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Titre: Stéreo multi-vues à grande échelle et de haute qualité.

Établissement: Groupe Imagine, laboratoire d’informatique Gaspard-Monge,

l’École des Ponts, l’Université de Paris-Est.

Résume:L’acquisition de modèles 3D des scènes réelles trouve son utilité dans

de nombreuses applications pratiques, comme l’archivage numérique, les jeux vidéo,

l’ingénierie, la publicité. Il existe principalement deux méthodes pour acquérir un

modèle 3D: la reconstruction avec un scanner laser (méthode active) et la recon-

struction à partir de plusieurs photographies d’une même scène prise dans des points

de vues différentes (méthode passive). Si la méthode active permet d’acquérir des

modèles avec une grande précision, il est cependant coûteux et difficile à mettre

en place pour de grandes scènes extérieures. La méthode passive, ou la stéréo

multi-vues est en revanche plus flexible, facile à mettre en oeuvre et surtout moins

coûteuse que la méthode active.

Cette thèse s’attaque au problème de la reconstruction de stéréo multi-vues à

grande échelle et précise pour les scènes extérieures. Nous améliorons des méthodes

précédentes et les assemblons pour créer une châıne de stéréo multi-vues efficace

tirant parti de l’accélération de cartes graphiques. La châıne produit des mail-

lages de qualité à partir d’images de haute résolution, ce qui permet d’atteindre les

meilleurs scores dans de nombreuses évaluations. Aux plus grandes échelles, nous

développons d’une part des techniques de type diviser-pour-régner pour reconstru-

ire des morceaux partiaux de la scène. D’autre part, pour combiner ces résultats

séparés, nous créons une nouvelle méthode qui fusionne rapidement des centaines de

maillages. Nous réussissons à reconstruire de beaux maillages urbains et des mon-

uments historiques précis à partir de grandes collections d’images (environ 1600

images de 5M Pixel).

Mot clés: multi-vues stéréo, reconstruction 3D, reconstruction de surface,

méthode variationelle, GPU, fusion des maillages, grande échelle, haute qualité,

précision, diviser pour régner, triangulation de Delaunay, tétrahédralisation con-

trainte de Delaunay, coupe minimale.
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Title: Large-scale and high-quality dense multi-view stereo.

Institution: Group Imagine, laboratory of Computer Science Gaspard-Monge,

Ecole des Ponts, University of Paris-Est.

Abstract: Acquisition of 3D model of real objects and scenes is indispensable

and useful in many practical applications, such as digital archives, game and en-

tertainment industries, engineering, advertisement. There are 2 main methods for

3D acquisition : laser-based reconstruction (active method) and image-based re-

construction from multiple images of the scene in different points of view (passive

method). While laser-based reconstruction achieves high accuracy, it is complex,

expensive and difficult to set up for large-scale outdoor reconstruction. Image-

based, or multi-view stereo methods are more versatile, easier, faster and cheaper.

By the time we begin this thesis, most multi-view methods could handle only low

resolution images under controlled environment.

This thesis targets multi-view stereo both both in large scale and high accu-

racy issues. We significantly improve some previous methods and combine them

into a remarkably effective multi-view pipeline with GPU acceleration. From high-

resolution images, we produce highly complete and accurate meshes that achieve

best scores in many international recognized benchmarks. Aiming even larger scale,

on one hand, we develop Divide and Conquer approaches in order to reconstruct

many small parts of a big scene. On the other hand, to combine separate partial re-

sults, we create a new merging method, which can merge automatically and quickly

hundreds of meshes. With all these components, we are successful to reconstruct

highly accurate water-tight meshes for cities and historical monuments from large

collections of high-resolution images (around 1600 images of 5 M Pixel images).

Key words: multi-view stereo, 3D reconstruction, surface reconstruction,

variational method, GPU, mesh merging, large scale, high quality, accuracy, di-

vide and conquer, Delaunay triangulation, constrained Delaunay tetrahedralization,

graph cuts.
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1.2 Le sujet de thèse et les contributions . . . . . . . . . . . . . . . . . . 5

1.2.1 Liste de publications . . . . . . . . . . . . . . . . . . . . . . . 7

2 Introduction 9

2.1 Overview of Multi-view stereo . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Thesis subject and contribution . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 List of publications . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Review on Multi-view stereo 17

3.1 Common concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Framework in photo-consistency and regularization measures . . . . 20

3.2.1 Photo-consistency matching . . . . . . . . . . . . . . . . . . . 20

3.2.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Transformation steps in multi-view stereo methods . . . . . . . . . . 24

3.3.1 From images to a discrete presentation . . . . . . . . . . . . . 24

3.3.2 From a discrete presentation to a surface . . . . . . . . . . . 25

3.3.3 From a surface to a surface . . . . . . . . . . . . . . . . . . . 25

3.3.4 From a volume to a surface . . . . . . . . . . . . . . . . . . . 26

3.4 Large scale multi-view stereo . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Multi-view stereo for compact objects . . . . . . . . . . . . . 27

3.4.2 Multi-view stereo for outdoor scenes . . . . . . . . . . . . . . 28

3.4.3 3D reconstruction on Internet scale . . . . . . . . . . . . . . . 29

3.5 Some related topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.1 Structure from motion . . . . . . . . . . . . . . . . . . . . . . 31

3.5.2 Active range finding . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.3 Shape from X . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.4 Reconstruction of dynamic scenes . . . . . . . . . . . . . . . . 32

3.5.5 Urban architecture understanding . . . . . . . . . . . . . . . 32

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Towards large-scale multi-view stereo 35

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



viii Contents

4.2 Multi-view reconstruction pipeline . . . . . . . . . . . . . . . . . . . 37

4.2.1 Quasi-dense point cloud . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Visibility-based surface reconstruction . . . . . . . . . . . . . 40

4.2.3 Photometric robust variational refinement . . . . . . . . . . . 43

4.2.4 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Implementation aspects . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.1 Compact objects . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.2 Outdoor architectural scenes . . . . . . . . . . . . . . . . . . 51

4.4.3 Landscape and cultural heritage scenes . . . . . . . . . . . . 51

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Surface triangular mesh merging 57

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Merging algorithm in general case . . . . . . . . . . . . . . . . . . . 59

5.2.1 Overlap detection . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.2 Graph cuts on Constrained Delaunay Tetrahedralization . . . 60

5.2.3 Graph cuts on the extracted surface . . . . . . . . . . . . . . 62

5.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Merging meshes from partition of bounding box . . . . . . . . . . . . 65

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Large-scale visibility-consistent surface reconstruction 71

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1.2 Work in multi-view stereo with the visibility issue . . . . . . 72

6.1.3 Work on large scale surface reconstruction . . . . . . . . . . . 74

6.2 Divide and Conquer algorithm . . . . . . . . . . . . . . . . . . . . . 75

6.2.1 Multi-level representation of a point set . . . . . . . . . . . . 76

6.2.2 Partition of a point set in many equal parts . . . . . . . . . . 78

6.2.3 Local visibility-consistent surface reconstruction . . . . . . . 80

6.2.4 Multi-level point cloud filter . . . . . . . . . . . . . . . . . . . 82

6.2.5 Partial surface reconstruction and mesh merging . . . . . . . 83

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



Contents ix

7 Large scale multi-view stereo 93

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2 Partition of mesh with associated images . . . . . . . . . . . . . . . . 96

7.3 Sequential and independent deformations . . . . . . . . . . . . . . . 98

7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.5 Some comparison with PMVS . . . . . . . . . . . . . . . . . . . . . . 103

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8 Conclusion 111

A Background 115

A.1 Delaunay triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.2 Constrained Delaunay triangulation . . . . . . . . . . . . . . . . . . 115

A.3 Graph cuts optimization . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.4 kd-tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.5 kd-tree of volumetric objects . . . . . . . . . . . . . . . . . . . . . . 119

B Supplement results 123

Bibliography 127





Chapter 1

Introduction (version française)

Contents

1.1 Conception générale de multi-vues stéréo . . . . . . . . . . . 2

1.2 Le sujet de thèse et les contributions . . . . . . . . . . . . . 5

1.2.1 Liste de publications . . . . . . . . . . . . . . . . . . . . . . . 7

Nous recevons des informations extérieures grâce à nos sens: la vue, l’oüıe, le

toucher, l’odorat et le goût. Pour l’être humain, la vue est le sens le plus important

qui capte 80 % des informations. Les yeux reçoivent la lumière , et la convertissent

en signaux dans les neurones du cerveau. Le cerveau traite les signaux et nous fait

percevoir le monde: la luminosité, la couleur de tout ce que nous pouvons voir.

Cette capacité peut se faire avec un seul œil, alors pourquoi en avons-nous deux

? En effet, le système de vision avec 2 yeux fournit la perception de profondeur et

l’estimation des distances relatives entre des objets. Avec un seul œil, cette capacité

est très limitée (bien qu’un léger déplacement du point de vue, ou un changement

de focale puisse aider à avoir une perception de profondeur). Deux yeux donnent

des vues un peu différentes, dans lesquelles le cerveau relie des similitudes pour

nous donner l’impression de relief. La perception de profondeur à partir de deux

vues est appelée la stéréopsie (ou stéréo-vision). Parfois, cette capacité spéciale

nous conduit à une estimation inexacte, e.g. nous voyons un poisson dans l’eau

plus haut que sa position actuelle (à moins que nous soyons aussi dans l’eau), ou

nous pouvons regarder un film 3D avec des lunettes particulières à travers lesquelles

chaque œil reçoit codes images différentes du film pour reconstruire le relief dans

notre cerveau. Les hommes ont inventé de nombreuses machines pour enregistrer

ce qu’ils ressentent : les magnétoscopes pour le son, les caméras pour la vue. Les

caméras sauvegardent le monde réel en photos de deux dimensions, qui préservent

la luminosité et les couleurs originales. Pourtant, ces photos en deux dimensions

ne fournissent pas les informations de profondeur de scène prise. Alors, comment

’enregistrer’ l’information 3D ?

Les machines les plus sophistiquées et les plus polyvalentes ont été inventées

en XX siècle : les ordinateurs. Les ordinateurs sont les machines les plus proches

de l’intelligence du cerveau humain. Un domaine dans l’informatique qui étudie
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les méthodes pour donner aux ordinateurs la capacité de comprendre la vue, est la

vision par ordinateur. La question centrale est : comment les ordinateurs peuvent-

ils interpréter et comprendre le monde de manière similaire au cerveau humain ?

Au début, les chercheurs ont pensé que ce travail a été assez simple, mais ils se sont

vite rendu compte de sa grande complexité.

Malgré de grandes avancées sur cette question grâce à des algorithmes innovants

et la puissance croissante des ordinateurs, la vision par ordinateur ne parvient

toujours pas à la capacité de la vision humaine. Une question classique et directe

dans la vision par ordinateur est : comment faire pour que l’ordinateur puisse

percevoir le relief à partir de différents ‘yeux’ (caméras) ?

La reconstruction de la structure 3D à partir de multiple images dans des points

des vues différentes ou la stéréo multi-vues, est plus ou moins équivalente de la

stéréopsie de l’humain. Outre son intérêt théorique, la stéréo multi-vues présente

son utilité dans de nombreuses applications, telles que:l’archivage numérique, simu-

lations et mesures sur des modèles numériques, jeux vidéo et films, publicité. Depuis

plus de 20 ans, nombreuses méthodes ont été proposées sans toutefois répondre

entièrement à l’exigence de qualité et de scalabilité récemment posée. Avant le début

de cette thèse, la plupart des méthodes de stéréo multi-vues dans la littérature, ne

permettait pas de traiter que des images de faible résolution dans un environnement

contrôlé en laboratoire. Les autres méthodes ont de résultats dont la précision et

la qualité reste encore à désirer. Le but de cette thèse est de produire des maillages

3D de grande échelle et de haute qualité à partir de nombreuses images de haute

résolution.

1.1 Conception générale de multi-vues stéréo

La stéréo multi-vues peut se considérer comme le processus inverse de la photogra-

phie de scène fixe. Une photographie étant la projection du monde réel en 3D dans

le plan d’image de la caméra, la stéréo multi-vues a pour l’objectif de retrouver la

géométrie 3D d’une scène à partir d’un ensemble d’images photographiques de cette

scène à partir des points de vues différents.

Bien qu’il existe de nombreux modèles de caméra, le modèle standard reste le

modèle sténopé. Dans ce modèle, la lumière venant du monde traverse le centre

optique de caméra et arrive au capteur d’image directement suivant une ligne droite

(Fig. 1.1).

Dans la vision biologique, les humains et les animaux sont capables

d’appréhender le relief et la profondeur en relation avec la position et la direc-

tion du regard des yeux. De même, la reconstruction 3D à partir de photographies

se base sur la connaissance de la position et l’orientation des caméras pour chaque
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Figure 1.1: Modèle sténopé. Gauche: une configuration de sténopé, l’image est à l’envers,
droite: une présentation avec l’image ayant le même sens que l’objet.

photographie. Par conséquent, la stéréo multi-vues nécessite d’abord d’estimer les

paramètres de caméras. Une telle estimation s’appelle ‘la calibration de caméras’,

qui dépasse le cadre de cette thèse. Nous invitons le lecteur à se rapporter à

l’excellent livre [Hartley and Zisserman, 2004].

Les correspondances des points des différentes images permettent de déduire les

positions 3D de l’objet. En effet, si un point 3D A sur la surface de l’objet est

projetée à une position a1 dans le capteur d’un caméra 1 avec le centre d’optique

c1, et une position a2 dans le capteur d’un caméra 2 avec le centre d’optique c2

(Fig. 1.2). Alors, connaissant les paramètres des caméras, nous retrouvons les

coordonnées du point A en calculant l’intersection des rayons c1a1 et c2a2. C’est la

‘triangulation’.

b

b b

S

a1

A

a2

camera 1 camera 2

b

b

c1 c2

Figure 1.2: Triangulation. Gauche: triangulation à partir de 2 images. Droite: trian-
gulation à partir de multiple images (une image à http://www.tnt.uni-hannover.de/

project/motionestimation/).

La stereo multi-vues soulève le problème fondamental qui est la mise en corre-

spondance des points dans les images. Les critères de cette correspondance sont très

importants dans la stéréo multi-vues et dans d’autres sujets stéréo de vision par or-

http://www.tnt.uni-hannover.de/project/motionestimation/
http://www.tnt.uni-hannover.de/project/motionestimation/
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dinateur ([Hirschmueller and Scharstein, 2007]). Un critère simple est la différence

d’intensité ou de couleur des pixels, mais il est sensible au changement du contraste.

D’autres critères ont alors été proposés pour résoudre ce problème, notamment: la

corrélation croisée normalisée, ou la description des points clés (des descripteurs

comme SIFT [Lowe, 2004], DAISY [Tola et al., 2010]). Cependant, tous ces critères

ne reste valable que si la surface conserve la propriété lambertienne: sa lumière est

pratiquement invariante au changement de point de vue. Citons quelques exem-

ples de bonnes surfaces lambertiennes: briques, murs, pierres, statues, bâtiments

anciens, animaux. Pour les surfaces spéculaires comme le verre, le plastique, l’eau,

il reste néanmoins difficile de trouver des correspondances de points de surface basé

sur ces critères. C’est pourquoi la plupart des méthodes de stéréo multi-vues sup-

posent que la surface reconstruite est lambertienne.

Figure 1.3: Exemples de surfaces lambertiennes (gauche) and moins lambertiennes (droite).
La plupart de méthodes de stéréo multi-vues fonctionnent le mieux pour les surface lam-
bertiennes.

Le problème de stéréo multi-vues le plus simple est l’estimation de la correspon-

dance (ou disparité) à partir de deux ou plusieurs images rectifiées. Nous précisons

que la rectification des images consiste à projeter deux (ou plus) images sur un

plan commun. Par conséquent, les pixels correspondants des images différentes

se trouvent toujours sur la même ligne droite. Depuis l’apparition de l’évaluation

quantitative de Middlebury 1 , de nombreuses méthodes d’estimation de la disparité

ont été développées et évaluées (voir Fig 1.4 pour un jeu de données). Une étude et

analyse en profondeur des différentes méthodes peuvent se trouver dans [Scharstein

and Szeliski, 2002].

En raison de sa connexité topologique, un maillage est préféré à une collection

1http://vision.middlebury.edu/stereo/
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Figure 1.4: La disparité des images rectifiées. La troisième image représente la disparité
de deuxième image par rapport à la première.

des cartes de disparités. Par ailleurs, les images d’une scène 3D peut être très

arbitraires et il est souvent difficile de les rectifier pour calculer leurs cartes de

disparité. Plusieurs évaluations, tels que ceux de Middlebury 2 ou de Strecha 3,

ont été mis au point afin de comparer des algorithmes différents et d’inciter les

chercheurs à créer et à améliorer leurs méthodes.

Figure 1.5: Queques images et la vérité de terrain dans l’évaluation de Middlebury.

1.2 Le sujet de thèse et les contributions

Bien que de nombreuses méthodes de stéréo multi-vues ont été proposées, la plupart

restent inapplicables pour reconstruire de larges scènes extérieures en raison du gros

volume de données. Les autres n’obtiennent pas des modèles 3D très complets et

précis. Le défi de cette thèse est donc de mettre au point et d’améliorer les méthodes

de stéréo multi-vues sur les grands jeux de données tout en compte des ressources

de calcul limitées. Donc, le sujet de thèse peut s’énoncer de la manière suivante:

On se donne n images d’une scène 3D fixe, prises à partir des caméras calibrées.

Calculer un maillage triangulaire de haute qualité de la scène, surtout avec un grand

nombre n images d’entrée de haute résolution.

Après avoir examiné la littérature de stéréo multi-vues dans le chapitre 3,

nous écrirons notre châıne de stéréo multi-vues dans le chapitre 4. Ensuite, nous

2http://vision.middlebury.edu/mview/
3http://cvlab.epfl.ch/∼strecha/multiview/denseMVS.html
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présenterons des algorithmes de type ‘Diviser pour Régner’ pour adapter cette

méthode pour une échelle encore plus grande (chapitre 6, chapitre 7). Pour com-

biner les résultats partiels, dans le chapitre 5, nous proposerons un algorithme

pour fusionner les maillages partielle à un maillage final correct topologiquement et

géométriquement.

Plus concrètement, le plan de la thèse est le suivant:

• Chapitre 3 expose l’état de l’art en stéréo multi-vues.

• Chapitre 4 présente notre châıne de stéréo multi-vues qui gère naturellement

les scènes de grande échelle et produit des maillages très précis pour des

temps de calcul raisonnable. La méthode consiste en 3 étapes principales:

la génération de nuage de points quasi-dense, l’extraction d’un maillage qui

respecte les contraintes de visibilité, le raffinement variationnel de ce maillage

initial pour optimiser la cohérence photométrique. La méthode a été évaluée

et nous avons obtenu les meilleurs résultats en terme de la complétude et la

précision dans de nombreux jeux de données.

• Chapitre 5 décrit une nouvelle méthode pour fusionner automatiquement

plusieurs maillages séparés à un seul maillage. Basé sur la tétraédrisation

contrainte de Delaunay et optimisation de graph-cuts (coupe minimale), la

méthode est robuste, efficace et performante pour fusionner de centaines de

maillages. Nous allons présenter également une variation qui combine des

maillages reconstruits à partir d’une partition d’une bôıte englobante, qui

sera utilisée dans les chapitres suivants.

• Chapitre 6 adapte une méthode de reconstruction de surface qui respecte la

contrainte de visibilité pour un ensemble très grand de points. En utilisant

une représentation à plusieurs niveaux de l’ensemble de point et une approche

de Diviser pour Régner, nous réussissons à reconstruire la surface avec la

cohérence de visibilité pour les grandes données avec une ressource limitée .

• Chapter 7 se concentre sur la méthode variationnelle de grande échelle grâce

au raffinement de manière séquentielle ou parallèle. Plusieurs expériences de

grande échelle seront menées.

• Chapitre 8 conclut et présente la perspective de cette thèse.

• Appendice A décrira les connaissances de base pour cette thèse: la trian-

gulation (constrainte) de Delaunay, qui est utilisé pour la reconstruction de

surface et le fusionnement des maillages, coupe minimale, le kd-tree pour la

partition de l’espace et des maillages.
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• Appendice B affichera des résultats supplémentaires de notre méthode dans

d’autres jeux de données.

Dans cette thèse, les contributions sont les suivantes:

• Une méthode innovante stéréo multi-vues de haute qualité, capable de recon-

struire les modèles 3D de grandes scènes extérieures pour des temps de calcul

raisonnable.

• Une nouvelle méthode qui fusionne automatiquement et rapidement un grand

nombre des maillages séparés à un maillage correct topologiquement.

• Des algorithmes de type Diviser pour Régner dans la reconstruction de surface

et dans le raffinement de maillage de grande taille, pour reconstruire de grands

modèles de à la fois complets et précis.

Pendant le projet, nous avons implémenté et optimisé notre méthode en C++,

avec la bibliothèque CGAL 4 et OpenGL 5. Ce projet a permis de reconstruire

plusieurs bâtiments et monuments, notamment l’Abbeye de Cluny, pour son 1100

ème anniversaire dans la collaboration avec le projet Gunzo 6.

Cette thèse est financée par l’École des Ponts ParisTech (ENPC) et l’École

Nationale Supérieure d’Arts et Métiers de Cluny (ENSAM Cluny).

1.2.1 Liste de publications

Papiers de journal

• H. H. Vu, P. Labatut, R. Keriven and J.-P. Pons. High accuracy and visibility-

consistent dense multi-view stereo. IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI), 2011 (accepté, à être apparu).

• F. Lafarge, R. Keriven, M. Brédif, and H. H. Vu. A Hybrid Multi-View

Stereo Algorithm for Modeling Urban Scenes. Sousmis in IEEE Transactions

on Pattern Analysis and Machine Intelligence (PAMI).

Papiers de conférence

• H. H. Vu, R. Keriven, P. Labatut, and J.-P. Pons. Towards high-resolution

large-scale multi-view stereo. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) 2009.

4http://www.cgal.org/
5http://www.opengl.org/
6http://cluny-numerique.fr/
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• F. Lafarge, R. Keriven, M. Brédif, and H. H. Vu. Hybrid multi-view Recon-

struction by Jump-Diffusion. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) 2010.
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We receive the external world information through our senses : sense of sight,

hearing, touch, smell and taste. For the human being, it is said that the sense of

sight is the most significant one which captures 80% of the information. The eyes

receive light from the world, and convert it to signals in neurons of the brain. The

brain treats the signals and makes us see the world: the brightness, the color of

everything that we can see.

This capacity can be done with just one eye, then why do we need 2 eyes? Indeed,

the vision system with 2 eyes provides the depth perception and the estimation of

the relative distance between objects. With only one eye, this capacity is severely

limited (moving the view slightly or adjusting the eye’s focal can also help to have

a depth perception). Two eyes provide slightly different views from which the brain

matches the similarities to give us the impression of depth. This perception of depth

from two views is called stereopsis (or stereovision). Sometimes, this capacity leads

us to wrong estimation, e.g. we see a fish in the water higher than its correct

position (unless we are also in the water), or we can watch a 3D movie with special

glasses through which each eye receives different images of the movie, to get a depth

perception in the brain.

Men have invented many machines to record what they sense: recorder for the

sound, cameras for the vision. The cameras save the ‘look’ of the world into two-

dimension photographs that preserve the original brightness and colors. However,

those two-dimension photographs do not provide the depth information of the taken

scene. Then, how to ‘record’ 3D information?

The most sophisticated and versatile machines were invented in XX century:

computers. Computers are the machines that are nearest to the human brain ca-

pacity. A branch of computer science that studies how to make computer under-

stand visual input like images, videos, is computer vision. The main question is how
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computers can interpret the world similar to the human brain. In the beginning

of computer vision, people thought that this work was easy, but they soon real-

ized how complicated it would be. Despite significant progress due to innovating

algorithms and increasing computation power, computer vision still cannot match

human vision system for even simple tasks. A fairly straightforward and classic

question in computer vision is: how to make computer create 3D information from

different ‘eyes’ (cameras) ?

The reconstruction of 3D structure from multiple images in different views, or

multi-view stereo, is more or less the equivalent of human stereo-vision. Beside

its theoretical interest, multi-view stereo has many practical applications such as

digital archives, simulation and measure over models, game and entertainment in-

dustries, tourism, advertisement. For more than 20 years, many methods have

been proposed. Nevertheless, most of them only handle low resolution images in

controlled laboratory environments. They do not response to the requirement of

quality and scalability for large scale. The few others have their results’ quality

somehow limited. This thesis goal is to solve this problem and to produce high

quality large scale 3D models in multi-view from many high-resolution images.

2.1 Overview of Multi-view stereo

Multi-view stereo can be considered as the inverse process of taking photographs

of a fixed scene. While a photograph is the map of the 3D scene into a 2D domain

through a camera, multi-view stereo has the goal of recovery of this scene from its

multiple photographs in different points of view.

While there are many camera models, the standard model is a the pinhole

camera (Fig. 2.1). In this model, the light from the world traverse the optical

center and meets the image sensor following a straight line.

Figure 2.1: Pinhole camera model. Left: a configuration of a pinhole camera, the image
is upside down, right: a common presentation with the image has the same orientation as
the object.
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Men and animals estimate the 3-dimension shapes and depth in relation with

the position and the direction of their eyes. Likewise, the 3D reconstruction from

photographs (images) relies on the knowledge of position and orientation of the

cameras. Therefore, the multi-view stereo usually goes after the estimation of cam-

eras parameters. Such estimation is called ‘camera calibration’, which is not in the

scope of this thesis. We refer interested readers to an excellent textbook [Hartley

and Zisserman, 2004].

