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Introduction

Finite precision floating-point numbers are widely used for approximating the set of the
reals on general purpose computers. Other ways of representing numbers exist, such as
fixed-point numbers that are often used for signal processing and in embedded applications.
But floating-point arithmetic provides a good compromise between speed, accuracy, and
range of representation for most numerical applications. This includes various applications,
such as the computation of approximate solution to partial differential equations that
appear in many problems of physics (weather prediction, fluid dynamics, etc.), virtual
monetary transfers, and many critical applications (plane control, aerospace systems, etc.).

The first modern implementation of binary floating-point arithmetic was probably in
Konrad Zuse’s Z3 computer in 1941 [7]. Floating-point arithmetic was already commonly
used in the mid 1950s, and during the next two decades, almost every computer manufac-
turer developed its own floating-point system. Portability of floating-point programs be-
came a real issue, as each processor designer was using a different floating-point hardware.
For instance, while most processors during this period were using binary floating-point
arithmetic, the IBM 360/370 series were using hexadecimal floating-point arithmetic [47,
p. 17]: As it will be recalled later in this document, changing the radix in a sequence of
floating-point operations also changes the rounding errors generated. As a consequence,
performing the same computation with two computers using different radices may lead to
different computed results. Moreover, not all processors incorporated a guard digit, which
may lead to serious inaccuracies for instance when performing a floating-point subtraction:
This was the case for the early versions of the IBM 360 [47, p. 17 and p. 36], and in the
1990s, CRAY supercomputers still did not have a guard bit [24, p. 44] and [47, p. 17]. That
poor situation was described in 1981 in Kahan’s paper Why do we need a floating-point
standard [30].

The IEEE 754 Standard for Binary Floating-Point Arithmetic [25] was developed in the
late 1970s and early 1980s, mainly as an effort to make floating-point programs easier to
write in a portable manner. Released in 1985, IEEE 754 standardizes both the formats of
representation of binary floating-point numbers on computers and the semantics of the five
basic floating-point operations (addition, subtraction, multiplication, division, and square-
root), and some conversions between decimal and binary numbers. A major feature of the
standard is the requirement for correct rounding of the basic operations: The standard
specifies four rounding modes (round to nearest, round toward positive, round toward
negative, and round toward zero), and the result of every basic floating-point operation
must be rounded according to one of these rounding modes; this constraint is called correct
rounding, and essentially means that the result of every basic floating-point operation is
uniquely defined using a well specified rounding function.

The IEEE 754 standard also specifies non-numerical encodings used in floating-point

3



4 LIST OF ALGORITHMS

arithmetic, such as infinities, or the result of invalid operations (such as 0/0), and how
these special values behave with basic operations.

Having a standardized floating-point arithmetic permits to easily write portable soft-
ware that works across various computers, but it also permits to prove the behavior of
numerical software independently of the hardware being used.

Since the 1970s, decimal floating-point arithmetic has mainly been used in banking
and financial applications. The IEEE 854 Standard for Radix Independent Floating-Point
Arithmetic [26], which partly generalized the binary standard 754, was released in 1987 to
cope with both binary and decimal floating-point arithmetic.

From 2001 to 2008, IEEE 754 and 854 have been under revision. The new IEEE 754-
2008 Standard for Floating-Point Arithmetic [27] merges the two previous standards and
brings significant improvements. Due to the constant evolution in hardware floating-point
units design, computer arithmetic, and numerical algorithm design, new functionalities
needed to be added to the floating-point arithmetic standard. The new standard incorpo-
rates some features that had become common practice, but that were not present in IEEE
754-1985; It also takes into account new research results that allowed one to easily perform
computations that were previously thought impracticable or too expensive. In particular,
the new standard incorporates the following features:

• The Fused Multiply-Add (FMA) instruction has been introduced in the standard. The
FMA evaluates the expression a×b+c with only one final rounding, and this property
can be used to approximately halve the number of roundings in many floating-point
algorithms, such as dot products or polynomial evaluation algorithms [24, p. 46].
This instruction was already available in the instruction set of some processors prior
to the release of the revised standard, such as the IBM PowerPC, HP/Intel IA-64
and HAL/Fujitsu SPARC64 VI. New Graphical Processing Units (GPU) architec-
tures, such as NVIDIA GeForce 200, GeForce 400 and GeForce 500 Series, or the
AMD HD 5000 Series [58], now also include correctly rounded floating-point FMA
operators. As was first noticed by Markstein [42], the availability of an FMA in-
struction is also particularly useful for implementing correctly rounded floating-point
division, square-root, or reciprocal square-root in software. This was already the
case in binary floating-point arithmetic on the HP/Intel IA-64 based computers us-
ing Newton-Raphson iterations (see [43] and [46, p. 262]).

• The new standard fully specifies decimal floating-point arithmetic, in particular, the
decimal interchange format encodings and the arithmetical properties needed for fi-
nancial computations. A hardware decimal floating-point unit can already be found
in the IBM POWER processors, since the POWER6 processor core (see for exam-
ple [46, p. 107]). Intel mainly provides a software decimal floating-point library that
uses binary hardware [8, 23]. The IEEE 754-2008 standard specifies two encodings
for the decimal floating-point numbers: one is more suited for hardware implemen-
tation, and the other is more suited for software implementation. Notice that the
set of representable numbers is the same in both cases: only the internal encodings
differ.

• After more than 20 years of work on floating-point algorithms, it became clear that it
was possible to efficiently implement more correctly-rounded functions than the ones
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standardized in 1985, like conversion between decimal and binary floating-point num-
bers in the full range of floating-point numbers, or the evaluation of transcendental
functions. In particular, the CRLIBM Library [11, 36] showed that it was possible
to efficiently implement correctly rounded elementary functions and the standard
now recommends (yet does not require) that some transcendental functions should
be correctly rounded.

It is usually easier to compute the correct rounding of a function using a higher internal
precision for intermediate computations. For example, to round the quotient of two 24-bit
precision floating-point numbers, it is possible to first compute that quotient using 53 bits
of precision, and then to round the floating-point result to 24 bits of precision. However,
doing so raises another issue, called the double-rounding problem, which may in some cases
lead to a wrong result. In the first part of this thesis, we present a special encoding of
numbers called the RN-coding, different from the IEEE 754 encodings, which does not
present the double-rounding issue. We then present how to perform sound and efficient
arithmetic with this encoding, for fixed-point and floating-point RN-codings. This work
on RN-coding arithmetic was published in IEEE Transaction on Computers [35].

When implementing correctly rounded elementary functions, a major difficulty that
arises is what is called the Table-Maker’s Dilemma [40], [46, chap. 12]. Given a function
f : R → R, let us assume we want to compute a correct rounding of f(x), where x is
a floating-point number. Usually, this is done by computing some “sufficiently accurate”
approximation f̂ to f(x), and then by rounding f̂ . This strategy only works if we know
that there is no discontinuity point of the rounding function between f̂ and f(x), i.e.
no breakpoint. Making sure this situation does not happen is called the Table Maker’s
Dilemma: The closer f(x) is to a breakpoint, the more accurately f̂ needs to be computed
to ensure correct rounding. In particular, when f(x) is a breakpoint, the only way to ensure
a correct rounding is to obtain f̂ = f(x) exactly. When there are floating-point numbers
x such that f(x) is a breakpoint, we say that f admits breakpoints. Hence, to design a
fast algorithm to correctly round a function f , two questions arise. For a given function
f , does f admit breakpoints? And how close can f(x) be to a breakpoint? Chapter 3 of
this thesis focuses on the former question for some algebraic functions:

√
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y
,
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We study whether these functions admit breakpoints for both binary and decimal floating-
point arithmetic. For the functions that admit breakpoints, we provide when it is possible
a simple characterization of the entries x for which f(x) is a breakpoint. This study
on the breakpoints of some algrebraic functions was published in IEEE Transaction on
Computers [29].

To compute the quotient of two floating-point numbers, there are essentially two classes
of algorithms: the ones based on digit recurrence algorithms, such as the SRT divi-
sion [13, 52, 55], and the Newton-Raphson division algorithms [42, 43, 46]. The SRT
division convergence is known to be linear, whereas the Newton-Raphson algorithm con-
verges quadratically. Despite their linear rate of convergence, SRT-based algorithms are
frequently used in hardware for single and double precision floating-point formats, because
they provide a good trade-off between speed and the logic area. However, as noticed for
instance by Markstein [42] or by Kahan [31], the availability of an FMA instruction makes
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it possible to design fast algorithms for correctly rounded division in software based on the
Newton-Raphson algorithm. For instance, binary floating-point division was implemented
solely in software on the IBM RS/6000 [42], and, later on, on the HP/Intel Itanium [9, 43].
The proofs of correct rounding provided by Markstein and Harisson [22] only handle binary
floating-point arithmetic, and do not work in other radices. The introduction of the FMA
instruction for decimal arithmetic in the revised IEEE 754-2008 standard raises the issue of
implementing decimal floating-point division in software using Newton-Raphson iterations.

In Chapter 4, we study general results on variants of the Newton-Raphson division
algorithm using FMA instructions: there are two ways of implementing one step of Newton-
Raphson iteration for division using an FMA instruction: the Markstein iteration [43] and
the Goldschmidt iteration [14, 19]. They have different advantages and drawbacks, so
that it make sense to use both kinds of iteration in a given calculation to compute the
quotient of two floating-point numbers [43]. Our study is done for radix β floating-point
arithmetic, focusing more particularly on the cases β = 2 and β = 10, and on rounding to
the nearest. However, the final rounding technique used by Markstein in radix 2 cannot be
directly generalized in radix 10: Indeed, while in radix 2 the quotient of two floating-point
numbers cannot be a midpoint in the range of normal floating-point numbers, this is no
longer the case in radix 10 (see Chapter 3). Therefore, we generalize some results proved
by Markstein for radix 2 to radix β, and also provide a tailored final rounding technique
in radix 10. This work on Newton-Raphson based divised was presented during the IEEE
Application-specific Systems Architectures and Processors international conference [41].



Chapter 1

Floating-point arithmetic

This chapter is an introductory chapter: it recalls the definitions related to floating-point
arithmetic, and presents some of the features of the IEEE-754-2008 Standard for Floating-
Point Arithmetic [27] that are used or studied through the rest of this thesis. In Sec-
tion 1.3, we recall some elementary facts about rounding functions and breakpoints, and
in Section 1.4, we present the concept of correct rounding. We present in Section 1.5 what
are the main issues related to correct rounding that we will deal with in the next chapters.
This chapter is largely inspired by [46, chap. 1, 2 and 3].

1.1 Floating-point numbers

We first present a general definition of both normal and subnormal floating-point numbers,
and introduce the notations that are used in this document.

1.1.1 Scientific notation

Every real number x can be represented using the ”scientific notation”

±mx · βex ,

where β is the radix in which the number is represented, mx is a real number called
significand of the representation, and ex is an integer, called exponent. For example, in
radix 10, the real number

xreal = 3718.50237499999950000 . . . · 10−393

has a significand mx = 3718.5023749999995 and an exponent ex = −393.
However, that scientific notation is not uniquely defined. For every non-null number,

the representation is normalized to make it unique. We will say that the representation of
a non-null number is normal if the significand is such that 1 ≤ mx < β. In that case, the
exponent ex is unique, and its value is �logβ |x|�. For example, the normal representation
of xreal is

xreal = 3.71850237499999950000 . . . · 10−390,

and one can check that −390 = �log10 |xreal|�.

7
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1.1.2 Limited significand

In order to remain efficient and fast in computer arithmetic, arbitrarily large represen-
tations of numbers cannot be used. Hence, in computer hardware and software, we use
finite-precision floating-point numbers to represent real numbers. The first step is to limit
the size of the significand. A normal floating-point number, is a non-null number such that
its significand mx is a rational of the form

mx = (m0.m1m2 . . .mp−1)β ,

where p is the precision of the format. The set of radix-β, precision-p floating-point num-
bers will be noted Fβ,p.

For a fixed exponent e, the set of normal floating point numbers comprised in the
interval [βe, βe+1) will be called a betade. For any non-null normal floating-point number
z in a given betade, i.e. z ∈ Fβ,p

�
[βez , βez+1), we define the unit in the last place, noted

ulp(z), as ulp(z) = βez+1−p. We extend this usual definition to all non-null real number:
For all z ∈ [βez , βez+1), we similarly define ulp(z) as βez+1−p. The unit in the last place
is often used to quantify rounding errors, since rounding a real number z to its nearest
normal floating-point number zfloat gives a error smaller than 0.5ulp(z).

For example, if we choose to represent radix 10 numbers using 16 digits of precision,
the previous

xreal = 3.718502374999999� �� �
16 digits

50000 . . . · 10−390

will have to be rounded to one of the following two normal floating-point numbers (in
F10,16):

xfloat = 3.718502375000000 · 10−390, x�
float = 3.718502374999999 · 10−390.

The previous number xreal is exactly between two consecutive floating-point numbers
of the set Fβ,p. This particular case is what we call a breakpoint, which will be explained
in §1.3.3. In order to be consistent with the standard rounding functions defined in §1.3.1,
we will choose to round to xfloat instead of x�

float.
One can also represent the same set of floating-point numbers Fβ,p using integral sig-

nificands. Instead of using the standard normalization of the significand 1 ≤ mx < β, the
same floating-point number can be represented using an integer Mx for its significand, with
βp−1 ≤ Mx < βp:

x = ±m0m1m2 . . .mp−1mp · 10ex−p+1.

For example, xfloat can be represented with an integral significand:

xfloat = 3718502375000000 · 10−405.

1.1.3 Limited exponent range

The second step toward floating-point formats is to limit the range of the exponent. To
avoid arbitrarily large exponents, a minimum exponent emin and maximum exponent emax

need to be specified.
For example, the IEEE-754-2008 standard specifies for the decimal64 format (Sec-

tion 1.2) 16 digits of precision in radix 10, with emin = −383 and emax = 384.
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However, if we only have normal floating-point numbers, with limited exponent range,
we observe a gap around 0, as shown in Figure 1.1. In order to avoid that gap, and smooth
the repartition of floating-point numbers around 0, floating-point formats introduced the
notion of ”subnormal numbers”. A subnormal floating-point number x is of the form

±mx · βemin ,

where mx = (0.m1m2 . . .mp−1)β < 1. To remain consistent with subnormal numbers, zero
is represented as 0 · βemin in floating-point formats.

0 βemin βemin+1 βemin+2

0 βemin βemin+1 βemin+2

ab− a b

ab− a b

Figure 1.1: The positive floating-point numbers in the toy system β = 2 and p = 3. Above:
normal floating-point numbers only. In that set, b − a cannot be represented, so that the
computation of b− a will be rounded to 0. Below: the subnormal numbers are included in
the set of floating-point numbers.

Our previous example is such that

xreal = 0.000000371850237� �� �
16 digits

499999950000 . . . · 10−383.

If we want to represent this real number in the decimal64 format (F10,16, with emin = −383),
it will be rounded as a subnormal number:

xsubnormal = 0.000000371850237 · 10−383.

Notice that if, instead of rounding xreal, we round the previously already rounded number

xfloat = 0.000000371850237� �� �
16 digits

5000000 · 10−383,

we can round this number to one of the two following subnormal floating-point numbers:

xsubnormal = 0.000000371850237 · 10−383, or xwrong = 0.000000371850238 · 10−383.

In fact, according to rounding rules (§1.3.1), xfloat will be rounded to xwrong. The fact
that rounding twice a number can give a wrong result is a well-known issue called Double
rounding [5, 17, 18, 44]: more details on that topic will be given in §1.5.2.
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1.2 The IEEE-754-2008 standard

Since 1985, floating-point formats have been specified by the IEEE-754 standard [25], in
order to have the same formats with the same behavior on every computer. Due to the
constant evolution in computers and algorithms, the standard had to be revised. In 2008,
a revised standard for floating-point arithmetic, IEEE-754-2008 [27], was then published.

1.2.1 Floating-point formats

The IEEE-754-2008 standard defines five basic floating-point formats, as well as several in-
terchange floating-point formats, extended formats and extendable formats [27, section 3].
Basic formats are formats used for computing in floating-point arithmetic. Interchange
formats are used for the exchange of floating-point data between implementations. Ex-
tended formats, while not required by the standard, can be used to extend a basic format
with wider precision and exponent range. Extendable formats are the same as extended
formats, except that precision and range are defined by the user. We will here specify basic
and interchange formats, using our notations. A floating-point format is fully characterized
by four parameters:

• The radix β, which is an integer larger than or equal to 2;

• The precision p, which is an integer larger than or equal to 1;

• The integer emin;

• The integer emax.

Once these parameters are specified, a floating-point number conforming the IEEE-
754-2008 standard is either:

• A normal floating-point number, which is a number of the form

x = ± (m0.m1m2 . . .mp−1)β · β
ex ,

with 1 ≤ mx < β and emin ≤ ex ≤ emax.

• A subnormal floating-point number, which is a number of the form

x = ± (0.m1m2 . . .mp−1)β · β
emin ,

with mx < 1.

• A special value: qNaN, sNaN, ±∞ (briefly described in §1.2.2).

The standard specifies format only for radices 2 and 10. It also fixes emin to the
value 1 − emax, for all formats. The binary interchange formats parameters are listed in
Table 1.1, while the decimal interchange formats parameters are given in Table 1.2. The five
basic formats correspond to the interchange formats binary32, binary64, binary128,

decimal64, decimal128. It should be noticed that binary32 and binary64 correspond
exactly to the single and double floating-point formats that were defined in the IEEE-754-
1985 Standard [25].
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Table 1.1: Parameters of the binary interchange formats in the standard IEEE-754-2008

Binary (β = 2)
binary16 binary32 binary64 binary128 binary{k}

p 11 24 53 113 k − �4 log2(k)�+ 13
emax +15 +127 +1023 +16383 2k−p−1 − 1
emin -14 -126 -1022 -16382 −2k−p−1

Table 1.2: Parameters of the decimal interchange formats in the standard IEEE-754-2008

Decimal (β = 10)
decimal32 decimal64 decimal128 decimal{k}

p 7 16 34 9k/32− 2
emax +96 +384 +6144 3× 2k/16+3

emin -95 -383 -6143 1− 3× 2k/16+3

1.2.2 Special values

In addition to normal and subnormal numbers, the IEEE-754-2008 standard defines special
values [27, ch. 6], in order to fully specify all operations on all floating-point entries. There
are three types of special values: NaNs, Infinities and Zeroes.

• A NaN (Not a Number) is mainly used to represent the result of invalid operations,
for example

√
−5 or 0/0. The standard in fact defines two types of NaNs, quiet NaN

and signaling NaN. For more information on NaNs, see Muller et al. [46, p. 69] or
the IEEE-754-2008 standard [27, ch. 6].

• When the result of a floating-point operation overflows, the standard also specifies
that the result is a special value called infinity (+∞ or −∞).

• Since the standard chose to keep the sign of the result in the infinities, and in order
to remain mathematically consistent, the standard also defines two signed zeroes,
namely +0 and −0. These two zeroes can lead to different results on some operations.
For example, 1/+ 0 = +∞ while 1/− 0 = −∞.

1.2.3 Implementation of floating-point formats

Only the definition of the floating-point formats given in §1.2.1 will be used in this doc-
ument. However, the IEEE-754-2008 standard also specifies the actual bit-level represen-
tation of floating-point numbers, both for binary and decimal arithmetic. For the sake of
completeness, these implementation issues and improvements are briefly explained in this
subsection.



12 CHAPTER 1. FLOATING-POINT ARITHMETIC

Binary

The first implementation issue in binary floating-point is the representation of the exponent
field. To represent that signed integer, the standard has chosen to use a biased representa-
tion. For normal floating-point numbers, the exponent ex is encoded as a biased exponent
Ex, with ex = Ex − b, b being the bias. Assuming the biased exponent is encoded on WE

bits, the bias for each binary format of the standard is b = 2WE−1. The value Ex = 0 is
used to represent subnormal numbers, while Ex = 2WE − 1 is used to represent special
values (§1.2.2).

Since the first bit of the significand in binary floating-point arithmetic is always a 1
when the number is normal, and always a 0 when it is subnormal, storing the first bit of
the significand is not needed. Indeed, it suffices to check whether Ex = 0 to determine if
the number is subnormal, and to determine the first bit of the significand. Hence, a binary
floating-point number of precision p has its significand stored on only p − 1 bits. This
unstored bit of the significand is called the implicit bit.

Given this two implementation requirements, binary floating-point formats are encoded
as follows.

1 bit WE bits p− 1 bits
S e�x m�

x

(sign) (biased exponent) (trailing significand)

Example 1.1. Consider the following bit string, interpreted as a binary32 floating-point
number x:

sign exponent trailing significand

0 01101011 01010101010101010101010

The biased exponent is neither 00000000 nor 11111111, so x is a normal floating-point
number. The biased exponent’s value is e�x = 107. Since the bias in binary32 is 127, the
exponent of x is ex = 107− 127 = −20.

Since x is a normal floating-point number, the implicit bit is a one. Hence, the signifi-
cand of x is

mx = (1.01010101010101010101010)2 =
5592405

4194304
.

Also, the sign bit is 0, so x ≥ 0. Hence, x is equal to

5592405

4194304
· 2−20 = 0.000001271565679417108185589313507080078125.

Decimal

The two possible bit-string representations of decimal floating-point numbers defined by
the standard are a bit more complex than binary. Since the understanding of these imple-
mentations is not necessary for the topics of this thesis, we will only outline the key ideas
behind these representations. For a more detailed presentation, see the standard [27] or
Muller et al. [46, pp. 82-92].
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• The standard defines two encodings for decimal floating-point numbers, named dec-
imal and binary encodings. The binary encoding, more suited for a software im-
plementation, encodes the decimal integral significand as a binary number. The
decimal encoding, more suited for a hardware implementation, encodes a group of
three consecutive decimal digits as a 10-bit string (a declet).

• The exponent range defined for the decimal formats (Table 1.2) is not a power of
two. As a consequence, the exponent field and significand field in the bit string are
not as clearly separated as in the binary formats.

• It is sometimes allowed to encode non-canonical floating-point numbers in decimal.
For example, the decimal32 canonical floating-point number 5.296800 · 1022 can also
be represented as 0.052968 · 1024.

1.3 Roundings

We present in this section the roundings defined by the IEEE-754-2008 standard, as well
as the faithful rounding, and define breakpoints.

1.3.1 Definition

Since floating-point numbers are used to approximate real numbers on a computer, it is es-
sential to define functions that transform a real number into a floating-point approximation
of precision p. Such functions are called rounding functions. A ”general” rounding func-
tion will be noted ◦p() in this manuscript. For any real number z, there is a floating-point
number x = ◦p(z) which is the rounded value of z.

The IEEE-754-2008 defines 5 rounding functions:

• roundTiesToEven rounds the real number z to the nearest floating-point number.
If z is exactly the middle of two consecutive floating-point numbers, it is rounded
to the floating-point number whose least significand digit is even. We will note this
rounding function x = RNp(z). Notice that roundTiesToEven is the default rounding
mode.

• roundTiesToAway rounds the real number z to the nearest floating-point number.
If z is exactly the middle of two consecutive floating-point numbers, it is rounded
to the floating-point number with the larger significand. We will note this rounding
function x = RAp(z). Also notice that roundTiesToAway is only required in decimal
arithmetic (it is only used for financial calculations). 1

• roundTowardPositive rounds the real number z to the nearest floating-point number
that is no less than z. We will note this rounding function x = RUp(z).

• roundTowardNegative rounds the real number z to the nearest floating-point number
that is no greater than z. We will note this rounding function x = RDp(z).

• roundTowardZero rounds the real number z to the nearest floating-point number that
is no greater in magnitude than z. We will note this rounding function x = RZp(z).

1
This rounding was not defined in the IEEE-754-1985 Standard.
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Sometimes, when there is no ambiguity on the value of the precision p being used for the
rounding, we will write

RN(),RA(),RU(),RD(),RZ()

instead of

RNp(),RAp(),RUp(),RDp(),RZp().

Two major properties of rounding functions are really important, and the first step
towards most of the proofs on floating-point arithmetic. All the previously defined rounding
functions are monotone, and the rounding of a floating-point number is always that floating-
point number. More formally:

• If x < y, then for any of the five rounding functions of the IEEE-754-2008 standard,
◦p(x) ≤ ◦p(y).

• If x is a floating-point number of precision p, then for any q ≥ p, and for any of the
five rounding functions of the IEEE-754-2008 standard, ◦q(x) = x.

1.3.2 Faithful rounding

Another rounding named the faithful rounding is often used in floating-point arithmetic.
While this rounding is not a mathematical function, it is however often used in many proofs
involving floating-point arithmetic [46, p. 22].

The floating-point number x ∈ Fβ,p is said to be a faithful rounding of the real number
z if:

• When z is a floating-point number (z ∈ Fβ,p), then x = z,

• When z is not in Fβ,p, then x is one of the two consecutive floating-point numbers
surrounding z.

In this thesis, we use the faithful rounding only in Chapter 4, which will help us prove the
correct rounding of the algorithms computing the quotient of two floating-point numbers.

1.3.3 Breakpoints

Another property that is shared by all five rounding functions defined in previous §1.3.1 is
the discontinuities of the rounding functions over the reals. For example, Figure 1.2 shows
the discontinuities of RN2(x) on a small set of positive binary floating-point numbers :
p = 3, emin = −1 and emax = 1.

Given the definition of each rounding functions, we see that there are two possibilities
for the discontinuities.

• For the roundTiesToEven and roundTiesToAway functions, the discontinuities lie
exactly halfway between two consecutive floating-point numbers. We will call mid-
points the numbers at which there is a discontinuity for these two rounding functions.
The set of midpoints, which depends on the radix β and the precision p, will be noted
Mβ,p.
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x

RN(x)

0 0.5 1.0 2.0
2.5 3.0 3.5

Figure 1.2: The RN2(x) function for radix β = 2 and precision p = 3.

• For the roundTowardPositive, roundTowardNegative and roundTowardZero functions,
the discontinuities lie on the floating-point numbers, except for roundTowardZero
which is continuous at 0.

The existence of these discontinuities for the rounding functions yields serious problems
when trying to evaluate a function, especially when we want to compute a correctly rounded
function, as we will see later in §1.5.1.

1.4 Floating-point operations

We present in this section most functions that are considered in the IEEE-754-2008 stan-
dard: First, the five basic arithmetic operations that all IEEE implementations need to
provide correctly rounded, and next the elementary functions that, if present, are recom-
mended to be correctly rounded by the IEEE-754-2008 standard.

1.4.1 Basic operations

Several operations on floating-point formats are required by the IEEE-754-2008 stan-
dard [27, section 5]. In this thesis, we will call basic operations the six following required
arithmetic operations:

• Addition(a, b) computes x = ◦p(a+ b).

• Subtraction(a, b) computes x = ◦p(a− b).

• Multiplication(a, b) computes x = ◦p(a× b).

• Division(a, b) computes x = ◦p(a/b).
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• Square-root(a) computes ◦p(
�
(a)).

• Fused Multiply-Add(a, b, c) (or FMA(a, b, c)) computes ◦p(a× b+ c).

