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Metastability Exchange Optical Pumping (MEOP) of 
3
He in situ 

 

Abstract: Polarized helium-3 is used as a contrast agent for lungs magnetic 
resonance imaging that has recently reached the pre-clinical applications. One 
method to hyperpolarize 3He is the metastability exchange optical pumping 
(MEOP). Optical pumping is performed in standard conditions at low pressure (  
1 mbar) and low magnetic field (  1 Gauss). In this work, the complete update of 
a low field polarizer dedicated to small animal lungs imaging is presented. The 
implementation of a new 10 W laser, new peristaltic compressor and others 
components resulted in a production of 3-4 scc/min for a polarization between 30 
to 40%. Images of rat lungs made with better resolution and a new dynamic radial 
sequence are presented as a validation of the system. Since few years, MEOP has 
also been studied at higher pressures and higher magnetic fields in small sealed 
cells. It showed that, thanks to hyperfine decoupling effect induced by high 
magnetic field, it was also possible to efficiently polarize at higher pressure (67 
mbar). Experiments done at 4.7 and 1.5 T are reported in this work. The first ones 
show a benefic (higher polarization values) and a negative effect (lower 
production rates) of the magnetic field. The seconds highlight the advantage of 
using an annular beam shape of the laser that matches the distribution of 23S state 
atoms at higher pressure. Nuclear polarization values of 66.4% at 32 mbar and 
31% at 267 mbar were obtained in 20 mL sealed cells and a 10 times increase in 
the production rate compare to best standard conditions. These promising results 
were the first motivation for building a high-field polarizer working inside MRI 
scanner in hospital. The design and the construction of such a polarizer are 
described in detail in the last part of the dissertation. The polarizer produces 
hyperpolarize 3He at 30-40% with a 4 times higher flow than the low field 
polarizer (10-15 scc/min). The first good quality human lungs images made in 
Poland with healthy volunteers are the main result of this work. 

Keywords: Helium-3, MEOP, metastability exchange, hyperpolarized gas, 
polarizer, optical pumping, nuclear polarization, 1083 nm, hyperfine decoupling, 
MRI, lungs imaging 
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Introduction 

The main principle of Optical Pumping (OP) was first theoretically 
suggested in 1950 by Alfred Kastler [Kas50] and consists in changing the 
distribution of atoms among the energy sublevels of the ground state by resonant 
absorption of polarized light. A little more than ten years later [Col63, Wal62], the 
first experiments demonstrating the possibility to hyperpolarize a stable isotope of 
helium, 3He, were successfully performed and a new technique was discovered: 
Metastability Exchange Optical Pumping (MEOP). In this method, optical 
pumping is firstly performed on the metastable state 23S of 3He atoms and in a 
second step, the nuclear orientation is transferred through metastability exchange 
collisions to the ground state. 

So far, MEOP has exclusively been applied to 3He and polarization near 90 
% could be obtained for pressures on the order of 1 mbar [Bat05, Bat11b, Big92, 
Gen93]. Recent laser developments dedicated to optical pumping [Gen03, Mue01, 
Tas04] and ameliorations of experimental conditions [Gen93, Sto96, Wol04] 
increased the efficiency of the method. Nevertheless, limitations in the higher 
pressure domain (P > 10 mbar) have never been fully understood and different 
methods of non-relaxing compression of 3He had to be developed [And05, Bat05, 
Eck92, Gen01, Hus05, Nac99, Wol04] to obtain polarized gas samples on the 
order of atmospheric pressure, which is required in most applications. 

In fact hyperpolarized 3He has many applications in many branches of 
physics. In nuclear physics it is being used for neutrons spin filters [Bat05, Bec98, 
Hut11, Iof11, Jon00, Sur97] and as polarized target to study the neutron structure 
[Ant93, Bec99, Mey94]. It can also be used for NMR measurements of gas 
diffusion in porous media [Tas05], for building magnetometer [Mor97] and for 
magnetic resonance imaging (MRI) of the lungs in animals [Via99] and in humans 
[Bee04]. Since the first images of excised rat lungs in 1994 in Nature [Alb94] and 
in-vivo human lungs shortly after [Ebe96, Fal96], the technique has made such 
significant progress that it is now providing unsurpassed images of gas ventilation 
and has demonstrated great potential in wide a range of chest diseases such as 
asthma [Dri07], cystic fibrosis [Ban10, Kou05], COPD [Swi05], lung transplant 
[Gas03] and lung cancer [Ire07].  

Interest in lungs MRI imaging using hyperpolarized (HP) gas has become 
more and more important since nowadays lung diseases are a huge cause of 
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mortality in the world. For example chronic obstructive pulmonary disease 
(COPD) is the fourth leading cause of chronic morbidity and mortality in the 
United States and is projected to rank fifth in 2020 in burden of disease worldwide 
[Rab07] whereas cystic fibrosis is the most frequent lethal genetic pediatric 
disease in the Caucasian population [Ban10]. Translation of HP-3He MRI into the 
clinical area has been accomplished [Kau09] but it still remains an emerging 
technique compared to the other modalities such as Chest Radiography, lung 
scintigraphy, Positron Emission Tomography (PET) and of course the standard 
modality that is chest Computed Tomography (CT). Nevertheless, the main 
advantage of MRI compare to CT is that it is a non-invasive technique, which is 
very convenient when it comes to repeatedly examining for asthma or cystic 
fibrosis in children. 

3He is not the only gas that can be optically polarized. It is possible to obtain 
hyperpolarized 3He and 129Xe with a different technique called Spin Exchange 
Optical Pumping (SEOP). This was also discovered in the early 60�s [Bou60]. In 
SEOP, optical pumping is firstly performed on an alkali atom and the polarization 
is then transferred to the ground state of the noble gas atoms via spin-exchange 
collisions [Wal97, Wal11]. The main advantage of SEOP is that optical pumping 
is performed directly at several bars and thus does not require any additional 
compression but the transfer of polarization to 3He or 129Xe is a long process that 
can take several hours and polarization is usually lower than in MEOP [Wal97]. It 
is good to notice though a recent significant work [Her08] where a 129Xe 
production of 0.3 L/hour was reached with 64 % polarization. Due to its lower 
gyromagnetic ratio, 129Xe has a lower signal in lung imaging compare to 3He but 
it is much cheaper and its solubility to the blood is well suited for functionality 
and perfusion studies. That is why 129Xe stays a good alternative and can also be a 
complement to MEOP. A recent study on imaging a mixture of xenon and helium 
[Aco04] proved the complementary of both methods. 

The present work will focus on the possible improvements of MEOP and 
the implementation of new polarizers in the clinical environment for lungs MRI. 
Apart from the recent redhibitory price of 3He, due to a global shortage [Cho09], 
the main drawback of MEOP is the compression required afterwards. It leads to 
design dedicated compressors that are in any case responsible for an additional 
relaxation. Moreover, it also limits the production rate that can be achieved in a 
compact polarizer suited for a clinical environment. That is why it is of great 
importance for MEOP to understand its current limitations at relatively high 
pressures (P > 10 mbar) and to try to find experimental conditions for which the 
compression step would be eased. Preliminary works of MEOP in high field (B > 
0.1 T) showed dramatic increase of steady state polarization and extended the 
range of operating pressure to several tens of mbar [Nac02, Abb04, Abb05b, 
Nik07]. Systematic studies of MEOP were then conducted in collaboration 
between Krakow and Kastler Brossel Laboratory (LKB) in Paris to explore 
influence of laser shape and intensity, magnetic field, 3He pumping pressure and 
density of metastable state [Nik10]. A comprehensive update of the theoretical 
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model of MEOP has even recently been extended to higher pressures domain 
although discrepancies still exist between experimental results and theoretical 
values of steady state polarization due to an unknown relaxation during OP 
[Bat11a]. 

The motivation of this work is to concretely transpose these promising 
results obtained in sealed cells to a new high field polarizer that would work 
directly inside the most commonly used scanner at 1.5 T. The manuscript is 
organized in the following way:  

• In the first chapter, the theory and basic aspects of MEOP required for a 
good comprehension of this work will be described. 

• In the second part, a complete update of a low field polarizer is 
presented leading to some lung imaging applications both in voluntary 
human and small animals. 

• My contribution to the systematic studies performed in high field (1.5 
and 4.7 T) with sealed cells is summarized in the third chapter. 

• A last, preliminary tests and construction of a high field polarizer is 
described and discussed. 

 
Before going on, I would like to introduce the notion of absorption that will 

be used in the following of this dissertation. When a laser is tuned to an atomic 
transition of 3He, a part of the laser light is absorbed and a part is going out of the 
cell containing the gas. The quantity remaining that can be monitored on a 
photodiode is called transmittance T. A = 1 � T, is called here the absorptance and 
the useful quantity for polarization and density of metastable state measurement is 
the absorbance: - ln (T). In this dissertation, most of the figures show a quantity 
called absorption, which is obtained by dividing the signal after demodulation by 
a lock-in amplifier by the integrated transmittance (see § 3.2.2). This quantity is 
directly proportional to the absorbance and this is the one used for the 
measurement. 
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Chapter 1  

MEOP Theory: 

In this chapter the main features of MEOP will be described in order to ease 
the comprehension of the physical processes involved. After a reminder of the 
basic notion of polarization, the 3-steps general scheme of MEOP will be 
presented together with the main results obtained in the standard conditions, 
which means low magnetic field (  10 G) and low pressure (  1 mbar). The main 
factors limiting the process at higher pressure will be recalled and the effects of 
magnetic field on 3He levels structure and MEOP results summarized. Finally, 
important parameters used in the different MEOP models proposed these last 
years will be introduced before their utilization in the results part of chapter 3. 

1.1. Concept of polarization: 

The ground state 11S0 of 3He is a singlet state with an orbital angular 
momentum L = 0. Its total electronic angular moment J is then also null and its 
total angular momentum is purely nuclear F = I =  . 11S0 is composed of two 
sublevels characterized by their quantum number mI = ±   and the nuclear 
polarization M is defined as the difference of populations between these two 
nuclear spin states:  

M =
N

"  N!

N
"
+ N

! =
N

"  N!

Ng

 (1.1) 

where N  and N  are respectively the number densities of nuclear spin states mI = 
  and mI = -   and Ng is the total number density of ground state atoms. 

In a magnetic field B, at normal room temperature and in the 
thermodynamic equilibrium, number densities follow the Boltzmann distribution 
and M can be written:  
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M =

exp(
2μB
k
B
T
) !1

exp(
2μB
k
B
T
) +1

 μB
k
B
T
 " 0hB
2k

B
T

 (1.2) 

with nuclear magnetic moment μ, Boltzmann constant k
B

, gyromagnetic ratio of 
3He  

0
 and Planck constant   h . At T = 300 K and B = 1.5 T, this gives a 

polarization of 3.89 ! 10-6. In conventional MRI, the signal is coming from the 
magnetization of protons in H2O contained inside tissues. The polarization of 
water in the same field and temperature conditions is only 1.31 times larger due to 
a difference in gyromagnetic ratio. The reason why it is possible to image protons 
in the case of water and not for 3He is due to the difference of density. In pure 
water and at 37 °C, proton density is around 6.7 ! 1022 atoms/cm3 when it is only 
2.3 ! 1019 for a gas at 1 atm [Con97]. It results in a difference of signal by a factor 
of approximately 3800. Some attempts to perform MRI with thermally polarized 
3He have been done at 2.35 T in small animals [Kob99] but the quality of picture, 
duration of apnea and sequence make it not feasible in human. 

With optical pumping, SEOP or MEOP for the concern of this work, 
polarization on the order of 30 to 80 % can be achieved and the difference of 
density is easily compensated by the resulting magnetization. 

1.2. MEOP in standard conditions: 

The main idea of optical pumping by exchange of metastability was found 
in early 60�s [Col63] and does not depend of the field and pressure conditions it is 
being performed. It is schematically described on Fig. 1.1 and its principle can be 
divided in three steps. 
• Direct pumping from the ground state like in SEOP with rubidium atoms is 

not possible due to a too high energy difference (  20 eV) and forbidden transition 
between 11S0 and 23S1 states. That is why a weak radio frequency (rf) discharge is 
sustained inside the optical pumping cell to populate higher states of 3He. After a 
radiative cascade, a small fraction of the atoms is falling into the metastable state 
23S1 that is playing the role of ground state for OP. Due to the angular momentum 
conservation rule and the forbidden transition between triplet and singlet states, it 
cannot decay via photon emission. Its lifetime is thus only limited by some 
collision process (see § 1.5.4). The number density nm of atoms in the metastable 
state is much lower than the ground state number density Ng. Typically nm/Ng = 1 
ppm. 
• In a second step, OP is performed with a circularly polarized light tuned at 

1083 nm on one of the available transition between 23S1 and 23P sublevels. From 
the 23P state, an isotropic radiative de-excitation happens and atoms come back to 
the metastable state (Fig. 1.2). After few cycles of optical pumping, the population 
densities of low hyperfine quantum number mF in the case of "+, are depleted in 
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Fig. 1.1. Scheme of metastability exchange optical pumping (see text). The singlet ground state 
11S0 and the two first triplet state 23S (metastable state) and 23P are the ones involved in the 

process. They have been subdivided into hyperfine sublevels prior to their total angular 
momentum number F. The most efficient transition used in low field C8 and C9 are displayed. 

 

Fig. 1.2. Population diagram of the 11S0, 2
3S1 and 23P1 and main processes involved during an OP 

performed on C8. The other sublevels of 23P are not presented for the sake of clarity. The black 
and grey bars represent the modified density of populations in the sublevels due to OP. 
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favor to those of high mF and the optical orientation of the electronic angular 
momentum is enforced. Due to an efficient hyperfine coupling between the 
electrons and the nucleus of the 23S1 atoms, this electronic optical orientation 
induces nuclear orientation as well. 
• The last step occurs during metastability exchange (ME) collisions between 

ground state atoms and nuclearly polarized metastable atoms 3He*
 . ME collisions 

are fast processes where the colliding 23S and 11S0 atoms just exchange electronic 
excitations with no change of nuclear orientations. They induce no global loss of 
angular momentum. The result of this last step is a net transfer of nuclear 
orientation from the metastable state to the much more populated ground state. 

3
He +

3
He!

*  3
He

*
+

3
He!  (1.3) 

The hyperfine level structure involved in the optical pumping transition at 
1083 nm have been already completely described in [Nac85] and [Cou02] and is 
displayed in Fig. 1.3. We will keep the same notation of sublevels as in [Cou02] 
and recall the main results. The metastable state 23S1 has two hyperfine levels F = 
3/2 and F = 1/2 well resolved in low field (split by 6.74 GHz) and six sublevels A1 
to A6 (population density a1 to a6) labeled by their increasing order of energy. 
These levels can be written using a decoupled basis states m

S
,m

I
. 

A
1
=  1, 

A
2
= cos!  1,+ + sin! 0, 

A
3
= cos!+ 0,+ + sin!+ 1, 

A
4
= 1,+

A
5
= cos! 0,  sin!  1,+

A
6
= cos!+ 1,  sin!+ 0,+

 (1.4) 

A1 and A4 are pure states whereas the other ones involve large mixing parameters 
!+ and !- (see appendix of [Cou02]). At zero magnetic field, maximal mixing of 
electronic and nuclear momenta occurs with sin2!+ = 1/3 and sin2!- = 2/3. The 
metastable state 23P has two hyperfine levels F = 1/2, two levels F = 3/2 and one 
level F = 5/2. This gives 18 sublevels B1 to B18 (population density b1 to b18). 

An absorption spectrum at 1 mT generated by a Fortran program made by 
Pierre-Jean Nacher from Kastler Brossel laboratory is displayed on Fig 1.4. The 
spectrum is computed from the amplitudes of the transition matrix elements Tij of 
the fine and hyperfine line components assuming pure Doppler broadening. The 
transition probabilities Tij of all components of the 1083 nm line were evaluated in 
[Cou02] and can be found in more detail in appendix A of [Bat11b]. At this field, 
differences between absorption spectrum of left-handed "- and right-handed "+ 
circularly polarized light parallel to the magnetic field axis are negligible. Nine 
components are allowed between 23S and 23P levels but due to Doppler 
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Fig. 1.3. Hyperfine structure of the 23S and 23P states. Left: diagram showing energetic positions 
at low magnetic field (  1 mT) of the 6 and 18 sublevels of 23S and 23P states respectively as a 

function of their angular momentum projection mF. Right: visualization of the nine allowed optical 
transitions at 1083 nm. 

 

Fig. 1.4. 1083 nm absorption spectrum at low magnetic field. The spectrum was computed 
assuming a pure Doppler broadening width of 1.2 GHz at 300K. The vertical bars represent the 

transition matrix elements Tij of the available components. Optical transition frequencies are 
referenced to that of the C1 line in zero magnetic field like in [Cou02]. 
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broadening only 5 peaks are resolved in the absorption spectrum. The well-resolve 
C8 and C9 components are the most commonly used transitions for MEOP at low 
field in pure 3He gas. The choice depends on the 3He pressure. For pressure lower 
than 1 mbar, the laser is tuned on C8 and for pressure of the order of 1 mbar or 
higher, pumping on C9 gives a higher steady state polarization. 

Nuclear polarizations of the order of 0.8 are obtained [Bat05, Big92, Gen93] 
thanks to the recent development of dedicated laser [Gen03, Tas04]. Efficiency 
and production rates depend mainly of the laser and the rf discharge intensities 
[Gen93, Wol04]. 

1.3. Pressure limitation of MEOP: 

When polarizing 3He at higher pressure (P > 5 mbar), the steady state 
nuclear polarization obtained is much lower (see Fig. 1.5). Values decrease 
progressively with pressure and polarization is only about a few percents at 40 
mbar and higher. This tendency could be mainly due to two collision processes. 
The ionizing Penning collisions described in equation (1.5) shorten the lifetime of 
atoms in the 23S metastable state [Sch69]. Thus, this non linear process could 
affect the efficiency of MEOP by inducing an unfavorable ratio between 
metastable and ground state atoms. 

 

Fig. 1.5. Steady-state polarization obtained by MEOP at low magnetic field as a function of the 
3He pressure. This figure is taken from § 1.3.2 of Marie Abboud�s thesis [Abb05a]. Stars: results 
published in [Gen03] from OP on C9 with a 4.5 W laser. Triangles: Abboud�s results with a 2 W 

laser tuned on C9. A more detailed and recent figure can be found in Marion Batz thesis ([Bat11b], 
Fig 6.49). The results are similar and show the same tendency. 
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He
*
+ He

* ! He + He
+
+ e

  (1.5) 

In addition, an increase in frequency of 3-body collisions with conversion 
into a metastable helium molecule (equation (1.6)) could also be an additional 
relaxation channel occurring at higher pressure. The rate of creation of these 
molecules is enhanced with a P2 dependence and their diffusion lifetime linearly 
increase with P [Nac02]. Collisions between 3He2 molecules and polarized atoms 
could be similar as metastability exchange collisions and nuclear angular 
momentum could be dissipated in the numerous rotational states of the molecule 
by spin-orbit coupling (see § 2.2.2 of [Cou01]). 

He
*
+ 2He  He

2

*
+ He  (1.6) 

Recent works have confirmed the existence of these molecules [Glo11] but 
their role to this additional relaxation has not been precisely defined yet. 

1.4. Magnetic field dependence of MEOP: 

Detailed calculations were performed in [Cou02] to obtain dependence of 
3He atomic structure with magnetic field. It is determined by finding the 
eigenvalues of the total Hamiltonian H of the system: 

H = H f + Hhf + Hz  (1.7) 

where Hf and Hhf are the Hamiltonians describing fine and hyperfine interactions 
and where Hz is the Hamiltonian taking into account the interaction between 
electronic and nuclear spins with magnetic field. If μB and μN are the Bohr and 
nuclear magneton, gL, gS and gI the g-factors of electronic orbital, electronic spin 
and nuclear spin angular momentum L, S and I respectively, Hhf can be written:  

Hz = μB (gLL + gSS) + μNgI I[ ]  B (1.8) 

In standard conditions (B   1 mT), the magnetic field is used only for 
preventing a fast relaxation of nuclear polarization and has negligible influence on 
the structure of the atomic states. Interactions between electronic and nuclear 
spins with magnetic field are much lower than fine and hyperfine interactions. 
That is why !+

 and !-
 spectrum look similar and a special care has to be taken to 

obtain pure circular polarization of laser light during optical pumping. But when 
Zeeman energy exceeds the fine and hyperfine structure energy scales, the 
structure of 23S and 23P levels and transitions between them are deeply modified. 

On Fig 1.6, the evolution of eigenvalues of the total Hamiltonian 
characterizing the energies of the Zeeman sublevels of 23S and 23P eigenstates are 
represented as a function of magnetic field until 4.7 T. At this field strength, only 
a weak state mixing remains in the 23S metastable state. For B > 1 T, the 
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Fig. 1.6. Energy splits between sublevels in the metastable state 23S1 (bottom) and first excited 
state 23P (top) as a function of the magnetic field B. The sublevels A1 to A6 and B1 to B18 are 

labeled by their increasing order of energy and their energetic positions are defined so that their 
sum equals 0. 
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following approximation can be made [Abb05a]: 

sin
2!±  0.012 /B2  (1.9) 

Variations of sin + and sin - are displayed in Fig 1.7. When increasing the 
magnetic field, a first energy crossing of eigenstates appears between A4 and A5 at 
0.1602 T (Fig 1.6) and at higher B, A5 becomes the eigenstate 1,+  with mF = 3/2. 
The Hamiltonian in excited state 23P cannot be resolved analytically due to its 
complexity but a numerical computation was made in [Cou02] and a precision of 
the order of MHz for sublevels energies was obtained. 

 

Fig. 1.7. Mixing parameters of electronic and nuclear angular momenta sin + and sin - as a 
function of the magnetic field. At 1.5 T, sin + = 0.07128 and sin - = 0.07697. 

All Zeeman sublevels for the magnetic fields B = 1.5 and 4.7 T at which 
experiments were made are displayed on figure 1.8. In the 23S state, the six 
Zeeman sublevels are organized in three pairs of states in which the level energy 
is mostly determined by the common dominant value of mS. The same 
phenomenon is present for the 23P state with 9 pairs of sublevels whose energies 
are also mostly determined by mS and mL. At high magnetic field, F is thus not the 
good quantum number anymore. However, the relation mF = mL + mI + mS being 
always fulfilled, mF is kept for the representation in Fig. 1.8. 
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Fig. 1.8. Energies Es/h and Ep/h in frequency units and angular momentum mF of the sublevels of 
the 23S and 23P states of 3He at 1.5 T (left) and 4.7 T (right). Energy references and state labeling 

are identical to those of [Cou02]. Arrows represent the two unresolved transitions of the most 
efficient component for MEOP in high field: f2-. 

Similar absorption spectra as Fig 1.4 and also generated by the same Fortran 
program are presented in Fig 1.9 for 1.5 T and 4.7 T. Spectra are different 
depending on the considered light polarization ( +

,  - or pi). This is a first benefic 
effect of hyperfine decoupling in high field, as it is not anymore mandatory to use 
an extremely pure circular polarization of the light due to a well resolved 
spectrum between  + and  - polarizations. These spectra extend other 170 GHz at 
1.5 T and 530 GHz at 4.7 T compared to 40 GHz at low field. The optical 
transition energies E/h and intensities Tij at 1.5 T are given in tables 2.1 and 2.2 of  
[Abb05a]. For a given polarization, the spectrum is composed of six main 
components appearing in one pair (f 2±) and one quartet (f 4±) unresolved at room 
temperature (Fig 1.9). 

