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I. Introduction : pourquoi l’apprentissage ? 

L‟objet du premier exercice du cours d'automatique que je propose aux étudiants découvrant 

cette matière est de les sensibiliser à la complexité du monde et au fait que, par exemple, la 

simple action de marcher droit, les yeux fermés, le long d‟un chemin nécessite une description 

parfaite de l‟environnement, ainsi qu‟une maitrise parfaite de leurs propres actionneurs. A 

défaut de cette description, il est nécessaire d'ouvrir les yeux pour utiliser le retour 

d‟information visuelle effectué par la contre réaction qui permet de calculer une erreur et ainsi 

de se repositionner par rapport à l‟objectif. Sans ce retour visuel d'information sur la 

satisfaction de l'objectif, la tâche est vouée à l'échec. 

Ainsi, une des difficultés de la conception de systèmes en interaction avec, ou modélisant, les 

milieux naturels est assez similaire : il est utopique de vouloir décrire complètement et 

exhaustivement toutes les situations que peut rencontrer le système que l‟on conçoit et ainsi 

toutes les actions qu‟il devrait réaliser. L‟approche algorithmique qui a nourri les systèmes 

experts à leurs débuts a ainsi montré ses limites, non seulement parce que toutes les 

configurations possibles ne peuvent être décrites (l‟espace des états comprend trop de 

configurations) mais également parce que le savoir n‟est pas forcément disponible sous une 

forme exploitable par les programmeurs et les algorithmes.  

Demandons ainsi à un conducteur de four, par exemple le four de calcination de chamottes
2
 que 

le groupe IMERYS nous a permis d‟étudier, comment il règle la température et la vitesse de 

rotation. Nous aurons des réponses à propos de la consistance des dépôts sur le bord du four, 

sur des mesures d‟humidité et d‟autres paramètres, mais rien ne nous assure que d‟autres 

informations ou traitements inconscients ne soient pas à l‟œuvre dans le processus intelligent 

que réalise ce conducteur. Comment donc prendre en compte ces processus ? 

Tentons également de modéliser le fonctionnement hydrologique d'un bassin versant 

hétérogène de montagne. À supposer que l'on connaisse les modèles physiques des multiples 

phénomènes permettant de réaliser la transformation de la pluie en débit dans la rivière, est-il 

                                                 

2
 La chamotte est une argile cuite à 1300°-1400° qui est utilisée pour réaliser des produits réfractaires. 

 

"Si les gens ne croient pas que 

les mathématiques sont simples, 

c’est seulement parce qu’ils ne 

réalisent pas combien la vie est 

compliquée ! " [J. Von Neumann, 

cité par F. L. Alt, 1972] 
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réellement possible d'obtenir toutes les informations utiles à la description des phénomènes 

physiques qui opèrent dans la transformation pluie-débit ? Pour ne parler que du sous-sol, et si 

tant est que l'on puisse le faire de manière non destructive, doit-on, par une multitude de 

forages, mesurer l'exacte épaisseur de chaque type de sol ou de roche, ainsi que son pendage, sa 

perméabilité, sa porosité ?  

L'apprentissage statistique apporte une réponse à ces questions. De même que l'asservissement 

exploite l'erreur entre la consigne et la sortie du système asservi, de même l'apprentissage 

automatique se fonde sur l'erreur du modèle par rapport à son objectif. Ainsi, grâce à une 

décomposition de la tâche à réaliser sur une base de fonctions paramétrées, l'apprentissage 

statistique permet simultanément de déterminer la fonction du modèle ainsi que de fixer ses 

paramètres, de manière à minimiser l'erreur sur un ensemble d'apprentissage donné. 

L'apprentissage n'est donc pas seulement le calage des paramètres d'un modèle, l'apprentissage 

construit le modèle en même temps qu'il calcule ses paramètres.  

Pour réaliser ce double travail, l'apprentissage statistique s'appuie sur des fonctions paramétrées 

lui permettant d'avoir la souplesse nécessaire pour s'ajuster à toutes les fonctions 

potentiellement étudiées. Nous verrons à ce propos à la section III.2 que les réseaux de 

neurones possèdent la propriété d'identification universelle.  

La capacité d'identification universelle a son prix, c'est celui de l'augmentation du nombre de 

paramètres libres du modèle qu'il faut ajuster. Opérant sur des fonctions non linéaires (les 

fonctions paramétrées), ces paramètres permettent au modèle de s'ajuster parfaitement à 

l'ensemble d'apprentissage, et d'autant plus efficacement que le nombre de ces paramètres, ou la 

complexité du modèle, croît. Mais le modèle, si certaines précautions ne sont pas prises, peut 

alors être surajusté et tellement spécialisé par rapport à l'ensemble d'apprentissage qu'il 

apprendrait même la réalisation particulière du bruit dans cet ensemble et serait alors incapable 

de généraliser à d'autres ensembles. Le dilemme biais-variance, présenté au chapitre II.2 

formalise ce phénomène. Plusieurs solutions ont été proposées pour l'éviter, parmi celles-ci, 

nous discuterons aux paragraphes III.5 et III.6 des méthodes de sélection de variable et de 

régularisation. 

Appliquer l'apprentissage statistique à des phénomènes naturels complexes et partiellement 

connus, dont les variables sont mesurées avec une grande incertitude et sur des événements en 

nombre restreint, pose bien évidemment avec plus d'acuité le problème du surajustement. C'est 

pourquoi nos travaux sur la modélisation et la prévision des crues des bassins rapides nous ont 

conduits à revisiter ces méthodes de régularisation et de sélection des variables. La section 

III.8.a présente comment l'application rigoureuse de telles méthodes a permis le développement 

d'un outil de prévision des crues sur les bassins du piémont cévenol. 

La "face noire" de l'identification universelle, qui est perçue de manière moins positive, est que 

la décomposition sur une base de fonctions paramétrées n'est pas très interprétable, au sens de 

la connaissance sur les phénomènes physiques ; c'est pourquoi ces modèles issus de 

l'apprentissage statistique sont qualifiés de "boîtes noires", et parfois décriés comme étant trop 

complexes à mettre en œuvre et "invérifiables".  
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Pourtant les modèles de type boîte noire extraient des bases de données une grande quantité 

d'information. Autant pour asseoir leur validité que pour exploiter cette information, certains 

travaux s'intéressent aux méthodes permettant de recouvrer cette connaissance ; ainsi les boîtes 

transparentes qui sont présentées dans ce mémoire en paragraphe IV.1 appliquent des 

contraintes au réseau de neurones afin de restreindre le champ des possibles et de pouvoir 

dégager une interprétation du calcul effectué par les fonctions paramétrées. Cette méthodologie 

a été appliquée avec succès à des bassins versants particulièrement mal connus : bassins 

karstiques composés de roches carbonatées et fracturées, que l'eau a dissoutes selon des 

géométries de dimensions très variables et jusqu'en profondeur. Ces bassins hétérogènes sont le 

siège de crues, mais peuvent parfois jouer le rôle d'écrêteurs de crues ; ils sont également le 

principal réservoir en eau douce de la Terre.  

Appliqué au bassin karstique de la source du Lez, source qui alimente en eau potable la ville de 

Montpellier, la méthode des boîtes transparentes a ainsi permis de mettre en évidence les 

propriétés hydrodynamiques de différents compartiments géologiques de ce bassin versant. Nos 

travaux futurs évoqués en IV.1.b.iii tenteront par ce moyen d'estimer les ressources en eau 

disponibles dans les karsts. 

Enfin, si l'apprentissage statistique est capable de déterminer simultanément, et les paramètres 

et la fonction d'un modèle, il semble alors naturel, dans le contexte d'un environnement mal 

connu, de proposer des modèles adaptatifs c'est-à-dire qui continuent à apprendre durant leur 

fonctionnement. Ce type d'approche est évoqué au chapitre III.7, appliqué à l'apprentissage de 

comportement d'un robot hexapode par renforcement. Nous avons ainsi pu montrer que des 

tâches a priori difficiles à formaliser pouvaient être effectuées avec succès grâce à un 

apprentissage permanent effectué sur un modèle particulièrement simple.  

Compte tenu de leur complexité, la connaissance imparfaite de leur état, ou des événements 

rares pouvant se produire, est également une propriété des systèmes météorologiques et 

hydrologiques. L'adaptatitivé (ou assimilation de données en météorologie) n'a-t-elle pas reçu 

ses lettres de noblesse lors de la grande tempête de 1999 ? Il pourrait en être ainsi au niveau des 

épisodes pluvieux extrêmes dont aucun enregistrement n'a encore été réalisé mais pour lesquels 

nous souhaiterions disposer d'un modèle capable de s'améliorer pendant que le phénomène se 

déroule. Une ouverture vers les travaux que nous envisageons dans le projet ANR FLASH est 

ainsi proposée à la section III.7.b.ii . 

Ce mémoire, qui présente nos travaux sur l‟application des réseaux de neurones à la 

modélisation des systèmes naturels complexes, ou des systèmes artificiels en relation avec un 

environnement naturel, n‟est une présentation ni chronologique, ni exhaustive, car il n‟est pas 

possible, tant pour des raisons pratiques que de confidentialité, de présenter tous les travaux et 

tous les projets de recherche industriels menés à bien ; elle se veut un cheminement sélectionné 

au travers de plus de quinze années de recherche.  

Je vous propose de commencer la lecture par quelques considérations sur la méthode qu‟utilise 

l‟apprentissage statistique pour résoudre un problème à l‟aide d‟une fonction de coût et d‟une 

base d‟exemples, considérations qui introduisent certaines de nos préoccupations actuelles sur 

l‟adéquation entre la fonction de coût, l‟objectif de la modélisation et les distributions 
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statistiques des exemples. Nous nous intéresserons ensuite au dilemme biais-variance, que l‟on 

pourrait présenter comme une formulation statistique du principe du rasoir d’Occam
3
, et qui 

conduit à sélectionner le modèle le plus parcimonieux afin d‟assurer une bonne qualité de 

généralisation.  

Restreignant alors notre propos aux réseaux de neurones dans la troisième partie de ce 

mémoire, nous pourrons présenter les modèles de prédicteur les plus adaptés à la modélisation 

des systèmes physiques qui nous intéressent particulièrement. L‟apprentissage des modèles 

neuronaux sera évoqué, en particulier lorsqu‟il est appliqué aux systèmes dynamiques ou pour 

concevoir des modèles adaptatifs. L'exemple de la synthèse d'un régulateur neuronal pour 

commander une pince électropneumatique sera alors présenté à titre d'illustration. Nous 

évoquerons ensuite les méthodes de régularisation et leur application aux modèles de prévision 

des crues rapides des bassins cévenols. 

Complexes par nature, ces bassins versants du piémont cévenol n‟ont rien de ce qui rend belle 

la physique : l‟invariance d‟échelle et la symétrie. Cumulant une géologie tourmentée, des 

pentes moyennes dignes du massif alpin et des orages aussi soudains qu‟intenses, les crues 

qu'ils subissent peuvent gonfler les cours d‟eau et, en quelques heures, les transformer en 

pièges mortels. La prévision a alors tout son sens : il faut anticiper avant que les réseaux 

routiers et de distribution ne soient coupés. Cette préoccupation passionnante est l‟objet des 

projets BVNE et ANR FLASH que nous présentons ensuite. 

Disposer de modèles efficaces est évidemment essentiel lorsque l‟on travaille sur de tels 

enjeux, mais comprendre ces modèles ou les utiliser pour mieux connaître les processus 

naturels est encore plus passionnant ; c‟est tout l‟enjeu évoqué dans la quatrième et dernière 

partie de ce mémoire. Nous y présentons comment l‟on peut esquisser des modèles semi-

physiques ou comment, grâce à l‟intégration de connaissances dans l‟architecture du réseau de 

neurones, cette dernière peut être contrainte pour, en retour, permettre d‟en extraire de 

l‟information. Nos travaux sur le système karstique du Lez, qui cumule les difficultés d‟une 

hétérogénéité géologique, d‟une hétérogénéité pluviométrique, d‟un anthropisation des débits 

par un pompage intense et d‟un bassin versant à géométrie variable en fonction du niveau du 

remplissage, ont permis non seulement d‟obtenir un modèle prédictif convenable, mais en plus 

d‟estimer les transits d‟eau souterraine entre les différents compartiments du karst et la source.  

Au cœur de nos préoccupations, nous terminons ce mémoire en envisageant d‟utiliser la 

méthode des boîtes transparentes, ainsi présentée, à l‟estimation des réserves en eau stockée 

dans les karsts.  

 

 

                                                 

3
 Guillaume d‟Occam vécut au XIV ème siècle, il énonça le principe suivant : “ pluralitas non est ponenda sine 

necessitate”, qui signifie qu‟il ne faut pas multiplier les hypothèses si elles ne sont pas nécessaires. Le principe du 

rasoir d‟Ockham fut formulé par la suite, on peut le comprendre comme une méthode d‟élagage. 
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II. L’apprentissage statistique 

APPRENTISSAGE PAR MINIMISATION DE FONCTION 

a. Maximum de vraisemblance et moindres carrés, autres fonctions de coût 

Comme nous l'avons indiqué dans l'introduction de ce mémoire, l'apprentissage statistique est 

fondé sur la minimisation d'une erreur, appelée dans la suite de ce mémoire fonction de coût. 

Cette dernière est formulée de manière à satisfaire un objectif, par exemple l'objectif d'avancer 

pour un robot adaptatif. L'objectif peut également être exprimé sous la forme d'une base 

d'exemples comprenant les variables d'entrée du processus à identifier et les réponses mesurées 

associées. La fonction de coût généralement choisie, mais pas seulement, est l'erreur 

quadratique. Outre ses bonnes propriétés de continuité et de dérivabilité, cette fonction est 

également particulièrement intéressante lorsque l'on dispose de bases de données dont les 

erreurs de mesure sont indépendantes et distribuées selon la loi gaussienne. En effet, dans cette 

configuration, W. H. Press (Press et al, 1992) présente comment le fait de poser l'hypothèse 

intuitive du maximum de vraisemblance est équivalent à minimiser l'erreur quadratique.  

Ainsi, la nécessité de transformer les variables pour les "normaliser" (de manière à ce qu'elles 

soient centrées et réduites) avant de réaliser l'apprentissage est couramment admise. Or comme 

nous le présenterons chapitre III.8.a, les erreurs et approximations réalisées sur les acquisitions 

de variables naturelles, en particulier les variables météorologiques et hydrologiques ne 

vérifient aucune des deux hypothèses de l'indépendance et de la distribution gaussienne, 

comme nous pouvons l‟illustrer sur la Figure 1 pour cette dernière caractéristique, sous 

l‟hypothèse que le bruit de mesure est proportionnel à la grandeur de la variable. Nous avons 

d'ailleurs pu observer que lorsque l'apprentissage est réalisé sur des variables de pluie et de 

débit centrées et réduites, le modèle obtenu n'est pas le plus performant, et que la simple 

transformation consistant à effectuer un changement d'échelle des variables afin que leurs 

valeurs soient plus petites que un conduit à des modèles plus efficaces (Toukourou, 2007).  

Cette difficulté est appréhendée par la communauté des modélisateurs en hydrologie. G. J. 

Bowden de son coté (Bowden, 2003) a étudié quelques transformations, linéaires et non 

linéaires, effectuées sur les variables de précipitation et de débit afin de diminuer leur grande 

variabilité sans noter d'améliorations notables alors que K. P. Sudheer (Sudheer, 2003) au 

contraire, note des améliorations notables sur l'estimation des pics de crue lorsqu'il applique des 

transformations sur les signaux de débit afin de diminuer les moments d'ordre trois et quatre. 

Dans les deux cas ces travaux, un peu anciens, utilisant la rétropropagation comme règle 

d'apprentissage et n'appliquant pas toujours de méthode de régularisation (section III.6) 

méritent d'être ré-explorés. 
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Figure 1. Distribution statistique de variables journalières de 1987 à 2005.  

Précipitations enregistrées à St Martin de Londres (mm) à gauche et débits à 

la source du Lez (m
3
/s) à droite. 

b. Critères de performance 

i. Des critères adaptés à l’objectif 

A défaut de pouvoir déterminer une fonction de coût prenant en compte les particularités 

statistiques des signaux hydrologiques, les auteurs se focalisent plutôt sur les critères de 

sélection des modèles. Ainsi le choix d'un critère de sélection de modèle représentatif de 

l'objectif est souvent discuté. P. K. Kitadinis (Kitadinis et al, 1980) ont proposé le critère de 

persistance adapté particulièrement à la prévision ; dans d'autres études, la racine carrée de la 

valeur absolue de l'erreur est utilisée pour mesurer plus particulièrement les erreurs de faibles 

débits ; tandis que M. Toukourou a proposé, dans ses travaux sur la prévision des crues du 

Gardon d'Anduze, un critère prenant en compte plus spécifiquement la montée du pic de crue 

(Toukourou, 2009-b). C. Perrin dans sa thèse (Perrin, 2000) discute d‟un grand nombre de 

critères et propose une stratégie multi-critères de sélection de modèle. R. Moussa (Moussa, 

2010) s‟inscrit dans la même démarche et dérive plusieurs critères du coefficient de 

détermination R
2
, ou critère de Nash (Nash et al, 1970) en modifiant le modèle de référence

4
 de 

ce dernier, terme qui apparait dans le coefficient de réduction présent au dénominateur.  

