
HAL Id: tel-00745553
https://theses.hal.science/tel-00745553

Submitted on 25 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to the Formal Verification of Arithmetic
Algorithms

Erik Martin-Dorel

To cite this version:
Erik Martin-Dorel. Contributions to the Formal Verification of Arithmetic Algorithms. Other [cs.OH].
Ecole normale supérieure de lyon - ENS LYON, 2012. English. �NNT : 2012ENSL0742�. �tel-00745553�

https://theses.hal.science/tel-00745553
https://hal.archives-ouvertes.fr


N◦ d’ordre : 742 N◦ attribué par la bibliothèque : 2012ENSL0742

École Normale Supérieure de Lyon
Laboratoire de l’Informatique du Parallélisme

THÈSE

présentée par
Érik Martin-Dorel

pour l’obtention du grade de

Docteur de l’École Normale Supérieure de Lyon – Université de Lyon

spécialité : Informatique
au titre de l’École Doctorale de Mathématiques et d’Informatique Fondamentale de Lyon

Contributions to the Formal Verification
of

Arithmetic Algorithms

Directeur de thèse : Jean-Michel Muller
Co-encadrant de thèse : Micaela Mayero

Soutenue publiquement le 26 septembre 2012

Après avis des rapporteurs :
Yves Bertot,
John Harrison,
Frédéric Messine

Devant le jury composé de :
Paul Zimmermann, président,
Yves Bertot,
Sylvie Boldo,
Micaela Mayero,
Frédéric Messine,
Jean-Michel Muller





Contents

Remerciements 7

1 Introduction 9

I Prerequisites 13

2 Floating-Point Arithmetic 15
2.1 Floating-Point Representations of Numbers . . . . . . . . . . . . 15
2.2 Rounding Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 The IEEE 754 Standard for FP Arithmetic . . . . . . . . . . . . 22
2.4 The Table Maker’s Dilemma . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Definitions and Notations . . . . . . . . . . . . . . . . . . 26
2.4.2 Practical Consequences of Solving the TMD . . . . . . . . 30

2.5 Algorithms to Solve the TMD . . . . . . . . . . . . . . . . . . . . 32
2.5.1 A Naive Algorithm . . . . . . . . . . . . . . . . . . . . . . 32
2.5.2 The L Algorithm . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.3 The SLZ Algorithm . . . . . . . . . . . . . . . . . . . . . 34

3 Formal Methods and Interactive Theorem Proving 37
3.1 Overview of Formal Methods . . . . . . . . . . . . . . . . . . . . 37
3.2 The Coq Proof Assistant . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Overview of the Tools and Languages Involved in Coq . . 39
3.2.2 Overview of the Gallina Specification Language . . . . . . 40
3.2.3 The Coq Proof Language . . . . . . . . . . . . . . . . . . 48
3.2.4 Computing Within the Coq Proof Assistant . . . . . . . . 50
3.2.5 Some Concepts Involved in an Everyday Use of Coq . . . 53
3.2.6 Around the Certificate-Based Approach . . . . . . . . . . 64
3.2.7 Description of the Coq Libraries at Stake . . . . . . . . . 65

II Contributions 69

4 Rigorous Polynomial Approximation
in the Coq Formal Proof Assistant 71
4.1 Rigorous Approximation of Functions by Polynomials . . . . . . 71

4.1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3



4 CONTENTS

4.2 Presentation of the Notion of Taylor Models . . . . . . . . . . . . 74
4.2.1 Definition, Arithmetic . . . . . . . . . . . . . . . . . . . . 74
4.2.2 Valid Taylor Models . . . . . . . . . . . . . . . . . . . . . 75
4.2.3 Computing the Coefficients and the Remainder . . . . . . 75

4.3 Implementation of Taylor Models in Coq . . . . . . . . . . . . . . 76
4.3.1 A Modular Implementation of Taylor Models . . . . . . . 77

4.4 Some Preliminary Benchmarks . . . . . . . . . . . . . . . . . . . 80
4.5 Formal Verification of Our Implementation of Taylor Models . . 82
4.6 Conclusion and Perspectives . . . . . . . . . . . . . . . . . . . . . 83

5 Hensel Lifting for Integral-Roots Certificates 85
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.1 Hensel’s Lemma in Computer Algebra . . . . . . . . . . . 85
5.1.2 A Certificate-Based Approach for Solving the TMD . . . 86
5.1.3 Our Contributions . . . . . . . . . . . . . . . . . . . . . . 86
5.1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Presentation of Hensel Lifting and Coppersmith’s Technique . . . 87
5.2.1 An Overview of Hensel Lifting in the Univariate Case . . 87
5.2.2 Focus on Hensel Lifting in the Bivariate Case . . . . . . . 94
5.2.3 Integer Small Value Problem (ISValP) and Coppersmith’s

Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3 Formalization of Hensel Lifting . . . . . . . . . . . . . . . . . . . 99

5.3.1 Formal Background for Hensel Lifting . . . . . . . . . . . 99
5.3.2 Insights into the Coq Formalization of Univariate Lemma 5.2102
5.3.3 Insights into the Coq Formalization of Bivariate Lemma 5.5104

5.4 Integral Roots Certificates . . . . . . . . . . . . . . . . . . . . . . 106
5.4.1 Univariate Case . . . . . . . . . . . . . . . . . . . . . . . . 106
5.4.2 Bivariate Case . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4.3 ISValP Certificates . . . . . . . . . . . . . . . . . . . . . . 112
5.4.4 A Modules-Based Formalization for Effective Checkers . . 116
5.4.5 Some Concrete Examples of Use . . . . . . . . . . . . . . 121

5.5 Technical Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.5.1 Formalization Choices . . . . . . . . . . . . . . . . . . . . 122
5.5.2 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.5.3 IPPE, An Implementation of Integers with Positive

Exponent . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.6 Conclusion and Perspectives . . . . . . . . . . . . . . . . . . . . . 128

6 Augmented-Precision Algorithms for
Correctly-Rounded 2D Norms 131
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.2 Two Well-Known Error-Free Transforms . . . . . . . . . . . . . . 132

6.2.1 The Fast2Sum Algorithm . . . . . . . . . . . . . . . . . . 132
6.2.2 The TwoMultFMA Algorithm . . . . . . . . . . . . . . . . 133

6.3 Augmented-Precision Real Square Root with an FMA . . . . . . 133
6.4 Augmented-Precision 2D Norms . . . . . . . . . . . . . . . . . . . 137
6.5 Can We Round


x2 + y2 Correctly? . . . . . . . . . . . . . . . . 144

6.6 Application: Correct Rounding of


x2 + y2 . . . . . . . . . . . . 147
6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149



CONTENTS 5

7 Some Issues Related to Double Roundings 151
7.1 Double Roundings and Similar Problems . . . . . . . . . . . . . . 151

7.1.1 Extra Notations and Background Material . . . . . . . . . 154
7.2 Mathematical Setup . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.2.1 Some Preliminary Remarks . . . . . . . . . . . . . . . . . 156
7.2.2 Behavior of Fast2Sum in the Presence of Double Roundings161
7.2.3 Behavior of TwoSum in the Presence of Double Roundings 163
7.2.4 Consequences of Theorems 7.2 and 7.3 on Summation

Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.3 Formal Setup in the Coq Proof Assistant . . . . . . . . . . . . . . 176

7.3.1 Technicalities of the Flocq Library . . . . . . . . . . . . . 176
7.3.2 Formalization of a Generic Theory on Midpoints . . . . . 180
7.3.3 Formalization of the Preliminary Remarks . . . . . . . . . 190
7.3.4 Formalization of Theorem 7.2 on Fast2Sum . . . . . . . . 191

7.4 Conclusion and Perspectives . . . . . . . . . . . . . . . . . . . . . 194

8 Conclusion and Perspectives 195

A Notations 197

List of Figures 201

List of Tables 203

List of Algorithms 205

Index 207

Bibliography 213





Remerciements

Tout d’abord je tiens à remercier mes directeurs de thèse Micaela Mayero et
Jean-Michel Muller pour leur soutien constant tout au long de ces trois années,
pour leur générosité bienveillante et leurs encouragements pour aller toujours
plus loin.

Merci à Yves Bertot, John Harrison et Frédéric Messine d’avoir accepté
d’être rapporteurs de cette thèse. Merci à Paul Zimmermann d’avoir accepté de
présider mon jury de soutenance. Merci à Sylvie Boldo pour sa présence dans le
jury. Merci à tous les membres de mon jury pour leurs remarques constructives.

Merci à Nicolas Brisebarre pour son engagement dans l’action CoqApprox et
merci aux membres du projet ANR TaMaDi pour les collaborations intéressantes
et les discussions que nous avons eues lors de nos multiples réunions, notam-
ment avec Guillaume H., Guillaume M., Ioana, Jean-Michel, Laurence, Laurent,
Micaela, Mioara et Nicolas.

Merci à mes encadrants de stage de Master 2 recherche Annick Truffert et
Marc Daumas, qui m’ont initié aux méthodes formelles et donné le goût de la
recherche.

Merci à mes cobureaux Adrien, Christophe, David, Ioana, Ivan, Nicolas,
Philippe, Serge et Xavier, à l’équipe-projet Arénaire/AriC et à tous les membres
du laboratoire LIP de l’ENS de Lyon que j’ai côtoyés durant ces années. Merci
aux ingénieurs et assistant(e)s du LIP pour leur gentillesse et leur dévouement.

Merci à Assia Mahboubi pour son code LATEX fondé sur l’extension listings
pour la coloration syntaxique du code Coq/SSReflect.

Merci à mes parents Annie et Gérard pour leur immense affection.

7





Chapter 1

Introduction

Floating-point arithmetic is by far the most frequently used way to deal with real
numbers on computers: from mathematical software to safety-critical systems,
floating-point operators and functions are ubiquitous. However, the various sets
of floating-point numbers we can consider are not closed under these opera-
tions. For instance, we can notice that for a mere addition of two floating-point
numbers of a given precision, the exact mathematical result is in general not
representable with the same precision. Hence the need to perform some approx-
imations, which leads to the notion of rounding error. However, just requiring
that operations commit a rounding error bounded by a given threshold would
lead to quite a weakly-specified arithmetic. In particular, this lack of speci-
fication would have a serious impact on the reproducibility of floating-point
computations, as well as on the accuracy of the obtained results.

In contrast, the IEEE 754 standard for floating-point arithmetic, published in
1985, requires that the five operations +,−,×,÷,

√
· should be correctly rounded,

that is to say, the computed result must always be equal to the rounding of the
exact value. This contributed to a certain level of portability and provability of
floating-point algorithms. Until the 2008 revision of this standard, there was no
such analogous requirement for the standard functions. The main impediment
for this was the so-called Table Maker’s Dilemma (TMD), which is the problem
that occurs when one tries to choose, among a discrete set, the element that is
closest to an exact mathematical result, only accessible by means of approxima-
tions. This problem actually arose a long time before the invention of computers,
namely when some mathematicians designed tables of values for mathematical
functions, such as tables of logarithms.

Roughly speaking, solving the TMD problem for an elementary function f
and a given rounding mode consists of finding the floating-point numbers x
such that f(x) is closest to the discontinuity points of the considered rounding
function. These numbers, called hardest-to-round cases, or simply worst cases,
play a central role for implementing such a function f with correct rounding,
since they are the inputs for which f(x) is “hardest to round.” The TMD can
thus be viewed as a discrete, global optimization problem and can be efficiently
solved in a naive way (by evaluating the function with large precision at each
floating-point input) only for 32-bit arithmetic, where the number of cases to
test is at most 232.

In order to address the TMD for higher precisions, two involved algorithms

9



10 CHAPTER 1. INTRODUCTION

by Lefèvre and by Stehlé-Lefèvre-Zimmermann (SLZ) have been designed, both
starting by splitting the domain under study in small sub-intervals, then replac-
ing the function f with an approximation polynomial P over each sub-interval.
These two algorithms are based on long and complex calculations (several cu-
mulated years×CPU), and their only output as of today is a list of hard-to-
round cases and a claim that the worst one is in that list, for which trust in
the algorithm, but also in the implementation, is required. This situation is
thus somewhat unsatisfactory: the initial motivation for the TMD problem is
to provide strong guarantees for numerical computations, but the algorithms to
solve it require a large degree of trust in highly optimized implementations of
complicated algorithms. To overcome this situation, we rely on so-called formal
methods.

Formal methods gather a wide spectrum of mathematically-based techniques
for specifying and verifying software or hardware systems. They are used in
areas where errors can cause loss of life or significant financial damage, as well
as in areas where common misunderstandings can falsify key assumptions. This
includes the verification of critical systems such as those involved in aeronautics
[129], where safety and security are a major concern. Formal methods have also
been successfully used in floating-point arithmetic [149, 71, 72, 109, 45, 16, 22,
130, 44]: these references present works that use a formal proof assistant such
as ACL2 [96], HOL Light [73], Coq [10] and PVS [139]. In this thesis, we will
rely on the Coq formal proof assistant.

Basically, a proof assistant is a piece of software that allows one to encode
formal specifications of programs and/or mathematical theorems in a formal
language, then develop proofs that the considered programs meet their specifi-
cations. The use of such a tool is in general very expensive, since the verification
process requires that the user scrutinizes many details in the proofs that would
typically be left implicit in a pen-and-paper proof. Yet this has the clear ben-
efit to force the explicit statement of all hypotheses, and thereby to avoid any
incorrect use of theorems. Moreover, the fact that the proofs are mechanically
checked by the computer using a proof assistant, provides strong guarantees on
these proofs, as lengthy as they might be.

Contributions

In this thesis, we thus focus on the formal verification of results related to
floating-point arithmetic, using the Coq formal proof assistant. In particular,
we address the following problems:

• When implementing an elementary function on machines (with or without
correct rounding), one of the main steps consists of determining an ap-
proximation of the function by a polynomial that has values very close to
those of the considered function. It is then important to properly handle
the error introduced by such an approximation. Indeed, reliable imple-
mentations of functions, as well as the initial step of the Lefèvre and SLZ
algorithms for solving the TMD, require the specified bounds on the ap-
proximation error to be correct. To this end, we develop a formal library
of Rigorous Polynomial Approximation in Coq. A key feature of this li-
brary CoqApprox is the ability to compute an approximation polynomial
P and an interval remainder ∆ that safely bounds the approximation



11

error, within the proof assistant. This formalization led us to implement
some symbolic-numeric techniques [88] in a formal setting, relying on the
CoqInterval library [117] for interval arithmetic in Coq. The first part of
this work resulted in a publication in the proceedings of the NASA Formal
Methods 2012 conference [28].

• Then, in order to provide strong guarantees on the results produced by
the SLZ algorithmic chain, we focus on the notion of certificate. The idea
is that it is possible to produce “logs” for the execution of the SLZ algo-
rithm, stored in the form of a certificate that can be verified a posteriori
by a certificate checker, this latter being itself formally verified by the
proof assistant. This approach led us to develop a Coq library that gath-
ers a formalization of Hensel’s lemma for both univariate and bivariate
cases, along with some formally verified certificate checkers that can be
executed within the logic of Coq, for verifying instances of small-integral-
roots problems. In particular, the CoqHensel library so obtained provides
a certificate checker for what is called the Integer Small Value Problem
in [160], which is the problem to be dealt with when formally verifying
the results of the SLZ algorithm.

• Then, solving the TMD for a bivariate function such as (x, y) →→


x2 + y2

is often a challenge, especially since the potential number of cases to test in
an enumeration strategy for finding the hardest-to-round cases is squared,
compared with a univariate function. Moreover, it has been shown that this
function has many exact cases, that is to say, a large amount of floating-
point inputs (x, y) have a 2D norm that is exactly a discontinuity point
of the considered rounding mode [87]. Consequently, it is not practically
feasible to filter all this exceptional data beforehand when implementing
a 2D norm with correct rounding. Focusing on the mathematical proof
of some “augmented-precision algorithms” for computing square roots and
2D norms, we show how we can solve the TMD to obtain correctly-rounded
2D norms. This work has been published in the proceedings of the IEEE
ARITH 2011 conference [29].

• Finally, we focus on the double rounding phenomenon, which typically oc-
curs in architectures where several precisions are available and when the
rounding-to-nearest mode is used by default. We thus study the poten-
tial influence of double roundings on a few usual summation algorithms in
radix 2. Then relying on the Flocq library for floating-point arithmetic [22],
we formalize in Coq all the corresponding proofs related to the Fast2Sum
algorithm. This led us to develop some new support results in the for-
malism of Flocq, notably on midpoints, which are values that are exactly
halfway between consecutive floating-point numbers. (In other words, they
correspond to the discontinuity points of rounding-to-nearest modes.)



12 CHAPTER 1. INTRODUCTION

Outline of the thesis

The manuscript is organized as follows:

• In Chapter 2, we recall the required background on floating-point arith-
metic and propose a mathematically-precise formulation of the TMD prob-
lem at stake;

• In Chapter 3, we give a general survey of the Coq proof assistant and
describe the main concepts involved in an everyday use of Coq, most of
them being required for this manuscript to be self-contained. The last
section is devoted to a summary of the main Coq libraries that are related
to our formal developments;

• In Chapter 4, we present our formalization of Rigorous Polynomial Ap-
proximation in Coq;

• In Chapter 5, we recall some key algorithmic features of Hensel lifting,
and present our formalization of some “integral-roots-certificates” in Coq;

• In Chapter 6, we present the mathematical proof of some “augmented-
precision algorithms” that can be used to get correctly-rounded 2D norms;

• In Chapter 7, we study the behavior of some summation algorithms with
double roundings, and present our formalization of the results on Fast2Sum;

• Finally Chapter 8 concludes the manuscript.



Part I

Prerequisites

13





Chapter 2

Floating-Point Arithmetic

This chapter presents the required background on floating-point arithmetic
and gives some mathematically-precise definitions related to the Table Mak-
er’s Dilemma, which we supplement with some proofs when it contributes to
the clarity of exposition.

2.1 Floating-Point Representations of Numbers
In this section we start by recalling some basic definitions related to the notion
of floating-point (FP) numbers, which is by far the most frequently used way to
represent real numbers on machines.

Definition 2.1 (FP format). A floating-point format is partly defined by four
integers

• β > 2, the radix (also known as base, typically 2 or 10);

• p > 2, the precision (roughly speaking, the number of “significant digits”);

• emin and emax, the extremal exponents (satisfying emin < 0 < |emin| 6 emax
in practice).

Note that we have written “partly defined” because in practice, some numerical
data such as infinities as well as undefined results need to be represented.

Definition 2.2 (FP number). We say that a given real x is a finite FP num-
ber in a given FP format if there exists at least one pair (M, e) of signed integers
satisfying

x = M · βe−p+1 (2.1a)
|M | < βp (2.1b)

emin 6 e 6 emax. (2.1c)

Note that (2.1a) implies that the finite FP numbers form a subset of the
rational numbers, since β, p, M, e are integers.

Note also that the representation (M, e) of a FP number is not necessarily
unique. For example, in radix 10 and precision 5, the number 1013 can be
represented either by 1013× 100 or by 10130× 10−1, since both 1013 and 10130
are less than 105.

15



16 CHAPTER 2. FLOATING-POINT ARITHMETIC

Definition 2.3 (Integral significand, quantum exponent). Assuming e is
the smallest integer satisfying (2.1) in Definition 2.2, we will call M the integral
significand of x, and e−p+1 the quantum exponent of x, borrowing the term
chosen in [128, p. 14].

We recall another useful (and equivalent) way of defining a FP number:

Definition 2.4 (FP number, second version). We say that x ∈ R is a fi-
nite FP number if there exists a triple (s, m, e) satisfying

x = s×m× βe (2.2a)
s ∈ {+1,−1} (2.2b)

m = (d0.d1 · · · dp−1)β , i.e.,

m =
p−1

i=0 diβ
−i with ∀i ∈ J0, pJ , di ∈ J0, βJ (2.2c)
e ∈ Jemin, emaxK . (2.2d)

Here again, the representation is not necessarily unique, but we may define:

Definition 2.5 (Significand and exponent). Assuming e is the smallest in-
teger satisfying (2.2) in Definition 2.4, we will call m the significand of x, and e
the exponent of x.

In the previous example of radix-10 and precision-5 format, we have 1013 =
1.013× 103, so that the exponent of 1013 is 3.

The link between Definitions 2.3 and 2.5 follows from the following simple
formula:

m = |M |
βp−1 (∈ Q), (2.3)

so that condition (2.1b) becomes

0 6 m < β. (2.4)

When defining the (quantum) exponent and the (integral) significand of a
FP number x, we have mentioned the fact that the FP representations are not
necessarily unique, hence the need of a convention when a “canonical” represen-
tation is desired:

Definition 2.6 (Normalized representations). Among the various repre-
sentations of a finite FP number x that are valid in the sense of Definition 2.2
(resp. Definition 2.4), the one that has the smallest possible exponent is called
the normalized representation of x. When looking closely at a normalized rep-
resentation, we can distinguish between two different kinds of FP numbers:

• the representations that satisfy βp−1 6 |M | < βp, i.e., 1 6 m < β (the
first digit d0 involved in (2.2c) is nonzero): we say that x is a normal FP
number;

• and the representations such that |M | < βp−1, i.e., 0 6 m < 1: we say
that x is a subnormal FP number and this implies that the exponent e
of x satisfies e = emin.



2.1. FLOATING-POINT REPRESENTATIONS OF NUMBERS 17

Note that this distinction between normal and subnormal numbers is strongly
linked to the presence of Constraint (2.2d) (resp. (2.1c)): for FP numbers with
unbounded exponents, the notion of subnormal number will be quite meaning-
less, given that any nonzero FP number would have a normal representation.

Although the definition of “zero” is often presented apart the other finite
FP numbers, we consider here for the sake of simplicity that it is a subnormal
number that admits two representations +0 and −0, which correspond to triples
(s, m, e) = (+1, 0, emin) and (−1, 0, emin).

A peculiarity of normal representations in radix 2 is that the first bit of
the significand is always 1, so that it may be omitted in the encoding of these
numbers. This is often called the implicit bit (or hidden bit) convention.
Remark 2.1 (Gradual underflow). From an architectural point of view, the
handling of subnormal numbers can sometimes be a difficult feature to imple-
ment [152]. However as shown by Figure 2.1, the lack of support for subnormal
numbers can falsify some key assumptions and trigger some unexpected arith-
metic behavior: in particular if a ̸= b holds (for two finite FP numbers a and
b), this would not imply that the computation of b − a is nonzero, which may
thus lead to a division-by-zero error in a program that relies on this kind of
test. Contrastingly, the availability of subnormal numbers avoids such pitfalls:
the result of a FP computation may happen to be a nonzero subnormal FP
number, and this phenomenon is usually called gradual underflow [38, 93].

0 βemin βemin+1 βemin+2

0 βemin βemin+1 βemin+2

ab− a b

ab− a b

Figure 2.1 – (Taken from [128], with permission) The positive FP numbers in
the toy FP format β = 2 and p = 3. Above: normal FP numbers only. In that
set, b − a cannot be represented, so that the computation of b − a in round-to-
nearest mode (see Section 2.2) will return 0. Below: the subnormal numbers are
included in the set of FP numbers.

Definition 2.7 (Special FP values). Beyond the previously defined finite FP
numbers, we usually define some special FP values, of which we will briefly sum-
marize the usefulness:



18 CHAPTER 2. FLOATING-POINT ARITHMETIC

• the infinite FP numbers +∞ and −∞ stand for numbers whose magni-
tude exceeds the one of the largest finite FP number as well as for “exact
infinities”: their availability somewhat compensates the fact that the ex-
ponent range is limited, and the arithmetic operations take these values
into account. For example, we have 1/(+∞) = +0 and 1/(−∞) = −0,
and conversely 1/(+0) = +∞ and 1/(−0) = −∞;

• NaN (Not-a-Number) basically encodes the fact that an invalid operation
occurred (e.g., (+∞)−(+∞), (+0)×(+∞), (+0)/(+0) and (+∞)/(+∞)
will return NaN), and this special value will be systematically propagated
by further operations (e.g., 2×NaN + 1 = NaN).

In the sequel, we will denote by F(β, p, emin, emax) the set of finite FP num-
bers in radix β, precision p, with an exponent range of Jemin, emaxK. Relaxing
the constraint on emax, we also introduce the notation F(β, p, emin) to denote
the set of finite FP numbers with exponent e > emin, while we will use the no-
tation F(β, p) to denote the set of FP numbers with no constraint at all on the
exponent—we recall that in this context all nonzero FP numbers have a normal
representation.

Definition 2.8 (Infinitely precise significand). Finally, for any nonzero real
number x (whether or not it is a FP number), we will call the infinitely precise
significand of x in radix β the number

ips(x) := x

β⌊logβ |x|⌋ (∈ R), (2.5)

where β⌊logβ |x|⌋ ∈ Q denotes the largest power of β less than or equal to |x|.
This implies that we have

∀x ∈ R∗, 1 6 |ips(x)| < β. (2.6)

For example, the infinitely precise significand of 1
3 in radix 10 is

ips
 1

3


=
1
3

10−1 = 3.333 · · · .

Notice that if ever x is a normal FP number, its significand mx will satisfy
mx = |ips(x)|.

Remark 2.2 (Extremal FP numbers). For any FP format F(β, p, emin, emax),
the following FP numbers play a special role:

• Ω := (βp − 1)× βemax−p+1 is the largest finite FP number;

• βemin is the smallest positive normal FP number;

• α := βemin−p+1 is the smallest (strictly) positive subnormal FP number.

In particular, the set of real numbers whose absolute value lies in [βemin , Ω] is
usually called the normal range, while the set of real numbers whose absolute
value lies in [0, βemin [ is called the subnormal range.



2.2. ROUNDING MODES 19

2.2 Rounding Modes
In this section, we will fix one FP format, assuming F = F(β, p, emin, emax) (or
possibly F(β, p, emin) or F(β, p)) and F = F ∪ {+∞,−∞}.

It should be noted that in any arbitrary FP format, the set of FP numbers
is not closed under the usual arithmetic operations. Therefore, one has to define
the way the exact (real-valued) operation on two given FP operands is mapped
back to the FP numbers. Moreover, we will see later on that major concerns such
as the reproducibility of FP calculations and the ability to develop mathematical
proofs of FP algorithms rely on such a definition of rounding.

Definition 2.9 (Rounding modes). A rounding mode for the format F (also
called rounding-direction attribute) is a function f : R −→ F that is monoton-
ically increasing and whose restriction to F is identity. We can mention five
typical rounding modes:

round towards −∞: this function (denoted by RD) maps x ∈ R to the largest
FP number below x, that is RD(x) := max

f∈F
f6x

f ∈ [−∞, x];

round towards +∞: this function (denoted by RU) maps x ∈ R to the small-
est FP number above x, that is RU(x) := min

f∈F
f>x

f ∈ [x, +∞];

round towards zero: this function (denoted by RZ) maps x ∈ R to the FP

number RZ(x) :=


RD(x) if x > 0
RU(x) if x 6 0

, which lies between 0 and x and

satisfies |RZ(x)| 6 |x| (this corresponds to truncation);

round to nearest, ties to even: this function (denoted by RNE) maps x ∈ R
to the closest FP number around x, with the convention for halfway cases
to choose the FP number with an even integral significand;

round to nearest, ties to away from zero: this function (denoted by RNA)
maps x ∈ R to the closest FP number around x, with the convention for
halfway cases to choose the FP number with the largest integral significand
(in absolute value).

We will frequently denote by RN an arbitrary round-to-nearest mode, i.e., with
an arbitrary tie-breaking rule (not necessarily the one of RNE or RNA). The
other rounding modes RD, RZ or RU are usually called directed roundings. The
Figure 2.2 illustrates the rounded value of real numbers using these standard
rounding modes.

As regards the notations, 2 : R −→ F will refer to one of the directed
roundings, while ◦ : R −→ F will refer to an arbitrary rounding mode, i.e., a
function satisfying

∀(x, y) ∈ R2, x 6 y =⇒ ◦(x) 6 ◦(y) (2.7)

and

∀x ∈ R, x ∈ F =⇒ ◦(x) = x. (2.8)



20 CHAPTER 2. FLOATING-POINT ARITHMETIC

...

0

x y

RD(x)
RZ(x)
RN(x)

RD(y)
RZ(y)

RU(y)RU(x)
RN(y)

Figure 2.2 – (Taken from [128], with permission) The standard rounding modes.
Here we assume that x and y are positive numbers.

We now define two usual notions that are very useful when dealing with
error analyses:

Definition 2.10 (Unit in the last place). The unit in last place of any nonzero
real x in a given FP format F = F(β, p, emin) or F(β, p) is defined by

ulp(x) = βex−p+1, (2.9)

where ex is the exponent of x in F.

Definition 2.11 (Unit roundoff). The unit roundoff (also known as machine
epsilon) associated with a radix-β, precision-p FP format F and a rounding mode
◦ : R −→ F is defined by

u(◦) =


ulp(1) = β1−p if ◦ is a directed rounding

1
2 ulp(1) = 1

2β1−p if ◦ is a rounding-to-nearest.
(2.10)

When there is no ambiguity on the considered rounding mode, we will write u
instead of u(◦).

In particular, the notion of unit roundoff appears when we want to bound
the relative error due to rounding:

Property 2.1 (Relative error and standard model). Assuming x is a real
number in the normal range1 of a FP format F with radix β and precision p,
the relative error committed when rounding x satisfies:x− ◦(x)

x

 < u, (2.11)

as well as x− ◦(x)
◦(x)

 6 u,

1implying that x and ◦(x) are nonzero



2.2. ROUNDING MODES 21

or equivalently, ∃ϵ1, ϵ2 ∈ R such that

|ϵ1| < u, ◦(x) = x · (1 + ϵ1), (2.12)

|ϵ2| 6 u, ◦(x) = x

1 + ϵ2
. (2.13)

When replacing the x ∈ R above with x⊤y for a given operation ⊤ : R×R −→ R
and (x, y) ∈ F × F, this property is usually known as the “standard model” or
“ϵ-model,” and is applicable whenever x⊤ y does not underflow nor overflow.

We can thus observe Inequality (2.11) on the example given by Figure 2.3, for
which u(RN) = 1

8 = 0.125.

Proof. See for instance [79, Theorem 2.2, p. 38] for a detailed proof of (2.13) in
the case of rounding-to-nearest (the strict inequality being not obvious in this
case).

Figure 2.3 – (Taken from [128], with permission) Relative error |x− RN(x)| / |x|
that occurs when representing a real number x in the normal range by its nearest
floating-point approximation RN(x), in the toy floating-point format β = 2,
p = 3.

Remark 2.3 (Faithful rounding). For the sake of completeness, we can men-
tion the concept of faithful rounding frequently used in the FP literature to refer
to an approximation of a real number x that is either RD(x) or RU(x) (the two
FP numbers surrounding x). The bad side of this terminology is that a faithful
rounding is not a monotone function, so it does not constitute a rounding mode
in the sense of Definition 2.9.

Finally we introduce another definition related to rounding that is stronger than
the notion of faithful rounding, and is a central notion for the present thesis:



22 CHAPTER 2. FLOATING-POINT ARITHMETIC

Definition 2.12 (Correct rounding). For any real-valued function f : D ⊂
Rn −→ R, FP format F and rounding mode ◦ : R −→ F, we say that f :
D∩Fn −→ F implements f with correct rounding if for all FP input x ∈ D∩Fn,
we have f(x) = ◦(f(x)). In other words, the computed result must always be
equal to the rounding of the exact value, as if we could pre-compute f(x) with
an “infinite precision” before rounding.

Beyond an improvement on the accuracy of FP computations, correct round-
ing (also known as exact rounding) provides some significant advantages over
faithful rounding, including:

reproducibility: the condition in Definition 2.12 implies that a function that
is implemented with correct rounding is fully-specified: it is uniquely de-
termined by the chosen FP format and rounding mode;

portability: for a given FP format and rounding mode, any IEEE-complying
implementation of functions with correct rounding (either in software or in
hardware) will return the same results, which greatly improves the porta-
bility of numerical software;

provability: furthermore, correct rounding allows one to devise some algo-
rithms and some correctness proofs that use this specification.

2.3 The IEEE 754 Standard for FP Arithmetic
The IEEE 754 standard for FP arithmetic, first published in 1985 [84] and re-
vised in 2008 [85], introduced precise definitions and requirements for FP imple-
mentations that paved the way for a predictable, fully-specified, FP arithmetic.
In particular, it provides the following:

FP formats: it specifies the parameters (β, p, emin, emax) of standard formats
that we summarize in Tables 2.1, 2.2, and 2.3, and it also defines the
“physical” encoding for all interchange FP formats, this notion being not
central for this thesis;

rounding modes: it defines the five standard rounding modes we have men-
tioned in Definition 2.9 (the last one RNA being new in the 2008-revision
of the standard, and especially useful for decimal arithmetic);

conversions: it defines conversions between integers and FP formats or be-
tween different FP formats, as well as between FP formats and external
representations as (decimal or hexadecimal) character sequences;

operations: it requires the availability of addition, subtraction, multiplication,
division, square root, comparison predicates, and (since the 2008-revision
of the standard) fused-multiply-add (FMA), with the requirement that all
these operations shall be correctly rounded, as stated in Definition 2.12:
the FMA is thus defined as the operator (x, y, z) ∈ F3 →→ ◦(x× y + z) ∈ F;

exceptions: it also defines five kinds of exceptions that shall be signaled in the
following situations: invalid operation, division by zero, overflow, under-
flow, and inexact result.



2.3. THE IEEE 754 STANDARD FOR FP ARITHMETIC 23

Basic format Legacy name [84] β p emin emax

binary32 single precision 2 24 −126 127
binary64 double precision 2 53 −1022 1023
binary128 2 113 −16382 16383
decimal64 10 16 −383 384
decimal128 10 34 −6143 6144

Table 2.1 – Specification of basic FP formats [85].

Interchange
format storage size k (bits) radix β precision p (digits) emax

binary16 16 2 11 15
binary32 32 2 24 127
binary64 64 2 53 1023
binary128 128 2 113 16383
binary-k k ∈ 128 + 32 · N 2 k − ⌊4× log2(k)⌉+ 13 2k−p−1 − 1
decimal32 32 10 7 96
decimal64 64 10 16 384
decimal128 128 10 34 6144
decimal-k k ∈ 32 · N∗ 10 9× k/32− 2 3× 2k/16+3

Table 2.2 – Specification of interchange FP formats (we have emin = −emax+1).
Notice that all basic formats are interchange ones.

Extended format
based on β p > emax >

binary32 2 32 1023
binary64 2 64 16383
binary128 2 128 65535
decimal64 10 22 6144
decimal128 10 40 24576

Table 2.3 – Specification of extended FP formats (we have emin = −emax + 1).
A typical example of extended format that meets these requirements is given
by Intel’s 80-bit binary-double-extended-precision format that indeed extends the
basic FP format binary64 (it has 1 sign bit, 64 bits for the significant—including
the implicit bit—, and 15 bits for the exponent, so that emax = 214−1 > 16383).
Finally note that unlike interchange formats, the IEEE 754-2008 standard does
not require any specific encoding for extended formats.



24 CHAPTER 2. FLOATING-POINT ARITHMETIC

As far as correct rounding is concerned, the 1985 version of the standard
only required that the five basic operations (+, −, ×, ÷, and

√
·) shall produce

correctly-rounded results. This contributed to a certain level of portability and
provability of FP algorithms. Until 2008, there was no such analogous require-
ment for standard functions. The main impediment for this was the so-called
Table Maker’s Dilemma, which constitutes the topic of the upcoming Section 2.4.
The interested reader will be able to find in [85, Table 9.1, pp. 42–43] a list of the
elementary functions for which the 2008 version of the standard recommends
correct rounding (without requiring it however).

2.4 The Table Maker’s Dilemma
Roughly speaking, implementations of a correctly-rounded elementary function
often use the so-called Ziv’s strategy:

1. compute a small enclosing interval for f(x), of width 2−q;

2. if all the points of this interval round to a single FP number, this number
is f(x) correctly rounded;

3. otherwise, increase q, and go to step 1.

Figure 2.4 illustrates the situation where we can conclude for correctly round-
ing f(x) at step 2, while Figure 2.5 illustrates the opposite situation.

The test corresponding to step 2 can typically be performed by checking
if the endpoints of the small enclosing interval have the same rounded value,
because roundings are monotone functions. There is also a fast testing strategy
suggested by Ziv, and analyzed in detail in [46].

Yet it can be noted that this strategy will not terminate if ever f(x) is a
point of discontinuity of the rounding function, since in this case no open interval
containing f(x) will round to a single FP number. Nevertheless, some results
from transcendental number theory such as Lindemann’s theorem [53] can be
used to establish that for a number of transcendental functions, this situation
cannot occur, except for some exceptional argument (e.g., cos(0) = 1) [165, 128].

Regardless of these possible exceptional cases, in order to make Ziv’s strategy
optimal, we want to go at most once through step 3, and in this situation set
q to a precision that is large enough to guarantee that the test at step 2 is
true, and yet not too large, since the cost of step 1 increases drastically with
q. Finding the optimal value (say m) of this “large enough” precision is the so-
called Table Maker’s Dilemma (TMD), this term having been coined by Kahan
[92, 90]. Finding an upper bound for m will be called the “Approximate TMD”.
Solving the TMD, for a given function f and for each considered FP format and
rounding mode, means finding the hardest-to-round points, that is, in rounding-
to-nearest, the FP numbers x such that f(x) is closest to the midpoint of two
consecutive FP numbers (in terms of relative error, or in terms of error in ulps).

More formally, we will give some general definitions of these key notions
related to the TMD in the upcoming Section 2.4.1, while in Section 2.4.2 we
will present a general scheme that may be considered once the (Approximate)-
TMD has been solved.



2.4. THE TABLE MAKER’S DILEMMA 25

Floating-point numbers

Breakpoints f̂(x)

Interval where f(x) is located

RN(f(x))

Figure 2.4 – (Taken from [128], with permission) In this example (assuming
rounding to nearest), the interval around f̂(x) where f(x) is known to be located
contains no breakpoint (see Definition 2.13). Hence, RN(f(x)) = RN(f̂(x)), so
we can safely return a correctly rounded result.

Floating-point numbers

Breakpoints

Interval where f(x) is located

f̂(x)

Figure 2.5 – (Taken from [128], with permission) In this example (assuming
rounding to nearest), the interval around f̂(x) where f(x) is known to be located
contains a breakpoint. We do not have enough information to provide a correctly-
rounded result.



26 CHAPTER 2. FLOATING-POINT ARITHMETIC

2.4.1 Definitions and Notations
Definition 2.13 (Breakpoints and midpoints). For a given FP format F
and rounding mode ◦ : R −→ F, the discontinuities of the function ◦ are called
breakpoints. We will use B(◦) to denote the set of breakpoints. For the particular
case of roundings-to-nearest, the breakpoints are also called midpoints, given
that they are the real numbers exactly halfway between consecutive FP numbers.

Property 2.2 (Midpoints in even radix). For any even radix β, the set of
precision-p midpoints is a subset of the set of precision-(p + 1) breakpoints for
directed roundings.

The result given by Property 2.2 can be used to simplify the resolution of the
TMD, by taking the directed roundings only into account without loss of gen-
erality.

Definition 2.14 (Centered modulo). We will call centered modulo any func-
tion cmod : R× R∗

+ −→ R satisfying

∀x ∈ R, ∀v > 0, ∃n ∈ Z, x cmod v = x + nv ∧ |x cmod v| 6 v

2 . (2.14)

To ensure the uniqueness of this notion, we can for example focus on the centered
modulo that has values in


− v

2 , v
2

, which amounts to considering the following

definition:
x cmod v := x− v


x

v
+ 1

2


.

Another possibility would be to consider

x cmod v := x− v


x

v
− 1

2


.

Note by the way that any centered modulo function satisfies

∀x ∈ R, ∀v > 0, |(−x) cmod v| = |x cmod v| .

Relying on this notion of centered modulo, we will precisely define the TMD
problem at stake, using a formalism similar to [159, Eq. (1)] and focusing on a
definition that is compatible with [128, Def. 10, p. 409].

Definition 2.15 (Distance to breakpoints). For a standard rounding mode
◦ ∈ {RD, RU, RZ, RN} : R −→ F(β, p), we define the normalized distance of
any2 y ∈ R to the set B(◦) of breakpoints as

dist (y, ◦) =
(ips(y)− u(◦)) cmod ulp(1)

, (2.15)

which can be rewritten to

dist (y, 2) =
ips(y) cmod ulp(1)

 (2.16)

in the case of directed roundings, since u(2) = ulp(1).
2with the convention that for y = 0, ips(y) = 0



2.4. THE TABLE MAKER’S DILEMMA 27

Definition 2.16 (Exact cases). We define the set of exact cases of f : D ⊂
Rn −→ R with respect to F = F(β, p, emin, emax) and ◦ : R −→ F(β, p) as the
inverse image of B(◦) by f :

EC(f,F, ◦) = Fn ∩ f−1

B(◦)


, (2.17)

which amounts to considering the set of FP inputs whose image by f cancels
the previously defined distance:

EC(f,F, ◦) =


x ∈ D ∩ Fn
 dist (f(x), ◦) = 0


. (2.18)

Definition 2.17 (Bad cases). We define the set of (p, q)-bad cases of f : D ⊂
Rn −→ R with respect to F = F(β, p, emin, emax) and ◦ : R −→ F(β, p) as the
FP inputs whose image by f is close to a breakpoint:

BC(f,F, ◦, q) =


x ∈ D ∩ Fn
 dist (f(x), ◦) 6 1

βq


. (2.19)

We will occasionally refer to (p, q)-bad cases as hard-to-round cases, when omit-
ting the precision p and q.

It can be noted that when q increases, the sets BC(f,F, ◦, q) are decreasing
with respect to inclusion:

BC(f,F, ◦, q) ⊃ BC(f,F, ◦, q + 1) ⊃ . . . , (2.20)

yet all these sets might be nonempty, if ever one value f(x) is an exact case (we
recall that in this situation, Ziv’s strategy would not terminate). So for solving
the TMD for a given function, we have to manually exclude all these exact
cases, either beforehand or after having enumerated all the (p, q)-bad cases.
This explains the shape of the following definitions:

Definition 2.18 (Hardness to round). The hardness-to-round of f : D ⊂
Fn −→ R with respect to F = F(β, p, emin, emax) and ◦ : R −→ F(β, p) can be
defined as one of the following integers:

HNR(f,F, ◦) = max


q ∈ N
 BC(f,F, ◦, q) \ EC(f,F, ◦) ̸= ∅


(2.21)

HNR′(f,F, ◦) = min


m ∈ N
 BC(f,F, ◦, m) \ EC(f,F, ◦) = ∅


. (2.22)

Before showing that these quantities are meaningful, we introduce another
useful definition:

Definition 2.19 (Non-zero distance). The minimum non-zero distance to
breakpoints of a given function f : D ⊂ Rn −→ R with respect to a FP format
F = F(β, p, emin, emax) and a rounding mode ◦ : R −→ F(β, p) is defined as:

NZD(f,F, ◦) := min
x∈F

x/∈EC(f,F,◦)

dist (f(x), ◦) . (2.23)



28 CHAPTER 2. FLOATING-POINT ARITHMETIC

Theorem 2.1 (Hardness to round). For any function f : D ⊂ Rn −→ R,
FP format F = F(β, p, emin, emax) and rounding mode ◦ : R −→ F(β, p), if
F \ EC(f,F, ◦) contains at least one point (which holds in all practical cases),
we have the following results:

NZD(f,F, ◦) exists, (2.24)

0 < NZD(f,F, ◦) 6 1
2 ulp(1), (2.25)

HNR(f,F, ◦) and HNR′(f,F, ◦) exist, (2.26)
HNR(f,F, ◦) =


− logβ NZD(f,F, ◦)


, (2.27)

HNR(f,F, ◦) > p− 1, (2.28)
HNR′(f,F, ◦) = 1 + HNR(f,F, ◦), (2.29)

∀m > HNR′(f,F, ◦), ∀x ∈ F,

f(x) ∈ B(◦) ∨ dist (f(x), ◦) > β−m


(2.30)

Proof of Theorem 2.1.
• For (2.24): F\EC(f,F, ◦) is a finite nonempty set, so it is legal to consider

the “min” that appears in the definition of NZD(f,F, ◦) in (2.23).

• For (2.25): due to the definition of EC given in (2.18), the function x →→
dist (f(x), ◦) is strictly positive over F \ EC(f,F, ◦), and so is its mini-
mum value NZD(f,F, ◦) > 0. Moreover, using the properties of the cen-
tered modulo, we have ∀y ∈ R, dist (y, ◦) 6 1

2 ulp(1), implying that
NZD(f,F, ◦) 6 1

2 ulp(1).

• For (2.26): Let us define the abbreviation

Gq := BC(f,F, ◦, q) \ EC(f,F, ◦).

Let us show that {q ∈ N |Gq ̸= ∅} is a nonempty upper-bounded set. First,
we have assumed that F\EC(f,F, ◦) contains at least one point, say x0 ∈ F.
Since x0 /∈ EC(f,F, ◦), we have 0 < dist (f(x0), ◦) 6 1

2 ulp(1) < 1 = 1
β0 ,

implying that G0 ̸= ∅. Second, we have:

∀q ∈ N, Gq ̸= ∅ ⇐⇒ ∃x ∈ Gq

⇐⇒ ∃x ∈ F, 0 < dist (f(x), ◦) 6 β−q

⇐⇒ 0 < NZD(f,F, ◦) 6 β−q by definition of “min”
⇐⇒ q 6 − logβ NZD(f,F, ◦), (2.31)

hence the existence of HNR(f,F, ◦). Moreover the definition of HNR(f,F, ◦)
implies

G1+HNR(f,F,◦) = ∅, (2.32)
that is to say the set {m ∈ N |Gm = ∅} is nonempty, hence the existence
of HNR′(f,F, ◦) = min {m ∈ N |Gm = ∅}.

• For (2.27): Here we can reuse the reasoning by equivalences that led to
Inequality (2.31):

HNR(f,F, ◦) = max {q ∈ N |Gq ̸= ∅}
= max


q ∈ N

 q 6 − logβ NZD(f,F, ◦)


=

− logβ NZD(f,F, ◦)


.



2.4. THE TABLE MAKER’S DILEMMA 29

• For (2.28): According to (2.25), we have

0 < NZD(f,F, ◦) 6 1
2β1−p < β1−p ⇐⇒ − logβ NZD(f,F, ◦) > p− 1 ∈ Z,

therefore by (2.27), we have

HNR(f,F, ◦) > p− 1.

• For (2.29): Result (2.32) directly implies that 1+HNR(f,F, ◦) > HNR′(f,F, ◦).
Thus it remains to verify that

HNR(f,F, ◦) + 1 6 min {m ∈ N |Gm = ∅} .

If it were not true, there would exists one m0 ∈ N such that

Gm0 = ∅ ∧ HNR(f,F, ◦) + 1 > m0,

that is m0 6 HNR(f,F, ◦), so that Result (2.20) implies

Gm0 ⊃ GHNR(f,F,◦),

which contradicts the fact that GHNR(f,F,◦) ̸= ∅.

• For (2.30): For all m > HNR′(f,F, ◦), we have Gm = ∅, that is to say

∀x ∈ F, x /∈ Gm ⇐⇒ x /∈ BC(f,F, ◦, m) \ EC(f,F, ◦)
⇐⇒ x ∈ EC(f,F, ◦) ∨ x /∈ BC(f,F, ◦, m)
⇐⇒ f(x) ∈ B(◦) ∨ dist (f(x), ◦) > β−m.

Definition 2.20 (Hardest-to-round cases). Finally, the set of hardest-to-
round cases of f : D ⊂ Rn −→ R with respect to F = F(β, p, emin, emax) and
◦ : R −→ F(β, p) can be defined as the set

HRC(f,F, ◦) = BC


f,F, ◦, HNR(f,F, ◦)

\ EC(f,F, ◦). (2.33)

We will sometimes use the term worst case as a synonym for hardest-to-round
case.

Finally, by “solving the TMD problem for a given function, FP format and
rounding mode” we will mean one of the following, interrelated assertions:

• Knowing the hardest-to-round cases HRC(f,F, ◦).

• Knowing the hardness-to-round HNR(f,F, ◦) (or HNR′(f,F, ◦));

• Knowing the nonzero distance to breakpoints NZD(f,F, ◦);

while the knowledge of a lower bound on NZD(f,F, ◦) will sometimes be referred
to as the “Approximate-TMD” problem.



30 CHAPTER 2. FLOATING-POINT ARITHMETIC

2.4.2 Practical Consequences of Solving the TMD

If we know the minimum nonzero distance between f(x) and a breakpoint, or
a lower bound η on this distance, then correctly rounding f(x) can roughly be
done as described in Algorithm 2.1. It is similar to what is called “Method B”
in [165], but more general since we deal with the various rounding modes in a
unified manner.

Algorithm 2.1: General scheme to provide correct rounding
Input : f : D ⊂ Rn → R, F = F(β, p, emin, emax), ◦ : R→ F(β, p),

0 < η 6 NZD(f,F, ◦), x ∈ D ∩ Fn

Output: ◦(f(x))
// Fast phase
ŷ1 ← an approximation of f(x), with an “accuracy” α1 > 0 slightly1
tighter than β−p, that is ŷ1 = f(x)(1 + ϵ1) with |ϵ1| 6 α1 < β−p

if ◦


ŷ1

1 + α1


= ◦


ŷ1

1− α1


then return ◦(ŷ1)

2

// Precise phase

α2 ←
4η

9β3

ŷ2 ← an approximation of f(x), with an accuracy of α2, that is to say4
ŷ2 = f(x)(1 + ϵ2) with |ϵ2| 6 α2

if dist (ŷ2, ◦) 6 |ips(ŷ2)|α2

1− α2
then5

b̂← the precision-p breakpoint closest to ŷ26

return ◦(b̂)7

else8
return ◦(ŷ2)9

end10

Proof of Algorithm 2.1. First, we notice that in the fast phase, both ŷ1 and f(x)
belong to ŷ1 ·


1

1+α1
, 1

1−α2


, so that if the endpoints of this interval round to the

same value, we indeed have ◦(f(x)) = ◦(ŷ1), so that Line 2 is correct.
Now suppose that we have

dist (ŷ2, ◦) 6 |ips(ŷ2)|α2

1− α2
.

and ŷ2 ̸= 0, implying f(x) ̸= 0. Let b̂ be the precision-p breakpoint closest to ŷ2



2.4. THE TABLE MAKER’S DILEMMA 31

and let us notate y := f(x). We have:

dist (y, ◦) = ulp(1)
ulp(y) min

b∈B(◦)
|y − b|

6 ulp(1)
ulp(y)

y − b̂
 (2.34)

6 ulp(1)
ulp(y)


|y − ŷ2|+

ŷ2 − b̂


= ulp(1)
ulp(y) |y| |ϵ2|+ ulp(ŷ2)

ulp(y)
ulp(1)

ulp(ŷ2)

ŷ2 − b̂


= |ips(y)| |ϵ2|+ ulp(ŷ2)
ulp(y) dist (ŷ2, ◦)

= |ips(y)| |ϵ2|+ |ips(y)|
|y| ulp(1)

|ŷ2| ulp(1)
|ips(ŷ2)| dist (ŷ2, ◦)

= |ips(y)| |ϵ2|+ |ips(y)| (1 + ϵ2) dist(ŷ2,◦)
|ips(ŷ2)|

< βα2 + β (1 + α2) α2
1−α2

6 βα2


1 + 1+α2

1−α2


6 βα2


1 + 1+ 1

9
1− 1

9


as α2 = 4

9 η 1
β 6 4

9
ulp(1)

2
1
2 6 1

9 .

= η 6 NZD(f,F, ◦),

hence dist (y, ◦) = 0, that is to say, f(x) ∈ B(◦). As a matter of fact, we have
f(x) = b̂. Indeed if it were not the case, there would exist a breakpoint b′ ∈ B(◦)
such that y = f(x) = b′ ̸= b̂, implying by (2.34):

0 < ulp(1)
ulp(b′)

b′ − b̂
 < η 6

ulp(1)
2 ,

which turns out to be impossible (two different breakpoints cannot be so close
to each other). Consequently, we have ◦(f(x)) = ◦(b̂), i.e., Line 7 is correct.
Finally, suppose that we have

dist (ŷ2, ◦) >
|ips(ŷ2)|α2

1− α2
.

Let y′ ∈ R be an arbitrary number such that

∃ϵ′ ∈ R, y′ = ŷ2

1 + ϵ′ ∧ |ϵ′| 6 |ϵ2| .

We recall that we have

ŷ2 = ips(ŷ2) ulp(ŷ2)
ulp(1) .

Consequently,

ulp(1)
ulp(ŷ2) |y

′ − ŷ2| = ulp(1)
ulp(ŷ2) |y

′| |ϵ′|

= ulp(1)
ulp(ŷ2)

|ŷ2|
1+ϵ′ |ϵ′|

= |ips(ŷ2)| |ϵ
′|

1+ϵ′

6 |ips(ŷ2)| α2
1−α2

< dist (ŷ2, ◦) ,



32 CHAPTER 2. FLOATING-POINT ARITHMETIC

so that there is no breakpoint in the interval ŷ2 ·


1
1+|ϵ2| ,

1
1−|ϵ2|


, which contains

both ŷ2 and f(x). Therefore, one can safely return ◦(ŷ2) = ◦(f(x)) on Line 9.

To sum up, a key prerequisite to ensure correct rounding at an optimal
cost for the usual functions, FP formats and rounding modes consists of the
knowledge of their minimum nonzero distance to breakpoints, or at least a
(relatively tight) lower bound of this distance.

2.5 Algorithms to Solve the TMD
2.5.1 A Naive Algorithm
A naive method of finding the hardest-to-round points consists of evaluating
the function with large precision at each FP number: this is efficient only in
binary32 and decimal32 formats, where the number of cases to test is at most
232.

Going beyond these 32-bit formats requires using different algorithms. Two
involved algorithms have been designed to find these hardest-to-round points.
Both proceed by splitting the domain under study into small intervals, and by
replacing the function over each of those intervals with a polynomial approxi-
mation, for which the TMD is solved.

2.5.2 The L Algorithm
The Lefèvre algorithm uses degree-1 polynomial approximations, and reduces
the TMD problem for each of these approximations to finding the integers k
that satisfy the following equation, for a given N ∈ N∗, d0 ∈ R∗, and a, b ∈ R
being determined by the considered degree-1 approximation:

k ∈ J0, NJ
(b− k × a) mod 1 < d0,

(2.35)

where y mod 1 := y − ⌊y⌋ denotes the positive fractional part of y. Then the
L-algorithm relies on a method that can be viewed as a variant of the Euclidean
GCD algorithm (cf. Algorithm 2.2 for the subtractive version, while another
version involving divisions can be found in [101]).

This algorithm made it possible to obtain hardest-to-round cases in binary64
arithmetic [102, 127].

For instance, the hardest-to-round case for the natural logarithm in the full
range of binary64 is

t = 1.0110001010101000100001100001001101100010100110110110× 2678,

whose logarithm is

log t =
53 bits  

111010110.01000111100111101011101001111100100101110001
0000000000000000000000000 · · · 0000000000000000000000000  

65 zeros

1110 . . .



2.5. ALGORITHMS TO SOLVE THE TMD 33

Algorithm 2.2: Subtractive version of L-algorithm [101]
Input: a, b, d0 ∈ R and N ∈ N∗

Output: Returns the first integer r ∈ J0, NJ such that
(b− ra) mod 1 < d0 if one such r exists, else returns an integer
greater than or equal to N

x← a mod 1; y ← 1− x; d← b mod 1; u← 1; v ← 1; r ← 0
if d < d0 then return 0
while true do

if d < x then
while x < y do

if u + v > N then return N
y ← y − x; u← u + v

end
if u + v > N then return N
x← x− y
if d > x then r ← r + v
v ← v + u

else
d← d− x
if d < d0 then return r + u
while y < x do

if u + v > N then return N
x← x− y; v ← v + u

end
if u + v > N then return N
y ← y − x
if d < x then r ← r + u
u← u + v

end
end



34 CHAPTER 2. FLOATING-POINT ARITHMETIC

This is a worst case for directed roundings on format F53 = binary64, so that

HNR′(log,F53, 2) = 53 + 65 = 118.

As regards rounding-to-nearest, the worst-case of x →→ 2x for binary64 is:

v = 1.1110010001011001011001010010011010111111100101001101× 2−10,

whose radix-2 exponential is

2v =
53 bits  

1.0000000001010011111111000010111011000010101101010011
0 1111111111111111111111111 · · · 1111111111111111111111111  

59 ones

0100 . . . ,

so that
HNR′(x →→ 2x,F53, RN) = 53 + 1 + 59 = 113.

Remark 2.4 (Complexity of L-algorithm). The Lefèvre algorithm has a
complexity of O


2

2p
3 +o(p)


, where p denotes the precision of the targeted binary

FP format, so that it is tractable for the binary64 format (2 2×53
3 ≈ 4 × 1010),

and near the limits of current processors for Intel’s extended-binary64 format
(2 2×64

3 ≈ 7× 1012) [160].

2.5.3 The SLZ Algorithm
The Stehlé–Lefèvre–Zimmermann (SLZ) algorithm uses higher degree polyno-
mial approximations, and solves the TMD for those approximations by follow-
ing an approach inspired by Coppersmith’s method [40, 39, 41]. Using larger
degree polynomials allows one to use larger, hence fewer, intervals [160, 158],
giving a better asymptotic complexity, though it has not been used until then
in large-scale computations. A variant of this algorithm solves the Approximate
TMD, and can, under a reasonable heuristic assumption, be made polynomial
for q = O(p2), though the practical meaning of this is still to be understood.

Roughly speaking, the SLZ algorithm is based on the bivariate, modular
version of Coppersmith’s technique and works as follows:

1. Focus on the (Approximate-)TMD problem over small sub-intervals (typ-
ically a sub-interval must be tight enough to ensure that for a given b ∈ Z,
the exponent of βb × f(x) is zero over the interval, and at the same time
for Coppersmith’s technique to be applicable), which amounts to finding
the values of x ∈ Z that are solutions of:

|x| 6 A ∧
βbf


x0 + x

βa


cmod β1−p

 6 1
βq

, (2.36)

for fixed integers p, q, a, b, A, and x0 ∈ Q,
which amounts to saying that there exists a value z ∈ R such that

|x| 6 A ∧ |z| 6 min


β1−p

2 , 1
βq


∧ βbf


x0 + x

βa


≡ z (mod β1−p);

(2.37)



2.5. ALGORITHMS TO SOLVE THE TMD 35

2. Replace f with a polynomial approximation3 F ∈ Q[X] around x0, so that
the initial problem (2.37) implies the existence of a value z′ ∈ R satisfying

|x| 6 A ∧ |z′| 6 1
βq

+ϵ ∧ βbF


x

βa


≡ z′ (mod β1−p), (2.38)

where ϵ > 0 takes the approximation error into account (ϵ will typically
be a rational chosen such that ϵ . 1

βq );

3. Clear the denominators4 in Equation (2.38), so that the problem can be
rewritten as finding all the solutions (x, y) ∈ Z2 of an equation of the form

|x| 6 A ∧ |y| 6 B ∧ Q(x, y) ≡ 0 (mod M), (2.39)
for given Q ∈ Z[X, Y ] and M, A, B ∈ Z. We have thus reduced the problem
(2.36) of finding the small real values of a univariate function modulo a
rational number, to the one of finding the small integral roots of a bivariate
polynomial modulo an integer;

4. Compute, with the help of the LLL lattice base reduction algorithm [104],
two linear combinations v1 and v2 with small integer coefficients of the
family of polynomials

Qi,j(X, Y ) = Mα−iQ(X, Y )iY j for (i, j) ∈ J0, αK× N,

where the Coppersmith parameter α ∈ N∗ is chosen to maximize the reach-
able bounds A and B. The polynomials v1 and v2 with small coefficients
are hard to find (this is a call to the LLL algorithm) but easy to check,
given the coefficients of the linear combination. Thus, suppose we have
found such polynomials that are sufficiently small compared with Mα, in
the sense that they satisfy

∀x, y ∈ Z, |x| 6 A ∧ |y| 6 B =⇒

|v1(x, y)| < Mα

|v2(x, y)| < Mα
(2.40)

First, we notice that any solution (x, y) of (2.39) will be a modular root
of each Qi,j modulo Mα, hence a modular root of v1 and v2 modulo Mα.
Then, combined with (2.40), this implies that (x, y) is an integral root of
both v1 and v2;

5. Find the solutions of the polynomial system
v1(x, y) = 0
v2(x, y) = 0,

(2.41)

subject to |x| 6 A and |y| 6 B, over the integers.

Remark 2.5 (Complexity of SLZ in the typical case). If we denote by p
the precision of the targeted FP format, and if 2p is the value chosen for the
parameter q that appears in Definition 2.17, the SLZ algorithm runs with an
asymptotic complexity of O


2

p
2 +o(p) [159, Corollary 4].

3Choosing in practice multiple-precision FP numbers for the coefficients of F .
4Noticing beforehand that z′ ∈ Q, and that u ≡ v (mod w) ⇒ N ×u ≡ N ×v (mod N ×w).



36 CHAPTER 2. FLOATING-POINT ARITHMETIC

Remark 2.6 (Reasoning by implication). Note by the way that the overall
algorithm proceeds by implication (especially due to steps 2 and 4), which means
that at the very end, the pairs (x, y) obtained at the root-finding step 5 are
candidates to be checked against Equation (2.36). Trusting the results computed
by SLZ thus amounts to saying that all the actual solutions of the considered
instance of the TMD problem are indeed among this list of candidate solutions,
so that we have not forgotten any hard-to-round case.



Chapter 3

Formal Methods and
Interactive Theorem Proving

3.1 Overview of Formal Methods
Formal methods are used in areas where errors can cause loss of life or significant
financial damage, as well as in areas where common misunderstandings can fal-
sify key assumptions. In such areas like critical software and hardware systems,
formal methods allow one to ensure a high-level of safety and security, even when
an exhaustive testing would be intractable. There exist several techniques, all
being based on specific mathematical methodologies, for instance:

• abstract interpretation,

• model checking,

• SAT/SMT solvers (based on satisfiability),

• temporal logic,

• theorem proving.

Most of them are automated techniques, while in the sequel we will mainly
focus on formal theorem proving, which relies on tools that are strongly related
to human-directed proofs.

A theorem prover is a piece of software that allows one to (interactively)
develop and check mathematical proofs. Basically, we can write formal specifi-
cations, programs, and proofs that the considered programs meet their specifi-
cations.

There exist various criteria allowing one to classify the various existing the-
orem provers. We will quote five typical ones below, and the reader will be able
to get more details in [164]:

the kind of underlying logic that may be a first-order or higher-order logic,
constructive or not, with or without dependent types, etc.;

the De Bruijn criterion asserts the existence of a proof kernel, devoted to
the “post-verification” of each generated proof object;

37



38 CHAPTER 3. INTERACTIVE THEOREM PROVING

the Poincaré principle tells whether the system allows one to discharge some
proofs by a mere computation: this principle originated in Poincaré’s state-
ment that “a reasoning proving that 2 + 2 = 4 is not a proof in the strict
sense, it is a verification” [142, chap. I];

the kind of proof language that may be a declarative language (cf. Mizar
[131]), a language of terms (cf. Agda [136]), or a language of tactics (cf.
PVS [139], Coq [10]) inspired by the LCF system [121];

the degree of automation which has a strong impact on the ease of devel-
oping formal proofs in the system, but may also influence the readability
of these proofs.

Note also that the expression “theorem prover” admits synonyms such as
“proof assistant” and “proof checker”, the former insisting somewhat on the
elaboration on the formal proof, and the latter on the verification of the so-
obtained formal proof by the kernel.

Using these tools naturally raises the issue of the soundness of the proof
checker. As explained in [143], believing a machine-checked proof can be split
in two subproblems:

• “deciding whether the putative formal proof is really a derivation in the
given formal system (a formal question)”;

• and “deciding if what it proves really has the informal meaning claimed
for it (an informal question)”.

