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Présentation de la thèse

0.1 Systèmes répartis temps réel

De nos jours, il est indéniable que les systèmes répartis deviennent une partie
intégrante de notre vie quotidienne. La société est de plus en plus dépendante
de technologies complexes et cela ne concerne pas uniquement notre qualité
de vie mais principalement notre sécurité. Dans notre environnement, il est
aisé de trouver de nombreux exemples de tels systèmes, en commençant par

les réseaux mobiles quasi omniprésents, pour finir par les systèmes de contrôle

aérien. Malheureusement, comme l’ont démontré les études jusqu’ici, ce qui

peut apparaître simple d’un point de vue utilisateur n’est pas si évident aux

yeux du concepteur de tels systèmes complexes. La conception et l’implé-

mentation de systèmes répartis temps réel représentent toujours un grand

défi pour les concepteurs et les développeurs.

La variété d’applications pouvant être associées avec le domaine des sys-

tèmes répartis est si grande que leur classification précise est une tâche dif-

ficile. Néanmoins, il existe plusieurs divisions de base selon lesquelles les

systèmes répartis temps réel sont souvent classifiés. Comme nous pourrons

le voir, ces classifications résultent de divers aspects fonctionnels et non-

fonctionnels des systèmes concernés.

La première division que nous mentionnons est la division liée au déploie-

ment d’éléments composant l’architecture du système. Il existe fondamenta-

lement deux types de systèmes répartis : centralisés et décentralisés.

Les systèmes centralisés sont largement basés sur l’architecture client-

serveur. Dans ce cas, le serveur est un nœud qui fournit et réalise habituel-

lement des services contractés par ses clients. Un système centralisé a une

architecture hiérarchisée, au sommet de laquelle figure une unité principale

de gestion. Contrairement aux systèmes centralisés, les systèmes décentrali-

sés ne disposent pas d’une hiérarchisation claire avec un nœud parent qui se

distingue. Les éléments d’un système décentralisé sont en général indépen-

dants. Ils peuvent bien sûr communiquer entre eux. Mais de cette façon, ils

prennent généralement des décisions indépendamment des autres composants

du système. Un exemple de systèmes décentralisés récemment populaires est

les réseaux peer to peer à travers lesquels les utilisateurs peuvent partager

les fichiers. Habituellement, dans un tel réseau, chaque utilisateur ne dis-
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pose que d’informations partielles concernant les fichiers disponibles dans le
système. De plus, il n’y a pas de coordinateur unique et global.

Un autre critère de division de systèmes répartis fréquemment cité est la
division au sein de systèmes homogènes et hétérogènes. Malgré les nombreux
avantages des systèmes homogènes, nous devrons aborder les systèmes hé-
térogènes quand nous ferons référence à de grands systèmes physiquement
répartis. Ces derniers incluent les réseaux mobiles, internet, les réseaux infor-
matiques à grande échelle (par exemple GRID, récemment populaire ; voir
[49]). La variété de logiciels et de matériel informatique au sein d’un tel
système, qui est plus ou moins un réseau complexe de divers composants,
entraîne de nombreuses difficultés. Une d’entre elles est que l’opération des
services et des programmes coopérant entre eux peut varier de manière signi-
ficative dans ses différentes parties. Dans les systèmes hétérogènes, il existe
également d’autres problèmes qui ne s’appliquent souvent pas aux systèmes
homogènes. La problématique de l’extensibilité est l’un d’entre eux. La ges-
tion de tels systèmes est souvent difficile et nécessite l’aide de couche logiciel
spécialisé.

Une des caractéristiques clés des systèmes répartis temps réel est égale-
ment les contraintes temporelles affectées à certain états ou actions. Pour
exemple, considérons un système en charge de la gestion d’un hôpital. Ces
derniers temps, de tels systèmes sont composés de nombreux modules dif-
férents comprenant quasiment toutes les domaines de l’activité hospitalière
: gérer les attentes des patients, maintenir le fonctionnement des cliniques,
gérer les blocs opératoires, contrôler les machines dans les laboratoires, gérer
le budget de l’hôpital, nourrir les patients, etc. De nombreuses contraintes
temporelles s’appliquent à ces composants et processus fort divers. Certaines
d’entre elles sont strictes ; et les dépasser peut mener à des conséquences dé-
sastreuses telles que le décès du patient. D’autres sont moins restrictives et
les dépasser ne cause pas de graves problèmes. Afin de distinguer ces deux
types de contraintes temporelles, nous utilisons respectivement le concept
de systèmes temps réel strict et souple. En tant qu’exemple de systèmes
temps réel strict, dans le cas où l’écoulement du temps joue un rôle crucial,
nous pouvons citer les systèmes surveillant les fonctions vitales des patients
et permettant une réponse relativement rapide des autres machines, ce qui
améliore ainsi la condition du patient, ou encore appelant le personnel hos-
pitalier. Nous pouvons citer le pacemaker en tant qu’exemple commun de
système temps réel.

En tant qu’exemple élémentaire de systèmes temps réel souple, nous pou-
vons évoquer un système servant des repas au sein de l’hôpital. Dans cette
configuration, le temps ne joue pas de rôle significatif. Ainsi, dans la ma-
jorité des cas, tout repas servi avec quelques minutes de retard ne génère
pas de conséquences majeures. Un exemple similaire peut être le système
de gestion de l’attente des patients. Dans ce cas, l’écoulement de certaines
contraintes temporelles planifiées dans de tels systèmes ne cause pas non plus
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de conséquences significatives.

Comme mentionné, la modélisation de systèmes répartis temps réel né-
cessite souvent l’utilisation de diverses contraintes temporelles. Dans une des
parties du document (voir Chapitre 2), nous pourrons remarquer que divers
types de contraintes temporelles ont été introduits, ainsi que de nombreux
types de modèles formels. Ces restrictions diffèrent dans les expressions uti-
lisées pour les formuler. Elles varient de simples expressions linéaires à, par
exemple, des expressions plus complexes avec dérivées. Il a été montré de
nombreuses fois que la complexité de telles expressions affecte directement
les possibilités d’analyse et de vérification de modèles les utilisant.

Il faut noter que les contraintes temporelles sont en résumé les fonctions
opérant sur les valeurs des horloges physiques disponibles dans le système.
Cependant, à ce niveau peuvent surgir certaines difficultés. Étant donné que
le système est réparti, il peut avoir de multiples horloges indépendantes.
Imaginons une situation dans laquelle le système réparti soit composé de
plusieurs ordinateurs. Chaque ordinateur dispose de sa propre horloge locale
pouvant être lue ou modifiée. Lorsqu’on modélise alors le système ainsi que
ses contraintes temporelles, il est possible qu’un programme sur un ordina-
teur veuille lire la valeur de l’horloge présente sur un autre ordinateur. Or,
comme il est connu dans le domaine des protocoles de synchronisation d’hor-
loge, ceci n’est pas tâche facile. Cependant, en pratique, l’opération faite à
distance de lecture directe de la valeur de l’horloge n’est pas si standard. En
général, ceci est dû au fait qu’il existe une couche supplémentaire logicielle
ou de matériel informatique responsable de la synchronisation de toutes les
horloges. De cette façon, tous les ordinateurs ont accès à l’horloge virtuelle
qui fournit un point de référence commun. Bien sûr, une telle solution n’est
pas parfaite. En effet, la synchronisation de l’horloge est parsemée d’erreurs
résultant notamment des délais de communication entre les ordinateurs, des
différences entre les paramètres des horloges physiques (qui influencent par
exemple la fréquence des horloges), voire des différences entre les paramètres
de l’environnement dans lequel sont situés les ordinateurs (par exemple la
température ambiante).

Les questions liées aux protocoles de synchronisation temporelle dans les
réseaux informatiques ont été assez bien étudiées. Parmi les protocoles de
synchronisation les plus populaires, se dénote de façon particulièrement re-
marquable le protocole NTP1. Ce dernier, décrit dans [74], est devenu un
standard largement répandu. Les solutions utilisées dans NTP témoignent
de la complexité du problème de synchronisation d’horloges dans un envi-
ronnement réparti.

Malheureusement, seules quelques incertitudes associées à la synchroni-
sation d’horloges restent solvables grâce aux protocoles de synchronisation
d’horloge. Étant donné que, dans la plupart des cas, l’incertitude concernant

1Network Time Protocol
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la mesure du temps est inévitable dans les systèmes répartis, il est naturel
que le problème affecte également les modèles formels utilisés pour les re-
présenter. Dans ce but, un nombre de modèles formels a été introduit. Ces
derniers s’attaquent directement à certains aspects concernant la fiabilité des
mesures du temps dans les environnements répartis.

Une caractéristique importante des systèmes répartis est leur imprévi-
sibilité, leur non-déterminisme. Par exemple, considérons la communication
entre des composants d’un système réparti. Celle-ci est généralement asyn-
chrone et il est parfois impossible d’estimer de façon précise le délai au bout
duquel les données sont reçues par son destinataire, en supposant que ces
données sont effectivement reçues. Des pannes et des retards n’ont rien d’in-
habituel dans de systèmes aussi grands.

Dans le cas de systèmes plus petits tels que les multiprocesseurs avec
mémoire partagée, la communication est souvent synchrone. Dans ce cas, il
est plus aisé de planifier certaines procédures et de prévoir la durée de leurs
opérations.

L’architecture moderne des systèmes répartis est largement basée sur
un réseau d’ordinateurs interconnectés pouvant échanger des données rela-
tivement librement. Chaque ordinateur exécute un certain nombre de pro-
grammes. En général, chacun de ces programmes consiste en un ou plusieurs
processus pouvant communiquer entre eux. De plus, il est possible de trouver
fréquemment au sein des processus des threads fonctionnant simultanément.

Comme nous pouvons le voir, la communication et la simultanéité peuvent
se produire au sein de systèmes répartis à différents niveaux d’architec-
ture. D’une part, il s’agit d’une conséquence de multiples utilisateurs de
tels systèmes. D’autre part, les utilisateurs peuvent simultanément initier de
nombreuses tâches. Un facteur important est la dispersion géographique des
nœuds intervenant dans le processus. Il s’avère que ce facteur est relativement
important, notamment dans le contexte des contraintes temporelles imposées
au système réparti. Ceci est largement dû au temps de communication qui
affecte fortement la vitesse globale du traitement de l’information.

0.2 Supervision

Lors de la conception de systèmes répartis temps réel, il est difficile de prévoir
toutes les situations pouvant causer un dysfonctionnement de tels systèmes.
Le fait qu’un système soit réparti entrave déjà significativement le travail de
ses concepteurs et testeurs. De plus, si nous mentionnons les contraintes tem-
porelles et le fait que l’environnement dans lequel le système fonctionne peut
subir des changements constants, l’analyse statique précise d’un tel système
semble quasiment irréalisable. Souvent, il est impossible d’analyser dans un
tel système un problème aussi simple que l’atteignabilité des états. À ce ni-
veau, la seule vérification possible du système est sa surveillance durant son
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fonctionnement, généralement au sein d’une portée limitée qu’il est possible
de plus ou moins prévoir (par exemple, dans un délai imparti et avec des
valeurs restreintes de certains paramètres). C’est l’une des raisons pour les-
quelles nous traiterons dans une partie du document d’aspects sélectionnés
de la supervision de systèmes répartis.

Avant de décrire certains détails rattachés à la supervision de systèmes
répartis temps réel, nous introduisons plusieurs termes utilisés dans notre
travail. Un système supervisé est un système qui est surveillé afin de détec-
ter un ensemble de comportements pouvant par exemple causer un dysfonc-
tionnement. Un système de supervision (ou de surveillance) est l’ensemble
des notions et des éléments servant à surveiller un système supervisé, et qui
permet d’analyser les observations collectées dans le but d’identifier certains
événements et comportements.

Afin de surveiller et diagnostiquer efficacement un système, le système
de surveillance doit disposer d’informations adéquates concernant les événe-
ments se produisant. La décision concernant le type d’information collectée
et analysée par le système de supervision appartient généralement au concep-
teur du système. Bien sûr, il est important que l’information soit utile dans
la détection d’une cible potentielle habituellement fausse et d’opérations in-
volontaires du système. Il faut aussi noter que rassembler un nombre excessif
d’informations dans le but de reproduire les actions du système s’avère dans
de nombreux cas inutile, notamment quand il s’agit de systèmes temps réel.
Cela découle du fait que l’opération de tels systèmes est généralement non
entièrement déterministe. Et il est fréquemment impossible de recréer les
conditions dans lesquelles le système a fonctionné.

Comment est l’information concernant les événements contenus dans l’ob-
servation réalisée ? Il existe fondamentalement deux sources d’origine des évé-
nements. La première est basée sur les mécanismes, les procédures qui sont
directement intégrés dans le système supervisé. Par exemple, nous pouvons
considérer un programme à l’intérieur duquel le programmeur a intégré des
procédures spéciales fournissant des informations concernant les événements.
La seconde source d’événements est basée sur les mécanismes externes. Typi-
quement, il s’agit de solutions basées sur le matériel informatique et n’inter-
férant pas avec l’opération du système surveillé. Cependant, cette solution
est habituellement moins flexible et plus onéreuse.

Comment un système de surveillance collecte-t-il et traite-t-il l’informa-
tion concernant les événements ? Un système réparti typique est composé de
nombreux dispositifs fonctionnant indépendamment et échangeant parfois
leurs données. Les observations réalisées par ces appareils à l’intérieur de la
procédure de supervision peuvent être exploitées de différentes manières.

Nous pouvons distinguer deux scénarios de base : elles peuvent par exemple
être stockées localement sous la forme de traces locales et attendre un traite-
ment ultérieur ; elles peuvent aussi être directement envoyées vers une unité
centrale de surveillance où elles peuvent être analysées toutes ensemble.
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Un avantage concernant le premier cas est qu’un coût de communication
inutile peut parfois être évité si certaines propriétés recherchées peuvent être
détectées localement sans se référer à l’ensemble du système. Cependant, à un
certain point, il peut s’avérer nécessaire d’envoyer des résultats à une autre
unité de surveillance afin d’obtenir une vision globale de certains événements
se produisant. Malheureusement, ceci peut facilement mener à un transfert
soudain d’un très grand nombre de données.

Dans le second cas, les observations sont directement transmises à un
superviseur sans avoir reçu de traitement local au préalable. De plus, cette
approche comporte le risque de surcharger le système avec un grand nombre
d’observations transmises à un système de surveillance. Or, contrairement
à la première approche, la charge du système, notamment les liens de com-
munication, peut être significative durant toute la période où le système
est actif. Par conséquent, une solution raisonnable semble être une réparti-
tion partielle de surveillance, ce qui permet ainsi d’éviter les inconvénients
des systèmes centralisés. Cependant, il faut noter qu’une telle configuration
n’est pas toujours possible, notamment de par l’architecture du système ou
encore de par une spécificité de la surveillance.

Dans notre travail, nous nous focaliserons sur le cas spécifique de la super-
vision basée sur des modèles. Le schéma général d’un système de surveillance
basée sur des modèles est présenté dans la Figure 1. Comme nous pouvons
le constater, il existe quatre éléments principaux dans un tel système de
surveillance :

• Le modèle du système supervisé. En d’autres termes, il s’agit d’une
représentation formelle du système de surveillance qui peut être décrite
par exemple par les réseaux d’automates temporisés ou bien les réseaux
de Petri temporels (pour plus de détails, voir Chapitre 2) ;

• Les observations, à savoir les informations concernant les événements
produits par des composants du système ;

• Les explications — ensemble de scénarios produit sur la base du mo-
dèle du système et des observations. Généralement, une explication
est une collection d’événements comprenant une relation d’ordre entre
ces derniers. Étant donné que nous étudions les modèles temporisés,
il existe également des contraintes temporelles associées à des explica-
tions. Les contraintes temporelles permettent d’assigner un horodatage
à des événements spécifiques dans les explications. Il convient de re-
marquer qu’il peut y avoir diverses explications pour un seul ensemble
d’observations. En effet, de nombreuses trajectoires d’un modèle donné
peuvent produire le même ensemble d’observations ;
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• Le module de surveillance : en utilisant les connaissances sur le mo-
dèle du système, il analyse les observations dans le but d’obtenir des
explications concernant le comportement de ce système.

La surveillance de systèmes répartis temps réel implique de nombreuses pro-
blématiques. Comme mentionné plus haut, la surveillance est faite lorsque le
système supervisé fonctionne. Cela permet à ce système d’interférer avec le
fonctionnement du système de surveillance. Comme nous pouvons le suppo-
ser, ceci cause en contre-partie une distorsion des résultats de la surveillance,
selon le principe bien connu d’incertitude. Cela provient du fait que la pro-
duction d’informations concernant les événements ensuite analysés par le
système de surveillance nécessite un certain laps de temps. Malheureuse-
ment, les opérations se déroulant au sein du système sont ralenties par le
système de surveillance alors que le temps s’écoule. En revanche, cette situa-
tion peut considérablement affecter les résultats du système de surveillance.
La seconde raison pour laquelle le système de surveillance peut perturber le
fonctionnement du système supervisé concerne le processus de recueil d’infor-
mations concernant les événements du système. Autrement dit, une grande
quantité d’informations décrivant les événements se déroulant au sein du sys-
tème, ainsi que l’utilisation des mêmes liens de transmission pour le système
de surveillance et le système supervisé, impliquent que le temps nécessaire
pour transmettre les données utilisées par ledit système supervisé peut être
considérablement plus long en comparaison avec la situation où il n’y a pas
de système de surveillance.

Comme mentionné précédemment, un facteur entravant un système ré-
parti de surveillance temps réel est le manque d’horloge globale avec laquelle
un individu pourrait mesurer temporellement la survenue d’un événement.

Comme le démontrent de nombreuses expériences de concepteurs et de
programmeurs, le fait même que le système soit basé sur des restrictions rela-
tives au temps réel est un défi majeur concernant les systèmes de surveillance.
En ajoutant à cela que nous traitons d’un système réparti, la procédure en-
tière de surveillance devient considérablement compliquée. Si nous étudions
les procédures permettant le débogage de programmes ou de programmes
distribués, nous découvrons qu’elles consomment relativement beaucoup de
temps, et qu’elles peuvent retarder significativement le travail réalisé par le
programme alors debogué.

0.3 Choix des modèles

Dans la section précédente, nous avons décrit les nombreux éléments com-
posant le système de surveillance dont nous traitons. Une des principales
hypothèses d’un tel système est l’existence d’un modèle du système super-
visé. Cependant, cela soulève la question du type de formalisme devant être
utilisé pour modéliser le système de façon à ce que toutes les exigences du
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système de surveillance soient satisfaites. La littérature à ce sujet fournit dif-
férentes possibilités. Parmi elles, nous pouvons trouver deux modèles récents
très connus et fréquemment utilisés : les réseaux d’automates temporisés et
les réseaux de Petri. Le choix d’un de ces modèles dépend de nombreux fac-
teurs tels que les caractéristiques du système supervisé ou les propriétés qui
sont surveillées.

Les réseaux d’automates temporisés et les réseaux de Petri peuvent mo-
déliser les systèmes répartis avec contraintes temporelles. Dans ce cas, un
aspect important repose certainement sur les possibilité de modéliser les
événements parallèles.

Par exemple, imaginons qu’il y ait un système réparti dans lequel figurent
de nombreux processus parallèles. De temps à autre, ces processus inter-
agissent entre eux. Nous supposons que chacun de ces processus se compose
d’une séquence d’actions. Dans cette situation, il semble presque naturel de
modéliser chaque processus en tant qu’automate. De plus, en cas d’interac-
tion entre automates, une simple synchronisation d’actions peut être utilisée.

Afin de modéliser convenablement le système réparti temps réel, l’aspect
temporel doit être pris en compte. Les deux types de modèles cités précé-
demment fournissent la possibilité d’imposer les contraintes temporelles sur
les événements et les états qu’ils génèrent. Cependant, il faut noter que, pour
chacun des modèles, ces restrictions sont différentes (plus de détails dans le
chapitre suivant).

Dans la section précédente, nous avons brièvement mentionné le rôle joué
par le processus d’acquisition de l’observation dans le système de surveillance.
Nous avons identifié les modalités possibles d’observation. Néanmoins, une
question subsiste à savoir quelle forme une information concernant les événe-
ments se produisant dans le système devrait avoir de sorte qu’elle soit utile
pour des analyses ultérieures. Comme nous le savons, dans les systèmes ré-
partis, il est difficile d’établir un point de référence commun pour tous les
événements tels que le temps par exemple. Y compris dans les situations
où le système de surveillance dispose d’informations concernant le temps de
survenue de certains événements, ces derniers ne sont habituellement pas
assez détaillés pour identifier les possibles erreurs dans l’opération du sys-
tème de surveillance. Heureusement, sans même l’aide d’horloges physiques,
le système de surveillance peut obtenir une autre information importante
concernant les événements. En effet, en utilisant par exemple des horloges
vecteurs ([48, 69]), nous pouvons explorer les dépendances causales entre les
événements. De cette manière, deux types élémentaires de relations entre
événements peuvent être distingués :

• la relation a ≤ b signifie que l’événement a précède de façon causale
l’événement b ;

• la relation a co b signifie que les deux événements a et b sont exécutés
en parallèles.
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Il peut également arriver que la relation causale entre les événements ne soit
pas connue. Dans ce but, nous utilisons le caractère ?. En d’autres termes,
l’expression a?b signifie que la relation causale entre a et b est inconnue.
Comme nous le verrons, les relations présentées jouent un rôle fondamen-
tal dans la description des problèmes associés aux systèmes répartis. Les
dépendances entre événements que nous avons introduites définissent ladite
relation d’ordre partiel. Ainsi, la relation permet de décrire l’ordre des événe-
ments dans un système réparti et, à ce titre, elle est l’un des points centraux
dans les structures utilisées pour stocker et traiter les informations concer-
nant les événements.

En utilisant les relations présentées ci-dessus dans le cas de l’observation,
il faut noter que, dans le meilleur des cas, uniquement sur la base d’obser-
vations, nous connaissons les dépendances causales exactes entre tous les
événements. Et, dans le pire des cas, l’ordre des événements est totalement
inconnu. Pour connaître l’ordre des événements, nous pouvons utiliser dans
ce but un système de surveillance tentant de calculer les dépendances recher-
chées sur la base du modèle du système et des observations.

Dans la suite du document, nous supposerons en général que la relation
causale entre les événements présents dans les observations est inconnue.
Naturellement, dans de nombreuses situations, cela implique un plus grand
nombre d’explications possibles compatibles avec une observation donnée.
D’autre part, cette approche montre les vastes capacités du système de su-
pervision, à la fois concernant l’aspect théorique et la possibilité d’implé-
mentation.

Dans le paragraphe précédent, nous avons brièvement mentionné le concept
de dépliage qui est une structure rassemblant les événements se déroulant
dans le système et les relations causales entre ces événements. Il est caracté-
ristique de cette structure que chaque événement y ait une histoire unique. En
d’autres termes, pour un événement donné provenant d’une telle structure,
nous pouvons clairement tracer le processus par lequel est survenu l’événe-
ment. Étant donné que nous introduisons dans ce document le problème de
surveillance dans le contexte des deux modèles, nous introduisons également
deux méthodes similaires permettant de formaliser les explications.

Afin de représenter les explications produites par le système basé sur les
réseaux de Petri, nous utilisons lesdits réseaux d’occurrence. Il s’agit d’une
structure représentant les survenues d’événements dans le système et les états
les accompagnant. Comme mentionné plus haut, étant donné que chaque
événement a son propre passé lorsque le modèle contient des contraintes
temporelles, la situation devient plus complexe. Considérons une situation
simple dans laquelle nous traitons de l’action pouvant se produire durant
une période de temps donnée. Si nous voulions décrire toutes les survenues
possibles de l’action en utilisant un simple réseau d’occurrence, le nombre
d’événements correspondants pourrait être infini dans le pire des cas. À cet
effet, nous utiliserons la variante symbolique des réseaux d’occurrence dont
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la structure regroupe les événements avec un temps d’exécution compris dans
un certain intervalle de temps. Ainsi, au lieu d’énumérer tous les événements
pouvant se produire durant une période de temps spécifique, nous pouvons
définir un événement symbolique avec une contrainte temporelle symbolique
représentant tous les temps de réalisation possibles de l’événement considéré.

Nous disposons d’une situation similaire dans le cas de réseaux d’au-
tomates temporisés. Cependant, comme nous le verrons dans un prochain
chapitre, la structure utilisée pour représenter les événements et les états
des réseaux d’automates temporisés est légèrement différente. Pour expli-
quer rapidement cette différence, au sein des réseaux d’occurrence, chaque
condition ou événement représente un élément unique du modèle associé qui,
dans notre cas, est un réseau de Petri. D’un autre côté, dans le cas d’une
structure d’événements utilisée pour les réseaux d’automates, chaque élé-
ment d’une telle structure peut représenter à la fois plusieurs éléments du
modèle associé. Chaque élément peut regrouper des transitions et des places
d’automates.

Comme nous le savons concernant le résultat du processus de surveillance,
nous obtenons un ensemble de scénarios. À leur tour, ces scénarios incluent
des événements reflétant le comportement possible du système, par exemple
les explications. Naturellement, les explications doivent être cohérentes avec
les observations émanant du système supervisé. Dans ce but, il ne s’agira
alors que d’un dépliage incluant des événements cohérents avec l’observation.
Cette structure est basée sur la notion de dépliage, avec pour différence de
prendre en compte l’observation.

Un exemple d’introduction

L’exemple que nous présentons ci-après est inspiré d’un problème réel.
Néanmoins, nous le présentons sous forme d’une version très simplifiée dans
le seul but de présenter l’idée des problèmes que nous traitons dans le suite
de notre travail. Nous montrons comment le concept de réseau d’automates
temporisés peut être utilisé dans un processus simple de production. Ce type
de problème peut être considéré comme une simple variante d’un problème
d’ordonnancement dans lequel existent des ressources devant être gérées de
façon appropriée. Le système que nous considérons est représenté dans la

Figure 2 et se compose de trois types basiques de composants : un four-

nisseur, un cahier des charges et des machines. Chaque composant contient

plusieurs automates qui, tous ensemble, forment un réseaux d’automates.

Chaque cercle représente un état et chaque flèche représente une transition

entre états. Toutes les flèches sans état d’entrée désignent les états initiaux.

Les flèches en caractère gras représentent les transitions spéciales appelées

synchronisations. De plus, les transitions concernant une synchronisation ont
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la même étiquette. Dans notre exemple, nous avons trois types de synchro-
nisation : matière X, prod X, sync, où X est égal à A ou B. Dans le cas de
notre exemple, nous avons ajouté deux caractères avant certains noms de
transitions, à savoir “ ?” ou “ !”. Dans le cas de synchronisations contenant
des transitions avec ces caractères, nous supposons que la synchronisation
peut impliquer uniquement deux transitions avec le même nom, l’une avec
“ !” et l’autre avec “ ?” sur l’étiquette. D’autre part, la synchronisation sync
représente l’exécution de toutes les transitions avec ce nom.

Nous décrivons brièvement ci-dessous tous les composants :

• Les fournisseurs — Leur tâche est de fournir des matières premières
qui sont ensuite traitées par des machines en produits finis. Nous dis-
tinguons divers types de matières. Dans notre exemple, nous utilisons
deux types d’entre eux, à savoir : matière A, matière B. Selon le type
de matière, cette dernière peut être traitée par différents types de ma-
chines. Il arrive parfois que les fournisseurs aient des difficultés à four-
nir certaines matières, causant alors des retards dans la production. De
telles situations peuvent naturellement avoir un impact sur le cahier
des charges de production.

• Le cahier des charges — Il montre combien de détails de chaque type
doivent être produits dans une période de temps donnée. En d’autres
termes, il représente les échéances devant être respectées. Dans la Fi-
gure 2b, nous pouvons observer trois types d’automates. Deux d’entre
eux représentent un processus de production de deux sortes de pro-
duits finis. Le premier produit Produit1 ne nécessite que d’un demi-
produit prod A pour être terminé, tandis que Produit2 nécessite un
demi-produit prod A puis un produit prod B. Nous supposons qu’il
existe un certain nombre de chaque type de produits à être réalisé.
Quand tous les produits finis sont terminés (voir les états avec les éti-
quettes fin dans la Figure 2b), il reste la dernière opération nommée
sync utilisée afin de confirmer que le cahier des charges tout entier
a été respecté à temps. L’automate utilisé en tant que chronomètre
est nommé Garde et comporte deux transitions : ok si l’échéance est
respectée, et échec le cas échéant.

• Les machines — Elles sont utilisées pour traiter les matières. Chaque
machine peut seulement travailler certains types de matières. Dans
notre exemple, Machine1 accepte uniquement les matières de type B,
tandis que Machine2 accepte les deux types de matière, à savoir A et
B. Avant qu’une machine ne débute la production, un certain laps de
temps est nécessaire afin de la préparer (états étiquetés avec prep X ).
Ensuite, elle peut traiter une par une toutes les matières délivrées et les
transformer en demi-produits. Cette procédure est représentée sous la
forme d’une boucle simple composée de deux transitions : matière X et
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prod X. Dans notre exemple, nous considérons également de possibles
pannes des machines qui peuvent alors causer des retards significatifs
(états étiquetés avec retard). Le point important est que nous suppo-
sons que les retards ne sont pas toujours observables et peuvent être
difficiles à détecter durant la procédure de production.

Le système présenté dans l’exemple est statique dans le sens où le nombre

de composants ne change pas durant son activité. Dans la description des

composants, nous avons mentionné des contraintes temporelles rattachées à

certaines transitions et états. Détenir l’information concernant les contraintes

temporelles présentes dans le modèle est très important étant donné qu’elles

rendent le modèle plus réaliste et reflètent finalement les possibles problèmes

avec plus de précision.

Le système que nous présentons est relativement simple. Cependant, et

ceci y compris dans l’exemple d’un tel système, nous pouvons déjà analyser

quelques problèmes pouvant survenir dans le contexte de systèmes de sur-

veillance avec contraintes temporelles. Par exemple, nous avons mentionné

plus haut qu’il pouvait exister différents types d’échecs dans le système pou-

vant causer des retards. L’utilisateur du système peut par exemple se poser

les questions suivantes : en cas de panne d’une machine, combien de temps

cela prend-t-il pour la réparer de sorte que le cahier des charges soit respecté

à temps et que la production n’ait pas à être reportée sur d’autres machines ;
si le temps attribué pour la réparation est écoulé, reporter la production sur
une autre machine est-il suffisant pour satisfaire les contraintes du cahier des
charges ; si des retards ont été constatés, à quel moment de la procédure de
production ces derniers sont survenus.

0.4 Positionnement et contribution

Dans notre travail, nous avons décidé de baser notre solution sur la théorie
des dépliages que nous avons estimée la plus adaptée pour l’objectif que nous
souhaitons atteindre. Cette théorie a été initialement introduite par McMil-
lan dans [70], puis ensuite étendue et améliorée, notamment par Esparza
dans [42]. À l’origine, les dépliages étaient utilisés pour la vérification de
modèles en tant qu’alternative, plus spécifiquement pour les méthodes ba-
sées sur une sémantique séquentielle. Les dépliages se sont avérés plus concis
que d’autres structures quand il s’agit de besoins de mémoire. Ils nous per-
mettent également de stocker des informations sous la forme d’une structure
d’événements partiellement ordonnée, alors que la structure basée elle-même
sur des structures entièrement séquentielles ne peut stocker d’informations
concernant les événements parallèles. Un des principaux recueils proposant
de synthétiser les principales connaissances concernant les dépliages a été
publié par Esparza et Heljanko ([44]).
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La théorie des dépliages a trouvé quelques applications peu de temps
après son introduction. L’application qui est particulièrement dans notre
champ d’intérêt est la diagnosticabilité de systèmes répartis décrite par [15].
La supervision de systèmes répartis temps réel que nous présentons plus
tard dans le document est une continuation de notre travail. La notion de
diagnostic de systèmes répartis a été décrite dans [46]. Cependant, ce travail
ne prend pas en compte les contraintes temporelles qui jouent souvent un
rôle clé dans la surveillance de systèmes répartis temps réel.

Par exemple, le problème des dépliages et des contraintes temporelles
dans le contexte des réseaux de Petri a été étudié dans [34, 32]. Dans ces
travaux, une nouvelle technique de dépliage pour les réseaux de Petri et un
exemple d’application à buts diagnostiques ont été proposés. Cette struc-
ture diffère des dépliages typiques des réseaux de Petri de par le fait qu’elle
contient des informations concernant les contraintes temporelles. Malheureu-
sement, quand nous considérons un dépliage de réseau de Petri temporel et
que nous en retirons toutes les contraintes temporelles, il se peut que la struc-
ture restante soit substantiellement plus grande que le dépliage construit sur
la base du même réseau de Petri sans contraintes temporelles. Ceci est dû à la
duplication de certains événements dans le but de leur associer les contraintes
temporelles adaptées. Le problème des duplications a été résolu, notamment
dans [85, 84]. Cette nouvelle méthode de construction de dépliages de
réseaux de Petri temporels, proposée dans ces travaux, résout le pro-
blème d’événements multiples au détriment de contraintes temporelles plus
complexes. Comme nous l’aborderons plus loin dans le document, les dé-
pliages construits de cette manière ont un grand avantage sur la première
approche. En effet, si nous soustrayons les contraintes temporelles de la struc-
ture, il s’avère que sa taille n’est pas plus grande que celle du dépliage de la
version non temporisée du modèle. Cela nous permet de diviser si nécessaire
la construction de dépliages en un certain nombre d’étapes. Tout d’abord,
nous construisons le dépliage d’une version non temporisée sous-jacente du
modèle. Nous ajoutons ensuite les contraintes temporelles appropriées. Il
faut noter qu’aucun nouvel événement n’est ajouté à la structure après la
première étape.

Une des principales parties de notre travail est l’étude des dépliages
des réseaux d’automates temporisés utilisés pour réaliser la super-
vision. Pour la première fois, le concept de tels dépliages a été proposé dans
[29, 26]. Nous avons décidé d’étendre ce travail et de l’adapter au problème
de surveillance de systèmes répartis. Dans [52], ce travail nous a menés à
une technique de construction de dépliages guidés par une observation et
une méthode permettant d’inférer les possibles dates de survenue d’actions,
ceci en utilisant des contraintes symboliques dans les réseaux d’automates
temporisés. Ceci a également été le début de notre travail ultérieur sur les
dépliages avec contraintes qui est le nom attribué à ce type de dépliages.
Ce travail a abouti à un ensemble d’algorithmes dédiés aux dépliages de
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réseaux d’automates temporisés, ainsi qu’à leur implémentation.
Dans le Chapitre 4, nous abordons le problème des événements inobser-

vables, c’est-à-dire les événements qui sont reflétés et visibles dans un modèle
donné, mais qui ne peuvent être observés durant l’opération du système as-
socié. Le problème d’observation partielle est déjà apparu de nombreuses
fois dans la littérature et a été discuté dans le contexte de divers modèles
formels, comme par exemple dans le domaine des réseaux de Petri ([37])
et des automates ([19, 27, 41, 18]). Cette problématique a également été
abordée notamment dans les travaux sur la vérification de modèle ([43]),
ou la supervision avec contrôle ([28]). Cependant, une grande partie de ces
événements invisibles est ignorée et il n’existe pas d’information directe les
concernant. Un exemple d’une telle approche est la supervision avec observa-
teurs décrite dans [28]. Intuitivement, dans le but de créer l’observateur, un
modèle de système est considéré et toutes les transitions correspondant à des
événements inobservables sont alors retirées. Par conséquent, les états entre
lesquels figurent des transitions inobservables sont regroupés. Ceci crée de
nouveaux états regroupant des états d’origine. Il faut noter que, dans le cas
d’un observateur ainsi défini, il n’existe aucune information directe concer-
nant les événements pouvant se produire dans le système, mais pouvant être
observés. De plus, dans ce cas, un inconvénient supplémentaire est la perte
de certaines informations concernant les relations de causalité entre les évé-
nements. Par exemple, il est impossible de déterminer si certains événements
ont été exécutés en parallèle.

Une autre approche du problème des événements inobservables a égale-
ment été proposée par Wimmel dans [88]. Dans son travail, il propose d’ôter
les transitions invisibles de sorte que le modèle modifié soit équivalent à un
pomset. Intuitivement parlant, les relations causales sont conservées entre
les événements. Cependant, le cas étudié par Wimmel est restreint à un cas
spécifique de réseaux de Petri. Pour autant que nous le sachions concernant
le cas général des réseaux de Petri, il semble que le problème n’ait toujours
pas de solution.

Pour conclure, les informations concernant les événements inobservables
peuvent être cruciales pour détecter quelque opération anormale du système
telle que les retards cachés pouvant souvent se glisser dans le système et
dont il est impossible de suivre la trace par le système de surveillance. Ainsi,
retirer de tels événements peut ne pas être souhaitable. Cependant, un pro-
blème subsiste étant donné que certains événements inobservables dans le
système peuvent être répétés et théoriquement produire des boucles inob-
servables infinies. Pour cette raison, nous proposons dans le Chapitre 4 une
nouvelle approche qui consiste à déplier un réseau de Petri guidé par
une observation partielle. Ce type nommé dépliage partiel nous per-
met de stocker et de traiter les informations concernant des boucles infinies
et inobservables en utilisant une quantité finie de mémoire. Dans ce cha-
pitre, nous abordons plusieurs classes de réseaux de Petri en montrant que



0.5. Organisation du document 17

la complexité du modèle influence la complexité du problème. Cette partie
du document n’a pas encore été publiée.

Dans la dernière partie de notre travail, à savoir le Chapitre 5, nous nous
focalisons sur l’implémentation des solutions proposées. Jusqu’ici, re-
lativement peu d’outils universels ont été créés, basés sur la théorie des
dépliages, et qu’il serait facile de comparer en terme d’utilisabilité et de
performance. Parmi les outils existants, nous pouvons par exemple trouver
l’outil PEP (Programming Environment based on Petri Net ; voir [83, 54]),
récemment Roméo (outil pour l’analyse de réseaux de Petri temporels ; voir
[50, 2]) que nous mentionnons également plus loin dans notre travail, le
Model-Cheking Kit qui est une collection de programmes incluant des al-
gorithmes de vérification basés sur la théorie des dépliages ([81]). Parmi les
diverses applications de dépliages, nous pouvons citer le travail susmentionné
sur le diagnostic des systèmes à événements discrets ([15]), les travaux sur les
dépliages utilisés dans le contexte des circuits logiques asynchrones ([61, 62]),
ainsi que la vérification de systèmes mobiles ([73]).