The first experiments of MEOP at high magnetic field were performed in 
2001 [Cou01] at 0.1 T and already showed an increase by a factor of two in the 
achievable polarization at 40 mbar. After the first attempts to explain this 
improvement in high field [Nac02], the experiments were reproduced and 
polarization improved at 1.5 T [Abb04] and f2- component was found to be giving 
the highest polarization [Abb05b]. The optical detection was then updated 
[Suc07] and results were extended to 2 T at 67 mbar for a nuclear polarization of 
51 % [Nik07]. The main reason of this spectacular improvement is the hyperfine 
decoupling effect happening at high magnetic field. In standard conditions, a 
strong entanglement of electronic and nuclear spin states (hyperfine coupling) 
occurs. In other words, a transfer of orientation between nuclear to electronic spin 
and orbital is eased and this orientation can be lost through emission of polarized  
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Fig. 1.9. Main parts of the 1083 nm absorption spectra at 1.5 T (top) and 4.7 T (bottom) for the 
circular light polarization  + (dotted line) and  - (solid line). Spectra were computed assuming a 

pure Doppler broadening width of 1.2 GHz at 300K. The vertical bars represent the transition 
matrix elements Tij of the available components. Optical transition frequencies are referenced to 

that of the C1 line in zero magnetic field like in [Cou02]. Probe lines used for pumping experiment 
on f2- (see chapter 3) are highlighted. 



 15 

light in the higher excited states created by the rf discharge. Therefore, due to 
decoupling effect at higher magnetic field, angular momentum loss is reduced in 
the cascade and subsequent reduced nuclear relaxation is expected to yield higher 
optical pumping performances. 

The reduced loss of nuclear polarization in the presence of the discharge is 
experimentally clearly visible at high magnetic field in the decreasing of the 
polarization decay rate in the absence of optical pumping:  decay. A negative 
aspect of hyperfine decoupling is that the polarization build up time tB is also 
longer in high field. Thus the efficiency of MEOP at low pressure can be actually 
lower than in low field. To characterize the efficiency of MEOP, the following 
volume-independent production rate is defined: 

R =
M  P
t
B

 (1.10) 

where M is the nuclear polarization and P the pressure. If the production rate is 
lower at low pressure compare to low field, the fact that it is possible to reach 
high polarizations at higher pressures makes MEOP much more efficient in high 
field than in standard conditions. The weaker coupling in high field is then 
compensated by the increase of Metastability Exchange (ME) collisions rate at 
high pressures. In the best standard conditions, the maximum production rate is 
around 0.16 mbar/s when it was found to be 0.32 mbar/s at 67 mbar and 2 T 
[Nik07]. In other terms, it means that the same production of magnetization can 
be reached in a two times lower volume at high magnetic field. This is a major 
concern knowing that the production facility in Mainz [Bat05, Wol04] uses 36 L 
of optical pumping cell in a 4 m long system. In practice, the two main values 
someone has to maximize when trying to build a polarizer is the polarization M 
and the production rate R and the rest of this work will focus in particular on these 
two parameters. 

1.5. Main features of MEOP model: 

The aim of this section is not to establish a new model of MEOP. This work 
is already performed elsewhere by Pierre-Jean Nacher�s group in Kastler Brossel 
Laboratory. A first detailed model was given in [Nac85] for low field and low 
pressure conditions that could predict the value of nuclear polarization achievable 
for different laser intensities and discharge conditions. This model is based on rate 
equations of the populations of the 23S and 23P states and takes into account the 
effects of OP, ME collisions and relaxations. This model was extended to 3He-4He 
gas mixtures in [Lar91] and after the first successful experiments of MEOP at 0.1 
T [Cou01], the levels energies were derived [Cou02] and effects due to higher 
magnetic field discussed [Abb05a].  Recently, a comprehensive improvement of 
this model that tries to implement the advances in MEOP at high laser powers, 
high gas pressures and high magnetic field is being tested [Bat11a, Bat11b]. 
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Unfortunately, some discrepancies between computed M values and experimental 
results are systematically obtained and lead to the conclusion that an additional 
laser induced relaxation should be taken into consideration. Details can be found 
in the given references and will not be discussed here. In this section, only the 
main features of MEOP and corresponding crude equations will be recalled in 
order to illustrate and give an easier understanding to the reader of the processes 
involved. 

1.5.1. Metastability Exchange collisions 

The relative populations of sublevels Ai (i = 1 to 6) in the metastable state 

are written ai such that a
i

i=1

6 =1. If nm is the total density of atoms in 23S state, the 

density of atoms in Ai is then nmai. For convenience, the relative populations bj in 
the 23P state are defined so that the density of atoms in Bj sublevels is nmbj. As 
described already earlier in equation (1.3), negligible depolarization occurs during 
metastable exchange collisions and the colliding atoms only exchange their 
electronic excitation. In the formalism using the density matrices introduced in 
[Nac85], and if we define the ME collisions rate  e = Ng! e"  (cross section of ME 

collisions: #e, atomic velocity of colliding atom: $ and where  
e
!  represents the 

average over the thermal distribution of the velocity), the time evolution of the 
relative populations can be written: 

da
i

dt
ME

= "
e

a
k
(E

ik
+ MF

ik
)

k=1

6

 ! a
i

# 

$ 
' 

% 

& 
(  (1.11) 

The field dependent matrices E and F involve the mixing parameter "± and 
can be found in appendix of [Cou02]. !e is proportional to the pressure of 3He and 
was found to be 3.75 !106s 1mbar 1 in [Dup71] at room temperature. The 
increase at higher pressures compensates for the decreasing values inside the 
matrices due to decoupling at high magnetic field. The ME collisions lead to a 
common evolution of the relative populations ai and the nuclear polarization M 
described by the following equation: 

dM

dt
ME

= !
e
M

*  M( )  (1.12) 

where M* is the nuclear polarization in the metastable state and  e the ME 

collision rate for atoms in the ground state 11S ( e =
Ng

nm
! e ). 

1.5.2. Spin temperature distribution 

The notion of spin temperature distribution plays an important role under 
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the conditions that OP and relaxation processes have negligible effect on 
populations. In practice, these conditions are fulfilled in absence of optical 
pumping. In these circumstances, it was proposed in [And59] that the relative 
populations of the 23S sublevels should follow a Boltzmann-like distribution in 
angular momentum. This is valid at all field strengths and in pure 3He as well as 
in 3He-4He gas mixtures. Under the effect of ME collisions, the nuclear 
polarization M enforces a spin temperature distribution of the 23S sublevels 
populations. Defining the temperature distribution 1/! by: 

e
#
=
N

"

N
! =

1+ M

1 M  (1.13) 

it can be written that [Cou02]: 

a
i
=

e
! "m

F

e
3! / 2

+ 2e
! / 2

+ 2e
 ! / 2

+ e
 3! / 2  (1.14) 

The notion of spin temperature (ST) is the basis of the optical detection of 
polarization methods implemented in the experiments of § 2.1.7 and chapter 3. 
The ST distribution is affected by optical pumping and relaxation processes. 

1.5.3. Optical pumping 

In the case of monochromatic excitation between Ai and Bj sublevels the 
average over Maxwell velocities distribution at thermal equilibrium of optical 
transition rate was given in [Cou02]:  

& ij = 4!%f
me($'

TijIlas

' !
$' /2( )

2

e
# ' /'( )

2

d'
$' /2( )

2

+ ( #( ij #( ij' /c( )
2# 

 "  (1.15) 

where   is the fine structure constant, f the oscillator strength of the transition, me 
the electron mass, Ilas the light intensity, " the atom velocity,   the average speed, 
# and #ij the angular frequencies of the light and of the atomic transition,  ' /2 the 
total damping rate and c the speed of light.  

The effect of OP can then be modeled by the following equations: 

dai

dt OP

= " Tijb j

j=1

18 + " ij b j ! ai( )
j=1

18  (1.16) 

db j

dt
OP

= !"b j + " ij ai ! b j( )
i=1

6  (1.17) 

where " =1.022 !107s 1 is the radiative decay of the 23P state [Bat11a]. The first 
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parts of equations (1.16) and (1.17) describe the contribution of spontaneous 
emission of light from 23P sublevels when the second part represents the 
competing effects between the 23S atoms excitation and stimulated emission by 
23P atoms. In the case of a broadband laser and at low pressure ("' /2 << 2 ! ,  : 
Doppler width) the integral in equation (1.15) can be easily computed and result is 
given in equation (2.16) of [Bat11b]. It can be used in practice for the single 
component C8 in low field and at low pressure. At high magnetic field, MEOP is 
performed on multi-components absorption lines f2± or f4± and thus gives higher 
optical rate. As it will be discussed in chapter 3, collisional broadening has to be 
taken into account at higher pressures and the computation of  ij  yields Voigt 

profiles that significantly differ from the Gaussian Doppler profile. 

1.5.4. Relaxation processes 

Relaxation refers to all the processes that couple the atoms of the various 
Zeeman sublevels. For simplicity, the contributions of all processes involved are 
taking into account in the [Bat11b] model through simple rate equations that 
correspond to uniform redistributions with a single relaxation rate for each state: 
 
r

S ,  
r

P  and !g for 23S, 23P and 11S states respectively. The different relaxations 
are briefly described below. 

As evoked earlier in § 1.2, atoms in 23S state cannot decay via photon 
emission due to the angular momentum conservation rule. It can, in practice, only 
decay through collision processes. Two of them, the ionizing Penning and 3-body 
collisions were already described in equations (1.5) and (1.6). Additional collision 
processes during 3He diffusion to the cell wall and excitation quenching by gas 
impurities are responsible for an angular momentum loss [Nac02]. Equation 
(1.18) summarizes all these effects using the single rate  

r

S  that tends to equalize 
all the relative populations of 23S sublevels to 1/6. Depending on pressure, cell 
dimensions, gas purity, etc.,  

r

S  is typically of order 103 s-1 [Bat11a]. 

da
i

dt
r

= !
r

S 1

6
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i

" 

# 
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$ 

% 
'  (1.18) 

A similar equation (1.19) is used for the 23P state but the J-changing 
collisions occur at a much higher rate.  

r

P  is of the order 107 s-1 at low pressure (1 
mbar) and 109 s-1 at 50 mbar [Abb05a]. In this relatively high pressures regime, 
 
r

P  is much higher than the radiative decay in the 23P state  , and a total 
redistribution of the atoms in the Bj sublevels can be assumed. 

db j

dt
r

= " r
P 1

18
bk

k=1

18

 ! b j
# 

$ 
' 

%

&
( (1.19) 

Finally, the relaxation in the ground state in the presence of discharge is 
modeled as follow: 
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dM

dt r

=  !gM  (1.20) 

with: 

 g =  dis +  dd +  w +  mag  (1.21) 

Different processes are taken into account.  dd is the nuclear spin relaxation 
rate due to the magnetic dipole interaction between the 3He nuclear spins. The 
decay time was found to be several years [New93] and  dd can be easily 
neglected.  w is the wall relaxation rate of spin polarized 3He. It was also already 
fully studied in [Den06, Sch06a, Sch06b] and can be neglected too in the 
conditions of the systematic studies of chapter 3.  mag represents the relaxation 
rate due to magnetic field inhomogeneities. A special care has to be taken to limit 
the field gradients in the location of the OP cell. In the case of the low field 
polarizer of chapter 2, numerical computation was done to reduce the 
inhomogeneities (see § 2.1.1). For systematic studies (chapter 3) and high field 
polarizer (chapter 4) the field maps of the scanners (made for MRI experiments) 
are much better than the homogeneity required for OP. Finally,  dis is the nuclear 
spin relaxation rate due to the presence of the plasma discharge (collisions with 
ions, etc). 

The generic equation of the variation of nuclear polarization can be thus be 
written as the sum of the ME collisions and relaxations contributions: 

dM

dt
= !e M*  M( )  !gM  (1.22) 

Practically, it will be shown in the results part of chapter 3 that a laser 
induced relaxation is missing in this crude model, and that it is responsible of the 
main relaxation during OP experiments. 



 20 

 

Chapter 2  

Low Field Polarizer: 

As seen in previous section, in the most favorable conditions, usually 
obtained in sealed cells, the achieved nuclear polarization can exceed 85 % 
[Bat05, Bat11b, Gen93]. In practice, achieving a good polarization level and 
production rate of 3He usable in MRI is far from being straightforward. Regarding 
MEOP technique, different strategies of gas production have been established. A 
global and central massive production has been chosen in Mainz [Bat05, Wol04], 
coupled with long storage relaxation systems for shipment to different partners 
[Bee03]. This group has designed an advanced bulky polarizer reaching an 
efficient gas production of 20 or 60 scc/min* for a nuclear polarization of 75 % 
and 60 % respectively, depending on the 3He working pressure inside the optical 
pumping cells. This polarizer has even been successfully duplicated in Laue-
Langevin institute in Grenoble for the production of spin-filter cells for polarizing 
neutron beams [And05]. The disadvantages however, are the high price due to the 
non-magnetic titanium alloy piston compressor [Bec94] driven by a hydraulic 
system, the big size of the polarizer containing five optical pumping cells of 2.4 m 
for a total volume of 36 L, as well as difficulties in adjusting to user demands with 
regard to gas shipment over large distances. 
Another approach is to design smaller polarizers, easy to handle, storable and 
placed close to the MRI system or other facilities for on-site production. The key 
element of such polarizer is always the compressor responsible mainly for the 
depolarization during compression to atmospheric pressure or higher inside the 
storage cell. Some attempts to build a more compact polarizer for 3He-4He gas 
mixtures working with a modified diaphragm pump [Gen01] and an aluminium 
piston compressor [Hus05] have been successful in the United States. A table-top 
polarizer have also been designed in Paris using a peristaltic compressor [Nac99] 
and duplicated in Orsay [Cho03]. In general, such compact polarizer has the 
 
*scc is an acronym for Standard Cubic Centimeter, corresponding to the number of atoms included 
in one mL (cubic centimeter) for a gas at atmospheric pressure and normal temperature. 
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advantage of having lower cost and less constrains but usually only allows to 
reach lower polarization level and much lower throughput than the system in 
Mainz. Typically, the polarized 3He production rate in all these systems is around 
3 to 5 scc/min for a polarization varying between 30 to 55 %. 

A similar table-top polarizer was designed few years ago by our group 
[Suc05a] but had typical throughput of only 0.4 scc/min for an estimated final 
polarization of only few percents when extracted into a syringe for small animal 
lungs MRI. During the 2 first years of this thesis, the polarizer underwent an 
extensive upgrade, whose main novelties are a new 10W laser and a new design 
of a peristaltic compressor. In this chapter, all the different modifications of the 
polarizer are described as well as the MRI facilities used for our applications. At 
last, results are presented and discussed. 

2.1. Upgrade of the polarizer: 

In Fig. 2.1 the general design of our table-top polarizer is schematically 
described and a picture of it is presented in Fig. 2.2. The main framework and the 
coils frame were copied from the Protlab polarizer made in Paris [Cho03, Nac99].  

 

Fig. 2.1. Scheme of the table top-polarizer (see text). Six coils (cross section) produce a 
homogeneous magnetic field. A gas handling system located under a 12 mm aluminium plate (G: 
Getter, F: 50  m filter) delivers gas to the optical pumping cell where it is being polarized by a 

laser tuned at 1083nm (BS: Polarizing beam splitter). A mirror (M) is reflecting back the beam to 
double the efficiency. The gas is then compressed to a storage cell (V: one-way valve, PI: Pressure 

sensor) with a peristaltic compressor. The same gas can be compressed a second time to 
atmospheric pressure inside a syringe for rat lung experiment using a bypass between input and 

output of the compressor. 
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Fig. 2.2. Picture of the low field polarizer. 

The supporting frame is made of fifteen 6 cm width square aluminium 
profiles inside which a main 12 mm thick aluminium plate is mounted. Wheels 
were added on the bottom of the framework, allowing an easy handling and 
transportation of the polarizer. The gas handling system was built inside a 
separate rectangular cuboid frame made of aluminium and plexiglas. MEOP 
efficiency being strongly dependent of the gas purity, a particular care was taken 
to keep all the system airtight. All necessary needle valves (4172G6Y/MM by 
Hoke, Spartanburg, SC, USA) were helium airtight certified, and connections 
between the different elements were made using a 6 mm OD electropolished non-
magnetic 316/316L stainless steel tube (Swagelok, Solon, Ohio, USA). The gas 
handling system is composed of a turbomolecular pump that can achieve a 
vacuum of 10-8 mbar and a bottle of 4He for cleaning purposes of the optical 
pumping cell. The 1 L 3He bottle at a pressure of 15 bar (Spectragases, 
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Stewartsville, New Jersey, USA) has a purity of 99.999 % but for further 

cleaning, the gas passes through a PS2-GC50 SAES (Lainate, Italy) getter, and an 

additional mechanical porous 0.5 μm filter. A pressure sensor (24PC, Honeywell, 

Morristown, New Jersey, USA) was mounted at the output of it to control the 

pressure inside the optical pumping cell. Connection between gas handling system 

and the optical pumping cell is made using a flexible pipe from the CT convoluted 

metal tubing series and a glass metal connection (G304-4-GM3, Cajon, Solon, 

Ohio, USA). All the gas handling system fits inside a 40*60*90 cage that can be 

placed under the main plate of the polarizer. The actual dimensions of the main 

framework plus gas handling system are 70*160*170 and make it easily 

transportable to any MRI facility. 

2.1.1. Guiding field 

A guiding field of 16.4 Gauss is produced by 3 pairs of square coils of 20 

cm side. The frame of the coils is made of 2 mm thick aluminium whose cross 

section has an open square shape. Grooves of the 2 inner pairs of coils have a 14 

mm thickness and 22 mm for the external ones. Positions and number of turns for 

each coil were optimized by a Matlab program, taking into account the different 

filling height of the groove depending on the number of turns of a 0.8 mm 

diameter copper wire. To be more realistic, the filled groove was not assimilated 

to one loop of current but discretized into nine equally spaced loops centered 

around the center of the groove. 

 

Fig. 2.3. Computation and experimental data of the magnetic guiding field deviation (1000* B/B) 

inside the set of 6 square coils. The magnetic field is along the z direction. a) Matlab computation 

of our magnetic field inhomogeneities for three different distances from the symmetric axis of the 

square frames (solid line, dotted line and dashed line respectively 0, 3.5 and 7 cm from the axis on 

the diagonal direction of the square frame). b) Comparison between computed (solid line) and 

experimental values (dotted and dashed lines) measured with a Bartington magnetometer. The 

dotted line corresponds to the left side of the axis where the 48 cm long optical pumping cell is 

lying and the dashed line to the right side where the NMR and the 100 mL, 5 cm long storage cell 

is located. 
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An optimized configuration was found to be 85, 100 and 225 turns 
respectively for the 6, 19.1 and 36.8 cm distances from the center of symmetry of 
the system (see Fig. 2.3). The simulations were experimentally verified with a 
three axis MAG-03 MS fluxgate magnetometer (Bartington Instruments, Witney, 
Oxfordshire, United Kingdom). The power supply of the probe was home made 
and gave a precision of 0.1� . The probe was mounted on a Plexiglas structure 
that allowed investigation of a matrix of 3.5 cm steps along transverse direction 
and it was manually moved with a step of 1 cm along the magnetic field direction. 
The experimental results gave a good agreement with the simulation and a final 
homogeneity of 1.5�  was obtained in the location of a cylindrical optical 
pumping cell 48 cm long, 0.1�  for a 100 mL storage cell which serves to perform 
the NMR measurement, and 0.6�  for the second NMR system dedicated to a 1.1 
L storage cell. 

2.1.2. Laser 

The 50 mW DBR diode laser was replaced by a new ytterbium 10 W fiber 
laser (2.1 GHz FWHM, Keopsys CUS-BT-YFL-1083-HE-100-COL, Lanion, 
France) with the same wavelength of 1083 nm. An APC collimator (model 
F220APC, Thorlabs, Newton, New Jersey, USA), coated for 1064 nm with a 
focus length of 11.17 mm was mounted directly on the output of the fiber. To 
improve efficiency of optical pumping inside the 5 cm diameter optical pumping 
cell, the beam was expanded by a Kepler-like telescope (magnification 7x, Eksma 
Optics, Vilnius, Lituania). The final FWHM of the Gaussian beam profile was 4.9 
mm. The beam was circularly polarized with a 5 cm cube polarizing beamsplitter 
and a multiple order plate with  /4 retardation. The beam was back-reflected by a 
dielectric mirror after first passage through the cell to double the efficiency. 

2.1.3. Optical pumping cell 

Thanks to the new guiding field, a new longer Pyrex optical pumping cell of 
48 cm length, 5 cm diameter with optical windows have been implemented. 
Apiezon L grease was used for lubrication of input and output valves. Some 5 cm 
glass capillaries of 1.8 mm diameter were located at the input and output of the 
cell to constraint the gas flowing in one direction only and keep impurities out of 
the storage cell and gas handling system. The cell was located 3.5 cm off center of 
the coils symmetry axis. 

2.1.4. Storage Cell and gas transportation 

To store the polarized 3He gas after compression, three different storage 
cells were used. A small 100 mL Pyrex cell was dedicated to short rat lung 
imaging experiments in our 0.088 T permanent magnet based system and optical 
calibration of the NMR signal. This cell was previously demagnetized in Mainz 
[Thi07]. Following this procedure, a longitudinal 3He relaxation time of 54 min 
was measured by NMR. A 500 mL quartz cell with a longer decay time of 4 h was 
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used to store larger quantities of helium for longer experiments. Thanks to a 
bypass system implemented between the output and the input of the peristaltic 
compressor (see Fig. 2.1) a portion of the gas can be compressed a second time to 
atmospheric pressure into a 12 mL syringe. This latter is used to transfer 3He from 
the low field polarizer to the low-field MRI system located 10 meters away in our 
laboratory. Previously, polarized 3He was mixed in the storage cell with a buffer 
gas (4He or N2) to reach a pressure higher than 1 atm and only a small amount of 
3He was retrieved by distending the mixture inside a plastic syringe. This new 
process of extracting helium avoids gas dilution and, as a result, increases the total 
magnetization inside the syringe by a factor of 3. Losses due to the first and the 
second compression inside the peristaltic compressor and also during 
transportation in presence of a non homogeneous magnetic-field are difficult to 
accurately assess but the relaxation time of 3He inside the syringe in the low-field 
MRI system was measured to be longer than 3 min (see Fig. 2.4). 

 

Fig. 2.4. Relaxation of magnetization inside a 12 mL polypropylene/polyethylene syringe in our 
0.088T permanent magnet. Plastic syringe was used to transport polarized 3He from the storage 
cell to the scanner and to inflate lungs of the tracheotomised rat. Time before application was 

reduced as much as possible and kept below 20 s, which is equivalent to a total magnetization loss 
lower than 10 %. 