                                                 

4
  Le coefficient de détermination pour un signal exprimé en fonction du temps discret k : s(k), s‟écrit de la 

manière suivante : 




nséchantillon 

2

2

))(-)((
1

krks

EQM
R . EQM est l'erreur quadratique moyenne et le modèle de 

référence apparaît sous la forme de r(k). Pour le coefficient de détermination, la valeur utilisée de r(k) est la 

moyenne observée sur l‟ensemble des n échantillons considérés. Cependant, on peut tout à fait prendre en compte 

d‟autres modèles de référence. Ainsi, le critère de persistance n‟est autre que le coefficient de détermination 

calculé à l'horizon de prévision hp, prenant comme modèle de référence la prévision naïve, c‟est-à-dire la prévision 

qui suppose que le système évolue très peu : r(k)=r(k+hp) où hp est l‟horizon de temps auquel s‟effectue la 

prévision. 
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ii. Vers l’ajustement de la fonction de coût à l’objectif 

Si de nombreux critères de performance ont été proposés, en revanche il existe moins 

d‟initiatives visant à adapter la fonction de coût à l‟objectif particulier du modèle. Ceci est dû 

au fait que la grande majorité des travaux s‟intéresse à des processus dont les variables peuvent 

être considérées comme gaussiennes, rendant de ce fait l‟erreur quadratique tout à fait adaptée. 

Comme présenté précédemment, cette hypothèse n‟étant pas satisfaisante pour un grand 

nombre de systèmes hydrologiques, nous pensons travailler de manière conjointe les deux 

aspects de la question : d‟une part les transformations visant à rendre gaussiennes les 

répartitions statistiques des variables d‟entrée et de sortie et d‟autre part l'utilisation d‟autres 

fonctions de coût que l'erreur quadratique durant l'apprentissage. 

Ainsi, dans le cadre du projet ANR FLASH (section III.8.a) Audrey Bornancin-Plantier étudie 

l‟impact de l‟utilisation d‟un critère favorisant les valeurs les plus élevées du signal dans le 

calcul de l‟apprentissage. Ce critère est inspiré du critère PWRMSE (Peak Weighted Root 

Mean Square Error) qui s‟exprime ainsi : 

n

y

ky
kyky

PWRMSE
p

p
p 

 élémentsn 

2 )
2

)(

2

1
())()((

 

où y
p
(k) est la variable de sortie observée sur le processus à l'instant discret k, y(k) la variable 

estimée par le modèle, n le nombre d'échantillons sur lequel est évalué le modèle et py  est la 

valeur moyenne de la grandeur observée.  

Cependant pour simplifier les calculs de l'apprentissage
5
, le critère de pic que nous avons 

implémenté et qui est en cours d'évaluation s‟exprime sous la forme : 

 
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L'erreur quadratique calculée à l'instant discret k est donc amplifiée si la valeur observée à cet 

instant est supérieure à la moyenne des valeurs observées ( py ). 

Suivant l‟analyse proposée par R. Moussa et présentée précédemment, d‟autres fonctions de 

coût pourront être étudiées, par exemple celle qui prend comme modèle de référence le modèle 

linéaire correspondant au modèle étudié (ayant les mêmes variables d'entrée et le même jeu de 

données) afin de mesurer le gain apporté par la non linéarité du modèle. 

                                                 

5
 Lors du calcul de l'apprentissage, la dérivée de la fonction de coût est calculée à la présentation de chaque 

exemple ; ces dérivées sont ensuite cumulées pour estimer le gradient de l'erreur total qui est utilisé pour modifier 

les paramètres du modèle. Or, lorsque la fonction de coût comporte la racine carrée des erreurs quadratiques, la 

dérivée globale n'est plus la somme des dérivées individuelles de chaque exemple. Afin de conserver cette 

propriété d'additivité des gradients et comme la racine carrée n'est utile que pour conserver la dimension de 

l'erreur, nous avons préféré enlever cette dernière de la formule du critère de pic. 
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II.2. Dilemme biais-variance 

a. Présentation  

La conception d'un modèle par apprentissage statistique comporte, comme nous l'avons 

souligné précédemment, le choix de la fonction de coût que le modèle doit minimiser à partir 

d'un ensemble d'exemples. Dans le cas d'une fonction de coût quadratique, les m observations 

disponibles de la grandeur à modéliser y
p
(k) sont vues comme les réalisations d'une variable 

aléatoire Y, fonction de x (le vecteur des variables d'entrées), telle que : 

Y(x)=g(x)+B 

g(x) est la fonction de régression, elle est égale à l'espérance mathématique de Y conditionnée à 

x : g(x)=E(Y|x) et B est une variable aléatoire d'espérance mathématique nulle et de variance σ
2
 

représentant le bruit compris dans les observations. 

Le but du modèle construit par apprentissage statistique est d'estimer la fonction g(x) par une 

fonction ĝ(x), au mieux, compte-tenu des observations disponibles. L'erreur de prédiction 

théorique réalisée par le modèle est donc l'espérance mathématique E[(g(x)+B-ĝ(x))
2
]. S. 

Geman (Geman et al., 1992) a montré que cette erreur peut s'exprimer sous la forme de la 

somme de trois termes : 

E[(g(x)+B-ĝ(x))
2
]=σ

2
+E[(g(x)-ĝ(x))

2
]=σ

2
+(g(x)-E[ĝ(x)])

2
+E[(ĝ(x)-E[ĝ(x)])

2
] 

Le premier des trois termes correspond au bruit irréductible présent dans les observations, le 

second terme est appelé biais, il transcrit comment l'espérance mathématique de la prévision est 

éloignée de la régression théorique, tandis que le troisième terme est la variance, il rend compte 

de la variance de la prédiction, en fonction des modèles obtenus avec tous les ensembles 

d'apprentissage possibles. 

Le biais correspond à l'ajustement du modèle aux données d'apprentissage et la variance est la 

variabilité de la prédiction obtenue en fonction de ces différents ensembles. 

Plusieurs observations peuvent être faites sur cette formulation proposée par Geman, d'une part 

les trois termes sont positifs, l'erreur de prédiction ne peut donc en moyenne être inférieure à 

celle des données d'observations ; d'autre part, le biais et la variance varient en sens inverse l'un 

de l'autre en fonction de la complexité du modèle. Ainsi lorsque la complexité du modèle 

augmente, le biais diminue car le modèle s'adapte d'autant plus facilement aux données 

d'apprentissage qu'il est plus complexe. Par ailleurs la variance du modèle augmente avec la 

complexité car la variabilité des prédictions obtenues est de plus en plus sensible aux 

spécificités de l'ensemble d'apprentissage et même à la réalisation particulière du bruit dans cet 

ensemble.  

La somme des deux termes, variance et biais, présente donc un minimum qu'il convient de 

rechercher en fonction de la complexité. Au delà de ce minimum, le modèle est surajusté. 

Il convient de noter que ces considérations sont théoriques et ne sont assurées que de manière 

asymptotique, pour les très grands ensembles de données. La régression g(x) n'étant pas 
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connue, il n'est pas possible de calculer numériquement le terme de biais. De même, il n'est pas 

envisageable d'effectuer le calcul des modèles pour tous les ensembles d'apprentissage 

possibles.  

Néanmoins, nous pensons intéressant d'illustrer le dilemme biais-variance sur un système 

hydrologique particulier, ceci est présenté dans la section suivante. 

b. Illustrations pour un système dynamique 

Même si le dilemme biais-variance ne s'applique en toute rigueur que dans la limite des grands 

ensembles de données, et si certains travaux se sont déjà intéressés à estimer les deux termes de 

biais et variance (Gallinari, 1999), nous avons souhaité calculer ces grandeurs sur un exemple 

de modélisation du bassin versant du Baget dans les Pyrénées Ariégeoises. Ce bassin versant a 

été choisi car c'est celui pour lequel nous disposons de la plus grande base de données. Celle-ci 

a été aimablement fournie par Monsieur Alain Mangin et comporte de manière journalière, les 

précipitations à la station pluviométrique de Balagué et les débits de la petite rivière du Baget, 

de 1973 à 2000 soit près de 9800 valeurs de chaque variable. Plus d'informations sur le bassin 

versant et les modélisations réalisées sont présentés en section III.8.b et dans (Johannet, 2008-b 

et Johannet, 2010). La base de données disponible a été partagée en deux sous-ensembles, d'une 

part celui dédié à l'apprentissage et d'autre part celui dédié au test, comportant les deux 

dernières années de la base soit les années 1999 et 2000. Plusieurs sous-ensembles 

d'apprentissage ont été composés afin d'établir autant de modèles et pour calculer ainsi les deux 

termes du biais et de la variance. Chaque ensemble d'apprentissage comporte l'ensemble des 

valeurs d'apprentissage sauf deux années consécutives qui en sont retirées. Successivement sont 

ainsi retirées toutes les années de la base d'apprentissage et 14 ensembles d'apprentissage sont 

ainsi définis. L'espérance mathématique est alors approchée par la moyenne effectuée sur les 14 

modèles ainsi constitués. 

Une autre difficulté subsiste : la valeur de la régression apparaissant dans le terme de biais n'est 

pas connue. Néanmoins, afin d'effectuer les calculs nous l'approchons par la valeur mesurée du 

débit tout en sachant que cette valeur n'est pas parfaite puisqu'elle comporte le bruit de mesure 

qui peut être très important pour ce type de grandeur (20% ou 30% sont souvent cités pour les 

grands débits). 

Les termes approchés de biais et de variance calculés sont donc : 

 Biais : (y
p
(x)-MoyA[y(x,A)])

2
 

 Variance : MoyA[(y(x,A)-MoyA(y(x,A))
2
] 

y
p
(x) est la valeur observée du débit, y(x,A) est la valeur estimée du débit par le modèle conçu 

avec l'ensemble d'apprentissage A, MoyA(y(x,A)) est la moyenne effectuée sur le débit estimé 

par les modèles conçus grâce aux différents ensembles d'apprentissage. 

On pourra trouver en Figure 2 les évolutions du biais et de la variance en fonction du nombre 

de paramètres libres du modèle. Ce dernier indicateur a été choisi pour mesurer la complexité 
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du modèle car même s'il est généralement admis qu'il n'est pas le plus représentatif pour les 

modèles non linéaires, il est cependant souvent utilisé, ne serait-ce que du fait de sa simplicité.  

Tout d'abord on pourra noter que le biais et la variance ont des ordres de grandeur très 

différents de ce que nous avons pu noter dans la littérature, (10
-1

 ou 10
-2

) ; de plus, les deux 

termes de biais et de variance ont ici un ordre de grandeur de différence l'un par rapport à 

l'autre alors qu'ils sont du même ordre pour les illustrations dont nous disposons (Geman et al, 

1992), (Gallinari et al, 1999). La première remarque peut être expliquée par les progrès faits 

depuis dans les algorithmes d'apprentissage. Pour la seconde constatation, nous pensons que le 

biais est très important dans les applications hydrométéorologiques du fait des grandes 

incertitudes et bruits sur les mesures (III.8) ; de ce fait, l'approximation du terme g(x) par y
p
(x) 

est vraisemblablement assez inexacte.  

On peut noter de plus sur cette illustration que le biais décroît bien au début tandis que la 

variance augmente globalement régulièrement en fonction de la complexité. Si la diminution du 

biais est rapide au début, en revanche ce dernier oscille pour les valeurs moyennes de 

complexité puis se met à augmenter pour les complexités élevées. Nous pensons que ce 

comportement du biais est dû aux incertitudes et au bruit de mesure qui l‟entachent 

vraisemblablement d'une erreur liée à la variance σ
2
 (variable aléatoire B). 

 
Figure 2 : Evolution du biais (trait pointillé) et de la variance (trait continu) 

en fonction du nombre de paramètres libres du modèle. 
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III. Les réseaux de neurones 

III.1. Modèles de neurones et d'architectures  

Les réseaux de neurones constituent une famille de modèles conçus par apprentissage 

statistique. La base de la non linéarité des modèles neuronaux est la fonction neurone, cette 

dernière est une fonction algébrique non linéaire, paramétrée et à valeur bornée de ses variables 

d'entrées : 

y=f(x,θ), où x et θ sont respectivement les vecteurs des variables et des paramètres de la 

fonction neurone.  

Le neurone formel effectue deux actions : 

 le calcul de son potentiel, ou somme pondérée de ses variables d'entrée par ses paramètres : 

v=x
t
θ, 

 le calcul de sa sortie par une fonction d'évaluation qui est non linéaire ou parfois 

linéaire : f(.). 

La fonction d'évaluation est généralement une fonction à seuil qui peut être continue et 

dérivable comme la fonction tangente hyperbolique, ou discontinue dans le cas de la fonction 

de Heaviside (fonction seuil). 

Dans ce mémoire nous nous contenterons d'utiliser les trois fonctions d'évaluation : linéaire, 

tangente hyperbolique (ou sigmoïde) et seuil, car elles permettent de mettre en œuvre tous les 

modèles que nous utilisons, d'autres fonctions d'évaluations ont été étudiées et utilisées 

(ondelettes, spline) qui n'apportent pas d'avantage significatif dans la qualité des modèles. 

Grace aux modèles de neurones précédemment définis, un réseau de neurones peut être conçu 

au moyen d'un graphe de connexions que l'on appelle architecture. Parmi toutes les 

architectures proposées, le réseau appelé perceptron multicouche sera particulièrement utilisé ; 

nous l'appellerons dans la suite plus simplement réseau multicouche. Ce réseau est composé 

d'une couche de neurones non linéaires de type sigmoïde, dite couche cachée car il n'y a pas de 

grandeur observée correspondant aux sorties de ces neurones, et d'une couche de sortie. Si le 

réseau de neurones est utilisé en identification de fonction, la fonction d'évaluation du neurone 

de sortie est linéaire. Ce dernier décompose alors la fonction qu'il effectue sur la base des 

sigmoïdes des neurones cachés. Si le réseau de neurones doit effectuer une fonction de 

classification
6
, alors le neurone de sortie peut être de type sigmoïde. Il permet donc de prendre 

une décision ainsi qu'une fonction logistique le fait en régression. 

                                                 

6
 La fonction de classification consiste à affecter des éléments décrits par des variables à une classe en sortie. La 

classe est explicitée par un code discret. Cette fonction est à distinguer de l'identification qui consiste à associer les 

variables d‟entrée d'un processus à la sortie continue observée de ce processus. 
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Figure 3 : Réseau Perceptron Multicouche 

Notons que le réseau tel que représenté en Figure 3 ne possède pas de rétroaction de sa sortie 

vers ses entrées il est donc appelé réseau statique. Dans le cas où les variables sont des signaux 

échantillonnés, les réseaux statiques sont des filtres numériques transverses non linéaires. 

III.2. Identification universelle et parcimonie 

K. Hornic et al. ont démontré que le perceptron multicouche possédait la propriété 

d'approximation universelle (Hornic et al, 1989). C'est-à-dire que toute fonction g(x), à valeurs 

bornées dans un domaine défini, peut être approchée à la précision ε près dans ce domaine par 

un réseau de type multicouche possédant un nombre fini de neurones cachés. C'est sur cette 

propriété que nous fondons le choix d'utiliser le perceptron multicouche pour identifier les 

relations non linéaires des systèmes naturels que nous étudions. Il est cependant bien évident 

que la démonstration de l'approximation universelle est une preuve d'existence de la solution, la 

capacité à trouver la solution dépendra tout autant de la base des informations disponibles et de 

la méthode de calcul des paramètres que de la capacité à sélectionner la complexité optimale au 

sens du dilemme biais-variance ; ces éléments sont repris à la section III.6 de ce chapitre. 

Une autre propriété des réseaux multicouches est la parcimonie. Celle-ci s'apprécie en regard 

du nombre de paramètres nécessaires à l'identification d'une fonction non linéaire par un réseau 

multicouche d'une part, et par d'autres décompositions sur des fonctions à base de polynômes, 

spline et fonctions trigonométriques d'autre part. A. R. Barron (Barron, 1993) a montré que le 

nombre de paramètres, pour une précision donnée croît exponentiellement avec le nombre de 

variables pour les modèles linéaires en leurs paramètres tandis que ce nombre croît 

linéairement pour les modèles non linéaires en leurs paramètres. Or, la fonction implémentée 

par le réseau multicouches dépend non linéairement de ses paramètres (la sigmoïde s'applique 

au potentiel des neurones), de ce fait ces modèles sont plus parcimonieux que les identificateurs 

linéaires en leurs paramètres (telles les décompositions sur fonctions spline, trigonométriques 

ou polynômes). De plus, cette propriété de parcimonie est d'autant plus significative que le 

nombre de variables est grand. 

On pourra noter que le nombre de paramètres d'un réseau multicouche augmente très 

rapidement avec le nombre de neurones cachés et/ou le nombre de variables. Ce nombre est 

sans commune mesure avec le nombre de paramètres d'un modèle physique dédié à la même 

fonction. Rappelons à ce propos que le perceptron multicouche, au contraire d'un modèle 

physique, doit déterminer simultanément et le type de fonction du modèle et les paramètres 

physiques, même si ces derniers ne sont pas identifiables en tant que tels dans le réseau. On ne 
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peut donc comparer la complexité des deux types de modèles au regard de leur seul nombre de 

paramètres ajustables. 

