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General Introduction 

 

 Progress of the modern society is marked by its increasing consumption of energy and 

it is a challenge for scientific community to discover new ways to meet the power 

requirements for ever-increasing population. Majority of the energy requirements are 

provided by the combustion of fossil fuels like coal and oil, since industrial revolution. Over 

consumption of such fuels increases air pollution thus causing global warming and such 

dependency on these fossil fuels spiked health and environmental concerns. Apart from that, 

erves and its insufficiency for future generations 

raises alarm. Need to meet power requirements economically, efficiently with minimal or no 

pollutants call usage of renewable energy sources. Study for such unconventional sources of 

power lead to discovery of solar, wind, hydro, geothermal, ocean, nuclear and photovoltaic 

energies. All of these unconventional methods have multiple advantages and limitations over 

one another; however the efficient way for future could be optimal mixture of several 

methods. Fuel cells are also extensively studied for their high efficiencies, better portability 

and low pollution yield, and no pollutant is expected if hydrogen is used as a fuel source. 

 Solid oxide fuel cell (SOFC) is a type of fuel cell and is an inclined application for 

this study. SOFC use oxygen ion conductors for operation. Ionic conductors are compounds 

in which ions migrate carrying an electrical charge. Depending on the structure of the 

compounds, these ions could be monovalent (H+, Li+, Na+, K+, Ag+) or divalent or trivalent 

(rare earth) cations or anions (F- and O2-). Li+ batteries which are regularly used in electrical 

devices like cell phones, GPS units etc are examples of solid state ionic conductors.  

 Oxygen ion conductors are an interesting group of solid state ionic conductors, and 

are widely used for oxygen gas sensors, oxygen separating membranes and as electrolytes in 

SOFC. 

with cationic network. Materials exhibiting oxygen ion conductivity would need specific 

structural network and such structural framework should provide ample space for the oxygen 

ion transport. Moreover such compounds should contain unoccupied positions equivalent to 

those of oxygen sites so that oxygen can migrate. The ionic conductivities in these 

compounds are comparable to liquid ionic conductors especially at elevated temperatures. 

One such compound is yttria stabilized zirconia (YSZ) and it is a widely used oxygen ion 
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conductor because of its high ionic conductivity. In most applications, high temperatures are 

required to achieve satisfactory ionic conductivities in YSZ and SOFC is one such 

application, where cell operation is around ~1000 oC. Use of such elevated temperatures for 

long duration affects the thermal behavior of SOFC components and leads to the premature 

deterioration of the cell. For economic and industrial application of SOFC, it is of vital 

importance to reduce operating temperatures to intermediate levels (~600 oC). Such 

intermediate temperature utilization of SOFC calls for discovery of new materials 

(electrolytes) for the SOFC.   

 A new fast oxide ion conductor La2Mo2O9 (LMO) was reported by Lacorre et al. in 

2000, which exhibits higher oxide ion conductivity (at temperatures above ~580 oC) 

compared to that of standard 8 mol % yttrium stabilized zirconia (YSZ8%). LMO undergoes 

a phase transition around 580 o -LMO) to high 

 -LMO). Phase transition occurs with a significant 

increase in cell volume by ~0.46% and increase of conductivity by two orders of magnitude. 

Several studies were reported where substitutions were carried out on La or Mo or both sites 

to stabilize the high temperature cubic phase down to room temperature. Out of all of those 

studies, W substitution to Mo in LMO is considered a viable choice since little W substitution 

(~10 mol %) is sufficient to suppress the phase transition and the solubility limit of W in 

LMO is high (~80 mol %). However, little information is available on the stability of these 

W-substituted LMO compounds. Significant part of this thesis work is dedicated to study W 

substitution in LMO (W substitution  50 mol %), and stability and metastability of the 

resultant compounds.   

Chemical inertness and mechanical compatibility of the electrolyte with the electrodes 

is crucial to avoid premature breakdown of the fuel cell. Undesired reaction of electrolyte 

with electrode can lead to the formation of new insulating phases, which would in turn lead to 

immediate drop in the cell performance, finally leading to the complete failure of total unit. 

Few studies were reported where the compatibility of LMO powders was tested against 

standard compounds used as SOFC cathode materials and observed that La0.8Sr0.2MnO3 

(LSM) is the less reactive compound, with SrMoO4 as a reaction product above 700 oC. Apart 

from knowing the reaction products it is important to understand the diffusion process of 

these elements at the interface along with their diffusion coefficients, thereby evaluating its 

magnitude during fuel cell operation and possibly controlling it by appropriate method. In 
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this thesis work, cationic diffusion process in LMO and LSM compounds is studied along 

with the diffusion of individual elements Mn/Sr in LMO and Mo in LSM.  

 LMO is unstable under reducing conditions. When LMO is annealed in diluted H2 

atmospheres, Mo partially reduces from hexavalent to lower oxidation states leading to the 

formation of undesired reaction products and even amorphisation under extreme reducing 

conditions. Such reaction products induce electronic conductivity, making such reduced 

compound a mixed electronic and ionic conductor (MIEC) (LMO is an electrolyte material 

and is a pure oxide ion conductor). However use of reduced LMO as an MIEC anode material 

in SOFC was proposed and attempted with success. It was even found that reduced LMO 

material is sulfur tolerant till satisfactory level giving new opportunities to explore in 

LAMOX world. Few studies stated that W substitution in LMO can limit its reducibility, and 

even showed that W component in the LMO is not prone to any reduction. Not many studies 

were conducted to understand reduction behavior and its kinetics. The last part of my thesis 

work was devoted to study structural changes, reduction behavior, and reductive kinetics of 

LMO and W-LMO under different reducive atmospheres and parameters.  

 There are five chapters in this thesis work. Bibliographic survey carried on previous 

works on LMO, W-LMO and their stabilities under air and reducing conditions along with 

their chemical compatibilities with electrode materials will be presented in Chapter 1. 

Synthesis methods and general experimental methodology are described in Chapter 2. 

Synthesis and stability of W-LMO under air will be discussed in Chapter 3. Cationic 

diffusion studies carried on LMO and LSM pellets will be presented in Chapter 4. Reduction 

behavior of LMO and W-LMO along with their stability under different reducing conditions 

will be presented in Chapter 5. Finally highlights of the results are discussed and conclusions 

are summarized. Perspectives for future work which are important for successful realization 

of LAMOX materials as components for SOFC application will be proposed.  
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Chapter 1 

Bibliography 

1.1Fast Oxide Ion Conductors:  

 

  Fast oxide ion conductors have attracted considerable attention in last few decades. Out 

of all the ionic conductors, oxide ion conductors are heavily studied for their increasing number 

of application domains. However their applications were confined to very few domains like 

oxygen sensors because of lack of higher performance materials (materials which can present 

higher current densities). Some of the major applications of these materials is as an electrolyte in 

Solid Oxide Fuel Cells (SOFC), oxygen separation membranes, dense membranes reactors for 

oxygen catalysis, etc. It was discovered by Nernst that some solids exhibit this specific property 

of oxide ion conduction 1. Oxide ion is double charged with relatively big radius ~ 1.40 Å, and 

can interact with cationic network. High mobility of this species requires high operating 

temperatures and specific structural framework which can tolerate their conduction by providing 

sufficient open spacing for oxygen ion transport. It is suggested that, for a material to favor 

higher oxygen ion mobility there have to be equivalent crystallographic sites, which can support 

movement of oxygen ions 2. Therefore, most of the electrolytes have cubic or nearly cubic 

structures. However, in some materials with non-cubic symmetry, oxide ion conduction occurs in 

conducting planes exhibiting higher anisotropic conductivity (bidimensional).2  

  For a material to be designated as a fast oxide ion conductor, it should exhibit high oxide 

ion conductivity and must contain unoccupied positions equivalent to those oxygen sites so that 

oxygen can migrate in the material 2. In other words, there should be enough vacancies (intrinsic 

vacancies) in the material for O2- ions to migrate. There are two methods to introduce oxygen 

vacancies in the material to improve their conductivity: one way is to opt for the materials with 

satisfactory intrinsic vacancies, while the other is to substitute aliovalent cations into the 

structure and create extrinsic oxygen vacancies 3. 
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1.2 Solid Oxide Fuel Cells: 

 Like any electrochemical device, Solid Oxide Fuel Cells (SOFC) has an anode, 

electrolyte and a cathode. SOFC operate at high temperature converting fuel directly into 

electrical energy, heat and rendering theoretical efficiency significantly higher than conventional 

methods like internal combustion engines. The system can reach efficiency about 80% 

(efficiency of Internal combustion engine is < 40%), when coupled with heat recovering system 

for cogeneration (heating applications and electric power). When pure hydrogen is used as fuel, 

the reaction product is water apart from desired electric power, making system eco-friendly. A 

schematic representation of SOFC is shown in Fig.1.1. Cathode takes e-and reacts with the O2 

from air reducing it to O2- ions.  

 

 

Figure 1.1: Schematic representation of SOFC working principle.  

 

 These O2- ions from the cathode diffuse into the electrolyte and are collected at the anode. 

Fuel at anode (hydrogen or hydrocarbons) reacts with these O2- ions (oxidation of H2 to H2O) 
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and form water, giving out e-. These electrons flow to the external circuit generating electricity. 

Oxidation of H2 to H2O is an exothermic reaction, which produces heat energy. When the fuel 

cell is used for stationary applications, this generated heat can be used for domestic heating 

applications. The total reaction mechanism can be stated as following equations:  

1/2 O2 + 2e- O2-
 (cathode) 

H2 + O2-
 H2O + 2e-

 (anode) 

With overall reaction:  H2 +1/2 O2 H2O 

 Although the operating principle of SOFC is rather simple, material selection process for 

individual components is a challenge. All the materials are supposed to exhibit required ionic 

and electronic conductivity properties to function in a cell. Good chemical and mechanical 

stability to endure fabrication and its high temperature operation have to be ensured. In order to 

achieve required current densities and power output, SOFC runs at high temperature (~ 800-1000 
oC). Any chemical reactivity or interdiffusion between components is considered fatal for the 

cell. The thermal expansion coefficients of the components must be close to each other, to ensure 

minimal thermal stresses, which could lead to mechanical failure of the total cell. One end of the 

cell must work in air, and the other in reducing atmosphere sustaining any chemical toxicity from 

the current environment. For industrial applications, materials selected, processing and 

fabrication are to be cost effective. The total cell is expected to run continuously for a long time 

(nearly 40,000 hours) ensuring chemical and mechanical stability 4. This is a current challenge, 

which demands novel materials with properties to meet requirements of SOFC and ability to 

work at intermediate temperatures with an increased efficiency.  

 This conventional SOFC setup is also known as double-chamber SOFC, since two 

different chambers are used for anode and cathode separately, where fuel and air are pumped 

respectively. Another SOFC setup called single chamber SOFC was proposed by Eyraud et al., 

where the total setup of anode, electrolyte and cathode are placed in a single chamber and 

mixture of fuel and oxidation gas are supplied 5. The working principle is based on the difference 

in catalytic activity of the electrodes for the respective cathode and anode reactions. The 

resulting difference in the oxygen partial pressure (pO2) between the electrodes leads to the 

generation of an open circuit voltage. Progress in single chamber technology has enabled the 
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generation of power outputs comparable to those of conv 6. Various 

hydrocarbons like ethane, methane, propane and LPG are used along with air for SC-SOFC 

operation 7, 8. Fig.1.2 shows the schematic representation of single chamber SOFC.  

 

 

Figure 1.2: Schematic representation of Single Chamber SOFC setup.6 

 

 Single chamber fu

free of sealing (which is a problem in double chamber SOFC, where there is a risk of fuel escape 

towards cathode or air escape towards anode). It has increased thermo-mechanical stability. 

Easier stack assembly and fabrication are possible along with compact and simplified designs. 

However single chamber setup faces few challenges. There is always a risk of explosion for fuel-

air mixtures at high temperatures. Highly selective and catalytically active materials are 

necessary. Since the oxidation reaction is exothermic in nature, such heat created will be well 

distributed throughout the system. SC-SOFC tends to have low efficiency due to parasitic non-

electrochemical reactions. Hibino et al. was the first to operate SC-SOFC in a methane and air 

mixture at 950 oC and these SC-SOFC  still subject to further studies for amplified 

advantages and applications 6, 7, 9-12. 
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1.2.1 Electrolytes: 

 Once the O2 from air is converted to O2- ions at the cathode, they must migrate through 

the electrolyte towards the anode. For such migration to occur, the electrolyte must possess high 

oxygen ion conductivity with negligible amount (less than 0.01%) or no electronic conductivity 
13. It is expected to be as thin as possible to minimize resistive losses and supposed to be highly 

dense to ensure high ionic conductivity and to prevent short circuit of any gas passing through it. 

It is expected to be chemically, mechanically and thermally stable over a wide range of 

temperatures (800  1000 oC).  

  Fluorite and Fluorite type oxides are widely investigated materials for solid state 

electrolytes. Most commonly used 8%YSZ (8 mol% Y2O3 substituted ZrO2) belongs to this 

category 14. Gadolinium doped Ceria oxide (CGO) is also a widely used fluorite material 15-17. 

Isovalent and aliovalent doped Bi2O3 are also studied for their improved oxide ion conductivity 2, 

16, 18, 19. Some other materials which have attracted significant attention include perovskites and 

perovskite based oxides 20, 21; Layered aurivillius type oxides 22-24. Silicates and germinates based 

apatite oxides 2, 25-27. Few studies suggested pyrochlores and scheelites for their possible 

application as O2- ion conductors. Currently huge research for suitable electrolyte is still going 

on; for now, 8%YSZ is accepted as default electrolyte for standard SOFC applications. 

 

1.2.2 Electrodes: 

 An ideal electrode for SOFC applications needs to possess good ionic and electronic 

conduction. Electrode materials should contribute to the diffusion of gasses, adsorption of 

reactants and desorption of reactant products. To promote diffusion of gas, electrodes are 

expected to be porous preserving mechanical, chemical and thermal stability and compatibility 

with electrolyte materials. To ensure sufficient electrocatalytic activity, and ion and electronic 

conductivity, two different types of material groups are considered: composite materials and 

materials exhibiting mixed ionic and electronic conductivity (MIEC). 

 Porous composite electrodes are used for their extended area useful for electrochemical 

activity which improves the current output of an electrode. Performance of these electrodes 
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depends mostly on mass-transfer process, electrocatalytic activity, surface area available for 

electrochemical reaction and the ionic and electronic conductivity of the material. 

Electrochemical activity happens here at the triple phase boundary (TPB). TPB is the interface 

where the ion conducting electrolyte, electron conducting metal part and gas (fuel for anode and 

air for cathode) meet together. Length of the TPB enhances the catalytic activity and therefore , 

the current densities and overall activity of the fuel cell rely on the TPB length 28. Ionic 

conductive part can also improve electronic conductivity part by increasing TPB area 29-35.  

Failure of one component in TPB can compromise SOFC operation, which leads to the 

development of materials exhibiting MIEC properties. 

 Most of the MIEC materials are cathodes; however some these MIEC materials can be 

used as anode for SOFC applications. Few metallic oxides demonstrate both electronic and ionic 

conductivities (which can be even possible by doping with selective elements). Metal oxides are 

very poor reforming catalysts. They do not form carbon fibers unless they are reduced to their 

respective metallic forms. They have high melting points and very low surface energies (which 

prevent them from forming clusters and blocking gas pathways; also help them to preserve their 

porosity under extreme operating conditions). For this to happen the electrode (anode) should be 

of a single material; single phase, for the electrocatalytic oxidation to happen all over the anode. 

Since the electrode is porous, and the entire electrode is in solid and single phase, it increases the 

surface of the electrode exposed to the gases, i.e. more area for electrochemical activity. Unlike 

in TPB which exist at single line in cermets, electrocatalytic activity happens in these materials 

all over the surface (in other words, TPB = lines and MIEC = total surface). Such 

electrochemical activity occurring all over the surface increases the efficiency of the cell; and 

cracks or mechanical failure in small region of component does not compromise the operation of 

the total unit.  

 The preliminary function of the cathode is to furnish enough reaction sites for the 

electrochemical reduction of oxygen (normally oxygen from air in SOFC). It should be stable in 

oxidizing environment retaining adequate electronic conductivity and electrocatalytic activity 

towards oxidation of gas at higher operating conditions of SOFC. The cathode must have ample 

electrocatalytic activity, hence low polarization for the electrochemical oxidation of air 36. 

Perovskite (ABO3) type LaMnO3, La0.8Sr0.2MnO3-  (LSM), La1-xSrxCo1-yFeyO3- ,   
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Gd0.8Sr0.2CoO3 
37 and perovskite based ABO3 (AO) type La2NiO4+  are studied for MIEC cathode 

materials 38-40. Whereas LSM cermets (LSM mixed with noble metals) and Pt/Ag - Zr(Sc)O2 

cermets are suggested as cathode materials 41.   

 The electrochemical oxidation of fuels is the important function of an anode in a SOFC. 

Basic requirements for anode include high catalytic activity towards oxidation of fuels, good 

chemical and thermal stability (in reducive atmospheres); high electronic conductivity all over 

the exposed surface, tolerance towards carbon decomposition (coking) and sulfur poisoning. 

Platinum, cobalt, iron, nickel and graphite were studied earlier as materials for anode. Nickel was 

assumed as the best material considering its availability, low cost, chemical and thermal stability 

and good electrocatalytic activity towards reforming of hydrocarbon fuels and oxidation of 

hydrogen. Considering YSZ as a standard industrial electrolyte, pure nickel is not tolerated 

because of its huge thermal expansion coefficient mismatch, poor adhering with the electrolyte 

and coarsening while operation of SOFC. To overcome these unlikely parameters, Ni was mixed 

with YSZ, resulting in a new hybrid material called cermet, Ni-YSZ. Ni metal induces electronic 

conductivity and YSZ induces ionic conductivity. Ni-YSZ cermets minimize the effect of 

thermal expansion coefficient mismatch, and Ni is prevented from aggregation and coarsening 

maintaining internal porosity and conduction path for O2- ions, which preserves the active 

surface area for electrocatalytic activity. Ni-YSZ cermet met most of the general requirements 

for a SOFC anode material and is still used as an anode for SOFC. However Ni-YSZ suffers 

from coking and sulfur poisoning. Many studies to overcome these limitations were not 

successful 42-54 leading to the study of Cu based cermet materials. Cu was immune to sulfur 

problem and even limited coking, but was instable thermally at temperatures over 700 oC 

because of its low melting point and low surface energy 35, 55-59. It has been stated in a review by 

Atkinson, that an alternative anode for Ni-YSZ should exhibit conductivity 1 S/cm at 10-20 atm 

pO2 
60. Although there are oxides which exhibit this conductivity value, it has been difficult to 

identify an oxide which is both chemically and mechanically (thermal expansion) compatible 

with YSZ along with tolerance towards coking and sulfur poisoning.  

 For MIEC anode materials, chemically stable Sr0.85Y0.10Ti0.095Co0.05O3 was proposed and 

the compound exhibited the highest conductivity values (higher that 60 S/cm @ 800 oC and 10-19 

atm). It showed good resistance towards oxidation (O2- ions from electrolyte) and sulfur 
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poisoning as well4. These samples are still subject to further studies in establishing irreversibility 

of the redox mechanism. Few other compounds studied are La0.75Sr0.25Cr0.5Mn0.5O3, 

Sr2MoMgO6- , Gd2Ti1.4Mo0.6O7 61-64, however each of these compounds lack one requirement at 

least and therefore have to be improved.   

 Recently the amorphous phase sample resulting from the reduction of La2Mo2O9 was 

proposed as sulfur tolerating anode material for SOFC applications 65 by X. C. Lu and J. H. Zhu. 

It is of interest to study the stabilization and properties of the reduced form of La2Mo2O9 in order 

to probe their use as anode material for SOFC.   

1.3 La2Mo2O9: 

A new fast oxide ion conductor La2Mo2O9 (LMO) was reported by Lacorre et al. in 2000 
66, which exhibits higher oxide ion conductivity (at temperatures above 600 oC) compared to that 

of standard 8 mol% yttrium stabilized zirconia (YSZ8%). See Fig. 1.3. The conductivity of the 

compound was found to be 6 x 10-2 S/cm at 800 oC. When the compound was synthesized by 

nanocrystalline powder, significant improvement in conductivity (12 x 10-2 S/cm) is found at 750 
oC 67.  Such a conductivity value was reached in YSZ at 970 oC, showing that LMO was able to 

lower the operating temperatures of SOFC by ~200 oC. This group of materials was considered 

as possible substitute to YSZ and CGO and has dragged considerable attention.  

LMO undergoes a phase transition around 580 o - -

LMO) to a - -LMO). The phase transition occurs with a significant 

increase in cell volume by ~0.46%. 

 Post analysis for the possible origin of the conductivity in this compound lead to a new 

concept called Lone Pair Substitution (LPS) method, which was proposed by the same team 68. 

LPS concept is expected to provide an original way to discover new families of oxide ion 

conductors, by appropriate substitution in specific oxides.  
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Figure 1.3: Conductivity of LMO compared to that of YSZ8%. 66 

   

  It is known that in some elements, valence shell has a lone pair of electrons, occupying a 

position normally occupied by a ligand in the element without a lone pair. Because of the 

similarity in size between a lone pair (denoted as E) and an oxide ion, when the element is 

replaced by one without a lone pair, the same structure would be kept while leaving a vacancy 

-SnWO4, Sn2+ is a cation with a lone 

pair, so it can be formulated as Sn2W2O8E2. When Sn2+ is substituted by La3+ (which has no lone 

pair and with a charge +1) and W6+ by Mo6+, it results La2Mo2O8+1  a vacancy and an 

oxygen atom added to compensate the loss of two lone pairs and for the change in cationic 

valence state. This vacancy in LMO helps mobility of O2- ions. See Fig.1.4 for such illustration. 

Based on this concept, a series of possible lone pair substitutions were proposed 68.  
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Figure 1.4: Illustration of LPS concept by La2Mo2O9 and isostructural -SnWO4. 
69 

 

1.3.1 Phase Transition, Crystal Structure: 

1.3.1.1 High temperature form:  

-LMO is a high temperature phase, with cubic 

cell (space group P213). At 617 oC, cell parameters are 

found by both Neutron and X-ray diffraction patterns 

positions. Oxygen O1 (4a) position is completely 

occupied; whereas O2 and O3 (12b) positions are 

partially occupied (about 78% and 38% respectively), 

leaving vacancies 70. These oxygen vacancies form a 

path for oxide ion transport (migration). Thermal 

factors of oxygen atoms are large, suggesting three 

dimensional oxygen conduction through channels 

created by oxygen vacancies 69. See Fig.1.5 and Table 

1.1 for structure and cell parameters of   the -LMO 

phase.                                     
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 Table1.1: (on the top) -LMO structure, along with 

Occ (site occupation factor) and Beq. (Thermal factors). Table on the bottom showing inter-

-LMO (in Å) at 670  oC. 70  

 

1.3.1.2 Low temperature form:  

- -LMO has a monoclinic symmetry with 2x3x4 

superstructure, unlike the -LMO form, as observed by X-ray neutron  and electron diffraction 
69. Space group P21, and cell parameters are: a = 14.325 Å, b = 21.482 Å, c = 28.585 Å, V = 

8796 Å3 o. Evans et al. determined the structure and it has a total of 312 

crstallographically independent atoms with 48 La, 48 Mo and 216 O. In this superstructure, La3+ 

have lower coordination numbers (with 6 and 12 O atoms), where 30 La atoms being nine 

coordinated. Whereas Mo exhibits three different types of coordinates; 15 tetrahedral, 15 trigonal 

bipyramidal and 18 octahedral 71. -LMO structure.   

It was suggested that order-  

key for increase in conductivity in LMO 72. When probed by neutron atomic pair distribution 

analysis it was found that the local structure of the high temperature phase is very similar to that 

of the low temperature phase,  

the distribution of the oxygen defects creating order and disorder in structures 73.  
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Fig. 1.6: (a) Coordination environment of Mo observed in -LMO. (b) Polyhedral representation 

-LMO: tetrahedral groups shown in pink, trigonal bipyramidal in purple, octahedral in 

green and yellow spheres represent La atoms. -

SnWO4 - -LMO. 71 

 

In thermal analysis performed on LMO, a hysteresis was observed at the transition during 

heating and cooling, and such transition is first order 66, 74, 75. On the contrary, Hayward et al. 

-LMO is sensitive to the thermal history of the material 76. It was reported 

that when a sample which was in -LMO was quenched from 950 oC, the progressive phase 

transition was of second order; however after subsequent annealing and cooling (slow cooling) 

1st order phase transition occurs. The 2nd order transition is because of the replacement of the 

high temperature dynamic disordered structure by static disorder (because of quenching). See 

Fig. 1.7 for evolution of cell parameters with the increase in temperature. 
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Figure 1.7: Evolution of LMO cell parameters as a function of temperature (left), Evolution of 

volume over monoclinic/cubic phase transition (right).77  

1.3.2 Limitations of La2Mo2O9 as an electrolyte material:  

Although LMO exhibits considerable O2- conductivity compared to standard electrolyte 

materials like YSZ, it is subject to some limitations. First major drawback is its instability in 

reducing atmospheres. When LMO comes in contact with H2 or even diluted H2 at SOFC 

operating temperatures, Mo6+ tends to reduce to lower valence states. It was shown by 

Goutenoire et al. that when LMO is heated at 760 oC in presence of diluted H2 (6%H2 + 94% 

N2), the compound reduces to La7Mo7O30 phase with part of Mo6+ reduced to Mo5+ or even  

Mo4+ 78. Marrero-Lopez et al. found the same result after annealing LMO at 650 oC for 24 hours 

in a flux of 5%H2 + 95% Ar. If LMO should be used as an SOFC electrolyte, stability in 

reducing atmospheres is vital, although less reducive gases are used in a single chamber fuel cell. 

 Another drawback is the phase transition around 580 o  , which leads to an 

abrupt volume increase (thermal expansion) of 0.46%. This undesired behavior can induce 

mechanical stress at the electrode interfaces and in extreme cases could lead to fracture of the 

membrane. Most isovalent and aliovalent substitutions were able to stabilize the high 

temperature form down to room temperature (these possibilities will be discussed later in this 

chapter). Although the high thermal expansion coefficient (TEC) of LMO could lead to the 

formation of cracks at the interface with the electrodes, appropriate substitution is likely to 

reduce the TEC. 
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1.3.3 Chemical compatibility La2Mo2O9 with electrode materials:   

Chemical inertness and mechanical compatibility of the electrolyte with the electrodes is 

crucial to avoid premature breakdown of the fuel cell. Undesired reaction of electrolyte with 

electrode can lead to the formation of new isolating phases, which would in turn lead to 

immediate drop in the cell performance, changing essential parameters for cell operation and 

finally leading to the complete failure of total unit.  

When powders of LMO and Ce0.9Gd0.1O1.95 (CGO, which can be used as diffusion barrier 

/interconnect) were annealed together at 600 oC, 700 oC, 800 oC and 1000 oC even for 72 hours 

no reaction products were observed. No Inter-diffusion/reaction of either of cationic species into 

other compounds was evidenced, showing that CGO is chemically compatible with LMO 79.  

NiO or NiO based cermets like Ni-YSZ are some of the standard anode materials used in 

SOFC. When chemical inertness of NiO was tested with LMO, no reaction between Ni or NiO 

and LMO was observed even at 1000 oC. Now it is known that Ni-CGO cermets do not react 

with LMO and could be potential anode materials compatible with LMO electrolyte 80. Contrary 

-

LMO/ - -LWO (which is a poor conductor) 81. However this result was 

contradicted by another study carried on mixture of 70% W substituted LMO and NiO, stating 

that NiO is stable with W-LMO compounds 82. In another study it was shown that the potential 

cathode material La2NiO4+  reacts with LMO readily at 600 oC resulting in the formation of 

La2MoO6 which on further annealings at 900 oC showed appearance of new NiO phase 79. 

Studies carried out on LMO with cathode material La0.6Sr0.4Co0.2Fe0.8O3-  (LSCF) 

showed appearance of impurity phases La2MoO6 and scheelite SrMoO4 already at 600 oC. It is 

clearly evident that Sr from LSCF reacts with Mo in LMO and forms SrMoO4, leaving Mo 

deficient LMO to form La2MoO6. In other terms it is explained as alkaline earth cation Sr2+ from 

LSCF diffuses in LMO and reaction leads to the formation of two new phases. A complex 

mechanism was realized when mixture of La0.85Ca0.15FeO3-  (LCF) was annealed with 

La2Mo0.6W1.4O9 (70 mol% W substitution in LMO). When the same mixture is annealed at 1100 
oC, appearance of La14W8O45 and CaMoO4 are observed, showing cross cationic diffusion of all 

elements in the system into each other, making LCF unsuitable cathode for LMO 82. When 
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La0.8Sr0.2MnO3-  (LSM) powders are mixed with the monoclinic phased LMO annealed at 

temperatures more than 700 oC, formation of SrMoO4 is observed, leaving Sr deficient LSM to 

form LaMnO3 phase. It was found that Sr2+ -LMO phase to 

room temperature. See Table 1.2 for the reactivity and the reaction products when LMO was 

annealed with some of the well known cathode materials. 

 

 

Table 1.2: Stability range and reaction products observed as a function of temperature, when 

LMO is annealed with various cathode materials.10, 79, 80 

 

1.3.3.1 Cationic diffusion studies of YSZ with cathode materials.   

 Apart from knowing the reaction products, it is important to understand the diffusion 

process of these elements at the interfaces. Diffusivity behavior of each element has to be studied 

precisely along with the possible cross-cationic diffusion and their coefficients. This kind of 

studies were performed on zirconias in contact with La0.8Sr0.2CoO3, La0.8Sr0.2FeO3, (La, Ca)CrO3 

and LSM e.t.c.83-89. When LSM is sputtered on a YSZ8% pellet and annealed at 1200 oC for two 

hours, new undesired phases of La2Zr2O7 and SrZrO3 are observed 90.  
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 Kilo et al. 84 coupled pellets of LSM-YSZ and annealed the samples at 900 oC for 1000 

hours and observed interdiffusion of elemental species from one pellet to other when analyzed by 

secondary ion mass spectrometry technique (SIMS; SIMS is briefly discussed in the next 

chapter). Undesired chemical reactions with dynamic chemical potential made it hard for 

investigating the mechanism. Diffusion coefficient of Sr+ in YSZ was observed ranging between 

1 x 10-16 to 10-15 cm2 s-1 at 1600 K to 1750 K. Diffusion coefficient of Mn in YSZ was estimated 

between 1 x 10-17 to 10-14 cm2 s-1 at 1350 K to 1750 K respectively. See Fig. 1.8 for the diffusion 

profiles.  

 In a study carried by Horita et al., a Sr(NO3)2 solution was applied on La0.75Ca0.25CrO3 

(LCC) pellet and diffusion was probed by annealing the sample at 900, 1000 and 1100 oC, which 

resulted in the formation of SrCrO4, Ca5(CrO4)3O0.5, (La1-xCax)CrO3 and few other minor phases. 

Alkaline earth Sr cationic diffusivity was than studied with SIMS; diffusion profile along the 

diffusion path was measured and diffusion coefficient of Sr in this compound was calculated. 

Diffusion coefficient of Sr in LCC pellet was distributed from 1 x 10-17 to 10-13 cm2 s-1 ranging 

between 900 to 1100 oC. Activation energy of 318 kJ mol-1 was calculated from the slope of the 

line used for fitting the diffusion profile. The same type of study was carried by coupling pellets 

of two different compositions ((La,Ca)CrO3 and (La,Sr)CrO3) and cross cationic diffusion 

mechanism of elements from one pellet to other was studied along with diffusion coefficients. In 

the measurements performed on a pellet couple, diffusion coefficient of both Sr and Ca was 

calculated as 2.8 x 10-12 cm2 s-1. It was observed that diffusion coefficients are higher in solution 

deposited measurements compared to measurements involving coupling of pellets.87 

Studies related to reaction mechanisms, diffusion mechanisms and cationic diffusion 

have to be realized to better understand the compatibility and the chemical stability of LMO and 

W-LMO with other electrode materials.  
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Figure  1.8: SIMS depth profile on: LSM-YSZ coupled pellets after annealing (left) 84 ,  LCC 

compound annealed after deposition of Sr(NO3)2 (right). 87 

1.4 LAMOX family:  

 Efforts to stabilize the -phase at room temperature, improvement in 

conductivity, tolerability towards reducive atmospheres were observed by doping or substitution 

on La or Mo or on both sites. All these compounds which were derived this way are known as 

LAMOX family. Substitutions made to (La2-xAx)(Mo2-yBy)O9-  included alkaline, alkali, rare 

earth and Bi3+ on A site, where as B site was substituted with transition metals. Attempts to 

substitute oxygen by fluorine were also carried out 13, 70, 75, 91-135. Oxygen tracer diffusion 

experiments carried on LAMOX family demonstrated that these materials are the best oxide ions 

conductors so far with higher tracer diffusion coefficient than stabilized zirconia and substituted 

gallate materials 136. These results keep encouraging evaluation of the properties and 

development of LAMOX materials. 

  In an attempt to substitute oxide ion by fluorine ion, La2Mo2O9-0.5zFz (z = 0.02 to 0.3) 

samples were synthesized 119. The phase transition was not suppressed; but the transition 

temperature was reduced by 40 oC. The role of F- ions in conductivity is uncertain. By F 

substitution, one O2- ion is replaced by two F- ion, modifying the vacancy present in the 
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parent material which results in different 

super structure with tripling of cubic cell 

parameters. 92. However the decrease in 

phase transition temperature promises 

improvement in anionic conductivity, but 

the compound is not stable since fluorine 

(all the samples with fluorine substitutes) 

tends to evolve upon heating. Some 

attempts to stabilize the high temperature 

form to room temperature by substitutions 

at the La site, Mo site and double 

substitutions along with their solubility 

limits are summarized in table 1.3. 

 V5+ doping at the Mo site is shown 

to suppress the phase transition, but no 

change in conductivity is reported 113, 137. 

