based 

on the correlation from many explaining variables (hydro-climatic, lithological, pedological, 

morphological, and biological factors). Only significant parameters which were taken into 

account in order to avoid parameter multiplication. Thus, the equation is presented as below:     

 

SlopeFOURQ020.0y ×××=                                                       (2-9) 
(n=58; r = 0.91) 

Where, 

y: suspended sediment-specific load (t km-2 year-1)  

Q: mean annual water yield (mm) 

FOUR: sum of the square of the mean monthly precipitations over then mean annual 

precipitation for all 12 months of the year (mm) 
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2.10.3. Conceptual models  

 
Many conceptual models were created before and at the same time with the huge development 

of deterministic models, such as LASCAM (Viney and Sivapalan, 1999), Negev model, Lee 

and Singh reservoir model (Lee and Singh, 2005), Gafref model (Gafrej, 1993). 

 
� LASCAM (Viney and Sivapalan, 1999) 
 

LASCAM is a conceptual model of sediment transport which was developed from an existing 

conceptual model of water and salt fluxes (LASCAM) coupling with sediment modeling 

algorithm (Viney and Sivapalan, 1999). In the model, sediment generation is based on a 

modified version of the universal soil loss equation. However, the developed sediment 

transport algorithm does not discriminate between sediment size classes. This model was 

originally developed to predict of the effect of landuse and climate change on the daily trends 

of water yield and quality in forested catchment in Western Australia.  

 

� Lee and Singh reservoir model (Lee and Singh, 2005) 
 

The sediment component of model is based on the hydrological model of reservoir from Tank 

model (Sugawara, 1995). Three tanks were used in this study. Each tank represents a specific 

runoff component: the first tank represents the surface runoff component, the second tank 

represents the intermediate runoff (or interflow), and the third tank represents the groundwater 

runoff component (or baseflow). Similarly, it is assumed that the sediment yield from the first 

tank was produced by surface runoff, the second tank by intermediate runoff and the third 

tank from groundwater runoff. The sediment concentration was determined in each tank based 

on the sediment production of unit hydrogramme. The detail of the sediment module in tank 

model was well reported in Lee and Singh (2005).   

2.10.4. Physically- based catchment erosion models  

 
A number of physically-based models such as CREAMS (Knisel, 1980), ANSWERS 

(Beasley et al., 1980), KIREROS (Smith, 1981), WEPP (Nearing et al., 1989), HSPF 

(Bicknell et al., 1997), EUROSEM (Morgan et al., 1998), SWAT, (Arnold et al., 1998), 

SHETRAN (Ewen et al., 2000), AnnAGPS (Binger and Theurer, 2003) have been used to 

study sediment transport at the catchment scale. Some model descriptions were presented as 

following:   
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� CREAMS (Knisel, 1980) 
 

CREAMS (Chemicals, Runoff, and Erosion from Agricultural Management Systems) have 

the sediment transport component which analyzes the interrill area and rill separately. 

Detachment on both rill and interrill area is determined by the modified USLE. The procedure 

allows parameters to change along the overland flow profile and along waterways to describe 

spatial variability (Foster et al., 1981).  

 

� ANSWERS (Beasley et al., 1980) 
 

The ANSWERS model (Areal Nonpoint Source Watershed Response Simulation) is a 

catchment scale, distributed parameter, event oriented, physically based model. The 

ANSWERS was developed to simulate the influence of catchment management practices on 

runoff and sediment loss. The overall model structure consists of a hydrological model, a 

sediment detachment and transport model, and several routing components necessary to 

describe the movement of water in overland, sub surface and channel flow phases. The model 

operates on cell basis. Soil detachment, transport, and deposition are modelled as a function 

of the precipitation and the runoff process. The erosion process assumes that sediment can be 

detached by both rainfall and runoff but can only be transported by runoff.  

 

� KIREROS (Smith, 1981) 
 

KINEROS (Kinematic Erosion Simulation) model is composed of elements of a network such 

as planes, channels or conduits, and ponds or detention storages, connected each other. 

Channel erosion is taken the same as upland erosion except for the omission of the splash 

erosion as it is no longer effective on erosion in the channel phase. KINERO is an extension 

of KINGEN model developed by Rovey et al. (1977), with incorporation of erosion and 

sediment transport components. The sediment component of model is based upon the one 

dimensional unsteady state continuity equation. Erosion/deposition rate is the combination of 

raindrop splash erosion and hydraulic erosion/deposition rates. The model does not explicitly 

separate rill and interrill erosion.  

 

� WEPP (Nearing et al., 1989) 

 
WEPP (Water Erosion Prediction Project) is a continuous simulation model that predicts 

sediment yield and deposition from overland flow on hill slopes, sediment yield and 
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deposition from concentrated flow in small channels, and sediment deposition in 

impoundments. The model divides runoff between rills and interrill areas; thus, it calculates 

the erosion in the rills and interrills separately. The model computes spatial and temporal 

distributions of sediment yield and deposition, and provides explicit estimates of when and 

where in a catchment or on a hill slope that erosion occurs so that conservation measures can 

be selected to most effectively control soil erosion (Flanagan and Nearing, 1995).  

 

� HSPF (Bicknell et al., 1997) 
 

HSPF (Hydrological Simulation Program Fortran) is a deterministic, lumped-parameter 

continuous time model which can also be used as a distributed parameter model as it 

reproduces spatial variability by dividing the basin in hydrologically homogeneous land 

segments and simulating runoff for each land segment independently. HSPF simulates three 

sediment types (sand, silt, and clay), in addition to single organic chemical and transformation 

products of that chemical. Re-suspension and settling of silt and clay (cohesive solids) are 

defined in terms of shear stress at the sediment-water interface. For sand, the capacity of the 

catchment or channel system to transport sand at a particular flow is calculated and re-

suspension or settling is defined by the difference between the sand in suspension and the 

capacity. Calibration of the model requires data for each of the three solid types. 

 

� EUROSEM (Morgan et al., 1998) 
 

The European Soil Erosion Model (EUROSEM) is a dynamic distributed (process-based) 

model designed to simulate the erosion, transport and deposition of sediment over the land 

surface by interrill and rill processes (Morgan et al., 1998). The model can be applied to 

individual storm events and to spatial scales ranging from small fields to small catchments. It 

is designed particularly to predict soil loss from those storms that contribute most of the 

annual soil loss since it was thought that erosion was dominated by only a few events per 

year. EUROSEM has explicit simulation of interrill and rill flow; plant cover effects on 

interception and rainfall energy; rock fragments or stoniness effects on infiltration, flow 

velocity and splash erosion; and changes in the shape and size of rill channels as a result of 

erosion and deposition. 
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� SWAT (Arnold et al., 1998) 
 

SWAT is a physically based, semi distributed parameter, catchment scale model that operates 

on a continuous daily time step. The model simulates hydrological processes, sediment yield, 

nutrient loss, and pesticide losses into surface/groundwater and the effects of agricultural 

management practices on water in large ungauged watersheds (Arnold et al., 1998). SWAT 

incorporates the effects of weather, surface runoff, evapotranspiration, crop growth, irrigation, 

groundwater flow, nutrient loading, pesticide loading, and water routing, as well as the long-

term effects of varying agricultural management practices (Neitsch et al., 2002, 2005). 

Sediment yield is estimated from the Modified Universal Soil Loss Equation (MUSLE). 

SWAT has been applied extensively for streamflow, sediment yield, and nutrient modelling in 

both small and large agricultural catchment.  
 

� AnnAGPS (Binger and Theurer, 2003) 
 

AnnAGPS is a batch-process, continuous simulation, daily time step, pollutant-loading model 

developed to simulate longterm runoff, sediment, and chemical transport from agricultural 

catchments (Cronshey and Theurer, 1998; Bingner and Theurer, 2003). It is a direct 

replacement for the single event model, Agricultural Non-Point Source (AGNPS) (Young et 

al., 1989), and retains many features of AGNPS (Yuan et al., 2001). Unlike AGNPS, 

AnnAGNPS divides the catchment into drainage areas with homogenous land use, soils, etc. 

and integrates these areas by simulated rivers and streams that route runoff and pollutants 

from each area downstream. AnnAGNPS uses the RUSLE to calculate sediment delivered to 

a field edge as a result of runoff from any type of precipitation. 

2.11. Uncertainties of catchment model simulation  
 
Uncertainties in the simulation are the important issue to consider in the simulation of 

hydrology, sediment yield. The main sources of uncertainties are: 

o Simplifications in the conceptual model. For instance, the simplifications in a 

hydrological model, or the assumptions in the equations for estimating surface erosion 

and sediment yield, or the assumptions in calculating flow velocity in a river. 

o Processes occurring in the catchment but not included in the model such as wind 

erosion, soil losses caused by landslides.  
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o Processes which are included in the model but their occurrences in the catchment are 

unknown to the modeler or unaccountable; for instance, reservoirs, water diversions, 

irrigations, or farm management affecting water quality.  

o Processes that are not known to the modeler and not include in the model. These 

include dumping of waste material that may last for a number of years and drastically 

changes the hydrology or water quality such as construction of roads, bridges, tunnels, 

and dams.  

o Errors in the input variables such as meteorological data (precipitation, temperature, 

etc.)  

o Errors in the observed data such as observed flow, sediment data.  

2.12. Synthesis of literature review 
 
In this chapter, we addressed catchment soil erosion, the origins of suspended sediment and 

transport processes that govern its dynamics in the river. Soil erosion and transport of 

suspended sediment are complex and involve many factors such as rainfall erosivity, soil 

erodibility, soil occupation, topography. Hydrological factor is the main agent in mobilizing 

the sediment to the catchment outlet. The relationship between suspended sediment and 

discharge known as hysteresis patterns was explained. The location of sediment sources 

(sediment nearby the sampling station, river deposited sediment, hillslope sediment) is 

important to characterize the hysteresis class (symmetric line, clockwise, anticlockwise or 

complex pattern). The analysis of hysteresis through different flood events could be used to 

interpret sediment sources.  To measure suspended sediment in river, different methods were 

presented. The choice of the method depends on the sediment range of the river which is 

observed and also the availability of the instruments. Among these methods, turbidity 

measurement is mostly preferred to measure continuously. The carbon cycle, relationship 

with hydrological processes and their origins were described in this chapter. This explained 

the link between hydrological flow and organic carbon fluxes. At the end of the chapter, a 

review of existing sediment transport models was introduced. Among these models, SWAT 

will be used in this study. The model is free assessable and user friendly environment.  

 

The next chapter will present the methods used to accomplish the objectives of the research.   

 

 

 



Chapter 2. Suspended sediment, organic carbon transport and modelling 

 - 42 - 

 

 



Chapter 3. Materials and Methods 

- 43 - 

 
 
 
 
 

Chapter 3 Materials and methods 
 
 
This chapter describes the materials and methods used to accomplish the objectives. The 

materials concern with the description of the study area (localisation, soil, landuse and 

hydro-climatic regime), installation of automatic water sampler and Sonde, and instruments 

to determine suspended sediment, dissolved and particulate organic carbon. The model 

selection and description of the model concepts were also described.    
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3.1. Study area 

3.1.1. General description and location   

 
The Save catchment, located in the area of Coteaux de Gascogne, is an agricultural catchment 

of 1110 km2 and has its source in the piedmont zone of the Pyrenees Mountains (south-west 

France) at an altitude of 600 m, joining the Garonne River after a 140 km course with a linear 

shape and an average slope of 3.6‰ (Figure 3-1). This catchment lies on detrital sediments 

from the Pyrenees Mountains. It is bound on the east by the Garonne River, on the south by 

the Pyrenees and on the west by the Atlantic Ocean. The catchment elevation ranges from 98 

to 620 m. There are 5 meteorological stations within the catchment.  

Gascogne area
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Figure 3-1: Location and topography of study area (Source: Cemagref de Bordeaux            

(UR ADBX)) 
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3.1.2. Soil and geomorphology  

 
Throughout the Oligocene and Miocene, this catchment served as an emergent zone of 

subsidence that received sandy, clay and calcareous sediments derived from the erosion of the 

Pyrenees Mountains, which were in an orogenic phase at that time. The heterogeneous 

materials were of low energetic value and produced a thick detrital formation of molasse type 

in the Miocene. From the Pleistocene onwards, the river became channelized, cutting broad 

valleys in the molasse deposits and leaving terraces of coarse alluvium (Revel and Guiresse 

1995). The substratum of the catchment consists of impervious Miocene molassic deposits.  

 

  
 

Figure 3-2: Major soils in the Save catchment (source: Cemagref de Bordeaux (UR ADBX) 
 
In this area, which has been cultivated since the Middle Ages, mechanical erosion by 

ploughing has had a greater impact on downward soil displacement than water erosion, with a 

major impact on surface relief, mainly on levelling and soil distribution (Guiresse and Revel, 
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1995). Very weak erosion has led to the development of calcic luvisols (UN FAO soil units) 

on the tertiary substratum and local rendosols on the hard calcareous sandstone beds. On 

hillsides with very gentle slope, the calcic cambisols have been subjected to moderate erosion. 

Non-calcic silty soils, locally named boulbènes, represent less than 10% of the soil in this 

area. Calcic soils are dominated by a clay content ranging from 40% to 50%, while non-calcic 

soils are silty (50-60%). There are 29 soil classes within the Save catchment presented in 

Figure 3-2. However there are some soil types which are found dominant in the whole 

catchment. The Deep calcaricsoil (R 212) is dominant at the dowstream area while the 

upstream area is mainly Calcaric Lithosol (R 520). The plane alluvial of the Save is composed 

of Calcaric Fluvisol (R 131) while he other zones are heterogonous, particularly the ancient 

terraces at the upstream area.    

3.1.3. Landuse and management practices 

 
The upstream part of the catchment is a hilly agricultural area mainly covered with dominant 

pastures and little forest. The downstream catchment is flat and devoted to intensive 

agriculture with many crop types such as winter wheat, corn, sunflower, soybean, cabbage 

etc. (90% of the area used for agricultural purposes) (Figure 3-3). Sunflower and winter wheat 

in rotation are mainly dominated at the downstream of the Save.  

For pastures, there is one rotation of corn during a period of 4 years. Tillage works were 

practiced during April within this area. For sunflower-winter wheat rotation, the planting date 

of sunflower is on April 10 then is harvested on July 10. After that, winter wheat begins on 

October 9 then it is harvested on July 10, following year. The rotation of winter wheat-

sunflower follows the same pattern by plant begins of winter wheat on October 9 and it is 

harvested on July 10. For following year, sunflower is planted on April 10, is harvested on 

July 10. The soil cover is empty from July through April during this rotation once per two 

years. 
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Figure 3-3: Landuse in the Save catchment with major agricultural land (Macary et al. 2006)  

 

3.1.4. Climate and hydrology  

 
The climatic conditions are oceanic, with annual precipitation of 700-900 mm and annual 

evaporation of 500-600 mm. The dry period runs from July to September (the month with 

maximum deficit) and the wet period from October to June (Ribeyeix-Claret, 2001). The 

mean temperature of the catchment is 13 °C with a minimum in January (5°C in average) and 

a maximum in August (20°C in average).  

 

 The hydrology regime of the catchment is mainly pluvial, i.e. regulated by rainfall 

(Echanchu, 1988), with maximum daily discharge in spring and low flows during summer 

(July to October). The summary of mean monthly discharge, specific discharge and runoff 

was presented in Figure 3-4.  
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Figure 3-4: Summary of mean monthly discharge (m3 s-1), specific discharge (l s-1 km2) and 
runoff (mm) in the Save catchment at Larra gauging station (1965-2006) (Data from CAGG)                          

(banque hydro http://www.hydro.eaufrance.fr/) 
 
 
The catchment substratum is relatively impermeable due to its high clay content. 

Consequently, the river discharge is mainly supplied by surface and subsurface runoff, and 

groundwater is limited to alluvial and colluvial phreatic aquifers. The maximum instantaneous 

discharge for the long-term period (1965-2006) is 620 m3 s-1 (1st July 1977) (data from 

CACG: Compagnie d’Aménagement des Coteaux de Gascogne). During the low flow 

periods, the Save River was sustained by the Neste canal about 1 m3 s-1.  

3.2. Instrumentation and water quality monitoring  

3.2.1. Sonde YSI and Ecotech preleveur 

 
Sonde YSI 6920 (YSI incorporated, Ohio, USA) measuring probe and Automatic Water 

Sampler (EcoTech Umwelt-Meßsysteme GmbH. Bonn, Germany) were used for water quality 

monitoring in the studied catchment at Larra sampling station (Figure 3-5). The sonde can 

contain with many sensors such as nitrate, turbidity, pH, oxygen, redox, electrical 

conductivity. Each sensor has to be calibrated before installing in the river. EcoTech can be 

programmed to activate the sampling based on water level variations and time intervals. The 
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automatic water sampler contains 24 bottles of 1 litre, which allows taking many water 

samples during both small and high magnitude flood.   

 
 

       
 
 

       
 

 
Figure 3-5: Sonde YSI 6920 and Ecotech Preleveur with 24 of 1 litter bottles 

 

3.2.2. Calibration processes of Sonde 

 
The Sonde has been calibrated before installing at Larra gauging station. The sensors of each 

parameter were calibrated separately as following:   

 
- Depth with one point at zero in atmospheric environment   

- Conductivity: 1413 µs/cm at 25 °C 

-  pH with three points: 7 (-40mV and 40 mV), 4 (140 et 220 mV); 10 (170 and 180 

mV)   
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- Nitrate with three points: 100 mg l-1, 1 mg l-1, and 1 mg l-1 at cold temperature lower 

than 10 °C  

- Turbidity with two points: 0 and 1000 NTU (Nephelometric Turbidity Units) 

3.2.3. Physico-chemical parameters in situ and water sampling  

 
We installed Sonde YSI 6920 (YSI Incorporated, Ohio, USA) measuring probe and 

Automatic Water Sampler with 24 bottles of 1 litre at the Save catchment outlet (Larra 

bridge) in January 2007 (Figure 3-6). The Sonde was positioned near the bank of the river 

under the bridge, where homogeneity of water movement was properly considered for all 

hydrological conditions. The pump inlet was placed next to the Sonde pipe. The dissolved 

oxygen content, electrical conductivity, nitrate, pH, turbidity and water level were recorded at 

10-min intervals. The values of the different parameters in water were detected by sensors on 

the Sonde YSI and the data then transferred to the ecoTech memory. We programmed the 

Sonde to activate the automatic water sampler for pumping water. The automatic water 

sampler was activated by water level variations )cm(x∆ ranged from 10 cm to 30 cm, 

depending on seasonal hydrological conditions for both the rising and falling stage. This 

sampling method provided high sampling frequency during flood events.  Manual sampling 

was also carried out using a 2 litter bottle lowered from the Larra bridge, near the Sonde 

position, at weekly intervals when water levels were not remarkably varied. Temperature, pH, 

and electric conductivity were measured by WTW instrument (pH/Cond 340i/SET) at the 

field for weekly water samples.  
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Figure 3-6: Schema of installing water quality monitoring system at Larra station: A) pump 
inlet and Sonde pipe, B) Automatic Water Sampler EcoTech, C) Sampling site at Larra bridge 

3.3. Technical problems   
 
During the study period, several technical problems such as sensor derivation and crushing 

led to occasional difficulties in measuring continuous water turbidity. Sensors were exhausted 

after a period of 3 to 5 months; therefore, each sensor had to be recalibrated or possibly 

replaced by the new one. By so doing, we could avoid from signal errors resulting from 

A B 

C 
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sensor derivation. However, we missed continuous measurements for some flood periods, but 

we carried out intensive manual sampling, particularly during the flood events.  

3.4. Determination of suspended sediment and organic carbon 

3.4.1. Filtration and determination of suspended sediment concentration 

 
We filtered the water samples from both manual and automatic sampling in the laboratory 

using pre-weighed nitrocellulose filter (GF/F 0.45 µm) to separate the suspended sediment 

fraction. We filtered water volume, ranging from 150 ml to 1000 ml according to the particle 

load. After filtration, the filters containing suspended particles were dried at 40 °C for 48 

hours then weight again to determine suspended sediment concentration (Figure 3-7).  

 

                                                     
   Water samples                                                       Filtration material 

 

                                      
                            Incubator                                                            Filters after filtration  

 
Figure 3-7: Photo of filtration for obtaining suspended sediment concentration 

3.4.2. Organic carbon analysis 

 
A-Dissolved organic carbon (DOC) 
 
The water sample had been again filtered through another type of filter-glass microfiber filter 

(GF/F Whatman 0.7 µm) which was burnt at 450 °C for 5:30 hours before utilizing in order to 

eliminate organic track. After filtering, each water sample was then acidified with HCL (12N; 
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pH=2) and store at 4 °C until analyses as soon as possible. The DOC analyses were carried 

out on Shimadzu TOC-5000 analyzer (Figure 3-8).  

 
 

            
 
 
 

 
 
 

Figure 3-8: Photo of Shimadzu TOC-5000 analyzer (ECOLAB Analytical Laboratory, 
Toulouse) 

 
 
B-Particulate organic carbon (POC) 
 
The filtered paper containing suspended sediment were then acidified with HCL 2N in order 

to remove carbonates and dried at 60 °C for 24 h. Particulate organic carbon (POC) analyses 

were carried out using LECO CS200 analyzer (Etcheber et al, 2007) (Figure 3-9) at EPOC 

Laboratory, Bordeaux. POC contents are expressed as a percentage of dry weight of sediment, 

abbreviated to POC% and POC concentrations are expressed in mg l-1. 
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Figure 3-9: Photo of LECO CS200 analyzer (EPOC Analytical Laboratory, Bordeaux) 

 

3.5.  SWAT model selection and description  
 
SWAT 2005 (Soil and Water Assessment Tool) was selected in this study is firstly because of 

many applications to assess hydrology and sediment transport in both small and large 

catchments undertaken in different regions. Secondly, the model is free 

(http://swatmodel.tamu.edu/) and user friendliness environment. Thirdly, SWAT project of 

the Save catchment could be extended afterwards to study other problematic such as nitrate 

and pesticide transport dynamics.    

 

SWAT is physically based distributed, agro-hydrological model that operates on a daily time 

step and is designed to predict the impact of management on water, sediment, and agricultural 

chemical yields in ungauged catchments (Arnold et al., 1998). The model is computationally 

efficient and capable of continuous simulation in large complex catchments with varying 

soils, and management conditions over long time periods. SWAT uses readily available inputs 

and has the capability of routing runoff and chemicals through stream and reservoirs, and 

allows the addition of flows and the inclusion of measured data from point sources. Major 

component models include weather, hydrology, soil temperature, plant growth, nutrients, 

pesticides and land management. SWAT can analyze both small and large catchments by 

discretizing into sub-basins, which are then further subdivided into hydrological response 
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units (HRUs), having homogenous land use, soil type and slope (Figure 3-10). The SWAT 

system embedded within geographical information system (GIS) that can integrate various 

spatial environmental data including soil, land cover, climate and topographical features.  

 

Figure 3-10: Schema of HRUs definition 
  

3.5.1. SWAT water balance  

 
In SWAT, water balance is the driving force behind everything that happens in the catchment. 

To accurately predict the movement of pesticides, sediments or nutrients, the hydrological 

cycle as simulated by the model must conform to what is happening in the catchment. 

Simulation of the hydrology of a catchment can be separated into two major divisions. The 

first division is the land phase of the hydrological cycle, presented in Figure (3-11). The land 

phase of the hydrological cycle controls the amount of water, sediment, nutrient and 

pesticides loadings to the main channel in each sub-basin. The second division is the water or 

routing phase of the hydrological cycle which can be defined as the movement of water, 

sediments, etc. through the channel network of the catchment to the outlet. SWAT simulates 

the hydrological cycle based on the soil and water balance equation as following:  

 

                   i

t
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Where,  

- SWt : the final soil water content (mm),  

- SW0 : the initial soil water content on day i (mm), 

 - t : the time (days), Rday is the amount of precipitation on day i (mm), 

- Qsurf  : the amount of surface runoff on day i (mm),  

- Ea : the amount of evapotranspiration on day i (mm),  

- Wseep : the amount of water entering the vadose zone from the soil profile on day i 

(mm),  

- Qgw : the amount of return flow into the river on day i (mm).  

 

 

 
Figure 3-11: Schematic representation of the hydrological cycle (From SWAT model theory) 
 

3.5.2. Surface runoff   

 
Surface runoff occurs whenever the rate of precipitation exceeds the rate of infiltration. 

SWAT has two methods for estimating surface runoff: the SCS curve number method 

(USDA-SCS, 1972) and the Green & Ampt method. For sub daily data, it is suitable to use 
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Green & Ampt method. In this study, the SCS method was used to compute surface runoff 

volume for each HRU. The SCS curve number equation is:  
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Where, 
 

- Qsurf : the accumulated runoff or rainfall excess (mm) 

- Rday : the rainfall depth for the day (mm) 

- S: retention parameter (mm), calculated by   �
�

�
�
�

� −= 10
CN

100
4.25S  

The SCS curve number (CN) is a function of the soil’s permeability, landuse and antecedent 

soil water conditions. CN is a parameter of the model. The detail of CN values is presented in 

the SWAT theory document.  

 

Peak runoff rate is estimated using a modification of the Rational Method (Chow et al., 1988). 

Daily rainfall data is used for calculations. Flow is routed through the channel using a variable 

storage coefficient method (Williams, 1969) or the Muskingum routing method (Cunge, 

1969). The modified rational formula used to estimate peak flow is given below: 
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=                                                            (3-3) 

Where, 

- qpeak : the peak runoff rate (m3 s-1)  

- tcα : the fraction of daily rainfall that occurs during the time of concentration  

- Qsurf: the surface runoff (mm H2O) 

- Area: the subbasin area (km2)  

- tconc: the time of concentration for the subbasin (hr) 

- 3.6 : unit conversion factor  

3.5.3. Evapotranspiration 

 
There are three methods for estimating potential evapotranspiration (PET) used in SWAT: 

Prisley Taylor (1972), Penman Monteith (Monteith, 1965) and Hargreaves & Samani (1985). 



