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"Si les gens ne croient pas que
les mathématiques sont simples,
c’est seulement parce qu’ils ne
réalisent pas combien la vie est
compliquee ! " [J. Von Neumann,
cité par F. L. Alt, 1972]

I. Introduction : pourquoi l'apprentissage ?

L’objet du premier exercice du cours d'automatique que je propose aux étudiants découvrant
cette matiére est de les sensibiliser a la complexité du monde et au fait que, par exemple, la
simple action de marcher droit, les yeux fermés, le long d’un chemin nécessite une description
parfaite de I’environnement, ainsi qu’une maitrise parfaite de leurs propres actionneurs. A
défaut de cette description, il est nécessaire d'ouvrir les yeux pour utiliser le retour
d’information visuelle effectué par la contre réaction qui permet de calculer une erreur et ainsi
de se repositionner par rapport a 1’objectif. Sans ce retour visuel d'information sur la
satisfaction de l'objectif, la tache est vouée a I'échec.

Ainsi, une des difficultés de la conception de systémes en interaction avec, ou modélisant, les
milieux naturels est assez similaire: il est utopique de vouloir décrire complétement et
exhaustivement toutes les situations que peut rencontrer le systétme que I’on congoit et ainsi
toutes les actions qu’il devrait réaliser. L’approche algorithmique qui a nourri les systémes
experts a leurs débuts a ainsi montré ses limites, non seulement parce que toutes les
configurations possibles ne peuvent étre décrites (’espace des états comprend trop de
configurations) mais également parce que le savoir n’est pas forcément disponible sous une
forme exploitable par les programmeurs et les algorithmes.

Demandons ainsi & un conducteur de four, par exemple le four de calcination de chamottes? que
le groupe IMERY'S nous a permis d’étudier, comment il régle la température et la vitesse de
rotation. Nous aurons des réponses a propos de la consistance des dépots sur le bord du four,
sur des mesures d’humidité et d’autres parametres, mais rien ne nous assure que d’autres
informations ou traitements inconscients ne soient pas a 1’ceuvre dans le processus intelligent
que realise ce conducteur. Comment donc prendre en compte ces processus ?

Tentons également de modéliser le fonctionnement hydrologique d'un bassin versant
hétérogéne de montagne. A supposer que I'on connaisse les modeles physiques des multiples
phénomeénes permettant de realiser la transformation de la pluie en débit dans la riviére, est-il

2 La chamotte est une argile cuite & 1300°-1400° qui est utilisée pour réaliser des produits réfractaires.
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réellement possible d'obtenir toutes les informations utiles a la description des phénomenes
physiques qui opérent dans la transformation pluie-débit ? Pour ne parler que du sous-sol, et si
tant est que I'on puisse le faire de maniere non destructive, doit-on, par une multitude de
forages, mesurer I'exacte épaisseur de chaque type de sol ou de roche, ainsi que son pendage, sa
perméabilité, sa porosité ?

L'apprentissage statistique apporte une réponse a ces questions. De méme que l'asservissement
exploite l'erreur entre la consigne et la sortie du systeme asservi, de méme l'apprentissage
automatique se fonde sur l'erreur du modele par rapport a son objectif. Ainsi, grace a une
décomposition de la tdche a réaliser sur une base de fonctions paramétrées, l'apprentissage
statistique permet simultanément de déterminer la fonction du modele ainsi que de fixer ses
parametres, de maniére a minimiser l'erreur sur un ensemble d'apprentissage donné.
L'apprentissage n'est donc pas seulement le calage des paramétres d'un modele, I'apprentissage
construit le modele en méme temps qu'il calcule ses parameétres.

Pour réaliser ce double travail, I'apprentissage statistique s'appuie sur des fonctions paramétrées
lui permettant d'avoir la souplesse nécessaire pour s'ajuster a toutes les fonctions
potentiellement étudiées. Nous verrons a ce propos a la section 1.2 que les réseaux de
neurones possédent la propriété d'identification universelle.

La capacité d'identification universelle a son prix, c'est celui de I'augmentation du nombre de
parametres libres du modele qu'il faut ajuster. Opérant sur des fonctions non linéaires (les
fonctions paramétrées), ces parameétres permettent au modeéle de s‘ajuster parfaitement a
I'ensemble d'apprentissage, et d'autant plus efficacement que le nombre de ces paramétres, ou la
complexité du modele, croit. Mais le modele, si certaines précautions ne sont pas prises, peut
alors étre surajusté et tellement spécialisé par rapport a l'ensemble d'apprentissage qu'il
apprendrait méme la réalisation particuliére du bruit dans cet ensemble et serait alors incapable
de geéneraliser a d'autres ensembles. Le dilemme biais-variance, présenté au chapitre 11.2
formalise ce phénoméne. Plusieurs solutions ont été proposées pour I'éviter, parmi celles-ci,
nous discuterons aux paragraphes I11.5 et 111.6 des méthodes de sélection de variable et de
régularisation.

Appliquer I'apprentissage statistique & des phénomenes naturels complexes et partiellement
connus, dont les variables sont mesurées avec une grande incertitude et sur des événements en
nombre restreint, pose bien évidemment avec plus d'acuité le probléme du surajustement. C'est
pourquoi nos travaux sur la modélisation et la prévision des crues des bassins rapides nous ont
conduits a revisiter ces méthodes de regularisation et de sélection des variables. La section
I11.8.a présente comment I'application rigoureuse de telles méthodes a permis le developpement
d'un outil de prévision des crues sur les bassins du piémont cévenol.

La "face noire" de I'identification universelle, qui est percue de maniere moins positive, est que
la décomposition sur une base de fonctions paramétrées n'est pas trés interprétable, au sens de
la connaissance sur les phénoménes physiques ; c'est pourquoi ces modeéles issus de
I'apprentissage statistique sont qualifiés de "boites noires”, et parfois décriés comme étant trop
complexes a mettre en ceuvre et "invérifiables".
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Pourtant les modeles de type boite noire extraient des bases de données une grande quantité
d'information. Autant pour asseoir leur validité que pour exploiter cette information, certains
travaux s'intéressent aux méthodes permettant de recouvrer cette connaissance ; ainsi les boites
transparentes qui sont presentées dans ce mémoire en paragraphe 1V.1 appliquent des
contraintes au réseau de neurones afin de restreindre le champ des possibles et de pouvoir
dégager une interprétation du calcul effectué par les fonctions paramétrées. Cette méthodologie
a été appliquée avec succes a des bassins versants particulierement mal connus : bassins
karstiques composés de roches carbonatées et fracturées, que l'eau a dissoutes selon des
géomeétries de dimensions trés variables et jusqu'en profondeur. Ces bassins hétérogenes sont le
siege de crues, mais peuvent parfois jouer le r6le d'écréteurs de crues ; ils sont également le
principal réservoir en eau douce de la Terre.

Applique au bassin karstique de la source du Lez, source qui alimente en eau potable la ville de
Montpellier, la méthode des boites transparentes a ainsi permis de mettre en évidence les
propriétés hydrodynamiques de différents compartiments géologiques de ce bassin versant. Nos
travaux futurs évoqués en IV.1.b.iii tenteront par ce moyen d'estimer les ressources en eau
disponibles dans les karsts.

Enfin, si l'apprentissage statistique est capable de déterminer simultanément, et les parametres
et la fonction d'un modéle, il semble alors naturel, dans le contexte d'un environnement mal
connu, de proposer des modéles adaptatifs c'est-a-dire qui continuent a apprendre durant leur
fonctionnement. Ce type d'approche est évoqué au chapitre 111.7, appliqué a l'apprentissage de
comportement d'un robot hexapode par renforcement. Nous avons ainsi pu montrer que des
taches a priori difficiles a formaliser pouvaient étre effectuées avec succes grace a un
apprentissage permanent effectué sur un modele particulierement simple.

Compte tenu de leur complexité, la connaissance imparfaite de leur état, ou des événements
rares pouvant se produire, est également une propriété des systemes météorologiques et
hydrologiques. L'adaptatitivé (ou assimilation de données en météorologie) n'a-t-elle pas recu
ses lettres de noblesse lors de la grande tempéte de 1999 ? Il pourrait en étre ainsi au niveau des
épisodes pluvieux extrémes dont aucun enregistrement n'a encore été réalisé mais pour lesquels
nous souhaiterions disposer d'un modéle capable de s'améliorer pendant que le phénoméne se
déroule. Une ouverture vers les travaux que nous envisageons dans le projet ANR FLASH est
ainsi proposée a la section I11.7.b.ii .

Ce mémoire, qui présente nos travaux sur l’application des réseaux de neurones a la
modélisation des systemes naturels complexes, ou des systemes artificiels en relation avec un
environnement naturel, n’est une présentation ni chronologique, ni exhaustive, car il n’est pas
possible, tant pour des raisons pratiques que de confidentialité, de présenter tous les travaux et
tous les projets de recherche industriels menés a bien ; elle se veut un cheminement sélectionné
au travers de plus de quinze années de recherche.

Je vous propose de commencer la lecture par quelques considérations sur la méthode qu’utilise
I’apprentissage statistique pour résoudre un probleme a I’aide d’une fonction de colt et d’une
base d’exemples, considérations qui introduisent certaines de nos préoccupations actuelles sur
I’adéquation entre la fonction de co(t, I’objectif de la modélisation et les distributions
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statistiques des exemples. Nous nous intéresserons ensuite au dilemme biais-variance, que 1’on
pourrait présenter comme une formulation statistique du principe du rasoir d’Occam®, et qui
conduit a selectionner le modéle le plus parcimonieux afin d’assurer une bonne qualité de
généralisation.

Restreignant alors notre propos aux reseaux de neurones dans la troisieme partie de ce
mémoire, nous pourrons présenter les modeles de prédicteur les plus adaptés a la modélisation
des systemes physiques qui nous intéressent particulierement. L’apprentissage des modéeles
neuronaux sera évoqué, en particulier lorsqu’il est appliqué aux systémes dynamiques ou pour
concevoir des modeles adaptatifs. L'exemple de la synthese d'un régulateur neuronal pour
commander une pince électropneumatique sera alors présenté a titre d'illustration. Nous
évoquerons ensuite les méthodes de régularisation et leur application aux modeles de prévision
des crues rapides des bassins cévenols.

Complexes par nature, ces bassins versants du piémont cévenol n’ont rien de ce qui rend belle
la physique : I’invariance d’échelle et la symétrie. Cumulant une géologie tourmentée, des
pentes moyennes dignes du massif alpin et des orages aussi soudains qu’intenses, les crues
qu'ils subissent peuvent gonfler les cours d’eau et, en quelques heures, les transformer en
piéges mortels. La prévision a alors tout son sens : il faut anticiper avant que les réseaux
routiers et de distribution ne soient coupés. Cette préoccupation passionnante est 1’objet des
projets BVNE et ANR FLASH que nous présentons ensuite.

Disposer de mode¢les efficaces est évidemment essentiel lorsque 1’on travaille sur de tels
enjeux, mais comprendre ces modeles ou les utiliser pour mieux connaitre les processus
naturels est encore plus passionnant ; c’est tout I’enjeu évoqué dans la quatriéme et derniére
partie de ce mémoire. Nous y présentons comment 1’on peut esquisser des modéles semi-
physiques ou comment, grace a I’intégration de connaissances dans 1’architecture du réseau de
neurones, cette derniére peut étre contrainte pour, en retour, permettre d’en extraire de
I’information. Nos travaux sur le systeme karstique du Lez, qui cumule les difficultés d’une
hétérogénéité géologique, d’une hétérogénéité pluviométrique, d’un anthropisation des débits
par un pompage intense et d’un bassin versant a géométrie variable en fonction du niveau du
remplissage, ont permis non seulement d’obtenir un modele prédictif convenable, mais en plus
d’estimer les transits d’eau souterraine entre les différents compartiments du karst et la source.

Au cceur de nos préoccupations, nous terminons ce mémoire en envisageant d’utiliser la
méthode des boites transparentes, ainsi présentée, a I’estimation des réserves en eau stockée
dans les karsts.

% Guillaume d’Occam vécut au XIV éme siécle, il énonga le principe suivant : < pluralitas non est ponenda sine
necessitate”, qui signifie qu’il ne faut pas multiplier les hypothéses si elles ne sont pas nécessaires. Le principe du
rasoir d’Ockham fut formulé par la suite, on peut le comprendre comme une méthode d’¢élagage.
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II.L’apprentissage statistique

APPRENTISSAGE PAR MINIMISATION DE FONCTION
a. Maximum de vraisemblance et moindres carrés, autres fonctions de coiit

Comme nous l'avons indiqué dans l'introduction de ce mémoire, I'apprentissage statistique est
fondé sur la minimisation d'une erreur, appelée dans la suite de ce mémoire fonction de codt.
Cette derniere est formulée de maniére a satisfaire un objectif, par exemple I'objectif d'avancer
pour un robot adaptatif. L'objectif peut egalement étre exprimé sous la forme d'une base
d'exemples comprenant les variables d'entrée du processus a identifier et les réponses mesurées
associees. La fonction de colt généralement choisie, mais pas seulement, est l'erreur
quadratique. Outre ses bonnes propriétés de continuité et de dérivabilité, cette fonction est
également particulierement intéressante lorsque I'on dispose de bases de données dont les
erreurs de mesure sont indépendantes et distribuées selon la loi gaussienne. En effet, dans cette
configuration, W. H. Press (Press et al, 1992) présente comment le fait de poser I'nypothese
intuitive du maximum de vraisemblance est équivalent a minimiser I'erreur quadratique.

Ainsi, la nécessité de transformer les variables pour les "normaliser” (de maniére a ce qu'elles
soient centrées et réduites) avant de réaliser I'apprentissage est couramment admise. Or comme
nous le présenterons chapitre 111.8.a, les erreurs et approximations réalisées sur les acquisitions
de variables naturelles, en particulier les variables météorologiques et hydrologiques ne
verifient aucune des deux hypotheses de l'indépendance et de la distribution gaussienne,
comme nous pouvons l’illustrer sur la Figure 1 pour cette derniere caractéristique, sous
I’hypothése que le bruit de mesure est proportionnel a la grandeur de la variable. Nous avons
d'ailleurs pu observer que lorsque l'apprentissage est réalisé sur des variables de pluie et de
débit centrées et réduites, le modéle obtenu n'est pas le plus performant, et que la simple
transformation consistant a effectuer un changement d'échelle des variables afin que leurs
valeurs soient plus petites que un conduit a des modeles plus efficaces (Toukourou, 2007).

Cette difficulté est appréhendée par la communauté des modélisateurs en hydrologie. G. J.
Bowden de son coté (Bowden, 2003) a étudié quelques transformations, linéaires et non
linéaires, effectuées sur les variables de précipitation et de débit afin de diminuer leur grande
variabilité sans noter d'améliorations notables alors que K. P. Sudheer (Sudheer, 2003) au
contraire, note des améliorations notables sur I'estimation des pics de crue lorsqu'il applique des
transformations sur les signaux de débit afin de diminuer les moments d'ordre trois et quatre.
Dans les deux cas ces travaux, un peu anciens, utilisant la rétropropagation comme regle
d'apprentissage et n'appliquant pas toujours de méthode de régularisation (section 1l1.6)
méritent d'étre ré-explorés.
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Figure 1. Distribution statistique de variables journaliéres de 1987 a 2005.
Précipitations enregistrées a St Martin de Londres (mm) a gauche et débits a
la source du Lez (m%s) & droite.

b. Criteres de performance

i Des criteres adaptés a I'objectif

A défaut de pouvoir déterminer une fonction de colt prenant en compte les particularités
statistiques des signaux hydrologiques, les auteurs se focalisent plutét sur les critéres de
sélection des modeéles. Ainsi le choix d'un critere de sélection de modele représentatif de
I'objectif est souvent discuté. P. K. Kitadinis (Kitadinis et al, 1980) ont proposé le critere de
persistance adapté particulierement a la prévision ; dans d'autres études, la racine carrée de la
valeur absolue de I'erreur est utilisée pour mesurer plus particulierement les erreurs de faibles
débits ; tandis que M. Toukourou a proposé, dans ses travaux sur la prévision des crues du
Gardon d'Anduze, un critere prenant en compte plus spécifiquement la montée du pic de crue
(Toukourou, 2009-b). C. Perrin dans sa these (Perrin, 2000) discute d’un grand nombre de
critéres et propose une stratégie multi-criteres de sélection de modéle. R. Moussa (Moussa,
2010) s’inscrit dans la méme démarche et dérive plusieurs critéres du coefficient de
détermination R?, ou critére de Nash (Nash et al, 1970) en modifiant le modéle de référence* de
ce dernier, terme qui apparait dans le coefficient de réduction présent au dénominateur.

