
HAL Id: tel-00741994
https://theses.hal.science/tel-00741994

Submitted on 15 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy-efficient reliable transport protocols for IP-based
low power wireless networks

Ahmed Ayadi

To cite this version:
Ahmed Ayadi. Energy-efficient reliable transport protocols for IP-based low power wireless networks.
Networking and Internet Architecture [cs.NI]. Télécom Bretagne, Université de Rennes 1, 2012. En-
glish. �NNT : �. �tel-00741994�

https://theses.hal.science/tel-00741994
https://hal.archives-ouvertes.fr

N° d’ordre : 2012telb0234

S o u s l e s c e a u d e lS o u s l e s c e a u d e l ’’ UU n i v e r s i tn i v e r s i t éé e u r o p é e n n e d e B e u r o p é e n n e d e B

Télécom Bretagne

En habilitation conjointe avec l’Université de Rennes 1

Ecole Doctorale – MATISSE

Energy-efficient reliable transport protocols for IP-based low-
power wireless networks

Thèse de Doctorat

Mention : Informatique

Présentée par Ahmed Ayadi

Département : RSM

Directeur de thèse : Xavier Lagrange

Soutenue le 25 juin 2012

Jury :

M. César Viho, professeur à l’université Rennes 1 (Président)
M. Bernard Tourancheau, professeur à l’université de Lyon 1 (Rapporteur)
M. Andrzej Duda, professeur à Grenoble INP-Ensimag (Rapporteur)
M. Xavier Lagrange, professeur à Télécom Bretagne (Directeur de thèse)
M. Claude Chaudet, maitre de conférence à Télécom ParisTech (Examinateur)
M. Patrick Maillé, maitre de conférence à Télécom Bretagne (Examinateur)

2

Energy-efficient reliable transport protocols

for IP-based, low-power multi-hop networks

Ahmed AYADI

Telecom Bretagne

September 6, 2012

ii

Remerciment

Je voudrais remercier Monsieur Xavier Lagrange mon directeur de thèse, de m’y avoir

accueilli et donné les moyens de mener à bien mes travaux.

Je remercie vivement mes deux encadrants David Ros et Patrick Maillé pour leur

disponibilité et leurs précieux conseils qui m’ont permis d’enrichir mon travail, je les re-

mercie également pour leur soutien tout au long du déroulement de ma thèse.

Je tiens à remercier profondément l’ensemble des doctorants et des stagiaires du dé-

partement RSM avec lesquels j’ai eu des échanges scientifiques et culturels pendant toute

la durée de la thèse.

Ma femme, ma fille, mes parents, et le reste de ma famille méritent bien plus qu’un

remerciement pour m’avoir supporté et aidé pendant tout mon cursus, je leur dédié cette

thèse.

Je ne saurais terminer ces remerciements sans penser aux membres du jury pour

l’honneur qu’ils m’ont fait d’avoir voulu examiner et évaluer cette contribution et à toute

personne qui a contribué, directement ou indirectement, à l’achèvement de ce travail.

iii

CHAPTER 0. REMERCIMENT

iv

Résumé en français

Introduction

Les réseaux à faible consommation d’énergie ont vécu une grande évolution depuis le début

du XXIème siècle. De nombreux chercheurs se sont intéressés à l’étude de l’efficacité énergé-

tique et ont proposé de nouvelles cartes réseaux sans fil à faible consommation d’énergie

(par exemple les cartes IEEE 802.15.4). Cependant, la consommation énergétique d’un

nœud mobile ne dépend pas seulement des protocoles des couches physiques et liaison de

données, mais aussi des protocoles des couches supérieures. D’autre part, le déploiement de

ces réseaux dans le monde réel a affronté d’autres obstacles que la consommation énergé-

tique comme les problèmes de fiabilité et d’adressage. Une première solution a été proposée

en 2003 par ZigBee alliance. La spécification ZigBee a complété la norme IEEE 802.15.4

en lui ajoutant quatre composantes principales: la couche réseau, la couche application,

les périphériques ZigBee et les objets applicatifs. Toutefois, cette solution n’a pas obtenu

un grand succès vu les problèmes d’évolutivité et d’intégration avec le grand réseau IP du

monde Internet.

En 2005, un nouveau groupe de travail à l’IETF, nommé 6LoWPAN, a eu l’idée du

déploiement d’IPv6 dans les réseaux à faible consommation d’énergie pour résoudre le

problème d’adressage. Avec l’introduction d’IPv6, les nouveaux appareils sont devenus

capables de communiquer aussi bien entre eux qu’avec tous les appareils IP à l’intérieur et

à l’extérieur du réseau sans fil. Ces derniers, appelés aussi objets intelligents, ont changé

le concept de l’Internet qui ne se limite pas qu’aux réseaux informatiques classiques, mais

s’étend à tous les objets de la vie quotidienne. L’extension de l’Internet à tous les objets

du monde réel représente la notion d’Internet des Objets.

Après le déploiement d’adressage IPv6, le regard des chercheurs s’est dirigé vers les

couches supérieures du réseau à faible consommation d’énergie c’est-à-dire la couche trans-

port des données et la couche application. Actuellement, l’UDP est le protocole de trans-

port le plus utilisé dans les réseaux à faible consommation d’énergie. Il est vrai que l’UDP

est utile pour les réseaux de faible consommation d’énergie car de nombreuses applica-

tions sont tolérantes aux pertes et qui ne demandent pas la fiabilité du transport des

données. Toutefois, d’autres applications et services (tels que SSH et HTTP) ne sont pas

tolérants aux pertes. Ce type d’applications nécessite un service fiable que l’UDP ne peut

pas fournir. En outre, certains domaines d’application (tels que la santé, l’Armée, et la

sécurité) imposent des contraintes de fiabilité fortes. Dans certains cas d’utilisation (par

exemple, envoyer une mise à jour d’un capteur, ou l’envoi d’une requête demandant des

informations spécifiques d’un capteur), il y a nécessité d’un moyen de transport fiable de

données. D’autre part, le déploiement de TCP, le protocole de transport le plus utilisé

dans les réseaux IP, dans les réseaux à faible consommation d’énergie rencontre diverses

v

CHAPTER 0. REMERCIMENT

difficultés telle que la consommation énergétique.

Physique IEEE 802.15.4 PHY

Liaison

IEEE 802.15.4 MAC

La couche 6LoWPAN

Réseau IPv6

Transport

Application

UDP

HTTP, SSH, etc.
CoAP

Couche fiable
TCP Autres?

Figure 1: Les choix possibles d’un protocole de transport fiable au dessus des réseaux à
faible consommation d’énergie

Dans ce contexte, nous pouvons imaginer quatre solutions possibles pour permettre un

transfert fiable des données sur les réseaux de faible consommation d’énergie. Une première

solution est de conserver l’un des protocoles de transport proposés dans la littérature pour

les réseaux de capteurs et de l’adapter afin qu’il soit plus générique pour toutes sortes

d’applications. Cependant, cette solution devra faire face au même problème de ZigBee.

En effet, il ne sera pas facile d’intégrer cette solution à l’Internet et cela demandera le dé-

ploiement d’un proxy entre le monde sans fil et le monde filaire. Le proxy aura pour rôle de

traduire les en-têtes du réseau IP (TCP ou UDP) en des en-têtes du protocole de transport

du réseau sans fil. Une deuxième solution est de compléter l’UDP avec une nouvelle couche

supérieure (comme le cas de RTP/RTCP). Cette solution doit offrir un transfert fiable de

données qui n’est pas offert par l’UDP et doit ainsi implémenter des mécanismes de dé-

tection de pertes, de retransmissions, et de contrôle de congestion. Cependant, afin que la

conception de ce protocole obéisse à toutes ces exigences, l’en-tête du protocole de trans-

port doit comporter un numéro de séquence, un numéro d’acquittement, et d’autres champs

qui sont déjà inclus dans l’en-tête TCP. Une troisième proposition, qui est actuellement en

discussion au sein du groupe CORE à l’IETF consiste à laisser le contrôle de congestion

et la récupération des pertes à la couche application. Toutefois, cette idée fournit une

solution pour une catégorie limitée d’applications. Jusqu’à la rédaction de cette thèse,

ce groupe de travail n’a prévu qu’une solution pour le HTTP sur l’UDP. Pour toutes ces

raisons, nous avons choisi une quatrième proposition qui consiste à conserver TCP sur les

réseaux à faible consommation d’énergie. Le choix de TCP nous permet de garder tous les

vi

mécanismes implémentés par le protocole comme la retransmission des segments perdus et

le contrôle de congestion. Dans ce travail, nous distinguons les limites de la mise en place

de TCP sur les réseaux à faible consommation d’énergie, et nous proposons une solution

pour chacun d’eux.

Dans nos travaux de recherche, nous nous sommes intéressés à l’étude de l’efficacité

énergétique des protocoles de la couche de transport tout en conservant la fiabilité du

transfert des données. Nos travaux se sont concentrés sur l’amélioration de l’efficacité én-

ergétique du protocole de transport TCP dans les réseaux à faible consommation d’énergie.

Ce chapitre présente un résumé des différents travaux de recherches réalisés en cours de

thèse.

La retransmission des segments perdus

Afin de garantir la fiabilité des transferts de données, TCP retransmet de bout en bout

les segments perdus. Dans les réseaux sans fil à multi sauts, la congestion n’est pas la

seule cause de pertes car les mauvaises conditions du canal de transmission peuvent l’être

aussi. Dans cet environnement, les performances de TCP peuvent se dégrader facilement

et entrâınent ainsi une baisse de débit et une augmentation du temps de transfert. De plus,

dans le contexte des réseaux de faible consommation d’énergie, la perte d’un segment dans

l’un des sauts du réseau sans fil entrâıne une retransmission bout en bout de ce dernier

alors que le paquet pourrait être à un ou deux sauts de la destination. Cette onéreuse

retransmission de bout en bout peut être évitée si la retransmission se déclenche par le

dernier nœud ayant reçu une copie du segment perdu. Cette idée suppose que les nœuds

intermédiaires possèdent de l’espace mémoire afin de mémoriser les segments non acquittés.

D’où l’idée de la retransmission de proche en proche des segments TCP perdus.

DATA 1

DATA 2

DATA 1 .

Segment 2 caché

DATA 2

Nœud 1 Nœud 2 Nœud 3

(a) DTC

DATA 1

DATA 2

Segment 1 verrouillé

DATA 1
.

DATA 1

Nœud 1 Nœud 2 Nœud 3

(b) NewDTC

Figure 2: La gestion du segment caché avec DTC et NewDTC

vii

CHAPTER 0. REMERCIMENT

Distributed TCP Caching (DTC) est une des solutions qui a été proposées permettant

aux nœuds intermédiaires de détecter les pertes et de retransmettre les segments perdus.

Les auteurs présument que chaque nœud intermédiaire a assez de mémoire pour mettre en

cache un seul segment TCP de données. Après la mise en cache d’un segment, un nœud

DTC ne supprime un segment du cache que s’il reçoit un acquittement de la couche liaison

de données. Un segment qui n’est pas acquitté par le prochain nœud est verrouillé dans

la mémoire cache et retransmis après un délai avant retransmission (RTO). De plus, un

segment de données verrouillé ne peut être écrasé par un autre segment TCP. Un segment

caché est supprimé de la mémoire cache uniquement lorsque un acquittement (ACK) TCP

est reçu.

Cependant, cet algorithme souffre de quelques lacunes. En effet, il a été proposé pour

des réseaux TDMA alors que la majorité des réseaux à faible consommation d’énergie sont

des réseaux CSMA-CD où le taux d’erreur est très élevé. De plus, la manière avec laquelle

DTC gère le segment caché peut causer la perte de ce dernier sans qu’il soit bien reçu par la

destination. Enfin, permettre aux nœuds de sauvegarder une copie du dernier segment et

le retransmettre après un RTO peut créer de multiples retransmissions d’un seul segment

TCP. Nous avons proposé une amélioration de DTC nommé Enhanced Distributed TCP

Caching (EDTC). En effet, DTC propose de mettre en cache un segment reçu si la mémoire

cache est vide. Il propose également de mettre en cache ce segment avec une probabilité

de 50% si le cache n’est pas vide et non verrouillé. Un nœud DTC met en cache les

segments les plus récents, ainsi les vieux devraient être retransmis. La figure 2 (a) montre

que l’utilisation de cette approche conduit à une perte d’un segment si un nœud reçoit un

nouveau segment TCP avant d’envoyer le segment déjà mis en cache. EDTC propose une

meilleure gestion des segments cachés. Nous proposons une nouvelle approche permettant

de remédier à ce problème. Après la réception d’un segment TCP données, un nœud

NewDTC verrouille le segment reçu et l’envoie à la couche MAC essayant de l’envoyer

à son tour au nœud prochain (voir la figure 2 (b)). A la réception d’un acquittement

niveau deux (confirmant que le nœud suivant a bien reçu le segment), le nœud NewDTC

déverrouille le segment reçu. Le segment mis en cache pourrait alors être remplacé par

le prochain segment TCP ou supprimé si le même nœud reçoit un ACK TCP acquittant

sa réception. Notre solution donne toute la priorité aux vieux segments s’ils ne sont pas

envoyés avec succès à la couche liaison et la priorité au nouveau segment si le nœud est sûr

que le suivant a bien reçu le segment mis en cache.

DTC propose que chaque nœud intermédiaire retransmette le segment mis en cache

après un délai avant retransmission (RTO). Toutefois, les retransmissions locales de nœuds

peuvent conduire à des retransmissions inutiles si le même segment est retransmis par plus

qu’un nœud. Afin de réduire le nombre de retransmissions inutiles, un nœud NewDTC

devrait recalculer le délai avant retransmission s’il reçoit un segment caché. Cette approche

n’a aucun impact sur la retransmission des segments perdus. Un nœud NewDTC détecte

viii

Node 1 Node 2 Node 3

ACK
3

.
DATA 2

DATA 2

(a) DTC

Node 1 Node 2 Node 3

ACK
3

.
DATA 2

ACK
3

(b) NewDTC

Figure 3: TCP ACK loss recovery

la perte d’un acquittement TCP en recevant un segment de données TCP qui a déjà été

acquitté. Ainsi, un nœud NewDTC supprime le segment de données TCP reçu et régénère

un acquittement. Cela exige que chaque nœud maintienne les états de toutes les connexions

TCP.

La figure 3 montre un exemple d’une connexion TCP où un acquittement est perdu

après qu’un segment ait été bien reçu. Le nœud 2 reçoit un acquittement TCP, mais ne

parvient pas à l’envoyer au nœud 1. Ensuite, il reçoit un segment de données TCP déjà

acquitté. Le nœud 2 supprime le segment TCP et régénère un acquittement TCP. Cette

approche évite une nouvelle retransmission.

La figure 4 montre que DTC et NewDTC permettent de réduire la consommation totale

d’énergie. Cela est dû aux retransmissions de proche en proche des segments perdus. Nous

distinguons également que NewDTC réduit plus que DTC dans la consommation d’énergie

en supprimant les segments TCP déjà acquittés. La figure 4 montre que NewDTC réduit

la durée de transfert d’environ 35 à 60% par rapport à TCP et 14-45% par rapport à DTC.

Cette performance est due à une meilleure gestion des segments cachés, tout en évitant les

retransmissions inutiles suite aux pertes d’acquittements.

Réduire le taux d’acquittements

De nombreux chercheurs ont travaillé afin d’améliorer les performances de TCP dans

les réseaux sans fil et ont proposé des algorithmes pour réduire le taux des acquitte-

ments par rapport aux segments de données. Ces derniers sont appelés des mécanismes

d’acquittements retardés. L’idée principale de ces algorithmes est de retarder l’envoi d’un

acquittement jusqu’à la réception de plusieurs segments de données (TCP permet de re-

tarder l’acquittement de deux segments). Les deux mécanismes d’acquittements retardés

ix

CHAPTER 0. REMERCIMENT

2 4 6 8 10
0

2

4

6

8

Nombre de sauts

É
n
er
gi
e
co
n
so
m
m
ée

(J
)

TCP
DTC

NewDTC

(a) Énergie consommée totale

2 4 6 8 10
0

20

40

60

80

100

Nombre de sauts

T
em

p
s
d
e
tr
an

sm
is
si
on

(s
) TCP

DTC
NewDTC

(b) Temps de transmission

Figure 4: Comparaison entre TCP, DTC et NewDTC en terme de consommation d’energie
et temps de transmission

les plus connus sont TCP-TDA et TCP-DCA. Les deux algorithmes proposent qu’envoyer

un acquittement TCP pour une serie de segments TCP reçus. L’algorithme TCP-TDA

est plus simple à mettre en œuvre (par rapport au TCD-DCA) et ne nécessite pas que le

récepteur calcule l’inter-arrivée des segments. En outre, le protocole TCP-DCA exige que

l’expéditeur connaisse le nombre de sauts entre la source et la destination.

1 2 3 4 5 6 7 8

0

2

4

6

8

Nombre de sauts

É
n
er
gi
e
C
on

so
m
m
ée

(J
)

TCP
TCP-DCA
TCP-TDA

10 12 14 16 18 20

10

15

Nombre de sauts

É
n
er
gi
e
co
n
so
m
m
ée

(J
)

TCP
TCP-DCA
TCP-TDA

Figure 5: Comparaison entre TCP, TCP-TDA et TCP-DCA en terme d’énergie consommée

La figure 5 montre l’énergie consommée par tous les nœuds sans fil dans les différents

algorithmes TCP. Nous pouvons voir que tous les algorithmes TCP d’acquittements re-

tardés consomment moins d’énergie en les comparant au TCP et permettent de réduire

l’énergie totale consommée de 40%. En outre, la figure 5 montre que le protocole TCP-

TDA est plus économe en énergie que le protocole TCP-DCA. Cependant, l’inconvénient

x

Sender Receiver
TCP-Data (1)

TCP-Data (2)

TCP-Data (3, AckNow)

TCP-Ack (4)
TCP-Data (4)

TCP-Data (5)

.TCP-Data (6, AckNow)

TCP-Ack (7, sack(6))TCP-Data (7)

TCP-Data (8)

TCP-Data (9, AckNow)
.

TCP-Data (10)

TCP-Data (11)

TCP-Data (12, AckNow)
TCP-Data (13) TCP-Ack (13, sack(9))

Figure 6: La récupération des acquittements TCP perdus

principal de TCP-TDA, c’est qu’il nécessite l’utilisation de la fenêtre demandée, qui devrait

normalement informer l’expéditeur de la capacité du tampon de réception et du nombre

de segments, successivement il doit envoyer un acquittement. Cette solution reste possible

pour le transfert de données unidirectionnel et non pour les applications TCP très utilisées

tels que SSH et HTTP. Nous proposons, à la place de l’envoi de la taille de la fenêtre de

congestion, l’utilisation de l’un des bits réservés de l’en-tête TCP pour demander un acquit-

tement. L’idée a été proposée auparavant par A. Oppermann 1 puis discutée par le groupe

de travail TCPM dans [FARI10]. Le but était de réduire la congestion des acquittements

et non de réduire la consommation d’énergie. La réduction du ratio des acquittements

TCP aurait de mauvais impacts sur les performances TCP. La fenêtre de congestion TCP

augmente d’une quantité constante à chaque acquittement reçu. Ainsi, un mécanisme

1http://www.ietf.org/mail-archive/web/tcpm/current/msg02356.html

xi

CHAPTER 0. REMERCIMENT

d’acquittements retardés risque de diminuer le débit TCP en réduisant les acquittements.

Dans [All03], Allman propose un autre mécanisme de contrôle de congestion pour faire

face aux mécanismes d’acquittements retardés. L’idée principale était que la fenêtre de

congestion TCP doit être augmentée en fonction du nombre d’octets acquittés par acquit-

tements. Afin d’améliorer la performance TCA-TDA, nous proposons d’appliquer la même

idée, même si le nombre d’acquittements est plus élevé que deux segments. En outre,

l’option SACK TCP peut être utiliser afin de signaler si un ou plusieurs segments sont

perdus. La figure 6 montre un exemple de scénario dans lequel l’un des segments envoyés

est perdu. Le récepteur répond par un acquittement avec une option SACK pour informer

l’expéditeur que le troisième segment n’a pas été reçu.

La compression d’en-tête TCP

L’en-tête TCP ajoute une surcharge importante par rapport à la taille totale d’une trame

et surtout pour les petits paquets. Pour les acquittements TCP envoyés dans de petites

trames (comme les trames IEEE 802.15.4 dont la taille maximale d’un paquet ne dépasse

pas les 127 octets), la surcharge due aux en-têtes TCP représente plus de 70 % de la taille

totale de la trame, ainsi, la transmission des champs inutiles ou redondants d’en-tête TCP

doit être évitée.

Dans ce travail, nous proposons un nouveau mécanisme de compression d’en-tête TCP,

appelé TCPHC, qui permet de réduire la taille de l’en-tête TCP jusqu’à six octets et ainsi

augmenter le débit et réduire la consommation d’énergie. Nous considérons les réseaux

6LoWPANs comme un exemple de réseaux à faible consommation d’énergie dans notre

étude.

TCPHC n’est pas seulement un algorithme de compression d’en-tête, mais fournit égale-

ment un système permettant l’établissement de connexions TCP. Ces derniers ne sont pas

seulement entre un nœud dans le réseau sans fil et un nœud externe, mais aussi entre les

deux nœuds du réseau sans fil. Le premier type de connexion est réalisé à l’aide d’un

routeur de bord (ER) qui relie le réseau sans fil au réseau IP externe. La figure 7 montre

une topologie typique d’un réseau 6LoWPAN avec trois routeurs de bord qui créent trois

ponts entre le réseau LoWPAN et le réseau IP externe.

Il existe trois types d’en-têtes TCPHC: un en-tête régulier (un en-tête normal, non

compressé qui ne porte aucun identifiant de contexte (CID)), un en-tête complet (un en-

tête non compressé qui rafrâıchit le contexte. Il porte un CID pour identifier le contexte),

et un en-tête compressé (un en-tête dans lequel tous les champs statiques sont éliminés,

et tous les champs dynamiques sont envoyés compressés). Les mécanismes de compression

et décompression ont été implémentés dans les routeurs de bord et les nœuds sans fil.

Ainsi, les nœuds IP externes envoient et reçoivent des segments TCP réguliers, alors que

xii

Internet

Routeurs

de bord

Les nœuds sans fil

Segments TCP non compressés Segments TCP compressés

Figure 7: La compression d’en-tête TCP dans les réseaux 6LoWPANs

les nœuds sans fil envoient et reçoivent des segments TCP avec des en-têtes compressés ou

des en-têtes complets.

Afin d’évaluer les performances de TCPHC, nous avons réalisé une évaluation expéri-

mentale de TCPHC dans notre laboratoire. Nos résultats montrent que TCPHC réduit la

consommation d’énergie de TCP. La figure 8 (a) montre que TCPHC réduit la consomma-

tion d’énergie de transmissions. Tout d’abord, nous ne distinguons pas une amélioration

significative pour moins de trois sauts entre les deux nœuds. Toutefois, TCPHC réduit

d’environ 17% l’énergie consommée par tous les nœuds de capteurs quand il y a 5 sauts

entre l’expéditeur et le récepteur. La figure 8 (b) montre que l’algorithme de compression

d’en-tête n’augmente pas l’énergie consommée par le processeur. Au contraire, l’énergie

consommée par le processeur a été réduite par TCPHC. Ceci est dû à la nature de notre

algorithme de compression qui n’ajoute pas les instructions nécessitant plus de calcul. La

figure 8 (d) montre que le temps de transfert a diminué lorsque TCPHC a été déployé.

TCPHC réduit la durée de transfert d’environ 9% par rapport à TCP et ainsi augmente le

débit TCP. Enfin, la figure 8 (d) confirme les résultats précédents et montre que TCPHC

réduit l’énergie totale par rapport à TCP.

xiii

CHAPTER 0. REMERCIMENT

1 2 3 4 5

200

400

600

800

1,000

1,200

Nombre de sauts

É
n
er
gi
e
d
e
tr
an

sm
is
si
on

(m
J
) TCP

TCPHC

(a) Énergie de transmission

1 2 3 4 5
0

50

100

150

Nombre de sauts

É
n
er
gi
e
co
n
so
m
m
ée

p
ar

le
p
ro
ce
ss
eu
r
(m

J
)

TCP
TCPHC

(b) Énergie consommée par le processeur

1 2 3 4 5
0

1

2

3

·104

Nombre de sauts

É
n
er
gi
e
to
ta
le

(m
J
)

TCP
TCPHC

(c) Énergie totale

1 2 3 4 5

40

60

80

100

Nombre de sauts

T
em

p
s
d
e
tr
an

sf
er
t
(s
)

TCP
TCPHC

(d) Temps de transfert

Figure 8: Les résultats expérimentaux de TCP et TCPHC dans les réseaux 6LoWPANs.

Impact de la taille des trames sur la consommation

d’énergie

Nous avons étudié l’impact de la taille maximale des données dans un segment sur l’efficience

énergétique de TCP selon les contraintes imposées par les couches inférieures. Nous avons

pris les réseaux IEEE 802.15.4 comme un exemple de réseaux à faible consommation

d’énergie. Comme été défini dans la norme, la taille maximale d’une trame IEEE 802.15.4

est de 127 octets. Le groupe 6LoWPAN de l’IETF a proposé une nouvelle couche proto-

colaire entre la couche IPv6 et la couche liaison de données IEEE 802.15.4.

La couche 6LoWPAN permet de compresser l’en-tête IPv6 (40 octets) et de fragmenter

les paquets IP sous forme de petits fragments IEEE 802.15.4. Ainsi, un long segment

xiv

TCP (dont la taille dépasse les 127 octets) est fragmenté au niveau de la couche 6LoW-

PAN en de petits fragments IEEE 802.15.4 envoyés de façon indépendante. La perte d’un

fragment induit la perte du segment TCP, et ainsi une nouvelle retransmission. D’autre

part, l’utilisation de petits segments TCP permet d’envoyer un seul segment TCP dans une

trame IEEE 802.15.4. L’envoi de petits segments TCP permet de régler le problème de la

retransmission des différents fragments si l’un d’eux est perdu. Cependant, elle augmente

la surcharge du nombre d’acquittements et la surcharge due aux en-têtes TCP dans tous les

en-têtes. La figure 9 confirme qu’il est plus économe d’envoyer de courts segments lorsque

le taux d’erreur est élevé, et d’envoyer de longs segments lorsque le taux d’erreur est faible.

10−6 10−5 10−4 10−3

101

102

103

BER

É
n
er
gi
e
co
n
so
m
m
ée

(J
)

MSS = 512 octets
MSS = 64 octets

Figure 9: La consommation d’énergie avec des longs et des courts segments TCP en fonction
du taux d’erreurs).

Comme l’estimation du taux d’erreur n’est pas si facile, nous avons étudié deux ap-

proches qui réduisent le taux d’erreur des segments. L’idée principale de la première ap-

proche, qui a été proposée par Thubert et al. [TH10], est de récupérer rapidement les

fragments perdus avant une retransmission de la couche transport. L’algorithme, nommé

SFFR, spécifie trois types de fragments: fragments récupérables (RFRAG), des fragments

récupérables avec demande d’acquittement (RFRAG-AR) et des fragments accusé de ré-

ception (ACK-RFRAG). SFFR ajoute de nouveaux champs dans l’en-tête 6LoWPAN afin

de spécifier le type et d’étiqueter les fragments pour pouvoir les rassembler ensuite.

xv

CHAPTER 0. REMERCIMENT

10−5 10−4 10−3

102

103

BER

É
n
er
gi
e
C
on

so
m
m
ée

(J
)

No ARQ, No SFFR
No ARQ, SFFR

ARQ=3, No SFFR
ARQ=3, SFFR

(a) MSS = 1024 octets

10−5 10−4 10−3

102

103

BER

É
n
er
gi
e
C
on

so
m
m
ée
(J
)

No ARQ, No SFFR
No ARQ, SFFR

ARQ=3, No SFFR
ARQ=3, SFFR

(b) MSS = 512 octets

Figure 10: L’énergie consommée par l’ensemble des noeuds sans fils avec et sans SFFR
(scenario avec 5 sauts).

Conclusion et Perspectives

Dans cette thèse, nous nous sommes intéressés à l’efficacité énergétique des protocoles de

transport dans les réseaux de faible consommation d’énergie. Nous avons montré que le

protocole TCP souffre de nombreuses limitations tels que la taille de son en-tête, le taux

des acquittements et les retransmissions de bout en bout des segments perdus. Dans ce

travail, nous avons essayé de proposer des améliorations/solutions simples pour chaque

limitation. Nos contributions peuvent être facilement intégrées dans la version actuelle de

TCP afin de le rendre plus viable pour les réseaux à faible consommation d’énergie. Dans

ce qui suit, nous énumérons nos contributions.

En premier point, nous avons travaillé sur la réduction de la retransmission de bout en

bout des segments perdus. Nous avons présenté un aperçu des algorithmes de récupération

de proche en proche des segments perdus, puis, nous avons proposé une version améliorée

de DTC, qui est l’un des algorithmes proposés pour TCP. Nos résultats de simulations ont

montré que nos améliorations rendent DTC plus économe en énergie avec une meilleure

gestion des segments en cache.

En second point, nous nous sommes concentrés sur la réduction du taux des acquitte-

ments TCP. Nous avons étudié deux algorithmes qui sont DCA et TDA. Ces deux algo-

rithmes proposent d’envoyer un acquittement TCP pour une série de segments de données.

Notre évaluation montre que les performances de TCP-TDA dépassent celles de TCP-DCA,

non seulement en débit, mais aussi en efficacité énergétique.

En troisième point, nous avons proposé TCPHC, un nouvel algorithme de compres-

xvi

sion d’en-têtes TCP pour les réseaux de faible consommation d’énergie. TCPHC est un

algorithme de compression d’en-tête robuste qui peut être mis en œuvre sur les systèmes

d’exploitation embarqués tel que Contiki OS. TCPHC présente une nouvelle idée de com-

presser les champs dynamiques de l’en-tête TCP, en outre, il propose un moyen de com-

presser les options TCP. De plus, nous avons implémenté TCPHC sur Contiki OS et nous

avons comparé ses performances à TCP. A partir de notre évaluation expérimentale, nous

avons constaté que TCPHC est plus efficace que TCP au niveau la consommation d’énergie.

Un dernier point était d’étudier l’impact de la taille de segment TCP sur la consomma-

tion d’énergie. Notre étude montre qu’il est préférable d’envoyer de longs segments lorsque

le taux d’erreur est faible, et de courts segments lorsque le taux d’erreur est élevé. Comme

l’estimation du taux d’erreur n’est pas si facile, nous avons proposé deux approches qui

réduisent le taux d’erreur des segments. L’idée principale de la première approche est de

récupérer rapidement les fragments perdus avant une retransmission de la couche transport

si elle existe. La deuxième approche consiste à résoudre le problème au niveau de la couche

de transport et d’adapter dynamiquement la taille du segment sur la base des pertes ob-

servées. Les résultats des simulations confirment que ces deux approches permettent de

réduire les retransmissions de bout en bout et ainsi la consommation d’énergie. Après cette

étude nous sommes arrivés à conclure que TCP peut être adapté pour les réseaux de faible

consommation d’énergie et mis en œuvre sur les nouveaux systèmes embarqués. En outre,

les solutions proposées permettent de réduire la consommation d’énergie de TCP.

