M. Kneissl, C. Kolbe, . Chua, . Kueller, . Lobo et al., Advances in group III-nitride-based deep UV light-emitting diode technology, Semiconductor Science and Technology, vol.26, issue.1, p.14036, 2011.
DOI : 10.1088/0268-1242/26/1/014036

B. Daudin, G. Feuillet, J. Huübner, Y. Samson, F. Widmann et al., How to grow cubic GaN with low hexagonal phase content on (001) SiC by molecular beam epitaxy, Journal of Applied Physics, vol.84, issue.4, p.2295, 1998.
DOI : 10.1063/1.368296

A. F. Wright, Basal-plane stacking faults and polymorphism in AlN, GaN, and InN, Journal of Applied Physics, vol.82, issue.10, p.5259, 1997.
DOI : 10.1063/1.366393

I. Vurgaftman and J. R. Meyer, Band parameters for nitrogen-containing semiconductors, Journal of Applied Physics, vol.94, issue.6, p.3675, 2003.
DOI : 10.1063/1.1600519

A. F. Wright, Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN, Journal of Applied Physics, vol.82, issue.6, p.2833, 1997.
DOI : 10.1063/1.366114

H. Sugahara, T. Sato, M. Hao, Y. Naoi, S. Kurai et al., Direct Evidence that Dislocations are Non-Radiative Recombination Centers in GaN, Japanese Journal of Applied Physics, vol.37, issue.Part 2, No. 4A, pp.398-400, 1998.
DOI : 10.1143/JJAP.37.L398

J. Wu, When group-III nitrides go infrared: New properties and perspectives, Journal of Applied Physics, vol.106, issue.1, p.11101, 2009.
DOI : 10.1063/1.3155798

H. Morkoc, Nitride semiconductors and devices, 1999.

F. Bernardini and V. Fiorentini, Nonlinear macroscopic polarization in III-V nitride alloys, Physical Review B, vol.64, issue.8, p.85207, 2001.
DOI : 10.1103/PhysRevB.64.085207

F. Bernardini and V. Fiorentini, , 085207 (2001)], Physical Review B, vol.65, issue.12, p.129903, 2002.
DOI : 10.1103/PhysRevB.65.129903

F. Bernardini, V. Fiorentini, and D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides, Physical Review B, vol.56, issue.16, pp.10024-10027, 1997.
DOI : 10.1103/PhysRevB.56.R10024

O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann et al., Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures, Journal of Applied Physics, vol.87, issue.1, p.334, 2000.
DOI : 10.1063/1.371866

K. Shimada, First-Principles Determination of Piezoelectric Stress and Strain Constants of Wurtzite III-V Nitrides, Japanese Journal of Applied Physics, vol.45, issue.No. 12, pp.358-360, 2006.
DOI : 10.1143/JJAP.45.L358

A. Hangleiter, F. Hitzel, S. Lahmann, and U. Rossow, Composition dependence of polarization fields in GaInN/GaN quantum wells, Applied Physics Letters, vol.83, issue.6, p.1169, 2003.
DOI : 10.1063/1.1601310

S. Park, Crystal orientation effects on electronic properties of wurtzite InGaN/GaN quantum wells, Journal of Applied Physics, vol.91, issue.12, p.9904, 2002.
DOI : 10.1063/1.1480465

O. V. Losev, Telegraya i Telefoniya bez Provodov, p.485494, 1927.

A. H. Herzog, High???Efficiency Zn???Diffused GaAs Electroluminescent Diodes, Journal of Applied Physics, vol.43, issue.2, p.600, 1972.
DOI : 10.1063/1.1661164

A. Hangleiter, C. Netzel, D. Fuhrmann, F. Hitzel, L. Homann et al., Anti-localization suppresses non-radiative recombination in GaInN/GaN quantum wells, Philosophical Magazine, vol.2, issue.13, p.2041, 2007.
DOI : 10.1063/1.1529993

A. Avramescu, T. Lermer, J. Müller, C. Eichler, G. Bruederl et al., -Plane GaN, Applied Physics Express, vol.3, issue.6, p.61003, 2010.
DOI : 10.1143/APEX.3.061003