* Le coefficient de détermination pour un signal exprimé en fonction du temps discret k : s(k), s’écrit de la

EQM

D (s(k) - (k)
n échantillms
référence apparait sous la forme de r(k). Pour le coefficient de détermination, la valeur utilisée de r(k) est la
moyenne observée sur I’ensemble des n échantillons considérés. Cependant, on peut tout a fait prendre en compte
d’autres modéles de référence. Ainsi, le critére de persistance n’est autre que le coefficient de détermination
calculé a I'horizon de prévision hy, prenant comme modele de reférence la prévision naive, c’est-a-dire la prévision
qui suppose que le systeme évolue trés peu : r(k)=r(k+h,) ot h, est I’horizon de temps auquel s’effectue la
prévision.

maniére suivante: R?=1— . EQM est l'erreur quadratique moyenne et le modele de
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ji. Vers I'ajustement de la fonction de codt a I'objectif

Si de nombreux critéres de performance ont été proposeés, en revanche il existe moins
d’initiatives visant a adapter la fonction de cofit a I’objectif particulier du mode¢le. Ceci est di
au fait que la grande majorité des travaux s’intéresse a des processus dont les variables peuvent
étre considérées comme gaussiennes, rendant de ce fait I’erreur quadratique tout a fait adaptée.
Comme présenté précédemment, cette hypothese n’étant pas satisfaisante pour un grand
nombre de systémes hydrologiques, nous pensons travailler de maniére conjointe les deux
aspects de la question: d’une part les transformations visant a rendre gaussiennes les
répartitions statistiques des variables d’entrée et de sortie et d’autre part l'utilisation d’autres
fonctions de codt que I'erreur quadratique durant I'apprentissage.

Ainsi, dans le cadre du projet ANR FLASH (section 111.8.a) Audrey Bornancin-Plantier étudie
I’impact de I’utilisation d’un critére favorisant les valeurs les plus élevées du signal dans le
calcul de I’apprentissage. Ce critére est inspiré du crittre PWRMSE (Peak Weighted Root
Mean Square Error) qui s’exprime ainsi :

y® (k)

250

> (50— G+
PVVRMSEZ n éléments

n

ol yP(k) est la variable de sortie observée sur le processus a l'instant discret k, y(k) la variable
estimée par le modéle, n le nombre d'échantillons sur lequel est évalué le modele et y* est la
valeur moyenne de la grandeur observée.

Cependant pour simplifier les calculs de I'apprentissage®, le critére de pic que nous avons
implémenté et qui est en cours d'évaluation s’exprime sous la forme :

y® (k)

yp

PUMSE == 3 (yp(k)—y(k))2(§+ )

n éléments 2
L'erreur quadratique calculée a I'instant discret k est donc amplifiée si la valeur observée a cet
instant est supérieure a la moyenne des valeurs observées (y").

Suivant 1’analyse proposée par R. Moussa et présentée précédemment, d’autres fonctions de
coQt pourront étre étudiées, par exemple celle qui prend comme modele de référence le modele
linéaire correspondant au modeéle étudié (ayant les mémes variables d'entrée et le méme jeu de
données) afin de mesurer le gain apporte par la non linéarité du modeéle.

% Lors du calcul de I'apprentissage, la dérivée de la fonction de codit est calculée & la présentation de chaque
exemple ; ces dérivées sont ensuite cumulées pour estimer le gradient de I'erreur total qui est utilisé pour modifier
les parametres du modele. Or, lorsque la fonction de colt comporte la racine carrée des erreurs quadratiques, la
dérivée globale n'est plus la somme des dérivées individuelles de chaque exemple. Afin de conserver cette
propriété d'additivité des gradients et comme la racine carrée n'est utile que pour conserver la dimension de
I'erreur, nous avons préféré enlever cette derniéere de la formule du critére de pic.

-19-



Anne Johannet. Mémoire d’HDR. Université Pierre et Marie Curie.

I.2. Dilemme biais-variance

a. Présentation

La conception d'un modele par apprentissage statistique comporte, comme nous l'avons
souligné précédemment, le choix de la fonction de colt que le modele doit minimiser a partir
d'un ensemble d'exemples. Dans le cas d'une fonction de codt quadratique, les m observations
disponibles de la grandeur a modéliser y°(k) sont vues comme les réalisations d'une variable
aléatoire Y, fonction de x (le vecteur des variables d'entrées), telle que :

Y(x)=g9(x)+B

g(x) est la fonction de régression, elle est égale a I'espérance mathématique de Y conditionnée a
X : g(X)=E(Y|x) et B est une variable aléatoire d'espérance mathématique nulle et de variance o
représentant le bruit compris dans les observations.

Le but du modele construit par apprentissage statistique est d'estimer la fonction g(x) par une
fonction g(x), au mieux, compte-tenu des observations disponibles. L'erreur de prédiction
théorique réalisée par le modéle est donc I'espérance mathématique E[(g(x)+B-g(x))]. S.
Geman (Geman et al., 1992) a montré que cette erreur peut s'exprimer sous la forme de la
somme de trois termes :

E[(9(x)+B-g(x))*1=0"+E[(9(x)-£(x))]=0"+(9(X)-E[S(0)])*+E[(&(x)-E[(x)])°]

Le premier des trois termes correspond au bruit irréductible présent dans les observations, le
second terme est appelé biais, il transcrit comment I'espérance mathématique de la prévision est
éloignée de la régression théorigue, tandis que le troisieme terme est la variance, il rend compte
de la variance de la prédiction, en fonction des modeles obtenus avec tous les ensembles
d'apprentissage possibles.

Le biais correspond a I'ajustement du modéle aux données d'apprentissage et la variance est la
variabilité de la prédiction obtenue en fonction de ces différents ensembles.

Plusieurs observations peuvent étre faites sur cette formulation proposée par Geman, d'une part
les trois termes sont positifs, I'erreur de prédiction ne peut donc en moyenne étre inférieure a
celle des données d'observations ; d'autre part, le biais et la variance varient en sens inverse l'un
de l'autre en fonction de la complexité du modéle. Ainsi lorsque la complexité du modéle
augmente, le biais diminue car le modele s'adapte d'autant plus facilement aux données
d'apprentissage qu'il est plus complexe. Par ailleurs la variance du modele augmente avec la
complexité car la variabilité¢ des prédictions obtenues est de plus en plus sensible aux
specificités de I'ensemble d'apprentissage et méme a la réalisation particuliére du bruit dans cet
ensemble.

La somme des deux termes, variance et biais, présente donc un minimum qu'il convient de
rechercher en fonction de la complexité. Au dela de ce minimum, le modele est surajusteé.

Il convient de noter que ces considérations sont théoriques et ne sont assurées que de maniere
asymptotique, pour les tres grands ensembles de données. La régression g(x) n'étant pas
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connue, il n'est pas possible de calculer numériquement le terme de biais. De méme, il n'est pas
envisageable d'effectuer le calcul des modeles pour tous les ensembles d'apprentissage
possibles.

Néanmoins, nous pensons intéressant d'illustrer le dilemme biais-variance sur un systeme
hydrologique particulier, ceci est présenté dans la section suivante.

b. Illustrations pour un systeme dynamique

Méme si le dilemme biais-variance ne s'applique en toute rigueur que dans la limite des grands
ensembles de données, et si certains travaux se sont déja intéressés a estimer les deux termes de
biais et variance (Gallinari, 1999), nous avons souhaité calculer ces grandeurs sur un exemple
de modélisation du bassin versant du Baget dans les Pyrénées Ariégeoises. Ce bassin versant a
été choisi car c'est celui pour lequel nous disposons de la plus grande base de données. Celle-ci
a été aimablement fournie par Monsieur Alain Mangin et comporte de maniére journaliere, les
précipitations a la station pluviométrique de Balagué et les débits de la petite riviere du Baget,
de 1973 a 2000 soit prés de 9800 valeurs de chaque variable. Plus d'informations sur le bassin
versant et les modélisations réalisées sont présentés en section 111.8.b et dans (Johannet, 2008-b
et Johannet, 2010). La base de données disponible a été partagée en deux sous-ensembles, d'une
part celui dédié a l'apprentissage et d'autre part celui dédié au test, comportant les deux
derniéres années de la base soit les années 1999 et 2000. Plusieurs sous-ensembles
d'apprentissage ont été composés afin d'établir autant de modeles et pour calculer ainsi les deux
termes du biais et de la variance. Chaque ensemble d'apprentissage comporte I'ensemble des
valeurs d'apprentissage sauf deux années consécutives qui en sont retirées. Successivement sont
ainsi retirées toutes les années de la base d'apprentissage et 14 ensembles d'apprentissage sont
ainsi définis. L'espérance mathématique est alors approchée par la moyenne effectuée sur les 14
modéles ainsi constitués.

Une autre difficulté subsiste : la valeur de la régression apparaissant dans le terme de biais n'est
pas connue. Néanmoins, afin d'effectuer les calculs nous I'approchons par la valeur mesurée du
débit tout en sachant que cette valeur n'est pas parfaite puisqu'elle comporte le bruit de mesure
qui peut étre trés important pour ce type de grandeur (20% ou 30% sont souvent cités pour les
grands débits).

Les termes approches de biais et de variance calculés sont donc :
o Biais : (y’(x)-Moy[y(x.4)])*
e Variance : Moy[(y(x,4)-Moy a(y(x,4))?]

yP(X) est la valeur observée du débit, y(x, 4) est la valeur estimée du débit par le modéle congu
avec l'ensemble d'apprentissage 4, Moy a(y(X,4)) est la moyenne effectuée sur le débit estimé
par les modeles congus grace aux différents ensembles d'apprentissage.

On pourra trouver en Figure 2 les évolutions du biais et de la variance en fonction du nombre
de paramétres libres du modele. Ce dernier indicateur a été choisi pour mesurer la complexité
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du modele car méme s'il est généralement admis qu'il n'est pas le plus représentatif pour les
modeles non linéaires, il est cependant souvent utilisé, ne serait-ce que du fait de sa simplicite.

Tout d'abord on pourra noter que le biais et la variance ont des ordres de grandeur tres
différents de ce que nous avons pu noter dans la littérature, (10 ou 10?) ; de plus, les deux
termes de biais et de variance ont ici un ordre de grandeur de différence I'un par rapport a
I'autre alors qu'ils sont du méme ordre pour les illustrations dont nous disposons (Geman et al,
1992), (Gallinari et al, 1999). La premiere remarque peut étre expliquée par les progres faits
depuis dans les algorithmes d'apprentissage. Pour la seconde constatation, nous pensons que le
biais est trés important dans les applications hydrométéorologiques du fait des grandes
incertitudes et bruits sur les mesures (111.8) ; de ce fait, I'approximation du terme g(x) par y°(x)
est vraisemblablement assez inexacte.

On peut noter de plus sur cette illustration que le biais décroit bien au début tandis que la
variance augmente globalement réguliérement en fonction de la complexité. Si la diminution du
biais est rapide au début, en revanche ce dernier oscille pour les valeurs moyennes de
complexité puis se met a augmenter pour les complexités élevées. Nous pensons que ce
comportement du biais est di aux incertitudes et au bruit de mesure qui I’entachent
vraisemblablement d'une erreur liée & la variance ¢ (variable aléatoire B).

4.4 2
1
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Figure 2 : Evolution du biais (trait pointillé) et de la variance (trait continu)
en fonction du nombre de parameétres libres du modéle.
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III. Lesréseaux de neurones

I1I.1. Modeéles de neurones et d'architectures

Les réseaux de neurones constituent une famille de modéles congus par apprentissage
statistique. La base de la non linéarité des modeles neuronaux est la fonction neurone, cette
derniere est une fonction algébrique non linéaire, paramétrée et a valeur bornée de ses variables
d'entrées :

y=f(x,0), ou x et O sont respectivement les vecteurs des variables et des paramétres de la
fonction neurone.

Le neurone formel effectue deux actions :

¢ |e calcul de son potentiel, ou somme pondérée de ses variables d'entrée par ses parametres :
t
v=x0,

e le calcul de sa sortie par une fonction d'évaluation qui est non linéaire ou parfois
linéaire : f(.).

La fonction d'évaluation est généralement une fonction a seuil qui peut étre continue et
dérivable comme la fonction tangente hyperbolique, ou discontinue dans le cas de la fonction
de Heaviside (fonction seuil).

Dans ce mémoire nous nous contenterons d'utiliser les trois fonctions d'évaluation : linéaire,
tangente hyperbolique (ou sigmoide) et seuil, car elles permettent de mettre en ceuvre tous les
modeéles que nous utilisons, d'autres fonctions d'évaluations ont été étudiées et utilisées
(ondelettes, spline) qui n'apportent pas d'avantage significatif dans la qualité des modeles.

Grace aux modeles de neurones précédemment définis, un réseau de neurones peut étre congu
au moyen d'un graphe de connexions que l'on appelle architecture. Parmi toutes les
architectures proposées, le réseau appelé perceptron multicouche sera particulierement utilisé ;
nous l'appellerons dans la suite plus simplement réseau multicouche. Ce réseau est composé
d'une couche de neurones non linéaires de type sigmoide, dite couche cachée car il n'y a pas de
grandeur observée correspondant aux sorties de ces neurones, et d'une couche de sortie. Si le
réseau de neurones est utilisé en identification de fonction, la fonction d'évaluation du neurone
de sortie est linéaire. Ce dernier décompose alors la fonction qu'il effectue sur la base des
sigmoides des neurones cacheés. Si le réseau de neurones doit effectuer une fonction de
classification®, alors le neurone de sortie peut étre de type sigmoide. Il permet donc de prendre
une décision ainsi qu'une fonction logistique le fait en régression.

® La fonction de classification consiste & affecter des éléments décrits par des variables & une classe en sortie. La
classe est explicitée par un code discret. Cette fonction est a distinguer de I'identification qui consiste a associer les
variables d’entrée d'un processus a la sortie continue observée de ce processus.
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Figure 3 : Réseau Perceptron Multicouche

Notons que le réseau tel que représenté en Figure 3 ne posseéde pas de rétroaction de sa sortie
vers ses entrées il est donc appelé réseau statique. Dans le cas ou les variables sont des sighaux
échantillonnés, les réseaux statiques sont des filtres numériques transverses non linéaires.

Il.2. Identification universelle et parcimonie

K. Hornic et al. ont démontré que le perceptron multicouche possédait la propriété
d'approximation universelle (Hornic et al, 1989). C'est-a-dire que toute fonction g(x), a valeurs
bornées dans un domaine défini, peut étre approchée a la précision ¢ prés dans ce domaine par
un réseau de type multicouche possédant un nombre fini de neurones cachés. C'est sur cette
propriété que nous fondons le choix d'utiliser le perceptron multicouche pour identifier les
relations non linéaires des systemes naturels que nous étudions. Il est cependant bien évident
que la démonstration de I'approximation universelle est une preuve d'existence de la solution, la
capacité a trouver la solution dépendra tout autant de la base des informations disponibles et de
la méthode de calcul des parameétres que de la capacité a sélectionner la complexité optimale au
sens du dilemme biais-variance ; ces éléments sont repris a la section 111.6 de ce chapitre.

Une autre propriéte des réseaux multicouches est la parcimonie. Celle-ci s'apprécie en regard
du nombre de parametres nécessaires a l'identification d'une fonction non linéaire par un réseau
multicouche d'une part, et par d'autres décompositions sur des fonctions a base de polynémes,
spline et fonctions trigonométriques d'autre part. A. R. Barron (Barron, 1993) a montré que le
nombre de parameétres, pour une précision donnée croit exponentiellement avec le nombre de
variables pour les modéles linéaires en leurs parameétres tandis que ce nombre croit
linéairement pour les modeles non linéaires en leurs parametres. Or, la fonction implémentée
par le réseau multicouches dépend non linéairement de ses parametres (la sigmoide s'applique
au potentiel des neurones), de ce fait ces modeéles sont plus parcimonieux que les identificateurs
linaires en leurs parametres (telles les décompositions sur fonctions spline, trigopnométriques
ou polyndmes). De plus, cette propriété de parcimonie est d'autant plus significative que le
nombre de variables est grand.

On pourra noter que le nombre de paramétres d'un réseau multicouche augmente trés
rapidement avec le nombre de neurones cachés et/ou le nombre de variables. Ce nombre est
sans commune mesure avec le nombre de parametres d'un modele physique dédié a la méme
fonction. Rappelons a ce propos que le perceptron multicouche, au contraire d'un modeéle
physique, doit déterminer simultanément et le type de fonction du modéle et les paramétres
physiques, méme si ces derniers ne sont pas identifiables en tant que tels dans le réseau. On ne
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peut donc comparer la complexite des deux types de modeéles au regard de leur seul nombre de
parametres ajustables.