III.3. Réseaux dynamiques 

Considérons par exemple l'équation différentielle de remplissage d'un réservoir par un débit x(t) 

et sa vidange par un autre débit y(t) proportionnel à la hauteur d'eau dans le réservoir. Ce 

modèle est schématiquement celui qui est pris en compte pour représenter le fonctionnement 

d'un bassin versant par l'approche dite des modèles conceptuels à réservoir. On peut montrer 

aisément que l'équation différentielle liant les deux variables s'écrit : 

)()(
)(

txty
dt

tdy

a

S
  

Où S est la section constante du réservoir et a le coefficient de proportionnalité liant le débit 

sortant à la hauteur dans le réservoir (y(t)=ah(t)).  

Une fois discrétisée (le temps discret est noté k), l'équation aux différences de ce processus 

s'écrit sous la forme : 

))()1()( kx
Sta

ta
ky

Sta

S
ky







  

où Δt est l'intervalle de temps séparant deux échantillons. 

Ce qu'il est intéressant de noter est que le modèle de type réservoir est le modèle postulé du 

modèle physique de vidange d'un réservoir. Ce modèle postulé est récurrent, c‟est un filtre 

récursif non linéaire : l'estimation de la sortie future y(k+1) dépend au moins d'une sortie 

précédente y(k). On pourra remarquer que l'équation aux différences précédente peut être 

implémentée par un neurone unique ayant comme variable exogène x(k) et comme variable 

d'état y(k-1).  

O. Nerrand (Nerrand et al, 1993) ont présenté comment la connaissance que l'on a des 

perturbations et bruits opérant sur le modèle postulé récurrent d'un processus peut être prise en 

compte pour synthétiser un prédicteur optimal. 

a. Modèles de prédicteur optimal 

Si nous limitons notre propos aux modèles de type entrée-sortie pour lesquels le vecteur d'état 

est composé des valeurs passées de la sortie. Le modèle postulé réalise la fonction : 

))1(),...,(),1(),...,(()1(  wkukurkykyky   

Où φ est une fonction qui représente le fonctionnement du système physique étudié, y(k) la 

sortie de cette représentation, u(k) le vecteur des variables exogènes, r et w sont des entiers 

positifs.  

Ce modèle postulé peut être représenté schématiquement tel qu'en Figure 4. 
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Figure 4 : Modèle postulé récurrent.  

Le modèle postulé reçoit en entrée les variables exogènes à l'instant k (vecteur 

u(k)) et la sortie précédente y(k) ; sa sortie est y(k+1). q
-1

 est l'opérateur 

retard. 

i. Hypothèse bruit de sortie 

Le modèle postulé peut être soumis à des perturbations additives sur sa sortie, correspondant 

par exemple à un bruit de mesure. Ceci se traduit par la relation : 

)1())1(),...,(),1(),...,(()1(  kbwkukurkykyky ssp   

où y
p
(k+1) est la grandeur observée du processus, y

s
(k) est la sortie de cette représentation, 

b(k+1) est un bruit de mesure agissant sur la sortie à l'instant k+1, φ est une fonction, u(k) le 

vecteur des variables exogènes, r et w sont des entiers positifs.  

Le modèle postulé correspondant à l'hypothèse bruit de sortie est représenté en Figure 5.a, son 

état y
s
(k) n'est pas affecté par les perturbations et est donc bouclé pour estimer l'état futur. En 

revanche, comme la sortie mesurée y
p
(k+1) est entachée d'erreur, on évite de l'utiliser dans 

l'estimation des sorties futures. 

Le modèle neuronal correspondant à ce modèle postulé est donc un modèle récurrent qui s'écrit 

ainsi : 

)),1(),...,(),1(),...,(()1( θ wkukurkykygky rn  

où grn est la fonction réalisée par le réseau de neurones, y(k) la sortie du réseau, u(k) le vecteur 

des variables exogènes, r et w sont des entiers positifs, θ est le vecteur des paramètres. 

 

5.a. 

 

5.b. 

Figure 5 : Modèle postulé (5.a) et prédicteur associé (5.b) à l'hypothèse bruit 

de sortie. 

Si la fonction grn parvient à identifier parfaitement la fonction φ, le réseau de neurones 

récurrent est stable, si l'on dispose de plus des valeurs exactes des perturbations pour initialiser 
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la fonction grn, alors on montre que le prédicteur réalise la meilleure prédiction possible : 

y
p
(k+1)-grn(k)=b(k+1) (Dreyfus, 2008). Toute la part déterministe du phénomène est identifiée 

par la fonction grn. 

Le prédicteur ainsi obtenu peut effectuer des prévisions pour un horizon indéfini à condition de 

disposer des prévisions de ses variables exogènes. Ceci n'est pas toujours possible pour les 

phénomènes naturels, néanmoins, par exemple, ce prédicteur pourrait être utilisé pour estimer 

l'impact du changement climatique sur les ressources en eau. Les entrées exogènes seraient 

alors les précipitations issues de modèles climatiques correspondant à différents scénarios et les 

sorties seraient des débits estimés ou des niveaux de nappe. 

Dans la thèse de Line Kong A Siou, nous avons mis en œuvre ce prédicteur pour estimer les 

débits et la piézométrie de la source du Lez. Ce travail en cours est effectué en collaboration 

avec P. Fleury et N. Dorfliger de l'équipe du BRGM
7
 de Montpellier pour comparer les 

propriétés des deux modèles : d'une part un modèle à réservoirs (P. Fleury et al, 2008) et d'autre 

part le prédicteur récurrent à réseau de neurones.  

ii. Hypothèse bruit d'état 

Dans l'hypothèse bruit d'état le modèle postulé est soumis à des perturbations additives sur son 

état. Cette hypothèse correspond au modèle NARX (Non linéaire Auto-Régressif à entrées 

eXogènes). La relation entrées-sortie du modèle postulé s'écrit : 

)1())1(),...,(),1(),...,(()1(  kbwkukurkykyky ppp   

où y
p
(k+1) est la grandeur observée du processus, sortie de cette représentation, b(k+1) est un 

bruit d'état agissant à l'instant k+1, φ est une fonction, u(k) le vecteur des variables exogènes, r 

et w sont des entiers positifs.  

Le modèle postulé correspondant à cette représentation est représenté en Figure 6.a.  

Compte tenu du modèle postulé, le modèle neuronal correspondant à cette représentation n'est 

pas un modèle récurrent puisque ses variables sont les entrées exogènes et les sorties observées 

du processus (y
p
(k)). Comme son état est bruité il est en effet plus intéressant d'appliquer en 

entrée les variables observées du processus. Le prédicteur associé s'écrit donc : 

)),1(),...,(),1(),...,(()1( θ wkukurkykygky pp
rn

s  

Où grn est la fonction réalisée par le réseau de neurones, y(k+1) la sortie du réseau, u(k) le 

vecteur des variables exogènes, r et w sont des entiers positifs, θ est le vecteur des paramètres. 

                                                 

7
 Le BRGM : Bureau de Recherches Géologiques et Minières est l'établissement public français de référence dans 

le domaine des sciences du sol et du sous-sol. 
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6.a. 

 

 

6.b. 

Figure 6 : Modèle postulé (6.a) et prédicteur associé (6.b) à l'hypothèse bruit 

d'état. 

Si la fonction grn identifie parfaitement la fonction φ du modèle postulé, alors le prédicteur 

neuronal est tel que : y
p
(k+1)-grn(k+1)=b(k+1), le prédicteur a identifié toute la partie 

déterministe du processus et son erreur est limitée à celle du bruit d'état non mesurable. 

Même si ce prédicteur a vocation à simuler un système dynamique, on peut remarquer qu'il 

n'est pas récurrent. Comme il est alimenté par les sorties mesurées du processus, ce prédicteur 

est appelé dirigé par le processus, par opposition au prédicteur NARX qui est qualifié de non 

dirigé. 

En pratique, ce prédicteur dirigé est celui qui délivre les meilleures prévisions sur les crues 

comme nous le présenterons en section III.8 de ce chapitre. Ce dernier point pourrait laisser à 

penser que les principales erreurs interviennent donc sur l'estimation de l'état du processus.  

 

 
Figure 7 : Représentation des erreurs de mesures des entrées exogènes, vues 

comme une perturbation additive sur l'état. 

D'autre part, on peut considérer les perturbations additives sur l'état comme des perturbations 

de mesure des entrées exogènes agissant sur l'état après un filtrage par une fonction ψ 

inconnue. Ainsi, comme représenté en Figure 7, l'erreur de mesure ε(k) commise sur les 

précipitations parfaites p
i
(k) est filtrée par la fonction inconnue ψ puis s'additionne à l'état du 

processus. Les précipitations mesurées p
m

(k) s'expriment comme la somme des précipitations 

parfaites p
i
(k) et de l'erreur ε(k). 
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Une perturbation additive sur l'état peut donc être vue comme une perturbation opérant sur les 

variables d'entrée du modèle hypothèse. On comprend aisément que si les entrées sont 

imparfaites, le prédicteur associé a avantage à capitaliser sur les sorties mesurées du processus. 

III.4. Apprentissage  

L'apprentissage consiste à estimer les paramètres θ du réseau de neurones afin de minimiser un 

critère préalablement défini. Comme présenté précédemment, en général ce critère est l'erreur 

quadratique moyenne. Comme le modèle neuronal est non linéaire en ses paramètres, la 

fonction de coût n'est pas quadratique en ses paramètres et la méthode des moindres carrés n'est 

donc pas applicable. Des méthodes de minimisation itératives de la fonction de coût sont donc 

utilisées. Le lecteur intéressé pourra trouver de plus amples informations sur les méthodes de 

calcul itératives des paramètres, appelées règles d'apprentissage, dans (Dreyfus et al, 2008) ; il 

suffit d„indiquer ici que la règle la plus efficace est actuellement la règle de Levenberg-

Marquardt, que nous avons utilisée dans tous nos travaux récents, qui est une règle de gradient 

du second ordre faisant appel à l'inversion d'une matrice approchée de la matrice Hessienne 

(Bender et al, 1996), (Press et al, 1992). Cette méthode est avantageuse car bien qu'appartenant 

à la catégorie des méthodes de second ordre, elle ne nécessite pas le calcul des dérivées 

secondes de la fonction de coût.  

a. Apprentissage des systèmes dynamiques 

Quand le modèle de réseau est récurrent, comme par exemple le prédicteur associé au modèle 

postulé bruit de sortie (Figure 5.b.), il est avantageux d'effectuer l'apprentissage sur la forme 

canonique du modèle bouclé (Nerrand et al, 1993). En effet, cette dernière représentation 

considère le modèle sous la forme d'une partie acyclique (ou statique) et d'une partie 

comportant les retards, déportée à l'extérieur du réseau. Ainsi la prise en compte du temps dans 

le réseau se fait en coupant la boucle des retards et en dupliquant le réseau en autant de copies 

que l'on souhaite remonter dans le passé. Le perceptron multicouche ainsi dupliqué en c copies 

possède donc 2c couches de paramètres à identifier. Néanmoins, comme il s'agit du même 

réseau qui est dupliqué, in fine ce dernier, en phase de prédiction, ne possède pas plus de 

paramètres. Pour cela, durant l'apprentissage, à l'issue de chaque modification des paramètres, 

la moyenne de chaque paramètre est effectuée sur toutes les copies. Cette technique est appelée 

la technique des poids partagés. 

La méthode est illustrée en Figure 8 dans le cas particulier de deux copies. Les variables 

exogènes, représentées par le vecteur u(k-c) sont appliquées à chaque copie, la sortie de la 

copie y(k-c) est appliquée en variable d'entrée de la copie suivante. La dynamique du processus 

peut ainsi être prise en compte. 
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Figure 8 : Apprentissage d'un réseau dynamique avec la méthode des copies. 

Se pose la question de l'initialisation de la copie correspondant au temps le plus ancien. Si les 

valeurs observées du processus sont disponibles, on peut initialiser cette première copie avec 

ces valeurs, on dit que l'on est alors en mode semi-dirigé. Dans le cas contraire, comme nous 

l'étudions pour la prévision des crues sur les bassins-versants non jaugés dans le cadre de la 

thèse de Guillaume Artigue qui est présentée en section III.8 de ce chapitre, on parle de mode 

non-dirigé. Dans ce dernier cas, les valeurs observées ne sont pas disponibles.  

Comme nous l'avons indiqué, l'apprentissage est réalisé de manière itérative. Les paramètres du 

modèle sont initialisés aléatoirement au début de l'apprentissage, l'erreur commise y est donc 

importante. Lorsque le modèle est statique, cette erreur n'est pas rebouclée vers l'entrée du 

modèle, l'apprentissage peut donc continuer d'améliorer le prédicteur. Lorsque le modèle est 

récurrent, l'erreur est, au contraire, réintroduite dans le modèle et peut même conduire à la 

divergence de l'apprentissage. Pour limiter cette erreur au début de l'apprentissage on peut donc 

utiliser le mode semi-dirigé qui permet de prendre en compte la dynamique du modèle tout en 

limitant cette erreur de début d'apprentissage.  

b. Illustration : synthèse de l’asservissement d’une pince électropneumatique 

Les deux types de prédicteurs évoqués dans les paragraphes précédents ont été mis en œuvre 

dans un travail effectué avec mon collègue Pierre Couturier. Il s‟agissait d‟asservir une pince 

composée de deux doigts rigides mus en rotation par un actionneur pneumatique
8
 (Figure 9). 

Ce type de préhenseur est assez utilisé dans les taches de micromanipulation en robotique. Du 

fait des non linéarités dues à la conception mécanique et à la compression du gaz, 

l‟asservissement en position de manière précise est assez difficile à réaliser. Dans les années 

1990, il était donc intéressant d‟évaluer les potentialités de l‟apprentissage statistique dans ce 

domaine.  

                                                 

8
 Nous remercions Monsieur Hugues Silvain pour la conception et réalisation de la pince électropneumatique. 
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Figure 9 : Schéma de la pince électropneumatique 

La pince est longue de 300 mm et a une ouverture de 150 mm. 

La synthèse d‟un asservissement pose une question différente de celle de l‟identification d‟un 

processus. Considérons le schéma classique d‟un asservissement comportant un système à 

asservir, un correcteur et le signal de consigne (y
c
(k)) qui représente la valeur que doit atteindre 

la sortie du processus à chaque instant (Figure 10).  

 
Figure 10 : Schéma élémentaire d’un asservissement 

Le correcteur reçoit en entrée la différence e(k) entre la sortie du processus et la sortie désirée 

(consigne) et traite cette différence de manière à conduire le processus à se rapprocher de la 

valeur de consigne. Le correcteur, ou contrôleur dont la sortie fournit le signal de commande 

u(k) doit assurer à la fois la stabilité du système asservi et la précision dans la satisfaction de la 

consigne. Il peut également imposer des contraintes dynamiques à l‟asservissement (par 

exemple un temps de réponse fixé).  

La synthèse d‟un contrôleur par apprentissage statistique se heurte donc au fait que l‟on ne 

connaît pas la valeur que doit avoir le signal de commande puisque le processus est en général 

non linéaire et non inversible. Néanmoins, la capacité des réseaux de neurones à identifier un 

processus non linéaire peut être mise à profit, en synthétisant un modèle du processus asservi 

non linéaire, pour disposer d‟une estimation de ce signal de commande, permettant ainsi de 

réaliser l‟apprentissage du correcteur. Ce type d'approche est qualifiée de commande indirecte, 

par opposition à la commande directe où le modèle du processus n'est pas demandé. 

Le travail a ainsi consisté en plusieurs étapes, d‟une part l‟identification d‟un modèle neuronal 

de la pince, ou prédicteur, et d‟autre part la conception de plusieurs contrôleurs afin d‟imposer 

Soufflet métallique 
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des dynamiques convenables tant en poursuite qu‟en régulation
9
 pour un contrôle de la pression 

appliquée par la pince lors de la préhension d‟une part, et de la position de la pince d‟autre part.  

Notons que lorsque le modèle prédictif du processus est utilisé dans le schéma de contrôle 

indirect, celui-ci permet d‟anticiper sur l‟erreur qui pourrait se produire dans le futur et, grâce 

au signal de commande, tendre à annuler cette erreur avant qu‟elle ne se produise, on parle 

alors d'anticipation et de commande prédictive. 

i. Identification du processus 

La stratégie d‟identification, plus amplement présentée dans (Couturier et al, 1998), peut se 

résumer ainsi :  

 La fonction de coût intègre les erreurs quadratiques de la sortie estimée sur un horizon 

temporel de profondeur j. Cet horizon définit la limite supérieure de l‟anticipation 

souhaitée pour le prédicteur. 

 Le prédicteur est récurrent, il représente le processus de la pince dont les variables 

d‟état peuvent être composées de sa sortie à l‟instant k et aux instants précédents, ainsi 

que de variables d‟état non mesurées.  Dans le modèle, les variables d‟état non 

mesurées correspondent à des neurones de « sortie », pour lesquels on ne dispose pas de 

valeur mesurée (Elmann, 1990). 