Durant notre recherche, nous avons implémenté et vérifié des algorithmes
dépliant des réseaux d’automates temporisés en présence d’obser-
vations. Avec la coopération de l’Institut de Recherche en Communication
et Cybernétique de Nantes qui est l’auteur de l’outil Roméo, nous avons réa-
lisé des tests sur la construction de dépliages avec contraintes pour
des réseaux de Petri temporels paramétrisés. Nous avons également
créé un outil expérimental que nous avons utilisé pour calculer des dépliages
avec contraintes de réseaux de Petri avec observation partielle dé-
crits dans le Chapitre 4.

De plus, nous avons décidé de restructurer et d’améliorer l’outil permet-
tant de déplier les réseaux d’automates temporisés. De cette façon, l’outil
Spinta a été créé. Ce dernier peut opérer sur des réseaux d’automates avec

des paramètres et des systèmes de contraintes linéaires, c’est-à-dire les polyè-

dres.

Tous les outils mentionnés précédemment ont été utilisés, notamment

pour préparer les études de cas et les exemples présentés dans ce rapport.

0.5 Organisation du document

Le Chapitre 2 commence par une brève présentation de notions de base que

nous utilisons dans les chapitres suivants. La Section 2.1 est une courte

introduction aux systèmes de transition temporisés qui sont un point de

référence pour une discussion ultérieure concernant d’autres modèles. En-

suite, les Sections 2.2 et 2.3 présentent deux familles différentes de modèles

connus destinés à la modélisation de systèmes répartis temps réel, à savoir

les réseaux d’automates temporisés et les réseaux de Petri temporels. Suite

à l’introduction de ces modèles, nous décrivons brièvement dans la Section
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2.4 des résultats de base concernant la décidabilité de divers problèmes dans
le contexte des deux modèles. Nous présentons ensuite très rapidement cer-
taines extensions et sous-classes des modèles. Le chapitre comporte égale-
ment des résultats sur la translation d’un modèle vers un autre et vice versa.
Dans la dernière partie du chapitre, nous décrivons les structures utilisées
pour le stockage et le traitement des observations collectées durant la procé-
dure de surveillance, ainsi que le traitement des explications représentant
leurs résultats.

Après cette introduction, dans le Chapitre 3, nous abordons directement
le problème de surveillance de systèmes répartis temps réel. La solution
décrite traite de l’approche basée sur un modèle comme mentionné dans
l’introduction. Étant donnés le modèle d’un système sous surveillance et les
observations en résultant, nous utiliserons la théorie des dépliages afin de
définir lesdits dépliages avec contraintes. Intuitivement, un dépliage avec
contraintes est une structure représentant les possibles scénarios composés
d’événements produits par un système sous surveillance. Bien sûr, dans ce
chapitre, nous introduisons l’aspect temporel et son influence sur les dé-
pliages avec contraintes. La description des dépliages avec contraintes inclut
les deux modèles suivants : les réseaux d’automates temporisés et les réseaux
de Petri temporels. De cette façon, le lecteur peut suivre les différences con-
cernant l’application des deux modèles et capturer des aspects communs
relatifs à la problématique de la supervision. Dans ce chapitre, nous rap-
pelons et étudions plus précisément quelques problématiques pouvant surgir
durant la procédure de supervision basée sur notre approche. Ces dernières
incluent : le problème des événements invisibles qui sera décrit plus loin et
analysé dans la section suivante, ainsi que la non-monotonie de dépliages
avec contraintes. Nous présentons également des études de cas pour les deux
modèles.

Le Chapitre 4 est dédié au problème des systèmes avec boucle invisi-
ble et observation partielle. En fait, il est rare qu’il y ait une possibilité
d’observation attentive concernant tous les événements se produisant dans
le système. En dépit du fait que seule une partie des survenues d’événements
puisse être physiquement vérifiée, il se peut simplement que trop d’entre eux
soit surveillé, ou bien que les surveiller soit inutile. Mais il existe de nom-
breuses situations dans lesquelles les informations sur les événements invisi-
bles dans le système soient hautement souhaitables, étant donné qu’elles af-
fectent significativement la performance du système. Cependant, quand nous
supposons l’existence de tels événements dans le système, qui est lui basé sur
un modèle, nous devons nous préparer au fait que, lorsque nous recherchons
des explications à certaines observations, nous puissions nous retrouver face
à un problème avec des scénarios dans lesquels il puisse y avoir un nombre
infini d’événements. Ceci est dû à la présence desdites boucles inobserv-
ables composées uniquement d’événements invisibles et non-surveillés. Le
Chapitre 4 décrit étape par étape comment faire face à un tel problème, de
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sorte que toutes les explications possibles puissent être stockées et tracées,
même si leur nombre est infini. Le chapitre débute par la description du
modèle le plus simple qui est en fait une machine à états finis, et termine
avec un cas général de réseaux de Petri.
Dans le Chapitre 5, nous présentons de nombreux résultats associés à

l’implémentation de solutions considérées dans notre travail. La première
partie traite de certains problèmes relatifs à la surveillance basée sur le mod-
èle de réseau d’automates temporisés. Nous abordons ensuite la partie liée
au problème des boucles invisibles.
Le Chapitre 6 résume les résultats de notre travail et fournit des directions

possibles pour les extensions futures.
Toutes les références utilisées dans ce rapport figurent dans la dernière

partie du document.
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Chapter 1

Introduction

1.1 Distributed real-time systems

Nowadays, hardly anyone has to be convinced that distributed systems are
becoming an integral part of our everyday lives. Society is increasingly de-
pendent on complex technology and it is not only about the quality of life
but mainly about our security. All around us, we can find many examples of
such systems, beginning from almost omnipresent mobile networks, and end-
ing with flight control systems. Unfortunately, as shown by hitherto studies,
what appears simple from the user perspective is no longer so obvious to the
designer of such complex systems. Design and implementation of distributed
real-time systems still are a big challenge for designers and developers.

The variety of applications that can be associated with the field of dis-
tributed systems is so large that the precise classification is a challenging
task. Nevertheless, there are several basic divisions according to which dis-
tributed real-time systems are often classified. As we shall see, these clas-
sifications result from various functional and nonfunctional aspects of the
concerned systems.

The first division which we mention is the division with respect to the
deployment of elements of the system architecture. Basically there are two
types of distributed systems: centralized and decentralized.

Centralized systems are largely based on client and server architecture.
In this case, the server is a node that usually provides and performs services
contracted by its clients. A centralized system has a hierarchical architecture,
on top of which is a main management unit. As opposed to centralized
systems, decentralized systems do not have a clear hierarchy with a parent
node which is highlighted. Elements of a decentralized system are usually
independent. They can of course communicate with each other, but as such,
they generally make decisions independently of other system components.
An example of decentralized systems which are very popular recently is peer
to peer networks through which users can share their files. Usually in such
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a network, each user only has partial information about the files which are
available in the system. What is more, there is no single, global coordinator.

Another frequently cited criterion of division of distributed systems is the
division into homogeneous and heterogeneous systems. Despite numerous
advantages of homogeneous systems, when referring to very large and phys-
ically distributed systems, we will have to deal with heterogeneous systems.
These include mobile networks, internet, large-scale computer networks (e.g.,
popular in recent times GRID, [49]). The variety of software and hardware
within such a system, which more or less is a complex network of different
computers, entails many difficulties. One of them is that the operation of
services and programs that cooperate with each other can significantly vary
in different parts of it. In heterogeneous systems, there are also other prob-
lems that often do not apply to homogeneous systems. Scalability issue is
one of them. The management of such systems is often difficult and requires
the assistance of specialized software layer.

One of the key characteristics of distributed real-time systems is also time
constraints which are assigned to some states or actions. For example, let us
take a comprehensive system managing hospitals. These days, such systems
are composed of many different modules which comprise almost all areas of
an hospital activity: managing queues of patients, supporting the function-
ing of medical clinics, managing operational blocks, control of machines in
laboratories, financial management of hospital, feeding patients, etc. Among
such a large diversity of components and processes, there are many time con-
straints that apply to them. Some of them are strict and exceeding them
can lead to disastrous consequences, as the death of the patient. Others
are less restrictive and exceeding them does not cause serious problems. To
distinguish these two types of time constraints, we respectively use the con-
cept of hard and soft real-time systems. As an example of hard real-time
systems we can give all the systems, in the case of which the passage of time
plays a crucial role, such as systems that monitor patients’ vital functions
and allow for a relatively rapid response of other machines that improve the
condition of the patient, or even call the hospital staff. A common example
of a real-time system is a pacemaker.

As a very simple instance of soft real-time systems, we can provide a
system for serving meals in the hospital. In this case, time does not play
such a significant role, and in most cases, a meal served with a few minutes
delay does not result in major consequences. A similar example may be the
queue management system for patients. In this case the passage of certain
scheduled time constraints in such systems also does not pose any significant
consequences.

As mentioned, the modeling of distributed real-time systems often re-
quires the use of various time constraints. Later in this document (see
Chapter 2), we can note that many different kinds of time constraints were
introduced along with many types of formal models. These restrictions dif-
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fer among others in types of expressions which are used to formulate them.
They range from simple linear expressions to, for example, more complex ex-
pressions with derivatives. It was shown many times that the complexity of
these expressions directly affect the possibilities for analysis and verification
of models that use them.

Note that time constraints are, in short, the functions that operate on the
values of physical clocks which are available in the system. However, at this
point, some difficulties may arise. Since the system is distributed, it can have
multiple independent clocks. Imagine a situation in which the distributed
system consists of several computers. Each computer has its own local clock
which can be read or modified. When we now model the system along with its
time constraints, we may find that a program on one computer wants to read
the value of the clock on another computer. But, as it is known in the field of
clock synchronization protocols, this is not an easy task. However, in practice
the direct remote read operation of value of the clock is not so common.
Usually this is due to the fact that there is an additional layer of software
or hardware which is responsible for synchronizing all the clocks. This way,
all computers have access to the virtual clock which can provide a common
reference point. Of course, such a solution is not perfect since the clock
synchronization is encumbered with some errors resulting e.g. from delays in
communication between computers, from differences between the parameters
of physical clocks (which have an influence on different frequencies of the
clocks), and even from differences in the parameters of the environment in
which computers are located (e.g. the ambient temperature).

Issues related to time synchronization protocols in computer networks
have been fairly well studied. Particularly noteworthy is certainly one of
the most popular synchronization protocols, namely, NTP1 described e.g.
in [74], which has become a widely used standard. Solutions used in the
NTP show the complexity of the problem of synchronization of clocks in a
distributed environment.

Unfortunately, not all uncertainties associated with the synchronization
of clocks can be solved by means of clock synchronization protocols. Since the
uncertainty time measurement in distributed systems is inevitable in many
cases, it is natural that the problem also affects the formal models used to
represent them. For this purpose, a number of formal models was introduced
which directly address some aspects of the reliability of measurement of time
in distributed environments.

An important characteristic of distributed systems is their unpredictabil-
ity, non-determinism. For example, let us consider communication between
components of a distributed system. It is usually asynchronous and it is of-
ten impossible to accurately estimate the delay after which data is received
by its recipient, assuming that the data is received at all; breakdowns and

1Network Time Protocol
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delays are nothing unusual in such large systems.
In the case of smaller systems such as multiprocessor systems with shared

memory, communication is frequently synchronous. In this case, it is easier
to plan some procedures and to predict the duration of their operations.

Modern architecture of distributed systems is largely based on a network
of interconnected computers that can exchange data relatively freely. Each
computer runs a number of programs. In general, each of these programs
consists of one or more processes that can communicate with each other. In
addition, frequently within the processes, we may find many threads which
work concurrently.

As we can see, the communication and the concurrency can occur in
distributed systems at several levels of architecture. On the one hand, it is
a consequence of multiple users of such systems. On the other hand, the
users can simultaneously initiate many tasks. An important factor is the
geographical dispersion of the processing nodes. As it turns out, this factor
is quite important especially in the context of the time constraints imposed
on the distributed system. This is largely due to the communication time
which strongly affects the overall speed of the information processing.

1.2 Supervision

When designing distributed real-time systems, one can not predict all the
situations that may cause the malfunction of such systems. The fact that a
system is distributed already hampers a lot of job to its designers and testers.
Moreover, if we mention time constraints and the fact that the environment
in which the system works can undergo constant changes, it appears that
accurate static analysis of such a system is practically impossible. Often,
it is impossible to analyze in such a system even so seemingly basic issue
as reachability of states. At this point, the only possibility of verification of
system is its monitoring during its operation, usually within the limited scope
which is relatively possible to predict (e.g. in a given timeframe and with
limited values of certain parameters). This is one of the reasons for which,
in the further part of the book, we deal with selected aspects of supervision
of distributed systems.

Before we proceed to the description of some details related to the su-
pervision of distributed real-time systems, we introduce several terms which
are used in our work. A supervised system is a system which is monitored
in order to detect a certain set of behaviors which can cause for example a
malfunction. A supervising (or monitoring) system is the whole of notions
and elements which serves to monitor a supervised system, and then helps
to analyze the collected observations in order to identify some events and
behaviors.

In order to effectively monitor and diagnose a system, the monitoring
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system must have adequate information about the events which take place.
The decision about what kind of information is collected and analyzed by the
supervising system usually belongs to the designer of the system. Of course,
it is important for the information to be useful in detecting a potential target
which is usually wrong and unintended operations of the system. Also note
that gathering excessive amount of information in order to reproduce the
actions of the system, in many cases, turn out to be pointless, especially
when it concerns real-time systems. This follows from the fact that the
operation of such systems is usually not fully deterministic, and frequently
it is impossible to recreate the conditions in which the system worked.

How is information about the events contained in the observation pro-
duced? Basically there are two sources of origin of the events. The first one
is based on mechanisms, procedures that are directly integrated in the super-
vised system. As an example, we can consider a program inside of which the
programmer embedded special procedures which produce information about
events. The second source of events is based on external mechanisms. Typ-
ically, these are hardware solutions that do not interfere with the operation
of the monitored system. However, this solution is usually less flexible and
more expensive.

How does a monitoring system collect and process information about
events? A typical distributed system consists of many independently func-
tioning devices which exchange their data from time to time. Observations
produced by these devices in the process of supervision may be used in dif-
ferent ways. We can distinguish two basic scenarios: they may for example
be stored locally in the form of local traces and wait for further processing;
or they can also directly be sent to a central monitoring unit where they can
be analyzed all together.

An advantage of the first case is that, sometimes, an unnecessary com-
munication cost can be avoided if certain properties which are searched can
be detected locally without referring to the whole system. However, it may
happen that at some point, there is a need to send the results to some other
monitoring unit in order to determine the global view of certain events that
took place. Unfortunately, this can easily lead to a sudden transfer of large
amounts of data.

In the second case, the observations are directly transmitted to the su-
pervisor without a local processing. Also, this approach carries the risk of
overburdening the system with a large number of observations sent to a su-
pervisory system. However, in contrast to the first approach, the load of
the system, in particular communication links, can be noticeable throughout
the entire period when the system is active. Therefore, a reasonable solu-
tion seems to be a partial distribution of supervision, and thus avoids the
disadvantages of centralized systems. However, note that this approach is
not always possible, for instance because of the existing architecture of the
system or a specificity of the monitoring.
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In our work, we will focus on the specific case of monitoring which is
called the model-based supervision. The general scheme of a model-based
supervision system is shown in Figure 1.1. As we can see, in such a moni-
toring system, we can distinguish four principal elements:

• model of the system which is supervised. In other words, it is a formal
representation of the monitored system which can be described e.g. by
networks of timed automata or time Petri nets (for details see Chapter
2);

• observations, that is information about events that are produced by
components of the system;

• explanations — a set of scenarios which is produced on the basis of
the model of the system and observations. In general, an explanation
is a collection of events with a relation of order between them. Since
we consider timed models, there are also time constraints which are
associated with explanations. The time constraints allow for assigning
time-stamps to specific events in the explanations. It should be noted
that there may be many different explanations for a single set of ob-
servations as many trajectories of a given model can produce the same
set of observations;

• monitoring module: using the knowledge about the model of the system
analyzes observations in order to obtain explanations of the system
behavior.

Supervision of distributed real-time systems involves many difficulties. As
mentioned above, monitoring is done during the operation of the supervised
system. This makes the system interfere with the functioning of the mon-
itoring system. As we can expect, this in turn causes a distortion of the
results of monitoring, according to the known principle of uncertainty. This
follows from the fact that the production of information about events which
are then analyzed by the supervising system requires a certain amount of
time. Unfortunately, while the operations that take place in the system are
slowed down by the monitoring system, real time goes by. This in turn can
greatly affect the results of the monitoring system. The second reason why
the monitoring system may affect the functioning of the supervised system
is the process of collecting information about the system events. Namely, a
large amount of information about events occurring in the system and the
use of the same transmission links for both the monitoring system and the
monitored system mean that time required to transmit data used by the sys-
tem can be considerably greater in comparison with the situation in which
there is no supervisory system.
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As mentioned earlier, a factor that hinders a monitoring real-time dis-
tributed system is the lack of global clock, in relation to which one could
measure the time occurrence of each event.

As shown by numerous experiences of designers and programmers, the
very fact that the system is based on restrictions relating to real time is
a major challenge for monitoring systems. When we add to this the fact
that we deal with a distributed system, the whole procedure of monitoring
becomes considerably complicated. As we look at procedures for debugging
programs or distributed programs, we find that they are relatively time-
consuming, and they can significantly delay the work of the program that is
debugged.

1.3 Choice of models

In the previous section, we described the various elements that are parts of
the monitoring system which will deal with. One of the main assumptions of
such a system is the existence of a model of the supervised system. Therefore,
the question arises what kind of formalism should be used to model the
system so that all requirements of the supervisory system are met. The
literature on this subject gives us many different possibilities. Among them,
we can find two recently very popular and frequently used models: networks
of timed automata and time Petri nets. Which of these models is chosen
depends on many factors such as, for example, the characteristics of the
system which is supervised or properties that are monitored.

Both networks of timed automata and time Petri nets can model dis-
tributed systems with time constraints. In this case, an important aspect
certainly is the possibility of modeling the parallel events.

For instance, imagine there is a distributed system in which there are
many parallel processes. From time to time, these processes interact with
each other. We assume that each of these processes consists of a sequence of
actions. In this case, it seems quite natural to model each of the processes
as an automaton. Additionally, in case of interaction between the automata,
a simple synchronization of actions can be used.

To correctly model the distributed real-time system, the aspect of time
must be taken into account. Both mentioned models provide the possibility
of imposing time constraints on events and states that they generate. How-
ever, it should be noted that, for each of the models, these restrictions are
different (more details in the next chapter.)

In the previous section, we briefly mentioned the role played by the pro-
cess of acquisition of an observation in the supervisory system. We have
identified the possible modalities of observation. Nevertheless, there is a
question which remains, namely what form an information about events that
occurred in the system should have so that it is useful for further analysis.
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As we know, in distributed systems it is difficult to establish a common ref-
erence point for all events such as the time, for example. Even in situations
where it happens that the supervisory system has information about the
time of occurrence of certain events, usually they are not detailed enough
to identify possible errors in the operation of the supervised system. Fortu-
nately, even without the aid of physical clocks, the monitoring system can
get another important information about events. Namely, using for exam-
ple vector clocks ([48, 69]) we can explore the causal dependencies between
events. In this way, two basic types of relationships between events can be
distinguished:

• relation a ≤ b means that the event a causally precedes the event b;

• relation a co b means that the two events a and b are executed in
parallel.

It may also happen that the causal relation between events is not known.
For this purpose, we use the character ?. In other words, the expression
a?b means that causal relationship between a and b is an unknown. As we
shall see, presented relationships play a fundamental role in describing the
problems associated with distributed systems. The dependencies between
events we introduced define the so-called partial order relation. Thus, the
relation allows to describe the order of events in a distributed system and,
as such, it is one of the central points in the structures used for storing and
processing information about events.
Using the above relations in the case of observation, we can note that,

at best, only on the basis of observations, we know the exact causal depen-
dencies between all events. And, in the worst case the order of events is
completely unknown. To learn the order of the events, we can use for this
purpose a monitoring system which tries to compute the searched dependen-
cies on the basis of the model of the system and observations .
In the remainder of the book, we will generally assume that the causal

relation between events in the observations is unknown. Of course, in many
situations, this implies a larger number of possible explanations consistent
with a given observation. On the other hand, this approach shows the broad
capabilities of the system of supervision, both from the theoretical side and
the possibility of implementation.
In previous paragraphs, we shortly mentioned the concept of unfolding

which is a structure that brings together the events occurring in the system
and causal relationships between these events. It is characteristic of this
structure that every event has a unique history in it. In other words, given
any event from such a structure, we can clearly trace the process by which the
event occurred. Since in the book we introduce the problem of monitoring
in the context of the two models, we also introduce two similar ways to
formalize explanations.
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To represent the explanations produced by the system based on Petri
nets, we use so-called occurrence nets. It is a structure that represents oc-
currences of events in the system and the states that accompany them. Since,
as already mentioned, each event has its own unique past when the model
contains time constraints, the situation becomes more complicated. Consider
a simple situation in which we deal with an action that may occur within a
specified period of time. If we would like to describe all possible occurrences
of the action using a simple occurrence net, the number of corresponding
events could be in the worst case infinite. For this purpose, we shall use the
symbolic variant of occurrence nets whose structure groups events with exe-
cution time within a certain time interval. Thus, instead of enumerating all
the events that can occur within a specified period of time, we can define a
symbolic event with a symbolic time constraint which represents all possible
realization times of the considered event.

We have a similar situation in the case of networks of timed automata.
However, as we shall see in a later chapter, the structure used to represent
events and states of networks of timed automata is slightly different. To
explain shortly the difference, in occurrence nets each condition or event
represents a single element of the associated model which, in our case, is
a Petri net. On the other side, in the case of an event structure used for
networks of automata, each element of such a structure may represent at
once several elements of the associated model. It can group both transitions
and locations of automata.

As we know, as a result of the monitoring process, we obtain a set of
scenarios. In turn, these scenarios include events which reflect the possible
behavior of the system, i.e. explanations. Obviously, explanations must be
consistent with the observations that come out of the monitored system.
For that purpose, we introduce the new concept of constrained unfoldings.
As we will see, this will be nothing but an unfolding which includes events
consistent with the observation. This structure is based on the notion of
unfolding, with the difference that it takes into account the observation.

An introductory example

The example we present below is inspired by a real problem. Neverthe-
less, we present it in a very simplified version just to show the idea of the
problems we deal with in the remainder of our work. We show how the
concept of network of timed automata can be used in a simple production
process. This type of problem can be seen as a simple variant of scheduling
problem in which there are certain resources which must be appropriately
managed. The system which we consider is depicted in Figure 1.2 and con-
sists of three basic types of components: suppliers, a schedule and machines.
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Figure 1.2: A simple production system
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Each component contains several automata which all together form a net-
work of automata. Each circle represents a state and each arrow represents
a transition between states. All the arrows without any input state indicate
the initial states. The arrows drawn in bold represent special transitions
called synchronizations. Moreover, transitions concerning a synchronization
have the same label. In our example, we have three types of synchroniza-
tions: material X, prod X, sync, where X is equal to A or B. For the sake of
our example, we added two characters before some names of transitions, i.e.
“?” or “!”. In the case of synchronizations containing transitions with these
characters, we assume that synchronization can involve only two transitions
with the same name, one with “!” and one with “?” in the label. On the other
hand, the synchronization sync denotes execution of all transitions with this
name.

Below, we shortly describe all the components.

• Suppliers — their task is to provide raw materials which are then pro-
cessed by machines into final products. We distinguish various types
of materials. In our example, we use two types of them, i.e.: material
A, material B. Depending on the sort of material, it can be processed
by different types of machines. Sometimes, the suppliers may fail to
deliver some materials causing some delays in production. Such situa-
tions may obviously have an impact on the production plan.

• Schedule — it shows how many details of each type should be produced
in a given period of time. In other words, it represents deadlines which
should be met. In the Figure 1.2b, we can observe three types of
automata. Two of them represent a production process of two sorts of
the final products. The first product Product1 only needs one semi-
product prod A to be finished, while Product2 needs one semi-product
prod A, and then one prod B. We assume that there is a certain number
of both type of products to be made. When all the final products are
finished (see the states with labels fin in Figure 1.2b), there is the last
operation called sync which is used in order to confirm that the whole
schedule is accomplished on time. The automaton that serves as the
timer is called Guard and has two transitions: ok in case the deadline
is satisfied, and fail otherwise.

• Machines — they are used to process the materials. Each machine can
only process certain types of materials. In our example,Machine1 only
accepts materials of type B, whereas Machine2 accepts both types of
materials, i.e. A and B. Before a machine starts production, a certain
amount of time is necessary to prepare it (states labeled with prep X ).
Then, it can one by one process all delivered materials and transform
them into the semi-products. This procedure is shown in the form of a
simple loop consisting of two transitions: material X and prod X. In our



1.4. Positioning and contribution 33

example, we also consider some possible breakdowns of the machines
which may cause significant delays (states labeled with delay). The
important point is that we assume the delays are not always observable
and can be difficult to detect during production process.

The system presented in the example is static in the sense that there is
a given number of components which does not change during its activity.
We mentioned in the description of the components some time constraints
related to some transitions and states. Having the information about time
constraints in the model is very important as they make model more realistic
and finally reflect the possible problems with more precision.
The system we present is quite simple but, even on the example of such

a system, we can already analyze a few issues which may arise in the context
of monitoring systems with time constraints. For example, we mentioned
earlier that there could be various types of failures in the system that cause
delays. The system user may for instance ask the following questions: in
the case of machine failure, how long it takes to repair it so that the plan is
completed on time and that the production does not have to be shifted onto
another machines; or if time given for reparation is exceeded, is shifting of
the production onto other machine sufficient to satisfy the constraints in the
schedule; if delays occurred, at which point of the production process they
happened.

1.4 Positioning and contribution

In our work, we decided to base our solution on the theory of unfoldings
which we found the most suitable for the objective we wanted to achieve.
This theory was initially introduced by McMillan in [70] and then extended
and improved, notably by Esparza in [42]. Originally, the unfoldings were
introduced to deal with the model checking as an alternative, especially for
the methods based on an interleaving semantics. Unfoldings have shown to
be more concise when it comes to memory requirements. They also enable
us to store information in the form of a partially ordered event structure,
whereas the structure based on fully sequential structures can not store in-
formation about parallel events. One of the main compendiums which tries
to synthesize the principal knowledge about unfoldings was published by
Esparza and Heljanko ([44]).
The theory of unfoldings found some applications soon after its intro-

duction. The one which was especially in the field of our interests was di-
agnosability of distributed systems described by e.g. [15]. Supervision of
distributed real-time systems that we present later in the book is a contin-
uation of this work. The subject of diagnosis of distributed systems was
described in [46]. However, this work does not consider the time constraints
which often play a key role in monitoring distributed real-time systems.
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For example, the problem of unfoldings and time constraints in the con-
text of Petri nets has been studied in [34, 32]. In these works, a new unfolding
technique for time Petri nets and its exemplary use for diagnostic purposes
were proposed. This structure differs from the typical unfoldings of Petri
nets, inter alia, that it contains information about time constraints. Un-
fortunately, when we take into consideration an unfolding of time Petri net
and remove all the time constraints from it, we may find that the remaining
structure is substantially greater than the unfolding built on the basis of the
same Petri net but without time constraints. This is caused by duplication
of some events in order to assign to them the relevant time constraints. The
problem of duplicates was solved, for example in [85, 84]. This new con-
struction method of unfoldings of time Petri nets, proposed in these
works, solves the problem of multiple events at the expense of more complex
time constraints. As we will later note in the book, unfoldings constructed
in this way have an important advantage over the first approach. Namely, if
we remove the time constraints from the structure, it turns out that its size
is not greater than the size of the unfolding of the untimed version of the
model. This enables us to split, if necessary, the construction of unfoldings
into a number of stages. First, we construct an unfolding of an underlying
untimed version of the model. Then we add the appropriate time constraints.
Note that no new events are added to the structure after the first stage.

One of the major part of our work is the study about unfoldings of
networks of timed automata used to perform supervision. For the
first time, the concept of such unfoldings was proposed in [29, 26]. We
decided to extend this work and to adapt it to the problem of monitoring
of distributed systems. In [52], this led us to a technique of construction of
unfoldings guided by an observation and a method to infer the possible dates
of occurrences of actions by using symbolic constraints in networks of timed
automata. This was also the beginning of our further work on constrained
unfoldings which is the name for this type of unfoldings. It resulted in a
set of algorithms dedicated to the unfoldings of networks of timed automata,
and their implementations.

In Chapter 4, we deal with the problem of unobservable events, i.e. events
that are reflected and visible in a given model, but that can not be observed
during the operation of the associated system. The problem of partial ob-
servation already appeared many times in the literature and was discussed
in the context of many different formal models, for instance in the domain
of Petri nets ([37]) and automata ([19, 27, 41, 18]). The issue was also dis-
cussed, e.g. in the works on model checking ([43]), or supervisory control
([28]). However, a large portion of those events that are invisible are ignored
and there is no direct information about them. One example of such an
approach is supervision with observers described e.g. in [28]. Intuitively, in
order to create the observer, a model of system is taken and then all the
transitions corresponding to unobservable events are removed. As a result,
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the states between which were unobservable transitions are grouped all to-
gether. This creates new states that group original states. It may be noted
that, in the case of the observer so defined, there is no direct information
about events that may occur in the system, but that can not be observed.
Moreover, in this case, an additional drawback is the loss of some informa-
tion about relations of causality between the events. For instance, it is not
possible to determine whether some events were executed in parallel.

Another approach to the problem of unobservable events was also pro-
posed by Wimmel in [88]. In his work, he proposed to remove the invisible
transitions in such a way that the modified model was pomset-equivalent.
Intuitively speaking, causal relations are maintained between the events.
However, the case studied by Wimmel is limited to a specific case of Petri
nets. As far as we know for the general case of Petri nets, it appears that
the problem still does not have a solution.

To conclude, information about unobservable events can be crucial to
detect any abnormal operation of the system, such as hidden delays that can
often creep into the system and which are impossible to track by the moni-
toring system. Thus, removing such events may not be desirable. However, a
problem remains as some unobservable events in the system can be repeated
and theoretically produce infinite unobservable loops. For this reason, in
Chapter 4, we propose a new approach which consists in unfolding a Petri
net guided by a partial observation. This type of so-called partial
unfolding enables us to store and process information about infinite and
unobservable loops using a finite amount of memory. In the chapter, we deal
with several classes of Petri nets showing that the complexity of the model
influences the complexity of the problem. This part of the book has not been
published yet.

In the last part of our work, Chapter 5, we focus on the implementation
of proposed solutions. So far, relatively few universal tools were created,
based on the theory of unfoldings which could be easy to compare in terms
of usability and performance. Among existing tools, we can for example find
the PEP tool (Programming Environment based on Petri Net; see [83, 54]),
recently Romeo (a tool for time Petri nets analysis; see [50, 2]) which we
also mention later in our work, the Model-Checking Kit which is a collection
of programs including some verification algorithms based on the theory of
unfoldings ([81]). Among various applications of unfoldings, we can find the
aforementioned work on the diagnosis of discrete event systems ([15]), works
on unfoldings used in the context of asynchronous logic circuits ([61, 62]), as
well as the verification of mobile systems ([73]).

During our research, we implemented and verified algorithms for unfold-
ing networks of timed automata in the presence of observations. In
cooperation with the Institut de Recherche en Communications et Cyberné-
tique de Nantes which is the author of the Roméo tool, we performed tests on
a construction of constrained unfoldings for parametric time Petri
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nets. We also created an experimental tool which we used to compute con-
strained unfoldings of Petri nets with partial observation described
in Chapter 4.

Moreover, we decided to reengineer and improve the tool for unfolding
networks of timed automata. This way, the Spinta tool was created. It
can operate on networks of automata with parameters and systems of linear
constraints, i.e. polyhedra.

All the tools mentioned above were used, for example to prepare the case
studies and examples presented in this book.

1.5 Organization of the document

Chapter 2, begins with a brief presentation of the basic notions which we
use in the following chapters. Section 2.1 is a short introduction to timed
transition systems which are a reference point for a further discussion about
other models. Then, sections 2.2 and 2.3 present two different families of
popular models aimed at modeling distributed real-time systems, namely
networks of timed automata and time Petri nets. After the introduction
of the models, we shortly describe in Section 2.4 basic results about the
decidability of various problems in the context of both models. We very
briefly present some extensions and subclasses of the models. The chapter
also contains some results on translation of one model to another and vice
versa. In the last part of this chapter, we describe the structures used for
storage and processing of the observations collected during the monitoring
process and the explanations which are its result.

After this introduction, in chapter 3, we directly go to the problem of
monitoring of real-time distributed systems. The described solution is based
on the model-based approach as mentioned in the introduction. Given a
model of a monitored system and observations that come out of it, we will
use the theory of unfoldings in order to define so-called constrained unfold-
ings. Intuitively, a constrained unfolding is a structure which represents
possible scenarios consisting of events that are produced by a supervised
system. Of course, these scenarios must be as consistent as possible with
the observations obtained from the supervised system. Additionally, in this
chapter, we introduce the aspect of time and its influence on constrained
unfoldings. The description of the constrained unfoldings includes the two
following models: networks of timed automata and time Petri nets. This
way, the reader can follow differences in application of the two models and
capture some common aspects related to the issue of supervision. In the
chapter, we recall and closer look at a few issues that may arise during the
process of supervision based on our approach. These includes: the problem
of invisible events which will be further described and analyzed in the next
section, non-monotonicity of constrained unfoldings. We also present some
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case studies for both models.
Chapter 4 is dedicated to the problem of invisible loop systems with

partial observation. In fact, it is rare that there is a possibility of careful
observation of all events occurring in the system. Despite the fact that not
all occurrences of events can be physically verified, it may also simply turn
out that either there are too many of them to monitor or monitoring them is
unnecessary. But there are many situations where information on invisible
events in the system is highly desirable, since it significantly affects the
system performance. However, when we assume the existence of such events
in the system, which is based on a model, we must be prepared for the fact
that, when searching for explanations of some observations, we encounter a
problem with scenarios in which there may be an infinite number of events.
This is due to the presence of so-called unobservable loops only consisting of
the invisible, non-monitored events. Chapter 4 step by step describes how to
cope with such a problem, so that all possible explanations could be stored
and tracked, even if their number is infinite. The chapter begins with the
description of the simplest model which is a finite state machine, and finishes
with a general case of Petri nets.

In Chapter 5, we present several results associated with implementation
of solutions considered in our work. The first part presents some issues
related to the monitoring based on the model of network of timed automata.
Then we move on to the part related to the problem of invisible loops.

Chapter 6 summarizes the results of the work and provides possible di-
rections for future extensions.

All the references used in the book are in the last part of the document.
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Chapter 2

Models

Before we move on in subsequent chapters to discuss the main problem which
is supervision of the distributed real-time systems, we introduce the neces-
sary set of notions that will serve us in the rest of the work.

As a basis of our further discussions, we describe formalisms which we use
to represent various types of distributed systems. Among numerous formal
models that have been defined in recent years, we have chosen two of them,
which are still very popular and are used in various applications. Namely,
these are mentioned in the introduction: networks of timed automata and
Petri nets.

Both models proved to be grateful material, not only for researchers but
also for practitioners. And even though they do not necessarily have all the
desirable characteristics in their basic versions, they represent a good starting
point for a variety of more specialized and complex models. Moreover, the
potential range of applications of such models is enormous. Along with new
research results, many new applications or solutions are created and often
replace their older, worse counterparts.

Although these models were introduced a relatively long time ago, they
have been developed quite independently of each other in the context of
distributed systems. However, recently we can observe a trend towards uni-
fication of the two models. In this way, many problems solved by using one
of the models could be transferred to the ground of the second one.

The chapter starts by introducing the concept of transition systems
which, due to its characteristics, will provide a reference point for models
based on networks of timed automata and time Petri nets. Then, we dis-
cuss properties of network of timed automata, starting with its most basic
version which is a finite state machine, and ending with a model consisting
of a number of finite state machines and time constraints. Analogically, we
discuss the model of Petri nets and its variants with time constraints and
parameters which gives a model known as a parametric time Petri net.

Then, we briefly describe the basic properties of both models. These
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properties are bounded to a number of algorithmic problems, which implies
decidability questions about them. Above all, we can find among them the
problems associated with verification of some basic properties of models such
as state reachability, liveness, the possibility of deadlocks, etc. We mention
briefly issues related to conversion between the models. This is largely due
to an issue which was mentioned in the previous paragraph, namely whether
problems described by one model can be automatically expressed using an-
other one.

The chapter closes with a description of the formalisms used to describe
two key concepts which are used in the context of monitoring distributed sys-
tems, i.e.: observations and explanations. In this part, we describe structures
used to represent and process information which is critical to the supervisory
system.

General notations

We denote by N the set of non-negative integers, by Q the set of rational
numbers and R the set of real numbers. For A ∈ {Q,R}, A≥0 (respectively
A>0) denotes the subset of non-negative (respectively strictly positive) ele-
ments of A.

Given a, b ∈ N such that a ≤ b, we denote by [a..b] the set of integers
greater or equal to a and less or equal to b. For any set X, we denote
by |X| its cardinality. In the symbolic expressions, ∧ denotes the logical
conjunction, ∨ the logical disjunction and ¬ the logical negation operators.
We will also use ⇒ as the logical implication.

For a function f on a domain D and a subset C of D, we denote by f|C
the restriction of f to C.

Let X be a finite set. A (rational) linear expression on X is an expression
of the form a1x1 + · · · + anxn, with n ∈ N, ∀i, ai ∈ Q and xi ∈ X. The set
of linear expressions on X is denoted Expr(X). A linear constraint on X
is an expression of the form LX ∼ b, where LX is a linear expression on X,
b ∈ Q and ∼∈ {<,≤,≥, >}. We will also use abbreviations like = and 6=.

For the sake of readability, when non-ambiguous, we will “flatten” nested
tuples, e.g. 〈〈〈B,E, F 〉, l〉, v, θ〉 will be written 〈B,E, F, l, v, θ〉.

2.1 Timed transition systems

A timed transitions system enables us to describe a system that, during its
operation, performs two types of operation: continuous and discrete. As we
will see later, using timed transition systems, we can express semantics of
both networks of timed automata and time Petri nets. This, in turn, enables
us in some way to make a comparison of both models. The exact definition
of timed transition systems is as follows:



2.1. Timed transition systems 41

Definition 1. (Timed transition system) A timed transition system DEF

(TTS) defined over a set of actions Σ is a tuple T = 〈S, S0,→,Σ, F,R〉
where:

• S is a set of states,

• S0 ⊆ S is the set of initial states. If S0 contains only one element we
directly use the name of the element instead of the set;

• →⊆ S × (Σ ∪ R≥0) × S is the transition relation. For each transition
s→ s′, s represents its source state, and s′ is its target state,

• Σ is a finite set of actions disjoint from R≥0,

• F ⊆ S is the set of final states,

• R ⊆ S is the set of repeated states.