URL : https://hal.archives-ouvertes.fr/tel-01001740

J. Simon, N. T. Pelekanos, C. Adelmann, E. Martinez-guerrero, R. André et al., Direct comparison of recombination dynamics in cubic and hexagonal GaN/AlN quantum dots, Physical Review B, vol.68, issue.3, p.35312, 2003.
DOI : 10.1103/PhysRevB.68.035312

D. Fuhrmann, C. Netzel, U. Rossow, A. Hangleiter, G. Ade et al., Optimization scheme for the quantum efficiency of GaInN-based green-light-emitting diodes, Applied Physics Letters, vol.88, issue.7, p.71105, 2006.
DOI : 10.1063/1.2173619

J. Bai, T. Wang, and S. Sakai, Influence of the quantum-well thickness on the radiative recombination of InGaN/GaN quantum well structures, Journal of Applied Physics, vol.88, issue.8, p.4729, 2000.
DOI : 10.1063/1.1311831

F. Bernardini and V. Fiorentini, Macroscopic polarization and band offsets at nitride heterojunctions, Physical Review B, vol.57, issue.16, pp.9427-9430, 1998.
DOI : 10.1103/PhysRevB.57.R9427

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Spontaneous emission of localized excitons in InGaN single and multiquantum well structures, Applied Physics Letters, vol.69, issue.27, p.4188, 1996.
DOI : 10.1063/1.116981

M. Schmidt, H. Kim, N. Sato, H. Fellows, S. Masui et al., -Plane InGaN Light Emitting Diodes, Japanese Journal of Applied Physics, vol.46, issue.No. 7, pp.126-128, 2007.
DOI : 10.1143/JJAP.46.L126

URL : https://hal.archives-ouvertes.fr/hal-00309734

Y. Zhao, S. Tanaka, D. Cc-pan, K. Fujito, J. Feezell et al., High-Power Blue-Violet Semipolar ($20\bar{2}\bar{1}$) InGaN/GaN Light-Emitting Diodes with Low Efficiency Droop at 200 A/cm$^{2}$, Applied Physics Express, vol.4, issue.8, p.82104, 2011.
DOI : 10.1143/APEX.4.082104

Y. Zhao, J. Sonada, I. Koslow, H. Cc-pan, . Ohta et al., Optimization of Device Structures for Bright Blue Semipolar (10\bar1\bar1) Light Emitting Diodes via Metalorganic Chemical Vapor Deposition, Japanese Journal of Applied Physics, vol.49, issue.7, p.70206, 2010.
DOI : 10.1143/JJAP.49.070206

M. Brendel, A. Kruse, H. Jönen, L. Homann, H. Bremers et al., Auger recombination in GaInN/GaN quantum well laser structures, Applied Physics Letters, vol.99, issue.3, p.31106, 2011.
DOI : 10.1063/1.3614557

M. Schubert, . Xu, . Kim, E. Schubert, . Kim et al., Polarization-matched GaInN???AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop, Applied Physics Letters, vol.93, issue.4, p.41102, 2008.
DOI : 10.1063/1.2963029

X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin et al., InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes, Applied Physics Letters, vol.97, issue.3, p.31110, 2010.
DOI : 10.1063/1.3465658

O. Landré, Etude de la nucléation et de la croissance de structures laires GaN et AlN, 2010.

H. P. Maruska, THE PREPARATION AND PROPERTIES OF VAPOR???DEPOSITED SINGLE???CRYSTAL???LINE GaN, Applied Physics Letters, vol.15, issue.10, p.327, 1969.
DOI : 10.1063/1.1652845

H. M. Manasevit, F. M. Erdmann, and W. I. Simpson, The Use of Metalorganics in the Preparation of Semiconductor Materials, Journal of The Electrochemical Society, vol.118, issue.11, p.1864, 1971.
DOI : 10.1149/1.2407853

S. Yoshida, S. Misawa, and A. Itoh, Epitaxial growth of aluminum nitride films on sapphire by reactive evaporation, Applied Physics Letters, vol.26, issue.8, p.461, 1975.
DOI : 10.1063/1.88210

D. Gaskill, N. Bottka, and M. C. Lin, Growth of GaN films using trimethylgallium and hydrazine, Applied Physics Letters, vol.48, issue.21, p.1449, 1986.
DOI : 10.1063/1.96886