Ce travail est ouvert à plusieurs améliorations. Dans cette section, nous présentons les

perspectives de chaque partie de ce travail qui sont les suivantes:

• Le réseau en châıne était la seule topologie étudiée dans ce travail. Une future

direction consiste à effectuer des simulations plus étendues afin d’évaluer les différents

algorithmes de TCP dans des topologies plus complexes tels que les réseaux en grille.

Avec ces nouvelles topologies, nos évaluations seront plus réalistes.

• Une autre perspective de ce travail est de combiner deux ou trois approches proposées

afin de réduire la consommation d’énergie de TCP. Par exemple, l’idée d’employer

l’algorithme de retransmission de proche en proche EDTC avec l’algorithme d’acquittements

retardés TDA sera très intéressante parce qu’ils réduiraient les retransmissions de

bout en bout et le nombre de segments d’acquittements échangés. Cependant, cette

combinaison devrait tenir en compte plusieurs facteurs telle que la manière de calculer

le délai avant retransmission.

• La compression d’en-tête de TCP pour les réseaux à faible consommation d’énergie

est la contribution principale de cette thèse. Bien que les résultats d’évaluations

montrent les bonnes performances de notre algorithme de compression, ce dernier

reste encore ouvert à d’autres améliorations. D’une part, l’algorithme de compression

xvii

CHAPTER 0. REMERCIMENT

d’en-tête peut tenir en compte le déplacement d’un nœud sans fil et le changement

de son routeur d’attachement. Après un changement de routeur d’attachement, le

nouveau routeur demande le transfert des contextes de compression d’en-tête de TCP

de l’ancien routeur. D’autre part, l’évaluation des performances de TCPHC réalisée

dans ce travail est basée sur un scénario statique, où tous les nœuds sans fil sont

fixes. Les futurs scénarios devraient prendre en considération la mobilité des nœuds

sans fil, surtout que la nouvelle version de Contiki OS inclut le protocole de routage

RPL.

• Le modèle analytique présenté dans ce travail peut être également amélioré, en par-

ticulier l’hypothèse que les taux d’erreur de tous les bits sont égaux. Le modèle de

Gilbert-Elliott, qui est un modèle simple permettant de mieux modéliser les erreurs

de transmission, peut être intégré dans notre modèle.

xviii

Abstract

Low power and Lossy Networks (LLNs) such as wireless sensor networks are currently

used in many important applications fields such as remote environment monitoring and

target tracking. This deployment has been enabled by the availability, especially in recent

years, of embedded micro-controller devices that are smaller and cheaper. These devices

are equipped with wireless interfaces, with which they can communicate with each other

to form a network. In this thesis we focus on studying the energy consumption of reliable

transport protocols over LLNs.

Recently, much research has been carried out to improve the reliability and the con-

gestion control on low power networks. Some of these works have considered TCP inap-

propriate for this kind of networks. Indeed, the idea of deploying TCP was rejected due

to its header overhead, its end-to-end retransmission mechanism, its large rate of acknowl-

edgment, and the impact of the lower layers fragmentation on the energy consumption.

Nonetheless, the use of standard TCP/IP protocols offers the advantage of a seamless

connectivity between the wireless network and the Internet. TCP allows easily the use

of standard applications (HTTP, SSH) for some tasks like reprogramming of nodes or

firmware updates, without the need of deploying complex proxies in border routers.

In the first part of this work, we study the energy consumption of TCP and the ways

that reduce its energy consumption. We study one of the proposed TCP algorithms to

reduce the end-to-end retransmissions cost and we propose some improvements that allow

it to reduce the energy consumption. Then, we study the compression of the TCP header

over low-power and lossy networks and we consider IPv6 over Low power Wireless Personnel

Area Networks (6LoWPAN) as an example. We propose a new TCP header compression

algorithm that reduces the TCP header size to about six bytes.

In the second part, we propose a mathematical model that allows to estimate the energy

consumption of wireless nodes. Using the model, we study the tradeoff between sending

long and short TCP segments and their impact on the energy consumption. Finally, we

study the impact of a new fragment recovery mechanism on the energy performance of

TCP.

Keywords

Low power and Lossy Networks, 6LoWPAN, Transport Protocols, Energy Efficiency, TCP,

Reliability.

xix

Résumé

Les réseaux à faible consommation d’énergie tels que les réseaux de capteurs sans fil sont

actuellement utilisés dans divers domaines militaires, environnementaux, médicaux, et com-

merciaux. Cette forte demande a été permise grâce à la disponibilité, surtout ces dernières

années, de nouveaux microcontrôleurs qui sont plus petits, moins chers et plus intelligents.

Ces nouveaux appareils sont équipés d’interfaces sans fil, avec lesquelles ils peuvent com-

muniquer les uns avec les autres pour former un réseau. Dans cette thèse, nous nous

concentrons sur l’étude de l’efficacité énergétique des protocoles de transport fiables pour

ces réseaux.

Récemment, nombreux travaux de recherche ont été menées afin d’améliorer la fiabilité

et le contrôle de congestion dans les réseaux à faible consommation d’énergie. Beaucoup de

ces travaux ont considéré la pile protocolaire IP/TCP inadéquate pour ce type de réseaux.

Initialement, l’idée a été rejetée à cause de plusieurs éléments, comme la surcharge de son

en-tête, son mécanisme de retransmission de bout en bout, son taux élevé d’acquittements,

et l’impact de la fragmentation des couches inférieures sur sa consommation d’énergie.

Néanmoins, l’utilisation de la pile TCP/IP offre l’avantage d’une connectivité transparente

entre le nouveau réseau sans fil et Internet. En effet, l’utilisation de TCP facilite l’utilisation

des applications standards (e.g., HTTP, SSH) pour de nouveaux besoins comme la repro-

grammation des nœuds ou la mise à jour du firmware sans une intervention humaine sur

champ et sans un déploiement d’un proxy très complexe au niveau des routeurs de bord.

Dans la première partie de cette thèse, nous étudions la consommation d’énergie du pro-

tocole TCP et les manières qui permettent de réduire cette consommation. Nous étudions

un des algorithmes TCP proposés afin de réduire le coût de la transmission de bout-à-bout

et nous proposons une amélioration de ce dernier réduisant encore davantage plus la con-

sommation d’énergie. Nous étudions ensuite la compression de l’en-tête TCP en prenant

le réseau 6LoWPAN comme un exemple d’applications. Nous proposons un nouvel al-

gorithme de compression qui permet aussi de réduire la consommation d’énergie. Dans

une deuxième partie, nous proposons un modèle mathématique qui permet d’estimer la

consommation d’énergie en fonction de plusieurs paramètres. A l’aide de ce modèle, nous

étudions le compromis entre l’envoi de longs et courts segments TCP et leur impact sur la

consommation d’énergie. Enfin, nous étudions ensuite l’impact d’un nouveau mécanisme

de récupération des fragments sur la performance énergétique du protocole TCP.

Mots clés

Réseaux à faible consommation d’énergie, 6LoWPAN, Protocoles de transport, Efficacité

énergétique, TCP, Fiabilité de transmission.

xxi

Contents

Remerciment iii

1 Introduction 1

1.1 Context . 1

1.2 Motivation and Objectives . 3

1.3 Contributions . 4

1.4 Outline . 5

I Background 7

2 Low power multi-hop wireless networks 9

2.1 Introduction . 10

2.2 Low power networks . 10

2.3 Wireless Sensor Networks . 10

2.4 IPv6 over Low power Wireless Personal Area Networks 12

2.4.1 IEEE 802.15.4 . 12

2.4.2 6LoWPAN . 13

2.4.3 Architecture . 13

2.4.4 Header compression . 14

2.4.5 Addressing . 15

2.5 Conclusion . 15

3 Reliable transport protocols over low power networks 17

3.1 Introduction . 18

3.2 Transport protocols reliability for low power networks 18

3.2.1 Congestion Control . 19

3.2.1.1 Congestion Detection . 20

3.2.1.2 Congestion Notification 21

3.2.1.3 Congestion Avoidance . 21

3.2.2 Reliability . 24

3.2.2.1 Loss detection . 25

3.2.2.2 Retransmissions . 25

3.2.3 Energy Efficiency . 28

3.3 TCP/IP solutions for low power networks 29

3.3.1 TCP caching and hop-by-hop recovery 29

3.3.2 TCP dynamic delayed-acknowledgement 30

3.3.3 Constrained Application Protocol (CoAP) 31

xxiii

3.4 Summary . 32

3.5 Conclusion . 34

II Reducing the energy consumption of TCP in multi-hop
wireless networks 35

4 Making TCP more energy-efficient for low power networks 37

4.1 Introduction . 38

4.2 Why TCP for low power networks . 39

4.3 Distributed TCP Caching . 39

4.3.1 MAC Automatic Repeat reQuest 40

4.3.2 Cache management . 41

4.3.3 Disabling unnecessary retransmissions 42

4.3.4 ACK loss detection . 42

4.3.5 Round-Trip Time computation . 43

4.4 Reducing the TCP Acknowledgement ratio 44

4.5 Performance evaluation . 45

4.5.1 Simulation environment . 46

4.5.2 Energy Model . 47

4.5.3 Comparison between NewDTC, TCP and DTC 47

4.5.3.1 Number of hops . 48

4.5.3.2 Bit Error Rate . 49

4.5.4 Round Trip Time Computation . 49

4.5.5 Comparison between TCP, DCA, and TDA 50

4.6 Conclusion . 51

5 TCP header compression for low power networks 53

5.1 Introduction . 54

5.2 Related work . 55

5.3 TCP Header Format . 56

5.4 TCP Header Compression . 58

5.4.1 Dynamic fields compression . 60

5.4.2 Context management . 63

5.4.3 Segment loss management . 63

5.4.4 LOWPAN TCPHC Format . 64

5.4.4.1 TCP segments types . 64

5.4.4.2 LOWPAN TCPHC Format 65

5.4.5 TCP Option Compression . 66

5.4.5.1 SACK . 67

5.4.5.2 Timestamp . 67

5.4.6 Example of compressed TCP headers 67

5.5 Experimental Setup . 68

5.5.1 Physical setup . 68

5.5.2 Hardware setup . 68

5.5.3 Software setup . 69

5.5.4 Energy consumption . 70

5.6 Results and Discussion . 71

5.6.1 TCPHC performance in loss-free environments 71

5.6.2 TCPHC performance in lossy environments 73

5.7 Conclusion . 73

III Impact of fragmentation on energy consumption 75

6 Impact of link layers fragmentation on the TCP energy consumption 77

6.1 Introduction . 78

6.2 Related Work . 79

6.3 TCP energy consumption model . 79

6.3.1 Link layer: one-hop model . 81

6.3.1.1 Link layer mechanisms 81

6.3.1.2 Performance of one-hop transmissions 81

6.3.2 Multi-hop model . 84

6.3.3 TCP performance . 86

6.4 Results and discussion . 88

6.4.1 Model assessment . 89

6.4.2 FEC redundancy ratio and energy consumption 90

6.4.3 Selecting the TCP MSS to minimize energy consumption 91

6.5 Conclusion . 92

7 Energy-efficient fragment recovery techniques for low power networks 95

7.1 Introduction . 96

7.2 The ARQ Error Control Mechanism . 96

7.3 Simple Fragment Forwarding and Recovery for 6LoWPANs 97

7.3.1 Fragment Recovery . 98

7.3.2 An SFFR scenario . 98

7.4 Performance Evaluation and Discussion . 100

7.4.1 Impact of SFFR on TCP energy consumption 100

7.4.2 Impact of SFFR on UDP energy consumption 102

7.4.3 SFFR rounds versus energy efficiency 104

7.4.4 When is it better to use SFFR? . 104

7.5 Conclusion . 105

8 Conclusion and Perspectives 107

My Publications as a PhD Student 111

List of Abbreviations and Acronyms 113

Bibliography 115

Index 122

List of Figures

1 Les choix possibles d’un protocole de transport fiable au dessus des réseaux

à faible consommation d’énergie . vi

2 La gestion du segment caché avec DTC et NewDTC vii

3 TCP ACK loss recovery . ix

4 Comparaison entre TCP, DTC et NewDTC en terme de consommation

d’energie et temps de transmission . x

5 Comparaison entre TCP, TCP-TDA et TCP-DCA en terme d’énergie con-

sommée . x

6 La récupération des acquittements TCP perdus xi

7 La compression d’en-tête TCP dans les réseaux 6LoWPANs xiii

8 Les résultats expérimentaux de TCP et TCPHC dans les réseaux 6LoWPANs. xiv

9 La consommation d’énergie avec des longs et des courts segments TCP en

fonction du taux d’erreurs). xv

10 L’énergie consommée par l’ensemble des noeuds sans fils avec et sans SFFR

(scenario avec 5 sauts). xvi

1.1 Choices of possible reliable transport protocols over low power networks . . 2

2.1 Overview of a Wireless Sensor Network 11

2.2 The 6LoWPAN architecture . 13

2.3 LOWPAN IPHC Header . 14

3.1 ESRT: five characteristics on the normalized event reliability versus report-

ing frequency . 23

3.2 RMST: a hop-by-hop recovery scenario . 26

4.1 Hidden and exposed terminals problems in CSMA-CA networks 41

4.2 DTC and NewDTC cache management . 42

4.3 Disabling unnecessary retransmissions . 43

4.4 TCP ACK loss recovery . 44

4.5 RTT computation: each node measures the RTT between itself and the

receiver . 44

4.6 TCP delayed acknowledgment recovery . 46

4.7 Chain Topology . 47

4.8 Comparison TCP, DTC, NewDTC in terms of consumed energy and transfer

duration . 48

4.9 Comparison of TCP, DTC and NewDTC with different bit error rates (num-

ber of hops=6) . 49

xxvii

4.10 Smoothed RTT computing improves TCP performance 50

4.11 Comparison between TCP, TCP-TDA and TCP-DCA in terms of Goodput 50

4.12 Comparison between TCP, TCP-TDA and TCP-DCA in terms of consumed

energy . 51

5.1 TCP header format . 56

5.2 The IPv6 over Low power Wireless Personal Area Network Topology . . . 58

5.3 TCP connection initiation . 59

5.4 Sequence number compression . 61

5.5 Sequence number decompression . 61

5.6 Comparison between TCP and CTCP in terms of sequence number com-

pression . 62

5.7 Different TCPHC packet format . 64

5.8 TCP Header Encoding . 65

5.9 TCP header option configuration . 66

5.10 Compressed SACK option . 67

5.11 Compressed TCP header encoding . 67

5.12 The distribution of the wireless motes in the testbed 69

5.13 Crossbow Telos mote . 70

5.14 Experimental results of multi-hop TCP vs. TCPHC over 6LoWPAN without

concurrent CBR traffic. 72

5.15 Experimental results of multi-hop TCP vs. TCPHC over 6LoWPAN with a

concurrent CBR traffic. 74

6.1 Failure and success scenarios for one link-layer transmission attempt. . . . 82

6.2 Failure and success scenarios in a multi-hop transmission. 85

6.3 Energy consumption with long or short TCP segments, as a function of the

BER B (with r = 3). 88

6.4 Number of collisions in a multi-hop scenario. 90

6.5 Energy consumption with short or long TCP segments, as a function of the

number of link layer attempts r (with B = 5 × 10−4). 91

6.6 Consumed energy using short or long TCP segment, as a function of the

redundancy ratio α (B = 3 × 10−4, h = 5). 92

6.7 Long (MSS=512 bytes) versus short (MSS=64 bytes) in a multi-hop TCP

transmission: prefer the short MSS above the curves, the long one below.

(α = 0) . 93

6.8 Long (MSS=512 bytes) versus short (MSS=64 bytes) in a multi-hop TCP

transmission: prefer the short MSS above the curves, the long one below.

(with r = 3) . 93

7.1 Recoverable Fragment Dispatch type and Header 97

7.2 Fragment Acknowledgement Dispatch type and Header 98

7.3 End-to-end simple fragment forwarding and recovery 99

7.4 Analytical results: Energy Consumption of a TCP data transfer with vs

without SFFR (scenario with five hops). 101

7.5 Simulation results: Energy Consumption of a TCP data transfer with vs

without SFFR (scenario with five hops). 102

7.6 Energy Consumption of a TCP data transfer with vs without SFFR (ARQ=3,

B = 5 × 10−4). 103

7.7 Energy Efficiency of an UDP data transfer with vs without SFFR. 103

7.8 Energy Efficiency of an UDP data transfer with and without SFFR (ARQ=3,

B = 5 × 10−4). 104

7.9 Energy Efficiency of an UDP data transfer with different SFFR rounds

(ARQ=3, 5 hops). 105

7.10 SFFR in a multi-hop TCP transmission: prefer SFFR above the curves

(ARQ=3). 106

7.11 SFFR in a multi-hop TCP transmission: prefer SFFR above the curves

(MSS=1024). 106

List of Tables

2.1 IEEE 802.15.4 frequency bands and data rates 12

3.1 Classification of Reliable Transport Protocols 33

4.1 Simulation parameters . 47

4.2 Energy model of wireless nodes . 47

6.1 Notations used in this chapter; capital italics letters correspond to probabil-

ities, bold letters to (expected) numbers of bits. 80

6.2 Default simulation parameters . 89

7.1 Network parameters . 100

xxxi

xxxii

Chapter 1

Introduction

1.1 Context

The success of wireless sensor networks (WSNs) is due to the small size of the wireless

devices and the low power consumption of their wireless interface. The WSNs have been

deployed in many applications fields: area monitoring (air pollution monitoring, forest fires

detection, greenhouse monitoring), industrial monitoring (e.g., machine health monitoring),

water/wastewater monitoring for agriculture, and so on. The wireless nodes in WSN are

called sensors and the base station is called sink. Sensor nodes are small embedded devices,

extremely basic in terms of their interfaces and their components. They usually consist

of a processing unit with limited computational power and limited memory, sensors, a

communication device, and a power source like battery. The base station is a gateway

between the sensor nodes and the external network as it typically forwards data from the

WSN to a server.

In this work, we do not limit our work to sensors (application layer), but we focus on

general wireless multi-hop low power networks. These new networks are recently known as

low power and lossy networks1 or just low power networks. Nowadays, low power net-

works are becoming more and more popular and they are currently used in many industrial

fields. Currently, most low power networks devices (e.g., sensors, actuators) use low-power

wireless interfaces (e.g., Bluetooth, Low power IEEE 802.11 [IEE99], and especially IEEE

802.15.4 [IEE06]).

The IEEE 802.15.4 low power wireless personal area networks (LoWPAN) standard was

released in 2003 by the Institute of Electrical and Electronics Engineers (IEEE). It provides

the first global low-power standard. Afterwards, the ZigBee Alliance developed a solution

for ad hoc control networks over IEEE 802.15.4. The ZigBee specification goes on to

complete the standard by adding four main components: network layer, application layer,

ZigBee device objects (ZDO’s) and manufacturer-defined application objects. However, this

solution has some problems with scalability, evolvability and Internet integration [Tit09,

Max11].

In 2005, a new Internet Engineering Task Force (IETF) Working Group (WG) named

6LoWPAN started thinking about how to deploy and provide IPv6 addressing for all low

power devices. After the introduction of IP, these devices are able to communicate not

only between one another but also potentially with every IP device, inside and outside the

1See http://datatracker.ietf.org/wg/roll/charter

1

CHAPTER 1. INTRODUCTION

wireless network. These new devices, called IP Smart Objects2 are changing the concept

of the Internet. Internet becomes not only limited to a system of interconnected computer

networks, but expands to an interconnection of all daily life objects leading to the concept

of the Internet of Things (IoT) [KHS10]. The new IP systems will not be limited to PCs,

laptops, routers, smart phones, but all wireless embedded devices that can be connected

to Internet. We consider IoT as the third Internet revolution.

After the deployment of IP addresses everywhere, researchers in wireless networking

started thinking about the upper layers: transport and application layers. It is true that

UDP is useful for low power networks because many applications are fault-tolerant and

do not require full reliability from the transport protocol. However, other applications

and services (such as SSH and HTTP) are not fault-tolerant. These kinds of applications

require a reliable service that UDP cannot provide. Moreover, some low power networks’

application areas, such as health, military and security applications, impose strong reliabil-

ity constraints. In some usage cases (e.g., sending a software update to a wireless node, or

sending a query requesting specific information from the wireless node) there is a need for

a reliable data transport. On the other hand, the deployment of TCP, which is currently

the most used transport protocol in wireless IP-based networks, has many disadvantages

such as the energy consumption.

PHY IEEE 802.15.4 PHY

Liaison

IEEE 802.15.4 MAC

6LoWPAN-Adaptation Layer

Network IPv6

Transport

Application

UDP

HTTP, SSH, etc.

WSN

Transport

Protocols

Reliable layer CoAP
TCP

Figure 1.1: Choices of possible reliable transport protocols over low power networks

We can imagine four possible solutions to enable a reliable data transfer over low power

networks (see Figure 1.1 for 6LoWPAN architecture). The first solution is to keep one of the

recently proposed transport protocols for the WSN and to adapt it to be more general for all

2http://ipso-alliance.org/

2

1.2. MOTIVATION AND OBJECTIVES

kinds of applications. However, this solution will face the same problem as ZigBee. In fact,

it will not be easy to integrate it with Internet, because it would require the deployment

of a proxy between the wireless and the wired network. The proxy translates headers in

the border router. A second solution is to provide a new transport layer over UDP. This

solution should offer a reliable data transfer that is not offered by UDP, which consists of

data loss detection and retransmission, and congestion control and avoidance. However, in

order to design that protocol with all these requirements, the transport protocol header

should include a sequence number, an acknowledgment number, and control flag and other

fields that are already included in the TCP header. A third proposition, which is currently

under development in the Constrained Restful Environments (CoRE) WG in the IETF, is

to leave the congestion control and the loss recovery in the application layer. However, this

solution provides a framework for a limited class of applications. At the moment of writing

this thesis, the WG provides only a solution for HTTP over UDP. For all these reasons, in

this thesis, we choose the fourth and last proposition, which consists of keeping TCP over

the low power networks. The choice of TCP allows us to keep all mechanisms provided by

TCP for loss recovery and congestion control. In this work, we distinguish most limitations

of the TCP deployment over low power networks, and we propose a solution for each one.

1.2 Motivation and Objectives

In this thesis, we study the reliability and the energy-efficiency of data transmission in low

power networks.

Most of these current propositions, which are proposed especially for wireless sensor

networks, are not IP-based solutions (see Chapter 3). The non-TCP/IP reliable transport

protocols need a complex algorithm on the Edge Router (ER), which is an IP router that

interconnects the wireless networks to another IP network. Thus, the use of TCP reduces

the complexity at the Edge Router. From the research perspective, investigating the use

of TCP in new generation of wireless networks is of importance because the intersection of

the TCP/IP protocol suite, the dominating communication protocol suite today, and low

power wireless networks is a new area in computer networking research.

In this thesis, we focus on TCP over low power networks and especially over 6LoWPAN

as an example of low power networks. The deployment of TCP allows current IP-based

devices to communicate directly with LoWPAN devices using their TCP/IP stack. De-

ploying TCP, as it is currently implemented, inside the 6LoWPANs may not be the ”best”

approach to solve the problem of reliability from 6LoWPANs to external-IP networks and

vice versa. However, our improvements allow TCP to be more appropriated for this new

context.

The objective of our thesis is to provide solutions for TCP over 6LoWPANs in order to

3

CHAPTER 1. INTRODUCTION

reduce the energy consumption and increase the throughput of TCP. The major problems

of TCP over low power networks are the TCP header overhead, ratio of acknowledgment

segments to data segments, end-to-end acknowledgments and retransmissions, and the TCP

segment size.

1.3 Contributions

In this section, we list the contributions of our work. In addition, we show the main points

that improve the energy efficiency of TCP in low power networks.

End-to-end acknowledgments and retransmissions

The end-to-end acknowledgment and retransmission schemes employed by TCP are not

energy-efficient enough to be useful in low power networks. A single dropped packet requires

an expensive retransmission from the original source. The low power wireless networks are

often designed to be multi-hop, so, a single retransmission will incur transmission and

reception costs at every hop through which the retransmitted packet will travel. The hop-

by-hop retransmission reduces significantly the end-to-end retransmission by caching the

not-yet acknowledged segments. In Chapter 4, we ameliorate a Distributed TCP Caching

algorithm with more energy-efficient improvements.

TCP Acknowledgment ratio

TCP has serious performance problems in wireless networks in terms of energy efficiency.

These problems are due to the high acknowledgment ratio (i.e. the number of TCP ac-

knowledgments to the number of data segments). As described in [Pos81], the TCP receiver

should acknowledge every data segment it receives. In fact, TCP acknowledgment segments

represent half of all exchanged TCP segments, or about 33% if the TCP delayed acknowl-

edgment mechanism is enabled. A delayed acknowledgment mechanism was proposed to

halve the amount of TCP acknowledgment segments. So, the receiver should wait a short

period before sending an acknowledgment. However, TCP delayed acknowledgments are

not energy-efficient enough for low power networks because the ratio of acknowledgments

to the data remains high. To be able to use TCP as a reliable transport protocol in

6LoWPANs, more energy efficient methods must be developed to decrease the TCP ac-

knowledgment ratio and thus reduce significantly the consumed energy.

Header Overhead

TCP has a high overhead in terms of the protocol header size, particularly for small packets

(such as IEEE 802.15.4). For small data packets, the TCP header overhead is over 70 % of

4

1.4. OUTLINE

the link layer frame. Energy consumption is of prime importance in low power networks,

thus transmission of unnecessary or redundant packet header fields should be avoided. In

Chapter 5, we propose a new TCP header compression (TCPHC) that allows to reduce

the TCP header down to six bytes. The TCP header compression algorithm for low power

networks was proposed as an Internet draft for the 6LoWPAN WG in IETF. In this thesis,

we present an experimental evaluation of TCPHC that was done in a testbed. Results

show that TCPHC reduces the energy consumed due to TCP.

Adapting the TCP maximum segment size

In low power networks, link layer frames are generally small (e.g., 128 bytes in IEEE

802.15.4). Then, if the network layer does not provide fragmentation/reassembly mecha-

nisms, TCP must send a short TCP segment that fits in a single frame. However, the use

of a small TCP Maximum Segment Size (MSS) increases the number of TCP segments,

and thus, the number of TCP acknowledgments and the header overhead. However, with

the 6LoWPAN adaptation layer, TCP segments are split into fragments. The fragmenta-

tion reduces the TCP overhead. However, the loss of one of the link layer fragments leads

to the loss of the original TCP segment, and thus to a new TCP retransmission. This

fragmentation can make therefore imply a loss of energy efficiency.

In Chapter 6, we discuss the impact of link layer fragmentation on the TCP energy

consumption by comparing the consumed energy by short versus long TCP segments.

Then, we study a recently proposed fragment recovery algorithm for low power networks

that allows to quickly recover the lost fragments in Chapter 7.

1.4 Outline

The manuscript is organized as follows:

In the first part, we present a background of related work on transport protocol re-

liability over multi-hop wireless networks. The first chapter gives some definitions and

presents an overview of low-power multi-hop networks and introduces IPv6 over low-power

networks. The second chapter is a survey of research works done on reliability, congestion

control, and energy-efficiency in wireless sensor networks.

In the second part, we focus on how we can improve TCP performance and how we

can make it more energy-efficient in low-power multi-hop wireless networks. The fourth

chapter presents limitations of the deployment of standard TCP algorithms in 6LoWPANs.

Thereafter, we present some improvements of TCP: we improve a distributed TCP caching

algorithm and we present a better TCP delayed acknowledgment algorithm. In the fifth

chapter, we introduce a new TCP header compression mechanism that allows us to reduce

the TCP header overhead. We implement the proposed algorithm in the Contiki OS. From

5

CHAPTER 1. INTRODUCTION

the experimental results, we show that TCP with header compression reduces significantly

the consumed energy.

In the third part, we study the impact of the link layer fragmentation on the energy

consumption. The sixth chapter presents an analytical model that allows us to estimate

the consumed energy. We study the tradeoffs involved in sending short versus long TCP

segments. The seventh chapter study and evaluate a new fragment recovery algorithm

that allows the link layer to recover quickly the lost fragments and to avoid a new TCP

retransmission.

Finally, a concluding chapter summarizes the main achievements of the thesis and gives

the perspectives of our work.

6

Part I

Background

7

Chapter 2

Low power multi-hop wireless networks

Contents

2.1 Introduction . 10

2.2 Low power networks . 10

2.3 Wireless Sensor Networks . 10

2.4 IPv6 over Low power Wireless Personal Area Networks . . . 12

2.4.1 IEEE 802.15.4 . 12

2.4.2 6LoWPAN . 13

2.4.3 Architecture . 13

2.4.4 Header compression . 14

2.4.5 Addressing . 15

2.5 Conclusion . 15

9

CHAPTER 2. LOW POWER MULTI-HOP WIRELESS NETWORKS

2.1 Introduction

Low power Networks (such as Wireless Sensor Networks [YMG08]) are becoming more

and more popular and they are currently being used in many industrial fields such as Re-

mote Environment Monitoring (temperature and humidity) , Tracking Systems (especially

for military purposes) [ARB+10], Health Monitoring [JEZ+05], etc. The evolution of the

deployment of these networks is due to the main characteristics of their wireless devices:

small size and weight, low power consumption and low cost.

In this chapter, we give an overview of low power networks and 6LoWPANs. Section 2.2

gives a definition of a low power network. Section 2.3 presents a detailed description of

wireless sensor networks. Finally, Section 2.4 presents the IEEE 802.15.4 standard, then

introduces the 6LoWPAN concept by describing its architecture.

2.2 Low power networks

Low power networks are made up of many wireless embedded devices with limited power,

memory, and processing resources. They are interconnected by a variety of links, such as

IEEE 802.15.4, Bluetooth, low power WiFi, wired or other low power Power Line Com-

munication (PLC) links. Low power networks are transitioning to an end-to-end IP-based

solution to avoid the problem of non-interoperable networks interconnected by protocol

translation gateways and proxies.

Generally speaking, low power networks have at least four distinguishing characteristics:

• Low power networks operate with small, resource-constrained and highly portable

operating systems.

• In most cases, low power nodes are energy-limited.

• Typical traffic patterns are not simply unicast flows (e.g. in some cases most if not

all traffic can be multipoint to point).

• In most cases, low power networks will be employed over link layers with restricted

frame-sizes, thus a routing protocol for low power networks should be specifically

adapted for such link layers.

2.3 Wireless Sensor Networks

A Wireless Sensor Network (WSN) is a low power network that is composed of a large

number of spatially distributed autonomous and embedded tiny sensor nodes, which consist

10

2.3. WIRELESS SENSOR NETWORKS

Wireless Sensor network

Internet

Relay Node

Sensor Node

Sink Node

Figure 2.1: Overview of a Wireless Sensor Network

of sensing, data processing, and communicating components. The primary role of sensor

nodes is to realize real-time monitoring, sensing and collecting information such as light

intensity, temperature, humidity, noise and other physical phenomena. Then, sensor nodes

process data and send it to sinks through wireless links. Motivated by military surveillance,

WSNs are widely used in different areas like health, scientific research and security.