Al3+ substitution at the Mo site has a 

positive effect on its stability in reduced 

atmospheres 114. Partial substitution of 

sulfur suppressed totally the phase 

transition, but conductivity is nearly half 

of that of LMO. See  Fig. 1.9. 

 

    

Few studies were reported where both La and Mo sites are substituted. Gd & W; Sr & Cr; 

Ba & W; Dy & W; Sm & W were doped on both A and B sites together. In these compounds, 

improved stability in reducing atmospheres, total suppression of the low temperature phase and 

improvements in conductivity at high temperature were reported 114, 120, 124, 130, 131.  
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Figure 1.9: Evolution of cubic cell parameters with different substitutions. 136 

 

Unusual metastability is observed in Ca substituted LMO compounds. Abnormal 

demixion/recombination behavior is observed in these samples and a narrow window for 

stabilizing the -phase is reported. See Fig. 1.10. This phenomenon has been identified as 

originating from a temperature dependent solid solution limit of alkali and alkaline-earth (for La) 

in LAMOX compounds, with higher solubility at higher limits. Many factors such as the 

synthesis temperature, cooling and heating rates, and the nature of the substituting element, 

sample shaping and sintering should -phase LMO compounds 

which were however metastable 91, 138. Metastable -phase at room temperature was also 

observed in Eu substituted LMO compounds. It was stated that in compounds La2-xEuxMoO9, till 

the x = 0.2 limit, the compound can be obtained in stable -phase; further increase of x content 

exhibits metastable phase with release of metastability - -  

during heating 100.   



26 | P a g e  
 

 

Figure 1.10: Complex successive phase transitions observed when heating and cooling LMO 

samples with 3mol% and 4mol% Ca substitute (extreme left). 13; Complex phase transformations 

observed when LMO sample with 4mol% Ca substitute (right). When cationic dimixing triggered 

by thermal stabilization at high temperature (a) and anionic vacancy ordering at intermediate 

temperature (b) are superimposed, complex metastability is observed (c). 91 

1.4.1 Tungsten substituted La2Mo2O9 and its stability in air.   

 One of the principle limitations of LMO is its vulnerability in reducing atmospheres. W 

substitution to Mo in LMO has shown to be successful to limit its stability in H2 atmospheres. A 

significant amount of this thesis work is dedicated to stability of LMO and W-LMO in reductive 

atmospheres, next session will be focused on this point. W substitution showed strong influence 

on the synthesis and sintering behavior of LAMOX compounds, leading to higher sintering 

temperatures to obtain pure compounds with the same relative density. The solubility limit of W 

-LMO was found to be 80 mol% above which the stable -La2W2O9 (LWO) structure was 

obtained. The substitution range could be due to the similar ionic radius of W6+ (0.60 Å) and 

Mo6+ (0.59 Å) 109, 126, 139.  Substitution of W and its effects on conductivity and redox stability 

properties were very widely studied 81, 95, 96, 109, 115, 124, 140, 141.  
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 LWO, the tungsten counterpart of LMO, has a similar structural arrangement at high 

temperature, only above ~1077 oC. Low temperature form -LWO is significantly different from 

its high temperature form, with triclinic crystal structure bearing space group P  (cell parameters 

a = 7.2489 Å, b = 7.2878 Å, c = 7.0435 Å o o o) 142, 143. 

With the increase in W content, cell parameters of its cubic LAMOX phase increases till certain 

limit, and surprisingly after this limit of substitution (50 mol% W in LMO), the cell parameters 

decreases, the reason for which is not clear 92, 94, 109.   

 Collado et al. studied the phase stability of W substituted LMO and showed its stability 

range. In the series of La2Mo2-yWyO9, (y = 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7 

1.8, 1.9, 2.0) it was shown that when x = 1.8 and 2.0, the resulted compound is triclinic LWO 

phase at room temperature 109.  

 While y = 1.5 to 1.7, compounds can be prepared as pure phase: when quenched into 

- -LWO/ 

-LMO when cooled slowly in the furnace. Attempts to quench compounds with y = 1.8 and 1.9 

from high temperature to liquid nitrogen for obtaining p -LWO went unsuccessful leading to 

-LWO phases. C -LWO phase by 

-LWO were found. For all compounds 

-LWO was obtained. In the case of y = 0.2 and 0.4, differential thermal 

analysis (DTA) has not shown the presence of any phase transition. Below 

-LMO is stable at room temperature (RT). Schematic representation is given in fig. 

1.11. 

 Apart from the synthesis by conventional solid state route, synthesis by microwave is also 

reported. It is shown that W series compounds can be obtained in pure phase easily and 

economically by microwave within 5 minutes 82, 109

revealed an endothermic event above 950 o - -

LMO/LWO (cubic) phase transition. See Fig. 1.12 for DTA curves. Comprehensive study on 

phase stability of W-LAMOX is due, for any industrial application.  
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Figure 1.11: Change of phases with increase in W-content (y) in La2Mo2-yWyO9 at RT 109. 

    

 

Figure 1.12: DTA curves for y in La2Mo2-yWyO9  -LWO phase transition is observed. 109 

   

 Georges et al. measured the electrical properties of La2Mo2-yWyO9 (y = 0.25, 0.5, 0.75, 

1.0, 1.2 and 1.4) -LMO phase at room temperature) and derived 

Arrhenius plots, see Fig. 1.13 for such Arrhenius plots. Because of the suppression of the 
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phase transition, no abrupt s 1/T was 

linear at low temperature (typical Arrhenius type behavior with thermal activated ionic mobility). 

High temperature evolution is more complex, with a deviation from Arrhenius behavior (increase 

in conductivity at first, then leveling off). This behavior is explained to be originated from 

variation in the conduction mechanism from Arrhenius type at low temperature (thermally 

activated ionic mobility in solids) to VTF-type (Vogel-Tammann-Fulcher model) at high 

temperature (mobility thermally assisted by the local environment).  

  

Figure 1.13: Arrhenius plots of the 

conductivity curves of high density 

pellets of the series La2Mo2-yWyO9,  

fitted with a conventional Arrhenius 

model on the linear part at low 

temperature (thin lines), and with a 

VTF model when departure from 

linearity is observed at high 

temperature (thick lines). The 

conductivity of LMO is added as a 

dotted line for reference.93 

   

 -LMO the formation of 3D rigid framework by anti-tetrahedral units of [1OLa3Mo] 

creates tunnels through which oxygen ions can migrate, introducing anionic conductivity in this 

sample. W substitution in LMO has a complex influence on the -LMO structure, which is 

explained as a combination of two effects: a smooth, regular evolution (re-equilibration) of 

O2/O3 sites occupancy balance, and a non-linear variation in the geometry of the [1OLa3Mo] 

anti-tetrahedral units. This could result in unusual evolution in cell volume parameters. It was 

found that La2MoWO9 (50 mol% W substitution) represents the highest degree of disorder on 

the hexavalant sublattice (the largest entropy), and such disorder is favorable for oxide ion 

mobility.93  
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 In double substituted system, W substitution compensates the negative effect of rare earth 

substitution on reducibility144 and stabilizes the high temperature phase to room temperature; 

retaining or even improving the conductivity values compared to the parent compound.  Along 

with the substitution of W at the Mo site; La site was substituted by Gd, Nd, Y, Dy, Ba, Ca, K 
120, 136, 144-146. Generally, W in LMO improves its stability in reductive atmospheres (discussed 

later) and even reduces the TEC. Previous studies provide guidance for the development and 

enhancement of desired properties in these materials.  

1.5 Stability of La2Mo2O9 and W-substituted La2Mo2O9 in reductive Atmospheres 

1.5.1 Stability of La2Mo2O9:  

It is mentioned in earlier discussion that LMO is vulnerable in reductive atmosphere. 

Prior to use LMO as core material (either electrolyte or electrode) in SOFC, it is mandatory to 

understand and control its reduction mechanism. Once understood, this phenomenon can 

possibly be limited by appropriate substitution, or once we have a wide spectrum of its reduction 

limitations, composition tuning for a given application is more possible.  

Goutenoire et al. in 1999 found that the partial reduction of LMO under diluted H2 

(6%H2 + 94% N2) at 700 oC leads to the formation of La7Mo7O30 (7730) phase (a perovskite 

related compound). A 1.5% weight loss (see Fig. 1.14) was observed and reoxidization in air at 

lower temperature leads back to La2Mo2O9. However, its electrical conductivity properties were 

not explored 78. These reductions of Mo6+ in LMO, lead to the formation of the 7730 phase 

where mixture of Mo5+ and Mo6+ can be observed. Further reduction of LMO above 700 oC leads 

to the amorphous phase 95. Surprisingly, attempts to reduce LMO pellets with temperature less 

than 700 oC (under 5 % H2 + 95 % Ar), revealed no change in the crystal structure but pellets 

broke easily. Degradation of the microstructure was also observed 95. 

The oxygen stoichiometry of the amorphous LMO was found close to 7 (i.e. 9-

La2Mo2O9- ), suggesting that the possible oxidation state of Mo was +4. When the sample is 

oxidized back in the TGA apparatus, oxygen stoichiometry of 9 is gained back swiftly (see fig. 

1.15). 
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Figure 1.14: TGA curve of the reduction of LMO under 5% H2 + 95% N2 at 700 oC. In inset: 

Detail of the same TGA curve along with its oxidation behavior from LM 7-7-30 to LMO 

phase.78 

 

Figure 1.15: TGA curves of LMO and W-LMO reduced samples, showing the oxygen 

gain (9- ) when annealed in air. 95 
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Further studies carried out on LMO reduction showed that it is able to get amorphous (i.e.  

LMO reduced down to amorphous phase La2Mo2O7- ) at temperature as low as 608 oC under 

high Ar + 10% H2 flow (contrary to earlier belief of its stability around 700 oC) 147. XRD pattern 

of amorphous La2Mo2O7-  and LMO, and TGA curve showing loss of oxygen as a function of 

time can be seen in fig. 1.16.   

The amorphous phase La2Mo2O6.88 (reduced LMO) is stable at temperatures less than 900 
oC in Ar H2 atmosphere, further annealing lead to the crystallization in an unknown phase. 

Reducibility of LMO has been studied in different pO2 pressures. Annealing carried in different 

pO2 atmospheres at 1000 oC (see Fig. 1.17) demonstrated that LMO is stable down to pO2 of 10-7 

Pa. Once the pO2 is further reduced down to 10-8 Pa, oxygen loss has started stabilizing sample 

with oxygen stoichiometry 7.71; which on further drop in pO2 under 10-10 Pa leads to more 

oxygen loss down till 6.4. It is shown that LMO when annealed at 10-9 Pa pO2, decomposes into 

a mixture of partially reduced molybdates: La5Mo3O16 (La5Mo2
VIMoVO16) and La5Mo6O21 

(La5Mo3
VMo3

IVO21). When annealed at a pO2 of 10-11 Pa, it decomposes in a mixture of two 

different molybdates: La4Mo2O11 and La16Mo21O56 (La16Mo20
IIIMoIVO56).   

 

 

Figure 1.16: TGA curve showing oxygen stoichiometry 9-  in reduced LMO as a function of 

time when reduced under 10% H2 + 90% Ar at 608 oC (left); XRD patterns of a) LMO and b) 

amorphous reduced phase La2Mo2O7-  (right) 147. 
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Figure 1.17: a) pO2 dependence of the overall oxygen content determined by isothermal TGA at 

1000 oC LMO powders; b) and c) showing the resultant XRD patterns with their crystallographic 

phases at 10-9 Pa and 10 -11Pa after annealing at 1000 oC. 147   

Conductivity measurements carried out on reduced LMO (amorphous phase) and reduced W-

substituted LMO showed enhanced total conductivity values 95. It is explained that Mo6+ in 

LMO, reduces into a mixture of Mo5+ and Mo6+ states (at 7730 phase). It is stated that once 

molybdenum loses oxygen from its lattice, this gives rise to n-type conductivity, suggesting that 

the reduced La2Mo2O9 compounds display electronic conductivity. The same possibility was 

suggested by Vega Castillo et al. 147  when they have observed SEM images of a reduced LMO 

material. On a pellet of LMO without any gold layer sputtering, they were able to explore the 

surface of the pellet (SEM technique is limited only to conductive materials: when an insulating 

material (non electronic conductive material) like LMO is observed, no electron image will be 

constructed); in other words, the surface of a reduced LMO pellet is electronically conductive. 

As we have seen above, the electrolyte in a SOFC should not exhibit electronic conductivity, if 

not the performance and stability of SOFC is affected and it gradually leads to the failure of the 

total unit. This observation of electronic conduction now raises question about the possible 

utilization of LMO and the LAMOX family materials as electrodes in SOFC.  

Considering the increase in total conductivity is attributed to the electronic part, recently 

the amorphous reduced LMO phase was proposed as an anode material in SOFC. Porous 

amorphous LMO anode is synthesized and coupled with La0.8Sr0.2Ga0.83Mg0.17O3-  electrolyte 
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material and discovered to have satisfactory performance. LMO reduced anode has shown 

significant tolerance towards sulfur (performance was tested against H2; H2 + 5ppm H2S; H2 + 10 

ppm H2S) 65.    

1.5.2 Stability of W substituted La2Mo2O9:  

 Vulnerability in reducing atmospheres is a crucial problem with molybdates. It has been 

showed that W-substitution to Mo in LMO can minimize the oxygen losses caused by partial 

reduction of hexavalant Mo (see Fig. 1.18), while stabilizing -phase down to 

room temperature and improving its conductivity and its abrupt thermal expansion behavior. In 

H2 atmospheres, Mo6+reduces partially to a mixture of Mo6+ and Mo5+ (happens at 7730 phase 

and this reduction of Mo6+ leads to the appearance of electronic conductivity) and its partial 

substitution by hexavalent W6+ helped to stabilize the same in reductive atmospheres.  

 

 

Figure 1.18: Time dependency of W-LMO relative resistivity at 608 oC under diluted H2 (left); Total 

conductivity of the same compounds at 300 oC and 600 oC in air and diluted H2 as a function of W 

content, grey colored area is assumed to represent the electronic contributions (right) 140. 

In a study which included W-LMO compounds (y = 0, 0.5, 1.0 and 1.4), it was suggested 

that the compound with y = 1.4 is a suitable candidate as an electrolyte because of its resistance 

towards reductive atmospheres and good total conductivity (assuming that the lesser the sample 
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is reduced, the lower will be its electronic contribution; overall good ionic conductor). On the 

other hand, compounds with low tungsten content are suggested to be suitable candidates for 

anode applications 140. Since W component in these compounds is less reduced, the sample still 

shows sufficient ionic conductivity, whereas reduced Mo component contributes to electronic 

part. It was found that reduction depends on time and temperature as well. Considering other 

dopants at the Mo site, W exhibited superior stability in terms of oxygen loss. During reduction, 

once LMO loses 0.43 oxygen per formula unit, the structure changes to La7Mo7O30; but when 

Mo is substituted by 12.5 mol% W, even after oxygen loss of 1.13 per formulae unit, no change 

in the structural type is noticed 144 (see Fig. 1.19 and 1.20).  

 An XPS study carried by Jin et al. concluded that only Mo component in LMO is prone 

to reduction. When 10 mol% of Dy is substituted to La in LMO and annealed in diluted H2 

atmospheres, oxygen loss attributed to Mo reduction is observed. Similarly, when 10 mol% Dy 

to La site and 50 mol% of W to Mo site are substituted, the reductive behavior in the sample was 

controlled and it is shown that only Mo is susceptible to reduction 124. 

 

Figure 1.19: 2 

flow) for  W-LMO compounds: as a function of temperature for 12.5 mol% W substitution in 

LMO (left), as a function of composition at fixed 605 oC (right).144 
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Figure 1.20: a) TGA curves showing Wt loss (%) on 12.5 mol% W substituted LMO as a function 

2 as a function of 

composition at 605 oC: bottom scale = y in La2Mo2-yWyO9; top scale = x in La2-xGdxMo2O9 and 

La2-xNdxMo2O9. 144 

 

A Spanish team has conducted similar type of experiments on LMO pellets with W 

substitution of 0 mol %, 25 mol %, 33.33 mol % and 75 mol % which were reduced in 5%H2+ 

95%Ar flow for 24 hours at 700 oC 95. They have obtained amorphous pellets (7- ) (initially 

LMO), whereas pellets with 25 and 33.33 mol % W substitute were obtained as isostructural 

La7Mo7O30 phase; however on pellet with 75 mol % W- -LMO 

structure was noticed (nevertheless when the annealing temperature was increased from 700 oC 

to 900 oC, the pellet had partially decomposed into La7Mo7O30 phase). The oxygen stoichiometry 

of the reduced amorphous sample (initially LMO) was close to 7 (9-  ~

loss), showing that the oxidation state of Mo was +4. These samples have been oxidized back in 

air in TGA recording the Wt. gain (amount of O2 took back by reduced compounds to retain their 

stable state). Such TGA curves were shown in Fig. 1.15 (in section 1.5.1). This study has shown 

a non-linear behavior of the thermal expansion coefficients with increase in W-content. In 

another study carried on La2Mo0.8W1.2O9, the thermal expansion coefficient was found to 9.7 x 

10-6 oC-1, which was a significant improvement compared to parent material LMO109. Another 

study reported TEC in La2Mo2-yWyO9  1.5 range from 13.5 - 16.0 x 10-6 K-1 
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between 298 and 773 K and TEC would range from 19.4 to 21 x 10-6 K-1  between 823 to 1073 K 
95. Details are given in Table1.4. TEC of some other standard electrode and electrolyte materials 

are given in Table 1.5.    

 It can be concluded that the partial reduction of LMO or W-LMO compounds can induce 

mixed electronic and ionic conductivity in these samples. W substitution in LMO reduces the 

oxygen loss and increases its potential as a suitable anode material in SOFC. However more 

research is needed to explore appropriate composition, thermal stability, reduction temperatures 

and atmospheres to have a complete understanding of the system. 

 

Composition  Thermal expansion  coefficients  

Temperature (K)  TEC (10
-6

 K
-1

)  

 
La2Mo2O9  

298 823  13.5  

898 1073  16.8  

 
La2Mo1.5W0.5O9  

298 723  15.2  

823 1073  19.9  

 
La2Mo1.25W0.75O9  

298 773  16.0  

823 1073  19.4  

 
La2Mo1W1O9  

298 773  15.4  

823 1073  20.7  

 
La2Mo0.5W1.5O9  

298 773  13.9  

823 1073  21.0  

 

Table 1.4: TEC of LMO and W-LMO compounds evaluated by Dilatometry 95.  
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Composition  Thermal expansion  coefficients  Reference  

Temperature ( oC)  TEC (10-6 oC-1)  

La0.9Sr0.1MnO3   50-1000  11.2  148 

La0.8Sr0.2MnO3   50-1000  11.4  148 

La0.6Sr0.4MnO3   50-1000  12.3 (1)  149 

La0.6Sr0.4Co0.2Fe0.8O3   100-600  15.3  150 

CeO2  50-1000  12.3  151 

Ce0.9Gd0.1O1.95  RT-800  11.9  79 

Ce0.8Gd0.2O1.9  50-1000  12.5  149 

Ce0.6Gd0.4O1.8  50-1000  12.1  149 

 

Table 1.5: TEC of some standard electrode and electrolyte materials used in SOFC applications.  

1.6 Summary and commitment to this thesis work: 

LMO is considered to be competitive to the industrially appreciated 8%YSZ. Its 

conductivity in intermediate temperature range around 600 oC makes it a potential candidate as 

an electrolyte material in SOFC. However, application of LMO is limited because of its 

instability in reductive atmospheres; abrupt volume expansion because of a phase transition from 

to oC; high thermal expansion; and chemical reactivity towards 

other components (electrodes) in SOFC.  

Various studies carried by doping / substitution of La and Mo site by other transition and 

rare earth elements were able to suppress the phase transition making thermal expansion 

continuous and lower its high thermal expansion coefficient. Out of all substitutions, only W-

substitution was able to limit the instability of LMO in reductive atmospheres and W-substitution 

is considered a viable candidate because of its high solubility allowance (~80 %). It was shown 

that the more the W-substitution, the more is its stability in reductive atmospheres; however 
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conductivity requirements for overall performance of SOFC were met better than 8% YSZ, but 

the compound is still vulnerable to reduction. First part of my thesis work presented in chapter-3, 

deals with studying the phase stability of W-substituted LMO compounds with W-content 50 

mol% and more. Since high W-content in LMO can result in the appearance of less conducting 

- La2W2O9 - LWO) and appearance of unusual metastable behavior, there is need to evaluate 

its phase stability. Selection and optimization of the suitable composition for SOFC application 

is important. Temperature controlled XRD, DTA were employed to study the thermal stability 

and phase diagram of W-LMO in precise.  

Many studies related to the compatibility of LMO and W-LMO with traditionally used 

cathode materials, electrolytes and anode were performed. LMO is considered to be chemically 

stable with the anode material NiO and the electrolyte CGO; raising hopes for possible use of Ni-

CGO cermets as possible anode materials for LMO electrolyte. However exploration of suitable 

cathode material is still in progress. Experiments carried with many standard cathode materials 

lead to appearance of undesired reaction products at the interface (which are considered to be 

hazardous for SOFC operation); thus indicating that cross cationic diffusion took place. In my 

thesis work, I attempt to probe the diffusion mechanism and to study the cationic diffusion 

behavior, cross cation diffusion, diffusion length, effect of time and temperature on diffusion. 

SIMS technique and XRD are used for this study to gain deeper insight into diffusion process. 

These details are discussed in chapter 4.  

As already discussed, LMO is vulnerable to reductive atmospheres. LMO in diluted H2 

atmospheres or any reductive atmospheres first reduces to La7Mo7O30 phase and on further 

reduction lead to the amorphisation of the sample. Overall the increase in conductivity is 

observed and it is attributed to the electronic contribution which was caused by partial reduction 

of hexavalent Mo to a mixture of Mo5+ and Mo6+, making these samples MIEC (behavior which 

makes LMO inapplicable as electrolyte in SOFC). However use of the reduced LMO as an anode 

material in SOFC was proposed and attempted with success. It is even found that reduced LMO 

material is sulfur tolerant till satisfactory level, giving new opportunities to explore in LMO 

world. Few studies stated that W substitution in LMO can limit its reducibility, and even showed 

that W part in the LMO is not prone to any reduction. Not many studies were conducted to 

understand the reduction behavior and its kinetics. In my thesis work I study the structural 
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changes, reduction behavior, and reduction kinetics of LMO in different reductive atmospheres 

and parameters. This part of the work is discussed in chapter 5. 

In summary, in this current thesis, possible use of LMO and W-LMO materials as 

electrolyte and anode materials for SOFC is studied and evaluated. Chemical compatibility of 

LMO with cathode materials was examined by studying the cationic diffusion mechanism. 
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Chapter 2 
Experimental and Methodology: 

2.1 Introduction: 

 Current materials utilized for high end applications are result of years of research, 

application of different experimental synthesis and analysis process. Advanced ceramic materials 

come under this group, which were designed for their unique and exceptional properties. 

Materials and methods designated for these properties also come through extreme experimental 

approvals and scrutinization. The properties of these designed breed of new materials are 

determined by their composition, synthesis route, microstructure, particle size and purity e.t.c. 

Optimization of synthesis, different processing stages, analysis methods, characterization 

techniques also play a vital role for proper governance of time, man power and cost induced.  

 In this chapter we will discuss synthesis and processing of La2Mo2O9, W-substituted 

LMO powders. We will be even discussing how these powders were pelletized and densified. 

How these samples were analyzed by different experimental techniques like differential thermal 

analysis (DTA), thermo gravimetric analysis (TGA), X-ray diffraction (XRD), in-situ 

temperature controlled X-ray diffraction (TC-XRD) and secondary ion mass spectrometry 

(SIMS). We will be discussing how electrical conductivity experiments were performed on 

chosen samples and how their respective stabilities in different reductive atmospheres were 

studied.  

2.2 Synthesis of powder samples: 

 Synthesis of LMO is a well studied process. Till date, different synthesis process like 

traditional solid state synthesis route, Pechini method, sol-gel process, precipitation method, 

microwave synthesis, chemical or physical vapour deposition methods; are available. It is well 

known that synthesis process employed can determine the grain size and microstructure of the 

final product; which in turn govern the properties of the materials. Few synthesis processes were 

able to derive final products at low temperature, but can take significant amount of time and man 
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power. Moreover it is already known that LMO if synthesized in smaller grain sizes, can 

drastically boost its electrical conductive properties.  

   We have employed traditional synthesis route for all of our LAMOX compounds, 

because of its simplicity and easiness. As of LMO:  La2O3 is first dehydrated by calcining at 

1000 oC for 3 hours. Then, stoichiometric quantities of commercial La2O3 (99.99 % pure, 

Chempur) and MoO3 (99.99 % pure, Chempur) are mixed in agate jar and ground by hand. This 

mixture is than heated at 500 oC for 12 hours (@ 2oC /min heating and cooling rates) to ensure 

homogeneity in the mixture. The product later goes for two other annealings at 900 oC for 12 

hours each (@ 5oC /min heating and cooling rates) followed by groundings in agate jar at the end 

of each heat treatment process. The final product is then confirmed by XRD before further 

experimentation.  

 W-LMO powders (La2Mo2-xWxO9, x = 0.5, 1, 1.1, 1.2, 1.3, 1.35, 1.4, 1.45, 1.5, 1.525, 

1.550, 1.575, 1.60, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2.0) were also synthesized by 

conventional solid state synthesis route. For convenience we will code W-substituted LMO 

compounds with their W-stoichiometry (Wx, where x is the stoichiometry of W, for example 

W1.3 is the sample where 65% of W substituted to Mo in LMO i.e. La2Mo0.7W1.3O9).  Different 

W-LMO compounds were synthesized at different synthesis temperatures; final temperatures 

applied depend on the amount of W, substituted in the sample. We have realized that more the 

amount of W-substituted, high are the final annealing temperatures required. Stoichiometric 

quantities of La2O3 (preheated at 1000 oC for 3 hours for dehydration), MoO3 and WO3 (99.9% 

pure, Riedel-de Heen) are mixed in agate jar and ground well. The mixture is first annealed at 

500 oC for 12 hours (@ 2 oC /min heating and cooling rate) for a homogenous distribution of the 

compounds in the mixture. Later on, multiple annealing stages are employed on each sample 

with variation in annealing temperature and time of annealing. Grinding of the product is carried 

for every stage and phase purity is also verified. The different annealing stages employed are 

mentioned in the fig. 2 oC, 

and remaining samples were annealed at 1250 oC.  

As already discussed in chapter-1, phase purity of W-LMO compounds tend to vary with 

the amount of W substitution. For availability of pure phase, some compounds were quenched 

from high temperature into a mixture of ice and water (these details will be discussed in the next 
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chapter). For quenching experiments, the samples were annealed in closed Pt tubes (Pt is very 

inert towards LMO compounds and Pt can sustain thermal shock caused by quenching), where as 

for traditional solid state synthesis route Al2O3 crucibles (Al2O3 crucibles are stable at high 

temperature used for synthesis and completely inert towards LMO compounds) were utilized.  

However, the phase purity of all the samples at all the stages from 900 oC was examined by 

XRD. We can see the XRD patterns of LMO and W-LMO in the next chapter.  

 

 

Figure 2.1: Bar Diagram showing different stages used in W-LMO synthesis along with the 

annealing temperature and annealing time per stage. 

2.3 Synthesis of Pellets: 

Most of the analysis techniques need the samples to be in defined geometry and as 

pellets. Conductive measurements, diffusion experiments which were the part of these studies, 

can be carried only on highly densified samples; where porosity is well controlled. The synthesis 

of the pellets is normally done in 4 stages: 1) Ball Milling, 2) Moulding and uni-axial pressing, 

3) Iso-static pressing and 4) Sintering. Relative densities in pellets as high as ~97% can be 

achieved by this process.  
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Ball milling is a stage where, the powders synthesized by conventional way are milled 

down to fine grains with uniform grain size. This uniformity in grain size helps to increase 

relative density in green pellet and eases formation of coarse grains while sintering, leading final 

product to achieve higher relative density. In this stage, ~ 4  5 grams of LMO or W-LMO 

apparatus) equipment along with 5 ml of ethanol or acetone and 20 agate balls of diameter 6 mm. 

Then the powders are milled in the apparatus at speed no. 8 on the instrument (1532 rpm of agate jar 

and 766 rpm of the platform) for 15 minutes. The powders are crushed inside the jar (agate jar of 

45ml volume) with the help of agate ball used, give uniform and fine grained final product. Thus 

obtained powder is collected from agate jar and heated at 100 oC for alcohol to evaporate. It was 

found in the literature LMO reacts with Zr; when Zr based milling jar is used, forming impurity 

La2Zr2O7 1. Figure 2.2 shows the ball mill setup.  

 

 

Figure 2.2: Cross section of Ball Mill showing its setup (top figure). Top view of ball mill 

showing the rotation sense of agate jar, when operating (bottom figure). 2 
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Fine powders obtained from ball mill, are than moulded into desired shape (generally into 

pellets). In our study, we have moulded powders into pellets ranging in diameter from 5-13 mm.  

Inner walls of die and punches were coated with Vaseline to reduce friction when pressing. 

Required amount of sample (calculated in accordance to thickness and diameter of desired pellet) 

is taken into the die. If the sample cannot cohere well under pressure, a binder (commercially 

available polyvinyl alcohol) is used. On a rough approximation, a droplet of binder is used for 

every 300 mg of sample; however once the sample is annealed for sintering, binder evaporates. 

The sample along with die is pressed uniaxially at 4~5 MPa. The powder formed in to pellet than 

put sealed into a balloon and pressed (4~5 MPa) into water controlled iso-static press. Iso-static 

press is equipment, where one can apply equal and high pressure in all directions, making green 

pellet even denser.  

 

 

Figure 2.3:  Schematic diagram for different sintering stages (adapted) 3, 4), R- particle 

radius, r- rep  the density of random close packing of spheres of an identical size, 

(r/R)critical is the boundary below which the pores in the sample become subcritical and shrink 

with grain boundary diffusion.  
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Thus obtained green pellet is than sintered to achieve pellet with higher relative density. 

its relative properties. The sintering process can be broadly divided into three stages, 1) where 

the particles will have little thermal expansion but do not lose their individuality, 2) Particles 

tend to shrink and adhere to each other leading to densification, 3) Grains will grow slightly, but 

the densification will halt with the display of flat shrinkage curve 5. In Fig. 3.5, shown above 

region I is a area where density of the sample approaches to 40% through homogenization and 

stochastic particle relocation. In region II, the density is approaching to 63% by particle 

repacking and coarsening by surface diffusion. In the final region, the densification is controlled 

through grain boundary diffusion or lattice diffusion.6-8.  

Coming back to LMO, pellets are sintered at 1050 oC for 12 hours with heating and 

cooling rate 5 oC/min. The relative density thus obtained varies from 98~95 % depending on the 

diameter. For W-LMO samples, pellet

applied was 1150 oC for 12 hours and standard heating and cooling rates of 5 oC/ min are 

applied. For diffusion studies (discussed in chapter 4), pellets of LSM were synthesized, where 

fine powders of LSM (99.9 % pure, Praxair, particle size dispersion d50 = 1.3 μm) were 

commercially available. In this case step of ball milling is skipped (since the powders are already 

of fine size), and remaining 3 steps were carried, with sintering temperature being 1400 oC (for 

12 hours, with 5 oC/ min rate of heating and cooling).  

2.4 X-Ray Diffraction (XRD) and insitu Temperature Controlled X-Ray 

Diffraction (TC-XRD): 

X-ray diffraction (XRD) is a typical analysis method used to derive composition of a 

compound. This is a most convenient tool to check phase purity and to define possible impurities 

in a sample. When X-rays hit the sample (powder or a single crystal sample), monochromatic 

light of X-rays are diffracted back by crystal lattices. This involves the occurrence of 

s 

law. If  is the angle of incident beam that is made by lattice planes, d is the spacing between 
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crystal lattices,  is the wavelength of incident beam (X-ray) and n is the integer

equation is stated as:  

  

Most commonly used types of X-ray diffraction are powder X-ray diffraction (XRD) and 

single crystal X-ray diffraction. A diffraction pattern is collected by exposing the sample to X-

rays, which is then compared to a standard database (PCPDF, JCPDS e.t.c) to determine the 

unknown materials (if certain compound is already known and was analyzed by XRD and if its 

pattern is submitted to these standard data bases). Apart from that for regular laboratory usage, it 

is very helpful in determining purity of the samples (XRD pattern of desired compound is 

already known), crystal structure or possibility of crystal orientation e.t.c. Regular XRD analysis 

software include X-pert High Score, X-pert Data Viewer, EVA e.t.c.  When combined with other 

techniques like Le Bail fitting 9 or Rietveld refinement 10, more information about the crystal 

structure can be obtained. 

For this current study, we have Philips® 

diffractometer . Qualitative parameters like 2  
range, step size, time per step etc were varied as of the requirement.  

For high temperature stability studies of W-LMO and reducibility studies on LMO, we 

have used in-situ temperature controlled X-ray diffractometer (TC-XRD). This instrument is 

equipped with a furnace, where one can study the crystal structure variations or phase stability of 

a given sample at high temperature. The sample can be placed in the atmospheres of Air or Ar or 

N2 and can be heated anywhere from 25 oC to 1200 oC.  This HT unit is very useful in 

characterizing phase stability or thermal behavior of the sample.  

2.5: Thermal Analysis: 

Thermal analysis can be defined as the measurement of physical and chemical properties 

of materials as a function of temperature. Some of these properties include enthalpy, heat 

capacity, mass and coefficient of thermal expansion. One of the main usage of these techniques 

is measurement of weight loss when oxides or hydrates, decompose while heating. Uses of 
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thermal analysis in solid state science are many and varied, which include study of solid state 

reactions, thermal decompositions and phase transitions and the determination of phase 

diagrams. Most of the solids are thermally active in one way or other, and can be studied by 

thermal analysis. There are four main types of thermal analysis: 1) Thermogravimetry, 2) 

Differential thermal analysis, 3) Differential scanning calorimetry and 4) Dilatometry. For our 

studies on LMO and W-LMO, for phase transition/stability studies, thermal behavior study, 

studies carried to examine stability of LAMOX compounds in reductive atmospheres, we have 

used TGA and DTA, details of which can be seen below. Data from DTA or TGA when coupled 

and analyzed with XRD data will reveal significant information.   