For human lung experiments, storage cells of 1.1 L volume were bought 
together with a magnetic transport box (Fig. 2.5) from Arbeitsgruppe Helium-3, 
Institut fur Physik, Universitat Mainz [Bee03, Hie10]. As it was shown in 
[Sch06b] that short relaxation times could be attributed to ferromagnetic 
contaminants, the vessels were made by Schott AG (Mainz, Germany) from a 
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special aluminosilicate-glass containing a minimum of these paramagnetic centers 
and the best flask was certified to have a 150 h wall relaxation time. In practice, 
our gas handling system at the output of the compressor being not as clean as it is 
at the input of the OP cell, an additional bulk relaxation due to impurities 
shortened this time. The NMR measurement gave a decay time of polarization 
inside the cell of 6 h. To store and keep the vessels inside a magnetic 
homogeneous guiding field, permanent magnets produce a field of 10 Gauss and 
the transport box is magnetically shielded with pieces of mu-metal leading to 
relative gradients lower than 10-3/cm. This gives a relaxation time due to gradient 
inhomogeneities close to 150 h at 1 bar. Once in the hospital and the preliminary 
calibrations on patient executed, the transport box was placed close to the end of 
the fringe field of the scanner. A special care was taken to have the same 
orientation of the fringe field of the scanner and the transport box. After opening 
the box, gas was extracted into a 1 L Tedlar gas sampling bag (model GST001S-
0707, Jensen Inert products, Coral Springs, Florida, USA) using a similar design 
of the peristaltic compressor as the one used in the table-top polarizer. The sample 
bag was pre-filled with 100 mL of nitrogen to avoid a too fast relaxation with its 
inner surface during the beginning of helium compression. After a first rinse of 
the lungs with nitrogen, gas mixture was directly administrated to the volunteer 
through the sample bag. Delay between the end of 3He polarization and the time 
of the scan was approximately 1.5 h, including 45 min of transportation. 
 

 

Fig. 2.5. Transport box and vessels from Mainz Univeristy group for 3He storage during journey to 
hospital. 
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2.1.5. Peristaltic compressor 

To replace the peristaltic compressor borrowed from the Kastler-Brossel 
laboratory [Nac03], a new transparent design was developed, tested and 
experimentally approved (see Fig. 2.6). The transparent feature eases the 
diagnosis of possible problem with peristaltic tube. The compressor is build of the 
following fixed elements: the main body is made of polycarbonate, two Plexiglas 
lids with bearing shells, Plexiglas pressing bar, radiators, peristaltic tube and 
Plexiglas oil chamber. The rotor of the compressor is made of polyamide and 
rotates around a non-magnetic steel axis. The pressing polyamide rollers also 
rotating on non-magnetic axis play the role of the compressor�s valves. The main 
motivation for this new design was to ease the replacement of the inner peristaltic 
tube. The replacement procedure was then shortened from 30 min to 15 min. To 
lengthen the lifetime of the tube, inorganic oil was inserted inside the compressor 
and two radiators were mounted on both side of the main body to dissipate the 
heat energy released during friction. To improve the flow circulation, a vacuum of 
the order of few mbar was maintained by a rotary pump inside the body of the 
compressor, while operating. This vacuum prevents the tube from shrinking under 
atmospheric pressure while compressing helium that is polarized in the optical 
pumping cell at 2-3 mbar. A small gas reservoir is located between the 
compressor and the vacuum chamber to keep the oil inside the main body. Several 
peristaltic tubes from Masterflex (Cole-Parmer, Vernon Hills, Illinois, USA), 
models C-FLEX (50 A), Pharmed BPT, Norprene (A 60 G) and BioPharm Plus 
silicone have been tested out of which only the first two showed satisfactory 
parameters to be used inside the compressor. NMR measurements on the storage 
cell showed that both of them gave similar and reproducible polarization levels 
but for mechanical considerations the Pharmed tube was chosen due to a more 
rigid property, allowing for a longer lifetime up to 20 h. Compressors of two 
different sizes were produced. The first one with a similar core diameter of 8 cm 
as the older compressor was built to work with the Pharmed BPT tube model 
06508-17, inside diameter of 6.4 mm. A larger model, core diameter of 9.5 cm 
and 12.7 mm 06508-82 tube model, was also tested to increase the production of 
polarized 3He.  
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Fig. 2.6. Picture of the new peristaltic compressor design. 

2.1.6. NMR 

Although Nuclear Magnetic Resonance induces polarization losses at each 
measurement of 3He nuclear magnetization, it is the most suited technique to 
deduce the polarization in the storage cell where no discharge is sustained, which 
explains why optical methods cannot be used. Another method relying on the 
detection of the static magnetic field produced by the spin-polarized 3He was 
developed in Mainz [Wil97] with the use of a similar fluxgate magnetometer as 
the one described in paragraph 2.1.1 but dense samples are required and NMR has 
a higher sensitivity. 

The NMR system was completely rebuilt (see Fig. 2.7). New square 
Helmholtz transmitter coils, of 107 cm radius, 20 turns each, were mounted on the 
main aluminium frame to give a homogeneous B1 field over the storage cells 
volume and an easy access to the different elements. They have been tuned to 55 
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kHz (inductance L = 3.85 mH, resistance R = 12.63  ). Radio-frequency pulse at 
the frequency of 53.3 kHz is produced by a generator (GW Instek GFG 3015), 
whose external trigger option allows a precise control of the number of 
oscillations, and amplified with a 100 W DMOS audio amplifier (model TDA 
7294). Concerning the pick-up coils, two different systems were built. The first 
one consists of two circular coils of 40 turns, 30 mm apart from each other (R = 
24  , L = 1.55 mH) and whose diameter (72 mm) was chosen to fit the size of the 
1.1 L storage cell. A smaller one is dedicated to the 5 cm long and 5 cm diameter 
storage cell and is made of two rectangular coils of 120 turns each (R = 50  , L = 
3.76 mH). Litz wire was used for both pick-coils and each of them has their own 
tuning and matching circuits. A similar Q factor of 20-25 was achieved in both 
coils. 

 

Fig. 2.7. Scheme of the NMR acquisition (see text). (TB: Tuning and matching circuit, I: Input, O: 
Output, S.C.: Storage Cell, E.T.: External Trigger). A microprocessor at the center of the NMR 

system is used to control the different elements. 

During NMR experiment a chosen pulse is sent through transmitter coils 
that causes free precession of the storage cell's magnetization. This free induction 
decay (FID) signal at 53.3 kHz is then detected by the pick-up coils and a digital 
lock-in amplifier (LIA, SR 830, Stanford Research systems, Sunnywale, 
California, USA) applies synchronous detection. The output of the lock-in 
amplifier is recorded on a numerical oscilloscope that had the possibility to 
transfer recorded waveforms from its memory to a personal computer via USB 
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connector. The free induction decay is revealed by the LIA using its internal clock 
a little off resonance to get a sufficient number of oscillations during the decay. 
Data analysis can be performed on a standalone PC, using a peak to peak analysis 
of the oscillations and fitting these values to retrieve the initial amplitude of the 
FID. A proper gating circuit protects the LIA at the time of the rf pulse and turns 
off the discharge during data acquisition to minimize the noise. The key element 
of the NMR system is a programmable microprocessor (Atmega 8, Atmel, San 
Jose, California, USA), which is synchronizing all the different elements together. 

Four output signals are delivered by the microprocessor: 
- one switches off the radio-frequency discharge inside the OP cell just before 

the rf pulse, 
- a second signal is sent to the external trigger of the generator and commands 

the NMR pulse length, 
- an opto-isolator coupled to flip flop diodes opens the gate and let the signal go 

through to the LIA after the ringing time of the transmitter coils, 
- a last logic signal triggers the acquisition of the oscilloscope. 

It is possible to program the length of the pulse, the delay between two 
pulses, the ringing off time after the pulse and the acquisition time through a 
simple interface with display (LCD panel). This home made device therefore 
offers an easy control of all the parameters and facilitates the NMR acquisition. 

2.1.7. NMR calibration 

At last, NMR was calibrated against an optical method with the use of a 
sealed cell filled with helium-3 at the pressure of 1.6 Torr. This cell was chosen 
because it had the exact same shape and dimensions, 5 cm in length and 5 cm in 
diameter, as the small storage cell used for rat lung experiments. In this case and 
for the same position inside the pick-up coils, the filling factor can be assumed to 
be the same. Different optical methods have been developed to measure 
accurately the nuclear polarization of 3He in the presence of a rf discharge. 
Polarimetry of the visible fluorescence light emitted by the plasma at 667.8 nm 
[Big92, Lor93, Sto96a, Sto96b] and 587.5 nm [Sto96b] is one of them but the 
ratio of the circular polarization of the emitted light over the nuclear polarization 
is pressure and magnetic field dependent and needs also a calibration. A second 
family of polarization measurement relying on light absorption [Cou02] of a 
transversal (perpendicular to the magnetic field) [Big92, Tal11] or longitudinal 
probe [Bat11b, Tal11] presents the advantage of not requiring any calibration and 
not being pressure dependent. It can also potentially be operated at all field 
strengths. The choice of the longitudinal scheme was made because it had a higher 
sensitivity at low polarization, could be performed both on C8 and C9 lines and 
was easier to implement on the framework of the polarizer. 

Absorbances A+ = -ln T+ and A- = -ln T- (where T+ and T- are the 
transmittances of the  + and  - components of a weak laser tuned on one of these 
two lines) give information about the populations of the probed metastable states 
sublevels. In the absence of pump laser, the distribution of populations between 
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hyperfine 23S sublevels is strongly coupled to that of the 11S state by metastability 
exchange collisions, which tend to enforce a spin-temperature distribution, ruled 
by the nuclear polarization M (see § 2.8.1 of [Bat11b]). In this spin-temperature 
limit, the ratio of relative populations of two adjacent mF sublevels follows the 
following relation: 
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respectively !+ and !- components of a weak probe laser is then directly related to 
the nuclear polarization (see Fig. 2.8 for C9 line). In the case of the single-
component line C8 one can even simply derived the following relation between M 
and the relative ratio of absorbances R8 [Tal11]: 
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Fig. 2.8. Left: Schematic of the optical setup used for NMR calibration, see text (P.D.: Photodiode, 
PBS: Polarizing Beam Splitter, D: Diaphragm, F: Filter,  /4: quarterwave plate). Right: relative !+ 

and !- absorbances of a weak probe laser beam tuned on C9 line as a function of the nuclear 
polarization M. 

The setup is described on Fig. 2.8. The sealed cell is located in the centre of 
the pick-up coils dedicated to the small storage cell of the same dimensions. A 
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weak rf discharge at approximately 1 MHz is maintained by 2 electrodes wrapped 
around the cell. A 500 mW pump laser (see § 2.1.2), circularly polarized  + and 
tuned on C9 line is used to optically pump the 3He contained inside the OP cell. 
The longitudinal probe consists of a DBR laser. A filter attenuates the level of the 
light intensity to the order of 20 μW/cm2 to be in the linear regime of absorptance 
and to avoid significant distortion of the 23S population in the metastable state 
[Tal11]. The probe light power is also reduced with the use of a diaphragm. The 
beam is linearly polarized by passing through a polarizing beam splitter (PBS). 
After the OP cell the two components  + and  + of the beam are separated by a 
quarterwave plate and a second PBS. Both photodiode signals are recorded on the 
channels of an oscilloscope. 

 

Fig. 2.9. FID signal recorded by the lock-in amplifier after the 90° pulse. At 1.6 Torr, the 
exponential decay time T2

*
 is about 660 ms. The starting amplitude was deduced by averaging the 

amplitudes of the 4 first oscillations found by a peak to peak analysis of the data (red crosses). 

Once the steady state polarization Meq is reached, the pump is switched off 
to record the absorbance values A+(Meq) and A-(Meq) in the absence of the pump 
laser. A 90° NMR pulse then tilts the corresponding magnetization into the 
transversal plane and a corresponding free induction decay (FID) signal is 
detected in the pick up coils (see Fig. 2.9). The absorbances after the NMR pulse, 
A+(0) and A-(0), are also measured and corresponds to a null nuclear polarization. 
The pump is then switched on again and the measurement can be repeated. To 
increase the accuracy of the measurement, it was performed 5 times with the 
probe tuned on C8 and the same amount of time with the probe tuned on C9. Ten 
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additional FID signals were recorded and the starting amplitude of the 20 FIDs 
were averaged.  For C8 line, a consistent polarization of 30.6 % was found by 
using the equation (2.2) and for C9, a value of 33.5 % was deduced on the graph 
of the Fig. 2.8 with the measured relative absorbance ratio. This polarization of 
32.1 ± 0.1 % corresponds to a starting amplitude of the FID signal of 147.6 ± 1.5 
μV. 

This optical method gives an accurate way to calibrate the pick-up coils of 
the small storage cell. Once this calibration was done, few compression 
experiments were performed inside the storage cell and polarization was deduced 
for different flows, optical pumping pressures and rotation speed of compressor. 
By keeping the same experiment conditions but compressing into the two other 
storage cells (§ 2.1.4), the second dedicated pick-up coils was also calibrated, 
assuming that the same magnetization was produced. 

2.2. MRI facilities: 

2.2.1. Low field (0.088T) scanner 

Rat lungs imaging was performed at a low field MRI scanner described in 
details elsewhere [Suc05b]. It was specially designed for small animal lung 
imaging using polarized 3He gas. The scanner is based on a 0.088 T permanent 
magnet (AMAG, Poland) equipped with a biplanar actively shielded gradient coils 
(30 mT/m, NRC, Winnipeg, Canada) controlled by a commercial MR Research 
System (previously SIMS, Surrey, Great Britain) MR4200 Narrow Band console. 
Dual-frequency 2.84 MHz for 3He (alternatively 3.73 MHz for 1H) solenoid coil 
was used for NMR signal detection.  

For in vivo animal study three adult rats (race: Wistar, 400 g) were used. All 
experiments using animals were approved by national research ethics committees 
and conducted in accordance with Polish regulations and animal protection law. 
Each animal was anesthetized by intraperitoneal injection of chloral hydrate (40 
mg/100 g body weight) and afterwards tracheotomized to simplify 3He gas 
injection. After each hour one third of the anesthetic dose was injected again to 
prevent the animal to wake up. The animals were placed in a supine position on a 
home-build holder in the centre of the rf coil. Just before imaging the volume of 7 
mL of polarized 3He gas was introduced to the rats lung directly from the syringe 
via the trachea catheter. 

For image acquisition we employed standard FLASH sequence and an 
additional radial sequence that was developed for both static and dynamic 
imaging. Both protocols utilized low-field excitation pulses optimal for polarized 
3He imaging. The important advantage of radial sequence as compared to FLASH 
is that it allows performing dynamic imaging of gas inflow with a good temporal 
resolution, following a single gas injection.  



 34 

2.2.2. Clinical 1.5 T scanner 

The clinical experiments were performed at a Siemens Sonata scanner at 1.5 T 
(see Fig. 2.10) in collaboration with the team at the John Paul 2nd Hospital in 
Krakow. A necessary update of the scanner's software and the purchase of a 3He 
birdcage lung coil from RAPID Biomedicals allowed us to perform 3He 
experiments at a frequency of 48.5MHz. In order to test the system, a first 
phantom consisting of a 250 mL vessel filled with 1.363 bar of 3He and 440 mbar 
of O2 was realized. A similar phantom was used already in Orsay [Vig03]. Only 
14.02 mmol of thermally polarized 3He is sufficient to get an FID from the 
phantom and the oxygen is used to shorten the longitudinal relaxation time T1. 
The theoretical value of T1 can be calculated from the equation (2.3) [Saa95] and 
is 5.6 s. 

1

T
1

= 0.448 ± 0.01 s
 1 per amagat of O2. (2.3) 

 

Fig. 2.10. Sonata scanner in John Paul 2nd Hospital with 3He coil from RAPID Biomedical. In the 
center of the coil, a first phantom (see text) is placed for angle calibration experiment. 

Using series of rf pulses with different repetition times from a Siemens 
spectroscopic sequence adapted for multinuclear experiments, an experimental T1 
of 2.8 s was found and the flip angle calibrated. Gradient recalled echo sequences 
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being the most commonly used sequences in MRI of hyperpolarized nuclei, a 
multinuclear multi-slice 2D Spoiled Gradient Echo (SPGR) sequence, also known 
as Fast Low-Angle Shot (FLASH), was written and implemented on the scanner. 
For this sequence the optimal flip angle can be derived by maximizing the Signal 
to Noise Ratio (SNR) expression given in equation (2.4) [Lee06]. 
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Where N is the number of k-space encoding lines, TR the repetition time between 
each rf pulse and T1 the longitudinal relaxation time in the lungs. This latter is 
around 20 s for in-vivo conditions [Kau09]. 

2.3. Results: 

2.3.1. 3He production using the table-top polarizer 

Thanks to all the improvements described above (optimized guiding field, 
new laser, optical pumping and storage cells, peristaltic compressor), the table-top 
polarizer is now able to work in a continuous mode. The new framework gives an 
easier open access to the elements inside and the possibility to transport the 
polarizer. The value of polarization inside the storage cell can be deduced thanks 
to the new calibrated NMR pick-up coils. The system was verified to give a 
reproducible 30 - 40 % polarization (Fig. 2.11) for an OP pressure between 2.5 
and 3 mbar. At this pressure and for a rotation speed of 4 to 5 Hz, the first design 
of peristaltic compressor has a production rate of 0.8-1 scc/min. The second larger 
version, working with a peristaltic tube of two times bigger diameter, also 
appeared to work satisfactorily and reaches 3.5-4 scc/min. As a reference, 
approximately 10 scc of gas are needed for a single rat lung experiment. This 
means that within 3 min of compression the necessary volume of 3He can be 
polarized. For human experiment, the required volume is much higher: around 
250 - 300 scc. This is obtained after about 1 h and 15 min of compression. 
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Fig. 2.11. FID signal recorded by the lock-in amplifier during a flip angle calibration and after a 
compression of polarized 3He inside the small storage cell. The experiment lasted 6 min to reach a 
pressure of 57.8 mbar. At this pressure, the decay is not exponential and lasts around 100 ms. The 
starting amplitude was found with a linear fit of the peak to peak analysis of the 2 first oscillations. 

The flip angle was 45.9 ± 0.5 ° and the polarization 38.7 ± 2 %. 

2.3.2. Small animal experiments 

Preliminary tests have been performed on a syringe phantom. The first test 
was made using a spectroscopy sequence to check the increase of total 
magnetization and compare this value to our previous experiments [Suc05a]. 
Results showed an increase of a factor of 7 in the total magnetization contained in 
a 10 mL syringe. The new way to extract the gas from the storage cell was 
responsible for an additional increase of a factor of 3, which means that new MRI 
experiments were possible with an at least 20 times higher signal. New radial 
static and dynamic sequences were first implemented and tested with this 
phantom (Fig. 2.12). The static radial image is shown on the left. The 2 mm 
diameter nozzle and the 1 mm thick septum are well visible respectively at the top 
and the bottom of the image. An artifact inherent to the radial reconstruction is 
responsible for the white vertical band pattern outside the syringe. On the right 
side of Fig. 2.12, a series of 10 images obtained using the projection sliding 
window sequence are presented. The sequence started before 3He entered the 
syringe, which explains the first 2 empty images of the series. The syringe was 
completely filled on the 8th image. Then, total magnetization is decreasing due to 
the relaxation process and the rf pulsing. That is why the image SNR gradually 
decreases on the 9th and 10th image. 
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Fig. 2.12. Preliminary tests of the radial sequence made with a syringe phantom filled with 3He in 
a 0.088 T permanent scanner. Left: static radial 2D projection image acquired with 256 samples 
and 200 views, 10 cm field of view (FOV), 25 kHz bandwidth, 6.1° flip angle, acquisition time 

(tac) of 4 s, TR = 20 ms. Right: dynamic series of radial 2D projection sliding window images with 
128 samples and 100 views, 10 cm FOV, 33 kHz bandwidth, 8° flip angle, tac = 21 s. 

These tests were followed by in vivo experiments with rats. Compared to 
the results previously reported by our group [Suc05] a two-fold increase in spatial 
resolution and a four-fold increase in the SNR was observed, significantly 
improving the quality of the static images acquired during breath-hold (Fig. 2.13) 
as well as the dynamic images representing the gas inflow into the animal�s lung 
(Fig. 2.14).  

 

Fig. 2.13. Transverse 3He images of rat lungs in vivo acquired with the (left) FLASH sequence 
(slice thickness 80 mm, FOV = 80 mm, imaging matrix 128*128, 8° flip angle, 10 kHz bandwidth, 
no averaging, echo time = 7 ms, repetition time = 32 ms, tac = 4 s) and the (right) projection radial 

one (FOV = 80 mm, 128 samples per 200 views, repetition time = 20 ms, tac = 4 s, 10 kHz 
bandwidth, flip angle 7°, no averaging). 
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Fig. 2.14. Transverse 3He radial projection sliding windows images of rat lungs in vivo (100 mm 
field of view, 128 samples and 100 views, 33 kHz bandwidth, flip angle 8°, tac 20 s). 

2.3.3. Human lung images 

Preliminary tests were required to validate the sequence. The signal coming 
from the first phantom described in paragraph 3.2) being too low for an imaging 
sequence, we decided to optically pump a 11.5 cm long cell of 14 mm inner 
diameter filled with 128 mbar of 3He directly inside the scanner. The cell had a 
volume of approximately 20 mL, which corresponds to 2.5 scc but a polarization 
on the order of 30 % can be obtained at 2 T. The different mechanisms and 
features of Metastability Exchange Optical Pumping in high field are not the 
subject of this chapter and are described in § 1.4 and 1.5. A 500 mW laser was 
tuned at 1083 nm on the f2m pumping line (see notation in § 1.4). After waiting 
few minutes for the steady state polarization to be reached, the FLASH sequence 
was successfully tested with this phantom. 

Thanks to the new larger design of the peristaltic compressor, few boluses 
of 3He could be carried to hospital inside the transport box and the storage cell. 
The polarization process takes 1h to get 240 scc of 3He. The polarized gas was 
then mixed with N2 until reaching the atmospheric pressure inside the 1.1 L 
storage cell. Once in hospital, 81 % of the total gas was extracted to the Tedlar 
bag previously rinsed with 4He. Lungs of a healthy volunteer were washed with 1 
L of clean N2 before inhalation from the Tedlar bag. The image was taken 1 h 
after the end of the polarization process. The FLASH sequence was launched 
directly after inhalation. The field of view was 35*35 cm for a matrix of 64*64. A 
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bandwidth of 16.64 kHz was used with a slice thickness of 20 cm to cover the 
whole lungs. There was no averaging and the sequence lasted approximately 500 
ms (TE = 3.6 ms and TR = 7.5 ms). An 11° flip angle used in the experiment was 
calculated to be optimal. The result is shown in Fig. 2.15. This image is the first 
MRI picture of human lungs using hyperpolarized gas made in Poland.  

 

Fig. 2.15. Transverse 3He image of healthy volunteer's lungs using a FLASH sequence (20 cm 
slice thickness, 35 cm FOV, 64*64 matrix, flip angle: 11°, 16.64 kHz bandwidth, TE = 3.6 ms, TR 

= 7.5 ms). 

2.4. Summary of the low-field polarizer: 

Improvements of our table-top polarizer, leading to the efficiency of 3-4 
scc/min and a reproducible corresponding polarization of about 30-40 % inside 
storage cell have been reported in this chapter. The improvements are mainly due 
to the implementation of a broader bandwidth 10 W laser and a new design of the 
peristaltic compressor. Thanks to these modifications the magnetization was 
increased by a factor of 20, which allowed improved FLASH rat lungs pictures to 
be taken and moreover, to implement radial dynamic and static sequences. These 
ventilation images show a sufficient resolution and SNR to be used for diagnostic 
or medical tests. In addition we were also able to polarize a necessary quantity of 
3He to take the first picture of human lungs made in Poland. Compared to rat 
images, the resolution of human lung images is still low. A major issue for this 
problem is probably the loss of polarization during transportation and extraction. 
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The losses due to relaxation time inside transport box and storage cell are minimal 
and can be easily assessed: the exponential decay time T1 is of the order of 6 h 
and the transport lasted 1 hour (corresponding to a 15 % loss of magnetization), 
the losses due to the transfer of storage cell inside transport box were checked to 
be around 7 % and only 81 % of the gas mixture was compressed inside the 
Tedlar bag. All these losses together correspond to a total loss of 36 % but the 
major issue is probably due to the time spent (around 1.5 min) during compression 
inside the Tedlar bag in the non-homogeneous fringe field of the magnet. 
Moreover transportation of the bag inside the scanner is probably adding also few 
losses.  