Moreover, the transition relation consists of two types of actions:

• delay transitions s
d
→ s′, with s, s′ ∈ S and d ∈ R≥0, or

• discrete transitions s
a
→ s′, with s, s′ ∈ S and a ∈ Σ.

In most cases, we skip the sets F and R, which means that F = R = S.
�

In the first part of the definition, we can see the standard features of a
transition system such as a set of states, a set of initial states, and a relation
that defines transitions between the states. Then, the definition distinguishes
two types of transitions that we mentioned earlier: continuous transitions,
also called delays (as they refer to time), and discrete transitions, which
represent the immediate change in the system. Note that in both cases, the
transitions are marked with labels. For a discrete transition s

a
→ s′ the label

a ∈ Σ denotes the name of the action. However, in the case of a continuous

transition s
d
→ s′, d ∈ R≥0 is the amount of time after which the system

changes its state from s to s′.
It is worth mentioning that the transition relation often requires some

standard properties (for more details see e.g. [75]) such as:

• Time determinism: if s
d
→ s′ and s

d
→ s′′, then s′ = s′′;

• Time additivity : if s
d
→ s′ and s′

d′
→ s′′, implies s′

d+d′
→ s′′;

• 0-delay : s
0
→ s;

• Continuity : if s
d
→ s′ then for each d′ and d′′, such that d = d′ + d′′,

there exists s′′, such that s
d′
→ s′′

d′′
→ s′.
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An operation of timed transition system can be defined as a finite or infinite
sequence of movements in which discrete transitions are interwoven with
continuous transitions. Such a sequence of length n ≥ 0 is called a run and
takes the following form:

ρ = s0
d0→ s′0

a0→ s1
d1→ s′1

a1→ s2 · · · sn
an→ s′n · · ·

Sometimes, for a finite run, we can write s
d0a0d1a1···dn···−−−−−−−−−→ s′. If there is a

run ρ such that the first state is s and the last one is s′, we write s
∗
−→ s′.

A run is initial if its first state belongs to S0.
A timed transition system can generate traces. For a run ρ, the trace

of ρ is defined by trace (ρ) = (ai0 , d0 + . . .+ di0) · · · (aik , d0 + . . .+ dik) · · ·
where aik ∈ Σ for k ∈ N. So defined trace forms a timed word.

Definition 2. (Timed word) A timed word w over a finite alphabet Σ isDEF

a finite or infinite sequence

w = (a0, d0) (a1, d1) . . . (an, dn) . . .

such that for each i ≥ 0, ai ∈ Σ, di ∈ R≥0 and di+1 ≥ di. Note that di is
an absolute date. �

Given a timed word w = (a0, d0) (a1, d1) . . . (an, dn) . . ., its untimed part
can be extracted, i.e. untimed (w) = a0, a1 . . . an . . ., and its duration duration (w) =
supk≥0 dk.

A run ρ is accepting if:

• either ρ is finite and initial and its last state belongs to F , or

• ρ is an infinite initial run and there is a state s ∈ R that infinitely
often appears in ρ.

A timed word w is accepted by T if there is an accepting run ρ such that
trace (ρ) = w. Finally, the timed language, L (T ), accepted by T , is the set
of timed words accepted by T .

2.2 Networks of timed automata

In order to understand the notion of network of timed automata, we present
it in two parts. In the first part, we introduce basic notions of a finite
automaton and network of automata. Then, we add time constraints to the
model. This way, as a final result, we obtain a network of timed automata.
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2.2.1 Finite state automaton

Below, we show a classical definition of a finite state automaton which is
a basic element of networks of automata presented in the remainder of our
work.

Definition 3. (Finite state automaton) A finite state automaton (or DEF

finite state machine) A is defined by a tuple A = 〈L, l0, T,Σ〉 where:

• L is a finite set of locations1,

• l0 ∈ L is the initial location,

• T ⊆ L × Σ × L is the set of transitions. Each transition repre-
sents a change between two states. A transition is denoted by t =
(α (t) , λ (t) , β (t)), which means that the transition t is labeled with
λ (t), its starting location is α (t) and its final location is β (t),

• Σ is an alphabet of actions (a finite set of symbols). �

In the definition above, we can see that, like we did in the case of timed
transition system, transitions can be attributed to some symbols of the al-
phabet Σ. For that reason, this type of automaton is also commonly referred
to as labeled automaton.

It is noteworthy that there exists some other similar definitions of finite
state automata. For example, there is a popular notion of acceptor finite
state machine which distinguishes an additional set of final states. Every
time one of the final states is reached, it means that a procedure consisting
of a sequence of transitions was finished successfully. However, the definition
presented above is sufficient to consider the problems raised in this book.
Therefore, we confine ourselves to this definition.
Basically, automata can be divided into two subgroups: deterministic

and non-deterministic automata. We say that an automaton is deterministic
if, for any input state, there is at most one possible transition which can be
executed. Otherwise, if for a single input state there is more than one possible
transition, the automata is non-deterministic. For a finite state automaton,
every non-deterministic automaton can be transformed into a deterministic
automaton which accepts the same language, i.e. a set of words accepted by
automaton. In the rest of the book, we assume that the models we use are
non-deterministic. In this context, the solutions that we present are quite
universal.

Example 1. An example of a graphical representation of a finite state EXM

1When we consider a finite state machine, notions of locations and states can be used
interchangeably. Be aware that in the case of timed automaton and its extensions, a state
frequently stores more than a location. It can for example contain information about time.
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Figure 2.1: A finite state automaton (2.1a) and a network of finite automata
(2.1b).

automaton is given in Figure 2.1a. l1 is the initial state. There are three
types of actions: a, b, and c. Note that the same action can be associated
with more than one transition in the model. Thus, in this figure we can
observe two transitions labeled by the same action b.

Note that each execution of such an automaton can be represented as a
sequence of actions with the initial state in the beginning. However, when
we consider a simple word of two actions cb, we can observe that the word
can represent two possible executions. That is because of action b which
introduces non-determinism into the model.

2.2.2 Network of finite state automata

Once we have a notion of a single finite automaton, we can take more than
one of them and construct a more complex system. Such a complex system
provides us with a possibility to model a distributed system in which events
can appear in parallel. Network of automata can naturally provide indepen-
dent functional elements of a distributed system where a single automaton
reflects a single element of the system. Below, we present a formal definition
of network of finite state automata.

Definition 4. (Network of finite state automata) A network of finiteDEF

state automata is a set {A1, . . . ,An} of n finite state automata with Ai =
〈Li, l0i, Ti,Σi〉. We note Σ =

⋃
iΣi the set of all action names. �

The activity of the automata is synchronized on transitions having the
same label. Formally, we define the set of synchronizations Sync as the set of
(t1, . . . , tn) ∈ (T1 ∪ {•})× . . .× (Tn ∪ {•}) such that (t1, . . . , tn) 6= (•, . . . , •)
and there exists a ∈ Σ such that λ (ti) = a for every ti 6= •, and a 6∈ Σi for
every ti = •.
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A global state of the network consists of current locations of all the
automata. We note it by the vector ~l, thus ~l ∈ L1 × . . . × Ln. The initial
global state is (l01, . . . , l0n).

Definition 5. (Semantics of NA) Let N = {A1, . . . ,An} be a network DEF

of automata, where Ai = 〈Li, l0i, Ti,Σi〉. The semantics of N is a labelled
transition system 〈Q, q0,→,Σ〉 where:

• Q = L1 × . . .× Ln,

• q0 = (l01, . . . , l0n),

• the transition relation → is defined by:

– action transition: ~l
a
−→ ~l′ iff there exists (t1, . . . , tn) ∈ Sync such

that ∀i ≤ n ,

{
l′i = li ∧ ti = • if a /∈ Σi

ti = (li, a, l
′
i) otherwise

�

Example 2. An example of such a network with two automata is given EXM

in Figure 2.1b. The set of actions consists of three symbols {a, b, c}. To
distinguish the transitions with the same symbol, we put an extra number
between parenthesis next to each of the symbols. The set of synchronizations
is as follows Sync = {(a, •) , (•, c) , (b (1) , b (3)) , (b (2) , b (3))}. Thus, a and
c are local actions, whereas b requires synchronization of the two automata.

2.2.3 Timed automata

Timed automata were introduced in [6] as an extension of classical automata.
The first timed automata were equipped with perfectly synchronized clocks.

This gives a possibility to model time which is very important for many
practical reasons. As we can expect, there are many algorithms for which
right timing is crucial and determines whether it works correctly or not. The
timed automaton introduced in [6] has been modified many times since its
creation. Many of its different variants were analyzed, for example in the
context of number of clocks, or a type of time constraints. Below, we will
try to bring closer all basic aspects of timed automata and show a bit of its
different variants.

Before we define timed automata, we introduce several notions which are
required to add time into the model.

First, let us define a set X of clocks, each of which is a variable taking a
value in R≥0. A valuation of the clocks is defined by a function v : X → R≥0.
Thus, if we want to read a value of a clock x, we use v (x).

C (X) is a set of conjunctions of constraints of the form x ⊲⊳ c, where
x ∈ X, c ∈ R and ⊲⊳∈ {<,≤,=,≥, >}. C< (X) is a set of conjunctions of
constraints of the form x < c or x ≤ c. A valuation v satisfies the atomic
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constraint x ⊲⊳ c iff v (x) ⊲⊳ c. This interpretation naturally extends to more
general constraints.

The formal definition of syntax of a timed automaton is as follows.

Definition 6. (Timed automaton) A timed automaton is a tuple A =DEF

〈L, l0, X,Σ, T, Inv〉 where:

• L is a finite set of locations, also called control states,

• l0 ∈ L is the initial location,

• Σ is a finite alphabet of actions,

• X is a finite set of clocks,

• T ⊆ L × C (X) × Σ × 2X × L is a finite set of transitions. A tuple
t = (α (t) , γ (t) , λ (t) , ρ (t) , β (t)) represents a transition from the state
α (t) to the state β (t), labeled by the action λ (t), with guard γ (t) and
a set of clocks ρ (t) reset by t,

• Inv : L→ C< (X) assigns an invariant to each location. �

As we can expect, to describe the current state of timed automaton, we
need to know at least two elements: the active location and the value v
of all clocks in X. In other words, the state of timed automaton is a pair
(l, v) ∈ L × RX

≥0. Semantics of timed automata can be described using a
previously described timed transition system and is as follows.

Definition 7. (Semantics of timed automaton) Let us take a timedDEF

automata A = 〈L, l0, X,Σ, T, Inv〉. The semantics of A can be defined as
the timed transition system 〈Q, q0,→,Σ〉 where:

• Q = L× RX
≥0,

• q0 = (l0, v0) with v0 (x) = 0 for every x ∈ X,

• the transition relation → is composed of:

– action transition: (l, v)
a
−→ (l′, v′) iff

∃ (l, g, a, r, l′) ∈ T ,





v |= g (1)
v′ = v [r] (2)
v′ |= Inv (l′) (3)

– delay transition: if d ∈ R≥0, (l, v)
d
−→ (l, v + d) iff v+d |= Inv (l).

Let us note that given the form of invariants, v+ d′ |= Inv (l) for
every 0 ≤ d′ ≤ d.
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l1 l2 : x ≤ 1

a : [x]

b

c : [x]

Figure 2.2: Timed automaton

The system operation begins with the state in which the initial location
is active, and the values of all clocks are equal to 0. During operation of
timed automaton, there are two types of actions that take place alternately.
By analogy with timed transition systems from Definition 1, there are con-
tinuous transitions – related to the passage of time, and discrete transitions
– associated with the change of location in the machine. In the case of
discrete transitions, there are three conditions highlighted in the definition,
which must be met: 1) the guards of the transition g have to be satisfied, 2)
the clocks in r have to be reset to 0, and c) the invariant Inv (l′) assigned to
the new location has to be satisfied. In the original model defined in [6], it
is assumed that the values of all the clocks change synchronously with the
same frequency. It should be noted that none of the clocks can be stopped
at any time, i.e. the time progresses continuously without any interruptions.

An important feature of models of this type is the property of urgency.
This means that the model designer may impose time constraints, e.g. forc-
ing the system to change the state at a particular moment of time or blocking
the possibility of transition to a new state during a specified period of time.

Example 3. Let us consider the timed automaton in Figure 2.2. It has EXM

two clocks x, y. Consider an exemplary fragment of scenario representing an

execution of timed automaton: (l1, (0, 0))
2
−→ (l1, (2, 2))

a
−→ (l2, (0, 2))

1
−→

(l2, (1, 3))
c
−→ (l2, (0, 3))

0.5
−→ (l2, (1, 4))

b
−→ (l1, (1, 4)) . . .. As previously

defined, the state of timed automaton is described by a pair consisting of its
current location and the vector containing the values of all clocks. In this
case, we have two clocks x, y. Thus, pair (2, 3) means that the value of the
clock v (x) = 2, and the value of the clock v (y) = 3.

Note that, on this basis, we can specify a timed word which we defined
when describing timed transition systems. Having the sequence, of events we
can convert it to the following sequence: (l0, (0, 0) , t0)

a
−→ (l0, (0, 2) , t1)

c
−→

(l0, (0, 3) , t2)
b
−→ (l0, (1, 4) , t3) . . ., where ti ∈ R≥0, t0 = 0 and ti ≤ ti+1 for

every i. As we can observe, states produced as a result of delays were removed
from the original sequences. While the other states which arose directly as
a result of discrete event remained. In addition, each of these states was
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extended with additional information about absolute time of occurrence of
an event that produced the state, that is the time counted from the beginning
of the operation of the automaton. In our case: t1 = 2, t2 = 3, t4 = 4. In
other words, by taking the difference ti+1 − ti, we obtain the delay between
successive discrete movements. Considering all these data, the timed word
which corresponds to the sequence of events from our example takes the
form: (a, 2) (c, 3) (b, 4).

2.2.4 Network of timed automata

Given the notions of network of automata and timed automata, we can move
to a model that combines the key features of both these models, namely the
network of timed automata.

Definition 8. (Network of timed automata) A network of timed au-DEF

tomata (NTA) is a set N = {A1, . . . ,An} of n timed automata with Ai =
〈Li, l0i, Xi,Σi, Ti, Invi〉.

We make the assumption that clocks are not shared between automata,
i.e. ∀Ai,Aj ∈ N , Xi ∩Xj 6= ∅. The set of synchronizations Sync is defined
as in the untimed case in Definition 4. We note X =

⋃
iXi the set of all

clocks. �

The state of network of timed automata consists of a mix of information
about all the active locations and values of all the clocks. Thus, it is quite
similar to the definition of timed automaton except the fact that there are
now several automata instead of one. In the definition we additionally ensure
that all the valuations of the clocks satisfy the relevant invariants assigned
to the current locations. The initial state consists of all the initial states of
all the components.

As we can expect, there are two types of transitions as it is defined for
timed transition systems, i.e. action transitions and delay transitions. We
assume that an action transition can also represent a synchronization. For
this reason, we do not distinguish these two notions below. In the first case,

in order to execute an action transition
(
~l, v

)
a
−→

(
~l′, v′

)
, the following

conditions have to be satisfied: the transition has to be a valid transition in
terms of definition for network of automata (see Definition 4), upon exercise
of transition the values of clocks have to satisfy restrictions associated with
them, appropriate clocks associated with active transitions have to be reset,
and finally all the invariants assigned to all the final locations have to be
satisfied. The delay transition describes a transition in time. In this case,
all the active locations stay unchanged and only the values of the clocks are
modified. Thus all invariants have to be correct during this modification.

A typical formal definition of semantics of network of timed automata
is presented below. For any synchronization t = (t1, . . . , tn) ∈ Sync, Is =
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l1

l2 : x ≤ 1

l3 : y ≤ 1

l4

a : [x] b(2) : x = 0

b(1) : [x]

b(3)

c : y = 1, [y]

A1 A2

Figure 2.3: Network of two timed automata

{i ∈ [1..n] | ti 6= •} denotes the set of indices of automata concerned by the
transition.

Definition 9. (Semantics of NTA) The semantics of network of timed DEF

automata N = (A1, . . . ,An) can be defined by the following timed transition
system (Q, q0,Σ,→) where:

• Q =
{(

~l, v
)
∈ (L1 × . . .× Ln)× (X → R≥0)

∣∣∣ v |=
∧

i Invi (li)
}
,

• q0 =
(
~l0, v0

)
, such that ∀x ∈ X, v (x) = 0,

• the transition relation →∈ Q× (Σ ∪ R≥0)×Q is composed of:

– action transition:
(
~l, v

)
a
−→

(
~l′, v′

)
iff

∗ ∃q = (t1, . . . , tn) ∈ Sync , ∀i ≤ n ,

{
l′i = li ∧ ti = • if a /∈ Σi

ti = (li, gi, a, ri, l
′
i) otherwise

∗ v |=
∧

i∈IS
gi, v

′ = v
[⋃

i∈IS
ri

]
, and v′ |=

∧
i Invi (l

′
i)

– delay action: ∀d ∈ R≥0,
(
~l, v

)
d
−→

(
~l, v + d

)
iff ∀d′ ∈ [0, d] , v +

d′ |=
∧

i Invi (li). �

Example 4. Let us consider an example in Figure 2.3 which is an exten- EXM

sion of our previous example in Figure 2.1b. There are two timed automata
with two clocks x and y. Each of the locations is marked with a label and
invariants. The transitions are labeled with their action (a, b, or c), the
guard on clocks, and the set of resets (in square brackets). Let us consider a
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simple scenario: ((l1, l3) , (0, 0))
1
−→ ((l1, l3) , (1, 1))

c
−→ ((l1, l3) , (1, 0))

a
−→

((l2, l3) , (0, 0))
0.5
−→ ((l2, l3) , (0.5, 0.5))

b
−→ ((l2, l4) , (0, 0.5)). As we can ob-

serve in the beginning of our scenario, the first executed transition is an
action transition c. In order to fire this transition, we have to wait one
unit (y = 1). Than we reset the clock y. After that, we decide to execute
transition a which causes reset of clock x. Half a unit of time later, we
execute the synchronization b which resets the clock x. What is interesting
to note: having only the scenario, we can deduce which specific transitions
were fired. Namely, if we ignore for a moment all the guards, for the state
((l2, l3) , (0.5, 0.5)), there are two possible synchronizations with the same
label b. But since we know that the values of both clocks are 0.5 and that
there is a guard x = 0 next to the transition b (2), we know that only the
synchronization of b (1) with b (3) is possible. This problem will be clearer
once we discuss the problem of supervision.

2.2.5 Network of parametric automata with linear constraints

In the further part of the book we use also a network of parametric automata
with linear constraints (see Section 5.4). This type of model is an extension
of timed automata and is much more expressive. The main difference consists
of the form of constraints assigned to locations and transitions of automata.
Each constraint can represent a not necessarily closed convex polyhedron
(NNC Polyhedron; see e.g. [9]). In other words, it is a conjunction of linear
constraints (strict or non-strict) (see also Section 5.4.1) which represent a
finite number of open or closed affine half-spaces.

Let CP (Y ) be a system of linear constraints on Y (see the beginning of
the chapter).

Definition 10. (Parametric automaton with linear constraints)DEF

A parametric automaton with linear constraints is a tuple 〈L, l0, X,Σ, T,
InvΠ,Π, DΠ〉 where:

• L is a finite set of locations,

• l0 ∈ L is the initial state,

• X is a finite set of clocks,

• Σ is a finite alphabet of actions,

• T ⊆ L× CP (X ∪Π)× Σ× 2X × L is a finite set of transitions,

• InvΠ : L→ CP (X ∪Π) assigns an invariant to any location.

• Π is a finite set of parameters and Π ∩ (L ∪ T ∪X) = ∅, and

• DΠ is a conjunction of linear constraints describing the set of initial
constraints on the parameters. �
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Given a notion of a single parametric automata we define a network of
automata.

Definition 11. (Network of parametric automata with linear con- DEF

straints) A network of parametric automata with linear constraints (NPA)
is a set N = {A1, . . . ,An} where Ai = 〈Li, l0i, Xi,Σi, Ti, InvΠi

,Πi, DΠi
〉 is a

parametric automata with linear constraints. We make the assumption that
clocks are not shared between automata.

We assume that there exists a set of labels describing synchronizations
Σsync. There also exists a function sync :

⋃
Ti → 2Σsync . The activity of the

automata is synchronized on transitions having the same synchronization
labels. �

We can note that the method of synchronization is slightly different in
comparison with a network of timed automata from Definition 4. This
method of synchronization reflects, for example, the mechanism used in
Spinta (see Section 5.4).

The semantics of an NPA is quite similar to the one of a network of
timed automata. In order to define it, we assume below that we already
know the semantics of a network of automata with linear constraints and
without parameters. This assumption comes from the fact that the only
difference between networks of timed automata and networks of automata
with linear constraints and without parameters is the form of expressions
used in invariants and guards.

Definition 12. (Semantics of NPA) Given an NPA N = {A1, . . . ,An} DEF

in which Ai = 〈Li, l0i, Xi,Σi, Ti, InvΠi
,Πi, DΠi

〉, its semantic can be defined
by a valuation v ∈

⋂n
i=1DΠi

and the semantics of a network of automata
with linear constraints (without parameters) Nv = {A′1, . . . ,A

′
n} in which

A′i = 〈Li, l0i, Xi,Σi, Ti, Invi〉, such that

∀l ∈
n⋃

i=1

Li , Invi (l) = InvΠi
(l) (v)

∀t ∈
n⋃

i=1

Ti , γi (t) = γΠi
(t) (v)

where γΠi
(t) denotes a guard of the transition t in the automaton Ai,

γi (t) denotes a guard of the transition t in the automaton A′i . �

2.3 Time Petri nets

In this part of the chapter, we present the second class of models which
will be dealt with later in the book, namely, time Petri nets. Similarly
to the previous section, presentations is divided into several parts. At the
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beginning of the presentation we give a general outline of the safe Petri nets
and key concepts related to them. Then, we move onto the aspect of time
constraints in Petri nets, namely, we define so called time Petri nets. The last
part presents a generalized version of the time Petri net, i.e. a parametric
time Petri net which potentially gives us more possibilities of application.

2.3.1 Safe Petri nets

Petri nets proposed by Petri in [78], like networks of timed automata, are
used for modeling distributed systems. However, the structure and mode
of operation offered by Petri nets is significantly different from networks of
timed automata. Our introduction to Petri nets starts with a definition of a
place/transition net to which we will often refer in the rest of the work (see
e.g. Section 2.6.1) as it is a kind of framework for more complex structures
including Petri nets.

Definition 13. (Place/transition net) A place/transition net (P/T net)DEF

is a tuple 〈P, T,W 〉 where:

• P is a finite set of places,

• T is a finite set of transitions, with P ∩ T = ∅, and

• W ⊆ (P × T ) ∪ (T × P ) is the transition incidence relation.

This structure defines a directed bipartite graph such that (x, y) ∈ W iff
there is an arc from x to y. We further define, for all x ∈ P ∪ T , the
following sets:

• •x = {y ∈ P ∪ T | (y, x) ∈W}, and

• x• = {y ∈ P ∪ T | (x, y) ∈W}.

These set definitions naturally extend by union to subsets of P ∪T , i.e. given
a set X ⊆ P ∪ T , •X =

⋃
x∈X

•x and X• =
⋃

x∈X x•. �

A marking M is a mapping in NP such that, for each M ∈ NP , M (pi)
denotes the number of tokens in the place pi. Having the notion of marking,
below we formalize what Petri nets are.

Definition 14. (Petri net) A Petri net (PN) is a marked P/T net, i.e. aDEF

pair (N ,M0) where N = 〈P, T,W 〉 is a P/T net and M0 ∈ NP is a marking
of N , called the initial marking. �

A transition t of a Petri net may be executed iff there is a token at each
of its input place. When the transition fires, it consumes all the mentioned
tokens and creates one token in each output place.

In this document we restrict our study to 1-safe nets, i.e. nets such that
for each p ∈ P , M (p) ≤ 1. Therefore, in the rest of the work, we will usually
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identify the marking M with the set of places in which for each place p,
M (p) = 1. Note that k-safe Petri nets (M (p) ≤ k) can be reduced to 1-safe
Petri net (see [23]). A transition t ∈ T is enabled in a marking M iff M ≥ •t.
Moreover we denote by enabled (M) the set of transitions enabled by m. A
transition t′ is newly enabled after executing t from the marking M iff it is
not enabled by M − •t and it is enabled by M − •t+ t•. Formally, it can be
expressed as follows:

↑ enabled
(
t′,M, t

)
=

(
M − •t+ t• ≥ •t′

)
∧
[(
M − •t < •t′

)
∨
(
t = t′

)]

2.3.2 Time Petri nets

Time Petri nets were described for the first time in [72]. This model was
introduced as an extended version of Petri nets. It is additionally equipped
with time constraints imposed on starting times for transitions. As we will
see below, these constraints take the form of time intervals assigned to each
transition. If clock values for a given transition are within its time interval,
the transition can be executed. It is worth noting that the model should not
be confused with the timed Petri nets [79] in which transitions are fired as
soon as they are enabled.

Definition 15. (Time Petri net) A time Petri net (TPN) is a tuple DEF

〈P, T,W,M0, eft, lft〉 where:

• 〈P, T,W,M0〉 is a Petri net and

• eft : T → Q≥0 and lft : T → Q≥0 ∪ {∞} associate the earliest firing
delay eft (t) and the latest firing delay lft (t) with each transition t. �

A state of time Petri net is a pair (M, v) where M is a marking and
v ∈ (Q≥0)

T is a valuation such that each value vi is the elapsed time since
transition ti was last enabled.

Definition 16. (Semantics of time Petri net) The semantics of a DEF

time Petri net 〈P, T, F,M0, eft, lft〉 is a timed transition system 〈Q, q0,Σ,→〉
where:

• Q = NP × (Q≥0)
T ,

• q0 =
(
M0,~0

)
,

• the transition relation→∈ Q×(T ∪Q≥0)×Q consists of two transition
relations:

– the discrete transitions are defined for all ti ∈ T by
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p2

p3p1

p4 p5

t4
[0,∞[

t5
[2, 6]

t2
[2, 4]

t3
[1, 3]

t1
[0,∞[

Figure 2.4: A time Petri net

(M, v)
ti−→

(
M ′, v′

)
iff





M ≥ •ti ∧M ′ =M − •ti + ti
•

eft (ti) ≤ vi ≤ lft (ti)

v′k =

{
0 if ↑ enabled (tk,M, ti)

vk otherwise

– the continuous transition are defined for all d ∈ Q≥0 by

(M, v)
d
−→

(
M, v′

)
iff

{
v′ = v + d
∀tk ∈ enabled (M) , v′k ≤ lft (tk)

�

A run of a time Petri net is a path starting in q0 and for which, like
in timed transition systems, we can consider alternation of two types of
operations: discrete and continuous ones.

Example 5. In Figure 2.4, we can observe an example of a time Petri netEXM

which consists of two separate components. The initial marking is {p1, p3}.
There are five transitions, each of which has a certain time interval assigned
to it. The initial marking enables three transitions. However, when we
consider their time constraints and the initial state of the model, denoted by
q0, we note that only the transition t1 is available at the global time 0. Now
let us shortly analyze the following scenario of the system.

• In the beginning, we decide to wait two units of time without moving
the two tokens.

q0
2
−→ q1, M1 =M0, v (t1) = v (t2) = v (t3) = 2;
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• After two units of time, it appears that not only t1 but also t2 and t3
are available for execution. We can nondeterministically chose to fire
one of the transitions. We decide to execute t3. We can observe that
one token was consumed and two new tokens were produced. This fact
implies that time for transitions related to places p4 and p5 starts to
progress.

q1
t3−→ q2, M2 = {p1, p4, p5}, v (t1) = v (t2) = 2, v (t4) = v (t5) = 0;

• We decide to spend two units of time after which we can observe that
the transition t2 becomes urgent and has to be fired immediately.

q2
2
−→ q3, M3 =M2, v (t1) = v (t2) = 4, v (t4) = v (t5) = 2;

• We fire the transition t2.

q3
t2−→ q4, M4 = {p2, p4, p5}, v (t4) = v (t5) = 2;

• Three units of time elapse.

q4
3
−→ q5, M5 =M4, v (t4) = v (t4) = 5;

• Finally, we fire the transition t5 which represents a loop and does not
change the marking.

q5
t5−→ q6, M6 =M5 v (t2) = v (t3) = 4, v (t4) = 1;

In the example, we can observe important properties of time Petri nets such
as: notion of urgency, influence of time constraints onto availability of tran-
sitions, nondeterminism, loops. In Figure 2.4 we can observe one more tran-
sition which is not executed in the scenario, i.e. t4. We mention it because
of its importance in terms of Chapter 4 as it represents a special kind of
loops. In theory, the transition t4 is a potential source of what is called Zeno
behavior , i.e. it can be fired infinitely many times in a certain finite amount
of time. The presence of such loops in the model can simply be verified by
detection of loops with the minimal execution time equal to 0. It is not
always possible to remove such behaviors from models. That is why we have
to deal somehow with them depending on the problem we consider.

2.3.3 Parametric time Petri nets

A mainstream way of adding time to Petri nets is by equipping transitions
with a time interval [72, 20] as we described in the previous section. In this
section, we consider an extension allowing the designer to leave open the
knowledge of time bounds by putting symbolic expressions on parameters in
time intervals instead of rational constants.

Definition 17. (Parametric time Petri net) A parametric time Petri DEF

net (PTPN) is a tuple 〈P, T,W,M0, eft, lft,Π, DΠ〉 where:
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t0[0, 0]

p1

p3

p2

p4

t1[0,∞[ t2[a, b]

t3[2, 2]

p5
Π = {a, b}
DΠ = {a ≤ b}

Figure 2.5: A parametric Petri net

• 〈P, T,W,M0〉 is a Petri net,

• Π is a finite set of parameters and Π ∩ (P ∪ T ) = ∅,

• DΠ is a conjunction of linear constraints describing the set of initial
constraints on the parameters, and

• eft : T → Q≥0 ∪ Expr (Π) and lft : T → Q≥0 ∪ {∞} ∪ Expr (Π)
are functions respectively called earliest (eft) and latest (lft) transition
firing times. For each transition t ∈ T , if eft (t) and lft (t) are constants,
it is assumed that eft (t) ≤ lft (t), otherwise, it is assumed that DΠ ⇒
eft (t) ≤ lft (t). �

Definition 18. (Semantics of parametric time Petri net) Given aDEF

parametric time Petri net N = 〈P, T,W,M0, eftΠ, lftΠ,Π, DΠ〉 its semantic
can be defined by a valuation v ∈ DΠ and semantics of time Petri net
Nv = 〈P, T,W,M0, eft, lft〉 such that

∀t ∈ T ,

{
eft (t) = eftΠ (t) (v)
lft (t) = lftΠ (t) (v)

�

Example 6. Figure 2.5 gives an example of a parametric time Petri net.EXM

Notice that the time interval of transition t2 refers to two parameters a and
b. The only initial constraint is DΠ = {a ≤ b}.
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2.4 Decidability and other interesting issues

Networks of timed automata

A network of timed automata can be seen as the parallel composition A1 |
· · · | An of a set of timed automata. As such, it does not add expressive
power in relation to a timed automata. Therefore, it is usually sufficient
to consider only a single timed automaton in order to prove decidability of
various problems.
The technique which was used to prove decidability of many verification

problems for timed automata was directly introduced by the authors of the
model ([5, 6]). The technique was based on the construction of a special
region automaton. This method was initially used to prove the reachability
of a control state in a timed automaton. The principle of this technique
relies on an abstraction of the behavior of the timed automaton. Namely,
the authors used the fact that constant values in the time constraints of the
model are countable. Thus, following this fact, they decided to group some
states for which the trajectories of the model are always the same. This let
them create a so called region graph in which each region represents a group
of the similar states. Finally, from the region graph, the related finite region
automaton was constructed. This way, it was proven in [6] that checking the
reachibility of a location in a timed automaton is decidable and that it is a
PSPACE-Complete problem.
It appeared that, using this technique, several verification problems such

as untimed language inclusion or language emptiness can be solved. Unfor-
tunately, the language inclusion problem and the universality problem are
undecidable [5, 6]. Moreover, timed automata can not be complemented, i.e.
there exists a timed language whose complement cannot be accepted by any
timed automaton. Untimed bisimilarity for timed automata is decidable in
EXPTIME [63].
It is worth mentioning that in order to improve verification of timed

automata, a more efficient technique was later developed. The technique is
based on so called zones. Intuitively, a zone represents a set which groups all
regions satisfying some time constraints. It is well-known that such sets can
be efficiently represented and stored in memory as DBMs (Difference Bound
Matrices) [13]. For example, this technique is used in a software tool called
Uppaal [64, 14].

Timed automata with diagonal clock constraints

In Definition 6 of timed automata, the only possible form of timed constraints
was x ⊲⊳ c. However, already in the original work of Alur and Dill, a different
type of constraints was mentioned. Namely, the diagonal constraints of the
form x − y ⊲⊳ c in which x and y stand for clocks and c is an integer. In
terms of modeling, the diagonal constraints give us a better way to express
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time constraints which are more difficult and more complex to write using
the constraints x ⊲⊳ c. This was already shown for example in [24] that
application of diagonal constraints give a more compact form of the whole
model.

In the context of expressiveness a timed automaton with diagonal con-
straints has the same power as the original timed automata with simple
constraints. This was proven in [19]. The main principle of the translation
between the two versions of the model is as follows: for each diagonal con-
straint x − y ⊲⊳ c, two copies of the original automata are made. In one of
the copies, the constraint x − y ≤ c is satisfied; and in the second one it is
x − y > c which is hold. Depending on the values of clocks (which depend
on reset to zero), we use the appropriate copy of the automaton. As we can
expect, the translation procedure suffers from an exponential blowup in the
number of diagonal constraints.

It is worth noting that checking reachability of such timed automata is
decidable.

Apart from the diagonal constraints, there are also some other types of
time constraints which were studied, like for example: additive time con-
straints which are of the form x + y ⊲⊳ c. It is more expressive than the
original timed automata. Unfortunately, in the case of additive time con-
straints, the problem of reachability is in general undecidable.

Updates of clocks

Another extension of the original timed automaton is based on different
types of clock update operations. In the basic model, the only possibly
modification of the value of the clocks is the reset to zero (x := 0). However,
an update operation can have many other forms. For example, instead of
reseting a clock to zero, the clock can be reset to some constant c. Thus, we
obtain an update operation x := c. We can even extend this operation and
use more than one clock, e.g. x := y + c, where x, y are clocks.

Updatable timed automata, as automata with update operations are
called, were analyzed for example in [25]. It appeared that many of the
considered update operations were too powerful and made the reachability
problem undecidable. However, it has been proved that the reachability
problem for timed automata with updates of the form x := c is decidable.

Some extensions and subclasses

Linear hybrid automata ([80]) are not of a special interest in our book. How-
ever, it is still one of the well-known extensions of timed automata. When we
compare it to the original timed automata, we can note differences like: gen-
eral linear functions in constraints, updates of derivatives of variables, more
general updates on variables. Unfortunately, many verification problems for
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linear hybrid automata are undecidable.
Since even the original version of timed automaton was found too hard

for model verification, some simpler subclasses of the model were also inves-
tigated.

One of the possible simplifications of the model is decrement of the num-
ber of clocks. The first case which was of special interest was a timed au-
tomaton with one clock. It was found that many verification problems can be
checked quite efficiently for this type of automaton. Besides, problems like
timed language inclusion for finite words, emptiness for one-clock alternating
automata are decidable ([76, 65]).

Another known subclass which was introduced in [7] is called event-
recording automata. This particular class of timed automata assigns to each
action a corresponding clock. Thus, the set of clocks is X = {xa | a ∈ Σ}.

Time Petri nets

One of the key problems for time Petri nets is reachability of a given marking
and boundedness. Both these issues have been addressed in [59], in which
the authors proved that they are undecidable. The consequence of this is also
the undecidability of problems such as liveness and reachability of states.

Similarly to the case of networks of timed automata, in order to increase
the efficiency of verification of time Petri nets, abstraction methods were
proposed. These methods rely on the grouping of certain states creating this
way classes so that the reachability analysis may be conducted on them. Ex-
amples of this approach can be found in the work of [22, 20] which proposed
the state class graph, and in [50] where the authors describe the zone graph.

Some extensions

The main extension of time Petri net we are interested in our work is a
parametric time Petri net. We have already mentioned them in this chapter
when presenting each of the models. As we will see in the next section, such
a model can e.g. control the behavior of the model by changing parameters
in the intervals associated with transitions. This model has been described
in [86].

Another interesting extension of a time Petri net is a stopwatch Petri
net described in [21]. This model allows for suspension and resumption of
actions.

The definition of this model is additionally extended by stopwatch inci-
dence relation, Ws ⊆ P × T . Intuitively, when we look into the semantics
of time Petri net, it states that any enabled transition measures the time
during which it has been enabled and an enabled transition can only fire
if that time is within the time interval of the transition. Also, unless it is
disabled by the firing of another transition, the transition must fire within
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the interval: a finite upper bound for the time interval then means that the
transition will become urgent at some point. For stopwatch Petri net, the
time during which the transition t has been enabled progresses if and only if
all its activating places, that are places in {p ∈ P | (p, t) ∈Ws}, are marked.
Otherwise it is “frozen” and keeps its current value.

2.5 Comparison of timed automata and time Petri

nets

Knowledge about similarities and differences of the two models can be crucial
in the design process of distributed systems. It not only allows the designer
to choose the right model as the basis for the system, but it also helps to
improve, modify, and exploit in some new ways already existing systems.

So far there has been many works conducted in order to describe both
networks of timed automata and time Petri nets. They have proven its
usefulness in many practical, real life problems. There is a significant number
of various applications in many outwardly different domains. However, many
of these problems have been specifically addressed for certain subclasses of
the models. Therefore, the desire to compare the two models appears to
be the most natural and desirable. Translation between the models opens a
great number of possibilities to reuse many solutions which, for the moment,
are available for only one of the models. We can imagine that there is a
specific algorithm to check a property on Petri nets and that does not exist
for timed automata. If we can translate the timed automata into Petri net
we would probably be able to check the property for timed automata without
inventing and developing new methods and algorithms. This approach was
already adapted in many cases.

In this section, we present the most popular ways of comparing models
with time constraints. Then we briefly present the existing results concerning
the conversion of networks of timed automata into time Petri nets, and vice
versa.

2.5.1 Timed similarity

There are many ways in which systems with time can be compared. In this
section, we will focus on the most interesting ones which are timed language
equivalence, strong timed similarity, weak timed similarity, and distributed
timed language equivalence.

We start with the most basic class of equivalence which is the equivalence
of timed languages. Below, we use notions introduced in Section 2.1.

