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soutenue publiquement le 15 Décembre 2011 par
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Résumé

Soit D un digraphe simple (sans cycle orienté de longueur 2 ). En 1990,
P. Seymour a conjecturé que D a un sommet v avec un second voisinage
extérieur au moins aussi grand que son (premier) voisinage extérieur [14].
Cette conjecture est connue sous le nom de la conjecture du second voisi-
nage du Seymour (SNC). Cette conjecture, si elle est vraie, impliquerait,
un cas spécial plus faible (mais important) de la conjecture de Caccetta et
Häggkvist [11] proposé en 1978: tout digraphe D avec un degré extérieur
minimum au moins égale à |V (D)|/k a une cycle orienté de longueur au
plus k. Le cas particulier est k = 3, et le cas faible exige les deux: le degré
extérieur minimum et le degré intérieur minimum de D sont au moins égaux
à |V (D)|/k.

La conjecture de Seymour restreinte au tournoi est connue sous le nom
de conjecture de Dean [14]. En 1996, Fisher [4] a prouvé la conjecture de
Dean en utilisant un argument de probabilité.

En 2003, Chen, Shen et Yuster [8] ont démontré que tout digraphe a un
sommet v tel que d+(v) ≤ γd++(v) où γ=0.657298..... est l’unique racine
de l’équation 2x3 + x2 − 1 = 0.

En 2000, Havet et Thomassé [7] ont donné une preuve combinatoire de
la conjecture de Dean, en utilisant un outil appelé l’ordre médian. Ils ont
démontré que le dernier sommet d’un tel ordre a toujours un second voisi-
nage extérieur au moins aussi grand que son voisinage extérieur.

En 2007, Fidler et Yuster [3] ont utilisé l’ordre médian et une autre outil
qui s’appelle le digraphe de dépendance afin de prouver la conjecture de
Seymour pour tout digraphe D ayant un degré minimum |V (D)| − 2. Ils
l’ont montré pour tout tournoi où manque un autre sous-tournoi.

El Sahili a conjecturé que pour tout D, il exist un completion T de D
et un ordre médian de T tel que le denier sommet a un second voisinage
extérieur au moins aussi grand que son voisinage extérieur (EC). Il est clair
que, EC implique SNC. Cependant, EC propose une méthode pour afin
de résoudre la SNC. En général, on orient les non arcs de D en manière
appropriée, afin d’obtenir un tournoi T et on essaie de trouver un sommet
particulier (le denier sommet d’un ordre médian) avec la propriété desirée.
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Clairement, grace aux resultats de [7] et [3], la EC est valable pour tourni,
et tout tournoi où manque un autre sous-tournoi. Nous allons vérifier EC
pour tout digraphe D ayant un degré minimum |V (D)| − 2. Alors, EC
est vraie pour tout digraphe où la SNC est déjà connue d’être vraie non
trivialement. Nous sommes aussi intéressé à la version pondérée de SNC
et EC. En réalité, Fidler et Yuster [3] utilisé les digraphes de dépendance
comme un outil supplémentaire et le fait que la SNC pondérée est vraie pour
les tournois afin de prouver la SNC pour tout digraphe D ayant un degré
minimum |V (D)| − 2.

Nous allons définir le digraphe de dépendance de façon plus générale et
qui convient à n’importe quel digraphe. Nous allons utiliser le digraphe de
dépendance et l’ordre médian comme des outils dans nos contributions à
cette conjecture.

Suivant la méthode proposée par la EC, nous démontrons la version
pondérée de EC, et par conséquent la SNC, pour les classes des digraphes
suivants : Digraphes où manque une étoile généralisée, soleil, étoile, ou
un graphe complète. En outre, nous prouvons la EC, et par conséquent
la SNC, pour digraphes où manque un peigne et digraphe où manque un
graphe complet moins 2 arêtes indépendantes ou moins les arêtes d’une cycle
de longueur 5. Par ailleurs, nous prouvons la EC, et par conséquent la SNC,
pour les digraphes où manque n étoiles disjointes, sous certaines conditions
sur les deux degrés minimum du digraphe de dépendance. Des conditions
plus faible sont exigées dans le cas n = 1, 2, 3. Dans certaines cas, on trouve
au moins deux sommets avec la propriété désirée.
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Title : A Study of Seymour’s Second Neighborhood
Conjecture

Abstract

Let D be a digraph without digons (directed cycles of length 2). In 1990,
Seymour [14] conjectured that D has a vertex whose first out-neighborhood
is at most as large as its second out-neighborhood. Such a vertex is said to
have the second neighborhood property (SNP). This conjecture is known as
the second neighborhood conjecture (SNC). This conjecture, if true, would
imply a weakening of a particular case (but important) of a long standing
conjecture proposed by Caccetta and Häggkvist in 1978, which states that
every digraph D with minimum out-degree at least |V (D)|/k has a directed
cycle of length at most k. The special case is when k = 3 and the weak-
ening requires both minimum out-degree and minimum in-degree at least
|V (D)|/k [11].

Seymour’s conjecture restricted to tournaments is known as Dean’s con-
jecture [14]. In 1996, Fisher [4] gave a probabilistic proof to Dean’s conjec-
ture.

In 2003 Chen, Shen and Yuster [8] proved that every digraph contains
a vertex v such that d+(v) ≤ γd++(v), where γ = 0.657298... is the unique
real root of the equation 2x3 + x2 − 1 = 0.

In 2000, another proof of Dean’s conjecture was given by Havet and
Thomassé using a tool called median order [7]. They proved that the last
vertex of this order, called a feed vertex, has second out-neighborhood at
least as large as its first out-neighborhood. Median order is found to be
a useful tool not only for the class of tournaments but for other classes of
digraphs.

In 2007, Fidler and Yuster [3] used also median orders to prove Sey-
mour’s conjecture for the class of digraphs with minimum degree |V (D)|−2
(i.e. D is a digraph missing a matching) and tournaments minus another



5

subtournament.

El Sahili conjectured that for every digraph D there is a completion T
of D and a median order of T whose feed vertex has the SNP in D. Clearly,
El Sahili’s conjecture (EC) implies SNC. However, as one can observe, EC
suggests a method (an approach) for solving the SNC, which we will call
the completion approach. In general, following this approach, we orient the
missing edges of D in some ’proper’ way, to obtain a tournament T . Then
we consider a particular feed vertex (clearly, it has the SNP in T ) and try
to prove that it has the SNP in D as well. Clearly, the result of Havet and
Thomassé shows that EC is true for tournaments and the result of Fidler
and Yuster [3] shows that EC holds for tournaments minus another subtour-
nament. We will verify EC for the class of tournaments missing a matching.
So EC is verified for all the classes of digraphs where the SNC is known to
hold non trivially. We will be interested also in the weighted version of EC
and SNC. In reality, Fidler and Yuster [3] used dependency digraphs as a
supplementary tool for proving the SNC for digraphs missing a matching
and the fact that the weighted SNC holds for tournaments.

We define dependency digraphs in a more general way, which is suitable
to any digraph, and use them in our contribution to Seymour’s conjecture.
We also use the median order as a tool in our contribution. Using these two
tools, and following the completion approach, we prove the weighted version
of EC, and consequently the SNC, for several classes of digraphs: Digraphs
missing a generalized star, sun, star or a complete graph. In addition, we
prove EC, and consequently the SNC for digraphs missing a comb, and
digraphs whose missing graph is a complete graph minus two independent
edges or the edges of a cycle of length five. Moreover, we prove it for
digraphs missing n disjoint stars under some conditions. Weaker conditions
are required for n = 1, 2, 3. In some cases, we exhibit at least two vertices
with the SNP.
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Résumé Substantiel

Définitions Préliminaires

Graphe. Un graphe G est un couple de deux ensembles disjoints finis
(V (G), E(G)) tel que E(G) ⊆ {{x, y}; x, y ∈ V (G)}. V (G) est l’ensemble
des sommets de G et E(G) est l’ensemble des arêtes de G. On ecrit xy (ou
yx) au lieu de {x, y} et on peut écrire v ∈ G et e ∈ G au lieu de v ∈ V (G)
et e ∈ E(G).
Quand e = xy ∈ E(G), on dit que x et y sont voisins ou adjacents, et ils
sont les extrémités de e. Le voisinage d’un sommet x, noté par NG(x),
est l’ensemble des voisins de x. On definit le voisinage d’un ensemble
X ⊆ V (G) par NG(X) :=

⋃

x∈X NG(x)\X. Le degré d’un sommet x est
dG(x) = |NG(x)|.

Sous-graphe. Un sous-graphe de G est un graphe G′ = (V ′, E′) tel que
V ′ ⊆ V (G) et E′ ⊆ E(G). Lorsque, pour tout x, y ∈ V ′, on a xy ∈ E′ si et
seulement si xy ∈ E(G), G′ est appelé sous-graphe engendré par V ′ et on le
note par G[V ′].

Digraphe. Un digraphe D est un couple de deux ensembles disjoints
finis (V (D), E(D)) où E(D) ⊆ {(x, y);x, y ∈ V (G)}. V (D) est l’ensemble
des sommets de D, et E(D) est l’ensemble des arcs de D. On peut écrire
v ∈ G et e ∈ D au lieu de v ∈ V (D) et e ∈ E(D).
Lorsque (x, y) ∈ E(D), on écrit x → y et on dit que y (resp. x) est un
voisin extérieur (resp. intérieur) de x (resp. y). Le voisinge extérieur (resp.
intérieur) d’un sommet x, noté par N+

D (x) (resp. N−
D (x)), est l’ensemble des

voisins extérieur (resp. intérieur) de x. Pour X ⊆ V (D), le voisinge extérieur
de X est l’ensemble N+

D (X) :=
⋃

x∈X N+
D (x)\X. En particulier, le second

voisinage extérieur d’un sommet x est l’ensemble N++
D (x) = N+

D (N+
D (x)).

Alors, les deux ensembles N+
D (x) et N++

D (x) sont disjoints. Le degré extérieur
(resp. intérieur ) de sommet x est d+

D(x) = |N+
D (x)| (resp. d−(x) = |N−

D (x)|)
et le degré de sommet x est dD(x) = d+

D(x)+d−(x). Une source est un som-
met dont le degré intérieur est nul. Un puits est un sommet dont le degré
extérieur est nul. Une feuille est un sommet de degré 1. Une feuille intérieure
(resp. extérieure) est une feuille x telle que d−(x) = 1 (resp. d+(x) = 1).
Un sommet x est complet si dD(x) = |V (D)| − 1.

Digraphe pondéré. Un digraphe pondéré est un couple (D,ω), où
D est un digraphe et ω : V (D) −→ R+ est une fonction réelle positive, dite
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fonction de poids. Cette fonction induit une autre fonction, notée aussi par
ω, sur les arcs de D: pour tout e = (x, y) ∈ E(D) on pose ω(x, y) := ω(y).
Le poids d’un ensemble U ⊆ V (D) est ω(U) := Σu∈Uω(u) et le poid de
F ⊆ E(D) est ω(F ) := Σe∈F ω(e).

Graphe orienté. Un boucle est un arc de la forme (x, x) et un digon
est un ensemble de 2 arcs de la forme (x, y) and (y, x). Un digraphe est un
graphe orienté ssi il ne contient pas de boucle ni digon.

Graphe sous-jacent. Le graphe sous-jacent d’un digraphe D est un
graphe noté par G(D), avec V (G(D)) = V (D) et xy ∈ E(G(D)) si (x, y) ∈ D
ou (y, x) ∈ D.

Graphe manquant. Le graphe manquant de digraph D, noté par GD,
est un graphe definit comme suit: Les sommets de GD sont les sommets de
D et xy ∈ E(GD) si (x, y) et (y, x) /∈ E(D). Une arête xy ∈ GD est dite
arête manquante de D.

Sous-digraphe. Un sous-digraphe de D est un digraphe D′ = (V ′, E′)
avec V ′ ⊆ V et E′ ⊆ E. Lorsque, pour tout x, y ∈ V ′, on a (x, y) ∈ E′ si
et seulement si (x, y) ∈ E(D), D′ est appelé sous-digraphe engendré par V ′

et on le note par D[V ′]. Pour F ⊆ E(D), D − F (resp. D + F ) est le di-
graphe (V (D), E(D)\F ) (resp. (V (D), E(D)∪F )). Lorsque F = {e}, on le
note D−e (resp. D+e). Pour A ⊆ V (D), D−A est le digraphe D[V (D)\A].

Dans la suite, on suppose que les digraphes ne contiennent pas de boucle
ni digon.

Chemin. Un chemin P est un graphe avec un ensemble des sommets
{v1, ..., vn} et un ensemble d’arêtes vivi+1 pour i < n. Un chemin noté par
v1v2...vn est dit un v1vn-chemin ou un chemin de v1 à vn.

Chemin orienté. Un chemin orienté P est un digraphe avec V (P ) =
{v1, ..., vn} et E(D) = {(vi, vi+1), i < n}. Un tel chemin est dit v1vn-chemin
orienté. On écrit P = v1...vn.

Cycle. Un cycle C est un graphe de sommets {v1, ..., vn} et d’arêtes
vivi+1 pour i < n plus l’arête vnv1. On écrit C = v1...vn.

Circuit. Un circuit C est un digraphe avec un ensemble de sommets
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{v1, ..., vn} et d’arcs (vi, vi+1) pour i < n plus l’arc (vn, v1). On écrit
C = v1...vn.

Connexe. Un graphe G est connexe si tous deux sommets sont liés
par un chemin.

Fortement connexe. Un digraphe D est fortement connexe si pour
tous deux sommets x et y, il existe un xy-chemin orienté .

Arbre. Un arbre est un graphe connexe sans cycle.
Arboresence. Une arbresence sortante (resp. rentrante) est un arbre

orienté tel que, tous les sommets, sauf exactement un sommet sont de degré
intérieur 1 (resp. extérieur 1).

Etoile. Une étoile est un arbre formé par un sommets et ses voisins.

Couplage. Un couplage est un ensemble d’arcs (ou d’arêtes) deux à
deux disjoints.

Stable. Un stable est un ensemble de sommets deux à deux non adja-
cents.

Graphe complet. Un graphe est dit complet si xy ∈ E(G) pour tous
2 sommets distincts x et y de V (G).

Tournoi. Un tournoi est une orientation d’un graphe complet.

Triangle. Un triangle est une cycle ayant 3 sommets. Un triangle
dans un digraphes est dit cyclique s’il est un circuit. Sinon, il est acyclique.

Carré. Un carré est une cycle ayant 4 sommets exactement.

Roi. Un roi dans un digraphe D est un sommet x tel que {x}∪N+
D (x)∪

N++
D (x) = V (D).

Degrés de digraphe. Le degré minimum de D est δD = min{d(x);x ∈
V (D)}.
Le degré extérieur minimum de D est δ+

D = min{d+(x);x ∈ V (D)}.
Le degré extérieur maximum de D est max{d+(x);x ∈ V (D)}.
Le degré intérieur minimum de D est δ−D = min{d−(x);x ∈ V (D)}.
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Le degré intérieur maximum de D est max{d−(x);x ∈ V (D)}.

Longueur. La longueur d’un chemin (resp. chemin orienté) ou d’un
cycle (resp. circuit) est le nombre de ses arêtes (resp. arcs).

Maille. Le maille d’un graphe G (resp. digraphe D) est la longueur
minimale d’un cycle minimale (resp. circuit) dans G (resp. D).

Nombre chromatique. Le nombre chromatique de digraphe (ou graphe)
D, noté par χ(D), est le plus petit k, tel que V (D) est l’union de k stables.

Ordre Médian

Définition et propriétés

Acyclic. Soit (D,ω) un digraphe ponderé. D est dit acyclique s’il ne
contient aucun circuit. Par exemple, les arbres orientés sont des digraphes
acyclique. Un sous-digraphe acyclique D′ est maximum lorsque ω(E(D′))
est maximum.

Feedback set. Un ensemble des arcs de digraphe D est appelé un
feedback arc set si D − F est acyclique. F est minimum feedback arc set
lorsque D − F est acyclique et ω(F ) est minimum.

Clairement, D′ est un sous-digraphe acyclic maximum de D ssi E(D)−
E(D′) est un feedback arc set minimum.

Ordre median. Soient (D,ω) un digraphe ponderé et L = x1x2...xnune
énumération des sommets de D. On dit que e = (xi, xj) est un arc avant
si i < j, sinon e est un arc retour. Les ensembles des arcs avants et
retours sont notés par A(L) et R(L) respectivement. Le poids de L est
ω(L, D) := ω(A(L)). Une énumération L, avec ω(L, D) est maximum, est
dite un ordre médian ponderé de (D,ω). Notons que, L est un ordre médian
ssi R(L) est un feedback arc set minimum, A(L) est donc maximal.

Pour i ≤ j, [i, j] ou [xi, xj ] est (le digraphe engendré par) l’ensemble
{xi, xi+1, ..., xj}.
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Propriété de Feedback. Soit L = x1x2...xnun ordre médian de D.
Pour 1 ≤ i ≤ j ≤ n, dans D[i, j] on a:

ω(N+(xi)) ≥ ω(N−(xi))

et
ω(N−(xj)) ≥ ω(N+(xj)).

Lorsque D est un tournoi, la Propriété de feedback est équivalente à

d+(xi) ≥
j − i

2

et

d−(xj) ≥
j − i

2

dans D[i, j], pour tout i ≤ j.

Ordre médian local. Une énumération L = x1x2...xnvérifiant la Pro-
priété de feedback est dit un ordre médian ponderé local. Dans ce cas, xn est
appelé un feed sommet de (D,ω). Soient j < n et xj /∈ N+(xn). S’il exist
i < j tel que xn → xi → xj on dit que xj est un bon sommet, sinon, xj est
mauvais. L’ensemble des bons sommets sera noté par GD

L (ou simplement
par GL, s’il n’y a pas de confusion).

Il est clair que tout ordre médian ponderé est un ordre médian ponderé
local.

Lorsque ω = 1, on obtient la défintion d’ordre médian (local) de digraphe
(non ponderé).

Proposition 0.0.1. Soit L = x1x2...xnun order médian ponderé (local)
d’un digraphe (D,ω). Soit D′ = D + F − B où F ⊆ {(xi, xj) /∈ D; i > j} et
B ⊆ R(L). Alors L est un median order ponderé (local) de (D′, ω).

La Conjecture de Sumner sur les Tournoi

L’ordre médian est un outil inductif: si L = x1x2...xnest un ordre médian
(local) de D alors, I = xixi+1...xj est un ordre médian (local) de D′ =
D[xi, xj ]. Il est utilisé par Havet et Thomassé [7] pour démontrer la CSV
pour les tournois, et aussi pour démontrer la conjecture de Sumner pour les
arboresences.
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Conjecture 1. (La conjecture de Sumner[13]) Tout tournoi sur 2k − 2
sommets (k > 1) contient toute arbre orienté sur k sommets.

Soient A et D deux digraphes et L = x1x2...xnun order médian de D.
Un plongement de A dans D est une fonction injective f : V (A) −→ V (D)
telle que (f(vi), f(vj)) ∈ E(D) si (vi, vj) ∈ E(A). Un L-plongement de A
dans D est un plongement f de A dans D telle que, pour tous intervalle de
L de la forme [xi+1, xn],

|f(A) ∩ [xi+1, xn]| <
1

2
|[xi+1, xn]| + 1.

Dans ce cas, on dit que, A est L-plongeable dans D.

Proposition 0.0.2. ([1]) Soient T un tournoi ayant au moins 3 sommets
et L = x1x2...xnun order médian de T . Posons T ′ = T − {v1, v2} et L′ =
x1x2...xn−2. Soit A un digraphe avec un feuille entrante y et suppose que
A′ = A − y a un L′-plongement f ′ dans T ′. Alors, A a un L-plongement f
dans T qui prolongef ′.

Corollaire 0.0.1. ([7]) Tout tournoi sur 2k − 2 sommets contient toute
arboresence sur k sommets (k > 1).

En effet, il est prouvé que, pour tout k > 0, pour tout tournoi T sur
2k − 2 sommets, pour tout order médian L = x1...x2k−2 de T , pour toute
arbre A sur k sommets, on a A est L-plongeable [7].

En utilisant un argument similaire on a:

Théorèm 0.0.1. ([7]) Tout tournoi sur 4k− 6 sommets contient tout arbre
orienté sur k sommet (k > 1).

El Sahili a utilisé aussi l’ordre médian pour prouver:

Théorèm 0.0.2. ([1]) Tout tournoi sur 3k− 3 sommets contient tout arbre
orienté sur k sommets (k > 1).

Récemment, le conjecture de Sumner est prouvé pour k suffisament
grand.

Théorèm 0.0.3. ([5]) Il existe k0 tel que pour tout k ≥ k0, tout tournoi sur
2k − 2 sommets contient toute arbre orientée sur k sommets.
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Conjecture de Seymour sur le Second Voisinage

On dit qu’un sommet v a la propriété du second voisinage (PSV) dans un
digraphe si d+(v) ≤ d++(v). En 1990 P. Seymour a donné la conjecture
suivante.

Conjecture 2. [14](Conjecture de Second Voisinage(CSV)) Tout di-
graphe a un sommet avec le PSV.

On dit qu’un sommet a la propriété du second voisinage ponderé (PSV
ponderé) si ω(N+(v)) ≤ ω(N++(v)). On sait que la CSV est équivalent à sa
version ponderé: tout digraphe ponderé a un sommet avec la PSV ponderé.

Conjecture de Dean - une preuve de probabiliste

La conjecture de Dean [14] est celle de Seymour restrainte aux tournois. En
1996, Fisher [4] a démontré la conjecture de Dean.

Théorèm 0.0.4. Tout tournoi a un sommet avec la PSV.

Fisher a utilisé un argument de probabiliste, il a prouvé que pour tout
digraphe D il exist une fonction de probabilité p : V (D) −→ [0, 1] telle que
pour chaque sommet v, p(N−(v)) ≤ p(N+(v)). En outre, il a observé que
cette probabilité verifie p(N−(v)) ≤ p(N−−(v)) pour tout sommet v de D,
lorsque D est un tournoi. Poson V (D) = {v1, v2, ..., vn}. Alors, on a

Ep(d
+) := Σvi∈V (D)p(vi)d

+(vi) = Σvi∈V (D)p(N−(vi))

et
Ep(d

++) := Σvi∈V (D)p(vi)d
+(vi) = Σvi∈V (D)p(N−(vi)).

Donc Ep(d
+) ≤ Ep(d

++) et par conséquent il existe un sommet vi tel que
d+(vi) ≤ d++(vi).
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Conjecture de Dean - une preuve combinatoire

En 2000, Havet et Thomassé ont donné une preuve combinatoire de la con-
jecture de Dean, en utilisant l’ordre médian.

Théorèm 0.0.5. [7] Soit L = x1x2...xnun ordre médian local de tournoi T .
Alors, xn a la PSV.

En fait, ils ont démontré que d+(xn) ≤ |GL|. La version pondérée du
théorème précédent est facile à obtenir.

Théorèm 0.0.6. [3] Soit L = x1x2...xnun ordre médian pondéré local de
tournoi (T, ω). Alors, xn a la PSV ponderé.

En outre, ils ont prouvé que tout tournoi sans puits a au moins deux som-
mets avec la PSV en utilisant le notin de sedimnetation d’un ordre médian.

Definition 0.0.1. Soit L = x1x2...xnun ordre médian local de tournoi T .
Si |N+(xn)| < |GL|, Sed(L)=L.
Si |N+(xn)| = |GL|, on dénote par b1, ..., bk les sommets mauvais de (T,L) at
par v1, ..., vn−1−k les sommet qui appartiennent à N+(xn) ∪ GL, énumérés
dans l’ordre croissant par rapport à L. Dans ce cas, Sed(L) est l’ordre
b1...bkxnv1...vn−1−k de T ([7]).

Théorèm 0.0.7. ([7]) Sed(L) est un ordre médian de T .

Théorèm 0.0.8. ([7]) Un tournoi qui n’a pas des puits contient 2 sommets
ayants le PSV.
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Une approche approximitive

Une autre approche du CSV est introduite dans [8]. Cette approche cherche
à trouver la valeur maximale de γ telle que pour tout digraphe on a: il
existe un sommet v avec d++(v) ≥ γd+(v). Comme d++(v) = d+(v) pour
les sommets dans un circuit, on a γ ≤ 1. La conjecture de Seymour dit que
γ = 1.