M. I. Yoshizawa, A. Kikuchi, M. I. Mori, N. Fujita, and K. Kishino, Growth of Self-Organized GaN Nanostructures on $\bf Al_{2}O_{3}(0001)$ by RF-Radical Source Molecular Beam Epitaxy, Japanese Journal of Applied Physics, vol.36, issue.Part 2, No. 4B, pp.459-462, 1997.
DOI : 10.1143/JJAP.36.L459

R. Songmuang, O. Landré, and B. Daudin, From nucleation to growth of catalyst-free GaN nanowires on thin AlN buffer layer, Applied Physics Letters, vol.91, issue.25, p.251902, 2007.
DOI : 10.1063/1.2817941

T. Gotschke, T. Schumann, F. Limbach, T. Stoica, and R. Calarco, Influence of the adatom diffusion on selective growth of GaN nanowire regular arrays, Applied Physics Letters, vol.98, issue.10, p.103102, 2011.
DOI : 10.1063/1.3559618

R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco et al., Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111), Applied Physics Letters, vol.90, issue.12, p.123117, 2007.
DOI : 10.1063/1.2715119

L. Cerutti, J. Ristic, S. Fernandez-garrido, E. Calleja, A. Trampert et al., Wurtzite GaN nanocolumns grown on Si(001) by molecular beam epitaxy, Applied Physics Letters, vol.88, issue.21, p.213114, 2006.
DOI : 10.1063/1.2204836

T. Aschenbrenner, C. Kruse, . Kunert, . Figge, . Sebald et al., -plane sapphire, Nanotechnology, vol.20, issue.7, p.75604, 2009.
DOI : 10.1088/0957-4484/20/7/075604

R. Songmuang, T. Ben, B. Daudin, D. Gonzalez, and E. Monroy, Identification of III???N nanowire growth kinetics via a marker technique, Nanotechnology, vol.21, issue.29, p.295605, 2010.
DOI : 10.1088/0957-4484/21/29/295605

L. Largeau, D. Dheeraj, G. Tchernycheva, J. Cirlin, and . Harmand, Facet and in-plane crystallographic orientations of GaN nanowires grown on Si(111), Nanotechnology, vol.19, issue.15, p.155704, 2008.
DOI : 10.1088/0957-4484/19/15/155704

O. Landré, R. Songmuang, J. Renard, E. Bellet-amalric, H. Renevier et al., Plasma-assisted molecular beam epitaxy growth of GaN nanowires using indium-enhanced diffusion, Applied Physics Letters, vol.93, issue.18, p.183109, 2008.
DOI : 10.1063/1.3013840

H. Sekiguchi, K. Kishino, and A. Kikuchi, Ti-mask Selective-Area Growth of GaN by RF-Plasma-Assisted Molecular-Beam Epitaxy for Fabricating Regularly Arranged InGaN/GaN Nanocolumns, Applied Physics Express, vol.1, p.124002, 2008.
DOI : 10.1143/APEX.1.124002

H. Sekiguchi, K. Kishino, and A. Kikuchi, Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate, Applied Physics Letters, vol.96, issue.23, p.231104, 2010.
DOI : 10.1063/1.3443734

K. Hestroer, C. Leclere, C. Bougerol, H. Renevier, and B. Daudin, Polarity of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111), Physical Review B, vol.84, issue.24, p.245302, 2011.
DOI : 10.1103/PhysRevB.84.245302

C. Cheze, L. Geelhaar, A. Trampert, and H. Riechert, investigation of self-induced GaN nanowire nucleation on Si, Applied Physics Letters, vol.97, issue.4, p.43101, 2010.
DOI : 10.1063/1.3464956

O. Landre, . Bougerol, B. Renevier, and . Daudin, Nucleation mechanism of GaN nanowires grown on (111) Si by molecular beam epitaxy, Nanotechnology, vol.20, issue.41, p.415602, 2009.
DOI : 10.1088/0957-4484/20/41/415602

URL : https://hal.archives-ouvertes.fr/hal-01067034

V. Consonni, M. Knelangen, L. Geelhaar, A. Trampert, and H. Riechert, Nucleation mechanisms of epitaxial GaN nanowires: Origin of their self-induced formation and initial radius, Physical Review B, vol.81, issue.8, p.85310, 2010.
DOI : 10.1103/PhysRevB.81.085310