Matching pixels through multiple images taken from different known views pro-

vide 3D positions of the object. Effectively, a 3D point A on the surface of the

object is projected to a position a1 in the captor of a camera 1, and position a2 in

the captor of a camera 2 (Fig. 2.2). Then knowing the camera parameters, such

as their optical centers c1 and c2, we can compute the position of point A as the

intersection of two rays c1a1 and c2a2. It is called the ’triangulation’.

b

b b

S

a1

A

a2

camera 1 camera 2

b

b

c1 c2

Figure 2.2: Triangulation. Left: triangulation from 2 images. Right: triangula-
tion from multiple images (image from http://www.tnt.uni-hannover.de/project/

motionestimation/).

A key component of Multi-view stereo algorithm is the matching the similarity

through the images. The criteria for this matching are very important in multi-

view stereo and other subjects of computer vision ([Hirschmueller and Scharstein,

2007]). A simple criterion is the difference of intensity or color of pixels, however, it

is sensible for light changing. Other popular criteria are then proposed to solve this

problem, in particular: normalized cross correlation, or description of key points

(descriptors SIFT [Lowe, 2004], DAISY [Tola et al., 2010]). However, those criteria

are good only if the scene surface has the Lambertian property: the luminance

is almost invariant regardless of the point of view. Good Lambertian surface, for

example, are bricks, walls, stones, statues, old buildings, animals. For specular

surface like glass, smooth plastic, water, it is difficult to match pixels based on

these criteria. That is why most multi-view stereo methods, include our method,

http://www.tnt.uni-hannover.de/project/motionestimation/
http://www.tnt.uni-hannover.de/project/motionestimation/
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assume that the reconstructed scene is Lambertian.

Figure 2.3: Examples of Lambertian surface (left) and less Lambertian surface (right).
Most multi-view stereo methods work best for Lambertian surface.

The simplest form of multi-view stereo is the estimation of correspondence (dis-

parity) from two or more rectified images. We precise that image rectification is

the process to project two or more images onto a common image plane. Therefore,

the corresponding pixels of different images always lie on the same line. Since the

testbed of Middlebury appeared 1, many methods of disparity estimation have been

developed and evaluated (see Fig. 2.4 for one data-set). A survey and analysis of

different methods can be found in [Scharstein and Szeliski, 2002].

Figure 2.4: Disparity of rectified images. The third image displays the disparity measure
of the second image with the first one.

Because of its topological connectivity, a watertight mesh model is preferable

to a collection of disparity maps. Moreover, images of a 3D scene may be highly

arbitrary so that it is difficult to rectify them to estimate their disparity maps.

Several benchmarks (Middlebury 2, Schetra’s large scale data-sets 3) have been set

1http://vision.middlebury.edu/stereo/
2http://vision.middlebury.edu/mview/
3http://cvlab.epfl.ch/∼strecha/multiview/denseMVS.html
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up to compare different algorithms and encourage researchers to create and improve

their methods.

Figure 2.5: Some images and the ground truths of Middlebury multi-view benchmark.

2.2 Thesis subject and contribution

While a lot of multi-view 3D methods have been created, the nature of outdoor

scenes and big quantity of input images has made most of them impossible to

apply. Other methods do not provide enough complete and accurate results for

large-scale data-sets. The challenge of this thesis is to create, and improve the

quality of multi-view stereo methods in order to handle large-scale data-sets within

a limited computing resource. Therefore, the subject of the thesis can be stated as:

Given n images of a fix object/scene 3D taken from n calibrated cameras, compute

a high-quality 3D triangular mesh of the object/scene, especially with a big number

n of images of high resolution.

After reviewing multi-view stereo literature in chapter 3, we will describe our

multi-view stereo pipeline in chapter 4. Next, we will present some Divide and

Conquer approaches to adapt this method for even larger scale (chapter 6, chapter

7). In order to combine partial results, chapter 5 will study how to merge partial

meshes to a topologically and geometrically correct final mesh.

More concretely, the outline of the thesis is as follows:

• Chapter 3 will review briefly the state-of-the-art of multi-view stereo.

• Chapter 4 will present our multi-view stereo method that naturally handles

large-scale open scenes, while providing highly accurate reconstructions within

a reasonable time. The method consists in 3 main steps: the generation of

quasi-dense point cloud with standard passive multi-view stereo techniques,

the extraction of a mesh that respects visibility constraints, the variational

refinement of this initial mesh to optimize its photo-consistency. The method

has been tested and achieved best scores in term of completeness and accuracy

in various data-sets.
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• Chapter 5 will describe a new method to merge automatically many sep-

arated meshes (in the same coordinate) into a single mesh. Based on con-

strained Delaunay tetrahedralization and graph cuts optimization, the method

is robust, effective and efficient to merge hundreds of input meshes. We will

also present its variation to combine meshes built within a partition of a

bounding box, which will be useful for next chapters.

• Chapter 6 will adapt a method of visibility-consistent surface extraction for

large input points. Using a multi-level representation of point set and a Divide

and Conquer paradigm, we succeed to build the visibility-consistent surface

for large point set within limited computing resource.

• Chapter 7 will focus in large scale photometric variational multi-view stereo

(in serial and parallel manners). More large-scale experiments will be con-

ducted.

• Chapter 8 will conclude and describe the perspective of the thesis.

• Appendix A will describe background knowledge for this thesis: Delaunay

and constrained Delaunay triangulation which are used for surface reconstruc-

tion and merging algorithm, graph cuts, kd-tree for some space partitioning

procedures.

• Appendix B will display supplement results of our multi-view stereo methods

in more outdoor data-sets.

The thesis contribution could be resumed as:

• State-of-the-art reconstruction multi-view stereo method, that is able to re-

construct beautiful 3D model of large outdoor scene in a reasonable time.

• A new automatic and fast merging method to combine many separated meshes

into a single, topologically correct mesh.

• A Divide and Conquer paradigm for surface reconstruction, that respects

visibility constraint from large point set. A Divide and Conquer variational

approach to refine with high-quality large model.

During this project, we have implemented and optimized our methods in C++,

with CGAL 4 , OpenGL library 5. The project successfully reconstructs many urban

4http://www.cgal.org/
5http://www.opengl.org/
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buildings and monuments, especially the Abbey of Cluny, for its 1100th anniversary

celebration and in collaboration with the project Gunzo 6.

This thesis work is funded by École des Ponts ParisTech (ENPC) and École

Nationale Supérieure d’Arts et Métiers of Cluny (ENSAM Cluny).

2.2.1 List of publications

Journal papers

• H. H. Vu, P. Labatut, R. Keriven and J.-P. Pons. High accuracy and visibility-

consistent dense multi-view stereo. IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI), 2011 (accepted, to be appeared).

• F. Lafarge, R. Keriven, M. Brédif, and H. H. Vu. A Hybrid Multi-View Stereo

Algorithm for Modeling Urban Scenes. Submitted in IEEE Transactions on

Pattern Analysis and Machine (PAMI) Intelligence.

Conference papers

• H. H. Vu, R. Keriven, P. Labatut, and J.-P. Pons. Towards high-resolution

large-scale multi-view stereo. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) 2009.

• F. Lafarge, R. Keriven, M. Brédif, and H. H. Vu. Hybrid multi-view Recon-

struction by Jump-Diffusion. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) 2010.

6http://cluny-numerique.fr/
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Multi-view stereo literature is extremely rich that it is difficult to describe all

tendencies. They differ not only in algorithms but also in the conditions of inputs

and outputs. Some methods can work best in some kind of images (e.g. with sil-

houette information), but work less on others (e.g. uncontrolled outdoor images,

specular surface). The outputs are usually a triangular mesh, but also a set of

primitives (planes, spheres, etc.) designed for urban building, or a zero level of a

function. An excellent reference of the domain is [Seitz et al., 2006] which cate-

gorized multi-view methods according to six properties: the scene representation,
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photo-consistency measure, visibility model, shape prior, reconstruction algorithm

and initialization requirements.

There are other ways to classify multi-view stereo. In chapter 2 of the thesis

of Gargallo [Gargallo, 2008], he divided multi-view stereo methods in 3 categories:

(i) Bottom-Up: from images, detect 3D points whose projections into the images

are sufficiently similar and then make a surface from these points, (ii) Top-Down:

instead of searching each 3D points, the whole surface is searched to match images

and (iii) Hybrid approach that combines the two previous approaches. The short

review of Pons in chapter 8 of his thesis [Pons, 2005] focused on methods that used

a 3D volume or surface as initial priori shape. In his term, space carving framework

consists of all methods that labeled voxels as ‘empty’ or ‘occupied’ and the surface

is the interface between empty and occupied voxels. The other methods use a

2-dimension surface and refine it to match the images (deformable model).

In this chapter, we will explore the framework of photo-consistency and regu-

larization measures used in most methods. Next, we will review the transformation

from one type of data to another during the reconstruction of 3D scene from input

images. We will examine different multi-view stereo methods for the large scale

reconstruction problem. In the end, we take a brief overview of other 3D recon-

struction techniques in computer vision besides multi-view stereo.

3.1 Common concepts

Image: An image I of size w × h is a finite set of values I(x, y) ∈ Rd where

x ∈ {0, . . . , w − 1}, y ∈ {0, . . . , h − 1}, d = 3 for color image, d = 1 for intensity

image. For a non-integer position (u, v) in the range of image, I(u, v) is computed

as an interpolation of value of pixels around (u, v). Therefore, I can be considered

as a function in a continuous domain [0, w − 1]× [0, h− 1].

Camera: A popular model of the camera is the pinhole camera. This model

means that the 3D point of the model surface, the camera center, and the cor-

responding pixel are collinear. Because the image captor is considered plat, this

pinhole camera assures that a straight line of the world remains a straight line in

the image. Mathematically, a pinhole camera is presented as a matrix 3 × 4, the

projection is a formula of projective geometry. With 2 images I1, I2 of pinhole cam-

eras, for a pixel p1 in I1, we do not need to search all pixels of I2 to find its match,

but only to of a segment in I2 that is called ‘epipolar line’. More descriptions are

found in the book [Hartley and Zisserman, 2004].

Depth map/Image range: Each pixel p of an image, corresponding to a point

P ∈ R3 of the scene surface, the depth of pixel p is the distance between the camera

center C to the perpendicular projection of P in the principal direction line of the
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camera. The depth map of an image is the set of depth of all its pixels.

Point cloud/Point set: A set of points in R3 that is a sample of the ob-

ject surface. Depending on algorithms to create this point cloud, it may contain

many points that are far from the actual surface (called outliers). Each point may

associate with images from which it is triangulated.

Patch: A patch is 3D rectangle from a surface. Normally it is a tangent patch

of the surface. From a patch, we have a 3D point with its normal vector.

Triangular mesh is a polyhedron whose facets are triangles. Triangular mesh

is popularly used in computer graphics and game industry, where render and texture

projection is easily computed with commodity hardware like video card. Triangular

mesh is an economic representation of the object surface. Its main drawback is the

difficulty to handle topological change during surface evolution.

3D Volume is a volume that contains the 3D object. Normally it is a rectan-

gular cuboid, but it could be a fill polyhedron like visual hull, or a convex hull of

3D points.

Voxel: is the smallest entity of a 3D volume. If 3D volume is a rectangular

cuboid grid, then voxels are inside small cuboids. A voxel of a Delaunay tetrahe-

dralization is a tetrahedron.

Level set: the object’s surface is represented implicitly as the zero level set

for a scalar function f in R3. For implementation, the function is typically defined

over a volumetric grid, or over a small band near the surface. The main advantage

of level methods is any deformation of the surface can be done by modifying the

underlying function. Thus, it also handles naturally topological change. However,

its has many shortcomings: large memory consumption for the grid that leads

to expensive computation, difficulty in tracking correspondence during the surface

evolution.

Silhouette: The projection of the object surface on an image. Such projection

shape can be easily estimated by segmentation, especially if the background color

is homogeneous and quite different to surface color e.g. a white statue in a black

background.

Visual hull: If we know the silhouette of the object on an image, then the

surface belongs to the back projection of the silhouette to space, which is called

a cone of silhouette. When the silhouette is available on many images, the object

must be contained in the intersection of their cones of silhouette. We call this

intersection volume a ‘visual hull’.
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3.2 Framework in photo-consistency and regularization

measures

Multi-view stereo is based on the similarity and the matching among pixels (or

sub-pixels) of different images. The similarity of pixels depends on some photo-

consistency of their values. Moreover, we expect the depth map of an image is quite

continuous (except in occlusion area), and the object surface is rather smooth. The

reconstruction then needs another measure, which is called the regularization.

Formulating in Bayesian approach, given I the set of images, we need to

find the surface S such that the probability P(S|I) is maximized. We have:

P(S|I) = P(S)P(I|S)/P(I). The term P(I|S) can be considered as data (photo-

consistency) term, and P(S) as regularization term (the probability of the surface

occurs independent to images). While not all methods formulate in a Bayesian

approach, most of them use the regularization for superior quality results.

3.2.1 Photo-consistency matching

Photo-consistency is the heart of multi-view stereo. We review photo-consistency

measure of pixels in images, without or with 3D information such as voxel, surface,

patch. First, we introduce some common matching costs function. Second, we

investigate two categories of photo-consistency estimation: scene space and image

space, which was described in [Seitz et al., 2006].

Matching cost Most photo-consistency measures evokes matching cost of pixels

between 2 (or more) images. Given two images I, J , we estimate a matching cost

between pixel p = p0 in I and q = q0 in J . We consider sets of n − 1 pixels pi in

I around p, and qi in J (1 ≤ i ≤ n − 1) around q. Normally, a low matching cost

means high similarity or high photo-consistency.

Some basic matching cost based on difference of intensity:

• Squared intensity differences: SD = (I(p)− J(q))2.

• Absolute intensity differences: AD = |I(p)− J(q)|.

• Sum of squared differences SSD =
∑n

i=0 |I(pi)− J(qi)|2.

• Sum of absolute differences SAD =
∑n

i=0 |I(pi)− J(qi)|.

We consider the mean, variance, covariance of intensity around p and q: µI(p) =

(
∑n

i=0 I(pi)) /n, µJ(q) = (
∑n

i=0 J(qi)) /n

νI(p) =
(∑n

i=0 I(pi)
2
)
/n− µI(p)2, νJ(q) =

(∑n
i=0 J(qi)

2
)
/n− µJ(q)2.

νI,J(p, q) = (
∑n

i=0 I(pi)J(qi)) /n− µI(p)µJ(q).
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Another variation is computing these values by a convolution of image window with

a Gaussian distribution.

• Normalized cross correlation (NCC): νI,J(p, q)/
√
nuI(p).nuJ(q). Usually, we

use 1 − NCC as the matching cost because we wants low value means high

similarity. In some articles, this NCC term is also called zero-mean normalized

cross correlation (ZNCC).

The NCC is more robust than SD, AD, SSD, SAD because it tolerates a linear

change of intensity: if J(qi) = aI(pi) + b then we have: 1−NCCI,J(p, q) = 0. On

the other hand, it is a more costly. There are other matching cost functions, like

Mutual Information (MI), histogram descriptors.

We now suppose have n images and a small continuous 3D representation S

(it can be a piece of surface, a voxel, a patch). How can we measure the photo-

consistency of S in relation with the images ? We will investigate the answer in two

categories described in [Seitz et al., 2006].

Scene space photo-consistency The idea is to project S into the images and

measure the mutual agreement of its projections. Some methods, especially which

compute voxels photo-consistency, measure the homogeneity of projected pixels in

the input images. Space carving in [Seitz and Dyer, 1999] used a function as the

average of intensity variance of projected pixels. [Hornung and Kobbelt, 2006b]

chose a discrete point sample inside voxels to compute the voxel photo-consistency

as the sum of normalized color variances per sample.

Another solution is to compute pair-wise photo-consistency. Using pair-wise

NCC is common in case S is a patch, or a voxel with a normal vector. [Furukawa

and Ponce, 2008] optimized this photo-consistency to find out the best normal

vector and center of surface patches. [Sinha et al., 2007] computed this photometric

measure with different normal direction to determine the crossing faces of the surface

in a volume. In those methods, a discrete set of points, sampled from the patch, is

projected to images to compute the photo-consistency. Voxel photo-consistency in

[Vogiatzis et al., 2005], [Tran and Davis, 2006], [Starck et al., 2006] also used pair-

wise NCC, however, they did not optimized normal vectors. In [Vogiatzis et al.,

2005], [Vogiatzis et al., 2007], the photo-consistency of voxels P (or their center

point P ) is a function of NCC of fixed windows around its projected pixels. This

is not quite accurate because two rectangles of two images are unlikely matching.

[Faugeras and Keriven, 1998] used an an approximate tangent plane of each point

on the surface to compute the matching cost, which would be integrated over the

surface.
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Image space photo-consistency It is quite similar to scene space photo-

consistency of surface (or patch) with many pairs of images. One difference is we

choose sample points over image (pixels) and not on the surface. Another difference

is the matching cost is integrated over the image domain.

One image is reprojected to another image by the surface S and the matching

cost is computed in a single image domain. Comparing the predicted and measured

image yields a photo-consistency measure known as prediction error in [Szeliski,

1999], [Hernández and Schmitt, 2004]. Deformable surface methods, such as [Pons

et al., 2007], [Gargallo et al., 2007], [Delaunoy et al., 2008] also optimized photo-

consistency over image domain. In those methods, more weight of photometric

attributes to the parts of the scene that are frequently viewed or occupy large

image areas.

This reprojection technique is also widely used in plane-sweeping depth maps

reconstruction, first introduced in [Collins, 1996]. For a reference camera, a plane is

swept in the reference camera frustum, and its offset follows a geometric sequence

between the near and far planes of the camera. Other images are projected to the

reference image by this plane then the matching cost is estimated for all pixels.

Hence, in each pixel, the photo-consistency measures with other images via all the

planes are computed. In Winter-take-all strategy, the pixels memorize the highest

score and the associated planes that provide the depth map. Plane-sweeping is

particularly suitable for GPU acceleration such as [Kim et al., 2007], [Merrell et al.,

2007], [Zach et al., 2007], [Frahm et al., 2010].

3.2.2 Regularization

Data-driven term as photo-consistency is not enough to produce a quality 3D model.

From a Bayesian view point, the surface model depends not only on its images, but

also on what it is expected to be (regular and smooth). Beside this Bayesian analy-

sis, another reason to add some regularization is that the captured images are more

or less noisy. The pixel intensity/color is discretized from the light entering the im-

age sensor, which is a source of noise. Moreover, the camera calibration may not be

accurate enough so that we can fully trust photometric measure. Photo-consistency

alone does not provide enough accurate and complete information, hence, regular-

ization is necessary.

In addition, multi-view methods which rely on non-global optimization, such as

deformable model, can fall to a local optimization surface. The regularization helps

to reduce the number of possible local optimization traps and makes the refinement

process more robust. In the following, we describe common regularization in 2

presentations of an object surface: depth maps and 3D surface.
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Depth maps smoothness We expect the depth from neighbor pixels differs

slightly, except in occlusion zone. In fact, this expectation is already used implicitly

with window-based photometric matching cost. The matching cost of a pixel is

computed with the assumption that neighboring pixels share equal or similar depths.

The regularization of depth map is mostly presented within 2 approaches: belief

propagation and energy optimization.

• Propagation belief: There are some distinctive pixels which we could find

correspondences more correctly than others (key points like SIFT, Harris,

Corner points, pixels in highly texture zone). The idea of propagation belief

is from those matching seeds, we consider match among the neighborhood

pixels around them. The matching cost of the neighborhood pixels is then

verified. The pixels with high photo-consistency measure are considered as

new seeds and the propagation process continues. While this is the main

idea of propagation belief, there are many details left for different methods,

such as the threshold of matching cost, the order of propagation, the outlier

filter. Some multi-view methods used propagation belief: [Strecha et al.,

2003], [Lhuillier and Quan, 2005], [Goesele et al., 2007], [Cech and Sara, 2007],

[Furukawa and Ponce, 2008].

• Energy optimization: This approach optimizes an image-based smoothness

term that seeks to give neighboring pixels the same depth value. This prior

fits nicely into a 2D Markov Random Field (MRF) framework. Some meth-

ods globally optimized an energy [Kolmogorov and Zabih, 2002], [Campbell

et al., 2008]. Some others used Bayesian formulations, that combine photo-

consistency, depth smoothness, visibility in their energy, and then optimized

within an EM framework [Strecha et al., 2004], [Gargallo and Sturm, 2005],

[Tylecek and Sara, 2009].

Surface smoothness The common regularization used in de-

formable/variational surface is the minimization of surface area or surface

curvature. If the energy is set as the integration of a function (typically photo-

consistency) over the surface, a regularization term may not be necessary because

this energy already favors small surface. Therefore, some methods, using level-set,

such as [Faugeras and Keriven, 1998], [Zhao et al., 2001], [Lhuillier and Quan,

2005], [Jin et al., 2005] did not use a regularization term. Some others still added

a regularization term in the energy: [Hernández and Schmitt, 2004], [Sinha et al.,

2007], [Furukawa and Ponce, 2008] . One benefice of using smoothness operator is

to distribute vertices more equally around the mesh and avoid degenerated facets.

Variational surface method with reprojection error optimization does not have
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that self-regularizing energy because the energy is integrated over image domain.

Thus, regularization is imperative in this case. [Pons et al., 2007], [Gargallo et al.,

2007], [Delaunoy et al., 2008] used weighted area functionals integrated over the

surface into their formula (typically a surface area term). Another regularization is

a thin-plate energy, that penalizes strong blending, and leads to the bi-Laplacian

operator [Vu et al., 2011].

3.3 Transformation steps in multi-view stereo methods

We consider a full multi-view stereo method is a process that transform images

information (with their camera matrices) into a watertight surface. During this

transformation, many intermediate representations and algorithms could be used.

We will describe different methods in intermediate steps: ‘images→ discrete presen-

tation’, ‘discrete presentation → surface’, ‘surface → surface’, ‘volume → surface’.

A discrete presentation consists of point set, set of patches, depth maps (or range

images). A volume is a volume containing the scene, like a grid box, or a visual

hull. Some transformation like ‘discrete presentation→ surface’, or ‘surface→ sur-

face’, could use a volume in their algorithms, but we do not include them in the

‘volume→ surface’ part. A transformation could be used many time, not necessary

consecutively, to improve the quality of the results.

3.3.1 From images to a discrete presentation

Computation of disparity and depth maps from pairs of images is a traditional

research topic. Lots of methods have been proposed, particularly in two-frame

stereo. Doing an extensive survey of two-frame corresponding is out of scope of

this thesis, and we refer interested readers to [Scharstein and Szeliski, 2002] for an

excellent taxonomy. Popular techniques in binocular stereo, beside Winner-Take-

All (WTA) approach, are global optimization (dynamic programming, graph cuts,

markov random field, etc) and propagation belief. Most multi-view stereo compute

depth maps quite similarly to binocular stereo. Some used directly binocular stereo

by considering each pair of image, rectifying them and estimating disparity [Cech

and Sara, 2007], [Bradley et al., 2008].

An efficient WTA approach in multi-view stereo is using plane-sweeping to find

out for each pixel, the depth associated with the best photo-consistency measure.

It has the advantage of using a multi-core GPU to accelerate the algorithm. Lack of

regularization mechanism, this approach usually produces noisy depths, which need

to take care afterwards, by using depth fusion [Merrell et al., 2007], [Zach et al.,

2007], [Tylecek and Sara, 2010], or by visibility filter [Vu et al., 2011].
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Depth map estimation could be formulated as a global optimization problem,

combining photo-consistency and regularization. It includes discrete label Markov

Random Field optimization [Campbell et al., 2008], graph cuts [Kolmogorov and

Zabih, 2002]. Heuristic optimization is found in Bayesian approaches [Strecha et al.,

2004], [Strecha et al., 2006], [Gargallo and Sturm, 2005], [Tylecek and Sara, 2009]. In

propagation belief methods, the initial seeds whose depth is accurately estimated are

key points from a SfM estimation [Goesele et al., 2007], or high photo-consistency

patches [Furukawa and Ponce, 2008].

3.3.2 From a discrete presentation to a surface

One crucial step is the transformation of a discrete presentation (depth maps, set

of points, patches) to a watertight surface. The reconstruction the surface from

depth maps or a point set is called surface reconstruction, which is the central

problem of laser rang-scanning acquisition. Many surface reconstruction methods

from laser rang-scanning acquisition, could be successfully applied in multi-view

stereo, providing that the depth maps or point set are dense and clean enough. On

the other hand, any surface reconstruction methods originated in multi-view stereo

community, also has a possibility to apply in range finding acquisition.

[Curless and Levoy, 1996] used volumetric integration to cumulate range scan

data and estimate the signed distance of voxels. The surface is then extracted as the

zero-crossing iso-sufrace from the volumetric grid. It is used in a multi-view method

[Goesele et al., 2006] to create a watertight surface. [Zach et al., 2007] developed a

total variation regularization and used L1 data term (TV − L1) as a functional to

estimate a more robust distance function. Poisson surface reconstruction method

[Kazhdan et al., 2006] is applied in many recent multi-view methods [Goesele et al.,

2007], [Furukawa and Ponce, 2008], [Tylecek and Sara, 2010].

Some other works build the Delaunay triangulation of point set and extract the

surface based on visibility of line-of-sight: graph cut optimization [Labatut et al.,

2007], fast heuristic optimization in [Pan et al., 2009], [Lovi, 2010]. The similar

work in [Labatut et al., 2009b] for range data is proven to be remarkably robust to

outliers. A very recent work [Jancosek and Pajdla, 2011] improved this method to

reconstruct textureless surface.