To some extent, this two-fold approach can be compared to the verification and
validation (V&V) concept that is typical in formal methods: the verification step
that aims at ensuring the product meets the specifications (roughly speaking,
“Are we building the thing right?”), and the validation step aims at ensuring
these specifications meets the user’s needs (roughly speaking, “Are we building
the right thing?”).

3.2 The Coq Proof Assistant
Coq [10, 81, 162] is an interactive formal proof assistant, based on an expressive
formal language called the Calculus of Inductive Constructions (CIC), which is
a constructive, higher-order logic with dependent types.

The Coq system comes with a relatively small proof kernel that may fit in
with independent verification. Specifically, the soundness of any (axiom-free)
proof that we may formalize in Coq only relies on the consistency of Coq’s logic
and the correctness of the kernel, which we may just as well re-write in another
language, and compile on various machines and platforms.

Finally, we would like to highlight the fact that the use of a proof assistant
such as Coq guarantees that all proofs of a given theory are correct, provided
the definitions involved in its theorems (including hypotheses) are relevant. As
mentioned in the remark on V&V in the previous section, this issue is mostly
an informal question. Yet this is something well surveyable, which consists most
of the time to check that the formal definitions indeed correspond to the usual
mathematical ones. On the other hand, the burden of the verification, namely



3.2. THE COQ PROOF ASSISTANT 39

the whole of the proof details involved in the derivation, is fully handled by the
tool. In other words, as lengthy as the proof might be, the confidence we have
in such a mechanized proof does not depend on its size.

3.2.1 Overview of the Tools and Languages Involved in
Coq

The Coq proof assistant comes with several command line programs which are
implemented in OCaml, including:

• coqtop, the interactive toplevel of Coq;

• coqc, the Coq batch compiler;

• coq_makefile, to ease the compilation of complex Coq developments.
Typically, we can compile a coq_makefile-based project by running:

$ coq_makefile -f Make -o Makefile && make

In Coq both specifications and proofs are gathered in a single file, in a human-
readable way. This is accomplished thanks to the so-called Vernacular language1

that provides commands such as Definition and Lemma, allowing the user to
structure its Coq script.

We can save such Coq scripts as vernacular files (i.e., ASCII files with ex-
tension ‘.v’) using any basic text editor. Yet some GUIs are also available for
editing ‘.v’ files, including CoqIDE and ProofGeneral which is based on the cus-
tomizable text editor Emacs.

Then, a Coq library will usually consist of several theories (each of them
being stored in a vernacular file). A given theory can import other theories, e.g.
to load some given prerequisites contained in foo, we can invoke the command
Require Import foo. This assumes that the theory foo has been successfully
compiled, namely that a compiled file foo.vo has been produced. Note that
when combining many theories in a given Coq development, the dependencies
resulting from the Require commands have to form a directed acyclic graph
(DAG).

The specification language of Coq, called Gallina, is a mathematical high-level
language that offers the expressiveness of a strongly-typed functional program-
ming language, directly wired to the higher-order logic CIC. We will describe
most of features of this language in Section 3.2.2.

As regards the proofs, Coq provides a language of tactics that we will briefly
present in Section 3.2.3. Note that the system allows one to define custom tactics
in order to increase automation.

Moreover, CIC provides a primitive notion of computation that we will ex-
plain in more detail in Section 3.2.4.

Section 3.2.5 will be devoted to a general survey of a number of technical
notions that are typical when developing formalizations in Coq.

Then, in order to position our Coq developments carried out in this thesis,
we will recall in Section 3.2.6 the different approaches that are possible when
dealing with algorithms in a formal setting, while Section 3.2.7 will be devoted

1It is a bit like a natural language since sentences begin with a capital letter and end with
a dot.



40 CHAPTER 3. INTERACTIVE THEOREM PROVING

to a brief presentation of the existing Coq libraries that are related to our formal
developments.

Note that we will use the same syntax highlighting as the one of ProofGeneral-
Emacs, which can be summarized as follows:

Command (e.g., Lemma)
keyword (e.g., forall)
tactic (e.g., apply)
tactical (e.g., repeat)
terminator (e.g., done) (borrowing the terminology from [64])
(* and comments, with OCaml’s syntax (* possibly nested *) *)

3.2.2 Overview of the Gallina Specification Language
In Coq, all objects have a type. Note that this is also the case for the dummy
variable of all quantifiers. If e.g., expressions such as “∀x, P” are valid in set-
theory, in a type-theory setting the x variable must belong to a type nevertheless:
we should say instead “for all x belonging to T , P holds”. The expression “x
belonging to T” is written “x : T”. One can also say “x is an inhabitant of type
T”, or simply “x has type T”. In this case, we will say that x is a (well-formed)
term.

Moreover, given two types T and U, we can build the arrow-type “T -> U,”
which corresponds to the type of all the functions2 from T to U. Using the key-
word ‘fun’ we can build so-called λ-abstractions, that is to say anonymous func-
tions. For instance the function “fun t : T => t” will have type “T -> T,”
and the multiple-arguments function “fun (t : T) (u : U) => t,” equivalent
to “fun t : T => fun u : U => t,” that is to say t ∈ T →→ (u ∈ U →→ t) in a
mathematical fashion, will have type “T -> (U -> T),” which is usually abbre-
viated as “T -> U -> T” by agreeing that the Coq arrow is right-associative.

We can also apply functions to one or more arguments. For instance, assum-
ing that f has type “T -> U -> V,” and that we have two terms “x : T” and
“y : U,” we can just write “f x” to apply f to x, and finally write “(f x) y” to
get an object of type V. Note that this can be shortened to “f x y,” as the Coq
syntax assumes any such succession of applications is left-associative. Note also
that as this example points out, one usually prefers to define multiple-arguments
functions in Coq in a curried way, that is to say with successive abstractions, e.g.
“fun (t : T) (u : U) => v : V” leading to a type “T -> U -> V,” rather
than in an uncurried way, i.e. providing an inhabitant of “T * U -> V.” The
latter is quite natural in our mathematical habits (viz., we tend to write f(x, y)
rather than f(x)(y)), but in Coq it would lead to an extra operation, namely
the destruction of the considered elements of type “T * U” for extracting their
components.

To display the type of a given term t, one can use the command “Check t,”
which will raise an error when the expression t is not well-formed. For instance,
we can display the type of the addition of natural numbers:

Check plus.
; plus : nat -> nat -> nat

2Note that all functions in Coq are total. Still, we will see some techniques to cope with
partial functions later on in Section 3.2.5.



3.2. THE COQ PROOF ASSISTANT 41

and we can also partially evaluate this function, which gives type:

Check (plus 3).
; plus 3 : nat -> nat

Furthermore, a specificity of the logic of Coq is that types are recognized by
the same syntactic class as terms, that is to say, types must also be well-form
terms. But then, what will be their type? If we give a try to interactively guess
it, we will get for instance:

Check 3.
; 3 : nat

Check nat.
; nat : Set

Check Set.
; Set : Type

Check Type.
; Type : Type

Let us briefly explain this output. In the CIC, the type of a type is called a sort,
which will always be Set, Type, or Prop — the sort of propositions. Set and
Prop have type Type, but the keyword Type actually refers to a sort “Type(i)”
taken in an infinite hierarchy of sorts {Type(i) | i ∈ N} called universe. Thus
strictly speaking, Type is not its own type, else it would lead to an inconsistency
[83]. But in practice the level i in the hierarchy is handled transparently to the
user. To be more precise, we have “Type(i) : Type(j)” if and only if i < j, yet
this will be displayed “Type : Type” by the Coq pretty-printer.

As regards the definition of logical propositions, they are understood by the
Coq system in the perspective of the so-called Curry–Howard isomorphism, also
known as the propositions-as-types correspondence. This means that in CIC,
a proposition “G : Prop” should be considered as a type that gathers terms
representing proofs of G. In other words, saying that “g is a proof of formula G”
amounts to saying that “g is a program of type G”.

A key notion related to propositions is implication. In a mathematical con-
text, especially in pen-and-paper proofs, we usually write it with a double-
arrow (e.g., A ⇒ B). Yet in Gallina, we just write it with a single-arrow (viz.,
“A -> B”), which is fully legitimate in the context of the Curry–Howard corre-
spondence : a proof “p : A -> B” will stand for a function that transforms an
arbitrary proof of A into a proof of B.

Note that as from Coq 8.0, Gallina’s syntax uses another kind of arrow,
namely the ‘=>’ involved in λ-abstractions such as “fun t : T => t”, which
is really required for syntactic reasons. (For instance, if we had just one kind
of arrow, we would not be able to distinguish between “fun s : T -> U => V”
and “fun t : T => U -> V”).

Let us give a simple example of λ-term to illustrate the previously mentioned
notions: if G is the proposition “forall A : Prop, A -> A,” a Coq proof of
G will be, for example, the term “fun (A : Prop) (a : A) => a,” which is
indeed a function of type G.

Note that a universal quantification ‘forall’ naturally appears in the ex-
ample of proposition mentioned above, but this construction is not specific to
propositional logic. The syntax “forall t : T, U t” actually corresponds to
what we call a product-type (or Π-type). We can notice this is very similar to the



42 CHAPTER 3. INTERACTIVE THEOREM PROVING

notion of the product of a family of sets (Ui)i∈I indexed by a given set I: a func-
tion that is member of this product will be a function mapping every i ∈ I to an
element in Ui (to be compared to a Coq function of type “forall i : I, Ui”).

Note that Gallina’s ‘forall’ quantifier is not defined but primitive, as well
as the arrow ‘->’ which actually corresponds to non-dependent product. To
be more precise, when the term U involved in “forall t : T, U” does not
depend on the value of “t : T,” we can replace t with a wildcard, namely
write “forall _ : T, U,” which is automatically shortened to “T -> U” by
the pretty-printer.

Note also that the ‘forall’ quantifier allows both first-order and higher-
order quantification. For dependent products, this means roughly that the type
of the bound variable may be just as well an arrow-type (or even a product-type).
Consequently, within Coq we can smoothly consider higher-order functions such
as

Coq < Check List.map.
map

: forall A B : Type, (A -> B) -> list A -> list B

(* as well as *)

Coq < Check List.Forall.
Forall

: forall A : Type, (A -> Prop) -> list A -> Prop

In addition to the Check command that we have used several times up to
now, note that a vernacular command Print is available to display the λ-term
of any defined identifier, including the proof term of any successfully-proved
theorem.

Inductive Types

Now we focus on the concept of inductive type, which is a very expressive feature
of the Coq system that allows one to easily define complex types and provides
standard ways to manipulate them.

The idea conveyed by the concept of inductive type is very natural, since
similar to how we usually proceed in (object-oriented) programming languages
when defining a data structure: roughly speaking, we start by specifying the
different ways we can “build” the desired datatypes (this is the role of so-called
constructors), then we specify how we can “use” such objects (e.g., for inspecting
the content of a previously built object). The CIC formal language provides a
unified way to declare such objects, and Gallina uses the following general syntax
for defining an inductive type ident:

Inductive ident binder1 . . . binderk : type :=
| ident1 : type1
| . . .
| identn : typen .

First, such a definition creates a type ident and the identifiers ident1. . . identn,
which are called the constructors of inductive type ident. At the same time, it
generates some induction principles ident_ind, ident_rec and ident_rect



3.2. THE COQ PROOF ASSISTANT 43

(resp. for sorts Prop, Set and Type), which describe intuitively the fact that
ident is the smallest object satisfying the clauses ident1. . . identn. These in-
duction principles are also called elimination principles, destructors or recursors.

Most of data-types can be defined this way, including the type of Booleans,
Peano natural integers, and polymorphic lists:

Inductive bool : Set :=
| true : bool
| false : bool.

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

Inductive list (A : Type) : Type :=
| nil : list A
| cons : A -> list A -> list A.

Note that while bool can just be viewed as an enumerated type, both types nat
and list are recursive (the argument (A : Type) in parentheses, written just
below the typing colon of the inductive, is called a parameter).

We will even see infra that almost all logical connectors can be defined using
an inductive definition.

Furthermore, if the concept of “record” is a wide-spread way to define sim-
ple datatypes in usual programming languages, it is available in Coq through
the commands Record and Structure, which are synonymous: they define the
desired type in the form of an inductive type with a single constructor, along
with some handy functions to access the different fields of the record (called
accessors or projections).

For instance, the following invocation defines complex numbers as pairs of
two real numbers:

Record C : Set := Cplx { Re : R ; Im : R }.

This is roughly equivalent to process the following commands:

Inductive C : Set :=
| Cplx : R -> R -> C.

Definition Re : C -> R :=
fun z : C => let ’Cplx x y := z in x.

Definition Im : C -> R :=
fun z : C => let ’Cplx x y := z in y.

and a dot-notation is also be provided for the specified accessors (here “z.(Re)”
will be a synonymous of “Re z”, and similarly for Im).

We can actually define more involved Records, for example with some fields
depending on the value of the others fields. This includes the case where a field
of the record is a proof that ensures the other fields satisfy a given property.

The usual equality in Coq is defined by the inductive predicate

Inductive eq (A : Type) (x : A) : A -> Prop :=
| eq_refl : eq A x x.



44 CHAPTER 3. INTERACTIVE THEOREM PROVING

that can be viewed as a family of predicates “being equal to x”, or also as the
smallest relation on A that is reflexive. Coq uses the notation “x = y” as an
abbreviation of “eq _ x y,” where x and y must have the same type. In general
this type may be inferred by the system, hence the wildcard. Otherwise Coq
provides an extra notation “x = y :> A” for “eq A x y.” Given the form of the
elimination principle of eq, this kind of equality is very often called Leibniz’s
equality:

Check eq_ind.
; forall (A : Type) (x : A) (P : A -> Prop),

P x -> forall y : A, x = y -> P y

We have already seen that universal quantification and implication are prim-
itive notions in Gallina. As regards the other logical connectors, they are all
defined in the core library of Coq in the form of an inductive type, except the
negation and the equivalence (bi-implication) that are not “atomic”.

Thus the always-false proposition is defined as

Inductive False : Prop := .

i.e., an inductive in Prop with no constructor, while the always-true proposition
is defined as

Inductive True : Prop :=
| I : True.

Then the logical negation is defined as

Definition not (A : Prop) := A -> False.

along with the unary notation

Notation "~ x" := (not x) : type_scope.

Then the conjunction is defined with its infix notation in one shot:

Inductive and (A B : Prop) : Prop :=
| conj : A -> B -> A /\ B

where "A /\ B" := (and A B) : type_scope.

and similarly for the disjunction:

Inductive or (A B : Prop) : Prop :=
| or_introl : A -> A \/ B
| or_intror : B -> A \/ B

where "A \/ B" := (or A B) : type_scope.

Finally, the “if and only if” connector is defined as

Definition iff (A B : Prop) := (A -> B) /\ (B -> A).

As regards existential quantification, an inductive type

Inductive ex (A : Type) (P : A -> Prop) : Prop :=
| ex_intro : forall x : A, P x -> ex P.

is provided, along with an intuitive notation “exists x : A , p” that stands
for “ex (fun x : A => p)”.



3.2. THE COQ PROOF ASSISTANT 45

Before entering the upcoming subsection, let us elaborate on one of the in-
ductive predicate mentioned supra, namely the disjunction. It has two construc-
tors or_introl (resp. or_intror) that are intended to build an object of type
“A \/ B” from a proof of A (resp. B). Consequently, each constructor correspond
to what is called an “introductory rule” in natural deduction logic, namely the
operation that consists of introducing a new connector (here it is ‘\/’) using the
required hypotheses. The opposite operation, called “elimination rule”, consists
of using an available assumption written with the considered connector; roughly
speaking, it is made possible in Coq by means of the elimination principles that
are generated by Coq at the time the inductive type is defined. For example, we
can ask the Coq toplevel to display the elimination principle of the disjunction:

Check or_ind.
; or_ind : forall A B P : Prop,

(A -> P) -> (B -> P) -> A \/ B -> P

This means that for proving a given proposition P, if we have a proof of “A \/ B”,
it suffices to prove that “A -> P” and “B -> P” hold.

As a matter of fact, for proving that a disjunction “A \/ B” holds, we need
to say explicitly which of A and B holds (and provide a proof for it), which will be
accomplished thanks to the Coq tactics left and right, w.r.t. the constructors
or_introl and or_intror. One such proof of disjunction might be tricky, even
if B is replaced with ~A, since the underlying logic of Coq is intuitionistic. In
other words, we do not have by default the axiom of excluded-middle

Axiom classic : forall A : Prop, A \/ ~A.

which is typical in classical logic. However, this axiom can be added to the
context just by load the appropriate standard library

Require Export Classical.

(Concerning the use of classical logic in Coq, we will give some details on con-
sistency issues later on in Section 3.2.7.)

Interestingly enough, we cannot use such a logical disjunction to build “in-
formative data” in Set or Type, since there is no elimination principle “or_rec”
nor “or_rect”. This is due to the design of the CIC that enforces the fact that
objects in sort Prop have no informative content, thereby their content should
not been involved in building informative objects in Set/Type. Consequently,
we can “destruct” objects in sort Prop only to build objects in Prop again.

Nevertheless, the Coq core library provides some inductive types in sort
Type for this purpose. They are very similar to the ones in sort Prop that we
mentioned supra. Consider for example:

Inductive sumbool (A B : Prop) : Set :=
| left : A -> {A} + {B}
| right : B -> {A} + {B}

where "{ A } + { B }" := (sumbool A B) : type_scope.

Like “or”, this 2-constructors inductive definition gathers a proof of either A or
B, yet it behaves just like a Boolean type. To sum up, we can build algorithms
in Set/Type that rely on the content of a given “C : {A} + {B}.”



46 CHAPTER 3. INTERACTIVE THEOREM PROVING

Pattern-Matching

A major feature of Gallina is the capability of inspecting the content of an
inductive object to perform a definition by case-analysis. This is accomplished
with the help of so-called pattern-matching expressions.

Basically, one such expression has the form

match term0 with
| patt1 => term1
| . . .
| pattn => termn

end

with the following constraints:

• the term0 belongs to an inductive type I;

• the pattern patti in each branch is a term of the form “c x y . . .” where
c is a constructor of I and x, y, . . . are either a wildcard or an identifier,
which can then occur in termi;

• the patterns are non-redundant and matches each constructor of the in-
ductive type I.

For instance, the following command defines the predecessor function for
Peano natural numbers:

Definition pred (n : nat) : nat :=
match n with

| O => O
| S n’ => n’

end.

while the function that returns the tail of a list may be defined by:

Definition tail (A : Type) (l : list A) :=
match l with

| nil => nil
| cons _ l’ => l’

end.

Note that in the pattern-matching expressions presented above, the result
type of the overall expression does not depend on the matched term and can
be inferred from the common type of the branches. If it is not the case, Gal-
lina provides a more general syntax for dependent pattern-matching, with some
“as. . . in. . . return. . . ” annotations that are written just before the with key-
word [162, Section 1.2.13].

Pattern-Matching for Singleton and Boolean Types. Gallina provides
specific notations to ease pattern-matching on types that have one or two con-
structors.

To be more precise, if T is an inductive type with a single constructor BuildT
taking n arguments, the expression



3.2. THE COQ PROOF ASSISTANT 47

match term with
| BuildT ident1 . . . identn => term’

end

can be equivalently written

let ’BuildT ident1 . . . identn := term in term’

Such inductive types with a single constructor are sometimes called singleton
types. A typical kind of singleton types are Gallina’s Records, which we men-
tioned above.

On the other hand, an inductive type with exactly two constructors may
behave like a Boolean type if it is involved in a pattern-matching expression
where the arguments of both constructors are ignored. In such a case an
“if. . .then. . .else. . .” syntax is available. More precisely, if term has type B
that is an inductive type with two constructors C1 and C1,

match term with
| C1 _ . . . _ => term1
| C2 _ . . . _ => term2
end

can be shortened to

if term then term1 else term2

In particular the pretty-printer will use this syntax for all the types that appear
in Print Table Printing If, including bool and sumbool.

Recursive Functions. In Gallina we can define recursive functions in different
ways. The most common one relies on the concept of fixpoint. When defining
such an object, Coq enforces that the considered function has a “structural
decreasing argument,” that is an argument whose type is an inductive one and
whose “size” decreases at each recursive call. More formally, its new value must
be a sub-term of the previous value. We can specify which argument has this role
using an explicit annotation,3 such as {struct arg}. For instance, the addition
of two (Peano) natural numbers can be defined as follows:

Fixpoint plus (n m : nat) {struct n} : nat :=
match n with

| O => m
| S p => S (p + m)

end
where "n + m" := (plus n m) : nat_scope.

It should be noted that the structural decreasing condition mentioned just now
is required to ensure the consistency of the system. Indeed, if we could define
the following function “wrong : nat -> nat,” we could derive a proof that
“wrong 0 = 1 + wrong 0” and its contrary. This would implies that False
has an inhabitant,4 and thereby that every formula holds5.

3otherwise Coq (> 8.2) will choose the first argument that satisfies the condition.
4since P /\ ~P is by definition equivalent to P /\ (P -> False), which implies False.
5cf. e.g., the elimination principle of False.



48 CHAPTER 3. INTERACTIVE THEOREM PROVING

Fixpoint wrong (n : nat) {struct n} : nat :=
1 + wrong n.

More straightforwardly, we could give an inhabitant to any type T by defining:

Fixpoint wrong’ (n : nat) {struct n} : T :=
wrong’ n.

Both pitfalls are avoided thanks to the the structural decreasing condition.

3.2.3 The Coq Proof Language
In Coq as in most interactive proof assistants, the proofs are interactively built
by the user using a specific proof language. There actually exists two proof lan-
guages in Coq, namely C-zar (a declarative one à la Mizar), and Ltac (language
of tactics) [48]. The latter language is by far the most widely used and it is the
one we will focus on throughout this document.

Thus each step of a Coq proof is written with the help of so-called tactics.
The Coq system comes with many built-in tactics. (Since Coq-v8, they are all
written with an initial lower case, as opposed to vernacular commands.) Note
that the user may also develop custom tactics using the Ltac vernacular. Some
tactics take one or more arguments, in general separated with a space. In any
case, any tactic invocation must end with a dot. Yet we may combine several
tactics in a single proof sentence with the help of so-called tacticals (including
the concatenation of tactics with ‘;’ that we will explain below, as well as the
keywords try, repeat, etc.).

Basically, the development of a Coq proof is a bottom-up process, starting
from the conclusion of the theorem to be proved. Then, with the help of tac-
tics, one such proof goal is turned into one or more simpler subgoals, and so
on, until we reach trivial subgoals. Note that at each step, the set of subgoals
generated using a given tactic consist of sufficient conditions to solve the initial
subgoal. Finally, we obtain a kind of proof tree, whose nodes can be viewed as
intuitionistic sequents, that is, logical objects of the form “H1, H2, . . . , Hm ⊢ C”
where the conclusion C has to be proved under the hypotheses H1, . . . , Hm of
the context. At the beginning of the proof, there are no hypothesis Hi in the
context, but the conclusion C corresponds to the statement of the theorem to
be proved. In particular, it should be noted that this “statement to be proved”
is a type, and the proof process amounts to interactively building an inhabitant
of this type.

To briefly illustrate this proof process, we focus on a toy example, namely
proving the “identity principle” saying that “∀P, P ⇒ P”. This leads to the
following Coq session:

Coq < Lemma id_princ : forall P : Prop, P -> P.
1 subgoal

============================
forall P : Prop, P -> P

where the formula under the double-bar is the conclusion to be shown, under the
hypothesis located above this double-bar. Currently, there is no such hypothesis,
but we can start by introducing some in the context:



3.2. THE COQ PROOF ASSISTANT 49

id_princ < intros P.
1 subgoal

P : Prop
============================
P -> P

Mathematically speaking, this step amounts to saying “Let P be a proposition”.
Now, “let us assume that P holds”:
id_princ < intros H.
1 subgoal

P : Prop
H : P
============================
P

Then the subgoal is trivial, since we just need to provide an inhabitant of type
P assuming H is of type P:
id_princ < exact H.
Proof completed.
id_princ < Qed.
id_princ is defined

And the proof is finished. (This tautology could have been proved just as well
using the tauto tactic.) By curiosity, we can ask Coq to display the proof term
that has been generated:
Coq < Print id_princ.
id_princ = fun (P : Prop) (H : P) => H

: forall P : Prop, P -> P

and we can see that this proof term is nothing but an identity function, and
that it indeed has the type “forall P : Prop, P -> P”.

Thus, the use of tactics not only allows one to guide the building of the
interactive proof tree, but also results in the definition of a proof term, whose
type can then be checked. This observation is strongly linked to the Curry–
Howard correspondence that we mention earlier in Section 3.2.2: a Coq proof is
nothing but a type judgement of the form

E ⊢ proof : T

where T is the statement of the theorem inside the environment E.
There exists some major categories of tactics, including:

• tactics for minimal propositional logic (including negation): intros, and
apply, exact, assumption;

• tactics to introduce usual inductive types:
reflexivity to prove the trivial equality “x = x” for a given x;
left and right for the “or” logical connector;
split for the conjunction “and”;
exists for providing a witness to an existential quantification,
as well as the constructor tactic, applicable for an arbitrary inductive;



50 CHAPTER 3. INTERACTIVE THEOREM PROVING

• tactics to eliminate inductive hypotheses:
destruct to perform case-analysis, or induction to apply the appropriate
elimination principle;
rewrite to use hypotheses involving equality;
discriminate and injection to use basic assumptions on CIC inductive
types w.r.t. equality (e.g., a constructor is always injective);

• the conversion tactics, including unfold, change, simpl and compute;

• some key tactics such as set and pose to bring in a local definition in the
proof context, as well as assert to locally prove an intermediate lemma,
which is often called a cut and leads to a ζ-redex in the final proof term
(i.e., a term of the form “let tmp := . . . in . . .”).

Since a tactic such as split or apply can possibly generate more than a
single subgoal, the ‘;’ tactical can be useful to shorten the proof script by
invoking the same tactic on all the subgoals generated by the first tactic. For
example the proof sentence “split; trivial.” is equivalent to

split. 2:trivial. trivial.

In addition to the few tactics presented above, Coq comes with many other
tactics that are often composed with more atomic tactics, and may provide
automation for a given kind of subgoals. This includes auto (for recursive ap-
plication of selected lemmas), tauto (for intuitionistic propositional calculus),
ring (for equalities on a declared ring or semi-ring), field (likewise, for fields),
as well as omega (for Presburger arithmetic).

3.2.4 Computing Within the Coq Proof Assistant
First of all, let us recall some preliminaries notions and notations.

Bound Variables and Free Variables. Among the variables that occur in
a given formula, some are bound to a quantifier or a similar construct (‘forall’,
‘exists’, ‘fun. . .=>. . .’, ‘let. . .in. . .’, etc.). The others are called free variables,
and we will write FV(E) to denote the set of the free variables involved in an
expression E.

alpha-conversion. As in usual mathematics, bound variables are sometimes
called “dummy” variables, since the meaning of the overall expression does not
depend on the name of these variables. Thus, “forall x : nat, x = x” and
“forall n : nat, n = n” represent the same term. The process of renaming
a bound variable is called α-conversion. It is handled transparently to the Coq
user and it may be required in some situations to avoid some clash with other
variables, like in the example described in the upcoming paragraph.

Substitution. If t is a term, the process of substituting all the occurrences of
v ∈ FV(t) by another term t′ leads to a new term that we will write “t [v := t′].”
Some α-conversion is required if some t′ contains some free variables whose
name clash with the one of a bound variable in t. For instance, if we consider
the terms t := “fun n => a * n + b” and t′ := “n + 1,” then writing the term



3.2. THE COQ PROOF ASSISTANT 51

corresponding to “t [a := t′]” needs to rename the dummy variable “n” into, say,
“x,” and we obtain the term “fun x => (n + 1) * x + b”. (Without the α-
conversion, we would have (wrongly) obtained “fun n => (n + 1) * n + b”.)

Now let us focus on the rules that govern computation in the Coq proof
assistant. Coq comes with a primitive notion of computation called conversion,
which is based on a set of elementary transformations (called reductions) on the
terms of CIC. We briefly describe below the four kinds of reductions at stake.

beta-reduction. This first kind of reduction has a central role for evaluat-
ing functions: it transforms any expression of the form “(fun x : T => s) t”
(called β-redex) into “s [x := t],” that is the term s where all occurrences of the
free variable x are replaced with t. Moreover, we usually say that “s [x := t]” is
the β-contraction of “(fun x : T => s) t” and that “(fun x : T => s) t”
is the β-expansion of “s [x := t].” More formally, we will denote this relation
between terms modulo β-reduction in the following manner:

(fun x : T => s) t �β s [x := t] .

zeta-reduction. This reduction consists of transforming terms by removing
the local definitions, namely the definitions that are expressed using the prim-
itive syntax ‘let. . . in’. Thus “let x := t in s” becomes “s [x := t],” which
we will denote in the following manner:

let x := t in s �ζ s [x := t] .

delta-reduction. Since Gallina allows one to define new constants (using the
commands Definition, Lemma, or their synonyms), a specific reduction allows
one to replace the constant with its value. This δ-reduction relies on the notion
of environment (also called global context) E and context Γ, which gather the
definitions added to the system, contrary to the ζ-reduction that only deals with
local definitions inserted in the CIC terms themselves. (The context Γ can be
understood as the set of the definitions handled by the sectioning mechanism
of Coq: we will present this mechanism in Section 3.2.5.) To sum up, if the
identifier d corresponding to a stored definition (d := t:T) ∈ E ∪ Γ occurs in
a term s, then the δ-reduction will transform s into “s [d := t],” which can be
written as follows:

E, Γ ⊢ s �δ s [d := t] if (d := t:T) ∈ E ∪ Γ.

iota-reduction (and mu-reduction [24]). In CIC, two reduction rules re-
lated to inductive types are available, both of them being called ι-reduction
in Coq’s reference manual [162, Section 8.5.1]. Without going into formal de-
tails, the first one allows one to reduce a pattern-matching expression when the
matched term begins with a constructor and the second one allows one to reduce
a recursive function when its decreasing argument is given in constructor form.
For instance, we will have:

if false then a else b �ι b

plus (S n) (S m) �ι S (plus n (S m)).



52 CHAPTER 3. INTERACTIVE THEOREM PROVING

Meta-theoretical Properties of the Conversion

The four kinds of reductions described above can be used at any position inside
a CIC term (including inside the body of a function that is partially applied),
so that they are often called strong reductions. We will write

E, Γ ⊢ t �βδζι t’

to say that t’ is obtained by one step of any of these reductions in the environ-
ment E and context Γ, and

E, Γ ⊢ t �∗
βδζι t’

to say that t can be reduced to t’ in one or more steps. Any such combination
of these four CIC reductions fulfills some key properties that are typical in the
study of rewriting systems, including:

strong normalization every sequence of reduction steps is finite, that is to
say the process of reduction on a CIC term terminates and leads to a
term that is not reducible anymore and called the normal form. This is
accomplished by the set of constraints that should be enforced for an
expression to be accepted as a valid CIC term, including the structural
decreasing condition mentioned in the previous section. To sum up, in
Coq, every computation terminates;

confluence for any terms t, u, v, if t �∗
βδζι u and t �∗

βδζι v, then there exists a
term w such that u�∗

βδζι w and v�∗
βδζι w. Generally speaking, this property

is sometimes called the Church-Rosser property, or the diamond property.
In the context of Coq, this implies the uniqueness of the normal form,
whatever is the chosen evaluation order, and justifies the availability of
the “Eval compute in . . . ” vernacular command to compute the normal
form of a term. (Note that the compute reduction tactic is equivalent to
cbv beta delta zeta iota.)

subject reduction if t �∗
βδζι t’ and t has type T, then t’ also has type T.

Definition 3.1 (Convertibility). Two terms u and v are said convertible if
they reduce to a third common term w, that is u �∗

βδζι w and v �∗
βδζι w for a

certain term w, which we will denote in the following manner:

E, Γ ⊢ u =βδζι v

Note that CIC convertibility is decidable, thanks to the properties of strong
normalization and confluence described above. Indeed, to check if two terms u
and v are convertible, it suffices to compute and compare their normal form.

A related notion is given by the convertibility rule of CIC, which asserts
that two convertible types have the same inhabitants: this typing rule relies on
the relation T 6βδζι T ′ whose definition extends the convertibility equivalence
(=βδζι) to take universes into account (e.g., we have Prop 6βδζι Set).

In order to illustrate how these meta-theoretical properties underlie the be-
havior of the system, we can consider a toy proof of the following result:

Remark 3.1 (Convertibility implies equality). Suppose x and y (having
type T and T ′, respectively) are two convertible terms in a global context E.
Then, x = y in the sense of Leibniz-equality.



3.2. THE COQ PROOF ASSISTANT 53

Proof. x and y are convertible, so by definition there exists one term u such
that x �∗

βδζι u �∗
βδζι y. By subject reduction, u and y admit the same type of x,

namely T . Consequently, the terms “G := eq T x y” and “H := eq T u u”
are well-typed. Then we notice that “h := refl_equal T u” is an inhabitant
of H. Since the Coq reductions are strong, we have G�∗

βδζι H, hence G =βδζι H,
so that by the convertibility rule, G and H have the same inhabitants, implying
that E ⊢ h : G, that is to say x = y.

Reduction tactics. We have seen in the present section that the logic of Coq
is computational: it is possible to write programs in Coq that can be directly
executed within the logic. This is why the result of a computation with a correct
algorithm can always be trusted.

Furthermore, it can be noted that three main reduction tactics are available
for computing in Coq:

• compute, the original interpreter-based implementation of strong reduc-
tion in the Coq system. It is a synonym for cbv beta delta zeta iota
(where cbv stands for “call-by-value”);

• vm_compute, an implementation of call-by-value evaluation that involves
a compilation to the byte-code of a virtual machine [67];

• native_compute, a similar reduction tactic (call-by-value evaluation strat-
egy) which relies on a compilation to OCaml native-code [15]: thanks to
this progress in the evaluation mechanism, programs in Coq can poten-
tially run as fast as an equivalent version directly written and compiled in
OCaml.

In practice, using vm_compute instead of compute for a given computation
yields a speedup of 10x to 100x, while native_compute yields a further speedup
of 2x to 5x over vm_compute. However it should be noted that doing so somewhat
increases what is called the trusted computing base (TCB). In particular, the
correctness of results that are derived using native_compute depends upon
the correctness of the entire code of the compiler. But as pointed out in [15],
“a certified compiler for the target language would certainly be of interest here
to reduce the trusted base.”

3.2.5 Some Concepts Involved in an Everyday Use of Coq
Type Inference. First of all, a convenient feature of Coq is type inference,
which is typically provided by several strongly-typed functional programming
languages such as OCaml and Haskell. It allows the user to omit, if pos-
sible, some explicit type annotations, without preventing type checking. For
instance, to show that this feature does not contradict what we said in the
first paragraph of Section 3.2.2, we can consider the following example: a uni-
versal quantification such as “forall m n, plus m n = plus n m” will be au-
tomatically recognized as “forall m n : nat, plus m n = plus n m”, since
the quantified term involves the function “plus : nat -> nat -> nat” whose
both arguments should be (Peano) natural integers. However, the expression
“forall x, x = x” will raise “Error: Cannot infer the type of x”.



54 CHAPTER 3. INTERACTIVE THEOREM PROVING

For the purpose of type inference, a special syntax ‘_’ is available in Coq:
this “inference wildcard” can be used everywhere a type (or even a term) is
expected, provided it can be inferred from the context. Note that this un-
derscore symbol ‘_’ has another meaning in the place of a bound variable,
namely in such a case, it is a “non-dependent wildcard” that stands for any
dummy variable name that will not be used elsewhere: for example no in-
ference occurs in “fun _ : nat => 5” (a constant function), as well as in
“forall _ : bool, Prop”, which is just another syntax for the non-dependent
product “bool -> Prop”.

Implicit Arguments. Furthermore, Coq provides a powerful mechanism re-
lying on so-called implicit arguments, which can be viewed as a way to shorten
the terms designation by omitting the inference wildcards themselves. For in-
stance, if a given theory begins with the Set Implicit Arguments invocation
and defines a polymorphic function such as

Definition identity (A : Type) (x : A) := x.

then the first argument (A : Type) will be declared as implicit, that is to say
we can specify the argument x just after the function name:

Eval compute in (identity 5)
; = 5
; : nat

But if ever we wanted to locally disable the implicit arguments feature, we could
use the ‘@’ prefix at any time, in the following way:

Eval compute in (@identity nat 5).
; = 5
; : nat

Moreover, we can disable the hiding of implicit arguments in the pretty-printer
output be setting the flag Set Printing Implicit:

Check (identity 5).
; identity 5 : nat

Set Printing Implicit.
Check (identity 5).

; @identity nat 5 : nat
Unset Printing Implicit. (* Back to default setting *)

The Coq mechanism of implicit arguments actually consider several kinds
of implicit arguments, with appropriate vernacular commands that are fully
described in [162].

Coq Sections. The Coq mechanism of sections allows the user to organize his
formalization in a somewhat declarative way, by enumerating the variables and
constants that will then be locally available in the ambient section. Basically, one
can start a section with “Section Foo” and enumerate the various hypothesis
that are required for a given theorem, then state itself in one line only. Then,
when closing the section with “End Foo,” each variable or local definition is
“discharged”: their identifier is removed from the context while the theorem is
universally generalized with respect these local declarations.



3.2. THE COQ PROOF ASSISTANT 55

Section Foo. (* Let’s start a new section *)
Variables a b c : nat.
Let b2 := b * b.
Definition D := b2 - 4 * a * c.
Print D.

; D = b2 - 4 * a * c : nat
End Foo. (* Discharging at end of section *)
Print D.

; D = fun a b c : nat => let b2 := b * b in b2 - 4 * a * c
; : nat -> nat -> nat -> nat

Table 3.1 gives a brief summary of the declaration commands that can be
used inside a Section.

Kind of action Command with a local effect Equivalent global command
Declaring variables Variable/Variables Parameter/Parameters
Assuming hypotheses Hypothesis/Hypotheses Axiom/Axioms
Defining terms Let Definition/Lemma/Theorem

Table 3.1 – Vernacular commands inside a section

Modules and Functors

Inspired by the module system of OCaml, Coq provides a native mechanism of
modules that allows one to group related Coq objects together [35, 34].

A first implicit use of modules is linked to the organization of a Coq develop-
ment in several files. One such splitting leads to the creation of one module per
file, called library file. As these files can possibly be organized in sub-directories,
Coq recursively translates this organization in a dots-separated path, under a so-
called library root. For instance, the main library on polymorphic lists from the
Coq standard library has physical name .../theories/Lists/List.v, thereby
its logical name will be Coq.Lists.List:

Locate Library List.
; Coq.Lists.List is bound to

file /usr/lib/coq/theories/Lists/List.vo

Each library file can contain some (sub)modules, possibly nested. Further-
more, a key feature of the module system relies on the concept of functor: beyond
the “modularization” allowed by bare modules, the concept of functor allows one
to define “parametrized modules”, where the “shape” of the parameters is spec-
ified using modules types, also known as signatures.

Consequently, the Coq modules allow one to perform a kind of separated
compilation, where the implementation at a given level just relies on the interface
(i.e., the types of the objects considered) for lower levels, the implementation of
these interfaces being stored apart. Moreover, one can just as well define different
low-level implementations corresponding to the same module type, and switch
between them.

To illustrate how the module system works in practice, here is a simple but
complete example using the main vernacular commands related to modules:



56 CHAPTER 3. INTERACTIVE THEOREM PROVING

Module Type MT.
Parameter T : Type.
Parameter Inline U : Type.
End MT.

Module F (A : MT). (* Functor *)
Import A.
Definition Rel := T -> U -> Prop.
End F.

Module M <: MT. (* Implementation *)
Definition T := nat.
Definition U := nat.
End M.

Module FM := F M. (* Instantiation *)
Print FM.Rel.

; FM.Rel = M.T -> nat -> Prop
; : Type

In this example, F is a functor taking a module A of signature MT, which
is immediately imported, that is, all the members of A are accessible in the
body of F using short names T and U (instead of A.T and A.U). Then, M is an
implementation of the module type MT. Thus, thanks to the clause “<: MT”, Coq
verifies at the moment of “End M” that all needed members have been defined
(and that they have a correct type). E.g., without the line defining T, Coq would
raise the “Error: The field T is missing in Top.M.” Then, we can instantiate the
functor F with module M (and also notice the effect of the Inline invocation
involved in MT on the definition of FM.Rel, viz., M.U has been automatically
expanded to nat at functor application).

Qualified Identifiers. If all the constants (axioms, definitions, lemmas) de-
fined in a Coq development are given an identifier when they are defined,
they have also a more precise identifier, called qualified identifier (qualid),
which consists of the logical path of its parent module, concatenated with
its short identifier (with a dot). For instance, the constant nat has qualid
Coq.Init.Datatypes.nat:

Locate nat.
; Inductive Coq.Init.Datatypes.nat

Consequently, if ever one defined another object called nat in another module,
both “nat” could be distinguished using their qualid. (But obviously we could
not define two different objects with the same identifier in the same module.)

Modules w.r.t. Sections. Note that a Coq Section can be opened inside a
module, but no Module invocation is allowed inside a Section.

Limitations of Modules. First of all, when applying a functor, all its ar-
guments have to be (module) identifiers. Consequently, we cannot perform sev-
eral functor applications at once. Nevertheless, a general workaround consists of



3.2. THE COQ PROOF ASSISTANT 57

defining intermediate modules to perform the desired instantiation. For instance,
instead of writing “Module M2 := F2 (F1 M),” one can just write:

Module M1 := F1 M.
Module M2 := F2 M1.

Finally, the main limitation of modules is that they are not first-class citizens.
In particular, we cannot “quantify over a module type” in a Gallina term, and
conversely it is not possible to have a Gallina type as a module parameter.
Nevertheless, it is always possible to encapsulate such a Gallina parameter inside
a module type to do the job.

Alternatives to Modules. In the current Coq system, there exists two other
mechanisms of abstraction that are similar to modules, namely canonical struc-
tures [150] and type classes [155]. Both are first-class citizens: they rely on the
concept of Record and makes heavy use of implicit arguments, in addition to
the high-level routines that are specific to each of them (e.g., Canonical for the
former, and Class, Instance, Context for the latter).

Syntax Customization

Defining Notations. In order to increase the readability and conciseness
of the Gallina expressions involved in a Coq library, one can define some user-
friendly notations that acts on both Coq’s parser and pretty-printer. We can thus
customize their syntax through some vernacular commands such as Notation.
Here is a typical invocation of this command:

Notation "x * y" := (prod x y) : type_scope.

This makes the ‘*’ sign be parsed and pretty-printed as an infix symbol for the
prod function applied to two given terms (written x and y in the string). As
regards type_scope, we will elaborate on this concept of scopes later on in this
section. Note that we can disable pretty-printing of notations at any moment
using the Unset Printing Notations command. We can also disable pretty-
printing of a notation once and for all, using the “only parsing” modifier at
definition time. For example, we could write:

Notation "x * y" := (prod x y) (only parsing) : type_scope.

Syntactic Equality. The status of Coq notations satisfies the following prop-
erties:

• The “body” of each notation is untyped at definition time; it will actually
be type-checked at the time we use the notation. We sometimes says that
the body of such a notation is syntactically equal to its short form.

• Two variants of the same Gallina expression written with or without using
some notations are indiscernible and lead to the same CIC term. Conse-
quently this syntactic equality is “stronger” than the usual equality, or
even than convertibility.



58 CHAPTER 3. INTERACTIVE THEOREM PROVING

Possible Robustness Issues. Since the identifiers chosen in a given library
are more likely to change than the notations themselves, relying on notations
rather than on identifiers may improve the robustness of the Coq scripts that
use this library. Note that when defining a notation it might be necessary to
use the ‘@’ symbol and/or inference wildcards to cope with implicit arguments.
On the other hand, when using existing notations whose body contains such
inference wildcards that cannot be filled at type-checking time, it may be better
just to add a type-cast colon after the considered notation, rather than using an
explicit term without notation. For example, writing “[::] : _ nat” instead
of “@nil nat”.

Parenthesizing Issues. Combining several infix notations in a given Gallina
expression often leads to ambiguities. They can be avoided using explicit paren-
theses, or relying on Coq implicit rules for grouping sub-expressions. There
exist two kinds of such rules, namely the operator precedence that is taken
into account to decide the relative “priority” of two different operators, and
the associativity that specifies the way two or more occurrences of the same
operator are understood. Each new notation should be assigned a precedence
level (between 0 and 100) and a kind of associativity, either at definition time,
using the “at level . . .” and “. . . associativity” modifiers, or using the
Reserved Notation command, before the Notation command itself. Let us il-
lustrate these concepts with the addition and multiplication of (Peano) natural
integers. The vernacular invocations

Notation "n + m" :=
(plus n m) (at level 50, left associativity) : nat_scope.

Notation "n * m" :=
(mult n m) (at level 40, left associativity) : nat_scope.

are equivalent to

Reserved Notation "n + m" (at level 50, left associativity).
Reserved Notation "n * m" (at level 40, left associativity).
(* and later on : *)
Notation "n + m" := (plus n m) : nat_scope.
Notation "n * m" := (mult n m) : nat_scope.

Since the precedence level for multiplication is lower than the one for addi-
tion, it will have priority in an expression such as 1 + 2 * 3, equivalent to
1 + (2 * 3). We can actually notice it by examining the output of a Check
command such as the following:

Check 1 + (2 * 3).
; 1 + 2 * 3
; : nat

while the parentheses are obviously mandatory in an expression such as

Check (4 + 5) * 6.
; (4 + 5) * 6
; : nat

and the pretty-printer displays the term accordingly. As regards the associa-
tivity rule, the term 2 * 3 * 4 will be parsed as (2 * 3) * 4 given that ‘*’



3.2. THE COQ PROOF ASSISTANT 59

is left-associative. Thus if we parse and display at once the pair of the similar
expressions 2 * (3 * 4) and (2 * 3) * 4, we will obtain:

Check (2 * (3 * 4), (2 * 3) * 4).
; (2 * (3 * 4), 2 * 3 * 4)
; : nat * nat

Overloading Notations. In a formal specification as in mathematics, we
would often want to reuse the same symbol for similar operations, even if they
“do not live in the sames types”. Thus an implementation of some overloading
“à la C++” is welcome, but it should at the same time be flexible enough and
prevent any ambiguity. In Coq, one such overloading is accomplished through
the mechanism of scopes. At definition time, each notation is assigned a scope
identifier, such as nat_scope, Z_scope, etc. Each scope gathers several notations
(which must be pairwise different), and we can overload any notation in a given
scope by the same notation in another scope. For instance, Table 3.2 gives the
most usual interpretations of the symbol ‘*’.

Library required Constant Type of the constant Scope name
(Init) prod Type -> Type -> Type type_scope
(Init) mult nat -> nat -> nat nat_scope
NArith Nmult N -> N -> N N_scope
ZArith Zmult Z -> Z -> Z Z_scope
QArith Qmult Q -> Q -> Q Q_scope
Reals Rmult R -> R -> R R_scope

Table 3.2 – Some interpretations of the product symbol "*"

The Locate vernacular allows one to display the body and the scope of
notations matching a given string among the loaded libraries, for example:

Locate "*".
; "x * y" := prod x y : type_scope
; "n * m" := mult n m : nat_scope
; (default interpretation)

Require Import ZArith.
Locate "*".

; "x * y" := prod x y : type_scope
; "x * y" := Pmult x y : positive_scope
; "n * m" := mult n m : nat_scope
; (default interpretation)
; "x * y" := Zmult x y : Z_scope
; "x * y" := Nmult x y : N_scope

Then, the “Open Scope . . .” vernacular allows one to choose the ambient default
scope, while a general syntax (term)%key is provided to locally change the de-
fault scope, where key stands for the delimiting key bound to the desired scope.
For instance, thanks to the command “Delimit Scope Z_scope with Z,” the
command “Check (1 + 2 * 3)%Z” is roughly equivalent to processing the fol-
lowing two commands:



60 CHAPTER 3. INTERACTIVE THEOREM PROVING

Open Scope Z_scope.
Check 1 + 2 * 3.

; 1 + 2 * 3
; : Z

Another useful command is available to automatically interpret functions ar-
guments of a given type with the relevant scope, in order to omit superfluous
groupings (term)%key, for instance the “Bind Scope Z_scope with Z” invo-
cation contained in the ZArith library implies that in any function, arguments
of type Z will be interpreted in Z_scope by default.

Finally, note that a handy vernacular command About is available to sum-
marize the “status” of most of the concepts mentioned so far, namely the type
(like with Check), the implicit arguments (like with Print Implicit), the ar-
guments scope, and the qualified-identifier (like with Locate):

About cons.
; cons : forall A : Type, A -> list A -> list A
; Argument A is implicit
; Argument scopes are [type_scope _ _]
; Expands to: Constructor Coq.Init.Datatypes.cons

Coercions. While the logic of Coq does not provide subtyping in itself, the
Coq system implements the concept of Coercion. Intuitively, it can be very con-
venient when we have a function “i : T -> U” and we want to “identify” the
elements of T with their image by i. This is useful in situations when an object of
type U is expected while an argument x of type T is provided. In this case, declar-
ing i as a coercion will automatically consider (i x) instead of x and the overall
term will be well-typed. As regards syntax, declaring the usual injection from
nat to Z as a coercion can be written “Coercion Z_of_nat : nat >-> Z.”

Extraction

We recall a characteristic of the underlying logic of Coq, related to the Curry-
Howard correspondence: a proof is a program. In other words, every proof is
a CIC term, which justifies the concept of extraction [107]. This mechanism
allows one to build programs in ML6 by extracting them from any Coq function
or axiom-free proof that is in the sort Type or Set. One can extract, for instance,
a proof whose conclusion is a sumbool, which will lead to a certified decision
procedure written in ML.

Definition by Tactics and Opacity

Since there is no visible difference between a Coq proof carried out with tactics
and a bare definition of the same term written in Gallina syntax, it is sometimes
useful to define a complex function (using dependent types or so) with the help
of tactics, such as refine. In this case, the very last vernacular used to save
the proof plays an important role: if this is Qed, the proof is made opaque, i.e.,
the system will prevent the user from unfolding the proof term, while Defined
declare the proof as being transparent, just like any Gallina definition.

6actually in OCaml, Haskell or Scheme



3.2. THE COQ PROOF ASSISTANT 61

This concept of opacity has to do with the Coq reduction mechanism, since
“unfolding” corresponds to δ-reduction. Intuitively, it makes sense for any “the-
orem proof”, since we can consider the chosen proof path for a theorem (stored
in its proof term) is not that important, apart from its existence. This idea cor-
responds to the so-called proof-irrelevance axiom, which is sometimes assumed
for sort Prop.

Partial Functions

We recall that for ensuring the logical consistency of the system, all functions
defined in Coq have to terminate. Likewise, all functions defined in Coq are
total. Yet thanks to the availability of dependent types, it is possible to define
partial functions using different strategies.

1. A first kind of partial functions have a type of the form:

f : forall x : D, P x -> E

where the predicate “P : D -> Prop” plays the role of pre-condition. If
this is probably the most natural way of writing a partial function, in
practice it may be tricky to define and use such functions in a given
development. This is mainly due to the presence of the proof of “P x,”
which has to be provided for any call of the function f. We can de-
fine such a function either using dependent pattern-matching (i.e., with
a “match. . . as. . . in. . . return. . . with. . . ” Gallina invocation) or with the
help of tactics. In the latter case, note that a use of automation tactics
such as auto or omega without caution might lead to a function that is
different to the one we would expect. Anyway, the tactic refine can take
advantage of this situation, by specifying the “skeleton” of the pattern-
matching, along with holes for the logical parts of the term, which can be
innocuously filled using auto, omega, and so on.

2. A second strategy consists of defining all the same a total function, by
choosing a default value “e0 : E” when the pre-condition is not verified.
This would lead to a function of type

f : D -> E

while the pre-condition would be kept in the correctness lemmas, like

thm : forall x : D, P x -> Q x (f x)

denoting by “Q : D -> E -> Prop” a given post-condition. This approach
could seem less natural, yet it turns out to be quite convenient in many
situations, and we will often use it in our formal developments.

3. Another strategy consists of defining a total function with an option-type
as a codomain, namely :

f : D -> option E

where the polymorphic inductive option is defined by:



62 CHAPTER 3. INTERACTIVE THEOREM PROVING

Inductive option (E : Type) : Type :=
| Some : E -> option E
| None : option E.

Here, the None constructor can be seen in some sense as a default value,
taken outside E.

4. A variant of this strategy consists of using a “hybrid disjoint sum” as a
codomain, which is very similar to an option-type, but gathers a proof for
the “singular” case:

f : forall x : D, E + {F x}

Intuitively, the “F x” may be any helpful proposition corresponding to
the case when “P x” (the pre-condition of f) does not hold. This uses the
following definition of sumor:

Inductive sumor (A : Type) (B : Prop) : Type :=
| inleft : A -> A + {B}
| inright : B -> A + {B}

where "A + { B }" := (sumor A B) : type_scope.

Note that the 4th strategy is in some sense, stronger than the 3rd one, and
so on. Indeed, it is always possible to consider the “projection” of the function
defined in a “strong way.” For the sake of completeness, we can mention some
other inductives that are usually involved in such “strong specifications”:

Inductive sig (A : Type) (P : A -> Prop) : Type :=
| exist : forall x : A, P x -> sig P.

Notation "{ x : A | p }" := (sig (fun x : A => p)) : type_scope.

Inductive sigT (A : Type) (P : A -> Type) : Type :=
| existT : forall x : A, P x -> sigT P.

Notation "{ x : A & p }" := (sigT (fun x : A => p)) : type_scope.

Inductive sum (A B : Type) : Type :=
| inl : A -> A + B
| inr : B -> A + B

where "A + B" := (sum A B) : type_scope.

The first one, sig, is very similar to the inductive ex defining to the existence
predicate, but contrary to ex, sig is in sort Type. Consequently, as regards
extraction, a term of type “sig E Q” will successfully be extracted and produce
an element of type E.

The second one, sigT, is a Sigma-type (also written Σ-type); it can be useful
when considering a nested specification such as, for example:

g : forall x : D, {y : E & {z : F | Q x y z}}

in order to take into account the specification of a function g that would output
two values “y” and “z” for any value x in domain D, satisfying a given post-
condition “Q : D -> E -> F -> Prop.”

Finally, the last one is the disjoint sum, which has to be compared with
sumor and sumbool with respect to the sort of the arguments.



3.2. THE COQ PROOF ASSISTANT 63

Well-Founded Recursion

As regards the definition of recursive functions and compared to ML languages,
Coq enforces their termination through the structural decreasing condition. Yet
in some developments, we might need to define functions that do not easily
fit this requirement. Nevertheless, Coq allows one to overcome this limitation
with the help of so-called well-founded recursions. The idea is to introduce a
well-founded relation, with respect to whom the argument of the function to
be defined decrease at each recursive call. Then, by definition of a well-founded
relation, this process terminates.

In general, this approach relies on the following principle:

well_founded_induction_type :
forall (A : Type) (R : A -> A -> Prop),
well_founded R ->
forall P : A -> Type,
(forall x : A, (forall y : A, R y x -> P y) -> P x) ->
forall a : A, P a.

where A is the domain of the function to be defined and “R : A -> A -> Prop”
is a well-founded relation (e.g., < : N −→ N). This leads to a function of type
“forall a : A, P a,” but in practice it may be difficult to reason on the func-
tion so-obtained. Nevertheless, it often suffices to consider a strong specification
for the function to be defined, and choose the function “P : A -> Type” ac-
cordingly. Moreover, the term of type

forall x : A, (forall y : A, R y x -> P y) -> P x

above is the key part of the definition concerning the computation itself, and
we can see from this type that a proof of “R y x” have to be provided at each
recursive call, which may be cumbersome. As a matter of fact, we can here rely
on a definition-by-Ltac involving the refine tactic, as mentioned supra in the
present section.

Quotient of an Equivalence Relation

Another subtlety involved in type theory is the treatment of equivalence rela-
tions. Usual mathematical reasoning often uses the notion of quotient set to
define various objects in abstract algebra, including the construction of the field
of reals. Yet this notion of quotient does not fit easily into type theory. Instead,
we often consider a pair (T, eq) composed with a type T and an equivalence
relation on T , the whole being called a setoid. (Likewise, the constructive ax-
iomatization of the reals performed in C-CoRN relies on constructive setoids.)
One such formalism thus requires to explicitly deal with equivalence relations,
and functions defined on setoids have to be shown compatible with respect to
the corresponding equivalence relation.

In the Coq system, a systematic machinery has been developed to handle
these notions, especially the Setoid-rewriting-tactic. For instance, the proposi-
tional equivalence iff (denoted by ‘<->’) can obviously be viewed as an equiva-
lence relation, and in recent versions of Coq it is possible to rewrite propositions
with lemmas using this connector with the help of the rewrite tactic, just as
well we can rewrite Boolean propositions with lemmas using the bare Leibniz
equality.



64 CHAPTER 3. INTERACTIVE THEOREM PROVING

Last but not least, we can mention the “Quotient Interface” developed in [36]
that makes it possible to obtain high-level interfaces for constructive quotients on
types with decidable equality, which falls in very well with the kind of structures
provided by the SSReflect libraries.

3.2.6 Around the Certificate-Based Approach

In this section we will summarize the different approaches that are possible
when working on the formal verification of algorithms. We will especially focus
on the notion of “certificate”.

The Certificate-Based Approach. First, to undertake the verification of
costly algorithms, a natural approach relies on the concept of certificates (also
known as witnesses). They are typically useful when it is more suitable to check
the outputs produced by a given algorithm, than to formally prove the algorithm
itself. This may be the case when the considered algorithm relies on a large
amount of computation, possibly with backtracking, heuristic strategies and
approximations.

With this approach, we notably need to design a specific type of certificate,
along with a certificates checker, which is typically a computable Boolean func-
tion defined within a Proof Assistant (PA). This requires the availability of a
“certifying property” that characterizes the validity of the algorithm, e.g., in the
case of the factorization of a big integer n into factors a and b, it will be sufficient
to verify that the equality n = a× b holds inside the PA. Yet the main part of
the computations corresponding to the algorithm at stake (here, factorization)
will often be processed outside the PA, in a Computer Algebra System (CAS)
or so.

Certifying Algorithms and Skeptical Approach. Depending on whether
one takes the point of view of CAS or PA, this certificate-based approach coin-
cides with the concept of certifying algorithm [116], or with the so-called skepti-
cal approach (as opposed to the believing and autarkic approaches, these three
terms having been coined in [7] and further developed in [6, 5]).

This skeptical methodology has been widely used in the past twenty years,
involving the HOL Light proof assistant [76, 75, 74], as well as the Coq proof
assistant: linking Coq and Maple [49, 51], developing primality certificates [68,
69, 163], as well as verifying SAT/SMT-based certificates [2].

The main advantage of the skeptical approach is that the highly compu-
tational part of the certifying algorithm can be executed on a highly efficient
computation platform, with as many error-prone optimizations as desired.

Still, this approach has to be validated: we need to design “good” certifi-
cates that are of reasonable size and can be easily checked with the formalized
checker. Then this checker should have been formally proved, using an appro-
priate “certifying property” that characterizes the problem at stake. Note finally
that the bottleneck of this approach is that its correctness relies on the individ-
ual verification of the output for all considered instances of the overall problem,
whose number will have to be estimated.



3.2. THE COQ PROOF ASSISTANT 65

Autarkic Approach. Contrastingly, another methodology called autarkic ap-
proach relies on a formalization where all computations are carried out in the
formal proof assistant (PA) itself. This approach is clearly more computationally
expensive than the skeptical approach, so it may be more suitable when focus-
ing on algorithms that do not involve much backtracking and can be efficiently
implemented in the PA.

Extraction. Furthermore, when a given algorithm has been implemented in a
PA such as Coq, the availability of an extraction mechanism can be used to get
a compilable program source from the formalized algorithm, which is correct
by construction. This is for example the approach followed in the design on
the CompCert C verified compiler [14, 106, 105]. Actually, such a mechanism of
extraction can be used when relying on the autarkic approach as well as on the
skeptical one, where the extracted program would just be a certificate checker.

Proof of Programs. Finally, another usual approach when dealing with the
formal verification of an algorithm consists of formally proving that a given
implementation of the algorithm does not raise any execution error and meets
its specification, typically expressed in a specific language of annotations, based
on Hoare logic [80]. In particular, there exist some state-of-the-art tools such
as the platform Frama-C/Jessie/Why [56, 43] that allows one to formally verify
C programs, by generating proof obligations that can be discharged by SMT
tools and/or proof assistants.

While we will mostly focus on formally verifying the SLZ algorithm in this
thesis (cf. Section 2.5), especially relying on the skeptical approach, the proof-of-
programs approach might be more suitable for verifying the Lefèvre algorithm,
given the huge number of degree-1 polynomial approximations that would be
involved in the corresponding certificates.

3.2.7 Description of the Coq Libraries at Stake
The Coq Standard Library. Coq comes with a comprehensive set of libraries
for Booleans, integers, rationals, real numbers, lists, etc. An online documen-
tation is available at http://coq.inria.fr/stdlib/. In this section, we will
mainly focus on some characteristics related to the library on real numbers:

The Reals Library. The design of the Reals library relies on the axiomati-
zation of the properties of R as a complete Archimedean ordered field [115].
Moreover, it is a classical axiomatization, due to the presence of the axiom of
total order (also known as trichotomy):

Axiom total_order_T :
forall r1 r2 : R, {r1 < r2} + {r1 = r2} + {r1 > r2}.

This axiom, which can be seen as an instance of excluded middle in Type,
can be used for instance to derive7 the “decidability of arithmetical statements”
{forall n, P n} + {~forall n, P n}, for any predicate “P : nat -> Prop”
that is decidable (i.e., such that “forall n, {P n} + {~P n}” holds).

7See for example http://coq.inria.fr/stdlib/Coq.Reals.Rlogic.html

http://coq.inria.fr/stdlib/
http://coq.inria.fr/stdlib/Coq.Reals.Rlogic.html


66 CHAPTER 3. INTERACTIVE THEOREM PROVING

At first, the logic of Coq had sort Set impredicative (i.e., a term such as
“t : forall A : Set, A -> A” still had type Set, allowing one to replace A
with t itself, etc.), so that it was quite dangerous to deal with classical logic
within Coq. Indeed, it was shown inconsistent to assume the excluded middle
in Set (e.g., at the time sumbool was in Set) with Set impredicative [61]. And
yet having a strong version of excluded middle in Set or Type, or at least the
trichotomy axiom, can be really useful. For instance one can use this axiom,
along with strong elimination in Type, to define some non-continuous functions
from R to R, which are typical in numerical analysis [115].

As a matter of fact, the sort Set is now predicative since Coq-v8, given that
its underlying logic (often called pCIC for predicative Calculus of Inductive
Constructions) does not have the typing rule for Set impredicative any more.
In some sense, the CIC has been weakened in such a way that it allows one to
safely cope with classical logic and any other similar axiomatics.

C-CoRN. Another kind of formalization of real numbers is provided in the
Constructive Coq Repository at Nijmegen (C-CoRN), which is a library of con-
structive mathematics that originated in the FTA project for formalizing the
Fundamental Theorem of Algebra. We recall that this theorem says that any
non-constant polynomial on the field of complex numbers has at least one root.
The C-CoRN library gathers an axiomatic algebraic hierarchy (including real
and complex numbers) that is intuitionistic, and for which Milad Niqui con-
structed a concrete model to demonstrate the soundness of all axioms involved
in C-CoRN’s real number structure [135].

Note that in an intuitionistic setting, equality on real numbers is semi-
decidable: for any particular pair of constructive real numbers (x, y), it is always
possible to prove that x ̸= y if it is the case, while in general we cannot decide
that x = y in finite time. Intuitively, if we consider the reals x and y as in-
finite Cauchy sequences of rationals (xn), (yn), we should prove that we have
limn→+∞(xn − yn) = 0, or equivalently that for any n ∈ N∗, there exists a
threshold Nn ∈ N such that for all k > Nn, we have |xk − yk| < 1/n, which
cannot be decided within a finite amount of computation.