URL : https://hal.archives-ouvertes.fr/hal-01067583

M. Knelangen, . Consonni, H. Trampert, and . Riechert, analysis of strain relaxation during catalyst-free nucleation and growth of GaN nanowires, Nanotechnology, vol.21, issue.24, p.245705, 2010.
DOI : 10.1088/0957-4484/21/24/245705

URL : https://hal.archives-ouvertes.fr/hal-01067635

L. Lymperakis and J. Neugebauer, Large anisotropic adatom kinetics on nonpolar GaN surfaces: Consequences for surface morphologies and nanowire growth, Physical Review B, vol.79, issue.24, p.241308, 2009.
DOI : 10.1103/PhysRevB.79.241308

T. Zywietz, J. Neugebauer, and T. Scheer, Adatom diffusion at GaN (0001) and (0001??) surfaces, Applied Physics Letters, vol.73, issue.4, p.487, 1998.
DOI : 10.1063/1.121909

I. Mahboob, T. D. Veal, C. F. Mcconville, H. Lu, and W. J. Scha, Intrinsic Electron Accumulation at Clean InN Surfaces, Physical Review Letters, vol.92, issue.3, p.36804, 2004.
DOI : 10.1103/PhysRevLett.92.036804

J. Renard, R. Songmuang, G. Tourbot, C. Bougerol, B. Daudin et al., Evidence for quantum-confined Stark effect in GaN/AlN quantum dots in nanowires, Physical Review B, vol.80, issue.12, p.121305, 2009.
DOI : 10.1103/PhysRevB.80.121305

URL : https://hal.archives-ouvertes.fr/hal-00999581

J. Lähnemann, O. Brandt, C. Pfüller, T. Flissikowski, U. Jahn et al., Coexistence of quantum-confined Stark effect and localized states in an (In,Ga)N/GaN nanowire heterostructure, Physical Review B, vol.84, issue.15, p.155303, 2011.
DOI : 10.1103/PhysRevB.84.155303

M. Knelangen, . Hanke, . Luna, . Schrottke, A. Brandt et al., Monodisperse (In, Ga)N insertions in catalyst-free-grown GaN(0001) nanowires, Nanotechnology, vol.22, issue.36, p.365703, 2011.
DOI : 10.1088/0957-4484/22/36/365703

K. Kishino, K. Kamimura, and J. Kamiyama, Near-Infrared InGaN Nanocolumn Light-Emitting Diodes Operated at 1.46 $\mu$m, Applied Physics Express, vol.5, issue.3, p.31001, 2012.
DOI : 10.1143/APEX.5.031001

R. S. Wagner and W. C. Ellis, VAPOR???LIQUID???SOLID MECHANISM OF SINGLE CRYSTAL GROWTH, Applied Physics Letters, vol.4, issue.5, p.89, 1964.
DOI : 10.1063/1.1753975

A. Morales and C. Lieber, A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires, Science, vol.279, issue.5348, pp.208-211, 1998.
DOI : 10.1126/science.279.5348.208

V. G. Dubrovskii, N. V. Sibirev, J. C. Harmand, and F. Glas, Growth kinetics and crystal structure of semiconductor nanowires, Physical Review B, vol.78, issue.23, p.235301, 2008.
DOI : 10.1103/PhysRevB.78.235301

W. Bergbauer, C. Strassburg, . Kölper, C. Linder, . Roder et al., Continuous-flux MOVPE growth of position-controlled N-face GaN nanorods and embedded InGaN quantum wells, Nanotechnology, vol.21, issue.30, p.305201, 2010.
DOI : 10.1088/0957-4484/21/30/305201

R. Koester, J. S. Hwang, C. Durand, D. L. , S. Dang et al., Self-assembled growth of catalyst-free GaN wires by metal???organic vapour phase epitaxy, Nanotechnology, vol.21, issue.1, p.15602, 2010.
DOI : 10.1088/0957-4484/21/1/015602

URL : https://hal.archives-ouvertes.fr/hal-00999293

J. B. Hannon, S. Kodambaka, F. M. Ross, and R. M. Tromp, The influence of the surface migration of gold on the growth of silicon nanowires, Nature, vol.151, issue.7080, pp.69-71, 2006.
DOI : 10.1038/nature04574

F. Glas, Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires, Physical Review B, vol.74, issue.12, p.121302, 2006.
DOI : 10.1103/PhysRevB.74.121302