It is required that all the basic operations yield a correctly rounded result. An operation
is said to be correctly rounded if the computed floating-point number is the same as the
one obtained if we round the real result of the operation according to the current rounding
mode.

For example the real number resulting from the operation 2/3 would be

0.666666666666666666666 . . .

Hence, the correctly rounded result of Division(2, 3) in decimal64 (p = 16) in round-to-
nearest mode is

0.6666666666666667 = ◦16(0.666666666666666666666 . . . )

1.4.2 Function evaluation

While only the basic operations are mandatory in the IEEE-754-2008 standard, one might
want to compute the correctly rounded result of some other functions. The standard [27,
section 9] recommends to provide an implementation of many functions, including exp, log,
trigonometric functions, hyperbolic functions, power, . . . (see Table 1.3 for a list of those
functions): We will call these functions elementary functions. Also, in Chapter 3, we study
some other functions that are linked to the normalization of vectors. While these functions
are not mentioned by the IEEE-754-2008 standard, they are often used in several domains.
Hence it would be a good idea to provide a fast correct rounding of these functions.

1.5 Issues related to correct rounding

In this last section, we finally present the mains issues related to correct rounding, which
are the core of this work: the Table Maker’s Dilemma, and the double-rounding error.

1.5.1 Correctly rounded function evaluation

A common way of evaluating the correctly rounded result of elementary functions over
floating-point numbers is to first use range reduction, and then use a good polynomial
or rational approximation to the targeted function. Range reduction is used to change
the problem of evaluating the function on all floating-point numbers into evaluating the
function on a small subset of floating-point numbers. A detailed explanation of the whole
process is given in Muller et al. [46, chap. 11, 12].

Determining a good approximation can be done by separating the problem in two parts:
computing an approximation, and proving the result of the approximation is the correctly
rounded function. Given a function f : Rd → R, the two parts can be expressed more
precisely:

• Computing the approximation is, given a target accuracy �, finding an algorithm
f̂ : (Fβ,p)d → R such that for any floating-point number x, |f̂(x)− f(x)| < �.
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Table 1.3: Recommended correctly rounded functions

Operation Function Domain

exp

expm1

exp2

exp2m1

exp10

exp10m1

ex

ex − 1

2x

2x − 1

10x

10x − 1

[−∞,+∞]

log

log2

log10

loge(x)

log2(x)

log10(x)

[0,+∞]

logp1

log2p1

log10p1

loge(1 + x)

log2(1 + x)

log10(1 + x)

[−1,+∞]

hypot(x, y)
�
x2 + y2 [−∞,+∞]× [−∞,+∞]

rSqrt 1/
√
x [0,+∞]

compound(x, n) (1 + x)n [−1,+∞]× Z
root(x, n) x

1
n [−∞,+∞]× Z

pown(x, n) xn [−∞,+∞]× Z
pow(x, y) xy [−∞,+∞]× [−∞,+∞]

powr(x, y) xy [0,+∞]× [−∞,+∞]

sin sin(x) (−∞,+∞)

cos cos(x) (−∞,+∞)

tan tan(x) (−∞,+∞)

sinPi sin(π × x) (−∞,+∞)

cosPi cos(π × x) (−∞,+∞)

atanPi
atan(x)

π [−∞,+∞]

atan2Pi(y, x) 2
π atan

�
y√

x2+y2+x

�
[−∞,+∞]× [−∞,+∞]

asin asin(x) [−1,+1]

acos acos(x) [−1,+1]

atan atan(x) [−∞,+∞]

atan2(y, x) 2 atan

�
y√

x2+y2+x

�
[−∞,+∞]× [−∞,+∞]

sinh sinh(x) [−∞,+∞]

cosh cosh(x) [−∞,+∞]

tanh tanh(x) [−∞,+∞]

asinh asinh(x) [−∞,+∞]

acosh acosh(x) [+1,+∞]

atanh atanh(x) [−1,+1]
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Floating-point numbers

Midpoints f(x)

Interval where f̂(x) is located

Figure 1.3: In this example (assuming rounding to nearest), the interval around f̂(x) where
f(x) is known to be located contains no breakpoint. Hence, RN(f(x)) = RN(f̂(x)): we
can safely return a correctly rounded result.

• Proving the correctly rounded result is, given a target precision pto, proving that for
all floating-point numbers x of input precision pin there exists an accuracy � such
that if |f̂(x)− f(x)| < �, then RNp(f̂(x)) = RNp(f(x)).

If these two conditions are fulfilled, then using the approximation f̂ yields the correctly
rounded result of the function f for all floating-point numbers. The latter problem, also
known as solving the Table Maker’s Dilemma, is the main topic of chapters 3 and 4.

Solving the Table Maker’s Dilemma for a given function f can be done by determining,
for any floating-point number x ∈ Fβ,p, how close from a breakpoint can f(x) be. If we
know that f(x) cannot be closer to a breakpoint than a distance δ, then it suffices to have
|f̂(x) − f(x)| < δ to prove a correctly-rounded result, as shown in Figures 1.3 and 1.4.
This method will be mainly used for the computation of the quotient in Chapter 4.

However, solving the Table Maker’s Dilemma can be done this way only if for any
floating-point number x, f(x) is not a breakpoint. Hence, determining for a given function
if f(x) can be a breakpoint is a crucial problem, for both proving the correctly rounded
result and designing an approximation algorithm. Chapter 3 address this issue in details for
some algebraic functions. Chapter 4 shows how to round correctly the division operation
using the correctly rounded FMA operation, by searching a good approximation algorithm,
solving the Table Maker’s Dilemma, and dealing with the case where f(x) is a breakpoint.

1.5.2 Double-rounding

In some cases, rounding several times the same number using decreasing successive preci-
sions can yield a bigger error than when rounding only once with the smallest precision.
For example, we saw previously that for

xreal = 3.71850237499999950000 . . . · 10−390,
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Floating-point numbers

Midpoints f(x)

Interval where f̂(x) is located

Figure 1.4: In this example (assuming rounding to nearest), the interval around f̂(x) where
f(x) is known to be located contains a breakpoint. We do not have enough information to
provide a correctly rounded result.

one has

xwrong = RN9 (RN16 (xreal)) = 3.71850238·10−390 �= 3.71850237·10−390 = RN9 (xreal) = xright.

During this thesis, we proposed the implementation of some basic operations on a
new encoding of numbers named RN-coding. This encoding is specially designed to avoid
this extra error due to double-rounding, and we provided an efficient and mathematically
coherent implementation of addition, subtraction, multiplication and division for fixed-
point and floating-point RN-codes.
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Chapter 2

RN-coding

Recently a class of number representations denoted RN-Codings was introduced [34, 35],
allowing rounding-to-nearest to take place by a simple truncation, with the property that
errors due to double-roundings are avoided. They are based on a generalization of the
observation that certain radix representations are known to possess this property. An
example is the classical (binary) Booth recoding. Another one is the following: we can
write a number in decimal using the digits {−5,−4, . . . , 4, 5} instead of the usual digit set
{0, . . . , 9}, with the constraint that the next non-null digit to the right of a 5 (resp. −5)
is negative (resp. positive).

When addressing the issue of double-roundings in §1.5.2, we saw with the number

xreal = 3.71850237499999950000 . . . · 10−390

that rounding it first to 16 digits, and then to 9 digits, is not the same as rounding xreal

only once to 9 digits:

xwrong = RN9 (RN16 (xreal)) = 3.71850238 · 10−390 �= 3.71850237 · 10−390 = RN9 (xreal) .

However, if we write xreal using the digit set {5̄, 4̄, . . . , 4, 5} with the constraint presented
above (5̄ representing the digit whose value is −5),

xrn-coding = 4.3̄21̄5̄0243̄50000005̄0000 . . . · 10−390.

Now, rounding xrn-coding is simply done by truncating:

RN16 (xrn-coding) = 4.3̄21̄5̄0243̄5000000 · 10−390,

RN9 (RN16 (xrn-coding)) = 4.3̄21̄5̄0243̄ · 10−390.

This means that using this special representation, we have no double-rounding error:
RN9 (RN16 (xrn-coding)) = RN9 (xrn-coding). Notice that RN9 (xrn-coding) = 4.3̄21̄5̄0243̄ · 10−390

represents as expected the correct result 3.71850237 · 10−390, i.e., without the double-
rounding error that previously occurred in the ordinary decimal representation.

In this chapter, we investigate in Section 2.1 a particularly efficient encoding of the binary
representation. This encoding is generalized to any radix and digit set; however radix com-
plement representations for odd values of the radix turn out to be particularly impractical.
The encoding is essentially an ordinary radix complement representation with an appended

21
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round-bit, but still allowing rounding to nearest by truncation and thus avoiding problems
with double-roundings. Conversions from radix complement to these round-to-nearest rep-
resentations can be performed in constant time, whereas conversion from round-to-nearest
representation to radix complement in general takes at least logarithmic time.

In Section 2.2, we develop arithmetic operations for fixed-point RN-codings. Not only is
rounding-to-nearest a constant time operation, but so is also sign inversion, both of which
are at best log-time operations on ordinary 2’s complement representations. Addition and
multiplication on such fixed-point representations are first analyzed and defined in such a
way that the rounding information can be carried along in a meaningful way, at minimal
cost. The analysis is carried through for a compact (canonical) encoding using 2’s com-
plement representation, supplied with a round-bit. Based on the fixed-point encoding it is
shown possible in Section 2.3 to define floating point representations, and a sketch of the
implementation of an FPU is presented.

2.1 Definition

When a number x is written as a digit sequence in radix β

x = dndn−1dn−2 · · · d0.d−1d−2 · · · =
n�

i=−∞

diβ
i,

we usually use digits di that are integers such that 0 ≤ di ≤ β−1. The conventional binary
representation uses the digits 0 and 1, whereas the conventional decimal representation uses
the digit set {0, . . . , 9}.

However, it is possible to use different digit sets, for example 0 ≤ di ≤ β (carry-save),
or

�−β+1
2

�
≤ di ≤

�
β−1
2

�
(symmetrical signed-digit). Using a different representation for

numbers can yield interesting properties, like faster, fully parallel, additions for carry-save
and signed-digit [1, 2, 21, 48, 49]. In this chapter, we present another way of representing
numbers, for which rounding to the nearest number at precision p is done by truncating
at precision p. Since rounding is done by truncating in this representation, no additional
error can occur from double-rounding.

Definition 2.1 (RN-codings). Let β be an integer greater than or equal to 2. The digit
sequence dndn−1dn−2 · · · with −β + 1 ≤ di ≤ β − 1 is a radix β RN-representation of x iff

1. x =
�n

i=−∞ diβi (that is dndn−1dn−2 · · · is a radix-β representation of x);

2. for any j ≤ n, �����

j−1�

i=−∞

diβ
i

����� ≤
1

2
βj,

that is, if the digit sequence is truncated to the right at any position j, the remaining
sequence is always the number (or one of the two numbers in case of a tie) of the
form dndn−1dn−2dn−3 . . . dj that is closest to x.

Hence, truncating the RN-coding of a number at any position is equivalent to rounding
it to the nearest.

Using the conversion algorithms from conventional digit sets into RN-codings of §2.1.2,
it is possible to prove that these RN-codings are correct encodings of numbers, i.e., every
number x can be written as a RN-coding in radix β.
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2.1.1 Characterization of RN-codings

Theorem 2.2 (Characterization of RN-codings).

• if β ≥ 3 is odd, then dndn−1dn−2 · · · is an RN-coding iff

∀i, −β+1
2 ≤ di ≤ β−1

2 ,

• if β ≥ 2 is even then dndn−1dn−2 · · · is an RN-coding iff

1. all digits have absolute value less than or equal to β
2 ;

2. if |di| = β
2 , then the first non-zero digit that follows on the right has the opposite

sign, that is, the largest j < i such that dj �= 0 satisfies di × dj < 0.

Proof. Consider first β ≥ 2 even. If dndn−1dn−2 · · · is a RN-representation of x, then for
any i ≤ n,

��diβi
�� =

�����

i�

k=−∞

dkβ
k −

i−1�

k=−∞

dkβ
k

����� ≤

�����

i�

k=−∞

dkβ
k

�����+

�����

i−1�

k=−∞

dkβ
k

����� ≤
β + 1

2
βi.

Hence for any i ≤ n, we have |di| ≤ β+1
2 . Since di is an integer, we then have |di| ≤ β

2 .
Furthermore, if di =

β
2 , the largest j < i such that dj �= 0 satisfies

djβ
j =

i�

k=−∞

dkβ
k − diβ

i −
j−1�

k=−∞

dkβ
k ≤ βj

2
.

Since dj is an integer, we know that dj ≤ 0. For the same reason, if di = −β
2 then the

largest j < i such that dj �= 0 gives dj ≥ 0.
Conversely, if the digit sequence dndn−1dn−2 · · · satisfies the characterization of Theo-

rem 2.2 for β even, we need to consider two cases:

• If |dj−1| < β
2 , then from |dj−1| ≤ β−2

2 and |di| ≤ β
2 for all i ≤ j − 1, we obtain

�����

j−1�

i=−∞

diβ
i

����� ≤
1

2
βj +

�
2βj−1 − βj

2(β − 1)

�

� �� �
≤0 since β≥2

≤ 1

2
βj.

• If dj−1 = β
2 and the largest k < j − 1 such that dk �= 0 satisfies dk ≤ −1 (the same

holds for dj−1 = −β
2 ), then

�����

j−1�

i=−∞

diβ
i

����� ≤
βj

2
− βk +

k−1�

i=−∞

��diβi
�� ,

and since for all i, |di| ≤ β
2 , we finally get

�����

j−1�

i=−∞

diβ
i

����� ≤
1

2
βj − βk

�
β − 2

2β − 2

�
≤ 1

2
βj,

which concludes the proof for β even.
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Now, let us consider β ≥ 3 with β odd. If dndn−1dn−2 · · · is a RN-representation, then
one can easily see from the inequality in the definition of RN-representations that |dj| ≤
β+1
2 . However, if we assume that for some j, dj =

β+1
2 , then from

���
�j

i=−∞ diβi
��� ≤ 1

2β
j+1,

we deduce that
j−1�

i=−∞

diβ
i ≤ −1

2
βj,

which is a contradiction with the definition of RN-representations. Hence, for all j, dj �=
β+1
2 . Similarly, dj �= −β+1

2 , hence |dj| ≤ β−1
2 .

Conversely, if |di| ≤ β−1
2 one can see by summing the terms that

�����

j−1�

i=−∞

diβ
i

����� ≤
1

2
βj,

which concludes the proof for β odd.

2.1.2 Conversion algorithms

Converting from the usual representation of a number x in radix β into its RN-coding
representation in the same radix is basically computing the operation 2x− x, whose result
is of course x.

Example 2.3. Representing π in RN-coding in radix 10 is done as follows:

2π 6.2831853071795 · · ·
−π 3.1415926535897 · · ·
π 3.1424̄1̄33̄5̄44̄1̄02̄

More formally, converting x from its usual radix β representation x = xnxn−1xn−2 · · · xl

into its radix β RN-representation x = dn+1dndn−1 · · · dl can be done by first defining the
carries ci ∈ {0, 1} as

ci+1 =

�
1 if 2xi + ci ≥ β
0 if 2xi + ci ≤ β − 1

,

and then computing the digit sequence dn+1dndn−1 · · · dl defined by

di = xi + ci − βci+1,

and dn+1 = cn+1.

If β is odd, this can lead to arbitrarily large carry-ripple, as we can see when converting
the radix 3 numbers 11111111 → 11111111 and 11111112 → 11̄1̄1̄1̄1̄1̄1̄1̄.

However, if β is even, the carries ci can equivalently be defined as

ci+1 =

�
1 if xi ≥ β/2
0 if xi < β/2

.

To prove this, it suffices to remark that

if xi ≥ β/2, then 2xi + ci ≥ β,

if xi < β/2, then since β is even, 2xi ≤ β − 2 and 2xi + ci ≤ β − 1.

This shows that, when β is even, carries cannot ripple, and conversion from regular radix
β into RN-coding can be done fully in parallel.
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2.1.3 Binary encoding

In binary, multiplying by 2 can be done with a left shift. When using our previously
defined conversion algorithm on binary 2’s complement numbers, this conversion algorithm
corresponds to the well-known Booth recoding [6].

Example 2.4. Let x = 110100110010 be a sign-extended 2’s complement number and
write the digits of 2x above the digits of x.

2x 1 0 1 0 0 1 1 0 0 1 0 0

x 1 1 0 1 0 0 1 1 0 0 1 0

RN-repr. x 1̄ 1 1̄ 0 1 0 1̄ 0 1 1̄ 0

In any column the two upper-most bits provide the encoding defined above of the signed-
digit below in the column. Since the signed digit in the leftmost position will always be
0, there is no need to include the most significant position otherwise found in the two top
rows.

Rounding this value by truncating off the two least significant digits we obtain:

RZ9(2x) 1 0 1 0 0 1 1 0 0 1

RZ9(x) 1 1 0 1 0 0 1 1 0 0

RN-repr. RN9(x) 1̄ 1 1̄ 0 1 0 1̄ 0 1

The bit of value 1 in the upper rightmost corner (in red) acts as a round bit, assuring a
round-up in cases there is a tie-situation as here.

From this example, one can imagine two possible ways of encoding the RN-coding in
binary:

• encoding each signed digit as two bits.

−1 ∼ (0, 1)
0 ∼ (0, 0) or (1, 1)
1 ∼ (1, 0),

(2.1)

where the value of the digit is the difference between the first and the second com-
ponent,

• using a more compact form, noticing that in the example above, the first row is simply
the second row, shifted to the left, except for the round-bit. This more compact form
is what we call Binary canonical RN-coding.

Definition 2.5 (Binary canonical RN-coding).
Let the number x be given in 2’s complement representation as the bit string bn · · · b�+1b�,
such that x = −bn2n+

�n−1
i=� bi2i. Then the binary canonical encoding of the RN-representation

of x is defined as the pair

x ∼ (bnbn−1 · · · b�+1b�, r) where the round-bit is r = 0

and after truncation at position k, for n ≥ k > �

RNn−k(x) ∼ (bnbn−1 · · · bk+1bk, r) with round-bit r = bk−1.
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Example 2.6. The binary canonical RN-coding of the previous truncated example corre-
spond to the bits set in red:

RZ9(2x) 1 0 1 0 0 1 1 0 0 1

RZ9(x) 1 1 0 1 0 0 1 1 0 0

RN-repr. RN9(x) 1̄ 1 1̄ 0 1 0 1̄ 0 1

Definition 2.7 (Value of a binary canonical RN-coding).
A fixed-point number x =

�n
i=l bi2

i has two binary canonical RN-codings, (x, 0) and (x −
u, 1), where u is the unit in the last place : u = 2l. We will note V(x, rx) the value of the
number represented by the RN-coding x, rx, and we have

V(x, rx) = x+ rxu.

It is important to notice that although from a “value perspective” the representation is
redundant (V(a, 1) = V(a+u, 0)), it is not so when considering the signed-digit representa-
tion. In this interpretation the sign of the least significant digit carries information about
the sign of the part which possibly has been rounded away. Hence, the two representations
that have the same value might round to different numbers, which have different values.
For example, we have V(0.1101001111, 1) = V(0.1101010000, 0), but

V(RN5(0.1101001111, 1)) �= V(RN5(0.1101010000, 0))
V(0.11010, 0) �= V(0.11010, 1)

0.11010 �= 0.11011

Lemma 2.8. Provided that a RN-represented number with canonical encoding (a, ra) is
non-zero, then ra = 1 implies that the least significant non-zero digit in its signed-digit
representation is 1 (the number was possibly rounded up), and ra = 0 implies it is −1 (the
number was possibly rounded down).

Proof. The result is easily seen when listing the trailing bits of the 2’s complement rep-
resentation of 2a + ra (with ra in red) above those of a together with the signed-digit
representation:

. . . 0 1 1 . . . 1

. . . . 0 1 . . . 1

. . . . 1 0 . . . 0

. . . 1 0 0 . . . 0

. . . . 1 0 . . . 0

. . . . 1̄ 0 . . . 0

If (x, rx) is the binary canonical encoding of X = V(x, rx) = x + rxu then it follows
that

−X = −x− rxu = x̄+ u− rxu = x̄+ (1− rx)u = x̄+ r̄xu,

which can also be seen directly from the encoding of the negated signed digit representation.

Lemma 2.9. If (x, rx) is the canonical RN-encoding of a value X, then (x̄, r̄x) is the
canonical RN-encoding of −X, where x̄ is the 1’s complement of x. Hence negation of a
canonically encoded value is a constant time operation.
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2.1.4 Interval interpretation

We may interpret the representation (a, ra) as an interval I(a, ra) of length u/2:

I(a, 1) =
�
a+ u

2 ; a+ u
�
, I(a+ u, 0) =

�
a+ u ; a+ 3u

2

�

or
I(a, ra) =

�
a+ ra

u
2 ; a+ (1 + ra)

u
2

�
, (2.2)

when interpreting them as intervals according to what may have been thrown away when
rounding by truncation.

Hence even though (a, 1) and (a + u, 0) represent the same value a + u, as intervals
they are essentially disjoint, except for sharing a single point. In general we may express
the interval interpretation as pictured in Fig. 2.1.

✲

✻
a

✻
a+ u

2

✻
a+ u

✻
a+ 3u

2

✻

a+ 2u

[ ][ ][ ][ ]
I(a, 0) I(a, 1) I(a+ u, 0) I(a+ u, 1)

Figure 2.1: Binary Canonical RN-representations as Intervals

We do not intend to define an interval arithmetic, but only require that the interval
representation of the result of an arithmetic operation ⊙ satisfies 1

I(A⊙ B) ⊆ I(A)⊙ I(B) = {a⊙ b|a ∈ A, b ∈ B}.

In Section 2.2, we find several ways of defining arithmetic operations such as addition, and
this constraint on intervals permits to ensure the uniqueness of the result of the operations.

2.2 Computing with fixed-point RN-coding

We will first consider fixed-point representations for some fixed value of u of the unit in
the last place. We want to operate directly on the components of the encoding (a, ra), not
on the signed-digit representation, but we will not discuss overflow problems, as we assume
that we have enough bits to represent the result in canonically encoded representation.

2.2.1 Addition of RN-Represented Values

Employing the value interpretation of encoded operands (a, ra) and (b, rb) we have for
addition:

V(a, ra) = a+ rau

+ V(b, rb) = b+ rbu

V(a, ra) + V(b, rb) = a+ b+ (ra + rb)u

The resulting value has two possible representations, depending on the choice of the
rounding bit of the result. To determine what the rounding bit of the result should be,

1
Note that this is the reverse inclusion of that required for ordinary interval arithmetic
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I(V(a, ra) + V(b, rb)) I(a, ra) + I(b, rb)

ra = rb = 0
I(a+ b− u, 1) =

�
a+ b− u

2 ; a+ b
�

I(a+ b, 0) =
�
a+ b ; a+ b+ u

2

�

�

⊆

[a+ b ; a+ b+ u]

[a+ b ; a+ b+ u]

ra ⊕ rb = 1
I(a+ b, 1) =

�
a+ b+ u

2 ; a+ b+ u
�

I(a+ b+ u, 0) =
�
a+ b+ u ; a+ b+ 3u

2

�





⊆

�
a+ b+ u

2 ; a+ b+ 3u
2

�

ra = rb = 1
I(a+ b+ u, 1) =

�
a+ b+ 3u

2 ; a+ b+ 2u
�

I(a+ b+ 2u, 0) =
�
a+ b+ 2u ; a+ b+ 5u

2

�

⊆

�

[a+ b+ u ; a+ b+ 2u]

[a+ b+ u ; a+ b+ 2u]

Table 2.1: Interpretations of additions as intervals

we consider interval interpretations of the two possible representations of the result in
Table 2.1, depending on the rounding bits of the operands. In order keep the property that
I((a, ra)⊕ (b, rb)) ⊆ I(a, ra) + I(b, rb), the rounding bit of the result should be 0 (resp. 1)
when the rounding bits of the operands are both 0 (resp. 1).

In order to keep the addition symmetric and to have (a, ra)⊕ (0, 0) = (a, ra) we define
addition of RN encoded numbers as follows.

Definition 2.10 (Addition). If u is the unit in the last place of the operands, let us define
addition as:

(a, ra)⊕ (b, rb) = ((a+ b+ (ra ∧ rb)u), ra ∨ rb),

where ra ∧ rb may be used as carry-in to the 2’s complement addition.



2.2. COMPUTING WITH FIXED-POINT RN-CODING 29

Example 2.11. Let us take two examples adding two numbers that were previously
rounded to the nearest integer.

Addition
not rounded

Addition on rounded
canonical representations

a1 01011.1110 (01011, 1)

b1 01001.1101 (01001, 1)

a1 + b1 010101.1011 (010101, 1)

a2 01011.1010 (01011, 1)

b2 01001.1001 (01001, 1)

a2 + b2 010101.0011 (010101, 1)

Using the definition above, RN0(a1 + b1) = RN0(a1) + RN0(b1) holds in the first case.
Obviously, since some information may be lost during rounding, there are cases like in the
second example where RN0(a2+b2) �= RN0(a2)+RN0(b2). Note that due to the information
loss, a2 + b2 is not in I((a2, ra2) + (b2, rb2)).

Recalling that −(x, rx) = (x̄, r̄x), we observe that using Definition 2.10 for subtraction
yields (x, rx) � (x, rx) = (−u, 1), with V(−u, 1) = 0. It is possible alternatively to define
addition on RN-encoded numbers as

(a, ra)⊕2 (b, rb) = ((a+ b+ (ra ∨ rb)u), ra ∧ rb).

Using this definition, one has

(x, rx)�2 (x, rx) = (0, 0),

but then the neutral element for addition is (−u, 1) instead of (0, 0), i.e.,

(x, rx)⊕2 (−u, 1) = (x, rx).

2.2.2 Multiplying RN-Represented Values

By definition we have for the value of the product

V(a, ra) = a+ rau

V(b, rb) = b+ rbu

V(a, ra)V(b, rb) = ab+ (arb + bra)u+ rarbu2,

noting that the unit of the result is u2, assuming that u ≤ 1 and a and b are greater than
u. Since negation of canonical (2’s complement) RN-encoded values can be obtained by
constant-time bit inversion (Lemma 2.9), multiplication can be realized by multiplication
of the absolute values of the operands, the result being supplied with the correct sign by a
conditional inversion.
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When multiplying positive values, the resulting value has two possible representations,
depending on the choice of the rounding bit of the result. To determine what the rounding
bit of the result should be, we consider interval interpretations of the two possible repre-
sentations of the result in Table 2.2, depending on the rounding bits of the operands. In
order keep the property that

I((a, ra)⊗ (b, rb)) ⊆ I(a, ra)× I(b, rb),

the rounding bit of the result should be 0 (resp. 1) when the rounding bits of the operands
are both 0 (resp. 1).

In order to keep the multiplication symmetric and to have (a, ra) ⊗ (1, 0) = (a, ra) we
define multiplication of RN encoded numbers as follows.