3.3.3 From a surface to a surface

When we obtain a watertight surface of the scene from a discrete representation,

this surface might not have decent quality. The insight is to deform this surface to

optimize some quality criteria such as photo-consistency, regularization or distance

to a point set.
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The first surface deformable (variational) method is [Faugeras and Keriven,

1998], which optimized a photo-consistent measure integrated over a level-set sur-

face. [Zhao et al., 2001] introduced a deformable surface framework to minimize

the distance towards an input data set (points, curves, surface patches). Further

work is developed in [Jin et al., 2005], [Hernández and Schmitt, 2004], [Lhuillier and

Quan, 2005], [Tylecek and Sara, 2010]. Other deformable surface methods mini-

mize reprojection error [Pons et al., 2007], [Gargallo et al., 2007], [Delaunoy et al.,

2008], [Vu et al., 2011]. The main difference between these two approaches is the

scene space photo-consistency and image space photo-consistency, which has been

discussed in sub-section 3.2.1.

3.3.4 From a volume to a surface

One important multi-view tendency is using a volumetric grid, computing photo-

consistency of voxels and then extract a surface that minimizes an energy.

A heuristic surface extraction method is space-carving [Kutulakos and Seitz,

2000], in which low photo-consistency voxels are consecutively removed from a vol-

ume. The surface is then the interface of remaining voxels. This method relied on

‘hard-decision’ of each voxel. A wrong removal of a voxel could not be undone and

it can lead to further wrong decisions. Therefore, the order of traversal is impor-

tant. Moreover, it used a global threshold to remove voxels, and the choice of this

threshold is often problematic. In consequence, the space-carving method is sus-

ceptible to noise and outliers, and typically yields very noisy reconstruction. The

hard decision is replaced by ‘soft decision’ in probabilistic space-carving [Broadhurst

et al., 2001]. The order of traversal is improved in [Yang et al., 2003], including a

smoothness term for voxels. Nevertheless, space-carving methods generally do not

yield accurate reconstruction.

More robust and sophisticated methods proposed global optimization of an en-

ergy over the voxels. The most popular choice of optimization is graph cuts, which

was used in [Vogiatzis et al., 2005], [Furukawa and Ponce, 2006], [Hornung and

Kobbelt, 2006b], [Hornung and Kobbelt, 2006a], [Tran and Davis, 2006], [Yu et al.,

2006], [Sinha et al., 2007], [Vogiatzis et al., 2007]. Typically, voxels are considered

as nodes of the graph. Two nodes are connected if their two correspondent voxels

are neighbors. In [Vogiatzis et al., 2005], the edge capacity is the photo-consistency

cost of the two voxels or the point in the middle of voxels (Fig. 3.1). The nodes

(voxels) in the border of the volume connect with the sink with infinitive cost, which

mean they are outside voxels. If inside voxels are available, they will connect the

source with infinitive cost. A balloon force is applied to avoid the resulted surface

to be an empty surface, by connect all voxels to the source with some costs. The big
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Figure 3.1: Graph cuts in voxels. Figure reproduced from [Vogiatzis et al., 2005].

balloon force creates over-inflated surface and removes thin details. The following

work [Vogiatzis et al., 2007] used a better photo-consistency measure. The balloon

force can be understood as a shape prior information that could code visibility

estimation [Hernández et al., 2007].

[Hornung and Kobbelt, 2006a] replaced volume grid by an octahedral graph

structure to reduce memory footprint, which is crucial to process larger data-set.

[Tran and Davis, 2006] added surface constraint costs in the graph cuts framework.

Different from those work, [Sinha et al., 2007] optimized the cut in an adaptive

tetrahedral mesh, that enforced silhouette constraints. [Yu et al., 2006] proposed

iterative graph cuts optimization which operated on the surface distance grid, and

yielded good results for non-Lambertian objects.

3.4 Large scale multi-view stereo

3.4.1 Multi-view stereo for compact objects

Since the review of [Seitz et al., 2006] and the associated Middlebury evaluation,

a lot of research has been focusing on multi-view reconstruction of small objects

taken under tightly controlled imaging conditions. This has led to the development

of many algorithms whose results are beginning to challenge the precision of laser-

based reconstructions. However, as will be explained, most of these algorithms are

not directly suited to large-scale outdoor scenes. A number of multi-view stereo

algorithms have been proposed that exploit the visual hull [Laurentini, 1994].

Many dense multi-view methods rely on this information either as an initial

guess for further optimization [Hernández and Schmitt, 2004], [Furukawa and Ponce,

2006], [Hornung and Kobbelt, 2006b], [Hornung and Kobbelt, 2006a], [Starck et al.,

2006], [Tran and Davis, 2006], [Vogiatzis et al., 2007], [Yu et al., 2006], as a soft
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constraint [Hernández and Schmitt, 2004], [Kolev et al., 2009] or even as a hard

constraint [Sinha and Pollefeys, 2005], [Furukawa and Ponce, 2006] to be fulfilled

by the reconstructed shape.

While the unavailability of the visual hull discards many of the top-performing

multi-view stereo algorithms of the Middlebury challenge [Seitz et al., 2006], the

requirement for the ability to handle large scenes discards most of the others, in

particular volumetric methods, i.e. methods based on a regular decomposition of the

domain into elementary cells, typically voxels. Obviously, this approach is mainly

suited to compact objects admitting a tight enclosing box, as its computational and

memory costs quickly become prohibitive when the size of the domain increases.

This includes space carving [Seitz and Dyer, 1999], [Kutulakos and Seitz, 2000],

[Broadhurst et al., 2001], [Yang et al., 2003], level sets [Faugeras and Keriven, 1998],

[Jin et al., 2005],[Pons et al., 2007], and volumetric graph cuts [Vogiatzis et al.,

2005], [Boykov and Lempitsky, 2006], [Hornung and Kobbelt, 2006a], [Lempitsky

et al., 2006], [Tran and Davis, 2006] (though [Sinha et al., 2007], [Hernández et al.,

2007] propose regular volumetric grid adaptive to photo-consistency measures to

push the resolution limit further). Finally, cluttered scenes disqualify variational

methods [Faugeras and Keriven, 1998], [Hernández and Schmitt, 2004], [Duan et al.,

2004], [Jin et al., 2005], [Lhuillier and Quan, 2005], [Pons et al., 2007], [Delaunoy

et al., 2008] that can easily get stuck into local minima, unless a way of estimating

a close and reliable initial guess that takes visibility into account is provided.

3.4.2 Multi-view stereo for outdoor scenes

Multi-view stereo methods that have been proven to be more adapted to larger

scenes, e.g. outdoor architectural scenes, usually initialize the scenes with sparser

measurements such as depth maps or point clouds to reconstruct a surface.

The performance of some depth maps based methods [Kolmogorov and Zabih,

2002], [Strecha et al., 2003], [Strecha et al., 2004], [Gargallo and Sturm, 2005],

[Strecha et al., 2006], [Goesele et al., 2006], [Goesele et al., 2007] for complete

reconstruction however seems to be lower than previously discussed approaches,

either as regards accuracy or completeness of the obtained model. This may be

due to the merging process and to the difficulty to take visibility into account

globally and consistently. While visibility is taken into account to fuse depth maps

in [Merrell et al., 2007], the focus on high performance prevents the use of a global

optimization. [Zach et al., 2007] proposed a globally optimal variational merging of

truncated signed distance maps using a volumetric grid. Another exception could

be the work of [Campbell et al., 2008], currently one of the most accurate method

according to the Middlebury evaluation, but this method relies on a volumetric
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graph cut [Hernández et al., 2007] that cannot handle large-scale scenes.

[Furukawa and Ponce, 2008] proposed a very accurate reconstruction that gener-

ates and propagates a semi-dense set of patches. This method has shown impressive

results but relies on filtering and expansion heuristics to process a set of oriented

patches. The surface reconstruction step that converts the set oriented patches into

a mesh, is done by applying the Poisson surface reconstruction [Kazhdan et al.,

2006], which requires dense and uniformly sampled point clouds and does not han-

dle visibility issues. Finally, the obtained mesh has to be refined using a mesh

evolution. This method has been tested on the data sets provided by Christoph

Strecha et al. [Strecha et al., 2008], the only available evaluation that allows com-

parison on large outdoor scenes (to our knowledge). It obtained the best results at

the moment of its publication. More recently, [Tylecek and Sara, 2010] used depth

map fusion, then refined camera center and mesh refinement, which obtained high

accuracy but still lacked the completeness. [Salman and Yvinec, 2009], using our

point clouds, achieved nice completeness of the scenes. The method presented in

[Jancosek et al., 2009] which aimed to a scalable multi-view stereo, sacrifice the

mesh quality and topology for the scalability. This method was designed to have

the running time linear of the surface scene.

Our method [Vu et al., 2009], [Vu et al., 2011] will be presented in chapter

4. This method is able to reconstruct accurate large scale open-door scenes from

hundred images of 3 MPixel images. However, because it uses a global optimization

over a Delaunay triangulation kept in in-core memory, it is not scalable for larger

scenes. We will treat this shortcoming in chapter 6. Its variational step, which

stores the mesh and images in memory during the photometric optimization, still

can handle large mesh in a piecewise manner (a controlled partition process will be

described in chapter 7). Different to other large scale multi-view work [Furukawa

et al., 2010], [Jancosek et al., 2009], our methods produce a single water-tight mesh

for connected scenes (not just a union of meshes).

3.4.3 3D reconstruction on Internet scale

Recent progress of Structure from Motion (SfM) and multi-view methods allow re-

searchers handle larger collections of images of a given site available on Internet.

The challenge is how to calibrate thousands, even millions of images and how to re-

construct 3D scene from these images within reasonable time. The standard way of

calibration is to use bundler adjustment to estimate SfM of all these images [Snavely

et al., 2008a], or its skeletal graph to reduce the computing cost [Snavely et al.,

2008b]. A preprocessing to remove redundant images and fast matching before cali-

bration could be useful to accelerate the calibration [Frahm et al., 2010]. Implemen-



30 Chapter 3. Review on Multi-view stereo

tations are also taken into account to exploit parallel computing on a cluster [Agar-

wal et al., 2009] or a single computer with many CPU and GPU cores [Frahm

et al., 2010]. For 3D reconstruction, [Goesele et al., 2007] computes depth maps

that form a point clouds and water-tight mesh using Poisson surface reconstruction.

[Furukawa et al., 2010] partitioned the cameras in view clusters to run a multi-view

stereo of choice for each cluster. Taking into account the known vertical of ur-

ban scenes, [Frahm et al., 2010] performs GPU-accelerated plane sweeping, and

then extracts the polygonal mesh. However, there is no qualitative benchmark on

Internet scale in our knowledge and it may be difficult to create one.

Most of those methods are limited to SfM and they only reconstruct point cloud

of the scenes. In order to create a watertight mesh, a generic approach is to use a

surface reconstruction method. Many surface reconstruction methods are able to

handle large point cloud such as streaming Poisson surface [Bolitho et al., 2007].

Nevertheless, such technique requires a relative clean and dense point cloud e.g. from

PMVS method [Furukawa and Ponce, 2008]. In chapter 6, we will examine more

closely surface reconstructions for large, noisy point cloud. The method [Frahm

et al., 2010] (among others) exploits the vertical nature of urban scenes to create

watertight meshes.

We do not target thousands of photos of tourists on Internet in this thesis. The

main reason is the accuracy of calibration for a large collection of images. While

our methods are designed for large scale data-sets, we do not always use the full-

resolution images because the calibration is not precise enough. While it is possible

to apply our method as a component for the reconstruction of huge data-sets, the

calibration accuracy is the principal obstacle.

3.5 Some related topics

Multi-view stereo does not stand alone but connects with many other fields in com-

puter vision. It needs the structure from motion methods to calibrate the cameras.

It competes with other 3D acquisition method in the range finding registration,

shape from X, etc. The 3D reconstruction of dynamical scenes is the generation of

multi-view stereos with movement. The comprehension of urban buildings, which

requires the detection of geometric primitives and semantics, is a higher level of a

brute 3D reconstruction. We will make a small introduction, certainly not complete,

of those fields. Therefore, we refer interested readers to many excellent textbooks of

computer vision as [Hartley and Zisserman, 2004], [Paragios et al., 2005], [Szeliski,

2010] and relevant papers of each field.
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3.5.1 Structure from motion

As we have said in the introduction, multi-view stereo usually requires the accurate

knowledge of camera’s parameters of the input images. There are two types of

parameters: internal (intrinsic) and external (extrinsic) parameters. The internal

parameters do not depend on camera’s position and are characterized by the focal

lengths, principal points in the image, skew value, distortion, etc. The external

parameters are the position and orientation of the camera in the world coordinate,

which contain the rotation and translation parameters.

If we have little knowledge of camera parameters and the 3D objects, we still

can estimate both 3D structure and the camera parameters. This problem is called

structure from motion. A popular and powerful method to solve SfM is Bundle

adjustment, which is studied thoroughly in many papers and textbooks such as

[Triggs et al., 1999], [Hartley and Zisserman, 2004], [Snavely et al., 2008a]. First,

the key points of the input images are extracted then are matched together. Second,

from the obtained matching, we estimate initial cameras parameters and triangulate

matching pixels to obtain 3D points. These parameters are iteratively adjusted to

optimize a sum of the squared distance between matching pixels and computed

projection of 3D points. In Bundler software [Snavely et al., 2008a], input cameras

are added incrementally during the execution. This incremental approach is quite

time consuming and is improved by a direct initialization in [Crandall et al., 2011].

3.5.2 Active range finding

One popular technique to reconstruction 3D object is actively to light the object

from one source/sensor and record the (diffuse) reflection by another sensor. It

is the mechanism of LIDAR (Light Detection And Ranging) scanners, which are

designed for small objects acquisition. The problem of reconstruct objects from

range images has been treated in depth from early days of computer vision. Many

surface reconstruction methods have been created for this purpose.

In comparison with multi-view stereo acquisition, range finding technique is

generally more accurate and does not depend on the object’s texture. Nevertheless,

the device is expensive, he acquisition process is long and tedious, especially for

large objects or exterior scenes. Meanwhile, multi-view stereo, as a passive method,

is much cheaper, faster and easy to set up. It is then a more convenient method for

a large scale acquisition.

A recent application of the active range finding is in the game industry with the

release of Kinect of Microsoft. The depth sensor of the device consists of an infrared

laser projector combined with a monochrome CMOS sensor, which captures video

data in 3D under ambient light conditions.
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plane

Figure 3.2: Image reproduced from [Curless and Levoy, 1996] (and [Szeliski, 2010]): (a) a
laser dot on a surface is imaged by a CCD sensor, (b) a laser stripe is imaged by the sensor,
(c) the resulting set of 3D points are turned into (d) a triangulated mesh.

3.5.3 Shape from X

Beside multi-view stereo and active range finding, there are other ways to estimate

the shape of objects with information like shading, texture and focus. If we can

control and adjust light source, the variation of the object’s image provides the

object surface orientation such as normal vectors. When the light source is a tex-

ture’s pattern, the deformation of the pattern wrapped onto the surface also helps

to estimate the surface orientation. The camera focus is also a clue of object depth.

The amount of blur increases as the object moves away from the camera’s focusing

distance. By adjusting the camera focus and measuring the blur of images, the

depth of the object can be recovered.

3.5.4 Reconstruction of dynamic scenes

In multi-view stereo or structure from motion problem, we suppose the objects are

static. This assumption is essential for finding cameras’ pose and 3D structure. A

slight movement of the object may have a negative impact for the reconstruction.

Nevertheless, beside static objects like building, stone, statue, there are lots of

objects are in movement like people, cars, animals. The problem is how to recover

3D structure over time with videos or sequence of images over time. This problems

takes into account static reconstruction and the movement flows (scene flow in 3D,

optical flow in 2D). Lots of methods have been proposed, however, best of our

knowledge, the quality of dynamic scenes reconstruction still can not match the

static reconstruction. Some methods [Aganj et al., 2009], [Courchay et al., 2009]

share some similar ideas with this thesis.

3.5.5 Urban architecture understanding

An architect designs a building not from a polyhedron or a triangular mesh. The

form of a typical building is relatively ‘simple’, and consists almost a set of (vertical
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and horizontal) planes or some other primitives like spheres, cones, etc. Different

from artistic sculptures, using a dense triangular mesh is unnecessary and heavy

for urban buildings. Exploiting the simplicity of urban structures, various methods

have been proposed such as the arrangement of planes in [Labatut et al., 2009a],

[Furukawa et al., 2009] [Chauve et al., 2010] or combination of geometric primitives

in [Lafarge et al., 2010]. The advantage over traditional multi-view stereo is the

small storage of result and the better interpretation of the urban scenes.

The higher level of the interpretation of urban buildings is the recognition and

semantic information of 3D models. A triangular mesh or a set of primitives of

a building does not provide the position of the windows or the walls. Human

can recognize the 3D shape of a building and instantly distinguish its components.

This capacity can help to design other buildings inspired from existent ones without

memorizing their exact shape. This subject is recent in computer vision, with many

published works such as [Alegre and Dellaert, 2004], [M uller et al., 2006], [Teboul

et al., 2011].

3.6 Conclusion

We have made a short survey in multi-view stereo literature. We try to cover the

principal ideas throughout state-of-the-art methods in some key criteria: photo-

consistency, regularization, and transformations from one presentation to another.

The end of the chapter briefly introduces other fields in computer vision related to

multi-views stereo. More discussion about multi-view methods will be presented in

the next chapters. The visibility (or occlusion) problem will be discussed further in

chapter 6. Some large scale dense multi-views methods will be analyzed in chapter

7.
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4.1 Introduction

4.1.1 Motivation

The classic problem of scene reconstruction from multiple images finds many prac-

tical applications in reverse-engineering, in the game and entertainment industry,

and in the digital archives of cultural heritage. However, when high-accuracy recon-

structions are required, the reconstruction of outdoor scenes has been traditionally

done using range-scanning and a combination of surface reconstruction from point

clouds and geometry processing techniques. These methods and the acquisition

process are rather complex to set for large-scale outdoor reconstructions, and this
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often proves to be time-consuming, expensive and dependent on the scene, partic-

ularly when aerial acquisition is required (see for instance the reconstruction of the

Bayon temple in Angkor [Banno et al., 2008] which used range finders attached to

flying balloons). Providing an image-based reconstruction solution would certainly

eliminate most if not all of these drawbacks. This problem has thus always been

one of the main goals and an active field of research in computer vision. Recent

advances in multi-view stereo methods made this goal closer than ever. In this

chapter, the focus is on the dense multi-view stereo problem, i.e. , the reconstruc-

tion of a surface model from a set of calibrated images where camera calibration is

assumed to be accurately known.

4.1.2 Contributions

Our multi-view stereo method consists in a pipeline that naturally handles large-

scale open scenes while providing very accurate reconstructions within a very rea-

sonable time. The whole pipeline is designed not to sacrifice accuracy for scalability.

Several design choices are made and justified by an analysis of the weak points of

other methods. The pipeline contains three main steps:

1. the generation of a quasi-dense point cloud with standard passive multi-view

stereo techniques,

2. the extraction of a mesh that respects visibility constraints and is close to

the final reconstruction, with a minimum s-t cut-based optimization to fit a

surface over the Delaunay triangulation of the points,

3. the variational refinement of this initial mesh to optimize its photo-

consistency.

Compared to the preliminary work [Labatut et al., 2007] on robust surface

reconstruction from semi-dense point clouds from multi-view stereo matching, the

initial point cloud is generated in a denser and more accurate fashion, the surface

reconstruction has been adapted to use a more suitable energy similar to [Labatut

et al., 2009b]. Finally, the variational refinement uses an energy inspired from

work [Pons et al., 2007] but in a lightweight and scalable Lagrangian framework.

Our experiments clearly demonstrate its competitiveness on large data sets.

In section 4.2, the different steps of our multi-view stereo reconstruction pipeline

are described in details. Implementation aspects are discussed in section 4.3 and

section 4.4 presents experiments on a variety of real data sets to demonstrate the

potential of our pipeline for reconstructing complex large-scale scenes. Background

knowledge such as Delaunay triangulation and Graph cuts are described in Ap-

pendix A.
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Figure 4.1: Reconstruction pipeline: (1) Generate a points cloud, (2) Extract a visibility-
consistency mesh, (3) Refine the mesh with photo-consistency optimization and regulariza-
tion.

4.2 Multi-view reconstruction pipeline

As shown in Fig. 4.1 and previously announced, our dense multi-view stereo pipeline

is composed of three successive stages. Given calibrated cameras associated to the

input images, a quasi-dense set of points is first extracted from the images. These

points are matched pair-wise between different views: from these matches, a quasi-

dense 3D point cloud is generated by reconstructing and optionally merging the

triangulated 3D points. This point cloud is then fed to the second stage which

builds a Delaunay triangulation from it and then robustly extracts an initial surface

from the facets of this triangulation filtering out most of the outliers. Finally, the

last step improves the quality of the recovered surface by refining it using a criterion

mixing photo-consistency and fairness.

4.2.1 Quasi-dense point cloud

In order to apply the surface fitting of the next step of our reconstruction pipeline,

a slightly non-conventional way to generate point clouds from passive stereo is used

that favors density over matching robustness. We describe two different but related

point cloud generation strategies: one matching interest points in the input images

and another using plane sweeping to compute sparse depth maps. We prefer the

latter strategy, which is used in all our recent experiments because it generates more

points.

Match of interest points First, interest points are located in all the input

images. For this purpose, and to capture most of the geometry of the sampled

shape, two complementary kinds of interest points are considered: Harris corners

which typically lie on “corners” in images and Laplacian-of-Gaussian located at the

center of blob-like structures in images. LoG blobs and Harris corners are extracted
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at some fixed scale1 in all the input images. Then, for each potential camera pair

(i, j) and for each interest point mi (of the same type) in the first image Ii of

this pair, its best matching point m?
j is sought within a small band around the

corresponding epipolar line in the other image Ij . The width of this band is fixed

and should partially depend on the accuracy of the calibration2.

The best matching point m?
j is the point with the highest matching score against

the reference interest point mi. The neighborhood of a potential match mj in the

image Ij is reprojected in the reference image Ii through a plane parallel to the

focal plane of the camera i and passing through the potential reconstructed 3D

point (the underlying assumption is that the surface is locally fronto-parallel to

the camera i). The matching score can then be estimated in a window around the

reference point. Since the choice of an appropriate matching window size is difficult,

multi-level matching is used, and the matching criterion is the sum of normalized

cross correlations (NCC) for several fixed window sizes3 (or scale σ) as in [Yang

and Pollefeys, 2003].

Furthermore, this best matching interest point m?
j is kept only if its matching

score is above some threshold and if it is also successfully validated: the original

interest point has to be the best matching interest point of its best matching interest

point. An initial 3D point can then be reconstructed from the calibration by using

standard triangulation optimization [Hartley and Zisserman, 2004].

The final step aggregates the different 3D points. In each image, the 2D De-

launay triangulation of the interest points (of the same type) is computed. This

geometric data structure allows to locate efficiently the nearest interest points of a

given 2D point. Now, a pair of matched interest points in two different views has

given rise to a 3D point by triangulation. By projecting this initial 3D point in

the other views, potential other unmatched interest points that are close enough

(within a tolerance similar to the half-width of the epipolar band) are located.

Closest unmatched interest points are merged with the original pair and a new 3D

point (replacing the previous one) is re-estimated from all the interest points. The

final result is a set of points each carrying a tuple of views where they were seen.

In addition, a confidence value has been assigned to each 3D point, accumulating

the photo-consistency scores of all its originating pairs. Obviously, as the whole

technique relies on simple greedy or winner-take-all “optimizations”, it possibly

generates a noisy point cloud with a decent amount of outliers.

1in practice, a scale of 2 pixels is used for 6 Mpixel images.
2a 3 pixel-wide band is typically chosen for 6 Mpixel images.
35 levels are used on 6 Mpixel images.
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Sparse depth maps While the previous passive stereo approach is general and

copes with scenes that have enough texture, it tends to generate lots of outliers

and the 3D points are often poorly located. A different passive stereo technique

can be devised when strong planar structures are observed as is often the case in

architectural scenes.

Initial sparse depth maps are computed between pairs of input images. These

depth maps have a downscaled resolution4 w.r.t. the images and are filled using a

simple geometric plane sweep with the same thresholded multi-level NCC matching

score and winner-takes-all optimization as above. A plane is swept in the reference

camera frustum and its offset follows a geometric sequence between the near and

far planes of the camera.

These initial depth maps are merged and clusters of points are formed according

to their position in the different camera frustums. These clusters are hierarchically

split until the bounding boxes of their projections in the images is small enough. A

3D k-D tree [Bentley, 1975] of this clustered initial point set is then build to find

efficiently the k nearest neighbors of each point using a large neighborhood5. A

plane is tentatively fitted to each point’s neighborhood with least-squares. Provided

the fit is good enough, the point is retained and its position is iteratively refined

using the same matching score as above. The final result is the same as what was

obtained from interest points: a set of points each carrying a tuple of views where

they were seen and an associated confidence. Again, this step still generates a noisy

point cloud with a decent amount of outliers but tends to yield better results on

architectural scenes (less outliers and noise).

The advantage of the two presented passive stereo techniques lies in the fact that

the reprojection and multi-level matching process can leverage the computational

resources of common graphics hardware allowing the overall process to be reasonably

fast (a few minutes in the data sets of [Strecha et al., 2008] featuring from 8 to 30

images of 6 Mpixel, on an Intel Xeon 3.0GHz CPU with a NVIDIA 260 GTX GPU).