S. Raychaudhuri and E. T. Yu, Calculation of critical dimensions for wurtzite and cubic zinc blende coaxial nanowire heterostructures, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.24, issue.4, p.2053, 2006.
DOI : 10.1116/1.2216715

B. Jenichen, C. Brandt, . Pfüller, . Dogan, A. Knelangen et al., Macro- and micro-strain in GaN nanowires on Si(111), Nanotechnology, vol.22, issue.29, p.295714, 2011.
DOI : 10.1088/0957-4484/22/29/295714

P. Corfdir, P. Lefèbvre, J. Risti¢, P. Valvin, E. Calleja et al., Time-resolved spectroscopy on GaN nanocolumns grown by plasma assisted molecular beam epitaxy on Si substrates, Journal of Applied Physics, vol.105, issue.1, p.13113, 2009.
DOI : 10.1063/1.3062742

URL : https://hal.archives-ouvertes.fr/hal-00390003

J. Renard, Optical properties of GaN quantum dots and nanowires, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00475438

F. Glas, J. Harmand, and G. Patriarche, Why Does Wurtzite Form in Nanowires of III-V Zinc Blende Semiconductors?, Physical Review Letters, vol.99, issue.14, p.146101, 2007.
DOI : 10.1103/PhysRevLett.99.146101

B. M. Shi, M. H. Xie, H. S. Wu, N. Wang, and S. Y. Tong, Transition between wurtzite and zinc-blende GaN: An effect of deposition condition of molecular-beam epitaxy, Applied Physics Letters, vol.89, issue.15, p.151921, 2006.
DOI : 10.1063/1.2360916

P. Das and D. K. Ferry, Hot electron microwave conductivity of wide bandgap semiconductors, Solid-State Electronics, vol.19, issue.10, p.851, 1976.
DOI : 10.1016/0038-1101(76)90042-3

M. Holmes, Y. Park, J. Warner, and R. Taylor, Quantum confined Stark effect and corresponding lifetime reduction in a single InxGa1???xN quantum disk, Applied Physics Letters, vol.95, issue.18, p.181910, 2009.
DOI : 10.1063/1.3257698

Y. Park, M. Holmes, T. Kang, and R. Taylor, Quantum confined Stark effect of InGaN/GaN multi-quantum disks grown on top of GaN nanorods, Nanotechnology, vol.21, issue.11, p.115401, 2010.
DOI : 10.1088/0957-4484/21/11/115401

M. Holmes, Y. Park, C. Wang, A. Chan, R. Jarjour et al., N quantum disks embedded in GaN nanocolumns, Journal of Applied Physics, vol.109, issue.6, p.63515, 2011.
DOI : 10.1063/1.3558990

V. Ramesh, A. Kikuchi, K. Kishino, M. Funato, and Y. Kawakami, Strain relaxation effect by nanotexturing InGaN/GaN multiple quantum well, Journal of Applied Physics, vol.107, issue.11, p.114303, 2010.
DOI : 10.1063/1.3369434

M. R. Krames, O. B. Schchekin, R. Mueller-mach, G. O. Mueller, G. Zhou et al., Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting, Journal of Display Technology, vol.3, issue.2, p.160, 2007.
DOI : 10.1109/JDT.2007.895339

A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, InGaN/GaN Multiple Quantum Disk Nanocolumn Light-Emitting Diodes Grown on (111) Si Substrate, Japanese Journal of Applied Physics, vol.43, issue.No. 12A, pp.1524-1526, 2004.
DOI : 10.1143/JJAP.43.L1524

W. Guo, A. Banerjee, P. Bhattacharya, and B. S. Ooi, InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon, Applied Physics Letters, vol.98, issue.19, p.98193102, 2011.
DOI : 10.1063/1.3588201

R. E. Schlier and H. E. Farnsworth, Structure and Adsorption Characteristics of Clean Surfaces of Germanium and Silicon, The Journal of Chemical Physics, vol.30, issue.4, p.917, 1959.
DOI : 10.1063/1.1730126

G. Binnig, H. Rohrer, . Ch, E. Gerber, and . Weibel, 7 ?? 7 Reconstruction on Si(111) Resolved in Real Space, Physical Review Letters, vol.50, issue.2, p.120, 1983.
DOI : 10.1103/PhysRevLett.50.120

