
HAL Id: tel-00745581
https://theses.hal.science/tel-00745581

Submitted on 25 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vues de sécurité XML: requêtes, mises à jour et
schémas.
Benoit Groz

To cite this version:
Benoit Groz. Vues de sécurité XML: requêtes, mises à jour et schémas.. Base de données [cs.DB].
Université des Sciences et Technologie de Lille - Lille I, 2012. Français. �NNT : �. �tel-00745581�

https://theses.hal.science/tel-00745581
https://hal.archives-ouvertes.fr

Université Lille 1 – Sciences et Technologies
Laboratoire d’Informatique Fondamentale de Lille

Institut National de Recherche en Informatique et en Automatique

Thèse
présentée en première version en vue d’obtenir le

grade de Docteur, spécialité Informatique

par

Benôıt Groz

XML Security Views:

Queries, Updates and Schemas

Thèse soutenue le 5 octobre 2012 devant le jury composé de :

Thomas Schwentick Technische Universität Dortmund Rapporteur
Michael Rusinowitch INRIA Nancy Rapporteur
Jean-François Raskin Université Libre de Bruxelles Examinateur
Hélène Touzet CNRS Présidente du Jury
Michael Benedikt Oxford University Invité
Sophie Tison Université de Lille 1 Directrice
S lawomir Staworko Université de Lille 3 Co-Encadrant

Summary: The evolution of web technologies and social trends fostered a
shift from traditional enterprise databases to web services and online data.
While making data more readily available to users, this evolution also raises
additional security concerns regarding the privacy of users and more generally
the disclosure of sensitive information. The implementation of appropriate
access control models is one of the approaches to mitigate the threat. We
investigate an access control model based on (non-materialized) XML views,
as presented among others in [FCG04]. The simplicity of such views, and
in particular the absence of arithmetic features and restructuring, facilitates
their modelization with tree alignments. Our objective is therefore to inves-
tigate how to manipulate efficiently such views, using formal methods, and
especially query rewriting and tree automata.

Our research follows essentially three directions: we first develop new al-
gorithms to assess the expressivity of views, in terms of determinacy, query
rewriting and certain answers. We show that those problems, although un-
decidable in our most general setting, can be decided under reasonable re-
strictions. Then we address the problem of handling updates in the secu-
rity view framework. And last, we investigate the classical issues raised by
schemata, focusing on the specific “determinism” requirements of DTDs and
XML Schemata. In particular, we survey some techniques to approximate
the set of all possible view documents with a DTD, and we provide new
algorithms to check if the content models of a DTD are deterministic.

Résumé: Les évolutions technologiques ont consacré l’émergence des ser-
vices web et du stockage des données en ligne, en complément des bases de
données traditionnelles. Ces évolutions facilitent l’accès aux données, mais
en contrepartie soulèvent de nouvelles problématiques de sécurité. La mise
en œuvre de politiques de contrôle d’accès appropriées est une des approches
permettant de réduire ces risques. Nous étudions ici les politiques de contrôle
d’accès au niveau d’un document XML, politiques que nous modélisons par
des vues de sécurité XML (non matérialisées) à l’instar de Fan et al. Ces
vues peuvent être représentées facilement par des alignements d’arbres grâce
à l’absence d’opérateurs arithmétiques ou de restructuration. Notre objec-
tif est par conséquent d’examiner comment manipuler efficacement ce type
de vues, à l’aide des méthodes formelles, et plus particulièrement des tech-
niques de réécriture de requêtes et la théorie des automates d’arbres. Trois
directions principales ont orienté nos recherches: nous avons tout d’abord
élaboré des algorithmes pour évaluer l’expressivité d’une vue, en fonction
des requêtes qui peuvent être exprimées à travers cette vue. Il s’avère que
l’on ne peut décider en général si une vue permet d’exprimer une requête par-
ticulière, mais cela devient possible lorsque la vue satisfait des hypothèses
générales. En second lieu, nous avons considéré les problèmes soulevés par la
mise à jour du document à travers une vue. Enfin, nous proposons des solu-

tions pour construire automatiquement un schéma de la vue. En particulier,
nous présentons différentes techniques pour représenter de façon approchée
l’ensemble des documents au moyen d’une DTD.

Motivations

Contexte général Le projet résumé dans ce manuscript a pour but de
développer des techniques inspirées par les méthodes formelles pour manip-
uler des vues de sécurité XML. XML s’est établit depuis une dizaine d’années
comme le format par excellence pour l’échange de données, et, dans une moin-
dre mesure, pour la publication de données sur le Web. Les évolutions tech-
nologiques de ces dernières années ont consacré l’émergence des services web
et la mise en ligne des données en complément des bases de données internes
plus “traditionnelles”. Ces nouvelles modalités de stockage et d’accès aux
données soulèvent la question de la sécurité des données. Les techniques de
contrôle d’accès couvrent un aspect essentiel de la sécurité informatique, en
veillant à préserver la confidentialité et l’intégrité des informations. Dans le
cadre de cette thèse nous considérons des problématiques de contrôle d’accès
au niveau du document. La politique de contrôle d’accès est modélisée par
une vue de sécurité non-matérialisée. Pour ces vues, inspirées du modèle de
Fan et al. [FCG04, FGJK07], la partie du document accessible à l’utilisateur
– que nous désignerons par document de vue– n’est pas matérialisée, et l’on
se contente de calculer la réponse aux requêtes de l’utilisateur. Nous pro-
posons des solutions pour comparer deux vues, mettre à jour le document
à travers une vue, ou encore construire un schéma qui représente l’ensemble
des documents de vues possibles.

Modélisation par des langages d’arbres Un document XML est formé
d’une suite de balises ouvrantes et fermantes, qui doivent être bien im-
briquées. Ceci permet de modéliser chaque document XML par un arbre,
comme illustré en Figure 1 (le document XML a été tronqué par souci de
lisibilité). De nombreux langages ont été définis et standardisés pour faciliter
la manipulation de documents au format XML, qu’il s’agisse de langages de
requêtes comme XPath et XQuery, ou bien de langages de schémas comme
les DTDs et XML Schema. Nos travaux s’appuient sur ces langages de la
constellation XML et sur la théorie des automates pour modéliser les vues,
requêtes et mises à jour.

En particulier, une vue de sécurité est définie essentiellement comme une
paire formée d’une DTD et d’une requête XPath. La DTD représente l’ensemble
des formes que peut prendre le document, et la requête associe à un docu-
ment l’ensemble de ses éléments accessibles à l’utilisateur, comme illustré
dans l’exemple 0.1.

Nous considérons principalement deux formalismes pour définir des requêtes:

projets

projet

nom stable licence

srcbindoc libre

projet

nom dev licence

src doc propr

<projets>
<projet>

<nom>
<stable>

<src></src>
<bin></bin>
<doc></doc>

</stable>
<licence>

<libre>
</libre>

</licence>
</projet>
...

</projets>

Figure 1.: Représentation arborescente d’un document XML t0.

les expressions Regular XPath, qui étendent le fragment navigationnel de
XPath 1.0 avec un opérateur de clôture transitive, et les automates d’arbres.
Plus précisément nous employons des automates visibly pushdown (VPA),
définis par Alur et Madhusudan [AM04b] et particulièrement bien adaptés
à la représentation de langages d’arbres d’arité non bornée. Ces automates
définissent par défaut des requêtes booléennes (caractérisées par le langage
accepté par l’automate). Pour définir des requêtes plus générales, ainsi que
des transformations de documents comme les vues et les mises à jour, nous
étudions des langages réguliers d’arbres d’alignements, c’est-à-dire des arbres
sur des alphabets de la forme Σ�ΣYtεu�ΣYΣ�tεu, où Σ est l’alphabet
du document et ε un symbole spécial. Un élément étiqueté par pa, εq, par ex-
emple, correspond à l’effacement d’un noeud étiqueté a dans l’arbre d’entrée,
alors qu’un noeud étiqueté par pa, aq (resp. pa, bq) est préservé tel quel (resp.
renommé en b).

Example 0.1. La DTD D0 ci-dessous décrit un ensemble de projets infor-
matiques. Chaque projet a un nom, une licence, et peut être soit stable soit
en cours développement (dev). Un projet en cours de développement contient
des sources (src) et de la documentation (doc). Un projet stable contient en
outre des fichiers binaires (regroupés sous bin). La licence d’un projet peut-
être soit libre (libre) soit propriétaire (propr). Le document de la figure 1
satisfait cette DTD D0.
L’annotation ann0 donne accès à tous les projets, mais cache le statut

(développement ou stable) des projets, et en particulier cache les fichiers bi-
naires. En outre, les sources sont cachées pour les projets sous licence pro-
priétaire. Lorsque la visibilité d’un élément n’est pas spécifiée, elle est héritée
du plus proche ancêtre pour lequel elle est spécifiée, et la racine (projects)
est toujours visible par défaut.

projects Ñ project�

project Ñ name, pstable | devq, license

ann0pproject, stableq � false

ann0pproject, devq � false

license Ñ libre | propr

stable Ñ src, bin, doc

ann0pstable, srcq�rò�::project{ó�::libres
ann0pstable, docq� true

dev Ñ src, doc

ann0pdev, srcq � rò�::project{ó�::libres
ann0pdev, docq � true

La figure 2 représente l’arbre d’alignement entre le document t0 et sa vue,
tandis que la figure 3 présente l’arbre de vue résultant.

pprojets, projetsq

pprojet, projetq

pnom, nomq pstable, εq plicence, licenceq

psrc, srcq pbin, εq pdoc, docq plibre, libreq

pprojet, projetq

pnom, nomq pdev, εq plicence, licenceq

psrc, εq pdoc, docq ppropr, proprq

Figure 2.: Arbre d’alignement entre t0 et sa vue pour pD0, ann0q

projets

projet

nom licencesrc doc

libre

projet

nom licencedoc

propr

Figure 3.: Vue de t0 pour pD0, ann0q

Contributions

Les problèmes que nous étudions et les réponses que nous apportons peuvent
être résumés comme suit.

Évaluation des requêtes sur des vues non-matérialisées Tout d’abord le
modèle de vue non-matérialisée impose de calculer la réponse aux requêtes
de l’utilisateur directement à partir du document original (qui contient les
parties inacessibles à l’utilisateur), alors même que la requête de l’utilisateur
est formulée sur le schéma de vue. Ceci impose de reformuler la requête
de l’utilisateur en fonction du document original (voir figure 4, point (3)).
Nous montrons que cette composition de la requête de vue avec la requête de

l’utilisateur peut être obtenue efficacement pour des requêtes Regular XPath,
ce qui n’est pas le cas pour de nombreux fragments XPath [FCG04, FGJK07,
VHP06]. Cette approche se distingue du modèle de Fan et al. sous deux
aspects: d’une part il n’est pas nécessaire d’exploiter les schémas du doc-
ument original et de la vue pour calculer la requête à appliquer: celle-ci
peut-être définie directement à partir de la requête de l’utilisateur et d’une
formule XPath décrivant la vue, et d’autre part la requête obtenue par
l’algorithme de composition est directement une requête XPath au lieu d’un
modèle d’automate ad-hoc dans [FGJK07]. De ce point de vue, l’utilisation
de Regular XPath en incluant tous les axes (axes descendants et ascendants,
ainsi que les axes horizontaux) simplifie le processus de réécriture, ainsi que la
définition des vues, en permettant de représenter la politique par une requête
unique. Par contre l’expressivité des vues ainsi obtenues soulève de nouveaux
problèmes pour la construction du schéma de vue, et rend potentiellement
plus difficile l’optimisation des requêtes. Pour des requêtes et vues exprimées
par VPAs, la composition peut aussi être calculée en temps polynomial, par
une construction standard d’automate produit.

Mises à jour sur des vues non-matérialisées La même question se pose
pour les mises à jour: comme l’utilisateur formule ses mises à jour sur le
schéma de vue, celles-ci ne peuvent pas en général être appliquées directement
au document original. La littérature désigne par view update problem (ou
mises à jour à travers des vues) le problème consistant à calculer la (une)
mise à jour qui doit être appliquée au document source pour obtenir l’effet
souhaité par l’utilisateur sur la vue: plus formellement, il s’agit d’obtenir la
mise à jour pour que le diagramme en figure 5 soit commutatif.

Nous étudions en particulier le problème de mise à jour à travers une
vue lorsque la mise à jour est spécifiée par une fonction associant à chaque
document de vue possible le document attendu après la mise à jour. Nous
représentons de telles fonctions par un ensemble régulier d’arbres d’alignement,
en imposant la contrainte supplémentaire que les insertions et suppressions
doivent concerner des sous-arbres complets (i.e., il n’est pas possible de sup-
primer (resp. d’insérer) un noeud sans supprimer (resp. insérer) aussi tous
ses descendants. Notons toutefois que les opérations atomiques du langage
de mise à jour XQUF (XQuery Update Facility) du W3C ne permettent elles
aussi les insertions et suppressions qu’au niveau des feuilles d’un document.
En l’absence de contraintes particulières, cette formulation du problème de
mise à jour à travers une vue admet une solution polynomiale. En revanche,
lorsque l’ensemble des mises à jour autorisées sur le document est restreint
à un ensemble régulier d’alignements, le problème soulève de nouvelles diffi-
cultés que nous étudions en détail.

Approximation du schéma de vue Dans le modèle de Fan, il est possible
d’interdire à l’utilisateur l’accès à des noeuds internes tout en conservant
leurs descendants dans la vue. En général, ces noeuds internes restent alors
présents dans la vue; seule leur étiquette est anonymisée. À l’instar de Kuper
et al., nous adoptons au contraire la sémantique qui consiste à supprimer
complètement ces noeuds, en faisant adopter un noeud par son plus proche
ancêtre accessible. Ce choix complique la construction d’un schéma de vue.
Il est bien entendu aussi possible d’anonymiser une étiquette, mais ceci se
fait seulement par l’opération de renommage, et non par des suppressions.
Lorsque le schéma décrivant l’ensemble des documents originaux possibles est
une DTD non-récursive, et même pour des vues très simples, l’ensemble des
documents de vue possibles peut définir des langages d’arbres non-réguliers: il
devient essentiellement nécessaire d’utiliser des grammaires algébriques pour
décrire le schéma de vue.

La première approche que nous suggérons pour limiter l’expressivité du
schéma de vue est d’imposer des restrictions sur la vue. Ces restrictions
permettent aussi de faciliter les autres problèmes comme la comparaison de
politiques ou la vérification de propriétés sur les mises à jour de documents.
La première restriction est d’imposer que les vues soient closes vers le haut:
un noeud ne peut alors être visible que si tout ses ancêtres aussi le sont.
Cette restriction apparait fréquemment dans la littérature sur les vues XML.
Une autre restriction courante consiste à borner la profondeur du document
original par une constante. Cette hypothèse peut aussi sembler raisonnable
du fait que la plupart des documents XML observés sur le web ont une faible
profondeur [BMV06] mais cette restriction exclut les DTDs récursives. Nous
proposons une troisième approche, moins restrictive que les deux précédentes.
Cette contrainte que nous appelons k-interval-boundedness impose une con-
stante k bornant pour tout chemin d’une feuille jusqu’à la racine, le nombre
de noeuds internes consécutifs que l’on efface sur ce chemin. Pour toute vue
V spécifiée par un VPA ou une formule de Regular XPath, s’il existe une
constante k telle que V est k-interval-bounded, alors le schéma de vue pour
V est un ensemble régulier d’arbres.

De notre point de vue, le schéma de vue sert essentiellement pour per-
mettre à l’utilisateur de formuler ses requêtes, et c’est pourquoi nous nous
intéressons au problème d’approximer le schéma de vue dans cette per-
spective. L’approximation du schéma de vue est compliquée par une con-
trainte spécifique aux schémas XML; à savoir que les expressions régulières
qui apparaissent dans ces schémas doivent être des expressions régulières
déterministes. Nous montrons en particulier que l’on peut tester en temps
linéaire si une expression régulière est déterministe ou non, même en présence
d’indicateurs numériques, un problème ouvert formulé Kilpeläınen and Tuhka-
nen [KT07, Kil11]. Pour les cas où l’on doit recourir à une approxima-
tion, nous étudions trois techniques permettant d’approximer une grammaire
algébrique par un langage régulier.

Comparaison de politiques Un problème classique lorsque l’on utilise des
vues est d’étudier leur expressivité: quelle information peut-être extraite à
partir d’une vue donnée? Dans un contexte de sécurité il importe de vérifier
qu’un adversaire ayant accès à la vue ne peut pas accéder à une informa-
tion jugée confidentielle. Nous proposons ainsi des méthodes pour comparer
des politiques de sécurité. De telles méthodes pourraient typiquement servir
dans un scénario où l’administrateur choisirait de modifier la politique, et
souhaiterait vérifier que la nouvelle vue ne permet pas d’inférer des informa-
tions qui étaient confidentielles avant la modification. Nous observons que ce
problème de comparaison de politiques peut être relié au problème de décider
si une requête Q est déterminée par une vue V ; est-ce que la connaissance
de View pV, tq (la vue de t pour V) suffit à calculer Qptq pour tout docu-
ment t? Cette question est indécidable pour des requêtes et vues définies
par des VPAs ou formules XPath arbitraires, mais nous proposons des algo-
rithmes répondant à cette question en temps au plus exponentiel pour des
vues k-interval bounded.

Perspectives

Les travaux résumés dans cette thèse peuvent être étendus dans plusieurs
directions.

Des modèles plus expressifs Les vues, requêtes et mises à jour étudiées
dans ce document sont limitées à des langages réguliers d’arbres ou au frag-
ment navigationnel du langage XPath. Ceci peut sembler trop restrictif
pour de nombreuses applications, en particulier pour prendre en compte
les méchanismes de clefs omniprésents dans les bases de données, ou les
opérations d’aggrégation. On pourrait envisager d’utiliser d’autres modèles,
peut-être basés sur les logiques prenant en compte les données. On pourrait
aussi envisager d’utiliser pour les vues d’autres modèles de transducteurs
permettant de copier des parties du document, et, plus généralement, de
réorganiser le document.

Par ailleurs, et dans la mesure ou les bases de données XML natives n’ont
pas connu un grand succès, il serait intéressant d’appliquer les techniques
de query rewriting sur des modèles de graphes au lieu d’arbres. Bien sûr,
de tels travaux ont déjà été entrepris dans cette direction, par exemple sur
la réécriture de requêtes conjonctives [NSV10, Pas11] ou de regular path
queries [CGLV02, CGLV07], mais de nombreux problèmes restent ouvert.

Optimisations pour les VPAs La figure 6.7 montre que les automates
visibly pushdowns ont suscité un intérêt croissant depuis leur introduction
par Alur et Madhusudan. Nous pensons qu’il reste plusieurs sujets dignes
d’intérêt pour mieux comprendre ce modèle d’automate. À commencer par

l’optimisation des opérations fondamentales telle l’évaluation d’un VPA sur
un document (tout particulièrement pour les modèles de VPAs définissant
des requêtes au lieu de langages booléens). Un des problèmes sous-jacents
est la question de traiter efficacement le non-déterminisme dans les VPAs, le
non-déterminisme soulevant des défis pour les VPAs comme pour la plupart
des modèles d’automates d’arbres, et a fortiori de transducteurs.

Optimisations pour les langages de schémas XML La restriction à des
expressions déterministes dans les DTD et Schémas XML est sujette à dis-
cussions [Man01, W3C]. Néanmoins les algorithmes actuels de validation de
schéma n’exploitent pas complètement le déterminisme des expressions pour
optimiser les performances. Nous avons définis des algorithmes radicalement
nouveaux pour manipuler des expressions déterministes, mais il n’est pas clair
si ces algorithmes permettraient des gains significatifs sur des schémas réels.
Nous avons l’intention d’évaluer expérimentalement les performances de ces
algorithmes. Par ailleurs, ces algorithmes soulèvent la question de la com-
plexité exacte des problèmes de décision pour les expressions déterministes.
Qui plus est, il serait intéressant d’étudier si les techniques développées dans
le cadre des schémas XML peuvent trouver une application dans d’autres
domaines.

Côté Source:
partie cachée à
l’utilisateur

Schema
Spécification

de la politique

Définition de la vue V

Document XML t

Requête réécrite
RewritepQ, V q

Mise à jour de
la source us

Côté vue:
partie accessible à

l’utilisateur

Schéma de la vue

Document de vue
t1 � View pV, tq

Query Q

Résultat de
requête: Qpt1q
obtenu comme
RewritepQ, V qptq

Mise à jour
sur la vue uv

(1)

(3)

(2)

(4)

(1): Construction du Schéma de
vue (et approximation)

(3): Évaluation des requêtes (par
composition avec la vue)

(2): Matérialization (virtuelle) (4): Traduction des mises à jour

Figure 4.: Vues de sécurité non-matérialisées.

V V

traduction us de la mise à jour

mise à jour uv

uv � V �1 � us � V

Figure 5.: View update problem.

Thanks

I will never be too grateful to all who offered me help, advice and friendship
during this PhD. My thanks go first to my loving family, to whom I owe so
much that I shan’t write it down (this dissertation is already long enough).

Michaël Rusinowitch and Thomas Schwentick did an excellent job to re-
view this dissertation. I am very obliged to them for their very thorough
examination of this work, appreciations and suggestions. Michael Benedikt
also agreed to review the dissertation and contributed many references and
other advice. In addition to their tremendous work at reviewing those 300
pages, I appreciate their patience waiting for the long-overdue dissertation.
I would also like to thank Jean-François Raskin and Hélène Touzet for ac-
cepting to take part in the jury of my defense.

It was a pleasure to work under the supervision of Sophie and Slawek,
devoted teachers and researchers always eager to contribute new questions
or techniques, proof ideas, or to check my own proofs. May I some day
match their leadership and scholarship. I am especially thankful that these
supervisors shared so generously their time with me, always willing to discuss
any topic I felt interested in. I would in particular like to express my gratitude
to Slawek for taking the thankless charge of improving my writing skills.

I have also been very fortunate to work with Yves, who helped shape up
this PhD, contributed several of the results, and shared his great knowledge
of language theory. Many thanks to Anne-Cécile, Iovka, and Yves for their
contributions in our project: they were delightful colleagues to work with.

Working within the Mostrare team was a very gratifying experience. Its
talented members are engaged in very diverse research topics and yet have
kept it a merry, united, and very lively team.

Joachim in particular communicated his great enthusiasm for research
along many discussions. Among others, I owe him numerous insights on
VPAs and tree automata, and he offered me a very nice opportunity to col-
laborate with Sebastian. Sebastian also deserves my gratitude for his knack
of finding interesting research topics, his patience when confronted with my
sketchy proofs, and for his very warm welcome in Sydney.

This dissertation and project owe a lot to Olivier, through his support, his
introducing me to VPAs, and his checking a part of this dissertation. Sharing
office with Guillaume and Antoine is the guarantee of having a great laugh
at least once a day. Antoine also introduced us to very interesting questions
about property testing, whereas I benefited from Guillaume’s tremendous
knowledge of computer theory and graphs. I have also enjoyed chatting with
Tom and Denis about their thrilling project on streaming evaluation, and
about a miscellany of other topics.

The very good humour of Jean-Baptiste, Adrien, and Fabien were further
incentives to work harder toward the completion of my PhD. Without Marc
I couldn’t have overcome the crashing of my debian at the peak of the dis-

sertation writing. May Antonino find a just retribution for trying to choke
me with italian biscuits. And so may Grégoire and Jean for hopelessly trying
to fatten me with sweets, Jérôme for numerous discussions and afternoons
when I could appreciate his organizing skills, or Rémi, Angela, Aurélien and
tutti quanti for pestering me about my dissertation in order to make sure I
would someday complete the redaction.

Many thanks finally to the teachers and to the supervisors of my previ-
ous internships; Wolfgang, Jean-François and Luc, who communicated to me
their interest for science and research. I also wish to thank the adminis-
trative staff, especially the INRIA team assistants for their invaluable help.
I definitely admired the effort of many reviewers, especially at PODS, who
helped correct, reformulate and simplify several of our results.

My last thanks go to all the friends that enlightened my student years:
schoolmates, board game players, members of the C4, o.p., musicians, flat-
mates, and all those with whom I shared a few steps along the path of life...

xii

Contents

1. Introduction 1

1.1. Motivation . 1

1.2. Security Views and Query rewriting as a model for Access
Control . 5

1.3. Our Contributions . 7

1.4. Organization of the Manuscript 9

2. State of the art 11

2.1. Access control specification for XML 11

2.2. Access control models for XML 14

2.3. Queries on views . 20

2.4. Views and Policies in Presence of Updates 27

2.5. Schema Approximation . 41

3. Models for XML Reasoning 45

3.1. Words, XML, and Unranked Trees 45

3.1.1. General Notations and Tools 47

3.1.2. Words and Trees as a Model for XML Documents . . . 48

3.1.3. Regular Expressions and Word Automata 52

3.1.4. Grammars . 57

3.2. Tree Languages . 59

3.2.1. Tree Automata and Visibly Pushdown Automata . . . 59

3.2.2. Decision Problems for Tree Automata 72

3.2.3. Pumping Lemmas for VPAs 81

3.2.4. Schema Languages for XML 84

3.3. Query Languages, Views and Updates 87

3.3.1. First Order and Monadic Second Order Logic 88

3.3.2. XPath Dialects . 90

3.3.3. Expressivity and Decision Problems 92

3.3.4. Tree Alignments, a Model for Queries, Views and Up-
dates . 95

3.3.5. XQUF . 103

3.3.6. From Regular XPath to Automata 107

xiii

Contents

4. XML Security Views 115
4.1. Specifying the Security Views 116

4.1.1. Annotated DTDs and Regular XPath 116
4.1.2. Restrictions on the views 118
4.1.3. Evaluation by Query Composition 123
4.1.4. Annotated DTD Models for Query Rewriting 128

4.2. Comparing Policies . 129
4.2.1. How can we Compare Policies? 129
4.2.2. Preliminary Results Relating the Different Comparisons 134
4.2.3. Undecidability Results for Comparisons ¤2 and ¤3. . . 139
4.2.4. Determinacy for MSO 140
4.2.5. From MSO Queries to Views that Relabel Nodes . . . 149
4.2.6. Comparing XReg Policies 149
4.2.7. Other XPath Dialects 154

4.3. Beyond Pairwise Comparison 155
4.3.1. Policy Comparison in Presence of Multiple Views . . . 155
4.3.2. Beyond Monadic Queries: n-ary Queries 156
4.3.3. Verifying Security Properties of a View 161

5. The View Update Problem 163
5.1. Formalization . 163

5.1.1. Equivalence of Editing Scripts 164
5.1.2. Composition of Editing Scripts 166
5.1.3. Propagation of a View Update 174

5.2. Update Functions . 176
5.2.1. Functionality and Disambiguation 177
5.2.2. Update Translation . 181
5.2.3. Solution in the Unconstrained Case 182

5.3. Translating Update Functions Under Constraints 183
5.3.1. The General Case . 184

6. The View Schema 199
6.1. Computing the View Schema 200
6.2. Determinism in View Schema: XML DTDs 203

6.2.1. Linear Algorithm to Test Determinism 203
6.2.2. “Determinizing” Non-deterministic Expressions 217

6.3. Approximation . 220
6.3.1. Subset, Subword, and Parikh Approximations 220
6.3.2. Indistinguishability of Approximation 228

Conclusion 233
6.3.3. Summary of the Contributions 233
6.3.4. Further directions of study 235

xiv

Contents

Notations 239

Index 241

List of Figures 243

Bibliography 244

A. Appendix 275

xv

1. Introduction

The whole difference between a construction and

a creation is exactly this: that a thing constructed

can be loved after it is constructed; but a thing

created is loved before it exists.

(G. K. Chesterton)

Contents
1.1. Motivation . 1

1.2. Security Views and Query rewriting as a model for
Access Control . 5

1.3. Our Contributions . 7

1.4. Organization of the Manuscript 9

1.1. Motivation

The project summarized in this dissertation aims at developing techniques
to support access control over XML documents, a topic that raised consid-
erable interest over the last few years. The ever-increasing role of the web in
society both comforts the expansion of XML technologies and raises growing
concerns about the security of data. The evolution of web technologies and
social trends fostered a shift from traditional database management systems
toward distributed storage of data and online services. With more and more
data accessible from the web, preserving the confidentiality of sensitive in-
formation such as customer data has emerged as one of the main challenges
for computer security. Applications raising security concerns span domains
as diverse as media sharing, social networks, biological databases, healthcare
systems and financial data. Independently of security considerations, views
can also be used to extract and organize information. One major issue when
considering views is the management of a dynamic environment: the policy
security (the view specification) may evolve over time, and, of course, the
document may be frequently updated. The support of update operations
appears in two of the twelve (thirteen actually) rules of Codd specifying the
requirements for a relational database management system: rule 6 requires
the support of view update mechanisms (for updatable views), whereas rule 7
requires the support of update operations that manipulate sets instead of a

1

1. Introduction

single tuple. The security view model that inspired our work faces those chal-
lenges for XML databases by keeping the view virtual. Our work extends
this model in terms of expressivity and support for view update operations.
We also consider techniques to reason about views and updates.

XML, the lingua franca on the web(?) Over the last two decades, the
Extensible Markup Language (XML) has evolved into a gold standard for
representing and exchanging data. The W3C and some other organizations
developed several specific schema and query languages to process XML docu-
ments, such as XML Schema, XPath, and XQuery. The XML Path Language
(XPath) is the core of all these query languages to address the elements of the
XML document. Three versions of XPath have been proposed successively
by the W3C, but this dissertation only exploits features from XPath 1.0,
and more accurately the navigational core of this language. So, whenever we
mention XPath in this dissertation we refer to a subset of XPath 1.0. (gen-
erally extended with a transitive closure operator to form Regular XPath).
While some databases store data into traditional database management sys-
tems (DBMS) and use XML only for exporting information, more and more
DBMS provide an XQuery engine. Storing data in XML format avoids the
conversion cost.

Securing the data: privacy and access control Access control encom-
passes mechanisms to specify and enforce a security policy that limits the
actions a user can perform. Access control mechanisms permit individuals
and organizations to share information while preserving the confidentiality
and integrity of data according to the user’s wishes. The read, write and
execute permissions attached to the files in the Unix systems are a typical
example of access control implementation that allows multiple users and pro-
grams executed on behalf of the user(s) to share resources on a computer.
It is also worth observing that the big effort toward formalizing access con-
trol [Lam71, GD72, BL73] follows shortly after the commercialization of time-
sharing systems, that flourished in the 1970’s when multiple organizations
shared the cost of leasing a computer [Bel05]. This also coincides with the
development of computer networks.

Why should the access to data be controlled? A first reason to control the
access to data could be to filter out irrelevant information. This argument
is especially relevant for view-based access control models. Yet the foremost
arguments for access control are privacy and security issues; to preserve the
privacy of individuals and prevent the dissemination of sensitive information
that could harm individuals or companies.

Access control mechanisms at the database level represent but a fraction
of much broader security and privacy perspectives. Although our thesis
remains focused on the specific view mechanism for access control at the

2

1.1. Motivation

database level, we briefly survey the impact of security and privacy on econ-
omy and politics. Privacy concerns triggered some legislative actions com-
pelling institutions to implement policies preventing the disclosure of per-
sonal data. Prominent among privacy-aware legislation are the Health In-
surance Portability and Accountability Act (HIPAA) and the Gramm-Leach-
Bliley Act (GLB), enacted by the U.S. Congress in 1996 and 1999. The ad-
ministrative simplification provisions of HIPAA address the privacy of health
data and include substantial penalties for failures to comply with national
standards and operating rules. The privacy provisions from the GLB act re-
quire financial institutions to provide their customers some notice before they
disclose information to non-affiliated third parties. More generally, the U.S.
Federal Trade Commission’s Fair Information Practice Principles gives rec-
ommendations concerning data collection practices. The European Union’s
Data Protection Directive harmonizes the processing of personal data be-
tween the member states. A reform is under way in order to put an end
to divergences in the enforcement of the previous directive between member
states, strengthen privacy, simplify administrative requirements and take into
account the evolution of digital economy since 1995 [EUd12]. These regu-
lations clearly demonstrate the concern of governments and individuals for
privacy protection. Let us however observe that while privacy and access
control overlap, the preservation of privacy raises many questions that we
do not consider in our access control model: our model provides no clue on
how general statistics about medical records (averages,. . .) could be made
available to scientists while preventing statistical inference of individual in-
formation about the patients in presence of an adversary armed with a priori
information. Techniques to handle that setting often rely on differential pri-
vacy, a notion that lies outside the scope of this dissertation.

Improper access control implementations in a broad sense often hit the
headlines. To mention but a few: an attack on Sony’s PlayStation network
in April 2011 compromised over 100 million customer accounts, including
street numbers, email, and passwords [Son11]. On March 30th, an attack
retrieved huge mailing lists from Epsilon, a leading online marketing com-
pany. On March 24th, tripadvisor informed its customers that part of the
(reportedly) 20 million addresses it collects had been leaked in a database
breach. On June 9th, CitiBank communicated a breach into 1% of its credit
card accounts, caused by the possibility to access user accounts without au-
thorization checks by modifying URLs. affecting some two hundred thousand
customers. The latest large-scale security breach to date hit GlobalPayment,
which reported on March 30th, 2012 that an estimated 1.500.000 card num-
bers may have been compromised as a result of unauthorized access into its
processing system.

What kind of information is generally stolen, and which vulnerabilities are
exploited? When trying to assess the extent of the threat, it seems that,
beyond a miscellany of blogs from security experts discussing vulnerabilities,

3

1. Introduction

patches and data leaks, reports from private IT-security companies provide
an interesting overview. The 2011 Data Breach Investigation Report [DBI] by
Verizon with the U.S. Secret Service, and Dutch National High Tech Crime
Unit observes a steady drop in the annual number of compromised records
since 2008: 361 millions in 2008, 144 millions in 2009, and 4 millions in
2010. The authors suggest the successful identification, prosecution and in-
carceration of the wrongdoers is the main explanation for this trend. A huge
majority of those attacks stems from external agents and does not implicate
insiders. The report also notes that criminals tend to turn away from big in-
stitutions, targeting most of the attacks at smaller target such as hospitality
sectors and retail industries, the main victims of opportunistic attacks. The
assets compromised are in most cases points of sale, database servers and
web servers. Payment card numbers still account for most of the compro-
mised records investigated in this Verizon record, followed by authentication
credentials. But the authors think the focus may still continue to shift from
payment card to other kinds of data such as personal information, although
the loss of information appears in less than 15% of the incidents investigated,
and in less than 1% of the compromised records. Those figures may seem im-
pressive, yet they do not take into account those of the access control failures
that do not register as criminal offence but still affect individuals. On the
whole, the figures stress the need for better controlling the access to sensitive
information, though it is hard to single out the impact of the document level
mechanisms in this broad picture of access control. Regarding specific XML
technology, we observe a few examples of breaches specific to xml processing.
A major vulnerability was discovered in Microsoft’s IE7 in 2008 [vul08], and
vulnerabilities were discovered in XML libraries, prompting some experts
to expect that XML-based attack would flourish soon [xml09]. There is no
doubt, however, about access control being considered a crucial feature in
database systems. According to the SANS report [SAN10], improper access
control belongs to the 25 most dangerous software errors. More specifically,
the 2010 report the inconsistency or absence of authorization as a highly
prevalent weakness with high likelihood of being exploited. The 2011 report
further distinguishes the absence of access control checks and their incorrect
implementation.

Many general models for access control have been developed to formal-
ize access control, and these models have been implemented in relational
databases: the major database management systems such as Oracle 11g and
IBM DB2 support fine-grained access control mechanisms. More recently,
several access control mechanisms have been proposed to take into account
the specifics of XML, namely the tree structure of the document, the specific
query languages (XPath,XQuery) and the possibility to define a schema with
a DTD (see, e.g., [FM04]). This thesis is thus part of a larger effort from the
community to develop models for XML access control.

4

1.2. Security Views and Query rewriting as a model for Access Control

1.2. Security Views and Query rewriting as a

model for Access Control

An access control policy defines which data should be accessible to the user
and which should be kept hidden. A popular model for access control is Role
Based Access Control, in which each user is assigned or may choose a role
and the policy defines which actions are allowed for each role. Role based
access control emphasizes the difference between the user’s identity and the
role. In general, the decision to grant or deny the execution of a query should
not depend only on the user’s identity, but also on the context of the query:
the user may run some third-party software which he does not trust, etc.
Furthermore, the policy may also take into account numerous elements such
as time and physical location. In our framework we assume the role has been
defined, and the data accessible to the user is represented as a (single) view.
Thus, the information the user can obtain from the view is exactly that which
he can obtain from the document using this role, according to the policy.

In the relational model, a view is generally a virtual relation, stored as a
query to the original database. The user can then use the view relation to
formulate queries, but the view relation needs not be materialized as a table
as it can be computed on-the-fly. Of course commercial databases also allow
to materialize the view, in which case the table for the view relation must
be updated when the original database is modified. In NoSQL databases,
and especially document-oriented databases, queries need not be formulated
in terms of algebraic operations on relations stored as tables, but use spe-
cific query languages to extract information from collections of documents.
In the XML framework, views (i.e., queries) are commonly expressed via
XQuery or directly with XPath expressions, which define paths to access
resources within a document. The evaluation of the view query returns a
set of documents. We consider the case of a single XPath view on a sin-
gle XML document, returning a single XML (tree-structured) document. In
that case we call view document the document resulting from the view query
evaluation.

Following the security view framework of Fan et al. [FCG04, FGJK07],
we consider non-materialized views, meaning that the view is stored as a
query, and the view document is not materialized. In this security view
framework, the user has no direct access to the real document. Instead, each
user (or role) is assigned a view, and the user has only access to the view
document to query the database. For better efficiency, the view document is
not materialized: the user is not provided the current view document V ptq,
which is kept implicit, but instead she is only provided a schema of the view.
Then, the user queries must be rewritten before they can be executed on the
real document.

5

1. Introduction

The Source side:
the hidden part

Schema
Access

specification

Definition of view V

XML document t

Rewritten query
RewritepQ, V q

Source update us

The View side:
what the user sees

View schema

View document
t1 � View pV, tq

Query Q

Query answers:
Qpt1q obtained as
RewritepQ, V qptq

View update uv

(1)

(3)

(2)

(4)

(1): View schema derivation (and
approximation) rChapter 6s

(3): Query evaluation (through
composition) rChapter 4s

(2): Materialization (virtual) (4): Update translation rChapter 5s

Figure 1.1.: Non-materialized security views.

Specific questions addressed in the project The specific problems that
we investigate can be summarized as follows. When the user formulates
her query on the view, how can we reformulate the query to obtain the
answers from the document (without first materializing the view) (cf. (3) in
Figure 1.1)? The same question arises also for write queries, a.k.a. updates,
and this problem of translating updates from the view into modifications of
the real document is known as the view update problem (4). As the user
needs some information on the view to formulate meaningful queries, one
must provide algorithms to compute a schema for the set of all possible view
documents. How can we represent the set of all possible view documents, in
particular when this set must be approximated (1) ? When the access control
policy is modified, how can we check if the new view discloses strictly less
information than the original one? More generally, what information can be

6

1.3. Our Contributions

extracted from a view? And finally, since we assume that our views come
with a schema, how can we efficiently validate a document against a schema?
We outline in the following our approach to treat those questions, and the
results obtained.

1.3. Our Contributions

We believe that formal methods provide powerful tools for reasoning about
access control, and this dissertation presents our contributions in this field.
We mostly interested ourselves in the evolution of database system, and pro-
pose methods to verify which properties are maintained when the document
or the security policy are modified. Our study focuses on the query rewriting
approach over non-materialized XML security views, but we actually address
general issues, whose applications span far beyond this security view frame-
work. Throughout this research journey, we have extended the security view
framework of Fan et al., and contributed some answers to the problems of
schema validation, policy comparison, and to the view update problem for
XML.

A general model for security views Our first contribution is an extension
to all axes from XPath of the query rewriting framework for security views
as presented, among others, by Fan et al. [FGJK07]. Thus, our model can
define more expressive access control policies while maintaining a quadratic
complexity for querying the database. This increase in expressiveness raises
a few issues at the database level. The query rewriting algorithm of Fan et
al. relies on the DTD schema to rewrite the user’s queries, but with our
more expressive fragment the rewriting process does not need to rely on the
schema anymore. Actually, the rewriting can be seen as the composition of
two queries, a relatively simple task.

Schema approximation As in the model of Kuper et al. [KMR05], it is
harder to derive a view schema for our views than for the views of Fan et
al. Whereas several assumptions in the model of Fan et al. allow to derive
easily a DTD to represent the set of all view documents, in our model the set
of all view documents needs not even be regular. Our contribution regard-
ing schema languages is twofold: on the one hand, we provide an efficient
algorithm to test if a candidate view schema DTD satisfies the determinism
constraint, and on the other hand, when the view schema is not regular,
we provide regular approximations of the view schema, and study sensible
restrictions that guarantee the regularity of the view schema.

Comparing policies in terms of determinacy and certain answers A ma-
jor issue raised by views is the question of expressiveness: what information

7

1. Introduction

can be extracted from the view. In a security framework, we must check
that the user cannot infer sensitive information from her set of authorized
queries. We provide a few tools for comparing policies. Actually, we observe
that some problems of policy comparison are related to the problem of de-
ciding whether a query is determined by a particular view: given a query
q on the source document, and a view V , can we answer q relying solely
on V ptq for all possible documents t? This problem, known under the de-
nomination of “determinacy” finds applications beyond access control for the
optimization of query evaluation with a cache (or with materialized views).
We characterize the complexity of this problem in our setting(s).

The view update problem While the definition of an access control policy
is relatively straightforward for read-only queries, “write” queries that modify
the document (i.e., updates) highlight a new set of challenges. A well-known
challenge is the view update problem: given an update uv from the user
(on the view), apply an update on the source document whose effect on
the view is that of uv. In the process of computing the update we will
apply on the source document, i.e., the translation of uv, we may have to
choose between different possible translations. Possibly also, there may be
no possible translation, when the policy forbids all write queries for instance.
We first propose a solution to the view update problem when the document to
be updated is fixed. Then we tackle the more general problem of translating
update functions: if the user wishes to apply an update of the kind “delete all
b nodes” whatever the document, we want to compute an update function
that will delete all b nodes of a source document while preserving schema
constraints.

Schemata with deterministic regular expressions We investigate in par-
ticular schemata (DTDs) satisfying the determinism requirement from the
W3C standard (according to these standard, the regular expression used in a
DTD or XML Schema should be deterministic for compatibility with SGML).
We investigate to what extent our approximations remain “feasible” when
the schema should be a DTD with deterministic content models, but also
propose a linear-time algorithm to test if a regular expression is determinis-
tic, whereas existing algorithms had quadratic complexity when the size of
the alphabet is not bounded.

Publications

The results in this dissertation have been (partially) published in four con-
ference papers.

• Our model of security views was first introduced in [GSC�09]. This
paper also presented our schema approximations. However, the paper

8

1.4. Organization of the Manuscript

only considers views defined by DTDs with XReg, and covers a small
fraction of our results on determinacy or schema approximations. A
larger subset of our policy comparison results is currently under revision
for a special issue of Information and Computation.

• Our first contribution to the view update problem for XML views ap-
peared in [SBG10]. This paper tackles the view update problem when
both the original document and the view update are given as input.

• While the previous paper focused on the optimality of the view up-
date’s translation, [BGT�11] instead investigates translatability of up-
date functions in a more general setting, when the original document
is not fixed by the input.

• The algorithms to test determinism of regular expression have been
published in [GMS12], together with algorithms to evaluate determin-
istic regular expressions .

1.4. Organization of the Manuscript

Chapter 3 presents definitions and general results, mostly about visibly push-
down automata. We essentially survey and fine tune existing algorithms with
low-degree polynomial for problems such as membership or emptiness. Chap-
ter 4 introduces our model of security views, with the corresponding algo-
rithm to rewrite queries to bypass view materialization. We then investigate
techniques for comparing different views in terms of determinacy. Chapter 5
is devoted to the view update problem for upward-closed security views, in
different settings. Chapter 6 proposes several approximations for the schema,
and explores in particular the effect of deterministic content models when the
approximation is a DTD.

9

2. State of the art

The first part of this chapter is devoted to the main access control models for
XML documents in the literature. The second section investigates the ques-
tions that arise when querying data through views. We put emphasis on two
questions of immediate relevance for non-materialized views, namely which
languages allow to evaluate directly on the original document a query that
has been expressed on the view, and conversely when is it possible to answer a
query that has been expressed on the original document, using only the view?
The third section surveys the techniques adopted in databases to handle the
combination of updates and views. It essentially focuses on techniques to up-
date data through the view, and techniques to maintain or verify properties
of the views when data can be updated. Finally, the last section mentions
solutions to provide simple schemata for XML documents, discussing ap-
proximations of XML schemata and context-free grammars. Statistics on
the structure of real-life XML documents conclude this overview with some
insight on the relevance and limitations of the techniques in this dissertation,
regarding the average depth of the documents and availability of a schema.

2.1. Access control specification for XML

Numerous formalisms have been considered to specify security views: anno-
tations of the source document, schema annotations, sets of rules identifying
target objects with XPath, etc. The eXtensible Access Control Markup Lan-
guage [Mos05] standard spearheaded by the OASIS consortium defines both
a language to specify security policies, and a language to submit or answer
authorization requests. Similarly to many models considering both write
and read operations, a policy is essentially specified as a set of rules, to-
gether with a rule combination algorithm. A policy may actually involves
other elements, such as obligations defining actions that must be fulfilled in
conjunction with the authorization decision, such as sending a notification
email. Each rule comprises the target of the rule, and its effect (with possibly
an additional condition on the applicability of the rule). The effect of a rule
indicates whether the action is authorized or rejected; it may only take values
“Permit” or “Deny”. The target of a rule consists of a resource, a subject,
an action, and an environment: the subject defines the entity that wishes to
perform the action over the resource. The action describes the list of actions
requested on the resource. Typical actions attributes are read or update...

11

2. State of the art

Environment attributes can be used to specify additional information such
as time and date of the request. Attributes can be designated by XPath
rules evaluated on the context. For controlling access over an XML docu-
ment, the request context will typically include the XML document itself, so
that subject and resource attributes can be obtained from the evaluation of
the corresponding XPath queries over the document. In a nuthsell, a rule
may be applicable if the attributes of the target (subject, action, resources,
environment) are matched in the request context. Applicable rules are then
combined at the policy decision point, and the decision is transmitted to the
policy enforcement point together with obligations.

XACML is a very flexible and expressive language, but is very verbose and
possibly difficult to master. Therefore Abassi et al. [AJREF10] investigate
tree automata techniques to derive a representation of an XACML policy
by an annotated schema. They thus provide a translation from a fragment
of XACML into security views. Among the other access control policy lan-
guages, XACL [KH00] is credited with the introduction of provisional autho-
rization in XML access control. Provisional authorizations are actions that
have to be performed for the action to be executed. This embraces actions
such as logging in, signing a term and conditions statement, etc. XACML
also supports provisional authorizations, along with many other features from
XACL. Kudo and Qi [KQ07] introduce and compare three implementation
schemes for these two models.

The question of structure: what should be “hidden”. Many access con-
trol models for XML consider the nodes of the document as the smallest unit
of information. Models may differ in the way they consider attributes and
other data (text) values but we abusively consider attributes as nodes. For an
overwhelming majority of these models, security specification is only about
granting or denying access to each node since the information is carried by
nodes individually rather than by relations between nodes. A security policy
is thus characterized by which nodes it allows to access.

Already this simple model raises a few questions in tree-structured docu-
ments: in the relational model (and as long as no there is no key preservation
constraint) there is no ambiguity about which table results from the dele-
tion of a particular tuple, whereas the deletion of internal nodes in a tree
(locally) modifies the structure of the tree. Some security policy may dis-
close a node while hiding some of its ancestors. There are several approaches
to tackle this question, although papers are not always very explicit about
which one they embrace. Many proposals simply rule out the possibility of
disclosing a node with invisible descendants: the downward denial consis-
tency enforces the deletion of the whole subtree below a node that is hidden.
This is the assumption in [MTKH03, DFGM08, LLLL11] for instance. Other
frameworks define more expressive policies, that allow the disclosure of a

12

2.1. Access control specification for XML

node while anonymizing the label of its ancestor into a “dummy” label. The
model by Fan [FCG04] could be ranked among those, modulo technical de-
tails (in some cases, nodes are simply deleted and their visible descendants
are adopted as in the approach discussed hereunder). To further prevent the
disclosure of sensitive information, other models fully delete invisible nodes
from the view document, and a visible node is adopted by its closest visible
ancestor. This approach has been adopted in [KMR09], for instance, and
is investigated in the present dissertation, although we also allow the policy
to specify anonymization instead of deletion for invisible nodes, as a special
case of relabeling. We will additionally discuss the impact of downward de-
nial consistency on the complexity of our algorithms. The chapter 5 about
updates reasoning does not consider such general views and allows only the
anonymization of internal nodes and the deletion of whole subtrees. Those
approaches are certainly no panacea for the problem of protecting structural
relationships, as information about the hidden parts could still be inferred,
from the sibling order for instance. We briefly discuss at the end of this sec-
tion some other approaches to protect structural relationships, but will not
explore those directions of research: to the scope of this dissertation belong
neither views restructuring the document nor statistical approaches.

The question of granularity: concise yet precise specifications for what
should be “hidden”? Annotating each node of the document with its au-
thorization status is not practical, so several methods have been proposed to
provide concise specification of the policy: the access control rules are gen-
erally specified via the annotation of a schema [WSL�07, FCG04] and via
XPath queries [MTKH06, DdVPS02, FCG04]. An overwhelming majority of
those models support propagation mechanisms to facilitate the specification
of the policy. Typically, the accessibility of some nodes will be propagated
to its descendants as long as it is not overridden. Depending on the models,
this may be the default behaviour or it may have to be explicitly expressed
in the access control rules.

In the case of access control models that rely on runtime evaluation of
the policy, the efficiency of the policy representation has received particular
attention. Yu et al. [YSLJ04] propose to use the structural locality of acces-
sibility in order to build a space efficient representation of the accessibility
map, i.e., the function mapping each node to its accessibility status. They
essentially observe that it is not necessary to tag each node with its accessi-
bility status: they optimize the number of tagged nodes and enhance those
nodes with propagation tags so that the accessibility of each node can be
deduced from its closest tagged ancestor and descendants.

Zhang et al. [ZZSZ07] refine this approach by using not only the structural
locality of the rights, but also correlations between the rights of several users
to further compress the accessibility map, where Yu et al. would store one

13

2. State of the art

accessibility map per role.

2.2. Access control models for XML

In this section we survey different access control models for XML. We first
mention approaches that do not rely on the construction of a view (whether
materialized or virtual) but allow the user to directly query the source doc-
ument instead. We then investigate view-based access control models, in
which the user queries the database through the view, and should typically
ignore up to the existence of hidden nodes. The last two paragraphs present
additional issues that we do not consider in this dissertation, namely how
to specify access control models that can both protect relations instead of
individual nodes, and handle data distributed on the web.

Access control without views Different techniques have been investigated
to efficiently specify and enforce access control in the absence of views. The
absence of a view makes it necessary to enforce the policy at runtime, i.e.,
together with query evaluation. In the security view framework, the user can
only access the document through the view, and the schema provided to the
user (if any) is that of the view. Authorization transparent models, on the
opposite, allow the user to directly query the database. One potential as-
set of authorization transparent models according to Rivzi [RMSR04] is that
they may save some development cost due to the necessity for the applica-
tion programmers to code one interface per authorization view in view-based
models.

Such authorization-transparent models have been investigated among oth-
ers by [Mot89, RS01, RMSR04] in the relational setting, and [KMM06] for
XML. Rivzi [RMSR04] distinguishes two different classes of models: in the
Truman models, the query from the user is “rewritten” into a query that
only accesses the information authorized by the view, while in the non Tru-
man models the system checks if the query is “valid” and executes the query
without modification if so, or else rejects the query and notifies the user.
In the Truman model, when query answers exceed the authorized data, the
rewriting process allows to return those of the answers that are within the
authorization views. Even if the rewriting process is transparent, the answers
delivered may not match the user’s expectations, as illustrated in [RMSR04].
Non-Truman models, on the other hand, raise the question of how we should
define validity. Validity is often expressed in terms of rewriting queries using
views. Our own work in Section 4.2 also addresses this query rewriting is-
sue, though from a different perspective. A contrario, this problem of query
rewriting is radically different from what is called query rewriting in the Tru-
man models (essentially, an intersection of the query with the set of accessi-
ble nodes) and from what is called query rewriting in the non-authorization

14

2.2. Access control models for XML

transparent models for non materialized views (essentially, a composition of
the query with the view).

In the Truman model, the simplest solution is to evaluate the query and
verify during evaluation that each node accessed is accessible. In order to
enforce access control at runtime with node filtering, one must then take
care that not only the nodes returned but also the nodes examined by the
query, inside XPath qualifiers for instance, are authorized to the user. This
solution which might prove expensive when the policy is specified with queries
or propagation rules that make it hard to establish accessibility of the node.
Most proposals are about improving the efficiency of this approach, using
indexes, static analysis or query rewriting.

Runtime evaluation of policies may be too expensive as it induces an over-
head to the evaluation of each query. Murata et al. [MTKH06] lighten the
burden on runtime analysis with a preliminary static analysis of the user’s
query. Static analysis techniques allow to distinguish queries that are guaran-
teed to be safe from those that cannot be answered and those whose correct-
ness depend on the data. In this approach the user’s query is preprocessed
independently from the actual document. They essentially consider poli-
cies defined by a set of positive rules using only downward axes of XPath,
which can easily be converted into regular expressions over paths by mak-
ing abstraction of the filters. In the conference version of [MTKH06], denial
downward consistency is explicitly assumed. However in both journal and
conference versions, the syntax of the policy languages distinguishes rules
that deny the access to a node and all its descendants (labeled �R) from
rules that apply only at the node and are not propagated downward (labeled
�r). This distinction seems rather useless under the downward denial con-
sistency assumption, but was possibly introduced for symmetry with positive
rules that grant access to the nodes. In the journal version furthermore, the
authors also consider the possibility to allow a hidden node to have visible
descendants, in which case the hidden ancestor node is anonymized. Let us
quickly describe the static analysis algorithm. The static analysis algorithm
first builds a regular expression (or NFA) from the query and two NFAs
from the schema and the policy rules. When the query or policy rules con-
tain filters, the analysis resorts to approximations by underestimating and
overestimating the automata. The filters are abstracted as false in under-
estimation automata, and as true in overestimation automata. The static
analysis determines from those automata if the query is unsatisfiable, or if
it can be safely evaluated, or if additional filters need to be evaluated at
runtime. Query rewriting is a popular approach [LLLL11, BP10] to avoid
those runtime verifications, or more exactly, to integrate them into the query
to be processed. The possibly unsafe query is rewritten into an equivalent
query returning only the authorized nodes.

15

2. State of the art

View based models for access control In their influential 2002 article,
Damiani et al [DdVPS02]. develop a model based on materialized security
views. The view of a document is obtained by pruning from the document
every node that is not visible according to the policy, except for those that
have visible descendants. For those nodes that should be hidden but have
visible descendants, the authors decide to fully disclose the node (but would
hide, for instance, its attributes): “to preserve the structure of the document,
the portion of the document visible to the requester will also include start
and end tags of elements with a negative or undefined label that have a
descendant with a positive label.” This statement is generally interpreted as
the disclosure of the node label, which would allow to conflate this approach
with downward denial consistency, even if the framework of Damiani et al.
could also be adapted into anonymizing the ancestor. After deletion of the
nodes, the resulting document may be invalid w.r.t. the schema, though.
Therefore, the schema is loosened: every element from the schema is made
optional. They consider authorizations specified either at the schema level or
at the instance level, i.e., dealing with a specific node of a specific document.
The authors enhance their model with write authorizations similar to the read
authorizations. Those authorization rules specify the three privileges insert,
delete, and update. 1 Processing write operations requires special care. For
instance, the authors observe that, when inserting a node, the visibility of the
inserted node must be checked in the resulting document. If the node is not
visible in the new document the insertion operation is rejected. Furthermore,
the authors observe that compliance of the new document with the schema
cannot be taken for granted in general. The write operation is rejected if
the new document is not valid with respect to the schema. The authors,
however, do not study the side-effect issue: due to the high expressiveness
of their authorization specification language, operations on an element may
affect the visibility of another element.

Stoica and Farkas [SF02] advocate the use of views as a technique that
guarantees better data availability and eludes illegal inference channels ob-
served in previous approaches. They introduce a model of security views
based on DTD annotation. Contrary to the models of Fan et al. [FCG04,
FGJK07] and Kuper et al. [KMR05, KMR09], the annotation of the DTD is
based on the tag of each individual element: the parent’s tag is not taken into
account. The specification of the security view are not the main focus of the
paper, however: the paper addresses the problem of preserving association
between nodes in a multilevel security policy. For this purpose, the authors
introduce minimum semantics conflict graphs, which specify the associations
(between pairs of nodes) that have to be preserved in the view. The authors
show how security views can be constructed from those graphs and the DTD

1Since we do not consider attributes but only element labels, we use the term of relabeling
or renaming in this dissertation, and save the word update for the document level

16

2.2. Access control models for XML

annotation.

Kuper et al. [KMR05] use a model closely related to the framework of Fan
for non-materialized security views, except they propose to materialize the
view instead of computing a new query for the composition of the view with
the user’s query. This clearly simplifies the task of evaluating the query,
but on the other hand exposes the model to the drawbacks of materialized
views underscored in [FCG04] in presence of multiple views and/or frequent
updates. This can be remedied if the views are materialized on the fly as is
also suggested in [KMR09], but this last solution may entail heavier query
evaluation costs at runtime. The extended version [KMR09] discusses sev-
eral materialization strategies. This paper also compares how different view
models including [FCG04], [KMR05], [DdVPS02] handle hidden nodes.

Query rewriting for non-materialized security views Fan et al. [FCG04]
introduced a first model of non-materialized security views that uses query
rewriting. They carefully motivate their framework by comparisons to other
approaches. We detail the main features of the model on page 128. In this
model, the views may hide internal nodes by anonymizing them.

Although the original paper by Kuper et al. [FCG04] develops a frame-
work for materialized views, the same setting was afterwards considered for
non-materialized views that use query rewriting [Ras06] with a correspond-
ing implementation [Ras07]. One of the distinctive features in the Kuper
et al. adaptation of Fan et al.’s framework is the semantics for internal
hidden nodes: those are deleted by the view in [KMR05], which triggers
the adoption of each visible node by its closest visible ancestor, whereas
in [FCG04, FGJK07] the nodes are typically anonymized. What is more,
the semantics of filters in annotations differs in the two models. Another di-
vergence lies in the DTDs considered: Kuper et al. consider general DTDs,
whereas Fan assumes normalized DTDs in which the production of a node
is either a disjunction or a sequence, but cannot be an arbitrary regular ex-
pression. This difference partly accounts for the choice of dummy nodes in
Fan’s models: dummy nodes are inserted in order to preserve the structure
of the DTD when internal nodes are hidden.

The XPath fragments used in the models of Fan et al. [FCG04, FGJK07]
only include the downward axes, whereas the fragments used in the model
of Kuper et al. [Ras07, KMR09] also includes upward axes. The views
in [FCG04, Ras07, KMR09] are non-recursive, but Fan et al. [FGJK07] con-
sider a model allowing recursive queries and views, based on their origi-
nal model [FCG04] regarding the specification of the policy: the main con-
tribution of [FGJK07] is an algorithm to efficiently evaluate (downward)
Regular XPath queries over non-materialized recursive views, as discussed
on page 128. All those models have been implemented [FCG04, FGJK06,
FGJK07, Ras07, KMR09], and the model of Fan et al. is protected by US

17

2. State of the art

Patent 7433870.

Damiani et al. [DFGM08] propose another framework to enforce access
control by query rewriting over non-materialized security views. The policy
is defined by an annotation of a schema D (defined in XML Schema), in a
way similar to Fan et al. The construction of the view schema, however, is
quite simple because Damiani et al. assume denial downward consistency.
Therefore, a rough approximation of the view schema is obtained by a simple
loosening of the schema: the elements from D whose visibility is conditional
are made optional in the view schema and elements from D which are not
visible are simply removed in the view schema together with all their descen-
dants. A DFA is also constructed to represent the annotated schema. When
the user sends a query on the view with the assistance of the view schema,
this automaton is used to rewrite the user’s XPath query into a correspond-
ing XPath query over the source document. The framework also supports
the three write privileges delete, insert and update. As for read privileges,
authorizations to perform those operations are specified by annotation of the
schema. Although denial downward consistency is assumed, and XPath ex-
pressions are restricted to the downward fragment of XPath, yet one cannot
always prevent the updates from raising side-effects on the source. For in-
stance, deleting a node implies the deletion of all its descendants, some of
which might be invisible nodes. The authors consider this to be a case of
confidentiality versus integrity, and opt in favour of confidentiality: rather
than rejecting the deletion of nodes with invisible descendants, they prefer
to delete its invisible descendants as well.

Protecting structural relationships The question of ancestor visibility for
hidden nodes is a prominent example for the difficulty of hiding structural
relationships in XML. This protection of structural relationship has also re-
ceived some attention from the community. Finance et al. [FMP05] propose
to extend the rule based access control models for XML with relationship
authorizations. Beyond the usual rules specifying the visibility of nodes, the
database administrator specifies explicitly the sibling and ancestor relation-
ships that must be hidden with relationship authorizations. The authors
propose methods based on cloning and shuffling to prevent inference of in-
formation about sensitive relationships.

Inspired by the Chinese wall model [BN89], Cuppens et al. [CCBS05] pro-
pose an alternative approach to extend existing XML access control models
with a mechanism for protecting relations. In this approach, the access con-
trol policy defines blocks of rules. The relationships between nodes selected
in a same block are displayed in the view, but not the relationships between
nodes from distinct blocks. The view is computed in two phases: the selected
nodes are first computed independently for each block, then the resulting
view trees (one per block) are merged. The merge process can fail if the

18

2.2. Access control models for XML

policy is not well designed. In this model, as in [FMP05], some nodes from
the original document can be duplicated in the view into anonymous copies.
This model also tackles the risk of inferences from the sibling ordering by
proposing a shuffle operation that randomly reorders the children of a node.

Security views restructuring the document could be an attracting alterna-
tive to the fragmentation of the policy into blocks. Creating new nodes, as
well as copying, deleting or moving existing nodes are primitives proposed by
the security specification language of Mohan et al. [MKSW06]. This proposal
adheres to the query rewriting approach: the user formulates XPath queries
on the basis of a view schema, and these queries are rewritten into XQuery
programs evaluated over the source document. This expressive framework
provides powerful tools for hiding structural relationships, but this may re-
sult in complex transformations, even though a non-recursive framework is
assumed. These have been considered unfit for large-scale security specifi-
cations [DFGM08]. Furthermore, this framework assumes a non-recursive
schema.

In their authorization-transparent model (which does not feature restruc-
turation of the document), Kanza et al. [KMM06] also study the protection
of structural relationships. Their approach is radically different from the ones
mentioned above because of the authorization transparent model, because of
a different formalism to specify the policy, and because the problems they
tackle assume a fixed document as input. The policy is specified by rules of
the form for p1 exclude p2, i.e., pairs of XPath formulae p1, p2. A rule of
this form specifies that in the document t the relationships between the nodes
in vp1wt and those in vp1{p2wt must be concealed from the user. Actually the
relationships are the child and descendant relationships between the nodes
of those two sets, because the paper only considers the downward axes of
XPath, although the authors mention the possibility to apply the same tech-
nique for general XPath queries. The authors define a “validity” property for
queries which essentially guarantees that a valid query Q returns the same
result for any pair of trees that differ only by their hidden relationships. The
authors also study the coherence of a set of rules, and present an algorithm
to check what level of security is guaranteed by a set of rules. In the spirit
of k-anonymization, they define the relationships between two sets of nodes
A and B to be k-concealed if for every element in B there are k elements
a1, . . . , ak in A, and k documents indistinguishable by valid queries, such that
in the ith document b is a descendant of ai but of no other ajpj � iq. The
authors give an algorithm that computes for a given document and for each
rule of the policy the maximal value of k for which the relations between the
sets vp1wt and vp1{p2wt are k-concealed.

Extensions of the access control framework With the boost of distributed
data management due to social networks and cloud services, the main pri-

19

2. State of the art

vacy and security issues may now be raised by distributed data model. The
security framework we consider handles a single document, stored as a whole
on a single machine, and as such, this centralized model does not address
the specific issues occurring in the context of distributed data. Several mod-
els have been proposed for reasoning about shared data in heterogeneous
environments. The Active XML language, for instance, defines documents
containing calls to Web services, together with a peer-to-peer architecture to
manage those services [ABM08]. While Active XML is specific to XML doc-
uments, Abiteboul et al. [ABGA11] also propose the Webdamlog language,
with the view to establish formal foundations for distributed data manage-
ment. Instead of the calls to Web services from Active XML, Webdamlog uses
Datalog-like rules to specify intentional data. The rules can be used for dele-
gation (installing rules at another peer), for materializing a view of the data,
for the sending of messages to other peers, or for deriving locally intentional
facts, whereas facts “capture both local tuples and messages between peers.”
Webdam Exchange [GAP11] extends this Webdamlog language with policies
controlling the access and the distribution of the data. In particular, the
notion of principal allows a finer granularity of the access control than the
physical peers used to localize the data in Webdamlog. Access control lists
allow to specify read and write authorizations, as well as localization rights
for deciding where data can be stored and found. Credentials (e.g., crypto-
graphic keys) are also supported. Webdam Exchange thus provides a unified
model to tackle the management of distributed data in a Web scenario.

Focusing on access control issues, Capitani et al. [dVFJ�10] address in
a non-XML framework the questions raised by data outsourcing, where the
data is stored on “honest but curious” external servers. Her model relies on
encryption of the data since an honest-but-curious server is trusted to keep
the data available, but should not be given access to the information, there-
fore the server cannot directly enforce the policy. Foresti supports policy
updates without re-encrypting the data by using a two-layered encryption,
the first layer protecting the privacy of the data, and the second layer en-
forcing the current version of the policy. Fragmentation of the data can be
used to protect associations of sensitive information, possibly combined with
encryption, as in [ABG�05, CdVF�10].

2.3. Queries on views

This dissertation investigates several questions about queries and views. In
the non-materialized setting one must compute a query for the composition
of the view with the user’s query. We survey here related work on query
composition. We then present the related work on determinacy and query
rewriting because we use these notion for the comparison of policies. Last,
and since views can be seen as a particular case of incomplete information,

20

2.3. Queries on views

we mention some results on querying in presence of incomplete information.

Query composition In the problem of view and query composition, a view
Qv and a query Q over the view are given as input, and one must find a query
Q2 over the source such that Q1 is equivalent to the composition of Q and
Qv. Formally, one has to compute a query Q1 such that for every document
t, Q1ptq � QpView pQv, tqq. We observe that such a query Q1 always exists if
we do not constrain its language.

Benedikt and Fundulaki [BF05] define subtree queries and study their clo-
sure under composition. A subtree query can be seen as an upward-closed
view, with the additional requirement that leaves of the view trees must be
leaves also in the original tree: for every tree t and subtree query Q, Qptq
returns a document whose root-to-leaf paths are root-to-leaf paths of the orig-
inal document. The definition of subtree queries is based on the XPath syn-
tax and more specifically, of the fragment XPathpó,ó�,ò,ò�,Y, r s,^,_, q.
The evaluation under subtree semantics of an XPath query QX over tree t
returns the subtree2 tQX uptq of t obtained by keeping every node selected by
QX under the usual semantics (QX ptq), plus all their descendants and ances-
tors. The authors study the closure under composition of subtree queries, i.e.,
establish which fragments F guarantee, for every pair of queries Q1, Q2 P F ,
the existence of a query Q P F satisfying for every t, tQuptq � tQ1uptQ2uptqq.
Among others, their results show that tree patterns are not closed under
composition, but union of tree patterns are. Computing the composition for
union of tree patterns involves an exponential blowup, but for fragments with
upward axes, the authors obtain simpler polynomial algorithms.

Vercammen et al. [VHP06] study the closure under composition of a larger
XPath fragment under the more traditional semantics: the view needs not
even be upward closed, and the view tree corresponding to query Qv is built
from the set of nodes selected by query qv, each node being adopted by its
closest visible ancestor. They distinguish fragments C of XPath that guar-
antee for every Qv, Q P C the existence of a query Q2 P C equivalent to the
composition of view Qv and query Q. The authors study several fragments of
NavXPath extended with path intersection and path complementation oper-
ators, which makes this fragment closer to XPath 2.0 than XPath 1.0. Some
of these fragments are not closed under composition: essentially those are
the fragments excluding path complementation but including recursive axes,
or sibling axes, or union. The remaining fragments studied in the paper are
closed under composition. What is more, query Q2 can be computed from
Qv and Q in time Op|Qv|�|Q|q or Op|Qv|2�|Q|q, depending on the fragment.

Fan et al. [FCG04, FGJK07] study the problem of view and query com-
position for their security view frameworks. They specify the view by an-

2In their semantics, evaluation of a subtree query returns a tree, not only a set of nodes.
As usual, the structure of the view tree is inherited from the original tree

21

2. State of the art

notated DTDs, with annotations defined in the same XPath fragment that
is used for querying the view: downwardXPath in [FCG04], and downward
Regular XPath in [FGJK07]. In general, XPathpó,ó�,Y, r s,^, q is not
closed under view composition for recursive DTDs [FGJK07], but it is when
the view is non-recursive [FCG04]. This is because axis ó� does not allow
any control over the nodes it “skips”, unlike the Kleene star operator on path
expressions: Regular XPathpó,ó�,Y, r s,^, q is closed under composition,
even for recursive views. Computing the composition, however, involves an
exponential blowup in the size of the formula, and the same exponential
blowup is incurred by XPathpó,ó�,Y, r s,^, q over non-recursive views.
Fan et al. introduce an automaton formalism to circumvent this exponen-
tial blowup [FGJK07]. This formalism is closely related to alternating word
automata, but alternation is used for branching over possibly different paths
in the tree. We briefly compare our view and query composition algorithm
with the one of Fan et al. on page 128.

Compared to the problem of view and query composition, the problem of
answering queries using views reverses in some sense the role of Q1 and Q: its
input consists of a view Qv and a query Q1 over the source, and one would like
to answer query Q1 by relying only on the view Qv. In other words, one has
to write a query Q that takes as input the view of the document by Qv (but
not the document itself), and returns the answers of Q1 over the document.
Contrary to the composition problem, the view Qv may provide insufficient
information to answer query Q1, so that allowing unlimited computational
power to Q does not guarantee a solution to the problem. The connection
between the two problems has already been observed in, e.g., [FGJK07].

Determinacy and query rewriting The problem of answering (or rewriting)
queries using views comes in two flavours: one should first decide if the view
provides enough information to determine the answer of the query for every
document. This is known as the determinacy problem. Knowing that view
V determines the answer to query Q, however, is of little help in practice if
we do not know how to compute the answer, or if the computational power
demanded is unreasonable. In the problem known as query rewriting, one
has to compute in some particular query language a reformulation of query
Q in terms of a query using view V . In the usual formulation of those two
problems, V consists of a set of views and the document is an arbitrary
structure.

Determinacy has been investigated in the middle of the 20th as a problem
of implicit definability in logics. More recently, these problems of rewriting
queries using a given set of queries have received considerable attention from
the database community, for all sorts of view and query languages, including
MSO and FO , conjunctive queries, and fragments of those languages [Mar07,
NSV10, Pas11, Hal01], as well as SQL queries with aggregates [CNS99, AC11]

22

2.3. Queries on views

and regular path queries [CGLV02, CGLV07]. Halevy [Hal01] surveys the
different contexts in which the problem has been considered, from query
optimization and database design to data integration and data warehousing.
He also establishes the state of the art at the end of the 90’s in the relational
setting, and surveys the different algorithms with a particular focus on their
application domain. Several different settings are distinguished for the query
rewriting problem. Under the exact view assumption, the view document
is guaranteed to consist in the set of all tuples selected by the view query,
whereas under the sound view assumption the view only returns a subset
of the tuples it selects. We only consider the exact view assumption in
this dissertation. Similarly, we only consider exact rewritings, but in other
contexts people have investigated maximally contained rewritings, namely
greatest under-approximations of the query Q using the view V . In the
present work, we came upon the determinacy and query rewriting problems
when we tried to compare views. The tree structure of the document and our
choice of query language makes it relatively easy to obtain some results in our
framework. In contrast, those problems appear to be quite challenging for
conjunctive queries(CQ) over relational databases. We first briefly survey the
state of the art regarding graphs and relational databases, yet for a broader
state of the art we refer the reader to [Hal01] for the motivations of query
rewriting using views, to [NSV10] for a general overview, or to [Mar07] for a
historical perspective.

The decidability of determinacy for CQ queries and views is still open.
However, it is known that when a set of CQ views V determines a CQ query
Q, one cannot always find a CQ rewriting of Q in terms of V [NSV10].
Nash et al. [NSV10] investigate the question of completeness of a rewriting
language as well as the decidability of determinacy for view and query lan-
guages ranging from FOto CQ. Given a view language V and query language
Q, a language R is complete for V-to-Q rewritings if for every set of views
V in V determining some query Q in Q, one can rewrite query Q in terms
of V using some R in R. Every language complete for FO-to-FO rewriting
is Turing-complete in the sense that it contains all computable functions,
and determinacy is undecidable for FO views and queries (it is even unde-
cidable for unions of conjunctive queries) [NSV10]. The authors also show
DSOX@SO to be complete for CQ-to-CQ rewritings, and similarly for rewrit-
ings involving conjunctive queries with difference, or union of conjunctive
queries instead of CQ. Moreover, they also study fragments of CQ for which
not only determinacy is decidable but also CQ form a complete language
for rewriting. These last results are further extended by Pasaila [Pas11].
Afrati [Afr11] also pursued the study of completeness for rewriting for frag-
ments of conjunctive queries. She relates determinacy to conjunctive query
equivalence in a particular setting with a single view, and she also introduces
the notion of a language being almost complete for rewriting. Zheng and
Chen [ZC11] investigate a different restriction of conjunctive queries: they

23

2. State of the art

show that determinacy is decidable in quadratic time when all relations have
arity one, and in this case CQ is complete for CQ-to-CQ rewriting.

Fan et al. [FGZ12] also investigate determinacy, under the name of invert-
ibility, for views and queries defined in CQ, Datalog and FO . Quite similarly
to our concerns in this dissertation, the authors do not study determinacy
for its own sake, but as a criterion for preserving information. They sharpen
the undecidability result from [NSV10], proving determinacy to be unde-
cidable when the view language is Datalog and the query language is CQ,
or vice-versa. They also establish the complexity of determinacy when the
query language is CQ and the view language is one of the SP, PC or SC frag-
ments of CQ (where SP denotes the conjunctive query using selections and
projections and PC, the conjunctive queries using projections and Cartesian
products). The complexity for determinacy ranges from PTime for PC to
NP-complete for SP ans SC, and drops to PTime for SP when the query
Q is a minimal CQ. Finally, the authors introduce the query preservation
problem, closely related to determinacy, and establish its complexity for the
aforementioned query languages.

We so far discussed relational databases, but query rewriting techniques
have also profited XML databases: the major database vendors have already
developed XML-specific techniques for optimizing queries with materialized
views3 [KLM�04, GGH�09]. Furthermore, the other traditional applications
for query rewriting such as data integration are possibly even more relevant
in an XML framework.

Xu and Öszoyoglu [XÖ05] and Mandhani and Suciu [MS05] study the query
rewriting problem when there is a single view defined by an XPath query.
Mandhani and Suciu derive a sound but incomplete algorithm for query
rewriting, when the view and query are defined by tree patterns. They assess
experimentally the efficiency of their technique for optimizing a small frag-
ment of XQuery in presence of materialized XPath views: their system main-
tains a cache containing the results of some XPath queries and, when a new
query must be evaluated, it tests for each view in the cache if the query can be
rewritten in terms of that view. Xu and Öszoyoglu prove that deciding the ex-
istence of a query rewriting is co-NP-hard for tree patterns. The authors also
prove query rewriting to be in PTime for the fragments of tree patterns that
allow child axis but rule out one of the other features: descendant, wildcard
labels or branching. They also claim an upper bound, but this upper bound is
based on a paper since refuted, as observed by Afrati et al. [ACG�09]. Afrati
et al. show the query rewriting problem to be decidable when the view and
query are tree patterns. They also prove the problem to be co-NP-complete
for a large fragment of tree patterns, and argue that their paper introduces
radically new techniques for reasoning about tree patterns. Those works con-
sider the query rewriting problem for a single view, but with the help of node

3materialized views are called materialized query tables in IBM DB2

24

2.3. Queries on views

identifiers, several views can be combined to answer queries. Several authors
have therefore undertaken the study of query rewriting problems in pres-
ence of multiple views [BÖB�04, ABMP07, TYÖ�08, CDO08, MKVZ11].
Balmin et al. [BÖB�04] introduce an algorithm to rewrite XPath expres-
sions using multiple materialized XPath views. The XPath fragment consid-
ered for the views and queries includes essentially the axes child, descendant
and parent (but not ancestor nor any of the optional axes from XQuery’s
Full Axis Feature). The rewriting algorithm also handles comparison predi-
cates. According to the authors, value-based comparison play a crucial role
in query optimization owing to their high selectivity. The query rewriting
algorithm comes with no completeness guarantee, but implementation of the
system allows to assess the efficiency of the optimization framework. Ar-
ion et al. [ABMP07] study the containment for queries expressed in a “rich”
tree pattern language, under Dataguides enhanced with integrity constraints.
Dataguides [GW97] form a structural summary describing all paths that oc-
cur in the document, which incidentally bounds the depth of the document.
The authors derive a sound and complete algorithm for query rewriting under
Dataguide constraints, and report on practical performances of the ULoad
prototype that implements these algorithms. Tang et al. [TYÖ�08] use a
path decomposition of the tree patterns to filter out the views that cannot
be used to produce a rewriting. They require an encoding of node identifiers
that records the label of all ancestors of the node, and use this encoding
to combine the views for the query rewriting. Cautis et al. [CDO08] show
that containment already becomes intractable when wildcard-free tree pat-
terns are extended with path intersection (in the spirit of XPath 2.0, but
only at the top level: intersections cannot be “nested” and must occur at
the “root” of the pattern), which implies intractability for query rewriting.
Consequently the authors identify restricted settings that allow to rewrite
their XPath queries using an intersection of views in polynomial time. The
authors also prove that deciding if the intersection of patterns can be rewrit-
ten without using intersection (nor union) is co-NP-hard, but is in PTime

under restrictions similar to those for the query rewriting. Manolescu et
al. [MKVZ11] consider the query rewriting problem for XQuery views and
query. They actually consider a fragment of XQuery corresponding to tree
patterns enhanced with value joins: those tree patterns may return several
output nodes, and a view may specify joins between nodes from different
patterns. Their algorithm first filters out views that cannot contribute to
the rewriting, and afterwards computes then optimizes a rewriting. The au-
thors put great emphasis on the optimization of the rewriting: they obtain
rewritings that use no redundant views. The rewriting algorithm may exploit
but does not require structural (node) identifiers. Finally, the authors com-
pare experimentally the performances of different strategies for computing
the rewriting. Cautis et al. [CDOV11] study a framework in which the set of
views is very large (and possibly infinite), precluding explicit enumeration of

25

2. State of the art

the views. The views are therefore defined implicitly: a grammar-like formal-
ism specifies the family of xpath views which are available for the rewriting.

Bohannon et al. [BFFN05] study related notions though in a very different
framework. They consider a function that maps each document satisfying
one DTD D1 to a document satisfying another DTD D2. Such a function
σ is invertible if the original document can be recovered from the target
document. Similarly, the function σ is query preserving with respect to a
query language L if there is a computable function F : L Ñ L such that
for any Q P L and any document t satisfying D1, Qptq � F pQqpσptqq. In
short, σ is query preserving w.r.t. L if every query from L can be rewritten
as the composition of another query from L with σ. The paper considers
schema mappings, whereas we consider views. What is more, we distinguish
two settings depending on whether identifiers are taken into account or not,
a distinction that is absent from [BFFN05]. Their definition of invertibility
may be considered under both settings. We observe that when considering
identifiers, Q1 ¤2 Q2 if and only if Q2 is query-preserving w.r.t. PublicpQ1q.
Also, Id ¤3 V if and only if V is invertible in the sense of [BFFN05], where
Id is the identity query, i.e., the view that hides no node. For this, we must
consider invertibility without identifiers in our model: if we assume each
node has a (unique and arbitrary) identifier, every query V that deletes an
unbounded number of nodes would not be invertible due to the impossibility
to recover the identifiers of the hidden nodes.

Incomplete information The questions raised by updates on the views and
those raised by query answering using views mostly derive from the incom-
pleteness of the information provided by the view. Incomplete information is
arguably the norm rather than exception in databases. The theoretical foun-
dations of incomplete databases date back thirty years [IL84]. Abiteboul et
al. [AKG91] establish the complexity of several problems pertaining to in-
complete databases. The field has received renewed interest since then, in
parallel with the maturing of data exchange and data integration techniques.

Certain answers are allegedly a tool of choice when it comes to handling
incompleteness. The certain answers of a query with respect to a partial
information, are generally defined as the intersection over all possible docu-
ments of the answer set. The problem of computing the certain answers of
a query given a view document has received much attention under the name
of query answering and is also related to the problem of rewriting a query
using views. The above definition for certain answers does not fit in the
case of XQuery queries which return a single tree instead of sets of tuples for
relational queries. David et al. [DLM10], in particular, remedy the shortcom-
ings of the usual definition with a homomorphism-based definition of certain
answers. For queries returning sets of nodes, Barcelo et al. analyse the com-
plexity [BLPS09] of the standard questions related to incompleteness, such

26

2.4. Views and Policies in Presence of Updates

as consistency, membership and query answering. They focus on restrictions
that lower the complexity of those problems, and observe in particular that
schema information quickly makes the problems intractable.

Several specific models of incompleteness have been proposed for XML
documents [ASV06, BLPS09, DLM10]. Libkin investigates a general data
model subsuming relational and XML frameworks for incompleteness. This
model uses a homomorphism-based ordering on the information conveyed
by the incomplete database in order to measure the “degree of incomplete-
ness” [Lib11]. Libkin shows that seemingly divergent definitions of certain
answers in relational and XML settings share the same interpretation in
terms of greatest lower bounds in the general model. He also studies the
interpretation in this general model of data exchange solutions in both rela-
tional and XML settings. The paper additionally surveys the complexity of
the standard questions related to incompleteness in this general model.

In the more specific view framework, Libkin and Sirangelo [LS10] present
as a subsidiary result an algorithm for reasoning about certain answers dis-
closed by upward-closed views. Given an upward-closed view V and Boolean
query Q, their algorithm computes the set of all view trees from which one
cannot be certain that Q holds on the source document. We discuss their re-
sults further on page 161. Kopczyinski [Kop11] investigates another problem
more distantly related to the results in the present dissertation, namely the
consistency of the incomplete information. He assumes a tree model similar
to [BLPS09], and uses tree automata as a schema model.

Beyond certain answers issues, the whole fields of data exchange and data
integration study the problem of answering queries using views and are also
more or less related to the view update problem. The formalisms, however,
are different from ours, as the relations between source and target are gen-
erally expressed with dependencies of various kinds, and it is not clear how
our problems could be formulated in these settings, so we will not expand
about those.

2.4. Views and Policies in Presence of Updates

A peculiar characteristics of works on XML updates, illustrated by the sur-
vey in [Che08] for instance, is the miscellany of update languages considered:
most papers in the field define their specific update language. Those lan-
guages are nevertheless quite similar, and generally consist in extensions of
XQuery with update operations. This section briefly surveys the problems
raised by the possibility to update the document, from the view maintenance
and view update problems to the more general questions of reasoning about
evolving documents, with an emphasis on access control and related issues.

27

2. State of the art

View Maintenance The problem of maintaining materialized views has
received much attention from the database community: in the relational
setting (see the studies of Gupta et al. [GM95] for a general overview, or
Koch [Koc10] for a more recent, but also more specific algebraic perspec-
tive on incremental evaluation), for graphs or semi-structured data [ZGM98,
AMR�98], and more recently for XML documents [FKSV08, BGMS11]. Gupta
et al. [GM95] survey several approaches to the problem. In the lucky case, the
update might leave the view unchanged: this motivates the study of query-
update independence, which we briefly survey in the next paragraph. In gen-
eral, however, updates will affect the views, but query-update independence
can still be useful as a preliminary step. It might also be the case that knowl-
edge of the initial view and of the update applied is sufficient to compute the
updated view, without additional information on the source document. This
motivates the self-maintainability approach: views that can be maintained
using only the view and key constraints are called self-maintainable but in
general views need not be self-maintainable. Finally, incremental mainte-
nance of the view is one of the prevailing approaches when re-computing the
view from scratch appears too expensive, and this technique is implemented
in major commercial databases.

Several practically-oriented papers addressed the incremental evaluation
of XPath queries. More recently, Bjorklund et al. [BGM10] investigated
the worst-case complexity of the problem for several fragments of XPath,
but they almost exclusively focus on Boolean queries, as we discuss below.
Maintaining XQuery views is even more challenging a task, but several ap-
proaches already tackle the maintenance of XQuery views. Bjorklund et
al. [BGM10] established the complexity of incremental evaluation for several
XPath fragments, but they essentially consider a Boolean restriction of view
maintenance, namely the problem of deciding if a Boolean XPath query is
satisfied by the document after the update, which is therefore related to the
problem of query-update independence, with the restriction that for incre-
mental evaluation, the document to which the update is applied is available.
An auxiliary data structure is maintained in addition to the document. The
updates considered encompass all atomic operations, and the authors pro-
pose algorithms with time polynomial in the size of the query, and sublinear
in the size of the document for several fragments of (navigational) XPath,
using an auxiliary datastructure of size linear in the document and polyno-
mial in the size of the query. As an adaptation of a similar result by Balmin
et al. [BPV04], they also show that incremental evaluation is feasible for the
whole NavXPath dialect in time sublinear in the document and exponential
in the size of the query, using an auxiliary structure of size linear in the
document and exponential in the query.

Foster et al. [FKSV08] propose a system for the incremental maintenance
of XQuery views. The query (view) language they consider is a fragment of
XQuery, which is translated into algebraic operators similar to those of the

28

2.4. Views and Policies in Presence of Updates

relational model, but with some additional operators to define the navigation
over the tree. This fragment can express FLOWR blocks and the XPath
navigation with downward axes, however it does not handle the recursive
features of XQuery. Therefore the view is essentially obtained by combining
the results obtained through the evaluation of a set of XPath queries. This
combination may involve joins, reordering, etc. The updates considered are
expressed as a set of atomic update operations, carrying a query from XQuery
that should be evaluated at runtime over the tree in order to specify the data
that must be inserted or deleted. The authors allow the system to maintain
an auxiliary structure. They demonstrate the performance of their prototype
over views from the XMark [SWK�02] benchmark.

Bonifati et al. propose another algebraic approach for the incremental
maintenance of materialized XML views [BGMS11]. As in [FKSV08], the
view and update are defined by XQuery and XQUF expressions. The frag-
ments, however, differ slightly: the syntax for the view language is simpler
but less expressive. It still allows one for loop and also uses the downward
fragment of XPath. As for the updates, deletions are specified via an XPath
formula returning the nodes to be deleted, whereas insertion uses a for it-
eration to specify the data that must be inserted, depending on the context.
While the approach of Foster et al. [FKSV08] exploits the tree algebra of
Galax, the approach of Bonifati et al. is designed to benefit from standard
optimizations techniques from the database engine, such as structural joins,
delta tables, and term pruning heuristics. The authors also use XMark for
benchmarking.