 

2.5.1: Thermogravimetric Analysis (TGA): 

TGA is a technique for measuring the change in weight of a material as a function of 

temperature or time. The results usually appear as a continuous chart record. The sample usually 

a few milligrams in weight, is heated at a constant rate (1 to 30 oC/min). It is usually to check the 

moisture content, presence of volatile components in samples, or to check amount of any 

released gases in the sample. In this instrument annealing can be done in different atmospheres 

like Ar or N2 or air, or O2 or diluted H2.  

In our case we use this instrument to check the stability of the LAMOX materials under 

different reductive conditions. LMO or W-LMO compound will be taken in Quartz crucible 

[unlike Pt (Pt does not reduce or oxidize in presence of H2, but it is known that H2 can enter in Pt 

cellmatrix), quartz is quite stable in reductive atmospheres and can withstand thermal shocks]. 

The compound is then placed in the flow of the gas to fill the respective chamber with the 

desired gas. (TGA instrument we use has a chamber capacity of 3 liters). Once the balance 

(weight of sample has to balanced by counter weights) is stabilized, and sample is heated, we can 

see the amount weight loss occurring in the samples as a function of time (in case of isothermal 

annealing), or temperature and time together. O2 in LMO reacts with H2 from the supplied gas 

forming H2O and flows away from the unit. The loss of this O2 can be attributed to the weight 

loss observed in the sample. So far, quantity of weight loss is the only tool to calculate the 

oxygen stoichiometry in LMO. On vice versa, when reduced LMO is heated in presence of air or 



57 | P a g e  
 

O2, weight gain is observed, revealing amount of O2 absorbed by the sample to oxidize to it 

stable state.  

We have used two different equipments for our experiments. First one, commercially 

® ® RH4 (6%H2 

+ 94% N2); Air liquid® Arcal 15  Noxal 3 (5% H2 + 95% Ar). We have observed that, the reduction 

rate of the sample depends on the quantity of sample used, gas used, flow rate, temperature, time 

e.t.c. Particular parameters governing reduction reaction will be furnished along with the experiments 

(discussed in chapter 5).    

-

and 100 g respectively. Configuration used in this setup reduces undesired thermal segregation 

effects, which is of primary importance when working with mixture of different gases having 

different densities 11. Total unit is maintained at controlled temperature of 25 oC.  On this 

instrument, we have studied the stability behavior of LMO and W-LMO compounds under 

different partial oxygen pressures. Same as earlier, reducibility of LMO and its derivates tend to 

depend on parameters varied on instrument. Details like temperature, gas flow e.t.c will be 

provided along with the results.  

Studies on stability of LMO and W-LMO compounds were carried in different pO2 

pressures. Electrochemical pump which helps in controlling desired pO2 is used for this study. 

Electrochemical pump together with an electrochemical gauge allows the continuous 

measurement and regulation of pO2 in a flowing gaseous atmosphere. pO2 pressures ranging 

from 10-5  to 10-27 atm were employed using different gas mixtures (Ar-O2; CO2  CO and H2O-

H2). 12  

 

2.5.2: Differential Thermal Analysis (DTA):  

DTA is a technique in which the temperature of a sample is compared with that of an 

inert reference material during a programmed change of temperature. The temperature of 

samples and reference should be the same until some thermal event, such melting, decomposition 

or change in crystal structure, occurs in the sample, in which case the sample temperature lags 
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behind (if the change is endothermic) or leads (in the case of exothermic) the reference 

used 

to determine phase diagram. The sample temperature was recorded on cooling rather than on 

heating; since the heat effects associated with solidification and crystallization are usually large, 

they could be detected by this method.  

Normally in a DTA, sample and reference are placed side by side in a heating block 

which is either cooled or heated at a constant rate. Identical thermocouples are placed in each 

and are connected back to back. When the sample and reference are at the same temperature, the 

net output of this pair will be zero, but when a thermal event occurs in the sample, a temperature 

 exists between the sample and the reference which is detected by the net voltage 

of the thermocouples. A third thermocouple is used to monitor the temperature of heating unit 

and the results are presented as a This is much sensitive and 

can give precise information in case of phase transitions.  13 

For this study, we used sample of ~100 mg against reference of similar weight of Al2O3. 

-SDI Q600  DTA instrument is used for the study. Our study is 

conducted over steady flow of 100 ml/min air. Rates of heating and cooling are the crucial 

parameters governing these experiments and will be discussed in details along with results.  

2.6: Secondary Ion Mass Spectrometry (SIMS): 

Secondary Ion Mass Spectrometry is a widely used mass spectrometric technique to study 

surfaces of the inorganic materials in 2D and 3D. It is the process where a high energy beam of 

ions are bombarded with the surface of the sample; portion of the energy from this collision 

cascade is redirected towards the surface, thus promoting the release (breaking) of molecules, 

atoms, photons, electrons and molecular fragments in to the vacuum system of the SIMS 

instrument, creating irreversible bombardment experience to the sample surface. This process of 

releasing surface material is termed as sputtering process. Thus, sputtered material (secondary 

ions) emerged from the sample is either positive or negative in charge. These secondary ions are 

then extracted to mass spectrometer, where ions are separated on the basis of their respective 

mass/charge ratio. Mass spectrometers used generally are Quadrupole analyzer, magnetic sector 
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analyzer or time of flight (TOF) analyzer. Each of the current analyzer designs collects about 

50% of the emitted ions and can provide a mass analysis with an ultrahigh mass resolution. 

SIMS can determine trace levels of all elements in the periodic table. 14, 15 

Primary ions sources can be classified into two types: plasma sources and liquid metal 

sources. When gas atoms are ionized, plasma is formed and  these ions are than collected into 

optical column, Several gas sources like O2
+, Ar+, N2

+ and Xe+ are used 16. These ion beams are 

normally used for depth profiling applications. Whereas, for the applications where high lateral 

resolution is required, ion beams from liquid metal is used. These beams are normally very fine 

and have small beam widths. Beams such as Au2
+, Au3

+ and Bi3
+ are used for these applications.3  

 

Figure 2.4: Schematic representation of SIMS operating principle. 3  

SIMS surface analysis is mainly classified into two modes of operation: static SIMS and 

dynamic SIMS. Static SIMS, is a process where low ion beam currents are applied, leading to 

low sputtering rates, i.e. low secondary ion yield. This is normally done when low sputtering rate 

is needed, for example, to study only top few atomic layers of a given material. This method is 

normally used to make surface image analysis and to collect mass spectrogram. This is normally 

done over a wide area to cover a large surface area of interest. Dynamic SIMS is a process where 

high energy ion beam is sputtered over the surface, to increase higher secondary ion yield and to 

sputter away material in large quantities. The primary ion beam is rastered over a typical area 

about 0.1~0.5 mm2, eroding a certain depth per each scan and producing a flat-bottomed crater. 
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A profile of concentration as a function of depth is obtained by recording the variation in 

intensity of a restricted number species as a function of ion dose. SIMS analysis can be presented 

in three different ways: 1) Image analysis 2) Surface Mass spectrogram and 3) Depth profile. 

First two methods come under static SIMS, where as the last one under dynamic SIMS. Mass 

spectrum is plotted with concentration against amu.  

 

Figure 2.5: Schematic representation of three different modes of analysis possible by SIMS 

instrument.17  

For the cationic diffusion studies mentioned in chapter 4, we have used this technique on 

LMO and La0.8Sr0.2MnO  samples to check the diffusion profiles (process and results are 

explained well in chapter 5). For these experiments, we have used focused ion beam  secondary 

ion mass spectrometry (FIB-SIMS) instrument. In this technique of FIB: an ion source is focused 

on an area of concentration, where sputtering is carried out generating secondary ions. In our 

case we used high brightness gallium liquid-metal ion source to generate the ion beam. As these 

ions are large, heavy and slow, it is easier to control the beam to remove material locally down to 

nanometer scale 18. Like most of the SIMS instrument, with FIB SIMS, it is possible to mill the 

sample in the desired geometry (crater with top view as a square, rectangle or a circle e.t.c). 

When milling is being done, all the sputtered material from sample (secondary ions) are 

transferred to a mass spectrometry and analyzed. Surface imaging, mass spectrogram and depth 
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profiles were collected. The instrument used was a FEI FIB200-SIMS, with a Ga+ ion beam with 

beam spot size around 10 nm.    

In SIMS experiment, sample also plays a significant role. Sample has to be well polished 

and cleaned to have flat crater during profiling. If the sample has a insulating surface, during 

sputtering, there will be a surface charge build up. Sample charging can diffuse the primary 

beam and divert it from the analytical area and then reducing the secondary ion yield and affect 

their transmissions. The most common way to overcome this problem is to flood the surface with 

electron beam to compensate the surface charge. It is even possible to coat the surface of 

examining sample by gold (thin nanolayer (25~75 nm) of gold is sputtered). In our diffusion 

studies, we have sputtered gold on the surface of LMO and LSM pellets aswell.  

For data processing of SIMS depth profile measurement, rate of sputtering has to be 

determined. This rate is calculated by time spent on sputtering and the depth of crater after 

sputtering. Crater depth can be calculated by the tilting the sample directly in the instrument and 

measuring the distance between the actual surface and bottom surface of the crater (see the 

procedure in Fig. 2.6). Sputtering depth is again verified by white light scanning interferometry. 

-light microscope based interferometer is used 

which can have depth resolution of 2 nm, a lateral resolution of 0.2 20 μm.     

 

Figure 2.6: Schematic representation of crater depth measurement while performing 

SIMS depth profiling measurements. 
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2.7: Electrical Conductivity Studies: 

Electrical conductivity measurements were carried on LMO, W0.5 and amorphous 

phased La2Mo2O7-  bars with approximate dimensions of 1 x 1 x 10mm. Resistivity 

measurements were carried by four wires method. Four Pt electrodes were first deposited on the 

bar by sputtering on one of the rectangular faces and Pt wire was glued on each electrode with Pt 

paste (see Fig. 2.7). The bar along with the Pt contacts was then annealed at 800 oC in static air 

for a hour to ensure maximum adherence of Pt paste. DC current variable (10 μA to 1mA) was 

applied between the external electrodes whilst the DC voltage between the internal electrodes 

was measured for the resistivity measurements.   

 

Figure 2.7: Schematic representation of 4 wire setup used for electronic conductivity 

measurements on LMO, W-LMO and amorphous phasedLa2Mo2O7-  bars.  

 

As seen in earlier sections, LMO sample when reduced turns from pure ionic conductor 

to MIEC. Four point Hebb-Wagners polarization method was used to determine the electronic 

conductivity in reduced MIEC W-LMO and LMO materials. 19-22. Powdered VG98 was 

suspended in a solution of polyvinyl-butyral and isoproponal; thus obtained viscous solution was 

used to paint over the two Pt electrodes on the bar. Two of the four electrodes were covered by 

VG98 glass to avoid oxygen exchange with the atmosphere and therefore block ionic 
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conductivity (ion-blocking). This setup was again fired for 15 minutes at 800 oC to decompose 

organic material and to ensure proper deposition of glass on the Pt electrodes.  

The total setup is then put in a tubular furnace under reductive atmosphere (diluted H2, 

UHV (ultra high vacuum) or low pO2 pressures). Samples with different relative densities (98  

75% relative dense) were used.  Activation energy of sample is determined under given 

experimental conditions (discussed along with results in Chapter 5).   

The resistivity obtained at ideal conditions was set as a reference for further 

experimentation. The behavior of the conductivity (T) as a function of temperature T was fitted 

with a thermally activated model:  

 

Whereas o is a pre-exponential factor, KB is the Boltzmann constant and Ea is the 

activation energy. Activation energy was calculated and provided in accordance with the 

experimental parameters and setups. 

 

Note: Experimental details, methods and materials used for regular laboratory experimentation 

were mentioned here. However experimental parameters cannot be standardized since they have 

to be varied in accordance with the requirement, which will be discussed along with their results 

further in this thesis report in their relative chapters.  
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Chapter 3: 
Thermal stability of W-substituted La2Mo2O9  

3.1Introduction 

 From the literature it seems clear that W substitution to Mo in La2Mo2O9 (LMO) 

- -phase while limiting 

its instability under reducive atmospheres 1-13. The solubility of W in LMO is around 80% and W 

substitution in LMO also shows improvement in its thermal expansion behavior. LMO is 

-LMO) and W substitution stabilizes the highly 

-LMO. However compound with 100 mol% 

W substitute to Mo in LMO has a different structure at room temperature (R.T). At R.T La2W2O9 

LWO) in symmetry -LWO cubic form at temperature around 

1077 o LW LMO have cubic symmetry. Fig 3.1 shows the XRD patterns of 

- - -LWO phases. W substituted LMO have undergone 

significant amount of research, however some of the properties of these compounds and their 

stability and metastable behavior are still not clear 1-13.  

 

Figure 3.1: XRD patterns of -La2Mo2O9 ( -LMO) La2WMoO9 ( LMO) and -La2W2O9 ( -

LWO) phases (left). Enlargement of the 2 region showing splitting of the cubic (231) peak 

characteristics of the monoclinic -LMO form (right). 
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In this part of work, we have synthesized various LMO compounds with W substitution (W-

LMO) ranging from 50 mol% to 100 mol% (La2Mo2-yWyO9, y = 1, 1.1, 1.2, 1.3, 1.35, 1.4, 1.45, 

1.5, 1.525, 1.550, 1.575, 1.60, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2.0). In order to simplify the 

composition terminology, we will use the following nomenclature: a W-LMO compound with 

formula La2Mo2-yWyO9 will be named Wy. Compound with W 50 mol% i.e. La2MoWO9; (y = 

1.0) will be called W1.0; and compound with y =1.1 is called as W1.1.  

 

3.2 La2Mo2-yWyO9 with y = 1, 1.1, 1.2 

 The three compounds were synthesized by conventional solid state synthesis route (SSS) 

with final synthesis temperature being 1150 oC and were cooled to R.T at 5 oC/min (synthesis 

procedure along with various annealing temperatures and time are mentioned in section 2.2, of 

chapter 2). In agreement with the literature, complete stabilization of the -form was observed. 

No phase transitions were detected by DTA performed on these samples (with ~100 mg of 

sample under air flow of 100 ml/min, with rate of heating 5 oC/min and rate of cooling 2 oC/min) 

(see Fig. 3.2). On the DTA curves slight perturbation was noticed around ~ 900 oC, which was 

confirmed as artifact (DTA was performed on empty crucibles and similar events were observed, 

results of this experiment are discussed in Annex-I).  

 In Ca and Eu substituted La2Mo2O9
14, 15, depending upon the Ca/Eu substitution amount 

it was understood that some compounds were metastable and these compounds have to be heat 

treated to obtain respective thermodynamic stable products. In Ca and Eu substituted LMO 

compounds, the ordering and disordering of the structure at high temperature is caused by oxide 

ion migration. Since in W-LMO cationic migration is expected in the structure to achieve a 

thermodynamic stable state, W substituted compounds may have to be heat treated for longer 

periods of time. Accordingly, in this study to obtain thermodynamically stable compounds, all 

three samples were annealed at 700 oC for 60 days in a tubular furnace in static air. XRD patterns 

collected on these heat treated samples show no change in the structure type (see Fig. 3.3). 

However little variation in the peak shape and intensity were noticed. Le Bail fitting was 

performed on the XRD patterns of heat treated samples and slight decrease in cell volume was 

observed.  
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Figure 3.2: DTA curves of samples with y = 1.0, 1.1 and 1.2, showing no phase transformations.  

 

 

Figure 3.3: XRD patterns ofLa2Mo2-yWyO9 samples with y = 1.0, 1.1 and 1.2 (left), before (in 

black color) and after annealing at 700 oC for 60 days (in pink color). Table (right) showing the 

variation in the cubic unit cell parameter of -LMO phase compounds before and after heat 

treatments. 
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3.3 La2Mo2-yWyO9 with y = 1.3-1.575 

 

3.3.1 La2Mo0.7W1.3O9 (W 1.3) and La2Mo0.65W1.35O9 (W 1.35) 

 Within the synthesis conditions, the samples W1.3 and W1.35 behave the same way as 

samples W1.0-1.2 and stabilization of the -form is noticed (see Fig. 3.4) TC-XRD patterns were 

collected on both samples. On W1.3 two different TC-XRD setups were used where data was 

collected from room temperature to 900 oC on 1st setup and from 900 oC to 1100 oC on another 

setup. On W1.35 TC-XRD was collected from 600 oC to 900 oC (see Chapter 2 for description of 

TC-XRD process and setups). TC-XRD patterns collected on W1.3 and W1.35 do not show any 

phase transitions even at elevated temperatures, suggesting that -form might be a stable state 

(see Fig. 3.5). DTA analysis was performed on W1.3 by heating the powder from room 

temperature till 1175 oC at 10 oC/min and cooling back to room temperature at 10 oC/min cooling 

rate. Once again, neither endothermic nor exothermic events were noticed (except a perturbation 

around ~980 oC) and this observation is in agreement with TC-XRD analysis (see Fig. 3.5). The 

perturbation was confirmed by TC-XRD to be an instrumental anomaly (Fig 3.5b).  

 

 

Figure 3.4: XRD patterns of W1.3 (left) and W1.35 (right) raw powders (synthesized at 1150 oC 

with a cooling rate 5 oC/min) showing the cubic -LMO phase.   
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Figure 3.5: TC-XRD patterns collected on W1.3 (R.T to 900 oC in fig a , and 900 oC to 1100 oC 

in fig b ) and W1.35 (600  950 oC) in Fig. c    

 

 On TC-XRD patterns of W1.3 sample, Le Bail fits were carried out in the cubic cell and 

space group P213 with the FullProf program. The thermal evolution of the unit cell volume is 

plotted in Fig. 3.6. As observed for the cubic members of the LAMOX family, two thermal 

domains with linear dependences of volume are observed, corresponding to an increase (upon 

heating) of the thermal expansion coefficient (TEC) 14, 16. The TEC was calculated from the 

linear regressions of the two thermal domains as 15.6 x 10-6 oC-1 and 22.3 x 10-6 oC-1 in the 
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temperature range 25 - 350 oC and 350 - 900 oC, respectively. These TEC values of W1.3 are 

comparable to the TEC values of W1.4 (13.9 x 10-6 oC-1 and 21.0 x 10-6 oC-1 in the temperature 

range R.T to 500 oC and 550 oC - 800 oC respectively)17 and TEC values of W1.5 (15.4 x 10-6 oC-

1 and 21.1 x 10-6 oC-1 in the temperature range R.T - 350 oC and 350 oC - 900 oC respectively)9. 

 

 

 Figure 3.6: Temperature dependence of the cubic cell parameters of W1.3 determined by Le 

Bail fitting of TC-XRD (left).   TEC (calculated from linear regression) are 15.6 x 10-6 oC-1 and 

22.3 x 10-6 oC-1 in the temperature range 25 - 350 oC and 350 - 900 oC respectively (right). Note 

that error scale is within the thickness of the symbols (triangles). 

  To probe the long term stability of the compound, raw W1.3 powder was annealed at 

intermediate temperatures for different periods of time (at 700 oC and 750 oC for 45 days and 

800 oC for 96 hours). Fresh batch of raw powder was used for each heat treatment and the same 

cooling rate of 5 oC/min used for synthesis was applied. All annealing were performed in a 
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tubular furnace and in static air. While raw W1.3 sample is cubic, heat treated sample turned into 

a - -LWO type phases (whatever the annealing temperature 700, 750 or 

800 oC) (see Fig. 3.7). Similar heat treatment was performed on W1.35 (annealing at 800 oC for 

96 hours), and the W1.35 also behaves the same as W1.3 (see Fig. 3.8). These measurements 

show that thermodynamic stable state of W1.3 and W1.35 compounds is bi-phasic in nature. 

 

  

Figure 3.7: XRD patterns of W1.3 before (Black) and after long term heat treatment (Pink).  

 On W1.3 powder sample which was annealed for 96 hours at 800 oC, DTA and TC-XRD 

were performed (see Fig. 3.9). The sample was a - -LWO type phases 

before the DTA experiment, while a pure -LMO type phase was noticed after the experiment. 

During TC-XRD upon heating, XRD patterns show that the W1.3 sample remains bi-phasic till 

950 oC and after this temperature, the sample undergoes a phase transition to a single -LMO 

phase. This phase is retained when the sample is cooled back to R.T at  an average of 400 oC/min 

in the TC-XRD unit. An annealing for 96 h at 800 oC was necessary to re-obtain the mixture of 

-LMO and -LWO type phases. TC-XRD analysis was carried on the W1.3 sample (mixed 

phase sample) at room temperature and at 700 oC. Details will be discussed in section 3.7 of this 

chapter for convenience. 
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Figure 3.8: XRD patterns of W1.35 before (Black color) and after long term heat treatment (Pink 

color).  

 This unique thermal behavior of the W1.3 sample was never reported before. We have 

already shown that samples y = 1.0, 1.1 and 1.2 were stable after long annealing. The single -

LMO phase is preserved in these three samples after annealing (even for longer annealing 

duration ~60 days). Considering the results obtained from long annealing/heat treatment 

measurements carried on samples from y = 1.0 to 1.3; one can assume that thermal instability 

occurs for compositions having W content higher than 60 mol %. It is now possible to suggest 

that samples with W substitution higher than 60 mol % are not recommended for SOFC 

applications, since low conducting tricli -LWO phase appears when annealed at SOFC 

operating temperatures for periods longer than 4 days. More information about the structural 

analysis is given in section 3.7 of this chapter. 
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Figure 3.9: DTA curve of W1.3 sample which was annealed for 96 hours at 800 oC (~100 mg of 

sample under air flow of 100ml/min) (left). TC-XRD patterns on similar W1.3 sample from 850 

to 1050 oC, patterns in violet showing the sample in a - -LWO phases and 

patterns in red showing the LMO phase. Please note the phase transition at 950 oC. 

 

3.3.2 La2Mo2-yWyO9 with y = 1.4 - 1.575 

 -LMO type phase compositions ranging from W1.4 to W1.575 were obtained 

when synthesized at 1150 oC by cooling down to R.T at 5 oC/min. In order to study the thermal 

stability of these raw powders, two successive DTA measurements were performed on raw W1.4 

and W1.5 powders (see Fig. 3.10). As observed for lightly W-substituted LMO compounds, 

DTA diagrams of W1.4 and W1.5 did not show any endothermic /exothermic events. XRD 

patterns of W1.4 and W1. -LMO type phase after DTA (see Fig. 3.11).   

 These compounds (y = 1.4, 1.5, 1.525, 1.550, 1.575) were studied by TC-XRD. All the 

samples exhibit multiple phase transitions upon heating (Fig. 3.12). When heated above 730 oC, 

a partial conversion of the -LMO phase into -LWO phase starts, which turns back to pure -

LMO phase around 940  990 oC (depending on the composition) (see Table 3.1).  It is 

surprising to observe this metastability in the TC-XRD measurements, since DTA did not exhibit 
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any such events. All t -LMO phase when 

cooled down to room temperature at 400 oC/min. It must be noted that release of metastability 

was not observed in-situ by TC-XRD for W1.3 and W1.35 and starts from W1.4. 

Figure 3.10: DTA curves of W1.4 and W1.5 samples (synthesized at 1150 oC with a cooling rate 

of 5 oC/min) (DTA conditions: ~100 mg of sample in air flow of 100 ml/min). 

 

 

Figure 3.11: XRD patterns of W1.4 and W1.5 samples (synthesized at 1150 oC with a cooling 

rate of 5 oC/min) -LMO type phase.  
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Table 3.1: Table showing the phase transition occurring in W-LMO samples with y = 1.3 to 

1.575. All these phase transitions were determined by TC-XRD analysis. Note that all 

-LMO (cubic) phase before and after TC-XRD analysis.  

 

 

Figure 3.12.a & b: TC-XRD pattern collected on W1.4 (left) and W1.45 (right). Phase 

-LMO (red) to a - -LWO (violet color) can be seen. W1.4 

-LWO is less; limi

range is shown for clarity. -LWO phases are highlighted.  
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Figure 3.12.c, d, e &f: TC-XRD patterns collected on W1.5 

 -LMO (red) to a mixture of - -LWO 

(violet) can be seen. 
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 As expected from TC-XRD studies, long annealing of W1.4 and W1.5 raw powders for 

96 hours at 700 oC or 800 o - -LWO type phases (see 

3.13). However, the amount -LWO type phase is higher in W1.5 than in W1.4 (see Rietveld 

refinements reported in section 3.7 of this chapter).  

 Two successive DTA measurements were performed on ~100 mg of these biphasic W1.4 

and W1.5 samples in 100 ml/min air flow. The first measurement was carried at a cooling rate 

lower than the second measurement. One can clearly observe a structural transition while heating 

in 1st cycle (Fig. 3.14). Note that both samples after the -LMO phase. TC-

XRD measurements were also performed on the bi-phasic W1.4 and W1.5 samples to determine 

the nature of the phase involved in the transition (see Fig. 3.15). The transition temperatures 

determined by DTA are similar to those determined by TC-XRD. From the TC-XRD study it is 

clear that, the endothermic event observed in the DT diagram upon heating is ascribed to the 

conversion of the bi-phasic sample into a -LMO type phase.  

 

 

 Figure 3.13: XRD patterns of W1.4 and W1.5 raw powder before (black) and after a heat 

treatment (at 700 oC for 96 hours) (pink).  
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Figure 3.14: DTA curves of W1.4 and W1.5 samples (annealed at 800 oC for 96 hours) (DTA 

conditions: ~100 mg of sample in air flow of 100 ml/min).  

 Figure 3.15.a & b: TC-XRD p

were heat treated at 800 oC for 96 hours. Phase transitions from a - -LWO 

-LMO (red) can be seen. 

 

 During cooling at 2°C/min and in the next heating/cooling cycle, no phase transitions 

were observed. XRD patterns reveal that -LMO phase after the 

DTA measurements. Another two successive DTA measurements were performed, with a 

cooling rate of 10 oC/min in 1st cycle and 2 oC/min in the 2nd cycle (data not shown). For both 
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cycles, the heating rate was fixed at 10°C/min. The DTA curves were similar to those reported in 

Fig. 3.14, where only the  transition is observed upon the first heating. It indicates that a 

cooling rate of 2°C/min is high enough to quench the high temperature -form. In order to 

recover the thermodynamically stable bi-phasic state, only re-annealing for several hours at high 

temperature (at 800 oC for 96 hours) is necessary, thus suggesting that the kinetic is slow 

  -LWO significantly differs from the structure of its high temperature 

for - - -LWO is built up from isolated four-member ring 

with [W4O18]12- -LMO, the coordinating polyhedra of the 

hexavalent Mo cations, share each of its oxygen corners with coordinating polyhedral of La. 

- -LWO type structures or vice versa implies a cationic 

migration. In pure LWO sample, the structural transition from -  is systematically observed on 

cooling whatever the cooling rate. -

transition) was observed for W1.4 and W1.5 upon the next heating at 10°C/min. This suggests 

that the cationic migration when molybdenum partly replaces tungsten in La2W2O9 is slower 

than in pure La2W2O9. Only a heat treatment for a longer period of time allows recovering a 

fraction of La2W2O9. Because of this instability towards heat treatments (at working 

temperatures of SOFC ~800 oC), W1.3, W.14 and W1.5 oxides are not suitable materials either 

as electrolyte or in association with Ni within a cermet anode.  

 In was reported that LMO 18 and W-LMO 19 are inert towards NiO. However, Marrero-

Lopez et al. have studied the thermal stability of NiO/W1.5 mixture under 5% H2-Ar atmosphere 

at 650 oC -LWO 

-LMO type phase 9. The presence of the 

LWO type phase was ascribed by these authors to a reaction between NiO and W1.5 oxides. In 

this work it was demonstrated that this composition (W1.5) is metastable. In order to check that 

the -LWO phase arise from a release of metastability rather than from a reaction, 

a mixture of Ni/W1.5 (50 Wt.% /50 Wt.%) was annealed at 1000 oC which is a temperature 

- oC/min. Note that in these conditions of 

-phase. For the sake of 

comparison, the same experiment was carried out on the W1.2 composition which is 

thermodynamically stable. XRD patterns collected on the mixtures after annealing reveals that 
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no reaction between NiO and W1.5 or W1.2 occurs even at 1000 oC (see Fig. 3.16) Thereby, the 

-LWO phase observed by Marrrero et al. 9 for a mixture NiO/W1.5 arises from 

the release of metastability of this W-composition rather than from an undesired reaction.  

   

Figure 3.16: XRD patterns of W1.2 and W1.5 after annealing (for 60 Hrs at 1000 oC) with 50  

50 Wt.% with NiO. Peaks attributed to NiO are marked with a star. 

 

3.4 La2Mo2-yWyO9 with y = 1.6-1.8 

 The increase of W-amount in LMO above y = 1.575 necessitates an increase of the 

synthesis temperature up to 1250 oC in order to obtain raw powders exempt from impurity. 

Contrary to what has been observed for y  1.575, cooling from the synthesis temperatures at 5 
oC/min is not enough to metastabilize the whole sample into -form at room temperature. A 

mixture of -LWO -LMO is obtained. Only a quenching into water  ice mixture allows to 

get a single - -phase samples was 

probed by DTA and TC-XRD. From these analyses, it appears that W1.6 composition stands 

apart from the remaining ones W1.65 - W1.8. 
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3.4.1 La2Mo0.4W1.6O9 (W1.6) 

 DTA was carried out in the temperature range RT-1175°C with a heating/cooling rate of 

10°C/min on the y = 1.6 compound which was quenched from 1250°C into a water-ice mixture. 

The curve is displayed in Fig. 3.17. Surprisingly, DTA revealed the appearance of multiple phase 

transitions in this sample upon heating and no transition while cooling. This behavior is not seen 

i

peak. -LMO phase before DTA and was a - -LMO 

phases after DT analysis. TC-XRD was carried on such sample to determine the nature of the 

phases involved in these transitions. The transition around ~ 475 oC, corresponds to the transition 

- - -LMO (see Fig. 3.17). These two phases coexist till 

750 o -LWO takes place. Appearance of 

exothermic peak at 1008 o -

-LMO phase.  

 

 

Figure 3.17: DTA curve of W1.6 sample showing multiple phase transitions (left). TC-XRD 

patterns of W1.6 (right) from room temperature to 960 o -LMO 

(red) to a - - -LWO (blue) can be 

clearly seen.  Note that the initial sample is quenched into a mixture of water and ice. 



84 | P a g e  
 

 

Figure 3.18: XRD patterns of W1.6 after annealing at 1250 oC and cooling down to room 

temperature at 5 oC/min (bottom), cooling into a mixture of water and ice (middle) and W1.6 

after heat treatment at 800 oC for 96 hours (top).  

 

 To determine the nature of the thermodynamically stable phase below 1008 oC, short or 

long annealing followed by quenching into a mixture of ice and water were performed on a 

biphasic W1.6 sample synthesized by annealing the sample till 1250 oC and cooling down to R.T 

at 5 oC/min. Quenching experiments were performed after annealing the sample in Pt capsule at 

800 oC, 750 oC, 700 oC, 650 oC, 600 oC for 12 hours; and 500 oC for 96 hours and 400 oC for 48 

hours. All samples after annealing were o - -LWO type 

phase is also obtained when biphasic raw powder of W1.6 sample is annealed at 800oC for 96 

-LWO form is the thermodynamically stable 

state of W1.6 composition below 1008 oC (see Fig. 3.18). 

 TC-XRD patterns and DTA curves were collected on such heat treated (800 oC for 96 

hours) W1.6 sample. Two successive DTA measurements were performed. The sample was first 

heated to 1175 oC and cooled at 2 oC/min (1st cycle), reannealed to 1175 oC and cooled at 10 
oC/min (2nd cycle). DTA analysis was performed over ~100 mg of sample in 100 ml/min of air 
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flow (see Figure 3.19). An endothermic event associated to a phase transition was observed upon 

heating for both cycles (see Fig. 3.19) while an exothermic event was only noted on cooling at 2 
oC/min in the first cycle. XRD analysis performed on sample after the second cycle of DTA 

- -LMO phase was obtained when the 

sample was quenched from 1250°C into water-ice mixture, the above result shows that a cooling 

rate of 10°C/min is fast -

form, thus acting as quenching effect.  

 

 

Figure 3.19: DTA curves of W1.6 (which was previously heat treated at 800 oC for 96 hours)  

 

 To determine the nature of the phases observed by DTA on heating and cooling, TC-

XRD analysis was performed on similar W1.6 sample which was annealed for 96 hours at 800 
oC. The thermal evolution of XRD patterns while heating and cooling is displayed in Fig. 3.20. 

-LWO phase at room temperature has a phase transition to a mixture of cubic 

and triclinic phases at 890 o -LMO phase around 980 oC and remain 

unchanged till 1150 oC. While cooling the sample back to R.T., XRD patterns were collected 

-LMO phase was seen till 500 oC. Between 500 oC to 450 o -LMO 

phase to bi-phasic domain occurs and W1.6 remains bi-phasic upon further cooling down to 

room temperature. The average rate of cooling in TC-XRD was calculated to be ~1.8 oC/min 
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(calculated by considering time took for each data collection at each temperature and time 

needed for cooling the sample down to the next temperature and the temperature difference). 

Since both - -LMO phases coexist at room temperature when the sample is cooled at 

1.8 °C/min during TC- -LWO detected 

by DTA in the first cooling at 2°C/min is par

transition upon the next heating at 10°C/min.  

 Considering the DT and XRD analyses, synthesis under different cooling rates (including 

quenching) and long term annealing measurements, -LWO is the 

thermodynamic stable phase for this compound at room temperature. However above 980 o -

LMO is the stable phase. Depending on the cooling rates applied during synthesis and post heat 

treatments, W1.6 can be obtained as a single cubic or triclinic phase or a mixture of both phases. 