Definition 2.12 (Multiplication). If u is the unit in the last place, with u ≤ 1, we define
for non-negative operands:

(a, ra)⊗ (b, rb) = (ab+ u(arb + bra), rarb) ,

and for general operands by appropriate sign inversions of the operands and result. If u < 1
the unit is u2 < u and the result may often have to be rounded to unit u, which can be done
by truncation.

The product can be returned as (p, rp) with

p = ab+ u(arb + bra) = a(b+ rbu) + brau,

where the terms of brau may be added into the array of partial products.
For a 5-bit integer example let (a, ra) = (a4a3a2a1a0, ra) and (b, rb) = (b4b3b2b1b0, rb),

or in signed-digit b = d4d3d2d1d0, di ∈ {−1, 0, 1}, we note that a4 = b4 = 0 since a ≥ 0 and
b ≥ 0. It is then possible to add the terms of brau (shown framed) into the array of partial
products2:

a3 a2 a1 a0
a3d0 a2d0 a1d0 a0d0 d0

a3d1 a2d1 a1d1 a0d1 b0ra d1
a3d2 a2d2 a1d2 a0d2 b1ra d2

a3d3 a2d3 a1d3 a0d3 b2ra d3
a3d4 a2d4 a1d4 a0d4 b3ra d4

p8 p7 p6 p5 p4 p3 p2 p1 p0

Thus the product is (p, rp) with p = ab+ u(arb + bra) = a(b+ rbu) + brau and rp = rarb.
Multiplication of RN-represented values can therefore be implemented on their canoni-

cal encodings at about the same cost as ordinary 2’s complement multiplication. The result
may have to be rounded, which by truncation in constant time will define the rounded prod-
uct as some (p�, r�p). Note that when recoding the multiplier into a higher radix like 4 and
8, similar kinds of modification may be applied.

2
We do not show the possible rewriting of negative partial products, requiring an additional row.
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Example 2.13. For a = (01011, 1) and b = (01001, 1) (with V(b) = 11̄010), the array of
partial products is:

1 0 1 1
0 0 0 0 0

1 0 1 1 1 1
0 0 0 0 0 0

−1 0 −1 −1 0 −1
1 0 1 1 1 1

0 0 1 1 1 0 1 1 1

Hence (01011, 1) ⊗ (01001, 1) = (001110111, 1), where we note that (001110111, 1) corre-
sponds to the interval [01110111.1 ; 01111000.0], which is a subset of the interval

[01011.1× 01001.1 ; 01100× 01010] = [01101101.01 ; 01111000.00].

2.2.3 Dividing RN-Represented Values

As for multiplication, we assume that negative operands have been sign-inverted, and that
the signs are treated separately. Employing our interval interpretation (2.2), we must
require the result of dividing (x, rx) by (y, ry) to be in the interval:

�
x+ rx

u
2

y + (1 + ry)
u
2

;
x+ (1 + rx)

u
2

y + ry
u
2

�
,

where it is easily seen that the rational value3

q =
x+ rx

u
2

y + ry
u
2

belongs to that interval. Note that the dividend and divisor to obtain the quotient q are
then constructed simply by appending the round bits to the 2’s complement parts, i.e.,
simply using the “extended” bit-strings as operands. To determine the accuracy needed in
an approximate quotient q� = q + ε consider the requirement

x+ rx
u
2

y + (1 + ry)
u
2

< q + ε <
x+ (1 + rx)

u
2

y + ry
u
2

. (2.3)

Generally division algorithms require that the operands are scaled, hence assume that the
operands satisfy 1 ≤ x < 2 and 1 ≤ y < 2, implying 1

2 < q < 2. Furthermore assume that
x and y have p fractional digits, so u = 2−p. To find sufficient bounds on the error ε in
(2.3) consider first for ε ≥ 0 the right bound. Here we must require

(x+ rx
u
2 ) + ε(y + ry

u
2 ) < x+ (1 + rx)

u
2 or ε(y + ry

u
2 ) <

u
2 ,

which is satisfied for ε < u
4 , since y + ry

u
2 < 2. For the other bound (for negative ε) we

must require
x+ rx

u
2

y + (1 + ry)
u
2

<
x+ rx

u
2

y + ry
u
2

+ ε

3
We might also have chosen to evaluate the quotient

x+rxu
y+ryu

. However dividing (x, rx) by the neutral

element (1, 0) would then yield the result (x+rxu, 0), whereas with the chosen quotient the result becomes

(x, rx). The difference between these two expressions evaluated to some precision p is at most one ulp(p).
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or
−ε(y + (1 + ry)

u
2 ) < (x+ rx

u
2 )

u
2 ,

which is satisfied for −ε < u
4 , since x ≥ 1 and y + u ≤ 2.

Hence |ε| < u
4 assures that (2.3) is satisfied, and any standard division algorithm may

be used to develop a binary approximation to q with p+2 fractional bits, x = q�y+ r with
|r| < y2−p−2. Note that since q may be less than 1, a left shift may be required to deliver
a p + 1 signed-digit result, the same number of digits as in the operands. Hence a bit of
weight 2−p−1 will always be available to determine the round bit.

The sign of the remainder determines the sign of the tail beyond the bits determined.
Recall from Lemma 2.8 that when the round bit is 1, the error is assumed non-positive,
and non-negative when the round bit is 0. If this is not the case then the resulting round
bit must be inverted, hence rounding is also here a constant time operation.

2.3 Computing with floating-point RN-coding

For an implementation of a binary floating point arithmetic unit (FPU) it is necessary
to define an encoding of an operand (2em, rm), based on the canonical encoding of the
significand part (say m encoded in p + 1 bits, 2’s complement), supplied with the round
bit rm and the exponent e in some biased binary encoding. It is then natural to pack
the components into a computer word (32, 64 or 128 bits), employing the same principles
as used in the IEEE-754 standard [27]. For normal values it is also possible here to use
a “hidden bit,” noting that the 2’s complement encoding of the normalized significand
will have complementary first and second bits. Thus representing the leading bit as a
(separate) sign bit, the next bit (of weight 20) need not be represented and can be used as
“hidden-bit.” Hence let fm be the fractional part of m, assumed to be normalized such that
1 ≤ |m| < 2, and let sm be the sign-bit of m. The “hidden bit” is then the complement s̄m
of the sign-bit. The components can then be allocated in the fields of a word as:

sm e fm rm

with the round bit in immediate continuation of the significand part. The exponent e can
be represented in biased form as in the IEEE-754 standard. The number of bits allocated
to the individual fields may be chosen as in the different IEEE-754 formats, of course with
the combined fm, rm together occupying the fraction field of those formats. The value of a
floating point number encoded this way can then be expressed as

2e−bias
�
[sms̄m.f1f2 · · · fp−1]2c + rm2

−p−1
�
,

where f1, f2, · · · , fp−1 are the (fractional) bits of fm.
Subnormal and exceptional values may be encoded as in the IEEE-754 standard, noting

that negative subnormals have leading ones. Observe that the representation is sign-
symmetric and that negation is obtained by inverting the bits of the significand.

We shall now sketch how the fundamental operations may be implemented on such
floating point RN-representations, not going into details on overflow, underflow and excep-
tional values as these situations can be treated exactly as known for the standard binary
IEEE-754 representation. [27]
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2.3.1 Multiplication and Division

Since the exponents are handled separately, forming the product or quotient of the signif-
icands is precisely as described previously for fixed point representations: sign-inverting
negative operands by bit-wise inversion, forming the double-length product, normalizing
and rounding it, and supplying it with the proper sign by possibly negating the result.

2.3.2 Addition

Before addition or subtraction there is in general a need of alignment of the two operand
significands, according to the difference of their exponents (too large a difference is treated
as a special case). The operand having the larger exponent must be left-shifted, with ap-
propriate digit values appended at the least significant end, to overlap with the significand
of the smaller operand. In effective subtractions, after cancellation of leading digits it may
be necessary to left normalize, so we also need here to consider what to append at the
right, recalling that we want to operate on the significands encoded in 2’s complement.

Thinking of the value as represented in binary signed-digit, obviously zeroes have to be
shifted in. In our encoding, say for a positive result (d, rd) we may have a 2’s complement
bit pattern:

d ∼ 0 0 · · · 0 1 bk · · · bp−1 and round bit rd

to be left normalized. If we were encoding the number with two bits for each signed digit,
as in (2.1), the least significant signed digit would be encoded as (rd, bp−1). Zero-valued
digits to be shifted in may then naturally be encoded as (rd, rd), as confirmed from applying
the addition rule for obtaining 2× (x, rx) by (x, rx) + (x, rx) = (2x+ rxu, rx).

It then follows that shifting in bits of value rd will precisely achieve the effect of shifting
in zeroes in the signed-digit interpretation:

2kd ∼ 0 1 bk · · · bp−1rd · · · rd with round bit rd.

Subtraction, the ”near case”

Addition is traditionally now handled in an FPU as two cases [16], where the “near case” is
dealing with effective subtraction of operands whose exponents differ by no more than one.
Here, a significant cancellation of leading digits may occur, and thus a variable amount of
normalization shifts are required. This left shifting is handled by shifting in copies of the
round-bit. Figure 2.2 shows a possible pipelined implementation of this case, where lzd(d)
is a log-time algorithm for “leading zeroes determination” of the difference (see e.g., [33])
to determine the necessary normalization shift amount. This determination is based on a
redundant representation of the difference (obtained in constant time by pairing the aligned
operands), taking place in parallel with the subtraction (conversion from redundant to non-
redundant representation). Normalization can take place on the non-redundant difference,
without need for sign inversion, as in the case of the sign-magnitude representation used
in the IEEE-754 encoding. For simplicity in the figure we assume that ma,mb and mr are
the 2’s complement operands, respectively the result, including their appended round-bits.

Addition, the ”far case”

The remaining case dealt with are the situations where the result of adding or subtracting
the aligned significands at most requires normalization by a single right or left shift. Since
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❄

ma

❄

mb

❄
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❄

lzd(d) Subtract

Form Exponent✲

❄
Normalize

❄

Adj. Exponent✲

❄
mr

❄
er

Figure 2.2: Near Path, effective subtraction when |ea − eb| ≤ 1

negation is a constant time operation we may assume that an effective addition is to
be performed of the larger operand (appended with copies of the round-bit) and the sign
extended smaller operand. Rounding can then be performed as usual by truncation, noting
that here there are only two log-time operations: the variable amount of alignment shifts
and addition/subtraction. Compared with standard number representations we avoid the
“expensive” determination of a sticky bit and rounding incrementation. Figure 2.3 shows
a possible two-stage pipeline implementation.

±

✲

❄

ma

❄

mb

❄

ea

❄

eb

Align operands

❄

Form exponent✲

❄Add/Sub and Round

❄
mr

Adj. exponent✲

❄
er

Figure 2.3: Far Path, add or subtract when |ea − eb| ≥ 2

Note that in the case where the exponent difference exceeds the number of operand
bits is not necessary to form the exact sum. It is sufficient to deliver the larger operand as
the result, but following Lemma 2.8 possibly inverting the round-bit of the result so that
it reflects the sign of the smaller (discarded) operand.

2.3.3 Discussion of the Floating Point RN-representation

As seen above it is possible to define binary floating point representations, where the sig-
nificand is encoded in the canonical 2’s complement encoding with the round-bit appended
at the end. An FPU implementation of the basic arithmetic operations is feasible in about
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the same complexity as one based on the IEEE-754 standard for binary floating point.
But since the round-to-nearest functionality is achieved at less hardware complexity, the
arithmetic operations will generally be faster, by avoiding the usual log-time “sticky-bit”
determination and rounding incrementation. Benefits are obtained through faster rounding
to nearest, also note that the domain of representable values is sign-symmetric. The di-
rected roundings can also be realized at minimal cost; however, they require the calculation
of a “sticky bit,” as also needed for the directed roundings of the IEEE-754 representation,
but no rounding incrementation is needed here, as shown in the next result.

Theorem 2.14. Let a number after truncation of tail t have encoding (a, ra) with sign-bit
sa, then the directed roundings can be realized by changing the resulting round-bit if the
truncated tail t (the “sticky-bit”) is non-zero as follows:

RU : ra := 1
RD : ra := 0
RZ : ra := sa
RA : ra := s̄a,

Proof. Consider the case of RU when ra = 0. By Lemma 2.8 the least significant non-zero
signed-digit of the truncated (a, ra) is −1, and if t �= 0 the value was effectively rounded
down, thus ra should be changed to ra = 1, whereas it should not be changed when ra = 1.
The other cases follow similarly.

2.4 Conclusion

We have analyzed a general class of number representations for which truncation of a digit
string yields the effect of rounding to nearest.

Concentrating on binary RN-represented operands, we have shown how a simple encod-
ing, based on the ordinary 2’s complement representation, allows trivial (constant time)
conversion from 2’s complement representation to the binary RN-representation. A sim-
ple parallel prefix (log time) algorithm is needed for conversion the other way. We have
demonstrated how operands in this particular canonical encoding can be used at hardly
any penalty in many standard calculations, e.g., addition and multiplication, with nega-
tion even being a constant time operation, which often simplifies the implementation of
arithmetic algorithms.

Similarly to what have been done for division in §2.2.3, function evaluations like squar-
ing, square root and even the evaluation of “well behaved” transcendental functions may be
defined and implemented, just considering canonical RN-represented operands as 2’s com-
plement values with a “carry-in” not yet absorbed, possibly using interval interpretation
to define the resulting round bit.

The particular feature of the RN-representation, that rounding-to-nearest is obtained
by truncation, implies that repeated roundings ending in some precision yields the same
result, as if a single rounding to that precision was performed. To deal with double-
rounding errors, it was previously proposed [39] to attach some state information (2 bits)
to a rounded result, allowing subsequent roundings to be performed in such a way, that
multiple roundings yields the same result as a single rounding to the same precision. It was
shown that this property holds for any specific IEEE-754 [27] rounding mode, including
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in particular for the round-to-nearest-even mode. But these roundings may still require
log-time incrementations, which are avoided with the proposed RN-representation.

The fixed point encoding immediately allows for the definition of corresponding floating
point representations, which in a comparable hardware FPU implementation will be simpler
and faster than an equivalent IEEE standard conforming implementation.

Thus in applications where conformance to the IEEE-754 standard is not required, it
is possible to avoid the penalty of intermediate log-time roundings by employing the RN-
representation. Signal processing may be an application area where specialized hardware
(ASIC or FPGA) is often used anyway, and the RN-representation can provide faster
arithmetic with round to nearest operations at reduced area and delay.
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Chapter 3

Breakpoints for some algebraic

functions

As we reminded in the Introduction (Section 1.3), in a floating-point system that follows
the IEEE 754-1985 standard for radix-2 floating-point arithmetic [25], the user can choose
an active rounding mode, also called rounding-direction attribute in the newly revised IEEE
754-2008 standard [27]:

• rounding toward −∞ (RDp(z)),

• rounding toward +∞ (RUp(z)),

• rounding toward 0 (RZp(z)),

• and rounding to nearest (RNp(z)), which is the default rounding mode.

We are interested here in facilitating the delivery of correctly-rounded results for var-
ious simple algebraic functions that are frequently used in numerical analysis or signal
processing. Given a function f : Rd → R and a floating-point number x, the problem of
computing RNp(f(x)) is closely related to the knowledge of the midpoints of the function
f , as we presented in §1.3.3. Let us remind that we call breakpoints the discontinuities
of the rounding functions: More specifically, the midpoints are the discontinuities of the
RN() rounding function, and Mβ,p denotes the set of all midpoints, namely:

Mβ,p =
�
±

�
Z +

1

2

�
· βez−p+1

���Z ∈ N, βp−1 ≤ Z < βp and ez ∈ Z
�
.

The exact points are the discontinuities of the other rounding functions, which basically
correspond to the set of floating point numbers Fβ,p.

In this chapter, we present results on the existence of midpoints and exact points for
some algebraic functions: beyond division, inversion, and square root, we studied the recip-
rocal square root 1/

√
y, the 2D Euclidean norm

�
x2 + y2 and its reciprocal 1/

�
x2 + y2,

and the 2D-normalization function x/
�
x2 + y2. A part of the results presented on division

and square root have been known for some time in binary arithmetic; see for instance the
work by Markstein [43], as well as studies by Iordache and Matula [28] and Parks [50, 51].
Let us also mention the work by Lauter and Lefèvre [38] on the function xy, which thus
covers integer powers. We present these results for completeness, and we extend some of
them to other radices, in particular to radix 10.

39
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Table 3.1 summarizes the results presented in the chapter. In this table, “many”
indicates that the techniques we used did not allow us to find a simple characterization of
the midpoints or of the exact points of the function, and that an exhaustive enumeration
was impractical because of the too large number of cases to consider. Most of the results
displayed here for β = 2 are in fact obtained in a more general setting, namely for β = 2q

with q ∈ N>0.

Table 3.1: Summary of the results given in this chapter.

Midpoints Exact points

Function Radix 2 Radix 10 Radix 2 Radix 10

√
y none none many many

1/
√
y none Theorem 3.5 y = 22k Theorem 3.8

xk for k ∈ N>0 Theorem 3.11 Theorem 3.11 Theorem 3.11 Theorem 3.11

x/�y�2 none many many many

x/y none many many many

1/y none Theorem 3.15 y = ±2k Theorem 3.16

1/
�
x2 + y2 none Theorem 3.20 {x, y} = {0,±2k} Theorem 3.22

x/
�

x2 + y2 none none x = 0 or y = 0 many
�

x2 + y2 many many many many

We start with extensions to radices 2q and 10 of classical, radix-2 results for square
roots (Section 3.1), reciprocal square roots (Section 3.2), and positive integer powers (Sec-
tion 3.3). In Section 3.4 we move to the function that maps a real x and a d-dimensional
real vector y = [yk]1≤k≤d to x/�y�2. Here � · �2 denotes the Euclidean norm of vectors:

�y�2 =
�

y21 + · · ·+ y2d.

The function x/�y�2 is interesting for it covers several important special cases, each of
them being detailed in a subsequent section: for d = 1, division and reciprocal (Sec-
tions 3.5 and 3.6); for d = 2, reciprocal two-dimensional Euclidean norm 1/

�
x2 + y2 and

normalization of two-dimensional vectors x/
�
x2 + y2 (Sections 3.7 and 3.8). We comment

on the two-dimensional Euclidean norm in Section 3.9. Finally, we discuss the issue of
breakpoints located in the range of subnormal floating-point numbers in Section 3.10.

3.1 Square-root

3.1.1 Midpoints for square root

The following Theorem 3.1 can be viewed as a consequence of a result of Markstein [43,
Theorem 9.4]. It says that the square root function has no midpoints, whatever the radix
β is. A detailed proof is given here for completeness.



3.1. SQUARE-ROOT 41

Theorem 3.1 (Markstein [43]). Let y ∈ Fβ,p be positive. Then
√
y �∈ Mβ,p.

Proof. Let z =
√
y and assume that z is in Mβ,p. Then there exist some integers Z and ez

such that z = (Z + 1/2) · βez−p+1 and βp−1 ≤ Z < βp. Using y = z2 and y = Y · βey−p+1,
we deduce that

4Y · βey−2ez+p−1 = (2Z + 1)2. (3.1)

Now, one may check that ez = �ey/2�, so that

ey − 2ez = ey mod 2, (3.2)

which is non-negative. Thus, for p ≥ 1, the left-hand side of (3.1) is an even integer. This
contradicts the fact that the right-hand side is an odd integer.

3.1.2 Exact points for square root

We saw in the previous subsection that the square root function has no midpoints. The
situation for exact points is just opposite: for a given input exponent, the number N of
floating-point numbers having this exponent and whose square root is also a floating-point
number is huge. This number grows essentially like βp/2. In this section, we make this
claim precise for β = 2q (q ∈ N>0) and β = 10 by giving an explicit expression for N
in Theorem 3.4. To establish this counting formula, we need the following two lemmata.
Lemma 3.2 counts the number of integer multiple of c in a positive interval [a, b], while
Lemma 3.3 gives a characterization of the exact points for the square root.

Lemma 3.2. Given a, b ∈ R such that 0 ≤ a ≤ b, and c ∈ N>0, let Na,b be the cardinal of
{d ∈ N | c divides d ∈ [a, b)}. Then Na,b = �b/c� − �a/c�.

Proof. Since [a, b) = [0, b)\[0, a), one has Na,b = N0,b − N0,a. Hence it remains to check
that N0,a = �a/c�. If a �∈ N, since c ∈ N>0, then N0,a = 1+�a/c�. If a ∈ N, either c divides
a in which case N0,a = a/c, otherwise N0,a = 1 + �a/c�.

Lemma 3.3. Let y be a positive number in Fβ,p. The real number
√
y is also in Fβ,p if and

only if the integral significand Y of y satisfies βp−1 ≤ Y < βp and Y = Z2 · β1−p−(ey mod 2)

for some integer Z such that βp−1 ≤ Z < βp.

Proof. Let z =
√
y. Assume first that z ∈ Fβ,p. Then there exists an integer Z such that

z = Z · βez−p+1 and βp−1 ≤ Z < βp. Using y = z2 and y = Y · βey−p+1, we deduce that

Y = Z2 · β1−p−(ey−2ez). (3.3)

The “only if” statement then follows from (3.2). Conversely, using y = Y · βey−p+1, we
may rewrite the equality Y = Z2 · β1−p−(ey mod 2) as

√
y = Z · βez−p+1, where ez = (ey − (ey mod 2))/2.

By definition, ez is an integer and, by assumption, Z is an integer lying in [βp−1, βp).
Therefore,

√
y belongs to Fβ,p.
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Theorem 3.4. Let δy = (ey + p − 1) mod 2. For a given ey, the number N of positive
values y ∈ Fβ,p such that

√
y ∈ Fβ,p is given by

N =






�
2(qp−δy(q mod 2))/2

�
−

�
2(q(p−1)−δy(q mod 2))/2

�
, if β = 2q, q ∈ N>0;

�
10(p−δy)/2

�
−

�
10(p−1−δy)/2

�
, if β = 10.

Proof. Let γ = p − 1 + (ey mod 2). From Lemma 3.3, N is the number of integers Y in
[βp−1, βp) and of the form Z2 ·β−γ for some integer Z such that βp−1 ≤ Z < βp. Rewriting
Y = Z2 · β−γ as

Y · βδy · βγ−δy = Z2,

we see that βγ−δy divides Z2. Since δy = γ mod 2, we know that γ − δy is even and, for
p ≥ 1, nonnegative. Using for instance the factorizations of β(γ−δy)/2 and Z into primes,
we deduce that β(γ−δy)/2 divides Z. Consequently, there exists a positive integer X such
that

Y · βδy = X2 and Z = X · β(γ−δy)/2.

Now, the assumption βp−1 ≤ Y < βp is equivalent to

β(p−1+δy)/2 ≤ X < β(p+δy)/2, (3.4)

while the same assumption on Z is equivalent to βp−1−(γ−δy)/2 ≤ X < βp−(γ−δy)/2. The
latter interval contains the former because p − 1 ≤ δ ≤ p. Hence, N is the number of
integers X satisfying (3.4) and whose square is an integer multiple of βδy . We distinguish
between the two cases δy = 0 and δy = 1.

• If δy = 0 then N is the number of integers X satisfying (3.4). Consequently, N =
�βp/2� − �β(p−1)/2� (using either Lemma 3.2 with c = 1, or [20, (3.12)]).

• If δy = 1 then X2 is a multiple of β: When β has linear factors only (like β = 2 or
β = 10 = 2 · 5), this implies that X is a multiple of β. In this case, N is the number of
integers X that are multiples of β and satisfy

βp/2 ≤ X < β(p+1)/2.

Hence, using Lemma 3.2,

N = �β(p−1)/2� − �β(p−2)/2�.

Assume now that β = 2q for some positive integer q. If q is even then 2q divides X2

implies 2q/2 divides X, so that we take the number of X’s being an integer multiple of 2q/2.
Lemma 3.2 thus gives

N = �2qp/2� − �2q(p−1)/2�.

If q is odd then Y · 2 = (X · 2−�q/2�)2, which means that X · 2−�q/2� is even. Hence we keep
all the X’s that are an integer multiple of 21+�q/2�. Using Lemma 3.2, this gives

N = �2(qp−1)/2� − �2(q(p−1)−1)/2�.
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For a fixed ey, using Theorem 3.4, one can count the number of input floating-point
numbers y whose square root is an exact point. Tables 3.2 and 3.3 give the number N of
exact points for the basic formats of the IEEE 754-2008.

Also, for a fixed exponent ey, one can see from Theorem 3.4 that the number of exact
points for the square root function is Θ(2qp/2) when β = 2q, and Θ(10p/2) when β = 10
(see for instance Graham, Knuth, and Patashnik [20, p. 448] for a precise definition of
the Θ notation). Except for small precisions, Theorem 3.4 implies therefore that it can be
regarded as impractical to enumerate the exact points for the square root. The exponential
growth of the number of exact points is also displayed in Figure 3.1.

Table 3.2: Number of exact point for the square-root function for various binary formats
Format binary16 binary32 binary64 binary128

p 11 24 53 113

δy = 0 14 1199 ≈ 2.78 · 107 ≈ 2.98 · 1016

δy = 1 9 849 ≈ 1.97 · 107 ≈ 2.11 · 1016

Table 3.3: Number of exact point for the square-root function for various decimal formats
Format decimal32 decimal64 decimal128

p 7 16 34

δy = 0 2163 ≈ 6.84 · 107 ≈ 6.84 · 1016

δy = 1 683 ≈ 2.16 · 107 ≈ 2.16 · 1016

3.2 Reciprocal square root

3.2.1 Midpoints for reciprocal square root

Theorem 3.5. Let y ∈ Fβ,p be positive and let δy denote ey mod 2. If β = 2q (q ∈ N>0)
then 1/

√
y �∈ Mβ,p. If β = 10, one has 1/

√
y ∈ Mβ,p if and only if the integral significand

Y of y has the form
Y = 23p−δy+1 · 53p−2�−δy−1,

with � ∈ N such that � ≤ (3p− δy − 1)/2 and
�

2 · 10p−1 < 5� < 2 · 10p−1/2, if ey is odd,
2 · 10p−1/2 < 5� < 2 · 10p, if ey is even.

(3.5)

Proof. Let z = 1/
√
y and assume z ∈ Mβ,p. Let y = Y ·βey−p+1 and z = (Z+1/2) ·βez−p+1

be the normalized representations of y and z. From yz2 = 1 we deduce that

Y (2Z + 1)2 = 4 · β−ey−2ez+3p−3. (3.6)

Since z is a midpoint, one has βez < z < βez+1 and so β−2ez−2 < y < β−2ez . From this, one
may check that 1 ≤ −ey − 2ez ≤ 2. If ey is even, then we have −ey − 2ez = 2, otherwise
−ey − 2ez = 1. Hence,

−ey − 2ez = 2− δy, δy = ey mod 2. (3.7)
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Figure 3.1: Number of exact points for the square-root function.
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Hence we obtain from Equations (3.6) and (3.7)

Y (2Z + 1)2 = 4 · β3p−δy−1. (3.8)

When β = 2q, Equation (3.8) has no solution, since the right-hand side of the equality is
a power of two while the left-hand side has an odd factor (2Z + 1)2.