An easy solution to this major loss would be to build a second smaller 
guiding field close to the magnet for minimizing the losses due to field 
inhomogeneities during the second compression from storage cell to the Tedlar 
bag. In the same way the table-top polarizer could also be transported close to 
magnet in hospital and the gas directly produced few meters away from it. But 
none of these solutions have been chosen by our group. As it is greatly described 
in the next chapters and contrary to the other groups, we decided to work on the 
alternative solution of performing MEOP at higher magnetic field and build a high 
field polarizer. Previous promising experiments have been done and showed a 
great increase in production rate efficiency [Col10]. This would solve both 
problems of transportation and polarization time. 
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Chapter 3  

Systematic studies in high field: 

The first experiments of MEOP in high field have been performed at 0.1 T 
in 2001 [Cou01] and already showed a factor 2 increase in nuclear polarization in 
a 40.4 mbar cell. First attempt to explain this important improvement was 
published shortly after [Nac02], and the thesis work of Marie Abboud [Abb05a] 
was dedicated to extend the field of studies to 1.5 T. Her main results were 
published in [Abb04, Abb05b], demonstrating the possibility to efficiently obtain 
polarization on the order of 25 % in cylindrical cells (diameter 5 cm, length 5 cm) 
filled with 67 mbar of pure 3He. A first crude model of MEOP at 1.5 T was 
proposed in the corresponding thesis dissertation [Abb05b] but the lack of 
agreement between experimental results and the computed values from the model 
was the main motivation for a joint collaboration between Kastler Brossel 
Laboratory in Paris and our group for deeper investigations. Systematic studies of 
MEOP were then performed in a wide range of magnetic fields (0.45, 0.9, 1.5, 2 
and 4.7 T), pressures (from 1.33 to 267 mbar), discharge conditions, but also with 
different OP transitions, pump laser bandwidths, intensities and beam shapes. At 
the beginning of the present work, some preliminary results for 32 and 67 mbar 
cells (diameter 1.4 cm, length 11 cm) were already published, describing an 
optical measurement technique of polarization [Suc07] and showing a dramatic 
increase in polarization [Nik07]. A value of 52 % was obtained at 2 T and at 67 
mbar, using what appeared to be the most suitable line for MEOP at high 
magnetic field: f2m. These systematic studies are now finished and although data 
have not been fully analyzed yet, an optimization of the laser beam spatial profile 
has been published in [Doh11a, Doh11b] and a summary of the main results can 
be found in the thesis dissertation of Anna Nikiel [Nik11]. My contribution to 
these studies is presented in this chapter and consists of extending the range of 
magnetic field to 4.7 T and implementing the annular profile shape of the pump 
beam at 1.5 T. 
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3.1. Materials and methods: 

A schematic of the experimental setup is presented in Fig. 3.1. All optics 
elements and the bone-shape sealed cell are mounted on an amagnetic plate 
(Dural) inside the homogeneous area of the magnetic field produced by a 
superconduting magnet. Electrodes, driven by a radio frequency generator and a 
high power amplifier, are wrapped around the cell and produce a weak plasma 
discharge inside the cell. The pump laser beam, parallel to the magnetic field, is 
circularly polarized by a polarizing beam splitter and a quarter-wave plate. The 
laser is back-reflected by a mirror to double the efficiency of OP and the 
transmission is monitored by a photodiode. A longitudinal optical detection 
method is used to measure the 3He nuclear polarization in the cell during 
experiments (see § 3.1.4). The probe laser beam is passing through a small 
aperture diaphragm before being also circularly polarized and delivered to the 
sealed cell by means of a set of mirrors. Due to experimental restrictions, the 
beam is actually propagating with a very low angle with respect to the magnetic 
field axis. The transmission of the probe is also monitored on a second 
photodiode. 

 

Fig. 3.1. Schematic of the optical setup used for systematic studies at 1.5 and 4.7 T. Probe and 
pump laser beams are first circularly polarized by a polarizing beam splitter (PBS) and a quarter-
wave plate (!/4). A set of mirrors (M) makes them pass through the OP cell in parallel with the 
magnetic field (B) before being recorded by two photodiodes (P.D.). The pump laser beam is 

expanded by a Kepler-like telescope and, in the case of 1.5 T experiments, the shape is reversed by 
the means of a pair of axicons whereas the probe beam is diaphragmed by a small aperture ("   

1.5 mm). 

3.1.1. Source of magnetic field 

The experiments were performed in two different superconducting magnets 
(Fig. 3.2). The first one (Magnex Scientific), in which most of the systematic 
studies have been carried out [Doh11a, Doh11b, Nik07, Suc07], belongs to our 
group and its field can be varied from 0 to 2 T. Its bore has 30 cm diameter and 
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the inhomogeneities were measured to be on the sufficient order of 2�  at the 
location of the optical pumping cell. Field values were measured in a virtual 
cylinder (diameter 4 cm, length 12 cm) in the center of the magnet, which 
corresponds approximately to the place where the cell was situated. Experiments 
at 4.7 T are the results of a collaboration with the Institute of Nuclear Physics, 
Polish Academy of Sciences, in Krakow, that allowed us to use its Bruker scanner 
dedicated for animal MRI studies. The bore was smaller (  20 cm) and that is why 
the optical setup was improved to fit on a 20 * 70 cm plate (see Fig. 3.2). On the 
other hand, inhomogeneities were much smaller (  2 ppm), due to the high quality 
standard for MRI. 

 

 

Fig. 3.2. Pictures of the superconducting magnets with the optical setup mounted inside their bore 
(top) and the optical setup (bottom). Top left: Bruker 4.7 T MRI scanner. The table with probe and 
pump laser were located outside the Faraday cage. Top right: 2 T Magnex Scientific magnet. Apart 
from the optical setup, the rest of equipment was situated in a separate room. Bottom: optical plate 

dedicated to 4.7 T experiments (both probe and pump lasers are absent in the picture). 
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3.1.2. Optical pumping cells 

Six sealed �bone-shaped� cells filled with high purity 3He (inner volume   
20 mL) and made of Pyrex glass were used for the experiments. The length of the 
cells (11 cm) was chosen with respect to the homogeneous area of the magnetic 
field in the 1.5 T scanner. Their small inner diameter (1.5 cm) is well suited for 
creating plasma discharge at relatively high pressures, which results in light 
absorptance enhancement in comparison with 5 cm diameter cells used in 
previous studies. Bone-shaped name comes from the optical windows (2.5 cm 
diameter) connected on both ends. Cells were prepared in Kastler Brossel 
Laboratory and special care was taken to avoid any impurities that could reduce 
the lifetime of metastable atoms. Prior to filling procedure, cells underwent a 
cleaning process consisting of rinsing with proper detergent and deionized water, 
baking out during several days in a 700 K oven with relatively high vacuum 
conditions (P   10-8 mbar) and with strong rf-discharges in 4He. Once only 
spectral lines of helium were observable in the plasma fluorescence, they were 
finally filled with 1.33, 32, 67, 96, 128 and 267 mbar and sealed. These pressures 
correspond to the pressures measured at room temperature and can slightly 
increase during experiments while the rf-discharge heats the cell. The plasma 
discharge was generated by a 2 MHz generator and a 50 W rf power amplifier, 
supplying two spiral electrodes wired onto the outer surface of the cell tube. It 
was easier to switch on discharge at high pressures in this configuration rather 
than in the standard set of circular electrodes. Metastable atoms densities on the 
order of 1010-1011 atoms/cm3 were obtained. 

3.1.3. Pump laser beams 

The same source of 1083 nm light as in § 2.1.2 was used for the pump 
beam. It consists of a broadband (2.1 GHz FWHM) ytterbium fiber laser with 10 
W maximum output power. In the case of 4.7 T experiment, the output of the fiber 
was collimated by an APC collimator (model F220APC, Thorlabs, Newton, New 
Jersey, USA) and expanded by a Kepler-like telescope (ratio of focal lenses = 7) 
into a 4.9 mm FWHM Gaussian beam (Fig. 3.3). At 1.5 T, a pairs of axicons 
(Eksma Optics, Vilnius, Lituania) was added to the telescope to obtain an annular 
profile whose external diameter was about 30 mm. In order to fit this beam to the 
internal diameter of our OP cells, an additional telescope with magnification 2.5-1 
was used. The resulting profile is shown in Fig. 3.3. 

The axicon term was suggested for the first time by McLeod in 1954 
[McL54] to define refractive or diffractive cylindrically symmetric optical 
elements and refers in the present dissertation to a conical prism. One specific 
characteristic of axicon is that the image of a point source turns into a line along 
the optical axis. That is why it does not have any focal length. A pair of axicons 
can transform a Gaussian beam into an annular beam without any loss of energy 
(Fig. 3.4). The axicons used were made of BK7 glass with refractive index 1.57, a 
diameter of 50.8 mm and a base angle of 10°. 
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Fig. 3.3. Transverse intensity profiles of the Gaussian (circles) and ring-like beam (squares) 
generated by the Keopsys laser. Fitting the data to a Gaussian curve gives a 4.9 mm Full Width at 

Half Maximum (FWHM). The outer diameter of the annular beam could be regulated to fit the 
diameter of the optical cells (  14 mm) by varying the distance between the two axicons. The 

reference of the displacement axis is the center of the cell. 

 

Fig. 3.4. Principle of the Gaussian beam transformation to an annular beam by means of a pair of 
axicons. The central part of the Gaussian beam is refracted to the external part of a resulting 

conical beam by the first axicon. The second axicon needs to have the exact same angle as the first 
one to re-collimate the beam into an annular shape. The angle and the distance between the pair of 

axicons determine the outer diameter of the beam. 
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The idea of using axicons for MEOP experiments comes from the 
absorptance profiles measured as a function of the radial position inside the cell at 
high magnetic field and high pressure (Fig. 3.5). A broad beam from a DBR laser 
(FWHM = 10.2 mm) was used for the measurements with a photodiode fixed on a 
non magnetic displacement system (step 0.5 mm). The absorptance A was 
calculated as follow: 

A =
I
1
 I

2

I
1
 I

0

 (3.1) 

where I0 is the signal recorded on the photodiode when laser and discharge are 
switched off (noise signal), I2 when both laser and discharge are switched on and 
I1 when the laser is on and discharge is off (background signal).  

 
Fig. 3.5. Comparison between laser absorptance profiles collected for various 3He gas pressures. 

The measurements were done at 2 T. 

At 32 mbar, the absorptance is nearly constant everywhere in the cell but as 
the pressure increases, absorptance dramatically drops at the center of the cell. 
The absorptance reflects the distribution of metastable atoms in the cell, which in 
turn are involved in the OP process. It is not surprising to see such results 
knowing that at high pressures, plasma molecules and metastable atoms are 
created in the area of high electric field, which means close to the electrodes. The 
strong magnetic field actually enforces such behavior by adding a force on the 
moving charges of the plasma. This effect is clearly visible when looking at the 
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light distribution coming from the cell. When pressure increases, the diffusion of 
metastable atoms is reduced and they loose excitations before diffusing to the 
center of the cell. If a Gaussian beam is used at high pressure, there is only a 
partial overlapping of the laser beam with metastable atoms distribution and a 
large fraction of the pumping laser power is wasted. Therefore, in order to 
optimize the OP process, a pair of axicons is used to match the plasma 
distribution. A complete study at 2 T comparing four different laser shapes, 
among which the annular one, have been published in [Doh11a, Doh11b]. As 
expected, results showed that the best performance was achieved with the ring-
like beam profile at high pressure and a nuclear polarization of 26 % was obtained 
at 267 mbar. 

Unfortunately, the axicons could not be implemented for the 4.7 T 
experiment due to space restrictions on the optical plate. The pump laser 
frequency was tuned on f2m transition (see Fig. 1.8 and 1.9) and its power varied 
from 0.5 to 2 W at 4.7 T and from 0.5 to 5 W at 1.5 T. 

3.1.4. Optical measurement of nuclear polarization 

The optical detection method relies on the absorption measurement of a 
weak probe beam and was already fully described in [Suc07]. The main principle 
is recalled in this subsection but as it will be evoked in § 3.2, the collisional 
broadening happening at high pressure is responsible for a great change in 
absorption lineshapes and requires a necessary improvement in data analysis. 

Compare to low field longitudinal probe scheme where the nuclear 
polarization can be inferred from the absorbances ratio of the two components "+ 
and "- (§ 2.1.7), it is necessary at high magnetic field to probe two different single 
transitions for which 23S1 involved sublevels are not affected by the pump laser. 
When pumping on f2m, the "+ probe doublet (A2!B9 and A1!B10 transitions, see 
Fig. 1.9) satisfies these requirements. In practice, a second 50 mW DBR diode 
laser was implemented to produce a weak beam (  100 μW/cm2) of 1.5 mm 
diameter to probe the sublevels A1 (mF = -3/2) and A2 (mF = -1/2). Effect of probe 
intensity on absorption measurement was introduced in [Cou02]. For the intensity 
level used in these systematic studies, the optical pumping rate is negligible 
compared to the metastability exchange collisions rate that tends to impose the 
spin temperature distribution. Thus, the populations in 23S state can be assumed to 
be unaffected by the probe and the relative ratio of absorptions at the top of the 
lines is related to the nuclear polarization by the following formula: 
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where A-1/2(M=0) and A-1/2(M) are the absorptions of the transition A2!B9 before 
and during optical pumping (see Fig 3.6). The same definition applies for A-3/2 
and A1!B10 transition. 
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Fig. 3.6. Example of absorption spectra of the !+ probe doublet computed by a Fortran program at 
1.33 mbar and 1.5 T for M = 0 (dotted line) and M = - 46.1 %. Peaks of the absorption lines are 

marked with a cross in reference to notation described in text: A-1/2(M)�  

 

Fig. 3.7. Example of the multiscan acquisition recorded at the beginning of an experiment (B = 1.5 
T, P = 1.33 mbar, Plas = 500 mW). The doublet is recorded 2 times as a reference for M = 0 before 

the pump is switched on at t   110 s. The relaxation decay is not showed for clarity. 
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At 1.5 and 4.7 T, the two transitions are separated by 5.3 GHz. That is why 
the laser frequency needs to be continuously swept back and forth over the !+ 
probe doublet by the temperature control of the laser diode. This is done during all 
the OP and relaxation processes to measure M(t). It takes approximately 10 s to 
scan one doublet (  1.5 GHz/s) and the resulting data consist of recorded 
�multiscan� (Fig 3.7). If deducing the nuclear polarization when the stationary 
value (Meq) is asymptotically reached is straightforward, interpolation between 
successive measurements during build-up and decay is required. This analysis is 
automatically performed by a Fortran program (see § 3.2). 

3.1.5. Data acquisition 

On Fig. 3.8, a block diagram of the data acquisition is presented. To 
improve sensitivity and separate the resonant atomic response from the infrared 
stray light background in photodiode signals, the amplitude of the 2-MHz rf 
voltage applied to the external electrodes was slightly modulated (15 % 
modulation depth) at 80 Hz for 4.7 T experiments and at 40 Hz at 1.5 T. This 
induces a slow time variation of the number density of 23S atoms in the gas, hence 
of the transmitted light intensity, that is analyzed using digital lock-in amplifier 
(Stanford Research Systems SR830, Sunnyvale, CA, USA, LIA3 in Fig. 3.8) for 
P.D.2 and analog lock-in amplifier (Unipan 232B, Warsaw, Poland, LIA1 in 
Fig.3.8) for P.D.1. In contrast with [Nik07] and [Suc07] where a similar 
longitudinal probe beam configuration was used, a double modulation scheme 
was implemented for the probe acquisition channel to remove any spurious 
contribution from the transmitted pump light on the P.D.2 signal. In practice, a 
mechanical chopper was inserted in the probe beam path before its injection into 
the single-mode fiber, modulating the incident probe power at a frequency of 1 
kHz. The signal was analyzed by the lock-in amplifier LIA2 (similar model to 
LIA3). Six analog signals were recorded (channels 0 to 5) using data logger 
(National Instruments type 6221, Austin, Texas) interfaced to a personal computer 
via its PCI port and subsequently processed offline to obtain: 

• The average transmitted pump power CH0, provided by the integrator 
that filters out the modulated part of P.D.1 output voltage. 

• The amplitude of modulation of the transmitted probe power CH1, 
provided by LIA3. 

• The amplitude of modulation of the transmitted pump power CH2, 
provided by LIA1. 

• The average transmitted probe power CH3, provided by numerical time 
integration of the output voltage of LIA2. 

• The average transmitted probe power CH4, provided by the integrator 
that filters out the modulated part of P.D.2 output voltage. 

• The transmitted pump power CH5 at the output of P.D.1. This channel 
has no use in theory but practically it was an alternative channel for CH0 
whose integrator appears to have occasionally electronic issue. 



 50 

 

Fig. 3.8. Block diagram of the data acquisition scheme. P.D.1, P.D.2: Photodiodes. LIA1, LIA3 
(resp. LIA2): lock-in amplifier for slow (resp. fast) demodulation of the transmitted probe and 

pump light signals. A tuned transformer (not shown) between amplifier and electrodes was used to 
obtain high voltage. The dotted arrows represent an update for 1.5 T experiments and channel 5 

(CH5), 2 and 4 were not recorded at 4.7 T. 

It is important to note that these experimental conditions were unfortunately 
not matched completely at 4.7 T. Systematic studies at 4.7 T were the first 
experiments for which double detection scheme was implemented and it was not 
possible to repeat them. As shown in Fig. 3.8, channels 2, 4 and 5 were not 
recorded and the integrator of channel 3 was absent. As we will see in § 3.3, it has 
a small consequence on the data noise level and limits possible interpretation of 
data analysis. 

3.1.6. Experimental procedure 

For each pressure (cell), five or six experiments were recorded 
corresponding to 3 different discharge conditions (weak, moderate and high 
discharge) and to 3 or 4 pump laser powers (0.5, 1, 2 and 5 W at 1.5 T). Before 
and after each experiment, the absorption of both probe and pump lasers were 
measured in low intensity conditions. During the first 30 seconds of the 
acquisition, the offsets of each channel were recorded using the following 
procedure:  

• pump, probe and discharge switched off for few seconds, 
• probe laser on, 
• pump laser on but without discharge, 
• pump off, 
• discharge on and acquisition of the 4 first doublets as a reference at M = 0. 
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Once the offsets are acquired, pump laser is switched on and optical 
pumping can start. When Meq is reached (build-up time tb), the pump laser is 
switched off and relaxation characterized by decay time Tdecay occurs. An example 
of the experimental procedure is shown in Fig 3.9 at 1.5 T, 1.33 mbar and high 
discharge. It was chosen due to its fast dynamics for clarity but because of strong 
hyperfine decoupling at 4.7 T, acquisition can last more than two hours in high 
pressure cells. More explanations about each step of the experimental procedure 
and what can be derived from them will be given in the next subsection of data 
analysis.  

 

Fig. 3.9. Example of data acquisition a) CH5 recording: the first seconds are dedicated to offset 
measurement (see text) before OP (pump on) and relaxation (pump off). b) CH1/CH3 is 

proportional to absorption signal. Example of data analysis c) peaks of absorption lines in 
CH1/CH3 data. From these peaks (proportional to A-1/2 and A-3/2), the nuclear polarization can be 

derived d) Resulting M evolution: build-up process with time constant tb until steady-state 
polarization Meq and exponential decay (Tdecay). 

Remark: experimental procedure was a little different at 4.7 T. Photodiode 
offsets were not recorded at the beginning and the pump and probe absorptions 
were measured only once before the recording. 
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3.2. Data analysis: 

3.2.1. Pressure broadening 

In the absorption spectrum at low pressure, the Doppler broadening is the 
main contribution to the spectral linewidth. The Doppler width is coming from the 
thermal motion of the atoms and the resulting line shape is Gaussian, 
characterized by its full width at half maximum (FWHM): wG. In helium plasma, 
a second phenomenon, consisting of atoms collisions with electrons, ions and 
others atoms, can influence the spectral line shape. This collisional broadening 
induces a Lorentzian profile, whose FWHM wL increases linearly with pressure. 
The resulting shape of absorption lines is then the convolution of a Gaussian and a 
Lorentzian profile also known as a Voigt profile. Influence of collision 
broadening on absorption profile of the !+ probe doublet at 1.5 T have been 
computed for different wL (Fig. 3.10) by a dedicated Fortran program (Voigt.exe) 
written by Pierre-Jean Nacher from Kastler Brossel laboratory. Voigt profiles for 
different pressures are compared to a simple Gaussian profile at 313 K (wL = 0 
and wG = 2.02 GHz) and to a baseline, corresponding to the influence of other 
lines (mainly f2p, f4p) on the Voigt spectrum. Similar investigations at 4.7 T were 
performed and will be published soon ([Nik11], in preparation). 

Previously reported high-field MEOP results [Abb04, Abb05b, Cou01, 
Nac02, Nik07, Suc07] have been obtained at moderate pressures (P   57 mbar), 
where the two lines in the probe doublet are well resolved and simple peak height 
determinations could be used to infer relative populations of the corresponding 
23S sublevels. As shown on Fig. 3.10 and for the higher pressures considered 
here, pressure broadening of the 1083 nm transition results in broad Voigt profiles 
for all hyperfine components such that, for the probe doublet:  

1/ the intense f4P and f2P lines induce a slanted baseline;  
2/ the two single-component hyperfine lines are no longer well resolved. 

These changes in individual line shapes as well as the contribution from 
overlapping neighboring lines must be taken into account in the quantitative 
analysis of the measured peak heights and are responsible for the necessary 
following update of the data analysis. 

In a first step, we used the experimental recorded absorption spectra of the 
probe doublet at M = 0 (first doublets of an experiment, before switching on the 
pump laser) to deduce the Lorentzian FWHM wL dependence with pressure. At 
each pressure, experimental data were compared with spectra computed at 
different temperatures and pressures. An example at 67 mbar is displayed on Fig. 
3.11. The fitting was done manually and special care was taken to obtain not only 
a good ratio of peak amplitude, but also a good agreement with the baseline on the 
wings of the doublet and with the minimum value between the two peaks. The 
compiled data are summarized in Fig. 3.12. Most of the wG values were found to 
correspond to an experimental temperature of 40 ± 5 °C except from the 267 mbar 
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cell at 4.7 T that reaches 77 °C. Values exceed room temperature because of the 
dissipated rf power to sustain the plasma discharge and the largest rf voltages 
were applied in high pressure cells to obtain stable discharges. Collisional 
broadening rates were found to be equal to 13.1 ± 1 MHz/mbar at 1.5 T and 12.2 
± 0.2 MHz/mbar at 4.7 T. Knowing exactly the shape of the probe doublet, two 
Fortran programs described in the next paragraphs were written to correct the 
nuclear polarization inferred by the measured peak heights analysis. 

 

Fig. 3.10. Part of the  + computed absorption spectra at 1.5 T for what was found to match 
experimental conditions at a) 1.33, b) 67, c) 128 and d) 267 mbar. The corresponding Voigt 

profiles (solid lines) were generated for T = 40 °C (wG = 2.02 GHz) and wL = 0.04, 0.95, 1.75 and 
3.6 GHz respectively and are compared with Gaussian profiles (dashed lines) and the baseline 

contribution to the probe doublet (dotted lines) induced by the nearest transition lines. This 
baseline is mainly coming from the far wings of the f2p and f4p transitions but also contains two 

negligible transitions at 46.19 and 50.44 and GHz (see a)). The collision broadening is negligible 
at a) 1.33 mbar but clearly induces dramatic change in line shape and baseline at higher pressure. 
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Fig. 3.11. Comparison between experimental  + probe doublet at 67 mbar, M = 0 (solid line) and 
computed Voigt profiles for different wG and wL. 