 La méthode des copies est utilisée pour effectuer l‟apprentissage sur la forme canonique 

du réseau de neurones et permet ainsi de prendre en compte la dynamique du système à 

identifier. 

 Afin de disposer d‟une base d‟exemples variée permettant d‟effectuer l‟apprentissage, 

une séquence de consignes pseudo-aléatoires (en amplitude et en fréquence) est 

appliquée à la pince. 

 L‟ajustement de la complexité est réalisé de la manière suivante : le nombre de neurones 

cachés est augmenté à partir de un jusqu‟à ce qu‟aucune amélioration ne soit notée dans 

la généralisation. 

Les modes d‟apprentissage dirigé, semi-dirigé et non dirigés sont évalués pour initialiser les 

variables d‟état qui correspondent au vecteur des sorties observées, tandis que le mode non 

dirigé est le seul qui permette de prendre en compte les variables d‟état non mesurées (Figure 

11).  

Le réseau de neurones émule la pince par la fonction suivante : 

 

                                                 

9
 La poursuite consiste à imposer une trajectoire à la sortie du processus, tandis que la régulation ramène le 

dispositif vers la trajectoire en cas de perturbation. Les deux tâches peuvent avoir des dynamiques différentes et 

elle peuvent être dissociées en plusieurs contrôleurs différents.  
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où y(k) est le vecteur des sorties estimées par le réseau à l‟instant k et aux instants précédents, 

s(k) le vecteur des variables d‟état non mesurées à l‟instant k et aux instants précédents, u(k) le 

vecteur des entrées exogènes à l‟instant k et aux instants précédents et θ le vecteur des 

paramètres du réseau. 

 
Figure 11 : Stratégie d’identification de la pince électropneumatique. 

(Couturier, 1998) 

Les résultats obtenus sont satisfaisants pour l‟identification du déplacement, mais moins bons 

pour l‟identification de pression du fait du frottement statique de la pince (Couturier et al, 

1998). Néanmoins, on peut juger ses performances en prédiction suffisantes sur l‟horizon 

d‟anticipation considéré. 

ii. Contrôle de la pince électropneumatique 

On souhaite que le système asservi se comporte comme un modèle de référence imposé, par 

exemple, comme un système linéaire du premier ordre (le modèle de remplissage du réservoir 

présenté en section III.3. est un modèle linéaire du premier ordre). 

Comme soulevé précédemment, une des difficultés de la synthèse d‟un contrôleur par 

apprentissage statistique est que l‟on ne dispose pas de valeur désirée pour la sortie du 

contrôleur. A partir des schémas de contrôle proposés par M. Kawato (type direct), qui afin de 

disposer d‟un contrôle opérationnel par un régulateur conventionnel dès le début de 

l‟apprentissage utilise la sortie d‟un correcteur conventionnel comme estimation de l‟erreur de 

sortie du contrôleur neuronal (Gomi et al, 1993), et du schéma proposé par M. I. Jordan (type 

indirect), qui effectue l‟apprentissage du contrôleur au travers
10

 du modèle neuronal du 

processus pour imposer une anticipation (Jordan et al, 1992), Pierre Couturier a proposé un 

schéma de contrôle général qui permet de synthétiser les deux types de schéma de contrôle 

pour le calcul du correcteur, récurrent ou non récurrent. Ce schéma est présenté dans (Couturier 

et al, 1998). Il inclut : 

                                                 

10
 Lorsque l‟on effectue l‟apprentissage d‟un réseau de neurones, la matrice Jacobienne (dérivées partielles des 

sorties du modèle par rapport aux entrées) est calculée par la règle de la rétropropagation. Si le réseau de neurones 

identifie correctement le processus, on peut considérer que la matrice Jacobienne calculée par le réseau est une 

estimation de celle du processus et l‟on peut donc utiliser ces dérivées partielles pour réaliser l‟apprentissage du 

correcteur placé en série avant le modèle du processus. 
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 Le prédicteur identifiant le processus (ici le modèle neuronal de la pince) qui réalise la 

fonction grn précédemment présentée (entrées u(k), s(k), y(k-1) et sortie y(k)).  

 Un bloc de contrôle qui comporte plusieurs correcteurs : linéaires et non linéaires par 

réseaux de neurones ; selon leurs entrées, les correcteurs non linéaires peuvent être 

dédiés à la tâche de régulation avec une dynamique propre, ou à la tâche de poursuite 

avec anticipation selon une autre dynamique. 

 Les variables sélectionnées des différents correcteurs sont les mêmes que celles qui 

seraient utilisées par leur équivalent en commande linéaire. 

Le schéma général de contrôle a été mis en œuvre pour les deux fonctions de contrôle de la 

pression dans la chambre de l‟actionneur et de contrôle de la position de la pince. Les 

saturations matérielles ont également pu être prises en compte dans la loi de commande. Par 

exemple la loi de commande peut prendre en compte la valeur maximale autorisée de la 

commande et être ainsi écrêtée. 

L‟avantage de ce schéma général est également qu‟il permet à l‟apprentissage d‟être effectué 

en ligne et que le modèle du processus n‟a besoin d‟être un bon prédicteur que sur la fenêtre 

temporelle limitée de l‟anticipation.  

En synthèse, ce travail a permis d‟étudier les potentialités de l‟apprentissage statistique pour 

identifier un système non linéaire dynamique et pour synthétiser des correcteurs, également non 

linéaires et récurrents, assurant une précision et une dynamique donnée. Si les performances 

dynamiques et en précision se sont montrées satisfaisantes et fort intéressantes (Couturier, 

1997), en revanche les conditions de stabilité n‟ont pu être exhaustivement délimitées, même 

empiriquement.  

III.5. Sélection de variables 

La sélection de variables consiste à choisir les variables effectives parmi l‟ensemble des 

variables candidates proposées par les experts. Si l‟on est capable de connaître les variables 

pertinentes pour la fonction à réaliser par apprentissage statistique, comme par exemple pour 

l‟identification d‟un modèle non linéaire de remplissage d‟un réservoir (décrit précédemment), 

on pourra sélectionner les mêmes variables. De plus, il se produit assez souvent le cas où les 

variables disponibles sont mutuellement dépendantes. Elles comportent le même type 

d'information, mais celle-ci est parfois mesurée au moyen de méthodes d'observation 

différentes. Afin de diminuer la complexité du réseau, il convient alors d‟utiliser des méthodes 

de sélection de variables qui permettent de définir le réseau le plus parcimonieux et d‟améliorer 

ainsi les performances de généralisation. 

La sélection de variables nécessite de mettre en œuvre : 

 Un critère quantitatif de performance qui sert à ordonner les variables. Pour ce faire des 

méthodes d‟orthogonalisation du type de Gram-Schmidt, ou des méthodes heuristiques 

(Yacoub et al, 2001) peuvent être utilisées.  
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 Un seuil à partir duquel les variables seront jugées non pertinentes ; on peut par exemple 

rejeter les variables qui influencent moins la sortie du modèle qu‟une variable dont les 

valeurs sont tirées aléatoirement (Stoppiglia et al, 2003). 

Comme les variables peuvent être corrélées il faudrait rigoureusement évaluer toutes les 

combinaisons possibles ce qui est matériellement impossible. L‟ensemble des variables 

sélectionnées dépend alors en général de la procédure suivie et n‟est donc pas unique : 

plusieurs sous-ensembles de variables peuvent conduire à des performances relativement 

équivalentes (Cybas et al, 1996). 

III.6. Méthodes de régularisation 

Comme nous l‟avons signalé précédemment en section II.2 l‟erreur estimée sur l‟ensemble 

d‟apprentissage est un mauvais estimateur de l‟erreur de généralisation et cette dernière 

augmente en fonction de la complexité du réseau. Cependant, afin d‟exploiter au mieux 

l‟information contenue dans la base d‟apprentissage dont on dispose, certaines méthodes ont 

été développées pour pallier ce phénomène : ce sont les méthodes de régularisation. Ces 

méthodes ont toutes pour objet de diminuer la variance. Parmi celles-ci on distingue les 

méthodes qui consistent à sélectionner les modèles qui ne sont pas surajustés des méthodes qui 

interviennent durant le calcul de l‟apprentissage.  

a. Régularisation par sélection de modèle 

Avant toute sélection de modèle il est nécessaire de mesurer l‟erreur de généralisation. 

Rappelons que celle-ci est calculée sur un ensemble d‟exemples qui n‟ont pas servi à 

l‟apprentissage. Afin que cette erreur ne dépende pas du choix d‟un sous-ensemble particulier, 

ce qui est possible si la base des exemples est de dimension réduite ou si quelques exemples 

correspondent à un phénomène rare ou extrême, la procédure de la validation croisée a été 

proposée (Stone, 1974). 

Représentée schématiquement en Figure 12, la validation croisée consiste à diviser l'ensemble 

d'apprentissage en K sous-ensembles. Chacun est utilisé à son tour en validation, les autres 

sous-ensembles servant à effectuer l'apprentissage. Sur chacun des K sous-ensembles de 

validation, on calcule un score. Ainsi, à l'issue de la procédure qui consiste en K apprentissages 

successifs sur K sous-ensembles, on peut disposer d'un score de performance, estimé en 

validation, mais représentatif de l'ensemble de la base. 

Le score généralement adopté est le score de validation croisée qui est la racine carrée de la 

moyenne des erreurs quadratiques de chacun des scores de validation JK. 


K

EQM
K

S
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Figure 12 : Validation croisée 

En fonction du critère choisi pour effectuer l'apprentissage, dont nous avons discuté en II.b, on 

gagnera en cohérence à utiliser le même critère pour l'apprentissage et pour calculer le score de 

validation croisée.  

Dans l'idée de réduire la variance en diminuant la complexité du modèle, la validation croisée a 

été utilisée pour effectuer également la sélection de variables. En particulier sont conservées les 

variables qui améliorent le score de validation croisée et supprimées celles qui le dégradent. 

Ainsi nous avons sélectionné les fenêtres temporelles définissant l'historique des précipitations 

appliquées aux modèles d'hydrosystèmes (Toukourou et al, 2009-a), (Kong A Siou et al, 

2011-b).  

Lorsque nous nous sommes intéressés à la prévision des crues des rivières du Piémont Cévenol, 

nous avons introduit la validation croisée partielle, validation croisée qui opère sur les 

événements pluvieux les plus intenses de façon à sélectionner les modèles prenant le mieux en 

compte ces événements spécifiques (Toukourou et al, 2009-a). 

b. Régularisation par diminution de la valeur des paramètres 

On peut comprendre intuitivement qu'une variance importante peut provenir du fait que les 

paramètres ont des valeurs trop élevées, contribuant à des pentes fortes pour les sigmoïdes et 

donc à une sortie fortement variable en fonction de faibles variations de l'entrée (Bishop, 1995). 

C'est pourquoi plusieurs méthodes de régularisation ont pour objet de diminuer la grandeur des 

paramètres du réseau. Parmi celles-ci nous avons mis en œuvre la modération des poids et 

l'arrêt précoce. 

La modération des poids consiste à modifier la fonction de coût de l'apprentissage en y 

intégrant un terme de pénalisation de la valeur des paramètres. On écrit alors : 

2
)1( θ  JJ r  

où Jr est la fonction de coût intégrant la régularisation, J la fonction de coût sans régularisation 

(par exemple l'erreur quadratique moyenne), θ le vecteur des paramètres et γ l'hyperparamètre 

qui permet d'ajuster de manière heuristique le poids relatif des deux termes.  

Dans le même esprit, consistant à diminuer la valeur des paramètres, l'arrêt précoce interrompt 

l'apprentissage avant que le minimum de la fonction de coût ne soit atteint grâce à un ensemble 

d'exemples indépendants des exemples utilisés en apprentissage, appelé l'ensemble d'arrêt. 

Lorsque l'on utilise l'arrêt précoce, au fur et à mesure du déroulement de l'apprentissage, 

l'estimation de la qualité de la généralisation est effectuée sur l'ensemble d'arrêt ; lorsque l'on 



Modélisation par apprentissage statistique des systèmes naturels, ou en interaction avec un environnement 

naturel. Applications aux karsts, crues éclair et en robotique. 

 

 -37- 

observe que la généralisation devient moins bonne (l'erreur observée sur l'ensemble d'arrêt 

augmente), l'apprentissage est arrêté. J. Sjöberg (Sjöberg et al, 1995) présente cette méthode 

comme une technique de régularisation car l'arrêt précoce interrompt l'apprentissage avant que 

les paramètres n'atteignent des valeurs trop importantes. 

En pratique, l'utilisation de l'arrêt précoce sur les systèmes hydrologiques est assez délicate à 

effectuer car l'apprentissage est alors spécialisé par rapport à l'ensemble d'arrêt, qui ne peut être 

tiré au hasard dans la base des exemples disponibles, car le traitement des signaux temporels 

nécessite la continuité des signaux. Dans le travail de thèse de Mohamed Toukourou 

(Toukourou, 2009-b), nous avons pu noter de très fortes variabilités de la solution obtenue en 

fonction de l'ensemble d'arrêt choisi. Finalement la solution retenue a été de sélectionner en 

arrêt l'ensemble qui est le mieux estimé lorsqu‟il se trouve en généralisation ; cet ensemble 

d'arrêt peut correspondre à un événement pluvieux particulier ou à un cycle hydrologique (1
er

 

septembre d'une année au 31 août de l'année suivante). Ainsi, arrêter l'apprentissage en fonction 

de l'ensemble qui est le mieux prédit a une certaine cohérence puisque c'est celui qui représente 

le mieux l'ensemble d'apprentissage.  

c. Avantages du couplage de plusieurs méthodes 

Les méthodes de régularisation peuvent être utilisées simultanément. On peut utiliser l'arrêt 

précoce tout en sélectionnant les variables au moyen de la validation croisée. 

Dans le travail de thèse de Line Kong A Siou, nous étudions l'impact de ces méthodes sur la 

qualité de la prévision des débits de la source du Lez (Hérault). En reportant le score de 

validation croisée en fonction de l'augmentation du nombre de neurones cachés nous 

comparons les performances respectives de l'arrêt précoce et de la modération des poids. Par 

exemple, on peut noter sur la Figure 13, (Kong A Siou et al, 2011-a) que les deux méthodes de 

régularisation dégradent légèrement la qualité de la prévision réalisée, mais permettent de 

prévenir avec une grande efficacité l'augmentation de la variance. Ainsi elles rendent le choix 

de la complexité beaucoup moins critique et permettent d'alléger considérablement le nombre 

d'expériences à réaliser pour concevoir un système opérant. 

d. Vers un outil de compréhension du modèle 

Nous avons indiqué précédemment que la sélection de la taille des fenêtres temporelles 

permettant de fixer l'historique des précipitations pris en compte dans les modèles de prévision 

des crues pouvait diminuer la complexité du modèle. La recherche de cette complexité optimale 

pourrait conduire à estimer des grandeurs hydrologiques fondamentales dans la compréhension 

du fonctionnement d'un bassin versant, comme le temps de concentration, le temps de montée 

ou le temps de réponse de ce bassin versant. Si ces deux dernières durées sont aisées à définir 

sur un système artificiel dont on maitrise les entrées, en revanche, toutes sont très difficiles à 

appréhender pour un bassin versant rapide comme celui du Gardon d'Anduze que nous étudions 

dans les thèses de Guillaume Artigue et de Audrey Bornancin-Plantier du fait du caractère 

pseudo-aléatoire des précipitations. Ainsi, comme chacune des méthodes de régularisation 

conduit à un dimensionnement différent des fenêtres temporelles, nous cherchons à déterminer 

laquelle de ces méthodes conduit à un modèle physiquement interprétable, ceci permettrait 
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alors d'une part de mieux comprendre le modèle et d'autre part d'obtenir de la connaissance sur 

le bassin versant considéré. 

 
Figure 13 : Illustration de l'évolution du score de validation croisée (ici fondé 

sur le R
2
), en fonction du nombre de neurones cachés (Kong A Siou, 2011-a). 

La courbe en trait plein est le score sans autre régularisation que la validation 

croisée, la courbe en pointillé correspond au score lorsque l'arrêt précoce est 

utilisé ; la courbe en tireté correspond au score lorsque la modération des 

poids est utilisée (γ =0.01).  

III.7. Apprentissage par renforcement 

a. Fonction objectif 

Jusqu'à présent nous avons envisagé l'apprentissage au moyen de la minimisation d'une 

fonction de coût représentant l'erreur entre la sortie du modèle et une sortie désirée qui est, soit 

la grandeur mesurée sur un processus que le modèle doit identifier, soit la consigne imposée à 

un processus asservi. L'apprentissage par renforcement, proposé par A. G. Barto (Barto et al, 

1995) revisite cette fonction de coût afin de la rendre opérante même lorsque l'on ne dispose 

pas des grandeurs désirées. Cette méthode s'applique pour réaliser des objectifs de haut niveau 

tels, pour un robot mobile autonome, la coordination des mouvements ou l'évitement d'obstacle. 

Le schéma général proposé par A. G. Barto, et représenté en Figure 14, comporte un agent 

effectuant des actions, et une heuristique appelée le critique. Le critique, proposé par B. 