In particular, C-CoRN’s formalism deals with constructive setoids (A, #,≡)
where ≡ is an equivalence relation and # is a relation called apartness. Clas-
sically speaking, apartness coincides with the negation of equality, but in an
intuitionistic point of view, it is a more primitive concept, as suggested by the
remark above on Cauchy sequences, and equality is defined as the negation of
apartness.

Furthermore, O’Connor [137] developed some computable exact reals in Coq
on top of the C-CoRN library, called fastreal. Then Krebbers [98] developed a
new library of computable exact reals in Coq using machine integers to increase
the efficiency of computations.

The SSReflect Extension. The SSReflect extension of Coq refers to a for-
mal proof methodology called small scale reflection, which is fully described in
[65]. We can relate this methodology to the concept of reflection, which con-
sists of reducing a whole logical proof to a single proof step composed with a
computation on a symbolic representation of the problem and the invocation
of a correctness lemma, along with the required transformations between the



3.2. THE COQ PROOF ASSISTANT 67

logical and symbolic representations. This concept is implemented, for example,
in the field tactic for solving equations over a given field structure [50], and in
romega, the reflexive variant of the omega tactic for Presburger arithmetic. In
SSReflect we actually encounter this approach everywhere, especially in the low-
level contents of the formalized theories. For example, every decidable predicate
is directly formalized using a Boolean function “p : T -> bool,” rather than
using a logical predicate “p’ : T -> Prop” along with a decidability lemma
“p’_dec : forall x : T, {p’ x} + {~ p’ x}.” Here, the symbolic represen-
tation is just based on the inductive type

Inductive bool : Set :=
| true : bool
| false : bool.

while in practice one can consider more sophisticated inductive types.
Moreover, SSReflect provides a small set of quite powerful tactics (move,

case, elim, apply, rewrite, etc.) which are highly customizable with the help
of tacticals (including ‘:’, ‘=>’, ‘/=’, ‘//’, ‘//=’). This often leads to more “com-
pact” proof lines that tend to shorten the proof scripts, and also to make
the structure of proofs more visible. For example, the SSReflect proof sentence
“elim: s=> [//|x s’ IH] /=” could roughly be written in plain Coq this way:
“elim s; clear s; [trivial|intros x s’ IH]; simpl”.

SSReflect also provides a full support for forward chaining thanks to the
tactics have, suff, and wlog.

While SSReflect originated in the formalization of the Four-Colour Theorem
carried out by G. Gonthier and B. Werner [63], this extension is maintained
by the project-team Math-Components at the Microsoft Research–INRIA Joint
Centre8 and it comes with a set of Coq libraries developed upon the SSReflect
extension, focusing on various aspects of abstract algebra such as polynomials,
matrices and finite groups.

The SSReflect libraries make heavy use of canonical structures [150] as well as
implicit arguments. Thus a SSReflect library typically begins by the invocation

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

and these libraries follow systematic naming conventions as well as the SSReflect
proving guidelines (including the use of bullets and terminators), as described
in [64].

Coq Libraries on Floating-Point Arithmetic. The publication of the
IEEE-754 standard for floating-point (FP) arithmetic provided a precise de-
scription of the FP formats and operations, which paved the way for a pre-
dictable, fully-specified, FP arithmetic, and is amenable to formal methods. In
the sequel, we will focus on the formalizations of FP arithmetic that have been
developed within the Coq proof assistant. The formalization [109] focused on a
formal description of the standard following a low-level approach, which made
it possible to formally verify a FP adder. Then, some high-level formalizations

8http://www.msr-inria.inria.fr/Projects/math-components/

http://www.msr-inria.inria.fr/Projects/math-components/


68 CHAPTER 3. INTERACTIVE THEOREM PROVING

of FP arithmetic have been designed in Coq, namely the Float library [45], the
Pff library [21, 20, 19], and the Flocq library [22].

Pff (in French, “Preuves Formelles sur les Flottants”) was built upon the
Float library, and a significant number of theorems have been added subse-
quently. The formalism of Pff relies on FP formats with gradual underflow. To
be more precise, a FP number (m, e) ∈ Z × Z (representing the value m · βe)
is said to belong to the FP format parameterized by (βp, E) ∈ N∗ × N if the
following condition holds:

|m| < βp ∧ e > −E.

Flocq (floats for Coq) provides a library for multi-radix, multiple-precision
FP arithmetic in Coq. It provides generic definition of valid formats and round-
ings modes, as well as specialized definitions for the usual ones. It includes the
fixed-point (FIX), floating-point with unbounded exponents (FLX), floating-
point with gradual underflow (FLT), and floating-point with flush-to-zero (FTZ)
formats. Note that the FLT format is equivalent to the only kind of format avail-
able in Pff, so that Flocq encompasses the formalism of Pff. Moreover, Flocq
provides not only axiomatic definitions of rounding that are suitable for proving
high-level properties, but also a computable version of the common roundings
modes (DN, UP, NE, and so on). Based on this machinery, Flocq offers effec-
tive arithmetic operators for addition, multiplication, division and square root.
Some of these features of Flocq were directly inspired by the CoqInterval library
for interval arithmetic, whose core is now based on Flocq.

The CoqInterval library is designed in a modular way; it defines intervals with
floating-point bounds in an abstract way and provides a concrete implementa-
tion for some elementary functions such as exp and arctan, based on Taylor
series, interval arithmetic, and if desired, machine integers. This allows one to
quickly compute an interval enclosure “f(I)” for these functions.

Likewise, the libraries [137] and [98] provide a multiple-precision real arith-
metic but the main difference between them and CoqInterval/Flocq is that in the
latter libraries, the precision is handled explicitly in all FP routines, while in the
former libraries, the user just specifies the desired output precision for the final
result and the exact reals involved in intermediate calculations are internally
approximated with a sufficient precision.

Finally, the formal certification method chosen in all the above libraries
consists of linking the “computable reals” to an axiomatic formalization of real
numbers (either Reals for the Float, Pff, Flocq and CoqInterval libraries, or C-
CoRN). Thus doing a formal proof of correctness will amount to saying the
implementation is correct with respect to a given abstract, mathematical object
defined in the system.



Part II

Contributions

69





Chapter 4

Rigorous Polynomial
Approximation in the
Coq Formal Proof Assistant

The work presented in this chapter, whose first results were published in the
proceedings of the NASA Formal Methods 2012 conference [28], is the fruit of a
collaboration between members of the TaMaDi project. The formal developments
presented here were carried out mainly by Ioana Paşca, Micaela Mayero and
myself, with remarks and suggestions by Laurent Théry and Laurence Rideau.

4.1 Rigorous Approximation of Functions
by Polynomials

It is frequently useful to be able to replace a given function of a real variable
by a simpler function, such as a polynomial, chosen to have values very close
to those of the given function, since such an approximation may be more com-
pact to represent and store but also more efficient to evaluate and manipulate.
As long as evaluation is concerned, polynomial approximations are especially
important. In general the basic functions that are implemented in hardware on
a processor are limited to addition, subtraction, multiplication, and sometimes
division. Moreover, division is significantly slower than multiplication. The only
functions of one variable that one may evaluate using a bounded number of addi-
tions/subtractions, multiplications and comparisons are piecewise polynomials:
hence, on such systems, polynomial approximations are not only a good choice
for implementing more complex mathematical functions, they are frequently the
only one that makes sense.

Polynomial approximations for widely used functions used to be tabulated
in handbooks [1]. Nowadays, most computer algebra systems provide routines
for obtaining polynomial approximations of commonly used functions. However,
when bounds for the approximation errors are available, they are not guaranteed
to be accurate and are sometimes unreliable.

Our goal is to offer formally verified error bounds for such polynomial approx-
imations. To this end, we formalize in Coq some symbolic-numeric techniques

71



72 CHAPTER 4. RIGOROUS POLYNOMIAL APPROXIMATION IN COQ

related to the concept of rigorous polynomial approximations [88], that is, poly-
nomial approximations for which (i) a provably-not-underestimated error bound
is provided, (ii) the framework is suitable for formal proof. We especially focus
on genericity (for our formalization to be applicable to a large class of problems)
and we follow the autarkic approach: all the computations are performed in the
formal proof assistant. We will thus devote a particular care to the efficiency of
computations.

4.1.1 Motivations
Most numerical systems depend on standard functions like exp, sin, etc., which
are implemented in libraries called libms, e.g.: CRlibm, glibc, Sun libmcr or In-
tel’s libm. These libms must offer guarantees regarding the provided accuracy:
they are of course heavily tested before being published, but for precisions higher
that single precision, an exhaustive test is impossible [52]. Hence a proof of the
behavior of the program that implements a standard function should come with
it, whenever possible. One of the key elements of such a proof would be the guar-
antee that the used polynomial approximation is within some threshold from
the function. This requirement is even more important when correct rounding is
at stake. Most libms do not provide correctly-rounded functions, although the
IEEE 754-2008 Standard for Floating-Point (FP) Arithmetic [85] recommends it
for a set of basic functions. Implementing a correctly-rounded function requires
rigorous polynomial approximations at two important steps: when actually im-
plementing the function in a given precision, and—before that—when trying to
solve the Table Maker’s Dilemma for that precision (cf. Section 2.4).

In particular, a central goal of the TaMaDi project [126] aims at safely com-
puting the hardest-to-round points for the most common functions and formats.
Doing this requires very accurate polynomial approximations that are formally
verified.

Beside the Table Maker’s Dilemma, the implementation of correctly rounded
elementary functions is a complex process, which includes finding polynomial
approximations for the considered function that are accurate enough to allow for
correct rounding. Obtaining good polynomial approximations is detailed in [27,
26, 31]. In the same time, the approximation error between the function and the
polynomial is very important since one must make sure that the approximation
is good enough. The description of a fast, automatic and verifiable process was
given in [88].

In the context of implementing a standard function, we are interested in
finding polynomial approximations for which, given a degree n, the maximum
error between the function and the polynomial is minimum: this “minimax ap-
proximation” has been broadly developed in the literature and its application to
function implementation is discussed in detail in [31, 127]. Usually this approxi-
mation is computed numerically [146], so an a posteriori error bound is needed.
Obtaining a tight bound for the approximation error reduces to computing a
tight bound for the supremum norm of the error function over the considered
interval. Absolute error as well as relative errors can be considered. For the sake
of simplicity, in this work, we consider absolute errors only (relative errors would
be handled similarly). Our problem can be seen as a univariate rigorous global
optimization problem, however, obtaining a tight and formally verified interval
bound for the supremum norm of the error function presents issues unsuspected



4.1. RIGOROUS APPROXIMATION OF FUNCTIONS 73

at a first sight [33], so that techniques like interval arithmetic and Taylor models
are needed. An introduction to these concepts is given below.

Interval arithmetic and Taylor models. The usual arithmetic operations
and functions are straightforwardly extended to handle intervals. One use of
interval arithmetic is bounding the image of a function over an interval. Interval
calculations frequently overestimate the image of a function. This phenomenon
is in general proportional to the width of the input interval. We are therefore
interested in using thin input intervals in order to get a tight bound on the image
of the function. While subdivision methods are successfully used in general, when
trying to solve this problem, one is faced with what is known in the literature
of interval-based methods as a “dependency phenomenon”: since function f
and its approximating polynomial P are highly correlated, branch and bound
methods based on using intervals of smaller width to obtain less overestimation,
end up with an unreasonably high number of small intervals. To reduce the
dependency, Taylor models are used. They are a basic tool for replacing functions
with a polynomial and an interval remainder bound, on which basic arithmetic
operations or bounding methods are easier.

4.1.2 Related Work

Taylor models [110, 134, 111] are used in rigorous global optimization prob-
lems [110, 12, 33, 13] and validated solutions of ODEs [132] with applications
to critical systems like particle accelerators [13] or robust space mission de-
sign [108]. Freely available implementations are scarce. One such implemen-
tation is available in Sollya [32], which handles univariate functions only, but
provides multiple-precision support for the coefficients. It was used for proving
the correctness of supremum norms of approximation errors in [33]. However,
this remains a C implementation that does not provide formally proved Tay-
lor models, although this would be necessary for having a completely formally
verified algorithm.

There were several attempts to formalize Taylor models in proof assistants.
An implementation of multivariate Taylor models is presented in [166]. They are
implemented on top of a library of exact real arithmetic, which is more costly
than FP arithmetic. Also, the purpose of that work is different than ours. It
is appropriate for multivariate polynomials with small degrees, while we want
univariate polynomials and high degrees. There are no formal proofs for that im-
plementation. The work in [30] presents an implementation of univariate Taylor
models in the PVS theorem prover. Though formally proved, this implemen-
tation contains ad-hoc models for only a few functions (exp, sin, arctan) and
it is not efficient enough for our needs, as it is unable to produce Taylor mod-
els of degree higher than 6. The work in [37] presents another formalization of
Taylor models in Coq. It uses polynomials with FP coefficients. However, the
coefficients are axiomatized, so we cannot compute the actual Taylor model in
that implementation. We can only talk about the properties of the involved
algorithms.



74 CHAPTER 4. RIGOROUS POLYNOMIAL APPROXIMATION IN COQ

4.1.3 Outline

Our goal is to provide a modular implementation of univariate Taylor models in
Coq, which is efficient enough to produce very accurate approximations of ele-
mentary real functions. We start by presenting in Section 4.2 the mathematical
definitions of Taylor models as well as efficient algorithms used in their imple-
mentation. We then present in Section 4.3 the Coq implementation itself, whose
performances (in terms of efficiency as well as accuracy) are briefly evaluated
in Section 4.4. Finally we summarize in Section 4.5 the main issues we have en-
countered during the formal verification of our implementation, before drawing
some perspectives in Section 4.6.

4.2 Presentation of the Notion of Taylor Models

4.2.1 Definition, Arithmetic

A Rigorous Polynomial Approximation (RPA) of order n for a function f that
is supposed to be n + 1 times differentiable over an interval [a, b], is a pair
(T, ∆) formed by a polynomial T of degree n, and an interval part ∆, such that
∀x ∈ [a, b], f(x)−T (x) ∈∆. The polynomial can possibly be a Taylor expansion
of the function at a given point, in which case the RPA will be called a Taylor
Model (TM). And the interval ∆ (called an enclosure of the approximation error
between the polynomial T and the function that it approximates.

For usual functions, we can easily build a TM by putting together a Tay-
lor expansion of the function with an error bound deduced from the Taylor–
Lagrange formula, relying on the recurrence relations satisfied by successive
derivatives of the functions (see Section 4.2.3). When using the same approach
for composite functions, the error we get for the remainder is too pessimistic [33].
Hence the usefulness of considering operations on the TMs themselves: simple
algebraic rules like addition, multiplication and composition are applied recur-
sively on the structure of function f , and build corresponding TMs step by step
to finally provide a TM for f over [a, b]. Usually, the use of these operations on
TMs offers a much tighter error than the one directly computed for the whole
function [33].

For example, the addition of TMs is defined as follows: let (P1, ∆1) and
(P2, ∆2) be two TMs of order n for two functions f1 and f2, over [a, b]. The
sum of the two models is an order-n TM for f1 +f2 over [a, b] and is obtained by
adding the two polynomials and the remainder bounds: (P1, ∆1) + (P2, ∆2) =
(P1+P2, ∆1+∆2). For multiplication and composition, similar rules are defined.

We follow the definitions from [88, 33], and represent the polynomial T with
tight interval coefficients. This choice is motivated by the ease of programming
(rounding errors are directly handled by the interval arithmetic) and also by the
fact that we want to ensure that the true coefficients of the Taylor polynomial lie
inside the corresponding intervals. This is essential for applications that need to
handle removable discontinuities [33]. For our formalization purpose, we recall
and explain briefly in what follows the definition of valid Taylor models [88,
Def. 2.1.3], and refer to [88, Chap. 2] for detailed algorithms regarding operations
with Taylor models for univariate functions.



4.2. PRESENTATION OF THE NOTION OF TAYLOR MODELS 75

4.2.2 Valid Taylor Models

A Taylor Model (TM) for a function f is a pair (T, ∆). The relation between f
and (T, ∆) can be rigorously formalized as follows.

Definition 4.1. Let f : I → R be a function, x0 be a small interval around an
expansion point x0. Let T be a polynomial with interval coefficients a0, . . . , an

and ∆ an interval. We say that (T, ∆) is a Taylor model of f at x0 on I when
x0 ⊂ I,

0 ∈∆,

∀ξ0 ∈ x0,∃α0 ∈ a0, . . . , αn ∈ an,∀x ∈ I,∃δ ∈∆, f(x)−
n

i=0
αi (x− ξ0)i = δ.

Informally, this definition says that there is always a way to pick some values
αi in the intervals ai in such a way that the difference between the resulting
polynomial and f around x0 is contained in ∆. This validity is the invariant
that is preserved when performing operations on Taylor models (addition, mul-
tiplication, etc.). Obviously, once a Taylor model (T, ∆) is computed, if need
be, one can get rid of the interval coefficients ai in T by picking arbitrary αi

and accumulating in ∆ the resulting errors.

4.2.3 Computing the Coefficients and the Remainder

We are now interested in an automatic way of providing both the coefficients
a0, . . . , an and ∆ of Definition 4.1 for basic functions. It is classical to use the
following

Theorem 4.1 (Taylor–Lagrange Formula). If f is n+1 times differentiable
on a domain I, then we can expand f in its Taylor series around any point
x0 ∈ I and we have: ∀x ∈ I, ∃ξ between x0 and x such that

f(x) =


n
i=0

f (i)(x0)
i! (x− x0)i


  

T (x)

+ f (n+1)(ξ)
(n + 1)! (x− x0)n+1  

∆(x,ξ)

.

Computing interval enclosures a0, . . . , an, for the coefficients of T , reduces
to finding enclosures of the first n derivatives of f at x0 in an efficient way. The
same applies for computing ∆, based on an interval enclosure of the (n + 1)th
derivative of f over I. However, the expressions for successive derivatives of
practical functions typically become very involved with increasing n. Fortu-
nately, it is not necessary to generate these expressions for obtaining values
of {f (i)(x0), i = 0, . . . , n}. For basic functions, formulas are available since
Moore [125] (see also [70]). There one finds either recurrence relations between
successive derivatives of f , or a simple closed formula for them. And yet, this
is a case-by-case approach, and we would like to use a more generic process,
which allows us to deal with a broader class of functions in a more uniform way
suitable to formalization.



76 CHAPTER 4. RIGOROUS POLYNOMIAL APPROXIMATION IN COQ

Recurrence Relations for D-finite Functions. An algorithmic approach
exists for finding recurrence relations between the Taylor coefficients for a large
class of functions that are solutions of linear ordinary differential equations
(LODE) with polynomial coefficients, usually called D-finite functions. The Tay-
lor coefficients of these functions satisfy a linear recurrence with polynomial co-
efficients [156]. Most common functions are D-finite—it is estimated that around
60% of the functions described by Abramowitz & Stegun in [1] belong to this
category—, while a simple counter-example is tan, whose ODE is not linear.
For any D-finite function it is possible to generate the recurrence relation di-
rectly from the differential equation that defines the function, see for example
the Gfun module in Maple [151]. From the recurrence relation, the computation
of the first n coefficients is done in linear time.

Let let us take a simple example and consider the function

f = exp

It satisfies the LODE

f ′ = f f(0) = 1

hence the following recurrence on the Taylor coefficients of f around the origin:

(n + 1)cn+1 = cn c0 = 1,

whose solution can be defined by: ∀n ∈ N, cn = 1
n! .

This property lets us include in the class of basic functions all the D-finite
functions. We will see in Section 4.3.1 that this allows us to provide a uniform
and efficient approach for computing Taylor coefficients, suitable for formaliza-
tion. We note that our data structure for that is recurrence relation + initial
conditions and that the formalization of the isomorphic transformation from the
LODE + initial conditions, used as input in Gfun is subject of future research.

4.3 Implementation of Taylor Models in Coq
We provide an implementation1 of Taylor models that is efficient enough to
produce very accurate approximation polynomials in a reasonable amount of
time. Moreover, the work is carried out in the Coq proof assistant, which provides
a formal setting where the implementation can then be formally verified (see
Section 4.5).

One of our goals with this implementation is to be as generic as possible.
As pointed out in the beginning of Section 4.2.1, we notice that a Taylor model
(TM) is just an instance of the more general notion of rigorous polynomial
approximation (RPA). For a function f , a RPA is a pair (T, ∆) where T is a
polynomial and ∆ an interval containing the approximation error between f
and T . We can choose a Taylor polynomial for T and thus obtain a TM, but
other kinds of approximation are also available, including Chebyshev models
which are based on Chebyshev polynomials. This generic rigorous polynomial
approximation structure will look like:

1The Coq development is available at http://tamadi.gforge.inria.fr/CoqApprox/

http://tamadi.gforge.inria.fr/CoqApprox/


4.3. IMPLEMENTATION OF TAYLOR MODELS IN COQ 77

Structure rpa := { approx: polynomial; error: interval }

In this structure, we also want genericity not only for polynomial with respect
to the type of its coefficients and to its physical implementation but also for
the type for intervals. Users can then experiment with different combinations of
datatypes. Also, this genericity allows us to factorize our implementation and
contributes to facilitate the proofs of correctness.

We implement Taylor models as an instance of a generic RPA following what
is presented in Section 4.2. Our development relies on the following tools and
libraries:

• the SSReflect extension of Coq,

• the CoqInterval library, which is based on

• the Flocq library, itself based on

• the Reals library from the Coq standard library.

All these libraries have been presented in Section 3.2.7. In particular, we recall
that the formal verification method chosen in both Flocq and CoqInterval consists
of linking the effective algorithms (in charge of producing FP approximations
or interval enclosures) to a mathematical formalization of real numbers (the
Reals library). So doing a formal proof of correctness amounts to saying an
implementation is correct with respect to a given abstract, mathematical object
defined in the system. We want to follow the same idea in our Taylor model
development: implement a computable Taylor model for a given function and
formally prove its correctness with respect to the abstract formalization of that
function in Coq. This can be done by using Definition 4.1 and the axiomatized
real-valued functions from the Coq standard library.

We recall there are some restrictions to the programs that can be executed
in Coq: they must always terminate and must be purely functional, i.e., no
side-effects are allowed. Nevertheless, it is possible to define some algorithms in
Coq on top of the multiple-precision arithmetic libraries BigN or BigZ, based on
the binary trees described in [68]. This allows one to benefit from the machine
modular arithmetic (32- or 64-bits depending on the machine) for computing in
Coq.

Thus following the autarkic approach for our development of Taylor models,
we have to consider polynomials with coefficients that are a suitable kind of
computational objects. As described in Section 4.2, we use intervals with FP
bounds, by relying on the CoqInterval library [118] that provides such datatypes
and related algorithms, which can possibly be instantiated with machine integers
(BigZ). By choosing a functional implementation for polynomials (e.g., lists),
we then obtain Taylor models that are directly executable within Coq. In the
next section we describe in detail this modular implementation.

4.3.1 A Modular Implementation of Taylor Models
The Coq proof assistant comes with three different mechanisms for modulariza-
tion: type classes [155], canonical structures [150], and modules [35, 34]. Modules
are less generic than the other two (which are first-class citizens) but they have
a better computational behavior. Indeed, module applications are performed



78 CHAPTER 4. RIGOROUS POLYNOMIAL APPROXIMATION IN COQ

statically, so the code that is executed is often more compact. Since the ob-
jects to be formalized only require simple parametricity, we have chosen to use
modules for developing our generic implementation. First, abstract interfaces
called Module Types are defined. Then concrete “instances” of these abstract
interfaces are created by providing an implementation for all the fields of the
Module Type. Furthermore, the definition of Modules can be parameterized by
other Modules. These parameterized modules are crucial to factorize code in our
data structures.

Abstract Polynomials, Coefficients and Intervals.

We describe abstract interfaces for polynomials and for their coefficients using
Coq’s Module Type. The interface for coefficients contains the common base of
all the computable real numbers we may want to use. Usually coefficients of
a polynomial are taken in a ring. We cannot do this here. For example, the
addition of two intervals is not associative. Therefore, the abstract interface
for coefficients contains only the required operations (addition, multiplication,
etc.) where some basic properties (associativity, distributivity, etc.) are ruled
out. The case of abstract polynomials is similar. They are also a Module Type
but this time parameterized by the coefficients. The interface contains only
the operations on polynomials (addition, evaluation, iterator, etc.) with the
properties that are satisfied by all common instantiations of polynomials.

For intervals, we directly use the abstract interface provided by the CoqIn-
terval library [118].

Rigorous Polynomial Approximations.

We are now able to give the definition of our rigorous polynomial approximation.

Module RigPolyApprox (C : BaseOps)(P : PolyOps C)(I : IntervalOps).
Structure rpa : Type := RPA { approx : P.T; error : I.type }.

The module is parameterized by C (the coefficients), by P (the polynomials with
coefficients in C), and by I (the intervals).

Generic Taylor Polynomials.

Before implementing our Taylor models, we use the abstract coefficients and
polynomials to implement generic Taylor polynomials. These polynomials are
computed using an algorithm based on recurrence relations as described in Sec-
tion 4.2.3. This algorithm can be implemented in a generic way. It takes as
argument the relation between successive coefficients, the initial conditions and
outputs the Taylor polynomial.

We detail the example of the exponential, which was also presented in Sec-
tion 4.2.3. The Taylor coefficients (cn)n∈N satisfy the recurrence

(n + 1)cn+1 − cn = 0 ⇐⇒ cn+1 = cn

n + 1 .

The corresponding Coq code is

Definition exp_rec (u : T) (n : nat) : T := tdiv u (tnat n).



4.3. IMPLEMENTATION OF TAYLOR MODELS IN COQ 79

where tdiv is the division on our coefficients and tnat is an injection of integers
to our type of coefficients. We then implement the generic Taylor polynomial
for the exponential around a point x0 with the following definition:
Definition T_exp (x0 : C.T) (n : nat) := trec1 exp_rec (texp x0) n.

In this definition, trec1 is the function in the PolyOps interface that is in charge
of producing a polynomial of degree n from a recurrence relation of order 1 (here,
exp_rec) and an initial condition (here, “texp x0,” the value of the exponential
at x0). The interface also contains trec2 and trecN for producing polynomials
from recurrences of order 2 and order N , with the appropriate number of initial
conditions, in an efficient way: they are implemented by tail-recursive functions,
and having specific functions for recurrences of order 1 and 2 makes it possible
to have optimized implementations for these frequent recurrences. As a matter
of fact, all the functions we currently dispose of in our library are defined using
trec1 and trec2. We provide generic Taylor polynomials for constant functions,
identity, x →→ 1

x ,
√
·, 1√

· , exp, ln, sin, cos, arcsin, arccos, arctan.

Taylor Models.

We implement Taylor models on top of the RPA structure by using polynomials
with coefficients that are intervals with FP bounds, according to Section 4.2.
Yet we are still generic with respect to the effective implementation of polyno-
mials. For the remainder, we also use intervals with FP bounds. Note that this
datatype is provided by the CoqInterval library [118], whose design is also based
on modules, in such a way that it is possible to plug all the machinery on the
desired kind of Coq integers (i.e., Z or BigZ).

In a Taylor model for a basic function (exp, sin, etc.), polynomials are in-
stances of the generic Taylor polynomials implemented with the help of recur-
rence relations described above. The remainder is computed with the help of the
Taylor–Lagrange formula in Lemma 4.1. For this computation, thanks to the
parameterized module, we reuse the generic recurrence relations. The order-n
Taylor model for the exponential on interval X expanded at the small interval
X0 is as follows:
Definition TM_exp (X0 X : T) (n : nat) :=

RPA (T_exp X0 n) (Trem T_exp X0 X n).

We implement Taylor models for the addition, multiplication, and composition
of two functions by arithmetic manipulations on the Taylor models of the two
functions, as described in Section 4.2. Here is the example of addition:
Definition TM_add (Mf Mg : rpa) : rpa :=

RPA (Pol.tadd (approx Mf) (approx Mg))
(I.add (error Mf) (error Mg)).

The polynomial approximation is just the sum of the two approximations and
the interval error is the sum of the two errors. Multiplication is almost as intu-
itive. We consider the truncated multiplication of the two polynomials and we
make sure that the error interval takes into account the remaining parts of the
truncated multiplication. Composition is more complex. It uses addition and
multiplication of Taylor polynomials. Division of Taylor models is implemented
in term of multiplication and composition with the inverse function x →→ 1/x.
The corresponding algorithms are fully described in [88].



80 CHAPTER 4. RIGOROUS POLYNOMIAL APPROXIMATION IN COQ

Figure 4.1 summarizes the hierarchy of the computational part2 of the li-
brary. This involves four abstract interfaces: BaseOps for the three base opera-
tions +, −, ×, PolyOps for polynomials, which is parameterized by the imple-
mentation of coefficients, IntervalOps, which is provided by CoqInterval, and
FullOps, which extends BaseOps with other operations such as division, expo-
nentiation, and elementary functions (e.g., the exponential). It can be noted
that this latter interface FullOps will be instantiated either with abstract func-
tions based on the Reals library, or with computational functions, such as the
evaluator I.exp for the exponential that is available in CoqInterval.

RigPolyApprox TaylorModel

PolyOps TaylorPoly

BaseOps FullOps IntervalOps TaylorRec

interface

module

Figure 4.1 – Overview of the modular hierarchy implemented in CoqApprox

4.4 Some Preliminary Benchmarks
Given that we follow the so-called autarkic approach (see Section 3.2.6), we
wanted to evaluate the performances of our Coq implementation of Taylor mod-
els, before starting proving anything. For this we compare our implementation
to that of Sollya [32], a tool specially designed to handle such numerical approx-
imation problems.

The Coq Taylor models we use for our tests are implemented with poly-
nomials represented as simple lists with a linear access to its coefficients. The
coefficients of the approximation polynomial in our instantiation of Coq Taylor
models as well as the interval errors are implemented by intervals with multiple-
precision FP bounds, as available in the CoqInterval library described in [118].
Note that because we need to compute the initial conditions for recurrences,
only the basic functions already implemented in CoqInterval can have their cor-
responding Taylor models.

In Sollya, polynomials have interval coefficients and are represented by a
(coefficient) array of intervals with multiple-precision FP bounds.

2Other modules have been added for the elaboration of the correctness proofs.



4.4. SOME PRELIMINARY BENCHMARKS 81

Timings, Accuracy and Comparisons
We compare the Coq and the Sollya implementations presented above on a selec-
tion of several benchmarks. Table 4.1 gives the timings as well as the tightness
obtained for the remainders, taking the rounding errors into account in addition
to the method error.

These benchmarks have been computed on a 8-core computer, Intel(R)
Xeon(R) CPU E5520 @ 2.27GHz with 16 GB of memory, using Coq 8.3pl4
(with the vm_compute evaluation strategy), and Sollya 3.0.

Execution time Approximation error
Coq Sollya Ratio Coq Sollya

exp
prec=1000, deg=70
I=[127/128, 1]

0.716s 0.093s 7.7 1.80× 2−906 1.79× 2−906

sin
prec=1000, deg=70
I=[127/128, 1]

2.636s 0.088s 30 1.45× 2−908 1.44× 2−908

arctan
prec=1000, deg=118
I=[127/128, 1]

2.969s 0.420s 7.1 1.71× 2−913 1.30× 2−967

exp× sin
prec=400, deg=20
I=[127/128, 1]

0.812s 0.013s 63 1.36× 2−222 1.36× 2−222

exp× sin
prec=400, deg=40
I=[127/128, 1]

1.736s 0.040s 44 1.01× 2−397 1.53× 2−397

exp ◦ sin
prec=400, deg=20
I=[127/128, 1]

7.165s 0.011s 650 1.56× 2−192 1.83× 2−192

exp ◦ sin
prec=400, deg=40
I=[127/128, 1]

52.687s 0.065s 810 1.88× 2−385 1.38× 2−384

Table 4.1 – Benchmarks and timings for our implementation in Coq

Each cell of the first column of Table 4.1 contains a target function, the
working precision in bits used for the computations, the order of the TM, and
the interval under consideration. Each TM is expanded at the middle of the
interval. For greater convenience, the errors in the last two columns are given
using three decimal digits times a power of 2.

We notice that on these examples of TMs for base functions exp, sin and
arctan, Coq is 7 to 30 times slower than Sollya, which is reasonable. Moreover, the
error bounds so obtained have a similar order of magnitude.3 Using the newly
designed evaluation strategy native_compute [15] instead of vm_compute, we
have done some similar experiments that tend to indicate we can expect a 2x
to 3x speedup, allowing one to compute TMs for base functions in Coq only 10
times slower than Sollya [28].

3Note however that in Sollya, the arctan is implemented with a more specific algorithm,
which trades accuracy for efficiency with respect to D-finite recurrences.



82 CHAPTER 4. RIGOROUS POLYNOMIAL APPROXIMATION IN COQ

The ratio gets larger when composition is used. One possible explanation is
that composition implies lots of polynomial manipulations and the implementa-
tion of polynomials as simple lists in Coq may be too naive. An interesting alter-
native could be to use persistent arrays [3] to have more efficient polynomials.
Another possible improvement is at algorithmic level: while faster algorithms for
polynomial multiplication exist [60], currently in all TMs related works O(n2)
naive multiplication is used, resulting in a composition in O(n3), which can
roughly be noticed in the last two rows of Table 4.1. We could improve that by
using a Karatsuba-based approach, for instance.

4.5 Formal Verification of Our Implementation
of Taylor Models

We prove that our implementation of Taylor models is correct with respect to
the formalization of real functions available in the Coq standard library Reals
that we presented in Section 3.2.7.

The TaylorModel Module presented in Figure 4.1 also imports a version of
Taylor polynomials defined with axiomatic real numbers as coefficients. These
polynomials are meant to be used only in the formal verification, when linking
the computable Taylor models to the corresponding functions on axiomatic real
numbers. This link is given by Definition 4.1 of a valid Taylor model given in
Section 4.2.2. The definition can be easily formalized in the form of a predicate
validTM.

Definition validTM X0 X M (f : ExtendedR -> ExtendedR) :=
I.subset X0 X /\
contains (error M) 0 /\
let N := tsize (approx M) in
forall x0, contains X0 x0 -> exists P, tsize P = N /\

( forall k, (k < N) ->
contains (tnth (approx M) k) (tnth P k) ) /\

forall x, contains X x ->
contains (error M) (f x - teval P (x - x0)).

where ExtendedR denotes the option type that is defined in the CoqInterval
library by

Inductive ExtendedR : Set :=
| Xnan : ExtendedR
| Xreal : R -> ExtendedR.

The theorem of correctness for the Taylor model of the exponential TM_exp then
establishes the link between the model and the exponential function Xexp (from
CoqInterval), itself defined in terms of the exponential function from the Reals
library:

Lemma TM_exp_correct :
forall X0 X n,
I.subset X0 X ->
( exists t, contains X0 t ) ->
validTM X0 X (TM_exp X0 X n) Xexp.



4.6. CONCLUSION AND PERSPECTIVES 83

Note that the correctness theorems for all the other base functions have the
same shape. Thus, we wanted to focus on proofs that are generic, so that a new
instantiation of the Taylor polynomials for a given function can be smoothly
proved, relying on the generic proof.

We have managed to prove some generic theorems of this kind, applicable
for TMs defined in terms of trec1 and trec2. This formalization effort led
us to prove Taylor’s theorem for functions over R. Then, we can derive, say,
TM_exp_correct by applying the generic theorem TM_rec1_correct, and dis-
charge the various hypotheses that are required, especially the fact that the
function f at stake propagates the NaNs (i.e., “f Xnan = Xnan”), and that the
recurrence “preserves” the successive derivatives of the considered function. The
formalization process of this last kind of properties is almost completed, in par-
ticular we have formally verified TMs for exp, sin, cos, x →→ 1

x , identity, and
“constant” functions.

Finally, the algorithms for addition, multiplication and composition requires
a separate proof. To this end, we closely follow the pen-and-paper proofs that
are detailed in [88, Sect. 2.2.2], and this formalization effort is still work in
progress (we have completed the proofs for addition and composition but some
subgoals remain for the multiplication of TMs). Among the various issues that
have arisen in this process, we can mention some peculiarities related to the
NaNs, for instance: what should return the evaluation of a null polynomial
at Xnan? besides, does the interval [ξ0, ξ0] always contain ξ0, notably when
ξ0 = Xnan? Finally, a number of the proofs related to the derivation of functions
in the formalism of Coq’s standard library were long and fastidious. Some recent
works in the domain may improve this aspect [103].

4.6 Conclusion and Perspectives
In this chapter, we have described an implementation of Taylor models in the
Coq proof assistant. We have addressed the following issues: the first one is
genericity. We wanted our implementation to be applicable to a large class of
problems. This motivates our use of modules in order to get this flexibility. The
second issue is efficiency. Working in a formal setting has some impact in terms
of efficiency. Before starting to prove anything, it was then crucial to evaluate
if the computational power provided by the Coq system was sufficient for our
needs. The results given in Section 4.4 clearly indicate that our implementation
is worth proving formally. The third issue was to design a framework with some
high-level and generic proofs, in order to ease the validation of each new Taylor
model added to the library. The process of formally verifying our implementation
is still work in progress, but we believe it should be complete in a couple of weeks.

As we aim at a complete formalization, a more subtle issue concerns the
Taylor models for the basic functions and in particular how the model and its
corresponding function can be formally related. This can be done in an ad-hoc
way, deriving the recurrence relation from the formal definition. An interesting
future work would be to investigate a more generic approach, trying to mimic
what is provided by the Dynamic Dictionary of Mathematical Functions [8] in
a formal setting.

Moreover, we have pointed out that a necessary building block to be able
to evaluate our formalized Taylor models is the availability of an interval-based



84 CHAPTER 4. RIGOROUS POLYNOMIAL APPROXIMATION IN COQ

evaluator. Some functions are still missing in CoqInterval and are worth to be
implemented, but at the same time we would like to investigate some techniques
that may provide an alternative to the availability of such an evaluator [119],
including fixed-point theorems.

Having Taylor models is a milestone in our overall goal of getting formally
proved hard-to-round cases for common functions and formats. Much more work
needs to be done. A natural next step is to couple our models with some pos-
itivity test for polynomials, for example some sums-of-squares technique. This
would give an automatic way of verifying polynomial approximations formally.
It would also provide another way of evaluating the quality of our Taylor ap-
proximations. If they reveal to be not accurate enough for our needs, we could
always switch to some better kinds of approximations such as Chebyshev trun-
cated series thanks to our generic setting.



Chapter 5

Hensel Lifting for
Integral-Roots Certificates

5.1 Introduction
Hensel’s lemma is a very classical mathematical tool which, given a polynomial
P over the integers, and starting from a solution to P (x) = 0 mod p, constructs
a solution to P (x) = 0 mod pk for any k, under mild hypotheses (for instance,
that p does not divide the discriminant of P ). This lemma was given its final
shape by Hensel, in his study of p-adic numbers, where it plays a central role
[77]. The algorithm derived from the proof of Hensel’s lemma is usually called
Hensel lifting.

The strengths of Hensel’s lemma are its versatility (it can be stated in a very
general context, being also valid, e.g., for power series rings), the fact that it
combines an assertion of existence (there is a lifting) and uniqueness (this lifting
is unique) under mild hypotheses, and the fact that it is effective, and provides
a simple and efficient algorithm.

Hensel’s lemma has applications in several areas of mathematics and com-
puter science where one has to solve equations over the integers. In this work,
we are interested in some of them that we present just below.

5.1.1 Hensel’s Lemma in Computer Algebra
Since the beginning of the development of computer algebra, Hensel’s lemma
(the algorithmic version of this lemma being usually called Hensel lifting) has
been one of the fundamental tools for computations over the integers. The strat-
egy is to isolate a “nice” prime p where the problem under study over the integers
has a “good reduction” to the same (but usually easier) problem modulo pk for
all k. One then solves the problem mod p, lifts the solution modulo pt for some t
such that pt is slightly larger than an a priori bound on the size of the solution.

Standard applications include linear system solving over the integers (Hensel’s
technique is very powerful in practice as it avoids manipulating huge rational
numbers while keeping the size of integers involved under control), but also 0-
dimensional polynomial system solving over the integers or polynomial factoring
over the integers. In all those cases, Hensel’s lemma can be used in two ways:

85



86 CHAPTER 5. INTEGRAL ROOTS CERTIFICATES

• to compute the solutions;

• to provide a certificate for a list of solutions (using the uniqueness state-
ment of the lemma).

In the present work, we are mainly interested in the second aspect, in a
setting where Hensel lifting is used at the end of a complex algorithmic chain
where certification is a major issue.

5.1.2 A Certificate-Based Approach for Solving the TMD
The main steps of the SLZ algorithm were recalled in Section 2.5.3. In this
algorithmic chain, step 4 is, for standard values of the parameters, in practice
by far the most time consuming part of the overall algorithm, due to the call to
the LLL algorithm [104]. This suggests to treat the LLL calls as an oracle and
log its results in a certificate, the verification of which no longer implying LLL
calls. This has the clear benefit of avoiding to have to deal with LLL formally.
Still, this approach has to be validated, we need to design “good” certificates
that are of reasonable size and can be easily checked, with the goal to provide
a fully verified checker for these certificates, in a similar way to what was done
for primality certificates in [69, 68, 163].

Roughly speaking, one such certificate will have to gather the coefficients of
the linear combinations v1 and v2 that appear in step 4, as well as the solutions
claimed for step 5, which is where Hensel lifting comes into play, and the core
motivation for this chapter.

Note that the part of this work which, beyond Hensel’s lemma, addresses
Coppersmith’s technique might have some use in applications of the latter, for
instance to the list decoding of some error-correcting codes [23, 9]

5.1.3 Our Contributions
We formalize Hensel’s lemma in the Coq proof assistant for both univariate and
bivariate polynomials on Z. Relying on these uniqueness results, we propose
some “small-integral-roots certificates checkers” that we formally prove correct.
Then we implement Coppersmith’s technique in the form of a certificate checker
for the integer-small-value-problem, this third checker being built upon our bi-
variate small-integral-roots certificates checker. Finally we implement a compu-
tational version of these checkers in Coq. This leads to a computational, formal
component to be involved in a complete verification chain for solving the Table
Maker’s Dilemma, based on the SLZ algorithm (see Section 2.5.3).

5.1.4 Outline
The chapter is organized as follow:

• In Section 5.2, we present the Hensel lifting algorithm and we highlight
its usefulness to find the small integral roots of polynomials with integer
coefficients, then we recall the version of Coppersmith’s technique at stake;

• Section 5.3 is devoted to the Coq formalization of Hensel’s lemma itself,
namely a description of the Coq mechanized formal background that is



5.2. HENSEL LIFTING AND COPPERSMITH’S TECHNIQUE 87

common to both univariate and bivariate cases, followed by some pen-
and-paper proofs for the uniqueness results that we develop;

• In Section 5.4, we present the formalization of our certificates checkers
for the “univariate and bivariate small-integral-roots problems,” as well
as for the integer-small-value problem, and we present the extra formal
material that makes it possible to obtain effective checkers in a modular
way, despite the non-computational nature of most of the datatypes used
in the proofs. We also describe some numerical examples that are typical
for the main application that we target;

• In Section 5.5, we discuss the relevance of our formalization choices and
we mention the few optimizations that we have implemented in order to
increase the efficiency of our effective checkers;

• Finally we draw some conclusions in Section 5.6.

We recall that a comprehensive list of mathematical notations used in the
sequel is available in Appendix A.

5.2 Presentation of Hensel Lifting and
Coppersmith’s Technique

The overall goal of the formalization at stake is to provide certificates checkers
based on bivariate Hensel lifting. We start by giving a mathematical and algo-
rithmic description of the univariate version of Hensel lifting to highlight the
key ideas behind this technique, and then turn to the bivariate case.

5.2.1 An Overview of Hensel Lifting in the Univariate
Case

Before focusing on the uniqueness statement of Hensel’s lemma (Lemma 5.2)
that constitutes a key part of the present chapter, we start by presenting the
algorithm of Hensel lifting with some remarks of an algorithmic nature that are
useful to give more intuition on its semantics.

Suppose we know a modular root (mod p) of a given polynomial P ∈ Z[X].
The idea is to use a kind of Newton iteration to “lift” this modular root and

obtain corresponding roots modulo powers of p, as summarized in Algorithm 5.1.
Algorithm 5.1: Hensel lifting

Input: P ∈ Z[X], p ∈ P, uk ∈ Z s.t. P (uk) ≡ 0 (mod p2k ) and
P ′(uk) ̸≡ 0 (mod p).

Output: uk+1 ∈ Z s.t. P (uk+1) ≡ 0 (mod p2k+1).

uk+1 ← uk −
P (uk)
P ′(uk) mod p2k+1

Note that this corresponds to the typical, quadratic version of Hensel lifting
as described in [60]—the modulus is squared at each iteration—, while some
works in computer arithmetic [94, 140] rely on the linear variant of Hensel
lifting, for prime p = 2: they consider moduli of the form 2i, i ∈ N∗.



88 CHAPTER 5. INTEGRAL ROOTS CERTIFICATES

So we can start with k := 0 and iterate Algorithm 5.1 with increasing values
of k, which leads to moduli of the form p2k . Yet we need to make sure that the
successive values of uk satisfy the invertibility assumption modulo p, that is

P ′(uk) ̸≡ 0 (mod p) (5.1)

for each considered uk. Nevertheless, it is sufficient to assume that the poly-
nomial P ∈ Z[X], together with the considered prime p, satisfies the following
hypothesis:

∀z ∈ Z, P (z) ≡ 0 (mod p) =⇒ P ′(z) ̸≡ 0 (mod p), (5.2)

this assertion being equivalent to

∀z ∈ J0, pJ , P (z) ≡ 0 (mod p) =⇒ P ′(z) ̸≡ 0 (mod p), (5.3)

which can easily be checked in practice (i.e., we need to check only p values for
z). We thus obtain modular roots modulo an arbitrary big integer M = p2k . Con-
sequently, we can obtain the small integral roots of the considered polynomial,
as summarized in Algorithm 5.2.

Algorithm 5.2: Find the small integral roots of a polynomial using Hensel lifting
Input: P ∈ Z[X], B ∈ N∗.
Output: The integral roots of P whose absolute value is 6 B.
p← a prime (say, the smallest one) such that (5.3) is fulfilled1
S ← ∅2
foreach z ∈ J0, pJ such that P (z) ≡ 0 (mod p) do3

k ← 04
M ← p5
u← z6

// We have M = p2k

, u ≡ z (mod p), P (u) ≡ 0 (mod M) and 0 6 u < M.
while M 6 2 ·B do7

k ← k + 18
M ←M29

u← u− P (u)
P ′(u) mod M

10

end11

// We have M = p2k

, u ≡ z (mod p), P (u) ≡ 0 (mod M) and 0 6 u < M.
if u 6 M/2 then s← u else s← u−M12

// We have M = p2k

, s ≡ z (mod p), P (s) ≡ 0 (mod M) and −M
2 < s 6 M

2 .
if P (s) = 0 and |s| 6 B then S ← S ∪ {s}13

end14
return S15

Here we can formulate several key remarks related to this algorithm:

Remark 5.1 (Choice of B). On the one hand, Algorithm 5.2 addresses what
we can call the univariate small-integral-roots problem, namely finding the in-
tegral roots s of P such that |s| 6 B, for a given P ∈ Z[X] and B ∈ N∗. On



5.2. HENSEL LIFTING AND COPPERSMITH’S TECHNIQUE 89

the other hand, there exist some results that allow one to bound all the roots
of such a univariate polynomial [154]. For instance, Lemma 5.1, which will be
stated later on in the present section, gives a result of this kind in the case
of polynomials with integer coefficients. Consequently, Algorithm 5.2 together
with the bound given by Lemma 5.1 can be extended to address the “univariate
whole-integral-roots problem”, that is finding all the integral roots of a given
P ∈ Z[X], provided (5.3) is satisfied. (We elaborate on this latter issue in Re-
mark 5.2.)

Remark 5.2 (Choice of p). The prime p plays a central role in Hensel lifting,
since all computations are carried out modulo a power of p. As mentioned in
Algorithm 5.2/Line 1, p has to be chosen such that (5.3) is satisfied, which
intuitively amounts to assuming the polynomial P has no repeated roots modulo
p. It can be shown that such a p can be found provided that the polynomial P
has no multiple root in Z (which can be accomplished, if need be, by considering

P (X)
gcd


P (X),P ′(X)
 instead of P (X)). But actually, we need not prove the existence

of a suitable prime p in our approach, since we want to focus on the verification
of instances of the problem at stake, where the prime p will have been generated
by a kind of oracle.

Remark 5.3 (Modular inversion). The modular inversion on Line 10 is the
key step of Algorithm 5.2 and is written with a slight abuse of notation. More
formally, it could have been written just as follows:

u←


u−

P ′(u)

−1
M
× P (u)


mod M. (5.4)

For the sake of completeness, note that it is possible to compute this quantity u
at each step with a formula that does not require the modular inversion oper-
ation, except for initializing the first step, by computing an inverse modulo p.
Such a formula can be found in [60, Algorithm 9.22, p. 264].

Remark 5.4 (Centered modulo). The last-but-one step of Algorithm 5.2
amounts to computing a centered modulo, i.e., the instructions on Line 12 are
here equivalent to:

s← u cmod M. (5.5)
However this kind of modulo operation is not directly available in usual im-
plementations of integer arithmetic. If it were the case, since the behavior of
Hensel lifting does not depend on the chosen representatives, we could just as
well remove Line 12 and directly use a centered modulo on Line 10:

u← u− P (u)
P ′(u) cmod M. (5.6)

A Simple Bound on the Univariate Integral Roots

For any univariate polynomial with integer coefficients, the following lemma
gives a simple example of a bound on its integral roots. Other bounds might be
sharper in some cases, but given the efficiency of Hensel’s lemma (which requires
a number of steps logarithmic in the bound) the sharpness of the bound used
has little significance.



90 CHAPTER 5. INTEGRAL ROOTS CERTIFICATES

Lemma 5.1. For any P ∈ Z[X], if we write P in the form
d

i=ν aiX
i ∈ Z[X]

with aν ̸= 0, we have ∀z ∈ Z, P (z) = 0 ⇒ |z| 6 |aν |. Therefore B := |aν | =amin{k : ak ̸=0}
 is a bound on the integral roots of P .

Proof. The idea of the proof is as follows: if z is a nonzero integral root of P ,
we can rewrite P (z) = 0 as aν = −z (aν+1 + · · · ), which implies z | aν ̸= 0,
hence |z| 6 |aν |.

Consequently, we can take the generic bound given by the previous simple
lemma if we want to address the whole-integral-roots problem. Otherwise we can
just choose another bound, depending on the considered application involving
the small-integral-roots problem.

Example of Use

Let us consider the polynomial

P := 225X5 − 11595X4 + 9961X3 − 197931X2 + 104312X − 13872 ∈ Z[X].

Suppose we want to determine all the integral roots x of P . By Lemma 5.1,
their absolute value satisfies |x| 6 13872. We notice that the derivative of P is

P ′ = 1125X4 − 46380X3 + 29883X2 − 395862X + 104312 ∈ Z[X].

and that the smallest prime satisfying Hensel’s lemma hypothesis (5.8) is p = 3.
Indeed, for p = 2, we have

P (0) = −13872 ≡ 0 (mod 2) P ′(0) = 104312 ≡ 0 (mod 2)
P (1) = −108900 ≡ 0 (mod 2) P ′(1) = −306922 ≡ 0 (mod 2)

(i.e., the derivative cancels on at least one root modulo 2), while for p = 3, we
have:

P (0) = −13872 ≡ 0 (mod 3) P ′(0) = 104312 ̸≡ 0 (mod 3)
P (1) = −108900 ≡ 0 (mod 3) P ′(1) = −306922 ̸≡ 0 (mod 3)
P (2) = −695604 ≡ 0 (mod 3) P ′(2) = −920920 ̸≡ 0 (mod 3).

For each of the roots of P modulo 3, we perform k = 4 iterations of Hensel
lifting following Algorithm 5.2, given that 324 = 43046721 > 2× 13872:

For z = 0: the values taken by u cmod M are 0,−3,−30, 51, and 51.

For z = 1: the values taken by u cmod M are 1, 1, −8,−413, and 5523949.

For z = 2: the values taken by u cmod M are 2,−1, 8, 413, and−5523949.

Now we focus on the values computed for the last iterations, and we notice
that

P (51) = 0 ∧ |51| 6 13872 P (5523949) ̸= 0 P (−5523949) ̸= 0. (5.7)

We have thus found a small integral root of P , 51, among the modular roots of P
obtained at the last iteration of Hensel lifting. Thanks to the material presented
throughout this chapter, we will be able to formally prove that, for example, 51
is the unique integral root of the polynomial P over Z.



5.2. HENSEL LIFTING AND COPPERSMITH’S TECHNIQUE 91

Remark 5.5 (Order of multiplicity). Finally, note that if the main assump-
tion (5.3) implies there are no repeated roots in Z, it does not prevent the
polynomial from having “repeated roots outside Z,” notably in Q \ Z. This
is illustrated by the previous example: the polynomial P can be factored to
P = (X − 51)(15X − 4)2(X2 + 17), implying that x = 4

15 is a rational root of P
with an order of multiplicity greater than 1. However we needed not pre-simplify
the polynomial P using the technique mentioned in Remark 5.2 (i.e., dividing
P by gcd(P, P ′)).

A Uniqueness Property on the Modular Roots of P ∈ Z[X]

We now present the main lemma involved in our formalization of univariate
Hensel lifting:
Lemma 5.2 (Hensel, univariate case). Let P ∈ Z[X] and p ∈ P that satis-
fies

∀z ∈ J0, pJ , P (z) ≡ 0 (mod p) =⇒ P ′(z) ̸≡ 0 (mod p), (5.8)

where P ′ is the derivative of the polynomial P . If x ∈ Z is such that

P (x) ≡ 0 (mod p2m

) (5.9)

for a given m ∈ N, then for

u0 := x mod p, (5.10)

the sequence (uk) defined by the recurrence relation

∀k ∈ J0, mJ uk+1 := uk −
P (uk)
P ′(uk) mod p2k+1

(5.11)

satisfies:
∀k ∈ J0, mK , uk = x mod p2k

. (5.12)

Remark 5.6 (A uniqueness result). Note that Lemma 5.2 gives a necessary
condition on each root of P ∈ Z[X] modulo p2k depending on the value of the
considered root modulo p. It is somewhat a uniqueness result, whereas usual
results about Hensel lifting such as the correctness theorem we can find in [60,
p. 264] are existence results. We will see in Sections 5.4.1 and 5.4.2 that we
specifically need such a uniqueness property to prove our main theorems that
deal with integral-roots certificates.

Remark 5.7 (Inequalities). The technique described in Algorithm 5.2 first
considers the roots modulo p, and outputs as many roots modulo p2k , say ℓ ∈ N
such roots, which are candidate for being integral roots (in Z). Consequently, if
we denote by r the number of actual integral roots, we obviously have:

0 6 r 6 ℓ 6 p. (5.13)

This implies that p has to be greater than or equal to the number of actual
roots in Z. Otherwise, Hypothesis (5.8) will not be fulfilled.

Before giving a complete mathematical proof of Lemma 5.2 and for illus-
trating its usefulness, we will present a correctness proof of Algorithm 5.2 as a
corollary of Lemma 5.2.



92 CHAPTER 5. INTEGRAL ROOTS CERTIFICATES

A Correctness Proof for Algorithm 5.2

First, we need to introduce a key arithmetic result, which we will reuse later on
in Sections 5.4.1 and 5.4.2:

Lemma 5.3. For all M, m, n ∈ Z, if m ≡ n (mod M), |m| 6 M/2 and |n| <
M/2, then we have m = n.

Proof. Suppose M, m, n ∈ Z satisfy the hypotheses of Lemma 5.3, so that we
have |2 ·m| 6 M and |2 · n| < M . Using the triangle inequality leads to:

|2 · (m− n)| < M + M,

hence
0 6 |m− n| < M.

Since we have also m− n ≡ 0 (mod M) by hypothesis, we deduce that m = n.

Lemma 5.4 (Correctness of Algorithm 5.2). For any bound B ∈ N∗ and
for any P ∈ Z[X] satisfying (5.3) (same as (5.8)), the finite sets S (returned by
the algorithm) and R := {α ∈ Z |P (α) = 0 ∧ |α| 6 B} are equal.

Proof. We proceed by double-inclusion:

• First, we have S ⊂ R since S is initially empty, and each inserted element
on Line 13 does belong to R;

• Next, let x ∈ Z be an element of R. Note that P (x) = 0 implies

P (x mod p) ≡ 0 (mod p). (5.14)

So the algorithm will process the foreach loop for z := x mod p, then
iterate Hensel lifting, until the stop condition M > 2 · B holds. Then we
have the following post-condition:

∃k ∈ N, M = p2k

,

u ≡ z (mod p),
0 6 u < M,

where the current value of variable u involved in Algorithm 5.2 corresponds
exactly to the quantity uk involved in Lemma 5.2, and the initial value of
u satisfies u0 = x mod p. So we can apply this lemma, hence:

uk ≡ x (mod M),
s := uk cmod M,

s ≡ x (mod M),
−M

2 < s 6 M
2 ,

|x| 6 B < M
2 ,

implying that s = x thanks to Lemma 5.3. To sum up, Algorithm 5.2
correctly found the small integral root x, and added it to S.



5.2. HENSEL LIFTING AND COPPERSMITH’S TECHNIQUE 93

Pen-and-Paper Proof of Lemma 5.2

For the sake of completeness, we present the pen-and-paper proof that helped
us to carry out the Coq formalization of Lemma 5.2.

Let us assume all the hypotheses of the lemma hold for P ∈ Z[X], p ∈ P,
x ∈ Z, and (uk) which is defined by (5.10) and (5.11). To shorten most of the
following formulas, we will denote x mod p2k by xk for all integer k ∈ N.

We want to show (5.12), that is to say, ∀k ∈ N, k 6 m⇒ uk = xk. We prove
it by induction on k:
• First, we can notice that p = p20 , therefore (5.10) means that u0 = x0,

which proves the base case.
• The inductive case amounts to showing that for a given integer k < m

satisfying uk = xk, we have uk+1 = xk+1.
To start with, we can write xk = x mod p2k =


x mod p2k+1


mod p2k =

xk+1 mod p2k , which implies xk+1 ≡ xk (mod p2k ), hence

∃λ ∈ Z, xk+1 = xk + λp2k

.

Now we introduce the operator

∆k(P ) := P (k)

k! (5.15)

and we notice that it maps Z[X] inside Z[X] (we can verify it easily on the
monomials, which form a basis for Z[X], and this result actually amounts to
saying that the binomial coefficients are integers).
Then we invoke Taylor’s theorem, written in terms of ∆, for the polynomial P :

P (xk+1) =
deg P
j=0


λp2k

j

∆j(P )(xk)

= P (xk) + λp2k

P ′(xk) +
deg P
j=2


λp2k

j

∆j(P )(xk). (5.16)

The left-hand side of (5.16) is zero modulo p2k+1 , since

P (xk+1) = P (x mod p2k+1
) ≡ P (x) = 0 (mod p2k+1

).

As for the right-hand side of (5.16), we can notice that

∀j > 2,


λp2k
j

=

λj ·


p2k
j−2


· p2k+1

and ∆j(P )(xk) ∈ Z.

Thus all terms in the summation involved in (5.16) are zero modulo p2k+1 when-
ever j > 2. Consequently, (5.16) becomes:

0 ≡ P (xk) + λp2k

P ′(xk) + 0 (mod p2k+1
). (5.17)

Furthermore, we have P (xk) ≡ 0 (mod p), hence by (5.8), P ′(xk) ̸≡ 0
(mod p), and consequently P ′(xk) is prime to p2k+1 , hence invertible modulo



94 CHAPTER 5. INTEGRAL ROOTS CERTIFICATES

p2k+1 , which allows us to write:

λp2k

≡ − P (xk)
P ′(xk) (mod p2k+1

),

Now replacing λp2k with xk+1−xk and using the induction hypothesis leads to

xk+1 ≡ uk −
P (uk)
P ′(uk) (mod p2k+1

).

Then we recognize the definition (5.11), which means that we have proved that

xk+1 mod p2k+1
= uk+1,

that is, xk+1 = uk+1.
This ends the proof of Lemma 5.2 for univariate Hensel lifting. We will present
a similar kind of result for bivariate Hensel lifting in the sequel.

5.2.2 Focus on Hensel Lifting in the Bivariate Case
This section is devoted to bivariate Hensel lifting, and relies on the generaliza-
tion of Algorithms 5.1 and 5.2 to bivariate polynomials. We will thus present
the generalized algorithms, describing some of their features compared to the
univariate case, then give the bivariate version of Lemma 5.2 with a complete
pen-and-paper proof.

Generalization of Algorithms 5.1 and 5.2 to Bivariate Polynomials

The definition of bivariate Hensel lifting is very similar to the one of univariate
Hensel lifting. A first major change is that we focus on the simultaneous roots
of a pair (P1, P2) of bivariate polynomials. To be more precise, given (P1, P2) ∈
Z[X, Y ]

2, we will be able to consider either its bivariate integral roots (i.e., the
(x, y) ∈ Z2 s.t. P1(x, y) = 0 = P2(x, y)), or its bivariate modular roots modulo
M (i.e., the (x, y) ∈ J0, MJ2 s.t. P1(x, y) ≡ 0 ≡ P2(x, y) (mod M)).

Furthermore, the univariate version of Hensel lifting was involving the deriva-
tive P ′(a) of the polynomial P ∈ Z[X] at some a ∈ Z, while here we have to
consider JP1,P2(a, b), the Jacobian matrix1 of the pair of polynomials (P1, P2) ∈
Z[X, Y ]

2 evaluated at (a, b) ∈ Z2. This is a natural extension, as the Jacobian
matrix (or the differential, which amounts to the same) is the generalization
of the derivative in higher-dimensional calculus. Hence the generalized Algo-
rithm 5.3.

Consequently, the main assumption on the roots modulo p that dealt with
a nonzero derivative modulo p for univariate polynomials (cf. (5.2)) becomes:

∀z, w ∈ Z, P1(z, w) ≡ 0 ≡ P2(z, w) (mod p) =⇒
det JP1,P2(z, w) ̸≡ 0 (mod p), (5.18)

1Recall that this matrix is defined by:

JP1,P2 (a, b) =


∂ P1
∂X

(a, b) ∂ P1
∂Y

(a, b)
∂ P2
∂X

(a, b) ∂ P2
∂Y

(a, b)


∈ M2(Z).



5.2. HENSEL LIFTING AND COPPERSMITH’S TECHNIQUE 95

Algorithm 5.3: Bivariate Hensel lifting
Input: P1, P2 ∈ Z[X, Y ], p ∈ P, uk, vk ∈ Z s.t. Pi(uk, vk) ≡ 0 (mod p2k ),

i = 1, 2, and det JP1,P2(uk, vk) ̸≡ 0 (mod p).
Output: (uk+1, vk+1) ∈ Z2 s.t. Pi(uk+1, vk+1) ≡ 0 (mod p2k+1), i = 1, 2.

uk+1
vk+1


←


uk

vk


−

JP1,P2(uk, vk)

−1

p2k+1


P1(uk, vk)
P2(uk, vk)


mod p2k+1

which deals with the invertibility of the matrix JP1,P2(z, w) modulo p. Notice
that Condition (5.18) can be decided with a finite number of calculations: we
only need to check p values for z and p values for w, that is, p2 different pairs
(z, w) ∈ J0, pJ2. We thus obtain Algorithm 5.4.