K. D. Brommer, M. Needels, B. Larson, and J. D. Joannopoulos, theory of the Si(111)-(7??7) surface reconstruction: A challenge for massively parallel computation, Physical Review Letters, vol.68, issue.9, p.1355, 1992.
DOI : 10.1103/PhysRevLett.68.1355

M. Otsuka and T. Ichikawa, New Ga-Induced Superstructures on Si(111) Surfaces, Japanese Journal of Applied Physics, vol.24, issue.Part 1, No. 8, p.1103, 1985.
DOI : 10.1143/JJAP.24.1103

M. Lai and Y. L. Wang, symmetry, Physical Review B, vol.61, issue.19, p.12608, 2000.
DOI : 10.1103/PhysRevB.61.12608

Y. F. Ng, Y. G. Cao, M. H. Xie, X. L. Wang, and S. Y. Tong, Growth mode and strain evolution during InN growth on GaN(0001) by molecular-beam epitaxy, Applied Physics Letters, vol.81, issue.21, p.3960, 2002.
DOI : 10.1063/1.1523638

E. Dimakis, E. Iliopoulos, K. Tsagaraki, . Th, . Kehagias et al., Heteroepitaxial growth of In-face InN on GaN (0001) by plasma-assisted molecular-beam epitaxy, Journal of Applied Physics, vol.97, issue.11, p.113520, 2005.
DOI : 10.1063/1.1923166

G. Tourbot, C. Bougerol, A. Grenier, M. D. Hertog, D. Sam-giao et al., Structural and optical properties of InGaN/GaN nanowire heterostructures grown by PA-MBE, Nanotechnology, vol.22, issue.7, p.75601, 2011.
DOI : 10.1088/0957-4484/22/7/075601

URL : https://hal.archives-ouvertes.fr/hal-01005899

M. H¸tch, E. Snoeck, and R. Kilaas, Quantitative measurement of displacement and strain fields from HREM micrographs, Ultramicroscopy, vol.74, issue.3, p.131, 1998.
DOI : 10.1016/S0304-3991(98)00035-7

K. Hestroer, R. Mata, D. Camacho, C. Leclere, G. Tourbot et al., The structural properties of GaN/AlN core???shell nanocolumn heterostructures, Nanotechnology, vol.21, issue.41, p.415702, 2010.
DOI : 10.1088/0957-4484/21/41/415702

Y. Liang, W. D. Nix, P. B. Grin, and J. D. Plummer, Critical thickness enhancement of epitaxial SiGe films grown on small structures, Journal of Applied Physics, vol.97, issue.4, p.43519, 2005.
DOI : 10.1063/1.1854204

R. N. Musin and X. Wang, Structural and electronic properties of epitaxial core-shell nanowire heterostructures, Physical Review B, vol.71, issue.15, p.155318, 2005.
DOI : 10.1103/PhysRevB.71.155318

K. Kavanagh, Misfit dislocations in nanowire heterostructures, Semiconductor Science and Technology, vol.25, issue.2, p.24006, 2010.
DOI : 10.1088/0268-1242/25/2/024006

C. Bougerol, R. Songmuang, D. Camacho, Y. M. Niquet, R. Mata et al., The structural properties of GaN insertions in GaN/AlN nanocolumn heterostructures, Nanotechnology, vol.20, issue.29, p.295706, 2009.
DOI : 10.1088/0957-4484/20/29/295706

URL : https://hal.archives-ouvertes.fr/hal-01003087

I. Ho and G. B. Stringfellow, Solid phase immiscibility in GaInN, Applied Physics Letters, vol.69, issue.18, p.2701, 1996.
DOI : 10.1063/1.117683

S. Y. Karpov, N. I. Podolskaya, I. A. Zhmakin, and A. I. Zhmakin, Statistical model of ternary group-III nitrides, Physical Review B, vol.70, issue.23, p.235203, 2004.
DOI : 10.1103/PhysRevB.70.235203

C. K. Gan, Y. P. Feng, and D. J. Srolovitz, alloys: Effect of lattice vibrations, Physical Review B, vol.73, issue.23, p.235214, 2006.
DOI : 10.1103/PhysRevB.73.235214

S. Y. Karpov, Suppression of phase separation in InGaN due to elastic strain, MRS Internet Journal of Nitride Semiconductor Research, vol.449, issue.268, p.16, 1998.
DOI : 10.1103/PhysRevB.53.16310