Independence of Updates and Queries (or Views) An update u and a
query Q are independent on a document t if the answer of query Q over
t remains the same after update u is applied to t. More generally a class
of updates U and a query Q are independent if for every source docu-
ment and every update in U , the view of the document remains the same
after application of the update. This problem of query-update indepen-
dence has received much attention, and in particular in the XML frame-
work [RS06, STP�06, BC09, BGM10, GI08]. Query-update independence
has been investigated essentially for the maintenance of materialized views
but also as a mean of detecting conflicting updates, among others. Query-
update independence may also find applications in the constant complement
approach, in order to check that a given update does not affect a certain
query (the complement). Benedikt et al. [BC09] for instance make a short
observation about such possible use of query update independence in an ac-
cess control framework to verify the compliance of an update with a policy
that forbids to alter some view.

Raghavachari and Shmueli [RS06] study the problem of detecting conflict-
ing updates, which in their approach amounts to a problem of query-update

29

2. State of the art

independence. They study the complexity of determining exactly if an up-
date and an XPath query are independent. This study does not restrict
the queries to Boolean XPath, which leads to a distinction between different
kinds of conflicts, depending on the semantics of query evaluation (namely,
does a query return the set of selected nodes or the whole subtrees below
those nodes) and the kind of updates considered. The authors show NP

hardness of the problem for fragments of XPathpó�,ó, r s,^q, and provide
a polynomial algorithm for the XPath fragment that does not use filters.
Sawires et al. [STP�06] implement algorithms to test query-update indepen-
dence and self-maintainability for the same XPath fragment as [RS06], when
the document and its view are loosely coupled, a framework which previous
algorithms do not manage well according to the authors.

Benedikt et al. [BBFV05] also study query-update independence in order to
optimize the ordering of update operations for an XQuery-inspired update
language. Their independence criterion is undecidable, so they provide a
sufficient condition in terms of satisfiability of XPath queries. They apply
the resulting independence check to speedup the evaluation of queries without
the snapshot semantics.

Gire and Idabal [GI08] study the independence of views and updates when
both the view and the update are specified by regular tree patterns. A regular
tree pattern is essentially a tree pattern of which the edges represent regular
expressions. Gire and Idabal show the Pspace-hardness of independence in
their framework, and propose a sufficient condition for independence that
can be tested in polynomial time. Gire and Idabal also propose to define
functional dependencies using the same regular tree pattern formalisms and
obtain similar results for the problem of independence between the update
and the functional dependencies, i.e., the problem of checking if an update
affects the satisfaction of a functional dependency [GI10].

Benedikt and Cheney [BC09] develop a schema-based static analysis al-
gorithm to decide if an XQuery query and an XQUF update are indepen-
dent. The schema language corresponds to regular tree languages (EDTDs),
and the query and update languages correspond to restricted versions of the
XQuery and XQUF languages: their core language for XQuery allows for

iterations, let bindings, conditions, as well as the standard XPath axes. The
updating expressions can similarly use iterations and bindings via XQuery
selection queries in order to define the nodes concerned with atomic updates.
The authors observe that query-update independence (with or without a
schema) is undecidable for the general XQuery and XQUF languages, but
becomes decidable, though non-elementary for their restricted versions when
the query considered is a Boolean query. The decidability proof works by re-
duction to the equivalence of first-order logic formulae: one for the query and
one for the composition of the query with the update. The non-elementary
hardness is obtained by a reduction from satisfiability in first-order logic
over trees. In view of those negative results, Benedikt and Cheney propose a

30

2.4. Views and Policies in Presence of Updates

“best-effort” analysis that approximates the set of nodes “impacted” by the
update and checks they are disjoint from the nodes “accessed” by the query.
Their analysis is sound, but not complete as some queries and updates are
not detected to be independent.

The same authors introduced the notion of destabilizers [BC10], which
provides a different, schema-independent framework for query-update inde-
pendence. A destabilizer for a given query is a finite representation of the set
of all updates that could modify the result of the query. In this framework,
an update expression u is independent from query Q if the set of updates
that can be generated by u does not intersect the updates represented by the
destabilizer of Q. For the authors’ core XQuery and XQUF languages, how-
ever, computing a destabilizer is not feasible, so that the authors resort to an
over-approximation of the destabilizer. The authors compare experimentally
two approaches to verify that update u does not intersect the destabilizer:
the direct one uses solvers for satisfiability in monadic second order logic
over trees, and the second one reduces the problem to satisfiability modulo
theories via the encoding of trees. In any case, the disjointness analysis can
be carried out with existing solvers.

Ghelli et al. [GRS08] develop a path-based static analysis to compute over-
approximations of the nodes accessed or modified by an XQuery update. The
authors actually study an update language of their own, XQueryU, based on
an extension of XQuery with update operations. In particular, they do not
assume snapshot semantics for the updates, which means that updates may
be applied in the course of the evaluation. The static analysis method devel-
oped by the authors provides a conservative approach to determine whether
two XQueryU updates commute.

Bidoit-Tollu et al. [BTCU12] propose a different schema-based analysis
of query-update independences for a similar fragment of XQuery. Their ap-
proach infers the possible chains of labels along the paths from root to nodes,
which allows to detect query and update independences overlooked by the
previous algorithms, thus improving the precision of the over-approximation.

Update anomalies In presence of a schema, some updates cannot be exe-
cuted without side effects or without making the database incoherent. Let
us a consider a traditional “student and courses” database where students
always appear as a pair formed by their name together with some identi-
fier: their student number, for instance. The database consists of a set of
triples (student name, student id, course taken). A typical constraint will be
that the same identifier should not be given to two different students. This
redundancy introduces update anomalies: if the name of some student is up-
dated for some but not all occurrences of the student, the database will not
satisfy the constraint any more. Also, a student cannot be inserted in the
database until it has registered for some course, and the deletion of the last

31

2. State of the art

course taken by the student makes the student disappear from the database.
We observe that in general the schema and constraints such as functional
dependencies may restrict which updates can be applied without side effects.

Normalization is a widespread approach to avoid update anomalies in the
relational setting. The process of normalization can be traced back to the
original presentation of the relational model by Codd [Cod70], and the suc-
cess of normalization inspired similar normal form proposals for XML doc-
uments [AL05]. A well-designed schema should then follow some normal
form such as 3NF or BCNF that eliminates or rather minimizes redundancy.
A better design for the example above would be to store the pairs (stu-
dent name, student id) and (student id, course taken) in two distinct tables.
Normalization algorithms generally decompose a database into smaller ta-
bles but, depending on the constraints, normalization is not always feasible.
Some schemata, for instance, do not admit dependency preserving BCNF
decompositions. What is more, normalization of the source schema does
not prevent data redundancy when computing the views, and thus does not
necessarily prevent side effects for updates applied through a view (view
updates) [Feg10].

The View Update Problem: Generalities Commercial databases such as
Oracle, IBM DB2, MySQL and Microsoft SQL server nowadays support view
updates. Some undesirable side effects can be avoided using by checking
that tuples inserted in the view can really appear in it according to the view
definition.

The view update problem is in some sense symmetric to the view mainte-
nance problem: in the view update problem one tries to maintain the original
document when its view undergoes updates from the user, whereas the view
maintenance problem deals with the maintenance of the view when the orig-
inal document undergoes updates. Of those two problems, the view update
problem is certainly the more challenging due to the question of side effects
and the necessity to decide between different propagations. Most contribu-
tions to the view update problem date back to the 80’s, and in particular
the formalization of the problem and its main solutions. Before we survey
the view update problem, let us mention a workaround: one may in some
settings expect the view-update to have no consequences beyond the mod-
ification of the corresponding view, if the updated data is to be accessible
only from that view. In this case there is no need to modify the document:
one can remember the update and apply it “on the fly” at query time, by
composition of the view with the update and with the user’s query for in-
stance. This approach is investigated by Fan et al. in [FCB07] for XQUF
updates, in the spirit of hypothetical queries. Actually the transform queries
investigated in [FCB07] can be applied in a much broader context, as argued
by the authors: even in the absence of updates, non-materialized views can

32

2.4. Views and Policies in Presence of Updates

be modeled as transform queries.

The translation us of a view-update uv w.r.t. view V has to be side-effect
free, i.e., the view obtained after performing the translation us on the orig-
inal document t must correspond to the application of the view-update uv
on the initial view. More formally, the following equality must be satisfied:
V pusptqq � uvpV ptqq. Early works by Dayal and Bernstein [DB82] formal-
ize the correctness of translations, and characterize conditions under which
such translations exists in the relational setting. Keller [Kel85] devised ad-
ditional criteria in view of choosing translations that do minimal changes to
the document. He suggests to use those criteria to reduce the number of
possible translations. The decision between the remaining possible transla-
tions should be taken through dialog at view definition time, to best take
into account the semantics of the real-world database [Kel86]. More gener-
ally, different criteria for correctness of a translation have been considered,
formalized through the notions of complement, of consistent views, or other
order- or information-based approaches.

The constant complement approach has been defined by Bancilhon and
Spyratos [BS81] as a criterion for choosing a meaningful propagation of the
view-updates. Their idea consists in defining a notion of complement: the
complement of a view mapping V is a function C such that for every doc-
ument t, the pair pV ptq, Cptqq formed on document t by the view and its
complement uniquely determines t. Although the paper is in line with the
relational setting, the definitions of view mapping and complement in [BS81]
are general functions mapping a document to an arbitrary value. One can de-
fine minimal complements for every view mapping, but they are never unique
except in trivial cases. Minimality is defined with respect to information con-
tent: a mapping (view) C1 will be smaller than another C2 if it distinguishes
more documents: C2pdq � C2pd1q ùñ C1pdq � C1pd1q. In the constant com-
plement approach, a complement for the view is fixed, and the translation of
any view-update is required to keep the complement constant. If C is a com-
plement for view V , every view-update admits at most one propagation under
constant complement C. The translations under constant complement also
enjoy nice properties with respect to reversibility: Lechtenbörger [Lec03]4

proves that in some sense the updates that can be translated under constant
complement are the updates which can be translated in a reversible manner
when the set of authorized updates is “complete” i.e., when the authorized
updates are closed under composition and allow to undo any update. Con-
stant complement strategies have often been considered a gold standard for
view update translation because they eliminate update anomalies [Heg04].
The trouble with the constant complement approach is twofold: one has to
choose a complement for the view, and there are numerous sensible updates

4The proof of this property in [Lec03] seems slightly inaccurate, but the author wrote a
patch in a subsequent note

33

2. State of the art

which cannot be translated under constant complement.
Soon after the seminal paper of Bancilhon and Spyratos, Cosmadakis and

Papadimitriou study the complexity of computing minimal constant comple-
ments in the context of relational databases [CP84]. They actually consider
a very restricted setting, with a single relation R and views limited to pro-
jections of the document, with integrity constraints expressed as functional
dependencies. The views and complements are therefore essentially defined
as a subset of the attributes from R. Even for those trivial projective views,
computing a minimal complement turns out to be NP-complete. The defini-
tion of minimality in this paper is not the aforementioned one, but denotes
the projection with the fewest attributes. The authors also characterize com-
plementarity for projective views, and provide an algorithm with cubic data
complexity to decide for a given complement C if the insertion of a tuple can
be translated under constant complement C. They also study the problem
of deciding for a given tuple i if there exists a complement that would allow
to translate the insertion of i under constant complement. Those results
are then extended to deletions and replacement operations. More recently,
Lechtenbörger and Vossen provide algorithms with polynomial complexity
that compute “reasonably small” complements to sets of views belonging to
several classes of relational queries, yet without considering arbitrary func-
tional dependencies [LV03]. The complements obtained are even minimal in
some cases such as views that do not use projection, and the authors argue
why minimality might sometimes be irrelevant. The authors also relate pre-
vious works discussing applications of the constant complement approach in
data warehousing for self-maintainability: a view that is not self maintainable
can be made so by the adjunction of complementary information.

The constant complement approach has often appeared as too restrictive in
the sense that many reasonable updates cannot be translated under constant
complement [Kel87, GPZ88]. Gottlob et al. extend the results of Bancil-
hon and Spyratos with the definition of consistent views. In the terminology
of Gottlob et al., a (dynamic) view consists of a view together with an up-
date policy (a.k.a. translator), i.e., a function that maps every update to a
translation. A dynamic view is consistent if any two equivalent sequences of
view-updates have equivalent translations. When all update operations can
be undone (as it is assumed in [BS81]), consistent views correspond to trans-
lators under constant complement. But without this cyclicity assumption,
there exist consistent views allowing updates that cannot be translated under
constant complement: in other words consistent views do not require from
the updates that they keep the information of some complement constant.
Instead, consistent views admit a complement as defined in [BS81], whose
information is “decreased” by the application of any update for an appropri-
ate order. In a nutshell: the “correct” translations for consistent views form
a strict superset of the translations under constant complement. We refer
the reader to the article from Gottlob et al. for the definitions. Moreover,

34

2.4. Views and Policies in Presence of Updates

choosing the complement and the corresponding order uniquely determines
the update policy, as for the constant complement approach. Another in-
teresting feature of the article is its high level of generality: similarly to the
paper by Bancilhon and Spyratos, this model is not specific to the relational
setting and handles arbitrary mappings for the definition of (static) views.
Furthermore, they consider update programs, which means that any update’s
semantics is defined as a mapping from D to D where D denotes the set of
all documents. The authors also establish a thorough state of the art for the
view update problem at the end of the 80’s.

Hegner further investigated the constant complement approach in a col-
lection of papers and articles spanning over two decades. To quote but a
few: [Heg90, Heg04, Heg08]. These results focus in particular on the possi-
bility to choose between different complements. They establish the difficulty
to find complements of a given view that define “distinct but reasonable”
update policies. The author proves that constant complement update poli-
cies are unique and independent of the complement under several natural
assumptions, based on the ordering of all possible documents [Heg04] or on
information-based techniques specific to the relational model [Heg08]. Closer
to the topic of this dissertation, Hegner defines additional constraints that
should be verified in closed views, i.e., when the user should ignore the exis-
tence of a view, the view being presented as if it were nothing but a schema for
the user’s document. In particular, he defines the notion of uniform updata-
bility. A view-update is uniformly translatable if it can be translated whatever
is the current state of the original document [Heg90]. Similarly to the works
of Bancilhon and Spyratos or Gottlob et al., though with yet a different for-
malism, the results of Hegner are mostly model-independent [Heg90, Heg04].

In a similar spirit, Johnson and Rosebrugh develop a categorical approach
to the view update problem [JR08]. The authors actually design a general
framework for database interoperability and support of view updates, based
on categorical algebra: the sketch data model. They claim successful applica-
tions of their approach in consultancies for australian governmental agencies.

Kotidis et al. [KSV06] adopt a radically different approach to the view up-
date problem in the relational setting: they separate the data into a physical
layer containing the base tables, and a logical layer containing the tables as
observed by the user. The deletion of a tuple on the view does not delete the
tuple from the source but makes it invisible to the user. Deletions of tuples
from the view are therefore handled differently from deletions of tuples from
the base tables. The insertion of a tuple in a view, however, will induce
the insertion of tuples in the base tables. The model stores several clones
of each tuple in the physical layer, distinguished by unique identifiers. As
observed by Fegaras [Feg10], this model that stores additional data beyond
the source document can be viewed as a trade-off between independent, ma-
terialized views and non-materialized views that would test if the updates
can be translated without side effects.

35

2. State of the art

The View Update Problem in XML The results discussed so far concerned
the view update problem in general or in the relational setting. There have
been several approaches dedicated to the view update problem for XML
documents. Vercammen presents a survey on the view update problem for
XML, drawing parallels with the relational setting [Ver05]. The view update
problem appeared early on in the XML context [AAC�99], although this
paper focuses on the introduction of active features in XML, not the view
update problem. It only authorizes simple view updates that always result
in unambiguous translations.

Foster et al. [FGM�07, FPZ09] study so called lenses. These are bi-
directional tree transformers (view definitions) that provide two operations:
get and put. The get operation allows to compute an abstract view of a con-
crete tree. The put operation takes an updated version of the abstract view,
together with the original concrete tree, and correspondingly updates the
original tree. This way the view definition itself allows to compute the update
propagation. In contrast with our approach, views are always materialized.
The expressiveness of lenses and of the views defined in our framework (ob-
tained by selecting nodes through XPath queries) are incomparable. Lenses
allow e.g. reordering of siblings, which is not possible for our approach. On
the other hand, the visibility of a node in our approach is defined by any
regular condition on the tree, whereas it only depends on a bounded neigh-
borhood for lenses. Lenses form a general framework, however, and several
kinds of lenses have been defined, most of them not specific to trees. For in-
stance, Barbosa et al. [BCF�10] extend the basic lenses with mechanisms for
specifying alignments between the document and its view. Those matching
lenses can be instantiated with arbitrary alignment functions whose design
depends on the applicative context. Matching lenses also integrate a no-
tion of complement, which is used together with the updated version of the
abstract view by the put function in place of the concrete document. An
additional res operation allows to compute the value of the complement from
the concrete document. In the lenses we discussed so far, one side of the lens,
the view, is assumed to be “smaller” than the other. Hofmann et al. gener-
alize the framework to symmetrical lenses, using the notion of complement
also [HPW11]. In view of the categorical interpretations of the constant com-
plement and view update approaches surveyed above, it may be interesting to
observe that the whole theory of lenses also admits a natural interpretation
in terms of categorical operations [HPW11].

The paradigm of lenses, namely bidirectional programming, has also been
applied directly to the XQuery language. Liu et al. [LHT07] propose to prop-
agate view updates by defining a backward semantics of XQuery expressions.
Essentially, the backward semantics of an XQuery expression used to define
a view is a function which takes the original source document with the mod-
ified view and returns an updated source document. The class of views is
incomparable with ours, as for instance it allows copying. Because of copy-

36

2.4. Views and Policies in Presence of Updates

ing, update propagation is not necessarily side-effect free. Moreover, as for
lenses, it requires materialization.

Several authors consider the problem of updating XML views of relational
databases [WRM06, BDH06, CCFV08, Feg10]. For instance, Braganholo et
al. [BDH06] focus on translating XML view updates to relational view up-
dates and delegating the problem to the relational DBMS, whereas Wang et
al. [WRM06] study the conditions under which a view update is translatable,
and extend their result in a subsequent paper [WJRM08]. They tackle the
question of uniform updatability with a two phase approach: the translation
algorithm first exploits the schema and current state of the view to decide
if the view update is uniformly updatable, i.e., is translatable from every
possible source document. If not, the algorithm tests if the update is never
translatable. In the remaining case, the algorithm takes the source document
into account. Choi et al. [CCFV08] provide algorithms for the translation of
a rich class of view updates. There exist numerous approaches storing XML
documents in relational databases, e.g. [TBS02, BGvK�06], and one could
attempt to combine them with the view propagation solutions.

It has been argued that XML schemata are more complex than their
SQL counterparts, due to richer cardinality constraints and recursive typ-
ings [JWMR07], and also due to the hierarchical structure of the document
and restructuring capabilities of XQuery [WJRM08]. Jiang et al. [JWMR07]
propose solutions to handle those features in the view update problem for
XML. They provide an algorithm for the translation of a delete operation
over a view defined in a fragment of XQuery. Insertions are out of the scope
of the paper. Their schema-based algorithm relies in part on an algorithm
proposed by Keller in the relational setting [Kel85].

Reasoning about the Evolution of a Document Several approaches have
been proposed to study properties of evolving documents. Cautis et al. [CAM09]
introduce update constraints defined by XPath queries. Each XPath con-
straint comes with an update type: no-insert, no-remove, or immutable,
meaning that the set of nodes selected by the query should respectively
shrink, grow, or remain the same after application of the updates. Nodes are
distinguished by their unique identifier, in a way quite similar to the presenta-
tion in this dissertation. Cautis et al. study for various combinations of frag-
ments and update types the problem of deciding if a given constraint is im-
plied by another set of constraints. For fragments of XPathpó�,ó, r s,^q, the
complexity for the implication problem ranges from PTime to NExptime

depending on the fragment and the update types allowed.

Bojańczyk and Figueira define a temporal logic to describe properties sat-
isfied by the evolution of a document tree [BF11]. Essentially, this logic
combines a temporal logic that navigates between the nodes of the document
using descendant and sibling orderings, with a temporal logic that travels in

37

2. State of the art

the time dimension. During the evolution of the document, the domain, i.e.,
the set of nodes in the trees, is kept constant and only the labeling of nodes
varies. An empty document, for instance, is a document of which every node
has a “blank” label. The authors show it is easy to evaluate a temporal logic
formula of their language over a sequence of documents t1, . . . , tk in time
Opk � nq, where n is the size of the domain. More interesting is the incre-
mental evaluation problem: the document is initially empty, then nodes are
inserted, deleted or relabeled 5. Each update operation consists in relabeling
one node, and is therefore described by a pair plabel , nodeq. This guarantees,
of course, the size of the domain to be smaller than k. The incremental eval-
uation problem takes as input a formula together with a sequence of k editing
operations, and decides if the corresponding sequence of trees – beginning
from the empty document – satisfies the formula. The main contribution of
the paper is an algorithm solving the incremental evaluation problem with
data complexity Opk logpnqq, or equivalently Opk logpkqq. The query com-
plexity, however, is non-elementary. In its current version, the algorithm
only works for trees of bounded depth as it involves a reduction to the word
case, but the authors hope to adapt the algorithm to arbitrary trees using
forest algebras.

Annotations are another way to trace the history of data. Provenance
techniques are quite popular, and find applications in privacy [DKM�11]
and more generally security [Che11]. Provenance techniques do not belong
to the scope of this paper, but we can still refer the reader to [CCF�09] for
an entertaining vision of provenance and its role. Let us also mention two
papers that highlight different connections between provenance and update
problems: Cong et al. [CFG�11] study the maintenance of annotations under
view updates for select-project-join-union views of relational data, focusing
on side effect problems, whereas Fegaras [Feg10] exploits provenance (lineage)
information to tackle the view update problem for XQuery views and updates
of relational data.

Specific Questions Raised by Access Control on Write Operations: Prov-
ing Properties of Policies Fundulaki and Maneth [FM07] study the prob-
lem of consistency for access control policies on update operations. They
define a policy as a set of positive and negative rules allowing or forbidding
some update operations. The rules are essentially given by triples consisting
of (1) an XPath expression to represent the nodes affected by the rule, (2) an
action, such as insertBefore, replace or delete, and (3) an effect which
can be � or �, that authorizes or forbids the action to take place at the
nodes selected by the XPath expression. A policy is consistent if there is no
sequence of authorized update operations that is equivalent to a forbidden

5actually, the algorithm in the paper focuses on relabelings, but the authors explain that
deletions and insertions can be supported using the node identifiers

38

2.4. Views and Policies in Presence of Updates

update. The authors prove that consistency quickly becomes undecidable in
presence of both negative and positive rules when the depth of the document
is not bounded. For access control rules defined by non-recursive annotated
DTD, namely an adaptation of the annotated DTDs of Fan et al. [FCG04] for
write operations, Bravo et al. [BCF07] show that consistency can be decided
in polynomial time. They furthermore provide an algorithm for repairing
inconsistent DTDs. Those results lead to an implementation [BCF08].

From a radically different perspective, Dougherty et al. [DKKdO07] for-
malize XACML policies by term rewriting rules. This formalization allows
to apply standard rewriting techniques to reason about properties of policies
such as consistency, or for studying the effect of combining several poli-
cies. Dougherty et al. [DFK06] also investigate comparison of policies, in a
dynamic setting. Their comparison is also based on containment, but the
essential effort in the paper consists in taking the environment into account:
they argue that the environment is crucial to support credentials, provisional
authorization, etc.

Jacquemard and Rusinowitch [JR10] model update policies as term rewrit-
ing systems, and focus on forward and backward typechecking algorithms.
An update policy is modeled as a term rewriting system parameterized with
a standard hedge automaton: the term on the right hand side of a rule may
have leaves labeled by states of the automaton, the semantics of such a rule
being that a leaf labeled with a state q is replaced by any ground tree accepted
by the automaton from state q. They consider a model of hedge automata
where the transitions may use context-free languages instead of regular lan-
guages to describe the states assigned to the children of a node. The authors
define a first class of update rules with this formalism, corresponding to the
update primitives of the XQUF, except that the nodes on which the update
may be applied can only be specified by their label, whereas XQUF allows to
use XQuery to specify on which nodes an update applies. The authors define
a second, more expressive class of rules that among others extends XQUF
primitive operations with the possibility to delete internal nodes, using the
classical adoption mechanism for their children. The forward typechecking
problem asks whether any document obtained from some input regular lan-
guage by (iterated) application of the rewriting rules belongs to some output
regular language. This problem is Exptime-complete for both classes of
update rules, and even PTime-complete when the output regular language
is given by a complete deterministic automaton. This is because the set of
documents obtained from a regular language by application of a set of rules
of the first class (resp. of the second class) is accepted by a hedge automaton
(resp. a context-free hedge automaton), computable in polynomial time. The
authors study similarly backward inference, and also investigate an extension
of parameterized rewriting systems that allows to specify the nodes on which
an update may be applied. An access control policy can be modeled by a
pair of rewriting systems, one specifying authorized updates and the other

39

2. State of the art

one specifying the forbidden operations. The authors study the complexity
of deciding consistency for the two classes of rules under several settings.

Efficient Evaluation of Updates and Transductions We do not investi-
gate in this dissertation the modus operandi for evaluating updates on a
document. Some authors however have developed techniques for the efficient
evaluation of XQUF updates. For instance, Boncz et al. adapted opti-
mization techniques from XQuery engines [BFG�06], whereas Cavalieri et
al. [CGM11] investigate efficient manipulations of pending update lists.

We are not aware of many works for the efficient evaluation of functional
non-deterministic transducers, even in the word case, except for a new al-
gorithm by Mohri to disambiguate finite automata and functional trans-
ducers [Moh12]. The efforts seems to have focused so far on normalization
and determinization [BC02, AM04a]. Mohri and others have investigated
weighted (word) transducers for applications in speech recognition. Allauzen
and Mohri [AM04a] propose an algorithm that transforms weighted word
transducers into determinizable weighted word transducers and report sub-
stantial speedup on their experiment. Beal and Carton [BC02] study the
determinization of functional word transducers. Choffrut [Cho77] gives a
characterization of subsequential functions, defined grosso modo as the trans-
ductions that can be accepted by transducers that are deterministic with
respect to the input. Weber and Klemm prove that subsequentiality of a
transduction can be decided in PTime [WK95].

Filiot et al. [FGRS11] investigate which functional transductions can be
evaluated by visibly pushdown transducers using limited memory. More pre-
cisely, they introduce two classes of transductions: bounded-memory trans-
ductions (BM) and height bounded memory (HBM). BM transductions can
be evaluated using space bounded by the size of the transducer only (and thus
independent of the input). This class corresponds to subsequential transduc-
ers over standard (non-nested) words. The more general HBM transductions
can be evaluated with a memory that depends only on the nesting depth
(height) of the input and the size of transducer. The authors show that in
this second case the memory required is at most exponential in the nest-
ing depth of the input. They provide a general space-efficient algorithm for
the evaluation of functional visibly pushdown transducers, and give charac-
terizations for BM and HBM that can be decided in co-NP. Finally, the
authors provide a sufficient condition over HBM transduction that guaran-
tees evaluation uses memory quadratic in the nesting depth of the input.
This last class of transductions contains and generalizes the determinizable
visibly pushdown transductions.

Automata for editing XML documents Shoaran and Thomo [ST11] pro-
pose a VPA-based framework to support insertions and deletions in an XML

40

2.5. Schema Approximation

file. Their framework shares several common features with our results on
views updates. They consider deletion and insertions of whole subtrees.
Similarly to our restrictions to that we call “k-interval-bounded” and “k-
synchronized” editing scripts, they bound by a constant k the number of op-
erations applied on the tree, which guarantees polynomial algorithms (with
complexity exponential in k if k is not fixed). They use classical construc-
tions on automata to show that their operations preserve regularity, namely:
the deletion of L1 from L and the insertion of L1 into L are still visibly push-
down languages for any visibly pushdown languages L and L1. The deletion
of L1 from L, for instance, consists of all the trees obtained by removing from
some tree of L one subtree belonging to L1. In order to define more expres-
sive transformations, the authors generalize these to automata accepting the
deletion (resp. insertion) of up to k subtrees. As these operations cannot
express conditions on the context in which the subtrees can be deleted, the
authors suggest to use XPath formulae to specify nodes at which each dele-
tions and insertions can be applied. Those expressions are then converted
into VPAs. In order to apply in parallel several deletions and insertion op-
erations expressed by visibly pushdown automata, the authors propose a
multiple phases approach that preliminary marks the nodes to be deleted
using visibly pushdown transducers. The deletions and insertion operations
are then processed in a second time.

2.5. Schema Approximation

In this section we first survey some results in the literature that deal with
the approximation of XML schema or the approximation of context-free lan-
guage. We finally mention some statistics about schemata and XML docu-
ments from the web.

Approximation of Schemata and of Context-Free Languages The statis-
tics surveyed on page 43 show that many XML documents on the web do
not refer to any particular schema. This may be one of the reasons why
inference of schema has early on been an active topic of research. Recently,
Bex et al. [BGNV10, BNSV10] proposed new algorithms for the inference
of schemata and investigate their performance experimentally. Due to the
locality of DTDs, DTD inference immediately reduces to the inference of de-
terministic regular expressions. Inference of XML schemata is slightly more
intricate due to the subtyping mechanism, but it also reduces to the infer-
ence of one deterministic regular expression for each context in which the
element appears, the context being the path from the element to the root of
the tree [BNV07].

Bex et al. [BNSV10] provide several algorithms for the inference of sin-
gle occurrence regular expressions (SOREs) and chain regular expressions

41

2. State of the art

(CHAREs). SOREs are the (necessarily deterministic) regular expressions in
which each letter occurs at most once in the expression, whereas CHAREs
form a subclass of SOREs with very simple structure. Statistics gathered
by the authors show that CHAREs represent a huge majority of expressions
occurring in practice. Bex et al. extend in [BGNV10] the fragment to k oc-
currence regular expressions. They show that contrary to deterministic reg-
ular expressions, k occurrence regular expressions are learnable in the limit
from positive examples, and provide a corresponding algorithm iDRegEx

for the inference of deterministic regular expressions. We refer the reader to
the above papers for other references on DTD and schema inference.

In this dissertation, we consider the case when a schema is already known
but the schema is too complex or is not a DTD nor even an XML Schema.
One possible motivation for approximating a DTD or XML Schema lies in
the difficulty to handle the determinism requirement from these schema lan-
guages, since deterministic regular expressions are less expressive than (stan-
dard) regular expressions. Ahonen proposes an algorithm based on the BKW
test presented in Section 6.2.2 to approximate an arbitrary regular expres-
sion with a deterministic regular expression. Bex et al [BGMN09] propose an
optimization of that algorithm together with a new algorithm, and compare
experimentally the three algorithms on synthetic regular expressions.

XML Schema is not closed under union and difference operations. Gelade
et al. [GIMN10] investigate XML Schema approximations for those opera-
tions. They also investigate the approximation of a regular tree language
with XML Schema. The XML Schema language being rather complex, how-
ever, the authors do not actually consider XML Schema but consider single-
type regular EDTDs instead, with content models (productions) given by
DFAs. The authors prove that for any EDTD, one can compute a minimal
upper-approximation by single-type EDTD in exponential time, and the as-
sociated decision problem, i.e., deciding if a given single-type EDTD is the
minimal upper-approximation of another, is Pspace-complete. Similarly,
one can compute a single-type EDTD for the minimal upper-approximation
of the union and intersection of two single-type EDTDs in quadratic time.
An upper-approximation for the difference of two single-type EDTDs can
similarly be computed in polynomial time. The authors also show there is
no unique maximal under-approximation in general.

Whereas Gelade et al. consider union and intersection operations, we es-
sentially consider schemata obtained after deletion of internal nodes, which
results in tree languages that need not even be regular in general. We are
therefore interested in the approximation of context-free languages with reg-
ular languages. Approximations of context-free languages have been moti-
vated by applications in natural language processing and especially for speech
recognition, as well as in verification. In the context of natural language pro-
cessing, Nederhof [Ned00] surveys regular over- and under-approximations of
context-free grammars and proposes some new ones. He also evaluates em-

42

2.5. Schema Approximation

pirically the effectiveness of those approximations regarding among others
the size of the automaton obtained and the percentage of sentences from the
corpus that are correctly recognized. Some of the approximation techniques
surveyed simplify the grammar rules in order to prevent “self-embedding”,
others restrict the stack behaviour of the corresponding pushdown automa-
ton, and others are based on N-grams, i.e., the factors of size N in the words
accepted by the grammar... Mohri and Nederhof [MN00] propose another
construction based on the decomposition of the grammar graph into strongly
connected components, and which builds in linear time a compact represen-
tation of the resulting automaton.

In the context of verification, Ganty et al. [GMM10] investigate under-
approximations of context-free languages with bounded languages, i.e., context-
free languages that are a subset of w�

1w
�
2 . . . w

�
k for some natural k and some

words w1, . . . , wk. The authors show that each context-free language L ad-
mits a subset L1 � L that has the same Parikh image as L and that is a
bounded language. They apply their under-approximation technique to test
emptiness of the intersection of context-free languages and to compute the
reachable states of a program. With Farré and Galvez, Schmitz [GSF06,
Sch07] develops a general framework for approximating context-free gram-
mars. This framework is based on the position graph, a representation of the
set of all derivation trees of the grammar. The position automaton is the
NFA obtained by quotienting the vertices of position graph with an equiv-
alence relation of finite index. The position automaton therefore depends
on the choice of equivalence relation: the coarser the relation, the coarser
the approximation. This general framework provides techniques to detect
ambiguity of grammars [Sch07] and to cope with non-determinism in parser
generation [GSF06].

Statistics on Real Documents and Schemata What are the main char-
acteristics of XML documents on the web? Numerous studies have gathered
statistics from the XML web, but we only survey a few of them. Grijzenhout
and Marx [GM11] study the quality of documents on the web with respect
to validity. They gather a collection of 180 000 XML documents from about
100 000 websites, for a total of 40GB. Of those documents, more than 85%
are well-formed, but the proportion is much lower when considering only
the documents referencing a DTD. Roughly a quarter of the collection files
references a downloadable DTD or XML Schema, but only a third of those
(8.9% of the total collection files) validates with respect to their schema. For
those referencing a DTD, the failure to validate is explained in 73.5% of the
cases by the document’s not being well formed, and in 22.3% by a failure
to validate the DTD, the remaining percents corresponding to syntactically
incorrect DTDs. For those referencing an XML Schema, the failure to val-
idate is explained in 66.5% of the cases by a failure to validate the DTD,

43

2. State of the art

and in 31.2% by syntactically incorrect schemata, the remaining percents
corresponding to documents that are not well-formed.

Martens et al. [MNSB06] compare DTDs and XML Schemata from both
theoretical and practical point of view, using a collection of 819 XML Schemata.
In a nutshell, they observe that the additional expressiveness of XML Schemata
over DTDs is used to a “very limited extent”: out of the 225 correct schemata
in the collection, only 15% cannot be expressed with an equivalent DTD. In
an overwhelming majority of these non-local languages, the type depends
only on the parent context. Bex et al. [BNdB04] makes some similar obser-
vations, focusing on the structure of the regular expressions in the content
models. They observe that regular expressions occurring in real-life DTDs
and XML Schemata are actually very simple.

Barbosa et al. [BMV06] analyse a collection of about 190 000 documents
from about 19 000 web sites, for a total of 843MB. They study a whole range
of properties including statistics about text nodes and attributes, the size
and depth of the documents, fan-out (i.e., number of children) of the ele-
ment nodes. This study reveals that 99% of the documents in the collection
have depth at most 8, with an average depth of 4, and a maximal depth of
135. Three quarters of the documents contain elements with mixed content,
i.e., have both text and element-nodes descendants. Those mixed contents
account for 5% of all nodes. Another conclusion from the study is the pre-
dominance of structural (markup) content over textual content, except for
big documents: the content/markup ratio increases with the size of the doc-
ument. We define as recursive a label common to two elements of which
one is an ancestor of the other. The authors observe that about 15% of the
documents contain a “recursive” label. Those documents generally do not
refer to any DTD. Of those documents, 98% contain a single recursive label,
and another 1% contain two recursive labels, with a maximum reached with
9 recursive labels.

Choi [Cho02] uses a sample of 60 DTDs, and observes structural properties
of theses, regarding content model, recursivity, etc. Half the DTDs (35) from
this small sample are recursive. Most non-recursive DTDs have depth at
most 8, with a maximum of 20. Choi also counts the number of simple cycles
made possible by the recursive DTDs, where a simple cycle is a sequence of
distinct element names apparently representing the possible element names
on the path from the root to a node. Half (19) of the recursive DTDs admit
at most 10 different simple cycles, 8 recursive DTDs admit between 10 and
100 different simple cycles, and the remaining 8 DTDs admit more than 100
different simple cycles, for a maximum of about 1500.

44

3. Models for XML Reasoning

You can only find truth with logic if you have

already found truth without it.

(G. K. Chesterton, The Man Who Was Thursday)

Contents
3.1. Words, XML, and Unranked Trees 45

3.1.1. General Notations and Tools 47

3.1.2. Words and Trees as a Model for XML Documents 48

3.1.3. Regular Expressions and Word Automata 52

3.1.4. Grammars . 57

3.2. Tree Languages . 59

3.2.1. Tree Automata and Visibly Pushdown Automata . 59

3.2.2. Decision Problems for Tree Automata 72

3.2.3. Pumping Lemmas for VPAs 81

3.2.4. Schema Languages for XML 84

3.3. Query Languages, Views and Updates 87

3.3.1. First Order and Monadic Second Order Logic . . . 88

3.3.2. XPath Dialects . 90

3.3.3. Expressivity and Decision Problems 92

3.3.4. Tree Alignments, a Model for Queries, Views and
Updates . 95

3.3.5. XQUF . 103

3.3.6. From Regular XPath to Automata 107

3.1. Words, XML, and Unranked Trees

XML, a Text Format that Emphasizes the Structure of the Document
The Extensible Markup Language (XML) is a text format defined by W3C
specification [XML99]. The origins of this language can be traced back to
the SGML language, XML was developed for the purpose of large-scale elec-
tronic publishing. The main design goals for XML include usability over the

45

3. Models for XML Reasoning

Internet, compatibility with SGML and facilitating automatic processing of
the documents [XML99].

Each XML document contains elements, delimited by start-tags and end-
tags. Unlike other markup languages like HTML, XML requires that doc-
uments are well-formed: each start-tag has an explicit corresponding end-
tag. Furthermore, those tags must be properly nested, with no overlapping.
Therefore, an XML document can be represented as a tree, and the con-
struction of this tree is straightforward. Each element n is represented as a
node, and the elements between the start- and end-tag of n constitute the
subtree below n. In addition to the nesting of elements, XML allows the
markup tags to contain attributes, and character data may be inserted be-
tween the markup tags. Those could be embodied by leaf nodes in the tree
representation. XML belongs to the family of semistructured data models,
and XML data is often referred to as redundant and self-describing [XML]1,
which comes at the expense of concision. This waste of space is arguably
balanced by improved interoperability, a requirement in web applications,
and also mitigated by the ever-decreasing cost of storage.

The author of an XML document can define his own element names, there-
fore the number of XML elements is potentially unbounded. Thus, an es-
sential feature of XML is the use of schemata and namespaces. Names-
paces allow to use element names from different vocabularies, avoiding name
clashes [XML99], while schemata express constraints on which elements should
appear in the document, and where. In this dissertation we do not consider
namespaces. But schemata are at the core of most of our algorithms, and we
will represent them using logical or automata-theoretic formalisms.

The W3C developed several query languages to extract information from
XML documents. The XML Path language (XPath) has proved a funda-
mental tool for extracting nodes from the document, and it is at the core
of more expressive query languages such as XQuery and XSLT. It is com-
mon practice in the community to abstract from the arithmetic operations in
XPath and consider only the navigational core of XPath, called NavXPath
in [BK08] and the present dissertation, and also known as CoreXPath 1.0,
although the original definition of CoreXPath does not contain the next- and
preceding-sibling axes [GK02]. CoreXPath queries can be easily translated
into first order logic formulae, and therefore standard decision problems can
be solved using formal methods, whereas arithmetic operations would make
most problems undecidable. We follow this classical approach and model
queries with tree automata.

1Although the description of XML as a self describing language drew much criticism on
the web

46

3.1. Words, XML, and Unranked Trees

3.1.1. General Notations and Tools

In this dissertation, |S| will denote the size of S for every object S, and the
cardinality of S if S is a set. Also, given a set S and function f , fpSq will
be used to denote the set tfpxq | x P Su whenever this meaning is clear from
context. For a one-to-one function f , the inverse of f will be denoted by
f�1: for all x, y, y � f�1pxq iff fpxq � y. Similarly, given a binary relation
R, we denote by R�1 the inverse relation, namely px, yq P R�1 if and only
if py, xq P R. We define a binary relation between two sets S1 and S2 as a
subset of S1 � S2. A binary relation over S1 is a subset of S1 � S1.

Operations on Binary Relations Let us begin with some preliminary re-
marks on the composition of binary relations. We do not specifically assume
binary relations to be represented as adjacency matrices: they are generally
lists of pairs, but a matrix representation for R1 � S1� S2 can be computed
in time |S1| � |S2|. The composition of two relations R1 � S1 � S2 and
R2 � S2 � S3 can be obtained by first computing the “join” of R1 and R2,
and then projecting the join attribute, i.e., the component in S2. Computing
joins is harder than computing composition insofar as the join of two rela-
tions may have cubic size. Joins of relations can be computed using sorting
and hashing techniques, among others. One can also use an array of size S2

to compute the join. The composition of R1 � S1�S2 and R2 � S2�S3 can
therefore be computed in time Op|R1| � |R2| � |S2|q.

The composition of binary relations can also be interpreted as the multipli-
cation of boolean matrices. Chandra and Merlin advocated as early as 1977
the use of (sparse) boolean matrix multiplication to optimize joins of rela-
tions [CM77, p. 80]. In particular, the composition of binary relations over
some set S can be viewed as the product of square Boolean matrices of dimen-
sion n � |S|, and therefore has complexity Opnωq for some ω 2, 38 [CW90].

We henceforth denote by ω this constant that gives the degree of Boolean
matrix multiplication2. Recent results have slightly improved the value of ω
for the Coppersmith-Winograd algorithm, yet this algorithm is notoriously
inefficient in practice. Other subcubic algorithms such as Strassen’s [Str69]
in Opn2,807q, however, outperform the näıve cubic algorithm for the multi-
plication of (reasonably) large-dimensional matrices. The comparative per-
formances of matrix multiplication algorithms are controversial, though, as
they may be blurred by optimization techniques that drastically improve
cache performance or parallelization.

Transitive closure and composition have essentially the same complex-
ity [Mun71, FM71], so that one can also compute in Opnωq the transitive
closure of a binary relation over a domain of cardinality n.

2the best value for ω to the best of our knowledge is slightly below 2, 3727 [Wil12]

47

3. Models for XML Reasoning

Lemma 3.1. The composition of two binary relations over a set of cardinal-
ity n can be computed in Opnωq. The transitive closure of a binary relation
can be computed with the same complexity.

More generally, let Q and Q1 two sets with respectively n and m elements.
Given two relations R1 � Q � Q1 and R2 � Q1 � Q, one can compute the
composition of R1 and R2 in time Oprm{ns�nωq. This complexity is slightly
better than Opm�n2q and can be obtained through the decomposition of ma-
trices into blocks of size n�n. Smarter algorithms have been devised to adapt
the fast matrix multiplication technique to rectangular matrices [HP98].

Some algorithms take advantage of particular properties of the matrices
to compute more efficiently the product. This is typically the case of output
sensitive algorithms [AP09, Lin11], or algorithms for the multiplication of
sparse matrices [YZ05]. Nevertheless, as the benefits from fast multiplica-
tion algorithms are not very impressive in general, we will use the coarser
cubic estimation for the evaluation of algorithms in this dissertation, but
will typically mention the potential improvements that could be gained from
those smarter algorithms.

Lemma 3.2. Let S1, S2, S3 three sets. The composition of R1 � S1�S2 and
R2 � S2� S3 can therefore be computed in time Op|R1| � |R2| � |S2|q. It can
also be computed in time Op|S1| � |S2| � |S3|q. When S2 � S1, the transitive
closure of R1 can be computed in Op|S1|3q.

3.1.2. Words and Trees as a Model for XML Documents

An alphabet Σ is a finite set of letters. The size of alphabet Σ is its number
of elements, denoted |Σ|. A word w over alphabet Σ is a sequence w �
a1a2 . . . an. The size of w is |w| � n, and we denote by |w|a the number of
occurrences of letter a in w. We also denote by wris the letter ai at position
i in w, and denote by mri..js the subword mrismri� 1s . . .mrjs of m.

Trees In this dissertation, we model XML documents as unranked or-
dered trees over a finite alphabet Σ. A tree t is a relational structure
pΣt, Nt, child t, follow t, labtq where Σt is the alphabet, Nt is the set of nodes,
labt : Nt Ñ Σt is the labeling function, child t � Nt�Nt is the child relation,
and follow t � Nt �Nt is the following sibling relation. Thus pn, n1q P child t

if and only if n1 is a child of n in t. We write n ¤t n
1 if n is an ancestor

of n1 in t: ¤t is the transitive reflexive closure of child t. The root of t will
be denoted by root t, while TΣ denotes the set of trees over the alphabet Σ.
The size of the tree is its number of nodes: |t| � |Nt|. The leaves of the
tree are the nodes without children. The other nodes are internal nodes.
Given n P Nt, the subtree below n in t is denoted by tæn and is defined as
tæn � t1 with Σt1 � Σt, Nt1 � tn1 P Nt | n ¤t n

1u, child t1 � child t X N2
t1 ,

follow t � follow t XNt1 , and, for every n1 P Nt1 , labt1pn1q � labtpn1q.

48

3.1. Words, XML, and Unranked Trees

projects

project

name stable license

src bin doc free

project

name stable license

src bin doc propr

project

name dev license

src doc free

n0

n1 n2 n3

n4 n5 n6

n7 n8 n9 n10

n11 n12 n13

n14 n15 n16 n17

n18 n19 n20

n21 n22 n23

Nt0 � tn0, n1, . . . , n23u, root t0 � n0, labt0 � tpn0, projectsq, . . . , pn23, freequ,

child t0 � tpn0, n1q, pn0, n2q, pn0, n3q, pn1, n4q, pn1, n5q, pn1, n6q, . . . pn20, n23qu,

follow t0
� tpn1, n2q, pn1, n3q, pn2, n3q, pn4, n5q, pn4, n6q, pn5, n6q . . . pn21, n22qu.

Figure 3.1.: A tree t0

We also define other axes to simplify the navigation inside the tree: next t
will denote the next-sibling axis: px, yq P next t if px, yq P follow t and there
is no z such that both px, zq P follow t and pz, yq P follow t. Parent tpnq
represents the parent of node n: x � Parent tpyq if px, yq P child t. Let t a
tree, n � n1 two nodes of t, and let n0 denote the lowest ancestor of n and
n1. Node n comes before (or is smaller than) n1 in document order if and
only if its opening tag comes before the opening tag of n1 in the linearization
of t. Equivalently, node n is smaller than n1 iff one of the two following
conditions is satisfied: (1) n ¤ n1 or (2) there exist two nodes n1, n

1
1 such

that all following conditions are satisfied: pn0, n1q P child t1 , pn0, n
1
1q P child t1 ,

n1 ¤t n, n1
1 ¤t n

1 and pn1, n
1
1q P follow t.

Example 3.1. Figure 3.1 contains an example of a tree representing an
XML database with information on software development projects. Every
project has a name and a type of license (either free or proprietary). Projects
under development come with their source codes and documentation, whereas
stable projects have also binaries. In tree t0, the descendant and next-sibling
relations are respectively ¤t0� tpn0, n1q, . . . , pn0, n23q, pn1, n4q . . . u and next t0 �
tpn1, n2q, pn2, n3q, pn4, n5q, . . .u. In t0, the node identifiers ni give the docu-
ment order of the nodes, but in general the node identifiers may be arbitrary.

Although most of our trees will be unranked trees, we sometimes use ranked
trees, especially binary trees: a tree t has rank k if every node of t has at
most k children. A binary tree is a tree of rank 2. A full binary tree is a
binary tree in which every internal node has exactly two children.

The depth of a node n P Nt is the length of the shortest path from n to root t:
depthtproot tq � 0 and, if pn1, nq P child t then depthtpnq � 1�depthtpn

1q. The
depth of tree t is the depth of its deepest node: depthptq � max tdepthtpnq |
n P Ntu. The yield of a tree t is the word formed by (the labels of) the leaves
of t, taken in document order. In particular, we will often identify trees of
depth one with their yield, as this is a convenient way to represent word

49

3. Models for XML Reasoning

languages in our proofs. A tree (resp. word) language over alphabet Σ is a
possibly infinite set of trees. A hedge is a sequence of trees.

We also define a notion of isomorphism between trees: an isomorphism
from t to t1 is a bijective mapping φ from Nt to Nt1 such that pφpxq, φpyqq P
child t1 iff px, yq P child t, pφpxq, φpyqq P follow t1 iff px, yq P follow t, and
labt1pφpxqq � labtpxq. Two trees t, t1 are isomorphic if they can be related
by an isomorphism, or in other words, if t and t1 are equal when considered
as terms. In that case we write t � t1. We point out that equality of trees
should not be confused with isomorphism: in general t � t1 does not imply
t � t1. For convenience, however, we are sometimes going to present trees
using terms. For instance, the tree t in Figure 3.2 corresponds to the term
rpa, fpb, cq, gpdqq.

Several alternative representations for unranked trees have been investi-
gated in the litterature. We will make ample use of two of them: the lin-
earization which represents trees as (nested) words, and the first-child-next-
sibling encoding which represents unranked trees as binary trees.

Linearization: Nested Words For every alphabet Σ, let Σ̂ � top, clu�Σ be
the corresponding tag alphabet, where for any label a P Σ, pop, aq stands for
the opening XML tag <a> and pcl , aq for the closing XML tag . The lin-
earization of a tree is defined as follows: linpεq � ε and lin papt1, t2, . . . , tnqq �
pop, aq linpt1qlinpt2q . . . linptnq pcl , aq. Thus, the linearization of a tree t in-
duces a one-to-one mapping from each node of t into a pair of opening and
closing tags in linptq. For instance, the linearization of tree t in Figure 3.2 is
pop, rq pop, aq pcl , aq pop, fq pop, bq pcl , bq pop, cq pcl , cq pcl , fq pop, gq pop, dq
pcl , dq pcl , gq pcl , rq.

Binary Encoding for Unranked Trees The Rabin first-child next-sibling
encoding fcns [Rab68, Koc03] basically encodes an unranked tree over Σ
into a binary tree over the alphabet ΣK � Σ Z tKu. All symbols from Σ
have in ΣK arity 2, and K is the sole constant symbol. The fcns encod-
ing of a hedge is defined as: fcnspεq � K and fcnspapt1, . . . , tnq, t12, . . . t

1
nq �

apfcnspt1, . . . , tnq, fcnspt12, . . . , t
1
nqq. A binary tree over alphabet ΣK is a fcns

tree if it is the fcns encoding of some unranked tree, i.e., if it is a full bi-
nary tree with internal nodes labeled in Σ, leaves labeled with K, and such
that the right child of the root is a leaf. For instance, the fcns encoding of
tree fpa, b, cq is given by fcnspfpa, b, cqq � fpapK, bpK, cpK,Kqqq,Kq, and the
fcns encoding of rpa, fpb, cq, gpdqq is given on Figure 3.2.

An alternative binary encoding of unranked tree is the curry encoding of
terms (also called “extension encoding”), which we will not use. The curry
encoding is defined inductively by currypaq � a and currypapt1, . . . , tnqq �
@pcurrypapt1, . . . , tn�1qq, curryptnqq. The tree fpa, bpdq, cq, for instance, is
encoded into @p@p@pf, aq,@pb, dqq, cq.

50

3.1. Words, XML, and Unranked Trees

r

a f

b c

g

d

tree t

r

a

K f

b

K c

K K

g

d

K K

K

K

binary encoding fcnsptq

Figure 3.2.: The fcns encoding.

Morphisms A morphism Φ from alphabet Σ to alphabet ∆ Y tεu is spec-
ified by a function from Σ to ∆ Y tεu. The notion of morphism extends
this relabeling function to words and trees as follows: the (word) morphism
induced by Φ is the function that maps a word w � a1 . . . an to the word
Φpwq � Φpa1q . . .Φpanq: ε is interpreted as the neutral element of the free
monoid and therefore ε symbols are removed in Φpwq. Similarly, given a tree
t � pΣ, Nt, child t, follow t, labtq, the (tree) morphism induced by f is the func-
tion that maps every tree t over Σ into the tree t1 over Σ1

ε s.t. t1 is obtained
from t by relabeling every node n P Nt as fplabtpnqq, and then deleting the
(resulting) subtrees whose root is labeled by ε. In this dissertation, tree mor-
phisms will always be defined in such a way that for every node mapped to ε,
all its descendants are also mapped to ε. Thus the morphism for trees corre-
sponds to the morphisms on the linearization: for every morphism Φ and tree
t over Σ linpΦptqq � Φplinptqq, with the convention that Φppη, aqq � pη,Φpaqq
for every η P top, clu and a P Σ. We do not distinguish the function f and
the morphism it induces.

This notion of morphism can be viewed as a very restricted adaptation
of the notion of (ranked) tree homomorphism and can also be viewed as a
special case of morphism of forest algebras as defined in [BW08]. Indeed, the
morphisms we have defined correspond to a subclass of linear alphabetic
(non necessarily non-erasing) tree homomorphisms on the fcns encoding.
More precisely, let us we denote by fe the linear alphabetic tree homomor-
phism [CDG�07] induced by f on the trees over ΣK. Formally, fepapt1, t2qq
is equal to fpaqpfpt1q, fpt2qq if fpaq � ε, and is equal to ε otherwise. Then
fepfcnsptqq � fcnspfeptqq. We get easily the following result.

Proposition 3.3. The image and the inverse image of a regular set of trees
under a morphism are regular sets of trees.

Proof. The proof is easily obtained by using the fcns encoding and the closure
properties of regular ranked tree languages under inverse morphisms and

51

3. Models for XML Reasoning

linear morphisms. The constructions are polynomial.

Limitations with Respect to Real XML Documents Our tree models
abstract several features from the XML data model. First of all, we ignore
attribute nodes and text nodes. Then we do not represent the prologue of the
document: the only part of the document that we model is the body of the
XML document. Last but not least, the lack of attributes prevents us from
supporting key mechanisms at the schema level. Neither do we model XML
namespaces nor DTD entities. On the one hand we attribute identifiers to
the nodes of our trees, but on the other hand the queries we consider cannot
refer to those identifiers, which anyway have particular meaning (and we
never consider rich identifiers schemes).

3.1.3. Regular Expressions and Word Automata

Throughout this thesis we will use several devices such as automata, regular
expression and logical formulae in order to define word and tree languages.
We will say that any two such devices are equivalent if they accept the same
language.

Regular Expressions Regular expressions are generated by grammar:

e� ǫ | a | peq d peq | peq � peq | peq� pwith a P Σq

We impose parentheses in order to obtain an immediate construction of the
parse tree of e, but we will omit the parentheses whenever we can. The parse
tree te of e is a binary tree, defined as usual, with node identifiers attributed
arbitrarily: the parse tree of an expression is only used in Sections A and A,
where the parse tree is given as input of the algorithms, so that node iden-
tifiers are already provided. A sample expression and its parse tree will be
presented in Figure 6.2 on page 206. Each node of te represents some subex-
pression, and the leaves of te with label in Σ are the positions of e, denoted
by Pospeq � tn P Nt | labepnq P Σu.

The symbols d, � and � represent concatenation, disjunction, and Kleene
star, respectively, but we generally omit the concatenation symbol. The
language Lpeq of all words accepted by a regular expression e is defined as
usual:

Lpǫq � tεu Lpe1 Y e2q � Lpe1q Y Lpe2q
Lpaq � tau Lpe1 d e2q � Lpe1q d Lpe2q
Lpe�q �

�
i¥0 Lpeq

i where Lpeqi � Lpeq d . . .d Lpeqlooooooooomooooooooon
i

We define the size of a regular expression as its number of symbols: |e1de2| �
|e1�e2| � |e1|�|e2|�1, |e�1 | � |e1|�1, and |a| � |ǫ| � 1 (a P Σ). We sometimes

52

3.1. Words, XML, and Unranked Trees

use a set to define the disjunction of elements in that set: for instance, Σ will
be used as a shorthand for

�
aPΣ a. For regular expressions defining DTDs,

we will use , and | to denote the concatenation and disjunction instead of d
and �.

In Section 6.2 we will discuss regular expressions with numeric occurrences:
those are obtained by extending the syntax of regular expressions with ern..ms

for every n P N,m P N Y t8u with n ¤ m. The semantics of these numeric
occurrence indicators is given by Lpern..msq �

�
n¤i¤m Lpeq

i. In particular,

Lpe�q � Lper0..8sq. The regular expressions with squares are (standard) reg-
ular expression extended with e � er2..2s. The size of a regular expression
with numeric occurrence indicators is defined by |ern..ms| � |e| � 1. Squares
and even numeric occurrence indicators do not increase the expressivity of
regular expressions, but they drastically improve succinctness: the following
example gives a family of regular expressions en of size n with numeric oc-
currences such that every (standard) regular expression equivalent to en has
size at least 2n.

Example 3.2. Set e1 � a, and for every natural n, set en � pen�1qr2..2s.
Expression en has size n, but every (standard) regular expression with lan-
guage a2

n

has size Ωp2nq. Conversely, for every regular expression e with
squares, one can build a regular expression e1 of size at most 2|e| such that
Lpe1q � Lpeq.

Word Automata Automata are one of the most extensively studied models
in formal methods for computer science. A nondeterministic finite automaton
(NFA) is a tuple A � pΣ, Q, I, F,∆q where Σ is the alphabet, Q is a finite
set of states, I is the set of initial states, F is the set of final states, and
∆ � Q � Σ � Q is the set of rules. The size of automaton A is defined as
|A| � |Q| � |∆|.

The semantics of finite state automata is given through the notion of runs.
Given a word w � a1a2 . . . an P Σ�, a run of A on w is a mapping ρ :
t0, . . . , nu Ñ Q such that ρp0q P I and pρpi � 1q, ai, ρpiqq P ∆ for every
i P t1, . . . , nu. The run ρ is accepting if ρpnq P F . Automaton A accepts
word w if it has an accepting run on w. The language LpAq of A is the set
of all the words accepted by A.
A is deterministic if |I| � 1 and, for every q P Q and a P Σ, there exists

at most one q1 with pq, a, q1q P ∆. It is well known that every NFA can be
determinized in time at most exponential, and there are NFAs for which the
exponential blowup in the number of states cannot be avoided.

Several word automata models have been proposed to extend the basic
automata. Pushdown automata, for instance, use a stack in addition to the
finite set of states, while Mealy machines and Moore machines do not only
accept an input word, but also produce an output [Mea55, Moo56]. These
models are commonly used for the verification of system properties. We also

53

3. Models for XML Reasoning

use a model of pushdown automata in addition to standard word automata
in this dissertation. Furthermore, our models for document transformations
can be viewed as a model of transducers. We shall discuss in the next sections
visibly pushdown automata and our modelization of document transforma-
tions by tree alignment languages.

Conversions Between Regular Expressions and Word Automata Early
works pertaining to the formal study of regular languages and finite automata
can be traced back to the first half of the 20th century, for instance, as a model
for neural net behaviour [MP43]. A major result by Kleene establishes the
equivalence between regular expressions and automata [Kle56] in terms of
expressiveness. This result initiated a recurring interest in the connections
between regular expressions and automata. While regular expressions are
essentially used to describe regular languages, finite state automata are the
foremost tool for reasoning about those languages.

There are two major approaches for converting an automaton into an
equivalent regular expression. McNaughton and Yamada [MY60] proposed a
method based on decomposition of the paths in the transition graph of the au-
tomaton. Brzozowski and McCluskey [BM63] proposed the state elimination
method, which can be applied either by constructing generalized automata in
which the transitions are labeled with regular expressions instead of letters,
or by solving a system of algebraic equations using Arden’s Lemma. We do
not detail those algorithms: they are surveyed in [Sak05] and many stan-
dard textbooks on automata theory such as [Sak09]. The above algorithms
have exponential complexity. A corresponding exponential lower bound has
been provided by Ehrenfeucht and Zeiger [EZ74]. They show that for every
n ¥ 0 there is a DFA An with n states and size Opn2q over an alphabet Σ
of size n2 such that any regular expression equivalent to An has size at least
2n�1. Similarly, they show a supra-exponential nΩplog lognq lower bound for
acyclic DFA. Gruber and Holzer improve in [GH08] the 2Θp?nq lower bound
for the conversion of DFAs into regular expressions to 2Ωpnq, which matches
the upper bound of the above algorithms. More precisely, they show with
graph-theoretic techniques that for any alphabet Σ of size at least 2, there is
a family of DFAs An over Σ with at most n states such that any regular ex-
pression equivalent to An has size at least 2Ωpnq. Consequently the conversion
of automata into regular expressions has complexity 2Θpnq.

Algorithms building finite automata from regular expressions have found
widespread applications in domains such as lexical analysis or pattern match-
ing. Several algorithms have been proposed to convert regular expressions
into NFAs. The major ones are discussed in most textbooks on automata
theory and we will not survey all existing constructions. Assume a regular ex-
pression e over alphabet Σ. An approach popularized by Thompson [Tho68]
allows to build in linear time Op|e|q an NFA A1 with ε-transitions from e,

54

3.1. Words, XML, and Unranked Trees

#start

a1 b2

b3

b4

a5
b

b

a

a

b

a

a

b
b

a

Figure 3.3.: Glushkov automaton of pab� bpb� εqaq�.

but eliminating the ε transitions from A1 raises the complexity to Op|e|2q if
we use the standard algorithm to eliminate the ε-transition [HU79, p. 26].
Another approach is to build (ε-free) NFAs from e. Algorithms following
this approach produce quadratic-size (ε-free) NFAs, such as the Glushkov
automaton, Follow automaton, or the Antimirov automaton. We detail the
Glushkov construction because it enjoys a nice connection to deterministic
regular expressions.

Glushkov Automaton The Glushkov automaton of a regular expression has
been introduced in [Glu61, MY60]. A striking property of this automaton is
a correspondence between the states of the automaton and the occurrences of
letters (aka. positions) in the expression. We denote by e the regular expres-
sion obtained from e by marking the i-th position (from left to right) with
subscript i. We denote by Σ the set of symbols obtained from Σ by adding
subscripts below letters. In particular, Pospeq � Pospeq. The First and Last-
positions of a regular expression e are Firstpeq � ti | Du P Σ

�
.labepiq d u P

Lpequ and Lastpeq � ti | Du P Σ
�
.u d labepiq P Lpequ, respectively. Given

a position p of e, Follow eppq is the set of positions that may follow p in e:
Follow eppq � tq | Du, v P Σ

�
.ud labeppq d labepqq d v P Lpequ.

The Glushkov automaton of regular expression e is defined as Glushkovpeq �
pΣ, Q, I, F,∆q where Q � t#u Y Pospeq (with # a fresh symbol outside Σ),
I � t#u, F � Lastpeq if ε R Lpeq, F � t#u Y Lastpeq otherwise, and ∆ de-
fined as follows: for every q, q1 P Pospeq, a P Σ, pq, a, q1q belongs to ∆ if and
only if labepq1q � a and q1 P Follow epqq. Furthermore, for every q P Pospeq,
p#, a, qq belongs to ∆ if and only if labepqq � a and q P Firstpeq. Figure 3.3
depicts the Glushkov automaton of regular expression e1 � pab� bpb� εqaq�.

The Glushkov construction produces quadratic-size automata, albeit with

55

3. Models for XML Reasoning

a linear number of states. For instance, over alphabet Σ � ta1, . . . , anu, the
Glushkov automaton for e � pa1� . . .� anqpa1� . . .� anq has n2 transitions.
Similarly, the Glushkov automaton for e1 � a1?a2? . . . an? has npn � 1q{2
transitions.

It was a long-standing open problem whether an NFA of subquadratic
size could be built from all regular expressions, with some people as-
suming the quadratic increase to be unavoidable, for instance on expres-
sion e1 (see the discussion in [HSW97, HSW01]). This problem was first
solved by Hromkovic̆ et al. [HSW97, HSW01], who presented an algo-
rithm converting any regular expression of size n into an NFA of size
at most Opnplog nq2q. The complexity of the algorithm from [HSW97]
is Opn2plog nqq, but Hagenah and Muscholl [HM98] improved the com-
plexity to Opnplog nq2q. What is more, [HSW97] also contributes a lower
bound, as they prove that any NFA equivalent to e1 needs Ωpn log nq tran-
sitions. This lower bound was subsequently improved to Ωpnplog nq2q by
Schnitger in [Sch06], still using expression e1. Thus, the Opnplog nq2q al-
gorithm from [HM98] is optimal for the conversion of regular expressions
into (ε-free) NFAs.

This optimality only applies to the construction of a full ε-free NFA,
however: there are other representations of regular expressions that
can be computed in linear time, besides the NFA with ε-transitions.
Chang and Paige [CP97], on one side, and Ponty, Ziadi and Champar-
naud [PZC96] on the other, propose a representation of the Glushkov
automaton that can be computed in linear time from the regular expres-
sion. This representation allows, given a position n of e, to compute
Followpnq in linear time Op|Followpnq|q. It is interesting to observe that
all algorithms in [HM98, HSW97, HSW01, CP97, PZC96] are based on
similar observations on the structure of regular expressions.

Determinism of Regular Expressions A regular expression e is determin-
istic if for every position p of e and every q � q1 P Follow eppq it holds that
labepqq � labepq1q and, for every p, p1 P Firstpeq with p � p1, it holds that
labppq � labpp1q. In terms of the Glushkov automaton, e is deterministic if
and only if its Glushkov automaton is deterministic. Deterministic regular
expressions are also called one-unambiguous regular expressions in the lit-
terature because of this property which facilitates the evaluation of a word
against a regular expression. We say that a regular language L0 is determin-
istic if there exists a deterministic regular expression e such that L0 � Lpeq.

Example 3.3. Let us define e1 � pab � bpb � εqaq� and e2 � pa�ba � bbq�.
Let us denote by p1, p2, . . . p5 the positions of e1 in left-to-right order, and by
q1, . . . , q5 those of e2. We have e1 � pa1b2�b3pb4�εqa5q� and Follow e1pp3q �

56

3.1. Words, XML, and Unranked Trees

tp4, p5u. Similarly, e2 � pa�1b2a3 � b4b5q�, and Follow e2pq3q � tq1, q2, q4u.
Regular expression e2 is non-deterministic since labe2pq2q � labe2pq4q � b, but
e1 is deterministic. One can check on Figure 3.3 that the Glushkov automaton
of e1 is deterministic.

We investigate or survey in Chapter 6 a few problems pertaining to determin-
istic regular expressions, such as deciding efficiently if a regular expression is
deterministic, deciding if a regular language is deterministic, and evaluating
such regular expressions.

3.1.4. Grammars

Context-free languages and grammars were initially designed as a formal
model for natural languages [Cho59]. They were extensively studied in the
context of syntactic analysis. In this dissertation we mainly use complexity
results on classical decision problems for context-free grammars in order to
establish lower bounds.

A context-free grammar (CFG) is a tuple G � pV, T, S, P q with V the non-
terminals, T the terminals (disjoint from V), S the initial non-terminal, and
P : V Ñ pV Y T q� the productions. Given u, v P pV Y T q�, we write u Ñ v

if there exist x P V , w1, w2 and w1 such that u � w1xw2, v � w1w
1w2 and

px, w1q P P . The reflexive transitive closure of Ñ is denoted by Ñ�. The
language accepted by a context-free grammar G is a context-free language
defined as LpGq � tw P T � | S Ñ� wu. Whenever the context raises no
ambiguity, we will speak of context-free languages, assuming implicitly that
those languages are given by a context-free grammar. Thus, when we mention
the undecidability of universality of context-free languages, we mean: “the
problem that takes as input a context-free grammar G over alphabet Σ and
decides if LpGq � Σ� is undecidable”.

Given a CFG G and a word w P LpGq, a derivation tree of w for G is a tree
t satisfying the following conditions: the internal nodes of t have label in V ,
its leaves have label in T , the yield of t is w, and for every internal node of t
with label x, if u is the word formed by the children of x, then xÑ u belongs
to P . A grammar is ambiguous if there exists one word w P T � that admits
two non-isomorphic derivation trees. The problem of testing if a context-free
grammar is ambiguous is undecidable.

A straight line program is a context-free grammar G � pV, T, S, P q such
that there is a single production from each non-terminal, and the production
relation is acyclic, i.e., @x P V, w1, w2, if x Ñ� w1xw2 then w1 � w2 � ε.
Thus, each straight line program G represents a single word wG, of size at
most exponential in the size of G.

The Post Correspondence Problem The Post Correspondence Problem
(PCP) can be viewed as a problem of deciding ambiguity for particular CFGs.

57

3. Models for XML Reasoning

PCP takes as input an integer n, an alphabet Σ and two sequences of words
u1, . . . , un and v1, . . . , vn. It returns true if there is a PCP match for the two
sets of words, i.e., if there are k P N, i1, . . . , ik P N such that ui1ui2 . . . uik �
vi1vi2 . . . vik . Otherwise, it returns false. The Post Correspondence Problem
is undecidable.

Properties of Context-Free Languages Context-free languages are strictly
more expressive than regular languages. Moreover, they are strongly related
to the regular tree languages. Not only because the linearization of a reg-
ular tree language is a visibly pushdown language, and visibly pushdown
languages are a subclass of context-free languages, but also because the lan-
guages formed by the leaves of regular sets of trees are exactly the context-free
languages: a set of words S is a context-free language if and only if there
exists a regular tree language L such that S � yieldpLq. Thus, context-
free languages appear naturally when we consider regular tree languages and
delete internal nodes. However, most decision problems become intractable
for context-free languages. What is worse, context-free languages are not
closed under all Boolean operations, unlike regular languages or visibly push-
down languages. The intersection of two context-free languages needs not be
a context-free language. Nor does the complement of a context-free language
need to be a context-free language.

Emptiness can be decided in linear time for a context-free language. But
universality is undecidable for context-free languages. Consequently, even the
problem of deciding if R � LG for R a regular language and LG a context-
free language is already undecidable. Inclusion, and even equivalence of two
context-free languages are also undecidable. Testing if the intersection of
two context-free grammars is empty is undecidable. Last, it is undecidable
if the language of a context-free language is regular. We prove that this
undecidability result still holds for deterministic regular languages as the
standard proof [HU79] carries over to deterministic regular languages. That
determinism of R does not help to test inclusion R � G is trivial by taking
R � Σ�.

Proposition 3.4. The problem of testing if LpGq is a deterministic regular
language for a context-free grammar G is undecidable.

Proof. We simply tailor for deterministic regular expressions the proof of
Greibach’s theorem [Gre68] in the textbook of Hopcroft and Ullman [HU79,
p. 205]. This proof proceeds by reduction from universality of context-free
grammars. Let L0 � anbn. Given any context-free language L over alphabet
Σ � ta, bu, L1 � Σ�#L Y L0#Σ� is a context free language. Furthermore,
L1 can be effectively computed from L, and L1 is a deterministic regular
language if and only if L � Σ�. Note that when L � Σ�, L1 equals Σ�#Σ�

58

3.2. Tree Languages

and is therefore deterministic, and otherwise L1 is not even regular. Conse-
quently, an algorithm testing if L1 is a deterministic regular language would
yield an algorithm to test universality of context-free languages.

3.2. Tree Languages

3.2.1. Tree Automata and Visibly Pushdown Automata

Tree automata were introduced by Doner [Don65, Don70] and Thatcher and
Wright [TW65, TW68] in order to obtain decision procedures for monadic
second order logic. Tree automata essentially adapt the word automata mod-
els to (ranked) trees: they still use a finite set of states and transition rules,
but the transition rules associate the state at a node with the states at its
children, instead of associating the state at position i with the state at posi-
tion i� 1.

Tree Automata for Binary Trees Let us define tree automata over (full)
binary trees. We only consider automata over fcns trees, representing the
encoding of unranked trees, so symbols from the alphabet Σ have arity 2 and
label internal nodes while leaves are labeled K. A (non-deterministic) tree au-
tomaton for binary trees (NTA) over alphabet Σ is a tuple A � pΣ, Q,Qf ,∆q
with ∆ � Q3 � Σ Y Q � tKu. We sometimes write apq1, q2q Ñ q instead of
pq, q1, q2, aq P ∆ and K Ñ q instead of pq,Kq P ∆, where q1, q2, q P Q, a P Σ.
The size of A is |Q|�|∆|. Automaton A is (bottom-up) deterministic if there
exists a unique q such that K Ñ q and if additionally for every q1, q2 P Q and
a P Σ there exists at most one q such that apq1, q2q Ñ q. Automaton A is
unambiguous if for every tree t, A has at most one accepting run over t.

Given a tree t over alphabet Σ Y K, a run of A over t is a mapping ρ

from Nt to Q such that for every node n of t, if n is a leaf then K Ñ ρpnq P
∆, and otherwise, denoting by n1 and n2 the left and right children of n,
labtpnqpρpn1q, ρpn2qq Ñ ρpnq P ∆. The run ρ is accepting if ρproot tq P Qf .
Given any state q P Q, we denote by Aq the NTA obtained from A by
replacing Qf with tq1u. We observe that, when A accepts only fcns encodings
of trees, then Aq accepts fcns encoding of hedges.

Of course automata for binary trees can be generalized to automata for
ranked trees. The challenges we address, however, are not about ranked but
about unranked trees. Several approaches extend the automata framework
to unranked trees: a first solution is to encode unranked trees as binary
trees, using the fcns encoding for instance. We will occasionally switch to
this approach when it helps keep simpler proofs, but will in general adopt a
formalism based on the linearization of trees: visibly pushdown automata.

59

3. Models for XML Reasoning

Visibly Pushdown Automata

Visibly pushdown automata (VPAs) have been introduced by Rajeev Alur
and Parthasarathy Madhusudan in [AM04b] in order to model program anal-
ysis. VPAs are special pushdown (word) automata whose stack behavior is
driven by the input symbol according to a partition of the alphabet. Al-
though they were not initially defined for this purpose, VPAs are very useful
for processing XML streams, since they can accept well-matched languages
defined over an input alphabet of opening tags and closing tags. Nested
word automata [Alu07, AM09] are a reformulation of visibly pushdown au-
tomata. We refer the reader to [AM09, Gau09] for a more detailed analysis
of properties of those automata, and their connection to other tree automata
representations.

Definition 3.1. A visibly pushdown automaton over alphabet Σ is a tuple
A � pΣ, Q,Γ, I, F,∆q where

• Σ is the input alphabet,

• Q is a finite set of states,

• Γ is a finite alphabet of stack symbols,

• I � Q is the set of initial states,

• F � Q is the set of final states,

• and ∆ � Q� top, clu � Σ � Γ �Q is the set of rules.

We shall define hereunder an additional condition that must be satisfied by
the VPA A.

The size of A is |Q| � |Γ| � |∆|. The states (, letters) and stack symbols that
do not occur in transitions of A can be removed in linear time from A so we
assume throughout the dissertation that the size of a VPA is essentially its
number of transition: |A| P Θp|∆|q. For the analysis of basic constructions,
we will nevertheless distinguish the contribution of |Q|, |Γ| and |∆| in the
complexity. This is because |∆| and therefore |A| may contain up to |Q|2 �
|Γ| � |Σ| transitions: the “gap” between state complexity and transition
complexity is much wider for VPAs than for word automata.

A rule pq, ι, a, γ, q1q P ∆ is written q
pι,aq:γ
ÝÝÝÑ q1. When ι is equal to op, then

q
pop,aq:γ
ÝÝÝÝÑ q1 is a push rule. It means that if the current state is q and the

input letter is an opening a then one can push γ into the stack and set the

current state to q1. Symmetrically, q
pcl,aq:γ
ÝÝÝÝÑ q1 is a pop rule. It means that if

the current state is q and the top of the stack is γ and the input letter is a

closing a then one can pop γ from the stack and set the current state to q1.

60

3.2. Tree Languages

We will sometimes define VPAs with ǫ-transitions of the form pq, ǫ, q1q
with q, q1 P Σ in the rules. This does not increase the expressiveness of the
VPAs because the ǫ transitions can be eliminated in polynomial time. To
eliminate the ǫ transitions we can add a new rule pq0, ι, a, γ, q1kq in ∆ for every
pq, ι, a, γ, q1q P ∆ and every j, k ¤ |Q|, q0, q1, . . . , qj P Q and q1 � q10, . . . q

1
k P Q

satisfying the following three conditions: (1) qj � q, (2) for every i j,
pqi, ǫ, qi�1q P ∆, and (3) for every i k, pq1i, ǫ, q

1
i�1q P ∆.

Let A � pΣ, Q,Γ, I, F,∆q be a visibly pushdown automaton, then a run
of A from q0 to qm over a word a1a2 . . . am P ptop, clu � Σq� is a sequence
pq0, σ0q, pq1, σ1q, . . . pqm, σmq with qi P Q and σi P Γ� for every i P t0, . . .mu,
such that σ0 � σm � ε and for every i P t1, . . . ,mu, there are some b P Σ and
γ P Γ such that either ai � pop, bq, pqi�1, op, b, γ, qiq P ∆ and σi � σi�1 � γ,
or otherwise ai � pcl , bq, pqi�1, cl , b, γ, qiq P ∆ and σi�1 � σi � γ. The run is
accepting if q0 P I and qm P F . The pair pqi, σiq is the configuration reached
by A on run ρ after reading the ith letter of the word w. By extension, a
run of A over tree t is defined as a run of A over linptq. A tree t (or the
corresponding nested word linptq) is accepted by A if there is an accepting
run of A over linptq. The language of a VPA A is a visibly pushdown language,
and is defined as the set of all trees (or equivalently all linearizations of trees)
accepted by A.

Caveat: In this dissertation, we only consider documents represented as
trees, so we require that every word accepted by our VPAs must be the lin-
earization of some tree or hedge: for instance, we consider that a word like
pop, aq pcl , bq is not accepted by any VPA. We sometimes assume that the
VPAs can accept a hedge instead of a tree, but in this case it will be ex-
plicitly mentioned unless it is clear from context. There are two restrictions
of the above definitions that guarantee the language only contains trees (or
hedges); in this dissertation we assume the second one:

1. We could consider that a VPA A may have accepting runs over words
that are not the linearization of an hedge, although these words do
not belong to the language of A: LpAq would be defined as the set
of all words w such that A has an accepting run over w and w is the
linearization of some hedge.

2. Or we could require that the transitions of the VPA check if the in-
put is the linearization of a hedge. In other words a tuple A �
pΣ, Q,Γ, I, F,∆q as above is not a VPA unless it satisfies the property
that every word over which A has an accepting run is the linearization
of a hedge.

We call the first and second assumption the expected tree-input and enforced
tree-input assumption for VPAs. We even distinguish the strong enforced
tree-input assumption for VPAs in which every stack symbol determines the

61

3. Models for XML Reasoning

letters which can be processed by a transition: that is, the VPA A satisfies
the strong enforced tree-input assumption if there is a mapping f from Γ to Σ
such that γ P Γ can only appear in transitions of the form pq, ι, fpγq, γ, q1q for
some q, ι, q1. In this dissertation we use the enforced tree-input assumption,
but the results which depend on it will be explicitly mentioned.

Actually, for any VPA A � pΣ, Q,Γ, I, F,∆q over alphabet Σ that does
not satisfy the enforced tree-input assumption, we can build a VPA A1 �
pΣ, Q,Γ1, I, F,∆1q in time Op|A|q satisfying the (strong) enforced tree-input
assumption such that the language of A (under the expected tree-input as-
sumption) is equal to the language of A1. The VPA A1 can be obtained
from A by encoding the letters into the stack symbol: Γ1 � Γ � Σ, and
pq, ι, a, pγ, aq, q1q belongs to ∆1 if and only if pq, ι, a, γ, q1q belongs to ∆. Thus,
using the enforced input-tree assumption does not limit the expressive power
of our VPA w.r.t. tree (hedge) languages, and does not impact the size of
the VPA although it impacts the number of stack symbols. We shall also
prove that the problem of checking if a VPA satisfies the enforced tree-input
assumption can be decided in cubic time by trivial reduction to the emptiness
problem.

Because VPAs were originally designed for verification and not for XML,
the original definition of VPAs is not restricted to trees and hedges. Actually,
since we only consider VPA accepting tree languages, we could have used the
streaming tree automaton [GNR08, Gau09] formalism for VPAs, except that
we do not assume a streaming model for XML. Therefore, an event-oriented
formalism would have been slightly more cumbersome (in our setting) than a
formalism focusing on nodes, trees and words. The streaming tree automaton
model does not use the enforced tree-input assumption because the language
of an STA is defined under the expected tree-input assumption.

We already pointed out that VPAs may sometimes define a set of hedges
instead of trees. In particular, given a VPA A � pΣ, Q,Γ, I, F,∆q and a pair
of states q, q1 P Q, we denote by Aq,q1 the VPA obtained from A by replacing
I with tqu and F with tq1u. This VPA accepts a hedge h if and only if A
admits over linphq � a1 . . . am a run pq0, σ0q, pq1, σ1q, . . . pqm, σmq satisfying
q0 � q and qm � q1 (and σ0 � σm � ε). We denote by AccA the horizontal
accessibility relation of A, defined as the set of all pairs pq, q1q such that Aq,q1

accepts at least one hedge. Formally, AccA � tpq, q1q P Q2 | LpAq,q1q � Hu.
We observe that a run ρ of A over a tree t induces a function, which

we abusively identify with the run ρ, from the nodes of t to pairs of states
pq, q1q. Given n P Nt, if ai, aj is the pair of opening and closing tag cor-
responding to node n in the word linptq � a1 . . . am and ρ is the sequence
pq0, σ0q, pq1, σ1q, . . . pqm, σmq, then ρpnq is defined as pqi, qj�1q. Note that we
have i � j � 1 if n is a leaf of t. A run ρ also induces another function ρÒ

from nodes to pairs of states, defined by ρÒpnq � pqi�1, qjq; the states of the
VPA before processing the opening tag of n and after processing its closing

62

3.2. Tree Languages

tag. We point out that ρÒ fails to fully characterize the run as the knowledge
of ρÒ for all nodes of the tree is not sufficient to determine the state of the
automaton between the opening and closing tag of the leaves. Actually, the
pairs ρpnq for every node n do not characterize the run either as the state
between the closing tag of a node and the opening tag of its next-sibling is
not represented.

A VPA A is deterministic if |I| � 1 and if for every q P Q and a P Σ
the following two conditions are satisfied: (1) for every γ P Γ, there exists
at most one q1 P Q such that pq, pcl , aq , γ, q1q P ∆, and (2) there exists at
most one γ P Γ and q1 P Q such that pq, pop, aq , γ, q1q P ∆. A VPA A is
unambiguous if for every word w, A has at most one accepting run over w.
Every deterministic VPA is clearly unambiguous, but the converse does not
hold.

Regular Tree Languages A set of unranked trees L is a regular tree lan-
guage if there exists a tree automaton accepting fcnspLq, or equivalently if
there exists a VPA accepting linpLq: the visibly pushdown automata over
the linearization and the NTA over the fcns encoding both have (exactly)
the expressive power of MSO over trees.

Determinization Tree automata can be determinized, albeit at exponential
cost. In particular, given any (binary) tree automaton A, one can compute
a deterministic (bottom-up, binary) tree automaton equivalent to A in time
2Op|A|q. Furthermore, this exponential blowup cannot be avoided: there exists
a family of languages Ln, n ¥ 1 such that Ln is accepted by a tree automaton
of size Opnq but any deterministic bottom-up automaton accepting Ln has
2n states. The lower bound is an immediate consequence of the blowup for
word automata.

Similarly, given any VPA A � pΣ, Q,Γ, I, F,∆q, one can compute a deter-
ministic VPA equivalent to A in time 2Op|A|2q. Furthermore, this complexity
involving an exponential with quadratic exponent cannot be avoided: there
exists a family of languages Ln, n ¥ 1 such that Ln is accepted by a VPA with
Opnq states but any deterministic VPA accepting Ln needs 2n2

states [AM09].

In this dissertation we use the determinization construction to establish the
complexity of the evaluation and emptiness problems for VPAs. The con-
struction also underlies the construction of Proposition 5.27 for representing
the updates that are not equivalent to updates in a regular language L. We
therefore detail below the construction, which is a trivial adaptation for tree
languages of the construction from Alur and Madhusudan. This adaptation
was already presented in [Gau09, p. 80].

63

3. Models for XML Reasoning

Theorem 3.5 ([AM09]). Let A a VPA. One can compute a deter-
ministic VPA A1 satisfying LpBq � LpAq. Moreover, if A has n states
then B has 2n2

states and 2n2

stack symbols, and can be computed in
Op|A| � 22n2

q.

Proof. Let A � pΣ, Q,Γ, I, F,∆q a VPA over Σ. We define an automaton
B � pΣ, QB,ΓB, IB, FB,∆Bq as follows. The set of states and stack alphabet
are both PpQ2q. The initial state is IB � ttpq, qq | q P Iuu. The set of final
states is FB � tS � Q2 | S X pQ � F q � Hu. Finally, the transitions are
defined below.

For every S P PpQ2q and a P Σ, let S 1 denote the set of all pairs pq, qq such
that there exist q1, q2 and γ satisfying the following two conditions: (1a)

pq1, q2q P S, (2a) q2
pop,aq:γ
ÝÝÝÝÑ q P ∆. Then ∆B has transition S

pop,aq:S
ÝÝÝÝÑ S 1

For every S, S0 P PpQ2q and a P Σ, let S 1 denote the set of all pairs pq1, q5q
such that there exist q2, q3, q4 and γ satisfying the following four conditions:

(1b) pq1, q2q P S0, (2b) q2
pop,aq:γ
ÝÝÝÝÑ q3 P ∆, (3b) pq3, q4q P S, and (4b) q4

pcl,aq:γ
ÝÝÝÝÑ

q5 P ∆. Then ∆B has transition S
pcl,aq:S0ÝÝÝÝÝÑ S 1.

Let w a word over top, clu � Σ that is the prefix of the linearization of a
tree. Let u the longest well-nested suffix of w, and v the prefix of w before
u: w � vu. The word v necessarily ends with an opening tag, and u either
begins with an opening tag or equals ε if the last symbol of w is an open-
ing tag. The following invariant proves the correction of the construction.

Invariant: The state reached by VPA B after reading w is the set of all
pairs pq, q1q such that u belongs to LpAq,q1q and A can reach state q after
reading v.

We observe that if w is not the prefix of the linearization of some tree, then
clearly the evaluation of B fails on w. This is because under our enforced
tree-input assumption, VPAs cannot accept nested words that are not the
linearization of trees, so A by definition would reject w. Since states accessi-
ble by B only contain states accessible by A, B also rejects w and therefore
also satisfies the enforced tree-input assumption. But even if we do not re-
quire the enforced tree-input assumption, we still have LpBq � LpAq under
the expected tree-input assumption because of the same invariant.

There are a few minor differences between this construction and the original
one from [AM09]. The main divergence stems from different definitions for
VPAs: in our setting, VPAs may only accept tree linearizations. In the
model of Alur and Madhusudan, there is no such restriction, and therefore
the stack alphabet is PpQ2q � Σ (plus a distinct initial stack symbol), the
symbol from Σ indicating which opening transitions can be considered in the

64

3.2. Tree Languages

construction of the closing rules. Since the letters in rules (4b) and (2b) need
not be identical in their model, the letter that should be used for rule (2b)
has to be stored and recovered from the stack.

There is also an inconsequential difference with the construction in [Gau09]:

Gauwin simplifies the opening rule of A1 into S
pop,aq:S
ÝÝÝÝÑ tpq, qq | q P Qu in-

stead of S
pop,aq:S
ÝÝÝÝÑ S 1. The definition of the closing rules as above ensures

that both construction are equivalent.