Chen, Shen and Yuster [8]ont démontré le résultat suivant:

Théorèm 0.0.9. Tout digraphe a un sommet v tel que d++(v) ≥ γd+(v),
où γ = 0.657298... est la racine unique de l’equation 2x3 + x2 − 1 = 0.

Pour les digraphes qui n’ont pas des sous-digraphes qui sont tournoi
sur k sommets, une amélioration est établie. Ces digraphes sont appelés
Kk+1-free digraphes.

Théorèm 0.0.10. ([3]) Soit D un Kk+1-free digraphe. Alors, D a un som-
met v avec d++(v) ≥ γd+(v), où γ est plus grand ou égale à la racine de
f(x) = 2k−2

k
x3 + k−2

k
x2 − 1.

Par example, pour k = 3, γ ≥ 0.8324.
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La conjecture de Caccetta et Häggkvist

En 1978, Caccetta et Häggkvist ont proposé la conjecture suivante:

Conjecture 3. [11] Tout digraphe D ayant un degré extérieur minimum
|V (D)|/k est de maille au plus k.

Cette conjecture est toujours non resolue meme pour k = 3.

Conjecture 4. Tout digraphe D ayant un degré extérieur minimum et un
degré intérieur minimum |V (D)|/3, est de maille au plus 3.

Le CSV implique la conjecture précédente. En effet, dans ce cas, il suffit
de considérer un sommet ayant le PSV et les ensembles N−(v), N+(v) et
N++(v). Chaqu’un de ces ensembles, auraient au moins |V (D)|/3 sommets.
Si D n’est pas de maille 3, donc ces ensemble sont deux à deux disjoints, et
par conséquent D a plus que |V (D)| sommets, contradiction.

En utilisant un argument similaire, on a:

Proposition 0.0.3. [8] Si γ est un nombre positif tel que, pour tout digraphe
D, il existe un sommet v tel que d++(v) ≥ γ.d+(v), donc tout digraphe D
sur n sommets avec min{δ+

D, δ−D} ≥ n
2+γ

est de maille 3.

Corollaire 0.0.2. Tout digraphe avec min{δ+
D, δ−D} ≥ n

2+γ
est de maille 3,

où γ = 0.657298... est la racine unique de l’equation 2x3 + x2 − 1 = 0.

Dans ce cas, n
2+γ

≈ 0.3764n.

Théorèm 0.0.11. [9] Tout digraphe D sur n sommets et avec δ+
D ≥ 0.3465n

est de maille 3.

Théorèm 0.0.12. [15] Tout digraphe D sur n sommets et avec min{δ+
D, δ−D} ≥

0.343545n est de maille 3.

On termine par les remarques suivantes:

Proposition 0.0.4. Tout digraphe sans triangles acyclic satisfait la CSV.

Corollaire 0.0.3. Tout digraphe de graphe sous-jacent de maille 4, satisfait
le CSV.
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Contres exemples minimaux

Soit D un digraphe. Un intervalle de D est un ensemble K ⊆ V (D) tel que
pour tous u, v ∈ K on a: N+(u)\K = N+(v)\K et N−(u)\K = N−(v)\K.
L’ensemble vide et l’ensemble V (D) sont des interavlles triviaux. D est dit
indécompsable si tous ses intervalles sont triviaux. Dans l’autre cas, on dit
que D est décomposable. Un digraphe indécomposable est critique s’il est
indécompsable, et pour tout u ∈ V (D) le digraphe D−u est décomposable.

Dans [10] (corollaire 5.8), les digraphes critiques sont caractérisés. Pour
r ≥ 2 les 5 digraphes suivantes sont définit.

Les digraphes Pr et P ′
r ont mème ensembles de sommets {a1, ..., ar, b1..., br},

les arc de Pr sont les arcs (ai, bj) où i ≥ j, les arcs de P ′
r sont (ai, aj), (bi, bj)

et (ai, bj) où i < j.
Le tournoi T 1

r a un ensemble des sommets {c0, c1, ..., c2r} et un ensemble des
arcs (ci, ci+k), k = 1, ..., r, où la somme i + k est mod 2r + 1.
Le tournoi T 2

r et le digraphe Dr ont {a0, a1, ..., ar, b1..., br} comme un ensem-
ble des sommets et les arcs du premier digraphe sont (ai, aj), (bj , ai),(aj , bi), (bj , bi)
si i < j et les arcs (bj , aj). Les arcs du second digraphe sont (ai, bj), (bi, bj), (bi, aj)
si i < j et les arcs (bj , aj).
Le tournoi T 3

r a {b, a1, a2, ..., ar} comme un ensemble de sommet et ses arcs
sont (ai, aj) pour i < j, (b, ai) pour i impair et (ai, b) pour i pair.

Lemme 0.0.1. [10] Tout digraphe critique est isomorphe à Pr, P ′
r, T 1

r ,
T 2

r , T 3
r ou Dr, pour r ≥ 2.

Remarquons que Pr, P
′
r et Dr ont un puits, T 1

r , T 2
r et T 3

r sont tournois.
Donc les digraphes critiques satisfont le CSV ponderé.

Un contre exemple du CSV ponderé est un digraphe ponderé qui n’est
pas de sommet avec le PSV pondéré. Il est minimal s’il a le minimum nombre
de sommets.

Proposition 0.0.5. Un contre exemple du CSV ponderé (s’il existe ) est
fortement connexe, indécomposable et n’est pas critique.
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Digraphe de Dépendance

Motivation. Supposons que D = T − e est un digraphe où manque exacte-
ment une arête e = ab. L’orientation de e nous donne un tournoi qui est
une completion de D. Cependant, on cherche une orientation particulière.
Supposons que (i) il existe v ∈ V \{a, b} avec v → a et b /∈ N+(v)∪N++(v)
et (ii) il existe u ∈ V \{a, b} avec u → b et a /∈ N+(u) ∪ N++(u). Par
définition, v et u sont distincts et uv 
= e. Alors, uv n’est pas une arête
manquante de D. D’où posons u → v, ceci implique u → v → a et contredit
(ii), v → u implique v → u → b et contredit (i). Donc
(i) (∀v ∈ V \{a, b})[(v → a) ⇒ (b ∈ N+(v) ∪ N++(v))] est vrai ou (ii)
(∀v ∈ V \{a, b})[(v → b) ⇒ (a ∈ N+(v) ∪ N++(v))] est vrai.

Si (i) est vrai, on ajoute l’arc (a, b) à D, sinon, on ajoute (b, a) à D.
On suppose, sans perte de généralité que, (i) est vrai et soit T = D + (a, b)
et on considère un ordre médian local (ponderé) de T et soit f son feed
sommet. f a le PSV dans T . Mais, on va vérifier qu’il a la PSV dans D. On
suppose que f /∈ {a, b}, i.e. f est un sommet complet. Si f → x → y dans
T . L’arc f → x est dans D. Si x → y dans D alors y ∈ N++(f) ∪ N+(f).
Si non, (x, y) = (a, b). Par définition de (i), y = b ∈ N++(f) ∪ N+(f). Ce
qui prouve que f a la même second voisinage dans D et T . Alors, f a le
PSV dans D. Supposons que f est non complet, i.e., f ∈ {a, b}. Soit T ′ le
tournoi obtenu de T en orientant ab vers f . L est aussi un ordre médian de
T ′. D’où f a le PSV dans T ′. f a le même voisinage extérieur dans D et
T ′ a le même deuxième voisinage extérieur dans D et T ′. D’où, f a la PSV
dans D.

Ce qui nous a motivé de donner la définition suivante:

Definition 0.0.2. (arête manquante et orientation convenable)
Une arête manquant ab est bonne si:
(i) (∀v ∈ V \{a, b})[(v → a) ⇒ (b ∈ N+(v) ∪ N++(v))] ou
(ii) (∀v ∈ V \{a, b})[(v → b) ⇒ (a ∈ N+(v) ∪ N++(v))].
Si ab satisfait (i) on dit que (a, b) est une orientation convenable de ab.
Si ab satisfait (ii) on dit que (b, a) est une orientation convenable de ab.

Motivation. Supposons qu’une arête manquante ab de D n’est pas
bonne. Donc (i) et (ii) ne sont pas vrais. Alors, il existe v ∈ V \{a, b} avec
v → a et b /∈ N+(v) ∪ N++(v) et il existe u ∈ V \{a, b} tele que u → b et
a ∈ N+(u) ∪ N++(u)). Dans ce cas, vu doit être une arête manquante de
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D.

Dépend. On dit qu’une arête manquante x1y1 de digraphe D dépend
d’une arête x2y2 si:
x1 → x2, y2 /∈ N+(x1) ∪ N++(x1), y1 → y2 et x2 /∈ N+(y1) ∪ N++(y1).

Digraphe de dépendance. Le digraphe de dépendance d’un digraphe
D noté par ∆D (ou simplement par ∆) est définit de la façon suivante: Ses
sommets sont les arêtes manquantes de D et (ab, cd) ∈ E(∆) si ab dépend
de cd. Notons que ∆ peut avoir des digons.

Proposition 0.0.6. Soient D un digraphe et ∆ son digraphe de dépendance.
Une arête manquante ab est bonne si et seulement si son degré intérieur dans
∆ est nul.
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Bon ordre médian et intervalles

Soit D un digraphe (ponderé) et soit ∆ son digraphe de dépendance. Soit
C une composante connex de ∆; On pose K(C) = {u ∈ V (D); il existe
v ∈ V (D) t.q. uv est une arête manquante et uv ∈ C }. Le graphe in-
tervalle de D, noté par ID, est définit de la façon suivante: ses sommets
sont les composants connexes de ∆ et 2 sommets C1 et C2 sont voisins
si K(C1) ∩ K(C2) 
= φ. Soit ξ une compsante connexe de ID. On pose
K(ξ) = ∪C∈ξK(C). Clairement, si uv est une arête manquante de D, alors
il existe une composante connexe unique ξ de ID telle que u et v appartien-
nent à K(ξ). Soit f ∈ V (D). Si f est complet, on pose J(f) = {f}, sinon
on pose J(f) = K(ξ), où ξ est l’unique composante connexe de ID telle que
f ∈ K(ξ). Il est clair que si x ∈ J(f) alors J(f) = J(x) et si x /∈ J(f) alors,
pour tout y ∈ J(f), on a x et y sont voisins dans D.

Soit L = x1x2...xnun ordre médian (local) ponderé de D. L’ensemble
[i, j] := [xi, xj ] := {xi, xi+1, ..., xj} est dit un intervalle de L. Rappellons
qu’un intervalle de D est un ensemble K ⊆ V (D) tel que pour tous u, v ∈ K
on a: N+(u)\K = N+(v)\K and N−(u)\K = N−(v)\K. La proposition
suivante montre une relation entre ces deux définitions de l’intervalle.

Proposition 0.0.7. Soit I = {I1, ..., Ir} un ensemble d’intervalles de D,
deux à deux disjoints. Pour tout ordre médian (ponderé) L de D, il existe
un ordre médian L′ de D tel que: L et L′ ont le même feed sommet et tout
intervalle dans I est un intervalle de L′.

On dit qu’un digraphe est bon si les ensembles K(ξ) sont des intervalles
de D. La propostion ci-dessus montre que, tout bon digraphe a un ordre
médian (local) ponderé L où les K(ξ) sont des intervalles de L. Cet ordre
est appelé un bon ordre médian (local) ponderé de D.

Théorèm 0.0.13. Soient (D,ω) un bon digraphe ponderé et L un bon or-
dre médian de (D,ω), avec un feed sommet f . Pour tout x ∈ J(f), on
a ω(N+(x)\J(f)) ≤ ω(GL\J(f)). En plus, si x a le PSV ponderé dans
(D[J(f)], ω) donc x a la PSV ponderé dans D.

Le théorème ci-dessus implique qu’un tournoi satisfait le CSV ponderé.

Soient L un bon ordre médian d’un bon digraphe D et f son feed vertex.
Pour tout x ∈ J(f) on a ω(N+(x)\J(f)) ≤ ω(GL\J(f)). Soient b1, · · · , br

les sommets mauvais de L qui n’appartiennent pas à J(f) et v1, · · · , vs

les autres sommets qui n’appartiennent pas à J(f), énumérés dans l’ordre
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croissant dans L.
Si ω(N+(f)\J(f)) < ω(GL\J(f)), Sed(L) := L. Si ω(N+(f)\J(f)) =
ω(GL\J(f)), sed(L) := b1 · · · brJ(f)v1 · · · vs.

Lemme 0.0.2. Soit L un bon ordre médian ponderé d’un bon digraphe
(D,ω). Donc Sed(L) est un bon ordre médian ponderé de (D,ω).

On définit inductivement Sed0(L) = L et Sedq+1(L) = Sed(Sedq(L)).
S’il existe q telle que Sedq(L) = y1...yn et ω(N+(yn)\J(yn)) < ω(GSedq(L)\J(yn)),
on dit que L est stable. Sinon, on dit que L est périodique. Ces ordres sont
utilisés pour prouver que certains digraphes ont 2 sommets ayant le PSV.
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L’approche par complétion

Dans cette section D = T − M , où T est un tournoi et M est un couplage,
c’est à dire, D est un digraphe où manque un couplage, et ∆ son digraphe
de dépendance.

Lemme 0.0.3. [3] ∆ est formé de chemins orientés et circuits disjoints.

Lemme 0.0.4. [3] K(C) est un intervalle de D, pour tout circuit C de ∆.

Lemme 0.0.5. [3] Pour tout circuit C de ∆, D[K(C)] a un sommets v avec
le PSV.

Pour tout chemin maximal P = a1b1, ...akbk de ∆, précisément ai →
ai+1, bi → bi+1, bi+1 /∈ N+(ai) ∪N++(ai) et bi+1 /∈ N+(ai) ∪N++(ai) pour
i = 1, ..., k − 1. Le degré intérieur de a1b1 est zéro, donc a1b1 est une bonne
arête manquante de D. On peut supposer que (a1, b1) est une orientation
convenable. On ajoute à D les arêtes (ai, bi) pour tout i. Soient D′ le di-
graphe obtenu et ∆′ son digraphe de dépendance. ∆′ est formé de circuits
disjoints. Alors D′ est un bon digraphe.

Soit L un bon ordre médian de D′ avec un feed vertex f . f a le PSV
dans D′. En plus, si f est complet dans D′ on peut vérifier que f a le PSV
dans D. Sinon, il existe un circuit C de ∆′ (et ∆) tel que f ∈ K(C) = J(f).
D’après le lemme 0.0.5, il existe un sommet v ayant le PSV dans D[K(C)].
Mais |N+(v)\K(C)| ≤ |GL|. Alors,

Théorèm 0.0.14. [3] D satisfait le CSV.

On peut voir qu’on a utilisé un autre digraphe D′ qui contient D, pour
vérifier que le dernier satisfait le CSV. A. El Sahili a proposé la conjecture
suivante:

Conjecture 5. (EC) Tout digraphe D a un completion avec un feed vertex
ayant le PSV dans D.

Il est clair que EC implique le CSV. On ne sait pas s’ils sont équivalents.

La version ponderé de la conjecture de El Sahili sera:

Conjecture 6. (GC) Tout digraphe ponderé (D,ω) a une completion avec
un feed vertex ayant le PSV ponderé dans (D,ω).
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Forcing Graphe

Définitions

Soit H un ensemble de digraphes ( les digons sont permis) et soit G un
graphe. On dit que G est H-forcing, si ∆D ∈ H pour tout digraphe D où
manque G. L’ensemble de tous les H-forcing graphes sera noté par F(H).

Les digraphes qui n’ont pas des arêtes sont appelés triviaux.

Proposition 0.0.8. Soit H un ensemble de digraphes. On a F(H) est non
vide si et seulement si H a un digraphe trivial.

Problèm 0.0.1. Soient S l’ensemble de tous les digraphes triviaux et �P
l’ensemble de tous les digraphes composés de chemins orientés disjoints
seulement. Caractériser F(S) et F(�P).
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S-forcing graphe

On va Caractériser F(S) et prouver que les digraphes où manque un élément
de F(S) satisfont la CSV S). Clairement, si G est le graphe manquant de
D et G ∈ F(S) alors toutes les arêtes manquantes de D sont bonnes. On va
prouver que les digraphes où manque un élément de F(S) satisfont le CSV.

Théorèm 0.0.15. Soient (D,ω) un digraphe ponderé. Si toutes les arêtes
manquantes de D sont bonnes donc D satisfait la GC.

Definition 0.0.3. Une n-étoile généralisée Gn est un graphe définit par:

1) V (Gn) =
n
⋃

i=1

(Xi ∪ Ai−1), où les Ai et Xi sont deux à deux disjoints

2) Gn[
n
⋃

i=1

Xi] est un graphe complet et les Xi sont non vides

3)

n
⋃

i=1

Ai−1 est un stable et Ai est non vide pour tout i > 0

4) N(A0) = φ et pour tout i > 0, pour tout a ∈ Ai, N(a) =
⋃

1≤j≤i

Xj.

Théorèm 0.0.16. Soit G un graphe. Les proposition suivantes sont équivalentes:

(A) G est une n-étoile généralisée.

(B) Les extrémités de deux arêtes non adjacentes de G, n’engendrent pas
un carré.

(C) Toutes les arêtes de tout digraphe où manque G sont bons.

Un soleil G est un graphe formé d’un graphe complet T et un stable S
tel que pour tout s ∈ S on a N(s) = V (T ). Clairement, G est une 2-étoile
généralisée où une 1-étoile généralisée. Si V (T ) a un seul élément donc G
est une étoile et si S est vide donc G est un graphe complet.

Corollaire 0.0.4. Tout digraphe ponderé où manque une n-étoile généralisée
satisfait (GC).

Corollaire 0.0.5. Tout digraphe ponderé où manque un soleil satisfait (GC).
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Corollaire 0.0.6. Tout digraphe ponderé où manque un graphe complet
satisfait (GC).

Corollaire 0.0.7. Tout digraphe ponderé où manque une étoile satisfait
(GC).

En particulier, ces digraphes satisfont (EC) et donc (CSV).

�P-forcing graphe

Un peigne G est un graphe définit par:

1) V (G) est l’union disjoint de trois ensembles A, X et Y .

2) G[X ∪ Y ] est un graphe complet.

3) A est un stable où N(A) = X et N(a) ∩ N(b) = φ pour tout 2 sommets
distincts a, b ∈ A.

4) Pour tout a ∈ A, d(a) = 1.

Remarquons que les arêtes avec un extémité dans A forme un couplage.

Proposition 0.0.9. Les peignes sont �P-forcing.

Théorèm 0.0.17. Tout digraphe où manque un peigne satisfait (EC).

Un K̃4 est un graphe obtenu d’un graphe complet en supprimant deux
arêtes non adjacentes. Si xy et uv les arêtes supprimées donc la restriction
de K̃4 à {x, y, u, v} est un carré.

Proposition 0.0.10. Les graphes K̃4 sont �P-forcing.

Théorèm 0.0.18. Tout digraphe où manque un K̃4 satisfait (EC).

Un K̃5 est un graphe obtenu d’un graphe complet en supprimant les
arêtes d’un cycle de longueur 5. Notons que la restriction de K̃5 aux som-
mets du cycle supprimé est encore un cycle de longueur 5.

Proposition 0.0.11. Les graphes K̃5 sont �P-forcing.

Théorèm 0.0.19. Tout digraphe où manque un K̃5 satisfait (EC).
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Digraphes où manque un couplage sont digraphes de degré minimum
|V (D)| − 2. Ces digraphes satisfont (CSV). Une généralization de ces di-
graphes sont les digraphes de degré minimum |V (D)| − 3, c’est à dire, le
graphe manquant est formé de cycles et chemins disjoints. P3 est le chemin
de longueur 3, C3, C4 et C5 sont les cycles de longueur 3, 4 et 5 respective-
ment.

Corollaire 0.0.8. Tout digraphe où manque un P3, C3, C4 ou un C5 satis-
fait (EC).

Tournoi où manque n étoiles

Rappellons qu’un roi d’un digraphe D est un sommet tel que {x}∪N+(x)∪
N++(x) = V (T ). On sait que tout tournoi a un roi. En plus, pour chaque
entier positive n /∈ {2, 4}, il exist un tournoi Tn avec n sommets, tel que
chaque sommet est un roi.

On dit que n étoiles sont disjoints si ses ensembles de sommets sont deux
à deux disjoints.

Théorèm 0.0.20. Soit D un digraphe où manque n étoiles disjointes et ∆
son digraphe de dépendance. Supposons que, dans le tournoi engendré par
les centres de ces étoiles, chaque sommet est un roi. Si δ−∆ > 0 donc D
satisfait le EC.

On a besoin du lemme suivant.

Lemme 0.0.6. Soit D un digraphe où manque n étoiles disjoints. Si les
composantes connexes de son digraphe de dépendance sont fortements con-
nexes et non triviaux alors D est un bon digraphe.

Théorèm 0.0.21. Soit D un digraphe où manque une étoile et un couplage.
Si les composants connexes du digraphe de dépendance qui contiennet un
arête de l’étoile supprimée ont un degré extérieur et intérieur minimum
non nulles, alors D satisafait EC.

Soit D un digraphe tel que son graphe manquant est l’union disjoint d’un
couplage M et un étiole Sx de centre x. ∆ et ID dénotent le digraphe de
dépendance et le graphe intervalle de D. En plus, on suppose que les com-
posantes connexes du digraphe de dépendance qui contiennent une arête de
l’étoile supprimé (x est un éxtrémité de cet arête), ont un degré extérieur et
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intérieur minimum non nulles.

On va prouver que D satisfait EC et par conséquent CSV.

Soient P une composante connexe de ∆ ou ID et v un sommet de D.
On dit que v apparâıt dans P si v ∈ K(P ). Si non, on dit que v n’apparâıt
pas dans P .

Il n’est pas dificile de démontrer que le degré extérieur et intérieur dans
∆ de chaque arête ax de l’étoile Sx est exactement 1 et si une arête uv ∈ M
a un degré extérieur (resp. intérieur) plus que 1 donc N+

∆(uv) ⊆ E(Sx)
(resp, N−

∆(uv) ⊆ E(Sx)). Par suite, toute composante connexe de ∆, où x
n’apparâıt pas, est un chemin orienté, ou un circuit.

On note par ξ la compsante connexe unique de ID où x apparâıt. On
note que ID est formé de ξ et des autres sommets isolés (ayant degré zéro
dans ID).

Soit P = a1b1a2b2 · · · akbk une compsante connexe de ∆ qui est un
chemin maximal et où x n’apparâıt pas, précisément ai → ai+1, bi → bi+1

pour i = 1, ..., k − 1. Parce que a1b1 est un bon arête manquant, (a1, b1) ou
(b1, a1) est une orientation convenable. On peut supposer que (a1, b1) est
une orientation convenable. On ajoute à D les arêtes (ai, bi) pour tout i.
On fait de même pour tous les chemins orientés maximals de ∆. On note
l’ensemble de nouveaux arcs par F et pose D′ = D + F .

Lemme 0.0.7. D′ est un bon digraphe.

Lemme 0.0.8. D[K((ξ)] satisfait EC.

Dans la suite, C = a1b1...akbk dénote un circuit de ∆ où x n’apparâıt
pas, précisément ai → ai+1, bi+1 /∈ N++(ai) ∪ N+(ai), bi → bi+1 et ai+1 /∈
N++(bi) ∪ N+(bi).

Lemme 0.0.9. Dans D[K(C)] on a:
Si k est impair:

N+(a1) = N−(b1) = {a2, b3, · · · , ak−1, bk}

N−(a1) = N+(b1) = {b2, a3, · · · , bk−1, ak},

Si k est pair:

N+(a1) = N−(b1) = {a2, b3, · · · , bk−1, ak}

N−(a1) = N+(b1) = {b2, a3, · · · , ak−1, bk}.
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Lemme 0.0.10. Dans D[K(C)] on a: N+(ai) = N−(bi), N−(ai) = N+(bi),
N++(ai) = N−(ai) ∪ {bi}\{bi+1} et N++(bi) = N−(bi) ∪ {ai}\{ai+1} pour
tout i = 1, ..., k où ak+1 := a1, bk+1 := b1 si k est impair ak+1 := b1,
bk+1 := a1 si k est pair. Donc d++(v) = d+(v) = d−(v) = k − 1 pour tout
v ∈ K(C).