- -LMO phase is obtained at room temperature, a 

release of metastability occurs on heating. 

 

 

Figure 3.20: TC-XRD patterns collected on W1.6 upon heating (left) and cooling (right) 

(previously heat treated at 800 oC for 96 hours). Phase transitions can be clearly identified in 

- - - -LWO (blue). 
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3.4.2 La2Mo2-yWyO9 with y = 1.65-1.8 

 DTA curves and TC-XRD patterns were collected on the y = 1.65 to 1.8 compounds 

which were quenched from 1250 °C into a water-ice mixture (see Fig. 3.21 and Fig. 3.22). Upon 

heating, DTA curves exhibit one intense exothermic peak at around ~435-464 oC (peak 

maximum) and one intense endothermic at around ~1020-1048oC (peak maximum). Note that 

the difference in temperature between these two thermal events increases as the W content in the 

sample increases. The thermal evolution of the patterns collected on heating for the W1.7 sample 

(Fig. - -LWO phase upon 

heating around ~ 400 o -LMO phase above 1030°C. The transition 

temperatures determined by both DTA and XRD are in good agreement (see Fig. 3.23). Contrary 

to the W1.6 composition in similar data collection conditions, successive DT analyses show that 

 phase transition taking place at high temperature upon heating is here reversible on 

cooling whatever the compositions: an intense exothermic peak is measured at around ~549-653 
oC (peak maximum). However this reversibility is partial since all samples with y = 1.65 to 1.8 

are bi- - -LWO) after DTA measurement.  

 

          
Figure 3.21: DTA curves of samples with y = 1.65 to 1.8 (quenched into mixture of ice and 

water).  Transition temperatures: Onset (Tonset) and Peak max (Tp.max) are given in inset. 
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Figure 3.22: TC-XRD patterns collected upon heating the W1.7 sample which was previously 

quenched from 1250 oC into a mixture of ice and water. Phase transitions from m -

-LWO (violet -LMO (red) and vice versa can be seen. 

 

 

Figure 3.23: Evolution of phase transition temperatures in W1.65 to W1.8 oxides. Note multiple 

phase  -

XRD and DTA are given in inset.  
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 To determine the nature of the thermodynamically stable phase below 1000 oC, short or 

long annealing followed by quenching into a mixture of ice and water were performed on 

biphasic W1.65, W1.7 samples (synthesized at 1250 oC and cooled to R.T. at 5 oC/min). 

Quenching experiments were performed after annealing the sample in Pt capsule at 800 oC, 750 
oC, 700 oC, 650 oC, 600 oC for 12 hours; and 500 oC for 96 hours and 400 oC for 48 hours. All 

samples after annealing were obtained in an - -LWO type phase is 

also obtained when biphasic raw powder of W1.7 and W1.8 samples is annealed at 800 oC for 96 

hours and co -LWO form is the thermodynamically stable 

state of all these compositions below 1000 oC. 

 TC-XRD patterns and DTA curves were collected on such W1.7 and W1.8 samples. Two 

successive DTA measurements were performed. The sample was first heated to 1175 oC and 

cooled at 2 oC/min (1st cycle), re-annealed to 1175 oC and cooled back at 10 oC/min (2nd cycle). 

The DTA curves and TC-XRD are displayed in Fig. 3.24 and Fig. 3.25 respectively.  

 

Figure 3.24: DTA curves of W1.7 and W1.8 samples which were annealed at 800 oC for 96 hours 

before measurement (DTA conditions: ~100 mg of sample with 100 ml/min air flow).  

 Contrary to what has been observed for W1.6 composition in similar data collection 

conditions, successive DT analyses  phase transition is reversible whatever the 

compositions considered and the cooling rates used. However, the TC-XRD patterns collected on 
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cooling reveal that the reversibility of the phase transition is partial and complete in nature for 

W1.7 and W1.8 samples, respectively. Indeed, both LWO and LMO phases coexist when 

the W1.7 sample is cooled below 700°C while the XRD patterns for W1.8 sample show a pure 

LWO phase on cooling below 900°C.  

 Between the W1.7 and 1.8 samples, a significant difference of 200 °C in the 

transition temperature is determined from TC-XRD measurements on cooling at ~2 °C/min. It is 

consistent with DT analysis performed on cooling at 2 °C/min since the average cooling rate 

during TC-XRD is similar. In DTA curve of quenched W1.7 sample reported in Fig. 3.24, a 

splitting of the exothermic peak while cooling was observed. Since a mixture of LWO and 

LMO phases is obtained after cooling the W1.7 sample at 10 °C/min, the peak splitting cannot 

arise from -LMO  - -LMO  -LWO phase transitions. In that way, one 

can interpret this peak splitting as originating from a non-uniform distribution of W/Mo within 

epending on 

the W content and such a possibility was reported in literature 1. Phase transition temperatures 

and nature of phases are discussed in Section 3.6.  

 

Figure 3.25.a: TC-XRD patterns of W1.7 sample upon heating (left) and cooling (right) which 

was previously heat treated by annealing at 800 o - -

- -LWO (blue) can be noticed. 
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Figure 3.25.b: TC-XRD patterns of W1.8 sample upon heating (left) and cooling (right) which 

was previously heat treated by annealing at 800 o - -

- -LWO (blue) can be noticed. 

 

3.5 La2Mo2-yWyO9 with y = 1.85 - 2.0 

 All four samples (y = 1.85, 1.9, 1.95 and 2.0) -LWO phase 

irrespective of the cooling rate applied while synthesis. -

LMO phased samples (from y = 1.85 to 2.0) were unsuccessful. The thermal study of the -LWO 

phases was probed by DTA and TC-XRD. DTA performed on W1.9 and W2.0 samples exhibits 

one endothermic peak on heating and one exothermic peak on cooling. The XRD patterns 

collected on the samples after DT analys -LWO phase. From TC-XRD patterns 

collected on the samples of 1.85, 1.9, 1.95 and 2.0, the thermal events on heating and on cooling 

are associated to  and  phase transitions, respectively (see Fig. 3.26). The transition from 

-LMO phase to -LWO phase undergoes through a transient mixture of both phases in the 

temperature range 1010-1060 °C and 1080-1090 °C for W1.9 and W2.0 samples, respectively 

(see Fig. 3.27).  
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Figure. 3.26: DTA curves of W1.9 and W2.0 samples. These samples were synthesized at      

1250 oC by cooling at 5 oC/min. 

  

 Although the TC-XRD patterns were collected only every 50 -

-LMO phases can be also noticed in the XRD pattern of the W2.0 sample at 1000 °C 

on cooling. On cooling at 10°C/min, the exothermic peak in DTA curves for both samples is 

broader than the endothermic peak measured on heating and exhibits a shoulder on the high 

- -LWO phase implies a 

cationic migration which decreases as the temperature decreases, a high cooling rate of 10 

°C/min is likely to induce a non-uniform distribution of W/Mo within the sample. It leads to 

ins the 

peak broadening and/or the occurrence of shoulders. 

 



93 | P a g e  
 

 

Figure 3.27.a: TC-XRD patterns of W1.9 sample while heating (left) and cooling (right) which 

was synthesized at 1250 oC and cooling at 5 o - - -

LWO (violet) -LWO (blue) can be identified. 

 

 

Figure. 3.27.b: TC-XRD patterns of W 2.0 sample while heating (left) and cooling (right) which 

was synthesized at 1250 oC and cooling at 5 o - - -

-LWO (blue) can be identified. 
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3.6 Phase Diagram of La2WyMo2-yO9  

 It was observed that variation in the synthesis conditions of W-LMO compounds can 

have effect on final phase purity of the compounds and accordingly samples with single phase 

(either cubic or triclinic) and bi-phasic were synthesized. Here overview of all the final phase 

purity of samples and their synthesis conditions will be taken into consideration. Results of DTA, 

XRD analysis and TC-XRD analysis will be considered and a phase diagram of the series with y 

= 1.0 to 2.0 will be proposed.   

 W1.0, W1.1 and W1.2 oxides when synthesized by cooling at 5 oC/min, -

LMO phase. Even though long heat treatments were performed, these samples were always -

LMO phase. DTA measurements carried on these samples showed neither endothermic nor 

exothermic events -LMO form is a thermodynamic stable state.  

 Samples from W1.3 to W1.575 when synthesized by cooling at 5 oC/m -

LMO form. DTA performed on these samples did not show any phase transition. TC-XRD 

performed on W1.3 and W1.35 also did not reveal any phase transitions. However samples W1.4 

to W1.575, when annealed in TC-XRD unit, revealed partial transition from -LMO to -LWO 

phase -LMO phase at elevated temperatures. 

The samples W1.3 to W1.5, when heat treated at 800 oC for 96 hours, resulted in bi-phasic 

products, sustaining that a mixture of the - -LWO forms is their thermodynamically 

stable state. DTA analyses on heat treated samples show phase transition while heating but no 

such events while cooling. TC-XRD performed on these samples show phase transition at 

elevated temperatures (above 950 oC), however the samples once cooled irrespective of their 

cooling rates, theese -LMO phase. They have to be again heat treated to achieve 

their thermodynamic - -LWO). DTA and TC-XRD results are consistent. 

Samples W1.3 and W1.5 are the end members of this metastable domain. The phase transition 

temperatures are listed in Table 3.2.   

 Samples from W1.6 to W1.8 synthesized by cooling at 5 oC/min lead to the formation of 

biphasic compounds at room temperature. DTA analysis show phase transition events while 

heating and cooling. When these samples are quenched from elevated temperatures into a 

-LMO phase compounds can be obtained. In this case -
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LMO phase is metastable and metastability releases upon annealing, around ~400 oC depending 

on W-content. DTA performed on these samples show multiple phase transition, which are 

consistent with the TC-XRD results. These compounds once annealed transit -LWO phase, 

-LWO phase as their stable state -LWO phase show 

-LMO phase at elevated 

temperatures (  980 oC). Transition temperatures are listed in Table 3.2. 

 Irrespective of the cooling rates and heat treatments, compounds from W1.85 to W2.0 are 

-LWO phase at room temperature. These compounds if annealed go through short bi-

-LMO phase (> 1050 
oC). The temperature limits of this bi-phasic domain increases with increase in W-content (see 

transition temperatures in Table 3.2).   

  Considering the results of DTA, XRD, TC-XRD and heat treatment measurements it was 

possible to differentiate stable and metastable domains in this series of samples (see Fig. 3.28). A 

phase diagram is proposed for the samples from y = 1.0 to 2.0 (see Fig. 3.29).  

 

Table 3.2: Phase Transition temperatures of all compounds from y = 1.0 to 2.0 (determined by 

TC-XRD).  
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Fig. 3 .28: Compounds in W-LMO series exhibiting metastable behavior at room temperature.  

 

   

Fig. 3.29: Proposed phase diagram for W-
Note that all compounds used for proposing this phase diagram were in their respective 

thermodynamically stable states.   
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3.7 X-Ray Powder Diffraction Analyses 

 The aim of this section is to determine the evolution of the unit cell volumes as a function 

of the W amount for raw powders and heat treated samples at R.T and at 700 oC. Evolution of 

weight fractions of each phase present in bi-phasic raw and heat treated samples are also studied. 

A new Nomenclature is proposed for ease of comprehension, and this nomenclature is provided 

according to the thermal history of the sample and the XRD data collecting conditions. XRD 

patterns collected on raw powders at room temperature which were synthesized at 1150 oC/1250 
oC are called RP-1200-RT (Raw powder  Synthesis temperature/1200  Room temperature). 

XRD patterns collected on heat treated samples (annealed for 800 oC for 96 hours) at room 

temperature are called HT-800-RT (Heat treated  Annealing Temperature/800 oC  Room 

temperature). As mentioned earlier, heat treated samples from y = 1.3 to 1.8, TC-XRD is 

performed at 700 oC; and XRD patterns collected on these pre-heat treated samples at 700 oC are 

called HT-800-700.  

 The crystal structures have been refined from X-ray powder diffraction patterns by the 

Rietveld method using the structures of -La2Mo0.6W1.4O9 (by Corbel et al.20) and -La2W2O9 

(by Laligant et al.6) as starting structural models. Since the X-ray scattering factor of oxygen is 

lower than that of La, Mo and W, the atomic positions and Site Occupation Factors (SOF) of the 

oxygen atoms were kept fixed at the values of the structural models determined from neutron 

diffraction data. -zero shift, parameters of the profile shape function, unit cell parameters, 

atomic positions for cations were refined step by step together. In a first step, the site occupation 

factors for Mo and W were kept fixed at the values of the nominal content of the composition 

and refined later. 

 

3.7.1 Raw powders 

 Unit cell parameters of all compositions as well as the weight fractions of the phases 

present in the bi-phasic samples are reported in Table 3.3. Representative observed, calculated, 

and difference diffraction patterns for samples exhibiting a single cubic phase, a single triclinic 

phase and a mixture of both phases are displayed in Fig. 3.30 and Fig. 3.31. 
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Table 3.3: Unit cell parameters of phases present in y = 1.0 - 2.0 samples (RP-1200-RT).  
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Figure 3.30. : Observed (red dots), calculated (black lines), and difference (blue, below) patterns 

of La2WMoO9 and La2W1.85Mo0.15O9 (RP-1200-RT). Vertical markers give Bragg peak 

positions of space group P213 or P-1, respectively. Reliability factors of the refinement were 

given in inset. 
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Fig 3.31. : Observed (dots), calculated (lines), and difference (below) patterns of bi-phasic 

La2W1.7Mo0.3O9 and La2W1.8Mo0.2O9 (RP-1200-RT). Vertical markers give Bragg peak positions 

of space group P213 ( form) and P-1 ( form), respectively. Reliability factors of the 

refinement were given in inset. 
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 As shown in Figure 3.32, the cubic unit cell volume of La2Mo2-yWyO9 samples decreases 

linearly (Volume (Å3): V = 370.791  4.7572 (y), where y is the W content) as the tungsten 

content y increases from y =1 to 1.55. This evolution is in good agreement with previous studies 

reported by our group20 and by Collado et al.1. Since W6+ ionic radius is slightly larger than that 

of hexavalent molybdenum, one would have expected the cell parameter to slightly increase 

upon W substitution. Previous thorough neutron diffraction study has revealed that this singular 

evolution is correlated with nonlinear changes in the O1 site cationic surrounding and with a 

variation in O2/O3 site occupation resulting in/from a decrease of the coordination number of 

tungsten ions 20. For tungsten content higher than y = 1.85, all compositions crystallize in a 

triclinic -LWO type structure. Surprisingly, no significant evolutions of the cell parameters are 

noticed as the tungsten amount increases (in Fig. 3.33). 

 

 -phasic in nature thus implying 

to carry out Rietveld refinements with both -LMO and -LWO structural models. The cubic 

unit cell parameter of -LMO type phase still decreases between y = 1.6 and 1.7 following the 

previous linear dependence on y, V = 370.791  

4.7572 (y)). For the latter composition y =1.8, the cubic unit cell volume is much lower than that 

expected from the previous linear regression. In addition, the weight fraction of -LMO type 

phase close to one third for y = 1.6 and 1.7 compositions decreases by a factor 2 for y =1.8. 

When compared in Fig.3.34 the diffraction patterns of these bi-phasic samples with those of 

mono-phasic specimens for either y<1.6 or y>1.8, one can note that diffraction lines of both 

phases are strongly broadened for compositions ranging from y = 1.6 to 1.8. In our series of 

samples, the difficulty to obtain satisfactory calculated patterns and then the low reliability 

factors for the Rietveld refinements, in particular for y = 1.8 composition, were ascribed to a non 

perfect simulation of the line broadening for both phases. In a previous study performed by 

Collado et al.1, it has been suggested that the coexisting -LWO and -LMO type phases in the 

interpret the line broadening (severe for y = 1.8, Figure 3.34) observed as a trace of the existence 

of a concentration gradient for both phases. This gradient, being probably dependent on the way 

the cooling to room temperature occurs, has a direct incidence on the stabilization or not of the 

-LMO type phase and on its weight fraction within the sample. 
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Figure. 3.32: Evolution of unit cell volume of compounds from W 1.0 to W 2.0 (RP-1200-RT). 

Unit cell volume of -LMO is compared against the model proposed by Corbel et al.20 and 

Collado et al.1  

 

 
Fig. 3. 

compounds W1.6 to W2.0 compounds (RP-1200-RT).  
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Figure 3.34: XRD patterns of W1.0, W1.6  W1.85 and W2.0 oxides (RP-1200-RT). Notice the 

change in the peak width. 

 

3.7.2 Powders post-annealed above 700°C 

 When the raw powders of compositions ranging from y = 1.3 to 1.8 were post annealed at 

temperatures above 700°C, release of metastability of the -form has been highlighted thanks to 

temperature-controlled X-ray diffraction. Two series of X-ray diffraction patterns were collected 

on these samples with the aim to determine the weight fraction of each phase when samples are 

in stable bi-phasic states (1.3  y  1.5). The first series was recorded at room temperature on 

raw powder post-annealed at 800 °C for 96 h and cooled down at 5°C/min, while the second data 

collection was carried out in-situ at 700 °C on the previous post-annealed powders. For both 

series of X-ray diffraction patterns, Rietveld refinements were performed. At first only the 

nominal content was used to calculate the occupation factors for Mo and W sites. Unit cell 

parameters and weight fractions are reported in tables 3.4 and 3.5. Observed, calculated, and 

difference diffraction patterns for all the samples are displayed in Figures 3.35 to 3.38. Besides 

y = 1.5 at room temperature, the cell parameters of -LMO or -LWO type phase follow the 

previous dependences on y of the cell parameters determined on raw powders as shown in Fig. 
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3.39. The evolution of unit cell parameters of these heat treated compounds at 700 oC is plotted 

in Fig. 3.40. In a previous study performed by Collado et al.1, it has been suggested that the 

coexisting -LWO and -

different fixed W/Mo ratios.  

 

 
Table 3.4: Unit cell parameters of phases present in y = 1.3  1.8 oxides (HT-800-RT). 

 

 
Table 3.5: Unit cell parameters of phases present in y = 1.3  1.8 oxides specimens at 700 oC 

(HT-800-700). 
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Figure 3.35: Observed (dots), calculated (lines), and difference (below) patterns at room 
temperature of La2WyMo2-yO9 (y=1.3-1.5) (HT-800-RT). Vertical markers give Bragg peak 

positions of space group P-1 ( form). Reliability factors of the refinement were given in inset. 
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Figure 3.36: Observed (dots), calculated (lines), and difference (below) patterns at room 
temperature of La2WyMo2-yO9 (y=1.6-1.8) (HT-800-RT). Vertical markers give Bragg peak 

positions of space group P213 ( form) and P-1 ( form), respectively. Reliability factors of the 
refinement were given in inset. 
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Figure 3.37: Observed (dots), calculated (lines), and difference (below) patterns collected at 

700°C on La2WyMo2-yO9 (y=1.3-1.5) samples (HT-800-700). Vertical markers give Bragg peak 
positions of space group P213 ( form) and P-1 ( form), respectively. Reliability factors of the 

refinement were given in inset. 
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Figure 3.38: Observed (dots), calculated (lines), and difference (below) patterns collected on 

La2WyMo2-yO9 (y=1.6-1.8) samples (HT-800-700). Vertical markers give Bragg peak positions 
of space group P-1 ( form). Reliability factors of the refinement were given in inset. 
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Figure. 3. - -LWO phases of y = 1.0 

to 2.0 compounds. Note that comparison is carried between heat treated samples HT-800-RT 

and raw powders RP-1200-RT. 

 

 

Fig. 3.40: Evolution of unit cell volume in W1.3-W1.8 compounds at 700 oC (HT-800-700).  
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This possibility has been then tested for 1.3  y  1.5 compositions by fixing the whole Mo 

content to the nominal content of the composition and by refining the occupation factors of Mo 

and W site with the following constrain: in order to balance for the enrichment in molybdenum 

of one phase, the second phase is depleted in molybdenum with the same magnitude. Results 

reported in Table 3.6, show the enrichment in tungsten of the -LMO type phase for y = 1.3-1.4 

compositions and a depletion for y = 1.5. In comparison with the cubic unit cell parameter that a 

single -LMO type phase with the equivalent tungsten content would have, the cubic unit cell 

parameter of the -LMO type phase determined is either very similar to that observed in Table 

3.3 for mono-phasic raw powders (y = 1.3-1.4) or higher (y = 1.5) which is not consistent with 

the magnitude of the enrichment or of a depletion in tungsten of the phase (the higher the 

tungsten content the lower its cubic unit cell parameter). Sum of W and Mo SOF of -LMO 

phase after the refinement do not correspond to their actual stoichiometry. 

 

 

Table 3.6: Change in the SOF of W1.3-W1.5 compounds (HT-800-RT) after refinement. No 

change in the -

SOF.  
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 It must be noted that in their thermodynamic equilibrium state at room temperature 

(reached after long annealing), the compositions in the range 1.3  y  1.5 are located in a border 

region of the phase diagram between two mono-phasic domains: a single -LMO phase domain 

for y  1.2 and a single -LWO phase domain for y  1.6. At room temperature, each 

composition located in this border region must consist in a mixture of -LMO and -LWO type 

phases having a tungsten content corresponding to compositions delineating this bi-phasic 

domain: between y  1.2-1.3 for the -LMO type phase and between y  1.575-1.6 for the -

LWO type phase (let say -La2Mo0.75W1.25O9 and -La2Mo0.4125W1.5875O9). Theoretically, the 

molar fraction of each constituent phase of a bi-phasic domain in a phase diagram can be 

determined by applying the Lever Rule 21. 

  

 By considering the reverse situation, the tungsten content of the end members of this bi-

phasic domain could be determined from the weight fractions in -La2Mo0.75W1.25O9 and -

La2Mo0.4125W1.5875O9 phases obtained from the Rietveld refinement of X-ray diffraction data of 

1.3  y  1.5 compositions. In Figure 3.41, the amount of the -LMO type phase within the 

sample decreases as the tungsten increases with a strong evolution above y =1.4. The Lever rule 

was then applied to each couple of compositions (y = 1.3+y = 1.4, y = 1.3+y = 1.5 and 

y = 1.4+y = 1.5). For each couple considered, the tungsten contents of the end members have 

been determined and tabulated in Table 3.7. Unfortunately, the tungsten contents are either not 

realistic (couple y = 1.3 + y = 1.4) or lower than the tungsten content of known bi-phasic 

samples (couples y = 1.3 + y = 1.5 and y = 1.4 + y = 1.5). Rietveld refined XRD patterns are 

given in Annex.II at the end of the thesis. 

 

 Suspecting that the tungsten content of each phase could be affected by cooling, and in a 

sense that it would have induced a concentration gradient, the above method for determining the 

limit of the bi-phasic domain was applied to weight fractions obtained from the Rietveld 

refinement performed on X-ray diffraction data collected in-situ at 700°C. Weight fractions and 

the tungsten contents of the end members are reported together in Table 3.7. Once again, the 

method remains non appropriate to determine these limits. 
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Figure 3.41: Evolution of weight fractions of -La2Mo2O9 and -La2W2O9 type phases in raw 

powders (RP-1250-RT) and heat treated La2WyMo2-yO9 (y=1.2-1.85) powders at room 

temperature (HT-800-RT) and at 700 oC (HT-800-700). 

 

 

Table 3.7: Boundary limits of bi-phasic domain calculated on heat treated W1.3-1.5 samples at 

R.T (HT-800-RT) and at 700 oC (HT-800-700) using the (inverse) Lever Rule.  
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3.8 Conclusions 

 La2Mo2-yWyO9 (y = 1.0 to 2.0) oxides were synthesized by conventional solid state 

synthesis route. Oxides with y = 1.0, 1.1 and 1.2 were always obtained in high conducting cubic 

-LMO phase. Heat treatment performed on these samples for 60 days at 700 oC, did not show 

any change in the crystal structure, suggesting -LMO is a thermodynamic stable state for these 

three compounds.  

 -LMO phase after synthesis using a cooling rate 

of 5 oC/min, however TC-XRD and DTA has shown multiple -

LWO phase appears at intermediate temperatures and disappears when heated at elevated 

temperatures. Short annealing performed on these (y = 1.3 to 1.575) samples (800 oC for 96 

hours) shows that the bi- - -LWO) is the stable state for these 

compounds at room temperature. However the limits of biphasic domain are suspected as: 

between W1.2 W1.3 for -LMO phase and between W1.575 W1.6 for -LWO phase. 

Application of (inverse) Lever rule to precise such boundary limits was delicate. This could be 

because of inhomogeneous W/Mo distribution within the sample (also supported by literature). 

TEC of W1.3 was calculated from linear regressions of two thermal domains as 15.6 x 10-6 oC-1 

and 22.3 x 10-6 oC-1 in the temperature range 25 - 350 oC and 350 - 900 oC respectively.  

 Oxides with y = 1.6 to 1.8 were bi- - -LWO) when synthesized and 

cooling rate of 5 o -LMO form when quenched 

from elevated temperatures into a mixture of water and ice (from ~1250 oC). TC-XRD and DTA 

exhibit multiple phase transitions in these samples and it was observed that rate of cooling has an 

impact over the final phase purity of these compounds. Short term annealing (800 oC for 96 

-LWO is a stable state for these compounds at room 

temperature.  

 -LWO was thermodynamic stable state at room 

-LMO phase was the stable state at elevated temperatures (above ~ 1050 oC). 

-LWO form, irrespective of rate of 

cooling or quenching. 
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 Overall it was observed that oxides from 1.0  -LMO form, and ~1.3 

1.8 were metastable (bi- - -LWO) and 1.85 -LWO phase. 

Considering the speculations on the boundary limits of bi-phasic domain, and all the DTA, XRD 

and TC-XRD results, a new phase diagram for La2Mo2-yWyO9 (y = 1.0 to 2.0) oxides is proposed 

(see Fig. 3.42). Inhomogeneous distribution of W is suspected in biphasic samples. It was clear 

that compounds above 60 mol% of W substitution (1.2<y) are not suitable for SOFC 

applications. It was shown that NiO does not react with La2Mo2-yWyO9 compounds, contrary to 

what has been claimed in the literature.  

 

 

Figure 3.42: Proposed phase diagram for La2WyMo2-yO9 (y =1.0 - 2.0) oxides. Note that the 
boundary limits of biphasic domain are assumed to be between W1.2-W1.3 for -LMO phase and 

between W1.575 W1.6 for -LWO phase. 
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Chapter 4:  
Cationic Diffusion Studies in La2Mo2O9 

4.1: Introduction 
 Chemical inertness between the electrolyte material and its electrode counterparts is a 

vital parameter for fuel cells. If reaction takes place between materials, the appearance of 

undesired reaction products at the interface affects the performance of the cell (i.e. decreases the 

overall cell potential or even puts the operation of total cell at risk). Chemical compatibility of 

La2Mo2O9 (LMO) was tested against many well known and industrially accepted electrode 

materials. NiO anode material was found to be totally inert towards LMO and LMO derived 

materials, thus making Ni-LMO cermets possible anode materials 1-3. Coming to chemical 

stability towards cathodes, LMO was found to be reactive with current industrially accepted 

materials. Chemical instability of LMO with several cathode materials, their reaction 

temperatures and reaction products were overviewed in chapter 1 in section 2.5. Apart from 

knowing the reaction products, it is important to understand the reaction mechanism and the 

diffusion phenomena governing it. For this, phase diffusivity of each element from one 

compound to the other has to be studied. The next stage would then be to find an appropriate 

barrier to overcome elemental diffusion.    

 Out of many compounds tested in mixture with LMO, La0.8Sr0.2MnO3-  (LSM) was found 

to be the least reactive compound and remaining stable in mixture with LMO below 700 oC, 

making it a suitable candidate for study 4. It was found that LMO reacts with LSM and forms 

insulating SrMoO4 phase at temperatures above 700 oC. These studies were performed on 

powder samples, which is not the case for SOFC applications. Here we induced reactivity 

between LMO with LSM pellets and attempts were made to study the cationic diffusion of 

elements from LMO to LSM and vice versa. We probed cationic diffusion in LMO and LSM, 

and investigated cross cationic diffusion between these two materials after pellets of such 

compositions were annealed in close contact by coupling the polished surfaces. Diffusion studies 

were also carried out by depositing desired cationic rich solutions on the surface of polished 

LMO or LSM pellets. Cationic diffusion studies were performed by SIMS measurements and 

XRD analysis. Similar experiments reported by other authors on zirconias, with electrode and 



120 | P a g e  
 

electrolyte materials, were discussed in chapter 1 in section 1.3.3. A brief introduction to SIMS 

measurements and experimentation methodology was given in chapter 2.   

4.2: Experimental Setup:  
 High density pellets (> 95%) of LMO and LSM were prepared by pressing and sintering 

powders of such compositions, which were synthesized by conventional solid state synthesis 

process. These highly dense pellets were polished mechanically using 0.1 µm diamond particle 

sprays. XRD measurements were performed to confirm their phase purity at every stage (stages 

include: after synthesis of powders, synthesis of pellets and after polishing the pellets). Once 

polished pellets were ready, cationic diffusion measurements were carried out. For cationic 

diffusion experiments two different sample setups were used (see Fig. 4.1). First setup involves 

coupling pellets of LMO and LSM together. Second setup involves deposition of cationic rich 

solutions on LMO and LSM pellets. 

 

Figure 4.1: Schematic representation of cationic diffusion experiments on LSM and LMO pellets. 

Coupled experimental setup (left); Solution deposited experiment setup on LMO pellet with 

solutions of Sr(NO3)2 and MnCl2.4H2O (two different solutions on two different LMO pellets) 

(middle); similar setup on LSM pellet with (NH4)6Mo7O24 4H2O solution (right) 

 

  In the first experimental setup, pellets of LMO and LSM were coupled together with 

polished surfaces facing each other. Three different measurements were performed by annealing 

three different couples under different conditions (different temperatures and time). The three 

measurement conditions were: 1) 1150 oC for 12 hours, 2) 1050 oC for 36 hours and 3) 1050 oC 

for 12 hours. These conditions were chosen to study the changes in diffusive behavior as a 
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function of temperature and time. All the couples went through rapid cooling after the annealing 

to avoid possible back diffusion or further reactions. The furnace was turned off and the door 

was opened.  

A complex reaction process and cross cationic diffusion of all cationic species was 

observed in measurements involving couples of LMO/LSM pellets. Corbel et al. also reported a 

complex reaction with SrMoO4 as a reaction product when powders of LMO and LSM were 

annealed together at elevated temperatures 4. To clarify such complex mechanism, a second 

experimental setup was introduced. In this setup, solutions of Sr(NO3)2 and MnCl2 4H2O were 

deposited on polished surfaces of two different LMO pellets. These measurements were 

performed to study the diffusive behaviour of the individual cation Sr/ Mn in LMO. Mo rich 

solution (NH4)6Mo7O24 4H2O, was deposited on polished surface of LSM pellet to study Mo 

diffusion in LSM. Horita et al., performed similar cation diffusion studies using SIMS 

techniques on solution deposited samples (where Sr(NO3)2 solution with 0.05 M amount was 

deposited on La1-xCaxCrO3 pellet and Sr content on such pellet was observed as 2 mg.cm-2) 5. In 

our case, all the solutions (Mn, Sr and Mo) were 0.5 M, and care was taken that amount of 

desired cation (Sr or Mn or Mo) is limited to 5 mg/cm2 on the surface of pellet. Such solution 

deposited pellets were than dried at 80 oC to remove water. It was later observed that the 

distribution of the solution on the surface of the pellets was not homogeneous (after drying the 

pellets at 80 oC). Non-uniform layer of solution on the polished surface of the pellet was found, 

with high amount on certain regions of the pellets and very low on other regions. This could be 

because of surface tension created by solution drop applied on the surface of the pellets. 

 to induce diffusion 

of solution into samples. Similar rapid cooling process, as performed on coupled experiments 

was carried out on these samples (turning off the furnace and opening the furnace doors). 

These samples after annealing at their respective temperatures have shown different 

reaction products. Reactions were followed by XRD analysis. Diffusion studies were carried by 

Focused Ion beam Secondary Ion Mass Spectrometry (FIB-SIMS) and Time of Flight  

Secondary Ion Mass Spectrometry (TOF-SIMS). Surface imaging, mass spectrograms and depth 

profile studies were conducted. Secondary electron and total secondary ion detector were used 

for in-situ surface imaging. Mass spectra were obtained over a wide range of mass (from 50  
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160 amu). For mass spectra, species of Mn (55+), Sr (84+, 86+, 87+, 88+; with isotope at 88+ amu 

being of 82.5% naturally abundant), Mo (92+, 94+, 95+, 96+, 97+, 98+, 100+; with isotope at 98+ 

being 24.1% naturally abundant) and La (138+, 139+; with 0.09 and 99.91 % abundance 

respectively) were used. Apart from individual elements, MoO+ and LaO+ species were also 

found at amu 108+  116+ and 155+ amu respectively.  Primary ion source of Ga (in FIB-SIMS) 

with amu 69+ and 71+ was detected. Mo has 7 isotopes widely spread in the range of amu 92 -

100+ with abundances ranging from 9.25 % to 24.1%, made it hard to detect. Depth profiling was 
2 and species of La+, Mo+, Sr+ and Mn+ were focused for 

study. The rate of sputtering for LMO and LSM pellets were calculated as 0.36 µm/sec and 0.29 

µm/sec respectively (see the section 2.6 of Chapter 2 for sputtering depth calculation procedure). 

For sake of clarity, results concerning the solution deposited pellets will be presented before. 

 

4.3 Results & Discussions: 

4.3.1 Surface reactions on the solution deposited La2Mo2O9 and La0.8Sr0.2MnO3-  pellets: 

 

4.3.1. 1) La2Mo2O9 with 5 mg/cm2 of MnCl2 4H2O solution deposition: 

 

LMO pellet was covered with MnCl2 4H2O solution and annealed at 1150 oC for 12 

hours. The pellet surface after annealing was analyzed by XRD, which showed presence of 

Mn3O4, LaMnO  and LMO phases (see the Fig. 4.2). When surface imaging of the pellet was 

carried out in SIMS equipment, three different kinds of surface morphologies were observed: 

smooth surfaced islands (A); rough textured surface (B) and fresh nucleated crystals (C) (see Fig. 