Let us now consider the case where β = 10. Equation (3.8) then becomes

Y (2Z + 1)2 = 23p−δy+1 · 53p−δy−1. (3.9)

Since 2Z + 1 is odd, we deduce from (3.9) that 2Z + 1 = 5� for some � ∈ N. Hence
Y = 23p−δy+1 · 53p−2�−δy−1

and it remains to prove the bounds on �. Since Y is an integer, we have 3p−2�−δy−1 ≥ 0,
and the first bound � ≤ (3p − δy − 1)/2 follows. To prove the bounds in (3.5), note first
that 10ey ≤ y < 10ey+1 and (3.7) give 10ez+(1−δy)/2 < z = 1/

√
y ≤ 10ez+1−δy/2. Then, using

z = (Z + 1/2) · 10ez−p+1, we obtain

2 · 10p−(δy+1)/2 < 2Z + 1 = 5� ≤ 2 · 10p−δy/2.

In fact, the upper bound is strict, for 5� is an odd integer while 2 ·10p−δy/2 is either an even
integer (δy = 0) or an irrational number (δy = 1).

Conversely, let Y = 23p−δy+1 · 53p−2�−δy−1, with � as in (3.5), and let z = 1/
√
y.

From (3.8) we deduce that y = 22p−2ez · 52p−2�−2ez−2 and z =
�
(5� − 1)/2 + 1/2

�
· 101−p+ez .

Now 2 · 10p−1 < 5� < 2 · 10p implies 10p−1 ≤ (5� − 1)/2 < 10p and thus z ∈ M10,p.

To find in radix 10 the significands Y of all the inputs y such that 1/
√
y is a midpoint,

it suffices to find the at most two � ∈ N such that 2 · 10p−1 < 5� < 2 · 10p, and to determine
from the bounds (3.5) whether ey is even or odd. Table 3.4 gives the integral significands
Y and the parity of the exponent ey such that z = 1/

√
y is a midpoint in the basic decimal

formats of IEEE 754-2008.

Table 3.4: Integral significands Y of y ∈ F10,p such that 1/
√
y ∈ M10,p, for the decimal

formats of the IEEE 754-2008 standard [27].

Format Integral significand Y ey

decimal32

(p = 7)
222 · 50 = 4194304 even

decimal64 248 · 52 = 7036874417766400 odd

(p = 16) 249 · 51 = 2814749767106560 even

decimal128 2102 · 54 = 3169126500570573503741758013440000 odd

(p = 34) 2103 · 53 = 1267650600228229401496703205376000 even

Notice that for radices different from 10 or a power of 2, we do not have general
results (which is in contrast with square root; see Section 3.1.1). Equation (3.8) may have
solutions:

Example 3.6. In radix 3, 1√
4
= 1

2 is a midpoint for the reciprocal square-root function for
any precision p ≥ 2. For example, with p = 6, one has

�
(110000)3 · 3

−4
�−1/2

= ((111111)3 + 1/2) · 3−6.
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3.2.2 Exact points for reciprocal square root

The following theorem gives a characterization of the exact points of the square-root re-
ciprocal when the radix is a power of a prime number, which includes the most frequent
case β = 2 and β = 2q. The case β = 10 is treated separately in Theorem 3.8.

Theorem 3.7. Let y ∈ Fβ,p be positive. Let β = mq with m a prime number. One has
1/
√
y ∈ Fβ,p if and only if y = m2k with k ∈ Z.

Proof. Taking z = 1/
√
y, note first that (3.7) still holds. Now assume that z ∈ Fβ,p and

let Y and Z be the integral significands of y and z. From yz2 = 1 and (3.7), we deduce
that

Y Z2 = β3p−δy−1. (3.10)

If β = mq, we deduce from (3.10) that Z = m� for some � ∈ N. Hence Y = mq(3p−δy−1)−2�

and, using (3.7), y = m2(qp−q−qez−�) is indeed an even power of m. Conversely, if y = m2k,
then z = m−k is in Fβ,p.

All the floating-point numbers y such that 1/
√
y is an exact point can be deduced from

the ones lying in the interval [1, β2). In radix 2q, Theorem 3.7 implies that at most q values
of y in [1, 22q) suffice to characterize the exact points for the reciprocal square root. In
radix 16 = 24 for instance, the only exact points for input values y ∈ [1, 256) are:

y 1 4 16 64

1/
√
y 1 1/2 = 0.816 1/4 = 0.416 1/8 = 0.216

Theorem 3.8. Let y ∈ F10,p be positive and let δy denote ey mod 2. One has 1/
√
y ∈ F10,p

if and only if either y = 10−2ez or the integral significand Y of y differs from 10p−1 and
has the form

Y = 23p−1−δy−2k · 53p−1−δy−2�,

with k, � ∈ N such that 0 ≤ k, � ≤ (3p− 1− δy)/2.

Proof. Let z = 1/
√
y and assume z ∈ F10,p. If z = 10ez then obviously y = 10−2ez . On the

other hand, z must differ from the irrational number 10ez+1/2. Hence we now assume

z ∈ (10ez , 10ez+1/2) ∪ (10ez+1/2, 10ez+1).

This implies
y ∈ (10−2ez−2, 10−2ez−1) ∪ (10−2ez−1, 10−2ez).

Therefore, y is not a power of 10 and its normalized representation y = Y ·10ey−p+1 is such
that Y �= 10p−1. Note now that (3.7) and (3.10) still hold here, so that yz2 = 1 implies
Y Z2 = 103p−1−δy . In particular, Z must have the form Z = 2k · 5� for some k, � in N. Thus

Y = 23p−1−δy−2k · 53p−1−δy−2�,

where, since Y is an integer, 0 ≤ k, � ≤ (3p− 1− δy)/2.
Conversely, the case y = 10−2ez being trivial, let Y = 23p−1−δy−2k · 53p−1−δy−2� be the

integral significand of y such that 10p−1 < Y < 10p, and let z = 1/
√
y. Using (3.7) further

leads to z = 2k · 5� · 10ez−p+1. One has 2k · 5� ∈ N and, from 10p−1 < Y < 10p, we get
10p−(1+δy)/2 < 2k · 5� < 10p−δy/2. Hence z ∈ F10,p.
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Enumerating the integral significands

Y = 23p−1−δy−2k · 53p−1−δy−2�,

with k, � ∈ N such that 0 ≤ k, � ≤ (3p− 1− δy)/2 and 10p−1 < Y < 10p is easily done by
a simple program, like for example Algorithm 1.

Data: Precision p, δy = ey mod 2

Result: Integral significands Y such that y = Y · 10ey−p+1 yields an exact point for

the reciprocal square-root function

print 10p−1; /* First, take into account the case y = 10−2ex */

minY = 10p−1;

maxY = 10p;

maxk� = �(3p− 1− δy)/2�;
for k from 0 to maxk� do

for � from 0 to maxk� do

Y = 23p−1−δy−2k · 53p−1−δy−2� ; /* Y as in Theorem 3.8 */

if minY < Y < maxY then

print Y ; /* Y is an integral significand */

end

end

end

Algorithm 1: Reciprocal Sqrt Exactpoints (int p, int δy)

Tables 3.5, 3.6, 3.7 and 3.8 give all the integral significands Y of y, and the parity of the
exponent ey, such that 1/

√
y is a floating-point number too, in the decimal32, decimal64

and decimal128 formats. Figures 3.2, 3.3 and 3.4 also display the distribution of the inputs
that leads to exact points for the reciprocal square-root on the decade [1, 100).

For the basic decimal formats of the IEEE 754-2008, the table below gives the number
of significands Y such that 1/

√
y is an exact point, with respect to the parity δy of the

exponent of y.

Format decimal32 decimal64 decimal128

p 7 16 34

δy = 0 9 17 37

δy = 1 7 17 36
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Figure 3.3: The exactpoints of the reciprocal square-root function for the decimal64 format.
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Table 3.5: Integral significands Y of y ∈ F10,7, such that 1/
√
y ∈ F10,7.

Y 1/
√
Y · 10δy−p+1 ey

26 · 56 = 1000000 1.000000 · 100 even

220 · 50 = 1048576 9.765625 · 10−1 even

218 · 52 = 6553600 3.906250 · 10−1 even

216 · 52 = 1638400 7.812500 · 10−1 even

212 · 54 = 2560000 6.250000 · 10−1 even

28 · 56 = 4000000 5.000000 · 10−1 even

24 · 58 = 6250000 4.000000 · 10−1 even

22 · 58 = 1562500 8.000000 · 10−1 even

20 · 510 = 9765625 3.200000 · 10−1 even

219 · 51 = 2621440 1.953125 · 10−1 odd

215 · 53 = 4096000 1.562500 · 10−1 odd

213 · 53 = 1024000 3.125000 · 10−1 odd

211 · 55 = 6400000 1.250000 · 10−1 odd

29 · 55 = 1600000 2.500000 · 10−1 odd

25 · 57 = 2500000 2.000000 · 10−1 odd

21 · 59 = 3906250 1.600000 · 10−1 odd
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Table 3.6: Integral significands Y of y ∈ F10,16, such that 1/
√
y ∈ F10,16.

Y 1/
√
Y · 10δy−p+1 ey

215·515 = 1000000000000000 1.000000000000000 ·100 even
245·53 = 4398046511104000 4.768371582031250 ·10−1 even
243·53 = 1099511627776000 9.536743164062500 ·10−1 even
241·55 = 6871947673600000 3.814697265625000 ·10−1 even
239·55 = 1717986918400000 7.629394531250000 ·10−1 even
235·57 = 2684354560000000 6.103515625000000 ·10−1 even
231·59 = 4194304000000000 4.882812500000000 ·10−1 even
229·59 = 1048576000000000 9.765625000000000 ·10−1 even
227·511 = 6553600000000000 3.906250000000000 ·10−1 even
225·511 = 1638400000000000 7.812500000000000 ·10−1 even
221·513 = 2560000000000000 6.250000000000000 ·10−1 even
217·515 = 4000000000000000 5.000000000000000 ·10−1 even
213·517 = 6250000000000000 4.000000000000000 ·10−1 even
211·517 = 1562500000000000 8.000000000000000 ·10−1 even
29·519 = 9765625000000000 3.200000000000000 ·10−1 even
27·519 = 2441406250000000 6.400000000000000 ·10−1 even
23·521 = 3814697265625000 5.120000000000000 ·10−1 even
246·52 = 1759218604441600 2.384185791015625 ·10−1 odd
242·54 = 2748779069440000 1.907348632812500 ·10−1 odd
238·56 = 4294967296000000 1.525878906250000 ·10−1 odd
236·56 = 1073741824000000 3.051757812500000 ·10−1 odd
234·58 = 6710886400000000 1.220703125000000 ·10−1 odd
232·58 = 1677721600000000 2.441406250000000 ·10−1 odd
228·510 = 2621440000000000 1.953125000000000 ·10−1 odd
224·512 = 4096000000000000 1.562500000000000 ·10−1 odd
222·512 = 1024000000000000 3.125000000000000 ·10−1 odd
220·514 = 6400000000000000 1.250000000000000 ·10−1 odd
218·514 = 1600000000000000 2.500000000000000 ·10−1 odd
214·516 = 2500000000000000 2.000000000000000 ·10−1 odd
210·518 = 3906250000000000 1.600000000000000 ·10−1 odd
26·520 = 6103515625000000 1.280000000000000 ·10−1 odd
24·520 = 1525878906250000 2.560000000000000 ·10−1 odd
22·522 = 9536743164062500 1.024000000000000 ·10−1 odd
20·522 = 2384185791015625 2.048000000000000 ·10−1 odd
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Table 3.7: Integral significands Y of y ∈ F10,34, such that 1/
√
y ∈ F10,34 and ey even.

Y 1/
√
Y · 10δy−p+1

2
33·533 = 1000000000000000000000000000000000 1.000000000000000000000000000000000 ×10

0

2
101·55 = 7922816251426433759354395033600000 3.552713678800500929355621337890625 ×10

−1

2
99·55 = 1980704062856608439838598758400000 7.105427357601001858711242675781250 ×10

−1

2
95·57 = 3094850098213450687247810560000000 5.684341886080801486968994140625000 ×10

−1

2
91·59 = 4835703278458516698824704000000000 4.547473508864641189575195312500000 ×10

−1

2
89·59 = 1208925819614629174706176000000000 9.094947017729282379150390625000000 ×10

−1

2
87·511 = 7555786372591432341913600000000000 3.637978807091712951660156250000000 ×10

−1

2
85·511 = 1888946593147858085478400000000000 7.275957614183425903320312500000000 ×10

−1

2
81·513 = 2951479051793528258560000000000000 5.820766091346740722656250000000000 ×10

−1

2
77·515 = 4611686018427387904000000000000000 4.656612873077392578125000000000000 ×10

−1

2
75·515 = 1152921504606846976000000000000000 9.313225746154785156250000000000000 ×10

−1

2
73·517 = 7205759403792793600000000000000000 3.725290298461914062500000000000000 ×10

−1

2
71·517 = 1801439850948198400000000000000000 7.450580596923828125000000000000000 ×10

−1

2
67·519 = 2814749767106560000000000000000000 5.960464477539062500000000000000000 ×10

−1

2
63·521 = 4398046511104000000000000000000000 4.768371582031250000000000000000000 ×10

−1

2
61·521 = 1099511627776000000000000000000000 9.536743164062500000000000000000000 ×10

−1

2
59·523 = 6871947673600000000000000000000000 3.814697265625000000000000000000000 ×10

−1

2
57·523 = 1717986918400000000000000000000000 7.629394531250000000000000000000000 ×10

−1

2
53·525 = 2684354560000000000000000000000000 6.103515625000000000000000000000000 ×10

−1

2
49·527 = 4194304000000000000000000000000000 4.882812500000000000000000000000000 ×10

−1

2
47·527 = 1048576000000000000000000000000000 9.765625000000000000000000000000000 ×10

−1

2
45·529 = 6553600000000000000000000000000000 3.906250000000000000000000000000000 ×10

−1

2
43·529 = 1638400000000000000000000000000000 7.812500000000000000000000000000000 ×10

−1

2
39·531 = 2560000000000000000000000000000000 6.250000000000000000000000000000000 ×10

−1

2
35·533 = 4000000000000000000000000000000000 5.000000000000000000000000000000000 ×10

−1

2
31·535 = 6250000000000000000000000000000000 4.000000000000000000000000000000000 ×10

−1

2
29·535 = 1562500000000000000000000000000000 8.000000000000000000000000000000000 ×10

−1

2
27·537 = 9765625000000000000000000000000000 3.200000000000000000000000000000000 ×10

−1

2
25·537 = 2441406250000000000000000000000000 6.400000000000000000000000000000000 ×10

−1

2
21·539 = 3814697265625000000000000000000000 5.120000000000000000000000000000000 ×10

−1

2
17·541 = 5960464477539062500000000000000000 4.096000000000000000000000000000000 ×10

−1

2
15·541 = 1490116119384765625000000000000000 8.192000000000000000000000000000000 ×10

−1

2
13·543 = 9313225746154785156250000000000000 3.276800000000000000000000000000000 ×10

−1

2
11·543 = 2328306436538696289062500000000000 6.553600000000000000000000000000000 ×10

−1

2
7·545 = 3637978807091712951660156250000000 5.242880000000000000000000000000000 ×10

−1

2
3·547 = 5684341886080801486968994140625000 4.194304000000000000000000000000000 ×10

−1

2
1·547 = 1421085471520200371742248535156250 8.388608000000000000000000000000000 ×10

−1
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Table 3.8: Integral significands Y of y ∈ F10,34, such that 1/
√
y ∈ F10,34 and ey odd.

Y 1/
√
Y · 10δy−p+1

2
98·56 = 4951760157141521099596496896000000 1.421085471520200371742248535156250 ×10

−1

2
96·56 = 1237940039285380274899124224000000 2.842170943040400743484497070312500 ×10

−1

2
94·58 = 7737125245533626718119526400000000 1.136868377216160297393798828125000 ×10

−1

2
92·58 = 1934281311383406679529881600000000 2.273736754432320594787597656250000 ×10

−1

2
88·510 = 3022314549036572936765440000000000 1.818989403545856475830078125000000 ×10

−1

2
84·512 = 4722366482869645213696000000000000 1.455191522836685180664062500000000 ×10

−1

2
82·512 = 1180591620717411303424000000000000 2.910383045673370361328125000000000 ×10

−1

2
80·514 = 7378697629483820646400000000000000 1.164153218269348144531250000000000 ×10

−1

2
78·514 = 1844674407370955161600000000000000 2.328306436538696289062500000000000 ×10

−1

2
74·516 = 2882303761517117440000000000000000 1.862645149230957031250000000000000 ×10

−1

2
70·518 = 4503599627370496000000000000000000 1.490116119384765625000000000000000 ×10

−1

2
68·518 = 1125899906842624000000000000000000 2.980232238769531250000000000000000 ×10

−1

2
66·520 = 7036874417766400000000000000000000 1.192092895507812500000000000000000 ×10

−1

2
64·520 = 1759218604441600000000000000000000 2.384185791015625000000000000000000 ×10

−1

2
60·522 = 2748779069440000000000000000000000 1.907348632812500000000000000000000 ×10

−1

2
56·524 = 4294967296000000000000000000000000 1.525878906250000000000000000000000 ×10

−1

2
54·524 = 1073741824000000000000000000000000 3.051757812500000000000000000000000 ×10

−1

2
52·526 = 6710886400000000000000000000000000 1.220703125000000000000000000000000 ×10

−1

2
50·526 = 1677721600000000000000000000000000 2.441406250000000000000000000000000 ×10

−1

2
46·528 = 2621440000000000000000000000000000 1.953125000000000000000000000000000 ×10

−1

2
42·530 = 4096000000000000000000000000000000 1.562500000000000000000000000000000 ×10

−1

2
40·530 = 1024000000000000000000000000000000 3.125000000000000000000000000000000 ×10

−1

2
38·532 = 6400000000000000000000000000000000 1.250000000000000000000000000000000 ×10

−1

2
36·532 = 1600000000000000000000000000000000 2.500000000000000000000000000000000 ×10

−1

2
32·534 = 2500000000000000000000000000000000 2.000000000000000000000000000000000 ×10

−1

2
28·536 = 3906250000000000000000000000000000 1.600000000000000000000000000000000 ×10

−1

2
24·538 = 6103515625000000000000000000000000 1.280000000000000000000000000000000 ×10

−1

2
22·538 = 1525878906250000000000000000000000 2.560000000000000000000000000000000 ×10

−1

2
20·540 = 9536743164062500000000000000000000 1.024000000000000000000000000000000 ×10

−1

2
18·540 = 2384185791015625000000000000000000 2.048000000000000000000000000000000 ×10

−1

2
14·542 = 3725290298461914062500000000000000 1.638400000000000000000000000000000 ×10

−1

2
10·544 = 5820766091346740722656250000000000 1.310720000000000000000000000000000 ×10

−1

2
8·544 = 1455191522836685180664062500000000 2.621440000000000000000000000000000 ×10

−1

2
6·546 = 9094947017729282379150390625000000 1.048576000000000000000000000000000 ×10

−1

2
4·546 = 2273736754432320594787597656250000 2.097152000000000000000000000000000 ×10

−1

2
0·548 = 3552713678800500929355621337890625 1.677721600000000000000000000000000 ×10

−1
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3.3 Positive integer powers

We consider here the function (x, k) �→ xk with x ∈ R and k ∈ N>0, assuming that each
prime factor appears only once in the prime decomposition of β, which is the case for β = 2
and β = 10. We provide a sufficient condition for the nonexistence of midpoints in such
radices. In the particular case β = 2, the results given in this section can be deduced easily
from Lauter and Lefèvre’s study of the power function (x, y) �→ xy [37, 38], which shows
how to check quickly if xy is a midpoint or an exact point, in double precision (binary64
format).

Definition 3.9. A number fits in n digits exactly in radix β if it is a precision-n floating-
point number that cannot be exactly represented in precision n − 1. More precisely, it is
a number of the form x = X · βex, where ex, X ∈ Z, βn−1 < |X| < βn, and X is not a
multiple of β.

Lemma 3.10. Let k ∈ N>0 be given. If each factor of β appears only once in its prime
number decomposition (which is true for β equal to 2 or 10), and if x fits in n digits exactly
then xk fits in m digits exactly, with m ∈ N such that k(n− 1) < m ≤ kn.

Proof. Let x = X · βex be a number that fits in n digits exactly. From βn−1 < |X| <
βn it follows that βk(n−1) < |Xk| < βkn. Consequently, there exists m ∈ N such that
k(n−1) < m ≤ kn and βm−1 < |Xk| < βm. Moreover, the assumption on the prime factor
decomposition of β and the fact that β does not divide X imply that Xk is not a multiple
of β.

An immediate consequence of the previous lemma is the following result.

Theorem 3.11. Assume the radix β is such that each factor appears only once in its
prime number decomposition, and let p be the precision. If x fits in n digits exactly then
xk cannot be a midpoint as soon as k(n− 1) > p, and it cannot be an exact point as soon
as k(n− 1) + 1 > p.

Theorem 3.11 is not very helpful when k is small. For large values of k, however, it
allows to quickly determine the possible midpoints and exact points. For instance, in the
binary64 format (β = 2 and p = 53), the only floating-point numbers x such that x10 can
be an exact point are those that fit in n bits exactly, where n ≤ 6. For a given value of
the exponent, there are at most 26 = 64 such points: it therefore suffices to check these 64
values to know all the exact points. By accurately computing x10 for these 64 points, we
easily find that the exact points for function x10 in the binary64 format correspond to the
input values of the form x = X · 2ex , where X is an integer between 0 and 40.

3.4 The function (x, y) �→ x / �y�2
Given d ∈ N>0, the number of exact points of the function that maps (x, y) ∈ R×(Rd\{0})
to

x

�y�2

=
x� �

1≤k≤d

y2k
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is huge. Indeed, all the exact points for the division operation, whose number is huge as we
will see later in §3.5.2, are exact points for the function x/�y�2 as well. Therefore, we shall
focus here exclusively on midpoints: our aim is to decide whether there exist floating-point
inputs x, y1, . . . , yd ∈ Fβ,p such that x/�y�2 ∈ Mβ,p. We start with the following theorem,
which says that midpoints cannot exist in radix 2.

Theorem 3.12. Let x ∈ Fβ,p and, for d ∈ N>0, let y be a nonzero, d-dimensional vector
of elements of Fβ,p. If β = 2 then x/�y�2 �∈ Mβ,p.

Proof. Because of the symmetries of the function that maps (x, y) to x/�y�2, we can restrict
to the case where x and all the entries of y = [yk] are positive. Hence x = X · βex−p+1 and
yk = Yk ·βeyk−p+1 for some integers X and Yk such that βp−1 ≤ X, Yk < βp. Let z = x/�y�2
and assume z is a midpoint, that is, z = (Z+1/2) ·βez−p+1 for some integer Z in the same
range as X and the Yk above. The identity x2 = �y�22 z2 thus becomes

4X2 · β2(ex−ez+p−1) =
��

k

Y 2
k · β2eyk

�
(2Z + 1)2. (3.11)

In order to have integers on both sides, it suffices to multiply (3.11) by β−2e∗ , where
e∗ = mink eyk . This gives

4X2 · β2(ex−ez−e∗+p−1) =
��

k

Y 2
k · β2(eyk−e∗)

�
(2Z + 1)2. (3.12)

Now, the power of β involved in the left-hand side of (3.12) is itself an integer. This is is
due to the fact that the integer ex − ez − e∗ is non-negative, which can be seen as follows.
Since d ≥ 1 and yk ≥ βe∗ for k = 1, . . . , d, one has z ≤ x/βe∗ . Using x < βex+1 and βez ≤ z
(in fact this lower bound is strict, for z is a midpoint), we deduce that βez < βex−e∗+1.
The exponents on both sides of the latter inequality being integers, we conclude that
ez ≤ ex − e∗.

When β = 2, Equation (3.12) becomes

X2 · 22(ex−ez−e∗+p) =
��

k

Y 2
k · 22(eyk−e∗)

�
(2Z + 1)2. (3.13)

The left-hand side of (3.13) is a multiple of the odd integer (2Z +1)2. Since ex − ez − e∗ is
non-negative, this implies that X is a multiple of 2Z + 1 and thus X ≥ 2Z + 1. However,
recalling that 2p−1 ≤ X,Z < 2p, we have X < 2Z + 1.

Hence a contradiction, which concludes the proof.

Theorem 3.12 implies the non-existence of midpoints in radix β = 2 for a number of im-
portant special cases: division x/y (see following Corollary 3.13) and thus reciprocal 1/y as
well; reciprocal 2D Euclidean norm 1/

�
x2 + y2 and 2D-vector normalization x/

�
x2 + y2.

However, when β > 2, the function x/�y�2 does have midpoints and some examples will
be given in §3.5.1 for β ∈ {3, 4, 10}. Thus, in the sequel, rather than trying to characterize
all the midpoints of that general function, we focus from Sections 3.5 to 3.8 on the four
special cases just mentioned.
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3.5 Division

3.5.1 Midpoints for division

Concerning midpoints for division, Theorem 3.12 gives an answer for the far most frequent
case in practice: the radix is 2, the input precision equals the output precision, and the
results are above the underflow threshold. Indeed, choosing d = 1 in Theorem 3.12, we
obtain the following corollary.

Corollary 3.13. In binary arithmetic, the quotient of two floating-point numbers cannot
be a midpoint in the same precision.

In radix-2 floating-point arithmetic, Corollary 3.13 can be seen as a consequence of a
result presented by Markstein in [43, Theorem 8.4, p. 114]. Note that this result only holds
when β = 2 and when the input precision is less than or equal to the output precision.
Nevertheless, it is sometimes believed that it holds in any prime radices: the first example
given below shows that this is not the case. The following examples also illustrate the
existence of midpoints when β > 2.

• In radix 3, with precision p = 4,

2810
5610

=
10013
20023

= 0.11113 +
1

2
· 3−4.

• In radix 4, with p = 4

12910
12810

=
20014
20004

= 1.0004 +
1

2
· 4−3.

• In radix 10, midpoint quotients are quite frequent. For instance, with p = 2 we have
181 midpoints for X/Y with 10 ≤ X, Y ≤ 99 (e.g., 10/16 = 0.625), and with p = 3,
we have 2633 cases with 100 ≤ X, Y ≤ 999.

We now briefly discuss the case of different input (pi) and output (po) precisions. If
pi > po, many quotients can be midpoints, even in radix-2 arithmetic. For example, we
can compute the quotient x/1 in precision po. Since x is in precision pi > po, x can be a
midpoint in precision po. It is also possible to find less trivial cases.

Example 3.14. If x and y are binary64 numbers (pi = 53) with

x = 1.0000000000000000000000001111111111111111111110100000,
y = 1.1111111111111111111111000000000000000000000000000000,

then one has
x/y = 0. 100000000000000000000001� �� �

po=24

1,

which is a midpoint in the binary32 floating-point format (po = 24).