The data collected by each node (such as temperature, vibrations, sounds, movements

etc.) are reported to a sink station in a hop-by-hop fashion using wireless transmissions.

Intermediate nodes relay generated packets to a sink. Once received by the sink, such

data can then be processed and analyzed for a better understanding of the monitored

environment. Several successful deployments already denote the growing interest in this

technology [BB08].

The small size and weight, the low cost of the hardware and the ease of deployment

of such platforms enable the sensing of the environment in the least intrusive fashion. By

spatially distributing tens or hundreds of such autonomous devices, a WSN can be built to

cooperatively monitor physical or environmental conditions at different locations. The low

power wireless transmitter usually mandates the collected data to be sent over multiple

hops toward one or several sinks (Figure 2.1).

Initially, WSN applications did not require reliability because wireless sensor networks

have been considered as fault-tolerant networks where sensor nodes collect environment

information. However, new WSN applications like military applications (e.g., battlefield

surveillance) require more and more reliability. Moreover, in [WCK05], the authors present

11

CHAPTER 2. LOW POWER MULTI-HOP WIRELESS NETWORKS

a need of re-tasking sensor nodes, and thus a need to send a binary file or a script file to

sensor nodes. In our work, we mainly focus on the reliability of data transfer.

2.4 IPv6 over Low power Wireless Personal Area Net-

works

2.4.1 IEEE 802.15.4

Low power wireless personal area networks consist of devices that conform to the IEEE

802.15.4 standard. The common characteristics of IEEE 802.15.4 devices are short range,

low bit rate, low power and low cost. Many of the devices are also limited in their memory

and energy availability.

The IEEE 802.15.4 [IEE06] standard specifies MAC sub-layer and physical layer for

Low power Wireless Personal Area Network (LoWPAN). The IEEE 802.15.4 standard

defines low power wireless embedded radio communications at 2.4 GHz, 915 MHz and 868

MHz. The 802.15.4 standard provides 20–250 kbit/s data rates depending on the frequency.

Table 2.1 summarizes the IEEE 802.15.4 frequency bands, the modulations, the spreading

formats and the data rates. Channel sharing is achieved using carrier sense multiple access

(CSMA), and acknowledgments are provided for reliability.

PHY (Mhz)
Frequency Spreading parameters Data parameters
band (Mhz) Chip rate Modulation Bit rate Symbol rate Symbols

868/915
868-868.6 300 BPSK 20 20 Binary
902-928 600 BPSK 40 40 Binary

868/915 (opt.)
868-868.6 400 ASK 250 12.5 20-bit PSSS
902-928 1600 ASK 250 50 5-bit PSSS

868/915 (opt.)
868-868.6 400 O-BPSK 100 25 16-ary Orthogonal
902-928 1000 O-BPSK 250 62.5 16-ary Orthogonal

2450 2400-2483.5 2000 O-BPSK 250 62.5 16-ary Orthogonal

Table 2.1: IEEE 802.15.4 frequency bands and data rates

The physical layer payload is up to 127 bytes, with 72–116 bytes of payload available

after link-layer framing, addressing, and optional security. The MAC protocol can be run

in two modes: beaconless mode and beacon-enabled mode. Beaconless mode uses pure

CSMA-CA channel access and operates quite like IEEE 802.11 without channel reserva-

tions. Beacon-enabled mode uses a hybrid time division multiple access (TDMA) approach,

with the possibility of reserving time-slots for critical data.

12

2.4. IPV6 OVER LOW POWER WIRELESS PERSONAL AREA
NETWORKS

2.4.2 6LoWPAN

6LoWPAN [KMS07] is an acronym of IPv6 over Low Power Wireless Personal Area Net-

works, and the name of an IETF Working Group (WG). The 6LoWPAN WG introduces a

new layer on the TCP/IP stack in order to transport the IPv6 packets over IEEE 802.15.4

links (Figure 2.2). The 6LoWPAN WG of IETF defines encapsulation and header com-

pression mechanisms that allow IPv6 packets to be sent and received over LoWPANs. The

6LoWPAN layer is required in order to adapt the size of the IPv6 packet (1280 bytes)

to the link layer maximum transmission unit (MTU), which is the size (in bytes) of the

largest protocol data unit that the layer can pass onwards. As described in [HT10], the new

adaptation layer splits the IPv6 packet into small IEEE 802.15.4 fragments that should be

sent to the receiver. In [SB09], the authors presented a straightforward technical definition

of 6LoWPAN:

6LoWPAN standards enable the efficient use of IPv6 over low power, low-rate wireless

networks on simple embedded devices through an adaptation layer and the optimization of

related protocols.

2.4.3 Architecture

Physical IEEE 802.15.4 PHY

Link
IEEE 802.15.4 MAC

6LoWPAN Layer

Network IPv6 Layer

Transport TCP, UDP

Application SSH, HTTP, etc.

Figure 2.2: The 6LoWPAN architecture

Figure 2.2 shows the IPv6 protocol stack with 6LoWPAN. As mentioned in Section 2.4.2,

the 6LoWPAN layer is between the IPv6 and the IEEE 802.15.4 MAC layer. 6LoW-

PAN supports only IPv6, for which a small adaptation layer (called the LoWPAN adap-

tation layer) has been defined to optimize IPv6 over IEEE 802.15.4 and similar link layers

in [MKHC07].

Adaptation between the full IPv6 and the LoWPAN format is performed by routers at

the edge of 6LoWPAN islands, called Edge Routers (ER). This transformation is transpar-

13

CHAPTER 2. LOW POWER MULTI-HOP WIRELESS NETWORKS

ent and stateless in both directions. LoWPAN adaptation in an edge router is typically

performed as part of the 6LoWPAN network interface driver.

2.4.4 Header compression

The 6LoWPAN WG proposed LOWPAN IPHC (IPHC) [MKHC07], a header compression

mechanism for IPv6, to solve the problem of its big header (40 bytes) leaving little space

for application data. With this mechanism, the 40 bytes can be often compressed to 3-5

bytes.

As described in [HT11], the algorithm is based on certain assumptions: IP version is

6, traffic class and flow label are both zero, the payload length can be inferred from lower

layers from either the 6LoWPAN fragmentation header or the IEEE 802.15.4 header; the

hop limit will be set to a well-known value by the source. These IPv6 fields are elided (e.g.,

the version field is always elided) or compressed (e.g., next header filed is one full byte,

but has a number of values) or sent in-line (e.g., the hop limit was considered difficult to

compress).

The LOWPAN IPHC encoding utilizes 13 bits, 5 of which as dispatch of type. The

encoding may be extended by another byte to support additional contexts (e.g., fragments

recovery). Any information from the uncompressed IPv6 header fields carried in-line follow

the LOWPAN IPHC encoding, as shown in Figure 2.3. A detailed description of LOW-

PAN IPHC can be found in [HT11].

Dispatch + LOWPAN IPHC (2-3) bytes In-line IPv6 Header Fields

Figure 2.3: LOWPAN IPHC Header

Currently, the User Datagram Protocol (UDP) is the most common transport protocol

used with 6LoWPAN. In [MKHC07], there is only a UDP datagram compression method

introduced (LOWPAN NHC). Inside the LoWPAN, hosts and routers do not actually need

to work with full IPv6 or UDP header formats at any point as all compressed fields are

implicitly known by each node.

The transmission control protocol (TCP) is not commonly used with 6LoWPAN for

performance, efficiency and complexity reasons (we focus on adapting TCP for 6LoWPAN

in Chapter 4). The Internet control message protocol v6 (ICMPv6) is used for control

messaging, for example ICMP echo, ICMP destination unreachable and Neighbor Discovery

messages. In [O’F10], O’Flynn proposes LOWPAN ICMPHC in a recent Internet draft,

a header compression algorithm of ICMP messages. In [Bor11], Bormann proposes an

Internet draft that provides a complete design for a simple addition to 6LoWPAN Header

Compression that enables the compression of generic headers and header-like payloads.

14

2.5. CONCLUSION

Applications in 6LoWPANs are often specific and in binary format, although more

standard application protocols are becoming available. Currently, the IETF CoRE WG

is working on resource-constrained applications intended to run on IP-based low power

networks. The Constrained Application Protocol (CoAP) functionality must operate well

over UDP and UDP must be carried on wireless devices. There may be optional functions

in CoAP that may be implemented over TCP [SSS+11].

2.4.5 Addressing

Addressing is required to differentiate between the nodes on a network. An IP adaptation

layer involves at least two kinds of address: link-layer addresses and IP addresses. Low

power wireless radio links typically make the use of flat link-layer addressing for all devices,

and support both unique long addresses and configurable short addresses. IEEE 802.15.4

devices may use either of IEEE 64 bit extended addresses or, 16 bit addresses.

The IP addressing in 6LoWPAN works just like in any IPv6 network. IPv6 addresses are

typically formed from the prefix of the LoWPAN and the link-layer address of the wireless

interfaces. The difference in a LoWPAN is in the manner low power wireless technologies

support link-layer addressing: a direct mapping between the link-layer address and the

IPv6 address is used to reduce the address field size.

2.5 Conclusion

In this chapter, we gave an overview of LoWPAN. First, the low power network was intro-

duced, followed by the definition of wireless sensor networks. Moreover, we showed that

6LoWPAN make viable to connect the low power wireless networks to Internet. In the next

chapter, we focus on reliability and energy efficiency in low power networks and especially

on wireless sensor networks. The next chapter compares the proposed reliable transport

protocols for wireless sensor networks in terms of reliability, loss recovery, congestion con-

trol and energy efficiency.

15

CHAPTER 2. LOW POWER MULTI-HOP WIRELESS NETWORKS

16

Chapter 3

Reliable transport protocols over low

power networks

Contents

3.1 Introduction . 18

3.2 Transport protocols reliability for low power networks 18

3.2.1 Congestion Control . 19

3.2.2 Reliability . 24

3.2.3 Energy Efficiency . 28

3.3 TCP/IP solutions for low power networks 29

3.3.1 TCP caching and hop-by-hop recovery 29

3.3.2 TCP dynamic delayed-acknowledgement 30

3.3.3 Constrained Application Protocol (CoAP) 31

3.4 Summary . 32

3.5 Conclusion . 34

17

CHAPTER 3. RELIABLE TRANSPORT PROTOCOLS OVER LOW
POWER NETWORKS

3.1 Introduction

The need for a transport layer for low power networks to handle congestion and packet loss

recovery has been recently debated. Researchers are working on the idea of a cheap, easily

deployable network runs contrary to the costly and specialized transport layer for low power

wireless networks. In this chapter, we focus especially on reliability in wireless sensor net-

works because most of the proposed works in the last years focused in sensing/monitoring

applications. A transport protocol for low power networks should be reliable (or provide

different levels of reliability for each kind of applications) and energy-efficient (reduce the

amount of exchanged messages to reduce total consumed energy and thus increase the

network lifetime). The reliability requires two essential mechanisms: congestion control

(detection and avoidance of congestion), and loss detection and recovery.

This chapter presents a survey of reliable transport protocols for low power networks.

The next section presents the needs of an energy-efficient and reliable transport protocols

for wireless sensor networks and the recent proposed works in the literature. In Section 3.3,

we present the related work on energy-efficiency of TCP over low power networks. Sec-

tion 3.4 gives a summary of presented protocols in term of reliability, congestion control

and energy efficiency.

3.2 Transport protocols reliability for low power net-

works

The transport protocol runs over the network layer, which generally provides a best-effort

service. It uses end-to-end message transmission, where messages may be fragmented

into several segments at the transmitter and reassembled at the receiver. The transport

protocol can provide an unreliable service and datagrams may arrive out-of-order, appear

duplicated, or go missing without notice. In this case, the transport protocol can assume

that the error checking and correction are not necessary or are performed in the application.

This allows to avoid the overhead of such processing at the transport level. On the other

hand, the transport protocol can provide the following functions: orderly transmission,

flow and congestion control, loss recovery, and possibly QoS guarantees such as timing and

fairness. In this case, it is called a reliable transport protocol.

A reliable transport layer ensures the reliability at the receiver. Transport protocols in

WSNs should support multiple applications and provide variable reliability levels, packet

loss recovery and congestion control mechanisms. We can distinguish between three types

of data in WSN:

• Data sent by sensor nodes to the sink (multipoint-to-point),

18

3.2. TRANSPORT PROTOCOLS RELIABILITY FOR LOW POWER
NETWORKS

• Data sent by the sink to sensor nodes (point-to-multipoint),

• Data sent by the sink to a sensor node for different purposes (control, management,

re-tasking, reprogramming) and data sent by a sensor node to the sink (point-to-

point).

The development of a transport protocol should be generic and independent of the

network layer. It may provide various reliability levels for different applications. WSNs

like all low power networks suffer from a high loss rate. Packet loss may be due to bad

radio communication, congestion, packet collision, full memory capacity, and node mobility

or failure. Thus, a reliable transport protocol should provide two main functions: reliable

data transport and congestion control.

A reliable application requires that all packets sent by a source arrive to the destination.

Missing messages that may be lost in the wireless network should be recovered by reliable

schemes. Congestion happens when the data packets generated by wireless nodes exceed

the network capacity. When the network gets congested, intermediate nodes may drop

packets. This leads to retransmissions of the dropped packets and thus a waste of energy,

which is an important factor in wireless networks.

3.2.1 Congestion Control

The congestion control mechanism is an essential component for a reliable transport proto-

col even if some transport protocols (like PSFQ [WCK05], DTSN [MGN07], ERTP [TWPS09])

make an assumption that congestion is not likely to be a problem for wireless sensor net-

works. Others assume that all packet losses are due to congestion (such as ESRT [SAA03]).

Congestion occurs when a link or node is carrying more data than its capacity. Con-

gestion leads to packet losses, and thus it has a significant impact on the performance of

a reliable transport protocol.There are mainly two causes for congestion in WSNs. The

first is due to the packet-arrival rate exceeding the packet-service rate. This is more likely

to occur at the sensor nodes close to the sink, as they usually carry more combined up-

stream traffic. The second cause is the link-level performance aspects such as contention.

It has some bad effects such as queuing delay and packet loss. Losses in wireless sensor

networks are not only due to congestion but also channel conditions, collisions and interfer-

ence. To distinguish between the two types of losses, an Explicit Congestion Notification

(ECN) [RFB01] is used.

Congestion has a bad effect not only on the energy consumption but also on the net-

work reliability. In fact, congestion in a relay node can lead to buffer overflow and thus

larger queuing delay. This leads to packet losses and new retransmissions for the transport

protocols. For these reasons, congestion in wireless networks must be well controlled and

19

CHAPTER 3. RELIABLE TRANSPORT PROTOCOLS OVER LOW
POWER NETWORKS

avoided. In practice, in order to solve the congestion problem, three mechanisms should

be provided: congestion detection, congestion notification, and congestion avoidance.

3.2.1.1 Congestion Detection

Congestion detection is the main component for congestion control. The congestion de-

tection can be carried out in a distributed form (in wireless nodes) or in a centralized

form (in the base station). In the distributed form, all sensor nodes detect congestion and

then share the information. On the other hand, centralized solutions implement congestion

detection on the base station.

A common mechanism would be to use queue length (e.g., Event to Sink Reliable

Transport (ESRT) [SAA03]), time to recover loss (e.g., Rate-Controlled Reliable Trans-

port protocol (RCRT) [PG07]), or the ratio of packet service time to packet interar-

rival time at the intermediate nodes.

Most protocols are based on buffer overflows to signal congestion using a congestion bit

for the notification. For example, STCP [IGV05] specifies two thresholds: tlower and thigher.

When the buffer reaches tlower, the congestion bit is set with certain probability. When

the buffer reaches thigher, the node sets the congestion notification bit in every packet it

forwards.

ESRT [SAA03] is one of the first transport protocols that seeks to achieve reliable event

delivery with minimum energy expenditure. An ESRT node calculates ∆b = bk − bk−1 after

receiving a new packet, where bk is the buffer size at the time k. If bk + ∆b > B (where B

is the buffer size) then the node signals a congestion by setting the congestion bit.

Interference-aware Fair Rate Control (IFRC) [RGGP06] is a shared congestion control

algorithm. IFRC uses an exponentially weighted moving average of instantaneous queue

length as a measure of congestion avqt+1 = (1 − w) × avgt + w × inst, where inst is the new

queue length, avg is the average queue length, and w is a weight. The average queue length

is updated whenever a packet is inserted into the queue. IFRC detects incipient congestion

by using multiple buffer thresholds U(k) where U(k) = U(k − 1) + I/2k−1 where k is a small

integer and I is a constant increment of the queue length. Unlike STCP, IFRC uses multiple

thresholds, thus, the rate halving becomes more frequent as the queue size increases. In

this manner, a node continues to aggressively cut its rate until its queue starts to drain.

Rate-Controlled Reliable Transport protocol (RCRT) [PG07] is a multipoint-to-point

reliable transport protocol for wireless sensor networks. RCRT uses an explicit end-to-end

loss recovery and places all congestion detection, recovery and rate adaptation schemes in

the base station. To distinguish between congestion and transmission losses, the RCRT

congestion detection mechanism is based on the length of the losses (i.e., the number of

lost packets). The sink node maintains a list of the out-of-order messages and computes

the Time to recover loss. If this value exceeds 2× RTT (Round-Trip Time), a congestion is

20

3.2. TRANSPORT PROTOCOLS RELIABILITY FOR LOW POWER
NETWORKS

then signaled. It assumes that the network is uncongested as long as end-to-end losses are

recovered quickly enough. Thus, RCRT permits the sender to transmit at a light rate

even if there are occasional end-to-end losses, since this rate can be recovered quickly.

For CSMA-like Medium Access Control (MAC) protocols, channel load can be measured

and used as an indication of congestion. CODA [WEC03] is based on congestion detection

by monitoring channel utilization and buffer occupancy at the receiver.

3.2.1.2 Congestion Notification

After detecting congestion, transport protocols need to propagate congestion information

from the congested node to the upstream nodes or to the source nodes that contribute to

congestion. In order to inform the source node about the congestion, two approaches can

be used.

The first approach is by using a single binary bit in the data message (generally called

congestion notification (CN) bit) (e.g., [SAA03]). This bit is set by a wireless node

when its local buffer reaches a threshold to notify the destination of congestion. Then,

the destination echoes the congestion indication to the source node by sending a control

packet. Thereby, after receiving a control packet with CN bit set, the source node learns

that the network is congested.

Another approach is to use into Explicit Congestion Notification (ECN) to disseminat-

ing congestion information. The explicit congestion notification uses control messages to

notify the involved sensor nodes of congestion.

3.2.1.3 Congestion Avoidance

Generally, the prevention of network congestion and collapse requires two main compo-

nents:

The first mechanism should be implemented in routers (in our case relay nodes) to drop

packets under overload (e.g., random early detection (RED)). The second is end-to-end

flow control mechanisms designed into the end-points, which respond to congestion and

behave appropriately.

Then, upon receiving a congestion indication, a source node can adjust its trans-

mission rate. If a single CN bit is used, additive increase multiplicative decrease

(AIMD) schemes or their variants are usually applied, such as ESRT [SAA03].

In CODA, nodes receiving back pressure signals throttle down their transmission rates.

In addition, a closed-loop mechanism operates on a longer time-scale. Based on acknow-

ledgments received from the sink, sources regulate themselves. Lost acknowledgments

result in reducing the rate at source.

Flush [KFD+07] is a reliable bulk transport protocol designed for WSNs. Flush sup-

ports only one data flow. Flush proposes also a rate allocation scheme for adapting dynam-

21

CHAPTER 3. RELIABLE TRANSPORT PROTOCOLS OVER LOW
POWER NETWORKS

ically the sending rate of the sensor nodes. This scheme takes into acccount the broadcast

nature of the medium and the interference between nodes. The rate allocation algorithm

follows two basic rules:

• Rule 1: A node should only transmit when its downstream node is free from inter-

ference.

• Rule 2: A node’s sending rate cannot exceed the sending rate of its successor.

These two rules reduce contention and thus collisions in the wireless network and minimize

losses due to the queue overflows for all nodes.

In ESRT [SAA03], sensor nodes send event messages with an announced reporting

frequency to the base station. Figure 3.1 shows the behavior of normalized reliability based

on the frequency of reporting. This figure is obtained by tuning the reporting frequency

from 10−1 to 103 messages/second and computing the corresponding normalized reliability

(i.e., the ratio of the observed event reliability to the desired event reliability).

Figure 3.1 shows that the event message reliability increases with the reporting fre-

quency of sensor nodes. It is obvious that the more frequently sensor nodes send event

messages, the more events arrive to the sink and thereafter more reliable are these events.

However, after a certain reporting frequency Fmax, the wireless network becomes congested.

Therefore, the observed event reliability decreases while increasing the reporting frequency.

Five characteristic regions are identified as follows:

• No Congestion, Low Reliability (NC, LR),

• No Congestion, High Reliability (NC, HR),

• Congestion, High Reliability (CHR),

• Congestion, Low Reliability (CLR),

• Optimal Operating Region (OOR).

An ESRT base station should regulate the reporting rate of sensors in response to a

congestion detected in the network and try to maintain the reporting frequency in the

OOR region. Congestion control mechanism is carried out in the base station, which

informs all sensor nodes using a different wireless technology (e.g. IEEE 802.16) about the

new reporting frequency. The use of a different MAC layer such as IEEE 802.16 allows the

sink node to reach out all sensors, and does not interfere with the wireless network.

In IFRC [RGGP06], each node i includes the following information in the header of each

outgoing transmission packet: its rate ri, current average queue length, a bit indicating

whether any child of i is congested, the smallest rate rl among all its congested children,

and l’s average queue length. This information allow a wireless node to share it state to

its parents. IFRC introduces two simple constraints:

22

3.2. TRANSPORT PROTOCOLS RELIABILITY FOR LOW POWER
NETWORKS

Figure 3.1: ESRT: five characteristics on the normalized event reliability versus reporting
frequency

• Rule 1: ri can never exceed r j, the rate of i’s parent j.

• Rule 2: Whenever a congested neighbor j of i crosses a buffer threshold U(k), i sets

its rate to the minimum of ri and r j. The same rule is applied for the most congested

child l of any neighbor of i, i sets its rate to the minimum of ri and rl where l is the

most congested child of i’s neighbor.

All nodes start from a fixed rate rinit. IFRC implements multiplicative rate increase

initially. After a slow start phase, an IFRC node increases its rate ri every 1/ri seconds.

If node i is congested, then when threshold U(k) is crossed, the node halves its current rate.

The base station, even if it does not send messages, maintains its ”rate” rb and adapts using

the same mechanism described below. Because the base station does not send messages,

23

CHAPTER 3. RELIABLE TRANSPORT PROTOCOLS OVER LOW
POWER NETWORKS

it broadcasts a control message after the reception of five messages to share its rate rb.

IFRC presents a shared congestion control mechanism but it does not provide reliability

guarantees. Moreover, IFRC adds an overhead in the header of the transport protocol and

a significant amount of control messages.

RCRT [PG07] uses additive increase/multiplicative-decrease (AIMD [APS99]) algo-

rithm to adapt the transmission rate of each source. Whenever the RCRT sink determines

the network is congested, it applies the rate decrease and it computes the new rate for all

flows.

• Increase : R(t + 1) = R(t) + A

• Decrease : R(t + 1) = M(t) × R(t)

Where A is a constant and M(t) is a function of loss rate, M(t) =
pi(t)

2 − pi(t)
and pi(t) are the

loss rate value of the source i at the instant t.

PORT [YLJH05] is another approach that minimizes the energy consumed by avoiding

high communication costs with two schemes. The first scheme is based on the application-

based optimization approach where the sink feedback the optimal reporting rates for source

nodes. These source report feedbacks allow the sink to adjust the reporting rate of each

data source. PORT adds a price for each node. A node price is the total number of

transmission attempts made before a successful packet is delivered from the source to the

sink. It is a metric used to evaluate the energy cost of communication. The sink adjusts the

reporting rate of each source based on the source’s node price and the information provided

about the physical layer. The second scheme is based on feedback from the source node to

the sink to inform it about the congestion and to increase the nodes costs. The sink uses

the communication cost information to slow down the reporting rate of the appropriate

source and to increase the reporting rate of other sources that have lower communication

cost since reliability must be maintained.

3.2.2 Reliability

In the context of low power wireless network protocols, reliability properties specify the

guarantees that the transport protocol provides with respect to the delivery of messages

to the intended recipient. In fact, a reliable protocol should provide notifications to the

sender as to the delivery of transmitted data.

The need for reliability is not the same for all applications but it depends on the im-

portance of the application and even on the importance of certain packets. Some protocols

such as PSFQ [WCK05], RMST [SH03], and RCRT [PG07] provide 100% reliability. On

the other hand, ESRT [SAA03], ERTP [TWPS09], DTSN [MGN07] and STCP [IGV05]

24

3.2. TRANSPORT PROTOCOLS RELIABILITY FOR LOW POWER
NETWORKS

provide classes of reliability for applications. Moreover, in the context of low power net-

works, the reliable transport protocol should be energy-efficient. Here we focus on the loss

recovery that consists of loss detection and notification and retransmissions.

3.2.2.1 Loss detection

Loss detection methods differ from a protocol to another. However, the common mechanism

is to include a sequence number in each packet header. The continuity of the sequence

numbers can be used to detect packet loss. Then, the receiver uses gaps in the sequence

numbers of received messages as a signal of packet losses.

There are two manners of loss detection: end-to-end and hop-by-hop. In the

end-to-end approach, the receiver infers packet loss when it observes out-of-sequence ar-

rivals. There are three ways for the notification: Acknowledgement (ACK), Negative ACK

(NACK), Selective Acknowledgement (SACK), and Implicit ACK (IACK). The two first

are explicit acknowledgments, which means that they consist of real control messages.

However, IACK is a piggyback ACK, which means that if a message is overheard being

forwarded again, this implies that the message has been successfully received. The use of

IACK avoids control message overhead, so it is considered more energy-efficient.

However, in power-constrained networks, end-to-end recovery is considered not energy-

efficient [PPG+07]. Therefore, most reliable transport protocols in WSNs use a hop-by-hop

approach. In hop-by-hop loss detection, intermediate/neighbor nodes are responsible for

loss detection and can enable local retransmissions.

3.2.2.2 Retransmissions

Like the loss detection, retransmissions of lost or damaged messages can be also either

hop-by-hop or end-to-end. In the end-to-end approach, the source performs retransmis-

sions. However, in hop-by-hop retransmissions, an intermediate node that receives a loss

notification (e.g., NACK) searches the requested message in its local buffer. If it finds the

lost message, it retransmits it, otherwise, it relays the NACK to the other nodes.

Reliable Multi-Segment Transport (RMST) [SH03] is the first transport layer with a

hop-by-hop recovery scheme using caching mode. The main goal of RMST is to minimize

the cost of end-to-end retransmissions. It offers two simple services: data segmentation/re-

assembly and guaranteed delivery. The RMST protocol provides two transmission modes:

caching mode (with hop-by-hop recovery) and non-caching mode (with end-to-end recov-

ery). In non-caching mode, only sources and sinks maintain a cache, and only sinks set

timers to detect losses.

In caching mode, the RMST protocol assumes that each sensor node has a cache memory

where recently received segments can be saved. RMST reduces end-to-end retransmissions

25

CHAPTER 3. RELIABLE TRANSPORT PROTOCOLS OVER LOW
POWER NETWORKS

Sender Receiver

1
1

1
1

2
2

2
.

3
3

3

NACK
(2)

2
2

3

Figure 3.2: RMST: a hop-by-hop recovery scenario

by introducing hop-by-hop retransmissions from caches of neighbor nodes. In the link layer,

lost packets are retransmitted using Automatic Repeat reQuest (ARQ) [FW02].

The RSMT receivers are the responsible for detecting losses and for trigging the recovery

of the missing segments through the generation of Negative Acknowledgments (NACKs).

The RSMT receivers are not only sinks, but they are also intermediate nodes. To handle

losses, an RSMT intermediate node should store data traffic and construct a map of received

segments. When an out-of-order segment is received, an RSMT receiver sends a NACK

requesting retransmissions of lost messages. First, the one-hop neighbors process NACKs.

Then, if one neighbor finds the missing segments in cache, it suppresses the NACK message

and it retransmits the missing segments to the sink. Else, the NACK message is relayed

to the next node toward the source. Figure 3.2 shows a detailed scenario of a RMST

hop-by-hop recovery where the second message is lost in the third hop.

Pump Slowly, Fetch Quickly (PSFQ) [WCK05] mechanism is proposed for re-tasking/re-

programming a group of sensors over-the-air. PSFQ is based on slowly injecting packets

into the network (pump operation) and performing aggressive hop-by-hop recovery in

case of packet losses (fetch operation). Like RSMT, PSFQ provides a hop-by-hop error

recovery mechanism in which intermediate nodes take the responsibility of loss detection

and recovery. To enable a hop-by-hop loss recovery and in sequence data delivery, a data

cache is created and maintained at intermediate nodes.

The PSFQ “pump operation” consists in a timely controlled data forwarding. In

the intermediate nodes, when a packet is received in an out-of-order sequence, it is stored.

However, instead of forwarding it, the intermediate node requests retransmissions of the

26

3.2. TRANSPORT PROTOCOLS RELIABILITY FOR LOW POWER
NETWORKS

missing segment from its neighbors.

The PSFQ “fetch operation” is a proactive action of requesting a retransmission

from neighboring nodes once the loss is detected at the receiving node. It corresponds to

sending NACK for a retransmission request containing the sequence number of the missing

segment. If the upstream neighbors do not posses the missing segment, they forward the

NACK farther, until it reaches a node having the missing segments.

Hop-by-hop Reliability Support (HRS) [LKL06] is a hop-by-hop based reliable conges-

tion control protocol. HRS proposes to use the packet sequence numbers to detect losses.

This method speeds up the delay time in end-to-end transfer using a pair of an end-to-end

sequence numbers and a hop-by-hop sequence numbers by which loss recovery is performed

on missing hop-by-hop level. The one-hop sequence number allows a wireless node to de-

tect a loss of a packet from its downstream node. Thus, with the hop-by-hop sequence

numbers, an intermediate node can forward a received packet immediately to the next

upstream node further and reduce the overall transfer delay by requesting the transmission

only for the missing packet to the previous node. HRS uses a NACK-based approach and

delayed ACK. A NACK message is sent if a gap is detected in the hop-by-hop sequence

numbers. Delayed ACK is sent for the last packet after a short timeout.

Distributed Transport for Sensor Networks(DTSN) [MGN07] is an energy-efficient hop-

by-hop reliable transport protocol using both ACK and NACK messages for delivery confir-

mation. A DTSN node analyzes the sequence numbers of the received packets and detects

the losses by finding gaps.

Every source node sends an Explicit Acknowledgment Request (EAR) every one

Acknowledgment Window (AW) to ask for an ACK or a NACK. The AW is the number of

messages sent by the sender before requesting an acknowledgment. The sink node responds

by an ACK message if no gap is detected or by a NACK message containing the sequence

numbers of missing segments.

