N. A. Lacher, K. E. Garrison, R. S. Martin, and S. M. Lunte, Microchip capillary electrophoresis/ electrochemistry, ELECTROPHORESIS, vol.71, issue.12, pp.2526-2562, 2001.
DOI : 10.1002/1522-2683(200107)22:12<2526::AID-ELPS2526>3.0.CO;2-K

M. J. Madou, Fundamentals of Microfabrication, p.589, 1997.

D. J. Fischer, W. R. Vandaveer, R. J. Grigsby, and S. M. Lunte, Pyrolyzed Photoresist Carbon Electrodes for Microchip Electrophoresis with Dual-Electrode Amperometric Detection, Electroanalysis, vol.11, issue.13, pp.1153-1159, 2005.
DOI : 10.1002/elan.200503239

B. Y. Park and M. J. Madou, 3-D electrode designs for flow-through dielectrophoretic systems, ELECTROPHORESIS, vol.123, issue.2, pp.3745-3757, 2005.
DOI : 10.1002/elps.200500138

J. Wang, G. Chen, M. P. Chatrathi, A. Fujishima, D. A. Tryk et al., Microchip Capillary Electrophoresis Coupled with a Boron-Doped Diamond Electrode-Based Electrochemical Detector, Analytical Chemistry, vol.75, issue.4, pp.935-939, 2003.
DOI : 10.1021/ac0262053

J. Gooding, Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing, Electrochimica Acta, vol.50, issue.15, pp.3049-3060, 2005.
DOI : 10.1016/j.electacta.2004.08.052

M. Zhou, Y. Zhai, and S. Dong, Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide, Analytical Chemistry, vol.81, issue.14, pp.5603-5613, 2009.
DOI : 10.1021/ac900136z

S. Ssenyange, J. Taylor, D. J. Harrison, and M. T. Mcdermott, A Glassy Carbon Microfluidic Device for Electrospray Mass Spectrometry, Analytical Chemistry, vol.76, issue.8, pp.2393-2397, 2004.
DOI : 10.1021/ac035168s

R. Adams, Carbon Paste Electrodes, Analytical Chemistry, vol.30, issue.9, pp.1576-1576, 1958.
DOI : 10.1021/ac60141a600

I. S. Vancara, K. Vytr-as, K. Kalcher, A. Walcarius, and J. Wang, Carbon Paste Electrodes in Facts, Numbers, and Notes: A Review on the Occasion of the 50-Years Jubilee of Carbon Paste in Electrochemistry and Electroanalysis, Electroanalysis, vol.17, issue.1, pp.7-28, 2009.
DOI : 10.1002/elan.200804340

L. C. Mecker, L. A. Filla, and R. S. Martin, Use of a Carbon-Ink Microelectrode Array for Signal Enhancement in Microchip Electrophoresis with Electrochemical Detection, Electroanalysis, vol.129, issue.19, pp.2141-2146, 2010.
DOI : 10.1002/elan.201000118

C. F. Gonzalez, D. M. Cropek, and C. S. Henry, Photopatternable Carbon Electrodes for Chip-Based Electrochemical Detection, Electroanalysis, vol.61, issue.19, pp.2171-2174, 2009.
DOI : 10.1002/elan.200904643

W. Lisen, L. Flanagan, and A. P. Lee, Side-wall vertical electrodes for lateral field microfluidic applications, Journal of microelectromechanical systems, vol.16, issue.2, pp.454-461, 2007.

C. Yu, J. Vykoukal, D. M. Vykoukal, J. A. Schwartz, and P. R. Gascoyne, A threedimensional dielectrophoretic particle focusing channel for microcytometry applications, Journal Of Microelectromechanical Systems, vol.14, issue.3, pp.480-487, 2005.

L. I. Segerink, A. J. Sprenkels, J. G. Bomer, I. Vermes, A. Van-den et al., A new floating electrode structure for generating homogeneous electrical fields in microfluidic channels, Lab on a Chip, vol.305, issue.12, 1995.
DOI : 10.1039/c0lc00489h

M. C. Cortizo and M. F. Lorenzo-de-mele, Cytotoxicity of Copper Ions Released from Metal: Variation with the Exposure Period and Concentration Gradients, Biological Trace Element Research, vol.102, issue.1-3, pp.129-141, 2004.
DOI : 10.1385/BTER:102:1-3:129

A. C. Siegel, S. S. Shevkoplyas, D. B. Weibel, D. A. Bruzewicz, A. W. Martinez et al., Cofabrication of Electromagnets and Microfluidic Systems in Poly(dimethylsiloxane), Angewandte Chemie International Edition, vol.123, issue.41, pp.6877-82, 2006.
DOI : 10.1002/anie.200602273

J. Villemejane, G. Mottet, O. Français, P. Lefèvre, L. M. Mir et al., Insulated liquid electrodes in a microfluidic chip for the nanomanipulation of living cells, Proceedings of the 1st European Conference on Microfluidics, 2008.

H. Shafiee, J. L. Caldwell, M. B. Sano, and R. V. Davalos, Contactless dielectrophoresis: a new technique for cell manipulation, Biomedical Microdevices, vol.71, issue.5, pp.997-1006, 2009.
DOI : 10.1007/s10544-009-9317-5

H. Shafiee, M. B. Sano, E. A. Henslee, J. L. Caldwell, and R. V. Davalos, Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP), Lab on a Chip, vol.58, issue.4, pp.438-483, 2010.
DOI : 10.1039/b920590j

S. Shang, W. Zeng, and X. Tao, High stretchable MWNTs/polyurethane conductive nanocomposites, Journal of Materials Chemistry, vol.56, issue.20, p.7274, 2011.
DOI : 10.1039/c1jm10255a

C. Wu, H. Lin, J. Hsu, M. Yip, and W. Fang, Static and dynamic mechanical properties of polydimethylsiloxane/carbon nanotube nanocomposites, Thin Solid Films, vol.517, issue.17, pp.4895-4901, 2009.
DOI : 10.1016/j.tsf.2009.03.146

X. Z. Niu, S. L. Peng, L. Y. Liu, W. J. Wen, and P. Sheng, Characterizing and Patterning of PDMS-Based Conducting Composites, Advanced Materials, vol.280, issue.18, pp.2682-2686, 2007.
DOI : 10.1002/adma.200602515

F. Pirmoradi, L. Cheng, and M. Chiao, A magnetic poly(dimethylesiloxane) composite membrane incorporated with uniformly dispersed, coated iron oxide nanoparticles, Journal of Micromechanics and Microengineering, vol.20, issue.1, p.15032, 2010.
DOI : 10.1088/0960-1317/20/1/015032

H. Cong and T. Pan, Photopatternable Conductive PDMS Materials for Microfabrication, Advanced Functional Materials, vol.122, issue.13, pp.1912-1921, 2008.
DOI : 10.1002/adfm.200701437