Complexity of determinization The complexity of the construction is in
any case dominated by the computation of the closing rules. There are several
strategies to compute those rules. Gauwin, for instance, first computes for
every possible value of S the set UpdateaS of all pairs q2, q5 for which there
exist q3, q4 and γ satisfying conditions (2b) to (4b) above. Then S 1 is obtained
as the composition of binary relations S0 and UpdateaS. Let n � |Q| denote
the number of states. A rough analysis3 shows that all relations UpdateaS
can be computed in Op|∆| � n � 2n2

q. Therefore we claim that we can
compute all transitions in time Op|∆| � n� 2n2

� |Σ| � n2 � 22n2

q, when the
transition table is stored as a set of tuples from QB�top, clu�Σ�ΓB�QB,
with each element from QB or ΓB represented explicitly by a matrix. If we
represent the elements QB and ΓB in those tuples by pointers toward the
corresponding states instead of matrices, then we can compute the transition
table in Op|∆| � n � 2n2

� |Σ| � 22n2

q. With Op|A| � 22n2

q we clearly have
an upper bound for this complexity.

To establish our claim we need to show how we can compute all closing
transitions with these complexities, once the relations UpdateaS are known.
We essentially have to compute the composition S0 � Update

a
S for all a P Σ

and S0, S P PpQ2q. We can use dynamic programming to compute for any
relation S � Q2 the product of all compositions S0 � S pS0 � Q2q, in total
time Opn2 � 2n2

q. The argument is that there are at most 2n arrays of n
booleans, therefore one can compute the product of all such arrays with R,
in total time n2 � 2n. Each relation S0 is represented as a matrix of n such
arrays (the lines of the matrix). Consequently the product of S0 with R can
be deduced in time Opn2q from the precomputed results, hence a total time
of Opn2 � 2n2

q for computing the product of all relations S0 � Q2 with R.
The claim follows immediately. We shall discuss again the computation of
the closing rules for Proposition 3.8.

Disambiguation The transformation of an unambiguous VPA with n states
into a deterministic one involves a 2n2

blowup, but so does also the transfor-
mation of a VPA into an unambiguous one [OS11]. Consequently, converting
VPAs into unambiguous automata instead of deterministic ones does not

3see also page 74

65

3. Models for XML Reasoning

guarantee to avoid the exponential blowup.

Closure Properties Regular tree languages are closed under union, inter-
section, and complementation. Furthermore, given two VPAs A1 and A2,
we can compute in polynomial time a VPA accepting LpA1q Y LpA2q or
LpA1q X LpA2q, and in exponential time a VPA computing TΣzLpA1q.

Han and Salomaa [HS09] establish precise bounds for those standard op-
erations. Let A1 � pΣ, Q1,Γ1, I1, F1,∆1q and A2 � pΣ, Q2,Γ2, I2, F2,∆2q
two VPAs. Han and Salomaa give a (standard) construction that builds an
automaton for LpA1q Y LpA2q with |Q1| � |Q2| states and maxp|Γ1|, |Γ2|q �
2 stack symbols, and another construction that builds an automaton for
LpA1q X LpA2q with |Q1| � |Q2| states and |Γ1| � |Γ2| stack symbols. They
show that those results are optimal in the following sense: for every n, there
exist automata A1 and A2 with n states and n stack symbols, such that every
automaton accepting LpA1qXLpA2q has at least n2 states and n2 stack sym-
bols. Similarly, for every n, there exists automata A1 and A2 with n states
and n stack symbols, such that every automaton accepting LpA1q Y LpA2q
has at least 3n� 2 states plus stack symbols.

The bounds for complementation, have been tightened more recently: for
every VPA A, one can build an automaton of size 2Op|A|2q that accepts the
complement of LpAq [AM09]. For arbitrarily large n there exists a VPA An

with n states and stack symbols such that any VPA accepting the comple-
ment of LpAq has 2pΩp|A|2qq states plus stack symbols [OS11]. For a more
detailed analysis of all these state complexities, we refer the reader to the
results in [HS09] and [OS11], which are slightly more precise.

Alternative Automata Models for Unranked Trees

Several other formalisms have been proposed for automata over unranked
trees [CDG�07]. Binary tree automata over the curryfied encoding have
been considered, for instance, in [CNT04], where they are called stepwise
automata. Hedge automata form another popular model working directly
on the unranked tree, without further encoding: transitions are of the form
pq, a, Lq where L is a regular language describing the states on the children of
the node. Hedge automata have received much attention since the early works
on unranked tree languages [Mur99, BKMW01]. Several automata models
based on hedge automata are presented in [BKMW01], with an overview of
related historical results on regular tree languages for ranked and unranked
trees.

Alternating Automata, and Tree-Walking Automata Intuitively, all the
models defined above traverse each node of the tree at most twice, and their
semantics is easily defined by the notion of runs, i.e., functions mapping in
a straightforward way each node of the tree to a state (or a pair of states).

66

3.2. Tree Languages

Tree-walking automata and two-way-alternating automata follow a different
philosophy, as their execution does not follow a particular traversal of the
tree, but can examine several times the same node in the tree. The “execu-
tion” of a tree-walking automaton over a tree is purely sequential, whereas
two-way alternating automata make a heavy use of branching.

Tree-walking automata were introduced in [AU71]. They have been used
recently in order to prove the gaps in terms of expressiveness between the log-
ics MSO and Regular XPath [tCS10] (see also page 93). Bojańczyk surveys
in [Boj08] properties of tree-walking automata, focusing on expressiveness
of the different types of tree-walking automata. The languages accepted
by (standard) tree-walking automata are clearly regular tree languages, but
the question whether the other inclusion holds was not solved until 2008,
when Bojańczyk and Colcombet produced a proof that tree-walking au-
tomata are strictly less expressive than MSO [BC08]. There exists a notion
of determinism for tree-walking automata but deterministic tree-walking au-
tomata are strictly less expressive than (non-deterministic) tree-walking au-
tomata [BC06]. Because of these limitations we do not use tree-walking
automata in this dissertation, notwithstanding their strong connection to
Regular XPath [tC06], but use the more expressive two-way alternating au-
tomata instead. For some XPath fragments, however, algorithms testing
emptiness of tree-walking automata could prove a viable alternative to empti-
ness testing for 2-ATAs. Héam et al. [HHK11] made a further step in that di-
rection, through the investigation of translations from tree-walking automata
to NTAs over full binary trees. Their algorithm focus on the computations of
the possible “loops” of the tree-walking automaton, and yield efficient algo-
rithms, especially for deterministic tree-walking automata. The authors also
propose approximations to bypass the Exptime-completeness of emptiness
checking for tree-walking automata.

In an NTA, the transition function maps each pair pq, aq to a set S of pairs
q1, q2. The pair q1, q2 expresses a kind of conjunction: there must be an ac-
cepting run from q1 in the left child of the node and an accepting run from q2
in the right child of the node. Intuitively, the set S expresses a disjunction:
one can choose which pair of states will be attributed to the children. Alter-
nating automata replace this set of pairs (or equivalently, this disjunction of
conjunctions) by an arbitrary positive Boolean formula to specify the proper-
ties that must be satisfied by the children of the node. Two way alternating
automata allow the formula to express conditions about the parent node in
addition to the conditions on the children nodes. Two-way (weak) alternat-
ing automata (2-ATAs) were introduced in [CGLV09] as a specialization for
finite tree of the two-way weak alternating automata from [KVW00]. It is
argued in [CGLV09, CGLV10] that 2-ATAs provide an interesting model for
reasoning about Regular XPath. In particular, they provide a hopefully more
implementable alternative to reasoning about variants of Propositional Dy-
namic Logic (PDL) that also have Exptime-complete satisfiability, but for

67

3. Models for XML Reasoning

which the exponential satisfiability algorithm is hardly implementable due
to the use of the notoriously complex determinization procedure from Safra.
The construction in [CGLV09, CGLV10] converts Regular XPath formulae in
linear time into a 2-ATA, and then builds an NTA equivalent to this 2-ATA
in exponential time. The conversion is discussed further in subsection 3.3.6.
We also postpone the formal definition of 2-ATA to this subsection. We
nonetheless survey here the complexity of the usual decision problems for 2-
ATA. Satisfiability is Exptime-hard in general since 2-ATAs extend NTAs,
and is therefore Exptime-complete, but we prove that it becomes Pspace-
complete over (binary encoding of) a non-recursive DTD, i.e., when consid-
ering only binary trees that encode trees of depth polynomial in the size of
the automaton. We do not write the proof explicitly, but it can be obtained
immediately from the proof of proposition 4.31, taking 2-ATAs instead of
Regular XPath formulae. As observed in [CGLV09], given a 2-ATA A and
a tree t, one can decide in time Op|A| � |t|q if t belongs to LpAq using the
technique from [KVW00].

The fcns encoding sometimes provides too little information for the simula-
tion of XPath formulae with tree-walking or two-way automata, in particular
one cannot infer whether the current node is the first child of its parent node
or the second when using the parent axis of the binary tree: a transition
going to the parent node in fcnsptq might correspond in the unranked tree to
either a move to the parent, or a move to the previous sibling. To remedy this
shortcoming of the fcns encoding, one can enrich the label of each node with
a subset of tifc, irs , hfc, hrsu. Thus the new labeling function maps each node
to some element in Σ � Pptifc, irs , hfc, hrsuq. The symbols ifc, irs , hfc, hrs
respectively stand for “is first child”, “is right sibling”, “has first child”, and
“has right sibling”. For instance, in the decorated binary encoding t1 of an
unranked tree t, a node label contains ifc iff the node is the leftmost child
of some node in t, and the nodes of t1 whose label contains hrs have a right
sibling in t, hence have a right child in t1 with label a P Σ, a � K, etc.

The above solution follows the presentation of [CGLV09]. Bojańczyk
and Parys [BP11] adopt a very similar approach, as they distinguish two
kinds of parent axes for the navigation over the binary tree: from-left

and from-right that can be applied only from the left and right child of a
node respectively. Ten Cate and Lutz [tCL09] follow an approach similar
to Bojańczyk and Parys. Although they do not explicitly mention a
binary encoding, their 2-ATA traverse trees using the axes corresponding
to the fcns structure, one of the axes goes to the previous sibling in the
unranked tree, and another goes to the parent provided the current node
has no left sibling, which corresponds to the from-right and from-right

axes over the fcns encoding, respectively.

68

3.2. Tree Languages

Equivalence of Tree Automata Models up to Polynomial Conversion

All those models have the same expressiveness. Furthermore, they are equiv-
alent up to a polynomial translation if we assume that the regular languages
in the transition of the hedge automata are given by NFAs in the case of
hedge automata. Let us detail the transformations between VPAs and tree
automata over the fcns encoding, as presented in [Gau09].

From NTAs to VPAs Let A � pΣ, Q,Qf ,∆q be an NTA. The VPA A1 �
pΣ, Q1,Γ1, I 1, F 1,∆1q defined as follows satisfies fcnspLpA1qq � LpAq. We pose
Q1 � Q, Γ1 � Q � Σ, I 1 � Qf , and F 1 � Q. The transitions of A1 are

derived from those of A: A1 has transition q
pop,aq:pq2,aqÝÝÝÝÝÝÝÑ q1 for every transition

apq1, q2q Ñ q in ∆, and has transition q
pcl,aq:pq2,aqÝÝÝÝÝÝÑ q2 for every transition

K Ñ q in ∆ and every q2 P Q. This translation preserves unambiguity,
but it does not preserve bottom-up determinism, that is, even when A is a
bottom-up deterministic automaton, A1 needs not be a deterministic VPA.4

The conversion above yields a VPA satisfying the strong enforced tree-input
assumption. Under the expected input-tree assumption, the conversion can
be simplified by dropping the Σ component from Γ1.

Example 3.4. Let A be the NTA with two states q0, q1 and with transitions
K Ñ q0, apq0, q1q Ñ q0, apq0, q1q Ñ q1, bpq0, q0q Ñ q0, and bpq0, q0q Ñ q1.
We set to tq0u the final states of A. The NTA A accepts the fcns encoding
of the trees over Σ � ta, bu in which the rightmost child of each node has
label b. In other words, A accepts all binary trees over ta, b,Ku satisfying the
two conditions that (1) all and only the leaves are labeled K, and (2) each
node whose right child is a leaf has label b. Figure 3.4 represents the VPA
obtained from A while Figure 3.5 parallels the runs of A1 and A over tree
t � bpapbq, a, bq and its fcns encoding. In both figures we have dropped the Σ
component from the stack symbols for better readability. This examples thus
illustrates the conversion under the expected input-tree assumption.

In the run of A over fcnsptq, the transition apq0, q1q Ñ q0 is applied at the
left child of the root. Consequently, A1 remains in state q0 and pushes q1
(resp. pq1, aq for the conversion under enforced tree-input assumption) onto
the stack when it processes the opening tag of this node in t. The state q1
(resp. pq1, aq) is therefore popped when processing the closing tag, so that
q1 is the state of A1 before processing the opening tag of the other a node.
More generally we can check the state of A1 before processing the opening tag
of a node n in t is the state assigned to n by A in fcnsptq. We observe also
that A1 is a deterministic VPA, which was to be expected since A is top-down

4When A is a top-down deterministic automaton, however, the VPA A1 obtained by the
conversion is deterministic [Gau09], but we do not study top-down determinism in this
dissertation.

69

3. Models for XML Reasoning

q0start q1

pop, aq : q1

pop, bq : q0

pcl , aq : q0
pcl , bq : q0

pcl , aq : q1

pcl , bq : q1

pop, aq : q1
pop, bq : q0

K Ñ q0,
apq0, q1q Ñ q0,
apq0, q1q Ñ q1,
bpq0, q0q Ñ q0,
bpq0, q0q Ñ q1

Figure 3.4.: NTA A and VPA A1

b

a

b

K K

a

K b

K K

K

q0

q0

q0

q0 q0

q1

q0 q1

q0 q0

q0

run of NTA A over fcnsptq

b

a

b

a b

q0 q0

q0

q0

q0

q0

q1

q0

q1

q0

q0

�q0

�q1

�q0 �q0

�q1

�q1 �q1 �q0 �q0

�q0

run ρt of VPA A1 over tree t

Figure 3.5.: From NTAs to VPAs

deterministic. We also observe that transitions pcl , aq : q0 and pcl , bq : q1 are
useless in A1.

Proposition 3.6. Given any NTA A � pΣ, Q,Qf ,∆q one can build in lin-
ear time Op|∆|q a VPA A1 such that fcnspLpA1qq � LpAq. The VPA A1 �
pΣ, Q1,Γ1, I 1, F 1,∆1q, computed by this conversion satisfies |Q1| � Op|Q|q,
|Γ1| � Op|Γ| � |Σ|q, and |∆1| � Op|∆|q.

Proof. The conversion detailed above almost satisfies those requirements ex-
cept for the closing rules that may be too many. If however we make sure
there is a unique state q such that K Ñ q belongs to ∆, then A1 has only
Op|Q|q closing rules. This can easily be achieved if we introduce a new state
q1 in Q and add to ∆ the transition K Ñ q1 together with appropriate tran-
sitions apq, q2q Ñ q0, apq1, qq Ñ q0 and apq, qq Ñ q0, for a total of Op|∆|q
transitions.

70

3.2. Tree Languages

From VPAs to NTAs Let A � pΣ, Q,Γ, I, F,∆q a VPA. The NTA A1 �
pΣ, Q1, Q1

f ,∆
1q defined as follows satisfies fcnspLpAqq � LpA1q. We pose Q1 �

Q�Q, Q1
f � I � F . For every a P Σ, A1 has transition appq1, q2q, pq3, q4qq Ñ

pq0, q4q if and only if there exists γ P Γ such that q0
pop,aq:γ
ÝÝÝÝÑ q1 and q2

pcl,aq:γ
ÝÝÝÝÑ

q3. A1 has transition K Ñ pq, qq for every q P Q. Again, this translation
preserves unambiguity, but it does not preserve determinism. The number
of states in A1 may be quadratic in the number of states in A, and even in
the size of A. We prove below that this cannot be helped in general. The
number of transitions in A1 may exceed |A|2 but is bounded by |Q| � |∆|2.

Proposition 3.7. Given any VPA A � pΣ, Q,Γ, I, F,∆q, one can build in
time Op|Q| � |∆|2q an NTA A1 such that fcnspLpAqq � LpA1q. The NTA A1

computed by this conversion has Op|Q|2q states and Op|Q|�|∆|2q transitions.
For every n P N there exists a deterministic VPA An of size Opnq over a

unary alphabet and using a single stack symbol, such that any NTA equivalent
to An needs at least n2 states.

Proof. Let n P N. Let A the VPA defined by A � pΣ, Q,Γ, I, F,∆q, with
Q � tq1, . . . , qn, p1, . . . , pn�1u, Γ � tγu, Σ � tau, I � tqnu, F � tp1u, and
with transitions defined as follows:

∆ �tqi
pop,aq:γ
ÝÝÝÝÑ qi�1 | i nu Y tqn

pop,aq:γ
ÝÝÝÝÑ q1u Y tqn

pcl,aq:γ
ÝÝÝÝÑ pn�1u

Y tpi
pcl,aq:γ
ÝÝÝÝÑ pi�1 | i ¡ 1u Y tp1

pcl,aq:γ
ÝÝÝÝÑ pn�1u

The VPA A only accepts unary trees. Intuitively, the states qi check that
the number of opening tags is a multiple of n, while the pj check the number
of closing tags is a multiple of n� 1. Consequently, a unary tree is accepted
by A if and only if its depth is a multiple of gcdpn, n � 1q � npn � 1q. The
VPA A has size Opnq, but the usual pumping argument for (ranked) tree
automata implies that any NTA accepting LpAq needs npn� 1q states.

With a second stack symbol γ1 one can easily modify A so that it accepts

only the unary tree of depth npn � 1q: we replace transition qn�1

pop,aq:γ
ÝÝÝÝÑ qn

by qn�1

pop,aq:γ1
ÝÝÝÝÝÑ qn, replace transition qn

pcl,aq:γ
ÝÝÝÝÑ pn�1 by qn

pcl,aq:γ1
ÝÝÝÝÑ pn�1,

and add a transition pi
pcl,aq:γ1
ÝÝÝÝÑ pi�1 for each i ¡ 1. We also observe that

the construction can be simplified if we allow a quadratic number of stack
symbol.

Figure 3.6 summarizes the cost of conversions between our tree automata
models in terms of number of states and number of transitions. We do
not consider the number of transitions for alternating automata because the
transition rules have a different nature: we do not want to compare boolean
formula with set of tuples.

71

3. Models for XML Reasoning

VPA NTA (fcns) 2-(W)ATA (fcns)

nb of states: n2{Ωpn2q
size: n �m2

nb of states: n
size: m

nb of states: n

nb of states:
22n2�n{2Ωpnq

Figure 3.6.: Number of states and size obtained from the conversion of an
automaton with n states and m transitions

3.2.2. Decision Problems for Tree Automata

For tree automata as well as for VPAs, the containment and the equivalence
problems are Exptime-complete. Emptiness and Membership can be tested
in polynomial time. Complexities for emptiness and membership are classical
results for tree automata models, so we only survey those that will prove use-
ful in this dissertation. Emptiness can be decided in linear time for a ranked
tree automaton, by reduction to CFG emptiness for instance: each transi-
tion rule corresponds to one possible step of a derivation. The emptiness
and membership problem are clearly decidable in polynomial time for visibly
pushdown automata, but the polynomials involved have received scant at-
tention in the literature as far as we could observe. The next few paragraphs
are therefore devoted to the complexity of emptiness and membership for
visibly pushdown automata.

Emptiness for VPAs We survey several approaches to decide emptiness for
VPAs, namely:

1. the reduction to ranked tree automata emptiness through the conver-
sion from Proposition 3.7

2. the reduction to CFG emptiness

3. the computation of an NFA representing all reachable configurations

4. the computation of the horizontal reachability relation of the VPA A

We obtain the following complexity result:

Proposition 3.8. Given a VPA A � pΣ, Q,Γ, I, F,∆q, one can compute the
horizontal reachability relation of A, and therefore decide emptiness of LpAq
in Op|∆| � |Q| � |Q|3q.

72

3.2. Tree Languages

Remark 3.1. The Op|Q|3q term comes from computing the transitive closure
of AccA, and matrix-multiplication techniques allow to compute transitive
closure of a relation over Q with complexity Op|Q|ωq. But the transitive
closure rules are applied incrementally simultaneously with other rules, so it
is not clear whether the matrix techniques could be of any help here. In any
case, the Op|∆| � |Q|q term probably subsumes the Op|Q|3q contribution in
most practical automata.

The conversion to NTA from Proposition 3.7 provides a first algorithm to
decide emptiness of visibly pushdown automata. The resulting NTA, how-
ever, has size Op|Q|� |∆|2q so that applying the standard linear algorithm to
decide emptiness of the resulting NTA without exploiting the specific struc-
ture of the resulting NTA is not optimal: the overall complexity in that case
would be Op|Q| � |∆|2q, which is greater than Op|∆|2 � |Q|3q.

The conversion of pushdown automata into context-free grammars is a
classical solution to test emptiness of pushdown automata. The standard
construction for pushdown automata builds from A the CFG G � pV, T, S, P q
defined by a set of non terminals V � tSu Y Q � pΓ Y tεuq � Q, delimited
by brackets r s, and terminals T � top, clu � Σ. The productions P consist

of (1) one production rq, γ, q1s Ñ pcl , bq for every q
pcl,bq:γ
ÝÝÝÝÑ q1 P ∆, (2) one

production rq, γ, q2s Ñ pop, bq rq1, γ1, q3srq3, γ, q2s for every q
pop,bq:γ1
ÝÝÝÝÝÑ q1 P ∆,

γ P Γ Y tεu and q2, q3 P Q, (3) one production rq, ε, qs Ñ ε for every q P Q,
and (4) one production S Ñ rq1, γ, q2s for each q P I, q1 P Q, and q2 P F

such that q
pop,aq:γ
ÝÝÝÝÑ q1 P ∆. Consequently, G may contain |∆| � |Q|2 � |Γ|

productions, and this approach yields an algorithm in Op|∆| � |Q|2 � |Γ|q to
decide the emptiness problem for A. This straightforward reduction to CFG
emptiness is therefore less efficient than the next algorithms which present
Op|Q|3 � |Γ| � |∆|q worst case complexity.

A third approach, popular in the model-checking community, relies on the
observation that for any pushdown automaton, the set of all configurations
reachable from the initial states is regular. Moreover an NFA representing
this set can be computed from A in cubic time [FWW97]. Using this NFA
one can easily check whether there exists some final state that can be reached
with an empty stack.

This result is often presented in a broader setting: for every regular set
of configurations C, one can compute an automaton for the set Post�pCq
of configurations that can be reached from some configuration in C.
Similarly, one can compute an automaton for the set Pre�pCq of con-
figurations from which one can reach some configuration in C [BEM97,
EHRS00]. The complexities mentioned in those works depend on the
formalism assumed for the pushdown automaton and so in general need
to be slightly adapted for visibly pushdown automata. Van Tang [Tan09]
reformulates the construction of the reachable configurations Post�pCq

73

3. Models for XML Reasoning

for visibly pushdown automata.

We analyze next the complexity of computing the configurations reachable
from I. We define an NFA AP with initial states Q, such that a word w P Γ�

is accepted by AP from q if and only if the configuration pq, wq is accessible
in A from some configuration pqi, εq with qi P I.5

Formally, let AP � pΓ, Q,Q, I,∆Pq the NFA over alphabet Γ, and with
transitions ∆P defined according to the following saturation rules:

1. we put in ∆P a rule of the form q1
γ
ÝÑ q for every rule q

pop,aq:γ
ÝÝÝÝÑ q1 in ∆

2. we put in ∆P a rule of the form q3 ǫÝÑ q for every pair of rules q
pop,aq:γ
ÝÝÝÝÑ q1

and q2
pcl,bq:γ
ÝÝÝÝÑ q3 in ∆ such that q2p ǫÝÑq�q1 according to ∆P .

We observe that in the second rule, a and b should actually refer to the same
letter according to our restriction of VPAs to linearizations of trees, but we
keep different letters in order to cover the more general case. Our construc-
tion differs in many respects from the one in [Tan09], essentially because
of a different definition of VPA and a simpler setting for the problem. In-
deed Van Tang details the construction of Post�pCq for an arbitrary regular
set of configurations C, and his definition of VPAs both assumes an initial
stack symbol and allows internal transitions. The construction that com-
putes the reachable configurations corresponds to the rules for computing
the horizontal reachability relation. Indeed, q1 can be reached from q follow-
ing ǫ-transitions in ∆p if and only if pq, q1q P AccA. This construction can
therefore be implemented with complexity Op|∆| � |Q|q, as we shall discuss
in the next paragraph.

A fourth method to solve the emptiness problem is to compute the horizon-
tal accessibility relation AccA. Clearly, the horizontal accessibility relation
of A is the smallest subset of Q2 satisfying the following three conditions:

1. tpq, qq | q P Qu � AccA

2. AccA is closed under transitive closure: if pq, q1q P AccA and pq1, q2q P
AccA then pq, q2q P AccA.

3. for every transitions q
pop,aq:γ
ÝÝÝÝÑ q1 and q2

pcl,aq:γ
ÝÝÝÝÑ q3 in ∆, if pq1, q2q P AccA

then pq, q3q P AccA

This relation can therefore be computed with complexity Op|∆|2 � |Q|3q, as
observed in [Gau09, p. 108]. Actually, Gauwin does not state the result as
such: he mentions the result in a particular setting, and for deterministic
VPAs only, but his proof does not require determinism. With a careful
attention to the strategy (order of the operations) to compute the relation,
we can actually obtain AccA in Op|∆| � |Q| � |Q|3q.

5This NFA is often called the P-automaton of A in the model-checking literature.

74

3.2. Tree Languages

To reduce the |∆|2 term to Op|∆| � |Q|q we compute the relation R1 �

tpq, a, γ, q2q | q
pop,aq:γ
ÝÝÝÝÑ q1 P ∆u together with AccA: each time a new pair

pq1, q2q is added to AccA we add all corresponding tuples pq, a, γ, q2q into R1.
And whenever a new tuple pq, a, γ, q2q is added into R1, we add to AccA the
corresponding pairs pq, q3q generated by rule 3. Of course whenever a pair is
added to AccA we also take care to add the pairs generated by rule 2. The
pairs generated by rule 2 contribute the |Q|3 factor, while the computation
of R1 and the applications of rule 3 contribute the |∆| � |Q| factor. We also
observe that under the enforced tree-input hypothesis one can project out
the Σ component from ∆ before we apply the above construction.

The emptiness of LpAq can be established using the accessibility relation:
LpAq � H if and only if AccA X I � F � H. This concludes our survey of
techniques to decide emptiness for visibly pushdown automata.

In a nutshell, the cost of converting A into an equivalent ranked tree
automaton or context-free grammar via the standard techniques exceeds the
cost of directly checking emptiness. The construction of an automaton that
accepts the reachable configurations and the computation of the horizontal
accessibility relation both provide an algorithm with complexity Op|∆| �
|Q| � |Q|3q.

Membership for VPAs We may consider several approaches to decide
membership for VPAs, namely:

1. the reduction to the membership problem for ranked tree automata
through the conversion from Proposition 3.7

2. the reduction to CFG parsing

3. the determinization of A

4. the determinization of A “on-the-fly”

Proposition 3.9. Given a tree t and VPA A � pΣ, Q,Γ, I, F,∆q, one can
decide if A accepts t with any of the following complexities, depending on the
evaluation strategy adopted.

• Op|A|2 � 22Q2

� |t|q,

• Opp|∆| � |Q| � |Q|3q � |t|q,

• or Op|A| � 22|Q| � p|Q|2 � |Γ|q � |t|q.

Remark 3.2. Actually, the ∆ contribution in the second bound could be re-
placed with δ � maxaPΣ ∆X pQ� top, clu � tau � Γ�Qq, provided one also
adds |A| or |∆| in the complexity to make sure the whole input can be read
at least once, which gives Op|A| � pδ� |Q| � |Q|3q � |t|q. In terms of |Q| and

75

3. Models for XML Reasoning

|Γ|, δ is therefore bounded by 2� |Q|2 � |Γ|, so that using fast matrix multi-
plication, one can replace the bound with any of Opp|∆| � |Q| � |Q|ωq � |t|q
or Op|A| � |Q|ω � |Γ| � |t|q.

The cost of evaluating the VPA A through conversion into an equivalent
ranked tree automaton or context-free grammar via the standard techniques
exceeds the cost of our evaluation algorithms. We will therefore only present
our algorithms working directly on the VPA model. Theorem 3.5 provides
an algorithm to evaluate VPA A over a tree t in time Op|A|2 � 22|Q|2 � |t|q:
the evaluation of a deterministic automaton over the tree takes linear time,
and the deterministic automaton can be computed in time Op|A|2 � 22|Q|2q
(and even slightly faster). The huge exponent may be prohibitive for a large
VPA, all the more so as the storage of the deterministic automaton essentially
requires this amount of space (there may be up to 2|Q|2 different states).

The determinization of A on-the-fly trades storage space for processing
time at evaluation. In a first step (A0) we preprocess in linear time Op|∆|q
the transition function so that given any pq, aq P Q � Σ, one can obtain in
time Op|Q|q the list of all states q1 for which there exists some γ such that

q
pop,aq:γ
ÝÝÝÝÑ q1 P ∆. This preprocessing can be achieved in Op|∆|q, using lazy

arrays [MS90] for instance. We also assume the states S � Q2 to be stored as
arrays of dimension Q2 (A1) together with a structure that allows to test in
constant time for every q2 P Q if there exists any q1 such that pq1, q2q belongs
to the current state (A2).

When processing an opening tag, from the state S � Q2 and given a
letter a P Σ, one has to compute the set S 1 satisfying conditions discussed
below Theorem 3.5, namely the set of all pairs pq, qq such that there exist
q1, q2 and γ satisfying the following two conditions: (1a) pq1, q2q P S, (2a)

q2
pop,aq:γ
ÝÝÝÝÑ q P ∆. Thus, opening transitions can be processed with complexity

Opδ � |Q|q according to assumptions (A0) and (A2), or even Op|Q|ω � |Γ|q.
The closing tags account for most of the work. At a closing tag, one gets

two sets S and S0 P PpQ2q, a letter a P Σ, and one has to compute the set S 1

of all pairs pq1, q5q such that there exist q2, q3, q4 and γ satisfying the following

four conditions: (1) pq1, q2q P S0, (2) q2
pop,aq:γ
ÝÝÝÝÑ q3 P ∆, (3) pq3, q4q P S, and

(4) q4
pcl,aq:γ
ÝÝÝÝÑ q5 P ∆. The challenge is therefore similar to the problem of

applying the saturation rule 3 when computing AccA for checking emptiness
of a VPA as discussed on page 74. We first compute the set S2 of pairs
pq2, q5q satisfying conditions (2) to (5): the pairs pq1, q5q satisfying conditions
(1) to (5) are easily deduced as the composition of two binary relations. This
composition can be computed easily in Op|Q|3q or even Op|Q|ωq using fast
matrix multiplication, according to Lemma 3.2 and Lemma 3.1.

We first compute the set R1 of triples pq2, γ, q4q for which there exists
q3 such that conditions (2) and (3) are satisfied. This relation R1 can be
computed in Opδ � |Q|q according to Lemma 3.2, or even Op|Q|ω � |Γ|q

76

3.2. Tree Languages

using fast matrix multiplication. From R1, we similarly obtain the set S2 in
Opδ � |Q|q, or again Op|Q|ω � |Γ|q. This approach yields the overall bound
of Oppδ � |Q| � |Q|ωq � |t|q for the membership problem.

We recall that in our variant of the determinization construction, S may
only consist of pairs pq3, q4q for which there exist q1 and q2 and γ satisfying

pq1, q2q P S0 and q2
pop,aq:γ
ÝÝÝÝÑ q3 P ∆. The simpler variant from [Gau09]

described below the determinization construction drops this assumption, but
this has no consequence on the complexities above since the cost of opening
transitions is dominated by the cost of closing transitions. The assumption
may only help to decrease the size of the state, which may slightly simplify
evaluation. However, some other optimization techniques can be applied
more easily when we drop the assumption. We recall (from the invariant of
Theorem 3.5) that, if we denote by B the determinized VPA obtained from
A, the state reached by B after reading a well-nested word u is the set of
all pairs pq, q1q such that u P LpAq,q1q. Let us consider a well-nested word u

as a sequence of trees with roots n1, . . . , nk. and set J1, . . . , Jk � Q2 such
that for each i ¤ k, Ji � tpq, q1q | ti P LpAq,q1q. Then the state reached
by B after closing nk is J1 � J2 � � � � � Jk. The strategies defined above
would compute the composition in left-to-right order. This is a requirement
for streaming evaluation as considered in [Gau09], but when a streaming
evaluation is not required, it may be beneficial to optimize the computation
of such compositions, all the more so since statistics [BMV06] show that XML
trees generally have low depth, but may have very high arity. One possible
direction for the optimization would be to take into account the cardinality of
the relations. Another one may be to use parallelization. A last one may be
to consider the computation of J1 �J2 � � � � �Jk as a reachability problem over
the graph whose vertices are k�1 copies q1, . . . , qk�1 of each state q in Q, the
edges between the ith and pi�1qth copies being given by Ji: one must compute
for each q1 P Q the states qk�1 reachable from q10. This provides a solution
with complexity Op|Q| � p|J1| � |J2| � � � � � |Jk|qq, which may sometimes be
better than algorithms computing the compositions pair after pair. When
k is much larger than |Q|, one possibility to speedup the evaluation of the
compositions could be to precompute for all pairs of binary relations over
|Q| elements the result of their composition, and store this in some table.
There are 22|Q|2 possible pairs of such relations, however, so we fall back
to the complexity and huge space requirements of determinization. This
could be expected since this precomputation is actually the most expensive
part in the determinization procedure. We next present a kind of hybrid
method that achieves another tradeoff between storage space and processing
time. The method also provides a solution to compute J1 � J2 � � � � � Jk in
Op|Q| � 22|Q| � |Q|2 � kq.

One can compute in time Op|Q|�22|Q|�|Σ|�|Q|3�|Γ|�2|Q|qq a represen-
tation of the determinized VPA that allows to simulate each transition of the

77

3. Models for XML Reasoning

deterministic VPA in time Op|Q|3q (or alternatively Op|Q|2� |Γ|q per transi-
tion). The constructions rely on a dynamic programming scheme extending
the one we presented for the determinization procedure: we precompute the
composition of every pair of binary relation over Q. But instead of storing
explicitly the result as a matrix, which would require to store up to 2|Q|2

different matrices, we only store a representation of the matrix, which allows
to compute the matrix in time Op|Q|2q: in a nutshell we add one level of indi-
rection to spare space and time during the preprocessing. We next describe
our algorithm to compute a representation of S � R for every S,R � Q2.
We observe there are at most 2|Q| different arrays of |Q| booleans. Let ~R

be the matrix with dimensions 2|Q| � |Q| whose lines are formed of distinct

arrays of (|Q|) booleans, sorted lexicographically. Let ~S be the transpose of
~R: ~S consists of 2|Q| distinct arrays of booleans, stored lexicographically in
columns.

We can compute the product M of ~R with ~S in Op|Q| � 22|Q|q. The
composition of two relations R, S � Q2 can be deduced from M in Op|Q|2q:
if R is formed of the lines i1, i2, . . . , i|Q| P t1, . . . , 2|Q|u, and S of the columns
j1, j2, . . . , j|Q| P t1, . . . , 2|Q|u, then R�S is formed by the intersection of those
lines and columns in M . This justifies that we can compose relations within
the complexity claimed. It remains to prove that the relations UpdateaS can
also be computed efficiently.

Let γ1, . . . , γ|Γ| denote the symbols of Γ in some fixed order. For each a P Σ
and i ¤ |Γ|, we also denote by Moppa, iq the matrix representing the relation

tpq, q1q | q
pop,aq:γiÝÝÝÝÝÑ q1 P ∆u, and similarly for M clpa, iq. Finally, for each

j ¤ |Q| and each array v of |Q| booleans, we denote by Cpj, vq the square
matrix whose jth column is v, with other columns being zero (i.e., with all
elements equal to false).

We next describe a first strategy to compute the relations UpdateaS. For
i ¤ |Γ|, j ¤ |Q|, and each array v of |Q| booleans, we compute the product
Rpi, j, vq of the three boolean square matricesMoppa, iq, Cpj, vq andM clpa, iq,
in time Op|Q|2q. We then compute the sum R1pj, vq of all matrices Rpi, j, vq,
in Op|Γ| � |Q|2q. As this is done for all j and v, the total time for that
preprocessing is Op|Σ| � |Q|3 � |Γ| � 2|Q|q. With this datastructure, we can
compute UpdateaS in Op|Q|3q for any set S � Q2 and a P Σ: we simply sum
all matrices R1pj, vjq with j ¤ |Q|, and vj the jth column of S.

We could also adopt another strategy to compute the relations UpdateaS.
For every column array v of |Q| booleans, every a P Σ and every i ¤ |Γ|,
we compute the product of Moppa, iq with v. For every row array v of |Q|
booleans, every a P Σ and every i ¤ |Γ|, we compute the product of v with
M clpa, iq. The total time for this preprocessing is Op|Σ| � |Γ| � |Q|3 � 2|Q|q.
With this datastructure, we can compute UpdateaS in Op|Q|2�|Γ|q for any set
S � Q2 and a P Σ: we compute for each i ¤ |Γ| the product R2pi, Sq of the
three matrices Moppa, iq, S, and M clpa, iq. For each i, this can be achieved

78

3.2. Tree Languages

in Op|Q|2q using the datastructure from preprocessing. Then one sums all
matrices R2pi, Sq for all i ¤ |Γ|, in time Op|Q|2�|Γ|q. We have thus given two
methods that allow to process each transition in Op|Q|3q, or Op|Q|2�|Γ|q after
a preprocessing in total time Op|Q| �Q2|Q|� |Σ| � |Γ| � |Q|3� 2|Q|q. But the
|Σ|� |Γ| factor only takes into account pairs that appear in some transitions,
so it can be bounded by |A|. We can therefore use Op|A| � 22|Q|q as an
upper bound for the preprocessing. Let us now briefly survey some related
results from the literature on the evaluation of VPAs before we introduce the
problem of emptiness in presence of a DTD.

In terms of complexity classes, emptiness of VPAs is PTime-hard [Lan11],
and Alur and Madhusudan [AM09] provide several bounds showing that
membership can be solved with small space and time requirements (typ-
ically sublinear space) for a fixed automaton. But we only focus on the
degree of the polynomial involved and do not consider other indicators for
the complexity such as complexity classes or circuit complexity. It should
also be noted that the “trick” of using fast-matrix multiplication has been
used early on in the related problem of parsing context-free grammars:
Valiant observed that the membership problem for context-free gram-
mars can be solved in subcubic time using matrix-multiplication [Val75].

As already mentioned, Alur and Madhusudan [AM09] evaluate to
Op|A|3q and Op|A|3 � |t|q the complexity of the emptiness and eval-
uation problems for a VPA A � pΣ, Q,Γ, I, F,∆q and document t.
The construction in [Gau09] as discussed above allows to refine those
complexities to Op|∆|2 � |Q|3q and Opp|∆|2 � |Q|3q � |t|q. La Torre et
al. [TNP07] investigate the complexity of membership for visibly push-
down languages described by so-called visibly pushdown grammars, and
give algorithms deciding w P LpGq in Op|G| � |w|q for every such gram-
mar G and nested word w. The transformation of VPAs into visibly
pushdown grammars is polynomial but excessively expensive. We also
detailed an algorithm to check emptiness of VPAs using the configura-
tion automata (P-automata), along the lines of [Tan09]. The OpenNWA
implementation of VPAs by Driscoll et al. [DTR] also relies on the con-
figuration automata for testing emptiness, which is quite natural since
the library is derived from a more general project on pushdown systems.

We are not aware of better bounds in the literature. Certainly, a bound
in Opp|Q| � |Γ|q3 � |w|q has been suggested for the emptiness problem
in [AM04b], and a bound in Op|Q|2 � |Γ| � |w|q has been mentioned for
the evaluation problem in [TNP07], but from private communications
with the authors, it seems these bounds cannot be sustained, although
we have no argument against their correctness. Another estimation of
the complexity can be found in [TVY08], but it is at best incomplete:
complexity Op|Q|2 � |Σ| � |w|q is claimed, but not supported by further
justificationa.

79

3. Models for XML Reasoning

There have been several implementations of VPAs, as evidenced on the
web page by Madhusudan dedicated to visibly pushdown automata liter-
ature [vpa]. Several of these implementations provide general construc-
tions (intersection...) on VPAs, and allow to decide classical problems
such as evaluation, inclusion... We mention in particular three libraries
(not yet mentioned on the VPA web page) that emphasize performance
for typical applications of VPAs: XEvolve [PSZ11] shows that VPAs
provide space efficient solutions for the validation and typechecking of
XML schemata, whereas FXP [DGN�12] and XSeq [MZZ12]. focus on
the efficient evaluation of XPath languages.

aIn particular, it is surprising that neither the number of stack symbols nor the
number of transitions appear in the formula: testing in constant time the empti-
ness of a VPA with, say, three states over a one-letter alphabet, seems unfeasible
if the number of transitions and stack symbols is arbitrary.

Emptiness for VPAs in Presence of a DTD We extend the algorithm
deciding emptiness to support satisfiability under a schema constraint ex-
pressed with a DTD, where DTDs are defined on page 84. The problem of
deciding emptiness under a DTD constraint and the problem of VPA evalu-
ation are related in the sense that given any tree t and VPA A, we can build
in Op|t| � |A| � |t|q a DTD D of size Op|t|q and VPA A1 of size Op|A| � |t|q
having the same states than A, such that LpA1q X LpDq � H if and only if
t P LpAq: we simply use alphabet Nt and replace each transition of A using
letter a by one transition for each node of t labeled with a.

Of course, one can decide if the languages of a VPA and a DTD have
empty intersection by first translating the DTD into an equivalent VPA,
computing a VPA for the intersection, and then testing emptiness of the
resulting automaton, but we can obtain better complexity.

Proposition 3.10. Given a VPA A � pΣ, QA,ΓA, IA, FA,∆Aq and DTD D,
one can decide if there exists some tree t P LpDq X LpAq in time Op|∆A| �
|QA| � |QA|3 � |D| � |Σ| � |QA|2 � |D|2 � |Σ|q.

Proof. Let A � pΣ, QA,ΓA, IA, FA,∆Aq a VPA andD � pr,Σ, P q a DTD. We
begin with the construction of one Glushkov automaton for each letter a P Σ,
and denote by ia the initial state of the automaton corresponding to the
production from letter a (a unique state indeed, according to the definition
of Glushkov automata). We use distinct states for each automaton, and
denote by QD the union of the states, by ID the unions

�
aPΣtiau of all initial

states and by ∆D the union of the transition rules for all these automata.
QD and ∆D can clearly be computed in time Op|D2| � |Σ|q, and even in
Op|D| � |Σ|q for XML DTDs.

The simplest approach to test satisfiability of A with respect to DTD D

may be to build a VPA for the intersection of LpAq and D by the standard

80

3.2. Tree Languages

product construction. This however results in a VPA with state set QA�QD.
The complexity obtained from Proposition 3.8 in that case would still be
polynomial but raises the degree of the polynomial to 6 as it includes the
term pQA�QDq3. A more careful analysis of the reachability relation allows
to lower the complexity: we define a relation R � Q2

A � QD such that for
any q1, q2 P QA and q P QD, pq1, q2, q1q belongs to R if and only if there exist
n ¥ 0 trees t1, . . . , tn with root symbols a1, . . . , an, satisfying the following
three conditions:

• A admits a run from q1 to q2 over the hedge t1 . . . tn,

• there exist q10, q
1
1, . . . , q

1
n � q1 such that for every j n, pq1j, aj�1, q

1
j�1q

belongs to ∆D and q10 P ID

• for every j ¤ n, tj satisfies the DTD paj,Σ, P q.

The relation R can be computed according according to the following rules:

1. pq, q, iaq P R for all a P Σ

2. pq0, q4, q2q P R for all q0, q1, q2, q3, q4 P QA, q, q1, q2 P QD, γ P ΓA,
and a P Σ satisfying the following 6 conditions: (1) pq0, q1, qq P R, (2)

q1
pop,aq:γ
ÝÝÝÝÑ q2 P ∆A, (3) q3

pcl,aq:γ
ÝÝÝÝÑ q4 P ∆A, (4) pq2, q3, q1q P R, (5)

q1 P Fa, (6) pq, a, q2q P ∆D.

The 6 conditions of the saturation rule 2 can be decomposed as follows
into auxiliary relations R0 and R1 to obtain the complexities stated above:
R0pq1, q4, aq if (2),(3),(4) and (5) are satisfied R1pq0, q4, a, qq if (1) is satis-
fied and R0pq1, q4, aq, and Rpq0, q4, q2q if (6) is satisfied and R1pq0, q4, a, qq.
To conclude our proof, we observe that LpDq X LpAq � H iff there exists

pq1, q2, q1q in R, qi P IA, qf P FA, and γ P Γ such that qi
pop,rq:γ
ÝÝÝÝÑ q1 P ∆,

q2
pcl,rq:γ
ÝÝÝÝÑ qf P ∆, and q1 P Fr.

Remark 3.3. For XML DTDs, the complexity can be lowered to Op|∆A| �
|QA| � |QA|3 � |D| � |Σ| � |QA|2 � |D| � |Σ|q since there exists at most one
q2 such that pq, a, q2q P ∆D for each pair pq, aq in QD � Σ.

3.2.3. Pumping Lemmas for VPAs

We will use pumping arguments in several proofs. We essentially distinguish
two different pumping arguments on unranked trees: one can either replace
the subtree at a node with the subtree below a descendant of this node
or delete a sequence of consecutive subtrees rooted at a same node n. In
the first case we obtain a tree of strictly smaller depth, and in the second
case, we lower the number of children of node n. Let us detail those two
transformations.

81

3. Models for XML Reasoning

t t1 t2

q’ q”

q’ q”

q’ q” q’ q”

q’ q”

q’ q”

Figure 3.7.: Vertical pumping lemma for VPAs.

Let A � pΣ, Q,Γ, I, F,∆q a VPA, t a tree in LpAq, ρ an accepting run of
A in t and n a node in t, the pair of states ρÒpnq � pq’, q”q characterizes the
subtrees (or hedges) that could be used to replace the subtree rooted at n
in t without modifying the run in every other node of t. The tree obtained
from t by replacing node n and all its descendants with hedge h belongs to
LpAq for all h in LpAq1,q2q. Consequently we obtain the following lemma:

Lemma 3.11. Let A a VPA, t a tree in LpAq and ρ an accepting run of A
on t. If there are nodes n � n1 in t with n ¤t n

1 and ρÒpnq � ρÒpn1q, then
the trees t1 and t2 also belong to LpAq, where t1 is the tree obtained from t

by replacing the subtree rooted at n (n included) by the subtree rooted at n1

whereas t2 is obtained from t by repeating the “part” of t between n and n1.

Remark 3.4. The two trees t1 and t2 are defined rather informally in the
lemma above. Set t � pΣt, Nt, child t, follow t, labtq, with n, n

1 P Nt such that
n ¤t n

1. The tree t1 is then defined by t1 � pΣt, Nt1 , child t1 , follow t1 , labt1q
where Nt1 � tx P Nt | n1 ¤t x _ n �¤t xu, labt1 is the restriction of labt to
the nodes in t1, child t1 � pchild t X N2

t1q Y tpParent tpnq, n1qu and follow t1 �
pfollow t X N2

t1q Y tpy, n1q | py, nq P follow tu Y tpn1, yq | py, nq P follow tu. The
tree t2 is defined in a similar way.

Let Q denote the states of the VPA. As soon as depthptq ¡ |Q|2, tree t has
two nodes n, n1 on which this pumping lemma can be applied. Therefore, the
following result is an immediate corollary of Lemma 3.11. Observe that this
result is essentially optimal as the proof of Proposition 3.7 provides a VPA
of size Opnq that accepts no tree of depth less than npn� 1q.

Proposition 3.12. Let A � pΣ, Q,Γ, I, F,∆q a VPA, if LpAq is not empty
then every tree of minimal size in LpAq has depth at most |Q|2.

Let us now focus on the horizontal pumping argument. It essentially states
that in any accepting run of A over a nested word of minimal size from

82

3.2. Tree Languages

LpAq, A cannot reach twice the same configuration. Let A denote a VPA
A � pΣ, Q,Γ, I, F,∆q, t a tree in LpAq with linptq � a1a2 . . . am, n a node
in t and ρ � pq0, σ0q . . . pqm, σmq an accepting run of A over t. Let ai and aj
the pair of opening and closing tags corresponding to n. For every k ¤ m,
the pair pqk, σkq with the current state and stack contains all the “relevant
information” from ρ. Therefore, for every tree t1 with linpt1q � b1 . . . bm1

and every accepting run pq10, σ
1
0q . . . pq

1
m1 , σ1m1q of A over t1, if there exists

some natural k1 ¤ m1 that satisfies pqk1 , σk1q � pqk, σkq, then the nested word
a1 . . . ak�1bk1 . . . bm1 belongs to LpAq under the enforced tree-input hypothesis.
As a corollary, we obtain Proposition 3.13.

Proposition 3.13. Let A � pΣ, Q,Γ, I, F,∆q a VPA, if LpAq is not empty
then every tree of minimal size in LpAq contains no node with |Q| children
or more.

The pumping argument above also shows that in any tree of minimal size
from LpAq the number of nodes at depth k ¥ 1 is at most 1 � minpps �
1q|Γ|k�1, ps� 1qkq, where s denotes the number of states |Q|.

Corollary 3.14. Let A � pΣ, Q,Γ, I, F,∆q a VPA. If A accepts a tree of
depth k, then it accepts some tree of size at most 1� p|Q| � 1qk.

We observe that both Propositions 3.12 and 3.13 can be interpreted in
terms of the usual pumping lemma for ranked trees using fcns encoding: for
Proposition 3.12, the pumping argument deals with two nodes one of which
is below the left child of the other in the fcns encoding, and for Proposi-
tion 3.12, the pumping argument deals with two nodes one of which is below
the right child of the other in the fcns encoding. Combining Propositions 3.12
and 3.13, we obtain a rough bound on the size of the smallest tree accepted
by A when LpAq is not empty, but we can obtain a finer pumping lemma
by combining horizontal and vertical pumping into a single pumping argu-
ment. This combination is essentially obtained from the vertical pumping
lemma, using pumping arguments over hedges instead of trees. Let t a tree
and nÐ, nÑ, nÖ, n× four nodes of t, not necessarily distinct, satisfying the
following four conditions: (1) nÑ is a following sibling of nÐ, (2) n× is a
following sibling of nÖ, (3) nÐ precedes nÖ in document order, and (4) n×
precedes nÑ in document order. Let a1 . . . am the linearization of t, and let
i1 ¤ i2 i3 ¤ i4 denote the positions of respectively the opening tags of nÐ
and nÖ, and the closing tags of n× and nÑ. Suppose additionally that A

has an accepting run over t of the form pq0, σ0q . . . pqm, σmq such that both
qi1 � qi2 and qi3 � qi4 . Then a1 . . . ai1�1ai2 . . . ai3ai4�1 . . . am belongs to LpAq.

As a corollary of this result we easily obtain Proposition 3.15, which is
also the bound obtained when combining the standard pumping lemma over
ranked trees with the transformation from VPAs to NTAs via fcns encoding
discussed in Proposition 3.7. Nevertheless the pumping argument over the

83

3. Models for XML Reasoning

fcns encoding yields a particular case of our pumping argument, obtained by
restricting n× and nÑ to be the rightmost children of their parent.

Proposition 3.15. Let A � pΣ, Q,Γ, I, F,∆q a VPA. If LpAq is not empty
then A accepts a tree of size at most 2|Q|

2

.

This upper bound is essentially optimal, as we show in the next proposition:

Proposition 3.16. For every n, there exists a VPA An with n states such
that the smallest tree in LpAnq has size 2Ωpn2q.

Proof. See the appendix, page 275.

3.2.4. Schema Languages for XML

DTDs and EDTDs A Document Type Definition (DTD) is a set of decla-
rations that define the type of the document. Formally, we model a DTD as
a triple D � pΣ, r, P q where Σ is the alphabet, r P Σ is the root symbol, and
P is the set of rules, i.e., a function that maps Σ to regular expressions over
Σ. In the sequel, we write DTD rules as aÑ e and if for a symbol a the rule
is not specified, then aÑ ε is implicitly assumed.

The dependency graph of a DTD D � pΣ, r, P q is a directed graph whose
node set is Σ and whose set of edges contains pa, bq iff P paq uses the symbol
b. A DTD is recursive iff its dependency graph is cyclic. The size |D| of a
DTD D � pΣ, r, P q is the sum of the sizes of the regular expressions P pαq
appearing in D. A tree t satisfies a DTD D � pΣ, r, P q if its root is labeled
r and, for every node n with k children n1, . . . , nk (listed in the document
order), we have labtpn1q � � � labtpnkq P Lpeq, where e � P plabtpnqq. By LpDq
we denote the set of all trees that satisfy D. In terms of expressive power,
DTDs cannot express all regular tree languages. A severe limitation is the
absence of a subtyping mechanism: in general we cannot define with a DTD
the union of two DTDs [PV00]. From a language-theoretic point of view,
the languages defined by DTDs correspond to the class of local regular tree
languages [MLMK05]. In this dissertation, we extend the definition of local
tree languages to non-regular languages: we say a language L is local if it
satisfies the following subtree exchange property: for any pair of trees t, t1 P L
and for any nodes n in t and n1 in t1, if n and n1 share the same label, then L
also contains the tree obtained from t by replacing the subtree below n with
the subtree below n1 from t1. This means that the subtrees allowed below a
node only depend on the label of the node: if LpDq contains two trees t and
t1 with a-labeled nodes n P Nt and n1 P Nt1 , then t remains in LpDq if we
replace its subtree below n (tæn) by t1æn1 .
Extended DTDs, were proposed by Papakonstantinou and Vianu [PV00]

under the denomination of specialized DTD, in order to overcome the lim-
itations of DTDs in terms of expressive power. They enhance DTDs with

84

3.2. Tree Languages

a subtyping mechanism, which allows to define any regular tree language.
Formally, an extended DTD is a tuple E � pΣ,Σ1, D, µq with Σ,Σ1 two alpha-
bets, D a DTD over Σ1, and µ a function from Σ1 to Σ. A tree t belongs to
LpEq if and only if there exists some tree t1 over Σ1 such that t1 P LpDq and
µpt1q � t, where µpt1q is the tree obtained by relabeling every a-labeled node
n of t1 with µpaq, for every a P Σ1.

Murata et al. [MLMK05] defined several subclasses of EDTDs deserving
attention for the modelization of XML schema languages. In particular, an
EDTD E � pΣ,Σ1, D, µq is single-type if for every a P Σ1 and for every pair of
symbols x, y P Σ1 that occur in Dpaq, µpxq � µpyq implies x � y. An EDTD
is restrained competition if for every a P Σ1 and for every pair of symbols
x, y P Σ1 and every words wxu and wyv in Dpaq, µpxq � µpyq implies x � y.

In Section 6.3, we will also use two unorthodox kinds of schemata: a
Context-free DTD (CDTD) is a DTD in which the production rules can use
context-free grammars instead of regular expressions, whereas an Extended
Context-free DTD (ECDTD) adds a subtyping mechanism to Context-free
DTDs6. Formally, a Context-free DTD is a triple D0 � pΣ, r P Σ, P q where
P , the set of rules, maps Σ to a CFG over Σ. An Extended Context-free
DTD is a tuple E � pΣ,Σ1, D, µq with D a Context-free DTD over Σ1, and
µ a function from Σ1 to Σ. The definition for the languages of D0 and E is
similar to the corresponding definition for DTDs and EDTDs.

SGML/XML DTDs In SGML/XML terminology, the production P pαq of
a symbol α is usually called the content model of α. For compatibility with
SGML, XML DTDs are required to use deterministic content model. For-
mally, this requirement means that regular expression P pαq has to be de-
terministic for every symbol α [XML99]. We will call XML DTD a DTD
satisfying this determinism constraint, and keep the “DTD” denomination
for our more permissive schema definition disregarding this constraint. This
denomination is slightly abusive since our model for XML DTDs leaves out
several feature of real DTDs.

XML Schema XML schema definition language (or XML Schema, in short)
is the XML-based schema language proposed by the W3C [XML04]. It en-
hances DTDs with a typing mechanism and allows to express richer con-
straints on the content of elements. We should mention several other features
from XML Schema which we do not consider. For instance, dependencies are
supported by XML Schema: elements unique, key and keyref allow to ex-
press integrity constraints similar to the unique, primary and foreign key

6In the terminology of [PV00], these would be called “context-free ltds” and “specialized
context-free ltds”. These should not be confused with extended context free grammars,
which are context-free grammars in which the right-hand side of the productions may
use regular expressions instead of a single word.

85

3. Models for XML Reasoning

constraints in the relational model. Also some (restricted) form of unordered
concatenation can be used to specify the elements appearing below another
element, through the all groups. Furthermore, it supports namespaces and
uses an XML syntax, unlike DTDs. The number of occurrences of an element
or group of elements below another element can be specified in XML Schema
through attributes minOccurs and maxOccurs.

XML Schema imposes a constraint named the “Element Declarations Con-
sistent” which Murata et al. formalize via the single-type restriction on
EDTDs [MLMK05]. The efficiency of validation provides a rationale for
this constraint: for a single-type EDTD E , types can be attributed to the
nodes in a top-down traversal. Thus, a top down algorithm allows to test if
a tree t belongs to LpEq.

To further facilitate the validation, XML Schema imposes a constraint sim-
ilar to the determinism of regular expressions: the “Unique Particle Attribu-
tion”. This constraint is more tricky to verify than determinism of regular
expressions due to the richer structure of XML Schema content models: ex-
pressions with numeric occurrences require special care. It remains easier
to check than its SGML counterpart, however, because interleaving is very
restricted in XML Schema.

Martens et al. [MNSB06] argue that these two constraints in XML Schema
could be relaxed while preserving the efficiency of the validation/typing al-
gorithms. They propose a more liberal constraint characterizing the EDTDs
that allow to attribute the type of an node at his opening tag (in a stream-
ing traversal of the document). They characterize the EDTDs satisfying this
property, and christen them “one pass preorder-typeable EDTDs”. The au-
thors show that EDTDs admit one pass preorder typing if and only if its
trimmed version is restrained-competition. They also provide semantic char-
acterizations for single-type and restrained-competition EDTDs, and study
the complexity of the following three classes of problems: (1) deciding if
an EDTD is single-type or one pass preorder typeable, (2) deciding if an
EDTD can be simplified into an equivalent EDTD in those classes (3) de-
ciding the containment problem for EDTDs in those classes. In particular
for (2), the authors prove by reduction to the universality problem for NTAs
that deciding if an EDTD admits an equivalent DTD is Exptime-complete,
and similarly for simplification into equivalent one pass preorder-typable or
restrained-competition EDTDs.

We investigate in Section 6.3 the validation of the document against a
schema, when the schema is modeled as a DTD with deterministic regular
expressions, but except for determinism issues in Chapter 6, we will only
consider schemata defined by general tree automata or DTDs.

Alternative Schema Languages for XML In spite of its powerful typing
and its good integration within the XML languages, the XML Schema Defini-

86

3.3. Query Languages, Views and Updates

tion language has not superseded the older but simpler DTDs. XML Schema
has been criticized among other for its complexity [Cla02]. A prominent al-
ternative to XML Schema is Relax NG [Rel01] from the OASIS consortium
and based on languages by J.Clark and M.Murata. It shares many features
with XML Schema. In particular, it supports namespaces and also provides a
typing mechanism. However, it is closer to regular tree language formalisms
such as EDTDs, and admits both an xml syntax and a more compact non-
xml syntax. Furthermore it does not require deterministic content models,
and shows better support for unordered content models. Those construction,
however, raise the complexity of the validation.

Schematron is a rule-based schema language and is specified as an ISO/IEC
standard. Each rule is an XPath expression expressing a constraint that
must be satisfied by the document. Thus, relations between distant parts of
the document (patterns) can easily be described in this language. However,
structural constraints are often best described by grammar-based formalisms,
so that this schema language finds a natural use in conjunction with another
schema such as Relax NG or XML Schema.

DataGuides provide another way to type graph data to facilitate the for-
mulation of queries and their optimization [GW97], in particular when a
schema is not available. DataGuides were introduced for semistructured data
based on the OEM model and have since also been used in XML context. A
DataGuide is an automaton (DFA) representation of all the paths from the
root of the document. For a given finite graph, this set is regular. One of
the issues raised by DataGuides and investigated by Goldman and Widom
is the efficient computation and maintenance of DataGuides.

3.3. Query Languages, Views and Updates

Queries can be defined independently of the way they are specified. Modulo
technical details, a query will be any function that takes as input a tree and
returns a set of selected nodes.

Definition 3.2. A (unary) query is a function Q that maps a document t
to a set of nodes Q ptq � Nt.

We slightly amend this definition as we only consider queries (and a for-
tiori views) closed under isomorphism. Assuming queries to be closed under
isomorphism is justified whenever we use automata or XPath as query lan-
guages, but it can be rather limiting if we wish to match (test equality) of a
node id against a constant, which could be expressed with minor adaptations
of our formalisms. Therefore, we will explicitly specify which results assume
queries to be closed under isomorphism.

The domain dompQq is the set of trees t in TΣ such that Q ptq is not
empty. A query Q is root-preserving if for every t P TΣ, either Qptq � H or

87

3. Models for XML Reasoning

root t P Qptq. A Boolean query returns a Boolean value instead of a set of
nodes: Q ptq P ttrue, falseu. We sometimes write t (Q for Qptq � true, and
t * Q for Qptq � false.

Containment, equivalence and satisfiability are classical decision problems
for query languages. They are defined as follows:

Problem: Containment: Q1 � Q2

Input: two (unary) queries Q1 and Q2

Question: Does it hold that for every tree t, Q1ptq � Q2ptq?

Problem: Equivalence: Q1 � Q2

Input: two (unary) queries Q1 and Q2

Question: Does it hold that for every tree t, Q1ptq � Q2ptq?

Problem: Satisfiability

Input: a Boolean query Q
Question: Is there any tree t such that Qptq � true?

Containment and Equivalence are usually “hard” decision problems for ex-
pressive query languages. Hardness results for those problems will provide us
with a few lower bounds on policy comparison. The model checking problem
is the problem of evaluating a Boolean formula on the document. It there-
fore provides a lower bound for the complexity of evaluating unary queries.
Formally, the model checking problem takes as input a tree t and Boolean
formula φ, and decides if t (φ. We will also study the problem of satisfia-
bility under non-recursive DTDs, that takes as input a Boolean query Q and
a non-recursive DTD D, and decides if there exists a tree t P LpDq such that
Qptq � true.

3.3.1. First Order and Monadic Second Order Logic

In this dissertation we scarcely use logical formalisms apart from XPath-
based languages. Nonetheless, it seems relevant to present those formalisms
as they lie at the core of both automata and query languages.

Syntax and Semantics: FO and MSO A First-order logic (FO) formula
over signature σ � pchild , follow q is a logical formula defined by the following
grammar:

φ� labpxq � a | Dx.φ | @x.φ | child px, yq | follow px, yq | φ_ φ | φ^ φ | φ

Monadic Second Order logic (MSO) extends First Order logic with second-
order variables, i.e., quantification over sets. The grammar defining second-

88

3.3. Query Languages, Views and Updates

order logic formulae is obtained from the grammar above through the addi-
tion of the following rules:

φ� DX.φ | @X.φ | x P X

These are actually the definition of FO and MSO over unranked trees seen a
relational structure with relations child and follow . First and Second Order
formulae over words can be defined similarly, removing the child relation
from the signature.

The semantics of a formula is defined according to an interpretation of
its free variables, i.e., a mapping from the free variables to nodes or sets
of nodes. We fix a tree t, naturals k, k1 P N, a MSO formula with k free
first-order variables x1, . . . xk, and k1 free second-order variables X1, . . . Xk1 .
Let I a mapping such that for every i ¤ k, Ipxiq P Nt and for every j ¤ k1,
IpXjq � Nt. Then the notation t, I (φ denotes the judgment: “formula φ
is satisfied on tree t under interpretation I”. The semantics of formulae is
defined as in Figure 3.8:

t, I (labpxq � a ðñ labtpIpxqq � a,

t, I (x P X ðñ Ipxq P IpXq,
t, I (child px, yq ðñ pIpxq, Ipyqq P child t,

t, I (follow px, yq ðñ pIpxq, Ipyqq P follow t,

t, I (φ1 _ φ2 ðñ pt, I (φ1q or pt, I (φ2q
t, I (φ1 ^ φ2 ðñ pt, I (φ1q and pt, I (φ2q
t, I (φ1 ðñ t, I (φ1 is false

t, I (Dx.φ1 ðñ there is some n P Nt with t, pI Y tx ÞÑ nuq (φ1

t, I (@x.φ1 ðñ for all n P Nt: t, pI Y tx ÞÑ nuq (φ1

t, I (DX.φ1 ðñ there is some S � Nt with t, pI Y tX ÞÑ Suq (φ1

t, I (@X.φ1 ðñ for all n � Nt: t, pI Y tX ÞÑ nuq (φ1

Figure 3.8.: The semantics of MSO .

Logical Queries An MSO formula φ without free variable is a Boolean
formula. Then interpretations are useless, and for each tree t, φ ptq � true

if and only if t is satisfied by the formula, i.e., t,H (φ. Thus, formulae
without free variables express Boolean queries. Similarly, formula with one
free variable express unary queries. Let Q a first order formula with one
free variable x, or a monadic second order formula with one free first-order
variable x. Then Q ptq � tn P Nt | t, tx ÞÑ nu (Qu.

This logical framework could obviously be extended to allow the definition
of binary queries, or even queries of arbitrary arity: a formula with n free
(first-order) variables represents a n-ary query. However, this dissertation
focuses on unary and Boolean queries so we will not use such queries.

89

3. Models for XML Reasoning

Evaluation of FO and MSO Formula (Model Checking) A major reason
why we do not use FO nor MSO queries in our framework is the high com-
plexity involved by reasoning in these logics. The evaluation of a formula
is already inefficient: the model checking problem is Pspace-complete for
FO and MSO over trees (and more generally, over finite structures) [Sto74,
Var82]. One could resort to the fixed-parameter tractability of MSO and con-
vert the formula into an automaton in order to obtain a complexity linear
in t. But the conversion is non-elementary in the size of the formula. What
is more, Frick and Grohe [FG04] show under the assumption PTime � NP

that the model checking of MSO on words is not solvable in time fp|φ|q�pp|t|q
for any elementary function f and polynomial p. Similarly, they show that
the model checking of FO on words is not solvable in time fp|φ|q � pp|t|q for
any elementary function f and polynomial p, unless FPT � AWr�s.

3.3.2. XPath Dialects

XPath is a language designed by the W3C in order to address parts of an
XML document [XPa99]. It is used as a selecting or matching component in
several XML query or transformation languages such as XQuery and XSLT,
the XPointer framework... In addition to selecting nodes, the evaluation
of an XPath query can also return a Boolean value, a string, or a num-
ber. Since arithmetic operations in full XPath 1.0 make classical problems
such as equivalence or containment undecidable, numerous restrictions have
been proposed that yield more tractable fragments of XPath [BK08]. The
mainstream approach when studying the usual decision problems for XPath
consists in restricting the queries to the navigational core of XPath, leaving
out the strings and numbers. We follow this approach and consider only
XPath dialects without strings nor arithmetic operations.

NavXPath [BK08] is the basic navigational fragment of XPath, with all
four axes: next-child, previous-child, parent, and child, the transitive closure
of these axes, path composition and union, and filters. This NavXPath frag-
ment is also referred to as CoreXPath 1.0 [GK02, GKP03] except that usually
the next-sibling and preceding-sibling axes are not available in CoreXPath 1.0.
Since NavXPath cannot express full First Order Logic on trees of depth 1
(not to mention transitive closure), the language accepted by a DTD can-
not even be expressed via an XPath query. Regular XPath [Mar04], which
we also denote by XReg, extends NavXPath with transitive closure, and
therefore can express DTD languages. The syntax of Regular XPath is as
follows:

α ::� self | ó | ò | ñ | ð

f ::� labpq � b | χ | true | false | not f | f and f | f or f

X ::� α | rf s | X {X | X Y X | X �

90

3.3. Query Languages, Views and Updates

The semantics of XReg is given in Fig. 3.9 except for Boolean connectives
which are interpreted in the usual manner. We also use α::b as a shorthand
for α{labpq � b, and even use a for self::a. We also use the symbol

�
(resp.�

) to denote sequences of disjunctions (resp. conjunction) indexed by a set:
if S � tx1, x2, x3u then

�
iPS fi denotes the expression: fx1

or fx2
or fx3

.

vselfwt � tpn, nq | n P Ntu,

vówt � child t,

vòwt � child�1
t ,

vñwt � next t,

vðwt � next�1
t ,

vX1{X2wt � vX1wt � vX2wt,

vX1 Y X2wt � vX1wt Y vX2wt,

vX �wt � vX w�t ,

vrf swt � tpn, nq P Nt | pt, nq (fu

pt, nq (labpq � a iff labtpnq � a,

pt, nq (X iff Dn1 P Nt.pn, n
1q P vX wt.

Figure 3.9.: The semantics of XReg.

For an expression X in XReg, vX wt is the binary reachability relation on the
nodes of t defined by the expression X . By pt, nq (f we denote that the
filter f is satisfied at the node n of the tree t. We say that an expression
X is satisfied in the tree t if pt, root tq (X . Then an expression X in XReg

defines a query QX where the set of answers to the query QX in a tree t is
defined as

QX ptq � tn P Nt | proot t, nq P vX wtu.

Given an expression X P XReg, we denote by X�1 the expression defined
hereunder such that vX�1w � vX w�1. Essentially, expression X�1 is obtained
from X by reversing the order of composition as well as all axes at the topmost
level, keeping filters unchanged. Formally, X�1 is defined by: pX1{X2q�1 �
X�1

2 {X�1
1 , pX1 Y X2q�1 � X�1

1 Y X�1
2 , pX �q�1 � pX�1q�, and rf s�1 � rf s,

whereas self�1 � self, ó�1 � ò, ò�1 � ó, ñ�1 � ð and ð�1 � ñ. We
denote by fX the filter fX � X�1{r notòs. Clearly, a node n P Nt satisfies
filter fX if and only if n P QX ptq.

Example 3.5. Let X � ó::project{ró{ó::frees{ó�{rlabpq � name or labpq �
srcs. The nodes selected by this Regular XPath query on tree t0 of Figure 3.1
are QX pt0q � tn4, n7, n18, n21u and from X�1, we obtain7 the filter fX :

fX �rlabpq�name or labpq�srcs{ò�{ró{ó::frees{rlabpq�projects{ò::r notòs

7In order to compute X�1 we must first replace the subexpression ó::project with
ó{rlabpq � projects then apply the transformation as defined above for expression
using the non-abbreviated syntax.

91

3. Models for XML Reasoning

Evaluation of Regular XPath Regular XPath formulae can be evaluated
in quadratic time, with complexity linear both in the size of the data and
the size of the query: given a Regular XPath formula X and a tree t, QX ptq
can computed in time Op|X | � |t|q [Mar04]. The proof in [Mar04] relies on
a result from [AI00] for the evaluation of (Boolean) Propositional Dynamic
Logic formulae, and on construction of filter fX . Another approach was
proposed in [CGLV09] by first translating in linear time expression X into
an equivalent 2-ATA AX . The resulting 2-ATA AX can then be evaluated
over t in time Op|AX | � |t|q � Op|X | � |t|q.

In this dissertation, we sometimes mention results for fragments of XPath
and Regular XPath. Those fragments are defined by the axes and operations
they allow. Regular XPathpó,ó�,Y, r s,^, q for instance, is the fragment
that consists of all Regular XPath expression that may use only downward
axes, union of paths, and filters using conjunction and disjunction: upward
and horizontal axes are proscribed as well as disjunction, although disjunction
is not an issue here since it can be encoded with only linear size increase using
conjunction and negation.

XPath 1.0 as Defined in the Standard from the W3C Apart from syn-
tactic differences, our model of XPath differs in several respects from the real
XPath 1.0 query language. A first (cosmetic) difference between our query
languages and XPath 1.0 is the absence of the next- and preceding-sibling

axes in XPath 1.0. These axes can be simulated in XPath 1.0, however, using
the position() predicate: the next-sibling axis is equivalent to expression
following-sibling::*[position()=1]. More relevant is the definition in
XPath 1.0 of functions returning integers, such as position() and last()

which allow to manipulate positions of elements, count which counts the
number of nodes returned by an expression. The standard also supports
arithmetic operations on those integers, and defines other functions, such
as id() that allows to select elements by their identity. The specification
of XPath 1.0 by the W3C is rather informal, but Gottlob et al. [GKP05]
provide a comprehensive formalization of its semantics.

3.3.3. Expressivity and Decision Problems

Logic and Expressivity The language accepted by a Boolean formula φ is
Lpφq � tt | φ (tu. A word or tree language L1 is MSO definable if there
exists a (Boolean) MSO formula φ such that L1 � Lpφq. This definition of
definability can be extended to any other class C of formulae: language L1

is C definable if there exists a formula φ P C such that L1 � Lpφq. Regular
tree (resp. word) languages are exactly the MSO definable tree (resp. word)
languages [TW68]. First order definable word and tree languages form a
strict subset of MSO definable word and tree languages.

92

3.3. Query Languages, Views and Updates

NavXPath is strictly less expressive than FO over trees. Marx and de Ri-
jke [MdR05] prove that NavXPath captures exactly the expressivity of First
Order formulae using only two variables. Marx also proves [Mar05b, Mar05a]
that every expansion of NavXPath that is closed under path complementation
can express all FO queries. Benedikt and Koch survey those results together
with several other results regarding the expressivity of numerous XPath frag-
ments [BK08]. They prove that extending of NavXPath with identifiers,
data comparisons and aggregation operations results in a FO-complete lan-
guage. Boolean queries can also be used in order to define the schema and
then Regular XPath is powerful enough to express DTDs. It is established
in [tCS08, tCS10] that Regular XPath is strictly less expressive than MSO
over trees: Regular XPath cannot express all regular tree languages. More
accurately, the authors introduce an extension of Regular XPath with a sub-
tree relativization operator that has the expressive power of FO with monadic
transitive closure, and prove that it has the expressive power of nested-tree-
walking automata. They prove that nested-tree walking automata cannot
accept all regular tree languages, which implies that FO with monadic tran-
sitive closure is strictly less expressive than MSO .

Lemma 3.17 ([Mar04]). From every DTD D, one can build in linear time
a Regular XPath filter f such that for every document t, t P LpDq if and only
if t (f .

However, Regular XPath is not powerful enough for richer schema languages
such as EDTDs since the languages definable with Extended DTDs are ex-
actly the regular tree languages.

Membership of a Language to a Class of Languages Given two classes
of languages C and C 1 with C � C 1, the problem MembpC 1, Cq takes as input
a language L P C 1 and returns the truth value of the assertion “L P C”.
We know that this problem is undecidable when C 1 is the set of context-
free grammars and C is the set of regular word languages. We confine our-
selves to instances of MembpMSO , Cq, and the MSO language can be given
indifferently by an automaton or an MSO formula because we do not con-
sider complexity, only decidability. Algebraic characterizations have provided
characterizations helping to decide MembpMSO , Cq for various restrictions of
regular word languages.

A notable example is that of first-order definable word languages. First
order languages were proved to define exactly the class of the star-free
languages [MP71], i.e., the languages that can be expressed by regular ex-
pressions without Kleene star, but using intersection and complementa-
tion operators defined by Lpe1Xe2q � Lpe1qXLpe2q and Lpecq � Σ�zLpeq.
Schützenberger also characterized star-free definable word languages as
the regular languages whose syntactic monoid is aperiodic [Sch65]. There-

93

3. Models for XML Reasoning

fore, it can be decided if a regular language is first order definable (and
the problem Pspace-complete from a DFA representation [CH91]). Simi-
larly, decidable characterizations have been obtained for numerous classes
of word languages. For instance, Therien and Wilke provide a decid-
able characterization of First Order formulae with two variables (over
words) [TW98]. They actually give two characterizations, because when
only two variables are allowed, whether the “successor”(next-sibling)
predicate is available or not in addition to its transitive closure makes a
difference.

This kind of algebraic characterization seems harder to establish for trees,
because of the multiple kinds of tree models (ranked, unranked), because of
the multiplicity of axis predicates which greatly increase the number com-
binations that have to be considered, and because of the lack of standard
formalism, as argued in [Pla10]. This may explain why few results are known
for the problem MembpMSO , Cq when C is the class of languages definable
in expressive XPath dialects, with a few exceptions. Let us mention for in-
stance [BS09] which gives a polynomial algorithm to decide if the language
of a bottom-up deterministic automaton is definable in First-order logic (for
ranked trees and unordered unranked trees), and [PS10], which gives a de-
cidable characterization for First Order formulae with two variables using
ancestor and following-sibling axis. To the best of our knowledge, it is still
an open question whether MembpMSO , Cq is decidable when C is the set of
Regular XPath definable tree languages.

Decision Problems for Logical Queries Given a unary query Q, we denote
by FiltpQq the query (or filter) such that for every tree t and node n P Nt,
n P Q ptq if and only if t, n (FiltpQq. Clearly, for a formula Q expressed
in FO , MSO or Regular XPath, we can in linear time compute a formula
FiltpQq in the same language.

Remark 3.5. For query languages such as FO, MSO or Regular XPath,
equivalence, satisfiability and containment are inter-reducible, using negation,
intersection and union operations. For instance, Q1 � Q2 if and only if
Q1 YQ2 � Q2, while n P Q1ptqzQ2ptq implies t, n (pFiltpQ1q ^ FiltpQ2qq.

For NavXPath, the problem of satisfiability is Exptime-complete. Satisfi-
ability for NavXPath remains Exptime-complete in presence of a schema
given by a DTD, and becomes Pspace-complete if the schema is given
by a non-recursive DTD [BFG08]. Satisfiability is Exptime-complete for
Regular XPath, and this complexity still holds in presence of a DTD as ev-
ery DTD can be represented with an equivalent Regular XPath formula of
linear size [Mar04]. Over a non-recursive DTD, however, or more gener-
ally when the depth of the trees (satisfying the formula) is polynomially
bounded in the size of the formula, the lower bound does not hold. We

94

3.3. Query Languages, Views and Updates

NavXPath XReg 2-ATA VPA FO , MSO

Evaluation Op|Q| � |t|q Op|Q| � |t|q Op|A| � |t|q Op|A|3 � |t|q Pspace-c

Satisfiability Exptime-c Exptime-c Exptime-c Op|A|3q non-elem

Satisf. over
non-rec DTD

Pspace-c Pspace-c Pspace-c PTime non-elem

Figure 3.10.: Complexity of satisfiability and evaluation

prove in Section 4.2 that satisfiability becomes Pspace-complete in this set-
ting. Our proof even gives Pspace-completeness for emptiness of 2-ATAs
in this setting. The other bounds for ATAs and VPAs are surveyed in Sec-
tion 3.2. In particular Propositions 3.9 and 3.8 give refined bounds for the
complexity of evaluation and satisfiability, whereas Proposition 3.10 states
that for any VPA A and DTD D over alphabet Σ, one can check if there
is a document that belongs simultaneously to LpAq and D with complexity
Op|∆A|2�|QA|3�|D|�|Σ|�|QA|2�|D|2�|Σ|q, for non-recursive (and there-
fore also for non-recursive) DTDs. It is not clear whether the restriction to
a non-recursive DTD could help to substantially reduce the complexity for
Proposition 3.10. The complexity of satisfiability of VPA under DTD con-
straint is thus higher than the complexity of VPA satisfiability in general (at
least, our upper bound is). This is because because VPA intersection, unlike
XReg intersection, may involve a quadratic size increase. Therefore, adding
a constraint in the form of an external DTD raises the complexity in spite
of the fact that every DTD can be converted to an equivalent VPA of linear
size. We have already observed that evaluation of FO or MSO formulae is in
Pspace. Satisfiability of such formulae, however, is non-elementary [Sto74].

The table in Figure 3.10 summarizes the complexity of evaluation and
satisfiability for Boolean queries. Queries are denoted by Q (XPath dialects
or logical queries), or A (automata), whereas the document is denoted by t.
The results in red are, to the best of our knowledge, new contributions.

3.3.4. Tree Alignments, a Model for Queries, Views and
Updates

Tree automata can clearly specify Boolean queries: an automaton A repre-
sents the Boolean query Q such that t (Q iff t P LpAq. The connection
between tree automata and unary queries is less straightforward. We settled
upon tree alignments to represent queries and views.

Conceptually, views and queries are very similar objects, because our views
simply select nodes which should be visible. Our views can also relabel nodes,
but since we assume a finite alphabet, the information regarding the relabel-

95

3. Models for XML Reasoning

ing can be managed similarly to the selection by a tree automaton. Views
and updates both take as input a document, and output another document.
On the other hand, views and updates have a different semantics: a view
constructs a new document and keeps the original document unchanged,
Nevertheless, this difference is a mere question of how we interpret the rela-
tion between the input and output document, and this difference does not
raise any trouble at our level of modelization. Therefore, we will use the
same formalism to reason about views and updates, and this formalism will
also represent queries. Queries, views and updates will be represented as
tree alignments, and we will add specific constraints for the tree alignments
representing queries and views.

Tree Alignments Tree alignments represent k versions of a document as
a single tree whose nodes are labeled with k-uples. Each component of this
tree stands for one of the versions, and an ε symbol on the ith component
in the label of node n means that node n is not present in this version of
the document. Given a natural k, we define the alphabet Σedit,k as Σedit,k �
Σkztpε, . . . , εqu. For the special binary case (k � 2q, we drop the subscript
and write Σedit. We also use Σε to denote the alphabet Σ Y tεu.

A k,Σ-alignment – or alignment for short – is a tree t over Σedit,k, such
that labtproot tq � pr, . . . , rq for some r P Σ. The alignment is upward-closed
if, for every natural i and every node n P Nt such that the ith component
of labtpnq is ε, the ith component of labtpn1q is also ε for every descendant
n1 of n. An upward-closed k,Σ-alignment for k � 2 is called an editing
script. For every alphabet Σ and naturals i ¤ k, the projection πk

i over the
ith component is the morphism that maps pa1, . . . , akq into ai. We extend
the definition of projection in order to manage several component: given m

integers i1, i2 . . . , im in t1, . . . , ku, the projection πk
i1,...,im

is the morphism that
maps pa1, . . . , akq into pai1 , . . . , aimq. We drop the superscript whenever it is
not relevant, and write πi instead of πk

i , or πi1,...,im instead of πk
i1,...,im

. Note
that by Proposition 3.3, we get directly:

Proposition 3.18. Any projection of a regular set of upward-closed align-
ments is also a regular set of alignments.

Maximal Languages, and Queries as Tree Alignments A set of tree align-
ments L is maximal if for every t, t1 in L, π1ptq � π1pt1q implies t � t1. We
will essentially use maximal languages for the representation of queries and
views.

Example 3.6. The set of tree alignments in Figure 3.11 is maximal because
none of the three trees t1, t2 and t3 have the same projection on the first
component. This set would still be maximal if the node n3 in t3 was labeled
pa, bq because π1pt1q and π1pt3q, though isomorphic, would still not be equal.

96

3.3. Query Languages, Views and Updates

pr, rq

pa, aq pa, εq

pr, rq

pa, aq pa, bq pb, bq

pr, rq

pa, aq pb, bq
n1 n2 n1 n4 n6 n1 n3

t1 t2 t3

Figure 3.11.: A maximal set of tree alignments

On the other hand, if the rightmost node in t3 was labeled pa, bq and had
identifier n2 instead of n3, then the language tt1, t2, t3u would not be maximal.

Notation. Given maximal sets of 2-alignments Q1 and Q2 over Σ, and a
tree t P π1pQ1q X π1pQ2q, we denote by t b Q1 the unique tree alignment
t0 P Q1 such that t � π1pt0q. We also denote by tbQ1 bQ2 the unique 3,Σ
alignment t1 such that π1,2pt1q P Q1, π1,3pt1q P Q2, and t � π1pt1q. Given
two maximal languages Q1 and Q2 and a languages L over Σ, we denote by
LQ1bQ2

the set of trees ttbQ1 bQ2 | t P Lu.

Remark 3.6. With the notations of Chapter 5, t b Q1 � π1,1ptq � Q1 and
tbQ1 bQ2 � π2,1,4pQ1 1 π1,1ptq 1 Q2q.

These notations will be used to represent the nodes selected by a query on
some tree: to each query Q1 is naturally associated a set of tree alignments
L over Σ�Σε, such that for every t P L and n P Nt, labtpnq P tpa, aq | a P Σu
if n P Q1ptq, and labtpnq P Σ�tεu otherwise. We will sometimes identify the
query Q1 with its representation L via tree alignments. Given two queries Q1

and Q2 and a tree t, the tree tbQ1 bQ2 allows to represent simultaneously
the nodes selected by Q1 and Q2 over t.

Example 3.7. The tree in Figure 3.12 is t0 b QX , where QX is the query
from Example 3.5. This is an upward-closed alignment.

Query Automata A query automaton is an automaton A that only accepts
trees over Σquery � tpa, aq | a P Σu Y tpa, εq | a P Σu, such that LpAq is a
maximal language. Every query automaton A represents a query QA defined
as follows: for every tree t, if t R π1pLpAqq then QAptq � H otherwise tbLpAq
defines a tree t1 over Σquery and QA ptq � tn P Nt | labt1pnq R Σ � tεuu.

We extend query automata to allow relabeling: a view automaton is an
automaton A that only accepts trees over Σ�Σε, such that LpAq is a maximal
language.

97

3. Models for XML Reasoning

pprojects, εq

pproject, εq

pname, nameq pstable, εq plicense, εq

psrc, srcq pbin, εqpdoc, εq pfree, εq

pproject, εq

pname, εq pstable, εq plicense, εq

psrc, εqpbin, εqpdoc, εq ppropr, εq

pproject, εq

pname, nameqpdev, εq plicense, εq

psrc, srcq pdoc, εq pfree, εq

n0

n1 n2 n3

n4 n5 n6

n7 n8 n9 n10

n11 n12 n13

n14 n15 n16 n17

n18 n19 n20

n21 n22 n23

Figure 3.12.: Tree alignment t0 bQX

Views Queries can only select nodes, according to our definition. Views,
however, should additionally allow relabeling. In general, the purpose of a
view is to map a document to another document that will be provided to the
user. We can consider a view as a mapping V that takes as input a document
t and a node n P Nt, and outputs V pt, nq P ΣYtεu, the label of n in the view
(or ε if n is hidden by the view).

Definition 3.3. A view is a regular language V such that V � TΣ�Σε
and

V is a maximal language.

Views are assumed to be closed under isomorphism like queries. The def-
inition of views restricts the views to regular tree languages, so that every
view can be represented by a view automaton. But in many parts of this
dissertation, views will assume a more restrictive definition, or use another
representation. In particular, the view will sometimes be specified not by
an automaton, but by Regular XPath queries, or by schema-aware specifica-
tions. Also, we often use non-relabeling views to keep proofs simpler. Those
restrictions or representations will be announced at the beginning of the cor-
responding sections.

Let V a view and t P π1ptq. Set t1 the unique tree in V such that π1pt1q � t.
A node n P Nt is visible w.r.t. view V if labt1pnq belongs to Σ2, otherwise
(labt1pnq P Σ � tεu) n is hidden. When labt1pnq � pa, bq P Σ2, view V

intuitively relabels the a-labeled node n into b. The view tree of t w.r.t.
view V is the tree View pV, tq obtained from t by removing the nodes hidden
by the view. Visible nodes whose parent is hidden are “adopted” by their
closest visible ancestor. Formally, View pV, tq is defined as the tree t1 �
pΣ, Nt1 , child t1 , follow t1 , labt1q with Nt1 � tn P Nt | labt1pnq R Σ � tεuu, and,
for every n labeled pa, bq in Nt1 , labt1pnq � b, while the relations child t1 and
follow t1 are defined as follows. The child relation of t1 is best defined in
terms of the ancestor relation ¤t1� p¤t XpNt1q2q: child t1 is the set of all pairs
pn, n1q P Nt1 such that n ¤t1 n

1 and such that there exist no n2 satisfying
n ¤t1 n

2 ¤t1 n
1 apart from n and n1. The following sibling relation follow t1

98

3.3. Query Languages, Views and Updates

is defined as the set of all pairs pn, n1q such that Parent t1pnq � Parent t1pn1q
and n comes before n1 in document order.