4.3). 

A depth profile was collected on a smooth textured island (area A) (see Fig. 4.4). Depth 

profile shows presence of La and Mo in these areas and no Mn was seen. Profiles of La and Mo 

were linear to each other and no changes were observed in their profiles until 10 µm depth. 

Similarities in their profiles would suggest that these areas (smooth islands) have homogeneous 

La and Mo content, therefore corresponding to the LMO substrate free from any deposited 

matter.  
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Figure 4.2:  XRD pattern of LMO pellet after deposition with MnCl2 4H2O solution and heat 
treatment at 1150 oC for 12 hours. 

 

 

Figure 4.3:  FIB-SIMS surface ion image of LMO pellet after deposition with MnCl2 4H2O 
solution. Three different surface features can be clearly noticed: the smooth surfaced islands 

(area A,) the rough textured area (area B), and the newly formed crystals (area C).  



124 | P a g e  
 

 

 Figure 4.4: FIB-SIMS depth profile of LMO pellet collected on smooth textured area after 
deposition with MnCl2 4H2O solution. Similarity in profile of La and Mo suggest the presence of 
LMO and fall of Mn signal in the background shows the absence of Mn on smooth surfaced area. 

 

As already seen on the pellet surface, areas B and C feature rough texture and nucleated 

crystals respectively. On both areas only FIB-SIMS mass spectrograms were collected because 

of high surface roughness (which would create an uneven crater formation and would lead to a 

huge error bar on depth profiles). On area C, nucleated crystals were observed to be oriented in 

indefinite direction relative to the pellet surface. This uneven distribution of crystals makes it 

hard to perform FIBS-SIMS depth profile.  

On the FIB-SIMS mass spectra, Fig. 4.5.b, collected on newly nucleated crystals of area 

C, species of La+, LaO+ and Mn+ were seen (apart from primary ion source Ga+). From the XRD 

pattern these newly nucleated single crystals are LaMnO . On the XRD pattern, one observes 

high intense peak of LaMnO o ((2 0 0) peak), showing that these 

(newly) nucleated single crystals were oriented preferably with (1 0 0) direction perpendicular to 

pellet surface. Fig. 4.6 shows a higher resolution image of these nucleated crystals. Nucleated 

single crystals were seen in the middle of the rough textured surface. On FIB-SIMS mass spectra 

collected from the rough textured area (Area B) (see Fig. 4.5.a), La+, LaO+, Mo+, MoO+, Mn+ 



125 | P a g e  
 

and MnO+ were seen. Apart from these species, Ga+ origination from the primary ion source was 

also observed. When FIB-SIMS mass spectra and XRD are compared, it is deduced that this 

rough textured area is composed of LMO and Mn3O4 phased compounds. It obviously results 

from the decomposition upon annealing of MnCl2 4H2O. In this rough textured surface, La from 

LMO reacts with Mn3O4 and forms LaMnO phase.    

   

Figure.4.5. a) and b) FIB-SIMS mass spectrums of rough textured areas (area B) and new 
nucleated crystals on the LMO surface (area C). 

   

 This would result in a Mo rich remaining phase but no Mo rich phase was detected in the 

XRD pattern. We propose two hypotheses for this observation. A first hypothesis is that the La 

deficient/ Mo rich is deep under LaMnO  single 

crystals and cannot be detected by XRD. Penetration depth of X-Rays under these conditions is 

limited to 9.7 µm (at 50o e of 

X-Ray penetration depths of all the reaction products found in this study are given in table 4.1. 

The second hypothesis results from the La2O3-MoO3 phase diagram (see Fig. 4.7). It can be seen 

in this figure that all the Mo rich phases (La2Mo3O12, La2Mo4O15, La2Mo6O21 and MoO3) have a 

melting point below the annealing temperature 1150 oC. Hence there is a possibility that this Mo 

rich phase sublimates upon annealing.  A possible reaction equation is: 
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3 La2Mo2O9 + 2/3 Mn3O4 + (1/6 ) O2  2 LaMnO3-  + 2 La2Mo3O12  

 

 

Figure 4.6:  FIB-SIMS surface ion image of LMO pellet after deposition with MnCl2 4H2O 
solution and annealing at 1150 oC for 12 hours. Nucleation of LaMnO single crystals from 

LMO and Mn3O4 phased rough surface can be noticed. 

 

Table 4.1: X-Ray penetration depth of compounds used for this study and their reaction products 
are given along with their evolution with o] angle. 
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Figure 4.7: Phase Diagram of La2O3  MoO3 system. 6  

 One of the goals of the experiment was to study the diffusion process of Mn in LMO 

pellet. In order to get the diffusion coefficient, regular amount gradient is expected. However, in 

this measurement non uniform reactions were observed, where La from LMO reacts with 

unequally formed Mn based compound and forms single crystals of LaMnO  Reaction 

between LMO and Mn3O4 is not complete. Appearance of such intermediate reaction products 

and uneven surface texture, limits any further diffusion analysis in these samples. The uneven 

distribution of Mn3O4 probably results from the fact that the deposition of MnCl2 4H2O solution 

on the surface of finely polished LMO pellet was not uniform. Pellet after deposition of Mn 

solution was heated at 80 oC to evaporate water in the solution. According to the color variation 

on the surface it was found that, amount of MnCl2 4H2O was higher at some regions on the 

pellet, whereas no MnCl2 4H2O was detected in some regions. This process has been probably 

governed by surface tension of the solution, amount of MnCl2 4H2O solution or some other 

uncontrolled parameters. Utilization of sputtering (RF-Sputtering) or vapour deposition process 
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(Pulsed vapour deposition or Chemical vapour deposition) for deposition of the Mn on surface of 

LMO pellet would have been advantageous. Such techniques would have achieved uniform 

deposition of Mn on the surface of LMO pellet; however the reaction of Mn with LMO and 

formation of reaction products would have been unchanged. Further studies using such 

deposition techniques are still in scope for Mn diffusion studies on LMO samples.  

 

4.3.1.2: La2Mo2O9 with 5 mg/cm2 of Sr(NO3)2 solution deposition: 

 

  LMO pellet was covered with Sr(NO3)2 solution and was annealed for 12 hours at 1150 
oC. The deposition method, drying of solution and annealing process were the same as mentioned 

earlier. After annealing, the pellet was studied by FIB-SIMS ion imaging, and the pellet appeared 

to have a high surface roughness. It was also observed that the material on the reaction surface 

was chipping out (see Fig. 4.8 for FIB-SIMS surface ion image of the pellet). Significant part of 

the material surface became brittle and was lost once exposed in FIB-SIMS equipment (because 

of ultra high vacuum in FIB-SIMS equipment: ~ 1 x 10-6 bar).  

 

Figure 4.8: FIB-SIMS ion surface image of the LMO pellet after deposition with Sr(NO3)2 
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XRD was performed on the pellet and four different phases La6MoO12 -LMO, SrMoO4 

and La2MoO6 were observed. Pattern matching was performed on this sample with all the above 

phases using FullProf package. Cell parameters and cell volume of the all refined phases are in 

agreement with their respective standards (see Fig. 4.9 and Table 4.2); however some variations 

in the intensity were observed in La6MoO12 and SrMoO4 phases. Sr(NO3)2 solution upon 

annealing decomposes to SrO and reacts with Mo in LMO forming SrMoO4 and Mo deficient 

lanthanum molybdates (like La2MoO6 and La6MoO12). However, when the phase diagram of 

SrMoO4 and La2(MoO4)3 was observed, it was realized that the solubility limit of Sr in 

La2(MoO4)3 phase and solubility limit of La in SrMoO4 phase is significantly high (see the Fig. 

4.10). SrMoO4 phase can accommodate a significant amount of La in its matrix, and La2(MoO4)3 

can accommodate high amount of Sr in its matrix and there also is a possibility for existence of 

intermediate solid solution (like Sr0.44La0.33MoO4 ). All these compounds even share a similar 

tetragonal structural arrangement with little variation in unit cell parameters. This makes it very 

hard to determine the exact composition or content of La/Sr in SrMoO4 type compound.  

Figure 4.9: FullProf fit performed on the XRD pattern of the LMO sample which was deposited 

with Sr(NO3) solution and annealed  
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Table 4. 2: Comparison of the cell parameters of the standard phases and the phases in the 
model proposed for LMO pellet which was annealed at 1150 oC for 12 hours after deposition of 

Sr(NO3)2. Standard references are taken from the International Centre for Diffraction Data 
(ICDD). 

 After annealing the LMO pellet with Sr(NO3)2 solution deposition, Sr diffuses into LMO 

pellet and reacts with La and Mo forming different reaction products (like SrMoO4 type phases) 

with varying Sr and La amounts as a function of depth and there would be a gradient in the 

dispersion of the reaction products (with various La and Sr content) over depth. In other words 

there will be high amount of Sr (and low La) in a SrMoO4 type phase at the surface of pellet and 

inside the pellet there would be low amount of Sr (and high La) in SrMoO4 type phase. Since 

XRD always gives average information over its penetration depth, it is harder to distinguish 

possible existence of multiple SrMoO4 type phases with different Sr and La content. XRD has 

shown the existence of a -LMO phase (pellet before annealing is -LMO). It 

is reported that Sr can be substituted for La in LMO and at between 2  7 mol% substitution, the 

-LMO can be stabilized down to room temperature 7, 8. Below 2 mol% 

substitution of Sr, LMO adopts the -LMO form and above 7 mol% the resultant 

compound is metastable. -LMO phase could be due to Sr 

incorporation in the LMO matrix and this behavior is in agreement with the literature 7.  
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                Figure 4.10: Phase Diagram of La2(MoO4)3 and SrMoO4 
9. 

 

Further investigation of the pellet was carried by FIB-SIMS depth profile collected on 

this sample on 20 x 20 µm2 area. The surface shows abundant presence of Sr on the surface of 

the pellet, and it shares a profile similar to Mo down to 13 µm (see Fig. 4.11). Sr and Mo profiles 

decrease down to 8 µm depth and remain unchanged down to 13 µm depth, below which there is 

a steep decrease in the Sr signal. Along with Sr and Mo, La was also seen on the surface of the 

pellet, which tends to gradually increase with the decrease of Sr amount down to 6µm depth, 

below which the La profile remains unchanged. The similarity in the profile of Sr, La and Mo 

down to 8 µm depth suggests that this area could be SrMoO4 type material with La in SrMoO4 

matrix. Such possibility was discussed earlier in the thesis . 

Between ~6 to 8 µm, amount of La increases, whereas amount of Sr and Mo falls down. 

Between ~8 to 10 µm, signals of Sr and Mo are constant and there is slight elevation in signal of 

La, showing that this area is rich in La.  This would mean that this area between ~8 to 10 µm was 
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build of Mo deficient lanthanum molybdates phases (i.e. amount of La is higher than that of Mo, 

like La2MoO6 and La6MoO12 phases) as observed by XRD along with SrMoO4 type compounds. 

Between 10 µm to 13 µm in the depth profile; La, Mo and Sr signals are constant. This region 

-LMO, as observed by XRD. This area (10-13 µm) could be in La2-

xSrxMo2O9 phase and content of Sr could vary over the depth. After 13 µm depth, Sr signal 

profile changes and appears to be falling down. However Sr presence did not completely 

disappear. Since the crater size is 20 x 20 µm, further depth analysis could lead to superficial 

signals which could be caused by crater walls or uneven surface roughness at the bottom of the 

crater e.t.c (more information about SIMS limitations in Annex-1). To further investigate such 

behavior of Sr after 13 µm depth, TOF-SIMS study was carried out. A slide of the sample was 

cut out and polished on the inner side of the pellet (see the schematic representation of in Fig. 

4.12). Later TOF-SIMS line scan was measured from the surface (Side A: reaction surface after 

deposition and annealing) towards bulk material. Amounts of Sr, SrO, Mo, MoO, La, LaO were 

studied.  

 

Figure 4.11: FIB-SIMS depth profile of LMO pellet after deposition with Sr(NO3)2 solution and 
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Figure 4.12: TOF-SIMS line scan setup on slide of sample cut out of LMO pellet after deposition 
with Sr(NO3)2  

 

 Similar line scan study was carried on the opposite side (Side B), the side which did not 

undergo any solution deposition or reaction, to check for any superficial artifacts. On side A (on 

the side of deposition), significant amount of Sr was seen and its amount increased gradually 

with the depth in the pellet and later such content falls back. This presence of Sr was observed 

for about ~ 60  70 µm. On a similar line scan performed on the same area, similar behaviour of 

Mo was also detected. Profile of Mo and Sr were same and their similarity lasts till ~ 60  70 

µm. After ~ 70 µm the Mo content goes linear with La signal and remain unchanged, this would 

mean that after ~ 70 µm LMO bulk material appears. On the TOF-SIMS image, little amount of 

La was seen on the surface of the pellet, and such amount increase gradually with the depth of 

the pellet. These results are in agreement with the FIB-SIMS depth profile results and XRD 

analysis. SrMoO4 type phase rich in Sr and Mo with little amount of La could be present at the 

surface till ~ 8 µm. La amount slowly increases whereas amount of Mo and Sr decrease till ~ 8 

µm. After such depth amounts of all the three elements remain unchanged. This is the depth 

where Sr enters in to the matrix of LMO and stabilizes it into cubic phase. La2-xSrxMo2O9 phase 

exist till ~ 60  70 µm after which Sr disappears and LMO appears. The diffusion length of Sr+ 

in LMO under the above mentioned conditions would be ~ 60  70 µm. See the line scan and 

TOF-SIMS images of side A in Fig. 4.13. Similar TOF-SIMS imaging and line scan 

measurements were performed on side B (the surface of pellet without any deposition). In these 

measurements constant Mo and La content were observed. Sr was not seen. One can notice that 

number of counts of Mo is less than that of La; this could be because of abundance of its 
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isotopes. Note that the number of counts of La and Mo cannot be compared to each other, since 

the signals correspond to the sputter yield rather than the actual amount of La or Mo in the 

sample (see Annex-1 for more information on SIMS limitations).This confirms that the pellet on 

the other side is pure LMO phase. See the line scan and TOF-SIMS images side B in Fig. 4.14.  

 From the TOF-SIMS results, profiles of La, Sr and Mo were collected as mentioned 

above. The ratio of Mo/La signals and Sr/La were plotted (see Fig. 4.15).  From the surface of 

the pellet for about ~ 60 µm distance, stronger Mo signal was noticed, which levels out 

indicating the constant composition of bulk LMO material. Similarly Sr also show strong signal 

for about ~60 µm from the surface and later disappear, confirming its diffusion length in LSM 

for about ~60 µm. Both Mo and Sr show similar profiles indicating the reaction product at the 

surface of the pellet to be SrMoO4 type material (even confirmed by XRD). Since the ratio of 

Mo/La and Sr/La profiles are not linear, it indicates that the reaction products have La in the 

SrMoO4 lattice and that amount of Sr and La in SrMoO4 type phases varies over depth. From the 

microstructure observed on TOF-SIMS image (see Fig. 4.13) it is evident that there is no 

apparent enrichment or depletion at the grain boundaries and since Sr content is gradually 

decreasing towards the surface of the pellet, it would be sensible to assume that this diffusion is 

rather bulk diffusion than grain boundary diffusion. 

 Unfortunately a different lattice will give different secondary ion yields and this makes 

quantification of any information very difficult. In addition, due to the apparent reaction between 

the materials this is no longer as simple as tracer ion diffusion and becomes more difficult to 

quantify any diffusion parameters of Sr as well as to give them any real meaning. However, 

using the approximated ~60 µm (at 1150 oC for 12 h) diffusion length of Sr in LMO, a diffusion 

coefficient, D, is estimated.  

 Considering D as the diffusion coefficient, L as diffusion length and t as time (in 

seconds); it can be stated that L = 2 (Dt)½  10. In this measurement, diffusion length (L) of Sr 

was nearly as ~60 µm in LMO after annealing at 1150 oC for 12 hours (t). Using these values in 

above the equation, diffusion rate of Sr (Dsr) in LMO was estimated as ~ 2 x 10-10 cm2 s-1.   
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Figure 4.13: TOF-SIMS Images of LMO pellet 
(on side A:  side of pellet where deposition was 
performed) after deposition with Sr(NO3)2 

 
Images of Sr+, Mo+ and La+ content can be 
seen. Line scan showing content of Sr+ and 
Mo+ can also be seen. Notice the similarities in 
the profiles of Sr+ and Mo+.  
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Figure 4.14: TOF-SIMS Images of LMO 
pellet (on side B:  side of pellet where no 
deposition was performed) after deposition 
with Sr(NO3)2 solution and annealing at 

+, Mo+ 
and La+ content can be seen. Line scan 
showing content of Sr+ and Mo+ can also 
be seen where no Sr+ was detected.  
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Fig.4.15: Ratio of Mo+/La+ (left) and Sr+/La+ (right) secondary ion yield signal counts as a function of 
distance from surface of pellet. Note that these TOF-SIMS measurements were performed on LMO pellet 

(on side A:  side of pellet where deposition was performed) after deposition with Sr(NO3)2 
 

   

 Sr diffusion coefficient in La0.75Ca0.25CrO3 (LCC) pellet was reported to be distributed 

from 1 x 10-17 to 10-13 cm2 s-1 in the range of 900 to 1100 oC 11. Diffusion coefficient of Sr in 

YSZ was observed to be ranging between 1 x 10-16 to 10-15 cm2 s-1 in range of 1325 to 1475 oC 10.  

Compared to the diffusion coefficients of Sr (in LCC or YSZ) reported in the literature, our 

estimate of Sr diffusion coefficient as ~ 2 x 10-10 cm2 s-1 (in LMO at 1150 oC) is significantly 

higher.  
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4.3.1.3: La0.8 Sr0.2MnO3-  with 5 mg/cm2 of (NH4)6Mo7O24 .4H2O deposited solution: 

 

 After annealing the LSM pellet covered with (NH4)6Mo7O244H2O solution for 12 hours at 

1150 oC, sample was observed by FIB-SIMS ion imaging. The surface morphology of the pellet 

consists of large and small grains (see the fig. 4.16). FIB-SIMS-depth profile was collected on 

smaller areas (10 x 10 µm) in this sample such that the beam can be focused only on large and 

small grains separately. The pellet was also analyzed by XRD, and presence of LSM, Mn3O4 and 

SrMoO4 type phases were detected (XRD pattern in Fig. 4.17).  

 

 

   Fig.4.16: FIB-SIMS ion surface image of LSM pellet after deposition with (NH4)6Mo7O24.4H2O solution 

and annealing for 12h at 1150 oC. 

 A depth profile was collected on large grains until 18 µm depth (see the depth profile in 

Fig. 4.18). Considering the profiles of La, Mo, Sr and Mn detected in this sample, it was possible 

to divide the depth profile in to three different zones (zones A, B and C) where peculiarity of 

each zone was differentiated. Zone A is from the surface of the pellet till 7µm depth.  
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Figure 4.17:  XRD pattern of LSM pellet after deposition with (NH4)6Mo7O24.4H2O solution and 

annealing for 12 hours at 1150 oC. 

 

   Figure 4.18: FIB-SIMS depth profile collected on a big grain formed on LSM pellet after 

deposition with (NH4)6Mo7O24.4H2O solution and annealing it for 12 hours at 1150 oC. Zone A, 

B and C can be identified along with color variation. Crater formed on the big grain after depth 

profiling is shown in the FIB-SIMS ion image on right side.  
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 In zone A, signals of La, Mo and Sr were found and no Mn was detected. This zone 

extends down to ~7µm, then zone B starts and extends down to ~16 µm. In zone B, Mn was 

detected and the content of Mn gradual increases and remains constant thereafter. Elevation in 

La content was also noticed along with fall of Sr and Mo signals. After ~16 µm zone C starts and 

it appears that all the signals were constant. Close observation of the depth profile in zone C 

shows gradual fall of almost all the signals. Considering 10 x 10 µm crater size perturbations in 

signals at depths more than ~10 µm could be assumed as instrument effect. SIMS depth profile 

analysis is based on secondary ion yield. During depth profile measurement if the depth of crater 

is more than its thickness, it is likely that secondary ions which were sputtered from the surface 

of the sample could be obstructed by the inner walls of the crater and do not reach the mass 

spectrometer detector, leading to the false count and overall fall in the signals (see the section I.2 

in Annex-I for limitations of SIMS experimentation). In order to have better insight in this 

sample TOF-SIMS line scan and surface imaging were also performed. These results will be 

discussed later in this section.  

 In the zones A and B, similarities in profiles of Sr and Mo can be seen. La was detected 

in zone A, with the elevation in profile in zone B. Considering the profiles of these three 

elements (and similarity in profiles of Sr and Mo) and XRD analysis, it can be said that the 

sample at the surface is most probably a Sr(MoO4) based compound with La partially substituted 

to  Sr (as discussed in previous sections, solid solution exists between SrMoO4 and La2Mo3O12, 

see Fig. 4.10). Zone B would then correspond to LSM or Sr deficient LSM material. Reaction 

mechanism is discussed later in this section. 

 FIB-SIMS depth profile was collected on the small grains (see the fig. 4.19). In this depth 

profile, Mo was not detected.  Sr signal was constant over the depth (from surface to ~15 µm). 

La content increases gradually until ~6 µm and remain unchanged. Surface of these small grains 

is rich in Mn, which falls gradually until ~ 6µm and later remains unchanged. Considering the 

XRD pattern (see Fig. 4.17), these small grains would then be Mn3O4 grains on top of LaMnO3 / 

LSM phase. Note that in LSM, La is partially substituted by Sr and both LaMnO3/LSM share 

similar structural arrangement.  
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Figure 4.19: FIB SIMS depth profile collected on small grains formed on LSM pellet after 

deposition with (NH4)6Mo7O24.4H2O solution. Crater formed on the area with small grains after 

depth profiling is shown in the FIB-SIMS ion image on right side. 

 

 For the TOF-SIMS measurement, the pellet was sliced off radially and the inner sides of 

the dissected pellets were polished (as described in earlier section and as in Fig. 4.12). The 

surface of the pellet on which solution deposition was performed was untouched were analyzed 

(see Fig. 4.20). As observed by depth profile, Mn+, La+ amounts in TOF-SIMS measurements 

were low on the surface and increased with the depth of the pellet. Mo+ was seen on the surface 

of the pellet and its content gradually disappeared with the depth. Mo+ can be seen till ~50 µm. 

Considering this diffusion length of Mo (~50 µm at 1150 oC for 12 h), the bulk diffusion 

coefficient was estimated as ~1.10-10.cm2s-1 (calculations were similar to those performed for Sr 

diffusion in LMO as in previous section) Some spots with high amount of Sr was noticed, this 

would be because of presence of SrMoO4 type grains and Mn3O4 type grains as seen on the 

surface by FIB-SIMS ion imaging. Irregular surface roughness was also detected, which would 

be the result of appearance of small and big grains as noticed in FIB-SIMS ion image. However 

such high amount of Sr (either from presence of SrMoO4 or irregular grain distribution) at the 

surface of the pellet gradually decreased with depth and remained constant in the bulk.  
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Figure 4.20: TOF-SIMS Images of LSM pellet (on the side of pellet where deposition was 
performed) after deposition with (NH4)6Mo7O24.4H2

hours. Images of Mn+, Sr+ , Mo+ and La+ content can be seen. Depletion of signal towards the 
sample surface is an artifact probably caused because of sample curvature due to polishing 

and/or mounting of the sample. 

 It is well informed in the literature that substitutions made to A-site cations segregate 

towards the surface in ABO3 type perovskites, yet the reason for this behavior is not understood 

well 12-16. Note (NH4)6Mo7O24 4H2O after annealing at high temperature decomposes into MoO3. 

Sr segregated from LSM pellet towards the surface reacts with the decomposed MoO3 to form 

Sr(MoO4) based material. Signals of La were also detected in FIB-SIMS depth profile. It is 

possible that La is present in the matrix of such SrMoO4 phase, because of existence of possible 

solid state solution between La2Mo3O12 and SrMoO4 as discussed in previous section. Since both 

end members of this series share similar tetragonal or pseudo-tetragonal structural arrangement 

with slight variation in unit cell parameters, it is hard to know the exact composition. Moreover, 

XRD data is always averaged over penetration depth. For example, X-ray penetration depth for 
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SrMoO4 o o. The result is consistent with 

presence of Sr1-xLaxMoO4 with small amount of La at the surface (0 µm) and gradual increase of 

La content with depth (for example down to ~ 14 µm). On the XRD pattern, such variation of La 

content cannot be differentiated because of their structural similarities. X-rays penetrate the 

whole of 12 µm depth volume giving only averaged information.  

 Three hypotheses are proposed for this complex reaction mechanism. In first hypothesis: 

La and Sr from LSM reacts with MoO3 and form Sr1-xLaxMoO4 (SrMoO4 - La2Mo3O12) phases. 
Such LSM compound which loose both Sr and La would form Mn3O4 type phases. In second 

hypothesis: Sr from LSM reacts with MoO3 and form SrMoO4 and small amount of La enters 

into SrMoO4 matrix. Sr deficient LSM becomes imbalanced with the loss of Sr, and takes La 

from surrounding areas forming LaMnO3 (LSM and LaMnO3 share similar structural 

arrangement). The surrounding LSM grains which loose Sr and La to form Sr1-xLaxMoO4 and La 

to form LaMnO3, form Mn3O4 phase. Limitations of XRD penetration depth; similarities in 

SrMoO4 - La2Mo3O12 phases and LaMnO3  LSM phases limit further analysis and a strong 

conclusion. Schematic representations of both the hypotheses 1 and 2 are presented in Fig. 4.21 

and Fig. 22 respectively.  

   

Figure 4.21: Schematic representation of hypothesis 1 for reaction mechanism (in stages) when 

LSM pellet is annealed after deposition with (NH4)6Mo7O24.4H2O solution.  
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Figure 4.22: Schematic 

representation of hypothesis 2 for 

reaction mechanism when LSM pellet 

deposited with (NH4)6Mo7O24.4H2O 

solution and annealed for 12 hours at 

1150 oC. Reaction mechanism is 

described in stages. 

 

 

 Third hypothesis is based on assumption of cation(s) segregation towards the surface of 

sample. Such a segregation behavior upon annealing is a well acknowledged phenomenon in A1-

xSxBO3 perovskites 12-16. On the surface of the LSM pellet, enrichment of SrO and MnO layers 

was observed by Jiang et al.15. In LSM, Mn is in mixed valance state (Mn3+ and Mn4+). It was 

reported that Mn4+/ Mn3+ratio at the surface is higher than that of bulk, and it was reported that 

such ratio varies with temperature (which affects the redox mechanism) 13. One can therefore 
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assume that SrO and MnO migrate towards the surface of the pellet and a thin layer of SrMnO3-  

growing on LSM surface. SrMnO3-  than reacts with deposited MoO3 and forms SrMoO4 type 

phases (along with little La). SrMnO3-  upon loosing Sr forms Mn3O4 grains (see Fig. 4.23). 

However, there could be some LSM grains on the top of the surface, where SrMnO3-  layer 

would have not covered and La from such grains enter the matrix of SrMoO4 (not represented in 

the figure). Since the stoichiometry of the final reaction products are not known (Sr/La content in 

Sr(MoO4) or LSM phases is not known), only an averaged chemical equation for the reaction is 

proposed. 

La0.8Sr0.2MnO3 + 0.2 MoO3  0.2 SrMoO4 + 0.8 LaMnO3 + 0.2/3 Mn3O4 + 0.2/3 O2  

 

Figure 4.23: Schematic representation of hypothesis 3 for reaction mechanism when LSM pellet 

is annealed after deposition with (NH4)6Mo7O24.4H2O solution. Reaction mechanism is described 

as stages. 
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 4. 3.2: Cationic diffusion measurements on La2Mo2O9 / La0.8Sr0.2MnO3-  pellet couples 

   Different annealing measurements were performed on pellets of LSM/LMO which 

were coupled together on their polished faces (detailed in section 4.2). As mentioned earlier, 

coupled experiments were performed at different temperatures and annealing times to study their 

respective effects on diffusion. Three different couples were annealed at 1) 1050 oC for 12 hours, 

2) 1050 oC for 36 hours and 3) 1150 oC for 12 hours (see the Fig. 4.24). After annealing, the 

coupled pellets were not sticked to each other and they split naturally. However, the surface 

topography and the darkish grey color on the surface of the LMO pellet indicated a reaction or 

diffusion of elements from LSM. On the LSM pellet, noticeable change in the surface roughness 

can be clearly identified. Because of complexity induced in the diffusion behavior, results are 

presented first and separate section is dedicated for discussions on reaction mechanism.  

 

 

Figure 4.24: Schematic representation of LMO and LSM couple (left). Bar diagram of the heat 

treatment experiments on three different LMO-LSM couples (right). 

 

4.3.2.1: XRD analysis and FIB-SIMS surface analysis on La2Mo2O9 pellets:  

     As mentioned earlier, LMO and LSM pellets of the couple split naturally. On the three 

LMO pellets from couples annealed at 1050 oC (for 12 and 36 hours) and 1150 oC, XRD analysis 

has shown presence of LaMnO3 /LSM phase (both the structures share similar rhombohedral 
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structure) (see Fig. 4.25). On the LMO pellet which was annealed at 1150 oC, another phase was 

also observed. The identification of this phase was delicate because of presence of only one low 
o. This peak can however be attributed to La2MoO6 

positioning of the peak fits with the position of the high intense peak of La2MoO6 phase and such 

phase was already observed when LMO pellet was deposited with Sr(NO3)2 and heat treated at 

1150 oC for 12 hours (see section 4.3.1.2 of this chapter). Corbel et al., reported appearance of 

La2MoO6 phase when powders of LMO and La0.6Sr0.4Co0.2Fe0.8O3-  were mixed and annealed at 

temperatures more than 800 oC 4. Probably this phase is a high temperature reaction product of 

LMO with Sr substituted perovskites. 

 

 

Figure 4.25:  XRD patterns collected on the surface of the LMO pellets which were coupled 

with LSM and annealed at (1): 1050 oC for 12 hours, (2): 1050 oC for36 hours and   (3)

for 12 hours. 

 The three LMO pellets were analyzed by FIB-SIMS surface analysis and numerous rod 

shaped structures were observed on the surface of all the three. In agreement with the reaction 

kinetics the size and number of rod like structures were higher in case of LMO pellet which was 

annealed at 1150 oC compared to pellet annealed at 1050 oC for 36 hours and even more when 
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compared to pellet annealed at 1050 oC for 12 hours. FIB-SIMS mass spectra analysis carried out 

on the rod like structures on the LMO pellet annealed at 1150 oC revealed that these structures 

were made up of La and Mn. The mass spectrum collected on these grains shows the presence of 

Mn+ (55), La+ (139), LaO+ (155) species (see the Fig. 4.26). On the other hand, another mass 

spectrum was collected on the area where rod shaped structures were not present. Such mass 

spectra does not indicate the presence of Mn+ (see the Fig. 4.27).  Considering the XRD results 

and mass spectra, it can be assumed that the composition of these rod shaped structures on the 

LMO surface is LaMnO3- . FIB-SIMS surface image of LMO pellets which were annealed at 

1050 oC for both 12 and 36 hours are given in Fig. 4.28.  

 

 

Figure 4.26: Mass spectrogram collected on the rod-shaped grains observed on the LMO 

sample surface which was annealed at 1150 oC for 12 h after coupling with LSM. Mn+ peak at 

55 amu can be clearly observed.  The crater formed from mass spectra is showed in the circle in 

the FIBS-Ion image. 
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Figure 4.27: Mass spectrum collected on planar area on the LMO sample surface sample 
surface which was annealed at 1150 oC for 12 h after coupling with LSM. No Mn+ peak at 55 

amu can be seen here. The crater formed from mass spectra is showed in the circle in the FIBS-
Ion image. 

 

Figure 4.28: FIB-SIMS surface ion image of LMO pellet annealed at 1050 oC for 12 h 
(right). FIB-SIMS surface Electron image of LMO pellet annealed at 1050 oC for 36 h (left).  

Rod shaped LaMnO3 structures can be noticed. Small dot like structures on the image are the 
result of Au sputtering.  
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4.3.2.2: XRD analysis and FIB-SIMS surface analysis on La0.8Sr0.2MnO3 pellets: 

 Surface of all three LSM pellets appeared rough (to the naked eye) after the heat 

treatments at 1050 oC (for 12 and 36 hours) and 1150 oC (initially these pellets were mirror 

polished). These pellets were then analyzed by XRD, and new SrMoO4 type phase was detected 

(see the Fig. 4.29). Possible appearance of SrMoO4 type phases in these compounds was already 

discussed in earlier sections along with respective phase diagram (high solubility limit of La/Sr 

in SrMoO4 and La2Mo3O12). The same behavior is suspected to be reason for the variations in the 

intensity of the peaks (in XRD pattern) attributed to SrMoO4 type phase. 

 

 

Figure 4.29:  X-ray diffraction pattern collected on the surface of the LSM pellets which was 

coupled with LMO and annealed at (1): 1050 oC for 12 hours, (2): 1050 oC for36 hours and   

(3)  

 FIB-SIMS ion and electron images were collected on LSM pellet which was annealed at 

1050 oC for 36 hours (see Fig. 4.30). During both the images (ion and electron) variation in the 

contrast was observed. When insulating material (non electronic conductive) material is exposed 

to electron beam, this variation is observed and this behavior is common for any electronic 

imaging (SEM, TEM etc...). Ion image was clear whereas electronic image was dark on some 
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areas. This insulating layer was attributed to SrMoO4 or SrMoO4 based materials (with La in the 

matrix) and the bright areas on the electronic image are attributed to LSM material (as observed 

by XRD).  

  

Figure 4.30: FIB-SIMS surface Ion image (left) and Electron image (right) of LSM pellet 
(annealing at 1050 oC for 36 Hours).  This contrast in ion and surface image is because of 

SrMoO4 type insulating phase. 