Algorithm 5.4: Find the small integral roots of two bivariate polynomials
Input: P1, P2 ∈ Z[X, Y ], A, B ∈ N∗.
Output: The bivariate integral roots (s, t) of (P1, P2) such that |s| 6 A and |t| 6 B.
p← a prime (say, the smallest one) such that (5.18) is fulfilled
S ← ∅
foreach (z, w) ∈ J0, pJ2 such that P1(z, w) ≡ 0 ≡ P2(z, w) (mod p) do

k ← 0
M ← p
u← z
v ← w
// Here, M = p2k

, u ≡ z (mod p), v ≡ w (mod p), 0 6 u < M, 0 6 v < M.
while M 6 2 ·max(A, B) do

k ← k + 1
M ←M2

u
v


←


u
v


−

JP1,P2(u, v)

−1

M


P1(u, v)
P2(u, v)


mod M

end
// Here, M = p2k

, u ≡ z (mod p), v ≡ w (mod p), 0 6 u < M, 0 6 v < M.
if u 6 M/2 then s← u else s← u−M
if v 6 M/2 then t← v else t← v −M

// Here, M = p2k

, s ≡ z (mod p), t ≡ w (mod p),−M
2 < s 6 M

2 ,−M
2 < t 6 M

2 .
if P1(s, t) = 0 = P2(s, t) and |s| 6 A and |t| 6 B then S ← S ∪ {(s, t)}

end
return S

A Uniqueness Property on the Modular Roots of 2 Bivariate Polyno-
mials on Z

An important result which constitutes the key point of our formalization of
bivariate Hensel lifting is given by the following lemma, which is a generalization
of Lemma 5.2 to the bivariate case.



96 CHAPTER 5. INTEGRAL ROOTS CERTIFICATES

Lemma 5.5 (Hensel, bivariate case). Let P1, P2 be two bivariate polynomi-
als with integer coefficients, and let p be a prime that satisfies:

∀z, t ∈ Z, P1(z, t) ≡ 0 ≡ P2(z, t) (mod p) =⇒ det JP1,P2(z, t) ̸≡ 0 (mod p).
(5.19)

If (x, y) ∈ Z2 is such that

P1(x, y) ≡ P2(x, y) ≡ 0 (mod p2m

) (5.20)

for a given m ∈ N, then for 
u0
v0


:=


x mod p
y mod p


, (5.21)

the sequence (uk, vk)k defined by the recurrence relation

∀k ∈ J0, mJ ,


uk+1
vk+1


:=


uk

vk


−

JP1,P2(uk, vk)

−1

p2k+1


P1(uk, vk)
P2(uk, vk)


mod p2k+1

(5.22)
satisfies:

∀k ∈ J0, mK ,


uk

vk


=


x mod p2k

y mod p2k


. (5.23)

Remark 5.6 is also applicable in the context of Lemma 5.5, while Remark 5.7
becomes:

Remark 5.8 (Inequalities in the bivariate case). If we denote by ℓbiv the
number of bivariate modular roots modulo p2k (this number being regardless of
k ∈ N), and by rbiv the number of actual bivariate integral roots of (P1, P2) in
Z× Z, we have:

0 6 rbiv 6 ℓbiv 6 p2. (5.24)

Lemma 5.6 (Correctness of Algorithm 5.4). For any A, B ∈ N∗ and any
P1, P2 ∈ Z[X] satisfying (5.18), the finite sets S ⊂ Z2 (returned by the algo-
rithm) and R :=


(x, y) ∈ Z2

P1(x, y) = 0 = P2(x, y) ∧ |x| 6 A ∧ |y| 6 B


are equal.

Proof. The proof of Lemma 5.6 is very similar to the one of Lemma 5.4; it
relies on Lemma 5.5, and uses twice Lemma 5.3 (once for each component of
the bivariate integral root).

Pen-and-Paper Proof of Bivariate Lemma 5.5

Now let us present the pen-and-paper proof that helped us to carry out the
formalization of Lemma 5.5 for bivariate polynomials in the Coq proof assistant.

Let us assume all the hypotheses of the lemma hold for P1, P2 ∈ Z[X, Y ],
p ∈ P, x, y ∈ Z, and (uk) , (vk) which are defined in (5.21) and (5.22) by mutual
recurrence.

To shorten most of the following formulas, we consider the sequences (xk)
and (yk) of the modular residues of the root (x, y):

∀k ∈ N,


xk

yk


:=


x mod p2k

y mod p2k


.



5.2. HENSEL LIFTING AND COPPERSMITH’S TECHNIQUE 97

We want to show (5.23), that is to say, ∀k ∈ N, k 6 m⇒ (uk, vk) = (xk, yk).
We prove it by induction on k:
• First, we notice that p = p20 , therefore (5.21) means that (u0, v0) =

(x0, y0), which proves the base case.
• The inductive case amounts to showing that for a given integer k < m

satisfying (uk, vk) = (xk, yk), we have (uk+1, vk+1) = (xk+1, yk+1).
We can write xk = x mod p2k = [x mod p2k+1 ] mod p2k = xk+1 mod p2k ,

which implies xk+1 ≡ xk (mod p2k ), hence

∃λ ∈ Z, xk+1 = xk + λp2k

.

Likewise, we obtain:
∃µ ∈ Z, yk+1 = yk + µp2k

.

For any bivariate polynomial P , we consider the operator

∆i,j(P ) := 1
i!j!


∂i+j

∂Xi∂Y j
P


(5.25)

which maps Z[X, Y ] inside Z[X, Y ]. Then we apply Taylor’s theorem to each
bivariate polynomial Pl (l = 1, 2):

Pl(xk+1, yk+1) =


i,j∈N


λp2k

i 
µp2k

j

∆i,j(Pl)(xk, yk). (5.26)

The left-hand side of (5.26) is zero modulo p2k+1 , since

Pl(xk+1, yk+1) = Pl(x mod p2k+1
, y mod p2k+1

) ≡ Pl(x, y) = 0 (mod p2k+1
).

Concerning the right-hand side, we can notice that

∀i, j ∈ N, i + j > 2 =⇒


λp2k
i 

µp2k
j

=

λiµj


p2k
i+j−2


· p2k+1

and
∆i,j(Pl)(xk, yk) ∈ Z,

therefore all terms in the summation involved in (5.26) are zero modulo p2k+1

whenever i + j > 2 . As a result, (5.26) becomes

0 ≡ Pl(xk, yk)+λp2k

∂XPl(xk, yk)+µp2k

∂Y Pl(xk, yk)+0 (mod p2k+1
). (5.27)

Note that combining (5.27) for both values l = 1, 2, we obtain the following
matrix equation:

0
0


=


P1(xk, yk)
P2(xk, yk)


+

JP1,P2(xk, yk)


λp2k

µp2k


mod p2k+1

. (5.28)

where the modulo operation is applied coordinatewise.



98 CHAPTER 5. INTEGRAL ROOTS CERTIFICATES

Furthermore, we have P1(xk, yk) ≡ 0 ≡ P2(xk, yk) (mod p), hence by (5.19),
det JP1,P2(xk, yk) ̸≡ 0 (mod p), implying det JP1,P2(xk, yk) ̸≡ 0 (mod p2k+1),
which allows us to write

−

JP1,P2(xk, yk)

−1

p2k+1


P1(xk, yk)
P2(xk, yk)


≡


λp2k

µp2k


(mod p2k+1

). (5.29)

Then, we use the induction hypothesis (xk, yk) = (uk, vk) after replacing
λp2k with xk+1 − xk (resp. µp2k with yk+1 − yk), and we obtain

uk

vk


−

JP1,P2(uk, vk)

−1

p2k+1


P1(uk, vk)
P2(uk, vk)


≡


xk+1
yk+1


(mod p2k+1

).

We eventually recognize the definition (5.22), which means we have proved
that 

uk+1
vk+1


=


xk+1
yk+1


mod p2k+1

,

that is, thanks to the idempotence of the modulo, (uk+1, vk+1) = (xk+1, yk+1).

5.2.3 Integer Small Value Problem (ISValP) and
Coppersmith’s Technique

The overall goal of this work is to address the so-called Integer Small Value
Problem (ISValP) [160, Section 3.2] in a formal setting. We give below a math-
ematical presentation of this problem that is typically solved by using Copper-
smith’s technique [41] (see also the description of the whole SLZ algorithm given
in Section 2.5.3).

Given P ∈ Z[X], we want to find the small integer entries on which the
univariate polynomial P has small values modulo a large integer M .

In other words, we want to find all e ∈ Z, |e| 6 B such that |P (e) cmod
M | 6 A for given M, A, B ∈ N.

If we pose a = P (e) cmod M , we have |a| 6 A and P (e)− a ≡ 0 (mod M),
so that the ISValP problem reduces to finding the small modular roots of the
bivariate polynomial Q(a, e) = P (e)− a modulo M .

Using the usual indeterminates X and Y in place of variables a and e leads
to the definition Q(X, Y ) = P (Y ) − X, which constitutes a slightly different
wording with respect to [160], on which we will elaborate at Section 5.5.1.

Coppersmith’s technique relies on the choice of a positive integer α > 0, as
well as the introduction of the family of polynomials

Qi,j(X, Y ) = Qi(X, Y )Mα−iY j

for i 6 α and j 6 (α− i) · deg(P ).
Let (a, e) be a small modular root of Q modulo M . Then we can prove that

(a, e) is a modular root of each Qi,j(X, Y ) modulo Mα. Furthermore, let us
assume that we have found two linear combinations v1(X, Y ) and v2(X, Y ) over
Z of these polynomials Qi,j(X, Y ), such that

∀l ∈ {1, 2}, ∀x, y ∈ Z, |x| 6 A ∧ |y| 6 B =⇒ |vl(x, y)| < Mα. (5.30)



5.3. FORMALIZATION OF HENSEL LIFTING 99

For both l ∈ {1, 2}, this implies that (a, e) is a modular root of vl modulo Mα,
and at the same time that |vl(a, e)| < Mα. Thence, we can conclude that (a, e)
is a small integral root of both bivariate polynomials v1 and v2.

These polynomials v1 and v2 can be found by means of the LLL algorithm
for Euclidean lattice basis reduction, which is the most time consuming part
of the overall algorithm SLZ [160]. More details on the way the polynomials v1
and v2 are computed may be found in [158, 160, 159]. Yet as regards formal
verification, we can just treat the LLL calls as an oracle and log its results in an
appropriate certificate, the verification of which no longer implying LLL calls.

We now turn to the description of our formalization in Coq: the upcoming
Section 5.3 will be devoted to the formal proof of Hensel’s lemma, while in
Section 5.4 we will describe the design of some integral-roots certificates, based
on Hensel lifting.

5.3 Formalization of Hensel Lifting
In this section we present the different choices we have made to undertake the
formalization2 inside the Coq proof assistant [10] using the SSReflect extension
[64, 65]. In particular, Section 5.3.1 is devoted to our final formalization choices
for proving Hensel’s lemma, for the univariate case (Section 5.3.2), as well as
for the bivariate case (Section 5.3.3).

In the sequel, we will often give the name of the formal definitions and
lemmas as they appear in the Coq code, in order to help the reader desirous of
immersing oneself in the reading of the formal development.

5.3.1 Formal Background for Hensel Lifting
We start by presenting the different theories on which relies our formalization,
as well as our new support results that are common to both univariate and
bivariate Hensel lifting.

Note that concerning the basic types, functions and lemmas required for this
formalization, we can see from the previous Section 5.2 that we need:

(i) N with the usual operations including exponentiation, and the primality
and divisibility predicates;

(ii) Z with the usual operations including modulo;

(iii) ExtendedGCD-based modular inversion in Z/qZ (with q = p2k );

(iv) Z[X] with polynomial evaluation, formal derivatives, and Taylor’s theorem
(for polynomials).

The SSReflect Extension.

As said in Section 3.2.7, SSReflect consists of an extension of the Coq proof
language as well as a set of Coq libraries developed upon this extension.

In particular, we extensively used the following theories that supply most of
the key concepts involved in our formalization:

2The Coq development is available at http://tamadi.gforge.inria.fr/CoqHensel/

http://tamadi.gforge.inria.fr/CoqHensel/


100 CHAPTER 5. INTEGRAL ROOTS CERTIFICATES

ssrnat for boolean comparison predicates on the type nat of natural numbers,
with the usual operations including exponentiation;

prime for the primality predicate (prime : nat -> bool);

div for the divisibility predicate (dvdn : nat -> nat -> bool) as well as the
modulo (modn : nat -> nat -> nat) on which it is based;

zmodp for the ExtendedGCD-based modular inversion in Z/qZ (where q will be
instantiated by p2k );

poly for the ring of univariate polynomials, with polynomial evaluation, formal
derivatives, and Taylor’s theorem for univariate polynomials;

The design of all the SSReflect libraries follow the so-called small-scale re-
flection methodology, in such a way that symbolic representations (including
the type bool) are ubiquitous. Thus mathematical predicates will typically be
formalized as Boolean functions. In particular our Coq formalization takes ad-
vantage of the primality predicate “prime : nat -> bool” provided by the
SSReflect library prime: a key feature of this predicate is that its codomain is
not the logical sort Prop of Coq but the enumerated type bool, which is suitable
for computations.

As regards polynomials, we needed to prove Taylor’s theorem for both uni-
variate and bivariate cases. This latter result is one of the key theorems gathered
in our theory bipoly.

Polynomials with Integer Coefficients.

As regards the type of relative integers, we use the one provided by the Coq stan-
dard library ZArith. (We will elaborate on this choice later on in Section 5.5.1.)

As regards the definition of polynomials, both poly and bipoly theories
deal with polynomials with coefficients in a type that has to be equipped with
a SSReflect decidable-equality ring structure.

Therefore, to be able to deal with polynomials on Z, we first needed to prove
that Z satisfies the required axioms of the SSReflect algebraic hierarchy. This is
accomplished in the first part of our theory ssrzarith, where we declare some
appropriate Canonical Structures (a kind of “structure inference” that is heavily
used in SSReflect libraries [59]) for the type Z. This includes canonical structures
Z_eqType (for decidable equality), Z_idomainType (for integral domain), and
Z_countType (for countable type).

Now the terms {poly Z} and {bipoly Z} typecheck so that we can use
them in the sequel to designate univariate and bivariate polynomials on Z.

Handling Different Definitions of the Modular Reduction.

In this section, we will summarize why we need to use several definitions of the
modular reduction in our formalization. Then we will present some lemmas that
allow one to move from one definition of to another.

To sum up, we are using the following four functions related to the modular
reduction:



5.3. FORMALIZATION OF HENSEL LIFTING 101

Zmod : Z -> Z -> Z
modn : nat -> nat -> nat
ZtoZp : forall q : nat, Z -> ’Z_q
inZp : forall p’ : nat, nat -> ’I_p’.+1

The first one, Zmod, is directly linked to the problem at stake and is relatively
efficient, while the second one, modn, is involved in most arithmetic lemmas we
are using from the SSReflect library, which are expressed in terms of Peano,
unary integers.

We provide a link between modn and Zmod through the following key result:

Lemma Z_of_nat_moduli :
forall n q : nat, q > 0 ->
Z_of_nat (modn n q) = Zmod (Z_of_nat n) (Z_of_nat q).

Furthermore, for any fixed second argument q > 2, none of these two func-
tions are homomorphisms, since (m + n) mod q ̸= (m mod q) + (n mod q) in
the general case (unless we add a outermost modulo operation in the right-
hand-side). However, to prove some key results such as the compatibility be-
tween the modulo operation and the polynomial evaluation, on {poly Z} as well
as {bipoly Z}, we need to apply lemmas that expect a morphism as argument.

Consequently, we need to specify the surjective morphism from Z onto Z/qZ,
even though it is just for proving purposes.

We thus define a function ZtoZp, whose codomain ’Z_q is a SSReflect nota-
tion for ’I_(Zp_trunc q).+2, that is ’I_q.-2.+2, where ’I_n is itself a nota-
tion for the type “ordinal n” defined by:

Inductive ordinal (n : nat) : predArgType :=
| Ordinal : forall m : nat, m < n -> ’I_n.

In other words, ’I_q represents the finite set J0, qJ for q ∈ N, while ’Z_q rep-
resents the same set J0, qJ with the additional assumption that q > 2. This
assumption is syntactically enforced thanks to the term q.-2.+2 above, which
is always > 2. Consequently ’Z_q becomes a nontrivial ring, which corresponds
to the mathematical ring Z/qZ.

Note that we define ZtoZp with the help of the inZp function, which is
located in the SSReflect library zmodp and defined by means of the modn function.

Finally we prove that “ZtoZp q” is a ring homomorphism for any fixed q > 2:

Lemma ZtoZp_morph :
forall (q : nat) q > 1 -> rmorphism (ZtoZp q).

The proof uses the following result linking ZtoZp and Zmod several times:

Lemma ZtoZp_Zmod :
forall (q : nat) (z : Z), q > 1 ->
Z_of_nat (ZtoZp q z) = Zmod z (Z_of_nat q).

This can be straightforwardly proved, relying on Z_of_nat_moduli and on our
definition of ZtoZp.

Using the previous lemmas, we can now prove some key results such as:

Lemma horner_Zmod_compat :
forall (P : {poly Z}) (z : Z) (q : nat),
P.[z mod q] = P.[z] %[Zmod q].



102 CHAPTER 5. INTEGRAL ROOTS CERTIFICATES

Lemma bieval_Zmod_compat :
forall (P : {bipoly Z}) (u v : Z) (q : nat), q > 1 ->
P.2[u mod q, v mod q] = P.2[u, v] %[Zmod q].

As regards the notations, “a mod b” is the infix notation for “Zmod a b”
and “a = b %[Zmod c]” denotes the equivalence relation a ≡ b (mod c), on
Z. Note that the SSReflect library div provides similar notations for the mod-
ulo operation on type nat: “a %% b” is the infix notation for “modn a b” and
“a = b %[mod c]” is a shortcut for “(a %% c == b %% c)”. Finally, “P.[x]”
denotes the Horner evaluation at point x of a univariate polynomial P, while
“P.2[x,y]” denotes the evaluation at (x, y) of a bivariate polynomial P.

5.3.2 Insights into the Coq Formalization of Univariate
Lemma 5.2

Thanks to the material presented in Section 5.3.1, we can define the univariate
Hensel lifting as a Coq function:

Definition univ_hensel_step (P:{poly Z}) (p:nat) (u:Z) (k:nat) :=
(u - P.[u] * Zmod_inv (p^2^k.+1) (P^‘()).[u]) mod p^2^k.+1.

where P^‘() denotes the derivative of the univariate polynomial P and the
function (Zmod_inv : forall q : nat, Z -> ’Z_q) is the modular inversion
that we defined beforehand, by composing the projection ZtoZp (from Z to
Z/qZ), followed by the function Zp_inv (from Z/qZ to itself). Note that this
latter function (provided by the SSReflect library zmodp) is a total function that
takes two arguments q and x, and returns the desired modular inverse x−1

q if it
exists (i.e., if x is coprime with q), otherwise x as a default value.

The function univ_hensel_step thus formalizes Algorithm 5.1, and can be
iterated by means of a fixpoint, namely:

Fixpoint univ_hensel_iterated
(P : {poly Z}) (p : nat) (u0 : Z) (k : nat) {struct k} : Z :=
if k is j.+1 then univ_hensel_step (univ_hensel_iterated u0 j) j
else u0.

Now we can state Lemma 5.2 in Coq:

Section UnivariateHenselLemma.
Variable P : {poly Z}.
Variable p : nat.
Hypothesis p_prime : prime p.
Hypothesis P_roots_mod_p :

forall z : Z, 0 <= z < Z_of_nat p ->
P.[z] = 0 %[Zmod p] -> (P^‘()).[z] <> 0 %[Zmod p].

Variable x : Z.
Variable m : nat.
Hypothesis x_root_m : P.[x] = 0 %[Zmod p^2^m].
Let u0 := x mod p.
Let uk := univ_hensel_iterated P p u0.
Let xk k := x mod (p^2^k)%N.



5.3. FORMALIZATION OF HENSEL LIFTING 103

Lemma univ_hensel_lemma :
forall k : nat, k <= m -> uk k = xk k.

End UnivariateHenselLemma.

We start the proof by induction on the integer k. The base case is solved
trivially, while in the inductive case we need to invoke Taylor’s theorem for
univariate polynomials on a ring R (which is not assumed commutative, hence
the hypothesis “GRing.comm x h” that x and h commute):

Lemma nderiv_taylor :
forall (R : ringType) (P : {poly R}) (x h : R),
GRing.comm x h ->
P.[x + h] = \sum_(i < size P) (P^‘N(i)).[x] * h ^+ i.

where P^‘N(i) is a notation for the operator “nderivn p i” corresponding to
the operator ∆i(P ) defined in Equation (5.15). Both nderivn and nderiv_taylor
have been been included in the SSReflect library poly at the occasion of this
work. Note that since SSReflect defines univariate polynomials as lists of coeffi-
cients without trailing zeros, we can reuse the size function relative to lists, so
that for any P ∈ R[X], we have intuitively:

size P =


0 if P = 0
1 + deg(P) otherwise.

Following the pen-and-paper proof presented in Section 5.2.1, we need to
“truncate” the Taylor expansion given in (5.16) in order to retrieve the “first
two terms” involved in (5.17). For this purpose, we first proved the following
result that is based on the machinery provided in SSReflect library bigop [11].

Lemma trunc_univ_sum :
forall (F : nat -> Z) (n : nat) (q : nat),
q > 1 ->
n > 1 ->
(forall i : nat, 2 <= i < n -> F i = 0 %[Zmod q]) ->
\sum_(i < n) F i = F 0 + F 1 %[Zmod q].

where the notation “\sum_(i < n) F i” denotes the finite sum


06i<n F (i).

Then we proved that under hypotheses P_roots_mod_p and x_root_m, we
have:

Lemma size_P_gt1 : size P > 1.

which allows us to prove the side-condition that appears when applying lemma
trunc_univ_sum (due to the hypothesis “n > 1” above).



104 CHAPTER 5. INTEGRAL ROOTS CERTIFICATES

5.3.3 Insights into the Coq Formalization of Bivariate Lemma 5.5
We now focus on the formalization of bivariate Hensel lifting, which is very
similar to the univariate case that we presented in Section 5.3.2. We will thus
summarize the main steps we met during the formalization of the bivariate case,
highlighting the key differences between both cases.

A first required building block to formalize bivariate Hensel lifting is the
availability of some operations on 2-by-2 matrices, including the Cramer rule
in modular arithmetic. More precisely, this rule is in charge of computing the

quantity

JP1,P2(uk, vk)

−1

p2k+1


P1(uk, vk)
P2(uk, vk)


mod p2k+1 involved in (5.22), and

its correctness proof will allow one to deduce (5.29) from (5.28). So in library
morebipolyz, we define order-2 matrices on a type T as a record called mat2by2
with four projections (one for each matrix coefficient), and we define the func-
tions Cramer_x and Cramer_y of type:

Cramer_x : nat -> mat2by2 Z -> Z -> Z -> Z
Cramer_y : nat -> mat2by2 Z -> Z -> Z -> Z

using the following formulas based on order-2 determinants:

∀q > 2, ∀u, v ∈ Z,

∀A =


a b
c d


∈M2(Z),


Cramer_x(q, A, u, v) =

u b

v d

×
a b

c d


−1

q

Cramer_y(q, A, u, v) =

a u

c v

×
a b

c d


−1

q

where the modular inversions can be performed by using the function Zmod_inv
presented at the beginning of Section 5.3.2. We will motivate our choice for
formalizing the concept of 2-by-2 matrices used here later on in Section 5.5.1.

Furthermore, we need to formalize bivariate polynomials on Z. We chose
to define bivariate polynomials on a ring R by iterating twice the polynomi-
als ring constructor: we introduce the notation {bipoly R} as a shortcut for
{poly {poly R}}, and we instantiate this definition with ring R := Z. (We will
motivate this choice later on in Section 5.5.1.)

Then, relying on Cramer_x and Cramer_y, we can implement Algorithm 5.3
as a Coq function biv_hensel_step, whose type is as follows:

biv_hensel_step :
{bipoly Z} -> {bipoly Z} -> nat -> Z * Z -> nat -> Z * Z

Note that the main difference here with respect to univ_hensel_step is that we
have two bivariate polynomials instead of a single univariate one, and that the
algorithm acts on a pair of integers. Like in the univariate case, we can iterate
this first function, which leads to a function biv_hensel_iterated, which has
the same type:

biv_hensel_iterated :
{bipoly Z} -> {bipoly Z} -> nat -> Z * Z -> nat -> Z * Z

Now we can state Lemma 5.5 in Coq:

Section BivariateHenselLemma.
Variables P1 P2 : {bipoly Z}.



5.3. FORMALIZATION OF HENSEL LIFTING 105

Variable p : nat.
Hypothesis p_prime : prime p.
Hypothesis Behavior_roots_mod_p :

forall (z w : Z),
0 <= z < p -> 0 <= w < p ->
P1.2[z,w] = 0 %[Zmod p] ->
P2.2[z,w] = 0 %[Zmod p] ->
(Jdet P1 P2).2[z,w] <> 0 %[Zmod p].

Variables x y : Z.
Variable m : nat.
Hypothesis P1_root_m : P1.2[x,y] = 0 %[Zmod p^2^m].
Hypothesis P2_root_m : P2.2[x,y] = 0 %[Zmod p^2^m].
Let x0 := x mod p.
Let y0 := y mod p.
Let hk := biv_hensel_iterated P1 P2 p (x0, y0).
Local Notation xk := (fun k : nat => x mod p^2^k) (only parsing).
Local Notation yk := (fun k : nat => y mod p^2^k) (only parsing).
Lemma biv_hensel_lemma :

forall k : nat, k <= m -> hk k = (xk k, yk k).
End BivariateHenselLemma.

where the expression (Jdet P1 P2).2[z,w] corresponds to the determinant
of the Jacobian matrix of P1 and P2, evaluated at (z, w).

Like in the univariate case, we start the proof by induction on the integer k.
The base case is solved trivially, while for the inductive case we need Taylor’s
theorem for bivariate polynomials. We have formalized this latter theorem in
our bipoly theory.

Furthermore, we need to truncate the Taylor expansion in order to retrieve
the “first three terms” involved in (5.27). Yet for this key step we cannot directly
use the proof path that worked for the univariate case in Section 5.3.2, since
there is no “bivariate equivalent” to the lemma size_P_gt1. (This is due to
the fact that an order-2 matrix that is invertible can possibly have some zero
coefficients.) We thus have been led to prove the following ad-hoc lemma, that
is a little more involved than the lemma trunc_univ_sum that we presented in
Section 5.3.2:

Lemma trunc_biv_sum :
forall (q : nat) (F : nat -> nat -> Z) (m : nat) (n : nat -> nat),
q > 1 ->
( forall i j : nat, i + j >= 2 -> F i j = 0 %[Zmod q] ) ->
( n 1 >= 1 -> m >= 2 ) ->
( n 0 >= 1 -> m >= 1 ) ->
( n 1 < 1 -> F 1 0 = 0 ) ->
( n 0 < 2 -> F 0 1 = 0 ) ->
( n 0 < 1 -> F 0 0 = 0 ) ->
\sum_(i < m)\sum_(j < n i)(F i j) = F 0 0 + F 0 1 + F 1 0 %[Zmod q].

The idea here for proving the equality
06i<m


06j<ni

Fi,j = F0,0 + F0,1 + F1,0 (mod q)



106 CHAPTER 5. INTEGRAL ROOTS CERTIFICATES

is first to use the hypothesis saying that only terms Fi,j with i + j < 2 may be
nonzero modulo q, and at the same time to assert that if ever one such term
Fi,j with i+ j < 2 is not included in the left-hand side (depending on the values
of m and ni), it will actually be zero. Hence the five implicative hypotheses
of trunc_biv_sum. We thus prove this lemma by case analysis (18 subgoals),
relying on some “sum bookkeeping” that is highly facilitated by the SSReflect
library bigop.

Finally, we follow the arguments that were presented in a “matrix fashion” at
the end of Section 5.2.2, working coefficient by coefficient. This is accomplished
with the help of half a dozen lemmas that are linked to Cramer rule for 2-by-2
matrices, including:

Lemma Cramer_x_opp : forall q A u v, q > 1 ->
Cramer_x q A (- u) (- v) = - Cramer_x q A u v.

(* and *)

Lemma Cramer_x_mod : forall q A u v, q > 1 ->
Cramer_x q A (u mod q) (v mod q) = Cramer_x q A u v %[Zmod q].

We will motivate our choice for formalizing the concept of 2-by-2 matrices
used here later on in Section 5.5.1.

5.4 Integral Roots Certificates
We follow the skeptical approach by viewing Algorithms 5.2 and 5.3 as certifying
algorithms, and devise some “integral root certificates” whose verification need
not recompute all the iterations of Hensel lifting. In upcoming Sections 5.4.1
and 5.4.2, we address both univariate and bivariate cases, the latter one being a
key building block for the ISValP problem that we will address in Section 5.4.3.

5.4.1 Univariate Case
In the sequel, we will call univariate small-integral-roots problem the problem
that consists of knowing all the “small” integral roots x ∈ Z of a univariate
polynomial P on Z. In other words, we consider the following kind of data:

B ∈ N
P ∈ Z[X]
S ⊂ Z

(5.31)

and we want to formally verify that we have

∀x ∈ Z, x ∈ S ⇐⇒

|x| 6 B ∧ P (x) = 0


. (5.32)

Following the certificate-based approach described in Section 3.2.6, we first
have to define a type for our univariate small-integral-roots certificates. Typi-
cally, it should gather at the same time the “input/output” of the problem—here
given in Equation (5.31)—, as well as some additional data that allows one to
deduce that the considered instance of the problem is valid—here it amounts to
saying that Equation (5.32) holds.



5.4. INTEGRAL ROOTS CERTIFICATES 107

We thus consider the following type of certificate for the univariate small-
integral-roots problem:

Record univCertif := UnivCertif
{ uc_P : {poly Z}
; uc_B : Z
; uc_p : nat
; uc_k : nat
; uc_L : seq (Z * bool)
}.

Note that in addition to the polynomial P and the bound B that constitutes
the “input” of the problem, we store in the certificate the prime p and the final
value of k that both occur in the Algorithm 5.2 of univariate Hensel lifting.
More precisely, p is the prime number that will fulfill (5.8), and k is the number
of iterations of Hensel lifting performed to reach bound B; in other words, we
will have p2k

> 2 · B. Finally, the list L involved in the certificate gathers all
the roots of P modulo p2k , along with a Boolean value that indicates whether
each modular root of the polynomial is an actual integral root or not.

Remark 5.9 (Usefulness of the Boolean values). We will see the correct-
ness of the method specifically relies on the fact all the modular roots are stored
in list L. Yet we want to deal with integral roots of the polynomial P , which
are obviously among these modular roots. So the presence of the Boolean values
inside the elements of list L allows one to easily get all the claimed integral
roots of the polynomial from the list L. More precisely, for a given certificate
“uc : univCertif,” we can immediately get the set S mentioned in (5.31) by
considering “map1_filter2 Z (uc_L uc),” where map1_filter2 is defined by:

Definition map1_filter2 (T : Type) (L : seq (T * bool)) :=
map (fun e => e.1) (filter (fun e => e.2) L).

We will say that one such certificate (P, B, p, k, L) is valid if the following
conditions are fulfilled:

p is a prime number, (5.33a)

the integer k > 0 satisfies p2k

> 2 ·B, (5.33b)

and denoting Lp = {u mod p | ∃b ∈ B, (u, b) ∈ L} , we have:

the elements of Lp are pairwise distinct, (5.33c)
∀s ∈ J0, pJ, s ∈ Lp ⇐⇒ P (s) ≡ 0 (mod p), (5.33d)

and for all (u, b) ∈ L, we have:

P ′(u) ̸≡ 0 (mod p), (5.33e)

|2 · u| 6 p2k

, (5.33f)

P (u) ≡ 0 (mod p2k

), (5.33g)
b = true ⇐⇒


|u| 6 B ∧ P (u) = 0


. (5.33h)



108 CHAPTER 5. INTEGRAL ROOTS CERTIFICATES

All these Boolean conditions are implemented in the form of a Coq function
univ_check that has type “univCertif -> bool,” and which constitutes what
we call a univariate small-integral-roots certificates checker.

Before dealing with the correctness proof of this checker, we can formulate
a few remarks:

Remark 5.10 (Uniqueness predicate). Equation (5.33c) is not central for
the problem at stake, yet it can be easily implemented using the uniq predicate
from the SSReflect library seq, and it ensures the number of modular (resp.
integral) roots is relevantly described by the size of list L (resp. the size of list S
mentioned in Remark 5.9).

Remark 5.11 (Invertibility hypothesis). Equation (5.33e) can be viewed
as a “distributed version” of the main invertibility hypothesis (5.3) for univariate
Hensel lifting. Indeed, according to (5.33d), the values that are given to variable
u in (5.33e) correspond to all the modular roots of P modulo p, so that (5.33d)
and (5.33e) imply

∀u ∈ J0, pJ , P (u) ≡ 0 (mod p) =⇒ P ′(u) ̸≡ 0 (mod p).

The correctness proof of the univariate checker univ_check consists of prov-
ing that any certificate that is accepted by the checker is valid, i.e., contains all
the integral roots of the considered polynomial in the considered range. To be
more precise, we need to prove the following result:

Lemma 5.7 (Correctness of univariate checker). For all univariate small-
integral-roots certificate uc = (P, B, p, k, L) such that (univ_check uc) holds,
for all z ∈ Z we have the equivalence

|z| 6 B ∧ P (z) = 0

⇐⇒ z ∈ (uc_roots uc), (5.34)

where (uc_roots uc) is defined by “map1_filter2 Z (uc_L uc)”.

We now present the main steps of this main correctness proof that we have
mechanized in Coq. The reasoning is somewhat close to the proof of Lemma 5.4
that we gave for pedagogical purposes, yet there is a key difference between
Lemmas 5.4 and 5.7, namely the former was a usual proof of correctness for
what we could call a “certified algorithm”, while we now focus on the correctness
of a checker, for certificates that are supposed to be generated by a “certifying
algorithm”, that is a kind of oracle.

Proof. Suppose (univ_check uc) hold for a given certificate uc = (P, B, p, k, L),
and let z ∈ Z.

• For proving the “=⇒” part of equivalence (5.34), we will use Lemma 5.2:
To begin with, the assumption P (z) = 0 implies

P (z mod p) ≡ 0 (mod p).

So applying (5.33d) with s := z mod p leads to s ∈ Lp, that is by definition
of Lp,

∃(u, b) ∈ L, s = u mod p,



5.4. INTEGRAL ROOTS CERTIFICATES 109

hence
z mod p ≡ u mod p. (5.35)

Then it is sufficient to show that (u, b) = (z, true), since it implies (z, true) ∈
L, that is to say, z ∈ (uc_roots uc).

– First, we want to show that z = u. The idea is to apply twice
Lemma 5.2 (once for x := z and once for x := u). The main hypoth-
esis (5.8) is fulfilled thanks to (5.33e), as explained in Remark 5.11.
Moreover, we have immediately

P (z) ≡ 0 (mod p2k

)

and
P (u) ≡ 0 (mod p2k

)
by using (5.33g). So we can apply Lemma 5.2 twice3 and use (5.35)
to deduce that

z mod p2k

= u mod p2k

.

In addition, we have
|z| 6 B by hypothesis
B < p2k

/2 by (5.33b)
|u| 6 p2k

/2 by (5.33f).

Consequently Lemma 5.3 implies z = u.
– Second, we want to show that b = true, knowing that (5.33h) holds.

It suffices here to combine the hypothesis

|z| 6 B ∧ P (z) = 0


with

the fact that z = u (proved just now) to get

|u| 6 B ∧ P (u) = 0


,

which is equivalent to the desired result b = true.

• For the “⇐=” part of (5.34), we need to verify the values stored in
(uc_roots uc) are actual integral roots, which is indeed the case since
we have

z ∈ (uc_roots uc) ⇐⇒ (z, true) ∈ L,

which implies

|z| 6 B ∧ P (z) = 0


thanks to the condition (5.33h).

An Example of Univariate Small-Integral-Roots Certificate. Resum-
ing the example of Section 5.2.1 page 90, the calculations based on univariate
Hensel lifting allow one to generate the following univariate small-integral-roots
certificate, where the Booleans that have to satisfy (5.33h) have been set ac-
cording to the simple tests mentioned in Equation (5.7).

C :=


P := 225X5−11595X4+9961X3−197931X2+104312X−13872


,


B := 13872


,


p := 3


,


k := 4


,


L =


(51, true); (5523949, false); (−5523949, false)


.

3Indeed, in this context we do not know how u has been computed, unlike Lemma 5.4
whose proof only required one application of Lemma 5.2.



110 CHAPTER 5. INTEGRAL ROOTS CERTIFICATES

Finally, this simple example allows one to formulate a general remark:

Remark 5.12 (Changing p). It is sometimes possible to choose a slightly
bigger prime p than the first one satisfying Hypothesis (5.8) so that the list L
of the certificate is smaller. (Note that this will typically be useful when there
is no root in Z at all, so that such a change of prime p leads to an empty list
L.) In the context of the considered example, we can thus notice that p = 5 is
another possible prime:

P (0) = −13872 ̸≡ 0 (mod 5)
P (1) = −108900 ≡ 0 (mod 5) P ′(1) = −306922 ̸≡ 0 (mod 5)
P (2) = −695604 ̸≡ 0 (mod 5)

P (3) = −2097888 ̸≡ 0 (mod 5)
P (4) = −4863936 ̸≡ 0 (mod 5).

We would thus obtain the following certificate:

C ′ :=


P := 225X5−11595X4+9961X3−197931X2+104312X−13872


,


B := 13872


,


p := 5


,


k := 3


,


L =


(51, true)


.

5.4.2 Bivariate Case
The problem we tackle in this section is to formally verify that we know all the
small integral roots (x, y) ∈ Z×Z of a pair of bivariate polynomials (P1, P2) on
Z. In other words, we consider the following kind of data:

A ∈ N
B ∈ N
P1 ∈ Z[X, Y ]
P2 ∈ Z[X, Y ]
S ⊂ Z× Z

and we want to formally verify that we have

∀(x, y) ∈ Z2, (x, y) ∈ S ⇐⇒

|x| 6 A ∧ |y| 6 B ∧ P1(x, y) = 0 = P2(x, y)


.

(5.36)
For this purpose, we follow the same proof path as for univariate integral-

roots certificates:

1. Define the type for bivariate integral-roots certificates as a Record;

2. Define the checker for these certificates as a Boolean function;

3. Prove the correctness of this checker (if it returns true, then (5.36) holds),
using the uniqueness result for bivariate modular roots given by Lemma 5.5.



5.4. INTEGRAL ROOTS CERTIFICATES 111

The formalization is very similar to the one we presented in Section 5.4 for the
univariate case and the generalization to the bivariate case yields no technical
difficulty, thanks to the material developed for proving the bivariate Lemma 5.5.
Yet we will give all the main definitions and statements involved in the three
steps of the formalization.

First, we consider the following type of certificate for the bivariate small-
integral-roots problem:
Record bivCertif := BivCertif
{ bc_P1 : {bipoly Z}
; bc_P2 : {bipoly Z}
; bc_A : Z
; bc_B : Z
; bc_p : nat
; bc_k : nat
; bc_L : seq (Z * Z * bool)
}.

Then, we will say that one such certificate (P1, P2, A, B, p, k, L) is valid if
the following conditions are fulfilled:

p is a prime number, (5.37a)

the integer k > 0 satisfies p2k

> 2 ·A and p2k

> 2 ·B, (5.37b)

and denoting Lp = {(u, v) mod p | ∃b ∈ B, (u, v, b) ∈ L} , we have:

the elements of Lp are pairwise distinct, (5.37c)
∀(s, t) ∈ J0, pJ2, (s, t) ∈ Lp ⇐⇒ P1(s, t) ≡ 0 ≡ P2(s, t) (mod p), (5.37d)

and for all (u, v, b) ∈ L, we have:

det JP1,P2(u, v) ̸≡ 0 (mod p), (5.37e)

|2 · u| 6 p2k

∧ |2 · v| 6 p2k

, (5.37f)

P1(u, v) ≡ 0 ≡ P2(u, v) (mod p2k

), (5.37g)
b = true ⇐⇒


|u| 6 A ∧ |v| 6 B ∧ P1(u, v) = 0 = P2(u, v)


. (5.37h)

These conditions are implemented in the form of a Boolean Coq function
named “biv_check : bivCertif -> bool” which constitutes a bivariate small-
integral-roots certificates checker.

The previously formulated Remarks 5.9, 5.10 and 5.11 are applicable in the
context of the bivariate case, and the correctness lemma of the bivariate checker
biv_check is as follows:

Lemma 5.8 (Correctness of the checker). For all bivariate small-integral-
roots certificate bc = (P1, P2, A, B, p, k, L) such that (biv_check bc) holds,
for all (z, w) ∈ Z we have the equivalence
|z| 6 A ∧ |w| 6 B ∧ P1(z, w) = 0 = P2(z, w)


⇐⇒ (z, w) ∈ (bc_roots bc),

where (bc_roots bc) is defined by “map1_filter2 (Z * Z) (bc_L bc)”.



112 CHAPTER 5. INTEGRAL ROOTS CERTIFICATES

Proof. The proof path is exactly the same as the one for Lemma 5.7, relying on
the bivariate Lemma 5.5 in place of Lemma 5.2, and using twice the arithmetic
Lemma 5.3, one for each variable.

5.4.3 ISValP Certificates
As we have seen in Section 5.2.3, Coppersmith’s technique reduces the ISValP
problem to the bivariate small-integral-roots problem, and proceeds by implica-
tion, so that this technique can be used to ensure we have forgotten no solution
of a given instance of ISValP.

Following the certificate-based approach (cf. Section 3.2.6), we implement a
checker for ISValP certificates, built on top of our bivariate small-integral-roots
certificates checker. We recall that this latter checker deals with certificates that
can be generated using bivariate Hensel lifting, and that its correctness derives
from the bivariate Hensel’s lemma.

In the sequel, we will present the main steps we met for formalizing an ISValP
certificates checker in Coq. We will thus present in Sections 5.4.3.1 and 5.4.3.2
two building blocks that are involved in this design, from the mathematical
point of view to the Coq material itself, then Section 5.4.3.3 will be devoted to
the presentation of the resulting formalization of the ISValP certificates, their
checker and the corresponding correctness lemma.

5.4.3.1 Change of Polynomial Basis

From a formal point of view, a key step to encode this technique in a for-
mal checker was to translate the fact the v1(X, Y ) and v2(X, Y ) are initially
expressed in the polynomial basis {Qi,j(X, Y )}i,j , and compute their expres-
sion in the usual monomial basis. In particular, we could not have stored these
polynomials in basis {XiY j}i,j directly, since the correctness of the method
strongly relies on the presence of Mα−i inside the expression of Qi,j(X, Y ). In
other words, these powers of M have to be there, syntactically.

In our formalization, we perform the change of polynomial basis at stake in
the following steps:

1. Given a bivariate polynomial v expressed with coefficients uij in basis
{Qi,j(X, Y )}i,j (i.e., assuming we have v =


i6α


j uijQi,j(X, Y )), we

first “lift” its coefficients uij to uijMα−i;

2. Then in the polynomial


i6α


j uijMα−iXiY j so obtained, we replace

the indeterminate X with the polynomial Q to get

v =

i6α


j

uijMα−iQi(X, Y )Y j ;

this may be accomplished using a Horner-based polynomial composition.
We implemented the first step by defining a function powers_alpha_pos (in

library morepolyz) for pre-computing lists of decreasing powers of M :
Definition Fpowers (M : Z) (x : Z * seq Z) : (Z * seq Z) :=

let: (x1, x2) := x in (M * x1, x1 :: x2).
Definition powers_alpha_pos (alpha : positive) (M : Z) :=

snd (iter_pos alpha (Z * seq Z)%type (Fpowers M) (1, [::])).



5.4. INTEGRAL ROOTS CERTIFICATES 113

So we can get the list (Mα, Mα−1, . . . , M1, 1) of size α + 1 by considering

powers_alpha_pos (Psucc alpha) M.

Then we define a recursive function rec_precalc_alpha that is in charge of
multiplying this list component-wise with a bivariate polynomial u ∈ Z[X, Y ]
seen as a list of univariate polynomials in Z[Y ]:

Fixpoint rec_precalc_alpha
(u : seq {poly Z}) (s : seq Z) {struct u} : seq {poly Z} :=
match u, s with

| u0 :: u’, s0 :: s’ => u0 * (s0%:P) :: rec_precalc_alpha u’ s’
| _, _ => [::]

end.

where the notation c%:P denotes the constant polynomial with coefficient c.
We can combine both functions to define function bipoly_precalc_alpha

(in library morebipolyz):

Definition bipoly_precalc_alpha
(u : {bipoly Z}) (alpha : positive) (M : Z) :=
let s := powers_alpha_pos (Psucc alpha) M in
Poly (rec_precalc_alpha u s).

and we prove the corresponding correctness lemma:

Lemma bipoly_precalc_alpha_correct :
forall (u : {bipoly Z}) (alpha : positive) (M : Z), M <> 0 ->
let a := nat_of_pos alpha in
bipoly_precalc_alpha u alpha M =
\poly_(i < a.+1, j < size u‘_i) (M ^+ (a - i) * u‘_i‘_j).

where the notation M ^+ n stands for the exponentiation (defined for any SS-
Reflect ringType), p‘_i denotes the i-th coefficient of list-based polynomial
p, and "\poly_(i < m, j < n) eij" (with i and j being free variables in
expression eij) is a shortcut we defined to denote the bivariate polynomial
m−1
i=0

n−1
j=0

eijXiY j .

For the second step, we rely on the polynomial composition function poly_comp
defined in SSReflect library poly that we briefly recall:

Section PolyCompose.
Variable R : ringType.
Implicit Types p q : {poly R}.
Definition poly_comp q p := (map_poly polyC p).[q].
End PolyCompose.
Notation "p \Po q" := (poly_comp q p) (at level 50).

This definition relies on a Horner evaluation of polynomial

map_poly polyC p : {poly {poly R}}

at (q : {poly R}), and we specialize it for (R := {poly Z}), namely for p and
q having type {bipoly R}, so that it will involve an intermediate polynomial

map_poly polyC p : {poly {poly {poly Z}}}



114 CHAPTER 5. INTEGRAL ROOTS CERTIFICATES

To sum up, the material presented in this subsection will lead to local defi-
nitions
let v1 := (bipoly_precalc_alpha u1 alpha M) \Po Q in
let v2 := (bipoly_precalc_alpha u2 alpha M) \Po Q in
...

inside the reference implementation of our checker for ISValP certificates.

5.4.3.2 Computation of Weighted Norm 1

Then, a crucial step is to formalize the required material to be able to verify
Equation (5.30) in an effective way. For this purpose, we consider the following
definition of a “weighted norm-1” (called bimaphorner in the code), for a given
P ∈ Z[X, Y ] and A, B ∈ N:

|P |(A, B) :=


i


j

|Pij |AiBj ∈ N.

Then we prove the following result:

Lemma 5.9 (lez_bimaphorner). For any P ∈ Z[X, Y ] and any (A, B) ∈ Z2,
we have:

∀x, y ∈ Z, |x| 6 A ∧ |y| 6 B =⇒ |P (x, y)| 6 |P |(A, B).

Thanks to this result (and considering P := vl), we can notice that it is sufficient
to have |vl|(A, B) < Mα to make sure that Equation (5.30) holds.

And we derive the following extra result:

Lemma 5.10 (modz_small_0). For any N ∈ Z, we have:

∀z ∈ Z, |z| < |N | ∧ z ≡ 0 (mod N) =⇒ z = 0.

Finally we can combine Lemmas 5.9 and 5.10 to obtain the following key
result:

Lemma 5.11 (small_modular_roots_in_Z). For any P ∈ Z[X, Y ] and any
(N, A, B) ∈ Z3, we have:

∀x, y ∈ Z, |x| 6 A ∧ |y| 6 B ∧ |P | (A, B) < |N |
∧ P (x, y) ≡ 0 (mod N) =⇒ P (x, y) = 0.

The definition bimaphorner presented in this subsection will be specialized
and used for our reference (proof-oriented) implementation of our ISValP cer-
tificates checker, as shown by lines:
let Ma := Zpower_pos M alpha in
...
(bimaphorner Zabs A B v1 < Zabs Ma) &&
(bimaphorner Zabs A B v2 < Zabs Ma) &&
...

and Lemma 5.11 will be applied twice, one for each polynomial v1 and v2 ob-
tained by the method presented in the previous Section 5.4.3.1.



5.4. INTEGRAL ROOTS CERTIFICATES 115

5.4.3.3 ISValP Certificates Based on Hensel Lifting

First, we consider the following type of certificate for the ISValP problem pre-
sented in Section 5.2.3:

Record cert_ISValP : Type := Cert_ISValP
{ c_P : {poly Z} (* hence [Q(X,Y) := P(Y) - X] *)
; c_M : Z
; c_alpha : positive
; c_A : Z
; c_B : Z
; c_u1 : {bipoly Z} (* in basis [M^(alpha-i) * Q^i(X,Y) * Y^j] *)
; c_u2 : {bipoly Z} (* in basis [M^(alpha-i) * Q^i(X,Y) * Y^j] *)
; c_p : nat
; c_k : nat
; c_L : seq (Z * Z * bool)
}.

Next, using the material presented in Section 5.4.2, 5.4.3.1 and 5.4.3.2, we
define the following certificates checker:

Definition check_ISValP (C : cert_ISValP) : bool :=
let: Cert_ISValP P M alpha A B u1 u2 p k L := C in
let Q := poly_cons P (bipolyC (-1)) in
let v1 := (bipoly_precalc_alpha u1 alpha M) \Po Q in
(* cf. Section 5.4.3.1 *)
let v2 := (bipoly_precalc_alpha u2 alpha M) \Po Q in
let Ma := Zpower_pos M alpha in
let C’ := BivCertif v1 v2 A B p k L in
[&& 0 < M,
bimaphorner Zabs A B v1 < Zabs Ma,
(* cf. Section 5.4.3.2 *)
bimaphorner Zabs A B v2 < Zabs Ma
& biv_check C’]. (* cf. Section 5.4.2 *)

where (poly_cons P (bipolyC (-1))) represents the polynomial “P (Y )−X”.
Finally, we derive the corresponding correctness lemma, whose statement is as
follows:

Lemma check_ISValP_correct :
forall C : cert_ISValP,
check_ISValP C = true ->
let: Cert_ISValP P M alpha A B u1 u2 p k L := C in
forall n y : Z,
let x := P.[y] - n * M in
Zabs x <= A ->
Zabs y <= B ->
(x, y) \in map1_filter2 (Z * Z) L.

Remark 5.13 (Reasoning by implication). As we pointed it out in Re-
mark 2.6, Coppersmith’s technique proceeds by implication, so it finally leads to
an inclusion in our correctness lemma check_ISValP_correct: all the solutions
of the ISValP instance are gathered in the list L. Contrastingly, the converse



116 CHAPTER 5. INTEGRAL ROOTS CERTIFICATES

inclusion is mathematically trivial (it amounts to evaluating the polynomial P
on each of the candidate roots), but implementing this ultimate verification in
the ISValP checker would require the addition of Booleans inside the ISValP cer-
tificate, with another semantics than for those that are involved in the bivariate
small-integral-roots certificates—we recall that the Booleans currently imple-
mented in these latter certificates allows one to fully address the equivalence
involved in (5.36).

5.4.4 A Modules-Based Formalization for Effective Check-
ers

The certificates checkers we have presented in Sections 5.4.1, 5.4.2 and 5.4.3 have
been developed using some data structures that are suitable for the proofs, but
not for effective computation. For instance, the implementation of polynomials
in the SSReflect library poly relies on the constructor Poly (taking a list of
coefficients as an argument), which is not computational. We thus need to re-
implement our certificates checkers with effective data structures.

In particular, we want to define generic checkers that can be instantiated
with the desired integer operations and implementation of polynomials, while
being able to derive their correctness by directly relying on the reference imple-
mentation based on SSReflect datatypes. We chose to rely on the module system
of Coq to achieve this genericity.

5.4.4.1 Presentation of the Main Abstract Interfaces

To begin with, we define abstract interfaces (Module Types) for computational
rings, rings of univariate polynomials, rings of bivariate polynomials, as well
as a specific interface for the ring of integers, which will handle some specific
functions such as modulo and absolute value in addition to the ring operations.
For instance, here is an excerpt of the Coq code defining the first interface in
the hierarchy:

Module Type CalcRingSig.
Parameter T : Type.
Parameter R : comRingType.
Parameter toR : T -> R.
Parameter ofR : R -> T.
Parameter ofR_inj : forall r : R, toR (ofR r) = r.
Parameter t0 : T.
Parameter t1 : T.
Parameter topp : T -> T.
Parameter tadd : T -> T -> T.
(* tsub, tmul, tnatmul, tnatexp omitted *)
Parameter toR_0 : toR t0 = 0%R.
Parameter toR_1 : toR t1 = 1%R.
Parameter toR_opp : forall x : T, toR (topp x) = (- toR x)%R.
Parameter toR_add :

forall x y : T, toR (tadd x y) = (toR x + toR y)%R.
(* more omitted *)
End CalcRingSig.



5.4. INTEGRAL ROOTS CERTIFICATES 117

The role of this interface is to gather an implementation of “ring operations”
on a given type T, which are proved correct with respect to the operations on a
specific R of type comRingType, the SSReflect structure for commutative rings.
Note that we consider two functions “toR : T -> R” and “ofR : R -> T” from
one type to the other, assuming that ofR is injective, unlike toR in general. The
fact we do not assume bijectivity is central to be able to consider datatypes that
provide multiple representations for a given single mathematical object (e.g., in
bigZ integers, zero admits at least two representations).

Then we define an interface for univariate polynomials CalcPolySig on a
computational ring CalcRingSig:

Module Type CalcPolySig (A : CalcRingSig) <: CalcRingSig.
Include CalcRingSig.
Parameter tpolyC : A.T -> T.
Parameter rpolyC : A.R -> R.
Parameter tpolyX : T.
Parameter rpolyX : R.
Parameter tpolycons : A.T -> T -> T.
Parameter rpolycons : A.R -> R -> R.
Parameter tderiv1 : T -> T.
Parameter rderiv1 : R -> R.
Parameter thorner : T -> A.T -> A.T.
Parameter rhorner : R -> A.R -> A.R.
Parameter toR_polyC : forall c, toR (tpolyC c) = rpolyC (A.toR c).
Parameter toR_polyX : toR tpolyX = rpolyX.
Parameter toR_polycons :

forall x t, toR (tpolycons x t) = rpolycons (A.toR x) (toR t).
Parameter toR_deriv1 : forall t, toR (tderiv1 t) = rderiv1 (toR t).
Parameter toR_horner :

forall t x, A.toR (thorner t x) = rhorner (toR t) (A.toR x).
End CalcPolySig.

First, the Include invocation above enforces the fact that any implementation
of interface CalcPolySig must implement all the parameters from CalcRingSig.
This amounts to saying that the polynomials on a ring themselves constitute a
ring. Then, the interface CalcPolySig specifies four additional “constructors”
(for constant polynomials, indeterminate, concatenation, derivative) and Horner
evaluation, each with two versions (computational and proof-oriented).

Then we can specify bivariate polynomials as an interface called CalcBiPolySig,
whose definition starts by iterating the CalcPolySig functor twice on the mod-
ule argument A:

Module Type CalcBiPolySig (A : CalcRingSig).
Declare Module Univ : CalcPolySig A.
Include CalcPolySig Univ.
Parameter tpolyY : T.
Parameter tderiv2 : T -> T.
Parameter rderiv2 : R -> R.
(* functions for Horner evaluation omitted *)
Parameter tbimaphorner : (A.T -> A.T) -> A.T -> A.T -> T -> A.T.
Parameter rbimaphorner : (A.R -> A.R) -> A.R -> A.R -> R -> A.R.



118 CHAPTER 5. INTEGRAL ROOTS CERTIFICATES

Parameter tliftalpha : T -> positive -> A.T -> T.
Parameter rliftalpha : R -> positive -> A.R -> R.
(* properties omitted *)
End CalcBiPolySig.

Finally, we define the interface RingIntSig for the ring of integers by extend-
ing the interface CalcRingSig with functions such as exponentiation, modulo,
absolute value, and order predicates, then we specialize the parameter (R := Z)
and the operations on R, so that the “modular proofs” that are developed upon
CalcRingIntSig can rely on the “reference proofs” presented in Sections 5.3,
5.4.1, 5.4.2 and 5.4.3, which are based on the type Z and the related operations
from ZArith:

Module Type CalcRingIntSig :=
RingIntSig with Definition R := Z_comRingType
with Definition rexp := Zpower_pos
with Definition req := @eq_op Z_eqType
with Definition rlt := Zlt_bool
with Definition rle := Zle_bool
with Definition rabs := Zabs
with Definition rmod := Zmod
with Definition nat2R := Z_of_nat.

We provide two4 implementations of this interface CalcRingIntSig, through
modules CalcRingZ and CalcRingBigZ. (To sum up, module CalcRingZ straight-
forwardly implements the same integer operations as those we have chosen for
the proofs, while module CalcRingBigZ relies on the BigZ library for efficient
multiple-precision integer arithmetic, based on machine integers.)

5.4.4.2 Implementation of Generic Effective Checkers

This subsection is devoted to our modular implementation of effective checkers
for small univariate (resp. bivariate) integral roots certificates that are gathered
in modules CalcUnivHensel and CalcBivHensel, as well as an effective checker
for ISValP certificates in module CalcISValP.

These checkers consist of a computational version of the checkers presented
in Sections 5.4.1, 5.4.2 and 5.4.3.3, and their formalization relies on the modular
hierarchy mentioned in previous Section 5.4.4.1.

In each of the modules CalcUnivHensel, CalcBivHensel and CalcISValP
that have a similar structure, the soundness of the checkers is expressed in the
form of two results:

Lemma tCheck_correct : forall t : tC, tCheck t = rCheck (toC t).
Lemma rCheck_correct : forall c : rC, rCheck c = true -> rValid c.

First, tCheck_correct ensures each computational checker returns true if and
only if the corresponding non-computational checker returns true. Second,
rCheck_correct ensures if the considered (non-computational) checker returns
true for a given certificate c, then this certificate relevantly describes all the
solutions of the problem at stake.

4A third one will be presented in Section 5.5.3.



5.4. INTEGRAL ROOTS CERTIFICATES 119

In the rest of this section, we will give more details on the various steps we
met during this modular formalization, focusing especially on the bivariate case.

So we start by defining a parameterized module called

Module CalcBivHensel (A : CalcRingIntSig).

First, we need to have type “seq (A.T * A.T * bool)” and some related ef-
fective functions for the uniqueness and belonging predicates. We provide this
material in a generic way by defining a few modules beforehand:

Module CalcProd (A B : CalcEqSig) <: CalcEqSig.
Definition T := (A.T * B.T)%type.
Definition teq x y := A.teq x.1 y.1 && B.teq x.2 y.2.
Definition Q := [eqType of (A.Q * B.Q)%type].
Definition toQ : T -> Q := fun x => (A.toQ x.1, B.toQ x.2).
Definition ofQ : Q -> T := fun x => (A.ofQ x.1, B.ofQ x.2).
Lemma ofQ_inj : cancel ofQ toQ.
Lemma toQ_eq : forall m n, teq m n = ((toQ m) == (toQ n)).
End CalcProd.

which strongly relies on the formalization of types with decidable equality in
the SSReflect library eqtype. Then:

Module CalcList (A : CalcEqSig) <: CalcEqSig.
Definition T := seq A.T.
Fixpoint in_seq (x : A.T) (s : seq A.T) {struct s} : bool.
Fixpoint notin_seq (x : A.T) (s : seq A.T) {struct s} : bool.
Fixpoint uniq_seq (s : seq A.T) {struct s} : bool.
Section Defix.

Variables (U : Type) (EQ : U -> U -> bool).
Fixpoint eq_seq s1 s2 {struct s2} : bool.

End Defix.
Definition teq : T -> T -> bool := eq_seq A.teq.
Definition Q := [eqType of seq A.Q].
Definition toQ : T -> Q := map A.toQ.
Definition ofQ : Q -> T := map A.ofQ.
Lemma ofQ_inj : cancel ofQ toQ.
Definition Tb := seq (A.T * bool).
Definition Qb := [eqType of seq (A.Q * bool)].
Definition toQb : Tb -> Qb := map (fun e => (A.toQ e.1, e.2)).
Definition ofQb : Qb -> Tb := map (fun e => (A.ofQ e.1, e.2)).
Lemma ofQb_inj : cancel ofQb toQb.
Lemma toQ_eq : forall x y, teq x y = eqseq (toQ x) (toQ y).
Lemma spec_in : forall x s, in_seq x s = ((A.toQ x) \in (toQ s)).
Lemma spec_notin :

forall x s, notin_seq x s = ((A.toQ x) \notin (toQ s)).
Lemma spec_uniq : forall s, uniq_seq s = uniq (toQ s).
Definition AtoQb := (fun e : A.T * bool => (A.toQ e.1, e.2)).
(* more lemmas omitted *)
End CalcList.

which provides support for the Boolean predicates on lists that are required in
our modular formalization. Now in module CalcBivHensel, we can process



120 CHAPTER 5. INTEGRAL ROOTS CERTIFICATES

Module ZYX := CalcBiPolyFull A.
Module ZZ := CalcProd A A.
Module LZZ := CalcList ZZ.
Module LZ := CalcList A.

Note that the module LZ is useful mostly for proving purposes. Then we can
define the following types and functions:

Record tC := Build_tC
{ c_P1 : ZYX.T
; c_P2 : ZYX.T
; c_B1 : A.T
; c_B2 : A.T
; c_p : nat
; c_k : nat
; c_L : LZZ.Tb
}.

which correspond to the inductive type of bivariate small-integral-roots certifi-
cate, while the effective checker for such certificates has type

Definition tCheck : tC -> bool. (* definition omitted, cf. (5.37) *)

Then the following addresses the correctness of this checker:

Definition rC := bivCertif.
Definition rCheck : rC -> bool := biv_check.
Definition rP1 : rC -> {bipoly A.R} := bc_P.
Definition rP2 : rC -> {bipoly A.R} := bc_Q.
Definition rB1 : rC -> A.R := bc_A.
Definition rB2 : rC -> A.R := bc_B.
Definition rRoots : rC -> LZZ.Q := bc_roots.
Definition rBounded : A.R -> A.R -> bool :=

fun a z => in (Zabs z <= Zabs a).
Definition toC : tC -> rC. (* definition omitted *)
Definition rValid (c : rC) : Prop :=

forall z w : A.R,
[&& rBounded (rB1 c) z, rBounded (rB2 c) w

& biv_root (rP1 c) (rP2 c) z w]
<-> (z,t) \in (rRoots c).

Lemma tCheck_correct : forall t : tC, tCheck t = rCheck (toC t).
Lemma rCheck_correct : forall c : rC, rCheck c = true -> rValid c.
End CalcBivHensel.

Note that the functions with a t prefix are related to the computational type T
while those with a r prefix are “proof-oriented”. To be more precise, the effec-
tive checker “tCheck : tC -> bool” on the certificate type tC is proved correct
with respect to the reference checker “rCheck : rC -> bool,” whose correct-
ness claim involves the logical predicate of validity “rValid : rC -> bool”.

The lemma rCheck_correct is directly proved using the mechanized proof
of Lemma 5.8 called small_roots_when_bc_is_valid in the Coq sources, while
for tCheck_correct, we heavily rely on the correctness lemmas that we added
in our hierarchy, leading to dozens of lines of rewriting tactics.



5.4. INTEGRAL ROOTS CERTIFICATES 121

Likewise, we derive a modular definition of effective certificate checkers for
the univariate small-integral-roots problem (in module CalcUnivHensel), as
well as for the ISValP problem (in module CalcISValP).

5.4.5 Some Concrete Examples of Use
We now present the characteristics of four ISValP instances that cover the entire
spectrum of situations that may occur for our targeted application (i.e., solving
the TMD using SLZ).

For each of these instances, we successively give in Table 5.1 the function at
stake, the target precision prec as well as the parameter prec′ that corresponds
to the variable q in Definition 2.17, the expansion point x0, the (normalized)
approximation polynomial P ∈ Z[X], the modulo M , and the bounds A and B.

These instances have been chosen so that

• #1, #2 and #3 deal with the binary64 format, while #4 deals with the
binary128 format;

• #1 contains a hardest-to-round-point, unlike others instances;

• #3 and #4 deal with the Approximate-TMD, with a value chosen for prec′

much larger than 2× prec.