R. L. Mccreery, Advanced Carbon Electrode Materials for Molecular Electrochemistry, Chemical Reviews, vol.108, issue.7, pp.2646-87, 2008.
DOI : 10.1021/cr068076m

F. Sassa, K. Morimoto, W. Satoh, and H. Suzuki, Electrochemical techniques for microfluidic applications, ELECTROPHORESIS, vol.21, issue.98, pp.1787-800, 2008.
DOI : 10.1002/elps.200700581

W. B. Zimmerman, Electrochemical microfluidics, Chemical Engineering Science, vol.66, issue.7, pp.1412-1425, 2010.
DOI : 10.1016/j.ces.2010.03.057

S. Z. Hua, F. Sachs, D. X. Yang, and H. D. Chopra, Microfluidic Actuation Using Electrochemically Generated Bubbles, Analytical Chemistry, vol.74, issue.24, pp.6392-6396, 2002.
DOI : 10.1021/ac0259818

H. Suzuki, A reversible electrochemical nanosyringe pump and some considerations to realize low-power consumption, Sensors and Actuators B: Chemical, vol.86, issue.2-3, pp.242-250, 2002.
DOI : 10.1016/S0925-4005(02)00192-2

D. E. Lee, S. Soper, and W. Wang, Design and fabrication of an electrochemically actuated microvalve, Microsystem Technologies, pp.1751-1756, 2008.
DOI : 10.1007/s00542-008-0594-3

C. Ho, R. Lin, H. Chang, and C. Liu, Micromachined electrochemical Tswitches for cell sorting applications, pp.1248-58, 2005.

M. Sun, Characterization of microfluidic fuel cell based on multiple laminar flow, Microelectronic Engineering, vol.84, issue.5-8, pp.1182-1185, 2007.
DOI : 10.1016/j.mee.2007.01.175

E. Choban, Microfluidic fuel cell based on laminar flow, Journal of Power Sources, vol.128, issue.1, pp.54-60, 2004.
DOI : 10.1016/j.jpowsour.2003.11.052

E. Kjeang, N. Djilali, and D. Sinton, Microfluidic fuel cells: A review, Journal of Power Sources, vol.186, issue.2, pp.353-369, 2009.
DOI : 10.1016/j.jpowsour.2008.10.011

E. Kjeang, R. Michel, D. A. Harrington, N. Djilali, and D. Sinton, A Microfluidic Fuel Cell with Flow-Through Porous Electrodes, Journal of the American Chemical Society, vol.130, issue.12, pp.4000-4006, 2008.
DOI : 10.1021/ja078248c

S. K. Yoon, E. R. Choban, C. Kane, T. Tzedakis, and P. J. Kenis, Laminar Flow-Based Electrochemical Microreactor for Efficient Regeneration of Nicotinamide Cofactors for Biocatalysis, Journal of the American Chemical Society, vol.127, issue.30, pp.10466-10467, 2005.
DOI : 10.1021/ja052613n

J. Wang, Electrochemical detection for microscale analytical systems: a review, Talanta, vol.56, issue.2, pp.223-231, 2002.
DOI : 10.1016/S0039-9140(01)00592-6

P. Bergveld, Thirty years of ISFETOLOGY, Sensors and Actuators B: Chemical, vol.88, issue.1, pp.1-20, 2003.
DOI : 10.1016/S0925-4005(02)00301-5

M. Castellarnau, Integrated cell positioning and cell-based ISFET biosensors, Sensors and Actuators B: Chemical, vol.120, issue.2, pp.615-620, 2007.
DOI : 10.1016/j.snb.2006.01.057

R. M. Guijt, New approaches for fabrication of microfluidic capillary electrophoresis devices with on-chip conductivity detection, ELECTROPHORESIS, vol.286, issue.2, pp.235-276, 2001.
DOI : 10.1002/1522-2683(200101)22:2<235::AID-ELPS235>3.0.CO;2-O

M. M. Richter, Electrochemiluminescence (ECL), Chemical Reviews, vol.104, issue.6, pp.3003-3039, 2004.
DOI : 10.1021/cr020373d

L. Hu and G. Xu, Applications and trends in electrochemiluminescence, Chemical Society Reviews, vol.112, issue.8, pp.3275-3304, 2010.
DOI : 10.1039/b923679c

J. Zhang, H. Qi, Y. Li, J. Yang, Q. Gao et al., Electrogenerated Chemiluminescence DNA Biosensor Based on Hairpin DNA Probe Labeled with Ruthenium Complex, Analytical Chemistry, vol.80, issue.8, pp.2888-94, 2008.
DOI : 10.1021/ac701995g

P. Chandra, S. A. Zaidi, H. Noh, and Y. Shim, Separation and simultaneous detection of anticancer drugs in a microfluidic device with an amperometric biosensor, Biosensors and Bioelectronics, vol.28, issue.1, pp.326-332, 2011.
DOI : 10.1016/j.bios.2011.07.038

X. Xu, S. Zhang, H. Chen, and J. Kong, Integration of electrochemistry in micro-total analysis systems for biochemical assays: Recent developments, Talanta, vol.80, issue.1, pp.8-18, 2009.
DOI : 10.1016/j.talanta.2009.06.039

F. Sassa, K. Morimoto, W. Satoh, and H. Suzuki, Electrochemical techniques for microfluidic applications, ELECTROPHORESIS, vol.21, issue.98, pp.1787-800, 2008.
DOI : 10.1002/elps.200700581

P. Tabeling, Introduction à la microfluidique, Belin, p.254, 2003.

J. W. Jorgenson and K. D. Lukacs, High-resolution separations based on electrophoresis and electroosmosis, Journal of Chromatography A, vol.218, pp.209-216, 1981.
DOI : 10.1016/S0021-9673(00)82057-9

N. I. and J. Wu, Microfluidic transport by AC electroosmosis, Journal of Physics: Conference Series, vol.34, issue.1, pp.356-361, 2006.
DOI : 10.1088/1742-6596/34/1/058

M. G. Pollack, R. B. Fair, and A. D. Shenderov, Electrowetting-based actuation of liquid droplets for microfluidic applications, Applied Physics Letters, vol.77, issue.11, p.1725, 2000.
DOI : 10.1063/1.1308534

M. Lian and J. Wu, Microfluidic flow reversal at low frequency by AC electrothermal effect, Microfluidics and Nanofluidics, vol.2, issue.2, pp.757-765, 2009.
DOI : 10.1007/s10404-009-0433-6

S. Hardt and F. Schönfeld, Microfluidic Technologies for Miniaturized Analysis Systems, Analysis, p.616, 2007.
DOI : 10.1007/978-0-387-68424-6

R. Pethig, Review Article???Dielectrophoresis: Status of the theory, technology, and applications, Biomicrofluidics, vol.4, issue.2, p.22811, 2010.
DOI : 10.1063/1.3456626