 

4.3.2.3: FIB-SIMS depth profile analysis on La2Mo2O9 / La0.8Sr0.2MnO3 couples: 

 FIB-SIMS depth profile analysis was carried out on all the three couples on both LMO 

and LSM pellets (on the faces which were in contact) (see Fig. 4.31). Depth profiles were plotted 

in a way to ease the understanding of diffusion behavior in these samples. The line separating 

both the pellets is the interface at which the pellets were coupled and annealed. 

 On the LMO / LSM couple annealed for 12 hours at 1050 oC (see Fig. 4.31): on the LSM 

pellet no significant change in signals of either La+ or Mn+ were detected. However Mo+ is found 

deep till 2 µm, which was diffused from LMO side of couple. Mo+ share similar profile with that  
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Figure 4.31:  FIB-SIMS depth profile collected couples of LMO and LSM pellets which were 
annealed for 12 hours at 1050 oC (top), 36 hours at 1050 oC (middle) and 12 hours at 1150 oC 
bottom.  Similarity in Sr+ and Mo+ profile on LSM side showing probable existence of SrMoO4 

type phase. On the LMO side Mn can be seen with changes in the length of diffusion. 
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of Sr+. SrMoO4 type phase detected by XRD was in agreement with this presence. Depth profile 

collected on LMO pellet does not reveal any Sr presence however almost negligible amount of 

Mn was noticed on the surface. No change in the profiles of La+ and Mo+ are noticed, this may 

mean that most of the surface is bulk LMO material. 

 For the couple annealed for 36 hours at 1050 oC (see Fig. 4.31): on the LSM part, Sr+ and 

Mo+ signals were seen with similar profile (till ~3 µm) defining possible presence of SrMoO4 

type phase. No big variation in the La+ profile was seen, which suggest that La was present in 

SrMoO4 type matrix. Little variation in the Mn+ signal was noticed at the surface of profile, 

which remains constant after 3 µm. These results suggest that, Mo from LMO diffused towards 

LSM and reacted with Sr in LSM creating SrMoO4 type insulating phase. Depth profile analysis 

of LMO pellet show presence of Mn+ until ~1.5 µm, whereas Sr+ signal can be seen till ~0.5 µm. 

No change in the profile of La+ and Mo+ were noticed. Presence of rod shaped LaMnO3 

structures on the surface of LMO pellet and Mn+ presence until ~1.5 µm suggest that these rod 

shaped structures are approximately ~1.5 µm thick.  

 For the couple annealed for 12 hours at 1150 oC (see Fig. 4.31); on the LSM side of the 

couple, Mo+ signal can be seen down to ~2.5 µm below surface and considering the similarities 

in the profile of Sr+ and Mo+ it can be assumed that the surface is rich in Sr(MoO4) type phase. 

La+ and Mn+ content was low at the surface which could be because of their probable diffusion 

towards LMO. The change in La+ and Mn+ profiles could also be because of the presence of 

higher amounts of Sr(MoO4) type phases on the surface of pellet, than deeper stabilize to 

constant levels. Mo+ cannot be seen after ~2.5  3 µm. All the elements La+, Mn+ and Sr+ get 

remain constant thereafter. In other words, LSM bulk material appears below ~2.5  3 µm depth. 

 On the depth profile on LMO, Mn+ was seen down to 6 µm from the interface. Presence 

of rod shaped structures on LMO side of the pellet was already discussed earlier and it was also 

known that these rod shaped structures are rich in La and Mn and correspond to LaMnO3 

material. Following the appearance of Mn+ down to ~6 µm deep, it would be sensible to assume 

that the rods shaped structures were present down to ~6 µm in depth. Change in Mo+ profile in 

LMO pellet could be caused by Mo loss (or diffusion) towards the LSM side for formation of 

Sr(MoO4) type phases. La+ signal is almost constant. Uneven distribution of rod shaped grains 

makes it hard to estimate the exact depth at which LaMnO3 exist. Sr+ was also seen in LMO 
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pellet until ~2 µm, however its amount is low. Sr could have entered into LMO matrix, which is 

-

LMO form. It was reported by Gao et al. 7 that, when Sr substitution to La in LMO is less than 2 

mol%, no change in the room temperature monoclinic structure can be detected (as discussed in 

section 4.3.1.2. of this chapter). This possibility of Sr diffusion in LMO cannot be overruled. 

Similar observations as in annealing measurement performed at 1050 oC were observed here, but 

with higher diffusion lengths. Explanation of the reaction mechanisms are discussed in next 

section. 

 Taking the penetration depths of Mo in LSM part of couple and Sr and Mn in LMO part 

of the couple (for  two couples: 1050 oC for 36 h and 1150 oC for 12 h), respective diffusion 

coefficients were estimated using the equation L = 2(Dt)½. Respective penetration depths of 

elements and there estimated bulk diffusion coefficients were given in Table 4.3.  

 

Table 4.3: Penetration depths and estimated bulk diffusion coefficients of Mn, Sr and Mo 

observed in LMO/LSM couples (annealed at 1050 oC /36 h and 1150 oC/12h). 

 

4.3.2.4: Discussions 

 In all of the diffusion measurements concerning couples of LMO / LSM, few limitations 

were observed. Structural similarities between LSM and LaMnO3, aswell as between SrMoO4 

and La2Mo3O12 phases, and high solubility of La/Sr in either of the phases have to be taken into 

account for the interpretation. XRD data was always limited to its penetration depth, considering 

existence of different reaction products as the function of depth of the pellet only averaged X-ray 



155 | P a g e  
 

data was obtained. However for the reaction mechanism concerning coupled pellets we propose 

three hypotheses.  

 In first hypothesis: Cross diffusion of La from LMO and Sr from the LSM pellet takes 

place. Such Sr deficient LSM phase on LSM pellet would become LaMnO3-  and La2-xSxMo2O9-d 

is formed on LMO surface. Once the samples were cooled by opening furnace doors (which 

cannot be considered quenching), there would be demixion of Sr forming LMO and SrMoO4 type 

phases. This demixion phenomenon has already been observed in alkaline earth LAMOX 

compounds. This behavior probably occurs in LMO /LSM couples at 1050 oC. Whereas in 

couple annealed at 1150 oC, demixion leads to formation of La2MoO6 (a Mo deficient lanthanum 

molybdate phase), La1-xMnO3-  (a La deficient lanthanum manganate phase), SrMoO4 and LMO 

phases. LSM grains which lost Sr towards LMO, forms LaMnO3 rod shaped structures, and these 

structures stick to the surface of LMO pellet while cooling back (see the Fig 4.32). The reaction 

mechanism is stated as: 

 

For LMO / LSM couple at 1050 oC:  

La1-xSrxMnO3-  + La2Mo2O9  LaMnO3-   + La2-xSrxMo2O9-x/2   LaMnO3-  + (1-x/2) 

La2Mo2O9 + x SrMoO4 

For LMO / LSM couple at 1150 oC:  

La1-xSrxMnO3-  + La2Mo2O9  LaMnO3-   + La2-xSrxMo2O9-x/2    La1-x MnO3-   +  (1-x) 

La2Mo2O9  + x SrMoO4  +  x La2MoO6 
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Figure 4.32: Schematic representation of reaction products observed in LMO and LSM couple.  

 

 As of the first hypothesis, LaMnO3 phase has to be observed in between layers of 

SrMoO4 and LSM, which was not consistent with the observation. To overcome this limitation 

another hypothesis is proposed. Second hypothesis is based upon an assumption of substituting 

cation(s) segregation towards the surface of sample. Such a segregation behavior upon annealing 

is a well acknowledged phenomenon in A1-xSxBO3 perovskites 12-16 (as discussed earlier in 

section 4.3.1.3 of this chapter). One can therefore assume that a thin layer of SrMnO3-  grows on 

the LSM surface, before reaction with LMO pellet.  SrMnO3-  then reacts with LMO to form 

SrMoO4 and LaMnO3 type phases. By cross diffusion of Mo and Mn through the surface 

LaMnO3 forms rod like structures and sticks to the surface of the LMO pellet, and SrMoO4 

remains at the surface of LSM pellet. For couple at higher annealing temperature (1150 oC), 

LaMnO3 becomes La deficient forming La1-xMnO3-  and such depleted La reacts with LMO 

forming La2MoO6 phase. Schematic representation of this mechanism can be seen in Fig. 4.33. 

The reaction equation would be: 

Surface segregation:               

LSM   SrMnO3-  (surface) + LS M (LS M with slightly lower Sr amount than LSM) 

Surface reaction in couples at 1050 oC:               

SrMnO3-  + ½ La2Mo2O9  SrMoO4 + LaMnO3 + ¼ O2  
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Surface reaction in couples at 1150 oC:               

SrMnO3-  + ½ (1 + x) La2Mo2O9   SrMoO4 + La1-xMnO3-  + x La2MoO6 + ¼ O2  

 

Figure 4.33: Schematic representation of hypothesis 2; a possible reaction mechanism in 

LSM/LMO couples 

 

The third hypothesis is a variant of the second one without prior Sr segregation. In these 

couples there would be cross cationic exchange of Mn from LSM side and Mo from LMO side. 

Excess Sr from Mn deficient LSM reacts with diffused Mo and forms Sr(MoO4) type phase. This 

area on LSM pellet which lost both Sr for SrMoO4 formation, and Mn for migration; turns into 

LaMnO . As both LSM and LaMnO3 share the same crystallographic rhombohedral structure, 

it cannot be clearly differentiated by X-ray diffraction. On the other side of the couple: Mo 

deficient lanthanum molybdate (since LMO lost Mo towards LSM) reacts with cross diffused 

Mn forming LaMnO  (freshly nucleated rod like structures). This kind nucleation of LaMnO
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is observed when Mn rich solution is deposited on LMO pellets. In couple at 1150 oC, LaMnO3 

becomes La deficient forming La1-xMnO3-  and such depleted La reacts with LMO forming 

La2MoO6 phase. Schematic representation of reaction mechanism is given in Fig. 4.34.  

 

Figure 4.34: Schematic representation of possible reaction mechanism in LSM and LMO couples 
which were annealed at elevated temperatures (hypothesis 3). 

Reaction in couples at 1050 oC:               

La1-xSrxMnO3 + x/2 La2Mo2O9    LaMnO3 + x SrMoO4 + x/4 O2  

Reaction in couples at 1150 oC:               

La1-xSrxMnO3 + x La2Mo2O9     La1-xMnO3-  + x La2MoO6 + x SrMoO4 
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 In solution deposited samples, care was taken to deposit same amount and amount of Sr 

and Mn on LMO pellets respectively. But when Mn rich solution was deposited on LMO pellet, 

there was huge amount of Mn3O4 (decomposed product of MnCl2.4H2O) left over on LMO 

surface which was unreacted. When Sr(NO3)2 solution was deposited on LMO pellet, there was 

no trace of SrO on the pellet surface. On the contrary, all the Sr is found to be reacted or deep in 

LMO pellet down to ~ 60  70 µm (as detected by TOF-SIMS line scan). In annealing 

measurements performed on the couples, Mn diffusion was quite limited. Mn diffusion of ~7 µm 

was observed on the LMO pellet which was annealed at 1150 oC. whereas on LMO pellets 

annealed at 1050 oC, Mn diffusion was limited to ~ 1 µm and ~0.5 µm (for 36 and 12 h 

respectively). This Mn seen on LMO pellets comes from rod shaped structures (see Fig. 4.35). 

This says the rate of reactivity of Mn with LMO is less than that of rate of reactivity Sr with 

LMO. In other words, SrMoO4 forms more rapidly than LaMnO . This would be underlying 

reason for observation of significant amount of (SrMoO4) type phased layer which was always 

observed on LSM side of the pellet. 

Complex reactivity in these compounds, formation of undesired reaction products and 

cross cationic diffusion of almost all the elements in the system, create non-homogeneous 

surface at the interface of pellet. Even in cation rich solution deposition experiments, the same 

problem was encountered. This non-homogeneous surface makes it very hard to estimate the 

diffusion coefficient of elements into each other. 

 One of the main problems to study the diffusion mechanism was lack of proper interface. 

As mentioned already, in the coupled samples, after the heat treatment, both pellets went apart 

naturally. Intermediate reaction products were seen. Both surfaces have shown different surface 

morphologies and high surface roughness. Any diffusion study (estimated diffusion coefficients) 

carried to have quantitative information on such samples could have significant error scale. Apart 

from that, natural limitations of SIMS technique also effect in quantitative analysis of such data. 

For the future perspective it is suggested to use sputtering of LMO material on LSM pellet or 

vice versa. Many sputtering techniques can be taken into consideration (ex. RF-sputtering, CVD, 

PVD e.t.c). Such sputtering would generate uniform thin layers of one compound on the other 

and would eliminate need of proper interface.  

  



160 | P a g e  
 

 

Figure 4.35: FIB-SIMS surface ion images of LMO pellets after coupling with LSM pellets and 
annealing (at1050 Co for12 hrs; at 1050 oC for36 hrs; and at 1150 oC for12 hrs (from left to 
right)). The evolution of variation of size and the shape of the rod shaped LaMnO3 formed on 

LMO pellets with change in reaction kinetics can be noticed. 
 
 

4.4: Conclusions 
The cross cation diffusion was investigated in the couples of LMO and LSM pellets. We 

reported the diffusive behavior of Sr, Mn when deposited on LMO pellets through solutions of 

Sr(NO3)2 and MnCl24H2O respectively. When (NH4)6Mo7O24 4H2O solution is deposited on 

LSM pellet, a complex reaction mechanism leading to the degradation of LSM pellet surface was 

observed.  

In the solution deposited diffusion measurements: Penetration depth of Sr in LMO was ~ 

60 µm (at 1150 oC for 12 h) and bulk diffusion coefficient of ~2 x 10-10 cm2 s-1 at 1150 oC was 

estimated. Penetration depth of Mo in LSM was around ~50 µm (at 1150 oC for 12 h) and bulk 

diffusion coefficient of ~1 x 10-10 cm2 s-1 at 1150 oC was estimated.  

On the LMO/LSM coupled measurements after annealing, rod shaped LaMnO3 grains are 

observed on LMO surface and SrMoO4 type insulating surface is observed on LSM surface. Bulk 

diffusion coefficient of Mo in LSM was estimated as ~1.5x10-13 cm2 s-1 and ~3.5x10-13 cm2 s-1 at 

1050 oC and 1150 oC respectively. Bulk diffusion coefficient of Mn in LMO was estimated as 

~4x10-14 cm2 s-1 and ~2x10-12 cm2 s-1 at 1050 oC and 1150 oC respectively. Bulk diffusion 

coefficient of Sr in LMO was estimated as ~5x10-15 cm2 s-1 and ~2x10-13 cm2 s-1 at 1050 oC and 
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1150 oC respectively. The reactivity mechanism and reaction products observed in the 

measurements performed on LMO/LSM coupled pellets are in agreement with those observed in 

cation rich solution deposition measurements carried out on LMO and LSM pellets. 

Bulk diffusion coefficients of Sr in both solution deposited on LMO pellet and from LSM 

pellet towards LMO (in LSM/LMO couple) are plotted in Fig. 4.36 and, assuming T-independent 

activation energy, linearly extrapolated down to lower temperatures. A standard fuel cell based 

on YSZ/LSM usually operates in the 900-1000°C thermal range, whereas a fuel cell based on a 

LAMOX electrolyte would operate in the same conditions but at a 150 °C lower temperature at 

least (around 750-850 oC). For comparison, diffusion coefficients of Sr in YSZ were adopted 

from Kilo et al.10 and such diffusion coefficients (of Sr in YSZ) were extrapolated to lower 

temperatures. Diffusion coefficient of Sr (from LSM) into YSZ would be around ~1x10-20 cm2 s-

1 at 900-1000 oC (operating temperatures of YSZ/LSM SOFC), and such diffusion coefficient 

would lead to penetration depth of ~10 nm/year at 900-1000 oC (YSZ/LSM operating 

temperatures), and using L = 2(Dt)½, it would lead to penetration depth of ~10 nm/year 

(seemingly a reasonable value since YSZ electrolyte is commonly used with LSM cathode in 

standard SOFC devices). which is a reasonable value and hence the use of YSZ electrolyte with 

LSM cathode in SOFC. Sr diffusion coefficient (from LSM to LMO) was extrapolated to be 

around ~1x10-20 cm2 s-1 at ~ 800 oC, the likely operating temperature of LMO based SOFC, and 

such diffusion value corresponds to the penetration depth of ~10nm/year. i.e. the same range as 

for YSZ in its operating conditions. Such a conclusion lies on several assumptions, as for 

instance that our estimation of diffusion coefficient is accurate enough, and that one can linearly 

extrapolate down to low temperature. Above all, there is the uncertainty on the measurement of 

Sr diffusion coefficient depending on the Sr source. An underestimation of 3 orders of magnitude 

(as for Sr from solution deposition) might result in an even larger underestimation at the 

operating temperature (depending on activation energy), which would be dramatic for Sr 

penetration.  

Sr penetration depth estimated from the FIB-SIMS depth profiles might be largely 

underestimated due to the difficulty to identify the pellets surface/interface. In these conditions, 

is a penetration depth of ~0.5 µm of Sr at 1050 °C/36h may not be realistic. The inaccuracy in 

the surface position can be as high as 5 µm, as for instance, if our diffusion model is incorrect 



162 | P a g e  
 

and SrMoO4 grains originally belong to the LMO pellet: these SrMoO4 grains might have sticked 

to the LSM pellet and be pulled out during separation. A penetration depth of 5 µm instead of 

~0.5 µm is an order of magnitude higher, resulting in a diffusion coefficient 2 orders of 

magnitude higher. Sr diffusion coefficient values would be closer to the solution deposition 

values, and extrapolation would give much higher value.  

Let us now assume that the discrepancy between the diffusion coefficients of Sr 

measured from solution deposition and from LSM/LMO couple reflects a real difference due to 

the difference in Sr source. Since it is known that Sr tends to segregate out from LSM when 

cooled down, it would mean that this segregated Sr is much more likely to diffuse in the 

electrolyte than the bulk Sr from LSM. Since this segregated Sr is formed essentially when the 

cell is cooled down or heated up, its presence at electrolyte/cathode interface would be affected 

by the frequency of cell operating disruptions and would lead to premature ageing of the cell. 

 

Figure 4.36: Evolution of bulk diffusion coefficients of Sr (from both LSM pellet (red line) and 

solution deposition (dark blue line)) in to LMO. Sr diffusion values from LSM into YSZ (green 

line) are adopted from Kilo et al.10  
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Corbel et al. 4 reported that LMO and LSM are stable under 700 oC and SrMoO4 type 

phase appears upon further heating (around ~800 oC). It seems strange that, with a Sr diffusion 

kinetics as low as 1x10-20 cm2.s-1 (extrapolated from our measurements), such a minute effect as 

10nm/year penetration depth would be detected by XRD after just 3 days. A sensible alternative 

would be that Mo (from LMO) diffuses more towards LSM than Sr (from LSM) towards LMO, 

and as a matter of fact, it was observed that estimated Mo diffusion coefficients are much higher 

when extrapolated towards lower temperatures (see Fig. 4.37). Penetration depth of Mo was 

estimated to be ~3µm/year at 800 oC. Even though Sr diffusion is low, Mo cross diffusion is 

higher and hence the SrMoO4 layer is formed (which is problematic for fuel cell).  

Note that estimated diffusion coefficient of Mn from LSM into LMO is also low at 

~1x10-20 cm2.s-1at 800 oC.  

 

Figure 4.37: Evolution of bulk diffusion coefficients of Sr (red) and Mn (pink) from LSM to LMO 

and Mo (black) from LMO towards LSM.  
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  Overall and independently from the accuracy problem on diffusion coefficient 

measurements, these results tend to show that the LMO/LSM couple is reactive, and that such an 

electrolyte/cathode association is not suitable as is for SOFC applications. However, both 

materials could be used with a proper buffer layer in between, so that cross cationic-diffusion of 

elements between LMO to LSM is stopped.  

Concerning the aim of measuring accurately cationic diffusion coefficient in this 

particular system, high surface roughness, lack of proper interface in coupled samples and 

complex reactivity mechanisms make it very hard to reach. Such limitations have certainly 

affected the estimated diffusion coefficients reported in this work. Natural limitations of SIMS 

technique and XRD analysis, similarities in the structural arrangement of reaction products and 

parent compounds also limited the precision of diffusion study. For any further diffusion study 

on these samples, different sample preparation methods should be tested. Sputtering of thin 

layers of LMO on LSM or vice versa is suggested, from which more precise diffusion 

coefficients could be obtained.  
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Chapter 5:  
LAMOX stability under Reductive Atmospheres 

5.1: Introduction: 
 

           La2Mo2O9 (LMO) is not stable in reductive atmospheres, making it a non suitable 

candidate for electrolyte applications in conventional double chamber SOFC. H2 or diluted H2 

when boosted to anode reacts with the electrolyte at electrolyte anode interface and can lead to 

the decomposition of the material. The decomposed material affect the conductive property of 

the material leading to the fall in cell overall potential and could even cause total cell failure. 

Goutenoire et al. in 1999 reported partial reduction of LMO when annealed at 700 oC under 

diluted H2 (6% H2 + 94% N2). LMO first reduces to La7Mo7O30 (7730) phase with 1.5% Wt. 

oxygen loss, which on further reduction leads to the amorphisation of the material, which is 

observed at La2Mo2O7-  (7- ) 1. An Argentinean team reported that when LMO was annealed at 

608 oC in 10% H2 + 90% Ar with a flow rate of 6 L/h, the resultant compound was an amorphous 

phase (7- ). No intermediate LM-7730 phase was observed 2. XRD patterns of LMO, 7730 phase 

and amorphous (7- ) phase can be seen in fig. 5.1. 

  Overall conductivity increase in reduced LMO was discussed in previous works, 

consistently with the partial reduction of Mo6+ 1-3. Use of reduced LMO as an anode material for 

SOFC was proposed and attempted with success. It is even found that reduced LMO material is 

sulfur tolerant, thus giving new opportunities to explore in LAMOX family 4. 

  In an XPS study carried on LMO by partial substitution of Dy on La site and W on Mo 

site, it was found that only Mo is susceptible to reduction 5. It is shown that W substitution to Mo 

in LMO not only retains its  but also limits 

the reducibility in diluted H2 atmospheres 6-8. [Note: Please refer to the section 1.6 in chapter 1. 

Studies concerning the stability of LMO and W-substituted LMO compounds in reductive 

atmospheres from literature are reported]. 
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Figure 5.1: XRD patterns of (a) LMO, (b) 7730 and (c) amorphous (7- ) phase collected at room 
temperature. 

 

   Not many studies were reported on the reduction behavior and reduction kinetics of 

LMO. In this chapter, we study the structural changes, reductive behavior, and reduction kinetics 

of LMO and W-substituted LMO in different reductive atmospheres. Electrical conductivities 

were studied as a function of reducibility, considering possible applications. Similar studies were 

carried on W substituted LMO compounds. Reduction studies were performed under diluted H2, 
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different pO2 pressures and ultra high vacuum (UHV) setups. Thermo-gravimetric (TGA) 

instruments and regular laboratory tubular furnaces were employed for this study. XRD setup 

was used for structural analysis. 

5.2: Stability of La2Mo2O9 under reductive atmospheres: 
 

           As a first exploring step, 1 g of LMO was annealed in TGA under N2 + 6% H2 at 760 oC 

for 20 hours with a flow rate of ~1.2 L/h. The resultant powder was black due to the mixed 

valence of molybdenum and a weight loss of 1.8% (by TGA) was observed. XRD analysis 

revealed that the resultant compound was in 7730 phase. When 500 mg of LMO is annealed in 

Ar + 5% H2 atmosphere for 72 hours at 800 oC with a flow rate ~1.2 L/h, a larger weight loss 

was noticed (6.99 % by TGA). The sample turned amorphous and was black. XRD patterns are 

similar to what was shown in Fig. 5.1. Both the TGA curves are in Fig. 5.2. Difference in the 

profiles of TGA curves shows significant difference in reduction behavior with the change in the 

reduction parameters. Variations induced in the controllable parameters seem to govern not only 

the amount of oxygen lost, but also the path of reduction. Numerous experiments studying the 

reductive behavior were conducted in TGA. It is believed that the reductive behavior of LMO is 

quite challenging and many parameters govern such behavior. These parameters include quantity 

of the sample, concentration of H2 used in diluted H2, flow rate of gas, annealing time and 

temperature. Here we have discussed the results of reduction experiments on LMO performed 

under different controlled parameters.  

 In order to follow the reductive process and considering the results of the previous 

experiment, all the controlled parameters governing the reduction mechanism except one were 

kept constant. Series of measurements were performed by increasing the annealing time (varying 

from 0 to 48 hours for every measurement) in TGA apparatus at 760 oC in 10 % H2 + 90% Ar 

with a flow rate 3.6 L/hr. For the measurements, batches of 300 mg of LMO sample were used 

and a new fresh batch was loaded for each measurement. Weight loss was measured by TGA and 

oxygen stoichiometry of the sample at given point was calculated, taking into reference the 

weight of the sample before the plateau. TGA curves of all the measurements along with the 

schematic representation of thermal profile can be seen in Fig. 5.3. On a TGA curve it was 

possible to define different zones A, B, C and D; where each zone exhibit a unique combination 
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of crystallographic phases and annealing time. See Fig. 5.4 for such schematic representation. 

Such samples in zones A, B, C and D were grouped in accordance of their structural symmetries 

as defined by XRD are shown in Fig. 5.5. Each zone is constituted of multiple samples. Final 

oxygen stoichiometry of the sample along with the nature of the crystallographic phases can be 

seen in Table 5.1.   

 

 

Figure 5.2: TGA curves of measurements carried on LMO sample showing the % of the Wt. loss 

as a function of the annealing time. Difference in the reduction profile can be identified with the 

change in the reduction parameters.  
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Figure 5.3: Multiple reduction measurements performed on different fraction of LMO samples 

which were taken from the same batch, were displayed in above TGA curves as a function of Wt. 

loss % and annealing time. The thermal profile of the TGA measurement can be seen in inset.  At 

the end of each curve, change in the slope of reduction path can be seen, which represents the 

sudden Wt. loss observed while cooling the sample. 

 

 LMO sample when heated to 760 oC and cooled back immediately (without any plateau 

of annealing time) turned black and weight loss was also observed. XRD revealed mixture of 

monoclinic - La2Mo2O9 (LMO), 7730 and amorphous phases in this sample. Presence of these 

three phases was still observed when annealing time was increased to an hour (in Zone A). After 

further annealing till 3 hours, total disappearance of LMO phase was noticed and a mixture of 

7730 and amorphous phases were observed (in Zone B). Further reduction of sample leads to 

amorphisation (between 3 to 18 hours of annealing). In the XRD patterns of the amorphous 
o, but no shift in the bump was noticed with the 

change in the oxygen content of sample bearing amorphous phase (in Zone C). In Fig. 5.6, XRD 

patterns of the amorphous phase are shown. When the sample was annealed over 18 hours under 

the above reducing conditions, appearance of metallic Mo from amorphous phase was noticed 

(i.e. complete reduction of Mo6+). 
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Figure 5.4: Graph showing the TGA curve of LMO when reduced in 10%H2 + 90% Ar gas with 

a flow rate of 3.6L/h at 760 oC. Each zone A, B, C and D presented, represent a unique 

combination of crystallographic phases observed after different annealing times. 

 

 

Figure 5.5: XRD patterns after reduction for 4 zones A, B, C and D. It is to be noticed 
that peaks at 28o and 31o -7730 phases.  



175 | P a g e  
 

Intensity of XRD peak  40o) representing metallic Mo, increases with the increase of 

oxygen loss in the sample. This would be because of negligible Wt. loss observed in the sample 

after such reduction (in zone D). These measurements show the vulnerability of LMO towards 

reducing conditions.  

 

 

 Table 5.1: The resultant phases formed when LMO was reduced in TGA at 760 oC in 

10% H2 + Ar gas with a flow rate of 3.6 L/h. Final oxygen content in the sample is also given. 
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Figure 5.6: XRD patterns of amorphous phase (7- ) oxides, when LMO was reduced in TGA at 

760 oC in 10% H2 + Ar gas with a flow rate of 3.6 L/h. 

  

 As mentioned in the introduction (section 5.1 of this chapter) and in the bibliography 

(section 1.6 in chapter 1), it was reported that when LMO was reduced (6% H2 + N2 at 700 oC) 

the appearance of La7Mo7O30 (7730) phase is observed first, which on further reduction leads to 

the amorphisation of the sample (i.e. is La2Mo2O7-  (7- )) 1. Direct transition of LMO to an 

amorphous phase was also reported when annealed at 608 oC under 10% H2 + Ar with 6 L/h flow 

rate 2. But here in the measurements mentioned above, we have seen the presence of all the three 

phases in the same sample (LMO + 7730 + 7- ), which later tend to form an amorphous phase. It 

has to be noted that all the measurements were not performed in a thermodynamic equilibrium. If 

the samples were in thermodynamic equilibrium conditions, the presence of two phases at most 

can be noticed and no Wt. loss would have been observed. It can be because of inhomogeneous 

reduction. Initially LMO partially reduces to 7730 phase, which on further reduction leads to 

amorphisation. In other words reduction works as a gradient rather than uniform oxygen loss all 

over the annealed sample. A wide stability range of the amorphous phase (oxygen stoichiometry 
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6.69 to 6.183) was found. Further reduction leads to total loss of oxygen coordinated with Mo 

and appearance of metallic molybdenum (as seen in XRD). In addition to the change in oxygen 

stoichiometry, the amorphous phase seems to accommodate a non stoichiometry in cationic 

system. Ratio of La:Mo in LMO is 1; amorphous phase accommodates displacement in oxygen 

stoichiometry, which inturn effects the stoichiometry of the ca   

 In one of the above mentioned measurements, where LMO sample was annealed and 

cooled back from 760 oC without any plateau stage (0 annealing time), the sample was found to 

be already reduced (760 oC, 10% H2 + Ar and 3.6 L/h flow rate). Change in color was observed 

and the sample was found to be a mixture of LMO + 7730 and 7-  phases. A similar experiment 

was performed to increase the reduction kinetics. The flow rate was increased from 3.6 L/h to 6 

L/h; keeping all the other parameters constant (Annealing temperature fixed to 760 oC, 10% H2 + 

Ar and annealing time 0 (i.e.no plateau stage)). As soon as LMO was heated and cooled back in 

the TGA instrument, surprisingly the sample was found to be brown (instead of white LMO or 

black reduced). The Wt. loss observed was 0.53% (La2Mo2O8.77). More surprisingly the sample 

was found to be in the The XRD pattern can be seen in 

Fig. 5.7. Similar behavior was noticed by our collaborators at Centro Atomico Bariloche (CAB), 

Bariloche, Argentina. When the stability of LMO was studied under different pO2 pressures at 

608 oC, complete crystalline high tempera -23 atm 

was stable till 10-25 atm; which later turned to amorphous phase once the pO2 

pressures were reduced. This experiment was performed in TGA instrument, where Wt. loss was 

measured and oxyg -polymorph sample was calculated to be La2Mo2O8.96 (9-

= 8.96) 9. These two experiments cannot be compared as they are in different thermodynamic 

conditions, however the appearance of the cubic phase La2Mo2O8.96 can be acknowledged.  

 Appearance of a -phased LMO was noticed at oxygen content 8.77 (9- . 

Similar crystalline compound was obtained previously with oxygen content 8.96 (9-

we consider the series of TGA measurements performed on LMO, the coexistence of a mixture 

of LMO, 7730 and 7-  phases was seen in few measurements (which were discussed above and 

presented in Fig. 5.3, 5.4, 5.5 and 5.6 and Table 5.1 of this chapter). The brown LMO (at 9-

-phase is seen by XRD. However a slight amorphisation of a fraction of 

the sample cannot be ruled out, as it cannot be clearly determined by XRD analysis (considering 
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limitations of XRD). Inhomogeneous reduction of LMO is already discussed above. Reduced 

brown LMO sample (9- - little 

part of the compound could be amorphous which could not be detected by XRD (since the 

reduction is not homogenous). Even though all the reduction parameters are kept constant and 

when the flow rate is increased by 2.4 L/h different reduction behavior was noticed.  

 

 

Figure 5.7: XRD patterns of LMO when synthesized (red) and after reduction (blue). LMO turns 
oC in 10%H2 + Ar gas 

with a flow rate of 6 L/h. XRD patterns collected at 47.5o do-cubic (2 3 

1) reflection of LMO,  and monoclinic (  phases are shown in inset. 
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5.3: Stability of La2Mo2O9 and La2Mo2O7-  (amorphous 7- ) under mild reductive  
 conditions: 
  

 Inhomogeneous reduction behavior and extreme vulnerability of LMO towards reduction 

was already noticed. Despite of a small amount of oxygen loss from LMO matrix (0.04 oxygen 

loss per unit formulae; i.e. 9- -LMO form is retained. Heating and immediate 

cooling (with zero annealing time/ no plateau stage) is sufficient to partially reduce LMO into an 

amorphous phase (along with the mixture of the parent phase and 7730 phase). Considering such 

instability of LMO towards reductive conditions and inhomogeneous reduction process, before 

any further applications were considered, it is important to determine reduction conditions at 

which LMO is stable. Few measurements were performed to determine such conditions. Since it 

was already known that LMO is too vulnerable to reduction atmosphere of double chamber 

SOFC and that possible application of the amorphous phase LMO (7- ) as sulfur tolerant MIEC 

anode was demonstrated 4, 10; stability conditions of amorphous phase (7- ) sample were then 

studied under mild reduction conditions.  

 Mild reduction conditions included usage of gas with less hydrogen concentration. The 

annealing time of was fixed to 12 hours 1% H2 + N2 with a flow rate of 3 L/h. Series of 

measurements were performed in TGA fixing the above mentioned parameters and increasing 

the temperature (from 500 to 700 oC for LMO; and 500 to 800 oC for amorphous 7-  samples). 

Fresh batch of 300 mg of sample was used for each measurement. Wt. loss was measured by 

TGA and the phase purity of the samples after cooling down to room temperature at 30 oC/min, 

was checked by XRD analysis. 