Problem ID f prec prec′ x0 deg(P ) maxi(|Pi|) M A B
#1 exp 53 100 54582361821388000/253 2 /1.68×2237 2185 2139 212

#2 exp 53 100 −2−1 2 /1.22×2237 2185 2139 212

#3 exp 53 300 1+2−21 12 /1.36×2996 2942 2696 232

#4 exp 113 3000 1+2−21 90 /1.36×213661 213547 210661 272

Table 5.1 – Short description of four instances of ISValP

Then, for a given parameter α, SLZ is in charge of producing polynomials v1
and v2, from which Hensel lifting is executed, which leads to complete ISValP
certificates as described in Table 5.2. The columns |v1| (A, B) and |v2| (A, B) give
the order of magnitude of the weighted norm-1 of both v1 and v2, following the
definition we have given in Section 5.4.3.2: these values are large but indeed less
than Mα, which is verified by the ISValP checker. Then, the subsequent columns
describe the parameters related to Hensel lifting: the prime p, the integer k and
the list L (whose size is denoted by # L). We finally give the timings for the
certificate to be accepted by Coq: these benchmarks have been computed on
the same machine as for Section 4.4: a 8-core computer, Intel(R) Xeon(R) CPU
E5520 @ 2.27GHz with 16 GB of memory, using Coq 8.3pl4, vm_compute and
the implementation of check_ISValP that takes into account the optimizations
that we will present in Section 5.5.2.

We can notice the following points:

• For the ISValP instance #2, changing the prime p has an impact on the
size of L (as stated in Remark 5.12), and thereby on the parsing timing
of the certificate. However, the timing that is necessary for the ISValP
checker to accept the certificate appears to be decorrelated with the size
of L, while this timing slightly increases when p increases;



122 CHAPTER 5. INTEGRAL ROOTS CERTIFICATES

Pb ID α |v1|(A, B) |v2|(A, B) Mα p k # L time to parse time to return true
#1 2 /1.23×2354 /1.77×2353 2370 5 6 1 0.096s 0.092s

#2 2 /1.02×2356 /1.05×2356 2370

7 6 2 0.132s 0.112s
3 7 1 0.112s 0.092s
23 5 0 0.088s 0.172s

#3 4 /1.84×23766 /1.13×23767 23768 5 9 0 0.420s 2.348s
#4 6 /1.68×281197 /1.81×281200 281282 5 14 0 17.4s 3h12m42s

Table 5.2 – Short description of some ISValP certificates with their verification
timing

• For the ISValP instance #3, we can extrapolate from the obtained tim-
ings to estimate the time for verifying 230 ISValP certificates, in order to
address the full range of an exponent in binary64: 2.768 s× 220 ≈ 34 days,
which is feasible;

• Finally the verification of the fourth considered instance of ISValP is ex-
pensive, and we expect this is due to our naive implementation of poly-
nomial multiplication, on which depends our implementation of bivariate
polynomial composition. We have indeed performed some experiments re-
lated to this ISValP instance that show that the two compositions involved
in the verification take over 95% of the timing. So it should be possible
to get an appreciable speed-up by implementing optimized operations on
polynomials, for instance using a Karatsuba-based approach [95]. This
may also need to change the data structures chosen for our computational
bivariate polynomials.

5.5 Technical Issues
In this section we discuss the relevancy of our formalization choices on which
relies the material that we have presented in Sections 5.3 and 5.4.

5.5.1 Formalization Choices
First of all, we focus on some key choices we have made for our formalization.
In particular, for each required core concept, we will mention the main possibles
choices we have considered and discuss some of their advantages and drawbacks.

Relative Numbers

As regards the ring Z of relative numbers, at least two different formalizations
are currently available:

• The library ZArith on binary integers from the Coq standard library;

• Cyril Cohen’s ssrint library5 (formerly zint).
5https://gforge.inria.fr/scm/viewvc.php/trunk/Saclay/Ssreflect/theories/

ssrint.v?view=markup&revision=2029&root=coq-contribs

https://gforge.inria.fr/scm/viewvc.php/trunk/Saclay/Ssreflect/theories/ssrint.v?view=markup&revision=2029&root=coq-contribs
https://gforge.inria.fr/scm/viewvc.php/trunk/Saclay/Ssreflect/theories/ssrint.v?view=markup&revision=2029&root=coq-contribs


5.5. TECHNICAL ISSUES 123

For the sake of completeness, we briefly recall each definition:
In library ZArith, the type Z is defined as an inductive type for signed,

binary integers:

Inductive Z : Set :=
| Z0 : Z
| Zpos : positive -> Z
| Zneg : positive -> Z.

Inductive positive : Set :=
| xI : positive -> positive
| xO : positive -> positive
| xH : positive.

(For example, the Coq term “Zneg (xO (xO (xI xH)))” will represent the neg-
ative number −12, whose absolute value is 1100 in radix 2.)

On the other hand, the library int relies on the following definitions:

Inductive int : Set :=
| Posz : nat -> int
| Negz : nat -> int.

Coercion Posz : nat >-> int.

While the formalism of int may be quite handy to use, notably thanks to the
presence of the Coercion above, this library does not provide yet any material
on modular arithmetic.

We thus chose to use ZArith for our formalization, where a modulo oper-
ation “Zmod : Z -> Z -> Z” is available with a comprehensive set of related
lemmas. All the new results that make ZArith fully compatible with SSReflect
are gathered in our theory ssrzarith.

Note that ZArith actually provides two implementations for the modulo:
ZOmod, very similar to OCaml’s modulo, and Zmod, whose values are always
nonnegative for a positive second argument, as shown by lemma

Z_mod_lt : forall a b : Z, (b > 0) -> (0 <= a mod b < b)

We will take advantage of this convention when deriving the lemma that links
Zmod and SSReflect’s modn on natural numbers. Note however that in the case
where the second argument is zero (and the first one is nonzero), these two
functions will differ:

Eval compute in (Zmod 5 0)%Z.

returns “0 : Z”, while

Eval compute in (modn 5 0)%N.

returns “5 : nat”. Nevertheless, this is not distracting for our formalization
since we just need modular reduction modulo q = p2k

> p > 2 > 0, for which
both functions coincide, as stated by the Coq lemma Z_of_nat_moduli that
was presented in Section 5.3.1.

Finally, while an alternative approach for dealing with modular arithmetic
could be working directly in the quotient rings Z/qZ, we cannot rely on this sin-
gle approach throughout the formalization. Indeed, the problems we are focusing
on typically rely on integral roots (in Z), for polynomials that are initially ex-
pressed with integer coefficients. However, as we pointed it out in Section 5.3.1,
our proofs require the availability of the rings Z/qZ, provided in the SSReflect
library zmodp.



124 CHAPTER 5. INTEGRAL ROOTS CERTIFICATES

Natural Numbers

In our different certificates, we chose to consider natural numbers p and k as
inhabitants of type nat (Peano integers) while other choices were possible, no-
tably the type N for nonnegative integers based on the type positive, which
comes with somewhat efficient operations. This choice was motivated by the
three following reasons:

• Considering (p : nat) allows one to use the Boolean primality predicate
provided in the SSReflect libraries, which is fully computational and has
type

prime : nat -> bool.

• Considering (k : nat) contributed to ease the formalization of the iter-
ated Hensel lifting algorithms and their correctness proofs by induction.

• The integers p and k that are to be considered for solving instances of
the ISValP problem are very small (i.e., with an order of magnitude much
lower than 1000), as shown by our four examples of ISValP certificates
presented in Section 5.4.5.

However, as far as the parameter α ∈ N∗ is considered, we chose the type
positive instead, since “most often, α growing to infinity is asymptotically the
optimal choice” for Coppersmith’s technique [157].

Bivariate Polynomials

Formalizing bivariate Hensel lifting requires to manipulate bivariate polynomials
on the ring Z. We chose to formalize bivariate polynomials on an arbitrary
SSReflect ring (R : ringType) as polynomials with polynomial coefficients on
R, that is, {bipoly R} stands for {poly {poly R}}.

This iterated definition is convenient to inherit some ring operations and
support theorems from the SSReflect library poly. In particular, the outer-
most {poly _} type immediately comes with a notation ’X which has type
{bipoly R}, while the monomial ’Y can easily be defined by injecting the in-
nermost (’X : {poly R}) in {bipoly R} as a constant (bivariate) polynomial.
In other words, this straightforward definition for {bipoly R} amounts to pos-
ing R[X, Y ] = (R[Y ])[X], which is coherent with the usual indexed writing

P (X, Y ) =


i


j


PijXiY j


,

where the summation on the first index i related to powers of X is written first
(i.e., outermost).

Note also that the intrinsic asymmetry of this definition for {bipoly R}
combined with the representation of univariate polynomials provided by the
SSReflect type {poly _}, namely finite lists of coefficients, can be viewed as a
compromise between dense and sparse bivariate polynomial representations.



5.5. TECHNICAL ISSUES 125

The Indeterminates

During the formalization, we have been led to inverse the order of indeter-
minates with respect to [160, Section 3.2] that was considering Qi,j(X, Y ) =
XiQj(X, Y )Mα−j . Indeed, the configuration with Q(X, Y ) = P (Y ) − X and
Qi,j(X, Y ) = Qi(X, Y )Mα−iY j appeared to be necessary given the context of
the formalization, and at the same time this rewording also is more convenient
for defining Q.

To be more precise, we mentioned in Section 5.4.3.1 the use of polynomial
composition to substitute Q(X, Y ) for one indeterminate. But poly_comp (the
SSReflect definition for polynomial composition), in the context of bivariate
polynomials presented in Section 5.5.1, is applicable only for replacing the in-
determinate X.

Moreover, the bivariate polynomial Q(X, Y ) := P (Y ) −X can be straight-
forwardly defined and computed using the “constructors” for polynomials (e.g.,
poly_cons P (bipolyC (-1))) rather than computing P (X)−Y using a map-
based definition to turn P ∈ Z[X] into P (X) ∈ Z[X, Y ].

Order-2 Square Matrices

As mentioned in Section 5.3.3 we rely on order-2 square matrices in the pre-
sentation of the bivariate proof. Although not essential to derive the proof, this
allows for more concise expressions and proof steps. We thus developed some
Coq material specific to 2-by-2 matrices, including a version of Cramer rule with
moduli, whose correctness lemma may be summarized as follows:

∀p ∈ P, ∀k ∈ N, ∀A ∈M2(Z), ∀u ∈ Z2 =M2,1(Z),

det(A) ̸≡ 0 (mod p) =⇒ A×


A−1
p2k+1 × u


≡ u (mod p2k+1

). (5.38)

Note that we did not use the generic SSReflect library matrix, given that the
proof path we followed in Section 5.3.3, focusing on bivariate polynomials, does
not involve indexed general terms. Moreover, the kind of definition we chose
for these 2-by-2 matrices (viz., a polymorphic Record with 4 fields), makes it
possible to get a computational version of these matrices for free. The availability
of these 2-by-2 computational matrices will be shown useful at Section 5.5.2.

Choice of a Modularization Mechanism

Finally, for the same reasons mentioned in Section 4.3.1, we chose to rely on the
Coq module system for developing the material presented in Section 5.4.4.

5.5.2 Optimizations

In this section, we briefly summarize the optimizations that we implemented
to increase the efficiency of our effective certificates checkers. Note that these
optimizations lead to changes only for the implementation of the computational
checkers, so the reference, proof-oriented checkers are unchanged.



126 CHAPTER 5. INTEGRAL ROOTS CERTIFICATES

Horner Evaluation of the Jacobian Determinant

To begin with, we describe two simple optimizations related to the verification
of condition (5.37e) (ensuring hypothesis (5.19) is fulfilled).

First, the quantity det JP1,P2(u, v) can be computed in several ways: we can
either compute the determinant ∆(X, Y ) = ∂P1

∂X ×
∂P2
∂Y −

∂P2
∂X ×

∂P1
∂Y and deduce

the quantity ∆(a, b), or perform the Horner evaluation beforehand on each of
the derivatives and compute the determinant of the matrix so obtained. We first
implemented the former calculation, while the latter one has the advantage of re-
quiring no multiplication of polynomials, since the determinant acts on a matrix
inM2(Z) instead ofM2(Z[X, Y ]). For implementing this optimization, we ben-
efit from our formalization of 2-by-2 matrices with coefficients in (T : Type),
which is applicable for the modular hierarchy we presented in Section 5.4.4. To
sum up, using the ambient module ZYX that is an instance of CalcBiPolySig, we
add a let-in for pre-computing JM := ZYX.tmatJ P1 P2 (i.e., JP1,P2), then we
compute “A.tdet (ZYX.tmateval JM u v)” (i.e., det (JP1,P2(u, v))) for each
(u, v, b) stored in the list L.

Second, the Jacobian determinant is useful for checking whether all the ele-
ments of list L are single roots modulo p, which will always be the case if there
are none. This is illustrated by the following result from the SSReflect library
seq:

Lemma all_nil :
forall (T : Type) (a : pred T), all a [::] = true.

(where the notation [::] stands for the empty list). As a result, we can add an
if-then-else construct that tests if L is the empty list, and move the let-in that
computes JP1,P2 inside the appropriate branch of the if-then-else. Consequently
when using call-by-value reduction, especially through the Coq tactics compute
and vm_compute, we obtain a speed-up in cases where the list L of the certificate
is empty, given that the Jacobian matrix is no more evaluated.

Performing a Modular Reduction Beforehand

Moreover, the Coq function calcBivCheck_modp whose purpose is to check
whether the conditions (5.37c) and (5.37d) related to the list

Lp = {(u, v) mod p | ∃b ∈ B, (u, v, b) ∈ L} ,

are fulfilled, involves the computation of Boolean tests of kind

let zp := (A.nat2T p) in
eqb (LZZ.in_seq (s,t) Lp)

(A.teq (A.tmod P1.2[s,t] zp) A.t0 &&
A.teq (A.tmod P2.2[s,t] zp) A.t0)

that is to say, (s, t) ∈ Lp
?⇐⇒ P1(s, t) ≡ 0 ≡ P2(s, t) (mod p). As in practice,

the coefficients of P1 and P2 will be somewhat big compared with p, we can op-
timize these calculations by performing the modular reduction “A.tmod _ zp”
beforehand, that is, applying the modulo operation on each individual coeffi-
cients of P1 and P2, and unroll the polynomial evaluation on (s, t) afterwards.



5.5. TECHNICAL ISSUES 127

5.5.3 IPPE, An Implementation of Integers with Positive
Exponent

We notice that the coefficients of the approximation polynomials that will be
typically involved in the final verification chain for SLZ will be floating-point
numbers in radix-2, and that these polynomials will be scaled by a large power
of 2 for generating an instance of ISValP (where the polynomial P has integer
coefficients). For instance, in the example of the fourth certificate presented in
Table 5.1, the power of 2 to be considered is 213660, leading to a polynomial
on Z whose largest coefficient is M × 210629 where M is an odd integer inq
23032, 23033q.

Consequently, we decided to write another implementation of the integer
coefficients for our ISValP checker: instead of using mere bigZ numbers, we
focus on pairs (m, e) ∈ bigZ×bigN corresponding to unevaluated floating-point
numbers m×2e with e > 0. We implement this with a special focus on genericity.
First, we define an abstract interface
Module Type CalcRingExpo (Import C : FloatCarrier).

that gathers several definitions and properties linked to “typeN : Type,” which
is to be instantiated with a type of efficient natural numbers for the expo-
nent, e.g., bigN. As regards the parameter C, its signature is based on the
FloatCarrier abstract interface provided in the CoqInterval library [118]. Then,
we define the main module
Module CalcRingIPPE

(Import C : FloatCarrier)
(Import E : CalcRingExpo C)

<: CalcRingIntSig.

that depends on both FloatCarrier (which notably specifies the radix) and
CalcRingExpo interfaces, and which implements all the required operations with
respect to the CalcRingIntSig interface. In particular, the type T of “integers
plus positive exponent” can be defined as follows:
Notation typeZ := smantissa_type.
Record T := TZN { TZ : typeZ; TN : typeN }.

where the type smantissa_type is a member of the FloatCarrier signature.
We implement the evaluation of these abstract integers in the form of a func-
tion named “toTZ : T -> typeZ,” which can afterwards be composed by the
function “MtoZ : typeZ -> Z” provided in the FloatCarrier interface, when
defining:
Definition toR : T -> R := fun x => MtoZ (toTZ x).

We then define tadd, tmul and texp as (exact) floating-point addition, multi-
plication and exponentiation on the type T, as well as opposite topp, subtraction
tsub, absolute value tabs, modular remainder tmod, and Boolean comparison
predicates teq, tlt and tle. Then we prove the correctness of all these functions
with respect to the the reference integers (R := Z) by means of “homomorphism
lemmas,” expressed in terms of toR.

This optimized implementation led to an appreciable twofold speedup for
the certificate #4 presented in Table 5.2, which is coherent with the kind of
simplification that is induced in the computations.



128 CHAPTER 5. INTEGRAL ROOTS CERTIFICATES

Finally, Figure 5.1 summarizes the dependencies between the different the-
ories belonging to the CoqHensel library described in this chapter.

calcisvalp isvalp

calcbivhensel bivhensel

calcbipoly

morebipolyz

calcpoly

calcunivhensel univhensel

calcringzbigz

morepolyz

morepolybipoly

calcringz_ippe

ssr_missing

calclistprod calcring

ssrzarith

Figure 5.1 – Dependency graph of the CoqHensel theories

5.6 Conclusion and Perspectives
We have implemented, formally verified and made effective three interrelated
certificate checkers in Coq. In particular, our ISValP certificate checker is suit-
able to check the claimed solutions to the Integer Small-Value Problem, typically
obtained by a computational-expensive algorithm based on Coppersmith’s tech-
nique, such as SLZ. In the context of the TMD problem (see Section 2.4), this
allows one to ensure that no bad case for correct rounding has been forgot-
ten. In particular, the complete proof of such a statement will result from the
combination of the CoqHensel machinery presented here with the one that is
under development in the CoqApprox library, in order to fully formally certify
the whole SLZ algorithmic chain for solving the TMD. We notably expect that
the formalization of “Integers Plus Positive Exponent” that we have developed
for the sake of efficiency of the coefficient operations will ease the link with
CoqApprox, since both libraries are built upon the CoqInterval formalism.

Both from the point of view of the implementation and the formal proof
of correctness, we recall that we have formalized our ISValP checker upon our
bivariate small-integral-roots certificates checker, the latter taking advantage
of the semantics of Hensel lifting. This formalization requires several notions,
such as Taylor theorem for bivariate polynomials, the Jacobian matrix of a
pair of bivariate polynomials, Cramer’s rule for order-2 matrices in modular
arithmetic, and the weighted-norm-1 of a bivariate polynomial, which have been
implemented in Coq.

As regards the univariate case, we have also formalized the notion of valua-
tion for a polynomial on an arbitrary ring and formally proved Lemma 5.1. As
mentioned in Remark 5.1, this allows one to use our univariate small-integral-
roots certificates checker to address the univariate whole-integral-roots problem,



5.6. CONCLUSION AND PERSPECTIVES 129

which is an interesting application in itself. Furthermore, we would like to in-
vestigate the possible extension of this formalization to address the problem of
rational roots of polynomials.

As detailed in previous Section 5.5, a key part of the work consists of mak-
ing a number of formal development choices, taking into account both proof
and computation aspects. In particular, we wanted to obtain a generic proto-
type that allows one to easily swap optimized implementations of the various
required building blocks: we achieve this genericity by means of Coq parame-
terized modules.

A minor point is the time to check some ISValP certificates (3 hours). As
mentioned in previous Section 5.4.5, the current order of magnitude of this
computation timing is certainly due to our naive implementation of polynomial
multiplication. As a short-term future work, we thus plan to implement the
Karatsuba algorithm [95] for polynomials in order to speedup the computation
for such “extreme” certificates, while keeping the confidence we have in our
formally verified ISValP certificates checker.





Chapter 6

Augmented-Precision
Algorithms for
Correctly-Rounded
2D Norms

This chapter is based on a joint work that resulted in a publication in the
proceedings of the IEEE ARITH 2011 conference [29].

We define an “augmented precision” algorithm as an algorithm that returns,
in precision-p floating-point arithmetic, its result as the unevaluated sum of
two floating-point numbers, with a relative error of the order of 2−2p. Assum-
ing an FMA instruction is available, we perform a tight error analysis of an
augmented precision algorithm for the square root, and introduce two slightly
different augmented precision algorithms for the 2D norm


x2 + y2. Then we

give tight lower bounds on the minimum distance (in ulps) between


x2 + y2

and a midpoint when


x2 + y2 is not itself a midpoint. This allows us to de-
termine cases when our algorithms make it possible to return correctly-rounded
2D norms.

6.1 Introduction
In some applications, just returning a floating-point approximation yh to the
exact result y of a function or arithmetic operation may not suffice. It may
be useful to also return an estimate yℓ of the error (i.e., y ≈ yh + yℓ). For
simple enough functions (e.g., addition or multiplication), it is even possible to
have y = yh + yℓ exactly. Having an estimate of the error makes it possible
to re-use it later on in a numerical algorithm, in order to at least partially
compensate for that error. Such compensated algorithms have been suggested
in the literature for summation of many floating-point numbers [91, 4, 144, 145,
141, 147], computation of dot products [138], and evaluation of polynomials [66].

We will call augmented-precision algorithm an algorithm that returns, in
radix-β, precision-p floating-point arithmetic, an approximation yh +yℓ (i.e., an

131



132 CHAPTER 6. CORRECTLY-ROUNDED 2D NORMS

unevaluated sum of two floating-point numbers) to an exact result y = f(x) (or
f(x1, x2)) such that
• |yℓ| 6 1

2 ulp(yh);

• there exists a small constant C, much smaller than βp such that

|y − (yh + yℓ)| < C · β−2p · |yh| .

When y = yh + yℓ exactly, the transformation that generates yh and yℓ from
the inputs of f is called an error-free transform in the literature.

The unevaluated sum yh + yℓ is a particular case (with two terms only) of a
floating-point expansion. Several algorithms have been suggested for performing
arithmetic on such expansions [144, 153, 78, 25].

In the first part of this chapter, we briefly recall two well-known error-
free transforms used later on in the chapter. Then, we analyze an augmented-
precision algorithm for the square-root. In the third part, we use that algorithm
for designing augmented-precision algorithms for computing


x2 + y2, where x

and y are floating-point numbers. Such a calculation appears in many domains
of scientific computing. It is also an important step when computing complex
square roots. The naive method—i.e., straightforward implementation of the
formula


x2 + y2—may lead to spurious overflows or underflows. When there

are no overflows nor underflows, it is quite accurate (an elementary calculation
shows that on a radix-2, precision-p floating-point system, the relative error is
bounded by 2−p+1 + 2−2p).

Friedland [57] avoids spurious overflows by computing


x2 + y2 as |x| ·
1 + (y/x)2 if |x| > |y|, and |y| ·


1 + (x/y)2 otherwise.

Kahan1, and Midy and Yakovlev [120] normalize the computation using a
power of the radix of the computer system: in radix 2, if |x| > |y|, let bx be
the largest power of 2 less than or equal to x, what they actually compute is
bx ·


(x/bx)2 + (y/bx)2. Their solution is less portable (and possibly on some

systems, less fast, at least in the context of fixed-precision, hardware-based,
arithmetic) than Friedland’s solution, yet it will in general be slightly more ac-
curate, since division and multiplication by bx is exact. Our augmented-precision
algorithms will derive from this one. As noticed by Kahan, the IEEE 754 Stan-
dard for Floating-Point Arithmetic [85] defines functions scaleB and logB that
make this scaling of x and y easier to implement.

Hull et al. [82] use the naive method along with the exception-handling
possibilities specified by the IEEE 754-1985 Standard to recover a correct result
when the naive method fails.

In the fourth part, we investigate the possibility of correctly rounding


x2 + y2

(assuming round-to-nearest). This requires solving the Table Maker’s Dilemma
for that function.

6.2 Two Well-Known Error-Free Transforms
6.2.1 The Fast2Sum Algorithm
The Fast2Sum algorithm was first introduced by Dekker [47], but the three op-
erations of this algorithm already appeared in 1965 as a part of a summation

1Unpublished lecture notes



6.3. AUGMENTED-PRECISION REAL SQUARE ROOT 133

algorithm, called “Compensated sum method,” due to Kahan [91]. Under con-
ditions spelled out by Theorem 6.1, it returns the floating term s nearest to a
sum a+b and the error term t = (a+b)−s. Throughout the chapter, RN(u) will
mean “u rounded to the nearest even”, unless otherwise stated (see Section 2.2).

Algorithm 6.1: Fast2Sum [47]
Input: (a, b)
s← RN(a + b)
z ← RN(s− a)
t← RN(b− z)
return (s, t)

The following theorem is due to Dekker.
Theorem 6.1 (Fast2Sum algorithm, cf. [47] and [97, Thm. C, p. 236]).
Assume the FP system being used has radix β 6 3, subnormal numbers available,
and provides correct rounding with rounding to nearest.

Let a and b be FP numbers, and assume that the exponent of a is larger than
or equal to that of b (this condition might be difficult to check, but of course, if
|a| > |b|, it will be satisfied). Algorithm 6.1 computes two FP numbers s and t
that satisfy the following:
• s + t = a + b exactly;

• s is the FP number that is closest to a + b.
We remind the reader that we use as a definition of the exponents the one

given page 16 (in Chapter 2).

6.2.2 The TwoMultFMA Algorithm
The FMA instruction makes it possible to evaluate ±ax± b, where a, x, and b
are floating-point numbers, with one final rounding only. That instruction was
introduced in 1990 on the IBM RS/6000. It allows for faster and, in general,
more accurate dot products, matrix multiplications, and polynomial evaluations.
It also makes it possible to design fast algorithms for correctly-rounded division
and square root [113].

The FMA instruction is included in the newly revised IEEE 754-2008 stan-
dard for floating-point arithmetic [85].

If an FMA instruction is available, then, to compute the error of a floating-
point multiplication x1 · x2, one can design a very simple algorithm, which only
requires two consecutive operations, and works for any radix and precision,
provided the product does not overflow and ex1 + ex2 > emin + p− 1, where ex1

and ex2 are the exponents of x1 and x2, and emin is the minimum exponent of
the floating-point system:

6.3 Augmented-Precision Real Square Root with
an FMA

Let us now present an augmented-precision real square root algorithm. That
algorithm is straightforwardly derived from the following theorem, given in [16]



134 CHAPTER 6. CORRECTLY-ROUNDED 2D NORMS

(see also [128]):

Theorem 6.2 (Computation of square root residuals using an FMA [16]).
Assume x is a precision-p, radix-β, positive floating-point number. If σ is

√
x

rounded to a nearest floating-point number then

x− σ2

is exactly computed using one FMA instruction, with any rounding mode, pro-
vided that

2eσ > emin + p− 1, (6.1)

where eσ is the exponent of σ.

Notice that similar approximations are used in [112] in a different context
(to return a correctly-rounded square root from an accurate enough approxi-
mation), as well as in [78] for manipulating floating-point expansions. This is
not surprising, since behind this approximation there is nothing but the Taylor
expansion of the square-root. What we do claim here, is that we have been able
to compute a very tight error bound for Algorithm 6.3 (indeed, an asymptot-
ically optimal one as p → +∞, as we will see later on). That error bound is
given by the following theorem, which shows that the number r returned by
Algorithm 6.3 is a very sharp estimate of the error

√
x− σ.

Theorem 6.3. In radix-2, precision-p arithmetic, if the exponent ex of the FP
number x satisfies ex > emin +p, then the output (σ, r) of Algorithm 6.3 satisfies
σ = RN(

√
x) and (σ + r)−

√
x
 < 2−p−1 ulp(σ),

and (σ + r)−
√

x
 < 2−2p · σ.

(Notice that the second inequality is a straightforward consequence of the first:
one give it here for the sake of completeness.)

Proof. First, if ex > emin + p then x > 2emin+p, so that
√

x > 2
emin+p

2 > 2⌊
emin+p

2 ⌋,

which implies
σ = RN(

√
x) > 2⌊

emin+p

2 ⌋,

therefore,

eσ >


emin + p

2


,

Algorithm 6.2: TwoMultFMA
Input: (x1, x2)
r1 ← RN(x1 · x2)
r2 ← RN(x1 · x2 − r1)
return (r1, r2)



6.3. AUGMENTED-PRECISION REAL SQUARE ROOT 135

Algorithm 6.3: Augmented computation of
√

x

σ ← RN(
√

x)
t← x− σ2 // exact operation through an FMA
r ← RN(t/(2σ))
return (σ, r)

so that we have,
2eσ > emin + p− 1.

Therefore, Theorem 6.2 applies: t = x − σ2 is a floating-point number, so that
it is exactly computed using an FMA instruction.

Now, since σ = RN(
√

x) and σ is a normal number (a square root never
underflows nor overflows), and since the square root of a floating-point number
is never equal to a midpoint [112, 87], we have

|σ −
√

x| < 2−p · 2eσ ,

which gives

|t| = |σ2 − x| = |σ −
√

x| · |σ +
√

x| < 2−p+eσ · (2σ + 2eσ−p).

Notice that 2σ is a floating-point number, and that ulp(2σ) = 2eσ−p+2. There-
fore there is no floating-point number between 2σ and 2σ + 2eσ−p. Hence, since
|t|/2−p+eσ is a floating-point number less than 2σ + 2eσ−p, we obtain

|t| 6 2−p+eσ+1 · σ,

implying  t

2σ

 6 2−p+eσ .

Also, since 2−p+eσ is a floating-point number, the monotonicity of the round-
to-nearest function implies RN


t

2σ

 6 2−p+eσ .

From these two inequalities, we deduceRN


t

2σ


− t

2σ

 6 2−2p−1+eσ . (6.2)

Notice (we will need that in Section 6.4) thatRN


t

2σ

 6 2−p · σ. (6.3)

Now, define a variable ϵ as

√
x = σ + t

2σ
+ ϵ,



136 CHAPTER 6. CORRECTLY-ROUNDED 2D NORMS

where

ϵ =
√

x− σ − t

2σ

= t√
x + σ

− t

2σ

= t · 2σ − (
√

x + σ)
(
√

x + σ) · 2σ

= − (σ −
√

x)2

2σ
,

from which we deduce

|ϵ| < 2−2p+2eσ

2σ
6 2−2p−1+eσ . (6.4)

By combining (6.2) and (6.4), we finally getσ + RN


t

2σ


−
√

x

 < 2−2p+eσ .

This gives an error in ulps as well as a relative error: since ulp(σ) = 2eσ−p+1 we
obtain σ + RN


t

2σ


−
√

x

 < 2−p−1 ulp(σ),

and σ + RN


t

2σ


−
√

x

 < 2−2p · σ.

Notice that the bound given by Theorem 6.3 is quite tight. Consider as an
example the case p = 24 (binary32 precision of the IEEE 754-2008 Standard).
Assume x is the floating-point number

x = 8402801 · 2−23 = 1.00169193744659423828125,

then one easily gets

σ = 8395702 · 2−23 = 1.0008456707000732421875,

and
r = −16749427 · 2−48 ≈ −5.950591841497× 10−8,

which gives (σ + r)−
√

x
 = 0.9970012 · · · × 2−48 × σ,

to be compared to our bound 2−48 × σ.
Furthermore, the error bounds given by Theorem 6.3 are asymptotically opti-

mal, as we can exhibit a family (for p multiple of 3) of input values parametrized
by the precision p, such that for these input values, |(σ + r)−

√
x| /σ is asymp-

totically equivalent to 2−2p as p → ∞. Just consider, for p being a multiple of
6, the input number

x = 2p + 2
p
3 +1 + 2,



6.4. AUGMENTED-PRECISION 2D NORMS 137

and for p odd multiple of 3, the input number

x = 2p−1 + 2p/3 + 1.

If p is multiple of 6 (the case where p is an odd multiple of 3 is very similar),
tedious yet not difficult calculations show that

√
x = 2p/2 + 2−p/6 + 2−p/2 − 2−1−5p/6 − 2−7p/6

+3 · 2−1−11p/6 + · · · ,
σ = 2p/2 + 2−p/6,
t = 2− 2−p/3,
t/(2σ) = 2−p/2 ·


1− 2−p/3−1 − 2−2p/3 + 2−p−1

+2−4p/3 − · · ·


,
r = 2−p/2 ·


1− 2−p/3−1 − 2−2p/3 + 2−p


,

σ + r = 2p/2 + 2−p/6 + 2−p/2 − 2−1−5p/6 − 2−7p/6

+2−3p/2,

so that √
x− (σ + r) ∼p→∞ 2−3p/2 ·


−1 + 3 · 2−1−p/3


,

from which we derive

|
√

x− (σ + r)| ∼p→∞ 2−p−1 ulp(σ),

and √x− (σ + r)
σ

 ∼p→∞ 2−2p


1− 3 · 2−1−p/3


,

which shows the asymptotic optimality of the bounds given by Theorem 6.3.

6.4 Augmented-Precision 2D Norms
We suggest two very slightly different algorithms. Algorithm 6.5 requires three
more operations (a Fast2Sum) than Algorithm 6.4, but it has a slightly better
error bound. Again, as for the square-root algorithm, these algorithms derive
quite naturally from the Taylor series for the square root: the novelty we believe
we bring here is that we provide proven and tight error bounds.

Notice that if one is just interested in getting a very accurate floating-
point approximation to


x2 + y2 (that is, if one does not want to compute

the error term rℓ), then it suffices to replace the last Fast2Sum instruction
by “rh ← RN(r′

1 + r′
3)” in both algorithms. Also notice that if the functions

scaleB and logB defined by the IEEE 754-2008 Standard are available and
efficiently implemented, one can replace lines 4, 5 and 6 of both algorithms
with

ex ← logB(x)
x̂← scaleB(x,−ex)
ŷ ← scaleB(y,−ex)

and Lines 16 and 17 of Algorithm 6.4, or lines Lines 17 and 18 of Algorithm 6.5
with

r′
1 ← scaleB(r1, ex)

r′
3 ← scaleB(r3, ex).



138 CHAPTER 6. CORRECTLY-ROUNDED 2D NORMS

Algorithm 6.4: Augmented computation of


x2 + y2

if |y| > |x| then1
swap(x, y)2

end3
bx ← largest power of 2 less than or equal to x4
x̂← x/bx // exact operation5
ŷ ← y/bx // exact operation6
(sx, ρx)← TwoMultFMA(x̂, x̂)7
(sy, ρy)← TwoMultFMA(ŷ, ŷ)8
(sh, ρs)← Fast2Sum(sx, sy)9
sℓ ← RN(ρs + RN(ρx + ρy))10
r1 ← RN(√sh)11
t← sh − r2

1 // exact operation through an FMA12
r2 ← RN(t/(2r1))13
c← RN(sℓ/(2sh))14
r3 ← RN(r2 + r1c)15
r′

1 ← r1 · bx // exact operation16
r′

3 ← r3 · bx // exact operation17
(rh, rℓ)← Fast2Sum(r′

1, r′
3)18

return (rh, rℓ)19

Algorithm 6.5: Slightly more accurate augmented computation of
x2 + y2

if |y| > |x| then1
swap(x, y)2

end3
bx ← largest power of 2 less than or equal to x4
x̂← x/bx // exact operation5
ŷ ← y/bx // exact operation6
(sx, ρx)← TwoMultFMA(x̂, x̂)7
(sy, ρy)← TwoMultFMA(ŷ, ŷ)8
(sh, ρs)← Fast2Sum(sx, sy)9
sℓ ← RN(ρs + RN(ρx + ρy))10
(s′

h, s′
ℓ)← Fast2Sum(sh, sℓ)11

r1 ← RN(


s′
h)12

t← s′
h − r2

1 // exact operation through an FMA13
r2 ← RN(t/(2r1))14
c← RN(s′

ℓ/(2s′
h))15

r3 ← RN(r2 + r1c)16
r′

1 ← r1 · bx // exact operation17
r′

3 ← r3 · bx // exact operation18
(rh, rℓ)← Fast2Sum(r′

1, r′
3)19

return (rh, rℓ)20



6.4. AUGMENTED-PRECISION 2D NORMS 139

We have the following result

Theorem 6.4 (Accuracy of Algorithms 6.4 and 6.5). We assume that a
radix-2, precision-p (with p > 8), floating-point arithmetic is used and that there
are no underflows nor overflows.

The result (rh, rℓ) returned by Algorithm 6.4 satisfies

rh + rℓ =


x2 + y2 + ϵ,

with
|ϵ| <


13
2 · 2

−2p + 31 · 2−3p


· |rh| ,

and
|rℓ| 6

1
2 ulp(rh).

The result (rh, rℓ) returned by Algorithm 6.5 satisfies

rh + rℓ =


x2 + y2 + ϵ′,

with
|ϵ′| <


39
8 · 2

−2p + 22 · 2−3p


· |rh| ,

and
|rℓ| 6

1
2 ulp(rh).

Note that we still don’t know if the bounds given by this theorem are sharp.

Proof of Algorithm 6.4. The computations of bx, x̂, and ŷ are obviously error-
less. We have

x̂2 + ŷ2 = sx + sy + ρx + ρy

= sh + ρs + ρx + ρy,

with |ρx| 6 2−psx, |ρy| 6 2−psy, and |ρs| 6 2−psh.
We easily find

|ρx + ρy| 6 2−p(sx + sy) = 2−p(sh + ρs).

Define u = RN(ρx + ρy). We have |u| 6 RN (2−p(sx + sy)), so that

|u| 6 2−psh,

and
|u− (ρx + ρy)| 6 2−2p · sh. (6.5)

We therefore get
|ρs + u| 6 2−p+1 · sh,

so that

|sℓ| 6 2−p+1 · sh.

Also,
|sℓ − (ρs + u)| 6 2−2p+1 · sh.



140 CHAPTER 6. CORRECTLY-ROUNDED 2D NORMS

This, combined with (6.5), gives

|sℓ − (ρs + ρx + ρy)| 6 3 · 2−2p · sh.

As a consequence

x̂2 + ŷ2 = sh + sℓ + ϵ0, with |ϵ0| 6 3 · 2−2p · sh.

Now, 
x̂2 + ŷ2 =

√
sh + sℓ + ϵ0

= √
sh ·


1 + sℓ+ϵ0

2sh
+ ϵ1


,

with (from the Taylor-Lagrange formula)

|ϵ1| 6
1
8

(sℓ + ϵ0)2

s2
h

.

From the bounds on sℓ and ϵ0 we getsℓ + ϵ0

sh

 6 2−p+1 + 3 · 2−2p,

which gives

|ϵ1| 6
1
8 ·


2−p+1 + 3 · 2−2p

2

1− (2−p+1 + 3 · 2−2p) < 2−2p−1 + 2 · 2−3p (6.6)

as soon as p > 2. Hence,
x̂2 + ŷ2 =

√
sh ·


1 + sℓ

2sh
+ ϵ2


(6.7)

with
|ϵ2| 6 |ϵ1|+

 ϵ0

2sh

 < 2−2p+1 + 2 · 2−3p.

In Eq. (6.7), √sh is approximated by r1 +r2 using Algorithm 6.3. Therefore,
from Theorem 6.3, we have

√
sh = r1 + r2 + ϵ3,

|ϵ3| < 2−2p · r1.

Now, |sℓ/(2sh)| 6 2−p, so that |c| 6 2−p too, andc− sℓ

2sh

 6 2−2p−1.

Hence, 
x̂2 + ŷ2 = (r1 + r2 + ϵ3) · (1 + c + ϵ4),

with
|ϵ4| 6

c− sℓ

2sh

+ |ϵ2| <
5
2 · 2

−2p + 2 · 2−3p.



6.4. AUGMENTED-PRECISION 2D NORMS 141

From the bound (6.3) obtained in the proof of Theorem 6.3, we have |r2| 6
2−p · |r1|. All this gives 

x̂2 + ŷ2 = r1 + r2 + r1c + ϵ6,

with

|ϵ6| 6 |ϵ3|+ |r1ϵ4|+ |r2c|+ |r2ϵ4|+ |ϵ3| · |c + ϵ4|

6 r1 ·


9
2 · 2

−2p + 11
2 · 2

−3p + 9
2 · 2

−4p + 2 · 2−5p


6 r1 ·


9
2 · 2

−2p + 7 · 2−3p


,

as soon as p > 2. Now, from the previously obtained bounds on r2 and c,

|r2 + r1c| 6 2 · 2−p · r1

so that
r3 = r2 + r1c + ϵ7,

with
|ϵ7| 6


2 · 2−2p


· r1,

and (since 2 · 2−p · r1 is a floating-point number),

|r3| 6 2 · 2−p · r1.

We therefore conclude that when bx = 1,

rh + rℓ = r1 + r3 =


x2 + y2 + ϵ8,

with

|ϵ8| 6 |ϵ6|+ |ϵ7| 6


13
2 · 2

−2p + 7 · 2−3p


· r1.

From rh + rℓ = r1 + r3, |rℓ| 6 2−p|rh| and |r3| 6 2 · 2−p · r1, we get

|r1| 6
1 + 2−p

1− 2 · 2−p
· |rh| 6


1 + 3 · 2−p + 7 · 2−2p


· |rh|,

as soon as p > 4. From this we easily deduce that as soon as p > 4, when bx = 1,

|ϵ8| 6


13
2 · 2

−2p + 31 · 2−3p


· |rh|.

Now, when bx ̸= 1, it suffices to notice that rh, rℓ, r1 and r2 will be multiplied
by the same factor bx, to deduce that rh + rℓ =


x2 + y2 + ϵ8, with

|ϵ8| 6


13
2 · 2

−2p + 31 · 2−3p


· |rh|.



142 CHAPTER 6. CORRECTLY-ROUNDED 2D NORMS

Proof of the error bound for Algorithm 6.5. Here again, the computations of bx,
x̂, and ŷ are obviously errorless. We have

x̂2 + ŷ2 = sx + sy + ρx + ρy

= sh + ρs + ρx + ρy,

with |ρx| 6 2−psx, |ρy| 6 2−psy, and |ρs| 6 2−psh.
We easily find

|ρx + ρy| 6 2−p(sx + sy) = 2−p(sh + ρs)

and define u = RN(ρx + ρy).
We have |u| 6 RN (2−p(sx + sy)), so that

|u| 6 2−psh,

and
|u− (ρx + ρy)| 6 2−2p · sh. (6.8)

We therefore get
|ρs + u| 6 2−p+1 · sh,

so that
|sℓ| 6 2−p+1 · sh.

Also,
|sℓ − (ρs + u)| 6 2−2p+1 · sh.

This, combined with (6.8), gives

|sℓ − (ρs + ρx + ρy)| 6 3 · 2−2p · sh,

implying that

x̂2 + ŷ2 = sh + sℓ + ϵ0, with |ϵ0| 6 3 · 2−2p · sh.

We also have, s′
h + s′

ℓ = sh + sℓ, |s′
ℓ| 6 2−p · s′

h, and |sℓ| 6 2−p+1 · sh, so that

sh 6
1 + 2−p

1− 2−p+1 · s
′
h 6 (1 + 3 · 2−p + 7 · 2−2p) · s′

h,

when p > 4. Which gives

x̂2 + ŷ2 = s′
h + s′

ℓ + ϵ0,
with |ϵ0| 6 (3 · 2−2p + 10 · 2−3p) · s′

h,

when p > 5.
Now, 

x̂2 + ŷ2 =


s′
h + s′

ℓ + ϵ0

=


s′
h ·


1 + s′
ℓ+ϵ0
2s′

h
+ ϵ1


,

with
|ϵ1| 6

1
8

(s′
ℓ + ϵ0)2

(s′
h)2 .



6.4. AUGMENTED-PRECISION 2D NORMS 143

From the bounds on s′
ℓ and ϵ0 we gets′

ℓ + ϵ0

s′
h

 6 2−p + 3 · 2−2p + 10 · 2−3p,

which gives

|ϵ1| 6
1
8 ·

2−p + 3 · 2−2p + 10 · 2−3p

2

< 2−2p−3 + 2−3p,

when p > 5. Hence, 
x̂2 + ŷ2 =


s′

h ·


1 + s′
ℓ

2s′
h

+ ϵ2


(6.9)

with
|ϵ2| 6 |ϵ1|+

 ϵ0

2s′
h

 <
13
8 · 2

−2p + 6 · 2−3p.

In Eq. (6.9),


s′
h is approximated by r1 +r2 using Algorithm 6.3. Therefore,

from Theorem 6.3, we have 
s′

h = r1 + r2 + ϵ3,

with
|ϵ3| < 2−2p · r1.

Since |s′
ℓ/(2s′

h)| 6 2−p−1, so that |c| 6 2−p−1 too, andc− s′
ℓ

2s′
h

 6 2−2p−2,

hence 
x̂2 + ŷ2 = (r1 + r2 + ϵ3) · (1 + c + ϵ4),

with
|ϵ4| 6

c− s′
ℓ

2s′
h

+ |ϵ2| <
15
8 · 2

−2p + 6 · 2−3p.

From the bound (6.3) obtained in the proof of Theorem 6.3, we have |r2| 6
2−p · |r1|. All this gives 

x̂2 + ŷ2 = r1 + r2 + r1c + ϵ6,

with

|ϵ6| 6 |ϵ3|+ |r1ϵ4|+ |r2c|+ |r2ϵ4|+ |ϵ3| · |c + ϵ4|

6 r1 ·


27
8 · 2

−2p + 9 · 2−3p


,

when p > 4. From the previously obtained bounds on r2 and c,

|r2 + r1c| 6 3
2 · 2

−p · r1



144 CHAPTER 6. CORRECTLY-ROUNDED 2D NORMS

so that
r3 = r2 + r1c + ϵ7,

with
|ϵ7| 6

3
2 · 2

−2p · r1,

and
|r3| 6

3
2 · 2

−p · (1 + 2−p) · r1.

We therefore conclude that when bx = 1,

rh + rℓ = r1 + r3 =


x2 + y2 + ϵ8,

with
|ϵ8| 6 |ϵ6|+ |ϵ7| 6


39
8 · 2

−2p + 9 · 2−3p


· r1.

From rh + rℓ = r1 + r3, |rℓ| 6 2−p|rh|, and |r3| 6 3
2 · 2

−p · (1 + 2−p) · r1, we get

|r1| <
1 + 2−p

1− 3
2 · 2−p · (1 + 2−p)

· |rh|

6

1 + 5

2 · 2
−p + 11

2 · 2
−2p

· |rh|,

when p > 6. From this we finally deduce that when p > 8,

|ϵ8| 6


39
8 · 2

−2p + 22 · 2−3p


· |rh|.

Again, when bx ̸= 1, it suffices to notice that rh, rℓ, r1 and r2 will be
multiplied by the same factor bx, to deduce that rh + rℓ =


x2 + y2 + ϵ8, with

|ϵ8| 6


39
8 · 2

−2p + 22 · 2−3p


· |rh|.

6.5 Can We Round
√

x2 + y2 Correctly?
In any radix, there are many floating-point values x and y such that


x2 + y2

is a midpoint [87]. A typical example, in the “toy” binary floating-point system
of precision p = 8 is x = 25310 = 111111012, y = 20410 = 110011002, for which

x2 + y2 = 32510 = 1010001012.
If the minimum nonzero distance in terms of ulps between


x2 + y2 and a

midpoint is η, then correctly rounding


x2 + y2 can be done as described in
Section 2.4.2.

Hence our purpose in this section is to find lower bounds on the distance
between


x2 + y2 and a midpoint. Notice that in the special case where x and

y have the same exponent, Lang and Muller provide similar bounds in [99].
As previously, we assume a binary floating-point arithmetic of precision p.

Let x and y be floating-point numbers. Without loss of generality, we assume
0 < y 6 x. Let ex and ey be the exponents of x and y. Define δ = ex − ey, so
δ > 0. We will now consider two cases.



6.5. CAN WE ROUND
√

X2 + Y 2 CORRECTLY? 145

1. If δ is large
First, let us notice that if x is large enough compared to y, our problem

becomes very simple. More precisely, we have


x2 + y2 = x ·


1 + y2

x2

= x + y2

2x
+ ϵ,

with
−1

8
y4

x3 < ϵ < 0.

When y 6 2−p/2x, we have

0 <
y2

2x
6 2−p−1x <

1
2 ulp(x),

so that x−x2 + y2
 = y2

2x
+ ϵ <

1
2 ulp(x).

Hence when y 6 2−p/2x, correctly rounding


x2 + y2 is straightforward: it
suffices to return x. Notice that δ > p/2 + 1 implies y 6 2−p/2x. So, let us now
focus on the case δ < p/2 + 1, i.e., δ 6 ⌊(p + 1)/2⌋.

2. If δ is small
Since x and y are floating-point numbers, there exist integers Mx, My, ex,

and ey such that 
x = Mx · 2ex−p+1

y = My · 2ey−p+1,

with 0 < Mx, My 6 2p − 1. Assume


x2 + y2 is within ϵ ulps from a midpoint
of the form (Ms + 1/2) · 2es−p+1 (with |ϵ| nonzero and much less than 1/2).
Notice that x 6 s 6 RU(x

√
2), so that es is ex or ex + 1. We have

M2
x · 22ex + M2

y · 22ey =


Ms + 1
2 + ϵ


· 2es ,

which gives

ϵ = 2−es


M2

x · 22ex + M2
y · 22ey −


Ms + 1

2


.

This implies

ϵ = 2−es ·
22ey


M2

x · 22δ + M2
y


− 22es


M2

s + Ms + 1
4


2ey


M2

x · 22δ + M2
y + 2es


Ms + 1

2


= 2−es
N

D
. (6.10)

Now since Ms 6 2p− 1, 2es ·

Ms + 1

2


is less than 2p+es and |ϵ| < 1/2, then
2ey


M2

x · 22δ + M2
y is less than 2p+es too, so that the term D in (6.10) is less

than 2p+es+1.



146 CHAPTER 6. CORRECTLY-ROUNDED 2D NORMS

Notice that if es = ex + 1 we can improve on that bound. In that case,
M2

x · 22ex + M2
y · 22ey <

√
22p + 22p−2δ · 2ex

= 1
2
√

1 + 2−2δ · 2p+es ,

so that, when es = ex + 1,

D <


1
2


1 + 2−2δ + 1

· 2p+es .

Let us now focus on the term N in (6.10). It is equal to

22ex−2δ


M2

x · 22δ + M2
y − 22(es−ex)+2δ


M2

s + Ms + 1
4


,

therefore

• if es = ex+1 or δ > 0, then N is an integer multiple of 22ex−2δ = 22es−2−2δ.
Hence, if ϵ is nonzero, its absolute value is at least

2−es · 22es−2−2δ
1
2
√

1 + 2−2δ + 1

· 2p+es

= 2−2−2δ

1
2
√

1 + 2−2δ · 2p + 2p
;

• if es = ex and δ > 0, then again N is an integer multiple of 22es−2δ. Hence,
if ϵ is nonzero, its absolute value is at least

2−es · 22es−2δ

2p+es+1 > 2−p−1−2δ.

• if es = ex and δ = 0 then

N = 22es


M2

x + M2
y −M2

s −Ms −
1
4


is a multiple of 22es/4, so that if ϵ is nonzero, its absolute value is at least
2−p−3.

To summarize what we have obtained so far in the case “delta is small”, whenever
ϵ ̸= 0, its absolute value is lower-bounded by

2−p−3 (6.11)

in the case δ = 0; and

min


2−2−2δ

1
2
√

1 + 2−2δ · 2p + 2p
; 2−p−1−2δ


= 2−p−1−2δ

√
1 + 2−2δ + 2

(6.12)

in the case δ > 0.
Now we can merge the various cases considered above and deduce

Theorem 6.5. If x and y are radix-2, precision-p, floating-point numbers, then



6.6. APPLICATION: CORRECT ROUNDING OF
√

X2 + Y 2 147

• if |y| 6 2−p/2 |x| then RN


x2 + y2


= |x|;

• if |x| 6 2−p/2 |y| then RN


x2 + y2


= |y|;

• otherwise, either


x2 + y2 is a midpoint, or it is at a distance of at least

2−p−1−2⌊(p+1)/2⌋

2 +
√

2
ulp


x2 + y2


from a midpoint.

When x and y are close, we obtain a much sharper result. For instance, when
they are within a factor of 2, δ is equal to 0 or 1, which gives

Theorem 6.6. If x and y are radix-2, precision-p, floating-point numbers such
that |x/2| 6 |y| 6 2 · |x|, then either


x2 + y2 is a midpoint, or it is at a

distance at least
2−p−2
√

5 + 4
ulp


x2 + y2


from a midpoint.

Tables 6.1 and 6.2 compare the actual minimum distance to a midpoint
(obtained through exhaustive computation) and the bounds we have obtained
in this section, in the case of “toy” floating-point systems of precision p = 10 and
15 (an exhaustive search was not possible for significantly wider formats). One
can see on these tables that in the cases δ = 0 or δ = 1, our bounds are close to
the minimum distance (a consequence is that there is little hope of significantly
improving the bound given in Theorem 6.6), and that for larger values of δ, our
bounds remain of the same order of magnitude as the minimum distance.

6.6 Application: Correct Rounding of
√

x2 + y2

Various properties can be deduced from the analyses performed in the previous
sections. Examples are:

• we can obtain


x2 + y2 correctly rounded in the binary32 format of the
IEEE 754-2008 standard if Algorithm 6.4 or Algorithm 6.5 is run in the
binary64 format (or a wider format);

• we can obtain


x2 + y2 correctly rounded in the binary64 format of the
IEEE 754-2008 standard if Algorithm 6.4 or Algorithm 6.5 is run in the
binary128 format;

• if |x/2| 6 |y| 6 |2x|, we can obtain


x2 + y2 correctly rounded in the
binary64 format of the IEEE 754-2008 standard if Algorithm 6.4 or Algo-
rithm 6.5 is run in the Intel binary80 format.

However, note that Algorithm 6.4 and Algorithm 6.5 do not necessarily work
in presence of underflow (if some variables are subnormal numbers) and overflow.
Note also that the proofs developed in Section 6.4 do not guarantee that the
algorithms always return the correct rounding of


x2 + y2 in case it is exactly



148 CHAPTER 6. CORRECTLY-ROUNDED 2D NORMS

δ
actual minimum distance

to a midpoint

our lower bound to

that distance

0 1.23× 10−4 ulp 1.22× 10−4 ulp

1 5.72× 10−5 ulp 3.91× 10−5 ulp

2 9.49× 10−5 ulp 1.00× 10−5 ulp

3 8.76× 10−6 ulp 2.53× 10−6 ulp

4 2.01× 10−6 ulp 6.35× 10−7 ulp

5 6.24× 10−7 ulp 1.58× 10−7 ulp

Table 6.1 – Comparison between the actual minimum distance to a midpoint
(obtained through exhaustive computation) and the bounds obtained in (6.11)
and (6.12) using our method, in the case of a “toy” floating-point system of
precision p = 10. All values in the table are rounded towards −∞.

δ
actual minimum distance

to a midpoint

our lower bound to

that distance

0 3.81× 10−6 ulp 3.81× 10−6 ulp

1 1.71× 10−6 ulp 1.22× 10−6 ulp

2 4.65× 10−7 ulp 3.14× 10−7 ulp

3 2.38× 10−7 ulp 7.92× 10−8 ulp

4 5.96× 10−8 ulp 1.98× 10−8 ulp

5 1.49× 10−8 ulp 4.96× 10−9 ulp

6 3.76× 10−9 ulp 1.24× 10−9 ulp

7 9.85× 10−10 ulp 3.10× 10−10 ulp

8 3.81× 10−5 ulp 7.76× 10−11 ulp

Table 6.2 – Comparison between the actual minimum distance to a midpoint
(obtained through exhaustive computation) and the bounds obtained in (6.11)
and (6.12) using our method, in the case of a “toy” floating-point system of
precision p = 15. All values in the table are rounded towards −∞.



6.7. CONCLUSION 149

a midpoint: we know that we get “a rounding-to-nearest,” but not necessarily
the one specified by the standard tie-breaking rule. Nevertheless, this could
probably be achieved by relying on an “exclusion zone” technique, as suggested
in Section 2.4.2, using the lower bounds on the minimum nonzero distance from

x2 + y2 to midpoints that we gave in Section 6.5.

6.7 Conclusion
We have given a very tight error bound for a simple augmented-precision al-
gorithm for the square root. We have also introduced two slightly different
augmented-precision algorithms for computing


x2 + y2. Then, we have given

bounds on the distance between


x2 + y2 and a midpoint, where x and y are
floating-point numbers and


x2 + y2 is not a midpoint. These bounds can be

used to provide correctly-rounded 2D norms (either using one of our algorithms,
or another one).





Chapter 7

Some Issues Related to
Double Roundings

The work presented in this chapter is based on a joint work with Jean-Michel
Muller and Guillaume Melquiond.

7.1 Double Roundings and Similar Problems
Double rounding is a phenomenon that may occur when different floating-point
precisions are available on a same system, or when performing scaled operations
whose final result is subnormal. Although double rounding is, in general, innocu-
ous, it may change the behavior of some useful small floating-point algorithms.
We analyze the potential influence of double roundings on the Fast2Sum and
TwoSum algorithms, as well as on some summation algorithms.

When several floating-point formats are supported in a given environment, it
is sometimes difficult to know in which format some operations are performed.
This may make the result of a sequence of arithmetic operations somewhat
difficult to predict, unless adequate compilation switches are selected. This is
an issue addressed by the recent IEEE 754-2008 standard for floating-point
arithmetic [85], so the situation might become clearer in the future. However,
current users have to face the problem. For instance, the C99 standard states [86,
Section 5.2.4.2.2]:

the values of operations with floating operands and values subject to
the usual arithmetic conversions and of floating constants are eval-
uated to a format whose range and precision may be greater than
required by the type.

To simplify, assume the various declared variables of a program are of the
same format. Two phenomena may occur when a wider format is available in
hardware (a typical example is the “double-extended format” available on Intel
processors, for variables declared in the double precision/binary64 format):

• for implicit variables such as the result of “a+b” in the expression “d =
(a+b)*c” it is not clear in which format they are computed. It may be
preferable in most cases to compute them in the wider format;

151



152 CHAPTER 7. SOME ISSUES RELATED TO DOUBLE ROUNDINGS

• explicit variables may be first computed in the wider format, and then
rounded to their destination format. This sometimes leads to a subtle
problem called double rounding in the literature. Consider the following C
program [128]:

double a = 1848874847.0;
double b = 19954562207.0;
double c;
c = a * b;
printf("c = %20.19e\n", c);
return 0;

Depending on the processor and the compilation options, we will either
obtain

3.6893488147419103232e+19

or

3.6893488147419111424e+19,

which is the double-precision/binary64 number closest to the exact prod-
uct. Let us explain this. The exact value of a*b is

36893488147419107329,

whose binary representation is
64 bits  

10000000000000000000000000000000000000000000000000000  
53 bits

10000000000 01

If the product is first rounded to the “double-extended precision” format
that is available on x87-compatible Intel processors, we get (in binary):

64 bits  
10000000000000000000000000000000000000000000000000000  

53 bits

10000000000 ×4

Then, if that intermediate value is rounded to the double-precision desti-
nation format, this gives (using the round-to-nearest-even rounding mode)

10000000000000000000000000000000000000000000000000000  
53 bits

× 213

= 3689348814741910323210,

In most applications, these phenomena are innocuous. However, they may
make the behavior of some numerical programs difficult to predict (interesting
examples are given by Monniaux [124]).

Most compilers offer options that prevent this problem. For instance, on a
Linux Debian Etch 64-bit Intel platform, with GCC, the



7.1. DOUBLE ROUNDINGS AND SIMILAR PROBLEMS 153

-march=pentium4 -mfpmath=sse

compilation switches force the results of operations to be computed and stored in
the 64-bit Streaming SIMD Extension (SSE) registers. However, such solutions
have drawbacks:

• they significantly restrict the portability of numerical programs: e.g., it is
difficult to make sure that one will always use algorithms such as TwoSum
or Fast2Sum (see Section 7.1.1), in a large code, with the right compilation
switches;

• they may have a bad impact on the performances of programs, as well
as on their accuracy, since in most parts of a numerical program, it is in
general more accurate to perform the intermediate calculations in a wider
format.

Hence, it is of interest to examine which properties of some basic computer
arithmetic building blocks remain true when some intermediate operations may
be performed in a wider format and/or when double roundings may occur. When
these properties suffice, the obtained programs will be much more portable
and “robust”. Interestingly enough, as shown by Boldo and Melquiond, double
roundings could be avoided if the wider precision calculations were implemented
in a special rounding mode called rounding to odd [18]. Unfortunately, as we are
writing this document, rounding to odd is not implemented in floating-point
units.

Also, with the four arithmetic operations and the square root, one may
rather easily find conditions on the precision of the wider format under which
double roundings are innocuous. Such conditions have been made explicit by
Figueroa [55, 54] (who mentions in his paper that they probably have been given
by Kahan in a course he gave in 1988). For instance, in binary floating-point
arithmetic, if the “target” format is of precision p > 4 and the wider format is
of precision p + p′, double roundings are innocuous for addition if p′ > p + 1, for
multiplication and division if p′ > p, and for square root if p′ > p+2. Notice that
in the most frequent case (namely, p = 53 and p′ = 11) these conditions are not
satisfied. For Euclidean division, the problem was addressed by Lefèvre [100].

Double roundings may also cause a problem in binary to decimal conversions.
Solutions are given by Goldberg [62], and by Cornea et al [42].

When the rounding mode (or direction) is towards, +∞, −∞ or 0, one may
easily check that double roundings cannot change the result of a calculation. As
a consequence, in this work, we will focus on “round to nearest” only.

The chapter is organized as follows:

• Section 7.1.1 defines some extra notations, generalizes the standard “ϵ-
model” for bounding errors of FP operations with double roundings, and
recalls the classical TwoSum algorithm;

• Section 7.2.1 gives some preliminary remarks that will be useful later on
in the proofs;

• Sections 7.2.2 and 7.2.3 analyze the behavior of the Fast2Sum and TwoSum
algorithms in the presence of double roundings. The main results of that
part are Theorems 7.2 and 7.3, which show that even if Fast2Sum or



154 CHAPTER 7. SOME ISSUES RELATED TO DOUBLE ROUNDINGS

TwoSum can no longer always return the error of a floating-point addition
(because that error is not always exactly representable), they will always
return the floating-point number nearest that error;

• Fast2Sum and TwoSum are basic building blocks of many summation algo-
rithms. In Section 7.2.4, we give some implications of the results obtained
in the previous two sections to the behavior of these algorithms.

• Finally Section 7.3 will be devoted to the formal verification of the mathe-
matical results mentioned in Sections 7.2.1 and 7.2.2, using the Coq formal
proof assistant. We will give a detailed outline at the beginning of Sec-
tion 7.3.

7.1.1 Extra Notations and Background Material
Even, Odd, Normal and Subnormal Numbers, Underflow

We will say that a finite floating-point number is even (resp. odd) if its integral
significand is even (resp. odd).

Concerning underflow, we will follow here the rule for raising the underflow
flag of the default exception handling of the IEEE 754-2008 standard [85], and
say that an operation induces an underflow when the result is both subnormal
and inexact.

Target Format, Wider Internal Format, Roundings

In the sequel, we assume a precision-p target binary format, and a precision-
(p + p′) wider “internal” format. When we just write that a number x is a
floating-point number without explicitly giving its precision, we mean that it
is a precision-p FP number. We assume that the set of possible exponents of
the wider format contains the set of possible exponents of the target format,
and in the following, emin and emax denote the extremal exponents of the target
format.

RNk(u) means u rounded to the nearest precision-k FP number (assuming
round to nearest even: if u is exactly halfway between two consecutive precision-
k FP numbers, RNk(u) is the one of these two numbers that is even). When k
is omitted, it means that k = p.

We will also use the notion of faithful rounding, presented in Remark 2.3 on
page 21.

We also say that a number x fits in k bits if it is equal to a precision-k
FP number, or, equivalently, if in the bit string S constituted by the binary
representation of x there is a chain of at most k consecutive bits that contains
all the nonzero bits of S.

Midpoints

We recall that a precision-p midpoint is a number exactly halfway between two
consecutive precision-p FP numbers, and that these numbers enjoy the following
properties:



7.1. DOUBLE ROUNDINGS AND SIMILAR PROBLEMS 155

Theorem 7.1 (On midpoints). If x and y are real numbers such that x ̸= y,
and if there is no midpoint between x and y, then we have

RN(x) = RN(y).