DTSN protocol is a hop-by-hop recovery protocol; all intermediate nodes cache received

packets in their cache. Upon the reception of an ACK message, intermediate nodes delete

acknowledged segments. Otherwise (i.e. reception of a NACK message), an intermediate

node checks if its cache contains one of the missing segments.

A DTSN node retransmits missing segments and updates the NACK message. DTSN

offers two types of service: total reliability service and differentiated reliability service. The

difference between the two types of service is the probability of caching a segment in an

intermediate node. For example, in full reliability scenario, all segments are cached in the

intermediate nodes. DTSN is more energy efficient compared to PSFQ because it sends

a ACK/NACK for AW messages. But, the DTSN algorithm does not treat congestion

detection and control. Moreover, the algorithm does not tune the acknowledgment window

size to reduce the ratio of acknowledgments to data.

Energy-efficient and Reliable Transport Protocol (ERTP) [TWPS09] is a hop-by-hop

27

CHAPTER 3. RELIABLE TRANSPORT PROTOCOLS OVER LOW
POWER NETWORKS

recovery algorithm using implicit acknowledgments. ERTP requires that each node i after

sending a packet to the next node to the sink overhears the next forwarding. The forwarding

of a packet by node i + 1 is considered as an implicit acknowledgment to node i.

The authors present a hop-by-hop reliability control, which adjusts the maximum num-

ber of retransmissions of a packet in each node based on the link loss rate. They present

also an algorithm for computing the time in which node i is expected to “overhear” the

forwarding packet of the node i + 1.

In the results section, the authors show that the use of ERTP algorithm for comput-

ing the retransmission timeout (RTO) is better than Jacobson’s algorithm. They show

also that using ERTP gives a higher delivery ratio than using simple explicit acknowledg-

ment. However, hearing all neighbor node traffics is not energy-efficient because listening

consumes energy as well as sending.

3.2.3 Energy Efficiency

The cost of sensor components is a critical consideration in the design of sensor networks.

It increases with the battery power of the devices. It is often economically advantageous

to replace a sensor rather than to recharge it. By this reason, battery power is usually the

important component in wireless devices. On the other hand, the lifetime of these devices

depends on battery lifetime. Thus, energy efficiency is an important direction of low power

networks investigations. As a result, it is important for the transport protocols to maintain

high energy-efficiency in order to maximize system lifetime.

For loss-sensitive applications, packet losses lead to both retransmissions and the in-

evitable consumption of additional battery power. Therefore, several factors need to be

carefully considered in the deployment of a transport protocol, including the number of

packet retransmissions, the distance (e.g., number of hops) for each retransmission, and

the overhead associated with control messages.

Transport protocols should provide reliability with the least number of exchanged mes-

sages. This constraint comes from the low capacity of energy of sensor node batteries.

First, transport protocols should provide a mechanism to reduce the frequency of sending

messages to reduce the total consumed energy for event-driven applications. Secondly,

they should propose to use hop-by-hop recovery instead of end-to-end recovery to reduce

retransmissions. Finally, the added control messages (e.g., ACK) must be used as rarely

as possible to reduce their overhead.

The presented protocols have proposed various methods in order to reduce the energy

consumption of the wireless nodes. For example, RMST, and PSFQ reduce the amount of

exchanged messages by caching not already acknowledged segments in intermediate nodes

and process a recovery once a loss is detected. DTSN proposes reducing the consumed

energy by using selective acknowledgment (ACK and NACK) after an acknowledgment

28

3.3. TCP/IP SOLUTIONS FOR LOW POWER NETWORKS

window of messages, thus it reduces the control messages overhead. ERTP does not propose

to use explicit acknowledgments but to use implicit acknowledgments. This approach needs

a cross-layer mechanism between the link and the transport layers and permits to reduce

the transport acknowledgments. All these works have tried to reduce the amount of control

messages in the wireless sensor networks and thus increase the network lifetime.

3.3 TCP/IP solutions for low power networks

Transmission Control Protocol (TCP) is a reliable transport protocol that runs over IP net-

works, which provides end-to-end reliability and congestion control. However, in [MGN07,

TWPS09, SH03], TCP was considered not well suitable for low power networks and es-

pecially wireless sensor networks. However, in order to make TCP viable for low power

networks, several researchers are interested in reducing energy consumption of TCP and

making it more energy-efficient [DVA04]. We present in this section related works to re-

ducing loss recovery costs.

3.3.1 TCP caching and hop-by-hop recovery

In [DAV04], the authors present Distributed TCP Caching, a new scheme that uses segment

caching and local retransmission in cooperation with the link layer for TCP/IP-based low

power networks. DTC is an extension of the Snoop [BSAK95] idea towards multi-hop

low power networks. The authors assume that each intermediate node is able to cache a

single TCP data segment. DTC relies mainly on timeouts to detect packet losses. Thus,

each DTC [DAV04] node measures the round-trip time (RTT) to the receiver and adapts

a retransmission timeout RTO to 1.5 × RTT. The authors propose to compute the RTT

in the TCP connection setup phase and to use RTO = 1.5 × RTT as a timeout value.

In fact, the RTO may be too high which leads to lower throughput, or too low and then

unnecessary end-to-end retransmissions may occur.

The wireless nodes cache the TCP segment that has the highest segment number seen

with a probability of 50%. Authors justify the choice of this probability by a better

distribution of cached segments than caching every new segment when the cache is not

locked. An unacknowledged packet in the link layer should be locked and retransmitted

after the timeout. Locked data segments should not be overwritten by a TCP segment

with the higher sequence number. A locked segment is removed from the cache when a

TCP ACK that acknowledges the cached segment is received, or when the segment times

out.

DTC uses also the TCP SACK option [FMMP00,Mat96] for both packet loss detection

on and signaling between DTC nodes. The TCP SACK option is used by wireless nodes to

29

CHAPTER 3. RELIABLE TRANSPORT PROTOCOLS OVER LOW
POWER NETWORKS

inform other nodes about segments locked in their caches. To validate their schemes, the

authors have implemented DTC on the OMNET++ simulator [Vag10]. Simulation results

show that DTC enhances TCP performance for a chain topology and reduces the number

of exchanged TCP segments.

In [BVD07], the authors present TCP Support for Sensor networks. TSS is a new layer

between TCP and the network layer. TSS requires storing state information for each TCP

connection that contains sequence numbers, acknowledgment numbers, and RTT. TSS uses

Implicit ACK (IACK) for loss detection: a node is assumed to listen to packet forward of

their neighbor to detect whether the next node has forwarded the TCP segment. A node

using TSS always caches a packet until it is sure that the successor node towards the

destination has received the segment. Retransmissions are mainly triggered by timeouts,

which requires careful setting of timeout values. Like DTC [DAV04], the retransmission

timeout is set to 1.5× RTT. To avoid congestion, a TSS node should stop forwarding its

packets until it knows that all earlier packets have been received and forwarded by its

successor node.

To validate their schemes, the authors used the OMNET++ simulator [Vag10]. The

scenario used for their evaluation is very simple because it consists of a TCP source, a TCP

sink and between them ten TSS wireless nodes. Simulation results show that TSS gives

more throughput than TCP and less exchanged messages than DTC [DAV04]. However,

hearing all neighbor nodes traffic is not energy-efficient because listening also consumes

energy. In addition, a message transmission failure of one wireless node leads to stop the

transmission of all its previous nodes.

3.3.2 TCP dynamic delayed-acknowledgement

Gerla et al. [GTB99] were the first to investigate the interaction between MAC layer and

TCP in multi-hop wireless networks. Their study showed that TCP performance decreases

significantly in CSMA networks when the distance between the sender and the receiver is

larger than two hops. They explained this result by the hidden terminal problem caused

by the collisions of TCP DATA segments and TCP ACK segments. In [FLZ+05], Fu et

al. extended this work and showed that a good choice of a TCP window size depending

on the number of hops between the source and receiver improves TCP throughput. Their

simulations and analysis show that a TCP window of
h

4
is the best choice in chain topology

multi-hop wireless networks, where h is the number of hops between the source and the

receiver.

Altman et al. [AJ03] studied the impact of delayed ACK on the TCP performance in

multihop wireless networks. They showed that increasing the standard delayed ACK value

(d = 2) up to 3 − 4 packets increases the TCP throughput by around 50%. Moreover,

they proposed a basic delayed ACK approach, which is called Dynamic Delayed ACK

30

3.3. TCP/IP SOLUTIONS FOR LOW POWER NETWORKS

(DDA). The TCP-DDA algorithm increases d gradually with the sequence number of the

acknowledgment segment. The advertised window was limited to 4 packets.

De Oliveira and Braun [OB07] proposed a dynamic adaptive acknowledgement (DAA)

strategy for minimizing the number of ACKs. The TCP-DAA algorithm proposes to adapt

the TCP receiver window and the timeout interval. The TCP receiver computes a smoothed

packet interval (δ) and then sets the timeout interval (ti) as ti = (2+κ)∗δ, where κ is a timeout

tolerance factor. κ defines how tolerant the receiver may be deferring its transmission

beyond the second expected DATA packet. The TCP window size is initialized with one

packet, and then increased by a startup speed factor (λ = 0.3 packet) until a certain

threshold. After the startup phase, the TCP window size is increased by one packet

size. TCP-DAA is more tolerant to packet delay variations by having the regular RTO

(retransmission timeout) at the sender multiplied by a factor of 5. The authors simulation

results show that TCP-DAA outperforms TCP-DDA in terms of goodput not only on chain

topologies but also on grid topologies.

Chen et al. [CGLS08] proposed an adaptive delayed acknowledgment mechanisms called

TCP-DCA (delayed Cumulative Ack). TCP-DCA removes the limit of delayed window of

four packets and adapts the delay window limit depending of the path length (e.g., ping

utility). The delay window limit is equal to the congestion window if the number of hops

between the sender and the receiver is less than 3. Moreover, the delay window limit is

equal to five if the number of hops is more than 3 and less than 9, and equal to three if

the number of hops is more than nine hops. In addition, TCP-DCA algorithm puts the

congestion window into the advertised window.

Chen et al. [CMSM09] proposed TCP-TDA, a new TCP algorithm that uses the ACK-

delay timeout as a trigger for sending an acknowledgment. In fact, the TCP-TDA receiver

always waits until this timeout event occurs to generate an ACK, no matter how many

in-order packets it receives during the timeout period. TCP-TDA sets up a large delay

window (equal to 25), thus it makes the ACK-delay timeout to be the main generator of

ACKs. Moreover, the authors set the timeout time at 200 ms (default value is 100 ms). In

addition, when the congestion window is small, TCP-TDA proposes to put the congestion

windows in the advertised window, so it allows informing the receiver about the current

value of the congestion window. The major difference between TCP-TDA and TCP-DCA

is that it does not need to count the path length. Moreover, simulation results show that

TCP-TDA improves TCP throughput up to 205% respect to standard TCP.

3.3.3 Constrained Application Protocol (CoAP)

The Constrained Application Protocol (CoAP) [SHBF11] is a simple, low-overhead and

specialized for web transfer protocol recently proposed by the CoRE WG in IETF. It was

proposed to be used in resource-constrained IP networks and nodes for machine-to-machine

31

CHAPTER 3. RELIABLE TRANSPORT PROTOCOLS OVER LOW
POWER NETWORKS

(M2M) applications such as smart energy and building automation. CoAP translates

to HTTP for integration with the web while meeting specialized requirements such as

multicast support, very low overhead and simplicity for constrained environments. CoAP

is a UDP-based protocol with optional reliability supporting unicast and multicast requests.

CoAP defines four types of messages: confirmable, non-confirmable, acknowledgement,

and reset. As specified in [SHBF11], the CoAP reliability is provided by marking a message

as confirmable (reliable message). A confirmable message is retransmitted using a default

timeout and exponential back-off between retransmissions, until the receiver sends an ACK

with the same message ID from the corresponding end-point. Instead, (i.e., the receiver is

not able to process a confirmable message) the receiver replies with a reset message instead

of an ACK. A reset message is sent if a confirmable message was received, but some context

is missing. In [Cas11], Castellani proposes the Constrained Messaging Protocol (CMP),

which is a message-layer protocol for CoAP. CMP adds to [SHBF11] some features such

as delayed acknowledging, multi-datagram messaging, and partially ordered delivery of

unconfirmed messages.

At the time of writing, only Eggert’s work focused on congestion control for CoAP.

In [Egg11], Eggert suggests a simple windowing algorithm; the CoAP stack should lo-

cally drop application-generated messages under overload situations. In fact, a CoAP node

has a certain number of message transmission credits available during a time inter-

val. Then if all message transmission credits have been sent, the CoAP stack should drop

the application messages. After the arrival time, the CoAP node checks if all confirmable

messages were acknowledged. If one of the confirmable messages is not acknowledged, the

transmission credits are halved for the next time interval, else (i.e., acknowledgments have

been received for all confirmable messages) the message transmission credits are increased

by unit.

In [Egg11], Eggert discussed the use of Explicit Congestion Notification (ECN) [RFB01]

for CoAP. The ECN bit can be used to decrease the message transmission credits if a CoAP

node receives a message with an ECN bit.

3.4 Summary

Table 3.1 presents a summary of the listed protocols in Section 3.2. We can differentiate

between transport protocols by the manner they recover losses (end to end recovery or hop

by hop recovery), the use or not of caching in intermediate nodes, the kind of messages

used for loss detection and recovery (ACK, NACK, IACK), and the level of reliability.

32

3
.4
.

S
U
M

M
A
R
Y

Transport Direction Type of Congestion Congestion End-to-End or Caching ACK / NACK
Protocol flows Control Detection Hop-by-Hop SACK / IACK

ESRT [SAA03] Sensor to Sink Continuous Yes Buffer size End-to-End No -
PORT [YLJH05] Sink to Sensor Event-Driven Yes Packet Loss - -

RSMT [SH03] Sensor to Sink Continuous - - Hop-by-Hop Yes NACK
End-to-End ACK

PSFQ [WCK05] Sink to Sensor Event-Driven - - Hop-by-Hop Yes NACK
Sensor to Sink

DTSN [MGN07] Sensor to Sink Continuous - - Hop-by-Hop Yes ACK/NACK
HRS [LKL06] Sensor to Sink Continuous - - Hop-by-Hop Yes NACK

End-to-End ACK
CODA [WEC03] Sensor to Sink Event-Driven Yes Buffer size End-to-End No ACK

Channel load Hop-by-Hop
STCP [IGV05] Sensor to Sink Continuous Yes Buffer Size End-to-Ends Yes ACK/NACK

Event-Driven
Flush [KFD+07] Sensors to Sink Continuous Rate control No End-to-End No NACK
IFRC [RGGP06] Sensor to Sink Continuous Yes Buffer size - No -
RCRT [PG07] Sensor to Sink Continuous Yes Time to recover End-to-End No NACK

loss
ERTP [TWPS09] Sensor to Sink Continuous - - Hop-by-Hop - IACK

Table 3.1: Classification of Reliable Transport Protocols

3
3

CHAPTER 3. RELIABLE TRANSPORT PROTOCOLS OVER LOW
POWER NETWORKS

3.5 Conclusion

In this chapter, we presented a survey of recent works on reliability and congestion control in

wireless sensor networks. We presented the different methods of loss detection and recovery,

congestion detection and avoidance and energy-efficiency. We compared and classified in

table 3.1 all these protocols in terms of reliability, congestion control and energy efficiency.

34

Part II

Reducing the energy consumption of

TCP in multi-hop wireless networks

35

Chapter 4

Making TCP more energy-efficient for

low power networks

Contents

4.1 Introduction . 38

4.2 Why TCP for low power networks 39

4.3 Distributed TCP Caching . 39

4.3.1 MAC Automatic Repeat reQuest 40

4.3.2 Cache management . 41

4.3.3 Disabling unnecessary retransmissions 42

4.3.4 ACK loss detection . 42

4.3.5 Round-Trip Time computation 43

4.4 Reducing the TCP Acknowledgement ratio 44

4.5 Performance evaluation . 45

4.5.1 Simulation environment . 46

4.5.2 Energy Model . 47

4.5.3 Comparison between NewDTC, TCP and DTC 47

4.5.4 Round Trip Time Computation 49

4.5.5 Comparison between TCP, DCA, and TDA 50

4.6 Conclusion . 51

37

CHAPTER 4. MAKING TCP MORE ENERGY-EFFICIENT FOR LOW
POWER NETWORKS

4.1 Introduction

The deployment of IP on low power networks (e.g. 6LoWPANs) enables a direct intercon-

nection of a low power network to external IP network without proxies or middleboxes.

Such interconnection satisfies new application needs by allowing e.g. an external host on

the Internet to communicate directly with a wireless device. In the scenario of controlling

and managing sensors presented in the last chapter, this would likely mean using TCP as

a reliable transport layer.

TCP uses end-to-end acknowledgements (ACKs) and retransmissions of lost packets

to guarantee reliability. In multi-hop wireless IP networks, packet loss does not only

happen because of congestion problem, but it may also be due to bad radio condition,

node failure and frame collision due to simultaneous transmissions. Under such conditions,

TCP performance may degrade, resulting in lower throughput and longer transfer times.

In the context of low power networks, wireless losses and end-to-end retransmissions result

in energy ”wasted” due to packets being transmitted over one or more hops, only to be

lost in a subsequent hop. The end-to-end retransmissions cost would be reduced by some

hop-by-hop recovery and caching mechanisms.

Moreover, TCP suffers from its header overhead. The TCP header size is 20 bytes

without options. The TCP header may be extended to 60 bytes by adding some options

such as Selective Acknowledgment (SACK) [Mat96,FMMP00] and Timestamps [JBB92].

In addition, TCP requires that every TCP segment should be replied by a TCP acknowl-

edgement from the receiver. Even with a delayed acknowledgment mechanism, the number

of TCP acknowledgments is still high. The ratio of TCP acknowledgments to the TCP

segments makes TCP not energy-efficient. One of the recently proposed ideas is to send a

TCP acknowledgment for a block of TCP segments (see Section 3.3.2).

In this chapter, we show the reason of choosing TCP as a reliable transport protocol.

We study Distributed TCP Caching (DTC) algorithm and we propose some simple mod-

ifications to improve the TCP energy-efficiency, which reduce both the consumed energy

and the file transfer duration. Our modified algorithm is designed for CSMA-CA networks

(e.g., IEEE 802.15.4 or IEEE 802.11) and it takes into account the presence of link-layer

ARQ.

The remainder of the chapter is organized as follows. Section 4.2 presents our reasons

for deploying TCP over low power networks. In Section 4.3, we study a hop-by-hop TCP

recovery algorithm and present some improvements of DTC. In Section 4.4, we study how

to improve the energy efficiency by reducing the TCP acknowledgment ratio. Section 4.5

presents performance evaluation, highlighting the improvement brought by our proposition,

and the impact of different parameters.

38

4.2. WHY TCP FOR LOW POWER NETWORKS

4.2 Why TCP for low power networks

Several transport protocols have been proposed to ensure end-to-end reliable data trans-

mission (see Chapter 3). To detect losses, these protocols have proposed to add a sequence

number to identify all segments. An acknowledgment number is used to inform the source

of the segments correctly received and the segments to be retransmitted. In addition, to

manage congestion, other protocols have proposed a congestion notification bit to inform

the source of congestion detected in the core network.

However, none of those protocols allows opening a connection between an IP node in

an IP-based network and a wireless embedded node in the LoWPAN network. Indeed, to

enable this communication, any new connection requires a proxy between the two networks

to translate the transport protocol header of the wireless network to TCP and vice versa.

In this chapter, we propose to maintain TCP in the wireless network for several reasons.

Currently, TCP is the most frequently used reliable transport protocol in the Internet. On

the other hand, all the mechanisms, which have been proposed for wireless networks to

ensure reliability, are already implemented in TCP (loss detection, retransmission, con-

gestion control). And finally, the extension of TCP in wireless networks avoids redefining

new specific applications for the wireless network. On the contrary, many applications

and services would be quickly deployed for the wireless devices (HTTP, SSH, Telnet, etc.).

However, TCP has to be improved and adapted to new constraints imposed by this new

environment (CPU, memory, energy, bit rate, etc.).

4.3 Distributed TCP Caching

DTC is an extension of the Snoop [BSAK95] idea towards multihop wireless networks. The

authors presume that each intermediate node has enough memory to cache a single TCP

data segment. Segments that are not acknowledged at the link layer by the next hop are

locked in the cache and retransmitted after a retransmission timeout (RTO). After caching

a segment, DTC node unlock it if it receives a link layer acknowledgement. Locked data

segments cannot be overwritten by other TCP segments. A locked segment is removed

from the cache only when a TCP ACK or SACK [BAFW03] that acknowledges the cashed

segment is received, or when the segment times out. DTC relies mainly on timeouts to

detect packet losses. Thus, each node measures the round-trip time (RTT) to the receiver

(sink) and adapts a retransmission timeout RTO to 1.5× RTT. The authors propose to

compute the RTT in the TCP connection setup phase (they call this approach ”flying start”)

and also after receiving a TCP ACK segment. Wireless nodes cache the TCP segment with

the highest segment number seen if the cache is empty. Saving the segment with the highest

segment number disadvantages old segments, which should be retransmitted. If the cache

39

CHAPTER 4. MAKING TCP MORE ENERGY-EFFICIENT FOR LOW
POWER NETWORKS

is not empty and not locked, a DTC node caches the TCP segment with a probability of

50%.

In the next section, we present our energy-efficient hop-by-hop distributed TCP caching

algorithm, called NewDTC, which is based on DTC, with some improvements regarding the

cache management. These improvements enable its deployment in CSMA-CA networks.

DTC nodes should maintain a TCP state for each connection. Our DTC version is based on

segment caching and local retransmission like the original DTC. However, an intermediate

node saves a segment if the buffer cache is not locked. This reduces the congestion problem

on intermediate nodes. We also suggest allowing intermediate nodes to generate an ACK

message and sent it back to the sender if they receive a TCP data segment that was already

acknowledged. The third point that we suggest is to adjust the timeout value that a node

should wait before retransmitting a locked TCP data segment. A good estimation of round-

trip time reduces the network congestion on intermediate nodes and avoids unnecessary

retransmissions. We describe with more details our enhancements to the DTC algorithm

in the following sections.

4.3.1 MAC Automatic Repeat reQuest

DTC was designed and validated for a TDMA network where losses are due to bit errors.

However, in CSMA-CA networks, errors are not only due to bit errors but also to colli-

sions between frames. Collisions in CSMA-CA networks are due to two problems: hidden

and exposed terminals (see Figure 4.1). Using a single transmission in a high error link

increases the RTT value, increases end-to-end retransmissions and reduces the connection

throughput.

Unlike DTC, the NewDTC approach enables Automatic Repeat reQuest (ARQ) in

MAC layer. This option already exists in CSMA-CA link layers like IEEE 802.15.4 and

IEEE 802.11. Thereby, after receiving a TCP data segment, a wireless node sends the

received message to its MAC layer buffer. The link layer uses ARQ to transmit TCP

segments. If a wireless node does not receive an ACK, it retransmits the message. If the

maximum retry number is reached, the MAC layer informs the DTC module about a link

layer transmission failure. Then, The DTC module locks the received segment in its cache

buffer and waits a retransmissions timeout RTO = 1.5× RTT before sending it again.

The use of the ARQ algorithm in the link layer allows wireless nodes to have a more

reliable link layer. Furthermore, higher retransmissions are done in the link layer, lower

hop-by-hop and end-to-end transport protocol retransmissions are needed.

40

4.3. DISTRIBUTED TCP CACHING

n-1 n n+1

(a) Hidden terminal: node n is visible for
both node n−1 and node n+1. However, n−1

and node n + 1 can not see each other. The
collision happens at node n when nodes n and
node n+1 send at the same time their frames
to node n.

n-1 n n+1 n+2

(b) Exposed terminal: node n−1 and node n+1 can
not see each other. Node n − 1 sends a frame to node
n while node n + 1 sends a frame to node n + 2. The
collision happens at node n because it hears both n − 1

and n + 1 frames.

Figure 4.1: Hidden and exposed terminals problems in CSMA-CA networks

4.3.2 Cache management

DTC proposes to cache a received segment if the cache buffer is empty. It also proposes

to cache that segment with 50% probability if the cache is not empty and not locked. A

DTC node caches the newest segments; this would deprive old segment, which should be

retransmitted. Figure 4.2 (a) shows that the use of this approach leads to a segment loss

if a wireless node receives a new TCP segment before sending the already cached segment.

Node 2 does not receive a link layer acknowledgment and does not cache it. The segment

1 is overwritten by the segment 2 and then retransmitted from the source node.

We propose a new approach to cure this problem. We assume that wireless nodes are

reliable. After receiving a TCP data segment, a NewDTC node locks the received segment

and sends it to the link layer trying to send it to next hop node (see Figure 4.2 (b)). After

receiving a link layer acknowledgment, the NewDTC node unlocks the received segment.

The cached segment could then be overwritten by the next received TCP segment or deleted

if the wireless node received a TCP ACK with an acknowledgement number greater than

its sequence number or a TCP SACK containing a SACK block acquitting the cached

segment.

41

CHAPTER 4. MAKING TCP MORE ENERGY-EFFICIENT FOR LOW
POWER NETWORKS

DATA 1

DATA 2

DATA 1 .

Segment 2 is cached

DATA 2

Node 1 Node 2 Node 3

(a) DTC: DATA 1 is lost and retransmitted from
the source node

DATA 1

DATA 2
Segment 1 locked

DATA 1
.

DATA 1

Segment 1 unlocked

Node 1 Node 2 Node 3

(b) NewDTC: DATA 1 is retransmitted from the
node 2

Figure 4.2: DTC and NewDTC cache management

Our solution gives all priority to the old segment if it is not successfully sent at the link

layer. On the other side (i.e., the source does not receive a link layer ack), NewDTC gives

the priority to the new segment if the cached one is already acknowledged in the link layer

(i.e., the wireless node is sure that its downstream neighbor has received the segment).

This approach solves the problem of overwriting a cached segment before it could be sent

to the next hop node and gives more chance to the old segment to be retransmitted.

4.3.3 Disabling unnecessary retransmissions

DTC imposes that each intermediate node should retransmit the cached segment after an

RTO. However, local retransmissions from wireless nodes can lead to unnecessary retrans-

missions if the same segment is retransmitted by more than one node (see Figure 4.3 (a)).

To reduce the number of unnecessary retransmissions, a NewDTC node should not relay

a TCP segment that just sent it. Moreover, a NewDTC node should update again the

retransmission timeout if it receives a cached TCP data segment (see Figure 4.3 (b)).

Further, when a wireless node receives a TCP data segment, it compares its sequence

number to the cached one (if it exists). If they have the same sequence number, the

wireless node should set the RTO value to 1.5× RTT. This approach has no impact on the

retransmission of missing segments.

4.3.4 ACK loss detection

A NewDTC node detects the loss of a TCP acknowledgment by receiving a TCP data

segment that has already been acknowledged by a TCP ACK. Thus, a NewDTC node

42

4.3. DISTRIBUTED TCP CACHING

Node 1 Node 2 Node 3 Node 4 Node 5

TCP-Data 1

TCP-Data 2
.

TCP-Data 2
TCP-Data 2

TCP-ACK (2)

R
T
O

R
T
O

(a) DTC

Node 1 Node 2 Node 3 Node 4 Node 5

TCP-Data 1

TCP-Data 2
.

TCP-Data 2TCP-Data 2

TCP-ACK (2)

R
T
O

R
T
O

(b) NewDTC

Figure 4.3: Disabling unnecessary retransmissions

deletes the received TCP data segment and replies by a new TCP ACK for the source.

This requires that each node keeps connection state for all TCP connections that pass

through the node by creating a context.

Figure 4.4 shows an example of a TCP ACK loss and a local TCP regeneration of an

ACK after receiving an acknowledged data segment. Node 2 receives a TCP ACK but

does not succeed in sending it to the downstream node. Then, it receives a TCP data

segment already acknowledged. Node 2 deletes TCP segment number 2, regenerates a new

TCP ACK. This approach avoids a new end-to-end retransmission from the sender to the

receiver.

4.3.5 Round-Trip Time computation

DTC proposes to compute the RTT value after receiving a TCP ACK segment (see Fig-

ure 4.5), which acknowledges the cached segment. Then, the RTO value is chosen as

43

CHAPTER 4. MAKING TCP MORE ENERGY-EFFICIENT FOR LOW
POWER NETWORKS

Node 1 Node 2 Node 3

ACK 3

.

DATA 2

DATA 2

(a) DTC

Node 1 Node 2 Node 3

ACK 3

.

DATA 2

ACK 3

(b) NewDTC

Figure 4.4: TCP ACK loss recovery

1.5 × RTT. The RTO computation is very important to reduce unnecessary end-to-end

retransmissions and to get a better throughput.

In NewDTC, we conserve the flying start used in DTC, which consists of measuring

RTT during the TCP connection set-up. However, we propose to smooth the measured

RTT value as specified in [PA00] and to keep 1.5 × smoothed RTT as a retransmission

timeout RTO.

Sender Node 1 Node 2 Node 3 Receiver

DATA 1

ACK 2

R
T
T

R
T
T

R
T
T

R
T
T

Figure 4.5: RTT computation: each node measures the RTT between itself and the receiver

4.4 Reducing the TCP Acknowledgement ratio

As it was well detailed in Section 3.3.2, recent researchers, that worked to improve the

performance of TCP in multi-hop wireless networks, have proposed algorithms to reduce

the number of TCP acknowledgments. The main idea of these algorithms is to delay the

acknowledgment even after the reception of two segments.

The two more efficient delayed acknowledgment algorithms are TCP-TDA and TCP-

DCA. TCP-TDA is simpler to implement (compared to TCP-DCA) and does not require

44

4.5. PERFORMANCE EVALUATION

that the receiver computes the segment inter-arrival times (i.e., the time between consec-

utive segment arrival). Moreover, TCP-DCA requires that the sender knows the number

of hops between itself and the receiver. For all these reasons, we focus more in this section

on TCP-TDA.

The main drawback of TCP-TDA is that it requires the use of the advertised window,

which should normally inform the sender about the receiver buffer capacity, to inform the

receiver about the number of segments after which it must send an acknowledgement. The

solution is possible for unidirectional data transfer (where one device can communicate

with each other but only one direction at a time (i.e., not simultaneously)). These disable

some of the most-used TCP-based applications such as SSH and HTTP. Instead of sending

the size of the congestion window, we propose to use one of the reserved bits of the TCP

header for requesting an acknowledgment. The idea was firstly proposed by A. Oppermann
1 and then discussed by [FARI10] to reduce the TCP acknowledgment congestion.

Reducing the TCP acknowledgement ratio would have a bad impact on TCP perfor-

mance. The TCP congestion window increases by a constant amount for each arriving

acknowledgment. The TCP delayed acknowledgement would reduce the TCP throughput

by reducing the ACKs and then increase the transfer duration. In [All03], Allman proposes

another congestion control mechanism for coping with delayed acknowledgments. The main

idea was that the TCP congestion window should be increased based on the number of

bytes acknowledged by the arriving ACKs. In order to improve delayed acknowledgment

algorithms performance, we propose to apply the same idea, even if the number of delayed

acknowledgments is higher than two segments. In addition, the TCP SACK option can

be used to signal if one or more segments are lost by showing the received segments. Fig-

ure 4.6 shows an example of scenario where one of the sent segments is lost. The receiver

responds by an ACK with a SACK option to inform the sender that the third segment

was not received. We assume that the sender has a large window to send many segments

before receiving an acknowledgment.