 

Fig. 3.12. Pressure dependence of Lorentz FWHM wL of Voigt profiles found to be matching 
experimental data. 
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3.2.2. Measurement of apparent polarization Map 

After acquiring one experiment, data analysis starts by exporting the data 
into a scientific graphing software (Microcal Origin) and checking that each of the 
six channels gives the expected behavior. Then, a �pick peaks� analysis is 
performed on the curve CH1/CH3 to get the multiscan peaks height and position. 
The signal at the output of LIA3, CH1, of the probe photodiode is divided by its 
integrated input CH3 to take into account for fluctuations of the transmitted 
intensity. Thus, CH1/CH3 is directly proportional to the probe absorption. 

To correct the effect of the slanted baseline induce by f2p and f4p on the peak 
ratio, Pierre-Jean Nacher developed a new Fortran program called 
fitpeaksHib.exe. This program needs two input files: the CH1/CH3 time evolution 
and a second file containing the time at which pump is switched on, which 
transition is scanned just after, the theoretical ratio of the transition at M = 0 (rtheo 
= 1.1654 at 1.5 T and 1.1067 at 4.7 T) and the times of the absorption peaks. Four 
outputs files are generated after running the program. M0av.dat gives an average 
of the four first doublets at M = 0 before the pump laser is switched on. This file 
is used for the Voigt fitting described in the previous paragraph. In the second file 
fitHiB_base.dat, the program after having calculated a linear baseline between the 
edges of each probe doublet, writes down the baseline time evolution and the 
corrected absorption consisting of input data whose baseline was subtracted. An 
example of baseline correction at 96 mbar is presented on Fig. 3.13. 

A peak fitting of the corrected data is performed around the estimated input 
time of each peak with a Gaussian shape and resulting fits are written in the third 
output file fitHiB_fits.dat together with the experimental data. Looking at this file 
gives a quick overview on whether something wrong happened during the 
program execution. This fit is also particularly useful when signal has a high noise 
level (specially at 4.7 T due to poorer acquisition scheme). Finally, the fourth 
output file fitHiBMst.dat contains values of peak ratios and its inferred apparent 
polarization Map. Ratios and Map are computed at the average time of each pair tav. 
During OP or decay, the procedure introduced in § 4.3.2 of [Abb05a] is used to 
correct for the time difference between the peaks in a pair. If we define S 3 / 2

i  and 
S 1/ 2
i  as the peak heights of the ith doublet recorded at respectively times t 3 / 2

i  and 
t 1/ 2
i , linear interpolations of S-3/2 and S-1/2 at t = t
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The linear interpolation is made with the following recorded doublet but can 
also be done with the previous one. In practice, the average of the two 
interpolations is used to calculate the experimental ratio of the ith doublet rexp

i  from 

which Map is deduced as follow: 
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Fig. 3.13. a) Fragment of a recorded multiscan at 96 mbar (solid line) with the baseline 
computed by the Fortran program (dashed line). The 900 mW pump laser is switched on at t = 118 

s. b) Corrected absorption data after subtraction of the baseline. 
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Map (tav
i
) =
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 (3.4) 

Values of t
av

i , rexp
i  and Map are not the only output data that can be found in 

fitHiBMst.dat. In a recent update of fitpeaksHib.exe program, relative density of 
metastable state nm/nm(0) (where nm(0)  is the average value during the four first 
recorded doublets at M = 0) were added and allow to see the relative evolution of  
metastable density during OP. 

The data analysis is nevertheless not finished yet. Map is still not the true 
value of nuclear polarization and an additional correction has to take into account 
the crosstalk between the two partly resolved doublet lines at high pressure. 

3.2.3. Main output parameters 

When the two lines are partly resolved, a significant difference exists 
between the apparent and the actual polarization. In order to find the relation 
between them, a new option was added to the Voigt.exe program. Knowing wL 
and wG from the experimental data (see § 3.2.1), it is possible with this program to 
generate a theoretical multiscan with known input polarization decreasing linearly 
with time from 0 to -1 (Fig. 3.14). 

 

Fig. 3.14. Theoretical multiscan computed by Voigt.exe program and the pick peaks detection (red 
crosses) for T = 313 K and wL = 1.4 Ghz. These conditions correspond to the experimental 96 

mbar pressure at 1.5 T. 
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For each pressure and each field, such theoretical spectra were generated 
and underwent exactly the same data analysis as the one described in § 3.2.2. 
Thus, the Map found could be compared with the known input nuclear polarization 
and a linear fit of M = f(Map) brought us the last missing relation to obtain true M 
values. An example of such dependence is displayed on Fig. 3.15 for P = 96 mbar 
and B = 1.5 T. 

 

Fig. 3.15. Comparison of Map obtained by analyzing the multiscan of Fig. 3.14 and the real 
nuclear polarization M given as the input of Voigt.exe program. The relation M = f(Map)  (solid 
line) is drawn only until M = -0.5 (no higher polarization was obtained during experiments at 96 

mbar and 1.5 T) and a linear fit (Dashed line) gives us the required relation to deduce M from each 
experiment at this pressure and field. 

At 4.7 T, relative differences between M and Map typically range from less 
than 2 % at 32 mbar to 18 % at 267 mbar, with Map systematically under 
estimating the actual steady state polarization Meq. These corrections are specific 
to the 4.7 T field strength and they are observed to be much smaller at 1.5 T for 
which only a maximum of 0.5 % difference was found at 32 mbar and 1.1 % at 
267 mbar. The explanation of this difference is that f2P and f4p transitions lines are 
closer from the probe doublet at 1.5 T than at 4.7 T, resulting in a stronger slanted 
baseline at 1.5 T that is fortuitously canceling almost all the effect of the crosstalk 
between lines in the doublet. 
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After having corrected and replaced Map by M in an experiment, it is then 
possible to plot the evolution of M(t) during optical pumping and decay and to 
deduce the main output parameters (Fig. 3.16): 

• The steady state polarization Meq is asymptotically reached at the end of 
the optical pumping process when the ME contribution to the time 
evolution of M is just balanced by the direct relaxation term - g (see 
equation (1.22)). It is experimentally obtained by fitting M by an 
exponential decay before the pump is switched off (Fig. 3.16 a)). 

• The relaxation time of nuclear polarization Tdecay in absence of OP but 
with rf discharge on, is also deduced from an exponential fit of M after 
the pump laser is switched off (Fig 3.16 a)). This decay is accurately 
exponential and we define the corresponding decay rate  decay = 
1/Tdecay. 

• The build-up time constant tb is defined as 1/ b where  b is the build-up 
rate of the polarization at the beginning of OP. It is calculated by 
performing a linear fit of ln(M-Meq) during the first seconds of OP (Fig 
3.16 b)). The building process being not purely exponential in standard 
conditions [Bat11a], that is why it is not defined in the same way as T1 
during relaxation. 

• Mtot is the total magnetization expressed in sccfp (standard cubic 
centimeter fully polarized). M

tot
= M  V  P  with V the volume in mL 

(20 mL for sealed cell) and P the pressure in Atm. 
• R is the production rate (see equation (1.10)). 
• Pabs is the pump power absorbed at the beginning of OP. It is 

determined by looking at the difference of transmitted pump signal of 
CH0 during offset measurement and just after that the OP starts.  

• nm/nm(0) is the relative density of metastable atoms and is given by 
fitpeaksHib.exe program in the output file fitHiBMst.dat (see § 3.2.2). 

• nm is the density of metastable state and its calculation is explained in 
the next paragraph. 

3.2.4. Derivation of the density of metastable state nm 

In this subsection, some theoretical considerations on the optical pumping 
rate and the pump laser transmission will lead to an experimental method of nm 
determination from absorption measurements of the weak probe and pump beams 
performed before and after each acquisition. This method was developed recently 
by Pierre-Jean Nacher and Geneviève Tastevin in Paris to take into account the 
pressure broadening and a summary of an internal note written by them during 
exchanges between our two groups will be given here. 

The optical pumping rate assuming a monochromatic transition was given in 
equation (1.15) of § 1.5.3. Practically, it corresponds to a single frequency probe 
tuned on C8 at low field or on the two single transition lines of the !+ doublet at 
high magnetic field and in case of no crosstalk (low pressure limit). 
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Fig. 3.16. a) Corrected values of nuclear polarization M and its evolution (squares) during one 
experiment at 96 mbar and 1.5 T with 0.5 W pump laser. The determination of steady state 

polarization Meq = -48.9 % and the relaxation time Tdecay = 1445 s is done by fitting an exponential 
decay of different parts of the curve (red solid and blue dashed lines respectively). b) 

Determination of the build-up rate  b and time constant tb = 101.8 s of nuclear polarization (red 
solid line) by fitting the time evolution of ln(M - Meq) (squares). 
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In formula 1.15, the mean velocity " = 2 ! /# ij
 is related to the Doppler 

width !: 

! = (" ij /2 ) 2kBT /matc
2  (3.5) 

where mat is the atomic mass. ! = 1.1875 GHz at 300K for 3He and the 
corresponding FWHM w

G
= 2 ln2 =1.9773 GHz. For the low pressure regime 

("�/2 << 2 !) the integral of equation (1.15) can be easily computed and leads to 
a Gaussian variation of the average optical transition rate: 

% ij !  $f
me&"

TijIlase
#((&#& ij ) / 2 " )2  (3.6) 

The leading factor in equation (3.6) is: 

 $f
me%!

= 3.7064 # 300 /T #103 s"1 /(W /m
2
) (3.7) 

In one unit element of volume dV = dS * dz (with S the surface unit element 
perpendicular to the propagation axis z of the laser), the total number of atoms of 
the metastable state ai addressed by the laser is nmaidV. The absorbed laser 
intensity per unit length is then given by: 

  

 dIlas
dz

= ! ijh"nmai (3.8) 

In a cell with uniform density of metastable state ai along the beam, the 
probe intensity exponentially decays with a characteristic absorptance length z0: 

I
las
(z) = I

las
(0)exp( z /z0)  (3.9) 

and after a total length Lpath (for instance Lpath = 2 * Lcell), the transmission factor 
is Tra = exp(-Lpath/z0). In the case of our systematic studies at relatively high 
pressure, nm is not uniform (see § 3.1.3) and the total transmittance provides an 
average value of nm. From equations (3.8) and (3.9) we have: 

  

Ilas

z
0

=  ijh!nmai (3.10) 

By replacing the optical rate in expression (3.10) and by expressing z0 with 
the transmittance, one obtains: 

nm = ˜ n 
 lnTra

Lpath

1

aiTij exp( uij

2 )
 (3.11) 
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with 
  

˜ n = h%
 $f

me%!

& 

' 
* 

( 

) 
+ 

"1

=1.47105 # T /300 #10
15

m
"2  (3.12) 

and uij = # "# ij( ) /2 !  (3.13) 

If the initial assumption of an isolated transition is not valid, ie whenever 
several transitions are simultaneously excited from levels Ak with reduced 
detuning ukl and line intensities Tkl, one can generalize equation (3.11): 

nm = ˜ n 
!lnTra

Lpath

1

akTkl exp(!ukl

2 )  (3.14) 

Experimentally, it can correspond to probe scheme on C9 at low magnetic field or 
f2 and f4 components at high B. 

The Voigt.exe program when generating absorption spectrum actually 
computes the effective weights a

k
T
kl
exp(!u

kl

2
)  for Doppler and Lorentzian 

widths. For these computations that do not rely on the low-pressure approximation 
of equation (3.6), it is convenient to separate equation (1.15) into 2 parts: 

! ij = K  IVoigt  (3.15) 

with K =
4  $f
me%#'

TijIlas " #' /2
2! =

 $f
me%!

TijIlas  (3.16) 

and IVoigt =
%' /2
2! 2#

e
$ t 2
dt

%' /4!#( )
2

+ & $& ij( ) /2!# $ t( )
2$ 

 "  (3.17) 

where IVoigt ! exp( uij2 ) when !' 0  (3.18) 

which is indeed consistent with equation (3.6). 
Using the equality w

L
= !' /2 , the Voigt integral can be finally written: 

IVoigt =
ln2

!
wL

wG

e
# t 2
dt

ln2wL /wG( )
2

+ 2 ln2 $ #$ ij( ) /wG # t( )
2# 

 "  (3.19) 

In practice, for M = 0, the average metastable density along the probe beam 
can be obtained using: 
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nm = ˜ n 
!lnTra

Lpath

1

S(" /2 )
 (3.20) 

in which S("/2 ) is the value of the computed Voigt spectrum (from Voigt.exe 
program) for the probe frequency "/2  and ˜ n  is the temperature-dependent value 
of equation (3.12). The experimental transmission Tra = 1 � A is measured as 
described in equation (3.1) of § 3.1.3. For the pump laser, A was measured on the 
top of the pumping line f2m using a correct set of filters to decrease the intensity to 
the 0.1 mW/cm2 limit. For the probe laser, the absorption was generally measured 
on f2p line but for high discharge conditions and when the transition was saturated, 
A was taken on the highest transition line of the !+ doublet. A summary of the 
S("/2 ) values used at 1.5 T for the calculation of nm is displayed in table 3.1. 

Pressure 

(mbar) 

Temperature 

(K) 

wL 

(GHz) 

S(f2m) S(f2p) S(A2
p) 

1.33 313 0.01 0.18529 0.24692 0.012413 

32 313 0.55 0.15771 0.20551 0.01027 

67 313 0.95 0.14104 0.18263 0.009188 

96 313 1.4 0.1254 0.16261 0.008318 

128 313 1.75 0.11511 0.15021 0.007828 

267 313 3.6 0.07902 0.11249 0.006739 

Table 3.1. Summary of the temperature and wL used for generating Voigt spectra in Voigt.exe 
program for the different pressures of the sealed cells. For each spectrum, the S("/2 ) values 

required for nm calculation were measured with a pick peaks analysis on the top of the f2m, f2p and 
the highest transition of the !+ probe doublet (A2

p). 

3.3. Results: 

3.3.1. At 4.7 T 

As previously evoked in materials and method subsection, the experimental 
conditions at 4.7 T were poorer than at 1.5 T. Some of the acquisition channels of 
Fig. 3.8 and the offsets at the beginning of the acquisitions were not recorded, 
absorption measurement were done only at the beginning of the experiment and 
the rf discharge was for few cases not stable during all the acquisition that could 
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last longer than 3 hours. That is why few acquisitions of these systematic studies 
are still the subject of exchanges between our group and Kastler Brossel 
Laboratory, mostly due to uncertainty on nm values for the concerned 
experiments. A joint publication including all the data analysis theory of § 3.2 and 
complete results at 4.7 T is under finalization and will soon be published [Nik11] 
but for the present dissertation, only the main parameters Meq, Mtot, tb, Tdecay and R 
will be discussed. For each pressure, six experiments were performed consisting 
of three different discharge conditions and three different pump powers (0.5, 1 
and 2 W) realized on one of these three discharges. The sixth acquisition 
corresponds to an OP experiment on the f2p transition but this case gave lower 
polarizations and will not be treated in this work. For clarity in data presentation 
and only for this chapter, the absolute values of M will be presented but no 
confusion should be done on the fact that the polarizations obtained are actually 
negative when pumping on f2m. 

Typical behavior of optical pumping at high magnetic field is displayed on 
Fig. 3.17 with influence of plasma characteristic on the left (Plas = 0.5 W) and 
influence of pump power on the right (at the same rf discharge). Fairly long decay 
times Tdecay (500 - 2000 s) are obtained at 4.7 T in the high pressure cells in spite 
 

 

Fig. 3.17. Results obtained for 32 (squares), 67 (circles), 96 (triangles), 128 (diamonds) and 267 
mbar (stars). Left: Steady-state polarization Meq and build-up time tb as a function of Tdecay (Plas = 
0.5 W). Right: Meq and tb as a function of Plas. Only three acquisitions were done at 267 mbar due 

to the difficulty to obtain stable discharges at this pressure. 
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Fig. 3.18. Summary of the steady-state polarization obtained in the different sealed cells and for 
500 mW of laser power. 

 

Fig. 3.19. Best values of total magnetization Mtot (squares) obtained for each pressure. In 
comparison, the evolution of the best production rates R is displayed in insert (circles). 



 66 

of the much higher rf power needed to sustain stable discharges and to reach a 
significant metastable atoms density. This is similar to what was observed already 
at 1.5 and 2 T in [Nik07] in the same cells. Meq does not seem to be highly 
dependent on the discharge intensity although it systematically decreases for 
really high discharge, when Tdecay starts to be of the order of tb. On the other hand 
and regardless of pressure, tb increases monotonically with Tdecay, illustrating a 
decrease of the metastability exchange collision rate with lower nm. The range of 
build-up time values (from 66 s at 32 mbar and high discharge to 590 s at 267 
mbar and low discharge) is much higher than in low field standard conditions. A 
closer look to the 32 and 67 mbar values obtained at 0.5 W shows an increase by a 
factor of two compared to the values obtained in the same cells at 2 T and by a 
factor of ten with 0.45 T results [Nik07]. This is a clear effect of hyperfine 
decoupling happening at high magnetic field and slowing down the transfer of 
electronic orientation to the nucleus (see § 1.4). The plot on the top right of Fig. 
3.17 shows that a laser power of 0.5 W is already sufficient to obtain high nuclear 
polarization. Increasing Plas to 1 W or more does not reach higher polarization (it 
will be shown in next subsection that it can actually even lower the Meq values), 
but it is still advantageous for shortening the build-up time. 

Let�s consider now the results at 0.5 W. On figures 3.18 and 3.19, the 
evolutions with pressure of the steady-state polarization and total magnetization 
respectively are displayed. As expected, Meq, although reaching a value of 60 % 
never obtained at 67 mbar and 26.5 % at 267 mbar, systematically decreases with 
pressure due to the increase of relaxing collisions (see § 1.3) but the total 
magnetization Mtot shows the opposite tendency. For P < 96 mbar, Mtot increases 
fast due to a greater amount of atoms and a polarization quite constant. But for 
higher pressure, Mtot reach a flat plateau around 1.4 sccfp for which the increase 
of gas number density compensates for the decrease in MEOP polarization. In 
insert of figure 3.19, a comparison is displayed with production rate values. If R 
follows the same trend than Mtot at low pressure, an additional factor makes it 
dramatically falls down for P > 96 mbar. This factor is the lengthening of build-up 
time values at high pressure and the fact that the Gaussian beam shape is not 
suited for high pressure OP. It will be shown in the next subsection that results are 
different in the case of 1.5 T experiments with the use of axicons (see § 3.1.3). 

However, the main motivation for performing these experiments at 4.7 T 
was not to investigate the production rates and possible applications of MEOP at 
this field strength, but to complete the systematic studies started in our lab at 0.45 
T and to see the influence of the magnetic field on Meq values. In figure 3.20, a 
summary of this evolution with chosen values of Meq for 32 and 67 mbar cells 
obtained at fixed pump power (0.5 W) is displayed. After an almost linear 
increase of the steady state polarization with magnetic field up to 2 T, a plateau is 
reached and a limiting value of 62 and 60 % for 32 and 67 mbar respectively, is 
achieved. As shown in insert, the corresponding production rates drops also 
linearly with B. The linear fits provide the slope values equal to -0.101 and -0.064 
mbar/(s*T) for 32 and 67 mbar respectively. 
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Fig. 3.20. Steady-state polarization M and production rates R (insert) as a function of magnetic 
field B in the 32 mbar (circles) and 67 mbar (stars) cells at fixed pump laser power (0.5 W) and 
weak rf discharge. The open and filled symbols represent the data from [Nik07] and from the 

present work, respectively. 

Figure 3.20 illustrates the two positive and negative effects of hyperfine 
decoupling: Mstat increases with B due to the suppression of some relaxation 
channels but it also slows down the build-up process and limits its efficiency. It is 
nonetheless important to remark that, although only Gaussian beams of the pump 
laser were used for data shown on Fig. 3.20, they were produced by different 
sources that had slightly different linewidths and spatial FWHM. Additional 
results at 1.33 mbar, nm values, OP experiments on f2p and additional discussions 
and comparisons with results obtained at different magnetic fields can be found in 
complete dissertation of Anna Nikiel [Nik10]. 

3.3.2. At 1.5 T 

In comparison with the results obtained at 4.7 T, the experimental scheme 
and the data analysis at 1.5 T allow us to describe the MEOP process more deeply 
and give us a broader range of tools to compare data with the recent model 
improved during the last years. After a first consideration of the plasma 
conditions, the main output quantities for a high field polarizer will be discussed. 
Finally, a closer look at some important parameters will bring us to a comparison, 
not exhaustive, with results obtained recently at low and high magnetic field. 
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3.3.2.1. Characterization of the plasma 

The characterization of the plasma can be done in the absence of optical 
pumping light by measuring two parameters: Tdecay and nm. When the rf intensity 
of the discharge is raised up, more power is transferred to the atoms in the sealed 
cell, resulting in an increase of collisions and atoms in excited states. This leads to 
a higher density of metastable atoms in the plasma yielding a more effective OP 
process but it also shortens the decay time of nuclear polarization and 
consequently Meq. That is why a compromise has to be found and the product 
nm*Tdecay to be maximized. 

 

Fig. 3.21. Compiled decay rates  decay = 1/Tdecay obtained at 1.5 T in the discharge as a function of 
metastable densities measured at M = 0 with a weak pump beam before and after experiments. The 

results are sorted in function of the pressure: 32 mbar (circles), 67 mbar (triangles), 96 mbar 
(reversed triangles), 128 mbar (diamonds) and 267 mbar (stars). 

On figure 3.21, a good correlation can be observed at each pressure between 
 decay = 1/Tdecay and nm and a systematic increase of the decay rate with nm. Tdecay 
values range from 50 s at 1.33 mbar (not represented on Fig. 3.21) to almost 2800 
s, which is the same order of magnitude than at 4.7 T. The surprising short values 
at 267 mbar compare to the rest of the results come from the fact that we had to 
use really high intensities to sustain discharge in this cell. The discharge was also 
not stable in these cases, explaining the non reproducibility of the results between 
two experiments done almost in the same conditions for the 267 mbar curve. Tdecay 
has long been the key parameter that characterized the plasma and determined Meq 
when only weak sources were available for OP but it is easier now to use nm to 
compare experimental conditions between experiments performed at different 
fields, pressures and by different groups. It is indeed interesting to compare Fig. 
3.21 with similar figures obtained at low (Fig. 6.4 and followings of [Bat11b]) and 
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high magnetic field (Fig. 4.8 of [Nik10]). Beside the 267 mbar data points, similar 
trend is visible and the empiric definition of low and high discharge introduced in 
these works can be used. If the levels of discharge were experimentally chosen to 
correspond to three cases (close to ignition voltage, highly visible plasma and 
intermediate position), it is important to be able to sort these three configurations 
with a physical quantity. A weak discharge is then labeled by nm value of the 
order of 1010 at/cm3 and strong discharge to the level of 5.1010 at/cm3 and above. 
Due to the ionizing Penning collisions (see § 1.3), nm stays limited to the level of 
approximately 1011 at/cm3 and this is also one of the reasons why, comparing 
metastable densities of different pressures with each other, it appears that the 
highest pressure does not yield the highest nm values. 