C. D. Falokun and G. H. Markx, Electrorotation of beads of immobilized cells, Journal of Electrostatics, vol.65, issue.7, pp.475-482, 2007.
DOI : 10.1016/j.elstat.2006.11.001

V. Tandon, S. K. Bhagavatula, W. C. Nelson, and B. J. Kirby, Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 1. The origins of charge, ELECTROPHORESIS, vol.101, issue.32, pp.1092-101, 2008.
DOI : 10.1002/elps.200700734

S. Weinbaum, J. M. Tarbell, and E. R. Damiano, The Structure and Function of the Endothelial Glycocalyx Layer, Annual Review of Biomedical Engineering, vol.9, issue.1, pp.121-167, 2007.
DOI : 10.1146/annurev.bioeng.9.060906.151959

G. H. Markx and C. L. Davey, The dielectric properties of biological cells at radiofrequencies: applications in biotechnology, Enzyme and Microbial Technology, vol.25, issue.3-5, pp.3-5, 1999.
DOI : 10.1016/S0141-0229(99)00008-3

T. Akagi and T. Ichiki, Cell electrophoresis on a chip: what can we know from the changes in electrophoretic mobility?, Analytical and Bioanalytical Chemistry, vol.1184, issue.7, pp.2433-2441, 2008.
DOI : 10.1007/s00216-008-2203-9

M. Hughes, AC electrokinetics: applications for nanotechnology, Nanotechnology, vol.11, issue.2, pp.124-132, 2000.
DOI : 10.1088/0957-4484/11/2/314

R. Pethig and D. B. Kell, The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology, Physics in Medicine and Biology, vol.32, issue.8, pp.933-970, 1987.
DOI : 10.1088/0031-9155/32/8/001

C. Jen and T. Chen, Selective trapping of live and dead mammalian cells using insulator-based dielectrophoresis within open-top microstructures, Biomedical Microdevices, vol.75, issue.8, pp.597-607, 2009.
DOI : 10.1007/s10544-008-9269-1

K. L. Chan, P. R. Gascoyne, F. F. Becker, and R. Pethig, Electrorotation of liposomes: verification of dielectric multi-shell model for cells, Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, vol.1349, issue.2, pp.182-196, 1997.
DOI : 10.1016/S0005-2760(97)00092-1

A. Irimajiri, T. Hanai, and A. Inouye, A dielectric theory of ???multi-stratified shell??? model with its application to a lymphoma cell, Journal of Theoretical Biology, vol.78, issue.2, pp.251-269, 1979.
DOI : 10.1016/0022-5193(79)90268-6

U. Zimmermann and G. A. Neil, Electromanipulation of Cells, p.416, 1996.

A. D. Goater and R. Pethig, Electrorotation and dielectrophoresis, Parasitology, vol.117, issue.7, pp.177-89, 1998.
DOI : 10.1017/S0031182099004114

M. A. Schwarz and P. C. Hauser, Recent developments in detection methods for microfabricated analytical devices, Lab on a Chip, vol.1, issue.1, pp.1-6, 2001.
DOI : 10.1039/b103795c

Y. Hu, J. L. Glass, A. E. Griffith, and S. Fraden, Observation and simulation of electrohydrodynamic instabilities in aqueous colloidal suspensions, The Journal of Chemical Physics, vol.100, issue.6, pp.4674-4682, 1994.
DOI : 10.1063/1.466250

M. Mittal, P. P. Lele, E. W. Kaler, and E. M. Furst, Polarization and interactions of colloidal particles in ac electric fields, The Journal of Chemical Physics, vol.129, issue.6, p.64513, 2008.
DOI : 10.1063/1.2969103

T. B. Jones, Electromechanics of Particles, p.288, 2005.
DOI : 10.1017/CBO9780511574498

J. Gimsa and D. Wachner, A Unified Resistor-Capacitor Model for Impedance, Dielectrophoresis, Electrorotation, and Induced Transmembrane Potential, Biophysical Journal, vol.75, issue.2, pp.1107-1116, 1998.
DOI : 10.1016/S0006-3495(98)77600-3

B. J. Kirby and E. F. Hasselbrink, Zeta potential of microfluidic substrates: 2. Data for polymers, ELECTROPHORESIS, vol.25, issue.2, pp.203-213, 2004.
DOI : 10.1002/elps.200305755

D. Li, Encyclopedia of microfluidics and nanofluidics, p.2242, 2008.

P. R. Gascoyne and J. V. Vykoukal, Dielectrophoresis-Based Sample Handling in General-Purpose Programmable Diagnostic Instruments, Proceedings of the IEEE, vol.92, issue.1, pp.22-42, 2004.
DOI : 10.1109/JPROC.2003.820535

X. B. Wang, Y. Huang, P. R. Gascoyne, and F. F. Becker, Dielectrophoretic manipulation of particles, Industry Applications IEEE Transactions on, vol.33, issue.3, p.34105, 2008.

L. Wang, J. Lu, S. A. Marchenko, E. S. Monuki, L. A. Flanagan et al., Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells, ELECTROPHORESIS, vol.23, issue.5, pp.782-791, 2009.
DOI : 10.1002/elps.200800637

Y. Huang, R. Hölzel, R. Pethig, and X. B. Wang, Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies, Physics in Medicine and Biology, vol.37, issue.7, pp.1499-1517, 1992.
DOI : 10.1088/0031-9155/37/7/003

S. O. Lumsdon, E. W. Kaler, and O. D. Velev, Two-Dimensional Crystallization of Microspheres by a Coplanar AC Electric Field, Langmuir, vol.20, issue.6, pp.2108-2116, 2004.
DOI : 10.1021/la035812y

P. P. Lele, M. Mittal, and E. M. Furst, Anomalous Particle Rotation and Resulting Microstructure of Colloids in AC Electric Fields, Langmuir, vol.24, issue.22, pp.12842-12850, 2008.
DOI : 10.1021/la802225u

D. Zimmermann, A Combined Patch-Clamp and Electrorotation Study of the Voltage- and Frequency-Dependent Membrane Capacitance Caused by Structurally Dissimilar Lipophilic Anions, Journal of Membrane Biology, vol.166, issue.2, pp.107-128, 2008.
DOI : 10.1007/s00232-007-9090-4

P. Gascoyne, R. Pethig, J. Satayavivad, F. F. Becker, and M. Ruchirawat, Dielectrophoretic detection of changes in erythrocyte membranes following malarial infection, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1323, issue.2, pp.240-252, 1997.
DOI : 10.1016/S0005-2736(96)00191-5

J. Yang, Y. Huang, X. Wang, X. B. Wang, F. F. Becker et al., Dielectric Properties of Human Leukocyte Subpopulations Determined by Electrorotation as a Cell Separation Criterion, Biophysical Journal, vol.76, issue.6, pp.3307-3314, 1999.
DOI : 10.1016/S0006-3495(99)77483-7