Definition 19. (Equivalence of timed languages) Let T1 = 〈S1, S
1
0 ,→1DEF

,Σ1〉 and T2 = 〈S2, S
2
0 ,→2,Σ2〉 be two timed transition systems. T1 and T2



2.5. Comparison of timed automata and time Petri nets 61

are language equivalent if L (S1) = L (S2) for acceptance conditions defined
as usual from final states or Büchi conditions. �

Below we present two different timed similarity relations which are some-
times called branching equivalences. This is caused by the fact that they take
into account the branching structures of the concerned timed transition sys-
tems.

Definition 20. (Strong timed similarity) Let T1 = 〈S1, S
1
0 ,→1,Σ1〉 and DEF

T2 = 〈S2, S
2
0 ,→2,Σ2〉 be two timed transition systems. Let � be a binary

relation over S1 × S2. We say that � is a strong timed simulation relation
of T1 by T2:

1. if s1 ∈ S1
0 there exists some s2 ∈ S2

0 such that s1 � s2,

2. if s1
d
→1 s

′
1 with d ∈ R≥0 and s1 � s2, then s2

d
→2 s

′
2 for some s′2, and

s′1 � s′2,

3. if s1
a
→1 s

′
1 with a ∈ A and s1 � s2, then s2

a
→2 s

′
2 and s′1 � s′2.

If there exists a strong timed simulation relation of T1 by T2, we say that T2
strongly simulates T1 and we denote it by T1 �S T2. �

When there are two transition systems T1 and T2, and there exists a
strong simulation relation �S such that T1 �S T2 and T2 �

−1
S T1, where

�−1S ≡�S , we say that �S is a strong timed bisimulation. To emphasize this
situation, we write T1 ≈S T2 instead of T1 �S T2. Moreover, the existence of
such a relation between the two systems means that they are strongly timed
bisimilar.

Below, we define another type of similarity which is called weak similarity.
Unlike in the case of strong similarity, weak similarity gives the possibility
of simulating a single move by a sequence. It is also stronger than language
equivalence and it is one of the most common equivalence relations for timed
systems.

Before we introduce the notion of weak similarity, we define a modified
version of a timed transition system T = 〈S, S0,→,Σǫ〉 (see e.g. [16]) by
removing ǫ transitions . Thus T ǫ = 〈S, Sǫ

0,→ǫ,Σ〉 is defined as follows:

• s
d
→ǫ s′, where d ∈ R≥0 iff there exists a run ρ = s

∗
→ s′ such that

Untimed (ρ) = ǫ and Duration (ρ) = d,

• s
a
→ǫ s

′, where a ∈ Σ iff there exists ρ = s
∗
→ s′ such that Untimed (ρ) =

a and Duration (ρ) = 0,

• Sǫ
0 =

{
s ∈ S | ∃s′ ∈ S0 | s

′ ∗→ s ≡ ρ ∧Duration (ρ) = 0 ∧ Untimed (ρ) = ǫ
}
.
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Definition 21. (Weak timed similarity) Let T1 = 〈S1, s
1
0,→1,Σ1〉 andDEF

T2 = 〈S2, s
2
0,→2,Σ2〉 be two timed transition systems. Let � be a binary

relation over S1 × S2. � is a weak timed simulation relation of T1 by T2 if
it is a strong timed simulation relation of T ε

1 by T ε
2 . If there exists a weak

timed simulation relation of T1 by T2, we say that T2 weakly simulates T1
and we denote it by T1 �W T2. �

When there are two transition systems T1 and T2, and there exists a weak
simulation relation �W such that T1 �W T2 and T2 �

−1
W T1, where �−1W ≡�W ,

we say that �W is a weak timed bisimulation. To emphasize this situation,
we write T1 ≈W T2 instead of T1 �W T2. Moreover, existence of such a
relation between the two systems means that they are weakly timed bisimilar.

Note that, for the three presented relations, we have the following de-
pendencies:

• if T1 �S T2 then T1 �W T2, and

• if T1 �W T2 then L (T1) ⊆ L (T2).

The last type of equivalence relation we present is based on timed traces
which can be used to represent a partial order of executions of real-time
distributed systems. It is especially interesting when comparing distribution
of actions. Below we use a notion of process which, in short, represents all
elements of activity of the system, i.e. mainly events and order between
them.

Definition 22. (Timed trace, [11]) A timed trace over the alphabet Σ,DEF

and the set of processes Π = (π1, . . . , πn) is a tuple W = (E,�, λ, t, proc)
where:

• E is a set of events,

• �⊆ E × E is a partial order,

• λ : E → Σ is a labeling function,

• t : E → R≥0 assigns a date to each event. Moreover, if e1 � e2, then
t (e1) ≤ t (e2),

• proc : Σ→ 2Π maps each action to a subset of Π. �

The distributed timed language is a set of timed traces.

Example 7. In Figure 2.6, we consider a simple example of a timed traceEXM

with five events. As we can see, each event is characterized by a pair
(λ (e) , t (e)). A possible word for the timed trace is (a, 1) (b, 2) (c, 3) (e, 4) (d, 4).
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π2

π1
(a, 1) (c, 3) (d, 4)

(b, 2) (e, 4)

Figure 2.6: A timed trace

Definition 23. (Equivalence of distributed timed languages) If two DEF

timed transition systems produce the same set of timed traces, we say that
they accept the same distributed timed languages. �

Note that if two timed transition systems have the same distributed timed
languages they are timed bisimilar.

2.5.2 Translation between the models

The works which compare the expressiveness of both models are relatively
new when we compare them with the time of their introduction. Below, we
review some key results on the comparison of time Petri nets and networks
of timed automata.

One of the first interesting results was described in [56]. It was proven
that subclass of timed automata called timed state machines (diagonal-free,
without invariants, with strict constraints) is weakly timed bisimilar to 1-
safe non-Zeno time Petri nets with non-urgent semantics. A more general
translation was presented in [66, 67] where it was shown that the state class
graph construction of a bounded TPN can be represented as a timed automa-
ton. The automaton is called state class automaton. The timed automaton
and TPN are weakly timed bisimilar. However, in terms of complexity, the
construction appeared to be expensive and impractical.

On the other side, in [16] it was shown that there exists a TA A such
that there is no TPN that is weakly timed similar to A. In other words, TAs
are strictly more expressive than bounded TPNs with respect to weak timed
bisimilarity. The authors propose a structural translation from TA to 1-safe
TPN that preserves timed language acceptance.

Later, in [31, 30], another structural translation from TPN to TA was
presented that preserves weak timed bisimilarity of the TPN. Moreover, the
translation was implemented in Romeo [50]. This opened a possibility to use
existing software, called UPPAAL, which was originally designed to verify
networks of timed automata. In general, structural translation was found to
be a good alternative to the previous methods. The translation is syntactic
and it does not need expensive computations like in the case of the state
class graphs. Moreover, there is an easy correspondence of the clocks of the
TA with the timing constraints on the transitions of the base TPN. It was
also shown in [31] that the bounded TPN is a subclass of the class of TA
with respect to weak timed bisimilarity. Hence, for each safe time Petri net
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N , there exists a TA which is weakly timed bisimilar to N .
Another approach to the problem of translation was presented in [38].

The authors translate safe TPN to TA with avoiding the timed reachability
step. The method is based on the underlying untimed Petri net. They
construct what is called marking class timed automata. The translation is
strong timed bisimilar.

Knowing that TPN is strictly included in TA and that there exist TAs
that are not weakly timed similar to any TPN, the authors of [17] describe a
subclass of the class TA such that, for each automaton from that subclass, we
can find a TPN which is weakly timed bisimilar. For this purpose the authors
define uniform bisimilarity which is stronger than weak timed bisimilarity.
They show that the problem of deciding whether there is a TPN bisimilar
to TA is PSPACE-complete.

Quite recently, in [11], it was noticed that the translation procedures
which were introduced so far do not keep concurrency relations. Thus, they
decided to propose a translation technique from TPN to NTA which pre-
serves distributed timed language. In this approach, the untimed version of
the given time Petri net is decomposed into a number of subnets. Then,
each of the subnets is translated into an automaton with one clock. Finally,
the time constraints and synchronizations are translated. However, in or-
der to cope with the time constraints and the synchronizations, the authors
introduced special global invariants into the final NTA.

If the reader is interested in more information on the comparison of the
two models, we refer to [82]. The author compares three models: TA, NTA
and additionally TAPN (timed-arc Petri net) and describes weak and strong
sides of all the models, their expressiveness and possibilities of translation.

2.6 Observations and explanations

In the next chapter, we closely study topic of monitoring in distributed
systems. Before, however, we look at two basic elements that are part of
the monitoring process, i.e.: observations and explanations. Earlier, we also
introduce the semantics of true concurrency which is essential for structures
such as unfoldings of network of automata or unfoldings of Petri nets.

2.6.1 Semantics of true concurrency

The main task of the formal models which have been described is modeling
of distributed systems. However, to fully reflect the nature of these systems
and to capture all interesting properties, we have to consider more than the
standard sequential semantics. For this purpose, below we introduce some of
the key notions for the structures that will enable us a precise definition of
causal relations between events, for example, parallel events. A more detailed
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description of these structures taking into account the time constraints is
presented in the next Chapter 3.

First, let us recall the notion of P/T net (see Definition 13) and describe
it in more details.

We say that there is a path x1, x2, . . . , xn in a P/T net iff ∀i ∈ [1..n] , xi ∈
P ∪ T and ∀i ∈ [1..n− 1] , (xi, xi+1) ∈W .

In an acyclic P/T net, let us consider two distinct elements x, y ∈ P ∪T .

• x and y are causally related, which we denote by x < y, iff there exists
a path in the net from x to y.

• x and y are in conflict, which we denote by x#y, iff there exists two
paths p, t, . . . , x and p, t′, . . . , y, starting from the same place p ∈ P
but such that t 6= t′.

• x and y are in concurrency, which we denote by x co y, iff none of
the two previous relations holds, that is to say ¬(x < y) ∧ ¬(y <
x) ∧ ¬(x#y).

• x ∈ T and y ∈ T are in direct conflict, denoted x conf y, iff they share
in their presets the place that originated the conflict (•x∩ •y 6= ∅) and
•x ∪ •y is a co -set.

We can also find in the literature (e.g. [33]) the notion of weak causality
which is used in the presence of read arcs. However, in our work, we do not
consider it.

A set X ⊆ T of transitions are said to be in conflict, noted #X, when
some transitions consumed the same token. Formally:

#X = ∃x, y ∈ X , x 6= y ∧ •x ∩ •y 6= ∅

The causal past of a transition t is called local configuration and denoted
by ⌈t⌉. It is constituted by the transitions that causally precede t, i.e.
⌈t⌉ = {t′ ∈ T | t′ < t}.

Definition 24. (Occurrence net) An occurrence net is an acyclic P/T DEF

net 〈B,E, F 〉:

• finite by precedence, i.e. ∀e ∈ E , ⌈e⌉ is finite,

• such that each place has at most one input transition, i.e. ∀b ∈
B , |•b| ≤ 1,

• and such that there is no conflict in the causal past of each transition,
i.e. ∀e ∈ E , ¬# {e ∪ ⌈e⌉}. �
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Figure 2.7: A Petri net (2.7a) and its branching processes (2.7b)

We use the classical terminology of conditions and events to refer to the
places B and the transitions E in an occurrence net.

Having the definition of occurrence nets, we define the branching process
of a Petri net.

Definition 25. (Branching process of a Petri net) A branching processDEF

of a 1-safe Petri net N = 〈P, T,W,M0〉 is a labeled occurrence net β = 〈O, l〉
where O = 〈B,E, F 〉 is an occurrence net and l : B ∪ E → P ∪ T is the
labeling function such that:

• l(B) ⊆ P and l(E) ⊆ T ,

• for all e ∈ E, the restriction l|•e of l to •e is a bijection between •e and
•l(e),

• for all e ∈ E, the restriction l|e• of l to e• is a bijection between e• and
l(e)•,

• for all e1, e2 ∈ E, if •e1 =
•e2 and l(e1) = l(e2) then e1 = e2.

E should also contain the special event ⊥, such that: •⊥ = ∅, l(⊥) = ∅, and
l|⊥• is a bijection between ⊥• and M0. �

Example 8. Figure 2.7b shows a branching process obtained by unfoldingEXM

the net presented in Figure 2.7a. The labels are figured inside the nodes. We
can see that the branching process in Figure 2.7b unfolds the loop t1, t2, t0
once. This loop could be unfolded infinitely many times, leading to an infinite
branching process.
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Similarly, we can define the branching process of a network of automata.

Definition 26. (Branching process of a network of automata) Let DEF

N = {A1, . . . ,An} be network of automata where Ai = 〈Li, l0i, Ti,Σi〉. A
branching process of N is a labeled occurrence net β = 〈O, l〉 where O =

〈B,E, F 〉 is an occurrence net and l : B ∪ E →
(⋃

i∈[1,n] Li

)
∪ Sync is the

labeling function such that:

• l (B) ⊆
⋃

i∈[1,n] Li and l (E) ⊆ Sync,

• for all e ∈ E, the restriction l|•e of l to •e is a bijection between •e and
pre (l (e)), where pre (t) = {α (ti) | ti 6= •},

• for all e ∈ E, the restriction l|e• of l to e• is a bijection between e• and
post (l (e)), where post (t) = {β (ti) | ti 6= •},

• for all e1, e2 ∈ E, if •e1 = •e2 and l(e1) = l(e2) then e1 = e2.

E should also contain the special event ⊥, such that: •⊥ = ∅, l(⊥) = ∅, and
l|⊥• is a bijection between ⊥• and

⋃
i∈[1,n] l0i. �

Branching processes can be partially ordered by a prefix relation. For
example, if we remove the event e4 from the branching process in Figure
2.7b, we obtain a prefix of the branching process. There exists the greatest
branching process according to this relation which is called the unfolding of
N .

Let β = 〈B,E, F, l〉 be a branching process.
A co-set in β is a set B′ ⊆ B of conditions that are in concurrence, that

is to say without causal relation or conflict, i.e. ∀b, b′ ∈ B′,¬(b < b′) and
¬#

⋃
b∈B′(

•b ∪ ⌈•b⌉).
A configuration of β is a set of events E′ ⊆ E which is causally closed

and conflict-free, that is to say ∀e′ ∈ E′, ∀e ∈ E, e < e′ ⇒ e ∈ E′ and ¬#E′.
In particular, the local configuration ⌈e⌉ of an event e is a configuration.

For any co-set B′, l(B′) defines a subset of the marking of the net. A
cut is a maximal co-set (inclusion-wise). For any configuration E′, we can
define the set Cut(E′) = E′• \ •E′ which is e.g. the marking of the Petri net
obtained after executing the events in E′.

An extension of β is a pair 〈t, e〉 such that e is an event not in E, such
that •e ⊆ B is a co-set, the restriction of l to •e is bijection between •e and
•t and there is no e′ ∈ E such that l(e′) = t and •e′ = •e. Adding e to E and
labeling e with t gives a new branching process. Starting from the event ⊥,
and successively adding possible extensions form the “unfolding algorithm".
In the next chapter, we present the exact procedures for creating branching
processes based on both models .
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Figure 2.8: An event structure of the network of automata in Figure 2.1b

Event structure for networks of automata

So far, we presented two definitions of branching processes used for both
Petri nets and networks of automata. Nevertheless, in our work, we will
sometimes use another, slightly different representation of branching pro-
cesses of networks of automata which we introduce below.

The event structure which we use for networks of automata consists of
events. An event is a vector e = (e1, . . . , en), where ei = (πi (e) , τi (e))
in which πi (e) denotes the predecessor of e considering the automaton Ai,
and (τ1 (e) , . . . , τn (e)) ∈ Sync. In the case where the automaton Ai is not
considered by the transition, we define τi (e) = •.

Given two events e and e′, e immediately precedes e′ in the automaton
Ai (denoted by e →i e′) if πi (e

′) = e. A set E of events is in conflict iff
∃e, e′ ∈ E, i ∈ [1, n] such that πi (e) = πi (e

′). From the causality point of
view, none of the events can have conflicts in its causal history as it would
mean that there are two exclusive events. Such events are the result of a
local choice of a single automaton.

Example 9. Figure 2.8 presents an example of an event structure of theEXM

network in Figure 2.1b.

Graphically, an event e is represented by a node, with an incoming arc
from each node πi (e) labeled by 〈λ (τi (e)) ,Ai〉. Each node is represented by
an ellipse, labeled with the name of an event e and the local states reached
by the corresponding transition.
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Symbolic occurrence nets

So far, the structures that we presented above do not include time con-
straints. More details of construction of such structures are given later in
Chapter 3. Below, we only briefly mention some of the main concepts con-
nected with the structures.

As we presented before, both time Petri nets and networks of timed au-
tomata in addition to the discrete transitions also have the delay transitions.
Let us consider an example of a system which produces some events, each
of which has a simple timestamp assigned to it. Each timestamp represents
a clock valuation. With such knowledge, it is easy to imagine that, even
by having only one transition in a timed model, it may be associated with
(possibly infinitely) many events in reality. That is why equipping events
with a timestamp is usually not practical. And also for this reason so called
symbolic occurrence nets were introduced.

In symbolic occurrence nets instead of events, we operate on symbolic
events that are events which in fact represent a number of simple events.
A usual way to define such a structure is to use some constraints on time
rather than the explicit timestamps. As we see in Chapter 3 the form of
these constraints above all depends on the model we consider.

The subject of symbolic occurrence nets was already studied in several
articles, both in the context of time Petri nets ([34]) and networks of timed
automata ([29, 26]).

2.6.2 Observations

The process of observation is an important source of information about
events that occur or could occur in the system. Monitoring of distributed
systems is often hampered by the lack of global references, such as time,
or information about the order of events. As we will see in the next chap-
ter, in many cases despite the absence of such data, it is possible to deduce
interesting information about the possible behavior of events in the system.

We consider that the real distributed system under supervision has been
instrumented in such a way that it will produce events (like prints used for
debugging) during its execution. These events have a name picked up in
some finite alphabet Σ. In order to relate the observation and the model, we
also consider that transitions of the model are labelled by a similar function
λ : T → Σ ∪ {ǫ}. The ǫ symbol not belonging to Σ is used to indicate that
the occurrence of the transition cannot be linked to an observable event. The
labeling does not need to be injective, and in general, the same observation
can be explained by several trajectories of the model.

Below, we present a brief description of the observations and the way
they may affect process of monitoring which is of our interest. We start with
a presentation of three basic types of observations. The type of observation
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depends on the sort and amount of information which are provided in the
monitoring process. We will distinguish the following types of observations:
unstructured observations, structured observations, and observations with
timestamps.

Unstructured observations

Definition 27. (Unstructured observation) An unstructured observa-DEF

tion is a finite set of events. Each event has a name given by the labeling
function λ : O → Σ.

In the case of unstructured observations, the only available information
about events is their name which may usually be attributed to a specific
transition in the underlying model of the system.

It can easily be noted that unstructured observations are the least re-
strictive type of observations. During monitoring process, this type of obser-
vations may cause numerous questions about the possible behaviors of the
considered system. This is mainly due to the fact that the set of events form-
ing this type of observation is completely unordered. This lack of informa-
tion makes the number of possible scenarios corresponding to the observation
dramatically large.

In other words, we are talking about unstructured observations when
there is no information about causal relations between the events that are
part of the observation. This situation is not uncommon in distributed sys-
tems. Of course, there are many situations in which determination of the
order between events is possible. Then, however, we have to deal with the
second type of observation, i.e. structured observations.

Structured observations

Even if it is sometimes difficult for distributed systems, there are a lot of
situations when the order of the events can be determined. A simple example
would be e.g. well-known vector clocks ([47, 69]). Sometimes, in order to
determine the order of events in a distributed system, the real-time can
also be used. Unfortunately, such an information is sometimes not accurate
enough.

As we can expect, structured observations provide more information than
unstructured observations. In this case, the information about events which
are flowing from the system to the supervising system is enriched with ad-
ditional data about causal relations between events. As we can expect, such
an information has great impact on searching and analyzing the trajectory
of the system.

Definition 28. (Structured observation) An observation is a finite setDEF

of events O equipped with a causal order � and a symmetric relation co. If
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two events are not related, their relation is said “unknown". An event also
has a name, given by the labeling function λ : O → Σ.

In the above definition, we can note that we distinguish three types of
relations that can occur between events in the observation (see also Section
1.3). Thus, we can consider the following three cases: two events can be
causally related, they can be concurrent, or their relation is not known.
As usual, the causal relation must be an order. The two others are just
symmetric.

Later, in Chapter 3, we will see that this type of observation can be used
to guide the construction of a finite unfolding containing the configurations
that are compatible with the observations. Intuitively, we consider the max-
imal configurations and ask if they do not contain events and relations that
contradict the observation.

Observations with real-time timestamps

As mentioned above, apart from knowing the name of an event, sometimes
we can also obtain information about the time in which the event occurred.
A precise knowledge about execution time of an event is a very valuable in-
formation from the viewpoint of the monitoring system. Such an information
can frequently help to specify causal relations between events. The problem
starts when we realize that the information about time is not perfect, which
is almost always the case in real-time distributed systems. In order to reduce
errors in measurement of time, there are obviously many additional solutions
such as clock synchronization protocols. But even they do not always give
satisfactory results. Nevertheless, it may turn out that even this inaccu-
rate information about the time can be useful. To solve such a problem, a
given system can be split, for instance into smaller groups within which the
measurement of time is sufficiently accurate to define causal dependencies
between events.

Example 10. To give a simple idea of how the three types of observation EXM

may look like, we present an example observation of four events a, b, c, d. For
the unstructured observation, we could have a set {a, b, c, d}, for the struc-
tured observation {(a ≺ b ≺ c) , (b ≺ d)}, and finally for observations with
real-time timestamps {(a, 1) , (b, 2) , (c, 4) , (d, 3)} in which each pair consists
of the event name and its timestamp.
Note that having only the observation with timestamps, it is not always

possible to deduce the causal dependency between the events (unless we know
that, for example, the events belong to the same process). In our example,
c happens after d, but this fact does not mean that d ≺ c.

Obviously the types we mentioned above are not the only possibly ones.
We can imagine, for instance, a simple mix of them where a part of the ob-
servation is structured and another part is with some real-time information.
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Our classification certainly does not cover all possible types of observa-
tions, such as probabilistic observations. However, in our work we mainly
focus on the unstructured observations as they are the most general case in
terms of monitoring in some sense. The rest of the cases, i.e. structured
observations or observation with timestamps, usually implies a set of expla-
nations which is in fact a subset of explanations obtained for unstructured
observations.

2.6.3 Explanations

As we already know, the main task of the supervisory system is to track
selected events occurring in the system and then to create scenarios based
on them (referred to as explanations) and compatible with the observations.

As we described in the previous section, observations that come to su-
pervisory system are usually incomplete, in the sense that they do not let
unequivocal reconstruction of the behavior of the monitored system. Among
factors which hinder creation of the explanations by the monitoring system,
we may find, for example:

• lack of traceability of all events, e.g. as a result of the so-called un-
observable events. Let us recall that these are events that are visible
in the model in the form of transitions which are usually marked with
the symbol ǫ. However, we can not observe them during activity of
the system. The presence of such events is one of the reasons why
explanation for a finite number of observations can be infinite, or the
number of explanations can be infinite. As we will see in Chapter 4,
this happens because the model may contain unobservable loops, that
are loops containing only ǫ-transitions. In the following part, we also
see that the number of unobservable transitions in the system often
significantly increases the number of possible explanations.

• lack of causal order of events in observations (see Section 2.6.2).

• lack of unambiguous information about events. This makes assignment
of events to specific transitions in the model difficult or even impossible.
For example, such a situation can take place when several transitions
in the model have identical labels.

We already know that appropriate structures are necessary for storing and
processing explanations. In our case, the natural choice is the already men-
tioned symbolic branching processes (Section 2.6.1), and the special event
structures dedicated for networks of automata. As we described earlier, these
structures enable us to maintain information about causal dependencies be-
tween events. If a branching process contains all possible explanations for a
given observation, we call it complete. Thus, as we will see in Chapters 3 and
4, a single branching processes can store many different explanations which
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are compatible with a given observation. In short, in order to construct such a
branching process, the supervisory system unfolds the concerned model with
respect to the observations. The resulting structure is called constrained un-
folding. It is worth noting that explanation with the same prefixes can share
with each other the common prefix, thereby saving memory.

When we consider models with time constraints, it appears that one of
their key features is the possibility to represent in symbolic way information
about time of execution of events.

As we will see in section on constrained unfoldings, there is also a possi-
bility to use parameters in time constraints. This often helps to obtain the
information about the possible execution time of events in the system.
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Chapter 3

Constrained unfoldings

3.1 Introduction

In this chapter we discuss a dynamic verification method called model-based
supervision. It is established that diagnosing dynamical systems, represented
as discrete-event systems, amounts to finding what happened to the system
from existing observations (an event log) derived from sensors. In this con-
text, the diagnostic task consists in determining the trajectories compatible
with the observations. The standard situation is that the observed events
correspond to the firing of some transitions of the model, while the other
transitions are just internal (this situation is called “partial observation” in
supervisory control theory [28]).

Among the different analysis techniques, we chose to develop the work on
unfoldings [44]. The great interest of unfoldings in that task is their ability
to infer the possible causal dependencies which in general are not part of the
observations. Unfoldings were introduced in the early 1980s as a mathemat-
ical model of causality and became popular in the domain of computer aided
verification. The main reason was to speed up the standard model-checking
technique based on the computation of the interleavings of actions, leading
to a very large state space in case of highly concurrent systems. The seminal
papers are [70] and [42]. They dealt with basic bounded Petri nets. Since
then, the technique has attracted more attention, and the notion of unfolding
has been extended to more expressive classes of Petri nets (Petri nets with
read and inhibitor arcs [12, 33], unbounded nets [3], high-level nets [60], and
time Petri nets [35]).

Supervision, based on unfoldings in our case, is implemented by the on-the-
fly construction of the unfolding, guided by the observations. With this
dynamic approach, since we only consider finite sequences of observations,
decidability questions become much easier. The only requirement is to be
able to decide whether a transition can be fired or not. Note that the lack of
existence of a finite prefix in the stopwatch ([21]) or parametric ([86]) cases is
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not necessarily prohibitive as several analysis techniques, such as supervision,
can do without it. Practical experience also demonstrates that, even for very
expressive models such as Linear Hybrid Automata [57], the undecidability
of the interesting problems still allows to analyze them in many cases.

We split the chapter into several parts according to the type of model we
deal with, as it is done in the previous chapter.

We start our presentation in the chapter with networks of timed au-
tomata. We describe a unified way to process the model of networks of
timed automata (introduced in [52]) without computation of any intermedi-
ate structures such as a single automaton representing all the components.
Next we show how to apply the unfolding method to solve a supervision
problem.

In the following sections 3.4 and 3.5, we present the similar subject of
supervision step by step but in the context of time parametric Petri nets.

Petri nets for supervisory control and diagnosis have been proposed in nu-
merous papers (see for instance [87] and [51]). In most cases, the construction
of diagnosers is based on the state graph (i.e. the interleaving view). The
use of unfoldings is more recent. [46] uses safe ordinary nets and focuses on
the distributed diagnosis, [34] proposes to use unfolding of safe time Petri
nets. The parametric case has not been considered yet.

Advancing this line, we present a method to unfold safe time parametric
Petri nets (described in [85] and [53]) in this chapter. The two novelties
are: a new unfolding algorithm, as an optimistic alternative to [35], and its
natural extension to deal with parameters. We think that adding parameters
in specifications is a real need. It is often difficult to fix them a priori:
indeed, we expect from the analysis some useful information about their
possible values. This feature of genericity clearly adds some “robustness” to
the modeling phase. It is particularly relevant for the supervision activity
we consider, in which an arbitrary choice of parameters often avoids to find
explanations compatible with the observations. This leads to the rejection
of the model. Moreover, no additional knowledge about the way to correct
it is provided.

For both models, we also give some case studies such as the classical
alternating bit protocol in which timeout duration and messages delays can
be parameterized. It shows the ability of the method to infer from a simple
sequence of observed events, explanations in which we explicitly see the re-
ordering of messages and we automatically infer a required condition linking
the timeout constant and the communication delays.

Finally, in Section 3.6, we briefly present some final remarks.
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3.2 Supervision of untimed networks of automata

In the following sections, we present the basics of the unfolding techniques
for networks of timed automata step by step. At the same time, we introduce
the concept of constrained unfoldings which is the target structure used for
supervision. We follow the description of the models presented in Chapter
2. This way, the reader can follow the notion of constrained unfoldings for
models with different features.

3.2.1 Finite state automaton

We start with the simplest version of automaton that is a finite state machine
(see Definition 3).

It is known that all executions of such an automaton can be represented
as labeled paths in a tree graph with the initial state as the root. Such
labeled paths can be formally defined with the use of notion of unfolding.

Let us shortly recall that we denote a transition of a finite automaton by
t = (α (t) , λ (t) , β (t)), i.e. α (t) is the initial state of the transition, λ (t) is
a label assigned to the transition t, β (t) is the final state of the transition.

An unfolding of an automaton A, denoted by U (A) is given by a set of
events (see Section 2.6.1). Each event represents an occurrence of a transi-
tion. It is defined by a pair e = (π (e) , τ (e)), where π (e) is the event which
precedes e in the unfolding, and τ (e) is the transition assigned to e. There
is also a fictitious initial event ⊥ for which β (τ (⊥)) = q0.
U (A) can inductively be defined as follows.

Definition 29. (Unfolding of finite automaton) Given a finite state DEF

automaton A = 〈Q, q0, T,Σ〉, the unfolding of A, denoted by U (A), is the
smallest set such that

• ⊥ ∈ U (A), and

• {∃π (e) ∈ U (A) ∧ ∃t ∈ T ∧ α (t) = β (τ (e))} =⇒ (e, t) ∈ U (A) �

Having two events e and e′ of U (A), e immediately precedes e′ (denoted
by e → e′) if π (e′) = e. The causality between two events is defined as a
reflexive and transitive closure of the relation → (denoted by →∗). For an
event e, its set of causal predecessors is denoted by ↓ e = {f | f →∗ e}. This
notation is extended to sets: ↓ E =

⋃
e∈E ↓ e.

In general, unfoldings are infinite sets, e.g. unfoldings of automata with
loops.

Example 11. In Figure 3.1, there is a finite subset of the unfolding of EXM

the automaton in Figure 2.1a. The subset is closed by precedence relation
and is called a prefix of the unfolding. Graphically, an event (π (e) , τ (e))
is represented by a node with an incoming arc labeled by λ (τ (e)) which
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e3,l1

a c

e7,l2 e8,l2 e14,l2

e1,l2

b b

e4,l2

b b

e10,l2 e9,l1

e2,l2

b b

e5,l1

a c

e6,l2

b b

e12,l2 e13,l1e11,l2

e0,l1

a c

Figure 3.1: A prefix of the unfolding of the automaton in Figure 2.1a.

starts from the node π (e). The events are drawn as ellipses which contain
the name of the event and the reached state.

The prefixes of unfoldings of finite state automata are trees with bounded
degree.

3.2.2 Network of finite state automata

As in the case of a single automaton, an unfolding of a network of automata
N (see Definition 4), denoted by U (N ), is given as a set of events. An event
is a vector e = (e1, . . . , en), where ei = (πi (e) , τi (e)) in which πi (e) denotes
the predecessor of e considering the automaton Ai, and (τ1 (e) , . . . , τn (e)) ∈
Sync. In the case where the automaton Ai is not considered by the transi-
tion, we define πi (e) = ǫ.

Given two events e and e′, e immediately precedes e′ in the automaton
Ai (denoted by e →i e′) if πi (e

′) = e. A set of events is in conflict iff
∃e, e′ ∈ E, i ∈ [1, n] such that πi (e) = πi (e

′). From the causality point of
view, none of the events can have conflicts in its causal history as it would
mean that there are two exclusive events. Such events are the result of a
local choice of a single automaton.

Definition 30. (Unfolding of a network) Given a network N , U (N ) isDEF

the smallest set satisfying:

• ⊥ ∈ U (N ), and

•





(τ1 (e) , ..., τn (e)) ∈ Sync

∀i ∈ [1, n]





τi (e) = ǫ⇒ πi (e) = ǫ

τi (e) 6= ǫ⇒

{
πi (e) ∈ U (N )
α (τi (e)) = β (τi (πi (e)))

↓ e is conflict free
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=⇒ e ∈ U (N ) �

Example 12. Figure 3.2b presents an example of a prefix of unfolding of the EXM

network in Figure 3.2a. The set of synchronizations is {(a, ǫ), (b (1) , b (3)),
(c, ǫ), (b (2) , b (3))}. The initial event ⊥ is represented as e0 in this and
all the following figures. Inside each ellipse which denotes an event apart
from its name, there is a set of locations which is reached after firing the
corresponding transitions of an event. For example, for the event e6, there
are two local transitions b (1) and b (3) which take part in the action b. After
this action the network reaches the locations l1 and l4.

Graphically, an event e is represented by an arc going from the node πi (e)
to the node e, and labeled by (λ (τi (e)) ,Ai). Each node is represented by
an ellipse, labeled with the name of an event e and the local states reached
by the corresponding transition.

In general the prefixes of unfoldings of networks are acyclic graphs with an
unbounded degree. The inductive definition can directly be used to construct
an algorithm in which the events are placed one by one in the unfolding if
they are not already there.

Constrained unfolding

Having the notion of unfolding, the question of supervision can be addressed.
We consider a sequence of observations σ ∈ Σ∗. The problem is to construct
all possible executions of a network which are correct with respect to the
observations. In other words, we search for explanations of what is observed.
The sequence of observations is finite, and so is the unfolding.

The idea is that the order given by the sequence of observations σ does
not necessarily correspond to the real order of the corresponding events. The
observation is just the result of the monitoring process in the distributed
system that is observed. It is the role of the supervisor using the model
to propose the possible causal relationship between observations. It is clear
that the actions of the same type are totally ordered as they correspond to a
local action of an automaton or a synchronization. A good method to guide
a construction of an unfolding is to use the Parikh function of the sequence
σ (for more details see e.g. [44]).

Definition 31. (Parikh function) Let σ ∈ Σ∗ be a sequence of observa- DEF

tion. The Parikh function ̟ : Σ∗ → N|Σ| counts the number of occurrences
of each symbol of the sequence. �

We extend the information of an event e by the Parikh vector ς (e) of the
sequence recognized by the set of causal predecessors of e. By comparison
of the Parikh vector of an event with the Parikh vector of an observation,
we ensure that the latter does not exceed the former. For an action a ∈ Σ,
we denote by χa the Parikh vector which has all its components set to 0
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(a)

e1,{l3}

b(3),A2 c,A2b(3),A2

e8,{l1,l4}

a,A1

e3,{l3}

b(3),A2 c,A2b(3),A2

e6,{l2,l4}

e2,{l2}

b(2),A1

b(1),A1 b(1),A1b(2),A1

b(1),A1

b(2),A1

e10,{l1,l4}

e5,{l2,l4} e7,{l1,l4}

a,A1

e9,{l2,l4}

e0,{l1,l3}

b(3),A2

b(3),A2 c,A2a,A1

e4,{l3}e11,{l2} e12,{l2}

(b)

Figure 3.2: A network of finite state automata (a) and a prefix of the un-
folding of the network (b).
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except the one which corresponds to the action a and equals 1. The events

are denoted by e =
(
(πi, τi)i∈[1,n] , ς (e)

)
.

Example 13. Let us take a prefix in Figure 3.1 and event e5. We can EXM

observe that the event e5 is preceded by two transitions labeled by b and
c. Thus, the observation produced by the predecessors of e5 is {b, c}. This
implies, in turn, ς (e5) = ̟ ({b, c}) = [0, 1, 1], where the subsequent positions
in the vector denote the number of occurrences of events respectively labeled
by a, b, and c.

The unfolding guided by the observation, denoted as E (N , σ), may there-
fore be defined as follows.

Definition 32. (Constrained unfolding of network of automata) DEF

Given a network N and a sequence of observations σ, a constrained unfold-
ing of N , denoted by E (N , σ), is the smallest set satisfying the following
conditions:

• ⊥ ∈ E (N , σ) with ς (⊥) = 0, and

•





t = (τ1(e), ..., τn(e)) ∈ Sync

∀i ∈ [1, n] ,





τi(e) = ǫ⇒ πi(e) = ǫ

τi(e) 6= ǫ⇒

{
πi(e) ∈ E (N , σ)
α(τi(e)) = β(τi(πi(e)))

↓ e is conflict free
ς (e) =

∑
f∈↓e χλ(τ(f)) ≤ ̟ (σ)

=⇒ e ∈ E (N , σ) �

Note that the definition of constrained unfolding of network of automata
is quite similar to the definition of unfolding. The key condition in this case,
i.e. ς (e) ≤ ̟ (σ), verifies whether the predecessors of e do not exceed the
observation σ.

Example 14. Figure 3.3 shows the constrained unfolding obtained for the EXM

sequence of observations σ = acbc for network in Figure 3.2a. The vector
ς (e) is shown next to each event. For the sake of simplicity, it is repre-
sented as a set of equalities of the form x = y, where x stands for the
number of transitions labeled by x and y is the corresponding value. In the
figure, we distinguished three events (dashed border) e4, e11, e12 for which
ς (e) � ̟ (σ), where e ∈ {e4, e11, e12}. For example, for e12, the number of
transitions labeled by a is greater than 1, which is the case in σ.

The result represents the two following explanations: the actions a and
two c are carried out independently and then the action b is fired. In the case
of the action b there are two possibilities as there are two actions labeled by
b in the first automaton. These explanations are obtained by:
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e1,{c=1}

b(3),A2 c,A2b(3),A2

e8,{a=1,c=1,b=1}

a,A1

e3,{c=2}

b(3),A2 c,A2b(3),A2

e6,{a=1,c=1,b=1}

e2,{a=1}

b(2),A1

b(1),A1 b(1),A1b(2),A1
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b(2),A1

e10,{a=1,c=2,b=1}

e5,{a=1,b=1} e7,{a=1,b=1}

a,A1

e9,{a=1,c=2,b=1}
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b(3),A2

b(3),A2 c,A2a,A1

e4,{c=3}e11,{a=2,b=1} e12,{a=2,c=1,b=1}

Figure 3.3: A constrained unfolding.

• extracting executions of the unfolding. An execution is defined by
a subset of E of the unfolding E (N , σ) which is closed by causality
(↓ E = E) and without conflicts; and

• requiring that the executions explain the whole sequence of observa-
tions, i.e.

∑
e∈E χλ(τ(e)) = ̟ (σ).

As we could see in the example above, not only we infer the trajectories
of automata, but also the possible causal links between observations. This
is what gives a real meaning of the method in the context of supervision,
thanks to which we get the extra information to the sequence of observations.