 When LMO sample was annealed at 500 oC, no change in weight or crystal structure was 

observed. When the annealing temperatures were increased to 550 oC and 600 oC, sample turned 

to grey color. However XRD did not reveal any change in the structure and no Wt. loss was 

observed either. At annealing temperatures of 700 oC, the sample showed traces of the 7730 

phase. There was a slight Wt. loss in the sample (< 0.1% Wt. loss) as seen in the Fig. 5.8 for 

XRD patterns. Black spots/ seeds are seen in a grey matrix of the sample. These seeds would be 

an indication of inhomogeneous reduction in the sample which could explain the presence of the 

7730 phase as noticed in XRD (more details about these black spots will be discussed in the next 
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section). It was concluded that LMO is stable till temperatures less than 700 oC. See the details in 

Table 5.2. See the TGA curves in Fig. 5.10. 

 The stability of the amorphous phase LMO (LM 7- ) was also probed under mild 

reduction conditions (1% H2 + N2, flow rate 3 L/h, annealing time 12 hours and 300 mg sample). 

In the measurements performed at 500 oC, 600 oC and 700 oC, no structural change is noticed by 

XRD and TGA revealed Wt. gain in the sample (very less Wt. gain ~ 0.2 %). No shift of the 

bump position in the amorphous samples was observed in the XRD patterns. At the annealing 

temperature of 800 oC, a weight gain was observed (~ 0.2% Wt. gain), the amorphous phase 7-  

decomposed into a mixture of La2MoO5, La2MoO6 and an unknown phase. See the Fig. 5.9 for 

XRD patterns. See the TGA curves in Fig. 5.11. 

  

 

Figure 5.8: XRD patterns of LMO compounds which where annealed in 1%H2 + N2 atmosphere 

with flow of 3L/h, at 600 oC (pink) and 700 oC (black). The super structural reflections of LMO 

phase and the coincidence of peak positions of LMO and 7730 phases make it difficult to 

differentiation.  Few visible traces of 7730 phase were marked with star. 
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Figure 5.9: XRD patterns of amorphous (7- ) samples when annealed in 1%H2 + N2 atmosphere 

under flow of 3L/h. 

 

 
Table 5.2: Stability of LMO and amorphous LMO (7- ) under mild reducing conditions (1%H2 + N2 

atmosphere under flow of 3L/h). 
. 
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Figure 5.10: TGA curves of LMO sample when annealed in 1% H2 + N2 atmosphere. Weight 
gain and loss displayed in the boxes, is because of increase in temperature. 

 

Figure 5.11: TGA curves of amorphous (7- ) phase sample when annealed in 1% H2 + N2 
atmosphere (at 3L/h). Weight gain and loss displayed in the boxes, is because of increase in 

temperature. 
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 When the TGA curves of LMO and amorphous (7- ) phases are compared, difference in 

the % Wt. gain/ loss was noticed. No change in the %Wt. gain or loss was observed in LMO 

samples during the measurements performed at 500, 550 and 600 oC. However, at 700 oC there 

was a slight fall in the Wt. signal (~ <0.1%). Whereas all the amorphous phase samples show 

Wt. gain, although, such % Wt. gain was very small (< ~0.2 % Wt. gain).  This could be because 

of oxygen residue left in the commercial N2 gas which was used to dilute H2. LMO is stable at 

this partial oxygen pressure (pO2) in the gas when annealed at 500, 550 and 600 oC. But at 700 
oC such pO2 induces reduction of LMO thereby losing oxygen from the system; however the rate 

of such reduction is very small. But amorphous phase is not stable in such pO2, and it oxidizes; 

in other words pO2 of 1% H2 + N2 is an oxidizing atmosphere for amorphous phase. It is hard to 

define the stoichiometry of the sample in the amorphous phase and its oxygen gain, since these 

amorphous phases synthesized in a tubular furnace where Wt. loss or gain cannot be precised. 

Moreover it is also known that the amorphous phase can accommodate a wide range of oxygen 

content (for amorphous phase: 9-

measurements show the instability of LMO towards the annealing temperature (normal 

temperatures at which SOFC operates ~ 800-1000 oC) even though the reduction parameters 

were very mild (content of H2 in the gas, flow rate of gas, annealing time (in case of SOFC, its 

operating time)). 
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5.4: Triggering and boosting of reduction process: 
 

 Considering the variations observed in the reduction behavior even with slight variation 

in thermodynamic conditions and inhomogeneous reduction process, it is of significant 

importance to understand the reduction phenomenon in these samples. In order to control the 

reduction phenomenon or overcome any limitations of LMO (towards reduction) and to design 

LMO as a possible candidate for SOFC application, one has to understand at first the triggering 

phenomenon which leads to reduction and how the reduction process boosts.  

 An unusual reduction phenomenon was accidentally observed in LMO. During a 

measurement in TGA (on 300 mg of LMO sample in 10% H2 + Ar with flow of 3.6 L/h), the 

thermocouple has failed while in operation. The sample after this failed experiment showed an 

inhomogeneous mixture of dark spots within a white matrix (see the Fig. 5.12). Traces of the 

7730 phase were found by XRD (which is consistent with the initial stages of measurements 

mentioned in table 5.1). The annealing temperature and time of the experiment were not 

determined because of the thermocouple failure. Numerous attempts made to reproduce this 

behavior were unsuccessful.  

If we recall the measurement carried on a LMO sample at 700 oC under mild reduction 

conditions mentioned in Table 5.2 (1% H2 + N2, flow rate 3 L/h, annealing time 12 hours and 

300 mg of LMO), similar behavior is observed. Here black spots are seen in a grey matrix 

instead of a white matrix. The XRD pattern showed the presence of the 7730 phase besides the 

parent compound even though TGA did not reveal any significant Wt. loss. This experiment is 

reproducible. Similar behavior is again noticed when 300 mg of LMO is heated at 650 oC and 

cooled back immediately at 30 oC/min (no plateau stage for annealing) under 10 % H2 + Ar with 

a flow rate of ~5.1 L/h. The resultant sample was a mixture of LMO and 7730 phases with no 

Wt. loss. The sample showed black spots/seeds in a grey colored matrix.  

Note that black spots are seen in the above mentioned three measurements around grey or 

white matrix and traces of a 7730 phase were detected by XRD in all of these three 

measurements. LMO material is normally white (beige to cream color), but the existence of grey 

LMO in an -monoclinic phase was already seen before (see table 5.2). Remaining black spots 
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could be the areas which were prone to initial stages of reduction (since reduction in these 

samples is not uniform) and could be in 7730 phase.  

 

Figure 5.12: Photograph of LMO sample when attempt to be reduce in Ar + 10% H2 with 

60 ml/min flow rate in a quartz crucible. Black spots in a white matrix  can be seen. 

  It has to be noted first, thermodynamic equilibrium was not reached in any of these 

measurements. Since the sample is in a powder form and synthesized by conventional solid state 

synthesis route, it would be sensible to assume that it is a homogeneous mixture of various grain 

sizes. We assume that these black dots develop around reduction spots have a in smaller grain 

size and are more prone to reduction. This could be because of convection water vapour bubbles, 

forming around the sample and helping to get it more reduced. In the literature it was found that 

during oxygen isotope exchange experiments in LAMOX compounds, to enhance the oxygen 

surface exchange, water vapour is used and it is reported that diffusion of oxygen gas into the 

sample is very small in pure oxygen gas, but when wet gas is used, the exchange es boosted 

considerably 11. Not only in LAMOX materials but in other ceramic oxide ion conductors and 

BIMEVOX materials wet atmospheres were reported to be advantageous for oxygen exchange 12-

14. A study states that LAMOX samples are stable when annealed in a dry propane:air mixture, 

whereas samples get reduced in wet propane:air mixture, pointing out the role of water vapor in 

the reduction 8, 10. In our case, maybe the water vapour is forming in the sample and is helping 
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oxygen to deplete from the sample; and these black spots could be seeds for reduction. However, 

further studies have to be made to understand the phenomenon. 

In a reduction measurement performed in a tubular furnace, 1.5 g of LMO was annealed in 

an alumina boat. The sample is uniformly spread in the crucible to promote homogenous 

reduction and measurement was performed at 760 oC for 12 hours in 10% H2 + Ar gas with a 

flow of 3.6 L/h. After the measurement, the sample revealed a gradient of reduction towards the 

direction of the gas flow. It was possible to divide the sample into three different zones (zones A, 

B and C) and XRD was performed on material from each zone. Sample in zone A was mostly in 

LMO phase with little amorphousness in the sample, in Zone B mixture of LMO and amorphous 

phases were seen; in Zone C sample was mostly amorphous along with traces of the LMO phase. 

Schematic representation of the measurement and XRD patterns corresponding to Zones A, B 

and C are shown in Fig. 5.13 and Fig.5.14 respectively.  

 

 

Figure 5.13: Schematic representation (above) and photograph (below) of gradient 

reduction observed in LMO when reduced in a tubular furnace. Reduction was performed at 

760 oC in Ar + 10% H2 gas with a flow rate of 3.6 L/h for 12 hours.  
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Figure 5.14:  XRD patterns of zones A, B and C as mentioned in Fig. 5.11. 

 

If we recall the results of measurements presented in the Table 5.1, intermediate 7730 

phase was noticed under similar reduction conditions (no change in the reduction parameters 

except the quantity of the sample used (1.5 g instead of 300 mg)). Measurements detailed in 

Table 5.1 were carried in a TGA, whereas the measurement detailed above is carried in a tubular 

furnace (i.e. different setup). The absence of the 7730 phase indicates a change in the 

thermodynamic conditions applied and due to possible gas leaks in the system. However this 

reduction gradient phenomenon can be explained by the same hypothesis used to explain the 

black spots seen in the white matrix sample. The gas would have exchanged oxygen from the 

surface of the sample at zone A forming H2O (Note: it is already described above that LMO is 

more prone to reduction to wet gas compared to dry gases). The wet gas (which picked up H2O) 

flows over the surface of the sample at Zones B and C creating a gradient of reduction over the 

direction of flow. More the sample surface is exposed to gas, higher will be the surface exchange 

of oxygen and higher will be the formation of H2O. More the H2O in the gas, higher reduction of 

LMO was observed. This could be the reason for appearance of a reduction gradient in the 

direction of gas flow. Later the sample (gradient reduced) was annealed by placing the crucible 

in a direction opposite to gas flow for 12 hours (in direction C  A with similar reduction 
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conditions). The sample turned amorphous with uniform black color all over the surface. Since 

the Wt. loss cannot be measured in the tubular furnace, the exact stoichiometry of the sample 

was not known (more over it was detailed earlier that amorphous phase accommodates a wide 

range of oxygen non stoichiometry). Overall a complex reduction behavior is noticed in LMO 

materials.  

5.5: Stability of W- substituted La2Mo2O9 under reductive atmospheres: 
 

 The instability of LMO compounds towards reduction is one of its vital problems. Reports 

from literature and the experimental results mentioned in the above sections of this chapter have 

shown us the same. It was shown that when hexavalent tungsten is substituted to hexavalent 

molybdenum in LMO, its instability towards reductive atmospheres can be limited besides 

preserving its high temperature and high conductive -form down to room temperature. An XPS 

study was reported where Dy is substituted to La (10 mol %) and W substitution to Mo by 50 

mol %. When such compound is annealed in reductive atmospheres, oxygen loss was observed 

and it was stated that only Mo component in LMO is susceptible to reduction 5. It was reported 

that when the compound y = 0.5 was annealed at 605 oC for 16 hours in 6% H2 + N2 atmosphere, 

oxygen loss of 0.543 per unit formulae (9-  = 8.457) was noticed. Similar measurements were 

performed on compounds with y = 0.25, 0.5, 0.75, 1.0, 1.2 and 1.4.  It was concluded that the 

reducibility in W-LMO compounds reduces with increased W-content 15. In a study which 

included reduction of W-LMO compounds (La2Mo2-yWyO9) with y = 0, 0.5, 1.0 and 1.4, the 

compound with y = 1.4 was suggested as a suitable candidate for electrolyte application in 

SOFC. On the other hand, compounds with low W content were suggested for MIEC anode 

applications 8.  

One of the main aims of this study is to explore the effects of reduction on W-LMO 

materials. For this study La2Mo1.5W0.5O9 (W0.5) and La2MoWO9 (W1.0) were used. All the 

measurements were performed in the TGA instrument using different reducing parameters and 

the phase purity was determined by XRD.   

As a preliminary step, 300 mg of a W0.5 was annealed at 760 oC for 12 hours with 3.6 L/h 

flow of Ar + 10% H2 gas. The sample was later found to be in La7Mo7O30 (7730) phase. See the 
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TGA curve in Fig. 5.13. 1.11% Wt. loss was measured by TGA, which corresponds to an oxygen 

content of 8.57 (i.e. 9-  = 8.57). When 300 mg of W0.5 sample was annealed in the TGA at 780 
oC under Ar +10% H2 with flow rate of 3.6 L/h, after 18 hours, the sample has lost 2.83% 

oxygen from the system (9   = 8.025). XRD revealed that the sample is a mixture of 7730 and 

amorphous phases. See the XRD patterns in Fig. 5.16. Later a fresh batch of W0.5 compound 

was annealed at 800 oC for 24 hours. XRD revealed presence of amorphousness and an unknown 

phase. Oxygen content is calculated as 6.83 (i.e. 9-  = 6.83) (calculated with Wt. loss of 5.65% 

measured by TGA). When 300 mg of W0.5 sample was annealed in TGA at 820 oC under Ar 

+10% H2 with a flow rate of 3.6 L/h, after 36 hours 5.89 Wt. % was detected (9-  = 6.96) and the 

sample was in mixture of amorphous and an unknown phase (the unknown phase found in this 

experiment is similar to that found in all the measurements performed on W0.5). TGA curves are 

presented in Fig. 5.15. XRD patterns corresponds to all the above experiments are shown in Fig. 

5.16. Increase in temperature by 60 oC made a significant difference in the reduction profile in 

these compounds. Irrespective of the weight loss, difference in the path of reduction is noticed 

(when all the above measurements are compared). 

 It is known that LMO after partial reduction transforms to the 7730 phase which in turn 

on further reduction transforms into an amorphous phase. Further reduction of such phase 

completely reduces hexavalent Mo to metallic Mo. In the above experiments, the 7730 type 

phase of W0.5 compound was seen. When the compound is further reduced, a mixture of phases 

is noticed (amorphous phase + an unknown phase). Considering the resultant phases (by XRD 

analysis), it would be sensible to assume that the unknown crystalline phase has lower oxygen 

content than the 7730 phase (i.e. oxygen content less that 8.57; 9-  < 8.57). However pure 

crystalline form of this unknown phase was never obtained. Attempts to reduce W0.5 to this 

unknown phase in single crystalline form were unsuccessful. Since the unknown phase always 

appears along with the amorphous phase, any information on the crystal structure cannot be 

determined. The results are detailed in Table 5.3.  
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Figure 5.15: TGA curves showing reduction profiles of four different samples of W0.5, which 

were annealed at different temperatures. Sudden fall of TG signal was observed while cooling. 

 

 

Figure 5.16: XRD patterns of W0.5 compounds after reduction. Annealings were performed in 

10% H2 + Ar with flow rate of 3.6 L/h. 
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Table 5.3: TGA measurements carried on W0.5 under constant flow of Ar + 10 % H2 at 3.6 L/h. 

Unknown* is the similar unknown phase when all the W0.5 compounds are reduced. 

 

 

Table 5.4: Reduction experiments carried on W0.5 and W1.0 in a tubular furnace under constant 

flow of Ar + 10 % H2 with variation of flow rate, temperature and annealing time. Unknown* is 

the similar unknown phase when all the W0.5 compounds are reduced.  

 

 Batches of 300 mg of W0.5 were annealed at 718 oC in a tubular furnace in Ar + 10% H2. 

Flow rate and annealing time were varied from an measurement to another. None of the 



192 | P a g e  
 

compounds after reduction were found to be a single crystalline phase. The samples were a 

mixture of 7730 / unknown phase along with the amorphous phase. Details of these 

measurements can be seen in Table 5.4. 300 mg of a W1.0 sample was annealed for 24 hours at 

718 oC with a flow rate of 6 L/h in a tubular furnace. The crystal structure of sample after 

annealing was found unchanged (i.e. sample is still in the cubic -LMO form). All the similar 

reduction conditions were applied on the W0.5 sample (all the parameters are the same and even 

the same tubular furnace is used). After annealing it is noticed that W0.5 is a mixture of 7730 

and amorphous phases; supporting literature information that with the increase of W substitution 

to Mo in LMO, vulnerability towards reduction will be improved. It was reported earlier that, 

after a loss of 0.43 oxygen per formulae unit, turned to 7730 phase 1. Here in these measurements 

it was observed that W0.5 sample also transforms to 7730 phase when 0.43 of oxygen is lost per 

formulae unit. It was also reported that when W0.25 compound lost 1.136 oxygen per unit 

formulae, the sample was able to retain its cubic -LMO form and such structural framework can 

sustain such oxygen loss 15. This is in contradiction with what was observed in our 

measurements, but in agreement with similar observations reported by Marrero-Lopez et al. 3. It 

is clear from all the above mentioned measurements that reduction in LAMOX samples can be 

controlled by increasing W-content in LMO and is in agreement with literature 15. 

 W0.5 pellet (10mm ) which was of 96% relative density was annealed at 608 oC for 260 

hours. This measurement was performed in a TGA in Ar + 10% H2 atmosphere with a flow rate 

of 6 L/h. Steady state was not achieved during measurement and no intermediate plateau was 

observed either. The pellet after reduction was checked by XRD and is a mixture of amorphous 

and an unknown phase (see the XRD in Fig. 5.17). Pellet turned black and oxygen content in the 

pellet after reduction was 7.53 (9-  = 7.53). The similar reduction study was performed on an 

LMO pellet which was 10 mm diameter and of ~96% relative density. Flow rate, gas and 

annealing temperature were the same. LMO pellet after reduction was amorphous after 130 hours 

of reduction. Oxygen content in the sample was 6.88 (9-  = 6.88). Although, the thermodynamic 

conditions applied to both pellets (W0.5 and LMO) were similar; there is a significant change in 

the reduction profile of both compounds. Even though W0.5 was annealed for longer time (LMO 

was annealed for 130 hours, W0.5 was annealed for 260 hours), W0.5 showed significant 

stability towards reduction atmospheres. TGA curves of both the samples can be seen in Fig: 

5.18. Both measurements described above were performed at CAB, Bariloche, Argentina.  
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Figure 5.17: XRD pattern of W0.5 pellet (10 mm ) which was annealed at 608 oC for 260 

hours in Ar + 10% H2 with a flow rate of 6 L/h.   

 

 

Figure 5.18: TGA curves collected on W0.5 pellet and compared against similar 

experiment done on LMO pellet.  
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5.6: Thermodynamic stability of La2Mo2O9 and W- substituted La2Mo2O9 under pO2 
 pressures: 

 

Numerous reduction measurements were performed on LMO and W-LMO compounds and 

are discussed in the above sections. It has to be noted that in neither of those measurements 

thermodynamic equilibrium was achieved. It is already mentioned that LMO when reduced first 

changes to crystalline cubic - LMO form with loss of 0.04 oxygen per unit formulae. On further 

reduction 7730 phase appears and further reduction can lead to the amorphisation of the sample. 

Complete reduction leads to appearance of metallic Mo. Coexistence of more than two phases 

were seen above, and oxygen loss in the sample was still observed. This clearly tells that 

thermodynamic equilibrium conditions were not achieved.  

It is of vital importance to study the thermodynamic stable domains of LMO and W-LMO 

compounds under reductive atmospheres. Such experiments have to be performed by controlling 

reduction parameters. In this part of the chapter we discuss isothermal measurements performed 

on LMO, W0.5 and W1.0 samples. 500 mg powder of each sample (LMO, W0.5 and W1.0) was 

annealed in TGA at 718 oC with constant gas flow of 6 L/h. pO2 pressures were decreased to 

probe the reduction in the samples. By using an electrochemical oxygen pump and an 

electrochemical oxygen sensor, it was possible to control the pO2 pressure of the gas. 

Commercially available Ar, CO2 and Ar + H2 gases were mixed according to the pO2 

requirement. Highest pO2 was found to be pO2 = 3 x 10-6 atm where commercial Ar was used 

(because of oxygen residue in the gas). Intermediate pO2 pressures were obtained by using a CO-

CO2 mixture (pO2 ~10-7 to 10-18 atm). Lowest pO2 pressures were obtained by using a mixture of 

Ar-H2-H2O (pO2  10-18 atm). Measurements started with Ar and pO2 were dropped by changing 

the gas as chemical pump. Since the goal of these experiments is to achieve steady state 

(thermodynamic equilibrium conditions), it is not possible to fix the annealing time. Samples 

were annealed under the gas flow till a steady state was achieved. Each equilibrium point was 

recorded only after a constant TGA signal was measured for at least 5 hours. Once the steady 

state was achieved, the sample was cooled down to room temperature in the same atmosphere 

and the XRD was performed. These measurements were performed at CAB, Bariloche, 

Argentina.   
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The LMO powder is first annealed at 718 oC in Ar and no oxygen loss is detected by TGA. 

Constant oxygen content is measured till 10-15 atm. After five days when pO2 of the gas is 

dropped down below 10-16 atm, abrupt fall in the oxygen content was noticed and remained 

constant till pO2 10-22 atm (see Fig. 5.19). The loss of oxygen was calculated to be in 

stoichiometric value of 9-  = 8.57. Below this pO2 value further fall in the oxygen content is 

noticed and drift of the oxygen content increases with the decrease in pO2 pressures. Reduction 

was continuous and no thermodynamic equilibrium sate was observed either. Wt. loss by TGA 

signal showed oxygen content less than 7 (i.e. 9-  < 7; La2Mo2O7- ). Partially reduced LMO 

compounds at pO2 of 10-20 and 10-24 atm are cooled down and followed by XRD. At pO2 of 10-20 

atm, an oxygen loss of 0.43 (9-  = 8.57) per formulae unit was observed and is consistent with 

the formation of the 7730 phase. At lower pO2 of 10-24 atm an amorphous phase was obtained 

having an oxygen stoichiometry lower than 9-  < 7. The amorphous phase 7-  compound has no 

fixed oxygen content and loses oxygen continuously with kinetics depending on the pO2. This 

experiment was performed for nearly 11 days.   

 

       
Figure 5.19: Oxygen content as a function of pO2 at 718 oC for LMO, W0.5 and W1.0 powders.  
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The W0.5 sample is found to be stable in the range 10-5 (Ar) to 10-18atm (Ar-H2-H2O). By 

decreasing pO2, the oxygen content in the sample decreases down to 8.57 (9- ; 7730 

phase confirmed by XRD when the sample is cooled down) and remains constant even after 

further decrease in pO2. This total measurement was carried over 6 days. After the last 

measurement, the sample was left in dry Ar + 5%H2 atmosphere at 718 oC for two hours and no 

change in the oxygen content was observed.  

The W1.0 sample is found to be stable in the range 10-5 (Ar) to 10-18atm (Ar-H2-H2O). By 

decreasing the pO2, the oxygen content in the sample decreases down to 8.57 (9- = 8.57; 7730 

phase confirmed by XRD when sample is cooled down) and remains constant even till pO2 10-27 

atm. Later when the sample is exposed to dry Ar + 10%H2 for a couple of hours, no change in 

the oxygen content is seen. The total experiment is carried over for 8 days.   

The pO2 measurements carried on LMO, W0.5 and W1.0 demonstrate that the stability 

domain of the LAMOX phase does not depend on the W content. Only the reduction kinetics 

varies with the W content. The pO2 limit found for the three compositions is almost identical. On 

the Contrary, the stability of the 7730 phase is dependent on the W substitution. The 7730 phase 

in LMO is stable only till pO2 of 10-22 atm, which reduces to amorphous 7-  phase, whereas in 

W-LMO (both W0.5 and W1.0) compounds, the 7730 phase was observed down till 10-27 atm.  

5.7: Conductivity experiments on reduced La2Mo2O9 and reduced W-LAMOX materials:  
 

As discussed earlier, the reduced LMO compounds show superior conductive values than 

fully oxidized LMO phase. Overall conductivity increase in reduced LMO is already reported 4, 8, 

10, 16, 17. This increase in conductivity is related to the partial reduction of Mo6+. Appearance of n-

type conductivity in these samples makes them potential candidates as MIEC anode and bad 

electrolyte materials for SOFC applications. In the above sections of this chapter it was already 

shown that, under extreme reduction conditions, LMO reduces down to the amorphous phase and 

further reduction could lead to reduction of Mo6+ to metallic Mo. It is even seen that W 

substitution in LMO can limit its reducibility; however it cannot be totally eliminated. It is 

important to study the conductivities of the reduced LMO and W-LMO compounds before 
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considering their applications into SOFC. In this part of work we report electrical 

characterization studies carried out on the LMO and W0.5 compounds.  

Electrical resistivity measurements were carried out on LMO and W0.5 samples which 

were over ~ 96 % relative dense. The pellets of both compositions were cut down into dense bars 

(8 x 3 x 2 mm) by a diamond saw. These bars were heat treated at 1000 oC and 1225 oC (LMO 

and W0.5 respectively). On these bars, four Pt contacts were obtained by sputtering Pt thin films. 

On these four contacts, Pt wires (electrodes) were joined using Pt paste and annealing 

subsequently at 800 oC. On two out of these four Pt electrodes (at the end of the bars), VG98 

powder glass paste is applied and again heat treated at 800 oC for wetting the electrodes 

(electrode blockage). This method which helps to characterize only electronic conductivity (since 

ionic conductivity is totally blocked) was performed by four probes electrical resistivity method 

(more details are given in chapter 2, experimental section).   

The samples were then placed in the tubular furnace setup in 6 L/h flow of Ar + 10% H2. 

The resistivity measurements were performed at temperatures 608 oC and below. Immediate drop 

of the resistivity is found and the resistivity was practically constant thereafter for the next 144 

hours (duration of measurement). This resistivity could be coming from the surface of the pellets. 

Reduction first occurs at the surface of the pellets and oxygen depletion from the bulk occurs 

later. This could be the reason for sudden displacement of resistivity appearing in initial stages of 

measurement. See the curves in Fig. 5.20. Arrhenius plot of the conductivity data vs. temperature 

is collected during 144 hours under the reducing conditions mentioned above. The resistivity 

measurements were performed as a function of time on cooling from 608 oC to 293 oC every 35 
oC. The samples were left for 30 min at each stage before the conductivity was measured. The 

activation energies of both samples are calculated and found to be similar (Ea = 0.23eV).  

Arrhenius plot can be seen in Fig. 5.21. Both bars were ground after the experiment and XRD 

analysis was carried out. LMO sample was an amorphous phase (7- ), whereas W0.5 was a 

mixture of an amorphous and an unknown phase (similar unknown phase to that observed in all 

W0.5 reduced powders). 

 Once the samples were cooled down to room temperature numerous cracks were noticed 

on both LMO and W0.5 pellets. These cracks as we believe would form  
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Figure 5.20: Resistivity of LMO and W0.5 compounds in Ar + 10 % H2 (6 L/h flow rate) at 608 
oC.  

 

 

 
Figure 5.21: Arrhenius plot (conductivity vs. temperature) of LMO and W0.5, samples after a 

preliminary reduction at 608 oC for 144 hours under 6 L/h flow of Ar + 10 % H2.  
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because of extreme reduction conditions to which the samples were exposed. SEM images of 

LMO bar after measurement are shown in Fig.5.22. The appearance of similar cracks in LMO 

was reported in literature 7, 10, 16, 18, 19. The formation of these cracks makes it impossible to 

characterize the electrical properties with precision. Cracks could create a barrier for the 

transport of electrons, which would reflect lower conductivity values. Various approaches were 

attempted to resolve formation of cracks.  

 

 
 

Figure 5.22: SEM images of LMO bar after reduction for 144 hours under 6 L/h flow of 

Ar + 10 % H2 at 608 oC. Both the images show huge cracks formed on the bar.  

  

LMO (both powder and pellet) transforms to amorphous phase (7- ) when reduced. 

Pellets/bars of LMO when reduced show numerous huge cracks on the surface. One of the 

approaches to overcome such problem is to reduce LMO down to the amorphous phase and 

sinter such powder into a high dense pellet. Normally sintering of LMO takes place at 

temperatures near to ~1000 oC 20, 21. If such amorphous powder is sintered at 1000 oC in static air 

or ambient conditions, amorphous phase sample (7- ) would oxidize back to LMO (oxygen 

content = 9) 3. If attempted to sinter in diluted H2 atmospheres, it would further deplete more 

oxygen and decompose (metallic Mo appears). Studies performed in thermodynamic equilibrium 

states using pO2 showed that LMO is not stable at 1000 oC 2. Another approach is reducing a 

LMO (fully oxidized) bar gently (under mild reduction conditions for a long time). In such 
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attempt, a low dense LMO bar would be more effective (instead of using bar with ~ 96 % 

relative density as earlier). A low dense sample would limit /eliminate formation of cracks. 

Utilization of a low dense bar for conductivity measurement generates a similar problem as a bar 

with no cracks. Porosity in a less dense bar obstructs the free path of the electrons in the sample 

which reflects poor conductive value. Ideal case would be to perform electrical characterization 

on a  bar with high relative density and free of cracks.  

  In such attempt to synthesize crack free pellets, two batches of LMO pellets (one with 

high density ~98 % relative density and other with low relative density 75%) were taken. Both 

batches were cut into bars of very small thickness (50  1000 µm) and were reduced under very 

mild reducing conditions in tubular furnace. Ar + 10% H2 was used for reduction with a flow rate 

of 1.2 L/h.  The temperature was first increased to 400 oC with the rate of increase 2 oC/min. 

From 400 oC, temperature was increased to 600 oC with the rate of heating 0.03 oC/min. After 96 

hours of annealing, the samples were cooled back to room temperature with the rate of cooling 2 
oC/min. Few bars from each batch were ground to follow phase purity by XRD. Samples in both 

batches were found to be amorphous. Bars which were initially 98% dense showed cracks, but 

very less compared to what we have seen in above mentioned measurement. Low dense bars 

(~75 % relative dense) show almost no cracks (very few cracks with very small width). SEM 

images of gently reduced low dense LMO bars are shown in Fig. 5.23.    

 

 

Figure 5.23: SEM images of a low dense LMO bar (~75 %) which was reduced to 

amorphous phase (7- ) under very mild reduction conditions. 
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Thus obtained low dense bar (8 x 1 x 1 mm) with negligible cracks were selected for 

electrical resistivity experiments (4 probes electrical resistivity method; more details were given 

in chapter 2, experimental section). Four Pt electrodes were painted on the bar, Pt wires were 

sealed to each electrode using the same Pt paste. Sample was then annealed at 800 oC for 30 min 

under ultra high vacuum (UHV) to dry the Pt paste used for sticking the electrodes. The 

conductivity measurements were performed under UHV (~ 1 x 10-6 bar) from 279 oC to 760 oC 

every 50 oC. The sample was annealed at each temperature for 30 minutes before the 

conductivity was measured. The thermal evolution of conductivity is plotted and a pseudo 

activation energy of 0.25 eV was calculated from the slope of such curve. Arrhenius plot can be 

seen in Fig. 5.24. Sample was ground after the measurement and is observed to be in amorphous 

phase (7- ). Conductivity values observed in porous non cracked bars is higher than that of the 

cracked one.  

 

 

Figure 5.24: Thermal evolution of conductivity for LMO bars which were reduced in different 

conditions. Porous non cracked bar (black-squares) was obtained by reducing low dense LMO 

bar at 600 oC for 96 hours under very mild conditions (1.2 L/h). Dense cracked bar (red-circles) 

was obtained by reducing at 608 oC for 144 hours in Ar + 10 % H2 flow, 6 L/h .  
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In an approach to synthesize high dense and crack free samples for electrical 

measurements, an intermediate reduced phase 7730 was also considered. Stability limits of 7730 

phase were already known (reported earlier in this report). Plan was to sinter high dense 7730 

phase pellets and reduce them gently to amorphous phase to obtain crack free samples. 7730 

phase powders of LMO sample were synthesized (annealing 300mg of sample for 13 hours in Ar 

+ 10% H2 at 710 oC with gas flow rate of 1.2 L/h). These samples were fired in UHV (~1 x 10-6 

bar) at 1000 oC. This firing was performed in UHV to avoid possible oxidation if annealed in 

ambient temperatures or Ar and to avoid further reduction in the sample if annealed in diluted H2 

atmospheres. Sample after annealing showed good density; however XRD revealed La5Mo3O16 

and La5Mo6O21 impurities in agreement with the literature 2. Several attempts to synthesize 7730 

phase high dense pellet were unsuccessful. Attempts to synthesize LMO and 7730 phase high 

dense crack free samples are still in progress. These conductivity experiments were also 

performed at CAB, Bariloche, Argentina.  
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5.8: Conclusions:  
 

 Here in this work we report studies carried out on the stability of LMO and amorphous 

(7- ) samples under very mild reducing conditions. It was found that LMO is stable  at 

temperature less than 700 oC and the amorphous phase is stable under 800 oC when N2 + 1% H2 

gas is used (performed only for 12 hours). Stability and phase transformations occurring in LMO 

compound when annealed at different times are reported (at 760 oC in Ar + 10% H2 atmosphere 

with 3.6 L/h flow rate). Transformation of LMO to amorphous phase was observed, which on 

further reduction leads to the appearance of a fraction of metallic molybdenum. All the three 

LMO, 7730 and amorphous phases were observed in one sample, depending on the reducing 

conditions applied (annealing time and temperature, reductive atmosphere, flow rate of gas, 

quantity of the sample used). 

 During such stability measurements, LMO was heated at 760 oC (Ar + 10% with 6 L/h) 

and immediately cooled back (no annealing/ plateau stage). Resultant compound La2Mo2O8.77 

was brown. In spite of partial reduction, the -LMO was retained.    