Ill.3. Réseaux dynamiques

Considérons par exemple I'équation différentielle de remplissage d'un réservoir par un débit x(t)
et sa vidange par un autre débit y(t) proportionnel a la hauteur d'eau dans le réservoir. Ce
modele est schématiquement celui qui est pris en compte pour représenter le fonctionnement
d'un bassin versant par I'approche dite des modéles conceptuels a réservoir. On peut montrer
aisément que I'équation différentielle liant les deux variables s'écrit :

2804 yo=x

dt

Ou S est la section constante du réservoir et a le coefficient de proportionnalité liant le débit
sortant a la hauteur dans le réservoir (y(t)=ah(t)).

Une fois discrétisée (le temps discret est noté k), I'équation aux différences de ce processus
s'écrit sous la forme :

S y(k—1)+ aAt

k) =
y(k) aAt + S aAt + S

x(K))

ou At est I'intervalle de temps séparant deux échantillons.

Ce qu'il est intéressant de noter est que le modele de type réservoir est le modéle postulé du
modéle physique de vidange d'un réservoir. Ce modéle postulé est récurrent, c’est un filtre
récursif non linéaire : I'estimation de la sortie future y(k+1) dépend au moins d'une sortie
précédente y(k). On pourra remarquer que l'équation aux différences précédente peut étre
implémentée par un neurone unigque ayant comme variable exogéne x(k) et comme variable
d'état y(k-1).

O. Nerrand (Nerrand et al, 1993) ont présenté comment la connaissance que l'on a des
perturbations et bruits opérant sur le modéle postulé récurrent d'un processus peut étre prise en
compte pour synthétiser un prédicteur optimal.

a. Modéles de prédicteur optimal

Si nous limitons notre propos aux modeles de type entrée-sortie pour lesquels le vecteur d'état
est composé des valeurs passées de la sortie. Le modéle postulé réalise la fonction :

y(k +1) =p(y(K),...,y(k —r +1),u(k),...,u(k —w+1))

Ou ¢ est une fonction qui représente le fonctionnement du systéme physique étudié, y(k) la
sortie de cette représentation, u(k) le vecteur des variables exogenes, r et w sont des entiers
positifs.

Ce modeéle postulé peut étre représenté schématiquement tel qu'en Figure 4.
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u(k) —p V(kt1)

y(k)

q-l
Figure 4 : Modéle postulé récurrent.
Le modeéle postulé recoit en entrée les variables exogénes a l'instant k (vecteur
u(k)) et la sortie précédente y(k) ; sa sortie est y(k+1). g* est I'opérateur
retard.

i Hypotheése bruit de sortie

Le modele postulé peut étre soumis a des perturbations additives sur sa sortie, correspondant
par exemple a un bruit de mesure. Ceci se traduit par la relation :

yP(k+1) =p(y*(K),...,y°* (k = r +1),u(k),....u(k —w+1)) +b(k +1)

ol yP(k+1) est la grandeur observée du processus, y°(k) est la sortie de cette représentation,
b(k+1) est un bruit de mesure agissant sur la sortie a l'instant k+1, ¢ est une fonction, u(k) le
vecteur des variables exogenes, r et w sont des entiers positifs.

Le modele postulé correspondant a I'nypothese bruit de sortie est représenté en Figure 5.a, son
état y°(k) n'est pas affecté par les perturbations et est donc bouclé pour estimer I'état futur. En
revanche, comme la sortie mesurée y°(k+1) est entachée d'erreur, on évite de l'utiliser dans
I'estimation des sorties futures.

Le modéle neuronal correspondant a ce modele postulé est donc un modéle récurrent qui s'écrit
ainsi :

ykk+D=09,,(y(K),...y(k =r +1),u(k),....u(k —w+1),0)

ou g, est la fonction réalisée par le réseau de neurones, y(k) la sortie du réseau, u(k) le vecteur
des variables exogénes, r et w sont des entiers positifs, 0 est le vecteur des paramétres.

b(k+1)
u(k) —p Y(k+1) w7 (k+1) x(k) —p w(k+1)
¢ »O—p & >
y'(k) y(k)
q’ q’
5.a. 5.b.
Figure 5 : Modele postulé (5.a) et prédicteur associé (5.b) a I'hypothese bruit

de sortie.

Si la fonction gy, parvient a identifier parfaitement la fonction ¢, le réseau de neurones
récurrent est stable, si I'on dispose de plus des valeurs exactes des perturbations pour initialiser
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la fonction g, alors on montre que le prédicteur réalise la meilleure prédiction possible :
yP(k+1)-grm(K)=b(k+1) (Dreyfus, 2008). Toute la part déterministe du phénoméne est identifiée
par la fonction gp.

Le prédicteur ainsi obtenu peut effectuer des prévisions pour un horizon indéfini & condition de
disposer des prévisions de ses variables exogénes. Ceci n'est pas toujours possible pour les
phénomenes naturels, néanmoins, par exemple, ce prédicteur pourrait étre utilisé pour estimer
I'impact du changement climatique sur les ressources en eau. Les entrées exogenes seraient
alors les précipitations issues de modeles climatiques correspondant a différents scénarios et les
sorties seraient des débits estimés ou des niveaux de nappe.

Dans la these de Line Kong A Siou, nous avons mis en ceuvre ce prédicteur pour estimer les
débits et la piézométrie de la source du Lez. Ce travail en cours est effectué en collaboration
avec P. Fleury et N. Dorfliger de I'équipe du BRGM’ de Montpellier pour comparer les
propriétés des deux modeles : d'une part un modele a réservoirs (P. Fleury et al, 2008) et d'autre
part le prédicteur récurrent a réseau de neurones.

ji. Hypotheése bruit d'état
Dans I'hypothése bruit d'état le modéle postulé est soumis a des perturbations additives sur son

état. Cette hypothese correspond au modéle NARX (Non linéaire Auto-Régressif a entrées
eXogenes). La relation entrées-sortie du modele postulé s'écrit :

yP(k+D)=p(yP(K),..,y°(k=r+21),uk),..,uk —w+1))+b(k +1)

ol yP(k+1) est la grandeur observée du processus, sortie de cette représentation, b(k+1) est un
bruit d'état agissant a I'instant k+1, ¢ est une fonction, u(k) le vecteur des variables exogénes, r
et w sont des entiers positifs.

Le modeéle postulé correspondant a cette représentation est représenté en Figure 6.a.

Compte tenu du modeéle postulé, le modele neuronal correspondant a cette représentation n'est
pas un modele récurrent puisque ses variables sont les entrées exogenes et les sorties observees
du processus (y°(k)). Comme son état est bruité il est en effet plus intéressant d'appliquer en
entrée les variables observées du processus. Le prédicteur associé s'écrit donc :

y (k+D)=g,,(y"k),..,y"?(k —r+2),u(k),..u(k —w+1),0)

Ou g est la fonction réalisée par le réseau de neurones, y(k+1) la sortie du réseau, u(k) le
vecteur des variables exogenes, r et w sont des entiers positifs, 0 est le vecteur des parameétres.

" Le BRGM : Bureau de Recherches Géologiques et Miniéres est I'établissement public francais de référence dans
le domaine des sciences du sol et du sous-sol.
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b(k+1)
u(k) —p W(k+1)
¢ u(k) — (k+1)
y'(k+1) 8 -
yP(k) yP(k) —
q—l
6.a. 6.b.
Figure 6 : Modele postulé (6.a) et prédicteur associé (6.b) a I'hypothese bruit

d'état.

Si la fonction gy, identifie parfaitement la fonction ¢ du modele postulé, alors le prédicteur
neuronal est tel que : y°(k+1)-gm(k+1)=b(k+1), le prédicteur a identifié toute la partie
déterministe du processus et son erreur est limitée a celle du bruit d'état non mesurable.

Méme si ce prédicteur a vocation a simuler un systeme dynamique, on peut remarquer qu'il
n'est pas récurrent. Comme il est alimenté par les sorties mesurées du processus, ce prédicteur
est appelé dirigé par le processus, par opposition au prédicteur NARX qui est qualifié de non
dirigé.

En pratique, ce prédicteur dirigé est celui qui délivre les meilleures prévisions sur les crues
comme nous le présenterons en section 111.8 de ce chapitre. Ce dernier point pourrait laisser a
penser que les principales erreurs interviennent donc sur I'estimation de I'état du processus.

s()—pl » b(k+1)
p(k)+
o) Y
¢
yP(k)
q’

Figure 7 : Représentation des erreurs de mesures des entrées exogenes, vues
comme une perturbation additive sur I'état.

D'autre part, on peut considérer les perturbations additives sur I'état comme des perturbations
de mesure des entrées exogenes agissant sur I'état aprés un filtrage par une fonction v
inconnue. Ainsi, comme représenté en Figure 7, l'erreur de mesure ¢(k) commise sur les
précipitations parfaites p'(k) est filtrée par la fonction inconnue y puis s'additionne a 1'état du
processus. Les précipitations mesurées p™(k) s'expriment comme la somme des précipitations
parfaites p'(k) et de I'erreur &(k).
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Une perturbation additive sur I'état peut donc étre vue comme une perturbation opérant sur les
variables d'entrée du modele hypothése. On comprend aisément que si les entrées sont
imparfaites, le prédicteur associé a avantage a capitaliser sur les sorties mesurées du processus.

I1l.4. Apprentissage

L'apprentissage consiste a estimer les paramétres 6 du réseau de neurones afin de minimiser un
critére préalablement défini. Comme présenté précédemment, en général ce critere est I'erreur
quadratiqgue moyenne. Comme le modele neuronal est non linéaire en ses paramétres, la
fonction de codt n'est pas quadratique en ses parametres et la méthode des moindres carrés n'est
donc pas applicable. Des méthodes de minimisation itératives de la fonction de colt sont donc
utilisées. Le lecteur intéressé pourra trouver de plus amples informations sur les méthodes de
calcul itératives des parameétres, appelées regles d'apprentissage, dans (Dreyfus et al, 2008) ; il
suffit d‘indiquer ici que la régle la plus efficace est actuellement la régle de Levenberg-
Marquardt, que nous avons utilisée dans tous nos travaux récents, qui est une regle de gradient
du second ordre faisant appel a l'inversion d'une matrice approchée de la matrice Hessienne
(Bender et al, 1996), (Press et al, 1992). Cette méthode est avantageuse car bien qu'appartenant
a la catégorie des methodes de second ordre, elle ne nécessite pas le calcul des dérivées
secondes de la fonction de codt.

a. Apprentissage des systemes dynamiques

Quand le modeéle de réseau est récurrent, comme par exemple le prédicteur associé au modele
postulé bruit de sortie (Figure 5.b.), il est avantageux d'effectuer I'apprentissage sur la forme
canonique du modele bouclé (Nerrand et al, 1993). En effet, cette derniere représentation
considere le modéle sous la forme d'une partie acyclique (ou statique) et d'une partie
comportant les retards, déportée a I'extérieur du réseau. Ainsi la prise en compte du temps dans
le réseau se fait en coupant la boucle des retards et en dupliquant le réseau en autant de copies
que I'on souhaite remonter dans le passé. Le perceptron multicouche ainsi dupliqué en c copies
possede donc 2c couches de parameétres a identifier. Néanmoins, comme il s'agit du méme
réseau qui est dupliqué, in fine ce dernier, en phase de prédiction, ne possede pas plus de
paramétres. Pour cela, durant I'apprentissage, a l'issue de chaque modification des parametres,
la moyenne de chaque parameétre est effectuée sur toutes les copies. Cette technique est appelée
la technique des poids partagés.

La méthode est illustrée en Figure 8 dans le cas particulier de deux copies. Les variables
exogenes, représentées par le vecteur u(k-c) sont appliquées a chaque copie, la sortie de la
copie y(k-c) est appliquée en variable d'entrée de la copie suivante. La dynamique du processus
peut ainsi étre prise en compte.
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R:i;au boucl¢ | ¥(&-1)
bouclé | V(k-2)

Non-dirigeé : y(k-3)
ou
Semi-dirige : y*(k-3)

Figure 8 : Apprentissage d'un réseau dynamique avec la méthode des copies.

Se pose la question de I'initialisation de la copie correspondant au temps le plus ancien. Si les
valeurs observées du processus sont disponibles, on peut initialiser cette premiére copie avec
ces valeurs, on dit que I'on est alors en mode semi-dirigé. Dans le cas contraire, comme nous
I'étudions pour la prévision des crues sur les bassins-versants non jaugés dans le cadre de la
these de Guillaume Artigue qui est présentée en section 111.8 de ce chapitre, on parle de mode
non-dirigé. Dans ce dernier cas, les valeurs observées ne sont pas disponibles.

Comme nous l'avons indiqué, I'apprentissage est réalise de maniére itérative. Les parametres du
modele sont initialisés aléatoirement au début de I'apprentissage, I'erreur commise y est donc
importante. Lorsque le modéle est statique, cette erreur n'est pas rebouclée vers l'entrée du
modele, I'apprentissage peut donc continuer d'améliorer le prédicteur. Lorsque le modéle est
récurrent, l'erreur est, au contraire, réintroduite dans le modeéle et peut méme conduire a la
divergence de I'apprentissage. Pour limiter cette erreur au début de I'apprentissage on peut donc
utiliser le mode semi-dirigé qui permet de prendre en compte la dynamique du modele tout en
limitant cette erreur de début d'apprentissage.

b. Illustration : synthése de I'asservissement d’une pince électropneumatique

Les deux types de prédicteurs évoques dans les paragraphes précédents ont été mis en ceuvre
dans un travail effectué avec mon collégue Pierre Couturier. Il s’agissait d’asservir une pince
composée de deux doigts rigides mus en rotation par un actionneur pneumatique® (Figure 9).
Ce type de préhenseur est assez utilisé dans les taches de micromanipulation en robotique. Du
fait des non linéarités dues a la conception mécanique et a la compression du gaz,
I’asservissement en position de maniére précise est assez difficile a réaliser. Dans les années
1990, il était donc intéressant d’évaluer les potentialités de I’apprentissage statistique dans ce
domaine.

¥ Nous remercions Monsieur Hugues Silvain pour la conception et réalisation de la pince électropneumatique.
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Figure 9 : Schéma de la pince électropneumatique
La pince est longue de 300 mm et a une ouverture de 150 mm.

La synthése d’un asservissement pose une question différente de celle de I’identification d’un
processus. Considérons le schéma classique d’un asservissement comportant un systéme a
asservir, un correcteur et le signal de consigne (y°(k)) qui représente la valeur que doit atteindre
la sortie du processus a chaque instant (Figure 10).

(k) e(k) u(k) (k)
Correcteur Processus 2

+

Figure 10 : Schéma élémentaire d’un asservissement

Le correcteur recoit en entrée la différence e(k) entre la sortie du processus et la sortie désirée
(consigne) et traite cette différence de maniére a conduire le processus a se rapprocher de la
valeur de consigne. Le correcteur, ou contrdleur dont la sortie fournit le signal de commande
u(k) doit assurer a la fois la stabilité du systeme asservi et la précision dans la satisfaction de la
consigne. 1l peut également imposer des contraintes dynamiques a I’asservissement (par
exemple un temps de réponse fixé).

La synthése d’un contréleur par apprentissage statistique se heurte donc au fait que 1’on ne
connait pas la valeur que doit avoir le signal de commande puisque le processus est en général
non linéaire et non inversible. Néanmoins, la capacité des réseaux de neurones a identifier un
processus non linéaire peut étre mise a profit, en synthétisant un modéle du processus asservi
non linéaire, pour disposer d’une estimation de ce signal de commande, permettant ainsi de
réaliser I’apprentissage du correcteur. Ce type d'approche est qualifiée de commande indirecte,
par opposition a la commande directe ou le modéle du processus n'est pas demande.

Le travail a ainsi consisté en plusieurs étapes, d une part 1’identification d’un modéle neuronal
de la pince, ou prédicteur, et d’autre part la conception de plusieurs contrdleurs afin d’imposer
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des dynamiques convenables tant en poursuite qu’en régulation® pour un contrdle de la pression
appliquée par la pince lors de la préhension d’une part, et de la position de la pince d’autre part.

Notons que lorsque le modéle prédictif du processus est utilisé dans le schéma de contréle
indirect, celui-ci permet d’anticiper sur I’erreur qui pourrait se produire dans le futur et, grace
au signal de commande, tendre a annuler cette erreur avant qu’elle ne se produise, on parle
alors d'anticipation et de commande prédictive.

i Identification du processus

La stratégie d’identification, plus amplement présentée dans (Couturier et al, 1998), peut se
résumer ainsi :

e La fonction de codt integre les erreurs quadratiques de la sortie estimée sur un horizon
temporel de profondeur j. Cet horizon definit la limite supérieure de I’anticipation
souhaitée pour le prédicteur.

e Le prédicteur est récurrent, il représente le processus de la pince dont les variables
d’état peuvent étre composées de sa sortie a ’instant k et aux instants précédents, ainsi
que de variables d’état non mesurées. Dans le modéle, les variables d’état non
mesurées correspondent a des neurones de « sortie », pour lesquels on ne dispose pas de
valeur mesurée (EImann, 1990).

e La méthode des copies est utilisée pour effectuer I’apprentissage sur la forme canonique
du réseau de neurones et permet ainsi de prendre en compte la dynamique du systeme a
identifier.

e Afin de disposer d’une base d’exemples variée permettant d’effectuer I’apprentissage,
une séquence de consignes pseudo-aléatoires (en amplitude et en fréquence) est
appliquée a la pince.

e L’ajustement de la complexité est réalisé de la maniére suivante : le nombre de neurones
cachés est augmenté a partir de un jusqu’a ce qu’aucune amélioration ne soit notée dans
la généralisation.