The domain of a view is π1pV q, the set of all documents that admit some
view tree w.r.t. V .

Each (root-preserving) query represents a view that does not relabel nodes;
the nodes selected by the query are visible to the user, and those that are
not are hidden from the user. We define the view tree of a tree t with
respect to a given query Q: this view tree View pQ, tq is obtained from t

by removing the nodes that are not selected by the query. Selected nodes
whose parent is not selected are “adopted” by their closest selected ancestor.
Formally, View pQ, tq is defined as the tree t1 � pΣ, Nt1 , child t1 , follow t1 , labt1q
with Nt1 � Qptq, with labt1pnq � labtpnq for every n P Nt1 , and with relations
child t1 and follow t1 defined exactly as above. If we materialize the view, it is
the document View pQ, tq that should be returned to the user. In the non-
materialized setting, the user is not provided with View pQ, tq directly, but is
allowed to pose queries on this view (possibly including the query: “return all
nodes”, which then will return View pQ, tq). In the non-materialized setting,
the user should be provided with a view schema, and the view schema for a
view V with domain D should be a representation for View pQ,Dq � π2pV q,
as discussed in Chapter 6.

Notation. We will often identify an automaton with the query or view it
represents. Therefore we can use notations such as View pA, tq where A is
an automaton, or attribute to the automaton some property of its query, for
instance speaking of root preserving view automata.
All the views we consider keep the label of the root as is, so we will not

even mention the fact that our view automata are root preserving. What is
more, in our examples, we will sometimes specify non-relabeling views using
XPath expressions. To keep shorter expressions, the expressions we use do
not explicitly select the root of the tree, but it is implicitly assumed that the
query does select the root.

Other Formalisms for Querying with Automata Several representations
of unary queries through tree automata have been investigated. One possible
representation consists in the extension of deterministic two-way automata
with selecting states [NS02]. This model of automata (which we do not de-
tail) is based on the two-way automata from [BKMW01]: actually, Neven
and Schwentick prove that the two-way automata from [BKMW01] extended
with selecting states have to be enhanced with special transitions in order to
capture the expressiveness of MSO queries with one free variable. The origi-
nal two-way automata and the enhanced ones thus accept the same language
but do not compute the same queries. This property generalizes the observa-
tion that NTAs extended with selecting states loose their MSO expressivity
if we require them to be deterministic. Frick et al. also extend classical

99

3. Models for XML Reasoning

automata models with selecting states [FGK03]. They propose to use NTAs
(over binary encoding) extended with selecting states. On the one hand they
give up determinism, but on the other hand they avoid the complexity of two-
way automata models. Standard tree automata with selecting states are also
used in [LS08, LS10, FDL11], but those are hedge automata, running over
unranked trees instead of the binary encoding. Basically, a query automaton
with selecting state is an NTA A � pΣ, Q,Qf ,∆q extended with a subset S
of Q that specifies the selecting states. Given a tree t, the nodes selected
by pA, Sq over t (under the existential semantics) are all nodes n P Nt such
that there exists some accepting run ρ of A over t that maps n to a state
in S. The expressive power of the model remains the same (namely, MSO
unary queries) if the universal semantics is adopted instead of the existential
semantics [FGK03], i.e., if n would be selected when all accepting runs ρ of
A over t map n to states in S. Neither existential nor universal semantics are
really convenient for reasoning tasks [LS08, LS10], not only because several
runs need to be taken into account, but also because choosing either of those
semantics makes operations such as complementation more complex.

To circumvent the limitations of the existential and universal semantics,
Libkin and Sirangelo [LS08, LS10] propose to restrict the automata to single-
run automata, for which the existential and universal semantics coincide: the
automaton with selecting states pA, Sq is single run if it accepts every tree
and if, for every tree t and every pair ρ1, ρ2 of accepting runs over t, the nodes
selected by ρ1 and ρ2 are the same. In a nutshell, since one cannot require
determinism in the transitions, one merely asks the mapping from the tree
to the set of selected nodes to be definable from a single run.

The MSO expressiveness of single run (and even unambiguous) query
automata was already established in the litterature under different for-
malisms, such as the IBAGs of [NdB02]. Those results were general-
ized to n-ary queries by [NPTT05]: existential and universal semantics
still have MSO expressiveness for n-ary queries, but unambiguous tree
automata are strictly less expressive: they have exactly the expressive
power of Boolean combinations of unary MSO queries.

Our model based on tree alignments also resorts to non-determinism, even
when we use deterministic automata in order to define the regular set of
tree alignments. In the tree-alignment model, the non-determinism lies in
the choice of the second component of the tree: given a tree t and query
automaton A, if we wish to compute QA ptq, we first need to guess the tree
t1 P LpAq such that π1pt1q � t. Only after we have guessed t1 can we run the
automaton A and check t1 P LpAq.

Updates In the chapter dealing with updates, we only consider upward-
closed tree alignments. An update is then formalized as an editing script.

100

3.3. Query Languages, Views and Updates

Each editing script t represents an update that takes as input π1ptq and
outputs π2ptq. This representation allows to identify not only the original
document and the resulting document, but also the correspondence between
the nodes of those trees. A node of the original document is deleted if it has
label pa, εq in t, preserved unchanged if it has label pa, aq, and relabeled if
it has label pa, bq with a � b, for some a, b P Σ. A node with label pε, aq
in t represents a new node that is inserted in the resulting document. Our
hypothesis regarding the label of the root in tree alignments implies that the
root of the document is always preserved, while our restriction to editing
scripts (upward-closed 2-alignments) implies that insertions and deletions
can only involve whole subtrees and cannot be limited to internal nodes.

Alternative Transformation Languages The litterature presents a huge
collection of tree transducer models: bottom-up and top-down tree transduc-
ers, macro tree transducers, attributed tree transducers, tree-walking trans-
ducers, visibly pushdown transducers, streaming tree transducers... Many of
these were primarily designed for ranked trees, but have since been extended
to unranked trees. Some of these models have also been enhanced with
pebbles or lookahead mechanisms... The operations supported cover relabel-
ings, insertions and deletions, copying or reordering of nodes and subtrees...
The closest to our 2-alignments is the visibly pushdown transducer, that can
manage unranked trees but does not allow to reorder or copy subtrees.

Visibly pushdown transducers extend VPAs with outputs. Several models
of VPTs have been proposed [RS08, TVY08, FRR�10], with different expres-
sivity. Apart from [TVY08] those papers define visibly pushdown transducers
that can express more than tree to tree transformations, as the pairs of corre-
sponding opening and closing tag need not have the same label. To facilitate
the comparison with our own transformation model, we survey which tree
transformations can be expressed with these transducers, when we require
the input and output to be the linearization of some trees.

The original versions of visibly pushdown transducers allowed the output
of symbols without reading any input symbol [RS08, TVY08]. Each transi-
tion may read and output at most one symbol. When it reads an opening
tag, it must output an opening tag, and similarly for closing tags. Transi-
tions dealing with opening tags push a symbol onto the stack, and transitions
dealing with closing tags pop a symbol. Raskin et al. [RS08] defines subfam-
ilies of these visibly pushdown transducers that preserve regularity and have
decidable typechecking. SVPTs partition the stack symbols into insertion,
copy and deletion symbols, thus synchronizing the operations applied to the
opening tag and its corresponding closing tag. Further restrictions of SVPTs
through the exclusion of insertions, deletions or both yield the classes of
SVPTni, SVPTnd and FSVPT. SVPT may match different occurrences of
an opening tag pop, aq with different closing tags (e.g., pcl , bq, pcl , cq), but

101

3. Models for XML Reasoning

the tree transformations they can express correspond to the regular sets of
2-alignments. FSVPTs can only relabel nodes (tags) and therefore the tree
transformations they express correspond to the class of regular sets of align-
ments using only letters in Σ2. SVPTni can only delete matching pairs of
closing and opening tags and therefore the tree transformations they can ex-
press correspond to the class of regular sets of alignments using only letters
in Σ� Σε.

In subsequent works, Filiot et al. [FRR�10, FGRS11] have adopted an-
other definition for visibly pushdown transducers (VPTs), which map each
transition of a VPA to a word over Σ̂. This new model clearly subsumes
FSVPTs and SVPTni, without incurring the disadvantages of SVPT (and
even SVPTnd) regarding decidability of functionality and equivalence. On
the other hand, these VPTs are not closed under composition nor inverse,
and the typechecking problem against a VPA is undecidable. Well-nested
VPTs restrict these VPTs with a notion of synchronization between the
opening and closing tags. Essentially, given any stack symbol γ, if there
exist opening and closing transitions with stack symbol γ and respective
output u1 and u2, then u1u2 must be a well-nested word8. Servais presents
in his Phd thesis [Ser11] a comprehensive survey of VPTs and well-nested
VPTs together with a comparative analysis of the expressiveness of VPT and
classical tree transducer models.

In contrast to our alignment representation, VPTs and well-nested VPTs
do not offer a direct relationship between input nodes and output nodes.
The increase in expressiveness obtained by the possibility to output several
tags while reading a single input tag comes at this price, but on the other
hand this notion of nodes is essentially relevant for XML document (or tree)
manipulation, which was not the primary purpose of visibly pushdown ma-
chines. In terms of expressive power, the tree transformations definable by
VPTs and well-nested VPTs are incomparable with regular sets of align-
ments and interval bounded regular sets of alignments. The only feature
of interval bounded regular sets of alignments that cannot be handled by
VPTs, however, are the unlimited insertions at the leaves, a rather cosmetic
difference, whereas insertion of even one single internal node by 1-interval
bounded alignments cannot be expressed by well-nested VPTs in general.

Example 3.8. Let L the set of all alignments that take as input three ar-
bitrary long threads of a, b and c below the root, that keep all nodes of the
input unchanged and add a d node below the root as an ancestor of the two
first threads, as illustrated on Figure 3.13. L is clearly a regular language
of 1-interval bounded alignments, yet one cannot build a well-nested VPT

8the authors define as well nested the smallest family comprising the empty word, and
the concatenation of an opening tag with a well-nested word followed by a closing tag.
pop, aq pop, bq pcl , cq pcl , cq pop, aq pcl , bq, for instance, is a well-nested word, though it is
not the linearization of a tree

102

3.3. Query Languages, Views and Updates

pr, rq

pε, dq

pa, aq

...

pa, aq

pb, bq

...

pb, bq

pc, cq

...

pc, cq

Figure 3.13.: A regular set of 1-interval bounded alignments

realizing the same transduction as L.

VPTs are only remotely related to regular sets of alignments, but the tree
transformations they can express include the regular sets of alignments such
that: (1) every insertion node has only insertion nodes as descendants or is
the only child of its parent (2) the number of consecutive insertion nodes on
any root-to-leaf path is bounded by a constant. Similarly to SVPTs, well-
nested VPTs are closely related to regular sets of alignment. The image of
a well-nested word by a well-nested VPT is still a nested word, and well-
nested VPTs are closed under composition, though not under inverse. Well-
nested VPTs have moreover decidable typechecking: given two VPAs A1

and A2 and a well-nested VPT T , the problem of checking if the image of
A1 by T is a subset of LpA2q is Exptime-complete, and is in PTime if A2 is
deterministic [FRR�10]. Let us consider the tree transformations that can
be expressed by well-nested VPTs, i.e., we require the word u1u2 in the above
description to be the linearization of some tree. Under this restriction, the
well-nested VPTs model forms a strict subclass of regular sets of alignments
but strictly generalizes SVPTni.

3.3.5. XQUF

XQuery Update Facility (XQUF) [W3C09] is an extension of the XQuery
language, for performing update operations on XML documents. It is based
on the XQuery and XPath 2.0 data model, and is composed of non-updating
expressions (classical XQuery) returning a result, and updating expressions
returning nothing, like in SQL. It provides basic operations acting upon XML
nodes:

• insert a (sequence of) node(s) after/before/as a children a specified
node

• delete a (sequence of) node(s)

103

3. Models for XML Reasoning

• rename a node without affecting its identity and content

• replace the children of a node with a sequence of nodes

• replace the value of a node by a string value

XQUF can copy all or parts of an XML document by iterated application
of basic operations. It cannot move parts of a document into another part
of the document, however, as justified on the XQuery-requirements page of
the W3C [W3C11]: “A node can be deleted, and a copy inserted in a new
location, but it will have a new identity. The Working Group felt that this
functionality would limit the environments in which the XQuery Update
Facility could be implemented.”

Updating expressions are evaluated following the snapshot semantics: the
query selects the node(s) to update, and describes the update operations to
apply on those nodes; update operations are accumulated into a Pending
Update List, and are executed all at once. Consider for instance the update
query in Figure 3.14. It is irrelevant whether the delete is written after
or before the insert operation. This query will insert an a(b) subtree
before every node selected by path expression /r/c[.//d], and delete all
such nodes.

for $x in /r/c[.//d]

return

delete $x ,

insert a(b) before $x

Figure 3.14.: An update defined with XQUF.

From XQUF to Editing Scripts

We introduce a small fragment of XQUF that can be compiled into automata
on editing scripts. That is, for every update query Q in that fragment,
one can construct an automaton on editing scripts AQ representing Q . For
example Figure 3.15 shows an editing script u belonging to the language
LpAQq accepted by the automaton AQ obtained from the XQUF query Q of
Figure 3.14. More formally, let LQ be the set of all editing scripts u such
that π1puq is transformed into π2puq by Q . The editing scripts equivalent to
editing scripts in the language LpAQq form exactly the set LQ . This XQUF
fragment and the translation have limited expressiveness and efficiency, and
are therefore rather intended as a proof-of-concept.

104

3.3. Query Languages, Views and Updates

A Proof-of-concept Fragment of XQUF The following grammar defines
the fragment of XQUF we are interested in. It essentially allows the afore-
mentioned basic operations, and uses for expressions to identify nodes to be
updated. The for expressions cannot be nested, and this is potentially the
most severe restriction of our fragment.

Expr ::= SingleExpr [, SingleExpr]�

SingleExpr ::= IfExpr | ForExpr | UpdateExpr
IfExpr ::= if (AbsolutePath)

then Expr else Expr
ForExpr ::= for $VarName in AbsolutePath

return UpdateExpr
UpdateExpr ::= SingleUpdate [, SingleUpdate]�

SingleUpdate ::= Insert | Delete | Rename | Replace
Insert ::= insert Source

[[[as[first|last]]?into]|after|before]
Target

Delete ::= delete Target
Rename ::= rename node Target as ElementName
Replace ::= replace node Target with Source
Target ::= $VarName | AbsolutePath
Source ::= ConstantSequence

Here AbsolutePath means any NavXPath absolute path and ConstantSe-
quence means any sequence of constant XML (sub)trees. Note that we basi-
cally distinguish two kinds of elementary update operations: those in which
the target is specified by an XPath expression (e.g. delete /a/b; insert
a, b(a) as last into /r/c), and those in which the target is specified by
a variable (e.g. rename node $var as e; replace node $var with a, b(),

a). The latter ones are to be used in the body of for update instructions
(ForExpr rule). An expression in the fragment we consider (Expr) is a se-
quence of single expressions that can be update instructions (insert, delete,
rename or replace), or a for update instruction (ForExpr rule), or an if up-
date instruction (IfExpr rule). The body of the for update instruction can
contain only a sequence of basic update operations (no nested for. The if

expression can contain, in its then and else parts, any expression. Naturally,
the target of basic update operations may be specified by a variable only
when the variable is bound by a for expression.

Translation to Automata We only give here an intuition of how the trans-
lation works. We know from e.g., [CGLV09], that for every XPath query p,
we can compute in exponential time an automaton Bp that accepts all trees
t over Σ�t0, 1u such that for every node n P u, labtpnq P Σ�t1u if and only
if n is selected by p over π1ptq.

Let Q be an XQUF update from the above fragment. We are going to

105

3. Models for XML Reasoning

decorate the editing scripts with intermediate results that represent the eval-
uation of the (absolute) path queries occurring in Q . Let p1, p2, . . . pk be the
absolute path queries appearing in Q .

First, we replace in Q every ForExpr expression for $x in pi return U

with update expression U in which we replace each occurrence of x with pi.
Technically speaking, the new expression is not exactly an XQUF update
because in queries of the form rename node Target as ElementName, for
instance, Target should evaluate into a single node. However, the intended
semantics of such an extended expression is quite clear. Thanks to this
transformation, we can suppose there are no variables in the SingleUpdate
expressions of Q for the following construction. Let u1, u2, . . . um be the
SingleUpdate expressions in (transformed) update Q . For each ui, we clearly
can build an automaton Bui

with the required property LpBui
q � Lui

.

Decorations for trees: Let Σdeco be the alphabet built from Σ � Σε �
t0, 1uk�pΣεqmYtεu�Σ�tεuk�1�pΣεqm with the additional restriction that for
every α P Σdeco , if π1pαq � ε then there is at most one i P tk�3, . . . k�m�2u
such that πipαq � π1pαq. Intuitively, the first two components will represent
the final XQuery update, the k next components represent the nodes selected
by the k XPath queries p1, . . . pk, and the last m components the result of the
SingleUpdates u1, . . . um. We now define D as the (regular) set of all trees t
over Σdeco such that
(1) for every i P t3, . . . , k � 2u, π1,iptq P LpBpiq and
(2) for every i P tk � 3, . . . , k �m� 2u, π1,iptq P LpBui

q.
Building the automaton: We can build by induction an automaton AQ

over D such that π1,2pLpAQqq � LQ . We just sketch the construction for a
single update and an if expression.

(SingleUpdate): For a single update ui, then Aui
selects the trees from D

such that π2ptq � πpk�2�iqptq, so this case is trivial.
(IfExpr): Given a query q of the form if (pi) then e1 else e2, suppose we

have computed automata Ae1 and Ae2 . Then, given any tree t, automaton
Aq tests whether there exists a node with label 1 on the p2� iqth component
of t. If so, Aq runs automaton Ae1 on t, otherwise it runs automaton Ae2 .
This concludes our sketch of proof.

pr, rq

pc, cq

pb, bq

pε, aq

pε, bq

pc, εq

pb, εq pa, εq

pd, εq

pε, aq

pε, bq

pc, εq

pd, εq

Figure 3.15.: An editing script from the XQUF query of Figure 3.14.

106

3.3. Query Languages, Views and Updates

3.3.6. From Regular XPath to Automata

Calvanese et al. [CGLV09] define a linear algorithm converting Regular XPath
Boolean expressions into two-way weak alternating automata (2-ATAs). They
also provide an exponential algorithm converting Regular XPath expressions
into NTAs. The conversion works as follows. First, they show how a 2-ATA
Aφ can be built in polynomial time from any Regular XPath Boolean filter
φ, such that LpAφq � tfcnsptq | t (φu. Then they show that for any 2-ATA
Aφ an NTA A equivalent to Aφ can be built in exponential time from Aφ.

The construction of a VPA from a Regular XPath formula involves an
exponential blowup. However, it is not always necessary to build the full
automaton when we only wish to run the automaton on a given tree. We
show how each transition can be tested using polynomial space only. This will
be used in order to simulate this automaton in polynomial space on small
trees (and particularly on trees of small depth). We copy from [CGLV09]
their definition of 2-ATAs and their conversion from 2-ATAs to NTAs in
order to prove the polynomial space simulation.

Two-way Weak Alternating Automata A 2-ATA is defined as a tuple
A � pS,Σ, s0, δ, αq where, to keep things simple 9, S is a finite set of states,
s0 P S is the initial state, Σ the alphabet, δ the set of transitions, and α

the acceptance condition. The set of transitions δ is a function mapping
pairs ps, aq P S�Σ to positive Boolean formulae over t�1, 0, 1, 2u�S, where
positive Boolean formulae over I are defined inductively as φ� x P I | true |
false | φ_φ | φ^φ. Let us introduce a notation that we use for the definition
of runs: for every node n of t, we denote by n. � 1 the parent of n, by n.0
the node n itself, by n.1 the left child of n, and by n.2 the right child of n,
if they exist.

A run of A over tree t from node n P Nt is a (possibly infinite) tree
t1 over alphabet Σt1 � Nt � S, verifying the following two properties: (1)
labproot t1q � pn, qiq, and (2) for every node n1 P Nt1 with labt1pn1q � px, qq,
there exist k ¥ 0 and a set S 1 � tpβ1, s1q, . . . pβk, skqu � t�1, 0, 1, 2u � S

satisfying δpq, labtpxqq and such that for every pβi, siq P S 1, x.βi is a node of
t and n1 has a child in t1 with label px.βi, siq.

A path in t1 is a (possibly infinite) sequence P � n0, n1, . . . of nodes from t1

such that n0 � root t1 and for every ni in P pi ¡ 0q, ni is a child of ni�1. The
acceptance condition α partitions S into disjoints subsets S1, . . . , Sl, some
of which are accepting subsets, the others being rejecting subsets. Abusing
the definition, we say that state s belongs to α if the component of s is
accepting. Furthermore, those subsets follow a partial order ¤α such that
for every i, j ¤ l, every s, a P S � Σ, and every state s1 appearing in δps, aq
with s P Si and s1 P Sj, the component of s1 is smaller than (or equal to)

9We restrict the original definition of 2-ATAs to binary trees

107

3. Models for XML Reasoning

the component of s: Sj ¤α Si. This particular ordering accounts for the
denomination of “weak” automaton. Clearly, every infinite path P of t1

eventually remains in some component: there exists a component SpP q � Si

and some k P N such that for every k1 ¡ k, the state q appearing in labt1pnk1q
belongs to Si. A run is accepting if and only if for every infinite path P of
t1, the states of P end up in an accepting component, i.e., SpP q is accepting.
The language LpAq of the 2-ATA A is the set of all trees t such that A has
an accepting run from the root of t. This concludes the definition of 2-ATAs.

We wish to build from a given Regular XPath expression an equivalent 2-
ATA on the fcns encoding. Yet one can build no 2-ATA on the fcns encoding
that would have an accepting run from node n if and only if n is the first child
of its parent. To remedy this shortcoming of the fcns encoding, Calvanese et
al. enrich the node labels with four new tags: tifc, irs , hfc, hrsu, as discussed
on page 68. Given an unranked tree t, we denote by tdeco the decorated
version of fcnsptq.

Theorem 3.19 (Theorem[CGLV09]). Given a Regular XPath formula
φ, one can build in polynomial time a 2-ATA Aφ such that for every (un-
ranked) tree t, Aφ accepts tdeco if and only if t (φ.

We do not detail their algorithm and refer the reader to [CGLV09] instead.
The complexity of the algorithm is actually linear: Calvanese et al. observe
that the number of states in Aφ is linear. From their algorithm it is also
clear that the number of transition rules is also linear: at some point in their
algorithm they build word automata to represent path expressions, but using
NFAs with ǫ-transitions guarantees linear complexity.

Conversion from 2-ATA into NTAs Let A � pS,Σ, s0, δ, αq a 2-ATA. Cal-
vanese et al. outline in [CGLV09] a construction from [Var98] that builds in
exponential time an NTA An with the same language as A.

Let An � pΣ, Q,Qf ,∆q be defined as follows. The set of states is Q �
PpSq�PpS�Sq�PpS�Sq, and the final states are Qf � tpS0, τ0, η0q | s0 P
S0u. Automaton An has transition appS1, τ1, η1q, pS2, τ2, η2qq Ñ pS0, τ0, η0q if
and only if there exists some set E � S0�t0, 1, 2u�S such that, if we denote
by θ0 the union θ0 � E Y tps,�1, s1q | ps, s1q P τ0u, the following 5 conditions
are satisfied:

1. for every s P S0, tpβ, s1q | ps, β, s1q P θ0u satisfies δps, aq

2. for every β P t0, 1, 2u, ts1 | Ds P S0.ps, β, s1q P θ0u � Sβ and similarly
for every β P t1, 2u, ts2 | Ds1 P Sβ.ps1, s2q P τβu � S0.

3. for every ps, 0, s1q P θ0, ps, s1q P η0.

108

3.3. Query Languages, Views and Updates

4. for every β P t1, 2u, if ps, β, s1q P θ0, ps1, s2q P ηβ and ps2, s3q P τβ, then
ps, s3q P η0. Similarly, if ps, s1q P τβ, ps1, s2q P η0 and ps2, β, s3q P θ0,
then ps, s3q P ηβ.

5. η0 is closed under transitive closure: ps, s1q, ps1, s2q P η0 ùñ ps, s2q P
η0,

6. and for every s P S such that ps, sq P ηi, then s belongs to α.

Intuitively, the first component Si represents the set of all states that are
mapped to the node. The second component τi represents the strategy ap-
plied. More accurately, θ0 represents the actual strategy, and τ0 is the sub-
set corresponding to the upward moves of θ0. Storing the other moves is
not necessary as they can be guessed non-deterministically inside the tran-
sitions. Finally, the third component ηi represents the annotation.10 This
third component may actually be larger than the annotation corresponding
to the chosen strategy θ0, but the larger η is, the more difficult it is to obtain
an accepting run of An. The first two conditions check that the strategy
satisfies the transitions of the alternating automaton, and that the set of
current states is correct w.r.t. the strategy. The last three rules check that
η contains all the possible loops when the strategy (partially) defined by θ0
and the τi is applied. The last rule additionally checks that the annotation
is accepting: every infinite path must visit infinitely often in the same state
s some node of the tree. Due to the weak acceptance condition, this infinite
path is accepting if and only if state s belongs to α, because then every state
appearing on that path between two occurrences of s also belongs to α.

We also define the rules that apply at the leaves. Automaton An has
transition K Ñ pS0, τ0, η0q if and only if there exists some set E � S0�t0u�S
such that, if we denote by θ0 the union θ0 � E Ytps,�1, s1q | ps, s1q P τ0u, the
following 3 conditions are satisfied:

1. for every s P S0, tpβ, s1q | ps, β, s1q P θ0u satisfies δps,Kq

2. for every ps, 0, s1q P θ0, ps, s1q P η0.

3. η0 is closed under transitive closure: ps, s1q, ps1, s2q P η0 ùñ ps, s2q P
η0, and for every s P S such that ps, sq P ηi, then s belongs to α.

This concludes the description of the conversion from 2-ATAs into NTAs.
Vardi [Var98] presents a slightly more general construction for the conversion
of general (instead of weak) two-way alternating parity automata: there is
no partial order on the components of the acceptance condition, and so the
annotations constructed in [Var98] record the components visited within the
loops. Another adaptation of the general construction to weak alternating
automata is sketched in [CGLV09]. They obtain an NTA with the same

10see [CGLV09, Var98] for more details about strategy and annotation

109

3. Models for XML Reasoning

number of states as we do, but inferring the states and transitions from their
sketch of proof is not an easy task, because their exposition of annotations
(loops) does not fully take benefit from the weak accepting conditions to
remove the visited components.

Theorem 3.20 ([Var98, CGLV09]). Let A a two-way weak alternat-
ing parity automaton (2-ATA) with n states. We can build in exponential
time an NTA An such that LpAnq � LpAq. The resulting automaton An

has 22n2�n states.

We are not aware of better bounds on the number of states required by
an NTA to simulate a 2-ATA, nor of a non-trivial lower bound. One can
achieve at least tiny improvements to the 22n2�n bound: first, only the loops
containing two states from the same rejecting component must be stored in
the annotations (and there cannot be such a loop of the form ps, sq), so that
annotations are actually partial orders over S. There is no simple formula
for the number pn of partial orders over a set of n elements, but this number
can be estimated asymptotically, and is bounded by 2n2{4�Θpnq [BPS96]. This
only lowers the number of states of An to 25n2{4�Θpnq because the “strategy”
component multiplies this with 2n2

.
If we analyse the construction above, we observe the following property,

which essentially says that the NTA obtained from converting the 2-ATA can
be simulated on the fly without constructing the NTA explicitly. Actually
the only property we exploit in this dissertation is that this transition can
be checked in polynomial space.

Theorem 3.21. Let A a 2-ATA, and An � pΣ, Q,Qf ,∆q the tree au-
tomaton (over fcns encoding) equivalent to A, defined as above. Given
an input consisting in q, q1, q2 P Q, a P Σ , and A, a we can decide if
pq, a, q1, q2q belongs to ∆ in polynomial time.

anote that An is not part of the input

Proof. We fix the notations: q0 � pS0, τ0, η0q, q1 � pS1, τ1, η1q and q2 �
pS2, τ2, η2q. If we are satisfied with non-deterministic polynomial time, the
result is trivial: we only need to guess the right set E then it is easy to
check all conditions in polynomial time. To obtain a polynomial algorithm,
we observe that the transitions of the 2-ATA which have to be satisfied in
condition 1. are positive Boolean formulae. This implies that maximizing E

only makes satisfaction of condition 1. easier, provided all other conditions
are satisfied.

Set E � E0 Y E1 Y E2, with E0 � tps, 0, s1q | ps, s1q P η0u, and for every
i P t1, 2u, Ei contains exactly all tuples ps, i, s1q such that the following four
conditions are satisfied: (1) s P S0, (2) s1 P Si, and (3) for all ps1, s2q in ηi and
all ps2, s3q in τi (if any), ps, s3q belongs to η0 (4) for all ps2, s3q in τi and all

110

3.3. Query Languages, Views and Updates

ps3, sq in η0 (if any), ps2, s1q belongs to η0. The set E can clearly be computed
in polynomial time and there exists a set satisfying conditions 1. to 5. if and
only if the set E � E0 Y E1 Y E2 satisfies them. Then we check conditions 1.
to 5. in polynomial time. Actually, only conditions 1. 2. and 5. still need
to be checked. The overall complexity is even cubic in |S0| � |S1| � |S2| as
the composition or transitive closure of binary relations over a set U can be
obtained in time Op|U |3q.

Given a Regular XPath formula φ, let us denote by VPApφq the visibly
pushdown automaton obtained from φ by composing the linear translation
from φ into a 2-ATA Aφ detailed in [CGLV09], then the exponential transla-
tion from the 2-ATA Aφ into an NTA An over fcns encoding detailed above,
and finally the translation of An into a VPA as described on page 69. We
observe that each state or stack symbol of VPApφq can be represented in
space linear in φ. As a corollary of Theorem 3.21 we obtain:

Proposition 3.22. Let φ a Regular XPath formula, and ∆ the set of transi-
tions of VPApφq, the VPA equivalent to φ obtained through the conversion of
φ as detailed above. Given an input consisting in q, q1 P Q, γ P Γ, η P top, clu,
a P Σ, and φ 11 we can decide if pq, η, a, γ, q1q belongs to ∆ in polynomial time.

Beyond [CGLV09], several authors study the translation of expressive
XPath fragments to automata. We only survey some of the most re-
cent constructions. Bjorklund et al. [BGM10] translate in linear time
NavXPath formulae into loop-free two-way alternating tree automata
over the binary fcns encoding. The resulting alternating automaton
is in turn translated in exponential time into an usual NTA over the
same encoding. The authors do not compare the construction to that
of [CGLV09], but the translations in both papers seem quite similar, all
the more so since the second phase relies in both cases on the original
works by Vardi [Var98]. The essential difference lies in the lesser expres-
siveness of the XPath fragment considered in [BGM10], which results in
simpler alternating automata: the runs of a loop-free two-way automaton
are finite. Interestingly, the authors also observe that their translation
provides an alternative to the translation of [LS10], although Libkin and
Sirangelo translate the more expressive Conditional XPath extension of
XPath.

Ten Cate and Lutz [tCL09] provide a translation for an even richer
fragment of XPath: CoreXPathp�,�q, discussed on page 154. The pur-
pose of this translation is also to prove that satisfiability for the corre-
sponding XPath fragment has Exptime complexity, so the authors are
only interested in the polynomial complexity of the translation to alter-
nating automata, and the resulting two-way alternating automaton may

11note that VPApφq is not part of the input

111

3. Models for XML Reasoning

have quadratically many states.
Libkin and Sirangelo [LS08, LS10] avoid both the intermediate step

through two-way automata and the associated binary encoding of the
document. They provide a translation of Conditional XPath into hedge
automata through an intermediate representation in the temporal logic
TLtree. This translation involves only a single exponential. Francis et
al. [FDL11] compute the same translation directly without resorting to
the intermediate TLtree representation.

From XPath to deterministic automata: no way round the double ex-
ponential The exponential blowup in the conversion from a Boolean XReg

formula to any NTA cannot be avoided. However, when one requires deter-
ministic automata, the determinization of NTAs involves yet another expo-
nential blowup, so one could wonder if this doubly exponential blowup could
be avoided in a direct translation from XReg to deterministic automata.
Kupferman et al. [KV05, KR10] prove it cannot.

Theorem 3.23 ([KR10]). There exists an LTL formula φ of size Opmq
such that every DFA accepting Lpφq is of size doubly exponential in m.

The proof uses essentially a language from [CKS81] based on the binary
representation of naturals. There are 2m different sequences of m bits, and
the formula is devised so as to make sure that any equivalent deterministic
automata needs to record an arbitrary subset of t1, . . . , 2mu, which requires
22m states. Let us recall the formula used in [KV05] with Regular XPath
syntax in order to precise some fragment of Regular XPath that shows this
blowup property. The formula used in [KV05] is essentially12 L1

m � tpa� b�
#q�#w#pa� b�#q�$w | w P ta, bumu. As every DFA accepting L1

m requires
22m states, this language witnesses a doubly exponential blowup of the form
22Ωp

?
mq

from LTL to DFA, a result which has been subsequently improved
by Kupferman et al. [KR10] to a 22Ωpmq

lower bound when the size of the

alphabet is not fixed and 22Ωpm{plogmqq
for fixed-size alphabet. The formula for

the unbounded alphabet is defined as follows. Let Σpmq denote the alpha-
bet ta1, . . . , am, b1, . . . , bm, $,#u and rm the expression rm � pa1 � b1qpa2 �
b2q . . . pam � bmq. Let Lm denote the language Lm � tprm#q�wp#rmq�$w |
w P rmu. Every DFA accepting Lm needs 22m states. XPath however can
represent Lm with the following formula ψm of size Opmq:

ψm � r notðs and pφ1q and pφ2q and
�
ñ�::rself::$ and φ0 and notpð�::$qs

�
12The result in [KV05], deals with infinite words and deterministic Büchi automata, so

they append an infinite sequence of # at the end of Lm. Since we only consider finite
words, we stick (or revert to) to the original language from [CKS81] and stop after w.
This does not affect the result.

112

3.3. Query Languages, Views and Updates

where φ0, φ1, and φ2 are as defined below:

φ0 � rñ{ra1 or b1s{ñ{ra2 or b2s{ . . . {ñ{ram or bms{r notñss

φ1 � ra1 or b1s and r notrñ
�{r
ª

i¤m�1

fis{ñ
�$ss

φ2 � rñ
�{rself::# and pñ{φ3q

�{ñ::#ss

The filter expression φ3 is defined as follows:

φ3 �
ª
i¤m

prai ^ rñ
�::${ñ�::aiss or rbi ^ rñ�::${ñ�::bissq

For every i ¤ m� 1, fi is defined as:

fi � rai or bis and rñ{r notpai�1 or bi�1qss

and finally:
fm � ram or bms and rñ{r notp# or $qss

fm�1 � self::# and rñ{r notpa1 or b1qss

In the formula above, φ0 and φ1 are used to check that the word belongs to
prm#q�rm$rm, and φ2 checks that at some position before the $, the next m
symbols form the same word as the word w after the $ because it enforces
the satisfaction of φ3 until the next #. Thus, the family of formulae pψmqm¥1

witnesses a doubly exponential blowup 22Ωpmq
from Regular XPath to DFAs.

Remark 3.7. The language L1m can be expressed with an LTL formula of
size Opm2q [KV05]. This formula does not exploit the “until” operator of
LTL and can therefore be expressed as a NavXPath formula, as presented in
the appendix (p. 277).

However, and unlike the formula in the appendix, the formulae ψm use
the Kleene star of Regular XPath, in formula φ2. We observe nevertheless
that this Kleene star only covers a single axis with a filter, so that only
Conditional XPath is used and not the full expressive power of Regular XPath.
This of course is not surprising since the restriction of Conditional XPath to
the horizontal axes corresponds to LTL (modulo linear translation).

This proof for the doubly exponential blowup from the translation of
Regular XPath formulae into DFAs immediately implies the same blowup
toward deterministic VPAs, and can be adapted to deterministic tree au-
tomata over the fcns encoding, etc. Also we have observed that the full ex-
pressive power of Regular XPath is not necessary: the formula in appendix
shows that a doubly exponential blowup 22Ωp

?
mq

can already be observed, for
instance, with the fragment of NavXPath containing only the vertical axes,
their transitive closure, and filters (with negation): pò,ò�,ó,ó�, r s, q.

113

3. Models for XML Reasoning

The language Lm was used in [CKS81] to establish the doubly exponential
blowup for the translation alternating automata to deterministic ones,
and in [KV05, KR10] to prove the same gap from LTL to deterministic
automata. But similar languages have also be used to show that some
temporal logics are more succinct when past-time modalities are allowed.
Benedikt and Jeffrey [BJ07] already use the language Lm in the XML
setting to show that some XPath-like language cannot be evaluated in
subexponential space.

114

4. XML Security Views: the
Non-materialized Approach

Contents
4.1. Specifying the Security Views 116

4.1.1. Annotated DTDs and Regular XPath 116

4.1.2. Restrictions on the views 118

4.1.3. Evaluation by Query Composition 123

4.1.4. Annotated DTD Models for Query Rewriting . . . 128

4.2. Comparing Policies . 129

4.2.1. How can we Compare Policies? 129

4.2.2. Preliminary Results Relating the Different Com-
parisons . 134

4.2.3. Undecidability Results for Comparisons ¤2 and ¤3.139

4.2.4. Determinacy for MSO 140

4.2.5. From MSO Queries to Views that Relabel Nodes . 149

4.2.6. Comparing XReg Policies 149

4.2.7. Other XPath Dialects 154

4.3. Beyond Pairwise Comparison 155

4.3.1. Policy Comparison in Presence of Multiple Views . 155

4.3.2. Beyond Monadic Queries: n-ary Queries 156

4.3.3. Verifying Security Properties of a View 161

The previous chapter surveyed tools and techniques that we use in this
dissertation. This chapter focuses on the interaction of security views with
read-only, unary queries. In the first section, we provide an XPath-based,
user-friendly formalism for the specification of security views. We also de-
scribe the corresponding evaluation process for queries on non-materialized
views, and investigate reasonable restrictions to facilitate the verification of
policies by eliminating pathological view definitions. The second section is
devoted to policy comparison. Using logical (automata-theoretic) methods
we try to assess what information is disclosed by the views. We provide a few
tools to verify security properties on the views, and evaluate the complexity
of the resulting problems.

115

4. XML Security Views

4.1. Specifying the Security Views

XPath expressions have been proposed as a fine-grained user-friendly for-
malisms for XML access control. Fan et al. propose to define the security
view using XPath queries correlated to the DTD of the document. The sim-
plest formalism could be to define the view through a single (Regular XPath)
query that selects all visible nodes. Writing the query, however, could prove
tedious and this approach departs from the spirit of traditional access con-
trol formalisms, where the possibility to write a list of simple rules, and the
propagation of privileges (for instance from ancestors to descendants) are
considered crucial features. We prove that in the case of DTDs annotated
with Regular XPath expressions, both approaches can be reconciled. Indeed
every security view defined by annotated DTDs can be expressed with a sin-
gle Regular XPath query and vice-versa, a fact deemed impossible by some
due to the “hierarchical structure and the dependency (e.g., ancestors and de-
scendants) of XML data as well as the presence of disjunction and recursion
in DTDs” [Ras07]. The justification for these seemingly conflicting state-
ments probably lies in the higher expressiveness of Regular XPath queries
w.r.t. the XPath fragment of [Ras07], which allows to support both DTDs
and propagation rules for accessibility.

4.1.1. Annotated DTDs and Regular XPath

Following the approach in [FCG04, KMR05], we introduce annotated DTDs
which consist in a pair pD, annq with D � pΣ, r, P q a DTD, and ann : Σ�Σ Ñ
XReg an annotation, i.e., a (partial) function mapping pairs of symbols to
Regular XPath filter expressions.

The size of pD, annq is |D| plus the size of all filters f for every mapping
pa, bq ÞÑ f in ann. The DTD D describes the schema of the document,
whereas ann specifies the visibility of the nodes. Essentially, ann adds the
security information to the production rules: the visibility of a node n labeled
a and with parent labeled b is specified by filter annpa, bq. In case annpa, bq
is not explicitly defined by ann, a default policy is assumed: n inherits the
visibility of its closest ancestor for which ann explicitly defines the visibility.
The root is always assumed to be visible. An annotation is simple if it uses
only the trivial filters true and false.

Annotated DTDs define views that do not relabel nodes, i.e., queries. We
denote by QpD,annq the query defined by the annotated DTD pD, annq. For-
mally, given a document t, and n P Nt, n belongs to QpD,annqptq if and only if
one of the following three conditions is satisfied: either (1) n is the root, or (2)
t, n (annplabtpParent tpnqq, labtpnqq, or (3) Parent tpnq belongs to QpD,annqptq
and annplabtpParent tpnqq, labtpnqq is not specified. Annotated DTDs are use-
ful to structure the specification of the policy. But in terms of expressiveness,
they are equivalent to a single Regular XPath query:

116

4.1. Specifying the Security Views

Lemma 4.1. For every annotated DTD pD, annq, we can compute a XReg

filter X ann

acc such that for every tree t P D and node n P Nt, t, n (X ann

acc iff
n is visible for ann. Similarly, the query QpD,annq can be expressed with a
Regular XPath formula. Moreover, these filter and formula can be computed
in linear time.

Proof. The proof is rather straightforward; we use the filters from function
ann and exploit the transitive closure from Regular XPath in order to simu-
late the inheritance. By dompannq we denote the set of pairs of symbols for
which ann is defined. We begin by defining two filter expressions. The first
checks if ann defines a filter expression for the current node

Xdom �
�

pa,bqPdompannq
�
self::b and ò::a

�
,

and if it is the case, the filter expression defined by ann is used to evaluate it

Xeval �
�

pa,bqPdompannq
�
self::b and ò::a and annpa, bq

�
.

Finally, we restate the definition of accessibility using XReg

X ann

acc � pr notXdoms{òq
�{r notpòq or Xevals

Lemma 3.17 allows us to compute in time Op|D|q a XReg filter fD equivalent
to D. The query QpD,annq can be expressed with rfDs{ó

�rX ann

acc s.

In the following, we will investigate two different models for views: either
the view will be given by a Regular XPath formula, or it will be given by a
(maximal) regular set of tree alignments. We assume the source documents
belong to a schema D, given by a DTD or an automaton over TΣ. Of course,
the domain may be TΣ itself, if we do not want to constrain the possible
source documents. This assumption is mainly used in section 4.2: when we
compare two queries Q1 and Q2, we assume they both have same domain:
dompQ1q � dompQ2q � D, and only the nodes they select may vary.

Example 4.1. The DTD D0 below captures the schema of XML databases
described in Example 3.1. We define here the annotated DTD A0 � pD0, ann0q.

projects Ñ project�

project Ñ name, pstable | devq, license

ann0pproject, stableq � false

ann0pproject, devq � false

license Ñ free | propr

stable Ñ src, bin, doc

ann0pstable, srcq�rò�::project{ó�::frees
ann0pstable, docq� true

dev Ñ src, doc

ann0pdev, srcq � rò�::project{ó�::frees
ann0pdev, docq � true

The annotation ann0 gives access to all projects but hides the information
whether or not the project is stable (in particular, it hides binaries). Addi-
tionally, ann0 hides the source code of all projects developed under proprietary
license.

117

4. XML Security Views

In the tree t0 from Fig. 3.1 the root node projects is accessible and all
nodes project are accessible by inheritance. The nodes name and license

with their children are accessible by inheritance as well. ann0 implicitly states
that stable and dev are not to be accessible, and the nodes bin are inacces-
sible by inheritance. On the other hand, ann0 overrides the inheritance for
nodes doc and makes them accessible. Finally, the accessibility of src nodes
is conditional: only n7 and n21 are accessible because only those satisfy the
specified conditions, ann0pstable, srcq and ann0pdev, srcq resp. Figure 4.1
presents View

�
QpD0,ann0q, t0

�
for t0 from Fig. 3.1.

projects

project

name licensesrc doc

free

project

name licensedoc

propr

project

name licensesrc doc

free

n0

n1 n2 n3

n4 n6n7 n9

n10

n11 n13n16

n17

n18 n20n21 n22

n23

Figure 4.1.: The view View
�
QpD0,ann0q, t0

�
.

4.1.2. Restrictions on the views

Defining the view with unrestricted Regular XPath queries or automata over
tree alignments raises a major difficulty: the set of view trees View pV,Dq �
tView pV, tq | t P Du needs not be regular. Section 6.3 proposes solutions to
compute a view schema in this case. Nonetheless, this non-regularity also
makes decision problems such as policy comparison intractable, in addition
to preventing the construction of the view schema. Therefore, we investigate
a few restrictions on the views that allow for better algorithms.

Bounded depth A set of trees L has bounded depth if there exists a constant
k such that all trees in L have depth at most k. In our setting, it is not the
depth of the view trees that we wish to bound, but the depth of the original
document. Thus, a view V � TΣ�Σε

has bounded depth if there exists some k
such that every tree alignment t P V has depth at most k. We point out that
it is not sufficient for the view document to have bounded depth: the whole
alignment must have bounded depth: if V has domain D, V has bounded
depth if and only if D has bounded depth: this implies that View pV,Dq has
bounded depth, but the latter is not a sufficient condition. For a bounded-
depth view, View pV,Dq is clearly a regular set of trees; this can also be
seen as a particular case of Proposition 4.2. Furthermore, Regular XPath
and MSO clearly have the same expressivity on trees of bounded depth.

118

4.1. Specifying the Security Views

Essentially, when the depth is bounded, we can express in Monadic Second
Order (over words) the binary relation matching the pairs of corresponding
opening and closing tags of the linearization, so that each MSO formula φ over
trees can be expressed with an “equivalent” MSO formula φw over (nested)
words, such that for every tree t, we have t (φ if and only if linptq (φw. The
axis child can be eliminated in φw, so that φ becomes a “standard” boolean
MSO formula over words. As such, it defines a regular word language, so the
set of words it accepts can be defined with a regular expressions ew over Σ̂:
for every tree t, we have t (φ if and only if linptq P Lpewq. This regular
expression over nested words can in turn be simulated by a Regular XPath
expression X over the corresponding trees, so that for every tree t, we have
t (X if and only if linptq P Lpewq. This shows that for every k, there exists
some equivalent Regular XPath expression for every MSO formula over trees
of depth bounded by k.

Upward closed views A view is upward-closed if it is a set of upward-closed
tree alignments. That means all the ancestors of every visible node are also
visible. Equivalently, whenever a node is hidden, all its descendants are
hidden as well. For this reason, this requirement is commonly referred to in
the literature as the policy’s denial downward consistency [MTKH06] 1.

Interval boundedness We generalize this notion to allow restricted dele-
tions of internal nodes. We say that a tree t over TΣ�Σε

is k-interval bounded
if the following two conditions are satisfied: (1) the label of the root of t
belongs to Σ � Σ and (2) on any descending path of t, there are at most
k consecutive nodes with label in Σ � tεu between two nodes with label in
Σ � Σ.

A view, or more generally a tree language L � TΣ�Σε
is k-interval bounded

if every tree of L is k-interval bounded, and we say that L is interval bounded
if there exists some k such that L is k-interval bounded. In the same way,
we can define k-interval bounded queries and interval bounded queries since
every query represents a view. Note that by definition any interval bounded
query (or annotation) is obviously root preserving.

Remark 4.1. Every upward-closed view is 0-interval bounded, and every
view with bounded depth k is pk � 1q-interval bounded.

We state further properties of interval-bounded MSO queries after a few
illustrative examples.

1The term “upward-closed” is employed by Libkin and Sirangelo [LS10], but a variety of
other names appear in the litterature.

119

4. XML Security Views

Example 4.2. The security view defined by pD0, ann0q in Example 4.1 is
interval bounded since DTD D0 is non recursive. It is actually (also) 1-
interval bounded, but not 0-interval bounded. The following DTD D1 gives
information about the versions of projects.

projects Ñ project�

project Ñ name, version

version Ñ number, files, license, prev

prev Ñ version | ε

files Ñ src, bin, doc

license Ñ free | propr

Annotation ann1 keeps the last version of each project and hides the oth-
ers. Moreover, it hides all nodes version, files, number (when no explicit
rule is given for an element name, its visibility is inherited from its parent):

projects Ñ project�

project Ñ name, version

ann1pproject, versionq � false

version Ñ number, files, license, prev

ann1pversion, licenseq
� rò::version{ò::projects

prev Ñ version | ε

files Ñ src, bin, doc

ann1pfiles, srcq
� ann1pfiles, binq
� ann1pfiles, docq
� rò::files{ò::version{ò::projects

license Ñ free | propr

The DTD D1 is recursive but query QpD1,ann1q is also 1-interval bounded, and
View

�
QpD1,ann1q, LpD1q

�
is the language validated by the following DTD D1

1:

projects Ñ project�

project Ñ name, src, bin, doc, license

license Ñ free | propr

The preceding policy is not upward closed as it hides the version nodes
that are children of the project nodes but discloses the files children of
those hidden version nodes. If we replace, however, the annotation ann1
by ann1

1 defined by the unique mapping ann1pversion, prevq � false, then
the resulting policy is upward-closed (and therefore interval bounded). The
corresponding view DTD is D1

1 given below:

projects Ñ project�

project Ñ name, version

version Ñ number, files, license

license Ñ free | propr
files Ñ src, bin, doc

Example 4.3. Let us consider a slightly more complex example: we allow
the previous version of project to be a collection of projects. This corresponds
to the following case scenario: projects are allowed to merge over time, but
not to branch. We define a new DTD D2 obtained from D1 by changing the
production of prev for: prevÑ project�. All other production rules remain
the same.
Annotation ann2 keeps licenses together with the name and version of the

corresponding project and the project node, and hides every other node.

120

4.1. Specifying the Security Views

projects Ñ project�

project Ñ name, version

ann2pproject, nameq � false

ann2pproject, versionq � false

version Ñ number, files, license, prev

ann2pversion, licenseq � true

prev Ñ project�

ann2pprev, projectq � true

files Ñ src, bin, doc

license Ñ free | propr

The query QpD2,ann2q is not 1-interval bounded, but it is 2-interval bounded.
The corresponding view DTD is D2 given below:

projects Ñ project�

project Ñ name, license, project�
license Ñ free | propr

As a last example, suppose we only want to store all licenses without fur-
ther information. This can be achieved, for instance, via annotation ann12:
ann12pprojects, projectq � false, and ann12pversion, licenseq � true. The
query QpD2,ann

1
2q is not interval bounded. The resulting view DTD contains a

single production rule: projects Ñ license�.

Below we are stating the main property of interval bounded views, namely,
that interval bounded views preserve regularity.

Proposition 4.2. For any regular language D and view V (given as an au-
tomaton over tree alignments), if V is interval bounded then the language
View pV,Dq is regular.

Proof. Let V be a k-interval-bounded view. Let A � pΣ�Σε, SA,Γ, I, F, Rq
be a VPA that accepts tt P V | π1ptq P Du. We define the VPA A1 as
follows: A1 � pΣ, S1,Γ1, I, F, R1q where S 1 � SA�Γ¤k, Γ1 � Γ¤k �Γ, and the
transition rules R1 are defined as follows

• A1 has transition xq, wy ǫÝÑ xq1, w � γy for all transition q
pop,pa,εqq:γ
ÝÝÝÝÝÝÑ q1 in

R, and w P Γ k

• A1 has transition xq, w � γy ǫÝÑ xq1, wy for all transition q
pcl,pa,εqq:γ
ÝÝÝÝÝÝÑ q1 in

R, and w P Γ k

• A1 has transition xq, wy
pop,bq:xw,γy
ÝÝÝÝÝÝÝÑ xq1, ǫy, for all transition q

pop,pa,bqq:γ
ÝÝÝÝÝÝÑ

q1 in R, and w P Γ¤k.

• A1 has transition xq, ǫy
pcl,bq:xw,γy
ÝÝÝÝÝÝÑ xq1, wy for all transition q

pcl,pa,bqq:γ
ÝÝÝÝÝÝÑ q1

in R, and w P Γ¤k.

• A1 has transition xq, wy ǫÝÑ xq1, wy for all w P Γk and q, q1 such that Aq,q1

accepts a tree t over alphabet Σ � tεu.

121

4. XML Security Views

Let w a word over top, clu�Σ, xq, uy a state in S 1, and σ a word over Γ¤k�Γ.
For the sake of clarity, we denote by σ1 the same σ considered as a word over
Γ. We claim that for all such w, q, and σ, A1 preserves the following invariant.

Invariant: A1 can reach configuration pxq, uy, σq after reading w if and
only if there exists a word w1 over top, clu � Σ � Σε such that the fol-
lowing two conditions are satisfied: (1) π2pw1q � w, and (2) A can reach
configuration pq, σ1uq after reading w1.

From this invariant we immediately deduce LpA1q � View pV,Dq. The VPA
A1 uses ǫ-transitions to simulate hidden elements. Because of the interval
boundedness assumption, the corresponding evolution of the stack can be
simulated within the state of the automaton. The last condition corresponds
to an ǫ-transition from state q to state q1 whenever there is some tree t

such that the second component of any label in t is ε and some run of the
automaton A can exit from t in state q1 if it enters in state q. Of course
those ǫ-transitions can be eliminated. Observe also that existence of the ǫ-
transition xq, wy ǫÝÑ xq1, wy does not depend on the value of w. The set of all
pairs q and q1 satisfying the conditions to obtain an ǫ-transition by the last
rule can be computed in time Op|R|2 � |SA|3q or Op|R| � |SA|3 � |Γ|q as an
adaptation of the algorithm computing AccA in Proposition 3.8: we compute
the horizontal reachability relation for the VPA obtained from A by keeping
only the transitions with label in Σ � tεu. The whole construction of A1 is
therefore polynomial in A for a fixed value of k, but exponential in k.

Let us now prove the claim. Clearly, LpAq � π2pLpA1qq � View pV,Dq.
The reverse inclusion also holds due to our interval-boundedness hypothesis.
When opening visible elements, A1 records the information of previous sim-
ulations in the stack, so that they may be recovered on the corresponding
closing tag. This concludes the proof of Proposition 4.2.

Proposition 4.3. Let V a view over Σ � Σε given by a VPA A with N

states, then V is interval bounded iff it is pN2 � 1q-IB.

Proof. We use the vertical pumping argument from Lemma 3.11. Let us
suppose that V is k-IB for some k, but not pN2 � 1q-IB. Then there is some
tree t P V such that t is not pN2�1q-bounded: there is a path in t from some
node n to some of its descendants n1 such that labtpn1q and labtpn1q belong to
Σ � Σ, there are at least pN2 � 1q nodes on the path between n and n1, and
all these nodes between n and n1 have label in Σ � tεu. Since there are at
least pN2 � 1q such nodes, this implies that on some (in fact, any) accepting
run ρ of A on t, there are two nodes n1 and n2 such that ρpn1q � ρpn2q. The
vertical pumping argument contradicts the interval-boundedness of Q.

Proposition 4.4. For any view V given by an automaton A over Σ � Σε,
testing whether V is interval bounded is in PTime.

122

4.1. Specifying the Security Views

Proof (outline). Essentially, the set of all k-IB trees over Σ � Σε can be
defined by a deterministic automaton with Opkq states. Hence, it suffices
to combine the previous proposition and a simple polynomial algorithm for
testing inclusion of tree automata.

Proposition 4.5. Testing whether a query given by a XReg expression is
interval bounded is Exptime-complete.

Proof. Building an NTA from a XReg expression is in Exptime [CGLV09].
Hence, the Exptime upper bound follows from Proposition 4.4. To show
Exptime-hardness, we reduce satisfiability of XReg to testing interval bound-
edness. Let Q a XReg expression over an alphabet Σ. We define DTD D as
follows: D � pΣ Z ta, bu, r, P q where P 1prq � Σ�a | w P P prqu, P paq � a|b,
P pbq � ε and, for every α P Σztru, P pαq � Σ�. We rewrite Q in linear time
into an expression Q1 that checks whether the tree satisfies D and whether
Q can be satisfied using only the elements from Σ. If those checks succeed,
then Q1 selects the (unique) node labeled b, and selects no other node except
the root, otherwise it selects only the root. Because the DTD D allows to
have b elements at arbitrary depth, the view defined by query Q1 is interval
bounded iff Q is not satisfiable.

We denote by Q0 the expression resulting from the addition of a filter
r notpself::a or self::bqs to each elementary axis of Q; for instance every occur-
rence of ñ is replaced by r notpself::a or self::bqs {ñ{ r notpself::a or self::bqs.
We also build in linear time an expression QD such that for every tree t,
t (QD iff t P LpDq. The expression Q1 can be built in linear time from QD

and Q0:

Q1 � ó�r notò or pself::b and ò�{r notò and Q0 and QDsqs

Remark 4.2. We have shown that interval bounded views preserve regular-
ity. We should note however that they do not preserve XReg definability; we
show in Proposition 4.37 that any regular tree language L over alphabet Σ is
equal to View pQ, TΣq for some 1-interval bounded query Q P XReg.

4.1.3. Evaluation by Query Composition

In the query rewriting approach, the user expresses its queries on the view
and those queries must be rewritten into equivalent queries on the original
document. Whether such a rewriting process is possible depends on the
classes of queries and views involved. We only investigate the case where the
query language and the view language have the same expressivity: we prove
that this rewriting process is possible for XReg queries over XReg views,
and for MSO queries over MSO views.

123

4. XML Security Views

We say that a class C of queries is closed under query composition if for
every view QV , Q P C, there exists Q1 P C such that for all t, Q1ptq �
QpView pQV , tqq. This property is called closure under query rewriting in
the terminology of [FGJK07], but we avoid this denomination in this disser-
tation in order to prevent any confusion that may arise with the other notion
of “query rewriting” (related to determinacy) that appears in Section 4.2.

Composition of Regular XPath Views The rewriting technique for down-
ward queries from [FCG04] relies on the knowledge of the DTD. Our rewrit-
ing method works independently of the DTD. The method uses the fact
that visibility of a node can be defined with a single filter expression X ann

acc

(Lemma 4.1). This filter is used to construct rewritings of the base axes
(Lemma 4.6), which are used to rewrite the user queries.

Lemma 4.6. For any XReg query Q and any α P tó,ò,ñ,ðu there ex-
ists a XReg expression RQ

α such that vRQ
α wt � vαwViewpQ,tq for every tree t.

Moreover, |RQ
α | � Op|Q|q.

Proof. We denote by FiltpQq the XReg filter such that for every tree t and
node n P Nt, t, n (FiltpQq iff n P Qptq. Essentially, the rewriting RQ

α defines
paths, traversing inaccessible nodes only, from one accessible node to another
accessible node in a manner consistent with the axis α. For the vertical axes
the task is quite simple:

R
Q
ó � rFiltpQqs{ó{pr notFiltpQqs{óq�{rFiltpQqs and R

Q
ò � pRQ

ó q
�1

Rewritings of the horizontal axes are slightly more complex and we first define
auxiliary filter expressions:

f DÓ � pr notFiltpQqs{óq�{rFiltpQqs, f∅

Ó � not f DÓ , f∅

Ñ � pñ{rf∅

Ó sq
�{r notpñqs.

f DÓ checks that the current node or any of its descendants is accessible. Con-
versely, f∅

Ó checks whether the current node and all of its descendants are
inaccessible. Similarly, f∅

Ñ verifies that only inaccessible nodes can be found
among the siblings following the current node and their descendants.

The expression RQ
ñ seeks the next accessible node among the following

siblings of the current node and their descendants. However, if there are
no such nodes but the parent is inaccessible, the next accessible node is
sought among the following siblings of the parent. The last step is repeated
recursively if needed.

RQ
ñ � rFiltpQqs{prf∅

Ñs{ò{r notFiltpQqsq
�{ñ{pφ1Yφ2q

�{rFiltpQqs and RQ
ð � pRQ

ñq
�1

where φ1 � rp notFiltpQqq and f∅

Ó s{ñ and φ2 � rp notFiltpQqq and f DÓ s{ó{r ðs.
We observe that |RQ

α | � Op|Q|q for every α P tó,ò,ñ,ðu.

124

4.1. Specifying the Security Views

Theorem 4.7. XReg is closed under query composition. Moreover,
given a XReg query Q and a root-preserving XReg query Q1, we can
compute a XReg formula RewritepQ,Q1q in time Op|Q| � |Q1|q such that,
for every tree t, RewritepQ,Q1qptq � QpView pQ1, tqq.

Proof. The formula RewritepQ,Q1q replaces in Q every occurrence of a base
axis α P tó,ò,ñ,ðu with RQ1

α . A simple induction over the size of Q shows
that vQwViewpQ1,tq � vRewritepQ,Q1qwt, Lemma 4.6 handling the nontrivial
base cases. Since the root is always accessible, we get Q pView pQ1, tqq �
RewritepQ,Q1q ptq. We note that the rewritten query is constructed in time
Op|Q| � |Q1|q, which also bounds the size of RewritepQ,Q1q.

We observe that the asymptotic complexity of our rewriting method is com-
parable to that of [FGJK06] but it handles a larger class of queries and
DTDs.

Our result is quite similar to the corresponding results of closure under
composition for other fragments of XPath in [VHP06]. In both algo-
rithms – ours and theirs – the composition of the view and query are es-
sentially obtained by rewriting the base axes. On the one hand we handle
a more expressive fragment of XPath, but on the other hand some queries
can be expressed more succinctly using XPath 2.0’s path complementa-
tion and intersection than with the Kleene star of Regular XPath. While
the rewriting of the base axes in [VHP06] relies on those path comple-
mentation and intersection operators, our rewriting only uses the simpler
Boolean negation and conjunction of filters. To be fair, let us observe
that the crux of our rewriting algorithm is already present in [VHP06].

Composition of Views Defined by Automata MSO enjoys the same clo-
sure under composition as Regular XPath: given two query automata (or
even view automata) Q and Qv, we can compute a query automaton (resp.
view automaton) in polynomial time for the composition of Q and Qv. The
rewriting is obtained through a standard construction by synchronization of
Q andQv, resulting in a new query automaton RewritepQ,Qvq.

Theorem 4.8. Query automata are closed under query composition, i.e.,
for every root-preserving query automaton Qv, and every query automa-
ton Q, there exists a query automaton RewritepQ,Qvq such that Q pView pQv qq �
RewritepQ,Qvq ptq. Moreover, we can compute RewritepQ,Qvq in time
|Q| � |Qv|. View automata can be composed likewise.

Proof. From the two automata Qv � pΣ � Σε, Sv,Γv, Iv, Fv, Rvq and Q �
pΣ�Σε, S,Γ, I, F, Rq, we build automaton Q� � pΣ�Σε, S�,Γ�, I�, F�, R�q �

125

4. XML Security Views

RewritepQ,Qvq as follows: S� � Sv � S, Γ� � Γv � pΓ Y t#uq, I� � Iv � I,
F� � Fv � F , and the transitions are defined by the two following rules:

(1) we add transition psv, sq
pη,pa,εqq:pγv ,#q
ÝÝÝÝÝÝÝÝÝÑ ps1v, sq to R�, for every η P top, clu,

sv, s
1
v P Sv, a P Σ, γv P Γv, every transition sv

pη,pa,εqq:γvÝÝÝÝÝÝÑ s1v P Rv, and every

s P S, and (2) we add transition psv, sq
pη,pa,βqq:pγv ,γqÝÝÝÝÝÝÝÝÝÑ ps1v, s

1q to R� for every
η P top, clu, sv, s1v P Sv, a P Σ, γv P Γv, s, s

1 P S, γ P Γ,β P Σε, every

transitions sv
pη,pa,aqq:γvÝÝÝÝÝÝÑ s1v P Rv and s

pη,pa,βqq:γ
ÝÝÝÝÝÝÑ s1 P R. The number of

transitions added by the first rule is at most |Rv| � |S|, whereas the number
of transitions added by the second rule is at most |Rv|�|R|, which sums up to
Op|Qv|�|Q|q. The resulting automaton Q� satisfies Q� ptq � Q pView pQv, tqq
for every tree t, since it satisfies the following invariant.

Invariant: For every word w over top, clu � Σ � Σε and every state
psv, sq P S�, there exists some word u over Γ� such that A� reaches
pps, svq, uq after reading w if and only if there exist a word w1 over top, clu�
pΣ�ΣεYΣ�tεu2q and two words u1 and u2 over Γv and Γ such that the
following three conditions are satisfied:

1. π1,3pw1q � w

2. Qv reaches psv, u1q after reading π1,2pw1q, and

3. Q reaches ps, u2q after reading π2,3pw1q.

In a nutshell, we have proved that XReg and MSO are closed under query
composition, and that we can compute a rewriting in polynomial time. The
same proof shows the closure under composition of view automata: given any
view automata Av and A, we can compute a view automaton RewritepA,Avq
such that for all t, View pA,View pAv, tqq � View pRewritepA,Avq, tq: the

only difference being the condition for adding transition psv, sq
pη,pa,βqq:pγv ,γqÝÝÝÝÝÝÝÝÝÑ

ps1v, s
1q to R� becoming the existence of η P top, clu, sv, s1v P Sv, a, b P Σ,

γv P Γv, s, s
1 P S, γ P Γ, and β P Σε, such that sv

pη,pa,bqq:γvÝÝÝÝÝÝÑ s1v belongs to Rv

and s
pη,pb,βqq:γ
ÝÝÝÝÝÝÑ s1 to R.

Materialized vs. Non-materialized Views We review the worst-case per-
formance of querying in the materialized and non-materialized setting in a
scenario with a single query, view and without updates to the document. We
then discuss the relevance and limits of such a comparison. We recall that we
compare the following two methods for evaluating of two different methods
for evaluating a query over the view: either the view is first materialized and
then queried, or the query is first rewritten to include the view query and
directly evaluated on original document.

Let t a document, Qv a query defining the view and Q1 a query. When Qv

and Q1 are XReg queries, the cost of materialization would be Θp|Qv|�|t|q, so

126

4.1. Specifying the Security Views

that the overall cost of evaluating Q1 on t is Θp|Q1|�|View pQv, tq |q�Θp|Qv|�
|t|q which amounts to Θpp|Q1| � |Qv|q � |t|q in the worst case. In the non-
materialized setting, the complexity of evaluating RewritepQ1, Qvq over t could
appear to be Θp|RewritepQ1, Qvq|� |t|q if we evaluate naively RewritepQ1, Qvq,
however the multiple occurrences of FiltpQq do not raise the complexity w.r.t.
a single occurrence, so that the cost of evaluating RewritepQ1, Qvq can be re-
duced to Θpp|Q1| � |Qv|q � |t|q. This can be established either by analysing
the dynamic programming algorithm for evaluating PDL [AI00, Mar04], or
by observing that in the 2-ATA one can build from RewritepQ1, Qvq, the mul-
tiple occurrences of XQv

acc can be represented with the same state: thus the
conversion of RewritepQ1, Qvq into a 2-ATA is in Θp|Qv|�|Q1|q, so that we can
evaluate this 2-ATA over t in time Θpp|Qv|�|Q1|q�|t|q by [CGLV09, KVW00].
Consequently, when we compare the worst-case complexity of query evalua-
tion, the non-materialized setting does not improve upon the view material-
ization, but it does not make things worse either (no wonder, as a matter of
fact, since the evaluation of XReg in quadratic time actually simulates the
materialization).

When Qv and Q1 are VPAs, the cost of materialization rises to roughly
Θp|Qv|3 � |t|q (see Proposition 3.9), while querying the materialized views
induces an additional Θp|Q1|3 � |View pQv, tq |q, which matches Θp|Q1|3 �
|t|q in the worst case. The overall complexity of query evaluation in the
materialized setting sums up to Θpp|Qv|�|Q1|q3�|t|q. In the non-materialized
setting, computing the automaton for RewritepQ1, Qvq requires Θp|Qv|�|Q1|q.
Therefore, the overall cost of query evaluation is raised to Θp|Qv|3�|Q1|3�|t|q
if we do not consider potential optimizations.

Those worst-case bounds are not very relevant for general scenarios, how-
ever. First, the worst case may seem unlikely and small view trees would
favor the materialized setting. Moreover, in the materialized framework, the
view document is computed once and for all, as long as no update is applied
to the document: once the view has been materialized multiple queries can be
processed on the view, which allows to amortize the cost of materialization.

The main assets of non-materialized views are gains in terms of space
required for storage, and avoiding the need to compute the view(s) anew
after each update of the document. The non-materialized setting may thus
be more interesting only when the number of roles having different privileges
and the frequency of updates are not dwarfed by the number of queries. Even
in that case, the view may be evaluated/updated “on-demand” at query
time, in which case the comparison scenario above makes sense, and tends
to question the point of non-materialized views in terms of time efficiency.

On the other hand, the scenario does not take into account optimiza-
tion techniques, which may favor either of the methods. Techniques such
as incremental evaluation allow to cope with updates in the materialized
framework, while pruning techniques may enhance the effectiveness of the
non-materialized setting.

127

4. XML Security Views

4.1.4. Annotated DTD Models for Query Rewriting

The specification of access control policies by annotating pairs of labels as
above is common to the models of Fan et al. [FCG04, FGJK07] and Kuper et
al. [Ras07, KMR09], yet the view derived from the same specification differs.

The View Specification In the models of Fan et al., and Kuper et al, the
annotated DTD pD, annq2 is used to derive a security view. In the terminology
of [KMR05, KMR09, FCG04, FGJK07], a security view is a pair pDv, σq, with
Dv the view DTD, and σ a function that maps each edge of Dv, i.e., each pair
of labels A,B such that B occurs in the production of A in Dv, to an XPath
query σpA,Bq. Given an accessible A-labeled node n in some document t,
evaluating the query σpA,Bq at node n allows to extract the B node(s) below
A whose parent in the materialized view is node n. Thus, σpA,Bq returns
the B labeled nodes that are “directly” accessible from n.

In those models, the annotation is defined as a function ann mapping
pairs of symbols to Y , N or an XPath filter. Y stands for Yes (true in our
model) and N for No (false in our model). Unlike Kuper et al. [KMR05],
Fan et al. [FCG04] only consider normalized DTDs. In a normalized DTD
the production rules are of the form: a Ñ ε, a Ñ b�, a Ñ b1, b2, . . . , bn,
or a Ñ b1 | b2 | . . . | bn (with pairwise distinct elements bi). In particular,
each rule assigns to the nodes a bounded number of distinct elements except
for the rule a Ñ b�. Both the original DTD and the view DTD must be
normalized DTDs.

Different Semantics for Annotated DTDs In [FCG04], inaccessible nodes
are generally anonymized instead of being deleted, essentially to guarantee
that the view DTD is normalized. For instance, consider a DTD with pro-
duction rules a Ñ b1 � b2 � � � � � bn and b2 Ñ c1 � � � � � cn with annotation
annpa, b2q � false and annpb2, ciq � true for all i. Then b2 is deleted from the
view and the view DTD has production rules: aÑ b1� c1� . . . cn� � � � � bn.
If however the production rule for b2 is b2 Ñ c1, . . . , cn, then b2 is anonymized
into a dummy label x, and the view DTD is defined by the rules a Ñ
b1 � x � � � � � bn and x Ñ c1, . . . , cn. This normalization of DTDs is not
so restrictive as every DTD can be turned into a normalized DTD through
the insertion of new labels. Using such normalized DTDs simplifies the query
rewriting algorithm, but essentially prevents the administrator from hiding
information on the structure of the document.

The choice of Kuper et al. is to delete systematically the invisible nodes.
This is also the semantics we adopted for annotated DTDs, although view
automata can also specify relabelings in addition to deletions.

2a.k.a. access specification [FCG04] or authorization specification [Ras07, KMR09]

128

4.2. Comparing Policies

Another specificity of annotations in [FCG04] is the semantics of filters:
Given a b-labeled node n with parent labeled a, if annpa, bq is a filter rqs that
evaluates to false at n, then the whole subtree below b is deleted, whereas
for an annotation annpa, bq � N , visible descendants of node n are present in
the view.

Query Rewriting Algorithms As already mentioned in Chapter 2, the frag-
ments of XPath used in the annotation vary: XPathpó,ó�,Y, r s,^,_, q
for [FCG04], XPathpó,ó�,ò,ò�,Y, r s,^,_, q for [Ras07, KMR09], and
Regular XPathpó,ó�,Y, r s,^,_, q for [FGJK07].

The query rewriting algorithms of those models [FCG04, Ras07, FGJK07]
essentially rely on σ to compute the composition of the view and query.
The algorithms from [FCG04] and [Ras07] are very close to each other, but
the algorithm from [FGJK07] is more distantly related to the others due to
the choice of mixed finite state automata as a query model. The authors
optimize the complexity for query evaluation with a specific evaluation algo-
rithm for their mixed finite state automata: they can evaluate an automaton
A over a document t in time Op|A| � |t|q. The complexity of evaluating
a Regular XPath query over the security view pDv, σq for any document t
amounts to Op|Q|2|σ||DV |2 � |Q||σ||DV ||t|q in the model of Fan et al. for
recursive views and queries [FGJK07]: the automaton for the composition
of the view and query is obtained in time Op|Q|2|σ||DV |2q, and has size
Op|Q||σ||DV |q, which yields the above complexity.

4.2. Comparing Policies

4.2.1. How can we Compare Policies?

We wish to provide the administrator with tools for comparing access control
policies. Although the access control policy is not disclosed in our model, we
implicitly suppose in this section that an “attacker” may obtain full knowl-
edge of the access control policy, and the information we are protecting is
the source document. We first address this problem when the views do not
relabel nodes, and then discuss how the results can be extended to views
that are allowed to relabel nodes.

Inclusion of Queries

A straightforward approach is to compare the nodes made visible by the root
preserving queries:

Definition 4.1 (inclusion). Given two root preserving queries Q1 and Q2

with dompQ1q � dompQ2q � D, we say that Q1 is included in Q2 and write
Q1 ¤1 Q2 if Q1ptq is a subset of Q2ptq for every t in D.

129

4. XML Security Views

The first comparison thus establishes whether all nodes visible for Q1 are
also displayed by query Q2. This comparison may sometimes be deficient:
when Q1 ¤1 Q2, Q1 may still disclose some information that Q2 does not,
while hiding more nodes than Q2, because a malicious user that knows some
information on the access control policy might infer information about the
origin of a node, as illustrated in the following example.

Example 4.4. We consider the DTD D0 given in Example 4.1, with another
annotation ann1

0. In this annotation, nodes src under dev are always hidden
(not only when they are under a proprietary licensed project). So the last
rule of ann0 is replaced by:

devÑ src, doc

ann1
0pdev, srcq � false

ann1
0pdev, docq � true

In this example, annotation ann1
0 hides more nodes than ann0, so QpD0,ann

1
0q ¤1

QpD0,ann0q, as evidenced by Figures 4.1 and 4.2. But hiding nodes may reveal
some information. Indeed, for every t valid for the DTD D0, the projects
with free license that are currently under development can be selected with
the following XReg expression on View

�
QD0,ann

1
0
, t
�
:

ó::projects{ó::projectrnotpó::srcq and ó::license{ó::frees

So the user can distinguish some projects under development from stable
projects, which was not possible with ann0.

projects

project

name licensesrc doc

free

project

name licensedoc

propr

project

name licensedoc

free

n0

n1 n2 n3

n4 n6n7 n9

n10

n11 n13n16

n17

n18 n20n22

n23

Figure 4.2.: The view View
�
QD0,ann

1
0
, t0

�
.

For this reason, we define now another way to compare views (root pre-
serving queries), based on which queries can be expressed through the view.

Comparison ¤2,C and Expressible Queries

Given a class of queries C and a root preserving query Q in C, we define the
class of “expressible queries” over the source document as

PublicCpQq � tQ1 P C | DQ2 P C.@t P dompQq.Q2pView pQ, tqq � Q1ptqu.

130

4.2. Comparing Policies

Definition 4.2. Given a class of queries C and two queries Q1 and Q2, we
write Q1 ¤2,C Q2 if PublicCpQ1q � PublicCpQ2q.

We call a class of queries C well-behaved if it satisfies the two following
conditions: (1) query Qall belongs to C, where for every tree t, Qallptq selects
all the nodes of t, and (2) C is closed under query rewriting. Regular XPath
and MSO are well-behaved classes of queries.

Proposition 4.9. Given a well-behaved C, and two root preserving queries
Q1 and Q2 in C with dompQ1q � dompQ2q, Q1 ¤2,C Q2 if and only if there
exists some query Q P C such that for every t, QpView pQ2, tqq � Q1ptq, i.e.,
if and only if Q1 P PublicCpQ2q.

Proof. Suppose PublicCpQ1q � PublicCpQ2q. Since we supposed Qall belongs
to C, Q1 P PublicCpQ1q, so Q1 P PublicCpQ2q. Conversely suppose Q1 P
PublicCpQ2q, and let Q denote some query in C such that for all t in D,

QpView pQ2, tqq � Q1ptq. (4.1)

Observe that, since Q1 is root preserving, so is Q. Fix also Q1 P PublicCpQ1q
and let Q2 denote some query such that for all t in D,

Q2pView pQ1, tqq � Q1ptq. (4.2)

As we supposed C to be closed under query rewriting, there exists a query
Qr in C such that for all t,

Qrptq � Q2pView pQ, tqq. (4.3)

Combining equations (4.1), (4.2) and (4.3) we obtain that for all t in D,
QrpView pQ2, tqq � Q1ptq, hence Q1 P PublicCpQ2q, which concludes our
proof.

To sum up, Q1 ¤2,C Q2 essentially means that every information we could
retrieve from Q1 using some query from class C could also be retrieved from
Q2 using some query from class C. For well-behaved classes of queries C, this
amounts to deciding whether the first view can be expressed with a query Q2

from C over the second view, a classical problem of database theory known
as query rewriting.

With a very large class of queries C, Q2 might prove exceedingly expen-
sive to evaluate, in which case Q1 would arguably provide some information
unavailable (or difficult to obtain) from Q2. The weaker the class of queries
C, the safer Q1 will be compared to Q2, but also the more restrictive the
comparison.

In the extreme case we may decide not to consider the difficulty of eval-
uating Q2; for instance if we assume an “adversary” with unlimited compu-
tational power. Thus, when C is the class of all queries (all queries closed
under isomorphism), the question is only about whether Q1 discloses any
information hidden by Q2. We prove below that this case corresponds to the
usual notion of determinacy for views.

131

4. XML Security Views

Determinacy, the Least Restrictive Form of Comparison ¤2,C

Q1 will be more secure than Q2 for comparison ¤2 if view Q2 determines
view Q1, i.e., if we can simulate view Q1 from view Q2.

Definition 4.3 (determinacy). Given two root preserving queries Q1 and
Q2 with dompQ1q � dompQ2q � D, we say that Q2 determines Q1 and write
Q1 ¤2 Q2 if View pQ2, tq � View pQ2, t

1q ùñ View pQ1, tq � View pQ1, t
1q

for every t and t1 in D.

We also observe that the notion of determinacy comes in two different flavors
depending on whether we reason up to isomorphism or prefer to take identi-
fiers into account. If we wish to reason only up to isomorphism of the tree,
then the identifiers do not matter and the comparison above can be adapted
into ¤3 as follows:

Definition 4.4 (determinacy modulo isomorphism). Given two root pre-
serving queries Q1 and Q2 with dompQ1q � dompQ2q � D, we say that Q2

determines Q1 modulo isomorphism and write Q1 ¤3 Q2 if

@t, t1 P D.View pQ2, tq � View pQ2, t
1q ùñ View pQ1, tq � View pQ1, t

1q

As we only consider queries closed under isomorphism, Q1 ¤2 Q2 implies
Q1 ¤1 Q2.

Proposition 4.10. For any two root preserving queries Q1 and Q2 with
dompQ1q � dompQ2q, Q1 ¤2 Q2 implies Q1 ¤1 Q2.

Proof. Let Q1, Q2 two queries with domain D such that Q1 ¤2 Q2. Suppose
Q1ptq � Q2ptq. There exists some t and a node n in Q1ptq such that n R Q2ptq.
Let t1 be the tree obtained from t by replacing n with a “fresh” node n1 R Nt

(modifying the relations child , follow accordingly). As Q2 and Q1 are closed
under isomorphism, View pQ2, t

1q � View pQ2, tq, and Q1pt1q � Q1ptq. This
contradicts our hypothesis. Therefore, we must have Q1ptq � Q2ptq.

We only used the fact that for any trees t, t1, View pQ2, tq � View pQ2, t
1q

implies Q1ptq � Q1pt1q to deduce that Q1 ¤1 Q2. As a result, we can give a
weaker but equivalent formulation for determinacy:

Remark 4.3. Given two root preserving queries Q1 and Q2 with dompQ1q �
dompQ2q � D, Q2 determines Q1 if and only if View pQ2, tq � View pQ2, t

1q
implies Q1ptq � Q1pt1q for every t and t1 in D.

The direct implication is straightforward, and the only-if direction follows
from the argument above: If View pQ2, tq � View pQ2, t

1q ùñ Q1ptq �
Q1pt1q for every t and t1 in D, then Q1 ¤1 Q2, so that from Q1ptq � Q1pt1q
and View pQ2, tq � View pQ2, t

1q we deduce View pQ1, tq � View pQ1,
1q.

We claimed before that comparison ¤2,C becomes comparison ¤2 when C

is the class of all queries closed under isomorphism. Let us establish this
claim.

132

4.2. Comparing Policies

Remark 4.4. Comparison ¤2 corresponds to Q1 ¤2,C Q2 with C the set of
all queries closed under isomorphism.

Assume first that Q1 ¤2 Q2, and let C the class of all queries closed under
isomorphism. Let Q1 any query in PublicCpQ1q and Q2 a query such that for
all t P dompQ1q, Q2pView pQ1, tqq � Q1ptq. For each tree t2 P View pQ2, Dq,
every tree t such that View pQ2, tq � t2 returns the same view by Q1, since
Q1 ¤2 Q2. Therefore, the value of Q1ptq is the same for every such tree.
Recall that in this case Q1 ¤1 Q2 according to Proposition 4.10, so that
Q1ptq � Q1ptq � Q2ptq � Nt2 . Thus, Q1ptq is a subset of Q2ptq and only
depends on View pQ2, tq. We can therefore define a query Qr that “computes”
Q1ptq from View pQ2, tq (the nodes selected by Qr on tree t2 are obtained by
choosing arbitrarily a tree t such that View pQ2, tq � t2, and then selecting
the nodes in Q1ptq). The resulting query Qr is closed under isomorphism
because Q1 and Q2 are so. Thus Q1 P PublicCpQ2q, and more generally
PublicCpQ1q � PublicCpQ2q. Conversely, assume PublicCpQ1q � PublicCpQ2q
for some C that contains Q1, which is the case for the class we are discussing.
In particular, Q1 P PublicCpQ2q, hence Q1 P PublicCpQ2q, which implies
Q1 ¤2 Q2. This concludes the proof.

Remark 4.5. If we consider views as tree transformations, then both com-
parisons ¤2 and ¤3 can be interpreted as a problem of functionality. In-
tuitively, given views Q1 and Q2, one wishes to test if the transformation
t ÞÑ Q1pQ�1

2 ptqq is functional, i.e., maps t to a unique tree (modulo iso-
morphism for comparison 3). In general, however, we shall prove that this
transformation can be expressed neither as a (regular) set of 2-alignments,
nor as any other representation of which functionality is decidable.

Comparison ¤3 and Certain Answers

Definition 4.5. Given a root preserving query Qv, a Boolean query Q, and a
tree tv in View pQv, dompQvqq, we define the set of possible source documents
of tv for Qv as Src ptv, Qvq � tt P dompQvq | View pQv, tq � tvu. The certain
answer of query Q for tv is

CertainQv
pQ; tvq �

©
tPSrcptv ,Qvq

Qptq.

We introduce conditions on the class of queries considered in order to obtain
for comparison ¤3 an alternative characterization similar to the one obtained
for comparison ¤2,C.

Definition 4.6. We say that a class of queries permits view-inversion if for
every root preserving query Q1 P C, any tree t1 P View pQ1, dompQ1qq, there
is a Boolean query Ant pt1, Q1q in C such that @t P dompQ1q.Ant pt1, Q1q ptq �
true iff t P Src pt1, Q1q, i.e., iff View pQ1, tq � t1.

133

4. XML Security Views

This means query Ant pt1, Q1q is only satisfied on trees whose view (for Q1)
is isomorphic to t1.

Lemma 4.11. Regular XPath and MSO permit view-inversion.

Proof. Let Q1 denote a root-preserving XReg query and let t1 denote a tree
in View pQ1, dompQ1qq. We can easily define a boolean query f P XReg such
that for every tree t, f (t if and only if t � t1. The construction for the
composition of queries in Section 4.1 can be applied to boolean queries as well
as root-preserving queries; thus, by rewriting the base axes of f , we obtain a
XReg query Rewritepf,Q1q which for every tree t satisfies Rewritepf,Q1qptq �
true if and only if View pQ1, tq � t1. The proof for MSO follows the same
lines.

For a class C that permits view inversion and with queries closed under
isomorphism, Q1 ¤3 Q2 iff the certain answers for t with view Q1 are also
certain answers with view Q2 for every query of C:

Proposition 4.12. Let C a class permitting view inversion, and Q1, Q2 P C.
Then Q1 ¤3 Q2 if and only if

@t P D.@Q P C.CertainQ1
pQ;View pQ1, tqq ùñ CertainQ2

pQ;View pQ2, tqq

Proof. Suppose that for all t in D and all Q in C, CertainQ1
pQ;View pQ1, tqq

implies CertainQ2
pQ;View pQ2, tqq. Since C permits view inversion, for all t

in D, Ant pt, Q1q can be expressed with a query in C and therefore we have
CertainQ1

pAnt pView pQ1, tq , Q1q ;View pQ1, tqq � true. By hypothesis, this
implies CertainQ2

pAnt pView pQ1, tq , Q1q ;View pQ2, tqq.
Suppose now that CertainQ2

pAnt pView pQ1, tq , Q1q ;View pQ2, tqq � true

for all t in D, and fix some t, t1 in D such that View pQ2, tq � View pQ2, t
1q.

Then, Ant pView pQ1, tq , Q1q pt1q � true, hence View pQ1, tq � View pQ1, t
1q.

To conclude, suppose that for all t and t1 in D, View pQ2, tq � View pQ2, t
1q

implies View pQ1, tq � View pQ1, t
1q. Then, Src pView pQ2, tq , Q2q is a subset

of Src pView pQ1, tq , Q1q for every t in D. Hence for every t in D and Q in
C, CertainQ1

pQ;View pQ1, tqq ùñ CertainQ2
pQ;View pQ2, tqq.

Thus, all our comparisons turn out to correspond to standard definitions
from database theory; inclusion, determinacy and query rewriting, as men-
tioned in chapter 2. We henceforth use these characterizations to investigate
the decidability of the comparisons.

4.2.2. Preliminary Results Relating the Different
Comparisons

The following results describe how the three definitions for policy comparison
are related (for queries closed under isomorphism):

134

4.2. Comparing Policies

Proposition 4.13. Given any class of queries C and root preserving queries
Q1 and Q2 in C with dompQ1q � dompQ2q,

1. Q1 ¤2 Q2 ùñ Q1 ¤1 Q2

2. Q1 ¤2 Q2 ùñ Q1 ¤3 Q2

3. pQ1 ¤1 Q2 ^Q1 ¤3 Q2q ÷ Q1 ¤2 Q2

4. Q1 ¤2 Q2 ÷ Q1 ¤2,MSO Q2.

Proof.