Corollaire 0.0.9. Tout digraphe où manque un couplage satisfait EC.

Notons que notre méthode montre que le sommet f trouvé ayant la PSV
est un feed vertex d’un digraphe qui contient D, mais c’est pas le cas par la
methode présenté dans [3].

Rappellons que F est l’ensemble des arcs ajoutés à D afin d’obtenir le
digraphe D′. Donc, si F = φ alors D est un bon digraphe.

Théorèm 0.0.22. Soit D un bon digraphe où manque un couplage et sup-
posons que F = φ. Si D ne contient pas de puits alors D a au moins deux
sommets ayants le PSV.

On va étudier les cas où le graphe manquant de D est soit deux étoiles
disjoints, soit trois étoiles disjoints.

Théorèm 0.0.23. Soient D un digraphe où manque 2 étoiles et ∆ son
digraphe de dépendance. Si δ∆ > 0 alors D satisfait EC.

Théorèm 0.0.24. Soient D un digraphe où manque 2 étoiles et ∆ son
digraphe de dépendance. Si δ+

∆ > 0, δ−∆ > 0 et D n’a pas de puits, alors D a
au moins 2 sommets ayants le PSV.

Théorèm 0.0.25. Soit D un digraphe où manque trois étoiles telles que
le triangle engendré par ses centres est cyclique. Soit ∆ le digraphe de
dépendance de D. Si δ∆ > 0 alors D satisfait (EC).

Théorèm 0.0.26. Soit D un digraphe où manque trois étoiles telles que
le triangle engendré par ses centres est cyclique. Soit ∆ le digraphe de
dépendance de D. Si δ+

∆ > 0, δ−∆ > 0 et D n’a pas des puits, alors D a au
moins 2 sommets ayants la PSV.
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Département de Mathématiques
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Chapter 1

Preliminary Definitions

1.1 Graphs

Graph. A graph G is a pair of two disjoint finite sets (V (G), E(G))
where the elements of E(G) belongs to the set {{x, y}; x, y ∈ V (G)}.
V (G) is called the vertex set and its elements are the vertices of G,
while E(G) is called the edge set and its elements are the edges of G.
We write xy (or yx) instead of the edge {x, y}. We may write v ∈ G
and e ∈ G instead of v ∈ V (G) and e ∈ E(G).

Empty graphs. An empty graph is a one with no edge.

Adjacent. If e = xy ∈ E(G), we say that x and y are neighbors
or adjacent and they are the endpoints of e and e is incident to x and
y. If xy /∈ E(G), we say x and y are non-adjacent. Two edges e and f
are adjacent if they have a common endpoint, otherwise non-adjacent
or independent.

Neighborhood. The neighborhood of a vertex x is the set of
neighbors of x and is denoted by NG(x). For X ⊆ V (G), NG(X) :=
⋃

x∈X NG(x)\X.

Degree. The degree of a vertex x is the number |NG(x)| and is de-
noted by dG(x). x is a whole vertex if it is adjacent to all other vertices
of G, that is dG(x) = |V (G)| − 1. Otherwise, x is a non-whole vertex.
A vertex is isolated if its degree is zero.

35
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The following statement is sometimes called the ”The First Theo-
rem of Graph Theory ” or ” The Hand Shaking Lemma”.

Proposition 1.1.1. (Degree-Sum Formula) Let G be a graph. We
have Σx∈V (D)dG(x) = 2|E(G)|.

Indeed, every edge xy is counted twice. Once in dG(x) and once in
dG(y).

Complement graph. For x, y ∈ V (G), xy is called a missing edge
if xy /∈ G. The complement graph G of G is the one whose vertices are
non-whole ones of G and whose edges are the missing edges of G.

Subgraphs. A subgraph of G is a graph G′ such that V (G′) ⊆ V (G)
and E(G′) ⊆ E(G). It is a spanning subgraph if V (G′) = V (G). An in-
duced subgraph of G is a subgraph of G′ such that xy ∈ E(G′) whenever
x, y ∈ V (G′) and xy ∈ E(G). For U ⊆ V (G), the subgraph induced by
U , is the induced subgraph of G whose vertex set is U , and it is denoted
by G[U ]. For F ⊆ E(G), the subgraph of G induced by F , denoted by
G[F ], is the subgraph induced by the endpoints of the edges in F .

Isomorphism. Two graphs G and G′ are said to be isomorphic if
there is a bijective function f : V (G) −→ V (G′) such that for every
x, y ∈ V (G), xy ∈ E(G) if and only if f(x)f(y) ∈ E(G′). Such a
function is called an isomorphism.
We say that G contains a copy of G′ if the second is isomorphic to a
subgraph of the first.

H-free graphs. Let G and H be two graphs. We say that G is an
H-free graph if G does not contain a copy of H. In this case H is for-
bidden in G. Forbidden graphs plays important role in characterizing
some families of graphs. We will use them in characterizing a family
of graph defined in Chapter 5.

A loop is an edge of the form xx. In this thesis, we suppose that all
our graphs do not have any loop since they do not play a role. When
the graph is clear from the context we remove the subscript G from the
above notations.
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1.2 Digraphs

Digraph. A digraph D is a pair of two disjoint finite sets (V (D), E(D))
where E(D) ⊆ {(x, y); x, y ∈ V (G)}. V (D) is called the vertex set and
its members are the vertices of D, while E(D) is the arc set and its
members are the arcs of D. If f is a vertex or an arc of D, we may
write f ∈ D when no confusion is possible. For short, we write x → y
if (x, y) ∈ E(D).

Empty digraphs. An empty digraph is a one with no arc.

Adjacent. For x, y ∈ V (D), if e = (x, y) ∈ E(D), we say that y
(resp. x) is an out-neighbor (resp. in-neighbor) of x (resp. y), x and
y are adjacent or neighbors and they are the endpoints of the arc e,
x is the tail of e and y is its head and e is incident to x and y. If
(x, y) and (y, x) /∈ E(D), then x and y are non-adjacent. Two arcs are
non-adjacent or independent if they do not have a common endpoint.

Neighborhood. The out-neighborhood (resp. in-neighborhood)
of a vertex x is the set of its out-neighbors (in-neighbors) and is de-
noted by N+

D (x) (resp. N−
D (x)). For X ⊆ V (D), N+

D (X) is the set
⋃

x∈X N+
D (x)\X and N−

D (X) is the set
⋃

x∈X N−
D (x)\X. In particular,

the second out-neighborhood of a vertex x is N++
D (x) = N+

D (N+
D (x)).

So the two sets N+
D (x) and N++

D (x) are disjoint.

Matching. A set of independent edges or arcs is called a matching.

Degree. The out-degree (resp. in-degree) of a vertex x is d+
D(x) =

|N+
D (x)| (resp. d−(x) = |N−

D (x)|). A vertex x is said to be whole if its
degree dD(x) := d+

D(x) + d−
D(x) = |V (D)| − 1, i.e. x is adjacent to all

the other vertices of D. Otherwise, x is a non-whole vertex. A vertex
with zero degree is an isolated vertex.

The digraph analogue of the degree-sum formula for graphs is the
following:

Proposition 1.2.1. For a digraph D we have Σx∈V (D)d
+
D(x) = Σx∈V (D)d

−
D(x)

= |E(D)|.

Indeed, in both sums, every arc is counted once.
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Sink, source and leaf. A sink is a vertex of zero out-degree. In
the opposite side, a source is a vertex with zero in-degree. A leaf is a
vertex of degree one. An out-leaf is a sink of degree one, i.e. it is a
sink and a leaf. An in-leaf is a source of degree one, i.e. it is a source
and a leaf.

Oriented graph. The arcs (x, y) and (y, x) are called orientations
of a given edge xy. An orientation D of a graph G, is a digraph with
vertex set V (G) and with one orientation of every edge of G. Such a
digraph is called an oriented graph. A loop is an arc of the form (x, x)
and a digon is a set of two arcs of the form (x, y) and (y, x). Clearly,
a digraph with no loop and no digon is an oriented graph.

Underlying graph. The underlying graph of a digraph D is a
graph, denoted by G(D), whose vertex set is V (D) and xy is an edge
of G(D) if (x, y) or (y, x) is in D.

Missing graph. The missing graph of a digraph D, denoted by
GD, is the complement graph of its underlying graph, i.e. GD = G(D).
In other words, its vertices are the non-whole vertices of D and xy ∈
E(GD) if (x, y) and (y, x) /∈ E(D).

Subdigraph. A subdigraph D′ of a digraph D is a digraph with
V (D′) ⊆ V (D) and E(D′) ⊆ E(D). It is a spanning subdigraph if
V (D′) = V (D). An induced subdigraph D′ of D is a subdigraph such
that for x, y ∈ V (D′), (x, y) ∈ E(D′) whenever (x, y) ∈ E(D). For
U ⊆ V (D), the subdigraph induced by U , denoted by D[U ], is the
induced subdigraph of D whose vertex set is U . For F ⊆ E(D), the
subdigraph induced by F is the subdigraph induced by the set of end-
points of the arcs in F . For a set of arcs F , D\F (resp. D ∪ F )
denote the spanning subdigraph of D whose arc set is E(D)\F (resp.
E(D) ∪ F ). When F is a singleton {e}, we write D\e (resp. D ∪ e)
instead. For A ⊆ V (D), D − A is by definition D[V (D)\A].

Isomorphism. Two digraphs D and D′ are said to be isomorphic
if there is a bijective function f : V (D) −→ V (D′) such that for every
x, y ∈ V (D), (f(x), f(y)) ∈ E(D′) if and only if (x, y) ∈ E(D). Such a
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function is called an isomorphism. We say that D contains a copy of
D′ (or D′ is contained in D) if the second is isomorphic to a subdigraph
of the first.

Weighted digraph. A weighted digraph is a couple (D, ω) where
D is a digraph and ω : V (D) −→ R+ is a non negative real valued
function on the vertex set of D. Such a function ω is called a weight
function. The value ω(x) is the weight of x, where x ∈ V (D). An
edge-weighted digraph is a couple (D, ω) where D is a digraph and
ω : E(D) −→ R+ is a non-negative real valued function on the edge
set of D. Such a function ω is called an edge-weight function.

Let (D, ω) be a weighted digraph. The weight function ω induces
an edge-weight function, denoted also by ω and defined as follows: for
an arc (x, y) ∈ E(D), its weight is ω(x, y) := ω(y).
For U ⊆ V (D) the weight of U is ω(U) := Σu∈Uω(u) and the weight of
F ⊆ E(D) is ω(F ) := Σe∈F ω(e). Since vertices of weight zero have no
role we suppose that ω is positively valued.

Contraction. Let D be a digraph and let S ⊆ V (D). D/S denotes
the digraph obtained from D after contracting S, defined as follows.
Its vertex set is V (D) ∪ vS\S and its arc set is {(x, y) ∈ E(D); x, y ∈
V (D)\S}

⋃

{(vS, y); there is s ∈ S with (s, y) ∈ E(D)}
⋃

{(x, vS);
there is s ∈ S with (x, s) ∈ E(D)}. In other words, D/S is obtained
from D − S by adding an extra vertex vS adjacent to the neighbors of
S. We say that the contraction is well defined if D/S does not con-
tain digons. For a collection S of pairwise disjoint subsets of V (D),
S = {S1, ..., Sr}, D/S is the digraph obtained by contracting the sets
Si, 1 ≤ i ≤ r, successively.

In the rest of this thesis, digraphs contain neither loops nor digons
(unless, otherwise stated). So they are oriented graphs. When there is
no confusion, we omit the subscript in the above notations.
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1.3 Usual structures

Path. A path P is a graph with vertex set {v1, ..., vn} and edge
set {vivi+1, i < n}. Such a path is denoted by v1v2...vn and is called a
v1, vn-path or a path between v1 and vn. A spanning subgarph which
is a path is called a Hamiltonian path.

Oriented path. An oriented path is simply an orientation of a
path.

Directed path. A directed path P is a digraph with vertex set
{v1, ..., vn} and arc set composed of the arcs {(vi, vi+1), i < n}. Such a
directed path is denoted by v1...vn. If P = v1...vn is a (directed) path,
we say that P is a (directed) v1, vn-path. A spanning subdigraph of
a digraph D which is a directed path is called a Hamiltonian path of D.

Cycle. A cycle C is a graph with vertex set {v1, ..., vn} and edge
set {vivi+1, i < n} ∪ {vnv1}. Such a cycle is also denoted by v1...vn. A
spanning cycle of a graph is called a Hamiltonian cycle.

Oriented cycle. An oriented cycle is simply an orientation of a
cycle.

Directed cycle. A directed cycle C is a digraph with vertex set
{v1, ..., vn} and arc set {(vi, vi+1)i < n} ∪ {(vn, v1)}. Such a directed
cycle is also denoted by v1...vn. A spanning directed cycle is called a
Hamiltonian cycle.

Connected components. A graph G is connected if for any two
vertices x and y, there is an x, y-path contained in G. A connected
component (or component) U of G is a maximal subset of V (G) such
that G[U ] is connected. A digraph is connected if its underlying graph
is connected and its connected components are those of its underlying
graph.

Strongly connected components. A digraph D is strongly con-
nected (or strong) if for any two vertices x and y there is a directed
x, y-path in D. A strongly connected component (or strong component)
U of D is a maximal subset of V (D) such that D[U ] is strong.
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Clearly, the connected components of a (di)graph form a partition
of the vertex set. In addition, the strong components of a digraph form
a partition of the vertex set. For convenience and with a slight abuse
of notation, we do not distinguish between a connected component K
and the sub(di)graph G[K] (or D[K]). For example, we might say a
path in K instead of a path in G[K].

Tree. A tree is connected graph without any cycle. It is well known
that every connected graph has a spanning tree: A connected spanning
subgraph T of a graph G with the minimum number of edges is a tree.
Indeed, if T has a cycle, then deleting one edge (but not its endpoints)
of the cycle from T yields a spanning connected subgraph of G with
number of edges less than that of T , a contradiction. So, between any
two vertices of a tree there is exactly one path.

Oriented tree. An oriented tree is simply an orientation of a tree.

In-tree and out-tree. An out-tree is an oriented tree with exactly
one source vertex and in which every other vertex has in-degree one.
So, an out-tree T with source s satisfies that for every x ∈ V (T ) there
is a unique directed s, x-path.
An in-tree is an oriented tree with exactly one sink vertex and every
other vertex has out-degree one. So, an in-tree T with sink s satisfies
that for every x ∈ V (T ) there is a unique directed x, s-path.

Forest. A forest is a graph whose connected components are trees.

Oriented forest. An oriented forest is simply an orientation of a
forest.

In-forest and out-forest. An out-forest is an oriented forest
whose connected components are out-trees.
An in-forest is an oriented forest whose connected components are in-
trees.

Star. A star is tree with one vertex, called the center, adjacent to
all the other vertices. So every edge of the star is incident to its center.
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We say that n stars are disjoint if their sets of vertices are pairwise
disjoint. So, they form a forest of stars.
An out-star is an out-tree whose underlying graph is a star.

Complete graph. A complete graph is a graph G such that
xy ∈ E(G) for any two distinct x, y ∈ V (G). A complete graph with n
vertices is denoted by Kn.

Tournament. A tournament is an oriented graph T such that any
two distinct vertices are adjacent.

Transitive tournament. A transitive tournament T is a tourna-
ment with vertex set, say {v1, v1, ..., vn} with the arcs (vi, vj) whenever
i < j.

Completion. A tournament T is said to be a completion of a di-
graph D if V (T ) = V (D) and E(D) ⊆ E(T ).

Triangle, cyclic and acyclic triangles. A triangle is a K3.
Equivalently, it is a cycle having three vertices only. If an oriented tri-
angle is a directed cycle, then it is called a cyclic triangle, otherwise it
is called acyclic triangle. For example ({x, y, z}, {(x, y), (y, z), (z, x)})
is a cyclic triangle, while ({x, y, z}, {(x, y), (y, z), (x, z)}) is an acyclic
triangle.

Square. A square is a cycle whose vertex set consists of four ver-
tices only. It is denoted by C4.

King. A king in a digraph D is a vertex x such that {x}∪N+
D (x)∪

N++
D (x) = V (D).

Clearly, when T is a transitive tournament, namely with vertex set
{v1, v1, ..., vn} and arcs (vi, vj) whenever i < j, it has a king, which is
the vertex v1 (in fact, it is the unique king).
However, every tournament T has at least one king: Every vertex x ∈
V (T ) with maximum out-degree is a king. Indeed, suppose that there is
a vertex y ∈ V (T )−{x}∪N+(x)∪N++(x). Then {x}∪N+(x) ⊆ N+(y),
whence d+(y) ≥ d+(x) + 1, a contradiction to the fact that x has
maximum out-degree.
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Moreover, if T has no source, then it has at least three kings. Indeed,
the subdigraph A induced by the set N++(x) (this set is not empty
because x is a king and not a source) is a tournament, and hence it
has a king y. Since y → x then y is also a king in T . By the same
reasoning, there is a vertex z ∈ N++(y) which is a king in T . Sine
x /∈ N++(y), the three vertices x, y and z are pairwise distinct.
Furthermore, it is known that for every nonzero natural number n /∈
{2, 4}, there is a tournament Tn on n vertices, such that every vertex
is a king for this tournament. Indeed for n = 1 it is trivial and for
n = 3, the cyclic triangle C3 = ({x, y, z}, {(x, y), (y, z), (z, x)}) satisfies
this. Add to C3 two vertices a and b with b → a → t → b, for every
t ∈ V (C3). The obtained tournament on five vertices, denote it by
F , satisfies the desired statement. By adding to F a vertex c, with
a → c → b and t → c for every t ∈ V (C3) we obtain a tournament on
six vertices in which every vertex is a king. Now let n ≥ 7. There is a
tournament A on n − 2 vertices in which every vertex is a king. The
tournament on n vertices, obtained by adding two vertices g and h to
A, with h → g → t → h for every h ∈ V (A), has the desired property.
This proves the aforementioned statement.

1.4 Classical functions on graphs and digraphs

In this section G and D denote a graph and a digraph respectively.

Degrees of a graph. The minimum degree of G, denoted by δG,
is the minimum of {d(x); x ∈ V (G)}.
The maximum degree of G, denoted by ∆G, is the maximum of {d(x); x ∈
V (G)}.

Degrees of a digraph. The minimum degree of D, denoted by
δD, is the minimum of {d(x); x ∈ V (D)}.
The maximum degree of D, denoted by ∆D, is the maximum of {d(x); x ∈
V (D)}.
The minimum out-degree of D, denoted by δ+

D, is the minimum of
{d+(x); x ∈ V (D)}.
The maximum out-degree of D, denoted by ∆+

D, is the maximum of
{d+(x); x ∈ V (D)}.
The minimum in-degree of D, denoted by δ−D, is the minimum of
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{d−(x); x ∈ V (D)}.
The maximum in-degree of D, denoted by ∆−

D, is the maximum of
{d−(x); x ∈ V (D)}.

Length of paths and cycles. The length of a path or a cycle S
is the number of its edges. The length of a directed path or cycle S
is the number of its arcs. For example, if v1...vn is a (directed) path,
then its length is n− 1, while, if it is a (directed) cycle, then its length
is n. The length of such an S is denoted by l(S). An odd (resp. even)
cycle is a cycle of odd (resp. even) length.

Distances. The distance between two vertices in a connected G is
the length of a shortest path between them. The maximum distance
between two vertices is called the diameter of G. The distance from x
to y in D is the length of a shortest directed x, y-path.

Circumference and girth. The circumference of D (resp. G) is
the length of a longest directed cycle (resp. cycle) in D (resp. G). On
the other hand, the girth of D (resp G), denoted by g(D) (resp. g(G)),
is the length of a shortest directed cycle (resp. cycle) in D (resp. in
G). If there is no (directed) cycle the circumference and the girth are
by convention zero and infinity, respectively.

Clique number. Let W be a subset of V (H) where H is a digraph
(resp. graph). W is a clique of H if H[W ] is a tournament (resp. com-
plete graph). The clique number of H is the maximum k such that H
contains a clique of size k.

Stability. A set of vertices is called stable if its elements are pair-
wise non-adjacent. The stability (or the independence number) of a
(di)graph is the maximum size of a stable set.

Chromatic number. The chromatic number of a digraph (or a
graph) H, denoted by χ(H), is the smallest integer k such that V (H)
is a union of k stable sets. In this case, we say that H is k-chromatic.
For example, χ(Kn) = n, the chromatic number of trees is 2, the chro-
matic number of cycles of even length is 2, while that of odd length is
3. 2-chromatic (di)graphs are called bipartite graphs.
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Universal digraphs. A digraph H is called n-universal if it is
contained in every n-chromatic digraph.

Theorem 1.4.1. ([16]) For any g and k, there is a graph with girth
at least g and chromatic number at least k.

This theorem shows that universal digraphs are oriented trees. Burr
considered [18] the function f such that every oriented tree on k vertices
is f(k)-universal. He proved that f(k) ≤ (k−1)2 and conjectured that
f(k) = 2k−2 remarking that f(k) ≥ 2k−2 since a regular tournament
T on 2k − 3 vertices (i.e. T is a tournament on 2k − 3 vertices with
d+(x) = d−(x) = k − 2 for every vertex x) has no vertex with out-
degree k − 1 and thus T is (2k − 3)-chromatic digraph but it does not
contain the out-star on k vertices.

Conjecture 1. (Burr’s conjecture [18]) Every oriented tree with k ver-
tices is (2k − 2)-universal (k > 1).
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Chapter 2

Median Order

2.1 Acyclic Digraphs and Feedback Sets

Acyclic. Let (D, ω) be an edge-weighted digraph. D is said to be
acyclic if it does not have any directed cycle. For example, oriented
trees and forests are acyclic. A maximum acyclic subdigraph D′ of D,
is an acyclic subdigraph of D such that ω(E(D′)) is maximum.

Feedback sets. Let F ⊆ E(D) be a set of edges. We say that F
is a feedback arc set if D\F is acyclic. F is a minimum feedback arc
set if ω(F ) is minimum among all the feedback arc sets. Similarly, a
subset A ⊆ V (D) is called a feedback vertex set if D − V is an acyclic
digraph. Such a set is a minimum feedback vertex set if its weight is
minimum among all the feedback vertex sets of D.

Clearly, D′ is acyclic subdigraph of D if and only if E(D)\E(D′) is a
feedback arc set. In addition D′ is maximum if and only if E(D)\E(D′)
is minimum. A result of Karp[17] asserts that finding a minimum feed-
back arc set is NP-Hard. It is even NP-Hard for tournaments [12].

Let S(D) be the set of all strongly connected components of D.
Recall that, D/S(D) is the digraph obtained from D by contracting
each strongly connected component into a single vertex, successively.
So we may suppose that, its vertex set is S(D) and for two distinct
strong components S and S ′ , (S, S ′) is an arc if there is u ∈ S and
u′ ∈ S ′ with (u, u′) ∈ E(D).

47
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D/S(D) is a well defined digraph. It has no loops by definition.
It has no directed cycles of length two. Indeed, it has no directed
cycle. Otherwise, if S1, ..., Sr is a directed cycle then

⋃

1≤i≤r Si is again
a strongly connected component containing Si, a contradiction to the
fact that strong components are pairwise disjoint. So, D/S(D) is an
acyclic digraph.
Note that every acyclic digraph has a sink and a source. In fact, the
first vertex of every longest directed path is a source, while the last is
a sink.

2.2 Definition of median order

Median order. Let (D, ω) be a weighted digraph. Let L =
x1x2...xn be an enumeration of the vertices of D. Suppose that (xi, xj) ∈
E(D). It is forward if i < j, otherwise it is backward. The set of
forward arcs and backward arc are denoted by F (L) and B(L) re-
spectively. Clearly, these two sets are feedback arc sets and the two
digraphs (V (D), F (L)) and (V (D), B(L)) are acyclic. The weight of an
enumeration L is ω(L, D) := ω(F (L)) (when there is no confusion we
write ω(L)). An enumeration L such that ω(L) is maximum is called a
median order. Observe that, L is a median order if and only if B(L) is
a minimum feedback arc set and (V (D), F (L)) is a maximum acyclic
subdigraph of D. Thus finding a median order is NP-Hard even for
tournaments.

For i ≤ j, the interval [xi, xj] or [i, j] of L is the set {xi, xi+1, ..., xj}.

Median orders have many properties. The following property is
called the feedback property [7, 3].