3.2.3 Problem with partial observation

In many cases, we cannot or we do not want to observe all the transitions of
the model. For this reason, we introduce a construction of an unfolding using
only a sequence of partial observations. To construct such an unfolding, we
assume that we observe only some transitions of the network. They can be
any transitions of the model. We can observe some local transitions or some
global transitions which involve several automata. By a global transition
we mean a synchronization which we introduce to emphasize the fact that
we treat it as a single non-local transition, and not as a collection of local
transitions (see Definition 4).

For the construction of an unfolding based on some partial observation
σ, we slightly modify the technique used in Definition 32. To mark unob-
servable transitions, we use a boolean function ν (x), where x is an event or
a transition. An event e is observable (i.e. ν (e) is true) if at least one of its
underlying transitions is observable. Formally, we can write it as follows:

ν (e) ⇐⇒ (∃τi ∈ τ (e) , ν (τi)) ∨ ν (τ (e))

Note that, in this definition, we distinguished two situations: one when
a local transition is observable or not ((∃τi ∈ τ (e) , ν (τi)) is true or false),
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and the other one when the global transition is observable or not (ν (τ (e))
is true or false). We have made a distinction in order to use a slightly
modified version of the method with the Parikh vector. Namely, in the
vector we put an extra position which is a number of events that cannot be
observed during the considered execution. Thus, during the construction of
the unfolding, every time an event which is not observable is produced, the
value of the mentioned position is increased. On the contrary, whenever there
is an observable event e, we have to increase the value which corresponds
to the transition τ (e). However, in the latter case, we may not observe the
whole global transition if it consists of several local transitions and if some
of them are not observable. Then, we increase only the values of the vector
which are assigned to the local observable transitions. This way, when we
observe a whole global transition (i.e. all its underlying local transition), only
one position of the vector is modified. Such approach lets us easily compare
a sequence of observations and a set of events produced by an execution in
the unfolding.

It is important to mention that one of the main problems, when we want
to infer some information about a system which is only partially observable,
is that there may be infinite loops which are unobservable. For this reason, in
our solution, we bound the number of unobservable events for each possible
execution E of the system, i.e. |{e ∈ E | ¬ν (e)}| ≤ M . We deal with the
topic of unobservable loops more precisely in Chapter 4.

Example 15. In Figure 3.4, we present an example of the constrained un- EXM

folding of the system in Figure 3.2. In the construction of the prefix, an
extra parameter is used, which limits the number of unobservable events in
the set of predecessors of any event (in the example, it is set to 2). The
description of events is the same as in Figure 3.3. ? denotes the number
of unobservable events in the set of predecessors of the considered event.
The dotted ellipses and arrows denote events and transitions which are un-
observable. The events e10, e11, e12 represent possible explanations for the
given sequence of observations.

In the example, we observe two transitions: a and b (3). It is worth noting
that we do not observe the whole action b but just one of the local transitions
which take part in it. Thus we do not care and we cannot distinguish which
of the two possible synchronizations takes place. Let us take one of the
successful events (i.e. a maximal event of a valid explanation) from Figure
3.4 ,e.g. e12. As an input we have a sequence of observations aba. We can
notice that, among predecessors of e9, there are two observable events {e2, e9}
(we do not count the initial event e0 ≡ ⊥) and two unobservable events
{e1, e3}. When we take all the transitions of the events {e1, e2, e3, e9, e12},
we get the vector in which we have two unobservable events (in the figure
? = 2), two transitions a, and one b (3).
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e0,{}

b(3),A2

c,A2a,A1

e6,{a=1,b(3)=1}

a,A1

e1,{?=1}

b(3),A2 c,A2

e2,{a=1}

b(2),A1

b(2),A1b(2),A1

e11,{?=1,a=2,b(3)=1}e10,{a=2,b(3)=1}

e7,{?=1,a=1,b(3)=1}

a,A1

e3,{?=2}

b(3),A2

e9,{?=2,a=1,b(3)=1}

a,A1

e12,{?=2,a=2,b(3)=1}

Figure 3.4: A prefix of unfolding of the network in Figure 3.2 guided by the
partial observation aba.

3.3 Supervision using networks of timed automata

3.3.1 Constrained unfoldings of timed automata

The question of supervision of timed systems can be placed in the same
context as in the case of systems without time constraints. Let us imagine
a sequence of observations made only of a series of symbols of the alphabet
Σ. The problem is to find executions that can explain this sequence. What
is especially interesting is to infer the causal relationships induced by the
model.

The first idea is to proceed as in the untimed case and to define the
notion of unfolding of a network of timed automata. The sequence of ob-
servations can also naturally be seen as a timed automaton without time
constraints. The notion of timed unfoldings has recently been introduced in
[29]. However, its calculation is complex. In the obtained structure, each of
the events is assigned a symbolic expression which gives the possible dates
of firing transitions. The concept of conflict also has to be weakened in the
notion of asymmetrical conflict in order to keep concurrency.

We propose a simpler approach to answer the question of supervision. By
definition, the introduction of time constraints limits the possible executions
of the model. Thus, we can consider the explanations produced for the un-
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derlying untimed model (i.e. the unfolding guided by the observations) and
then take into account the time constraints. Furthermore, we will see that
this phase of post-selection allows inferring the possible dates of observation.
This is a potentially rich information for supervision activities.

Thus let us consider a network of timed automata, its untimed underlying
network N and a sequence of observations σ. Let us also take the set of
possible untimed explanations, i.e. all the sets of events E ⊆ E (N , σ) such
that ↓ E = E is without conflict and

∑
e∈E χλ(τ(e)) = ̟ (σ).

We consider an explanation E. We denote by Ei the set of events con-
cerned by the automaton Ai (i.e. the events e such that τi (e) 6= ǫ). We know
that the closure →∗

i is a total order on Ei since the processes are sequential.
We will denote by ↑i E the maximal event for this relation. For each event,
we will denote by δ (e) a date of the event and by dori (e) a date of reseting
clocks (Xi) of the automaton Ai after the event occurred. dori (e) is defined
as follows:

∀x ∈ Xi, ∀e ∈ E, dori (e) (x)
def
=

{
δ (e) if x ∈ ρ (τi (e))

dori (πi (e)) (x) otherwise

Definition 33. (Time validity) An explanation E which does not take DEF

time into consideration is valid according to the time constraints of the net-
work iff:

∀i ∈ [1, n]





∀e 6= ⊥ ∈ Ei





δ (πi (e)) ≤ δ (e)
Ii (α (τi (e))) (δ (e)− dori (πi (e)))
γ (τi (e)) (δ (e)− dori (πi (e)))

Ii (β (τi (↑i E))) (maxf∈Eδ (f)− dori (↑i E))

�

The definition of time validity incorporates the definition of sequential
semantics. We explain the formula line by line:

• the time cannot go back between the causal predecessor of an event
and itself;

• the invariants of the initial locations of the transition are satisfied at
the moment of firing the transition;

• the guards of the local transitions which form the transition of the
considered event are also satisfied at the time of firing; and

• the invariants of the final locations of the transition are satisfied at the
end of the explanation.
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Figure 3.5: Two possible explanations E1 and E2 with time constraints
C (E1) , C (E2) on dates of occurrences of events.

These conditions can therefore reject the explanations which are invalid if
time constraints are taken into consideration. Beyond that, we can pass to
the symbolic representation constraints having in mind that, for each event e,
δ (e) is a real variable assigning the possible dates of firing the corresponding
transition of the event e.

Example 16. In the example presented in Figure 2.3, we have a network ofEXM

automata which produces four actions a, b, and two actions c. The possible
explanations of these actions are shown in Figure 3.5. What we want to
know is the possible dates of these actions (denoted δ (a) , δ (b) and δ (c)).
As we can see, the action c can only be produced at time 1. After this
action, we can reset the clock and repeat it at time 2. After these two
actions, the automaton A1 fires action b but , for that purpose, it has to be
synchronized with the second automaton A2. Thus the automaton A1 has
to go to the location l2 before the action c and then it can choose between
two transitions labeled by b. If the automaton executes the action b that
produces the state in which automaton A1 is in location l1, we know that
δ (a) = δ (b) because of the guard x = 0. We actually have δ (b) ≤ 3,
otherwise we would have another action c. Moreover, since we know that
the global time progresses, we can infer that δ (b) ∈ [2, 3]. In the other
case, where the transition b was the effect of the synchronization of b (1)
with b (3), we have δ (b) ≤ 3 like previously but also δ (b) ≤ δ (a) + 1.
Otherwise, another action c would be produced. In fact we can deduce that
max (δ (a) , 2) ≤ δ (b) ≤ min (δ (a) + 1, 3). This is the type of information
that we will try to automatically infer during the supervision.

For our example in Figure 3.5, the two possible explanations are described
with the following constraints:
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• C (E1) ≡





δ (⊥) ≤ δ (e1)
δ (e1) ≤ δ (e3) ∧ δ (e3) ≤ δ (e9)
δ (⊥) ≤ δ (e2) ∧ δ (e2) ≤ δ (e9)
δ (e9)− δ (e3) ≤ 1 ∧ δ (e9)− δ (e2) ≤ 1
δ (e3)− δ (e1) ≤ 1 ∧ δ (e3)− δ (e1) = 1
δ (e1)− δ (⊥) ≤ 1 ∧ δ (e1)− δ (⊥) = 1
max (δ (⊥) , δ (e1) , δ (e2) , δ (e3) , δ (e9))− δ (e2) ≤ 1

• C (E2) ≡





δ (⊥) ≤ δ (e1)
δ (e1) ≤ δ (e3) ∧ δ (e3) ≤ δ (e10)
δ (⊥) ≤ δ (e2) ∧ δ (e2) ≤ δ (e10)
δ (e10)− δ (e2) ≤ 1 ∧ δ (e10)− δ (e2) = 0
δ (e10)− δ (e3) ≤ 1 ∧ δ (e3)− δ (e1) ≤ 1
δ (e3)− δ (e1) = 1 ∧ δ (e1)− δ (⊥) ≤ 1
δ (e1)− δ (⊥) = 1

After reduction and with assumption that δ (⊥) = 0, we obtain:

C (E1) ≡ (e1 = 1) ∧ (e3 = 2) ∧ (2 ≤ e9 ≤ 3) ∧ (0 ≤ e9 − e2 ≤ 1) ,

and

C (E2) ≡ (e1 = 1) ∧ (e3 = 2) ∧ (2 ≤ e10 ≤ 3) ∧ (e10 − e2 = 0)

which very well confirms the previous informal analysis of the executions
of the timed model.

3.3.2 Case study

In the following case study, we present a network of timed automata which
models the alternating bit protocol. The whole model consists of four au-
tomata. They are illustrated and described in Figure 3.6. AS is a sender, AR

a receiver, and a parametrized automaton A (x, y) which represents two ana-
logical automata A(S→R), A(R→S) used to model communication channels,
each for one direction. A(S→R) denotes the communication channel from
the sender to the receiver, whereas AR→S is used for the opposite direction.
Dotted lines denote unobservable transitions. We can only observe transi-
tions which are drawn with a solid line. Therefore, we assume that the user
of the protocol can only observe four transitions of the model, i.e. !m0 (0)
which is the first emission of a message with bit 0, !m1 (2) which is the first
emission of a message with bit 1, ?m0 (0) and ?m1 (1) which are the first
receptions of bit 0 and 1 respectively. It is worth noting that the user can-
not observe the retransmissions (!m0 (2) and !m1 (0)). This is a task of the
protocol to retransmit and manage all of the unobservable transitions. Let
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Figure 3.6: The alternating bit protocol and three different automata, each
of which has its role in the protocol.

us also mention that the user do not observe any transitions of the automata
which model medium.

In our example, we want to answer the following questions:

• Given the sequence of observations σ =!m0 (0), ?m0 (0), ?m1 (1), !m1 (2),
?m0 (0), is there an execution of the given model which satisfies σ?

In other words, we check if there is a possibility of sending a message
once (in our example: !m0 (0)) and receiving it twice by the receiver
(?m0 (2)).

• How do such possible executions look like?
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• How can we avoid such executions when we take into account time
constraints of the model?

To address the first and the second question, we can use the method pro-
posed in Section 3.3 and we can construct the prefix of the unfolding of
the network. Because there are some unobservable events and we want to
terminate the construction of the prefix at some point, we give a limit of
maximum five unobservable events in any execution (as we mentioned, the
problem of unobservable events is analyzed in details in Chapter 4).

The possible explanations with respect to the given sequence of observa-
tions and the termination condition are presented in Figure 3.7. There are
twelve successful executions, each with different maximal events (drawn us-
ing double ellipses). In the figure, there are only events which are successful
and their causal predecessors. The rest of the events produced during the
search procedure are removed. Dotted arrows are unobservable transitions,
dotted ellipses unobservable events. The events drawn using double ellipses
are the ones which satisfy the sequence of observations. It is worth noting
that in some explanations, the final events are unobservable e.g. the event
e305.

Let us mention that four of these events e307, e308, e309, e310 are not real
events. We introduced them to represent executions which end up with
more than one maximal event. During construction of the prefix, the actual
number of events was much higher than presented in the figure (307 events
were generated for this example).

Before we answer the last question, we give below the constraints asso-
ciated with the automata in Figure 3.6:

• for the sender AS , we have the following constraints:

γ (!m0 (2))
def
= cS ≥ β

γ (!m1 (0))
def
= cS ≥ β

ρ (!m0 (0))
def
= {cS}

ρ (!m1 (2))
def
= {cS}

• for the two automata AS→R and AR→S :

ρ (!x0 (0))
def
= ρ (?x0 (1))

def
= ρ (?x0 (2))

def
= {cA}

ρ (!x1 (0))
def
= ρ (?x1 (1))

def
= ρ (?x1 (2))

def
= {cA}

ρ (ε (1))
def
= ρ (ε (4))

def
= ρ (ε (2))

def
= ρ (ε (5))

def
= {cA}

∀i∈[1,5]I (yi)
def
= cA ≤ α

In the example, we assume that each of the automata has its own non-
shared clock. In the time constraints above, we use two parameters α and β.
With the parameter α, we can control the time which is spent to transmit a
message through the medium (the two automata AS→R and AR→S), whereas
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e310

e71

!m1(2),S

!a1(0),RSe152

?a1(1),S!m1(0),S
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e7
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S RS

e8
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e21
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e49

!m1(0),S?m1(1),SR
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!m1(0),S

e0

!a0(0),RS

!a0(0),RS!m0(0),S

?m0(0),R

!m0(0),SR

?m0(0),R

Figure 3.7: The prefix of the unfolding of the model in 3.6 constructed in
accordance with the described search criteria.
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e4

?m0,1,SR

?a0,0,S

e11

!a0,0,R

!m1,1,SR

e71 !m1,2,S

!a1,0,RS

e27
?m1,1,R

?a0,0,RS

e152 ?m1,1,SR e208 ?m0,0,SR

!a1,1,R

e301

e263 ?m0,0,R

e0

!m0,0,SR

!a0,0,RS

?m0,0,R

!m0,0,S

e1

!m0,2,S

!m0,1,SR

Figure 3.8: A possible explanation.

β is a threshold value of the minimal time amount after which a message
can be retransmitted by the sender.

To present our method, we show on one of the successful explanations
how we can avoid the corresponding execution just by adjusting the two
variables α and β. For the following example, we choose the execution E
shown in Figure 3.7b ending with the event e301. Using Definition 33, we get
the following system of constraints for this execution:





δ (⊥) ≤ δ (e1) ∧ δ (e1) ≤ δ (e4)
δ (⊥) ≤ δ (e11) ∧ δ (e4) ≤ δ (e11)
δ (⊥) ≤ δ (e27) ∧ δ (e11) ≤ δ (e27)
δ (e27) ≤ δ (e71) ∧ δ (e4) ≤ δ (e71)
δ (e11) ≤ δ (e152) ∧ δ (e71) ≤ δ (e152)
δ (e27) ≤ δ (e208) ∧ δ (e152) ≤ δ (e208)
δ (e208) ≤ δ (e263) ∧ δ (e71) ≤ δ (e263)
δ (e208) ≤ δ (e301) ∧ δ (e263) ≤ δ (e301)
δ (e301)− δ (e208) ≤ α ∧ δ (e208)− δ (e11) ≤ α
δ (e71)− δ (e27) ≤ α ∧ δ (e152)− δ (e11) ≤ α
δ (e4)− δ (e1) ≥ β ∧ δ (e4)− δ (e1) ≤ α (1)∧(2)
δ (e11)− δ (e1) ≤ α (3)
maxe∈E δ (e)− δ (e263) ≤ α

When we take and reduce the three formulas (1), (2), and (3), we can
simply deduce that β ≤ 2α. This means that it is impossible to have this
execution if we set the retransmission time which is more than the double
time of transmission by the medium.

3.4 Supervision using safe Petri nets

In Chapter 2, we described the notions of a place/transition net (Definition
13) and a branching process (Definition 25). Below, we introduce the basic
case of supervision of Petri nets which we extend in the following sections.
In this context, we also briefly discuss the problem of monotonicity of con-
strained unfoldings.
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p3 p4

t3e3
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t0 e4

p2p1

(b)

Figure 3.9: A safe Petri net (3.9a) and a constrained unfolding based on it
(3.9b).

3.4.1 Constrained unfoldings of safe Petri nets

In the previous part of the chapter, we described the construction technique
of constrained unfoldings of networks of timed automata. In the case of time
Petri nets, we can use a similar approach.

Definition 34. (Constrained unfolding of safe Petri net) Given a safeDEF

Petri net N = 〈P, T,W,M0〉 and a sequence of observations σ, a constrained
unfolding of N , denoted by E (N , σ), is the maximal branching process of N
denoted by β = 〈B,E, F, l〉 such that ∀e ∈ E

• ς (⊥) = 0, and

• ς (e) =
∑

f∈⌈e⌉ χλ(τ(f)) ≤ ̟ (σ) �

Before we describe a short example, we introduce a simple notion of
untimed time Petri net. Given a TPN N = 〈P, T,W,m0, eft, lft,Π, DΠ〉, we
denote by untimed (N ) the Petri net 〈P, T,W,m0〉.

Example 17. In Figure 3.9a, we can see the untimed version of parametricEXM

time Petri net in Figure 2.5. We distinguish two observable transitions in
the figure: t1, t2. We assume that both transitions are labeled with the
same action. Given an observation consisting of two actions, we obtain a
constrained unfolding in Figure 3.9b.
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3.4.2 Non-monotonicity of constrained unfoldings

Before we directly go to discuss the problem of invisible loops, we want to
draw attention to a certain property of constrained unfoldings of Petri nets.
Let us consider the following example.

Example 18. In Figure 3.10a, we can see a 1-safe Petri net. In the follow- EXM

ing pictures 3.10b-3.10f, we can see constrained unfoldings of the net for 5
different observations. In the figures we left only complete explanations i.e.
we removed events which do not belong to complete explanations. Note that
each of the subsequent observations, when treated as a multiset, is a superset
of the previous one, i.e. σ1 ⊂ σ2 ⊂ σ3 ⊂ σ4 ⊂ σ5. Thus, we can somehow
observe an evolution of complete explanations for the growing observation
σ. Let us look closer at the event e1 which is associated with the transi-
tion t1. When we analyze the subsequent prefixes in Figures 3.10b-3.10f, we
can observe that the event appears in Figure 3.10c, then in Figure 3.10e it
disappears, and finally reappears in Figure 3.10f.

In Example 18, we show that, once we want to keep only complete ex-
planations obtained from constrained unfolding, and then want to extend
the input observation of the unfolding, the resulting prefix becomes non-
monotonic. Loosely speaking, this means that an event can be added or
removed from the unfolding multiple times as the observation grows. How-
ever, as we will see in the following part of the chapter, when constructing
an unfolding, we will keep all explanations, even the incomplete ones. As we
have observed in the example, an event which belongs to some incomplete
explanations of an observation may be a part of a complete explanation for
some greater observation. Thus, in many situations, it will be computation-
ally inefficient to remove and add the same events many times. Instead, we
just keep them in the constrained unfolding during the construction, and
we remove them only when there is a real need for it, i.e. we need to exe-
cute some particular queries on the unfolding. The above discussion can be
summed up by the following lemma.

Lemma 3.1. Let us take two constrained unfoldings E1 (N , σ1) and E2 (N , σ2),
such that σ1 ⊂ σ2. Then, let us remove events which do not belong to any
complete explanations from the both unfoldings. As a result, we respectively
obtain : Ě1 (N , σ1), and Ě2 (N , σ2). The following property is true:

¬
[
σ1 ⊂ σ2 =⇒ Ě1 (N , σ1) ⊏ Ě2 (N , σ2)

]

where A ⊏ B means that A is a prefix of B (for details see Section [True
conc. semantics]).

The subject of the non-monotonicity is analyzed further in Section 4.5.4,
when the problem of extraction of complete explanation is presented more
deeply. It is also discussed when we describe construction procedures for
Petri nets.
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Figure 3.10: A 1-safe Petri net (a) and prefixes of constrained unfoldings for
the observation σi (i ∈ [1..5]) only consisting of complete explanations.
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3.5 Supervision with parametric time Petri nets

Below, we present the construction of a complete (i.e. containing all the valid
explanations) constrained unfolding of a parametric time Petri net step by
step for a sequence of observations σ. In the first section, we describe sym-
bolic time branching processes which are used to construct unfoldings of
PTPNs. We also present also some basic issues connected to the construc-
tion of TBPs. Next, we describe the technique which we use to unfold the
parametric time Petri nets and the way to extract valid time configurations
from it. In the final section, we show how to apply the unfolding method
in the process of supervision. Let us note that we consider a structured
observation. We terminate the presentation with a simple example of the
method.

3.5.1 Symbolic time branching processes of parametric time

Petri nets

Before we go into details of the unfolding technique of parametric time Petri
nets we use in the process of supervision, we recall several basic notions.

We already described the semantics of parametric time Petri nets. Below,
we extend this description with the most important definitions.

Definition 35. (Time process) A time process of a time Petri net N DEF

is a pair 〈E′, θ〉, where E′ is a configuration of (a branching process of)
untimed (N ) and θ : E′ → R≥0 is a timing function giving a firing date for
any event of E′. �

Now we shall extend the notion of branching process with time informa-
tion, allowing us later to define the unfolding of parametric time Petri nets.
We do this in a way similar to extending configurations to time processes,
by adding a function labeling events with their firing date. However, in a
branching process some events may be in conflict, which means that some
of them may not fire at all. We will account for this situation by labeling an
event that never fires with +∞.

Definition 36. (Time branching process) Given a PTPN N = 〈P, T,W, DEF

m0, eft, lft,Π, DΠ〉 , a Time Branching Process (TBP) of N is a tuple 〈β, v, θ〉
where β = 〈B,E, F, l〉 is a branching process of 〈P, T,W,m0〉, v ∈ DΠ a
valuation of the parameters and θ : E → R≥0 ∪ {∞} a timing function
giving a firing date for any event in E. �

The notion of time (branching) process is naturally related to the problem
of validity of the timing function. In the sequel, we will say that a TBP is
valid if its timing function is valid. We introduce such a valid timing function
later in the chapter when describing the unfoldings of parametric time Petri
nets.
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(a)

∅⊥ θ(⊥) = 0
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t1e1 t2e2

θ(e1) = 3 θ(e2) =∞
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∅⊥ θ(⊥) = 0

p1

t2e1 θ(e1) = 2

p1

t3e2 θ(e2) = 5

(c)

Figure 3.11: A time Petri net (3.11a) and two of its time branching processes:
temporally complete (3.11b) and not temporally complete (3.11c).

Let N = 〈P, T,W,m0, eft, lft,Π, DΠ〉 be a PTPN and β = 〈B,E, F, l〉 the
associated unfolding of untimed(N ). We define the enabling date of an event
e ∈ E as the expression TOE(e) standing for maxf∈••e (θf ). It gives the date
at which the corresponding transition has been enabled.

Valid time branching processes, as defined by Definitions 36, do not nec-
essarily contain correct executions since a TBP is a priori incomplete in the
sense that all timed constraints of the PTPN may not be included yet in the
TBP: by extending the TBP with additional events, new conflicts may ap-
pear that would add those constraints. Therefore we will consider sometimes
temporally complete TBP as defined below:

Definition 37. (Temporally complete TBP) A TBP 〈B,E, F, l, v, θ〉 isDEF

temporally complete if for all the extensions 〈t, e〉 of 〈B,E, F, l〉,

max{θ(e′) | e′ ∈ E ∧ θ(e′) 6=∞} ≤ TOE(e) + v(lft(t)) (3.1)

�

This definition basically says that the firing date of all events in the TBP
should be less than or equal to the latest firing date of all possible extensions.
Since the conflicts that have not yet been discovered will result from these
extensions, this implies that all the events in the TBP are possible before
these conflicts occur. It further ensures that all the parallel branches in the
TBP have been unfolded to a same date. A similar condition applies for
time processes.

Example 19. Let us consider a time Petri net in Figure 3.11a. We canEXM
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observe that the time branching process in Figure 3.11b is temporally com-
plete. However, the time branching process in Figure 3.11c is not temporally
complete. Note that the latest firing date is 5 and that there exists a possible
extension 〈t1, e3〉 with the latest firing date 3.

In this context, a question about the construction of a time branching
process may arise. Namely, how to extend a time branching process in order
to ensure that it is temporally complete? Firstly, it was shown (e.g. in [85]),
that for a temporally complete TBP 〈B,E, F, l, v, θ〉 and any extension 〈t, e〉
of β = 〈B,E, F, l〉, there exists θ′ such that 〈β′, v, θ′〉 is a valid TBP in
which β′ is the branching process obtained by extending β. Secondly, if the
extension of β has the smallest latest firing date of all the extensions, then
〈β, v, θ〉 extended by 〈t, e〉 is a temporally complete TBP. Thus, following
these two rules from the initial event ⊥, we obtain a temporally complete
TBP.

Similarly to the case of networks of timed automata, we can consider
more than one timing functions in a time branching process. Having all the
possible timing functions and all the possible valuations for the parameters
providing such TBPs, we obtain a union of convex polyhedra in the rational
space of the infinite dimension, denoted by D(N ). Also, whatever the pa-
rameter valuation and the timing function, the underlying branching process
of the corresponding infinite TBP is the same. We denote it by β(N ). In the
following part we refer to D (N ) (respectively β (N )) as to D (respectively
β), if the argument is clear from the context.

Formally, we can express a symbolic time branching process as follows:

Definition 38. (Symbolic time branching process) Let N = 〈P, T,W, DEF

m0, eft, lft,Π, DΠ〉 be a PTPN. A symbolic time branching process (STBP) Γ
is a pair 〈β,D〉 where β = 〈B,E, F, l〉 is a branching process of untimed(N ),
D is a subset of Q|Π| × (R ∪ {+∞})|E| such that for all λ = (v1, . . . , v|Π|,
θ1, . . . , θn, . . .) ∈ D, if we note E = {e1, . . . , en, . . .}, vλ the valuation (v1, . . . ,
v|Π|) and θλ the timing function such that ∀i, θλ(ei) = θi, then 〈β, θλ〉 is a
valid TBP of Nvλ . �

The set D can be represented as a union of pairs 〈Ei,Di〉 where Ei is a
subset of the events (e.g. a configuration) of β and Di is a rational convex
polyhedron (possibly of infinite dimension) whose variables are the events in
Ei plus the parameters of the net. Each point λ in Di describes a value of
the parameters and the finite values of the timing function on the elements
of Ei. For all elements not in Ei, the timing function has value +∞. We
can find an example of a symbolic TBP in Figure 3.13.

As in the case of a branching process, we can define a notion of prefix of
symbolic time branching processes.

Definition 39. (Prefix of an STBP) LetN = 〈P, T,W,m0, eft, lft,Π, DΠ〉 DEF
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be a PTPN. Let 〈β,D〉 and 〈β′,D′〉 be two STBPs of N . 〈β,D〉 is a prefix of
〈β′,D′〉 if β is a prefix of β′ and D is the projection of D′ on the parameters
plus the events of β. �

There also exists the greatest symbolic time branching process according
to this relation which is called the symbolic unfolding. What is significant,
as we can observe in the next section, is that the unfolding obtained using
the technique presented below has the same size as the one computed for
underlying Petri net. However, some of the events may not be executed in
any circumstances. These events are not possible and will be useless. Thus,
it will be sufficient to compute a prefix of the unfolding in which they are
discarded.

3.5.2 Unfolding parametric time Petri nets

The method we propose to unfold time parametric Petri nets is based on
an original way of determining conflicts in the net. The method with all
its details, which we shortly present below, was introduced and described
in [84, 85]. In the non parametric case, unfoldings built with this method
generally differ from those of [35]. In [35], the emphasis is put on the on-
line characteristic of the algorithm: it is a pessimistic approach that ensures
that events and constraints put in the unfolding cannot be back into question.
This possibly leads to unnecessary duplication of events. In the more recent
method, a more optimistic approach is applied: it requires to dynamically
compute the conflicts and sometimes to backtrack on the constraints. For
this purpose we use a refined version of the conflict notion, i.e. a relation of
direct conflict.

Direct conflicts involve events sharing a common precondition but such
that none of their preconditions are in conflict. The formal definition is as
follows:

Definition 40. (Direct conflict) Let O = 〈B,E, F 〉 be an occurrence net.DEF

Two events e1, e2 ∈ E are in direct conflict, which we denote by e1 conf e2,
iff:

• •e1 ∩
•e2 6= ∅, and

• ∀b ∈ •e1,¬(b#e2), and

• ∀b ∈ •e2,¬(b#e1). �

The last two conditions amount to say that •e1 ∪
•e2 is a co-set. We

can note that the notion of direct conflict is central to the construction of
unfoldings as direct conflicts are the cause of all conflicts. In other words,
for any e1, e2 ∈ E, e1#e2 ⇒ ∃e′1 ≤ e1, ∃e

′
2 ≤ e2 s.t. e′1 conf e

′
2.
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t1[5, 5]

p1

t2[3, 4]
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t3[0,∞[
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t2e2
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t3e3

∅⊥ θ(⊥) = 0

θ(e1) = 5 θ(e2) =∞ θ(e3) = 1
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Figure 3.12: A time Petri net with conflicts (3.12a) and one of its possible
time branching processes (3.12b).

Example 20. In Figure 3.12a, there is an example of a simple time Petri EXM

net with conflicts. In Figure 3.12b, we have its time branching process which
we explain later in the chapter. There are the two direct conflicts: e1 conf e2,
e2 conf e3.

Having the notion of the direct conflict, we can proceed to unfold a paramet-
ric time Petri net. The idea is to decorate the unfolding of the underlying
net by associating with each event e a symbolic expression θ(e) representing
the constraints that must be satisfied to justify the occurrence of e. For
each event e, we consider its firing date represented by the variable θe. The
expressions on events will be boolean expressions on linear constraints on
the set of variables and parameters. Figure 3.13 gives an example of such
“decorated" unfolding.

∅⊥ [θ⊥ = 0]

p1 p2

t1 e1[(θ1 6=∞) ∧ (0 ≤ θ1 − θ⊥)] t2e2
[(θ2 6=∞) ∧ (a ≤ θ2 − θ⊥ ≤ b)]

∨ [(θ2 =∞) ∧ (θ⊥ =∞)]

p3 p4

t3 e3



(θ3 6=∞)∧
(θ3 − θ1 = 2)∧
(θ4 =∞)




∨

[
(θ3 =∞)∧
(θ1 =∞)

]

∨



(θ3 =∞)∧
(θ4 6=∞)∧
(θ4 ≤ θ2)


 p5

t0e4



(θ4 6=∞)∧
(θ4 −max(θ1, θ2) = 0)∧
(θ3 =∞)




∨

[
(θ4 =∞)∧
((θ1 =∞) ∨ (θ2 =∞))

]

∨



(θ4 =∞)∧
(θ3 6=∞)∧
(θ3 ≤ max(θ1, θ2) + b)


p2p1

Figure 3.13: A prefix of the symbolic unfolding of the PTPN of Figure 2.5.

Definition 41. (Valid timing function for an unfolding) Given a DEF
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PTPN N = 〈P, T,W,m0, eft, lft,Π, DΠ〉. Let β = 〈B,E, F, l〉 be the unfold-
ing of untimed (N ). The timing function θ is defined by θ(⊥) = 0 and ∀e ∈ E
(e 6= ⊥),

[
(θe 6=∞) ∧ (eft (l (e)) ≤ θe − TOE(e) ≤ lft (l (e)))

∧
∧

e′∈E,e′ conf e (θe′ =∞)

]
(3.2)

∨
[
(θe =∞) ∧

∨
b∈•e (θ•b =∞)

]
(3.3)

∨

[
(θe =∞) ∧

∨
e′∈E,e′ conf e

[
(θe′ 6=∞)

∧ (θe′ ≤ TOE(e) + lft (l (e)))

] ]

(3.4)

�

Note that, in this definition, the parameters appear through the functions
eft and lft.

The first line of the expression (Equation 3.2) means that the event e has
been fired and, consequently, that no conflicting event is fired and that its
firing date must conform to its time interval according to the TPN semantics.
The remaining two lines consider the case in which the event e has not been
fired (coded by the expression θe =∞). There are two possibilities: either a
preceding event has not fired yet (Equations 3.3), either a conflicting event
has been fired and has prevented e to occur (Equations 3.4). This latter case
means that such conflicting event has fired while e was enabled.

Example 21. Figure 3.13 shows a symbolic prefix of the unfolding of theEXM

PTPN in Figure 2.5. We can see that each event is attributed with a symbolic
expression. The expressions are formed with variables denoting the firing
dates of the considered event and of its neighborhood (the events that directly
precede and those in conflict) and parameters. In practice, the expressions
are implemented using polyhedra.

We also define the set of events temporally preceding an event e ∈ E as:
Earlier(e) = {e′ ∈ E | θ(e′) < θ(e) is satisfiable}.

Following the standard semantics of TPNs, [8] has defined the notion of
valid time configuration, which can be used here:

Definition 42. (Valid time configuration) Let E′ be a configuration ofDEF

U (untimed (N )). E′ is a valid time configuration of U(N ) iff (θ⊥ = 0) and

∧

e∈E′\{⊥}

[
θe ≥ TOE(e) + eft(l(e))

∧
∧

e′∈enabled(l(Cut(Earlier(e))) θe ≤ TOE(e′) + lft(l(e′))

]

�
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Let us consider a maximal (in term of set inclusion) configuration E′ of
U (untimed (N )), extended with the events that are in direct conflict E′′ and
equipped with the corresponding symbolic expressions of U(N ). Assuming
that events in E′ have fired and that events in E′′ not, E′ is a valid time
configuration if the conjunction of all expressions of E′ ∪ E′′ is satisfiable.
This leads to the following theorem [84].

Theorem 1. (Correctness) Let 〈B,E, F, l, v, θ〉 be the unfolding of a para- THM

metric time Petri net N = 〈P, T,W,m0, eft, lft,Π, DΠ〉. Consider a maximal
configuration E′ ⊆ E, and E′′ = {e ∈ E | ∃e′ ∈ E′, e conf e′}

E′ is a valid time configuration iff

[
∧

e∈E′

(θe 6=∞) ∧
∧

e∈E′′

(θe =∞)

]
⇒

∧

e∈E′∪E′′

θe is satisfiable.

�

Moreover, it was proven ([84]) that all valid time processes can be repre-
sented by such a TBP. Therefore, since the symbolic unfolding contains all
the valid TBPs, it also contains all the time processes of the PTPN.

Theorem 2. (Completeness) Let N = 〈P, T,W,m0, eft, lft,Π, DΠ〉 be a THM

PTPN and v ∈ DΠ be a valuation of the parameters. Let 〈B,E, F, l〉 be a
branching process of the underlying Petri net and 〈E, θ〉 be a time process
of the TPN Nν .

There exists a temporally complete time branching process 〈B′, E′, F ′, l′, v,
θ′〉 such that ∀e ∈ E, ∃e′ ∈ E′ s.t. l(e) = l′(e′) and θ(e) = θ′(e′).

3.5.3 Application to supervision

Using the unfolding technique of parametric time Petri nets presented above
and the notion of structured observation (see Definition 28), we can con-
struct the constrained unfolding, i.e. an unfolding compatible with the ob-
servation. To define this notion of compatibility, we consider the maximal
configurations and ask if they do not contain events and relations that con-
tradict the observation. Given an observation O, we consider the Parikh
vector ̟(O) = (|λ−1(a)|)a∈Σ which counts the number of occurrences of
each action in O. The same function can also be applied to configurations,
considering that, for each event e, λ(e) is in fact λ(l(e)).

Definition 43. (Compatibility) The unfolding of a PTPN N is compat- DEF

ible with an observation O if all its maximal (in the sense of set inclusion)
configurations are. A configuration E is compatible with an observation iff:

1. ∀e ∈ E,̟(E) = ̟(O) and
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2.
∀o1, o2 ∈ O , o1 � o2 ⇒
∃e1, e2 ∈ E , [λ(o1) = λ(e1)] ∧ [λ(o2) = λ(e2)] ∧ (e1 ≤ e2)

and

3.
∀o1, o2 ∈ O , o1 co o2 ⇒
∃e1, e2 ∈ E , [λ(o1) = λ(e1)] ∧ [λ(o2) = λ(e2)] ∧ (e1 co e2)

�

The first condition ensures that all the events in E have their counter-
parts in O, i.e. the number of all types of events has to match. The other
two conditions ensure that the causal relations between some events in the
observation O are satisfied in E.

Theorem 3. (Finiteness) Given a finite observation, if the PTPN doesTHM

not contain loops of ǫ transitions, the set of compatible configurations is
finite and thus the unfolding.

Proof. Because of the finiteness of the original Petri net, the only possibility
to obtain an infinite object is to have an infinite configuration. Such a
configuration contains some observable events (events e such that λ(l(e)) 6=
ǫ). They are in finite number, due to the finiteness of the observation and by
application of the Parikh constraint. Thus, the only possibility is to have an
infinite number of ǫ events. Because of the safeness of the net, this infinite set
of events must form a chain of causality, which is prevented by the absence
of ǫ-loop in the net.

At the end of the observation, we obtain a finite unfolding in which each
event is equipped with a symbolic expression. From Theorem 1, it is pos-
sible to extract the valid timed configurations. This is done by considering
the maximal configurations of the underlying untimed net, extended by the
events that are in direct conflict with some events of the configuration. The
associated symbolic constraint is given by Theorem 1. After boolean simplifi-
cation, keeping only the configurations in which the expression is satisfiable,
we obtain a set of timed configuration which constitutes the set of explana-
tions. In general an explanation adds in general a lot of information to the
observation:

• it has inferred some added causal and concurrent relations between the
observable events;

• it has also inserted some patterns of non observable events;

• it gives the constraint that must be satisfied between all the firing dates
of the events;

• it gives some constraints about the possible values of the parameters.