Widrow (Widrow et al, 1973) analyse l'effet des actions de l'agent et envoie à cet agent un 

signal de renforcement, sous forme de pénalité ou de récompense, qui permet à ce dernier de 

s'adapter afin de satisfaire l'objectif. Par rapport à un superviseur qui connait la valeur mesurée 

sur le processus à identifier, le critique donne une indication qualitative. En sus de 

l'introduction du critique, A. G. Barto introduit dans l'agent un processus stochastique qui lui 

permet, au début de l'apprentissage, de parcourir l'espace des états de manière aléatoire. Au fur 

et à mesure de ce parcours, le signal de renforcement permet à l'agent de modifier ses actions et 

ainsi de les adapter à l'objectif. Qui plus est, après avoir atteint un état stable, si une 

modification survient soit sur l'agent, soit dans l'environnement, une nouvelle exploration de 
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l'espace des états est toujours possible. Grâce à ce processus stochastique, l'agent a donc un 

comportement adaptatif.  

 
Figure 14 : Schéma de principe de l'apprentissage par renforcement 

L'apprentissage par renforcement est donc intéressant pour réaliser des systèmes capables 

d'effectuer une tâche dans un environnement qui n'est que partiellement décrit et de s'adapter 

aux modifications de ce dernier, car seul l'effet des actions est analysé par le critique. Ces 

propriétés sont particulièrement pertinentes pour les environnements extérieurs et plus encore 

pour les environnements naturels.  

b. Adaptativité en milieu non stationnaire 

i. Apprentissage de comportements d’un robot hexapode 

Lorsque j'ai intégré l'Ecole des Mines d'Alès en 1991 avec l'ambition de développer des 

recherches sur les algorithmes d'apprentissage, il a paru particulièrement intéressant de mettre à 

profit le potentiel de ces méthodes sur des systèmes naturels, c'est-à-dire mal connus et 

partiellement imprévisibles, ou en interaction avec un environnement naturel. Le champ de la 

robotique mobile était un terrain de jeux idéal et les travaux émergents à cette époque en 

relation avec la locomotion de robots (A. Frank, 1988) et l'éthologie (D. M. Wilson, 1966) nous 

ont stimulés. Le projet de conception et de réalisation d'un robot mobile autonome nous a paru 

un bon moyen de fédérer les compétences que l'on appellerait aujourd'hui mécatroniques
11

. Sur 

une impulsion de C. Touzet (Touzet et al, 92), le choix s'est porté sur un robot hexapode, robot 

qui permettait de s'exercer à une certaine complexité, le nombre de pattes assurant cependant 

une bonne stabilité (Figure 15). Les caractéristiques techniques du robot ainsi conçu sont 

présentées dans (Johannet et al, 1999-b). Ce prototype a appris tous les comportements que 

nous lui imposions mais des limitations assez importantes de conception, en particulier la 

conception des pieds l'amenant, en fait, à marcher sur des "talons aiguilles" nous ont empêchés 

de tester toutes les fonctions. De ce fait, et pour éviter l'endommagement du robot au cours de 

                                                 

11
 L'équipe était composée de Michel Artigue, Pierre Couturier, Alexandre Meimouni, Isabelle Marc et Hugues 

Silvain. Autant leur bon accueil que leur travail enthousiaste a permis de mener ce projet à bout.  
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ses chutes multiples, un simulateur logiciel a également été développé afin d'effectuer les tests 

nécessaires à l'ajustement des algorithmes d'apprentissage.  

 
Figure 15 : Robot hexapode 

Nous avons vu précédemment que l'apprentissage par renforcement, décliné comme 

apprentissage par pénalité et récompense, ou ARP, par A. G. Barto, nécessite la définition d'un 

agent, d'une heuristique (le critique) et d'une règle de modification des actions. Voyons 

comment ces éléments ont été revisités en utilisant les réseaux de neurones. 

L'agent est le contrôleur du mouvement d'une patte du robot. Le modèle le plus simple a été 

choisi pour préserver la parcimonie. Le mouvement de chaque patte est contrôlé par un seul 

neurone binaire (fonction d'évaluation de Heaviside). Ses variables sont l'état des cinq autres 

pattes et son propre état. Deux mouvements sont possibles : lever, avancer et poser la patte 

d'une part et reculer la patte d'autre part. L'exploration de l'espace des états est réalisée par un 

générateur de nombres aléatoires dont la valeur s'ajoute au potentiel du neurone. Le mouvement 

de la patte est donné par le signe du potentiel ainsi bruité.  

L'apprentissage est réalisé par une règle inspirée d'une descente de gradient du premier ordre 

prenant en compte les signaux de pénalité et récompense, ainsi que la "sortie non bruitée du 

neurone", calculée par l'espérance mathématique de la sortie d'un neurone ayant les paramètres 

actuels du neurone soumis à l'apprentissage. Ainsi, l'estimation de l'incrément appliqué par 

l'apprentissage est déterministe (Johannet et al, 1999-a). 

Ce type d'apprentissage a été appliqué pour l'acquisition de deux comportements : 

l'apprentissage de la marche et l'évitement d'obstacle. Ces deux comportements sont acquis 

assez rapidement après une séquence de mouvements aléatoires validant ainsi que des 

comportements de haut niveau peuvent être acquis au moyen de règles simples et locales. Deux 

types de marche sont obtenus (Figure 16), ainsi que plusieurs stratégies d'évitement d'obstacle. 

La capacité du robot à s'adapter à des modifications de son environnement a été validée car le 

robot est capable de réapprendre à marcher très efficacement s'il subit des dégradations, qui, par 

exemple, rendent une patte inopérante (Johannet et al, 1999-a). L'apprentissage par 

renforcement permet donc de réaliser des systèmes adaptatifs très réactifs. 
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Figure 16 : Les deux types de marche hexapode découverts. 

La patte figurée par un pied blanc se lève avance et se pose tandis que la patte 

figurée par un pied noir recule. Le type de marche du bas de la figure est une 

marche tripode adoptée par les insectes, la marche du haut de la figure n'est 

pas observée dans le monde animal. 

ii. Vers l’assimilation de données en hydrologie 

Dans le projet ANR FLASH (présenté ci-après section III.8.a), il est prévu d'appliquer les 

méthodes de l'assimilation de données à l'hydrologie. L'assimilation de données, qui consiste 

en un ensemble des méthodes statistiques permettant de prendre en compte les informations 

mesurées ou supposées sur le processus en cours, doit permettre d‟améliorer la prévision ou 

l'estimation de l‟état d‟un système. Cette approche est à mettre en relation étroite avec les 

modèles statistiques obtenus par apprentissage adaptatif. On comprend qu'elle a tout son intérêt 

pour envisager la prévision d'événements rares et extrêmes, non encore compris dans la base 

d'apprentissage
12

. 

Si l‟assimilation de données est déjà très étudiée en météorologie, et plus généralement pour la 

modélisation de l‟atmosphère (Daley, 1993), elle est encore assez peu étudiée et utilisée en 

hydrologie ; quelques travaux publiés se fondent néanmoins sur l‟estimation de la hauteur 

d‟eau (Neal et al, 2007).  

Les travaux développés actuellement sur l‟assimilation de données se répartissent en deux 

écoles : une approche fondée sur le formalisme des filtres de Kalman, et une autre selon une 

approche variationnelle. Or le formalisme variationnel de l‟assimilation de données est très 

voisin de celui de l‟apprentissage statistique : dans le premier cas, il s‟agit de minimiser une 

fonction de coût quadratique afin d‟optimiser l‟ébauche de la prévision, sous contrainte du 

modèle physique ; dans le second cas, il s‟agit de calculer les paramètres du modèle au cours 

d‟un apprentissage qui se déroule en même temps que l'évènement pluvieux. Les deux 

formalismes font appel à des optimisations quadratiques, non linéaires dans le cas de 

l‟apprentissage statistique.  

Quelques travaux ont été publiés sur l‟utilisation de l'apprentissage statistique pour réaliser 

l‟assimilation de données sur des systèmes académiques fortement non linéaires, comme le 

modèle proie-prédateur (Wu et al, 2005), ou les équations de Lorentz (Liaqat et al, 2003) ; 

                                                 

12
 L‟assimilation de données a prouvé son efficacité lors de la grande tempête de 1999 qui n‟avait pas son 

équivalent dans les archives météorologiques (Mackenzie, 2003). 



Anne Johannet. Mémoire d‟HDR. Université Pierre et Marie Curie. 

 

 -42- 

néanmoins, à notre connaissance, aucun travail couplant l‟apprentissage artificiel et 

l‟assimilation de données opérant sur la chaîne hydrométéorologique n‟a été publié.  

Dans le cadre du projet FLASH nous pensons intéressant de comparer les deux approches 

permettant de conférer au modèle un caractère adaptatif ; d'une part l'apprentissage adaptatif 

conventionnel, que nous avons mis en œuvre pour le contrôle de la pince électropneumatique 

présenté en section III.4.b. et qui fait évoluer le jeux des paramètres du modèle en fonction des 

dernières variables mesurées par une règle de gradient dit stochastique (Widrow et al, 1985) ; 

d'autre part, l'apprentissage par renforcement qui ne nécessite que des informations qualitatives 

devrait avoir un grand intérêt, dans la mesure où les variables mesurées sur les systèmes 

hydrométéorologiques sont entachées de grandes erreurs ou incertitudes, comme nous allons le 

présenter dans la section suivante.  

III.8. Application aux hydrosystèmes 

Par hydrosystèmes nous entendons systèmes hydrologiques et systèmes hydrogéologiques. Les 

premiers effectuent la conversion pluie-débit puis la propagation de l'eau au sein des rivières, 

les seconds prennent en compte l'interaction de l'eau avec le sous-sol ainsi que son stockage. 

Compte-tenu de la pression anthropique exercée sur ces systèmes, leur étude est essentielle, que 

ce soit pour la ressource en eau ou pour le risque inondation. Les hydrosystèmes sont connus 

pour avoir un fonctionnement non linéaire, ne serait-ce que du fait de l'évapotranspiration, 

action d'évaporation, de consommation et de transpiration de la végétation, dont on comprend 

bien qu'elle est saisonnière et difficile à estimer précisément. Parmi la grande variété des 

hydrosystèmes, nous nous sommes intéressés à deux types d'entités emblématiques de leur 

complexité : les karsts et les bassins versants rapides.  

a. Projets BVNE et ANR FLASH 

Depuis 2006 nous travaillons en collaboration avec le Service Central d'Hydrométéorologie et 

d'Appui à la Prévision des Inondations, ou SCHAPI, afin d'établir un modèle de prévision des 

crues du Gardon d'Anduze. Le projet intitulé Bassins Versant Numériques Expérimentaux, ou 

BVNE
13

, sur lequel s'est déroulée la thèse de Mohamed Toukourou (Toukourou, 2009-b) a 

permis de mettre en évidence autant la grande difficulté de ce problème que les possibilités 

d'amélioration apportées par l'apprentissage statistique. Ces premiers résultats, très intéressants, 

nous ont permis de monter le projet FLASH
14

, soutenu par l'ANR, qui s'intéresse aux mêmes 

                                                 

13
 Le projet BVNE a pour ambition de faire collaborer plusieurs équipes scientifiques autour d'un même objectif à 

l'aide d'une même base de données. Ce projet s‟appuie sur le Service de Prévision des Crues (ou SPC) Grand 

Delta, ainsi que sur des laboratoires de recherche développant et adaptant leurs modèles hydrologiques afin 

d‟effectuer, en temps réel, une prévision des débits à Anduze. Les équipes travaillant sur le projet sont les 

suivantes : Bureau de Recherches Géologiques et Minières (BRGM), CEntre national du Machinisme Agricole, du 

Génie Rural, des Eaux et des Forêts (CEMAGREF), Environnements DYnamiques et TErritoires de Montagne 

(EDYTEM), Hydrosciences Montpellier (HSM), Institut de Mécanique des Fluides de Toulouse (IMFT), 

Laboratoire d'étude des Transferts en Hydrologie et Environnement (LTHE), Météo France. 

14
 Le projet FLASH : Flood forecasting with machine Learning, data Assimilation and Semi-pHysical modeling 

fait intervenir, outre l'Ecole des Mines d'Alès qui est coordonateur, trois partenaires : l'ESPCI ParisTech, par son 
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bassins et a pour ambition de généraliser les méthodes développées autours du bassin versant 

d'Anduze (Gard-France) aux autres bassins versants du Piémont Cévenol (Cèze et Ardèche), 

puis, afin d'y étudier les changements d'échelle tant spatiale que temporelle, d'effectuer la 

prévision des débits de la Somme (Somme, France). La Somme est en effet un fleuve qui est 

soumis à des crues de nappes de temps de réponse très long, contraint en ses limites par les 

fluctuations des marées qui peuvent être très importantes dans la baie de Somme. En 2001 

l‟inondation de la Somme a marqué l'actualité par son étendue (plus d'un millier de maisons 

inondées), et sa durée (deux à trois mois).  

A l'opposé de la Somme, les bassins versant rapides sont des bassins versants de montagne 

soumis à des événements pluvieux très intenses donnant lieu à des crues aussi soudaines que 

dévastatrices. En septembre 2002, la petite ville d'Anduze (Gard, France) a vu se déverser sur 

elle, en moins de 24h, l'équivalent d'une année de précipitations en région parisienne
15

. En 

conséquence, le débit du Gardon d'Anduze est passé de 200 m
3
/s à plus de 2500 m

3
/s en 

quelques heures. Sur le département du Gard, cet événement pluvieux a tué près de 25 

personnes et a causé plus d'un milliard d'euros de dégâts (Le Lay et al, 2007).  

L'application des modèles hydrologiques MARINE (Bessiere et al, 2007) et TOPMODEL 

(Saulnier et al, 2009) à la prévision des crues du Gardon d'Anduze, met en évidence que 

l'application d'un champ spatialisé de précipitation est nécessaire pour obtenir de bonnes 

simulations de la crue. Ainsi, si les modèles hydrologiques parviennent à estimer le débit en 

chaque point du cours d'eau, en revanche, ils souffrent de ne pas disposer de prévision des 

pluies, qui sont indisponibles à une si petite échelle de quelques km
2
.  

Concernant l'apprentissage statistique, si l'absence de prévision de pluie est pénalisante, il reste 

cependant possible de réaliser autant de modèles que l'on demande de prévisions jusqu'à 

l'horizon maximal de prévision. Ainsi, Mohamed Toukourou a, dans sa thèse, élaboré six 

modèles de prévision, en mode dirigé, afin d'estimer les hauteurs d'eau futures aux horizons de 

prévision ½h, puis de 1h à 5h (Toukourou et al, 2010), en l'absence de prévision de pluie
16

.  

Par ailleurs les signaux mesurés sur les hydrosystèmes sont entachés d'une grande imprécision. 

En premier lieu les précipitations issues de mesures effectuées par les pluviomètres ont une 

                                                                                                                                                           
Laboratoire SIGMA (Signaux, Modèles, Apprentissage statistique) ; le Laboratoire EDYTEM, Laboratoire 

Environnements DYnamiques et TErritoires de Montagne, Unité mixte CNRS et Université de Savoie ; et le 

SCHAPI, Service Central d'Hydrométéorologie et d'Appui à la Prévision des Inondations, service central du 

Ministère en charge de l'Ecologie qui actualise les cartes de vigilance “vigicrues” 

(http://www.vigicrues.ecologie.gouv.fr/). 

15
 Plus précisément 648 mm d‟eau ont été relevés à Anduze par le pluviomètre du Service de Prévision des Crues 

Grand Delta entre le 08/09 13h et le 09/09 8h30 (TU). 

16
 On pourra noter que le modèle de prévision effectué par apprentissage statistique à un horizon de prévision 

donné hp, n‟effectue pas une prévision en supposant la pluie future nulle, hypothèse souvent posée par les 

utilisateurs des modèles hydrologiques pour réaliser des prévisions. En effet, les entrées de pluies futures ne sont 

pas proposées au réseau de neurones. De ce fait, si le réseau apprend à associer les précipitations passées (pluie 

tombée jusqu‟au temps k) aux débits futurs (au temps k+hp). On peut supposer qu‟il effectue également en interne 

une prévision propre de ces précipitations. 

http://www.vigicrues.ecologie.gouv.fr/
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précision quantifiée à 10% ou 20% (Marchandise et al, 2007), mais le réseau de pluviomètres 

(six sont disponibles pour le bassin versant d'Anduze de 540 km
2
 environ) est insuffisant pour 

garantir que l'essentiel de l'orage ne passe pas entre deux de ces dispositifs. Par exemple, lors 

de l‟événement de 2002, on a pu relever un cumul de précipitation près de trois fois plus 

important à Anduze qu‟à Soudorgues, alors que les deux villes ne sont distantes que d‟une 

quinzaine de kilomètres (Figure 17). La technique d'observation des précipitations par 

l'imagerie des ondes réfléchies des radars météorologiques permet l'obtention de cartes donnant 

les réflectivités à la définition du km
2
. Néanmoins, la transformation des réflectivités en pluie 

n'est pas encore totalement satisfaisante, d'une part à cause du relief ou de phénomènes 

physiques encore mal appréhendés, et d'autre part parce qu'elle est souvent réalisée avec l'aide 

de pluviomètres au sol, reportant ainsi sur les cartes radar l'imprécision des pluviomètres. En 

second lieu, les débits sont souvent estimés à partir des hauteurs d'eau au moyen d'une courbe 

de tarage qui est non linéaire. Cette courbe est établie au moyen de jaugeages expérimentaux 

qui permettent de mesurer les débits pour une hauteur particulière. Il est inutile de préciser ici 

qu'aucun jaugeage du Gardon lors des épisodes de crues très intenses ne peut être réalisé sans 

mettre en péril la sécurité des personnes. La courbe de tarage est donc contestable pour les très 

forts débits. Pour cette raison et grâce à la capacité de l'apprentissage statistique d'estimer aussi 

bien les hauteurs d'eau que les débits, nous avons donc préféré prévoir la hauteur d'eau. 