Chapter 3. Materials and Methods 

- 58 - 

In this study, Penman method was used to estimate potential evapotranspiration. The three 

PET methods included in SWAT vary in the amount of required inputs. The Penman method 

requires solar radiation, air temperature, relative humidity and wind speed. The Priestley-

Taylor method requires solar radiation, air temperature and relative humidity but the 

Hargreaves method requires only temperature.  For this study, we used Penman method. The 

Penman-Monteith equation is: 
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Where, 

- Eλ  : The latent heat flux density (MJ m-2 d-1) 

- E : the depth rate evaporation (mm d-1)  

- ∆  : The slope of the saturation vapor pressure-temperature curve, de/dT (KPa °C-1) 

- Hnet : the net radiation (MJ m-2 d-1)  

- G : the heat flux density to the ground (MJ m-2 d-1)  

- airρ  : the air density (kg m-3) 

- Cp :   the specific heat at constant pressure (MJ kg-1 °C-1)  

- 0
ze  : the saturation vapor pressure of air at height z (kPa)  

- ez : the water vapor pressure of air at height z (kPa)  

- γ: the psychrometric constant (kPa °C-1) 

- rc : the plant canopy resistance ( s m-1)  

 - ra : the diffusion resistance of the air layer (aerodynamic resistance) (s m-1)     

3.5.4. Groundwater  

 
The groundwater simulation is partitioned into aquifer system i.e an unconfined aquifer 

(shallow 2 to 20m) and a deep-confined aquifer (>20m) in each sub basin. Percolation from 

the bottom of the root zone is considered as recharge to the shallow aquifer. Water that enters 

the deep aquifer is assumed to contribute to streamflow outside the catchment (Arnold et al., 

1993). In SWAT 2005, the water balance for a shallow aquifer is calculated with equation 

below: 

 

sh,pumpdeeprevapgwrchrg1i,shi,sh wwwQwaqaq −−−−+= −                              (3-5) 
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Where, 
 

- aqsh,1 : the amount of water stored in the shallow aquifer on day i (mm) 

- aqsh,i-1: the amount of water stored in the shallow aquifer on day i (mm) 

- wrchrg : the amount of recharge entering the aquifer on day i (mm) 

- Qgw : the groundwater flow, or base flow into a main channel on day i (mm)  

- wrevap : the amount of water moving into the soil zone in response to water 

deficiencies on day i (mm) 

- wdeep : the amount of water percolating from the shallow aquifer into the deep aquifer 
on day i (mm) 
- wpump, sh: the amount of water removed from the shallow aquifer by pumping on day i 
(mm).  

 
 
The steady state response of groundwater flow to recharge is estimated by the equation below: 
 
 

wtbl
gw

sat
gw h

L

K800
Q ×

×
=                                                            (3-6) 

Where, 
 

- Qgw : the groundwater flow, or base flow into a main channel on day i (mm)  

-  Ksat : the hydraulic conductivity of the aquifer (mm/day) 

- Lgw : the distance from the ridge or sub basin divide for the groundwater system to 

the main channel (m) 

- hwtbl : the water table height (m)  

3.5.5. Erosion and Sediment component  

 
The sediment from sheet erosion for each HRU is calculated using the Modified Universal 

Soil Loss Equation (MUSLE) (Williams, 1975). The USLE uses rainfall as an indicator of 

erosive energy but MUSLE uses the amount of runoff to simulate erosion and sediment yield. 

The benefits of the substitution are: the prediction accuracy of the model is increased, the 

need for a delivery ration is eliminated, and single storm estimates of sediment yields can be 

calculated.  
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The equation of MUSLE in SWAT is presented as below:   

 

( )CFRGLSPCK)AqQ8.11Sed USLEUSLEUSLEUSLE
56.0

hrupeaksurf ××××××××=              (3-7) 

 
Where, 

- Sed is the sediment yield (t) on a given day,  

- Qsurf
  is the surface runoff volume (mm ha-1),  

- qpeak is the peak runoff rate (m3 s-1), Ahru is the area of the HRUs (ha),  

- KUSLE is the soil erodibility factor,  

- CUSLE is the cover and management factor,  

- PUSLE is the support practice factor,  

- LSUSLE is the USLE topographic factor, 

- CFRG is the coarse fragment factor.  

The details of the USLE factors can be found in (Neithsch et al., 2005).  

 

The sediment concentration is obtained from the sediment yield which corresponds to flow 

volume within the channel on a given day. The transport of sediment in the channel is 

controlled by simultaneous operation of two processes: deposition and degradation. When 

Channel deposition or channel degradation occurs, it depends the sediment loads from the 

upland areas and transport capacity of the channel network. If the sediment load in a channel 

segment is larger than its sediment transport capacity, channel deposition will be the dominant 

process. Otherwise, channel degradation occurs over the channel segment. SWAT calculates 

the maximum amount of sediment that can be transported from channel segment as a function 

of the peak channel velocity:  

 
expsp

mx,ch,sed SPCONconc υ×=                                                      (3-8) 

 
Where,  

- concsed,ch,mx (ton m-3) is the maximum concentration of sediment that can be 

transported by streamflow (i.e., transport capacity),   

- SPCON is a coefficient defined by user, spexp is exponent parameter for calculating 

sediment reentrained in channel sediment routing that is defined by the user (1< spexp 

<2)   

- υ  (m s-1) is the peak channel velocity.  
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The peak channel velocity in a reach segment at each time step is calculated from:  

 

2/1
ch

3/2
ch SR

n

PRF ××=υ                                                          (3-9) 

 
Where, 

- υ is the peak channel velocity (m s-1), 

- PRF is the peak rate adjustment factor with a default value of unity,  

- n is manning ’s roughness coefficient, Rch is the hydraulic radius(m),  

- Sch is the channel invert slope (m m-1).  

 

The maximum concentration in the reach is compared with the concentration of sediment in 

the reach at the beginning of the time step, concsed,ch,i,  

•  If concsed,ch,i > concsed,ch,mx, deposition is the dominant process in the reach segment. 

The net amount of sediment deposited is calculated by: 

chmx,ch,sedi,ch,seddep V)concconc(Sed ×−=                                                           (3-10)                             

 

Where,  

- seddep is the amount of sediment deposited in the reach segment (metric tons),  

- concsed,ch,i is the initial sediment that can be transported by water (kg/l or ton/m3)  

- Vch is the volume of water in the reach segment (m3).      

 

•  If concsed,ch,i < concsed,ch,mx, degradation is the dominant process in the reach segment. 

The net amount of sediment reentrained is calculated by:  

chchchi,ch,sedmx,ch,seddeg CKV)concconc(Sed ×××−=                                      (3-11) 
Where,  

- seddeg is the amount of sediment reentrained in the reach segment (metric tons),  

- concsed,ch,mx is the maximum concentration of sediment that can be transported by 

water (kg l-1 or ton m-3),  

- Vch is the volume of water in the reach segment (m3),  

- Kch (CH_EROD)is the channel erodibility factor  (cm h-1 Pa-1),  

- Cch (CH_COV) is the channel cover factor.  
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The final amount of sediment in the reach is calculated by:  

 

degdepi,chch sedsedsedsed +−=                                                                           (3-12) 

 

Where, 

- sedch is the amount of suspended sediment in the reach (metric tons),  

- sedch,i is the amount of the suspended sediment in the reach at the beginning of the 

time period (metric tons),  

- seddep is the amount of sediment reentrained in the reach segment (metric tons).  

The total amount of sediment that is transported out of the reach segment is computed as: 
 

ch

out
chout V

V
sedsed ×=                                                         (3-13) 

 
Where, 

- sedout is the total amount of sediment transported out of the reach (metric tons),  

- sedch is the amount of suspended sediment in the reach (metric tons),  

- Vout is the volume of water leaving the reach segment (m3) at each time step,  

- Vch is the volume of water in the reach segment (m3) at each time step.  

3.5.6. SWAT model input 

 
The spatially distributed data (GIS input) needed for ArcSWAT interface include the Digital 

Elevation Model (DEM), soil data and landuse data. Meteorological data and river discharge 

were also used for prediction of streamflow and calibration purposes. 

 

o Digital Elevation Model 
 
Topography is defined by a DEM that de-scribes the elevation of any point in a given area at a 

specific spatial resolution. The DEM was used to delineate the watershed and to analyze the 

drain-age patterns of the land surface terrain. Subbasin parameters such as slope gradient, 

slope length of the terrain, and the stream network characteristics such as channel slope, 

length, and width were derived from the DEM. In this study, Digital elevation map (DEM) 

with a resolution of 25 m × 25 m was received from BD TOPO R IGN France- Cemagref de 

Bordeaux (UR ADBX) (Figure 3-12 A) 
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o Meteorological data 

 
Meteorological data included 5 rainfall stations with daily precipitation from Meteo France 

(Figure 3-12 A). Some past and missing data was generated for some stations by linear 

regression equation from the data of the nearest stations with complete measurement. Two 

stations at the upstream part having a complete measurement of daily minimum and 

maximum air temperature, wind speed, solar radiation and relative humidity was used to 

simulate the potential evapotranspiration (PET) in the model by Penman method.  

o Soil data 

SWAT model requires different soil textural and physico-chemical properties such as soil 

texture, available water content, hydraulic conductivity, bulk density and organic car-bon 

content for different layers of each soil type. These data were obtained mainly from the 

following sources: soil map from CACG and digitized by Cemagref de Bordeaux (UR 

ADBX) (Macary et al. 2006) with the scale of 1:80 000 and soil properties for SWAT soil 

data base (Lescot et al. 2009). In this study, soil classes were simplified (Figure 3-12 B).  

 

o Landuse and management practices  
 
Land use is one of the most important factors that affect runoff, evapotranspiration and 

surface erosion in a catchment. In this study, landuse data was obtained from Landsat 2005 

(Macary et al. 2006).The management practices were taken into account in the model for 

simulation. The dominant landuse in the catchment were pasture, sunflower/winter wheat in 

rotation (Figure 3-12 C). The starting dates of plant beginning, amounts, date of fertilizer and 

irrigation applications were included. For pastures, there is one rotation of corn during a 

period of 4 years. Tillage works were practiced during April within this area. For sunflower-

winter wheat rotation, the planting date of sunflower is on April 10 then is harvested on July 

10. After that, winter wheat begins on October 9 then it is harvested on July 10, following 

year. The rotation of winter wheat-sunflower follows the same pattern by plant begins of 

winter wheat on October 9 and it is harvested on July 10. For following year, sunflower is 

planted on April 10, is harvested on July 10. The soil cover is empty from July through April 

during this rotation once per two years.  

 

 
 
 



Chapter 3. Materials and Methods 

- 64 - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   (A)                                                                                          (B)                                                                                   (C) 
 
 

Figure 3-12 (A) Digital Elevation Model of the study area, (B) Major soils of study area, (C) Major landuse of the study area 
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Chapter 4  
 
 

Dynamics of suspended sediment transport 
and yield in a large agricultural catchment, 

southwest France 
 
 

 
This chapter presents the first result of the analysis of suspended sediment transport dynamics 

in the studied agricultural catchment with the assessment of flood load contribution. The 

hydro-climatic factors influencing the mobilisation of sediment load from the catchment outlet 

during flood events were identified by means of statistical analysis of correlations and 

Principle Component Analysis (PCA). This part details hysteresis patterns of each flood and 

identifies their suspended sediment sources in order to determine their origins. This chapter 

presented the publication accepted in Journal of Earth Surfaces Processes and Landforms 

(ESPL) with the following reference:      

 
Oeurng C, Sauvage S, Sánchez-Pérez J.-M. 2010. Dynamics of suspended sediment 
transport and yield in a large agricultural catchment, South-west France. Earth Surface 
Processes and Landforms 35: 1289-1301  
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Chapter 5  
 

Fluvial transport of suspended sediment       
and organic carbon in a large agricultural 

catchment during flood events, in           
southwest France 

 
 
 
 
This chapter describes the fluvial transport and relationship between suspended sediment and 

organic carbon (DOC and POC) within the agricultural catchment context. The fluxes were 

estimated during each flood event. Their relationship of discharge and hydro-climatic 

variables is studied in order to comprehend the hydrological processes controlling the 

transport. The analysis of each hysteresis pattern during different seasonal floods was 

examined. This chapter was written in the form of publication which was accepted in 

Hydrological Processes.     
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Abstract 
 

Water draining from a large agricultural catchment in south-west France was sampled over an 

18-month period to determine the temporal variability in suspended sediment (SS) and 

dissolved (DOC) and particulate (POC) organic carbon transport during flood events, with 

quantification of fluxes and controlling factors, and to analyse the relationships between 

discharge and SS, DOC and POC. A total of 15 flood events were analysed, providing 

extensive data on SS, POC and DOC during floods. There was high variability in SS, POC 

and DOC transport during different seasonal floods, with SS varying by event from 513 to 

41 750 t; POC from 12 to 748 t and DOC from 9 to 218 t. Overall, 76% and 62% of total 

fluxes of POC and DOC occurred within 22% of the study period. POC and DOC export from 

the Save catchment amounted to 3090 t and 1240 t, equivalent to 1.8 t km-2 y-1 and 0.7 t km-2 

y-1, respectively. Statistical analyses showed that total precipitation, flood discharge and total 

water yield were the major factors controlling SS, POC and DOC transport from the 

catchment. The relationships between SS, POC and DOC and discharge over temporal flood 

events resulted in different hysteresis patterns, which were used to deduce dissolved and 

particulate origins. In both clockwise and anticlockwise hysteresis, POC followed the same 

patterns as discharge and SS. The DOC-discharge relationship was mainly characterised by 

alternating clockwise and anticlockwise hysteresis due to dilution effects of water originating 

from different sources in the whole catchment.  

 

Key words:  

Agricultural catchment; suspended sediment; dissolved organic carbon; particulate organic 

carbon; flood events; hysteresis.  
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5.1. Introduction  
 
Studies of fluvial suspended sediment and organic carbon transport through streams and rivers 

provide information on the rate of continental erosion, global carbon cycling and the 

contribution of terrestrial carbon to aquatic systems and oceans (Meybeck, 1982, 1993; 

Robertson et al., 1996; Sarin et al., 2002). The transportation of organic carbon from 

terrestrial ecosystems by rivers and hydrological fluxes to the oceans plays an important role 

in regional budgets of organic carbon entering the continent-ocean interface (Sarin et al., 

2002). At the terrestrial scale, the previous estimations of global fluxes of organic carbon 

brought by the rivers are in the order of 400 ×106 C per year in which 170 – 195 ×106 C in 

particulate form (Ludwig et al., 1996; Meybeck and Vörösmarty, 1999) and 200 – 215  ×106 

C in dissolved form (Meybeck and Vörösmarty, 1999). 

 

Intensive agriculture has led to environmental degradation through soil erosion and carbon 

losses from agricultural land to stream networks (Sharma and Rai, 2004). Suspended sediment 

(SS) transport from agricultural catchments to watercourses is responsible for aquatic habitat 

degradation, reservoir sedimentation and the transport of sediment-associated pollutants 

(pesticides, particulate nutrients, heavy metals and other toxic substances) (Valero-Garcés et 

al., 1999; Heaney et al., 2001; Verstraeten and Poesen, 2002). Total organic carbon (TOC), 

comprising dissolved organic carbon (DOC) and particulate organic carbon (POC), is not only 

an important factor in stream water quality, but also an indicator of organic contamination (Ni 

et al., 2008). There is a general lack of studies determining organic carbon concentrations and 

fluxes in lowland agricultural catchments, particularly during flood events where there are 

many difficulties such as spatiotemporal variability in climatic conditions, different land uses 

and soil textures. Studies on river ecosystems have demonstrated that river discharge, primary 

production and litter pool sizes in catchments and the type and extent of agriculture in 

catchments are major processes influencing organic carbon fluxes in rivers (Robertson et al., 

1996). Agriculture can significantly affect hydrological processes and organic carbon and 

nutrient transport in many ways. For instance, landuse changes and tillage practices affect the 

hydrological response of a system, and thus nutrient flux, through changes in land cover, 

infiltration, evapotranspiration and soil characteristics (Roberstson et al., 1996). These 

changes are followed by feedback mechanisms for water, organic carbon and other chemical 

substances that bring further changes in these linked processes (Alexander and Smith, 1990).  
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There is a wide range of existing literature investigating fluvial export of organic carbon from 

peatland environments (Hope et al., 1997; Dawson et al., 2002; Worrall et al., 2003; Pawson 

et al., 2008). Similar studies have been conducted in forest environments (Meybeck, 1993; 

Molot and Dillon, 1996; Kao and Liu, 1997 Meybeck and Vörösmarty, 1999; Shibata et al., 

2001). However, little attention has been paid to fluvial transport of organic carbon in large 

agricultural catchments, particularly during flood events when sediment transport can be 

significant.  

 

The Gascogne area of southern Europe encompasses highly contrasting zones with various 

climatic influences (mountains, the Atlantic and the Mediterranean) and is dominated by 

anthropogenic activities, particularly intensive agriculture, causing severe erosion in recent 

decades. This is posing a major threat to surface water quality, since sediment transport within 

the catchment is the main factor mobilising aquatic contaminants and associated particulate 

organic carbon. For example, Oeurng et al. (2010) showed that sediment export during floods 

in the Save agricultural catchment in 2007 and 2008 represented 85% and 95% of annual 

loads (16% and 20% of annual duration), respectively. Within these floods, there was one 

extreme event which transported 63% of the total load. Moreover, Pawson et al. (2008) found 

that POC export from a peatland catchment in southern Pennines, UK, accounted for 95% of 

flux in only 8% of the total study period. These results demonstrate the major role of floods in 

delivering sediment associated with particulate organic carbon transport from catchments.   

During flood events, hysteresis effect is often observed in sediment/nutrient concentrations 

and discharge relationships (Asselman, 1999). When the concentration peak at the rising limb 

arrives before the discharge peak, it describes a clockwise hysteretic loop. When it arrives 

after the discharge peak, it describes an anticlockwise hysteretic loop (Williams, 1989). 

However, when there are multiple peaks within a flood event, a complicated mix of clockwise 

and anticlockwise hysteretic loops occurs. Hysteresis patterns have been used in previous 

studies to indicate changing sources of sediment and nutrient supply to rivers during flood 

events (Lefrançois et al., 2007; Nadal-Romero et al., 2008; House and Warwick, 1998; Bowes 

et al., 2005; Stutter et al., 2008).     

 

The overall aim of the present study was to gain a deeper understanding of fluvial transport of 

SS and TOC from a large agricultural catchment during flood events. Specific objectives were 

to:  



Chapter 5. Fluvial transport of suspended sediment and organic carbon 

- 84 - 

� Study the temporal variability in suspended sediment, POC and DOC transport during 

flood events, including quantification of fluxes and controlling factors.  

� Analyse the relationship between discharge and SS, DOC and POC concentrations. 

5.2. Materials and methods 

5.2.1.  Study area 
 

The Save agricultural catchment is located in the area of Coteaux Gascogne, with an area of 

1110 km2 (Figure 5-1). The Save river has its source in the piedmont zone of the Pyrenees 

Mountains (south-west France) at an altitude of 600 m, joining the Garonne River after a 140 

km course with a linear shape and an average slope of 3.6‰.  

 

 

Figure 5-1. Location, landuse and topographical maps of the Save catchment. 
 

 

 

 



Chapter 5. Fluvial transport of suspended sediment and organic carbon 

- 85 - 

This catchment lies on detrital sediments from the Pyrenees Mountains. It is bordered on the 

east by the Garonne River, on the south by the Pyrenees and on the west by the Atlantic 

Ocean. Calcic luvisols (UN FAO soil units) have developed on the tertiary substratum and 

local rendosols on the hard calcareous sandstone beds. The calcic cambisols that developed on 

hillsides with very gentle slopes have been subjected to moderate erosion. Calcic soils 

represent dominantly more than 90% in the whole catchment with a clay content ranging from 

40% to 50%. Non-calcic silty soils, locally named boulbènes, represent less than 10% of the 

soil in this area (50-60% silt) (Revel and Guiresse, 1995). The upstream part of the catchment 

is a hilly agricultural area mainly covered with pastures and little forest, while the lower part 

is flat and devoted to intensive agriculture, mostly sunflower and winter wheat in rotation 

(90% of the area used for agricultural purposes)  (Figure 5-1).  

 

The climatic conditions are oceanic, with annual precipitation of 700-900 mm and annual 

evaporation of 500-600 mm. The dry period runs from July to September (the month with 

maximum deficit) and the wet period from October to June. The mean temperature of the 

catchment is 13°C, with a minimum in January (5°C on average) and a maximum in August 

(20°C on average). The hydrological regime of the catchment is mainly pluvial, i.e. regulated 

by rainfall, with maximum discharge in May and low discharge during summer (July to 

September). The catchment substratum is relatively impermeable due to its high clay content 

and consequently river discharge is mainly supplied by surface and subsurface runoff, while 

groundwater is limited to alluvial and colluvial phreatic aquifers (Echanchu, 1988). The 

maximum instantaneous discharge in the past 40 years (1965-2006) was 620 m3 s-1 (1 July 

1977). During low flow periods, the Save River is sustained by about 1 m3 s-1 from the Neste 

canal at the upstream area.  

5.2.2. Instrumentation and sampling method 
 

A Sonde YSI 6920 (YSI Incorporated, Ohio, USA) measuring probe and Automatic Water 

Sampler (ecoTech Umwelt-Meßsysteme GmbH. Bonn, Germany) with 24 1-litre bottles has 

been installed at the Save catchment outlet (Larra bridge) since January 2007 for water quality 

monitoring. The Sonde was calibrated at the laboratory for turbidity with two points (0 and 

1000 NTU) and recalibrated each three months in order to avoid sensor derivation. The Sonde 

is positioned near the bank of the river under the bridge, where homogeneity of water 

movement is considered appropriate for all hydrological conditions. The pump inlet is placed 

next to the Sonde pipe. The turbidity and water level are recorded at 10-min intervals.  
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The turbidity values in water are detected by sensor on the Sonde YSI and the data are then 

transferred to the ecoTech memory. The Sonde is programmed to activate the automatic water 

sampler to pump water at water level variations )cm(x∆ ranging from 10 cm to 30 cm, 

depending on seasonal hydrological conditions for both the rising and falling stage (Oeurng et 

al., 2010). This sampling method provides high sampling frequency during storm events (3 

minutes to 24 h per sample during floods). In the present study, manual sampling was also 

carried out using a 2-litre bottle lowered from the Larra bridge, near the Sonde position, at 

weekly intervals when water levels were not markedly varied. A total of 208 water samples 

were taken by automatic and manual sampling during the study period (January 2008 to June 

2009).  

5.2.3. Data sources and treatment   

 
Hydro-meteorological data 
 
Hourly rainfall data from five meteorological stations in the catchment (Figure 5-1) were 

obtained from Meteo France. Data on mean total rainfall depth and intensity in the whole 

catchment were derived using the Thiessen Polygon method (Thiessen, 1911). Data on hourly 

discharge at Larra hydrometric station were obtained from CACG (Compagnie 

d’Aménagement des Coteaux de Gascogne), which is responsible for hydrological monitoring 

in the Gascogne region. The discharge was plotted by the rating curve in which water level 

was measured hourly by pressure with the form of a rectangular weir (length 12 m), then 

transferred by teletransmission. 

Laboratory analysis   
 
Water samples pumped by automatic sampling were generally collected from the field once a 

week but during high flood periods they were collected twice a week. The water samples were 

filtered in the laboratory using pre-weighed glass microfibre filter paper (Whatman GF/F 0.7 

µm). Volumes of water ranging from 150 ml to 1000 ml were filtered according SS 

concentration. The sediment retained on the filter paper was dried for 48 h at 60 °C to ensure 

accurate sediment weight. The filters were then weighed to determine suspended sediment 

concentration (SSC).  

- Sediment analysis for POC 

The dried filters containing SS (4 mg to 150 mg) were acidified with HCL 2N in order to 

remove carbonates and dried at 60 °C for 24 h. POC analyses were carried out using a LECO 
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CS200 analyser (Etcheber et al., 2007). POC content is expressed as a percentage of dry 

weight of sediment, abbreviated to POC%, and POC concentration as expressed in mg l-1. 

- Water analysis for DOC 

The water samples filtered through 0.7 µm filter paper were acidified with HCL (12N; pH=2) 

and kept cold at 4 °C until analyses were performed as soon as possible. The analyses were 

carried out with a Shimadzu TOC-5000 analyser using the high temperature catalytic 

oxidation method (HTCO).  

5.2.4.  SS concentration data and calculation of fluxes  

 
Continuous data on SS concentration were generated from the relationship between SS and 

turbidity, with the interpolation method used for missing points (Oeurng et al., 2010). The SS 

load was calculated using high data resolution. The organic carbon flux for flood events and 

annual period was calculated using the Walling and Webb (1985) method recommended by 

the Paris Commission for estimating river loads:  

�
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Where Ci is the concentration for each instantaneous sample point (mg l-1), Qi is the discharge 

at each sampling point (m3 s-1), V is the water volume over the period considered (m3) and n 

is the number of samples. This is the preferred method for flux estimates given the available 

data (Littlewood, 1992) and is common in the literature for estimates of organic carbon loads 

(e.g. Hope et al., 1997; Dawson et al., 2002; Worrall et al., 2003; Worrall and Burt, 2005). 