This is illustrated in Figure 3.14. We have considered the PTPN of Figure
2.5a in which only transitions t1 and t2 are observable and labelled with
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∅⊥ θ⊥ = 0
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t1 e10 ≤ θ1 − θ⊥ t2e2 a ≤ θ2 − θ⊥ ≤ b
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t1 e10 ≤ θ1 − θ⊥ t2e2 a ≤ θ2 − θ⊥ ≤ b

p3 p4

t0 e4θ4 −max(θ1, θ2) = 0

p2p1

(b)

Figure 3.14: Two possible explanations.

the same letter. Now let us consider a simple observation formed with only
two occurrences of the letter. The finite symbolic unfolding we obtain is
the one depicted in Figure 3.13. There are only two maximal valid timed
configurations as shown in Figure 3.14.

3.5.4 Case study 1

Before we go to our main case study, we briefly mention an example that
directly relates to our previous example in section 3.3.2. The following case
study considers a parametric model of the alternating bit protocol, but this
time for parametric time Petri net. The exact analysis of the example was
presented in [84]. Below, we briefly mention a few most important facts.

Like in the previous case study, the parametric time Petri net consists of
four components, i.e. a sender, a receiver and communication channels. The
sender emits messages, either with a bit (0) or (1) (transitions !m). After
the first emission, the next retransmission happens after to time units, where
to is a time parameter. In the meantime, it waits for the acknowledgment
(transitions ?a). Similarly, the receiver gets the message through transitions
?m and sends the acknowledgment by transitions !a. These two components
are connected by communication channels, modeled by a 2-length queue, one
for each type of messages and acknowledgments. Transmission delays belong
to the parametric time intervals: [m,M ] for the channel of the messages, and
[a,A] for the channel of the acknowledgments. Messages may also be lost.
To sum up, this net is safe by construction. It consists of 31 places, 29
transitions and 5 time parameters (to, m, M , a, A). The domain of the
parameters is DΠ = {0 < a ≤ A, 0 < m ≤ M, 0 < to}. To supervise the
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system with this model, the observable transitions of the net are labeled by
actions. These are: the emissions of the sender and the correct receptions of
the receiver. All other transitions are considered as non-observable.

Diagnostic

Analogically to the case study with the network of timed automata, a se-
quence σ of partial observations is analyzed to determine if it is possible to
send a message once and to receive it twice. For this purpose, the previously
presented method of supervision is applied. First, the supervisor E(N , σ)
is computed by unfolding the parametric time Petri net. It contains 125
possible events and 212 conditions. Then, 43 explanations compatible with
the observations are extracted from this supervisor.

For each explanation, we get a constraint on the parameters. In partic-
ular, the tool computes the fact that to ≤ M + A is a necessary condition
to explain the observations. This result is compatible with the one obtained
in [52] and described in the previous case study (Section 3.3.2). In that
paper, the authors consider stricter initial constraints on the parameters
(a = A = m = M) and get the condition to ≤ 2a. This result can be used
to prevent the sequence of observations to happen by adding the constraints
to > M +A to the initial domain of the parameters.

Implementation

The case study was analyzed with the tool Romeo, in a devoted module
written in C++, with 3 thousand lines of code and the help of the Parma
Polyhedra Library [10] to verify the satisfaction of the temporal and para-
metric constraints.

The proposed method assumes that there is no loop of unobservable
transitions in the model. This is the case in the example. The set of expla-
nations was limited by selecting explanations containing only a fixed number
of non-observable events. Otherwise, the set might be potentially infinite.

3.5.5 Case study 2

The continuous model

In this section, we present a realistic case-study based on the industrial case
study for climate control in a cowshed proposed in [58]. The problem is
to keep the temperature, humidity, CO2 and ammonia concentrations at
specified levels so that the well-being of pigs is ensured. Though it would be
relevant to model temperature, humidity, CO2 and ammonia concentrations,
we limit ourselves to modeling only temperature. It would though be easy to
include the disregarded climate parameters since the mixing dynamics are,
roughly, identical.
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Qi−1,iQi,i−1 Qi,i+1Qi+1,i

heater

fresh air inlet

fan+outlet
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Figure 3.15: The zone number i and the air flows through it.

The cowshed is divided into distinct climatic zones which interact by
exchanging air flow. Besides internal air flow, a zone interacts with the
ambient environment by activating a ventilator in an exhaust pipe and also
by opening a screen to let fresh air enter into the building. Air flowing from
outside into the ith zone is denoted Qin

i [m
3/s]. Air flowing from the ith zone

to outside is denoted Qout
i [m3/s]. Air flowing from zone i to i+1 is denoted

Qi,i+1[m
3/s](air flow is defined positive from a lower index to a higher index).

A stationary flow balance for each zone i is found: Qi−1,i+Qin
i = Qi,i+1+Qout

i

where, by definition, Q0,1 = QN,N+1 = 0. The flow balance for zone i is
illustrated in Fig. 3.15

The temperature in a given zone is impacted in several ways:

• Each zone is equipped with a heater which can be either on (ui = 1)
or off (ui = 0). We denote by Ui[J/s] the resulting heating;

• The pigs in the zone produce heat, denoted by Wi[J/s];

• Air flows from/to adjacent zones;

• Fresh air flows in from outside through the inlet. Tamb is the outside
temperature. Qin,max

i is the maximum flow of air drawn from outside;

• Air flows outside by means of the fan. Qout,max
i is the maximum flow

of air fanned outside.

The evolution of the temperature in zone i is therefore given by the following
differential equation, where Vi is the volume of zone i, ρair the air density



106 3. Constrained unfoldings

[kg/m3], and cair the specific heat capacity of air [J/kg.C]:

dTi

dt
= f(Ti−1, Ti, Ti+1),with

f(Ti−1, Ti, Ti+1) = 1
Vi
[Qin

i Tamb −Qout
i Ti +Qi−1,iTi−1 −Qi,i−1Ti

−Qi,i+1Ti −Qi+1,iTi+1 +
uiUi+Wi

ρaircair
]

Among all the factors impacting the temperature in the zone, only three
ones are directly controllable:

• The heater, which is on or off;

• The aperture of the inlet, between 0 and some maximal value inducing
Qin,max

i ;

• The speed of the fan, between 0 and some maximal value inducing
Qout,maxi .

In particular, the internal air flows between zones are induced by these last
two parameters. We also decided to extend the system with an extra feature
which is a possibility of failures of fans (depicted by the state OOOi in Figure
3.16).

The parametric time Petri net generation

We consider a discrete evolution of temperature of each cell on a scale of
n degrees. Each possible temperature in a cell is represented as a place.
The marked place gives the current temperature of the cell. We sample and
compute the successor state considering that Ti−1, Ti and Ti+1 are constants.
Let us denote nextδ(Ti) the temperature of cell i, obtained in these conditions
after δ units of time (t.u.).

We define Cδ ∈ [0, 1] as the coefficient of heat exchange on the duration
δ.

1. Without fan (no communication with outside) and without pig:

nextδ(Ti) = Ti + Cδ ∗
Ti−1 − Ti

3
+ Cδ ∗

Ti+1 − Ti

3

On an infinite delay (Cδ = 1), we would obtain the heat equilibrium:

nextδ(Ti) =
Ti−1+Ti+Ti+1+Tamb

3

2. Without fan, but with pigs:
Let TW

δ be the heat brought by the pigs during δ time units.

nextδ(Ti) = Ti + Cδ ∗
Ti−1 − Ti

3
+ Cδ ∗

Ti+1 − Ti

3
+ TW

δ
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Figure 3.16: The cell i.
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3. With fan and pigs:
Let Camb

δ ∈ [0, 1[ the coefficient of heat exchange with outside (depend-
ing on the power of the fan: Camb

δ = 1 means a fan with an infinite
power).

nextδ(Ti) = Camb
δ ∗Tamb+(1−Camb

δ )∗(Ti+Cδ ∗
Ti−1−Ti

3 +Cδ ∗
Ti+1−Ti

3 +
TW
δ )

The model of a cell i, given in Figure 3.16, consists of 4 blocks:

• the block Ti with one place per temperature,

• the block Nexti is used to store the intermediate state,

• the block FANi is a model of the behavior of the fan including possi-
bility of failures,

• the block nextδ compute the next temperature of the cell and per-
forms the exchange of tokens between blocks Ti and Nexti using the
block FANi and the temperature of adjacent cells. This exchange is
given by the quantization (on the n temperature levels) of the function
nextδ(Ti).

The sampling is controlled by the places Ctrli Computei and Waiti and
transitions topi, runi and updatei. The new temperature of the cell i is
computed in two steps. First, the new temperature nextδ(Ti) is computed at
(δ−ǫ) t.u. and the result is stored in the intermediate places of block Nexti.
This intermediate result is obtained in zero t.u. and does not depend on the
interleaving since marking of block Ti is not modified by this computation.
Then, the intermediate result is moved from Nexti to Ti after ε t.u.
All the possibilities are defined, which leads to a complex graph. With

n the number of temperature levels, the model has 2× n3 transitions. This
one is tedious to build by hand. Thus, we decided to automatically generate
the model by programming a tcl-tk generator, parameterized by the number
of considered cells and the temperature scale. This generator of 1000 lines
builds a PTPN model as an XML file directly read by Romeo. For exam-
ple, Figure 3.17 gives an insight of the model with 2 cells and 3 levels of
temperature.

The diagnosis experiment

The goal of the experiment is to show a case in which a certain maximal
temperature is exceeded in one of the cells. This leads in turn to the death
of some pigs. In the model, we assume that we can observe the changes of
temperature in each of the cells, and that we can get to know if some pigs
are dead. As a result, we would like to know the possible explanations of
cases in which a pig died. For example, we can imagine a situation where a
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Figure 3.17: The model with 2 cells and 3 levels of temperature.
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fan is broken in a cell. Moreover, we would like to obtain some information
about the possible dates of death.

The experiment was performed on the system presented in the previous
section in Figure 3.17. It consists of 2 cells and 3 levels of temperature. In
the example, we assume that the temperature of cells is monitored at some
given rate which amounts to 10 units of time.

To be able to execute our scenario, we added some additional transitions
to the model (see Figure 3.17). They do not change the main functionality
of the model. They are used for two reasons. The first reason is to verify
whether the critical temperature was reached or not. Consequently, each
time the extra transitions are fired, one can observe the death of pigs as a
consequence of the excessive temperature. The second reason is to compute a
minimal delay between two events: the initial event of the model (at time 0),
and the potential death of pigs in a cell. The structure which implements this
task is based on two transitions. One of the transitions has a parametrized
constraint [a, a]. The transitions share an input place with a token. The
token is active from the very beginning of the model activity. However, the
non-parametrized transition t also depends on some other token at place p (in
the model it denotes the maximal temperature). Our goal is to get to know
when the place p can activate the non-parametrized transition (in the model
it denotes the death of a pig). We can note that, by using the structure, we
get the minimal possible date of firing t by reading the parameter a.

For the purpose of the experiment, we set up an initial temperature for
each cell and we entered a set of observed events into our tool for analysis, i.e.:
log with unordered temperature measurements, and an event which signals
death of an animal in one of the cells. In total, there were 8 observable
events and a limit of 6 unobservable events in the observation. As a result,
we obtain a prefix consisting of 108 events with 4 possible explanations. From
the prefix, we can observe that in any of the four scenarios, the fans in both
cells have to be broken before the temperature become critical. Moreover,
as a result of the experiment, we get possible valuations of the parameters
given in the model. Thus, we get to know that the minimal time amount
which is necessary in order to reach the state dangerous for the pigs amounts
to 20 units of time.

To perform the experiment, we used a prototype implemented in Romeo
which is a software for analysis of time Petri nets. The experiment was
executed on a small machine with 1GB of RAM and 2GHz Intel Pentium
processor. The computation time of the example needed about 15 seconds.
During our experiments, we also tested some different variants of the prob-
lem: with more cells, with more levels of temperature and with different
observations. In general, the size of the model and observations can strongly
influence the time complexity of the diagnosis. It is not difficult to observe
that one of the issues which plays a great role in the time consumption of
the analysis is the number of unobservable, or indistinguishable events in the
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system. During the tests we observed many difficult cases in the context of
time complexity.

3.6 Final remarks

In the first part of the chapter we present an original method using the model
of networks of timed automata to compute timed explanations of a sequence
of actions produced by a distributed system under surveillance. Many pos-
sible applications can be considered such as the correlation of alarms and
the detection of errors, monitoring behavior patterns to detect for example
intrusions, surveillance of non-functional time properties, etc. A more de-
tailed algorithmic analysis is given in Chapter 5. Concerning the algorithmic
complexity, we can note that one of its main components is nondeterminism
caused by unobservable events. The more unobservable events in the partial
observation, the greater the number of possible explanations of the model
execution.

During our research, we developed a prototype tool which implements the
presented solutions. We used this tool to prepare a more realistic example
which is described in Section 3.3.2.

In the second part of the chapter, we propose a new technique for the
unfolding of safe parametric time Petri nets that allows a symbolic handling
of both time and parameters. To the best of our knowledge, this is the first
time that the parametric cases are addressed in the context of unfoldings.
Moreover, when restricting to the subclass of safe time Petri nets, our tech-
nique compares well with the previous approach of [35]. It indeed provides a
more compact unfolding, by eliminating the duplication of transitions, and
also removes the need for read arcs in the unfolding. As a tradeoff, the con-
straints associated with the firing times of events may seem slightly more
complex.

We have partly implemented the technique in the tool Romeo which
can currently compute unfoldings of safe time Petri nets. However, the
computation of the finite prefix is not yet implemented and the unfolding
is there coupled to a supervision technique that makes the unfolding finite
based on a finite set of observations.

The current version of the Romeo tool 2.9.0 is available on the webpage
[2]. It also offers the possibility of computing symbolic unfoldings for safe
time Petri nets with parameters. When guided by a sequence of actions, this
feature allows the user to perform some diagnosis. The diagnosis consists of
a finite prefix of the unfolding, presenting all the possible explanations of the
input sequence. The explanations explicit the inferred causal relationships
between the events of the model and also give the possible values for the
parameters. We think that such an integrated method is a real added-value
for the analysis of concurrent systems, and opens the door to deal with even
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more complex models like time Petri nets with stopwatches or time Petri
nets with more robust time semantics (e.g. with imperfect clocks).

It is worth noting that in [85] we can already find a method to unfold
safe parametric stopwatch Petri nets. Stopwatch Petri nets [21] are a strict
extension of the classical time Petri nets à la Merlin (TPNs) [72, 20] and
provide a means to model the suspension and resumption of actions with
a memory of the “work” done before the suspension. This is very useful to
model real-time preemptive scheduling policies for example.



Chapter 4

Unobservable loops

Below, we address the problem of constructing an unfolding without having
to consider the infinite behaviors of ǫ-transitions. It is motivated by the
application of supervision or diagnosis.

4.1 Introduction

We propose a new method to deal with unobservable and infinite behav-
iors for constrained unfoldings of Petri nets. The concept of constrained
unfolding was introduced in [46] to tackle the problem of supervision of dis-
tributed systems. Loosely speaking, it is assumed that such systems provide
information about certain events that occur in it. Then this information is
analyzed in order to reproduce the possible scenarios that could occur during
the system operation.

In this chapter, we address the particular question of unfolding Petri
nets under partial observations. To understand the concept of the unfoldings
under partial observations, we can imagine a system modeled by a Petri net
which produces two types of events: observable and unobservable ones. By
definition, only the execution of observable events can be visible outside the
system. The information about observable events, called the observation, is
collected by a certain mechanism which we call the collector. We take the
most general case of observation which is a set of unordered events. One
of the key issues in the problem is the fact that we do not want to lose
the information about the unobservable events. In many situations, it is
crucial to have the information in order to be able to analyze behaviors that
cannot be observed. The main goal of the supervision method is to recreate
a structure on the basis of the observable events, consisting of all behaviors
possible for a given observation. Such behaviors are called explanations and
the structure used to store them is a prefix of the unfolding of the system.

In general, the prefix which is produced by the supervision method can
be infinite. This is due to unobservable loops which can be executed in the
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system. That is why it is not possible to obtain all explanations for a given
observation using the method mentioned above. To cope with this problem,
we show how to construct a constrained unfolding under partial observation.
Then we explain why it is sufficient to consider a finite part (prefix) of it
only.

We present our approach step by step showing different aspects of the
problem. We also show the way to convert the final constrained prefix into
a 1-safe Petri net (called a supervisor) which contains all the explanations.
Throughout the chapter, we use the bottom-up approach to present our
results. We start with the simple case of finite state machine and we finish
with the general case of 1-safe Petri net. In the meantime, we discuss various
aspects of our solution.

The problem of supervision was also investigated in [52, 86] in the con-
text of parametric time Petri nets and network of timed automata. Yet,
the question of invisible loops still remained open there. Since the elimina-
tion of unobservable transitions from 1-safe Petri nets is still an open and
very difficult question (see e.g. [88]), it cannot be circumvented by a model
transformation.

4.2 Background and preliminaries

4.2.1 Notations

Before we go into the problem description, we shortly introduce several nec-
essary notations.

We define a process of a Petri net as a branching process without conflicts.

Let π = 〈B,E, F, l〉 be a process. Having the notion of extension of
a branching process, we can define the future of a process. The future of
π, denoted by future (π), is a set of events which can be executed after
the final state of π. Additionally, we define the future of π with an extra
constraint, i.e. we require that the events in the future belong to a given set
of events S. We denote it by future|S (π). In other words, future|S (π) ≡
{e ∈ S | e ∈ future (π)}.

The set of all events which precede an event e plus e is denoted by past (e)

and is formally defined as follows: past (e)
def
= {f ∈ E | f ≤ e}.

Having a configuration C and a set of events E, we denote by C ⊕E the
fact that C ∪ E is a configuration and C ∩ E 6= ∅. Moreover, we say that a
configuration C1 = C2 ⊕ E is an extension of a configuration C2.

In order to state that two event structures E1, E2 are isomorphic up to
the naming of events and conditions, we use an isomorphism I21 .

Let E be a set of events of a branching process and C ⊆ E, then
futures|E (C) = {e ∈ E \ C | ∄f ∈ C , f#e}.
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4.2.2 A finite complete prefix

Once we defined the basic notions, we mention some results about finite
complete prefixes of 1-safe Petri nets. The techniques used to construct the
prefix are applied to many similar problems. This is also a good starting
point to solve our problem.

First, note that branching processes can be partially ordered by a prefix
relation, denoted by ⊑ (we already mentioned it when describing branching
processes).

Definition 44. (Prefix relation, ⊑) Let us take two branching processes DEF

β1 = 〈B1, E1, F1, l1〉 and β2 = 〈B2, E2, F2, l2〉. We say that β2 is a prefix of
β1 if there exists an injection f : B2∪E2 → B1∪E1, such that a = f (b) =⇒
l2 (b) = l1 (a), and the following conditions are satisfied:

• b ∈ B2 =⇒ f (b) ∈ B1 ∧
•b = f−1 [•f (b)] ∧ f−1 [•f (b)] ∈ B2

• e ∈ E2 =⇒





f (e) ∈ E1

∀b ∈ •f (e) ∪ f (e)• , f−1 (b) ∈ B2

∀b ∈ •f (e) , f−1 (b) ∈ •e
∀b ∈ f (e)• , f−1 (b) ∈ e•

Moreover, ∀x, y ∈ B2 ∪ E2, [f (x) , f (y)] ∈ F1 =⇒ (x, y) ∈ F2, and ∀x ∈
B2 ∪ E2, l1 (f (x)) = l2 (x). �

For example, when we consider the branching process in Figure 2.7b,
denoted by β1 = 〈B,E, F, l〉, and we take a similar branching process β2 =
〈B \ {e3

•} , E \ {e3} , F, l〉, we can observe that β2 is a prefix of β1, i.e.
β2 ⊑ β1.

There exists a maximal branching process according to this relation for
any 1-safe Petri net N , which is called the unfolding of N , denoted by U (N ).
Formally, U (N ) ≡ max

⊑
[β ∈ B (N )], where B (N ) is the set of all possible

branching processes of N .
It was shown in [71] and later in [42] that there exists a finite prefix of

such an unfolding containing all the possible reachable states. Such a finite
complete prefix can be found, for example by applying the following theorem.

Theorem 4. [71] Let N be a 1-safe Petri net. There exists a finite prefix THM

βf = 〈Bf , Ef , Ff , lf 〉 containing all the reachable states of N , and

βf ≡ max
⊑
{〈B,E, F, l〉 ⊑ U (N ) | ∄e, f ∈ E , e < f ∧ cut-off (e)} ,

where cut-off (e) ≡ ∃e′ ∈ E, e′ < e ∧ l (cut(past (e))) = l (cut(past (e′))) .

The finite prefix presented in Theorem 4 can be minimized as shown by
Esparza by using so-called adequate order on events (for details see [44]). In
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the theorem, there is the notion of a cut-off event which was not presented
before and which is crucial in the context of this chapter. In brief, a cut-off
event guarantees that there is an event before it, which leads to the same
marking of the net. Thus, anytime a cut-off event is encountered during the
construction of a finite complete prefix, it is set as a maximal event of the
prefix.

4.2.3 Constrained unfoldings

In this section, we briefly recall what was described in the previous chapters
and what we need for the current chapter.

In the context of supervision, we consider a set of observable events
described by a finite alphabet Σ of actions. With these actions, we define a
function λ : T → Σ ∪ {ǫ} that labels each transition in the net by an action
λ(t). To handle partial observations, the unobservable transitions are labeled
by a silent action ǫ. In our supervision method, we will construct a prefix of
the unfolding, guided by the observation σ ∈ Σ∗. To achieve this, we use the
Parikh function of the sequence σ defined by: ̟ : Σ∗ → N|Σ|. It computes
a Parikh vector ̟(σ) in which we count the number of occurrences of each
action in σ. For each event e in a branching process 〈B,E, F, l〉, we also
compute a Parikh vector ζ(e) ∈ N|Σ| which counts the number of occurrences
of each action in the causal past of e. We can compute ζ(e) by defining for
each action a ∈ Σ a Parikh vector χa, such that all its components are set
to 0, except the one corresponding to the action a which is equal to 1. χǫ is
the null vector. Then ζ(e) =

∑
e′∈past(e) χλ(l(e′)).

In the further part of the chapter, we use an extended version of the func-
tion ζ, denoted by ζ̂ (E). ζ̂ (E) is defined as follows: ζ̂ (E) =

∑
e′∈E χλ(l(e′)).

Definition 45. (Constrained unfolding) The constrained unfolding E(N , σ)DEF

of a system modeled by a Petri net N , for a sequence of observations σ, is a
prefix β of the unfolding U(N ). It is computed such that, for each event e,
ζ(e) ≤ ̟(σ). �

Having the constrained unfolding, we can extract all the explanations
from it.

Definition 46. (Explanation) An explanation η = 〈B,E, F, l〉 is a processDEF

of a Petri net which satisfies a certain observation σ, i.e. ζ̂ (E) ≤ ̟ (σ). If
ζ̂ (E) = ̟ (σ), it means that η is a complete explanation of σ for N . �

Unfortunately, the finiteness of the observation sequence does not imply
that the supervisor is bounded. It remains infinite when there exist ǫ-loops
in the model, that is loops containing ǫ-transitions only. Of course, this
would imply the infinite number of explanations. We address this question
in the following part of the chapter.
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Figure 4.1: Nets with unbounded supervisors.

Example 22. In Figure 4.1, there are two Petri nets for which there is no EXM

finite constrained unfolding. Since there are unobservable loops in both nets
which are available from the initial markings (the ǫ-transitions are filled in
white), there is always an infinite number of events in constrained unfoldings
independently of observations.

In the chapter, we will also use the notion of a supervisor for a given
Petri net N and observation σ, which intuitively is a Petri net such that its
unfolding contains all processes of the constrained unfolding E (N , σ).

4.2.4 Fusion of conditions or events in Petri nets

The fusion of places (respectively transitions) is one of the most common
transformation used in the domain of Petri nets. The principal of the op-
eration for both cases is presented in Figure 4.2. This type of operation is
frequently used to reduce the size of a Petri net.

Remark that we can use a similar operation for unfoldings as they store
references to original places inside conditions and references to original tran-
sitions inside events. For the purpose of the problem presented in the section,
we only consider fusion of conditions (or events) which are associated with
the same place (respectively transition) in the original net.

4.3 The simple case of finite state machine

4.3.1 Construction of constrained unfolding

First, we illustrate the problem and its solution on the simple case of Finite
State Machines (FSM). An FSM is a particular case of safe Petri net in which
the preset and postset of each transition are bounded by one:

∀t ∈ T, |•t| ≤ 1 ∧ |t•| ≤ 1
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Figure 4.2: Fusion of two places (a) and two transitions (b)
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Figure 4.3: Supervisor of the net (b) of Figure 4.1 when two events are
observed.

In that case, the causal relation < is a total order. Thus, the branching
process is just a tree branching on the conditions. Co-sets and cuts are
singletons.

An ǫ-terminal cut is a cut such that the label of the cut (a place) is already
present in the past of the condition, and such that all the intermediate events
are labelled with ǫ. For each cut C = {b},

ǫ -terminal (C) ≡ ∃b′ ∈ B,





b′ < b (1)
λ [l (b′)] = λ [l (b)] (2)
∀e ∈ E, b′ < e < b =⇒ λ [l (e)] = ǫ (3)

b′ is called the companion of b.

For an FSM N and a sequence σ of observations, let us consider the
constrained prefix P (N , σ). If the FSM contains an ǫ-loop, the constrained
unfolding is infinite. We thus consider a re-folding operation which consists
of a fusion operation of each ǫ-terminal cut with its companion. As a result,
we get a Petri net S (N , σ) called a supervisor.

Since the number of places is finite, the constrained prefix only contains
finite ǫ-chains. Since the sequence of observations is finite too, we obtain
that the constrained prefix is finite. The result is a tree (in case of non-
determinism), decorated by ǫ-loops. Notice that there are no ǫ-loops with
observable events in the supervisor.
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Figure 4.4: A naïve approach to solve the problem.

We can note that, in order to compute a supervisor, for each condition
of the constrained prefix, we have to look if there was a condition associated
with the same place in its causal past. However, as we show in Example 23,
it is not true for the general case of Petri nets.

Example 23. Let us consider a Petri net in Figure 4.4a. As we can observe, EXM

it has one observable transition (drawn in bold line). In our example, we
take an observation consisting of one observable event.

The example shows that it does not make sense to simply glue conditions
which are associated with the same places. In the example, this naïve ap-
proach leads to the fusion of two conditions, b2 and b11. Both are associated
with the place p2. However, we can see that, in order to create a loop, we
would have to consider a transition t1 which is between the two conditions.
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Algorithme 4.1 Removal of incomplete explanations from constrained pre-
fix of an FSM.
Input: A constrained prefix P.
Output: A prefix of the constrained prefix, such that each of its events
belongs to some complete explanation.

1. We take all the maximal events of P and we calculate their Parikh
vectors.

2. If the Parikh vector of an event e is the same as the Parikh vector of
the observation, we mark all the predecessors of e.

3. When we finish the analysis of all the maximal events, we remove from
P all events which are not marked.

The rest of the conditions associated with t1, i.e. b1, b3, does not belong to
any loop in the underlying Petri net (see Figure 4.4a).

4.3.2 Removal of incomplete explanations

Example 24. In Figure 4.5a, we can see an FSM. Next to it, in FigureEXM

4.5b, there is a Petri net which was constructed using the method from the
previous section. The observation used to construct the prefix is σ = {a, b, c}.
We can see that the structure contains some events, i.e. e3, e6, which do not
belong to any complete explanation.

In the example 24, we show that, when we use the simple method from the
previous section, we can obtain some incomplete and incorrect explanations.
Such explanations can be simply removed with Algorithm 4.1.

The algorithm terminates as the number of maximal events is finite in
the input prefix. Moreover, all the events in the result prefix belong to one
complete explanation at least.

For the net from Example 24, the result is illustrated in Figure 4.5c.
Note that such a removal may not always be desirable, if we plan at

some point to extend the observation and thus the prefix. This problem was
already mentioned in the section about non-monotonicity of the supervisors
(see Section 3.4.2). Recall that such incomplete explanations can become
complete ones when there are some new observable events added to the
observation.

4.3.3 Canonical form of the supervisor

From the previous section, we got to know how to construct a Petri net which
contains all complete explanations for a given observation. However, we can
go even one step further, and we can ask the question if there is a minimal
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Figure 4.5: Consecutive steps to calculate canonical supervisor of an FSM.
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Algorithme 4.2 Construction of canonical supervisor of an FSM.
Input: A constrained prefix with removed incomplete explanations P .
Output: The canonical supervisor Snorm.

1. Compute ǫ -state for each condition in P.

2. Merge conditions with the same ǫ -state.

3. Merge events of E such that ∀e1, e2 ∈ E , l (e1) = l (e2)∧ǫ -state (
•e1) =

ǫ -state (•e2) ∧ ǫ -state (e1
•) = ǫ -state (e2

•),

form of such a supervisor. In other words, we ask if there is a canonical form
of the supervisor. Indeed, as we will see in this section, we can compute such
a form by using the constrained prefix with no incomplete explanations .

When we take a finite prefix from the previous section, we can observe
that some parts of it are identical. This fact is easy to explain. Every time
we have two cuts with conditions assigned to the some place , they should
naturally have the same futures. Of course, this is true for the case when
we do not consider observations in the construction of the prefix. In our
case, however, we have to consider all observed events. For this purpose,
let us define a state associated with each condition. Such a state, denoted
ǫ -state (b), is a pair [l (b) , ζ (b)]. It is simple to prove the following lemma.

Lemma 4.1. Let us take a constrained unfolding E (N , σ) = 〈B,E, F, l〉 in
which N is an FSM and σ a finite observation. For any two conditions b1, b2
in B, iff they have the same ǫ -states, then configurations C1 = past (b1) and
C2 = past (b2) have the same futures.

∀b1, b2 ∈ B , ǫ -state (b1) = ǫ -state (b2) ⇐⇒ futures|E (C1) = futures|E (C2)

Proof. The fact that the two conditions have the same ǫ -states implies the
fact that they are associated with the same place in the underlying net.
Moreover, the two configurations C1, C2 consist of the same observable ac-
tions. When we consider all the properties, and the fact that we deal with
an FSM, we observe that the futures of both configurations have to be iden-
tical.

Having the notion of the ǫ-state, we can simply compute a canonical
supervisor for FSMs, denoted Snorm.

Below we show that the structure computed by using Algorithm 4.2 is
canonical and we explain the reason why.

Theorem 5. Given an FSM N and a finite observation σ, Snorm (N , σ) isTHM

the smallest Petri net representing all correct explanations of σ.
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Proof. There is only one place in the result net for each ǫ -state. We are also
sure that each of the ǫ -states is reachable for the given observation. Thus,
we cannot remove any of them. This proves that the number of places is
minimal.

After the fusion of conditions associated with the same ǫ -states, we may
encounter a situation in which there is more than one transition labeled
by the same action such that they have identical presets. However, this
also implies the identical postsets about which we are certain that they are
merged in the final supervisor. This property is used in the computation
of the supervisor. Thus, we are sure that there are no repetitions of such
transitions.

In fact, in implementations, we can observe that, every time we have two
conditions with the same ǫ -state, we continue extending only one of them
as the future will be the same for both of them. This is illustrated in Figure
4.5d.

4.4 Constrained unfoldings of free-labeled 1-safe Petri

nets

There are many possible ways in which transitions of Petri nets can be la-
beled. A labeling function can have a significant influence on the construction
procedure of constrained unfolding. In the following section, we look closer
at a certain subclass of Petri nets, namely free-labeled Petri nets with silent
transitions. The notion of free-labeled Petri net is already introduced and
described e.g. in [77].

Definition 47. (Free-labeled Petri nets with silent transitions, FLPN) DEF

A free-labeled Petri net NFL = 〈P, T,W,m0〉 with silent transitions is a la-
beled Petri net in which all non-silent transitions are uniquely labeled, i.e.
∀t1, t2 ∈ T , λ (t1) = λ (t2) 6= ǫ =⇒ t1 = t2. �

In the following subsections, we show how the specific properties of free-
labeled Petri nets can be used in the construction of constrained unfoldings.

4.4.1 Construction of constrained unfolding

So far, we have considered finite state automata and we were able to give
a procedure to construct a canonical form of constrained prefix and the
associated supervisor. Below, we follow the similar steps to show the new
aspects of the construction of constrained unfoldings of FLPNs.

First, we redefine the notion of an ǫ-terminal event.

Definition 48. (ǫ -terminal event) Let β = 〈B,E, F, l〉 be a branching DEF
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process of a 1-safe free-labeled Petri net N = 〈P, T,W,m0〉. We say that e′

is an ǫ-terminal event iff the following conditions are satisfied:

ǫ -terminal
(
e′
)
≡ ∃e ∈ E,





e < e′ (1)

l [cut(past (e))] = l [cut(past (e′))] (2)

∀f ∈ [past (e′) \ past (e)] , λ [l (f)] = ǫ (3)

Moreover, we call e an ǫ-companion event of e’. To express this fact, we
use the function ǫ-companion (e′) = e or the predicate ǫ-companion (e, e′).�

We also use a variant of the ǫ-companion predicate but for conditions. In
order to state that there are two conditions b1 ∈ cut (e) and b2 ∈ cut(e

′), such
that l (b1) = l (b2) and ǫ-companion (e, e′) is true, we write ǫ-companion(b1, b2).
Sometimes, we refer to cut (e) as a companion cut of cut (e′).

Example 25. In Figure 4.4, we presented a 1-safe Petri net with one ob-EXM

servable transition. Consider Definition 48. We want to show why we cannot
simply check observability of events between e and e′, but we have to use
the condition 3. For this reason, let us replace the last condition with the
following condition: ∀f ∈ E, e < f ≤ e′ ∧ λ [l (f)] = ǫ. When we apply the
new definition of ǫ -terminal events to the net in Figure 4.4a, we will note
that e5 is an ǫ -terminal event. This would mean that transitions, which
are associated with events e3, e4, e5, form an invisible loop. However, t4 is
observable and such is the loop.

Given the new definition of an ǫ -terminal event, we introduce a con-
strained prefix for FLPN with silent transitions, which is next used to con-
struct a supervisor.

Definition 49. (Constrained prefix) Let N be a free-labeled Petri netDEF

and σ a finite observation. A constrained prefix P (N , σ) is a maximal
branching process such that:

∀e ∈ P (N , σ)

{
∄f ∈ E, ǫ -terminal (e) ∧ e < f

ζ (e) ≤ ̟ (e)

�

As we can note, Definition 49 makes use of the basic rule of construction
of constrained unfoldings, and additionally the new ǫ -terminal predicate.
The similar predicate was introduced for finite state machines described in
4.3. The difference is that, this time, we may have parallel events in the
configurations.

Below, we prove one of the essential properties of the constrained prefix,
i.e. its finiteness.
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Theorem 6. (Finiteness) Let N be a free-labeled 1-safe Petri net. Let THM

P (N , σ) be a constrained prefix. For any finite observation σ, P (N , σ) is
also finite, i.e. it consists of a finite number of events.

Proof. In order to prove that P is finite, we have to analyze two features of
the structure. The first one is the maximal size of each configuration in P.
By the size of configuration, we mean the number of events in it. The second
one is the number of maximal configurations which are embedded in P. If
we can show in both cases that all of those values are finite, it is equivalent
with the fact that the whole structure P is finite.

Note that the model we consider is 1-safe. Structural features of a 1-safe
Petri net make its branching process infinite only if it contains a process
which is infinite. Note that any cut of any process of 1-safe Petri net is
always a finite set of conditions. These properties can be directly observed
when we interpret a branching process and a process of 1-safe Petri net as
a graph. For a process of 1-safe Petri net, a degree of any of the vertices
is always finite. Thus, we cannot have an infinite number of parallel events
in the process. On the other hand, when we take a set of vertices which
represents a cut of a process, it can be extended only with a finite set of
events. In other words, having a state of a 1-safe Petri net, we cannot have
an infinite number of conflicting events following the state.

Once we proved that there can only be a finite number of events in
conflict directly extending a state of P , we show that all the configurations
are finite. We know that the observation σ is finite and that all events of P
have to respect it. In Definition 49, this fact is represented by the condition
ζ (e) ≤ ̟ (σ). Thus, a simple conclusion is that any configuration of P
may contain at most a finite number of observable events. Consequently, in
order to make sure that the configuration is finite, we only need to guarantee
that the number of unobservable events is finite. However, this situation is
impossible. Let us consider a potential infinite configuration of P , and let
us take a cut C1 of this configuration. We can note that, if the configuration
is continued infinitely by executing unobservable events, eventually a cut
C2 will be reached, such that l (C1) = l (C2). This is due to the pigeonhole
principle and the fact that any 1-safe Petri net has a finite number of possible
states. Thus, in such a process, we will eventually have an event which is an
ǫ-terminal event.

Now, when we have a finite constrained prefix from Definition 49, we
introduce a way to obtain explanations which are coded in the structure. In
order to avoid the introduction of new semantic rules, we decide to translate
the constrained prefix into a Petri net. For this purpose, we introduce an
operator supervisor [P (N , σ)]. The result of the operator is a Petri net which
we call a supervisor. As we show in the following part, after the standard
unfolding procedure, it returns a maximal branching process containing all
the possible explanations of the observation σ.
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Before we define a notion of a supervisor, we introduce a predicate
ǫ-companionmin (b1, b2), where b1, b2 are two conditions which we use in the
definition.

ǫ-companionmin (b1, b2) ≡ ∃p = (a1, . . . , an) , b1 = a1 ∧ b2 = an∧

¬ǫ-condition (a1) ∧ ∀ai, ai+1 ∈ p, ǫ-companion (ai, ai+1)

Note that the predicate is a subset of the transitive closure of the predi-
cate ǫ-companion.

For the sake of simplicity of notation, we also introduce a predicate
ǫ -condition (b) ≡ ∃e ∈ E , ǫ -terminal (e) ∧ b ∈ cut (past (e)).

Definition 50. (Supervisor) Let E (N , σ) = 〈B,E, F, l〉 be a constrainedDEF

unfolding of a free-labeled 1-safe Petri net N = 〈P, T,W,m0〉. σ is a finite
observation. We say that S (N , σ) = 〈P ′, T ′,W ′,m′0, l

′〉 is a supervisor based
on a constrained unfolding E (N , σ) iff:

1. P ′ = {b ∈ B | ¬ǫ -condition (b)}

2. T ′ = E \ {⊥}

3. ∀x, y ∈ B ∪ E,





(x, y) ∈W ′ if {(x, y) ∈ F∧

[(x ∈ E ∧ ¬ǫ -condition (y))∨

(y ∈ E ∧ ¬ǫ -condition (x))]}∨

{x ∈ E, ǫ -condition (y)∧

∃z ∈ x•, ǫ-companionmin (y, z)}∨

{y ∈ E, ǫ -condition (x)∧

∃z ∈ •y, ǫ-companionmin (x, z)}

(x, y) /∈W ′ otherwise

4. m′0 = ⊥
•

5. l′ = l

We express the fact of translation using the following notation: S (N , σ) =
supervisor [E (N , σ)]. �

In fact, we can observe that the only operation used during the transla-
tion from constrained prefix to supervisor is actually the fusion of conditions
described in Section 4.2.4. Apart from that, there is a small modification,
i.e. a removal of the initial event from E . This way, we obtain initial marking
of the original net N in S.