4.5 Performance evaluation

In this section, we presented a simulation evaluation of discussed ideas. In fact, we evaluate

the performance of two TCP caching algorithms which are NewDTC and DTC. Then, we

evaluate DCA and TDA and we compare their performance.

1http://www.ietf.org/mail-archive/web/tcpm/current/msg02356.html

45

CHAPTER 4. MAKING TCP MORE ENERGY-EFFICIENT FOR LOW
POWER NETWORKS

Sender Receiver
TCP-Data (1)

TCP-Data (2)

TCP-Data (3, AckNow)

TCP-Ack (4)
TCP-Data (4)

TCP-Data (5)

.TCP-Data (6, AckNow)

TCP-Ack (7, sack(6))TCP-Data (7)

TCP-Data (8)

TCP-Data (9, AckNow)
.

TCP-Data (10)

TCP-Data (11)

TCP-Data (12, AckNow)
TCP-Data (13) TCP-Ack (13, sack(9))

Figure 4.6: TCP delayed acknowledgment recovery

4.5.1 Simulation environment

To evaluate the performance of our improvements, we have implemented DCA, TDA, DTC

and NewDTC on INETMANET [Vag11] a framework of the OMNET++ [Vag10] network

simulator. We have performed simulations with a unidirectional TCP data transfer. We

have used a chain topology as shown in Figure 4.7 where node n is in the transmission

range of node n − 1 and n + 1. The distance between two neighbor nodes is 50 meters.

Like the scenario in [DAV04], the TCP sender (source) sends 1000 TCP data segments (64

bytes) to the TCP receiver. Table 4.1 contains the values of all scenario parameters. Our

simulations consist of 10 runs, and the reported results are the average of the 10 runs.

46

4.5. PERFORMANCE EVALUATION

TCP Sender TCP Receivern-1 n n+1

Figure 4.7: Chain Topology

Table 4.1: Simulation parameters
Parameters Value

Maximum Segment Size 64 bytes
Routing Protocol Static routing

MAC Layer IEEE 802.15.4
PHY bitrate 250kb/s

4.5.2 Energy Model

To measure the amount of consumed energy by wireless nodes, we apply the following en-

ergy model. At a given moment, a wireless node is on one of four states: Transmit, Receive,

Sleep or Idle. Table 4.2 contains the voltage and the current value of each state. These

values have been obtained from CC2420 Datasheet and the Texas Instruments MSP430

Datasheet2. The energy consumed to transmit a link-layer frame equals

Transmit energy = Voltage × Transmit Current × Transmit time.

Table 4.2: Energy model of wireless nodes
Parameters Values
Voltage 3V

Transmit Current 17.4 mA
Receive Current 19.7 mA
Idle Current 1.38 mA
Sleep Current 0.06 mA

4.5.3 Comparison between NewDTC, TCP and DTC

In this section, we compare the new version of DTC (i.e., NewDTC) which includes all our

modifications to DTC and the original version of DTC described in [DAV04]. The compar-

2http://focus.ti.com/general/docs/lit/getliterature.tsp?genericPartNumber=msp430f1611

47

CHAPTER 4. MAKING TCP MORE ENERGY-EFFICIENT FOR LOW
POWER NETWORKS

2 4 6 8 10
0

2

4

6

8

Number of hops

C
on

su
m
ed

en
er
gy

(J
)

TCP
DTC

NewDTC

(a) Total energy consumption

2 4 6 8 10
0

20

40

60

80

100

Number of hops

T
ra
n
sf
er

d
u
ra
ti
on

(s
)

TCP
DTC

NewDTC

(b) Transfer Duration

Figure 4.8: Comparison TCP, DTC, NewDTC in terms of consumed energy and transfer
duration

ison metrics that we propose are: total consumed energy and transfer duration. We

simulate two scenarios. In the first one, we increase the number of nodes in the network

and thus the number of hops. In the second scenario we fix the number of nodes to seven

and we simulate the same scenario with different bit error rate.

4.5.3.1 Number of hops

In order to justify our motivation for hop-by-hop retransmissions, we compare NewDTC

and DTC to TCP. Figure 4.8 shows that DTC and NewDTC reduce the total consumed

energy. This is due to the hop-by-hop recovery of lost packets. We also distinguish that

NewDTC out-performs DTC in energy consumption by deleting already acknowledged

TCP segments.

Sending a file is not the main purpose of low power network applications. However, if

the transfer duration takes a long time, the performance of the WSN would decrease. Using

the same topology as defined above, we compute the transfer duration of the same file using

TCP, DTC and NewDTC. Figure 4.8 shows that in a CSMA-CA network, NewDTC reduces

the transfer duration by about 35-60% compared to TCP and by 14-45% compared to DTC.

This is due to the proposed cache management which reduces unnecessary end-to-end

retransmissions, a scheme that disables sending multiple copies of the lost segments, and

an acknowledgment detection mechanism that prevents an intermediate node to retransmit

an acknowledged segment.

48

4.5. PERFORMANCE EVALUATION

10−6 10−5 10−4
2

3

4

5

6

BER

C
on

su
m
ed

en
er
gy

(J
)

TCP
DTC

NewDTC

(a) Consumed energy

10−6 10−5 10−4
0

20

40

60

80

BER

T
ra
n
sf
er

d
u
ra
ti
on

(s
)

TCP
DTC

NewDTC

(b) Transfer duration

Figure 4.9: Comparison of TCP, DTC and NewDTC with different bit error rates (number
of hops=6)

4.5.3.2 Bit Error Rate

In this section, we study DTC performance with different bit error rate scenarios. Figure 4.9

compares the total consumed energy by TCP, DTC, and NewDTC nodes. It shows that

NewDTC nodes consume 27.9% less than the TCP ones in high BER networks (10−4) and

about 23% less in low BER networks (10−6).

Figure 4.9 shows that NewDTC also reduces the file transfer duration. Results show

that NewDTC achieves higher throughput than TCP and DTC.

4.5.4 Round Trip Time Computation

DTC proposes to compute an RTT value from the time of reception a data segment to the

time of reception of its ACK and then take 1.5 × RTT as RTO value. In Section 4.3.5,

we explained that the TCP SACK option can also used to compute the RTT value. In

fact, if an intermediate node receives a TCP segment with a SACK option acknowledging

segment n, then, it computes the RTT of this segment and then updates the RTO.

In order to justify our motivation for the computing method of RTT, we compare

NewDTC to the same version of NewDTC with RTT smoothing. We propose the use of

Paxson and Allman’s algorithm [PA00] for computing the RTO value. Figure 4.10 shows

that a better RTO computing leads not only to reduce the total consumed energy by

wireless nodes but also to decrease the transfer duration and thus to improve the TCP

throughput.

49

CHAPTER 4. MAKING TCP MORE ENERGY-EFFICIENT FOR LOW
POWER NETWORKS

2 4 6 8 10
0

2

4

6

8

Number of hops

C
on

su
m
ed

en
er
gy

(J
)

RTO = Instantaneous RTT
RTO = Smoothed RTT

(a) Consumed energy

2 4 6 8 10

20

40

60

80

Number of hops

T
ra
n
sf
er

d
u
ra
ti
on

(s
)

RTO = Instantaneous RTT
RTO = Smoothed RTT

(b) Transfer duration

Figure 4.10: Smoothed RTT computing improves TCP performance

4.5.5 Comparison between TCP, DCA, and TDA

Now, we focus on studying the impact of delayed acknowledgments on the energy con-

sumption. All previous studies compared between the proposed TCP algorithms based on

the throughput. In this section, we present a first energy efficiency comparison of these

TCP algorithms.

1 2 3 4 5 6 7 8

20

40

60

80

Number of hops

G
o
o
d
p
u
t
(k
b
p
s)

TCP
TCP-DCA
TCP-TDA

10 12 14 16 18 20

5

6

7

8

9

Number of hops

G
o
o
d
p
u
t
(k
b
p
s)

TCP
TCP-DCA
TCP-TDA

Figure 4.11: Comparison between TCP, TCP-TDA and TCP-DCA in terms of Goodput

Figure 4.11 shows that our results are close to the ones presented in [CMSM09]. In

fact, TCP-TDA increases more the TCP throughput than TCP-DCA. TCP-TDA does not

limit the delayed window size which allows the TCP source to send more segments before

receiving an acknowledgment. We assume that the source node has a large sending buffer

50

4.6. CONCLUSION

to do that.

1 2 3 4 5 6 7 8

0

2

4

6

8

Number of hops

C
on

su
m
ed

E
n
er
gy

(J
)

TCP
TCP-DCA
TCP-TDA

10 12 14 16 18 20

10

15

Number of hops
C
on

su
m
ed

E
n
er
gy

(J
)

TCP
TCP-DCA
TCP-TDA

Figure 4.12: Comparison between TCP, TCP-TDA and TCP-DCA in terms of consumed
energy

Figure 4.12 shows the consumed energy by all wireless nodes in different TCP algo-

rithms. We can see that all TCP delayed acknowledgment algorithms are more energy

efficient than standard TCP and reduce the total consumed energy by 40%. Moreover,

Figure 4.12 shows that TCP-TDA is more energy-efficient than TCP-DCA because it re-

duces more the number of TCP acknowledgments segments.

4.6 Conclusion

In this chapter we have identified some points that should be improved to make TCP viable

for low power networks. This chapter proposed some improvements to a distributed TCP

caching algorithm for unicast transmission in low power networks. We have evaluated our

contribution by simulation and verified that it reduces the amount of consumed energy by

up to 30 percent and increases the throughput due to a better congestion management.

51

CHAPTER 4. MAKING TCP MORE ENERGY-EFFICIENT FOR LOW
POWER NETWORKS

52

Chapter 5

TCP header compression for low power

networks

Contents

5.1 Introduction . 54

5.2 Related work . 55

5.3 TCP Header Format . 56

5.4 TCP Header Compression . 58

5.4.1 Dynamic fields compression . 60

5.4.2 Context management . 63

5.4.3 Segment loss management . 63

5.4.4 LOWPAN TCPHC Format . 64

5.4.5 TCP Option Compression . 66

5.4.6 Example of compressed TCP headers 67

5.5 Experimental Setup . 68

5.5.1 Physical setup . 68

5.5.2 Hardware setup . 68

5.5.3 Software setup . 69

5.5.4 Energy consumption . 70

5.6 Results and Discussion . 71

5.6.1 TCPHC performance in loss-free environments 71

5.6.2 TCPHC performance in lossy environments 73

5.7 Conclusion . 73

53

CHAPTER 5. TCP HEADER COMPRESSION FOR LOW POWER
NETWORKS

5.1 Introduction

In this chapter, we focus on TCP header compression for low power networks. Deploying

TCP allows current IP-based devices to communicate directly with all wireless devices

using their TCP/IP stack. Moreover, non-TCP/IP reliable transport protocols need a

complex algorithm on the Edge Router. Thus the use of TCP reduces the complexity at

the Edge Router (ER), which is an IPv6 router that interconnects the wireless network to

another IP network.

Nevertheless, TCP performance is mainly harmed due to its header length. As an

illustration, the maximum physical layer packet size in IEEE 802.15.4 networks [IEE06]

is 127 bytes, and medium access layer and link layer security requirements leave only 81

bytes for upper layers data; finally, the use of IPv6 [Ste98] as a network protocol header

(40 bytes) without compression leaves only 41 bytes for transport protocols. TCP uses 20

bytes in the header (if no TCP options are included), which leaves only 21 bytes for the

application layer if no compression scheme is applied. Even with 6LoWPAN adaptation

layer, a pure TCP acknowledgment (i.e., a TCP ACK carrying no data) without any TCP

options represents 25% of the payload of an IEEE 802.15.4 MAC frame while TCP pure

ACKs represent roughly 33% of the total number of segments exchanged in a TCP session

(this figure may go up to roughly 50% if the Delayed ACK mechanism is not used). There-

fore, a TCP header compression algorithm is needed for 6LoWPANs. Such a compression

algorithm should respect some requirements: efficiency (the scheme must provide small

header), transparency (the resulting header after a compression and decompression should

be identical to the original header), and disordering tolerance (the scheme must be able

to decompress compressed segments correctly even when segments arrive with a moderate

disordering (1-2 packets)). Without these requirements the header compression algorithm

can not be energy-efficient.

We propose LOWPAN IPHC (TCPHC) [ART10], a new TCP header compression algo-

rithm in order to reduce significantly the TCP header size for 6LoWPAN. The TCP header

compression is performed in wireless nodes and the edge routers between the 6LoWPAN

and the external IP network. Moreover, the TCPHC mechanism can be used in conjunc-

tion with the IPv6 header compression proposed by 6LoWPAN (IPHC) [HT10] and thus

reduces all header overheads (i.e., IPv6 and TCP) to about seven to 10 bytes instead of 60

bytes.

The goal of this chapter is to introduce our new TCP header compression algorithm and

to present an experimental evaluation of the TCPHC algorithm. The evaluation is done on

our testbed in different environments (low-BER and high-BER environments). We compare

the performance of the legacy TCP and of TCPHC based on two main metrics, namely

transfer duration and the consumed energy. The results show that the TCPHC mechanism

can reduce the size of the TCP header to 6 bytes in 95% of the cases and the consumed

54

5.2. RELATED WORK

energy by 9% to 16% depending on the scenario. Although these gains seem low, given

the context of low power networks, our header compression algorithm would increase the

lifetime of the low power networks.

The remainder of this chapter is organized as follows. Section 5.2 presents a brief

overview of the related works in the area of TCP header compression. Section 5.3 presents

the TCP header fields. Section 5.4 presents an overview of the TCPHC mechanism. We

describe our testbed in Section 5.5. Section 5.6 shows experimental results.

5.2 Related work

This section presents prior work on TCP/IP header compression. In particular, we briefly

describe three existing TCP header compression algorithms and discuss why they do not

fit to low power networks. A more detailed discussion of these algorithms can be found

in [JPS07].

One of the first TCP/IP header compression methods was Compressed TCP (CTCP),

which has been proposed by Jacobson [Jac90]. Jacobson’s header compression algorithm

distinguishes dynamic fields from static fields. The static fields (i.e., fields that are expected

to be constant throughout the lifetime of the packet stream such as source address and

source port) are sent in two situations: when initiating a connection, and when refreshing

the context (i.e., the state used by the compressor to compress a header, and by the

decompressor to decompress a header) after a loss of synchronization. CTCP proposes

to send the difference between the current and the previous value of dynamic fields (e.g.,

sequence number, acknowledgment number). When the synchronization is lost between the

compressor and the decompressor (i.e., the destination does not success to decompress the

compressed segments), the TCP sender sends a segment with a regular header to refresh the

context. Experimental studies [PM97,SFRF01,Wan04] have shown that the performance

of Jacobson’s algorithm may degrade significantly in noisy/lossy network environments.

An important disadvantage of CTCP is that it does not support TCP options, some of

which are ubiquitous nowadays (e.g., SACK).

In [DNP99], Degermark et al. enhances Jacobson’s TCP header compression by intro-

ducing a mechanism, called TWICE, to repair incorrectly-decompressed headers. [DNP99]

also describes a mechanism for explicitly requesting the transmission of less-compressed or

uncompressed headers. Such a mechanism is especially suited for pure TCP acknowledg-

ments. Note however that Degermark’s header compression algorithm does not currently

provide a compression method for TCP options; changing option fields are carried in com-

pressed headers, but without any compression. Also, the header request mechanism may

be unsuited for 6LoWPAN networks, whose low bit rates and strong energy constraints

are at odds with any additional signaling overhead. In addition, these two schemes are

55

CHAPTER 5. TCP HEADER COMPRESSION FOR LOW POWER
NETWORKS

based on sending a delta for the evolution of the sequence and acknowledgment fields. In

case of de-sequencing, this latter leads to a complex reordering. TCPHC enhances the

two previous algorithms by defining an adapted header compression of TCP for low power

networks by sending the least significant bytes instead of sending a delta value. Moreover,

TCPHC completes these solutions by defining header compression schemes for the most

commonly used TCP options.

ROHC-TCP [JPS07] improves [DNP99] by providing a new method for compressing all

TCP header fields, including the TCP options. ROHC-TCP proposes also to start com-

pressing packets from the SYN segments, using parameters from previous or simultaneous

connections. This may offer noticeable improvements in performance when most TCP

flows are short-lived, i.e., composed of a small number of data segments. Nevertheless, the

ROHC-TCP algorithm is fairly complex and its memory requirements may not be adequate

in memory-constrained devices.

The TCPHC algorithm, described in this chapter, supports features like the compression

of TCP options adapted for low power networks and at the same time it is relatively simple

and easy to implement in memory- and CPU-constrained devices.

5.3 TCP Header Format

The TCP header consists of 11 fields, of which 10 are required. The 11th field is an optional

extension field. Figure 5.1 shows the TCP header format. A detailed description of the

TCP header fields can be found in [Pos81,RFB01,DNP99].

1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Source Port Destination Port
Sequence Number

Acknowledgment Number

Data

Offset
Reserved

F
IN

S
Y
N

R
S
T

P
S
H

A
C
K

U
R
G

E
C
E

C
W

R

Window

Checksum Urgent Pointer

Options Padding

Figure 5.1: TCP header format

Source Port (16 bits): The source port number.

Destination Port (16 bits): The destination port number.

56

5.3. TCP HEADER FORMAT

Sequence Number (32 bits): The sequence number of the first data octet in this seg-

ment (except when SYN is present). If SYN is present the sequence number is the

initial sequence number (ISN) and the first data octet is ISN+1.

Acknowledgment Number (32 bits): If the ACK control bit is set this field contains

the value of the next sequence number the sender of the segment is expecting to

receive. Once a connection is established this is always sent.

Data Offset (4 bits): The number of 32 bit words in the TCP Header. This indicates

where the data begins. The TCP header (even one including options) is an integral

number of 32 bits long.

Reserved (4 bits): Reserved for future use. Must be zero.

Control Bits (8 bits): from left to right

CWR: Congestion Window Reduced flag is set to indicate that it received a TCP

segment with the ECE flag set.

ECE: if SYN flag is set (1) ECN-Echo indicates that the TCP node is ECN capable,

else the packet it indicates that a packet with ECN flag set in IP header is

received (added to header in [RFB01]).

URG: Urgent Pointer field significant.

ACK: Acknowledgment field significant.

PSH: Push Function.

RST: Reset the connection.

SYN: Synchronize sequence numbers.

FIN: No more data from sender.

Window (16 bits): The number of data octets beginning with the one indicated in the

acknowledgment field which the sender of this segment is willing to receive.

Checksum (16 bits): The 16 bit checksum field is used for error-checking of the header

and data.

Urgent Pointer (16 bits): This field communicates the current value of the urgent pointer

as a positive offset from the sequence number in this segment. The urgent pointer

points to the sequence number of the octet following the urgent data. This field is

only be interpreted in segments with the URG control bit set.

57

CHAPTER 5. TCP HEADER COMPRESSION FOR LOW POWER
NETWORKS

5.4 TCP Header Compression

This section presents LOWPAN TCPHC (TCPHC) , the TCP header compression mech-

anism for 6LoWPANs. The main purpose of TCPHC is to reduce the protocol header

overhead, with the intent of reducing both bandwidth usage and energy consumption due

to packet transmissions.

Indeed, TCPHC does not only introduce a header compression algorithm but also pro-

vides a scheme to allow establishing TCP connections between an external IP host and

a LoWPAN host, and between two LoWPAN hosts. The former type of connection is

performed by an Edge Router (ER), which links the 6LoWPAN to an external IPv6-based

network. Figure 5.2 shows a typical 6LoWPAN topology with three edge routers, which

create a gateway between the LoWPAN network and the external IP network.

Internet

Edge

routers

LoWPAN nodes

Uncompressed TCP/IP Compressed TCP/IP

Figure 5.2: The IPv6 over Low power Wireless Personal Area Network Topology

There are three kinds of headers:

• regular header: a normal, uncompressed header that does not carry any context

identifier (CID), which is a small unique number identifying the context that should

be used to decompress a compressed header.

• full header: an uncompressed header that updates or refreshes the context for a

packet stream. It carries a CID that will be used to identify the context,

58

5.4. TCP HEADER COMPRESSION

• compressed header: a header in which all the static fields are elided, and all the

dynamic fields are sent compressed.

The compression and the decompression mechanisms are implemented on the edge

routers and on the LoWPAN hosts. The external IP host sends and receives regular

TCP segments, whereas the LoWPAN host sends and receives segments with compressed

headers or full headers. The TCP connection can also be established between two LoWPAN

hosts inside the same low power network for Machine-to-Machine (M2M) communications

purposes.

External-IP host ER LoWPAN host

SYN
SYN with CID=0

SYN-ACK with CID

SYN-ACK

ACK
ACK with CID

(a) TCP connection initiated by an external IP-host

External-IP host ER LoWPAN host

SYN with CID

SYN with CID

SYN-ACK
SYN-ACK

ACK with CID

ACK with CID

(b) TCP connection initiated by a LoWPAN host

LoWPAN host LoWPAN host

SYN with CID

SYN-ACK with CID

ACK with CID

(c) TCP connection between two LoWPAN hosts

Figure 5.3: TCP connection initiation

Thus, all segments inside the LoWPAN can be either full header segments or compressed

header segments. The TCP header compression algorithm defines two kinds of headers. For

the TCP opening phase or messages with the URG flag set to 1, full header segments are

59

CHAPTER 5. TCP HEADER COMPRESSION FOR LOW POWER
NETWORKS

sent. For the other situations, compressed header segments are sent. All these segments

contain the Context Identifier (CID), which is used, with the IPv6 address of the first

involved LoWPAN node, to identify the connection during the transfer phase and thus

avoids to send on each packet the port numbers. The first LoWPAN node involved in the

TCP connection assigns the CID value and its size. Figure 5.3 shows the exchanged TCP

control segments in the TCP connection establishment phase.

5.4.1 Dynamic fields compression

In this section, we define the TCPHC specifications for TCP header compression for IEEE

802.15.4 networks. TCPHC initiates the compression algorithm by exchanging a context

identifier at the beginning of the connection. The compressor and decompressor nodes

save most fields of the first full headers as a context. The context consists of the header

fields whose values are constant. These fields should be elided because they are the same

or have few changes relative to the previous header. It is more efficient to send fewer bits,

which represent the difference from previous value, compared to the sending of the absolute

value. This mechanism is based on sending not all TCP fields, but only fields or parts of

fields that do change from the last one sent. For example, the most significant bytes of

the sequence number field can be elided if they are equal to those of the previous segment.

The following paragraphs detail how the TCP dynamic fields are compressed.

• Sequence and acknowledgment numbers: the sequence number is the number

of the first data byte in the segment (except for the first segment). The length of the

sequence number field is four bytes.

In a TCP connection, the sequence number is incremented for each segment by a

value, which is between zero and the Maximum Segment Size (MSS). Thus, the two

least significant bytes would change more frequently than the two most significant

ones. For example, only the least significant byte (LSB) should be sent if the other

bytes do not change. The decompressor module can deduce the elided bytes from

the previously received segments. The sequence number can be elided if a receiver

does not send data to the source and is acknowledging data segments. The same

algorithm is used for the compression of acknowledgment number and only bytes,

which are changed, should be carried in-line. If the TCP sink does not generate

data, the four bytes of sequence number are omitted in all acknowledgment segments

and only compressed acknowledgment fields should be sent.

Figure 5.4 shows an example of a sequence number compression. In the first step,

the source node compares the sequence number of the new TCP segment with the

sequence number of the context. In this example, only one byte of the segment

number (the less significant) has changed from the last segment sent. That byte

60

5.4. TCP HEADER COMPRESSION

Uncompressed packet IPv6 A B C E Payload

A B C D

A B C E

1. Compare

2. Encoding

3. Fill the header

4. Update the context

Number
of bytes

Encoding

0 00
1 01
2 10
4 11

Packet to be sent IPv6 01 CID E Payload

Figure 5.4: Sequence number compression

must be sent with the corresponding encoding. TCPHC fills the header with the

right encoding in the LOWPAN TCPHC header and the uncompressed header field

with the uncompressed byte of the sequence number. Finally, TCPHC updates the

context fields.

Received packet IPv6 01 CID E Payload

A B C E

A B C D1. Decode

2. Decompress
the sequence number

3. Error-checking

4. Update the context

Number
of bytes

Encoding

0 00
1 01
2 10
4 11

Decompressed Packet IPv6 A B C E Payload

Figure 5.5: Sequence number decompression

Figure 5.5 shows an example of a sequence number decompression. In the first step,

the receiver decodes the two byte of LOWPAN TCPHC to know what are the fields

that have been compressed and how they are compressed. In this example, only

one byte of the sequence number (the less significant) has changed. That byte is

61

CHAPTER 5. TCP HEADER COMPRESSION FOR LOW POWER
NETWORKS

completed by three byte from the sequence number of the context. Then, TCP does

an error-cheking in order to assure correctness. Finally, TCPHC updates the context

fields.

Sender Receiver
ABCD ABCD

ABCD
ABC1D1 C1D1

.ABC2D2 C2D2

ABC2D2

(a) TCPHC: The receiver succeeds to de-
compress the third segment

Sender Receiver
ABCD ABCD

ABCD
ABC1D1 ∆1 = C1D1 −CD

.ABC2D2 ∆2 = C2D2 −C1D1

ABCD + ∆2

(b) CTCP: The receiver fails to decompress the
third segment

Figure 5.6: Comparison between TCP and CTCP in terms of sequence number compression

Our algorithm is more loss-tolerant than Jacobson’s algorithm (CTCP). In fact, even

if one TCP segment is lost, our TCP header compression algorithm has more chances

to decompress the next compressed TCP segment. Figure 5.6 shows a scenario where

the first segment is sent with-in full header. The second segment is lost and has not

been by the receiver. CTCP sends detla in the segment 2, while TCPHC sends the

two uncompressed bytes of the sequence number field. The third segment segment

is correctly received in both cases, however, only TCPHC succeeds to uncompress

the compressed segment and keeps the synchronization between the sender and the

receiver.

• The window field can be omitted if it does not change in time. The TCP sender

compares the window size in the TCP header and in the context. If only one byte

is different, the different byte must be sent. Otherwise, if all the two bytes are the

same, nothing must be sent. Else, if both of the two bytes are different, 2 bytes must

be sent.

• Flags are omitted because TCP control messages are sent uncompressed, except

SYN flag. The not compressed flags are: Push, Urgent, Congestion Window Reduced

(CWR) and ECN-Echo (ECE). They are sent in the TCPHC encoding.

• The urgent pointer field is sent in uncompressed header format only if the urgent

flag is set. Otherwise, this field is elided.

• The checksum is not compressed and is used by the receiver to check if the decom-

pressed TCP segment is received correctly.

62

5.4. TCP HEADER COMPRESSION

5.4.2 Context management

The CID management is an important key feature of LOWPAN TCPHC. The CID is

always allocated by the LOWPAN hosts. The Interface Identifier (IID) (e.g., the MAC ad-

dress) of a LoWPAN host and the CID is utilized as a key by the wireless hosts and the edge

routers in order to identify a TCP connection. Because the CID and context are precious

resources for the sensor node, we tried to use them efficiently in our implementation.

Figure 5.3 (a) shows an example where an external host initials a TCP connection.

Upon receiving the SYN segment, the ER does not create a new context but retransmits

the SYN segment to the wireless host in full header format with an CID field equal to 0.

If the wireless host accepts the connection, it creates a new context, and assigns to it the

smallest number from the available CID numbers. When the ER receives the SYN-ACK,

it creates a new TCP header compression context using the received information from the

TCP header fields.

In a second case, where a wireless node initiates the TCP communication, the ER

creates directly a new context when it receives the SYN segment. The SYN segment

contains the CID chosen by the wireless node (see Figure 5.3 (b)). In the last case (i.e., a

TCP connection between two wireless nodes), the CID is chosen by the node that initiated

the connection (see Figure 5.3 (c)).

The edge router to which a LoWPAN node host is attached may change over time, due

to route instability or to host mobility. However, this change should not break the TCP

communication. To ensure the TCP communication despite the change of ER, the ERs

should share the contexts of current connections. So, even if a 6LoWPAN node changes

its attached ER, the new ER should continue to compress the segments using the same

context. Context exchange and management between ERs are left for future work.

The ER should free a context when a TCP connection is finished (e.g., reception of FIN

control messages). The edge router can also free a connection after a long silent period

(i.e., when no messages are exchanged after a certain period of time). The ER can remove

the context of a TCP connection after a long period of inactivity that may not be closed.

In this case, after receiving a new data segment, the connexion continue but without any

compression.

5.4.3 Segment loss management

Here, we present how the TCPHC mechanism should react when a segment is lost or is

assumed to be lost. The loss is handled when the TCP ACK segment is not received

within the retransmission timeout (RTO). The ER handles a retransmission by scanning

the sequence numbers. The ER should send a retransmitted segment without compressing

the dynamic fields. This mechanism allows updating the context on both sides after a

63

CHAPTER 5. TCP HEADER COMPRESSION FOR LOW POWER
NETWORKS

packet loss.

We assume that the 6LoWPAN has a low bit rate, and also that nodes are memory-

constrained and thus the TCP window size is probably limited to a few segments. In this

case, the loss of synchronization will likely not lead to a burst of losses. Therefore, this

thesis does not present a refresh algorithm to update the context between the compressor

and the decompressor.

5.4.4 LOWPAN TCPHC Format

5.4.4.1 TCP segments types

This section presents different types of TCP segments. In fact, three types of packets are

used in a TCP session with header compression: regular header, full header and compressed

header. Figure 5.7 shows the fields of different TCPHC packets. Figure 5.7 (a) shows the

header stack of a regular TCP segment. The 6LoWPAN next header compression (NHC)

flag of the 6LoWPAN encoding is equal to 0 and indicates that next header (i.e., TCP

header) is not compressed.

Figure 5.7 (b) shows a full header TCP segment, an uncompressed header that updates

or refreshes the context for a packet stream. It carries a dispatch equals to 00000001 and

a CID that will be used to identify the context. Note that the NHC flag of the 6LoWPAN

encoding is equal to 1 and indicates that the TCP header compressions is enabled.

Figure 5.7 (c) shows the header stack of a compressed TCP segment. The NHC flag

of the 6LoWPAN header is equal to 1 and indicates that the TCP header is compressed.

The TCPHC header carriers a LOWPAN TCPHC fields of two bytes that describe how

the TCP header fields are compressed or elided. This field is followed by a CID and

the uncompressed TCP header fields. The next section describes with more details the

LOWPAN TCPHC encoding.

IPHC (NHC=0) TCP header Payload

(a) Regular header TCP segment

IPHC (NHC=1) 00000001 CID TCP header Payload

(b) Full header TCP segment

IPHC (NHC=1) LOWPAN TCPHC CID uncompressed TCP header fields Payload

(c) Compressed header TCP segment

Figure 5.7: Different TCPHC packet format

64

5.4. TCP HEADER COMPRESSION

5.4.4.2 LOWPAN TCPHC Format

Figure 5.8 shows the fields of LOWPAN TCPHC.