5.2.5. Statistical analyses  
 

Statistical analyses were performed using statistical techniques (Pearson correlation matrix) 

and Principal Component Analysis (PCA) by the STATISTICA package. The relationships 

between SS, POC, DOC and hydro-climatological variables were analysed in order to 

determine the factors controlling SS, POC and DOC transport during flood events. A database 

was generated for each flood event and contained two main groups of variables: antecedent 

variables to the flood conditions and flood variables (precipitation, discharge, sediment and 

organic carbon) during the events (Table 5-1). The antecedent variables used were 

accumulated precipitation one day before the flood (P1d, mm), five days before (P5d), and ten 

days before (P10d); initial baseflow (Qb) before the flood started; and the antecedent flood 

corresponding to the current flood (Qa).  
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Table 5-1. Names, abbreviations and units for the variables used to characterise flood events 

and to perform Pearson correlation matrix and factorial analysis 
 

  Antecedent conditions Abbreviation Unit 
Precipitation 1 day before the event  P1d mm 
Precipitation 5 days before the event  P5d mm 
Precipitation 10 days before the event P10d mm 

Baseflow before the event  Qb m3 s-1 

Antecedent peak discharge  Qa m3 s-1 
         

  Flood event conditions     

Flood duration   Fd h 
Time of rise   Tr h 
Total precipitation during the event Pt mm 
Maximum rainfall intencity of the event Imax mm h-1 

Flood intensity ( (Qmax - Qb)/time of rise ) If m3min-2 

Total water yield  Wt Hm3 

Mean discharge  Qm m3 s-1 
Maximum discharge  Qmax m3 s-1 
Mean suspended sediment concentration SSCm mg l-1 

Maximum suspended sediment concentration SSCmax mg l -1 

Total suspended sediment yield SSt t 
Mean dissolved organic carbon DOCm mg l-1 

Max.dissoloved organic carbon DOCmax mg l-1 

Dissolved organic carbon yield DOCt t 
Mean particulate organic carbon POCm mg l-1 

Max.particulate organic carbon POCmax mg l-1 

Particulate organic carbon yield POCt t 

 

A Pearson correlation matrix and factorial analysis that included all the above-mentioned 

variables (Table 5-1) were generated for 13 flood events (event 1 excluded due to lack of 

DOC and POC data). Event 4 (1 June 2008) was also excluded from the matrix because it was 

an extraordinary event making a high contribution to total variance. Flood variables were 

described by the precipitation that caused the flood, i.e. mean total precipitation (Pt) and 

hourly maximum intensity of the precipitation (Imax). Total water yield (Wt) during the flood 

was expressed by the total water depth of the event, total duration of the event (Td), and mean 

discharge (Qm) and maximum discharge (Qmax) corresponding to the time of rise to reach 

the peak discharge (Tr). The discharge speed to reach the peak flow during flood events was 

defined by flood intensity If (If =(Qmax- Qb)/Tr). Suspended sediment was expressed as the 

mean concentration (SSCm), the maximum concentration (SSCmax) and the total suspended 

sediment yield during the flood event (SSt). Dissolved and particulate organic carbon loads 

during floods were expressed by mean values (DOCm, POCm), maximum values (DOCmax, 

POCmax) and their yield (DOCt; POCt).  
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5.3. Results  

5.3.1.  Hydrometeorology during the study period  

 
The term ‘flood’ is used here to represent a complete hydrological event with rising and 

receding limbs. Major rainfall events generally occurred in autumn (October to December) 

and particularly in spring (March to June) and minor rainfall events in summer (July to 

October). During the whole observation period, 15 flood events were recorded (3 in winter, 8 

in spring and 4 in autumn) (Figure 5-2). The duration of these flood events ranged from 95 h 

to 351 h, with a mean value of 188 h. The longest event (event 10; 351h) occurred on 27 

January 2009, with total precipitation of 74.5 mm in the whole catchment. This event was 

unusual since it had a 10-year return period and it represented the biggest flood during the 

whole study period. Maximum hourly discharge during observed flood events varied from 

12.97 m3 s-1 (8 November 2008) to 112.60 m3 s-1 (27 January 2009). Mean daily discharge in 

the whole study period was 6.28 m3 s-1. Table 5-2 summarises all flood characteristics during 

the observed flood events and their antecedent conditions. Total rainfall in the catchment for 

the whole study period (January 2008-June 2009) was 1152 mm (i.e. 768 mm y-1). The 

maximum rainfall intensity reached 17 mm h-1 in event 4 (1 June 2008). The mean total water 

yield of the whole study period (January 2008 to June 2009) was 178 mm y-1 higher than the 

long-term mean value of 136 mm for the period 1985-2008. 

 

 

Figure 5-2: Hourly discharge in the 15 flood events observed during the study period 
(January 2008 to June 2009) at Larra sampling station. 
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Table 5-2.  Summary of the main flood characteristics recorded during the study period in Save catchment 
 
 

                          
Flood date Season P1d P5d P10d Qb Qa Fd Tr Pt Imax If Wt Qm Qmax N° 

     (mm) (mm)  (mm)  
(m3 s-

1) (m3 s-1) (h) (h) (mm) 
(m     
(m h-1) (m3 min-2) (Hm3) (m3 s-1) (m3 s-1) 

 
1 

 
19/01/2008 

 
winter 

 
17.7 

 
27.7 

 
41.6 

 
3.16 

 
6.75 

 
184 

 
43 

 
19.9 

 
3.4 

 
0.87 

 
7.34 

 
10.74 

 
40.64 

2 28/03/2008 spring 7.2 24.9 26.8 2.56 40.64 228 84 39.3 2.8 0.42 8.56 10.39 37.60 
3 21/04/2008 spring 13.3 22.4 51.3 4.06 37.60 189 22 19.4 4.0 1.19 7.1 9.60 30.20 
4 01/06/2008 spring 24.0 48.9 61.1 4.28 30.20 228 16 50.0 17.2 2.48 12.75 15.70 44.02 
5 12/06/2008 spring 7.5 14.6 54.5 4.28 44.02 259 29 28.5 8.5 1.40 12.61 15.01 44.80 
6 08/11/2008 autumn 3.1 14.5 47.3 2.96 44.80 105 46 23.8 4.6 0.22 2.4 6.18 12.97 
7 26/11/2008 autumn 3.3 13.1 14.7 4.90 12.97 191 43 35.9 4.4 0.53 3.42 9.08 27.57 
8 06/12/2008 autumn 4.2 9.6 32.7 4.90 27.57 126 54 27.7 5.3 0.28 3.21 10.12 19.77 
9 14/12/2008 autumn 11.7 22.6 41.0 6.95 19.77 256 27 13.3 1.6 0.73 6.01 11.63 26.74 
10 27/01/2009 winter 11.5 11.7 13.0 4.06 26.74 351 69 74.5 4.1 1.57 43.71 34.50 112.60 
11 11/02/2009 winter 0.2 7.7 12.6 9.99 112.60 233 54 32.9 4.2 0.94 19.71 25.94 60.66 
12 14/04/2009 spring 17.6 48.3 49.1 5.10 60.66 141 29 29.5 4.5 0.64 7.15 14.08 23.80 
13 22/04/2009 spring 3.1 9.2 51.5 6.75 23.80 112 36 19.3 4.2 1.26 9.80 24.31 52.24 
14 02/05/2009 spring 9.6 25.1 38.9 11.00 52.80 116 22 1.1 0.7 1.20 7.18 15.90 37.47 
15 15/05/2009 spring 11.3 12.7 13.2 5.10 37.47 95 26 13.0 1.9 0.48 3.31 9.68 17.62 
                

 
 
*Maximum values for bold numbers and minimum values for bold-italic
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5.3.2. SS, POC and DOC concentrations and relationship with discharge 

 
Delivered SS characteristics increased with seasonal discharge and varied widely during the 

observation period. For all hydrological periods (flood and non-flood events), SS 

concentration ranged between 6 and 15 743 mg l-1. Maximum SS concentration during flood 

events reached 15 743 mg l-1 (observed in event 4), while the minimum value was 391 mg l-1, 

observed on 14 April 2009 (event 12). Mean discharge-weighted SS concentration for the 

whole period (estimated as the mean of all measurements including base flows and floods) 

was 535 mg l-1.  
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Figure 5-3.  Temporal variability in particulate (POC) and dissolved (DOC) organic carbon 
during the study period (January 2008, June 2009). 

 

Maximum POC and DOC concentrations were recorded during flood events (Figure 5-3), 

whereas minimum concentrations occurred during base flow periods. POC concentration 

during all hydrological conditions at the catchment outlet ranged from 0.1 to 173.2 mg l-1 

(discharge-weighted mean value of 14 mg l-1) and DOC concentration from 1.5 to 7.9 mg l-

1(discharge-weighted mean value of 4.1 mg l-1). There was a trend for decreasing POC% with 

increasing discharge and SS concentration during flood events, with POC% ranging from 0.9 

to 8% (mean value 2.25%) (Figure 5-4). The Save catchment showed a good relationship 

between discharge and DOC concentration (R2 =0.50) during all hydrological conditions, but 

a weak relationship between discharge and POC concentration (R2=0.18) (Figure 5-5). 
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Figure 5-4. Relationship between POC contents (% of dry weight) and suspended sediment 
concentrations (mg l-1) from the Save catchment at Larra sampling station 
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Figure 5-5.  Relationship between discharge and DOC (a) and POC (b). 
 

In the present study, complex mixes of clockwise and anticlockwise loops were observed 

when there were multiple peaks of discharge together with multiple peaks of SSC during a 

flood event, coinciding with extreme rainfall intensity, e.g. in flood event 4. The relationship 

between POC/DOC and discharge showed clockwise, anticlockwise and mixed hysteresis due 

(a) 

(b) 
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to temporal variability in concentrations during flood events in different seasons (Figure 5-6), 

as also observed for sediment concentration and discharge by Oeurng et al. (2010). 
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Figure 5-6. Relationship between discharge and suspended sediment (SS), particulate organic 

carbon (POC) and dissolved organic carbon (DOC), showing different hysteresis patterns. 

5.3.3. SS, POC and DOC fluxes  

 
The results clearly demonstrated the temporal variability in SS, DOC and POC transport 

during seasonal flood events (Table 5-3). The SS, DOC and POC loads transported during 

autumn were less than those in winter and spring due to lower flood magnitude. The transport 

rates during observed floods showed that SS load (per event) varied from 513 to 41 750 t; 

POC load from 12 to 748 t and DOC load from 9.3 to 218 t. The POC and DOC transported 
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during flood events represented 76% and 62% of their total loads and occurred within 22% of 

the study period (January 2008-June 2009).  The maximum SS and POC loads recorded in 

flood events occurred during spring flood (event 4), while the maximum DOC load was 

recorded during the flood of the longest duration (event 10). During the whole study period, 

POC from the Save catchment amounted to 3090 t and DOC export to 1240 t, representing 1.8 

t km-2 y-1 and 0.7 t km-2 y-1, respectively. The POC load ranged from 1.6 to 7.7% of sediment 

transport from the catchment during flood events and represented 2.5% of total sediment 

export during the whole study period.  

 
Table 5-3. TSS, DOC, POC concentrations and transport rates during 15 studied flood events 
 

          

Flood date Season SSCm SSCmax SSt DOCm DOCmax DOCt POCm POCmax POCt N° 

    (mg l-1) (mg l-1) (t) (mgl-1) (mgl-1)  (t) (mgl-1) (mgl-1) (t) 

1 19/01/2008 winter 652 1380 4801 NA NA NA NA NA NA 
2 28/03/2008 spring 562 1160 4820 4.0 6.1 34 11.5 24.1 98 
3 21/04/2008 spring 650 1536 4385 3.8 5.1 25 13.0 23.8 85 
4 01/06/2008 spring 1597 15743 41750 4.5 7.9 58 58.0 173.2 748 
5 12/06/2008 spring 850 1322 9077 5.0 6.1 70 12.5 17.6 176 
6 08/11/2008 autumn 159 466 513 4.3 4.8 10 16.8 21.9 39 
7 26/11/2008 autumn 494 1618 2959 3.6 5.2 22 7.4 10 46 
8 06/12/2008 autumn 278 569 1018 3.3 4.3 15 4.4 5.6 20 
9 14/12/2008 autumn 128 501 1085 3.6 4.1 38 4.9 6.9 52 
10 27/01/2009 winter 337 2003 23374 5.0 5.7 218 16.2 36.2 706 
11 11/02/2009 winter 396 1030 6867 3.4 4.8 75 7.2 16.8 157 
12 14/04/2009 spring 268 391 1690 4.5 6.7 32 5.5 8.6 39 
13 22/04/2009 spring 678 1055 5029 5.2 6.3 51 12.6 24.8 123 
14 02/05/2009 spring 344 1246 3113 3.8 5.3 25 8.8 24.2 58 
15 15/05/2009 spring 204 434 666 2.8 4.6 9 3.6 6.1 12 
            

 
*Maximum values for bold numbers and minimum values for bold-italic 
 

5.3.4. Relationship among POC, DOC and hydro-climatological variables.  

 
Table 5-4 shows the relationships between hydro-climatological, DOC and POC variables in 

the Save catchment. Total precipitation (Pt) showed a moderate correlation with mean 

discharge (Qm) (R=0.56) and good correlations with maximum discharge (Qmax) (R=0.73) 

and total water yield (Wt) (R=0.79). Antecedent flood discharge (Qa) and baseflow (Qb) had 

weak correlations with total precipitation (Pt). 
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Table 5-4. Pearson correlation matrix among all variables (n=13) 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
*Correlation is significant at P<0.01 level for bold numbers and P<0.05 for italics 

 
 
 
 

 Fd Tr If Pt Imax  P1d P5d P10d Qa Qb Qm Qmax Wt SSCm SSCmax SSCT DOCm DOCmax DOCt POCm POCmax POCt 

Fd 1.00                      

Tr 0.42 1.00                     

If 0.50 -0.20 1.00                    

Pt 0.71 0.73 0.22 1.00                   

Imax 0.21 0.10 0.15 0.37 1.00                  

P1d 0.12 -0.38 0.20 -0.03 -0.26 1.00                 

P5d -0.11 -0.25 -0.10 -0.17 -0.20 0.75 1.00                

P10d -0.28 -0.50 0.16 -0.45 0.30 0.23 0.39 1.00               

Qa 0.00 0.05 0.06 -0.05 0.04 -0.17 0.09 -0.13 1.00              

Qb -0.14 -0.36 0.30 -0.44 -0.42 -0.16 -0.06 -0.11 0.48 1.00             

Qm 0.53 0.29 0.72 0.56 0.07 -0.07 -0.26 -0.28 0.26 0.34 1.00            

Qmax 0.72 0.43 0.74 0.73 0.11 -0.02 -0.29 -0.34 0.10 0.12 0.93 1.00           

Wt 0.76 0.44 0.66 0.79 0.13 0.08 -0.22 -0.37 0.15 0.03 0.89 0.97 1.00          

SSCm 0.22 0.01 0.53 0.10 0.54 -0.18 -0.16 0.31 -0.04 -0.14 0.16 0.24 0.10 1.00         

SSCmax 0.60 0.26 0.67 0.54 0.17 -0.07 -0.27 -0.24 -0.15 -0.04 0.49 0.70 0.62 0.58 1.00        

SST 0.77 0.43 0.71 0.81 0.25 0.07 -0.26 -0.30 -0.01 -0.11 0.82 0.96 0.97 0.27 0.74 1.00       

DOCm 0.29 0.12 0.57 0.40 0.49 0.05 0.10 0.49 -0.13 -0.23 0.49 0.51 0.45 0.47 0.35 0.54 1.00      

DOCmax 0.11 0.13 0.39 0.30 0.34 0.22 0.43 0.33 0.04 -0.20 0.31 0.31 0.24 0.57 0.30 0.32 0.76 1.00     

DOCt 0.78 0.42 0.66 0.80 0.18 0.10 -0.22 -0.32 0.02 -0.04 0.86 0.96 0.99 0.11 0.62 0.98 0.52 0.26 1.00    

POCm 0.29 0.30 0.42 0.41 0.32 -0.16 -0.20 0.27 -0.10 -0.38 0.29 0.46 0.44 0.39 0.53 0.54 0.70 0.38 0.45 1.00   

POCmax 0.38 0.36 0.62 0.44 0.01 -0.05 -0.16 0.05 0.03 -0.07 0.57 0.71 0.65 0.37 0.69 0.71 0.62 0.41 0.62 0.87 1.00  

POCt 0.75 0.45 0.64 0.82 0.17 0.11 -0.24 -0.32 -0.05 -0.13 0.81 0.95 0.97 0.11 0.66 0.98 0.51 0.25 0.99 0.53 0.69 1.00 
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Organic carbon concentration (POCm, POCmax, DOCm, DOCmax) had weak relationships 

with total precipitation (Pt) and maximum rainfall intensity (Imax). DOCm was fairly well 

correlated with flood intensity (IF) (R=0.57), while POCmax showed a moderate correlation 

with If (R=0.62). DOCmax was slightly correlated with Qmax, while POCmax was more 

strongly correlated with this parameter (R=0.71). SSt, DOCt and POCt showed significant 

correlations with flood duration (Fd), total precipitation (Pt), flood discharge (Qm; Qmax) and 

total water yield (Wt) (Table 5-4). SS, POC and DOC variables did not show any relationship 

with antecedent flow (Qa, Qb) or antecedent precipitation (P1d, P5d and P10d). In Principal 

Component Analysis (PCA) taking samples and variables into account, two factors explained 

59.10% of total variance, with factor 1 representing 44.25%. Factor 1 was characterised by 

high negative Eigen-value for total rainfall (Pt), flood duration, flood discharge (Qm; Qmax) 

and total water yield (Wt), which indicates the response of SS, POC and DOC load transport 

during flood events. Four factors were retained for rotational analysis. A summary of varimax 

rotated factors for all variables is given in Table 5-5. The first four axes absorbed 79.10% of 

the total variance. 

Table 5-5. Summary of varimax rotated factor for all variables presented in Table 5-1   
(Eigen-values <0.50 were excluded) 

 
Variables Factor 1 Factor 2 Factor 3 Factor 4 
Fd -0.76 –  – – 
Tr – – 0.58 – 
If -0.72 – -0.51 – 
Pt -0.80 – – – 
Imax – – – – 
P1d – – – 0.75 
P5d – – – – 
P10d – – – – 
Qa – – – – 
Qb – – -0.74 -0.51 
Qm -0.83 – – – 
Qmax -0.96 – – – 
Wt -0.94 – – – 
SSCm – -0.59 – – 
SSCmax -0.77 – – – 
SST -0.98 – – – 
DOCm -0.63 -0.66 – – 
DOCmax – -0.67 – – 
DOCt -0.95 – – – 
POCm -0.63 – – – 
POCmax -0.78 – – – 
POCt -0.95 – – – 
     
Variance explained  44.30 14.80 10.90 9.10 
Cumulative variance 44.30 59.10 70.00 79.10 

 
Bold number for value ≥  0.80 
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5.4. Discussion  

5.4.1. Temporal variability in SS, POC and DOC transport and yield 

 
SS, POC and DOC concentrations recorded during different seasonal flood events provide an 

insight into the temporal variability in these parameters in the Save agricultural catchment. 

Maximum SS, POC and DOC concentrations generally increased with increasing magnitude 

of flood events, particularly in spring, yielding SS, POC and DOC fluxes with strong 

variability. Based on the statistical analyses, there were strong correlations between total 

precipitation (Pt), flood duration (Fd), flood discharge (Qm; Qmax), total water yield (Wt) 

and suspended sediment and organic carbon fluxes (SSt, POCt and DOCt). These variables 

could be the main factors controlling SS, POC and DOC transport. Cooper et al. (2007) also 

attributed DOC transport to flood event magnitude. However, the availability of SS and 

organic carbon sources is also important in determining the temporal variability. The 

variability in sediment transport during successive peaks of similar magnitude is influenced 

by sediment exhaustion effects. After a period of relatively high sediment transport (supply-

rich floods), sediment becomes less and less available (exhaustion phenomenon), and the 

sediment concentrations recorded during successive months are consequently lower (Walling, 

1978). This was seen in successive floods (events 7, 8 and 9) during autumn 2008, recorded 

on 26 November 2008 (Qmax = 27.57 m3 s-1; SSCmax = 1613 mg l-1), 6 December 2008 

(Qmax =19.77 m3 s-1; SSCmax = 569 mg l-1), and 14 December 2008 (Qmax = 26.74 m3 s-1; 

SSCmax = 501 mg l-1). These exhaustion effects have been described by many previous 

studies (Walling, 1978; Alexandrov et al., 2003; Rovira and Batalla, 2006).  

 

The highest POC concentrations were measured in the flood event with the highest rainfall 

intensity (17.2 mm h-1). However the maximum discharge during this flood event amounted 

to 44.02 m3 s-1, while the flood on 27 January 2009, with discharge of 112.60 m3 s-1, 

transported only 36.20 mg l-1 of POC. This shows that the level of peak discharge does not 

always control the peak of POC, as it can also be affected by other factors such as rainfall 

intensity and flood intensity that determine soil erosion within the catchment during rainfall 

events. The extreme POC concentration was linked to the highest SS associated with POC%.  

 

DOC also showed strong variability in concentrations during all hydrological conditions. 

However, it transpired that the level of increase in flood discharge did not solely control the 

increase in DOC concentration, as similar peaks in DOC were produced by different flood 
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discharges (Table 3). This is confirmed by the poor statistical relationship between maximum 

DOC and peak discharge (R=0.31). The temporal dynamics of DOC are very complex (Jones 

et al., 1996) and may be controlled not only by microbial activity in sediments (Bicudo et al., 

1998) but also by variations in POC (Vervier et al., 1993; Jones et al., 1995). However during 

summer, the groundwater dilution of DOC is limited in the Save catchment, since the 

catchment substratum is relatively impermeable due to its high clay content, and therefore 

DOC concentrations are not high (<8 mg L-1). Numerous authors have reported that 

groundwater may be high in DOC (Wallis et al., 1981; McDowell & Likens, 1988; Vervier et 

al., 1993); Bernard et al., 1994) and have described groundwater as being a source of organic 

matter for surface water (Fiebig & Lock, 1991). The mean DOC concentration in the Save 

catchment is similar to the DOC value of 4.1 mg l-1 reported for temperate zones (Meybeck, 

1988). Compared with other rivers, the Save DOC range is close to the range (2-6 mg l-1) of 

the Niger River (Martins, 1982), slightly higher than the range (3-5 mg l-1) of the Amazon 

(Richey et al., 1985) and the St. Lawrence River (Pocklington and Tan, 1983) but much lower 

than the range (2-22 mg l-1) of the Indus River (Arain, 1987).    

 

The specific POC yield (1.8 t km-2 y-1) of the Save catchment is comparable to the mean of the 

Garonne River (1.47 t km-2 y-1) (Veyssy et al., 1999) and slightly higher than the mean of 

rivers in Europe (1.10 t km2 y-1) (Ludwig et al., 1996). However, it is lower than the yield of 

the Amazon River (2.83 t km2 y-1; Richey et al., 1990), and much lower than that of the 

Nivelle River (5.3 t km2 y-1) (Coynel et al., 2005), which drains a typical Pyrenean 

mountainous catchment into the Bay of Biscay (Atlantic Ocean). This could be attributed to 

lower soil erosion generating less POC yield, as POC is associated with sediment. The 

specific DOC yield of the Save catchment (0.7 t km-2 y-1) is 2.5 times higher than that of a 

Himalayan catchment dominated by agriculture studied by Sharma and Rai (2004), a 

difference that can be attributed to land conservation preventing soil and carbon losses within 

the latter. However, peatland catchments, which are rich in organic carbon, have much higher 

specific DOC yields, e.g. 16.9 t km2 y-1 for a catchment in north-east Scotland (Dawson et al., 

2002). This value is common in peat-dominated headwater catchments in the UK, where soil 

carbon is the major source of organic carbon in stream water (Aitkenhead et al., 1999; 

Dawson et al., 2001).  
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5.4.2. Discharge, SS, POC and DOC relationships and probable origins 

 
The relationship between sediment concentration and discharge revealed the existence of 

clockwise, anticlockwise and mixed-shape hysteretic loops (mixing of clockwise and 

anticlockwise patterns). Interpreting sediment and organic carbon delivery processes using 

hysteresis patterns could help understand the origins of dissolved and particulate matter in a 

catchment. Increasing SSC on the falling limb during floods may be related to sources of 

relatively more available sediment near the catchment outlet. Clockwise hysteresis occurs 

when the sediment source area is the channel itself or an adjacent area located close to the 

catchment outlet, with runoff triggering the movement of sediment accumulated in the 

channel during the previous seasons and with little or no contribution from the tributaries 

(Klein, 1984). López-Tarazon et al (2009) also reported that the clockwise phenomenon was 

found preferentially when rainfall was mostly located near the catchment outlet. In the Save 

catchment, this was the case for clockwise flood events in early autumn and late winter. 

Anticlockwise hysteretic loops occur when sediment sources are far from the catchment 

outlet, e.g. soil erosion from hillsides and upstream areas (Braisington and Richards, 2000; 

Goodwin et al., 2003; Orwin and Smart, 2004). This type of hysteretic loop is mainly found in 

the Save catchment in spring and late autumn, when there are high flood magnitudes with 

sufficient capacity to transport sediments from distant areas of the upstream catchment to the 

outlet (Oeurng et al., 2010). However, it is noted that clear interpretation of sediment sources 

using hysteresis patterns is limited within this study because the Save catchment is long with 

only one sampling station at the catchment outlet. Some hysteresis studies from existing 

literature were used to identify the sediment sources which are close or far referring to the 

sampling station, mainly in small catchments (Lefrançois et al., 2007; Nadal-Romero et al., 

2008).  

 
POC and DOC exhibited different hysteresis behaviour during flood events. This resulted 

from variability in concentrations during rising and falling limbs of floods. The relationship 

between discharge and POC for both clockwise and anticlockwise hysteresis followed the 

same patterns as discharge and SS hysteresis. Examples can be seen in flood events 4, 7, 10 

and 15 (Figure 5-6). Although POC% decreased during flood events, POC concentrations 

remained high with high concentrations of SSC and therefore the hysteresis patterns were 

similar (Figure 5-6). Generally, POC% decreased as SS increased, following a hyperbolic 

relationship (Figure 5-4). This is a very typical trend as reported for other rivers (Meybeck, 

1982; Ittekkot, 1988, Coynel et al., 2005), and it is attributed to changes in organic matter 
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sources during the hydrograph through declining organic carbon in eroded materials (Ittekkot 

and Lanne, 1991). Probst (1992) showed for the Garonne that high POC% corresponds to 

production of phytoplankton during low flood periods, while low POC content corresponds to 

POC from soil erosion during high flow periods. In the present study (SSC < 20 mg l-1, 

associated with low river discharge), the high POC content could be attributed to the 

phytoplankton and litter contribution. For the other classes, corresponding to medium or 

strong sediment mobilisation associated with high river discharge and turbid waters, organic 

carbon content is low and generally recognised as being of allochthonous origin (Etcheber, 

1986; Lin, 1988; Coynel et al., 2005). In this study, POC associated with SSC higher than the 

2000 mg l-1 can be attributed to the terrigenous origins which mainly originated from the soil.  