A typical case in binary floating-point arithmetic arises when the output falls in the
subnormal range. However, since division is one of the basic operations of the IEEE-754-
2008 norm (§1.4.1), it is mandatory to handle that midpoint case correctly.
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3.5.2 Exact points for division

Let x and y be two numbers in Fβ,p, and assume that the quotient z = x/y is also in Fβ,p.
Using the normalized representations x = X ·βex−p+1, y = Y ·βey−p+1 then z can be written
z = Z · βex−ey+δ−p, with δ ∈ {0, 1}. Hence from x = yz it follows that

βp−δX = Y Z, (3.14)

with δ ∈ {0, 1}. In other words, if z is an exact point then Equation (3.14) must be
satisfied. For any radix β, Equation (3.14) has many solutions: for each value of X there
is at least the straightforward solution (X, Y ) = (Z, βp−1), which corresponds to x/βey . As
a consequence, the number of exact points of the function (x, y) �→ x/y grows at least like
βp−1(β − 1) for any given exponents ex, ey. This is too large to enumerate all the exact
points of division in practice.

3.6 Reciprocal

As we have seen in the previous section, except in radix 2, division admits many midpoints.
Moreover, whatever the radix is, division also admits a lot of exact points. Consequently,
we now focus on a special case, the reciprocal function y �→ 1/y, for which more useful
results can be obtained.

3.6.1 Midpoints for reciprocal

Theorem 3.15. Let y ∈ Fβ,p be nonzero. If β = 2q (q ∈ N>0) then 1/y �∈ Mβ,p. If β = 10,
one has 1/y ∈ Mβ,p if and only if the integral significand Y of y has the form

Y = 22p · 52p−1−�, (3.15)

with � ∈ N such that 2 · 10p−1 < 5� < 2 · 10p.

Proof. Without loss of generality, we assume y > 0. Let z = 1/y. First, one may check
that

ez = −ey − 1. (3.16)

Now, if z ∈ Mβ,p then z = (Z +1/2) ·βez−p+1 for some integer Z such that βp−1 ≤ Z < βp.
Using yz = 1 thus gives

Y (2Z + 1) = 2 · β2p−1. (3.17)

When β = 2q, Equation (3.17) has no solution, since the right-hand side of the equality
is a power of two while the left-hand side has an odd factor 2Z + 1.

When β = 10, Equation (3.17) becomes

Y (2Z + 1) = 22p · 52p−1. (3.18)

As 2Z + 1 is odd, we deduce from Equation (3.18) that 2Z + 1 is necessarily a power of 5,
and since 2 · 10p−1 < 2Z + 1 < 2 · 10p, we deduce that there are at most two such powers
of 5. Hence y is necessarily as in (3.15).

Conversely, if y = Y ·10ey−p+1 with Y as in (3.15) then, using (3.16), y = 5−�−1 ·10−ez+p.
It follows that z can be written z = ((5� − 1)/2 + 1/2) · 10ez−p+1. Since (5� − 1)/2 is an
integer, and by hypothesis 10p−1 ≤ (5� − 1)/2 < 10p, we deduce that z ∈ M10,p, which
concludes the proof.
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In radix 10, notice that there are at most two values of � ∈ N such that 2 · 10p−1 < 5� <
2 · 10p. Therefore, to determine all inputs y that give a midpoint 1/y for a fixed exponent
ey, it suffices to find the at most two � such that 2 ·10p−1 < 5� < 2 ·10p. This is easily done,
even when the precision p is large. For example, Table 3.9 gives the integral significands
Y of the floating-point numbers y such that 1/y is a midpoint, for the decimal formats of
the IEEE 754-2008 standard [27].

Table 3.9: Integral significands Y of y ∈ F10,p such that 1/y ∈ M10,p, for the decimal
formats of the IEEE 754-2008 standard [27].

Format Integral significand Y

decimal32

(p = 7)
214 · 53 = 2048000

decimal64 232 · 58 = 1677721600000000

(p = 16) 232 · 59 = 8388608000000000

decimal128 268 · 518 = 1125899906842624000000000000000000

(p = 34) 268 · 519 = 5629499534213120000000000000000000

3.6.2 Exact points for reciprocal

For radices either 10 or a positive power of 2, the exact points of the reciprocal function
can all be enumerated according to the following theorem.

Theorem 3.16. Let y ∈ Fβ,p be nonzero. One has 1/y ∈ Fβ,p if and only if the integral
significand Y of y satisfies βp−1 ≤ Y < βp and

Y =

�
2k, 0 ≤ k ≤ q(2p− 1), if β = 2q, q ∈ N>0;
2k · 5�, 0 ≤ k, � ≤ 2p− 1, if β = 10.

Proof. For the “only if” statement, let y > 0 in Fβ,p be given, let z = 1/y, and assume
that z ∈ Fβ,p. First, one may check that the exponent of z satisfies ez = −ey − δ with
δ ∈ {0, 1}. Then, using the identity yz = 1 together with the normalized representations
y = Y · βey−p+1 and z = Z · βez−p+1, we get

Y Z = β2p−2+δ, βp−1 ≤ Y, Z < βp. (3.19)

If β = 2q for some integer q ≥ 1 then (3.19) implies that Y = 2k for some integer k such
that 0 ≤ k ≤ q(2p− 1). If β = 10 then (3.19) implies that Y = 2k · 5� for some integers k
and � such that 0 ≤ k, � ≤ 2p− 1.

Let us now prove the “if” statement. If Y = βp−1 then y is a power of the radix and
thus 1/y belongs to Fβ,p. If βp−1 < Y < βp then, defining Z = Y −1 · β2p−1, we obtain

1/y = Z · β−ey−p, βp−1 < Z < βp. (3.20)

To conclude that 1/y belongs to Fβ,p it remains to show that Z is an integer: If β = 2q

and Y = 2k, one has Z = 2q(2p−1)−k, which is an integer for k ≤ q(2p − 1); If β = 10 and
Y = 2k · 5� then Z = 22p−1−k · 52p−1−�, which is an integer for k, � ≤ 2p− 1. Hence Z is an
integer in both cases, showing that 1/y is indeed an exact point.



58 CHAPTER 3. BREAKPOINTS FOR SOME ALGEBRAIC FUNCTIONS

In radix 16 = 24 for instance, the exact points 1/y with y in the interval [1, 16) are
listed below:

y 1 2 4 8

1/y 1 1/2 = 0.816 1/4 = 0.416 1/8 = 0.216

In radix 10, all the integers Y = 2k · 5� with 0 ≤ k, � ≤ 2p − 1 and 10p−1 ≤ Y < 10p

can be enumerated by the simple Algorithm 2, and each one of them gives an exact point.
Tables 3.10, 3.11, 3.12, and 3.13 give the integral significands Y such that 1/y is an exact
point, in the case of the decimal32, decimal64 and decimal128 formats. Figures 3.5, 3.6
and 3.7 also display the distribution of the inputs that leads to exact points for the recip-
rocal function on the decade [1, 10).

Data: Precision p
Result: Integral significands Y such that y = Y · 10ey−p+1 yields an exact point for

the reciprocal

minY = 10p−1; maxY = 10p − 1;
for k from 0 to 2p− 1 do

�1 =
�
log5

�
minY · 2−k

��
; /* At most two � for each k */

�2 =
�
log5

�
maxY · 2−k

��
;

print 2k · 5�1 ;
if �1 �= �2 then print 2k · 5�2 ;

end

Algorithm 2: Enumerating reciprocal exactpoints

Furthermore, given an input exponent, the result below provides an explicit formula
for the number N of floating-point inputs having this exponent and whose inverse if also
a floating-point number:

Theorem 3.17. For a given exponent ey, the number N of positive values y ∈ Fβ,p such
that 1/y ∈ Fβ,p is given by

N =





q, if β = 2q, q ∈ N>0;

2
�
p log5(10)

�
+ 1, if β = 10.

Proof. When β = 2q, Theorem 3.16 says that each exact point corresponds to an integer
k such that 2q(p−1) ≤ 2k < 2qp and 0 ≤ k ≤ q(2p − 1). The former condition is equivalent
to q(p− 1) ≤ k < qp and thus implies the latter. From this we deduce that the number of
possible values of k is q when β = 2q.

When β = 10, Theorem 3.16 says in this case that each exact point corresponds to a
pair of integers (k, �) such that

10p−1 ≤ 2k · 5� < 10p and 0 ≤ k, � ≤ 2p− 1.

The value of N is the number of points (k, �) ∈ Z2 that satisfy those two sets of constraints.
Let σ = log5(2) = 0.4306765581 . . .. The first set of constraints is equivalent to

(p− 1)(1 + σ) ≤ σk + � < p(1 + σ). (3.21)



3.6. RECIPROCAL 59

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1  2  3  4  5  6  7  8  9  10

1/
y

y

1/y
Exact points

Figure 3.5: The exactpoints of the reciprocal function for the decimal32 format.
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Figure 3.6: The exactpoints of the reciprocal function for the decimal64 format.
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Figure 3.7: The exactpoints of the reciprocal function for the decimal128 format.
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Table 3.10: Integral significands Y of y ∈ F10,7 such that 1/y ∈ F10,7.

Y 1/Y

20 · 59 = 1953125 5.120000 · 10−7

20 · 510 = 9765625 1.024000 · 10−7

21 · 59 = 3906250 2.560000 · 10−7

22 · 58 = 1562500 6.400000 · 10−7

22 · 59 = 7812500 1.280000 · 10−7

23 · 58 = 3125000 3.200000 · 10−7

24 · 57 = 1250000 8.000000 · 10−7

24 · 58 = 6250000 1.600000 · 10−7

25 · 57 = 2500000 4.000000 · 10−7

26 · 56 = 1000000 1.000000 · 10−6

26 · 57 = 5000000 2.000000 · 10−7

27 · 56 = 2000000 5.000000 · 10−7

28 · 56 = 4000000 2.500000 · 10−7

29 · 55 = 1600000 6.250000 · 10−7

29 · 56 = 8000000 1.250000 · 10−7

210 · 55 = 3200000 3.125000 · 10−7

211 · 54 = 1280000 7.812500 · 10−7

211 · 55 = 6400000 1.562500 · 10−7

212 · 54 = 2560000 3.906250 · 10−7

213 · 53 = 1024000 9.765625 · 10−7

213 · 54 = 5120000 1.953125 · 10−7
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Table 3.11: Integral significands Y of y ∈ F10,16 such that 1/y ∈ F10,16.

Y 1/Y

2
0·522 = 2384185791015625 4.194304000000000 ×10

−16

2
1·522 = 4768371582031250 2.097152000000000 ×10

−16

2
2·521 = 1907348632812500 5.242880000000000 ×10

−16

2
2·522 = 9536743164062500 1.048576000000000 ×10

−16

2
3·521 = 3814697265625000 2.621440000000000 ×10

−16

2
4·520 = 1525878906250000 6.553600000000000 ×10

−16

2
4·521 = 7629394531250000 1.310720000000000 ×10

−16

2
5·520 = 3051757812500000 3.276800000000000 ×10

−16

2
6·519 = 1220703125000000 8.192000000000000 ×10

−16

2
6·520 = 6103515625000000 1.638400000000000 ×10

−16

2
7·519 = 2441406250000000 4.096000000000000 ×10

−16

2
8·519 = 4882812500000000 2.048000000000000 ×10

−16

2
9·518 = 1953125000000000 5.120000000000000 ×10

−16

2
9·519 = 9765625000000000 1.024000000000000 ×10

−16

2
10·518 = 3906250000000000 2.560000000000000 ×10

−16

2
11·517 = 1562500000000000 6.400000000000000 ×10

−16

2
11·518 = 7812500000000000 1.280000000000000 ×10

−16

2
12·517 = 3125000000000000 3.200000000000000 ×10

−16

2
13·516 = 1250000000000000 8.000000000000000 ×10

−16

2
13·517 = 6250000000000000 1.600000000000000 ×10

−16

2
14·516 = 2500000000000000 4.000000000000000 ×10

−16

2
15·515 = 1000000000000000 1.000000000000000 ×10

−15

2
15·516 = 5000000000000000 2.000000000000000 ×10

−16

2
16·515 = 2000000000000000 5.000000000000000 ×10

−16

2
17·515 = 4000000000000000 2.500000000000000 ×10

−16

2
18·514 = 1600000000000000 6.250000000000000 ×10

−16

2
18·515 = 8000000000000000 1.250000000000000 ×10

−16

2
19·514 = 3200000000000000 3.125000000000000 ×10

−16

2
20·513 = 1280000000000000 7.812500000000000 ×10

−16

2
20·514 = 6400000000000000 1.562500000000000 ×10

−16

2
21·513 = 2560000000000000 3.906250000000000 ×10

−16

2
22·512 = 1024000000000000 9.765625000000000 ×10

−16

2
22·513 = 5120000000000000 1.953125000000000 ×10

−16

2
23·512 = 2048000000000000 4.882812500000000 ×10

−16

2
24·512 = 4096000000000000 2.441406250000000 ×10

−16

2
25·511 = 1638400000000000 6.103515625000000 ×10

−16

2
25·512 = 8192000000000000 1.220703125000000 ×10

−16

2
26·511 = 3276800000000000 3.051757812500000 ×10

−16

2
27·510 = 1310720000000000 7.629394531250000 ×10

−16

2
27·511 = 6553600000000000 1.525878906250000 ×10

−16

2
28·510 = 2621440000000000 3.814697265625000 ×10

−16

2
29·59 = 1048576000000000 9.536743164062500 ×10

−16

2
29·510 = 5242880000000000 1.907348632812500 ×10

−16

2
30·59 = 2097152000000000 4.768371582031250 ×10

−16

2
31·59 = 4194304000000000 2.384185791015625 ×10

−16
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Table 3.12: Integral significands Y of y ∈ F10,34 such that 1/y ∈ F10,34.

Y 1/Y

2
0·548 = 3552713678800500929355621337890625 2.814749767106560000000000000000000 ×10

−34

2
1·547 = 1421085471520200371742248535156250 7.036874417766400000000000000000000 ×10

−34

2
1·548 = 7105427357601001858711242675781250 1.407374883553280000000000000000000 ×10

−34

2
2·547 = 2842170943040400743484497070312500 3.518437208883200000000000000000000 ×10

−34

2
3·546 = 1136868377216160297393798828125000 8.796093022208000000000000000000000 ×10

−34

2
3·547 = 5684341886080801486968994140625000 1.759218604441600000000000000000000 ×10

−34

2
4·546 = 2273736754432320594787597656250000 4.398046511104000000000000000000000 ×10

−34

2
5·546 = 4547473508864641189575195312500000 2.199023255552000000000000000000000 ×10

−34

2
6·545 = 1818989403545856475830078125000000 5.497558138880000000000000000000000 ×10

−34

2
6·546 = 9094947017729282379150390625000000 1.099511627776000000000000000000000 ×10

−34

2
7·545 = 3637978807091712951660156250000000 2.748779069440000000000000000000000 ×10

−34

2
8·544 = 1455191522836685180664062500000000 6.871947673600000000000000000000000 ×10

−34

2
8·545 = 7275957614183425903320312500000000 1.374389534720000000000000000000000 ×10

−34

2
9·544 = 2910383045673370361328125000000000 3.435973836800000000000000000000000 ×10

−34

2
10·543 = 1164153218269348144531250000000000 8.589934592000000000000000000000000 ×10

−34

2
10·544 = 5820766091346740722656250000000000 1.717986918400000000000000000000000 ×10

−34

2
11·543 = 2328306436538696289062500000000000 4.294967296000000000000000000000000 ×10

−34

2
12·543 = 4656612873077392578125000000000000 2.147483648000000000000000000000000 ×10

−34

2
13·542 = 1862645149230957031250000000000000 5.368709120000000000000000000000000 ×10

−34

2
13·543 = 9313225746154785156250000000000000 1.073741824000000000000000000000000 ×10

−34

2
14·542 = 3725290298461914062500000000000000 2.684354560000000000000000000000000 ×10

−34

2
15·541 = 1490116119384765625000000000000000 6.710886400000000000000000000000000 ×10

−34

2
15·542 = 7450580596923828125000000000000000 1.342177280000000000000000000000000 ×10

−34

2
16·541 = 2980232238769531250000000000000000 3.355443200000000000000000000000000 ×10

−34

2
17·540 = 1192092895507812500000000000000000 8.388608000000000000000000000000000 ×10

−34

2
17·541 = 5960464477539062500000000000000000 1.677721600000000000000000000000000 ×10

−34

2
18·540 = 2384185791015625000000000000000000 4.194304000000000000000000000000000 ×10

−34

2
19·540 = 4768371582031250000000000000000000 2.097152000000000000000000000000000 ×10

−34

2
20·539 = 1907348632812500000000000000000000 5.242880000000000000000000000000000 ×10

−34

2
20·540 = 9536743164062500000000000000000000 1.048576000000000000000000000000000 ×10

−34

2
21·539 = 3814697265625000000000000000000000 2.621440000000000000000000000000000 ×10

−34

2
22·538 = 1525878906250000000000000000000000 6.553600000000000000000000000000000 ×10

−34

2
22·539 = 7629394531250000000000000000000000 1.310720000000000000000000000000000 ×10

−34

2
23·538 = 3051757812500000000000000000000000 3.276800000000000000000000000000000 ×10

−34

2
24·537 = 1220703125000000000000000000000000 8.192000000000000000000000000000000 ×10

−34

2
24·538 = 6103515625000000000000000000000000 1.638400000000000000000000000000000 ×10

−34

2
25·537 = 2441406250000000000000000000000000 4.096000000000000000000000000000000 ×10

−34

2
26·537 = 4882812500000000000000000000000000 2.048000000000000000000000000000000 ×10

−34

2
27·536 = 1953125000000000000000000000000000 5.120000000000000000000000000000000 ×10

−34

2
27·537 = 9765625000000000000000000000000000 1.024000000000000000000000000000000 ×10

−34

2
28·536 = 3906250000000000000000000000000000 2.560000000000000000000000000000000 ×10

−34

2
29·535 = 1562500000000000000000000000000000 6.400000000000000000000000000000000 ×10

−34

2
29·536 = 7812500000000000000000000000000000 1.280000000000000000000000000000000 ×10

−34

2
30·535 = 3125000000000000000000000000000000 3.200000000000000000000000000000000 ×10

−34

2
31·534 = 1250000000000000000000000000000000 8.000000000000000000000000000000000 ×10

−34

2
31·535 = 6250000000000000000000000000000000 1.600000000000000000000000000000000 ×10

−34

2
32·534 = 2500000000000000000000000000000000 4.000000000000000000000000000000000 ×10

−34

2
33·533 = 1000000000000000000000000000000000 1.000000000000000000000000000000000 ×10

−33
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Table 3.13: Integral significands Y of y ∈ F10,34 such that 1/y ∈ F10,34.

Y 1/Y

2
33·534 = 5000000000000000000000000000000000 2.000000000000000000000000000000000 ×10

−34

2
34·533 = 2000000000000000000000000000000000 5.000000000000000000000000000000000 ×10

−34

2
35·533 = 4000000000000000000000000000000000 2.500000000000000000000000000000000 ×10

−34

2
36·532 = 1600000000000000000000000000000000 6.250000000000000000000000000000000 ×10

−34

2
36·533 = 8000000000000000000000000000000000 1.250000000000000000000000000000000 ×10

−34

2
37·532 = 3200000000000000000000000000000000 3.125000000000000000000000000000000 ×10

−34

2
38·531 = 1280000000000000000000000000000000 7.812500000000000000000000000000000 ×10

−34

2
38·532 = 6400000000000000000000000000000000 1.562500000000000000000000000000000 ×10

−34

2
39·531 = 2560000000000000000000000000000000 3.906250000000000000000000000000000 ×10

−34

2
40·530 = 1024000000000000000000000000000000 9.765625000000000000000000000000000 ×10

−34

2
40·531 = 5120000000000000000000000000000000 1.953125000000000000000000000000000 ×10

−34

2
41·530 = 2048000000000000000000000000000000 4.882812500000000000000000000000000 ×10

−34

2
42·530 = 4096000000000000000000000000000000 2.441406250000000000000000000000000 ×10

−34

2
43·529 = 1638400000000000000000000000000000 6.103515625000000000000000000000000 ×10

−34

2
43·530 = 8192000000000000000000000000000000 1.220703125000000000000000000000000 ×10

−34

2
44·529 = 3276800000000000000000000000000000 3.051757812500000000000000000000000 ×10

−34

2
45·528 = 1310720000000000000000000000000000 7.629394531250000000000000000000000 ×10

−34

2
45·529 = 6553600000000000000000000000000000 1.525878906250000000000000000000000 ×10

−34

2
46·528 = 2621440000000000000000000000000000 3.814697265625000000000000000000000 ×10

−34

2
47·527 = 1048576000000000000000000000000000 9.536743164062500000000000000000000 ×10

−34

2
47·528 = 5242880000000000000000000000000000 1.907348632812500000000000000000000 ×10

−34

2
48·527 = 2097152000000000000000000000000000 4.768371582031250000000000000000000 ×10

−34

2
49·527 = 4194304000000000000000000000000000 2.384185791015625000000000000000000 ×10

−34

2
50·526 = 1677721600000000000000000000000000 5.960464477539062500000000000000000 ×10

−34

2
50·527 = 8388608000000000000000000000000000 1.192092895507812500000000000000000 ×10

−34

2
51·526 = 3355443200000000000000000000000000 2.980232238769531250000000000000000 ×10

−34

2
52·525 = 1342177280000000000000000000000000 7.450580596923828125000000000000000 ×10

−34

2
52·526 = 6710886400000000000000000000000000 1.490116119384765625000000000000000 ×10

−34

2
53·525 = 2684354560000000000000000000000000 3.725290298461914062500000000000000 ×10

−34

2
54·524 = 1073741824000000000000000000000000 9.313225746154785156250000000000000 ×10

−34

2
54·525 = 5368709120000000000000000000000000 1.862645149230957031250000000000000 ×10

−34

2
55·524 = 2147483648000000000000000000000000 4.656612873077392578125000000000000 ×10

−34

2
56·524 = 4294967296000000000000000000000000 2.328306436538696289062500000000000 ×10

−34

2
57·523 = 1717986918400000000000000000000000 5.820766091346740722656250000000000 ×10

−34

2
57·524 = 8589934592000000000000000000000000 1.164153218269348144531250000000000 ×10

−34

2
58·523 = 3435973836800000000000000000000000 2.910383045673370361328125000000000 ×10

−34

2
59·522 = 1374389534720000000000000000000000 7.275957614183425903320312500000000 ×10

−34

2
59·523 = 6871947673600000000000000000000000 1.455191522836685180664062500000000 ×10

−34

2
60·522 = 2748779069440000000000000000000000 3.637978807091712951660156250000000 ×10

−34

2
61·521 = 1099511627776000000000000000000000 9.094947017729282379150390625000000 ×10

−34

2
61·522 = 5497558138880000000000000000000000 1.818989403545856475830078125000000 ×10

−34

2
62·521 = 2199023255552000000000000000000000 4.547473508864641189575195312500000 ×10

−34

2
63·521 = 4398046511104000000000000000000000 2.273736754432320594787597656250000 ×10

−34

2
64·520 = 1759218604441600000000000000000000 5.684341886080801486968994140625000 ×10

−34

2
64·521 = 8796093022208000000000000000000000 1.136868377216160297393798828125000 ×10

−34

2
65·520 = 3518437208883200000000000000000000 2.842170943040400743484497070312500 ×10

−34

2
66·519 = 1407374883553280000000000000000000 7.105427357601001858711242675781250 ×10

−34

2
66·520 = 7036874417766400000000000000000000 1.421085471520200371742248535156250 ×10

−34

2
67·519 = 2814749767106560000000000000000000 3.552713678800500929355621337890625 ×10

−34
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It implies in particular that (p− 1)(1 + σ) ≤ � < p(1 + σ), which is stronger than 0 ≤ � ≤
2p− 1 for p ≥ 2, since 1 + σ ≈ 1.43. Hence N =

�
0≤k<2p Nk, where Nk is the number of

integers � satisfying (3.21) for a given k.
Recalling that half-open real intervals [a, b) such that a ≤ b contain exactly �b� − �a�

integers [20, p. 74], we deduce that, for 0 ≤ k < 2p,

Nk =
�
p(1 + σ)− σk

�
−

�
(p− 1)(1 + σ)− σk

�

=
�
(p− k)σ

�
−

�
(p− k − 1)σ

�
+ 1.

Consequently, the sum
�

0≤k<2p Nk telescopes to 2p + �pσ� + �pσ�. Since the integer p is
nonzero and σ is irrational, pσ cannot be an integer. Hence �pσ� = �pσ�+ 1, which leads
to N = 2

�
p(1 + σ)

�
+ 1.

According to Theorem 3.17, when β = 2q, the numberN of different integral significands
leading to an exact point is simply q. In radix 10, we have N = Θ(p), which confirms the
fact that the midpoints for the reciprocal can be easily enumerated, even when the precision
p is large. In particular, this is in contrast with the exact points of square root in radix 10
or 2q, whose number was seen to be exponential in p in §3.1.2. For the decimal formats of
the IEEE 754-2008, the corresponding values of N are listed below:

Format decimal32 decimal64 decimal128

p 7 16 34

N 21 45 97

3.7 Reciprocal 2D Euclidean norm

Given a d-dimensional vector y with entries in F2,p, we know from Theorem 3.12 that z =
1/�y�2 cannot be a midpoint in radix 2. In this section, we focus on the two-dimensional
case, studying the midpoints and the exact points of the reciprocal 2D Euclidean norm, in
radices 2q and 10. In radix 10, our study relies on the representation of products of the
form 2r · 5s as sums of two squares a2 + b2, where a, b ∈ N. Thus, we first explain in §3.7.1
the method we used for enumerating all the representations of such a product as the sum
of two integer squares. Then midpoints and exact points are studied in §§3.7.2 and 3.7.3,
respectively.

3.7.1 Decomposing 2r · 5s into sums of two squares

Decomposing an integer into sums of two squares is a well studied problem in the mathe-
matical literature (see for instance Wagon [56] and the references therein). In our particular
case of interest, we deduce the following theorem that allows to compute all decompositions
of 2r · 5s as sums of two squares. The proof of Theorem 3.18 relies on the unicity of the
decomposition of a number into prime factors in the ring of Gaussian integers Z[i] (see for
instance Everest and Ward [15, chap. 2] for more details on this topic).

Theorem 3.18. Let r, s ∈ N be given, and assume k ∈ N. All the unordered pairs {a, b}
with a, b ∈ N and a2 + b2 = 2r · 5s are given by a = |�(c)| and b = |�(c)| with

c = 2�r/2�(1 + i)r mod 2(2 + i)k(2− i)s−k, 0 ≤ k < �(s+ 1)/2�.



3.7. RECIPROCAL 2D EUCLIDEAN NORM 65

In particular, there are �(s + 1)/2� different decompositions of 2r · 5s as the sum of two
squares.