However, in identical plasma conditions, a different value of nm can be 
inferred when the pump or the probe light transmission is used, in spite of their 
comparable path length (Lpath = 2*Lcell). On figure 3.22, the nm values obtained 
with the probe beam (left) show great discrepancies over the pressure range 
compare to the nm deduced from the pump (right). The reason is that, as it was 
shown in § 3.1.3, the density distribution of metastable atoms is not homogeneous 
at high pressure. The probe beam is more sensitive to this variation than the pump 
beam because of its non parallel path with the cell axis (see Fig. 3.1). The probe is 
averaging the metastable atoms density across the cell by entering from one edge, 
passing through the center where there is almost no absorptance at high pressure, 
and going out from the second edge of the cell. This is the reason of really small 
nm values obtained for 128 and 267 mbar cells and that is why all results will be 
discussed in the following by using exclusively the nm values obtained with the 
pump absorption measurements that are better suited for describing the OP 
process. 

 

Fig. 3.22. Comparison of metastable atoms density averages along the path of a weak probe beam 
(left) and a weak pump beam (right) for different pressures. Three different discharges were tested 

for each pressure. 
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3.3.2.2. Meq,  b, R, Mtot 

The main motivation for repeating MEOP studies at 1.5 T was to test the 
pair of axicons at higher pressure and to find the best parameters and see which 
efficiency could be expected for building a high field polarizer. This is discussed 
in details in this subsection. 

 

Fig. 3.23. Results obtained for 32 (cirlces), 67 (triangles), 96 (reversed triangles), 128 (diamonds) 
and 267 mbar (stars). Left: Steady-state polarization Meq and build-up rate  b as a function of nm 

(Plas = 0.5 W). Right: Meq and  b as a function of Plas. The influence of laser power was not 
performed at 267 mbar due to the difficulty to obtain stable discharges at this pressure. 

Figure 3.23 is similar to Fig. 3.17 at 4.7 T except that nm replaces Tdecay to 
characterize the discharge and that  b was preferred to tb to describe the build-up 
process. The left bottom graph shows that a strong and similar correlation 
between  b and nm exists at all pressures. The build-up rates roughly scale with 
the metastable density inferred by the pump, as expected, because moderate 
saturation of light absorption occurs at 500 mW, and this is validating the choice 
of nm pump made in the previous paragraph for defining the discharge. The nm 
values for the 32 mbar cell show that a strong discharge was always obtained at 
this pressure and might explain why such important polarization (66.4 %) was 
obtained (top left). Like for 4.7 T experiments, Meq values is not depending too 
much on the discharge conditions, although it seems (apart from the 32 mbar cell) 
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to decrease systematically by a few percents for high discharge conditions. But it 
is not comparable with the loss of polarization inferred when using 5W of laser 
power (see top right plot of Fig. 3.23). The decrease actually starts already for the 
2 W data points but for 5 W, the polarization falls down from 66.4 to 53.8 % at 32 
mbar, 54 to 46.3 % at 67 mbar, 48.8 to 36.3 % at 96 mbar and 45.8 to 34.2 % at 
267 mbar (for the same discharge condition at each pressure). 

On the other hand, using more power increases of course the build-up rate 
(see correlation on the bottom right plot of Fig 3.23) but the  b values reached are 
on the same level as the one obtained only by increasing the level of the 
discharge. And this will be the main conclusion from Fig. 3.23, one should favor 
high power discharge for building a high-field polarizer rather than using 
phenomenal laser power. As a last remark on this figure, results of 1.33 mbar cell 
are not displayed because of systematic inconsistency in the obtained values (long 
tb;  b and Meq independent of Plas; really small nm), raising up the question of 
conception problem with this cell. It is important to notice that it was already the 
case to some extent at 4.7 T. However, Meq, Mtot and R values obtained at this 
pressure are displayed in the next figures. 

 

Fig. 3.24. Summary of the steady-state polarization obtained in the different sealed cells. Squares: 
1.33 mbar, circles: 32 mbar, triangles: 67 mbar, reversed triangles: 96 mbar, diamonds: 128 mbar 
and stars: 267 mbar. Filled symbols were obtained with 500 mW of laser power and open symbols 

with 1, 2 and 5 W. 
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On Fig. 3.24, a compilation of all steady-state polarizations obtained for 
each pressure is presented. Compare to the results published in 2007 with a 
Gaussian beam and a spatial FWHM of 3.2 mm [Nik07], a spectacular 25 % 
increase of M is demonstrated at 32 (66.4 %) and 67 mbar (57.3 %). Like in Fig. 
3.18, Meq decreases with pressure but not as fast as it was at 4.7 T. If steady-state 
polarizations were higher at 67 and 96 mbar (effect of magnetic field decoupling), 
it is similar at 128 mbar and yields even higher value of 31.2 % at 267 mbar due 
to the benefic effect of annular beam shape. On the opposite, Meq obtained at 1.33 
mbar shows that the axicons are not suited for optical pumping at low pressure. 
The benefic effect of using axicons optics can also be seen on the total 
magnetization and the productions rate compiled on figure 3.25 (left and right 
respectively). Compare to 4.7 T, Mtot does not reach a plateau of 1.4 sccfp at 267 
mbar because the increase in 3He density is not completely balanced by a dramatic 
loss of nuclear polarization anymore. 

But the second most important result of this study after the increase of 
steady-state polarization is the considerably high values of productions rate 
obtained in the right plot of Fig. 3.25. R is 4 times higher at 32 mbar compare to 
4.7 T experiments and 15 times higher at 267 mbar. Two reasons can explain this 
feature: the hyperfine decoupling slowing down the process at 4.7 T and the use 
of axicons for 267 mbar cell that allows a perfect matching of annular shape and 
metastable atoms distribution in the cell, leading to a much more efficient 
pumping and to shorter build-up times values. Considering that R is only about 
0.16 mbar/s in standard conditions, these results show the great potential to 
perform OP at high magnetic field and high pressure. The expected efficiency 
inferred from these data is at least ten times better than in low field MEOP, 
meaning that the same total magnetization inside an OP cell could be reached in a 
10 times shorter duration using a higher pressure. 

 

Fig. 3.25. Summary of the total magnetization values (left) and production rates (right) as a 
function of pressure. Filled symbols were obtained with 500 mW of laser power and open symbols 

with 1, 2 and 5 W. 
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The compression factor could also be greatly reduced at 267 mbar and the 
compression process eased. At last, a selection of the most promising acquisition 
at each pressure is summarized in table 3.2. A closer look at the build-up time 
column shows the second benefic effect of axicons evoked earlier, which is 
keeping a high build-up rate even at high pressure. That is why, contrary to 4.7 T 
experiment, R is not falling down at high pressure. 

Pressure 

(mbar) 

Plas 

(W) 

nm  

(1010 at/cm3) 

tb 

(s) 

Meq 

(%) 

R 

(mbar/s) 

1.33 2 0.628 48.1 ± 0.6 55.8 ± 0.1 0.015 

32 0.5 8.163 14.7 ± 0.8 66.4 ± 0.2 1.417 

67 0.5 5.282 31.8 ± 1 53.7 ± 0.1 1.124 

96 0.5 4.231 37.1 ± 1.3 47.2 ± 0.1 1.225 

128 0.5 4.905 38.8 ± 1.1 43.6 ± 0.1 1.431 

267 0.5 4.900 45.4 ± 5.8 31.2 ± 0.0 1.835 

Table 3.2. Summary of Plas, nm, tb, Meq and R for the most interesting data acquisitions obtained at 
each pressure. 

3.3.2.3. Additional considerations and laser-induced relaxation 

In this subsection, the behavior of few parameters recently studied and 
analyzed for the MEOP model developed in low field [Bat11a] will be compared 
with the present high field results in order to see to which extent this model can be 
applied to our results. 

• Variation of metastable atoms density nm(M)/nm(0) 

Variation of nm during optical pumping was already reported in [Cou02] and 
it was shown at 1.5 T and for each tested pressure in [Abb05a] that nm increases 
with M. It is attributed to the inhibition effect of polarization on Penning 
collisions. Indeed, the average value of the electronic angular momentum in the 
23S state <J*

z> has an influence on the cross section of ionizing Penning collisions 
in the plasma. More recently, it was shown at low field that nm exhibits a M2 
dependence during polarization decay (see Fig. 14 of [Bat11a]). Experimentally, it 
is possible in the absence of OP, when <J*

z> is coupled to M, to derive the relative 
variation of nm(M) from the absorption of a probe beam. In figure 3.26, the 
nm(M)/nm(0) values coming from the output file of fitpeaksHib.exe program is 
presented for an experiment performed at 67 mbar with 0.5 W laser power. 
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During polarization decay from 53.7 to 0 %, a significant change of 20 % of nm 
values is observed. On the right plot of Fig. 3.26, the M2 dependence found at low 
magnetic field is confirmed. The same behavior was checked to agree at all 
pressures. 

 

Fig. 3.26. Left: relative variation of nm during an OP experiment at 67 mbar (the laser is switched 
off at t = 616 s). Right: M2 dependence of relative density of metastable atoms for the 

corresponding experiment with linear fit. 

• Polarization build-up and tb(t) 

When looking at first sight at the evolution of nuclear polarization M(t), one 
could think of a build-up process purely exponential like for the decay. In reality, 
it was proved in [Abb05a] that the build-up is more complicated and new tools 
were developed to study more precisely this feature at low magnetic field 
[Bat11a]. One of these tools consists of an additional Fortran program 
fitTbuild10.exe also written by Pierre-Jean Nacher from Kastler-Brossel 
Laboratory that requires as an input a two columns ASCII file containing the 
nuclear polarization time evolution during OP. It is generating as outputs, the 
dM/dt values and the resulting variation of tb (see Fig. 3.27). The fact that the 
build-up is actually not exponential could be viewed already on Fig. 3.16 when 
representing ln(Meq-M) as a function of time. The natural logarithm of the 
difference between Meq and M is not purely linear and the build-up time value tb 
inferred from a fit at the beginning of this curve and used in the results subsection 
is in fact tb(M=0). Looking at dM/dt and tb(t) in Fig. 3.27 gives more quantitative 
information about relative value difference in tb for example. Build-up values 
clearly increases at the end of the polarization building. This behavior was 
observed at each pressure during these studies. Remark: in order to avoid 
confusion, it should be kept in mind that the experiments are different between 
Fig. 3.16 and 3.27 and that compare to section 3.2, M is here defined as positive 
(absolute value) as a practical convention. 
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Fig. 3.27. dM/dt (left) and corresponding tb values (right) given by the fitTbuild10.exe program for 
a MEOP experiment at 67 mbar and 500 mW pump power. 

• Laser-induced relaxation  L 

Nevertheless, the most important phenomenon recently highlighted in 
[Bat11a] is the presence of an additional relaxation during OP, dependent on the 
laser power absorbed by the plasma discharge. This laser-induced relaxation rate 
 L would be responsible for the systematic inconsistency between Meq theoretical 
values computed by the MEOP model found in Paris and the experimental results. 
Theoretical values are obtained with a program based on rate equations similar to 
the ones presented in the first chapter and the complete detailed model is 
described in [Bat11b]. Existence of  L was found by comparing the decay rates 
involved during OP and decay. The decay rate  decay in presence of the discharge 
but in absence of OP is the sum of the intrinsic ground state relaxation rate  g (see 
equation (1.21)) and the M dependent relaxation rate introduced by the 
metastability exchange collisions  ME(M). For a long time, when only weak arc-
lamped and diode lasers were used for OP, the total polarization loss rate in the 
presence of OP  R was found to be in the same order of magnitude than  decay and 
MEOP model agreed with experiments at low magnetic field [Nac85]. But since 
high power lasers are commercially available,  R is observed to be much larger. 
That is why  L was introduced and defined by the following equation: 

 R =  decay +  L  (3.21) 

To experimentally assess  R, the following equation of the detailed balance 
of angular momentum has to be considered: 
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where ! is the photon efficiency, defined as the ratio between the number of 
polarized atoms by the number of absorbed photons. In the formalism used in 
equation (3.22), the left part represents the stored angular momentum, the first 
term on the right part is the deposited angular momentum during OP and the two 
additional terms are the nuclear relaxation loss. As we have nm << Ng, we can 
neglect the terms linked to 23S state and rewrite: 

Ng
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dt
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 (3.23) 

Ng is known from the filling conditions, Pabs can be deduced by scaling the 
channel CH0 with the offsets recorded at the beginning of the acquisition and 
M(t) is known. Only the quantum efficiency is unknown but it can be measured at 
the beginning of OP when M = 0: 
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In practice, the dM/dt values coming from the fitTbuild10.exe program are 
extrapolated to find the dM/dt(M=0). It was shown that the quantum efficiency is 
both M and Plas-dependent [Bat11a] but as a first approximation, it will be 
supposed constant in these experiments to determine the order of magnitude of  L. 

It was then possible to follow the evolution of the total polarization loss rate 
 R for few experiments. The induced laser relaxation was then calculated by 
subtracting  decay and resulting  L values are presented in figure 3.28 as a function 
of the absorbed pump power.  L seem to increase linearly with absorbed power 
like in low field [Bat11a] but the most important is that these rates are also higher 
than  decay by at least one order of magnitude. It means that the induced laser 
relaxation is the dominant relaxation during MEOP experiment. It also confirms 
the tendency previously found at 1.5 T in [Abb05a]. A nice figure summarizing 
 L obtained in different works can be found in [Bat11a] (Fig. 6.63) and shows that 
although exceeding  decay at high absorbed power,  L values are lower by one 
order of magnitude in comparison to low field situation. 

This laser-induced relaxation is expected to be explained by an OP-induced 
plasma �poisoning� and for example by metastable 3He2

* molecules but the first 
results obtained by Bartosz Glowacz at 32 mbar and at low magnetic field, shows 
that the 340- fold increase of  L was accompanied by only a 3-fold increase of the 
3He2

* concentration [Glo11]. This excludes these molecules to be the main 
relaxation mechanism of MEOP in low field but additional investigation needs to 
be performed at higher field and higher pressures. 
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Fig. 3.28. Laser-induced relaxation rate  L =  R -  decay, during OP experiments performed at 96 
mbar (filled symbols) and different laser power (squares: 0.5 W, circles: 0.9 W and triangles: 2W) 
and 67 mbar with 500 mW (open stars). The horizontal dotted line represents the decay rate found 
for these experiments and the dashed line whose slope equals 1, a guide for the eye fitting all the 

values obtained at low magnetic field. 

3.4. Outlook of the systematic studies at 1.5 T: 

The main Meq and R results of table 3.2 are summarized in figure 3.29. 
Compared to the one published in 2007, an increase of 25 % have been observed 
in the steady-state polarization and a factor of at least ten in the production rate 
compared to the best standard conditions. It also showed that, to increase the 
efficiency, MEOP should be performed at relatively high discharge and at 
moderate laser power (1-2 W, depending on the cell length and total absorptance). 
In order to build a high field polarizer, a compromise has to be found between 
high Meq (low pressure) and high production rate (high pressure). Usually, the 3He 
application gives the minimum required Meq value that decides which pressure (or 
production rate) can be used. In lungs MRI, a reasonably good quality picture can 
already be taken with 300 mL of 3He polarized at 30 %. But having 60 % 
polarization of course increases by a factor 2 the SNR or reduces by the same 
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factor the required quantity of a gas that has become rare and expensive. When 
looking at Fig. 3.29, the best conditions seem to be reached around the pressure of 
32 mbar for which surprisingly high R was obtained and for which Meq is still 
above 60 %. 

 

Fig. 3.29. Summary of the Meq (filled symbols) and R (open symbols) obtained at 1.5 T in [Nik07] 
(triangles) and in the present work (squares). 

In these first theoretical considerations, the benefic effect of axicons for a 
high field polarizer is not really clear. Actually, a comparison of laser shape 
influence on MEOP experiments was published in [Doh11a] and showed that at 
32 mbar and in closed cells, the best configuration is to use a highly expanded 
beam like for low field conditions, to match a quite homogeneous distribution of 
metastable atoms in whole cell (see Fig. 3.5). But it will be seen in the next 
chapter that these expectations based on experimental data obtained in sealed cells 
could hardly be achieved in an open system and that the axicons were highly 
needed. 
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Chapter 4  

Building a high field polarizer at 1.5T: 

Motivated by the promising results of metastability exchange optical 
pumping obtained at high magnetic field and presented in the previous chapter, 
the decision was made to study the feasibility of building a high-field polarizer 
operating inside the most available MRI scanner at 1.5 T. The main advantage of 
having such a polarizer is to produce directly on-site the required amount of 
magnetization for lung magnetic resonance imaging performed shortly after the 
compression process. Production rates of polarization being higher at high B, the 
duration of accumulation in the storage cell is expected to be shorter. Moreover, 
the guiding field is already produced by the scanner and as the polarizer should fit 
inside its bore, the high field polarizer has to be compact and easy to transport and 
store. In a first part, preliminary tests with small open cells will be presented. 
Then, the complete design and construction of the high field polarizer will be 
detailed before showing the first results and pictures in the last part. 

4.1. Preliminary tests in open cells: 

4.1.1. Optical pumping cells 

To see if the results of chapter 3 were reproducible in an open system and 
before starting experiments in a clinical environment, four small cells of different 
shape and diameter were produced by a glass maker, Mr Napiórkowski, from 
Gdansk. A picture of two of them is displayed in figure 4.1. Two different shapes 
were used. The first two cells were cylindrical with 11 cm length, 15 and 34 mm 
inner diameter. They appeared to not work properly because of multiple 
reflections and diffractions of the laser on the boarder of the optical windows. 
These windows, polished in our institute, were sent for assembling to Gdansk with 
the cylindrical body. During this operation, the border of the windows heated by 
the flame lost their flatness, which explains the optical aberrations. The problem 
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was solved by ordering two new cells with the so-called bone shape used in the 
previous systematic studies. These two cells had the same length (11 cm) that fits 
the homogeneous volume of our superconducting magnet and similar diameter: 16 
and 31 mm. At the input and output of each cell, valves using Apiezon L grease 
were tested to be leak tight with a turbomolecular pump. 

 

Fig. 4.1. Picture of two open cells used for preliminary tests inside our superconducting magnet at 
1.5 T. The first cell at the bottom of the figure has a cylindrical shape (diameter: 34 mm) whereas 

the top one has a bone-shape (diameter: 16 mm) and is connected through a glass-metal 
connection to a turbomolecular pump for cleaning purpose. 

All cells underwent the following cleaning procedure: 
o Ultrasound (US) bath with hot water + detergent (15�) 

o US bath with hot water (two times 8�) 

o US bath with gently heated aceton (15�) 

o US bath with gently heated isopropanol (15�) 

o Rinsing with pure ethanol and dry with nitrogen flow 

o Connected to a turbomolecular pump (TMP) and heated during 6 h 
Each cell was then connected to a gas handling system with relatively high 

vacuum (6.3 10-8 mbar) and to a non magnetic plate inside the 1.5 T magnet. 
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4.1.2. Experimental procedure and gas handling system 

The superconducting magnet producing the guiding field for this experiment 
was already presented in § 3.1.1 as it was used for the systematic studies at 1.5 T. 
Each open cell was lying on a similar optical plate as the one shown in Fig. 3.2 
and including a pump laser and an optical detection of the nuclear polarization. 
The main difference of experimental procedure comes from the additional gas 
handling system (GHS) dedicated to 3He supply and cleaning purpose. 

  

Fig. 4.2. Pictures of the gas handling system (left) used for the OP preliminary experiments 
in small open cells. On the right, a global picture of the 1.5 T magnet room shows the gas handling 
system connected to the optical pumping plate inside the magnet with 4 m of rigid (attached to the 

wall) and flexible non magnetic pipe made of stainless steel. 

Most elements of the gas handling system being magnetic (4He bottle, TMP 
and flow controller), it was located few meters away from the magnet and 
connected to the OP cell with approximately 4 meters of 6 mm outer diameter 
electropolished non-magnetic 316/316L stainless steel tube, 316L flexible tube 
from the FL series of Swagelok (Solon, Ohio, USA) and a metal to glass 
connection (G304-4-GM3, Cajon, Solon, Ohio, USA), (see Fig. 4.2). The GHS 
design is very similar to the low field polarizer one with a turbomolecular pump 
and a 4He bottle for cleaning purpose and the same getter, filter and non magnetic 
valves. The only differences are a new pressure meter (model PTI-S-AC0-35AS, 
Swagelok� ) and a flow meter (series SLA5800, Brooks Instrument, Hatfield, PA, 
USA). After building it, the GHS was heated for several hours with a hot air dryer 
(300 °C) for impurities in the walls of the connection pipes to be vacuumed by the 
TMP. 

4.1.3. Purity issue 

The first sign that the results obtained at 1.5 T would be not easily 
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reproduced in open cells was quickly observed even before aligning the lasers, 
when the first attempts to switch on discharge were made. The plasma aspect 
inside these open cells was close to the one observed in high pressure sealed cell 
(at 128 mbar and more) although the pressure was reasonably low (on the order of 
10 mbar). On figure 4.3, a picture of such plasma, located only close to the 
electrodes wired around the walls of the cell, is compared with plasma obtained in 
sealed cells. Moreover, the plasma color and spectral lines of the light emitted 
were not purely coming from 3He atoms during the first attempts leading to the 
conclusion that a serious problem of purity was met. Such features were 
frequently matched in low field polarizers when a new system is starting to work 
for the first time or after that a leak has been discovered and repaired. It is thus not 
really surprising and is usually solved by vacuuming and heating the pipes and by 
rinsing several times the OP cell with 4He plasma resulting from high power 
discharge. However, this cleaning process, although reducing greatly the weight 
of additional transitions in the visible spectrum of the plasma, did not improve the 
plasma distribution for pressure higher than 5 mbar, even in the case of the open 
cell with only 14 mm diameter for which getting homogeneous discharge at high 
pressure is easier. 

   

Fig. 4.3. Pictures of the plasma inside sealed cells (diameter 14 mm) at 1.33 mbar (left), 32 mbar 
(center) and open cell (diameter 31 mm) at 18 mbar (right) after conscientious cleaning process 

consisting of rinsing several times the cell with high plasma discharges in 4He. 

Although the vacuum inside the system seemed satisfactory (on the order of 
10-7 mbar), the gas handling system was then tested with a helium sniffer leak 
detector that did not report any leaking issue. Additional cleaning attempts did not 
reach better plasma behaviors but the presence of impurities is certain. In Fig. 4.3, 
the pictures on the left and the center show the plasma distribution inside sealed 
cells filled with highly pure helium after the cleaning process described in § 3.1.2. 
Bright areas in the plasma indicate the location where radiative cascade 
contributes to the creation of metastable state. But the actual metastable density 
distribution results from the balance of creation, diffusion and destruction by 
various processes. That is why the map of nm cannot be inferred directly from the 
plasma brightness. One example is the homogeneous nm distribution measure in 
the 32 mbar cell (see Fig. 3.5) although plasma is much brighter closed to the cell 
walls. It was however not the case for the open cells as absorption measurement 
will prove it in the next subsection. Impurities in the helium plasma reduce the life 
time of metastable atoms by destroying them through collisions processes and if 
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the quenching length becomes really small, the brightness tend to match the 
density distribution, which was the case in the open system. In the low pressure 
regime (around 1 mbar) of low field polarizer, collisions with impurities are rare 
and the lifetime of 23S atoms is long enough. But when the pressure increases, 
number of impurities increases and the quenching length is greatly reduced, 
giving to MEOP experiments a strong dependency upon the purity of the system. 