C. Holzapfel, J. Vienken, and U. Zimmermann, Rotation of cells in an alternating electric field theory and experimental proof, The Journal of Membrane Biology, vol.36, issue.1, pp.13-26, 1982.
DOI : 10.1007/BF01868644

M. B. Fox, Electroporation of cells in microfluidic devices: a review, Analytical and Bioanalytical Chemistry, vol.17, issue.11, pp.474-85, 2006.
DOI : 10.1007/s00216-006-0327-3

J. Teissié and M. P. Rols, An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization, Biophysical Journal, vol.65, issue.1, pp.409-413, 1993.
DOI : 10.1016/S0006-3495(93)81052-X

S. Movahed and L. Dongqing, Microfluidics cell electroporation, Microfluidics and Nanofluidics, vol.56, issue.3, pp.703-734, 2011.
DOI : 10.1007/s10404-010-0716-y

J. Weaver and Y. A. Chizmadzhev, Theory of electroporation: A review, Bioelectrochemistry and Bioenergetics, vol.41, issue.2, pp.135-160, 1996.
DOI : 10.1016/S0302-4598(96)05062-3

L. M. Mir and S. Orlowski, Mechanisms of electrochemotherapy, Advanced Drug Delivery Reviews, vol.35, issue.1, pp.107-118, 1999.
DOI : 10.1016/S0169-409X(98)00066-0

J. Kim, S. H. Jang, G. Jia, J. V. Zoval, N. A. Da et al., Cell lysis on a microfluidic CD (compact disc), Lab on a Chip, vol.4, issue.5, pp.516-522, 2004.
DOI : 10.1039/b401106f

J. Kim, M. Johnson, P. Hill, and B. K. Gale, Microfluidic sample preparation: cell lysis and nucleic acid purification, Integrative biology quantitative biosciences from nano to macro, pp.574-586, 2009.
DOI : 10.1039/b905065p

H. Andersson, Microfluidic devices for cellomics: a review, Sensors and Actuators B: Chemical, vol.92, issue.3, pp.315-325, 2003.
DOI : 10.1016/S0925-4005(03)00266-1

G. Mernier, N. Piacentini, T. Braschler, N. Demierre, and P. Renaud, Continuous-flow electrical lysis device with integrated control by dielectrophoretic cell sorting, Lab on a Chip, vol.37, issue.7, pp.2077-82, 2010.
DOI : 10.1016/j.snb.2009.11.066

H. Lu, M. A. Schmidt, and K. F. Jensen, A microfluidic electroporation device for cell lysis, Lab on a Chip, vol.5, issue.1, pp.23-32, 2005.
DOI : 10.1039/b406205a

H. Sedgwick, F. Caron, P. Monaghan, W. Kolch, and J. Cooper, Lab-on-a-chip technologies for proteomic analysis from isolated cells, Journal of The Royal Society Interface, vol.560, issue.2, pp.123-130, 2008.
DOI : 10.1006/abio.1997.2530

H. Wang and C. Lu, Electroporation of Mammalian Cells in a Microfluidic Channel with Geometric Variation, Analytical Chemistry, vol.78, issue.14, pp.5158-64, 2006.
DOI : 10.1021/ac060733n

S. W. Lee and Y. Tai, A micro cell lysis device, Proceedings MEMS 98 IEEE Eleventh Annual International Workshop on Micro Electro Mechanical Systems An Investigation of Micro Structures Sensors Actuators Machines and Systems Cat No98CH36176, pp.74-79, 1998.

K. Lu, A. M. Wo, Y. Lo, K. Chen, C. Lin et al., Three dimensional electrode array for cell lysis via electroporation, Biosensors and Bioelectronics, vol.22, issue.4, pp.568-574, 2006.
DOI : 10.1016/j.bios.2006.08.009

V. L. Sukhorukov, H. Mussauer, and U. Zimmermann, The Effect of Electrical Deformation Forces on the Electropermeabilization of Erythrocyte Membranes in Low- and High-Conductivity Media, Journal of Membrane Biology, vol.163, issue.3, pp.235-245, 1998.
DOI : 10.1007/s002329900387

G. Pucihar, T. Kotnik, M. Kanduser, and D. Miklavcic, The influence of medium conductivity on electropermeabilization and survival of cells in vitro, Bioelectrochemistry, vol.54, issue.2, pp.107-115, 2001.
DOI : 10.1016/S1567-5394(01)00117-7

A. Ivorra, J. Villemejane, and L. M. Mir, Electrical modeling of the influence of medium conductivity on electroporation, Physical Chemistry Chemical Physics, vol.5, issue.34, pp.10055-64, 2010.
DOI : 10.1006/mthe.2002.0526

M. Pavlin, Effect of Cell Electroporation on the Conductivity of a Cell Suspension, Biophysical Journal, vol.88, issue.6, pp.4378-90, 2005.
DOI : 10.1529/biophysj.104.048975

S. Movahed and D. Li, Microfluidics cell electroporation, Microfluidics and Nanofluidics, vol.56, issue.3, pp.703-734, 2010.
DOI : 10.1007/s10404-010-0716-y

B. M. Ogle, M. Cascalho, and J. L. Platt, Biological implications of cell fusion., " Nature reviews, Molecular cell biology, vol.6, issue.7, pp.567-75, 2005.

R. Jahn, T. Lang, and T. C. Südhof, Membrane fusion, Current Opinion in Cell Biology, vol.14, issue.4, pp.519-533, 2003.
DOI : 10.1016/S0955-0674(02)00356-3

G. Köhler, S. C. Howe, and C. Milstein, Fusion between immunoglobulin-secreting and nonsecreting myeloma cell lines, European Journal of Immunology, vol.30, issue.4, pp.292-297, 1976.
DOI : 10.1002/eji.1830060411

J. Gong, D. Chen, M. Kashiwaba, and D. Kufe, Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells, Nature Medicine, vol.36, issue.5, pp.558-561, 1997.
DOI : 10.1038/nm1295-1297

M. Oren-suissa and B. Podbilewicz, Cell fusion during development, Trends in Cell Biology, vol.17, issue.11, pp.537-546, 2007.
DOI : 10.1016/j.tcb.2007.09.004

G. Pontecorvo, Production of mammalian somatic cell hybrids by means of polyethylene glycol treatment, Somatic Cell Genetics, vol.255, issue.4, pp.397-400, 1975.
DOI : 10.1007/BF01538671

U. Zimmermann and J. Vienken, Electric field-induced cell-to-cell fusion, The Journal of Membrane Biology, vol.6, issue.No. 1, pp.165-182, 1982.
DOI : 10.1007/BF01868659