As the reconstruction involves matching points in different images, the corre-

sponding 3D error distribution is complex and cannot be modeled as simply as in

the range scanning case. Mismatches are also almost inevitable leading to gross out-

liers. Depending on the geometry of the cameras and the repetitiveness of texture

patterns, these mismatches may even aggregate in structured clusters of outliers

producing phantom structures in the point cloud. Another limitation of passive

stereo is the highly non-uniform density of samples that depends on the amount of

texture on the scene and object. While visibility filtering and expansion techniques

combining heuristic-based optimizations have been able to improve the quality of

4by a factor 4 × 4 for 6 Mpixel images.
5k = 25.
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point clouds from stereo as in [Furukawa and Ponce, 2008; Goesele et al., 2007],

standard point clouds from multi-view such as the two described acquisition meth-

ods have notoriously higher levels of noise and higher ratio of outliers that point

clouds acquired with laser range finding.

However, in our case, relying on thresholds and possibly generating numerous

outliers is not a serious concern. The only goal of this point cloud from the passive

stereo step is to generate enough points so that the following global optimization

finds a close enough surface from the tetrahedra facets.

4.2.2 Visibility-based surface reconstruction

The second step of our multi-view pipeline consists in filtering gross outliers from

the point cloud and reconstructing an initial surface. These two goals are achieved

at once by relying on the Delaunay triangulation described in Appendix A.2 and

using a visibility-based formulation to build a surface and discard outliers.
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Figure 4.2: Visibility and graph construction. A line of sight from a reconstructed
3D point traverses a sequence of tetrahedra, the graph construction and the assignment of
weights to the tetrahedra and oriented facets.

Optimal tetrahedron binary labeling From the image-based point cloud P
where each point memorizes the two or more images from which it has been trian-

gulated v (as described in the previous section), the 3D Delaunay triangulation of

these points is built. Then, the Delaunay tetrahedra are labeled inside or outside

the object so that this binary labeling minimizes some energy and finally the surface
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is extracted as the set of triangles between inside and outside tetrahedra (called a

pseudo-surface in what follows).

Surface visibility A pseudo-surface S∗ is sought so as to minimize visi-

bility constraints imposed by the line-of-sight of the acquired points: S∗ =

arg minS Evis(S,P, v).

A surface should never cross the empty space traversed by the various lines of

sight attached to the points. Ideally, one would like to minimize the conflicts of

the lines of sight with the surface S induced by the tetrahedron labeling l. This

corresponds to the following term:∑
P∈P

∑
Q∈vP Vconflict

(
l
TQ→P

1
, . . . , l

TQ→P
N[QP ]

)
,

where TQ→P1 , . . . , TQ→PN[QP ]
is the ordered sequence of the N = N[QP ] tetrahedra

crossed from the camera center position Q to the point P (see Fig. 4.2). Since

P is a vertex of the Delaunay triangulation, the sequence is terminated before the

tetrahedron lying behind P as shown in the upper part of Fig. 4.2. Each oriented

facet F = (TQ→Pi ∩TQ→Pi+1 ) for i ∈ [1, N−1] is intersected by the line segment [QP ].

To cast as a minimum s− t cut problem, we penalize the number of misalignments

of tetrahedra’s label and define Vconflict as (we drop the notation Q→ P ):

Vconflict (lT1 , . . . , lTN ) =
N−1∑
i=1

Valign

(
lTi , lTi+1

)
where Valign is a simple pair-wise subterm defined for two adjacent cells of the

complex (since in the above equation the cells are crossed in that order, they are

adjacent to each other) Valign

(
lTi , lTj

)
= αvis 1

[
lTi = 0 ∧ lTj = 1

]
with αvis is a

constant w.r.t. the labeling but depends on the considered point or line of sight:

it is a confidence measure of the point or line of sight. αvis can be linked to the

photo-consistency score of the triangulated 3D point.

Since the trivial labeling l0 : t ∈ T → 0 marking all tetrahedra as outside and to

which an empty pseudo-surface corresponds, satisfying these constraints, the facts

that the point is assumed to lie near the surface and that the camera centers have to

be outside have to be considered. TQ→P1 is the tetrahedron containing the camera

and it should be marked as outside. We denote by TQ→PN+1 the tetrahedron behind

the point P in the direction of the line of sight and this tetrahedron should be

favored as inside. Therefore we add two more terms: Dout (lT ) = αvis 1 [lT = 1] and

Din (lT ) = αvis 1 [lT = 0].

To this end, Evis is the following expression:
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Evis(S,P, v) =
∑
P∈P

∑
Q∈vP

Dout

(
l
TQ→P

1

)
(4.1)

+

N[QP ]−1∑
i=1

Valign

(
l
TQ→P
i

, l
TQ→P
i+1

)
(4.2)

+Din

(
l
TQ→P
N[QP ]+1

)
. (4.3)

The corresponding weight construction is shown in Fig. 4.2: the s-link of the

vertex representing the tetrahedron T1 is assigned αvis, the t-link of vertex repre-

senting the tetrahedron TN+1 (N = 4 in Fig. 4.2) behind the point P is assigned

αvis and each oriented facet crossed by the line of sight from P to Q is also as-

signed αvis. These weight assignments are accumulated over all lines of sight, and

computing a minimum s-t on this graph yields a globally optimal labeling.

One might wonder if alternatives would not be better suited to this problem,e.g.

, using the Dout subterm for all crossed tetrahedra, that leads to a guided balloon-

ing force [Lempitsky and Boykov, 2007], [Hernández et al., 2007]. Without an

appropriate regularization term, that energy tends to minimize the number ’inside’

tetrahedra in a light-of-sight no matter whether these tetrahedra are adjacent or

not. It might lead to a fragmented surface. On the other hand, our visibility term

minimizes the number of time the surface cut the light-of-sights, which favors a

more regularized surface.

Surface quality As input images are available, an additional photo-consistency

term Ephoto may be used to favor surfaces with best matching re-projections in

the different views. This can also be implemented within the minimum s-t cut

framework [Labatut et al., 2007]. However the resulting point cloud typically might

contain millions of points (see Fig. 4.9), the photo-consistency term is quite expen-

sive. Moreover, the visibility term of our energy is very effective to filter out outliers

from stereo point clouds. Since the output surface is only used as an initialization for

a variational photometric refinement, the photo-consistency term is advantageously

replaced with the simple surface quality term Equal of [Labatut et al., 2009b] for

surface reconstruction from range scans: Equal(S) =
∑

f wf1
[
l
T f

1
6= l

T f
1

]
. This

sum is over every facet f in the triangulation, T f1 and T f2 the 2 tetrahedra incident

to f , wf = 1 −min{cos(φ), cos(ψ)}, where φ, ψ are the angles of the facet f with

the circumspheres of T f1 , T f2 respectively.(Fig. 4.3).

This term penalizes facets unlikely to appear on a densely sampled surface by

using a geometric criterion related to the size of the empty circumspheres of a
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Figure 4.3: Surface quality. A facet of the triangulation, its two adjacent tetrahedra
(red) and their circumspheres (green). Their angles φ and ψ with the facet influence the
weight this facet will get.

triangle. Support for infinite tetrahedra is also added (tetrahedra with one facet

on the convex hull and incident to the infinite vertex). This not only allows the

observer to be “inside” the object, but also makes it possible to generate open

meshes. This is an important aspect of outdoor scenes.

The energy to label tetrahedra which can be globally minimized with minimum

s-t cut, is thus:

E(S) = Evis(S,P, v) + λqual Equal(S) (4.4)

where P is the generated point cloud and v the associated visibility sets of the

points.

4.2.3 Photometric robust variational refinement

As the initial surface reconstruction method is interpolatory and the point cloud

still contains a decent amount of noise, the obtained initial mesh, noted as M0 is

noisy and fails to capture fine details. By using all the image data, this mesh is

refined with a variational multi-view stereo-vision approach pioneered by [Faugeras

and Keriven, 1998]: M0 is used as the initial condition of a gradient descent of

an adequate energy function. As the mesh M0 is already close to the desired

solution, this local optimization is very unlikely to get trapped in an irrelevant

local minimum. The details of the energy function and the optimization procedure

are now presented and the improvements over the initial method are justified. This

collection of improvements should not be considered as mere implementation details
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and all have a strong impact on the accuracy of the final reconstruction.

The initial mesh M0, as the surface between interior and exterior tetrahedra,

may still contain isolated triangles respecting visibility constraint (for example, from

false points in the sky, back ground of the scene), or big-size triangles (due to lack

of density of points or lack of images in some area). Moreover, it might capture

the landscape far from our scene, that we do not need to reconstruct in detail

(plus it is impossible to refine this part accurately because of inexact calibration

for scenes very far from cameras). For these reasons, we remove these triangles

by some threshold of triangle size or number of triangles in an isolated piece, and

manually cut unnecessary, far landscape background.

Figure 4.4: Reprojection induced by the surface.

Photo-consistency refinement Let S be the object surface, x a point on S,

~n the normal to S at point x, gij(Ii, Ij)(x, ~n) a positive decreasing function of a

photo-consistency measure of the patch P = (x, ~n) according to images Ii and Ij ,

and vSij(x) ∈ {0, 1} the visibility of x in these images according to S. The original

energy in [Faugeras and Keriven, 1998] is:

Ephoto(S) =
∑
i,j

∫
S
vSij(x) gij(x, ~n) dS (4.5)

Instead of this energy, the re-projection error introduced by [Pons et al., 2007] is

preferred, namely:

Eerror(S) =
∑
i,j

∫
ΩS

ij

h(Ii, I
S
ij)(xi) dxi (4.6)

where h(I, J)(x) is a decreasing function of a photo-consistency measure between

images I and J at pixel x (typically the opposite of normalized cross correlation)

, ISij = Ij ◦ Πj ◦ Π−1
i is the re-projection of image Ij into image Ii induced by S
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and ΩS
ij is the domain of definition of this re-projection (see Fig. 4.4), Πi and Π−1

i

are the projection and back projection from an image i to the surface. This energy

measures, for each considered camera pair, the dissimilarity between the portion of

a reference image corresponding to the projected surface and a portion of another

image re-projected via the surface into the reference image.

This summation has several major advantages over the original one:

1. re-projecting Ij into Ii according to S uses the exact geometry of S and does

not rely on any approximation of the tangent patch (x, ~n),

2. the less a surface element is viewed in a given image, the less it contributes

to the energy, and

3. this re-projection can easily and efficiently be computed on graphics hardware

with projective texture mapping.

The first point is essential to get an accurate reconstruction: in methods approxi-

mating the surface by planar patches, the choice of patch size is a difficult trade-off

between robust and accurate photo-consistency. In practice, we set the photo-

consistency measure as the opposite of normalized cross correlation (NCC). This

measure has the advantage of robustness to noise and light change, that occurs

frequently for outdoor images, due to real lighting change and internal image pro-

cessing inside cameras.

Regularization The original intrinsic energy Ephoto of (4.5) is self-regularizing

due to the area-weighted integration over the surface. This is however not the case

of (4.6). The energy function Eerror is thus complemented with a surface fairing

term Efair, thin-plate energy that measures the total curvature of the surface. This

term penalizes strong bending, not large surface area:

Efair(S) =

∫
S

(κ2
1 + κ2

2) dS (4.7)

where κ1 and κ2 are the principal curvatures of the surface at the considered point.

Consequently, the associated gradient flow is exempt from the classical shrinking

bias.

4.2.4 Discretization

Many methods in variational multi-view stereovision [Faugeras and Keriven, 1998;

Duan et al., 2004; Jin et al., 2005; Lhuillier and Quan, 2005; Pons et al., 2007], and

more, generally in computer vision, rely on an optimize then discretize approach:

an energy functional depending on a continuous infinite-dimensional representation

is considered, the gradient of this energy functional is computed analytically, then

the obtained minimization flow is discretized.
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In contrast, a discretize then optimize approach is adopted: an energy func-

tion that depends on a discrete finite-dimensional surface representation, here a

triangle mesh is considered, and standard non-convex optimization tools are used.

The benefits of this approach have long been recognized in mesh processing, but

have seldom been demonstrated in computer vision [Hernández and Schmitt, 2004;

Slabaugh and Unal, 2005; Delaunoy et al., 2008].

We describe how to compute a discrete gradient flow from a continuous one. The

variations of an energy E attached to a surface S can be analyzed with a functional

gradient defined as the vector field ∇E such that for all vector field v on S, we have:

DE(S)[v] =
∂E(S + ε v)

∂ε

∣∣∣∣
ε=0

=

∫
S
∇E(x)v(x)dx (4.8)

If the S is a the triangulated mesh, consisting of n vertices Xi ∈ R3, i ∈ [1, n], a

discrete vector field is defined at the vertices of this mesh by a sequence of vectors

vi ∈ R3, i ∈ [1, n]. Such vector field is interpolated between the vertices over the

whole mesh: v(x) =
∑

i viφi with
∑

i φi(x) = 1 for all x ∈ S (in the case of

triangular facet, φi(x) is the barycentric coordinate corresponding to vertex i if i is

one of vertices of a triangle containing x and 0 otherwise).Equation (4.8) becomes:

DE(S)[v] =
∑
i

vi

∫
S
φi(x)∇E(x)dx (4.9)

This equation naturally shows how to formulate a discrete gradient from a contin-

uous one:
dE(S)

dXi
=

∫
S
φi(x)∇E(x)dx i ∈ [1, n] (4.10)

As (4.10) shows, the obtained gradient vector at a vertex involves integrals over

the whole ring of triangular facets around it (see also [Eckstein et al., 2007], 2.2).

This is in strong contrast with a point-wise, and thereby noise-sensitive, dependency

on the input data that a late discretization typically causes. A crucial point has

to be noted here: this discrete gradient flow may include a significant tangential

component driving the vertices at the right places minimizing the energy. For

instance, vertices naturally migrate to the object edges if any. This is illustrated

by the crisp reconstruction of stair treads in Fig. 4.7.

In what follows, we recall some definitions and results of [Pons et al., 2007] that

are the base of our discretization:

Given 2 images: I, J : Ω → Rd, let us consider M(I, J) =
∫

Ω h(I, J)(x)dx as a

function of similarity of 2 images. ∂2M(I, J) is defined as the derivative of M(I, J)
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Figure 4.5: Some notations in reprojection.

with respect to the second image, in the sense that for any image variation δJ :

lim
ε→0

M(I, J + εδJ)

ε
=

∫
Ω
∂2M(I, J)(x)δJ(x)dx. (4.11)

We note Mij(S) = M(Ii, I
S
ij), thus: Eerror(S) =

∑
i,jMij(S) and ∇Eerror(S) =∑

i,j ∇Mij(S).

With a point x ∈ S visible for cameras i and j, we note: xi = Πi(x), xj = Πj(x)

the projection in image i, j, di the vector joining the center of camera i and x, zi

the depth of x in camera i, N the outward surface normal at x (see Fig. 4.5). From

[Pons et al., 2007] (page 10), we have:

dxi = −NTdidx/z
3
i . (4.12)

∇Mij(x) = −
[
∂2M(xi)DIj(xj)DΠj(x)di

z3
i

]
N (4.13)

with M is the abbreviation for M(Ii, I
S
ij), D. denotes the Jacobian matrix of a

function. The term between square brackets line is a scalar quantity. We note

fij(xi) = ∂2M(xi)DIj(xj)DΠj(x)di, then ∇Mij(x) = −fij(xi)N/z3
i .
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We rewrite (4.10), in dropping the index i of Xi and φi:

dEerror(S)

dX
=

∫
S
φ(x)

∑
i,j

∇Mij(x)dx (4.14)

= −
∫
S
φ(x)

∑
i,j

fij(xi)N/z3
i dx (4.15)

= −
∑
i,j

∫
S
φ(x)fij(xi)N/z3

i dx (4.16)

=
∑
i,j

∫
Ωij

φ(x)fij(xi)N/z3
i

z3
i

NTdi
Ndxi (4.17)

=
∑
i,j

∫
Ωij

φ(x)fij(xi)/(N
Tdi)Ndxi (4.18)

where Ωij is the map of the reprojection from image j to image i via the sur-

face. Therefore, the gradient of each vertex equals the summation weighted (with

barycentric co-ordinate) of contribution of all pixels lying in the projection of all

the triangles containing this vertex for all pairs of images (i, j).

When the mesh parametrization is close to isometric, the gradient from the com-

plementary thin-plate energy reduces to a simple bi-Laplacian ∆2. A discrete analog

of such simplified thin-plate energy and associated flow, described in [Kobbelt et al.,

1998] is used by applying the umbrella operator of [Taubin, 1995] to approximate

the Laplace-Beltrami operator. This particular choice has a convenient property of

redistributing vertices along the surface, and in particular discourages degenerate

triangles.

Balance between photo-consistency and regularization A long-standing is-

sue in variational methods is the proper and automatic balancing between data

attachment and smoothing terms. Designing a general solution to this problem

is clearly beyond the scope of this paper. A specific strategy is instead proposed

that allows to conduct all the following experiments without adjusting parameters

to each data set. The solution is twofold.

First, the fact that regularization has to be more important where photo-

consistency is less reliable is observed, in particular in textureless or low-textured

image regions. Consequently, the contribution of camera pair (i, j) at pixel xi in

(4.18) is weighted by a reliability factor r(xi) = min(σ2
i , σ

2
j )/(min(σ2

i , σ
2
j ) + ε2),

where σ2
i and σ2

j denote the local variance at xi in images Ii and ISij , respectively,

and ε is a constant.

Second, the two terms of the energy function are homogenized: while the data

attachment term of (4.6) is homogeneous in an area in pixels, the discrete thin-plate
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term is homogeneous in squared world units. After weighting the contribution of

each image in (4.6) by the square of the ratio between the average depth of the scene

and the focal length in pixels, a scalar regularity weight can be defined whose opti-

mal value is stable across very different datasets. As we previously mentioned, this

thin-plate term does not only plays an a priori knowledge of the model (Bayesian

arguments), but stabilizes the mesh during the refinement by redistributing vertices

along the surface.

Mesh resolution The resolution of the mesh is automatically and adaptively

adjusted to image resolution: a triangular facet is subdivided if there is one camera

pair such that the visible facet projection exceeds a user-defined number of pixels in

both images. This threshold is set to 16 pixels in the experiments. A classical one-

to-four triangle subdivision scheme is used, which has the advantage of preserving

sharp edges. Nevertheless, we believe that other subdivision methods can be used.

4.3 Implementation aspects

Parts of our reconstruction pipeline take advantage of the cheap parallel processing

resources available in many consumer-grade graphics card: namely, the computa-

tion of the initial quasi-dense point cloud, the computation of the mesh velocity

field (the normalized cross-correlation and the image reprojections) also its evolu-

tion which are mostly done with a custom combination of vertex, geometry and

fragment shaders. The independence of pixels of images in our computation helps

our pipeline very adapted to graphics card. Our approach heavily relies on geomet-

ric data structures and queries: from the 2D and 3D Delaunay triangulations and

its corresponding queries to dynamic meshes. Fortunately the Computational Ge-

ometry Algorithms Library (CGAL)6 [Boissonnat et al., 2000] defines robust and

efficient implementations of all the geometric data structures, primitives, queries

and traversals needed for our different algorithms. Finally, the max-flow algorithm

described in [Boykov and Kolmogorov, 2004] 7 is used to compute a minimum s-t-cut

of our specifically designed network graphs.

With these implementation advantages, the overall running time is quite rea-

sonable, for example, it takes 45 minutes for the whole pipeline in the dataset

Herz-Jesu-P25 provided by Strecha et al. [Strecha et al., 2008], consisting of 25 im-

ages of resolution 3072×2048. Most of the time being spent either in computing and

selecting points when generating the initial point cloud or in the final photometric

refinement.

6http://www.cgal.org/
7and implemented in http://www.adastral.ucl.ac.uk/~vladkolm/software.html

http://www.adastral.ucl.ac.uk/~vladkolm/software.html
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4.4 Experimental results

4.4.1 Compact objects

As mentioned in the introduction, our reconstruction pipeline does not target small-

scale data sets for which the acquisition conditions can typically be easily modified

to allow a foreground / background segmentation. Nevertheless, Fig. 4.6 shows

the results of our final variational refinement step (from a mesh approximating the

visual hull) and evaluation on the Middlebury dense multi-view stereo benchmark

of [Seitz et al., 2006]. For the sake of comparison, we have included the results of

other methods including the results of our previous level set based method [Pons

et al., 2007] and another mesh-based variational approach based on the same energy

function as our previous work [Zaharescu et al., 2007]. Our results on the temp-

leRing are currently the best both in completeness and accuracy. However, on the

dinoRing, while a highly complete reconstruction is indeed achieved, our results are

less competitive in term of accuracy. This may be explained in the strong lack of

texture on this particular data set that makes our photo-consistency measurement

less peaked near the ground-truth surface.

accuracy completeness

(at 90%) (at 1.25mm)

Ours 0.45mm 99.8%
[Campbell et al., 2008] 0.48mm 99.4%

[Furukawa and Ponce, 2008] 0.47mm 99.6%
[Hernández and Schmitt, 2004] 0.52mm 99.5%

[Pons et al., 2007] 0.60mm 99.5%
[Zaharescu et al., 2007] 0.55mm 99.2%

accuracy completeness

(at 90%) (at 1.25mm)

Ours 0.53mm 99.7%
[Bradley et al., 2008] 0.39mm 97.6%

[Furukawa and Ponce, 2008] 0.28mm 99.8%
[Kolev et al., 2009] 0.43mm 99.4%

[Hernández and Schmitt, 2004] 0.45mm 97.9%
[Pons et al., 2007] 0.55mm 99.0%

[Zaharescu et al., 2007] 0.42mm 98.6%

Figure 4.6: Comparison to ground truth (top images: left column is ground truth, right
column is our result) and evaluation results (bottom tables) on the dinoRing and templeRing
data sets of [Seitz et al., 2006].
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4.4.2 Outdoor architectural scenes

Provided by Strecha et al. [Strecha et al., 2008], the already mentioned data sets

consist of outdoor scenes acquired with 8 to 30 calibrated 6 Mpixel images. Ground

truth has been acquired with a LIDAR system. The evaluation of the multi-view

stereo reconstructions is quantified through relative error histograms counting the

percentage of the scene recovered within a range of 1 to 10 times the estimated

LIDAR depth standard deviation σ. Dedicated to large-scale objects and fitting

perfectly our objective, these sets are particularly challenging, especially the castle-

P19, a complete courtyard acquired from the inside and where a tractor is placed in

the middle, disturbing reconstruction. So far, [Furukawa and Ponce, 2008; Tylecek

and Sara, 2009, 2010; Jancosek et al., 2009; Salman and Yvinec, 2009] submitted for

all these particular data sets. Some of them appeared after our conference version

of this paper [Vu et al., 2009], yet our results still achieve the best at accuracy

and completeness in most datasets of this benchmark. Comparisons with the other

methods are given in Fig. 4.8, where cumulated histograms clearly show that the

proposed pipeline is both more accurate (thanks to the final variational refinement)

and complete (thanks to the initial visibility-consistent mesh).

More detailed views of our reconstruction of the Herz-Jesu-P25 data set are

shown in Fig. 4.7. Note how details, topology (e.g. columns) and edges (e.g. stairs)

are precisely recovered while regularization still handles as correctly as possible

blurred or untextured parts. Further results are available on the challenge website8.

4.4.3 Landscape and cultural heritage scenes

The method was tested on an aerial acquisition of the Aiguille du Midi summit (data

and calibration courtesy Bernard Vallet and Marc Pierrot-Deseilligny respectively).

The data set consists of 53 images of 5 Mpixel. Fig. 4.9 shows two of the images,

the generated point cloud, the initial mesh M0 and the final reconstruction. This

experiment validates the whole pipeline and the ability to cope with uncontrolled

imaging conditions (snow, sun, moving people from one image to another) and a mix

of complex and smooth geometries. The variational process is able to recover the

top antenna although it is only partially present in M0. Fig. 4.1 shows results on a

data set of 27 images of 10 Mpixel of a sculpted calvary taken from the ground. The

cloud has 802K points, with many outliers, mainly sky points obtained by matching

clouds that have moved between shots. 539K of these points are selected for the

initial mesh. This mesh is noisy, due to the process of matching interest points that

are just approximately view-point invariant. The closer views in Fig. 4.10 show, the

final reconstruction (2, 331K triangles) is very sharp to capture meaningful details.

8http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html

http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
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Figure 4.7: Top: overview of our reconstruction of Herz-Jesu-P25. Bottom: close-ups on
reconstruction details such as the thin metal bars, the facade relief or the staircases.

Fig. 4.11 shows results on a data set of 30 images of 14 Mpixel of Cluny Abbey in

France, taken from a balloon in front. Lacking different views, the total scene is

not complete, but the final reconstruction proves its great details from the direction

of input images. We also tested on an aerial acquisition of Entrevaux (Fig. 4.12),

consisting of 109 images of 3.1 Mpixel. The final mesh is very complete, captures

small details of buildings and cliffs with trees. Note that trees are not suitable for

multi-view or mesh representation, because of their complex and changing shape in

time. Nevertheless, our method is robust enough to give them a reasonable form.