4.1.4. Results 

The purity problem was a great concern during these preliminary 
experiments and led to the conclusion that the pair of axicons had to be used. But 
the thickness of plasma distribution was so small for P > 5 mbar and with the 
additional effect of high B that almost no absorptance was measured if the pump 
or the probe beam was more than 3 mm away from the cell walls. In the probe 
configuration describe in Fig 3.1, the absorptance of the probe beam was close to 
be null. That is why the configuration of the optical setup was changed to obtain a 
better match between metastable atoms and laser path (Fig. 4.4). The probe beam 
was thus collinear to the magnetic field and passing through the OP cell back and 
forth on one side, close to the wall. The mirror directing the probe beam in the OP 
cell was then blocking one side of the pump beam, leading to a C shape. 

 

Fig. 4.4. Schematic of the optical setup used for experiments in open cells at 1.5 T. The valves and 
connection to the GHS are not represented on the scheme. Probe and pump laser beams are first 
circularly polarized by a polarizing beam splitter (PBS) and a quarter-wave plate ( /4). A set of 
mirrors (M) makes them pass through the OP cell in parallel with the magnetic field (B) before 

being recorded by two photodiodes (P.D.). One part of the annular pump laser beam is blocked by 
the circular mirror used to transmit the narrow probe beam on the left side of the cell. A resulting 

C-shape of the pump is obtained. 

The first two cylindrical cells were tested with this configuration but as 
explained in § 4.1.1, the boarder of the windows were not flat enough and many 
diffractions and reflections disturbed the few recorded acquisitions. That is why 
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two new bone shape cells were ordered. Unfortunately, the 15 mm diameter one 
appeared to have a very small leak in a connection between one window and the 
main body. Special low vapor glue dedicated to high vacuum experiment was 
used but the results were unsatisfactory and the last cell was preferred to perform 
the experiments. All the Meq and R values of the 31 mm diameter bone shape cell 
are summarized in Fig. 4.5 and compared to the results obtained in sealed cells. 

 

Fig. 4.5. Summary of the Meq (filled symbols) and R (open symbols) obtained at 1.5 T in sealed 
cells (squares) and in a 31 mm diameter open cell (stars). Results obtained after a conscientious 

aligning of the beam are highlighted in red. 

The results obtained were disappointing and confirmed the presence of 
impurities. Experiments at pressure higher than 75 mbar could not be performed 
due to a too small absorption signal of the probe beam yielding to a poor signal to 
noise ratio of the data. The total probe absorptance at the beginning of the OP Pabs 
showed the same tendency and was only on the level of 1 %. This led to steady 
state polarizations of only 30 to 50 % around 30 mbar and more dramatically to 
production rate 10 times lower than the ones obtained in sealed cells. The reasons 
of these small R values are the much longer build-up times values explained by 
smaller efficiency (absorptance) and a 5 times larger volume of gas to be 
polarized (it was 20 mL in sealed cell and around 95 mL in the 31 mm open cell). 
Thus, tb could reach 200 s for only 15  to 30 mbar when it was only on the level of 
15 s in 32 mbar sealed cell. Finally, a last attempt to perfectly align the pump 
beam with plasma discharge was made (highlighted in red in Fig. 4.5). It 
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succeeded to increase pump absorptance to more reasonable values (5 to 20 %) 
and increased both Meq and R values. 

 

Fig. 4.6. Left: Absorption recorded during a multiscan acquisition of the probe doublet at 27 mbar. 
The pump laser was switched on at t = 86 s and switched off at t = 940 s. Although the ratios of the 
peaks induce a nice exponential build-up of the nuclear polarization, the total absorption decreases 
during the acquisition. Right: Absorption of a weak pump (channel CH0) tuned on f2m transition. 
The decrease of absorption can not be explained by the OP process because of the small intensity 

used for this measurement. 

The presence of impurities was also clearly visible when looking at the 
surprising behavior of recorded multiscan acquisitions. The acquisitions 
performed just after 3He was renewed inside the cell showed trend displayed on 
the left plot of Fig. 4.6. The absorption decreased with time and eventually 
reached a more or less stable value for which the next acquisition was performed 
and gave lower steady-state polarization. It was confirmed with a decrease, 
sometimes by factor of two between absorption measurements with a weak probe 
beam before and after acquisitions. On figure 4.6, the worst cases are presented 
for a better understanding but the decrease of absorption during the duration of the 
acquisition was fortunately not always so important. The stability of the discharge 
during experiment was not raising up any question and that is why the most 
probable explanation is that these experiments are defecting from a problem of 
design. Having the GHS four meters away from the cell makes the cleaning of 4 
mm inside diameter tubes and OP cell harder. When the gas is refreshed, 
absorptance is higher and acquisitions give reasonable results in the pressure 
range of 30 to 50 mbar, if the conditions of well aligned laser is matched. But 
impurities still contained in the walls of long pipes are probably desorbed and 
mixed with 3He as the time goes on, which explains the decrease in absorptance 
and lower results. 

In conclusion, these preliminary tests, although bringing much worse values 
of Meq and R, were necessary because they highlighted the most important 
features to take into account when pumping at relatively high pressure and when 
building a high field polarizer. It showed that the purity of the system was the 
most important parameter to improve, that the future GHS system has to be as 
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close as possible from the OP cell, that the axicons should be used, that MEOP 
should be performed in the pressure range of 20 - 60 mbar with high discharge 
and that the diameter of the cells should be reduced to improve the plasma density 
distribution across the cell as the absorptance seems to be the key parameter for an 
efficient MEOP. 

4.2. High field polarizer design: 

The systematic studies of the chapter 3 and the first tests in open cells of the 
previous section brought enough elements to start designing the first prototype of 
a high field polarizer. In this part of the dissertation, the different considerations 
and steps of the construction of the polarizer are presented in the chronological 
way it was achieved. It is starting with a simulation of the production and nuclear 
polarization that are expected to be achieved, before presenting the compression 
system chosen for the polarizer, describing in details the main design of the GHS 
and optical pumping plate and finally, the derivation of capillaries sizes for flow 
restriction is explained. 

4.2.1. Flow considerations and expected production 

Two modes of production can be chosen. The first one is called batch mode, 
consists in filling the OP cells with the desired pressure, optically pumping the 
3He until a chosen value of polarization and then compressing the gas into the 
storage cell, stopping the compressor, filling the cell again etc�  It is the method 
used in Mainz for their large production facility [Bat05, Wol04] and has the 
advantage of having a fast increase of nuclear polarization during OP because it is 
averaging the dM/dt until the chosen polarization is reached. However, there are 
also many disadvantages linked to the compression step that needs to be fast and 
the frequency at which it should be done due to the number of times valves should 
be opened and closed. An approximation of the production that can be reached 
with this mode is given by the total amount of gas contained inside the cell (P*V) 
divided by 3tb (for M = 0.95 * Meq or by 5tb for 0.99 * Meq, etc). To this time 
should be added the time of compression and refilling of the OP cells. This 
solution seemed not appropriate in a high magnetic field environment where 
electromagnetic valves cannot be a-priori used and where the manipulator have 
restricted access to the magnet bore for manually opening and closing the valves. 

The second mode that has been selected in this work is the continuous flow 
mode where the compressor is always running, and the valves from the 3He 
reservoir to the storage cell remain open. In the following, simple approximations 
will be made to deduce the expected flow Q and polarization M that can be 
expected from the results previously obtained in sealed and open cells. As a first 
approximation, the flow and the steady state polarization in the OP cell will be 
considered constant and the build-up process purely exponential with a constant 
time tb�. To take into account the slowing down of the process described in § 
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3.3.2.3 and as we want to reach high polarization value, tb� will be taken equal to 
1.4 times the build-up time at the beginning of OP tb, which is a good average of 
the experimental results (see Fig. 3.26). In the steady-state situation, the total 
magnetization produced in a unit of time by OP and expressed in sccfp/min 
(standard cubic centimeter fully polarized per minute) is carried out by the 
compressor to the storage cell. We can then write: 

dM

dt

PV

T
=QM  (4.1) 

where P is in atm, V in mL, T = 1 (a normal temperature is assumed) and the 
atomic flow Q in scc/min. In addition, M can be written: 

M = Meq 1 exp  t / tb'( )( )! dM

dt
=
Meq

tb
'
exp  t / tb'( ) =

Meq  M
tb
'

 (4.2) 

By combining equations (4.1) and (4.2), the following simple equation 
linking the chosen flow with the cell dimension, build-up time and resulting 
polarization can be obtained: 

M =
Meq

1+
Q tb'  T

PV

 (4.3) 

On figure 4.7, the polarization values derived from equation (4.3) and 
extrapolated from the Meq, tb, P and V obtained in sealed and open cells are 
 

 

Fig. 4.7. Computed nuclear polarization from Eq. (4.3) as a function of the flow. Left: M inferred 
from the systematic studies performed at 1.5 T, using a cell volume of 20 mL and from the results 
of table 3.2 (black solid line: 1.33 mbar, red dashed line: 32 mbar, green dotted line: 67 mbar, blue 

dash dot: 96 mbar, cyan short dash: 128 mbar, magenta short dot: 267 mbar). Right: M inferred 
from the open cell data highlighted on Fig. 4.5 and using a volume of 95 mL (solid lines: 27 mbar, 

dashed line: 21 mbar, dotted line: 67 mbar). 
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presented. For this simulation, it is assumed that the experimental conditions 

would be exactly the same in the presence of a constant flow. In practice, it can be 

matched if well design capillaries are inserted at the input and output of the cell 

preventing impurities from diffusing from the storage cell to the OP cell and the 

polarized 
3
He to diffuse outside the cell.  Figure 4.7 shows that, except for the 

1.33 mbar sealed cell, the Q-dependence of the polarization is actually not really 

different when considering sealed and open cells. The polarization at Q = 0 is of 

course higher in the case of sealed cell but each cell of 11 cm length seems to be 

able to produce more or less the same magnetization in a flow range of 2 to 10 

scc/min. The dramatic effect of impurities that slows down the efficiency is 

actually hidden by the almost factor 5 difference between the volume of sealed 

cells (20 mL) and the open cell (95 mL). To fairly compare the two situations, it is 

better to use a common volume. This is done in figure 4.8 by taking an OP cell 

volume V of 1L corresponding to approximately 6.5 m of 14 mm diameter (sealed 

cell) and 1.3 m of 31 mm diameter (open cell).  

 

Fig. 4.8. Polarization derived from equation (4.3) with a fixed volume of 1L. Comparison between 

the closed cell configuration for different pressure (solid lines, values taken from table 3.2, the 

1.33 mbar cell is not represented) and the open cell results highlighted on Fig. 4.5 (dotted lines). 

The effect of longer tb values is clearly seen on Fig. 4.8. For open cell 

simulation, the steady state polarizations are falling down much more rapidly with 
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the increasing flow, reflecting the fact that for higher Q, 
3
He atoms do not have 

the time to be fully polarized during their average time spent in the OP cell. This 

is a disadvantage of using the constant flow mode because, as it can be seen in 

Fig. 3.26, the magnetization transfer (dM/dt) is less efficient when the steady state 

polarization chosen during an experiment gets closer to its maximum value Meq. 

Nevertheless, if the results obtained in sealed cells could be reproduced with a 

constant flow, Fig. 4.8 shows that only one liter of OP cell could produce 20 

scc/min of 
3
He polarized at 55 %. 

As a result of the previous considerations, several decisions were taken for 

the future design of the polarizer. The first one was to design it for a flow in the 

range of 10 to 20 scc/min. For lower flow, the time to reach the required amount 

of 
3
He for lung imaging would be too long and no real breakthrough would be 

achieved compare to the low field polarizer. The second one is to perform MEOP 

at approximately 30 mbar with high discharge and in a cell with approximately 

2.4 cm of diameter. The 31 mm open cell showed that it was difficult to obtain 

homogeneous density of metastable state in such large cell. On contrary, using a 

14 mm diameter cell would require a total length of OP cell too important. 

Finally, and as a first prototype, it was decided to work with a total volume of 

approximately 1L corresponding to 2.2 m of cell. Thanks to the projection 

presented in Fig. 4.8 and if the best results obtained in open cells can be repeated 

(and neglecting the loss due to the compression) a polarization of 30 to 45 % 

should be obtained with a constant flow of 10 � 20 scc/min. 

4.2.2. Compression 

 For the compression stage, a smaller version of the peristaltic compressor 

presented in subsection 2.1.5 (see also Fig. 2.6) was used. Its dimensions were 

chosen to reach a volumetric flow in the experimental range of pressure (20-40 

mbar) fitting the chosen value of Q (10-20 scc/min) when running at 3-5 Hz. At 

this rotational speed, the vacuum reached at the input of the compressor is on the 

level of 10
-5

 bar for a 1 atm output pressure. This level of vacuum efficiently 

prevents impurities from diffusing to the OP cell when the output valve is opened 

at the beginning of an experiment for the first time (and of course in the presence 

of a capillary at the output of the OP cell). A rotary pump produced a vacuum of 

the level of 10
-4

 bar inside the body of the peristaltic compressor to prevent the 

peristaltic tube (Pharmed BPT tube model 06508-17, inside diameter of 6.4 mm) 

from shrinking. Some tests done while the vacuum was not used inside the 

compressor or when the compressor was running at lower speed (  1 Hz) showed 

that the optical pumping cell was then getting dirty (color change of the plasma). 

Finding a non magnetic engine for the compressor was more difficult. 

During a research of pneumatic engine that could satisfy our need (speed: 300 

rpm, torque: 0.1-2 N.m), I found an interesting model and asked the company 

producing it (Globe Airmotors BV, http://www.globe-benelux.nl/) if it was 

possible to send a list of the materials with which the engine was made. The 

company answered that a new design was under construction to satisfy the 
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demand for such non magnetic engine but that they needed someone to test it. I 

accepted it and the engine was first tested inside the superconducting magnet of 

our institute at 1.5 T to see if it was attracted by the magnetic field and if it was 

able to drive the compressor in the same conditions outside and inside the magnet. 

These tests being positive, the engine was then brought inside the MRI scanner in 

John Paul II hospital in Krakow to study the influence of the presence of the 

engine inside the scanner on the resonance frequency of small water sample and 

on the picture of a bigger water sample located at different distances from the 

engine. Inhomogeneities induced by the engine were about 4.5 ppm at 24 cm from 

the water sample, 12.7 ppm at 16 cm and 33 ppm at 8 cm. For MEOP, such 

inhomogeneities are negligible. In systematic studies performed at 1.5 T, the 

guiding field of the magnet was more inhomogenous (  1000 ppm). On contrary, 

for MRI experiment, this level of inhomogeneity produces artifacts on the picture 

(Fig. 4.9, left) and the engine should be at least 50 cm away from the object to be 

imaged. All the different parts of the compressor were separately tested to see 

which one was the most perturbing. It appeared to be the stator and rotor ring. 

This first prototype engine was used anyway because it was fulfilling the 

experimental requirements and since summer 2010, the engine is commercially 

available on the main webpage of the company (Fig. 4.9, right). For our 

experiment, the engine is driven at the input with 2-3 bar of air supplied by an air 

compressor. 

  

Fig. 4.9. Left: artifact produced on a picture (spin-echo sequence) of a 24 cm spherical phantom 

filled with water when the air motor is located 7 cm from it. Right: part of the main webpage of 

Globe Airmotor BV company: http://www.globe-benelux.nl/ showing the design of the reversible 

non magnetic piston air motor, model RM-004R 

During the test of the pneumatic engine inside the scanner, the homogeneity 

of the magnet was checked inside the tube of the scanner. This tube is particularly 

long compare to different scanners and has a level of inhomogeneity of only 11 

ppm in an imaginary rectangular cuboid of 1 m length and 40 cm height and depth 

centered in the middle point of the magnet. 
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4.2.3. Design 

In figure 4.10, the high field polarizer is schematically described in totality. 

It consists of three main elements: the optical pumping plate and the gas handling 

system divided into two parts (the gas inlets system and the cleaning system). 

• Optical pumping plate 

In order to easily have a measurement of the magnetization inside the OP 

and storage cells, the system was designed to fit inside the birdcage coil dedicated 

to 
3
He human lungs MRI (see § 2.2.2 and Fig. 2.10). This condition, together with 

the homogeneity measurements of the magnetic field inside the scanner evoked in 

the previous paragraph and showing that the OP cells could be almost one meter 

long, gave the dimension restrictions for the OP plate. It was decided that three 

OP cells would have an inner diameter of 24 mm, a length of 80 cm, and would be 

connected in series on a wooden plate (length: 1.5 m, width: 35 cm). The 70 cm 

long available space is dedicated to the optics elements. 

A 10 W laser from Keopsys (Lanion, France) is located in a safe area of the 

clinical scanner room, and the 4 m long fiber is connected to a Kepler-like 

telescope (magnification 2x, Eksma Optics, Vilnius, Lituania) and a new pair of 

axicons from the same company allowing a tunable diameter of the annular beam 

from 18 to 28 mm. A first pair of mirrors at 45° regulates precisely the height and 

inclination of the beam. This latter is divided into three beams by a set of half-

wave plates and polarizing beam splitters. Each beam is passing through one cell 

back and forth thanks to additional mirrors and after having been circularly 

polarized by quarter-wave plates. It was also possible to use only one beam and 

guide the light transmitted by the first cell into the second and third cells. But in 

this case, the circular beam should be neither divergent, neither convergent on a 

length scale of 6 m. It was experimentally really difficult to achieve due to optics 

imperfections. Moreover, it was shown in the conclusion of chapter 3 that a pump 

power of 3 W per cell would be largely sufficient. The transmitted light of the 

laser at the output of the second and third cell is focused and monitored with two 

lenses and photodiodes. 

Forty circular electrodes are wired around each cell with a space of about 2 

cm between them. Previous experiments in our laboratory showed that this 

configuration was more efficient than the spiral one for generating a dense plasma 

inside the 24 mm diameter cells. The generator and amplifier of the systematic 

studies in sealed cells are used to create a 1 MHz rf discharge inside the second 

and third OP cells. A GW Instek (model GFG 3015) generator (1 MHz) with a 

100 W wide band amplifier is dedicated to the first cell. It is then possible to have 

two different regimes of discharge between the 1
st
 and the 2

nd
 and 3

rd
 cells. 

Between the 1
st
 and 2

nd
 cells, a smaller wooden plate (12 * 60 cm) is fixed 

on the main one. The peristaltic compressor, the pneumatic engine and the 500 

mL storage cell (Sample flask with glass piston and plain side arm, model 

SFB/500/G, Aimer Products Ltd, Enfield, England) are mounted on this plate. 

When the compression is finished, the plate can be easily disconnected from the
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Fig. 4.10. Scheme of the high field polarizer: the optical pumping plate (bottom, 1.5 m * 35 cm) is 

connected permanently using a flexible pipe to the gas handling system (top left) supplying high 

purity 
3
He through a getter, a 50 μm filter (F), a fine metering valve (MV), a pressure meter (PI), 

and an additional getter located as close as possible from the three OP cells (diameter: 24 mm, 

length 80 cm) mounted in series. Three capillaries are inserted for flow restrictions at the input of 

the first cell, between the first and the second cell and at the output of the third one. The laser 

beam, expanded by a Kepler-like telescope and whose annular shape is created by a pair of 

axicons, is divided into three beams by a set of half-wave plates ( /2) and beam splitters (PBS). 

Each beam is being circularly polarized and aligned with each cell by a set of quarter-wave plates 

( /4) and mirrors (M) and the transmissions of the second and third beam are recorded by two 

photodiodes (P.D.). The peristaltic compressor (C), driven by a pneumatic engine (P. engine), 

compresses the gas from the third cell to the storage cell. These three elements are mounted 

separately on a smaller plate (60 * 12 cm) that can be disconnected easily from the main optical 

pumping plate when the compression is finished and the polarizer remove from the scanner. When 

the polarizer is not used, it is connected in a separate room to a cleaning system (top right) 

consisting of a turbomolecular pump and a 
4
He bottle. The cleaning system can be connected at 

three different locations labeled 1, 2 and 3 on the figure. 
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main one and stays inside the scanner when the polarizer is taken out from its tube 

to let a patient go in. Connections between output of the 3
rd

 cell, compressor and 

storage cell are made from Pharmed BPT tube of different diameters and the 

design is similar to the low-field polarizer one (see Fig. 2.1). A vacuum 

membrane pump and a bottle of 
4
He are located far from the scanner and 

connected to the storage cell through longs pipes for washing it between 

experiments and mixing 
3
He before compression inside a Tedlar bag. 

At the entrance of the first OP cell, a capillary is used, after the 2
nd

 getter 

and the metal-glass connection, to restrain the back diffusion of 
3
He to the 

metallic pipe during the constant flow mode. A second capillary between 1
st
 and 

2
nd

 cell has the same effect and allows having two different conditions of 

discharge in the three cells. At the output of the third cell, a last capillary prevents 

impurities from the peristaltic compressor to contaminate the cells. 

• Gas handling system 

The gas handling system was built on a separate and compact Plexiglas 

plate (  60 * 50 cm). It is reduced as its minimum to be as close as possible from 

the OP plate and limits the purity issue of the 4.1 subsection. It consists of a non 

magnetic 
3
He bottle, the same getter, 50 μm filter and valves as the ones used for 

the GHS of the low-field polarizer. The pressure meter of the open cells 

preliminary experiments was kept. On the contrary, the flow meter working with 

electromagnetic valves was replaced for a fine metering valve (model SS-SS2-D-

VH, Swagelok) needed to reduce the pressure inside the getter (  1 bar) to the 

required one inside the OP cells. The connection with the OP plate is made with a 

new 61 cm long flexible tube made of 321 stainless steel (model 321-4-X-24DFR, 

Swagelok) as we thought the previously used flexible tube was mainly responsible 

for the impurities in the open cell experiment. Finally, an additional compact 

getter (model MC1-902F, SAES Pure Gas, Lainate, Italy) was inserted on the OP 

plate, before the metal glass connection and as close as possible from the entrance 

of the 1
st
 cell. 

All the elements were checked to be safe when used in high field 

environment and only the 1
st
 getter is slightly magnetic (1.4 ppm change of 

Larmor frequency at 40 cm from a small water sample). 

• Cleaning system 

A second part of the GHS, dedicated to cleaning purpose and consisting in a 

TMP and a 
4
He bottle was built separately in a storage room close to the MRI 

scanner. When the polarizer is not used, it is connected to this cleaning system 

through a KF 16 flange adaptor. There are three locations where the cleaning 

system can be connected, labeled �1, 2 and 3� on figure 4.10. �1� is dedicated to 

the cleaning of the GHS and was used mainly after its construction was finished. 

Usually, the cleaning system is connected in parallel to �2� and �3�. When it is 

necessary, OP cells are filled with 
4
He at low pressure, and strong discharge is 

applied through the rf electrodes before vacuuming the cells with the TMP. 
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4.2.4. Choice of the capillaries 

The choice of the dimensions of capillaries inserted in the different parts of 

the polarizer results from a good combination between a negligible back diffusion 

of 
3
He and an acceptable pressure drop. It is assumed that the compressor speed is 

regulated in such a way that the flow Q is constant and in the 10 to 20 scc/min 

range and that the pressure at the output of the fine metering valve (measured by a 

pressure meter) is also constant and in the 20 to 40 mbar range. The back 

diffusion is neglected if the average speed of helium inside the capillary is much 

higher than the mean free diffusion length divided by the transit time of atoms in 

the capillary. 

Let�s consider first the free diffusion coefficient of 3He: D. In [Tas05], it is 
given by: 

D =1.967  
T

300

! 