Moreover, in any radix-2 FP format, we have:

• if x is a nonzero FP number, and if |x| is not a power of 2, then the two
midpoints that surround x are x− 1

2 ulp(x) and x + 1
2 ulp(x);

• if |x| is a power of 2 strictly larger than 2emin and less than or equal to
2emax then the two midpoints that surround x are x− sign(x) · 1

4 ulp(x) and
x + sign(x) · 1

2 ulp(x).

Double Roundings and Double Rounding Slips

In the literature, the term “double rounding” either just means that two round-
ings occurred, or means that two roundings occurred and that this changed
the result. To distinguish between these two events, we will say that, when the
arithmetic operation x⊤y appears in a program:

• a double rounding occurs if what is actually performed is

RNp (RNp+p′(x⊤y)) ,

• a double rounding slip occurs if a double rounding occurs and the obtained
result differs from RNp(x⊤y).

(a very similar definition can be given for an unary function such as
√

x).

The “standard model”, or “ϵ-model”

In the sequel, we will often use the following property that is very similar to the
usual ϵ-model that we recalled in Property 2.1 (on page 20). Specifically, it can
be shown as a corollary of Property 2.1, by using the fact that two consecutive
roundings, one in precision p + p′, and one in precision p, are performed:

Property 7.1 (ϵ-model with double roundings). Let a and b be precision-
p FP numbers, and let ⊤ ∈ {+,−,×,÷}.

• if no underflow nor overflow occurs, then

RNp (RNp+p′(a⊤b)) = (a⊤b) · (1 + ϵ1) = a⊤b

1 + ϵ2
, (7.1)

where |ϵ1|, |ϵ2| 6 u′, with u′ = 2−p + 2−p−p′ + 2−2p−p′ ;

• if the result of a floating-point addition a + b has absolute value less than
2emin , then

RNp (RNp+p′(a + b)) = (a + b)
exactly, which implies that for ⊤ = +, (7.1) always holds, unless overflow
occurs.

Since (when p′ is large enough) the bound u′ is only slightly larger than u,
most properties that can be shown using the ϵ-model only will remain true in
the presence of double roundings (possibly with somewhat larger error bounds).



156 CHAPTER 7. SOME ISSUES RELATED TO DOUBLE ROUNDINGS

u, θk and γk Notations

In [79, page 67], Higham defines notations θk and γk that turn out to be very
useful in error analysis. We will very slightly adapt them to the context of double
roundings.

Define u = 2−p and u′ = 2−p + 2−p−p′ + 2−2p−p′ . For any integer k, θk will
denote a quantity of absolute value bounded by

γk = k u
1− k u ,

and θ′
k will denote a quantity of absolute value bounded by

γ′
k = k u′

1− k u′ .

The TwoSum Algorithm

As recalled by Theorem 6.1 on page 133, the Fast2Sum algorithm works in radix
β 6 3 and assumes its FP arguments a and b satisfy ea > eb.

When we do not know in advance whether ea > eb or not (or when the
radix β is not 2, this latter case being not dealt with in this work), it may be
preferable to use the following algorithm, due to Knuth [97] and Møller [123]:

Algorithm 7.1: TwoSum
Input: (a, b)
s← RN(a + b)
a′ ← RN(s− b)
b′ ← RN(s− a′)
δa ← RN(a− a′)
δb ← RN(b− b′)
t← RN(δa + δb)
return (s, t)

Knuth shows that, if a and b are normal FP numbers, then for any radix β,
provided that no underflow nor overflow occurs, a + b = s + t. Boldo et al. [17]
give a formal proof of this algorithm in radix 2, and show that underflow does
not hinder the result.

7.2 Mathematical Setup
7.2.1 Some Preliminary Remarks
Let us first notice something about Fast2Sum.

Remark 7.1. The proof of Fast2Sum (see for instance the one given in [128])
relies on the fact that if we have

s = RN(a + b),

then the variables z and t of Algorithm Fast2Sum are computed exactly (i.e.,
s − a and b − z are FP numbers). This implies that the same result will be
obtained if these variables are computed in a wider format, or with double



7.2. MATHEMATICAL SETUP 157

roundings (or with a directed rounding mode). Incidentally, this shows (at least
in common languages) that an explicit declaration of variable z is unnecessary,
and that in a program, one may safely replace

z = s-a; t = b-z

with

t = b-(s-a).

Generally speaking, it is well known that unless overflow occurs, the error
of a rounded-to-nearest floating-point addition of two precision-p numbers is a
precision-p number: it is precisely that error that is computed by Algorithms 6.1
and 7.1. When double roundings slips occur, the results of sums are very slightly
different from rounded to nearest sums. This difference, although it is very small,
sometimes suffices to make the error not representable.

More precisely, assume a double rounding slip occurs when evaluating the
sum s of two precision-p FP numbers a and b, i.e.,

s = RNp(RNp+p′(a + b)) ̸= RNp(a + b).

Then if p′ > 1 and p′ 6 p, the error r = a + b− s of that floating-point addition
may not be exactly representable in precision-p arithmetic.

Proof. To show this, it suffices to consider

a = 1 xxxx · · ·x  
p−3 bits

01,

where xxxx · · ·x is any (p − 3)-bit bit-chain. The number a is a p-bit integer,
thus exactly representable in precision-p FP arithmetic. Also consider

b = 0.0 111111 · · · 1  
p ones

= 1
2 − 2−p−1.

The number b is equal to (2p − 1) · 2−p−1, hence it is a precision-p FP number
too.

We thus have:
a + b = 1xxxx...x01  

p bits

.0 111111...1  
p bits

,

so that if 1 6 p′ 6 p,

u = RNp+p′(a + b) = 1xxxx...x01.100...0.

The “round to nearest even” rule thus implies

s = RNp(u) = 1xxxx...x10 = a + 1.

Therefore,

s− (a + b) = a + 1− (a + 1
2 − 2−p−1) = 1

2 + 2−p−1 = 0. 10000 · · · 01  
p+1 bits

,

which is not exactly representable in precision-p FP arithmetic.



158 CHAPTER 7. SOME ISSUES RELATED TO DOUBLE ROUNDINGS

Remark 7.2. Let a and b be precision-p FP numbers, and define

s = RNp


RNp+p′(a + b)


for a given p′ > 0. If the exponents of a and b satisfy eb 6 ea and s is nonzero,
then its exponent satisfies

es 6 1 + ea. (7.2)

Proof. Since |a| and |b| are less than or equal to (2p − 1) · 2ea−p+1, we have

|a + b| 6 (2p − 1) · 2ea−p+2,

so that, given that roundings are monotonically-increasing functions and that
(2p − 1) · 2ea−p+2 is a precision-p (and precision-(p + p′)) FP number, we have

|s| =
RNp


RNp+p′(a + b)

 6 (2p − 1) · 2(ea+1)−p+1,

therefore es 6 ea + 1.

Remark 7.3. Assume we compute w = RNp(RNp+p′(u + v)), where u and v
are precision-p, radix-2, FP numbers of exponents eu and ev, with eu > ev. If
p′ > 2 and a double-rounding slip occurs in that computation, then

eu − p− 1 6 ev 6 eu − p′, (7.3)

and
ew > ev + p′ + 1. (7.4)

Proof of (7.3). First, if eu − p− 1 > ev (i.e., eu − p− 2 > ev), then

|v| < 2ev+1 6 2eu−p−1 = 1
4 ulp(u). (7.5)

Also, p′ > 2 implies that u− 1
4 ulp(u) and u + 1

4 ulp(u) are precision-(p + p′) FP
numbers. Therefore,

u− 1
4 ulp(u) 6 RNp+p′(u + v) 6 u + 1

4 ulp(u).

Therefore,

• if |u| is not a power of 2 then RNp+p′(u + v) cannot be a precision-p
midpoint. The final result follows from Remark 7.5 below;

• if |u| = 2eu exactly, then |u| − 1
4 ulp(u) is a midpoint (it is the only one

between |u| − 1
4 ulp(u) and |u| + 1

4 ulp(u)), but ev 6 eu − p − 2 implies
|v| < 2eu−p−1 = 1

4 ulp(u), so that the real value of u + v is between the
midpoint µ = u− sign(u) · 1

4 ulp(u) and µ′ = u + sign(u) · 1
4 ulp(u). Given

that
RNp (RNp+p′(µ)) = u (7.6)

(due to the round-to-nearest even rounding rule), and that

RNp (RNp+p′(µ′)) = u,



7.2. MATHEMATICAL SETUP 159

we can use the fact that the roundings are monotonic functions to deduce
that

RNp (RNp+p′(u + v)) = u

= RN(u + v), (7.7)

so that no double rounding slip occurs.

Second, if ev > eu − p′, then u + v can be written 2ev−p+1 (2eu−ev Mu + Mv),
where Mu and Mv are the integral significands of u and v, and the integer
2eu−ev Mu + Mv satisfies2eu−ev Mu + Mv

 6 2p′−1(2p − 1) + (2p − 1) 6 2p+p′
− 1.

Therefore u + v is exactly representable in precision p + p′, so that no double
rounding slip can occur.

Proof of (7.4). Let k be the integer such that 2k 6 |u + v| < 2k+1. The mono-
tonicity of the rounding functions implies that

2k 6 |RNp(RNp+p′(u + v))| 6 2k+1,

therefore, ew is equal to k or k + 1. Since u + v does not fit into p + p′ bits
(otherwise there would not be a double rounding slip) and u + v is a multiple of
2ev−p+1, we deduce that ulpp+p′(u + v) > 2ev−p+1, which implies that k − p−
p′ + 1 > ev − p + 1. Therefore ew > k > ev + p′, which concludes the proof.

Notice that the condition “p′ 6 p” in Remark 7.1 is necessary. More precisely,

Remark 7.4. If p′ > p + 1 then a double rounding slip cannot occur when
computing a + b, i.e., we always have

RNp (RNp+p′(a + b)) = RNp(a + b).

Proof. This is a classical result [55, 54]. A sketch of the proof is the following.
Assume, without l.o.g., that |a| > |b|: if eb > ea−p−1 then a + b fits in at most
2p + 1 bits, so that as soon as p′ > p + 1, RNp+p′(a + b) = a + b exactly; and
if eb < ea − p − 1, then Equation (7.3) in Remark 7.3 implies that no double
rounding slip can occur.

Remark 7.5. Assume, p′ > 1, if a double rounding slip occurs when evaluating
a⊤b (where ⊤ is any operation) then RNp+p′(a⊤b) is a precision-p midpoint, i.e.,
a number exactly halfway between two consecutive precision-p FP numbers.

Proof. The proof of Remark 7.5 is common arithmetic folklore, and just uses the
fact that roundings are monotonic functions. Let us give it anyway for the sake
of completeness. If RNp(a⊤b) ̸= RNp(RNp+p′(a⊤b)) then there is a precision-p
midpoint, say µ, between a⊤b and RNp+p′(a⊤b). That number satisfies

|(a⊤b)− µ| 6 |(a⊤b)− RNp+p′(a⊤b)| .

µ fits in (p + 1) bits. Since p′ > 1, it is a precision-(p + p′) FP number. Since
by definition RNp+p′(a⊤b) is a a precision-(p + p′) FP number nearest a⊤b, we
have:



160 CHAPTER 7. SOME ISSUES RELATED TO DOUBLE ROUNDINGS

• either there is only one precision-(p + p′) FP number nearest a⊤b—i.e.,
a⊤b is not a precision-(p+p′) midpoint, in such a case we necessarily have
RNp+p′(a⊤b) = µ;

• or a⊤b is a precision-(p+p′) midpoint. In such a case, if RNp+p′(a⊤b) ̸= µ,
then either µ is above a⊤b and RNp+p′(a⊤b) is below a⊤b, or µ is below
a⊤b and RNp+p′(a⊤b) is above a⊤b: in any case, µ cannot be between
a⊤b and RNp+p′(a⊤b), which is a contradiction.

An immediate consequence of Remark 7.5 (due to the round-to-nearest-even
rule) is the following.

Remark 7.6. Assume, p′ > 1, if a double rounding slip occurs when evaluating
a⊤b then the returned result RNp (RNp+p′(a⊤b)) is an even FP number.

In our proofs, we will also frequently use the following, well-known, result.

Remark 7.7 (Sterbenz Lemma [161]). If a and b are positive FP numbers,
and

a

2 6 b 6 2a,

then a − b is a floating-point number, which implies that it will be computed
exactly, whatever the rounding.

Finally, the following result will be used later on to prove that even when
the error of a floating-point addition is not exactly representable because of a
double rounding slip, as soon as p′ > 2, we are anyway able to compute the
floating-point number nearest that error.

Remark 7.8. Let a and b be precision-p FP numbers, and define

s = RNp (RNp+p′ (a + b)) .

The number r = a + b − s fits in at most p + 2 bits, so that as soon as p′ > 2,
we have

RNp (RNp+p′ (a + b− s)) = RNp(a + b− s). (7.8)

Proof. Without l.o.g., we assume ea > eb. First, we already know that if no dou-
ble rounding slip occurs when computing s, namely if RNp (RNp+p′ (a + b)) =
RNp(a + b), then a + b − s is a precision-p FP number. In such a case, (7.8)
is obviously true. So let us assume that RNp (RNp+p′ (a + b)) ̸= RNp(a + b).
Equation (7.3) in Remark 7.3 implies therefore that eb > ea − p− 1.

Since a and b are both multiple of 2eb−p+1, we easily deduce that a + b− s
too is a multiple of 2eb−p+1. Moreover by Remark 7.2, we have es 6 ea + 1.

From all this, we deduce that a + b− s is a multiple of 2eb−p+1 of absolute
value less than or equal to

2−p+es + 2−p−p′+es 6 2−p+ea+1 + 2−p−p′+ea+1 6 2eb+2 + 2eb−p′+2.

Hence, r = a + b− s fits in at most p + 2 bits, therefore, as soon as p′ > 2,

RNp+p′(a + b− s) = a + b− s.



7.2. MATHEMATICAL SETUP 161

7.2.2 Behavior of Fast2Sum in the Presence of Double
Roundings

Remark 7.1 implies that Algorithms Fast2Sum and TwoSum cannot always re-
turn the exact value of the error when the addition RN(a + b) is replaced by

RNp (RNp+p′(a + b)) ,

i.e., when a double rounding occurs, because that error is not always exactly
equal to a floating-point number.

And yet, we may try to bound the difference between the exact error and
the returned number t (indeed, we will prove that t is the FP number nearest
the exact error). Let us analyze how algorithm Fast2Sum behaves when double
roundings are allowed. Assume ea > eb, we will consider that what is actually
performed is

Algorithm 7.2: Fast2Sum-with-double-roundings
Input: (a, b)
s← RNp (RNp+p′(a + b))
z ← ◦(s− a)
t← RNp (RNp+p′(b− z)) or RNp(b− z)
return (s, t)

where ◦(u) means either RNp(u), RNp+p′(u), or RNp(RNp+p′(u)), or any faithful
rounding—this is not important, as we will see that s−a is exactly representable
in precision-p FP arithmetic, so that it will be computed exactly, whatever the
rounding: this means that in a program, one may safely replace

z = s-a; t = b-z

by

t = b-(s-a).

Define ea, eb, and es as the floating-point exponents of a, b, and s, and Ma,
Mb, and Ms as their significands. We assume ea > eb (that condition will be
satisfied if |a| > |b|). By Remark 7.2, this implies es 6 ea + 1.

Without l.o.g., we assume s > 0 (otherwise if suffices to change the signs of
a and b). We have

a = Ma · 2ea−p+1,

with |Ma| 6 2p − 1, and similar relations for b and s. Also, notice that

2p−1 6
s

2es−p+1 6 2p − 1

implies

2p−1 − 1
4 6

RNp+p′(a + b)
2es−p+1 < 2p − 1

2 ,

which implies

2p−1 − 1
4 − 2−p′−2 6

a + b

2es−p+1 < 2p − 1
2 + 2−p′−1.



162 CHAPTER 7. SOME ISSUES RELATED TO DOUBLE ROUNDINGS

1. if es = ea + 1, define δ = ea − eb. We have,

a + b = 2es−p+1


Ma

2 + Mb

2δ+1


,

from which we deduce

RNp+p′(a + b) = 2es−p+1


Ma

2 + Mb

2δ+1 + ϵ


,

where |ϵ| 6 2−p′−1. Therefore, we have

Ms =


Ma

2 + Mb

2δ+1 + ϵ


, (7.9)

where ⌈u⌋ is the integer nearest to u (with round-to-even choice in case of
a tie). Now, define µ = 2Ms −Ma. We have,

Mb

2δ
− 1− 2−p′

6 µ 6
Mb

2δ
+ 1 + 2−p′

.

Since µ is an integer, δ > 0, and |Mb| 6 2p − 1, if p′ > 1, then either
|µ| 6 2p − 1, or µ = ±2p. In both cases, since s− a = µ · 2ea−p+1, s− a is
exactly representable in precision p.

2. if es 6 ea, define δ1 = ea − eb. We have

a + b =

2δ1Ma + Mb


· 2eb−p+1.

• if es 6 eb then s = a + b exactly, since s is obtained by rounding
a + b first to the nearest multiple of 2es−p−p′+1—or to the nearest
multiple of 2es−p−p′ in case |a+b| is less than 2es−2es−p−p′−1—which
is a divisor of 2eb−p+1, and then to the nearest multiple of 2es−p+1

(which is a divisor of 2eb−p+1 too). These two rounding operations
left it unchanged since it is already a multiple of 2eb−p+1. Hence in
the case es 6 eb, s− a = b is exactly representable;
• if es > eb, let us define δ2 = es − eb. We have,

s =

2δ1−δ2Ma + 2−δ2Mb + ϵ


· 2es−p+1,

where |ϵ| 6 2−p′−1. This implies

|s− a| 6


2−δ2Mb + 1
2 + 2−p′−1


· 2es−p+1.

Also, since es 6 ea, s−a is a multiple of 2es−p+1. We therefore have,

s− a = K · 2es−p+1,

where K is an integer satisfying

|K| 6 2−δ2 |Mb|+
1
2 + 2−p′−1 < 2p−1 + 1 < 2p − 1.

(as soon as p > 3 and p′ > 1, which holds in all cases of practical
interest). Hence, s−a is exactly representable in precision-p floating-
point arithmetic.



7.2. MATHEMATICAL SETUP 163

We have shown that in all cases, s−a is exactly representable in precision-p FP
arithmetic. Hence, variable z of the algorithm will be exactly computed (and
the way it is rounded—correct rounding to precision p, correct rounding to an
“extended”, precision-(p + p′) format, double rounding, directed rounding—has
no influence on this). Now, from z = s − a, we immediately deduce b − z =
(a + b)− s = r, so that

t = RNp (RNp+p′(r)) .

Using Remark 7.8, we immediately deduce

t = RNp (r) .

In other words, each time r is exactly representable (which happens every
time a double rounding slip does not occur when computing a + b), we get it
exactly; and when r is not exactly representable, we get the precision-p FP
number nearest to r. The following theorem summarizes the obtained results.

Theorem 7.2. Assume a binary target floating-point format of precision p >
3, assume a binary format of precision p + p′, with p′ > 2, is available. If
a and b are precision-p numbers, with ea > eb (that condition will be sat-
isfied if |a| > |b|), and if no overflow occurs, then the sequence of calcula-
tions

s← RNp (RNp+p′(a + b))
z ← ◦(s− a)
t← ⊙(b− z)

(where ◦(u) means either RNp(u), RNp+p′(u), or RNp(RNp+p′(u)), and ⊙(u)
means either RNp (RNp+p′(u)) or RNp(u)) satisfies the following property:

• z = s− a exactly (this will be useful later on);

• if no double rounding slip occurred when computing s (in other words, if
s = RNp(a + b)), then t = (a + b− s) exactly;

• otherwise, t = RNp(a + b− s).

7.2.3 Behavior of TwoSum in the Presence of Double
Roundings

The following preliminary lemma is directly adapted from Lemma 4 in Shewchuk’s
paper [153].

Lemma 7.1. Let a and b be precision-p binary floating-point numbers. Let

s = RNp (RNp+p′(a + b)) or RNp(a + b).

If |s| < min{|a|, |b|} then s = a + b (that is, s is computed exactly).

Proof. Define σ = a + b. Without loss of generality, assume that min{|a|, |b|} =
|b|. Define eb as the exponent of b and Mb as its integral significand (i.e., b =
Mb · 2eb−p+1). Since a and b are both multiples of 2eb−p+1, σ is a multiple of
2eb−p+1 too. Also, due to the monotonicity of rounding, |s| < |b| implies |σ| < |b|.
An immediate consequence is that σ/2eb−p+1 is an integer of absolute value less
than |Mb| 6 2p − 1. This implies that σ is a precision-p floating-point number.
Therefore RNp+p′(σ) = σ, and RN(σ) = σ, so that s = σ.



164 CHAPTER 7. SOME ISSUES RELATED TO DOUBLE ROUNDINGS

We will analyze the following algorithm
Algorithm 7.3: TwoSum-with-double-roundings

Input: (a, b)
s← RNp(RNp+p′(a + b)) or RNp(a + b)1
a′ ← RNp(RNp+p′(s− b)) or RNp(s− b)2
b′ ← ◦(s− a′)3
δa ← RNp(RNp+p′(a− a′)) or RNp(a− a′)4
δb ← RNp(RNp+p′(b− b′)) or RNp(b− b′)5
t← RNp(RNp+p′(δa + δb)) or RNp(δa + δb)6
return (s, t)7

where ◦(u) is either RNp(u), RNp+p′(u), or RNp(RNp+p′(u)), or any faithful
rounding (indeed, we will show that s− a′ is a precision-p FP number, so that
b′ will be computed exactly).

First, let us raise the following point:

Remark 7.9. Assuming p′ > 2, if the variables a′ and b′ of Algorithm 7.3
satisfy a′ = a and b′ = s− a′ exactly, then t = RN(a + b− s).

Proof. If a′ = a then δa = 0. Also, b′ = s− a′ = s− a implies b− b′ = a + b− s,
so that δb = RNp(RNp+p′(a + b− s)). This gives

t = RNp(RNp+p′(a + b− s)) = RNp(a + b− s),

using Remark 7.8.

Let us now analyze Algorithm 7.3.

Behavior of Algorithm 7.3 in the case |b| > |a|.
In the case |b| > |a|, Lines 1, 2 and 4 of Algorithm 7.3 constitute Fast2Sum-
with-double-roundings(b, a), i.e., Algorithm 7.2, called with input values (b, a).
A consequence of this (see Theorem 7.2) is that the computation of Line 2 is
exact, which implies a′ = s− b and δa = RNp(a + b− s). Also, a′ = s− b implies
s− a′ = b, so that b′ = b exactly and δb = 0. All this implies

t = RNp(a + b− s).

Behavior of Algorithm 7.3 in the case |b| < |a| and |s| < |b|.
If |b| < |a| and |s| < |b|, then Lemma 7.1 applies: s = a+b exactly, which implies
a′ = a, b′ = b, and δa = δb = t = 0.

Behavior of Algorithm 7.3 in the case |b| < |a| and |s| > |b|.
Let us now assume |b| < |a| and |s| > |b|. These inequalities have two important
consequences:

• we have s = (a + b) · (1 + ϵ1) and a′ = (s− b) · (1 + ϵ2), with |ϵ1|, |ϵ2| 6 u′

(we remind the reader that u′ = 2−p +2−p−p′ +2−p−2p′ , see Section 7.1.1),
from which we easily deduce

a′ = (a + aϵ1 + bϵ1) · (1 + ϵ2) = a · (1 + ϵ3),



7.2. MATHEMATICAL SETUP 165

with |ϵ3| 6 3 u′ +2 u′2. An immediate consequence is that as soon as p > 4
and p′ > 1 (which holds in all practical cases), |a/2| 6 |a′| 6 |2a|, and
a and a′ have the same sign. Hence, from Sterbenz lemma (Remark 7.7),
a − a′ is a precision-p floating-point number, which implies δa = a − a′

exactly. Also (which will be useful later on), e′
a 6 ea + 1.

• Lines 2, 3 and 5 constitute Fast2Sum (with double roundings, i.e., Algo-
rithm 7.2), called with input values (s,−b). This implies that b′ = s − a′

exactly, and δb = RNp(a′ − (s − b)). Moreover, Theorem 7.2 shows that
δb = a′ − (s− b) exactly if no double rounding slip occurred in Line 2: in
such a case, δa+δb = (a+b−s), which implies t = RNp(RNp+p′(a+b−s)) =
RNp(a + b− s) (using Remark 7.8).

Thus, in the following, we assume that a double rounding slip
occurred in Line 2, i.e., when computing s− b. Notice that this implies from
Remark 7.6 that a′ is even. Notice that Equation (7.4) in Remark 7.3 implies
that eb 6 e′

a − p′ − 1.
Also, we know that

• δa = a− a′ and b′ = s− a′ exactly;

• all variables (s, a′, b′, δa, δb, t) are multiples of 2eb−p+1.

Since a double rounding slip occurred in Line 2, we have

s− b = a′ + i · 2e′
a−p + j · ϵ,

where i = ±1 (or± 1
2 in the case a′ is a power of 2), j = ±1 and 0 6 ϵ 6 2e′

a−p−p′ .
Since b′ = s− a′ exactly, we deduce

b′ = b + i · 2e′
a−p + j · ϵ,

hence,
b− b′ = −i · 2e′

a−p − j · ϵ,

so that, since it is a multiple of 2eb−p+1, b − b′ fits in at most (e′
a − p) − (eb −

p + 1) + 1 = e′
a − eb 6 ea − eb + 1 bits. Hence, if ea − eb 6 p − 1 then b − b′

is a precision-p floating-point number, therefore δb = b − b′ exactly. It follows
that δa + δb = a − a′ + b − b′ = a − a′ + b − (s − a′) = a + b − s, so that
t = RNp(RNp+p′(a + b− s)) = RNp(a + b− s) (using Remark 7.8).

Furthermore, if ea − eb > p + 2, then one easily checks that s = a′ = a,
b′ = δa = 0, and t = δb = b, which is the desired result.

Hence the last case that remains to be checked is the case ea− eb ∈
{p, p + 1}. Notice that in that case, if a is not a power of 2, s is necessarily
equal to a−, a, or a+, where a− and a+ are the floating-point predecessor and
successor of a. If a is a power of 2, s can also be equal to a−− (when a > 0)
or a++ (when a < 0). To simplify the presentation, we now assume a > 0
(otherwise, it suffices to change the signs of a and b).

1. if a is not a power of 2, then s is equal to a−, a, or a+. Notice that
s = a− ⇒ a′ > s (because in that case, b < 0), and s = a+ ⇒ a′ 6 s.

• if |b| is not of the form ±2ea−p + ϵ with |ϵ| 6 2ea−p−p′ , then there are
no double rounding slips in lines (1) and (2) of the algorithm;



166 CHAPTER 7. SOME ISSUES RELATED TO DOUBLE ROUNDINGS

• otherwise, if a is even, then (due to the round to nearest even round-
ing rule) s = a, and a′ = s = a, therefore Remark 7.9 implies
t = RNp(a + b− s);
• otherwise, if a is odd, then (still due to the round to nearest even

rounding rule) s = a+ or a− and a′ = s, so that b′ = 0, which implies
δb = b and t = RNp(RNp+p′(a−a′ + b)) = RNp(RNp+p′(a+ b−s)) =
RNp(a + b− s).

2. if a is a power of 2, i.e., a = 2ea . Notice again that s < a ⇒ a′ > s
(because in that case, b < 0), and s > a⇒ a′ 6 s.

• if b > 0, then s is equal to a, or a+.
– If s = a+ then if a′ = a+ then there is no double rounding slip in

Line 2 of the algorithm since a′ is odd (using Remark 7.6), and
if a′ = a then Remark 7.9 implies t = RNp(a + b− s);

– now, if s = a then if a′ = a then Remark 7.9 implies t = RNp(a+
b − s), and if a′ = a− then (since a′ is odd) there is no double
rounding slip in Line 2 of the algorithm (using Remark 7.6).

• if b < 0, then s is equal to a, a−, or a−−.
– if s = a then b > −2ea−p−1 − 2ea−p−p′−1. In such a case, there

is no double rounding slip when computing s− b, i.e., in Line 2
of the algorithm;

– if s = a− then if a′ = a− then there is no double rounding slip
in Line 2 since a− is odd, and if a′ = a then Remark 7.9 implies
t = RNp(a + b− s);

– if s = a−− then if a′ = a− then there is no double rounding
slip in Line 2 since a− is odd; if a′ = a then Remark 7.9 implies
t = RNp(a + b− s); and a′ = a−− is impossible (s = a−− implies
−b > 3 ·2ea−p−1−2ea−p−p′−1, from which we deduce s− b > a−,
which implies a′ > a−).

We therefore deduce

Theorem 7.3. Assume a radix-2 target floating-point format of precision p > 4,
assume that a format of precision p + p′, with p′ > 2, is available. If a and b are
precision-p numbers, and if no overflow occurs, then Algorithm 7.3 satisfies the
following property:

• if no double rounding slip occurred when computing s (in other words, if
s = RNp(a + b)), then t = (a + b− s) exactly;

• otherwise, t = RNp(a + b− s).

Notice that an immediate consequence of Theorems 7.2 and 7.3 is

Corollary 7.1. The values s and t returned by Algorithms 7.2 and 7.3 satisfy

(s + t) = (a + b)(1 + η),

with |η| 6 2−2p + 2−2p−p′ + 2−3p−p′ .



7.2. MATHEMATICAL SETUP 167

It may be of interest to notice that, even when a double rounding slip oc-
curred when computing s in Fast2Sum or TwoSum, (a + b) − s will very often
be exactly representable. More exactly,

Remark 7.10. Assume p′ > 2, let a and b be precision-p FP numbers, with
ea > eb, such that

s = RNp (RNp+p′(a + b)) ̸= RNp(a + b),

if a + b− s is not a precision-p FP number, then eb = ea − p− 1.

Proof. Assume that a + b − s is not a precision-p FP number. Without l.o.g.,
we assume a + b > 0. First, Remark 7.3 implies

ea − p− 1 6 eb 6 ea − p′. (7.10)

Also, Remark 7.5 implies that RNp+p′(a + b) has the form g + 1
2 ulpp(g), where

g is a precision-p FP number, which means that

a + b = g + 1
2 ulpp(g) + ϵ,

with
|ϵ| 6 1

2 ulpp+p′(g) and ϵ ̸= 0.

Therefore, we have

s =


g if g is even
g+ = g + ulp(g) otherwise.

and

RNp(a + b) =


g if ϵ < 0
g+ if ϵ > 0.

Hence, s and RNp(a + b) differ in two cases:

1. if g is even and ϵ > 0, in which case

a + b− s = 1
2 ulpp(g) + ϵ;

2. if g is odd and ϵ < 0, in which case

a + b− s = −1
2 ulpp(g) + ϵ.

Now, notice that ϵ is an integer multiple of ulp(b). Equation (7.10) implies that
eg is ea − 1, ea, or ea + 1. Furthermore,

• If eg = ea − 1, then 1/2 ulp(eg) = 2ea−p−1 6 2eb , so that ±1/2 ulp(eg) + ϵ
is representable in precision-p FP arithmetic;



168 CHAPTER 7. SOME ISSUES RELATED TO DOUBLE ROUNDINGS

• If eg = ea, then the leftmost bit of the binary representation of± 1
2 ulpp(g)+

ϵ is of weight 6 2eg−p, whereas its rightmost nonzero bit has weight
> 2eb−p+1. Hence, if ± 1

2 ulpp(g) + ϵ is not a precision-p FP number then

eb − p + 1 < (eg − p)− p + 1,

which implies
eb 6 ea − p− 1.

Combined with (7.10), this gives

eb = ea − p− 1.

• If eg = ea + 1, reasoning as previously, we find that if ± 1
2 ulpp(g) + ϵ is

not a precision-p FP number then

eb − p + 1 < (eg − p)− p + 1,

which implies
eb 6 ea − p.

However, if eb 6 ea − p, then |b| < ulpp(a) = 2ea−p+1, therefore (since
|a| 6 (2p − 1) · 2ea−p+1), |a + b| < 2ea+1, which implies

RNp+p′(a + b) 6 2ea+1.

Hence, RNp+p′(a+b) cannot be of the form g+ 1
2 ulp(g)+ϵ, with eg = ea+1

and |ϵ| 6 1
2 ulpp+p′(g).

A consequence of Remark 7.10 will be of interest when discussing the Rump,
Ogita and Oishi Splitting algorithm (useful for designing a summation algo-
rithm):

Remark 7.11. If a is a power of 2 (say, a = 2ea) and |b| 6 a, then the values
s and t returned by Algorithm 7.2 or Algorithm 7.3 satisfy

t = a + b− s

exactly.

Proof. Suppose we have t ̸= a + b − s. We know that this cannot happen if
s = RNp(a + b), so we necessarily have

RNp (RNp+p′(a + b)) ̸= RNp(a + b),

and a + b− s is not a FP number. Remark 7.10 implies eb = ea − p− 1, so that

|b| < 1
2 ulp(a).

• if b > 0 then the only case for which we may have a double rounding
slip (according to Remark 7.5, and the fact that a + b < a + 1

2 ulpp(a)⇒
RNp+p′(a + b) 6 a + 1

2 ulp(a)) is

RNp+p′(a + b) = 2ea + 1
2 ulp(a),



7.2. MATHEMATICAL SETUP 169

• if b < 0 then then the only case for which we may have a double rounding
slip (still according to Remark 7.5, and the fact that a+b > a− 1

2 ulp(a) =
a−, so that RNp+p′(a + b) > a−) is

RNp+p′(a + b) = 2ea − 1
4 ulp(a).

In both cases, the round-to-nearest-even rounding rule implies s = 2ea =
a, so that a + b− s = b, which contradicts the assumption that a + b− s
is not a FP number. This proof is illustrated by Figure 7.1.

one of these 2 values

a = 2ea

a + b is there

Double rounding slip
⇒ RNp+p′ (a + b) is

Figure 7.1 – This figure illustrates the fact that when a is a power of 2, we have
t = a + b− s exactly. Here, if a double rounding slip occurs, RNp+p′(a + b) can
take two possible values only, and for each of them s = a.

7.2.4 Consequences of Theorems 7.2 and 7.3 on
Summation Algorithms

Many numerical problems require the computation of sums of lots of FP num-
bers. Several compensated summation algorithms use, either implicitly or ex-
plicitly, the Fast2Sum or TwoSum algorithms [91, 144, 145, 138, 148]. As a
consequence, when double roundings may occur, it is of importance to know if
the fact that we can only guarantee that we return the FP number nearest the
error of a FP addition (instead of that error itself) may have an influence on
the behavior of these algorithms. There is a huge literature on summation algo-
rithms: the purpose of this section is not to examine all published algorithms,
just to give a few examples.

Before analyzing other summation methods, let us see what happens with
the naive, “recursive sum” algorithm.



170 CHAPTER 7. SOME ISSUES RELATED TO DOUBLE ROUNDINGS

The Recursive Sum Algorithm and Kahan’s Compensated Summa-
tion Algorithm in the Presence of Double Roundings

Let us consider the naive, recursive-sum algorithm, rewritten with double round-
ings:

Algorithm 7.4: Naive summation algorithm
r ← a1
for i = 2 to n do

r ← RNp(RNp+p′(r + ai))
end
return r

A straightforward adaptation of the proof for the error bound of the usual
recursive sum algorithm without double roundings gives

Property 7.2. The final value of the variable r returned by Algorithm 7.4 sat-
isfies r −

n
i=1

ai

 6 γ′
n−1

n
i=1
|ai|.

Without double roundings, the bound is γn−1
n

i=1 |ai|. See Section 7.1.1 for a
definition of notations γk and γ′

k.
Kahan’s compensated summation algorithm, rewritten with double round-

ings, is as follows:
Algorithm 7.5: Kahan’s compensated summation algorithm

s← a1
c← 0
for i = 2 to n do

y ← RNp(RNp+p′(ai − c))
t← RNp(RNp+p′(s + y))
c← RNp(RNp+p′(RNp(RNp+p′(t− s))− y))
s← t

end
return s

Goldberg’s proof for this algorithm [62] only uses the ϵ-model, so that adap-
tation to double roundings is straightforward (it suffices to replace u by u′ in
the ϵ-model), and we will immediately deduce that the final value s provided
by Algorithm 7.5 satisfiess−

n
i=1

ai

 6 2 u′ +O(n u′2)

·

n
i=1
|ai|

(see Section 7.1.1 for a definition of notations u and u′). This makes Kahan’s
compensated summation algorithm very “robust”: double roundings have little
influence on the error bound. However, when

n
i=1 |ai| is very large in front

of |
n

i=1 ai|, the relative error of Kahan’s compensated summation algorithm
becomes large. A solution is to use Priest’s doubly compensated summation al-
gorithm [145]. For that algorithm, the excellent error bound 2u |

n
i=1 |ai|| will

remain true even in the presence of double roundings (the proof essentially as-
sumes faithfully rounded operations). However, it requires a preliminary sorting
of the ai’s by magnitude.



7.2. MATHEMATICAL SETUP 171

In the following, we investigate the potential influence of double roundings
on some sophisticated summation algorithms. For most of these algorithms, the
proven error bounds (without double roundings) are of the form

 computed sum −
n

i=1
ai

 6 u ·


n

i=1
ai

+ α ·
n

i=1
|ai|.

Rump, Ogita, and Oishi exhibit a family of algorithms for which, without double
roundings, α has the form O(nK2−Kp). As we will see, that property will be
(roughly) preserved when K = 2. However, for the more subtle algorithms—for
which K > 3—, double roundings may ruin that property.

Rump, Ogita and Oishi’s Cascaded Summation Algorithm in the Pres-
ence of Double Roundings

The following algorithm was independently introduced by Pichat [141] and by
Neumaier [133]:

Algorithm 7.6: Pichat-Neumaier summation algorithm
s← a1
e← 0
for i = 2 to n do

if |s| > |ai| then
(s, ei)← Fast2Sum(s, ai)

else
(s, ei)← Fast2Sum(ai, s)

end
e← RN(e + ei)

end
return RN(s + e)

To avoid tests, the algorithm of Pichat and Neumaier can be rewritten using
the TwoSum algorithm. This gives the cascaded summation algorithm of Rump,
Ogita, and Oishi [138]:

Algorithm 7.7: Rump, Ogita, and Oishi’s cascaded summation algorithm
s← a1
e← 0
for i = 2 to n do

(s, ei)← TwoSum(s, ai)
e← RN(e + ei)

end
return RN(s + e)

Notice that both algorithms will return the same result. In the following,
we therefore focus on Algorithm 7.7 only. More precisely, we will be interested
here in analyzing the behavior of that algorithm, with double roundings allowed.



172 CHAPTER 7. SOME ISSUES RELATED TO DOUBLE ROUNDINGS

That is, we will consider:
Algorithm 7.8: Algorithm 7.7 with double roundings

s← a1
e← 0
for i = 2 to n do

(s, ei)← TwoSum-with-double-roundings(s, ai)
e← RNp(RNp+p′(e + ei))

end
return RNp(RNp+p′(s + e))

Define si as the value of variable s after the loop of index i (namely, s1 = a1,
and for i > 2, si = TwoSum-with-double-roundings(si−1, ai)). One easily finds

s2 + e2 = (a1 + a2)(1 + η(2))

si + ei = (si−1 + ai)(1 + η(i))

|ei| 6 u′(1 + u)|si|,

with |η(i)| 6 2−2p + 2−2p−p′ + 2−3p−p′ (from Corollary 7.1). Therefore,

sn + (en + en−1 + · · ·+ e2)
= (sn + en) + (en−1 + en−2 + · · ·+ e2)
= (sn−1 + an)(1 + η(n)) + (en−1 + en−2 + · · ·+ e2)
= an(1 + η(n)) + sn−1η(n) + (sn−1 + en−1) + (en−2 + · · ·+ e2)
= an(1 + η(n)) + sn−1η(n) + (sn−2 + an−1)(1 + η(n−1)) + (en−2 + · · ·+ e2)
= · · ·
= an(1 + η(n)) + an−1(1 + η(n−1)) + · · ·+ a3(1 + η(3))
+sn−1η(n) + sn−2η(n−1) + · · ·+ s2η(3)

+(s2 + e2)

=
n

i=3
ai(1 + η(i)) +

(n)
i=3

si−1η(i) + (a1 + a2)(1 + η(2)),

From which we deduce

sn +
n

i=2
ei =

n
i=1

ai + η ·
n

i=1
|ai|+ η′

n
i=2
|si|, (7.11)

with |η|, |η′| 6 2−2p + 2−2p−p′ + 2−3p−p′ .
Let |E| be obtained by computing

n
i=2 ei by the recursive summation al-

gorithm (possibly with double roundings), from Property 7.2, we haveE −
n

i=2
ei

 6 γ′
k ·

n
i=2
|ei|. (7.12)



7.2. MATHEMATICAL SETUP 173

Let us now bound
n

i=2 |ei|. We already have

|ei| 6


2−p + 2−p−p′
+ 2−2p + 2−2p−p′


· |si|.

Now,
|s2| 6 (|a1|+ |a2|) · (1 + γ′

1),

so that
|s3| 6 [(|a1|+ |a2|)(1 + γ′

1) + |a3|] · (1 + γ′
1)

< (|a1|+ |a2|+ |a3|) · (1 + γ′
2),

and, by induction

|sj | < (|a1|+ |a2|+ · · ·+ |aj |) · (1 + γ′
j−1)

< (|a1|+ |a2|+ · · ·+ |an|) · (1 + γ′
n−1).

Therefore,
n

i=2
|si| 6 (n− 1) · (1 + γ′

n−1) ·
n

i=1
|ai|, (7.13)

which implies

n
i=2
|ei| 6 (n− 1)(1 + γ′

n−1)


2−p + 2−p−p′
+ 2−2p + 2−2p−p′

 n
i=1
|ai|. (7.14)

Hence,
n

i=1
ai = sn + E + ρ, (7.15)

where

|ρ| <


n

i=1
|ai|


× κ, (7.16)

with

κ = η + (n− 1) · (1 + γ′
n−1)

·


η′ +


2−p + 2−p−p′ + 2−2p + 2−2p−p′


γ′
n−2


.

(7.17)

We remind the reader that γ′
n−2 = (n− 2) u′ /(1− (n− 2) u′).

Assuming p > 8 and p′ > 4, we find
2−p + 2−p−p′

+ 2−2p + 2−2p−p′


u′ 6 2−2p + 2−2p−p′+1 + 2−2p

100 . (7.18)

Let us now assume |(n− 1) u′ | < 1/2, which implies 1/(1− (n− 2)) < 2.
From (7.18), we deduce


2−p + 2−p−p′ + 2−2p + 2−2p−p′


γ′

n−2

6 (2n− 4) ·


2−2p + 2−2p−p′+1 + 2−2p

100


.

(7.19)



174 CHAPTER 7. SOME ISSUES RELATED TO DOUBLE ROUNDINGS

Similarly, still assuming p > 8 and p′ > 4,

|η′| 6 2−2p + 2−2p−p′ + 2−3p−p′

< 2−2p + 2−2p−p′+1.
(7.20)

By combining (7.19) and (7.20), we obtainη′ +


2−p + 2−p−p′ + 2−2p + 2−2p−p′


γ′
n−2


< (2n− 3) ·


2−2p + 2−2p−p′+1 + 2−2p

100


.

Our assumption |(n− 1) u′ | < 1/2 implies γ′
n−1 < 1, therefore the term

(n− 1)(1 + γ′
n−1)

in (7.16) is less than (2n− 2). From all this, we deduce that the term
η + (n− 1)(1 + γ′

n−1) ·


η′ +


2−p + 2−p−p′
+ 2−2p + 2−2p−p′


γ′

n−2


in (7.16) is less than

4n2 − 10n− 5

·


2−2p + 2−2p−p′+1 + 2−2p

100


. (7.21)

Now, from (7.15), the final value, say σ, returned by Algorithm 7.8, satisfies

σ = (sn + E) · (1 + θ′), with |θ′| 6 u′,

=


n
i=1

ai − ρ


(1 + θ′).

using (7.21), this impliesσ −
n

i=1
ai

 6 u′ ·


n

i=1
ai


+ (1 + u′)


4n2 − 10n− 5


2−2p + 2−2p−p′+1 + 2−2p

100

 n
i=1
|ai|.

An elementary calculation, still assuming p > 8 and p′ > 4, shows that

(1 + u′) ·


2−2p + 2−2p−p′+1 + 2−2p

100


6 2−2p + 2−2p−p′+1 + 3 · 2−2p

200 ,

which gives

Theorem 7.4. Assuming p > 8, p′ > 4, and n <
1

2 u′ , the final value σ re-
turned by Algorithm 7.8 satisfiesσ −

n
i=1

ai

 6


2−p + 2−p−p′ + 2−2p−p′

·

n
i=1

ai

+ 2−2p ·

4n2 − 10n− 5


·


1 + 2−p′+1 + 3
200


·

n
i=1
|ai|.



7.2. MATHEMATICAL SETUP 175

In that case, the final result is not so different from the classical, double-
rounding-free, result: in that classical case, the term in front of

n
i=1 ai is u =

2−p, and the term in front of
n

i=1 |ai| is γ2
n−1. Hence the Cascaded Summation

algorithm is “robust” and can be used safely, even when double roundings may
happen: the error bound is slightly larger but remains of the same order of
magnitude.

However, more subtle algorithms, that return a more accurate result (as-
suming no double roundings) whenn

i=1 |ai|
|
n

i=1 ai|

is very large, may be of less interest when double roundings may happen, unless
we have some additional information on the input data that allows one to make
sure there will be no problem. Consider for instance the K-fold summation
algorithm of Rump, Ogita and Oishi, defined as follows:

Algorithm 7.9: VecSum
Input: a = (a1, a2, . . . , an)
p← a
for i = 2 to n do

(pi, pi−1)← TwoSum(pi, pi−1)
end
return p

Algorithm 7.10: Rump, Ogita and Oishi’s K-fold summation algorithm
for k = 1 to K − 1 do

a← VecSum(a)
end
c = a1
for i = 2 to n− 1 do

c← RN(c + ai)
end
return RN(an + c)

If double roundings are not allowed, Rump, Ogita, and Oishi show that if
4n u < 1, the final result σ returned by Algorithm 7.10 satisfiesσ −

n
i=1

ai

 6 (u +γ2
n−1)


n

i=1
ai

+ γK
2n−2

n
i=1
|ai|. (7.22)

If a double-rounding slip occurs in the first call to VecSum, an error as large as
2−2p max |ai|may be produced. Hence, it will not be possible to show a final error
bound better than 2−2p max |ai| > 2−2p

n

n
i=1 |ai| when double roundings are

allowed. In practice (since double rounding slips are not so frequent, and do not
always change the result of TwoSum when they occur), the K-fold summation
algorithm will almost always return a result that satisfies a bound close to the
one given by (7.22), but exceptions may occur. Consider the following example
(with n = 5, but easily generalizable to any larger value of n):

(a1, a2, a3, a4, a5) =


2p−1 + 1,
1
2 − 2−p−1,−2p−1,−2,

1
2





176 CHAPTER 7. SOME ISSUES RELATED TO DOUBLE ROUNDINGS

and assume that Algorithm 7.10 is run with double roundings, with 1 6 p′ 6 p.
One may easily check that in the first addition of the first TwoSum of the first
call to VecSum (i.e., when adding a1 and a2), a double rounding slip occurs,
so that immediately after this first Fast2Sum, p2 = 2p−1 + 2 and p1 = −1/2,
so that p1 + p2 ̸= a1 + a2. At the end of the first call to VecSum, the returned
vector is 

−1
2 , 0, 0, 0,

1
2


so that Algorithm 7.10 will return 0 whatever the value of K, whereas the exact
sum of the a′

is is −2−p−1. Hence (since

|ai| = 2p + 4− 2−p−1 ≈ 2p), the final

error of Algorithm 7.10 is approximately 2−2p−1 |ai|, whatever the value of
K.

This example shows that if we wish to be sure of getting error bounds of the
order of magnitude of the one given by (7.22) when using the K-fold summation
algorithm with K > 3, we need to select compilation switches that prevent
double roundings from occurring, unless we have additional information on the
input data (such as all values having the same order of magnitude) that allow
one to use Remark 7.10 to show that Fast2Sum and TwoSum will return an
exact result, even in the presence of double roundings.

7.3 Formal Setup in the Coq Proof Assistant
Proofs in computer arithmetic are somewhat complex: they are frequently based
on the enumeration of many possible cases, so that one may very easily overlook
one of these cases. To avoid this problem and get more confidence in our proofs,
we are working on the formal proof of our theorems using the Coq proof assis-
tant [10]. We thus have completed the formal proof of Theorem 7.2 page 163
and of all the support results that we have used to derive its pen-and-paper
proof; the formalization1 is based on the Flocq library [22].

The section is organized as follows:

• In Section 7.3.1, we start by presenting the key concepts of the Flocq
library that are required to position our formalization;

• In Section 7.3.2, we describe the theory on midpoints that we developed
using the formalism of Flocq, with a special focus on genericity;

• In Section 7.3.3, we summarize the formalization of the various remarks
that we stated previously in Section 7.2.1, with the help of our theory on
midpoints and a few extra support results;

• Finally Section 7.3.4 is devoted to the formalization of Theorem 7.2 itself.

7.3.1 Technicalities of the Flocq Library
The Flocq library was introduced in Section 3.2.7, but for an understanding of
the rest of the chapter, we need to go into the implementation details of Flocq,
which is the topic of the present subsection.

1The Coq development is available at http://tamadi.gforge.inria.fr/DblRnd/

http://tamadi.gforge.inria.fr/DblRnd/


7.3. FORMAL SETUP IN THE COQ PROOF ASSISTANT 177

We will thus highlight some key features of the Flocq library, and describe
most of its basic formal definitions, while referring to the presentation given in
Chapter 2 if need be.

First, FP numbers are defined as pairs f = (Mf , qf ) of signed integers,
along with projections Mf = Fnum(f) and qf = Fexp(f) which will respectively
return the integral significand and the quantum exponent of the FP number f
(we reuse the terminology given in Definitions 2.2 and 2.3 from Chapter 2, but
no normalization assumption is required in the present context since we only
deal with the components of a FP representation):
Record float (beta : radix) := Float { Fnum : Z ; Fexp : Z }.

Note the presence of the parameter β : radix inside the type of this record
(radix being defined as the type Z ∩ [2, +∞[): this allows one to easily define
the value of such FP numbers, depending on the radix:

∀β : radix, ∀f : float(β), F2R(f) := Mf × βqf ∈ R.

Then, the concept of rounding mode is first defined in a generic fashion
(without dealing yet with FP formats), as predicates P : R −→ R −→ Prop
that satisfy:

round_pred(P ) :=

∀x ∈ R, ∃f ∈ R, P (x, f)
∀x, y, f, g ∈ R, P (x, f) ∧ P (y, g) ∧ x 6 y =⇒ f 6 g,

or in other words, a rounding predicate P is a 2-place relation on R that is
left-total and monotonically increasing, implying that it is a functional relation.

Note that in this definition of a rounding predicate, both arguments x and
f have type R (while f could have been specified with type float or so, as in
the Pff library [21, 20, 19], cf. definition RoundedModeP in theory Fround). This
formalization choice is pervasive in the formalism of Flocq and contributes to
increase the user-friendliness of the library.

In particular, relying on the previous definitions of F2R, Flocq defines five
standard formats: FIX (fixed-point, i.e., with a constant exponent), FLX (float-
ing-point with unbounded exponents), FLXN (normalized floating-point with
unbounded exponents, which is provably equivalent to FLX), FLT (floating-
point with gradual underflow), and FTZ (floating-point with flush-to-zero, i.e.,
without subnormal numbers). These formats are defined as parameterized pred-
icates over R named FIX_format, FLX_format, etc., following the specification
recalled in Table 7.1.

Format Parameters x belongs to this format if ∃f, x = F2R(f) ∧ . . .
FIX β, qmin qf = qmin
FLX β, p |Mf | < βp

FLXN β, p βp−1 6 |Mf | < βp ∨ x = 0
FLT β, p, qmin qmin 6 q ∧ |Mf | < βp

FTZ β, p, qmin

qmin 6 q ∧ βp−1 6 |Mf | < βp


∨ x = 0

Table 7.1 – Definition of standard formats in Flocq

We can see here that Flocq encompasses the formalism of the library Pff,
given that the only format that is available in Pff corresponds to the FLT
format of Flocq.



178 CHAPTER 7. SOME ISSUES RELATED TO DOUBLE ROUNDINGS

Furthermore, Flocq provides a generic framework to define and use arbitrary
FP formats, which allows one to obtain simpler, and more general statements of
FP theorems. This framework relies on the concept of generic format, which is
entirely determined by a radix β and a function ϕ : Z −→ Z. In order to explain
the semantics of such functions ϕ, we need to mention the following definitions
(we reuse the notations from [22]):

Definition 7.1 (Slice). The slice of a given nonzero real number x in radix β
is the unique integer n = slice(x) satisfying

βn−1 6 |x| < βn. (7.23)

In other words, we have slice(x) =

logβ(x)


+ 1.

Definition 7.2 (Canonical exponent). The canonical exponent of a given
nonzero real number x with respect to β and ϕ is defined by

cexp(x) = ϕ (slice(x)) ∈ Z. (7.24)

Definition 7.3 (Scaled mantissa). The scaled mantissa of a given real num-
ber x with respect to β and ϕ is defined by

smant(x) = x · β− cexp(x). (7.25)

Notice that mathematically speaking, “slice(0)” and “cexp(0)” are meaningless,
while the value that we expect for “smant(0)” is zero. In the Coq formalization,
slice(·) is defined as an opaque, total function along with a proof that character-
izes the value of slice(x) for all nonzero real x. Consequently, “the value slice(0)
exists” (since slice(·) is a total function), but no information can be retrieved
about this value (thanks to the mechanism of opacity). Then smant(·) is directly
defined in Coq using (7.25). Despite the fact that there is no information on the
value of cexp(0), we can formally prove that smant(0) = 0, given that 0 ∈ R is
an absorbing element.

Definition 7.4 (Integer part). The integer part (rounded towards zero) of a
given real number x is defined by

Z(x) =

⌊x⌋ if x > 0
⌈x⌉ if x 6 0.

(7.26)

Now we can introduce the core definition:

Definition 7.5 (Generic format). The generic format associated with β and
ϕ is defined by

Fβ,ϕ :=


x ∈ R
x = Z(smant(x)) · βcexp(x)


. (7.27)

First, notice that the integer part Z involved in (7.27) could be replaced just
as well with ⌊·⌋ or ⌈·⌉, given that we have ∀x ∈ R, x = smant(x) · βcexp(x) and
that the “set of invariant points” is the same for these three functions (it is Z).

Second, we can see from Definition 7.5 that the previously defined integer
cexp(x) corresponds to the quantum exponent of x and that Z (smant(x)) cor-
responds to the integral significand of x ∈ Fβ,ϕ (cf. Definition 2.3 on page 16).



7.3. FORMAL SETUP IN THE COQ PROOF ASSISTANT 179

Then it should be noted that an arbitrary function ϕ might not relevantly de-
scribe what we expect for a FP format. Flocq thus defines a predicate valid_exp
that formalizes some general constraints on such functions ϕ.

Definition 7.6 (Valid format). We say that a function ϕ : Z −→ Z defines
a valid generic format if:

∀k ∈ Z,


ϕ(k) < k =⇒ ϕ(k + 1) 6 k

k 6 ϕ(k) =⇒


ϕ(ϕ(k) + 1) 6 ϕ(k)
∀ℓ ∈ Z, ℓ 6 ϕ(k) =⇒ ϕ(ℓ) = ϕ(k).

(7.28)

The interested reader will be able to find more intuition on these constraints in
[22, Section III.D].

Remark 7.12 (Standard formats). Note that all the standard formats men-
tioned in Table 7.1 can be expressed as instances of Definition 7.5, using the
following functions:

FIX_exp(qmin) : k ∈ Z →→ qmin

FLX_exp(p) : k ∈ Z →→ k − p

FLT_exp(p) : k ∈ Z →→


k − p if k − p > qmin

qmin otherwise

FTZ_exp(p, qmin) : k ∈ Z →→


k − p if k − p > qmin

qmin + p− 1 otherwise,

(where it can be noted that FTZ_exp is not a monotone function from Z to Z).
Then, the equivalence between the definitions of Table 7.1 and the generic for-
malism is given by theorems such as the following:

Theorem FLX_format_generic :
forall (beta : radix) (p : Z), 0 < p -> forall x : R,

FLX_format beta p x <-> generic_format beta (FLX_exp p) x.

In the sequel, we will often deal with the generic formalism, and omit the suffix
_exp for the standard ϕ functions: e.g., we will notate FLX(p) := (FLX_exp p)
and Fβ,FLX(p) := (generic_format beta (FLX_exp p) x).

Finally, Flocq defines rounding modes associated with generic formats in the
following way:

Definition 7.7 (Generic rounding modes). For any generic format Fβ,ϕ, a
generic rounding mode is defined as an instance of the function

round(β, ϕ, Zrnd) : x ∈ R →−→ F2R


Zrnd(smant(x)), cexp(x)

∈ R,

for a given function Zrnd : R −→ Z satisfying the conditions
∀n ∈ Z ⊂ R, Zrnd(n) = n,

∀x, y ∈ R, x 6 y =⇒ Zrnd(x) 6 Zrnd(y).



180 CHAPTER 7. SOME ISSUES RELATED TO DOUBLE ROUNDINGS

We can now specialize the function Zrnd involved in Definition 7.7 to obtain
the desired roundings modes. For instance:

Example 7.1 (Standard rounding modes). The standard roundings modes
described in Definition 2.9 on page 19 can be obtained in the following way:

• round(β, ϕ, ⌊·⌋) corresponds to RD,

• round(β, ϕ, ⌈·⌉) corresponds to RU,

• round(β, ϕ,Z) corresponds to RZ,

• round(β, ϕ, ZnearestE) corresponds to RNE,

• round(β, ϕ, ZnearestA) corresponds to RNA, and

• round(β, ϕ, (Znearest choice)) corresponds to an arbitrary rounding-to-
nearest mode RN (the variable choice having type Z −→ bool).

7.3.2 Formalization of a Generic Theory on Midpoints
First, for any radix-β and any FP format Fβ,ϕ, we formalize three generic def-
initions of the set of midpoints Mβ,ϕ (as well as some equivalent formulations
that do not involve any division, which we will not mention here for the sake of
brevity):

Definition 7.8 (Midpoint, version 1).

∀x ∈ R, x ∈Mβ,ϕ ⇐⇒ x = RD(x) + 1
2 ulp(x) ∧ x ̸= 0. (7.29)

Definition 7.9 (Midpoint, version 2).

∀x ∈ R, x ∈Mβ,ϕ ⇐⇒ x = 1
2


RD(x) + RU(x)


∧ x /∈ Fβ,ϕ. (7.30)

Definition 7.10 (Midpoint, version 3).

∀x ∈ R, x ∈Mβ,ϕ ⇐⇒ x = 1
2


RD(x)+RU(x)


∧ RD(x) ̸= RU(x). (7.31)

Then we formally prove that all these definitions are equivalent, without
assuming any hypothesis: for instance the fact that Fβ,ϕ is a valid format turns
out not to be necessary for deriving these equivalences.

The availability of these multiple, equivalent definitions for the notion of
midpoint has been helpful at many occasions in the development. For instance,
Definition 7.9 can be used to straightforwardly prove that Mβ,ϕ ∩ Fβ,ϕ = ∅
(midpoint_no_format), while Definition 7.10 (combined with the fact that
RD(−x) = −RU(x)) allows one to easily prove that

Property 7.3 (midpoint_opp).

∀x ∈ R, x ∈Mβ,ϕ =⇒ −x ∈Mβ,ϕ. (7.32)



7.3. FORMAL SETUP IN THE COQ PROOF ASSISTANT 181

A key formalized result that may be considered as belonging to “common
arithmetic folklore” is given by the following theorem, whose formal verification
was actually somewhat tricky due to the large number of new support results
and cases analyses it led to:

Theorem 7.5 (no_midpoint_same_round). For any radix β, FP format Fβ,ϕ

and round-to-nearest mode RN on Fβ,ϕ, we have

∀x, y ∈ R, x 6 y ∧

∀z ∈ R, x 6 z 6 y =⇒ z /∈Mβ,ϕ


=⇒ RN(x) = RN(y). (7.33)

Theorem 7.5 can be proved as a corollary of the following theorem, which
is expressed in a more constructive fashion (specifically, there is an existential
quantifier):

Theorem 7.6 (RN_lt_exists_midpoint). For any radix β, FP format Fβ,ϕ

and round-to-nearest mode RN on Fβ,ϕ, we have

∀x, y ∈ R, RN(x) < RN(y) =⇒ ∃µ ∈Mβ,ϕ, x 6 µ 6 y. (7.34)

The rest of this section will thus be devoted to the formal proof of this
Theorem 7.6, whose elaboration led us to formalize a number of results related
to midpoints that will be reused in the sequel.

First, we define a generic predicate that will be useful to state and prove
results on the relative location of FP numbers and midpoints:

Definition 7.11 (surround predicate). We define surround as a predicate
taking four arguments P : R −→ Prop, x ∈ R, a ∈ R and b ∈ R, asserting that
a and b are the closest reals surrounding x and satisfying the given predicate P :

∀P, x, a, b, surround(P, x, a, b) ⇐⇒ P (a) ∧ P (b) ∧ a 6 x < b

∧

∀c ∈ R, a < c < b⇒ ¬P (c)


. (7.35)

The fact we require an asymmetric double-inequality a 6 x < b in Defini-
tion 7.11 (instead of a 6 x 6 b) enables us to prove the values a and b at stake
are unique, whether or not P (x) is satisfied.

Moreover, we will typically replace the predicate P : R −→ Prop with either
the set Fβ,ϕ, or the setMβ,ϕ, but other specializations would be possible thanks
to the genericity of the predicate surround.

In particular, we derive the following theorem that deals with surrounding
midpoints, and which constitutes a full generalization of the results given in the
second part of Theorem 7.1:

Theorem 7.7 (surroundP). For any radix β and FP format Fβ,ϕ, and for all
x ∈ Fβ,ϕ such that x ̸= 0, we have:

• |x| is not a power of β, then the midpoints surrounding x are µ1 = x −
1
2 ulp(x) and µ2 = x + 1

2 ulp(x);

• if x > 0 is a power of β, then the midpoints surrounding x are µ1 =
x− 1

2 ulp(x/β) and µ2 = x + 1
2 ulp(x);



182 CHAPTER 7. SOME ISSUES RELATED TO DOUBLE ROUNDINGS

• if x < 0 is (the opposite of) a power of β, then the midpoints surrounding
x are µ1 = x− 1

2 ulp(x) and µ2 = x + 1
2 ulp(x/β).

Note the location of the division by β: it is ulp(x/β), not ulp(x)/β. This allows
one to seamlessly handle the case where x/β is a “subnormal power of β,” taking
advantage of the behavior of the function ulp provided in the Flocq library.

To shorten the statement of the previous theorem, we define the following
predicate

Definition 7.12 (Signed powers of β).

∀x ∈ R, is_pow(x) ⇐⇒ ∃e ∈ Z, |x| = βe. (7.36)

along with a decidability lemma

Lemma is_pow_dec : forall x : R, {is_pow x} + {~ is_pow x}.

that we proved using the total order on R, and which will allow for building
terms by case analysis on is_pow.

A useful result related to is_pow is given by the following lemma, which is
easy to derive from the definition of the predecessor function pred:

Property 7.4 (POSpow_pred). For all generic format Fβ,ϕ, we have

∀x ∈ Fβ,ϕ, x > 0 ∧ is_powβ(x) =⇒ pred(x) = x− ulp(x/β). (7.37)

Now we focus on the proof of a previously-mentioned key theorem:

Proof of Theorem 7.7. Let x ∈ Fβ,ϕ a nonzero FP number. We give below a
detailed sketch of the proof of Theorem 7.7 in the case where x is a signed
power of β (the case where |x| is not a power of β being very similar, if not
simpler).