In the following part, we start with the presentation of some basic prop-
erties of the supervisor. Then, step by step, we show that the construction
serves well its purpose.
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Figure 4.6: Illustration for the proof of Lemma 4.2.

Lemma 4.2. Let us consider a process π = 〈B,E, F, l〉 of a 1-safe Petri
net N . Then, let us take an ǫ -terminal event e′ which belongs to π, and its
companion event e = ǫ -companion (e′). For any condition b ∈ cut (past (e))
and any condition b′ ∈ cut (past (e′)), such that l (b) = l (b′), b ≤ b′.

The intuition behind the lemma is quite simple. Namely, it states that,
for every condition b′ ∈ cut (past (e′)), there is a condition b ∈ cut (past (e))
assigned to the same place in the underlying net. This property is important
in the context of the fusion operation which we conduct in order to construct
the supervisor.

Proof. Let us assume that l (b) = l (b′) and b � b′. Because we consider a
process, we have two possibilities:

1. b co b′. The situation when the two conditions are parallel and they
are associated with the same place, i.e. l (b) = l (b′). However, we are
sure that this situation is not possible. Otherwise, it would mean that
there are two parallel transitions which are enabled and that they lead
to the same place in the net. This would contradict the fact that we
deal with 1-safe Petri net.

2. b > b′. From the definition of ǫ -terminal event, we know that ∃f ∈
E, b ∈ f• ∧ f ∈ past (e). If b > b′, it means there is an event, let us
say g, such that b ∈ g• and b′ < g. In other words, there is a sequence
of events going from b′ to b, and the last event in the sequence is g.
This situation is depicted in Figure 4.6. The zigzag lines  represent
the relation ≤, whereas the straight lines → denote <. Moreover,
st (x) = cut (past (x)). Now, we have two possibilities:
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• f 6= g, this case is not possible in a branching process of 1-safe
Petri net as we would have two parallel events leading to the same
condition;

• f ≡ g, this implies the following dependencies b′ < f ≤ e < e′.
This would mean that b′ ∈ past (e). However, we know that b′ ∈
cut (past (e′)). Such a situation is not possible in general. This
is due to the following property: ∀c ∈ cut (past (h)) , c /∈ past (h),
where h is an event, and c is a condition. The property is a direct
consequence of the definitions of the functions cut and past.

Corollary 4.3. Given a process π and two events e and e′ from Lemma 4.2,
let us define a sequence of branching processes ~π = (π0, . . . , πn), such that:

π0 = past (e), π1 = past (e′), πi = πi−1 ⊕ I (past (e′) \ past (e)). Note
that when we apply Lemma 4.2 to ~π, we obtain the following result:

∀i, j ∈ [0, n] , ∀ba ∈ cut (Ei) , bb ∈ cut (Ej) , i < j∧l (ba) = l (bb) =⇒ ba ≤ bb

The intuition behind the above corollary of Lemma 4.2 is to enable us
to apply the lemma to processes which are created due to a number of rep-
etitions of an unobservable loop. This property is especially useful, once
we want to prove the compatibility of the constrained unfolding with the
unfolding of the supervisor (see Definition 50).

Lemma 4.4. If S (N , σ) is a supervisor from Definition 50, then it is a
1-safe Petri net.

Proof. In order to break the safety of the supervisor, it would have to produce
more than one token for a place. To show that it is not possible, we can take
any two conditions b1 and b2 of the underlying constrained prefix E (N , σ)
such that they satisfy the conditions for being merged in S (N , σ). Then,
note that, in E (N , σ), it is not possible for both conditions to be active at
the same time. This is due to Lemma 4.2 and Definition 50 which show that
one condition has to causally precede another. Thus, when we make a fusion
of conditions of E (N , σ), the result structure S (N , σ) is still 1-safe.

Before we step further into the presentation of properties of the supervisor
introduced in this section, we recall the fact that we deal with free-labeled
Petri nets with silent transitions. As we have already mentioned before, it
is a special case of 1-safe Petri net in which each transition t, such that
λ (t) 6= ǫ, is labeled with a distinct action chosen from a given alphabet of
actions.

In the following part, we show that, the conditions (see Definitions 45
and 51) necessary to build a supervisor can be simplified for this particular
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sort of Petri nets. Namely, every time we add a new event, it is sufficient to
check only the events which have the same action symbol as the new event.
We start with the following crucial remark.

Lemma 4.5. For any two events which belong to the unfolding U (N ) =
〈B,E, F, l〉 of 1-safe FLPN N , if they are not in conflict and they are labeled
by the same action different from ǫ, then they are totally ordered. Formally:

∀e, f ∈ E , ¬ (e#f) ∧ λ [l (e)] = λ [l (f)] ∧ λ [l (e)] 6= ǫ =⇒ ¬ (e co f)

Proof. The explanation of the lemma is straightforward and follows from the
fact that each transition of FLPN is uniquely identified by a different action,
provided that the action is not equal to ǫ. Thus, two observable events which
have the same label and belong to the same process cannot be executed in
parallel. Otherwise it would mean that the underlying transition can be
executed in parallel to itself.

Having Lemma 4.5, we can show that the construction procedure pre-
sented in Definition 45 can be simplified. A new and more efficient procedure
is presented in Definition 51.

Definition 51. (Constrained unfolding of FLPN) A constrained un- DEF

folding of FLPN N guided by the observation σ, denoted by EFL (N , σ) =
〈B1, E1, F1, l1〉, is a prefix of U (N ) = 〈B2, E2, F2, l2〉, such that:

∀e ∈ E2 , ζ̂ (e) ≤ ̟ (σ) [λ (l (e))] ⇐⇒ e ∈ E1,

where ̟ (σ) [α] denotes a component of ̟ (σ) associated with actions
labeled by α, whereas:

ζ̂ (e) =
∣∣{e′

∣∣ e′ ∈ past (e) ∧ λ [l (e)] = λ
[
l
(
e′
)]}∣∣ .

�

The following Lemma 4.6 proves the correctness of the construction pre-
sented in Definition 51.

Lemma 4.6. Let us take a 1-safe FLPN N , a finite observation σ and two
constrained unfoldings constructed in two different ways, i.e. E (N , σ) and
EFL (N , σ). Both constructions give the same result, i.e.

E (N , σ) = EFL (N , σ) .

Proof. Note that the condition used to construct EFL (N , σ) is a simplified
version of the condition used in the construction of E (N , σ). Thus, we can
simply compare the two conditions and show that they are equal. Conse-
quently, the lemma is true iff the following equivalence is satisfied:
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∀e ∈ E , ζ (e) ≤ ̟ (σ) ⇐⇒ ζ̂ (e) ≤ ̟ (σ) [λ (l (e))] ,

where E is a set of events of E . Following the last statement, we have
two cases to prove.

1. ∀e ∈ E , ζ (e) ≤ ̟ (σ) =⇒ ζ̂ (e) ≤ ̟ (σ) [λ (l (e))]. This implication
is a direct result of the definition of the relation ≤ for vectors, and the
fact that ζ (e) takes into consideration all events considered by ζ̂ (e).

2. ∀e ∈ E , ζ̂ (e) ≤ ̟ (σ) [λ (l (e))] =⇒ ζ (e) ≤ ̟ (σ). In order to prove
the implication, we can use the following two properties:

• ∀α ∈ Σ \ {λ [l (e)]} , ζ (e) [α] = maxf∈••e {ζ (f) [α]}, and

• ζ (e) [λ [l (e)]] = maxf∈••e {ζ (f) [α]}+ χλ[l(e)].

These two properties are a corollary of Lemma 4.5. In both cases
we can observe that to compute ζ (e), it is sufficient to consider
maxf∈••e {ζ (f) [α]}.

Moreover, every time we add a new event e, we assume that all events
in ••e satisfy the observation σ. This implies:

∀α ∈ Σ \ {λ [l (e)]} , ζ (e) [α] ≤ ̟ (σ) .

Thus, the only component of the observation which can be exceeded
when we add e is the one assigned to the events labeled by λ [l (e)].

Once we know how to construct a supervisor of FLPN, we have to prove
its key properties. We start with Lemma 4.7, and then with Theorem 7. It
is worth mentioning that the proof of the theorem also constitutes a frame
for similar proofs, e.g. for a generic 1-safe Petri net which is presented later
in the work.

Lemma 4.7. Let N be a 1-safe FLPN with silent transitions and E (N , σ) =
〈B,E, F, l〉 a constrained unfolding of N guided by an observation σ. More-
over, let us consider a sequence of configurations C = (C0, . . . , Cn), such
that:

• Cn ⊆ E,

• C0 = past (e), where e = ǫ -companion (e′),

C1 = past (e′), where e′ is an ǫ -terminal event,

Ci = Ci−1 ⊕ I [past (e′) \ past (e)].
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Figure 4.7: Illustration of the proof of Lemma 4.7.

Then the following statement is true:

∀Ci, Cj ∈ C , futures|E (Ci) = I
[
futures|E (Cj)

]
.

Proof. Note that the statement of the lemma can be written as follows:

∀Ci, Cj ∈ C , ∀F ⊆ futures|E (Cj) , Ci ⊕ I (F ) ⊆ E.

We use that fact and we split the proof into two parts showing two
possible cases.

1. ∀Ci, Cj ∈ C, i < j =⇒ ∀F ⊆ futures|E (Cj) , Ci ⊕ I (F ) ⊆ E

From the assumptions of the lemma, we know that, if i < j, then
Ci ⊂ Cj . We also know that both configurations Ci and Cj are histories
of some events, and l (cut (Ci)) = l (cut (Cj)).

From Lemma 4.2, we can observe that each condition of cut (Cj) is
causally preceded by a corresponding condition from cut (Ci), i.e. by
the condition associated with the same place in the net. This induces
the fact that the conditions of cut (Ci) have Parikh vectors which are
not greater than the respective conditions of cut (Cj).

Let us take any configuration C ′i ⊆ E, such that Ci ⊂ C ′i. Then, let
us try to extend it with an event f ∈ E, i.e. the result should be
C ′i ⊕ {f}. Then, consider an analogically constructed extensions, that
is to say C ′j = Cj⊕I (C ′i \ Ci) and C ′j⊕{f

′}, where f ′ ≡ I ({f}). Now,
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consider the maximal subset Bi of cut (Ci), such that all conditions of
Bi are causal predecessors of f . Analogically, we construct a subset
Bj ⊆ cut (Cj) for the event f ′. Since C ′i\Ci and C ′j \Cj are isomorphic,
we can note that l (Bi) and l (Bj) are identical.

Given all the properties above, we can observe that the Parikh vector
of f is equal or less than the one of the event f ′.

2. ∀Ci, Cj ∈ C, i < j =⇒ ∀F ⊆ futures|E (Ci) , Cj ⊕ I (F ) ⊆ E

Let us consider once again the situation described in the first part of
the proof. Thus, there are the two configurations C ′i and C ′j . This time,
we try to add an event g which extends C ′i to C ′′i = C ′i ⊕ {g}, and an
event g′ = I (g) which produces C ′′j = C ′j ⊕ {g

′}. We will conduct the
proof by contradiction, i.e. we assume that the event g can extend C ′i
whereas the event g′ cannot extend C ′j . This would mean that there
are more events labelled by λ [l (g)] before g′ than before g. Recall
that Definition 51 shows that, every time we add a new event, it is
sufficient to check only one component of its Parikh vector, which is
assigned to the action of the new event. Moreover, from Lemma 4.5,
we know that, every time we add a new event h to a process of FLPN,
all transitions in the process with the label λ [l (h)] causally precede h.
Consequently, we are sure that, before g, there are no events labeled
by λ [l (g)] which are parallel to g. Otherwise, the events would be in
conflict with g. Thus, all the events in C ′i labeled by λ [l (g)] are before
g. Since Cj \ Ci only consists of unobservable events, we can observe
that all events labeled by λ [l (g)] in Ci are before g′. Also note that
C ′i \ Ci is isomorphic to C ′j \ Cj . As a result, the number of events in
C ′j labeled by λ [l (g)] before g′ cannot be greater than the number of
events in C ′i labeled by λ [l (g)] before g.

Intuitively, Lemma 4.7 shows that, if we consider configurations resulting
from a number of repetitions of an unobservable loop, the possible future for
each of them is always the same. As a direct result of Lemma 4.7, we get
the property showing that, in the construction process of constrained prefix
of FLPN, it is sufficient to repeat each unobservable loop only once. This
property is presented in the following Theorem 7.

Theorem 7. Let N = 〈P, T,W,m0〉 be a 1-safe free-labeled Petri net withTHM

silent transitions. Consider S (N , σ) as a supervisor (from Definition 50) of
the net N for the finite observation σ. The unfolding of S (N , σ) is denoted
by US (N , σ) ≡ U (S (N , σ)). The following is always satisfied:

processes [E (N , σ)] =1 processes [US (N , σ)] .
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C0
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Ci+1
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Cj+1

(a) (b)

(c)

Figure 4.8: Illustration of the proof of Theorem 7.

The relation =1 means that both arguments are isomorphic up to names
of conditions and events.

Proof. We can split the proof into two parts: in the first case, we show
that all processes of E (N , σ) are coded in US (N , σ). Then, we prove the
inverse i.e. all processes of US (N , σ) are coded in E (N , σ). For the sake of
simplicity, we skip arguments in the structures.

1. ∀π1 ∈ processes [E (N , σ)] , ∃π2 ∈ processes [US (N , σ)] , π1 =1 π2

First, let us briefly recall the chain of operations which leads from E
to US . From Definition 49, we know that P is a prefix of E . In turn,
P is a base for construction of S, and thus the unfolding US . We can
observe in Definition 50 that, by starting from the initial event up to
ǫ -terminal events and the cuts associated with the events, both struc-
tures E and US are isomorphic. The problem arises with an ǫ -terminal
event in P. From Definition 50, we know that ǫ -terminal events imply
cuts which are subjects to the operation of fusion (see section 4.2.4).
Moreover, we know that such an ǫ -terminal event has its ǫ -companion
event which generates a companion cut. Following that, we can take
an ǫ -terminal event e′, a cut cut (past (e′)) and its companion cut
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cut (past (e)), where e = ǫ -companion (e′). Now, we can use the fact
that there was a fusion of conditions, and we will continue the process
from the companion cut. Then, from Lemma 4.7, we know that both
cuts have exactly the same possible futures in E . As we mentioned,
if there were some events E executed after the cut, they can also be
executed after the companion cut, resulting in past (e) ⊕ I (E). Note
that, except e, there may be other ǫ -terminal events in E. However,
this fact does not disrupt the presented procedure as we can consider a
subset E′ of E without any ǫ -terminal events. Then, we can continue
adding the rest of the events of E \E′ to past (e)⊕ I (E′). Every time
there is a new ǫ -terminal event, we simply repeat the whole procedure.
Thus any process which is stored by E is present in US . This case is
briefly illustrated in 4.8a.

2. ∀π1 ∈ processes [US (N , σ)] , ∃π2 ∈ processes [E (N , σ)] , π1 =1 π2

We have shown that we can recreate all processes of E in S. Now, we
have to take all the other processes of S which we did not analyze in
the previous case and show that they are stored by E . Let us recall a
cut associated with the ǫ -terminal event e′. We showed that the future
of the cut and its companion cut are the same. We also demonstrated
that we “moved” with the continuation of the process to the companion
cut every time there was such a cut. We present three possible cases
which were not analyzed by us in the previous situation and which are
sufficient to prove the second case of the proof. In the following part,
we assume that π1 = 〈B1, E1, F1, l1〉, π2 = 〈B2, E2, F2, l2〉.

(a) If there is an ǫ -terminal event, we continue the process as long
as it is possible, i.e. until there is a successor of the ǫ -terminal
event which could not be added to P due to its construction rules,
and thus which is not stored by S. In this case, we know that the
created process is present in E as it is a prefix of P .

(b) The second case is when there is a cut in a process π of S (N , σ),
and when one decides to continue the process using a mix of
transitions that are after the cut and transitions that are after
the companion cut. We can notice that the same result can be
obtained if the process π has its continuation starting from the
companion cut.

(c) We can imagine a process in which, after an ǫ -terminal event,
some events from E1 were added after the cut of the event, and
some events from E2 were added after the companion cut. As in
the previous cases, here we use the fact that the conditions of the
two cuts are merged. Now, if we consider the new extension, we
can note that it is impossible to add a new event which would
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use preconditions from E1 and E2 at the same time. This would
generate a conflict.

Figures 4.8b and 4.8c respectively depict the cases a), b) and c).

Given the above theorem, we can prove the two following properties.

Lemma 4.8. (Correctness) Let N be a 1-safe free-labeled Petri net and σ a
finite observation. Let S (N , σ) be a supervisor. Any event e of unfold [S (N , σ)]
satisfies the observation σ.

Proof. The proof is a direct consequence of Theorem 7.

Lemma 4.9. (Completeness) Let N be a 1-safe free-labeled Petri net and
σ a finite observation. Let S (N , σ) be a supervisor. For any observation σ,
S (N , σ) represents all possible processes which satisfy the observation.

Proof. The proof is a direct consequence of Theorem 7.

Example 26. Let us consider the free-labeled Petri net N in Figure 4.1a EXM

and an observation σ = {t4, t4} (we use names of transitions as labels). The
observable events and transitions are drawn with a bold line. Figure 4.9
represents a small fragment of the constrained unfolding E (N , σ) which is
infinite in general. In Figure 4.10, there is a constrained prefix P (N , σ). The
dashed arrows indicate the places which are merged in the related supervisor
S (N , σ). The symbol • is used to indicate the ǫ-terminal events,⋆ is used to
distinguish conditions in their cuts which are merged. Events and conditions
inside foldable structures are filled in gray. After the fusion of appropriate
conditions (accordingly to Definition 50), we obtain the supervisor presented
in Figure 4.11.

4.4.2 Removal of incomplete explanations

As we mentioned before, a constrained unfolding (or prefix) may contain
explanations which are not complete. We propose a procedure 4.3 which
can be used to remove such explanations. The basic idea of the algorithm
is to remove all events which do not belong to any complete explanation of
σ. All the events for which we are sure that they belong to some complete
explanations are stored in the set Accepted. In the first step (item 1.), we put
in Accepted events such that their predecessors completely satisfy σ. Then,
we analyze the rest of the events step by step considering all maximal events
which are not in Accepted (items 2.-4.). At each step, we remove unnecessary
maximal events, i .e. which do not belong to any complete explanation. We
repeat the whole procedure until all the remaining events are in Accepted.
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Figure 4.9: Prefix of the constrained unfolding of the Petri net in Figure 4.1.
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Figure 4.10: Constrained prefix of the Petri net in Figure 4.1.
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Figure 4.11: A supervisor based on the constrained prefix in Figure 4.10.
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Algorithme 4.3 Removal of incomplete explanations from constrained un-
folding.
Input: A constrained prefix P (N , σ)
Output: A constrained prefix P (N , σ) with removed incomplete explana-
tions

1. Take all the events that completely satisfy σ and put them in
Accepted.

2. Also add to Accepted the events that precede events in Accepted.

3. Take all the maximal events of P (N , σ) such that they are not in
Accepted and put them in F .

4. For each e ∈ F do

(a) Let G be a set of all co -sets which contain e

(b) For each C ∈ G do

• If
⋃

f∈C past (f) completely satisfies the observation then
Accepted = Accepted ∪ (C ∩ F )
F = F \ C
goto 2

(c) Remove e from P (N , σ)

5. If all events which rest are in Accepted, then stop. Otherwise goto 2
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Algorithme 4.4 Elimination of redundant places and transitions from a
supervisor.
Input: A supervisor S (N , σ) = 〈P, T,W, l〉
Output: A supervisor with removed unnecessary redundant transitions and
places, denoted by Sreduced (N , σ)

1. Take a set T ⊆ 2T such that ∀Ti ∈ T , ∀tj , tk ∈ Ti, l (tj) = l (tk)∧
•tj =

•tk

2. If T = ∅ then stop

3. For each Ti ∈ T do

(a) Merge all transitions in Ti and their postsets with respect to the
names of the original places in N .

4. Goto 1

4.4.3 Elimination of duplicate processes

As we could note in Example 26, sometimes some unnecessary duplications
of transitions may appear in supervisors. For example, in Figure 4.11, we
can observe three transitions going out of the same place and associated with
the same transition t3 of the underlying Petri net in Figure 4.1a. We propose
a method to remove transitions and places which produce duplicates of some
explanations.

Lemma 4.10. The algorithm 4.4 terminates.

Proof. The input S (N , σ) is finite. At any time, we can only remove tran-
sitions and places; we do not add new places or transitions. Thus, at some
point of the algorithm execution, the condition from line 2. will be satis-
fied.

Lemma 4.11. The set of processes of the supervisor is preserved.

Proof. In the algorithm 4.4, no unique transition is removed. Only transi-
tions of the supervisor which are associated with the same transition of the
underlying Petri net are merged together with their postsets which also have
to be identical (line 1. of the algorithm).

Lemma 4.12. There are no redundant processes in the final supervisor of
the algorithm 4.4 with respect to the underlying net N .

In other words, if there are two isomorphic processes up to the naming of
transitions and places in N , it means that they are created using the same
transitions of the supervisor Sreduced (N , σ).
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Proof. We can note that the situation contradicting the lemma is impossible
since we removed all duplications of the transitions from S (N , σ).

The time complexity of the algorithm is linear in the size of the supervi-
sor.

Example 27. In Figure 4.12, we can find a reduced version of the supervisor EXM

presented in Figure 4.11. As we can observe, the new supervisor is smaller
than the previous one.

4.5 Constrained unfolding of 1-safe Petri nets

4.5.1 Construction of constrained unfolding

Unfortunately, the solution adopted in the previous chapter does not work
in the general case of 1-safe Petri nets with silent transitions. To understand
why, let us look closer at the net presented in Figure 4.13. The net is a
1-safe Petri net. It consists of a number of equal segments. However, we
can note that all its transitions have the same label “a”, therefore it is not a
free-labeled Petri net. However, we note the fact that all visible transitions
which have the same label does not affect the generality of the solution that
we present below.

Let us consider the constrained prefix in Figure 4.14 constructed on the
base of the net in Figure 4.13. The prefix is based on the observation σ =
{a, a, a, a}. Note that if we would apply the construction procedure of the
constrained prefix used for 1-safe free-labeled Petri nets, the event e2,4 would
be an ǫ -terminal event. Moreover, the resulting supervisor would look like
the one in Figure 4.15.

Now, let us consider the unfolding of such a supervisor. It is very similar
to the one shown in Figure 4.14, except for one important detail. Note that
we have one invisible loop in the underlying Petri net. After each repetition
of the loop, according to the results presented in Figure 4.15, it is possible
to run two transitions: t3 and t4. However, when we look at Figure 4.14,
we can observe that the supervisor does not meet the conditions imposed by
the observation σ.

To understand the problem which appears in the example above, we need
to look at the pre-condition of transitions t3. Note that with each repetition
of the unobservable loop, the number of observable events preceding the
event associated to the transition t3 is being changed. Thus, before the first
execution of the unobservable loops, the number of observable events is equal
to 0; after one loop, there is one observable event before t3; after two loops,
there are two observable events, etc. In other words, after each repetition of
the loop, the number of observable events before the condition corresponding
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Figure 4.12: A reduced supervisor of the Petri net in Figure 4.1.
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to place p1 is increased by one. After four and more repetitions, the number
of events is four.

As a result, the value of the Parikh vector for an event associated with t3,
which potentially can occur after each repetition of the loop, is also changed.
This, in turn, directly affects the set of events which occur after the event.
It should be noted that, depending on the number of loop iterations in our
example, the number of events following t3 may differ. This way, after a
single or double execution of the loop, we can execute t3 and t4; after a
triple loop execution, only t3 can be executed; and finally, after four or more
repetitions of the loop, we can no longer fire the transition t3. This example
is precisely illustrated in Figure 4.14.

After the analysis of the above example, two questions may arise: in
general, what is the necessary number of repetitions of the ǫ-loop so that we
can be confident that the state reached after the last repetition is stable?
Through a stable condition after the loop, we mean a state whose future is
the same as the future of the state before the loop. Of course, we have to
take into account an observation. Is the number of iterations always finite?

To answer both questions, for the most general case of 1-safe Petri nets,
let us point out that the key element to achieve the stability condition for the
ǫ-loops is the Parikh vector for events which may occur immediately after a
certain number of repetitions of the ǫ-loop. Namely, let s1 be a state reached
afterm iterations of the loop, and s2 a state reached afterm

′ iterations of the
loop. We can say that both states s1 and s2 can form a stability condition
necessary to create a supervisor if the following situations are fulfilled: 1) for
every transition available from the state s1, there is an identical transition
available from s2, and 2) for each such a pair of transitions, their associated
events have the same sets of observable events in their past. This way, we
can inductively show that, under certain circumstances, a set of possible
configurations is the same after each repetition of the unobservable loop in
the supervisor.

Above all, if we take the state before the first performance of the ǫ-loop
and the state after n iterations of the loop, we can observe that the number
of observable events is actually not increased. The only observable events
occur before the first repetition of the loop. With successive repetitions,
there are new connections between the events and conditions of the initial
state after each repetition of the loop. The algorithms we propose identify
such possible connections between conditions of the initial and final states
(concerning executions of the loop).

Below, in the following two sections, we present two possible solutions to
the problem.
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Figure 4.13: A schema of 1-safe Petri net.

4.5.2 Approach 1

In this approach, we will show how we can identify a number of repetitions
of a silent loop before each repetition gives a state with the same futures. In
the first approach, we propose a solution with a fixed number of repetitions.
For this reason, we introduce a new definition of an ǫ-terminal event.

π|X denotes a process consisting of events in X.

Definition 52. (ǫ -terminal event of type 3) Let β = 〈B,E, F, l〉 be aDEF

branching process of a 1-safe Petri net N = 〈P, T,W,m0〉. Let us consider a
sequence of configurations ~C = (C0, . . . , Cn) such that:

• ∀Ci, Ci+1 , Ci ⊆ Ci+1,

• Cn ⊆ E,

• C0 = past (e0), where e0 = ǫ -companion (e1),

C1 = past (e1), where e1 is an ǫ -terminal event from Definition 48,

Ci = Ci−1 ⊕ I (past (e1) \ past (e0)) = past (ei), for i ∈ [2, n],

• n = |cut (C0)| − 1.

We call en an ǫ -terminal event of type 3. In other words, ǫ -terminal3 (en)
is true if en is an ǫ -terminal event of type 3. Analogically as for ǫ -terminal
events, we define an ǫ -companion event, i.e. ǫ -companion3 (en) = e0. To
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Figure 4.14: A prefix of the constrained unfolding of the Petri net in Figure
4.13.
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Figure 4.15: Wrong supervisor of the net in Figure 4.13.
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simplify the notation, we also define the secondary ǫ -companion, i.e.
ǫ -companion32 (en) to denote e1. �

The idea behind the definition is quite simple. Intuitively, when we look
into the solution proposed for free-labeled Petri nets, we can observe that we
stop extending an ǫ -terminal event which is produced by one repetition of
the associated unobservable loop. As we already showed before, in the case
of general 1-safe Petri nets, the construction is incorrect. In the solution
presented in this section, each silent loop has to be repeated n − 1 times,
where n is the number of conditions reached after each repetition of the
loop. In other words, it is the number of tokens in the associated marking.
As we will see in the following lemma, this is sufficient to guarantee that the
construction is correct and correctly stores all explanations of the related
constrained unfolding.

Lemma 4.13. Let N be a 1-safe Petri net and E (N , σ) = 〈B,E, F, l〉 a
constrained unfolding of N guided by an observation σ. Let us consider a
sequence of configurations ~C = (C0, . . . , Cn) such that:

• ∀Ci, Ci+1 , Ci ⊆ Ci+1,

• Cn ⊆ E,

• C0 = past
(
e0
)
, where e0 is an ǫ -terminal event of type 3,

Ci = Ci−1 ⊕ I
(
past (f) \ past

(
e0
))
, where f = ǫ -companion32

(
e0
)
,

Then the following statement is true:

∀Ci, Cj ∈ ~C , futures|E (Ci) = futures|E (Cj) .

Proof. Each configuration Ci in ~C represents an extension of C0 after ith
iteration of an unobservable loop. By Si, we denote cut (Ci). Remark that,
for all configurations in ~C, l (Si) is the same and |Si| = m. Now let us
consider a condition b0 ∈ S0 and all its counterparts in the subsequent sets
Si, denoted by b

i. By the counterparts, we understand conditions associated
with the same place (according to N ). Moreover, we will consider a subset
P k
l ⊆ Sk, such that P

k
l is a maximal set of predecessors of b

l. Note that
P k
l = P k+o

l+o .

Knowing the properties presented above, we can analyze how the set of
observable events changes for subsequent conditions in Si. First, note that
P 0
l can only grow in number of elements as l is being increased. This is due
to Lemma 4.2 from which we know that bi causally precedes bj , when i < j.
As P 0

l grows, note that the number of possible observable events of bl grows.
However, we know that such a growth is bounded by m. Each time the loop
is repeated, there are two possible situations:
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1. P 0
l = P 0

l+1, this means that the set of observable events before bl and
bl+1 is the same. Thus, we can stop repeating the loop,

2. P 0
l ⊂ P 0

l+1, in this case the number of observable events before bl and
bl+1 is different and we have to continue repeating the loop to reach a
stable set of observable events for bi.

The more interesting for us is the second situation in which we have to
repeat the loop. Let us check what is the maximal necessary number of
repetitions. Note that the loop has to be repeated iff we have the second
situation after each iteration. In order to obtain the number which we look
for, we can note that, after each repetition,

∣∣P 0
l

∣∣ grows at least by one, i.e.∣∣P 0
l

∣∣ + 1 =
∣∣P 0

l+1

∣∣, where
∣∣P 0

0

∣∣ = 1. This way, we can deduce that, after
m − 1 iterations,

∣∣P 0
m

∣∣ = m, which is the boundary we mention before. To
conclude, for p > q ≥ m− 1,

∣∣P 0
p

∣∣ =
∣∣P 0

q

∣∣.

Having the above property, we can define a constrained prefix for 1-safe
Petri nets.

Definition 53. (Constrained prefix) Let N be a 1-safe Petri net, and letDEF

σ be a finite observation. A constrained unfolding under partial observation
E3PO (N , σ) is a maximal branching process such that:

∀e ∈ E3PO (N , σ)

{
∄f ∈ E, ǫ -terminal3 (f) ∧ e > f

ζ (e) ≤ ̟ (e)

�

4.5.3 Approach 2

In section 4.5.2, we introduced a solution in which we had to repeat each
silent loop a certain fixed number of times before we could stop extending a
given ǫ -terminal event. Below, we will describe how the previously presented
approach can be improved by minimizing the number of repetitions of the
unobservable loops.

The algorithm that we propose uses a single segment of the ǫ-loop. In
Figure 4.18, we can see such a segment from the example in Figure 4.14. The
idea is to transform it into a weighted graph with which we can compute
the number of iterations of the loop required to achieve all the connections
between the respective conditions. The outline of the algorithm is in 4.5.

Having the function reps (G), we can define a new modified version of
ǫ -terminal event.

Definition 54. (ǫ -terminal event of type 4) Let β = 〈B,E, F, l〉 be aDEF

branching process of a 1-safe Petri net N = 〈P, T,W,m0〉. Let us consider a
sequence of processes ~C = (C0, . . . , Cn) such that:
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Algorithme 4.5 The computation of the number of ǫ-loop iterations.
Input: A segment G of an ǫ-loop
Output: A number of repetitions of the loop, denoted by reps (G), necessary
to correctly terminate the constrained prefix

1. Convert the ǫ-loop into a directed graph and then calculate its transi-
tive closure.

2. We eliminate all the vertices (and edges adjacent to them) except for
vertices of the initial and final states of the loop.

3. For all other edges, we assign cost 1.

4. In addition, the conditions attached to the same places in the underly-
ing net have to be connected with edges with cost 0. These edges are
used to represent repetitions of the ǫ-loop.

5. Having the directed graph, we compute all the paths of the minimum
cost between all pairs (v1, v2) such that v1 belongs to the initial state,
and v2 to the final state. To solve this problem, we can use e.g. Floyd-
Warshall algorithm (see [36]).

6. From all the existing paths, we choose the one with the highest cost.
This cost corresponds to the number of iterations required to stabilize
the state.
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b1 b2 bi bn−1 bn

b′1 b′2 b′i b′n−1 b′n

SI

SF

Figure 4.16: Illustration for the proof of Lemma 4.14.

• ∀Ci, Ci+1 , Ci ⊆ Ci+1,

• Cn ⊆ E,

• C0 = past (e0), where e0 = ǫ -companion (e1),

C1 = past (e1), where e1 is an ǫ -terminal event from Definition 48,

Ci = Ci−1 ⊕ I (past (e1) \ past (e0)) = past (ei), for i ∈ [2, n],

• n = reps (past (e1) \ past (e0)).

We call en an ǫ -terminal event of type 4. In other words, ǫ -terminal4 (en)
is true if en is an ǫ -terminal event of type 4. Analogically as for ǫ -terminal
events, we define an ǫ -companion event, i.e. ǫ -companion4 (en) = e0. To
simplify the notation, we also define the secondary ǫ -companion, i.e.
ǫ -companion42 (en) to denote e1. �

Below, we prove that the new algorithm actually always gives a smaller
number of iterations of unobservable loops.

Lemma 4.14. Let us consider Definitions 52 and 54. The following is true:

reps [past (e1) \ past (e0)] ≤ |cut (C0)| − 1

Proof. Because the result of the reps function may differ for different loops,
we take the worst case in which the value is the greatest. We prove that the
number obtained with the function is not greater than |cut (C0)| − 1.

Let us consider a directed graph G which is constructed on the base of
a segment of ǫ-loop, i.e. past (e1) \ past (e0) in the Lemma. It is the same
graph which is used in the procedure for the computation of reps (G) (see
4.5). The vertices of the graph can be divided into two groups: the initial
vertices SI and the final vertices SF . The number of vertices in each group
is equal to |cut (C0)| = m. There are only edges from SI to SF with cost
1. The edges with cost 0 connect vertices assigned to the same places in the
underlying Petri net. There is no path from a vertex of SF to a vertex of
SI without at least one edge of cost 0. There are no edges between vertices
inside SI (the same is true for SF ).
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Let us take any two vertices in G such that there exists a path between
them. Moreover, we assume that it is the path with the least possible cost
which is at the same time the greatest cost in such a graph. When we take
into consideration all above properties, we can observe that the cost is equal
to m − 1, which proves the lemma. This situation is depicted in Figure
4.16.

Similarly to the previous approach, we prove the correctness of the new
ǫ -terminal event.

Lemma 4.15. Let N be a 1-safe Petri net and E (N , σ) = 〈B,E, F, l〉 a
constrained unfolding of N guided by an observation σ. Moreover, let us
consider a sequence of configurations ~C = (C0, . . . , Cn) such that:

• ∀Ci, Ci+1 , Ci ⊆ Ci+1,

• Cn ⊆ E,

• C0 = past (e), where e = ǫ -companion (e′),

C1 = past
(
e0
)
, where e0 is an ǫ-terminal event of type 4,

Ci = Ci−1⊕I (past (e′) \ past (e)), where e′ is an ǫ-terminal event from
Definition 48,

Then, the following statement is true:

∀Ci, Cj ∈ ~C , futures|E (Ci) = futures|E (Cj) .

Proof. Let us consider the graph G from the proof of Lemma 4.14. We will
show that the procedure used to compute the value of reps (G) is correct,
i.e. it ensures that a set of futures for all the configurations in ~C is identical.
In order to explain this, we prove the following property:

∀Ci, Cj ∈ ~C, ∀b1 ∈ Ci, b2 ∈ Cj , l (b1) = l (b2)

=⇒ obs [past (b1)] = obs [past (b2)] (4.1)

where obs (E) = {e ∈ E |λ [l (e)] 6= ǫ}.
Such a property guarantees that all the possible extensions of Ci and Cj

are identical in terms of constrained unfolding.

Let us recall the Algorithm 4.5: the graph G contains edges which rep-
resent two different relations.

• Edges with cost 1 represent causal links between the conditions inside
a single segment of the considered ǫ-loop,
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Figure 4.17: Illustration for the proof of Lemma 4.15.

p1,3 p2,3p1

p1,2

p1

p3,3 p3t3,2

p1,2

t1,2 t2,2t1

p3,2

p2,2

p3

p3,2

p2,2

Figure 4.18: A fragment of the branching process in Figure 4.14 representing
a segment of an ǫ-loop.

• Edges with cost 0 represent causal links between the conditions in the
consecutive iterations of the ǫ-loop.

The procedure for the computation of reps (G) takes all the pairs of the
vertices and computes the minimum cost path for each pair. In other words,
for each pair of the initial and the final conditions in the ǫ-loop, we get
to know the number of iterations of the loop which is sufficient to causally
connect the two conditions. In Figure 4.17, we present a schema explaining
the main principle of the computation of the function reps (G), where G is
a graph in Figure 4.19. Now, when we take a pair with the greatest cost, we
get the minimal number k of repetitions of the ǫ-loop such that Expression
4.1 is satisfied for all the configurations created as a result of lth iteration of
the loop, where l ≥ k.

Example 28. In Figure 4.18, we can see a fragment of the branching processEXM
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p1
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p1
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Figure 4.19: The weighted graph obtained from the segment in Figure 4.18.

representing a segment of an ǫ-loop. The dotted line groups conditions which
belong to the state before execution of the loop. The dashed line groups
conditions which belong to the state obtained after execution of the loop.
Figure 4.19 represents the weighted graph obtained from the segment in
Figure 4.18. The solid arcs have cost 1, the arcs drawn with dashed lines
have cost 0. After the computation of the least cost paths between all pairs
of vertices, we can note that the highest of all the costs is equal to 4. The
path with this cost leads from the vertex p3 to p1. Indeed, in Figure 4.14,
we can partly see that after four or more loops, the possible extensions after
each iteration are the same. The result supervisor is presented in Figure
4.20.