1. This is Proposition 4.10.

2. Let Q1 ¤2 Q2. Let Q be a Boolean query and t in dompQ1q such that
CertainQ1

pQ;View pQ1, tqq. Let t0 be a tree such that View pQ2, tq �
View pQ2, t0q. There exists a tree t1 with t1 � t0 and View pQ2, t

1q �
View pQ2, tq, because we considered queries closed under isomorphism.
We have Q2ptq � Q2pt1q and Q1 ¤2 Q2, so Q1ptq � Q1pt1q by definition,
which implies View pQ1, tq � View pQ1, t0q. We have proved Q1 ¤3 Q2.

3. Let D be the DTD defined by r Ñ a*baa*, let χ1 � órself::a and

ð::bs and χ2 � ó::a. Let Q1 be the query that synthesizes validation
againstD and XReg expression χ1 andQ2 be the query that synthesizes
validation against D and XReg expression χ2. Those queries satisfy:
pQ1 ¤1 Q2 ^Q1 ¤3 Q2q but Q1 ¦2 Q2.

4. We show a stronger result actually; we prove that determinacy for sim-
ple annotations does not imply the existence of an MSO query rewriting
even when View pQ2, Dq is regular.

Let D be the DTD defined by r Ñ ara + ar’a and r’ Ñ a. Let
ann and ann1 be the annotations defined by annpr, rq � annpr, r1q �
false and annpr, aq � annpr1, aq � true, while ann1pr, rq � ann1pr, r1q �
ann1pr, aq � false and ann1pr1, aq � true. Let Q1 � QpD,ann1q and Q2 �
QpD,annq. Language View pQ2, LpDqq consists of all trees of depth one
with nodes labeled a below root r, in odd number. Any query Q such
that RewritepQ,Q2q � Q1 would have to select the middle “a” element
in a2n�1, which is beyond the power of MSO queries.

We define the decision problems associated to the comparisons. Those prob-
lems are parameterized by the comparison i P t1, 2, 3u and a class of queries
C, and prove that deciding comparisons ¤2 and ¤3 (determinacy) are at least
as hard as deciding comparison ¤1 (inclusion)
Problem: Comparison ¤i (for C)

Input: Queries Q1, Q2 P C with dompQ1q � dompQ2q.
Question: Q1 ¤i Q2 ?

135

4. XML Security Views

Proposition 4.14. For all classes of queries C P tXReg,MSOu there is a
polynomial time reduction from comparison ¤1 (for C) to comparison ¤2

(also for C), and a polynomial time reduction from comparison ¤1 to com-
parison ¤3.

Proof. Let C denote one of XReg or MSO , and let Q1 and Q2 be two root
preserving queries from C with identical domain D. We denote by Σ1 the
new alphabet: Σ1 � ppΣztruq � t1, 2uq Y t$u Y tpr, 1qu where r is the label
of the root of trees in D. Intuitively, the $ will be used as a tag that marks
the positions selected by Q1, while the substitution with two copies of each
letter will be necessary only for the reduction to comparison ¤3.

We define a transformation τ that adds a $ symbol as the leftmost child of
every node of the trees inD: @a P Σ, τpapt1, t2, . . . , tnqq � ap$, τpt1q, . . . , τptnqq.
We also define morphism φ from Σ1 to Σ Y t$u that projects the labels on
their first component. Formally, φp$q � $, φppr, 1qq � r, and for all a in
Σztru, φppa, 1qq � φppa, 2qq � a. Finally, D1 is defined as φ�1pτpDqq.

Given any tree t P D1, τ�1ptq returns the tree obtained from t by removing
the $ nodes (only leaves may be labeled by a $), and φpτ�1ptqq additionally
projects the labels on the first component. We define two queries Q1

1 and
Q1

2 as follows. For every i P t1, 2u, Q1
iptq X Nτ�1ptq � Qipφpτ�1ptqqq, and Q1

1

selects no node with label $ whereas Q1
2 selects a node with label $ if and

only if its parent node is selected by Q1
1. Queries Q1

1 and Q1
2 in C can clearly

be defined in polynomial time from Q1 and Q2. To conclude the proof we
observe that: Q1 ¤1 Q2 ðñ Q1

1 ¤2 Q
1
2 ðñ Q1

1 ¤3 Q
1
2.

Here is a proof for the observation: if Q1 ¤1 Q2 does not hold, then there
exists a tree t1 and node n P Nt such that n P Q1pt1qzQ2pt1q. Let t1 be a
tree such that φpτ�1pt1qq � t1 and labt1pnq � pa, 1q, and t2 be obtained from
t1 by relabeling n with pa, 2q. From Q1

2pt1q one cannot guess if the label of
n is pa, 1q or pa, 2q: View pQ1

2, t1q � View pQ1
2, t2q, and yet View pQ1

1, t1q ��
View pQ1

1, t2q. Therefore, Q1
1 ¤3 Q

1
2 implies Q1 ¤1 Q2. When Q1 ¤1 Q2,

Q1
1 ¤2,C Q

1
2 obviously holds, since in that case we only need to select in the

view for Q1
2 the nodes having a child labeled $ to get the nodes selected by

Q1
1. Moreover, Q1

1 ¤2,C Q
1
2 implies Q1

1 ¤3 Q
1
2 by Proposition 4.13.

We observe that we have used ¤2,C instead of ¤2 in the last paragraph of
the proof, which yields the additional result that Q1 ¤1 Q2 ðñ Q1

1 ¤2,C Q
1
2.

Consequently we also have a reduction from comparison ¤1 to the problem
of deciding comparison ¤2,C.

Example 4.5. Figure 4.3 illustrates the reduction for two XReg queries.
Clearly, the queries Q1 and Q2 from that figure satisfy Q1 ¤1 Q2. There-
fore, queries Q1

1 and Q1
2 satisfy Q1

1 ¤3 Q
1
2 and even Q1

1 ¤2,XReg Q
1
2. Query

ó�::ró::$s is a rewriting of Q1
1 in terms of Q1

2.

136

4.2. Comparing Policies

pr, 1q

$ pa, 1q

$ pb, 2q

$ pb, 1q

$

pb, 2q

$

r

a

b

b

b

pr, 1q

$ pb, 2q

$ pb, 1q

pb, 2q

pr, 1q

pb, 2q

t1 φpτ�1pt1qq View pQ1
2, t

1q View pQ1
1, t

1q

Q2 � ó�::a{ó�::b Q1
2 � ó�::rself::pa, 1q or self::pa, 2qs{ó�::rself::pb, 1q or self::pb, 2qs

YQ1
1{ó::$

Q1 � ó�::a{ó::b Q1
1 � ó�::rself::pa, 1q or self::pa, 2qs{ó::rself::pb, 1q or self::pb, 2qs

Figure 4.3.: Reduction from ¤1 to ¤2,XReg and ¤3 for particular Q1 and Q2.

When the class of queries C is expressive enough, for instance when C is one
of XReg or MSO , we can reduce determinacy (with identifiers) to the third
comparison.

Proposition 4.15. Let C denote one of XReg or MSO, and let Q1, Q2

denote two root preserving queries in C, satisfying dompQ1q � dompQ2q.
We can compute in polynomial time two queries Q1

1 and Q1
2 in C such that

Q1 ¤2 Q2 ðñ pQ1 ¤1 Q2 ^Q1
1 ¤3 Q

1
2q.

Proof (outline). Fix C P tXReg,MSOu, and root preserving queries Q1, Q2

such that dompQ1q � dompQ2q � D. We first test the inclusion, and then
we must check not only isomorphism constraints, but also that “the same
nodes appear at the same position”. For this purpose we modify the domain
D before we test comparison ¤3, inserting dummy nodes into the first view
so as to indicate the positions.

Formally, the proof works as follows: let $ represent a new symbol outside
Σ. The alphabet of D1 is ΣYt$u, and in a tree of D1 every node of odd depth
is labeled with a $ and has a unique child, and every node of even depth has
label in Σ. The new domain D1 contains for each tree t in D the tree t1

obtained from t by the transformation φ replacing every subtree apt1, . . . , tnq
by ap$pt1, . . . , tnqq. Transformation φ is clearly bijective, and we also observe
that if D is expressible in C, D1 is also expressible in C. Next, we define two
queries Q1

1 and Q1
2 of domain D1 such that for all t1 P D1, Q1

2pt
1q � Q2pφ�1pt1qq,

137

4. XML Security Views

i.e., Q1
2 hides all $-labeled nodes and the nodes hidden by Q2 in t, and

Q1
1pt

1q contains exactly Q1pφ�1pt1qq plus every node n with label $ whose child
belongs to Q1

2pt
1q. It is easy to build such queries in polynomial time from Q1

and Q2, for XReg as well as for query automata. Thus, we have constructed
two queries Q1

1 and Q1
2 such that Q1 ¤2 Q2 ðñ pQ1 ¤1 Q2 ^Q1

1 ¤3 Q
1
2q. At

first glance, this looks like a Turing reduction, because we use two instances of
¤3: one for Q1

1 ¤3 Q
1
2 and one for Q1 ¤1 Q2 (we recall from Proposition 4.14

that comparison ¤1 reduces into ¤3). However, it is easy to build a single
instance from these two: we can use disjoint alphabets for the two instances
by copying the alphabet, and then use as domain the set of trees whose root
has two children; each child being devoted to one instance.

Example 4.6. Figure 4.4 illustrates the reduction. Clearly, the queries Q1

and Q2 from that figure satisfy Q1 ¤1 Q2, and also Q1 ¤2 Q2: one can
even rewrite Q1 in terms of Q2 using query ó�::a{ó::b. This is witnessed by
Q1

1 ¤3 Q
1
2.

r

a

b

c

a

b

c

a

r

$

a

$

b

$

c

$

a

$

b

$

c

$

a

r

b a

b

r

$ $

$

b

t φptq View pQ1
2, φptqq View pQ1

1, φptqq

Q2 � ó�::a{ró::b and ò::cs Y ó�::b
Q1 � ó�::c{ó::a{ó::b

Q1
2 � ó�::a{ró::b and ò::cs Y ó�::b

Q1
1 � ó�::c{ó::${ó::a{ó::${ó::b

Figure 4.4.: Reduction from ¤2 to ¤3 for particular Q1 and Q2.

Complexity of Inclusion Deciding if Q1 ¤1 Q2 is Exptime-complete for
Regular XPath queries: we already mentioned this complexity for the con-
tainment of Regular XPath queries in Section 3.3, and since this holds for
Boolean queries, the interval-boundedness restriction does not help. We
will show that this complexity can be lowered to Pspace over non-recursive
DTDs.

Deciding if Q1 ¤1 Q2 is in PTime for query automata. We observe that
this polynomial complexity stems from our representation via maximal lan-
guages and from the hypothesis that both automata have domain D. These

138

4.2. Comparing Policies

conventions make the Exptime-hardness of tree automata inclusion irrele-
vant for the verification of ¤1.

4.2.3. Undecidability Results for Comparisons ¤2 and ¤3.

Theorem 4.16. Given C P tXReg,MSOu, and two root preserving queries
Q1 and Q2 in C, testing Q1 ¤2,C Q2 is undecidable.

Proof. We use a reduction from regular separability of context-free gram-
mars. Recall that two context-free grammars G1 and G2 over the alphabet Γ
are regularly separable if there exists a regular language R (over Γ) such that
LpG1q � R and LpG2q � RA, where RA is the complement of R. Checking
regular separability of two context-free languages is known to be undecid-
able [SW73].

We give the proof for C � XReg; the result for MSO follows the same
lines. The reduction constructs a DTD D defining the set of all derivation
trees of G1 and G2. The query Q2 hides all nonterminals from the derivation
tree except the root. The nodes selected by Q2 are the yield of the trees in D,
and they form a word of LpG1qYLpG2q. The query Q1 works similarly except
that it also hides terminals derived from nonterminals of G2; essentially, it
returns only words of LpG1q.

If G1 and G2 are separable by a regular set R, then the regular expression
describing R can be easily rewritten into a XReg query Q such that for all
t in D, QpView pQ2, tqq � Q1ptq, that is QpD,Q1q ¤2,C QpD,Q2q. Conversely,
suppose there is a XReg query Q such that for all t in D, QpView pQ2, tqq �
Q1ptq. Essentially, Q selects words from LpG1q and hides words from LpG2q,
hence it separates G1 and G2. Then Q is equivalent to a tree MSO formula
ϕ [B6̈0], and we remark that ϕ is interpreted on trees of height one only.
Therefore, there exists a word MSO formula ψ that captures exactly the
words consisting of labels of the consecutive children of the root node. This
formula ψ can be converted into a regular expression [TW68] which defines
a set separating G1 and G2.

We prove similarly that determinacy is undecidable:

Theorem 4.17. Given two root preserving XReg queries Q1 and Q2,
testing Q1 ¤2 Q2 is undecidable.

Proof. The proof is similar to the one for Theorem 4.16, hiding derivations
of context-free grammars, except that the reduction is toward emptiness of
intersection: we recall that the problem of deciding whether LpG1qXLpG2q �
H given two context-free grammars G1 and G2, is undecidable.

139

4. XML Security Views

Proposition 4.18. We denote by �3 the equivalence relation Q1 �3 Q2 ðñ
Q1 ¤3 Q2^Q2 ¤3 Q1. In general (and even if the visibility of a node depends
only on its label) testing whether Q1 �3 Q2 is undecidable, therefore testing
whether Q1 ¤3 Q2 is undecidable.

Proof. Given an instance of PCP P : u1, . . . un, v1, . . . vn with ui, vi P Σ� for
all i ¤ n, we define as follows a DTD D over alphabet ΣY tu, v,#, 1, . . . nu,
together with access functions X1, X2. The DTD production rules are: rÑ
u | v, uÑ pu1, u, 1q | . . . | pun, u, nq | #, and vÑ pv1, v, 1q | . . . | pvn, v, nq | #,
and the access functions are, for all j in t1, 2u, i in t1, . . . nu, and α P ΣYt#u:

ann1pr, uq � ann1pr, vq � false,
ann2pr, uq � ann2pr, vq � true,
annjpu, uq � annjpv, vq � false, and
annjpu, αq � annjpv, αq � annjpu, iq � annjpv, iq � true

The view for annotation ann1 consists of some tree of depth one, and therefore
can be identified with words. See Figure 4.5 for an illustration of the PCP
instance (u1 � aab, u2 � ba, u3 � b, v1 � aa, v2 � bb, v3 � abb) over alphabet
Σ � ta, bu: the two annotations derived from this instance do not satisfy
QpD,ann1q �3 QpD,ann2q. QpD,ann1qptq can easily be obtained from QpD,ann2q by
erasing u or v, soQpD,ann1q ¤3 QpD,ann2q trivially holds. Clearly, QpD,ann2qptq ¤3

QpD,ann1qptq if and only if there is no solution to the PCP problem. Hence,
QpD,ann1q �3 QpD,ann2q if and only if the answer of P is negative. Thus testing
QpD,ann1q �3 QpD,ann2q is undecidable.

4.2.4. Determinacy for MSO

For interval-bounded views, comparisons ¤2,MSO and ¤2 are equivalent:

Proposition 4.19. Let Q1 and Q2 denote two query automata, with dompQ1q �
dompQ2q and Q2 interval-bounded. Then Q1 ¤2,MSO Q2 if and only if Q1 ¤2

Q2. Furthermore, if Q2 is k-interval-bounded and Q1 ¤2,MSO Q2, one can
compute a query automaton Q such that RewritepQ,Q2q � Q1 in time expo-
nential in k.

Proof. Since Q1 ¤2,MSO Q2 ùñ Q1 ¤2 Q2, we only need to prove that one
can compute a query automaton Q such that RewritepQ,Q2q � Q1 whenever
Q1 ¤2 Q2. Let k P N a natural number such that Q2 is k-interval-bounded.
We suppose Q1 ¤2 Q2. Then, by Proposition 4.13, Q1 ¤1 Q2. We define
an automaton A � pΣ � Σ2

ε, S,Γ, I, F, Rq with language LpAq � LQ1bQ2
.

Note that since we suppose Q1 ¤1 Q2, no label pa, a, εq can occur in any tree
accepted by A. Next, we abstract from elements in t that are not selected
by Q2 in order to rewrite Q1 in terms of Q2. For this, we use the same
construction as in Proposition 4.2 which computes an automaton for the

140

4.2. Comparing Policies

tree t

r

u

aab 1u

ba 2u

aab 1u

#b 3

View
�
QpD,ann2q, t

�
r

u

aabbaaabb#1213

View
�
QpD,ann2q, t

1�
r

v

aabbaaabb#1213

r

aabbaaabb#1213

View
�
QpD,ann1q, t

�
� View

�
QpD,ann1q, t

1�

tree t1

r

v

aa 1v

bb 2v

aa 1v

#abb 3

Figure 4.5.: PCP encoding for comparison ¤3.

view. Indeed, A can be considered as defining an interval bounded query on
trees labeled by Σ � Σε which will select all the nodes labeled by Σ � Σ as
Q1 ¤1 Q2.

Construction of an automaton rewriting Q1 in terms of Q2: the idea

is to eliminate transitions q
pη,pa,ε,εqq:γ
ÝÝÝÝÝÝÝÑ q1 for every q, q1 P S, η P top, clu, q P

Σ, γ P Γ, replacing them with ǫ-transitions. The interval-boundedness re-
striction allows us to eliminate those transitions. First, let E � S �S be the
set of all pairs pq, q1q such that A accepts some tree with labels in Σ�tεu�tεu
from initial state q to final state q1. More formally, pq, q1q P E if and only
if there is some tree t in LpAq,q1q satisfying labtpnq P Σ � tεu � tεu for all
n P Nt.

We define a VPA B � pΣ�Σε, S �Γ¤k,Γ¤k �Γ, I � tǫu, F � tǫu, R1q from
A with the following rules. Basically, the VPA B simulates within its states
a stack of depth at most k.

• B has transition pq, uq ǫÝÑ pp, uγq for every transition

q
pop,pa,ε,εqq:γ
ÝÝÝÝÝÝÝÑ p of A and u P Γ¤pk�1q.

• B has transition pq, uγq ǫÝÑ pp, uq for every transition

q
pcl ,pa,ε,εqq:γ
ÝÝÝÝÝÝÝÑ p of A and u P Γ¤pk�1q.

• B has transition pq, uq
pop,pa,x1qq:xu,γyÝÝÝÝÝÝÝÝÝÑ pp, ǫq for every transition

q
pop,pa,x1,aqq:γÝÝÝÝÝÝÝÝÑ p of A and u P Γ¤k.

141

4. XML Security Views

• B has transition pq, ǫq
pcl ,pa,x1qq:xu,γyÝÝÝÝÝÝÝÝÝÑ pp, uq for every transition

q
pcl ,pa,x1,aqq:γÝÝÝÝÝÝÝÝÑ p of A and u P Γ¤k.

• B has transition pq, uq ǫÝÑ pp, uq for every u P Γ¤k and pq, pq P E .

One can compute B from A in time exponential in k. There is a polynomial
p1 such that |B| ¤ pp1p|Q1| � |Q2|qq

k. To conclude the proof, we observe that
due to our determinacy hypothesis, the language accepted by B is maximal,
and by construction, it defines a query Q such that RewritepQ,Q2q � Q1, as
evidenced by the following invariant.

Let w a word over top, clu � Σ, xq, uy a state in S � Γ¤k, and σ a word
over Γ� Γ¤k. For the sake of clarity, we denote by σ1 the same σ considered
as a word over Γ. We claim that for all such w, q, and σ, B preserves the
following invariant.

Invariant: B can reach configuration pxq, uy, σq after reading w if and
only if there exists a word w1 over top, clu � Σ � Σε � Σε such that the
following two conditions are satisfied: (1) π2,3pw1q � w, and (2) A can
reach configuration pq, σ1uq after reading w1.

Remark 4.6. There is no way round the exponential blowup: for every n ¥ 0
there exist n-interval-bounded query automata Q1 and Q2 of size Opnq, such
that no automaton Q satisfying RewritepQ,Q2q � Q1 has size less than 2n.

Proof. We prove this remark with a simple counting argument. Consider
the DTD Dn : r Ñ a0#a0 and, for every i n, ai Ñ ai�1ai�1. This
DTD Dn describes a single tree tn with yield panq2

n

#panq2
n

. Let Q2 be the
query with domain ttnu that selects the leaves an, and Q1 the query with
domain ttnu that selects the p2nqth leaf an in document order. Q1 and Q2

can clearly be represented by VPAs (query automata) of linear size Opnq.
However, View pQ2, tnq is a tree of depth one with yield panq2

n�1

. Therefore,
a query automaton Q satisfying RewritepQ,Q2q � Q1 must select the letter
at position 2n in the word panq2

n�1

. Obviously, this cannot be achieved by
query automata having fewer than 2n states.

From this proposition, since determinacy is co-recursively enumerable, and
¤2,MSO is recursively enumerable, we can deduce immediately the decidability
of ¤2 for interval-bounded annotations, but we can do much better. A first
approach for testing ¤2 could be to build the “square” of B and test whether
there are two trees t � t1 accepted by B, with the same projection π1; π1ptq �
π1pt1q. We can test this property on B, in terms of accessibility of states.

Corollary 4.20. Let Q1 and Q2 denote two query automata, with dompQ1q �
dompQ2q. Given a fixed constant k, we can test in polynomial time whether

142

4.2. Comparing Policies

Q1 ¤2 Q2 for Q2 k-interval bounded. This holds in particular for upward
closed views.
Similarly, when the depth of the domain is bounded by a fixed constant, the

complexity for testing Q1 ¤2 Q2 becomes NLogspace.

Proof. We first check in polynomial time that Q1 ¤1 Q2; otherwise, Q1 ¦2

Q2. We then build the automaton B above, and eliminate its epsilon tran-
sitions, resulting in a VPA pΣ � Σε, SB,ΓB, IB, FB, RBq. Let Bsquare denote
the square of this automaton B, namely pΣ�Σε�Σε, S

2
B,Γ

2
B, I

2
B, F

2
B, Rsquareq

such that Bsquare has rule pq1, q2q
pη,pb,α1,α2qq:pγ1,γ2qÝÝÝÝÝÝÝÝÝÝÝÝÑ pq1

1, q
1
2q P Rsquare iff B

has rules q1
pη,pb,α1qq:γ1qÝÝÝÝÝÝÝÑ q1

1 P R and q2
pη,pb,α2qq:γ2qÝÝÝÝÝÝÝÑ q1

2 P R. We could al-
ternatively drop the first component of the letters (b) without any conse-
quences for the remaining of the proof. By construction, and as we sup-
posed Q1 ¤1 Q2, it holds that Q1 ¤2 Q2 if and only if for all b, α1, α2

with α1 � α2, the language of Bsquare contains no tree with a node la-
beled pb, α1, α2q. This is a problem of reachability, which can be solved
in polynomial time for VPAs. For instance, we modify Bsquare so that its
state remembers if a letter of the form pb, α1, α2q with α1 � α2 has already
been read: the resulting automaton B1 has states, initial and final states
S2
B � t0, 1u, I2B � t0u and F 2

B � t1u respectively. Moreover, B1 has transition

pq1, q2, xq
pη,pb,α1,α2qq:γ2qÝÝÝÝÝÝÝÝÝÑ q1

1, q
1
2, y if and only if the following two conditions are

satisfied: (1) pq1, q2q
pη,pb,α1,α2qq:pγ1,γ2qÝÝÝÝÝÝÝÝÝÝÝÝÑ pq1

1, q
1
2q P Rsquare and (2) y � 1 if and

only if x � 1 or α1 � α2, otherwise y � 0. Since there is a polynomial p2
such that B1 is built in time at most pp2p|Q1| � |Q2|qq

k, we get the polynomial
time complexity when k is a fixed constant.

When the depth of the domain is bounded by a fixed constant k, Proposi-
tion 3.13 proves that B1 accepts a tree of size polynomial or accepts no tree
at all. Consequently, we can guess non-deterministically a tree of polyno-
mial size and guess a run of the VPA B1 over this word. We cannot afford
to build the full B1, but it can be evaluated on-the-fly: only a counter and
the current stack and state of the VPA need to be stored, which requires
only logarithmic space (the stack has constant depth). This way we can test
emptiness of the VPA in NLogspace. One could alternatively prove that
emptiness of B1 can be evaluated in NLogspace by reduction to emptiness
for word automata: when the depth of the domain is bounded by a constant,
B1 can be seen as an automaton of polynomial size, of which the transitions
can still be evaluated on the fly. This guarantees we can test its emptiness
in NLogspace.

However, the full construction of B induces an exponential cost in terms
of time and space, so that for general interval-bounded queries, the above
approach uses exponential space. We provide a polynomial space algorithm
instead for interval-bounded queries.

143

4. XML Security Views

Lemma 4.21. Let A1 and A2 be two query automata, expressing queries Q1

and Q2, such that Q2 is interval bounded. If there are two trees t, t1 such that
View pQ2, tq � View pQ2, t

1q but Q1ptq � Q1pt1q, then there are two such trees
of size exponential and depth polynomial in the size of the automata A1,A2.

Proof. We prove this with a rough pumping argument: the purpose of this
lemma being to obtain a polynomial space algorithm in Proposition 4.22,
little care has been given to lower the degree of the polynomial. We need
to adapt the standard pumping argument due to the necessity to synchro-
nize two trees and two automata instead of one tree and one automaton:
we need to consider three nodes instead of two in order to preserve the
difference between the views for Q1. Let A1 � pΣ, S1,Γ1, I1, F1,∆1q and
A2 � pΣ, S2,Γ2, I2, F2,∆2q two query automata, with corresponding queries
Q1 and Q2 such that Q2 is an interval bounded queries and Q1 ¤1 Q2. Let
pt, t1q be a pair of trees of minimal size such that View pQ2, tq � View pQ2, t

1q
but Q1ptq � Q1pt1q. Let ρt2 (resp. ρt

1
2) denote accepting runs of the automa-

ton A2 on tbQ2 (resp. t1 bQ2), and ρt1 (resp. ρt
1
1) denote accepting runs of

the automaton A1 on tbQ1 (resp. t1 bQ1). We also denote by pρt2q
Ò, pρt

1
1 q

Ò,
etc. the corresponding functions that map a node n to the pair of states
assigned by the run to the automaton before reading the opening tag and
after processing the closing tag of n, as detailed on page 62.

Vertical pumping: We decorate every node n in Q2ptq (therefore also in
Q2pt1q) with the tuple ρpnq � pρt2pnq, ρ

t1
2 pnq, ρ

t
1pnq, ρ

t1
1 pnqq. Suppose there is

some node in Q2ptq at depth strictly greater than pk � 1q � 2 � |S2|2 � |S1|2

in t or t1, then there are three distinct nodes nÒ, n�, nÓ in Q2ptq such that
nÒ is an ancestor of n�, n� an ancestor of nÓ, and ρpnÒq � ρpn�q � ρpnÓq as
depicted in Figure 4.6.

We consider two cases depending on whether there exists below n� a node
n that belongs to Q1ptq∆Q1pt1q. In the first case we assume there is some
node n below n� that belongs to Q1ptq∆Q1pt1q. Then we could replace the
subtree below nÒ with the subtree below n� in t and t1: the two trees thus
obtained would have same view for Q2 and different views for Q1, which
contradicts minimality of the pair pt, t1q. In the second case there is no
node n P Q1ptq∆Q1pt1q below n�, but then we could replace the subtree
below n� with the subtree below nÓ in t and t1: the two trees thus obtained
would have same view for Q2 and different views for Q1, which contradicts
minimality of the pair pt, t1q. So either way, our minimality hypothesis enters
in contradiction with the existence of a node of depth greater than pk� 1q�
2 � |S2|2 � |S1|2 in Q2ptq or in Q2pt1q. Hence no node in Q2ptq or Q2pt1q has
depth greater than pk � 1q � 2 � |S2|2 � |S1|2.

Thus, t and t1 have polynomial depth. Notice that the pumping argument
used to bound the depth of the trees does not increase the size of the trees.
We can use another pumping argument, pumping “horizontally” this time,
and bound the number of children of every node in t or t1 by an exponential.

144

4.2. Comparing Policies

Horizontal pumping: As before we use a pumping argument over nodes
in Q2ptq, because this makes it easier to preserve equality of the views for
Q2. Let n P Q2ptq. Then n also belongs to Q2pt1q. However, it could
very well be that no child of n in t or t1 belongs to Q2ptq, while some de-
scendant of n would still belong to Q2ptq. To avoid those difficulties, we
consider the children n1, n2, . . . , nM of n in View pQ2, tq, in document or-
der. We decorate each node ni with two tuples ~ρpni, opq and ~ρpni, clq in
pS1 � Γ¤k

1 q2 � pS2 � Γ¤k
2 q2. Tuple ~ρpni, opq is associated to the opening

tag of ni and ~ρpni, clq to its closing tag. The tuples are defined as fol-
lows. Let dt ¤ k denote the number of stack symbols that have been
added (and not yet removed) after reading the opening tag of n and be-
fore reading the opening tag of ni in t: dtpniq � depthtpniq � depthtpnq � 1,
and similarly dt1pniq � deptht1pniq � deptht1pnq � 1. The tuples ~ρpni, opq
and ~ρpni, clq are respectively defined as ppq2, u2q, pq12, u

1
2q, pq1, u2q, pq

1
1, u

1
1qq and

pps2, u2q, ps12, u
1
2q, ps1, u2q, ps

1
1, u

1
1qq where pρt2q

Òpniq � pq2, s2q, pρt
1
1 q

Òpniq � pq11, s
1
1q,

etc. and u2 P pΓ2qdtpniq contains the dtpniq topmost symbols of the stack for
run ρt2 before processing the opening tag of node ni, u

1
1 P pΓ1qdt1 contains the

dt1pniq topmost symbols of the stack for run ρt
1
1 before processing the opening

tag of node ni etc.

We assume that Γ1,Γ2 both contain at least two elements. The other
cases can be treated similarly. The number of different tuples ~ρ that can be
constructed is strictly smaller than |S1|2 � |Γ1|2k�2 � |S2|2 � |Γ2|2k�2. Hence
if M ¥ 2|S1|2 � |Γ1|2k�2 � |S2|2 � |Γ2|2k�2, there exist 1 ¤ i j l ¤
M such that ~ρpni, opq � ~ρpnj, opq � ~ρpnl, opq. This however contradicts
the minimality of t and t1: the trees ti,j and t1i,j obtained from t and t1

by removing all tags between the opening of ni (included) and the opening
of nj (excluded) satisfy View pQ2, ti,jq � View

�
Q2, t

1
i,j

�
, and likewise the

trees tj,l and t1j,l obtained by removing all tags between nj and nl. The
contradiction stems from the observation that Q1pti,jq � Q1pt1i,jq or Q1ptj,lq �
Q1pt1j,lq. This concludes the proof that every node from Q2ptq has at most

2 � |S1|2 � |Γ1|2k�1 � |S2|2 � |Γ2|2k�1 children in View pQ2, tq.
We still have to bound the number of nodes in NtzQ2ptq and likewise in

t1, but here the pumping argument is the usual one, as we can apply the
pumping argument from Proposition 3.13 independently in t and t1 on the
“hidden” parts, provided nodes selected by Q2 are not affected. For each
node n P Nt and every sequence n1, n2, . . . , nL of consecutive children of n, if
L ¥ |S1|�|S2| then one of these children has necessarily a descendant in Q2ptq
otherwise the pumping argument from Proposition 3.13 would contradict the
minimality of t and t1. Consequently, the number of children of a node in t

or t1 can be roughly bounded3 by Op|S1|3�|Γ1|2k�2�|S2|3�|Γ2|2k�2q. More-

3We chose to simplify the presentation, but one could obtain much better bounds. For
instance, we use pairs of states ρt2pniq in the definition of ~ρ, in order to apply the

145

4. XML Security Views

over, each node n P Nt without descendant in Q2ptq has no descendants of
depth greater than its own depth plus |S1|2�|S2|2, according to the pumping
argument of Proposition 3.12. Therefore, no node in t or t1 has depth greater
than k � 3 � |S2|2 � |S1|2. The combination of those horizontal and vertical
pumping arguments allows to conclude the proof for Lemma 4.21: t and t1

have size at most exponential.

nÒ

n�

nÓ

nÒ

n�

nÓ
n P Q1ptqzQ1pt1q

n�

nÓ

n�

nÓ

View pQ2, tq � View pQ2, t
1q

View pQ1, tq � View pQ1, t
1q

tree t tree t1

ó ó

Figure 4.6.: Pumping argument for comparison ¤2.

Proposition 4.22. Given query automata A1 and A2 expressing queries Q1

and Q2 with Q2 interval bounded, we can test Q1 ¤2,MSO Q2 in polynomial
space.

pumping argument on nodes, but we could “dissociate” the opening and closing tags
as in the proof of Proposition 3.13, which would lower the degree of S1 and S2 in our
polynomials.

146

4.2. Comparing Policies

Proof. Let Q1 be an MSO query and Q2 an MSO k-interval-bounded query.
Then, by Lemma 4.19 it is enough to test whether there are trees t, t1 such
that Q2ptq � Q2pt1q but Q1ptq � Q1pt1q. Moreover, Lemma 4.21 gives a bound
on the size and depth of t and t1. This suggests the following algorithm: we
guess the size of t, t1. Those trees have exponential size, so their size can be
represented using polynomial space only. Then we guess step by step the run
of both view automata over t and t1. We only need to store the stack and the
current state, which provides a non-deterministic algorithm in polynomial
space. The result then follows from Savitch’s theorem.

In the following, we are interested in query automata with a domain equiv-
alent to a non recursive DTD. We write that the domain is equivalent to a
non-recursive DTD even if no DTD is manipulated here: the only property
that is required is actually that every tree of the domain has depth bounded
by a polynomial in the queries. As queries whose domain is equivalent to
a non-recursive DTD are a special case of interval-bounded queries, we get
immediately from Proposition 4.22:

Corollary 4.23. Let A1 and A2 denote two query automata expressing queries
Q1 and Q2. When the domain is equivalent to a non-recursive DTD, one can
test Q1 ¤2,MSO Q2 in polynomial space.

We recall that a straight line program is a context free grammar such
that there is a single production from each non-terminal, and the production
relation is acyclic. Thus, each straight line program G represents a single
word wG. In that setting, the Compressed Membership Problem consists in
deciding given a regular expression with squares E (over alphabet T), and a
word w over T given by a straight line program, whether w belongs to the
language of E.

Theorem 4.24 (Theorem 6 in [Loh10]). The Compressed Member-
ship Problem is Pspace-complete for regular expressions with squares.

Lemma 4.25. For query automata, comparison ¤2 is Pspace-hard even
when the domain is equivalent to a non-recursive DTD.

Proof. The proof works by reduction from the compressed membership prob-
lem for regular expressions with squares. Fix a straight line program G �
pV, T, S, P q and a regular expression with squares E over T . We can compute
in polynomial time a visibly pushdown automaton A accepting the deriva-
tion trees of G, and another one AE whose yield is the language of E.
Furthermore, LpAEq and LpAq can be described by non recursive DTDs.

Let D be the domain that consists of trees with root r, and a unique
subtree either in LpAEq or in LpAq below the root. Let Q1, Q2 denote two
queries over D satisfying respectively (1) Q1 selects all the leaves of t if t

147

4. XML Security Views

consists of a root r and a subtree in LpAq (then View pQ1, tq represents the
word wG), or selects nothing but the root r if t consists of a root r and a
subtree in LpAEq, and (2) Q2 selects the leaves of every tree. Then Q1 ¤2 Q2

iff wG does not belong to the language of E. This concludes the proof.

We can conclude from Proposition 4.22 and Lemma 4.25 that

Theorem 4.26. Comparison ¤2 is Pspace-complete for query automata
when the domain has bounded depth.

Theorem 4.27. Comparison ¤2 is Pspace-complete for interval-bounded
query automata.

Theorem 4.28. Comparison ¤3 is Pspace-complete for query automata,
when the domain has bounded depth.

Proof. We have the hardness by using the same construction as in Lemma 4.25.
Let us prove that this problem can be decided in polynomial space.

Here is a proof following a schema similar to ¤2: we define an automaton
A � pΣ � Σ2

ε, S,Γ, I, F, Rq with language LpAq � LQ1bQ2
.

We transform A into a word transducer from View pQ2,�q to View pQ1,�q.
We build a word automaton Aw � pΣ � Σ2

ε, S � Γk, I � tεu, F � tεu, Rwq
equivalent to A: for all η P Σ � Σ2

ε, u P Γ¤pk�1q, q, q1 P S, and all γ P Γ,

Aw has rule pq, uq
pop,ηq
ÝÝÝÑ pq1, uγq iff A has rule q

pop,ηq:γ
ÝÝÝÝÑ q1. Aw has rule

pq, uγq
pcl ,ηq
ÝÝÝÑ pq1, uq iff A has rule q

pcl ,ηq:γ
ÝÝÝÝÑ q1.

From Aw we build automaton Bw � pΣ�Σ2
ε, S�Γk, I �tεu, F �tεu, RBq,

such that for all x1, x2 P Σε, u P Γ¤pk�1q, q, q1 P S, and all γ P Γ, Bw has

rule pq, uq
pop,x1,x2qÝÝÝÝÝÝÑ pq1, uγq iff x1 P Σ or x2 P Σ and there exists b P Σ such

that Aw has rule pq, uq
pop,pb,x1,x2qqÝÝÝÝÝÝÝÝÑ pq1, uγq. Bw has rule pq, uq εÝÑ pq1, uγq iff

there exists b P Σ such that Aw has rule pq, uq
pop,pb,ε,εqq
ÝÝÝÝÝÝÑ pq1, uγq. We add

similar rules for the closing tags. We remark that the number of consecutive
ǫ-transitions in a minimal (accepting) run of Bw over some input is bounded
by |Aw|k.

Now, we can see Bw as a word transducer of polynomial size (remember
that k is a fixed constant), and Q1 ¤2 Q2 if and only if that transducer is
functional. We use the algorithm from [GI81, GI83] that decides functionality
of word transducers in NLogspace. They use a result on the emptiness of
automata with reversal-bounded counters to prove that whenever there is an
input on which a word transducer T can produce two different outputs then
there is such an input of size polynomial in T . Here, Bw is of exponential
size, so that we cannot afford to build it, but we can simulate its transitions
on-the-fly, and check for every input v of size polynomial in |Bw| – i.e., for

148

4.2. Comparing Policies

every input of exponential size – if Bw can produce two different outputs on
v. This gives a non-deterministic algorithm in polynomial space: guess the
size of the input, and simulate Bw on-the-fly on this input. The result then
follows from Savitch’s theorem.

Theorem 4.29. Comparison ¤3 is in Exptime for interval-bounded
query automata.

Proof. See the appendix, page 279.

4.2.5. From MSO Queries to Views that Relabel Nodes

The previous results dealt with queries, i.e., views that do not relabel nodes.
Comparison ¤3 can be used for views as well (without any need for adapting
the definition). The results obtained carry over to views that relabel nodes.
Similarly, the definition of comparison¤2 can be adapted in a straightforward
manner to deal with views that relabel nodes: for views V1 and V2, the
definition becomes: V1 ¤2 V2 if

@t, t1 P D.View pV2, tq � View pV2, t
1q ùñ View pV1, tq � View pV1, t

1q

Again, the results obtained for queries carry over to views that relabel nodes.
The definition of ¤1 requires more thorough transformation: a possible
definition would be: V1 ¤1 V2 if for every t the two following conditions
are satisfied: (1)NViewpV1,tq � NViewpV2,tq and (2) for every n P NViewpV1,tq,
labViewpV1,tqpnq � labViewpV2,tqpnq. With this definition, the polynomial time
complexity for the first comparison still holds. But condition (2) may seem
too restrictive. So it is not clear what is the natural notion of inclusion for
views that relabel nodes.

4.2.6. Comparing XReg Policies

Containment for XReg Queries over a Non-recursive DTD We prove the
Pspace-completeness of satisfiability for XReg over non-recursive DTDs.
This immediately gives the Pspace-completeness of the first comparison
over non-recursive DTDs, as query containment and satisfiability are equiv-
alent problems for XReg according to Remark 3.5. Actually we claim that,
given a non-recursive DTD D representing trees of maximal depth k, any
Regular XPath formula φ encoding D has size Ωpkq. This result can be
proved as follows: let t be a tree of depth k in LpDq then let a1, . . . , ak be
the label of the nodes on the path from root t to some leaf of t with depth k.
Necessarily, those labels are all distinct. If there are 1 ¤ i j ¤ k such that
φ does not explicitly contain the letters ai and aj, then the tree obtained from
t by inverting labels ai and aj still satisfies φ, but does not belong to LpDq,

149

4. XML Security Views

which concludes the proof of the claim. As a consequence of this claim, we
do not need to explicitly give the DTD as part of the input: satisfiability
is in Pspace and therefore Pspace-complete as soon as the domain of the
query is a non-recursive DTD. As a Corollary we obtain we obtain the same
complexity for containment.

Theorem 4.30. Satisfiability is Pspace-complete for Regular XPath over
non-recursive DTDs.

Proposition 4.31. Let QX and QX 1 be two root preserving XReg queries.
When the domain of QX is a non-recursive DTD, deciding QX ¤1 QX 1 is
Pspace-complete.

In order to prove membership in Pspace it may be tempting to use a prop-
erty of Regular XPath such as the small model property of PDL [BdRV01].
However, there exist (finitely) satisfiable XReg formulae φ of size Opn2q
whose smallest model has size 22n , as exposed in [ABD�05]. We show in the
appendix on page 277 that this gap can be improved using the technique
from Kupferman and Rosenberg [KR10] presented for Theorem 3.23:

Remark 4.7. There exist (finitely) satisfiable XReg formulae φ of size Opnq
whose smallest model has size 22n

When the depth of all trees accepted by φ is bounded by ppφq for some
polynomial p, however, φ has a model of size at most exponential in φ,
according to Corollary 3.14 and using the exponential conversion from XReg

formulae to NTAs.

Lemma 4.32. There exists a polynomial p1 such that for every XReg for-
mula φ of size n, if φ accepts only trees of depth at most fpnq and Lpφq � H
then Lpφq contains a tree of size Op2p1pfpnqqq.

Proof of Proposition 4.31. Pspace-hardness is obvious since Regular XPath
generalizes regular expressions, and containment for regular expressions is
Pspace-hard. With the small model property we have obtained we can
sketch a Pspace algorithm for satisfiability: we first guess the size of the
tree satisfying φ. This tree has size exponential in φ by Lemma 4.32, so
that its size can be represented using polynomial space only. We non-
deterministically guess letter by letter the linearization of the tree, and the
rule we apply. This rule can be verified in polynomial space according to
Corollary 3.22. We only need to remember the stack of the automaton,
which is of polynomial size by our hypothesis of a non-recursive DTD. Sav-
itch’s theorem allows to conclude.

150

4.2. Comparing Policies

Determinacy for XReg Queries over Non-recursive DTDs When the
schema is a non-recursive DTD, we can prove that determinacy is in polyno-
mial space with the same constructions as were used for satisfiability. Since
MSO and XReg have the same expressivity when the depth of the trees is
bounded, Q1 ¤2,XReg Q2 if and only ifQ1 ¤2,MSO Q2. So, by Proposition 4.19,
Q1 ¤2,XReg Q2 if and only if Q1 ¤2 Q2.

Theorem 4.33. Let Q1 and Q2 be two root preserving XReg queries.
When the domain of Q1 is a non-recursive DTD, deciding Q1 ¤2 Q2 is
Pspace-complete.

Proof. Let d denote the depth of the domain for query Q2. To begin, we first
check that Q1 ¤1 Q2, in polynomial space by Theorem 4.31. Let A1 and A2

denote two automata over Σ�Σε corresponding to queries Q1 and Q2. Using
the construction in [CGLV09], for instance, we can assume that the size of
A1 and A2 are at most exponential. Then, we use a pumping argument
similar to Lemma 4.21: if there are two trees t, t1 such that Q2ptq � Q2pt1q
but Q1ptq � Q1pt1q, then there are two such trees in which the number of
children of every node is at most p0p|A1| � |A2|qd for some polynomial p0.
Thus, there exists a polynomial p such that the number of children below
each node in these trees is at most 2ppnq, where n is the sum of the size of Q1

and Q2. Since our hypothesis on the domain bounds the depth of the trees
by a n, the size of t and t1 is at most 2ppnq�n. To sum up, we have proved
that if there are two trees t, t1 such that Q2ptq � Q2pt1q but Q1ptq � Q1pt1q,
then there are two such trees of size at most exponential in Q1 and Q2.

We cannot afford to build automata A1 and A2, but we simulate their
execution on-the-fly: we guess the size of two trees t and t1, which we can keep
in memory as t and t1 have exponential size. Then we check Q2ptq � Q2pt1q
and Q1ptq � Q1pt1q by simulating the runs of A1 and A2 in polynomial space
using Corollary 3.22.

Observe that we used the assumption bounding the depth of the domain
in several assertions: in general query containment for XReg is Exptime-
complete, the automata A1 and A2 cannot be simulated using polynomial
space, and the expressive power of MSO and of XReg are not the same. An
assumption of that kind is thus necessary to avoid the difficulties observed
in Proposition 4.37 for the more general interval-bounded setting.

We have already stated that ¤2,XReg and ¤2,MSO (and therefore ¤2) co-
incide over non-recursive DTDs because XReg and MSO have the same
expressive power in that case. The resulting query rewriting algorithm, how-
ever, is not very efficient: if we first compute an automaton rewriting Q1

in terms of Q2, we face a first exponential blowup. Converting the result-
ing query automaton into a XReg query may involve another exponential

151

4. XML Security Views

blowup, so the whole construction is doubly exponential, and we do not have
a matching lower bound.

Proposition 4.34. Let Q1 and Q2 be two root preserving XReg queries
such that the domain of Q1 is a non-recursive DTD and Q1 ¤2 Q2. We

can compute in doubly exponential time 22OpQ3q
a XReg query Q satisfying

RewritepQ,Q2q � Q1.

We obtain a result similar to Theorem 4.33 for comparison ¤3. It actually
implies Theorem 4.33 by Propositions 4.15 and 4.31.

Proposition 4.35. The problem of deciding Q1 ¤3 Q2 for XReg queries Q1

and Q2 over non-recursive DTD D can be decided in polynomial space.

Proof. We adapt the proof of Theorem 4.28. Once more, we use the trans-
lation from XReg expressions into automata to build an automaton A of
exponential size with language LpAq � LQ1bQ2

. Actually, we do not build
the automaton, because of its exponential size, but we simulate its transitions
in polynomial space using Corollary 3.22 which also implies we can simulate
in polynomial space the transitions of Bw, where Bw is defined from A as in
the proof of Theorem 4.28. The proof proceeds as for Theorem 4.28.

Comparisons for Interval-bounded XReg Queries For interval bounded
XReg queries, comparison ¤2,XReg is not equivalent to ¤2. We prove that
testing ¤2,XReg can be reduced to MembpMSO ,XRegq, the membership
problem, namely deciding MSO definability of XReg formulae.

Proposition 4.36. The problem of deciding ¤2,XReg for interval bounded
XReg queries can be reduced in exponential time to MembpMSO ,XRegq.

Proof. The reduction is immediate from the construction in Lemma 4.19 :
we compute an automaton A with language LQ1bQ2

, test Q1 ¤2 Q2 and in
this case the construction provides a query Q satisfying RewritepQ,Q2q � Q1.
All tests and the construction of Q require at most exponential time. Then,
Q1 ¤2,XReg Q2 if and only if there exists a XReg query equivalent to Q.

However, since the exact complexity, or even the decidability of problem
Memb(MSO ,XReg) have not been established in the literature (to the best
of our knowledge), this is of little help. Actually, the gap in expressiveness
between MSO and XReg has been established very recently [tCS08]. Thus,
the following result sheds a new light on the problem of deciding ¤2,XReg.

Proposition 4.37. MembpMSO ,XRegq can be reduced in polynomial time
to ¤2,XReg with interval bounded XReg annotations.

152

4.2. Comparing Policies

Proof. Fix A � pΣ, Q,Γ, I, F, Rq a VPA, which we assume w.l.o.g. to be
complete. That is, we assume A has a run (not necessarily accepting, of
course) over all trees t in TΣ. We build a DTD D and interval-bounded
queries Q1, Q2 defined by XReg expressions, such that Q1 ¤2,XReg Q2 iff
there exists a XReg filter f such that for every tree t, pt, root tq (f if and
only if t P LpAq. We assume without loss of generality that ΣXQ � H. We
build a DTD D over alphabet ΣYQ defined via the following rules. Abusing
notations for regular expressions, we use sets and denote by S the expression
s1 | s2 | . . . | sn, for a set S consisting of elements s1, . . . sn. For all a P Σ,
the production from a is defined by aÑ pQ � Σq� �Q.

The proof works as follows: under r, D simulates a run of automaton A

over a tree. Q1 checks the simulation of the transitions and, when the run
is valid and leads to an accepting state, Q1 selects all nodes from the tree
with label in Σ. A contrario, if either the run leads to rejection, or if the
elements labeled in Σ simulate no valid run, Q1 selects only the root. Q2

selects all nodes from the tree with label in Σ when the run is valid, whether
it is accepting or it leads to rejection, but selects only the root if the elements
labeled in Σ simulate no valid run. The crux of the proof is to make sure
with nodes labeled in Q that View pQ1, Dq � LpAq, while View pQ2, Dq is
the set of all trees over Σ.

This result is obtained with the following queries: let E be the set of all
pq1, q11, q2, q

1
2, aq in Q4 � Σ such that there exists some γ in Γ that verifies

simultaneously q1
pop,aq:γ
ÝÝÝÝÑ q11 and q12

pcl ,aq:γ
ÝÝÝÝÑ q2. We define auxiliary XReg

filters: fΣ �
�

bPΣ self::b

froot �

�ª
qiPI

rór notðss{self::qi

�
and

�
�ª

qfPF
rór notñss{self::qf

�

f
q1,q2
q1
1,q

1
2
� pð::q1q and pñ::q2q and pór notðs{self::q11q and pór notñs{self::q12q

fvalid �

�
� not

�
�ó�{

�
�fΣ and

�
� not

ª
pq1,q1

1,q2,q
1
2,aqPE

pself::aq and f q1,q2
q1
1,q

1
2

�

�
�
�

�
�

The two XReg queries are defined as Q2 � rfvalids {ó
�{rfΣs Y selfr notòs

and Q1 � rfvalid and froots {ó
�{rfΣs Y selfr notòs. It should be clear that

Q1 ¤2,XReg Q2 if and only if there exists a XReg filter f such that for every
tree t, pt, root tq (f if and only if t P LpAq. Actually, the two queries Q1 and
Q2 are even upward-closed.

From this proof and the expressivity gap between MSO and XReg [tCS08],
we can deduce that even for upward closed queries, Q1 ¤2,MSO Q2 does not

153

4. XML Security Views

imply Q1 ¤2,XReg Q2. Furthermore, in terms of expressivity, the queries
Q1 and Q2 used in the proof belong to a small fragment of XReg in that
they do not use the full expressivity of the Kleene star. When the depth
of the domain is not bounded, given any fragment C of XReg and queries
Q1

1, Q
1
2 P C, Q1

1 ¤2 Q
1
2 does not imply Q1

1 ¤2,C Q
1
2 as soon as C is expressive

enough to define Q1 and Q2.

Corollary 4.38. Let Q1 and Q2 be two upward-closed queries given by XReg
expressions, Q1 ¤2 Q2 needs not imply Q1 ¤2,XReg Q2.

Because determinacy does not deal with expressiveness, we do not face the
same difficulties related to the expressiveness of XReg for Comparison ¤3

(for XReg):

Proposition 4.39. Comparison ¤3 can be decided in exponential time for
interval bounded XReg queries.

Proof. The proof first translates the XReg expressions into automata, and
proceeds as for Theorem 4.29: even if the automata have exponential size,
the overall complexity remains exponential.

As a corollary of Proposition 4.39 and 4.35, we obtain the same complexity
bounds for ¤2:

Proposition 4.40. Let Q1 and Q2 two Regular XPath queries. One can
decide if Q1 ¤2 Q2 in exponential time for interval bounded XReg queries,
and in polynomial space over a non-recursive DTD.

4.2.7. Other XPath Dialects

We consider Regular XPath as a natural fragment for expressing policies.
Nonetheless other XPath fragments deserve some attention. CoreXPathp�,�q
extends Regular XPath with equality of paths [tCL09]. The syntax of filters
becomes: f ::� labpq � b | χ | true | false | not f | f and f | f or f | p � p and
the semantics of the new operator is given by: vp1 � p2wt � tn P Nt | Dm P
Nt.pn,mq P vp1wt X vp2wtu. Note that this XPath dialect allows to express
the fact that a path expression loops on a node via p � self::true. Actually,
[tCL09] provides an alternative definition of this dialect in terms of path
expressions with loop tests. The authors show that every CoreXPathp�,�q
expression can be converted in polynomial time into an equivalent two-way
alternating automaton with parity acceptance condition. This allows them
to test emptiness of a CoreXPathp�,�q expression in Exptime, but it also
implies that our results for Regular XPath carry over to CoreXPathp�,�q:
Theorem 4.30, Proposition 4.31, Proposition 4.39 and Proposition 4.35 ...
also hold for CoreXPathp�,�q.

154

4.3. Beyond Pairwise Comparison

VPA XReg

Schema non-rec IB gen non-rec IB gen

¤1 PTime PTime PTime Pspace-c Exptime-c Exptime-c

¤2 Pspace-c 1 Pspace-c 2 undec Pspace-c Exptime-c undec

¤3 Pspace-c 1
Exptime

Pspace-h undec Pspace-c Exptime-c undec

aWhen the depth of the DTD is bounded by a fixed integer k, this problem becomes
polynomial.

bWhen the constant for interval boundedness is a fixed integer k, this problem be-
comes polynomial.

Figure 4.7.: Summing up complexity for the three comparisons

Conditional XPath expressions can be viewed as a subset of Regular XPath
expressions. Consequently, all upper bounds for Regular XPath also hold for
Conditional XPath. Nevertheless, we did not use Conditional XPath for two
reasons: first it is not expressive enough to encode DTDs, and then it does
not allow easily to compose queries. Figure 4.7 summarizes our results on
the complexity of policy comparisons ¤1,¤2 and ¤3.

4.3. Beyond Pairwise Comparison

Here we outline how the methods developed above can help the database ad-
ministrator to assess how much information is disclosed by a policy. We first
sketch possible generalizations of view comparison when multiple views are
considered or when n-ary queries come into play, and then discuss additional
properties that can be verified using certain answers.

4.3.1. Policy Comparison in Presence of Multiple Views

A user may be allowed to take several roles and thus combine several views
to gather more information. Can our result be generalized to compare sets
of views? The answer depends on how the user may combine its views. We
identify two particular settings. If the user can superimpose its different
views into a single tree, and a set of views tV1, V2, . . . , Vku � TΣ�Σε

can be
modelled as a single view V � TΣ�Σ1 with Σ1 � Σk

ε : the pi� 1qth component
of the tree alignments in view V correspond to the second component in view
Vi. In that setting the problem of comparing two sets of views is reduced
to the problem of comparing two single views, so the decidability results
established in this section still apply.

155

4. XML Security Views

If the user has no access to the relations (follow ,¤) between the nodes from
its different views, then the problem of determinacy becomes undecidable
even for very simple views. This can be proved with an immediate encoding
of PCP:

Example 4.7. Let n P N and u1, . . . , un, v1, . . . , vn P Σ� a PCP instance.
Let D the DTD over alphabet tr, u, v,#1, . . . ,#nu Y Σ with root r and pro-
duction rule r Ñ uvpupu1#1 � � � � � un#nq� � vpv1#1 � � � � � vn#nq�q.
Consider annotations ann0, ann1, ann2 defined as follows:

ann0pr, uq � rñ�::us
ann0pr, vq � rñ�::vs
ann0pr, αq � false for every α P Σ Y t#1, . . . ,#nu

ann1pr, uq � ann1pr, vq � r notrð{ðss
ann1pr, 1q � � � � � ann1pr, nq � false

ann1pr, aq � true for every a P Σ

ann2pr, uq � ann1pr, vq � false

ann2pr, 1q � � � � � ann2pr, nq � true

ann2pr, aq � false for every a P Σ
Essentially, view 1 selects the first two children, and then only the letters
from Σ. View 2 selects the indices, and view 0 selects the first child if the
word is built from the uis, and the second child otherwise. One can determine
view 0 from the combination of views 1 and 2 if and only if there is no match
for the instance of PCP encoded. This would not hold in the first setting
because the position of the indices #i separating the uis would then allow to
distinguish whether the sequence is built from the uis or the vis.

4.3.2. Beyond Monadic Queries: n-ary Queries

When considering MSO n-ary queries (n ¥ 1), there is no obvious notion of
view tree: the representation via the maximal language, in particular, cannot
be used. Thus, the notion of query composition needs another definition. The
same question arises with determinacy: if we only consider queries returning
tuples of node identifiers, then one may be unable to recover the structure
of the trees, in particular in the case n � 1 the setting is different from the
one investigated in this paper. For n ¥ 3, modulo technical details we can
encode the ancestor and next-sibling relations in the tuples returned by the
query.

For any tree t, one possible solution is to define the view tree of t by an
n-ary query Q as a pair View pQ, tq � ptv, Sq with S � Nn

t the set of all
tuples selected by Q in t and tv the tree obtained from t by selecting every
node that appears in at least one tuple of S, plus the root, the structure
being inherited from t.

We represent every query Q as a language of alignments LQ such that a
tree t over Σn-ary � Σ� tεu � tεu Y tpa, a, αq | a P Σ, α � t1, . . . , nuu belongs

156

4.3. Beyond Pairwise Comparison

to LQ iff there exist a set S � Nt and an n-uple v P S satisfying the following
two conditions: (1) View pQ, π1ptqq � pπ2ptq, Sq, (2) for every node x of t,
π3plabtpxqq is the set of all components of v that equal x.

Remark 4.8. We observe that in any tree from LQ and for every i ¤ m

there exists at most one node x that contains i in its third component.

A regular query Q will be represented by an automaton A such that
LpAq � LQ. We observe that while the second component helps to represent
the monadic case as a restriction of this n-ary framework, we only consider
queries in the n-ary case, and queries do not relabel nodes, so that the second
component of each label is either equal to the first component, or is ε. In
the case n � 1, then S � Nπ2ptq in condition (1), and View pQ, tq � pπ2ptq, Sq
can therefore be identified with π2ptq.

Essentially, the second component displays all the nodes that are selected
in at least one tuple, whereas the third component encodes one particular
tuple that is selected. Several trees in LpAq may therefore have the same
first (and even first two) component(s) if Q selects several tuples in a tree.

We now extend the definition of determinacy to n-ary queries. Let Q1 and
Q2 denote two n-ary queries over domain D. We say that Q2 determines Q1

and write Q1 ¤2 Q2 iff for every trees t, t1 P D, View pQ2, tq � View pQ2, t
1q

implies View pQ1, tq � View pQ1, t
1q. This definition clearly extends the defi-

nition for the monadic case investigated in this dissertation, and as a result,
remains undecidable in general. We shall prove that it remains decidable
when D has bounded depth.

We generalize the definition of interval boundedness to n-ary queries, and
qualify an n-ary query Q as k-interval bounded iff the set of alignments
π1,2pLQq is k-interval bounded. Determinacy can still be decided for interval
bounded queries using a pumping argument similar to Lemma 4.21.

Lemma 4.41. Let A1 and A2 be two query automata expressing n-ary queries
Q1 and Q2, such that Q2 is interval bounded. If there are two trees t, t1 such
that View pQ2, tq � View pQ2, t

1q but Q1ptq � Q1pt1q, then there are two such
trees of depth exponential in the size of the automata A1 and A2.

Proof. For any tree t and query Q2, as we consider n-ary queries, we under-
score that LQ2

may contain several trees with first component t, so there is no
practical way to represent View pQ2, tq as a “decoration” of tree t. Instead,
we define t b Q2 as the set of all trees in LQ2

whose first component is t.
The trees in tbQ2 thus have the same first two components but may differ
in their third component. We next explain how to represent succinctly all
possible runs of A2 on all trees of tbQ2 as a decoration of t. This decoration
is not meant as a comprehensive representation of Q2ptq, but only serves as a
tool to decide whether View pQ2, tq � View pQ2, t

1q given two different trees
t and t1.

157

4. XML Security Views

Let k, n ¥ 1 two naturals, and Q1 and Q2 two n-ary queries, represented by
VPAs A1 � pΣ, S1,Γ1, I1, F1,∆1q and A2 � pΣ, S2,Γ2, I2, F2,∆2q, such that
Q2 is k-interval bounded and Q1 ¤1 Q2. Let also pt, t1q be a pair of trees such
that the first component of View pQ2, tq and View pQ2, t

1q are equal, that is,
the tuples selected by Q2 in t and t1 are not necessarily the sames, but the
set of all nodes that appear in at least one tuple are the same for t and t1,
and additionally they share the same parent and sibling relations in the view
for Q2. In other words, π2ptbQ2q � π2pt1 bQ2q.

We first decorate each node of t in bottom-up order. For every a P Σ,
m ¥ 0, and any a-labeled node x P NViewpQ2,tq such that in View pQ2, tq
node x has children x1, x2, . . . , xm, we first define decoration deco0 which is
basically a powerset construction, and then deco which essentially indicates
whether every tuple selected by Q2 in t is also selected in t1.

The decoration decot
0pxq is the set of all triples pq, pq1, . . . , qmq, αq with

q, q1, . . . , qm P pS2q2 and α � t1, . . . , nu such that there exists t0 P t b Q2

satisfying the following two conditions: (1) labt0pxq � pa, a, αq and (2) there
exists a run ρÒ of A2 over t0æx such that ρÒpxq � q and ρÒpxiq � qi for every
i ¤ m. Note that m � 0 when x is a leaf.

The decoration decot1
t pxq is the union of two sets.

• The first set consists of all pairs pq,Failq such that there exist α �
t1, . . . , nu and q1, . . . , qm P pS2q2 satisfying the following condition (a)
together with (at least) one of pbq or pcq: (a) pq, pq1, . . . , qmq, αq P
decot

0pxq, and (b) there exists i ¤ m such that pqi,Failq P decot1
t pxiq or

(c) there exist S1, . . . , Sm � pS2q2 satisfying the following conditions:
(i) pqi, Siq P decot1

t pxiq, (ii) for every q1, q11, . . . , q
1
m such that q1i P Si for

all i ¤ m, pq1, pq11, . . . , q
1
mq, αq R decot1

0 pxq.

• The second set consists of some pairs pq, Sq with q P pS2q2 such that
pq,Failq R decot1

t pxq, and S � pS2q2, obtained as follows. For each
α � t1, . . . , ku, q1, . . . , qm P pS2q2, and each S1, . . . , Sx � pS2q2, pq, Sq
belongs to decot1

t pxq if and only if S is the set of all q1 P pS2q2 for which
there exist some q11, . . . , q

1
m such that all the following four conditions

are satisfied: (1) q1i P Si for all i ¤ m, (2) pqi, Siq P decot1
t pxiq for all

i ¤ m, (3) pq, pq1, . . . , qmq, αq P decot
0pxq, and (4) pq1, pq11, . . . , q

1
mq, αq P

decot1
0 pxq.

Claim: We have View pQ2, tq � View pQ2, t
1q if and only if there is no pair

from pI2 � F2q � tFailu in decot1
t proot tq and in decot

t1proot t1q.
The claim can be proved using the following two invariants, which essen-

tially state that for every s, s1 P S2, decot1
t pxq contains pps, s1q,Failq if and

only if A2 admits a run from s to s1 on the subtree below x in t that “pre-
selects” some tuple, whereas no run of A2 on the subtree below x in t1 can
“pre-select” the same tuple. We use the term of “pre-selection” because the

158

4.3. Beyond Pairwise Comparison

tuple mentioned needs not be selected by Q2 in t, though it might be (possi-
bly after completing some components of the tuple with nodes that are not
descendants of x).

Invariant: For every q P pS2q2 and every pair of trees t, t1 over Σ such
that π1pView pQ2, tqq � π1pView pQ2, t

1q, if we denote by x the (common)
root node of t and t1, pq,Failq P decot1

t pxq if and only if there exists a tree
t0 over Σn-ary satisfying the following four conditions:

1. π1pt0q � t,

2. x P Nπ2pt0q,

3. A2 admits a run over t0 with ρÒpxq � q

4. there exists no tree t10 over Σn-ary satisfying the three conditions (i)
π1pt10q � t1, (ii) A2 admits a run over t10, and (iii) π2,3pt0q � π2,3pt10q.

We observe that together with (2), (iii) implies x P Nπ2pt10q.

Invariant: For every q P pS2q2, S � pS2q2 and every pair of trees t, t1 over
Σ with a common root node x, pq, Sq P decot1

t pxq if and only if pq,Failq R
decot1

t pxq and there exist two trees t0 and t10 over Σn-ary satisfying :
1. π1pt0q � t,

2. π1pt10q � t1,

3. x P Nπ2pt0q,

4. π2,3pt0q � π2,3pt10q,

5. A2 admits a run over t0 with ρÒpxq � q

6. S is the set of states q1 such that A2 admits a run over t0 with
ρÒpxq � q1

Using the claim, we move on to the proof of the lemma. Let t and t1 be
two trees of minimal size such that View pQ2, tq � View pQ2, t

1q but Q1ptq �
Q1pt1q. We claim that the depth of t and t1 can be bounded in terms of |A1|
and |A2|.

Claim: the depth of t and t1 as defined above is bounded by k�22Op|S1|2�|S2|2q.

If π1pView pQ1, tqq � π1pView pQ1, t
1qq then Lemma 4.21 applies hence the

claim holds. Consequently we assume from now on that π1pView pQ1, tqq �
π1pView pQ1, t

1q, that is: the nodes appearing in at least one tuple selected
by Q1 are the same for t and t1, so that Q1ptq and Q1pt1q only vary in the
tuples they select, not the nodes they make visible.

We define from A1 an automaton B0 such that LpB0q is the set of all trees
over Σn-ary that do not belong to LpA1q. According to Theorem 3.5, one can
build such a VPA B0 with 2|S1|2 states. From A1 and B0, one can easily build

159

4. XML Security Views

a VPA B1 that represents query Q1 : t ÞÑ tv P pNtqn | v R Q1ptqu. Again, B1

needs no more than 2Op|S1|2q states.
As the roles of t and t1 are symmetric, we can assume without loss of

generality that Q1ptq contains a tuple v that does not belong to Q1pt1q. Let
therefore t0 and t10 be the two trees such that

• π1,2,3pt0q P tbQ2,

• π1,4,5pt0q P tbQ1,

• π1,2,3pt10q P t
1 bQ2,

• π1,4,5pt10q P t
1 bQ1,

• π2,3,5pt0q � π2,3,5pt10q, and

• for every node x P Nt0 and i ¤ n, i belongs to π5plabt0pxqq if and only
if x is the ith component of v.

Let ρ2 (resp. ρ1
2) denote an accepting run of the automaton A2 on π1,2,3pt0q

(resp. on π1,2,3pt10q). Let also ρ1 denote an accepting run of the automaton
A1 on π1,4,3pt0q, and let ρ1

1 denote an accepting run of the automaton B1 on
π1,4,3pt10q. We also denote by pρ2qÒ, pρ1

1q
Ò ... the corresponding functions that

map a node x to the pair of states assigned by the run to the automaton
before reading the opening tag and after processing the closing tag of x, as
detailed on page 62.

We decorate every node x in Q2ptq (therefore also in Q2pt1q) with the tuple
ρpxq � pρ2pxq, ρ1

2pxq, ρ1pxq, ρ
1
1pxq, deco

t1
t pxq, deco

t
t1pxqq. First, we observe that

decot1
t pxq may take at most 22Op|S2|2q different values, and so ρpxq may take at

most 22Op|S1|2�|S2|2q different values. 4

Assume there is some node in View pQ2, tq at depth greater than k �

22Op|S2|2�|S2|2q in t or t1. Then there are two distinct nodes nÒ, nÓ in View pQ2, tq
such that nÒ is an ancestor of nÓ and ρpnÒq � ρpnÓq. We observe that every
node that appears in v either is a descendant of nÓ or is not a descendant
of nÒ in both t and t1. For t this is because π1,4,5pt0q belongs to LpA1q and
ρ1pnÒq � ρ1pnÓq, hence by Lemma 3.11, the tree obtained by repeating the
“part” of t0 between nÒ and nÓ is also accepted by A1, but for any tree t1 in
LpA1q and any i ¤ n, i cannot appear in the label of two distinct nodes of
t1 according to Remark 4.8. Therefore the fifth component of labt0pxq is H
for every node x that is a descendant of nÒ but not of nÓ in t0. A symmetric
argument proves the same result for t1.

Consequently, the trees t1 and t11 obtained from t and t1 by substituting the
subtree below nÒ with the subtree below nÓ still satisfy v P Q1pt1qzQ1pt11q,

4Actually, ρpxq may take 2p|S1|2�2Op|S2|2qq different values, but the whole construction is
inefficient anyway.

160

4.3. Beyond Pairwise Comparison

a fortiori Q1pt1q � Q1pt11q. Furthermore, we prove that View pQ2, t1q �
View pQ2, t

1
1q. First, π1pView pQ2, t1qq � π1pView pQ2, t

1
1qq because we have

View pQ2, tq � View pQ2, t
1q, ρ2pnÒq � ρ2pnÓq, and ρ12pn

Òq � ρ12pn
Óq. Then

decot1
t pn

Òq � decot1
t pn

Óq and similarly decot
t1pn

Òq � decot
t1pn

Óq. Moreover, given
any node x in the view for Q2, the decorations decopxq only depend on the
values of those decorations and on the states reachable in the children y of

x in the view for Q2, so that deco
t11
t1
pxq and decot1

t pxq are identical for every
node x that is descendant of nÓ or that is not descendant of nÒ. In par-

ticular deco
t11
t1
proot t1q � decot1

t proot tq � decot
t1proot t1q � decot1

t11
proot t11q. This

implies that View pQ2, tq � View pQ2, t
1q. Thus, the existence of a node in

View pQ2, tq at depth greater than k � 22Op|S2|2�|S2|2q in t or t1 contradicts the
minimality of t and t1, which concludes the proof of the claim, hence the
Lemma.

We could prove along the same lines an horizontal pumping argument to
bound the number of children in terms of |A1| and |A2|, which gives the
decidability of comparison ¤2 for n-ary queries.

4.3.3. Verifying Security Properties of a View

Instead of comparing several policies, one may wish to check security prop-
erties of a single view. We only mention one approach, based on certain
answers, that is closely related to our work.

Verifying if some Specific “Sensitive” Information is Disclosed Libkin
et Sirangelo [LS10] propose another approach based on certain answers: the
database administrator specifies a Boolean query Q representing a secret, and
this secret is considered to be disclosed by view V if there exists some tree t for
which CertainV pQ;View pV, tqq � true. There are a few differences between
our formalisms and those of [LS10]. In [LS10], the view and query are speci-
fied by a single run query automaton with selecting states, a model equivalent
to our query automata using maximal alignments. Also, the certain answers
are parameterized with a domain in [LS10], because the automaton specify-
ing the view may accept trees beyond that domain: CertainD

V pQ; t1q equals
true if and only if every t in D such that View pV, tq � t1 satisfies Q. The
authors prove by reduction from CFG universality that one cannot in general
decide if a secret is disclosed.

Proposition 4.42 ([LS10]). Given a view V and boolean query Q, all de-
fined by automata, it is undecidable if there exists some tree t such that
CertainD

V pQ;View pV, tqq � true.

When the view is upward-closed, however, the authors prove that the problem
becomes decidable. They propose an algorithm to build an automaton A�

161

4. XML Security Views

such that LpA�q � tt1 | CertainD
V pQ; t1q � falseu. This, of course, implies the

possibility to decide if there is a tree for which the secret is disclosed, since
for instance we can check if LpA�q is equal to the set of all possible view
trees.

Proposition 4.43 ([LS10]). Let V be a view, Q a boolean query, and D

a domain. Given automata AV for V , AD for D, and A Q such that t P
LpAq ðñ t1 * Q, one can compute in polynomial time an automaton A�

such that LpA�q � tt1 | CertainD
V pQ; t1q � falseu.

A� is essentially built from the product of AD and A Q with AV : the select-
ing states of AV identify the nodes that belong to the view, and so an analog
of Proposition 4.2 (for upward-closed automata with selecting states) allows
to build an automaton for those trees belonging to D that do not satisfy Q.
Our results on interval-bounded views allow to generalize this proposition to
interval-bounded views that may relabel nodes, via a straightforward adap-
tation of the proof in [LS10]. The complexity becomes exponential in k but
polynomial for a fixed k. Libkin and Sirangelo conclude their analysis with
the application of these results for XPath views and queries. Given a DTD
D and Conditional XPath queries V and Q5 for the view and secret, respec-
tively, assuming Qv to be upward-closed, the authors explain how to build
an automaton A� such that LpA�q � tt1 | CertainD

V pQ; t1q � falseu using
their algorithm translating Conditional XPath queries into automata. The
construction has complexity polynomial in |D| � 2Op|V |�|Q|q. This can also
be generalized to Regular XPath using the translation from [CGLV09]. On
the whole, this kind of reasoning about whether a secret is disclosed or not
is complementary to our policy comparison definition. The analysis of infor-
mation disclosed in terms of certain answers allows the verification of precise
properties, whereas our comparisons are very general and therefore quite
restrictive. One weakness of the certain answers analysis for security proper-
ties, however, lies in its vulnerability to statistical inference: if “most” trees
with view t1 satisfy Q, but one single tree (having view t1) does not, then
CertainV pQ;View pV, tqq � false (and CertainV p Q;View pV, tqq � false),
yet a malicious user can still infer from view t1 that Q is “likely” to hold.
Other privacy notions allow to take this kind of statistical deductions into
account.

5The formulation of the result in [LS10] is slightly different.

162

5. The View Update Problem

Contents
5.1. Formalization . 163

5.1.1. Equivalence of Editing Scripts 164

5.1.2. Composition of Editing Scripts 166

5.1.3. Propagation of a View Update 174

5.2. Update Functions . 176

5.2.1. Functionality and Disambiguation 177

5.2.2. Update Translation 181

5.2.3. Solution in the Unconstrained Case 182

5.3. Translating Update Functions Under Constraints . . . 183

5.3.1. The General Case 184

The previous chapter describes our framework for non-materialized secu-
rity views. Rewriting a query Qv from the user into a query over the source
document is relatively straightforward, as evidenced in Theorems 4.7 and 4.8:
the rewritten query was specified unambiguously as the composition of Qv

with the view. Managing updates defined by the user on the view, however,
is a much more demanding task. First, the arbitrary combination of inser-
tions and deletions quickly leads to undecidability problems for transducers.
And secondly, an update defined by the user on the view does not in general
define unambiguously the update that should be applied on the source docu-
ment. Therefore, choosing the right update on the source requires additional
information, or an arbitrary choice function.

5.1. Formalization

Before we introduce formal definitions, let us illustrate with our software
projects example the problems raised by updates on views. Suppose again
we have a database containing projects of two kinds: stable projects, and
projects under development. The process is controlled by two different au-
thorities A1, A2 that certify the projects independently by attaching some
certificate c1 (resp. c2) to the projects in the database. Every stable project

163

5. The View Update Problem

possesses a certificate from each authority. Projects that are not yet certi-
fied remain under development, and once a project has received both cer-
tificates, it becomes stable. For the sake of clarity, we only keep the name

nodes, and remove other informations such as license, etc. in the following
specifications, so that the database schema is given by the following DTD:

projects Ñ project�

project Ñ name, pstable | devq
dev Ñ c1? | c2?
stable Ñ c1, c2

Since each authority should ignore the status of the project and work
independently, authority A1 gets only a view of the database, that hides cer-
tificates c2 and renames both dev and stable elements with a more general
docs label for documents. Authority A1 should not even be aware that it has
only access to a view of the database instead of the whole database. This
means in particular that A1 does not get DTD D and instead gets a schema
for its view, that consists of the following three rules: projects Ñ project�,
project Ñ name, docs, and repository Ñ c1?

Now, authority A1 may wish to delete all its certificates, via an XQUF
query like QV � delete {projects{project{docs{c1. This update should
not be applied directly on the database, since there are no docs elements in it.
Besides, deleting c1 element under a stable project would lower the status
of this project from 'stable' to 'dev'. The update function QV should thus
be first translated into some query like

delete /projects/project/dev/c1,

delete /projects/project/stable/c1,

for $p in /projects/project/stable return rename node $p as dev

This chapter focuses on such update translation problems.

5.1.1. Equivalence of Editing Scripts

We wish to emphasize that our notion of update takes node identifiers into
account. Different editing scripts can define the same transformation be-
tween input and output document up to isomorphism, but we still wish to
distinguish them. For instance, the three editing scripts pr, rqppε, bqpa, εqq,
pr, rqppa, εq, pε, bqq, and pr, rqppa, bqq define the same transformation from in-
put tree rpaq to output tree rpbq when we consider those two trees up to
isomorphism. However, we wish to distinguish the update performed by the
two former scripts from the update performed by the latter script. Intuitively,
the two first scripts insert a b-labeled node and delete an a-labeled node alike,
save they do it in different order. The third script renames an a-labeled node
as b. Therefore, the first two scripts are equivalent, and are different from
the third one. More generally, two editing scripts are equivalent if we can
obtain each of them from the other by (repeatedly) commuting a subtree

164

5.1. Formalization

labeled with insertions with an adjacent subtree labeled with deletions. This
is formalized below.

Consider the two morphisms Φ1,Φ2 : Σedit Ñ Σ Y Σ2 Y tεu defined by:

Φipα1, α2q �

"
αi if αp3�iq � ε or αi � ε

pα1, α2q otherwise

Definition 5.1. Two editing scripts t and t1 are equivalent, if Φ1ptq � Φ1pt1q
and Φ2ptq � Φ2pt1q. In this case we write t � t1, as � is clearly an equivalence
relation.

Notation. We define the equivalence class of an editing script t as rts � tt1 |
t1 � tu. We extend these definitions to sets of editing scripts: rLs �

�
tPLrts,

and L � L1 if rLs � rL1s.

Let us note that Φ1pLq � Φ1pL1q and Φ2pLq � Φ2pL1q does not imply L � L1.
Figure 5.1 represents two editing scripts t and t1, and their images by the
morphisms Φ1 and Φ2 as a witness for t � t1.

pr, rq

pa, ǫq pa, bq pε, cq pd, εq

pε, dqpε, gq pb, εq

(a) alignment t

pr, rq

pa, ǫq pa, bqpd, εq pε, cq

pb, εq pε, dqpε, gq

(b) alignment t1

pr, rq

a pa, bq d

b

(c) Φ1ptq � Φ1pt
1q

pr, rq

pa, bq c

d g

(d) Φ2ptq � Φ2pt
1q

Figure 5.1.: Two equivalent trees t and t1.

As seen before, a set of editing scripts L induces a binary relation of input
and output trees tpπ1puq, π2puqq | u P Lu. If two editing scripts are equivalent,
they induce the same relation, but the converse is false in the general case.
However, it is true when the scripts contain no insertion (resp. no deletion,
resp. no renaming). Equivalence of two regular sets of editing scripts is
undecidable; this can be easily deduced from undecidability of equivalence
of two word transducers [Gri68] or undecidability results for trace languages
[AH87]. Let us also note that even when L is a regular set of words, the
set rLs needs not even be context-free: consider the set of editing scripts
tpr, rqpwq | w P ppa, εqpε, bqq� ppc, εqpε, dqq�u.

165

5. The View Update Problem

pr, rq

pε, aq pb, εq px, fq

1

pr, rq

pa, dq pε, cq pf, yq

�

pr, r, rq

pε, a, dqpb, ε, cqpx, f, yq

,
pr, r, rq

pε, a, dqpb, ε, εqpε, ε, cqpx, f, yq

,
pr, r, rq

pε, a, dqpε, ε, cqpb, ε, εqpx, f, yq

Figure 5.2.: Synchronization of two editing scripts.

Remark 5.1. If t, t1 (resp. L,L1) are editing scripts (resp. sets of editing
scripts) over the alphabet Σ�Σε or over the alphabet Σε�Σ, then equivalence
coincides with equality. That is, t � t1 iff t � t1 (resp. L � L1 iff L � L1).

The inverse of an editing script is an editing script having the same tree
structure but in which labels are inverted, that is, pα, βq becomes pβ, αq, for
α, β P Σε. This can be achieved with the morphism π2,1.

Definition 5.2. For an editing script t, we denote by t�1 its inverse editing
script defined by t�1 � π2,1ptq. We extend this definition to sets of editing
scripts: the inverse of a set L of editing scripts is L�1 � ts�1 | s P Lu.

We point out that for any automaton A that accepts a set of editing scripts
L, the automaton obtained from A by inverting the label in every transition
accepts L�1.

5.1.2. Composition of Editing Scripts

In order to define compositions of updates, we define synchronization of edit-
ing scripts. The definitions are given in terms of sets of editing scripts, but
the definition for single editing scripts can be deduced by identifying an edit-
ing script with the singleton containing that script.

Definition 5.3. For n ¥ 2 sets of editing scripts L1, L2, ... Ln, their syn-
chronization L1 1 L2 1 ... 1 Ln is the set of trees t over Σedit,n�1 such that
for all 1 ¤ i ¤ n and πi,i�1ptq P Li.

Figure 5.2 presents the synchronization of two editing scripts.

Remark 5.2. Consider two sets of editing scripts L1, L2 and let u P L1 1

L2. Let u1 P L1 and u2 P L2 be the witnesses for u P L1 1 L2, that is,
π1,2puq � u1 and π2,3puq � u2. Remark that in this case u P u1 1 u2.
Then π2pu1q � π1pu2q, as both are equal to π2puq. This intuitively means
that the synchronization of two editing scripts u1, u2 (resp. of two sets of

166

5.1. Formalization

pr, rq

pε, aq pb, εq px, fq

�

pr, rq

pa, dq pε, cq pf, yq

�

pr, rq

pε, dq pb, εq pε, cq px, yq

,
pr, rq

pε, dq pε, cq pb, εq px, yq

Figure 5.3.: Composition of two editing scripts.

editing scripts L1, L2) is obtained by “gluing” the two trees (resp. the two
sets of trees) around a common “middle” component π1pu2q � π2pu1q (resp.
π1pL2q X π2pL1q � ∅). This is actually where the term “synchronization”
comes from.

Regularity is preserved by synchronization, as established in the following
proposition.

Proposition 5.1. Given regular sets of editing scripts L1, L2, ... Ln, their
synchronization L1 1 L2 1 ... 1 Ln is a regular set of alignments.

Proof. By definition, L1 1 L2 1 ... 1 Ln is obtained as the intersection of
pπn�1

1,2 q�1pL1q, pπn�1
2,3 q�1pL2q. . . , and pπn�1

n,n�1q
�1pLnq, and this set is regular by

Proposition 3.3.

The composition of two editing scripts is the set of editing scripts obtained by
projecting their synchronization on its first and last component. We denote
by L1 � L2 the composition of L1 and L2 with the intuitive semantics that
editing operations from L1 are applied first, then operations from L2 are
applied on the resulting document. Since composition is to represent the
composition of editing operations, we forbid to “recover” a node once it has
been deleted.

Definition 5.4. Let L1 and L2 two sets of editing scripts. The composition
of L1 and L2 is defined as L1 � L2 � π1,3 ppL1 1 L2q X Lcorrq, where Lcorr is
the set of all trees having no nodes labeled with a tag in Σ � tεu � Σ.

Example 5.1. Let L1 represent the transformation that relabels every a node
into b in trees of TΣ, i.e., L1 is the set of trees over alphabet tpa, bqu Y
tpx, xq | x P Σztauu. Similarly, let L2 represent the transformation that
relabels b nodes into c. Then L1 � L2 is the set of all trees over alphabet
tpa, cq, pb, cqu Y tpx, xq | x P Σzta, buu.
As another example, Figure 5.3 represents the composition of the two edit-

ing scripts from Figure 5.2. The first of the three editing scripts in the syn-
chronization on Figure 5.2 is removed before applying the projection because
it contains a node labeled pb, ε, cq.

Composition of editing scripts preserves regularity, and the corresponding
automaton is constructed in polynomial (quadratic) time. The construction

167

5. The View Update Problem

can be obtained as a minor modification of the one for Theorem 4.8, taking
into account insertions and upward-closure of the tree alignments.

Proposition 5.2. Operation � is associative.

Proof. Let Lcorr denote the set of all trees over Σedit,3 that have no node
labeled with a tag in Σ� tεu �Σ, and Lcorr,4 denote the set of all trees over
Σedit,4 that have no node labeled with a tag in Σ�tεu�Σ�Σε, Σε�Σ�tεu�Σ,
or Σ � tεu � tεu � Σ.

First, we note that π3
1,3pu 1 vq 1 w � π4

1,3,4pu 1 v 1 wq. Let m in pu�vq�w,
i.e. in π3

1,3pπ
3
1,3pu 1 vXLcorrq 1 wXLcorrq. Then, m P π3

1,3pπ
3
1,3,4pu 1 v 1 wX

Lcorr,4qq, so m P π4
1,4pu 1 v 1 wXLcorr,4q. Let m P π4

1,4 ppu 1 v 1 wq X Lcorr,4q,
then clearly m P u � pv � wq : there is m0 P pu 1 v 1 wq X Lcorr,4 such that
m � π4

1,4pm0q. Since m0 P Lcorr,4, π1,2,4pm0q P Lcorr, and π1,2,3pm0q P Lcorr.
Therefore, π1,2,4pm0q P pu 1 pv � wqq X Lcorr. This implies m � π1,4pm0q �
u � pv � wq.

In particular, taking S to be the set of all sets of editing scripts, pS, �q is a
monoid, with neutral element the set of all editing scripts over tpa, aq | a P Σu.

Remark 5.3. As we could expect, pL1 � L2q�1 � L�1
2 � L�1

1 and the relation
associated with L�1 is the inverse relation of the relation associated with
L. However, L ÞÑ L�1 is not the inverse operation associated to the binary
operation �. Indeed pS, �q is not a group: not every set L has an inverse for
operation �, whereas L�1 is always defined.

We prove a first technical lemma regarding the synchronization of equivalent
editing scripts. We denote by p1 the morphism defined by : p1pε, α, βq � ε

and p1pa, α, βq � pa, α, βq for all a P Σ, α, β P Σε � Σε.

Lemma 5.3. For all editing scripts w,w1 over Σedit,3zΣ�tεu�Σ, if π1,2pwq �
π1,2pw1q and π2,3pwq � π2,3pw1q, then p1pwq � p1pw1q.

Proof. The definitions of equivalence for words is an immediate adaptation
of Definition 5.1 since morphisms can be evaluated on words. The result for
editing scripts follows using the linearization: p1plinpwq � linpp1pwq. We fix
two words w,w1 over Σedit,3zΣ � tεu � Σ such that π1,2pwq � π1,2pw1q and
π2,3pwq � π2,3pw1q. For every word m, integer k and set S � Σedit,3, we
denote by mrks the kth letter of word m, and by Beforem pk , S q the number
of elements with label in S among mr1s,mr2s, . . .mrk � 1s. Clearly, for all
k ¥ 1, a, b P Σ, γ P Σε :

pp1pwqq rks � pa, ε, εq iff pΦ1pπ1,2pwqqq rks � pa, εq

pp1pwqq rks � pa, b, γq iff

"
pΦ1pπ1,2pwqqq rks � pa, bq
and pΦ1pπ2,3pwqqq rkw1 s � pb, γq

168

5.1. Formalization

where kw1 is the number defined in the following equation:
kw1 � k � Beforew pk , tεu � Σ � Σεq � Beforew pk ,Σ � tεu � tεuq. Given the
definition of p1, pp1pwqq rks is necessarily of the form pa, ε, εq or of the form
pa, b, γq for some a, b P Σ, γ P Σε. Similarly,

pp1pw
1qq rks � pa, ε, εq iff pΦ1pπ1,2pw

1qqq rks � pa, εq

pp1pw
1qq rks � pa, b, γq iff

"
pΦ1pπ1,2pw1qqq rks � pa, bq
and pΦ1pπ2,3pw1qqq rkw

1
1 s � pb, γq

From these equations we conclude that pp1pwqq rks � pa, ε, εq if and only if
pp1pw1qq rks � pa, ε, εq. Furthermore, we observe that if pp1pwqq rks � pa, b, γq,
then there exists γ1 P Σε such that pp1pw1qq rks � pa, b, γ1q, since by hypothesis
Φ1pπ1,2pwqq � Φ1pπ1,2pw1qq. For such a k, this implies

Beforew pk , tεu � Σ � Σεq � Beforew
1
pk , tεu � Σ � Σεq

since by hypothesis Φ2pπ1,2pwqq � Φ2pπ1,2pw1qq, and

Beforew pk ,Σ � tεu � tεuq � Beforew
1
pk ,Σ � tεu � tεuq

since by hypothesis Φ1pπ1,2pwqq � Φ1pπ1,2pw1qq. Therefore, kw1 � kw
1

1 , so that
pp1pwqq rks � pp1pw1qq rks. This concludes the proof.