J. Su, M. Gherasimova, G. Cui, H. Tsukamoto, J. Han et al., Growth of AlGaN nanowires by metalorganic chemical vapor deposition, Applied Physics Letters, vol.87, issue.18, p.183108, 2005.
DOI : 10.1063/1.2126113

X. B. Niu, G. B. Stringfellow, and F. Liu, Nonequilibrium Composition Profiles of Alloy Quantum Dots and their Correlation with the Growth Mode, Physical Review Letters, vol.107, issue.7, p.76101, 2011.
DOI : 10.1103/PhysRevLett.107.076101

D. N. Nath, E. Gür, S. A. Ringel, and S. Rajan, Molecular beam epitaxy of N-polar InGaN, Applied Physics Letters, vol.97, issue.7, p.71903, 2010.
DOI : 10.1063/1.3478226

P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, ???Blue??? temperature-induced shift and band-tail emission in InGaN-based light sources, Applied Physics Letters, vol.71, issue.5, p.569, 1997.
DOI : 10.1063/1.119797

M. J. Galtrey, R. A. Oliver, M. J. Kappers, C. J. Humphreys, P. H. Clifton et al., Three-dimensional atom probe analysis of green- and blue-emitting InxGa1???xN???GaN multiple quantum well structures, Journal of Applied Physics, vol.104, issue.1, p.13524, 2008.
DOI : 10.1063/1.2938081

C. J. Humphreys, Does In form In-rich clusters in InGaN quantum wells?, Philosophical Magazine, vol.3, issue.13, p.1971, 2007.
DOI : 10.1063/1.100288

URL : https://hal.archives-ouvertes.fr/hal-00513829

L. Bellaiche, T. Mattila, L. Wang, S. Wei, and A. Zunger, Resonant hole localization and anomalous optical bowing in InGaN alloys, Applied Physics Letters, vol.74, issue.13, p.1842, 1999.
DOI : 10.1063/1.123687

P. R. Kent and A. Zunger, Carrier localization and the origin of luminescence in cubic InGaN alloys, Applied Physics Letters, vol.79, issue.13, p.1977, 2001.
DOI : 10.1063/1.1405003

H. Saito, K. Nishi, and S. Sugou, Shape transition of InAs quantum dots by growth at high temperature, Applied Physics Letters, vol.74, issue.9, p.1224, 1999.
DOI : 10.1063/1.123506

I. Daruka, J. Terso, and A. Barabasi, Shape Transition in Growth of Strained Islands, Physical Review Letters, vol.82, issue.13, p.2753, 1999.
DOI : 10.1103/PhysRevLett.82.2753

J. E. Northrup and J. Neugebauer, ) surfaces, Physical Review B, vol.53, issue.16, pp.10477-10480, 1996.
DOI : 10.1103/PhysRevB.53.R10477

T. U. Schülli, G. Vastola, M. Richard, A. Malachias, G. Renaud et al., Enhanced Relaxation and Intermixing in Ge Islands Grown on Pit-Patterned Si(001) Substrates, Physical Review Letters, vol.102, issue.2, p.25502, 2009.
DOI : 10.1103/PhysRevLett.102.025502

T. K. Neugebauer, J. Zywietz, J. E. Scheer, M. Northrup, H. J. Chen et al., Adatom Kinetics On and Below the Surface: The Existence of a New Diffusion Channel, Physical Review Letters, vol.90, issue.5, p.56101, 2003.
DOI : 10.1103/PhysRevLett.90.056101

N. V. Medhekar, V. Hegadekatte, and V. B. Shenoy, Composition Maps in Self-Assembled Alloy Quantum Dots, Physical Review Letters, vol.100, issue.10, p.106104, 2008.
DOI : 10.1103/PhysRevLett.100.106104

S. Pereira, M. R. Correia, E. Pereira, K. P. Donnell, C. Trager-cowan et al., layers:???A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study, Physical Review B, vol.64, issue.20, p.205311, 2001.
DOI : 10.1103/PhysRevB.64.205311

D. Cherns, L. Meshi, S. Griths, S. V. Khongphetsak, R. Novikov et al., GaN devices based on nanorods, Journal of Physics: Conference Series, vol.209, p.12001, 2010.
DOI : 10.1088/1742-6596/209/1/012001