Proof. Let us assume 2r · 5s = a2+ b2. Since the decomposition of 2r · 5s into prime factors
in Z[i] is unique apart from multiplications by ±1 or ±i, and since 2 = (1 + i)(1 − i),
5 = (2 + i)(2− i), one has

2r · 5s = (1 + i)r(1− i)r(2 + i)s(2− i)s,

On the other hand one has a2+ b2 = (a+ ib)(a− ib), hence by unicity of the decomposition
into prime factors it follows that

a+ ib = δ0(1 + i)k1(1− i)k2(2 + i)k3(2− i)k4

for some k1, k2, k3, k4 ∈ N and δ0 ∈ {±1,±i}. Then one has

a2 + b2 = δ0δ0(1 + i)k1+k2(1− i)k1+k2(2 + i)k3+k4(2− i)k3+k4 ,

and from 2r · 5s = a2 + b2 we deduce that k1 + k2 = r and k3 + k4 = s, hence

a+ ib = δ0(1 + i)k1(1− i)r−k1(2 + i)k3(2− i)s−k3

Moreover, since k1 + k2 = r, it can be noticed that

(1 + i)k1(1− i)r−k1 = δ1 ×
�

2(r−1)/2(1 + i), if r is odd,
2r/2, otherwise,

with δ1 ∈ {±1,±i}. This can be rewritten (1 + i)k1(1 − i)r−k1 = δ1 · 2�r/2�(1 + i)r mod 2.
Hence we obtain

a+ ib = δ · 2�r/2�(1 + i)r mod 2(2 + i)k(2− i)s−k,

for some δ ∈ {±1,±i} and k ∈ N such that 0 ≤ k ≤ s.
Since a, b ≥ 0, we deduce that necessarily a = |�(c)| and b = |�(c)| with

c = 2�r/2�(1 + i)r mod 2(2 + i)k(2− i)s−k.

However, since both c and c = 2�r/2�(1−i)r mod 2(2−i)k(2+i)s−k lead to the same unordered
pair {a, b}, there are at most �(s+1)/2� such unordered pairs {a, b}. This implies that we
only need the assumption 0 ≤ k < �(s+ 1)/2� for k.

Conversely, if a = |�(c)| and b = |�(c)| with c = 2�r/2�(1 + i)r mod 2(2 + i)k(2 − i)s−k,
then a+ ib = δ2�r/2�(1 + i)r mod 2(2 + i)k(2− i)s−k with δ ∈ {±1,±i}. Then one can easily
check that a2 + b2 = (a+ ib)(a− ib) = 2r · 5s.

By unicity of the factorization into primes in Z[i], it can be shown that if we take
k1 �= k2 with 0 ≤ k1, k2 < �(s+1)/2�, then the corresponding unordered pairs {a1, b1} and
{a2, b2} are necessarily different. It means that there are exactly �(s + 1)/2� unordered
pairs {a, b}.

For later use, we also state the following corollary of Theorem 3.18 for the decomposition
of 2r.

Corollary 3.19. Given r ∈ N, the unique decomposition of 2r as a sum of two integer
squares is

2r =

�
02 + (2r/2)2, if r is even,
(2(r−1)/2)2 + (2(r−1)/2)2, if r is odd.
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3.7.2 Midpoints for reciprocal 2D norm

Theorem 3.20 below can be used to determine all the midpoints of the reciprocal 2D-norm
function with a given exponent ez.

Theorem 3.20. Let x, y ∈ Fβ,p be such that (x, y) �= (0, 0), and let z = 1/
�
x2 + y2. If

β = 2q (q ∈ N>0) then z �∈ Mβ,p. If β = 10, one has z ∈ Mβ,p if and only if z has the form

�
5� − 1

2
+

1

2

�
· 10ez−p+1,

with ez ∈ Z, and � ∈ N such that 2 · 10p−1 < 5� < 2 · 10p.

Proof of Theorem 3.20. Let z = 1/
�
x2 + y2 be a midpoint, with x, y ∈ Fβ,p. Without

loss of generality, we assume that z is in [1, β), and since z is a midpoint then one has
1 < z < β. Let us also assume that x ≥ y ≥ 0, which implies

1√
2x

≤ 1�
x2 + y2

≤ 1

x
. (3.22)

Denoting by ex and ey the exponents of x and y respectively, from (3.22) it follows that
β−ex−2 < z ≤ β−ex , and since 1 < z < β, necessarily ex ∈ {−1,−2}. Writing z =
(Z + 1/2) · β−p+1, with Z ∈ N such that βp−1 ≤ Z < βp, from (x2 + y2)z2 = 1 we deduce

�
X2 · β2ex−2ey + Y 2

�
(2Z + 1)2 = 4 · β4p−2ey−4. (3.23)

Note that x ≥ y implies ex ≥ ey, so that the left-hand side of Equation (3.23) is indeed in
N. When β = 2q, Equation (3.23) has no solution, since the right-hand side of the equality
is a power of two while the left-hand side has an odd factor (2Z + 1)2.

When β = 10, Equation (3.23) becomes

�
X2 · 102ex−2ey + Y 2

�
(2Z + 1)2 = 24p−2ey−2 · 54p−2ey−4. (3.24)

Then one has necessarily 2Z + 1 = 5� with � ∈ N. The bounds on 5� follow from 10p−1 ≤
Z ≤ 10p−1. Conversely, if z has the form given in Theorem 3.20 it is clearly a midpoint.

For instance, in the decimal32 format of the IEEE 754-2008 (p = 7), the function
1/
�
x2 + y2 has only one midpoint in the decade [1, 10), namely z = 4.8828125. This

midpoint corresponds to 510 = 9765625, which is the only power of 5 in the interval
(2 · 106, 2 · 107). All the other midpoints of the function are obtained by multiplying
4.8828125 by an integral power of 10.

Theorem 3.20 can only be used to determine the midpoints of the reciprocal norm
function. Given such a midpoint z, let us now show how to find x and y in F10,p such that
z = 1/

�
x2 + y2. For this, we shall use the following lemma.

Lemma 3.21. Let a be in Q. One has a2 ∈ N if and only if a ∈ Z.

Proof. Assume that a = p/q, with p, q ∈ Z, q �= 0, and gcd(p, q) = 1. Assume also that
a2 = n ∈ N. Then p2 = nq2, hence q2|p2, which in turn implies q|p. Since by assumption
gcd(p, q) = 1, then one has q = ±1, hence necessarily a ∈ Z. Conversely, if a ∈ Z then
obviously a2 ∈ N.
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As in the proof of Theorem 3.20, let us assume that 1 < z < 10 and x ≥ y ≥ 0, which
implies ex ∈ {−1,−2}. We denote by X and Y the integral significands of x and y
respectively. From Equation (3.24) we can deduce that X and Y must satisfy

24p+2 · 54p−2� =
�
X · 10ex+2

�2
+
�
Y · 10ey+2

�2
. (3.25)

From 2 ·10p−1 < 5� < 2 ·10p, one has 54p−2� ∈ N. Since moreover ex ∈ {−1,−2}, necessarily
X · 10ex+2 ∈ N, and Y 2 · 102(ey+2) is also in N. Since Y · 10ey+2 is a nonnegative rational
number whose square is a natural integer, it follows from Lemma 3.21 that Y · 10ey+2 ∈ N.
Hence we know that X · 10ex+2 and Y · 10ey+2 both necessarily belong to N.

As a consequence, to find all inputs (X, Y ) that give a midpoint for the function
1/
�
x2 + y2, we know from Equation (3.25) that we need to find all the decompositions of

the at most two integers 24p+2 · 54p−2� as the sum of two squares. We use Algorithm 3 to
build all values x and y, x ≥ y, such that 1/

�
x2 + y2 is a midpoint, for the decimal formats

of the IEEE 754-2008 standard. For the decimal32 format, all the pairs of floating-point
numbers (x, y) for which 1/

�
x2 + y2 is a midpoint can be deduced from the pairs listed

in Table 3.14 by either exchanging x and y or by multiplying them by the same power of
10. Tables 3.15 and 3.16 give similar results for the decimal64 and decimal128 formats.

Data: Precision p
Result: Couples x, y; x ≥ y such that 1/

�
x2 + y2 is a midpoint in the decade

[10−1; 1)

num = 0;
�1 = �log5(2 · 10p−1 + 1)�;
�2 = �log5(2 · 10p − 1)�;
/* Decompose 24p+2 · 54p−2�1 = a2 + b2 into two lists */
ta1, tb1 = decomp25(4p+ 2, 4p− 2i�1);
if �1 �= �2 then

ta2, tb2 = decomp25(4p+ 2, 4p− 2�2) ; /* Decompose 24p+2 · 54p−2�2 = a2 + b2 */
ta1 = ta1@ ta2 ; /* Concatenation of lists */
tb1 = tb1@ tb2;

end

for i from 1 to SizeOf(ta1) do
if ta1[i] and tb1[i] fit on p digits then

print (ta1[i], tb1[i]) ; /* Non-normalized output */
end

end

Algorithm 3: Determining the midpoints for the reciprocal 2Dnorm function

Table 3.17 gives the number Nz of midpoints z in a decade (i.e., with a fixed exponent
ez), with respect to the decimal format considered. The table also gives the number N of
pairs of integral significand (X, Y ) with X ≥ Y that give these midpoints. In decimal64
arithmetic for instance, the function (x, y) �→ 1/

�
x2 + y2 has 2 midpoints z1 < z2 in the

decade [1, 10): the number of pairs (X, Y ) that give z1 is 10, and 9 pairs give z2.
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Table 3.14: Floating-point numbers x, y ∈ F10,7 with X ≥ Y such that z = 1/
�

x2 + y2 is
a midpoint, with 10−8 ≤ z < 10−7.

x y z = 1/
�
x2 + y2

1966080

1638400

1916928

2048000

573440.0

1228800

720896.0

0

4.8828125 ×10−7

Table 3.15: Floating-point numbers x, y ∈ F10,16 with X ≥ Y such that z = 1/
�
x2 + y2 is

a midpoint.

z1 = 1.1920928955078125 · 10−16

z2 = 5.9604644775390625 · 10−16

x y z

8053063680000000 2348810240000000

6710886400000000 5033164800000000

7851737088000000 2952790016000000

7073274265600000 4509715660800000

6309843828736000 5527622909952000 z1
8208004625203200 1731301317017600

7605184490373120 3539761721507840

7394920071430144 3960290559393792

8364448808960000 636192030720000

8388608000000000 0

1342177280000000 1006632960000000

1261968765747200 1105524581990400

1610612736000000 469762048000000

1570347417600000 590558003200000

1414654853120000 901943132160000 z2
1672889761792000 127238406144000

1641600925040640 346260263403520

1521036898074624 707952344301568

1677721600000000 0
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Table 3.16: Floating-point numbers x, y ∈ F10,34 with X ≥ Y such that z = 1/
�
x2 + y2 is

a midpoint.

z1 = 1.7763568394002504646778106689453125 · 10−34

z2 = 8.8817841970012523233890533447265625 · 10−34

x y z

5404319552844595200000000000000000 1576259869579673600000000000000000
4503599627370496000000000000000000 3377699720527872000000000000000000
5269211564023480320000000000000000 1981583836043018240000000000000000
4746794007248502784000000000000000 3026418949592973312000000000000000
4234464513638835159040000000000000 3709524941072530145280000000000000
5508298661041325211648000000000000 1161856646267550040064000000000000
5103752916593590193356800000000000 2375493879610755094937600000000000
4962646853644758191964160000000000 2657706005508419097722880000000000
4019983297956610516923187200000000 3940938884308614627563929600000000
4908896652364120987199864832000000 2755721078431934000528359424000000 z1
5149914854164019792742606438400000 2273684674832136389442876211200000
5484142688230497667859810877440000 1271001172632702764091262894080000
4307286551044460811988896841728000 3624713447004776475833090965504000
4685765143417034444156658442567680 3120075323841344966276075497717760
5307519345123296639514855463714816 1876566920428820575559681455423488
5613286575554586214400000000000000 426941244674723020800000000000000
5564741086220858012205056000000000 851423307780119637000192000000000
5580549968950457190076907520000000 740761128672925391897231360000000
5620657309038434535090972052684800 315398826977144693473134667366400
5629499534213120000000000000000000 0
1080863910568919040000000000000000 315251973915934720000000000000000
1053842312804696064000000000000000 396316767208603648000000000000000
1101659732208265042329600000000000 232371329253510008012800000000000
1020750583318718038671360000000000 475098775922151018987520000000000
1112948217244171602441011200000000 170284661556023927400038400000000
1116109993790091438015381504000000 148152225734585078379446272000000
1029982970832803958548521287680000 454736934966427277888575242240000
1096828537646099533571962175488000 254200234526540552818252578816000
1122657315110917242880000000000000 85388248934944604160000000000000
1124131461807686907018194410536960 63079765395428938694626933473280 z2
900719925474099200000000000000000 675539944105574400000000000000000
949358801449700556800000000000000 605283789918594662400000000000000
846892902727767031808000000000000 741904988214506029056000000000000
992529370728951638392832000000000 531541201101683819544576000000000
803996659591322103384637440000000 788187776861722925512785920000000
981779330472824197439972966400000 551144215686386800105671884800000
861457310208892162397779368345600 724942689400955295166618193100800
937153028683406888831331688513536 624015064768268993255215099543552
1125899906842624000000000000000000 0
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Table 3.17: Number of midpoints in a decade for reciprocal 2D norm with a fixed exponent
Format decimal32 decimal64 decimal128

p 7 16 34

Nz 1 2 2

N 4 10 + 9 20 + 19

3.7.3 Exact points for reciprocal 2D norm

Theorem 3.22. Let x, y ∈ Fβ,p be such that (x, y) �= (0, 0). Let X, Y denote the integral
significands of x, y, and let also z denote 1/

�
x2 + y2.

• For β = 2q (q ∈ N>0), the real z is also in F2q ,p if and only if {x, y} = {0,±2k} for some
k ∈ Z.
• For β = 10, the number z is in F10,p if and only if its integral significand Z satisfies
Z = 2k ·5�, with 10p−1 ≤ 2k ·5� < 10p and k, � ∈ N. In this case one has 28p−2k ·58p−2� ∈ N,
and (X, Y ) must satisfy

(X · 10m)2 + (Y · 10n)2 = 28p−2k · 58p−2�,

where m,n ∈ Z such that X · 10m and Y · 10n are in N.

Proof. Without loss of generality, we assume that 1 ≤ z < β and that 0 ≤ y ≤ x.
Reasoning as in the proof of Theorem 3.20, one may check that necessarily ex ∈ {−2,−1, 0}.
Using as usual the normalized representations of x, y and z, from (x2+y2)z = 1 we deduce

Z2(X2 · β2ex−2ey + Y 2) = β4p−4−2ey . (3.26)

If β = 2q for some q ∈ N>0, then Equation (3.26) implies that Z = 2� for some � ∈ Z.
From Equation (3.26), we then deduce

�
X · 2q(ex+2)

�2
+
�
Y · 2q(ey+2)

�2
= 24qp−2�. (3.27)

Since 2q(p−1) ≤ Z < 2qp, we deduce that q(p − 1) ≤ � < qp, hence 24qp−2� is in N. Since
both 24qp−2� and X · 2q(ex+2) are in N, it follows that (Y · 2q(ey+2))2 is also in N, and from
Lemma 3.21 we deduce that Y · 2q(ey+2) ∈ N. Then Corollary 3.19 implies that the only
possible decomposition of 24qp−2� as the sum of two squares is 24qp−2� = 02 +

�
22qp−�

�2
, so

that {X, Y } = {0, 22qp−�}. Conversely, if {x, y} = {0,±2k}, then 1/
�
x2 + y2 = 2−k is in

F2q ,p.
Now let us assume that β = 10. Then Equation (3.26) becomes

Z2
�
X2 · 102ex−2ey + Y 2

�
= 104p−4−2ey . (3.28)

Since 104p−4−2ey is a multiple of Z, necessarily Z = 2k · 5� with k, � ∈ N such that 10p−1 ≤
2k · 5� < 10p, which implies � ≤ 2p and k ≤ 4p. Moreover, from Equation (3.28) with
Z = 2k · 5� we have

�
X · 102p+ex+2

�2
+
�
Y · 102p+ey+2

�2
= 28p−2k · 58p−2�. (3.29)

Since (X · 102p+ex+2)2 and 28p−2k · 58p−2� are both in N, then necessarily Y · 102p+ey+2 also
belongs to N, which concludes the proof.
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Table 3.18: Number of inputs giving an exactpoint for the reciprocal 2D norm for a fixed
exponent

Format decimal32 decimal64 decimal128

p 7 16 34

Nz 42 93 196

N 160 764 3373

In radix 2q, the pairs (x, y) such that 1/
�

x2 + y2 is an exactpoint are clearly character-
ized by Theorem 3.22. In radix 10, we used Algorithm 4 to determine all couples (x, y) that
leads to an exactpoint. For each Z = 2k · 5� with k, � ∈ N such that 10p−1 ≤ 2k · 5� < 10p,
we are reduced to find all decompositions of 28p−2k · 58p−2� as sums of two squares. This is
done exactly as explained in §3.7.1.

The number of input couples that leads to an exact point for the reciprocal 2D norm
with respect to the precision is given in Figure 3.8. For each basic decimal format of
the IEEE 754-2008 standard, Table 3.18 gives the number Nz of exactpoints with a fixed
exponent ez, together with the number N of pairs of significands (X, Y ) with X ≥ Y such
that 1/

�
x2 + y2 is also in F10,p.

Data: Precision p
Result: Couples x, y; x ≥ y such that 1/

�
x2 + y2 is an exactpoint in the decade

[10−1; 1)

num = 0;
for k from 0 to 4p do

�1 =
�
log5(

10p−1

2k )
�
;

�2 =
�
log5(

10p−1
2k )

�
;

/* Decompose 28p−2k · 58p−2�1 = a2 + b2 */
ta1, tb1 = decomp25(8p− 2k, 8p− 2�1);
if �1 �= �2 then

/* Decompose 28p−2k · 58p−2�2 = a2 + b2 */
ta2, tb2 = decomp25(8p− 2k, 8p− 2�2);
ta1 = ta1@ ta2 ; /* Concatenation of lists */
tb1 = tb1@ tb2;

end

for i from 1 to SizeOf(ta1) do
if ta1[i] and tb1[i] fit on p digits then

print (ta1[i], tb1[i]) ; /* Non-normalized output */
end

end

end

Algorithm 4: Determining the exactpoints for the reciprocal 2Dnorm function
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Figure 3.8: Number of inputs leading to exact points for the reciprocal 2D norm in decimal

3.8 Normalization of 2D-vectors

Theorem 3.12 on the function (x, y) �→ x / �y�2 implies that x/
�

x2 + y2, cannot be a
midpoint in radix 2. Here we first extend this result to radices 2q and 10. Then we
characterize the exact points of the 2D-normalization function in radix 2q.

3.8.1 Midpoints for 2D normalization

Theorem 3.23. Let x, y ∈ Fβ,p such that (x, y) �= (0, 0). If β = 2q (q ∈ N>0) or β = 10
then x/

�
x2 + y2 �∈ Mβ,p.

Proof. Without loss of generality, let us assume x, y > 0, and assume that z = x/
�

x2 + y2

is a midpoint. Hence we write as usual z = (Z + 1/2) · 10ez−p+1 with ez ∈ Z and Z ∈ N
such that βp−1 ≤ Z < βp. From x/

�
x2 + y2 ≤ 1 we deduce that z ≤ 1, hence ez ≤ 0.

Using x2(1− z2) = y2z2 and the normalized representations of x and y gives

X2
�
4 · β2p−2−2ez − (2Z + 1)2

�
= Y 2(2Z + 1)2 · β2ey−2ex . (3.30)

From ez ≤ 0, the left-hand side of (3.30) is in N and thus, using Lemma 3.21, Y (2Z + 1) ·
βey−ex ∈ N. Since Y 2(2Z+1)2 ·β2ey−2ez is a multiple of X2, it follows that Y (2Z+1) ·βey−ex

= JX for some J in N>0. Equation (3.30) then becomes

(2 · βp−1−ez)2 = J2 + (2Z + 1)2, (3.31)

which expresses (2 · βp−1−ez)2 as a sum of two integer squares.
If β = 2q then (2 · βp−1−ez)2 is an even power of two and Corollary 3.19 then implies

that it has only one possible decomposition, which is 02 + (2q(p−1−ez)+1)2. However, this
contradicts the fact that both J and 2Z + 1 are positive integers.

With β = 10, Equation (3.31) becomes

22p−2ez · 52p−2−2ez = J2 + (2Z + 1)2. (3.32)
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Since 2p− 2ez is even, according to Theorem 3.18, one has necessarily

22p−2ez · 52p−2−2ez = |�(c)|2 + |�(c)|2,

with c = 2p−ez(2+ i)k(2− i)2p−2−2ez−k for some k ∈ N, and one may check that both |�(c)|
and |�(c)| are even. Hence the two squares in the right-hand side of Equation (3.32) must
be even, which is a contradiction since 2Z + 1 is odd.

3.8.2 Exact points for 2D normalization

The next theorem provides a characterization of the exact points of the 2D-normalization
function in radix 2q.

Theorem 3.24. Let q ∈ N>0 and let x, y ∈ F2q ,p be such that (x, y) �= (0, 0). One has
= x/

�
x2 + y2 ∈ F2q ,p if and only if x = 0 or y = 0.

Proof. The “if” statement is obvious. Conversely, assume that z ∈ F2q ,p and that both
x and y are nonzero. We can restrict to x, y > 0 with no loss of generality. Let z =
x/

�
x2 + y2. Since z ≤ 1, necessarily ez ≤ 0. Then, using x2(1 − z2) = y2z2 and the

normalized representations of x and y,

X2(β2p−2ez−2 − Z2) = Y 2Z2 · β2ey−2ex , (3.33)

From ez ≤ 0 it follows that the left-hand side of (3.33) is in N and, due to Lemma 3.21, so
is Y Z · βey−ey . Now, since Z2Y 2 · β2ey−2ex is a multiple of X2, we have ZY · βey−ex = JX
for some J ∈ N>0. Then we obtain from Equation (3.33)

�
βez−p+1

�2
= J2 + Z2. (3.34)

When β = 2q, Corollary 3.19 implies that either J or Z is zero, a contradiction. Hence,
only the cases x = 0 or y = 0 are obviously exact points.

In radix 10, we do not have simple results to characterize the exact points of the 2D-
normalization function. But they can of course be enumerated using Equation (3.34), at
least for some small precisions p. Using Theorem 3.18, we enumerate all the pairs (Z, J)
for a fixed ez such that Equation (3.34) is satisfied. Without loss of generality, we fix
ex = 0. The inputs x and y can then be found by searching the points (X, Y · 10ey) on
the line Y Z · 10ey = JX, with 10p−1 ≤ X < 10p and X ∈ N. For some small precisions,
the following table gives the number of pairs of inputs (X, Y ) such that x/

�
x2 + y2 is an

exact point:

p 1 2 3 4 5 6 7

ez = −1 4 54 558 5622 56254 562696 5630268

ez = −2 0 0 0 6 60 597 2889

This experiment suggests that the number of (x, y) such that x/
�

x2 + y2 is an exact
point grows very rapidly with p, and that no useful enumeration can be performed.



74 CHAPTER 3. BREAKPOINTS FOR SOME ALGEBRAIC FUNCTIONS

3.9 2D Euclidean norm

Let x and y be two numbers in Fβ,p, and assume that the Euclidean norm z =
�
x2 + y2

is a midpoint. We use the normalized representations of x, y and we write as usual
z = (Z + 1/2) · βez−p+1. Without loss of generality, we assume that x ≥ y, which implies
ez ≥ ex ≥ ey. Then from x2 + y2 = z2 it follows that

4(Y 2 +X2 · β2ex−2ey) = (2Z + 1)2 · β2ez−2ey . (3.35)

When β is odd, the right-hand side of Equation (3.35) is odd, while the left-hand side
is always even. Hence, if the radix β is odd,

�
x2 + y2 cannot be a midpoint, and this

observation can be generalized to the Euclidean norm in higher dimensions. Nevertheless,
this not a very useful result since it does not hold for binary, decimal nor hexadecimal
arithmetic.

For even radices, we do not have general results. Equation (3.35) has solutions, and
exhaustive enumeration can be performed at least for small precisions. In radices 2 and
10, and for some small precisions p, the following tables display the number N of input
pairs (x, y), with x ≥ y, such that z =

�
x2 + y2 is a midpoint in the interval [1, β).

Radix 2

p 1 2 3 4 5 6 7 8 9 10

N 0 1 1 3 5 18 30 76 155 348

Radix 10

p 1 2 3 4

N 0 11 177 2428

These experiments suggest that the number of midpoints for the function (x, y) �→�
x2 + y2 grows very rapidly with p.
On the other hand, in one-dimension the Euclidean norm reduces to the absolute value,

which suffices to see that it admits all exact points, whatever the parity of β.

3.10 Inputs and/or outputs in the subnormal range

In this chapter, we have assumed that the exponent range is unbounded and all floating-
point numbers are normalized. Let us now briefly describe what changes if the input or
output variables are in the subnormal range.

A subnormal floating-point number x can be written

x = X · β1−p+emin ,

with 0 < X ≤ βp−1, i.e., x is of absolute value less than βemin . We also call subnormal
midpoint a number z of the form

z =

�
Z +

1

2

�
· β1−p+emin ,
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with 0 ≤ Z < βp−1. In the following, we will note SFβ,p,emin the set of subnormal floating-
point number of precision p in radix β, and SMβ,p,emin the set of subnormal midpoints of
precision p in radix β.

An interesting fact is that when considering an unlimited exponent range, a subnormal
number becomes a normal floating-point number with trailing zeros. For example, the
binary32 subnormal number

x = 0.00010110101100001101011 · 2−126

can be represented as

x = 1.01101011000011010110000 · 2−130.

Since Fβ,p is the set of floating-point number assuming an unbounded exponent range, we
deduce that SFβ,p,emin is a subset of Fβ,p. Notice however that SMβ,p,emin is not a subset of
Mβ,p, but a subset of Fβ,p.

From this, we deduce the following lemmata.

Lemma 3.25. Assume that function f admits no midpoints in Fβ,p. Then for all x1, . . . , xn ∈
Fβ,p

�
SFβ,p,emin, the value f(x1, . . . , xn) is not in Mβ,p.

Lemma 3.26. Assume that function f admits no exact points in Fβ,p. Then for all
x1, . . . , xn ∈ Fβ,p

�
SFβ,p,emin, the value f(x1, . . . , xn) is not in Fβ,p

�
SFβ,p,emin.

Lemma 3.27. Assume that function f admits a set I of inputs x1, . . . , xn ∈ Fβ,p such
that f(x1, . . . , xn) is an exact points. Then the set of inputs x1, . . . , xn ∈ Fβ,p

�
SFβ,p,emin

such that f(x1, . . . xn) ∈ SFβ,p,emin and the set of inputs x1, . . . , xn ∈ SFβ,p such that
f(x1, . . . xn) ∈ Fβ,p,emin are subsets of I.

Lemma 3.28. Assume that function f admits a set I of inputs x1, . . . , xn ∈ Fβ,p such
that f(x1, . . . , xn) is a midpoint. Then the set of inputs x1, . . . , xn ∈ SFβ,p such that
f(x1, . . . xn) ∈ Mβ,p,emin is a subset of I.

Proof of Lemma 3.25, 3.26, 3.27 and 3.28. Since SFβ,p,emin is a subset of Fβ,p, we know
that Fβ,p = SFβ,p,emin

�
Fβ,p, which proves the two first lemmata.