As a corollary of this lemma, for every editing scripts t and t1 over Σedit,3zΣ�
tεu�Σ, if π1,2ptq � π1,2pt1q and π2,3ptq � π2,3pt1q, then Φ1pπ1,3ptqq � Φ1pπ1,3pt1qq.
By symmetry, we get Φ2pπ1,3ptqq � Φ2pπ1,3pt1qq, and this proves both Propo-
sitions 5.4 and 5.5 below. Propositions 5.4 states that, although the composi-
tion of two editing scripts may result in several editing scripts, those editing
scripts are equivalent. Propositions 5.5 states that our equivalence relation
is stable under composition.

Proposition 5.4. Given editing scripts u and w, all editing scripts in u �w
are equivalent.

Proposition 5.5. Given editing scripts u, u1, w, w1, if u � u1 and w � w1,
then u � w � u1 � w1.

Note that neither Proposition 5.4 nor Proposition 5.5 would hold if we did
not intersect π1,3 pL1 1 L2q with Lcorr in the definition of composition. For in-
stance, let u, u1 and v denote the three following editing scripts of depth one:
u � pr, rqppb, εq, pε, aqq, u1 � pr, rqppε, aq, pb, εqq, and v � pr, rqppa, dq, pε, cqq.
Clearly, u � u1, but π1,3pu 1 vq, which contains the single editing script
pr, rqppb, εq, pε, dq, pε, cqq, is not equivalent to π1,3pu1

1 vq which contains
editing scripts pr, rqppε, dq, pb, εq, pε, cqq and pr, rqppε, dq, pε, cq, pb, εqq, but also
pr, rqppε, dq, pb, cqq. We observe also that the second and third editing scripts
in π1,3pu1

1 vq are not equivalent.

169

5. The View Update Problem

One could wonder if the converse of Proposition 5.5 is true, namely: given
two editing scripts u and w, can we obtain every editing script equivalent
to u � w as the composition of two editing scripts u1 and w1 respectively
equivalent to u and w? Unfortunately, this property is not true in general,
as illustrated by Example 5.2.

Example 5.2. Let u � pr, rqppε, aq, pb, bqq and w � pr, rqppa, aq, pb, εqq. The
unique editing script in u � w is pr, rqppε, aq, pb, εqq, but there are no editing
scripts u1 and w1 respectively equivalent to u and w such that u � w contains
pr, rqppb, εq, pε, aqq since u and w are the unique elements in their respective
equivalence class.

In the following, we denote by us and uv editing scripts with the intended
meaning that uv should be applied on the view and us on the source. We
also denote by V a view, and by L a set of editing scripts.

Properties of Views for Composition Views have the following noteworthy
properties with respect to composition and equivalence:

Lemma 5.6. For all editing scripts us, u
1
s and uv, for all view V

1. us 1 V , V �1
1 us, and V

�1
1 us 1 V are singletons or empty.

2. rV � uvs � V � ruvs.

Proof. 1. By definition of synchronization and by Remark 5.2, (a) u P
us 1 V only if Du2 P V s.t. π1pu2q � π2pusq and u P us 1 u2. Now,
by definition of views and using Remark 5.1, there exists at most one
editing script u2 in V such that π1pu2q � π2pusq and, thus using (a),
we have (b) us 1 V � us 1 u2. Another observation is that (c) for
all editing scripts s, s1, if s1 is over the alphabet Σ � Σε, then s 1 s1

consists of a single tree (having the same structure as s), or is empty
whenever π2psq � π1ps1q. From (b) and (c) we deduce that us 1 V is a
singleton or empty. Using similar arguments and Remark 5.3, we can
show that V �1

1 us and V �1
1 us 1 V also have cardinality at most

one.

2. Inclusion rV � uvs � V � ruvs follows from Proposition 5.5. We give a
proof for rV � uvs � V � ruvs in the case of words. This proof can be
extended to trees like the one for Proposition 5.5 by considering the
linearization. Fix v P V , u, and w P pv 1 uq X Lcorr. Let w1 a word
over Σedit such that w1 � π3

1,3pwq. Then |w1| � |w| because w contains
no letter in tεu � Σ � tεu. We are going to build some u1 � u and
w1 P pv 1 u1qXLcorr such that π3

1,3pw
1q � w1. Intuitively, w1 � π3

1,3pwq if
and only if w1 can be obtained from π3

1,3pwq by (repeatedly) commuting
nodes labeled pa, εq with adjacent nodes labeled pε, bq for some pairs of

170

5.1. Formalization

letters a, b P Σ. A letter pa, εq must correspond in w to a letter of the
form pa, ε, εq or of the form pa, d, εq for some d P Σ, while a letter pε, bq
must correspond in w to a letter of the form pε, ε, bq. This explains how
u1 can be built from u, by commuting pd, εq with pε, bq if necessary.

The following diagram considers a view v � pa, εqpc, dqpa, aq and an
editing script u � pd, εqpε, bqpa, cq, with w, w and w1 has above. The
diagram illustrates how an editing script u1 � u can be computed such
that w1 P v � u and also provides a corresponding w1.

pa, ε, εqpc, d, εqpε, ε, bqpa, a, cq

pa, εqpc, εqloooomoooonpε, bqpa, cq

pε, bq
hkkkkikkkkj
pa, εqpd, εqpa, cq

pε, ε, bqpa, ε, εqpa, d, εqpa, a, cq

w

w

w1

w1

pd, εqpε, bqpa, cq

pε, bqpd, εqpa, cq

u

u1

Illustration of rv � uvs � v � ruvs, for v � pa, εqpc, dqpa, aq.

The discussion above and the diagram convey the intuition of why the
result holds, yet we do not wish to introduce a formal framework for
handling commutativity. So we use Algorithm 1 to provide a formal
proof of rV � uvs � V � ruvs in the case of words, based directly on the
definition of equivalence via morphisms Φ1 and Φ2. In this algorithm,
the two variables k1 and k2 have no real use, but we use them to specify
invariants.

The invariants preserved by the loop are the followings:

kv � |π1pw1r1..ksq|
k1 � |π1pvr1..kvsq|
k2 � |π2pw1r1..kvsq|
vr1..kvs � π1,2pw1r1..ksq
u1r1..k1s � π2,3pw1r1..ksq
pΦ1pu1qq r1..k1s � pΦ1puqq r1..k1s
pΦ2pu1qq r1..k1s � pΦ2puqq r1..k2s
k1 � |π1,3 ppv�1

1 w1q r1..ksq |.

Consequently, after the last iteration,

kv � |v|
k1 � |Φ1puq|
k2 � |Φ2puq|
k � |w| � |w1|
k1 � |π1,3 ppv�1

1 w1qq | � |u|.

171

5. The View Update Problem

Algorithm 1: Auxiliary algorithm for the proof of Lemma 5.6

Input: v, u, and w1

Output: u1 and w1

Initialization1

kv � 0; k1 � 0; k1 � 0; k2 � 02

//Loop over w1
3

for k � 0 to |w1| do4

switch w1rks do5

case pε, bq6

k1++; k2++7

u1rk1s � pε, bq8

w1rks � pε, ε, bq9

case pa, cq10

// implies vrkvs P Σ � Σ after kv’s increment11

k1++; kv++; k1++; k2++12

Let pb, cq � vrkvs in13

u1rk1s � pb, cq14

w1rks � pa, b, cq15

case pa, εq16

kv++17

if vrkvs � pa, εq then18

w1rks � pa, ε, εq19

else20

let pa, bq � vrkvs in21

k1++; k1++22

u1rk1s � pb, εq23

w1rks � pa, b, εq;24

end25

end26

end27

172

5.1. Formalization

This concludes our proof.

Thus, by item 1, given an editing script us and a view V , V �1
1 us 1 V

consists of a single tree t1 (or is empty). We can also observe that π1,4pt1q �
V �1 �us �V . This leads to the following definition, illustrated on Figure 5.4.

Definition 5.5. Given an editing script us and a view V , the editing script
induced by us on the view V is the editing script V �1 � us � V .

We do not want updates to affect the visibility of nodes. It seems to us that
it would make little sense to translate an insertion on the view by showing
a hidden node. This assumption is justified among others by the potential
information leaks induced by such behaviour in an access control framework.
Similarly, deleting a node should result in proper deletion, and not in hiding
that node. It should be noted, however, that those updates are not always
considered irrelevant. Keller [Kel85] for instance explicitly allows this kind
of updates.

Definition 5.6. An editing script us is stable w.r.t. view V if V �1
1 us 1

V is non empty and if no node of that tree V �1
1 us 1 V has label in

tεu � Σ � Σ � Σ or Σ � Σ � Σ � tεu.

Let us note that the set of stable editing scripts w.r.t. a regular view V is
regular as defined by π2,3pV �1

1 TΣedit
1 V X Correctq where Correct is the

regular set of tree alignments over the alphabet Σedit,4 with no occurrences
of tεu�Σ�Σ�Σ or Σ�Σ�Σ�tεu. A VPA representation for the set of all
stable editing scripts can be computed in polynomial (quadratic) time from
the VPA representation of V . Furthermore, we note that the set of stable
scripts is closed under �.

Lemma 5.7. For every editing scripts uv, every stable editing script us, for
every view V , the following assumptions are equivalent:

π1,4pV
�1

1 us 1 V q � uv (5.1)

iff us P π1,4pV 1 ruvs 1 V �1q (5.2)

iff us � V P rV � ruvss (5.3)

iff us � V P V � ruvs (5.4)

Proof. p5.3q ô p5.4q by Proposition 5.6 item 2. Let us prove p5.1q ô p5.2q:
Let ψ be the (bijective) morphism that relabels a node with label pα, β, γ, δq
into a node with label pβ, α, δ, γq. Then, for every tree alignment t over Σedit,4,
if t � V �1

1 us 1 V and π1,4pV �1
1 us 1 V q � uv, then ψptq P V 1 ruvs 1

V �1 and us � π1,4pψptqq. Conversely, if t P V 1 ruvs 1 V �1 and us � π1,4ptq,
then ψ�1ptq � V �1

1 us 1 V and π1,4pψ�1ptqq � uv. To conclude, we prove

173

5. The View Update Problem

V V

source update us

induced view update uv

uv � V �1 � us � V

V V

Propagations of uv

view update uv

@us P Prop pV, uvq,
uv � V �1 � us � V

Figure 5.4.: The view update framework: induced script and propagations.

p5.2q ùñ p5.4q and (5.4) ùñ (5.1). If us P π1,4pV 1 ruvs 1 V �1q, Then,
us � V P V � ruvs � V �1 � V . Hence, us � V P V � ruvs, so (5.2) ùñ (5.4).
Conversely, if us � V P V � ruvs, then V �1 � us � V P V �1 � V � ruvs. Hence
V �1 � us � V P ruvs, so (5.4) ùñ (5.1).

5.1.3. Propagation of a View Update

Given an update on the view, we want to define which propagations on the
source we allow. Roughly speaking, we will require a propagation of a view
update to be side-effect free, i.e., induce the update defined by the user
on the view, and to preserve visibility of nodes. Of course we also want
our propagations to be schema compliant, i.e., we want the resulting source
document to follow the source document schema. But this will be enforced
by the definition of the view: we assume the domain of the view to be exactly
the source document schema. Figure 5.4 illustrates the following definition
for propagations.

Definition 5.7. An editing script us is a propagation of editing script uv
w.r.t. view V iff uv is equivalent to the editing script induced by us on the
view V , and us is stable w.r.t. V . We denote by Prop pV, uvq the set of all
propagations of uv w.r.t. view V .

We extend the definition to sets as usual: given a set of editing scripts L,
Prop pV, Lq �

�
uvPL Prop pV, uvq. Given a document t P TΣ, a view V and

an editing script uv, we may wish to compute an automaton representing all
the propagations of uv from t, i.e., tt1 P Prop pV, uvq | π1pt1q � tu. This can
be achieved in polynomial time according to the following proposition.

Proposition 5.8. Given a view V and an editing script uv, we can compute
in polynomial time an automaton for the set Prop pV, uvq.

Proof. We first compute an automaton for the set ruvs, and then pick up
the stable editing scripts from π1,4pV 1 ruvs 1 V �1q. Equivalently, if we

174

5.1. Formalization

denote by L the set of all trees in pV �1
1 TΣedit

1 V q X Correct such that
π1,4ptq � uv, then Prop pV, uvq � π2,3pLq. A VPA for ruvs already may require
size quadratic in uv, but a detailed analysis of the transitions appearing in
the VPA for Prop pV, uvq shows that the construction is cubic.

Similarly, one can build in cubic time an automaton that accepts Prop pV, Uvq ��
uvPUv

Prop pV, uvq, for every set Uv of editing scripts. Consequently, one can
build in cubic time an automaton representing the (source) editing scripts
that do not affect a view: those are obtained as the propagations of all
“identity” editing scripts.

Proposition 5.9. Given a view V , we can compute in polynomial time an
automaton accepting all (source) editing scripts that keep the view unchanged.

Proof. These scripts are Prop pV, TΣId
q, where ΣId � tpx, xq | x P Σu.

Proposition 5.10. Given a view V and a regular set of editing scripts L,
we can decide in polynomial time if all editing scripts in L keep the view
unchanged.

Proof. Of course we could test the inclusion of L in the set of editing scripts
that keep the view unchanged, but this would be unefficient, so we use the
direct approach. The editing scripts in L keep the view unchanged if and only
if no tree in V �1 �L�V contains a node with label outside of tpx, xq | x P Σu,
which can clearly be tested in polynomial time.

Remark 5.4. In particular, this yields a polynomial algorithm to solve the
query- (or view-) update independence problem for regular update functions.

One may wish to select a unique propagation from t. We outline two ap-
proaches that help select a propagation. As a first approach we propose to
optimize the propagation with respect to a cost function such as edit dis-
tance. And as a second approach we propose to use typing mechanisms in
order to eliminate undesirable propagations. Finally, none of those two ap-
proaches guarantee that a single propagation will be selected, but a unique
propagation can be defined by indicating preferences.

Computing the Optimal Propagations Let L denote the language tt1 P
Prop pV, uvq | π1pt1q � tu. We assume the cost of a script t1 in L to be the num-
ber of nodes from t whose label does not belong to tpa, aq | a P Σu: costpt1q �
|tn P Nt | Dα � β.labtpnq � pα, βqu|. We must find the editing scripts of min-
imal cost in L, where L is given by a VPA A � pQ,Σ,Γ,∆, I, F q. Let t1 an
editing script of minimal cost in L. Proposition 3.12 implies that the depth
of t1 is bounded by the number of pairs of states in the automaton, by min-
imality of t1 and because π1pt1q � t. The same bound holds for the number

175

5. The View Update Problem

of children of every node in t1. This observation suggests an algorithm that
computes for each pair of states q, q1 P Q a hedge of minimal cost accepted by
Aq,q1 . Actually, computing a tree of minimal cost would be too expensive due
to the fact that the smallest tree accepted by an automaton or even a DTD
may be of exponential size (consider the DTD Dn defined by the rules r Ñ an
and ai Ñ ai�1ai�1 for all i ¥ 1, and a0 Ñ a). However, we can compute in
polynomial time this minimal cost as well as an automaton representation
of the trees of minimal cost. We will not detail further the computation of
optimal propagations in this dissertation, but some exploratory work on the
topic was published in [SBG10] in a restricted setting.

Typing Typing the nodes may also help to reduce the number of propaga-
tions. We can use types and require that propagations do not change the
types of nodes that are preserved by the view update uv. Formally, a docu-
ment typing is a function Θ which maps a tree t to a function Θt : Nt Ñ Γ,
where Γ is a set of types. A propagation S 1 of a view update S preserves Θ-
typing iff for every n P NS1 with label in Σ2, we have Θπ1pS1qpnq � Θπ2pS1qpnq.
The typing could be based on rich schema formalisms, like EDTD. Another
possibility would be to base the typing on the states of the automaton used
to verify that the sequence of children is valid w.r.t. the DTD. It would re-
quire the automata to be deterministic (or at least unambiguous), but XML
DTD are usually required to be deterministic, anyway. We addressed these
problems regarding the propagation of a view update in [SBG10]. This pa-
per specialized the view update problem for annotated DTDs with simple
annotations. Thus, the access specifications considered did not use any com-
plex filters. As a consequence, the visibility of nodes was defined locally,
which allowed a much simpler representation of the propagations through
propagation graphs, and a shortest path algorithm in those graphs yielded
the optimal propagations. On the other hand, annotated DTDs are more
restricted in terms of expressive power than our views that have full MSO
expressivity and can relabel nodes, so that the above presentation is slightly
more complex, but also more general.

5.2. Update Functions

As seen before, an editing script u defines an update on its input tree π1puq.
The notion of update function generalizes this, as an update function defines
how a set of input trees should be updated.

Definition 5.8. A set of editing scripts f is an update function iff for all
u, u1 P f , π1puq � π1pu1q implies u � u1. The set of trees tπ1puq | u P fu � TΣ
is called the domain of f .

176

5.2. Update Functions

Note that if L is an update function, then the induced relation tpπ1puq, π2puqq |
u P Lu is functional, but the converse is false. In this paper, we are only
interested in update functions that are regular sets. These have a finite rep-
resentation by means of tree automata over Σedit. The following proposition
adapts to our setting a classical property, namely that testing equivalence of
functional transductions can be reduced to testing functionality of the union
of those transductions. It states that two update functions are equivalent if
and only if they have the same domain and their union is an update function.

Proposition 5.11. Two update functions f1 and f2 are equivalent if and
only if π1pf1q � π1pf2q and f1 Y f2 is an update function.

Proof. For the only if part suppose f1 � f2. Then π1pf1q � π1pf2q. Let
u1 P f1, u2 P f2 such that π1pu1q � π1pu2q. By hypothesis, there exists
u11 P f1 such that u11 � u2. Since π1pu1q � π1pu2q � π1pu11q, u1 � u11 (f1 is an
update function). Hence, u1 � u2. Therefore, f1 Y f2 is an update function.

For the if part, suppose π1pf1q � π1pf2q and f1 Y f2 is an update function.
Then for every u1 P f1, there exists u2 P f2 such that π1pu1q � π1pu2q. By
hypothesis, u1 � u2. Therefore f1 � f2.

Proposition 5.12. The composition f1 � f2 of two update functions f1 and
f2 is an update function.

Proof. Fix s, s1 P f1 1 f2. There are u1, u
1
1 P f1, u2, u

1
2 P f2 such that

s P u1 1 u2 and s1 P u11 1 u12. Suppose π1psq � π1ps1q. Then π1pu1q � π1pu11q,
hence u1 � u11 (f1 is an update function). Consequently, π1pu2q � π2pu1q �
π2pu11q � π1pu12q, hence u2 � u12. Thus, u1 � u11 and u2 � u12. We conclude
the proof using propositions 5.4 and 5.5: π1psq � π1ps1q implies s � s1, so
f1 � f2 is an update function.

Without intersecting π1,3 pL1 1 L2q with Lcorr in the definition of compo-
sition, this property would not hold: given f1 � pa, εq and f2 � pε, bq,
π1,3 pL1 1 L2q comprises pa, bq, pa, εqpε, bq and pε, bqpa, εq, hence is not an
update function.

5.2.1. Functionality and Disambiguation

Proposition 5.13. Given a regular set L of editing scripts, it is decidable
whether L is an update function in time polynomial in the size of the au-
tomaton defining L.

Proof. According to Proposition 5.1, the language L�1
1 L is regular, so its

linearization is context-free. Furthermore, the morphisms we have defined on
tree alignments (projections, inversions and Φ1,Φ2) can be viewed as word
homomorphisms on the linearizations. We define morphisms f1, f

1
1, f2, f

1
2 on

177

5. The View Update Problem

trees over Σedit,3 as: f1 : t ÞÑ Φ1 ppπ1,2ptqq�1q, f 11 : t ÞÑ Φ1 pπ2,3ptqq, and
similarly for f2, f

1
2 with Φ2 instead of Φ1. From the equality tps, s1q P L2 |

π1psq � π1ps1qu�tppπ1,2ptqq�1, π2,3ptqq | t P L�1
1 Lu we get f1ptq � f 11ptq for

every t P L�1
1 L iff Φ1pt0q � Φ1pt10q for every t0 and t10 P L such that π1pt0q �

π1pt10q. We obtain the same condition for f2, f
1
2 and Φ2 and this implies

f1ptq � f 11ptq and f2ptq � f 12ptq for every t P L�1
1 L iff t0 � t10 for every

t0, t
1
0 P L such that π1pt0q � π1pt10q. Therefore it suffices to use Plandowski’s

result that equivalence of morphisms on context-free languages is decidable
in polynomial time [Pla94] in order to verify that t ÞÑ Φ1 ppπ1,2ptqq�1q and
t ÞÑ Φ1 pπ2,3ptqq are equivalent morphisms on L�1

1 L, and similarly for Φ2.

Proposition 5.13 actually states a decidability result for the functionality
of a particular kind of transduction. The “squaring” technique used in
the proof is fairly standard, and already appears in [SLLN09, FRR�10]
to decide functionality for some models of visibly pushdown transducers.
The technique can be generalized to test k-valuedness of a transduction
for arbitrary k, functionality corresponding to 1-valuedness. Functional-
ity is tested by computing an automaton accepting trees representing in
parallel two instances of the transduction over a same input. The alpha-
bet of this “square” automaton is therefore Σ3, or Σ2 since we can project
out the input component. Once this square automaton has been com-
puted, one must check if it accepts a word representing two distinct trans-
ductions. Several techniques exist: one can use results on morphisms
such as Plandowski’s, or one can use results on reversal-bounded multi-
counter machines such as Ibarra’s. Actually both Plandowski’s [Pla94]
and Gurari and Ibarra’s [GI81] rely on a pumping argument. The first de-
cidability result for testing functionality of two word transducers directly
used a pumping lemma to bound the size of the input word on which the
transducer may produce two different outputs by a quadratic polynomial
in the size of the transducer [Sch75]. Recently, Filiot et al. [FRR�10] ap-
plied and improved similar techniques to decide k-functionality of visibly
pushdown transducers in NP.

When the user formulates an update function on its view, the resulting set
of all propagations on the source may be ambiguous. Disambiguating a set of
updates, i.e., making it functional, is a key point as eventually only one spe-
cific update will be applied to the document. The following theorem shows
how this inherent ambiguity of update translation can be resolved by arbi-
trary choices while preserving the regularity of the update.

Theorem 5.14. Given a regular set of editing scripts L, we can effec-
tively compute a regular update function L1 such that L1 � L and the
domains of L1 and L are equal pπ1pLq � π1pL1qq.

178

5.2. Update Functions

Proof. In this proof we represent the regular languages of editing scripts
L with an NTAs A � pΣedit, Q,Qf ,∆q whose language is the fcns binary
encoding of the tree alignments.

Let h � pt1, . . . , tnq a hedge -eventually empty- of closed trees. We will
here abusively confuse h and the fcns encoding of pt1, . . . , tnq. We denote by
pε, hq the encoding of π�1

2 phq X π�1
1 pεq. To get rid of insertions, we extend

the NTA model to allow rules of the form pf, h1, α, h2qpq1, q2q Ñ q where
q1, q2, q P Q, f P Σ, α P Σε and h1, h2 are (fcns encoding of) hedges over Σ;
if α � ε, h1 has to be empty. The semantics of such a rule is to rename the
node labelled by f with α, insert h1 ahead of its descendants and h2 after
the node. Formally, a rule pf, h1, α, h2qpq1, q2q Ñ q can be applied to assign
state q to some node n of fcnsptq if and only if

• state q1 has been assigned to the representant n1 in fcnsptq of the first
child of n (in t) whose label is not of the form pε, aq (or, if there is
no such child, to the rightmost K symbol below the left child of n in
fcnsptq),

• state q2 has been assigned to the representant n2 in fcnsptq of the closest
following sibling of n whose label is not in tεu � Σ (or, if there is no
such sibling, to the rightmost K symbol below n in fcnsptq),

• the children of n until n1 form the hedge pε, h1q, and

• and the siblings of n until n2 form the hedge pε, h2q

We observe that a rule of the form pf, αqpq1, q2q Ñ q can be viewed as a rule
pf, h1, α, h2qpq1, q2q Ñ q with empty hedges h1, h2. A rule pf, h1, α, hqpq1, q2q Ñ
q can be viewed as the composition of the rule pf, αqpr1, r2q Ñ q with
pε, h1qpq1q Ñ� r1, pε, h2qpq2q Ñ� r2. We explain next how we associate with
the tree alignment automaton A an extended automaton B s.t. has

• property P1 if LpBq � LpAq

• property P2 if π1pLpBqq � π1pLpAqq

Elimination of insertions: We suppose that every state q P Q is produc-
tive, i.e., there is at least one tree accepted by the NTA pQ, tqu,∆q.

• for every rule pε, aqpq1, q2q Ñ q, according to the definition of editing
scripts, q1 accepts only trees whose first component is entirely labelled
by ε . For any such state q, we choose arbitrarily a tree accepted by q
and note tq its image by π2.

• we add a rule pa, h1, α, h2qpqp, rnq Ñ q with

h1 � β1ptl1 , β2ptl2 , . . . , βpptlpq . . .qq,

179

5. The View Update Problem

h2 � α1pts1 , α2pts2 , . . . , αnptsnq . . .qq

for every n, p P t0, . . . , |Q|u, and for every sequence of rules of the form:

pa, αqpq0, r0q Ñ q, (a in Σ)

pε, α1qps1, r1q Ñ r0

pε, α2qps2, r2q Ñ r1

...

pε, αnqpsn, rnq Ñ rn�1,

pε, β1qpl1, q1q Ñ q0

pε, β2qpl2, q2q Ñ q1

...

pε, βpqplp, qpq Ñ qp�1, with p � 0 if α � ε,

• we eliminate rules labelled with pε, αq and pa, αq;

Disambiguation: let us notice that, as we have eliminated transitions la-
belled with pε, αq, we get from an extended alignment automaton A an
“usual” tree automaton A1 over Σ by “forgetting” the second component
i.e. associating with a rule pf, h1, α, h2qpq1, q2q Ñ q the rule fpq1, q2q Ñ q.
We will call A1 this automaton. Actually, the following construction relies
on disambiguation of this automaton A1.

First, we transform A1 while keeping Properties P1 and P2 to make sure
that for each letter a and triple q1, q2, q there is at most one rule of the form
pa, h1, α, h2qpq1, q2q Ñ q in A. This can easily be achieved by removing some
transitions. We call δ the resulting transition function. Secondly, we choose
a total order on Q �Q, e.g. lexicographic order induced by a total order
on Q. And finally, we define B1 � pQ1,∆1, Q1

f q defined by:

• Q1 � tpq, S, F q | S � Q,F � Q, q P S, S X F � Hu

• ∆1 contains the rule pf, α, hqppq1, S1, F1q, pq2, S2, F2qq Ñ pq, S, F q Iff

– F Y S � δpf, F1 Y S1, F2 Y S2q

– δpf, F1, S2YF2qY δpf, F1YS1, F2q � F : a fail leads only to fails.

– @s1 P S1, s2 P S2, δpf, s1, s2q X S � H : a success leads at least to
one success.

– @pq11, q
1
2q P S1 � S2, q P δpf, q11, q

1
2q ùñ pq11, q

1
2q ¡ pq1, q2q : this

guarantees minimality (unicity) of the run.

– pf, α, hqpq1, q2q Ñ q is a rule of A : this guarantees the transfor-
mation satisfies P1

180

5.2. Update Functions

V V

translation

update

Figure 5.5.: The view update problem.

• Q1
f � tpq, S, F q | S � Qf , F XQf � H, q � minpSqu

We check easily that tÑ�
B1
pq, S, F q only when tÑ�

A1
SYF . Then, it is easy

to check uniqueness of accepting run because there is no choice for the node
labelling the root of an accepting run, and therefore by induction no choice
for the states labelling the other nodes. Properties P1 and P2 are obviously
preserved by the construction.

Theorem 5.14 gives a theoretical solution for disambiguating a regular set of
editing scripts. The construction is not polynomial but could be applied on
the fly to increase efficiency: rather than first constructing an unambiguous
set of editing scripts and then apply it on the document, we can disambiguate
on the fly by a two-pass run on the document.

Theorem 5.14 states that one can uniformize relations defined by editing
scripts. Uniformization is a well-studied property for word transduc-
ers (see [CG99] for a survey). Filiot and Servais prove a related result
in [FS11]: they prove that for every visibly pushdown transducer T , one
can compute a deterministic visibly pushdown transducer T 1 with reg-
ular lookahead such that the domains of T 1 and T are equal and the
transduction defined by T 1 is a subset of the transduction defined by T 1.
Consequently, the transductions defined are equal when T is functional.
The authors order the states as we do in the proof above, then extend
this ordering to runs, and use the lookahead to obtain a “minimal” run.

5.2.2. Update Translation

We extend the notion of propagation to sets of editing scripts: given a set
of editing scripts L, the propagations of L are defined by Prop pV, Lq �
tProp pV, uvq | uv P Lu. Now, for an update function fv on the view V ,
we want to characterize which sets of editing scripts can be considered as
correctly and completely propagating fv on the source:

Definition 5.9. Given an update function fv, and a set of editing scripts
L, we say that L is a translation of update fv w.r.t. view V if L consists of
stable editing scripts w.r.t. view V and L � V � V � fv.

181

5. The View Update Problem

Thus, a set of editing scripts is a translation if the diagram of Figure 5.5
commutes. As we could expect, propagations and translations (as well as
stability) are preserved under equivalence:

Remark 5.5. Observe that, by Proposition 5.5, an editing script equivalent
to a propagation is a propagation, and a set of editing scripts equivalent to a
translation is a translation.

There is an alternative characterization of translations:

Proposition 5.15. L is a translation of update function fv iff L � Prop pV, fV q
and π1pV � fvq � π1pL � V q.

Proof. Let L a translation of update function fv and us in L; as L�V � V �fv,
us �V � v �uv for some uv in fv and v in V ; then V �1 �us �V � uv according
to Lemmma 5.7: so L � Prop pV, fV q; furthermore as L � V � V � fv,
π1pL � V q � π1pV � fvq.

Conversely, let L s.t. L � Prop pV, fV q and π1pL � V q � π1pV � fvq. As
L � Prop pV, fV q, L consists of stable editing scripts w.r.t. V and V �1�L�V �
rfvs. So L � V � V � rfvs by Lemma 5.7, using (5.1) ùñ (5.4). Then, by
Lemma 5.6 item 2, L � V � rV � fvs as L consists of stable editing scripts.
As π1pV � fvq � π1pL � V q and V � fv is functional, L � V � V � fv.

The Update Translation Problems

Problem 1 (Checking a translation). Given a regular view V , a reg-
ular view update function fv, and a regular set of source editing scripts
Ls, answer whether Ls is a translation of fv.

Problem 2 (Finding a translation). Given a regular view V and a
regular view update function fv, find a regular set of source editing scripts
Ls s.t. Ls is a translation of fv.

5.2.3. Solution in the Unconstrained Case

From now on, we suppose w.l.o.g. that π1pfvq � π2pV q. We further assume
that π2pfvq � π2pV q otherwise there would be no translation for fv. Every
update function satisfying those requirement is translatable. These assump-
tions are reasonable insofar as we can suppose the user to be provided a view
schema. Besides, one can verify those assumptions in time polynomial in
terms of fv and exponential in terms of V (this problem of regular tree lan-
guages inclusion is of course Exptime-complete). Proposition 5.16 answers
Problem 1 positively.

182

5.3. Translating Update Functions Under Constraints

Proposition 5.16. Given a regular view V , a regular update function fv,
and a regular set of source editing scripts L, testing whether L is a translation
of fv is decidable.

Proof. First, we test whether L consists of stable updates. Next, we must
check that L�V � V �fv. We claim that L�V � V �fv iff π1pL�V q � π1pV �fvq
and L � V Y V � fv is an update function. Once we have tested the equality
of the domains, namely π1pL � V q � π1pV � fvq, we can use Proposition 5.13
and check that L � V Y V � fv is an update function. Let us prove the claim:
V � fv is an update function, by Proposition 5.12. Now, either L � V is not
an update function and then it is not equivalent to V � fv, but L �V YV � fv
is not an update function either. Or L � V is an update function and the
claim follows by Proposition 5.11. This concludes our proof. Furthermore,
the algorithm is polynomial once we have checked equality of the domains.

The following proposition answers Problem 2 positively.

Proposition 5.17. Given a regular view V and a regular update function
fv, we can compute a translation L of fv in polynomial time.

Proof. By Propositions 5.1 and 3.18, we can compute in polynomial time
an automaton for the set L of all editing scripts from π1,4 pV 1 fv 1 V �1q
that are stable (w.r.t. V). We must show that L is a translation of fv. By
Lemma 5.7, using (5.1) ùñ (5.2), L consists of propagations of fv. The
above assumptions ensure that π1pL � V q � π1pV � fvq.

Finally, using Theorem 5.14, we get

Corollary 5.18. We can compute a functional translation L of fv.

5.3. Translating Update Functions Under

Constraints

Let us resume with the illustrative example from section 5.1. We assume
that once a project has acquired the 'stable' status, it cannot be modified
anymore, so that no 'stable' project should revert to the 'dev' status. This in
turn implies that authority A1 cannot delete certificates c1 under a document
that has also been certified by the second authority. Such constraints can
clearly be expressed via a regular set of editing scripts. However, if we
do only forbid the above deletions, A1 may face a strange behavior since
it does not know about certificates c2. Thus, A1 will observe that it is
sometimes allowed to delete its certificate c1 under some documents nodes,
and sometimes not. The uniform updates are those that avoid this kind of
unpredictable behaviour. Here, the uniform updates forbid deleting any c1
certificate altogether. Computing the set of uniform updates enables the
database administrator to provide the user with the set of updates she is
allowed to execute, which is the motivation for Problem 5.

183

5. The View Update Problem

5.3.1. The General Case

Our views impose only static constraints on the state of the database. We
wish to study constraints on the updates in the spirit of the transition laws
of [FUV83]. While in [FUV83] the transition laws are treated as static con-
straints, using an extended database, our approach focuses on studying tran-
sitions, and the constraints we define on the updates cannot be expressed by
static constraints within our framework.

In this section, we suppose a given regular set of editing scripts Us repre-
senting the authorized source updates. Furthermore, we are going to consider
only translations valid w.r.t. Us (as formalized by Definition 5.10). Such re-
strictions can be most useful in the case of a database with multiple user
profiles. One may require for instance that the updates of user 1 should
not affect the view of user 2, or more permissively, the updates of user 1
should affect user 2’s view only on nodes that are also visible in user 1’s
own view. A regular set Us of authorized source updates can express that
kind of restrictions on side effects. This approach is more flexible than the
constant complement approach of [BS81] in the sense that we do not require
the constant part to be a complement. Thus, the user can specify precisely
the constraints he deems relevant, without the obligation to enforce a unique
propagation. Such restrictions can also be used to protect the integrity of
sensible data or to indicate some preference among possible propagations, as
demonstrated in Theorem 5.32, in order to get a unique propagation. More
generally, the possibility to define a set of authorized source updates allows
the database administrator to specify which updates he thinks are reasonable.

Definition 5.10. A set of editing scripts L is a valid translation of an update
function fv w.r.t. view V and set Us if L is a translation of fv w.r.t. V and
there exists a set of editing scripts L1 � Us s.t. L1 � L.
A view editing script is called uniform if it admits a valid translation. We

denote by Unif pV ,Usq the set of uniform (view) editing scripts.
An update function fv is called uniformly translatable w.r.t. view V and

Us if it has a valid translation.

Let us note that even when fv and V are regular, we impose in the defini-
tion neither regularity of L nor regularity of L1.

Example 5.3. Let V denote the identity and Us denote the set of editing
scripts of depth one with yield in pa, εq�pε, bq�. The update function f1 that
consists of editing scripts of depth one with yield in pa, bq� has a regular
translation but it does not admit any valid translation L. The update func-
tion f2 that consists of editing scripts of depth one with yield in ppa, εqpε, bqq�

is uniformly translatable. It is indeed its own valid translation, since the
set L1 � Us that contains all editing scripts of depth one with yield in
tpa, εqnpε, bqn | n P Nu, though not regular, is equivalent to f2.

184

5.3. Translating Update Functions Under Constraints

Proposition 5.19. An update function fv is uniformly translatable w.r.t.
view V and set Us iff there exists some set of stable editing scripts L � Us

such that L � V � V � fv.

Proof. The result is immediate by Remark 5.5.

However, let us note that the preceding property is no longer valid when
we require regularity; fv can have a regular valid translation but no regular
valid translation included in Us, as illustrated by f2 in Example 5.3. In view
of the previous definition and result, the following adapts Problem 1 to the
constrained setting.

Problem 3. Given a regular view V , a regular set of authorized source
editing scripts Us, a regular update function fv, and a regular set of
source editing scripts L, answer if L is a valid translation of fv.

While every update function admits a translation in the unconstrained set-
ting, this is no longer the case in presence of constraints. The presence of
source constraints raises two additional problems.

Problem 4. Given a regular view V , a regular set of authorized source
editing scripts Us, and a regular update function fv, answer if fv is uni-
formly translatable.

Problem 5. Given a regular view V , and a regular set of authorized
source editing scripts Us, compute an automaton whose language is the
set Unif pV ,Usq.

Negative Results in the General Setting

Proposition 5.20. Testing uniform translatability is undecidable, even when
fv is regular.

Proof. Let V be the identity over trees of depth one. Formally, view V is the
set of trees of depth one with root pr, rq and yield p

�
aPΣpa, aqq

�. Suppose
fv uses no relabelings, only deletions and insertions fv consists only of trees
of depth one with root pr, rq and yield in pΣ � tεu Y tεu � Σq�. Then the
problem is equivalent to the problem of testing the inclusion of a functional
word transducer (fv) into an arbitrary word transducer (Us), which is unde-
cidable [Ber79]. This proves also that testing uniform translatability remains
undecidable when we require translation to be regular. The question remains
open when we also require regularity of L1 � Us such that L � L1.

Note that with the same proof, for L � fv, we get the undecidability of
Problem 3. However, if the input is some L � Us, it becomes decidable in
polynomial time once the domains are verified equal, using Proposition 5.16.

185

5. The View Update Problem

Proposition 5.21. Given a regular view V , Unif pV ,Usq is not regular, and
its emptiness is undecidable.

Consequently, computing the set of uniform editing scripts seems unfeasible
in general, and therefore, we look for restrictions that allow to tackle these
problems.

Single Updates The simplest restriction will be to study translatability
of single editing script instead of more general update functions. For that
limited setting, the previous problems become decidable.

Proposition 5.22. Testing uniform translatability of a view editing script
uv is decidable. Furthermore, we can compute in polynomial time a regular
set L of editing scripts such that rLs is the set of (valid) propagations of uv.

Proof. The set of valid propagations is equivalent to Us X π1,4pV 1 ruvs 1

V �1q by Lemma 5.7, using (5.1)ô(5.2). Those results can also be considered
a consequence of Propositions 5.28 and 5.29.

The previous results might however be misleading: one could suppose the
difficulty to stem from Us’s not being closed under equivalence. The following
undecidability result that holds for Us over alphabet Σε � Σ shows it does
not. Intuitively, even when Us has no deletions, V may have deletions, so
that Us � V needs not be regular.

One could have supposed that solving Problem 5 dynamically rather than
statically would be easier: one does not need to compute all the uniform up-
dates, but only those possible from the current state of the (non-materialized)
view document. The following proposition puts paid to any such hope. We
cannot tackle Problem 5 by fixing the initial document t and asking for the
set of all uniform view editing scripts u such that π1puq � t. Fix a tree t
over Σ, the tree that consists of a single node r for instance. Even when we
require Us to consist only in editing scripts without deletions, i.e., trees over
Σε � Σ, we get the following negative result

Proposition 5.23. The problem (with input V and Us) of deciding ’univer-
sality’ of the set tt1 P Unif pV ,Usq | π1pt1q � tu (more exactly, testing whether
it is equal to the co-domain of the view) is undecidable.

Proof. Fix a PCP instance u1, . . . , un, v1, . . . , vn over alphabet Σ. Without
loss of generality, we assume that none of u1, . . . , vn are empty words (this
variant of PCP is known to be undecidable). We use trees of depth one over
alphabet Σ1 � tr,#1, . . . ,#nu Z Σ. We define view V as follows: V hides
#1, . . . ,#n and keeps the other tags unchanged. In order to define Us, we
use two auxiliary languages: we claim that there exists an automaton Au

accepting some regular set of editing scripts Lu such that tpπ1ptq, π2ptqq | t P

186

5.3. Translating Update Functions Under Constraints

Lu � V u � tprp#i1, . . . ,#ikq, rpa1, . . . , amqq | i1, . . . ik ¤ n,m ¥ 0, a1 . . . am P
Σ�, a1 . . . am � ui1ui2 . . . uiku. We build Lv symmetrically. Us is defined as
Lu Y Lv. Consequently, since tπ1ptq | t P V ^ π2ptq � ru � trpa1, . . . , amq |
m ¥ 0, a1, . . . , am P t#1, . . . ,#nuu, the sets tt1 P Unif pV ,Usq | π1pt1q � ru
and tpr, rqppε, a1q, . . . , pε, amqq | m ¥ 0, a1, . . . , am P Σ�u are equal if and only
if there is no match for the PCP instance.

Let us prove the claim. The construction is similar to the one in [Gri68].
We build Au � pQ,Qf � tqru,∆q on the fcns encoding as follows: Q contains
states q0, qr, qH , qK, qf and q1f , and, for each word ui � ai,1ai,2 . . . ai,ki , ki states
qi,1 . . . qi,ki . We define the transitions in ∆ as follows: the initial rules are
given by K Ñ q for every q R tqH , q0u, and the other rules are, for every
i ¤ n,

1. for all a P Σ, pε, aqpqK, q1f q Ñ q1f and pε, aqpqK, q1f q Ñ qH .

2. for all j ¤ n, all a P Σ, p#j,#jqpqK, qf q Ñ qf and pε, aqpqK, qf q Ñ qf .

3. for all j ¤ ki, for all a P Σ such that a � ai,j, pε, aqpqK, qf q Ñ qi,j.

4. for every j ki, pε, ai,jqpqK, qi,j�1q Ñ qi,j.

5. pε, ai,kiqpqK, qHq Ñ qi,ki

6. p#i,#iqpqK, qi,1q Ñ q0

7. q0 Ñ qH : we use an ǫ-transition here, but it can be eliminated.

8. pr, rqpq0, qKq Ñ qr

Let k ¥ 1 and i1, . . . , ik P t1, . . . , nu. A word w is different from ui1 . . . uik
if and only if one of the following three conditions is satisfied: (i) w is a strict
prefix of ui1 . . . uik , (ii) ui1 . . . uik is a strict prefix of w or (iii) there exists a
common prefix s of w and ui1 . . . uik and two distinct letters x and y such that
sx is a prefix of w and sy is a prefix of ui1 . . . uik . This proves the correction
of automaton Au: a word w with π1pwq � i1 . . . ik is accepted (i) from some
state qi,j if and only if π2pwq is a strict prefix of ui1 . . . uik , (ii) from state q1f
if and only if ui1 . . . uik is a strict prefix of π2pwq, and (iii) from state qf if
and only if there exists a common prefix s of π2pwq and ui1 . . . uik and two
distinct letters x and y such that sx is a prefix of π2pwq. This concludes the
proof of the claim.

It may be difficult to understand the transition table of such a big au-
tomaton, so Figure 5.6 depicts the possible evolution of states from the
rightmost child of the tree up to its leftmost child, in the case where n � 1
and u1 � a1,1a1,2 . . . a1,k. The “run” can begin from every state except qH
and q0 (initial rules, represented by K Ñ qi in the figure), and must end in
q0 (according to rule 8). We have dropped the left qK state of every pair
in the picture: a transition qi

aÝÑ qj in the picture represents a transition

187

5. The View Update Problem

apqK, qiq Ñ qj of the tree automaton Au. When there are several words in
the PCP instance (of course, n ¡ 1 in general), states q0, qH , qf and q1f are
common to all the ui’s pi ¤ nq but all states qj,i are distinct.

q0 q1,1

K

q1,2

K

. . . q1,k

K

qH q1
f

K

qfK

(#1,#1) pε, a1,1q pε, a1,2q pε, a1,kq

pε, aq @a � a1,1
p#j,#jq @j P t1 . . . nu

pε, aq @a � a1,2
p#j,#jq @j P t1 . . . nu

pε, aq @a � a1,k
p#j,#jq @j P t1 . . . nu

pε, aq @a P Σ
p#j,#jq @j P t1 . . . nu

pε, aq @a P Σ

pε, aq

@a P Σ

ε

Figure 5.6.: “Core” of Au for u1 � a1,1a1,2 . . . a1,k.

Since our target is a translation of update functions, we look for a less
drastic restriction than single updates. What makes translatability decidable
for a single (view) editing script uv is the possibility to compute a regular
language for the equivalence class of uv. The next section defines a class
of update functions that guarantees that property, while remaining powerful
enough to express most reasonable update functions.

Equivalence of editing scripts deals with commuting consecutive insertions
and deletions. For that reason, we must control those commutations to make
sure the closure under equivalence of regular editing scripts languages remains
regular.

Definition 5.11. Given a natural k ¥ 1, an editing script t is k-synchronized
if for every sequence n1, n2, . . . nk�1 of nodes in Nt such that for all j ¤ k,
pnj, nj�1q P next t, and for all j ¤ k�1, labtpnjq P tεu�Σ, there is some node
n1 P Nt such that pn1, n

1q P follow t, pn
1, nk�1q P follow t, and labtpn1q P Σ�Σ.

This means that, among the children of the same node, there cannot be
more than k inserting nodes without a node tagged with a relabeling between
them. A set of editing scripts is k-synchronized if it consists of k-synchronized
editing scripts. A set of editing scripts is synchronized if it is k-synchronized
for some k.

188

5.3. Translating Update Functions Under Constraints

Remark 5.6. This notion is monotone: if a (set of) editing script(s) is
k-synchronized, then it is k1 synchronized for all k1 ¡ k.

General Properties The k-synchronized editing scripts can be viewed as
the horizontal counterpart of k-interval bounded view alignments. We can
therefore prove similar properties, based on the horizontal pumping argu-
ments.

Proposition 5.24. Let A a VPA (resp. NTA) with n states accepting a set
of editing scripts (resp. its fcns encoding). If LpAq is synchronized, then it
is n� 1 synchronized.

Together with Remark 5.6, this proposition allows to test in polynomial time
whether a regular set of editing scripts is synchronized.

Remark 5.7. When L is a regular set of editing scripts given by an automa-
ton, one can compute an automaton for the set tt P L | t is k-synchronized u.
The construction is polynomial in k and L. We will denote this set by
Syncpk, Lq.

Proposition 5.25. Fix k P N. Given a regular set L of editing scripts,
rSyncpk, Lqs is a regular set of k-synchronized editing scripts.

Proof. This can be proved using classical constructions on automata. The
core of the proof is the storage of a limited information between two siblings
labeled with a relabeling. This additional information corresponds to the
insertions that are realized between the relabelings. Let k P N. Let A �
pΣedit, Q,Γ, I, F,∆q an automaton over Σedit such that LpAq is k-insertion-
bounded. When |Q| � 1, the proposition is trivial so we assume |Q| ¡ 1
in the following construction, which simplifies the complexity analysis. We
define an automaton B � pΣedit, QB,ΓB, IB, FB,∆Bq as follows. The set of
states is QB � pQ2q¤k �Q� t0, . . . , ku � t0, . . . , ku YQ� töu. Clearly, the
symbol ö carries no information in the states of QB (and likewise for QC

in the proof of Proposition 5.27). We use the symbol for the sole purpose
of identifying a particular kind of states: the states in Q � töu can only
appear below an insertion or deletion node and mimicks the behaviour of A
on hedges over tεu�Σ or Σ�tεu. The semantics for the other states is a little
more intricate. The first component pQ2q¤k stores the sequence of subtrees
that are presumably inserted between the preceding and following siblings
of the current node that are labeled with relabeling nodes. The inserted
subtrees are specified as a pair of states, and so the first component stores
a word u of length at most k over alphabet Q2. The unique α such that
u P pQ2qα is the length of u, denoted by |u|, and the ith pair of u is denoted
by uris for all i ¤ |u|. The second component of the state belongs to Q and
basically processes the transitions as in A. The third component records

189

5. The View Update Problem

how many subtrees have actually been inserted, whereas the last component
records how many insertions have been proved “feasible”. The stack alphabet
is ΓB � Γ � pQ2q¤k � pQ Y �q � t0, . . . , ku � t0, . . . , ku Y Γ � töu. Again,
states of the form Γ � töu mimick the behaviour of A. In the other kind
of states, the first component Γ basically processes the transitions as in A,
and the remaining components are essentially used to propagate the state
of the automaton. The initial and final states are IB � tεu � I � t0u � t0u
and tεu � F � t0u � t0u, respectively. The transitions are specified by the
following rules:

• For every a, b P Σ, η P top, clu, i ¤ k, u P pQ2qi, u1 P pQ2q¤k, and for

every transition q
pη,pa,bqq:γ
ÝÝÝÝÝÝÑ q1 P ∆, we add pu, q, i, iq

pη,pa,bqq:pγ,ε,�,0,0q
ÝÝÝÝÝÝÝÝÝÝÝÑ

pu1, q1, 0, 0q to ∆B.

• For every u P pQ2q¤k, i ¤ |u|, and j |u| such that urj � 1s � pq, q1q,
we add transition pu, q, i, jq εÝÑ pu, q1, i, j � 1q to ∆B.

• For every u P pQ2q¤k, i, j P t0, . . . , |u|u and every transition q
pop,pa,εqq:γ
ÝÝÝÝÝÝÑ

q1 P ∆, we add transition pu, q, i, jq
pop,pa,εqq:pγ,u,�,i,jq
ÝÝÝÝÝÝÝÝÝÝÝÝÑ pq1,öq to ∆B.

• For every u P pQ2q¤k, i, j ¤ |u| and every transition q
pcl,pa,εqq:γ
ÝÝÝÝÝÝÑ q1 P ∆,

we add transition pq,öq
pcl,pa,εqq:pγ,u,�,i,jq
ÝÝÝÝÝÝÝÝÝÝÝÑ pu, q1, i, jq to ∆B.

• For every u P pQ2q¤k, i |u|, j ¤ |u|, every p P Q, and every pair of

transitions q
pop,pε,aqq:γ
ÝÝÝÝÝÝÑ q1 and q2

pcl,pε,aqq:γ
ÝÝÝÝÝÝÑ q3 in ∆ such that uri� 1s �

pq, q3q, we add the transition pu, p, i, jq
pop,pε,aqq:pγ,u,p,i,jq
ÝÝÝÝÝÝÝÝÝÝÝÑ pq1,öq to ∆B.

We also add pq2,öq
pcl,pε,aqq:pγ,u,p,i,jq
ÝÝÝÝÝÝÝÝÝÝÝÑ pu, p, i� 1, jq to ∆B.

• For every η P top, clu and every transition q
pη,pε,aqq:γ
ÝÝÝÝÝÝÑ q1 in ∆, we add

transition pq,öq
pη,pε,aqq:γ
ÝÝÝÝÝÝÑ pq1,öq to ∆B.

• For every η P top, clu and every transition q
pη,pa,εqq:γ
ÝÝÝÝÝÝÑ q1 in ∆, we add

transition pq,öq
pη,pa,εqq:γ
ÝÝÝÝÝÝÑ pq1,öq to ∆B.

Invariant: Let q, q1 P Q, i, j ¤ k, u P pQ2q¤k, and w a word over
top, clu � pΣeditzΣ � Σq. The VPA B can reach state pq1, u, i, jq after
reading w from pq, u, 0, 0q if and only if w admits a decomposition of the
form u1v1u2 . . . viui�1 such that the following conditions are satisfied:

1. i, j ¤ |u|

2. each ul (l ¤ i� 1) is a well nested word over Σ � tεu,

3. each vl (l ¤ i) is the linearization of some tree over tεu � Σ

190

5.3. Translating Update Functions Under Constraints

4. vl P Aql,q
1
l
where urls � pql, q1lq, (l ¤ i)

5. there exists a decomposition of the word u1u2 . . . ui�1 into j � 1
nested words x1, . . . , xj�1, and there exist j trees t1, . . . , tj over
tεu � Σ such that the following two conditions are satisfied: (a)
for every j1 ¤ j, tj is accepted by As,t, where urj1s � ps, tq, and (b)
x1linpt1qx2linpt2q . . . xi�1 is accepted by Aq,q1.

Moreover, B cannot reach from pq, u, 0, 0q a state that is not of the form
pq1, u, i, jq if w is a well nested word (over ΣeditzΣ � Σ).

We can deduce another invariant from the form of the transitions for symbols
in top, clu � Σ � Σ together with this invariant:

Invariant: Let q1 P Q, i, j ¤ k, N P N, γ1, . . . , γN P Γ, and w a word
over top, clu � Σedit. The following two statements are equivalent:

1. there exist u P pQ2q¤k, and σ P Γ�
B with π1pσq � γ1 . . . γN such that

VPA B can reach a configuration ppq1, u, |u|, |u|q, σq after reading w

2. there exists w1 � w such that A can reach configuration pq1, γ1 . . . γNq
after reading w1.

This guarantees the correction of the construction. LpBq � rLs, and |B| �
Op|Q|Opkq|Σ|q, which concludes the proof. The VPA B has Opk2|Q|2k�1q
states and Opk2|Γ||Q|2k�2q stack symbols. The number of transitions could be
slightly lowered if we observe that the useful information in word u from state
pq, u, i, jq is contained in the suffix of u after minpi, jq: urminpi, jqsurminpi, jq�
1s . . . ur|u|s. One could therefore reduce the number of transitions generated
by the first rule, resulting in an overall number of transitions bounded by
Op|∆|2�k2|Q|2kp|∆|�|Q|2qq. We stick to the above non-optimal construction
because it can be easily adapted in order to prove Proposition 5.27.

This result is essentially the adaptation for editing scripts of standard
results on trace monoids. For instance, given a k-synchronized regular
word language L1, the regularity of rL1s is an immediate consequence of
a result by Métivier [Mét88] on free partially abelian monoids.

We could also define a normal form for the document, shifting all deletions
to the left and insertions to the right as far as possible for instance. The
set of editing scripts resulting from the normalization of a regular set L of
k-synchronized editing scripts is regular.

Notation. Given a regular view V and k ¥ 0, we denote by Uk
V the set of

all editing scripts us such that the editing script induced by us on view V is
k-synchronized.

We have a result of the same flavour as the above remark:

191

5. The View Update Problem

Proposition 5.26. When L is a regular set of editing scripts given by an
automaton, one can compute an automaton for the set LX Uk

V .

Proof. We first compute an automaton for the set of all t in V �1
1 L 1 V

such that π14ptq is k-synchronized. Then we project this regular language on
the second and third component, using Proposition 3.18.

We next introduce the complementation of a set of editing scripts and show
how to combine complementation and equivalence for k-synchronized lan-
guages of scripts. The complement of a set of scripts L over alphabet Σ con-
sists of all scripts over alphabet Σ except those of L. We denote by AL this
complement. Clearly, AL is regular for any regular set of scripts L. More-
over, complementation preserves closure under equivalence: rArLss � ArLs.
We also observe that complement preserves closure under equivalence, and
that Syncpk, ASyncpk, Lqq � Syncpk, ALq.

Proposition 5.27. Given a regular view V , k P N, and a regular set L of
k-synchronized editing scripts, one can compute an automaton for the set
ArLs in exponential time.

Proof. Let A � pΣedit, Q,Γ, I, F,∆q an automaton over Σedit such that LpAq �
L is k-insertion-bounded. If we complement näıvely (through determiniza-
tion) the VPA obtained in Proposition 5.25 for rLs, we obtain a doubly
exponential complexity since in general the determinization of an automaton
with |Q|k states results in a VPA with 2|Q|

2k

states. What is more, attempts
at producing “ad-hoc” determinization procedures seem to be doomed, as a
deterministic VPA for ArLs would have to store a representation of some set
of sequences of (up to) k insertions, and there are over 2|Q|

k

such sets.
Instead of determinization, we describe an ad-hoc construction that builds

an unambiguous VPA for ArLs. The construction essentially extends with
additional components the deterministic automaton obtained from A, instead
of using the automaton from rLs.

The VPA for ArLs has states QC � Q1 YQ2 YQ3 with Q1 � pPpQ2qq¤k �
t0, . . . , ku � PpQ2 � t0, . . . , kuq, Q2 � PpQ2q � töu, and Q3 � tq#u. The
stack alphabet is ΓC � Γ1YΓ1

1YΓ2YΓ3 with Γ1 � pPpQ2qq¤k�t0, . . . , ku�
PpQ2 � t0, . . . , kuq � Σedit, Γ1

1 � t�u � PpQ2 � t0, . . . , kuq � Σedit, Γ2 �
PpQ2q � töu � Σedit, and Γ3 � Σedit. The initial and final states are IC �
tptεu, 0, tpq, q, 0q | q P Iuqu. and FC � tq#uYtεu�t0u�PppQ�pQzF qq�t0uq.
The transitions are defined by the rules below. We first define for every
u P PppQ2q¤kq and S P PpQ2 � t0, . . . , kuq the set Extpu, Sq as the set of
all triples pp, q, jq such that j ¤ |u| and there exist i ¤ j, q0, q1, . . . qj�i in
Q satisfying the following two conditions: (1) pq, q0, iq P S and (2) for all
h P t0, . . . , j � i� 1u, pqh, qh�1q P uri� h� 1s.

• For every a, b P Σ, u P pPpQ2qq¤k, and S P PpQ2 � t0, . . . , kuq, let S 1

denote the set of all triples pq, q, 0q such that there exists pp, p1q P S

192

5.3. Translating Update Functions Under Constraints

with p1
pop,pa,bqq:γ
ÝÝÝÝÝÝÑ q P ∆. If S 1 � H, we add for every u1 P pPpQ2qq¤k

the transition pu, |u|, Sq
pop,pa,bqq:p�,S,pa,bqq
ÝÝÝÝÝÝÝÝÝÝÝÝÑ pu1, 0,Extpu1, 0, S1qq to ∆C .

Otherwise, we add transition pu, |u|, Sq
pop,pa,bqq:pq#,pa,bqq
ÝÝÝÝÝÝÝÝÝÝÝÑ q# to ∆C .

• For every a, b P Σ, u P pPpQ2qq¤k, and S, S0 P PpQ2 � t0, . . . , kuq, let
S 1 denote the set of all triples pq1, q5, 0q such that there exist q2, q3, q4
and γ satisfying the following four conditions: (1) pq1, q2q P S0, (2)

q2
pop,pa,bqq:γ
ÝÝÝÝÝÝÑ q3 P ∆, (3) pq3, q4, |u|q P S, and (4) q4

pcl,pa,bqq:γ
ÝÝÝÝÝÝÑ q5 P ∆.

If S 1 is not empty, we add for every u1 P pPpQ2qq¤k the transition

pu, |u|, Sq
pcl,pa,bqq:p�,S0,pa,bqqÝÝÝÝÝÝÝÝÝÝÝÝÑ pu1, 0,Extpu1, S1qq to ∆C . Otherwise, we

add transition pu, |u|, Sq
pcl,pa,bqq:p�,S0,pa,bqqÝÝÝÝÝÝÝÝÝÝÝÝÑ q# to ∆C .

• For every a P Σ, and S P PpQ2 � t0, . . . , kuq, let S 1 denote the set of
all pairs pq, qq such that there exist q1, q2 and γ satisfying pq1, q2q P S

and q2
pop,pa,εqq:γ
ÝÝÝÝÝÝÑ q P ∆. Then we add for every u P pPpQ2qq¤k and

i P t0, . . . , ku the transition pu, i, Sq
pop,pa,εqq:pu,i,S,pa,εqq
ÝÝÝÝÝÝÝÝÝÝÝÝÑ pS 1,öq to ∆C .

• For every a P Σ, S0 P PpQ2 � t0, . . . , kuq, and S P PpQ2q, let S 1

denote the set of all triples pq1, q5, jq such that there exist q2, q3, q4
and γ satisfying the following four conditions: (1) pq1, q2, jq P S0, (2)

q2
pop,pa,εqq:γ
ÝÝÝÝÝÝÑ q3 P ∆, (3) pq3, q4q P S, and (4) q4

pcl,pa,εqq:γ
ÝÝÝÝÝÝÑ q5 P ∆.

If S 1 � H then we add for every u P pPpQ2qq¤k and i P t0, . . . , ku the

transition pS,öq
pcl,pa,εqq:pu,i,S0,pa,εqqÝÝÝÝÝÝÝÝÝÝÝÝÝÑ Extpu, S1q to ∆C . Otherwise we

add for every such u and i the transition pS,öq
pcl,pa,εqq:pu,i,S0,pa,εqqÝÝÝÝÝÝÝÝÝÝÝÝÝÑ q#

to ∆C .

• For every S P PpQ2 � t0, . . . , kuq, let S 1 denote the set of all pairs

pq, qq such that there exist q1 P Q and γ satisfying q1
pop,pε,aqq:γ
ÝÝÝÝÝÝÑ q P ∆.

If S 1 � H then for every u P pQ2q¤k and i P t0, . . . , |u|u, we add

transition pu, i, Sq
pop,pε,aqq:pu,i,S,pε,aqq
ÝÝÝÝÝÝÝÝÝÝÝÝÑ pS 1,öq to ∆C . Otherwise we add

the transition pu, i, Sq
pop,pε,aqq:pε,aq
ÝÝÝÝÝÝÝÝÑ q# to ∆C .

• For every S P PpQ2q, let S 1 denote the set of all pairs pq2, q5q in Q2 such
that there exist q2, q3, q4 and γ satisfying the following four conditions:

(1) q2
pop,pa,εqq:γ
ÝÝÝÝÝÝÑ q3 P ∆, (2) pq3, q4q P S, and (3) q4

pcl,pa,εqq:γ
ÝÝÝÝÝÝÑ q5 P

∆. If S 1 � H then for every u P pQ2q¤k, i P t0, . . . , |u|u, and S0 P

PpQ2�t0, . . . , kuq, we add a transition pS,öq
pcl,pε,aqq:pu,i,S0qÝÝÝÝÝÝÝÝÝÝÑ q# to ∆C .

Otherwise, for every u P pQ2q¤k, i P t0, . . . , |u|u, if S 1 � uri � 1s then

we add transition pS,öq
pcl,pε,aqq:pu,i,S0,pε,aqqÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pu, i� 1, S0q to ∆C .

193

5. The View Update Problem

• For every S P PpQ2q and α P Σ � tεu Y tεu, let S 1 denote the set of
all pairs pq, qq such that there exist q1, q2 and γ satisfying the following

two conditions: (1) pq1, q2q P S, (2) q2
pop,αq:γ
ÝÝÝÝÑ q P ∆. If S 1 � H then

we add the transition pS,öq
pop,αq:α
ÝÝÝÝÝÑ q# to ∆C . Otherwise we add the

transition pS,öq
pop,αq:pS,ö,αq
ÝÝÝÝÝÝÝÝÑ pS 1,öq to ∆C .

• For every S, S0 P PpQ2q and α P Σ � tεu Y tεu, let S 1 denote the set
of all pairs pq, qq such that there exist q2, q3, q4 and γ satisfying the fol-

lowing four conditions: (1) pq1, q2, jq P S0, (2) q2
pop,pa,εqq:γ
ÝÝÝÝÝÝÑ q3 P ∆, (3)

pq3, q4q P S, and (4) q4
pcl,pa,εqq:γ
ÝÝÝÝÝÝÑ q5 P ∆. If S 1 � H then we add for ev-

ery u P pPpQ2qq¤k and i P t0, . . . , ku the transition pS,öq
pcl,αq:pS0,ö,αqÝÝÝÝÝÝÝÝÑ

q# to ∆C . Otherwise we add for every such u and i the transition

pS,öq
pcl,αq:pS0,ö,αqÝÝÝÝÝÝÝÝÑ pS 1,öq to ∆C .

• for every α P Σedit and γ P ΓC such that the last component of γ is α,

we add transitions q#
pop,αq:γ
ÝÝÝÝÑ q# and q#

pcl,αq:γ
ÝÝÝÝÑ q# to ∆C .

The construction satisfies the following invariant:

Invariant: Let u P pQ2q¤k, i ¤ k, S P PpQ2 � t0, . . . , kuq, and w a word
over top, clu � pΣeditzΣ � Σq. The VPA B can reach state pu, i, Sq after
reading w from pu, i, Sq if and only if w admits a decomposition of the
form u1v1u2 . . . viui�1 such that the following conditions are satisfied:

1. i ¤ |u|

2. each ul (l ¤ i� 1) is a well nested word over Σ � tεu,

3. each vl (l ¤ i) is the linearization of some tree over tεu � Σ

4. urls � tpq, q1q P Q2 | vi P Aql,q
1
l
u (l ¤ i)

5. S is the set of all pairs ppq, q1q, jq P Q2�t0, . . . , |u|u such that there
exists a decomposition of the word u1u2 . . . ui�1 into j � 1 nested
words x1, . . . , xj�1, and there exist j trees t1, . . . , tj over tεu � Σ
such that the following two conditions are satisfied: (a) for ev-
ery j1 ¤ j, tj is accepted by As,t, where ps, tq P urj1s, and (b)
x1linpt1qx2linpt2q . . . xi�1 is accepted by Aq,q1.

Moreover, when w is a well nested word (over ΣeditzΣ � Σ), B cannot
reach from pq, u, 0, 0q a state that is not of the form pq1, u, i, jq or q#.

From this invariant and the form of the three transition rules introducing
state q#, we can deduce the following invariant. Let w a word over top, clu�
Σedit ending with a letter in top, clu � Σ � Σ. Let u the longest well nested
suffix of w (possibly ε), and v the prefix of w before u: w � vu.

194

5.3. Translating Update Functions Under Constraints

Invariant: VPA B can reach state q# after reading w if and only if A
has no run on any word equivalent to w. Moreover, VPA B can reach
state pε, 0, Sq after reading w if and only if S is not empty and is the set
of triples pq, q1, 0q such that there exist u1 � u and v1 � v that satisfy both
(1) u1 P Aq,q1, and (2) A can reach q after reading v1.

This guarantees the correction of the construction. By construction, the
VPA AC satisfies LpACq � ArLs. Furthermore, it has Opk � 22k|Q|2q states
and Opk � 2p2k|Q|2qq stack symbols. We have thus obtained an automaton of
exponential size that accepts ArLs. This concludes the proof.

Uniform Updatability for Synchronized Updates

Proposition 5.28 (Problem 4). Testing uniform translatability of a syn-
chronized update function fv w.r.t. V and Us is Exptime-complete.

Proof (outline). Let A an automaton that accepts fv, and let k denote its
size. Then V � fv is a regular set of k-synchronized editing scripts. There-
fore, rV � fvs also is, according to Proposition 5.25. Furthermore, if we
take L2 � Syncpk,Us � V q, fv is uniformly translatable iff rV � fvs � rL2s.
Moreover, one can compute in exponential time an automaton accepting the
complement of rL2s according to Proposition 5.27. Consequently, one can
decide in exponential time the emptiness of the intersection between this
complement and rV � fvs. Uniform translatability is therefore in Exptime

for a synchronized update function fv.
Conversely, uniform translatability is Exptime-hard, in spite of our as-

sumptions of “translatability” for fv on page 182, because the problem sub-
sumes regular tree languages inclusion: let L regular tree languages over
alphabet Σ. We define U∫ and fv as the identity transformation over the
domains of L and L1. Formally, we define Σ1 � tpa, aq | a P Σu, Us � tt P
TΣ1 | π1ptq P Lu, V � T 1

Σ, and fv � tt P TΣ1 | π1ptq P L1u. Clearly, V is a
view, fv is a 0-synchronized update function (satisfying the assumptions on
page 182) and fv is uniformly translatable if and onlt if L � L1. Admittedly,
the example looks strange because one should probably assume Us to contain
at least the identity. But then we could define a copy of alphabet Σ, fv as
the update that relabels every node into its copy: a node a takes label, say,
a1 after the update for every a P Σ. A similar adaptation of Us gives a more
sensible example for the reduction.

We can observe that our Exptime-hardness result relies on Us and V ’s being
part of the input. The problem is polynomial in terms of fv, as it suffices to
compute rV � fvs and check it has empty intersection with the complement
of rL2s.

Proposition 5.29. When fv is a regular set of k-synchronized editing scripts
and V is a regular view, we can compute an automaton for its propagations.

195

5. The View Update Problem

Proof. This proposition holds whenever rfvs is a regular language. By propo-
sition 5.25, this is the case when fv is k-synchronized. The set of valid prop-
agations is equivalent to Us X π14pV 1 rfvs 1 V �1q by proposition 5.7, using
(5.1)ô(5.2). Note that in fact this result implies proposition 5.28

The following theorem gives a procedure to compute the set of all uniform
k-synchronized updates. This would for instance allow to provide the user
with a representation of her possible updates. The construction, however, is
blatantly inefficient.

Theorem 5.30 (Problem 5). We can compute an automaton for the
set of all uniform k-synchronized view editing scripts.

This means in particular that when Us � Uk
V , i.e., when the set of authorized

editing scripts is such that the editing scripts it induces on the views are
k-synchronized, then we can compute all editing scripts. Both versions of
the problem are equivalent since we can build in polynomial time from Us an
automaton that accepts the language Us � Uk

V .

Proof. First of all, we recall that we assume throughout the chapter that
view updates are reasonable and so π1puvq P π2pV q for every view update
uv over view V . In accordance with the above remark, we assume w.l.o.g.
that Us � Uk

V . We claim that Unif pV ,Usq is equal to U1 � rV �1 � Us �
V s X ArV �1 � ArUs � V ss. The result follows easily from this claim. By as-
sumption, V �1 � Us � V is k-synchronized, hence Us � V also is. We can
therefore compute an automaton for the language ArUs � V s. This yields in
turn the construction of an automaton for Syncpk, V �1 � ArUs � V sq, hence
for Syncpk, ArSyncpk, V �1 � ArUs � V sqsq. As observed on page 192, for any
language L the languages Syncpk, ArSyncpk, Lqsq and Syncpk, ArLsq are equal.
Furthermore, we assumed V �1 � Us � V to be k-synchronized, so that rV �1 �
Us � V s X ArV �1 � ArUs � V ss denotes the same language as rV �1 � Us � V s X
Syncpk, V �1 � ArUs � V sq. We have thus proved the result.

Let us now prove the claim. We begin with implication U1 � Unif pV ,Usq.
Let uv P U1. According to Proposition 5.15, we must prove there exists some
L � Us such that V �1 � L � V � ruvs and π1pV � uvq � π1pL � V q. Let v1
any script in V such that v1 � uv � H. We have v�11 � v1 � uv � uv � H,
therefore v1 � uv cannot belong to ArUs � V s since by hypothesis uv belongs
to ArV �1 � ArUs � V ss. Hence v1 � uv P rUs � V s. Let u1 P Us and v2 P V

such that v1 � uv � u1 � v2. We obtain v�11 � v1 � uv � v�11 � u1 � v2, hence
uv � v�11 � u1 � v2. If we take for L the set of all scripts u1 obtained when v1
ranges the set of script in V such that v1 � uv � H, we obtain a set L � Us

such that V �1 � L � V � ruvs and π1pV � uvq � π1pL � V q, which concludes
the proof of the first implication.

Conversely, we prove that U1 � Unif pV ,Usq. Let uv P Unif pV ,Usq.
There exists some L � Us such that L � V � V � uv. Consequently, V �1 �L �

196

5.3. Translating Update Functions Under Constraints

V � V �1 � V � uv according to Proposition 5.5, hence V �1 � L � V � uv. Let
finally w R rUs �V s. Suppose there were some v1 P V such that uv � v�1

1 �w.
Then we would get v1 � uv � v1 � v�1

1 �w according to Proposition 5.5, hence
w � v1 � uv. This however contradicts V � uv � rL � V s � rUs � V s. We have
thus proved that uv cannot belong to rV �1 � ArUs � V ss, which concludes the
proof of the claim.

We have put a thoroughly different construction for the automaton that
accepts uniform view editing scripts in the appendix. The construction of
the appendix is more “direct” as it avoids the double complementation pro-
cess. This makes the construction more intuitive and possibly more efficient,
although it presents similar worst case doubly exponential complexity.

We may be interested also in restricting the set of authorized editing
scripts. For instance, given a fixed view V , one may wish the set Us to
be such that every view editing script uv has a unique propagation from each
source document:

Definition 5.12. A set of source editing scripts Us is V -unambiguous if for
all us, u

1
s in Us such that π1pusq � π1pu1sq, either us � u1s or us �V and u1s �V

are not equivalent.

Given a regular set of (stable) editing scripts Us and a view V , we would
like to compute U 1

s � rUss such that U 1
s�V � Us�V and U 1

s is V -unambiguous.
In general, this disambiguation of Us cannot be achieved.

Proposition 5.31. Testing whether Us is V -unambiguous is undecidable.

We can prove similarly there is no algorithm that can compute a (regular)
set disambiguating Us. However, for k-synchronized editing scripts, the dis-
ambiguation can be achieved.

Theorem 5.32. Given a view V , and Us � Uk
V , we can compute a reg-

ular set of editing scripts U 1
s � Us such that U 1

s � V � Us � V and U 1
s is

V -unambiguous.

Proof. We proceed by an exponential reduction to Theorem 5.14. Given an
editing scripts t, the left normal form of t is the unique script lnfptq equivalent
to t such that for every nodes n.i, n.pi � 1q P Nt, labtpn.iq P Σ � tεu ùñ
labtpn.pi�1qq R tεu�Σ. Intuitively, it is obtained from t by placing insertions
before deletions for the following-sibling ordering. As usual, this notion is
extended to sets of alignments: lnfpLq � tlnfptq | t P Lu. Fix a view V ,
and Us � Uk

V . Let L0 � lnfpUs � V q. This is a regular set of editing scripts
since we supposed Us � Uk

V . Therefore, we can compute an automaton
for the set of alignments: L � tt P Σedit,3 | π1,3ptq P L0 ^ π2,3ptq P TΣ1u,
where Σ1 � tpα, αq | α P Σεu. We consider L as an editing script with

197

5. The View Update Problem

first component over alphabet Σedit and second component over alphabet Σε.
Then, applying Theorem 5.14, we can compute a regular language L1 such
that L1 � L and the domains of L1 and L are equal. Posing U 1

s � π1,3pL1q,
we get: U 1

s � V � Us � V and U 1
s is V -unambiguous.

To conclude, let us add a few words about our definition for equivalence.
Not only does this definition take better account of identifiers and data-
values, it also helps incidentally to define the k-synchronized restriction. If
we had defined the equivalence as the equality of the relations, i.e., letting t
and t1 be equivalent if and only if π1ptq � π1pt1q and π2ptq � π2pt1q, we could
have adapted most of our results except for this last local restriction on the
number of insertions defining which we called “k-synchronized updates”.

198

6. The View Schema

Contents
6.1. Computing the View Schema 200

6.2. Determinism in View Schema: XML DTDs 203

6.2.1. Linear Algorithm to Test Determinism 203

6.2.2. “Determinizing” Non-deterministic Expressions . . 217

6.3. Approximation . 220

6.3.1. Subset, Subword, and Parikh Approximations . . . 220

6.3.2. Indistinguishability of Approximation 228

The non-materialized framework relies on the presentation of a view schema
to the user, so that she can formulate her queries. Ideally, for a view V over
domain D0, the view schema should be a representation of View pV,D0q, a
DTD representation for instance. In the most general case D0 is an arbitrary
regular language, and V is an arbitrary view (i.e., a regular set of align-
ments). We also consider the effect of various restrictions on D0 and V on
the view schema.

Two different obstacles may arise when we try to compute a DTD D

satisfying LpDq � View pV,D0q. On the one hand, there may be no DTD
that represents the language View pV,D0q. Representing the view schema
indeed raises the question of the expressivity of our views: views that are too
expressive yield view schemata that need not even be regular. But on the
other hand, even when the view schema can be represented with an XML
DTD, the computation of this view schema might prove intractable, and the
size of the resulting schema may be prohibitive. This raises the question of
the complexity for computing a view schema.

The first section of this chapter surveys the expressivity of various restric-
tions on the view. We then investigate the particular case of XML DTDs
where the regular expressions are required to be deterministic. Finally, we
provide a few algorithms to approximate the view schema when needed. We
have no quick fix for the complexity problem, though: only the most simple
of our approximations is guaranteed to give a small and easily computable
view schema.

199

6. The View Schema

6.1. Computing the View Schema

First of all, View pV,D0q need not be a local tree language, as illustrated by
pD1, ann1q in Example 6.1. When View pV,D0q is a regular language, we can
resort to EDTDs, or similar representations that overcome the limitations
of DTDs. However View pV,D0q need not always be regular, when internal
nodes are deleted as in pD2, ann2q from Example 6.1. In any case, pD3, ann3q
shows that the deletion of internal nodes may result in an exponential blowup
in the size of the view schema.

Example 6.1. We consider the three annotated DTDs pD1, ann1q, pD2, ann2q,
and pD3, ann3q specified below. Let Q1, Q2 and Q3 denote queries representing
those annotated DTDs.

D1 : rÑ abc

bÑ d | e

D2 : rÑ c

cÑ pacbq | ε

D3 : rÑ ak

ai Ñ ai�1ai�1
a0 Ñ a

ann1pr, aq � rñ{ó::ds,

ann1pr, cq � rð{ó::ds,

ann2pr, cq � ann2pc, cq � false,

ann2pc, aq � ann2pc, bq � true,

ann3pr, akq � false,

ann3pa0, aq � true.

We observe that View pQ1, D1q � trpa, bpdq, cq, rpbpeqqu, although regular,
cannot be captured with a DTD, whereas View pQ2, D2q � trpakbkq | k P Nu
is not even a regular tree language. And finally, View pQ3, D3q � trpa2

k

qu
can be captured by a DTD but requires a DTD of size exponential in |D3|.

For simple and general (XReg) annotations, we survey the impact of the
interval-boundedness and upward-closure assumptions on the expressiveness
of the view schema.

Simple Annotations When the view is specified by an annotated DTD
pD, annq where ann maps each pair into true or false, i.e., for simple anno-
tations, the view schema is local. For upward-closed or even for interval-
bounded annotations, the view schema is regular. Consequently, the view
schema can be represented by a DTD for every interval-bounded simple an-
notation. Reciprocally, any DTD is trivially the view schema of some upward-
closed simple annotation if we consider an annotation that does not hide any
node. Without restrictions, however, simple annotations do not guarantee a
regular view schema, as illustrated by D2. But the view schema can always
be expressed with a CDTD. Reciprocally, every CDTD D0 � pΣ, r, P q is the
view schema of some simple annotation: take for D a DTD whose symbols
are the union of Σ and of all terminals and non terminals occurring in some
grammar from P . We can suppose without loss of generality that all gram-
mars in P use distinct non-terminals. The production rules of D are then
defined from those in the grammars from P , and the annotation hides the
non-terminals.

200

6.1. Computing the View Schema

Regular XPath Annotations The view schema obtained for any interval-
bounded Regular XPath annotation or even for any interval-bounded MSO
query is regular according to Proposition 4.2, and thus can be expressed as an
EDTD. Reciprocally, every EDTD is the view of some DTD for some XReg

annotation. The proof of this is quite similar to the proof for Proposition 4.37
and can be immediately deduced from the one for Lemma 6.2:

Lemma 6.1. Let E � pΣ,Σ1, D, µq an arbitrary EDTD. There exists an in-
terval bounded XReg query, satisfying View pQ, TΣq � LpEq.

Proof. The result follows immediately from the proof of Lemma 6.2: when E

is an EDTD, the productions are given immediately with a regular expression,
there is no need for non-terminals except the start symbol, and therefore the
query Q is 1-interval bounded.

Using views that are not interval bounded brings hassle when it comes to
constructing the view schema: the view schema may have to represent an
arbitrary context-free language (if we consider view trees of depth one). We
prove that every ECDTD can be expressed as the view of some XReg query.

Lemma 6.2. Let E � pΣ,Σ1, D, µq an arbitrary ECDTD. There exists a
general XReg query, satisfying View pQ, TΣq � LpEq.

Proof. Let D � pΣ1, r, P q the underlying DTD in E . We define a XReg

query Q and DTD D0 such that View pQ,D0q � LpEq. The proposition
follows immediately by Lemma 3.17. For technical reasons, we assume that
E does not relabel its root, that Σ and Σ1 have only the root symbol r in
common, and that the single node tree r consisting of the root only belongs
to LpEq. Those assumptions could be disposed of at the cost of “heavier”
constructions.

We further assume that non-terminals appearing in the context-free gram-
mars P paq and P pbq are disjoint for every a � b P Σ1, and are also disjoint
from Σ and Σ1. We denote the union of all such non-terminals by V . We
define a new DTD D0 � pΣ Y Σ1 Y V , r, R0q, where P0 is defined as follows.
Let α P Σ. We denote the symbols from Σ1 satisfying µpβq � α by β1, . . . , βk,
and denote by S1, . . . , Sk the start symbols from P pβ1q, . . . , P pβkq. Then we
define R0pαq as S1 � � � � � Sk. For every U P V , U appears in a single gram-
mar Gi � pV, T, Si, Piq from P . We define R0pUq as the regular expression
obtained from PipUq by replacing every symbol β P Σ1 by the two symbols
βµpβq. R0pβq is set to ε for every β P Σ1.

One can easily build a query Q that checks, for every node with label in Σ
whose left sibling has label β, that its child is labeled with the initial symbol
in grammar P pβq. This query selects only the root r if the verification fails,
and select every node with label in Σ otherwise. Such a query will satisfy
View pQ,D0q � LpEq.

201

6. The View Schema

Reciprocally, the view of a XReg query or MSO query can always be ex-
pressed as an ECDTD. We can easily prove that View pQ,Dq is the language
of some ECDTD for every regular tree language D and every query Q in
XReg or even MSO , by encoding the state of the automaton into the labels
from Σ1 but not from Σ. This concludes the characterization of the view
languages obtained for XReg queries.

We observe that assuming the source schema to be an XML DTD has
no effect on the above results. For instance, every EDTD is the view of
some XML DTD for some XReg annotation. We summarize the results in
Figure 6.1 in the case when the view is defined with an annotated DTD.
The table still holds if we suppose the domain to be given by an XML DTD
instead of an arbitrary DTD. Also, the first line of the table remains the
same if we use query automata instead of XReg annotations to define the
views.

general interval bounded upward-closed

XReg annotation ECDTD EDTD EDTD

simple annotation CDTD DTD DTD

Figure 6.1.: View language obtained by each annotation when the domain
is a DTD (same table from an XML DTD).

Testing if The View Schema can be Expressed as a DTD/EDTD...
Given an ECDTD or a CDTD, we cannot decide if there exists an EDTD
(or a DTD, or even an XML DTD) with the same language. This follows
immediately from the undecidability of MembpCFL,MSOq, the problem of
testing if the language of a context-free grammar is regular, which remains
undecidable for deterministic regular languages according to Proposition 3.4.
However, given an EDTD, we can decide if there exists some equivalent DTD,
and this problem is Exptime-complete [MNSB06] as we already mentioned
on page 86. Moreover, given a DTD, we can decide (1) if it is an XML DTD,
in polynomial (linear) time, and if not (2) if there exists some equivalent
XML DTD, in exponential time using a result from Brüggeman-Klein and
Wood, as we shall discuss in the next section. Bex et al. [BGMN09] show
the problem is Pspace-hard, and leave it as an open question whether it is
Pspace-complete. Combining these results, testing if an EDTD admits an
equivalent XML DTD is Exptime-complete: the lower bound carries over
(for instance considering NTAs over binary trees), and the upper bound is
obtained by first testing if the EDTD admits an equivalent DTD in expo-
nential time, in which case the DTD is of linear size, and we can test if the

202

6.2. Determinism in View Schema: XML DTDs

regular expressions occurring in the DTD denote deterministic languages in
exponential time.

In the following sections, we address the problems of computing a repre-
sentation or an approximation by a DTD (or an XML DTD) for the view
schema. In the first section, we investigate the verification of determinism
in XML DTD. More exactly, we discuss how determinism of regular expres-
sions can be checked, and propose a few solutions when a DTD fails the
verification for determinism. Also, we survey some algorithmic issues associ-
ated with XML DTDs and discuss, among others, how they allow for faster
validation of a file against the schema. We finally outline some solutions to
approximate the view schema when obtaining a DTD (or an XML DTD)
representing the view language proves unfeasible.

6.2. Determinism in View Schema: XML DTDs

In a favorable setting, a DTD for the view schema may be proposed by the
administrator. In this case, checking if this DTD is an XML DTD is an easy
task: for each production rule, we check if the regular expression is deter-
ministic. Given a regular expression, Brüggeman-Klein proposes a quadratic
algorithm 1 in Op|Σ|�|e|q for checking the determinism of a regular expression
e over alphabet Σ. This algorithm simply computes the Glushkov automaton
for e and checks if this automaton is deterministic. We improve the com-
plexity into a truly linear algorithm in the next section:

Theorem 6.3. Determinism of a regular expression e can be tested in
time Op|e|q, for an arbitrary alphabet.

This algorithm assumes a RAM model with word size logarithmic in e. We
also discuss how our linear time algorithm can be combined with the method
from Kilpeläınen and Tuhkanen [KT07] to obtain a linear algorithm for test-
ing determinism of a regular expression with numeric occurrence, which finds
applications in the validation of XML Schema documents [KT07, Kil11].

6.2.1. Linear Algorithm to Test Determinism

We investigate in this section the problem of testing determinism:

Problem 6. Given a regular expression e, test if e is deterministic.

We show that determinism can be tested in Op|e|q linear time, thus im-
proving upon the Op|e| � |Σ|q quadratic algorithm by Brüggeman-Klein and
Wood [BKW98] when the size of the alphabet is not bounded by a constant.
The alphabet Σ remains a finite set of symbol, but its size may be of the

1She actually claims a linear algorithm, but she assumes a constant size alphabet

203

6. The View Schema

same order than |e|. This is actually often the case, since single occurrence
regular expressions form a huge majority of the expressions that occurr in
practice according to [BNSV10].

We provide two different algorithms. One proceeds by reduction to the
evaluation of a Regular XPath formula with data equality, using the property
that such a formula can be evaluated with linear data complexity [BP11].
The other is an ad-hoc algorithm. The constructions underlying this latter
algorithm have been extended in [GMS12] to provide new algorithms for the
evaluation of deterministic regular expressions.

Our algorithm for testing determinism does not construct the Glushkov
automaton of e, but works directly on the parse tree of e. Similarly to the
construction of the Glushkov automaton, it exploits the relations Follow ,
First and Last as defined in Section 3.1.3. We cannot compute these relations
for every subexpression of e but we provide algorithms to check efficiently if
an element belongs to these relations.