0 1 2 3 4 5 6 7 8 9 0
1

1 2 3 4 5

1 1 0 Id Seq Ack W CWRECE F P T S

Figure 5.8: TCP Header Encoding

Id: Context Identifier size

0: CID is coded in 8 bits.

1: CID is coded in 16 bits.

Seq: Sequence Number:

00: All 32 bits of Sequence Number are elided.

01: The 8 less-significant bits of Sequence Number are carried in-line. The remaining

24 bits are elided.

10: The 16 less-significant bits of Sequence Number are carried in-line. Last 16 bits

of Sequence Number are elided.

11: All 32 bits of Sequence Number are carried in-line.

Ack: Acknowledgment Number:

00: All 32 bits of Acknowledgment Number are elided.

01: The 8 less-significant bits of Acknowledgment Number are carried in-line. The

remaining 24 bits are elided.

10: First 16 less-significant bits of Acknowledgment Number are carried in-line. Last

16 bits of Acknowledgment Number are elided.

11: All 32 bits of Acknowledgment Number are carried in-line.

W: Window:

00: The Window field is elided.

01: The less-significant byte of Window field is carried in-line. The second byte is

elided.

65

CHAPTER 5. TCP HEADER COMPRESSION FOR LOW POWER
NETWORKS

10: The most-significant byte of Window field is carried in-line. The first byte is

elided.

11: Full 16 bits for Window field are carried in-line.

F: Fin flag

P: Push flag

CWR: Congestion Window Reduced

ECE: ECN-Echo

T: Indicates if the TCP header contains Timestamp option

S: Indicates if the TCP header contains SACK option

Fields carried in-line (in part or in whole) appear in the same order as they do in the

TCP header format. The TCP Length field must always be elided and it is inferred from

lower layers using the 6LoWPAN fragmentation header or the IEEE 802.15.4 header.

5.4.5 TCP Option Compression

This section defines a compression method for the TCP options most likely to be used in

6LoWPAN. The TCP options are negotiated at the connection establishment phase. The

ER can decide to allow or to deny an option sent in the SYN segment. This is compatible

with standard TCP even if the TCP host in the external network does not know who

refused the TCP options. LOWPAN TCPHC compresses the mostly used TCP options :

SACK and Timestamp. We assume that the SACK and Timestamp are enabled by default.

The MSS option is sent uncompressed in the SYN segments. The Window Scale Option

(WSO) is useless in 6LoWPAN because it is more performance to use small windows than

large windows.

LOWPAN TCPHC specifies two bits for SACK and Timestamp TCP options (see 5.8).

Figure 5.9 shows the structure of a TCP segment including option compressed using

LOWPAN TCPHC. The size of the SACK option is 4 bytes and the size of Timestamp

option is variable from 4 to 8 bytes.

Encoding

LOWPAN TCPHC SACK

option

Timestamp

option

Payload

Figure 5.9: TCP header option configuration

66

5.4. TCP HEADER COMPRESSION

5.4.5.1 SACK

The SACK option [Mat96,FMMP00] should be negotiated in set-up phase, then the option

may be used when dropped segments are detected by the receiver. This option is to

be used to convey extended acknowledgment information over an established connection.

LOWPAN TCPHC allow to send only one block SACK. The left edge of the block can be

replaced by the offset between the first byte of the segment and the right edge by the length

of the block. The Left edge and the right edge will be coded in 16 bits (see Figure 5.10).

Left Edge (16 bits) Right Edge (16bits)

Figure 5.10: Compressed SACK option

5.4.5.2 Timestamp

This option carries eight-byte timestamp fields. If timestamp options [JBB92] are ex-

changed in the connection set-up phase, they are expected to appear on all subsequent

segments. This overhead added by this option can be reduced: a TCP node, which does

not sent data, is not interested in computing the RTT. And thus, it can reply by sending

only Timestamp Echo Reply field (TSecr). However, the Timestamp Value field (TSval) is

more important for TCP that send data.Then, if the T flag and ACK flag are set, it mean

that the next 4 byte contain the TSecr. Otherwise, (i.e., if the ACK flag is not set) the

4 bytes contain the TSval.This optimization is only valid when a single TCP sends data.

Otherwise, the two four-bytes should be sent.

5.4.6 Example of compressed TCP headers

In this section, we present an example of a compressed TCP header using LOWPAN TCPHC.

Figure 5.11 represents a header of a compressed TCP data segment. The first 16 bits are

the LOWPAN TCPHC encoding. The window field has not been changed compared to

its antecedent, the two bytes of the lowest bytes of the sequence number that have been

changed. The timestamp and Sack options bits are equal to 0 and indicates that ”no TCP

header option”. The size of this header is seven bytes.

3

1 1 0

1

0

2

0 1

2

0 0

2

0 0

1

0

1

0

1

0

1

0

1

0

1

0

8

CID

16

Seq. Number

16

Checksum

Figure 5.11: Compressed TCP header encoding

67

CHAPTER 5. TCP HEADER COMPRESSION FOR LOW POWER
NETWORKS

5.5 Experimental Setup

In this section, we describe our wireless testbed that we used in order to evaluate our header

compression algorithm. Moreover, we present the hardware setup, the physical setup, and

the placement of our wireless devices.

5.5.1 Physical setup

In our wireless testbed, seven wireless nodes are distributed with the same distance (be-

tween three and four meters) between each neighbor. The position of the wireless devices

is shown in Figure 5.12. We can distinguish four types of wireless devices based on their

functionalities:

1. The Edge Router (ER) is the border router that connects the wireless network to the

IP-based wired network.

2. Wireless nodes (N1, N2, N3, N4, and N5) can either be a Terminal Node (TN), or

only a relay of data frames from the ER to the TN and vice-versa.

3. The External Node (EN) is an external sensor node in the same wireless network,

which generates a CBR traffic to increase the packet loss ratio.

5.5.2 Hardware setup

In our testbed, all wireless devices are connected to a standard laptop by the USB port.

This solution allows us to log the output messages from the wireless devices to the laptop.

The embedded devices used in our testbed are Crossbow TelosB 1 motes. They use

Texas Instruments MSP430 microcontroller, which offers a 10kB RAM, and a 48 kB pro-

gram flash memory. The Crossbow TelosB radio is CC2420 2, which uses ISM frequency

band (from 2400 MHz to 2483.5 MHz) and offers 250 kbps data rate.

Before starting our experiments, we explored the use of radio channels. We found that

the radio environment is highly polluted by the IEEE 802.11 networks, because the IEEE

802.15.4 uses the same radio frequency as IEEE 802.11. To reduce this effect, we used the

last channel of IEEE 802.15.4 (channel number 26) as described in [IEE06].

1http://www.hoskin.qc.ca/uploadpdf/Instrumentation/CrossBow/hoskin TPR2400CA 42efb73715b8b.pdf
2www.flexipanel.com/Docs/CC2420 Data Sheet 1 2.pdf

68

5.5. EXPERIMENTAL SETUP

ERN1

N2

N3 N4

N5

EN

Laptop StationWireless Devices

1m 3m 3m

1.5m

1.5m

3m

Figure 5.12: The distribution of the wireless motes in the testbed

5.5.3 Software setup

In our work, we use Contiki OS as the operating system for our wireless devices.

We have chosen Contiki OS because it already implements 6LoWPAN, UDP, and TCP.

Contiki OS3 is an open source operating system for networked embedded devices that

includes the uIPv6 [Dun03] stack. Moreover, Contiki OS provides standard operating

system features like threads, timers, random number generator, clocks, a file system, and

a command line shell.

The 6LoWPAN implementation in Contiki OS is conformant to [HT10]. TCP is par-

tially implemented on Contiki OS because of the memory-constraints of the wireless devices.

In uIP, all RFC requirements that affect host-to-host communication are implemented, ex-

cept for some mechanisms, such as soft error reporting.

A more detailed description of TCP implementation on Contiki OS is as follows:

• Maximum Segment Size (MSS): the default value of MSS in Contiki is 48 bytes.

Fragmentation and recovery is not implemented, instead, a short MSS is utilised to

send a TCP segment in one IEEE 802.15.4 frame.

3www.sics.se/contiki

69

CHAPTER 5. TCP HEADER COMPRESSION FOR LOW POWER
NETWORKS

Figure 5.13: Crossbow Telos mote

• Retransmissions: driven by the periodic TCP timer. Since there is not any buffer to

remember the packets sent previously, Contiki OS requires that the application takes

an active part in performing the retransmissions.

• Flow Control: in uIPv6, the application cannot send more data than the receiving

host can buffer.

• Congestion Control: there is no congestion control mechanism implemented on Con-

tiki OS because uIPv6 can handle only one in-flight TCP segment per connection.

5.5.4 Energy consumption

Contiki OS provides a tool to compute the running time spent by a node on the transmit

and listen radio states. Moreover, the Contiki OS provides an estimation of its CPU

consumption.

Table 4.2 shows the energy power values, that have been obtained from CC2420 Datasheet

and the Texas Instruments MSP430 Datasheet4. Based on those values, we are able to com-

pute the consumed energy.

For example, the consumed energy EListen due to channel listening is equal to

EListen = TListen × Voltage × IListen (5.1)

where TListen and IListen are respectively the time spent by a mote in listen mode and the

listen current.

4http://focus.ti.com/general/docs/lit/getliterature.tsp?genericPartNumber=msp430f1611

70

5.6. RESULTS AND DISCUSSION

5.6 Results and Discussion

In this section, we describe the TCP scenario in detail. A TCP source sends 48 kbytes of

data to a TCP receiver. The maximum segment size is equal to 48 bytes, thus the TCP

source sends 1000 TCP data segments to the receiver.

We design two kinds of experiments: loss-free scenario and lossy scenario. In our

scenario, one node is a TCP source and the others are relay nodes. With respect to

Figure 5.12, the routing is such that for a i-hops scenario, Ni is the destination node and

nodes N1 to Ni−1 (in that order) relay TCP segments from ER to Ni.

In the experiment, we are mainly interested in the energy consumed by the CPU,

the radio transmission, and the radio listening during the TCP connection. We are also

interested in the number of segment retransmissions and throughput.

We study the TCP performance in a multi-hop scenario from one to five hops in terms

of both throughput and energy consumption. In our experiment, there are two traffics, one

is a TCP connection, the other is a constant bit rate (CBR) traffic generated by a UDP

traffic to increase the contention and to increase the bit error rate.

5.6.1 TCPHC performance in loss-free environments

In a first scenario, we compare legacy TCP to TCP with header compression, in terms

of transmitting energy consumption and transfer time for different numbers of hops. Fig-

ures 5.14 show the average and confidence interval of 10 runs. Figure 5.14 (e) shows that

the transfer time decreases when TCPHC is deployed. TCPHC reduces the transfer du-

ration by about 9% compared to legacy TCP, and thus increases the TCP throughput.

Figure 5.14 (a) shows that TCPHC reduces the transmissions energy consumption. The

TCPHC reduces by about 17% the energy consumed by all sensor nodes when there are 5

hops between the TCP sender and the TCP receiver.

Figure 5.14 (b) shows that the header compression algorithm does not increase the con-

sumed CPU energy. On the contrary, the CPU energy has been reduced by TCPHC. This

is due to the nature of our compression algorithm that does not add instructions requiring

a large computing time. Figure 5.14 (c) shows that TCPHC does not reduce significantly

the passive listening of the radio channel because 90% of this energy is dissipated by the

MAC and PHY layers in a passive listening of the channel. Finally, Figure 5.14 (d) confirm

previous results and shows that TCPHC reduces the total energy compared to the Contiki

version of TCP.

71

CHAPTER 5. TCP HEADER COMPRESSION FOR LOW POWER
NETWORKS

1 2 3 4 5

200

400

600

800

1,000

1,200

Number of hops

T
ra
n
sm

it
ti
n
g
E
n
er
gy

(m
J
)

TCP
TCPHC

(a) Transmit Energy

1 2 3 4 5
0

50

100

150

Number of hops

C
P
U

E
n
er
gy

(m
J
)

TCP
TCPHC

(b) CPU Energy

1 2 3 4 5
0

1

2

·104

Number of hops

E
n
er
gy

co
n
su
m
p
ti
on

of
L
is
te
n
in
g
(m

J
)

TCP
TCPHC

(c) Listening Energy

1 2 3 4 5
0

1

2

3

·104

Number of hops

T
ot
al

en
er
gy

(m
J
)

TCP
TCPHC

(d) Total Energy

1 2 3 4 5

40

60

80

100

Number of hops

T
ra
n
sf
er

T
im

e
(s
)

TCP
TCPHC

(e) Transfer Time

Figure 5.14: Experimental results of multi-hop TCP vs. TCPHC over 6LoWPAN without
concurrent CBR traffic.

72

5.7. CONCLUSION

5.6.2 TCPHC performance in lossy environments

Now, we compare legacy TCP to TCP with header compression in a lossy network. We

add a new traffic generated by the External Node with the purpose of increasing the

collisions and thus the packet error rate. To compare TCP performance with and without

the header compression algorithm, we plot the energy consumption, the TCP end-to-end

retransmission and transfer time with different number of hops between the TCP sender

and TCP receiver. Figure 5.15 (f) shows that the transfer time decreases when TCPHC

is deployed. The header compression algorithm reduces the transfer duration by about

15% compared to legacy TCP. The transfer time is reduced due to the short size of the

new segments, which require less time to be sent and received. Moreover, Figure 5.15 (b)

shows that TCPHC reduces the number of TCP end-to-end retransmissions compared

to legacy TCP because the PER of the compressed segments is lower than PER of the

normal segments. Figures 5.15 (a),(c) and (d) are similar to that observed in Figure 5.14

which confirm that TCPHC reduces the CPU and listening energy not only of loss-free

environment but also in lossy environment. Finally, Figure 5.15 (e) shows that the header

compression algorithm reduces the total energy consumption. As discussed in Figure 5.14,

we do not observe a significant improvement when the number of hops between the two

TCP hosts is less than or equal to two. However, the TCPHC reduces by about 15% the

energy consumed by all sensor networks when there are five hops between the TCP sender

and the TCP receiver. All those results show that TCPHC is a very interesting scheme for

making TCP more energy-efficient and viable for low-power networks.

5.7 Conclusion

This chapter has presented experimental results of a TCP header compression algorithm

over 6LoWPAN in a multi-hop scenario. Experimental results have shown that the larger

the distance between the TCP sender and the edge router, the more header compression

improves energy efficiency.

73

CHAPTER 5. TCP HEADER COMPRESSION FOR LOW POWER
NETWORKS

1 2 3 4 5

500

1,000

Number of hops

T
ra
n
sm

it
ti
n
g
E
n
er
gy

(m
J
)

TCP
TCPHC

(a) Transmitting Energy

1 2 3 4 5

0

200

400

600

Number of hops

R
et
ra
n
sm

is
si
on

s

TCP
TCPHC

(b) Retransmissions

1 2 3 4 5

0

50

100

150

200

Number of hops

C
P
U

E
n
er
gy

(m
J
)

TCP
TCPHC

(c) CPU Energy

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

·105

Number of hops

L
is
te
n
in
g
E
n
er
gy

(m
J
)

TCP
TCPHC

(d) Listening energy

1 2 3 4 5

0.2

0.4

0.6

0.8

1

1.2
·105

Number of hops

T
ot
a
l
en
er
gy

(m
J
)

TCP
TCPHC

(e) Total energy

1 2 3 4 5

100

200

300

Number of hops

T
ra
n
sf
er

T
im

e
(s
)

TCP
TCPHC

(f) Transfer Time

Figure 5.15: Experimental results of multi-hop TCP vs. TCPHC over 6LoWPAN with a
concurrent CBR traffic.

74

Part III

Impact of fragmentation on energy

consumption

75

Chapter 6

Impact of link layers fragmentation on

the TCP energy consumption

Contents

6.1 Introduction . 78

6.2 Related Work . 79

6.3 TCP energy consumption model 79

6.3.1 Link layer: one-hop model . 81

6.3.2 Multi-hop model . 84

6.3.3 TCP performance . 86

6.4 Results and discussion . 88

6.4.1 Model assessment . 89

6.4.2 FEC redundancy ratio and energy consumption 90

6.4.3 Selecting the TCP MSS to minimize energy consumption 91

6.5 Conclusion . 92

77

CHAPTER 6. IMPACT OF LINK LAYERS FRAGMENTATION ON THE
TCP ENERGY CONSUMPTION

6.1 Introduction

This chapter focuses on the energy cost of reliability when TCP is used in multi-hop

wireless low power networks. In what follows, we will illustrate some main issues by

considering the case of TCP in IPv6-enabled low power networks based on the 6LoWPAN

protocols [KMS07].

Many parameters affect the energy consumption of a reliable transport protocol, like

channel conditions (e.g., wireless losses, collisions), the level of link-layer reliability, the

number of links/hops, or the maximum size of link-layer frames (e.g., 127 bytes for IEEE

802.15.4). The length of such frames may require the fragmentation of IPv6 datagrams

before sending them. The 6LoWPAN layer compresses the IPv6 header and fragments IPv6

packets into short MAC frames. So, if the size of a TCP segment exceeds the maximum

allowed length, the 6LoWPAN layer fragments it so it fits into small link-layer frames.

Therefore, sending short TCP segments does not require any fragmentation. However,

the use of a small maximum segment size(MSS) increases the number of TCP segments

and, thus, the number of TCP acknowledgements and the corresponding MAC frames sent.

Besides, with small MSS values the overhead due to TCP headers becomes larger; this,

coupled with the small size of MAC frames, may result in very low protocol efficiency.

This chapter introduces a mathematical model aimed at predicting the energy consumed

by the wireless nodes of a low power network in a bulk-data transfer scenario, with TCP

used as a reliable transport layer. The model estimates TCP energy performance based on

the bit error rate, the maximum number of retransmissions at the link layer, the number of

hops between the sender and the receiver, the amount of Forward Error Correction (FEC),

and the TCP maximum segment size.

The proposed model allows us to study the tradeoffs involved in sending short versus

long TCP segments. We assume that the energy consumed in a data transfer depends

mainly on the number of bits sent. Thus, our analytical model estimates the number

of bits sent by all nodes in the network, taking into account the cumulated cost of all

the link layer transmissions. Indeed, the number of MAC frames sent can be large with

respect to the initial amount of data to transmit, because of link-layer retransmissions, the

redundancy added for Forward Error Correction, and also due to end-to-end (i.e., transport

layer) retransmissions when a TCP segment is lost before reaching the receiving node. We

apply the model to study the energy efficiency of TCP over a low power network using

6LoWPAN and 802.15.4 protocols, and to study the effect of the TCP segment size, of

the FEC redundancy ratio, and of the maximum link layer retransmission attempts on the

total energy consumption.

The remainder of the chapter is organized as follows. Section 6.2 presents a short

description of related work on modeling TCP energy consumption in wireless networks.

Section 6.3 presents the derivation of our analytical model. In Section 6.4, we apply

78

6.2. RELATED WORK

the analytical results to derive the best TCP segment size strategy in terms of energy

consumption.

6.2 Related Work

In [LS02], Lilakiatsakum and Senevirane propose an energy-efficiency metric to compare

the performance of different versions of TCP. The metric is the ratio between the amount

of bits sent by all nodes and the size of the application data. In this chapter, we adopt a

variant of that metric (the total amount of bits sent); we use a fixed value for the application

data size in all our numerical and simulation scenarios.

Bansal et al. [BSGM06] propose an analytical model to compute the energy consumed

for carrying a TCP flow over a multi-hop wireless network. The authors assume that all

wireless links have the same packet error rate and the same transmission power. They

compute the energy spent by all nodes for sending a single TCP segment. The energy

consumption is then a function of the packet error rate, the number of hops, and the

maximum number of link-layer retransmissions. However, [BSGM06] does not take into

account the cost of sending link-layer acknowledgements, nor the cost of transport-layer

acknowledgements, which we add in the model introduced here. Besides, we explicitly

consider the impact of lower-layer fragmentation and the impact of error correction, as

well as different per-link error rates on the energy-efficiency of TCP.

Barman et al. [BMAA04] and Gallucio et al. [GMP03] present an analytical study of

a TCP optimization problem in a hybrid wired/wireless network where the last hop is a

wireless link. The authors of both papers define a utility function, which is the ratio of

the throughput to the cost of a TCP connection. Our work completes these studies by

introducing a multi-hop model for computing the energy consumption. Note that in this

chapter we are not interested in the TCP throughput, because data rates are a secondary

concern in low power networks; instead, we focus mainly on the energy costs of a TCP

connection over multiple lossy links.

6.3 TCP energy consumption model

This section introduces a mathematical model to estimate the energy consumed by a

TCP transmission in a wireless low power network. In order to simplify the model, we

assume that such energy mainly corresponds to data emission and reception, and thus

directly depends on the number of bits sent by all nodes.

We therefore compute the expected total amount of bits sent for a successful end-to-end

TCP data transmission, as a function of several network parameters, namely: the bit error

rate, the link-layer maximum number of attempts, the FEC redundancy ratio, the number

79

CHAPTER 6. IMPACT OF LINK LAYERS FRAGMENTATION ON THE
TCP ENERGY CONSUMPTION

of hops between the source and receiver TCP hosts, and the TCP maximum segment size

(MSS).

For the convenience of the reader, Table 6.1 lists most of the variables used in this

chapter.

Table 6.1: Notations used in this chapter; capital italics letters correspond to probabilities,
bold letters to (expected) numbers of bits.

Variable Definition
h Number of hops between source and destination
r Maximum number of transmission attempts at the link layer
m Number of fragments corresponding to a single TCP segment (due

to link layer fragmentation)
α FEC redundancy ratio
B Bit error rate

Pfail Probability of a failure in a link-layer transmission attempt of a
data frame

Ppartial Probability of a link-layer data frame being correctly received and
the corresponding acknowledgement being lost

Psucc Probability of a successful link-layer transmission attempt
(data+acknowledgement are correctly received)

F Probability that a destination node does not receive a link layer
data frame after r attempts

Qs Probability of an end-to-end packet transmission success
Q f Probability of an end-to-end packet transmission failure
D Link-layer data frame size
A Link-layer acknowledgement frame size
H f Expected number of bits sent after r attempts knowing that the

(one-hop) transmission has failed
Hs Expected number of bits sent within r attempts knowing that the

(one-hop) transmission has succeeded
E f Expected number of bits sent for an end-to-end packet transmission

knowing that it has failed
Es Expected number of bits sent for a successful end-to-end packet

transmission knowing that it has succeeded
S Average number of bits sent for successfully transmitting a TCP

segment

80

6.3. TCP ENERGY CONSUMPTION MODEL

6.3.1 Link layer: one-hop model

We first focus on modeling the link-layer energy consumption, considering a CSMA-CA net-

work with error correction control techniques combining Automatic Repeat reQuest (ARQ) [FW02]

and Forward Error Correction (FEC).

6.3.1.1 Link layer mechanisms

Standard ARQ uses the cyclic redundancy check (CRC) error-detecting code that is added

to the data: The receiver uses the error-detecting code number to check the integrity of the

received data. After receiving a correct frame, the receiver replies by an ACK. If the sender

does not receive any ACK before a timeout1— because either the original message or the

ACK is lost, or they contain errors—, the sender retransmits again the same message. If

the receiver sees that the frame is damaged, the receiver discards it and does not send

an ACK. The ARQ algorithm continues until the sender receives an ACK or exceeds a

predefined number of attempts r.

ARQ is the algorithm most frequently used by link-layer protocols to reduce the packet

error rate. However, if the wireless network becomes very lossy, ARQ would increase the

transmission delay between the source and the receiver. Abrupt increases of the end-to-

end delay increase the round-trip time and may lead to a spurious TCP timeout. This can

deteriorate the TCP performance.

An orthogonal approach consists in applying Forward Error Correction (FEC). FEC is

a good solution for decreasing the packet error rate. The main idea of FEC is to add

redundancy to the original frame, to allow the destination node to detect and correct some

bit errors. In our case, if the size of a network datagram is greater than the maximum

transmission unit (MTU) of the link layer, the datagram is divided into fragments of length

K bits, and the FEC algorithm adds (α × K) redundancy bits to form a frame of length

D. The ratio α = D−K

K
between the amount of redundancy added by FEC and the original

frame length is called the redundancy ratio.

In what follows, we will consider an error-correction method like the well-known Reed-

Solomon [RG60] (RS) algorithm. By adding D − K bits to the K data, the RS algorithm

can correct up to (D −K)/2 bits.

6.3.1.2 Performance of one-hop transmissions

First, we only consider here a transmission between two immediate neighbors, without in-

termediate nodes. In CSMA-CA, two types of messages are used during data transmission:

the data message (i.e., the message that contains the useful data), and the acknowledge-

ment message sent by the receiving node. Figure 6.1 shows the three possible cases:

1Remark that we do not consider time issues in this model, thus, only losses can lead to retransmissions.

81

CHAPTER 6. IMPACT OF LINK LAYERS FRAGMENTATION ON THE
TCP ENERGY CONSUMPTION

a. Failure: A failure due to the loss of the data frame. The sender will retransmit the

frame.

b. Partial failure: The data frame is correctly received by the receiver, while the ac-

knowledgement frame is lost2. Therefore, the sender will (needlessly) retransmit the

data frame.

c. Success: A successful transmission of both the data and the acknowledgement frames.

Sender Receiver

Data frame
.

(a) Failure.

Sender Receiver

Data frame

Ack frame
.

(b) Partial failure.

Sender Receiver

Data frame

Ack frame

(c) Success.

Figure 6.1: Failure and success scenarios for one link-layer transmission attempt.

The probability of a successful transmission of a link-layer frame depends on the bit

error rate, the size of the message, and the redundancy ratio. Moreover, we assume that

2In a multi-hop setting, the receiver would nonetheless relay the frame to the next hop.

82

6.3. TCP ENERGY CONSUMPTION MODEL

a frame transmission fails as soon as the number of bits erroneously received exceeds the

number of correctable bits. The probability Pfail of having a failure (case (a) in Figure 6.1)

is then the error probability for a data frame, i.e.,

Pfail := 1 −

c∑

i=0

(

D

i

)

Bi(1 − B)D−i

where D is the number of bits of a data frame, c = D−K

2
=
αK

2
is the number of correctable

bits, and for two integers i and j,

(

j

i

)

is the number of possibilities of choosing i elements

among j, i.e.,

(

j

i

)

=
j!

i!(j − i)!
.

Likewise, denoting by A the size of an acknowledgement frame, the probability of a

partial failure is the probability that the data frame is correctly received but the acknowl-

edgement frame contains errors:

Ppartial := (1 − Pfail)
(

1 − (1 − B)A
)

,

whereas the probability of a success is

Psucc := (1 − Pfail)(1 − B)A.

Note that we assume that acknowledgement frames are sent without adding redundancy.

This is a reasonable assumption, given the current practices in most wireless technologies.

In order to estimate the energy consumption, we compute the expected number of bits

sent at the link layer. Remark that in cases of success or partial failure, D+A bits are sent,

whereas only D bits are sent in cases of failure. Recall however that the redundancy ratio

determines the number of useful bits per frame, and thus the number of frames to send.

Now, we take into account the link-layer sending attempts, following the ARQ technique

implemented by the MAC protocol. We denote by r the maximum number of attempts,

after which the sender of a data frame considers the receiver is unreachable.

The reception failure probability of the data frame after r attempts is simply the prob-

ability F of having r successive failures, i.e.:

F := Pr
fail. (6.1)

In that case, the total number of bits sent only comes from the sender (no acknowledgement

is sent), and thus equals

H f := r × D. (6.2)

83

CHAPTER 6. IMPACT OF LINK LAYERS FRAGMENTATION ON THE
TCP ENERGY CONSUMPTION

With the probability 1 − F, the receiver gets the data frame within the r link-layer

attempts. In that case, the total number of bits sent depends on the number of failures

and partial failures before a success, if any (we only know here that at least one attempt

led to a success or a partial failure). There are two possibilities:

• either all r attempts were failures or partial failures, but at least one of them was a

partial failure (since we are in the case where the receiver got the data),

• or the last of the k ≤ r attempts was a success (in the sense of case (c) in Figure 6.1).

Conditioned on the receiver getting the data frame within the r link-layer attempts,

the expected total number of bits sent Hs can therefore be computed as follows:

Hs =
1

1 − F

(
r∑

i=1

(

r

i

)

Pi
partialP

r−i
fail(rD + iA)

+

r∑

k=1

Psucc

k−1∑

i=0

(

k − 1

i

)

Pi
partialP

k−1−i
fail

(

kD + (i + 1)A
))

=
1

1 − F

(

rD
(

(Pfail + Ppartial)
r − Pr

fail

)

+ rAPpartial(Pfail + Ppartial)
r−1

+Psucc

r∑

k=1

(kD + A)(Pfail + Ppartial)
k−1
+ A

(
k−1∑

i=0

(

k − 1

i

)

Pi
partialP

k−1−i
fail i

))

(6.3)

In (6.3), k stands for the index of the first success in r attempts (if any), and i is the

number of partial failures among all attempts.

6.3.2 Multi-hop model

Let us now focus on the multi-hop case. An end-to-end transmission succeeds if the message

reaches the destination after a certain number h of hops.

In this chapter, we assume that link layer transmissions on each hop are independent.

We denote Bi the bit error rate and F i the frame error rate of the ith hop. F i is computed

as per (6.1), taking B = Bi. Therefore, the probability that a frame is correctly received by

a destination node is simply the probability Qs that all h one-hop transmissions succeed,

i.e.,

Qs =

h∏

i=1

(

1 − F i

)

(6.4)

where h is the number of hops from the sender to the receiver.

We assume here that the MAC layer is able to detect duplicate frames, such as those that

are produced in case of a partial failure (case (b) in Figure 6.1). This can be implemented,

84

6.3. TCP ENERGY CONSUMPTION MODEL

for instance, by using a sequence number in the MAC frame headers; when a node receives

from one neighbor two successive frames with the same sequence number, it assumes that

the corresponding Ack frame was lost and deletes the second frame. This avoids the

propagation of several copies of the same data frame.

Figure 6.2 shows the two possibilities for the outcome of the end-to-end transmission

of a frame.

Sender Receiver

.
.
.

(a) End-to-end failure scenario: the frame cannot be
forwarded after r unsuccessful retransmissions.

Sender Receiver

.

(b) End-to-end success scenario: the frame arrives
at the destination. This scenario may also include
partial failures over one or more hops (not depicted).

Figure 6.2: Failure and success scenarios in a multi-hop transmission.

Again, we express the expected number of bits sent, conditioned on the success of the

end-to-end transmission (encompassing possible link-layer retransmissions, within the limit

of r total attempts per hop).

• Knowing that the destination node correctly receives the message, the expected num-

ber of bits sent by all network nodes is simply

Es :=

h∑

i=1

Hsi
. (6.5)

• Knowing that the message was lost in one of the h hops, the number of bits sent

85

CHAPTER 6. IMPACT OF LINK LAYERS FRAGMENTATION ON THE
TCP ENERGY CONSUMPTION

depends on the hop where the loss (i.e., the failure of all r attempts) occurs. The

expected value then equals

E f :=

∑h
k=1(

∑k−1
i=1 Hsi

+H fk)
∏k−1

j=1(1 − F j)Fk

1 − Qs

(6.6)

where Hsi
and H fi are computed using (6.3) and (6.2), respectively.