4.5 Conclusion

A novel dense multi-view stereo reconstruction pipeline has been presented. The

whole method is designed to handle the reconstruction of large-scale cluttered scenes

taken under uncontrolled imaging conditions, a scenario where traditional multi-
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Figure 4.8: Relative error cumulated histograms. From left to right, up to down, the
relative error cumulated histograms respectively for the fountain-P11 (2 first histograms),
Herz-Jesu-P8, entry-P10, castle-P19,Herz-Jesu-P25 data set. Legend is the following: FUR
for [Furukawa and Ponce, 2008], ST4 for [Strecha et al., 2004], ST6 for [Strecha et al., 2006],
ZAH for [Zaharescu et al., 2007], TYL for [Tylecek and Sara, 2009], TYL09 for [Tylecek and
Sara, 2010], JAN for [Jancosek and Pajdla, 2009], JAN09 for [Jancosek et al., 2009], SAL
for [Salman and Yvinec, 2009] and VU for our work. On all data sets, the measurements
clearly confirm our better results, both in accuracy and completeness.

view stereo methods are either not applicable or have completeness and accuracy

issues in part due to a lack of a correct treatment of visibility issues. The initial

surface reconstruction problem is cast as the recovery of a visibility-consistent sur-

face from the Delaunay triangulation of a quasi-dense point generated from the

input images. This problem is reduced to a binary labeling of tetrahedron that

can efficiently be computed with a minimum s-t cut: the obtained surface is both

complete and close to the ground truth and serves as a coarse initial estimate of

the scene or object of interest. Its accuracy is then improved by a carefully de-

signed and scalable variational refinement. The full multi-view stereo pipeline has

been demonstrated on a number of large-scale scenes. Its results are visually and

quantitatively more accurate and complete than state-of-the-art techniques. This

pipeline will be adapted for even larger data-sets in the rest of this thesis.

The variational method of the pipeline was combined with geometric primitives

(planes, spheres, cylinders, cones and tori) in a hybrid multi-view stereo [Lafarge

et al., 2010]. The obtained results have smaller size and still preserve the quality of

surface with the primitives that are suitable for urban scenes.
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Figure 4.9: Results on Aiguille-du-Midi data set. From left to right: two sample
images taken from a helicopter ( c© B.Vallet/IMAGINE), point cloud from interest points,
initial surface and our final reconstruction.

Figure 4.10: Refined mesh on ground-level scene Calvary.

Figure 4.11: Results on Cluny data-set. Cluny Abbey built from 30 images taken from
a balloon ( c© B.Vallet/IMAGINE) and an image of data-set.
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Figure 4.12: Results on Entrevaux data set. Top row: final model of Entrevaux with
texture. Two bottom rows: non texture mesh taken from 109 images form a helicopter ( c©
IMAGINE/CSTB), seen in 2 views associated with similar images.
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5.1 Introduction

In 3D acquisition problems, both active (laser range scanning) and passive (multi-

view stereo), large scale reconstruction is usually a big issue. Lack of memory, an

in-core method, which stores and processes data in the computer memory, is severely

penalized. Without changing this in-core method, there is a general paradigm to

solve this issue: divide the problem into smaller one, solve each small problem, and

combine those partial solutions into the final solution (Divide and Conquer). When

the problem is the surface reconstruction, which produces a big mesh: instead to

obtain the mesh, we will get many separated partial meshes. However, combining

these separates meshes is not evident.

In this chapter, we are interested in producing a final mesh from overlapped

separate meshes in common coordinate. While the union of separate meshes is

enough for graphic rendering, or depth map benchmark, it is undesirable for some

mesh processing, like smoothness, edge collapse decimation. Such operations will
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shrink each mesh. Thus, merging overlapped meshes into a single, topologically

correct mesh is essential for mesh processing and simulation.

The problem of mesh merging resides in the overlap of meshes: double walls, and

gaps. Thus, it can be solved as a model repair problem. One approach is to consider

the union of input meshes as a whole input and try to correct artifacts. Although

this approach can fix various artifacts, it might resample input meshes unnecessarily

because it breaks topology information of input meshes. Any remeshing, and surface

reconstruction algorithm can be used in this approach: distance function introduced

by [Curless and Levoy, 1996], Power Crust by [Amenta et al., 2001], Poisson surface

by [Kazhdan et al., 2006], implicit surface from polyhedron soup by [Shen et al.,

2004], surface meshing by [Boissonnat and Oudot, 2005] and many more.

It is desirable to preserve input meshes as much as possible in mesh merging to

economize computing resource. Mesh zippering by [Turk and Levoy, 1994] created

connectivity in overlapped areas by adding new vertices and computing geometrical

intersection. TransformMesh by [Zaharescu et al., 2007], [Zaharescu et al., 2011],

also computed mesh intersection in a different context (mesh deformation rather

than mesh merging). These methods require considerable care to handle connec-

tivity in the overlap area to combine meshes. A better approach is resampling the

whole overlapped area and preserving the non-overlapped one. Any remeshing al-

gorithms can be applied in the overlapped area to create a single surface, providing

that this new surface is appropriately connected with the remaining non-overlapped

area. Some methods are proposed in that direction: Poisson surface with boundary

by [Huang et al., 2007], local Marching Cubes by [Wojtan et al., 2009], advancing

front by [Scheidegger et al., 2005], Laplace surface editing by [Sorkine et al., 2004],

SnapPaste by [Sharf et al., 2006]. Likewise, we propose a novel algorithm, that

remeshes overlapped areas, based on Constrained Delaunay Triangulation, which

succeeds in combining many dense meshes into a single manifold surface. To our

knowledge, this is the first method which automatically merges hundreds of dense

surface triangular meshes.

5.1.1 Contribution

The main contributions of this chapter are:

• Novel remeshing method with boundary information, based on constrained

Delaunay tetrahedralization (or constrained 3D Delaunay triangulation)and

graph cuts extraction.

• Non-overlapped areas of input meshes are preserved. It can almost be stored

on hard disk during the algorithm, which makes it possible to merge a large

data-set.
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Thanks to its proper properties, Delaunay triangulation is popular in surface re-

construction (excellent survey by [Cazals and Giesen, 2006]). Extraction of surface

from a Delaunay tetrahedralization with graph cuts optimization can be found in

[Labatut et al., 2007], [Labatut et al., 2009b], [Wan et al., 2010]. Unlike their

work, we use constrained Delaunay tetrahedralization instead of normal Delaunay

tetrahedralization, and different graph cuts optimization to target merging problem.

Below, we will describe all steps of our method, which are illustrated and val-

idated through various experiments. Next, we will apply the method in a special

case where input meshes are associated with a box partition. This case is used for

merging process in chapters 6 and 7. Finally, we will conclude the chapter and

discuss its limitation.

5.2 Merging algorithm in general case

The mesh merging is stated roughly as: An unknown surface S is approximated with

n triangular 2-manifold meshes, sharing some overlaps. Build a single 2-manifold

mesh that is geometrically and topologically correct with the surface S.

The problem is ill-posed because the exact surface itself is unknown. Moreover,

there are many ways to mesh a single surface. For instance, the unknown surface

may be exactly the union of n input meshes, including all overlapped parts (which

is unlikely). Normally, we expect that the surface is regular and smooth enough.

In applying Constrained Delaunay tetrahedralization (CDT) [Si, 2010] (appendix

A.2), our algorithm consists of 3 steps:

1. Detect overlapped part for each input mesh.

2. Consider a piecewise linear system (PLS) (appendix A.2) consisting all ver-

tices of overlapped area, and a set of triangle rings F (of non-overlapped area

for each mesh) around it. Compute its CDT. Consider a graph dual of the

tetrahedralization. Assign edge weights, compute label nodes and extract a

surface according to the s-t mincut. Collapse Steiner points.

3. Cut this extracted surface along the edges between triangle rings F and the

remaining non-overlapped area with a graph cuts optimization. Combine this

surface to remaining non-overlapped area.

We explain each step in the following sub-sections.

5.2.1 Overlap detection

Due to geometrical errors (input meshes are not exactly on the same surface) and

combinatorial incoherence (vertices are not identical), overlaps are unlikely inter-

sections of the input meshes. We propose a simple and inexpensive way to detect
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Figure 5.1: The illustration with Stanford’s Bunny: left to right: 2 meshes of different
resolution, their union in the same coordinate, a zoom in overlap. Note overlapped area,
although faithful to the surface, is totally inconsistent.

Figure 5.2: From left to right: overlap detection (overlap: red area, around triangles:
yellow area, the remaining non-overlap: grey area), PLS of overlap points and constrained
triangles, extracted surface from tetrahedralization, a junction surface cut(dark grey area).

overlaps. It would be safe to suppose that the distance of an input mesh to its

ideal surface is much smaller than its edge length (there is no point building a

mesh whose resolution is smaller than its estimated error). We associate each facet

ABC with a sphere B(G, r) which entirely containing it, where G is its mass center,

r = k×max{GA,GB,GC} with k > 1 (k = 1.1 for our experiment). We detect the

intersection of spheres of different meshes. We use a kd-tree for spheres (appendix

A.5) to speed up the collision detection: spheres in different leaves are disjoint,

then intersections occur only in leaves. These intersected spheres correspond to

overlapped facets. We collect overlapped facets and rings of non-overlapped facets

around (in practice, for each mesh, we take 2 layers of non-overlapped facets: one

for PLS in the next step, one for fixing 2-manifold in the merging step). The re-

maining non-overlapped triangles can be saved on hard disk to economize memory,

because we will only use it at the end, simply as an unmodified part of the merged

surface.

5.2.2 Graph cuts on Constrained Delaunay Tetrahedralization

We consider collected facets from the previous step. To ensure the numerical sta-

bility, we determine vertices which have the same position(or very close together).
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For this purpose, we detect collision of tiny spheres centered in every vertex, with

a radius of ε/2 (this means their distance is less than ε). We set ε = 10−6 in our

experiments. We re-use a kd-tree to accelerate the collision detection.

Next, let P be the set of all vertices of overlapped facets. For each vertex, we

compute its normal vector, as a weighted sum of normal vectors of facets around

it. For each input mesh, consider a ring of non-overlapped facets, which share

a vertex with an overlapped triangle. F denotes the union of these rings. The

overlap detection ensures that no triangles in the non-overlapped areas of different

meshes can intersect. However, facets in the non-overlapped area of the same mesh

may intersect (due to input error). For each input mesh, we detect and remove

intersected triangles (with a kd-tree of triangles for acceleration) of the set F . We

need remove these self-intersected triangles to ensure F is a PLS. We denote by E

the set of edges which separate F with other non-overlapped facets. Considering

a PLS which consists of the point set P and triangle set F as a constraint, we

compute the CDT by Si Hang’s software tetgen [Si, 2009] 1 (Fig. 5.2). As a result,

we obtain a CDT with possible Steiner points inserted on the edges of constrained

triangles. We register all Steiner points with the edges containing it (by using a

kd-tree for segments, appendix A.5). Hence, we will know an input facet f ∈ F is

preserved or fragmented into smaller triangles in the tetrahedralization. An infinite

vertex is added in the CDT which joins all facets of its convex hull, so that an open

surface can be extracted (as [Labatut et al., 2007], [Labatut et al., 2009b]).

We consider a dual graph of this triangulation: nodes correspond to tetrahedra,

edges correspond to the triangular facets between adjacent tetrahedra. Each node

is linked to the source s and the sink t. We determine a cut C minimizing an energy:

E(C) = Edata(C)+Equality(C), where each term corresponds to a cost in the graph

cuts framework:

Edata(C) =
∑

vi∈S\{s}

ti +
∑

vj∈T\{t}

sj , Equality(C) =
∑

vi∈S\{s}
vj∈T\{t}

wij . (5.1)

The set S (source s ∈ S) and the set T (sink t ∈ T ) contain tetrahedra respec-

tively in front of and behind the surface. Hence, if we favor a facet i to be in front

of, or behind the surface, we raise si or ti respectively. These values are computed

based on constrained facets and the vertex normal vectors in the tetrahedralization:

• Intialization: set all values si, ti, wij to 0.

• Constrained costs : for all constrained (sub)triangles f of F , which belongs to

1http://tetgen.berlios.de/
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st ← st +Wc

tj ← tj +Wc

si ← si +Wn

tj ← tj +Wn

φ

ψ

wij = Wqual (1−min{cosφ, cosψ})

Constrained cost Normal cost Quality cost

Figure 5.3: Graph cuts costs. A triangle represents a tetrahedron. Red (blue) trian-
gles/normal vectors represent the direction outwards (inwards) the surface.

2 tetrahedra: vi (in front of the facet) and vj (behind the facet): si ← si+Wc,

tj ← tj + Wc (Wc is a big value). These constrained costs force constrained

facets with right orientation appear on the final surface.

• Normal costs: for every vertex V with its normal vector: ~N (which is oriented

outside the surface). If there is a finite tetrahedron i incident to V , and

containing ~N , we set: si ← si + Wn (Wn > 0). If not: si ← si + Wn (for

all infinite tetrahedra i incident to V ). We apply the same for the opposite

normal vector − ~N and tj : tj ← tj + Wn. The normal costs encourage the

surface to pass the soup of facets in overlapped areas.

• Quality costs: we use the quality cost by [Labatut et al., 2009b], which

penalizes facets unlikely to appear on a densely sampled surface. Con-

cretely, with a facet f incident to tetrahedra vi and vj : wij = Wqual × (1 −
min{cos(φ), cos(ψ)}), where Wqual > 0 , φ and ψ are the angles of the facet

with the cumscribing spheres of tetrahedra vi and vj . This term favors a

regular surface.

After the optimization, we extract a cut C, and the associated surface S1. Be-

cause of the extreme value Wc, all constrained triangles will appear on the surface

S1 (with probably some Steiner points). We remove Steiner points as follow: for a

Steiner point D inside a constrained edge AB, with DA ≤ DB we replace D with

A, and we remove all degenerated triangles. It is like a continuous move (without

self-crossing) of Steiner points towards triangle vertices: the union of sub-triangles

inside a constrained triangle ABC remains ABC during the move. Finally, while all

Steiner points are identical with A,B,C, one sub-triangle becomes the constrained

triangle ABC (and the others are degenerated and removed). We denote by S2 this

obtained interpolated surface, which keep the constrained facets of F .

5.2.3 Graph cuts on the extracted surface

In the step described above, we marked E as the set of edges separating F from the

remaining non-overlap parts. Now, we need to cut the interpolated surface S2 by
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Figure 5.4: From left to right: 2 input meshes in same coordinate, final merged mesh, and
its smooth version (applied Laplacian smooth operation).

edges in E, that preserves all triangles in F and triangles in overlapped areas(see

Fig. 5.2).

We apply a graph cuts optimization again: consider a graph in which nodes

are facets of S2, edges correspond to sharing edges of 2 adjacent facets, with the

cost as the edge’s length. We mark all triangles of F in S2 as ‘inside’ (they link

to the source s with very high cost), all other triangles with an edge in E as

‘outside’ (they link to the sink t with very high cost). The optimal cut will be

the shortest cut that separates these ‘inside’ and ‘outside’ triangles, which passes

through all edges of E. Let S3 be the surface of computed ‘inside’ facets. S3 can

naturally merge with the remaining non-overlapped triangles from the first step,

because they share same border edges. Nevertheless, this merged mesh may not be

2-manifold. Indeed, while S3 is the surface separating different label tetrahedra, it

can contain some edges incident to more than 2 triangles, or some vertices incident

to non-connected facets. To correct manifold issue, we consider another ring of non-

overlapped triangles around S3, add some identical vertices to make all vertices of

S3 is 2-manifold, before merging with the remaining non-overlapped area. So if

input meshes are 2-manifold, the final merged mesh is surely 2-manifold, which is

topologically correct, suitable for further processing (see the Laplacian smoothness

in Fig. 5.4 and Fig. 5.5).

5.2.4 Experiments

Beside using tetgen for CDT, we use the CGAL library for geometry process-

ing, Boost Graph Library implementation of Kolmogorov for graph cuts optimiza-

tion( [Boykov and Kolmogorov, 2004]). We set the following cost parameters for

all experiments: Wc = 109, Wn = Wqual = 1. At first, we tested with 2 classical

Stanford data-sets: Bunny and Armadillo. We cut each mesh manually into small

meshes with overlaps. We applied a different decimation for each sub-mesh so that

they can not longer “stick” together. Our merging method gave a geometrically

and topologically correct final mesh (Fig. 5.4, 5.5).
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Figure 5.5: From left to right: 6 input separate overlapped meshes, overlap detection
(overlap:red, constrained triangles:yellow, remaining non-overlap: grey), junction surface
(grey), merged mesh, smooth merged mesh.

We also tested our method to merge input partial surfaces reconstructed from

multi-view stereo. We considered two data-sets of city scenes, consisting of 4 and 347

meshes. Each mesh of the scene is built separately. These data-sets are challenging,

not only because of their size, but also because they contain noise from camera

calibration and multi-view reconstruction. As overlaps are always inside intersection

of the bounding box of meshes, we use this information to discard facets outside this

intersection zone and to accelerate overlap detection. Fig. 5.6 shows a 4-mesh data-

set in different coordinates, an overlap zone (triangles discarded by bounding box

do not appear) and interpolated surface, merged mesh and its decimated version

(quadratic collapse edge decimation by Meshlab with 5% of total merging facets).

The correctness of the decimated surface in the overlapped area shows the merging

process is successful. Fig. 5.7 compares an overlapped area before and after the

merge: the topology and small gaps are corrected. For the City-347 data-set, we

show in Fig. 5.8 the overlapped zone, the interpolated surface, and the decimated

merged surface. Although the overlap is quite complicated due to hundreds of

inputs, a junction surface has been appropriately extracted (black part in upper

right figure in Fig. 5.8).

However, several wrong facets have been observed in the interpolated surface,

which connects far vertices in different overlap zones. Fortunately, they are rare

and can be easily discarded by setting a threshold of triangle size after extracting

the interpolated surface, or setting a strong penalty for big triangles in graph cuts

optimization. This result show that our approach is robust and efficient to handle

large data-sets.

The following table shows information about data-sets and running time (I/O

included), in a laptop equipped with 4 GB memory, a 2GHz processor Duo Core

(without parallelization), and a Solid State Driver (SSD):



5.3. Merging meshes from partition of bounding box 65

Figure 5.6: Merging of 4 meshes. First row: 4 separate meshes in different coordi-
nates, overlapped zone (red: overlap facets, yellow: constrained facets, gray: remained
non-overlapped facets), interpolated surface S2 (black:”inside”, white: ”outside”). Second
row: merged surface of 15M facets, zoom on a decimation of merged surface with 5% of
the total facets.

Data-set # input meshes # PLS points/facets # final facets seconds

Bunny 2 3921/613 24K 0.4

Armadillo 6 9984/1250 53K 1.1

City-4 4 105556/38976 15M 81

City-347 347 961813/384676 43M 323

5.3 Merging meshes from partition of bounding box

In this section, we handle a particular merging problem which usually occurs in

practice: merging meshes from a partition of bounding boxes. We suppose a 3D

Figure 5.7: Zone containing overlap of 4 separate meshes: union of meshes and merged
result. Note small gaps are completed and overlap is corrected.
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Figure 5.8: Merging of 347 meshes. First row: overlapped zone (red: overlap, yellow:
constrained facets, grey: others non-overlapped facets), interpolated surface S2(black: ”in-
side”, white: ”outside”). Second row: decimated merged surface with 25% of total 43M
merged facets.

object/scene is too large to reconstruct directly (by some active/passive 3D re-

construction methods). Its estimated bounding box is then partitioned into small

bounding boxes, such that we can reconstruct each piece of the surface for each

small box. The input meshes slightly exceed its associated box to limit the border

effect in the reconstruction.

While this might be solved as the general method in 5.2, we had better take

advantage of the partition of the bounding box. Firstly, for each box b (in the

bounding box partition) and its associated mesh M , we do not need to keep any

vertex of M outside b in the final merged mesh. Effectively, we expect the part

of M outside b is better reconstructed by some other meshes coming from other

boxes. Secondly, we should keep as much as possible the part of M inside b in the

final mesh, because no other mesh would represent the scene better than M inside

the box b.

One straightforward strategy to respect the criteria is:

1. For each box b and its associated mesh M : we define a facet of M as ‘inside’,

‘outside’ if it is completely inside, outside the box b (all its 3 vertices are

inside, outside the box b respectively). We define ‘wall-cut’ facets of M the

other facets. (at least one vertex inside b and one outside b).

2. We consider a ring of ‘inside’ facets of M which share at least one vertex with

‘wall-cut’ ones: they form a set of constrained facets in the CDT.
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3. We remove all ‘outside’ and ‘wall-cut’ facets. We run CDT for all constrained

facets of every input mesh M and we reuse the rest of the general merging

algorithm.

We consider in particular the case when input meshes share a common set of

vertices. It may happen when the surface is reconstructed from a point cloud in

each box and the method keeps input points as vertices of the surface (e.g. merging

visibility-consistent meshes in chapter 6). There are ‘wall-cut’ facets A1A2A3, where

for i = 0, 1, 2: Ai is inside a box bi, and Ai belongs to the associated input mesh

Mi of bi. We should let such facets appear in the final mesh, thus we do not remove

them but set them as constrained facets.

We illustrate the merging strategy with Poisson surface reconstruction recon-

struction methods of Stanford bunny data-set. We align its range images to obtain

a point cloud of 362 K points with an estimated normal at each point. We partition

the bounding box of the point cloud in 5 boxes, in which each contains roughly 1/5

the number of points (Fig. 5.9. For each box, we consider all points inside and 20%

more points around the box to obtain 5 point sets. We run a Poisson surface recon-

struction method for each set (Fig. 5.10). In the end, we merge 5 partial meshes to

have the final mesh (Fig. 5.11).

Figure 5.9: Partition of point cloud of Standford Bunny in 5 partitions. Each partition
has almost the same number of points.

We note that input partial meshes do not match quite well: there are visible

seams in the merged mesh (Fig. 5.11). However, the algorithm is quite successful

to recover the mesh topology. Still, there are few small holes in the region around
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Figure 5.10: Partial meshes from Poisson surface reconstruction (in different coordinates
system for better visualization).

the seams that the method does not recover.

5.4 Conclusion

We proposed a fully automatic algorithm to merge many meshes with overlaps,

based on CDT and graph cuts. Our method remeshes overlapped areas only, while

keeping the connection with non-overlapped parts thanks to CDT. The computation

resource was focused on extraction of the junction surface and graph cuts optimiza-

tion used in tetrahedralization and surface. The experiments show the method’s

high effectiveness and performance in merging many dense triangular meshes. This

merging method does not change vertices position, therefore, does not correct any

geometrical error. If it is desirable, a variational method can be used as a post

process to reduce the seam and the geometry error in the overlapped areas. This

merging method will be used for next chapters, when we will handle large scale

data-sets. It would be also useful for merging separated meshes, found in other

multi-view stereo or view clustering methods such as [Jancosek et al., 2009], [Fu-

rukawa et al., 2010].
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Figure 5.11: Merged mesh from partial Poisson meshes with zoomed details.
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In this chapter, we will study the problem of finding a surface over a large

point set associated with line-of-sights. The globally visibility-consistent surface

reconstruction presented in chapter 4 might not be applied for large input because

it requires large memory in Delaunay triangulation and graph cuts optimization.

We will describe how to adapt this method in a convenient Divide-and-Conquer

paradigm that tries to conserve the surface quality of the original method.

The contribution of this chapter is as follows:

• Multi-level representation of a point set, from coarse to fine levels. Fast way

to compute any point set a representation from a given point set. Equal

partition of a point set using a convenient kd-tree.

• Coarse-to-fine extraction of visibility-consistent surface, which gradually re-

moves outliers in each level.
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• Adaptation of the original surface reconstruction method for a subset of

points, which takes into account the exterior line-of-sights. Test of the mesh

merging method presented in chapter 5 in various data-sets.

6.1 Introduction

6.1.1 Motivation

The surface reconstruction in our multi-view pipeline in chapter 4, is a bridge

which transforms a discrete 3D model (a point cloud) to a continuous surface (a

watertight mesh). According to our experiments, this step is quite fast, comparing

to the time dedicated for the remaining steps (plan-sweeping generations of points

and the photometric deformation of mesh). Nevertheless, this method requires an

in-core 3D Delaunay triangulation as well as an in-core graph-cuts optimization

which consumes a considerable amount of memory. Solving this challenge is a key

towards a large-scale multi-view stereo.

The problem is stated as: Given a point cloud P = {P0, . . . , Pn−1} . Every

point Pi remembers 2 or more cameras (associated with a confidence measure) from

which it has been triangulated (we called such point a track). The point cloud has a

significant amount of outliers due to mismatches. Extract a triangular meshM from

the point set, which respects as much as possible the visibility constraint of line-of-

sights in P. Its size n is too big for an in-core 3D Delaunay triangulation and a graph

cuts optimization of previous globally visibility-consistent surface reconstruction

method.

In which follows, we make a brief survey about how the visibility issue has been

treated in the multi-view stereo and the surface reconstruction literature.

6.1.2 Work in multi-view stereo with the visibility issue

The visibility (or occlusion) is an compelling issue in multi-view stereo. A camera

can only capture the part of the surface which is in its view and is not hidden by

other objects or the surface itself. A part of a surface is visible for some cameras

but may not be visible for others. This makes point matching more difficult and

prone to errors: we can not match a feature of an image to another one that does

not see it. Visibility information is then important for the matching process which

is a key to reconstruct a surface. However, the exact visibility information is only

available if the surface is known.

Fortunately, it does not mean the visibility is an intractable problem. Two fea-

tures with good matching cost will have a high chance to correspond to a 3D point of

the scene. That is why visibility (or occlusion) can be considered as outliers during



6.1. Introduction 73

the matching process. Most depth map based multi-view methods simply ignore vis-

ibility in their first matching step, such as [Kolmogorov and Zabih, 2002],[Strecha

et al., 2003], [Strecha et al., 2004], [Gargallo and Sturm, 2005], [Strecha et al.,

2006], [Goesele et al., 2006], [Goesele et al., 2007], [Furukawa and Ponce, 2008].