A. Hirai, B. A. Haskell, M. B. Mclaurin, F. Wu, M. C. Schmidt et al., Defect-mediated surface morphology of nonpolar m-plane GaN, Applied Physics Letters, vol.90, issue.12, p.121119, 2007.
DOI : 10.1063/1.2715126

J. E. Northrup and J. Neugebauer, Indium-induced changes in GaN(0001) surface morphology, Physical Review B, vol.60, issue.12, pp.8473-8476, 1999.
DOI : 10.1103/PhysRevB.60.R8473

J. E. Northrup, GaN and InGaN(112??2) surfaces: Group-III adlayers and indium incorporation, Applied Physics Letters, vol.95, issue.13, p.133107, 2009.
DOI : 10.1063/1.3240401

E. Monroy, E. Sarigiannidou, F. Fossard, N. Gogneau, E. Bellet-amalric et al., Growth kinetics of N-face polarity GaN by plasma-assisted molecular-beam epitaxy, Applied Physics Letters, vol.84, issue.18, pp.3684-3686, 2004.
DOI : 10.1063/1.1739511

C. Gan and D. J. Srolovitz, surfaces, Physical Review B, vol.77, issue.20, p.205324, 2008.
DOI : 10.1103/PhysRevB.77.205324

H. Zheng, M. H. Xie, H. S. Wu, and Q. K. Xue, Kinetic energy barriers on the GaN(0001) surface: A nucleation study by scanning tunneling microscopy, Physical Review B, vol.77, issue.4, p.45303, 2008.
DOI : 10.1103/PhysRevB.77.045303

C. D. Lee, R. M. Feenstra, J. E. Northrup, L. Lymperakis, and J. Neugebauer, Morphology and surface reconstructions of GaN(11??00) surfaces, Applied Physics Letters, vol.82, issue.11, p.1793, 2003.
DOI : 10.1063/1.1560558

A. Das, S. Magalhaes, Y. Kotsar, P. K. Kandaswamy, B. Gayral et al., Indium kinetics during the plasma-assisted molecular beam epitaxy of semipolar (11???22) InGaN layers, Applied Physics Letters, vol.96, issue.18, p.181907, 2010.
DOI : 10.1063/1.3427310

F. Widmann, . Daudin, . Feuillet, . Pelekanos, and J. L. Rouviere, Improved quality GaN grown by molecular beam epitaxy using In as a surfactant, Applied Physics Letters, vol.73, issue.18, p.2642, 1998.
DOI : 10.1063/1.122539

S. J. Chua, S. Tripathy, P. Chen, E. Takasuka, and M. Ueno, Near-field optical characterization of GaN and InxGa1???xN/GaN heterostructures grown on freestanding GaN substrates, Physica E: Low-dimensional Systems and Nanostructures, vol.25, issue.4, pp.356-365, 2005.
DOI : 10.1016/j.physe.2004.06.053

Y. Yamada, T. Saito, N. Kato, E. Kobayashi, T. Taguchi et al., ternary alloys, Physical Review B, vol.80, issue.19, p.195202, 2009.
DOI : 10.1103/PhysRevB.80.195202

G. Radtke, M. Couillard, G. A. Botton, D. Zhu, and C. J. Humphreys, Scanning transmission electron microscopy investigation of the Si(111)/AlN interface grown by metalorganic vapor phase epitaxy, Applied Physics Letters, vol.97, issue.25, p.251901, 2010.
DOI : 10.1063/1.3527928

S. Dasgupta, F. Wu, J. S. Speck, and U. K. Mishra, Growth of high quality N-polar AlN(0001??) on Si(111) by plasma assisted molecular beam epitaxy, Applied Physics Letters, vol.94, issue.15, p.151906, 2009.
DOI : 10.1063/1.3118593

. Le-dépôt-d, InGaN en conditions riches azote sur des nanols GaN pré-existants permet de conserver la structure colonnaire La morphologie des nanols s'est révélée dépendre fortement du taux d'indium utilisé dans les ux. A faible taux nominal d'indium celui-ci se concentre dans le c÷ur du l, ce qui résulte en une structure c÷ur-coquille InGaN-GaN spontanée

L. Au-contraire and . Croissance, en conditions riches métal entraîne une croissance latérale très importante, nettement plus marquée dans le cas d'InGaN que de GaN : l'indium en excès a un eet surfactant qui