We slightly modify the definition of regular expressions from Section 3.1.3.
First of all, we assume that every expression accepts at least one word of
size one or more, otherwise the expression is obviously deterministic. Then
we do not use ε in our syntax for expressions, but use symbol “?” instead.
In this section, regular expressions over Σ are thus defined by the following
grammar, where d represents concatenation, � union, ? choice, and � the
Kleene star: e � a pa P Σq | peq d peq | peq � peq | peq? | peq�. Note that
Lppeq?q � LpeqYtεu, where ε denotes the empty word. In expressions, we do
not write parentheses around words over Σ and often omit d symbols. We
require of our regular expressions e that:

(R1) e � p#e1q$ and # and $ do not appear in e1

(R2) ppe1q�q� does not appear in e

(R3) if pe1q? appears in e, then ε R Lpe1q

An arbitrary regular expression can be changed easily (in linear time) into
an equivalent one of the required form.

We identify a regular expression with its parse tree (as illustrated in Fig-
ure 6.2), and define the positions Pospeq of e as the leaves of e whereas Ne

denotes the set of all nodes from e. For a node n P Ne we denote by e{n
the subexpression of e rooted at n. Every tree t is implemented as a pointer
structure, where Lchild tpnq (resp. Rchild tpnq) returns the left (resp. right)
child of node n in t and parent tpnq returns the parent of n in t. The pointers
return Null if the respective node does not exist. For unary nodes Rchild tpnq
returns Null . We denote by labtpnq the label of n in t, and by ¤t the (re-
flexive) ancestor relationship in t. If m ¤t n then we also say that n is a
descendant of m. Thus, each node is ancestor and descendant of itself.

The size of e is as defined on page 52, with |peq?| � 1 � |e|. Consequently,
the size of an expression corresponds to the size of its parse tree. Furthermore,

204

6.2. Determinism in View Schema: XML DTDs

restrictions (R2) and (R3) guarantee that |e| is linear in |Pospeq|.
We say that e is nullable if ε P Lpeq. Nullability can be expressed induc-

tively, as already observed in the literature (see, e.g., [BK93]): e1 d e2 is
nullable if and only if both e1 and e2 are nullable, e1 � e2 is nullable if and
only if e1 or e2 is nullable, e�1 and e1? are always nullable, whereas a P Σ is
never nullable.

Whenever the regular expression or the tree is clear from context, we drop
the subscript and write Follow , lab, and ¤. We call a pair of positions
q, q1 P Pospeq a witness for non-determinism if it satisfies the following two
conditions: (1) labepqq � labepq1q and (2) there exists some p P Posptq such
that q, q1 P Follow eppq. Thanks to assumption (R1), we can rephrase the tra-
ditional definition of determinism from section 3.1.3 as follows: an expression
is non deterministic if it admits a witness for non-determinism, otherwise it
is deterministic.

Example 6.2. Let e1 � pab � bpb?qaq� and e2 � pa�ba � bbq�. Denote by
p1, . . . , p5 the positions of e1 in left-to-right order, and by q1, . . . , q5 those of
e2. Then e1 � pa1b2 � b3pb4?qa5q� and Follow e1pp3q � tp4, p5u. Similarly,
e2 � pa�1b2a3 � b4b5q�, and Follow e2pq3q � tq1, q2, q4u. Expression e1 is deter-
ministic, while e2 is non-deterministic because labe2pq2q � labe2pq4q � b.

To conclude these preliminaries, we introduce lowest common ancestors
queries, which are the cornerstone of our algorithm. Given a tree t and two
nodes n and n1 in t, we denote by LCAtpn, n1q the lowest common ancestor
of n and n1 in t. As usual, we drop the subscript when it can be deduced
from context. Harel and Tarjan [HT84] proved that after a linear preprocess-
ing, one can answer in constant time lowest common ancestor queries. The
constants have been improved in a subsequent series of papers, and Bender
et al. [BFCP�05] evaluate the performance of the algorithm experimentally:
they observe that the algorithm does not significantly outperform (and is even
often outperformed by) algorithms with slightly higher asymptotic complex-
ity. Alstrup et al. [AGKR04] survey most of those constructions and proposes
a labeling scheme for nearest common ancestor queries, whereas the other
constructions require external data structures such as a few arrays.

Lemma 6.4 ([HT84]). A tree t can be preprocessed in time Op|t|q, so that
for every nodes u and v in t, LCApu, vq can be computed in constant time.

Similarly, one can preprocess a tree t in linear time to answer ancestor queries
in constant time. One possible solution to the problem is to use the LCA
preprocessing, as u ¤ v if and only if LCApu, vq � u. A simpler technique
to answer such queries in constant time could be the use of rich identifiers,
storing for instance the pre- and post-order numbers of the node, that is, the
position of its opening and closing tags in the linearization. Smarter labeling
scheme have actually been devised to minimize the size of the labels required
for ancestor queries, but the complexity remains essentially the same.

205

6. The View Schema

d

�

d

?

c

d

d

a �

b

d

?

a

c

d

b a

ra, cs

rbs

ras

Regular expression e0

n1

n2

n3

n4

n5

p1

p2

p3 p4

p5

p6 p7

d

�

d

d

a

?

a

d

a

a-skeleton

n1

n2

n3

n5

ra, cs : color � ra, cs

n : SupFirstpnq

n : SupLastpnq

Figure 6.2.: Expression e0 � pc?ppab�qpa?cqqq�pbaq.

Remark 6.1. After a linear preprocessing of t, one can decide in constant
time for any nodes u, v P Nt if u ¤t v.

Structural properties of the expression

We first survey some properties of the relations First , Last and Follow . The
next lemma was stated before, e.g., in [CP97, PZC96], but not explicitly in
terms of lowest common ancestors.

Lemma 6.5. Let p, q P Pospeq and n � LCApp, qq. Then q P Followppq iff
one of the following two conditions is satisfied:

(1) labpnq � d, q P FirstpRchildpnqq, and p P LastpLchildpnqq, or

(2) n has some ancestor labeled with � and, if we denote by s the lowest
�-labeled ancestor of n, then q P Firstpsq and p P Lastpsq.

Lemma 6.5 says that there are only two ways in which positions follow each
other: (1) through a concatenation, or (2) through a star. We write q P
Followd

e ppq if (1) is satisfied, and q P Follow�
e ppq if (2) is satisfied. For

instance, in e0 (Figure 6.2), we have p4 P Followd
e0
pp3q and p1 P Follow�

e0
pp5q.

Note, however, that there may exist some positions p and q that satisfy
simultaneously (1) and (2).

206

6.2. Determinism in View Schema: XML DTDs

Firstppq � p for all p P Pospeq, i.e., if labppq P Σ

Firstpe1 d e2q �

"
Firstpe1q Y Firstpe2q if e1 is nullable
Firstpe1q otherwise

Firstpe1 � e2q � Firstpe1q Y Firstpe2q
Firstpe�1q � Firstpe1q
Firstpe1?q � Firstpe1q

Lastppq � p for all p P Pospeq, i.e., if labppq P Σ

Lastpe1 d e2q �

"
Lastpe1q Y Lastpe2q if e2 is nullable
Lastpe2q otherwise

Lastpe1 � e2q � Lastpe1q Y Lastpe2q
Lastpe�1q � Lastpe1q
Lastpe1?q � Lastpe1q

Figure 6.3.: Inductive definition for the First and Last sets.

It was also observed earlier, e.g., [CP97, PZC96, HM98], that First and
Last-sets (and nullability) can be defined in a syntax-directed way over the
parse tree of e. Figure 6.3 summarizes this inductive definition of the first
and last sets.

We observe on Figure 6.3 that for every node n, either Firstpparentpnqq
contains Firstpnq or they are disjoint, and in the latter case Firstpnq is also
disjoint with Firstpn1q for every ancestor n1 of n. The same property also
holds for the Last sets. On the basis of this observation, we now define two
Boolean properties SupFirst and SupLast for every node n, where n1 denotes
the parent of n:

SupFirstpnq iff labpn1q � d, n � Rchildpn1q, and Lchildpn1q is non-nullable.

SupLastpnq iff labpn1q � d, n � Lchildpn1q, and Rchildpn1q is non-nullable.

For every node n, SupFirstpnq holds if and only if the First set of n is disjoint
from the one of its parent, and the same holds for SupLast and the Last set.
We define two pointers SupFirstpnq and SupLastpnq for every node n. Pointer
SupFirstpnq points to the lowest ancestor x of n such that SupFirstpxq. Sim-
ilarly, SupLastpnq points to the lowest ancestor x of n such that SupLastpxq.
Recall that by (R1) we assumed e to be of the form p#e1q$; this implies
that for every node n in e1 the pointers SupLastpnq and SupFirstpnq are well
defined. Those pointers will never be applied to the “help nodes” that are
not in e1. We also define for every node n a pointer pStarpnq toward the
lowest ancestor of n labeled with a Kleene star (possibly n itself). If there
is no such ancestor, pStarpnq � Null . During preprocessing we compute the
pointers SupFirst and SupLast for every node in e, in linear time.

207

6. The View Schema

The relations First and Last can be expressed in terms of ancestorship
with respect to the SupFirst and SupLast pointers:

Lemma 6.6. Let p P Pospeq and n P Ne.

(1) p P Firstpnq iff SupFirstppq ¤ n ¤ p, and

(2) p P Lastpnq iff SupLastppq ¤ n ¤ p.

The following technical lemmas state relationships between positions and
their SupFirst and SupLast nodes.

Lemma 6.7. Let p, q P Pospeq and q P Follow eppq. Then

(1) parentpSupFirstpqqq ¤ p and

(2) parentpSupLastppqq ¤ q.

Proof. To show (1), assume that parentpSupFirstpqqq is not an ancestor
of p. Then n � LCApp, qq is an ancestor of parentpSupFirstpqqq, hence
SupFirstpqq �¤ n. By Lemma 6.6(1) we obtain q R Firstpnq and therefore, by
Lemma 6.5, q does not follow p. Point (2) can be proved similarly.

Lemma 6.8. Let p and q be two positions of e such that q follows p. If
SupLastppq ¤ parentpSupFirstpqqq then SupFirstpqq is nullable.

Proof. Let p, q P Pospeq such that SupLastppq ¤ parentpSupFirstpqqq and
q P Followppq, and let x � LCApp, qq. Assume first that q P Followdppq.
Then labpxq � d and there are no SupLast nodes between p and SupLastppq
except SupLastppq. It means that in particular Rchildpxq is nullable. Hence
SupFirstpqq is nullable if it is the right-child of x. Otherwise SupFirstpqq is
an ancestor of x. In that case, there are no SupFirst nodes between q and
SupFirstpqq, except SupFirstpqq, so that Lchildpxq is nullable. Consequently,
x is nullable, and there are no SupFirst nor SupLast nodes between x and
SupFirstpqq, except the node SupFirstpqq. Therefore, SupFirstpqq is nullable.
The case q P Follow�ppq is handled similarly: pStarpxq is nullable and satisfies
SupFirstpqq ¤ pStarpxq ¤ x. Moreover there are no SupFirst nor SupLast
nodes between x and SupFirstpqq, except SupFirstpqq. Thus, SupFirstpqq is
nullable.

Algorithm scheme: Our algorithm to test determinism searches a wit-
ness for non-determinism pq, q1q. We must take care of the quadratic
number of candidate pairs pq, q1q, and moreover we cannot afford to enu-
merate all positions p to check if q, q1 P Follow eppq.

We prove that only a linear number of pairs pq, q1q must be considered in
order to establish whether e is deterministic or not, and for each pair one
can decide in constant time if it is a witness for non-determinism, that is, if
there exists a position p followed by both q and q1.

208

6.2. Determinism in View Schema: XML DTDs

Candidate Pair Reduction

Let P1peq denote the condition:

“for every q � q1 in Pospeq, SupFirstpqq � SupFirstpq1q implies
labpqq � labpq1q”.

We claim that every deterministic expression satisfies (P1). Indeed, let e a
deterministic expression. Let q and q1 two distinct positions of e such that
SupFirstpqq � SupFirstpq1q. We denote by n this node SupFirstpqq. Since the
First and Last sets of any node are non-empty, there exists some position p in
LastpLchildpparentpnqqq. By definition, parentpnq � LCApp, qq � LCApp, q1q.
By Lemma 6.5, q, q1 P Follow eppq, hence labpqq � labpq1q by definition of
determinism.

Testing (P1) in linear time is straightforward: during one traversal of e we
group the positions with same SupFirst-pointer. In a second step we check
that all positions of a same group have distinct labels, for every group. This
can easily be achieved in linear time with a single array of size Σ. Therefore
we assume from now on that e satisfies (P1).

Point (1) of Lemma 6.7 suggests to store information about position q in
the parent n of SupFirstpqq: for every position p, if q P Followppq then n is
an ancestor of p. For each position p labeled a, we therefore

• assign color a to the node parentpSupFirstppqq

• say that p is a witness for color a in the node parentp SupFirstppqq. 2

Observe that each node may be assigned several colors, but, since (P1) holds,
each node has at most one witness per color.

Example 6.3. In Figure 6.2, node n3 has colors a and c. The witness for
color a (resp. c) in n3 is p4 (resp. p5).

Lemma 6.7 states that a position q labeled a that follows p is a witnesses for
color a in some ancestor of p. Thus, if two a-labeled positions q and q1 follow
a same position p (in other words: pq, q1q is a witness for non-determinism),
then q and q1 are witness for color a in some ancestors n and n1 of p. In
particular, one of n or n1 is a strict ancestor of the other because (P1) rules
out the possibility of having n � n1.

There may still be quadratically many such pairs q and q1. The remaining
of the section further reduces the number of pairs that should be considered
when searching a witness for non-determinism. Essentially, for every node
n of color a, we shall identify three positions whose combination may build
a witness for non-determinism: the witness for color a in n, the unique a-
labeled position in Firstpnq if any, and some other specific position.

2the witness for color (a position) should not be confused with a witness for non-
determinism (a pair of position)

209

6. The View Schema

We say that a node n P Ne has class a if n has color a, or n is a position
labeled a, or n is the lowest common ancestor of two nodes of class a. The
a-skeleton ta of e consists of all nodes n of class a plus their SupLast and
pStar nodes (as defined in Section 3.1.3). The node labels in ta are taken
over from e, and the tree structure is inherited from e: n1 is the left (resp.
right) child of n in ta if (1) n1 is in the subtree of the left (resp. right) child of
n in e, (2) n ¤ n1, and (3) there is no n2 in ta with n ¤ n2 ¤ n1. If a node has
no left (resp. right) child defined in this way, then the corresponding pointer
is set to Null . Note that a node in ta can be labeled d or � and have its left
(or right) child point to Null . Figure 6.2 presents a regular expression and
its a-skeleton. Our skeleta are very similar to the skeleta from [BP11], and
so they can all be computed in linear time:

Lemma 6.9. The collection of a-skeleta for all a P Σ can be computed in
time Op|e|q.

Proof. The size of the a-skeleton is linear in the number of positions labeled
a in e. Hence the size of the collection of a-skeleta is linear in |e|. The skeleta
can be constructed in linear time by simply applying LCA repeatedly, insert-
ing each position from e in left-to-right order using the linear preprocessing
so that the LCA of two nodes of e is obtained in constant time. This con-
struction is detailed in Proposition 4.4 of [BP11].

In the a-skeleton ta, we equip each node n with three pointers: Witnesspn, aq,
FirstPospn, aq, and Nextpn, aq. For every node n in ta,

• if n has color a then Witnesspn, aq is the witness for color a in n (and
is undefined otherwise)

• FirstPospn, aq is the position p labeled a such that p P Firstpnq if it
exists (and is undefined otherwise); note that property (P1) guarantees
that there is at most one such position p

• Nextpn, aq is the set of all positions in FollowAfter epnq labeled a.

The set FollowAfter epnq is an extension of Follow to internal nodes n of e,

FollowAfter epnq � tq | n �¤ q and Dp P Lastpnq.q P Follow eppqu.

Constructing the data structures FirstPos and Witness is straightforward:
Witness is built simultaneously with the a-skeleton; FirstPos can for instance
be computed in a single bottom-up traversal of each a-skeleton, using pointers
SupFirst from e and ancestor queries in e. Let n be the root node of the
a-skeleton. Then BuildNextpa, n,∅q in Algorithm 2 builds the data structure
Nextpn1, aq for all nodes n1 of the a-skeleton.

210

6.2. Determinism in View Schema: XML DTDs

Algorithm 2: Computing Nextpn, aq, if e is deterministic.

procedure BuildNext(a : Σ, n : Node, Y : Set(Node)) : Bool
1 if SupLastpnq
2 then Y Ð ∅

3 if n is the left child in ta of a d-node and
4 n has a right sibling n1 in ta and
5 p SupLastpnq or parent tapnq � parentepnqq
6 then Y Ð Y Y tFirstPospn1qu
7 Nextpn, aq Ð tp P Y | n �¤ pu
8 if labpnq � �
9 then Y Ð Y Y tFirstPospn, aqu

10 if |Y | ¡ 2
11 then return false

12 if Lchild tapnq � Null
13 then return true

14 else B Ð BuildNextpa,Lchild tapnq, Y q
15 if Rchild tapnq � Null
16 then return B

17 else return B ^ BuildNextpa,Rchild tapnq, Y q
end procedure

Lemma 6.10. Calling BuildNextpn, a,∅q for each a P Σ and root node n
of ta takes in total time Op|e|q. If any call returns false then e is non-
deterministic. Otherwise, the set Nextpn, aq defined during the execution
consists of all positions in FollowAfter epnq labeled a, for n P Nta and a P Σ.

Proof. The Op|e|q time is achieved because (1) BuildNext is called at most
m-times, where m is the number of nodes of all skeleta, and m P Op|e|q by
Lemma 6.9, and (2) each line of the algorithm runs in constant time be-
cause |Y | ¤ 2 at each call, due to Line 10. To see the correctness consider
the execution along a path in ta. If at Line 7 the current node n has an
ancestor u labeled � with no SupLast-node on their path, then Y contains
FirstPospuq; if n is in the left subtree of an ancestor u labeled d with no
SupLast-node on their path, and n has a right sibling n1 in ta, then Y con-
tains FirstPospn1q. Together with Line 7, these conditions are equivalent to
FirstPospuq P FollowAfter epnq. Clearly, e is non-deterministic if |Y | ¡ 2 in
Line 10.

We define another condition:

(P2) for every a P Σ and n P Nta , Nextpn, aq contains at most one element.

Clearly, (P2) can be tested in linear time (for instance by incorporating it
into Algorithm 1). If (P2) is false, then e is non-deterministic. Thus, from

211

6. The View Schema

now on we assume that both (P2) and (P1) are true. We identify Nextpn, aq
with q if Nextpn, aq � tqu, and let it be undefined otherwise.

Lemma 6.11. Let p, q P Pospeq with labepqq � a. If q P Follow eppq then the
lowest ancestor n of p having color a exists and satisfies q � Witnesspn, aq
or q � FirstPospn, aq or q P Nextpn, aq.

Proof. By Lemma 6.5, Lemma 6.7 (1), and Lemma 6.10: q � Witnesspn, aq
if Rchildpnq ¤e q, q � FirstPospn, aq if Lchildpnq ¤e q, and q � Nextpn, aq if
n �¤e q.

From Lemma 6.11 and the definition of (P1) and (P2) we obtain that an ex-
pression e is non-deterministic iff one of the following three conditions is satis-
fied: (1) (P1) is false, (2) (P2) is false, or (3) there exist a P Σ, n P Nta of color
a, and two distinct positions q, q1 in tFirstPospn, aq,Witnesspn, aq,Nextpn, aqu
such that Follow�1

e pqq X Follow�1
e pq1q � ∅.

Furthermore, we prove that the case where both q and q1 are different
from Witnesspn, aq need not be considered. Let F and N denote the nodes
Nextpn, aq and FirstPospn, aq, and let nF and nN denote the parent of their
SupFirst-node. We can prove that either nF ¤ nN ¤ n, in which case
F � FirstPospnN , aq (and N � WitnesspnN , aq), or nN ¤ nF ¤ n, in which
case N is one of FirstPospnF , aq or NextpnN , aq (and F � WitnesspnF , aq).
We have thus proved that in an expression that satisfies (P1) and (P2), every
witness for non-determinism pq, q1q with labpqq � a consists of the witness for
color a in some node n together with one of FirstPospn, aq or Nextpn, aqu.

Lemma 6.12. The expression e is non-deterministic iff (P1) is false, (P2)
is false, or there exist a P Σ, a node n P Nta of color a, and a position q in
tFirstPospn, aq,Nextpn, aqu such that Follow�1

e pqqXFollow�1
e pWitnesspn, aqq

contains at least one position.

Algorithm Determinism Testing

To check determinism using Lemma 6.12 we need to check for a P Σ and
n P Nta of color a, and for every position q in tFirstPospn, aq,Nextpn, aqu
whether or not

Follow�1
e pqq X Follow�1

e pWitnesspn, aqq � ∅.

Two combinations can occur for a position p:

(1) Witnesspn, aq and Nextpn, aq follow p, or

(2) Witnesspn, aq and FirstPospn, aq follow p, or

212

6.2. Determinism in View Schema: XML DTDs

d

d

c d

?

b

?

a

a

�

d

a d

?

b

?

a

n

W

N

n

F

W

e1 e2

Figure 6.4.: Combinations (1) and (2).

To understand the first combination, consider the expression e � pcpb?a?qqa,
and let n be the parent of the c node in e. Thus, n is of color a, with
the left a in e as witness. Clearly e is non-deterministic: take p as the c
position, then both Witnesspn, aq and Nextpn, aq follow p. The same holds
for the expressions e1 � pcpa?b?qqa and e2 � pcpb?aq�qa. However, expression
e3 � pcpb?aqqa is deterministic; this is because n’s right subtree is non-
nullable, which prevents that Nextpn, aq and Witnesspn, aq both follow a
same position p. It is not hard to see, and is formally shown in the proof of
Theorem 6.13, that the first combination occurs if and only if the right-child
of n is nullable.

Let us now consider combination (2). This combination can only occur if
there is a �-node S � pStarpnq above n, and SupLastpnq is above this node S.
Let e � papb?aqq� and let n be the parent of the first a-position. As we can see,
this expression is deterministic. This is for a similar reason as before: because
the right child of n is non-nullable. If we consider e1 � papb?a?qq� then this
expression is indeed non-deterministic and it holds that both FirstPospn, aq
and Witnesspn, aq follow position p, where p is for instance the b-position.
Thus, combination (2) requires that the right child of n is nullable, and also
that FirstPospS, aq � FirstPospn, aq. The latter guarantees that on the path
from S to FirstPospn, aq there is nothing non-nullable “to the left”, and
hence, that FirstPospn, aq follows the same position p that Witnesspn, aq
follows.

To check determinism of e we check (P1), (P2), and then we execute for
every a P Σ and every node n with color a, CheckNodepn, aq of Algorithm 3;
if any call returns false, then e is non-deterministic.

Theorem 6.13. Determinism of a regular expression e can be decided
in time Op|e|q.

Proof. Let S, W , N , and F denote the nodes pStarpnq, Witnesspn, aq, Nextpn, aq,
and FirstPospn, aq respectively. Since (P1) and (P2) can be tested in Op|e|q
time, it suffices, by Lemma 6.12, to prove the following two statements.

213

6. The View Schema

(i) Follow�1
e pW q X Follow�1

e pNq � ∅ iff Rchild epnq is nullable and N �
Null ,

(ii) Follow�1
e pW qXFollow�1

e pF q � ∅ iff F � Null , S � Null , Rchild epnq is
nullable, FirstPospS, aq � F , and SupLastpnq ¤ S.

Let us prove statement (i) first. If N � Null and Rchild epnq is nullable then
Lchild epnq is not a SupLast-node. Therefore any position in LastpLchild epnqq
belongs to Follow�1

e pW q X Follow�1
e pNq. For the only-if direction, let q

be a position in Follow�1
e pW q X Follow�1

e pNq. Then in particular N �
Null . Node n is a strict ancestor of q since q P Follow�1

e pW q and n �
parentepSupFirstpW qq. As q belongs to Follow�1

e pNq, SupLastpqq is an an-
cestor of n. This implies that Rchildpnq is nullable according to Lemma 6.8,
since Rchildpnq � SupFirstpW q and W follows q.

We now prove (ii). If F � Null , Rchild epnq is nullable, FirstPospS, aq � F ,
and SupLastpnq ¤ S, then any q in LastpLchildpnqq belongs to pFollowd

e qpW qX
pFollow�

e q
�1pF q. Conversely, let q be a position in Follow�1

e pW qXFollow�1
e pF q.

As q belongs to Follow�1
e pW q, node n is a strict ancestor of q. If Rchild epnq ¤e

q then q P pFollow�
e q
�1pF q, hence FirstPospS, aq � F and SupLastpnq ¤ S,

and furthermore SupLastpqq ¤ S, so that Rchild epnq is nullable according
to Lemma 6.8. Assume now that Lchild epnq is an ancestor of q, and let
x � LCApq, F q. As an ancestor of both q and F , Lchild epnq is an ancestor of
x. Furthermore, there is no SupLast-node between q and Lchild epnq, except
possibly Lchild epnq, and there is no SupFirst-node between F and Lchild epnq.
Consequently, x is non-nullable because Lchild epnq is, and, there is no �-
labeled node between x and Lchild epnq. Hence q R pFollowd

e q
�1pF q, and,

more generally, Follow�1
e pW qXpFollowd

e q
�1pF q is empty. This means that q P

pFollow�
e q
�1pF q. Thus S � pStarpxq is not Null , satisfies FirstPospS, aq � F ,

and is an ancestor of n since there is no �-labeled nodes between x and
Lchild epnq. Accordingly, SupLastpqq ¤ S and hence Rchild epnq is non-
nullable.

Algorithm 3: Checking determinism.

procedure CheckNode(n : Node, a : Σ) : Bool
1 F Ð FirstPospn, aq
2 S Ð pStarpnq
3 if Rchild epnq is nullable and
4 (Nextpn, aq � Null or
5 (FirstPospS, aq � F and SupLastpnq ¤ S))
6 then return false

7 return true

end procedure

214

6.2. Determinism in View Schema: XML DTDs

Alternative Determinism Test

Determinism of e can be formulated as follows:

 pDp, p1, p2 P Pospeq. labepp1q � labepp2q^p1 P Follow eppq^p2 P Follow eppqq.

A natural question arises: Is there a logic that allows to capture determinism,
and at the same time, has efficient model checking that yields a procedure for
checking determinism in linear time? The answer is positive: It is possible
with X�

reg , the language of Regular XPath expressions with data equality tests
for binary trees with data values as defined in [BP11].

Trees with data values allow to store with every node its label, drawn form
a finite set, and additionally, a data value, drawn form an infinite set. Regular
XPath allows to navigate the nodes of the tree using regular expressions of
simple steps (e.g., parent to the left child) and filter expressions. Filter
expressions with data equality allow essentially to test whether two nodes
have the same data value. In [BP11] Bojańczyk and Parys show that an
X�

reg -expression ϕ can be evaluated over a tree t in time 2Op|ϕ|q � |t|.
We wish to construct an X�

reg -expression ϕdet that captures determinism
and whose size is constant i.e., does not depend on the regular expression e.
The main challenge is to handle position labels of e that can be drawn from
an alphabet of arbitrary size: with MSO formulae as defined on page 89 and
hence without data equality, determinism cannot be defined independently
from the alphabet. This is accomplished by: 1) storing the labels of positions
of e as data values and 2) using data equality to check whether two positions
have the same label.

This provides an alternative and shorter proof for the possibility to test in
linear time determinism of a regular expression. Yet expression ϕdet uses the
transitive closure operator of Regular XPath. It therefore does not belong
to the basic fragment of XPath that Bojańczyk and Parys [BP11] can eval-
uated with complexity Op|φ|3 � |t|q. We believe that our algorithm is easier
to implement than the 2Op|φ|q � |t| time algorithm, and that it runs more
efficiently in practice. The latter claim has not been verified yet because no
implementation of [BP11] is available.

Theorem 6.14. There exists an X�
reg-expression ϕdet such that for any

alphabet Σ and any regular expression e over Σ, ϕdet is satisfied in e if
and only if e is deterministic.

Proof. We present only the construction of ϕdet . Let SupFirst and SupLast
denote X�

reg -expressions that are satisfied only in SupFirst- and SupLast-
nodes, respectively. We also use axis from-left with the same semantics as
in [BP11], i.e., it goes from a node to its parent and checks that this parent
has two children, of which the original node is the leftmost. Similarly, to-right
goes from a node to its right child provided the original node has two children.

215

6. The View Schema

D � pó{r notSupFirstsq�{P P � r notós

U � pr notSupLasts{òq� F � prlabpq�dsq{to-right{D

ϕdd � ó�{r notSupLasts{from-left{rF �pU{from-left{F qs

ϕ�� � ó�{rlabpq��s{rD�pU{rSupFirsts{ò{U{rlabpq��s{Dqs

ϕd� � ó�{r notSupLasts{from-left{rpto-right{rSupFirsts{Dq�pò{U{rlabpq��s{Dqs

Y ó�{rlabpq��s{rD�pU{from-left{F qs

ϕP1
� ó�{rpto-left{r notSupFirsts{Dq � pto-right{r notSupFirsts{Dqs

ϕdet � r notpϕP1
or ϕdd or ϕd� or ϕ�d or ϕ��qs.

Basically, ϕP1
checks if (P1) is violated in e and the expression ϕℓℓ1 for

tℓ, ℓ1u � t�,du checks whether there exist two distinct positions p1 and p2 of
e such that labpp1q � labpp2q and pFollow ℓ

eq
�1pp1q X pFollow ℓ1

e q
�1pp2q � ∅.

Technically, the five formula have the form ϕ � ψ{rψ1 � ψ2s for some
XReg expressions ψ, ψ1 and ψ2. For any tree e and n P Ne, proote, nq P vϕwe
if and only if there exist p1, p2 P Pospeq such that the following four conditions
are satisfied: (1) proote, nq P vψwe (2) pn, p1q P vψ1we (3) pn, p2q P vψ2we (4)
p1 and p2 have the same label. Let e an expression that satisfies P1 and
consider ϕdd � ψ{rψ1 � ψ2s. If there exist a position p and two distinct
positions p1 and p2 of e such that labpp1q � labpp2q and p P pFollow ℓ

eq
�1pp1qX

pFollow ℓ1
e q

�1pp2q, then one of n1 � LCApp, p1q or n2 � LCApp, p2q is a strict
descendant of the other. Assume for instance that it is n1 that is a descendant
of Lchildpn2q. Clearly, p belongs to LastpLchild epn1qq, so is a descendant of
Lchild epn1q. It also belongs to LastpLchild epn2qq, so that Lchild epn1q is not
a SupLast node, hence proote, n1q P vψwe. Furthermore, p1 and p2 belong
to the First-set of Rchild epn1q and Rchild epn2q, respectively. Consequently,
pn1, p1q P vψ1we and pn1, p2q P vψ2we, hence ϕdd is satisfied. Conversely,
assume that ϕdd is satisfied by e, and let n, p1 and p2 be nodes of e satisfying
the conditions (1) to (4) above. We show easily that for any position p in
LastpLchildpnqq, p1 and p2 both belong to Followd

e ppq.

Testing Numeric Occurrences

Regular expression occurring in XMLSchema may contain numeric occur-
rence indicators. Kilpeläınen and Tukhanen [KT07] provide an astute char-
acterization of deterministic expressions with numeric occurrences. They
deduce a polynomial algorithm to check determinism of such expressions, es-
sentially computes a relation based on Follow taking numeric occurrences into
account. This algorithm has cubic complexity Op|Σ| � |e|2q when the size of
the alphabet is not bounded. Kilpeläınen [Kil11] improves the complexity to
Op|e| � |Σ|q. The algorithm from Kilpeläınen is therefore quadratic (Op|e|2q)

216

6.2. Determinism in View Schema: XML DTDs

when the alphabet is not bounded. 3 Kilpeläınen obtains this complexity
by a merging-based examination of First and Follow sets, similar to the ap-
proach in [KT07], but relying on a more careful analysis of the Follow sets.
After Theorem 3.3 in [Kil11], the author leaves as an open question whether
a better complexity can be obtained, and observes that with merging-based
approaches it seems difficult to go below Opn � |Σ|q. Our algorithm essen-
tially avoids the computation and merging of First and Follow sets, which
allows us to obtain linear complexity to test determinism in the absence of
numeric occurrences, for arbitrary large alphabets. We show in the appendix
that our algorithm can be combined with the characterization from [KT07]
to obtain a linear algorithm testing the determinism of regular expressions
with numeric occurrences.

Theorem 6.15. Determinim of a regular expression e with numeric oc-
currences can be tested in linear time Op|e|q, for an arbitrary alphabet.

To conclude these remarks on deterministic regular expressions with numeric
occurrences, let us observe that deterministic regular expressions with coun-
ters are strictly more expressive than deterministic expressions. The defini-
tion of deterministic expressions with numeric occurrences that we consider;
the one used as well in [KT07, Kil11] and the XML Schema, is sometimes
called weak determinism. A more restrictive notion of determinism, strong
determinism has also been investigated for regular expressions with counters,
and the strongly deterministic regular expressions have the same expressivity
as deterministic regular expressions (without counters) [GGM12].

6.2.2. “Determinizing” Non-deterministic Expressions

When a DTD fails the determinism check, we may wish to repair it into a
schema satisfying the determinism constraint. More generally, given a regular
language, we may want to compute a deterministic regular expression for
this language. Unfortunately, there exist regular languages that cannot be
represented with a deterministic regular expression [BKW98]: pa� bq�apa�
bq, for instance. This suggests the following approach: test if there exists
a deterministic representation of the language, and, if so, compute it. If
there is none, the database administrator can be notified so that he modifies
the schema. Brüggeman-Klein and Wood [BKW98] provide a polynomial
algorithm that tests if the language of a DFA can be represented with a
deterministic regular expression. We briefly review this algorithm (following
the presentation from Brüggeman-Klein and Wood) because we will use this
algorithm to discuss approximations.

3Actually, in Theorem 3.3 from [Kil11], the complexity is stated as n2{plogpnqq, with n

representing the size of the binary representation of the regular expression. But with
our notations, this translates into a quadratic Op|e|2q.

217

6. The View Schema

The Brüggeman-Klein and Wood algorithm (BKW) for testing determin-
ism of a regular language assumes the input DFA A0 to be minimal. This
assumption does not affect the complexity of the algorithm as DFA A0 can
be minimized in time Op|Σ| � |Q| log |Q|q [HU79] and, from a minimal DFA
A0, every DFA appearing in the recursive calls of algorithm BKW pA0q will
be minimal. Given any automaton A � pQ,Σ,∆, tq0u, F q and state q of A,
the orbit of q is the strongly connected component of A containing q, i.e.,
the state q plus every state q1 such that q and q1 can be reached from one
another. A state q is a gate of its orbit if q is final, or if there is a transition
from q leading to a state outside the orbit of q. A has the orbit property if
every two gates q1, q2 in the same orbit satisfy the following two conditions:
(1) q1 is final iff q2 is, and (2) for every a P Σ and every state q outside the
orbit of q1 and q2, A has transition pq1, a, qq iff it has transition pq2, a, qq.

When A is a DFA, a letter a P Σ is A-consistent if there exist a state q P Q
such that every final state of A as a transition to q labeled a. Given a set S
of A-consistent letters, the S cut of A is the automaton obtained from A by
removing for every final state of A all its outgoing transition with label in S.

We finally define Aq, the orbit automaton of q, for every state q P A. Aq

is obtained from A by setting the initial state to q and restricting the states
to the orbit of q. The final states of Aq are the gates of this orbit.

Brüggeman-Klein and Wood state that their algorithm runs with complex-
ity quadratic in the size of the input DFA. It seems they assume a constant
size alphabet, because they claim quadratic complexity for the Hopcroft mini-
mization algorithm, and further in their paper they also claim that language
Σ�w admits a DFA of size linear in w. Nevertheless, their proof for the
quadratic complexity of algorithm BKW still holds without assumption on
the size of the alphabet. The crude estimation Op|Σ| � |Q| log |Q|q for the
minimization algorithm is not accurate enough in this case, but the com-
plexity of minimization was refined by Valmari and Lehtinen. They prove
that a DFA pΣ, Q, i, F,∆q with partial transition function ∆ can be mini-
mized in time Op|∆| log |Q|q, using space Op|∆| � |Q| � |Σ|q [VL08]. The
estimation of the complexity works as follows ([BKW98]): first, the automa-
ton is minimized, once and for all. Then for each call of BKW , the set of
consistent letters can be computed in Op|∆|q. Furthermore the states of the
automaton can be partitioned into disjoint orbits, in linear time Op|∆|q using
the algorithm by Tarjan to compute the strongly connected components of a
graph [Tar72]. This yields the overall quadratic complexity Op|Q| � |∆|q for
algorithm BKW .

Bex et al. proved that testing determinism of a regular language is Pspace-
hard when the input is a regular expression [BGMN09] instead of a DFA.
However, their proof goes through a relatively complex and long reduction
from Corridor Tiling. We provide a much simpler proof in the appendix.
They also leave as an open question whether the determinism of a regular
language can be tested in Pspace. They argue that an approach “guess-

218

6.2. Determinism in View Schema: XML DTDs

Algorithm 4: Algorithm BKW pAq from [BKW98], testing if LpAq is
deterministic
Input: minimal DFA A

Output: true if A is deterministic, false otherwise
S Ð The set of all A consistent letters1

if A has a single state without outgoing transitions then return true2

else if A has a single orbit and S � H then return false3

if AS has the orbit property then4

foreach orbit K of AS do5

choose q in K6

if BKW ppASqqq � false then return false7

end8

else9

return false10

end11

ing” an expression before testing equivalence would not work, but do not
investigate whether the algorithm from Brüggeman-Klein and Wood can be
simulated in polynomial space by constructing the DFA on-the-fly. Beyond
this negative result, they also observe the problem to be fixed parameter
tractable in k for k-occurrence regular expressions; they observe that one
can test if the language of a k-ORE can be expressed with a deterministic
regular expression with complexity Op22k � |Σ|3q using algorithm BKW.4

This justifies the tractability of the algorithm deciding if there exists a de-
terministic expression equivalent to the input regular expression, for real-life
schemata.

When there exists such a deterministic expression, Brüggeman-Klein and
Wood [BKW98] provide an algorithm that computes the deterministic ex-
pression in optimal exponential time. Their algorithm takes as input a DFA
and computes in time 2Op|Q| logp|Σ|qq an equivalent deterministic regular ex-
pression. They prove that the smallest deterministic regular expression (if
any) equivalent to a DFA may require exponential size, while the conversion
from regular expressions to deterministic regular expressions (when possible)
also requires an exponential blowup. Bex et al. study additional algorithms
to compute a deterministic regular expression from a determinizable regular
expression [BGMN09].

4the numbers in [BGMN09] are slightly different.

219

6. The View Schema

6.3. Approximation

The preceding sections show that the limited expressivity of DTDs makes it
hard and sometimes unfeasible to construct a view schemata: depending on
the restrictions, one has to tackle non-local or even non-regular (context-free)
features in the view schema. As a way to elude these obstacles we propose
to relinquish exact view schemata and resort to approximations of the view
schema instead. In our opinion the primary purpose of the view schema is
to guide the user in her attempt to formulate a meaningful query. In that
perspective, we will consider that a good approximation of the view schema
allows the user to check if the result of a query is empty for every document:
that way, the user will never formulate queries which return no answer for
all documents. Of course, the existence of such an approximation depends
on the expressivity of the query language. We therefore propose three simple
approximations which present different information on the view schema. The
following paragraph surveys the size of the resulting approximations as well
as the complexity to compute the approximations. We then investigate which
approximation may be considered suitable when the query language ranges
over several XPath fragments.

6.3.1. Subset, Subword, and Parikh Approximations

We define local approximations, that replace each production rule of a CDTD
with a regular expression. Our approximations are defined as a function
mapping context-free languages into (deterministic) regular expressions. This
function is extended to CDTD as follows: approximation Approxpq replaces
a CDTD pΣ, r, P q with the DTD pΣ, r, P 1q, where for each a P Σ, P 1paq �
ApproxpP paqq.

Subset Approximation As a first approximation, we only provide the user
with the set of elements that can appear below a node.

Definition 6.1. For every context-free grammar G we define the subset ap-
proximation of G as ApproxpGq � palphpGqq�, where alphpGq denotes the
set of all letters appearing in LpGq. Naturally, ApproxpGq is a deterministic
expression, and its size is at most linear in |G|.

Parikh Approximation The subset approximation does not even allow to
derive the information of which symbols can occur simultaneously below a
node. Therefore we propose a more precise approximation based on the
Parikh image of the word. We recall the definition of the Parikh image,
with the result from Parikh [Par66] that leads to the construction of the
approximation.

220

6.3. Approximation

Definition 6.2. Let Σ � ta1, . . . , anu an alphabet, and w a word over alpha-
bet Σ. The Parikh image of w is the n-uple ΦParikhpwq � p|w|a1 , |w|a2 , . . . , |w|anq.
The definition is extended to a language L over Σ as follows: ΦParikhpLq �
tΦParikhpwq | w P Lu.

Definition 6.3. A subset of Nk is linear if it is of the form Spv, tu1, . . . ,unuq �
tv�k1u1�k2u2�. . . knun | k1, . . . , kn P Nu for some n P N, and v,u1, . . . ,un

in Nk. A subset of Nk is a semilinear set if it is the union of a finite number
of linear sets.

Theorem 6.16 (Parikh [Par66]). The Parikh image of a context-free
language L is a semilinear set. Therefore, one can compute a regular
language with the same Parikh image as L.

Several alternative construction have been proposed to build regular expres-
sions or NFAs with Parikh image ΦParikhpLpGqq. Esparza et al. [EGKL11]
survey those constructions, with the complexity expressed in terms of n and
m, respectively the number of variables of the grammar G � pV, T, S, P q
and the degree of G, defined as the maximal number of variable occur-
rences appearing in some right-hand side of a production rule minus one:
n � |V | and m � �1 � maxtk | DA P V,B1, . . . , Bk P V, w0, . . . wk P
T �.w0B1w1B2 . . . Bkwk P P pAqu.

Remark 6.2. It is obvious that every CFG can be transformed in linear time
into a grammar of which the production rules contain at most two characters
(be they variables or terminals). Therefore, we define 2NF grammars as
the context-free grammars satisfying this constraint. For our purpose in this
dissertation, namely a bound in terms of |G|, it is sufficient to consider 2NF
grammars. A fortiori these grammars will have degree m ¤ 1.

Theorem 6.17 ([EGKL11]). Given a grammar G � pV, T, S, P q of
degree m with n variables, one can compute an automaton MG with�
n�nm�1

n

�
states such that MG and G have the same Parikh image. The

alphabet of MG is T¤k with k the maximal number of non terminals ap-
pearing in a production rule of P .

If the degree of G is m � 1, then MG has
�
2n�1

n

�
states. As observed by

Esparza et al.,
�
2n�1

n

�
can be bounded by Op4nq, therefore by Op4|G|q. For

2NF grammars we obtain directly an automaton with
�
2n�1

n

�
� Op4|G|q states

over alphabet T by the same remark5. DTD D3 of Example 6.1 provides a
corresponding Ωp2nq lower bound: any automaton accepting the language
ta2

n

u needs at least 2n � 1 states as also observed in [EGKL11].

5see the discussion after Theorem 3.1 in [EGKL11]

221

6. The View Schema

Remark 6.3. Esparza et al. only considers the size of the resulting automa-
ton in terms of states, there is no mention of the complexity for computing
the actual automaton. However, it is clear that it can be computed in time
Op|G| � |MG|q. One could also avoid to build the whole automaton: after a
preprocessing in Op|G|q one can decide in time Op|V |q if there is a transition
from q to q1 labeled “a” for any pair of states q, q1 in MG and any a P Σ.

Esparza et al. also implicitly provide an upper bound toward regular expres-
sions. More accurately, they observe that their construction can be plugged
into a recent result by To(Lin)6 in order to bound the size of the semilinear
representation of G.

Theorem 6.18 ([To10a]). Let A an NFA with s states over an alphabet
Σ of size k. Then, there exists a representation of ΦParikhpAq as a union
of Opsk

2�3k�3k4k�6q linear sets, with each linear set Spv, tu1 . . .ujuq sat-
isfying the following three properties: (1) j ¤ k, (2) each ui belongs to
t0, . . . suk and (3) the maximal entry in v is bounded by s3k�3k4k�6. Fur-
thermore, this semilinear set can be computed from A in time 2Opk2 logpksqq.

Esparza et al.5 discuss how the value of s can be obtained from MG by first
introducing intermediate states to obtain alphabet T instead of T¤k. For
2NF grammars, we get s ¤ |G|

�
2n�1

n

�
¤ Op|G| � 4|G|q.

Corollary 6.19 (from [EGKL11]). Let G a 2NF CFG with n variables
over alphabet Σ of size k. Set s � |G|

�
2n�1

n

�
. Then, there exists a represen-

tation of ΦParikhpLpGqq as a union of Opsk
2�3k�3k4k�6q linear sets, with each

linear set Spv, tu1 . . .ujuq satisfying the following three properties: (1) j ¤ k,
(2) each ui belongs to t0, . . . suk and (3) the maximal entry in v is bounded
by s3k�3k4k�6. Furthermore, this semilinear set can be computed from G in
time 2Opk2 logpksqq.

For every semilinear set S, a regular expression e satisfying ΦParikhpLpeqq � S

can be trivially computed in linear time. Therefore we obtain the same
bounds as above for regular expressions instead of semilinear sets. Us-
ing the approximation of

�
2n�1

n

�
by Op4|G|q, we obtain an upper bound of

2Opk2 logpk�|G|�Op4Gqqq � 2Opk2 logpkqq�Opk2�|G|q � 2Opk2�|G|q.

Corollary 6.20. Let G a CFG over alphabet Σ. One can compute a regular
expression PpGq with ΦParikhpLpPpGqqq � ΦParikhpLpGqq in time 2Op|Σ|2�|G|q.

Definition 6.4. Given a context-free grammar G, we define the Parikh ap-
proximation of G as ApproxpGq � PpGq.

6A version of this result also appears in [To10b], but the constants in[To10a] are slightly
better, and that result does not appear in the paper [KT10] published after merg-
ing [To10b] with related results by Kopczyński. We also observe that the bound is
only a rough estimation: a simple analysis of the proof shows that the degree of the
polynomials can be slightly lowered.

222

6.3. Approximation

We may want to approximate the schema with an XML DTD. Then, the
above corollary is not fully satisfying as we are looking for a determinis-
tic regular expression. Unfortunately, deterministic regular expressions are
strictly less expressive than regular expressions with respect to Parikh im-
age: for languages over unary alphabet, the Parikh image of the language
is essentially the language itself, in the sense that two different words have
different image. The following example shows that even over a unary alpha-
bet, deterministic regular expressions cannot represent all regular languages,
even though deterministic automata over unary alphabet always consist of
one loop preceded by a single tail, where the loop or the tail may possibly
be empty.

Example 6.4. Set Σ � tau the alphabet.
The DFA A3 on the right is clearly minimal.
However, Algorithm 4 proves there is no deter-
ministic regular expression accepting LpA3q, be-
cause A3 consists of a single non-trivial loop,
and letter a is not A3-consistent.

q1start

q2

q3

a

a

a

Automaton A3

Subword Approximation Parikh approximation records the number of oc-
currences of each symbol, however it may fully reorder the elements. This
does not fit when the order of the siblings is relevant. We therefore intro-
duce a last approximation, that does not preserve the Parikh image of the
productions, but preserves the sibling ordering.

This last approximation uses subwords and relies on a result from Cour-
celle [Cou91]. Formally, u is a subword of w, denoted u � w, if u � u1 � � �uk
and there exist v0, v1, . . . , vk P Σ� such that v0u1v1 � � � vk�1ukvk � w. Cour-
celle shows that for every CFG G one can construct a regular expression GÓ
accepting the subwords of LpGq:

Theorem 6.21 ([Cou91]). For every CFG G one can construct a reg-
ular expression GÓ such that LpGÓq � tu | Dw P LpGq.u � wu.

Remark 6.4. The construction given by Courcelle is effective and runs in
exponential time 2Op|G|q. 7

7There is quite an interesting story about these Theorem 6.21 and Remark 6.4: regularity
of the subword closure is actually a simple consequence of Higman’s Lemma [Hig52],
and so can also be seen as a consequence of the Robertson-Seymour theorem. The
paper by Courcelle proves that a regular expression representation can be effectively
obtained for CFG. Apparently unknown to Courcelle, van Leeuwen had already proved
the effectiveness of the construction of an NFA for the subword closure of a language.
However, his algorithm is more complex than the one from Courcelle. Courcelle does
not analyse the complexity of his algorithm but it is relatively easy to bound the run-
ning time by 2Op|G|q. Atig et al. [ABQ09] already mention that Courcelle’s algorithm

223

6. The View Schema

Proof. We refer the reader to the construction in [Cou91]. To establish the
complexity of his algorithm, we observe that his algorithm provides a straight
line program of size Op|G|q over the alphabet of regular expressions: Σ Y
t�, p, q, �u. The word represented by this straight line program is a regular
expression with language tu | Dw P LpGq.u � wu. The size of this expression
is therefore 2Op|G|q.

Remark 6.5. This construction is optimal since for every n P N there exists
a grammar G of size Opnq accepting a2

n

, and every NFA accepting tu | Dw P
LpGq.u � wu has size at least 2n. As regular expressions over a fixed alphabet
can be converted to NFAs in linear time, this implies the same lower bound
toward regular expressions instead of NFAs.

The regular expression GÓ, however, is not deterministic in general. Never-
theless, every subword-closed language L0 can be represented by a determin-
istic regular expression. Indeed, the minimal DFA accepting a language L0

such that L0 � tu | Dw P L0.u � wu has only trivial loops (or no loops at all).
Therefore, L0 can be represented with a deterministic expression according
to the algorithm from Brüggeman-Klein and Wood (see [BKW98]).

Lemma 6.22. Given any NFA A with n states, we can build in time 2Opn log |Σ|q

a deterministic regular expression e that accepts the subwords of LpAq.

Proof. Let A � pΣ, Q, tq0u, F,∆q an NFA with |Q| � N states. Set A� �
pΣ, Q, tq0u, Q,∆�q the NFA obtained from A by making every state final
and replacing ∆ with ∆� defined as follows. For every q, q1, pq, a, q1q P ∆�
iff there are n ¥ 1, q0 � q, q1, . . . , qn � q1 P Q and a1, . . . , an P Σ such
that (1) for every i ¤ n pqi�1, ai, qiq P ∆ and (2) there exists j ¤ n such
that aj � a. Intuitively, ∆� can be obtained by adding an ǫ-transition in
parallel to every transition from ∆, and then removing all ǫ-transitions with
the usual transitive closure algorithm. This is a fairly standard construction,
see also [GHK09] for instance.

We observe that the strongly connected components of A� are cliques, and
for every such clique K, there exists a set of letters S such that for every
q, q1 in K, (1) there is no transition with label b R S from q to q1, (2) for
every a P S, there is a transition with label a from q to q1, and (3) q and q1

share the same outgoing and incoming transitions with states outside their
clique K. Therefore, we merge in A� all the states q, q1 in the same strongly
connected component into a single state. Consequently ∆� induces a partial

has complexity “exponential” in |G|. Gruber, Holzer and Kutrib undertook a thor-
ough investigation of the subword closure of word languages([GHK07, GHK09]) and

they evaluate the complexity of the construction from Van Leeuwen to Opn2
?
2n lognq

in [GHK09]. The result from Courcelle closes the gap between a 2Ωpnq lower bound

and the Opn2
?
2n lognq upper bound in [GHK09], modulo the constant hidden in the

Landau notation.

224

6.3. Approximation

order ¤ on Q, defined by: q1 ¤ q iff q � q1 or there exists some a P Σ such
that pq, a, q1q P ∆�.

We build the DFA obtained from A� by the powerset construction; the
states of A� are subsets of Q, and all the strongly connected components of
A� consist of a single state. The automaton B is obtained from this powerset
automaton by identifying each state (a subset of Q) with its set of maximal
elements for ¤. The point is that we are going to unfold this automaton into
an equivalent DFA whose underlying graph is a tree (plus trivial loops on
some states), but we need an argument to bound the depth of this tree. This
is why we identify each state of B with an antichain in Q for ¤. Let pS, a, S 1q
a transition from B. Then for every q P S, q1 P S 1 we have either q1 ¤ q

or q and q1 are incomparable. Furthermore, for every q1 P S 1 there exists
some q P S such that q1 ¤ q. Consequently, every run of B goes through
at most n different states: whenever the state S changes, there exists some
q P Q which is removed from S and which satisfies q ¦ q1 for every q1 P S,
therefore q1 cannot come back in the future states. The tree (with trivial
loops) obtained by unfolding B has rank at most |Σ| and depth at most n,
and therefore allows to derive inductively a deterministic regular expression
in time 2Opn log |Σ|q.

Proposition 6.23. For every CFG G one can construct a deterministic reg-
ular expression Gdet

Ó such that LpGdet
Ó q � tu | Dw P LpGq.u � wu. Further-

more, Gdet
Ó can be computed in time 22Op|G|q

.

Proof. From Theorem 6.21 we immediately get a doubly exponential upper
bound toward DFAs, but the translation from DFAs to deterministic reg-
ular expressions involves yet another exponential. The following sketch of
algorithm computes Gdet

Ó in doubly exponential time. We first compute the
Glushkov automaton for the regular expression GÓ from Courcelle’s algorithm
in Theorem 6.21. This automaton has 2Op|G|q states. Then Lemma 6.22 al-
lows to compute a deterministic expression equivalent to this NFA in time
22Op|G|q�log |Σ| � 22Op|G|q

.

This upper bound can be matched with a doubly exponential lower bound: we
can build subword-closed context-free languages for which the translation into
a DFA requires two exponentials, hence a doubly exponential lower bound for
deterministic regular expressions. This rules out the use of subword closure
on arbitrary grammars, but subword closure may still lead to reasonable
approximations on practical cases.

Proposition 6.24. For every n, we can build a CFG G of size Opnq such
that every DFA for Gdet

Ó needs 22n states.

225

6. The View Schema

Proof. For every natural N , we consider the following language LN , were wR

represents the reversal of word w: wR � wrkswrk�1s . . . wr2swr1s for a word
w of length k.

LN � tpa� bqjwpa� bq2
N

#wRpa� bq2
N�j|j ¤ 2N , w P ta, buNu

The following two claims establish the doubly exponential blowup.

Claim. The subwords of LN can be represented with a grammar GN of size
OpNq.

LetGN be the grammar pV, T, SN , P q with terminals T � ta, bu, non-terminals
V � tS0, . . . , SN ,W0, . . . ,WN , U0, . . . , UN , A,Bu, and with production rules
defined below for k, i P t0, . . . , N�1u. Clearly, |GN | � OpNq and GN accepts
exactly the subwords of LN , which concludes the proof of the first claim.

Si�1 Ñ SiUi | UiSi

S0 ÑWNU0 | U0WN

Wk�1 Ñ BWkB |AWkA

W0 Ñ UN#

Ui�1 Ñ UiUi

U0 Ñ A |B

AÑ a | ǫ

B Ñ b | ǫ

Claim. Any DFA accepting the subwords of LN needs 22N states.

We prove easily the claim with the standard residual technique. Let u and
u1 two distinct words in ta, bu2

N

: u and u1 differ on the ith letter for some
i ¤ 2N . Then u and u1 lead to different states in any DFA for LN : we exhibit
a word v such that uv P LN , but u1v R LN . Let w be the word defined by
w � urisuri� 1s . . . uri�N � 1s, with the convention urjs � a for all j ¡ 2N .
For v � aN�i�1#wRb2

N�pi�1q, we obtain uv P LN , but uv1 R LN . There are
22N words in ta, bu2

N

. Consequently, any DFA accepting LN needs at least
22N states. This concludes the proof of the claim, and thereby the proof of
Proposition 6.24.

Definition 6.5. Given a context-free grammar G, we define the subword
approximation of G as ApproxpGq � Gdet

Ó .

We assume w.l.o.g. that Gdet
Ó is uniquely determined by G. This can be

obtained if we fix a deterministic algorithm for computing Gdet
Ó .

Approximating Regular Expressions or NFAs To complete the picture, let
us discuss the complexity of those approximations when the input language
is a regular expression or a word automaton instead of a CFG. In order to
represent the subwords of a regular expression or automaton with a DFA we
can use the classical powerset construction, as in the first part of the proof
from Lemma 6.22. The resulting DFA has 2Opnq states where n is the number
of states of the input automaton (the Glushkov automaton if the input is an
expression). If we wish to represent the subwords of a regular expression

226

6.3. Approximation

e with a deterministic regular expression, then we can apply Lemma 6.22
to its Glushkov automaton. The following Lemma shows that there cannot
be a polynomial algorithm for the task. More exactly, we prove a rough
superpolynomial lower bound for the operation that represents the subwords
of a regular expression with a DFA. This implies in particular the same
bound toward deterministic expressions instead of DFAs.

Lemma 6.25. There exists a constant α ¡ 0 and a family of regular expres-
sions en of size Opnq such that any DFA accepting the subwords of en has at
least 2nα

states.

Proof. This bound can be obtained from the combination of Proposition 6.24
and Theorem 6.21. Proposition 6.24 essentially states that for some constant
c ¡ 0, there exists for every n a CFG Gn of size at most cn such that any
DFA accepting the subwords of LpGnq has at least 22n states. Theorem 6.21
states that there is some constant d ¡ 0, such that for every CFG of size
cn one can build a regular expression of size at most 2dn. Let us consider a
transformation that maps every regular expression e to a DFA accepting the
subwords of e. For every n, we denote by fpnq the maximal number of states
of the resulting DFA, when e ranges over all expressions of size at most n.
From what precedes, we deduce that fp2dpcnqq ¥ 22n , hence fpnq ¥ 2n1{pcdq

.

Okhotin [Okh10] proves that there exists a DFA An of arbitrary large size n
such that any DFA accepting the subwords of An needs 2n{2�2 states. This
implies an exponential blowup for the representations by deterministic ex-
pressions or DFAs of both NFAs and DFAs. These lower bounds are matched
by exponential upper bounds derived from Lemma 6.22.

When the approximation can be an arbitrary regular expression instead of
a deterministic one, the approximation is simplified from regular expressions,
but remains expensive from both DFAs and NFAs. From a regular expression
e, we can trivially compute a regular expression for the subwords of Lpeq with
the addition of a question mark after each letter of e. As discussed above,
Lemma 6.22 allows to compute a (deterministic) regular expression for the
subwords of a DFA or NFA, in exponential time. But Ellul et al. [EKSW05]
establish that a classical algorithm can provide a better bound when the
output can be an arbitrary regular expression.

Lemma 6.26 (Corollary 18 in [EKSW05]). If A is an NFA with n states
over a k-letter alphabet, and LpAq is finite, then there is a regular expression
e specifying LpAq with at most knpn� 1qpn� 1qplognq�1 positions.

Our NFA may accept infinite languages, but the strongly connected compo-
nents are cliques and can therefore be assumed to consist of a single node.
It is obvious that the conversion of an NFA A � pΣ, Q, I, F,∆q with trivial
loops can be reduced in polynomial time to the conversion of acyclic NFAs:

227

6. The View Schema

one only needs to compute the symbols Sq that allow to loop on each state
q, remove the loops, replace Σ with Σ � Q, and replace transitions pq, a, q1q
with pq, pa, q1q, q1q. One then computes the regular expression for the result-
ing automaton, and deduces the regular expression for A as follows: for each
b, a P Σ, q P Q, one adds p

�
aPSq

aq� after each occurrence of pb, qq in the

regular expression (nothing is added when Sq � H). Finally one replaces
every label of the form pb, qq with b. This gives the following result:

Corollary 6.27. If A is an NFA with n states over a k-letter alphabet, and
LpAq is finite, then there is a regular expression e specifying the subwords of
LpAq with at most kpknqnpn� 1qpn� 1qplognq�1 P 2Opplognq2q positions.

We do not have a matching lower bound. However, we exhibit a family
of DFAs An with n states, such that the size of any regular expression en
accepting the subwords of LpAnq cannot be bounded by any polynomial.
The proof is a minor adaptation of [EZ74], and is therefore postponed to the
Appendix.

Lemma 6.28. There exist a family of DFAs An with size n such that any
deterministic expression accepting the subwords of LpAnq has size nΩplog lognq.

We plan to investigate whether the techniques of Gruber et al. may help to
match the lower and upper bound. In particular, Gruber and Johannsen [GJ08]
prove that the conversion of acyclic DFA into regular expressions involves a
nΩplogpnqq lower bound, matching the nOplogpnqq upper bound of [EKSW05].
But it is not yet clear to us whether the result can be adapted when we
wish to represent the subwords of the language. The table in Figure 6.5
summarizes the size of the subword approximation, with rows denoting the
format for the input, whereas columns distinguish the format expected for
the approximation. The meaning of n depends on the kind of input: when
the input is an automaton, n denotes its number of states, and when the
input is a regular expression or grammar, n denotes its size. The size of the
alphabet is denoted by k.

6.3.2. Indistinguishability of Approximation

We recall that in our opinion the primary purpose of the view schema is
to guide the user in her attempt to formulate a meaningful query, and an
approximation of the schema should be judged from this perspective. Conse-
quently, we propose the following notion to identify the approximations that
prevent the user from formulating unsatisfiable queries.

Definition 6.6. We say that two sets L1 and L2 of Σ-trees are indistin-
guishable by a class C of queries, denoted L1

���C L2, when every Q P C is
satisfied by a tree in L1 if and only if it is satisfied by a tree in L2.

228

6.3. Approximation

NFA reg. exp. DFA det. reg. exp.

reg. exp Opnq Opnq 2Opnq ¶ 2Opn log kq ¶

NFA Opnq 2Opplognq2�log kq § 2Opnq : 2Opn log kq :

DFA Opnq 2Opplognq2�log kq § 2Opnq : 2Opn log kq :

CFG 2Opnq ; 2Opnq ; 22Opnq � 22Opnq �

�: optimal complexity. The lower bound is obtained from Prop. 6.24.
:: optimal complexity. The lower bound is obtained from [Okh10].
;: optimal complexity. The lower bound is obtained from Remark 6.5
§: non-polynomial lower bound by Lemma 6.28.
¶: non-polynomial lower bound by Lemma 6.25.

Figure 6.5.: “State” complexity for the subword closure operation.

Given a CDTD H, we denote its subset approximation by H Set, its Parikh
approximation by HParikh, and its subword approximation by HWord.

Theorem 6.29. For any CDTD H we have

(i) H and H Set are indistinguishable by C1 � XRegpóq.

(ii) H and HParikh are indistinguishable by C2 � XRegpó,ò, r s, notq.

(iii) H and HWord are indistinguishable by C3 � XRegpó,ò,ñ�,ð�, r sq.

Proof. (i) We observe that LpHq � LpHWordq, and consequently, it suffices
to show that for any query q P C2 that is satisfied by a t P LpHWordq
there exists some t1 P LpHq satisfying Q. We remark that, indeed,
for every t P LpHWordq there exists a t1 P LpHq such that Nt � Nt1 ,
rootr � root t1 , childt � child t1 , labt � labt1 , and follow t � follow�

t1 .
Since queries in Q P C2 use neither negation nor horizontal axes (except
ñ�,ð�), adding subtrees under some nodes of t cannot invalidate Q.
Consequently, t1 satisfies Q.

(ii) It can be shown with an immediate inductive argument that for every
t P LpHq there exists t1 P LpHParikhq that differs from t only by the
relative order of siblings, i.e. Nt1 � Nt, root t1 � root t, labt1 � labt,
and child t � child t1 . Since the semantics of the queries in C1 does not
depend on follow t, any query Q P C2 is satisfied by t P LpHq if and
only if Q is satisfied by the corresponding t1 P LpHParikhq. Similarly,

229

6. The View Schema

every query satisfied in some tree t1 of LpHParikhq will also be satisfied
in some (in any) tree t P LpHq that differs from t1 only by the order of
siblings, which concludes the proof.

(iii) By pathptq we denote the set of all descending paths from the root node
to any node of t and we extend path to sets of trees in the standard
way. We observe, that L1

���C3 L2 if and only if pathpL1q � pathpL2q.
Clearly, pathpLpHqq � pathpLpH Setqq.

We also remark that the subword and the subset methods construct a su-
perset of the real schema. More precisely, LpHq � HWord � H Set. As for
Parikh approximation, HParikh correctly characterizes H if we consider un-
ordered trees. We now present a proof that XPath dialects allowing other
combinations of horizontal axes cannot be approximated with DTDs.

Approximability and “Optimality” of our Approximations

Proposition 6.30. There exists a CDTD H from which no DTD is indis-
tinguishable by C0 � XRegpó,ñ�, r s, notq or C 10 � XRegpó,ñq.

Proof. For C0 we observe that for every tree there exists a query in C0 that
is satisfied by that tree and isomorphic trees only, i.e., this query character-
izes the tree up to isomorphism. For example, for rpa, bq the query can be
expressed as:

self::r
�
ó::ar notpóqs{ñ�::br notpóq and notpñ�qs and notpó{ñ�::a{ñ�::bq

�
.

Consequently L1
���C L2 iff L1 � L2 for any C containing C0.

The proof for C 10 is a bit more intricate. Let H be a CDTD such that
LpHq � trpc, ak, bk, cq | k P Nu and assume that there is a DTD D such that
H ���C1

0
D.

We observe that LpDq consists of trees of depth 1 since ó::�{ó::� is not
satisfied by any tree in LpHq. Also,

Dprq � pǫ� cqa�b�pǫ� cq (6.1)

since no tree in LpHq satisfies any of the queries

self::r{ó::�{ñ�::c{ñ�::c, self::r{ó::c{ñ�::c{ñ�::�,

self::r{ó::a{ñ�::b{ñ�::a, self::r{ó::b{ñ�::a{ñ�::b.

Define the following objects

R1 � LpHprqq � tcakbkc | k P Nu,

R2 � LpDprqq X Lpca�b�cq,

Qn,m � self::r{ó::c{pñ::aqn{pñ::bqm{ñ::c,

230

6.3. Approximation

and note that R2 is regular (being an intersection of two regular sets).
Given (6.1), H ���C0 D with Qk,k for k P N implies R1 � R2, since for all

k P N the query Qk,k is satisfied by a tree in LpHq. In a similar way, we can
show that for every w � cak1bk2c P R2 we have k1 � k2, i.e. w P R1. Indeed,
if there was some w � cak1bk2c P R2 with k1 � k2, the query Qk1,k2 would be
satisfied on D, and thus on H, which is not the case. Consequently, R2 � R1

is not a regular set, a contradiction.

Theorem 6.31. Take any class of queries C containing C4 � XRegpó, r sq
or C 14 � XRegpó,òq. For any k P N there exists a CDTD Hk such that
|Hk| � Opkq and for any DTD D indistinguishable from Hk by C the size
of D is Ωp2kq.

Proof. We consider the CDTD Hk such that

r Ñ a2
k

a Ñ b b Ñ b | c

Clearly, Hk can be constructed in a manner such that |Hk| � Opkq (see D3

in Example 6.1). Now, let D be any DTD indistinguishable from Hk by C4.
It can be easily shown that

Dpcq � ǫ, b� c �Dpbq � b� c�,

Dprq � a�, b �Dpaq � b� ǫ,

We claim that: (i) a2
k

P LpDprqq, and (ii) LpDprqq � tam | 0 ¤ m ¤ 2ku.
For (i) it suffices to consider the query self::r{Q1{ � � � {Q2k , where

Qi � self::�ró::a{pó::bqi{ó::cs.

To show (ii) consider the query self::r{Q1{ � � � {Q2k for any m ¡ 2k. It is
not satisfied by any tree in LpHkq and so it cannot be satisfied by any
tree in LpDq. Since LpDprqq is a set of words whose length is bounded
by 2k, then the length of the regular expression Dprq must be at least
2k. We prove the lower bound for C 14 with the same argument but using
Qi � ó::a{pó::bqi{ó::c{pò::�qi�2.

Figure 6.6 summarizes our results on approximations.

231

6. The View Schema

XRegpó,ñq or XRegpó,ñ�, r s, notq
No approximation

XRegpó,ò, r s, notq
Parikh approximation (exponential)
XML DTD are not expressive enough

XRegpó,ò,ñ�,ð�, r sq
Subword approximation (exponential)
doubly exponential toward XML DTD

XRegpó,òq or XRegpó, r sq
Lower exponential bound

XRegpóq
Subset approximation (linear)

Figure 6.6.: Summary of approximation results (negative results in round
boxes).

232

Conclusion

What we call the beginning is often the end

And to make an end is to make a beginning.

The end is where we start from.

(T.S. Elliot, Little Gidding)

The purpose of this thesis was to develop new tools for (non-materialized)
view based access control over XML documents. We investigated which prob-
lems could be solved using formal methods from automata and language the-
ory. As illustrated in this thesis, query rewriting methods provide numerous
mechanisms to execute or restrict query and update operations on XML data
in this framework, with polynomial query complexity and linear data com-
plexity. We also developed new algorithms to check properties of policies,
such as determinacy or applicability of view updates under some restrictions
on authorized updates.

After introducing general algorithms and results about word and tree lan-
guages, we present our framework for non-materialized security views. The
more technical contributions focus on reasoning about evolving policies and
documents, as well as techniques for providing a view schema to the user.

6.3.3. Summary of the Contributions

General algorithms A first contribution of this dissertation is a detailed
survey of algorithms for membership and evaluation for visibly pushdown
automata, together with a few insights on the conversion between VPAs and
other tree automata models. We also define tree alignments as a unified
model for views, queries and updates. In the chapter about updates, we
study the behaviour of tree alignment languages with respect to the join and
composition operations.

Access control model The cornerstone of this thesis is the definition of
an access control model inspired by the non-materialized view-based frame-
work of [FCG04, FGJK07, KMR09]. Compared to these previous models,
we can use a more larger query language for the view definition and the
user queries. As in the previous models, we rewrite the users query before
they are evaluated. Our choice of using XReg allows to simplify the previ-
ous query rewriting algorithms: in particular, the addition of upward axes
greatly simplifies the rewriting algorithm in comparison to [FGJK07]. The

233

6. The View Schema

asymptotic complexity of query evaluation remains similar to the complexity
of the previous models. However, it is not clear whether the optimization
techniques developed in [FGJK07] can be adapted to our model.

Due to the higher expressiveness of our views, it becomes harder to de-
rive a schema for the view and to reason about the policy. We therefore
introduce three restrictions that facilitate the derivation of a view schema,
the comparison of policies, and the processing of updates. Two of these re-
strictions, upward-closed views [MTKH06, DFGM08, LS10, LLLL11], and
bounded depth documents [FCG04, KMR05, BCF07, BFG08], are classi-
cal restrictions when dealing with tree languages. The third one: interval-
boundedness, seems to us a natural generalization of the other two.

Policy comparison We believe that tools for evaluating which information
can be obtained from a view can prove useful to a database administrator.
In particular, the administrator may wish to check if a modification of the
policy does not disclose some information that was previously hidden. There
are many possible criteria for comparing security views. The most intuitive
definition just checks containment of the views. As this comparison does
not capture precisely the information that can be obtained from the poli-
cies, we propose two further comparisons. The first one compares policies in
terms of what (unary) queries can be expressed on the view. We show that
this comparison can be expressed in terms of a query rewriting (or determi-
nacy) problem. This problem is undecidable in general, but can be decided
for interval-bounded views, though with exponential complexity. The com-
parison becomes tractable under tighter restrictions. The other comparison
contrasts the certain answers for both views, and can be evaluated with com-
plexity similar to the second comparison. Under very general assumptions
on the view language, containment can be reduced in the second comparison,
which in turns can be reduced to the third. In terms of expressiveness, the
second comparison refines the third one and the containment, whereas the
containment and the third comparison are incomparable.

View update translation Support of update operations is a crucial feature
in database systems. We investigate the view update problem: given an up-
date (function) that the user wishes to execute on its view, we compute the
corresponding update (function) that must be executed on the source docu-
ment. We consider two cases: in the unconstrained case, every update that
maps a source document to another source document (satisfying the schema)
is authorized, whereas in the constrained setting only a subset of these up-
dates are allowed. The constrained setting raises interesting questions, such
as deciding uniform translatability. We introduce k-synchronized updates,
a restriction on the updates which makes uniform translatability decidable
and allows to solve the view update problem in the constrained case.

234

6.3. Approximation

View schema derivation The view schema obtained from a general view
needs not be regular. For interval-bounded views, however, it is regular, but
still needs not be a DTD. We propose three techniques to approximate the
view schema with a DTD: the Subset, Subword and Parikh approximations.
The Subword and Parikh approximations refine the subset approximations,
and capture more information about the schema, but on the other hand
the productions of the resulting DTD have exponential size, whereas the
Subset approximation can be computed in linear time. Furthermore, the
Subset approximation is an XML DTD, whereas some view schemata do not
admit Parikh approximations with deterministic productions. The Subword
approximation can be modified so that its output is an XML DTD, but in
that case the resulting productions are doubly exponential.

It is undecidable whether a general view schema (defined with context-free
DTDs) can be defined with a DTD, an XML DTD, or a tree automaton. How-
ever, if the view schema is regular, as is the case for interval-bounded views,
testing if it can be defined with a DTD is Exptime-complete [MNSB06],
and similarly for XML DTDs. When the view schema is given as a DTD,
one can check if it can be defined with an XML DTD in exponential time,
and the problem is Pspace-hard [BGMN09]. In contrast with these expo-
nential complexities, we provide a new algorithm that tests if a given DTD
is an XML DTD in linear time, whereas existing algorithms had quadratic
complexity.

6.3.4. Further directions of study

Increasing the expressivity of views and queries The views and query lan-
guages in this dissertation are restricted to the navigational core of XPath, or
use tree automata. This may appear too restrictive for practical applications,
which may require to support key mechanisms for the view, and data aggre-
gation for the queries. One may consider extending the framework to address
this shortcoming, using data logic for instance. The view language could also
be extended to allow restructuring the document. Several transducer models
for unranked trees, such as [AD12] could be considered to define views that
copy and reorganize parts of a document.

From trees to graphs Native XML databases remain the exception rather
than the norm. This may limit the use of access control models for tree-
structured documents. And indeed, we observe on Figure 6.7 a decline in the
community’s interest for XML access control, while access control in general
remains an active topic of research. However, query rewriting techniques
could find applications for graph-structured data, to query ontologies for
instance. This has already been investigated in the literature for various
query languages such as conjunctive queries to Datalog and regular path

235

6. The View Schema

queries, but could find new applications with the recent proposal of SPARQL
as a query language.

Optimizations for VPAs Visibly pushdown automata have raised increas-
ing interest since their introduction by Alur and Madhusudan [AM04b, AM09],
as evidenced on Figure 6.7. Yet we believe that many fundamental issues
over VPAs are not fully understood yet. Optimizing the evaluation of VPAs
(and especially of extensions of VPAs defining queries) can still be consid-
ered a research topic. These questions pertain to the problem of handling
efficiently non determinism in different automata and transducer models.
Non-determinism is particular challenging for VPAs, and is problematic for
most tree automata models. Also, we are not aware of much work that would
address (directly) the efficient evaluation of non-deterministic transducers.

Optimizations for (XML) Schema languages The opportunity of the de-
terminism constraint for regular expressions in XML DTD, XML Schema and
SGML has been debated [Man01, W3C]. Current algorithms do not fully ex-
ploit the determinism requirement to gain performance, but it is not clear
whether our algorithms for deterministic regular expressions would allow sub-
stantial optimizations for schemata of reasonable size. We plan to compare
experimentally our algorithms with state of the art parsers and regular ex-
pression libraries... These algorithms also raise numerous other questions, on
the precise complexity of evaluation, containment, and equivalence of deter-
ministic regular expressions. Some other interleaving and shuffling operators
from classical schema languages should also be considered. Furthermore,
one may wonder whether the techniques developed can be used for regular
expressions occurring in other contexts.

236

6.3. Approximation

 0

 500

 1000

 1500

 2000

 2500

 2001 2003 2005 2007 2009 2011

"xml access control" (*10)
"xml database"

"access control policy" OR
 "access control policies"

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2001 2003 2005 2007 2009 2011

"xpath"
"visibly pushdown" OR

 "nested word" (*10)

Figure 6.7.: Google scholar results by domain: 2001-2011

The results in Figure 6.7 have been obtained from queries on Google scholar
on June 6th, 2012 (including citations and patents). The accurate numbers
are not very relevant, but can be considered as an indicator on general trends
in the research community. Nota Bene: the numbers for the two queries
1) “XML access control” and 2) “visibly pushdown” OR “nested word” have
been scaled by a factor of 10 for better readability.

237

Notations

Notation Description Def. on page

Words and Trees

w : word, a : letter, t : tree, i : natural

|w| size of the word w 48
|w|a number of occurrences of a in w 48
wris ith letter in w 48
d concatenation symbol 52
TΣ set of all trees over Σ 48
Σt alphabet of t 48
follow t following sibling predicate 48
child t child predicate 48
root t root 48
Parent t parent predicate 49
next t next sibling predicate 49
fcnsptq first child next sibling encoding 50
yieldptq yield 58
ρÒ run 62
ω the exponent in the complexity of ma-

trix multiplication
47

� isomorphism relation 50

Regular expressions

e : regular expression, n : position, i, j : natural

Pospeq positions 52
eri..js repetition of e 53
Firstpeq first positions 55
Lastpeq last positions 55
Glushkovpeq Glushkov automaton 55
Follow epnq following positions 55

Tree automata

A : NTA or VPA, q : state

Aq language accepted below q (NTA) 59
Aq,q1 language accepted from q to q1 (VPA) 62

239

Notations

Notation Description Def. on page

AccA horizontal accessibility relation of A 62

Queries and Views

Q,Qv : query, C, C 1 : class of queries, t : tree,
D : DTD, ann : annotation, X : XPath query

dompQq domain 87
Q ptq Answer of query 89
MembpC, C 1q membership problem 93
Σedit,k alphabet for alignments 96
πi1,i2,...,im projection 96
tbQ annotation of a tree 97
View pQv, tq view tree 98
pD, annq annotated DTD 116
¤1 comparison by inclusion 129
¤2 comparison by determinacy 132
¤3 determinacy modulo isomorphism 132
¤2,C comparison by query rewriting 131
CertainQv

pQ; tvq certain answers 133
Ant pt, Qvq view inverse 133
QpD,annq query defined by annotated DTD 116
XReg Regular XPath language 90
QX query defined by X 91
FiltpQq filter corresponding to Q 91
X�1 inverse expression 91

Updates

u, u1, uv : editing script, V : view, L,Us : set of

editing scripts

� equivalence of editing scripts 165
rus equivalence class of u 165
Φ1puq,Φ2puq morphisms for equivalence 165
u�1 inverse of u 166
u 1 u1 synchronization of editing scripts 166
u � u1 composition of editing scripts 167
Prop pV, uvq propagations of uv w.r.t. V 174
Unif pV ,Usq uniform edit. scripts (w.r.t. V and Us) 184
Syncpk, Lq k-synchronized scripts of L 189
Uk
V edit. scripts inducing k-sync. ed. scripts 191

240

Index

Regular XPath, 90

automaton
Glushkov automaton, 55, 203
query automaton, 97
ranked tree automaton, 59
two-way alternating, 67, 107
view automaton, 97
visibly pushdown automaton, 60

certain answer, 133
configuration, 61
context-free, 57

derivation tree, 57, 139, 147
determinacy, 132, 132–161
DTD, 84

annotated DTD, 116
simple annotation, 116

Extended DTD, 84, 200
simple annotation, 200
XML DTD, 85, 202

editing script, 96
composition, 167
equivalence, 165
inverse, 166
k-synchronized, 188
stable, 173
synchronization, 166
uniform, 184

indistinguishable, 228
isomorphism, 50, 87, 132, 164, 279,

293

linearization, 50, 61, 64, 83, 101,
119, 150, 168, 177, 194, 281

morphism, 51

Parikh image, 221, 221–223
PCP, 57, 140, 156, 186
propagation, 174

regular expression, 52
deterministic, 56, 203–219, 287–

291
with numeric occurrences, 53,

216, 287–291
with squares, 53, 147

star-free language, 93
straight line program, 57, 147, 224

translation, 181
tree, 48
tree alignments, 96

upward-closed, 96
tree language

interval bounded, 102, 119
local, 84, 200
maximal, 96
regular, 63

update function, 176
uniformly translatable, 184

view, 98
interval bounded, 119, 140, 157
upward-closed, 119, 161, 200

yield, 57, 58, 139, 147

241

List of Figures

1. Représentation arborescente d’un document XML t0. iv
2. Arbre d’alignement entre t0 et sa vue pour pD0, ann0q v
3. Vue de t0 pour pD0, ann0q . v
4. Vues de sécurité non-matérialisées. x
5. View update problem. x

1.1. Non-materialized security views. 6

3.1. A tree t0 . 49
3.2. The fcns encoding. 51
3.3. Glushkov automaton of pab� bpb� εqaq�. 55
3.4. NTA A and VPA A1 . 70
3.5. From NTAs to VPAs . 70
3.6. Number of states and size obtained from the conversion of an

automaton with n states and m transitions 72
3.7. Vertical pumping lemma for VPAs. 82
3.8. The semantics of MSO . 89
3.9. The semantics of XReg. 91
3.10. Complexity of satisfiability and evaluation 95
3.11. A maximal set of tree alignments 97
3.12. Tree alignment t0 bQX . 98
3.13. A regular set of 1-interval bounded alignments 103
3.14. An update defined with XQUF. 104
3.15. An editing script from the XQUF query of Figure 3.14. 106

4.1. The view View
�
QpD0,ann0q, t0

�
. 118

4.2. The view View
�
QD0,ann

1
0
, t0

�
. 130

4.3. Reduction from ¤1 to ¤2,XReg and ¤3 for particular Q1 and Q2. 137
4.4. Reduction from ¤2 to ¤3 for particular Q1 and Q2. 138
4.5. PCP encoding for comparison ¤3. 141
4.6. Pumping argument for comparison ¤2. 146
4.7. Summing up complexity for the three comparisons 155

5.1. Two equivalent trees t and t1. 165
5.2. Synchronization of two editing scripts. 166
5.3. Composition of two editing scripts. 167
5.4. The view update framework: induced script and propagations. . 174
5.5. The view update problem. 181

243

5.6. “Core” of Au for u1 � a1,1a1,2 . . . a1,k. 188

6.1. View language obtained by each annotation when the domain is
a DTD (same table from an XML DTD). 202

6.2. Expression e0 � pc?ppab�qpa?cqqq�pbaq. 206
6.3. Inductive definition for the First and Last sets. 207
6.4. Combinations (1) and (2). 213
6.5. “State” complexity for the subword closure operation. 229
6.6. Summary of approximation results (negative results in round

boxes). 232
6.7. Google scholar results by domain: 2001-2011 237

A.1. The pumping of Lemma 4.21 does not work for ¤3 280
A.2. Two alignment trees and their square 282

244

Bibliography

Stella: We’ve become a race of Peeping Toms.

What people ought to do is get outside their own

house and look in for a change. Yes sir. How’s

that for a bit of homespun philosophy?

Jeff: Readers Digest, April 1939.

Stella: Well, I only quote from the best.