A. M. Skelley, O. Kirak, H. Suh, R. Jaenisch, and J. Voldman, Microfluidic control of cell pairing and fusion, Nature Methods, vol.6, issue.2, pp.147-152, 2009.
DOI : 10.1016/j.biomaterials.2007.03.023

Y. Kimura, M. Gel, B. Techaumnat, H. Oana, H. Kotera et al., Dielectrophoresis-assisted massively parallel cell pairing and fusion based on field constriction created by a micro-orifice array sheet, ELECTROPHORESIS, vol.4, issue.18, 2011.
DOI : 10.1002/elps.201100129

G. Tresset and S. Takeuchi, A Microfluidic Device for Electrofusion of Biological Vesicles, Biomedical Microdevices, vol.6, issue.3, pp.213-218, 2004.
DOI : 10.1023/B:BMMD.0000042050.95246.af

V. L. Sukhorukov, A biophysical approach to the optimisation of dendritic-tumour cell electrofusion, Biochemical and Biophysical Research Communications, vol.346, issue.3, pp.829-839, 2006.
DOI : 10.1016/j.bbrc.2006.05.193

Y. Cao, Y. H. Yang, Z. Q. Yin, H. Y. Luo, J. R. Xu et al., Study of high-throughput cell electrofusion in a microelectrode-array chip, Microfluidics and Nanofluidics, vol.21, issue.2???3, pp.669-675, 2008.
DOI : 10.1007/s10404-008-0289-1

J. Ju, J. Ko, H. Cha, J. Y. Park, C. Im et al., An electrofusion chip with a cell delivery system driven by surface tension, Journal of Micromechanics and Microengineering, vol.19, issue.1, p.15004, 2009.
DOI : 10.1088/0960-1317/19/1/015004

N. and P. Van, A high density microfluidic device for cell pairing and electrofusion, Procedia Engineering, vol.5, pp.49-52, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00739189

M. Gel, Y. Kimura, O. Kurosawa, H. Oana, H. Kotera et al., Dielectrophoretic cell trapping and parallel one-to-one fusion based on field constriction created by a micro-orifice array, Biomicrofluidics, vol.4, issue.2, 2010.
DOI : 10.1063/1.3422544.2

B. Techaumnat and M. Washizu, Analysis of the effects of an orifice plate on the membrane potential in electroporation and electrofusion of cells, Journal of Physics D: Applied Physics, vol.40, issue.6, pp.1831-1837, 2007.
DOI : 10.1088/0022-3727/40/6/036

S. Masuda, M. Washizu, and T. Nanba, Novel method of cell fusion in field constriction area in fluid integration circuit, IEEE Transactions on Industry Applications, vol.25, issue.4, pp.732-737, 1989.
DOI : 10.1109/28.31255

J. Koo, Polymer Nanocomposites -Processing, Characterization, and Applications, 2006.

S. Uchida, A. Martinez, Y. Song, T. Ishigure, and S. Yamashita, Carbon nanotube-doped polymer optical fiber, Optics Letters, vol.34, issue.20, p.3077, 2009.
DOI : 10.1364/OL.34.003077

J. G. Smith, K. A. Watson, D. M. Delozier, and J. W. Connell, Carbon nanotube-conductive additive-space durable polymer nanocomposite films for electrostatic charge dissipation, Polymer, vol.45, issue.18, pp.6133-6142, 2004.
DOI : 10.1016/j.polymer.2004.07.004

S. Kirkpatrick, Percolation and Conduction, Reviews of Modern Physics, vol.45, issue.4, pp.574-588, 1973.
DOI : 10.1103/RevModPhys.45.574

R. K. Gupta, E. Kennel, and K. Kim, Polymer Nanocomposites Handbook, pp.463-482, 2008.
DOI : 10.1201/9781420009804

S. Shang, W. Zeng, and X. Tao, High stretchable MWNTs/polyurethane conductive nanocomposites, Journal of Materials Chemistry, vol.56, issue.20, p.7274, 2011.
DOI : 10.1039/c1jm10255a

X. Z. Niu, S. L. Peng, L. Y. Liu, W. J. Wen, and P. Sheng, Characterizing and Patterning of PDMS-Based Conducting Composites, Advanced Materials, vol.280, issue.18, pp.2682-2686, 2007.
DOI : 10.1002/adma.200602515

C. Wu, H. Lin, J. Hsu, M. Yip, and W. Fang, Static and dynamic mechanical properties of polydimethylsiloxane/carbon nanotube nanocomposites, Thin Solid Films, vol.517, issue.17, pp.4895-4901, 2009.
DOI : 10.1016/j.tsf.2009.03.146

A. Massaro, F. Spano, R. Cingolani, and A. Athanassiou, Experimental Optical Characterization and Polymeric Layouts of Gold PDMS Nanocomposite Sensor for Liquid Detection, IEEE Sensors Journal, vol.11, issue.9, pp.1-1, 2011.
DOI : 10.1109/JSEN.2011.2104414

E. M. James, Polymer Data Handbook, 1999.

J. M. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, Components for integrated poly(dimethylsiloxane) microfluidic systems, ELECTROPHORESIS, vol.23, issue.20, pp.3461-3473, 2002.
DOI : 10.1002/1522-2683(200210)23:20<3461::AID-ELPS3461>3.0.CO;2-8

Y. Xia and G. M. Whitesides, SOFT LITHOGRAPHY, Annual Review of Materials Science, vol.28, issue.1, pp.153-184, 1998.
DOI : 10.1146/annurev.matsci.28.1.153

J. C. Mcdonald and G. M. Whitesides, Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices, Accounts of Chemical Research, vol.35, issue.7, pp.491-499, 2002.
DOI : 10.1021/ar010110q

M. Morra, On the aging of oxygen plasma-treated polydimethylsiloxane surfaces, Journal of Colloid and Interface Science, vol.137, issue.1, pp.11-24, 1990.
DOI : 10.1016/0021-9797(90)90038-P

H. Hillborg, Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques, Polymer, vol.41, issue.18, pp.6851-6863, 2000.
DOI : 10.1016/S0032-3861(00)00039-2

H. Pierson, Handbook of Carbon, Graphite, Diamonds and Fullerenes, 1994.

R. L. Mccreery, Advanced Carbon Electrode Materials for Molecular Electrochemistry, Chemical Reviews, vol.108, issue.7, pp.2646-87, 2008.
DOI : 10.1021/cr068076m

S. Stankovich, Graphene-based composite materials, Nature, vol.83, issue.7100, pp.282-288, 2006.
DOI : 10.1038/nature04969

E. L. Crump, Economic Impact Analysis For the Proposed Carbon Black Manufacturing NESHAP Prepared by, U.S. Environmental Protection Agency, 2000.