 

The relationship between DOC and discharge also showed clockwise, anticlockwise and 

mixed patterns during the study period, but the mixed patterns were mostly found when the 

SS peak arrived before peak discharge. An example can be seen in flood events 4 and 10 

(Figure 5-6). This could be due to dilution effects between old water before the floods and 

new water during and after floods. For clockwise patterns, DOC before the flood events was 

low, but then it was diluted by new water containing higher DOC concentrations from soils 

which quickly released DOC during storm events before reaching the peak discharge. Many 

studies have examined the effect of storms on the ability of soils to release DOC and water 

fluxes are responsible for seasonal changes in DOC concentration in runoff (Kalbitz et al., 

2000). The relationship between DOC and discharge showed anti-clockwise hysteresis, with 

higher DOC concentrations on the falling limb of the high hydrograph than on the rising limb. 

This indicates that water entering the stream during the early part of the flood events had 

lower DOC concentrations than water entering the stream after peak discharge (Morel et al., 

2009), an effect associated with subsurface water from shallow soil horizons, which is rich in 

DOC.  

5.5. Conclusion  
 
Temporal characteristics of fluvial transport of suspended sediment and organic carbon during 

flood events were studied in a large agricultural catchment using an extensive dataset with 

high temporal resolution obtained by manual and automatic sampling. The results showed 

strong variability in SS and POC and DOC concentrations. Suspended sediment load during 

different seasonal flood events varied from 513 to 41 750 t; POC load from 12 to 748 t and 

DOC load from 9 to 218 t. Transport of POC and DOC during flood events amounted to 76% 
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and 62% of their total fluxes and occurred within 22% of the study period (January 2008-June 

2009). These results reveal the important role of floods in mobilising SS, POC and DOC 

transport from the Save agricultural catchment. Total POC export during the whole study 

period amounted to 3091 t and total DOC export to 1238 t, representing 1.8 t km-2 y-1 and 0.7 t 

km-2 y-1, respectively.  

 

Statistical analyses revealed strong correlations between total precipitation (Pt), flood 

discharge and total water yield and SS, POC and DOC, indicating that these variables are the 

main factors controlling sediment and organic carbon export from the Save catchment. 

Sediment and organic carbon sources are also important in yielding dissolved and particulate 

matter during flood events, as successive floods exhaust the amounts available. The 

relationships between SSC, POC and DOC loads and discharge over different temporal scales 

during flood events resulted in different hysteresis patterns, which were used to identify their 

origins. For POC, clockwise and anticlockwise hysteresis followed the same patterns as 

discharge and SS hysteresis. The relationship between DOC and discharge was mainly 

dominated by alternating clockwise and anticlockwise hysteresis due to dilution effects of 

water originating from different sources in the whole catchment.  
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Chapter 6  
 

Assessment of hydrology, sediment and 
particulate organic carbon yield in a large 

agricultural catchment using the SWAT model 
 

 

This chapter addresses the modelling approach to characterise the fluxes of suspended 

sediment and particulate organic carbon using agro-hydrological model, the SWAT model 

(Soil and Water Assessment Tool). The simulation of suspended sediment was compared with 

observed sediment data from the two year observation. The catchment water balance was also 

evaluated. The fluxes of sediment and POC were estimated via long-term simulation of 

suspended sediment and POC concentrations. A regression between annual water yield and 

simulated annual sediment yield was established and potential source areas of erosion were 

also identified for the studied catchment. This chapter was written in the form of publication 

which is under review in the Journal of Hydrology.  
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Abstract 

Assessment of catchment hydrology, sediment and associated particulate organic carbon 

losses from agricultural land to stream networks is important for best water and soil 

management and for better understanding of the global carbon cycle. In this study, the Soil 

and Water Assessment Tool (SWAT 2005) was used to simulate discharge and sediment 

transport at daily time steps within the intensively farmed Save catchment in south-west 

France. The SWAT model was applied to evaluate catchment hydrology and sediment and 

associated particulate organic carbon yield using historical flow and meteorological data for 

the period January 1999-March 2009 and sediment data for January 2007-March 2009. Data 

on management practices (crop rotation, planting date, fertiliser quantity and irrigation) were 

also included in the model. Simulated daily discharge and sediment values matched the 

observed values satisfactorily. The model predicted that mean annual catchment precipitation 

for the total study period (726 mm) was partitioned into evapotranspiration (78.3%), 

percolation/groundwater recharge (14.1%) and abstraction losses (0.5%), yielding 7.1% 

surface runoff. Simulated mean total water yield for the whole simulation period amounted to 

138 mm, comparable to the observed value of 136 mm. Simulated annual sediment yield 

ranged from 4766 t to 123000 t, representing a mean specific sediment yield of 48 t km-2 y-1. 

Annual yield of particulate organic carbon ranged from 120 t to 3100 t, representing a mean 

specific POC yield of 1.2 t km-2 y-1. A regression between annual water yield and simulated 

annual sediment yield was developed for this agricultural catchment. Potential source areas of 

erosion were also identified.  

 

Key words: Save catchment, SWAT 2005, hydrology, sediment yield, particulate organic 

carbon,   
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6.1. Introduction  
 

Intensive agriculture has led to environmental degradation through soil erosion and associated 

carbon losses from agricultural land to stream networks (Sharma and Rai, 2003). The global 

river network is increasingly being recognised as a major component of the carbon cycle due 

to the important role of rivers in the terrestrial water cycle, regulating the mobilisation and 

transfer of components from land to sea. Studies seeking a better understanding of the global 

carbon cycle have expressed increasing concern over the quantification of sediment and 

carbon transport by rivers to the sea (Milliman and Syvitski, 1992; Ludwig and Probst, 1998). 

The erosion of carbon from land and its subsequent transport to sea via rivers represents a 

major pathway in the global carbon cycle (Kempe, 1979; Degens et al., 1984). Organic carbon 

is estimated to constitute ~40% of the total flux of carbon carried by the world’s rivers (1 Gt 

yr-1) (Meybeck, 1993).  

Effective control of water and soil losses in agricultural catchments requires the use of best 

management practice (BMP). Quantifying and understanding sediment transfer from 

agricultural land to watercourses is also essential in controlling soil erosion and in 

implementing appropriate mitigation practices to reduce stream sediment transport and 

associated pollutant loads, and hence improve surface water quality downstream (Heathwaite 

et al., 2005). However, field measurements and collection of data on suspended sediment and 

particulate organic carbon are generally difficult tasks, rarely achieved over long timescales in 

large catchments.  

Appropriate tools are needed for better assessment of long-term hydrology and soil erosion 

processes and as decision support for planning and implementing appropriate measures. The 

tools include various hydrological and soil erosion models, as well as geographical 

information system (GIS). Due to technological developments in recent years, distributed 

catchment models are increasingly being used to implement alternative management 

strategies in the area of water resource allocation and flood control (Setegn, 2009). Many 

hydrological and soil erosion models are designed to describe hydrology, erosion and 

sedimentation processes. Hydrological models describe the physical processes controlling the 

transformation of precipitation to runoff, while soil erosion modelling is based on 

understanding the physical laws of processes that occur in the natural landscape (Setegn, 

2009). Distributed hydrological models, mainly simulating processes such as runoff and the 

transport of sediment and pollutants in a catchment, are crucial for providing systematic and  
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consistent information on water availability, water quality and anthropogenic activities in the 

hydrological regime (Yang et al., 2007). A physically-based distributed model is preferable, 

since it can realistically represent the spatial variability of catchment characteristics (Mishra 

et al., 2007). A number of water quality models at catchment scale have been developed, such 

as AGNPS (Young et al., 1989), CREAMS (Knisel, 1980), EUROSEM (Morgan et al., 1998), 

ANSWERS (Beasley et al., 1980), HSPF (Donigian et al., 1995), KIREROS (Smith, 1981), 

WEPP (Nearing et al., 1989), AnnAGPS (Binger and Theurer, 2003), SWAT (Arnold et al., 

1998) and SHETRAN (Ewen et al., 2000). Among these models, SWAT (Soil and Water 

Assessment Tool) is frequently used to assess hydrology and water quality in agricultural 

catchments. To date, a number of SWAT applications to study hydrology and sediment 

transport in small and large catchments have been undertaken in different regions, e.g. Miyun 

reservoir catchment in China (Xu et al., 2009), Lake Pyhäjärvi, YIäneenjoki catchment in 

Finland (Bärlund et al., 2007; Koskiaho et al., 2007), Tana Lake Basin in Ethiopia (Setegn et 

al., 2009), two mountainous catchments in Central Iran (Rostamian et al., 2008), Kapgari 

catchment in India (Behera and Panda, 2006), and many studies in American catchments such 

as Cottonwood catchment in Minnesota (Hanratty and Stefan, 1998), Upper North Bosque 

River in Texas (Di Luzio et al., 2002) and Sandusky catchment in Ohio (Grunwald and Qi, 

2006). However, there have been few applications in European catchments in which intensive 

agriculture is increasingly being practised. Moreover, most previous SWAT applications were 

made on a monthly timescale.  

The objective of the present study was to apply the SWAT model to the Save catchment in the 

Gascogne area of south-west France in order to assess long-term catchment hydrology and 

sediment-associated particulate organic carbon (POC) transport and to quantify sediment and 

carbon yields from this agricultural catchment.  

6.2. Materials and methods 

6.2.1. Study area 
 

The Save catchment in the area of Coteaux Gascogne is a 1110 km2 agricultural catchment. 

The Save river has its source in the piedmont zone of the Pyrenees Mountains (south-west 

France), joining the Garonne River after a 140 km course with a linear shape and an average 

slope of 3.6‰ (Figure 6-1A). The altitude ranges from 98 m to 620 m (Figure 6-1B). This 

catchment lies on detrital sediments from the Pyrenees Mountains. It is bound on the east by 

the Garonne River, on the south by the Pyrenees and on the west by the Atlantic Ocean.  
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Figure 6-1.  (A) Location of study area; (B) Topographical map; (C) Major agricultural landuses (D) Major soil types in the Save catchment. 
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Throughout the Oligocene and Miocene, this catchment served as an emergent zone of 

subsidence, receiving sandy, clay and calcareous sediments derived from the erosion of the 

Pyrenees Mountains, which were in an orogenic phase at that time. The heterogeneous 

sediment materials were of low energetic value and produced a thick detrital formation of the 

molasse type in the Miocene. From the Pleistocene onwards, the river became channelised, 

cutting broad valleys into the molasse deposits and leaving terraces of coarse alluvium (Revel 

and Guiresse 1995). The substratum of the catchment consists of impervious Miocene 

molassic deposits.  

In this area, which has been cultivated since the Middle Ages, mechanical erosion by 

ploughing has had a greater impact on downward soil displacement that water erosion, with a 

major impact on surface relief, mainly on levelling and soil distribution (Guiresse and Revel, 

1995). Very weak erosion has led to the development of Calcic Luvisols (UN FAO soil units) 

on the tertiary substratum and local Rendosols on the hard calcareous sandstone beds. The 

Calcic Cambisols on hillsides with very gentle slopes have been subjected to moderate 

erosion. Non-calcic silty soils, locally named boulbènes, represent less than 10% of the soils 

in this area. The calcic soils are dominated by a clay content ranging from 40% to 50%, while 

the non-calcic soils are silty (50-60%). The major soils of the Save catchment are presented in 

Figure 6-1C. The upstream part of the catchment is a hilly agricultural area mainly covered 

with patchy forest and dominant pastures, while the lower part is flat and devoted to intensive 

agriculture, with sunflower and winter wheat dominating the crop rotation (Figure 6-1D).  

The climatic conditions are oceanic, with annual precipitation of 700-900 mm and annual 

evaporation of 500-600 mm. The dry period runs from June to August (the month with 

maximum deficit) and the wet period from October to May. The hydrological regime of the 

catchment is mainly pluvial, i.e. regulated by rainfall, with maximum discharge in May and 

low flows during summer (July to September). 

The catchment substratum is relatively impermeable due to its high clay content. 

Consequently, the river discharge is mainly supplied by surface and subsurface runoff, and 

groundwater is limited to alluvial and colluvial phreatic aquifers. The maximum instantaneous 

discharge for the long-term period (1965-2006) is 620 m3 s-1 (1 July 1997). The mean annual 

discharge (1965-2006) is 6.29 m3 s-1 (data from Compagnie d’Aménagement des Coteaux de 

Gascogne, CACG). During low flow, the river discharge is sustained by a nested canal at the 

catchment head about 1 m3 s-1 
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6.2.2. Catchment water quality monitoring  
 

A Sonde YSI 6920 (YSI Incorporated, Ohio, USA) measuring probe and Automatic Water 

Sampler (ecoTech Umwelt-Meßsysteme GmbH. Bonn, Germany) with 24 1-litre bottles has 

been installed at the Save catchment outlet (Larra bridge) since January 2007 for water quality 

monitoring. The Sonde is positioned near the bank of the river under the bridge, where the 

homogeneity of water movement is considered representative of all hydrological conditions. 

The pump inlet is placed next to the Sonde pipe. The Sonde is programmed to activate the 

automatic water sampler to pump water at water level variations )cm(x∆ ranging from 10 cm 

to 30 cm, depending on seasonal hydrological conditions for both the rising and falling stage. 

This sampling method provides a high sampling frequency during storm events (3 samples 

per week to 4 samples per day during flood events). Manual sampling is also carried out using 

a 2-litre bottle lowered from the Larra bridge, near the Sonde position, at weekly intervals 

when water levels are not remarkably varied. The total instantaneous water samples from both 

automatic and manual sampling from January 2007 to March 2009 amounted to 246 samples.  

6.2.3. Determination of suspended sediment and POC concentrations 
 

All 246 water samples were analysed in the laboratory to determine suspended sediment 

concentration (SSC) using a nitrocellulose filter (GF 0.45 µm) and drying at 40 °C for 48 h. 

Volumes of water ranging from 150 to 1000 ml were filtered according the suspended 

sediment load. Suspended sediment concentration data were determined for samples collected 

using the automatic and manual sampling methods described above over a range of 

hydrological conditions from January 2007 to March 2009 (Oeurng et al., 2010). Daily SSC 

values were calculated from the mean of instantaneous SSC for a given day.    

Particulate organic carbon (POC) was analysed on samples collected from January 2008 to 

March 2009. Water samples were filtered by glass microfibre filter paper (GF/F 0.7 µm) for 

determination of particulate organic carbon (POC). The filter paper containing suspended 

sediment was then acidified with HCL 2N in order to remove carbonates and dried at 60 °C 

for 24 h. Particulate organic carbon analyses were carried out using a LECO CS200 analyser 

(Etcheber et al., 2007). The SSC values obtained using the nitrocellulose and glass microfibre  

filters were identical.  
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6.3. Modelling approach  

6.3.1. The SWAT model 
 

The Soil and Water Assessment Tool (SWAT 2005) was selected for this study primarily 

because of its many previous applications to assess hydrology and sediment transport in small 

and large catchments in different regions. The model is a free assessable source and user 

friendly environment. Furthermore, the SWAT project for the Save catchment may be 

extended in the future to study the other aspects of nutrient and pesticide transport.  

SWAT is physically-based, distributed, agro-hydrological model that operates on a daily time 

step and is designed to predict the impact of management on water, sediment and agricultural 

chemical yields in ungauged catchments (Arnold et al., 1998). Major component models 

include weather, hydrology, soil temperature, plant growth, nutrients, pesticides and land 

management. The model is capable of continuous simulation in large complex catchments 

with varying soils and management conditions over long time periods. SWAT uses readily 

available inputs, has the capability of routing runoff and chemicals through stream and 

reservoirs, and allows the addition of flows and the inclusion of measured data from point 

sources.  

SWAT can analyse small or large catchments by discretising into sub-basins, which are then 

further subdivided into hydrological response units (HRUs) with homogeneous land use, soil 

type and slope. The SWAT system embedded within geographical information system (GIS) 

can integrate various spatial environmental data, including soil, land cover, climate and 

topographical features.  

6.3.2. Hydrological modelling component in SWAT 
 

SWAT uses a modification of the SCS curve number method (USDA Soil Conservation 

Service, 1972) to compute surface runoff volume for each HRU. Peak runoff rate is estimated 

using a modification of the Rational Method (Chow et al., 1988). Daily rainfall data are used 

for calculations. Flow is routed through the channel using a variable storage coefficient 

method (Williams, 1969) or the Muskingum routing method (Cunge, 1969). In this work, SCS 

curve number and Muskingum routing methods, along with daily climate data, were used for 

surface runoff and streamflow computations. SWAT simulates the hydrological cycle based 

on the soil and water balance equation as follows:  
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where SWt is the final soil water content (mm), SW0 is the initial soil water content on day i 

(mm), t is the time (days), Rday is the amount of precipitation on day i (mm), Qsurf is the 

amount of surface runoff on day i (mm), Ea is the amount of evapotranspiration on day i 

(mm), Wseep is the amount of water entering the vadose zone from the soil profile on day i 

(mm), and Qgw is the amount of return flow to the stream on day i (mm).  

Groundwater flow contribution to total streamflow is simulated by creating shallow aquifer 

storage (Arnold & Allen, 1996). Percolation from the bottom of the root zone is considered as 

recharge to the shallow aquifer. Three methods for estimating potential evapotranspiration are 

used in SWAT: Priestley and Taylor (1972), Penman (Monteith, 1965) and Hargreaves and 

Samani (1985). In this study, the Penman method was used to estimate potential 

evapotranspiration.  

6.3.3. Suspended sediment modelling component in SWAT 
 

The sediment from sheet erosion for each HRU is calculated using the Modified Universal 

Soil Loss Equation (MUSLE) (Williams, 1975).   

( ) CFRGLSPCKAqQ8.11Sed USLEUSLEUSLEUSLE
56.0

hrupeaksurf ××××××××=  

where Sed is the sediment yield (t) on a given day, Qsurf
  is the surface runoff volume         

(mm ha-1), qpeak is the peak runoff rate (m3 s-1), Ahru is the area of the HRUs (ha), KUSLE is the 

soil erodibility factor, CUSLE is the cover and management factor, PUSLE is the support practice 

factor, LSUSLE is the USLE topographical factor and CFRG is the coarse fragment factor. 

Details of the USLE factors can be found in Neitsch et al. (2005).  

The sediment concentration is obtained from the sediment yield, which corresponds to flow 

volume within the channel on a given day. The transport of sediment in the channel is 

controlled by simultaneous operation of two processes: deposition and degradation. Whether 

channel deposition or channel degradation occurs depends on the sediment loads from the 

upland areas and the transport capacity of the channel network. If the sediment load in a 

channel segment is larger than its sediment transport capacity, channel deposition will be the 

dominant process. Otherwise, channel degradation occurs over the channel segment. SWAT 

calculates the maximum amount of sediment that can be transported from the channel 

segment as a function of the peak channel velocity:  
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SPEXP
mx,ch,sed SPCONconc υ×=  

where concsed,ch,mx (ton m-3) is the maximum concentration of sediment that can be transported 

by streamflow (i.e. transport capacity),  SPCON is a coefficient defined by the user, SPEXP is 

an exponent parameter for calculating sediment reentrained in channel sediment routing that 

is defined by the user (1< spexp <2)  and υ  (m s-1) is the peak channel velocity. The peak 

channel velocity in a reach segment at each time step is calculated from:  

2/1
ch

3/2
ch SR

n

PRF ××=υ  

where PRF is the peak rate adjustment factor with a default value of unity, n is manning’s 

roughness coefficient, Rch is the hydraulic radius(m), and Sch is the channel invert slope       

(m m-1).  

The maximum concentration in the reach is compared with the concentration of sediment in 

the reach at the beginning of the time step, concsed,ch,i  

If concsed,ch,i > concsed,ch,mx, deposition is the dominant process in the reach segment. The net 

amount of sediment deposited is calculated by: 

Seddep= (concsed,ch,i – concsed,ch,mx) × Vch 

where seddep is the amount of sediment deposited in the reach segment (metric tons), 

concsed,ch,i is the initial sediment that can be transported by water (kg L-1 or ton m-3) and Vch is 

the volume of water in the reach segment (m3).      

If concsed,ch,i < concsed,ch,mx, degradation is the dominant process in the reach segment. The net 
amount of sediment reentrained is calculated by:  

Seddeg= (concsed,ch,mx – concsed,ch,,i) × Vch × Kch × Cch 

where seddeg is the amount of sediment reentrained in the reach segment (metric tons), 

concsed,ch,mx is the maximum concentration of sediment that can be transported by water (kg l-1 

or ton m-3), Vch is the volume of water in the reach segment (m3), Kch (CH_EROD) is the 

channel erodibility factor  (cm h-1 Pa-1), and Cch (CH_COV) is the channel cover factor.  

The final amount of sediment in the reach is calculated by:  

Sedch = sedch,i – seddep + seddeg 
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where sedch is the amount of suspended sediment in the reach (metric tons), sedch,i is the 

amount of the suspended sediment in the reach at the beginning of the time period (metric 

tons) and seddep is the amount of sediment reentrained in the reach segment (metric tons).  

The total amount of sediment that is transported out of the reach segment is computed as: 

ch

out
chout V

V
sedsed ×=  

where sedout is the total amount of sediment transported out of the reach (metric tons), sedch is 

the amount of suspended sediment in the reach (metric tons), Vout is the volume of water 

leaving the reach segment (m3) at each time step and Vch is the volume of water in the reach 

segment (m3).  

6.3.4. Particulate organic carbon modelling  
 

The relationship between SSC and POC concentration was found to have an R2 value of 0.93 

(Figure 6-2). Based on this relationship (POC=0.01 SSC + 1.87), long-term POC could be 

computed from simulated SSC obtained from SWAT.  

y = 0.01x + 1.87
R2 = 0.93 (P<0.001)
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Figure 6-2. Relationship between instantaneous suspended sediment concentration (SSC) and 
particulate organic carbon (POC) at Larra sampling station. 
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6.3.5. SWAT data input 
 

The Arc SWAT interface for SWAT version 2005 (Winchell et al., 2007) was used to compile 

the SWAT input files. The SWAT model requires input on topography, soils, landuse and 

meteorological data.  

- Digital elevation map (DEM) with a resolution of 25 m × 25 m from BD TOPO R IGN 

France - Cemagref de Bordeaux (UR ADBX) 

- Soil data at the scale of 1:80 000 from CACG and digitised by Cemagref de Bordeaux (UR 

ADBX) (Macary et al., 2006) and soil properties from Lescot and Bordenave. (2009)  for the 

SWAT soil database  

- Landuse data from Landsat 2005 (Macary et al. 2006).The management practices were taken 

into account in the model for simulation. The dominant landuse in the catchment were 

pasture, sunflower/winter wheat in rotation. The starting dates of plant beginning, amounts, 

date of fertilizer and irrigation applications were included. For pasture area, there is one 

rotation of corn during a period of 4 years. Tillage works were practiced during April within 

this area. For sunflower-winter wheat rotation, the planting date of sunflower is on April 10 

then is harvested on July 10. After that, winter wheat begins on October 9 then is harvested on 

July 10, following year. The rotation of winter wheat-sunflower follows the same pattern by 

plant begins of winter wheat on October 9 and it is harvested on July 10. For following year, 

sunflower is planted on April 10, then is harvested on July 10. The soil is uncovered from 

July through April for this rotation once per two years.  

- Meteorological data included 5 rainfall stations with daily precipitation from Meteo France 

(Figure 6-1A). Some past and missing data were generated for some stations by linear 

regression equation from the data of the nearest stations with complete measurement. Two 

stations at the upstream part having a complete measurement of daily minimum and 

maximum air temperature, wind speed, solar radiation and relative humidity was used to 

simulate the potential evapotranspiration (PET) in the model by the Penman method.  
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Figure 6-3. Map showing 91 sub-basins in the Save catchment. 

The catchment was discretized into 91 subbasins with dominant landuse and soil 

classification. The main dominant landuses in the Save catchment are pasture, sunflower and 

winter wheat. The figure 6-3 showed 91 subbasins in the Save catchment.   

6.3.6. Model evaluation 
 

The performance of the model in simulating discharge and sediment was evaluated 

graphically and by Nash-Sutcliffe efficiency (ENS) and coefficient of determination (R2):  
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Where Oi and Si are the observed and simulated values, n is the total number of paired 

values,O is the mean observed value and Sis the mean simulated value.  

ENS ranges from negative infinity to 1, with 1 denoting perfect agreement between simulated 

and observed values. Generally ENS is very good when ENS is greater than 0.75, satisfactory 

when ENS is between 0.36 and 0.75, and unsatisfactory when ENS is lower than 0.36 (Nash and 

Sutcliffe, 1970; Krause et al., 2005).  However, a shortcoming of the Nash-Sutcliffe statistic 

is that it does not perform well in periods of low flow, as the denominator of the equation 

tends to zero and ENS approaches negative infinity with only minor simulation errors in the 

model. This statistic works well when the coefficient of variation for the data set is large 

(Pandey et al., 2008). The coefficient of determination (R2) is the proportion of variation 

explained by fitting a regression line and is viewed as a measure of the strength of a linear 

relationship between observed and simulated data. R2 ranges between 0 and 1. If the value is 

equal to one, the model prediction is considered to be ‘perfect’. 

6.3.7. Calibration process  
 

The period July-December 1998 served as a warm-up period for the model (allowing state 

variables to assume realistic initial values for the calibration period). The calibration was 

carried out at daily time steps using flow data for the hydrological years from January 1999 to 

March 2009 and suspended sediment data for January 2007-March 2009. The capability of a 

hydrological model to adequately simulate streamflow and sediment process typically 

depends on the accurate calibration of parameters (Xu et al., 2009). Parameters can either be 

estimated manually or automatically. In this study, the calibration was done manually based 

on physical catchment understanding and sensitive parameters from published literature (e.g. 