6.3.3 TCP performance

We now study the energy consumption of TCP in a multi-hop wireless network, taking into

account the fact that TCP segments may be fragmented by lower layers if the total size of

data frames (that depends on the TCP maximum segment size (MSS)) exceeds the MTU

of those layers.

We can intuitively think of several opposite effects of the MSS, which suggest that a

trade-off has to be found:

i) If TCP segments are fragmented, the loss of one fragment leads to the loss of the

original TCP segment and therefore a new TCP end-to-end retransmission. Further, using

short TCP segments (i.e., a small MSS) saves CPU power associated to fragmentation and

reassembly. Moreover, sending several fragments (treated independently by lower layers)

increases the probability of collision between two TCP data fragments, due to the hidden-

node problem. As an illustration of that phenomenon, one can refer to Figure 6.4, provided

later on (see Section 6.4.1), where the number of collisions with long TCP segments is

much larger than when short TCP segments are used.

ii) On the other hand, the use of long TCP segments reduces the number of TCP seg-

ments sent by the source, and thus, the TCP header overhead (which can be very large,

for small MTU values) and the number of TCP acknowledgements.

To analyze such trade-off, we now apply the model presented in Section 6.3.2. Our

objective here is to determine an MSS choice that optimizes TCP performance, in terms

of energy consumption.

Let us consider that the MSS of TCP and the MTU of the MAC layer are such that

each TCP segment is fragmented into m link-layer frames. This encompasses the particular

case when no fragmentation occurs, that simply corresponds to m = 1. We will make the

assumption that TCP ACKs always fit in a single MAC frame, though it would be easy to

consider a more general case in which TCP ACKs are also fragmented.

To simplify the analysis, we assume that all fragments of a TCP data segment have

the same total size DDATA, and all TCP acknowledgement frames have the same total

86

6.3. TCP ENERGY CONSUMPTION MODEL

size DACK. At the destination, the segment is reconstructed from the received fragments.

The loss of a single link-layer frame induces the loss of the whole TCP segment, and thus

the retransmission of all m fragments. Further, we consider that the number of TCP

retransmissions is not limited; that is, the TCP source keeps on sending a segment until it

receives a TCP acknowledgement from the TCP receiver.

From the previous analysis, the success probability Ps of a TCP segment transmis-

sion attempt is simply the probability that all m data fragments be correctly sent to the

destination, and the TCP ACK be successfully sent back to the source:

Ps = Qm
s × Qs,ack ,

where Qs and Qs,ack denote the success probability of the multi-hop transmission of a TCP

data fragment and of a TCP acknowledgement frame, respectively. Qs and Qs,ack are simply

obtained by applying (6.4), but replacing D by respectively DDATA and DACK.

In our model, each TCP data fragment transmission succeeds or fails independently

of the others. Knowing that a transmission is successful at the TCP level (i.e., the TCP

ACK is correctly received by the TCP source, which implies that all m fragments correctly

reached the destination), the expected total number of bits sent by all nodes equals:

Ss := Es × m + Es,ack

As above, Es and Es,ack are obtained from (6.5) using DDATA and DACK, respectively, as

the size of a frame. Likewise, we also define E f ,ack from (6.6).

Knowing that a TCP transmission attempt has failed, the expected number of bits sent

end-to-end by all nodes is:

S f :=
1

1 − Ps

[

I f (1 − Qm
s)

︸ ︷︷ ︸

end-to-end transmission failure
of one or more of the m fragments

+ (Es × m + E f ,ack)Qm
s (1 − Qs,ack)

︸ ︷︷ ︸

end-to-end transmission failure of the TCP ACK

]

,

where I f is the expected total number of bits sent for the m fragments to reach the desti-

nation, knowing that they (i.e., at least one) finally fail. Formally,

I f :=

m∑

k=1

(

m

k

)
(

kE f + (m − k)Es

)

(1 − Qs)
kQm−k

s .

After some algebra, we get

I f = m(1 − Qs)E f + mEsQs(1 − Qm
s).

To simplify the analysis, we will assume that the TCP window is equal to one TCP seg-

87

CHAPTER 6. IMPACT OF LINK LAYERS FRAGMENTATION ON THE
TCP ENERGY CONSUMPTION

ment. This assumption is justified because a small window is a sensible choice for networks

with a moderate number of hops [FLZ+05]. Moreover, such small windows are typical of

current TCP implementations for low power networks (e.g., Contiki OS [DGV04]), since

the memory and CPU constraints of wireless embedded devices make it difficult to fully

implement TCP’s congestion control mechanisms.

We can now compute the total number of bits that have to be sent by all nodes, to

successfully transmit both a TCP segment and its corresponding TCP ACK. Since we

assumed the number of TCP retransmissions is unbounded (i.e., the TCP sender keeps on

retrying until the transmission succeeds), the mean number of transmissions for a given

TCP segment equals 1/Ps. This therefore corresponds to a total number of bits sent (per

segment) of

S := S f (1/Ps − 1) + Ss.

Finally, to successfully send a given amount M of application (“useful”) data, the expected

number of bits sent by all wireless nodes is S× ⌈M/MSS⌉. It is that final value that will be

considered as representative of the overall energy consumption of the TCP transmission.

6.4 Results and discussion

We will now compare the predictions of our analytical model to OMNET++ simulation

results, and discuss the tradeoff between sending long or short segments in different sce-

narios.

10−6 10−5 10−4 10−3

101

102

103

BER

C
on

su
m
ed

en
er
gy

(J
)

MSS = 512 (model)
MSS = 512 (simulation)
MSS = 64 (model)
MSS = 64 (simulation)

Figure 6.3: Energy consumption with long or short TCP segments, as a function of the
BER B (with r = 3).

88

6.4. RESULTS AND DISCUSSION

We apply our model to study the energy consumption of TCP on IPv6 over Low-

Power Wireless Personal Area Networks [KMS07], considering IEEE 802.15.4 [IEE06] as

the link-layer technology. The maximum link-layer frame size is thus equal to 127 bytes.

The 6LoWPAN layer adapts the IPv6 datagrams to the link-layer MTU, as explained

in [KMS07].

We consider two MSS choices (MSS=64 and MSS=512 bytes) for a given TCP session.

When the MSS is 64 bytes, no fragmentation is performed by the 6LoWPAN layer, whereas

in the case where MSS=512 bytes, this adaptation layer splits each segment into 8 frames.

6.4.1 Model assessment

Table 6.2: Default simulation parameters
Parameter Value
h 5
r 3
α 0
BER B 3 × 10−4

Link-layer Ack frame size 40 bits
Link-layer data frame header 120 bits
IP header 160 bits
TCP header 160 bits

We first validate the results of our analytical model, through the simulation of the fol-

lowing scenario. A TCP sender sends a short file (51.2 Kbytes) to a TCP receiver. We con-

sider an average size of 20 bytes for IPv6 headers, thanks to the LOWPAN IPHC [MKHC07]

compression. The simulation results plotted are average values after 30 simulation runs.

The TCP window size is set to 1, which implies that no congestion losses occur (we only

consider one flow here).

As a result, retransmissions can only be due to transmission errors, as described in Sec-

tion 6.3. For the sake of simplicity, all links have the same bit-error rate Bi = B, i = 1, . . . , h.

Unless indicated otherwise, the parameters used in simulations and in numerical computa-

tions correspond to the default values shown in Table 6.2. Finally, as in Section 6.3.3, the

maximum number of transport-layer retransmissions is not bounded.

Figure 6.3 shows that analytical results closely match simulations results when a short

TCP segment size is chosen. However, we can see that with long TCP segments, the model

tends to underestimate the energy consumption. This difference comes from the presence of

collisions between fragments of a given TCP data segment, that are not taken into account

in the analytical model but do occur in simulation, as illustrated in Figure 6.4. In the

89

CHAPTER 6. IMPACT OF LINK LAYERS FRAGMENTATION ON THE
TCP ENERGY CONSUMPTION

1 2 3 4 5 6

100

101

102

103

104

Node number

N
u
m
b
er

of
co
ll
is
io
n
s

MSS = 64
MSS = 512

Figure 6.4: Number of collisions in a multi-hop scenario.

figure, nodes 1 and 6 are the source and destination TCP nodes, respectively, and nodes 2

to 5 are intermediate nodes.

Moreover, Figure 6.3 shows that using short TCP segments becomes interesting, from

an energy point of view, when the bit-error rate is high (above 10−4). For example, for a

BER of 4 × 10−4, the total consumed energy with MSS = 512 bytes is three times larger

than with MSS = 64 bytes. For low values of B, the number of retransmissions is small,

hence the energy consumption becomes roughly independent of B.

We remark on Figures 6.3 and 6.5 that simulation results fit better our analytical results

when no fragmentation is performed by the link layer. This is again due to collisions that

occur in the large-MSS case and are not encompassed by our model. Figure 6.5 also illus-

trates that increasing the number of link-layer attempts decreases the energy consumption,

especially so when there is fragmentation (i.e., a large MSS). Indeed, giving the link layer

more chances to send a data frame to its next-hop node reduces the discard probability of

TCP segments, and therefore the number of end-to-end retransmissions. In the following,

we study the impact of the other system parameters on the energy consumption, based on

the model only. We should therefore stay aware that the energy consumption might be a

little underestimated for large values of the MSS.

6.4.2 FEC redundancy ratio and energy consumption

We first study the impact of FEC on the energy consumption. Figure 6.6 shows that there

seems to be an optimal amount of redundancy, in terms of energy consumption. Below the

optimal value, adding redundancy reduces the probability of losses, and thus reduces the

90

6.4. RESULTS AND DISCUSSION

2 3 4 5 6 7

101

102

Maximum link layer attempts

C
on

su
m
ed

en
er
gy

(J
)

MSS = 512 (simulation)
MSS = 512 (model)
MSS = 64 (simulation)
MSS = 64 (model)

Figure 6.5: Energy consumption with short or long TCP segments, as a function of the
number of link layer attempts r (with B = 5 × 10−4).

energy consumption. When α is above such optimal value, however, energy expenditure

steadily increases because of the redundancy overhead.

Recall that the MTU being fixed, the number of frames to send depends on the redun-

dancy ratio according to a stair step function, hence the discontinuities in the figure.

6.4.3 Selecting the TCP MSS to minimize energy consumption

Depending of the numerous parameters of a given scenario, it appears that the same

MSS value is not always the most efficient one in terms of energy. We now intend to

summarize the effect of all parameters, by focusing on the best MSS strategy to imple-

ment. In the following figures, we compare the two values MS S = 64 and MS S = 512,

and we concentrate on the boundary values, that delimitate zones where one MSS value

outperforms the other.

We plot those frontier curves in Figs. 6.7 and 6.8. In each figure, the area above the

curve represents the case where a TCP MSS value of 64 bytes consumes less energy than

an MSS of 512 bytes, while the opposite holds below the curves.

Figure 6.7 shows the two zones, depending on the transmission distance and the BER.

We remark that for a given BER, short MSSs tend to outperform long MSSs when the

distance grows: it is more and more interesting to use short MSS values instead of long

ones. Indeed, for large networks the cost of end-to-end retransmissions will exceed the

potential economy in terms of TCP header overhead. For a given distance, short MSSs are

91

CHAPTER 6. IMPACT OF LINK LAYERS FRAGMENTATION ON THE
TCP ENERGY CONSUMPTION

10−3 10−2 10−1 100
100

101

102

103

Redundancy ratio (α)

C
on

su
m
ed

en
er
gy

(J
)

MSS = 512, r=1
MSS = 512, r=3
MSS = 64, r=1
MSS = 64, r=3

Figure 6.6: Consumed energy using short or long TCP segment, as a function of the
redundancy ratio α (B = 3 × 10−4, h = 5).

better suited for large BER environments since (energy-spending) segment retransmissions

tend to occur more frequently. As previously observed, increasing the maximum number of

link layer attempts r reduces the one-hop transmission failures, and thus limits the effects

of errors, hence favoring long MSSs.

Finally, Figure 6.8 illustrates the effect of FEC mechanisms. Not surprisingly (the FEC

reducing the effect of transmission errors), redundancy makes large MSSs outperform small

MSSs due to the overhead reduction they allow.

6.5 Conclusion

In this chapter, we have proposed an analytical model to estimate the number of bits sent

by all wireless nodes in a TCP session in a low power network, in order to evaluate the

overall energy consumption. The model has been validated through simulations, using

the INETMANET framework [Vag11] of the OMNet++ network simulator [Vag10], in the

context of TCP over 6LoWPANs.

Our main outcomes regard the choice of an energy-saving Maximum Segment Size

(MSS) for TCP. We have shown that using a large TCP segment size is less energy con-

suming in small, low-error networks, while it becomes interesting to reduce the MSS when

the network is large or very lossy. The impact of the number of attempts at the link layer,

as well as the use of FEC, has also been studied.

92

6.5. CONCLUSION

2 4 6 8
10−5

10−4

10−3

r = 1

r = 2

r = 3

Number of Hops (h)

B
E
R

Figure 6.7: Long (MSS=512 bytes) versus short (MSS=64 bytes) in a multi-hop TCP
transmission: prefer the short MSS above the curves, the long one below. (α = 0)

2 4 6 8
10−5

10−4

10−3

10−2

10−1

α = 10−3

α = 10−2

α = 10−1

Number of Hops (h)

B
E
R

Figure 6.8: Long (MSS=512 bytes) versus short (MSS=64 bytes) in a multi-hop TCP
transmission: prefer the short MSS above the curves, the long one below. (with r = 3)

93

CHAPTER 6. IMPACT OF LINK LAYERS FRAGMENTATION ON THE
TCP ENERGY CONSUMPTION

94

Chapter 7

Energy-efficient fragment recovery tech-

niques for low power networks

Contents

7.1 Introduction . 96

7.2 The ARQ Error Control Mechanism 96

7.3 Simple Fragment Forwarding and Recovery for 6LoWPANs 97

7.3.1 Fragment Recovery . 98

7.3.2 An SFFR scenario . 98

7.4 Performance Evaluation and Discussion 100

7.4.1 Impact of SFFR on TCP energy consumption 100

7.4.2 Impact of SFFR on UDP energy consumption 102

7.4.3 SFFR rounds versus energy efficiency 104

7.4.4 When is it better to use SFFR? 104

7.5 Conclusion . 105

95

CHAPTER 7. ENERGY-EFFICIENT FRAGMENT RECOVERY
TECHNIQUES FOR LOW POWER NETWORKS

7.1 Introduction

In the previous chapter, we provide a study of the impact of fragmentation on the energy

consumption. Results show that it is not energy-efficient to send long packets when the

bit error rate is high. A first possible solution is to reduce the transport layer payload to

fit within the 802.15.4 maximum transmission unit (MTU). However, this solution adds

a significant header overhead to each 802.15.4 frame because all link layer frames include

the network and transport headers. A second solution is to use legacy link layer error

control mechanisms such as Automatic Repeat reQuest (ARQ) [FW02]. However, if a

single fragment is lost in transmission, all fragments may end up being retransmitted,

further contributing to the congestion that might have caused the initial packet loss.

Legacy MAC layer error control techniques (e.g., ARQ) provide only one-hop error

control solutions. These solutions are not sufficient for multi-hop environments, especially

if the link layer does not support long frames. In this case, the IP packet is split into

several fragments and the loss of one fragment in one hop leads to the retransmission of

all fragments by the transport protocol.

Recently, Thubert and Hui introduced in [TH10] Simple Fragment Forwarding and

Recovery (SFFR), a simple protocol to forward and recover individual fragments that

might be lost over multiple hops between 6LoWPAN endpoints. SFFR complements hop-

by-hop link layer recovery mechanisms for multi-hop environments. This chapter provides

a performance evaluation of the simple fragment recovery based on energy consumption

for UDP and TCP data transfers.

The remainder of the chapter is organized as follows. Section 7.2 gives a brief overview

of the ARQ scheme and its drawbacks. Section 7.3 presents the principles of the SFFR

mechanism. Section 7.4 shows our performance evaluation model and results.

7.2 The ARQ Error Control Mechanism

Currently, most error recovery algorithms are implemented in the link layer. In this section,

we focus on the most common error recovery and correction techniques (e.g., Automatic

Repeat reQuest (ARQ) [FW02,SCM84]).

As described in Section 6.3.1.1, ARQ is the most frequently used algorithm at the link

layer to reduce the packet error rate. However, if the wireless network becomes very lossy,

ARQ would increase the transmission delay between the source and the receiver. Abrupt

increases of the end-to-end delay increase the round-trip time and may lead to a spurious

TCP timeout. This can deteriorate the TCP performance.

In a multi-hop low power network, it makes little sense to reassemble the fragments at

every hop. In a Mesh-Under low power network (that is, a Layer 2 switched mesh), each

96

7.3. SIMPLE FRAGMENT FORWARDING AND RECOVERY FOR
6LOWPANS

fragment is an individual frame that follows its own-switched path along the mesh. In a

Route-Over low power network (that is a Layer 3 routed mesh), the SFFR method that

we describe in the next section consists in forwarding the fragments using a datagram tag

as a label. In that case, all fragments follow the path found by the first fragment. In all

cases, if an intermediate hop fails, a hop-by-hop recovery mechanism such as ARQ cannot

reject a fragment back to the source to ask a retry and the loss will not be known at layer

2.

7.3 Simple Fragment Forwarding and Recovery for

6LoWPANs

The failure of successive ARQ attempts leads to the loss of a link layer frame in one of

the hops between the source and the destination. In that case, reliable transport protocols

such as TCP should retransmit the lost segment. Additionally, the transport protocol may

send long segments that can be split by the link layer into small fragments if its MTU is

smaller than the size of the network layer datagram. Therefore, the transport segment is

sent by the link layer in small fragments, and the loss of one of these fragments leads to

the loss of the original segment.

To resolve this point, a new simple end-to-end fragment forward and recovery algo-

rithm has been proposed to allow the receiver to recover intelligently the lost fragments.

In [TH10], the authors specify three types of link layer fragments: recoverable fragments

(RFRAG), recoverable fragments with acknowledgment request (RFRAG-AR) and ac-

knowledgment fragments (RFRAG-ACK).

1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

1 1 1 0 1 0 0 X datagram offset datagram tag

Sequence datagram size

X set = Ack Requested

Figure 7.1: Recoverable Fragment Dispatch type and Header

The authors propose to add new fields such as sequence, datagram tag, datagram offset

to the 6LoWPAN header. Figure 7.1 shows the RFRAG header. Moreover, they suggest

adding a compressed acknowledgment bitmap to the acknowledgment. The bitmap can

hold 32 bits, which is more than enough to index with a bit in the bitmap each possible

97

CHAPTER 7. ENERGY-EFFICIENT FRAGMENT RECOVERY
TECHNIQUES FOR LOW POWER NETWORKS

fragment of an IPv6 packet with the 6LoWPAN MTU of 1280 octets. Figure 7.2 shows

the RFRAG-ACK header.

1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

1 1 1 0 1 0 0 X datagram tag

Compressed Acknowledgment Bitmap (8 to 32 bits)

Figure 7.2: Fragment Acknowledgement Dispatch type and Header

7.3.1 Fragment Recovery

The 6LoWPAN sender controls the Fragment Acknowledgements. When the sender of

the fragment knows that an underlying mechanism protects the Fragments it already may

refrain from using the Acknowledgement mechanism, and it never sets the Ack Requested

bit. The receiver must acknowledge the fragments it has received when it is asked to, and

it may slightly defer that acknowledgement.

In the beginning, the sender issues a number of RFRAGs and it may flag the last

fragment of a series with an Acknowledgment Request (AR). The receiver must reply

by an RFRAG-ACK, with a bitmap that indicates which fragments are received, upon

the reception of an RFRAG-AR. The bitmap is a 32-bits which accommodates up to 32

fragments. The bitmap is compressed as a variable length field formed by control bits and

acknowledgement bits. For each fragment that was actually received, the corresponding

bit is set in the compressed acknowledgment bitmap, so the acknowledgment enables the

sender to know which fragments are lost or on the way and must potentially be recovered.

This corresponds to one fragment recovery round.

Moreover, fragments are sent in a round robin fashion: the sender sends all the frag-

ments for a first time before it retries any lost fragment; lost fragments are retried in

sequence, oldest first. This mechanism enables the fragments on the way to be finally re-

ceived and acknowledged before the sender decides to retry them. As specified in [TH10], a

single round of fragment recovery is recommended, so it fits within the upper layer recovery

timers; more than one round frame recovery may lead to a TCP timeout.

7.3.2 An SFFR scenario

Figure 7.3 (a) shows a first scenario of an end-to-end loss recovery using SFFR. Here, an

IPv6 packet is split by the link layer protocol into three RFRAGs. The third fragment

is sent with AR set. In this scenario, the second fragment (RFRAG2) is lost before it

98

7.3. SIMPLE FRAGMENT FORWARDING AND RECOVERY FOR
6LOWPANS

Sender Receiver

RFRAG
1

RFRAG
2

.
RFRAG

3-AR

RFRAG-ACK

RFRAG
2-AR

RFRAG-ACK

(a) Scenario 1: An RFRAG is lost

Sender Receiver

RFRAG
1

RFRAG
2RFRAG

3-AR

.

RFRAG
1

RFRAG
2RFRAG

3-AR

RFRAG-ACK

(b) Scenario 2: An RFRAG-AR is lost

Figure 7.3: End-to-end simple fragment forwarding and recovery

reaches the receiver. After receiving the RFRAG3-AR fragment, the receiver replies by

sending an RFRAG-ACK informing the sender that the first and the last fragments are

correctly received, and requesting the retransmission of the lost fragment. The source

sends a new copy of the lost fragment (i.e., RFRAG2) with an acknowledgment request

and removes copies of acknowledged fragments from the sending buffer (RFRAG1 and

RFRAG3). Finally, the receiver ends the IPv6 packet transmission with an RFRAG-

ACK, which acknowledges the reception of all the packet fragments. The source node

deploying SFFR must have enough memory to save the sent fragments while waiting for

the acknowledgment from the receiver. Figure 7.3 (b) shows a second scenario where the

source node does not receive the RFRAG-ACK before the TCP retransmission timeout.

In this case, the source node retransmits all fragments.

In this chapter, we assume that the link layer splits the original message into m frag-

ments with the same size D/m+ o where D is the original packet size and o is the overhead

added by SFFR. At the destination, the message is reconstructed from the received frag-

ments. The loss of one fragment makes impossible to reconstruct the original message. In

addition, we assume that SFFR recovery rounds are limited to a single round for reliable

transport protocols such as TCP. This work studies also the impact of the recovery rounds

on the energy-consumption of a datagram transport protocol (e.g., UDP).

99

CHAPTER 7. ENERGY-EFFICIENT FRAGMENT RECOVERY
TECHNIQUES FOR LOW POWER NETWORKS

7.4 Performance Evaluation and Discussion

In this section, we present a performance study of SFFR in a multi-hop low-power net-

work. The main metric that we take into account in our study is the energy consumption.

Numerical results are obtained from the analytical model presented in Chapter 6, where

on each radio channel, the bit transmission errors are assumed independent and identically

distributed. Simulation results are obtained from OMNET++ simulator [Vag10] used in

Chapter 4. The expected number of ARQ trials, as well as the probability of success,

can then be computed. Likewise, the probability of end-to-end successful packet transmis-

sion and the expected number of bits sent at each end-to-end transmission attempt are

calculable.

Table 7.1: Network parameters
Parameter Value
Hop number 5
Application data size 1048 kbytes
TCP MSS/ UDP payload size 512/1024 bytes
NHC header 1 bytes
TCPHC header 8 bytes
6LoWPAN header 3 bytes
IEEE 802.15.4 header 23 bytes
IEEE 802.15.4 acknowledgment size 10 bytes

We study the energy consumption of UDP and TCP on IPv6 over Low-Power Wireless

Personal Area Networks [KMS07], considering IEEE 802.15.4 [IEE06] as the link-layer

technology.

In our evaluation, we assume that the UDP header compression described in [HT10]

is used to reduce the UDP header to 1 byte and our TCP header compression mecha-

nism [ART10] is also used to reduce the TCP header to 8 bytes. Table 7.1 shows the

default parameter values that, unless specified otherwise, have been used in our evalua-

tion.

7.4.1 Impact of SFFR on TCP energy consumption

We first evaluate the SFFR performance in multi-hop wireless networks, through the fol-

lowing scenario. A TCP sender sends a file (1024 kbytes) to a TCP receiver. The number

of sent TCP segments depends on the chosen MSS value (e.g., if the MSS value is equal to

1024, the TCP receiver should receive 1000 segments). We choose to study two cases: in

the first case no link layer error recovery algorithm is used, and in the second case ARQ

with a maximum of three link layer recovery attempts is implemented. We vary the bit

100

7.4. PERFORMANCE EVALUATION AND DISCUSSION

10−5 10−4 10−3

102

103

BER

C
on

su
m
ed

en
er
gy

(J
)

No ARQ, No SFFR
No ARQ, SFFR

ARQ=3, No SFFR
ARQ=3, SFFR

(a) MSS = 1024 bytes

10−5 10−4 10−3

102

103

BER

C
on

su
m
ed

en
er
gy

(J
)

No ARQ, No SFFR
No ARQ, SFFR

ARQ=3, No SFFR
ARQ=3, SFFR

(b) MSS = 512 bytes

Figure 7.4: Analytical results: Energy Consumption of a TCP data transfer with vs
without SFFR (scenario with five hops).

error rate, and we compute the consumed energy by all the wireless nodes in two scenarios,

with and without SFFR.

Figure 7.4 displays the consumed energy by all wireless devices for two different MSS

values, of 1024 and 512 bytes, with and without the simple fragment forward and recovery

algorithm. Figure 7.4 shows that the SFFR significantly reduces the energy consumption

if no ARQ is applied at the link layer. For example, when the Bit Error Rate (BER) is

equal to 5 × 10−5, the consumed energy without SFFR (767 J) is more than four times the

consumed energy when SFFR is applied (160 J).

In the presence of ARQ, SFFR becomes less efficient in low bit error networks due to

the added overheads and the new control messages (RFRAG-ACKs). However, it decreases

significantly the consumed energy if the bit error rate is high (more than 2 × 10−4). The

SFFR improvement is less significant if the MSS is shorter. For example, Figure 7.4 (b)

shows that SFFR is less energy efficient if the MSS is equal to 512 bytes. The longer

the TCP segment, the more SFFR reduces the energy consumption because the segment

recovery involves more fragments, i.e., more energy.

In Figure 7.6, we fix the bit error rate to 5 × 10−4 and the ARQ maximum number

of retransmissions to three and we vary the number of hops from one to ten. Figure 7.6

shows that as the network size (the number of hops between the sender and receiver)

increases, the improvement from SFFR becomes more significant. For example, when the

101

CHAPTER 7. ENERGY-EFFICIENT FRAGMENT RECOVERY
TECHNIQUES FOR LOW POWER NETWORKS

10−5 10−4 10−3

102

103

BER

C
on

su
m
ed

en
er
gy

(J
)

No ARQ, No SFFR
No ARQ, SFFR

ARQ=3, No SFFR
ARQ=3, SFFR

(a) MSS = 1024 bytes

10−5 10−4 10−3

102

103

BER

C
on

su
m
ed

en
er
gy

(J
)

No ARQ, No SFFR
No ARQ, SFFR

ARQ=3, No SFFR
ARQ=3, SFFR

(b) MSS = 512 bytes

Figure 7.5: Simulation results: Energy Consumption of a TCP data transfer with vs
without SFFR (scenario with five hops).

MSS value is equal to 1024, SFFR reduces the consumed energy by about 30% for a three-

hop transmission, and by 70% for a nine-hop transmission. This could also be expected:

the larger the distance between the TCP sender and the TCP receiver, the more likely

losses are and thus the more beneficial SFFR becomes.

7.4.2 Impact of SFFR on UDP energy consumption

Now, we study the impact of SFFR in datagram mode in a multi-hop scenario, where the

receiver does not acknowledge the received segments and no end-to-end transport layer re-

transmissions are applied. To show the advantages of SFFR, we define an energy efficiency

metric (λ), which is equal to the ratio of the received data bytes to the total bytes sent by

all wireless nodes.

λ =
Received data bytes

Total Sent bytes

In the first scenario, we fix the number of hops to five and we vary the bit error rate. As

described in the previous section, we compute the energy efficiency of UDP packet transfer

with and without SFFR and we plot the energy efficiency curves for two UDP payload

sizes (1024 and 512 bytes). We compare the energy efficiency with only ARQ and with

both ARQ/SFFR. Figure 7.7 shows that SFFR increases the energy efficiency when long

UDP packets are sent. However, SFFR is not energy efficient when the size of the UDP

102

7.4. PERFORMANCE EVALUATION AND DISCUSSION

2 4 6 8 10

102

103

Number of hops

C
on

su
m
ed

E
n
er
gy

(J
)

1024, No SFFR
1024, SFFR

512, No SFFR
512, SFFR

Figure 7.6: Energy Consumption of a TCP data transfer with vs without SFFR (ARQ=3,
B = 5 × 10−4).

packet is short. On the contrary, for low BERs it is less efficient than ARQ due to the

SFFR overhead.

10−5 10−4 10−3
10−3

10−2

10−1

BER

E
n
er
gy

E
ffi
ci
en
cy

No ARQ, No SFFR
No ARQ, SFFR

ARQ=3, No SFFR
ARQ=3, SFFR

(a) UDP payload size = 1024 bytes

10−5 10−4 10−3
10−3

10−2

10−1

BER

E
n
er
gy

E
ffi
ci
en
cy

No ARQ, No SFFR
No ARQ, SFFR

ARQ=3, No SFFR
ARQ=3, SFFR

(b) UDP payload size = 512 bytes

Figure 7.7: Energy Efficiency of an UDP data transfer with vs without SFFR.

103

CHAPTER 7. ENERGY-EFFICIENT FRAGMENT RECOVERY
TECHNIQUES FOR LOW POWER NETWORKS

2 4 6 8 10

10−2

10−1

Number of hops

E
n
er
gy

E
ffi
ci
en
cy

1024, No SFFR
1024, SFFR

512, No SFFR
512, SFFR

Figure 7.8: Energy Efficiency of an UDP data transfer with and without SFFR (ARQ=3,
B = 5 × 10−4).

7.4.3 SFFR rounds versus energy efficiency

In this section, we study the impact of the number of fragment recovery rounds on the

energy efficiency of SFFR in datagram mode. It is not recommended to add more than

one fragment recovery round in TCP mode because, after a round-trip time, the TCP

sender assumes that the TCP segment is lost and it must be retransmitted. However,

in datagram mode, more than one SFFR round can be applied if the UDP application

tolerates the corresponding delay. We study four scenarios with different values of SFFR:

0 (or no SFFR), 1, 2 or 3 SFFR rounds. Figure 7.9 shows the energy efficiency of all

scenarios. The UDP payload size is equal to 1024 octets and the number of hops is equal

to five.