Other methods handle visibility by iteratively updating depth maps and visibility

information in a Bayesian framework: [Strecha et al., 2004], [Gargallo and Sturm,

2005],[Tylecek and Sara, 2009]. [Sun et al., 2005] did not use probabilistic but still

iteratively optimized occlusion and disparity maps. [Broadhurst et al., 2001] carved

a volume with the visibility probability of voxels, [Hernández et al., 2007] used an

evidence of visibility as a balloon force in a graph cuts optimization framework.

The nature of self-dependency between the surface and the occlusion leads

to variational methods handling visibility from an initial estimation of surface.

[Faugeras and Keriven, 1998], [Hernández and Schmitt, 2004], [Pons et al., 2007]

used the occlusion implicitly in each optimization iteration by z-culling. [Delaunoy

et al., 2008] even included an occlusion formula in its gradient computation.

Although occlusion is a problem for image matching, it does help the estimation

of the surface. A point on the surface is seen by a camera only if there is no

obstacle between the camera and the point (we ignore transparency, reflectance).

It is called ‘empty space’ property of a line-of-sight. The reconstructed surface

should respect this property: a line from a point of the surface to cameras from

which it is originated should not cut the surface. This property was exploited in

a labeling framework to estimate discrete levels of depth map of a single camera

in [Kolmogorov and Zabih, 2001], [Kolmogorov and Zabih, 2002]. However, these

methods are only suitable for small data-sets with a few number of depth map

layers.

In large scale or real-time multi-view stereo where performance is a constant

issue, the visibility is usually ignored in the first step. Many methods try to quickly

generate a 3D model representation (e.g. . point cloud, depth map, patches), fol-

lowed by a step of visibility filter. [Merrell et al., 2007] generated depth maps by

plane-sweeping stereo with GPU, and combined depth maps with visibility con-

straints. [Furukawa and Ponce, 2008] used visibility information to remove outlier

matching patches. However, these approaches handled visibility in a heuristic man-

ner and did not use a global optimization.

There are some recent online algorithms to extract the surface, based on Delau-

nay triangulation and visibility constrain. [Pan et al., 2009] produced a surface over

feature points in real-time with only a webcam. [Lovi, 2010] independently solved

a similar problem with different algorithms. While they used Delaunay triangula-

tion and line-of-sights constraint as us, their point clouds, resulted from SfM, are

much cleaner and sparser than our point clouds. More recently, [Jancosek and Pa-
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jdla, 2011] modified the range-data global visibility-consistent surface algorithm in

[Labatut et al., 2009b], in order to better construct the surface having low texture.

Our global visibility surface algorithm (chapter 4 and some previous work of

Labatut et al. ) extracts a surface from a Delaunay triangulation of a noisy point

cloud. The goal of the method is two-fold: (i) remove outliers of the point cloud

based on visibility constraint and (ii) extract a globally visibility-consistent surface

from the remained clean points, that respects the visibility constraint. Online meth-

ods [Pan et al., 2009], [Lovi, 2010] could effectively compute a surface that respects

the visibility. However, we think it would be difficult to remove a large amount of

outliers from a noisy point set based on their heuristic approaches. Effectively, the

point sets resulted from SfM in [Pan et al., 2009] were free of erroneous mismatches,

so that they could assume a Gaussian model of outliers around the real surface. In

our point sets, the outliers are very far from surface and can form ghost structures,

which are impossible to model them. [Lovi, 2010] which used incremental space-

carving of Delaunay triangulation with line-of-sights, also handled relatively clean

SfM point set.

6.1.3 Work on large scale surface reconstruction

Surface reconstruction (or surface fitting) from a point set is a broad field in com-

puter vision that we do not intend to make a complete and thoughtful overview

in this thesis. We mention only general tendencies, specially ones that can handle

large point set.

The problem is stated as computing a surface S from a set of points P ⊂ R3,

which is the result of a 3D acquisition technique. The surface S should match the

surface of the original model both geometrically and topologically. Depending on

the surface and the sampled points, computation of the surface is quite challenging

because of noise, outliers, and varying density.

Various methods have been proposed to solve this problem. Delaunay-based

methods compute the surface as a subset of facets in a Delaunay triangulation (or

its variations): the first proposed method by [Boissonnat, 1984], Crust by [Amenta

et al., 1998], Cocone and variations by [Amenta et al., 2002] [Dey and Goswami,

2006]. Review and analysis of Delaunay methods can be found in an excellent

survey of [Cazals and Giesen, 2006].

[Bernardini et al., 1999] proposed a Ball-pivoting algorithm to build a mesh

from the point set without computing the triangulation. Other methods define the

surface as a level-set of a function that represents the input point set. The function

can be distance functions [Hoppe et al., 1992], distance functions with visibility

constraint [Curless and Levoy, 1996]. Another choice is using the indicator function,
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which has the value 1 inside the object and 0 outside. Solving a Poisson equation

related to the indicator function, [Kazhdan et al., 2006] designed an efficient method,

which is robust to sample density and outliers. The Poisson surface reconstruction

has been widely used to produce a water-tight mesh from a point set in recent

multi-view stereo methods [Furukawa and Ponce, 2008], [Tylecek and Sara, 2010].

Those above methods usually handle range scale data, up to hundred million

of points (The Digital Michelangelo Project 1 . Many were designed to run in an

out-of-core or streaming manner.

In general, all of them can be used within a divide and conquer approach. For

example, by dividing the domain space into blocks, the range-image volumetric

merging in [Curless and Levoy, 1996] reconstructed pieces of surface independently

that were stitched together by identifying and merging common vertices between

neighboring blocks [Levoy et al., 2000]. Advancing-front algorithm as [Bernardini

et al., 1999] was easily implemented in out-of-core extension. Several other stream-

ing methods were proposed in order to reconstruct the surface gradually by keeping

small input data in-core [Pajarola, 2005], [Bolitho et al., 2007].

Therefore, large-scale point set is not an issue for surface reconstruction meth-

ods. Nevertheless, the point sets usually come from range-scanning is relatively

clean. The outliers of point set generated by multi-view stereo can be very arbi-

trary (a survey in [Labatut et al., 2009b] showed that beside the presented method,

only Poisson surface reconstruction can remove a significant number of outliers).

We conclude that there is no other method in both multi-view stereo and surface

reconstruction community which can response to our problem. That is why we will

apply our current visibility-consistent surface reconstruction method in a convenient

Divide and Conquer manner for large-scale point sets.

6.2 Divide and Conquer algorithm

This Divide and Conquer (DC) approach consists in partitioning a set of tracks P
into small subsets so that we could use the original surface reconstruction method

for each subset to obtain many partial meshes. At the end, these partial meshes

are combined to produce the final result (with a merging algorithm in chapter 3).

However, using the original method in each subset directly will produce partial

mesh with two flaws. First, while each partial mesh is visibility-consistent within

the tracks of its associated subset, it may not respect the visibility constraint from

other parts. Second, the visibility constrained in each subset can be too weak to

remove its own outliers (thinking of a subset containing all outliers behind the

scene).

1http://graphics.stanford.edu/projects/mich/
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To remedy the problems, we realize that the globally visibility-consistent al-

gorithm fulfills 2 different roles: remove outliers and compute a surface. A DC

approach should be designed to accomplish these 2 roles. Therefore, we design

a separated algorithm for each role which share many parts in common. First,

the point cloud filter algorithm will remove outliers based on visibility-constraint.

Second, the surface reconstruction algorithm builds a visibility-consistent mesh.

In order to build a surface from a subset of points that respects the ‘free space’

property of line-of-sights coming from other subsets, we need to take into account

the visibility constrains outside the considered subset. When we compute Delaunay

triangulation for each subset (as the original method), we need to add the visibility

cost of line-of-sights from exterior points, if they cut the triangulation of the current

subset.

While this modification could remove outliers between the ground truth and

the cameras, it can not remove outliers behind the ground truth. The reason is

no line-of-sight penetrates these outliers. In the original algorithm, the graph cuts

optimization is designed to favor the tetrahedron behind the each line of sight as

‘inside’. Thus, the outliers behind the ground truth will be surrounded by ‘inside’

tetrahedra and then be removed from the mesh. This mechanism is weakened when

we break the input points into small parts: if one part has not significant amount

of inliers, it could not remove the outliers which are behind the ground truth.

Therefore, we should consider the input points as a whole in some sense to remove

outliers behind the scene. For it, we will use a multi-level representation of input

points, along with a DC paradigm to filter the outliers. After removing outliers, we

will run a visibility-consistent algorithm for each subset to create a partial surface,

that will be merged into a final surface.

In the following, we will present necessary components before describing the

main two parts of the method: point filter and surface reconstruction.

6.2.1 Multi-level representation of a point set

We want to create multi-level representations of the given a set of track P, each

point is associated with line-of-sights towards cameras and confidence measures. For

this down-sampling, we use a binary kd-tree space decomposition, similar as [Tobor

et al., 2004], with some modification and improvement in the implementation. The

main difference is that the bounding box of point set is subdivided recursively into

2 local sub-domains by a hyperplane in the middle of its longest axis (not in the

median of point set as in [Tobor et al., 2004]). This process produces a kd-tree

where each node corresponds to a cluster of subset points of P. A low resolution

point set of P is computed as a set of barycenters of a clustering of points of P,
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based on 2 list of indexes that we will soon explain.

We propose some definitions, which are only used in this subsection. Let S =

{0, 1, . . . , n−1} the set of indexes of P. We say a partition of a set S = {0, 1, . . . , n−
1} is a set of disjoint subset of S, whose union is equal to S. Given 2 partitions Par1

and Par2, we say Par1 is coarser than Par2 if each element of Par1 is a union of cer-

tain elements of Par2, and note Par1 ≺ Par2 . We also say Par2 is finer than Par1.

A partition of S: Par={{i00, i01, . . . , i0s0}, . . . , {ik0, ik1, . . . , iksk}} could be written

as a pair of a background permutation {i00, i01, . . . , i0s0 , . . . , ik0, ik1, . . . , iksk} of S

and a set called partition mark {0, s0, s0+s1, . . . , s0+. . .+sk}. This representation of

a partition as a pair of a back ground permutation and a partition mark is not unique

(by mixing the order of subsets in a partition, we obtain other representations). We

notice if two partitions Par1 and Par2 share a same background and the partition

mark of Par1 is the subset of the partition mark of Par2 then Par1 ≺ Par2. For

examples: n = 6, Par1 = {{0, 4, 5}, {1, 2, 3}}, Par2 = {{0}, {4, 5}, {1, 2}, {3}}, we

have: Par1 ≺ Par2 and they share a background permutation: {0, 4, 5, 1, 2, 3} with

partition marks: {0, 3, 6} ⊂ {0, 1, 3, 5, 6}.
We will build a permutation p of S and a list of marks m such that for every

value k < n, we can create a point set of size k from P (based on p and m) in

linear time. In order to create down samples of the point set, we use a kd-tree to

partition the point set into clusters. We consider a node of the kd-tree is a pair

of index (u, v). With a background permutation p = {p0, . . . , pn−1} of S, the node

(u, v) corresponds to a cluster of all points of P with indexes: pu, pu+1, . . . , pv−1.

We build the kd-tree as follow: first the root is the node (0, n) corresponding to

the whole point set, the background permutation p is simply the identity, the list

of mark is m = (0, n) . Recursively, for each node (u, v) containing more than 2

points (v > u+ 1), we compute the bounding box of points of this node, and obtain

[xmin, xmax]×[ymin, ymax]×[zmin, zmax]. We suppose without loss of generality that

the bounding box has its longest size along x-axis . We cut the bounding box by the

hyperplane of the equation x = x0 := 0.5(xmax +xmin). Each point Pi whose index

i ∈ pu, pu+1, . . . , pv−1 will be put in either the left-child node (when Pi.x ≤ x0) or

the right-child node (Pi.x > x0). This separation forms a permutation of index of

p in the range (u, v): we update the permutation p within this range. Let w the

number of nodes in the left-child, then the two child nodes (u, u+w) and (u+w, v)

are created. We put element u + w in the list of marks m. A leaf node is a node

of type (u, u+ 1) because it corresponds to only 1 element of P, which can not be

divided.

To arrange the order of the subdivision,we maintain a priority queue Q of nodes

that put the node having the longest axis at the beginning. First, we add the tree’s

root (with its longest axis) in Q. During the tree building, we take out the first
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node of Q and create its children nodes which are pushed back into Q. The process

terminates when all nodes of Q are leaf nodes.

At the end, we obtain a background permutation p and a list of indexes m:

(m1,m2, . . . ,mn+1), with first element is m1 = 0 and m2 = n. With this infor-

mation, we can create any multi-level representation of S. To compute a point set

of size k < n from S, we extract k + 1 first elements of m : {m1, . . . ,mk+1},
then we sort them in increasing order to obtain: {u1, u2, . . . , uk+1}. We then

consider k nodes (u1, u2), . . . , (uk, uk+1), that correspond to a partition of set S:

{{pu1 , pu1+1, . . . , pu2−1}, . . . , {puk , puk+1, . . . , puk+1−1}}. For each subset of this par-

tition, which corresponds to a node (u, v), we compute the barycenter of all points

Ppu , Ppu+1 , . . . , Ppv−1 with weights as their confidence measure. The set of the

barycenters is the set of k points down-sampling of the initial point set. For ex-

ample, a size 1 down-sample of P is the barycenter of the whole point set with

weights as their confidence measure, a size n down-sample is P itself (an example

is shown in the Fig. 6.1). We set the line-of-sight of the new point as the union of

line-of-sight of all tracks in its cluster. The confidence measure of each line-of-sight

from the new point (created from a cluster) to a camera is set as the summary of all

confidence measures of all line-of-sights from points of this cluster to this camera.

With this mechanism, we just need to compute the background permutation p and

the list of marks m only one time, to produce multi-level sets of tracks of any size

of P
One difference of our reconstruction from [Tobor et al., 2004] is instead of using

the hyperplane-cut in the medium of the point set, we use the hyperplane cutting

the bounding box into 2 equals bounding box. Each cluster in our reconstruction

is more similar and more compact in the size of volume (but not in the number of

points), hence the barycenter of each cluster is better represented all points in the

cluster. It produces more faithful multi-level representations of the point set.

6.2.2 Partition of a point set in many equal parts

We want to equally partition a large point set P to small parts by a bounding box

partition. Each part contains all points inside a box of the bounding box partition

and nearby points coming from neighboring boxes. The reason of adding these

exterior points is to avoid border effect in the local surface reconstruction.

We then formulate the problem as follow: given a point set P of size n, a positive

integer number th, we want to partition the point set into m subsets whose size is

not greater than th, in using hyperplanes perpendicular to coordinate axis . We

want the number of subset m as small as possible.

Each subset has the size not greater than th, then the number of point: n ≤
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Figure 6.1: Example of multi-level construction of 20 points. The black number above
each point is their original indexes. The red number below each point is the index of the
permutation p in each step. Below each image we have the background permutation p and
the list or marks m. In the first row: the point set and the point set divided by 2. In the
second row, left: the point set at the end, right: clustering the point set in 7 points (star
point), based on the permutation p and 8 first elements of the list of marks m.

m × th, which leads to: m ≥ n/th, or m ≥ dn/the. It is indeed the best lower

bound of m. One solution to obtain that bound is just dividing the point set by

hyperplanes of type x = x0, in which each subset has the size of th (possibly except

the last one). Nevertheless, such subsets might not ideal to run a local surface

reconstruction because its bounding box may be long in one axis, and exceedingly

short in another one. While we can not prove that a more ‘regular’ division leads

to a better surface reconstruction, it is intuitive to prefer a regular division.

Therefore, we prefer to cut the point set into m = dn/the subsets in which each

one has a more or less regular bounding box and has almost equal number of points.

We propose a recursive solution as follows. Suppose the longest axis of its bounding

box is x. If m is even: m = 2m0, we cut the point set by at the medium x = x0



80 Chapter 6. Large-scale visibility-consistent surface reconstruction

into 2 small sets, so that we will cut later each small set in m0 parts. If m is odd:

m = 1: we do not need to cut, otherwise: m = 2m0 + 1: we cut the point set by

a hyperplane x = x0 into 2 parts, such that they contain around m0/m × n and

(m0 + 1)/m×n points. The subsets will be cut into m0 and m0 + 1 subsets. At the

end, each subset contains roughly n/m0 ≤ th points. The choice of hyperplanes is

done by the selection algorithm (finding the first k smallest number in a list), which

ensures the linear running time for each step of the algorithm. The total running

time is then O(n×m).

Figure 6.2: Partition of 20 point in 10 subsets. First row, left to right: original point set,
division of the point set into 2 equal parts (each will contain 5 subsets), each part is divided
into 2 smaller parts with the ratio 2/3 of points number. Second row, the division process
continues from left to right until we obtain 10 subsets in the right most image.

We add exterior points in each subset to avoid border effect. We suppose the

number of exterior points for each subset, is fixed at th1, a fraction of the subset’s

size. By using again a selection algorithm, the exterior points are added in linear

time O(n) for each subset. Effectively, for each subset, we determine its bounding

box. For each point outside the bounding box, we consider its d∞ distance to the

bounding box (d∞(P,Q) = max{|P.x − Q.x|, |P.y − Q.y|, |P.z − Q.z|}). We select

th1 nearest points as supplement points to the subset. The total running time is

again O(n×m).

6.2.3 Local visibility-consistent surface reconstruction

The goal of this subsection is to adapt the original surface reconstruction method

for a subset Pk of a track set P. We add exterior line-of-sights that cut the convex
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hull of the subset in order to remove the outliers in the subset which are between the

cameras and the ground truth. Except modified exterior visibility costs (Fig.6.3),

the algorithm is the same as the original one.
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Figure 6.3: Exterior line-of-sight cost.
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Figure 6.4: Interior line-of-sight cost.

Comparing visibility cost of exterior line-of-sights (Fig.6.3) to visibility cost of

interior ones (Fig.6.4), we do not attach the tetrahedron behind an exterior line-of-

sight to an ‘inside’ terminal. This line-of-sight does not belong to the local mesh,

we do not need to use this ‘inside’ cost. Moreover, this cost will favor a minimum

cut that cuts this line-of-sight - which is wrong if the subset are all outliers in front

of the surface. After assigning cost and applying a graph cuts optimization, we

obtain a (local) surface S = Sk, with vertex set V .

This local surface extraction will be used in both parts of the DC approach,

which are point cloud filter and the general surface extraction.We recall that with

the partitioning algorithm in the subsection 6.2.2, the entire point set P is separated
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into many disjoint parts by a partition of the bounding box. In order to limit border

effect, each subset Pk, associated with a box Bk, contains all tracks inside Bk and

neighboring tracks. In order to remove outliers, we qualify all points in V and inside

the box Bk as ‘inliers’. Moreover, for each point P ∈ V , we compute the average

distance dP from P to all its neighboring vertices in S. We consider all points Q

inside Bk but not in V , which connects to P via the Delaunay triangulation and

qualified Q as ‘inliers’ if PQ < 0.5 × dP and PQ < dS , with dS is the average

edge length in S. The reason we add more points is to reduce the number of true

negative detection, that will be explained more in the next subsection. If we want

to extract a mesh, we consider all facets of Sk having at least one vertex inside Bk.

6.2.4 Multi-level point cloud filter

In this subsection, we describe the first step of our DC method: removal of outliers

of the input. We denote by n the size of the input point set P. Given a threshold

th, we suppose the surface reconstruction algorithm can run with point set of size

no greater than th. If n ≤ th, we just run the original algorithm for the whole point

set and remove all points that do not appear in the output mesh. Unless, we use a

multi-level approach as follows.

Firstly, we consider the multi-level representations of a point set (in subsection

6.2.1). We compute the set of tracks P0 of size th, clustered from the original set

of tracks. We run the global visibility-consistent algorithm in P0 to remove its

outliers. Supposing we have already filtered the set of tracks of level k (k ≥ 0),

we will filter the finer representation Pk+1. Each outlier p removed from the level

k corresponds to a cluster of points in the level k + 1. Therefore, we remove all

tracks of Pk+1 corresponding to outliers of Pk. For all remained points in Pk+1, we

partition it into many equal parts with the threshold value th (subsection 6.2.2) .In

each part, we apply the local visibility-consistent surface reconstruction (subsection

6.2.3) to remove outliers of each part. At the end, we obtain the new point cloud

as union of point clouds in the level k + 1. We continue until the final level and

obtain a set of clean tracks.

The strong point of this procedure is based on the coarse-to-fine structure of

Pk: the result of a coarse level will filter a finer one. We remind that, without this

coarse-to-fine reconstruction, only outliers in front of the scene could be deleted.

In adopting a multi-level filter approach, we handle the point cloud from the global

structure to local ones. The outliers behind the scene are also removed gradually

from each level.

Nevertheless, we notice that a cluster point which is removed from a level can

not appear in the finer level. A cluster point is built from a set of input points that
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may contain both inliers and outliers. A deleted cluster also leads to the removal of

its inliers. Therefore, in subsection 6.2.3, we qualify some points near the extracted

surface as ‘inside’, to make these ambiguity points still appear in the finer level.

We do not want to add too many points either, because it can add more outliers

that are difficult to remove in finer level.

One question is how to choose the number of multi-level set of points and the

size of each level. While a big number of levels will make the transition from global

structure to local structure algorithms more smoothly, it requires more computation

time. On the other hand, too few levels are not enough to remove behind-the-scene

outliers. In our implementation, we set #P0 = th and Pk+1 ' c×#Pk (with c is a

constant around 2, depending on the input size), until 1/c the size of the original

set P. We do not need to run this point cloud filter for the original set, because the

final surface reconstruction(presented in the next subsection) also filters outliers.

6.2.5 Partial surface reconstruction and mesh merging

Once the set of tracks is filtered by the first step (subsection 6.2.4) of the DC

method, we begin the surface reconstruction. First, we partition the point set P
into many equal parts (subsection 6.2.2), such that each part (its exterior points

included) has the size smaller than th. We apply the local visibility-consistent sur-

face reconstruction (subsection 6.2.3) to obtain many partial surfaces Sk associated

with the bounding box Bk. At the end, we use the merging method for meshes

from a partition of bounding box (see 5.3) to obtain the final surface.

6.3 Experiments

We apply the algorithm for 3 point clouds: Entry-10 (70 K points), Lausanne (3.00

M points) and Chamonix (2.6 M points) (Fig. 6.5). Although the point cloud

of Entry-10 is small and not necessary to use the DC algorithm, it is helpful to

illustrate and analysis the method. We run all data-sets in a computer with a SSD

hard disk, two processor 4 core 2.8 GHz (we use only one core), and 24 GB Memory

- the large memory helps run the in-core global reconstruction method, in order

to compare with DC approach in term of quality and consumed resource. For all

data-sets, we use a various threshold th for local surface reconstruction. (th = ∞
for the original method).

The point set of Entry-10 contains 70K points. We use the following thresholds:

1K, 5K, 20K, ∞. We observe in Fig. 6.6 that DC approach is as effective as the

original method to remove outliers: there is almost no difference between different

thresholds.
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Figure 6.5: Initial noisy point set (with colors) of Entry-10, Chamonix, and Lausanne.

Next, we compare output meshes from different threshold th. In Fig. 6.7, each

value th (except th = ∞) corresponds to 2 images of the final mesh: left is the

union of partial surface inside each box of the bounding box partition, right is the

final surface after merging. We can see the effectiveness of the merging method,

which combines many small meshes in a singe mesh. There is no different in the

facade of the building, where the points are quite dense. The ground varies varies

depending on the threshold number th. The running time for Entry-10 is less than

20 s for each threshold (the merging process takes less than 1 second).

In order to understand the impact of multi-level filter process, we compare the

reconstructed in case th = 1K with/without multi-level filter in Fig. 6.8. Without

the point filter process, the outliers behind the scene are not completely removed.

The point cloud of Chamonix contains 2.6M points, from 2118 images taken

from a helicopter. The point set is quite noisy with outliers not only floating

in the sky cloud, but also lying under the ground truth (Fig. 6.5). We use the

following threshold: th = 10K, 50K, 200K,∞. All values give almost the same

point set. Fig. 6.9 compare the input point set and the vertices of the final mesh

with th = 200K. Most of underground and floating outliers near the surface are

removed. Points in the sky above the helicopters exist because there is no visibility

constraint to remove them (those points exist because of true or false matching of

pixels in the sky).

The final meshes are almost the same in the area where the point set is dense,

and again, merging process is quite effective (Fig. 6.10, 6.11, 6.12). In this data-set,

if we keep only vertices in the surface during the point cloud filter process, instead

of adding some nearby points (subsection 6.2.3), there would be some small details

that DC methods do not recover. The lessening of the inliers choice by including

points near the surface vertices, limits this unwanted effect.

The point set of Lausanne data-set contains 3.05M points, triangulating from

400 images, visually having fewer outliers than the Chamonix’s. We use the same

set of thresholds: th = 10K, 50K, 200K,∞. Fig. 6.13 shows the input point against

the output vertices with th = 200K. Fig. 6.14 shows the final mesh and partial

meshes inside each partition with th = 10K, 200K. We find almost no difference in
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Figure 6.6: Point clouds of Entry-10. First row, left to right: initial point cloud, vertices
in the final mesh of DC method with th = 1K, th = 5K. Second row, left to right: vertices
in the final mesh of DC method with th = 20K and vertices of global method.

final meshes.
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Figure 6.7: Result of the final surface with different threshold th = 1K, 5K, 20K,∞ for
each row. Each row, except the last one: left: union of the interior part of each sub-mesh
before merging, right: the final mesh.