Proposition 2.2.1. Let L = x1x2...xn be a median order of a weighted
digraph (D, ω). Then for every 1 ≤ i ≤ j ≤ n, in D[xi, xi+1, ..., xj] we
have: ω(N+(xi)) ≥ ω(N−(xi)) and ω(N−(xj)) ≥ ω(N+(xj)).

Proof. Suppose that the first inequality is false. Then ω(F (L′)) =
ω(F (L)) + ω(N−(xi)) − ω(N+(xi)) > ω(F (L)), where L′ is obtained
from L by inserting xi just after xj. A contradiction. Similar argument
is used to prove the second inequality .
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As a corollary, if D is a weighted tournament, then by the feed-
back property x1x2...xn is a directed path of D. In the case of a (non
weighted) tournament D, the feedback property is equivalent to say
that d+(xi) ≥ j−i

2
and d−(xj) ≥ j−i

2
, in D[i, j], for all i ≤ j, because

every two distinct vertices are adjacent in tournaments.

Local median order. An enumeration L = x1x2...xn that satisfies
the feedback property is called a local median order. So every median
order is a local median order.

When all the weights are units, we get the definition of the (local)
median order of a (non weighted) digraph D.

Proposition 2.2.2. Let L = x1x2...xnbe a (local) median order of a
digraph D. Let D′ = D ∪ F\B where F ⊆ {(xi, xj) /∈ D; i > j} and
B ⊆ B(L). Then L is a (local) median order of D′.

Proof. If L is a local median order then adding forward arcs and delet-
ing backward arcs strengthens the feedback property. Now suppose
that L is a median order and suppose e = (x, y) ∈ B and let D′ = D\e.
Since e is backward arc, then it does not contribute to ω(L, D). Let L′

be a median order of D′. If, in L′, the index of y is smaller than the
one of x, then we have ω(L′, D′) = ω(L′, D) ≤ ω(L, D) = ω(L, D′) ≤
ω(L′, D′). Thus ω(L, D′) = ω(L′, D′), whence L is a median order of
D′.

Otherwise, in L′, the index of x is smaller than the one of y. In
this case ω(L′, D) = ω(L′, D′) + w(x, y) ≤ w(L′, D′). So we have,
ω(L′, D′) ≤ w(L′, D) ≤ ω(L, D) = ω(L, D′) ≤ ω(L′, D′). So, ω(L, D′) =
ω(L′, D′), whence L is a median order of D′.

Now, suppose that e = (x, y) ∈ {(xi, xj) /∈ D; i > j} and let D′ =
D ∪ e. Let L′ be a median order of D′. Clearly, ω(L, D′) = ω(L, D) +
w(x, y) ≥ ω(L, D). If e ∈ B(L′), then by the above argument L′

is a median order of D. We get ω(L′, D′) = w(L′, D) ≤ ω(L, D) ≤
ω(L, D′) ≤ ω(L′, D′). Thus ω(L, D′) = ω(L′, D′) and L is a median
order of D′.

Otherwise, e ∈ F (L′). We have ω(L, D) + w(x, y) = ω(L, D′) ≤
ω(L′, D′) = ω(L′, D) + w(x, y) ≤ ω(L, D) + w(x, y). Thus ω(L, D′) =
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ω(L′, D′) and L is a median order of D′.

To conclude we use induction on the number of the deleted and
added arcs.

Back and feed vertices. Let L = x1x2...xnbe a (local) median
order of a (weighted) digraph D. The first vertex x1 is called a back
vertex, while the last vertex xn is called a feed vertex of D.

Proposition 2.2.3. ([7]) The back vertex x1 is a king when D is a
tournament.

Proof. Let i > 1. We have by the feedback property, |N+
[1,i](x1)| ≥

i−1
2

and |N−

[1,i](xi)| ≥
i−1
2

. If xi /∈ N+
[1,i](x1)∪N++

[1,i](x1), then the set {x1, xi},

N+
[1,i](x1) and N++

[1,i](x1) are pairwise disjoint. Thus, i = |[1, i]| ≥

{x1, xi} ∪ N+
[1,i](x1) ∪ |N++

[1,i](x1)| ≥ 2 + i−1
2

+ i−1
2

= i + 1, a contra-

diction. Thus, xi /∈ N+
[1,i](x1) ∪ N++

[1,i](x1) and x1 is a king.

GL. Among the vertices not in N+(xn) two types are distinguished:
A vertex xj is good if there is i ≤ j such that xn → xi → xj, otherwise
xj is a bad vertex. The set of good vertices of L is denoted by GD

L ( or
GL if there is no confusion ). Clearly, GL ⊆ N++(xn) [7].

2.3 Median orders and the chromatic number

Suppose that B is a minimum feedback arc set of a weighted digraph
(D, ω) and consider the acyclic weighted digraph D′ = D − B. Let
S0 be the (possibly empty) set of isolated vertices of D′. We define
inductively, for i > 0, the set Si as follows. Si is the set of sources of
D′ −

⋃

j<i Sj. Let n be the greatest integer such that Sn 
= φ. Note
that for all 0 < i ≤ n, Si 
= φ. Enumerate, for every 0 ≤ i ≤ n, the
vertices of Si in arbitrary way as
vji−1+1 vji−1+2 ......vji

with j−1 + 1 := 1 and ji = Σk≤i|Sk|. Denote by
L the overall enumeration. By construction, the sets Si are stable sets
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in D′, F (L) = E(D′) and B(L) = B. Thus L is a median order of D.
However,

Proposition 2.3.1. Every set Si is stable in D. Therefore χ(D) ≤ n.

Proof. Since the sets Si are stable sets in D′ and F (L) = E(D′) we have
the following. If (x, y) ∈ E(D′), then there is i < j such that x ∈ Si

and y ∈ Sj. Indeed, fix i ≥ 0 and assume that there is (x, y) ∈ E(D)
with x, y ∈ Si. Then (x, y) ∈ B. Hence D′ + (x, y) has a cycle y =
u1u2...uk−1uk = x. Every arc of this cycle, except (x, y), is in D′ (hence
forward), whence there is j > i such that x ∈ Sj. A contradiction.

The proof of the above proposition shows the following:

Proposition 2.3.2. If i < j and (x, y) ∈ E(D) with y ∈ Si and
x ∈ Sj, then there is a directed y, x-path formed of forward arcs of L.
Therefore, (x, y) is an arc of a directed cycle of D of length at most
j − i + 1.

Proposition 2.3.3. D has a directed path of length at least n − 1.

Proof. We construct a directed path v1v2...vn with vi ∈ Si. As a basis
step, we choose a vertex vn from Sn. Suppose that such a directed path
vi+1vi+2...vn is constructed. Since vi+1 is not a source in D′[

⋃

j≥i Sj] and

since the arcs of D′ are in F (L), there is vi ∈ Si such that vi → vi+1.

So we obtain Galli-Roy theorem.

Corollary 2.3.1. ([19],[2]) D has a directed path of length at least
χ(D) − 1.

2.4 Median orders and Sumner’s conjecture

Median order is a powerful inductive tool: if L = x1x2...xnis a median
order of a weighted digraph D, then for i < j, also I = xixi+1...xj is a
median order of the digraph D′ = D[xi, xj]. To see this, observe that
if J is a median order of D′ then ω(L′) = ω(L) + ω(J) − ω(I), where
L′ = x1...xi−1Jxj+1...xn. Now, I is not a median order if and only if
ω(J) > ω(I) if and only if ω(L′) > ω(L).

As an example for the importance of (local) median orders as an
inductive tool, we present a short argument of [7] to show how they are



52 CHAPTER 2. MEDIAN ORDER

used in order to reach an upper bound for Burr’s conjecture restricted
to tournaments. Burr’s conjecture restricted to the class of tourna-
ments is the following one, known as Sumner’s Universal Conjecture.

Conjecture 2. ([13]) Every tournament on 2k − 2 vertices (k > 1)
contains a copy of every oriented tree with k vertices.

Let A and D be digraphs, and let L = x1x2...xnbe a local median
order of D. An embedding of A in D is an injective function f :
V (A) −→ V (D) such that (f(vi), f(vj)) ∈ E(D) whenever (vi, vj) ∈
E(A). An L-embedding of A in D is an embedding f of A in D such
that, for every interval of L of the form [xi+1, xn],

|f(A) ∩ [xi+1, xn]| <
1

2
|[xi+1, xn]| + 1.

In this case, we say that A is L-embeddable.

Proposition 2.4.1. ([1]) Let T be a tournament on at least three ver-
tices and let L = x1x2...xnbe a local median order of T . Set T ′ =
T −{vn−1, vn} and L′ = x1x2...xn−2. Let A be a digraph with an in-leaf
y and suppose that A′ = A − y has an L′-embedding f ′ in T ′. Then A
has an L-embedding f in T which extends f ′.

Proof. Let x denote the in-neighbor of y. Let f ′ be an L′- embedding
of A′ in T ′. Suppose that f ′(x) = xi. We have |f ′(A′) ∩ [xi+1, xn−2]| <
1
2
|[xi+1, xn−2]|+1. Since L is a median order of T and T is a tournament,

|N+
T (xi) ∩ [xi+1, xn]| ≥ 1

2
|[xi+1, xn]| = 1

2
|[xi+1, xn−2]| + 1. Therefore

|N+
T (xi) ∩ [xi+1, xn]| > |f ′(A′) ∩ [xi+1, xn−2]| = |f ′(A′) ∩ [xi+1, xn]|.

In other words, xi has an out-neighbor xj ∈ I\f ′(A′). We define f :
V (A) −→ V (T ) by f(v) := f ′(v) for v ∈ V (A′) and f(y) := xj.

An immediate consequence of the above proposition is that out-trees
(and in-trees) satisfies Sumner’s conjecture.

Corollary 2.4.1. ([7]) Every tournament on 2k − 2 vertices contains
a copy of every out-tree on k vertices (k > 1).

In fact, it is proved that, for every k > 0, for every tournament T
on 2k− 2 vertices, for every local median order L = x1...x2k−2 of T , for
every out-tree A on k vertices we have that A is L-embeddable [7].

Using a similar argument Havet and Thomassé proved the following:
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Theorem 2.4.1. ([7]) Every tournament on 4k − 6 vertices contains
a copy of every oriented tree on k vertices (k > 1).

The prove of this result differs from the previous one by taking
L′ = x3x4...x2k−8 in the inductive step instead of L′ = x1x2...x2k−8

because the existence of an out-leaf of A is not guaranteed. However,
a leaf must exist in A (in or out), which makes the induction successful.

El Sahili also used the notion of median order to prove the best
known bound for general k.

Theorem 2.4.2. ([1]) Every tournament on 3k − 3 vertices contains
a copy of every oriented tree on k vertices (k > 1).

Recently, it is proved that for sufficiently large k we have f(k) =
2k − 2.

Theorem 2.4.3. ([5]) There exists k0 such that for every k ≥ k0, every
tournament on 2k − 2 vertices contains a copy of every oriented tree
on k vertices.
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Chapter 3

The second neighborhood
conjecture

A vertex v is said to have the second neighborhood property (SNP) if
d+(v) ≤ d++(v).

3.1 The conjecture stated

In 1990, P. Seymour conjectured [14] the following statement:

Conjecture 3. (The Second Neighborhood Conjecture (SNC))
Every digraph has a vertex with the SNP.

The SNC was verified for digraphs with minimum out-degrees at
most 6 [20].

A vertex v is said to have the weighted second neighborhood prop-
erty (weighted SNP) if ω(N+(v)) ≤ ω(N++(v)). It is known that the
SNC is equivalent to its weighted version: Every weighted digraph has
a vertex with the weighted SNP.
One of the two implications is obvious. For the non obvious one, let
(D, ω) be a weighted digraph. First we suppose that the weights are
non negative integers. We construct a new (non weighted) digraph
D′. We replace every vertex v by a stable set Sv with ω(v) vertices
(each new vertex has weight 1). Let u′ and v′ be two vertices of D′.
There are two vertices u and v such that u′ ∈ Su and v′ ∈ Sv. Now
(u′, v′) ∈ E(D′) if and only if (u, v) ∈ E(D). Now D′ has a vertex v′

with SNP. This is equivalent to say that v has the weighted SNP in D,
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where v is the vertex of D such that v′ ∈ Sv. Multiplying by a common
denominator this can be extended to digraphs weighted by rationales.
Since rationales are dense in the set of real numbers, we can extend
this to digraphs weighted by real numbers.

3.2 Dean’s Conjecture

Seymour’s conjecture restricted to tournaments is known as Dean’s
conjecture [14]. In 1996, Fisher [4] proved Dean’s conjecture, thus
asserting the SNC for tournaments.

Theorem 3.2.1. ([4]) Every tournament has a vertex with the SNP.

Fisher’s proof uses Farkas’ Lemma (see for example, [6] page 279).
The symbols 0 and 1 denote the vectors whose all components are 0
and 1 respectively and for vectors x and y we write x ≥ y if xi ≥ yi,
the i − th entries of x and y respectively, for every i. I denotes the
identity matrix.

Lemma 3.2.1. (Farkas’ Lemma) Given a Matrix M and a vector
b, exactly one of these systems has a solution:

(i) Mx=b with x ≥ 0;

(ii) MT y ≥ 0 with bT .y <0.

Now, let D be a digraph with vertex set {v1, v2, ..., vn}. A (prob-
ability) density p on D is a weight function such that p(V (D)) = 1.
For such p let p be the vector (p(vi); i = 1, ..., n)T . A density p is
called winning if for every vertex vi we have p(N−(vi)) ≥ p(N+(vi)).
On the other hand, it is a losing density if for every vertex vi we have
p(N−(vi)) ≤ p(N+(vi)).

The matrix K(D) (or simply K) is the n × n matrix (kij)ij, with
kij = 1 if vi → vj, kij = −1 if vj → vi and kij = 0 otherwise.

Note that K is a skew-symmetric matrix and the i-th component
(K.p)i equals p(N+(vi)) − p(N−(vi)). So p is a winning density if
K.p ≥ 0 and a losing density if K.p ≤ 0.
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Lemma 3.2.2. ([4]) Any digraph D has a winning (resp. losing) den-
sity. Further for a winning (resp. losing) density p, if p(vi) > 0, then
p(N+(vi)) = p(N−(vi)).

Proof. Suppose D has no winning density. Then this system has no
solution:

[

K(D) I
1T 0T

] (

w
z

)

=

(

0
1

)

with

(

w
z

)

≥

(

0
0

)

Since KT = −K, Farkas’ Lemma shows that this system has a
solution:

[

−K I
1T 0T

] (

u
v

)

≥

(

0
0

)

with
(

0T 1
)

(

u
v

)

< 0.

Thus u≥ 0 and Ku ≤ v1 with v < 0. So Ku<0 and hence
p=(1T u)−1u is the associated vector of a winning density, a contra-
diction. Therefore D has a winning density.
Now let p be a winning density of D with associated vector denoted
also by p. Then K.p ≤ 0 and p ≥ 0 and hence pi(K.p)i ≤ 0 for every i.
Since K is skew-symmetric, pT .K.p = 0. Thus pi(K.p)i ≤ 0 for every i.
Therefore, if pi := p(vi) > 0, then 0 = (K.p)i = p(N+(vi))−p(N−(vi)),
whence p(N+(vi)) = p(N−(vi)).

Since a losing density on D is a winning density on the digraph
formed by reversing its arcs, the statement holds.

Lemma 3.2.3. ([4]) Let p be a losing density on a tournament T .
Then p(N−(vi)) ≤ p(N−−(vi)) for every vertex vi of T .

Proof. Let vi be a vertex of T . Since p is a losing density, p(N−(vi)) ≤
1
2
. If p(N−−(vi)) ≥

1
2

we are done. Otherwise let Q be the tournament
induced by the set V (T )−N−(vi)∪N−−(vi). Note that p(V (Q)) > 0.
Within Q we have

Σvj∈V (Q)p(vj)p(N−
Q (vj)) = Σvk∈V (Q)p(vk)p(N+

Q (vk)).

Since p(V (Q)) > 0, there is vh ∈ V (Q) with p(vh) > 0 and p(N−
Q (vh)) ≥

p(N+
Q (vh)).
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Since vh /∈ N−(vi)∪N−−(vi) and T is a tournament, we have N−(vi)∪
N−(vh). So

p(N−(vh)) = p(N−
Q (vh)) + p(N−(vh) ∩ (N−(vi) ∪ N−−(vi)))

≥ p(N−
Q (vh)) + p(N−(vi)).

Similarly N+(vh)∪N+(vi) and hence N+(vh)∩(N−(vi)∪N−−(vi)) =
N+(vh) ∩ N−−(vi) ⊆ N−−(vi). So

p(N+(vh)) = p(N+
Q (vh)) + p(N+(vh) ∩ (N−(vi) ∪ N−−(vi)))

≤ p(N+
Q (vh)) + p(N−−(vi)).

Since p(vh) > 0, by Lemma 3.2.2 p(N+(vh)) = p(N−(vh)). Hence

p(N−
Q (vh))+p(N−(vi)) ≤ p(N−(vh)) = p(N+(vh)) ≤ p(N+

Q (vh))+p(N−−(vi)).

But p(N−
Q (vh)) ≥ p(N+

Q (vh)) then p(N−(vi)) ≤ p(N−−(vi)).

The above lemma applies only for losing densities on tournaments.
For example, let D be the directed cycle x1x2x3x4 with the losing den-
sity p defined by p(v1) = p(v3) = 1

2
and p(v2) = p(v4) = 0. However,

we have p(N−(v4)) = p(v3) = 1
2

while p(N−−(v4)) = p(v2) = 0.

Let p be a probability density on D and let f be any real valued
function defined on V (D). The expected value of f on a random pick
from the density p is

Ep(f) = Σvi∈V (D)p(vi)f(vi).

Proof of Theorem 3.2.1 ([4]): When f = d+ : V (D) −→ R,
is the function that associates to every vertex its first out-degree, we
have

Ep(d
+) = Σvi∈V (D)p(vi)d

+(vi) = Σvi∈V (D)p(N−(vi)).
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When f = d++ the function that associates to every vertex it second
out-degree, we have

Ep(d
++) = Σvi∈V (D)p(vi)d

+(vi) = Σvi∈V (D)p(N−(vi)).

By Lemma 3.2.3, we have p(N−(vi)) ≤ p(N−−(vi)) for every vertex
vi of T , then Ep(d

+) ≤ Ep(d
++). Hence there is a vertex vi with

d+(vi) ≤ d++(vi).

3.3 Dean’s Conjecture - A combinatorial proof

Another proof to Dean’s conjecture was achieved in 2000 by F. Havet
and S. Thomassé. It is a constructive and a combinatorial proof that
uses median orders. We will see in the next chapter (Lemma 4.2.1)
another proof similar to a proof given by F. Havet and S. Thomassé.
They have proved that every feed vertex (the last vertex of every local
median order) of a tournament has the SNP. In fact, they have proved
that d+(xn) ≤ |GL|. Moreover, they have exhibited two vertices with
the SNP if the tournament does not have a sink [7].

Theorem 3.3.1. ([3]) Let L = x1x2...xnbe a local median order of a
weighted tournament T . Then xn has the SNP.

The following proposition, proved by Fidler and Yuster, is an ex-
tension of the above theorem to weighted tournaments.

Proposition 3.3.1. ([3]) Let L = x1x2...xnbe a local median order of
a tournament (T, ω). Then xn has the weighted SNP.

Proof. We shall prove, by induction on n, that ω(N+(xn)) ≤ ω(GL).
If L has no bad vertices then N−(xn) = GL, whence ω(N+(xn)) ≤
ω(N−(xn)) = ω(GL), where the first inequality is by the feedback prop-
erty. Otherwise, let xi be the bad vertex of L with minimal i. Since i
is minimal, for all s ≤ i − 1, xs ∈ N+

[1,i](xn) or xs ∈ GL ∩ [x1, xi]. Let

xs ∈ N+
[1,i](xn), then xs ∈ N+

[1,i](xi), hence N+
[1,i](xn) ⊆ N+

[1,i](xi), equiv-

alently, N−

[1,i](xi) ⊆ GL ∩ [x1, xi]. So ω(N+
[1,i](xn)) ≤ ω(N+

[1,i](xi)) ≤

ω(N−

[1,i](xi)) ≤ ω(GL ∩ [x1, xi]), where the second inequality is by the

feedback property. By induction, ω(N+
[i+1,n](xn)) ≤ ω(GL′) where L′ =

xi+1 · · ·xn which is a median order of T ′ = T [xi+1, xn]. However GL′ ⊆
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GL ∩ [xi+1, xn], then ω(N+(xn)) = ω(N+
[1,i](xn)) + ω(N+

[i+1,n](xn)) ≤

ω(GL ∩ [x1, xi]) + ω(GL ∩ [xi+1, xn]) = ω(GL)

A natural question is to seek another vertex with the SNP. Ob-
viously, this is not always possible: consider for instance a transitive
tournament. The sole vertex with the SNP is its sink vertex. In [7],
it is proved that a tournament always has two vertices with the SNP,
provided that every vertex has out-degree at least one. The notion
of local median orders turns out to be too weak for that purpose, so
median orders are used.
The notion of sedimentation of a median order L = x1...xn of T is
introduced in [7], denoted by Sed(L). We recall that, by the proof of
Theorem 3.3.1,
|N+(xn)| ≤ |GL|.

Definition 3.3.1. If |N+(xn)| < |GL|, then Sed(L)=L.
If |N+(xn)| = |GL|, we denote by b1, ..., bk the bad vertices of (T,L)
and by v1, ..., vn−1−k the vertices of N+(xn) ∪ GL, both enumerated in
increasing order with respect to their index in L. In this case Sed(L)
is the order b1...bkxnv1...vn−1−k of T ([7]).

Lemma 3.3.1. ([7]) The order Sed(L) is a median order of T.

Proof. If Sed(L) = L, there is nothing to prove. Otherwise, we as-
sume that |N+(xn)| = |GL|. The proof is by induction on k the
number of bad vertices. If k = 0, all the vertices are good or in
N+(xn), in particular N−(xn) = GL. Thus, |N+(xn)| = |N−(xn)|
and the order Sed(L) = xnx1, ..., xn−1 is a median order of T . (Note
that this is not true for local median orders.) Now, assume that
k is a positive integer. Let i be the index of the vertex b1 in L
(that is xi = b1). By the previous proof d+

[1,i](xn) ≤ |GL ∩ [x1, xi]|

and d+
[i,n](xn) ≤ |GL ∩ [xi, xn]|. But |d+(xn)| = |GL|, then equality

holds in both previous inequalities. Let t ≤ i − 1. If vt ∈ N+(xn),
then vt ∈ N+(xi), since xi is bad vertex. If xt ∈ N−(xi), then
xt ∈ N+(xn) ⊆ Gl ∩ [x1, xi], since xi is the bad vertex with minimal in-
dex i. Therefore, d+

[1,i](xn) ≤ d+
[1,i](xi) ≤ d−

[1,i](xi) ≤ |GL ∩ [x1, xi]|, then

d+
[1,i](xi) = d−

[1,i](xi), whence L′ = xix1 · · ·xi−1xi+1 · · ·xn is a median

order of T . The bad vertices of L and L′ are the same. To conclude
apply induction to L” = x1 · · ·xi−1xi+1 · · ·xn which is a median order
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of T − vi, hence b2...bkxnv1...vn−1−k is median order of T − vi. Hence,
Sed(L) is a median order of T .

Define now inductively Sed0(L) = L and Sedq+1(L) = Sed(Sedq(L)).
If the process reaches a rank q such that Sedq(L) = y1...yn and |N+(yn)|
< |GSedq(L)|, call the order L stable. Otherwise call L periodic [7].

Theorem 3.3.2. [7] A tournament with no sink vertex has at least two
vertices with the SNP.

Proof. Let L = x1...xn be a median order of T . By Theorem 3.3.1, xn

has the SNP, so we need to find another vertex with this property. Con-
sider the restriction of (T, L) to the interval [x1, ..., xn−1], and denote
it by (T ′, L′). Suppose first that L′ is stable, and consider an integer q
for which Sedq(L′)= y1...yn−1 and |N+

T ′(yn−1)| < |GSedq(L′)|. Note that
y1...yn−1xn is a median order of T , and consequently yn−1 → xn. Thus,

|N+(yn−1)| = |N+
T ′(yn−1)| + 1 ≤ |GSedq(L′)| ≤ N++(yn−1)|.