If I = {(x1, . . . , xn) ∈ Fβ,p

�
SFβ,p,emin |f(x1, . . . , xn) ∈ Fβ,p}, since SFβ,p,emin is a subset

of Fβ,p, the set of inputs such that f(x1, . . . , xn) is in SFβ,p,emin is a subset of I.

Except for the midpoints in the subnormal range, we can use the four lemmata and
the proofs of the previous sections to deduce what happens for subnormal floating-points
numbers.

Example 3.29. Function (x, y) �→ x / �y�2 of Section 3.4 admits no midpoints in radix 2
when the inputs are normalized floating-point numbers with unbounded exponent range.
Then, using Lemma 3.25, we know that this function admits no midpoints in radix 2, even
if some or all inputs are subnormal floating-point numbers.

Notice however that Lemma 3.25 proves nothing about midpoints in the subnormal
range (SMβ,p,emin). This is however covered in §3.10.3.
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Example 3.30. The reciprocal square-root function admits two midpoints in the decimal64
format, namely y = 7.036874417766400 ·10ey if ey is odd, and y = 2.814749767106560 ·10ey
if ey is even. Then, according to Lemma 3.28 one can check that in the subnormal range,
only the following entries will lead to midpoints (in the normalized range):

y = 0.070368744177664 · 10−383,

y = 0.281474976710656 · 10−383.

If a function f admits no exact points for normal floating-point numbers, it will admit
no exact points when some inputs are subnormals. If there are a few exact points of the
function f , the formula that characterize those exact points can yield some false positives
when some inputs are subnormals, but will detect them all.

In the case of midpoints in the subnormal range, we have to check each function indi-
vidually. For the same reason as the lemmata 3.25, 3.26, 3.27, and 3.28, we only consider
normal floating-point numbers with unbounded exponent range for the inputs. The results
will be the same when considering that some inputs might be subnormals.

Characterizing subnormal midpoints, when there is no easy characterization of mid-
points in the normalized range, seems rather pointless. Hence, we focus on radices and
functions where normalized midpoints are easily characterized or enumerated.

3.10.1 Square root

For the square-root function, notice that if β1−p+emin < x < βemax ,
√
x is not subnormal. It

means that, for all inputs of precision p (even for subnormal numbers), the output cannot
be in the range of subnormal numbers of precision p, hence cannot be a midpoint in the
subnormal range.

The only case in which we can have midpoints in the subnormal range for square-root
is if we are working with a larger input precision (pi) than the output precision (po). In
this case, when an FMA operation is available, midpoints in the subnormal range can be
detected at run time: if the rounded approximate z̃ ≈ √

y would lead to a midpoints in the
subnormal range of the output format, then one can check by computing t = RNpi(z̃

2 − y)
whether this is really a midpoint (t = 0), or if we are in a case of double-rounding (t �= 0)
(see §1.5.2). In addition, if t �= 0, then the sign of t indicates in which way z̃ should be
rounded in the output format: t > 0 means z̃ should be rounded down (RDpo(z̃)), and
t < 0 means z̃ should be rounded up (RUpo(z̃)).

3.10.2 Reciprocal square root

Theorem 3.31. Let y ∈ Fβ,p. If β = 2, then 1/
√
y cannot be in SMβ,p,emin. If β = 10,

then 1/
√
y is in SMβ,p,emin if and only if the integral significand Y of y is of the form

23p−1−2emin−ey · 53p−3−2k−2emin−ey

with 0 ≤ k < p− 1 + p log5(2).

Notice that having Y of the form

23p−1−2emin−ey · 53p−3−2k−2emin−ey
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with 0 ≤ k < p− 1 + p log5(2) is not sufficient in Theorem 3.31: it should also be checked
that Y correspond to an integral significand, i.e., βp−1 ≤< βp. This will also be the case
in Theorem 3.33 for the reciprocal.

Proof. Let z = 1/
√
y be a subnormal midpoint. From z < βemin , we deduce that ey ≥

−2emin. Let y = Y · βey−p+1 and z = (Z + 1/2) · βemin−p+1 be the representations of y and
z. From yz2 = 1 we deduce that

(2Z + 1)2Y βey+2emin = 4β3p−3. (3.36)

Equation (3.36) has no solution for β = 2. Now, if β = 10, we deduce from Equation (3.36)
that 2Z+1 = 5k for some integer k. Since Z < βp−1, we know that 0 ≤ k < p−1+p log5(2).
From Equation (3.36), we deduce that

Y 10ey−p+1 = 22p−2emin · 52p−2−2k−2emin .

Conversely, if the integral significand of y satisfies Y = 23p−1−2emin−ey ·53p−3−2k−2emin−ey , we
deduce from Equation (3.36) that 2Z + 1 = 5k, and from 0 ≤ k < p − 1 + p log5(2), we
deduce that z is in SMβ,p,emin .

3.10.3 Division, x/�y�2
In radix β = 2, there are many subnormal midpoints. Indeed, all subnormal midpoints
can be obtained, by choosing adequate inputs.

Example 3.32 (Binary32).

x = 1.10000000000000000000000 · 2−63,

y = 1.00000000000000000000000 · 263,

x/y = 0.00000000000000000000001� �� �
p=24

1 · 2−126.

That example is easily generalized to all subnormal midpoints. Let z be a subnormal
midpoint, with z = (Z +1/2) · 2emin−p+1 and 0 ≤ Z < 2p−1. If Z = 0, then x = 2emin−p and
y = 1 gives x/y = z. If Z �= 0, then there exists an integer k such that 2k ≤ Z < 2k+1 and
0 ≤ k ≤ p− 2. Taking x = (2Z + 1) · 2k−p+1 and y = 2−emin , we can check that x, y ∈ Fβ,p,
and that x/y ∈ SMβ,p,emin .

Since x/y is a sub-case of the function x/�y�2, we also know that all subnormal mid-
points can be obtained for the latter function.

3.10.4 Reciprocal

Theorem 3.33. Let y ∈ Fβ,p. If β = 2, then 1/y cannot be in SMβ,p,emin. If β =
10, then 1/y is in SMβ,p,emin if and only if the integral significand Y of y is of the form
22p−1−emin−ey · 52p−2−k−emin−ey , with 0 ≤ k < p− 1 + p log5(2).
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Proof. Let z = 1/y be a subnormal midpoint. From 1/2β1−p+emin ≤ z < βemin , we deduce
that ey ≤ −emin − p. Let y = Y · βey−p+1 and z = (Z + 1/2) · βemin−p+1 be the normalized
representations of y and z. From yz = 1 we deduce that

(2Z + 1)Y = 2β2p−2−emin−ey . (3.37)

Equation (3.37) has no solution for β = 2. Now, if β = 10, we deduce from Equation (3.37)
that 2Z+1 = 5k for some integer k. Since Z < βp−1, we know that 0 ≤ k < p−1+p log5(2).
From Equation (3.37), we deduce that

Y = 22p−1−emin−ey · 52p−2−k−emin−ey .

Conversely, if Y = 22p−1−emin−ey · 52p−2−k−emin−ey , we deduce from Equation (3.37) that
2Z + 1 = 5k, and from k < p− 1 + p log5(2), we deduce that z is in SMβ,p,emin .

3.10.5 Reciprocal 2D Euclidean norm

Theorem 3.34. Let x, y ∈ Fβ,p. If β = 2, then 1/
�
x2 + y2 cannot be in SMβ,p,emin. If

β = 10, the subnormal midpoints are of the form

z = 2r−1 · 5s · 10emin−p+1,

with 0 < 2r5s < 2 · 10p−1. The inputs x, y are then given by the following decomposition in
a sum of two squares:

�
X · 10ex+p−emin

�2
+
�
Y · 10ey+p−emin

�2
= 26p−2−4emin−2r · 56p−4−4emin−2s.

Proof. Let z = 1/
�
x2 + y2 be a subnormal midpoint. Without loss of generality, we

assume that x ≥ y, which implies βex−2 < z ≤ β−ex (as in §3.7.2). From z < βemin , we
deduce that −ey ≥ −emin > 0.

Let x = X · βex−p+1 and y = Y · βey−p+1 be the normalized representations of x and y,
and z = (Z+1/2) ·βemin−p+1 be the normalized representations of z. From (x2+y2)z2 = 1,
we deduce

(X2β2ex−2ey + Y 2)(2Z + 1)2 = 4β4p−4−2ey−2emin . (3.38)

If β = 2, Equation (3.38) has no solution. If β = 10, then 2Z + 1 = 2r5s with 0 < 2r5s <
2 · 10p−1. From Equation (3.38), we deduce

�
X · 10ex+p−emin

�2
+
�
Y · 10ey+p−emin

�2
= 26p−2−4emin−2r · 56p−4−4emin−2s.

By decomposing the right hand side integer into the sum of two squares, it is then
possible to determine every couple of inputs that give a midpoint in the subnormal range.
In decimal16, there are 666 couples of inputs that gives midpoints in the subnormal range,
and there are 8025 such couples for decimal32.
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3.10.6 Normalization of 2D-vectors

Theorem 3.35. Let x, y ∈ Fβ,p. If β = 2 or β = 10, then x/
�
x2 + y2 cannot be in

SMβ,p,emin.

Proof. Let z = x/
�
x2 + y2 be a subnormal midpoint, and let x = X · βex−p+1 and y =

Y · βey−p+1 be the normalized representations of x and y. Let z = (Z + 1/2) · βemin−p+1 be
the normalized representations of z. From x2(1− z2) = y2z2, we deduce

X2
�
4β2p−2−2emin − (2Z + 1)2

�
= Y 2(2Z + 1)2β2ey−2ex (3.39)

Since all the terms in the left hand side of Equation (3.39) are integers, we deduce from
lemma 3.21 that Y (2Z+1)βey−ex is an integer multiple of X. From Y (2Z+1)βey−ex = JX,
we then deduce from Equation (3.39) that

4β2p−2−2emin = (2Z + 1)2 + J2,

which has no solution (as in §3.8.1).

3.11 Conclusion

We have shown that for several simple algebraic functions (
√
y, 1/

√
y, xk for k ∈ N>0,

x/�y�2, x/y, 1/y, 1/
�

x2 + y2, x/
�
x2 + y2), we can obtain useful information on the

existence of midpoints and exact points. This information can be used for simplifying or
improving the performance of programs that evaluate these functions.

Finding midpoints and exact points would also be of interest for the most common tran-
scendental functions (sine, cosine, exponential, logarithm,. . . ). Providing these functions
with correct rounding is a difficult problem, known as the Table-Maker’s Dilemma [32, 45].
For the most simple transcendental functions, those built from the complex exponential
and logarithm, one can deduce the nonexistence of midpoints from the following corollary
of Lindemann’s theorem (see for example [3, p. 6]):

Theorem 3.36 (Lindemann). ez is transcendental for every non-zero algebraic complex
number z.

Since floating-point numbers as well as midpoints are algebraic numbers, Theorem 3.36
allows us to deduce that for any radix and precision, if x is a floating-point number
then ln(x), exp(x), sin(x), cos(x), tan(x), arctan(x), arcsin(x) and arccos(x) cannot be
midpoints. Furthermore, the only exact points are ln(1) = 0, exp(0) = 1, sin(0) = 0,
cos(0) = 1, tan(0) = 0, arctan(0) = 0, arcsin(0) = 0, and arccos(1) = 0.

The case of radix-2 and radix-10 exponentials and logarithms have to be treated more
carefully. But one can prove that the radix-2 or 10 logarithm of a rational number is
either an integer or an irrational number. This gives the following result. Assume that
the exponent size is less than the precision (which is true in any reasonable floating-point
system), and that x is a floating-point number. Then we have the following:

• log2(x) cannot be a midpoint. It can be an exact point only when x = 2k, where k
is an integer;
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• log10(x) cannot be a midpoint. It can be an exact point only when x = 10k, where k
is an integer.

It is always possible to build ad-hoc transcendental functions for which something can be
said about midpoints or exact points. Unfortunately, for the many common non-elementary
transcendental functions useful in scientific applications (physics, statistics, etc.), almost
nothing is known about their midpoints or exact points in floating point arithmetic.

Consider for instance the Gamma function. We know that if n is a nonnegative integer
then Γ(n) = (n − 1)! is an integer too (which implies the existence of midpoints in some
cases, e.g., in radix-2 arithmetic with p = 3, the number 610 = 1102 is a floating-point
number, and Γ(6) = 5! = 12010 = 11110002 is a midpoint). Although we have no proof
of that, it is extremely unlikely that Gamma of a non-integer floating-point number could
be a midpoint or an exact point. To our knowledge (see for example [57]), the only result
that can be used to deal with a very few cases is that Γ(x) is shown to be irrational if x
modulo 1 belongs to {1/6, 1/4, 1/3, 1/2, 2/3, 3/4, 5/6}.



Chapter 4

Newton-Raphson division using an

FMA

To compute the quotient of two numbers, there are essentially two classes of algorithms: the
digit recurrence algorithms, such as the SRT division, and the Newton-Raphson division
algorithms. The SRT division is based on the ordinary pencil-and-paper division, and
its convergence is known to be linear, whereas the Newton-Raphson algorithm converges
quadratically.

The most commonly used division algorithm in hardware is the SRT division. Indeed,
for the considered floating-point formats, it is more efficient to use these kinds of algorithms
in hardware.

However, due to the constant increase of format lengths and the introduction of correctly
rounded FMA operations in the IEEE-754-2008 standard [27], it may become preferable
to perform division using the Newton-Raphson algorithms [9, 43]. With an FMA unit
available in hardware, the quotient can be computed efficiently purely in software, as it
was already the case for example on the HP/Intel Itanium architecture [9, 43]: in this case,
there is no need for a hardware division unit.

While we start with a small remainder of the SRT algorithm, this chapter focuses on
the proof of correct rounding of Newton-Raphson based algorithms, for both binary and
decimal floating-point arithmetic.

4.1 SRT division

The most commonly used division algorithm in today’s hardware is known as the SRT
division, named after its three finders: D.W. Sweeney, J.E. Robertson and K.D. Tocher [52,
55]. This algorithm is roughly like the ordinary paper-and-pencil division, as depicted in
figure 4.1.

In the ordinary division, one guesses a next quotient digit y(−n) one at a time, and
computes a residual rn, usually by subtracting by(−n) to the previous residual rn−1. Hence,
the ordinary division might be described as follows, where SEL(rn−1b) =

� rn−1

b

�
.

The SRT division uses many tweaks to improve the ordinary division for radix-2 hard-
ware computers. First, instead of computing the remainder rn, the SRT algorithm com-
putes wn = βnrn. While wn is basically the same thing as the remainder (wn being rn with

81
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r0 =

a����
149

b����
527

r1 = 43.6 y = 0.2827 . . .

r2 = 1.44 = 0.y(−1)y(−2)y(−3)y(−4) . . .

r3 = .386

r4 = .0171

r5 = . . .

Figure 4.1: Example of an ordinary paper-and-pencil division

Data: a, b fixed point numbers such that a < b < βa

Result: The quotient y and a remainder rk such that a = by + rk

r0 = a, y(0) = 0;

for n from 1 to k do

y(−n) = SEL(rn−1, b);

rn = rn−1 − by(−n)β−n;
end

y = y(0).y(−1)y(−2)y(−3) . . . y(−k)

Algorithm 5: Ordinary paper-and-pencil division in radix β

a shift), the main loop becomes

y(−n) = SEL(wn−1, b),
wn = β

�
wn−1 − by(−n)

�
.

(4.1)

In this new iteration, the variable shift previously used to compute rn has been replaced
with a fixed shift, which is preferable in hardware implementation. To also improve division
timing, a redundant representation (usually borrow-save) is used for wn, which improves
the time for the subtraction in (4.1).

That redundant representation, however, makes the choice of y(−n) more complex. In
practice, due to the representation of wn, the SEL() function is based on a few most
significant bits of wn only, which imposes the choice of another redundant number system
for y.

4.2 Newton-Raphson division

The Newton-Raphson method is a general method used to approximate a root α of a
function f . We assume here1 that the function f is C 2, with f �(α) �= 0. We then know
that there is an interval I around α such that all y ∈ I are such that f �(y) > 0. Assuming

1
Although the Newton-Raphson method works on a bigger set of functions, all functions considered in

this chapter are C 2
on the set of positive real numbers, with f �

(α) �= 0.
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yn is an approximation to α, with yn ∈ I, a second order Taylor’s expansion of f around
yn on the interval I gives

f(α) = f(yn) + (α− yn) f
�(yn) +

(α− yn)
2

2
f ��(ξn),

with ξ between yn and α. Since f is C 2 and yn ∈ I, we have f �(yn) �= 0, hence

α = yn −
f(yn)

f �(yn)� �� �
yn+1

− (α− yn)
2 ·Kn,

with Kn = f ��(ξn)
2f �(yn)

. Since f is C 2, we know that for all n, Kn ≤ K = supy∈I
1
2

���f
��(y)
f �(y)

���. Hence

|α− yn+1| ≤ |α− yn|2 ·K.

This proves that if we take y0 close enough to a root α of multiplicity 2 of a C 2 function
(|y0 − α| < 1), iterating the formula

yn+1 = yn −
f(yn)

f �(yn)
, (4.2)

will correctly approximate the root α with a quadratic convergence. But how can it be
applied to the computation of quotient?

4.2.1 Mathematical iteration

y0 y1 y2 y3 y4

yn+1 = yn − f(yn)
f �(yn)

f(y) = 1
y −

b
a

(a) Newton-Raphson’s method for the func-

tion f

yn+1 = yn +
yn
a (a− byn)

y0

y1

y2

y3
y4

(b) Convergence of Newton-Raphson’s iteration

Figure 4.2: Newton-Raphson’s iteration on function f(y) = 1
y −

b
a used to compute a

b
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To compute the quotient a
b , starting from a first approximation y0, we can use Newton-

Raphson’s method on the function f(y) = 1
y −

b
a , which gives the iteration

yn+1 = yn +
yn
a
(a− byn) , (4.3)

which is illustrated in Figure 4.2. However, this iteration might seem unusable to compute
a quotient, since there is another quotient in the formula. But since yn is an approximation
to a

b , we can replace yn
a in Formula (4.3) by xm, an approximation to 1

b .
But now, how do we compute an approximation to 1

b? This is simply done by using
again Newton-Raphson’s method on function f(x) = 1

x−b, which finally gives the iterations

xm+1 = xm + xm (1− bxm) , (4.4)

yn+1 = yn + xm (a− byn) , (4.5)

For example, we can compute the quotient 149
527 starting from an approximation x0 to

1
527 as follows.

x0 = 0.0019 ≈ 1/b,
x1 = x0 + x0(1− bx0) = 0.00189753 ≈ 1/b,
y1 = a× x1 = 0.28273197 ≈ a/b,
y2 = y1 + x1(a− by1) = 0.2827324478170293 ≈ a/b.

a/b = 0.28273244781783681214421 . . .

There are two ways of using the basic operation Fused-Multiply and Add (FMA, see
§1.4.1) to compute a quotient (or a reciprocal) using Newton-Raphson’s iteration. We can
either perform

Markstein

�
rn+1 = a− byn
yn+1 = yn + rn+1xm,

(4.6)

or

Goldschmidt






r0 = a− by0
rn+2 = r2n+1

yn+1 = yn + rn+1xm.
(4.7)

In this chapter, we consider both iterations. Although they are mathematically equiv-
alent to the Newton-Raphson’s iteration (4.5), they will behave differently when imple-
mentation is at stake. We can see that in Goldschmidt’s iteration, the computations of
rn+2 and yn+1 are independent. Hence, if we have several FMA units, or a pipelined FMA,
Goldschmidt’s iterations will go faster than Markstein’s iteration. However, the Markstein
iteration will prove to be less susceptible to rounding errors. Roughly speaking, Gold-
schmidt’s iteration only uses a and b at the first step. Hence, we loose more and more
information by roundings at each step, and this loss of information is never corrected by
using the initial information a and b in the subsequent iterations.
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4.2.2 Floating-point algorithms

To compute a/b, an initial approximation x̂0 to 1/b is obtained from a lookup table ad-
dressed by the first digits of b [12, 54]. One next refines the approximation to 1/b using
iteration (4.8) below:

x̂n+1 = x̂n + x̂n (1− bx̂n) . (4.8)

Then ŷn = ax̂n is taken as an initial approximation to a/b that can be improved using

ŷn+1 = ŷn + x̂m (a− bŷn) . (4.9)

There are several ways of using the FMA to perform Newton-Raphson iterations. To
compute the reciprocal 1/b using Equation (4.8), we have the following two iterations:

Markstein

�
r̃n+1 = RN(1− bx̃n)
x̃n+1 = RN(x̃n + r̃n+1x̃n)

(4.10)

Goldschmidt






r̃1 = RN(1− bx̃0)
r̃n+2 = RN(r̃2n+1)
x̃n+1 = RN(x̃n + r̃n+1x̃n)

(4.11)

The Markstein iteration [42, 43] immediately derives from Equation (4.8). The Gold-
schmidt iteration [19] is obtained from the Markstein iteration (4.10), by substituting rn+1

with r2n. Even if both iterations are mathematically equivalent, when we use them in
floating-point arithmetic, they behave differently, as Example 4.1 shows.

Example 4.1. In binary16 (pw = 11, β = 2):

b = 1.1001011001
1/b = 0. 10100001010� �� �

11

100011...

Markstein’s iteration Goldschmidt’s iteration

x̃0= 0.10101010101 x̃0= 0.10101010101
r̃1=−1.1101100010 · 2−5 r̃1=−1.11011000100 · 2−5

x̃1= 0.10100000110 x̃1= 0.10100000110 // r̃2...
r̃2= 1.1100111010 · 2−9 x̃2= 0.10100001010 // r̃3...
x̃2= 0.10100001011 (x̃n remains the same)

In the Goldschmidt iteration, r̃n+2 and x̃n+1 can be computed concurrently. Hence, this
iteration is faster than Markstein’s iterations on architectures providing parallel floating-
point units, or pipelined FMAs. However, in this example, only the Markstein iteration
yields the correct rounding. A common method [43] is to use Goldschmidt’s iterations at
the beginning, when accuracy is not an issue, and next to switch to Markstein’s iterations
if needed on the last iterations to get the correctly rounded result.

Concerning the division, one may consider several iterations derived from Equation
(4.9). We only consider here the following ones:

Markstein

�
r̃n+1 = RN(a− bỹn)
ỹn+1 = RN(ỹn + r̃n+1x̃m)

(4.12)

Goldschmidt






r̃0 = RN(a− bỹ0)
r̃n+2 = RN(r̃2n+1)
ỹn+1 = RN(ỹn + r̃n+1x̃m)

(4.13)
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In this chapter, we will also consider different precisions:

• The input precision (pi), which is the precision of the operands (x, y ∈ Fβ,pi).

• The ouput precision (po), which is the precision we want to obtain for the correctly
rounded quotient.

• The working precision (pw), which is the precision at which the Newton-Raphson
iterations are performed. This precision is always greater than pi and po.

4.3 Faithful rounding

In some cases explained in Section 4.4, a faithful rounding is required in order to guarantee
correct rounding of the quotient a/b. One may also only need a faithful rounding of the
quotient or the reciprocal. This section provides a sufficient condition to ensure a faithful
rounding of the quotient. We then remind the ”exact residual theorem” (Theorem 4.3),
that will be used for proving the correct rounding in Section 4.4.

4.3.1 Ensuring a faithful rounding

To prove that the last iteration yields a correct rounding, we use the fact that a faithful
rounding has been computed. To prove that at some point, a computed approximation
ỹn is a faithful rounding of the exact quotient a/b, we use a theorem similar to the one
proposed by Rump in [53], adapted here to the general case of radix β.

Theorem 4.2. Let x̂ ∈ R be an approximation to z ∈ R. Let x̃ ∈ Fβ,p be such that
x̃ = RN(x̂). If

|x̂− z| < 1

2β
ulp(z), (4.14)

then x̃ is a faithful rounding of z.

The condition of Theorem 4.2 is tight: Assuming β is even, if z = βk, then x̂ =
z − 1

2βulp(z) will round to a value that is not a faithful rounding of z, as illustrated on
Figure 4.3.

z = βk
x̃

x̂
= 1

2βulp(z)

Figure 4.3: Tightness of the condition on |x̂− z|
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4.3.2 Exact residual theorem

When ỹn is a faithful rounding of a/b, the residual RN(a− bỹn) is computed exactly. The
theorem was first stated by Markstein [42] and has been more recently proved by John
Harrison [22] and Boldo and Daumas [4] using formal provers.

Theorem 4.3 (Exact residual for the division). Let a, b be two floating-point numbers
in Fβ,p, and assume ỹn is a faithful rounding of a/b. For any rounding mode ◦, r̃n+1 =
◦(a − bỹn) is computed exactly (without any rounding), provided there is no overflow or
underflow.

4.4 Round-to-nearest

In this section, we present several methods to ensure correct rounding. We first present a
general method of exclusion intervals that only applies if the quotient a/b is not a midpoint,
and how to extend the exclusion intervals in the case of reciprocal. We then show how to
handle the midpoint cases separately.

4.4.1 Exclusion intervals

A common way of proving correct rounding for a given function in floating-point arithmetic
is to study its exclusion intervals (see §1.5.1). Given a, b ∈ Fβ,pi , either a/b is a midpoint
at the output precision po, or there is a certain distance between a/b and the closest
midpoint. Hence, if we assume that a/b is not a midpoint, then for any midpoint m, there
exists a small interval centered at m that cannot contain a/b. Those intervals are called
the exclusion intervals.

More formally, let us define µpi,po > 0 as the smallest value such that there exist
a, b ∈ Fβ,pi and a midpoint m in precision po with |a/b − m| = βea/b+1µpi,po . If a lower
bound on µpi,po is known, next Theorem 4.4 can be used to ensure correct rounding, as
illustrated by Figure 4.4 (see [22] or [46, chap. 12] for a proof).

Theorem 4.4. Let a, b in Fβ,pi be such that a/b is not midpoint in precision po for the
division, and ŷ be in R. If |ŷ − a/b| < βea/b+1µpi,po, then RN(ŷ) = RN(a/b).

To bound the radius of the exclusion intervals, we generalize the method used by
Harrison [22] and Marius Cornea [10] to the case of radix β.

Theorem 4.5. Assuming po ≥ 2 and pi ≥ 1, a lower bound on µpi,po is given by

µpi,po ≥
1

2
β−pi−po . (4.15)

Proof. By definition of µpi,po , it can be proved that a/b is not a midpoint. Let m be the
closest midpoint to a/b, and note δβea/b+1 the distance between a/b and m:

a

b
= m+ δβea/b+1. (4.16)

By definition, µpi,po is the smallest possible value of |δ|. As we excluded the case when
a/b = m, we have δ �= 0. We write a = Aβ1−pi , b = Bβ1−pi and m = (M + 1/2)β1−po+ea/b ,
with A,B,M integers and βpi−1 ≤ A,B,M < βpi . Equation (4.16) becomes

2Bβpoδ = 2Aβpo−1−ea/b − 2BM − B. (4.17)
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Exclusion interval

ŷa
b

Figure 4.4: Use of exclusion intervals for proving the correct rounding

Since 2Aβpo−1−ea/b − 2BM − B is an integer and δ �= 0, we have |2Bβpoδ| ≥ 1. Since
βpi−1 ≤ B < βpi , the conclusion follows.