 Unusual reduction phenomenon is reported where black spots are seen in a white matrix 

powder. Reasons underlying this phenomenon were not clear but a hypothesis is proposed. It is 

believed that black spots are the areas in the sample which were more reduced than the other 

parts. Inhomogeneous reductive behavior is also reported. Gradient of reduction over the sample 

in alumina boat is observed (exhibiting O2 depletion with the gas contact) and respective phase 

transformation is analyzed by XRD.   

 Reductive behavior of W0.5 is studied using TGA and laboratory tubular furnaces. 7730 

phase of W0.5 (powder sample) was synthesized in TGA with Ar + 10% H2 gas. It is shown that 

reducibility in LMO can be limited by substitution of W6+ to Mo6+; thus confirming the results 

reported in the literature. In a measurement performed on W0.5 and W1.0 (powder samples), 

where all the reduction parameters were kept constant, it was found that W1.0 is more stable than 

W0.5. TGA study performed on W0.5 and LMO pellets showed that LMO is more vulnerable to 

reduction than W0.5.  

 TGA in controlled oxygen partial pressures atmospheres were performed on LMO, W0.5 

and W1.0 (shown in Fig. 5.17). LMO was found to be stable till 10-17 atm, later which reduces to 
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7730 and is stable till 10-22 atm. Further fall in pO2 leads to amorphisation of the sample with no 

stable oxygen stoichiometry. Stability limits of 7730 phase for W0.5 and W1.0 were defined, see 

the curves in Fig. 5.19. It was observed that the stability domain of the La2Mo2-yWyO9 phases 

does not depend on the W content; only the reduction kinetics varies with the W content. pO2 

limit found for the three compositions is almost identical. On the contrary, the stability of 7730 

phase was found to be dependent on W substitution.   

 Resistivity experiments were performed on LMO and W0.5 pellets. It was observed that 

most of the resistivity arises from the surface of the pellet (in the initial stages of reduction) and 

falls back immediately as soon as the surface is in equilibrium with the atmosphere. LMO 

surface once exposed to reductive atmosphere, exhibits n-type conductivity and it is postulated 

that n-type electronic conductivity arises from partial reduction of hexavalent Mo6+ to a mixture 

of Mo6+ and Mo5+ (for 7730 phase) and Mo3+ and Mo4+ (for the amorphous (7- ) phase), 

becoming MIEC and displays superior conductivity than its fully oxidized sample). On these 

dense pellets (both LMO and W0.5) on which cracks have appeared, pseudo activation energy 

was found to be 0.23 eV.  

 Synthesis of amorphous phase (7- ) pellet with no cracks was achieved (by mild reducing 

conditions) and conductivity experiments were carried on such sample. Superior conductivity 

value with a pseudo activation energy of 0.255 eV is reported. It has to be acknowledged that for 

a material to be potential anode in SOFC, sufficient porosity is necessary (for free mobility of 

oxygen ions and hydrogen); however the true conductivity values of the potential compound are 

to be well studied and this is subjected to the availability of such non-cracked and high dense 

sample. Attempts to synthesize reduced, high dense and non cracked LMO and W-LMO 

compounds have to be carried out. Much higher conductivity values can be expected in such 

samples. Moreover level of electronic conductivity has to be improved in order to make W 

substituted LAMOX suitable as anode materials for dual chamber SOFC. 

 Local structure analysis of the amorphous reduced phase (7-

XRD, and for this purpose use of Extended X-ray Absorption Fine Structure (EXAFS) is 

desirable. The oxidation states of molybdenum could be reached through X-ray Absorption Near 

Edge Structure (XANES) or Electron paramagnetic Resonance (EPR) measurements. 
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Summary and Conclusion 
  

 La2Mo2O9 (LMO) is a pure and fast oxide ion conductor in air, and its use as SOFC 

fuel cell core material (as electrolyte or anode material) was debated. LMO undergoes a 

phase transition around ~580 oC and it was reported that W substitution to Mo in LMO can 

suppress this phase transition. It was known that LMO reacts at various temperatures with 

standard cathode materials used in SOFC applications and it was reported that 

La0.8Sr0.2MnO3-  (LSM) is the least reactive compound. It was also known that LMO reduces 

under atmospheres with low pO2 and W substitution to Mo in LMO can limit its reducibility. 

Recently reduced amorphous phase La2Mo2O7-  (7- ) was proposed as a performing sulfur-

tolerant MIEC anode material for SOFC applications. The aim of this study is to understand 

the thermal stability of W substituted LMO compounds in air (to choose optimum 

composition for SOFC applications), study the reactivity of LMO/LSM (to understand the 

diffusion behavior of individual elements in these compounds and thereby possibly 

limit/control such reaction mechanism) and to study the reductive behavior of LMO and W-

LMO compounds and optimize the suitable candidate for SOFC anode application. The 

results of this study as summarized below are presented in the three main chapter of my thesis 

manuscript. 

 La2Mo2-yWyO9 (y = 1.0 to 2.0) oxides were synthesized by conventional solid state 

route and their thermal stability was studied using X ray diffraction (XRD), temperature 

controlled XRD and differential thermal analysis. Multiple quenching experiments and long 

term heat treatments were performed to probe their thermal behavior. It was observed that 

oxides with 1.0  -LMO form and thermodynamically 

stable over long term annealing (60 days at 700 oC). At higher W content 1.3   1.8, the  

form is metastable in nature. A partial or full release of metastability of this  form was 

observed upon further heating ( -LMO + -LWO for y  1.575 and -LWO for y  1.6). 

Compounds with 1.85  -LWO phase, 

irrespective of heat treatments and synthesis conditions. Inhomogeneous distribution of W is 

suspected in the biphasic samples. A phase diagram for La2Mo2-yWyO9 (y = 1.0 to 2.0) oxides 

was proposed. It was even seen that NiO does not react with La2Mo2-yWyO9 compounds, 
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contrary to what has been claimed in the literature. Overall it was clear that compounds above 

60 mol% of W substitution (1.2 < y) are not suitable for SOFC application as an electrolyte.   

 A reaction was probed between pellet couples of LMO/LSM by annealing such 

couples (two couples were annealed at 1050 oC for 12 and 36 hrs, and a third one at 1150 oC 

for 12 hrs), and such reaction mechanism was studied using Secondary Ion Mass 

Spectrometry (FIB-SIMS and TOF-SIMS; surface analysis, mass spectrometry, depth profiles 

and line scan) and XRD. After the reaction, it was found that Mn from LSM migrates towards 

LMO and forms LaMnO3 rod shaped grains on its surface. Whereas Mo from LMO diffuses 

towards LSM and forms insulating SrMoO4 type phases on the surface of LSM. Multiple 

hypotheses for such reaction mechanism were formulated. To understand the diffusive 

behavior of individual cations, Sr and Mn rich solutions were deposited on two different 

LMO pellets and Mo solution was deposited on LSM pellet and such solution deposited 

pellets were annealed at 1150 oC for 12 hrs. Mn solution decomposition was observed to be 

forming LaMnO3-  single crystals on the surface of LMO pellet. Penetration depth of Sr in 

LMO was approximated at ~60 to 70 μm and Mo in LSM was nearly ~50 μm. Multiple 

reaction products were observed in solution deposited measurements (LaMnO3, La6MoO12, 

La2MoO6 -LMO and SrMoO4 type phases) and possible reaction mechanisms are proposed. 

From the LSM/LMO pellet couples, diffusion coefficient of Sr and Mn (from LSM pellet) 

into LMO was estimated as 1x10-20 cm2 s-1 in the LAMOX fuel cell operating temperature 

range (~800 oC), and in the same temperature range, diffusion coefficient of Mo (from LM)) 

into LSM was estimated to be 1x10-15 cm2 s-1. Even though diffusion rate of Sr is small, fast 

diffusion of Mo towards LSM leads to the formation of SrMoO4 type phases at the interface 

and appearance of this new phase is problematic for fuel cell. It is clear that LMO/LSM are 

highly reactive and such electrolyte/cathode couple is not suitable for SOFC applications and 

an buffer layer between both components has to be used in order to realize LMO/LSM couple 

for fuel cell applications.  

 Third part of this study deals with the stability of LMO and W-LMO compounds 

under reductive atmospheres. Thermogravimetric analysis, XRD and tubular furnace setups 

were used with different diluted H2 gases and controlled pO2 pressures as reductive 

atmosphere. Resistivity measurements were performed using four wire method. Structural 

changes from LMO to La7Mo7O30 (7730), amorphous phase and partial decomposition of 

amorphous phase to metallic Mo were observed as a function of oxygen loss in the system 
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and it was observed that the amorphous phase can accommodate a wide range of oxygen 

stoichiometry (from 7- = -LMO phase, brown colored sample was 

obtained for the first time when LMO was reduced to La2Mo2O8.77.  Inhomogeneous 

reduction behavior was observed in LMO and such behavior is assumed to be boosted by 

water vapour. When similar reduction conditions were employed on LMO, La2Mo1.5W0.5O9 

(W0.5) and La2MoWO9 (W1.0), it was observed that LMO is more vulnerable to reduction 

compared to W0.5, which is further more reductive compared to W1.0. It was observed that 

LMO reduces to 7730 phase at 10-17atm (at 718 oC), which further reduces to amorphous (7-

) when pO2 is dropped to 10-22 atm, and the sample keeps on reducing with further fall in 

pO2, without reaching thermodynamic stability. Stability limits of W0.5 and W1.0 were also 

determined (at 718 oC by decreasing pO2). It was observed that the stability domain of the 

La2Mo2-yWyO9 phases does not depend on the W content; but only the reduction kinetics vary 

with the W content. The pO2 limits for all three compounds were identical. On the contrary, 

the stability limit of the 7730 phase was found to be dependent on W substitution. Resistivity 

measurements showed significant increase in conductivity (higher conductivity than for the 

fully oxidized sample) and it was clear that this increase is due to the appearance of an n-type 

conductivity arising from partial reduction in LMO of hexavalent Mo6+ to a mixture of Mo3+ 

and Mo4+. Amorphous phase (7- ) pellets were synthesized without cracks under mild 

reduction conditions, and on these samples, despite their porosity superior conductivity was 

measured (>1 S/cm at 1000 K) with a pseudo activation energy of 0.255eV.  

Overall, it is clear that n-type conductivity arises in La2Mo2O9 and W-substituted LMO, 

because of the partial decomposition of hexavalent Mo. Appearance of electronic 

conductivity makes this compound a mixed ionic and electronic conductor (MIEC) and there 

arises a possible utilization of LAMOX materials as MIEC anode in SOFC applications. 

Presuming thermal and chemical compatibilities between reduced lanthanum molybdate 

MIEC and LAMOX based electrolyte material, a novel LAMOX based fuel cell could be 

possible. Reduced amorphous (7- ) has shown conductivity >1 S/cm at 1000 K with a pseudo 

activation energy 0.255 eV, which is satisfactory for a MIEC anode; however there were 

some stability issues. Under thermodynamic equilibrium conditions, it was shown that LMO 

was in amorphous (7- ) phase at 10-22 atm (718 oC), and the sample keeps on reducing. Even 

though further reduction would increase electronic conductivity in the sample, one has to 

study the limits of reduction for an understanding of the system.    
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Perspectives 

 LAMOX materials show significant potential towards applications in high end 

technologies like SOFC, oxide ion separation membranes e.t.c; however substantial work has yet 

to be realized to meet requirements for such applications.  

 In this thesis work, rough estimate of La2WyMo2-yO9 (y = 1.0-2.0) phase diagram was 

given and it was shown that compounds with W substitution above 60 mol% (above W1.2) are 

not suitable for SOFC electrolyte applications. This conclusion was drawn after testing stability 

of W1.2 for 60 days at 700 oC. Further long term heat treatment measurements at higher 

temperature (say for a year at 800 oC or higher) has to be performed to verify its thermal 

stability. In W-LMO samples with W content more than y = 1.2, inhomogeneous distribution of 

W was suspected. Possible inhomogeneity of the W distribution has to be verified in samples 

with W content less than 60 mol%. The effect of long term heat treatment on W-inhomogeneous 

distribution and its possible incidence on conductivity are to be studied. 

 
 Cationic diffusion studies carried on LMO and LSM show that these samples are highly 

reactive and our current results point towards a high diffusivity of at least one element (Mo). In 

order to control/block such cationic diffusivity, a buffer layer is necessary and appropriate 

materials for such buffer layer are to be researched. Since it is known that ceria based materials 

do not react with LMO, research on buffer materials made of ceria would be worthy studying. 

Apart from that, it would be necessary to obtain more accurate diffusion coefficients and for this 

purpose, homogenous and better quality surface/interface would be necessary. Sputtering of thin 

layers of LMO on LSM or vice versa could be advantageous.  

 
 Conductivity values of amorphous reduced phase (7-  observed in our measurements 

were good but should be improved. Higher level of electronic conductivity would be necessary 

in order to improve the performance of such materials as MIEC anode for dual chamber SOFC. 

Elaboration of high compact and crack-free pellets of amorphous reduced phase (7-  has to be 

achieved in order to obtain the bulk conductivity values of these compounds. Conductivity 

higher than 1 S/cm are expected from such high density reduced samples. Since in our 

measurements, only electronic conductivity is studied, ionic conductivity of reduced LMO (the 
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amorphous phase) has to be studied to validate real conductivity and possible application of 

reduced LMO as MIEC materials. Long term stability studies of reduced LAMOX materials in 

low pO2, possibly in a SOFC operating device, would be necessary in order to determine if a 

stable equilibrium can be reached for given oxygen content in the amorphous phase. We have 

observed that amorphous phase upon further reduction leads to partial decomposition into 

metallic molybdenum, and such decomposition need not be worrisome, since it should increase 

electronic conductivity in this new type of cermet phase. A new field of studies opens up with 

the determination of the compositional extension of La:Mo>1 reduced amorphous phases, their 

conducting properties and thermal stability. Local structure analysis of amorphous reduced 

phased (7- -ray 

Absorption Fine Structure (EXAFS) is desirable. Oxidation states of molybdenum could be 

reached through X-ray Absorption Near Edge Structure (XANES) or Electron paramagnetic 

Resonance (EPR) measurements. 

 



213 | P a g e  
 

Annex 

I.1: Instrument effects in Differential Thermal Analysis (DTA): 

 As reported in chapter 3, numerous compounds were synthesized in La2WyMo2-yO9 series 

with (y = 1 to 2.0). Thermal behavior of these compounds was studied by TC-XRD and DTA 

analysis. In the DTA patterns of several compounds a variation in the TG signal resembling an 

endothermic event (a phase transition) was observed around ~980 oC. Such even registered by 

DTA was verified by performing HT-XRD analysis on the sample, and it was concluded that 

such variation in the TG signal was an instrument artifact and such perturbation does not 

represent any phase transition in the compounds.  

 In order to confirm this artifact, empty Pt crucibles were heated in DTA unit from room 

temperature to 1175 oC at 10 oC/min and cooled back to room temperature immediately at the 

same rate in air flow of 100 ml/min. This measurement conditions were similar to those used for 

W-LMO samples.  A perturbation in the TG signal was observed at ~ 980 oC, confirming this 

behavior as an artifact (see Fig. I.1).  

 

Figure I.1: DTA pattern collected on empty Pt crucibles showing perturbations at ~980 oC. 
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 Reason for such perturbation is unknown; however it is believed that an unknown 

component) of DTA unit (alumina crucible holding arms or inner chamber walls e.t.c) was 

contaminated by some volatile material. Since same DTA instrument is being used by all the 

teams in our laboratory and some of them work with volatile materials, it is possible for the 

instrument to be contaminated (one team works on Li based materials and another team work on 

F based materials). To overcome this limitation of DTA and to confirm any abnormal behavior 

observed in the DTA patterns, thermal behavior of all the samples was studied by TC-XRD 

analysis aswell.  

I.2: Limitations of Secondary Ion Mass Spectrometry (SIMS) analysis: 

 In SIMS analysis a high energy primary beam is collimated, focused and directed onto 

the surface of the sample. When the beam is rastered on the surface of the sample, material 

erodes or sputters from the surface. Thus obtained sputtered material is called secondary ions. 

Secondary ions constitute of positive or neutral or negatively charged ions, and secondary ions 

are mixture of different types of ions, and such variation in mixture depends on the composition 

of the sample. Secondary ions which were sputtered from the sample surface are transferred to 

another column under UHV, where the ions are separated by their mass. It is here secondary ions 

are counted by detectors of mass spectrometer.  

 SIMS collects information on the number of secondary ions, of a given mass, emitted by 

sample (for ex. specific count of Sr+ (amu = 88), or La+ (amu = 139) e.t.c). The data obtained is 

the number of counts, the interval of time used to take the count and the depth of the crater which 

was the result of sputtering (in depth profiles). Thus obtained data allows correlation of 

secondary ion counts made with the changes in the material and allows tracking such changes as 

the function of depth in the material. Using this information, profile of a specific secondary ion 

(identified by the mass) is plotted. If a line scan is performed instead of depth analysis, 

correlation of the length of line and the respective secondary ion yield (in counts) are profiled. 

This information is entirely qualitative. Sputter yield or secondary ion yield of one type of ion 

need not be similar to other and they cannot be compared.  In a material system with multiple 

components sputter yield typically varies with the composition. It is well known that the 
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secondary ion yield changes with the atomic composition, chemical state, crystallographic 

orientation and other attributes. These sample dependent variables are called matrix effects. 

 In the SIMS measurements performed in this thesis work, specific cation rich solution 

was deposited on surface of LMO and LSM pellets. As an example, Sr is deposited on the 

surface of the LMO pellet and diffusion of Sr is induced into LMO pellet by annealing the pellet. 

Concentration of Sr on the surface of the pellet will be higher and such concentration diminishes 

with the depth into bulk. It was later observed that Sr can enter into LMO matrix (by partially 

substituting La) or can react with Mo in LMO and form SrMoO4 type phases. In the section 

4.3.1.2 of chapter 4, different possibilities for the existence of Sr and La (with different Sr:La 

ratios) in SrMoO4 was explained. In this measurement two different Mo deficient lanthanum 

molybdate phases (La2MoO6 and La6MoO12) were observed by XRD. During SIMS depth 

profiling signals of Sr+, La+, Mo+ were collected and it has to be noted that these compositions 

would have been spread at different layers of depth in the pellet. Also note that here the 

secondary ion yield of La+ from La2MoO6 or La6MoO12 or LMO or SrMoO4 type phases will be 

different to each other and quantitative information of such yield would not be sensible, however 

the overall changes in the profile of La+ count can be taken into account. This behavior is same 

for Sr+ and Mo+ signals aswell. Similar interpretation has to be considered for other 

measurements where Mn is deposited on LMO pellet or Mo is deposited on LSM pellet or 

LSM/LMO coupled pellet measurements.  

 In most of the samples on which depth profiles were carried out, the surface of the crater 

will not be uniform. The surface roughness of the bottom of the crater will be remarkably high 

when compared to surface roughness at the top of sample surface. Variations caused by the 

secondary ion yield and the relative density of the pellet could be factors leading such behavior 

(because of micro and macro porosity). It is generally recommended to have samples with 

relative density higher than 95 %. All pellets used for cationic diffusion studies and SIMS 

analysis in this thesis work had relative density higher than 95 % (LMO and LSM), and inspite 

of high density, surface roughness of the bottom of the crater was found to be significantly 

higher. Crater formed after depth profile analysis on LMO pellet is shown in Fig. I.2. This 

phenomenon would have been caused by micro porosity and variation in secondary ion yield. 
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Figure I.2: FIB-SIMS depth profile of LMO pellet which was coupled with LSM pellet and 

annealed at 1150 oC for 12 Hrs. A (20 x 20 µm) crater and high surface roughness at the bottom 

of the crater are clearly visible. Small dot like structures on the surface of LMO pellet comes 

from Au coating.  

 

 During the SIMS depth profile analysis, the signals of all the elements gradually fall after 

certain depth. Consider a crater with thickness w, and a depth profile was performed on this 

crater till d.  If d/w > 1 depth, there will be fall in the count of all the secondary ion yield signals. 

During depth profile measurement if the depth of crater is more than its thickness, it is likely that 

secondary ions which were sputtered from the surface of the sample could be obstructed by the 

inner walls of the crater (see Fig. I.3). Secondary ions which were struck to the crater wall do not 

reach the mass spectrometer detector and lead to appearance of low secondary ion yield 

(artifact). This phenomenon causes false count and overall fall in the signals. This behavior is 

observed in most of our SIMS measurements, where depth of the crater was high than its 

thickness.  
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Figure I.3: Schematic representation of SIMS depth profiling limitation caused by crater walls. 

When primary ions Ip are bombarded over the surface of the sample, sample erodes into 

secondary ions Is and forms a crater. If the depth of the  is more than width of crater 

, the secondary ions hit the inner walls of the crater, leading to the false count in the signals.  

II. W-substituted La2Mo2O9 XRD Analysis: 

 Several compounds La2WyMo2-yO9 (y = 1 to 2.0) were synthesized under different 

conditions (details were presented in Chapter 3). All these compounds were first synthesized by 

cooling from their relative synthesis temperatures at 5 oC/min, where it was found that samples 

from W1.0 to W1 -LMO form and compounds from W1.6 to W1.8 were 

-LWO form. On all the single phase samples 

Rietveld analysis was performed and the results were shown and discussed in section 3.7 of 

Chapter 3.  Here the Rietveld refinement of all the XRD patterns will be presented. Reliability 

factors (Rwp (%), Rexp 2) are provided in their respective patterns. Note that the 

background was taken into account while defining reliability factors. Patterns of the samples 

from W1.0 to W2.0 which were synthesized by cooling at 5 oC/min are shown in Fig. II.1 - Fig. 

II. 14.  

 W1.0, W1.1 and W1.2 were heat treated at 700 oC for 60 days to study their stability and 

-LMO phase irrespective of heat treatments. On 
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these three samples Le-Bail fitting is performed and respective patterns are shown in Fig. II.5 to 

Fig. II.17.   

 Samples from W1.3 to W1.8 were heat treated at 800 oC for 4 days (96 hours). After heat 

treatments, samples from W1.3 to W1.5 were observed to be bi-phasic. On these samples XRD 

patterns were collected at room temperature and thermal diffractometry was performed at 700 oC 

by TC-XRD aswell. On all patterns both at R.T and at 700 oC, Rietveld analysis was performed 

and relative results were discussed in section 3.7 of Chapter 3. Note that W1.25 and W1.5875 

was used as the boundary limits of the bi- - -LWO phases) and attempts 

were made to extrapolate the theoretical values of such bi-phasic domain using (inverse) Lever 

rule. Here the Rietveld analysis patterns of these compounds are presented (see Fig II. 18 to Fig. 

II.20 for patterns at room temperature and Fig. II. 21 to Fig. II. 23 for patterns at 700 oC).  Unit 

cell parameters of the compounds after the refinement were given in Table II.1 and II.2 for 

patterns collected at R.T and 700 oC respectively. All the refined parameters of W1.3 and W1.7 

for raw powders, W1.4 and W1.7 thermodynamic stable (heat treated) compounds at R.T and at 

700 oC are given in Table II.3 to II.7 respectively. 

 

Figure II.1: Rietveld -LMO phase W1.0 compound (space group 

P213). Synthesized by cooling at 5 oC/min. 
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Figure II.2: Rietveld -LMO phase W1.1 compound (space group 

P213). Synthesized by cooling at 5 oC/min. 

 

Figure II.3: Rietveld -LMO phase W1.2 compound (space group 

P213). Synthesized by cooling at 5 oC/min. 
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Figure II.4: Rietveld -LMO phase W1.3 compound (space group 

P213). Synthesized by cooling at 5 oC/min. 

 

Figure II.5: Rietveld -LMO phase W1.4 compound (space group 

P213). Synthesized by cooling at 5 oC/min. 
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Figure II.6: Rietveld -LMO phase W1.5 compound (space group 

P213). Synthesized by cooling at 5 oC/min. 

 

Figure II.7: Rietveld -LMO phase W1.55 compound (space group 

P213. Synthesized by cooling at 5 oC/min. 
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Figure II.8: Rietveld refined XRD pattern bi-phasic W1.6 compound (space group P213 and 

1), which was Synthesized by cooling at 5 oC/min. 

.  

Figure II.9: Rietveld refined XRD pattern bi-phasic W1.7 compound (space group P213 and 

1), which was Synthesized by cooling at 5 oC/min. 
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Figure II.10: Rietveld refined XRD pattern bi-phasic W1.8 compound (space group P213 and 

1), which was Synthesized by cooling at 5 oC/min. 

Figure II.11: Rietveld refined XRD p -LWO phase W1.85 compound (space 

group 1). Synthesized by cooling at 5 oC/min. 
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Figure II.12: Rietveld refined XRD p -LWO phase W1.9 compound (space 

group 1). Synthesized by cooling at 5 oC/min. 

Figure II.13: Rietveld -LWO phased W1.95 compound (space 

group 1). Synthesized by cooling at 5 oC/min. 
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Figure II.14: Rietveld refined XRD p -LWO phase W 2.0 compound (space 

group 1). Synthesized by cooling at 5 oC/min. 

 
Figure II.15: Le-Bail fitting of X -LMO phase W1.0 compound (space group 

P213). Sample heat treated at 700 oC for 60 days. 
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Figure II.16: Le-Bail fitting of X -LMO phase W1.1 compound (space group 

P213). Sample heat treated at 700 oC for 60 days. 

 
Figure II.17: Le-Bail fitting of XRD -LMO phase W1.2 compound (space group 

P213). Sample heat treated at 700 oC for 60 days. 
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Table.II.1: Unit cell parameters and Wt. fractions (%) calculated by Rietveld refinement on R.T 

XRD patterns of W1.3-W1.5 compounds, applying (inverse) Lever rule and using W1.25 and 

W1.5875 as boundary limits for the  bi-phasic domain. Note that these compounds were pre-heat 

treated at 800 oC for 96 Hrs.   

 

Table.II.2: Unit cell parameters and Wt. fractions (%) calculated by Rietveld refinement on the 

XRD patterns of W1.3-W1.5 compounds (collected at 700 oC), applying (inverse) Lever rule and 

using W1.25 and W1.5875 as boundary limits for bi-phasic domain. Note that these compounds 

were pre-heat treated at 800 oC for 96 Hrs. 
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Table.II.3: Unit cell parameters and cationic positions of W1.3 raw powder at R.T.  

 

 

Table.II.4: Unit cell parameters and cationic positions of W1.85 raw powder at R.T.  
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Table.II.5: Unit cell parameters and cationic positions of W1.4 which was heat treated at 800 oC 

for 96 hours  at R.T .  
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Table.II.6: Unit cell parameters and cationic positions of W1.7which was heat treated at 800 oC 

for 96 hours at R.T.  

Figure II.18: Rietveld refined of the XRD pattern for bi-phasic W1.3 compound at R.T, which 

was heat treated at 800 oC for 96 hours. Reliability factors of the refinement were given in inset. 
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Table.II.7: Unit cell parameters and cationic positions of W1.4 which was heat treated at 800 oC 

for 96 hours at 700 oC.  
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Table.II.8: Unit cell parameters and cationic positions of W1.7which was heat treated at 800 oC 

for 96 hours at 700 oC. 

 
Figure II.19: Rietveld refined of the XRD pattern for bi-phasic W1.4 compound at R.T, which 

was heat treated at 800 oC for 96 hours. Reliability factors of the refinement were given in inset. 
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Figure II.20: Rietveld refined XRD pattern bi-phasic W1.5 compound at R.T, which was heat 

treated at 800 oC for 96 hours. Reliability factors of the refinement were given in inset. 

  
Figure II.21: Rietveld refined XRD pattern bi-phasic W1.3 compound at 700 oC, which was heat 

treated at 800 oC for 96 hours. Reliability factors of the refinement were given in inset. 
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Figure II.22: Rietveld refined XRD pattern bi-phasic W1.4 compound at 700 oC, which was heat 

treated at 800 oC for 96 hours. Reliability factors of the refinement were given in inset. 

 
Figure II.23: Rietveld refined XRD pattern bi-phasic W1.5 compound at 700 oC, which was heat 

treated at 800 oC for 96 hours. Reliability factors of the refinement were given in inset. 



Résumé 

 Les oxydes La2Mo2-yWyO9 -solide et 
caractérisés par diffraction des rayons X (température ambiante et en température) ainsi que par 
analyse thermique différentielle. Un diagramme de phase de ce système est proposé. Les phases 
thermodynamiquement stables à température ambiante sont 
type -La2Mo2O9  (cubique); pour -
La2Mo2O9+ -La2W2O9 -La2W2O9. Dans le domaine 
biphasique, une distribution inhomogène du tungstène est suspectée. Il est clair que les composés à 
teneur en tungstène supérieure à y=1,2 ne conviennent pas pour utilisation en piles à combustibles à 
oxydes solides. 

 Des études de diffusion cationiques par SIMS ont été menées sur des couples La2Mo2O9 

(LMO)/La0.8Sr0.2MnO3-  (LSM) après leurs recuits à haute température. Des cristaux de LaMnO3 en 
forme de barreau ont été observés sur les pastilles 
SrMoO4 a été constatée sur la pastille LSM. Des hypothèses expliquant les mécanismes possibles de 
diffusion sont présentés. Les coefficients de diffusion en volume du strontium et du manganèse dans 
LMO et du molybdène dans LSM sont estimés proches respectivement de 1x10-20 cm2.s-1 et 1x10-15 
cm2.s-1 à 800°C.  Des études similaires de diffusion ont été menées par dépôts de solutions riches en 

n riche en cation molybdène 
sur une pastille de LSM. Après recuit, la formation de cristaux de LaMnO3 au niveau de la zone de 
dépôt de la solution de manganèse a été observée. Les coefficients de diffusion du molybdène dans 
LSM et du strontium dans LMO semblent être beaucoup plus importants -proches de 1-2x10-10cm2.s-1 
à 1150°C- que ceux obtenus lors des mesures sur couple LMO/LSM. De par leur réactivité, le couple 
LMO/LSM ne semble pas adapté pour une application dans le domaine des piles à combustible, sauf 
si une couche tampon appropriée les sépare. 

 Les stabilités de LMO et de LMO dopé tungstène ont été étudiées sous atmosphères 
réductrices. Suivant le taux de perte en oxygène, des changements structuraux successifs ont été 
observés : de phase LMO à La7Mo7O30(7730), phase amorphe réduite La2Mo2O7-  et décomposition 
partielle sous forme de molybdène métallique. Le domaine de stabilité de La2Mo2-yWyO9 sous faible 
pression de O2 ne semble pas dépendant du taux de tungstène alors que la cinétique de réduction, elle, 
évolue avec y. En revanche, la limite de stabilité de la phase 7730 apparait dépendante du taux de 

-  de 
6,69 à 6,20), cependant sa stabilité vs. PO2 reste à démontrer. Les mesures de résistivité conduites sur 
un échantillon amorphe de La2Mo2O7-  de faible compacité et sans fissure ont montré une 
augmentation significative de la conductivité (> 1 S.cm-1 à 1000 K) vis-à-vis de La2Mo2O9, avec une 
pseudo-  
résulte de la réduction partielle des cations Mo6+ en Mo3+ et Mo4+. 

 

Mots clés : La2Mo2O9, LAMOX, La2Mo2O9 substitué par le tungstène, SOFC, électrolyte, MIEC, 
anode, diagramme de phase, métastabilité, réductibilité, diffusion cationique, diffraction des RX, 
pression partielle de O2, La0.8Sr0.2MnO3- , SIMS. 



Summary 

 La2Mo2-yWyO9 (y = 1.0 to 2.0) oxides were synthesized by conventional solid state route and 

studied by XRD, TC-XRD and DTA. A phase diagram of the series was proposed. The 

-La2Mo2O9 type 

-La2Mo2O9 -La2W2O9 type phases, 

-La2W2O9 type solid solution. Inhomogeneous distribution of W is 

suspected in the biphasic samples. It is clear that the compounds above y =1.2 are not suitable for 

SOFC applications.  

 Cationic diffusion studies were performed using SIMS on La2Mo2O9 (LMO)/La0.8Sr0.2MnO3-

(LSM) annealed couples. Rod shaped LaMnO3 grains were observed on LMO pellet and SrMoO4 type 

phases were seen to be growing on LSM pellet. Hypotheses for possible reaction mechanisms are 

presented. Bulk diffusion coefficients of Sr and Mn in LMO and of Mo in LSM are extrapolated to be 

around 1x10-20 cm2.s-1 and 1x10-15 cm2.s-1, respectively, at 800oC. Similar diffusion studies were 

performed by depositing Mn and Sr cation rich solutions on LMO pellets and Mo rich solution on 

LSM pellet. Mn solution was observed to be forming, upon annealing, LaMnO3 single crystals on the 

surface of the LMO pellet. Mo in LSM and Sr in LMO diffusion coefficients appear to be much 

higher than in LMO/LSM couple experiments, namely around 1-2x10-10cm2.s-1 at 1150°C. Because of 

the reactivity, LMO/LSM couple is not desirable for SOFC applications, unless an appropriate buffer 

layer separates them.  

The stability of LMO and W-LMO was studied under reductive atmospheres. Successive 

structural changes from LMO to La7Mo7O30 (7730), an amorphous reduced phase La2Mo2O7- , and 

partial decomposition to metallic Mo were observed as a function of oxygen loss. The pO2 stability 

domain of La2Mo2-yWyO9 did not appear to change with W content, but the reduction kinetics varied 

with y. At reverse, the stability limit of the 7730 phase was found to be dependent on W content. The 

amorphous reduced phase can accommodate a wide range of oxygen stoichiometry (7-

6.20), but its stability vs. pO2 is questioned. Resistivity measurements performed on a low compacity 

crack-free amorphous La2Mo2O7-  sample showed significant increase in the conductivity (> 1 S.cm-1 

at 1000 K) relative to La2Mo2O9, with a pseudo activation energy 0.255eV. It is postulated that n-type 

electronic conductivity arises from partial reduction of hexavalent Mo6+ to a mixture of Mo3+ and 

Mo4+. 

 

Key words: La2Mo2O9, LAMOX, W substituted La2Mo2O9, SOFC, electrolyte, MIEC, anode, phase 

diagram, metastability, reducibility, cationic diffusion, XRD, pO2 , La0.8Sr0.2MnO3- , SIMS. 