Bärlund et al., 2007; Xu et al., 2009) and calibration techniques from the SWAT user manual. 

After calibration of flow, calibration of sediment was carried out. The SCS curve number 

(CN2) is a function of soil permeability, landuse and antecedent soil water conditions. This 

parameter is important for surface runoff. The baseflow recession coefficient (ALPHA_BF) is 

a direct index of groundwater flow response to changes in recharge. This parameter is 

necessary for baseflow calibration. The sensitive parameters for predictions of sediment are a 

linear parameter for calculating the maximum amount of sediment that can be entrained 

during channel sediment routing (SPCON), an exponential parameter for calculating the 

channel sediment routing (SPEXP), and a peak rate adjustment factor (PRF), which is 
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sensitive to peak sediment. There is no channel protection; however, the channel banks are 

covered by riparian vegetation along the Save river.  

Added to the difficulty of discharge calibration was possibly another disadvantage caused by 

inaccuracy of instantaneous discharge higher than 40 m3 s-1 at Larra station, generated from 

the rating curve. Moreover, daily nested discharge data for the Save catchment during water 

extraction in summer and during the winter period to sustain flow discharge in the Save river 

also contribute to the uncertainty in baseflow calibration. The parameters used to calibrate 

discharge and suspended sediment, are presented in Table 6-1. 

6.4. Results and Discussion 

6.4.1. Discharge simulation and hydrological assessment   
 

Simulations were carried out for the period January 1999-March 2009. Flow and sediment 

calibration was based on daily simulations. Table 6-1 presents the calibrated parameters for 

discharge, suspended sediment and the range of SWAT parameter values, while Figure 6-4 

graphically illustrates observed and simulated daily discharge at Larra gauging station. 

Simulated discharge followed a similar trend to observed discharge. However, simulated peak 

discharge was underestimated during some flood periods such as an event in June 2000, 

which was the largest flood observed in the study area since 1985 (data from CACG). The 

underestimation may be due to local rainfall storms not being well represented by the rainfall 

data used in the hydrological simulations. In any case, SWAT could not accurately simulate 

the flood discharge when the river overflowed, as in the June 2000 flood. Daily simulated 

discharge was also overestimated for some periods, e.g. in May 2007. Larger errors occurred 

when simulated peak and average flows differed significantly from the measured values. It 

should be noted that the hydrological regime of the Save fluctuates significantly, possibly 

resulting in difficulty in discharge calibration. The statistical performance was satisfactory, 

with a daily ENS value of 0.53 and an R2 value of 0.56. Good statistical performance was hard 

to achieve for the Save agricultural catchment over a long period of simulation due to strong 

spatial heterogeneity and lack of accurate data limitation (climate data, agricultural data) 

within the catchment. Very few studies published to date have shown good results of SWAT 

model calibration for long periods of daily simulation within an intensively farmed 

agricultural catchment.    
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Table 6-1. Parameters used to calibrate flow and sediment at Larra gauging station 

    

           Parameters used to calibrate flow 
 

  Parameter Definition  Min.Value Max.Value Calibrated value 
ESCO Soil evaporation compensation factor 0 1 0.5 
EPCO Plant water uptake compensation factor 0 1 1 
ICRK Crack flow (1=model crack flow in soil   active 

basins.bsn 

SURLAG Surface runoff lag time 0 10 1 
GW_DELAY Groundwater delay 0 500 30 
GW_REVAP Groundwater revap 0.02 0.2 0.05 
RCHRG_DP Deep aquifer percolation factor 0 1 0.15 

*.GW 

ALPHA_BF Baseflow alpha factor 0 1 0.5 
*.soil SOL_AWC Available water capacity of the soil layer 0 1 0.2 
*.sub CH_N1 Manning's "n" value for tributary channels 0.01 0.5 0.025 
*.rte CH_N2 Manning's "n" value for main channel 0.01 0.5 0.04 
*hru OV_N Maining's "N" for overland flow 0.01 0.5 0.19 

*.mgt CN2 SCS Curve number 35 98 80 (cultivated)  

     65 (urban)  
     70 (forest) 

Parameters used to calibrate sediment 

File Parameter Definition Min.Value  Max.Value Calibrated value 

*.bsn PRF 
Peak rate adjustment factor for sediment 
routing 

0 2 0.58 

*.rte CH_COV Channel cover factor -0.001 1 1 
*.rte CH_EROD Channel erodibility factor -0.05 0.6 0.0001 

Linear parameters for calculating the 
*.bsn SPCON 

channel sediment rooting 
0.0001 0.01 0.01 

Exponent parameter for calculating the 
*.bsn SPEXP 

channel sediment routing 
1 2 2 

 

For the calibrated parameter set, the model predicted that mean annual rainfall for the total 

simulation period over the area of the catchment (726 mm) is mainly removed through 

evapotranspiration ET (78.3%), percolation/groundwater recharge (14.1%) and transmission 

loss/abstraction (0.5%), yielding surface runoff of 7.1%. The computed water balance 

components indicated rather high mean annual ET rates (78.3% of mean annual rainfall). This 

value is similar to the ET (72%) of an agricultural catchment in an arid area in Tunisia studied 

by Ouessar et al. (2009). However, the groundwater recharge rate (14.1% of mean annual 

rainfall) of the Save catchment was lower than that of the Tunisian catchment (22%). This can 

be attributed to limitation of groundwater recharge by the Save catchment substratum, which 

is relatively impermeable due to its high clay content. Simulated mean total water yield for 

the whole simulation period amounted to 138 mm, which is comparable to the observed value 
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of 136 mm (1985-2008). In this large intensive agricultural catchment, most rainfall was 

evapotranspired throughout the year.  
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Figure 6-4.  Observed and simulated daily discharge at Larra station (January 1999 to March 
2009). 

6.4.2. Suspended sediment simulation and yield 
 

The observed values of suspended sediment were compared with simulated sediment values 

for the period January 2007-March 2009. Figure 6-5 shows observed and simulated discharge 

and observed and simulated suspended sediment concentration during the suspended sediment                         

sampling period at Larra gauging station. Similar trends were found for observed and 

simulated sediment concentrations. During some floods in June 2007 and January 2008, there 

were no observed sediment data due to the damage of the sampling instrument. However, the 

simulated sediment was underestimated and overestimated during some flood events. The 

underestimation occurred for a flood event in June 2008 when rainfall intensity was extreme, 

resulting in severe sediment load transport (Oeurng et al., 2010). In practice, high-intensity 

and even short duration rainfall can generate more sediment than simulated by the model on 

the basis of daily rainfall (Xu et al., 2009). The statistical analysis showed reasonable 

agreement between observed and simulated daily values, with an R2 value of 0.51 (excluding 

a few extreme observed concentrations). However, at the annual scale, the model predicted 

annual sediment yield which significantly matched the two years of observed sediment yield 

data at the outlet (Figure 6-6B). 
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Figure 6-5. Observed and simulated daily discharge (A) and observed and daily simulated 
suspended sediment concentration (B) at Larra sampling station (January 2007 to March 

2009). 

Oeurng et al. (2010) showed that one extreme flood event in June 2008 in the Save catchment 

yielded a sediment load of 63% of the annual sediment yield in 2008. This could indicate that 

SWAT might not be able to simulate high sediment transport flood events and those even-

based models such as AGNPS and ANSWERS should be used instead of continuous 

simulation models such as SWAT (Xu et al., 2009). Benaman and Shoemaker (2005) 

analysed high flow sediment event data to evaluate the performance of the SWAT model in 

the 1178 km2 Cannonsville catchment and concluded that SWAT tended to underestimate the 

loads for high loading events (greater than 2000 metric tons). The main disadvantage of 

SWAT is the very simplified suspended sediment routing algorithm as described in section 

2.3.3. Furthermore, SWAT allows all soil eroded by runoff to reach the river directly, without 

considering sediment deposition remaining on surface catchment areas.   

The simulated sediment yield of other years is also presented in Figure 6-6B. The annual 

sediment yield from the Save catchment showed great variability, ranging from 4766 t to  
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Figure 6-6.  (A) Simulated daily suspended sediment concentration (SSC) and particulate 
organic carbon (POC) (January 1999-March 2009), (B) simulated annual sediment yield 
(1999-2008) and observed annual sediment yield (2007-2008) and  (C) simulated annual 

particulate organic carbon yield (POC) (1999-2008) and observed annual POC yield (2008). 
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123000 t, representing a mean specific sediment yield of 48 t km-2 y-1. The sediment yield in 

2000 was the highest of all simulated annual sediment yields and could be attributed to a 

major flooding period when daily maximum discharge reached 210 m3 s-1. The lowest 

sediment yield occurred in the driest year (2005), when no major flood events were observed 

during the whole year. The great variability of sediment yield in the Save catchment mainly 

resulted from hydrological fluctuations from season to season and year to year.  Oeurng et al. 

(2010) showed that hydro-climatological variables (total precipitation during flood event, 

flood discharge, flood duration, flood intensity and water yield) are the main factors 

controlling sediment load transport in the Save catchment. The annual sediment yield from 

the model was significantly correlated with annual water yield, with an R2 value of 0.82 

(Figure 6-7). Based on this strong regression, annual water yield could be used to estimate 

annual sediment yield for long-term periods within this catchment. 

Figure 6-7.  Regression between annual water yield and simulated annual sediment yield with 
95% confidence interval for the Save catchment�
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The mean specific sediment yield of 48 t km-2 y-1 in the Save catchment is within the range 

reported for the Garonne River (11-74 t km-2 y-1) by Coynel (2005). The 1330 km2 Baïs 

catchment and the 970 km2 Gers catchment, located in the same Gascogne region as the Save 

catchment and with the same climatic conditions, geology (molasse) and agricultural landuse, 

also have similar specific sediment yields (63 and 41 t km-2 y-1, respectively) (Maneux et al., 

2001). The Save sediment yield is also similar to that of the 900 km2 Tordera catchment (50 t 

km-2 y-1) in north-east Spain (Rovira and Batalla, 2006), but much lower than the 414 t km-2 y-

1 reported for the 445 km2 Isábena catchment (Southern Central Pyrenees) which is highly 

erodible and experiences frequent floods (López-Tarazon et al., 2009).  

6.4.3. POC simulation and yield 
 

Based on the relationship between suspended sediment and particulate organic carbon 

(R2=0.93), POC was computed from simulated suspended sediment data for the period 

January 1998-March 2009 (Figure 6-6A). The simulated annual POC yield ranged from 120 t 

to 3100 t (mean 1327 t; SD 916 t), representing a mean specific POC yield of 1.2 t km-2 y-1. 

The 2008 value of 1948 t was statistically similar to the observed annual value of 2060 t 

(Figure 6-6C). The annual POC yield showed strong variability due to the variability in 

sediment yield within the catchment. The average specific POC yield of 1.2 t km-2 in the Save 

catchment is similar to that of the Garonne River (1.47 t km-2 y-1) (Veyssy et al., 1999) and 

that of other rivers in Europe (mean 1.10 t km2 y-1) (Ludwig et al., 1996). However, it is lower 

than that of the Amazon River (2.83 t km2 y-1) (Richey et al., 1990). 

6.4.4. Identification of critical areas of soil erosion 
 

Using the total simulation results, it was possible to identify areas of significant soil erosion 

based on the average annual sediment yield for the total hydrological period within each sub-

basin. The rate of soil erosion ranged from 0.10 to 6 t ha-1 (Figure 6-8). Among the 91 sub-

basins within the catchment, numbers 91, 89, 88, 87, 83, 81 were identified as areas with 

serious soil erosion areas (3.16 - 6 t ha-1). These are several possible reasons for this. These 

sub-basins located at high upstream, have the steep slope and experience many major rainfall 

events, while downstream areas are mostly flat and experience fewer major rainfall events 

which impacted less soil erosion. Although the downstream areas are intensively cultivated, 

less soil erosion occurs there than in upstream areas, where high slope, tillage practices in 

pasture areas and major rainfall events are significant factors contributing to sediment 
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transport from the Save catchment. Therefore, appropriate strategies should be devised to 

protect these critical areas where soil erosion is most serious.  

 

Figure 6-8. Simulated soil erosion within the 91 sub-basins, based on average sediment yield 
(1999-2008). 

6.5. Conclusions  
 

Parameterisation of the model to achieve good simulations of daily flow and sediment 

transport for long hydrological periods proved to be a laborious task in the Save agricultural 

catchment. The simulation of daily discharge was better than that of sediment transport. 

Although the model underestimated and overestimated daily discharge and suspended 

sediment for some flood events, predictions were within acceptable limits. The hydrological 

assessment showed that more than two-thirds of the total rainfall received was removed from 

the Save catchment as evapotranspiration. The water balance component in SWAT proved 

very useful for examining water management in the catchment, which is dominated by 

intensive agriculture. The simulated sediment yield at annual scale well matched the 
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measured sediment yield during the two-year study. The simulated mean total water yield for 

the whole simulation period amounted to 138 mm (observed value 136 mm) and annual 

sediment yield varied from 4766 t to 123000 t, representing a mean specific sediment yield of 

48 t km-2 y-1. The annual yield of particulate organic carbon ranged from 120 t to 3100 t, 

representing a specific POC yield of 1.2 t km-2 y-1.  A regression between annual water yield 

and simulated annual sediment yield was developed for this agricultural catchment. This 

relationship can be used for generating long-term sediment yield for the Save catchment in the 

future, reducing the need for expensive field work. Moreover, potential sources of erosion 

were also identified.  

SWAT can be a useful tool for assessing hydrology and sediment yield over long-term 

periods. Based on historical flow and climate data, SWAT can generate sediment yield values, 

which are crucial in identifying pass soil erosion patterns within a catchment. Prediction of 

discharge and soil losses is important for assessing soil degradation and for determining 

suitable landuse and soil conservation measures for a catchment. The results obtained can be 

used to mitigate environmental problems within intensively farmed agricultural catchments.   
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Chapter 7  
 

General Discussion 
 
 
This chapter provides the general discussion of the results from the chapter 4, 5 and 6 and the 

model.  
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7.1. SS, POC and DOC transport dynamics and modelling 
 
The study of the suspended sediment and organic carbon transport collected at different 

temporal scales with high frequency of extensive dataset in the Save catchment provides an 

insight into the characteristics of the temporal variability in this agricultural catchment. 

Maximum SS, POC and DOC concentrations generally increased during high flood 

magnitudes particularly in spring, yielding SS, POC and DOC fluxes with strong variability. 

Increasing SS on the falling limb during floods may be related to sources of relatively more 

available sediment with lower soil aggregate stability. The variability in event sediment 

transport during successive peaks of similar magnitude is influenced by sediment exhaustion 

effects. The Save catchment shows a pattern similar to that observed in other catchments in 

the Mediterranean region, e.g. in the Tordera catchment (Rovira and Batalla, 2006). An 

example is the progressive reduction in suspended load at different temporal scales (within 

floods and within multiple-peak events, during a succession of events, and seasonally) related 

to the exhaustion of sediment availability. The role of in-channel sediment storage also 

controls suspended sediment dynamics during inter-flood periods of stable flow (Smith and 

Dragovich, 2008). Therefore, after a period of relatively high sediment transport (supply-rich 

floods), sediment becomes less and less available from the channel (exhaustion phenomenon) 

and sediment concentrations recorded during successive floods events are consequently lower 

(Walling, 1978). The two year study of suspended sediment transport revealed strong 

temporal variability (16 614 tonnes in 2007 and 77 960 tonnes in 2008) attributed to the 

hydro-climatic factors such as flood duration, rainfall intensity and flood amplitude, and other 

controlling factors related to soil conditions and  agricultural practices in the Save catchment 

during both study years. The first hydrological year of the study (2007) was very dry, since 

there were very few rainfall events during autumn and less sediment was transported during 

floods with low duration and flood magnitude. Flood intensity is also a main factor to 

determine sediment transport. Flood events in 2008 were strong with high flood intensity. The 

maximum flood intensity in 2007 was only 1.27 m3 min-2, while one event in spring 2008 

exhibited the maximum flood intensity of 2.48 m3 min-2, yielding a suspended sediment load 

of 63% of annual sediment yield in 2008. Sediment was slightly transported during summer 

due to low rainfall events.  

 

DOC also showed strong variability in concentrations during all hydrological conditions. 

However, it transpired that the level of increase in flood discharge did not solely control the 
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increase in DOC concentration, as similar peaks in DOC were produced by different flood 

discharges. This is confirmed by the poor statistical relationship between maximum DOC and 

peak discharge (R=0.31). The temporal dynamic of DOC is very complex (Jones et al., 1996) 

and can be controlled not only by microbial activity in sediments (Bicudo et al., 1998) and 

also by variations in POC (Vervier et al., 1993; Jones et al., 1995). Regarding POC dynamics, 

POC% decreased while SS increased during high flood events. However, POC loads were 

also transported significantly during floods particularly in spring, attributed to high soil 

erosion from the catchment.   

 
With only two years of data collection, it is difficult to understand temporal dynamics and to 

characterise inter-annual variability in a large agricultural catchment like the Save with the 

context of intensive agriculture due to strong seasonal and annual hydrological variations. 

Therefore, modelling approach using the SWAT model is very useful to understand long term 

temporal variability of suspended sediment transport and yield. The model predicted the 

annual sediment yield (1999-2008) varying from 4766 t to 123000 t, representing a mean 

specific sediment yield of 48 t km-2 y-1. During the 10 years of hydrological variations, the 

flux ratio between the maximum load and minimum load is 26 times, indicating a significant 

variability of sediment yield exporting from the Save catchment. POC concentration (1999-

2008) was computed from the relationship between suspended sediment and POC. As POC is 

associated with sediment, annual POC fluxes also showed strong temporal variability ranging 

from 120 t to 3100 t, representing a mean specific POC yield of 1.2 t km-2 y-1.   

 
The annual total specific sediment yields in the Save catchment (48 t km-2) is within the range 

of specific yields reported for the Garonne River, which vary from 11 to 74 t km-2 y-1 

(Coynel, 2005), but lower than the values for Mediterranean basins of the Iberian Peninsula 

(100 to 200 t km-2 y-1) reported by Walling and Webb (1996). Located in the same Gascogne 

region as the Save catchment, with the same climatic conditions, geology (molasse) and 

agricultural landuse, the 1330 km2 Baïse catchment and the 970 km2 Gers catchment have 

specific sediment yields (63 and 41 t km-2 y-1, respectively) that are of a similar order of 

magnitude to that of the Save catchment (Maneux et al., 2001). The value of specific POC 

yield (1.2 t km-2 y-1) is comparable to the value range of the Garonne River of 1.47 t km-2 y-1 

(Vessy et al., 1999) and also similar to the rivers in Europe with a mean of 1.10 t km2 y-1 

(Ludwig et al., 1996). However, this value is lower than Amazon River (2.83 t km2 y-1; 

Richey et al., 1990). Moreover, the value of the Save agricultural catchment is much lower 
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than that of the Nivelle River of 5.3 t km2 y-1 (Coynel et al., 2005), draining a typical 

Pyrenean mountainous catchment, reaching the Bay of Biscay (Atlantic Ocean). The value of 

specific DOC yield (0.7 t km-2 y-1) is 2.5 times higher than that of one Himalayan catchment 

which is also dominated by agriculture studied by Sharma and Rai (2004) due to landuse 

conservation which prevented soil and carbon loss within this Himalayan catchment. 

However, this value is much lower than the peatland catchments; for instance, a catchment in 

northeast Scotland with specific DOC yield of 16.9 t km2 y-1 (Dawson et al., 2002). This value 

is common in peat dominated headwater catchments in the UK where soil carbon is the major 

source of organic carbon to the stream (Aithenhead et al., 1999; Dawson et al., 2001). 

7.2. Agro hydrological modelling using the SWAT model 
 
So far lots of models have been developed to study the soil erosion and sediment transport at 

catchment scale. These models were applied within the different catchment context. In 

agricultural environment, SWAT has been widely used for assessing water resources and 

water quality (sediment, nutrients and pesticides). SWAT is semi-distributed model which 

subdivides a catchment into different subbasins connected by a stream network, and further 

into hydrological response units (HRUs), which is a combination of the same soil, landuse 

and slope. The main advantage of HRUs enables to simplify the physical processes in order to 

integrate some empirical equations into the model such as SCS curve number method and 

MUSLE erosion/sediment equation. Furthermore, landuse types can be directly modified 

within the HRUs, which are useful to study the landuse change. SWAT offers many 

possibilities to take into account the adverse agricultural management practices (tillage, crop 

planting fertilizer and pesticides applications, irrigation, harvest/kill), water bodies (ponds, 

reservoirs, wetland etc.), point sources (urban, industries etc.,), and exclusion of non-

modelled zones. However, this simplification cannot well represent the natural systems into 

the model such as grid based processes.   

7.2.1. Input data and sub-catchment delineation  

 
SWAT requires lots of input data which is important to represent the spatial processes within 

the model. Basically, SWAT takes the climate data of the closest station to the centre of each 

subbasin to represent HRU where it is located. In our case, there are only 5 meteorological 

stations (two at the downstream and three at the upstream). It is therefore difficult to represent 

the rainfall specialisation at the middle catchment. Another difficulty is that there are only 

two stations which were used to simulate potential evapotranspriration (PET) since data is 
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unavailable for other stations. Chaplot et al. (2005) analyzed the effects of rain gauge 

distribution on SWAT output by simulating the impacts of climatic inputs for a range of 1 to 

15 rain gauges in both the Walnut Creek catchment in central Iowa and the upper North 

Bosque River catchment in Texas. Sediment predictions improved significantly when the 

densest rain gauge networks were used.  

 

Agricultural management practices and rotation of the crops were taken into account; 

however, in this study, only dominant landuse (pastures, winter wheat, and sunflower) and 

dominant soil type were taken into the model. This can decrease the spatial landuse and soil 

information and it can affect on erosion processes within the Save catchment. Bosch et al. 

(2004) found that SWAT streamflow estimates for a 22.1 km2 tributary catchment of the 

Little River catchment in Georgia were more accurate using high resolution topographic, land 

use, and soil data versus low resolution data. In terms of sub-catchment delineation, many 

studies found that SWAT streamflow predictions were generally insensitive to variations in 

HRU and/or sub-catchment delineations for catchments ranging in size from 21.3 to 17 941 

km2 (Bingner et al., 1997; Manguerra and Engel, 1998; Fitz-Hugh and Mackay, 2000; Jha et 

al., 2004; Chen and Mackay, 2004; Tripathi et al., 2006; and Muleta et al., 2007). Tripathi et 

al. (2006) and Muleta et al. (2007) further discuss HRU and sub-catchment delineation 

impacts on other hydrologic components. Haverkamp et al. (2002) report that streamflow 

accuracy was much greater when using multiple HRUs to characterize each sub-catchment, as 

opposed to using just a single dominant soil type and land use within a sub-catchment, for two 

catchments in Germany and one in Texas. However, the gap in accuracy between the two 

approaches decreased with increasing numbers of sub-catchments. 

7.2.2. Challenges in model calibration and evaluation 

 
There are many parameters in the SWAT model; therefore, it is very challenging to calibrate 

the model. In this case, we can identify the sensitive parameters through manual calibration. 

SWAT calibration technique can be useful to calibrate the model. The experience on manual 

calibration is essential for applying auto calibration and sensitivity analysis.  

 

In this study, lots of parameters associated with basin parameters and groundwater parameters 

were manually tested with maximum, minimum and mean values to assess their sensitivity 

within the model. The parameters related to the subbasins and the channels were also tested to 

evaluate the sediment response from the model. In our model calibration, CN is the most 
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sensitive parameter which played an important role in controlling surface runoff peak. 

However, the main disadvantage of the SCS method is that the amount of simulated runoff is 

not sensitive to rainfall intensity. Therefore, the method would compute the same amount of 

runoff, given the same amount of total rainfall, independent of event duration or the 

distribution of rainfall intensity during the event (Shen et al., 2009). This could affect the soil 

erosion resulting from high rainfall intensity during a short rainfall period. Furthermore, the 

assessment of hydrological and sediment yield modelling at only the Save catchment outlet 

can result in less representation of processes correctly. It is therefore necessary to consider 

more gauging stations along the main channel in order to calibrate/validate hydrology and 

sediment. Added to the difficulty of discharge calibration was possibly another disadvantage 

caused by inaccuracy of instantaneous discharge higher than 40 m3 s-1 at Larra station, 

generated from the rating curve. Moreover, inaccurate daily discharge data from Neste canal 

to the Save catchment under water derivation during summer and winter period to sustain 

flow discharge in the Save river also contributes to the incertitude for baseflow calibration. 

 

The main disadvantage of SWAT is the very simplified suspended sediment routing algorithm 

as described in previous chapter. During the overflow in the river during high flooding period, 

SWAT could not simulate properly. The high underestimation of suspended sediment load 

was seen during a flood in early June 2008 when rainfall intensity during this flood was 

extreme (Oeurng et al., 2010). In practice, high-intensity and even short duration rainfall can 

generate more sediment than did the model based on daily rainfall (Xu et al., 2009). The 

model might not be able to daily simulate sediment transport during high sediment loading 

period; therefore, even-based models such as AGNPS and ANSWERS should be used instead 

of continuous simulation models such as SWAT (Xu et al., 2009). Benaman and Shoemaker 

(2005) evaluated the performance of the SWAT model in the 1178 km2 Cannonsville 

catchment and concluded that SWAT tended to underestimate the sediment loads for high 

loading events (greater than 2000 metric tons). Moreover, SWAT does not properly take the 

bank erosion into account. A parameter (CH_COV) which can address the river bank 

conditions is only channel cover factor in the model. Through observation, the Save river also 

experienced bank collapse particularly during flood events, which could contribute more 

sediment export from this catchment.   