So yn−1 has the SNP in T . Now assume that L′ is periodic. Since
T has no dominated vertex, xn has an outneighbor xj. Note that for
every integer q, the feed vertex of Sedq(L′) is an in-neighbor of xn. So
xj is not the feed vertex of any Sedq(L′). Observe also that, since L′

is periodic, xj must be a bad vertex of some Sedq(L′), otherwise the
index of xj would always increase during the sedimentation process.
Now, fix this value of q. Let Sedq(L′)=y1...yn−1. We claim that yn−1

has the SNP in T : on the one hand we have

|N+(yn−1)| = |N+
T ′(yn−1)| + 1 = |GSedq(L′)| + 1

and on the other hand we have yn−1 → xn → xj, so the second
neighborhood of yn−1 in T contains GSedq(L′) ∪ {xj}, hence, it contains
at least |GSedq(L′)| +1 elements.

We will prove in the next chapter (Lemma 4.2.1 ) a result, which
yields Theorem 3.3.1 and Proposition 3.3.1.
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3.4 The approximation approach

Another approach to the SNC is to find the maximum value of γ such
that every digraph has a vertex v with d++(v) ≥ γd+(v). Since every
vertex v of a directed cycles satisfies d++(v) = d+(v), we have γ ≤ 1.
The conjecture is γ = 1.

Chen, Shen and Yuster [8] proved the following:

Theorem 3.4.1. Every digraph has a vertex v such that d++(v) ≥
γd+(v), where γ = 0.657298... is the unique real root of the equation
2x3 + x2 − 1 = 0.

Proof. For 2 disjoint sets A and B, e(A, B) is the number of arcs with
tail in A and head in B. Note that e(A, B) + e(B, A) ≤ ab.
The proof is by induction on n = |V (D)|. The theorem is trivial for
digraphs with one or two vertices. Suppose that D is a digraph on n
vertices. Assume, to the contrary, that D does not contain any vertex
v such that d++(v) ≥ γd+(v).
Let u be a vertex with minimum out-degree, i.e. d+(u) = δ+(D).
Let D′ be the subdigraph induced by N+(u). Set A = N+(u), B =
N++(u), a = |A| and b = |B|. It will be shown that e(A, B)+e(B, A) >
ab, a contradiction to the fact that D does not contain any digon.
By the assumption, the following inequality holds,

b = d++(u) < γd+(u) = γa. (3.1)

Since a = d+(u) = δ+(D), then d+
A(x) + d+

B(x) = d+(x) ≥ d+(u) = a
for every x ∈ A. Since D does not contain any digon, we have that
Σx∈Ad+

D′(x) ≤ a(a − 1)/2. Thus,

e(A, B) = Σx∈A|N
+(x)∩B| ≥x∈A (a−d+

A(x)) ≥ a2−a(a−1)/2 > a2/2.
(3.2)

Since |V (D′)| = a < n, then by induction hypothesis, there is a
vertex x ∈ N+(u) such that d++

D′ (x) ≥ γd+
D′(x). Let X = N+(x) ∩ A,

Y = N (x) − A = N+(x) ∩ B and d = |Y |. Since |A − X| ≥ N++
D′ (x),

then (1 − γ)|X| ≤ a. Thus,

|X| ≤
1

1 + γ
a ≤

2a

3
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where the last inequality follows since γ ≥ 1/2. Since d+(x) ≥ δ+(D) =
a,

d = |Y | = |N+(x)| − |X| ≥ a −
2a

3
=

a

3
. (3.3)

For every y ∈ Y , since d++(x) < γd+(x) and d++
D′ (x) ≥ γd+

D′(x), we
have

d+
D[V −A−Y ](y) ≤ d++(x) − d++

D′ < γd+(x) − γd+
D′(x) = γ|Y | = γd

Using the inequalities

d+(y) ≥ a (3.4)

and

Σy∈Y d+
D[Y ](y) ≤ d(d − 1)/2, (3.5)

We obtain the following inequalities.

e(Y, A) = Σy∈Y |N
+(y) ∩ A| (3.6)

≥ (a − d+
D[V −A−Y ](y) − d+

D[Y ](y)) (3.7)

≥ (a − γd)d − Σy∈Y d+
D[Y ](y) (3.8)

≥ (a − γd)d − d(d − 1)/2 (3.9)

> (a − γd − d/2)d. (3.10)

Combining the inequalities 3.1, 3.2 and 3.10, we obtain that

γa2 > ab ≥ e(A, B)+e(B, A) ≥ e(A, B)+e(Y, A) ≥ a2/2+(a−γd−d/2)d.
(3.11)

Let f(z) = a2/2 + (a − γz − z/2) = −(γ + 1/2)z2 + az + a2/2.
Since f(z) is a quadratic fucntion with negative leading coefficient, the
following inequality holds.

f(z) > min{f(a/3), f(γa)}



64 CHAPTER 3. THE SECOND NEIGHBORHOOD CONJECTURE

for all z ∈ (a/3, γa).
Thus, γa2 > min{f(a/3), f(γa)}.

A simple calculation gives that

f(a/3) = a2(7 − γ)/9.

Solving γa2 > a2(7 − γ)/9, we obtain that γ > 0.7, a contradiction.
Also, a simple calculation gives that

f(γa) =
1

2
a2(−2γ3 − γ2 + 2γ + 1).

Solving the inequality

γa2 >
1

2
a2(−2γ3 − γ2 + 2γ + 1)

we obtain that 2γ3 +γ2−1 > 0, which contradicts that γ is the unique
real root of the equation 2x3 + x2 − 1 = 0.

For Kk+1-free digraphs, since D[A] and D[B] are Kk-free digraphs,
greater values (in terms of k) of e(A, B) and e(B, A) are found, leading
to better results of γ = γ(k).

Theorem 3.4.2. ([3]) Let D be a Kk+1-free digraph. Then D has a
vertex v with d+(v) ≥ γd+(v), where γ is greater than or equal the real
root of f(x) = 2k−2

k
x3 + k−2

k
x2 − 1.

For example for k = 3, γ ≥ 0.8324.
In Chapter 4, we will see another approach, which is based on the

completion of a digraph in some way, and proving that a feed vertex
of such completion has the SNP in the original digraph.

3.5 Intervals and minimal counterexamples

Let D be a digraph. A set of vertices I ⊆ V (D) is said to be an
interval of D if for every x, y ∈ I we have N+(x)\I = N+(y)\I and
N−(x)\I = N+(y)\I. The empty set, V (D) and singletons are inter-
vals for any digraph D. Such interval are called trivial intervals. An
interval which is not trivial is called a non-trivial interval. D is said to
be indecomposable if all its intervals are trivial. Otherwise, D is said
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to be a decomposable digraph. D is said to be critically indecomposable
if it is indecomposable but for every u ∈ V (D) the dighraph D − u is
decomposable.

In [10] (Corollary 5.8), critically indecomposable digraphs are char-
acterized. For r ≥ 2 the following five digraphs are defined. The di-
graphs Pr and P ′

r are defined as follows: There vertex set is {a1, ..., ar, b1..., br},
the edge set of Pr is composed of the arcs (ai, bj) where i ≥ j, the edge
set of P ′

r consists of the arcs (ai, aj), (bi, bj) and (ai, bj) where i < j.
The tournament T 1

r has vertex set {c0, c1, ..., c2r} and arc set (ci, ci+k)
for k = 1, ..., r, where the sum i + k is mod 2r + 1.
The tournament T 2

r and the digraph Dr have {a0, a1, ..., ar, b1..., br} as
a vertex set and the arcs of the first are (ai, aj), (bj, ai),(aj, bi), (bj, bi) if
i < j and the arcs (bj, aj). While the arcs of the second are (ai, bj), (bi, bj), (bi, aj)
if i < j and the arcs (bj, aj).
The tournament T 3

r has {b, a1, a2, ..., ar} as a vertex set and its arc set
consists of the arcs (ai, aj) for i < j, (b, ai) for odd i and (ai, b) for even
i.

Lemma 3.5.1. [10] Every critically indecomposable digraph is isomor-
phic to a Pr, P

′
r, T

1
r , T 2

r , T 3
r or Dr, for r ≥ 2.

Remark that Pr, P
′
r and Dr have a sink, T 1

r , T 2
r and T 3

r are tour-
naments. So critically indecomposable digraphs satisfies the weighted
SNC.

A counterexample to the weighted SNC is a weighted digraph that
does not have a vertex with the weighted SNP. A minimal counterex-
ample to the the weighted SNC is a one with the least number of
vertices.

Proposition 3.5.1. A minimal counterexample to the weighted SNC
(if exists) is strongly connected, indecomposable and not critically in-
decomposable.

Proof. Suppose that (D, ω) is a minimal counterexample to the the
weighted SNC. By the above remark, D is not a critically indecompos-
able. Assume that D is decomposable. There is a non-trivial interval I
of D. Let D′ = D/I denote the well defined digraph obtained from D
by contracting I into a single vertex vI . Define a weight on D′ as fol-
lows: ω′(vI) = ω(I) and ω′(u) = ω(u) if u /∈ I. Since I is a non-trivial
interval, (D′, ω′) has fewer vertices than D, so it is not a counterex-
ample of the weighted SNC, i.e. it has a vertex x with the weighted
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SNP. By construction of (D′, ω′), x has the weighted SNP in (D, ω), a
contradiction.
Now, suppose for contradiction that D is not strongly connected. Since
the digraph D/S(D) is acyclic, D has a strongly connected component
S which is a sink in D/S(D). Now the weighted digraph (D[S], ω)
induced by S has fewer vertices than D, whence it is not a coun-
terexample. Thus there is v ∈ S with d+

D[S](v) ≤ d++
D[S](v). However,

d+
D[S](v) = d+

D(v) and d++
D[S](v) = d++

D (v), because every vertex in S has

no out-neighbor outside S. The rest is due to Lemma 3.5.1 and the
remark that follows it.

3.6 Caccetta-Häggkvist’s Conjecture

For completeness, we introduce the following related conjecture, which
was proposed in 1978 by Caccetta and Häggkvist [11]. Recall that the
girth of a digraph is the length of a shortest directed cycle contained
in D

Conjecture 4. If D is a digraph with minimum out-degree at least
|V (D)|/k, then its girth is at most k.

This conjecture is still open even for the particular case k = 3.
Moreover, the following weakening is not yet proved.

Conjecture 5. If D is a digraph with both minimum out-degree and
minimum in-degree at least |V (D)|/3, then its girth is at most 3.

Seymour’s Conjecture, if true, would imply this weakening. In fact,
in such a case consider a vertex v with the SNP in the digraph D and
the sets N−(v), N+(v) and N++(v). Each of these sets have size at
least |V (D)|/3. If D does not have any directed triangle, then these
three sets would be pairwise disjoint, whence D would have more than
|V (D)| vertices, a contradiction.

By simple observation we have:

Proposition 3.6.1. [8] If γ is a positive real number such that, for
every digraph D, there exists a vertex v such that d++(v) ≥ γ.d+(v),
then every digraph D on n vertices with min{δ+

D, δ−D} ≥ n
2+γ

has a

directed triangle.
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Proof. Consider the settings of the statement. By given, there is a
vertex v with d++(v) ≥ γ.d+(v). So, we have the following three sets
N−(v), N+(v) and N++(v) has sizes at leat n

2+γ
, n

2+γ
and γ. n

2+γ
. If D

has no triangle, then |V (D)| ≥ |{v} ∪ N−(v) ∪ N+(v) ∪ N++(v)| > n,
a contradiction.

Replacing γ by 1, the above proposition shows that Seymour’s con-
jecture implies Conjecture 5. Moreover, combining Proposition 3.6.1
and Theorem 3.4.1 yields the following corollary.

Corollary 3.6.1. [8] Every digraph with min{δ+
D, δ−D} ≥ n

2+γ
contains

a directed triangle, where γ = 0.657298... is the unique real root of the
equation 2x3 + x2 − 1 = 0.

In this case, n
2+γ

≈ 0.3764n. However, much better results are found

recently.

Theorem 3.6.1. [9] Every digraph D on n vertices with δ+
D ≥ 0.3465n,

contains a directed triangle.

Theorem 3.6.2. [15] Every digraph D on n vertices with min{δ+
D, δ−D} ≥

0.343545n, contains a directed triangle.

We end this section by the following easy to proof observation.

Proposition 3.6.2. Every digraph without transitive triangle satisfies
SNC.

Proof. Consider a vertex v with minimum out-degree. If v is a sink
then it, clearly, has the SNP. Otherwise, let x ∈ N+(v). Since D
has no transitive triangles then N+(x) ⊆ N++(v). So, |N++(v)| ≥
|N+(x)| ≥ δ+

D = |N+(v)|.

Corollary 3.6.2. Every digraph whose underlying graph has girth at
least 4 satisfies SNC.

Proof. Digraphs whose underlying graph has girth at least 4 do not
have oriented triangles and in particular do not have transitive trian-
gles.
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Chapter 4

Dependency digraph

4.1 Definition of the dependency digraph

Motivation. Suppose that D is a digraph missing exactly one edge
e = ab. By giving an orientation to e and adding it to D, we obtain a
tournament completing D (T is a completion of D). However, we shall
orient e in some “convenient” way. Suppose (i) there is v ∈ V \{a, b}
with v → a and b /∈ N+(v) ∪ N++(v) and (ii) there is u ∈ V \{a, b}
with u → b and a ∈ N+(u) ∪ N++(u). From the definition, v and u
are distinct and uv 
= e. So uv is not a missing edge. Whence, either
u → v and this implies u → v → a which contradicts (ii), or v → u
and this implies v → u → b which contradicts (i). Then at least one of
the following holds:
(i) (∀v ∈ V \{a, b})[(v → a) ⇒ (b ∈ N+(v) ∪ N++(v))] or (ii) (∀v ∈
V \{a, b})[(v → b) ⇒ (a ∈ N+(v) ∪ N++(v))].

If (i) is true, orient e = ab as (a, b), otherwise (ii) holds and in this
case orient e as (b, a). Suppose without loss of generality that (i) holds
and let T = D + (a, b) and consider a local median order of T and let
f denote the feed vertex obtained. By theorem 3.3.1, f has the SNP
in T . Suppose f /∈ {a, b}, i.e. f is a whole vertex. f has the same
out-neighbor in T and D. Suppose f → x → y in T . The first arc
is in D. If the second arc is also in D, then y ∈ N++(f) ∪ N+(f).
Otherwise, (x, y) = (a, b). By definition of (i), b ∈ N++(f) ∪ N+(f).
This proves that f has also the same second out-neighbor in D and
T . Therefore, f has the SNP in D. Suppose that f is not whole, i.e.

71
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f ∈ {a, b}. Let T ′ be obtained from T by reorienting the missing edge
ab in a forward direction with respect to L, i.e. the head of this ori-
ented arc is f . By Proposition 2.2.2 the same enumeration L is also a
local median order of T ′, whence f has the SNP in T ′. However, f has
the same out-neighbor in D and T and the same second out-neighbor
in D and T . Therefore, f has the SNP in D.

This motivates us to the following definition:

Definition 4.1.1. Good missing edges and convenient orien-
tations. A missing edge ab is called good if:
(i) (∀v ∈ V \{a, b})[(v → a) ⇒ (b ∈ N+(v) ∪ N++(v))] or
(ii) (∀v ∈ V \{a, b})[(v → b) ⇒ (a ∈ N+(v) ∪ N++(v))].
If ab satisfies (i) we say that (a, b) is a convenient orientation of ab.
If ab satisfies (ii) we say that (b, a) is a convenient orientation of ab.

We will see in Chapter 5, that when all the missing edges of D are
good, then D has a vertex with the SNP property, using the above
argument as a base.

Motivation. Suppose that a missing edge e = ab is not a good
missing edge of a digraph D. Then (i) and (ii) do not hold. Then
there is v ∈ V \{a, b} with (v → a) and b /∈ N+(v)∪N++(v) and there
is u ∈ V \{a, b} with u → b and a ∈ N+(u) ∪N++(u)). In this case vu
should be also a missing edge of D.

Loses. We say that a missing edge x1y1 loses to a missing edge
x2y2 if: x1 → x2, y2 /∈ N+(x1) ∪ N++(x1), y1 → y2 and x2 /∈ N+(y1) ∪
N++(y1).

Dependency digraph. The dependency digraph ∆D (or ∆ if there
is no confusion) of D is defined as follows: Its vertex set consists of all
the missing edges and (ab, cd) ∈ E(∆) if ab loses to cd. Note that ∆
may contain digons (directed cycles of length 2).

These digraphs were used in [3] to prove SNC for tournaments miss-
ing a matching. However, our definition is general and is suitable for
any digraph, as we shall see.
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The following holds by the definition of good missing edges and
losing relation between them.

Lemma 4.1.1. Let D be a digraph and let ∆ denote its dependency
digraph. A missing edge ab is good if and only if its in-degree in ∆ is
zero.

4.2 Intervals and good median orders

Let D be a (weighted) digraph and let ∆ denote its dependency di-
graph. Let C be a connected component of ∆. Set K(C) = {u ∈ V (D);
there is a vertex v of D such that uv is a missing edge and belongs to
C }. The interval graph of D, denoted by ID is defined as follows. Its
vertex set consists of the connected components of ∆ and two vertices
C1 and C2 are adjacent if K(C1)∩K(C2) 
= φ. So ID is the intersection
graph of the family {K(C); C is a connected component of ∆ }. Let ξ
be a connected component of ID. We set K(ξ) = ∪C∈ξK(C). Clearly,
if uv is a missing edge in D then there is a unique connected compo-
nent ξ of ID such that u and v belongs to K(ξ). If f ∈ V (D), we set
J(f) = {f} if f is a whole vertex, and J(f) = K(ξ) otherwise, where ξ
is the unique connected component of ID such that f ∈ K(ξ). Clearly,
if x ∈ J(f), then J(f) = J(x) and if x /∈ J(f), then x is adjacent to
every vertex in J(f).

Let L = x1 · · ·xn be a median order of a weighted digraph D.
Recall, for i < j, the set [i, j] := [xi, xj] := {xi, xi+1, ..., xj} and ]i, j[=
[i, j]\{xi, xj} are called intervals of L. We recall also that K ⊆ V (D) is
an interval of D if for every u, v ∈ K we have: N+(u)\K = N+(v)\K
and N−(u)\K = N−(v)\K. The following shows a relation between
the intervals of D and the intervals of L.

Proposition 4.2.1. Let I = {I1, ..., Ir} be a set of pairwise disjoint
intervals of D. Then for every median order L of (D, ω), there is a
median order L′ of (D, ω) such that: L and L′ have the same feed vertex
and every interval in I is an interval of L′.

Proof. Let L = x1x2...xnbe a median order of a weighted digraph
(D, ω) and let I = {I1, ..., Ir} be a set of pairwise disjoint inter-
vals of D. We will use the feedback property to prove it. Suppose
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a, b ∈ I1 with a = xi, b = xj, i < j and [xi, xj] ∩ I1 = {xi, xj}. Since
I1 is an interval of D, we have N+(xi) = N+

]i,j[(xj) and N−

]i,j[(xi) =

N−

]i,j[(xj). So, ω(N−

]i,j[(xi)) ≤ ω(N+
]i,j[(xi)) = N+

]i,j[(xj) ≤ ω(N−

]i,j[(xj)) =

ω(N−

]i,j[(xi)), where the two inequalities are by the feedback property.

Whence, all the quantities in the previous statement are equal. In
particular, ω(N+

]i,j[(xi)) = ω(N−

]i,j[(xi)). Let L1 be the enumeration

x1...xi−1xi+1...xj−1xxi
xjxj+1...xn. Then ω(L1) = ω(L) + ω(N−

]i,j[(xi))−

ω(N+
]i,j[(xi)) = ω(L). Thus, L1 is a median order of (D, ω). By suc-

cessively repeating this argument, we obtain a weighted median order
in which I1 is an interval of L. Again, by successively repeating the
argument for each I ∈ I, we obtain the desired order.

We say that D is good if the sets K(ξ)’s are intervals of D. By the
previous proposition, every good digraph has a median order L such
that the K(ξ)’s form intervals of L. Such an enumeration is called a
good median order of the good weighted digraph (D, ω).

Lemma 4.2.1. Let (D, ω) be a good weighted digraph and let L be a
good median order of (D, ω), with feed vertex say f. Then for every
x ∈ J(f), ω(N+(x)\J(f)) ≤ ω(GL\J(f)). So if x has the weighted
SNP in (D[J(f)], ω), then it has the weighted SNP in D.

Proof. The proof is by induction n, the number of vertices of D. It is
trivial for n = 1. Let L = x1...xn be a good median order of (D, ω).
Since J(f) is an interval of D, we may assume that J(xn) = {xn}.
If L does not have any bad vertex then N−(xn) = GL. Whence,
ω(N+(xn)) ≤ ω(N−(xn)) = ω(GL) where the inequality is by the
feedback property. Now suppose that L has a bad vertex and let i
be the smallest such that xi is bad. Since J(xi) is an interval of D
and L, then every vertex in J(xi) is bad and thus J(xi) = [xi, xp]
for some p < n. For j < i, xj is either an out-neighbor of xn or
a good vertex, by definition of i. Moreover, if xj ∈ N+(xn), then
xj ∈ N+(xi). So N+(xn) ∩ [1, i] ⊆ N+(xi) ∩ [1, i]. Equivalently,
N−(xi)∩ [1, i] ⊆ GL∩ [1, i]. Therefore, ω(N+(xn)∩ [1, i]) ≤ ω(N+(xi)∩
[1, i]) ≤ ω(N−(xi)∩ [1, i]) ≤ ω(GL ∩ [1, i]), where the second inequality
is by the feedback property. Now L′ = xp+1...xn is good also. By induc-
tion, ω(N+(xn)∩ [p+1, n]) ≤ ω(GL′). Note that GL′ ⊆ GL ∩ [p+1, n].
Whence ω(N+(xn)) = ω(N+(xn) ∩ [1, i]) + ω(N+(xn) ∩ [p + 1, n]) ≤
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ω(GL ∩ [1, i]) + ω(GL ∩ [p + 1, n]) = ω(GL). The second part of the
statement is obvious.

So Theorem 3.3.1 and Proposition 3.3.1 are corollaries of Lemma
4.2.1. In fact, we have, in our proof of the above lemma, used nearly
the same ideas of [7] used to prove theorem 3.3.1, where the difference
in ours is that we treated intervals of the given good weighted digraph
as a single vertex, but with weight equals to that of the interval it
represents. In addition, similar to an idea of [7], we can define the
sedimentation of a good median order of a good weighted digraph.

Let L be a good median order of a good digraph (D, ω) and let f
denote its feed vertex. We have for every x ∈ J(f), ω(N+(x)\J(f)) ≤
ω(GL\J(f)). Let b1, · · · , br denote the bad vertices of L not in J(f)
and v1, · · · , vs denote the non bad vertices of L not in J(f), both enu-
merated in increasing order with respect to their index in L.
If ω(N+(f)\J(f)) < ω(GL\J(f)), then we set Sed(L) = L. If ω(N+(f)\J(f)) =
ω(GL\J(f)), then we set sed(L) = b1 · · · brJ(f)v1 · · · vs.

Lemma 4.2.2. Let L be a good median order of a good weighted digraph
(D, ω). Then Sed(L) is a good median order of (D, ω).

Proof. Let L = x1...xn be a good median order of (D, ω). If Sed(L) =
L, then there is nothing to prove. Otherwise, we may assume that
ω(N+(xn)\J(xn)) = ω(GL\J(xn)). The proof is by induction on r,
the number of bad vertices not in J(xn). Set J(xn) = [xt, xn]. If
r = 0, then for every x ∈ J(xn) we have N−(x)\J(xn) = GL\J(xn).
Whence, ω(N+(x)\J(xn)) = ω(GL\J(xn)) = ω(N−(x)\J(xn)). Thus,
Sed(L) = J(xn)x1...xt−1 is a good median order. Now suppose r > 0
and let i be the smallest such that xi /∈ J(xn) and is bad. As before,
J(xi) = [xi, xp] for some p < n, ω(N+(xn)∩[1, i]) ≤ ω(N+(xi)∩[1, i]) ≤
ω(N−(xi)∩[1, i]) ≤ ω(GL∩[1, i]) and ω(N+(xn)∩[p+1, t−1]) ≤ ω(GL∩
[p + 1, t − 1]). However, ω(N+(xn)\J(xn)) = ω(GL\J(xn)), then the
previous inequalities are equalities. In particular, ω(N+(xi) ∩ [1, i]) =
ω(N−(xi) ∩ [1, i]). Since J(xi) is an interval of L and D, then for
every x ∈ J(xi) we have ω(N+(x) ∩ [1, i]) = ω(N−(x) ∩ [1, i]). Thus
J(xi)x1...xi−1xp+1...xn is a good median order. To conclude, apply the
induction hypothesis to the good median order x1...xi−1xp+1...xn.
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Define now inductively Sed0(L) = L and Sedq+1(L) = Sed(Sedq(L)).
If the process reaches a rank q such that Sedq(L) = y1...yn and ω(N+(yn)\J(yn))
< ω(GSedq(L)\J(yn)), call the order L stable. Otherwise call L periodic.
These new order are used by Havet and Thomassé to exhibit a second
vertex with the SNP in tournaments that do not have any sink. We
will use them for the same purpose but for other classes of digraphs.