 
Figure 17 : Bassin versant d'Anduze (Artigue, 2010). 

Le bassin versant est situé dans le Sud-Est de la France, il s’étend sur 540 km
2
 

environ. 

Ces difficultés, ajoutées au nombre réduit d‟événements de la base de données
17

 (17 

événements disponibles, dont seulement cinq événements jugés intenses) nous ont permis de 

prendre la mesure du défi qui est posé aux systèmes à apprentissage statistique pour parvenir à 

prévoir les crues du Gardon d'Anduze. On comprend aisément que de telles imprécisions 

                                                 

17
 Pour un hydrosystème, cette base de données est très importante ; elle est le fruit du travail régulier du SPC 

Grand Delta ; si nous la présentons comme "réduite" c'est en regard du nombre d'événements intenses et de la 

nécessité de disposer d'une base de données redondante pour l'apprentissage statistique. 
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soulèvent avec plus d'acuité la difficulté du surapprentissage soulevée par le dilemme biais-

variance. 

Face à ces difficultés, une méthodologie rigoureuse de mise en place des méthodes de 

régularisation précédemment exposées a été proposée et mise en œuvre par Mohamed 

Toukourou. La validation croisée a permis de sélectionner les meilleurs modèles au sens des 

critères tels que la persistance, l'erreur quadratique ou le coefficient de détermination. La 

validation croisée partielle, variante de la validation croisée, n'opérant que sur les événements 

les plus intenses afin de sélectionner les modèles les meilleurs sur ces crues, a été proposée et 

une comparaison entre l'arrêt précoce et la modération des poids a été menée (Toukourou et al, 

2009-a). Dans la continuité de ce travail, Audrey Bornancin-Plantier qui effectue sa thèse dans 

le cadre du projet FLASH étudie exhaustivement la sélection des modèles et effectue une 

analyse de sensibilité sur les hyperparamètres de la règle de Levenberg-Marquardt, ainsi que 

sur les critères employés pour l'apprentissage et/ou la sélection des modèles (section II.b.ii). 

Par ailleurs, une autre demande sociétale est émergente : celle qui concerne les bassins versants 

non-jaugés. Ces bassins sont ceux qui, du fait de leur taille réduite, ne disposent pas d'une 

station de mesure de débit (station de jaugeage), et pour lesquels on ne dispose donc pas de 

mesures. Bien que petits, ces bassins versant peuvent cependant recueillir des quantités de 

précipitation considérables, car très localisées, qui vont donc causer des dégâts et même des 

décès. Dans le cadre du projet BVNE nous avons entrepris, avec la thèse de Guillaume Artigue 

de bâtir des modèles de prévision des crues opérant sur ces bassins en s'inspirant de l'approche 

dite de régionalisation. L'approche de régionalisation consiste à effectuer un calage sur un 

bassin jaugé (noté A), semblable, hydrologiquement parlant, au versant cible non jaugé (noté 

B). Grâce à l'estimation des précipitations au moyen des cartes radar, les pluies peuvent être 

estimées sur le bassin B. Ainsi le modèle calé sur le bassin A peut être utilisé en prévision sur 

le bassin B.  

Cette méthode est revisitée par Guillaume Artigue qui définit ainsi un bassin versant normalisé 

régional (le bassin A normalisé). Lors de la prévision sur un bassin B, le modèle normalisé est 

mis en œuvre avec les précipitations radar du bassin B, puis dénormalisé afin de délivrer les 

débits du bassin B à la bonne échelle. Le travail de thèse en cours concerne donc la recherche 

de facteurs de normalisations tant spatiaux que temporels, et la mise en œuvre de prédicteurs du 

type non dirigé. 

b. Systèmes karstiques 

Dès 1993 les karsts
18

, mal connus du fait de leur grande hétérogénéité spatiale, nous ont paru 

un champ d'application intéressant pour l'apprentissage statistique. Nos premiers travaux ont 

                                                 

18
 Le mot karst vient d'un mot slovène qui décrit un paysage calcaire comportant des formes d'érosions 

particulières. Dans ce mémoire le karst est une entité géologique, formée de roches carbonatées fracturées et 

dissoutes en profondeur par l'eau, créant ainsi des réseaux de vides organisés. Ces réseaux sont en partie emplis 

d'eau, ce qui permet de qualifier les karsts de châteaux d'eau naturels. Les karsts contribuent à l‟alimentation en au 

potable pour 20 à 25% de la population (Ford et al, 1997). 
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alors porté, en collaboration avec Messieurs Alain Mangin et Dominique d'Hulst, sur le karst 

du Baget (Ariège-France). Ainsi, très en avance sur la communauté internationale, nous avons 

modélisé la relation pluie-débit du karst du Baget avec les deux prédicteurs évoqués en section 

III.3.a. (Johannet et al, 1994).  

Plus récemment, alors que quelques travaux sur la thématique de l'apprentissage statistique 

appliqué aux karsts commencent à être publiés (Kurtulus et al, 2007), et bénéficiant de 

l'amélioration de l'apprentissage apporté par la règle de Levenberg-Marquardt, nous avons 

étudié le comportement du modèle non-dirigé en comparaison avec un modèle linéaire 

possédant les mêmes variables. Il a ainsi été mis en évidence que, en l'absence d'estimation de 

l'évapotranspiration potentielle, remplacée par une simple gaussienne ayant son maximum au 

moment des plus fortes chaleurs (quand l'évapotranspiration est supposée maximale) le modèle 

neuronal parvenait à une bonne modélisation (Johannet, 2010). Mettant en œuvre le prédicteur 

non-dirigé, il a également été possible d'alimenter le modèle par une série d'impulsions de 

précipitations simulées croissantes afin de visualiser la réponse à des impulsions croissantes
19

. 

Comme représenté en Figure 18, on peut noter que la réponse du modèle neuronal marque un 

effet de saturation pour les grandes impulsions, contrairement au modèle linéaire. Cet effet de 

saturation est par ailleurs explicable puisque, lors des grandes crues, le débit est contraint par la 

dimension des conduits à l'intérieur du karst.  

Ces premières approches de modélisation hydrodynamique d'un aquifère karstique, très 

intéressantes, d'une part pour les interprétations physiques possibles, et d'autre part pour la 

demande assez faible en types de données observées (la température n‟est pas mesurée mais 

remplacée par une gaussienne), nous ont permis d'envisager le travail de thèse de 

Line Kong A Siou afin d'étudier l'aquifère du karst du Lez. Ce travail a pour objectif, non 

seulement d'effectuer la prévision des crues, mais également de tenter d'interpréter le modèle 

obtenu afin d'en retirer des informations sur ce système physique où les inconnues restent 

nombreuses. A cette fin, nous avons appliqué la méthode dite des boîtes transparentes, que 

nous avons proposée (Johannet et al, 2008-a), et présentons dans le chapitre suivant. 

 

                                                 

19
 On ne peut rigoureusement parler ici de réponse impulsionnelle puisque cette dernière est définie dans le cadre 

des systèmes linéaires, qui n'est pas le cadre de cette étude. 
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Figure 18 : Réponse du modèle à des impulsions croissantes de précipitation 

simulée.  

En échelle négative les impulsions croissantes de pluie, en trait pointillé fin 

(vert) la réponse du modèle linéaire aux impulsions de pluie, en tireté (rouge) 

la réponse du modèle non linéaire neuronal. Les sommets des pics de crue de 

la réponse linéaire sont reliés entre eux par une droite afin de rendre 

apparente la proportionnalité des réponses du modèle linéaire, tandis que les 

sommets des réponses du modèle non linéaire sont reliés par des segments de 

droite tiretée (Johannet, 2010). 
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IV. Au-delà de la boîte noire 

IV.1. Boîte grise et boîte transparente 

a. Modélisation semi-physique 

Une autre utilisation de l'apprentissage statistique peut être de réaliser un modèle de type boîte 

grise : la part du processus qui est parfaitement connue est représentée sous la forme d'un 

modèle de connaissance, par exemple des équations différentielles, tandis que la part du 

processus qui est moins bien connue est identifiée par un modèle en boîte noire (Sjöberg et al, 

1995). Ainsi, déclinée avec le formalisme propre des réseaux de neurones (III.3), la part 

modélisée de manière déterministe et la part modélisée de manière statistique peuvent être 

représentées avec un formalisme unifié et l'apprentissage peut ne s'appliquer qu'à un sous-

ensemble des paramètres du modèle. Y. Oussar a utilisé cette approche des boîtes grises pour 

modéliser le processus de séchage d'un film polymère sur un substrat (Oussar et al, 2001).  

Si ces utilisations, qualifiées de boîte noire ou boîte grise, ont toute leur utilité, la modélisation 

de processus hydrométéorologiques par apprentissage statistique conduit cependant souvent à 

s'interroger sur la vérification de la qualité du modèle par une autre méthode que le calcul de 

l'erreur sur l'ensemble de validation. En effet, autant la complexité croissante des modèles et 

des algorithmes allant à l‟encontre des principes de parcimonie préconisés dès les premières 

heures du développement des statistiques (Box, 1976), autant leur application à des 

phénomènes non stationnaires et mesurés sur une période trop courte, ne permettent pas de les 

évaluer de manière pleinement satisfaisante selon la seule approche statistique. Il est alors 

légitime, afin de le valider, de chercher à expliquer le modèle ou de chercher à retrouver les 

caractéristiques du processus dans les paramètres statistiques du modèle. 

Pour ce faire nous avons proposé dès 1993 de contraindre l'architecture du réseau de neurones 

par la connaissance acquise sur le fonctionnement du processus modélisé. L'idée est de séparer 

les « fonctions » des « paramètres » en représentant le processus de manière modulaire et en 

isolant les « modules » que l'on veut étudier de façon qu'ils puissent être identifiés par un 

réseau de type approximateur universel. Ainsi le modèle neuronal du processus physique se 

compose de plusieurs perceptrons multicouches disposés en cascade. 

Partant du modèle hydrodynamique du karst proposé par Alain Mangin (Mangin, 1975), qui 

avait l'avantage d'être déjà décomposé en différents modules, nous avons simulé le 

fonctionnement du karst du Baget par un ensemble de cinq sous-réseaux connectés les uns aux 

autres. Il s'agissait des sous-réseaux : infiltration rapide, infiltration retardée, drain, systèmes 

annexes et évapotranspiration (Johannet et al, 1994), (Figure 22). 

Une fois l'apprentissage réalisé, on peut observer les signaux issus des sorties des sous-réseaux 

et ainsi, si le processus physique est correctement identifié, avoir une visualisation des 

évolutions des grandeurs physiques non mesurables : on peut observer le système comme si ce 

dernier était transparent. Bien évidemment, la validation des signaux ainsi obtenus 

empiriquement est une difficulté à ne pas négliger, elle peut être faite par des experts qui 
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évaluent le caractère vraisemblable de ces résultats (Johannet et al, 2007), ou par 

l'intermédiaire d'un modèle supplémentaire, d'inspiration physique, comme nous l'avons 

proposé dans le cadre de la thèse de Line Kong A Siou (Kong A Siou et al, 2010).  

b. Estimation empirique de grandeurs physiques 

i.  Estimation de l’évapotranspiration 

L'approche des boîtes transparentes a été utilisée pour estimer le signal d'évapotranspiration. 

Cette information est en effet cruciale pour les modèles hydrologiques qui opèrent souvent sur 

les pluies efficaces
20

. Si plusieurs modèles d'évapotranspiration existent, il a également été 

montré par L. Oudin que la précision du modèle d'évapotranspiration n'a que peu d'importance 

et qu'un modèle assez rustique ne prenant en compte que l'évolution de la température pour 

estimer l'évapotranspiration potentielle peut suffire (Oudin et al, 2004).  

Le modèle hypothèse de processus physique que nous avons utilisé pour simuler 

l'évapotranspiration est le suivant : un premier processus effectue la conversion pluie-débit, 

tandis que le processus d'évapotranspiration prélève de l'eau à la conversion pluie-débit (Figure 

19). Les variables d'entrées de la modélisation par boîtes transparentes sont bien entendu 

prépondérantes puisqu‟elles conditionnent la représentation physique. Ainsi, les précipitations 

alimentent la relation pluie-débit tandis qu'une courbe en gaussienne maximale au 30 juin (sous 

nos latitudes) représente les variations schématiques des variables climatiques prépondérantes 

sur l'évapotranspiration (température, radiations solaires).  

Appliquées aux données du karst du Baget (Ariège) et après plusieurs raffinements successifs, 

nous avons obtenu pour l'évapotranspiration observée dans le réseau de neurones (Figure 19) 

une courbe différente de la gaussienne appliquée en variable d'entrée. On peut y noter en 

particulier une translation systématique du maximum au mois de septembre (Johannet et al, 

2008-a). L'interprétation de ce maximum n'est pas très aisée à faire. En effet, la sortie du 

neurone "évapotranspiration" est le résultat d'un calcul effectué sur des variables d'entrée qui ne 

dépendent pas de la pluie, on penserait donc observer l'évapotranspiration potentielle. Or, il faut 

se souvenir que le calcul des paramètres a été effectué à partir d'une erreur calculée en sortie, 

qui dépend donc des précipitations observées, et ferait alors intervenir l'évapotranspiration 

réelle. Ce que l'on obtient à la sortie du neurone "évapotranspiration" est donc une grandeur 

différente des deux précédentes, qui transcrit l'eau que la végétation consomme, que cette eau 

vienne d'être précipitée (le Baget se situe dans les Pyrénées et est donc bien arrosé), ou qu'elle 

se situe dans des réserves plus profondes. Il s'agirait d'un déficit en écoulement moyen causé 

par la végétation et l'évaporation.  

Après avoir validé cette analyse sur d'autres bassins versants, nous pensons pouvoir utiliser ce 

type d'information pour évaluer l'impact d'un changement de pratiques agricoles ou d'un 

changement climatique sur les réserves en eau. 

                                                 

20
 Les pluies efficaces sont les pluies auxquelles on a retiré l'évapotranspiration réelle (ETR); cette dernière dépend 

de l'évapotranspiration potentielle (ETP) et de l'eau effectivement disponible pour l'évaporation et la 

consommation par la végétation (réserve du sol, précipitations). 
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-a- -b- 

Figure 19 : Boîte transparente pour mettre en évidence l'évapotranspiration 

17-a. Hypothèse physique. 17-b. Déclinaison de l'hypothèse physique en 

utilisant un réseau de type perceptron multicouche pour identifier chacune 

des fonctions physiques inconnues. 

ii.  Estimation de transferts d’eau souterrains 

Nous avons déjà évoqué le travail de thèse de Line Kong A Siou sur l'aquifère karstique du 

Lez. Le cœur de son travail est l'utilisation des boîtes transparentes pour mieux connaitre le 

fonctionnement de l'aquifère du Lez, source d'eau douce qui alimente la ville de Montpellier 

(agglomération de 300 000 habitants) en eau potable. 

Ce travail est effectué en collaboration avec Monsieur Séverin Pistre et Madame Valérie 

Borrel, du Laboratoire HydroSciences Montpellier. L'aquifère du Lez est un aquifère 

extrêmement étudié depuis plus de 50 années du fait de son exploitation industrielle, et de 

nombreux modèles ont été proposés pour décrire son fonctionnement (Fleury, 2008). En 

quelques mots, les difficultés de l'étude de cet aquifère sont dues au fait qu'il est très hétérogène 

au niveau géologique et comporte des failles majeures ; il est également alimenté par des 

précipitations de type cévenol, très hétérogènes sur une courte échelle de temps (horaire). Du 

fait de son exploitation industrielle, les débits à la source sont artificialisés et les dynamiques de 

la vidange et du remplissage du karst sont vraisemblablement perturbées ; à cause du pompage 

la source est asséchée durant les mois d'été, les chroniques de débits ne sont donc plus 

disponibles et de plus la source du Lez n'est qu'un des exutoires de l'aquifère plus profond ; 

d'autres sources non pérennes existent dont le débit n'est pas mesuré (source du Lirou, des 

Fleurettes, …). Enfin, les délimitations du bassin d'alimentation souterrain ne sont pas très bien 

connues et sont variables en fonction du niveau de remplissage du réservoir : en effet, l'aquifère 

se fragmente en plusieurs compartiments indépendants durant la période sèche qui sont ainsi 

isolés les uns des autres. Une délimitation du bassin d'alimentation a cependant été proposée 

par Y. Conroux (Conroux, 2007), représentée sur la Figure 20. Le bassin ainsi délimité s‟étend 

sur environ 400 km
2
. 
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Figure 20 : Bassin d'alimentation supposé du Lez  

Au centre, le Lez, à droite le Vidourle et à gauche l'Hérault. On note sur la 

figure : les pluviomètres utilisés (triangles), les sources connectées à l'aquifère 

(disques rouges) et le site de piézométrie du Terrieu (disque vert). 