At monthly or annual scale, SWAT could provide more satisfied results. For the Save 

catchment, the model is able to simulate well the two years of annual suspended sediment 

loads which had strong inter-annual variability in sediment yield.  Kaur et al. (2004) also 
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concluded that SWAT predicted annual sediment yields reasonably well for a Nagwan 

catchment of 9.58 km2 in India. Therefore, SWAT is the agro-hydrological model which is 

crucial for long-term assessment purposes.  
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Chapter 8                              
 

Conclusion and perspectives  
 
 
 
 
This chapter is finalized by the conclusion summarizing the results of the research findings 

and remains some perspectives for future works.  
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8.1. Conclusion  
 
The study of suspended sediment and organic carbon transport in an agricultural catchment 

provides the understanding of the transport dynamics and factors conditioning the transport 

processes. This work confirmed the key factors which control the suspended sediment and 

organic carbon transport. The measurement of sediment load, together with agro-hydrological 

modelling is crucial for soil and water conservation within the catchment.  

 

Synthesis of research results: 

The two year sampling at the Larra station in the Save River outlet enables to collect the 

interesting dataset. The sediment load during flood events from January 2007 to March 2009 

varied from 177 t to 41 750 t. The annual sediment load transport in 2007 and 2008 ranged 

from 16 614 to 77 960 t (85% to 89 of annual load), which were transported during floods for 

16 % to 20 % of annual duration. The organic carbon load during flood events (January 2008 

to June 2009) varied from 12 t to 748 t for particulate organic carbon (POC) and from 9 t to 

218 t for dissolved organic carbon (DOC). The total export of POC and DOC from the Save 

agricultural catchment amounted to 3 091 t and 1 238 t, representing the specific yields of 1.8 

t km-2 y-1 and 0.7 t km-2 y-1, respectively.  

 

The analysis of suspended sediment load during flood events could allow understanding the 

fundamental processes which result in sediment responses from the catchment. Within the 

context of water quality monitoring, the estimation of suspended sediment load is essential. 

Different sediment dynamics reflect different sediment availability from the catchment. The 

results of this study showed that the sediment and organic carbon transport in the Save 

catchment, varied significantly in time (infra-daily, seasonally and inter-annually). The role of 

spring floods impacted on sediment and organic carbon load transport, which considerably 

contributed to annual load, and could be explained mainly by the hydro-climatic factors. The 

application of statistical approach: correlations and Principle Component Analysis, could 

identify the hydro-climatic factors controlling SS, POC and DOC load transport from the 

Save catchment. Better correlations were found between total precipitation, flood discharge, 

water yield and SS, POC and DOC load transport, but no relationship with antecedent 

conditions. The hysteresis analysis at flood time scale with high data resolution enabled to 

estimate the sediment sources: 68% from river deposited sediments and nearby source area, 

29% from distant source areas and simultaneity of SS and discharge 3%. 
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The two-year sampling could not explain the long-term variability but retrospective modelling 

would allow predicting the value range from different hydrological years. Despite the 

satisfactory results of sediment modelling at daily timestep, SWAT could wells simulation 

two years’ annual sediment yield which were similar to the observed values. In this case, the 

model was essentially used to estimate long-term sediment yield, taking into account 

agricultural management practices and hydro-climatic conditions within the catchment. The 

modeling results showed that the simulated total water yield of 138 mm was close to the 

observed value of 136 mm for hydrological periods (1999-2008). During the whole 

simulation periods, the simulated annual sediment yield varied from 4 766 t to 123 000 t, 

representing a specific sediment yield of 48 t km-2 y-1 and simulated annual POC yield ranged 

from 120 t to 3 100 t, representing a specific POC yield of 1.2 t km-2 y-1. We used the model 

to reconstruct the past sediment chronic. According to this result, we could establish a good 

empirical correlation between annual water yield and annual sediment yield. Consequently, 

this relation is crucial to generate sediment yield by using only water yield. Furthermore, the 

potential areas of soil erosion were identified within the Save catchment. As a result, this 

could help characterize the sediment sources at the catchment scale. Therefore, SWAT was 

tested to evaluate catchment hydrology and long-term sediment yield, particularly in an 

agricultural catchment like the Save catchment.           

8.2. Perspectives  
 
This work remains several perspectives for future research. The data acquisition from more 

sampling points along the main river such as at the middle route should be considered in order 

to have better understanding of sediment and organic carbon dynamics within the Save 

catchment. These data would be also beneficial for model calibration/validation. The 

modelling project of the Save catchment using the SWAT model provides the possibilities to 

extend this work for other problematic concerning with modelling of nitrate and pesticide 

transport. Since particulate pesticide is associated with SS and POC, this work could 

contribute to the future study of pesticide transport in this agricultural catchment. These 

perspectives could be also oriented to study the impact of agricultural practice scenarios on 

sediment and contaminant transport at catchment scale. These works would be beneficial to 

the catchment manager in order to evaluate the impacts of agricultural practices, particularly 

to minimize soil erosion and reduce diffuse pollution from agriculture-dominated catchments. 

Moreover, it is interesting to focus on the role of climate change which can impact on 

sediment associated with contaminants transport at catchment scale.  
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Another research perspective would be to improve the sediment simulations by developing 

the model which can integrate the physical processes and distributed approach so as to better 

simulate the suspended sediment transport at daily time step until hourly time step. To answer 

this question, the development of the mechanistic MOHID model (http://www.mohid.com/) 

will be considered since the model takes into account the distributed and mechanic processes 

rather than the SWAT model. The MOHID model will include the erosion/deposition on the 

catchment into account and allows improving the simulation of sediment transport at different 

temporal scales. This type of the model could ameliorate the simulation from daily to hourly 

time scale, particularly flood time scale when a large of sediments associated with 

contaminants (pesticides, metals, particulate organic carbon) mobilize to the catchment outlet. 

Such a model would be indispensable for catchment manager to predict the water pollution 

and minimize these impacts.  

 

The last research perspective from this work would the SWAT model applications for other 

catchments in the future, particularly the catchments in Cambodia in order to better manage 

water resources and help the development of agriculture which is the indispensable sector of 

the country. When the agricultural activities starts to significantly increase from year to year, 

soil erosion problems and diffuse pollutions resulting from agricultural practices would be 

key factors on surface water degradation. It is therefore to envisage the different scenarios of 

agricultural practices using the modelling approach such use SWAT or MOHID model so as 

to choose a better scenario in response to the context of sustainable development.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

- 151 - 

Conclusion générale 
 
Ce travail a permis la récolte d’un jeu de données important sur 2 ans à la sortie d’un bassin 

versant agricole, sud-ouest de la France. Cette étude, sur le transport des matières en 

suspension et du carbone organique à l’échelle du bassin versant agricole, a permis de 

quantifier la dynamique du transport de ces matières et de comprendre les facteurs qui la 

conditionnent. Ce travail a donc confirmé ou précisé l’effet de plusieurs facteurs clefs qui 

contrôlent le transport des MES et du carbone organique. L’analyse des flux de MES à 

l’échelle de la crue  permet de mettre en évidence les processus fondamentaux qui régissent le 

transfert des sédiments sur le bassin versant. Dans un contexte de suivi de la qualité de l’eau, 

le suivi des MES repose principalement sur l’estimation des flux de MES. Ces dynamiques de 

MES reposent sur des disponibilités en particules différentes. Le problème de la 

quantification des matières est lié à la grande variabilité spatiale et temporelle des 

concentrations et de flux de MES, fonction de l’événement hydrologique et des 

caractéristiques naturelles et/ou anthropiques du bassin. Les résultats de cette étude ont 

montré que le transport de MES et du carbone sur le bassin versant de la Save est très variable 

dans le temps (réponse infra journalière, saisonnière et interannuelle). Les flux annuels sont 

également très variables entre les années. Le rôle des crues saisonnières sur le flux de MES a 

montré que les crues de printemps étaient plus fortes que les autres, et transportent beaucoup 

de MES et de carbone par rapport au flux annuel, car elles sont liées principalement aux 

conditions hydro-climatiques. L’utilisation des approches statistiques, les statistiques de 

corrélations et l’Analyse en Composante Principale, a permis d’identifier les facteurs hydro-

climatiques qui peuvent contrôler le transport de ces matières à l’échelle du bassin versant.  

 
Les mesures réalisées durant deux ans n’ont pour l’instant pas permis de mettre en évidence 

une variabilité sur le long terme. Pour cela, l’utilisation de modèle permet de prédire les 

variations interannuelles pour les différentes années hydrologiques. Nous avons pour l’instant 

utilisé le modèle SWAT (http://swatmodel.tamu.edu/), calibré sur la période de mesure, pour 

reconstruire des chroniques passées des MES. A partir de ces simulations, on a pu établir la 

relation empirique entre le flux d’eau annuel et le flux annuel de MES sur le long terme. Cette 

relation est utile pour générer le flux de MES en n’utilisant que le flux d’eau. De plus, les 

zones potentielles de sources d’érosion ont été identifiées pour la Save. Cela permet de 

caractériser les sources de MES à l’échelle du bassin versant.   
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Ce travail ouvre un certain nombre de perspectives de recherche intéressantes. Les travaux de 

modélisation à l’aide du modèle SWAT sur la Save seront prolongés sur d’autres 

problématiques, concernant la modélisation du transfert des nitrates et des pesticides. Ces 

perspectives peuvent s’orienter notamment vers l’étude de l’impact de scénarios agricoles sur 

le transport de MES et d’autres contaminants vers l’exutoire du bassin versant. Ces travaux 

sont nécessaires pour les gestionnaires du bassin afin d’évaluer les impacts des pratiques 

agricoles, notamment pour minimiser l’érosion du sol et limiter les pollutions diffuses dans le 

bassin versant agricole. De plus, on s’intéresse également au rôle du changement climatique 

sur le transport des contaminants associés aux MES et des nutriments à l’échelle du bassin 

versant.  

 

Enfin, ce travail a fait l’objet de 3 publications dont une publication acceptée et 2 publications 

soumises.  
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Annexe 1 
 

Measured data of suspended sediment concentrations (January 2007-June 2009) 
and dissolved and particulate organic carbon concentrations                                 

(January 2008-June 2009) in the Save catchment from               
 
 

N  Samples Field date Real date Hours Vol (ml) 
Filter 

(g) 
Filter+SSC 

(g) 
SSC       

(mg l-1) 

1 L1 15/02/2007 10/02/2007 19:29 19h29 740 0.0875 0.0957 11 

2 L3 15/02/2007 12/02/2007 10:35 10h35 500 0.0782 0.092 28 

3 L4 15/02/2007 12/02/2007 14:11 14h11 500 0.0808 0.1478 134 

4 L5 15/02/2007 13/02/2007 07:04 7h04 500 0.084 0.1172 66 

5 L7 15/02/2007 13/02/2007 14:38 14h38 400 0.0867 0.1313 112 

6 L8 15/02/2007 14/02/2007 04:47 4h47 400 0.0819 0.1074 64 

7 L1 28/02/2007 26/02/2007 06:37 6h37 500 0.0939 0.0977 8 

8 L2 28/02/2007 26/02/2007 09:57 9h57 500 0.0759 0.0942 37 

9 L3 28/02/2007 26/02/2007 15:27 15h27 400 0.0807 0.1007 50 

10 L7 28/02/2007 26/02/2007 23:57 23h57 215 0.075 0.1145 184 

11 L9 28/02/2007 27/02/2007 02:17 2h17 300 0.0764 0.146 232 

12 L11 28/02/2007 27/02/2007 04:17 4h17 300 0.0822 0.1514 231 

13 L1 07/03/2007 01/03/2007 07:42 7h42 400 0.0798 0.1354 139 

14 L2 07/03/2007 02/03/2007 19:36 19h36 540 0.0769 0.1176 75 

15 L1 14/03/2007 08/03/2007 19:40 19h40 500 0.0846 0.1169 65 

16 L3 14/03/2007 08/03/2007 22:12 22h12 500 0.0874 0.1436 112 

17 L6 14/03/2007 09/03/2007 03:10 3h10 400 0.0758 0.1641 221 

18 L8 14/03/2007 09/03/2007 05:48 5h48 300 0.0811 0.1801 330 

19 L10 14/03/2007 09/03/2007 12:10 12h10 300 0.0746 0.2024 426 

20 L12 14/03/2007 09/03/2007 15:23 15h23 400 0.0885 0.2362 369 

21 L1 21/03/2007 20/03/2007 16:49 16h49 500 0.079 0.1244 91 

22 L1 04/04/2007 24/03/2007 21:28 21h28 500 0.0897 0.1201 61 

23 L2 04/04/2007 25/03/2007 00:18 0h18 350 0.0904 0.144 153 

24 L4 04/04/2007 25/03/2007 07:08 7h08 350 0.0886 0.1832 270 

25 L5 04/04/2007 25/03/2007 14:58 14h58 300 0.0872 0.1986 371 

26 L7 04/04/2007 25/03/2007 18:31 18h31 300 0.0896 0.1462 189 

27 L8 04/04/2007 28/03/2007 02:38 2h38 500 0.0893 0.132 85 

28 L9 04/04/2007 28/03/2007 02:41 2h41 500 0.0885 0.1234 70 

29 L10 04/04/2007 02/04/2007 22:38 22h38 500 0.0887 0.1069 36 

30 L1 03/05/2007 27/04/2007 12:20 12h20 950 0.0737 0.1634 94 

31 L2 03/05/2007 01/05/2007 18:46 18h46 850 0.0758 0.1178 49 

32 L8 03/05/2007 02/05/2007 10:32 10h32 275 0.0751 0.2154 510 

33 L1 10/05/2007 03/05/2007 17:34 17h34 300 0.0845 0.1735 297 

34 L2 10/05/2007 04/05/2007 03:44 3h44 300 0.0755 0.1264 170 

35 L3 10/05/2007 06/05/2007 09:44 9h44 400 0.0876 0.1334 115 

36 L1 06/12/2007 26/11/2007 22:28 22h28 250 0.091 0.2708 719 
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37 L2 06/12/2007 27/11/2007 14:28 14h28 500 0.0895 0.1045 30 

38 L3 06/12/2007 28/11/2007 17:18 17h18 500 0.0924 0.0986 12 

39 L1 12/12/2007 10/12/2007 14:56 14h56 500 0.0757 0.1068 62 

40 L2 12/12/2007 11/12/2007 03:16 3h16 500 0.0747 0.1807 212 

41 L1 19/12/2007 13/12/2007 12:59 12h59 500 0.0851 0.1526 135 

42 L2 19/12/2007 16/12/2007 15:25 15h25 400 0.0806 0.0982 44 

43 LARRA 09/01/2007 09/01/2007 09:30 9H30 500 0.0928 0.094 2 

44 LARRA 15/01/2007 15/01/2007 13:00 13H00 500 0.0768 0.0813 9 

45 LARRA 25/01/2007 25/01/2007 08:45 8H45 500 0.0812 0.0848 7 

46 LARRA 01/02/2007 01/02/2007 15:45 15H45 500 0.0794 0.0802 2 

47 LARRA 07/02/2007 07/02/2007 12:45 12H45 500 0.0828 0.0839 2 

48 LARRA 15/02/2007 15/02/2007 09:00 9h 500 0.0913 0.1144 46 

49 LARRA 21/02/2007 21/02/2007 09:40 9H40 500 0.09 0.1053 31 

50 LARRA 28/02/2007 28/02/2007 09:40 9h40 400 0.0808 0.1431 156 

51 LARRA 07/03/2007 07/03/2007 09:08 9H08 500 0.0765 0.0924 32 

52 LARRA 14/03/2007 14/03/2007 16:15 16H15 500 0.0913 0.1132 44 

53 LARRA 21/03/2007 21/03/2007 09:05 9H05 500 0.0806 0.1014 42 

54 LARRA 04/04/2007 04/04/2007 08:55 8H55 500 0.0843 0.1092 50 

55 LARRA 20/04/2007 20/04/2007 14:50 14H50 500 0.0752 0.1228 95 

56 LARRA 03/05/2007 03/05/2007 13:30 13H30 500 0.0764 0.2535 354 

57 LARRA 10/05/2007 10/05/2007 14:50 14H50 500 0.0902 0.1125 45 

58 LARRA 24/05/2007 24/05/2007 15:05 15H05 500 0.0795 0.1027 46 

59 LARRA 31/05/2007 31/05/2007 08:50 8H50 500 0.09 0.1721 164 

60 LARRA 07/06/2007 07/06/2007 15:30 15H30 500 0.094 0.1495 111 

61 LARRA 14/06/2007 14/06/2007 08:55 8h55 800 0.2043 0.2369 41 

62 LARRA 21/06/2007 21/06/2007 08:45 8H45 500 0.0789 0.1153 73 

63 LARRA 27/06/2007 27/06/2007 08:20 8h20 500 0.086 0.1169 62 

64 LARRA 12/07/2007 12/07/2007 08:55 8h55 850 0.098 0.1242 31 

65 LARRA 18/07/2007 18/07/2007 12:55 12h55 750 0.0995 0.1132 18 

66 LARRA 26/07/2007 26/07/2007 15:00 15h 500 0.0873 0.0986 23 

67 LARRA 06/08/2007 06/08/2007 21:55 21h55 700 0.0965 0.125 41 

68 LARRA 24/08/2007 24/08/2007 09:28 9h28 750 0.0958 0.1215 34 

69 LARRA 29/08/2007 29/08/2007 13:55 13h55 790 0.0992 0.1094 13 

70 LARRA 07/09/2007 07/09/2007 09:25 9h25 750 0.0993 0.1168 23 

71 LARRA 12/09/2007 12/09/2007 14:20 14H20 500 0.0849 0.0983 27 

72 LARRA 19/09/2007 19/09/2007 09:05 9H05 500 0.092 0.1074 31 

73 LARRA 26/09/2007 26/09/2007 09:24 9H24 500 0.087 0.1043 35 

74 LARRA 02/10/2007 02/10/2007 09:25 9H25 500 0.0912 0.1074 32 

75 LARRA 09/10/2007 09/10/2007 09:50 9H50 850 0.0999 0.1135 16 

76 LARRA 17/10/2007 17/10/2007 09:50 9H50 500 0.092 0.102 20 

77 LARRA 24/10/2007 24/10/2007 14:40 14H40 500 0.0903 0.097 13 

78 LARRA 08/11/2007 08/11/2007 09:10 9H10 500 0.0923 0.0953 6 

79 LARRA 14/11/2007 14/11/2007 11:35 11H35 500 0.0906 0.0937 6 

80 LARRA 21/11/2007 21/11/2007 09:50 9h50 790 0.098 0.1024 6 

81 LARRA 06/12/2007 06/12/2007 09:30 9H30 500 0.0906 0.0936 6 
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82 LARRA 12/12/2007 12/12/2007 09:30 9H30 500 0.0906 0.1255 70 