The tables Tab. 6.1 and Tab. 6.2 shows the running time, consumed memory,

and other informations of each data set corresponding to different threshold (the

final row corresponds to th =∞, that we replace with input size). We notice that

different thresholds do not have too different the running time. For Chamonix,

the method runs fastest with th = 500K, while the global method (th = ∞)

runs fastest in Lausanne point cloud. We can not deduce an optimal threshold for

the speed, because it depends strongly on the size of input point as well as the
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Figure 6.8: Final surface with and without multi-level point filter process (th = 1K). The
surface without the filter can not remove outlier behind the scene.

Figure 6.9: Filter outliers in Chamonix data. Left: initial input, right: vertices of the final
surface in DC method with threshold of 200K.

number of line-of-sights. The consumed memory increases with th, due to the 3D

Delaunay triangulation and the graph cuts nodes. The total memory used in global

method make it unsuitable for a computer with less than 4GB (Chamonix: 3.7

GB, Lausanne: 4.5 GB, we need to count the memory for OS which is 500 MB or

more). Please note that we store the whole point set with line-of-sights in RAM in

the current implementation for convenient. However, it is not imperative. In the

future, to handle with even large input point set that can not fit the RAM, we will

modify the implementation to let the input in the hard disk. The only things must

be in the RAM are the 3D Delaunay triangulation and the graph cuts optimization

for each sub-set.

Incore size # points /# facets # subsets RAM time

10K 0.97M/2.00M 181 890 M 2915 s
50K 0.98M/2.01M 37 930 M 2394 s
200K 0.98M/2.01M 10 1.1 GB 2127 s
500K 0.97M/2.01M 4 1.4 GB 1779 s
2.650M 0.98M/2.01M 1 3.7 GB 2654 s

Table 6.1: Information of Chamonix point set.
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Figure 6.10: Urban zone in the final mesh of th = 10K. Above: partial surfaces inside
each box of the bounding box partition. Below: final merged mesh.

Incore size # points /# facets # subsets RAM time

10K 1.45M/2.99M 261 470 M 1746 s
50K 0.98M/2.01M 53 515 M 1425 s
200K 1.45/2.99M 14 685 MB 1347 s
500K 1.45M/3.00M 5 1.0 GB 1332 s
3.054M 1.50M/3.01M 1 4.5 GB 1021 s

Table 6.2: Information of Lausanne point set.
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Figure 6.11: Urban zone in the final mesh of th = 200K. Above: partial surfaces inside
each box of the bounding box partition. Below: final merged mesh.
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Figure 6.12: Global visibility-consistent surface, corresponding to th =∞.

Figure 6.13: Filter outliers in Lausanne data. Left: initial input, right: vertices of the
final surface in DC method with the threshold of 200K.

6.4 Limitation

Although we carefully design this DC approach, it still has 2 drawbacks. First, while

it removes aberrant points of a noisy point set effectively, it can not remove all wrong

triangles which are formed by correct points behind the ground truth . It is because

these triangles do not cut other line-of-sights (no visibility constraints), the coarse-

to-fine strategy only removes aberrant points (and facets formed by those points)

but not wrong facets from good points. Second, although our merging method is

effective and robust, it can let few small holes appear in the resulted mesh if the

input meshes do not well consistent geometrically. These holes are more visible if

the mesh is then smoothed or deformed (e.g. by a photometric variational method).

To remedy these limitations, we will look at the energy formulations in both surface

reconstruction and merging algorithms carefully.
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Figure 6.14: Lausanne data-set mesh with the threshold th = 10K (first row) and th =
200K (second row). Left images show merged surfaces, right images show partial sub-
meshes inside boxes of the bounding box partition.

6.5 Conclusion

In this chapter, we have presented a Divide and Conquer approach based on the

global visibility-consistent reconstruction method. It consists of 2 principal steps:

the removal of outliers and the reconstruction of partial surfaces (followed by the

merging process in chapter 5). It enables us to build a surface from a set of million

tracks. This DC approach can profit of multi-core architecture or network comput-

ing in the surface reconstruction from each subset of the input although we have

not implemented yet. In the future, we will try to apply other methods such as

[Pan et al., 2009], [Lovi, 2010] into the surface reconstruction in our Divide and

Conquer framework.
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In this chapter, we study the multi-view variational method of an initial mesh

with a large number of high-resolution images, which is the extended version of the

last step of the pipeline presented in chapter 4. We first analyze why large input data

is an obstacle for this method. Second, we propose a Divide-and-Conquer approach

to alleviate this issue. We show some experiments with some big data-sets to valid

our approach. The main contribution of this chapter is the fair partition of the

initial mesh into many fragments: each one associates with a set of sub-images,

which can fit to GPU memory. We modify the variational implementation to take

into account the visibility issue when refining each partial mesh. This approach is

parallelizable.

7.1 Introduction

The multi-view pipeline presented in chapter 4 consists of 3 steps: plane-sweeping

generation of point clouds, visibility-surface reconstruction, photometric variational

method. The first step (point cloud generation) is truly scalable because in each

instance, it only loads 2 images from the hard disk, to generate depth maps. The

second step (surface reconstruction) is not quite scalable, and it has been specifically

treated in chapter 6. This chapter will handle the last step, photometric variational

method.

We recall the method’s description in chapter 4. The input consists of images

with cameras and an initial mesh. The mesh is deformed by photo-consistency

gradient and regularization force, in order to minimize a given error projection:
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Eerror(S) =
∑
i,j

∫
ΩS

ij

h(Ii, I
S
ij)(xi) dxi (7.1)

where h(I, J)(x) is a decreasing function of a photo-consistency measure between

images I and J at pixel x (typically h is the opposite of normalized cross correlation)

, ISij = Ij ◦ Πj ◦ Π−1
i is the re-projection of image Ij into image Ii induced by S

and ΩS
ij is the domain of definition of this re-projection (see Fig. 7.1), Πi and Π−1

i

are the projection and back projection from an image i to the surface. This energy

measures the sum of the dissimilarity between the portion of a reference image

corresponding to the projected surface and a portion of another image re-projected

via the surface into this reference image.

Figure 7.1: Reprojection induced by the surface.

Because this energy takes over a set of images pair (i, j), then the gradient could

be updated from each pair of image. In principle, we just to load many times a

pair of 2 images from the hard disk into memory to compute their contribution

to the gradient of vertices. However, different from the point cloud generation

step, where each pair is loaded only one time, this variational step contains many

iterations. Therefore, an image pair is loaded as many time as the number of

iterations. Because hard disk access is slow comparing to in-core memory (except

fast storage like Solid State Disk SSD), it is preferable to keep all images in in-core

memory.

Our method is implemented for NVidia GPU acceleration, using OpenGL and

shader language. Then for each pair of images, these 2 images and the mesh are

transferred in GPU in-core memory (896 MB in a NVidia 260 GTX, 1.5 GB in a 480

GTX card) to run the computation. Sometimes, this GPU memory is quite small to

contain all textures created from all input images, the program only stores a subset

of images in the GPU RAM. The remaining data is stored in RAM. During the
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computation, some textures are transferred from CPU memory to GPU memory if

necessary. This displacement is done automatically by GPU driver that we can not

control it.

In our implementation, for n images of max size s = w × h, a total area of

images a (then a ≤ ns), a mesh of m facets, the total required memory size is a

linear function of a, s,m: f(a, s,m). We estimate f(a, s,m) = 9.34a+40s+52m for

color images and 5.34a+35s+52m for intensity images. For a data-set like Herzjesu-

25 (a data-set of Strecha), which contains 25 images of 6 Mpixel, if the final mesh

has the 2M facets, the memory needed is : 6(9.34×25+40)+52×2 = 1745MB for

color images. Hence, for a GPU’s memory less than this amount, images textures

will be moved many times from RAM to GPU memory. For even larger data-set,

Chamonix, containing 1595 images of 5 Mpixel, this amount arises to 75 GB / 43

GB (for color / intensity images). That can not even fit to the memory of a typical

workstation.

One insight is that the gradient of a point on the surface depends mostly on

its surrounding area of the surface and local windows surrounding its projections

in images. Hence, if the mesh is cut into small sub-meshes, and each sub-mesh is

refined independently, the union of refined sub-meshes would be nearly the same as

a refined global mesh. Moreover, refining a small sub-mesh does not require to load

all input images, but only sub-images that containing the projection of the sub-

mesh. That leads to the principal idea of this chapter: division the mesh into small

sub-meshes such that the memory for each sub-mesh and its associated sub-images

is smaller than a given amount of memory.

There are some previous papers working in the division of multi-view data-sets,

but they targeted a slightly different issue: overlap viewing clustering, which extract

many clusters of cameras from a large collection ([Zaharescu et al., 2008], [Furukawa

et al., 2010]). [Zaharescu et al., 2008] divided the set of camera in each subset of

cameras with k-mean, and for each subset, they collected a sub-mesh that can be

viewed by this subset of camera. It is difficult to reduce image size, because the

sub-meshes are created based on camera clusters. Therefore, in order to use sub-

images in high-resolution data-sets, each image is replaced with multiple (typically

4) virtual images which capture many parts of the original image, before running

the clustering method. Using a number of subsets as input parameters, they did

not guaranty that each subset can fit a given limited memory. Our method does

not divide the set of cameras, but cut the mesh into small fragment such that

each fragment of the mesh will decide the associated sub-images. Hence, we have

almost no trade-off between mesh quality and the memory size (or number of sub-

data). With slightly different objective, [Furukawa et al., 2010] worked with a

large collection of cameras with SfM point cloud. They divided the camera set to
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meet many criteria: compactness, size constraint and coverage. They also proposed

a Multi-view filtering (quality and visibility filter) for point cloud generated by

PMVS algorithm ([Furukawa and Ponce, 2008]). [Jancosek et al., 2009] produced

separated depth maps (and meshes) for each camera (in removal redundant or

similar views in a data-set). This approach shares the same scalability as the first

step of our pipeline (depth map generation). Nevertheless, the visibility issue is

treated incrementally. The obtained result is a set of separated meshes which are

not refined to get a better quality. Different from them, our algorithm yields a

topologically connected and highly accurate mesh for large data-sets.

In principle, our whole pipeline reconstruction does not require a camera clus-

tering formulation to produce a large scale reconstruction. We recall that, its first

step, the depth map generation, is naturally parallelizable and scalable. The second

and the last step require a division of the point cloud (chapter 6) or the initial mesh

(this chapter) into small parts before collecting associated cameras and sub-images.

Nevertheless, we are aware that for extremely large scale data-sets (more than

hundred thousands images), it is preferable to cluster cameras into many isolated

clusters to reduce the running time.

7.2 Partition of mesh with associated images

This division of an input mesh into small sub-meshes is somehow similar to the

point cloud partition in chapter 6. The main difference is that the current problem

takes into account the size of of sub-images who contain the projections of each

sub-mesh. Similar to chapter 6, we divide the mesh with hyperplane perpendicular

to a coordinate axis. A sub-mesh related to a bounding box is the set of all facets

having at least one point inside this box. Therefore, when a mesh is divided by

a partition of the bounding box method, we obtain a set of slightly overlapped

sub-meshes.

The problem is stated as: “Given a mesh M inside a bounding box B with

n calibrated images I1, . . . , In of size w × h. Given a consumed memory formula

f depending on size of n images: wi × hi, number of facets m of the mesh, a

threshold th. Partition the bounding box B into small bounding boxes, such that

each sub-mesh contained in each bounding box, associated with its sub-images, has

its consumed memory (given by the formula f) not greater than th. The number

of boxes/sub-meshes should be small”.

The sub-image containing the projection of a sub-mesh in an image I is the

smallest rectangle of I that contains this projection. The division of mesh by the

bounding box partition does not lead to a simple partition in an image domain.

The number of vertices, facets of a sub-mesh have no direct relation with the size
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of sub-images.

To handle this problem, we use the following sub-routine: “partition the bound-

ing boxB into 2 bounding boxes, such that the amount of memory for each sub-mesh

and its sub-images, given by the formula f are nearly equal”. After solving this

sub-routine, we successively divide each bounding box by two until the consumed

memory for each sub-mesh not greater than th. At the end, we then obtain a

binary tree of bounding boxes, in which the leaves correspond to sub-meshes and

sub-images whose consumed memory does not exceed th.

For this, we suppose the bounding box of the input mesh is B = [0, 1]3, which

is divided by a hyperplane perpendicular to x axis at position x = u. g(u) is the

total necessary memory for the sub-mesh between x = 0 and x = u, h(u) is the

total memory for the sub-mesh between x = u and x = 1. We have g(0) = h(1) = 0

and g(1) = h(0). For 0 < u1 < u2 < 1, the sub-mesh and sub-images between

x = 0 and x = u1 are contained in the sub-mesh and sub-images between x = 0

and x = u2, then f(u1) ≤ f(u2). Hence, g is increasing, similarly, h is decreasing,

then the difference d(u) = g(u) − h(u) is a decreasing function from −h(1) < 0 to

g(1) > 0. We want to find u such that d(u) = 0 or nearest the zero.

One common solution is using bisection method : first, test the value u1 = 0.5:

d(0.5). If d(0.5) > 0 then the optimal u would be in [0, 0.5], and the search in

repeated in [0, 0.5]. If d(0.5) < 0 then the optimal u would be in [0.5, 1] and the

search is repeated in [0.5, 1]. For each segment, the middle value is tested. We then

have the sequence: u1, u2,. . . . The search is stopped when d(uk) or |d(uk)−d(uk−1)|
near to zero. This algorithm is practical if the computation of the functions g and

h is cheap.

In our case, the estimation of g and h evolves the computation of depth of

the sub-mesh with images (to handle the visibility) and the projection of sub-

mesh in each image. The multiple estimations of d(u) in bisection method require

many repeated projections, which are expensive. Therefore, we use a more direct

approach. First we estimate the depth map of the whole input for into each image

only one time to obtain n depth maps: D1, . . . , Dn. Second, we consider a fixed

sequence of value u: 0 = u0 < u1 < · · · < uk = 1 and compute all d(ui) (1 ≤ i ≤ k)

to choose the smallest |d(ui)|.
By using precomputed depth maps, we traverse all pixels in depth maps only

one time to compute all d(ui). For each image I with depth map D, we traverse all

pixels, each pixel p corresponds to a 3D point P of the mesh. Considering x axis

of P : P.x, for all i, j such that ui ≤ P.x ≤ uj , we conclude the point P will be on

the sub-mesh of I between x = 0 and x = uj , and between x = ui and x = 1, that

will update the value of f(uj), g(ui). After traversing all pixels of all images, we

can compute all d(ui) = f(ui)− g(ui). We choose the i such that |d(ui)| minimum.
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For implementation, we consider the sequence u of k = 16 elements such that each

slice x = [ui, ui+1] contains 1/k number of vertices of the initial mesh.

The variational method runs in multi-level, which takes a refined mesh from

images of lower resolution, subdivides and deforms it with higher resolution images.

We do not need to compute this binary tree of boxes for each resolution, we only

compute one time in the beginning with input mesh and full resolution images. In

each resolution, we travel from the root, and choose boxes which have the required

memory not greater than th, otherwise, we consider their two child boxes. We then

obtain for each resolution, a set of small boxes, corresponding to a set of sub-meshes

to define.

7.3 Sequential and independent deformations

Once we divide the mesh into many sub-meshes with its associated sub-images,

the next step is running the variational method for each. We could deform each

sub-mesh in a sequential (serial) or an independent algorithm (parallelizable).

In a sequential implementation, each sub-mesh is deformed in order without

separating the whole mesh. It is like the refinement of the input mesh in different

regions over time. Its main advantage is to keep the topological connectivity of

the mesh. If the mesh is refined within one computer, a sequential implementation

would be the best choice because there is no problem with the mesh topology.

Because our algorithm use intensively GPU computing and memory, it can not use

many CPU-cores for parallelization within a computer.

If we have several available machines, we had better to cut the sub-meshes (with

its sub-images) from the initial mesh, and refine them independently in these ma-

chines to reduce the computation time. During the deformation, common vertices

of different sub-meshes change their position and do not stick in the end. The situa-

tion is more complicated when each sub-mesh is subdivided independently because

we can not simply match additional vertices. We need to merge them together from

a partition of bounding box (chapter 5).

In fact, there is a simple alternative to merge sub-meshes in this case. In order

to avoid matching subdivided vertices of different sub-meshes, we can subdivide

the whole mesh before partitioning it. Next, we mark all vertices strictly inside

each box, associated with each sub-mesh. Therefore, while a vertex can belong

to many meshes, it has only one mesh ‘native’ to decide its final position. After

deforming each sub-mesh related to each box, we update new position of all vertices.

With available connectivity information, we obtain the whole refined mesh. With

a careful implementation, this approach could work in parallelization for different

machines. It is better than applying the mesh merging because it is like a sequential
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deformation in a parallel manner. However, this idea comes to us very recently

so that we have not implemented it yet. Please note that in case there is no

connectivity information, only a merging method (chapter 5) can be effectively

used.

Another concern about the deformation of a sub-mesh is its visibility in relation

with other sub-meshes. Given a sub-meshM0 from the input meshM, a sub-image

I0 of an image I containing the reprojection ofM0. A point P ofM0 may have its

projection inside the domain of I, however, if P is hidden by the rest of meshM, this

projection pixel does not correspond to P . Hence, the computation of projection

has to involve a depth test to detect that occlusion. Therefore, after computing the

sub-image I0, we still need to mark pixels of I0 that does not correspond to M0.

Otherwise, the back reprojection of I0 into M0 could be wrong.

7.4 Experiments

We test with 3 data-sets: Cluny-26-Big (26 grey images of 56 MPixel), Cluny-161-

Small (161 grey images of 5.3 MPixel) and Chamonix (1596 grey images of 5.3

MPixel) associated with their initial meshes. In fact, the two last data-sets have

original images of 21 MPixel but our calibration of cameras is not accurate enough

to build a better 3D model at this resolution. Thus, we reduce its resolution by two

in each dimension. Using intensity or color images does not produce a noticeable

change in our variational method results, we convert them into grey images to

economize the memory. The initial meshes were reconstructed with our visibility-

consistent reconstruction methods (Cluny meshes: original method in chapter 4,

Chamonix mesh: DC method with the threshold of 200K in chapter 6).

All experiments are done in a workstation with 2 CPU 4 cores of 2.6 GHz, 24

GB RAM and a Nvidia 480 GTX GPU. Because our method relies essentially on

GPU, the performance of CPU and the large capacity of RAM are not important.

The Nvidia 480 GTX GPU has 448 cores of 1.5 GHz and 1.5 GB Memory. Our

variational method has a parameter th which indicates the maximum allowed con-

sumed GPU memory. This parameter decides the division of the input mesh into

sub-meshes (section 7.2). We use th = 1GB for all data-sets, except another ex-

perience conducted with th = 512MB for Cluny-26-Big data-set. Because we use

only one machine, our method is implemented in the sequential manner, except a

test is applied for Cluny-26-Big. The following table lists input information of 3

data-sets:
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Data-set # images/pairs Resolution # total pixels #initial facets

Cluny-26-Big 26/102 5992× 9326 1.45 GPixels 889K facets

Cluny-161-Small 161/494 2808× 1872 836 MPixels 480K facets

Chamonix 1595/5316 1875× 2812 8.41 GPixels 747K facets

Firstly, we consider Cluny-26-Big data-set, 26 images of 56 MPixel taken from

a balloon. The variational method refines the mesh from a set of mipmap images,

from level 4 to level 0 (full resolution). The input memory size increases from the

highest mipmap level to the lowest one. Therefore, each level has a different number

of sub-meshes. In order to verify the impact of GPU memory threshold, we consider

2 cases: th = 1GB and th = 512MB. We do not see any quality difference in the

final mesh in 2 cases (Fig. 7.3). To see the variational process in different levels,

Fig. 7.4 shows the chapel of Cluny Abbey from initial mesh to multi-level refined

mesh.

The below table describe the running time and number of partition sub-mesh

in each mipmap level. Some table cells contain 2 values, where the first value

corresponds to th = 1GB, the second corresponds to th = 512MB.

Cluny-26-Big #sub-meshes (1.0/0.5 GB) # output facets times

binary box tree 10 / 20 s

mipmap-4 1 916 K 1.3m

mipmap-3 1 974 K 1.6m

mipmap-2 1 / 3 1.42 M 2.3m / 2.5m

mipmap-1 8 / 24 4.74 M 8.9m / 9.7m

mipmap-0 43 / 85 18.3 M 37m / 43m

In this above table, the number of sub-meshes of th = 512MB is quite greater

than that of th = 1GB in full resolution (85 vs 43) without a big impact on the run-

ning time (43m vs 37m). In fact, it is not a surprise because the variational method

complexity depends on mesh size and its projections on input images (with some

margins to compute correlation window and anticipate mesh projection change).

No matter how we divide the mesh, this quantity should be almost the same. From

this, we can argue that the memory-equal division of a sub-mesh into 2 sub-meshes

in section 7.2 does not change the running time significantly. Nevertheless, this

division allows similar quantity of data for each sub-mesh, which will be useful for

parallel computing. We also notice that the bounding box tree computation time

is negligible comparing to the total running time (20s vs many minutes).

Beside this sequential deformation, we test the independent deformation of sub-

meshes in mipmap-1 resolution (with th = 1GB): 8 sub-meshes are deformed inde-

pendently and are merged at the end. The surface quality remains the same, and

visually, it is difficult to distinguish each sub-mesh unless we zoom in an overlapped

zone (Fig. 7.5). The merging process (section 5.3) takes 15 seconds (I/O time from
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Figure 7.2: Cluny-26-Big datasets with 26 images of 56 MPixel. Left: initial mesh. Right:
final mesh in the full resolution with th = 1GB.

hard disk included) and successfully merge them together. To compare the quality

of serial and independent deformation, we apply 30 Laplacian smoothness opera-

tions in Fig. 7.6: the quality of meshes in two cases are almost the same, while the

simple union of sub-meshes crack as expected. While using this merge method is

not the only way to combine refined sub-meshes (as previously discussed in section

7.3), this experiment shows again the robustness of the merging method.

The data-set Cluny-161-Small has more number of images, in much lower res-
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Figure 7.3: Cluny-26-Big refined mesh with memory threshold th = 1GB and th =
512MB. There is almost no difference in 2 meshes.

olution (5.3 MPixel vs 56 MPixel). As we said, due to less accurate calibration,

we do not use full resolution 21 MPixel of the original image. We obtain a more

complete mesh of Cluny Abbey with less accuracy (Fig. 7.7). The following table

displays computation information for this data-set:

Cluny-161-Small # sub-meshes # output facets times

binary box tree 23 s

mipmap 2 1 506 K 3m

mipmap 1 2 779 K 4.5m

mipmap 0 14 2.7 M 16m

The biggest data-set is Chamonix, consist of 1596 images of 5.3 Pixels, taken

from a helicopter. The scene is so vast that we show only a small part of it in

initial and final refined mesh (Fig. 7.8). We show computation information in the

following table:

Chamonix # sub-meshes # output facets times

binary box tree 7 m

mipmap 2 4 2.6 M 35 m

mipmap 1 22 8.9 M 1.1 h

mipmap 0 110 36.3 M 4.2 h

The next table displays information of previous steps of the multi-view pipeline

(point cloud extraction and visibility-consistent surface reconstruction ). Because

we did not use exactly the same computer as this variational step, the running time

is just for reference. Please note that after the surface reconstruction step, we au-

tomatically remove exceedingly large facets, small isolated connected components,

and manually cut additional facets outside an interested area, before running the

photometric variational step. The number of images and pairs for Chamonix data

set in the point cloud extraction step (2118/19400) is larger than the variational

step (1596/5316) because we want to refine only the urban area of the scene.
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Figure 7.4: Cluny-26-Big (26 images of 56 MPixels) in different resolution. From up to
down, left to right, detail on input mesh, refined mesh with the mipmap 4,3,2,1,0 (the final
mesh). They have 889 K, 916 K, 1.42 M, 4.71 M, 18.3 M facets respectively.

Data-set #images/pairs Mipmap # 3D points/time # surface facets/time

Cluny-26-Big 26/102 2 1.03 M / 17.7 m 1.26 M / 8.9 m

Cluny-161-Small 161/494 2 350 K / 38.7 m 530 K / 2 m

Chamonix 2118/19400 2 2.65 M / ∼10 h 2.01 M / 35.4 m

7.5 Some comparison with PMVS

Patch-based Multi-view Stereo Software (PMVS) 1 is a 3D reconstruction software

of Yasutaka Furukawa and Jean Ponce, which is the implementation of their method

1http://grail.cs.washington.edu/software/pmvs/



104 Chapter 7. Large scale multi-view stereo

Figure 7.5: Cluny-26-Big: A simple union of meshes and the merged mesh in the indepen-
dent deformation. Because the scene is too big to distinguish different sub-meshes, we only
zoom in a detail, found on a roof of the main building.

Figure 7.6: Cluny-26-Big: (Level 1) refined meshes are smoothed with 30 Laplacian op-
erations. Left to right: mesh with serial refinement, mesh is merged from 8 partial refined
sub-meshes, union of these 8 refined sub-meshes. There is visually no crack in merged mesh,
which prove the success of the merging algorithm.