Afin de mieux connaitre les écoulements souterrains, un découpage du bassin d'alimentation 

supposé en quatre zones géologiques estimées homogènes a été proposé par Kévin Cros lors de 

son stage de Master II effectué au Laboratoire de l‟Ecole des Mines d‟Alès (Cros, 2010). 

Relativement à chacune des zones baptisées Nord-Est, Nord-Ouest, Sud-Est et Sud-Ouest, 

Kévin Cros a défini autant de chroniques pour des pluviomètres virtuels qui enregistreraient les 

précipitations tombant sur ces zones. Ces chroniques ont été définies à partir de six 

pluviomètres présents dans le bassin ou à proximité de celui-ci en utilisant une méthode 

géométrique de pavage du plan (polygones de Thiessen) afin de définir la "contribution" de 

chacun de ces pluviomètres.  

Nous avons émis l'hypothèse selon laquelle l'eau tombant sur chacune de ces zones : i) alimente 

l'aquifère profond, ii) ressort à la source du Lez, iii) sort à un autre exutoire. En contraignant 

l'architecture du réseau de neurones par ces hypothèses, la boîte transparente la plus complète a 

été proposée telle que représentée à la Figure 21. Sa mise en œuvre a été simplifiée par souci de 

parcimonie et les réseaux de type identificateur universel correspondant à l'infiltration de 

chacune des zones ont été remplacés par un seul neurone linéaire. De l'information a été 

extraite de chacun de ces sous-réseaux en utilisant la méthode de sélection de variables 

proposée par (Yacoub, 2001) qui permet de quantifier l'importance de chacune des variables. 

Ainsi, Line Kong A Siou a pu extraire, pour chacune des zones, d'une part le volume relatif de 

l'eau sortant à la source provenant de cette zone et d'autre part le temps de transfert de 
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l'énergie
21

 issue des précipitations tombant sur la zone. Ces résultats ont été soumis pour une 

publication.  

 
Figure 21 : Boîte transparente pour la simulation hydrodynamique de 

l'aquifère du Lez.  

La validation de la méthode a été effectuée en construisant un modèle hydrologique avec le 

logiciel HEC-HMS (HEC-HMS) qui représente le type de fonctionnement que nous cherchons 

à identifier : quatre sous-bassins dont le débit est partiellement collecté dans un drain qui sort à 

la source du Lez, le reste de l'eau étant transmis à l'aquifère pour émerger à d'autres exutoires. 

Pour chaque sous bassin, le pourcentage d'eau exsurgeant à la source ainsi que la constante de 

temps ont été imposés et devraient donc être retrouvés dans la boîte transparente. Les résultats 

obtenus concernant les contributions sont synthétisés dans le Tableau 1. Il s'agit d'une moyenne 

sur quatre modèles du bassin virtuel, différents par leur dynamique. 

                                                 

21
 Le retard estimé correspond au temps de que met l‟onde de crue à traverser le karst ; il ne s‟agit donc pas de 

transfert de matière mais de transfert d‟énergie. Le transfert de la matière obtenu à partir de traçages peut être 

rapide en crue et très lent à l‟étiage. 
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Contribution au débit Z1 Z2 Z3 Z4 

Imposée dans le bassin-versant virtuel 33.9% 37% 8.4% 19.2% 

Boîte transparente (moyenne sur quatre 
bassins virtuels différents) 35,3% 37,3% 8,8% 18,5% 

Ecart type 2,86% 3,49% 3,49% 1,66% 

Tableau 1 : Validation de la méthode à partir d'un aquifère virtuel. 

Appliquée au bassin d'alimentation du Lez, la méthode fournit les pourcentages de contribution 

de chaque zone au débit observé à la source (Tableau 2). Les contributions sont estimées à 

partir des paramètres médians correspondant à 50 réseaux obtenus à partir d'initialisations 

différentes des paramètres. 

Contribution au débit Zone NO Zone NE Zone SO Zone SE  

Boîte transparente 28% 44% 11% 5% 

Temps de réponse (jour) 1 à 3 1 1 0 

Tableau 2 : Contribution  des zones estimée par la boîte transparente 

Les contributions des zones au débit de la source appellent plusieurs commentaires. A la 

première lecture, on est surpris de la faible importance de la zone Sud-Ouest qui est pourtant 

une zone de recharge importante de l'aquifère ; cependant cette faible contribution est 

explicable car la source du Lirou draine cette zone mais cette dernière n'est jaugée que depuis 

moins d‟un an. Les contributions des zones Nord-Ouest et Nord-Est correspondent à ce que l'on 

peut attendre : on sait que la zone Nord-Est contribue directement à l'alimentation de la source 

puisque des mesures de hauteur d'eau dans la nappe montrent qu'elle est directement influencée 

par les pompages effectués dans le drain du Lez
22

. Par ailleurs la contribution de la zone Nord-

Ouest doit arriver à la source à la faveur de la faille de Corconne, accident tectonique majeur 

qui sépare le bassin d'alimentation en deux et draine l'eau vers le sud. Enfin, la très faible 

importance de la contribution de la zone Sud-Est parait indiquer que cette zone est peu ou pas 

comprise dans le bassin d'alimentation de la source. Ceci étant d'autant plus justifié que la zone 

Sud-Est est constituée de terrains imperméables (avec quelques aquifères perchés) sur lesquels 

l'eau ruisselle pour atteindre le fleuve du Lez à l'aval de la source. Quelques apports marginaux 

à l‟aquifère pourraient cependant se produire à la faveur de failles.  

Pour valider cette dernière hypothèse, une autre manipulation a été réalisée en ajoutant à 

l‟aquifère une cinquième zone fictive d‟alimentation, définie par un pluviomètre "recevant" des 

précipitations aléatoires lorsque des pluies sont enregistrées sur au moins un des quatre 

pluviomètres virtuels de la zone, et nulles autrement. Extraite de la boîte transparente, la 

                                                 

22
 Des piézomètres implantés sur le site du Terrieu situé à quelques kilomètres de la source (Figure 20) voient le 

niveau de la nappe baisser très rapidement lorsque le pompage dans le Lez est effectif (Jazayeri Noushabadi, 

2009).  
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contribution de cette zone est apparue quasi nulle. Cette dernière expérience permet donc 

d'affirmer que lorsque les variables d‟une zone n'affectent pas le débit, la zone est identifiée par 

la boîte transparente comme peu contributive. Ce dernier point renforce la proposition 

consistant à redéfinir le bassin d'alimentation en excluant une grande partie de la zone SE.  

iii. Vers la connaissance des volumes d’eau stockés dans les karsts 

Dès 1975 Monsieur Alain Mangin proposait une approche systémique de modélisation 

hydrodynamique du karst (Mangin, 1975). Celle-ci était fondée sur les mêmes hypothèses que 

l'apprentissage statistique : les signaux d'entrée et de sortie du système recèlent suffisamment 

d'informations pour réaliser un modèle efficace sans la connaissance détaillée des processus 

élémentaires. Sa modélisation conceptuelle, fondée sur un enchaînement de blocs en cascade 

effectuant des opérations physiquement interprétables, représentée de manière simplifiée en 

Figure 22, est celle qui nous a inspiré l'idée des boîtes transparentes en 1993. Après toutes ces 

années et maintenant mieux armés, tant au niveau outils que méthodologie, nous pensons 

pouvoir reprendre ce travail pour arriver à mieux connaître le karst.  

En identifiant chaque boîte proposée par Alain Mangin avec un perceptron multicouche et en 

« cascadant » les réseaux ainsi constitués comme représenté schématiquement à la Figure 22, 

nous pensons pouvoir estimer les niveaux d'eau souterrains
23

, soit globalement pour l‟aquifère, 

soit pour chacune des zones géologiques.  

Sur la partie droite de la Figure 22 représentant la boîte transparente, qui correspond au modèle 

systémique de gauche, on note p(k) le vecteur des précipitations au temps discret k et à des 

valeurs précédentes. Compte tenu de l'évapotranspiration, la sortie de ce réseau délivre une 

estimation des pluies efficaces peff qui sont appliquées, pour leurs valeurs récentes peff(k) à la 

fonction infiltration rapide, et pour leurs valeurs passées peff(k-r) à la fonction infiltration 

retardée. Les sorties de chacune des fonctions infiltrations (ir(k) et il(k), respectivement 

infiltration rapide et infiltration lente) sont appliquées aux deux modules : drain et systèmes 

annexes qui délivrent les sorties s(k+1) pour les systèmes annexes et y(k+1) pour le drain. La 

connaissance du niveau de remplissage se fait en observant la sortie s(k+1). 

Cette dernière information est très précieuse pour deux raisons. D'une part elle permet d'évaluer 

le niveau des réserves d'eau et est donc très utile pour un gestionnaire ; d'autre part elle permet 

d'estimer le remplissage du barrage écrêteur de crue que peut représenter le karst. Ainsi, en 

début d'automne, elle peut servir à mieux appréhender l'importance d'une éventuelle crue.  

                                                 

23
 Il est très difficile de pouvoir estimer le volume d'eau stocké dans un karst du fait de l'hétérogénéité de la 

structure. Les forages ne fournissent pas nécessairement une information généralisable puisqu‟ils peuvent être 

réalisés dans un conduit large empli d'eau ou dans un réseau de fines fissures très peu drainantes. Compte-tenu de 

la charge hydraulique, les niveaux d‟eau dans ces deux types de vides ont des valeurs très différentes. 
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Figure 22 : Modèle systémique du karst et sa boîte transparente. 
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V. Conclusion 

Ce mémoire d‟habilitation à diriger les recherches a l‟ambition de présenter de manière 

synthétique les recherches que j‟ai effectuées sur la modélisation par apprentissage statistique 

de systèmes naturels ou en interaction avec un environnement naturel. Au fil de mes travaux, 

j‟ai acquis la conviction que les capacités d‟apprentissage et d‟identification universelle avaient 

un champ d‟application très vaste dans la modélisation des systèmes naturels par essence non 

linéaires et partiellement connus.  

Parmi ces derniers, les hydrosystèmes m‟ont paru emblématiques des défis que la science doit 

permettre d‟aborder. De fait, l‟importance des enjeux soulevés par la ressource en eau ou la 

prévision des crues a déterminé l‟instrumentation et le suivi de ces systèmes depuis des 

décennies, aboutissant ainsi à la constitution de bases de données d‟une importance et d‟une 

richesse considérables. Les scientifiques qui se sont attachés à relever ces mesures, à les 

consigner, les valider et les sauvegarder dans des fichiers numériques maintenant utilisables, 

sont évidemment les premiers que nous devons remercier. Leur travail est immense en regard 

de celui du modélisateur.  

Comme nous l‟avons soulevé dans la première partie de ce mémoire, l‟apprentissage 

statistique, issu de l‟optimisation d‟une fonction de coût décomposable en fonctions 

paramétrées non linéaires, s‟est enrichi de l‟idée du compromis entre le biais et la variance, 

compromis qui doit être pris en compte pour déterminer la complexité adéquate du modèle. 

Ainsi, diminuer la variance a donné lieu à plusieurs méthodes de régularisation que nous avons 

présentées et que nous utilisons et revisitons pour optimiser des modèles statistiques capables 

d‟opérer en présence de données très bruitées ou en partie incertaines.  

En deuxième partie de ce mémoire nous avons présenté comment les réseaux de neurones se 

sont dotés d‟outils performants. Autant les règles d‟apprentissage modernes qu‟une habile 

synthèse entre la théorie des systèmes et l‟apprentissage statistique permettent désormais de 

proposer des prédicteurs adaptés aux modèles hypothèses choisis du processus que l‟on 

identifie. Des illustrations, auxquelles nous avons contribué, ont été proposées concernant 

l‟apprentissage de comportements d‟un robot hexapode, la synthèse de régulateurs pour le 

contrôle en position et en pression d'une pince électropneumatique, ou la définition d‟un 

modèle de prévision des crues rapides du bassin versant d‟Anduze.  

Cependant, même si nous disposons de bases de données établies sur une durée qui paraît 

longue, celle-ci est fort courte devant l‟histoire des phénomènes hydrométéorologiques. Aussi 

la recherche d‟un modèle capable d‟adopter une bonne réponse devant des phénomènes rares 

ou extrêmes doit être spécifiquement menée. Face à ce questionnement, nous avons tenté de 

Tous les modèles sont faux ; 

certains sont utiles. 

(G. E. Box, 1979)  
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valider le fonctionnement du modèle statistique par une autre approche que la seule mesure 

statistique de l‟erreur de validation.  

Ceci nous a conduits à proposer les boîtes transparentes, présentées en dernière partie, qui sont 

utiles autant pour permettre la validation par un expert que pour retirer des enseignements sur 

le système étudié. Trois illustrations de cette démarche originale ont été proposées, depuis 

l‟estimation des flux d‟eau souterrain, à celle de l‟évapotranspiration pour déboucher sur la 

proposition de l‟estimation du remplissage en eau d‟un aquifère karstique.  

Si j‟ai bien conscience que la complexité des systèmes et des algorithmes utilisés dans 

l‟approche des réseaux de neurones peut donner le vertige autant à un naturaliste qu‟à un 

statisticien des premières heures qui effectuait les calculs à la main et prônait déjà la 

parcimonie, je n‟en reste pas moins convaincue que les pistes que j‟ai pu esquisser dans ce 

mémoire vont nous permettre, en collaboration étroite avec les spécialistes des sciences 

naturelles et des sciences physiques, de mettre en œuvre des méthodes fiables permettant de 

mieux identifier et mieux connaître ces processus physiques pour l‟instant si mal connus et 

pourtant tellement importants.  
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Annexes 

Résumé des travaux de recherche 

Depuis 1985, mes travaux de recherche portent sur l'apprentissage statistique. La première 

expérience est celle de la thèse qui s'est déroulée au Laboratoire d'Electronique de l'ESPCI sous 

la direction de Monsieur Gérard Dreyfus. Il s'agissait, d'une part, d'implémenter les réseaux de 

neurones de type Hopfield, et d'autre part, de paralléliser les calculs sur plusieurs processeurs 

parallèles afin d'accélérer les temps d'exécution. Ces travaux nous ont permis d'étudier 

l'influence de la précision du codage des paramètres du réseau sur la qualité de la mémoire ainsi 

réalisée [RO3].  

En 1991, j‟ai intégré l'école des Mines d'Alès. Après 2 périodes d'activité d'enseignement et de 

recherche en laboratoire (1991-1999) et (2006-2011) qui m'ont permis d'initier des recherches 

en apprentissage statistique dans des équipes aux compétences et activités très différentes, le fil 

directeur de mes travaux peut être reformulé comme l'application des méthodes 

d’apprentissage artificiel, notamment des réseaux de neurones, à des systèmes complexes, mal 

connus, qu’ils soient naturels ou artificiels, en interaction avec un environnement naturel. Si 

rajouter la complexité d'un réseau de neurones à un système cible déjà mal décrit peut paraitre 

trop ambitieux ou voué à l'échec, j'ai toujours cru, au contraire, que les questionnements 

soulevés par ces systèmes cibles peuvent faire progresser, également, la connaissance sur 

l'apprentissage statistique.  

Le premier exemple que je choisirai de présenter est celui d'un robot hexapode. Partant du 

principe que l'environnement naturel ne peut être décrit parfaitement, nous nous sommes 

inspirés, avec mes collègues de l'EMA, des travaux de A.G. Barto pour proposer l'apprentissage 

de comportement de ce robot par une méthode de renforcement utilisant une fonction objectif. 

Ainsi, deux comportements nécessitant coordination et anticipation (l'évitement d'obstacles et 

l'apprentissage de la marche) ont été évalués avec succès dans un environnement changeant 

(modification des obstacles, réapprentissage sur 5 pattes) [RO6]. J'ai également contribué aux 

travaux concernant la commande adaptative de processus non linéaire ou non stationnaire par 

réseaux de neurones [RO4]. 

Dès 1993, j'ai pris contact avec Monsieur Alain Mangin afin de travailler sur la modélisation 

des karsts, aquifères non-linéaires et spatialement très hétérogènes. Très en avance sur la 

communauté internationale, nous avons jeté les bases de la recherche que j'effectue 

actuellement [C10]. À partir de 2006, j'ai pu concrétiser ces travaux en étudiant la prévision des 

crues rapides et la modélisation des karsts. Ces deux thématiques hydrologiques ont en 

commun la disponibilité de bases de données observées depuis plusieurs décennies, la non-

linéarité des processus impliqués dans ces phénomènes, la difficulté à mesurer les variables 

d'état, la présence d'un bruit de mesure considérable. Considérant le dilemme biais-variance qui 

est au cœur des recherches sur l'apprentissage statistique, ces signaux et systèmes nous ont 

conduits à revisiter les méthodes de régularisation [RO10]. Ainsi, j'ai proposé et coordonné le 

projet ANR FLASH, dont les partenaires sont l'ESPCI Paris-Tech, le laboratoire EDYTEM et 

le SCHAPI (qui alimente en temps réel la carte de vigilance crue sur internet). Ce projet permet 
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de prolonger les travaux précédents en s'intéressant à la modélisation systémique de l'ensemble 

de la chaine hydrométéorologique sur les bassins versants du Piémont Cévenol. En 

complément, les enjeux forts portant sur les bassins versants trop petits pour qu'une station de 

mesure soit maintenue, ou bassins non jaugés, nous ont conduits à proposer un modèle de 

bassin versant normalisé virtuel. Enfin, sur le volet karst, la méthode des boîtes transparentes 

qui vise à contraindre l'architecture d'un réseau de neurones afin de pouvoir interpréter les 

variables internes du réseau en tant que grandeur physique a fait ses preuves tant sur 

l'évapotranspiration [RO7] que la modélisation hydrodynamique du bassin d'alimentation 

souterrain du Lez.  