D. Pantea, Electrical conductivity of thermal carbon blacks, Carbon, vol.39, issue.8, pp.1147-1158, 2001.
DOI : 10.1016/S0008-6223(00)00239-6

J. Huang, Carbon black filled conducting polymers and polymer blends Advances in Polymer Technology, pp.299-313, 2002.

J. Liang and Q. Yang, Aggregate structure and percolation behavior in polymer/carbon black conductive composites, Journal of Applied Physics, vol.102, issue.8, p.83508, 2007.
DOI : 10.1063/1.2795674

J. Sanchez-gonzalez, A. Macias-garcia, M. A. Franco, and V. Serrano, Electrical conductivity of carbon blacks under compression, Carbon, vol.43, issue.4, pp.741-747, 2005.
DOI : 10.1016/j.carbon.2004.10.045

K. Miyasaka, K. Watanabe, E. Jojima, H. Aida, M. Sumita et al., Electrical conductivity of carbon-polymer composites as a function of carbon content, Journal of Materials Science, vol.56, issue.6, pp.1610-1616, 1982.
DOI : 10.1007/BF00540785

A. L. Thangawng, R. S. Ruoff, M. A. Swartz, and M. R. Glucksberg, An ultra-thin PDMS membrane as a bio/micro???nano interface: fabrication and characterization, Biomedical Microdevices, vol.845, issue.20, pp.587-95, 2007.
DOI : 10.1007/s10544-007-9070-6

C. K. Alexander and M. Sadiku, Fundamentals of Electric Circuits. McGraw-Hill Science, Math, p.960, 2003.

M. J. Madou, Fundamentals of Microfabrication, p.589, 1997.

P. De-gennes, Wetting: statics and dynamics, Reviews of Modern Physics, vol.57, issue.3, pp.827-863, 1985.
DOI : 10.1103/RevModPhys.57.827

A. Mata, A. J. Fleischman, and S. Roy, Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems, Biomedical Microdevices, vol.56, issue.535, pp.281-93, 2005.
DOI : 10.1007/s10544-005-6070-2

X. Li, Electrochemical characterization of carbon black subjected to RF oxygen plasma, Carbon, vol.38, issue.1, pp.133-138, 2000.
DOI : 10.1016/S0008-6223(99)00108-6

I. Junkar, U. Cvelbar, A. Vesel, N. Hauptman, and M. Mozetic, The Role of Crystallinity on Polymer Interaction with Oxygen Plasma, Plasma Processes and Polymers, vol.201, issue.10, pp.667-675, 2009.
DOI : 10.1002/ppap.200900034

M. J. Owen and P. J. Smith, Plasma treatment of polydimethylsiloxane, Journal of Adhesion Science and Technology, vol.3, issue.10, pp.1063-1075, 1994.
DOI : 10.1163/156856194X00942

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, and T. Watanabe, Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces, Langmuir, vol.16, issue.13, pp.5754-5760, 2000.
DOI : 10.1021/la991660o

M. Ma and R. Hill, Superhydrophobic surfaces, Current Opinion in Colloid & Interface Science, vol.11, issue.4, pp.193-202, 2006.
DOI : 10.1016/j.cocis.2006.06.002

H. Irie, T. S. Ping, T. Shibata, and K. Hashimoto, Reversible Control of Wettability of a TiO2 Surface by Introducing Surface Roughness, pp.23-25, 2005.

N. Verplanck, Y. Coffinier, V. Thomy, and R. Boukherroub, Wettability Switching Techniques on Superhydrophobic Surfaces, Nanoscale Research Letters, vol.3, issue.12, pp.577-596, 2007.
DOI : 10.1007/s11671-007-9102-4

URL : https://hal.archives-ouvertes.fr/hal-00283959

S. C. Wang, K. S. Chang, and C. J. Yuan, Enhancement of electrochemical properties of screen-printed carbon electrodes by oxygen plasma treatment, Electrochimica Acta, vol.54, issue.21, pp.4937-4943
DOI : 10.1016/j.electacta.2009.04.006

C. Chan, Polymer surface modification by plasmas and photons, Surface Science Reports, vol.24, issue.1-2, pp.1-54, 1996.
DOI : 10.1016/0167-5729(96)80003-3

U. Cvelbar, S. Pejovnic, M. Mozeti, and A. Zalar, Increased surface roughness by oxygen plasma treatment of graphite/polymer composite, Applied Surface Science, vol.210, issue.3-4, pp.255-261, 2003.
DOI : 10.1016/S0169-4332(02)01286-2

T. Takada, Surface modification and characterization of carbon black with oxygen plasma, Carbon, vol.34, issue.9, pp.1087-1091, 1996.
DOI : 10.1016/0008-6223(96)00054-1

S. Z. Hua, F. Sachs, D. X. Yang, and H. D. Chopra, Microfluidic Actuation Using Electrochemically Generated Bubbles, Analytical Chemistry, vol.74, issue.24, pp.6392-6396, 2002.
DOI : 10.1021/ac0259818

L. Wang, Design and Fabrication of Vertical Electrodes in Microchannels for Particles/cells Sorting by Dielectrophoresis, 2006 International Conference on Microtechnologies in Medicine and Biology, 2006.
DOI : 10.1109/MMB.2006.251513

W. Lisen, L. Flanagan, and A. P. Lee, Side-wall vertical electrodes for lateral field microfluidic applications, Journal of microelectromechanical systems, vol.16, issue.2, pp.454-461, 2007.

]. R. Mccreery, Handbook of Carbon, Graphite, Diamonds and Fullerenes Advanced carbon electrode materials for molecular electrochemistry, Chemical reviews, vol.1083, issue.2 7, pp.2646-87, 1994.

C. Shan, H. Yang, J. Song, D. Han, A. Ivaska et al., Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene, Analytical Chemistry, vol.81, issue.6, pp.2378-82, 2009.
DOI : 10.1021/ac802193c

J. Wang, M. Li, Z. Shi, N. Li, and Z. Gu, Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes, MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC, pp.1993-1997, 2002.

]. S. Ranganathan, R. Mccreery, S. M. Majji, M. Madou, M. T. Mcdermottt et al., Photoresist-Derived Carbon for Microelectromechanical Systems and Electrochemical Applications Scanning Tunneling Microscopy of Ordered Graphite and Glassy Carbon Surfaces: Electronic Control of Quinone Adsorption Control of Electron Transfer Kinetics at Glassy Carbon Electrodes by Specific Surface Modification Electron Transfer Kinetics at Modified Carbon Electrode Surfaces: The Role of Specific Surface Sites, Journal of the Electrochemical Society Adsorption Journal Of The International Adsorption Society Analytical Chemistry Analytical Chemistry, vol.147, issue.67 18, pp.277-4307, 1994.