4.3 The completion approach

In this section we present the proof of Fidler and Yuster of the SNC
restricted to digraphes missing matchings [3] and then we present a
new conjecture proposed by El Sahili.

In what follows D is a digraph whose missing edges form a matching
M and ∆ denotes it dependency digraph.

An induced directed cycle (a1, a2, b1, b2) is called a losing cycle if
b2 /∈ N++(a1) and a2 /∈ N++(b1) [3]. Clearly, a1b1 ∈ M loses to
a2b2 ∈ M .

Lemma 4.3.1. [3] The maximum out-degree of ∆ is 1, and the maxi-
mum in-degree of ∆ is 1. Thus ∆ is composed of vertex disjoint directed
paths and directed cycles.

Proof. Assume that (a1, a2, b1, b2) and (a1, a
′
2, b1, b

′
2) are two losing cy-

cles. The edge a′
2b2 is not a missing edge of D. If a′

2 → b2 then
b1 → a′

2 → b2, a contradiction. If b2 → a′
2 then b1 → b2 → a′

2, a
contradiction. Thus, the maximum out-degree of ∆ is 1. Similarly, the
maximum in-degree is 1.

This lemma shows that ∆ is composed of vertex-disjoint directd
paths and directed cycles. Let C = a1b1, ...akbk be a maximal path or
a cycle in ∆ (possibly k = 1). Namely, (ai, ai+1, bi, bi+1) forms a losing
cycle for i = 1, ..., k − 1. We have:

Lemma 4.3.2. [3] If C is an odd cycle then (ak, a1, bk, b1) is a losing
cycle. If C is an even cycle then (ak, b1, bk, a1) is a losing cycle.

Proof. Assume first that C is odd. Consider the tournament induced
by the vertices a1, b2, ..., bk−1, ak. This tournament has a king. Since
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b2 /∈ N++(a1 ∪ N+(a1), a1 is not a king. Similarly, b2, a3, ..., bk−1 are
not kings. So ak is the king. If (ak, b1, bk, a1) were a losing cycle, then
a1 /∈ N++(ak ∪ N+(ak), a contradiction. So (ak, a1, bk, b1) is the losing
cycle between the edges akbk and a1b1. Similar argument is used for
the even case.

Lemma 4.3.3. [3] If C is a cycle, then K(C) is an interval of D.

Proof. Let (a1, a2, b1, b2) be a losing cycle and let f /∈ K := {a1, a2, b1, b2}.
f is adjacent to every vertex in K. If a1 → f then b2 → f , since oth-
erwise b2 ∈ N++(a1∪N+(a1) which is a contradiction. So N+(a1)\K ⊆
N+(b2)\K. Applying this to every losing cycle of C yields N+(a1)\K(C) ⊆
N+(b2)\K(C) ⊆ N+(a3)\K(C)... ⊆ N+(bk)\K(C) ⊆ N+(b1)\K(C) ⊆
N+(a2)\K(C)... ⊆ N+(ak)\K(C) ⊆ N+(a1)\K(C) if k is even. So
these inclusion are equalities. An analogous argument proves the same
result for odd cycles.

If C is a path, then by Lemma 4.1.1 a1b1 is a good missing edge.
Assume without loss of generality that (a1, b1) is a convenient orienta-
tion. Then for all 1 ≤ i ≤ k, add the arc (ai, bi) to D (in the other case
add (bi, ai)). If C is a path add (ai, bi) for every i. We do this for every
such C of ∆. The obtained digraph T is a tournament. Let T ∗ be the
tournament obtained from T by contracting the sets K(C) whenever C
is a cycle in ∆. Assign the new vertices weight 2k where k is the length
of the corresponding cycle of ∆ (this is equal the size of the contracted
set), while assign weight 1 to the non-contracted vertices. note that
the contraction is well defined since the contracted set are intervals of
T . We obtain a weighted tournament, denote it by (T ∗, ω). Let L be
weighted median order of the new tournament and let f ∗ denote its
feed vertex. f ∗ has the weighted SNP in T ∗ [3].

Lemma 4.3.4. [3] If C is a cycle of ∆, then D[K(C)] has a vertex
with the SNP.

Set f = f∗ if the feed vertex is not a contracted vertex. Otherwise,
let C be the cycle corresponding to the set contracted into f ∗. Set f
to be a vertex of K(C) having the SNP in D[K(C)].

Corollary 4.3.1. [3] f has the SNP in D.

This proves that digraphs missing a matching satisfies the SNC.
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El Sahili conjectured the following statement:

Conjecture 6. (EC) Every digraph D has a completion with a feed
vertex having the SNP in D.

Clearly, El Sahili’s Conjecture implies the Second Neighborhood
Conjecture. We do not know if the reverse is holds. As one can ob-
serve, that EC suggests a method (an approach) for solving the SNC,
which we will call the completion approach. In general, following this
approach, we orient the missing edges of D in some ’proper’ way, to
obtain a tournament T . Then we consider a particular feed vertex
(clearly, it has the SNP in T ) and try to prove that it has the SNP in
D as well.

Not so far from EC, we conjecture the following:

Conjecture 7. (GC) Every weighted digraph (D, ω) has a completion
with a feed vertex having the weighted SNP in (D, ω).

Clearly, GC is just the weighted version of EC and the first im-
plies the later one. We do not know whether these two statements
are equivalent or not. Theorem 3.3.1 and Proposition 3.3.1 shows that
EC and GC hold for tournaments. For the class of digraphs missing
a matching, the above proof does not guarantee that the vertex found
with the SNP is a feed vertex of some completion of D. In Chapter 7,
we refine this proof to guarantee that the vertex found with the SNP is
a feed vertex of some completion of D, and thus proving EC for these
digraphs. However, in Chapter 5, we prove GC, and thus EC and SNC,
for digraphs missing a generalized star, sun, star or a complete graph.
Moreover, we prove EC, and thus SNC, for digraphs missing a comb
and digraphs whose missing graph is a complete graph minus two in-
dependent edges or the edges of a cycle of length five. In addition, we
prove EC, and thus SNC for digraphs missing n disjoint stars under
some conditions. Weaker conditions are required for n = 1, 2, 3.

4.4 Forcing graphs

Let H be a family of digraphs (digons are allowed) and let G be a given
graph. We say that G is H-forcing if the dependency digraph of every
digraph missing G is a member of H. The set of all H-forcing graphs
is denoted by F(H).
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Proposition 4.4.1. Let H be a family of digraphs. Then F(H) is
non-empty if and only if H has a trivial digraph.

Proof. Let G be a graph and let D be any digraph missing it. Suppose
xy → uv in ∆, the dependency digraph of D, namely v /∈ N+(x) ∪
N++(x). We add to D an extra whole vertex α such that x → α → v.
This breaks the arc (xy, uv). Hence, by adding a sufficient number of
such vertices, one obtains a digraph whose missing graph is G and such
that its dependency digraph is trivial. This establishes the necessary
condition.
The converse holds, by observing that the dependency digraph of any
digraph missing a star is trivial.

Problem 4.4.1. Let S denote the class of all empty digraphs and let �P
be the family of all digraphs composed of vertex disjoint directed paths
only. Characterize F(S) and F( �P).

We will characterize F(S) and prove when such a graph is the
missing graph of D, then D satisfies GC, and thus EC and SNC. For the
second class, we give some examples and prove when such an example
is the missing graph of D, then D satisfies EC, and thus the SNC.
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Chapter 5

S-forcing graphs

As we can see from sections 3.5 and 4.3, the weighted version of Sey-
mour’s second neighborhood conjecture is also important. For example,
in 4.3 the truthfulness of the weighted SNC in weighted tournaments
was used to proved that every digraph missing a matching satisfies the
SNC. In this chapter we prove GC, and thus the weighted SNC, for
digraphs whose missing graphs are in F(S). When the missing graph
of D is in F(S), then by definition, all the missing edges of D are good.

Theorem 5.0.1. Let (D, ω) be a weighted digraph. If all the missing
edges of D are good then it satisfies GC.

Proof. We give every missing edge a convenient orientation and add it
to D. The obtained digraph is a tournament T . Consider a weighted
local median order L of (T, ω) and let f denote its feed vertex. We
modify T by reorienting all the missing edges incident to f towards f ,
if any exists. Let T ′ denote the new obtained tournament. L is also a
weighted local median order of (T ′, ω), by Proposition 2.2.2. We have
that f has the weighted SNP in T ′, by Proposition 3.3.1. Note that
N+(f) = N+

T ′(f). Suppose f → u → v in T ′. Either (u, v) ∈ E(D)
or a convenient orientation. Thus v ∈ N+(f) ∪ N++(f). Whence,
N++(f) = N++

T ′ (f). Therefore, f has the weighted SNP in (D, ω) as
well.

This shows when the missing graph of a given graph is an S-forcing
graph, then the digraph satisfies the weighted SNC.

81



82 CHAPTER 5. S-FORCING GRAPHS

5.1 Characterization

In this subsection, we characterize the class F(S). We begin by the
following definition

Definition 5.1.1. An n-generalized star Gn is a graph defined as fol-
lows:

1) V (Gn) =
n

⋃

i=1

(Xi ∪ Ai−1), where the Ai’s and Xi’s are pairwise

disjoint sets

2) Gn[
n

⋃

i=1

Xi] is a complete graph and Xi’s are non-empty

3)
n

⋃

i=1

Ai−1 is a stable set and Ai is non-empty for all i > 0

4) N(A0) = φ and for all i > 0, for all a ∈ Ai, N(a) =
⋃

1≤j≤i

Xj.

Recall that a square is a cycle of length 4.

Theorem 5.1.1. Let G be a simple graph. The following are equiva-
lent:

(A) G is a generalized star.

(B) Any two non-adjacent edges of G do not induce a subgraph of
square.

(C) All the missing edges of every digraph whose missing graph is G
are good missing edges.

Proof. A ⇒ B: By the definition of a generalized star.

B ⇒ A: By setting A0 the set of isolated vertices, we may assume
that G has no isolated vertices. Let S be a stable set in G with the
maximum size. Set T = V (G) − S. We Show that T is a clique. By
the maximality of S, every element of T has a neighbor in S. Suppose
x, y ∈ T . If (N(x)

⋃

N(y))∩S = {a}, then xy ∈ E(G), since otherwise
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the stable set S
⋃

{x, y}−{a} is lager than S which is a contradiction.
Otherwise, there’s distinct vertices a, b ∈ S such that ax and by are
in E(G). By hypothesis, these two edges do not induce a subgraph of
a square, then at least one of them has at least an endpoint which is
adjacent to the endpoints of the other. Assume, without loss of gener-
ality, that this edge is ax. Since S is stable, x is the endpoint which is
adjacent to b and y. In particular, xy ∈ E(G). Thus T is a clique.
Suppose a, b ∈ S with d(a) ≤ d(b). We prove N(a) ⊆ N(b). Suppose
there is x ∈ N(a) − N(b). Since d(a) ≤ d(b) there is y ∈ N(b) − N(a).
Thus the path axyb is the induced graph in G by the two non-adjacent
edges ax and by, which is a subgraph of a square, a contradiction.
Whence, N(a) ⊆ N(b). Finally, let d1 < ... < ds be the list of distinct
degrees of vertices of S. Set Ai = {a ∈ S; d(v) = di} and Xi = {x ∈ T ;

there is a ∈ Ai such that ax ∈ E(G)}\
⋃

j<i

Xj. From these two families

of sets, we can show that G is an s or s + 1-generalized star.

B ⇒ C: Let D be a digraph whose missing graph is G and let ab
be a missing edge. Suppose, to the contrary, that ab is not good. Then
there is u, v ∈ V (D) − {a, b} such that u → a, b /∈ N+(u) ∪ N++(u),
v → b and a /∈ N+(v) ∪ N++(v). In this case, also uv is a missing
edge and not adjacent to ab. Clearly, These 2 missing edges induce a
subgraph of a square. A contradiction.

C ⇒ B: Suppose to the contrary that there is two non-adjacent
edges in G, say xy and uv, that induce in G a subgraph of square.
We may assume without lose of generality that xu and yv are not in
E(G). We construct a digraph D whose missing graph is G and such
that xy is not good as follows: V (D) = V (G). For a vertex w with
wu /∈ E(G) (resp. wv /∈ E(G)), (w, u) ∈ E(D) (resp. (w, v) ∈ E(D)),
with exception when w = x (resp. w = y), (u, x) ∈ E(D) (resp.
(v, y) ∈ E(D)). For any two non-adjacent vertices w, t in G both not
in {u, v}, we give wt any orientation to be in E(D). By construction
of D, u → x, y /∈ N+(u) ∪ N++(u), v → y and x /∈ N+(v) ∪ N++(v).
Whence, xy is not a good missing edge of D. A contradiction.

So the graphs of F(S) are the generalized stars.
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5.2 Corollaries

A sun G is a graph formed of a complete graph T and a stable set
S such that for every s ∈ S we have N(s) = V (T ). Clearly, G is a
2-generalized star or a 1-generalized star. If V (T ) is a singleton, then
G is a star and if S is empty, then G is a complete graph.

Now, the previous two theorems imply the following statements.

Corollary 5.2.1. Every weighted digraph whose missing graph is a
generalized star satisfies GC.

Corollary 5.2.2. Every weighted digraph whose missing graph is a sun
satisfies GC.

Corollary 5.2.3. Every weighted digraph whose missing graph is a star
satisfies GC.

Corollary 5.2.4. Every weighted digraph whose missing graph is a
complete graph satisfies GC.

In particular, the aforementioned digraphs satisfies EC and thus
SNC.



Chapter 6

Some �P-forcing graphs

6.1 Removing a comb

A comb G is a graph defined as follows:

1) V (G) is disjoint union of three sets A, X and Y with —A—=—X—.

2) G[X ∪ Y ] is a complete graph.

3) A is stable set.

4) The bipartite graph induced by the edges A and X is a perfect
matching.

Observe that the edges with an end in A form a matching, say M .

Proposition 6.1.1. Combs are �P-forcing.

Proof. Let D be a digraph missing a comb G. We follow the previous
notations. The only possible arcs of ∆ occur between the edges in
M . For i = 1, 2, 3 let aixi ∈ M with ai ∈ A and xi ∈ X. Suppose
a1x1 loses to the two others. Then we have a1 → x3, x1 → a2, a2 /∈
N++(a1) ∪ N+(a1) and x3 /∈ N++(x1) ∪ N+(x1). Since a2x3 is not
a missing edge then either a2 → x3 or a2 ← x3. Whence, either
x3 ∈ N++(x1) ∪ N+(x1) or a2 ∈ N++(a1) ∪ N+(a1). A contradiction.
Therefore, the maximum out-degree in ∆ is 1. Similarly, the maximum
in-degree is 1. Thus, ∆ is composed of vertex-disjoint directed paths
and directed cycles. Now it is enough to prove that it has no directed
cycles. Suppose that C = a0x0a1x1...anxn is a cycle in ∆. Then we have
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ai+1 /∈ N++(ai) and ai ← ai+1 for all i < n. We prove, by induction on
i, that ai → an for all i < n. In particular, an−1 → an, a contradiction.
The case i = 1 holds since anxn loses to a1x1. Now let 1 < i < n. By
induction hypothesis, ai−1 → an. Since ai /∈ N++(ai−1) and aian is not
a missing edge we must have (ai, an) ∈ D.

Theorem 6.1.1. Every digraph missing a comb satisfies EC.

Proof. Let D be a digraph missing a comb G. We follow the previ-
ous notations. Let P = a0x0a1x1... be a maximal directed path in ∆
(ai ∈ A and aixi is a vertex in ∆). By Lemma 4.1.1, a0x0 has a conve-
nient orientation. Suppose (a0, x0) is a convenient orientation. In this
case add (a2i, x2i) and (x2i+1, a2i+1) to D. Otherwise, we orient in the
reverse direction. We do this for all such paths of ∆. The obtained
digraph D′ is missing the complete graph G[X ∪ Y ]. Clearly, all the
missing edges of D′ are good (in D′), so we give each one a convenient
orientation and add it to D′. The obtained digraph T is a tournament.
Let L be a local median order of T and let f denote its feed vertex.
By Theorem 3.3.1, f has the SNP in T . We claim that f has the SNP
in D as well.

Suppose f is a whole vertex. We show that f gains no vertex
in its second out-neighborhood and hence our claim holds. Assume
f → u → v → f in T . Since f is whole, f → u in D. If u → v in
D′−D, then it is either a convenient orientation and hence v ∈ N++(f)
or there is a missing edge rs that loses to uv, namely s → v and
u /∈ N+(s)∪N++(s). However, fs is not a missing edge, then we must
have f → s. Whence v ∈ N++(f). Now, if u → v in T − D′, then
v ∈ N++

D′ (f). But this case is already discussed. This argument is used
implicitly in the rest of the proof.

Suppose f ∈ A. There is a maximal directed path P = a0x0...aixi...akxk

with f = ai. If (xi, ai) ∈ D′, then d+(f) = d+
T (f) ≤ d++

T (f) =
d++(f). In fact f gains no new first nor second out-neighbor. Oth-
erwise (ai, xi) ∈ D′. If i < k, f gains only xi as a first out-neighbor
and at least ai+1 as a second out-neighbor. If i = k, then we reorient
akxk as (xk, ak). The same order L is also a local median order of T ′

the modified tournament. Now f gains no vertex in its second out-
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neighborhood.

Suppose f ∈ X. There is a maximal directed path P = a0x0...aixi...akxk

with f = xi. If (ai, xi) ∈ D′ we reorient all the missing edges incident to
xi towards xi. In this case f gains no new first nor second out-neighbor
in the modified tournament. Otherwise (xi, ai) ∈ D′. If i = k, we reori-
ent all the missing edges incident to xi towards xi. In this case f gains
no new first nor second out-neighbor in the modified tournament. If
i < k, we reorient all the missing edges incident to xi towards xi except
(xi, ai). In this case f gains only ai (resp. xi+1 ) as a first (resp. second
) out-neighbor in the modified tournament.

Suppose f ∈ Y . Reorient all the missing edges incident to y to-
wards y. In the modified tournament f gains no vertex in its second
out-neighborhood.

Therefore D satisfies EC.

6.2 Removing a K̃4

A K̃4 is a graph obtained from the complete graph by removing 2 non
adjacent edges. If xy and uv are the removed edges then K̃4 restricted
to {x, y, u, v} is a cycle of length 4.

Proposition 6.2.1. The graphs K̃4 are �P-forcing.

Proof. This is clear because the dependency digraph can have at most
one arc.

Theorem 6.2.1. Every digraph whose missing graph is a K̃4 satisfies
EC.

Proof. Let D be a digraph missing a K̃4. If ∆ has no arc then D sat-
isfies SNC, by theorem 5.0.1 . Otherwise, it has exactly one arc, say
xy → uv with x → u and v /∈ N++(v). Note that the cycle C = xyuv
is an induced cycle in the missing graph. We may suppose that (x, y)
is a convenient orientation. Add (x, y) and (u, v) to D. The rest of the
missing edges are good missing edges. So we give them a convenient
orientation and add to D. The obtained digraph T is a tournament.
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Let L be a local median order of T and let f denote its feed vertex.
Now f has the SNP in T . We discuss according to f .

Suppose f is a whole vertex. Then f gains no vertex in its second
out-neighborhood.

Suppose f = x. Reorient all the missing edges incident to x towards
x except (x, y). The same order L is a local median order of the modi-
fied tournament T ′. The only new first (resp. second) out-neighbor of
f is y (resp. v).

Suppose f = y, u, v or a non-whole vertex that does not belong C.
Reorient all the missing edges incident to f towards f . In the modified
tournament, f gains no vertex in its second out-neighborhood.

6.3 Removing a K̃5

A K̃5 is a graph obtained from the complete graph by removing a cycle
of length 5. Note that K̃5 restricted to the vertices of the removed
cycle is also a cycle of length 5.

In the following ab → cd means ab loses to cd, namely, a → c and
b → d (the order of the endpoints is considered). Let D be a digraph
missing K̃5 and let ∆ denote its dependency digraph. Let C = xyzuv
be the induced cycle of length five in K̃5. Checking by cases, we find
that ∆ has at most three arcs. If ∆ has exactly three arcs, then its
arcs are (isomorphic to) uv → xy → zu → vx or uv → xy → zu and
xv → zy.
If ∆ has exactly two arcs, then they are (isomorphic to) uv → xy → zu
or uv → xy and vx → yz.
If ∆ has exactly one arc, then it is (isomorphic to) uv → xy. So we
have the following.

Proposition 6.3.1. The graphs K̃5 are �P-forcing.

Theorem 6.3.1. Every digraph whose missing graph is a K̃5 satisfies
EC.
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Proof. Let D be a digraph missing a K̃5. Let C = xyzuv be the in-
duced cyle of length five in K̃5. If ∆ has no arcs, then D satisfies SNC,
by Theorem 5.0.1.

Suppose ∆ has exactly one arc uv → xy. Without loss of general-
ity, we may assume that (u, v) is a convenient orientation. Add (u, v)
and (x, y) to D. We give the rest of the missing edges (they are good)
convenient orientations and add them to D. Let L be a local median
order of the obtained tournament T and let f denote its feed vertex. f
has the SNP in T . If f = u, then the only new first (resp. second) out-
neighbor of u is v (resp. y). Whence f has the SNP in D. Otherwise,
we reorient all the missing edges incident to f towards f , if any exist.
The same order L is a local median order of the new tournament T ′ and
f has the SNP in T ′. However, f gains neither a new first out-neighbor
nor a new second out-neighbor. So f has the SNP in D.

Suppose ∆ has exactly two arcs, say uv → xy and vx → yz. We
may assume that (u, v) is a convenient orientation. Add (u, v) and
(x, y) to D. If (v, x) is a convenient orientation, then we add (v, x) and
(y, z) to D, otherwise we add their reverse. We give the rest of the
missing edges (they are good) convenient orientations and add them to
D. Let L be a local median order of the obtained tournament H and
let f denote its feed vertex. We reorient every missing edge incident
to f , whose other endpoint is not in {u, v, x}, towards f if any exists
. The same L is a local median order of the new tournament T and f
has the SNP in T .

If f /∈ {u, v, x}, then it gains neither a new first out-neighbor nor a
new second out-neighbor. So f has the SNP in D.

If f = u, then the only new first (resp. second ) out-neighbor of f
is v (resp. y), whence f has the SNP in D.

If f = v, then either v → x in T and in this case the only new
first (resp. second ) out-neighbor of v is x (resp. z) or x → v and
in this case f gains neither a new first out-neighbor nor a new second
out-neighbor. Whence f has the SNP in D.

If f = x, then we reorient xy as (y, x). The same L is a local median
order of the new tournament T ′ and f has the SNP in T ′. If v → x
in T ′, then f gains neither a new first out-neighbor nor a new second
out-neighbor. Otherwise, x → v in T ′ then the only new first (resp.
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second ) out-neighbor of f is v (resp. y). Whence f has the SNP in D.

Suppose ∆ has exactly 2 arcs with uv → xy → zu. We may assume
that (u, v) is a convenient orientation. Add (u, v), (x, y) and (z, u) to
D. We give the rest of the missing edges (they are good) convenient
orientations and add them to D. Let L be a local median order of the
obtained tournament H and let f denote its feed vertex. We reori-
ent every missing edge incident to f , whose other endpoint is not in
{u, v, x, y, z}, towards f , if any exists . The same L is a local median
order of the new tournament T and f has the SNP in T .