In radix 2, the following example illustrates the sharpness of the result of Theorem 4.5.

Example 4.6. In radix 2, for any precision pi = po, b = 1.11 . . . 1 = 2− 21−pi gives

1

b
=

1

2
+ 2−1−pi +

2−1−2pi

1− 2−pi� �� �
δβ

ea/b+1

= 0. 100 . . . 0� �� �
pi bits

100 . . . 0� �� �
pi bits

1 . . .

From this example, an upper bound on µpi,pi can be deduced, and for any precision pi ≥ 1
one has

2−1−2pi ≤ µpi,pi ≤
2−1−2pi

1− 2−pi
.

The following result can also be seen as a consequence of Theorem 4.4 (see [43, chap. 8]
or [46, p.163] for a proof).

Theorem 4.7. In binary arithmetic, when the working precision is the same as the ouput
precision (pw = po), if x̃ is a correct rounding of 1/b and ỹ is a faithful rounding of a/b,
then an extra Markstein’s iteration yields RNpo(a/b).

4.4.2 Extending the exclusion intervals

When pw = po = pi, the error bounds of Section 4.5 might remain larger than the bound
on the radius of the exclusion intervals of §4.4.1. A way to prove correct rounding is then
by extending the exclusion intervals.

In this subsection, we describe a method to determine all the inputs b ∈ Fβ,pi such that
the reciprocal 1/b is not a midpoint and lies within a distance βe1/b+1µ from the closest
midpoint m. Once all such worst cases are determined, correct rounding can be guaranteed
as can be seen on Figure 4.5 considering two cases:

• If 1/b corresponds to one of the worst cases, we then run the Newton-Raphson algo-
rithm on the input b and check that the result is correct.

• If (1, b) is not one of those worst cases and x̂ is an approximation to 1/b that satisfies
|x̂− 1/b| < βe1/b+1µ, then RNβ,po(x̂) = RNβ,po(1/b).
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Exclusion
interval

µpi,po

Extended
exclusion
interval

βe1/b+1µ

1
b1

1
b2

1
b3

Proved by running the Newton-Raphson algorithm on b1, b2 and b3.

Proved correctly rounded when
��x̂− 1

b

�� < βe1/b+1µ.

Figure 4.5: Proving the correct rounding using extended exclusion intervals

Unfortunately, there are too many worst cases to do the same for the division. Starting
from Equation (4.17) of §4.4.1, one has:

2βpi+po − 2Bβpoδ� �� �
∆

= B(2M + 1). (4.18)

Factorizing 2βpi+po −∆, with |∆| ∈ {1, 2, . . . } into B(2M + 1) with respect to the range
of these integral significands isolates the worst cases. After finding all the worst cases such
that |∆| < n, the extended radius is such that µ ≥ β−pi−pon/2. Table 4.1 shows how many
values of b have to be checked to extend the exclusion interval.

n 2 3 4 5 6 7
binary64 2 68 68 86 86 86

decimal128 1 1 3 3 19 22

Table 4.1: Number of b to check separately according to the extended radius of the exclusion
interval µ ≥ β−pi−pon/2

There is a particular worst case that is worth mentioning: When b = β − 1/2 ulp(β),
the correctly rounded reciprocal is 1/β + ulp(1/β), but if the starting point given by the
lookup table is not RNβ,pw(1/b), even Markstein’s iterations cannot give a correct rounding,
as shown in Example 4.8.
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Example 4.8. In binary16, (pw = pi = po = 11, β = 2):

b = 1.1111111111
x̃ = 0.1 = Table-lookup(b)
r̃ = 2−11 (exact)
x̃ = 0.1

Hence, x̃ will always equals 0.1, which is not the correct rounding of RN(1/b).

A common method [43] to deal with this case is to tweak the lookup table for this value.
If the lookup table is addressed by the first k digits of b, then the output corresponding to
the address β − β1−k should be 1/β + β−pw .

4.4.3 The midpoint case

Theorem 4.4 can only be used to ensure correct rounding when a/b cannot be a midpoint.
In this subsection, we summarize our results about the midpoints for division and reciprocal
that were already presented in Sections 3.5 and 3.6.

Midpoints in radix 2

In radix 2, a/b cannot be a midpoint in a precision greater or equal to pi. However,
Example 4.9 shows that when pi > po, a/b can be a midpoint.

Example 4.9. pi = 24, p0 = 11, β = 2 (Inputs in binary32 and output in binary16)

a=1.00000001011001010011111
b=1.00101100101000000000000

a/b=0. 11011011001� �� �
po=11

1

When computing reciprocals, we have the following.

Theorem 4.10. In radix 2, and for any precisions pi and po, the reciprocal of a floating-
point number in F2,pi cannot be a midpoint in precision po.

Midpoints in radix 10

In decimal floating-point arithmetic, the situation is quite different. As in radix 2, there
are cases where a/b is a midpoint in precision po, but they can occur even when pi = po,
as shown in Example 4.11. Contrarily to the binary case, there are also midpoints for the
reciprocal function, characterized by Theorem 4.12.

Example 4.11. pi = po = 7, β = 10 (inputs and output are in decimal32)

a = 2.000005, b = 2.000000, a/b = 1.000002 5

Theorem 4.12. Let y ∈ F10,p be nonzero. One has 1/y ∈ M10,p if and only if the integral
significand Y of y has the form

Y = 22p · 52p−1−�, (4.19)

with � ∈ N such that 2 · 10p−1 < 5� < 2 · 10p.
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Using Theorem 4.12, we isolate the at most two values of b whose reciprocal is a
midpoint. These values are checked separately when proving the correct rounding of the
reciprocal. Table 4.2 gives the corresponding b when pi = po, for the IEEE 754-2008
decimal formats.

decimal32 decimal64 decimal128

p 7 16 34
b1 2.048000 1.67772160. . . 0 1.12589990684262400. . . 0
b2 2.048000 8.38860800. . . 0 5.62949953421312000. . . 0

Table 4.2: Decimal floating-point numbers whose reciprocal is a midpoint in the same
precision

4.4.4 Correctly handling midpoint cases

Let us recall that the midpoints cases for reciprocal can be handled as explained in §4.4.3.
Hence, we only focus here on division.

When pi, po and the radix are such that division admits midpoints, the last Newton-
Raphson iteration must be adapted to handle the case where a/b is a midpoint. We
propose two methods, depending whether pw = po. Both methods rely on the exact
residual theorem 4.3 of §4.3.2, so it is necessary to use a Markstein iteration (4.12) for the
last iteration.

When pw > po

The exclusion interval theorem of §4.4.1 does not apply, since there are several cases where
a/b is a midpoint in precision po. In that case, we use the following Theorem 4.13 instead
of Theorem 4.4.

Theorem 4.13. We assume β is even and pw > po, and we perform a Markstein iteration:

�
r̃ = RNβ,pw(a− bỹ),
ỹ� = RNβ,po(ỹ + r̃x̃).

If ỹ is a faithful rounding of a/b in precision pw, and |ŷ� − a/b| < βea/b+1µpi,po, then ỹ� =
RNβ,po (a/b).

Proof of theorem 4.13. If a/b is not a midpoint in precision po, Theorem 4.4 proves that
ỹ� is the correct rounding of a/b. Now, we assume that a/b is a midpoint in precision po.
Since β is even and pw > po, a/b is a floating-point number in precision pw. Since ỹ is a
faithful rounding of a/b in precision pw, we have ỹ = a/b. Using Theorem 4.3, we know
that r̃ = 0, which gives ŷ� = a/b, hence ỹ� = RNβ,po(ŷ

�) = RNβ,po(a/b).

Example 4.14 shows why it is important to round directly in precision po in the last
iteration.
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Example 4.14. pi = 24, po = 11, β = 2 (inputs are in binary32 and output is in binary16)

a=1, b = 1.01010011001111000011011
ỹ=0.110000010010111111111111 (faithful)
r̃=1.01010011000111000011011 · 2−24 (exact)
ỹ�=0. 11000001001� �� �

11 bits

1000000000000 = RN24(ỹ + r̃ỹ)

ỹ��=0.11000001010 = RN11(ỹ�)

Due to the double rounding, ỹ�� is not RN11(a/b).

When pw = po

The quotient a/b cannot be a midpoint in radix 2. For decimal arithmetic, Example
4.15 suggests that it is not possible in this case to round correctly using only Markstein’s
iterations: We know from Theorem 4.3 that the residuals r̃1 and r̃2 are computed exactly.
However, the Markstein’s iteration oscillates between the two faithful roundings, which
means that the Newton-Raphson method does not converge to the correct rounding.

Example 4.15. In decimal32 (pi = po = pw = 7, β = 10):

a = 6.000015, b = 6.000000
x̃ = RN(1/b) = 0.1666667, a/b = 1.000002 5

ỹ0 = RN(ax̃) = 1.000003
r̃1 = RN(a− bỹ0) =−0.000003
ỹ1 = RN(ỹ0 + r̃1x̃) = 1.000002
r̃2 = RN(a− bỹ1) = 0.000003
ỹ2 = RN(ỹ1 + r̃2x̃) = 1.000003

Algorithm 6 can be used in this case to determine the correct rounding of a/b from a
faithfully rounded approximation.

Theorem 4.16. Let us assume that β = 10 and pw = po and that ỹ is a faithful rounding
of a/b. Then, Algorithm 6 yields the correct rounding of a/b.

Proof. By assumption, ỹ is a faithful rounding of a/b. Thus, there exists � such that
−ulp(a/b) < � < ulp(a/b) and ỹ = a/b + �. Also, according to Theorem 4.3, r̃ = −b�.
Six cases, depending on the signs of r̃ and c, have to be considered for the whole proof, as
depicted in Figure 4.6. We only present here two cases, the others being similar.

• Case r̃ ≥ 0 and 2r̃ − b ulp(a/b) < 0: Since r̃ is positive, −� ≤ 0. Moreover, since
2r̃ − b ulp(a/b) < 0 we have −1/2 ulp(a/b) < � < 0. Hence, the correct rounding of a/b is
ỹ.

• Case r̃ < 0 and 2r̃ + b ulp(a/b) = 0: From 2r̃ + b ulp(a/b) = 0, we deduce that a/b is
a midpoint and RN(a/b) = RN(ỹ − 1/2 ulp(a/b)).
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bs = b ulp(a/b) ; /* bs ∈ Fβ,pw */

/* Assume ỹ faithful */

r̃ = a− bỹ ; /* r̃ exactly computed. */

if r̃ > 0 then

c = RN(2r̃ − bs);

if c = 0 then return RN(ỹ + 1
2 ulp(a/b));

if c < 0 then return ỹ;

if c > 0 then return ỹ + ulp(a/b);

else /* r̃ ≤ 0 */
c = RN(2r̃ + bs);

if c = 0 then return RN(ỹ − 1
2 ulp(a/b));

if c < 0 then return ỹ − ulp(a/b);

if c > 0 then return ỹ;
end

Algorithm 6: Returning the correct rounding in decimal arithmetic when pw = po.

4.5 Error bounds

In this section, we present the techniques we used to bound the error in the approximation
to the reciprocal 1/b or to the quotient a/b obtained after a series of Newton-Raphson
iterations. As our aim is to analyze any reasonable sequence combining both Markstein’s
or Goldschmidt’s iterations, we only give the basic results needed to analyze one step
of these iterations. The analysis of a whole sequence of iterations can be obtained by
combining the induction relations proposed here: This is a kind of running error analysis
(see [46, chap. 6]) that can be used together with the results of §§4.4.1 and 4.4.2 to ensure
correct rounding.

All the arithmetic operations are assumed to be performed at precision pw, which is
the precision used for intermediate computations. Let us denote by � the unit roundoff: In
round-to-nearest rounding mode, one has � = 1

2β
1−pw . In the following, we note

φ̂n:=|x̂n − 1/b|, φ̃n:=|x̃n − 1/b|,
ψ̂n:=|ŷn − a/b|, ψ̃n:=|ỹn − a/b|,
ρ̃n:=|r̃n − (1− bx̃n−1)|, σ̃n:=|r̃n − (a− bỹn−1)|.

4.5.1 Reciprocal iterations

Both for Markstein’s iteration (4.10) and for Goldschmidt’s iteration (4.11), the absolute
error φ̂n in the approximation x̂n is bounded as

φ̂n+1 ≤ (φ̃n + |1/b|)ρ̃n+1 + |b|φ̃2
n, (4.20)

φ̃n+1 ≤ (1 + �)φ̂n+1 + |�/b|. (4.21)

Hence it just remains to obtain induction inequalities for bounding ρ̃n+1.
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Figure 4.6: The different cases for Algorithm 6, when ỹ is a faithful rounding of a
b .

Reciprocal with the Markstein iteration (4.10)

One has r̃n+1 = RN(1− bx̃n), hence

ρ̃n+1 ≤ |�||b|φ̃n. (4.22)

The initial value of the recurrence depends on the lookup-table used for the first approx-
imation to 1/b. Inequality (4.20) together with (4.22) can then be used to ensure either
faithful or correct rounding for all values of b in [1, β), using Theorems 4.2 or 4.4.

At iteration n, if x̃n is a faithful rounding of 1/b, then Theorem 4.3 implies ρ̃n+1 = 0.
Hence in this case one has φ̂n+1 ≤ φ̃2

n, which means that no more accuracy improvement
can be expected with Newton-Raphson iterations. Moreover, if we exclude the case b = 1,
since b belongs to [1, β) by hypothesis, it follows that 1/b is in (β−1, 1). Since x̃n is assumed
to be a faithful rounding of 1/b, one has ulp(x̃n) = ulp(1/b), and we deduce

φ̃n+1 ≤ |b|φ̃2
n + 1/2 ulp(x̃n), (4.23)

which gives a sharper error bound on φ̃n+1 than (4.20) when x̃n is a faithful rounding of
1/b.

Reciprocal with the Goldschmidt iteration (4.11)

For the Goldschmidt iteration, one has

ρ̃n+1 ≤ (1 + �)
�
ρ̃n + |b|φ̃n−1 + 1

�
ρ̃n + �. (4.24)

Combining (4.24) into (4.21), one can easily deduce a bound on the error φ̂n+1.
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4.5.2 Division iterations

Both for Markstein’s iteration (4.12) and for Goldschmidt’s iteration (4.13), one may check
that

ψ̂n+1 ≤ |b|ψ̃nφ̃m + (φ̃m + |1/b|)σ̃n+1, (4.25)

ψ̃n+1 ≤ (1 + �)ψ̂n+1 + �|a/b|. (4.26)

Now let us bound σ̃n+1.

Division with the Markstein iteration (4.12)

In this case, one has
σ̃n+1 ≤ �|b|ψ̃n. (4.27)

Again, if ỹn is a faithful rounding of a/b, due to the exact residual theorem 4.3, one has
ψ̂n+1 ≤ |b|ψ̃nφ̃m. This corresponds exactly to the error bound due to the mathematical
method of Newton-Raphson iterations. This means that it is the best accuracy improve-
ment that can be expected from one Newton-Raphson iteration in floating-point arithmetic.

Division with the Goldschmidt iteration (4.12)

Using the same method as in §4.5.1, we now bound σ̃n+1:

σ̃n+1 ≤ (1 + �)(σ̃n + |b|ψ̃n−1)(|b|ψ̃n−1 + |b|φ̃m + σ̃n) + (1 + �)σ̃n + �|a|.

Then, from (4.25), a bound on ψ̂n+1 can be obtained.

4.6 Experiments

Using the induction relations of Section 4.5, one can bound the error on the approximations
to a/b for a given series of Newton-Raphson iterations, and use it with the sufficient con-
ditions presented in Section 4.4 to ensure correct rounding. In this section, we will denote
by MR and GR the Markstein (4.10) and Goldschmidt (4.11) iterations for computing the
reciprocal, and by MD and GD the Markstein (4.12) and Goldschmidt (4.13) iterations for
the division.

Let us consider three examples : Algorithms 7, 8 and 9 below. The certified error on x̂
and ŷ for those algorithms is displayed on Figure 4.7.

Algorithm 7 computes the quotient of two binary128 (pi = 113) numbers, the output
being correctly rounded to binary64 (po = 53). The internal format used for the compu-
tations is also binary128 (pw = 113). Since pi > po, there are midpoints for division, as
stated in §4.4.3. After the MD1 iteration, we know from Theorem 4.2 that ỹ is a faithful
rounding of a/b, as shown in Figure 4.7(a). An extra Markstein’s iteration gives an error
on ŷ that is smaller than the radius of the exclusion interval βea/b+1µ113,53, as illustrated
by Figure 4.7(a). Hence, Theorem 4.13 of §4.4.4 applies and guarantees that Algorithm 7
yields a correct rounding of the division, even for the midpoint cases.

Algorithm 8 computes the quotient of two binary64 numbers, with pi = pw = po = 53.
Since binary arithmetic is used and pw = po, there are no midpoints for division. After
the MR4 iteration, x̃ is less than 2 · βe1/b+1µ53,53. Hence, by excluding two worst cases as
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x̃ = Table-lookup(b); {Error less than 2−8}
r̃ = RN113(1− bx̃);
x̃ = RN113(x̃+ r̃x̃); {MR1} | | r̃ = RN113(r̃2);
x̃ = RN113(x̃+ r̃x̃); {GR2} | | r̃ = RN113(r̃2);
x̃ = RN113(x̃+ r̃x̃); {GR3}
ỹ = RN113(ax̃); {y0}
r̃ = RN113(a− bỹ);
ỹ = RN113(ỹ + r̃x̃); {MD1}
r̃ = RN113(a− bỹ);
ỹ = RN53(ỹ + r̃x̃); {MD2}

Algorithm 7: Computing the quotient of two binary128 numbers, output in bi-
nary64.

x̃ = Table-lookup(b); {Error less than 2−8}
r̃ = RN53(1− bx̃);
x̃ = RN53(x̃+ r̃x̃); {MR1} | | r̃ = RN53(r̃2);
x̃ = RN53(x̃+ r̃x̃); {GR2}
r̃ = RN53(1− bx̃);
x̃ = RN53(x̃+ r̃x̃); {MR3}
r̃ = RN53(1− bx̃);
x̃ = RN53(x̃+ r̃x̃); {MR4}
ỹ = RN53(ax̃); {y0}
r̃ = RN53(a− bỹ);
ỹ = RN53(ỹ + r̃x̃); {MD1}
r̃ = RN53(a− bỹ);
ỹ = RN53(ỹ + r̃x̃); {MD2}

Algorithm 8: Computing the quotient of two binary64 numbers, output in binary64.

explained in §4.4.2, and checking those cases, we ensure a correct rounding of the reciprocal
using Theorem 4.4. Since a faithful rounding of a/b at iteration MD1 is ensured by the error
bounds of Section 4.5, Theorem 4.7 proves that the next Markstein’s iteration outputs a
correct rounding.

Algorithm 9 computes the quotient of two decimal128 numbers, with pi = pw = po = 34.
The starting error given by the lookup table is less than 5·10−5. Since pw = po, Algorithm 6
is needed to ensure the correct rounding of the division. Notice that to improve the
latency, bs in Algorithm 6 can be computed concurrently with the first Newton-Raphson
iterations. As shown in Figure 4.7(c), ỹ is a faithful rounding after the MD1 iteration.
Hence, Theorem 4.16 ensures correct rounding for Algorithm 9.

4.7 Conclusion

We gave general methods of proving correct rounding for division algorithms based on
Newton-Raphson’s iterations, for both binary and decimal arithmetic. Performing the
division in decimal arithmetic of two floating-point numbers in the working precision seems
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x̃ = Table-lookup(b); {Error less than 5 · 10−5}
r̃ = RN34(1− bx̃); | | bs = b ulp(ab );
x̃ = RN34(x̃+ r̃x̃); {MR1} | | r̃ = RN34(r̃2);
x̃ = RN34(x̃+ r̃x̃); {GR2} | | r̃ = RN34(r̃2);
x̃ = RN34(x̃+ r̃x̃); {GR3}
ỹ = RN34(ax̃); {y0}
r̃ = RN34(a− bỹ);
ỹ = RN34(ỹ + r̃x̃); {MD1}
r̃ = RN34(a− bỹ);
Call Algorithm 6.

Algorithm 9: Computing the quotient of two decimal128 numbers, output in deci-
mal128.

to be costly, and we recommend to always use a higher internal precision than the precision
of inputs.

We only considered the round-to-nearest rounding mode. To achieve correct rounding
in other rounding modes, only the last iteration of the Newton-Raphson algorithm has to
be changed, whereas all the previous computations should be done in the round-to-nearest
mode.
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Figure 4.7: Absolute error before rounding for each algorithm considered. (M/G: Mark-
stein/Goldschmidt, R/D: reciprocal/division)



Conclusion

In Chapter 2, we analyzed the RN-codings, a general class of number representations for
which truncation of a digit string yields the effect of rounding to nearest, avoiding double-
rounding issues. We were able to provide sensible arithmetic based on an efficient encoding
of binary RN-coding, for both fixed point and floating-point binary RN-coding.

It is not known yet if it is possible to develop such an arithmetic on other radices
RN-coding. For example, it is not known yet if it is possible to have an efficient addition
for RN-coded decimal. Also, it may not be possible to have an efficient arithmetic for odd
radices.

In Chapter 3, we obtained useful information on the existence of midpoints and exact
points for several simple algebraic functions (

√
y, 1/

√
y, xk for k ∈ N>0, x/�y�2, x/y, 1/y,

1/
�
x2 + y2, x/

�
x2 + y2). This information can be used for simplifying or improving the

performance of programs that evaluate these functions.
The next step for a fast implementation of these functions would be to determine how

close can f(x) be to a breakpoint, excluding the cases when f(x) is a breakpoint. Knowing
these worst cases would allow one to know in advance at which precision f(x) needs to be
approximated in order to ensure a correct rounding.

Such study could also be extended to other functions. For example, for d ≥ 3, we
do not know yet whether the d-dimensional normalization function2 admits midpoints in
decimal, or if it admits exact points in binary. Notice however that the case of midpoints
in binary was already covered in Section 3.4, and that the 2-dimensional normalization
function admits many exact points in decimal, meaning that this will still hold for higher
dimensions.

In Chapter 4, we gave general methods for proving correct rounding for division algo-
rithms based on Newton-Raphson’s iterations, both for binary and decimal arithmetic. In
decimal arithmetic, performing the division of two floating-point numbers using only the
working precision seems to be costly, and we recommend to always use an internal precision
higher than the precision of inputs.

To guarantee that a sequence of Newton-Raphson iterations yields a correctly rounded
quotient, it would be ideal to prove it using a formal proof checker. This would provide
more confidence to processor designers for using Newton-Raphson based algorithms for
implementing floating-point division.

The new requirement for a correctly rounded FMA in the IEEE 754-2008 Standard
encourages processor manufacturers to implement an FMA in hardware in new architec-
tures. Our work on Newton-Raphson algorithms can be used to exploit these FMAs in a
software implementation of correctly rounded division. Speed and throughput of a Newton-
Raphson division algorithm vary depending on how many FMA units are available, and

2
The function that maps a d-dimensional x to

xi√�d
i=1 x2

i

.
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their throughput. It would be interesting to implement various Newton-Raphson itera-
tions to see how they compare on a given architecture. It would also be interesting to
implement Newton-Raphson algorithms on different architectures, to compare them with
SRT implemented in hardware. SRT algorithms having a linear convergence, we think that
Newton-Raphson algorithms should become clearly faster than SRT algorithms at higher
precisions, such as 128 bits floating-point formats.

The work presented here shows that it is possible to design programs that automatically
create a tailored Newton-Raphson algorithm, based on architectural constraints. Such
programs may also generate algorithms for special cases: For example, if one needs only to
compute 1/x, it is possible to design a simpler Newton-Raphson algorithm for this special
case. Knowing in advance that the inputs are normal floating-point numbers and do not
lead to subnormals could also speed up the division algorithm.
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Abstract

Efficient and reliable computer arithmetic is a key requirement to perform fast and
reliable numerical computations. The choice of the number system and the choice of the
arithmetic algorithms are important. We present a new representation of numbers, the
”RN-codings”, such that truncating a RN-coded number to some position is equivalent
to rounding it to the nearest. We give some arithmetic algorithms for manipulating RN-
codings and introduce the concept of ”floating-point RN-codings”.

When implementing a function f in floating-point arithmetic, if we wish to always
return the floating-point number nearest f(x), one must be able to determine if f(x) is
above or below the closest ”midpoint”, where a midpoint is the middle of two consecutive
floating-point numbers. This determination is first done with some given precision, and
if it does not suffice, we start again with higher precision, and so on. This process may
not terminate if f(x) can be a midpoint. Given an algebraic function f , we try either to
show that there are no floating-point numbers x such that f(x) is a midpoint, or we try to
enumerate or characterize them.

Since the IBM PowerPC, binary division has frequently been implemented using vari-
ants of the Newton-Raphson iteration due to Peter Markstein. This iteration is very fast,
but much care is needed if we aim at always returning the floating-point number near-
est the exact quotient. We investigate a way of efficiently merging Markstein iterations
with faster yet less accurate iterations called Goldschmidt iterations. We also investigate
whether those iterations can be used for decimal floating-point arithmetic. We provide
sure and tight error bounds for these algorithms.

Résumé

Une arithmétique sûre et efficace est un élément clé pour exécuter des calculs rapides et
sûrs. Le choix du système numérique et des algorithmes arithmétiques est important. Nous
présentons une nouvelle représentation des nombres, les ”RN-codes”, telle que tronquer un
RN-code à une précision donnée est équivalent à l’arrondir au plus près. Nous donnons
des algorithmes arithmétiques pour manipuler ces RN-codes et introduisons le concept de
”RN-code en virgule flottante.”

Lors de l’implantation d’une fonction f en arithmétique flottante, si l’on veut toujours
donner le nombre flottant le plus proche de f(x), il faut déterminer si f(x) est au-dessus
ou en-dessous du plus proche ”midpoint”, un ”midpoint” étant le milieu de deux nombres
flottants consécutifs. Pour ce faire, le calcul est d’abord fait avec une certaine précision,
et si cela ne suffit pas, le calcul est recommencé avec une précision de plus en plus grande.
Ce processus ne s’arrête pas si f(x) est un midpoint. Étant donné une fonction algébrique
f , soit nous montrons qu’il n’y a pas de nombres flottants x tel que f(x) est un midpoint,
soit nous les caractérisons ou les énumérons.

Depuis le PowerPC d’IBM, la division en binaire a été fréquemment implantée à l’aide
de variantes de l’itération de Newton-Raphson dues à Peter Markstein. Cette itération est
très rapide, mais il faut y apporter beaucoup de soin si l’on veut obtenir le nombre flottant le
plus proche du quotient exact. Nous étudions comment fusionner efficacement les itérations
de Markstein avec les itérations de Goldschmidt, plus rapides mais moins précises. Nous
examinons également si ces itérations peuvent être utilisées pour l’arithmétique flottante
décimale. Nous fournissons des bornes d’erreurs sûres et précises pour ces algorithmes.
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