R. and D. Levie, The influence of surface roughness of solid electrodes on electrochemical measurements, Electrochimica Acta, vol.10, issue.2, pp.113-130, 1965.
DOI : 10.1016/0013-4686(65)87012-8

S. H. Duvall and R. L. Mccreery, Control of Catechol and Hydroquinone Electron-Transfer Kinetics on Native and Modified Glassy Carbon Electrodes, Analytical Chemistry, vol.71, issue.20, pp.4594-4602, 1999.
DOI : 10.1021/ac990399d

N. G. Ferreira, L. L. Silva, E. J. Corat, and V. J. Trava-airoldi, Kinetics study of diamond electrodes at different levels of boron doping as quasi-reversible systems, Diamond and Related Materials, vol.11, issue.8, pp.1523-1531, 2002.
DOI : 10.1016/S0925-9635(02)00060-2

S. C. Wang, K. S. Chang, and C. J. Yuan, Enhancement of electrochemical properties of screen-printed carbon electrodes by oxygen plasma treatment, Electrochimica Acta, vol.54, issue.21, pp.4937-4943
DOI : 10.1016/j.electacta.2009.04.006

I. Yagi, Electrochemical selectivity for redox systems at oxygen-terminated diamond electrodes, Journal of Electroanalytical Chemistry, vol.473, issue.1-2, pp.173-178, 1999.
DOI : 10.1016/S0022-0728(99)00027-3

K. Okajima, K. Ohta, and M. Sudoh, Capacitance behavior of activated carbon fibers with oxygen-plasma treatment, Electrochimica Acta, vol.50, issue.11, pp.2227-2231, 2005.
DOI : 10.1016/j.electacta.2004.10.005

J. Xu, Q. Chen, and G. M. Swain, Anthraquinonedisulfonate Electrochemistry:?? A Comparison of Glassy Carbon, Hydrogenated Glassy Carbon, Highly Oriented Pyrolytic Graphite, and Diamond Electrodes, Analytical Chemistry, vol.70, issue.15, pp.3146-54, 1998.
DOI : 10.1021/ac9800661

W. R. Vandaveer, S. A. Pasas-farmer, D. J. Fischer, C. N. Frankenfeld, and S. M. Lunte, Recent developments in electrochemical detection for microchip capillary electrophoresis, ELECTROPHORESIS, vol.25, issue.21-22, pp.21-22, 2004.
DOI : 10.1002/elps.200406115

N. A. Lacher, K. E. Garrison, R. S. Martin, and S. M. Lunte, Microchip capillary electrophoresis/ electrochemistry, ELECTROPHORESIS, vol.71, issue.12, pp.2526-2562, 2001.
DOI : 10.1002/1522-2683(200107)22:12<2526::AID-ELPS2526>3.0.CO;2-K

J. Rossier, F. Reymond, and P. E. Michel, Polymer microfluidic chips for electrochemical and biochemical analyses, ELECTROPHORESIS, vol.271, issue.6, pp.858-67, 2002.
DOI : 10.1002/1522-2683(200203)23:6<858::AID-ELPS858>3.0.CO;2-3

S. Masuda, M. Washizu, and T. Nanba, Novel method of cell fusion in field constriction area in fluid integration circuit, IEEE Transactions on Industry Applications, vol.25, issue.4, pp.732-737, 1989.
DOI : 10.1109/28.31255

P. Tabeling, Introduction à la microfluidique, Belin, p.254, 2003.

M. E. Bayer and J. L. Sloyer, The electrophoretic mobility of Gram-negative and Gram-positive bacteria: an electrokinetic analysis, Journal of General Microbiology, vol.136, issue.5, pp.867-874, 1990.
DOI : 10.1099/00221287-136-5-867

J. Li and L. A. Mclandsborough, The effects of the surface charge and hydrophobicity of Escherichia coli on its adhesion to beef muscle, International Journal of Food Microbiology, vol.53, issue.2-3, pp.185-93, 1999.
DOI : 10.1016/S0168-1605(99)00159-2

D. Cui, F. Tian, C. S. Ozkan, M. Wang, and H. Gao, Effect of single wall carbon nanotubes on human HEK293 cells, Toxicology Letters, vol.155, issue.1, pp.73-85, 2005.
DOI : 10.1016/j.toxlet.2004.08.015

S. Movahed and D. Li, Microfluidics cell electroporation, Microfluidics and Nanofluidics, vol.56, issue.3, pp.703-734, 2010.
DOI : 10.1007/s10404-010-0716-y

D. Zimmermann, A Combined Patch-Clamp and Electrorotation Study of the Voltage- and Frequency-Dependent Membrane Capacitance Caused by Structurally Dissimilar Lipophilic Anions, Journal of Membrane Biology, vol.166, issue.2, pp.107-128, 2008.
DOI : 10.1007/s00232-007-9090-4

D. Attwell, I. Cohen, and D. Eisner, Membrane Potential and Ion Concentration Stability Conditions for a Cell with a Restricted Extracellular Space, Proceedings of the Royal Society B: Biological Sciences, vol.206, issue.1163, pp.145-161, 1979.
DOI : 10.1098/rspb.1979.0098

R. Alford, Toxicity of organic fluorophores used in molecular imaging: literature review, Molecular imaging, vol.8, issue.6, pp.341-54, 2009.

M. Mittal, P. P. Lele, E. W. Kaler, and E. M. Furst, Polarization and interactions of colloidal particles in ac electric fields, The Journal of Chemical Physics, vol.129, issue.6, p.64513, 2008.
DOI : 10.1063/1.2969103

T. B. Jones, Electromechanics of Particles, p.288, 2005.
DOI : 10.1017/CBO9780511574498

C. L. Pérez and J. D. Posner, Electrokinetic Vortices and Traveling Waves in Nondilute Colloidal Dispersions, Langmuir, vol.26, issue.12, pp.9261-9269, 2010.
DOI : 10.1021/la100132w

M. Abe, A. Yamamoto, M. Orita, T. Ohkubo, H. Sakai et al., Control of Particle Alignment in Water by an Alternating Electric Field, Langmuir, vol.20, issue.17, pp.7021-7027, 2004.
DOI : 10.1021/la0490801

P. P. Lele, M. Mittal, and E. M. Furst, Anomalous Particle Rotation and Resulting Microstructure of Colloids in AC Electric Fields, Langmuir, vol.24, issue.22, pp.12842-12850, 2008.
DOI : 10.1021/la802225u

Y. Hu, J. L. Glass, A. E. Griffith, and S. Fraden, Observation and simulation of electrohydrodynamic instabilities in aqueous colloidal suspensions, The Journal of Chemical Physics, vol.100, issue.6, pp.4674-4682, 1994.
DOI : 10.1063/1.466250

T. Akagi and T. Ichiki, Cell electrophoresis on a chip: what can we know from the changes in electrophoretic mobility?, Analytical and Bioanalytical Chemistry, vol.1184, issue.7, pp.2433-2441, 2008.
DOI : 10.1007/s00216-008-2203-9

J. Zhu and X. Xuan, Particle electrophoresis and dielectrophoresis in curved microchannels, Journal of Colloid and Interface Science, vol.340, issue.2, pp.285-290, 2009.
DOI : 10.1016/j.jcis.2009.08.031