We discuss on the sign of x:

• Case 1: x > 0 is a power of β
We pose µ1 = x − 1

2 ulp(x/β) and µ2 = x + 1
2 ulp(x). We have to prove

that µ1 and µ2 are the surrounding midpoints of x, that is

µ1 ∈Mβ,ϕ ∧ µ2 ∈Mβ,ϕ ∧ µ1 6 x < µ2

∧

∀c ∈ R, µ1 < c < µ2 ⇒ c /∈Mβ,ϕ


. (7.38)

This can be split into four goals:

– Goal 1.1: µ1 ∈Mβ,ϕ?

To start with, we invoke the following result (pred_ge_0) from the
Flocq library:

∀x ∈ R, 0 < x ∧ x ∈ Fβ,ϕ =⇒ 0 6 pred(x), (7.39)

then we use Property 7.4 and the definition of µ1: this implies that
we have 0 6 pred(x) < µ1 < x, which allows us to show that

RD(µ1) = pred(x) (7.40)



7.3. FORMAL SETUP IN THE COQ PROOF ASSISTANT 183

and

RU(µ1) = x, (7.41)

relying on a set of lemmas related to pred, RD and RU that generalize
some results of the Flocq library. Now we can show that µ1 satisfies
the Definition 7.10 of a midpoint: we have trivially RD(µ1) ̸= RU(µ1),
and

1
2


RD(µ1) + RU(µ1)


= 1

2


pred(x) + x


= 1

2


x− ulp(x/β) + x


by Property 7.4

= x− 1
2 ulp(x/β)

= µ1.

– Goal 1.2: µ2 ∈Mβ,ϕ?
We have x < µ2 < x + ulp(x), and we can directly use lemmas
round_DN_succ and round_UP_succ from the Flocq library to obtain:

RD(µ2) = x (7.42)

and

RU(µ2) = x + ulp(x). (7.43)

Hence we deduce that µ2 satisfies Definition 7.10: we have RD(µ2) ̸=
RU(µ2) and

1
2


RD(µ2) + RU(µ2)


= 1

2


x + x + ulp(x)


= x + 1

2 ulp(x)

= µ2.

– Goal 1.3: µ1 6 x < µ2?
It amounts to showing that

x− 1
2 ulp(x/β) 6 x < x + 1

2 ulp(x),

which is trivial given that ulp(y) > 0 for all y ̸= 0.
– Goal 1.4: ∀c ∈ R, µ1 < c < µ2 ⇒ c /∈Mβ,ϕ?

Suppose one c ∈ R satisfies µ1 < c < µ2 and c ∈ Mβ,ϕ, and let
us try to derive a contradiction. Expanding the Definition 7.10 of a
midpoint, we have the following hypotheses:

µ1 < c < µ2, (7.44)

c = 1
2


RD(c) + RU(c)


, (7.45)

RD(c) ̸= RU(c). (7.46)

Relying on the total order of R, we have three cases:



184 CHAPTER 7. SOME ISSUES RELATED TO DOUBLE ROUNDINGS

∗ Case 1.4.1: c < x
Using Property 7.4, the definition of µ1, and (7.44), we have:

pred(x) = x− ulp(x/β) < µ1 < c < x,

implying

RD(c) = pred(x)

and

RU(c) = x.

Consequently (7.45) becomes

c = 1
2


pred(x) + x


hence by Property 7.4,

c = x− 1
2 ulp(x/β) = µ1,

which contradicts (7.44).
∗ Case 1.4.2: c = x

This implies RD(c) = RD(x) = x = RU(x) = RU(c) (given that
x ∈ Fβ,ϕ), which contradicts (7.46).
∗ Case 1.4.3: c > x

Using (7.44) and the definition of µ2, we have:

x < c < µ2 < x + ulp(x/β),

implying

RD(c) = x

and

RU(c) = x + ulp(x/β).

Consequently (7.45) becomes

c = x + 1
2 ulp(x/β) = µ2,

which contradicts (7.44).

• Case 2: x < 0 is (the opposite of) a power of β
We reuse the result proved in Case 1 for −x, which is indeed a positive FP
number and a power of β. Consequently we get ν1 = −x − 1

2 ulp(−x/β)
and ν2 = −x + 1

2 ulp(−x) satisfying

ν1 ∈Mβ,ϕ ∧ ν2 ∈Mβ,ϕ ∧ ν1 6 − x < ν2

∧

∀c ∈ R, ν1 < c < ν2 ⇒ c /∈Mβ,ϕ


. (7.47)



7.3. FORMAL SETUP IN THE COQ PROOF ASSISTANT 185

Taking µ1 := −ν2 and µ2 := −ν1, since ulp(−y) = ulp(y) for all y ̸= 0
and thanks to the Property 7.3, this implies that:

µ1 ∈Mβ,ϕ ∧ µ2 ∈Mβ,ϕ ∧ µ1 < x 6 µ2

∧

∀c′ ∈ R, µ1 < c < µ2 ⇒ c /∈Mβ,ϕ


. (7.48)

Thus it only remains to verify that x < µ2 = x + 1
2 ulp(x/β), which holds

since ulp(y) > 0 for all y ̸= 0.

This ends the proof of Theorem 7.7.

It can be noted that among the various inequalities that we used to derive the
previous proof, there is no monotonicity assumption on the ulp function, so
that our proof is applicable to any valid FP format, including the format FTZ
(Flush-To-Zero).

As regards the handling of consecutive FP numbers, the Flocq libraries allows
one to use (fun x => x + ulp beta fexp x) for the successor of positive FP
numbers, and provides a predecessor function pred whose properties are only
established for positive FP numbers. Thus for greater convenience, we define
two (total) functions Succ and Pred over R in a symmetric way:

Definition 7.13 (Pred and Succ). For any FP format Fβ,ϕ and any real num-
ber x, we pose

Succ(x) :=


−pred(−x) if x < 0
0 if x = 0
x + ulp(x) if x > 0

∧ Pred(x) :=


x− ulp(−x) if x < 0
0 if x = 0
pred(x) if x > 0.

(7.49)

Property 7.5 (Pred and Succ). The following properties hold:

∀x ∈ R, Pred(x) 6 x 6 Succ(x)
∀x ∈ R∗, Pred(x) < x < Succ(x) (7.50)
∀x ∈ R, Pred(−x) = −Succ(x)

and for any valid FP format Fβ,ϕ, we have:

∀x, y ∈ Fβ,ϕ, x < y =⇒ Succ(x) 6 y

∀x, y ∈ Fβ,ϕ, x < y =⇒ x 6 Pred(y)
∀x ∈ Fβ,ϕ, Succ(x) ∈ Fβ,ϕ

∀x ∈ Fβ,ϕ, Pred(x) ∈ Fβ,ϕ

∀x ∈ R \ Fβ,ϕ, RU(x) ̸= 0 =⇒ Pred(RU(x)) = RD(x))
∀x ∈ R, RU(x) ̸= 0 =⇒ Pred(RU(x)) 6 RD(x) (7.51)

∀x ∈ R \ Fβ,ϕ, RD(x) ̸= 0 =⇒ Succ(RD(x)) = RU(x))
∀x ∈ R, RD(x) ̸= 0 =⇒ RU(x) 6 Succ(RD(x))

∀x ∈ Fβ,ϕ,∀y ∈ R, Pred(x) 6 y < x =⇒ RD(y) = Pred(x)
∀x ∈ Fβ,ϕ,∀y ∈ R, x < y 6 Succ(x) =⇒ RU(y) = Succ(x)



186 CHAPTER 7. SOME ISSUES RELATED TO DOUBLE ROUNDINGS

Most of the results summarized in Property 7.5 admit a simple and direct proof:
for instance to prove (7.51) we can combine (7.50) with the following extra result
(lt_UP_le_DN):

∀x ∈ R,∀y ∈ Fβ,ϕ, y < RU(x) =⇒ y 6 RD(x).

Then we can use this material to prove the following required result:

Property 7.6 (Rounding half-sums). The following properties hold:

∀x ∈ R, RD
1

2


RD(x) + RU(x)


= RD(x)

∀x ∈ R, RU
1

2


RD(x) + RU(x)


= RU(x).

whose proof involves three case analyses (sign of RD(x), whether x ∈ Fβ,ϕ or
not, and sign of RU(x)).

Then this result allows one to derive the following corollary:

Theorem 7.8 (midpoint_intro).

∀x ∈ R, x /∈ Fβ,ϕ =⇒ 1
2


RD(x) + RU(x)


∈Mβ,ϕ.

which provides another way, in addition to Theorem 7.7, to “introduce midpoints
in the context”. Both results will be useful to formally prove Theorem 7.6.

Furthermore, a typical situation that will occur in the proof of Theorem 7.6
consists of the case where x, y ∈ R satisfy RN(x) < RN(y), and RU(x) > RD(y).
We will call this situation a “crossed configuration”, and we show it satisfies the
following property:

Property 7.7 (Crossed configuration). Let x, y be two real numbers such
that

RN(x) < RN(y) and RD(y) < RU(x).

Then we have

RN(x) = RD(x) = RD(y)
RN(y) = RU(y) = RU(x)

RU
1

2


RD(y) + RU(x)


= RU(x)

RD
1

2


RD(y) + RU(x)


= RD(y).

The proof of these results rely on some bookkeeping related to RD and RU,
including the following extra result (float_discr_DN_UP) that can be viewed
as a low-level formulation of the “discreteness” of the set of FP numbers:

∀x, y ∈ R, RD(x) < y < RU(x) =⇒ y /∈ Fβ,ϕ.

Last but not least, we derive the following result that describe a natural
property of rounding-to-nearest, related to the location of a real number with
respect to midpoints:



7.3. FORMAL SETUP IN THE COQ PROOF ASSISTANT 187

Theorem 7.9 (Strict inequalities and rounding-to-nearest). For any valid
FP format Fβ,ϕ, and for any rounding-to-nearest mode on Fβ,ϕ denoted by RN,
we have:

∀x ∈ R, x <
1
2


RD(x) + RU(x)


=⇒ RN(x) = RD(x)

∀x ∈ R, x >
1
2


RD(x) + RU(x)


=⇒ RN(x) = RU(x).

The proof directly follows from the properties of RN, RD and RU, using some
lemmas of the Flocq library that are expressed in terms of the predicates Rnd_N_pt,
Rnd_DN_pt and Rnd_UP_pt.

Now we give a complete pen-and-paper proof of Theorem 7.6:

Proof of Theorem 7.6. Suppose x, y ∈ R satisfy RN(x) < RN(y), which implies
(by monotonicity of RN) that x < y. We have to exhibit one midpoint µ satisfy-
ing x 6 µ 6 y. We distinguish between the following two cases (which amounts
to saying whether or not there is a floating-point number between x and y):

• Case 1: RU(x) 6 y.
By definition of the rounding towards −∞, this implies RU(x) 6 RD(y).
Either this inequality is strict, or it is an equality:

– Case 1.12: RU(x) < RD(y)
In this part of the proof, we will use Theorem 7.7, which deals with
the midpoints surrounding any FP number x that is nonzero. We
thus start by proving that the following formula holds:

0 < RU(x) < RD(y) ∨ RU(x) < RD(y) < 0
∨ RU(x) 6 0 < RD(y)
∨ RU(x) < 0 6 RD(y),

then we inspect each case:
∗ Case 1.1.1: 0 < RU(x) < RD(y)

We invoke Theorem 7.7 for t := RU(x) > 0, which distinguishes
between three cases and provides two surrounding midpoints
µ1 < t and µ2 > t in each of these cases:
· Case 1.1.1.1: RU(x) is not a power of β

We take the midpoint µ := µ2 = RU(x)+ 1
2 ulp(RU(x)) given

by Theorem 7.7. The inequality x 6 µ is trivial, while for
µ 6 y, it suffices to prove that RU(x)+ulp(RU(x)) 6 RD(y).
Given that RU(x) and RD(y) are FP numbers satisfying 0 <
RU(x) < RD(y), we can deduce that we indeed have RU(x)+
ulp(RU(x)) 6 RD(y), using the appropriate lemma of Flocq.
· Case 1.1.1.2: RU(x) is a (positive) power of β

The only change of context with respect to Case 1.1.1.1 is
that the first midpoint µ1 given by Theorem 7.7 has another
value, but this does not matter: we take µ = µ2 again and
we follow exactly the same reasoning as Case 1.1.1.1.

2In the Coq formal development, the proof corresponding to this Case 1.1 has been split
into five lemmas entitled round_lt_exists_midpoint_*, which helped to factorize the code.



188 CHAPTER 7. SOME ISSUES RELATED TO DOUBLE ROUNDINGS

· Case 1.1.1.3: RU(x) is the opposite of a power of β
This case cannot occur due to a contradiction related to the
sign of RU(x).

∗ Case 1.1.2: RU(x) < RD(y) < 0
To prove this case we can invoke the result corresponding to
Case 1.1.1, after replacing x with −y, and y with −x, given that
we have RU(x) = −RD(−x) and RD(y) = −RU(−y), which
implies 0 < RU(−y) < RD(−x).
∗ Case 1.1.3: RU(x) 6 0 < RD(y)

Similarly, we use Theorem 7.7 for t := RD(y) > 0 which now
leads to the following cases:
· Case 1.1.3.1: RD(y) is not a power of β

We take the midpoint µ := µ1 = RD(y) − 1
2 ulp(RD(y))

given by Theorem 7.7. In order to show the inequality x 6 µ
holds, we rely on the predecessor function (here denoted by
x →−→ x−) and we prove that

x 6 RU(x)

6


RD(y)
−

since RU(x) < RD(y)

= RD(y)− ulp(RD(y)) as RD(y) is not a power of β

< RD(y)− 1
2 ulp(RD(y))

= µ.

And we also have µ = RD(y)− 1
2 ulp(RD(y)) < RD(y) 6 y.

· Case 1.1.3.2: RD(y) is a (positive) power of β
We take the midpoint µ := µ1 = RD(y) − 1

2 ulp(RD(y)/β)
given by Theorem 7.7. The inequality µ 6 y is trivial and
the proof of x 6 µ similarly uses the predecessor function,
but in a different context:

x 6 RU(x)

6


RD(y)
−

since RU(x) < RD(y)

= RD(y)− ulp(RD(y)/β) as RD(y) is a positive power of β

< RD(y)− 1
2 ulp(RD(y)/β)

= µ.

· Case 1.1.3.3: RD(y) is the opposite of a power of β
This case cannot occur due to a contradiction related to the
sign of RD(y).

∗ Case 1.1.4: RU(x) < 0 6 RD(y)
To prove this case we can invoke the result corresponding to
Case 1.1.3, after replacing x with −y, and y with −x, given that
we have RU(x) = −RD(−x) and RD(y) = −RU(−y), which
implies RU(−y) 6 0 < RD(−x).



7.3. FORMAL SETUP IN THE COQ PROOF ASSISTANT 189

– Case 1.2: RU(x) = RD(y)
We pose gx = 1

2


RD(x) + RU(x)


and gy = 1

2


RD(y) + RU(y)


,

which are not necessarily midpoints for the moment. There are four
cases, depending on whether or not x, y are FP numbers:
∗ Case 1.2.1: x ∈ Fβ,ϕ and y ∈ Fβ,ϕ

This would implies x = RU(x) = RD(y) = y, which is excluded.
∗ Case 1.2.2: x ∈ Fβ,ϕ and y /∈ Fβ,ϕ

By Theorem 7.8, this implies that µ := gy = 1
2


RD(y) + RU(y)


is a midpoint. Moreover it satisfies x 6 RU(x) = RD(y) 6 gy,
and gy 6 y. Indeed, if we had y < gy, by Theorem 7.9 we would
have RN(y) = RD(y), hence RN(x) < RN(y) would become
x < RD(y), which contradicts x = RU(x) = RD(y).

∗ Case 1.2.3: x /∈ Fβ,ϕ and y ∈ Fβ,ϕ

The proof is similar to the previous one for Case 1.2.2, this time
with µ := gx.

∗ Case 1.2.4: x /∈ Fβ,ϕ and y /∈ Fβ,ϕ

We first prove that x 6 gx ∨ gy 6 y holds. Indeed, if we had gx <
x and y < gy, by Theorem 7.9, we would have RN(x) = RU(x)
and RN(y) = RD(y), hence RN(x) = RN(y), which contradicts
RN(x) < RN(y). Then we have two cases:
· Case 1.2.4.1: x 6 gx

By Theorem 7.8, this implies that µ := gx is a midpoint,
which satisfies x 6 µ 6 RU(x) = RD(y) 6 y.
· Case 1.2.4.2: gy 6 y

Similarly, µ := gy is a midpoint, which satisfies x 6 RU(x) =
RD(y) 6 µ 6 y.

Case 2: y < RU(x)
(In other words, we assume there is no FP number between x and y.)
In this case we have RN(x) < RN(y) and RD(y) < RU(x), which means
we are in the “crossed configuration,” so by Property 7.7, we have:

RN(x) = RD(x) = RD(y)
RN(y) = RU(x) = RU(y).

(7.52)

We pose g := 1
2


RN(x) + RN(y)


, and we easily prove that g satisfies the

Definition 7.10 of a midpoint, relying on from Property 7.7. Last but not
least, we show that x 6 g 6 y holds. If it were not the case, we would
have g < x or y < g. Hence the two following cases:

– Case 2.1: g < x

Using (7.52) and the definition of g, this implies 1
2


RD(x)+RU(x)


<

x, so by Theorem 7.9, we have RN(x) = RU(x), that is by (7.52),
RN(x) = RN(y), which contradicts RN(x) < RN(y).

– Case 2.2: g > y
Similarly, this would imply RN(y) = RN(x), which is excluded.

This ends the proof of Theorem 7.6.



190 CHAPTER 7. SOME ISSUES RELATED TO DOUBLE ROUNDINGS

In addition to the material presented up to now, we have been led to prove
several extra results related to midpoints that are more format-specific: we will
mention some of them in the sequel.

7.3.3 Formalization of the Preliminary Remarks
In this section, we describe the formalization of the results mentioned in Sec-
tion 7.2.1, with the aim to formally proving Theorem 7.2 with the hypothesis
that no underflow nor overflow occurs. Thus we focus on the Flocq format FLX
that is parameterized by the precision p and which offers a natural background
for this aim.

The formal proofs of these preliminary remarks closely follow the pen-and-
paper proofs that we gave in Section 7.2.1, but their formalization required some
extra support results that we briefly present here. (As regards Remark 7.7, it
was already available in Flocq as Theorem sterbenz.)

First, formalizing Remark 7.5 led us to prove the following

Theorem 7.10 (MID_FLX). For any even radix β and precision p > 1, we have:

∀x ∈ R, x ∈Mβ,FLX(p) =⇒ x ∈ Fβ,FLX(p+1), (7.53)

whose proof relies on the Definition 7.8 as well as on the following

Property 7.8 (ulp_FLX_p1). For any radix β and p ∈ Z, we have:

∀x ∈ R, ulpβ,FLX(p)(x) = ulpβ,FLX(p+1)(x)× β. (7.54)

Second, proving Remark 7.6 led us to define the following predicate:

Definition 7.14 (Feven). We say that a real number x is an even FP number
with respect to a FP format Fβ,ϕ if the following condition holds:

Feven(β, ϕ, x) := ∃f : float(β) such that


x = F2R(f),
canonic(β, ϕ, f) and
Fnum(f) ∈ 2Z,

(7.55)

where canonic is the Flocq predicate saying that a given FP representation is
normalized.

So we can derive the following result:

Property 7.9 (midp_even). For any valid FP format Fβ,ϕ that allows for round-
ing to nearest even (Flocq condition Exists_NE), and denoting by RNE the
rounding-to-nearest-even mode, we have:

∀m ∈ R, m ∈Mβ,ϕ =⇒ Feven(β, ϕ, RNE(m)). (7.56)

Finally, one of the most technical remark to prove was Remark 7.3, which we
split into three Coq lemmas (one for the inequality eu − p− 1 6 ev, another for
the inequality ev 6 eu−p′, and the last one for the inequality ew > ev+p′+1). In
particular, the formal proof of the first inequality reuses Properties 7.8 and 7.9
as well as Theorem 7.10, but also the three following extra results:



7.3. FORMAL SETUP IN THE COQ PROOF ASSISTANT 191

Property 7.10. For any valid format Fβ,ϕ such that ϕ is monotone (thus ex-
cluding FTZ), we have:

∀x, y ∈ R, x ∈ Fβ,ϕ ∧ x ̸= 0 ∧ x− ulp(x/β)/2 < y < x + ulp(x/β)/2
=⇒ RN(y) = x, (7.57)

which is a corollary of Theorems 7.5 and 7.7 and can be specialized with x = u
and y = u + v to show that Inequality (7.5) implies Equality (7.7).

Then, a result related to the predicate Feven in radix 2:

Theorem 7.11 (Feven_pow). In radix 2, any FLX format with precision p > 2
satisfies:

∀p > 2, ∀x ∈ R, is_pow(x) =⇒ Feven(2, FLX(p), x). (7.58)

(Note that although FLX(1) is a valid Flocq format, the condition p > 1 would
not suffice here.)

And finally another result that will be combined with Theorem 7.11 to prove
Equality (7.6):

Theorem 7.12 (Feven_DN_UP_incompat). For any valid format Fβ,ϕ such that
ϕ is monotone, we have

∀x ∈ R, x /∈ Fβ,ϕ ∧ RD(x) ̸= 0 ∧ RU(x) ̸= 0 =⇒

¬


Feven(β, ϕ, RD(x)) ∧ Feven(β, ϕ, RU(x))


. (7.59)

Figure 7.2 summarizes the dependencies between the formal proofs of these
preliminary remarks as well as of the Theorem 7.2, which is the topic of the next
subsection. Note by the way that the node “Hyp. RN = RNE” that appears in
the figure stands for the rounding-to-nearest-even rule, which is assumed by two
remarks (as well as the other results that rely on them). All other results are
formalized in the generic case of a rounding-to-nearest (i.e., with an arbitrary
tie-breaking rule “choice : Z -> bool”).

7.3.4 Formalization of Theorem 7.2 on Fast2Sum
We now focus on the formalization of Theorem 7.2 in the Flocq format FLX.

The corresponding proofs are located in the theory “Fast2SumWDR,” on top
of the other theories gathering the results presented up to now, as shown by
Figure 7.3.

First, we can define the context of the proof with the help of the sectioning
system of Coq:

Section ProofFast2SumWDR.
(* Define the FP formats *)
Variables p p’ : Z.
Hypothesis Hp : 2 < p.
Hypothesis Hp’ : 1 < p’.
Local Notation fexp := (FLX_exp p).
Local Notation format := (generic_format radix2 fexp).



192 CHAPTER 7. SOME ISSUES RELATED TO DOUBLE ROUNDINGS

Remark 7.8 - main part

Remark 7.3 - 1st ineq.

Hyp. RN = RNE

Remark 7.8 - corollary

Theorem 7.2 - 2nd part

Theorem 7.2

Remark 7.3 - 2nd ineq.

Theorem 7.2 - 1st part

Remark 7.3 - 3rd ineq.

Theorem 7.2 - 3rd part

Remark 7.6

Remark 7.5

Remark 7.4Remark 7.3

Remark 7.2

Figure 7.2 – Dependency graph between formalized Remarks and results on Fast2Sum

Fast2SumWDR

Remarks

Midpoint

MoreFlocq

MoreReals

MoreZArith

Tactics

Figure 7.3 – Dependency graph of the Coq theories on Fast2Sum



7.3. FORMAL SETUP IN THE COQ PROOF ASSISTANT 193

Local Notation cexp := (canonic_exp radix2 fexp).
Local Notation mant := (scaled_mantissa radix2 fexp).
Local Notation fexp2 := (FLX_exp (p + p’)).
(* Define the rounding modes *)
Variable choice : Z -> bool.
Local Notation rnd_p := (round radix2 fexp (Znearest choice)).
Local Notation rnd_p2 := (round radix2 fexp2 (Znearest choice)).
(* Define the input/output variables of Fast2Sum *)
Variables a b s z t : R.
Hypothesis Fa : format a.
Hypothesis Fb : format b.
Hypothesis sDef : s = rnd_p (rnd_p2 (a + b)).
Hypothesis zDefOr :

z = rnd_p2 (s - a) \/ z = rnd_p (rnd_p2 (s - a))
\/ z = rnd_p (s - a).

Hypothesis tDefOr :
t = rnd_p (rnd_p2 (b - z)) \/ t = rnd_p (b - z).

Hypothesis cexp_le : cexp b <= cexp a.

Now we derive the following technical result, which will allow one to prove
Equation (7.9) (by replacing x and m with s and Ma

2 + Mb

2δ+1 + ϵ, respectively):

Theorem mant_N : forall x m : R,
x = (rnd_p (pow (cexp x) * m)) ->
Ztrunc (mant x) = Znearest choice m.

The proof of this result involves several case analyses, notably whether x is zero
or not and whether it is a power of the radix or not.

Then we closely follow the pen-and-paper proof presented in Section 7.2.2,
and use mant_N to derive the first part of Theorem 7.2, whose statement in the
present context is:

Theorem Thm2a : z = s - a.

Then the second part of the theorem is as follows:

Theorem Thm2b : s = rnd_p (a + b) -> t = a + b - s.

whose proof involves the result plus_error from the Flocq library, saying that
the error of a FP addition is representable in Fβ,ϕ (provided ϕ is monotone,
which is the case in the present context).

Finally, the proof of the last part of the theorem needs for the rounding
mode to be chosen with the round-to-nearest-even rule (in order to be able to
apply Remark 7.8). We simply state this assumption in the following way:

Hypothesis ZNE : choice = fun n => negb (Zeven n).

Theorem Thm2c : s <> rnd_p (a + b) -> t = rnd_p (a + b - s).

End ProofFast2SumWDR.



194 CHAPTER 7. SOME ISSUES RELATED TO DOUBLE ROUNDINGS

7.4 Conclusion and Perspectives
We have considered the possible influence of double roundings on the algorithms
Fast2Sum and TwoSum, which constitute some key building blocks for a num-
ber of compensated summation algorithms described in the literature. Although
these two algorithms do not behave exactly as when there are no double round-
ings, they still have interesting properties that can be exploited in a useful
way. Depending on the considered applications, these properties may suffice, or
specific compilation options should be chosen to prevent double roundings.

We have formally verified in Coq the proof of Theorem 7.2 and the proofs
of the Remarks mentioned in Section 7.2.1, relying on the FLX format of the
Flocq library, and using the theory on midpoints that we have formalized, which
is generic (multi-radix, multi-format) and gathers a number of core results that
are widely used in proofs of FP arithmetic. Relying on the material formalized
up to now, we now plan to work on the formal proof of other problems related
to FP arithmetic (including Theorem 7.3).



Chapter 8

Conclusion and
Perspectives

Correct rounding for floating-point implementations of mathematical functions
is a key requirement for providing a fully-specified arithmetic, and ensure the
portability and the provability of numerical software that is developed upon it.
Yet for implementing a given function f with correct rounding at a minimal
cost, the Table Maker’s Dilemma (TMD) has to be solved (offline) for that
function. The L and SLZ algorithms were designed to solve this problem, and
produce lists of hard-to-round cases. But these calculations are very long, and
are performed using heavily optimized programs that implement very complex
algorithms: this inevitably casts some doubt on the correctness of their results.

Thus, we have proposed two formal components that can fit in with inde-
pendent verification and that provide strong guarantees on the results obtained
by the SLZ algorithm.

First, in collaboration with members of the TaMaDi project, we have formal-
ized some symbolic-numeric techniques for Rigorous Polynomial Approximation
(RPA) inside the Coq proof assistant, which allows one to easily compute Tay-
lor approximations of some usual functions in Coq with formally verified error
bounds, taking advantage of the computational logic of Coq as well as the Co-
qInterval library for multiple-precision interval arithmetic, on which our library
CoqApprox [28] is based.

We plan to investigate further extensions of this library. On the one hand,
combining the machinery that we developed in CoqApprox with some Sums-
of-Squares techniques may lead to a tool of global optimization, formally ver-
ified in Coq. On the other hand, formalizing some other state-of-the-art tech-
niques in symbolic-numeric computation may greatly facilitate the implemen-
tation and/or the a posteriori verification of RPAs for new functions, directly
relying on the ordinary differential equation.

Second, we have designed and formally verified in Coq some effective check-
ers of integral-roots certificates for both univariate and bivariate cases, relying
on a uniqueness claim on the modular roots of polynomials over Z that we
have formally proved in Coq, considering the technique of Hensel lifting and
its generalization to the bivariate case. Then, we have formalized a third ef-
fective certificate checker (also in the form of a Boolean function in Coq) that

195



196 CHAPTER 8. CONCLUSION AND PERSPECTIVES

is specifically designed to check instances of the Integer Small Value Problem
(ISValP), which is the problem to be dealt with when formally verifying the
results of the SLZ algorithm. In particular, this ISValP certificates checker is
built upon our bivariate-integral-roots-certificates checker, and likewise for the
formal proof of correctness. The timings obtained using our CoqHensel library
for typical instances of ISValP are encouraging: in particular, our formalization
of “Integers-Plus-Positive-Exponent” (IPPE) based on a subset of the CoqInter-
val library allows one to get a 2x speedup for operations on coefficients.

In a near future, we also plan to implement optimized versions of the op-
erations on polynomials currently implemented in CoqHensel to get further
speedups. This should be facilitated by the modular design of the library which
properly “encapsulates” the various algorithms and specifications at stake with
the help of the Coq Module system. Moreover, we would like to investigate the
possible extension of our integral-roots-certificates to the case of rational roots,
especially for univariate polynomials.

Beyond the development of these components for a formally verified and
generic certification chain for the TMD, I have been involved in a joint work for
solving the TMD for the bivariate function (x, y) →→


x2 + y2, for which the

IEEE 754-2008 standard recommends correct rounding. We have proposed some
“augmented-precision algorithms” for computing 2D norms, as well as some tight
lower bounds on the nonzero minimum distance from


x2 + y2 to a midpoint

[29]. These results can then be used to provide correct rounding for this function,
despite the fact that it admits a large number of exact cases.

Finally, in collaboration with J.-M. Muller and G. Melquiond, we have fo-
cused on the double rounding phenomenon, which typically occurs in archi-
tectures where several precisions are available, when the rounding-to-nearest
mode is used, and may lead to what we call a “double rounding slip.” In par-
ticular, we have studied the potential influence of double roundings on a few
usual summation algorithms in radix 2. Then, relying on the Flocq library for
multiple-precision floating-point arithmetic in Coq and on the library on mid-
points that we have developed at this occasion, we have formally verified all the
corresponding proofs related to the behavior of the Fast2Sum algorithm in Coq.

The formal verification of these arithmetic results allows one to have a high
level of confidence on their proofs, and at the same time leads to a new formalized
background that may be reused by further developments. In particular, we plan
to work on the formal proof of our results related to the behavior of the TwoSum
algorithm with double roundings.

We have carried out these formal developments in Coq using various tools
and techniques: from a computational point of view, we thus relied both on
autarkic and skeptical approaches, and a part of the proofs were built upon
the SSReflect extension of the proof language of Coq. Finally we devoted a
particular care to the genericity of our formal developments, either by relying
on the Coq Module system for separating the specification of computational data
structures from their (possibly optimized) implementations, or by introducing
general definitions whenever possible, whether implementing RPAs or dealing
with midpoints in radix β.



Appendix A

Notations

We summarize below the main mathematical notations used in the manuscript.

• A×B denotes the Cartesian product of sets A and B, and An is a shortcut
for A× · · · ×A  

n times

;

• A \B denotes the subset of A defined by A \B := {x ∈ A |x /∈ B};

• # L denotes the length of a list L;

• B denotes the set of booleans, that is B := {true, false};

• P denotes the set of prime numbers;

• N denotes the set of nonnegative integers;

• N∗ denotes the set of positive integers, that is N∗ := N \ {0};

• Z denotes the ring of signed integers;

• Q denotes the field of rational numbers;

• R denotes the field of real numbers;

• R∗ denotes the set of nonzero real numbers;

• R∗
+ denotes the set of positive real numbers;

• Ja, bK (for a 6 b in Z) denotes the set of integers k such that a 6 k 6 b, so
Ja, bK = Z ∩ [a, b];

• Ja, bJ (for a < b in Z) denotes the set Z ∩ [a, b[ = {k ∈ Z | a 6 k < b};

• ⌊x⌋ (for x ∈ R) is the largest integer 6 x; in other words, it is the unique
integer k ∈ Z such that k 6 x < k + 1;

• ⌈x⌉ (for x ∈ R) is the smallest integer > x; in other words, we have
⌈x⌉ = −⌊−x⌋;

• a mod q (for a ∈ Z and q ∈ N∗) denotes the remainder of a modulo q,
taken in J0, qJ;

197



198 APPENDIX A. NOTATIONS

• a ≡ b (mod q) states the modular equality between a and b; in other
words, we have a ≡ b (mod q)⇔ a mod q = b mod q;

• a cmod q denotes the “centered modulo” of a ∈ Z by q ∈ N∗, satisfying

a cmod q ≡ a (mod q) and |a cmod q| 6 q

2 ;

see Definition 2.14 on page 26 for more details on this notion, which also
makes sense for any a ∈ R and q ∈ R∗

+ (likewise for the bare modulo);

• qZ (for q ∈ N) denotes the principal ideal generated by q, that is the set
of integers that are multiples of q;

• Z/qZ (for q ∈ N∗) denotes the ring of integers modulo q, defined as the
quotient of Z with respect to the equivalence relation ≡ defined above,
that is Z/qZ = {qZ, 1 + qZ, 2 + qZ, . . . , (q − 1) + qZ}; we may deal with
this set through a set of representatives, like J0, qJ;

• d | a (for d, a ∈ Z) denotes the divisibility relation defined by d | a⇔ ∃e ∈
Z, a = d× e; note that we have d | a⇔ a ≡ 0 (mod d);

• gcd(a, b) (for any nonzero pair (a, b) ∈ Z2) denotes the greatest common
divisor of a and b, taken in N; if gcd(a, b) = 1 we will say that a and b
are coprime; note also that if p ∈ P, an integer a is coprime with (any
nontrivial power of) p if and only if a ̸≡ 0 (mod p);

• a−1
q (for a ∈ Z coprime with q ∈ N∗) denotes the modular inverse of a

modulo q, that is the integer a′ ∈ J0, qJ such that ∃b ∈ Z, aa′ + bq = 1;

• Z[X] denotes the ring of univariate polynomials with coefficients in Z;

• deg(P ) (assuming P ∈ Z[X] is nonzero) denotes the degree of the uni-
variate polynomial P =

m
i=0 aiX

i, that is the largest integer n ∈ N such
that an ̸= 0;

• P ′ (for P ∈ Z[X]) denotes the formal derivative of the univariate polyno-
mial P ;

• Z[X, Y ] denotes the ring of bivariate polynomials on Z;

• Mm,n(A) (for any ring A and m, n ∈ N∗) denotes the set of m-rows, n-
columns matrices with coefficients in A, while the notation for order-n
square matrices can be shortened to Mn(A);

• As regards vectors, they will be identified to column matrices; in other
words, we assume An ≃Mn,1(A);

• JP1,P2(a, b) denotes the Jacobian matrix of the pair (P1, P2) of bivariate
polynomials on Z evaluated at (a, b) ∈ Z2; in other words,

JP1,P2(a, b) =

∂P1
∂X (a, b) ∂P1

∂Y (a, b)
∂P2
∂X (a, b) ∂P2

∂Y (a, b)

 ∈M2(Z).



199

• det(M) denotes the determinant of a square matrix M ; in particular we

have
a b
c d

 := det


a b
c d


= ad− bc;

• M−1
q (for M ∈Mn(Z) and q ∈ N∗) denotes, when it is defined, the mod-

ular matrix inverse of M modulo q; for instance we have


a b
c d

−1

q

=a b
c d

−1

q

·


d −b
−c a


mod q, where the modulo operation is applied coor-

dinatewise;

We assume this latter convention for the modulo throughout the manuscript,
that is: “A mod q,” for A ∈ Zn (resp. for A ∈ Mm,n(Z)) will denote the vector
(Ai mod q)16i6n (resp. the matrix (Aij mod q)(i,j)∈J1,mK×J1,nK).





List of Figures

2.1 Positive floating-point numbers for β = 2 and p = 3. . . . . . . . 17
2.2 The standard rounding modes. . . . . . . . . . . . . . . . . . . . 20
2.3 Relative error committed by rounding a real number to nearest

floating-point number. . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Example of an interval around f̂(x) containing f(x) but no break-

point. Hence, RN(f(x)) = RN(f̂(x)). . . . . . . . . . . . . . . . . 25
2.5 Example of an interval around f̂(x) containing f(x) and a break-

point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Overview of the modular hierarchy implemented in CoqApprox . 80

5.1 Dependency graph of the CoqHensel theories . . . . . . . . . . . . 128

7.1 Illustration of the proof in the situation where a is a power of 2 . 169
7.2 Dependency graph between formalized Remarks and results on

Fast2Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.3 Dependency graph of the Coq theories on Fast2Sum . . . . . . . 192

201





List of Tables

2.1 Specification of basic floating-point (FP) formats . . . . . . . . . 23
2.2 Specification of interchange FP formats . . . . . . . . . . . . . . 23
2.3 Specification of extended FP formats . . . . . . . . . . . . . . . . 23

3.1 Vernacular commands inside a section . . . . . . . . . . . . . . . 55
3.2 Some interpretations of the product symbol "*" . . . . . . . . . . 59

4.1 Benchmarks and timings for our implementation in Coq . . . . . 81

5.1 Short description of four instances of ISValP . . . . . . . . . . . 121
5.2 Short description of some ISValP certificates with their verifica-

tion timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.1 Comparison between the actual minimum distance to a midpoint
and the bounds provided by our method, for p = 10 . . . . . . . 148

6.2 Comparison between the actual minimum distance to a midpoint
and the bounds provided by our method, for p = 15 . . . . . . . 148

7.1 Definition of standard formats in Flocq . . . . . . . . . . . . . . . 177

203





List of Algorithms

2.1 General scheme to provide correct rounding . . . . . . . . . . . . . 30
2.2 Subtractive version of L-algorithm . . . . . . . . . . . . . . . . . . 33

5.1 Hensel lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Find the small integral roots of a polynomial using Hensel lifting . 88
5.3 Bivariate Hensel lifting . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4 Find the small integral roots of two bivariate polynomials . . . . . 95

6.1 Fast2Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.2 TwoMultFMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3 Augmented computation of

√
x . . . . . . . . . . . . . . . . . . . . 135

6.4 Augmented computation of


x2 + y2 . . . . . . . . . . . . . . . . 138
6.5 Slightly more accurate augmented computation of


x2 + y2 . . . 138

7.1 TwoSum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.2 Fast2Sum-with-double-roundings . . . . . . . . . . . . . . . . . . . 161
7.3 TwoSum-with-double-roundings . . . . . . . . . . . . . . . . . . . 164
7.4 Naive summation algorithm . . . . . . . . . . . . . . . . . . . . . . 170
7.5 Kahan’s compensated summation algorithm . . . . . . . . . . . . 170
7.6 Pichat-Neumaier summation algorithm . . . . . . . . . . . . . . . 171
7.7 Rump, Ogita, and Oishi’s cascaded summation algorithm . . . . . 171
7.8 Algorithm 7.7 with double roundings . . . . . . . . . . . . . . . . 172
7.9 VecSum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.10 Rump, Ogita and Oishi’s K-fold summation algorithm . . . . . . . 175

205





Index

Symbols
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
v ∈ FV(t) . . . . . . . . . . . . . . . . . . . . . . . . . 50
-> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40–42
=> . . . . . . . . . . . . . . . . . . . . . . 40, 41, 46, 50
Prop, Set, Type . . . . . . . . . . . . . . see sort
exists . . . . . . . . . . . . . . . . . . . . . . . . 44, 50
forall . . . . . . . . . . . . . . . . . . . . . . . . 42, 50
fun· · ·=>· · · . . . . . . . . . . . . . . . . . 40, 41, 50
let· · ·:=· · ·in· · · . . . . . . . . . . . . . . . 47, 50
match· · ·with· · ·end . . . . . . . . . . . . . . . . 46
t [v := t′] . . . . . . . . . . . . . . . . . . . . . . . . . . .50

A
α-conversion . . . . . . . . . . . . . . . . . . . . . . . 50
abstraction. . . . . . . . . . . . . . . . . . . . .40, 41
accessor . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
algorithm

augmented-precision
√

x . . . . . 135
augmented-precision 2D norm138
bivariate Hensel lifting . . . . . . . . 95
bivariate Hensel lifting, iterated95
Fast2Sum . . . . . . . . . . . . . . . . . . . . 132
Lefèvre . . . . . . . . . . . . . . . . . . . . . 9, 32
LLL . . . . . . . . . . . . . . . . . . . . . . . . . . 86
SLZ . . . . . . . . . . . . . . . . . 9, 34, 86, 99
TwoMultFMA . . . . . . . . . . . . . . . 133
TwoSum . . . . . . . . . . . . . . . . . . . . . 156
univariate Hensel lifting . . . . . . . 87
univariate Hensel lifting, iterated

88
apartness . . . . . . . . . . . . . . . . . . . . . . . . . . 66
arrow-type . . . . . . . . . . . . . . . . . . . see type
associativity . . . . . . . . . . . . . . . . . . . . . . . 58
augmented-precision algorithm. . . .131
autarkic approach . . . . . . . . . . 64, 65, 72
axiom of excluded-middle . . . . . . . . . . 45

B
bad cases (BC) . . . . . . . . . . . . . . . . . . . . 27

basic formats . . . . . . . . . . . . . . . . . . . . . . 23
believing approach. . . . . . . . . . . . . . . . . 64
bound variable. . . . . . . . . . . . . . . . . . . . .50
breakpoint . . . . . . . . . . . . . . . . . . . . . . . . .26

distance to breakpoints (dist) . 26
nonzero distance (NZD) . . . . . . . 27

C
C99 standard . . . . . . . . . . . . . . . . . . . . . 151
Calculus of Inductive Constructions . 38
canonical structure . . . . . . . . . . . . . 57, 67
case-analysis . . . . . . . . . . . . . . . . . . . . . . . 46
centered modulo (cmod) . . . . . . . 26, 89
certificate . . . . . . . . . . . . . 11, 64, 86, 106
certificates checker . . . . . . . . . . . . . . . . . 64
certifying algorithm . . . . . . . . . . . 64, 106
certifying property . . . . . . . . . . . . . . . . .64
Chebyshev model (CM) . . . . . . . . 76, 84
Church-Rosser property. . . . . . . . . . . .52
classical logic . . . . . . . . . . . . . . . . . . . . . . 45
coercion . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
computation

compute . . . . . . . . . . . . . . . . . . . 52, 53
native_compute . . . . . . . . . . 53, 81
vm_compute . . . . . . . . . . 53, 81, 121

computer algebra system . . . . . . . . . . 64
confluence . . . . . . . . . . . . . . . . . . . . . . . . . 52
conjunction . . . . . see logical connectors
connectors . . . . . . . . . . . . . . . . . see logical
consistency . . . . . . . . . . . . . . . . . 41, 47, 66
constructor . . . . . . . . . . . . . . . . . . . . 42, 46
context . . . . . . . . . . . . . . . . . . . . . . . . 51, 54
conversions . . . . . . . . . . . . . . . . . 22, 51–53
convertibility . . . . . . . . . . . . . . . . . . . . . . 52
convertibility rule . . . . . . . . . . . . . . . . . . 52
Coppersmith’s technique . . . . . . . . . . . 98
Coq . . . . . . . . . . . . . . . see theorem prover

command-line programs . . . . . . . 39
proof kernel . . . . . . . . . . . . . . . . . . . 38

Coq commands
About . . . . . . . . . . . . . . . . . . . . . . . . . 60

207



208 INDEX

Axiom . . . . . . . . . . . . . . . . . . . . . . . . . 55
Bind Scope . . . . . . . . . . . . . . . . . . . 60
Check . . . . . . . . . . . . . . . . . . . . . . . . . 40
Defined . . . . . . . . . . . . . . . . . . . . . . 60
Definition . . . . . . . . . . . . . . . 51, 55
Delimit Scope . . . . . . . . . . . . . . . 59
End. . . . . . . . . . . . . . . . . . . . . . . .54, 55
Eval . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Hypothesis . . . . . . . . . . . . . . . . . . . 55
Import . . . . . . . . . . . . . . . . . . . . . . . .55
Inline . . . . . . . . . . . . . . . . . . . . . . . .55
Lemma . . . . . . . . . . . . . . . . . . . . . 51, 55
Let . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Locate . . . . . . . . . . . . . . . . . . . . . . . .59
Ltac . . . . . . . . . . . . . . . . . . . . . . 48, 63
Module . . . . . . . . . . . . . . . . . . . . . . . .55
Notation . . . . . . . . . . . . . . . . . . . . . 57
Open Scope . . . . . . . . . . . . . . . . . . . 59
Parameter . . . . . . . . . . . . . . . . . . . . 55
Print . . . . . . . . . . . . . . . . . . . . . . . . . 42
Qed . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Record . . . . . . . . . . . . . . . . . . . . . . . .43
Require . . . . . . . . . . . . . . . . . . . . . . 39
Section . . . . . . . . . . . . . . . . . . . . . . 54
Structure . . . . . . . . . . . . . . . . . . . . 43
Theorem . . . . . . . . . . . . . . . . . . . . . . 55
Variable . . . . . . . . . . . . . . . . . . . . . 55

Coq languages
Gallina . . . . . . . . . . . . . . . . . . . . . 39–48
Ltac . . . . . . . . . . . . . . . . . . . .39, 48–50
Vernacular . . . . . . . . . . . . . . . . . . . . . 39

Coq libraries . . . . . . . . . . . . . . . . . . . . . . . 65
BigZ . . . . . . . . . . . . . . . . . . . . . . 77, 79
C-CoRN . . . . . . . . . . . . . . . . . . . . . . . 66
CoqInterval . . . . . . . . . 68, 77, 80, 84
Flocq . . . . . . . . . . . . . . . . 68, 176–180
Pff . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Reals . . . . . . . . . . . . . . . . . . . . . . 65, 82
SSReflect . . . . . . . . . . . . . 66, 99, 106
standard library. . . . . . . . . . . . . . .65

CoqApprox . . . see also Taylor, D-finite
abstract interfaces . . . . . . . . . 78, 80
benchmarks. . . . . . . . . . . . . . . .80–82
formal proof . . . . . . . . . . . . . . . 82–83
implementation . . . . . . . . . . . . 78–80
interval coefficients . . . . . . . . 74, 75
perspectives . . . . . . . . . . . . . . . 83–84
recurrence relations. . . . . . . .76, 79
URL . . . . . . . . . . . . . . . . . . . . . . . . . . 76

CoqHensel

abstract interfaces . . . . . . . 116–118
benchmarks . . . . . . . . . . . . . 121–122
bipoly theory. . . . . . . . . . .104, 105
bivariate Hensel’s lemma 104–106
change of polynomial basis . . 112–

114
effective checkers . . . . . . . . 116–121
example . . . . . . . . . . 90–91, 109–110
formal background. . . . . . . .99–102
formalization choices . . . . 122–125
integral-roots-certificates 106–112
IPPE theory . . . . . . . . . . . . 127–128
ISValP certificate . . . . . . . . 112–116
optimizations . . . . . . . . . . . . 125–127
order-2 matrices . . . . . . . . .104, 106
perspectives . . . . . . . . . . . . . 128–129
ssrzarith theory . . . . . . . 100–102
theories’ dependency graph . . 128
univariate Hensel’s lemma . . 102–

103
URL . . . . . . . . . . . . . . . . . . . . . . . . . . 99
weighted norm-1 . . . . . . . . . . . . . 114

correct rounding. . . . . . . . .see rounding
for (x, y) →→


x2 + y2 . . . 144–147

recommended functions . . . . . . . 24
curried function . . . . . . . . . . see function
Curry–Howard isomorphism. . . . 41, 49

D
D-finite function . . . . . . . . . see function
De Bruijn criterion . . . . . . . . . . . . . . . . 37
deductive verification . . . . . . . . . . . . . . 65
Dekker’s theorem . . . . . . . . . . . . . . . . . 133
dependency problem . . . . . . . . . . . . . . . 73
destructor . . . . . . . . . . . . . . . . . . . . . . . . . 43
diamond property . . . . . . . . . . . . . . . . . 52
disjoint sum . . . . . . . . . . . . . . . . . . . . . . . 62
disjunction . . . . . see logical connectors
distance . . . . . . . . . . . . . . . see breakpoint
division by zero . . . . . . . . . see exception
double roundings . . . . . . . . . . . . . 11, 153

behavior of Fast2Sum . . . 161–163,
191–193

behavior of TwoSum. . . . .163–169
double rounding slip . . . . . . . . . 155
formal setup in Coq . . . . . 180–193
remarks . . . . . . . . 156–160, 190–191
summation algorithms . . . 169–176
theories’ dependency graph . . 192
URL . . . . . . . . . . . . . . . . . . . . . . . . . 176



INDEX 209

Dynamic Dictionary of Mathematical
Functions. . . . . . . . . . . . . . . . .83

E
elimination principle . . . . . . . . . . . . . . . 43
elimination rule . . . . . . . . . . . . . . . . . . . .45
enumerated type . . . . . . . . . . . . . see type
environment . . . . . . . . . . . . . . . . . . . . . . . 51
equality . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Leibniz . . . . . . . . . . . . . . . . . . . . 44, 52
syntactic . . . . . . . . . . . . . . . . . . . . . . 57

equivalence . . . . . see logical connectors
error

absolute error bound . . . . . . . . . . 72
relative error . . . . . . . . . . . . . . . . . . 20

error-free transform. . . . . . . . . . . . . . .132
exact cases (EC). . . . . . . . . . . . . . . . . . .27
exact reals . . . . . . . . . . . . . . . . . . . . . 66, 68
exception

division by zero . . . . . . . . . . . . . . . 22
inexact result . . . . . . . . . . . . . . . . . 22
invalid operation . . . . . . . . . . . . . . 22
overflow. . . . . . . . . . . . . . . . . . . . . . . 22
underflow . . . . . . . . . . . . . . . . 22, 154

existence . . . . . . . see logical connectors
exp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76, 78
expansion . . . . . . . . . . . . . . . . . . . . . . . . 132
exponent . . . . . . . . . . . . . . . . . . . . . . . . . . 16

quantum exponent . . . . . . . . . . . . 16
extended formats . . . . . . . . . . . . . . . . . . 23
extraction. . . . . . . . . . . . . . . . . . . . . .60, 65
extremal floating-point numbers . . . 18

F
faithful rounding . . . . . . . . see rounding
False proposition . . . . . . . . . . . . . . . . . 44
Fast2Sum . . . . . . . . . . . . . . . . . . . . . . . . 133
fixpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
floating-point

extremal numbers . . . . . . . . . . . . . 18
format . . . . . . . . . . . . . . . . . . . . . . . . 15
number. . . . . . . . . . . . . . . . . . . .15, 16
special values . . . . . . . . . . . . . . . . . 17

formal developments
CoqApprox . . . . . . . . . . . . . . . . . . . . 76
CoqHensel . . . . . . . . . . . . . . . . . . . . . 99
on double roundings . . . . . . . . . 176

formal methods . . . . . . . . . . . . . . . . 10, 37
format . . . . . . . . . see also IEEE Std 754

floating-point . . . . . . . . . . . . . . . . . 15

IEEE . . . . . . . . . . . . . . . . . . . . . . . . . 22
free variable . . . . . . . . . . . . . . . . . . . . . . . 50
function . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

curried . . . . . . . . . . . . . . . . . . . . . . . . 40
D-finite . . . . . . . . . . . . . . . . . . . . . . . 76
higher-order. . . . . . . . . . . . . . . . . . .42
partial . . . . . . . . . . . . . . . . . . . . . . . . 61
recursive . . . . . . . . . . . . . . . . . . . . . . 47
total . . . . . . . . . . . . . . . . . . . . . . . . . . 61
uncurried . . . . . . . . . . . . . . . . . . . . . 40

functor . . . . . . . . . . . . . . . . . . . . . . . . . 55–57

G
Gallina . . . . . . . . . . . . . see Coq languages
Gfun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
gradual underflow . . . . . . . . . . . . . . . . . 17

H
hard-to-round cases . . . . . see bad cases
hardest-to-round cases (HRC) . . . . . 29
hardness-to-round (HNR, HNR′) . . 27,

28
Hensel lifting . . . . . . . . . . . . . . . . . . . . . . 85

bivariate case . . . . . . . . . . . . . . 94–95
univariate case. . . . . . . . . . . . .87–89

Hensel’s lemma . . . . . . . . . . . . . . . . . . . . 85
bivariate case . . . . . . . . . . . . . . 95–98
univariate case. . . . . . . . . . . . .91–94

Higham’s notations . . . . . . . . . . . . . . . 156
hybrid disjoint sum . . . . . . . . . . . . . . . . 62

I
IEEE Std 754 . . . . . . . . . . . . . . . . . . . 9, 22

basic formats. . . . . . . . . . . . . . . . . .23
exceptions . . . . . . . . . . . . . . . . . . . . 22
extended formats. . . . . . . . . . . . . .23
interchange formats . . . . . . . . . . . 23
rounding modes . . . . . . . . . . . . . . . 22
standard operations . . . . . . . . . . . 22

implication . . . . . . . . . . . . . . . . . . . . . . . . 41
implicit arguments . . . . . . . . . . . . . . . . .54
induction principle . . . . . . . . . . . . . . . . .42
inductive . . . . . . . . . . . . . . . . . . . . see type
inexact . . . . . . . . . . . . . . . . . see exception
infinitely precise significand (ips) . . 18
informative content . . . . . . . . . . . . . . . . 45
inhabitant . . . . . . . . . . . . . . . . . . . see type
integer small value problem (ISValP)

98
integral significand. . . . . . . . . . . . . . . . .16



210 INDEX

interchange formats . . . . . . . . . . . . . . . .23
interval arithmetic . . . . . . . . . . . . . . . . . 73
introductory rule . . . . . . . . . . . . . . . . . . 45
intuitionistic logic . . . . . . . . . . . . . . 45, 66
invalid operation . . . . . . . .see exception

J
Jacobian matrix . . . . . . . . . . . . . . . 94, 95

L
λ-abstraction . . . . . . . . . . . . . . . . . . 40, 41
Lefèvre algorithm. . . . . . . . . . . . . . . . . . 32
Leibniz equality . . . . . . . . . . see equality
libm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
library . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
linear ODE (LODE) . . . . . . . . . . . . . . . 76
logical connectors . . . . . . . . . . . . . . . . . . 44

conjunction . . . . . . . . . . . . . . . . . . . 44
disjunction . . . . . . . . . . . . . . . . 44–45
equivalence. . . . . . . . . . . . . . . . . . . .44
existence . . . . . . . . . . . . . . . . . . . . . . 44
negation . . . . . . . . . . . . . . . . . . . . . . 44

logical name . . . . . . . . . . . . . . . . . . . . . . . 55
logical proposition . . . . . . . . . . . . . . . . . 41
lower bounds on the nonzero distance

to midpoints for the function
(x, y) →→


x2 + y2 . . 144–147

M
machine epsilon . . . . . see unit roundoff
midpoint. . .26, 135, 144, 154, 180–190
minimax approximation . . . . . . . . . . . 72
modular inversion . . . . . . . . . . . . . . . . . 89
module . . . . . . . . . . . . . . . . . . . . . 55–57, 78

N
negation . . . . . . . . see logical connectors
Newton iteration . . . . see Hensel lifting
normalized representation. . . . . . . . . .16
number

complex. . . . . . . . . . . . . . . . . . . . . . .43
even floating-point number . . . 154
floating-point . . . . . . . . . . 15, 16, 18
natural . . . . . . . . . . . . . see type: nat
odd floating-point number . . . 154
prime . . . . . . . . . . . . . . . . . . . . . . . . . 89

O
opacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
option-type . . . . . . . . . . . . . . . . . . see type
order of multiplicity . . . . . . . . . . . . . . . 91

ordinary differential equation (ODE)
73

overflow . . . . . . . . . . . . . . . . see exception

P
parameter of an inductive. . . . . . . . . .43
partial function . . . . . . . . . . see function
pattern-matching . . . . . . . . . . . 46–48, 51
Poincaré principle . . . . . . . . . . . . . . . . . 38
polynomial approximation . . . . . . . . . 71
portability . . . . . . . . . . . . . . . . . . . . . . 9, 22
pre-condition . . . . . . . . . . . . . . . . . . . . . . 61
precedence. . . . . . . . . . . . . . . . . . . . . . . . .58
predicative CIC (pCIC) . . . . . . . . . . . . 66
principle

elimination. . . . . . . . . . . . . . . . . . . .43
induction . . . . . . . . . . . . . . . . . . . . . 42

product-type. . . . . . . . . . . . . . . . .see type
projection . . . . . . . . . . . . . . . . . . . . . . . . . 43
proof assistant . . . . see theorem prover
proof checker . . . . . . . . . . . . . . . . . . . . . . 38
proof language. . . . . . . . . . . . . . . . . . . . .38

declarative . . . . . . . . . . . . . . . . . . . . 38
tactics . . . . . . . . . . . . . . . . . . . . . . . . 38
terms . . . . . . . . . . . . . . . . . . . . . . . . . 38

Q
qualified identifier . . . . . . . . . . . . . . . . . 56
quantifier

existential . . . . . . . . . . . . . . . . . . . . .44
higher-order. . . . . . . . . . . . . . . . . . .42
universal . . . . . . . . . . . . . . . . . . . . . . 41

quantum exponent . . . . . . . . . . . . . . . . . 16
quotient of an equivalence relation . 63

R
recursive function . . . . . . . . see function
recursor . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
relative error . . . . . . . . . . . . . . . . see error
remainder . . . . . . . . . . . . . . . . . . . . . . . . . 74
representation

normalized . . . . . . . . . . . . . . . . . . . . 16
rigorous

global optimization. . . . . . . . . . . .73
polynomial approximation (RPA)

10, 72, 74, 76, 78
rounding

correct . . . . . . . . . . . . . . . . . . 9, 22, 24
faithful. . . . . . . . . . . . . . . . . . . . . . . .21

rounding mode . . . . . . . . . . . . . . . . . . . . 19



INDEX 211

S
separated compilation . . . . . . . . . . . . . 55
setoid . . . . . . . . . . . . . . . . . . . . . . . . . . 63, 66
sigma-type . . . . . . . . . . . . . . . . . . .see type
significand . . . . . . . . . . . . . . . . . . . . . . . . . 16

infinitely precise. . . . . . . . . . . . . . .18
integral . . . . . . . . . . . . . . . . . . . . . . . 16

singleton type. . . . . . . . . . . . . . . .see type
skeptical approach . . . . . . . . 64, 86, 106
SLZ algorithm . . . . . . . . . . . . . . . . . . . . . 34
small-integral-roots problem

univariate case . . . . . . . . . . . . . . . . 88
Sollya . . . . . . . . . . . . . . . . . . . . . . . . . . 73, 80
sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41, 45

impredicative Set . . . . . . . . . . . . . 66
special floating-point values . . . . . . . . 17
SSE registers . . . . . . . . . . . . . . . . . . . . . 153
standard . . . . . . . . . . . see IEEE Std 754
standard model . . . . . . . . . . . . . . . 20, 155
strong normalization . . . . . . . . . . . . . . . 52
strong reduction . . . . . . . . . . . . . . . . . . . 52
strong specification . . . . . . . . . . . . . . . . 62
structural decreasing condition. . . . .47
structural decreasing condition. . . . .63
subgoal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
subject reduction . . . . . . . . . . . . . . . . . . 52
substitution . . . . . . . . . . . . . . . . . . . . . . . 50

T
table maker’s dilemma (TMD) . . . . . 9,

24–36
tactic . . . . . . . . . . . . . . . . . . . . . . . . . . 48–50
tactical . . . . . . . . . . . . . . . . . . . . . . . . 48, 50
Taylor polynomial . . . . . . . . . . . . . . . . . 78
Taylor–Lagrange formula . . . . . . .75, 79
Taylor model (TM) 73, 74, 79, see also

RPA
algebraic rules . . . . . . . . . . . . . 74, 79
validity predicate . . . . . . . . . . 75, 82

term
convertible . . . . . . . . . . . . . . . . . . . . 52
well-formed. . . . . . . . . . . . . . . .40, 41

terminator . . . . . . . . . . . . . . . . . . . . . . . . . 67
theorem prover . . . . . . . . . . . . . 10, 37, 38

ACL2 . . . . . . . . . . . . . . . . . . . . . . . . . 10
Agda . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Coq . . . . . . . . . . . . . . . . . . . . 10, 38–68
HOL Light . . . . . . . . . . . . . . . . . . . . 10
LCF . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Mizar . . . . . . . . . . . . . . . . . . . . . . . . . 38

PVS. . . . . . . . . . . . . . . . . . . . . . .10, 38
theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
total function . . . . . . . . . . . . see function
total order . . . . . . . . . . . . . . . . . . . . . . . . . 65
trichotomy . . . . . . . . . . . . . . . . . . . . . . . . 65
True proposition. . . . . . . . . . . . . . . . . . .44
trusted computing base . . . . . . . . . . . . 53
type . . . . . . . . . . . . . . . . . . . . . . . . . . . 40, 41

arrow-type . . . . . . . . . . . . . . . . 40, 42
bool . . . . . . . . . . . . . . . . . . . . . . . . . . 43
enumerated type . . . . . . . . . . . . . . 43
inductive type . . . . . . . . . . . . . 42, 51
inhabitant . . . . . . . . . . . . . . . . . 40, 48
list . . . . . . . . . . . . . . . . . . . . . . 43, 46
nat . . . . . . . . . . . . . . . . . . . . 43, 46, 47
option-type . . . . . . . . . . . . . . . .61, 82
product-type . . . . . . . . . . . . . . . . . . 41
sigma-type . . . . . . . . . . . . . . . . . . . . 62
singleton type . . . . . . . . . . . . . . . . . 47
type annotation . . . . . . . . . . . 53, 58
type checking . . . . . . . . . . . . . . . . . 53
type inference . . . . . . . . . . . . . . . . . 53

type class . . . . . . . . . . . . . . . . . . . . . . . . . .57
type theory . . . . . . . . . . . . . . . . . . . . . . . . 40

U
uncurried function . . . . . . . see function
underflow . . . . . . . . . . . . . . . see exception

gradual . . . . . . . . . . . . . . . . . . . . . . . 17
unit in the last place (ulp) . . . . . . . . . 20
unit roundoff (u) . . . . . . . . . . . . . . . . . . 20
universe . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
upper-bound for P ∈ Z[X] . . . . . . . . . 89

V
variable

bound . . . . . . . . . . . . . . . . . . . . . . . . 50
explicit . . . . . . . . . . . . . . . . . . . . . . 152
free . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
implicit . . . . . . . . . . . . . . . . . . . . . . 151

verification and validation (V&V). .38
Vernacular . . . . . . . . . .see Coq languages

W
well-founded recursion . . . . . . . . . . . . . 63
whole-integral-roots problem . . . 89, 90
wildcard

inference . . . . . . . . . . . . . . . . . . 44, 54
non-dependent . . . . . . . . . 42, 46, 54

witness . . . . . . . . . . . . . . . . . see certificate



212 INDEX

worst case. . . . . . . . . . . . . . . . . . . . . . .9, 29

X
x87’s double-extended format 23, 151,

152

Z
Ziv’s strategy . . . . . . . . . . . . . . . . . . . . . . 24



Bibliography

[1] Milton Abramowitz and Irene A. Stegun. Handbook of mathematical
functions with formulas, graphs, and mathematical tables. Vol. 55. Na-
tional Bureau of Standards Applied Mathematics Series. For sale by the
Superintendent of Documents, U.S. Government Printing Office, Wash-
ington, D.C., 1964, xiv+1046 pages.

[2] Michaël Armand, Germain Faure, Benjamin Grégoire, Chantal Keller,
Laurent Théry, and Benjamin Werner. “A Modular Integration of SAT/SMT
Solvers to Coq through Proof Witnesses”. In: CPP. Ed. by Jean-Pierre
Jouannaud and Zhong Shao. Vol. 7086. Lecture Notes in Computer Sci-
ence. Springer, 2011, pp. 135–150. isbn: 978-3-642-25378-2. doi: 10 .
1007/978-3-642-25379-9_12.