Les modes d’apprentissage dirigé, semi-dirigé et non dirigés sont évalués pour initialiser les
variables d’état qui correspondent au vecteur des sorties observées, tandis que le mode non
dirigé est le seul qui permette de prendre en compte les variables d’état non mesurées (Figure
11).

Le réseau de neurones émule la pince par la fonction suivante :

yk+1) =g (y(k),...y(k-r+1),s(k),..s(k —e+1),u(k),...,u(k —w+1),0)

% La poursuite consiste & imposer une trajectoire & la sortie du processus, tandis que la régulation raméne le
dispositif vers la trajectoire en cas de perturbation. Les deux taches peuvent avoir des dynamiques différentes et
elle peuvent étre dissociées en plusieurs controleurs différents.
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ou y(k) est le vecteur des sorties estimées par le réseau a I’instant k et aux instants précédents,
(k) le vecteur des variables d’état non mesurees a I’instant k et aux instants précédents, u(k) le
vecteur des entrées exogenes a I’instant k et aux instants précédents et 0 le vecteur des
parametres du réseau.

u(k) y*(k)
— | Pince électropneumatique a identifier
e(k) +
| 7 _
/ y(k)
k-1 /
vk s(k-1 9 /
X (k)
qd

Figure 11 : Stratégie d’identification de la pince électropneumatique.
(Couturier, 1998)

Les résultats obtenus sont satisfaisants pour 1’identification du déplacement, mais moins bons
pour I’identification de pression du fait du frottement statique de la pince (Couturier et al,
1998). Néanmoins, on peut juger ses performances en prédiction suffisantes sur 1’horizon
d’anticipation considéré.

ji. Contréle de la pince électropneumatique

On souhaite que le systéme asservi se comporte comme un modéle de référence imposé, par
exemple, comme un systéme linéaire du premier ordre (le modéle de remplissage du réservoir
présenté en section I11.3. est un modele linéaire du premier ordre).

Comme soulevé précédemment, une des difficultés de la synthése d’un contrdleur par
apprentissage statistique est que 1’on ne dispose pas de valeur désirée pour la sortie du
contrbleur. A partir des schémas de contrdle proposés par M. Kawato (type direct), qui afin de
disposer d’un contrdle opérationnel par un régulateur conventionnel des le début de
I’apprentissage utilise la sortie d’un correcteur conventionnel comme estimation de I’erreur de
sortie du contrdleur neuronal (Gomi et al, 1993), et du schéma proposé par M. |. Jordan (type
indirect), qui effectue I’apprentissage du contrdleur au travers'® du modéle neuronal du
processus pour imposer une anticipation (Jordan et al, 1992), Pierre Couturier a proposé un
schéma de contrdle général qui permet de synthétiser les deux types de schéma de contrble
pour le calcul du correcteur, récurrent ou non récurrent. Ce schéma est présenté dans (Couturier
et al, 1998). Il inclut :

1% Lorsque ’on effectue 1’apprentissage d’un réseau de neurones, la matrice Jacobienne (dérivées partielles des
sorties du modéle par rapport aux entrées) est calculée par la régle de la rétropropagation. Si le réseau de neurones
identifie correctement le processus, on peut considérer que la matrice Jacobienne calculée par le réseau est une
estimation de celle du processus et I’on peut donc utiliser ces dérivées partielles pour réaliser 1’apprentissage du
correcteur placé en série avant le modeéle du processus.
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o Le prédicteur identifiant le processus (ici le modele neuronal de la pince) qui réalise la
fonction g, précédemment présentée (entrées u(k), s(k), y(k-1) et sortie y(k)).

e Un bloc de contr6le qui comporte plusieurs correcteurs : linéaires et non linéaires par
réseaux de neurones ; selon leurs entrées, les correcteurs non linéaires peuvent étre
dédiés a la tache de régulation avec une dynamique propre, ou a la tache de poursuite
avec anticipation selon une autre dynamique.

e Les variables selectionnées des différents correcteurs sont les mémes que celles qui
seraient utilisées par leur équivalent en commande linéaire.

Le schéma général de contrdle a été mis en ceuvre pour les deux fonctions de contrdle de la
pression dans la chambre de 1’actionneur et de controle de la position de la pince. Les
saturations mateérielles ont également pu étre prises en compte dans la loi de commande. Par
exemple la loi de commande peut prendre en compte la valeur maximale autorisée de la
commande et étre ainsi écrétée.

L’avantage de ce schéma général est également qu’il permet a 1’apprentissage d’étre effectué
en ligne et que le modele du processus n’a besoin d’étre un bon prédicteur que sur la fenétre
temporelle limitée de I’anticipation.

En synthése, ce travail a permis d’étudier les potentialités de I’apprentissage statistique pour
identifier un systeme non linéaire dynamique et pour synthétiser des correcteurs, également non
linaires et récurrents, assurant une précision et une dynamique donnée. Si les performances
dynamiques et en précision se sont montrées satisfaisantes et fort intéressantes (Couturier,
1997), en revanche les conditions de stabilité n’ont pu étre exhaustivement délimitées, méme
empiriqguement.

I11.5. Sélection de variables

\

La sélection de variables consiste a choisir les variables effectives parmi 1’ensemble des
variables candidates proposees par les experts. Si I’on est capable de connaitre les variables
pertinentes pour la fonction a réaliser par apprentissage statistiqgue, comme par exemple pour
I’identification d’un modele non linéaire de remplissage d’un réservoir (décrit précédemment),
on pourra sélectionner les mémes variables. De plus, il se produit assez souvent le cas ou les
variables disponibles sont mutuellement dépendantes. Elles comportent le méme type
d'information, mais celle-ci est parfois mesurée au moyen de méthodes d'observation
différentes. Afin de diminuer la complexité du réseau, il convient alors d’utiliser des méthodes
de sélection de variables qui permettent de définir le réseau le plus parcimonieux et d’améliorer
ainsi les performances de généralisation.

La sélection de variables nécessite de mettre en ceuvre :

e Un critére quantitatif de performance qui sert a ordonner les variables. Pour ce faire des
méthodes d’orthogonalisation du type de Gram-Schmidt, ou des méthodes heuristiques
(Yacoub et al, 2001) peuvent étre utilisées.
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e Un seuil a partir duquel les variables seront jugées non pertinentes ; on peut par exemple
rejeter les variables qui influencent moins la sortie du modele qu’une variable dont les
valeurs sont tirées aléatoirement (Stoppiglia et al, 2003).

Comme les variables peuvent étre corrélées il faudrait rigoureusement évaluer toutes les
combinaisons possibles ce qui est matériellement impossible. L’ensemble des variables
sélectionnées dépend alors en général de la procédure suivie et n’est donc pas unique :
plusieurs sous-ensembles de variables peuvent conduire a des performances relativement
équivalentes (Cybas et al, 1996).

lll.e. Meéthodes de régularisation

Comme nous 1’avons signalé précédemment en section 1.2 I’erreur estimée sur 1’ensemble
d’apprentissage est un mauvais estimateur de l’erreur de généralisation et cette dernicre
augmente en fonction de la complexité du réseau. Cependant, afin d’exploiter au mieux
I’information contenue dans la base d’apprentissage dont on dispose, certaines méthodes ont
été developpées pour pallier ce phénoméne : ce sont les méthodes de régularisation. Ces
méthodes ont toutes pour objet de diminuer la variance. Parmi celles-ci on distingue les
méthodes qui consistent a sélectionner les modeles qui ne sont pas surajustés des méthodes qui
interviennent durant le calcul de I’apprentissage.

a. Régularisation par sélection de modéle

Avant toute sélection de modele il est nécessaire de mesurer I’erreur de généralisation.
Rappelons que celle-ci est calculée sur un ensemble d’exemples qui n’ont pas servi a
’apprentissage. Afin que cette erreur ne dépende pas du choix d’un sous-ensemble particulier,
ce qui est possible si la base des exemples est de dimension réduite ou si quelques exemples
correspondent a un phénomeéne rare ou extréme, la procédure de la validation croisée a été
proposée (Stone, 1974).

Représentée schématiquement en Figure 12, la validation croisée consiste a diviser I'ensemble
d'apprentissage en K sous-ensembles. Chacun est utilisé a son tour en validation, les autres
sous-ensembles servant a effectuer l'apprentissage. Sur chacun des K sous-ensembles de
validation, on calcule un score. Ainsi, a l'issue de la procédure qui consiste en K apprentissages
successifs sur K sous-ensembles, on peut disposer d'un score de performance, estimé en
validation, mais représentatif de I'ensemble de la base.

Le score généralement adopte est le score de validation croisée qui est la racine carrée de la
moyenne des erreurs quadratiques de chacun des scores de validation Jx.

[1
S= EZK:EQM
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Figure 12 : Validation croisée

En fonction du critére choisi pour effectuer I'apprentissage, dont nous avons discuté en Il.b, on
gagnera en cohérence a utiliser le méme critére pour l'apprentissage et pour calculer le score de
validation croisée.

Dans l'idée de réduire la variance en diminuant la complexité du modeéle, la validation croisee a
été utilisée pour effectuer également la selection de variables. En particulier sont conservées les
variables qui améliorent le score de validation croisée et supprimées celles qui le dégradent.
Ainsi nous avons sélectionné les fenétres temporelles définissant I'historique des précipitations
appliquées aux modeles d'hydrosystemes (Toukourou et al, 2009-a), (Kong A Siou et al,
2011-b).

Lorsque nous nous sommes intéresses a la prévision des crues des riviéres du Piémont Cévenol,
nous avons introduit la validation croisée partielle, validation croisée qui opere sur les
événements pluvieux les plus intenses de facon a sélectionner les modeles prenant le mieux en
compte ces événements spécifiques (Toukourou et al, 2009-a).

b. Régularisation par diminution de la valeur des paramétres

On peut comprendre intuitivement gqu'une variance importante peut provenir du fait que les
paramétres ont des valeurs trop élevées, contribuant a des pentes fortes pour les sigmoides et
donc a une sortie fortement variable en fonction de faibles variations de I'entrée (Bishop, 1995).
C'est pourquoi plusieurs méthodes de régularisation ont pour objet de diminuer la grandeur des
paramétres du réseau. Parmi celles-ci nous avons mis en ceuvre la modération des poids et
I'arrét précoce.

La modération des poids consiste a modifier la fonction de colt de l'apprentissage en y
intégrant un terme de pénalisation de la valeur des parametres. On écrit alors :

3, =-7) +7]0|’

ou J; est la fonction de codt intégrant la régularisation, J la fonction de codt sans régularisation
(par exemple I'erreur quadratique moyenne), 0 le vecteur des parametres et y I'hyperparameétre
qui permet d'ajuster de maniere heuristique le poids relatif des deux termes.

Dans le méme esprit, consistant a diminuer la valeur des paramétres, I'arrét précoce interrompt
I'apprentissage avant que le minimum de la fonction de co(t ne soit atteint grace a un ensemble
d'exemples indépendants des exemples utilisés en apprentissage, appelé I'ensemble d'arrét.

Lorsque l'on utilise l'arrét précoce, au fur et a mesure du déroulement de Il'apprentissage,
I'estimation de la qualité de la généralisation est effectuée sur I'ensemble d'arrét ; lorsque I'on
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observe que la généralisation devient moins bonne (l'erreur observée sur I'ensemble d'arrét
augmente), l'apprentissage est arrété. J. Sjoberg (Sjoberg et al, 1995) présente cette méthode
comme une technique de régularisation car I'arrét précoce interrompt I'apprentissage avant que
les paramétres n'atteignent des valeurs trop importantes.

En pratique, l'utilisation de l'arrét précoce sur les systemes hydrologiques est assez delicate a
effectuer car I'apprentissage est alors spécialisé par rapport a I'ensemble d'arrét, qui ne peut étre
tiré au hasard dans la base des exemples disponibles, car le traitement des signaux temporels
nécessite la continuité des signaux. Dans le travail de these de Mohamed Toukourou
(Toukourou, 2009-b), nous avons pu noter de trés fortes variabilités de la solution obtenue en
fonction de I'ensemble d'arrét choisi. Finalement la solution retenue a été de sélectionner en
arrét I'ensemble qui est le mieux estimé lorsqu’il se trouve en genéralisation ; cet ensemble
d'arrét peut correspondre a un événement pluvieux particulier ou a un cycle hydrologique (1%
septembre d'une année au 31 aodt de I'année suivante). Ainsi, arréter I'apprentissage en fonction
de I'ensemble qui est le mieux prédit a une certaine cohérence puisque c'est celui qui représente
le mieux I'ensemble d'apprentissage.

c. Avantages du couplage de plusieurs méthodes

Les méthodes de régularisation peuvent étre utilisées simultanément. On peut utiliser l'arrét
précoce tout en sélectionnant les variables au moyen de la validation croisée.

Dans le travail de these de Line Kong A Siou, nous étudions I'impact de ces méthodes sur la
qualité de la prévision des débits de la source du Lez (Hérault). En reportant le score de
validation croisée en fonction de I'augmentation du nombre de neurones cachés nous
comparons les performances respectives de l'arrét précoce et de la modération des poids. Par
exemple, on peut noter sur la Figure 13, (Kong A Siou et al, 2011-a) que les deux méthodes de
régularisation dégradent légérement la qualité de la prévision réalisée, mais permettent de
prévenir avec une grande efficacité I'augmentation de la variance. Ainsi elles rendent le choix
de la complexité beaucoup moins critique et permettent d'alléger considérablement le nombre
d'expériences a réaliser pour concevoir un systéme opérant.

d. Vers un outil de compréhension du modéle

Nous avons indiqué précédemment que la sélection de la taille des fenétres temporelles
permettant de fixer I'historique des précipitations pris en compte dans les modéles de prévision
des crues pouvait diminuer la complexité du modele. La recherche de cette complexité optimale
pourrait conduire a estimer des grandeurs hydrologiques fondamentales dans la compréhension
du fonctionnement d'un bassin versant, comme le temps de concentration, le temps de montée
ou le temps de réponse de ce bassin versant. Si ces deux dernieres durées sont aisées a définir
sur un systeme artificiel dont on maitrise les entrées, en revanche, toutes sont trés difficiles a
appréhender pour un bassin versant rapide comme celui du Gardon d'Anduze que nous étudions
dans les théses de Guillaume Artigue et de Audrey Bornancin-Plantier du fait du caractere
pseudo-aléatoire des précipitations. Ainsi, comme chacune des méthodes de régularisation
conduit & un dimensionnement différent des fenétres temporelles, nous cherchons a déterminer
laquelle de ces méthodes conduit a un modele physiquement interprétable, ceci permettrait
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alors d'une part de mieux comprendre le modele et d'autre part d'obtenir de la connaissance sur
le bassin versant consideré.

0.95

0.94
0.93
092 |
0.91
0.90
0.89

0.88

Score de validation croisée (R?)

0.87 1 I L 1 I 1 1 I 1

Nombre de neurones cachés

Figure 13 : lllustration de I'évolution du score de validation croisée (ici fondé
sur le R?), en fonction du nombre de neurones cachés (Kong A Siou, 2011-a).
La courbe en trait plein est le score sans autre régularisation que la validation
croisée, la courbe en pointillé correspond au score lorsque I'arrét précoce est
utilisé ; la courbe en tireté correspond au score lorsque la modération des
poids est utilisée (y =0.01).

lIl.7. Apprentissage par renforcement

a. Fonction objectif

Jusqu'a présent nous avons envisagé l'apprentissage au moyen de la minimisation d'une
fonction de co(t représentant l'erreur entre la sortie du modele et une sortie désirée qui est, soit
la grandeur mesurée sur un processus que le modele doit identifier, soit la consigne imposée a
un processus asservi. L'apprentissage par renforcement, proposé par A. G. Barto (Barto et al,
1995) revisite cette fonction de codt afin de la rendre opérante méme lorsque I'on ne dispose
pas des grandeurs désirées. Cette méthode s'applique pour réaliser des objectifs de haut niveau
tels, pour un robot mobile autonome, la coordination des mouvements ou I'évitement d'obstacle.
Le schéma général proposé par A. G. Barto, et représenté en Figure 14, comporte un agent
effectuant des actions, et une heuristique appelée le critique. Le critique, proposé par B.
Widrow (Widrow et al, 1973) analyse l'effet des actions de I'agent et envoie a cet agent un
signal de renforcement, sous forme de pénalité ou de récompense, qui permet a ce dernier de
s'adapter afin de satisfaire I'objectif. Par rapport a un superviseur qui connait la valeur mesurée
sur le processus a identifier, le critique donne une indication qualitative. En sus de
I'introduction du critique, A. G. Barto introduit dans I'agent un processus stochastique qui lui
permet, au debut de I'apprentissage, de parcourir I'espace des états de maniere aléatoire. Au fur
et a mesure de ce parcours, le signal de renforcement permet a I'agent de modifier ses actions et
ainsi de les adapter a l'objectif. Qui plus est, aprés avoir atteint un état stable, si une
modification survient soit sur I'agent, soit dans I'environnement, une nouvelle exploration de
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I'espace des états est toujours possible. Grace a ce processus stochastique, I'agent a donc un
comportement adaptatif.