C. Wei, C. Hsu, and C. Wang, The role of electro-osmosis and dielectrophoresis in collection of micro/nano size particles in low frequency AC electric field, Nanoengineering: Fabrication, Properties, Optics, and Devices IV, p.664528, 2007.
DOI : 10.1117/12.735185

M. Lian and J. Wu, Microfluidic flow reversal at low frequency by AC electrothermal effect, Microfluidics and Nanofluidics, vol.2, issue.2, pp.757-765, 2009.
DOI : 10.1007/s10404-009-0433-6

T. B. Jones, Electromechanics of Particles, p.288, 1995.
DOI : 10.1017/CBO9780511574498

C. Holzapfel, J. Vienken, and U. Zimmermann, Rotation of cells in an alternating electric field theory and experimental proof, The Journal of Membrane Biology, vol.36, issue.1, pp.13-26, 1982.
DOI : 10.1007/BF01868644

G. O-'toole, H. B. Kaplan, and R. Kolter, Biofilm Formation as Microbial Development, Annual Review of Microbiology, vol.54, issue.1, pp.49-79, 2000.
DOI : 10.1146/annurev.micro.54.1.49

H. Flemming and J. Wingender, The biofilm matrix, Nature Reviews Microbiology, vol.79, issue.9, pp.623-633, 2010.
DOI : 10.1038/nrmicro2415

C. H. Kua, C. Yang, S. Goh, R. Isabel, K. Youcef-toumi et al., Generation of Dielectrophoretic Force under Uniform Electric Field, 2006.

P. R. Gascoyne and J. Vykoukal, Particle separation by dielectrophoresis, ELECTROPHORESIS, vol.23, issue.13, pp.1973-83, 2002.
DOI : 10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1

R. Pethig, Review Article???Dielectrophoresis: Status of the theory, technology, and applications, Biomicrofluidics, vol.4, issue.2, p.22811, 2010.
DOI : 10.1063/1.3456626

V. Sukhorukov, A single-shell model for biological cells extended to account for the dielectric anisotropy of the plasma membrane, Journal of Electrostatics, vol.50, issue.3, pp.191-204, 2001.
DOI : 10.1016/S0304-3886(00)00037-1

M. P. Szostak, Bacterial ghosts: non-living candidate vaccines, Journal of Biotechnology, vol.44, issue.1-3, pp.161-170, 1996.
DOI : 10.1016/0168-1656(95)00123-9

H. Lu, M. A. Schmidt, and K. F. Jensen, A microfluidic electroporation device for cell lysis, Lab on a Chip, vol.5, issue.1, pp.23-32, 2005.
DOI : 10.1039/b406205a

C. Jen and T. Chen, Selective trapping of live and dead mammalian cells using insulator-based dielectrophoresis within open-top microstructures, Biomedical Microdevices, vol.75, issue.8, pp.597-607, 2009.
DOI : 10.1007/s10544-008-9269-1

G. Mernier, N. Piacentini, T. Braschler, N. Demierre, and P. Renaud, Continuous-flow electrical lysis device with integrated control by dielectrophoretic cell sorting, Lab on a Chip, vol.37, issue.7, pp.2077-82, 2010.
DOI : 10.1016/j.snb.2009.11.066

U. Zimmermann and G. A. Neil, Electromanipulation of Cells, p.416, 1996.

G. Tresset and S. Takeuchi, A Microfluidic Device for Electrofusion of Biological Vesicles, Biomedical Microdevices, vol.6, issue.3, pp.213-218, 2004.
DOI : 10.1023/B:BMMD.0000042050.95246.af

A. M. Skelley, O. Kirak, H. Suh, R. Jaenisch, and J. Voldman, Microfluidic control of cell pairing and fusion, Nature Methods, vol.6, issue.2, pp.147-152, 2009.
DOI : 10.1016/j.biomaterials.2007.03.023

Y. Kimura, M. Gel, B. Techaumnat, H. Oana, H. Kotera et al., Dielectrophoresis-assisted massively parallel cell pairing and fusion based on field constriction created by a micro-orifice array sheet, ELECTROPHORESIS, vol.4, issue.18, 2011.
DOI : 10.1002/elps.201100129

W. Tan and S. Takeuchi, A trap-and-release integrated microfluidic system for dynamic microarray applications, Proceedings of the National Academy of Sciences, vol.104, issue.4, pp.1146-1151, 2007.
DOI : 10.1073/pnas.0606625104

T. Teshima, H. Ishihara, K. Iwai, A. Adachi, and S. Takeuchi, A dynamic microarray device for paired bead-based analysis, Lab on a Chip, vol.22, issue.18, pp.2443-2451, 2010.
DOI : 10.1038/msb.2008.69

B. Techaumnat and M. Washizu, Analysis of the effects of an orifice plate on the membrane potential in electroporation and electrofusion of cells, Journal of Physics D: Applied Physics, vol.40, issue.6, pp.1831-1837, 2007.
DOI : 10.1088/0022-3727/40/6/036

M. Gel, Y. Kimura, O. Kurosawa, H. Oana, H. Kotera et al., Dielectrophoretic cell trapping and parallel one-to-one fusion based on field constriction created by a micro-orifice array, Biomicrofluidics, vol.4, issue.2, 2010.
DOI : 10.1063/1.3422544.2

M. Washizu and B. Techaumnat, Cell membrane voltage during electrical cell fusion calculated by re-expansion method, Journal of Electrostatics, vol.65, issue.9, pp.555-561, 2007.
DOI : 10.1016/j.elstat.2006.12.001

M. Brun, J. F. Chateaux, A. L. Deman, P. Pittet, R. ]. Ferrigno et al., Characterization of C-PDMS electrodes for electrokinetic applications in microfluidic systems Microfluidic chip for the screening of crystallization conditions and in-situ crystallographic analyses, Liste des communications Articles Proceedings : EMRS 2009, pp.321-324, 2011.

M. Brun, A. L. Deman, J. F. Chateaux, M. Frenea-robin, N. Haddour et al., Nanocomposite Carbon-PDMS thick electrodes for electrokinetic manipulation during cell fusion, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00734010

M. Brun, Development of a microfluidic chip for in-situ crystallization and crystallographic analysis, Communications, 2009.

G. Microfluidique, Microfluidic chips for the crystallization and the structural analysis of biomolecules, 2009.

M. Brun, K. Dhouib, P. Morin, R. Giegé, A. Deman et al., Microfluidic Chip for the Screening of Crystallization Conditions and In-Situ Crystallographic Analysis, 2010.

M. Brun, A. L. Deman, J. F. Chateaux, M. Frenea-robin, N. Haddour et al., Nanocomposite Carbon-PDMS thick electrodes for electrokinetic manipulation during cell fusion, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00734010