Figure 7.9 shows that in low BER networks, all curves have the same behavior and we do

not observe a significant improvement by increasing the SFFR recovery rounds. However,

in high-loss networks (i.e., B is greater than 10−4), Figure 7.9 shows that increasing the

recovery rounds improves the energy efficiency. The SFFR recovery rounds recover more

lost fragments in-network and then increases the delivery ratio.

7.4.4 When is it better to use SFFR?

Depending of the numerous parameters of a given scenario, it appears that using SFFR is

not always the most energy-efficient solution. We now intend to summarize the effect of all

parameters, by focusing on the Bit Error Rate, the number of hops, the TCP MSS value,

and the ARQ retransmissions.

104

7.5. CONCLUSION

10−5 10−4 10−3
10−3

10−2

10−1

BER

E
n
er
gy

E
ffi
ci
en
cy

No SFFR
SFFR=1
SFFR=2
SFFR=3

Figure 7.9: Energy Efficiency of an UDP data transfer with different SFFR rounds
(ARQ=3, 5 hops).

In the following figures, we compare the energy consumption by a TCP connection

with and without SFFR, and we concentrate on the boundary values, that delimitate

zones where SFFR yields some improvement or it does not.

Figure 7.10 shows the two zones, depending on the number of hops and the BER. We

remark that for a given BER, using SFFR increases the energy-efficiency when the distance

grows: it is more and more interesting to use SFFR for large networks, as it was already

observed in Figures 7.6 and 7.8.

We plot those frontier curves in Figures 7.10 and 7.11. In each figure, the area above

the curve represents the case where the use of SFFR makes the TCP connection consume

less energy, while the opposite holds below the curves.

Finally, Figure 7.11 illustrates the effect of ARQ mechanisms. Not surprisingly (the

ARQ reducing the effect of transmission errors), ARQ retransmissions reduce the resulting

per-hop packet error rate, and thus, they also reduce the energy improvement yielded by

SFFR.

7.5 Conclusion

This chapter has studied the performance of a recently proposed end-to-end error correc-

tion algorithm that recovers lost link-layer fragments. The main advantage of the simple

fragment forward and recovery scheme is to reduce the end-to-end transport layer retrans-

missions. Numerical results have shown that SFFR reduces the energy consumption for

both TCP and UDP traffics.

105

CHAPTER 7. ENERGY-EFFICIENT FRAGMENT RECOVERY
TECHNIQUES FOR LOW POWER NETWORKS

2 4 6 8 10
10−4

10−3

MSS=1280

MSS=1024
MSS=768

MSS=512

MSS=256

Number of Hops (h)

B
E
R

Figure 7.10: SFFR in a multi-hop TCP transmission: prefer SFFR above the curves
(ARQ=3).

2 4 6 8 10
10−6

10−5

10−4

10−3

No ARQ

ARQ=1

ARQ=3

Number of Hops (h)

B
E
R

Figure 7.11: SFFR in a multi-hop TCP transmission: prefer SFFR above the curves
(MSS=1024).

106

Chapter 8

Conclusion and Perspectives

The Internet of the Future will not be limited to PCs, routers, laptops, and smart phones

but also to the new IP wireless embedded systems that will help to solve large problems

in industry, health, home comfort, and energy management. The new embedded wireless

systems use wireless connectivity that should be low power. The low energy consumption

of the network interface issue has been solved by the new wireless interfaces such IEEE

802.15.4. However, having low-power wireless interfaces does not solve totally the issue if

the higher layers are not adapted to the new context.

Low-power networks such as 6LoWPANs have an important role to play for in the

Internet of the Future. The success of the 6LoWPAN devices deployment depends firstly

on how they will be integrated into the current Internet wireless and wired infrastructure.

Moreover, the success depends also on the manner the upper layers should be adapted to

solve the tradeoff between energy-efficiency and reliability.

In this thesis, we have been interested in the energy efficiency of transport network

protocols in low power networks and especially TCP over low power networks. We showed

that TCP suffers from many limitations such as header overhead, high acknowledgment

ratio, and end-to-end retransmissions. In this work, we tried to propose simple solutions

and improvements for each limitation. Our contributions can be easily added to the current

version of TCP in order to make it more viable for the resource-constraint environment

without affecting the reliability of the protocol. In the following, we state some of these

contributions.

The first point that we worked on is the reduction of the end-to-end retransmission

of lost TCP segments. We presented an overview of the proposed TCP hop-by-hop re-

covery algorithms. We studied Distributed TCP Caching algorithm, then we proposed an

enhanced version of it, named NewDTC. Our simulation results showed that our enhance-

ments make DTC more energy-efficient than other TCP hop-by-hop recovery schemes due

to a better congestion management.

In the second point, we focused on reducing the ratio of TCP acknowledgments. We

studied two of the proposed algorithms to reduce the radio of acknowledgment segments

to data segments, which are DCA and TDA. These two algorithms propose to send a TCP

acknowledgment for more than 2 data segments. We have implemented DCA and TDA in

OMNet++ simulator. Our simulation evaluation showed that TDA outperforms DCA not

only on the throughput but also on the energy-efficiency.

We cannot reduce the energy consumption of TCP without reducing the header size. In

this thesis we studied the proposed TCP header compression algorithms and we proposed

107

CHAPTER 8. CONCLUSION AND PERSPECTIVES

TCPHC, a new mechanism to compress TCP headers for low power networks (TCPHC).

TCPHC aims to reduce the size of the TCP header and thus the energy consumption.

TCPHC is a simple and robust header compression algorithm that can be implemented on

resource-constrained operating systems such as Contiki OS. TCPHC presents a new idea

to compress the dynamic fields of the TCP header that is more loss-tolerant, moreover, it

proposes a new way to compress the TCP options. In order to evaluate our header com-

pression algorithm, we implemented TCPHC on Contiki OS and compared its performance

to legacy TCP. From our experimental evaluation, we found that no matter the loss level

in the network, TCPHC decreases the energy consumption of TCP.

A final topic was to study the impact of the TCP segment size on the energy consump-

tion. The TCP segment size has a great impact on the energy consumption and especially

over 6LoWPANs where the link layer MTU is equal to 127 bytes. Based on an analytical

model, our study shows that it is better to send long segment when the bit error rate

is low; and short segment when the bit error rate becomes weak. Because the bit error

rate estimation is not so easy to do, we studied an approach that allows the receiver to

quickly recover the lost fragments before a new high layer retransmission. The main idea

consist of sending a Results confirm that this approach allow a reduction of end-to-end

retransmissions and thus the energy consumption.

After the implementation and evaluation, we reach the final conclusion: TCP can

be adapted for the low-power networks and implemented on the new embedded wireless

devices. Moreover, the proposed solutions help to reduce the overhead of the TCP header,

hence saving the energy consumption.

Perspectives

This work is open to several areas for improvement. In this section, we present the possible

perspectives of each part of this work.

The chain topology was the single topology used in our work. One possible future

direction consists in performing extensive simulations to evaluate the performance of TCP

versions in more complex topologies such as grid and cross topologies. We think that

with these new models of topologies simulations will be much more realistic. Another

perspective is to combine two or three approaches. For example, the ideas of using both

the caching algorithm with TDA would be very interesting because it would reduce the end-

to-end retransmissions and the number of exchanged acknowledgment segments. However,

this combination should take into account several factors due to changes added by the

two algorithms such as the way a TCP source should compute the retransmission timeout.

Moreover, we would like to implement the discussed TCP algorithms on a real world testbed

to not be limited to simulation results.

108

The TCP header compression for low power networks is the one of the main contribution

of this thesis. Although the evaluation results show good performance, this algorithm is

open to many improvements. On the one hand, the header compression algorithm would

take into account the displacement of a wireless node and thus its router attachment change.

After a change of an ER, the new ER requests the old one for the eventual TCP header

compression contexts.

On the other hand, the performance evaluation of TCPHC done in this work is based

on a static routing, where all wireless nodes are not mobile. Future scenarios should take

into account the wireless node mobility for testing the ER change. This would be easier to

integrate especially with the new version of Contiki OS that includes RPL as its default

routing protocol.

The analytical model presented in this work, can also be improved especially the as-

sumption that the bit error rate is independent. The Gilbert–Elliott model, which is a

simple channel model for describing burst error patterns in transmission channels, can be

integrated in our model.

109

CHAPTER 8. CONCLUSION AND PERSPECTIVES

110

My Publications as a PhD Student

Journal papers

• [Aya11] Ahmed Ayadi, ”Energy-efficient and reliable transport protocols for wireless

sensor networks: state-of-art”, Wireless Sensor Network, Vol. 3, No. 3, pp. 106-113,

march 2011.

Conference papers

• [AMR+11b] Ahmed Ayadi, Patrick Maillé, David Ros, Laurent Toutain and Pascal

Thubert, ”Energy-efficient fragment recovery techniques for low-power and lossy net-

works”, In Proc. 7th International Wireless Communications and Mobile Computing

Conference (IWCMC 2011), Istambul, Turkey, 5-8 July 2011.

• [AMR+11c] Ahmed Ayadi, Patrick Maillé, David Ros, Laurent Toutain and Tian-

cong Zheng, ”TCP over Low-Power and Lossy Networks: Tuning the Segment Size

to Minimize Energy Consumption”, In Proc. 7th International Wireless Communica-

tions and Mobile Computing Conference (IWCMC 2011), Istambul, Turkey, 5-8 July

2011.

• [AMR11a] Ahmed Ayadi, Patrick Maillé, and David Ros, ”TCP over Low-Power

and Lossy Networks: Tuning the Segment Size to Minimize Energy Consumption”, In

Proc. International Conference on New Technologies, Mobility and Security (NTMS’11),

Paris, France, 07-10 february 2011.

• [ZAJ11] Tiancong Zheng, Ahmed Ayadi, and Xiaron Jiang, ”TCP over 6LoWPAN for

industrial applications: an experimental study”, In Proc. International Conference on

New Technologies, Mobility and Security (NTMS’11), Paris, France, 07-10 february

2011.

• [AA10] Ahmed Ayadi and Azlan Awang, ”Adaptive TCP segment size control for

reducing energy consumption in 6LoWPANs”, In Proc. International Conference on

Intelligent Network and Computing (ICINC’2010), Kuala Lumpur, Malaysia, 26-28

november 2010.

• [AMR10a] Ahmed Ayadi, Patrick Maillé, and David Ros, ”Improving distributed

TCP caching for wireless sensor networks”. In Proc. IFIP Annual Mediterranean

Ad Hoc Networking Workshop (Med-Hoc-Net’10), Juan les pins, France, 23-25 june

2010.

111

APPENDIX . MY PUBLICATIONS AS A PHD STUDENT

IETF Internet Drafts

• [ART10] Ahmed Ayadi, David Ros, and Laurent Toutain, ”TCP header compression

for 6LoWPAN”, Internet Draft, draft-aayadi-6lowpan-tcphc-01, July 2010

TELECOM Bretagne Research Reports

• [AMR10b] Ahmed Ayadi, Patrick Maillé, and David Ros, ”TCP over Low-Power

and Lossy Networks: Tuning the Segment Size to Minimize Energy Consumption”,

In Institut TELECOM/TELECOM Bretagne, (Collection des rapports de recherche

de TELECOM Bretagne, RR-2010004-RSM), Brest, France, december 2010.

112

List of Abbreviations and Acronyms

List of Abbreviations and Acronyms

6LoWPAN IPv6 over Wireless Personel Area Network

ACK Acknowledgement

ARQ Automatique Repeat reQuest

BER Bit Error Rate

BR Border Router

CBR Constant Bir Rate

CH Compressed header

CID Context Identifier

CPU Central Processing Unit

CRC Cyclical Redundancy Check

CSMA-CA Carrier Sense Multiple Access with Collision Avoidance

ECN Explicit Congestion Notification

ER Edge Router

FEC Foward Error Correction

FH Full Header

FTP File Transfer Protocol

HC Header Compression

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

ID Internet Draft

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IID Interface Identifier

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IPSO IP for Smart Objetcs (Alliance)

LAN Local Area Network

LLN Low-power and Lossy Network

LoWPAN Low-power Wireless Personal Area Network

LSP Least Significant Byte

M2M Machine-to-Machine

MAC Medium Access Control

MH Mostly compressed Header

MSS Maximum Segment Size

MTU Maximum Transmission Unit

113

List of Abbreviations and Acronyms

NACK Negative Acknowledgement

OS Operating System

PC Personal Computer

PER Packet Error Rate

PHY Physical Layer

PLC Power Line Communications

QoS Quality of Service

RAM Random Access Memory

RFC Requests For Comments

ROHC Robust Header Compression

ROLL Routing over Low-power and Lossy networks

ROM Read Only Memory

RTT Round-Trip Time

RTO Retransmission Timeout

SACK Selective Acknowledgement

SFFR Simple Fragment Forward and Recovery

TCP Transmission Control protocol

TCPHC TCP Header Compression

TDMA Time division Multiple Access

TTL Time To Live

UDP User Datagram Protocol

WG Working Group

WLAN Wireless Local Area Network

WPAN Wireless Personal Area Network

WSN Wireless Sensor Network

WWW World Wide Web

114

Bibliography

[AA10] A. Ayadi and A. Awang. Adaptive TCP segment size control for reducing

energy consumption in 6LoWPANs. In International Conference on Intelligent

Network and Computing, November 2010.

[AJ03] E. Altman and T. Jiménez. Novel Delayed ACK Techniques for Improving

TCP Performance in Multihop Wireless Networks. In PWC, pages 237–250,

2003.

[All03] M. Allman. TCP Congestion Control with Appropriate Byte Counting (ABC),

February 2003.

[AMR10a] A. Ayadi, P. Maillé, and D. Ros. Improving distributed TCP caching for

wireless sensor networks. In IEEE, editor, IFIP Annual Mediterranean Ad

Hoc Networking Workshop, pages 1 – 6, Juan les pins, June 2010.

[AMR10b] A. Ayadi, P. Maille, and D. Ros. TCP over low-power and lossy networks: tun-

ing the segment size to minimize energy consumption. TELECOM Bretagne

Research Report RR-2010004-RSM, October 2010.

[AMR11a] A. Ayadi, P. Maillé, and D. Ros. TCP over low-power and lossy networks:

tuning the segment size to minimize energy consumption. In Wireless Sensor

Networks - theory and practice (WSN’2011), Paris, France, Febrary 2011.

[AMR+11b] A. Ayadi, P. Maillé, D. Ros, P. Thubert, and L. Toutain. Energy-efficient

fragment recovery techniques for low-power and lossy networks. In IEEE

IWCMC: 7th International Wireless Communications and Mobile Computing

Conference, july 2011.

[AMR+11c] A. Ayadi, P. Maillé, D. Ros, T. Zheng, and L. Toutain. Implementation and

evaluation of a TCP header compression for 6LoWPAN. In IEEE IWCMC: 7th

International Wireless Communications and Mobile Computing Conference,

july 2011.

[APS99] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control, April 1999.

[ARB+10] N. Ahmed, M. Rutten, T. Bessell, S.S. Kanhere, N. Gordon, and S. Jha.

Detection and tracking using particle-filter-based wireless sensor networks.

IEEE Transactions on Mobile Computing, 9(9):1332 –1345, sep. 2010.

[ART10] A. Ayadi, D. Ros, and L. Toutain. TCP header compression for 6LoWPAN.

Internet Draft draft-aayadi-6lowpan-tcphc-01, work in progress, July 2010.

115

BIBLIOGRAPHY

[Aya11] A. Ayadi. Energy-efficient and reliable transport protocols for wireless sensor

networks: state-of-art. Wireless Sensor Network, 3(3):106 – 113, march 2011.

[BAFW03] E. Blanton, M. Allman, K. Fall, and L. Wang. A conservative selective ac-

knowledgment (SACK)-based loss recovery algorithm for TCP. RFC 3517,

IETF, April 2003.

[BB08] Z. Bojkovic and B. Bakmaz. A survey on wireless sensor networks deployment.

WTOC, 7:1172–1181, December 2008.

[BMAA04] D. Barman, I. Matta, E. Altman, and R. El Azouzi. TCP Optimization

through FEC, ARQ, and Transmission Power Tradeoffs. In Proceedings of

WWIC, pages 87–98, 2004.

[Bor11] C. Bormann. 6LoWPAN Generic Compression of Headers and Header-like

Payloads, March 2011.

[BSAK95] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz. Improving TCP/IP per-

formance over wireless networks. In MobiCom ’95: Proceedings of 1st annual

international conference on Mobile computing and networking, pages 2–11,

New York, 1995.

[BSGM06] S. Bansal, R. Shorey, R. Gupta, and A. Misra. Energy efficiency and capacity

for TCP traffic in multi-hop wireless networks. Wireless Networks, 12(1):5–21,

2006.

[BVD07] T. Braun, T. Voigt, and A. Dunkels. TCP support for sensor networks. Fourth

Annual Conference on Wireless on Demand Network Systems and Services,

WONS ’07, pages 162–169, Jan. 2007.

[Cas11] A. Castellani. Constrained Messaging Protocol: an UDP protocol extension

useful for CoAP and other protocols., July 2011.

[CGLS08] J. Chen, M. Gerla, Y.-Z. Lee, and M. Y. Sanadidi. TCP with delayed ack for

wireless networks. Ad Hoc Networks, 6(7):1098–1116, 2008.

[CMSM09] B. Chen, I. Marsic, H.-R. Shao, and R. Miller. Improved delayed ack for tcp

over multi-hop wireless networks. In WCNC, pages 1772–1776, 2009.

[DAV04] A. Dunkels, J. Alonso, and T. Voigt. Distributed TCP Caching for Wire-

less Sensor Networks. In Proceedings of 3rd Annual Mediterranean Ad-Hoc

Networks Workshop, 2004.

116

BIBLIOGRAPHY

[DGV04] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a lightweight and flexible

operating system for tiny networked sensors. In Proceedings of First IEEE

Workshop on Embedded Networked Sensors (Emnets-I), Tampa, Florida, USA,

November 2004.

[DNP99] M. Degermark, B. Nordgren, and S. Pink. IP Header Compression. IETF,

RFC 2507, February 1999.

[Dun03] Adam Dunkels. Full TCP/IP for 8 Bit Architectures. In Proceedings of First

ACM/Usenix International Conference on Mobile Systems, Applications and

Services (MobiSys 2003), San Francisco, May 2003.

[DVA04] Adam Dunkels, Thiemo Voigt, and Juan Alonso. Making TCP/IP Viable

for Wireless Sensor Networks. In Proceedings of First European Workshop

on Wireless Sensor Networks (EWSN 2004), work-in-progress session, Berlin,

Germany, January 2004.

[Egg11] L. Eggert. Congestion Control for the Constrained Application Protocol

(CoAP), January 2011.

[FARI10] S. Floyd, A. Arcia, D. Ros, and J. Iyengar. Adding Acknowledgement Con-

gestion Control to TCP, February 2010.

[FLZ+05] Z. Fu, H. Luo, P. Zerfos, S. Lu, L. Zhang, and M. Gerla. The Impact of Mul-

tihop Wireless Channel on TCP Performance. IEEE Transactions on Mobile

Computing, 4(2):209–221, 2005.

[FMMP00] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An Extension to the

Selective Acknowledgement (SACK) Option for TCP. RFC 2883, IETF, 2000.

[FW02] G. Fairhurst and L. Wood. Advice to link designers on link Automatic Repeat

reQuest (ARQ). RFC 3366, IETF, 2002.

[GMP03] L. Galluccio, G. Morabito, and S. Palazzo. An Analytical Study of a Tradeoff

Between Transmission Power and FEC for TCP Optimization in Wireless

Networks. In Proceedings IEEE INFOCOM, pages 1765–1773, 2003.

[GTB99] M. Gerla, K. Tang, and R. Bagrodia. TCP performance in wireless multi-hop

networks. In Proceedings 2nd IEEE Workshop on Mobile Computer Systems

and Applications (WMCSA), page 41, Washington, DC, USA, 1999.

[HT10] J. Hui and P. Thubert. Compression Format for IPv6 Datagrams in 6LoW-

PAN Networks. Internet Draft draft-ietf-6lowpan-hc-11, work in progress,

September 2010.

117

BIBLIOGRAPHY

[HT11] J. Hui and P. Thubert. Compression Format for IPv6 Datagrams over IEEE

802.15.4-Based Networks, September 2011.

[IEE99] IEEE 802.11. IEEE 802.11-1999 Standard: Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) Specifications. IEEE Computer

Society., 1999.

[IEE06] IEEE Computer Society. IEEE Std. 802.15.4-2006, October 2006.

[IGV05] Y.G. Iyer, S. Gandham, and S. Venkatesan. STCP: a generic transport layer

protocol for wireless sensor networks. In Proceedings of 14th International

Conference on Computer Communications and Networks, pages 449–454, Oct.

2005.

[Jac90] V. Jacobson. Compressing TCP/IP headers for Low-Speed Serial Links. RFC

1144, IETF, Febrary 1990.

[JBB92] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High Perfor-

mance, May 1992.

[JEZ+05] R. Jafari, A. Encarnacao, A. Zahoory, F. Dabiri, H. Noshadi, and M. Sar-

rafzadeh. Wireless sensor networks for health monitoring. In Proceedings of

Second Annual International Conference on Mobile and Ubiquitous Systems:

Networking and Services, pages 479 – 481, jul. 2005.

[JPS07] L-E. Jonsson, G. Pelletier, and K. Sandlund. The RObust Header Compression

(ROHC) Framework. RFC 5795, IETF, July 2007.

[KFD+07] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. Culler, Ph. Levis, S. Shenker,

and I. Stoica. Flush: a reliable bulk transport protocol for multihop wire-

less networks. In Proceedings of 5th international conference on Embedded

networked sensor systems, pages 351–365, New York, 2007. ACM.

[KHS10] M. Kranz, P. Holleis, and A. Schmidt. Embedded interaction: Interacting

with the internet of things. Internet Computing, IEEE, 14(2):46 –53, 2010.

[KMS07] N. Kushalnagar, G. Montenegro, and C. Schumacher. IPv6 over Low-Power

Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions,

Problem Statement, and Goals. RFC 4919, IETF, 2007.

[LKL06] H. Lee, Y. Ko, and D. Lee. A hop-by-hop reliability support scheme for wireless

sensor networks. In Proceedings of the 4th annual IEEE international confer-

ence on Pervasive Computing and Communications Workshops, PERCOMW

’06, pages 431–, Washington, DC, USA, 2006. IEEE Computer Society.

118

BIBLIOGRAPHY

[LS02] W. Lilakiatsakun and A. Seneviratne. Enhancing TCP energy efficiency for

mobile hosts. In Proceedings of 10th IEEE International Conference on Net-

works, pages 235 – 239, 2002.

[Mat96] M. Mathis. TCP Selective Acknowledgment Options. RFC 2018, IETF, Oc-

tober 1996.

[Max11] C. Maxfield. IPv4, IPv6, The Internet of Things, 6LoWPAN, and Lots of

other Stuff, July 2011.

[MGN07] B. Marchi, A. Grilo, and M. Nunes. DTSN: Distributed Transport for Sensor

Networks. Proceedings of 12th IEEE Symposium on Computers and Commu-

nications, pages 165–172, July 2007.

[MKHC07] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. Transmission of IPv6

Packets over IEEE 802.15.4 Networks. RFC 4944, IETF, September 2007.

[OB07] R.de Oliveira and T. Braun. A Smart TCP Acknowledgment Approach

for Multihop Wireless Networks. IEEE Transactions on Mobile Computing,

6(2):192–205, 2007.

[O’F10] C. O’Flynn. ICMPv6/ND Compression for 6LoWPAN Networks. Internet

Draft draft-oflynn-6lowpan-icmphc-00, work in progress, July 2010.

[PA00] V. Paxson and M. Allman. Computing TCP’s Retransmission Timer, 2000.

[PG07] J. Paek and R. Govindan. RCRT: rate-controlled reliable transport for wireless

sensor networks. In Proceedings of 5th international conference on Embedded

networked sensor systems, pages 305–319, New York, 2007. ACM.

[PM97] S. J. Perkins and M. W. Mutka. Dependency Removal for Transport Protocol

Header Compression over Noisy Channels. In Proceedings of International

Conference on Communications (ICC), pages 1025–1029, 1997.

[Pos81] J. Postel. Transmission Control Protocol. RFC 793 (Standard), September

1981. Updated by RFC 3168.

[PPG+07] P. Pereira, P. R. Pereira, A. Grilo, F. Rocha, M. S. Nunes, A. Casaca,

C. Chaudet, P. Almström, and M. Johansson. End-to-end reliability in wireless

sensor networks: survey and research challenges, December 2007.

[RFB01] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Conges-

tion Notification (ECN) to IP. RFC 793 (Standard), September 2001.

119

BIBLIOGRAPHY

[RG60] I. Reed and S. Golomb. Polynomial codes over certain finite fields. Joint

Society of Industrial and Applied Mathematics Journal, 8(2):300–304, June

1960.

[RGGP06] S. Rangwala, R. Gummadi, R. Govindan, and K. Psounis. Interference-aware

fair rate control in wireless sensor networks. In Proceedings of conference on

Applications, technologies, architectures, and protocols for computer commu-

nications, pages 63–74, New York, NY, USA, 2006. ACM.

[SAA03] Y. Sankarasubramaniam, B. Akan, and I. F. Akyildiz. ESRT: event-to-sink

reliable transport in wireless sensor networks. In Proceedings of 4th ACM

international symposium on Mobile ad hoc networking & computing, pages

177–188, New York, 2003. ACM.

[SB09] Z. Shelby and C. Bormann. 6LoWPAN, the Wireless Embadded Internet.

WILEY, 2009.

[SCM84] L. Shu, D. Costello, and M. Miller. Automatic-repeat-request error-control

schemes. IEEE Communications Magazine, 22(12):5 – 17, December 1984.

[SFRF01] A. Srivastava, R.J. Friday, M.W. Ritter, and W.S. Filippo. A study of TCP

performance over wireless data networks. In Proceedings of IEEE VTS 53rd

Vehicular Technology Conference, volume 3, pages 2265 –2269, 2001.

[SH03] F. Stann and J. Heidemann. RMST: reliable data transport in sensor net-

works. Proceedings of First IEEE International Workshop on Sensor Network

Protocols and Applications, pages 102–112, May 2003.

[SHBF11] Z. Shelby, K. Hartke, C. Bormann, and B. Frank. Constrained Application

Protocol (CoAP), July 2011.

[SSS+11] Z. Shelby, M. Garrison Stuber, D. Sturek, B. Frank, and R. Kelsey. CoAP-

Requirements and Features, May 2011.

[Ste98] E. Stephen. Internet Protocol, Version 6 (IPv6) Specification. IETF, RFC

2460, December 1998.

[TH10] P. Thubert and J. Hui. LoWPAN fragment Forwarding and Recovery. Internet

Draft draft-thubert-6lowpan-simple-fragment-recovery-07, work in progress,

June 2010.

[Tit09] J. Titus. 6LoWPAN goes where ZigBee can’t, February 2009.

120

BIBLIOGRAPHY

[TWPS09] L. Tuan, H. Wen, C. Peter, and J. Sanjay. ERTP: Energy-efficient and Reliable

Transport Protocol for data streaming in Wireless Sensor Networks. Computer

Communications, 32(7-10):1154 – 1171, 2009.

[Vag10] A. Vagas. OMNET++ 4.0, May 2010. http://www.isi.edu/nsnam/ns/.

[Vag11] A. Vagas. INETMANET framework, January 2011.

[Wan04] R. Wang. An experimental study of TCP/IP’s Van Jacobson header com-

pression behavior in lossy space environment. In Proceedings of 60th IEEE

Vehicular Technology Conference, volume 6, pages 4046 – 4050, sep. 2004.

[WCK05] C.-Y. Wan, A.T. Campbell, and L. Krishnamurthy. Pump-slowly, fetch-quickly

(PSFQ): a reliable transport protocol for sensor networks. IEEE Journal on

Selected Areas in Communications, 23(4):862–872, April 2005.

[WEC03] Ch.-Y. Wan, S. B. Eisenman, and A. T. Campbell. CODA: congestion de-

tection and avoidance in sensor networks. In Proceedings of 1st international

conference on Embedded networked sensor systems, pages 266–279, New York,

2003. ACM.

[YLJH05] Z. Yangfan, M.R. Lyu, L. Jiangchuan, and W. Hui. PORT: a price-oriented

reliable transport protocol for wireless sensor networks. In Proceedings of 16th

IEEE International Symposium on Software Reliability Engineering, pages 10

pp.–126, Nov. 2005.

[YMG08] J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network survey. Com-

puter Networks, 52(12):2292–2330, 2008.

[ZAJ11] T. Zheng, A. Ayadi, and X. Jiang. TCP over 6LoWPAN for industrial ap-

plications: An experimental study. In Wireless Sensor Networks - theory and

practice (WSN’2011), Paris, France, Febrary 2011.

121

Index

6LoWPAN, 1, 13

ACK loss detection, 42

AIMD, 21, 23

ARQ, 38, 81, 96, 97

Cache management, 41

CoAP, 15

Compressed TCP, 55

Congestion Control, 19

Congestion Detection, 20

Congestion Notification, 21

Constrained Application Protocol, 31

Context management, 63

CSMA, 12

CSMA-CA, 12, 81

DTC, 29

DTSN, 26

Edge Router, 13, 54

Energy Efficiency, 27

ERTP, 27

ESRT, 20

Explicit Congestion Notification, 32

FEC, 81, 90

Flush, 21

HRS, 26

ICMPv6, 14

IEEE, 1

IEEE 802.11, 1, 38

IEEE 802.15.4, 1, 12, 38, 54

IETF, 1, 13

IFRC, 20

Implicit ACK, 29

Internet of Things, 2

IP Addressing, 15

IPHC, 54, 55

Loss detection, 24

Low power Networks, 1, 10

LoWPAN, 1

LOWPAN ICMPHC, 14

LOWPAN IPHC, 14

LOWPAN NHC, 14

MSS, 80, 91

MTU, 81

OMNet++, 29

PLC, 10

PSFQ, 26

Random Early Detection, 21

RCRT, 20

Reed-Solomon, 81

Reliability, 24

Remote Environment Monitoring, 10

RMST, 25

ROHC-TCP, 56

SACK, 38

Selective Acknowledgment, 28

SFFR, 97

TCP, 14, 28, 79, 86

TCP Header Compression, 58

TCPHC, 54, 58

TDMA, 12

TSS, 29

TWICE, 55

UDP, 14

Wireless Sensor Networks, 10

ZigBee, 1

122

w
w
w
.t
el
ec
o
m
-b
re
ta
g
n
e.
eu

Campus de Brest

Technopôle Brest-Iroise

CS 83818

29238 Brest Cedex 3

France

Tél : + 33 (0)2 29 00 11 11

Fax : + 33 (0)2 29 00 10 00

Campus de Rennes

2, rue de la Châtaigneraie

CS 17607

35576 Cesson Sévigné Cedex

France

Tél : + 33 (0)2 99 12 70 00

Fax : + 33 (0)2 99 12 70 19

Campus de Toulouse

10, avenue Édouard Belin

BP 44004

31028 Toulouse Cedex 04

France

Tél : + 33 (0)5 61 33 83 65

Fax : + 33 (0)5 61 33 83 75