If f /∈ {u, v, x, y, z}, then it gains neither a new first out-neighbor
nor a new second out-neighbor. So f has the SNP in D.

If f = u, then the only new first (resp. second ) out-neighbor of f
is v (resp. y), whence f has the SNP in D.

If f = v, then we orient xv as (x, v). The same L is a local median
order of the new tournament T ′ and f has the SNP in T ′.

If f = x, then we orient xv as (v, x). The same L is a local median
order of the new tournament T ′ and f has the SNP in T ′. The only
new first (resp. second) out-neighbor of f is y (resp. u). Whence f
has the SNP in D.

If f = y, then we orient yz as (z, y). The same L is a local median
order of the new tournament T ′ and f has the SNP in T ′. f gains
neither a new first out-neighbor nor a new second out-neighbor. So f
has the SNP in D.

If f = z, then we orient yz and zu towards z. The same L is a local
median order of the new tournament T ′ and f has the SNP in T ′. f
gains neither a new first out-neighbor nor a new second out-neighbor.
So f has the SNP in D.

Suppose ∆ has exactly three arcs with uv → xy → zu → vx. We
may assume that (u, v) is a convenient orientation. Add (u, v), (x, y),
(z, u) and (v, x) to D. We give the rest of the missing edges (they are
good) convenient orientations and then add to D. Let L be a local
median order of the obtained tournament H and let f denote its feed
vertex. We reorient every missing edge incident to f , whose other
endpoint is not in {u, v, x, y, z}, towards f if any exists . The same L
is a local median order of the new tournament T and f has the SNP
in T .
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If f /∈ {u, v, x, y, z}, then it gains neither a new first out-neighbor
nor a new second out-neighbor. So f has the SNP in D.

If f = u, then the only new first (resp. second ) out-neighbor of f
is v (resp. y), whence f has the SNP in D.

If f = v, then we orient xv as (x, v). The same L is a local median
order of the new tournament T ′ and f has the SNP in T ′. In this case f
gains neither a new first out-neighbor nor a new second out-neighbor.
So f has the SNP in D.

If f = x, then the only new first (resp. second ) out-neighbor of f
is y (resp. u). Whence f has the SNP in D.

If f = y, then we orient yz as (z, y). The same L is a local median
order of the new tournament T ′ and f has the SNP in T ′. f gains
neither a new first out-neighbor nor a new second out-neighbor. So f
has the SNP in D.

If f = z, then we orient yz towards z. The same L is a local median
order of the new tournament T ′ and f has the SNP in T ′. The only
new first (resp. second) out-neighbor of f is u (resp. x). Whence f
has the SNP in D.

Finally, suppose ∆ has exactly three arcs with uv → xy → zu and
xv → zy. We may assume that (u, v) is a convenient orientation. Add
(u, v), (x, y) and (z, u) to D. Note that xv is a good missing edge. If
(x, v) is a convenient orientation, then add it with (z, y), otherwise, we
add the reverse of these arcs. We give the rest of the missing edges
(they are good) convenient orientations and add them to D. Let L be
a local median order of the obtained tournament H and let f denote
its feed vertex. We reorient every missing edge incident to f , whose
other endpoint is not in {u, v, x, y, z}, towards f , if any exists. The
same L is a local median order of the new tournament T and f has the
SNP in T .

If f /∈ {u, v, x, y, z}, then it gains neither a new first out-neighbor
nor a new second out-neighbor. So f has the SNP in D.

If f = u, then the only new first (resp. second ) out-neighbor of f
is v (resp. y), whence f has the SNP in D.

If f = v, then either x → f = v in T and in this case it gains neither
a new first out-neighbor nor a new second out-neighbor or f = v → x
and in this case the only new first (resp. second ) out-neighbor of f is
x (resp. z). Whence f has the SNP in D.
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If f = x, then either v → f = x in T and in this case the only new
first (resp. second ) out-neighbor of f is y (resp. z) or f = x → v and
in this case the only new first (resp. second ) out-neighbor of f are y
and v (resp. z). Whence f has the SNP in D.

If f = y or z, then we orient the missing edges incident to f towards
f . The same L is a local median order of the new tournament T ′ and
f has the SNP in T ′. f gains neither a new first out-neighbor nor a
new second out-neighbor. So f has the SNP in D.

Digraphs missing a matching are the digraphs with minimum de-
gree |V (D)| − 2. These digraphs satisfies SNC (also EC 7.1.1). A
more general class of digraphs is the class of digraphs with minimum
degree at least |V (D)| − 3. The missing graph of such a digraph is
composed of vertex disjoint directed paths and directed cycles. P3 is
the path of length 3 and C3, C4 and C5 are the cycles of length 3, 4
and 5 respectively. Theorems 6.1.1, 6.2.1 and 6.3.1 imply the following
statement.

Corollary 6.3.1. Every digraph whose missing graph is P3, C3, C4 or
a C5 satisfies EC.



Chapter 7

Digraphs missing disjoint
stars

7.1 Removing n stars

We recall that a vertex x in a tournament T is a king if {x}∪N+(x)∪
N++(x) = V (T ). It is well known that every tournament has a king.
However, for every natural number n /∈ {2, 4}, there is a tournament
Tn on n vertices, such that every vertex is a king for this tournament.

Theorem 7.1.1. Let D be a digraph obtained from a tournament by
deleting the edges of disjoint stars. Suppose that, in the induced tour-
nament by the centers of the missing stars, every vertex is a king. If
δ−∆ > 0 then D satisfies EC.

Proof. Orient all the missing edges towards the centers of the missing
stars. Let L be a median order of the obtained tournament T and let
f denote its feed vertex. We have d+

T (f) ≤ d++
T (f). It is easy to prove

that if f is a whole vertex, then it has the SNP in D.

Suppose that f is the center of a missing star. In this case N+(f) =
N+

T (f). Suppose f → u → v in T . If (u, v) ∈ D then v ∈ N+(f) ∪
N++(f). Otherwise, uv is a missing edge, hence v is the center of a
missing star, whence v ∈ N+(f) ∪ N++(f) because f is a king for the
centers of the missing stars. Thus N++(f) = N++

T (f). Therefore f has
the SNP in D.

93
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Now suppose that fx is a missing edge belonging to some missing star
of center x. Suppose, first, that fx loses to a missing edge by, say y is
the center of the missing star containing by. Assume f → x → q in T
with q 
= y, then b → y, whence, f → b → q. Assume that f → c → z
in T , for some missing edge cz with z 
= y. Since δ−∆ > 0 there is a
missing edge uv, with x /∈ {u, v} that loses to cz, namely, v → z and
c /∈ N+(v) ∪ N++(v). But f → c then f → v, hence f → v → z and
z ∈ N+(f) ∪ N++(f). Thus y is the only new second out-neighbor of
f . Note that f have lost x as a second out-neighbor and became a first
out-neighbor. Therefore, d+(f) + 1 = d+

T (f) ≤ d++
T (f) = d++(f).

Suppose that fx does not lose to any edge. Reorient fx from x to
f . The same order L is a median order for the new tournament T ′

and N+(f) = N+
T ′(f). Suppose that f → c → z with cz is a missing

edge and z /∈ N+(f)∪N++(f). Assume that ax is a missing edge that
loses to cz. Then x → z and c /∈ N+(z) ∪ N++(z). Whence, fx loses
to cz, a contradiction. Since δ−∆ > 0 there is a missing edge by, with
x /∈ {b, y} that loses to cz, namely, y → z and c /∈ N+(y) ∪ N++(y).
But f → c then f → y, hence f → y → z and z ∈ N+(f) ∪ N++(f).
Thus, N++(f) = N++

T ′ (f). Therefore, f has the SNP in D.

We will need the following lemma in this chapter.

Lemma 7.1.1. Let D be a digraph missing disjoint stars such that the
connected components of its dependency digraph are non-trivial strongly
connected. Then D is a good digraph.

Proof. Let ξ be a connected component of ID. Assume first that
K(ξ) = K(C) for some directed cycle C of ∆, say C = a1b1...anbn),
namely ai → ai+1 and bi+1 /∈ N+(ai) ∪ N++(ai) (aibi is considered
as a vertex). If the set of edges {aibi}i forms a matching then by
Lemma 4.3.3, we have the desired result. So, we will suppose that a
center x of a missing star appears twice in the list a1, b1, ..., an, bn and
assume without loss of generality that x = a1. Suppose n is even.
Set K1 = {a1, b2, ..., an−1, bn} and K2 = K(C)\K1. Suppose that
an → b1 and a1 /∈ N+(an) ∪ N++(an). Then by following the proof
of Lemma 4.3.3 in [3] we obtain the desired result. Suppose an → a1

and b1 /∈ N+(an) ∪ N++(an). By using the same argument of Lemma
4.3.3 in [3], we have that K1 and K2 are intervals of D. Assume, for
contradiction, that K1 ∩ K2 
= φ and let i > 1 be the smallest index
for which x is incident to aibi. Clearly i > 2. However, b3 /∈ K1 and
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x = a1 → a2 → a3 implies that i > 3. Suppose that x = ai. Since
b2 → a1 = x = ai and a3 /∈ N+(b2) ∪ N++(b2) then a3 → x. Similarly
b4, a5, ..., bi−1 are in-neighbors of x. However, bi−1 is an out-neighbor of
ai = x, a contradiction. Suppose that x = bi. Similarly, a3, b4, ..., ai−1

are in-neighbors of x. However, ai−1 is an out-neighbor of x, a contra-
diction. Thus K1 ∩K2 
= φ. whence, the desired result follows. Similar
argument is used to prove it when C is an odd directed cycle.
This result can be easily extended to the case when K(ξ) = K(C)
and C is a non-trivial (having more than one vertex) strongly con-
nected component of ∆, because between any two missing edges uv
and zt there is directed path from uv to zt and a directed path from
zt to uv. These two directed paths will form many directed cycles
that are used to prove the desired result. This also is extended to
the case when K(ξ) = ∪C∈ξK(C): Let u, u′ be 2 vertices in K(ξ).
There is non-trivial (having more than one vertex) strongly connected
components C and C ′ containing u and u′ respectively. Since ξ is a
connected component of there is a directed path C = C0, C1, ..., Cn =
C ′. For all i > 0, there is ui ∈ K(Ci−1) ∩ K(Cn). Therefore, we
have: N+(u)\K(ξ) = N+(u1)\K(ξ) = ... = N+(ui)\K(ξ) = ... =
N+(un)\K(ξ) = N+(u′)\K(ξ) and N−(u)\K(ξ) = N−(u1)\K(ξ) =
... = N−(ui)\K(ξ) = ... = N−(un)\K(ξ) = N−(u′)\K(ξ).

Theorem 7.1.2. Let D be a digraph whose missing graph is disjoint
union of one star and a matching. If every connected component of the
dependency digraph containing an edge of the missing star, has positive
minimum out-degree and positive minimum in-degree, then D satisfies
EC.

Let D be a digraph such that its missing graph is disjoint union of
a star Sx of center x and a matching M . ∆ and ID denote the depen-
dency digraph and the interval graph of D respectively. In addition,
we suppose that each connected component of ∆ containing a missing
edge of D incident to x (edge of the missing star) has positive minimum
out-degree and positive minimum in-degree. In what follows, we prove
that D satisfies EC.

Let P be a connected component of ∆ or ID and let v be a vertex
of D. We say that v appears in P if v ∈ K(P ). Otherwise, we say v
does not appear in P .
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Note that we can use the same argument of Lemma 4.3.1 to prove
that the in-degree and out-degree in ∆ of every edge ax of the miss-
ing star Sx is exactly one, and that if an edge uv of M has out-
degree (resp. in-degree) more than one then N+

∆(uv) ⊆ E(Sx) (resp,
N−

∆(uv) ⊆ E(Sx)). So every connected component of ∆, in which x
does not appear, is either a directed path or a directed cycle.

We denote by ξ the unique connected component of ID in which x
appears. So ID is composed of the connected component ξ and other
isolated vertices.

Let P = a1b1a2b2 · · · akbk be a connected component of ∆, which
is also a maximal path in ∆ in which x does not appear, namely
ai → ai+1, bi → bi+1 for i = 1, ..., k − 1. Since a1b1 is a good edge
then (a1, b1) or (b1, a1) is a convenient orientation. If (a1, b1) is a con-
venient orientation , we orient (ai, bi) for i = 1, ..., k. Otherwise we
orient aibi as (bi, ai). We do this for every such a path of ∆. Denote
the set of these new arcs by F . Set D′ = D + F .

Lemma 7.1.2. D′ is a good digraph.

Proof. Lemma 4.3.3 proves that every set K(C) is an interval of D
whenever C is a directed cycle of ∆ in which x does not appear.

Now we prove for all u ∈ K(ξ), we have N+(u)\K(ξ) = N+(x)\K(ξ).
Let u ∈ K(ξ) and let C denote the connected component of ∆ in which
u appears. Note that also x appears in C. If u appears in a non-trivial
strongly connected component then by the proof of Lemma 7.1.1 the
result follows. Otherwise, due to the condition that C has positive min-
imum out-degree and positive minimum in-degree, there is a directed
path P = u1v1, ..., ukvk joining two non-trivial strongly connected com-
ponents C1 and C2 contained in C such that u appears in P . The
vertex x must appear in C1 and C2. By the proof of Lemma 7.1.1, for
all a ∈ K(C1) ∪ K(C2), we have N+(a)\K(ξ) = N+(x)\K(ξ). Due
to the definition of losing relations between missing edges (precisely,
the beginning of the proof of Lemma 4.3.3), we can easily show that
for all a ∈ K(C1), b ∈ K(P ) and c ∈ K(C2) we have N+(a)\K(ξ) ⊆
N+(b)\K(ξ) ⊆ N+(c)\K(ξ), in particular, for a = x = c and b = u.
So K(ξ) is an interval of D.
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This shows also that the dependency digraph ∆
′

of D′ is obtained
from ∆ by deleting the components that are directed paths not con-
taining x. So the above intervals of D are also intervals of D′. Whence
D′ is a good digraph.

Lemma 7.1.3. D[K((ξ)] satisfies EC.

Proof. Set A = V (Sx)− x. For all a ∈ A, orient ax as (a, x). Let uv ∈
M such that u, v ∈ K(ξ). Let P be the shortest path in ∆ starting with
an edge of the star Sx and ending in uv, namely, P = ax, u1v1, ..., unvn

with x → v1, vi → vi+1 for all i < n and unvn = uv. We orient uv from
un to vn. We do this for all the missing edges of D[K(ξ)]. We denote
the obtained tournament by T [K(ξ)].

Let L be a median order of T [K(ξ)] which maximizes α the index
of x and let g denote its feed vertex. In addition to the fact that g has
the SNP in T [K(ξ)], g has the SNP in D[K(ξ)]. In fact, if g = x then
clearly g gains no out-neighbor. Moreover, g does not gain any new
second out-neighbor. Suppose that g → u → v → g, with uv ∈ M .
Since x → u and uv is oriented from u to v, then for every a ∈ A,
ax → uv in ∆, whence there is a missing edge u′v′ that loses to uv, say,
v′ → v and u /∈ N++(v′). But x → u, then x → v′, whence x → v′ → v
in D. So x gains no new second out-neighbor, so it has the SNP in
D[K(ξ)] also. Suppose that g = a ∈ A. Then a gains only x in its
first out-neighbor. There is a unique missing rs with ax → rs, say
a → r and s /∈ N+(a) ∪ N++(a). Then (r, s) ∈ T [K(ξ)]. Suppose that
a → u → v → a in T [K(ξ)] with uv ∈ M − rs. There is a missing
edge u′v′ that loses to uv, say, v′ → v and u /∈ N++(v′). But a → u,
then a → v′ → v. Suppose that a → x → q in T [K(ξ)] with q 
= s.
Since x → q in D and r /∈ N++(x) then r → q, whence a → r → q in
D[K(ξ)]. Note that a loses x as second out-neighbor in T [K(ξ)]. We
get d+

D[K(ξ)](a) + 1 = d+
T [K(ξ)](a) ≤ d++

T [K(ξ)](a) = d++
D[K(ξ)](a), whence, a

has the SNP in D[K(ξ)]. Similar argument can be used in the case
when g is incident to a missing edge of M , that is oriented out of g
, to show g has the SNP in D[K(ξ)]. Suppose that g is incident to
a missing edge of M , that is oriented towards g. We can use similar
arguments as above, to show that x is the only possible new second
out-neighbor of g. If x ∈ GL and d+

T [K(ξ)](g) = |GL| then sed(L) is

a median order of T [K(ξ)], in which the index of x is greater than
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α, a contradiction. Otherwise, x /∈ GL or d+
T [K(ξ)](g) < |GL|, whence,

d+
D[K(ξ)](g) = d+

T [K(ξ)](g) ≤ d++
D[K(ξ)](g), hence g has the SNP in D[K(ξ)]

in this case. So g has the SNP in D[K(ξ)] and D[K(ξ)] satisfies EC.

In the following, C = a1b1...akbk denotes a directed cycle of ∆ in
which x does not appear, namely ai → ai+1, bi+1 /∈ N++(ai) ∪ N+(ai),
bi → bi+1 and ai+1 /∈ N++(bi) ∪ N+(bi).

Lemma 7.1.4. In D[K(C)] we have:
k is odd:

N+(a1) = N−(b1) = {a2, b3, · · · , ak−1, bk}

N−(a1) = N+(b1) = {b2, a3, · · · , bk−1, ak},

k is even:
N+(a1) = N−(b1) = {a2, b3, · · · , bk−1, ak}

N−(a1) = N+(b1) = {b2, a3, · · · , ak−1, bk}.

Proof. Suppose that k is odd. Since (ak, a1, bk, b1) is a losing cycle,
then bk ∈ N+

D[K(C)](a1). Since (ak−1, ak, bk−1, bk) is a losing cycle and

(a1, bk) ∈ E(D) then (a1, ak−1) ∈ E(D) and so ak−1 ∈ N+
D[K(C)](a1),

since otherwise (ak−1, a1) ∈ E(D) and so bk ∈ N++
D[K(C)](ak−1), contra-

diction to the definition of the losing cycle (ak−1, ak, bk−1, bk). And so
on bk−2, ak−3, ..., b3, a2 ∈ N+

D[K(C)](a1). Again, since (a1, a2, b1, b2) is a

losing cycle then b2 ∈ N−

D[K(C)](a1). Since (a2, a3, b2, b3) is a losing cy-

cle and (b2, a1) ∈ E(D) then (a3, a1) inE(D) and so a3 ∈ N−

D[K(C)](a1).

And so on, b4, a5, ..., bk−1, ak ∈ N−

D[K(C)](a1). We use the same argu-

ment for finding N+
D[k(C)](b1) and N−

D[k(C)](b1). Also we use the same

argument when k is even.

Lemma 7.1.5. In D[K(C)] we have: N+(ai) = N−(bi), N−(ai) =
N+(bi),
N++(ai) = N−(ai) ∪ {bi}\{bi+1} and N++(bi) = N−(bi) ∪ {ai}\{ai+1}
for all i = 1, ..., k where ak+1 := a1, bk+1 := b1 if k is odd and ak+1 :=
b1, bk+1 := a1 if k is even. So d++(v) = d+(v) = d−(v) = k − 1 for all
v ∈ K(C).

Proof. The first part is due to the previous lemma and the symmetry
in these cycles. For the second part it is enough to prove it for i = 1
and a1. Suppose first that k is odd. By definition of losing relation
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between a1b1 and a2b2 we have b2 /∈ N++(a1) ∪ N+(a1). Moreover
a1 → a2 → b1, whence b1 ∈ N++(a1). Note that for i = 1, ..., k − 1,
ai → ai+1 and bi → bi+1. Combining this with the previous lemma we
find that N++(a1) = N−(a1) ∪ {b1}\{b2}. Similar argument is used
when k is even.

Proof of Theorem 7.1.2: Let L be a good median order of the
good digraph D′ and let f denote its feed vertex.

Suppose f is a whole vertex then J(f) = {f} and by Lemma
4.2.1, |N+

D′(f)| ≤ |GL\J(f)|. We show that f has the SNP in D.
Clearly, f gains no new first out-neighbor. Suppose f → u → v
in D′′ with (u, v) /∈ D. If (u, v) is a convenient orientation, then
v ∈ N+(f) ∪ N++(f). Otherwise, there is a missing edge rs that
loses to uv, namely s → v and u /∈ N+(s) ∪ N++(s). But f → u then
f → s, whence, f → s → v. So f gains no new second out-neighbor
and thus f has the SNP in D.

Suppose that J(f) = K(C) for some cycle C of ∆. By Lemma 4.2.1
and Lemma 7.1.3, f has the SNP in D′. We use the same argument of
the above case to prove that f has the SNP in D.

Suppose that f ∈ K(ξ), i.e. J(f) = K(ξ). Consider the tourna-
ment T [K(ξ)] established in the proof of lemma 7.1.5 and let L′ be
a median order of T [K(ξ)] which maximizes α the index of x. Let g
denote the feed vertex of L′. In L, replace L restricted to K(ξ) by L′.
The new enumeration L′′ is again a median order of the digraph D′′

obtained from D′ by adding the new arcs of T [K(ξ)], since both L and
L′ are median orders. By Lemma 4.2.1 and the fact that L and L′′, D′

and D′′ coincides outside K(ξ), we have |N+
D′′(g)\K(ξ)| ≤ |GL′′\K(ξ)|.

By the proof of Lemma 7.1.5, g has the SNP in T [K(ξ)]. Thus g has
the SNP in D′′. We use the same argument of the first case to show
that g also have the SNP in D.

Now assume that (z, f) ∈ F for some z. Then f gains neither a
new first out-neighbor nor a new second out-neighbor. Now assume
that (f, z) ∈ F . If fz is the last vertex of the directed path in ∆,
then we reorient it as (z, f). The same L is a median order of the new
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digraph D′′, however, f gains neither a new second out-neighbor nor a
new first out-neighbor. The last case to consider is when f = ai and
(ai, bi) ∈ F and aibi → ai+1bi+1 in ∆. In this case, f gains only bi

as new first out-neighbor and only bi+1 as a new second out-neighbor.
Thus, f has the SNP in D.

To conclude, in each case, we add to our final digraph obtained its
missing edges after orienting them in forward direction with respect to
the final median order considered. So D satisfies EC.

Corollary 7.1.1. Every digraph missing a matching satisfies EC.

We note that our method guarantees that the vertex f found with
the SNP is a feed vertex of some digraph containing D (by orienting
the missing edges towards f we obtain that f is a feed vertex of a
completion of D). This is not guaranteed by the proof presented in [3].
Recall that F is the set of the new arcs added to D to obtain the good
digraph D′. So, if F = φ, then D is a good digraph.

Theorem 7.1.3. Let D be a digraph missing a matching and suppose
F = φ. If D does not have any sink then it has two vertices with the
SNP.

Proof. Consider a good median order L = x1...xn of D. If J(xn) =
K(C) for some directed cycle C of ∆ then by Lemma 4.2.1 and Lemma
7.1.5 the result holds. Otherwise, xn is a whole vertex (i.e. J(xn) =
{xn}). By Lemma 4.2.1, xn has the SNP in D. So we need to find an-
other vertex with SNP. Consider the good median order L′ = x1...xn−1.
Suppose first that L′ is stable. There is q for which Sedq(L′) = y1...yn−1

and | N+(yn−1)\J(yn−1) |<| GSedq(L′)\J(yn−1) |. Note that y1...yn−1xn

is also a good median order of D. By Lemma 4.2.1 and Lemma 7.1.5,
y := yn−1 has the SNP in D[y1, yn−1]. So | N+(y) |=| N+

D[y1,yn−1](y) |

+1 ≤| GSedq(L′) |≤| N++(y) |. Now suppose that L′ is periodic. Since
D has no sink then xn has an out-neighbor xj. Choose j to be the great-
est (so that it is the last vertex of its corresponding interval). Note that
for every q, xn is an out-neighbor of the feed vertex of Sedq(L′). So
xj is not the feed vertex of any Sedq(L′). Since L′ is periodic, xj must
be a bad vertex of Sedq(L′) for some integer q, otherwise the index of
xj would always increase during the sedimentation process. Let q be
such an integer. Set Sedq(L′) = y1...yn−1. Lemma 7.1.5 and Lemma
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4.2.1 guarantees that the vertex y := yn−1 with the SNP in D[y1, yn−1].
Note that y → xn → xj and GSedq(L′)∪{xj} ⊆ N++(y). So | N+(y) |=|
N+

D[y1,yn−1](y) | +1 =| GSedq(L′) + 1 |=| GSedq(L′) ∪ {xj} |≤| N++(y) |.