[3] Michaël Armand, Benjamin Grégoire, Arnaud Spiwack, and Laurent Théry.
“Extending Coq with Imperative Features and Its Application to SAT
Verification”. In: ITP. Vol. 6172. LNCS. 2010, pp. 83–98.

[4] I. Babuška. “Numerical stability in mathematical analysis”. In: Proceed-
ings of the 1968 IFIP Congress. Vol. 1. 1969, pp. 11–23.

[5] Henk Barendregt and Erik Barendsen. “Autarkic Computations in For-
mal Proofs”. In: J. Autom. Reasoning 28.3 (2002), pp. 321–336. doi:
10.1023/A:1015761529444.

[6] Henk Barendregt and Arjeh M. Cohen. “Electronic Communication of
Mathematics and the Interaction of Computer Algebra Systems and
Proof Assistants”. In: J. Symb. Comput. 32.1/2 (2001), pp. 3–22. doi:
10.1006/jsco.2001.0455.

[7] Gilles Barthe, Mark Ruys, and Henk Barendregt. “A Two-Level Ap-
proach Towards Lean Proof-Checking”. In: TYPES. Ed. by Stefano Be-
rardi and Mario Coppo. Vol. 1158. Lecture Notes in Computer Science.
Springer, 1995, pp. 16–35. isbn: 3-540-61780-9. doi: 10.1007/3-540-
61780-9_59.

[8] Alexandre Benoit, Frédéric Chyzak, Alexis Darrasse, Stefan Gerhold,
Marc Mezzarobba, and Bruno Salvy. “The Dynamic Dictionary of Math-
ematical Functions (DDMF)”. In: Mathematical Software - ICMS 2010.
Ed. by Komei Fukuda, Joris Hoeven, Michael Joswig, and Nobuki Takayama.
Vol. 6327. Lecture Notes in Computer Science. Springer, 2010, pp. 35–41.
isbn: 978-3-642-15581-9. doi: 10.1007/978-3-642-15582-6_7.

213

http://dx.doi.org/10.1007/978-3-642-25379-9_12
http://dx.doi.org/10.1007/978-3-642-25379-9_12
http://dx.doi.org/10.1023/A:1015761529444
http://dx.doi.org/10.1006/jsco.2001.0455
http://dx.doi.org/10.1007/3-540-61780-9_59
http://dx.doi.org/10.1007/3-540-61780-9_59
http://dx.doi.org/10.1007/978-3-642-15582-6_7


214 BIBLIOGRAPHY

[9] Daniel J. Bernstein. “Simplified High-Speed High-Distance List Decoding
for Alternant Codes”. In: PQCrypto. Ed. by Bo-Yin Yang. Vol. 7071.
Lecture Notes in Computer Science. Springer, 2011, pp. 200–216. isbn:
978-3-642-25404-8. doi: 10.1007/978-3-642-25405-5_13.

[10] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Pro-
gram Development. Coq’Art: The Calculus of Inductive Constructions.
Texts in Theoretical Computer Science. Springer-Verlag, 2004. isbn: 978-
3-540-20854-9. url: http://www.labri.fr/publications/l3a/2004/
BC04.

[11] Yves Bertot, Georges Gonthier, Sidi Ould Biha, and Ioana Pasca. “Canon-
ical Big Operators”. In: TPHOLs. Ed. by Otmane Aït Mohamed, César
Muñoz, and Sofiène Tahar. Vol. 5170. Lecture Notes in Computer Sci-
ence. Springer, 2008, pp. 86–101. isbn: 978-3-540-71065-3. doi: 10.1007/
978-3-540-71067-7_11.

[12] M. Berz and K. Makino. “Rigorous global search using Taylor models”.
In: SNC ’09: Proceedings of the 2009 conference on Symbolic numeric
computation. Kyoto, Japan: ACM, 2009, pp. 11–20. isbn: 978-1-60558-
664-9. doi: 10.1145/1577190.1577198.

[13] M. Berz, K. Makino, and Y-K. Kim. “Long-term stability of the Tevatron
by verified global optimization”. In: Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 558.1 (2006). Proceedings of the 8th International
Computational Accelerator Physics Conference - ICAP 2004, pp. 1 –10.
issn: 0168-9002. doi: 10.1016/j.nima.2005.11.035.

[14] Sandrine Blazy and Xavier Leroy. “Mechanized semantics for the Clight
subset of the C language”. In: J. Autom. Reasoning 43.3 (2009), pp. 263–
288. url: http://gallium.inria.fr/~xleroy/publi/Clight.pdf.

[15] Mathieu Boespflug, Maxime Dénès, and Benjamin Grégoire. “Full Re-
duction at Full Throttle”. In: CPP. Ed. by Jean-Pierre Jouannaud and
Zhong Shao. Vol. 7086. Lecture Notes in Computer Science. Springer,
2011, pp. 362–377. isbn: 978-3-642-25378-2. doi: 10.1007/978-3-642-
25379-9_26.

[16] S. Boldo and M. Daumas. “Representable correcting terms for possibly
underflowing floating point operations”. In: Proceedings of the 16th Sym-
posium on Computer Arithmetic. Ed. by J.-C. Bajard and M. Schulte.
Santiago de Compostela, Spain: IEEE Computer Society Press, Los Alami-
tos, CA, 2003, pp. 79–86.

[17] S. Boldo, M. Daumas, C. Moreau-Finot, and L. Théry. Computer Vali-
dated Proofs of a Toolset for Adaptable Arithmetic. Tech. rep. Available
at http://arxiv.org/pdf/cs.MS/0107025. École Normale Supérieure
de Lyon, 2001.

[18] S. Boldo and G. Melquiond. “Emulation of FMA and correctly rounded
sums: proved algorithms using rounding to odd”. In: IEEE Transactions
on Computers 57.4 (Apr. 2008), pp. 462–471.

http://dx.doi.org/10.1007/978-3-642-25405-5_13
http://www.labri.fr/publications/l3a/2004/BC04
http://www.labri.fr/publications/l3a/2004/BC04
http://dx.doi.org/10.1007/978-3-540-71067-7_11
http://dx.doi.org/10.1007/978-3-540-71067-7_11
http://dx.doi.org/10.1145/1577190.1577198
http://dx.doi.org/10.1016/j.nima.2005.11.035
http://gallium.inria.fr/~xleroy/publi/Clight.pdf
http://dx.doi.org/10.1007/978-3-642-25379-9_26
http://dx.doi.org/10.1007/978-3-642-25379-9_26
http://arxiv.org/pdf/cs.MS/0107025


BIBLIOGRAPHY 215

[19] Sylvie Boldo. “Pitfalls of a Full Floating-Point Proof: Example on the
Formal Proof of the Veltkamp/Dekker Algorithms”. In: IJCAR. Ed. by
Ulrich Furbach and Natarajan Shankar. Vol. 4130. Lecture Notes in
Computer Science. Springer, 2006, pp. 52–66. isbn: 3-540-37187-7. doi:
10.1007/11814771_6.

[20] Sylvie Boldo and Marc Daumas. “A Simple Test Qualifying the Accu-
racy of Horner’s Rule for Polynomials”. In: Numerical Algorithms 37.1-4
(2004), pp. 45–60. doi: 10.1023/B:NUMA.0000049487.98618.61.

[21] Sylvie Boldo and Marc Daumas. “Representable Correcting Terms for
Possibly Underflowing Floating Point Operations”. In: IEEE Symposium
on Computer Arithmetic. IEEE Computer Society, 2003, pp. 79–86. isbn:
0-7695-1894-X. doi: 10.1109/ARITH.2003.1207663.

[22] Sylvie Boldo and Guillaume Melquiond. “Flocq: A Unified Library for
Proving Floating-Point Algorithms in Coq”. In: IEEE Symposium on
Computer Arithmetic. Ed. by Elisardo Antelo, David Hough, and Paolo
Ienne. IEEE Computer Society, 2011, pp. 243–252. isbn: 978-0-7695-
4318-5. doi: 10.1109/ARITH.2011.40.

[23] Dan Boneh. “Finding Smooth Integers in Short Intervals Using CRT
Decoding”. In: J. Comput. Syst. Sci. 64.4 (2002), pp. 768–784. doi: 10.
1006/jcss.2002.1827.

[24] Pierre Boutillier. “A relaxation of Coq’s guard condition”. English. In:
Actes des Journées Francophones des langages Applicatifs. Carnac, France,
Feb. 2012, 14 pages. url: http://hal.archives-ouvertes.fr/hal-
00651780/en/.

[25] K. Briggs. The doubledouble library. Available at http://www.boutell.
com/fracster-src/doubledouble/doubledouble.html. 1998.

[26] N. Brisebarre and S. Chevillard. “Efficient polynomial L∞-approximations”.
In: 18th IEEE SYMPOSIUM on Computer Arithmetic. Ed. by P. Ko-
rnerup and J.-M. Muller. Los Alamitos, CA: IEEE Computer Society,
2007, pp. 169–176.

[27] N. Brisebarre, J.-M. Muller, and A. Tisserand. “Computing Machine-
efficient Polynomial Approximations”. In: ACM Transactions on Mathe-
matical Software 32.2 (2006), pp. 236–256.

[28] Nicolas Brisebarre, Mioara Joldeş, Érik Martin-Dorel, Micaela Mayero,
Jean-Michel Muller, Ioana Paşca, Laurence Rideau, and Laurent Théry.
“Rigorous Polynomial Approximation Using Taylor Models in Coq”. In:
NASA Formal Methods 2012. Ed. by Alwyn Goodloe and Suzette Person.
Vol. 7226. Lecture Notes in Computer Science. Springer, 2012, pp. 85–
99. isbn: 978-3-642-28890-6. url: http://hal-ens-lyon.archives-
ouvertes.fr/ensl-00653460_v2/en/.

[29] Nicolas Brisebarre, Mioara Maria Joldeş, Peter Kornerup, Érik Martin-
Dorel, and Jean-Michel Muller. “Augmented precision square roots, 2-
D norms, and discussion on correctly rounding


x2 + y2”. In: IEEE

ARITH 2011. Tuebingen, Germany, 2011, pp. 23–30. url: http://hal-
ens-lyon.archives-ouvertes.fr/ensl-00545591/en/.

http://dx.doi.org/10.1007/11814771_6
http://dx.doi.org/10.1023/B:NUMA.0000049487.98618.61
http://dx.doi.org/10.1109/ARITH.2003.1207663
http://dx.doi.org/10.1109/ARITH.2011.40
http://dx.doi.org/10.1006/jcss.2002.1827
http://dx.doi.org/10.1006/jcss.2002.1827
http://hal.archives-ouvertes.fr/hal-00651780/en/
http://hal.archives-ouvertes.fr/hal-00651780/en/
http://www.boutell.com/fracster-src/doubledouble/doubledouble.html
http://www.boutell.com/fracster-src/doubledouble/doubledouble.html
http://hal-ens-lyon.archives-ouvertes.fr/ensl-00653460_v2/en/
http://hal-ens-lyon.archives-ouvertes.fr/ensl-00653460_v2/en/
http://hal-ens-lyon.archives-ouvertes.fr/ensl-00545591/en/
http://hal-ens-lyon.archives-ouvertes.fr/ensl-00545591/en/


216 BIBLIOGRAPHY

[30] Francisco Cháves. “Utilisation et certification de l’arithmétique d’inter-
valles dans un assistant de preuves”. French. PhD thesis. Lyon, France:
École Normale Supérieure de Lyon, Sept. 2007. url: http : / / tel .
archives-ouvertes.fr/tel-00177109/en/.

[31] S. Chevillard. “Évaluation efficace de fonctions numériques. Outils et
exemples”. PhD thesis. Lyon, France: École Normale Supérieure de Lyon,
2009. url: http://tel.archives-ouvertes.fr/tel-00460776/fr/.

[32] S. Chevillard, M. Joldeş, and C. Lauter. “Sollya: An Environment for the
Development of Numerical Codes”. In: Mathematical Software - ICMS
2010. Ed. by K. Fukuda, J. van der Hoeven, M. Joswig, and N. Takayama.
Vol. 6327. Lecture Notes in Computer Science. Heidelberg, Germany:
Springer, Sept. 2010, pp. 28–31.

[33] Sylvain Chevillard, John Harrison, Mioara Joldeş, and Christoph Lauter.
“Efficient and accurate computation of upper bounds of approximation
errors”. In: Theoretical Computer Science 16.412 (2011), pp. 1523–1543.

[34] Jacek Chrząszcz. “Implementing Modules in the Coq System”. In: TPHOLs.
Ed. by David A. Basin and Burkhart Wolff. Vol. 2758. Lecture Notes in
Computer Science. Springer, 2003, pp. 270–286. isbn: 3-540-40664-6. doi:
10.1007/10930755_18.

[35] Jacek Chrząszcz. “Modules in Coq Are and Will Be Correct”. In: TYPES.
Ed. by Stefano Berardi, Mario Coppo, and Ferruccio Damiani. Vol. 3085.
Lecture Notes in Computer Science. Springer, 2003, pp. 130–146. isbn:
3-540-22164-6. doi: 10.1007/978-3-540-24849-1_9.

[36] Cyril Cohen. “Types quotients en Coq”. In: Actes des 21èmes journées
francophones des langages applicatifs (JFLA 2010). Ed. by Hermann.
Vieux-Port La Ciotat, France: INRIA, Jan. 2010. url: http://jfla.
inria.fr/2010/actes/PDF/cyrilcohen.pdf.

[37] Pieter Collins, Milad Niqui, and Nathalie Revol. “A Taylor Function
Calculus for Hybrid System Analysis: Validation in Coq”. In: NSV-3:
Third International Workshop on Numerical Software Verification. 2010.

[38] J. T. Coonen. “Underflow and the Denormalized Numbers”. In: Com-
puter 14 (1981), pp. 75–87. issn: 0018-9162. doi: 10.1109/C-M.1981.
220382.

[39] Don Coppersmith. “Finding a Small Root of a Bivariate Integer Equa-
tion; Factoring with High Bits Known”. In: EUROCRYPT. Ed. by Ueli
M. Maurer. Vol. 1070. Lecture Notes in Computer Science. Springer,
1996, pp. 178–189. isbn: 3-540-61186-X. doi: 10.1007/3-540-68339-
9_16.

[40] Don Coppersmith. “Finding a Small Root of a Univariate Modular Equa-
tion”. In: EUROCRYPT. Ed. by Ueli M. Maurer. Vol. 1070. Lecture
Notes in Computer Science. Springer, 1996, pp. 155–165. isbn: 3-540-
61186-X. doi: 10.1007/3-540-68339-9_14.

[41] Don Coppersmith. “Small Solutions to Polynomial Equations, and Low
Exponent RSA Vulnerabilities”. In: J. Cryptology 10.4 (1997), pp. 233–
260. doi: 10.1007/s001459900030.

http://tel.archives-ouvertes.fr/tel-00177109/en/
http://tel.archives-ouvertes.fr/tel-00177109/en/
http://tel.archives-ouvertes.fr/tel-00460776/fr/
http://dx.doi.org/10.1007/10930755_18
http://dx.doi.org/10.1007/978-3-540-24849-1_9
http://jfla.inria.fr/2010/actes/PDF/cyrilcohen.pdf
http://jfla.inria.fr/2010/actes/PDF/cyrilcohen.pdf
http://dx.doi.org/10.1109/C-M.1981.220382
http://dx.doi.org/10.1109/C-M.1981.220382
http://dx.doi.org/10.1007/3-540-68339-9_16
http://dx.doi.org/10.1007/3-540-68339-9_16
http://dx.doi.org/10.1007/3-540-68339-9_14
http://dx.doi.org/10.1007/s001459900030


BIBLIOGRAPHY 217

[42] M. Cornea, J. Harrison, C. Anderson, P. T. P. Tang, E. Schneider, and
E. Gvozdev. “A Software Implementation of the IEEE 754R Decimal
Floating-Point Arithmetic Using the Binary Encoding Format”. In: IEEE
Transactions on Computers 58.2 (2009), pp. 148–162.

[43] Pascal Cuoq, Benjamin Monate, Anne Pacalet, and Virgile Prevosto.
“Functional dependencies of C functions via weakest pre-conditions”. In:
STTT 13.5 (2011), pp. 405–417. doi: 10.1007/s10009-011-0192-z.

[44] M. Daumas, G. Melquiond, and C. Muñoz. “Guaranteed proofs using
interval arithmetic”. In: Proceedings of the 17th IEEE Symposium on
Computer Arithmetic. Ed. by P. Montuschi and E. Schwarz. Cape Cod,
MA, 2005, pp. 188–195.

[45] Marc Daumas, Laurence Rideau, and Laurent Théry. “A Generic Library
for Floating-Point Numbers and Its Application to Exact Computing”.
In: TPHOLs. Ed. by Richard J. Boulton and Paul B. Jackson. Vol. 2152.
Lecture Notes in Computer Science. Springer, 2001, pp. 169–184. isbn:
3-540-42525-X. doi: 10.1007/3-540-44755-5_13.

[46] Florent De Dinechin, Christoph Lauter, Jean-Michel Muller, and Serge
Torres. “On Ziv’s rounding test”. English. Pre-print. 2012. url: http:
//hal-ens-lyon.archives-ouvertes.fr/ensl-00693317/en/.

[47] T. J. Dekker. “A floating-point technique for extending the available
precision”. In: Numerische Mathematik 18.3 (1971), pp. 224–242.

[48] David Delahaye. “A Tactic Language for the System Coq”. In: LPAR.
Ed. by Michel Parigot and Andrei Voronkov. Vol. 1955. Lecture Notes
in Computer Science. Springer, 2000, pp. 85–95. doi: 10.1007/3-540-
44404-1_7.

[49] David Delahaye and Micaela Mayero. “Dealing with algebraic expressions
over a field in Coq using Maple”. In: J. Symb. Comput. 39.5 (2005),
pp. 569–592. doi: 10.1016/j.jsc.2004.12.004.

[50] David Delahaye and Micaela Mayero. “Field, une procédure de décision
pour les nombres réels en Coq”. In: JFLA. Ed. by Pierre Castéran. Col-
lection Didactique. INRIA, 2001, pp. 33–48. isbn: 2-7261-1154-8.

[51] David Delahaye and Micaela Mayero. “Quantifier Elimination over Alge-
braically Closed Fields in a Proof Assistant using a Computer Algebra
System”. In: Electr. Notes Theor. Comput. Sci. 151.1 (2006), pp. 57–73.
doi: 10.1016/j.entcs.2005.11.023.

[52] Florent de Dinechin, Christoph Lauter, and Guillaume Melquiond. “As-
sisted verification of elementary functions using Gappa”. In: Proceedings
of the 2006 ACM Symposium on Applied Computing. Dijon, France, 2006,
pp. 1318–1322. url: http://www.lri.fr/~melquion/doc/06-mcms-
article.pdf.

[53] N. I. Feldman and Yu. V. Nesterenko. Transcendental numbers. Vol. 44.
Encyclopedia of mathematical sciences. Berlin: Springer-Verlag, 1998.
isbn: 3-540-61467-2.

[54] S. A. Figueroa. “A Rigorous Framework for Fully Supporting the IEEE
Standard for Floating-Point Arithmetic in High-Level Programming Lan-
guages”. PhD thesis. Department of Computer Science, New York Uni-
versity, 2000.

http://dx.doi.org/10.1007/s10009-011-0192-z
http://dx.doi.org/10.1007/3-540-44755-5_13
http://hal-ens-lyon.archives-ouvertes.fr/ensl-00693317/en/
http://hal-ens-lyon.archives-ouvertes.fr/ensl-00693317/en/
http://dx.doi.org/10.1007/3-540-44404-1_7
http://dx.doi.org/10.1007/3-540-44404-1_7
http://dx.doi.org/10.1016/j.jsc.2004.12.004
http://dx.doi.org/10.1016/j.entcs.2005.11.023
http://www.lri.fr/~melquion/doc/06-mcms-article.pdf
http://www.lri.fr/~melquion/doc/06-mcms-article.pdf


218 BIBLIOGRAPHY

[55] S. A. Figueroa. “When is Double Rounding Innocuous?” In: ACM SIGNUM
Newsletter 30.3 (July 1995).

[56] Jean-Christophe Filliâtre and Claude Marché. “The Why/Krakatoa/Ca-
duceus Platform for Deductive Program Verification”. In: CAV. Ed. by
Werner Damm and Holger Hermanns. Vol. 4590. Lecture Notes in Com-
puter Science. Springer, 2007, pp. 173–177. isbn: 978-3-540-73367-6. doi:
10.1007/978-3-540-73368-3_21.

[57] P. Friedland. “Algorithm 312: Absolute Value and Square Root of a
Complex Number”. In: Communications of the ACM 10.10 (Oct. 1967),
p. 665.

[58] Ulrich Furbach and Natarajan Shankar, eds. Automated Reasoning, Third
International Joint Conference, IJCAR 2006, Seattle, WA, USA, August
17-20, 2006, Proceedings. Vol. 4130. Lecture Notes in Computer Science.
Springer, 2006. isbn: 3-540-37187-7.

[59] François Garillot, Georges Gonthier, Assia Mahboubi, and Laurence Rideau.
“Packaging Mathematical Structures”. In: Theorem Proving in Higher
Order Logics. Ed. by Tobias Nipkow and Christian Urban. Vol. 5674.
Lecture Notes in Computer Science. Munich, Allemagne: Springer, 2009.
url: http://hal.inria.fr/inria-00368403/en/.

[60] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra.
2nd ed. Cambridge University Press, 2003, xiv+785 pages.

[61] Herman Geuvers. “Inconsistency of classical logic in type theory”. Short
Note. Nov. 2007. url: http://www.cs.ru.nl/~herman/PUBS/newnote.
ps.gz.

[62] D. Goldberg. “What every computer scientist should know about floating-
point arithmetic”. In: ACM Computing Surveys 23.1 (Mar. 1991). An
edited reprint is available at http://www.physics.ohio-state.edu/
~dws/grouplinks/floating_point_math.pdf from Sun’s Numerical
Computation Guide; it contains an addendum Differences Among IEEE
754 Implementations, also available at http://www.validlab.com/
goldberg/addendum.html., pp. 5–47.

[63] Georges Gonthier. “Formal Proof—The Four-Color Theorem”. In: No-
tices of the American Mathematical Society 55.11 (2008), pp. 1382–1393.
url: http://www.ams.org/notices/200811/tx081101382p.pdf.

[64] Georges Gonthier and Assia Mahboubi. A Small Scale Reflection Exten-
sion for the Coq system. Research Report RR-6455. INRIA, 2008. url:
http://hal.inria.fr/inria-00258384/en/.

[65] Georges Gonthier and Assia Mahboubi. “An introduction to small scale
reflection in Coq”. In: Journal of Formalized Reasoning 3.2 (2010), pp. 95–
152. url: http://hal.inria.fr/inria-00515548/en/.

[66] S. Graillat, P. Langlois, and N. Louvet. “Algorithms for accurate, val-
idated and fast computations with polynomials”. In: Japan Journal of
Industrial and Applied Mathematics 26.2 (2009), pp. 215–231.

[67] Benjamin Grégoire and Xavier Leroy. “A compiled implementation of
strong reduction”. In: ICFP. Ed. by Mitchell Wand and Simon L. Peyton
Jones. ACM, 2002, pp. 235–246. isbn: 1-58113-487-8. doi: 10.1145/
581478.581501.

http://dx.doi.org/10.1007/978-3-540-73368-3_21
http://hal.inria.fr/inria-00368403/en/
http://www.cs.ru.nl/~herman/PUBS/newnote.ps.gz
http://www.cs.ru.nl/~herman/PUBS/newnote.ps.gz
http://www.physics.ohio-state.edu/~dws/grouplinks/floating_point_math.pdf
http://www.physics.ohio-state.edu/~dws/grouplinks/floating_point_math.pdf
http://www.validlab.com/goldberg/addendum.html
http://www.validlab.com/goldberg/addendum.html
http://www.ams.org/notices/200811/tx081101382p.pdf
http://hal.inria.fr/inria-00258384/en/
http://hal.inria.fr/inria-00515548/en/
http://dx.doi.org/10.1145/581478.581501
http://dx.doi.org/10.1145/581478.581501


BIBLIOGRAPHY 219

[68] Benjamin Grégoire and Laurent Théry. “A Purely Functional Library
for Modular Arithmetic and Its Application to Certifying Large Prime
Numbers”. In: IJCAR. Ed. by Ulrich Furbach and Natarajan Shankar.
Vol. 4130. Lecture Notes in Computer Science. Springer, 2006, pp. 423–
437. isbn: 3-540-37187-7. doi: 10.1007/11814771_36.

[69] Benjamin Grégoire, Laurent Théry, and Benjamin Werner. “A Computa-
tional Approach to Pocklington Certificates in Type Theory”. In: Func-
tional and Logic Programming. Ed. by Masami Hagiya and Philip Wadler.
Vol. 3945. Lecture Notes in Computer Science. Springer, 2006, pp. 97–
113. doi: 10.1007/11737414_8.

[70] A. Griewank. Evaluating Derivatives - Principles and Techniques of Al-
gorithmic Differentiation. SIAM, 2000.

[71] J. Harrison. “A Machine-Checked Theory of Floating-Point Arithmetic”.
In: Theorem Proving in Higher Order Logics: 12th International Con-
ference, TPHOLs’99. Ed. by Y. Bertot, G. Dowek, A. Hirschowitz, C.
Paulin, and L. Théry. Vol. 1690. Lecture Notes in Computer Science.
Nice, France: Springer-Verlag, Berlin, Sept. 1999, pp. 113–130.

[72] J. Harrison. “Formal verification of floating-point trigonometric func-
tions”. In: Proceedings of the 3rd International Conference on Formal
Methods in Computer-Aided Design, FMCAD 2000. Ed. by W. A. Hunt
and S. D. Johnson. Lecture Notes in Computer Science 1954. Springer-
Verlag, Berlin, 2000, pp. 217–233.

[73] John Harrison. “HOL Light: A Tutorial Introduction”. In: FMCAD. Ed.
by Mandayam K. Srivas and Albert John Camilleri. Vol. 1166. Lecture
Notes in Computer Science. Springer, 1996, pp. 265–269. isbn: 3-540-
61937-2. doi: 10.1007/BFb0031814.

[74] John Harrison and Laurent Théry. “A Skeptic’s Approach to Combining
HOL and Maple”. In: J. Autom. Reasoning 21.3 (1998), pp. 279–294.
doi: 10.1023/A:1006023127567.

[75] John Harrison and Laurent Théry. “Extending the HOL Theorem Prover
with a Computer Algebra System to Reason about the Reals”. In: HUG.
Ed. by Jeffrey J. Joyce and Carl-Johan H. Seger. Vol. 780. Lecture Notes
in Computer Science. Springer, 1993, pp. 174–184. isbn: 3-540-57826-9.
doi: 10.1007/3-540-57826-9_134.

[76] John Harrison and Laurent Théry. “Reasoning About the Reals: The
Marriage of HOL and Maple”. In: LPAR. Ed. by Andrei Voronkov.
Vol. 698. Lecture Notes in Computer Science. Springer, 1993, pp. 351–
353. isbn: 3-540-56944-8. doi: 10.1007/3-540-56944-8_68.

[77] Kurt Hensel. “Neue Grundlagen der Arithmetik”. In: Journal für die
reine und angewandte Mathematik (Crelle’s Journal) 1904.127 (1904).
10.1515/crll.1904.127.51, pp. 51–84.

[78] Y. Hida, X. S. Li, and D. H. Bailey. “Algorithms for Quad-Double Preci-
sion Floating-Point Arithmetic”. In: Proceedings of the 15th IEEE Sym-
posium on Computer Arithmetic (ARITH-16). Ed. by N. Burgess and
L. Ciminiera. Vail, CO, June 2001, pp. 155–162. doi: 10.1109/ARITH.
2001.930115.

http://dx.doi.org/10.1007/11814771_36
http://dx.doi.org/10.1007/11737414_8
http://dx.doi.org/10.1007/BFb0031814
http://dx.doi.org/10.1023/A:1006023127567
http://dx.doi.org/10.1007/3-540-57826-9_134
http://dx.doi.org/10.1007/3-540-56944-8_68
http://dx.doi.org/10.1109/ARITH.2001.930115
http://dx.doi.org/10.1109/ARITH.2001.930115


220 BIBLIOGRAPHY

[79] N. J. Higham. Accuracy and Stability of Numerical Algorithms. 2nd ed.
SIAM, Philadelphia, PA, 2002. isbn: 0-89871-521-0.

[80] C. A. R. Hoare. “An Axiomatic Basis for Computer Programming”. In:
Commun. ACM 12.10 (1969), pp. 576–580. doi: 10 . 1145 / 363235 .
363259.

[81] Gérard Huet, Gilles Kahn, and Christine Paulin-Mohring. The Coq proof
assistant: a tutorial: version 8.3. 2011. url: http://coq.inria.fr/
distrib/V8.3pl4/files/Tutorial.pdf.

[82] T. E. Hull, T. F. Fairgrieve, and P. T. P. Tang. “Implementing Complex
Elementary Functions Using Exception Handling”. In: ACM Transac-
tions on Mathematical Software 20.2 (June 1994), pp. 215–244.

[83] Antonius J. C. Hurkens. “A Simplification of Girard’s Paradox”. In:
TLCA. Ed. by Mariangiola Dezani-Ciancaglini and Gordon D. Plotkin.
Vol. 902. Lecture Notes in Computer Science. Springer, 1995, pp. 266–
278. isbn: 3-540-59048-X. doi: 10.1007/BFb0014058.

[84] IEEE. “IEEE Standard for Binary Floating-Point Arithmetic”. In: AN-
SI/IEEE Std 754–1985 (1985). doi: 10.1109/IEEESTD.1985.82928.

[85] IEEE. “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std
754–2008 (Aug. 2008). doi: 10.1109/IEEESTD.2008.4610935.

[86] International Organization for Standardization. Programming Languages
– C. Geneva, Switzerland: ISO/IEC Standard 9899:1999, Dec. 1999.

[87] C.-P. Jeannerod, N. Louvet, J.-M. Muller, and A. Panhaleux. “Mid-
points and Exact Points of Some Algebraic Functions in Floating-Point
Arithmetic”. In: IEEE Transactions on Computers 60.2 (Feb. 2011). doi:
10.1109/TC.2010.144.

[88] Mioara Joldeş. “Rigourous Polynomial Approximations and Applications”.
PhD thesis. Lyon, France: École Normale Supérieure de Lyon, 2011. url:
http://tel.archives-ouvertes.fr/tel-00657843/en/.

[89] Jean-Pierre Jouannaud and Zhong Shao, eds. Certified Programs and
Proofs - First International Conference, CPP 2011, Kenting, Taiwan,
December 7-9, 2011. Proceedings. Vol. 7086. Lecture Notes in Computer
Science. Springer, 2011. isbn: 978-3-642-25378-2.

[90] W. Kahan. “A logarithm too clever by half”. Available at http://http.
cs.berkeley.edu/~wkahan/LOG10HAF.TXT. 2004.

[91] W. Kahan. “Pracniques: further remarks on reducing truncation errors”.
In: Commun. ACM 8.1 (1965), p. 40. issn: 0001-0782. doi: 10.1145/
363707.363723.

[92] W. Kahan. The Table-Makers’ Dilemma and other Quandaries. In Math-
ematical Software II, Informal Proceedings of a Conference, Purdue Uni-
versity, May 29–31, 1974. url: http://books.google.fr/books?id=
ff8hAQAAIAAJ.

[93] W. Kahan. Why do we Need a Floating-Point Standard? Tech. rep. Avail-
able at http://www.cs.berkeley.edu/~wkahan/ieee754status/why-
ieee.pdf. Computer Science, UC Berkeley, 1981.

http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1145/363235.363259
http://coq.inria.fr/distrib/V8.3pl4/files/Tutorial.pdf
http://coq.inria.fr/distrib/V8.3pl4/files/Tutorial.pdf
http://dx.doi.org/10.1007/BFb0014058
http://dx.doi.org/10.1109/IEEESTD.1985.82928
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://dx.doi.org/10.1109/TC.2010.144
http://tel.archives-ouvertes.fr/tel-00657843/en/
http://http. cs.berkeley.edu/~wkahan/LOG10HAF.TXT
http://http. cs.berkeley.edu/~wkahan/LOG10HAF.TXT
http://dx.doi.org/10.1145/363707.363723
http://dx.doi.org/10.1145/363707.363723
http://books.google.fr/books?id=ff8hAQAAIAAJ
http://books.google.fr/books?id=ff8hAQAAIAAJ
http://www.cs.berkeley.edu/~wkahan/ieee754status/why-ieee.pdf
http://www.cs.berkeley.edu/~wkahan/ieee754status/why-ieee.pdf


BIBLIOGRAPHY 221

[94] William Kahan. “A Test for Correctly Rounded SQRT”. Lecture note.
May 1996. url: http://www.cs.berkeley.edu/~wkahan/SQRTest.ps.

[95] A. Karatsuba and Y. Ofman. “Multiplication of Many-Digital Numbers
by Automatic Computers”. In: Doklady Akad. Nauk SSSR 145 (1962).
Translation in Physics-Doklady 7, 595–596, 1963, pp. 293–294.

[96] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-
Aided Reasoning: An Approach. Kluwer Academic Publishers, 2000.

[97] D. Knuth. The Art of Computer Programming. 3rd. Vol. 2. Addison-
Wesley, Reading, MA, 1998.

[98] Robbert Krebbers and Bas Spitters. “Computer Certified Efficient Exact
Reals in Coq”. In: Calculemus/MKM. Bertinoro, Italy, 2011, pp. 90–106.

[99] T. Lang and J.-M. Muller. “Bound on Run of Zeros and Ones for Alge-
braic Functions”. In: Proceedings of the 15th IEEE Symposium on Com-
puter Arithmetic (ARITH-16). Ed. by N. Burgess and L. Ciminiera. June
2001, pp. 13–20.

[100] V. Lefèvre. The Euclidean Division Implemented with a Floating-Point
Division and a Floor. Research report RR-5604. INRIA, June 2005. url:
http://www.vinc17.org/research/papers/rr_intdiv.

[101] Vincent Lefèvre. “New Results on the Distance between a Segment and
Z2. Application to the Exact Rounding”. In: IEEE Symposium on Com-
puter Arithmetic. IEEE Computer Society, 2005, pp. 68–75. isbn: 0-7695-
2366-8. doi: 10.1109/ARITH.2005.32.

[102] Vincent Lefèvre and Jean-Michel Muller. “Worst Cases for Correct Round-
ing of the Elementary Functions in Double Precision”. In: Proceedings of
the 15th IEEE Symposium on Computer Arithmetic. Ed. by Neil Burgess
and Luigi Ciminiera. Vail, CO, June 2001, pp. 111–118. doi: 10.1109/
ARITH.2001.930115.

[103] Catherine Lelay and Guillaume Melquiond. “Différentiabilité et inté-
grabilité en Coq. Application à la formule de d’Alembert”. In: Vingt-
troisièmes Journées Francophones des Langages Applicatifs. Carnac, France,
Feb. 2012.

[104] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. “Factoring polynomi-
als with rational coefficients”. In: Mathematische Annalen 261 (1982),
pp. 515–534.

[105] Xavier Leroy. “A Formally Verified Compiler Back-end”. In: J. Autom.
Reasoning 43.4 (2009), pp. 363–446. doi: 10.1007/s10817-009-9155-4.

[106] Xavier Leroy and Sandrine Blazy. “Formal verification of a C-like mem-
ory model and its uses for verifying program transformations”. In: J.
Autom. Reasoning 41.1 (2008), pp. 1–31. url: http://gallium.inria.
fr/~xleroy/publi/memory-model-journal.pdf.

[107] Pierre Letouzey. “A New Extraction for Coq”. In: Proceedings of the
2nd International Workshop on Types for Proofs and Programs (TYPES
2002). Ed. by Herman Geuvers and Freek Wiedijk. Vol. 2646. LNCS.
Berg en Dal, Netherlands: Springer, 2003.

http://www.cs.berkeley.edu/~wkahan/SQRTest.ps
http://www.vinc17.org/research/papers/rr_intdiv
http://dx.doi.org/10.1109/ARITH.2005.32
http://dx.doi.org/10.1109/ARITH.2001.930115
http://dx.doi.org/10.1109/ARITH.2001.930115
http://dx.doi.org/10.1007/s10817-009-9155-4
http://gallium.inria.fr/~xleroy/publi/memory-model-journal.pdf
http://gallium.inria.fr/~xleroy/publi/memory-model-journal.pdf


222 BIBLIOGRAPHY

[108] P. Di Lizia. “Robust Space Trajectory and Space System Design using
Differential Algebra”. PhD thesis. Milano, Italy: Politecnico di Milano,
2008.

[109] Patrick Loiseleur. “Formalisation en Coq de la norme IEEE-754 sur
l’arithmétique à virgule flottante”. French. Rapport de stage de DEA.
École Normale Supérieure de Lyon, 1997. url: http://web.archive.
org/web/20010605165747/http://www.lri.fr/~loisel/rapport-
stage-dea.ps.gz.

[110] K. Makino. “Rigorous Analysis of Nonlinear Motion in Particle Acceler-
ators”. PhD thesis. East Lansing, Michigan, USA: Michigan State Uni-
versity, 1998.

[111] K. Makino and M. Berz. “Taylor Models and Other Validated Functional
Inclusion Methods”. In: International Journal of Pure and Applied Math-
ematics 4.4 (2003). http://bt.pa.msu.edu/pub/papers/TMIJPAM03/
TMIJPAM03.pdf, pp. 379–456.

[112] P. Markstein. IA-64 and Elementary Functions: Speed and Precision.
Hewlett-Packard Professional Books. Prentice-Hall, Englewood Cliffs,
NJ, 2000.

[113] P. W. Markstein. “Computation of Elementary Functions on the IBM
RISC System/6000 Processor”. In: IBM Journal of Research and Devel-
opment 34.1 (Jan. 1990), pp. 111–119.

[114] Ueli M. Maurer, ed. Advances in Cryptology - EUROCRYPT ’96, In-
ternational Conference on the Theory and Application of Cryptographic
Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding. Vol. 1070.
Lecture Notes in Computer Science. Springer, 1996. isbn: 3-540-61186-X.

[115] Micaela Mayero. “Formalisation et automatisation de preuves en anal-
yses réelle et numérique”. PhD thesis. Université Paris VI, Dec. 2001.
url: http://www-lipn.univ-paris13.fr/~mayero/publis/these-
mayero.ps.gz.

[116] R. M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. “Certifying
Algorithms”. To appear in Computer Science Review. June 2010. url:
http://www.mpi-inf.mpg.de/~mehlhorn/ftp/CertifyingAlgorithms.
pdf.

[117] G. Melquiond. “Floating-point arithmetic in the Coq system”. In: Proc.
of the 8th Conference on Real Numbers and Computers. 2008, pp. 93–
102.

[118] Guillaume Melquiond. “Proving Bounds on Real-Valued Functions with
Computations”. In: Proceedings of the 4th International Joint Conference
on Automated Reasoning. Sydney, Australia, Aug. 2008, pp. 2–17.

[119] Marc Mezzarobba. “Autour de l’évaluation numérique des fonctions D-
finies”. Thèse de doctorat. École polytechnique, Nov. 2011.

[120] P. Midy and Y. Yakovlev. “Computing some elementary functions of
a complex variable”. In: Mathematics and Computers in Simulation 33
(1991), pp. 33–49.

http://web.archive.org/web/20010605165747/http://www.lri.fr/~loisel/rapport-stage-dea.ps.gz
http://web.archive.org/web/20010605165747/http://www.lri.fr/~loisel/rapport-stage-dea.ps.gz
http://web.archive.org/web/20010605165747/http://www.lri.fr/~loisel/rapport-stage-dea.ps.gz
http://bt.pa.msu.edu/pub/papers/TMIJPAM03/TMIJPAM03.pdf
http://bt.pa.msu.edu/pub/papers/TMIJPAM03/TMIJPAM03.pdf
http://www-lipn.univ-paris13.fr/~mayero/publis/these-mayero.ps.gz
http://www-lipn.univ-paris13.fr/~mayero/publis/these-mayero.ps.gz
http://www.mpi-inf.mpg.de/~mehlhorn/ftp/CertifyingAlgorithms.pdf
http://www.mpi-inf.mpg.de/~mehlhorn/ftp/CertifyingAlgorithms.pdf


BIBLIOGRAPHY 223

[121] Robin Milner. Logic for Computable Functions: description of a machine
implementation. Tech. rep. Stanford University, May 1972. url: ftp:
//reports.stanford.edu/pub/cstr/reports/cs/tr/72/288/CS-TR-
72-288.pdf.

[122] Otmane Aït Mohamed, César Muñoz, and Sofiène Tahar, eds. Theorem
Proving in Higher Order Logics, 21st International Conference, TPHOLs
2008, Montreal, Canada, August 18-21, 2008. Proceedings. Vol. 5170.
Lecture Notes in Computer Science. Springer, 2008. isbn: 978-3-540-
71065-3.

[123] O. Møller. “Quasi Double-Precision in Floating-Point Addition”. In: BIT
5 (1965), pp. 37–50.

[124] D. Monniaux. “The Pitfalls of Verifying Floating-Point Computations”.
In: ACM TOPLAS 30.3 (2008). A preliminary version is available at
http://hal.archives-ouvertes.fr/hal-00128124, pp. 1–41.

[125] R. E. Moore. Methods and Applications of Interval Analysis. Society for
Industrial and Applied Mathematics, 1979, xi+190 pages.

[126] J.-M. Muller. Projet ANR TaMaDi – Dilemme du Fabricant de Tables –
Table Maker’s Dilemma (ref. ANR 2010 BLAN 0203 01). url: http:
//tamadiwiki.ens-lyon.fr/tamadiwiki/.

[127] Jean-Michel Muller. Elementary Functions, Algorithms and Implemen-
tation. 2nd ed. Birkhäuser Boston, MA, 2006. isbn: 0-8176-4372-9.

[128] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-
Pierre Jeannerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol,
Damien Stehlé, and Serge Torres. Handbook of Floating-Point Arithmetic.
Birkhäuser Boston, 2010, 572 pages. isbn: 978-0-8176-4704-9.

[129] César Muñoz, Víctor Carreño, Gilles Dowek, and Ricky Butler. “Formal
verification of conflict detection algorithms”. In: International Journal
on Software Tools for Technology Transfer 4.3 (2003), pp. 371–380. doi:
10.1007/s10009-002-0084-3.

[130] César Muñoz and David Lester. “Real number calculations and theo-
rem proving”. In: 18th International Conference on Theorem Proving in
Higher Order Logics. Oxford, England, 2005, pp. 239–254. doi: 10.1007/
11541868_13.

[131] Adam Naumowicz and Artur Kornilowicz. “A Brief Overview of Mizar”.
In: TPHOLs. Ed. by Stefan Berghofer, Tobias Nipkow, Christian Urban,
and Makarius Wenzel. Vol. 5674. Lecture Notes in Computer Science.
Springer, 2009, pp. 67–72. isbn: 978-3-642-03358-2. doi: 10.1007/978-
3-642-03359-9_5.

[132] M. Neher, K. R. Jackson, and N. S. Nedialkov. “On Taylor Model Based
Integration of ODEs”. In: SIAM J. Numer. Anal. 45 (2007), pp. 236–262.

[133] A. Neumaier. “Rundungsfehleranalyse einiger Verfahren zur Summation
endlicher Summen”. In: ZAMM 54 (1974). In German, pp. 39–51.

[134] A. Neumaier. “Taylor Forms – Use and Limits”. In: Reliable Computing
9.1 (2003), pp. 43–79.

[135] Milad Niqui. “Formalising Exact Arithmetic: Representations, Algorithms
and Proofs”. PhD thesis. Radboud Universiteit Nijmegen, 2004.

ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/72/288/CS-TR-72-288.pdf
ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/72/288/CS-TR-72-288.pdf
ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/72/288/CS-TR-72-288.pdf
http://hal.archives-ouvertes.fr/hal-00128124
http://tamadiwiki.ens-lyon.fr/tamadiwiki/
http://tamadiwiki.ens-lyon.fr/tamadiwiki/
http://dx.doi.org/10.1007/s10009-002-0084-3
http://dx.doi.org/10.1007/11541868_13
http://dx.doi.org/10.1007/11541868_13
http://dx.doi.org/10.1007/978-3-642-03359-9_5
http://dx.doi.org/10.1007/978-3-642-03359-9_5


224 BIBLIOGRAPHY

[136] Ulf Norell. “Dependently Typed Programming in Agda”. In: Advanced
Functional Programming. Ed. by Pieter W. M. Koopman, Rinus Plas-
meijer, and S. Doaitse Swierstra. Vol. 5832. Lecture Notes in Computer
Science. Springer, 2008, pp. 230–266. isbn: 978-3-642-04651-3. doi: 10.
1007/978-3-642-04652-0_5.

[137] Russell O’Connor. “Certified exact transcendental real number computa-
tion in Coq”. In: Theorem Proving in Higher Order Logics. 2008, pp. 246–
261.

[138] T. Ogita, S. M. Rump, and S. Oishi. “Accurate Sum and Dot Product”.
In: SIAM Journal on Scientific Computing 26.6 (2005), pp. 1955–1988.
issn: 1064-8275. doi: 10.1137/030601818.

[139] Sam Owre, John M. Rushby, and Natarajan Shankar. “PVS: a prototype
verification system”. In: 11th International Conference on Automated De-
duction. Ed. by Deepak Kapur. Saratoga, New-York: Springer-Verlag,
1992, pp. 748–752. url: http://pvs.csl.sri.com/papers/cade92-
pvs/cade92-pvs.ps.

[140] Michael Parks. “Number-Theoretic Test Generation for Directed Round-
ing”. In: 14th IEEE Symposium on Computer Arithmetic. Adelaide, Aus-
tralia, 1999, pp. 241–248.

[141] M. Pichat. “Correction d’une somme en arithmétique à virgule flottante”.
In: Numerische Mathematik 19 (1972). In French, pp. 400–406.

[142] Henri Poincaré. La science et l’hypothèse. Paris: Flammarion, 1902.
[143] Robert Pollack. “How to Believe a Machine-Checked Proof”. In: Twenty

Five Years of Constructive Type Theory. Ed. by G. Sambin and J. Smith.
Oxford Univ. Press, 1998. url: http://homepages.inf.ed.ac.uk/
rpollack/export/believing.ps.gz.

[144] D. M. Priest. “Algorithms for arbitrary precision floating point arith-
metic”. In: Proceedings of the 10th IEEE Symposium on Computer Arith-
metic (Arith-10). Ed. by P. Kornerup and D. W. Matula. Grenoble,
France: IEEE Computer Society Press, Los Alamitos, CA, June 1991,
pp. 132–144.

[145] D. M. Priest. “On Properties of Floating-Point Arithmetics: Numerical
Stability and the Cost of Accurate Computations”. PhD thesis. Univer-
sity of California at Berkeley, 1992.

[146] E. Remez. “Sur un procédé convergent d’approximations successives pour
déterminer les polynômes d’approximation (in French)”. In: C.R. Académie
des Sciences, Paris 198 (1934), pp. 2063–2065.

[147] S. M. Rump, T. Ogita, and S. Oishi. “Accurate Floating-Point Summa-
tion Part I: Faithful Rounding”. In: SIAM Journal on Scientific Com-
puting 31.1 (2008), pp. 189–224. doi: 10.1137/050645671. url: http:
//link.aip.org/link/?SCE/31/189/1.

[148] S. M. Rump, T. Ogita, and S. Oishi. “Accurate Floating-point Summa-
tion Part II: Sign, K-fold Faithful and Rounding to Nearest”. In: SIAM
Journal on Scientific Computing (2005–2008). Submitted for publication.

http://dx.doi.org/10.1007/978-3-642-04652-0_5
http://dx.doi.org/10.1007/978-3-642-04652-0_5
http://dx.doi.org/10.1137/030601818
http://pvs.csl.sri.com/papers/cade92-pvs/cade92-pvs.ps
http://pvs.csl.sri.com/papers/cade92-pvs/cade92-pvs.ps
http://homepages.inf.ed.ac.uk/rpollack/export/believing.ps.gz
http://homepages.inf.ed.ac.uk/rpollack/export/believing.ps.gz
http://dx.doi.org/10.1137/050645671
http://link.aip.org/link/?SCE/31/189/1
http://link.aip.org/link/?SCE/31/189/1


BIBLIOGRAPHY 225

[149] D. M. Russinoff. “A Mechanically Checked Proof of Correctness of the
AMD K5 Floating Point Square Root Microcode”. In: Formal Methods
in System Design 14.1 (1999), pp. 75–125.

[150] Amokrane Saïbi. “Typing Algorithm in Type Theory with Inheritance”.
In: POPL. 1997, pp. 292–301. doi: 10.1145/263699.263742.

[151] B. Salvy and P. Zimmermann. “Gfun: a Maple package for the manipu-
lation of generating and holonomic functions in one variable”. In: ACM
Transactions on Mathematical Software 20.2 (1994), pp. 163–177. doi:
10.1145/178365.178368.

[152] E. M. Schwarz, M. M. Schmookler, and S. D. Trong. “FPU Implementa-
tions with Denormalized Numbers”. In: IEEE Transactions on Comput-
ers 54.7 (2005), pp. 825–836. issn: 0018-9340. doi: 10.1109/TC.2005.
118.

[153] J. R. Shewchuk. “Adaptive Precision Floating-Point Arithmetic and Fast
Robust Geometric Predicates”. In: Discrete & Computational Geometry
18 (1997), pp. 305–363. doi: 10.1007/PL00009321.

[154] A. van der Sluis. “Upperbounds for roots of polynomials”. In: Numerische
Mathematik 15 (3 1970), pp. 250–262. issn: 0029-599X. doi: 10.1007/
BF02168974.

[155] Matthieu Sozeau and Nicolas Oury. “First-Class Type Classes”. In: TPHOLs.
Ed. by Otmane Aït Mohamed, César Muñoz, and Sofiène Tahar. Vol. 5170.
Lecture Notes in Computer Science. Springer, 2008, pp. 278–293. isbn:
978-3-540-71065-3. doi: 10.1007/978-3-540-71067-7_23.

[156] R. P. Stanley. “Differentiably Finite Power Series”. In: European Journal
of Combinatorics 1.2 (1980), pp. 175–188.

[157] D. Stehlé. “On the Randomness of Bits Generated by Sufficiently Smooth
Functions”. In: Proceedings of the 7th Algorithmic Number Theory Sym-
posium, ANTS VII. Ed. by F. Hess, S. Pauli, and M. E. Pohst. Vol. 4078.
Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2006, pp. 257–
274.

[158] Damien Stehlé. “Algorithmique de la réduction des réseaux et application
à la recherche de pires cas pour l’arrondi des fonctions mathématiques”.
PhD thesis. Université Nancy 1 Henri Poincaré, Dec. 2005.

[159] Damien Stehlé. “On the Randomness of Bits Generated by Sufficiently
Smooth Functions”. In: Algorithmic Number Theory, 7th International
Symposium, ANTS-VII, Berlin, Germany, July 23-28, 2006, Proceedings.
Ed. by Florian Hess, Sebastian Pauli, and Michael E. Pohst. Vol. 4076.
Lecture Notes in Computer Science. Springer-Verlag, 2006, pp. 257–274.
doi: 10.1007/11792086_19.

[160] Damien Stehlé, Vincent Lefèvre, and Paul Zimmermann. “Searching Worst
Cases of a One-Variable Function Using Lattice Reduction”. In: IEEE
Transactions on Computers 54.3 (Mar. 2005), pp. 340–346.

[161] P. H. Sterbenz. Floating-Point Computation. Englewood Cliffs, NJ: Prentice-
Hall, 1974.

http://dx.doi.org/10.1145/263699.263742
http://dx.doi.org/10.1145/178365.178368
http://dx.doi.org/10.1109/TC.2005.118
http://dx.doi.org/10.1109/TC.2005.118
http://dx.doi.org/10.1007/PL00009321
http://dx.doi.org/10.1007/BF02168974
http://dx.doi.org/10.1007/BF02168974
http://dx.doi.org/10.1007/978-3-540-71067-7_23
http://dx.doi.org/10.1007/11792086_19


226 BIBLIOGRAPHY

[162] The Coq Proof Assistant: Reference Manual: version 8.3. 2011. url:
http://coq.inria.fr/distrib/V8.3pl4/files/Reference-Manual.
pdf.

[163] Laurent Théry and Guillaume Hanrot. “Primality Proving with Ellip-
tic Curves”. In: Theorem Proving in Higher Order Logics. Ed. by Klaus
Schneider and Jens Brandt. Vol. 4732. Lecture Notes in Computer Sci-
ence. Springer, 2007, pp. 319–333. doi: 10.1007/978-3-540-74591-
4_24.

[164] Freek Wiedijk. The Seventeen Provers of the World. Vol. 3600. Lecture
Notes in Computer Science. Springer-Verlag, 2006.

[165] Chee-Keng Yap and Jihun Yu. “Foundations of Exact Rounding”. In:
WALCOM. Ed. by Sandip Das and Ryuhei Uehara. Vol. 5431. Lecture
Notes in Computer Science. Springer, 2009, pp. 15–31. isbn: 978-3-642-
00201-4. doi: 10.1007/978-3-642-00202-1_2.

[166] R. Zumkeller. “Formal Global Optimization with Taylor Models”. In:
Proc. of the 4th International Joint Conference on Automated Reasoning.
2008, pp. 408–422.

http://coq.inria.fr/distrib/V8.3pl4/files/Reference-Manual.pdf
http://coq.inria.fr/distrib/V8.3pl4/files/Reference-Manual.pdf
http://dx.doi.org/10.1007/978-3-540-74591-4_24
http://dx.doi.org/10.1007/978-3-540-74591-4_24
http://dx.doi.org/10.1007/978-3-642-00202-1_2




Abstract
We say that the Floating-Point (FP) implementation of a real-valued function is performed with correct

rounding if the output is always equal to the rounding of the exact value. Requiring correct rounding for the
implementation of standard mathematical functions has a number of advantages, including the reproducibility of
numerical computations. But for implementing a function with correct rounding in a reliable and efficient manner,
it is necessary to solve the so-called Table Maker’s Dilemma (TMD). Two sophisticated algorithms (L and SLZ)
have been designed to solve this problem, relying on some long and complex calculations (several years×CPU) that
are performed by some heavily-optimized implementations. Hence the motivation to provide strong guarantees
on these costly pre-computations.

To this end, we use the Coq formal proof assistant. First, we develop a formal library of Rigorous Polynomial
Approximation (RPA) in Coq, a feature of which being the capability of computing an approximation polynomial
as well as an interval that bounds the approximation error, in the proof assistant itself. This formalization
constitutes a key building block for verifying the first step of SLZ, as well as the implementation of a mathematical
function in general (with or without correct rounding).

Then we have implemented, formally verified and made effective three interrelated certificates checkers in Coq,
whose correctness proof derives from Hensel’s lemma that we have formalized for both univariate and bivariate
cases. In particular, our “ISValP verifier” constitutes a key component for formally verifying the results generated
by the SLZ algorithmic chain.

Then, we have focused on the mathematical proof of “augmented-precision” FP algorithms for the square root
and the Euclidean 2D norm, whose IEEE 754-2008 standard recommends correct rounding. We give some tight
lower bounds on the minimum non-zero distance between


x2 + y2 and a “midpoint”, which allows us to solve

the TMD for this bivariate function.
Finally, the so-called “double-rounding” phenomenon can typically occur when several FP precision are avail-

able in a given architecture. Although it is, in general, innocuous, it may change the behavior of some usual small
FP algorithms. In particular, we have formally verified a set of results describing the behavior of the Fast2Sum
algorithm in presence of double-roundings, which led us to develop a Coq formalization on the notion of midpoints.

Keywords: floating-point arithmetic, IEEE 754 standard, correct rounding, Table Maker’s Dilemma, SLZ algo-
rithm, Coppersmith’s technique, Coq formal proofs, SSReflect, Hensel’s lemma, certificates, integral roots, rigor-
ous polynomial approximation, Taylor models, interval arithmetic, Taylor–Lagrange remainder, D-finite functions,
square root, 2D norms, midpoints, TwoMultFMA, Fast2Sum, TwoSum, double-rounding, Flocq library

Résumé
On dit que l’implantation en Virgule Flottante (VF) d’une fonction à valeurs réelles est réalisée avec arrondi

correct si le résultat calculé est toujours égal à l’arrondi de la valeur exacte. Exiger l’arrondi correct pour l’im-
plantation des fonctions mathématiques usuelles a de nombreux avantages, dont celui d’assurer la reproductibilité
des calculs numériques. Mais pour implanter une fonction avec arrondi correct de manière fiable et efficace, il est
nécessaire de résoudre ce qu’on appelle le dilemme du fabricant de tables (TMD en anglais). Deux algorithmes so-
phistiqués (L et SLZ) ont été conçus pour résoudre ce problème, en ayant recours à des calculs longs et complexes
(plusieurs années×CPU) effectués par des implantations largement optimisées. D’où la motivation d’apporter des
garanties fortes sur le résultat de ces pré-calculs coûteux.

Dans ce but, nous utilisons l’assistant de preuves formelles Coq. Tout d’abord nous développons une biblio-
thèque d’approximation polynomiale rigoureuse (RPA) en Coq, dont une caractéristique est de pouvoir calculer
un polynôme d’approximation ainsi qu’un intervalle bornant l’erreur d’approximation à l’intérieur même de l’as-
sistant de preuves. Cette formalisation constitue un élément clé pour valider la première étape de SLZ, ainsi que
l’implantation d’une fonction mathématique en général (avec ou sans arrondi correct).

Puis nous avons implanté en Coq, formellement prouvé et rendu effectif trois vérifieurs de certificats, dont
la preuve de correction dérive du lemme de Hensel que nous avons formalisé dans les cas univarié et bivarié.
En particulier, notre « vérifieur ISValP » constitue un composant clé pour la certification formelle des résultats
générés par l’algorithme SLZ.

Ensuite, nous nous sommes intéressés à la preuve mathématique d’algorithmes VF en « précision augmentée »
pour la racine carré et la norme euclidienne en 2D, dont le standard IEEE 754-2008 recommande l’arrondi correct.
Nous donnons des bornes inférieures fines sur la plus petite distance non nulle entre


x2 + y2 et un « midpoint »,

ce qui nous permet de résoudre le dilemme du fabricant de tables pour cette fonction bivariée.
Enfin, lorsque différentes précisions VF sont disponibles dans une architecture donnée, peut survenir le

phénomène de « double-arrondi ». Bien qu’en général inoffensif, il peut potentiellement changer le comportement
de petits algorithmes usuels en arithmétique à VF. En particulier nous avons formellement prouvé un ensemble
de théorèmes décrivant le comportement de l’algorithme Fast2Sum en présence de double-arrondis, ce qui nous a
conduit à développer une formalisation Coq portant sur les midpoints.

Mots-clés : arithmétique à virgule flottante, standard IEEE 754, arrondi correct, dilemme du fabricant de tables,
algorithme SLZ, technique de Coppersmith, preuves formelles Coq, SSReflect, lemme de Hensel, certificats, racines
entières, approximation polynomiale rigoureuse, modèles de Taylor, arithmétique par intervalles, reste de Taylor–
Lagrange, fonctions D-finies, racine carrée, norme 2D, midpoints, TwoMultFMA, Fast2Sum, TwoSum, double-
arrondi, bibliothèque Flocq


	Contents
	Remerciements
	1 Introduction
	I Prerequisites
	2 Floating-Point Arithmetic
	2.1 Floating-Point Representations of Numbers
	2.2 Rounding Modes
	2.3 The IEEE 754 Standard for FP Arithmetic
	2.4 The Table Maker's Dilemma
	2.4.1 Definitions and Notations
	2.4.2 Practical Consequences of Solving the TMD

	2.5 Algorithms to Solve the TMD
	2.5.1 A Naive Algorithm
	2.5.2 The L Algorithm
	2.5.3 The SLZ Algorithm


	3 Formal Methods and Interactive Theorem Proving
	3.1 Overview of Formal Methods
	3.2 The Coq Proof Assistant
	3.2.1 Overview of the Tools and Languages Involved in Coq
	3.2.2 Overview of the Gallina Specification Language
	3.2.3 The Coq Proof Language
	3.2.4 Computing Within the Coq Proof Assistant
	3.2.5 Some Concepts Involved in an Everyday Use of Coq
	3.2.6 Around the Certificate-Based Approach
	3.2.7 Description of the Coq Libraries at Stake



	II Contributions
	4 Rigorous Polynomial Approximation in the Coq Formal Proof Assistant
	4.1 Rigorous Approximation of Functions by Polynomials
	4.1.1 Motivations
	4.1.2 Related Work
	4.1.3 Outline

	4.2 Presentation of the Notion of Taylor Models
	4.2.1 Definition, Arithmetic
	4.2.2 Valid Taylor Models
	4.2.3 Computing the Coefficients and the Remainder

	4.3 Implementation of Taylor Models in Coq
	4.3.1 A Modular Implementation of Taylor Models

	4.4 Some Preliminary Benchmarks
	4.5 Formal Verification of Our Implementation of Taylor Models
	4.6 Conclusion and Perspectives

	5 Hensel Lifting for Integral-Roots Certificates
	5.1 Introduction
	5.1.1 Hensel's Lemma in Computer Algebra
	5.1.2 A Certificate-Based Approach for Solving the TMD
	5.1.3 Our Contributions
	5.1.4 Outline

	5.2 Presentation of Hensel Lifting and Coppersmith's Technique
	5.2.1 An Overview of Hensel Lifting in the Univariate Case
	5.2.2 Focus on Hensel Lifting in the Bivariate Case
	5.2.3 Integer Small Value Problem (ISValP) and Coppersmith's Technique

	5.3 Formalization of Hensel Lifting
	5.3.1 Formal Background for Hensel Lifting
	5.3.2 Insights into the Coq Formalization of Univariate Lemma 5.2
	5.3.3 Insights into the Coq Formalization of Bivariate Lemma 5.5

	5.4 Integral Roots Certificates
	5.4.1 Univariate Case
	5.4.2 Bivariate Case
	5.4.3 ISValP Certificates
	5.4.4 A Modules-Based Formalization for Effective Checkers
	5.4.5 Some Concrete Examples of Use

	5.5 Technical Issues
	5.5.1 Formalization Choices
	5.5.2 Optimizations
	5.5.3 IPPE, An Implementation of Integers with Positive Exponent

	5.6 Conclusion and Perspectives

	6 Augmented-Precision Algorithms for Correctly-Rounded 2D Norms
	6.1 Introduction
	6.2 Two Well-Known Error-Free Transforms
	6.2.1 The Fast2Sum Algorithm
	6.2.2 The TwoMultFMA Algorithm

	6.3 Augmented-Precision Real Square Root with an FMA
	6.4 Augmented-Precision 2D Norms
	6.5 Can We Round sqrt(x^2+y^2) Correctly?
	6.6 Application: Correct Rounding of sqrt(x^2+y^2)
	6.7 Conclusion

	7 Some Issues Related to Double Roundings
	7.1 Double Roundings and Similar Problems
	7.1.1 Extra Notations and Background Material

	7.2 Mathematical Setup
	7.2.1 Some Preliminary Remarks
	7.2.2 Behavior of Fast2Sum in the Presence of Double Roundings
	7.2.3 Behavior of TwoSum in the Presence of Double Roundings
	7.2.4 Consequences of Theorems 7.2 and 7.3 on Summation Algorithms

	7.3 Formal Setup in the Coq Proof Assistant
	7.3.1 Technicalities of the Flocq Library
	7.3.2 Formalization of a Generic Theory on Midpoints
	7.3.3 Formalization of the Preliminary Remarks
	7.3.4 Formalization of the theorem on Fast2Sum

	7.4 Conclusion and Perspectives


	8 Conclusion and Perspectives
	A Notations
	List of Figures
	List of Tables
	List of Algorithms
	Index
	Bibliography
	Abstract