Effets des
actions

v

Actions Interactions
. Agent i ) (
Entrées agent-environnemen

extérieures

Signal de renforcement

Critique | Environnement

Figure 14 : Schéma de principe de I'apprentissage par renforcement

L'apprentissage par renforcement est donc intéressant pour réaliser des systemes capables
d'effectuer une tache dans un environnement qui n'est que partiellement décrit et de s'adapter
aux modifications de ce dernier, car seul I'effet des actions est analysé par le critique. Ces
propriétés sont particulierement pertinentes pour les environnements extérieurs et plus encore
pour les environnements naturels.

b. Adaptativité en milieu non stationnaire

i Apprentissage de comportements d’un robot hexapode

Lorsque j'ai intégré I'Ecole des Mines d'Alés en 1991 avec l'ambition de développer des
recherches sur les algorithmes d'apprentissage, il a paru particulierement intéressant de mettre a
profit le potentiel de ces méthodes sur des systémes naturels, c'est-a-dire mal connus et
partiellement imprévisibles, ou en interaction avec un environnement naturel. Le champ de la
robotique mobile était un terrain de jeux idéal et les travaux émergents a cette époque en
relation avec la locomotion de robots (A. Frank, 1988) et I'éthologie (D. M. Wilson, 1966) nous
ont stimulés. Le projet de conception et de réalisation d'un robot mobile autonome nous a paru
un bon moyen de fédérer les compétences que I'on appellerait aujourd'hui mécatroniques**. Sur
une impulsion de C. Touzet (Touzet et al, 92), le choix s'est porté sur un robot hexapode, robot
qui permettait de s'exercer a une certaine complexité, le nombre de pattes assurant cependant
une bonne stabilité (Figure 15). Les caractéristiques techniques du robot ainsi congcu sont
présentées dans (Johannet et al, 1999-b). Ce prototype a appris tous les comportements que
nous lui imposions mais des limitations assez importantes de conception, en particulier la
conception des pieds I'amenant, en fait, a marcher sur des "talons aiguilles" nous ont empéchés
de tester toutes les fonctions. De ce fait, et pour éviter I'endommagement du robot au cours de

1 'équipe était composée de Michel Artigue, Pierre Couturier, Alexandre Meimouni, Isabelle Marc et Hugues
Silvain. Autant leur bon accueil que leur travail enthousiaste a permis de mener ce projet a bout.

-39-



Anne Johannet. Mémoire d’HDR. Université Pierre et Marie Curie.

ses chutes multiples, un simulateur logiciel a également été développé afin d'effectuer les tests
nécessaires a l'ajustement des algorithmes d'apprentissage.

Figure 15 : Robot hexapode

Nous avons vu précédemment que l'apprentissage par renforcement, décliné comme
apprentissage par pénalité et récompense, ou Agp, par A. G. Barto, nécessite la définition d'un
agent, d'une heuristique (le critique) et d'une regle de modification des actions. Voyons
comment ces éléments ont été revisités en utilisant les réseaux de neurones.

L'agent est le contrdleur du mouvement d'une patte du robot. Le modele le plus simple a été
choisi pour préserver la parcimonie. Le mouvement de chaque patte est contr6lé par un seul
neurone binaire (fonction d'évaluation de Heaviside). Ses variables sont I'état des cing autres
pattes et son propre état. Deux mouvements sont possibles : lever, avancer et poser la patte
d'une part et reculer la patte d'autre part. L'exploration de I'espace des états est réalisée par un
générateur de nombres aléatoires dont la valeur s'ajoute au potentiel du neurone. Le mouvement
de la patte est donné par le signe du potentiel ainsi bruité.

L'apprentissage est réalisé par une régle inspirée d'une descente de gradient du premier ordre
prenant en compte les signaux de pénalité et récompense, ainsi que la "sortie non bruitée du
neurone", calculée par I'espérance mathématique de la sortie d'un neurone ayant les parametres
actuels du neurone soumis a l'apprentissage. Ainsi, I'estimation de l'incrément appliqué par
I'apprentissage est déterministe (Johannet et al, 1999-a).

Ce type dapprentissage a été appliqué pour l'acquisition de deux comportements
I'apprentissage de la marche et I'évitement d'obstacle. Ces deux comportements sont acquis
assez rapidement apres une séquence de mouvements aléatoires validant ainsi que des
comportements de haut niveau peuvent étre acquis au moyen de régles simples et locales. Deux
types de marche sont obtenus (Figure 16), ainsi que plusieurs stratégies d'évitement d'obstacle.
La capacité du robot a s'adapter a des modifications de son environnement a été validée car le
robot est capable de réapprendre a marcher tres efficacement s'il subit des dégradations, qui, par
exemple, rendent une patte inopérante (Johannet et al, 1999-a). L'apprentissage par
renforcement permet donc de réaliser des systemes adaptatifs tres réactifs.
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Figure 16 : Les deux types de marche hexapode découverts.
La patte figurée par un pied blanc se léve avance et se pose tandis que la patte
figurée par un pied noir recule. Le type de marche du bas de la figure est une
marche tripode adoptée par les insectes, la marche du haut de la figure n'est
pas observée dans le monde animal.

ji. Vers I'assimilation de données en hydrologie

Dans le projet ANR FLASH (présenté ci-apres section 111.8.a), il est prévu d'appliquer les
méthodes de I'assimilation de données a I'hydrologie. L'assimilation de données, qui consiste
en un ensemble des méthodes statistiques permettant de prendre en compte les informations
mesurées ou supposees sur le processus en cours, doit permettre d’améliorer la prévision ou
I'estimation de I’état d’un systéme. Cette approche est a mettre en relation étroite avec les
modeles statistiques obtenus par apprentissage adaptatif. On comprend qu'elle a tout son intérét
pour envisager la prévision d'événements rares et extrémes, non encore compris dans la base
d'apprentissage™.

Si I’assimilation de données est déja tres étudiée en météorologie, et plus généralement pour la
modélisation de I’atmosphére (Daley, 1993), elle est encore assez peu étudiée et utilisée en
hydrologie ; quelques travaux publiés se fondent néanmoins sur I’estimation de la hauteur
d’eau (Neal et al, 2007).

Les travaux développés actuellement sur 1’assimilation de données se répartissent en deux
écoles : une approche fondée sur le formalisme des filtres de Kalman, et une autre selon une
approche variationnelle. Or le formalisme variationnel de 1’assimilation de données est trés
voisin de celui de ’apprentissage statistique : dans le premier cas, il s’agit de minimiser une
fonction de colt quadratique afin d’optimiser 1’ébauche de la prévision, sous contrainte du
modele physique ; dans le second cas, il s’agit de calculer les parameétres du modele au cours
d’un apprentissage qui se déroule en méme temps que I'événement pluvieux. Les deux
formalismes font appel a des optimisations quadratiques, non linéaires dans le cas de
I’apprentissage statistique.

Quelques travaux ont été publiés sur ’utilisation de l'apprentissage statistique pour réaliser
I’assimilation de données sur des systemes academiques fortement non linéaires, comme le
modele proie-prédateur (Wu et al, 2005), ou les équations de Lorentz (Liagat et al, 2003) ;

12 1 ’assimilation de données a prouvé son efficacité lors de la grande tempéte de 1999 qui n’avait pas son
équivalent dans les archives météorologiques (Mackenzie, 2003).
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néanmoins, a notre connaissance, aucun travail couplant [’apprentissage artificiel et
I’assimilation de données opérant sur la chaine hydrométéorologique n’a été publié.

Dans le cadre du projet FLASH nous pensons intéressant de comparer les deux approches
permettant de conférer au modele un caractere adaptatif ; d'une part I'apprentissage adaptatif
conventionnel, que nous avons mis en ceuvre pour le contrdle de la pince électropneumatique
présenté en section 111.4.b. et qui fait évoluer le jeux des paramétres du modéle en fonction des
dernieres variables mesurées par une regle de gradient dit stochastique (Widrow et al, 1985) ;
d'autre part, l'apprentissage par renforcement qui ne nécessite que des informations qualitatives
devrait avoir un grand intérét, dans la mesure ou les variables mesurées sur les systémes
hydrométéorologiques sont entachées de grandes erreurs ou incertitudes, comme nous allons le
présenter dans la section suivante.

1.8. Application aux hydrosystémes

Par hydrosystemes nous entendons systemes hydrologiques et systemes hydrogéologiques. Les
premiers effectuent la conversion pluie-débit puis la propagation de I'eau au sein des riviéres,
les seconds prennent en compte l'interaction de I'eau avec le sous-sol ainsi que son stockage.
Compte-tenu de la pression anthropique exercée sur ces systemes, leur étude est essentielle, que
ce soit pour la ressource en eau ou pour le risque inondation. Les hydrosystémes sont connus
pour avoir un fonctionnement non linéaire, ne serait-ce que du fait de I'évapotranspiration,
action d'évaporation, de consommation et de transpiration de la végétation, dont on comprend
bien qu'elle est saisonniere et difficile a estimer précisément. Parmi la grande variété des
hydrosystémes, nous nous sommes intéressés a deux types d'entités emblématiques de leur
complexité : les karsts et les bassins versants rapides.

a. Projets BVNE et ANR FLASH

Depuis 2006 nous travaillons en collaboration avec le Service Central d'Hydrométéorologie et
d'Appui a la Prévision des Inondations, ou SCHAPI, afin d'établir un modéle de prévision des
crues du Gardon d'Anduze. Le projet intitulé Bassins Versant Numériques Expérimentaux, ou
BVNE®, sur lequel s'est déroulée la thése de Mohamed Toukourou (Toukourou, 2009-b) a
permis de mettre en évidence autant la grande difficulté de ce probléme que les possibilités
d'amélioration apportées par I'apprentissage statistique. Ces premiers résultats, trés intéressants,
nous ont permis de monter le projet FLASH™, soutenu par I'ANR, qui s'intéresse aux mémes

3 e projet BVNE a pour ambition de faire collaborer plusieurs équipes scientifiques autour d'un méme objectif &
l'aide d'une méme base de données. Ce projet s’appuie sur le Service de Prévision des Crues (ou SPC) Grand
Delta, ainsi que sur des laboratoires de recherche développant et adaptant leurs modéles hydrologiques afin
d’effectuer, en temps réel, une prévision des débits a Anduze. Les équipes travaillant sur le projet sont les
suivantes : Bureau de Recherches Géologiques et Miniéres (BRGM), CEntre national du Machinisme Agricole, du
Génie Rural, des Eaux et des Foréts (CEMAGREF), Environnements DYnamiques et TErritoires de Montagne
(EDYTEM), Hydrosciences Montpellier (HSM), Institut de Mécanique des Fluides de Toulouse (IMFT),
Laboratoire d'étude des Transferts en Hydrologie et Environnement (LTHE), Météo France.

% e projet FLASH : Flood forecasting with machine Learning, data Assimilation and Semi-pHysical modeling
fait intervenir, outre I'Ecole des Mines d'Alés qui est coordonateur, trois partenaires : 'ESPCI ParisTech, par son
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bassins et a pour ambition de généraliser les méthodes développées autours du bassin versant
d'Anduze (Gard-France) aux autres bassins versants du Piémont Cévenol (Ceze et Ardéche),
puis, afin d'y étudier les changements d'échelle tant spatiale que temporelle, d'effectuer la
prévision des debits de la Somme (Somme, France). La Somme est en effet un fleuve qui est
soumis a des crues de nappes de temps de réponse trés long, contraint en ses limites par les
fluctuations des marées qui peuvent étre trés importantes dans la baie de Somme. En 2001
I’inondation de la Somme a marqué l'actualité par son étendue (plus d'un millier de maisons
inondées), et sa durée (deux a trois mois).

A l'opposé de la Somme, les bassins versant rapides sont des bassins versants de montagne
soumis a des événements pluvieux tres intenses donnant lieu a des crues aussi soudaines que
dévastatrices. En septembre 2002, la petite ville d'Anduze (Gard, France) a vu se déverser sur
elle, en moins de 24h, I'équivalent d'une année de précipitations en région parisienne'®. En
conséquence, le débit du Gardon d'Anduze est passé de 200 m*/s & plus de 2500 m®/s en
quelques heures. Sur le département du Gard, cet événement pluvieux a tué prés de 25
personnes et a causé plus d'un milliard d'euros de dégats (Le Lay et al, 2007).

L'application des modéles hydrologiques MARINE (Bessiere et al, 2007) et TOPMODEL
(Saulnier et al, 2009) a la prévision des crues du Gardon d'Anduze, met en évidence que
I'application d'un champ spatialisé de précipitation est nécessaire pour obtenir de bonnes
simulations de la crue. Ainsi, si les modeles hydrologiques parviennent & estimer le débit en
chaque point du cours d'eau, en revanche, ils souffrent de ne pas disposer de prévision des
pluies, qui sont indisponibles & une si petite échelle de quelques km?.

Concernant l'apprentissage statistique, si l'absence de prévision de pluie est pénalisante, il reste
cependant possible de réaliser autant de modeéles que l'on demande de prévisions jusqu'a
I'norizon maximal de prévision. Ainsi, Mohamed Toukourou a, dans sa these, élaboré six
modéles de prévision, en mode dirige, afin d'estimer les hauteurs d'eau futures aux horizons de
prévision ¥zh, puis de 1h & 5h (Toukourou et al, 2010), en I'absence de prévision de pluie®®.

Par ailleurs les signaux mesurés sur les hydrosystemes sont entachés d'une grande imprécision.
En premier lieu les précipitations issues de mesures effectuées par les pluviométres ont une

Laboratoire SIGMA (Signaux, Modéles, Apprentissage statistique) ; le Laboratoire EDYTEM, Laboratoire
Environnements DYnamiques et TErritoires de Montagne, Unité mixte CNRS et Université de Savoie ; et le
SCHAPI, Service Central d'Hydrométéorologie et d'Appui a la Prévision des Inondations, service central du
Ministere en charge de I'Ecologie qui actualise les cartes de vigilance  “vigicrues”
(http://www.vigicrues.ecologie.gouv.fr/).

1> Plus précisément 648 mm d’eau ont été relevés a Anduze par le pluviométre du Service de Prévision des Crues
Grand Delta entre le 08/09 13h et le 09/09 8h30 (TU).

16 On pourra noter que le modéle de prévision effectué par apprentissage statistique a un horizon de prévision
donné h,, n’effectue pas une prévision en supposant la pluie future nulle, hypothése souvent posée par les
utilisateurs des modéles hydrologiques pour réaliser des prévisions. En effet, les entrées de pluies futures ne sont
pas proposées au réseau de neurones. De ce fait, si le réseau apprend & associer les précipitations passées (pluie
tombée jusqu’au temps K) aux débits futurs (au temps k+h,). On peut supposer qu’il effectue également en interne
une prévision propre de ces précipitations.
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précision quantifiée a 10% ou 20% (Marchandise et al, 2007), mais le réseau de pluviometres
(six sont disponibles pour le bassin versant d’Anduze de 540 km? environ) est insuffisant pour
garantir que I'essentiel de I'orage ne passe pas entre deux de ces dispositifs. Par exemple, lors
de I’événement de 2002, on a pu relever un cumul de précipitation prés de trois fois plus
important a Anduze qu’a Soudorgues, alors que les deux villes ne sont distantes que d’une
quinzaine de kilometres (Figure 17). La technique d'observation des précipitations par
I'imagerie des ondes réfléchies des radars météorologiques permet I'obtention de cartes donnant
les réflectivités a la définition du km?. Néanmoins, la transformation des réflectivités en pluie
n'est pas encore totalement satisfaisante, d'une part a cause du relief ou de phénomenes
physiques encore mal appréhendés, et d'autre part parce qu'elle est souvent realisée avec l'aide
de pluviometres au sol, reportant ainsi sur les cartes radar I'imprécision des pluviometres. En
second lieu, les débits sont souvent estimeés a partir des hauteurs d'eau au moyen d'une courbe
de tarage qui est non linéaire. Cette courbe est établie au moyen de jaugeages expérimentaux
qui permettent de mesurer les débits pour une hauteur particuliere. 1l est inutile de préciser ici
qu'aucun jaugeage du Gardon lors des épisodes de crues trés intenses ne peut étre réalisé sans
mettre en péril la sécurité des personnes. La courbe de tarage est donc contestable pour les trés
forts débits. Pour cette raison et grace a la capacité de I'apprentissage statistique d'estimer aussi
bien les hauteurs d'eau que les débits, nous avons donc préféré prévoir la hauteur d'eau.