(conference version [Furukawa and Ponce, 2007] and journal version [Furukawa and

Ponce, 2008]). We use the Windows version ported by Pierre Moulon 2 . The

software takes as input the images and calibrated cameras, and produces a set

of patches or a point set with normal vectors, eventually with line-of-sights from

cameras. PMVS achieved the best result (both completeness and accuracy) for 4 /

6 data-sets of Strecha in 2007. Lack of a variational refinement step described in

their paper, PMVS does not provide a full implementation of the method, hence

the comparison of our multi-view pipeline and PMVS is not complete. Because it

produced highly accurate point sets, we are curious to see whether it is possible to

use its point clouds in our pipelines. We also compare the meshes of our method

to meshes reconstructed from PMVS patches (with Poisson reconstruction and the

visibility-reconstruction surface method). We will use 2 data-sets: our Cluny-26-

Big, and the Hall data-set (61 images of 6MPixel) in PMVS package. For Hall

2http://francemapping.free.fr/Portfolio/Prog3D/PMVS2.html
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Figure 7.7: Cluny-161-Small (161 images of 5.3 MPixels). Initial mesh (480 K facets) and
final refined mesh (2.6 M facets).
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Figure 7.8: Chamonix (1595 images of 5.3 MPixels): initial mesh ( 747 K facets) and final
refined mesh (36.3 M facets).

data-set, we use 120 pairs of neighboring images.

Although PMVS does not use a GPU acceleration, it can exploit all 8 CPU

cores of our machine for the computation. That makes it have the same order

of performance as our plane-sweeping point cloud generation: 10m vs 17.7m for

Cluny-26-Big and 14m vs 7m for Hall data-sets. Because PMVS aims to create an

accurate point set, it has the trade-off with the scene completeness: its Cluny-26-

Big point cloud is less complete than ours (Fig. 7.9). It captures main features

of the scene but it is still not free from outliers. Due to false matching of pixels

of the sky and, and accentuated by the belief propagation (false matching seeds

propagate), it obtains denser false floating points than our point cloud.

We run the visibility-consistent surface reconstruction for two point clouds, then

remove facets outside a given bounding box and too big facets, to obtain the initial
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Figure 7.9: Point cloud generated by our GPU sweeping-plane method (up) and PVMS2
(bottom). PMVS point cloud has less noise but also less complete.

mesh for variational method in Fig. 7.10). This surface reconstruction does not

remove false floating points in PMVS point set, because there is little visibility

constraint to remove them. Our point set does some false sky points, but they are

less dense, and there are much more light-of-sights (include light-of-sights from very

far points) going through those false points. While the refined mesh from PMVS

point cloud has equivalent accuracy as our original refined mesh, the floating outliers

can not be removed.

The Hall data-set consists of 61 images around a hall, included in the PMVS

package. The images are taken sequentially around the building (while images in

Cluny-26-Big are much less controlled). We executed PMVS with the option file for

this data-set, but we did not produce a point cloud as complete as the expected one

(also available in the package). Therefore, we consider this available point cloud,

which is nearly as complete as our plane-sweeping point set. Because a point /

patch in PMVS output also can remember the images from which it is generated,

we can extract a visibility-surface reconstruction from it (Fig. 7.12), and refine it

with the variational method (Fig. 7.13). While initial mesh generated from point

cloud of PMVS is much cleaner than from out point cloud, the refined meshes have

the same excellent quality. We also observe that the Poisson surface mesh directly

generated from the PMVS point set is significantly less accurate.

This short comparison shows the advantage and disadvantage of our GPU

sweeping-plane point cloud extraction and the current PMVS. The two approaches
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Figure 7.10: First row: initial mesh from our point cloud and from PMVS cloud. Second
row: associated refine meshes with mipmap level 2.

Figure 7.11: Hall data-set. Top: 3 among 61 input images. Bottom: from left to right:
our point cloud, the PMVS point cloud found in the package, the PMVS point cloud which
we obtain.

take advantage of parallel computing (GPU vs multi-core CPU) to have high per-

formance. Taking care of accuracy, PMVS produces less complete point clouds then

our method. Comparing the Poisson mesh from an accuracy point cloud of PMVS

and the refined mesh from our pipeline, we confirm that a photometric variational

is vital for a high quality reconstruction.
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Figure 7.12: Visibility consistent mesh with our GPU sweeping-plane point cloud (left)
and PVMS point cloud (right). The PMVS point cloud leads to more accurate initial mesh.

Figure 7.13: Refine meshes from initial meshes in Fig. 7.12 (the top 2 images), and mesh
generated by Poisson surface reconstruction. Without a refinement process, Poisson surface
is not quite accurate.

7.6 Conclusion

This chapter presents a variational method enhanced with memory-equal partition

of mesh, in order to handle very large data-sets that original method can not handle.

The amount of GPU memory decides the sub-meshes number in each level of image

resolution, however, it has no impact on mesh quality and slightly overhead on the

running time. This flexibility allows us to apply the variational method to build

large-scale meshes of high quality. However, this quality depends largely on the

calibration accuracy, which is also a challenging issue in computer vision. In the

future, we will deploy this algorithm to distributed computing over a network. The

variational method is applied for each sub-mesh independently in each machine and
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the final refined sub-meshes are merged with a method presented in section 5.3, in

order to produce the same quality mesh with less running time.

This chapter with previous chapters 5, 6 complete our pipeline (in chapter 4)

for large-scale multi-views stereo. We recall the process to reconstruct a 3D sur-

face from a set of calibrated images : extraction of point cloud, reconstruction the

visibility-consistent surface (with large scale version in chapter 6), refinement of

the initial mesh (with large scale version in this chapter). In fact, after the point

cloud generation step, there is different possibility to build large-scale models: re-

construction a set of overlapped surfaces (as in chapter 6 but we do not merge

meshes), refinement of these partial meshes followed by a merging process at the

end.
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Conclusion

The central goal of this thesis is the reconstruction of high quality multi-view stereo

from many of high resolution images. We have provided a high performance and

quality multi-view stereo pipeline. We have developed scalable approaches in order

to run this pipeline for large data-sets (up to thousands of 5 MPixel images), and

have produced large geometrically and topologically accurate meshes. The thesis

contribution can be resumed as follows:

• We have combined and improved previous works in order to obtain a

multi-view stereo pipeline, that produces highly complete and accurate

meshes. First, a point set with visibility information is extracted from

photo-consistency matching over pairs of images. Second, a global visibility-

consistent surface is extracted over this point set, with Delaunay triangulation

and graph cuts optimization. Finally, an enhanced photometric variational

method refine this surface to increase its accuracy.

• We have created a fast, robust and automatic merging method that merges

multiple separated meshes into a single surface. It can take advantage of

a bounding box partition to accelerate merging process if this information

is available. The method uses Constrained Delaunay tetrahedralization and

graph cuts optimization.

• We have developed a non-trivial Divide and Conquer approach for visibility-

consistent surface reconstruction of a large, noisy point set with visibility

information. This approach consists of 2 separated steps: remove outliers and

surface reconstruction, which share many common components. To remove

outliers behind the surface effectively, we work with multi-level representations

of the point set. We use our merging method to combine partial meshes at

the end. The computation of a surface or inliers in each part can be run in

parallel.

• The photometric refinement of a mesh is limited by GPU memory. Then we

have thoughtfully partitioned the mesh into many sub-meshes so that each

sub-mesh associated with portions of images containing its projection, can be

fit in GPU memory. Each sub-mesh is refined in an independent (parallel)
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or a serial manner. In both cases, we obtain the same accurate result. This

partition allows us to produce high quality and complete mesh from thousands

of high resolution images.

A highlight feature of our multi-view pipeline is its high modularity. The plane

sweeping point set extraction, the visibility consistent surface reconstruction, the

photometric refinement and the mesh-merging method are independent and can be

replaced by other similar methods. This independence might enable them to apply

in other contexts.

We believe many points in the thesis could be further investigated and im-

proved, such as parameter tuning, direct comparisons with other methods. More

importantly, some additional majors issues should be addressed in perspective to

boost the multi-view stereo:

• The main obstacle of our multi-view methods is the accuracy of calibration.

Currently, we use the calibration software Bundler ([Snavely et al., 2006]),

which can calibrate remarkably well for some data-sets, but not for all. The

variational method, while produces highly detailed mesh features, is sensitive

for calibration error. It is not a surprise because accurate reconstruction

requires the same degree of calibration accuracy. The lack of accuracy in

current state-of-the-art calibration is the main obstacle for us to limit the

image resolution in the 3D reconstruction.

• Moreover, the variational method should identify areas of mesh that do not

have a good calibration measure in order to apply an appropriate treatment.

A more ambitious solution is to optimize mesh and camera calibration in some

manner, similar to [Furukawa and Ponce, 2008], [Tylecek and Sara, 2009].

• Our methods, as many other classic multi-view stereo methods, suppose the

3D objects are more or less Lambertian. While it is almost true for ancient

buildings, statues, etc, it is not true for many materials like glass, specular

plastic. If it is difficult to reconstruct them successfully, at least, detecting

and ignore them could be useful. The same argument is applied for moving

objects (people, cars) across images.

• When there are many data-sets for the same 3D scene, but their cameras (and

resulted mesh) are not in the same coordinates, it is advisable to merge them

together (matching images and mesh) to obtain a bigger data-set. This could

be helpful for the calibration or the refinement of some details of a mesh using

supplement images, which are not in the current data-set associated with the

mesh.
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The ultimate goal of multi-view stereo and computer vision is to design algo-

rithms and devices, which are intuitive and have the same capacity as human vision.

From the achievements in the domains, we can think about saving the 3D models

of humans, trees, buildings, animals with cameras or mobile phones instantly. That

will bring immense applications in game, cinema, architecture, computer industry,

not to mention the military. It is not a far future because multi-view stereo today

are efficient enough for average users produce and enjoy their 3D models with free

applications such as Microsoft’s Photosynth1 and Autodesk’s 123DCatch 2. The

success of computer vision will help to create more intelligent robots which under-

stand and recognize the environment in order to reduce human labor. For now,

Google has experimentally tested a prototype of an auto driver 3. Everything still

just begins.

1http://photosynth.net
2http://www.123dapp.com/
3http://googleblog.blogspot.com/2010/10/what-were-driving-at.html





Appendix A

Background

A.1 Delaunay triangulation

A triangulation of a point set P in Rd is a partition of its convex hull into simplices

of dimension d. In 3-dimension, it is also called tetrahedralization. A given set of

points admits, in general, many triangulations.

A Delaunay Triangulation of a point set P is a triangulation with empty disk

property: no point in P is inside the circumcircle of any simplex of this triangula-

tion. In the general position, where there are no d + 2 points on the same sphere,

the Delaunay triangulation is unique.

A.2 Constrained Delaunay triangulation

Instead of an input point set P , we have a Piecewise linear system (a set of points,

edges, triangles such that they do not cut themselves in the interior) as input,

the similar concept of Delaunay Triangulation would be the Constrained Delaunay

Triangulation / Tetrahedralization (CDT). The CDT shares many useful properties

with Delaunay Triangulation while it contains the input constraint (with eventually

additional points, called Steiner Points).

In two dimensions, CDT was first defined by Lee and Lin [Lee and Lin, 1986],

Chew [Chew, 1989], and such triangulation always exists (Fig. A.1). However, in

three dimensions, the CDT may not exist because not every 3-dimension polyhedron

allows a tetrahedralization without additional vertices (eg. Shönhardt’s polyhedron,

Figure A.1: Delaunay Triangulation, and constrained Delaunay triangulation (CGAL man-
ual).
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Figure A.2: Schönhardt’s polyhedron , and its CDT with 3 Steiner points.

Fig. A.2). Fortunately, in carefully adding some points (called Steiner points), the

CDT of a PLS always exists ( [Shewchuk, 2002], [Si, 2010]).

The following concepts and materials are reproduced from [Si, 2010] to under-

stand CDT:

Piecewise Linear System (abbreviated as PLS) is a finite collection X of

polyhedra with the following properties: (Fig. A.3)

1. if P ∈ X , then all faces of P are in X .

2. if P,Q ∈ X , then P
⋂
Q ⊂ X .

3. if dim(P
⋂
Q) = dim(P ), P 6= Q then P ⊂ Q, and dim(P ) < dim(Q).

Figure A.3: The left image is a PLS, while the middle and the right one are not.

The dimension of a PLS X , denoted as dim(X ), is the largest dimension of its

polyhedra. A subsystem of X is a subset of X which is also a PLS. The underlying

space of X is |X | =
⋃
P∈X P . The set of all vertices in X is denoted as vert(X ).

Triangulation of PLS Let X be a PLS in Rd. A triangulation of X is a

simplical complex T such that the underlying space of T equals the convex hull of

the vertices of X and every polyhedron of X is represented by a subcomplex of T .

More formally:

1. |T | = conv(vert(X )) and

2. ∀P ∈ X ⇒ ∃K ⊂ T such that |K| = P .
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Visibility in R3: Two points x, y ∈ R3 are invisible to each other if the interior

of the line segment xy intersects a polyhedron P ∈ X at a single point. Otherwise

x and y are visible to each other (see an example in Fig. A.4).

v
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p
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q
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b
c

F

p

d

q

a

b
c

F

Figure A.4: Visibility and constrained Delaunay criterion. The shaded region is a facet
F of a PLS X , a, b, c, p ∈ F , ab ∈ X . Left: d and q are invisible to each other because of
F , c and p are invisible to each other because of segment ab. Right: a circumball of the
tetrahedron abcd contains q. abcd is constrained Delaunay since q is not visible from its
interior. The triangle abc ⊂ F is constrained Delaunay since p is outside its diametric ball.

Constrained Delaunay simplex: Let S be a finite set of points and X be a

PLS in R3 with vert(X ) ⊂ S. A simplex σ whose vertices are in S is constrained

Delaunay if it is in one of the two cases:

1. There is a circumball Bσ of σ contains no vertices of S in its interior.

2. There exists F ∈ X , such that int(σ) ⊂ int(F ). Let K = S
⋂
aff(F ), then

no vertex of K contained in the interior of Bσ is visible from any point in

int(σ).

Constrained Delaunay tetrahedralization of X is defined as a tetrahedral-

ization T of a PLS X such that every simplex of X is contrained Delaunay.

Hang Si [Si, 2010] presented his algorithm for CDT and proved that this algo-

rithm terminates. His method can compute CDT for any PLS in R3, with Steiner

points may be added in some segments of the PLS. He claimed that his method

tended to add less Steiner points than [Shewchuk, 2002].

A.3 Graph cuts optimization

Given a finite directed graph G = (V, E) with nodes V = {v1, . . . , vn} and edges E
with non-negative weights (capacities) wpq, and two special vertices, the source s

and the sink t, an s-t-cut C = (S, T ) is a partition of V into two disjoints sets S
and T such that s ∈ S and t ∈ T (Fig. A.5).

The cost of the cut is the sum of the capacities of all the edges going from S to

T :
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c(S, T ) =
∑

vp∈S\{s}
vq∈T \{t}

wpq +
∑

vp∈S\{s}

wpt +
∑

vp∈T \{t}

wsp (A.1)

The minimum s-t-cut problem consists in finding a cut C with the smallest cost:

the Ford-Fulkerson theorem [Ford and Fulkerson, 1962] states that this problem is

equivalent to computing the maximum flow from the source s to the sink t and

many classical algorithms exist to efficiently solve this problem.

sink

source

qp

s

t

source

sink

cut

qp

s

t

Figure A.5: A graph and a cut on it. Edge costs are reflected by thickness (image is
reproduced from [Boykov and Kolmogorov, 2004].

Graph cuts optimization has been widely used in multi-view stereo and many

other domains of computer vision [Boykov and Kolmogorov, 2004]. It is efficiently

applied in segmentation, multi-view, optical flow, texturing, etc. There is a wide

range of energy functions which can be cast as a graph cuts optimization [Kol-

mogorov and Zabih, 2004]. Graph cuts is also used to solve a multi-label problem

[Boykov et al., 2001].

Graph cuts optimization can only handle a limited class of discrete energy. For

more general energy functions and more performance, there are other methods such

as belief propagation, tree re-weighted message passing [Wainwright et al., 2005],

[Kolmogorov, 2006], linear programming [Komodakis et al., 2011], [Komodakis and

Tziritas, 2007].

A.4 kd-tree

Binary space partitioning (BSP) is a method for recursively subdividing a space

into convex sets by hyperplanes. This subdivision leads to a representation of the

scene by means of a binary tree data structure (BSP tree).

kd-tree (short for k-dimensional tree) ([Bentley, 1975]) is a space partitioning

data structure for organizing points in k-dimensional space. kd-tree is a special case
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Figure A.6: A process of partitioning an irregular polygon into a series of convex ones by
BSP (Image created by Jkwchui in wikipedia).

of BSP, when splitting hyperplanes are perpendicular to a dimensional axis. The

hyperplane divides the space into two pars, known as subspaces. Points in each

subspace represent a sub-tree.

Please note that is an informal definition of kd-tree. There are many ways to

choose axis-aligned splitting tree. The nearest neighbor search (NN) usually need

a balance kd-tree, then the splitting hyperplanes is chosen at the median of one

coordinate of point set. In chapter 6, we use hyperplane in the middle of the longest

axis of a node’s bounding box to generate point clusters. It is optional to consider

points are only in leaf nodes. The average complexity of kd-tree construction is

around O(n log n).An example of kd-tree is shown in Fig. A.7.

A.5 kd-tree of volumetric objects

Instead of points, a kd-tree can contain other geometric like: spheres, segments,

rectangles, triangles, etc. In this thesis, this kd-tree helps to detect quickly inter-

section of shapes. For example, we want to determine among n triangles in R3,

all pairs of triangles that intersect each other. A brute force algorithm tests in-

tersection of all 2 triangles with quadratic complexity O(n2). It’s better to create

a kd-tree structure in which every triangle is put in its leaf-nodes, where every

intersected triangles are found in the same leaf-nodes.

To this end, the bounding box of the shapes is recursively split by hyperplanes

perpendicular to an axis like normal kd-tree. However, each subspace will contain

all shapes that belong or intersect that subspace, hence a shape may be contained

in many nodes. The leaf node is the node that we can not divide it into 2 nodes

that have the number of shapes strictly less than its number of shapes. By this

construction, we ensure that any pair of intersected triangles will be found in at least
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Figure A.7: Partition of a Stanford Bunny point set in 5 equal parts in using kd-tree.
Each box represents a leaf node of the tree.

one leaf-nodes. In this thesis, for spheres, we consider all its center, for triangles,

we consider all its vertices to build a kd-tree. For each node, we choose hyperplane

at the medium of coordinate of all points in longest axis. It reduces the number

of shapes in each node by roughly a half. While a pair of intersected shapes may

be in many leaf-nodes, we can test it only one time by mark it as ‘tested’ so that

we ignore it in the other nodes. The complexity of building the kd-tree is roughly

O(n log n). The complexity of the intersection detection is a constant factor of the

number of intersections. Then it is more efficient than brute force test if the number

of intersected pairs is much smaller than n2.

Figure A.8: kd-tree for triangles to determine the intersections. Left: the root is divided
in 2 nodes by a hyperplane. Right: each cell represent leaf-trees containing triangles. Each
color corresponds to a node. A triangle with many colors belongs to different nodes.

One special case of intersection using kd-tree is the determination of segments

containing a set of Steiner points. The Constrained Delaunay Tetrahedralization of
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a set of constrained triangles may require additional Steiner points in the edges of

these triangles. While it’s possible to modify the tetgen program so that it reports

Steiner points associated with segments containing them, we prefer to use it as a

black box and detect the segments later. The detection is done with a kd-tree of

segments: when a node is divided in two child-nodes, we also distribute Steiner

points in each node. We delete a node if it does not contain any Steiner points.

At the end, in the leaf-nodes, we test for all Steiner points and all segments to

determine which segments contain Steiner points. Again, it’s much faster than a

brute force approach, especially when the number of constrained segments are much

more than the number of Steiner points.
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Supplement results

We add the results of some image data-sets of CMP, Czech Technical University

in Prague 1. We test 3 data-sets: Head data-set, Detenice fountain data-set, and

Tête de Plate Longe dataset. They are given as set of images without calibration

camera. We then calibrate them with Bundler [Snavely et al., 2006], which might

not calibrate all images of each data-set. Next, we build a set of pairs of images

based on SfM point cloud, for the multi-view stereo, in which we may not use all

calibrated images (Fig.B.1). The results are given in Fig. B.2, Fig. B.3 and Fig. B.4.

Figure B.1: Some images 3 calibrated datasets: Head (61 images of 6 MPixel, 126 pairs),
Delenice Fountain(118 images of 3 MPixel , 118 pairs), and Tete (200 images of 5 Mpixel,
700 pairs).

1http://cmp.felk.cvut.cz/projects/is3d/Data.html
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Figure B.2: Result of Head data-set with full resolution (mipmap 0: 6 MPixel). This
data-set is very well calibrated, so that the reconstructed mesh is highly accurate. Last 2
images show the mesh with texture.
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Figure B.3: Result of Detenice data-set with demi-resolution (mipmap 1: 750K Pixel).
The result with full resolution does not improve the quality of the mesh. It might be due
to the limited image quality (chromatic aberration, blur, etc) which leads to not accurate
calibration and multi-view stereo. Last 2 images show the mesh with texture.
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Figure B.4: Result of Tete data-set with demi-resolution (mipmap 1: 1.2M Pixel): mesh
without and with texture. The result with full resolution does not visually improve the
quality of the mesh.
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Wojtan, C., Thürey, N., Gross, M., and Turk, G. (2009). Deforming meshes that

split and merge. ACM Trans. Graph., 28:76:1–76:10. (Cited on page 58.)

Yang, R. and Pollefeys, M. (2003). Multi-resolution real-time stereo on commod-

ity graphics hardware. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 211–220. (Cited on page 38.)

Yang, R., Pollefeys, M., and Welch, G. (2003). Dealing with textureless regions

and specular highlights: A progressive space carving scheme using a novel photo-

consistency measure. In IEEE International Conference on Computer Vision,

volume 1, pages 576–584. (Cited on pages 26 and 28.)

Yu, T., Ahuja, N., and Chen, W.-C. (2006). SDG cut: 3D reconstruction of non-

lambertian objects using graph cuts on surface distance grid. In IEEE Conference

on Computer Vision and Pattern Recognition, volume 2. (Cited on pages 26

and 27.)



Bibliography 139

Zach, C., Pock, T., and Bischof, H. (2007). A globally optimal algorithm for robust

TV-L1 range image integration. In IEEE International Conference on Computer

Vision. (Cited on pages 22, 24, 25 and 28.)

Zaharescu, A., Boyer, E., and Horaud, R. (2011). Topology-adaptive mesh de-

formation for surface evolution, morphing, and multiview reconstruction. IEEE

Transactions on Pattern Analysis and Machine Intelligence. (Cited on page 58.)

Zaharescu, A., Boyer, E., and Horaud, R. P. (2007). TransforMesh: a topology-

adaptive mesh-based approach to surface evolution. In Asian Conference on

Computer Vision, pages 166–175. (Cited on pages 50, 53 and 58.)

Zaharescu, A., Cagniart, C., Ilic, S., Boyer, E., and Horaud, R. P. (2008). Cam-

era clustering for multi-resolution 3-D surface reconstruction. In ECCV 2008

Workshop on Multi Camera and Multi-modal Sensor Fusion Algorithms and Ap-

plications. (Cited on page 95.)

Zhao, H. K., Osher, S., and Fedkiw, R. (2001). Fast surface reconstruction using

the level set method. In IEEE Workshop on Variational and Level Set Methods

in Computer Vision, pages 194–201. (Cited on pages 23 and 26.)


	Introduction (version française)
	Conception générale de multi-vues stéréo
	Le sujet de thèse et les contributions
	Liste de publications


	Introduction
	Overview of Multi-view stereo
	Thesis subject and contribution
	List of publications


	Review on Multi-view stereo
	Common concepts
	Framework in photo-consistency and regularization measures
	Photo-consistency matching
	Regularization

	Transformation steps in multi-view stereo methods
	From images to a discrete presentation
	From a discrete presentation to a surface
	From a surface to a surface
	From a volume to a surface

	Large scale multi-view stereo
	Multi-view stereo for compact objects
	Multi-view stereo for outdoor scenes
	3D reconstruction on Internet scale

	Some related topics
	Structure from motion
	Active range finding
	Shape from X
	Reconstruction of dynamic scenes
	Urban architecture understanding

	Conclusion

	Towards large-scale multi-view stereo
	Introduction
	Motivation
	Contributions

	Multi-view reconstruction pipeline
	Quasi-dense point cloud
	Visibility-based surface reconstruction
	Photometric robust variational refinement
	Discretization

	Implementation aspects
	Experimental results
	Compact objects
	Outdoor architectural scenes
	Landscape and cultural heritage scenes

	Conclusion

	Surface triangular mesh merging
	Introduction
	Contribution

	Merging algorithm in general case
	Overlap detection
	Graph cuts on Constrained Delaunay Tetrahedralization
	Graph cuts on the extracted surface
	Experiments

	Merging meshes from partition of bounding box
	Conclusion

	Large-scale visibility-consistent surface reconstruction
	Introduction
	Motivation
	Work in multi-view stereo with the visibility issue
	Work on large scale surface reconstruction

	Divide and Conquer algorithm
	Multi-level representation of a point set
	Partition of a point set in many equal parts
	Local visibility-consistent surface reconstruction
	Multi-level point cloud filter
	Partial surface reconstruction and mesh merging

	Experiments
	Limitation
	Conclusion

	Large scale multi-view stereo
	Introduction
	Partition of mesh with associated images
	Sequential and independent deformations
	Experiments
	Some comparison with PMVS
	Conclusion

	Conclusion
	Background
	Delaunay triangulation
	Constrained Delaunay triangulation
	Graph cuts optimization
	kd-tree
	kd-tree of volumetric objects

	Supplement results
	Bibliography