Ce type de démarche a également été proposé pour la caractérisation des suspensions 

minérales, systèmes physiques au comportement complexe, montrant ainsi la possibilité 

d'améliorer la connaissance sur ces processus [RO12]. 
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Projet de recherches à 4 ans 

Comme indiqué dans le résumé de mes activités de recherche, le fil directeur de ma démarche 

est l'application des méthodes d‟apprentissage artificiel, notamment des réseaux de neurones, à 

des systèmes complexes, mal connus, qu‟ils soient naturels ou artificiels, en interaction avec un 

environnement naturel. Mes recherches prévues dans les 4 années à venir vont s'appuyer sur 

cette démarche et la décliner dans plusieurs projets pour répondre à plusieurs questions. 

Caractéristiques très particulières des signaux en hydrologie 

Dans de nombreux travaux, le choix du critère qui permet de mesurer la qualité d'un modèle est 

adapté à l'objectif particulier visé par le modèle. Or, fort peu de travaux s'intéressent à modifier 

le critère minimisé durant l'apprentissage. Ainsi, prenant en compte le fait qu'en hydrologie les 

mesures de précipitations comme de débits, ainsi que le bruit associé, suivent une distribution 

très éloignée de la distribution normale, nous allons étudier les liens qui existent entre la 

fonction de coût et les distributions statistiques des signaux d'entrée et de sortie. Plusieurs 

pistes sont envisagées : celle qui consiste à effectuer une transformation non linéaire des 

signaux d'entrée et de sortie a déjà été initiée par d'autres auteurs, mais mérite d'être revisitée 

avec des transformations statistiques ; celle qui consiste à adapter la fonction de coût est plus 

originale. Nous entreprendrons les deux approches. 

Approfondissement des méthodes de régularisation 

Les travaux réalisés sur les données hydrologiques montrent que, pour ces données et pour le 

type de modèle que nous avons mis en œuvre, la régularisation par arrêt précoce est 

généralement plus efficace que celle par modération des poids. En nous inspirant des travaux 

réalisés par L. Ljung, nous comparerons, en fonction des méthodes de régularisation, les 

valeurs obtenues respectivement, par les paramètres du réseau, par la matrice Jacobienne et par 

la matrice Hessienne, afin d'étudier les relations qui lient chacun de ces trois types grandeurs et 

les propriétés de généralisation des modèles. 

Bassin versant normalisé 

Le bassin versant normalisé est proposé dans une approche dite de régionalisation : un modèle 

est conçu pour un bassin versant jaugé, puis après la normalisation des précipitations et des 

débits tant en intensité qu'en temporel, un bassin versant normalisé à intérêt régional est conçu. 

Dans le cadre du projet BVNE
24

, nous étudierons les différentes transformations de 

normalisation qui ont un sens en hydrologie (tant pour le temps de réponse du bassin versant 

que pour la normalisation par rapport à sa superficie ou ses caractéristiques topographiques), 

ainsi que les limites de régionalisation du bassin normalisé ainsi conçu. 

                                                 

24
 BVNE : Bassin Versant Numérique Expérimental : projet du SCHAPI dont l'objectif est de faire collaborer 

plusieurs équipes scientifiques autour d'un même objectif à l'aide d'une même base de données. 
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Modélisation semi-physique et boîtes transparentes 

Les boîtes transparentes seront mises à profit dans le projet FLASH
25

 pour évaluer différentes 

hypothèses sur la capacité d'infiltration des sols lors des épisodes pluvieux intenses du Piémont 

Cévenol. Elles seront également utilisées pour estimer et prévoir le niveau de la nappe 

souterraine du bassin versant de la Somme. Par ailleurs, en s'inspirant du modèle 

hydrodynamique des karsts de M. Alain Mangin, les boîtes transparentes seront utilisées afin 

d'estimer le niveau de remplissage du karst. Les applications sont alors immenses tant pour 

l'estimation des ressources en eau que pour l'écrêtage de crue en cas d'orage violent. 

Adaptativité et assimilation de données 

Le projet FLASH prévoit d'étudier l'application de l'assimilation de données. À cette fin nous 

étudierons comment rendre adaptatifs les paramètres du modèle, ce qui est une démarche déjà 

étudiée ; de manière plus innovante, nous assimilerons également les grandeurs de 

précipitations afin de compenser les erreurs et approximations de mesure qui peuvent être très 

importantes.  

 

                                                 

25
 FLASH : Flood forecasting with machine Learning, data Assimilation and Semi-pHysical modeling. 
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Synthèse des activités d'enseignement  

 

Enseignant-chercheur depuis 1985, mes activités d'enseignement sont assez diverses, tant sur 

les contenus que sur les méthodes.  

Travaux dirigés et Travaux pratiques 

ESPCI (1985-1990) Electronique en première année : TD, préceptorats et TP. 

EMA (1991-2011) TD en : électronique (1991-2006), automatique (1998-2011), réseaux de 

neurones (1991-2011), électronique physique (1997-2000), capteurs (1994-1999), traitement du 

signal (2000-2011) ; TP de : électronique (1991-1999), physique (1995-1999), réseaux de 

neurones (1991-2011). 

Cours magistraux 

 EMA 

Pour tous les cours magistraux, j'ai rédigé un polycopié détaillé. Sont indiqués dans ce qui suit 

l'année d'étude où est dispensé l'enseignement, le nombre moyen d'étudiants, les années où cet 

enseignement a eu lieu ; en effet de nombreuses refontes des enseignements font que les cours 

apparaissent puis disparaissent ou sont repris par des collègues lors de leur arrivée à l'Ecole. 

Electronique (4
ème

 année, 30 élèves ; 1991-1994). 

Architecture de l'ordinateur (2
ème

 année, 150 élèves ; 1995-1998). 

Automatique (1
ère

 année, 120 élèves ; 1998-2011). 

Réseaux de neurones (3
ème

 année, 30 élèves ; 1991-2010). 

Complexité (3
ème

 année, 30 élèves ; 1999). 

 DEA SIAM de l‟Université Montpellier II 

Réseaux de neurones (1995 et 1996). 

 DEA de Productique et d‟Informatique de l‟Université d‟Aix Marseille III 

Réseaux de neurones (1998). 

Encadrement de projets (enseignement et recherche) 

 EMA, en moyenne par année 

Deux projets longs internes à l'EMA par an : projet d'un groupe de trois élèves en 3
ème

 année 

(temps élève de plus de 100 h à l'emploi du temps). 

Cinq mini-missions de mathématiques (depuis 2000) : trois élèves durant 1 semaine. 
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Accueil de stagiaires étrangers (russes, espagnols, indiens, allemands …) dans le cadre 

d'échanges internationaux.  

Suivi de 2 missions (depuis 2000 : 3 élèves en situation professionnelle en entreprise durant 5 

semaines ; vérification du bon déroulement de l'étude). 

Pédagogies innovantes 

Ma conviction, forgée aux feux des tableaux noirs et des amphithéâtres, est que le temps de 

l'expert qu'est l'enseignant devrait être réservé aux approfondissements du cours et aux 

discussions avec les étudiants plus qu'à l'explication des bases qui constitue parfois une part 

non négligeable des enseignements. C'est pourquoi, avec mon collègue Daniel Diep j'ai initié 

une modification profonde de la pédagogie de l'enseignement d'automatique en première année 

de formation initiale (120 élèves en 2000) ; j'ai également participé à la formation à distance 

(par Internet) en électronique, pour un public d'étudiants salariés (2001-2008). 

Automatique en formation initiale. Le cours magistral en amphithéâtre a été supprimé au profit 

d'un pilotage pédagogique renforcé avec des contrôles continus rendus par groupes de 3 élèves 

à chaque séance de TD. Les contrôles continus ont pour vocation de faire travailler les élèves 

sur les points importants du cours, par ailleurs fourni sous forme d'un polycopié détaillé (100 

pages environ) comprenant des apports théoriques méthodologiques et des exercices simples 

d'application et de stimulation du questionnement des étudiants. En place et lieu du cours, un 

espace question est aménagé pour les étudiants qui le souhaitent et prennent un rendez-vous 

avec l'enseignant. L'efficacité de cette méthode pédagogique est validée après 9 années 

d'exercice. 

Electronique à distance en formation continue. Le cours est remplacé par un polycopié détaillé. 

Les TD ont lieu le soir par internet chaque semaine pendant la durée de l'enseignement. Les TP 

sont réalisés à l'occasion des examens chaque trimestre (regroupement physique des étudiants 

qui habitent parfois à plusieurs centaines de km de l'école, voire à l'étranger). Compte tenu des 

limitations de la bande passante par internet, une méthode pédagogique originale a été déployée 

durant les TD pour stimuler le travail des étudiants. Cette activité a donné lieu à 2 

communications internationales [C26][C28]. 

Responsabilités pédagogiques 

Coordination de l'enseignement d'automatique en tronc commun (1994-1999) 

Responsable adjoint de l'équipe pédagogique de la 2
ème

 année (1999-2005) 

Animations de groupes de travail et rapports internes ayant trait à la pédagogie 

Groupe de travail sur l'évaluation des élèves en 1992-1993. Définition et intégration au 

règlement de scolarité de la notion de "groupe de matières". Rédaction des comptes-rendus. 

Groupes de travail sur l'évaluation des élèves en 1997-1998. Animation (et rédaction des 

comptes-rendus) du groupe de travail sur les cours de base ; définition originale et proposition 
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de la "grille de contenus et d'évaluation". Participation aux groupes centrés sur les cours au 

choix et l'évaluation des TP. 

Groupes de travail sur la réforme entrepreneuriale en 1999. 

Groupe de travail sur l'efficacité des enseignements en 2004. Animation du groupe, rédaction 

des comptes rendus et du rapport de synthèse pour le Conseil de Direction de l'Ecole. 
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 Jurys de thèses et encadrements 

 

Participation à des jurys de thèses 

 Pierre Couturier, soutenue le 16 juillet 1997. Thèse de doctorat de l‟INSA de Lyon en 

spécialité : Automatique Industrielle. «Commande par réseaux de neurones : application 

au contrôle d'un préhenseur électropneumatique». Directeur de thèse : 

Monsieur Maurice Bétemps. 

 Carole Dautun, soutenue le 14 décembre 2007. Thèse de doctorat de l'Ecole Nationale 

Supérieure des Mines de St Etienne en spécialité : Science et Génie de 

l‟Environnement. « Contribution à l‟Etude des crises de grande ampleur : connaissance 

et aide à la décision pour la Sécurité Civile. ». Directeur de thèse : Monsieur Gilles 

Dusserre. 

 Mohamed Toukourou, soutenue le 10 décembre 2009. Thèse de doctorat de l'Ecole des 

Mines de Paris en spécialité : Informatique Temps Réel, Robotique et Automatique : 

«Application de l‟apprentissage artificiel aux prévisions des crues éclair». Directeur de 

thèse : Monsieur Gérard Dreyfus. 

 Julien Bongono, soutenue le 3 septembre 2010. Thèse de doctorat de l'Ecole Nationale 

Supérieure des Mines de St Etienne en spécialité : Science et Génie des Matériaux. 

«Caractérisation des suspensions par des méthodes optiques. Modélisation par Réseaux 

de Neurones». Directeur de thèse : Monsieur Pierre Gaudon. 

 

 

Co-encadrement de thèses en cours 

 Line Kong A Siou (2008-2011), Montpellier II, Ecole Doctorale SIBAGHE 

« Modélisation des crues de bassins karstiques par réseaux de neurones ». Directeur de 

thèse : M. Séverin Pistre. 

 Audrey Bornancin-Plantier (2009-2012), Paris VI, Ecole Doctorale EDITE. 

«Application de l‟apprentissage artificiel à la modélisation systémique de la chaîne 

hydrométéorologique pour la prévision des crues éclair ». Directeur de thèse : M. 

Gérard Dreyfus  

 Guillaume Artigue (2009-2012), Montpellier II, Ecole Doctorale SIBAGHE. « Prévision 

des crues éclair par réseaux de neurones, généralisation aux bassins versants non 

jaugés ». Directeur de thèse : M. Séverin Pistre.  

 

 

 

 



Anne Johannet. Mémoire d‟HDR. Université Pierre et Marie Curie. 

 

 -80- 

Master 1 

- Guillaume Artigue (2007). "Les réseaux de neurones formels : application aux crues 

éclair du bassin versant de la Cèze". Université Montpellier II. Master Géosciences. 

- Coralie Guillot (2010). "Détermination de paramètres spatio-temporels de 

caractérisation des bassins versants (multi échelles – multi sites) à l‟aide de la 

modélisation hydrologique". Université de Montpellier II. Département des Sciences de 

la Terre, de l‟Eau et de l'Environnement, mention Sciences Pour l‟Environnement. 

 

 

Master 2, DEA ou Mastère professionnel 

- Jean Louis Zorer (1986). "Etude du réseau de Hopfield". Université Pierre et Marie 

Curie. DEA d'électronique. 

- Gilles Lohéac (1987). "Règles Locales d'apprentissage pour les réseaux de neurones 

formels". Université Pierre et Marie Curie, DEA d'électronique. 

- Jean Philippe Amouroux (1996). "Etude de la construction d'un classifieur par réseaux 

de neurones : application au traitement d'images satellites". Université de Montpellier 

II. DEA SYAM. 

- Stéphane Danieau (1996). "Gestion des sites pollués : outils d'évaluation des risques et 

méthodologie de choix d'une filière de traitement". LGEI- EMA. Mastère spécialisé en 

Sécurité Industrielle et Environnement.  

- Cuq Jérôme (1997). "Identification de processus dynamique par réseaux de neurones". 

Université de Montpellier II. DEA SYAM. 

- Sarah Eurisouké (2006). "Prévision des crues par réseaux de neurones formels". 

Université de Poitiers. Master Professionnel Géotechnologie Expérimentale.  

- Kévin Cros (2009). "Prise en compte du karst dans la modélisation par réseaux de 

neurones appliquée au Lez". Université Pierre et Marie Curie. Master 2 Sciences de 

l‟Univers, Environnement, Ecologie, Parcours Hydrologie-Hydrogéologie. 
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Résumé 

Ce mémoire d’Habilitation à Diriger les Recherches présente de manière synthétique les 
recherches effectuées sur la modélisation par apprentissage statistique de systèmes naturels ou 
en interaction avec un environnement naturel. La spécificité de l’apprentissage est tout 
d’abord discutée en relation avec le calage et permet d’introduire les notions d’identification 
universelle et de dilemme biais-variance qui sont ensuite approfondies dans le mémoire. Ces 
notions sont illustrées en relation avec la problématique de la synthèse d’un modèle de 
simulation ou de prédiction. Plusieurs illustrations sont présentées comme l’apprentissage de 
comportement d’un robot hexapode, la synthèse du contrôleur d’un préhenseur pneumatique 
et la modélisation d’hydrosystèmes tels les karsts ou les bassins versants rapides. Ces 
derniers, emblématiques des défis que la science doit permettre d’aborder, ont en commun la 
disponibilité de bases de données observées depuis plusieurs décennies, la non-linéarité des 
processus impliqués dans ces phénomènes, la difficulté à mesurer les variables d'état et la 
présence d'un bruit de mesure considérable. Face à ces difficultés, ce mémoire présente 
comment les méthodes de régularisation ont été revisitées et propose une démarche originale 
de modélisation semi physique, les boîtes transparentes, qui permet de valider physiquement 
le modèle tout en approfondissant la connaissance des phénomènes étudiés. 

Abstract 

This “Habilitation à Diriger les Recherches” report presents a synthesis of research on the 
modeling of natural systems, or systems in interaction with a natural environment, by machine 
learning. The specificity of training is first discussed in relation to the calibration and leads to 
the introduction of the concepts of universal identification and bias-variance dilemma which 
are then detailed. These concepts are illustrated with regards to the synthesis of a model 
dedicated to simulation or prediction. Several illustrations are presented such as the training 
of several behaviors by a mobile robot, the synthesis of a gripper pneumatic controller, and 
finally the modeling of hydrosystems such as karsts or rapid watersheds. These iconic 
challenges have in common the availability of databases for several decades, the nonlinearity 
of the processes involved in these phenomena, the difficulty to measure the state variables, the 
presence of a considerable noise on the measurements. In order to deal with these difficulties, 
this report presents how the regularization techniques were reviewed and proposes an original 
method of semi-physical modeling, the transparent boxes, which allows the physical 
validation of the model and the deepening of the knowledge one gets about the studied 
phenomena. 
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