Barre des Cévennes -
=N
s A g S A )

Saumae!

Figure 17 : Bassin versant d'Anduze (Artigue, 2010).
Le bassin versant est situé dans le Sud-Est de la France, il s’étend sur 540 km?

environ.

Ces difficultés, ajoutées au nombre réduit d’événements de la base de données'’ (17
événements disponibles, dont seulement cing événements jugés intenses) nous ont permis de
prendre la mesure du défi qui est pose aux systemes a apprentissage statistique pour parvenir a
prévoir les crues du Gardon d'Anduze. On comprend aisément que de telles imprécisions

7 pour un hydrosystéme, cette base de données est trés importante ; elle est le fruit du travail régulier du SPC
Grand Delta ; si nous la présentons comme "réduite” c'est en regard du nombre d'événements intenses et de la
nécessité de disposer d'une base de données redondante pour lI'apprentissage statistique.
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soulévent avec plus d'acuité la difficulté du surapprentissage soulevée par le dilemme biais-
variance.

Face a ces difficultés, une méthodologie rigoureuse de mise en place des méthodes de
régularisation précédemment exposees a été proposée et mise en ceuvre par Mohamed
Toukourou. La validation croisée a permis de sélectionner les meilleurs modeles au sens des
criteres tels que la persistance, I'erreur quadratique ou le coefficient de détermination. La
validation croisée partielle, variante de la validation croisée, n‘opérant que sur les évenements
les plus intenses afin de sélectionner les modeéles les meilleurs sur ces crues, a été proposée et
une comparaison entre l'arrét précoce et la modeération des poids a été menée (Toukourou et al,
2009-a). Dans la continuité de ce travail, Audrey Bornancin-Plantier qui effectue sa these dans
le cadre du projet FLASH étudie exhaustivement la sélection des modéles et effectue une
analyse de sensibilité sur les hyperparametres de la regle de Levenberg-Marquardt, ainsi que
sur les criteres employés pour I'apprentissage et/ou la sélection des modéles (section I1.b.ii).

Par ailleurs, une autre demande sociétale est émergente : celle qui concerne les bassins versants
non-jaugés. Ces bassins sont ceux qui, du fait de leur taille réduite, ne disposent pas d'une
station de mesure de débit (station de jaugeage), et pour lesquels on ne dispose donc pas de
mesures. Bien que petits, ces bassins versant peuvent cependant recueillir des quantités de
précipitation considérables, car trés localisées, qui vont donc causer des dégats et méme des
déces. Dans le cadre du projet BVNE nous avons entrepris, avec la these de Guillaume Artigue
de bétir des modéles de prévision des crues opérant sur ces bassins en s'inspirant de I'approche
dite de régionalisation. L'approche de régionalisation consiste a effectuer un calage sur un
bassin jaugé (noté A), semblable, hydrologiquement parlant, au versant cible non jaugé (noté
B). Grace a l'estimation des précipitations au moyen des cartes radar, les pluies peuvent étre
estimées sur le bassin B. Ainsi le modeéle calé sur le bassin A peut étre utilisé en prévision sur
le bassin B.

Cette méthode est revisitée par Guillaume Artigue qui définit ainsi un bassin versant normalisé
régional (le bassin A normalisé). Lors de la prévision sur un bassin B, le modéle normalisé est
mis en ceuvre avec les précipitations radar du bassin B, puis dénormalisé afin de délivrer les
débits du bassin B a la bonne échelle. Le travail de thése en cours concerne donc la recherche
de facteurs de normalisations tant spatiaux que temporels, et la mise en ceuvre de prédicteurs du
type non dirigé.

b. Systéemes karstiques

Dés 1993 les karsts'®, mal connus du fait de leur grande hétérogénéité spatiale, nous ont paru
un champ d'application intéressant pour l'apprentissage statistique. Nos premiers travaux ont

' Le mot Karst vient d'un mot slovéne qui décrit un paysage calcaire comportant des formes d'érosions
particuliéres. Dans ce mémoire le karst est une entité géologique, formée de roches carbonatées fracturées et
dissoutes en profondeur par I'eau, créant ainsi des réseaux de vides organisés. Ces réseaux sont en partie emplis
d'eau, ce qui permet de qualifier les Karsts de chateaux d'eau naturels. Les karsts contribuent a 1’alimentation en au
potable pour 20 a 25% de la population (Ford et al, 1997).
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alors porte, en collaboration avec Messieurs Alain Mangin et Dominique d'Hulst, sur le karst
du Baget (Ariége-France). Ainsi, trés en avance sur la communauté internationale, nous avons
modélisé la relation pluie-débit du karst du Baget avec les deux prédicteurs évoqués en section
I11.3.a. (Johannet et al, 1994).

Plus récemment, alors que quelques travaux sur la thématique de l'apprentissage statistique
appliqué aux karsts commencent a étre publiés (Kurtulus et al, 2007), et benéficiant de
I'amelioration de l'apprentissage apporté par la regle de Levenberg-Marquardt, nous avons
étudié le comportement du modeéle non-dirigé en comparaison avec un modele linéaire
possedant les mémes variables. 1l a ainsi €té mis en évidence que, en I'absence d'estimation de
I'évapotranspiration potentielle, remplacée par une simple gaussienne ayant son maximum au
moment des plus fortes chaleurs (quand I'évapotranspiration est supposée maximale) le modele
neuronal parvenait a une bonne modélisation (Johannet, 2010). Mettant en ceuvre le prédicteur
non-dirigé, il a également été possible d'alimenter le modéle par une série d'impulsions de
précipitations simulées croissantes afin de visualiser la réponse a des impulsions croissantes™.
Comme représenté en Figure 18, on peut noter que la réponse du modele neuronal marque un
effet de saturation pour les grandes impulsions, contrairement au modéle linéaire. Cet effet de
saturation est par ailleurs explicable puisque, lors des grandes crues, le débit est contraint par la
dimension des conduits a l'intérieur du karst.

Ces premieres approches de modélisation hydrodynamique d'un aquifére karstique, trés
intéressantes, d'une part pour les interprétations physiques possibles, et d'autre part pour la
demande assez faible en types de données observées (la température n’est pas mesurée mais
remplacée par une gaussienne), nous ont permis denvisager le travail de these de
Line Kong A Siou afin d'étudier l'aquiféere du karst du Lez. Ce travail a pour objectif, non
seulement d'effectuer la prévision des crues, mais également de tenter d'interpréter le modéle
obtenu afin d'en retirer des informations sur ce systeme physique ou les inconnues restent
nombreuses. A cette fin, nous avons appliqué la méthode dite des boites transparentes, que
nous avons proposée (Johannet et al, 2008-a), et présentons dans le chapitre suivant.

19°:0n ne peut rigoureusement parler ici de réponse impulsionnelle puisque cette derniére est définie dans le cadre
des systemes linéaires, qui n'est pas le cadre de cette étude.
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Figure 18 : Réponse du modele a des impulsions croissantes de précipitation
simulée.

En échelle négative les impulsions croissantes de pluie, en trait pointillé fin
(vert) la réponse du modeéle linéaire aux impulsions de pluie, en tireté (rouge)
la réponse du modéle non linéaire neuronal. Les sommets des pics de crue de

la réponse linéaire sont reliés entre eux par une droite afin de rendre
apparente la proportionnalité des réponses du modéle linéaire, tandis que les
sommets des réponses du modele non linéaire sont reliés par des segments de
droite tiretée (Johannet, 2010).
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IV. Au-dela de la boite noire

IV.1. Boite grise et boite transparente

a. Modélisation semi-physique

Une autre utilisation de I'apprentissage statistique peut étre de réaliser un modéle de type boite
grise : la part du processus qui est parfaitement connue est représentee sous la forme d'un
modele de connaissance, par exemple des équations différentielles, tandis que la part du
processus qui est moins bien connue est identifiée par un modele en boite noire (Sjéberg et al,
1995). Ainsi, déclinée avec le formalisme propre des réseaux de neurones (I11.3), la part
modélisée de maniere déterministe et la part modélisée de maniére statistique peuvent étre
représentées avec un formalisme unifié et l'apprentissage peut ne s'appliquer qu'a un sous-
ensemble des paramétres du modele. Y. Oussar a utilisé cette approche des boites grises pour
modeéliser le processus de séchage d'un film polymeére sur un substrat (Oussar et al, 2001).

Si ces utilisations, qualifiées de boite noire ou boite grise, ont toute leur utilité, la modélisation
de processus hydrométéorologiques par apprentissage statistique conduit cependant souvent a
s'interroger sur la vérification de la qualité du modele par une autre méthode que le calcul de
I'erreur sur I'ensemble de validation. En effet, autant la complexité croissante des modeles et
des algorithmes allant a 1’encontre des principes de parcimonie préconisés dés les premiéres
heures du développement des statistiques (Box, 1976), autant leur application a des
phénomenes non stationnaires et mesurés sur une période trop courte, ne permettent pas de les
évaluer de maniére pleinement satisfaisante selon la seule approche statistique. Il est alors
Iégitime, afin de le valider, de chercher a expliquer le modéle ou de chercher a retrouver les
caractéristiques du processus dans les parametres statistiques du modéle.

Pour ce faire nous avons proposé dés 1993 de contraindre l'architecture du réseau de neurones
par la connaissance acquise sur le fonctionnement du processus modélisé. L'idée est de séparer
les « fonctions » des « paramétres » en représentant le processus de maniére modulaire et en
isolant les « modules » que I'on veut étudier de fagcon qu'ils puissent étre identifiés par un
réseau de type approximateur universel. Ainsi le modele neuronal du processus physique se
compose de plusieurs perceptrons multicouches disposés en cascade.

Partant du modele hydrodynamique du Kkarst proposé par Alain Mangin (Mangin, 1975), qui
avait l'avantage d'étre déja décomposé en différents modules, nous avons simulé le
fonctionnement du karst du Baget par un ensemble de cing sous-réseaux connectés les uns aux
autres. 1l s'agissait des sous-réseaux : infiltration rapide, infiltration retardée, drain, systémes
annexes et évapotranspiration (Johannet et al, 1994), (Figure 22).

Une fois I'apprentissage réalisé, on peut observer les signaux issus des sorties des sous-réseaux
et ainsi, si le processus physique est correctement identifié, avoir une visualisation des
évolutions des grandeurs physiques non mesurables : on peut observer le systéme comme si ce
dernier était transparent. Bien évidemment, la validation des signaux ainsi obtenus
empiriquement est une difficulté a ne pas négliger, elle peut étre faite par des experts qui
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évaluent le caractéere vraisemblable de ces résultats (Johannet et al, 2007), ou par
I'intermédiaire d'un modéle supplémentaire, d'inspiration physique, comme nous l'avons
proposé dans le cadre de la these de Line Kong A Siou (Kong A Siou et al, 2010).

b. Estimation empirique de grandeurs physiques

i. Estimation de I’évapotranspiration

L'approche des boites transparentes a été utilisée pour estimer le signal d'évapotranspiration.
Cette information est en effet cruciale pour les modéles hydrologiques qui opérent souvent sur
les pluies efficaces®®. Si plusieurs modéles d'évapotranspiration existent, il a également été
montré par L. Oudin que la précision du modéle d'évapotranspiration n'a que peu d'importance
et qu'un modeéle assez rustique ne prenant en compte que I'évolution de la température pour
estimer I'évapotranspiration potentielle peut suffire (Oudin et al, 2004).

Le modeéle hypothése de processus physique que nous avons utilisé pour simuler
I'évapotranspiration est le suivant : un premier processus effectue la conversion pluie-débit,
tandis que le processus d'évapotranspiration préléve de I'eau a la conversion pluie-débit (Figure
19). Les variables d'entrées de la modélisation par boites transparentes sont bien entendu
prépondeérantes puisqu’elles conditionnent la représentation physique. Ainsi, les précipitations
alimentent la relation pluie-débit tandis qu'une courbe en gaussienne maximale au 30 juin (sous
nos latitudes) représente les variations schématiques des variables climatiques prépondérantes
sur I'évapotranspiration (température, radiations solaires).

Appliquées aux données du karst du Baget (Ariege) et apres plusieurs raffinements successifs,
nous avons obtenu pour I'évapotranspiration observée dans le réseau de neurones (Figure 19)
une courbe différente de la gaussienne appliquée en variable d'entrée. On peut y noter en
particulier une translation systématique du maximum au mois de septembre (Johannet et al,
2008-a). L'interprétation de ce maximum n'est pas tres aisée a faire. En effet, la sortie du
neurone "évapotranspiration” est le résultat d'un calcul effectué sur des variables d'entrée qui ne
dépendent pas de la pluie, on penserait donc observer I'évapotranspiration potentielle. Or, il faut
se souvenir que le calcul des paramétres a été effectué a partir d'une erreur calculée en sortie,
qui dépend donc des précipitations observées, et ferait alors intervenir I'évapotranspiration
réelle. Ce que I'on obtient a la sortie du neurone "évapotranspiration” est donc une grandeur
différente des deux précédentes, qui transcrit I'eau que la végétation consomme, que cette eau
vienne d'étre précipitée (le Baget se situe dans les Pyrénées et est donc bien arrosé), ou qu'elle
se situe dans des réserves plus profondes. Il s'agirait d'un déficit en écoulement moyen causé
par la végétation et I'évaporation.

Aprés avoir validé cette analyse sur d'autres bassins versants, nous pensons pouvoir utiliser ce
type d'information pour évaluer I'impact d'un changement de pratiques agricoles ou d'un
changement climatique sur les réserves en eau.

2 |_es pluies efficaces sont les pluies auxquelles on a retiré I'évapotranspiration réelle (ETR); cette derniére dépend
de I'évapotranspiration potentielle (ETP) et de I'eau effectivement disponible pour I'évaporation et la
consommation par la végétation (réserve du sol, précipitations).

-50-



Modélisation par apprentissage statistique des systémes naturels, ou en interaction avec un environnement
naturel. Applications aux karsts, crues éclair et en robotique.

Précipitations Précipitations
— Relation pluie-débit |—» —» —
Débit Débit
Gaussienne Gaussienne
— Evapotranspiration —» RO [ a[ /\ I

Sortie du neurone caché
«évapotranspiration»

-a- -b-

Figure 19 : Boite transparente pour mettre en évidence I'évapotranspiration
17-a. Hypothese physique._17-b. Déclinaison de I'hypothése physique en
utilisant un réseau de type perceptron multicouche pour identifier chacune
des fonctions physiques inconnues.

ji. Estimation de transferts d’eau souterrains

Nous avons déja évoqué le travail de thése de Line Kong A Siou sur l'aquifére karstique du
Lez. Le cceur de son travail est l'utilisation des boites transparentes pour mieux connaitre le
fonctionnement de l'aquifére du Lez, source d'eau douce qui alimente la ville de Montpellier
(agglomération de 300 000 habitants) en eau potable.

Ce travail est effectué en collaboration avec Monsieur Séverin Pistre et Madame Valérie
Borrel, du Laboratoire HydroSciences Montpellier. L'aquiféere du Lez est un aquifere
extrémement étudié depuis plus de 50 années du fait de son exploitation industrielle, et de
nombreux modeles ont été proposés pour décrire son fonctionnement (Fleury, 2008). En
quelques mots, les difficultés de I'étude de cet aquifere sont dues au fait qu'il est trés hétérogene
au niveau geologique et comporte des failles majeures ; il est également alimenté par des
précipitations de type cévenol, trés hétérogenes sur une courte échelle de temps (horaire). Du
fait de son exploitation industrielle, les débits a la source sont artificialisés et les dynamiques de
la vidange et du remplissage du karst sont vraisemblablement perturbées ; a cause du pompage
la source est asséchée durant les mois d'été, les chroniques de débits ne sont donc plus
disponibles et de plus la source du Lez n'est qu'un des exutoires de I'aquifére plus profond ;
d'autres sources non pérennes existent dont le débit n'est pas mesuré (source du Lirou, des
Fleurettes, ...). Enfin, les délimitations du bassin d'alimentation souterrain ne sont pas trés bien
connues et sont variables en fonction du niveau de remplissage du réservoir : en effet, lI'aquifére
se fragmente en plusieurs compartiments indépendants durant la période séche qui sont ainsi
isolés les uns des autres. Une délimitation du bassin d'alimentation a cependant été proposée
par Y. Conroux (Conroux, 2007), représentée sur la Figure 20. Le bassin ainsi délimité s’étend
sur environ 400 km?.
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Figure 20 : Bassin d'alimentation supposé du Lez
Au centre, le Lez, a droite le Vidourle et a gauche I'Hérault. On note sur la
figure : les pluviométres utilisés (triangles), les sources connectées a lI'aquifere
(disques rouges) et le site de piézométrie du Terrieu (disque vert).