83 LARRA 19/12/2007 19/12/2007 09:50 9H50 500 0.0862 0.0945 17 

84 L1 09/01/2008 23/12/2007 18:04   450 0.0905 0.1 21 

85 L2 09/01/2008 24/12/2007 00:10   460 0.0906 0.0975 15 
86 L3 09/01/2008 25/12/2007 00:12   460 0.0891 0.0965 16 
87 L4 09/01/2008 26/12/2007 12:44   460 0.0912 0.0985 16 
88 L5 09/01/2008 27/12/2007 21:50   420 0.0901 0.094 9 
89 L6 09/01/2008 28/12/2007 02:32   460 0.0895 0.0944 11 
90 L7 09/01/2008 28/12/2007 20:15   460 0.0907 0.0952 10 
91 L8 09/01/2008 29/12/2007 22:04   440 0.0894 0.1 24 
92 L10 09/01/2008 31/12/2007 18:19   500 0.0884 0.094 11 
93 L11 09/01/2008 02/01/2008 18:08   455 0.0883 0.0928 10 
94 L12 09/01/2008 03/01/2008 14:16   470 0.0904 0.0941 8 
95 LARRA 17/01/2008 17/01/2008 09:00 9h 490 0.0885 0.1243 73 
96 LARRA 20/01/2008 20/01/2008 09:00   500 0.0931 0.0941 2 
97 LARRA 23/01/2008 23/01/2008 09:00   430 0.0889 0.1117 53 
98 LARRA 07/02/2008 07/02/2008 09:00 9h 600 0.0882 0.0954 12 
99 LARRA 13/02/2008 13/02/2008 09:00   360 0.0899 0.0931 9 
100 LARRA 27/02/2008 27/02/2008 09:00 9h 450 0.0888 0.0924 8 
101 LARRA 05/03/2008 05/03/2008 09:00 9h15 450 0.0893 0.0927 8 
102 LARRA 12/03/2008 12/03/2008 10:00 9h45 480 0.0898 0.0935 8 
103 LARRA 19/03/2008 19/03/2008 09:50 9h45 470 0.0903 0.0945 9 
104 LARRA 26/03/2008 26/03/2008 09:30 9h27 420 0.0896 0.1476 138 
105 L1 26/03/2008 19/03/2008 16:33   450 0.0906 0.0932 6 
106 L2 26/03/2008 19/03/2008 21:13   430 0.0885 0.0965 19 
107 L3 26/03/2008 21/03/2008 18:13   300 0.0898 0.0938 13 
108 L4 26/03/2008 23/03/2008 09:43   426 0.1267 0.1305 9 
109 L5 26/03/2008 25/03/2008 23:43   455 0.0883 0.1062 39 
110 L6 26/03/2008 26/03/2008 06:03   364 0.0758 0.1093 92 
111 L1 02/04/2008 28/03/2008 10:19   240 0.0906 0.369 1160 
112 L2 02/04/2008 28/03/2008 11:39   380 0.0895 0.1697 211 
113 L3 02/04/2008 28/03/2008 12:39   320 0.0912 0.1975 332 
114 L4 02/04/2008 28/03/2008 13:29   300 0.0904 0.1986 361 
115 L5 02/04/2008 28/03/2008 14:09   200 0.0897 0.1661 382 
116 L6 02/04/2008 28/03/2008 14:49   250 0.0899 0.1797 359 
117 L7 02/04/2008 28/03/2008 15:39   234 0.0887 0.261 736 
118 L8 02/04/2008 28/03/2008 16:49   300 0.0917 0.3053 712 
119 L9 02/04/2008 28/03/2008 18:19   215 0.089 0.2282 647 
120 L10 02/04/2008 28/03/2008 19:49   250 0.0894 0.3422 1011 
121 LARRA 02/04/2008 02/04/2008 09:50 9h45 480 0.0911 0.1405 103 
122 LARRA 03/04/2008 03/04/2008 12:40 12h45 445 0.09 0.14 112 
123 LARRA 04/04/2008 04/04/2008 11:00   390 0.0913 0.1227 81 
124 LARRA 05/04/2008 05/04/2008 13:30 13h30 480 0.0898 0.1125 47 
125 LARRA 09/04/2008 09/04/2008 10:00 10h 470 0.0883 0.0982 21 
126 LARRA 12/04/2008 12/04/2008 11:00   315 0.0886 0.1492 192 
127 LARRA 14/04/2008 14/04/2008 16:50 16h15 695 0.0904 0.1145 35 
128 LARRA 17/04/2008 17/04/2008 13:30 13h30 440 0.089 0.1001 25 
129 LARRA 21/04/2008 21/04/2008 16:30 16h30 240 0.0892 0.4578 1536 
130 LARRA 22/04/2008 22/04/2008 16:10 16h10 430 0.09 0.1951 244 
131 LARRA 23/04/2008 23/04/2008 15:35 15h35 460 0.0923 0.1688 166 
132 LARRA 24/04/2008 24/04/2008 15:50 15h50 500 0.0891 0.1366 95 
133 LARRA 30/04/2008 30/04/2008 10:00 10h 480 0.0898 0.1051 32 
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134 LARRA 14/05/2008 14/05/2008 10:00   500 0.0913 0.0972 12 
135 LARRA 21/05/2008 21/05/2008 10:00   450 0.0905 0.1482 128 
136 LARRA 28/05/2008 28/05/2008 10:00   450 0.0893 0.1486 132 
137 L1 21/05/2008 16/05/2008 11:45   400 0.087 0.1918 262 
138 L2 21/05/2008 19/05/2008 20:39   447 0.0887 0.222 298 
139 L1 05/06/2008 01/06/2008 09:28   214 0.0744 0.1227 226 
140 L2 05/06/2008 01/06/2008 11:18   156 0.0741 0.1726 631 
141 L4 05/06/2008 01/06/2008 13:48   226 0.074 0.4471 1651 
142 L6 05/06/2008 01/06/2008 17:38   96 0.0758 1.5871 15743 
143 L7 05/06/2008 01/06/2008 23:38   100 0.076 0.7821 7061 
144 L12 05/06/2008 02/06/2008 04:08   112 0.0759 0.471 3528 
145 L14 05/06/2008 02/06/2008 10:18   108 0.076 0.3815 2829 
146 L15 05/06/2008 02/06/2008 11:28   140 0.0737 0.4817 2914 
147 L16 05/06/2008 02/06/2008 23:38         4750 
148 LARRA 04/06/2008 04/06/2008 09:30   220 0.077 0.6584 2643 
149 LARRA 05/06/2008 05/06/2008 14:30   363 0.0768 0.2845 572 
150 LARRA 10/06/2008 10/06/2008 11:00   490 0.0775 0.1244 96 
151 LARRA 12/06/2008 12/06/2008 15:15   291 0.0774 0.4622 1322 
152 LARRA 13/06/2008 13/06/2008 13:30 13h30 430 0.0768 0.436 835 
153 LARRA 14/06/2008 14/06/2008 16:30   350 0.0768 0.1577 231 
154 LARRA 15/06/2008 15/06/2008 16:00   353 0.076 0.189 320 
155 LARRA 18/06/2008 18/06/2008 10:00   490 0.075 0.1392 131 
156 LARRA 26/06/2008 26/06/2008 10:00   500 0.0752 0.1121 74 
157 LARRA 03/07/2008 03/07/2008 10:00 10h 450 0.0887 0.1128 54 
158 LARRA 09/07/2008 09/07/2008 09:40 9h40 500 0.0764 0.1075 62 
159 LARRA 16/07/2008 16/07/2008 09:25 9h25 480 0.0745 0.1073 68 
160 LARRA 23/07/2008 23/07/2008 10:00 10h 500 0.076 0.093 34 
161 LARRA 08/08/2008 08/08/2008 09:55 9h55 500 0.0751 0.1001 50 
162 LARRA 20/08/2008 20/08/2008 13:30 13h30 470 0.0743 0.0939 42 
163 LARRA 04/09/2008 04/09/2008 09:40 9h40 470 0.076 0.0943 39 
164 LARRA 12/09/2008 12/09/2008 09:45 9h45 490 0.0762 0.0972 43 
165 LARRA 17/09/2008 17/09/2008 09:50 9h50 500 0.0749 0.0941 38 
166 LARRA 24/09/2008 24/09/2008 09:00 9h 497 0.0763 0.0895 27 
167 LARRA 08/10/2008 08/10/2008 11:45 11h45 480 0.075 0.1243 103 
168 LARRA 15/10/2008 15/10/2008 09:55 9h55 480 0.0743 0.0833 19 
169 LARRA 23/10/2008 23/10/2008 09:40 9h40 480 0.0742 0.084 20 
170 LARRA 29/10/2008 29/10/2008 09:40 9h40 500 0.076 0.0879 24 
171 LARRA 05/11/2008 05/11/2008 10:00 10h 500 0.0751 0.112 74 
172 L1 07/11/2008 07/11/2008 02:54 2h54 240 0.0745 0.5521 1990 
173 LARRA 12/11/2008 12/11/2008 09:40 9h40 500 0.0742 0.0903 32 
174 LARRA 19/11/2008 19/11/2008 09:45 9h45 740 0.076 0.0878 16 
175 L1 26/11/2008 24/11/2008 18:49   250 0.0752 0.1208 182 
176 L2 26/11/2008 25/11/2008 01:09   250 0.0757 0.1535 311 
177 L3 26/11/2008 25/11/2008 04:29   250 0.0763 0.214 551 
178 L4 26/11/2008 25/11/2008 09:19   200 0.0742 0.2818 1038 
179 L5 26/11/2008 26/11/2008 01:09   180 0.0749 0.2211 812 
180 LARRA 26/11/2008 26/11/2008 09:00 9h40 204 0.0753 0.1427 330 
181 LARRA 03/12/2008 03/12/2008 09:00 10h 500 0.0763 0.0843 16 
182 LARRA 08/12/2008 08/12/2008 09:00 10h 410 0.075 0.117 102 
183 L1 08/12/2008 06/12/2008 00:06   350 0.0765 0.1167 115 
184 L2 08/12/2008 06/12/2008 04:48   350 0.0763 0.1419 187 
185 L3 08/12/2008 07/12/2008 16:22   250 0.0738 0.1424 274 
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186 LARRA 10/12/2008 10/12/2008 10:00 10h 450 0.0745 0.1206 102 
187 L1 18/12/2008 14/12/2008 18:24   200 0.089 0.1448 279 
188 L2 18/12/2008 14/12/2008 21:51   200 0.0907 0.1319 206 
189 L3 18/12/2008 15/12/2008 21:02   200 0.0891 0.1738 424 
190 L4 18/12/2008 17/12/2008 07:11   200 0.0882 0.1088 103 
191 LARRA 18/12/2008 18/12/2008 10:00 10h 480 0.0764 0.1003 50 
192 LARRA 07/01/2009 07/01/2009 10:00 10h 500 0.089 0.0957 13 
193 LARRA 14/01/2009 14/01/2009 10:00 10h 500 0.091 0.0943 7 
194 L1 21/01/2009 20/01/2009 18:01   400 0.0895 0.1141 62 
195 LARRA 21/01/2009 21/01/2009 09:00 10h 500 0.0906 0.1153 49 
196 L1 27/01/2009 23/01/2009 04:46   200 0.0898 0.2428 765 
197 L3 27/01/2009 23/01/2009 07:46   143.5 0.0882 0.2078 833 
198 L5 27/01/2009 23/01/2009 09:46   150 0.0905 0.2387 988 
199 L7 27/01/2009 23/01/2009 11:16   164 0.088 0.2571 1031 
200 L9 27/01/2009 23/01/2009 12:46   144 0.0994 0.2955 1362 
201 L11 27/01/2009 23/01/2009 14:56   142 0.1062 0.3004 1368 
202 L13 27/01/2009 23/01/2009 20:06   154 0.0964 0.4244 2130 
203 L14 27/01/2009 24/01/2009 08:36   175 0.12 0.3537 1335 
204 L15 27/01/2009 24/01/2009 21:56   135 0.1003 0.2482 1096 
205 L16 27/01/2009 26/01/2009 07:26   156 0.0935 0.2605 1071 
206 LARRA 27/01/2009 27/01/2009 12:00 12h 250 0.09 0.1921 408 
207 L1 04/02/2009 28/01/2009 05:50   240 0.01211 0.254 1008 
208 L2 04/02/2009 28/01/2009 17:52   206 0.0986 0.1567 282 
209 L3 04/02/2009 28/01/2009 20:31   250 0.1191 0.1822 252 
210 L4 04/02/2009 29/01/2009 01:16   220 0.095 0.1519 259 
211 L5 04/02/2009 29/01/2009 07:06   250 0.0997 0.1617 248 
212 L6 04/02/2009 29/01/2009 16:05   250 0.0931 0.1598 267 
213 L7 04/02/2009 29/01/2009 23:40   250 0.099 0.1577 235 
214 L8 04/02/2009 30/01/2009 02:47   250 0.0921 0.1486 226 
215 LARRA 04/02/2009 04/02/2009 09:00 9h 500 0.0923 0.1196 55 
216 L1 11/02/2009 11/02/2009 07:45   200 0.0991 0.1575 292 
217 L2 11/02/2009 11/02/2009 08:45   233 0.0951 0.1363 177 
218 LARRA 11/02/2009 11/02/2009 10:00 10h 450 0.1006 0.1497 109 
219 L1 18/02/2009 11/02/2009 10:45   220 0.101 0.1464 206 
220 L2 18/02/2009 11/02/2009 11:40   250 0.0764 0.133 226 
221 L3 18/02/2009 11/02/2009 12:46   213 0.0939 0.2447 708 
222 L4 18/02/2009 11/02/2009 14:01   250 0.0757 0.2141 554 
223 L5 18/02/2009 11/02/2009 15:35   228 0.095 0.2772 799 
224 L6 18/02/2009 11/02/2009 17:39   200 0.0966 0.3017 1026 
225 L7 18/02/2009 11/02/2009 20:51   220 0.1 0.3265 1030 
226 L8 18/02/2009 12/02/2009 05:17   200 0.1057 0.2318 631 
227 L9 18/02/2009 12/02/2009 19:13   250 0.0942 0.2003 424 
228 L10 18/02/2009 13/02/2009 16:45   230 0.0764 0.1285 227 
229 L11 18/02/2009 13/02/2009 20:53   250 0.0976 0.1501 210 
230 L12 18/02/2009 13/02/2009 23:57   250 0.0759 0.1269 204 
231 L13 18/02/2009 14/02/2009 02:26   250 0.0762 0.1263 200 
232 L14 18/02/2009 14/02/2009 04:26   250 0.0747 0.127 209 
233 L15 18/02/2009 14/02/2009 06:21   250 0.0744 0.1301 223 
234 L16 18/02/2009 14/02/2009 08:37   250 0.0763 0.1315 221 
235 L17 18/02/2009 14/02/2009 11:53   250 0.0739 0.129 220 
236 L18 18/02/2009 14/02/2009 18:34   250 0.0761 0.1804 417 
237 L19 18/02/2009 15/02/2009 01:34   250 0.0748 0.1252 202 
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238 L20 18/02/2009 15/02/2009 11:44   250 0.0752 0.1205 181 
239 L21 18/02/2009 16/02/2009 05:44   250 0.0741 0.1101 144 
240 L22 18/02/2009 18/02/2009 07:26   250 0.0752 0.1483 292 
241 LARRA 18/02/2009 18/02/2009 10:00 10h 500 0.0744 0.0984 48 
242 LARRA 25/02/2009 25/02/2009 10:00 10h 480 0.1219 0.1364 30 
243 LARRA 03/03/02009 03/03/200910:00 10h 490 0.1279 0.1514 48 
244 LARRA 12/03/2009 12/03/2009 10:00 10h 500 0.129 0.1409 24 
245 LARRA 25/03/2009 25/03/2009 10:00 10h 750 0.1305 0.1408 14 
246 LARRA 27/03/2009 27/03/2009 10:00 10h 750 0.1254 0.1342 12 
247 L1 15/04/2009 12/04/2009 02:00   400 0.1312 0.2643 333 
248 L2 15//04/2009 12/04/2009 05:00   350 0.1273 0.2265 283 
249 L3 15//04/2009 12/04/2009 08:00   300 0.1271 0.2025 251 
250 L4 15//04/2009 12/04/2009 11:00   300 0.1291 0.2465 391 
251 L5 15//04/2009 12/04/2009 22:00   300 0.1257 0.2158 300 
252 L6 15//04/2009 14/04/2009 04:00   300 0.1302 0.1954 217 
253 L7 15//04/2009 14/04/2009 10:00   300 0.1282 0.183 183 
254 L8 15//04/2009 14/04/2009 15:00   300 0.1256 0.1725 156 
255 LARRA 15//04/2009 15/04/2009 10:00   300 0.1277 0.1562 95 
256 L1 22/04/2009 20/04/2009 23:00   300 0.1254 0.2954 567 
257 L2 22/04/2009 21/04/2009 00:00   300 0.1263 0.4428 1055 
258 L3 22/04/2009 21/04/2009 01:00   250 0.1242 0.3364 849 
259 L4 22/04/2009 21/04/2009 02:00   250 0.1256 0.3279 809 
260 L5 22/04/2009 21/04/2009 03:00   200 0.1296 0.2792 748 
261 L6 22/04/2009 21/04/2009 06:00   250 0.1276 0.2439 465 
262 L7 22/04/2009 21/04/2009 10:00   160 0.1257 0.2218 601 
263 L8 22/04/2009 21/04/2009 12:00   180 0.1262 0.259 738 
264 L9 22/04/2009 21/04/2009 13:00   170 0.127 0.239 659 
265 L10 22/04/2009 21/04/2009 14:00   160 0.1262 0.245 743 
266 L11 22/04/2009 21/04/2009 15:00   180 0.1241 0.2689 804 
267 L12 22/04/2009 21/04/2009 21:00   160 0.1266 0.2643 861 
268 L13 22/04/2009 22/04/2009 08:00   180 0.127 0.2148 488 
269 LARRA 22/04/2009 22/04/2009 10:00 10h 250 0.1255 0.213 350 
271 LARRA 29/04/2009 29/04/2009 10h 350 0.1332 0.1765 124 
272 L1 13/05/2009 29/04/2009 17:48   350 0.1286 0.2578 369 
273 L2 13/05/2009 30/04/2009 06:15   300 0.1284 0.3106 607 
274 L3 13/05/2009 01/05/2009 20:07   250 0.1251 0.2487 494 
275 L4 13/05/2009 01/05/2009 23:21   350 0.1272 0.2354 309 
276 L5 13/05/2009 02/05/2009 01:30   450 0.1239 0.21 191 
277 L6 13/05/2009 02/05/2009 03:12   400 0.1275 0.2011 184 
278 L7 13/05/2009 02/05/2009 04:43   450 0.1283 0.2046 170 
279 L8 13/05/2009 02/05/2009 06:24   450 0.1262 0.2437 261 
280 L9 13/05/2009 02/05/2009 08:38   250 0.1276 0.2641 546 
281 L10 13/05/2009 02/05/2009 15:39   350 0.1252 0.2891 468 
282 L11 13/05/2009 02/05/2009 17:04   235 0.1282 0.4094 1197 
283 L12 13/05/2009 02/05/2009 18:35   250 0.1252 0.2973 688 
284 L13 13/05/2009 02/05/2009 20:27   400 0.1292 0.3067 444 
285 L14 13/05/2009 02/05/2009 23:23   250 0.1234 0.2954 688 
286 L15 13/05/2009 03/05/2009 04:56   200 0.1269 0.329 1011 
287 L16 13/05/2009 03/05/2009 14:29   220 0.1268 0.2561 588 
288 L17 13/05/2009 05/05/2009 00:01   250 0.125 0.1995 298 
289 L18 13/05/2009 10/05/2009 19:02   250 0.1255 0.1966 284 
290 LARRA 13/05/2009 10h   500 0.1343 0.2058 143 
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291 L1 20/05/2009 15/05/2009 00:00   500 0.1326 0.143 21 
292 L2 20/05/2009 15/05/2009 02:17   500 0.1351 0.2264 183 
293 L3 20/05/2009 15/05/2009 04:31   500 0.1338 0.2115 155 
294 L4 20/05/2009 15/05/2009 21:34   400 0.1341 0.2049 177 
295 L5 20/05/2009 16/05/2009 14:23   300 0.1339 0.2238 300 
296 LARRA 20/05/2009 20/05/2009 10:00   500 0.1318 0.1508 38 
297 LARRA 27/05/2009 27/05/2009 10h 500 0.1334 0.1559 45 
298 LARRA 03/06/2009 03/06/2009 10h 500 0.1313 0.1408 19 
299 LARRA 10/06/2009 10/06/2009 10h 500 0.1316 0.1499 37 
300 LARRA 17/06/2009 17/06/2009 10h 500 0.1327 0.1448 24 
301 LARRA 24/06/2009 24/06/2009 10h 500 0.1312 0.1421 22 

 
 
Measured data of dissolved and particulate organic carbon concentrations from January 2008-

June 2009 in the Save catchment  
 

N  Samples Field date Real date 
DOC   

(mg l-1 ) 
POC  
(%) 

POC    
(mg l-1) 

1 L11 09/01/2008 02/01/2008 18:08 2.00 7.98 0.64 

2 L12 09/01/2008 03/01/2008 14:16 1.84 6.26 0.49 

3 LARRA 17/01/2008 17/01/2008 09:00 1.89 2.64 1.47 

4 LARRA 20/01/2008 20/01/2008 09:00 2.78 3.38 0.27 

5 LARRA 23/01/2008 23/01/2008 09:00 3.17 2.39 1.32 

6 LARRA 07/02/2008 07/02/2008 09:00 2.02 7.09 0.71 

7 LARRA 13/02/2008 13/02/2008 09:00 1.63 4.42 0.46 

8 LARRA 27/02/2008 27/02/2008 09:00 1.65 2.84 0.31 

9 LARRA 05/03/2008 05/03/2008 09:00 1.70 3.98 0.28 

10 LARRA 12/03/2008 12/03/2008 10:00 1.70 3.96 0.32 

11 LARRA 19/03/2008 19/03/2008 09:50 1.69 2.38 0.27 

12 LARRA 26/03/2008 26/03/2008 09:30 1.92 1.86 3.15 

13 L1 26/03/2008 19/03/2008 16:33 2.15 2.04 0.13 

14 L2 26/03/2008 19/03/2008 21:13 1.67 3.12 0.61 

15 L3 26/03/2008 21/03/2008 18:13 1.66 3.21 0.43 

16 L4 26/03/2008 23/03/2008 09:43 1.65 3.59 0.32 

17 L5 26/03/2008 25/03/2008 23:43 1.65 3.35 0.89 

18 L6 26/03/2008 26/03/2008 06:03 2.03 2.42 3.29 

19 L1 02/04/2008 28/03/2008 10:19 3.66 2.08 21.73 

20 L2 02/04/2008 28/03/2008 11:39 3.89 2.07 4.37 

21 L3 02/04/2008 28/03/2008 12:39 4.22 2.07 6.01 

22 L4 02/04/2008 28/03/2008 13:29 4.54 2.10 7.05 

23 L5 02/04/2008 28/03/2008 14:09 3.66 2.16 9.51 

24 L6 02/04/2008 28/03/2008 14:49 4.38 1.93 8.76 

25 L7 02/04/2008 28/03/2008 15:39 3.87 1.87 9.85 

26 L8 02/04/2008 28/03/2008 16:49 6.12 1.92 15.99 

27 L9 02/04/2008 28/03/2008 18:19 3.21 1.87 17.94 

28 L10 02/04/2008 28/03/2008 19:49 3.19 1.99 18.80 

29 LARRA 02/04/2008 02/04/2008 09:50 2.53 2.02 2.42 
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30 LARRA 03/04/2008 03/04/2008 12:40 3.85 7.83 7.63 

31 LARRA 04/04/2008 04/04/2008 11:00 3.93 1.54 1.11 

32 LARRA 05/04/2008 05/04/2008 13:30 3.72 1.97 1.02 

33 LARRA 09/04/2008 09/04/2008 10:00 2.66 2.48 0.62 

34 LARRA 12/04/2008 12/04/2008 11:00 2.81 1.72 3.82 

35 LARRA 14/04/2008 14/04/2008 16:50 2.87 2.43 0.76 

36 LARRA 17/04/2008 17/04/2008 13:30 2.51 3.20 0.96 

37 LARRA 21/04/2008 21/04/2008 16:30 2.86 1.55 23.39 

38 LARRA 22/04/2008 22/04/2008 16:10 5.08 1.85 4.36 

39 LARRA 23/04/2008 23/04/2008 15:35 4.37 3.42 6.45 

40 LARRA 24/04/2008 24/04/2008 15:50 4.00 2.37 2.18 

41 LARRA 30/04/2008 30/04/2008 10:00 2.68 3.10 1.08 

42 LARRA 14/05/2008 14/05/2008 10:00 1.79 3.14 0.52 

43 LARRA 21/05/2008 21/05/2008 10:00 3.66 1.47 1.65 

44 LARRA 28/05/2008 28/05/2008 10:00 3.18 1.53 4.18 

45 L1 21/05/2008 16/05/2008 11:45 1.88 1.96 5.38 

46 L2 21/05/2008 19/05/2008 20:39 3.78 1.63 4.75 

47 L1 05/06/2008 01/06/2008 09:28 3.20 1.79 5.04 

48 L2 05/06/2008 01/06/2008 11:18 3.40 1.50 8.47 

49 L4 05/06/2008 01/06/2008 13:48 3.24 1.40 23.12 

50 L6 05/06/2008 01/06/2008 17:38 3.37 1.10 173.16 

51 L7 05/06/2008 01/06/2008 23:38 4.03 1.22 86.42 

52 L12 05/06/2008 02/06/2008 04:08 5.46 1.23 42.07 

53 L14 05/06/2008 02/06/2008 10:18 7.87 1.23 31.51 

54 L15 05/06/2008 02/06/2008 11:28 5.01 1.11 34.35 

55 L16 05/06/2008 02/06/2008 23:38 4.89 1.24 58.89 

56 LARRA 04/06/2008 04/06/2008 09:30 4.12 1.16 29.38 

57 LARRA 05/06/2008 05/06/2008 14:30 4.91 1.44 8.20 

58 LARRA 10/06/2008 10/06/2008 11:00 2.36 1.88 1.54 

59 LARRA 12/06/2008 12/06/2008 15:15 6.14 1.33 16.20 

60 LARRA 13/06/2008 13/06/2008 13:30 4.55 1.52 13.80 

61 LARRA 14/06/2008 14/06/2008 16:30 3.97 1.70 5.53 

62 LARRA 15/06/2008 15/06/2008 16:00 3.24 1.60 4.64 

63 LARRA 18/06/2008 18/06/2008 10:00 2.92 1.90 2.09 

64 LARRA 26/06/2008 26/06/2008 10:00 2.11 1.67 1.34 

65 LARRA 03/07/2008 03/07/2008 10:00 1.82 2.59 1.35 

66 LARRA 09/07/2008 09/07/2008 09:40 1.50 3.13 1.82 

67 LARRA 16/07/2008 16/07/2008 09:25 1.70 1.69 1.29 

68 LARRA 23/07/2008 23/07/2008 10:00 1.80 1.92 0.65 

69 LARRA 08/08/2008 08/08/2008 09:55 1.97 1.92 1.01 

70 LARRA 20/08/2008 20/08/2008 13:30 1.82 1.96 0.86 

71 LARRA 04/09/2008 04/09/2008 09:40 2.21 2.09 0.96 

72 LARRA 12/09/2008 12/09/2008 09:45 2.05 2.13 0.99 

73 LARRA 17/09/2008 17/09/2008 09:50 1.87 2.02 0.67 

74 LARRA 24/09/2008 24/09/2008 09:00 1.94 2.08 0.59 
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75 LARRA 08/10/2008 08/10/2008 11:45 2.54 2.45 2.60 

76 LARRA 15/10/2008 15/10/2008 09:55 2.21 2.63 0.49 

77 LARRA 23/10/2008 23/10/2008 09:40 2.47 3.24 0.45 

78 LARRA 29/10/2008 29/10/2008 09:40 2.35 2.44 0.61 

79 LARRA 05/11/2008 05/11/2008 10:00 2.90 3.08 1.84 

80 L1 07/11/2008 07/11/2008 02:54 4.84 1.10 22.54 

81 LARRA 12/11/2008 12/11/2008 09:40 4.12 2.59 0.84 

82 LARRA 19/11/2008 19/11/2008 09:45 2.61 2.46 0.47 

83 L1 26/11/2008 24/11/2008 18:49 5.23 2.87 5.62 

84 L2 26/11/2008 25/11/2008 01:09 2.95 2.67 10.67 
85 L3 26/11/2008 25/11/2008 04:29 3.01 0.90 5.62 
86 L4 26/11/2008 25/11/2008 09:19 3.43 0.97 10.47 
87 L5 26/11/2008 26/11/2008 01:09 4.03 0.95 8.19 
88 LARRA 26/11/2008 26/11/2008 09:00 4.88 1.79 6.72 
89 LARRA 03/12/2008 03/12/2008 09:00 3.00 2.71 0.51 
90 LARRA 08/12/2008 08/12/2008 09:00 4.20 2.37 2.71 
91 L1 08/12/2008 06/12/2008 00:06 3.28 2.55 3.11 
92 L2 08/12/2008 06/12/2008 04:48 2.70 2.44 4.34 
93 L3 08/12/2008 07/12/2008 16:22 4.30 2.04 5.99 
94 LARRA 10/12/2008 10/12/2008 10:00 2.96 2.61 2.58 
95 L1 18/12/2008 14/12/2008 18:24 3.56 1.64 5.18 
96 L2 18/12/2008 14/12/2008 21:51 2.92 2.26 4.87 
97 L3 18/12/2008 15/12/2008 21:02 4.15 1.64 9.15 
98 L4 18/12/2008 17/12/2008 07:11 3.96 2.34 2.87 
99 LARRA 18/12/2008 18/12/2008 10:00 3.18 2.12 1.46 
100 LARRA 07/01/2009 07/01/2009 10:00 1.92 3.26 0.49 
101 LARRA 14/01/2009 14/01/2009 10:00 1.87 3.40 0.35 
102 L1 21/01/2009 20/01/2009 18:01 2.67 3.14 2.12 
103 LARRA 21/01/2009 21/01/2009 09:00 2.00 2.51 1.57 
104 L1 27/01/2009 23/01/2009 04:46 3.79 2.70 18.63 
105 L3 27/01/2009 23/01/2009 07:46 4.35 2.63 21.31 
106 L5 27/01/2009 23/01/2009 09:46 4.30 2.38 21.07 
107 L7 27/01/2009 23/01/2009 11:16 4.50 2.16 22.95 
108 L9 27/01/2009 23/01/2009 12:46 4.99 2.03 25.82 
109 L11 27/01/2009 23/01/2009 14:56 4.42 1.78 24.28 
110 L13 27/01/2009 23/01/2009 20:06 5.05 1.70 35.39 
111 L14 27/01/2009 24/01/2009 08:36 5.62 1.80 24.09 
112 L15 27/01/2009 24/01/2009 21:56 5.69 1.76 19.50 
113 L16 27/01/2009 26/01/2009 07:26 5.07 1.71 18.90 
114 LARRA 27/01/2009 27/01/2009 12:00 4.52 2.23 8.91 
115 L1 04/02/2009 28/01/2009 05:50 4.25 1.90 10.32 
116 L2 04/02/2009 28/01/2009 17:52 4.48 2.16 6.04 
117 L3 04/02/2009 28/01/2009 20:31 4.00 1.95 5.07 
118 L4 04/02/2009 29/01/2009 01:16 4.35 2.11 5.70 
119 L5 04/02/2009 29/01/2009 07:06 4.23 2.28 5.49 
120 L6 04/02/2009 29/01/2009 16:05 3.64 2.15 6.01 
121 L7 04/02/2009 29/01/2009 23:40 4.14 1.99 4.96 
122 L8 04/02/2009 30/01/2009 02:47 4.01 2.13 4.92 
123 LARRA 04/02/2009 04/02/2009 09:00 2.63 2.02 1.29 
124 L1 11/02/2009 11/02/2009 07:45 4.24 2.51 6.52 
125 L2 11/02/2009 11/02/2009 08:45 2.88 1.89 4.15 
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126 LARRA 11/02/2009 11/02/2009 10:00 2.94 2.64 3.29 
127 L1 18/02/2009 11/02/2009 10:45 2.77 2.04 4.24 
128 L3 18/02/2009 11/02/2009 12:46 2.51 1.37 10.45 
129 L5 18/02/2009 11/02/2009 15:35 2.86 1.49 12.66 
130 L7 18/02/2009 11/02/2009 20:51 4.19 1.71 16.77 
131 L8 18/02/2009 12/02/2009 05:17 4.29 1.77 12.06 
132 L9 18/02/2009 12/02/2009 19:13 4.78 1.89 8.27 
133 L11 18/02/2009 13/02/2009 20:53 3.89 1.97 4.54 
134 L13 18/02/2009 14/02/2009 02:26 4.00 2.11 4.44 
135 L15 18/02/2009 14/02/2009 06:21 3.92 2.10 4.48 
136 L16 18/02/2009 14/02/2009 08:37 3.84 2.14 4.77 
137 L18 18/02/2009 14/02/2009 18:34 3.78 1.88 8.66 
138 L20 18/02/2009 15/02/2009 11:44 3.07 2.02 3.66 
139 L21 18/02/2009 16/02/2009 05:44 2.84 1.92 3.01 
140 L22 18/02/2009 18/02/2009 07:26 2.79 1.88 6.36 
141 LARRA 18/02/2009 18/02/2009 10:00 2.62 2.66 1.39 
142 LARRA 25/02/2009 25/02/2009 10:00 2.04 2.50 0.75 