7.2 Removing one star and an Erratum

A more general statement to the following theorem is proved in Chapter
5. Here we present, yet, another prove that uses the sedimentation
technique of a median order.

Theorem 7.2.1. Let D be a digraph obtained from a tournament by
deleting the edges of a star. Then D satisfies EC.

Proof. Orient all the missing edges of D towards the center x of the
missing star. The obtained digraph is a tournament T completing D.
Let L be a median order of T that maximizes α the index of x in L and
let f denote its feed vertex. If f = x, then clearly, d+(f) = d+

T ′(f) ≤
|GT ′

L | ≤ d++
T ′ (f) = d++(f). Now suppose that f 
= x. Reorient the

missing edges incident to f towards f (if any). L is also a median
order of the new tournament T ′. Note that N+(f) = N+

T ′(f) and we
have d+

T ′(f) ≤ |GT ′

L |. If x ∈ GT ′

L and d+
T ′(f) = |GT ′

L | then sed(L) is
a median order of T ′ in which the index of x is greater than α, and
also greater than the index of f . So we can give the missing edge
incident to f (if it exists it is xf) its initial orientation (as in T ) such
that sed(L) is a median order of T , a contradiction to the fact that
L maximizes α. So x /∈ GT ′

L or d+T ′(f) < |GT ′

L |. We have that x is
the only possible gained second out-neighbor vertex for f . If x /∈ GT ′

L

then GT ′

L ⊆ N++(f), whence the result follows. If d+
T ′(f) < |GT ′

L |, then
d+(f) = d+

T ′(f) ≤ |GT ′

L | − 1 ≤ d++(f). So f has the SNP in D.

In the paper entitled: ”Remarks on the second neighborhood prob-
lem ”[3], the authors’ proof of their true statement (”every digraph
missing a star satisfies SNC”), is false.
They gave every missing edge a convenient orientation and then they
added them to D. They claimed that the obtained tournament T sat-
isfies that for every v ∈ V (D)−{x}, where x is the center of the miss-
ing star, we have N+

T (x) = N+
D (x), and continued their proof based

on this claim. However their claim is false. When the edge xy is
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a missing edge and (y, x) is the added arc, outgoing neighbors of x
may become new second outgoing neighbors of y. For example, con-
sider the digraph D, with vertex set V = {x, y, z, t, q} and edge set
E = {(y, q), (q, x), (z, q), (x, z), (z, y), (t, q), (t, z), (t, y)}. We have that
xy and xt are the missing edges, x is the center of the missing star,
(q ∈ Q, R = φ, z /∈ N++(y) these are the notations of the author’s
proof), however, adding the convenient arc (y, x) to D, makes z a new
second outgoing neighbor of y.

7.3 Removing two stars

In this section, D is a digraph obtained from a tournament by deleting
the edges of two disjoint stars. Let Sx and Sy be the two missing disjoint
stars with centers x and y respectively, A = V (Sx)\x, B = V (Sy)\y,
K = V (Sx)∪ V (Sy) and assume without loss of generality that x → y.
In the chapter 5 it is proved that if the dependency digraph of any
digraph consists of isolated vertices only then it satisfies SNC. Here we
consider the case when the dependency digraph of D has no isolated
vertex.

Theorem 7.3.1. Let D be a digraph obtained from a tournament by
deleting the edges of two disjoint stars. If δ∆ > 0, then D satisfies EC.

Proof. Assume without loss of generality that x → y. We note that the
condition δ∆ > 0 implies that for every a ∈ A and y ∈ B we have y → a
and b → x. We shall orient the missing edges to obtain a completion
of D. First, we give every good edge a convenient orientation. For the
other missing edges, let the orientation be towards the center of the
two missing stars Sx or Sy. The obtained digraph is a tournament T
completing D. Let L be a median order of T such that the index k of
x is maximum and let f denote its feed vertex. We know that f has
the SNP in T . We have only five cases:
Suppose that f is a whole vertex. In this case N+(f) = N+

T (f). Sup-
pose f → u → v in T . Clearly (f, u) ∈ D. If (u, v) ∈ D or is a
convenient orientation, then v ∈ N+(f) ∪ N++(f). Otherwise there is
a missing edge zt that loses to uv with t → v and u /∈ N+(t)∪N++(t).
But f → u, then f → t, whence f → t → v in D. Therefore,
N++(f) = N++

T (f) and f has the SNP in D as well.
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Suppose f = x. Orient all the edges of Sx towards the center x.
L is a median order of the modified completion T ′ of D. We have
N+(f) = N+

T ′(f). Suppose f → u → v in T ′. If (u, v) ∈ D or is a conve-
nient orientation, then v ∈ N+(f)∪N++(f). Otherwise, (u, v) = (b, y)
for some b ∈ B, but f = x → y. Thus, N++(f) = N++

T ′ (f) and f has
the SNP in T ′ and D.
Suppose f = b ∈ B. Orient the missing edge by towards b. Again, L is
a median order of the modified tournament T ′ and N+(f) = N+

T ′(f).
Suppose f → u → v in T ′. If (u, v) ∈ D or is a convenient orientation,
then v ∈ N+(f) ∪ N++(f). Otherwise (u, v) = (b′, y) for some b′ ∈ B
or (u, v) = (a, x) for some a ∈ A, however x, y ∈ N++(f) ∪ N+(f)
because f = b → x → y in D. Thus, N++(f) = N++

T ′ (f) and f has the
SNP in T ′ and D.
Suppose f = y. Orient the missing edges towards y and let T ′ de-
note the new tournament. We note that B ⊆ N++(y) ∩ N++

T ′ (y) due
to the condition δ∆ > 0. Also, x is the only possible new second
neighbor of y in T ′. If B ∪ {x} � GL or d+

T ′(y) < d++
T ′ (y), then

d+(y) = d+
T ′(y) ≤ d++

T ′ (y) − 1 ≤ d++(y). Otherwise, B ∪ {x} ⊆ GL

and d+
T ′(y) = |GL|. In this case we consider the median order Sed(L)

of T ′. Now the feed vertex of sed(L) is different from y, the index of
x had increased, and the index of y became less than the index of any
vertex of B which makes Sed(L) a median order of T also, in which
the index of x is greater than k, a contradiction.
Suppose f = a ∈ A. Orient the missing edge ax as (x, a) and let T ′

denote the new tournament. Note that y is the only possible new sec-
ond out-neighbor of a in T ′ and not in D. Also x ∈ N++

T (a)∩N++(a).
If d+

T ′(a) < d++
T ′ (a), then d+(a) = d+

T ′(a) ≤ d++
T ′ (a)− 1 ≤ d++(a), hence

a has the SNP in D. Otherwise, d+
T ′(a) = |GL| = d++

T ′ (a) and in partic-
ular x ∈ GL. In this case we consider sed(L) which is a median order
of T ′. Note that the feed vertex of Sed(L) is different from a and the
index of a is less than the index of x in the new order Sed(L). Hence
Sed(L) is a median of T as well, in which the index of x is greater than
k, a contradiction.
So in all cases f has the SNP in D. Therefore D satisfies EC.

Theorem 7.3.2. Let D be a digraph obtained from a tournament by
deleting the edges of two disjoint stars. If δ+

∆ > 0, δ−∆ > 0 and D does
not have any sink, then D has at least two vertices with the SNP.

Proof. First, we show that D[K] has at least two vertices with the
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SNP. The condition δ∆ > 0 implies that for every a ∈ A and b ∈ B
we have y → a and b → x. Clearly, N+(x) = {y}, N+(y) = A,
d+(x) ≤ 1 ≤ |A| ≤ d++(x), thus x has the SNP in D[K]. Let H be
the tournament D − {x, y}. Then H has a vertex v with the SNP in
H. If v ∈ A, then d+v = d+

H(v) ≤ d++
H (v) = d++(v). If v ∈ B, then

d+(v) = d+
H(v) + 1 ≤ d++

H (v) + 1 = d++(v). Whence, v also has the
SNP in D[K].

Next, we show that D is a good digraph. Let ID be the interval
graph of D. Let C1 and C2 be two distinct connected components of
∆. Then the centers x and y appear in each of the these two connected
components, whence K(C1)∩K(C2) 
= φ. Therefore, ID is a connected
graph ( more precisely, it is a complete graph), having only one con-
nected component ξ. Then, K = K(ξ).

So, if ∆ is composed of non-trivial strongly connected components,
then the result holds by Lemma 7.1.1.
Due to the condition δ+

∆ > 0 and δ−∆ > 0, ∆ has a non-trivial strongly
connected component, hence N+(x)\K = N+(y)\K. Now let v ∈ K
and assume without loss of generality that xv is the missing edge inci-
dent to v. Due to the condition δ+

∆ > 0 and δ−∆ > 0, we have that either
xv belongs to a non-trivial strongly connected component of ∆, and in
this case N+(v)\K = N+(x)\K = N+(y)\K, or xv belongs to a di-
rected path P = xa1, yb1, · · · , xap, ybp joining two non-trivial strongly
connected components C1 and C2 with xa1 ∈ C1 and ybp ∈ C2. There
is i > 1 such that v = ai. L = xai−1, ybi−1, xai, ybi is a path in ∆.
By the definition of losing cycles, we have N+(x)\K ⊆ N+(bi−1)\K ⊆
N+(ai)\K ⊆ N+(y)\K = N+(x)\K. Hence N+(x)\K = N+(v)\K
for all v ∈ K. Since every vertex outside K is adjacent to every vertex
in K we also have N−(x)\K = N−(v)\K for all v ∈ K.

Now, consider a good median order L = x1...xn of D. If J(xn) = K,
then by Lemma 4.2.1 the result holds. Otherwise, xn is a whole vertex
(i.e. J(xn) = {xn}). By Lemma 4.2.1, xn has the SNP in D. So we
need to find another vertex with SNP. Consider the good median order
L′ = x1...xn−1. Suppose first that L′ is stable. There is q for which
Sedq(L′) = y1...yn−1 and | N+(yn−1)\J(yn−1) |<| GSedq(L′)\J(yn−1) |.
Note that y1...yn−1xn is also a good median order of D. Lemma 4.2.1



7.4. REMOVING THREE STARS 105

guarantees the existence of a vertex y with the SNP in D[y1, yn−1].
Since yn−1 → xn and y ∈ J(yn−1) which is an interval of D, then
y → xn. So | N+(y) |=| N+

D[y1,yn−1](y) | +1 ≤| GSedq(L′) |≤| N++(y) |.

Now suppose that L′ is periodic. Since D has no sink, then xn has an
out-neighbor xj. Note that for every q, xn is an out-neighbor of the feed
vertex of Sedq(L′). So xj is not the feed vertex of any Sedq(L′). Since
L′ is periodic, xj must be a bad vertex of Sedq(L′) for some integer q,
otherwise the index of xj would always increase during the sedimen-
tation process. Let q be such an integer. Set Sedq(L′) = y1...yn−1.
Lemma 4.2.1 guarantees the existence of a vertex y with the SNP in
D[y1, yn−1]. Since yn−1 → xn and y ∈ J(yn−1) which is an interval
of D, then y → xn → xj. Note that GSedq(L′) ∪ {xj} ⊆ N++(y). So
| N+(y) |=| N+

D[y1,yn−1](y) | +1 =| GSedq(L′) | +1 =| GSedq(L′) ∪ {xj} |≤|

N++(y) |.

7.4 Removing three stars

In this section, D is obtained from a tournament missing the edges of
three disjoint stars Sx, Sy and Sz with centers x, y and z respectively.
Set A = V (Sx) − x, B = V (Sy) − x, C = V (Sz) − z and K = A ∪ B ∪
C∪{x, y, z}. Let ∆ denote the dependency digraph of D. The triangle
induced by the vertices x, y and z is either a transitive triangle or a
directed triangle.
First we will deal with the case when this triangle is directed, and
assume without loss of generality that x → y → z → x. This is a
particular case of the case when the missing graph is a disjoint union
of stars such that, in the induced tournament by the centers of the
missing stars, every vertex is a king.

Theorem 7.4.1. Let D be a digraph obtained from a tournament by
deleting the edges of three disjoint stars whose centers form a directed
triangle. If δ∆ > 0, then D satisfies EC.

Proof. Note that xa can not lose to zc because z → x and z ∈ N++(x).
Similarly yb can not lose to xa and zc can not lose to yb. So the only
possible arcs in ∆ have the forms xa → yb or yb → zc or zc → xa,
where a ∈ A, b ∈ B and c ∈ C.
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Orient the good missing edges in a convenient way and orient the
other edges toward the centers. The obtained digraph T is a tourna-
ment. Let L be a median order of T such that the sum of the indices
of x, y and z is maximum. Let f denote the feed vertex of L. Due
to symmetry, we may assume that f is a whole vertex or f = x or
f = a ∈ A. Suppose f is a whole vertex. Clearly, N+(f) = N+

T (f).
Suppose f → u → v in T . If (u, v) ∈ E(D) or uv is a good missing
edge, then v ∈ N+(f) ∪ N++(f). Otherwise, there is missing edge rs
that loses to uv with r → v and u /∈ N++(r) ∪ N+(r). But f → u,
then f → r, whence f → r → v and v ∈ N+(f) ∪ N++(f). Thus,
N++

T (f) = N++(f) and f has the SNP in D.
Suppose f = x. Reorient all the missing edges incident to x toward x.
In the new tournament T ′ we have N+(x) = N+

T ′(x). Since y ∈ N+(x)
and z ∈ N++(x) we have that N++(x) = N++

T ′ (x). Thus x has the SNP
in D.
Suppose that f = a ∈ A. Reorient ax toward a. Suppose a → u → v
in the new tournament T ′ with v 
= y. If (u, v) ∈ E(D) or uv is a good
missing edge then v ∈ N+(a) ∪ N++(a). Otherwise, there is b ∈ B
and c ∈ C such that (u, v) = (c, z) and by loses to cz, then f → c
implies that a → y, but y → z, whence z ∈ N++(a) ∪ N+(a). So the
only possible new second out-neighbor of a is y, hence if y /∈ N++

T ′ (a)
then a has the SNP in D. Suppose y ∈ N++

T ′ (a). If d+
T ′(a) < d++

T ′ (a)
then d+(a) = d+

T ′(a) ≤ d++
T ′ (a) = d++

( a), hence a has the SNP in D.

Otherwise, d+
T ′(a) = |GL| and GL = N++

T ′ (a). So x, y and z are not bad
vertices, hence the index of each increases in the median order Sed(L)
of T ′. But the index of a is less than the index of x, then we can give
ax its initial orientation as in T and the same order Sed(L) is a median
order of T . However, the sum of indices of x, y and z have increased.
A contradiction. Thus f has the SNP in D and D satisfies EC.

Theorem 7.4.2. Let D be a digraph obtained from a tournament by
deleting the edges of three disjoint stars whose centers form a directed
triangle. If δ+

∆ > 0 and δ−∆ > 0 and D does not have any sink, then it
has at least two vertices with SNP.

Proof. Due to the condition δ+
∆ > 0 and δ−∆ > 0 and the fact that the

only possible arcs in ∆ have the forms xa → yb or yb → zc or zc → xa,
where a ∈ A, b ∈ B and c ∈ C, the following holds: For every a ∈ A,
b ∈ B and c ∈ C we have:
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b → x → c → y → a → z → b. .

First we show that D[K] has at least three vertices with the SNP.
Let H = D − {x, y, z}. H is a tournament with no sink (dominated
vertex). Then H has two vertices u and v with SNP in H. Without
loss of generality we may assume that u ∈ A. But y → u → z, then
adding the vertices x, y and z makes u gains only one vertex to its first
out-neighborhood and x to its second out-neighborhood. Thus, also u
has the SNP in D[K]. Similarly, v has the SNP in D[K]. Suppose,
without loss of generality, that |A| ≥ |C|. We have C ∪ {y} = N+(x)
and A ∪ {z} = N++(x). Hence, d+(x) = |C| + 1 ≤ |A| + 1 ≤ d++(x),
whence, x has the SNP in D.

Next, we show that D is a good digraph. Let ID be the interval
graph of D. Let C1 and C2 be two distinct connected components
of ∆. The three centers of the missing disjoint stars appear in each
of the these two connected components, whence K(C1) ∩ K(C2) 
= φ.
Therefore, ID is a complete graph, having only one connected compo-
nent ξ. Then, K = K(ξ). So if ∆ is composed of non-trivial strongly
connected components, then the result holds by Lemma 7.1.1. Due
to the condition δ+

∆ > 0 and δ−∆ > 0, ∆ has a non-trivial strongly
connected component C. Since x, y and z appear in C we have
N+(x)\K = N+(y)\K = N+(z)\K. Now let v ∈ K. If v appears
in a non-trivial strongly connected component of ∆, then N+(v)\K =
N+(x)\K = N+(y)\K = N+(z)\K. Otherwise, due to the condition
δ+
∆ > 0 and δ−∆ > 0, v appears in a directed path P of ∆ joining two

non-trivial strongly connected components of ∆. By the definition of
losing relations, we can prove easily that for all a ∈ K(C1), b ∈ K(P )
and c ∈ K(C2) we have N+(a)\K(ξ) ⊆ N+(b)\K(ξ) ⊆ N+(c)\K(ξ).
In particular, for a = x = c and b = v, So the result follows.

To conclude, we apply the same argument of the proof of Theorem
7.3.2.

Now we will deal with the case when the triangle induced by the
vertices x, y and z is a transitive triangle and assume without loss of
generality that x → y → z ← x. An alternating path in ∆ is a directed
path of length two u → v → w where {u, v, w} = {xa, yb, zc} for some
a ∈ A, b ∈ B and c ∈ C.
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Theorem 7.4.3. Let D be a digraph obtained from a tournament by
deleting the edges of three disjoint stars whose centers form a transitive
triangle. If δ+

∆ > 0 and δ−∆ > 0 then D satisfies EC.

Proof. Observe that the only possible alternating paths in ∆ have the
forms:
xa → zc → yb, yb → xa → zc and zc → yb → xa. Indeed, sup-
pose there is an alternating path of the form xa → yb → zc. Then
b /∈ N+(x) ∪ N++(x). But x → z → b, a contradiction. Suppose
there is a path of the form zc → xa → yb. Since δ+

∆ > 0 and the
previous path is forbidden, there is a′ ∈ A such that yb loses to xa′,
whence x /∈ N++(y). However, y → a and a /∈ N+(c) ∪ N++(c), then
y → c, but c → x, hence x ∈ N++(y), a contradiction. Suppose there
is a path of the form yb → zc → xa. Since δ+

∆ > 0 and the previous
path is forbidden, there is c′ ∈ C such that xa loses to zc′, whence
z /∈ N+(a) ∪ N++(a). Since a → c and c /∈ N+(y) ∪ N++(y), then
a → y, whence a → y → z, a contradiction.

Remark that ∆ has no directed cycle P such that for all b ∈ B,
yb /∈ P . Indeed suppose that there is such a directed cycle. Then it
can be easily showed, as before, that N+(x)\(A∪C) = N+(y)\(A∪C).
But x → y → z, a contradiction.

Orient the missing edges toward the centers. The obtained digraph
is a tournament T . Let L be a median order of T and let f denote its
feed vertex. If f is a whole vertex or f = x, then it is easy to show
that d+(f) = d+

T (f) ≤ d++
T (f) = d++(f). Suppose f = a ∈ A. Let

q ∈ V (D)−{y, z} with a → x → q → a. Since δ+
∆ > 0 there is a missing

edge uv such that ax loses to it, with x → v and u /∈ N+(x)∪N++(x).
Hence, u → q and q ∈ N++(a). So N++

T (a) − {y, z} ⊆ N++(a) − {x}
and N+

T (a) = N+(a) ∪ {x}, whence, d+(a) + 1 = d+
T (a) ≤ d++

T (a) ≤
d++(a) + 1. So a has SNP in D. Suppose f = b ∈ B. We first show
that x /∈ N++

T (b) − (N++(b) ∪ N+(b)). Otherwise, there is a ∈ A such
that b → a → x in T . Since δ−∆ > 0 there is a missing edge cz that loses
to ax. Since b → a and a /∈ N++(c) then b → c, whence b → c → x, a
contradiction. Using the argument of the previous case, we can prove
that N++

T (b) − {z} ⊆ N++(b) − y. However, N+
T (b) = N+(b) ∪ {y}.

Therefore, d+(b) + 1 = d+
T (b) ≤ d++

T (b) ≤ d++(b). Thus b has the SNP
in D. Suppose f = c ∈ C. Using the same argument of the case f = b,
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we show that x and y are not in N++
T (c) − N+(c) ∪ N++(c). Hence,

d+(c)+1 = d+
T (c) ≤ d++

T (c) ≤ d++(c) and c has the SNP in D. Finally,
suppose that f = z. Assume that x /∈ N++

T (z) − N++(z). Then y
is the only possible new second out-neighbor of z. If d+

T (z) < |GL|,
then d+(z) = d+

T (z) ≤ d++
T (z) − 1 ≤ d++(z). Otherwise, d+

T (z) = |GL|,
whence the feed vertex, which is not z, of the median order Sed(L)
of T has the SNP in D. Now assume that x ∈ N++

T (z) − N++(z). If
∆ has an alternating path, then x ∈ N++(z), a contradiction. So ∆
has no alternating path. There is a ∈ A such that z → a → x in T ,
because x /∈ N++(z). Let Q be a connected component of ∆ containing
xa. If for every c ∈ C, (cz, ax) /∈ E(∆), then there is b ∈ B such that
(by, ax) ∈ E(∆). But z → a and a /∈ N+(b) ∪ N++(b), then z → b,
hence z → b → x, a contradiction. So there is c ∈ C such that cz ∈ Q.
There is b ∈ B such that yb ∈ Q, since otherwise Q must contain a
directed cycle P such that for all b ∈ B, yb /∈ P . Hence, Q must contain
an alternating path. Whence x ∈ N++(z), a contradiction.

Corollary 7.4.1. Let D be a digraph obtained from a tournament by
deleting the edges of three disjoint stars. If δ+

∆ > 0 and δ−∆ > 0, then
D satisfies EC.
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[9] J. Hladký, D. Král, and S. Norin, Counting flags in triangle-free
digraphs, Electronic Notes in Discrete Mathematics, 34 (2009), pp.
621-625.

111



112 BIBLIOGRAPHY

[10] J. Shmerel, W. Trotter, Critically indecomposable partailly ordered
sets, graphs, tournaments and other binary relational structures,
Discrete Mathematics 113 (1993), 191-205.

[11] L. Caccetta, R. Häggkvist: On minimal digraphs with given girth.
Proc. 9th S-E Conf. Combinatorics, Graph Theory and Computing
181-187 (1978)

[12] N. Alon, Ranking tournaments, SIAM J. Discrete Math. 20 (2006),
137-142.

[13] N.C. Wormald, Subtrees of large tournaments, in: Combinatorial
Mathematics, X (Adelaide, 1982). Lecture Notes in Mathematics,
Vol. 1036, Springer, Berlin, 1983, pp. 417-419.

[14] N. Dean and B. J. Latka, Squaring the tournament: an open prob-
lem, Congress Numerantium 109 (1995), 73-80.

[15] N. Lichiardopol, A new bound for a particular case of the Caccetta-
Hggkvist conjecture, Discrete Mathematics, 23 (2010), 3368-3372.

[16] P. Erdös, Graph theory and probability, Canad. J. Math. 11
(1959), 34-38.

[17] R. Karp, Reducibility among combinatorial problems, Proc. Sym-
pos. IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y.,
85-103, 1972.

[18] S.A. Burr, Subtrees of directed graphs and hypergraphs, Proceed-
ings of the Eleventh Southeastern Conference on Combinatorics,
Graph Theory and Computing, Boca Raton, Congr. Numer., 28
(1980), 227-239.

[19] T. Gallai, On directed paths and circuits, Theory of Graphs,
P.Erdös and G.Katona (Editors), Academic press, New York,
1968, pp. 115-118.

[20] Y. Kaneko and S.C. Locke, The minimum degree approach for
Paul Seymour’s distance 2 conjecture, Congressus Numerantium
148 (2001), 201-206.