Afin de mieux connaitre les écoulements souterrains, un découpage du bassin d'alimentation
supposé en quatre zones géologiques estimées homogénes a été proposé par Kévin Cros lors de
son stage de Master Il effectué au Laboratoire de I’Ecole des Mines d’Ales (Cros, 2010).
Relativement a chacune des zones baptisées Nord-Est, Nord-Ouest, Sud-Est et Sud-Ouest,
Kévin Cros a défini autant de chroniques pour des pluviometres virtuels qui enregistreraient les
précipitations tombant sur ces zones. Ces chroniques ont été définies a partir de six
pluviomeétres présents dans le bassin ou a proximité de celui-ci en utilisant une méthode
géométrique de pavage du plan (polygones de Thiessen) afin de définir la "contribution™ de
chacun de ces pluviometres.

Nous avons émis I'hypothése selon laquelle I'eau tombant sur chacune de ces zones : i) alimente
I'aquifere profond, ii) ressort a la source du Lez, iii) sort a un autre exutoire. En contraignant
I'architecture du réseau de neurones par ces hypothéses, la boite transparente la plus complete a
été proposée telle que représentée a la Figure 21. Sa mise en ceuvre a été simplifiée par souci de
parcimonie et les réseaux de type identificateur universel correspondant a l'infiltration de
chacune des zones ont été remplacés par un seul neurone linéaire. De l'information a été
extraite de chacun de ces sous-réseaux en utilisant la méthode de selection de variables
proposée par (Yacoub, 2001) qui permet de quantifier I'importance de chacune des variables.
Ainsi, Line Kong A Siou a pu extraire, pour chacune des zones, d'une part le volume relatif de
I'eau sortant a la source provenant de cette zone et d'autre part le temps de transfert de
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I'énergie?! issue des précipitations tombant sur la zone. Ces résultats ont été soumis pour une
publication.

Précipitations
zone NE
Précipitations el s
zone NO » Debita
la source
Précipitations Aquifere ., Autres
zone SE profond exutoires
Précipitations
zone SO

Figure 21 : Boite transparente pour la simulation hydrodynamique de
I'aquifére du Lez.

La validation de la méthode a été effectuée en construisant un modele hydrologique avec le
logiciel HEC-HMS (HEC-HMS) qui représente le type de fonctionnement que nous cherchons
a identifier : quatre sous-bassins dont le débit est partiellement collecté dans un drain qui sort a
la source du Lez, le reste de I'eau étant transmis a l'aquifére pour émerger a d'autres exutoires.
Pour chaque sous bassin, le pourcentage d'eau exsurgeant a la source ainsi que la constante de
temps ont été imposés et devraient donc étre retrouvés dans la boite transparente. Les résultats
obtenus concernant les contributions sont synthétisés dans le Tableau 1. Il s'agit d'une moyenne
sur quatre modeles du bassin virtuel, différents par leur dynamique.

2 Le retard estimé correspond au temps de que met I’onde de crue a traverser le karst ; il ne s’agit donc pas de
transfert de matiére mais de transfert d’énergie. Le transfert de la matiére obtenu a partir de tragages peut étre
rapide en crue et trés lent a I’étiage.
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Contribution au débit Z1 Z2 Z3 Z4
Imposée dans le bassin-versant virtuel 33.9% 37% 8.4% 19.2%
Boite transparente (moyenne sur quatre
bassins virtuels différents) 35,3% 37,3% 8,8% 18,5%
Ecart type 2,86% 3,49% 3,49% 1,66%

Tableau 1 : Validation de la méthode a partir d'un aquifére virtuel.

Appliquée au bassin d'alimentation du Lez, la methode fournit les pourcentages de contribution
de chaque zone au débit observe a la source (Tableau 2). Les contributions sont estimées a
partir des paramétres medians correspondant a 50 réseaux obtenus a partir d'initialisations
différentes des parametres.

Contribution au débit Zone NO Zone NE Zone SO Zone SE
Boite transparente 28% 44% 11% 5%
Temps de réponse (jour) la3 1 1 0

Tableau 2 : Contribution des zones estimée par la boite transparente

Les contributions des zones au débit de la source appellent plusieurs commentaires. A la
premiere lecture, on est surpris de la faible importance de la zone Sud-Ouest qui est pourtant
une zone de recharge importante de l'aquifere ; cependant cette faible contribution est
explicable car la source du Lirou draine cette zone mais cette derniére n'est jaugée que depuis
moins d’un an. Les contributions des zones Nord-Ouest et Nord-Est correspondent a ce que I'on
peut attendre : on sait que la zone Nord-Est contribue directement a I'alimentation de la source
puisque des mesures de hauteur d'eau dans la nappe montrent qu'elle est directement influencée
par les pompages effectués dans le drain du Lez?. Par ailleurs la contribution de la zone Nord-
Ouest doit arriver a la source a la faveur de la faille de Corconne, accident tectonique majeur
qui sépare le bassin d'alimentation en deux et draine I'eau vers le sud. Enfin, la tres faible
importance de la contribution de la zone Sud-Est parait indiquer que cette zone est peu ou pas
comprise dans le bassin d'alimentation de la source. Ceci étant d'autant plus justifié que la zone
Sud-Est est constituée de terrains imperméables (avec quelques aquiféres perchés) sur lesquels
I'eau ruisselle pour atteindre le fleuve du Lez a I'aval de la source. Quelques apports marginaux
a I’aquifére pourraient cependant se produire a la faveur de failles.

Pour valider cette derniére hypothése, une autre manipulation a été realisée en ajoutant a
I’aquifere une cinquieme zone fictive d’alimentation, définie par un pluviométre "recevant” des
précipitations aléatoires lorsque des pluies sont enregistrées sur au moins un des quatre
pluviomeétres virtuels de la zone, et nulles autrement. Extraite de la boite transparente, la

22 Des piézométres implantés sur le site du Terrieu situé a quelques kilométres de la source (Figure 20) voient le
niveau de la nappe baisser tres rapidement lorsque le pompage dans le Lez est effectif (Jazayeri Noushabadi,
2009).
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contribution de cette zone est apparue quasi nulle. Cette derniére expérience permet donc
d'affirmer que lorsque les variables d’une zone n'affectent pas le débit, la zone est identifiée par
la boite transparente comme peu contributive. Ce dernier point renforce la proposition
consistant a redéfinir le bassin d'alimentation en excluant une grande partie de la zone SE.

jii. Vers la connaissance des volumes d’eau stockés dans les karsts

Dés 1975 Monsieur Alain Mangin proposait une approche systémique de modélisation
hydrodynamique du karst (Mangin, 1975). Celle-ci était fondée sur les mémes hypothéses que
I'apprentissage statistique : les signaux d'entrée et de sortie du systéme recélent suffisamment
d'informations pour réaliser un modéle efficace sans la connaissance détaillée des processus
élémentaires. Sa modélisation conceptuelle, fondée sur un enchainement de blocs en cascade
effectuant des opeérations physiquement interprétables, représentée de maniére simplifiée en
Figure 22, est celle qui nous a inspiré I'idée des boites transparentes en 1993. Aprés toutes ces
années et maintenant mieux armés, tant au niveau outils que méthodologie, nous pensons
pouvoir reprendre ce travail pour arriver a mieux connaitre le karst.

En identifiant chaque boite proposée par Alain Mangin avec un perceptron multicouche et en
« cascadant » les réseaux ainsi constitués comme représenté schématiquement a la Figure 22,
nous pensons pouvoir estimer les niveaux d'eau souterrains®, soit globalement pour I’aquifére,
soit pour chacune des zones géologiques.

Sur la partie droite de la Figure 22 représentant la boite transparente, qui correspond au modele
systémique de gauche, on note p(k) le vecteur des précipitations au temps discret k et a des
valeurs précédentes. Compte tenu de I'évapotranspiration, la sortie de ce réseau délivre une
estimation des pluies efficaces pesr qui sont appliquées, pour leurs valeurs récentes pesr(k) a la
fonction infiltration rapide, et pour leurs valeurs passées per(k-r) & la fonction infiltration
retardée. Les sorties de chacune des fonctions infiltrations (i,(k) et i(k), respectivement
infiltration rapide et infiltration lente) sont appliquées aux deux modules : drain et systemes
annexes qui délivrent les sorties s(k+1) pour les systemes annexes et y(k+1) pour le drain. La
connaissance du niveau de remplissage se fait en observant la sortie s(k+1).

Cette derniére information est tres précieuse pour deux raisons. D'une part elle permet d'évaluer
le niveau des réserves d'eau et est donc trés utile pour un gestionnaire ; d'autre part elle permet
d'estimer le remplissage du barrage écréteur de crue que peut représenter le karst. Ainsi, en
début d'automne, elle peut servir a mieux appréhender I'importance d'une éventuelle crue.

211 est trés difficile de pouvoir estimer le volume d'eau stocké dans un karst du fait de I'hétérogénéité de la
structure. Les forages ne fournissent pas nécessairement une information généralisable puisqu’ils peuvent étre
réalisés dans un conduit large empli d'eau ou dans un réseau de fines fissures trés peu drainantes. Compte-tenu de
la charge hydraulique, les niveaux d’eau dans ces deux types de vides ont des valeurs trés différentes.

-55-



Anne Johannet. Mémoire d’HDR. Université Pierre et Marie Curie.

Précipitations
ou apports d’un autre systéme

~N v 7

Evapotranspiration

/\,

Infiltration rapide Infiltration retardée

Drain |<—} Systémes annexes

V¥ Débit a la source

Pun(k) +

l p(k)

i (k)

y(k),s(k)

* P(k-r)

VA=

o

s(k+1

V¥ y(k+1)

Figure 22 : Modéle systémique du karst et sa boite transparente.
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Tous les modeles sont faux ;
certains sont utiles.

(G. E. Box, 1979)

V. Conclusion

Ce mémoire d’habilitation a diriger les recherches a 1’ambition de présenter de manicre
synthétique les recherches que j’ai effectuées sur la modélisation par apprentissage statistique
de systémes naturels ou en interaction avec un environnement naturel. Au fil de mes travaux,
J’ai acquis la conviction que les capacités d’apprentissage et d’identification universelle avaient
un champ d’application trés vaste dans la modélisation des systémes naturels par essence non
linéaires et partiellement connus.

Parmi ces derniers, les hydrosystémes m’ont paru emblématiques des défis que la science doit
permettre d’aborder. De fait, I'importance des enjeux soulevés par la ressource en eau ou la
prévision des crues a déterminé 1’instrumentation et le suivi de ces systémes depuis des
décennies, aboutissant ainsi a la constitution de bases de données d’une importance et d’une
richesse considérables. Les scientifiques qui se sont attachés a relever ces mesures, a les
consigner, les valider et les sauvegarder dans des fichiers numériques maintenant utilisables,
sont évidemment les premiers que nous devons remercier. Leur travail est immense en regard
de celui du modélisateur.

Comme nous I’avons soulevé dans la premiéere partie de ce mémoire, 1’apprentissage
statistique, issu de I’optimisation d’une fonction de colt décomposable en fonctions
paramétrées non linéaires, s’est enrichi de 1’idée du compromis entre le biais et la variance,
compromis qui doit étre pris en compte pour déterminer la complexité adéquate du modele.
Ainsi, diminuer la variance a donné lieu a plusieurs méthodes de régularisation que nous avons
présentées et que nous utilisons et revisitons pour optimiser des modeles statistiques capables
d’opérer en présence de données trés bruitées ou en partie incertaines.

En deuxiéme partie de ce mémoire nous avons présenté comment les réseaux de neurones se
sont dotés d’outils performants. Autant les régles d’apprentissage modernes qu’une habile
synthése entre la théorie des systémes et ’apprentissage statistique permettent désormais de
proposer des prédicteurs adaptés aux modeles hypothéses choisis du processus que 1’on
identifie. Des illustrations, auxquelles nous avons contribué, ont été proposées concernant
I’apprentissage de comportements d’un robot hexapode, la synthése de régulateurs pour le
contr6le en position et en pression d'une pince électropneumatique, ou la définition d’un
modele de prévision des crues rapides du bassin versant d’ Anduze.

Cependant, méme si nous disposons de bases de données établies sur une durée qui parait
longue, celle-ci est fort courte devant I’histoire des phénoménes hydrométéorologiques. Aussi
la recherche d’un mode¢le capable d’adopter une bonne réponse devant des phénomenes rares
ou extrémes doit étre spécifiguement menée. Face a ce questionnement, nous avons tenté de
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valider le fonctionnement du modéle statistique par une autre approche que la seule mesure
statistique de I’erreur de validation.

Ceci nous a conduits & proposer les boites transparentes, présentées en derniére partie, qui sont
utiles autant pour permettre la validation par un expert que pour retirer des enseignements sur
le systeme étudié. Trois illustrations de cette démarche originale ont été proposées, depuis
I’estimation des flux d’eau souterrain, a celle de I’évapotranspiration pour déboucher sur la
proposition de I’estimation du remplissage en eau d’un aquifére karstique.

Si j’ai bien conscience que la complexité des systeémes et des algorithmes utilisés dans
I’approche des réseaux de neurones peut donner le vertige autant a un naturaliste qu’a un
statisticien des premiéres heures qui effectuait les calculs a la main et pronait déja la
parcimonie, je n’en reste pas moins convaincue que les pistes que j’ai pu esquisser dans ce
mémoire vont nous permettre, en collaboration étroite avec les spécialistes des sciences
naturelles et des sciences physiques, de mettre en ceuvre des méthodes fiables permettant de
mieux identifier et mieux connaitre ces processus physiques pour I’instant si mal connus et
pourtant tellement importants.
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Annexes

Résumé des travaux de recherche

Depuis 1985, mes travaux de recherche portent sur l'apprentissage statistique. La premiére
expérience est celle de la these qui s'est déroulée au Laboratoire d'Electronique de I'ESPCI sous
la direction de Monsieur Gérard Dreyfus. Il s'agissait, d'une part, d'implémenter les réseaux de
neurones de type Hopfield, et d'autre part, de paralléliser les calculs sur plusieurs processeurs
paralleles afin d'accélérer les temps d'exécution. Ces travaux nous ont permis d'étudier
I'influence de la précision du codage des parametres du réseau sur la qualité de la mémoire ainsi
réalisée [RO3].

En 1991, j’ai intégré 1'école des Mines d'Ales. Aprés 2 périodes d'activité d'enseignement et de
recherche en laboratoire (1991-1999) et (2006-2011) qui m'ont permis d'initier des recherches
en apprentissage statistique dans des équipes aux compétences et activités tres différentes, le fil
directeur de mes travaux peut étre reformulé comme [I'application des méthodes
d’apprentissage artificiel, notamment des réseaux de neurones, a des systemes complexes, mal
connus, qu'’ils soient naturels ou artificiels, en interaction avec un environnement naturel. Si
rajouter la complexité d'un réseau de neurones a un systéeme cible déja mal décrit peut paraitre
trop ambitieux ou voué a l'échec, jai toujours cru, au contraire, que les questionnements
soulevés par ces systemes cibles peuvent faire progresser, également, la connaissance sur
I'apprentissage statistique.

Le premier exemple que je choisirai de présenter est celui d'un robot hexapode. Partant du
principe que l'environnement naturel ne peut étre décrit parfaitement, nous nous sommes
inspirés, avec mes collégues de I'EMA, des travaux de A.G. Barto pour proposer l'apprentissage
de comportement de ce robot par une méthode de renforcement utilisant une fonction objectif.
Ainsi, deux comportements nécessitant coordination et anticipation (I'évitement d'obstacles et
I'apprentissage de la marche) ont été évalués avec succes dans un environnement changeant
(modification des obstacles, réapprentissage sur 5 pattes) [RO6]. J'ai également contribué aux
travaux concernant la commande adaptative de processus non linéaire ou non stationnaire par
réseaux de neurones [ROA4].