4.5.4 Extraction of processes from constrained unfoldings

When using constrained unfoldings, in order to represent possible expla-
nations of some observations, we may notice some unwanted effects. To
understand the problem, let us consider a 1-safe Petri net in Figure 4.21a.
In Figure 4.21b, we can observe the constrained unfolding built for observa-
tion σ = {a}. Note that we can not remove any of the events of the prefix
without losing any explanation of the observation. However, let us note that
such a prefix is also correct for observation {a, a} and even {a, a, a}.

Before we look at the problem closer, we try to answer the question
whether this problem also applies to certain special cases of 1-safe Petri net,
namely a finite state machine and a free-labeled Petri net.

Lemma 4.16. Every process of a constrained unfolding E (N , σ) of an FSM
N is a part of an explanation of the observation σ.

Proof. If we take a transition t of N and all processes of the constrained
unfolding such that t is maximal, we can note that t belongs only to one
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Figure 4.20: A correct supervisor of the net represented in Figure 4.13.
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Figure 4.21: A 1-safe Petri net (a) and a constrained unfolding (b) valid for
many different observations.

process. This is due to properties of finite state machines. We can not have
parallel transitions which are not in conflict in FSMs. Thus, the transition
t cannot belong to some unwanted explanation - explanation which exceeds
the observation - because, when t was added to E (N , σ), it was already
checked that it satisfies the observation.

Lemma 4.17. Every process of a constrained unfolding E (N , σ) of an FLPN
N is a part of an explanation of the observation σ.

Proof. To see that there are no unwanted explanations in FLPN, we can
show that, for any co -set which is a cut of some configuration, the process
does not exceed the observation. This can be easily observed, for example,
by temporarily adding an unobservable event with a preset consisting of all
conditions of the given coset. We can see that the Parikh vector of such event
shows if the process exceeds the observation. From Lemma 4.5, we can also
note that the vector can be calculated by simply taking the maximum of all
Parikh vectors of all conditions.

We already know that, when operating with constrained unfoldings of
Petri nets, we can encounter erroneous processes. Now, we will introduce
two notions which show some important aspects of constrained unfoldings
and explanations which are coded in it. We can call these notions conflicting
sets of events, i.e. sets of events which may normally create a correct process
but are incorrect as explanations. Before we briefly describe the two types
of conflicts, we want to emphasize that it is not sufficient to consider just
pairs of events as it is in the case of standard conflict between events which
cannot be in the same process. To see why, we can look at Figure 4.21a. Let
us take an observation {a, a}. The prefix for the observation will be exactly
like in Figure 4.21b. We can observe that, in a single explanation, any pair
of observable events is actually possible. However, it is impossible to have 3
observable events (i.e. {a, a, a}) at once in an explanation.
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The first type of conflict between events in a set C, expressed as #σ
1C,

occurs when the events exceed the Parikh vector of the observation σ. Note
that such a conflict can be captured at any stage of the construction of the
prefix. Formally, such a conflict can be defined as follows:

#σ
1C ≡ ζ (C) > ̟ (σ)

The second type of conflict is a little more complex, requiring the analysis
of future events, between which we want to check the existence of a conflict.
Namely, while the first type of conflict checks whether the observation vector
has not been exceeded, the second type of conflict checks whether events may
occur together in a process that fully satisfies the Parikh vector. Therefore,
the test for the presence of this conflict requires that the analyzed structure
contains all the possible explanations for this observation. This conflict can
be expressed using the following formula:

#σ
2C ≡ ∄〈B,E, F, l〉 ∈ processes (E) , C ⊆ E ∧ ζ (E) = ̟ (σ)

The conflict of type 2 is more difficult to state than the conflict of type 1.
Every time we want to verify if a set of events is in conflict of type 2, we have
to analyze, not only the events of the set, but also its possible extensions.

Example 29. In Figure 4.21b, we can see the prefix which is correct forEXM

observation σ = {a, a}. We mentioned earlier that such a prefix contains
false processes that have events which can not be removed. Let us take such
a process consisting of events ⊥, e1, e3 and e5. We can observe that the events
are in conflict of type 1. Therefore, these events can not all occur in one
explanation. Another process which is incorrect is a process of the events
⊥, e1, e4, e6. In this case, there is a conflict of type 2. As we can note, the
process comprising these events is not complying with the full observation
vector. What is more, there are no perspective of extending this process
within the given structure.

Remark that, we usually do not need any special knowledge about each
possible process of a constrained unfolding. Actually, it is often sufficient to
know that all the events belong to a complete explanation. Later, if necessary,
all the explanations can be extracted by using the structure and definitions
of the conflicts.



Chapter 5

Prototypes

In this chapter, we present several results and comments connected to the
practical experiments we conducted during our studies. We describe below
several main issues and problems we encountered during the implementation
of our solutions.

5.1 Constrained unfoldings of networks of automata

As we described in Section 2.6.1 in case of networks of automata, we decided
to apply a special event structure used to store and process constrained
unfoldings. Since it is different from the solutions proposed for Petri nets,
below we briefly present the main algorithms used to compute constrained
unfoldings of network of automata. The algorithms were implemented and
successfully used in case studies (see e.g. Section 3.3.2).

Before we describe the algorithm, we recall some notions which are ap-
plied in the context of unfoldings.

When talking about unfoldings and its construction, we have to consider
two key issues: search strategy and search scheme. In simple words, search
strategy tells us which event out of all the available events has the priority
to be fired. For this purpose, for example we may choose the depth first
search or the breadth first search based strategies. In turn search scheme
indicates us two things: which event is a terminal one and can be extended,
and which event is a successful one (one which we are searching for).

The algorithm below computes a prefix of a constrained unfolding net-
work of automata for the given search scheme and search strategy. By a
global transition we denote both local transition of automata and synchro-
nizations. T stands for the set of all global transitions. For the convenience,
we treat global transitions as sets of pairs (t, A), where t is a transition of an
automaton A. T denotes a global transition. In the algorithm, we basically
maintain three structures:
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• the prefix P - a set of complete events (events for which there is a valid
transition in the model) which is actually a directed acyclic graph used
to keep the events in certain order,

• the collection of events E - a collection of events to be visited; it can
be a list, a queue etc. Usually it depends on the search strategy.

• the collection of incomplete events IncompleteE - a collection of events
which are not complete in the sense that they consist of a strict subset
of some global transition. When we take such two incomplete events
e, f which are not in conflict, and when the sum of their sets of tran-
sitions is equal to some global transition, we can create a new valid
event (complete or incomplete).

The function pickNext() takes (according to the search strategy) and re-
moves from E an event e which is to be visited. If the event is complete,
it is added to the prefix and extended if possible. If not, it is merged with
some other “pending” events (from IncompleteE) which are incomplete and
belong to the same global transition. After each fusion of two events, we get
a new complete or incomplete event. Moreover, we still keep the old incom-
plete events just in case we want to merge them with some other incomplete
events which occur later during the construction of the prefix. succ() is a
function which computes all possible extensions of an event. In fact, the
extensions form a set of events (complete or incomplete). ⊎ is used to sum
local transitions of events and to create a new event.

In Algorithm 5.1 and Algorithm 5.2, there are some auxiliary functions
which are defined as follows:

• IS-CONFLICT-FREE (E)
def
= ¬∃f, g ∈ E, i ∈ {1, . . . , n} .f 6= g ∧

πi (f) = πi (g)

• IS-EXTENDABLE (e)
def
= ∃T ∈ T , τ (e) ⊂ T

• IS-COMPATIBLE (e, f)
def
= ∃T ∈ T .τ (e) ⊂ T ∧ τ (f) ⊂ T

• IS-COMPLETE (e)
def
= ∃T ∈ T .τ (e) = T

• IS-TERMINAL (e)
def
= event e is terminal according to the search

scheme

• IS-CONFLICT-FREE (↓ e) ⇐⇒ isHistoryConflictFree (e,P)

In Algorithm 5.1, we do not consider observations which should be con-
sidered during the construction. This functionality can be built on the top of
the presented algorithm (see Algorithm 5.3 for a part of the modified version
with observations).
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Algorithm 5.1 Pseudo-code of the prefix function for network of automata
1: function unfold(N , einit) : P
2: input N : network of automata
3: input einit : event ⊲ Initial event
4: output P ⊲ Prefix
5: var E : collection of events ⊲ Events to visit
6: var IncompleteE : collection of events ⊲ Visited events but still

active
7: var e, e′ : events

8: procedure visitAndExtend(g : event)
9: P ← P ∪ g ⊲ Visiting the new event

10: if ¬IS-TERMINAL (g) then
11: E ← E ⊕ succ (N , g)
12: end if
13: end procedure

14: begin
15: E ← ∅
16: IncompleteE ← ∅
17: visitAndExtend (einit)
18: while E 6= ∅ do
19: e← pickNext (E) ⊲ Take an event according to the search

strategy
20: if IS-COMPLETE (e) then
21: visitAndExtend (e)
22: end if
23: if IS-EXTENDABLE (e) then
24: for all f ∈ IncompleteE such that

IS-COMPATIBLE(e, f)do
25: for all ∧e′ ← e ⊎ f ∧ IS-CONFLICT-FREE (↓ e′) do
26: E ← E ⊕ e′

27: end for
28: IncompleteE ← IncompleteE ⊕ e
29: end if
30: end while
31: return P
32: end
33: end function
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Algorithm 5.2 Procedure of searching for conflict in P in the history of e
1: function isHistoryConflictFree(e,P) : boolean
2: input e : event
3: input P : prefix
4: output boolean
5: var f, g : event
6: var E,F : collection of events

7: function visitedSucc(h : event) : collection of events
8: G← ∅
9: for all i ∈ succ (h,P) do

10: if visited [i] then
11: G← G⊕ i
12: end if
13: end for
14: return G
15: end function

16: begin
17: for all f ∈ P do
18: visited [f ]← false
19: end for
20: E ← pred (e,P)
21: while E 6= ∅ do
22: g ← pickNext (E)
23: if visited [g] then
24: F ← visitedSucc (g,P) ⊲ Take direct successive events

of g which were already visited
25: if ¬IS-CONFLICT-FREE (F ∪ {g}) then
26: return false ⊲ A conflict detected
27: end if
28: else ⊲ ¬visited (g)
29: visited [g]← true
30: E ← E ⊕ pred (g,P)
31: end if
32: end while
33: return true
34: end
35: end function
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Algorithm 5.3 A modified version of visitAndExtend procedure used in
Algorithm 5.1.
1: procedure visitAndExtend(g : event, σ : observation)
2: ς (g) =

∑
f∈↓g χλ(τ(f))

3: if ς (g) ≤ ̟ (σ) then
4: P ← P ∪ g ⊲ Visiting the new event
5: if ¬IS-TERMINAL (g) then
6: E ← E ⊕ succ (N , g)
7: end if
8: end if
9: end procedure

The tool is written in Java with about 9000 lines of code. It has its
own simple editor to edit models written in a special language used to define
networks of timed automata.

5.2 Constrained unfoldings of parametric time Petri

nets

In Section 3.5.4, we mentioned an example of the alternating bit protocol
which was implemented in the Roméo tool. The unfolding technique which
was used in this case study is already well-described in [84]. Thus we only
recall some main features connected to this tool and to the subject of con-
strained unfoldings.

In the current version of Roméo 2.9 we can define a parametric time Petri
net and then we can compute a constrained unfolding on the basis of a given
unstructured observation. In the tool we have the possibility to indicate
unobservable transitions in the model. For the construction of constrained
unfolding we can give a maximal number of unobservable loops for each
event in the unfolding. We can also define a vector characterizing number
of occurrences of events related to all the observable transitions. As a result
we get a prefix of the constrained unfolding and constraints assigned to the
events. Note that the problem of infinite unobservable loops is still an open
issue in Roméo.

In the context of supervision, one of the advantages of this tool is certainly
a possibility to use parameters in the time constraints of the model (the
time constraints are handled with the Parma Polyhedra Library [10]). This
enables us in many cases to discover possible valuations of parameters for a
given behavior of the model (see for example Section 3.5.5).

On the other side, the unfolding technique, even in the case of con-
strained unfoldings, is still a challenge in the context of time and memory
complexity. For more complex models with many unobservable transitions,
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(a) (b)

Figure 5.1: A tool Roméo: a Petri net with two observable transitions and
an observation (a) and an associated prefix of its constrained unfolding (b).

and unstructured observations, computation of constrained unfoldings might
be in practice very difficult. For this reason, some additional assumptions
which are possible in the context of supervision, could probably accelerate
and simplify the construction of constrained unfoldings. This is however left
for further studies.

5.3 Unobservable loops in Petri nets

During our studies we developed a tool which computes constrained prefixes
and supervisors of Petri nets. The implementation is based on the approach
described in Section 4.5.2.

The input of the program consists a Petri net defined in the file format
of Roméo. In Figure 5.2a we can find an example of a 1-safe Petri net
defined in Roméo. The Petri net has two observable transitions a and b.
Then, for comparison in Figures 5.2b and 5.2c we may find two prefixes of a
constrained unfolding based on observation {a, b}. Both prefixes are limited
with the number of unobservable events in the history of each individual
event. Thus in Figure 5.2b the limit is 4 and in Figure 5.2c it is 10. As
we can observe the constrained unfolding is in general infinite. To solve this
problem we can apply our tool and compute an associated constrained prefix.
Such a prefix is presented in Figure 5.3b. To ease the comparison we give in
Figure 5.3a a different presentation of the prefix from Figure 5.2b. Finally
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using our tool we can compute a related supervisor (Figure 5.4) which is a
folded version of the constrained prefix.

The current version of the software is limited to free-labeled Petri nets
(see Definition 47).

Apart from the above mentioned features, the tool offers the following
functionalities:

• unfolding of Petri nets with a maximum given depth. This feature
helped us to discover two errors in Roméo. We found it also more
efficient for Petri nets of bigger size.

• a comparison of two prefixes, i.e. the inclusion,

• dynamic addition of events. This feature is experimental and imple-
ments a more incremental way to construct constrained unfoldings.
Thus in the beginning of the construction we do not have a whole ob-
servation. We assume that new events arrive during the construction of
unfolding. At each moment of the construction we can take a snapshot
of the constrained unfolding and continue later the procedure.

The tool was implemented in C++ and uses a Graphviz tool which is an
open source graph visualization software.

5.4 Spinta

Spinta is an experimental tool which was created on the basis of our first
tool used to construct constrained unfoldings of networks of timed automata
(see Section 5.1). The current version of Spinta (version 0.1) performs com-
putation of constrained prefixes of networks of parametric automata with
constraints represented by polyhedra (NPA; see Section 2.2.5).

The main features of the program

• The program includes a simple editor in which we can define NPA and
verify its syntax.

• The program can compute constrained prefixes of NPAs on the basis
of a given finite observation and additional parameters (see Section
5.4.1).

– Extraction of explanations with their constraints.

– Folding constraints, i.e. elimination of all variables except for
parameters.

– Computation of disjunction of all folded constraints.
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Figure 5.2: A 1-safe Petri net (a) and two prefixes of its constrained unfolding
((b) and (c)).
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Figure 5.3: A different form of the prefix in Figure 5.2b and a constrained prefix of the net in Figure 5.2a.
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Figure 5.4: A supervisor of Petri net in Figure 5.2a.



5.4. Spinta 167

– Producing a complete report from the computation process and
a visualization of the prefix in GraphViz format (a file with ex-
tension “dot”).

Below we describe the basic properties of the software. This section
serves also as a short tutorial for Spinta.

5.4.1 Syntax of the model in Spinta

In order to define a network of automata in Spinta we have to use a dedicated
language. The syntax of this language is described in details below.

Remark 5.1. We can export our model into GraphViz format (Model ⊲Export

to .DOT). The model is saved in the file “_system.dot” in the same directory
as the program.

Parameters and clocks

In the model, we can use two types of variables: clocks and parameters.
There is no need to declare them before using in the model. However, we
have to distinguish them in the code of the model. Namely, all parameters
have to be prefixed with “_” (e.g. _a, _param). Consequently, clocks cannot
start with “_” (e.g. x, clock1).

Constraints

In order to represent constraints, we can use a conjunction of linear con-
straints, i.e. A~x ⊳ ~b in which ⊳∈ {<,≤}, A is a matrix of known coeffi-
cients, ~x is a vector of variables, ~b is a vector of known coefficients. In the
Spinta code, we can express it by the following grammatical rules:

c o n s t r a i n t s : ’ ( ’ c o n s t r a i n t ( ’&&’ c o n s t r a i n t )∗ ’ ) ’
c o n s t r a i n t : l i n e a r_ e x p r e s s i o n

( ’ < ’ | ’<=’ | ’==’ | ’>=’ | ’>=’)
l i n e a r_ e x p r e s s i o n

l i n e a r_ e x p r e s s i o n : ( ’− ’ | ’+ ’)? ( c o e f f i c i e n t ’∗ ’ )∗ v a r i a b l e
(( ’− ’ | ’+ ’) ( c o e f f i c i e n t ’∗ ’ )∗ v a r i a b l e )∗

All coefficients have to be integers.

For example, we can use the following constraint in Spinta:

( -2*x+_a -3*z <= 2*y -5+3* _b )

Package

A basic unit containing a model is called a package.
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Table 5.1: The list of parameters.

Parameter name Values Default value

max_prefix_depth n ∈ N 3
observation see Section 5.4.1 -
time_constraints {true, false} true
extract_explanations {true, false} false
filter_explanations {true, false} false
initial_constraints see Section 5.4.1 -
folded_constraints {true, false} false
folded_constraints_together {true, false} false
only_max_explanations {true, false} true

package MyPackage;

/* Parameters */

/* Automata */

A package consists of two parts: a part with parameters and a part with
automata.

Computation parameters

The parameters are used in the process of computation of a prefix. To specify
the parameter param with a value val, we write:

@param val

The current version of Spinta supports the parameters in Table 5.1.

max_prefix_depth Describes the maximal depth of a prefix. It can be
used together with observations.

observation Specifies a set of pairs (λ, n) where λ is a name of an observable
transition or synchronization, and n is a number of events labeled by λ.
There is a special symbol ? which describes unobservable events. It is
used to bound the number of unobservable events in a prefix due to the
problem of unobservable loops. By default, there is no observation and
all events are valid. The value of this parameter should be the name
of a file (in quotes) containing an observation defined by the following
grammar rule (λi, ni)

∗.

time_constraints Indicates whether time constraints of a considered model
are taken into consideration during the computation of a prefix.

extract_explanations If the value of this parameter is true, all the expla-
nations of a given observation are extracted and are visible in a final
report.



5.4. Spinta 169

filter_explanations If the value of this parameter is true, there are only
events which belong to explanations in the final diagram of the prefix.

initial_constraints Defines the initial constraints of a prefix. The con-
straints consist of a conjunction of strict or non-strict linear inequalities
(e.g. (2*x-3*y+z>=4*_a && z>_b)). They are applied for the initial
event in the prefix. Thus, before the constraints are used, values of all
clocks are set to 0.

folded_constraints If the value of the parameter is true, all variables ex-
cept parameters are eliminated from constraints of explanations.

folded_constraints_together If the value of the parameter is true, a
disjunction of all folded constraints of all explanations is computed.

only_max_explanations If the value of the parameter is true, only the
maximal (in the sense of inclusion) explanations are considered in the
final result.

Automata

In each package, we can define a set of automata which constitute a net-
work of automata. The definition of an automaton contains two types of
definitions: locations and transitions.

automaton MyAutomaton {

/* Locations */

/* Transitions */

}

Locations The structure represents a single location of an automaton. The
locations do not have to be declared before they are used in transitions.

modifier location name {

constraints = ( /* constraints */ );

}

modifier In the current version of the program, there is only one type of
modifier, i.e. initial. This type of modifier indicates the initial loca-
tion of an automaton. Each automaton must have one initial location.

name A name of location. It is optional.

constraints An invariant assigned to the location. It is optional.
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Transition The structure represents a single transition of an automaton.

modifier initial_location ->final_location name {

constraints = ( /* constraints */ );

resets = { /* clocks */ };

sync = { /* labels */ };

}

modifier In the current version of the program, there is only one type of
modifier, i.e. hidden. This type of modifier indicates that the local
transition is unobservable. It is optional.

name A name of a local transition which can be used in observations. It is
optional.

constraints A guard assigned to the local transition. It is optional.

resets A set of clocks which are reset when the transition is executed. For
example, {x,y,z}. It is optional.

sync A set of synchronizations considered by the local transition. For exam-
ple, {sync1, sync2, sync3} where sync1, sync2, sync3 are labels of
synchronizations. A name of synchronization which starts with charac-
ter “_” means that the synchronization is unobservable. The parameter
is optional.

Remark 5.2. In a model, we can mark both local transitions and synchro-
nizations as unobservable. Unless a synchronization sync is unobservable,
all events associated with this synchronization are visible in an observation
as sync. Otherwise, if the synchronization is unobservable, labels of all its
underlying observable transitions are put into the observation.

Comments

At any place in the code, we can insert comments. There are two types of
comments presented below.

/*

* A multiline comment

*/

// A single line comment
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5.4.2 Computation of prefix

In order to compute a prefix of a model, we have to open it in Spinta.
Then, from the menu, we choose Model ⊲Prefix ⊲Compute (the model has
to be saved before the computation). The computation process is performed
in a separate thread and can be terminated at any time (Model ⊲Prefix ⊲
Terminate). The result consists of two files: a prefix in GraphViz format in
the file “_prefix.dot” and a full report in “_report.txt”.

5.4.3 Graphical user interface of Spinta

The GUI of Spinta consists of three parts (see Figure 5.5): the main part in
which we can view and edit models (upper right panel), the panel with main
properties of a chosen model (upper left panel) and the status window (the
bottom panel).

Main panel

The main panel is an editor in which we can view and edit a model. To
facilitate the programming of models, a pop-up menu is available from which
we can chose all basic code structures and insert them directly into the model.
The syntax of the model can be verified at any time (before we have to save
our document) by choosing Model ⊲Verify Syntax from the menu .

Properties

After verification of the syntax or computation of a prefix, we can observe
basic elements of the verified model in this window, i.e. automata, synchro-
nizations, variables.

Status panel

In the status panel, we can observe all operations performed by Spinta. The
contents of the status panel can be saved in an HTML file.

5.4.4 Final remarks

The program is written in Java (more than 11 000 lines of code). It uses the
Parma Polyhedra Library to perform operations on polyhedra. The program
generates files with diagrams which can be read in the program GraphViz.

The program package includes several examples.
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Figure 5.5: A screenshot of the program Spinta.



Chapter 6

Conclusion

6.1 Results

The problem of monitoring of distributed systems certainly is a subject that
still remains open for many future researches. In our work, we presented a
number of important issues that raise some important aspects of monitoring.

Distributed systems created today apply many advanced solutions. Nev-
ertheless, despite the specific procedures used to create these systems, it often
happens that they still require constant testing and monitoring in order to
eliminate errors of various types. They are not necessarily errors which are
complex and difficult to predict. There are many reasons for this, such as
an excessive complexity of system or simply a lack of predictability of all
the events that affect performance of the system. The reason we study in
our work can be summarized as: a lack of or an inadequate formal verifica-
tion of the model on which a concerned system is based, of course assuming
that such a model exists, which is not often true. Of course, apart from the
formal verification of the model, it is important that the model is properly
implemented. Hence, the approach which we propose to solve the problem of
monitoring of distributed systems tries to use formal methods and shows the
possible advantages and disadvantages of such a formal approach in practice.

In this context, the desire to formalize all phases of software lifespan as
much as possible seems to be reasonable. As already mentioned, the practice
shows that the formal verification of the systems is often extremely difficult
or even impossible to perform. And since for practical or theoretical reasons
such problems can not be solved, this naturally leads to some solutions which
try to solve it less formally or with less restrictions than assumed originally.
Hence, there are numerous methods introduced in the context of software
engineering.

In our work, we focused on monitoring as an essential element of verifica-
tion of the correctness of distributed systems. We began our presentation by
describing the main issues related to the monitoring of distributed systems.
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Then, we briefly presented the notions which served us as a base for further
discussion. In the solutions that we presented, we used two different models
of formal models: time Petri nets and networks of timed automata. This
allowed to show some specific features of both models.

As mentioned, usually it is not possible to fully verify a system before it is
executed. However, sometimes it is possible to perform a limited verification
of a system during its activity. It turns out that, when collecting incoming
information about events in the system, we can often reduce enough the
complexity of the problem we are interested in to be able to verify some
properties and find explanations for certain behaviors of the system (i.e.
scenarios of execution). For this purpose, we used the theory of unfoldings.
Additionally, we presented this notion in the context of two different models.
At the end, we studied the problem of unobservable events in distributed
systems which are often ignored in practice, but that can be a valuable
source of information about errors.

6.1.1 Unfoldings in supervision

We presented an original method using the model of networks of timed au-
tomata to produce timed explanations of a sequence of actions produced by
a distributed system under surveillance [52]. For the purpose of our prob-
lem we develop the idea of constrained unfoldings which is derived from the
theory of unfoldings. This way, we could obtain, not only information about
causal relations between events of the underlying model, but also informa-
tion about time at which the events occurred. Concerning the algorithmic
complexity, we note that one of its main components is non-determinism
caused by unobservable events. The more unobservable events in the partial
observation, the greater the number of possible explanations of the model
execution. This could also be observed during the tests which we performed
to verify our solutions. In our work, we show that on the basis of the prob-
lem we presented, many possible applications can be considered such as the
correlation of alarms and the detection of errors, monitoring behavior pat-
terns to detect for example intrusions, surveillance of non-functional time
properties, etc.

Following our research, we also apply a new technique for the unfolding
of safe stopwatch parametric Petri nets ([53, 85, 84]) that allows a symbolic
handling of both time and parameters. To the best of our knowledge, this
is the first time that the parametric or stopwatch cases are addressed in the
context of unfoldings. Moreover, when restricting to the subclass of safe time
Petri nets, our technique compares well with the previous approach of [35].
It indeed provides a more compact unfolding, by eliminating the duplication
of transitions, and also removes the need for read arcs in the unfolding. As a
trade-off, the constraints associated with the firing times of events may seem
slightly more complex.



6.1. Results 175

Most of the solutions that we propose in the framework of the network
timed automata-based surveillance and monitoring systems based on time
Petri nets have been implemented and tested on various examples and some
case studies, some of which are presented in this work. In addition, a solution
based on the time Petri nets model is implemented as part of the earlier
drop software tool for analyzing models based on Petri nets called Romeo.
The current version of the Romeo tool 2.9.0 is available on the web-page
[2]. It offers the possibility of computing symbolic unfoldings for safe time
Petri nets with parameters. When guided by a sequence of actions, this
feature allows the user to perform some diagnosis. The diagnosis consists of
a finite prefix of the unfolding, presenting all the possible explanations of the
input sequence. The explanations explicit the inferred causal relationships
between the events of the model and also give the possible values for the
parameters. We think that such an integrated method is a real added-value
for the analysis of concurrent systems, and opens the door to deal with even
more complex models like time Petri nets with stopwatches, or time Petri
nets with more robust time semantics (e.g. with imperfect clocks).

6.1.2 Supervision for different models

In our work, we present the problem of monitoring from the perspective of
two seemingly different models such as networks of timed automata and time
Petri net. As mentioned in the introduction of our work, the models were
developed relatively independently. More exact studies of relations between
the models were conducted relatively recently. And there are still many
open questions in this field. During our research, we tried to capture the
characteristics that are common and unique to both formalisms, especially
in the context of the problem of monitoring distributed systems. Differences
between the two models are mainly due to differences in time constraints
used in them.

For both networks of timed automata and time Petri nets, we have de-
veloped methods for monitoring distributed systems based on the aforemen-
tioned unfoldings. The methods also take into account the time constraints
present in the models. Both approaches that we developed are also com-
pared on a simple example of the alternating bit protocol [52, 84] partially
prepared with software we implemented.

6.1.3 Unfoldings under partial observation

As we presented in the previous chapters, the prefix produced during the
process of supervision can be theoretically infinite. This is due to the unob-
servable loops which can be executed in the system for an arbitrary number
of times. That is why it is not possible to obtain all explanations for a given
observation using the method introduced in [52, 53]. To tackle this problem



176 6. Conclusion

we show how to construct a constrained unfolding under partial observation,
and then we explain why it is sufficient to only consider a finite part (a prefix)
of it.
For the first time, we encountered the problem of unobservable loops dur-

ing our research when discussing the monitoring distributed systems based
on networks of timed automata (see article [52]). In the article, we propose
a simple solution which is based on quite a strong assumption that the num-
ber of unobservable events in a single process of network of timed automata
is bounded from above by a specified number. However, in practice, the
assumption is quite a significant restriction. In addition, our test implemen-
tations only confirms that the number of unobservable events arising from
the model of the system can dramatically affect memory and time complex-
ity of the methods that we introduce to carry out the monitoring system.
Consequently we decided to take a closer look at this problem.

In our further work, we address the particular question of unfolding Petri
nets under partial observations. We propose a new method to deal with
unobservable and infinite behaviors for constrained unfoldings of Petri nets.
Throughout the work, we use the bottom-up approach to present our results.
We start with the simple case of finite state machine to show the basic
aspects of the problem. Then we consider a more generalized case of free-
labeled 1-safe Petri nets in which each transition has a unique label assigned
to it. Finally, we discuss the most general case of 1-safe Petri net. In the
context of the solution, we discuss various aspects of our solutions and some
related problems. We prove correctness and completeness of our translations
concerning the assumptions mentioned before.

To explain the concept of the unfoldings under partial observations, we
consider a system modeled by a Petri net which produces two types of events:
observable and unobservable ones. By definition, only the execution of ob-
servable events can be visible outside the system. The information about
observable events, called the observation, is collected by a certain mecha-
nism, which we call the collector. In our work, we mainly consider most
general case of the observation, which is a set of unordered events. One of
the key issues in the problem is the fact that we do not want to lose the
information about the unobservable events. We notice that, in many situ-
ations, it is crucial to have the information in order to be able to analyze
behaviors that cannot be observed. It is not difficult to imagine a system
which produces a lot of unobservable events which may cause some serious
perturbations such as unwanted delays or strange valuations of parameters
(for example for parametric time Petri nets). Finally, in the same way as
in the case of supervision without unobservable events, the main goal of the
supervision under partial observation method is to recreate, on the basis of
the observable events, a structure consisting of all behaviors possible for the
given observation. Thus, we get explanations similarly to the case when all
events in the system are observable. However, in order to store all the ex-
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planations, even the infinite ones, we show that the prefix produced during
supervision is different. Moreover, to extract the explanations, we can con-
vert the prefix into a Petri net whose unfolding is compatible with the initial
observations gathered during the process of monitoring.

In order to verify our methods, we developed a tool which, on the basis
of a given model and a set of observations, can construct the corresponding
prefix. In order to compute the prefix, the program can apply different
termination criteria. In the simplest case, the construction of the prefix
can terminate when a certain maximal number of consecutive events are
executed. In the more complex cases the program detects unobservable loops
and stops extending the prefix when the partial observation is fulfilled and
the corresponding processes can be extracted.

It should be stressed that the aim of our study is to keep information
about unobservable events. However, there are solutions in which the infor-
mation about unobservable events is insignificant and where only a fragment
of the information, which influences the observable events, is kept. As men-
tioned in Section 4.1, the question of invisible loops still remains largely
open. It cannot be simply circumvented by a model transformation since
the elimination of unobservable transitions from 1-safe Petri nets is still an
open and very difficult question [88].

6.2 Perspectives

Below, we present some possible developments of this work. The section is
divided into two parts.

6.2.1 Short-term goals

One of the first targets for further development are issues related to the
theory of partial unfoldings, i.e. unfoldings with possible infinite and
unobservable behaviors.

Above all, it would be valuable to solve the problem of unobservable
loops in the case of timed models such as time Petri nets. Also, the natural
continuation of the work is the problem of unobservable loops in networks of
timed automata. As we showed in Section 2.5, relatively recently, there has
been some research done on the relations between the two models such as
comparison of their expressivenesses. We think that it would be interesting
to solve the problem directly for the network of timed automata to compare
possible advantages of the models in this context. As the so-far experience
shows, an exact translation between the two models is possible in many cases;
but it may be a difficult task in practice (see Section 2.5.2).

Another interesting direction for the future work could be an application
of trellises and an attempt to define a canonical form of the supervisors.
The theory of trellises was introduced in [45]. They constitute a certain
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alternative to the unfolding technique which we present in our work. First
of all, they are more compact than the standard unfoldings we presented as
the conflict relations are not unfolded in the trellises. Secondly, the trellises
were found to have some interesting factorization properties which make
them good candidates for distributed supervision. Namely, it appears that,
for a system which can be expressed as a product of components, its trellis
is the product of the trellises of these components. This topic was discussed
in [68], where the authors moreover show a simple example of application to
the problem of diagnosis in distributed systems.

It could be also interesting to extend our studies to more complex
models such as parametric stopwatch Petri nets or non-safe models. The
subject of stopwatch Petri nets was already discussed in one of our articles
(see [85]) which seems to be an interesting target to study.

Finally, a detailed algorithmic analysis is still necessary. During our
research on supervision of timed distributed systems, we analyzed several
case studies. However, it would also be interesting to focus more on the
aspect of performance of the algorithms used for supervision in order to make
them more practical for real-life applications. Since the solutions we present
are quite generic, we think that, in many cases, stronger assumptions
in the process of supervision can still be made. For example, some
observations may be equipped with extra information on causal relations
about the events. Or maybe, in some cases, only a part of explanation is
necessary without the need to consider all the components of the distributed
system.

6.2.2 Long-term goals

So far, for both models that we present and which are used to solve the
problem of monitoring, it is assumed that time flows equally across all com-
ponents of the system and that its measurement is perfectly accurate. It is
not difficult to observe that such a case is impossible in practice, especially
when we deal with large distributed systems. It is assumed that the model
of time, which is used in the systems, is perfect but does not always work in
real-world applications. The difficulty of this issue is especially obvious when
we look at the problem of synchronization of clocks in distributed systems,
and protocols created to solve it such as Network Time Protocol (NTP –
for more information, see [74, 1]). Until now, many different solutions have
been proposed to solve the problem of reliability of the measurement
of time in timed systems, for both networks of timed automata and time
Petri nets. There are many different approaches that try to solve this prob-
lem. One of them is based on systems which use standard models (with
assumption of perfect clocks), without changing their semantics. This type
of approach tries to avoid the problem of precision of clocks by using struc-
tural properties of the model (see [4]). Another type of solutions applies
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systems based on models with a specially adapted semantics which takes
into account different clock rates, offsets, and other significant properties
of the clocks in distributed systems (for example [39, 55, 89, 40]). The se-
lection of an appropriate model for designing distributed systems is not a
simple task, especially when we take into account imperfections of clocks in
such systems, and the fact that the problem of monitoring itself is relatively
complex computationally. Moreover, additional features of the models with
modified semantics raise a lot of new questions. The properties that were so
far verifiable in the original model can not be checked for its new enhanced
version.

The previous problem also implies another important issue: imple-
mentability. At the stage of designing a system, it is almost impossible
to predict all the situations which may occur during its activity. Thus, find-
ing a model that would perfectly fit the problem is very hard. Hence, the
idea of using parameters in the models. An interesting direction of research
that would expand our work may be automatic adaptation of some param-
eters (e.g. in time constraints) of a distributed system, depending on the
environment in which the system operates.

From the perspective of implementation of the proposed solutions, an im-
portant issue certainly is the complexity of the algorithms. This is a problem
which still needs theoretical analysis and a large number of tests. As men-
tioned earlier, the technique of unfoldings is interesting especially for two
reasons: the information that can be stored using unfoldings and the com-
plexity of memory that is needed to store this information. Unfortunately,
it is usually associated with the large computational cost. In the case of
monitoring, the size of the unfoldings is limited by various additional factors
such as: observations collected by the monitoring module, and time con-
straints present in the model which eliminate some scenarios of the system’s
behavior.

Another direction that could be an interesting continuation of this work is
to extend the functionality of monitoring system with supervisory control.
In this case, the system would not only be monitored to determine whether
there are some particular events or behaviors, but also there would exist a
possibility of an automatic response to a number of situations. The idea of
an automatic control of systems is not new and is a natural extension of the
problem of supervision.
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Résumé

Ce travail est consacré à la problématique du suivi des systèmes 
répartis temps réel. Plus précisément, il se concentre sur les as-
pects formels de la supervision basée sur des modèles ainsi que 
sur les problèmes qui lui sont liés.

Dans la première partie du travail, nous présentons les propriétés 
de base de deux modèles formels bien connus utilisés pour la mo-
délisation de systèmes répartis : les réseaux d’automates tempo-
risés et les réseaux de Petri temporels. Nous montrons que le com-
portement de ces modèles peut être représenté par les procédés 

dits de branchement. Nous introduisons également les éléments 

conceptuels clés du système de surveillance.

La deuxième partie du travail est consacrée à la question des dé-

pliages avec contraintes qui permettent le suivi des relations cau-

sales entre les événements dans un système réparti. Ce type de 

structure peut reproduire des processus sur la base d’un ensemble 

totalement non-ordonné d’évènements. Dans notre travail, nous 

soulevons les problèmes des contraintes de temps et de leurs pa-

ramétrages. Les méthodes proposées sont illustrées par des étu-

des de cas.

La troisième partie du travail traite de la problématique des boucles 

inobservables qui peuvent résulter de comportements cycliques 

inobservables des systèmes considérés. Ce type de comporte-

ment conduit à un nombre in%ni d’événements dans les dépliages 

avec contraintes. 

La quatrième et dernière partie du travail est consacrée à l’implé-

mentation des méthodes décrites précédemment.
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Abstract

This work is devoted to the issue of monitoring of distributed real-

time systems. In particular, it focuses on formal aspects of model-

based supervision and problems which are related to it.

In its %rst part, we present the basic properties of two well-known 

formal models used to model distributed systems: networks of ti-

med automata and time Petri nets. We show that the behavior of 

these models can be represented with so-called branching proces-

ses. We also introduce the key conceptual elements of the super-

visory system.

The second part of the work is dedicated to the issue of constrained 

unfoldings which enable us to track causal relationships between 

events in a distributed system. This type of structure can be used 

to reproduce processes of the system on the basis of a completely 

unordered set of previously observed events. Moreover, we show 

that time constraints imposed on a system and observations sub-

mitted to the supervisory system can signi%cantly a&ect a course 

of events in the system. We also raise the issue of parameters in 

time constraints. The proposed methods are illustrated with case 

studies.

The third part of the work deals with the issue of unobservable 

cyclical behaviors in distributed systems. This type of behaviors 

leads to an in%nite number of events in constrained unfoldings. We 

explain how we can obtain a %nite structure that stores informa-

tion about all observed events in the system, even if this involves 

processes that are in%nite due to such unobservable loops. 

The fourth and %nal part of the work is dedicated to implementation 

issues of the previously described methods.
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nets, networks of timed automata, branching processes, constrai-

ned unfoldings, time constraints with parameters, unobservable 

loops, partial observations.