" 
% 

# 

$ 
& 

1.71

/P  (4.4) 

where D is in cm2/s if T is in K and P in atm. In a three dimensions problem, the 
main distance over which a particle will have diffused from its starting point 
during a time t is then: 

x = 6Dt  (4.5) 

In addition, the mass flow Qm can be written: 

Q
m
= u S  (4.6) 

where u is the average speed of the gas,  , the mass density and S the cross 
section. Equation 4.6 can then be rewritten to give the velocity of the gas in the 
capillary: 

u =
Q

4.6507  dt2  P
 (4.7) 

u is in m/s if Q is in scc/min, the diameter of the tube dt in cm and P in mbar. For 
a diameter of 1.6 mm, equation (4.7) gives a mean velocity u of 8.40 m/s for Q = 
20 scc/min and P = 20 mbar (case 1) and 2.10 m/s for Q = 10 scc/min and P = 40 
mbar (case 2). The average time spent by the gas when going through 7 cm of 
such capillary is then 8.3 ms in first case and 33 ms in 2nd case. During this time, 
the average free diffusion length from Eq. (4.5) is 2.23 cm (case 1) and 3.14 cm 
(case 2) at 300 K. This length is at least two times lower than the length of the 
capillary, which is safe. Moreover, in this crude model, we considered the free 
diffusion in an open 3 dimensions system, which gives an order of magnitude but 
is actually not realistic. The mean free path inside a small diameter tube is lower 
and as a comparison we have x = 2Dt  for a one dimensional diffusion problem. 
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It can then be concluded that negligible back diffusion will occur with such 

capillary. 

Remark: the same calculations can be done inside the 2.4 cm diameter OP 

cells. For Q = 15 scc/min and P = 30 mbar, u   2 cm/s. It means that helium atoms 

spend on average 40 s in each cell. During this time, the mean free path is 

approximately 1.3 m showing that there is a total mixing of atoms inside OP cells. 

Before validating the capillary dimensions, the pressure drop !P introduced 

by them should be checked. The following calculation is largely inspired from a 

private communication from Pierre-Jean Nacher who is finalizing an article on a 

wider subject. For this derivation, the first parameter that should be calculated is 

the Reynolds number Re: 

R
e
=
!ud

t

  (4.8) 

where " is the viscosity of 
3
He (  20 μPa.s at 300 K). In the experimental range 

of flow and diameter, Re is around 1.5, which is much lower than the critical value 

2000 for which flow becomes turbulent. In consequence, the flow regime is 

always laminar and the pressure drop is then proportional to: 

 P !Q

C
 (4.9) 

where C is the fluid conductance. The expression of C depends on a second 

parameter, the Knudsen number K
n
=  /d

t
, where # is the mean free path: 

" = !
P

 
2
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 (4.10) 

with the gas constant Rg and the molar mass Mm. At room temperature: 

K
n
=
0.192

P  d
t

 (4.11) 

if P is in mbar and dt in mm. In our case (P = 20 mbar), this gives Kn = 0.006 < 

0.01 $ we are in the hydrodynamic regime and a simple expression of C is given 

by: 

C =
 
128

d
t

4
P

!L
c

 (4.12) 

where Lc is the length of the capillary (7 cm). Equation 4.9 can then be integrated 

along the capillary to get the final formula giving the pressure drop between input 

and output pressures: 
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Pin
2 ! Pout2 =

256"
 

QLc

dt
4

 (4.13) 

For an input pressure of 30 mbar and a flow of 15 scc/min measured on the 

pressure meter, the pressure inside the first OP cell is then 29.3 mbar, 28.5 mbar 

in the 2
nd

 and 3
rd

 cells and 27.7 mbar at the input of the compressor. In 

conclusion, the total pressure drop is negligible and has not impact on the 

compressor flow. The three capillaries have the dimensions discussed in this 

subsection: length 7 cm and diameter 1.6 mm. 

4.3. Results: 

4.3.1. Cleaning and first tests with 
4
He 

It took around 6 months to complete the construction of the gas handling 

system and the polarizer. While the OP cells were being finalized in Gdansk, the 

GHS was cleaned up to the metal glass connection by connecting the cleaning 

system in the output �1� of Fig. 4.10 and heating the tubes with a hot air dryer. 

The OP cells, after being mounted on the wooden plate with holders made of 

Plexiglas, were connected together by a local glass blower. Optics was then fixed 

on the plate and the laser beam was aligned with the three cells (Fig. 4.11). 

 

Fig. 4.11. Picture of the OP plate of the high field polarizer during construction. On the 

foreground, the pair of axicons is mounted on Plexiglas holders. Non magnetic holders were 

ordered for mirrors, half and quarter-wave plates and polarizing beam splitter. The peristaltic 

compressor can be seen on the background. All the system fits inside the birdcage coil. 
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Non magnetic holders were then built by our workshop to hold and protect 

the fragile connection between the gas handling system and the cells. The 

cleaning process of the cells could then start and lasted almost one month and a 

half (see Fig. 4.12). During the first week, the cells were vacuumed (10
-8

 mbar) 

and heated to 100°C using a heating tape. The second step consisted in sustaining 

high plasma discharge inside 20 mbar of 
4
He during 2-3 hours and vacuuming 

with a turbomolecular pump until   10
-8

 mbar. This step was repeated in average 

two times per day and during almost one month, until only the spectral lines of 
4
He could be visible in the emitted light from the plasma. All the cleaning process 

needed to be unfortunately repeated (but for a shorter time) because the glass 

connection between 2
nd

 and 3
rd

 cell cracked. 

  

Fig. 4.12. Cleaning process of the OP cells. Left: A heating tape (100°C) was wired around each 

cell while a vacuum was produced by a TMP. The aluminium foil visible on the picture keeps the 

heat close to the glass. Right: Plasma discharge with 20 mbar of 
4
He. The shape of the plasma is 

made of rings close to each electrode. 

When the system started to be operational, preliminary experiments were 

performed with 
4
He. During these experiments, the compressor was tested for 

different OP pressures, rotational speeds and the predicted flows of 10-20 scc/min 

were obtained. The capillaries were also checked to be well designed. At the 

beginning of an experiment, the absorption of the pump laser was measured. The 

peristaltic compressor was then switched on for 5 min to reach a good level of 

vacuum at the output of the third cell before opening this latter and regulating a 

desired pressure at the input with the fine metering valve. After accumulation in 

the storage cell, the valve of the third cell was closed, the compressor switched off 

and absorption was checked again. It showed that if the pressure in the OP cells is 

at least 30 mbar when opening the cell, neither change of color of the plasma, 

neither differences between absorption before and after experiments were 

observed, which means that no impurities is contaminating the cell. After these 

successful tests, the polarizer was brought inside John Paul 2
nd

 hospital in 

Krakow. 
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4.3.2. Characterization inside the MRI scanner 

Three people are required to transport the polarizer from the storage room to 

the scanner. It is also possible to use a hospital bed dedicated for patient. In that 

case, two people can handle it but all the electronics for discharge, pressure meter, 

laser and oscilloscope for photodiodes need to be brought before in a safe location 

of the scanner room. All the process takes at least 30 min. Two pictures of the 

polarizer being inside the scanner are displayed on figure 4.13. The optical 

detection with a probe laser was not implemented due to a lack of space on the 

optical plate and because of the complexity of bringing additional lock-in 

amplifiers, laser, integrators, photodiodes and oscilloscope in a clinical 

environment already full with electronics for discharge, air compressor, vacuum 

pumps and bottle of helium. The measurement of nuclear polarization inside the 

OP cells is thus an important quantity missing for the full characterization of the 

polarizer but M can be assessed inside the storage via the 
3
He coil. It also gives a 

signal proportional to the polarization inside the OP cells although the low filling 

factor for the cells and a not homogeneous flip angle map over the cells longer 

than the coils result in non reproducible values. This method was still used to 

compare the magnetization value changes when pumping with different laser 

powers and discharge levels. 

  

Fig. 4.13.Pictures of the high field polarizer outside (left) and inside the MRI scanner (right). The 

storage cell is in the center of the birdcage coil and the GHS is located at the bottom of the bed 

allowing access for a regulation of the flow during accumulation. 

At the beginning of each experiment, the frequency of the laser can be tuned 

to the f
2m

 transition by looking with an oscilloscope at the transmission of the 

beam on the 2
nd

 and 3
rd

 cell. A comparison of the FID signal amplitudes acquired 

by the scanner showed that without flow and for each cell, the highest amplitudes 

were reached when pumping with a moderate discharge and a pump power of 1-2 

watt in each cell. But to reduce the build-up time, so important during constant 
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flow experiment, the following experimental conditions are used. Two different 

levels of discharge are applied between the first cell and the two next ones. In the 

first cell, the discharge is much stronger and the pump power is about 3 W 

allowing a faster pumping but a moderate polarization Meq1, where Meq1 is the 

steady-state polarization of the gas inside the first cell without flow. To get an 

idea of tb, the first cell was closed and evolution of the transmission of the pump 

beam in the first cell was observed with an additional photodiode. With such 

conditions, tb was approximately 10-15 s. During constant flow, the gas arrives 

inside the second cell with already a �pre-polarization� quickly reached in the first 

cell. In the second and third cells, the discharge is lower and only 1.5 W is used 

per cell. The polarization of the gas is then improved to a certain fraction of Meq2 

(Meq2 > Meq1) depending on the flow but with a lower production rate R than in 

the first cell (the build up time inside the 2 last cells being about 25-30s). The 

total laser power used is then 6 W divided into three beams by the half-wave 

plates and beam splitters. 

Unfortunately, the fiber of our laser broke during the first accumulations 

and the laser was replaced by a similar one (10 W, Keopsys) but having a problem 

of polarization maintaining inside the fiber. In consequence, the total power was 

still 8 W but the power in each cell was fluctuating a lot and could not be 

controlled anymore. 

4.3.3. First accumulations and calibration of polarization 

The calibration of the polarization inside the storage cell was done by using 

a thermally polarized phantom as a reference. The phantom is the one used for the 

flip angle calibration and described in § 2.2.2. A comparison between the FID 

signals coming from the phantom and the storage cell after accumulation of 

polarized 
3
He was made on the same day, with the exact same location inside the 

coils, the same NMR sequence and flip angle. To increase the SNR of the signal 

from the first phantom, the signal was averaged 60 times with a repetition time of 

25 s that is approximately 5 times the longitudinal relaxation time T1 inside the 

phantom. The difference in size between the storage cell (500 mL, 10 cm 

diameter) and the phantom (250 mL, 8 cm diameter) was neglected, meaning that 

the filling factor was supposed to be the same. To increase the accuracy of the 

measurement, the signals were processed from the raw data with a Matlab 

program in the frequency domain. A Fourier transformation (FT) of the absolute 

value of the time domain signals gives the NMR spectra presented on figure 4.14. 

To reduce the influence of the noise, the signal was integrated only under the 

peaks. A comparison of these integrals and the corresponding pressures and 

volumes gave the nuclear polarization inside the storage cell during this 

experiment (34.7 %). An additional FID was taken before with a small flip angle 

(3.5 °) when the OP plate was still inside the scanner. This FID was always 

measured in the same conditions for each experiment of compression, which 

allowed us to deduce the polarization inside the storage cell for each accumulation 

performed. 
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Fig. 4.14. FT of the absolute value of the FID signal (512 samples, 10 kHz bandwidth) obtained in 

the thermally polarized phantom (left, M = 3.892 10
-6

, P*V = 329.7 ± 7 scc, flip angle: 61.6 °) and 

the storage cell for the calibration experiment (right, P*V = 79,2 scc, flip angle: 61.6 °). A 

comparison of the integrated signal under the peak (area in red under the curve) gave a 

polarization of 34.7 ± 1.5 %. 

 

Fig. 4.15. Image of the 500 mL storage cell on the OP plate and filled with 165.6 mbar of 
3
He 

polarized at 23.9 % (resolution: 128*128, FOV: 400*400 mm, slice thickness: 20 cm, TR: 8 ms, 

flip angle: 5.6°, tac = 1 s, no average). Image reconstructed with Matlab with a bilinear 

interpolation and no filter. 
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In total, nine accumulations were performed ranging from 29 scc for flow 

tests to 493 scc for lung imaging experiment. It showed that, as expected 

increasing the flow reduces the polarization inside the storage cell. On average, a 

polarization of 33 % for a 15 scc/min flow was obtained. The best M value 

(44.8%) was obtained for a flow of 8 scc/min. During some of the tests, the decay 

time inside the storage cell was measured to be T1 = 208 ± 8 min and the flash 

sequence was tested on the storage cell (Fig. 4.15), showing that the lungs MRI 

could be performed on healthy volunteer. 

4.3.4. Lungs MRI 

Three accumulations of approximately 500 scc (1 atm) were made with an 

average flow of 12.5 scc/min (40 min). After compression, the polarization is 

checked with a NMR sequence and 
4
He is mixed with 

3
He until an absolute 

pressure of 2.4 Bar. The storage cell is then closed, the peristaltic compressor is 

disconnected from the output of the 3
rd

 OP cell and OP plate is taken out from the 

scanner while the storage cell stays inside with the compressor and pneumatic 

engine. A healthy volunteer is then introduced inside the scanner and the gas 

being over the atmospheric pressure is released from the storage cell to a 1L 

Tedlar bag previously rinsed and pre-filled with 
4
He. 

 
Fig. 4.16. 

3
He (272 scc at 20.8 ± 1%) coronal image of the lungs of a healthy volunteer using a 

FLASH sequence (20 cm slice thickness, 38 cm FOV, 128*128 matrix, flip angle: 8.6°, bandwidth 

per pixel 260 Hz, TE = 3.7 ms, TR = 7.9 ms, SNR = 56.3). 
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Fig. 4.17. 

3
He (150 scc at 20.8 ± 1%) transversal image of the lungs using a FLASH sequence (5 

cm slice thickness, 38 cm FOV, 64*64 matrix, flip angle: 12.2°, bandwidth per pixel 260 Hz, TE = 

3.7 ms, TR = 7.9 ms, SNR = 64.6). 

The decay time T1 inside the Tedlar bag was measured to be longer than 1 h 

30. When the sequence is ready, the patient is breathing a volume of 
4
He from a 

different bag to wash his lungs from paramagnetic oxygen and then the mixture of 
3
He-

4
He. The sequence lasts 1 s per slice for a resolution of 128 lines limiting the 

apnea in our experiments to only 3 s in the worst case. After the first sequence, the 

gas left inside the storage cell (almost half) can be �re-compressed� to the Tedlar 

bag for a second or the same patient. During recompression, it was checked that 

the polarization losses due to the peristaltic compressor are negligible. On figure 

4.16, 4.17 and 4.18, images performed during two accumulations (the third one 

did not work due to an artifact) are presented. These pictures were reconstructed 

from the raw data with a Matlab program. Bilinear interpolation was used but no 

filter. Except a small asymmetry between right and left lung due probably to a 

coupling problem between Siemens system and coil from RAPID Biomedical, the 

quality of the pictures is much better than the one obtained with the low-field 

polarizer (Fig. 2.15). The trachea and the first branches are clearly visible on these 

ventilation maps of the lungs and the SNR was calculated with Matlab, showing 

high values up to 65. 
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Fig. 4.18. Left: 
3
He (285 scc at 32.2 ± 1.5%) coronal image of the lungs of a second healthy 

volunteer using a multi-slices FLASH sequence (5 cm slice thickness, 38 cm FOV, 128*128 

matrix, flip angle: 8.6°, bandwidth per pixel 260 Hz, TE = 3.7 ms, TR = 24 ms). Top to bottom: 

from chest to the back (SNR: 11.2, 14.4 and 11.6 respectively). Right: 
3
He (161 scc at 32.2 ± 

1.5%) transversal image of the lungs using a multi-slices FLASH sequence (5 cm slice thickness, 

38 cm FOV, 64*64 matrix, flip angle: 12.2°, bandwidth per pixel 260 Hz, TE = 3.7 ms, TR = 24 

ms). Top to bottom: From head to belly (SNR on the lungs: 51.6, 67 and 44.1 respectively). The 

SNR of the top right picture in the trachea is actually almost 230. 
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4.4. Summary of the high-field polarizer: 

In this chapter, it has been proven that a high-field polarizer can be built, 

work in-situ and produce enough gas for high quality ventilation lung imaging. 

Although the results are clearly below the expected values obtained in sealed cells 

due to a purity problem, the results seem to match with a relatively good 

agreement the simulation done with small open cells in paragraph 4.2.1. Due to a 

lack of time and a broken laser at the end of this work, the characterization could 

not be fully achieved. This polarizer should be considered as a first prototype and 

some necessary upgrade involving laser protection, reinforcement of the glass 

connections that cracked a couple of times and a more automated system for 

controlling valves and flow while running should be implemented for a 

commercial application. However, the polarizer still showed a factor 4 increase in 

gas production compared to the low-field polarizer, reaching flows of 15 scc/min 

of 
3
He hyperpolarized to a similar polarization of 30 to 40%. Compare to this 

latter and other production system, another benefic aspect is that the gas is 

produced directly in-situ and that negligible losses thus occur until the lungs MRI 

experiments. It explains the difference between the qualities of the lungs images 

obtained with both polarizers although the amounts of 
3
He were similar. The time 

was missing to repeat lungs imaging but it should be stressed that the quality can 

be still improved easily by compressing all polarized gas from the storage cell into 

the Tedlar bag, which would allows to reduce slice thickness and increase number 

of slices. 

At last, another benefic advantage of this polarizer is the relatively low cost 

to produce it compare to high technology system developed in Mainz recently. It 

cost approximately 65,000 euro for which half is coming from the laser and the 

turbomolecular pump. The main inconvenient for the potential production of this 

polarizer is coming from the global 
3
He shortage whose price, compared to its 

availability, has been increased dramatically in these last five years and that is 

why it was not included in the above cost study. 
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Conclusions 

For many years, polarized 
3
He has been used in many domains of physics. 

One of them is to use it as a contrast agent for magnetic resonance imaging of the 

respiratory airways. Lungs MRI has made significant progress in the last few 

years reaching the step of clinical applications for the early detection of 

respiratory diseases such as COPD, cystic fibrosis, asthma�  The present work is 

focused on one polarization technique of 
3
He called metastability exchange 

optical pumping. This process has been well known since several years and the 

main features and equations of a recent complete model were recalled in the first 

theoretical chapter. The theory was transferred to experience with the realization 

of a low field table-top polarizer whose initial design was completely changed to 

copy the one made in Paris. Thanks to the implementation of a new 10 W laser, 

but also a 50 cm long optical pumping cell and a new design of the peristaltic 

compressor, the polarizer has a typical production of 3 to 4 scc/min for a 

reproducible polarization on the order of 30 to 40 % inside the storage cell, which 

makes it a good facility for lungs MRI in small animals. Thanks to this new 

polarizer, new in-vivo images of rat lungs were made showing a two-fold increase 

in spatial resolution and a four-fold increase in signal to noise ratio. Moreover, 

new dynamic radial images were performed. However, it also showed the limits of 

the method when experimenting human lungs MRI. These limits are mainly a 

high compression factor and a low production rate due to the pressure conditions 

(  1 mbar) at which standard optical pumping is performed. 

One possibility to go beyond these limitations is to optically pump 
3
He at 

higher pressure and at high magnetic field. In this work was presented my 

contribution to the systematic studies of MEOP begun earlier between the group 

of Tomasz Dohnalik and Pierre-Jean Nacher in these non standard conditions. 

Thanks to the benefic effect of hyperfine decoupling occuring at high magnetic 

field (> 0.1 T) that suppresses some of the polarization relaxation channels, it is 

possible to obtain high value of nuclear polarization at higher pressure, which 

increases the efficiency of the method. The systematic studies presented in this 

dissertation were performed at 1.5 and 4.7 T with 20 mL sealed OP cells over a 

wide range of pressure (from 1.33 to 267 mbar), discharges conditions but also 

laser power and beam shapes. At 4.7 T, a comparison of the results with those 

obtained earlier by Anna Nikiel at lower magnetic fields showed that the 
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reachable steady state polarization increases with B until a plateau at 60 % for 32 

and 67 mbar. But it also highlighted a negative effect of the hyperfine decoupling 

inducing longer build-up process and thus lowering the production rate at a given 

pressure. 

At 1.5 T, which, regarding to the previously obtained polarization and 

production rate values, looks like a good choice for performing MEOP, the 

implementation of a pair of axicons reversing the standard Gaussian beam to an 

annular beam resulted in a 25% increase of polarization values at 32 and 67 mbar, 

yielding 66.4 and 57.3% respectively. Even more interestingly, the production 

rates reached are 10 times higher than the ones obtained in the best standard 

conditions and a polarization of 31% was still acquired at 267 mbar. The fact that 

MEOP is being more efficient at higher pressure with the annular shape of the 

pumping beam is coming from the inhomogeneous distribution of metastable 

states atoms inside the OP cell. A higher density is located close to the electrodes 

where metastable atoms are created and whose diffusion to the center of the cell is 

reduced by the increasing number of collisions due to high pressure. It is then not 

surprising to reach a more efficient pumping when the shape of the beam match 

exactly the distribution of 2
3
S atoms from which the gas is optical pumped. In 

addition, results at 1.5 T showed a good agreement with the MEOP model 

recently updated at low magnetic field. One of the main conclusions is the 

confirmation of the presence of a laser-induced relaxation previously observed in 

standard conditions for high absorbed laser power. This relaxation is the major 

factor limiting MEOP but its physical origins has not been discovered yet. 

However, the relaxation rates found in this work seems 10 times lower than in low 

field conditions and agree with the values previously obtained by Marie Abboud. 

Nevertheless, the spectacular increase of both steady-state polarization and 

production rate was the main motivation for studying the feasibility of building a 

high-field polarizer working inside the most widespread available scanner at 1.5 T 

and producing directly onsite required boluses of polarized 
3
He for human lungs 

MRI. After preliminary tests in small open cells that unfortunately showed a 

dramatic decrease of the production rate due to a purity issue, a relatively low-

cost, compact and non magnetic high field polarizer was built. It is consisting of 

three 80 cm long OP cells (diameter: 24 mm) connected in series to an input gas 

handling system and to an output peristaltic compressor driven by a new design of 

a pneumatic engine. The production matches the simulations done with the 

preliminary tests and it takes about 40 min to compressed 500 mL of 
3
He (M   

33%) to the atmospheric pressure with an optical pumping pressure of 

approximately 25 mbar. The main advantages of this polarizer are the four times 

higher production, its cost compared to other high production systems and the fact 

that the gas is produced in-situ, which is reducing the loss due to transportation. 

Unfortunately, the time was missing to make easy update of this first prototype. 

An optical detection of the polarization inside each OP cell would be necessary to 

fully understand the limitations and to improve flow and output polarization. It 

would be also worth trying to reduce again impurities in the system by 
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implementing for example a non relaxing additional getter at the output of the 3
rd

 

OP cell. Anyway, this prototype works and was validated with the acquirement of 

high SNR human lung images. It proved that it is possible to hyperpolarize 
3
He at 

high magnetic field and high pressure in an open system and is opening the way 

of a more automated and commercial system that could reach higher flow with 

more optical pumping cells connected together.  

In conclusion, since my arrival in Krakow, two 
3
He polarizers have been 

built: a low-field polarizer dedicated to small animal experiments whose results 

are comparable to the standard table-top polarizers and the first high-field 

polarizer ever built yielding the first good quality images of 
3
He human lung 

ventilation done in Poland. The two polarizers have similar values of polarization 

(30 to 40%) but the high-field one produces the gas 4 times faster. Thus, our 

group has now the tools required to perform pre-clinical research on lungs MRI. 

The only concern is the rarity of 
3
He at the moment. That is why the recycling of 

the gas, as few other groups do it already, should be soon implemented. An 

alternative is also being brought by the construction of a 
129

Xe polarizer, which 

gives the hope that simultaneous and comparative experiments of 
129

Xe and 
3
He 

will be possible in a near future. 
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