Dés 1993, j'ai pris contact avec Monsieur Alain Mangin afin de travailler sur la modélisation
des karsts, aquiferes non-linéaires et spatialement trés hétérogénes. Tres en avance sur la
communauté internationale, nous avons jeté les bases de la recherche que j'effectue
actuellement [C10]. A partir de 2006, j'ai pu concrétiser ces travaux en étudiant la prévision des
crues rapides et la modélisation des karsts. Ces deux thématiques hydrologiques ont en
commun la disponibilité de bases de données observées depuis plusieurs décennies, la non-
linéarité des processus impliqués dans ces phénomenes, la difficulté a mesurer les variables
d'état, la présence d'un bruit de mesure considérable. Considérant le dilemme biais-variance qui
est au cceur des recherches sur l'apprentissage statistique, ces signaux et systémes nous ont
conduits a revisiter les méthodes de régularisation [RO10]. Ainsi, j'ai proposé et coordonné le
projet ANR FLASH, dont les partenaires sont 'ESPCI Paris-Tech, le laboratoire EDYTEM et
le SCHAPI (qui alimente en temps réel la carte de vigilance crue sur internet). Ce projet permet
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de prolonger les travaux précédents en s'intéressant a la modélisation systémique de I'ensemble
de la chaine hydrométéorologique sur les bassins versants du Piémont Cévenol. En
complément, les enjeux forts portant sur les bassins versants trop petits pour qu'une station de
mesure soit maintenue, ou bassins non jauges, nous ont conduits a proposer un modéle de
bassin versant normalisé virtuel. Enfin, sur le volet karst, la méthode des boites transparentes
qui vise a contraindre l'architecture d'un réseau de neurones afin de pouvoir interpréter les
variables internes du réseau en tant que grandeur physique a fait ses preuves tant sur
I'évapotranspiration [RO7] que la modélisation hydrodynamique du bassin d'alimentation
souterrain du Lez.

Ce type de démarche a également été proposé pour la caractérisation des suspensions
minérales, systémes physiques au comportement complexe, montrant ainsi la possibilité
d'améliorer la connaissance sur ces processus [RO12].
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Projet de recherches a 4 ans

Comme indiqué dans le résumé de mes activites de recherche, le fil directeur de ma démarche
est l'application des méthodes d’apprentissage artificiel, notamment des réseaux de neurones, a
des systemes complexes, mal connus, qu’ils soient naturels ou artificiels, en interaction avec un
environnement naturel. Mes recherches prévues dans les 4 années a venir vont s'appuyer sur
cette démarche et la décliner dans plusieurs projets pour répondre a plusieurs questions.

Caractéristiques tres particulieres des signaux en hydrologie

Dans de nombreux travaux, le choix du critére qui permet de mesurer la qualité d'un modéle est
adapté a I'objectif particulier visé par le modéle. Or, fort peu de travaux s'intéressent a modifier
le critere minimisé durant l'apprentissage. Ainsi, prenant en compte le fait qu'en hydrologie les
mesures de précipitations comme de débits, ainsi que le bruit associé, suivent une distribution
trés éloignée de la distribution normale, nous allons étudier les liens qui existent entre la
fonction de codt et les distributions statistiques des signaux d'entrée et de sortie. Plusieurs
pistes sont envisagées : celle qui consiste a effectuer une transformation non linéaire des
signaux d'entrée et de sortie a déja été initiée par d'autres auteurs, mais mérite d'étre revisitée
avec des transformations statistiques ; celle qui consiste a adapter la fonction de colt est plus
originale. Nous entreprendrons les deux approches.

Approfondissement des méthodes de régularisation

Les travaux réalises sur les données hydrologiques montrent que, pour ces données et pour le
type de modéle que nous avons mis en ceuvre, la régularisation par arrét précoce est
généralement plus efficace que celle par modération des poids. En nous inspirant des travaux
réalisés par L. Ljung, nous comparerons, en fonction des méthodes de régularisation, les
valeurs obtenues respectivement, par les parameétres du réseau, par la matrice Jacobienne et par
la matrice Hessienne, afin d'étudier les relations qui lient chacun de ces trois types grandeurs et
les propriétés de généralisation des modéles.

Bassin versant normalisé

Le bassin versant normalisé est proposé dans une approche dite de régionalisation : un modele
est congu pour un bassin versant jaugé, puis aprés la normalisation des précipitations et des
débits tant en intensité qu'en temporel, un bassin versant normalisé a intérét régional est concu.
Dans le cadre du projet BVNE?, nous étudierons les différentes transformations de
normalisation qui ont un sens en hydrologie (tant pour le temps de réponse du bassin versant
que pour la normalisation par rapport a sa superficie ou ses caractéristiques topographiques),
ainsi que les limites de régionalisation du bassin normalisé ainsi congu.

?* BVNE : Bassin Versant Numérique Expérimental : projet du SCHAPI dont I'objectif est de faire collaborer
plusieurs équipes scientifiques autour d'un méme objectif a I'aide d'une méme base de données.
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Modelisation semi-physique et boites transparentes

Les boftes transparentes seront mises & profit dans le projet FLASH® pour évaluer différentes
hypotheses sur la capacité d'infiltration des sols lors des épisodes pluvieux intenses du Piémont
Cévenol. Elles seront également utilisées pour estimer et prévoir le niveau de la nappe
souterraine du bassin versant de la Somme. Par ailleurs, en s'inspirant du modele
hydrodynamique des karsts de M. Alain Mangin, les boites transparentes seront utilisées afin
d'estimer le niveau de remplissage du karst. Les applications sont alors immenses tant pour
I'estimation des ressources en eau que pour I'écrétage de crue en cas d'orage violent.

Adaptativité et assimilation de données

Le projet FLASH prévoit d'étudier l'application de l'assimilation de données. A cette fin nous
étudierons comment rendre adaptatifs les parametres du modele, ce qui est une démarche déja
étudiée ; de maniére plus innovante, nous assimilerons également les grandeurs de
précipitations afin de compenser les erreurs et approximations de mesure qui peuvent étre trés
importantes.

» FLASH : Flood forecasting with machine Learning, data Assimilation and Semi-pHysical modeling.
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Synthése des activités d'enseignement

Enseignant-chercheur depuis 1985, mes activités d'enseignement sont assez diverses, tant sur
les contenus que sur les méthodes.

Travaux dirigés et Travaux pratiques
ESPCI (1985-1990) Electronique en premiére année : TD, préceptorats et TP.

EMA (1991-2011) TD en : électronique (1991-2006), automatique (1998-2011), réseaux de
neurones (1991-2011), électronique physique (1997-2000), capteurs (1994-1999), traitement du
signal (2000-2011) ; TP de : électronique (1991-1999), physique (1995-1999), réseaux de
neurones (1991-2011).

Cours magistraux
e EMA

Pour tous les cours magistraux, j'ai rédigé un polycopié détaillé. Sont indiqués dans ce qui suit
I'année d'étude ou est dispensé I'enseignement, le nombre moyen d'étudiants, les années ou cet
enseignement a eu lieu ; en effet de nombreuses refontes des enseignements font que les cours
apparaissent puis disparaissent ou sont repris par des collegues lors de leur arrivée a I'Ecole.

Electronique (4°™ année, 30 éléves ; 1991-1994).
Architecture de I'ordinateur (2°™ année, 150 éléves ; 1995-1998).
Automatique (1 année, 120 éléves ; 1998-2011).
Réseaux de neurones (3°™ année, 30 éléves ; 1991-2010).
Complexité (3°™ année, 30 éléves ; 1999).

e DEA SIAM de I’Université Montpellier 11
Réseaux de neurones (1995 et 1996).

e DEA de Productique et d’Informatique de I’Université d’Aix Marseille 111
Réseaux de neurones (1998).

Encadrement de projets (enseignement et recherche)

e EMA, en moyenne par année

3éme

Deux projets longs internes a I'EMA par an : projet d'un groupe de trois éleves en annee

(temps éléve de plus de 100 h a I'emploi du temps).

Cing mini-missions de mathématiques (depuis 2000) : trois éléves durant 1 semaine.
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Accueil de stagiaires étrangers (russes, espagnols, indiens, allemands ...) dans le cadre
d'échanges internationaux.

Suivi de 2 missions (depuis 2000 : 3 éléves en situation professionnelle en entreprise durant 5
semaines ; vérification du bon déroulement de I'étude).

Pédagogies innovantes

Ma conviction, forgée aux feux des tableaux noirs et des amphithéatres, est que le temps de
I'expert qu'est I'enseignant devrait étre réservé aux approfondissements du cours et aux
discussions avec les étudiants plus qu'a I'explication des bases qui constitue parfois une part
non négligeable des enseignements. C'est pourquoi, avec mon collegue Daniel Diep j‘ai initié
une modification profonde de la pédagogie de I'enseignement d'automatique en premiere année
de formation initiale (120 éleves en 2000) ; j'ai également participé a la formation a distance
(par Internet) en électronique, pour un public d'étudiants salariés (2001-2008).

Automatique en formation initiale. Le cours magistral en amphithéatre a été supprimé au profit
d'un pilotage pédagogique renforcé avec des contréles continus rendus par groupes de 3 éléves
a chaque séance de TD. Les contrbles continus ont pour vocation de faire travailler les éléves
sur les points importants du cours, par ailleurs fourni sous forme d'un polycopié détaillé (100
pages environ) comprenant des apports théoriques méthodologiques et des exercices simples
d'application et de stimulation du questionnement des étudiants. En place et lieu du cours, un
espace question est aménagé pour les étudiants qui le souhaitent et prennent un rendez-vous
avec l'enseignant. L'efficacité de cette méthode pédagogique est validée aprés 9 années
d'exercice.

Electronique a distance en formation continue. Le cours est remplacé par un polycopié détaillé.
Les TD ont lieu le soir par internet chaque semaine pendant la durée de I'enseignement. Les TP
sont réalisés a I'occasion des examens chaque trimestre (regroupement physique des étudiants
qui habitent parfois a plusieurs centaines de km de I'école, voire a I'étranger). Compte tenu des
limitations de la bande passante par internet, une méthode pédagogique originale a été déployée
durant les TD pour stimuler le travail des étudiants. Cette activité a donné lieu a 2
communications internationales [C26][C28].

Responsabilités pedagogiques
Coordination de I'enseignement d'automatique en tronc commun (1994-1999)
Responsable adjoint de I'équipe pédagogique de la 2°™ année (1999-2005)

Animations de groupes de travail et rapports internes ayant trait a la pédagogie

Groupe de travail sur I'évaluation des éleves en 1992-1993. Définition et intégration au
reglement de scolarité de la notion de "groupe de matieres”. Rédaction des comptes-rendus.

Groupes de travail sur I'évaluation des éléves en 1997-1998. Animation (et rédaction des
comptes-rendus) du groupe de travail sur les cours de base ; définition originale et proposition
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de la "grille de contenus et d'évaluation”. Participation aux groupes centrés sur les cours au
choix et I'évaluation des TP.

Groupes de travail sur la réforme entrepreneuriale en 1999.

Groupe de travail sur l'efficacité des enseignements en 2004. Animation du groupe, rédaction
des comptes rendus et du rapport de synthese pour le Conseil de Direction de I'Ecole.
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Jurys de théses et encadrements

Participation a des jurys de théses

e Pierre Couturier, soutenue le 16 juillet 1997. Thése de doctorat de ’INSA de Lyon en
spécialité : Automatique Industrielle. «Commande par réseaux de neurones : application
au controle dun préhenseur électropneumatique». Directeur de these:

Monsieur Maurice Bétemps.

e Carole Dautun, soutenue le 14 décembre 2007. These de doctorat de I'Ecole Nationale
Supérieure des Mines de St Etienne en spécialité: Science et Genie de
I’Environnement. « Contribution a I’Etude des crises de grande ampleur : connaissance
et aide a la décision pour la Sécurité Civile. ». Directeur de thése : Monsieur Gilles

Dusserre.

e Mohamed Toukourou, soutenue le 10 décembre 2009. These de doctorat de I'Ecole des
Mines de Paris en spécialité : Informatique Temps Réel, Robotique et Automatique :
«Application de I’apprentissage artificiel aux prévisions des crues éclair». Directeur de

thése : Monsieur Gérard Dreyfus.

e Julien Bongono, soutenue le 3 septembre 2010. Thése de doctorat de I'Ecole Nationale
Supérieure des Mines de St Etienne en spécialité : Science et Génie des Matériaux.
«Caractérisation des suspensions par des méthodes optiques. Modélisation par Réseaux

de Neurones». Directeur de these : Monsieur Pierre Gaudon.

Co-encadrement de théses en cours

e Line Kong A Siou (2008-2011), Montpellier 1l, Ecole Doctorale SIBAGHE
« Modélisation des crues de bassins karstiques par réseaux de neurones ». Directeur de

thése : M. Séverin Pistre.

e Audrey Bornancin-Plantier (2009-2012), Paris VI, Ecole Doctorale EDITE.
«Application de I’apprentissage artificiel a la modélisation systémique de la chaine

hydrométéorologique pour la prévision des crues éclair ». Directeur de thése :
Gérard Dreyfus

e Guillaume Artigue (2009-2012), Montpellier Il, Ecole Doctorale SIBAGHE. « Prévision
des crues éclair par réseaux de neurones, généralisation aux bassins versants non

jauges ». Directeur de these : M. Séverin Pistre.
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Master 1

Guillaume Artigue (2007). "Les réseaux de neurones formels : application aux crues
éclair du bassin versant de la Céze". Université Montpellier Il. Master Géosciences.

Coralie Guillot (2010). "Détermination de paramétres spatio-temporels de
caractérisation des bassins versants (multi échelles — multi sites) a ’aide de la
modeélisation hydrologique”. Université de Montpellier 11. Département des Sciences de
la Terre, de I’Eau et de 'Environnement, mention Sciences Pour I’Environnement.

Master 2, DEA ou Mastére professionnel

Jean Louis Zorer (1986). "Etude du réseau de Hopfield". Université Pierre et Marie
Curie. DEA d'électronique.

Gilles Lohéac (1987). "Regles Locales d'apprentissage pour les réseaux de neurones
formels". Université Pierre et Marie Curie, DEA d'électronique.

Jean Philippe Amouroux (1996). "Etude de la construction d'un classifieur par réseaux
de neurones : application au traitement d'images satellites”. Université de Montpellier
Il. DEA SYAM.

Stéphane Danieau (1996). "Gestion des sites pollués : outils d'évaluation des risques et
méthodologie de choix d'une filiere de traitement”. LGEI- EMA. Mastére spécialisé en
Securité Industrielle et Environnement.

Cuq Jeréme (1997). "ldentification de processus dynamique par réseaux de neurones"”.
Université de Montpellier Il. DEA SYAM.

Sarah Eurisouké (2006). "Prévision des crues par réseaux de neurones formels".
Universite de Poitiers. Master Professionnel Géotechnologie Expérimentale.

Kévin Cros (2009). "Prise en compte du karst dans la modélisation par réseaux de
neurones appliquée au Lez". Université Pierre et Marie Curie. Master 2 Sciences de
I’Univers, Environnement, Ecologie, Parcours Hydrologie-Hydrogéologie.
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Résumé

Ce mémoire d’Habilitation a Diriger les Recherches présente de maniere synthétique les
recherches effectuées sur la modélisation par apprentissage statistique de systémes naturels ou
en interaction avec un environnement naturel. La spécificité de ’apprentissage est tout
d’abord discutée en relation avec le calage et permet d’introduire les notions d’identification
universelle et de dilemme biais-variance qui sont ensuite approfondies dans le mémoire. Ces
notions sont illustrées en relation avec la problématique de la synthése d’un modele de
simulation ou de prédiction. Plusieurs illustrations sont présentées comme 1’apprentissage de
comportement d’un robot hexapode, la synthése du contréleur d’un préhenseur pneumatique
et la modélisation d’hydrosystémes tels les karsts ou les bassins versants rapides. Ces
derniers, emblématiques des défis que la science doit permettre d’aborder, ont en commun la
disponibilit¢ de bases de données observées depuis plusieurs décennies, la non-linéarité¢ des
processus impliqués dans ces phénomeénes, la difficulté a mesurer les variables d'état et la
présence d'un bruit de mesure considérable. Face a ces difficultés, ce mémoire présente
comment les méthodes de régularisation ont été revisitées et propose une démarche originale
de modélisation semi physique, les boites transparentes, qui permet de valider physiquement
le mode¢le tout en approfondissant la connaissance des phénoménes étudiés.

Abstract

This “Habilitation a Diriger les Recherches” report presents a synthesis of research on the
modeling of natural systems, or systems in interaction with a natural environment, by machine
learning. The specificity of training is first discussed in relation to the calibration and leads to
the introduction of the concepts of universal identification and bias-variance dilemma which
are then detailed. These concepts are illustrated with regards to the synthesis of a model
dedicated to simulation or prediction. Several illustrations are presented such as the training
of several behaviors by a mobile robot, the synthesis of a gripper pneumatic controller, and
finally the modeling of hydrosystems such as karsts or rapid watersheds. These iconic
challenges have in common the availability of databases for several decades, the nonlinearity
of the processes involved in these phenomena, the difficulty to measure the state variables, the
presence of a considerable noise on the measurements. In order to deal with these difficulties,
this report presents how the regularization techniques were reviewed and proposes an original
method of semi-physical modeling, the transparent boxes, which allows the physical
validation of the model and the deepening of the knowledge one gets about the studied
phenomena.
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