143 LARRA 03/03/02009 
03/03/02009 

10:00 2.04 3.47 1.66 

144 LARRA 12/03/2009 12/03/2009 10:00 2.30 3.14 0.75 
145 LARRA 25/03/2009 25/03/2009 10:00 2.07 4.36 0.60 
146 LARRA 27/03/2009 27/03/2009 10:00 2.16 0.31 0.04 
147 L1 15/04/2009 12/04/2009 02:00 2.78 2.49 8.28 
148 L2 15//04/2009 12/04/2009 05:00 3.87 1.30 3.67 
149 L3 15//04/2009 12/04/2009 08:00 3.86 1.96 4.92 
150 L4 15//04/2009 12/04/2009 11:00 4.27 2.20 8.60 
151 L5 15//04/2009 12/04/2009 22:00 6.67 2.22 6.66 
152 L6 15//04/2009 14/04/2009 04:00 4.53 2.07 4.49 
153 L7 15//04/2009 14/04/2009 10:00 4.38 2.36 4.32 
154 L8 15//04/2009 14/04/2009 15:00 4.71 2.57 4.02 
155 LARRA 15//04/2009 15/04/2009 10:00 4.26 2.99 2.84 
156 L1 22/04/2009 20/04/2009 23:00 3.65 2.06 11.66 
157 L2 22/04/2009 21/04/2009 00:00 3.69 2.35 24.78 
158 L3 22/04/2009 21/04/2009 01:00 4.04 2.22 18.83 
159 L4 22/04/2009 21/04/2009 02:00 5.25 0.25 2.04 
160 L5 22/04/2009 21/04/2009 03:00 5.46 2.23 16.67 
161 L6 22/04/2009 21/04/2009 06:00 5.83 2.19 10.18 
162 L7 22/04/2009 21/04/2009 10:00 5.20 1.95 11.70 
163 L8 22/04/2009 21/04/2009 12:00 4.95 1.78 13.12 
164 L9 22/04/2009 21/04/2009 13:00 4.49 1.81 11.91 
165 L10 22/04/2009 21/04/2009 14:00 4.76 1.88 13.95 
166 L11 22/04/2009 21/04/2009 15:00 5.12 1.87 15.03 
167 L12 22/04/2009 21/04/2009 21:00 5.83 1.77 15.22 
168 L13 22/04/2009 22/04/2009 08:00 6.32 2.12 10.33 
169 LARRA 22/04/2009 22/04/2009 10:00 5.99 2.00 6.99 
170 LARRA 29/04/2009 29/04/2009 10:00 3.54 1.08 1.34 
171 L1 13/05/2009 29/04/2009 17:48 4.40 1.76 6.49 
172 L2 13/05/2009 30/04/2009 06:15 3.83 1.55 9.40 
173 L3 13/05/2009 01/05/2009 20:07 2.93 1.89 9.33 
174 L4 13/05/2009 01/05/2009 23:21 3.09 1.69 5.21 
175 L5 13/05/2009 02/05/2009 01:30 2.68 1.72 3.30 
176 L6 13/05/2009 02/05/2009 03:12 2.65 1.55 2.86 
177 L7 13/05/2009 02/05/2009 04:43 2.65 1.62 2.75 
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178 L8 13/05/2009 02/05/2009 06:24 2.50 1.57 4.09 
179 L9 13/05/2009 02/05/2009 08:38 2.46 1.65 9.00 
180 L10 13/05/2009 02/05/2009 15:39 4.92 2.15 10.06 
181 L11 13/05/2009 02/05/2009 17:04 5.19 2.02 24.16 
182 L12 13/05/2009 02/05/2009 18:35 5.03 1.99 13.69 
183 L13 13/05/2009 02/05/2009 20:27 5.18 NA NA 
184 L14 13/05/2009 02/05/2009 23:23 5.28 2.17 14.92 
185 L15 13/05/2009 03/05/2009 04:56 5.24 2.08 21.01 
186 L16 13/05/2009 03/05/2009 14:29 5.20 2.01 11.80 
187 L17 13/05/2009 05/05/2009 00:01 3.42 1.98 5.89 
188 L18 13/05/2009 10/05/2009 19:02 2.74 2.23 6.33 
189 LARRA 13/05/2009 13/05/2009 10:00 2.05 0.43 0.61 
190 L1 20/05/2009 15/05/2009 00:00 2.81 15.25 3.17 
191 L2 20/05/2009 15/05/2009 02:17 2.50 2.03 3.72 
192 L3 20/05/2009 15/05/2009 04:31 2.30 2.08 3.24 
193 L4 20/05/2009 15/05/2009 21:34 2.83 2.07 3.67 
194 L5 20/05/2009 16/05/2009 14:23 4.56 2.03 6.07 
195 LARRA 20/05/2009 20/05/2009 10:00 3.08 2.76 1.05 
196 LARRA 27/05/2009 27/05/2009 10:00 2.07 2.37 1.07 
197 LARRA 03/06/2009 03/06/2009 10:00 1.91 2.83 0.54 
198 LARRA 10/06/2009 10/06/2009 10:00 2.21 2.43 0.89 
199 LARRA 17/06/2009 17/06/2009 10:00 1.77 3.55 0.86 
200 LARRA 24/06/2009 24/06/2009 10:00 1.78 3.11 0.68 
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Annexe 2 
 

Agricultural management practices in the Save catchment  
 

Pasture 
 

Year Month Days Mgt Operation Machine / Product 
Quantity 
(kg/ha) 

1 April 10 Tillage 
Generic Spring Ploughing 

Operation 
 

1 April 20 Fertilizer 0-25-25 300 
1 April 25 Tillage Roller Harrow 15 Ft  
1 April 25 Plant/Begin Corn Silage  
1 April 25 Fertilizer Ammonitrates 60 
1 May 20 Fertilizer Urea 195 
1 June 10 Fertilizer Urea 220 
1 July 10 Irrigation  30 mm 
1 July 31 Irrigation  30 mm 
1 August 10 Irrigation  30 mm 
1 August 31 Irrigation  30 mm 
1 September 10 Irrigation  30 mm 
1 September 25 Harvest and kill   

2 January 15 Tillage 
Generic Spring Ploughing 

Operation 
 

2 February 5 Fertilizer 15-15-15 400 
2 February 5 Tillage Roller Harrow 15 Ft  
2 February 10 Plant/Begin Tall Fescue  
2 February 10 Tillage Roller Groover  
2 July 1 Grazing  60 days 
2 October 31 Kill/End   
 
3 

March 1 Plant/Begin/Begin Tall Fescue  

3 July 1 Grazing  60 days 
3 October 31 Kill/End   
4 March 1 Plant/Begin/Begin Tall Fescue  
4 July 1 Grazing  60 days 
4 October 31 Kill/End   
5 March 1 Plant/Begin/Begin Tall Fescue  
5 July 1 Grazing  60 days 
5 October 31 Kill/End   

 
Sunflower 

 

Year Month Days Mgt operation Machine / Product 
Quantity 
(kg/ha) 

1 April 1 Tillage Fldcdscr  
1 April 5 Fertilizer 15-15-15 193,3 
1 April 10 Plant/Begin Sunflower   

1 May 16 Fertilizer 15-15-15 193,3 

1 Oct 1 Harvest and kill   
1 Oct 9 Plant/Begin WWHT   
2 Jan 12 Fertilizer 15-15-15 306.6 
2 Feb 17 Fertilizer 15-15-15 306.6 
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2 Mars 20 Fertilizer 15-15-15 306.6 

2 July 10 Harvest and kill   
2 Sept 8 Tillage subchpw  

 
Winter Wheat 

 
Year Month Days Mgt operation Machine / Product Quantity (kg/ha) 

1 Oct 9 Plant/Begin WWTH   
2 January 12 Fertilizer 15-15-15 306.6 
2 February 17 Fertilizer 15-15-15 306.6 
2 March 20 Fertilizer 15-15-15 306.6 

2 July 10 Harvest and kill   

2 September 8 Tillage Subchpw  
3 April 1 Tillage Fldcdscr  
3 April 5 Fertilizer 15-15-15 193.3 

3 April 10 Plant/Begin Sunflower   

3 May 16 Fertilizer 15-15-15 193.3 
3 Oct 1 Harvest and kill   
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Annexe 3 
 
 

Association de la légende de la carte pédologique du BV de la Save au 1/80000 
(cartes papiers CACG) avec la légende détaillée du guide des sols de la région 

Midi Pyrénées restituée sur le site de la CRAMP avec les profils pédo. 
 
 
Tableau de synthèse de la correspondance entre les codes de la légende de la carte pédo du 
BV de la Save (CACG) et les profils de la légende de la carte morpho pédo Midi pyrénées de 
la CRAMP 
 
 
 
 
 
 
 
 

SAVE CACG Type de sol Unité   
131 1 2   
132 1 1   
322 2 4   
321 2 3 ou T 3 U 2b  
325 3 1   
353 3 5   
331 4 1   
335 4 5   
332 4 2   
351 4 3 ou 4   
212 5 3   
213 5 2   
221 5 6   
520 7 1   
518 9 1 ou 2   
327 15 2   
328 15 3   
326 15 1   
127 16 1   
129 16 2   

9999 13 Bati   

620 NR 
Zone boisée lors 
des relevés (1960)   
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Scan de la légende de la carte pédologique du BV de la Save au 1/80000 (CACG) 
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Tableau Excel de la légende de la carte pédologique du BV de la Save au 1/80000 (CACG) 
avec codification des thèmes 

 
CODE_SOL TOPOGRAPHIE NATURE DESCRIPTION CARACTERISTIQUES 

131 
Pente faible ou 

moyenne (<15%) 
Alluvions 
recentes 

Alluvions des rivieres Calcaires 

132 
Pente faible ou 

moyenne (<15%) 
Alluvions 
recentes 

Alluvions des rivieres Non calcaires 

127 
Pente faible ou 

moyenne (<15%) 
Alluvions 
recentes 

Alluvions de la Garonne 
Calcaires 

Limono-sableuses en surface, sablo-
limoneuses en profondeur 

129 
Pente faible ou 

moyenne (<15%) 
Alluvions 
recentes 

Alluvions de la Garonne 
non Calcaires 

Limono-argileuses, sur alluvions 
calcaires de l Arrats 

212 
Pente faible ou 

moyenne (<15%) 
Calcaires Sur formations miocenes 

Terreforts profonds (marnes a plus 
de 40 cm de profondeur) 

213 
Pente faible ou 

moyenne (<15%) 
Calcaires Sur formations miocenes 

Terreforts superficiels (marnes a 
moins de 40 cm de profondeur) 

221 
Pente faible ou 

moyenne (<15%) 
Calcaires Sur depots remanies Colluvions d origine diverse 

331 
Pente faible ou 

moyenne (<15%) 
Non calcaires 

Boulbenes du systeme 
ancien des rivieres 

Profondes 

332 
Pente faible ou 

moyenne (<15%) 
Non calcaires 

Boulbenes du systeme 
ancien des rivieres 

Superficielles 

335 
Pente faible ou 

moyenne (<15%) 
Non calcaires 

Boulbenes du systeme 
ancien des rivieres 

De basse terrasse 

351 
Pente faible ou 

moyenne (<15%) 
Non calcaires 

Boulbenes du systeme 
ancien des rivieres 

Limono-argileuses 

321 
Pente faible ou 

moyenne (<15%) 
Non calcaires 

Boulbenes du systeme 
ancien de la Garonne 

Profondes 

322 
Pente faible ou 

moyenne (<15%) 
Non calcaires 

Boulbenes du systeme 
ancien de la Garonne 

Superficielles 

327 
Pente faible ou 

moyenne (<15%) 
Non calcaires 

Sol du Plateau de 
Lannemezan 

Sols noirs sur limons 

328 
Pente faible ou 

moyenne (<15%) 
Non calcaires 

Sol du Plateau de 
Lannemezan 

Sols bruns sur limons 

353 
Pente faible ou 

moyenne (<15%) 
Non calcaires Sur depots divers 

Limono-argileux et colluvions d 
origine non calcaire 

325 
Pente faible ou 

moyenne (<15%) 
Non calcaires Sur depots divers Cailloutis de lomagne 

326 
Pente faible ou 

moyenne (<15%) 
Non calcaires Sur argile rouge  

518 Pente forte (<15%) Non calcaires Sur argile ou colluvions squelettiques 

520 Pente forte (<15%) Calcaires 
Sur marne ou marno-

calcaire 
Squelettiques 

620 Pente forte (<15%) NR NR Bois 
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Codification des grands thèmes morpho-pedo dont les profils détaillés ont pu être extraits du 
guide des sols consultable depuis le site de la CRAMP. 

 
Code_corr  Types de sol (carte morpho-pedoCRAMP) 

1 Basses plaines d’alluvions récentes Vallées secondaires de Gascogne 

2 

Terrasses planes d’alluvions anciennes mal drainées à boulbènes - Garonne (en aval 
de Toulouse) 

3 Hautes terrasses anciennes découpées 

4 

Terrasses d’alluvions anciennes - Vallées secondaires Terrasses d'alluvions 
anciennes (et glacis de limons soliflues) Sud de la Gascogne 

5 

Coteaux peu à moyennement accidentés - Coteaux argilo-calcaires peu à 
moyennement accidentés Gascogne 

16 Basse plaine d'alluvions récentes Garonne (en aval de Toulouse) 
7 Coteaux argilo-calcaires accidentés avec bancs de calcaire Gascogne 

9 

Coteaux accidenté sur molasse acide argileuse ou argilo-caillouteuse - Sud 
Gascogne et Piémont Pyrénéen 

15 Hauts niveaux bien conservés - Plateaux de Lannemezan et de Gers 
 
Type Unité Description 

1 2 Sols alluviaux argileux et calcaires 
1 1 Sols alluviaux non calcaires des zones amont des rivières gascognes 

16 1 
Sols peu évolués d'apport alluvial de texture sableuse à limoneuse en surface souvent 
sableuse à sablo-graveleuse à moyenne profondeur. 

16 2 Sols bruns calcaires ou bruns eutrophes, de texture limoneuse à argilo-limoneuse. 
5 3 Sols argilo-calcaires profonds sur marne à 60-80 cm (terreforts profonds) 
5 2 Sols argilo-calcaires superficiels au-dessus de marne (30-35 % de la surface) 
5 6 Sols argilo-calcaires de colluvionnement (10 % de la surface) 
4 1 Boulbènes profondes des terrasses 
4 2 Boulbènes superficielles des terrasses 
4 5 Sols limoneux hydromorphes (boulbènes de basse terrasse) 
4 3 boulbènes colorées profondes  
4 4 boulbènes colorées superficielles qui sont souvent caillouteuses 
2 3 Boulbènes moyennes 
3 2b Les boulbènes profondes (épaisseur de l'horizon limoneux > 50 cm) 
2 4 Boulbènes superficielles 
3 5 Colluvions profondes hydromoprhes   
3 1 Sols caillouteux des hauts niveaux ou cailloutis de Lomagne 

15 2 Terres noires à Touyas sur limons jaunes 
15 3 Sols bruns profonds sur limons ou argile jaune 
15 1 Sol noir profond hydromorphe sur argile rouge (unité 1) 
9 1 Sols bruns caillouteux superficiels sur argiles à galets du Pliocène.  
9 2 Sols bruns limono-argileux ou argilo-limoneux superficiels sur argile à faible profondeur  
7 1 Sols argilo-calcaires superficiels sur marnes ou marno-calcaires 
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Correspondance entre les codes de la légende de la carte pédo du BV de la Save (CACG) et 
les profils de la légende de la carte morpho pédo Midi pyrénées de la CRAMP 

 
Sols à pente à faible ou moyenne <15%  = Coteaux peu à moyennement 
accidentés 
 
I Alluvions récentes 
 
- Des rivières 
 
= Type 1 Basses plaines d’alluvions récenets Vallées secondaires de Gascogne 
 
131 Calcaires 
1 Unité 2 = Sols alluviaux argileux et calcaires 
 
132 Non calcaires 
1 Unité 1= Sols alluviaux non calcaires des zones amont des rivières gascognes 
 
- De la Garonne 
 
= Type 16 Basse plaine d'alluvions récentes Garonne (en aval de Toulouse) 
 
127 Calcaires Limono-sableuses en surface, sablo-limoneuses en profondeur 
16 Unité 1 ( ??) = Sols peu évolués d'apport alluvial de texture sableuse à limoneuse en 
surface souvent sableuse à sablo-graveleuse à moyenne profondeur. 
 
129  Non Calcaires Limono-argileuses, sur alluvions calcaires de l Arrats 
16 Unité 2 ( ??) Sols bruns calcaires ou bruns eutrophes, de texture limoneuse à argilo-
limoneuse.  
 
II Sols calcaires  
 
= Type 5 Coteaux peu à moyennement accidentés - Coteaux argilo-calcaires peu à 
moyennement accidentés Gascogne 
 
- Sur formations miocènes (dépôts molassiques) 
 
212  Terreforts profonds (marnes a plus de 40 cm de profondeur) 
5 Unité 3 : Sols argilo-calcaires profonds sur marne à 60-80 cm (terreforts profonds)  
 
213 Terreforts superficiels (marnes a moins de 40 cm de profondeur) 
5 Unité 2 : Sols argilo-calcaires superficiels au-dessus de marne (30-35 % de la surface). 
 
- Sur dépôts remaniés 
 
221 Pente faible ou moyenne Sols Calcaires Sur dépôts remanies Colluvions d origine 
diverse 
5  Unité 6 : Sols argilo-calcaires de colluvionnement (10 % de la surface).  
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III Sols non calcaires 
 
- Boulbènes du système ancien des rivières 
 
= Type 4 Terrasses d’alluvions anciennes - Vallées secondaires Terrasses d'alluvions 
anciennes (et glacis de limons soliflues) Sud de la Gascogne 
 
331 Profondes 
4 Unité 1 : Boulbènes profondes des terrasses 
 
332 Superficielles 
4 Unité 2 : Boulbènes superficielles des terrasses 
 
335 De basse terrasse 
4 Unité 5 : Sols limoneux hydromorphes (boulbènes de basse terrasse)  
 
351 Limono-argileuses (ou colorées) 
4 Unité 3 boulbènes colorées profondes  
4 Unité 4 boulbènes colorées superficielles qui sont souvent caillouteuses 
 
- Boulbènes du système ancien de la Garonne 
 
Type 2 = Terrasses planes d’alluvions anciennes mal drainées à boulbènes - Garonne (en aval 
de Toulouse) 
 
321 Profondes 

7.1.1. 2 Unité 3 : Boulbènes moyennes 

 
ou 
 
Type 3 = Hautes terrasses anciennes découpées 
3 Unité 2b - Les boulbènes profondes (épaisseur de l'horizon limoneux > 50 cm) 
 
322 Superficielles 
2 Unité 4 : Boulbènes superficielles  
 
- Sur dépôts divers 
 
Type 3 = Hautes terrasses anciennes découpées 
 
353 Limono-argileux et colluvions d origine non calcaire 

3 Unité 5 : Colluvions profondes hydromoprhes   
 
325 Cailloutis de lomagne 

3 Unité 1 : Sols caillouteux des hauts niveaux ou cailloutis de Lomagne 
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- Sols du plateau de Lannemezan 
 
Type 15 = Hauts niveaux bien conservés - Plateaux de Lannemezan et de Gers 
 
327 Sol noirs sur limons 
15 Unité 2 : Terres noires à Touyas sur limons jaunes 
 
328 Sol bruns sur limons 
15 Unité 3 : Sols bruns profonds sur limons ou argile jaune 
 
326 Sols sur argile rouge 
15 Unité 1 : Sol noir profond hydromorphe sur argile rouge (unité 1) 
 

Sols à pentes fortes (>15%) = Coteaux accidentés 
 
518 Non calcaire squelettiques sur argile ou colluvions 
Type 9 = Coteaux accidenté sur molasse acide argileuse ou argilo-caillouteuse - Sud 
Gascogne et Piémont Pyrénéen 

9 Unité 1 : Sols bruns caillouteux superficiels sur argiles à galets du Pliocène.  
ou 
 
9 Unité 2 : Sols bruns limono-argileux ou argilo-limoneux superficiels sur argile à faible 
profondeur  
 
520 Calcaire squelettiques sur marne ou marno-calcaire 
Type 7 = Coteaux argilo-calcaires accidentés avec bancs de calcaire Gascogne 
7 Unité 1 : Sols argilo-calcaires superficiels sur marnes ou marno-calcaires 
 
 
 
 



RESUME  
 

L’étude du transport fluvial des matières en suspension (MES) et du carbone organique dans les rivières du monde 
informe sur le taux d’érosion des continents, le cycle du carbone et la contribution du carbone terrestre à l’océan. Les 
objectifs du travail sont, d’une part, de décrire, analyser et quantifier la dynamique des MES et du carbone organique, 
particulaire (COP) et dissous (COD), lors des périodes de crue, d’évaluer la contribution des événements de crue sur les 
flux annuels et, d’autre part, de quantifier ces flux sur le long terme par une approche de modélisation agro-hydrologique. 
L’étude expérimentale est basée sur l’échantillonnage à l’exutoire des données par un prélèvement manuel et 
automatique dans un bassin versant agricole de 1 110 km2 du Sud-ouest de la France, la Save, un affluent de la Garonne, 
de Janvier 2007 à Juin 2009. Concernant l’approche de modélisation, le modèle SWAT 2005 (Soil and Water Assessment 
Tool) est utilisé pour décrire le transport et quantifier le flux des MES et du COP sur du long terme (1999-2008) intégrant 
les données hydro-climatiques, l’occupation du sol et les itinéraires techniques des pratiques agricoles dans ce bassin.    
 
Les résultats montrent la forte variabilité temporelle de la dynamique de transport des MES, COP et COD durant les 
différentes crues saisonnières. Ces flux sont notamment transportés au printemps grâce aux fréquences importantes des 
crues et à la durée des crues. La quantification de flux (MES, COP et COD) pendant les crues contribuant aux flux annuel 
à été estimé. Le flux annuel des MES en 2007 est de 16 614 tonnes, représentant 15 t km-2 (85% du flux annuel transporté 
en crue pour 16% de la durée annuelle) et il est de 77 960 tonnes représentant 70 t km-2 en 2008 (95% du flux annuel 
transporté en crue pour 20% de la durée annuelle). Le transport du COP et COD durant les crues est respectivement de 
76% et 62% du flux total pour 22% de la durée totale (Janvier 2008 à Juin 2009). Les flux de COP et COD exportés de la 
Save sont de 3091 tonnes et 1238 tonnes, représentant respectivement, 1,8 t km-2 an-1 et 0,7 t km-2 an-1. En utilisant des 
analyses statistiques, les facteurs hydro-climatiques qui conditionnent la dynamique du transport montrent de bonnes 
corrélations entre la précipitation totale, le débit de crue, le flux d’eau et les flux de MES, COP et COD. De plus, la 
dynamique des MES, COP et COD pour les différents crues a été examinée, en utilisant l’analyse des hystérésis. 
 
Les résultats du modèle agro-hydrologique SWAT montrent la forte variabilité temporelle des flux annuels de MES et 
COP (1999-2008). Le flux annuel de MES varie de 4 766 tonnes à 123 000 tonnes, représentant un flux spécifique de 48 t 
km-2 an-1 et le flux annuel de POC varie de 120 tonnes à 3 100 tonnes, représentant un flux spécifique de 1,2 t km-2 an-1. 
La régression entre le flux d’eau annuel et le flux de MES simulé a été établie et les zones potentielles d’érosion sont 
également identifiées par modélisation pour le bassin versant de la Save.    

 
 

ABSTRACT  
 
The study of the fluvial suspended sediment and organic carbon transport through the world’s streams and rivers provides 
information on the erosion rate of continents, the cycling of carbon on earth, and the contribution of terrestrial carbon to 
the oceans. The objectives of the research are, on the one hand, to describe and analyse the transport dynamics of 
suspended sediment (SS), and dissolved and particulate organic carbon (DOC and POC) during flood events with 
assessment of flood load contribution and, on the other hand, to quantify the long term fluxes by agro-hydrological 
modelling approach. The experimental study is based on the field experiment for extensive data collection at the 
catchment outlet from both manual and automatic sampling within the Save agricultural catchment, 1110 km2, a tributary 
of the Garonne River in Southwest France from January 2007 through June 2009. For modelling approach, the SWAT 
model (Soil and Water Assessment Tool) was applied to study long term trend of sediment transport processes, sediment 
and particulate organic carbon yield taking into account hydrolo-climaitic data (1999-2008), landuse, and agricultural 
management practices within the catchment.  

 
Our results revealed high temporal variability in transport dynamics during different seasonal flood events. SS, DOC and 
POC load were strongly transported during spring resulting from frequent flood events of high magnitude and timing of 
flood. The quantification of flood loads of SS, DOC and POC contributing to annual load was estimated. Annual 
sediment transport in 2007 yielded 16 614 tonnes, representing 15 t km-2 (85% of annual load transport during floods for 
16% of annual duration), while the 2008 sediment yield was 77 960 tonnes, representing 70 t km-2 (95% of annual load 
transport during floods for 20% of annual duration). The transport of POC and DOC during flood events exhibited 76% 
and 62% of their total loads within 22% of the whole duration (January 2008 to June 2009). POC and DOC export from 
the Save catchment amounted to 3091 t and 1238 t, representing 1.8 t km-2 y-1 and 0.7 t km-2 y-1, respectively. The hydro-
climatic factors conditioning the transport dynamics using statistical analyses revealed strong correlations between total 
precipitation, flood discharge, total water yield with SS, POC, DOC load transport. Moreover, SS, POC and DOC 
dynamics using concentration-discharge relationship (hysteresis patterns) at different flood events during rising and 
falling flow were also examined.   
 
SWAT agro-hydrological model results show strong temporal variability of annual sediment and POC yield from the 
Save catchment (1999-2008). Annual sediment yield ranged from 4766 t to 123000 t, representing a mean specific 
sediment yield of 48 t km-2 y-1 and annual POC yield ranged from 120 t to 3100 t, representing a mean specific POC yield 
of 1.2 t km-2 y-1. A regression between annual water yield and simulated annual sediment yield was established and 
potential source areas of erosion were also identified by modelling for the Save agricultural catchment. 