(Hitchcock, Rear window)

[AAC�99] Serge Abiteboul, Bernd Amann, Sophie Cluet, Anat Eyal, Lau-
rent Mignet, and Tova Milo. Active views for electronic commerce.
In VLDB, pages 138–149, 1999. (Cited page 36)

[ABD�05] Loredana Afanasiev, Patrick Blackburn, Ioanna Dimitriou,
Bertrand Gaiffe, Evan Goris, Maarten Marx, and Maarten de Ri-
jke. PDL for ordered trees. Journal of Applied Non-Classical
Logics, 15(2):115–135, 2005. (Cited pages 150, 278, and 279)

[ABG�05] Gagan Aggarwal, Mayank Bawa, Prasanna Ganesan, Hec-
tor Garcia-Molina, Krishnaram Kenthapadi, Rajeev Motwani,
Utkarsh Srivastava, Dilys Thomas, and Ying Xu. Two can keep
a secret: A distributed architecture for secure database services.
In CIDR, pages 186–199, 2005. (Cited page 20)

[ABGA11] Serge Abiteboul, Meghyn Bienvenu, Alban Galland, and Emilien
Antoine. A rule-based language for web data management. In
PODS, pages 293–304, 2011. (Cited page 20)

[ABM08] Serge Abiteboul, Omar Benjelloun, and Tova Milo. The Active
XML project: an overview. VLDB J., 17(5):1019–1040, 2008.
(Cited page 20)

[ABMP07] Andrei Arion, Véronique Benzaken, Ioana Manolescu, and Yan-
nis Papakonstantinou. Structured materialized views for XML
queries. In VLDB, pages 87–98, 2007. (Cited page 25)

[ABQ09] Mohamed Faouzi Atig, Ahmed Bouajjani, and Shaz Qadeer.
Context-bounded analysis for concurrent programs with dynamic
creation of threads. In TACAS, pages 107–123, 2009. (Cited
page 223)

245

Bibliography

[AC11] Foto N. Afrati and Rada Chirkova. Selecting and using views to
compute aggregate queries. J. Comput. Syst. Sci., 77(6):1079–
1107, 2011. (Cited page 22)

[ACG�09] Foto N. Afrati, Rada Chirkova, Manolis Gergatsoulis, Benny
Kimelfeld, Vassia Pavlaki, and Yehoshua Sagiv. On rewriting
XPath queries using views. In EDBT, pages 168–179, 2009. (Cited
page 24)

[AD12] Rajeev Alur and Loris D’Antoni. Streaming tree transducers, to
appear at ICALP (2), 2012. (Cited page 235)

[Afr11] Foto N. Afrati. Determinacy and query rewriting for conjunctive
queries and views. Theor. Comput. Sci., 412(11):1005–1021, 2011.
(Cited page 23)

[AGKR04] Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe.
Nearest common ancestors: A survey and a new algorithm for a
distributed environment. Theory of Computing Systems, 37:441–
456, 2004. 10.1007/s00224-004-1155-5. (Cited page 205)

[AH87] I. J. Aalbersberg and H. J. Hoogeboom. Decision problems for
regular trace languages. In 14th International Colloquium on Au-
tomata, languages and programming, pages 250–259, 1987. (Cited
page 165)

[AI00] Natasha Alechina and Neil Immerman. Reachability logic: An
efficient fragment of transitive closure logic. Logic Journal of the
IGPL, 8(3):325–337, 2000. (Cited pages 92 and 127)

[AJREF10] Ryma Abassi, Florent Jacquemard, Michael Rusinowitch, and Si-
hem Guemara El Fatmi. XML Access Control: from XACML
to Annotated Schemas. In Second International Conference on
Communications and Networking (ComNet), pages 1–8, Tozeur,
Tunisie, 2010. IEEE Computer Society Press. (Cited page 12)

[AKG91] Serge Abiteboul, Paris C. Kanellakis, and Gösta Grahne. On the
representation and querying of sets of possible worlds. Theor.
Comput. Sci., 78(1):158–187, 1991. (Cited page 26)

[AL05] Marcelo Arenas and Leonid Libkin. An information-theoretic ap-
proach to normal forms for relational and XML data. J. ACM,
52(2):246–283, 2005. (Cited page 32)

[Alu07] Rajeev Alur. Marrying words and trees. In PODS, pages 233–242,
2007. (Cited page 60)

246

Bibliography

[AM04a] Cyril Allauzen and Mehryar Mohri. An optimal pre-
determinization algorithm for weighted transducers. Theor. Com-
put. Sci., 328(1-2):3–18, 2004. (Cited page 40)

[AM04b] Rajeev Alur and P. Madhusudan. Visibly pushdown languages.
In STOC, pages 202–211, 2004. (Cited pages iv, 60, 79, and 236)

[AM09] Rajeev Alur and P. Madhusudan. Adding nesting structure to
words. J. ACM, 56(3), 2009. (Cited pages 60, 63, 64, 66, 79,
and 236)

[AMR�98] Serge Abiteboul, Jason McHugh, Michael Rys, Vasilis Vassalos,
and Janet L. Wiener. Incremental maintenance for materialized
views over semistructured data. In VLDB, pages 38–49, 1998.
(Cited page 28)

[AP09] Rasmus Resen Amossen and Rasmus Pagh. Faster join-projects
and sparse matrix multiplications. In ICDT, pages 121–126, 2009.
(Cited page 48)

[ASV06] Serge Abiteboul, Luc Segoufin, and Victor Vianu. Representing
and querying XML with incomplete information. ACM Trans.
Database Syst., 31(1):208–254, 2006. (Cited page 27)

[AU71] Alfred V. Aho and Jeffrey D. Ullman. Translations on a context-
free grammar. Information and Control, 19(5):439–475, 1971.
(Cited page 67)

[B6̈0] A. R. Büchi. Weak second-order arithmetic and finite automata.
Z. Math. Logik Grundlagen Math, 6:66–92, 1960. (Cited page 139)

[BBFV05] Michael Benedikt, Angela Bonifati, Sergio Flesca, and Avinash
Vyas. Verification of tree updates for optimization. In CAV,
pages 379–393, 2005. (Cited page 30)

[BC02] Marie-Pierre Béal and Olivier Carton. Determinization of trans-
ducers over finite and infinite words. Theor. Comput. Sci.,
289(1):225–251, 2002. (Cited page 40)

[BC06] Mikolaj Bojanczyk and Thomas Colcombet. Tree-walking au-
tomata cannot be determinized. Theor. Comput. Sci., 350(2-
3):164–173, 2006. (Cited page 67)

[BC08] Mikolaj Bojanczyk and Thomas Colcombet. Tree-walking au-
tomata do not recognize all regular languages. SIAM J. Comput.,
38(2):658–701, 2008. (Cited page 67)

247

Bibliography

[BC09] Michael Benedikt and James Cheney. Schema-based indepen-
dence analysis for XML updates. PVLDB, 2(1):61–72, 2009.
(Cited pages 29 and 30)

[BC10] Michael Benedikt and James Cheney. Destabilizers and indepen-
dence of XML updates. PVLDB, 3(1):906–917, 2010. (Cited
page 31)

[BCF07] Loreto Bravo, James Cheney, and Irini Fundulaki. Repairing in-
consistent XML write-access control policies. In DBPL, pages
97–111, 2007. (Cited pages 39 and 234)

[BCF08] Loreto Bravo, James Cheney, and Irini Fundulaki. ACCOn:
checking consistency of XML write-access control policies. In
EDBT, pages 715–719, 2008. (Cited page 39)

[BCF�10] Davi M. J. Barbosa, Julien Cretin, Nate Foster, Michael Green-
berg, and Benjamin C. Pierce. Matching lenses: alignment and
view update. In ICFP, pages 193–204, 2010. (Cited page 36)

[BDH06] Vanessa P. Braganholo, Susan B. Davidson, and Carlos A. Heuser.
PATAXO: A framework to allow updates through XML views.
ACM Transactions on Database Systems (TODS), 31, 2006.
(Cited page 37)

[BdRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal
logic. Cambridge University Press, New York, NY, USA, 2001.
(Cited pages 150, 278, and 279)

[Bel05] David Elliott Bell. Looking back at the Bell-La Padula model. In
ACSAC, pages 337–351, 2005. (Cited page 2)

[BEM97] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability
analysis of pushdown automata: Application to model-checking.
In CONCUR, pages 135–150, 1997. (Cited page 73)

[Ber79] Jean Berstel. Transductions and context-free languages, volume 38
of Leitfäden der Angewandten Mathematik und Mechanik. B. G.
Teubner, Stuttgart, 1979. (Cited page 185)

[BF05] Michael Benedikt and Irini Fundulaki. XML Subtree Queries:
Specification and Composition. In DBPL, pages 138–153, 2005.
(Cited page 21)

[BF11] Mikolaj Bojanczyk and Diego Figueira. Efficient evaluation for
a temporal logic on changing XML documents. In PODS, pages
259–270, 2011. (Cited page 37)

248

Bibliography

[BFCP�05] M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and
P. Sumazin. Lowest common ancestors in trees and directed
acyclic graphs. J. Algorithms, 57(2):75–94, 2005. (Cited page 205)

[BFFN05] Philip Bohannon, Wenfei Fan, Michael Flaster, and P. P. S.
Narayan. Information preserving XML Schema embedding. In
VLDB, pages 85–96, 2005. (Cited page 26)

[BFG�06] Peter A. Boncz, Jan Flokstra, Torsten Grust, Maurice van Keulen,
Stefan Manegold, K. Sjoerd Mullender, Jan Rittinger, and Jens
Teubner. MonetDB/XQuery-consistent and efficient updates on
the pre/post plane. In EDBT, pages 1190–1193, 2006. (Cited
page 40)

[BFG08] Michael Benedikt, Wenfei Fan, and Floris Geerts. XPath satis-
fiability in the presence of DTDs. J. ACM, 55(2), 2008. (Cited
pages 94 and 234)

[BGM10] Henrik Björklund, Wouter Gelade, and Wim Martens. Incremen-
tal XPath evaluation. ACM Trans. Database Syst., 35(4):29, 2010.
(Cited pages 28, 29, and 111)

[BGMN09] Geert Jan Bex, Wouter Gelade, Wim Martens, and Frank Neven.
Simplifying XML schema: effortless handling of nondeterminis-
tic regular expressions. In SIGMOD Conference, pages 731–744,
2009. (Cited pages 42, 202, 218, 219, 235, and 291)

[BGMS11] Angela Bonifati, Martin Hugh Goodfellow, Ioana Manolescu, and
Domenica Sileo. Algebraic incremental maintenance of XML
views. In EDBT, pages 177–188, 2011. (Cited pages 28 and 29)

[BGNV10] Geert Jan Bex, Wouter Gelade, Frank Neven, and Stijn Vansum-
meren. Learning deterministic regular expressions for the infer-
ence of schemas from XML data. TWEB, 4(4), 2010. (Cited
pages 41 and 42)

[BGT�11] I. Boneva, B. Groz, S. Tison, A.-C. Caron, Y. Roos, and S. Sta-
worko. View update translation for XML. In International Con-
ference on Database Theory (ICDT), pages 42–53. ACM, March
2011. (Cited page 9)

[BGvK�06] Peter A. Boncz, Torsten Grust, Maurice van Keulen, Stefan Mane-
gold, Jan Rittinger, and Jens Teubner. MonetDB/XQuery: a fast
XQuery processor powered by a relational engine. In SIGMOD
Conference, pages 479–490, 2006. (Cited page 37)

249

Bibliography

[BJ07] Michael Benedikt and Alan Jeffrey. Efficient and expressive tree
filters. In FSTTCS, pages 461–472, 2007. (Cited page 114)

[BK93] A. Brüggemann-Klein. Regular expressions into finite automata.
TCS, 120(2):197–213, 1993. (Cited page 205)

[BK08] Michael Benedikt and Christoph Koch. XPath leashed. ACM
Comput. Surv., 41(1), 2008. (Cited pages 46, 90, and 93)

[BKMW01] Anne Brüggemann-Klein, Makoto Murata, and Derick Wood.
Regular tree and regular hedge languages over unranked alpha-
bets (version 1). Unpublished manuscript, 2001. (Cited pages 66
and 99)

[BKW98] Anne Brüggemann-Klein and Derick Wood. One-unambiguous
regular languages. Inf. Comput., 140(2):229–253, 1998. (Cited
pages 203, 217, 218, 219, 224, and 291)

[BL73] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathe-
matical foundations. Technical Report MTR-2547, Vol. 1, MITRE
Corp., Bedford, MA, 1973. (Cited page 2)

[BLPS09] Pablo Barceló, Leonid Libkin, Antonella Poggi, and Cristina Sir-
angelo. XML with incomplete information: models, properties,
and query answering. In PODS, pages 237–246, 2009. (Cited
pages 26 and 27)

[BM63] J. A. Brzozowski and E. J. McCluskey. Signal flow graph tech-
niques for sequential circuit state diagrams. Electronic Comput-
ers, IEEE Transactions on, EC-12(2):67 –76, april 1963. (Cited
page 54)

[BMV06] Denilson Barbosa, Laurent Mignet, and Pierangelo Veltri. Study-
ing the XML Web: Gathering Statistics from an XML Sam-
ple. World Wide Web, 9(2):187–212, 2006. (Cited pages vii, 44,
and 77)

[BN89] D. F. C. Brewer and M. J. Nash. The chinese wall security pol-
icy. In IEEE Symposium on Security and Privacy, pages 206–214,
1989. (Cited page 18)

[BNdB04] Geert Jan Bex, Frank Neven, and Jan Van den Bussche. DTDs
versus XML Schema: A Practical Study. In WebDB, pages 79–84,
2004. (Cited page 44)

[BNSV10] Geert Jan Bex, Frank Neven, Thomas Schwentick, and Stijn Van-
summeren. Inference of concise regular expressions and DTDs.
ACM Trans. Database Syst., 35(2), 2010. (Cited pages 41 and 204)

250

Bibliography

[BNV07] Geert Jan Bex, Frank Neven, and Stijn Vansummeren. Inferring
XML Schema Definitions from XML Data. In VLDB, pages 998–
1009, 2007. (Cited page 41)

[BÖB�04] Andrey Balmin, Fatma Özcan, Kevin S. Beyer, Roberta
Cochrane, and Hamid Pirahesh. A framework for using mate-
rialized XPath views in XML query processing. In VLDB, pages
60–71, 2004. (Cited page 25)

[Boj08] Mikolaj Bojanczyk. Tree-walking automata. In LATA, pages 1–2,
2008. (Cited page 67)

[BP10] Changwoo Byun and Seog Park. A schema based approach to
valid XML access control. J. Inf. Sci. Eng., 26(5):1719–1739,
2010. (Cited page 15)

[BP11] Miko laj Bojańczyk and Pawel Parys. XPath evaluation in linear
time. J. ACM, 58(4):17, 2011. (Cited pages 68, 204, 210, 215,
and 290)

[BPS96] Graham Brightwell, Hans Jürgen Prömel, and Angelika Steger.
The average number of linear extensions of a partial order. J.
Comb. Theory, Ser. A, 73(2):193–206, 1996. (Cited page 110)

[BPV04] Andrey Balmin, Yannis Papakonstantinou, and Victor Vianu. In-
cremental validation of XML documents. ACM Trans. Database
Syst., 29(4):710–751, 2004. (Cited page 28)

[BS81] François Bancilhon and Nicolas Spyratos. Update semantics of
relational views. ACM Trans. Database Syst., 6(4):557–575, 1981.
(Cited pages 33, 34, and 184)

[BS09] Michael Benedikt and Luc Segoufin. Regular tree languages de-
finable in FO and in FOmod. ACM Trans. Comput. Log., 11(1),
2009. (Cited page 94)

[BTCU12] Nicole Bidoit-Tollu, Dario Colazzo, and Federico Ulliana. Type-
based detection of XML query-update independence. PVLDB,
5(9):872–883, 2012. (Cited page 31)

[BW08] Miko laj Bojańczyk and Igor Walukiewicz. Forest algebras. In
Automata and Logic: History and Perspectives. Collected papers
for Wolfgang Thomas’ 60th birthday, 2008. (Cited page 51)

[CAM09] Bogdan Cautis, Serge Abiteboul, and Tova Milo. Reasoning about
XML update constraints. J. Comput. Syst. Sci., 75(6):336–358,
2009. (Cited page 37)

251

Bibliography

[CCBS05] Frédéric Cuppens, Nora Cuppens-Boulahia, and Thierry Sans.
Protection of relationships in XML documents with the XML-BB
model. In ICISS, pages 148–163, 2005. (Cited page 18)

[CCF�09] James Cheney, Stephen Chong, Nate Foster, Margo I. Seltzer, and
Stijn Vansummeren. Provenance: a future history. In OOPSLA
Companion, pages 957–964, 2009. (Cited page 38)

[CCFV08] Byron Choi, Gao Cong, Wenfei Fan, and Stratis D. Viglas. Up-
dating recursive XML views of relations. Journal of Computer
Science and Technology, 23, 2008. (Cited page 37)

[CDG�07] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata tech-
niques and applications. Available on: http://www.grappa.univ-
lille3.fr/tata, 2007. release October, 12th 2007. (Cited pages 51
and 66)

[CDO08] Bogdan Cautis, Alin Deutsch, and Nicola Onose. XPath rewriting
using multiple views: Achieving completeness and efficiency. In
WebDB, 2008. (Cited page 25)

[CDOV11] Bogdan Cautis, Alin Deutsch, Nicola Onose, and Vasilis Vassalos.
Querying XML data sources that export very large sets of views.
ACM Trans. Database Syst., 36(1):5, 2011. (Cited page 25)

[CdVF�10] Valentina Ciriani, Sabrina De Capitani di Vimercati, Sara Foresti,
Sushil Jajodia, Stefano Paraboschi, and Pierangela Samarati.
Combining fragmentation and encryption to protect privacy in
data storage. ACM Trans. Inf. Syst. Secur., 13(3), 2010. (Cited
page 20)

[CFG�11] G. Cong, W. Fan, F. Geerts, J. Li, and J. Luo. On the complexity
of view update analysis and its application to annotation propa-
gation. Knowledge and Data Engineering, IEEE Transactions on,
PP(99):1, 2011. (Cited page 38)

[CG99] Christian Choffrut and Serge Grigorieff. Uniformization of ratio-
nal relations. In Jewels are Forever, pages 59–71, 1999. (Cited
page 181)

[CGLV02] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Moshe Y. Vardi. Lossless regular views. In PODS, pages 247–258,
2002. (Cited pages viii and 23)

252

Bibliography

[CGLV07] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Moshe Y. Vardi. View-based query processing: On the relation-
ship between rewriting, answering and losslessness. Theor. Com-
put. Sci., 371(3):169–182, 2007. (Cited pages viii and 23)

[CGLV09] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Moshe Y. Vardi. An automata-theoretic approach to regular
XPath. In DBPL, pages 18–35, 2009. (Cited pages 67, 68, 92,
105, 107, 108, 109, 110, 111, 123, 127, 151, and 162)

[CGLV10] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Moshe Y. Vardi. Node selection query languages for trees. In
AAAI, 2010. (Cited pages 67 and 68)

[CGM11] Federico Cavalieri, Giovanna Guerrini, and Marco Mesiti. Dy-
namic reasoning on XML updates. In EDBT, pages 165–176,
2011. (Cited page 40)

[CH91] Sang Cho and Dung T. Huynh. Finite-automaton aperiodicity
is PSPACE-Complete. Theor. Comput. Sci., 88(1):99–116, 1991.
(Cited page 94)

[Che08] James Cheney. FLUX: functional updates for XML. In ICFP,
pages 3–14, 2008. (Cited page 27)

[Che11] James Cheney. A formal framework for provenance security. In
CSF, pages 281–293, 2011. (Cited page 38)

[Cho59] Noam Chomsky. On certain formal properties of grammars. In-
formation and Control, 2(2):137–167, 1959. (Cited page 57)

[Cho77] Christian Choffrut. Une caracterisation des fonctions sequen-
tielles et des fonctions sous-sequentielles en tant que relations
rationnelles. Theor. Comput. Sci., 5(3):325–337, 1977. (Cited
page 40)

[Cho02] Byron Choi. What are real DTDs like? In WebDB, pages 43–48,
2002. (Cited page 44)

[CKS81] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer.
Alternation. J. ACM, 28(1):114–133, 1981. (Cited pages 112
and 114)

[Cla02] newsgroup post, 2002. http://www.imc.org/ietf-xml-use/mail-
archive/msg00217.html. (Cited page 87)

253

Bibliography

[CM77] Ashok K. Chandra and Philip M. Merlin. Optimal implementa-
tion of conjunctive queries in relational data bases. In STOC,
pages 77–90, 1977. (Cited page 47)

[CNS99] Sara Cohen, Werner Nutt, and Alexander Serebrenik. Rewriting
aggregate queries using views. In PODS, pages 155–166, 1999.
(Cited page 22)

[CNT04] Julien Carme, Joachim Niehren, and Marc Tommasi. Querying
unranked trees with stepwise tree automata. In RTA, pages 105–
118, 2004. (Cited page 66)

[Cod70] E. F. Codd. A relational model of data for large shared data
banks. Commun. ACM, 13(6):377–387, 1970. (Cited page 32)

[Cou91] Bruno Courcelle. On constructing obstruction sets of words. Bul-
letin of the EATCS, 44:178–186, 1991. (Cited pages 223 and 224)

[CP84] Stavros S. Cosmadakis and Christos H. Papadimitriou. Updates
of relational views. J. ACM, 31(4):742–760, 1984. (Cited page 34)

[CP97] C.-H. Chang and R. Paige. From regular expressions to DFA’s
using compressed NFA’s. TCS, 178(1–2):1–36, 1997. (Cited
pages 56, 206, and 207)

[CW90] Don Coppersmith and Shmuel Winograd. Matrix multiplication
via arithmetic progressions. J. Symb. Comput., 9(3):251–280,
1990. (Cited page 47)

[DB82] Umeshwar Dayal and Philip A. Bernstein. On the correct trans-
lation of update operations on relational views. ACM Trans.
Database Syst., 7(3):381–416, 1982. (Cited page 33)

[DBI] Verizon 2011 Data Breach Investigation Report, available at:
www.verizonbusiness.com/go/2011dbir. (Cited page 4)

[DdVPS02] Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano
Paraboschi, and Pierangela Samarati. A fine-grained access con-
trol system for XML documents. ACM Trans. Inf. Syst. Secur.,
5(2):169–202, 2002. (Cited pages 13, 16, and 17)

[DFGM08] Ernesto Damiani, Majirus Fansi, Alban Gabillon, and Stefa-
nia Marrara. A general approach to securely querying XML.
Computer Standards & Interfaces, 30(6):379–389, 2008. (Cited
pages 12, 18, 19, and 234)

254

Bibliography

[DFK06] Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi.
Specifying and reasoning about dynamic access-control policies.
In IJCAR, pages 632–646, 2006. (Cited page 39)

[DGN�12] Denis Debarbieux, Olivier Gauwin, Joachim Niehren, Tom Se-
bastian, and Mohamed Zergaoui. Early XPath Node Selection on
XML Streams. Research report, March 2012. (Cited page 80)

[DKKdO07] Daniel J. Dougherty, Claude Kirchner, Hélène Kirchner, and An-
derson Santana de Oliveira. Modular access control via strategic
rewriting. In ESORICS, pages 578–593, 2007. (Cited page 39)

[DKM�11] Susan B. Davidson, Sanjeev Khanna, Tova Milo, Debmalya Pan-
igrahi, and Sudeepa Roy. Provenance views for module privacy.
In PODS, pages 175–186, 2011. (Cited page 38)

[DLM10] Claire David, Leonid Libkin, and Filip Murlak. Certain answers
for XML queries. In PODS, pages 191–202, 2010. (Cited pages 26
and 27)

[Don65] J. E. Doner. Decidability of the weak Second-Order theory of two
successors. Notices Amer. Math. Soc., 12:365–468, March 1965.
(Cited page 59)

[Don70] John Doner. Tree acceptors and some of their applications. J.
Comput. Syst. Sci., 4(5):406–451, 1970. (Cited page 59)

[DTR] Evan Driscoll, Aditya Thakur, and Thomas
Reps. OpenNWA, a nested-word-automaton library.
http://research.cs.wisc.edu/wpis/OpenNWA, retrieved 02/2012.
(Cited page 79)

[dVFJ�10] Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia,
Stefano Paraboschi, and Pierangela Samarati. Encryption policies
for regulating access to outsourced data. ACM Trans. Database
Syst., 35(2), 2010. (Cited page 20)

[EGKL11] Javier Esparza, Pierre Ganty, Stefan Kiefer, and Michael Lut-
tenberger. Parikhs theorem: A simple and direct automaton
construction. Inf. Process. Lett., 111(12):614–619, 2011. (Cited
pages 221 and 222)

[EHRS00] Javier Esparza, David Hansel, Peter Rossmanith, and Stefan
Schwoon. Efficient algorithms for model checking pushdown sys-
tems. In CAV, pages 232–247, 2000. (Cited page 73)

255

Bibliography

[EKSW05] Keith Ellul, Bryan Krawetz, Jeffrey Shallit, and Ming-wei Wang.
Regular expressions: New results and open problems. Journal of
Automata, Languages and Combinatorics, 10(4):407–437, 2005.
(Cited pages 227 and 228)

[EUd12] European data protection reform.
http://ec.europa.eu/justice/newsroom/data-
protection/news/120125 en.html, 2012. (Cited page 3)

[EZ74] Andrzej Ehrenfeucht and H. Paul Zeiger. Complexity measures
for regular expressions. In STOC, pages 75–79, 1974. (Cited
pages 54, 228, 292, and 293)

[FCB07] Wenfei Fan, Gao Cong, and Philip Bohannon. Querying XML
with update syntax. In SIGMOD Conference, pages 293–304,
2007. (Cited page 32)

[FCG04] W. Fan, C.-Y. Chan, and M. N. Garofalakis. Secure XML query-
ing with security views. In SIGMOD Conference, pages 587–598,
2004. (Cited pages ii, iii, vi, 5, 13, 16, 17, 21, 22, 39, 116, 124,
128, 129, 233, and 234)

[FDL11] Nadime Francis, Claire David, and Leonid Libkin. A direct trans-
lation from XPath to nondeterministic automata. In AMW, 2011.
(Cited pages 100 and 112)

[Feg10] Leonidas Fegaras. Propagating updates through XML views using
lineage tracing. In ICDE, pages 309–320, 2010. (Cited pages 32,
35, 37, and 38)

[FG04] Markus Frick and Martin Grohe. The complexity of first-order
and monadic second-order logic revisited. Ann. Pure Appl. Logic,
130(1-3):3–31, 2004. (Cited page 90)

[FGJK06] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. SMOQE:
A system for providing secure access to XML. In VLDB, pages
1227–1230. ACM, 2006. (Cited pages 17 and 125)

[FGJK07] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Rewriting
regular XPath queries on XML views. In ICDE, pages 666–675,
2007. (Cited pages iii, vi, 5, 7, 16, 17, 21, 22, 124, 128, 129, 233,
and 234)

[FGK03] Markus Frick, Martin Grohe, and Christoph Koch. Query eval-
uation on compressed trees (extended abstract). In LICS, pages
188–, 2003. (Cited page 100)

256

Bibliography

[FGM�07] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore,
Benjamin C. Pierce, and Alan Schmitt. Combinators for bidirec-
tional tree transformations: A linguistic approach to the view-
update problem. ACM Transactions on Programming Languages
and Systems (TOPLAS), 2007. (Cited page 36)

[FGRS11] Emmanuel Filiot, Olivier Gauwin, Pierre-Alain Reynier, and
Frédéric Servais. Streamability of nested word transductions. In
FSTTCS, pages 312–324, 2011. (Cited pages 40 and 102)

[FGZ12] Wenfei Fan, Floris Geerts, and Lixiao Zheng. View determinacy
for preserving selected information in data transformations. Inf.
Syst., 37(1):1–12, 2012. (Cited page 24)

[FKSV08] J. Nathan Foster, Ravi Konuru, Jérôme Siméon, and Lionel Vil-
lard. An algebraic approach to view maintenance for XQuery. In
PLAN-X, 2008. (Cited pages 28 and 29)

[FM71] Michael J. Fischer and Albert R. Meyer. Boolean matrix multipli-
cation and transitive closure. In SWAT (FOCS), pages 129–131,
1971. (Cited page 47)

[FM04] Irini Fundulaki and Maarten Marx. Specifying access control poli-
cies for XML documents with XPath. In SACMAT, pages 61–69,
2004. (Cited page 4)

[FM07] Irini Fundulaki and Sebastian Maneth. Formalizing XML access
control for update operations. In SACMAT, pages 169–174, 2007.
(Cited page 38)

[FMP05] Béatrice Finance, Säıda Medjdoub, and Philippe Pucheral. The
case for access control on XML relationships. In BDA, 2005.
(Cited pages 18 and 19)

[FPZ09] J.N. Foster, B.C. Pierce, and S. Zdancewic. Updatable secu-
rity views. In Computer Security Foundations Symposium, 2009.
(Cited page 36)

[FRR�10] Emmanuel Filiot, Jean-François Raskin, Pierre-Alain Reynier,
Frédéric Servais, and Jean-Marc Talbot. Properties of visibly
pushdown transducers. In MFCS, pages 355–367, 2010. (Cited
pages 101, 102, 103, and 178)

[FS11] Emmanuel Filiot and Frédéric Servais. Visibly Pushdown Trans-
ducers with Look-Ahead. Research report, March 2011. to appear
at SOFSEM’12. (Cited page 181)

257

Bibliography

[FUV83] Ronald Fagin, Jeffrey D. Ullman, and Moshe Y. Vardi. On the
semantics of updates in databases. In PODS, pages 352–365, 1983.
(Cited page 184)

[FWW97] Alain Finkel, Bernard Willems, and Pierre Wolper. A direct
symbolic approach to model checking pushdown systems. Electr.
Notes Theor. Comput. Sci., 9:27–37, 1997. (Cited page 73)

[GAP11] Alban Galland, Serge Abiteboul, and Neoklis Polyzotis. Web in-
formation management with access control. In 14th International
Workshop on the Web and Databases (WebDB), May 2011. (Cited
page 20)

[Gau09] Olivier Gauwin. Flux XML, Requêtes XPath et Automates.
Phd thesis, Université des Sciences et Technologie de Lille
- Lille I, September 2009. http://tel.archives-ouvertes.fr/tel-
00421911/en/. (Cited pages 60, 62, 63, 65, 69, 74, 77, and 79)

[GD72] G. Scott Graham and Peter J. Denning. Protection: principles
and practice. In Proceedings of the May 16-18, 1972, spring joint
computer conference, AFIPS ’72 (Spring), pages 417–429, New
York, NY, USA, 1972. ACM. (Cited page 2)

[GGH�09] Parke Godfrey, Jarek Gryz, Andrzej Hoppe, Wenbin Ma, and
Calisto Zuzarte. Query rewrites with views for XML in DB2. In
ICDE, pages 1339–1350, 2009. (Cited page 24)

[GGM12] Wouter Gelade, Marc Gyssens, and Wim Martens. Regular ex-
pressions with counting: Weak versus strong determinism. SIAM
J. Comput., 41(1):160–190, 2012. (Cited page 217)

[GH08] Hermann Gruber and Markus Holzer. Finite automata, digraph
connectivity, and regular expression size. In ICALP (2), pages
39–50, 2008. (Cited pages 54 and 293)

[GHK07] Hermann Gruber, Markus Holzer, and Martin Kutrib. The size of
Higman-Haines sets. Theor. Comput. Sci., 387(2):167–176, 2007.
(Cited page 224)

[GHK09] Hermann Gruber, Markus Holzer, and Martin Kutrib. More on
the size of Higman-Haines sets: Effective constructions. Fundam.
Inform., 91(1):105–121, 2009. (Cited page 224)

[GI81] E.M. Gurari and O.H Ibarra. The complexity of decision prob-
lems for finite-turn multicounter machines. J. Comput. Syst. Sci.,
22(2):220–229, 1981. (Cited pages 148 and 178)

258

Bibliography

[GI83] E.M. Gurari and O.H Ibarra. A note on finitely-valued and finitely
ambiguous transducers. Mathematical Systems Theory, 16(1):61–
66, 1983. (Cited page 148)

[GI08] Françoise Gire and Hicham Idabal. Updates and views depen-
dencies in semi-structured databases. In IDEAS, pages 159–168,
2008. (Cited pages 29 and 30)

[GI10] Françoise Gire and Hicham Idabal. Regular tree patterns: a uni-
form formalism for update queries and functional dependencies in
XML. In EDBT/ICDT Workshops, 2010. (Cited page 30)

[GIMN10] Wouter Gelade, Tomasz Idziaszek, Wim Martens, and Frank
Neven. Simplifying XML schema: single-type approximations of
regular tree languages. In PODS, pages 251–260, 2010. (Cited
page 42)

[GJ08] Hermann Gruber and Jan Johannsen. Optimal lower bounds on
regular expression size using communication complexity. In FoS-
SaCS, pages 273–286, 2008. (Cited pages 228 and 293)

[GK02] Georg Gottlob and Christoph Koch. Monadic queries over tree-
structured data. In LICS, pages 189–202, 2002. (Cited pages 46
and 90)

[GKP03] Georg Gottlob, Christoph Koch, and Reinhard Pichler. The com-
plexity of XPath query evaluation. In PODS, pages 179–190, 2003.
(Cited page 90)

[GKP05] Georg Gottlob, Christoph Koch, and Reinhard Pichler. Efficient
algorithms for processing XPath queries. ACM Trans. Database
Syst., 30(2):444–491, 2005. (Cited page 92)

[Glu61] V. M. Glushkov. The abstract theory of automata. Russian Math-
ematical Surveys, 16:1–53, 1961. (Cited page 55)

[GM95] Ashish Gupta and Inderpal Singh Mumick. Maintenance of ma-
terialized views: Problems, techniques, and applications. IEEE
Data Eng. Bull., 18(2):3–18, 1995. (Cited page 28)

[GM11] Steven Grijzenhout and Maarten Marx. The quality of the XML
web. In CIKM, pages 1719–1724, 2011. (Cited page 43)

[GMM10] Pierre Ganty, Rupak Majumdar, and Benjamin Monmege.
Bounded underapproximations. In CAV, pages 600–614, 2010.
(Cited page 43)

259

Bibliography

[GMS12] Benôıt Groz, Sebastian Maneth, and Slawek Staworko. Determin-
istic regular expressions in linear time. In PODS, pages 49–60,
2012. (Cited pages 9 and 204)

[GNR08] Olivier Gauwin, Joachim Niehren, and Yves Roos. Streaming tree
automata. Inf. Process. Lett., 109(1):13–17, 2008. (Cited page 62)

[GPZ88] Georg Gottlob, Paolo Paolini, and Roberto Zicari. Properties
and update semantics of consistent views. ACM Trans. Database
Syst., 13(4):486–524, 1988. (Cited page 34)

[Gre68] Sheila A. Greibach. A note on undecidable properties of formal
languages. Mathematical Systems Theory, 2(1):1–6, 1968. (Cited
page 58)

[Gri68] Timothy V. Griffiths. The unsolvability of the equivalence prob-
lem for lambda-free nondeterministic generalized machines. J.
ACM, 15(3):409–413, 1968. (Cited pages 165 and 187)

[GRS08] Giorgio Ghelli, Kristoffer Høgsbro Rose, and Jérôme Siméon.
Commutativity analysis for XML updates. ACM Trans. Database
Syst., 33(4), 2008. (Cited page 31)

[GSC�09] Benôıt Groz, Slawomir Staworko, Anne-Cécile Caron, Yves Roos,
and Sophie Tison. XML security views revisited. In DBPL, pages
52–67, 2009. (Cited page 8)

[GSF06] José Fortes Gálvez, Sylvain Schmitz, and Jacques Farré. Shift-
resolve parsing: Simple, unbounded lookahead, linear time. In
CIAA, pages 253–264, 2006. (Cited page 43)

[GW97] Roy Goldman and Jennifer Widom. DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases. In
VLDB, pages 436–445, 1997. (Cited pages 25 and 87)

[Hal01] Alon Y. Halevy. Answering queries using views: A survey. VLDB
J., 10(4):270–294, 2001. (Cited pages 22 and 23)

[Heg90] Stephen J. Hegner. Foundations of canonical update support for
closed database views. In ICDT, pages 422–436, 1990. (Cited
page 35)

[Heg04] Stephen J. Hegner. An order-based theory of updates for closed
database views. Ann. Math. Artif. Intell., 40(1-2):63–125, 2004.
(Cited pages 33 and 35)

260

Bibliography

[Heg08] Stephen J. Hegner. Semantic bijectivity and the uniqueness of
constant-complement updates in the relational context. In SDKB,
pages 160–179, 2008. (Cited page 35)

[HHK11] Pierre-Cyrille Héam, Vincent Hugot, and Olga Kouchnarenko.
Loops and overloops for tree walking automata. In CIAA, pages
166–177, 2011. (Cited page 67)

[Hig52] Graham Higman. Ordering by divisibility in abstract algebras.
Proc. London Math. Soc., s3-2(1):326–336, January 1952. (Cited
page 223)

[HM98] C. Hagenah and A. Muscholl. Computing epsilon-free NFA from
regular expressions in Opn log2pnqq time. In MFCS, pages 277–
285, 1998. (Cited pages 56 and 207)

[HP98] Xiaohan Huang and Victor Y. Pan. Fast rectangular matrix mul-
tiplication and applications. J. Complexity, 14(2):257–299, 1998.
(Cited page 48)

[HPW11] Martin Hofmann, Benjamin C. Pierce, and Daniel Wagner. Sym-
metric lenses. In POPL, pages 371–384, 2011. (Cited page 36)

[HS09] Yo-Sub Han and Kai Salomaa. Nondeterministic state complexity
of nested word automata. Theor. Comput. Sci., 410(30-32):2961–
2971, 2009. (Cited page 66)

[HSW97] Juraj Hromkovic, Sebastian Seibert, and Thomas Wilke. Trans-
lating regular expressions into small epsilon-free nondeterministic
finite automata. In STACS, pages 55–66, 1997. (Cited page 56)

[HSW01] Juraj Hromkovic, Sebastian Seibert, and Thomas Wilke. Trans-
lating regular expressions into small -free nondeterministic finite
automata. J. Comput. Syst. Sci., 62(4):565–588, 2001. (Cited
page 56)

[HT84] D. Harel and R. E. Tarjan. Fast algorithms for finding near-
est common ancestors. SIAM J. Comput., 13(2):338–355, 1984.
(Cited page 205)

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Au-
tomata Theory, Languages and Computation. Addison-Wesley,
1979. (Cited pages 55, 58, 218, and 291)

[IL84] Tomasz Imieliński and Witold Lipski, Jr. Incomplete information
in relational databases. J. ACM, 31:761–791, September 1984.
(Cited page 26)

261

Bibliography

[JR08] Michael Johnson and Robert D. Rosebrugh. Constant comple-
ments, reversibility and universal view updates. In AMAST, pages
238–252, 2008. (Cited page 35)

[JR10] Florent Jacquemard and Michaël Rusinowitch. Rewrite-based ver-
ification of XML updates. In PPDP, pages 119–130, 2010. (Cited
page 39)

[JWMR07] Ming Jiang, Ling Wang, Murali Mani, and Elke A. Rundensteiner.
Updating views over recursive XML. In EROW, 2007. (Cited
page 37)

[Kel85] Arthur M. Keller. Algorithms for translating view updates to
database updates for views involving selections, projections, and
joins. In PODS, pages 154–163, 1985. (Cited pages 33, 37,
and 173)

[Kel86] Arthur M. Keller. Choosing a view update translator by dialog
at view definition time. In VLDB, pages 467–474, 1986. (Cited
page 33)

[Kel87] Arthur M. Keller. Comments on bancilhon and spyratos’ “update
semantics and relational views”. ACM Trans. Database Syst.,
12(3):521–523, 1987. (Cited page 34)

[KH00] Michiharu Kudo and Satoshi Hada. XML document security
based on provisional authorization. In ACM Conference on Com-
puter and Communications Security, pages 87–96, 2000. (Cited
page 12)

[Kil11] P. Kilpeläinen. Checking determinism of XML schema content
models in optimal time. Inf. Syst., 36(3):596–617, 2011. (Cited
pages vii, 203, 216, 217, and 288)

[Kle56] S. Kleene. Representation of Events in Nerve Nets and Finite
Automata, pages 3–42. Princeton University Press, Princeton,
N.J., 1956. (Cited page 54)

[KLM�04] Muralidhar Krishnaprasad, Zhen Hua Liu, Anand Manikutty,
James W. Warner, Vikas Arora, and Susan Kotsovolos. Query
rewrite for XML in Oracle XML DB. In VLDB, pages 1122–1133,
2004. (Cited page 24)

[KMM06] Yaron Kanza, Alberto O. Mendelzon, Renée J. Miller, and
Zheng Zhang 0002. Authorization-transparent access control for
XML under the non-truman model. In EDBT, pages 222–239,
2006. (Cited pages 14 and 19)

262

Bibliography

[KMR05] G. Kuper, F. Massacci, and N. Rassadko. Generalized XML secu-
rity views. In SACMAT ’05: Proceedings of the tenth ACM Sym-
posium on Access Control Models and Technologies, pages 77–84.
ACM, 2005. (Cited pages 7, 16, 17, 116, 128, and 234)

[KMR09] Gabriel M. Kuper, Fabio Massacci, and Nataliya Rassadko. Gen-
eralized XML security views. Int. J. Inf. Sec., 8(3):173–203, 2009.
(Cited pages 13, 16, 17, 128, 129, and 233)

[Koc03] Christoph Koch. Efficient processing of expressive node-selecting
queries on XML data in secondary storage: A tree automata-
based approach. In VLDB, pages 249–260, 2003. (Cited page 50)

[Koc10] Christoph Koch. Incremental query evaluation in a ring of
databases. In PODS, pages 87–98, 2010. (Cited page 28)

[Kop11] Eryk Kopczynski. Trees in trees: Is the incomplete information
about a tree consistent? In CSL, pages 367–380, 2011. (Cited
page 27)

[KQ07] Michiharu Kudo and Naizhen Qi. Access control policy models
for XML. In Secure Data Management in Decentralized Systems,
pages 97–126. 2007. (Cited page 12)

[KR10] Orna Kupferman and Adin Rosenberg. The blowup in translating
LTL to deterministic automata. In MoChArt, pages 85–94, 2010.
(Cited pages 112, 114, 150, and 278)

[KSV06] Yannis Kotidis, Divesh Srivastava, and Yannis Velegrakis. Up-
dates through views: A new hope. In ICDE, page 2, 2006. (Cited
page 35)

[KT07] P. Kilpeläinen and R. Tuhkanen. One-unambiguity of regular
expressions with numeric occurrence indicators. Inf. Comput.,
205(6):890–916, 2007. (Cited pages vii, 203, 216, 217, and 288)

[KT10] Eryk Kopczynski and Anthony Widjaja To. Parikh images of
grammars: Complexity and applications. In LICS, pages 80–89,
2010. (Cited page 222)

[KV05] Orna Kupferman and Moshe Y. Vardi. From linear time to
branching time. ACM Trans. Comput. Log., 6(2):273–294, 2005.
(Cited pages 112, 113, 114, and 277)

[KVW00] Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An
automata-theoretic approach to branching-time model checking.
J. ACM, 47(2):312–360, 2000. (Cited pages 67, 68, and 127)

263

Bibliography

[Lam71] Butler W. Lampson. Protection. In Princeton University, pages
437–443, 1971. (Cited page 2)

[Lan11] Martin Lange. P-hardness of the emptiness problem for visibly
pushdown languages. Inf. Process. Lett., 111(7):338–341, 2011.
(Cited page 79)

[Lec03] Jens Lechtenbörger. The impact of the constant complement ap-
proach towards view updating. In PODS, pages 49–55, 2003.
(Cited page 33)

[LHT07] D. Liu, Z. Hu, and M. Takeichi. Bidirectional interpretation of
XQuery. In ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-based Program Manipulation (PEPM), pages 21–
30, 2007. (Cited page 36)

[Lib11] Leonid Libkin. Incomplete information and certain answers in
general data models. In PODS, pages 59–70, 2011. (Cited page 27)

[Lin11] Andrzej Lingas. A fast output-sensitive algorithm for boolean
matrix multiplication. Algorithmica, 61(1):36–50, 2011. (Cited
page 48)

[LLLL11] Bo Luo, Dongwon Lee, Wang-Chien Lee, and Peng Liu. QFil-
ter: rewriting insecure XML queries to secure ones using non-
deterministic finite automata. VLDB J., 20(3):397–415, 2011.
(Cited pages 12, 15, and 234)

[Loh10] Markus Lohrey. Compressed membership problems for regular
expressions and hierarchical automata. Int. J. Found. Comput.
Sci., 21(5):817–841, 2010. (Cited page 147)

[LS08] Leonid Libkin and Cristina Sirangelo. Reasoning about XML with
temporal logics and automata. In LPAR, pages 97–112, 2008.
(Cited pages 100 and 112)

[LS10] Leonid Libkin and Cristina Sirangelo. Reasoning about XML
with temporal logics and automata. J. Applied Logic, 8(2):210–
232, 2010. (Cited pages 27, 100, 111, 112, 119, 161, 162, and 234)

[LV03] Jens Lechtenbörger and Gottfried Vossen. On the computation
of relational view complements. ACM Trans. Database Syst.,
28(2):175–208, 2003. (Cited page 34)

[Man01] Murali Mani. keeping chess alive do we need 1-unambiguous
content models? In Extreme Markup Languages, 2001. (Cited
pages ix and 236)

264

Bibliography

[Mar04] Maarten Marx. XPath with conditional axis relations. In EDBT,
pages 477–494, 2004. (Cited pages 90, 92, 93, 94, and 127)

[Mar05a] Maarten Marx. Conditional XPath. ACM Trans. Database Syst.,
30(4):929–959, 2005. (Cited page 93)

[Mar05b] Maarten Marx. First order paths in ordered trees. In ICDT, pages
114–128, 2005. (Cited page 93)

[Mar07] Maarten Marx. Queries determined by views: pack your views.
In PODS, pages 23–30, 2007. (Cited pages 22 and 23)

[MdR05] Maarten Marx and Maarten de Rijke. Semantic characteriza-
tions of navigational XPath. SIGMOD Record, 34(2):41–46, 2005.
(Cited page 93)

[Mea55] George H. Mealy. A method for synthesizing sequential circuits.
Bell System Technical Journal, 34(5):1045–1079, 1955. (Cited
page 53)

[Mét88] Yves Métivier. On recognizable subsets of free partially commu-
tative monoids. Theor. Comput. Sci., 58:201–208, 1988. (Cited
page 191)

[MKSW06] Sriram Mohan, Jonathan Klinginsmith, Arijit Sengupta, and
Yuqing Wu. Acxess - access control for XML with enhanced se-
curity specifications. In ICDE, page 171, 2006. (Cited page 19)

[MKVZ11] Ioana Manolescu, Konstantinos Karanasos, Vasilis Vassalos, and
Spyros Zoupanos. Efficient XQuery rewriting using multiple
views. In ICDE, pages 972–983, 2011. (Cited page 25)

[MLMK05] Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke
Kawaguchi. Taxonomy of XML schema languages using formal
language theory. ACM Trans. Internet Techn., 5(4):660–704,
2005. (Cited pages 84, 85, and 86)

[MN00] Mehryar Mohri and Mark-Jan Nederhof. Regular approximation
of context-free grammars through transformation, 2000. (Cited
page 43)

[MNSB06] Wim Martens, Frank Neven, Thomas Schwentick, and Geert Jan
Bex. Expressiveness and complexity of XML Schema. ACM
Trans. Database Syst., 31(3):770–813, 2006. (Cited pages 44, 86,
202, and 235)

265

Bibliography

[Moh12] Mehryar Mohri. A disambiguation algorithms for finite automata
and functional transducers. In CIAA, to appear, 2012. (Cited
page 40)

[Moo56] Edward F. Moore. Gedanken experiments on sequential machines.
In Automata Studies, pages 129–153. Princeton U., 1956. (Cited
page 53)

[Mos05] Tim Moses. eXtensible Access Control Markup Language TC v2.0
(XACML), February 2005. (Cited page 11)

[Mot89] Amihai Motro. An access authorization model for relational
databases based on algebraic manipulation of view definitions.
In ICDE, pages 339–347, 1989. (Cited page 14)

[MP43] W. S. McCulloch and W. Pitts. A logical calculus of the ideas
immanent in nervous activity. Bulletin of Mathematical Biophysic,
5:115–133, 1943. (Cited page 54)

[MP71] Robert McNaughton and Seymour A. Papert. Counter-Free Au-
tomata. M.I.T. Research Monograph no. 65. The MIT Press,
November 1971. (Cited page 93)

[MS90] B. Moret and H. Shapiro. Algorithms from P to NP. Ben-
jamin/Cummings, 1990. (Cited page 76)

[MS05] Bhushan Mandhani and Dan Suciu. Query caching and view selec-
tion for XML databases. In VLDB, pages 469–480, 2005. (Cited
page 24)

[MTKH03] Makoto Murata, Akihiko Tozawa, Michiharu Kudo, and Satoshi
Hada. XML access control using static analysis. In ACM Con-
ference on Computer and Communications Security, pages 73–84,
2003. (Cited page 12)

[MTKH06] Makoto Murata, Akihiko Tozawa, Michiharu Kudo, and Satoshi
Hada. XML access control using static analysis. ACM Trans.
Inf. Syst. Secur., 9(3):292–324, 2006. (Cited pages 13, 15, 119,
and 234)

[Mun71] J. Ian Munro. Efficient determination of the transitive closure
of a directed graph. Inf. Process. Lett., 1(2):56–58, 1971. (Cited
page 47)

[Mur99] M. Murata. Hedge automata: a formal model for
XML schemata. Unpublished manuscript, 1999.
www.horobi.com/Projects/RELAX/Archive/hedge nice.html.
(Cited page 66)

266

Bibliography

[MY60] R. McNaughton and H. Yamada. Regular expressions and finite
state graphs for automata. IRE Trans. on Electronic Comput,
EC-9(1):38–47, 1960. (Cited pages 54 and 55)

[MZZ12] Barzan Mozafari, Kai Zeng, and Carlo Zaniolo. High-performance
complex event processing over XML streams. In SIGMOD Con-
ference, pages 253–264, 2012. (Cited page 80)

[NdB02] Frank Neven and Jan Van den Bussche. Expressiveness of struc-
tured document query languages based on attribute grammars. J.
ACM, 49(1):56–100, 2002. (Cited page 100)

[Ned00] Mark-Jan Nederhof. Practical experiments with regular approx-
imation of context-free languages. Computational Linguistics,
26(1):17–44, 2000. (Cited page 42)

[NPTT05] Joachim Niehren, Laurent Planque, Jean-Marc Talbot, and So-
phie Tison. N-Ary Queries by Tree Automata. In DBPL, pages
217–231, 2005. (Cited page 100)

[NS02] Frank Neven and Thomas Schwentick. Query automata over fi-
nite trees. Theor. Comput. Sci., 275(1-2):633–674, 2002. (Cited
page 99)

[NSV10] Alan Nash, Luc Segoufin, and Victor Vianu. Views and queries:
Determinacy and rewriting. ACM Trans. Database Syst., 35(3),
2010. (Cited pages viii, 22, 23, and 24)

[Okh10] Alexander Okhotin. On the state complexity of scattered sub-
strings and superstrings. Fundam. Inform., 99(3):325–338, 2010.
(Cited pages 227 and 229)

[OS11] Alexander Okhotin and Kai Salomaa. Descriptional complexity
of unambiguous nested word automata. In LATA, pages 414–426,
2011. (Cited pages 65 and 66)

[Par66] Rohit Parikh. On context-free languages. J. ACM, 13(4):570–581,
1966. (Cited pages 220 and 221)

[Pas11] Daniel Pasaila. Conjunctive queries determinacy and rewriting.
In ICDT, pages 220–231, 2011. (Cited pages viii, 22, and 23)

[Pla94] W. Plandowski. Testing equivalence of morphisms on context-
free languages. In ESA, pages 460–470, 1994. (Cited pages 178
and 285)

267

Bibliography

[Pla10] Thomas Place. Decidable Characterizations for Tree Logics.
Thèse de doctorat, Laboratoire Spécification et Vérification, ENS
Cachan, France, December 2010. (Cited page 94)

[PS10] Thomas Place and Luc Segoufin. Deciding definability in FO2()
(or XPath) on trees. In LICS, pages 253–262, 2010. (Cited
page 94)

[PSZ11] François Picalausa, Frédéric Servais, and Esteban Zimányi. XE-
volve: an XML schema evolution framework. In SAC, pages 1645–
1650, 2011. (Cited page 80)

[PV00] Yannis Papakonstantinou and Victor Vianu. DTD inference for
views of XML data. In PODS, pages 35–46, 2000. (Cited pages 84
and 85)

[PZC96] J.-L. Ponty, D. Ziadi, and J.-M. Champarnaud. A new quadratic
algorithm to convert a regular expression into an automaton.
In Workshop on Implementing Automata, pages 109–119, 1996.
(Cited pages 56, 206, and 207)

[Rab68] Michael O. Rabin. Decidability of second-order theories and au-
tomata on infinite trees. Bull. Amer. Math. Soc., 74:1025–1029,
1968. (Cited page 50)

[Ras06] N. Rassadko. Policy classes and query rewriting algorithm for
XML security views. In 20th Annual IFIP WG 11.3 Working Con-
ference on Data and Applications Security (DBSec), volume 4127
of Lecture Notes in Computer Science, pages 104–118. Springer,
2006. (Cited page 17)

[Ras07] Nataliya Rassadko. Query rewriting algorithm evaluation for
XML security views. In Secure Data Management, pages 64–80,
2007. (Cited pages 17, 116, 128, and 129)

[Rel01] 2001. http://www.oasis-open.org/committees/relax-ng/spec-
20011203.html. (Cited page 87)

[RMSR04] Shariq Rizvi, Alberto O. Mendelzon, S. Sudarshan, and Prasan
Roy. Extending query rewriting techniques for fine-grained access
control. In SIGMOD Conference, pages 551–562, 2004. (Cited
page 14)

[RS01] Arnon Rosenthal and Edward Sciore. Administering permissions
for distributed data: Factoring and automated inference. In DB-
Sec, pages 91–104, 2001. (Cited page 14)

268

Bibliography

[RS06] Mukund Raghavachari and Oded Shmueli. Conflicting XML Up-
dates. In EDBT, pages 552–569, 2006. (Cited pages 29 and 30)

[RS08] Jean-François Raskin and Frédéric Servais. Visibly Pushdown
Transducers. In ICALP (2), pages 386–397, 2008. (Cited
page 101)

[Sak05] Jacques Sakarovitch. The language, the expression, and the
(small) automaton. In CIAA, pages 15–30, 2005. (Cited page 54)

[Sak09] Jacques Sakarovitch. Elements of Automata Theory. Cambridge
University Press, 2009. (Cited page 54)

[SAN10] CWE/SANS top 25 most dangerous software errors, available at:
http://cwe.mitre.org/top25, 2010. (Cited page 4)

[SBG10] S. Staworko, I. Boneva, and B. Groz. The view update problem
for XML. In EDBT Workshops (Updates in XML). ACM, March
2010. (Cited pages 9 and 176)

[Sch65] Marcel Paul Schützenberger. On finite monoids having only trivial
subgroups. Information and Control, 8(2):190–194, 1965. (Cited
page 93)

[Sch75] Marcel Paul Schützenberger. Sur les relations rationnelles. In
Automata Theory and Formal Languages, pages 209–213, 1975.
(Cited page 178)

[Sch06] G. Schnitger. Regular expressions and NFAs without epsilon-
transitions. In STACS, pages 432–443, 2006. (Cited page 56)

[Sch07] Sylvain Schmitz. Conservative ambiguity detection in context-free
grammars. In ICALP, pages 692–703, 2007. (Cited page 43)

[Ser11] Frédéric Servais. Visibly Pushdown Transducers. Phd
thesis, Université Libre de Bruxelles, September 2011.
http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-
09292011-142239/. (Cited page 102)

[SF02] A. Stoica and C. Farkas. Secure XML views. In IFIP WG 11.3
Sixteenth International Conference on Data and Applications Se-
curity, volume 256 of Research Directions in Data and Applica-
tions Security, pages 133–146. Kluwer, 2002. (Cited page 16)

[SLLN09] Slawomir Staworko, Grégoire Laurence, Aurélien Lemay, and
Joachim Niehren. Equivalence of deterministic nested word to
word transducers. In FCT, pages 310–322, 2009. (Cited page 178)

269

Bibliography

[Son11] 2011. Playstation network consumer alert :
http://us.playstation.com/news/consumeralerts. (Cited page 3)

[ST11] Maryam Shoaran and Alex Thomo. Evolving schemas for stream-
ing XML. Theor. Comput. Sci., 412(35):4545–4557, 2011. (Cited
page 40)

[Sto74] Larry J. Stockmeyer. The Complexity of Decision Problems in
Automata Theory and Logic. PhD thesis, MIT, Cambridge, Mas-
sasuchets, USA, 1974. (Cited pages 90 and 95)

[STP�06] Arsany Sawires, Jun’ichi Tatemura, Oliver Po, Divyakant
Agrawal, Amr El Abbadi, and K. Selçuk Candan. Maintaining
XPath views in loosely coupled systems. In VLDB, pages 583–
594, 2006. (Cited pages 29 and 30)

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische
Mathematik, 13(4):354–356, August 1969. (Cited page 47)

[SW73] T. G. Szymanski and J. H. Williams. Non-canonical parsing. In
14th Annual Symposium on Foundations of Computer Science,
pages 122–129. IEEE, 1973. (Cited page 139)

[SWK�02] Albrecht Schmidt, Florian Waas, Martin L. Kersten, Michael J.
Carey, Ioana Manolescu, and Ralph Busse. XMark: A Benchmark
for XML Data Management. In VLDB, pages 974–985, 2002.
(Cited page 29)

[Tan09] Nguyen Van Tang. A tighter bound for the determinization of
visibly pushdown automata. In INFINITY, pages 62–76, 2009.
(Cited pages 73, 74, and 79)

[Tar72] Robert Endre Tarjan. Depth-first search and linear graph algo-
rithms. SIAM J. Comput., 1(2):146–160, 1972. (Cited page 218)

[TBS02] I. Tatarinov, K. Beyer, and J. Shanmugasundaram. Storing and
querying ordered XML using a relational database system. In
SIGMOD Conference, 2002. (Cited page 37)

[tC06] Balder ten Cate. The expressivity of XPath with transitive clo-
sure. In PODS, pages 328–337, 2006. (Cited page 67)

[tCL09] Balder ten Cate and Carsten Lutz. The complexity of query con-
tainment in expressive fragments of XPath 2.0. J. ACM, 56(6),
2009. (Cited pages 68, 111, and 154)

270

Bibliography

[tCS08] Balder ten Cate and Luc Segoufin. XPath, transitive closure logic,
and nested tree walking automata. In PODS, pages 251–260, 2008.
(Cited pages 93, 152, and 153)

[tCS10] Balder ten Cate and Luc Segoufin. Transitive closure logic, nested
tree walking automata, and XPath. J. ACM, 57(3), 2010. (Cited
pages 67 and 93)

[Tho68] Ken Thompson. Regular expression search algorithm. Commun.
ACM, 11(6):419–422, 1968. (Cited page 54)

[TNP07] Salvatore La Torre, Margherita Napoli, and Mimmo Parente. The
word problem for visibly pushdown languages described by gram-
mars. Formal Methods in System Design, 31(3):265–279, 2007.
(Cited page 79)

[To10a] Anthony Widjaja To. Model Checking Infinite-State Systems:
Generic and Specific Approaches. PhD thesis, School of Infor-
matics, University of Edinburgh, 2010. (Cited page 222)

[To10b] Anthony Widjaja To. Parikh images of regular languages: Com-
plexity and applications. CoRR, abs/1002.1464, 2010. (Cited
page 222)

[TVY08] Alex Thomo, Srinivasan Venkatesh, and Ying Ying Ye. Visibly
pushdown transducers for approximate validation of streaming
XML. In FoIKS, pages 219–238, 2008. (Cited pages 79 and 101)

[TW65] J. W. Thatcher and J. B. Wright. Generalized finite automata.
Notices Amer. Math. Soc., 820, 1965. (Cited page 59)

[TW68] James W. Thatcher and Jesse B. Wright. Generalized finite
automata theory with an application to a decision problem of
second-order logic. Mathematical Systems Theory, 2(1):57–81,
1968. (Cited pages 59, 92, and 139)

[TW98] Denis Thérien and Thomas Wilke. Over words, two variables are
as powerful as one quantifier alternation. In STOC, pages 234–
240, 1998. (Cited page 94)

[TYÖ�08] Nan Tang, Jeffrey Xu Yu, M. Tamer Özsu, Byron Choi, and Kam-
Fai Wong. Multiple materialized view selection for XPath query
rewriting. In ICDE, pages 873–882, 2008. (Cited page 25)

[Val75] Leslie G. Valiant. General context-free recognition in less than
cubic time. J. Comput. Syst. Sci., 10(2):308–315, 1975. (Cited
page 79)

271

Bibliography

[Var82] Moshe Y. Vardi. The complexity of relational query languages (ex-
tended abstract). In STOC, pages 137–146, 1982. (Cited page 90)

[Var98] Moshe Y. Vardi. Reasoning about the past with two-way au-
tomata. In ICALP, pages 628–641, 1998. (Cited pages 108, 109,
110, and 111)

[Ver05] Roel Vercammen. Updating XML views. In VLDB PhD Work-
shop 2005, pages 6–10, 2005. (Cited page 36)

[VHP06] Roel Vercammen, Jan Hidders, and Jan Paredaens. Query Trans-
lation for XPath-Based Security Views. In EDBT Workshops,
pages 250–263, 2006. (Cited pages vi, 21, and 125)

[VL08] Antti Valmari and Petri Lehtinen. Efficient minimization of DFAs
with partial transition. In STACS, pages 645–656, 2008. (Cited
page 218)

[vpa] The visibly pusdhown languages page. (Cited page 80)

[vul08] http://www.kb.cert.org/vuls/id/493881, 2008. (Cited page 4)

[W3C] http://lists.w3.org/Archives/Public/xmlschema-
dev/2007Oct/0039.html. (Cited pages ix and 236)

[W3C09] W3C. XQuery Update Facility 1.0.
http://www.w3.org/TR/xquery-update-10/, 2009. (Cited
page 103)

[W3C11] W3C. XQuery Update Facility 1.0 Requirements.
http://www.w3.org/TR/xquery-update-10-requirements/, 2011.
(Cited page 104)

[Wil12] Virginia Vassilevska Williams. Multiplying matrices faster than
coppersmith-winograd. In STOC, pages 887–898, 2012. (Cited
page 47)

[WJRM08] Ling Wang, Ming Jiang, Elke A. Rundensteiner, and Murali Mani.
An optimized two-step solution for updating XML views. In DAS-
FAA, pages 19–34, 2008. (Cited page 37)

[WK95] Andreas Weber and Reinhard Klemm. Economy of description
for single-valued transducers. Inf. Comput., 118(2):327–340, 1995.
(Cited page 40)

[WRM06] Ling Wang, Elke A. Rundensteiner, and Murali Mani. Updat-
ing XML views published over relational databases: Towards the
existence of a correct update mapping. Data and Knowledge En-
gineering, 58, 2006. (Cited page 37)

272

Bibliography

[WSL�07] Wendy Hui Wang, Divesh Srivastava, Laks V. S. Lakshmanan,
SungRan Cho, and Sihem Amer-Yahia. Optimizing tree pattern
queries over secure XML databases. In Secure Data Management
in Decentralized Systems, pages 127–165. 2007. (Cited page 13)

[XML] http://www.w3.org/standards/xml/core. (Cited page 46)

[XML99] W3C. extensible markup language (XML) 1.0.
http://www.w3.org/TR/xml/, 1999. (Cited pages 45, 46,
and 85)

[XML04] XML Schema Part 1: Structures Second Edition.
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028,
2004. (Cited page 85)

[xml09] 2009. http://www.pcworld.com/businesscenter/article/169825/
xml exploits are next analyst warns.html. (Cited page 4)

[XÖ05] Wanhong Xu and Z. Meral Özsoyoglu. Rewriting XPath queries
using materialized views. In VLDB, pages 121–132, 2005. (Cited
page 24)

[XPa99] W3C. XML path language (XPath) version 1.0.
http://www.w3.org/TR/xpath, 1999. (Cited page 90)

[YSLJ04] Ting Yu, Divesh Srivastava, Laks V. S. Lakshmanan, and H. V.
Jagadish. A compressed accessibility map for XML. ACM Trans.
Database Syst., 29(2):363–402, 2004. (Cited page 13)

[YZ05] Raphael Yuster and Uri Zwick. Fast sparse matrix multiplica-
tion. ACM Transactions on Algorithms, 1(1):2–13, 2005. (Cited
page 48)

[ZC11] Lixiao Zheng and Haiming Chen. Determinacy and rewriting of
conjunctive queries over unary database schemas. In SAC, pages
1039–1044, 2011. (Cited page 23)

[ZGM98] Yue Zhuge and Hector Garcia-Molina. Graph structured views
and their incremental maintenance. In ICDE, pages 116–125,
1998. (Cited page 28)

[ZZSZ07] Huaxin Zhang, Ning Zhang, Kenneth Salem, and Donghui Zhuo.
Compact access control labeling for efficient secure XML query
evaluation. Data Knowl. Eng., 60(2):326–344, 2007. (Cited
page 13)

273

A. Appendix

Where the tree falls, there it will lie.

(Ecclesiastes, 11:3)

Pumping lemma for VPAs: a lower bound

Proposition 3.16: For every n, there exists a VPA An with n states such
that the smallest tree in LpAnq has size 2Ωpn2q.

Fix n an odd number. We define three symbols tl,m, ru, together with a
strict order l ¤ m ¤ r. We define the VPA A � pΣ, Q,Γ, I, F,∆q as follows:
Q � tiη | i P t0, 1, . . . , nu, η P tl,m, ruu Y tqi, qfu, Γ � Q,Σ � tau, I � tqiu,
F � tqfu, and the transitions are defined by the following rules:

1. qi
pop,aq:qiÝÝÝÝÝÑ 1l

2. nr
pcl,aq:qiÝÝÝÝÑ qf

3. iη
pop,aq:iηÝÝÝÝÝÑ pi� 1ql for all i ¥ 2, η P tl,mu

4. pi� 1qr
pcl,aq:ilÝÝÝÝÑ im for all i ¥ 1

5. pi� 1qr
pcl,aq:imÝÝÝÝÝÑ ir for all i ¥ 1

6. 0l
εÝÑ 0r

7. pi� 2k � 1qr
pcl,aq:ilÝÝÝÝÑ pi� kqm for all i ¥ 2, k ¥ 1

8. pj � kqm
pop,aq:jmÝÝÝÝÝÑ pj � 1� 2kql for all k ¥ 1, j ¥ 2k � 2

9. 1l
pop,aq:krÝÝÝÝÝÑ pn� 2k � 2ql for all k ¥ 1

10. nr
pcl,aq:krÝÝÝÝÑ p1� kqm for all k ¥ 1

11. pj � kqm
pop,aq:jmÝÝÝÝÝÑ pn� 2k � 2ql for all k ¥ 1, j � 2k � 1 such that j ¤ n

12. nr
pcl,aq:jmÝÝÝÝÝÑ jl for all j ¤ n

The ε-transition from rule 6 can be easily eliminated. The intuition behind
these definitions is that we use the stack symbol to determine the state before
opening the left child (state indexed by l) and the one after closing the right

275

Appendix

child (state indexed by r). In other words, for every tree t P LpAq, every node
n in t and every accepting run ρ over t, ρÒpnq is uniquely determined by ρpnq.
The state in the middle is not determined in this way, but cannot be arbitrary
in a tree of minimal size, as we show below.

Claim: there exists a mapping f : Q2 Ñ Q2 such that for every tree t P LpAq,
every node n in t and every accepting run ρ over t, ρÒpnq � fpρptqq.

This mapping can be obtained easily from the transition rules: fpqi, qf q �
p1l, nrq for instance, and for the appropriate values of i and k as exposed in
rules 3,4 and 3,7: fpil, imq � ppi�1ql, pi�1qrq and fpil, pi�kqmq � ppi�1ql, pi�
2k � 1qrq . . .

For every i, j ¤ n and every α, β P tl,m, ru, let tpiα, jβq denote the set of all
hedges (or trees) of minimal size in LpAiα,jβq. We denote this minimal size by
spiα, jβq, with the convention that spiα, jβq is infinite if the corresponding set
of hedges LpAiα,jβq is empty. A quick inspection of ∆ shows that tpiα, jβq � H
if i ¡ j or α �¤ β (P0). Fix i, j such that 1 ¤ i ¤ j ¤ n and such that
d � j � i is even. For each k ¤ n let Spi, k, jq denote the sum Spi, k, jq �
spil, kmq � spkm, jrq. From the property (P0) above we get immediately:

spil, jrq � min
kPti,...,ju

Spi, k, jq (A.1)

.

For every pα, βq P tpl,mq, pm, rqu, the pair fpiα, jβq is of the form pi1l, j
1
rq,

and we get:

spiα, jβq � 1� spi1l, j
1
rq (A.2)

Clearly, when j � i, Spi, k, jq is finite only for k � i � j, in which case
Spi, i, iq � 2 � p2i � 1q. Let us now assume that i j and Spi, k, jq is finite. A
further inspection of ∆ shows the following property of Spi, k, jq:

• if d � 2k (i � 2k � j) then after applying equation A.2 to spil, kmq and
spkm, jrq we obtain at least one term spi1l, j

1
rq satisfying either j1 � i1 ¡ d

or j1 � n, i1 � n� d.

• if d � 2k (i � 2k � j) then after applying equation A.2 to spil, kmq and
spkm, jrq we obtain twice the same result: either sppi � 1ql, pj � 1qrq if
i ¥ 2, or sppn� pd� 2qql, nrq if i � 1

In short: the gap between the left and right integer remains even, and it can
decrease, by 2, only in the case where d � 2k and i � 1, in which case the right
integer is “reset” to n. Furthermore, if Spi, k, jq is finite for some value of k,
then it is so for d � 2k. Consequently, Spi, k, jq is minimized for d � 2k.

We can now replace equation A.1 with

spil, pi� 2kqrq � Spi, i� k, i� 2kq (A.3)

276

Appendix

It follows easily that if we set uk � sppn � 2kql, nrq for each k ¤ pn � 1q{2
we obtain: u0 � 2 � p2n � 1q and for every k P t1, . . . , pn � 1q{2u: uk �
2 � p2n�2k � 1q � 2 � 2n�2k � uk�1. Hence

uk ¥ 2 � 2n�2k � uk�1

¥ p
k¹

j�1

2 � 2n�2jq � u0

¥ 2pn�1qk � p2�2
°k

j�1 jq � u0

¥ 2pn�1qk � p2�kpk�1qq � 2 � p2n � 1q

¥ 2pn�kqpk�1q

For n � 1 � 2k we thus obtain uk ¥ 2pk�1qpk�1q � 2Ωpn2q. This proves that any
tree in LpAq has size 2Ωpn2q, which concludes our proof since the number of
states (and stack symbols) in A is clearly linear in n.

Doubly exponential blowup from LTL to DFA, from
NavXPath to deterministic automata

Remark 3.7: The language L1m � tpa � b � #q�#w#pa � b � #q�$w | w P
ta, bumu can be expressed with an LTL formula of size Opm2q [KV05]. This
formula does not exploit the “until” operator of LTL and can therefore be ex-
pressed as a NavXPath formula.

ψn � r notðs and pφ1q and
�
ñ�::rself::$ and φ0 and notpð�::$qs

�
where φ0 and φ1 are as defined below:

φ0 � r

mhkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkj
ñ{ra or bs{ñ{ra or bs . . .ñ{ra or bs {r notñss

φ1 � rñ�{rself::# and
©
i¤m

pφpi, aq or φpi, bqq and ñm::#ss

with φpi, aq and φpi, bq defined as follows for every i ¤ m:

φpi, aq � rñi::a and ñ�{r$ and ñi::ass

φpi, bq � rñi::b and ñ�{r$ and ñi::bss

Regular XPath formulae whose smallest model has size

doubly exponential

Remark 4.7: There exist (finitely) satisfiable XReg formulae φ of size Opmq
whose smallest model has size 22m.

277

Appendix

To obtain the formula we combine the proof in [ABD�05, BdRV01] with the
technique from [KR10]. The proof in [BdRV01] uses a formula of size Opm2q
which simulates the incrementation of a binary counter of n bits along a path:
a path beginning at 0 and counting up to 2m � 1 has therefore length 2m.
The formula from [ABD�05] simply combines the formula from [BdRV01] that
forces a branch of depth 2m with a formula to enforce binary branching. We
follow the same proof outline, but replace the formula from [BdRV01] with a
formula of size Opmq inspired by [KR10]. The resulting formula is quite similar
to the formula from [KR10], which is natural since checking incrementation
essentially consists in identifying the bit which is incremented, verifying that
least significant bits are reset, and checking equality of the words formed by
the most significant bits, whereas the formula from [KR10] essentially checks
the equality of two words having n bits.

The example uses the alphabet ta1, . . . , am, b1, . . . , bm, cu. Let t denote the
unique tree satisfying the following two conditions:

1. t follows the DTD given by the single rule:
cÑ ppa1 | b1q, pa2 | b2q, . . . pam | bmq, c, cq | a1, . . . , am

2. if we consider the ai, bi below the c nodes as representing a binary counter
(with bi standing for 1 at the ith bit and ai for 0, the least significant bit
a1{b1 being the leftmost one), this counter is incremented by one at each
parent node. In other words, each path from leaf to root counts from 0
(a1 . . . am) to 2m � 1 (b1 . . . bm).

The tree t has depth 2m and therefore size m� 22m . Nonetheless the following
Regular XPath formula ψm of size Opmq represents Lm:

ψn � φroot and p notró� notψallsq and p notró{ó{ó�{rr notðs and r notφincrsssq

where φroot, φincr, ψall, and their auxiliary formulae are as defined below:

φroot � rself::c and
©
i¤m

ó::bis and r notòs

ψall � rpself::c and rró{φ0s or ró{φ1ssq or p
ª
i¤m

pself::ai or self::biq and r notósqs

φincr � pφincr-0{ñq�{φincr-1{ñ{pφincr-2{ñq�{rself::c or r notñss

φ0 � rr notðs{ra1 or b1s{ñ{ra2 or b2s{ . . . {ñ{ram or bms{ñ::c{ñ::c{r notñss

φ1 � rr notðs{ra1s{ñ{ra2s{ . . . {ñ{rams{r notñss

φincr-0 � r
ª

i¤m�1

pbi and ò{ð�::aiqs

φincr-1 � r
ª
j¤m

paj and ò{ð�::bjqs

278

Appendix

φincr-2 � r
ª
k¤m

prak and ò{ð�::aks or rbk and ò{ð�::bksqs

The formulae φroot and p notró� notψallsq check that the DTD is satisfied,
whereas φincr checks the incrementation of the counter, with φincr-1 identify-
ing the bit that is incremented from 0 (aj) to 1 (bj), φincr-0 checking that every
bit before was 1 and is reset to 0, and φincr-2 checking that the remaining bits
remain the same.

What fragment of Regular XPath is required in this example? The negation
is necessary: we use the double negation to express that some property must
be satisfied at every node. All axes are not required, though: The example can
be adapted to use only the forward axes of XPath: ó and ñ. For instance, we
can use special symbols zroot and zfc to identify the root of the tree and the first
child of a node by requesting that formulae notó�::zroot and notró�{ñ�::zfcs
be satisfied. Furthermore, the formula does not use the full expressive power
of XPath: the expression φincr clearly belongs to Conditional XPath. The
construction in [ABD�05, BdRV01] has size Opm2q but it does not even require
conditional axes; the PDL formula involved can be expressed in NavXPath.

Determinacy modulo isomorphism for interval-bounded views

Theorem 4.29: Comparison ¤3 is in Exptime for interval-bounded query
automata.

We could first think of adapting immediately the proof of Lemma 4.21. Let
pt, t1q be a minimal pair of trees such that View pQ2, tq � View pQ2, t

1q but
View pQ1, tq � View pQ1, t

1q. Let φ denote an isomorphism between View pQ2, tq
and View pQ2, t

1q . Suppose there are three nodes n
Ò
t , n

�
t , n

Ó
t in Q2ptq, and

three nodes nÒt1 , n
�
t1 , n

Ó
t1 such that nÒt is an ancestor of n�t , n

�
t an ancestor of nÓt ,

φpnÒt q � n
Ò
t1 , φpn

�
t q � n�t1 , φpn

Ó
t q � n

Ó
t1 , ρtpn

Ò
t q � ρtpn�t q � ρtpn

Ó
t q and ρt1pn

Ò
t1q �

ρt1pn�t1q � ρt1pn
Ó
t1q, where ρt, ρ

1
t are defined similarly to ρ in Lemma 4.21. Re-

placing the subtrees below n
Ò
t (resp. nÒt1) with the subtree below n�t (resp. n�t1),

we preserve isomorphic views for Q2. However, the views for Q1 may become
isomorphic. One could think that for at least one of the combinations for the
pumping the views forQ1 would remain non isomorphic. It so happens that this
is not true, as illustrated in Figure A.1. In this figure, Q2 selects all the nodes
labeled with d, plus the root, and Q1 selects all the nodes with label different
from d. Clearly, View pQ2, tq � View pQ2, t

1q and View pQ1, tq � View pQ1, t
1q.

We can build the automata for Q2 and Q1 such that ρt (resp. ρt1) has the same
value on all nodes labeled d in t (resp. t1). However, whatever combination is
chosen for the pumping, the views for Q1 become isomorphic after we replace
the subtrees. For instance, if we replace the subtree below nÒ with the sub-
tree below n� in both trees, the views obtained for Q1 are both isomorphic to
rpcpaqq, and if we replace the subtree below n� with the subtree below nÓ in
both trees, the views obtained for Q1 are both isomorphic to rpa, b, aq.

279

Appendix

tb A1ptq b A2ptq

nÒ

n�

nÓ

pr, r, rq

pd, ε, dq

pa, a, εqpb, b, εqpd, ε, dq

pc, c, εq

pd, ε, dq

pa, a, εq

t1 b A1pt1q b A2pt1q

pr, r, rq

pd, ε, dq

pd, ε, dq

pc, c, εq

pd, ε, dq

pa, a, εq

pb, b, εqpa, a, εq

nÒ

n�

nÓ

Figure A.1.: The pumping of Lemma 4.21 does not work for ¤3

This suggests there is no trivial adaptation from the pumping Lemma and
proof of Lemma 4.21. We therefore developed a new method, based on align-
ment of trees, which we discuss hereunder. We recall that Σedit � Σ2 Y pΣ �
tεuq Y ptεu � Σq, and define the alphabet Σ4 by Σ4 � Σ1 Y Σ2 Y Σ3 with

Σ1 � Σ � pΣ Y tεuq � pΣ Y tεuq ,

Σ2 � ptεu � tεu � Σq Y ptεu � Σ � tεuq ,

Σ3 � ptεu � tεu � Σ � top, cluq Y ptεu � Σ � tεu � top, cluq .

Given two trees t1, t2 over Σedit, we denote by t14t2 the square of t1 and t2, i.e.,
the tree over Σ4 defined by the recursive algorithm hereunder. The tree t14t2
belongs to π2,1,3pt�1

1 1 t2q when t1 and t2 are upward-closed alignments, but in
general t1 and t2 are arbitrary 2 alignments. The complexity of our definition
for t14t2 is explained by the necessity to handle deletions and insertions of
internal nodes. One has to combine insertions of t1 and t2 that cover different
children of a node n. This cannot be achieved using tree alignments and
therefore we represent explicitly the location of the opening and closing tags of
those “conflicting” nodes by special nodes labeled in Σ3. The location of those
special nodes among the children of n indicates the relationships between these
nodes in t1 and t2, and therefore one can recover t1 and t2 from t14t2, as we
prove in Proposition A.1.
Caveat: In this whole proof, we consider trees as terms, i.e., we do not consider
identifiers. Two trees will be considered equal iff they are isomorphic. We also
define hedges as a sequence of trees.

A recursive definition for t14t2

We define more generally operation 4 as a binary operation on hedges.

280

Appendix

To prevent confusion with the symbol separating different components of a
tuple, we use “�” to represents the concatenation of hedges in the definition.
Similarly, we use parentheses to clarify the priority of operations, and therefore
represent by f rhs the tree with a root f whose children form the hedge h. The
hedge fpapb, cq, dq � g is thus represented as f rarb � cs � ds � g. Furthermore, we
note pairs/triples of symbols (i.e., tags over product alphabets like Σ � Σ)
between “ x”, “y ” instead of usual parentheses. We fix the following priorities
for operations: insertion r s of an hedge under a node has highest priority, next
comes the concatenation � of two hedges, and 4 has the lowest priority. The
tree t14t2 is defined by the following rules. For all letters a, b P Σ, α1, α2 P Σε,
and all hedges h1, h2, w1, w2,

1. pxb, α1y rh1s � w1q4 pxb, α2y rh2s � w2q � xb, α1, α2y rh14h2s � pw14w2q

2. pxε, ay rh1s � w1q4h1 is defined as:

"
xε, a, εy rT ph1qs � pw14h

1q if h1 is a hedge over tεu � Σ
pxε, a, opy � h1 � xε, a, cly � w1q4h1 otherwise

where T is defined by T pxε, cy rhs � wq � xε, c, εy rT phqs � T pwq and the
image by T of the empty word (neutral element of the monoid) is the
empty word.

3. pxε, a, opy � w1q4h1 � xε, a, ε, opy � pw14h
1q 1. We define symmetrically,

pxε, a, cly � w1q4h1 as xε, a, ε, cly � pw14h
1q.

4. for the right operand, we add symmetrical rules to define h4 xε, ay rh2s �
w2, h4 pxε, a, opy � w2q, and h4 pxε, a, cly � w2q. The definition of the
hedge h1

4 pxε, a, opy � w1q is xε, ε, a, opy � pw14h
1q, for instance. To keep

the algorithm deterministic, we fix that rules 2 and 3 have higher priority
than their right counterpart. Thus, the right rules can be applied only if
no left one can.

We extend the definition to tree languages: given two 2,Σ-alignment languages
L1 and L2, we define L14L2 as tt14t2 | t1 P L1, t2 P L2u.

Example A.1. In Figure A.2, we represent two alignment trees and their
square.

We define two morphisms φ1, φ2 on linearization of trees: φ1 and φ2 take as
input a symbol from top, clu � Σ4 and output a symbol in top, clu � Σedit.

• @η P top, clu, @a P Σ, @α1, α2 P Σ Y tεu, @i P t1, 2u, φipη, a, α1, α2q �
pη, a, αiq if αi P Σ, ǫ2 otherwise .

1the construction fails if a node of the form xε, a, opy has a child
2the neutral element of the free monoid

281

Appendix

pr, rq

pε, aq

pb, bq pc, εq

pε, dq

pε, gq

pd, dq

pd, εq

tree t1

pr, rq

pε, dq

pb, εq pc, cq pd, dq

pd, εq

tree t2
pr, r, rq

pε, a, ε, opqpε, ε, d, opq pb, b, εq pc, ε, cq pε, a, ε, clq pd, d, d, q pε, ε, d, clq

pε, d, εq

pε, g, εq

pd, ε, εq

tree t � t14t2

Figure A.2.: Two alignment trees and their square

• @η, η1 P top, clu, @a P Σ, φ1pop, ε, a, ε, η1q � pη1, ε, aq, φ1pcl , ε, a, ε, η1q �
ǫ1, and φ1pη, ε, ε, a, η1q � ǫ1. Similarly, φ2pop, ε, ε, a, η1q � pη1, ε, aq,
φ2pcl , ε, ε, a, η1q � ǫ1, and φ2pη, ε, a, ε, η1q � ǫ1.

• @η P top, clu, @a P Σ, φ1pη, ε, a, εq � pη, ε, aq, and φ1pη, ε, ε, aq � ǫ1.

Similarly, φ2pη, ε, ε, aq � pη, ε, aq, and φ2pη, ε, a, εq � ǫ1.

Proposition A.1. For every two trees t1 and t2 over Σedit, t14t2 exists iff
π1pt1q � π1pt2q, in which case it is a unique tree, t1 � φ1pt14t2q and t2 �
φ2pt14t2q. More accurately, we have linpt1q � φ1pt14t2q.

Proof. t14t2 exists iff π1pt1q � π1pt2q (recall that in this proof equality stands
for isomorphism) because rule 1 is the only rule that allows a tag in Σ on the
first component, and this rule requires that the same letter b occurs at the
same position in π1pt1q and π1pt2q. Clearly, this is also a sufficient condition
for the existence of t14t2. The priority rules make the algorithm deterministic:
only one rule can be applied at any time, which guarantees the uniqueness. As
for t1 � φ1pt14t2q and t2 � φ2pt14t2q, it can be proved by induction, analysing
each of the rules.

Given two (interval bounded) queries Q2 and Q1 over Σ, we denote by
V2Ñ1pQ2, Q1q the function that maps each tree t over Σ to the tree t1 � π2,3ptb
Q2bQ1q. This definition is extended to languages by V2Ñ1pLq �

�
tPL V2Ñ1ptq.

282

Appendix

Proposition A.2. Given two k-interval bounded root preserving queries Q1

and Q2 with dompQ1q � dompQ2q � D, there is a polynomial p0 such that one
can compute an automaton B that accepts V2Ñ1pDq in time p|AQ1

|� |AQ2
|qp0pkq

Proof. We first build an automaton B0 that accepts LpB0q � tt b Q1 b Q2 |
t P LpDqu in polynomial time. B is built from B0 by projecting out the first
component, with a construction similar to the one for Proposition 4.2.

Remark A.1. Due to the k-interval boundedness of A2, V2Ñ1pDq presents the
following property: for every t in V2Ñ1pDq, for every nodes n1, n2, . . . , nk�1 P
Nt, with pn1, n2q P childt, pn2, n3q P childt . . . , and pnk, nk�1q P childt, if
labtpn1q P tεu � Σ, labtpn2q P tεu � Σ, . . . and labtpnk�1q P tεu � Σ, then for
every descendant n1 of nk�1, labtpn1q P tεu � Σ.

Proposition A.3. Given two k-interval bounded root preserving queries Q1

and Q2 with dompQ1q � dompQ2q � D, there is a polynomial p such that
one can compute an automaton Balign that accepts V2Ñ1pDq4V2Ñ1pDq in time
p|AQ1

| � |AQ2
|qppkq

Proof. Actually this holds not only for V2Ñ1, but also for every language pre-
senting the property in Remark A.1. Let B � pΣedit, Q,Γ, I, F, Rq be the
automaton accepting V2Ñ1pDq as in Proposition A.2. We define automaton
Balign as pΣ1, Q1,Γ1, I 1, F 1, R1q where:

• Σ1 � Σ4

• Q1 � Q13 YQ2 where Q13 � Q�Q� Γ¤k � Γ¤k � tJ,Ku � tCl, Cru and
Q2 � pQ� t7uq Y pt7u �Qq

• Γ1 � Γ13 Y Γ2 where Γ13 � Γ � Γ � Γ¤k � Γ¤k � tJ,Ku and Γ2 �
Γ Y pΓ � Γ¤k � Γ¤k � tJ,Ku �Qq

• I 1 � tpql, qr, ε, ε,Kq | ql, qr P Iu

• F 1 � tpql, qr, ε, ε,Kq | ql, qr P F u

• the rules in R1 are defined as follows: for all ql, qr, q
1
l, q

1
r P Q, all γl, γr P Γ,

all ul, ur P Γ¤k, all η P tK,Ju, all C P tCl, Cru, all α1, α2 P Σ Y tεu, all
θ P top, clu and all b P Σ;

– pql, qr, ul, ur, η, Cq
pop,pb,α1,α2qq:pγl,γr,ul,ur,K,ClqÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq1l, q

1
r, ε, ε,Kq is in R1 if

there are rules ql
pop,pb,α1qq:γlÝÝÝÝÝÝÝÑ q1l and qr

pop,pb,α2qq:γrÝÝÝÝÝÝÝÝÑ q1r in R.

– pql, qr, ε, ε,K, Cq
pcl ,pb,α1,α2qq:pγl,γr,ul,ur,K,ClqÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq1l, q

1
r, ul, ur,Kq is in R1 if

there are rules ql
pcl ,pb,α1qq:γlÝÝÝÝÝÝÝÑ q1l and qr

pcl ,pb,α2qq:γrÝÝÝÝÝÝÝÑ q1r in R.

283

Appendix

– pql, qr, ul, ur, η, Clq
pop,pε,b,ε,opqqpcl ,pε,b,ε,opqq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq1l, qr, ul � γl, ur,J, Clq is in

R1 if there is a rule ql
pop,pε,bqq:γlÝÝÝÝÝÝÝÑ q1l in R and ul P Γ¤k�1.

We use a transition that does not modify the stack and reads two
symbols at a time for the sake of clarity. Actually, this does not
strictly follow the syntax of VPA transitions. However, it is straight-
forward to introduce a few new states to simulate this behaviour
with two transitions, the first transition pushing a symbol into the
stack which is immediately removed by the second one.

– pql, qr, ul � γl, ur,K, Clq
pop,pε,b,ε,clqqpcl ,pε,b,ε,clqq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq1l, qr, ul, ur,K, Clq is in

R1 if there is a rule ql
pcl ,pε,bqq:γlÝÝÝÝÝÝÑ q1l in R and ul P Γ¤k�1.

– The rules for pε, ε, b, opq and pε, ε, b, clq are symmetric, except for
the Cl, Cr constraints that need to be adapted, yielding rules

pql, qr, ul, ur, η, Cq
pop,pε,ε,b,opqqpcl ,pε,ε,b,opqq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq1l, qr, ul � γl, ur,J, Crq and

pql, qr, ul � γl, ur,K, Cq
pop,pε,ε,b,clqqpcl ,pε,ε,b,clqq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq1l, qr, ul, ur,K, Crq.

– pql, qr, ul, ur, η, Clq
pop,pε,b,εqq:pγl,ul,ur,η,qrqÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq1l, 7q is in R1 if there is a

rule ql
pop,pε,bqq:γlÝÝÝÝÝÝÝÑ q1l in R.

– pql, 7q
pcl ,pε,b,εqq:pγl,ul,ur,η,qrqÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq1l, qr, ul, ur, η, Clq is in R1 if there is a

rule ql
pcl ,pε,bqq:γlÝÝÝÝÝÝÑ q1l in R.

– pql, 7q
pθ,pε,b,εqq:γlÝÝÝÝÝÝÝÑ pq1l, 7q is in R1 if rule ql

pθ,pε,bqq:γlÝÝÝÝÝÝÑ q1l is in R.

– Rules for pε, ε, bq are symmetric, using states in t7u � Q instead of
Q� t7u, and replacing Cl with Cr.

Basically, we build a product automaton, and the difficulty stems from the syn-
chronization of the stacks. The stacks are synchronized on transitions that read
a letter in Σ1. The state and stack use words ul, ur to simulate the runs on let-
ters in Σ2. The property in Remark A.1 allows to bound by k the required size
for ul and ur. To guarantee the uniqueness property, the definition of the 4 op-
eration demands that we read a letter in Σ1 between an opening tag pε, b, ε, opq
and the corresponding closing tag pε, b, ε, clq. We use J to remember this in-
formation that one has to read a letter in Σ1 before reading the next closing
tag in Σ3. K is used whenever there is no such constraint. Also for uniqueness,
rules 2 and 3 have higher priority than their ’right’ counterpart. So, no node
with label in ptεu � tεu � Σq or ptεu � tεu � Σ � top, cluq can be the left sib-
ling of a node with label in ptεu � Σ � tεuq or Yptεu � Σ � tεu � top, cluq. We
use Cr to remember this information: a tag Cr in the state forbids transition
labeled by ptεu � Σ � tεuq or Yptεu � Σ � tεu � top, cluq. Last, but not least,
all descendants of a node of the form pε, ε, bq in t14t2 have label in tεu�tεu�Σ.
Therefore, we do not simulate the second part of the run in that subtree, which

284

Appendix

explains why we use a state of the form p7, qq, using the “7” symbol on the left
so as to avoid switching to symbols of the form tεu � Σ � tεu.

Proposition A.4. Given two k-interval bounded root preserving queries Q1

and Q2 with dompQ1q � dompQ2q � D, Q1 ¤3 Q2 iff morphisms φ1 and φ2 are
equal over V2Ñ1pDq4V2Ñ1pDq, i.e., iff @t P V2Ñ1pDq4V2Ñ1pDq, φ1ptq � φ2ptq.

Corollary A.5. Given two k-interval bounded root preserving queries Q1 and
Q2 with dompQ1q � dompQ2q � D, Q1 ¤3 Q2 can be decided in exponential
time

Proof. We use Plandowski’s result [Pla94] stating that equivalence of mor-
phisms on a context-free language is decidable in polynomial time. Using this
result for morphisms φ1 and φ2 on LpBalignq we get an algorithm that works in
exponential time.

Updates and views

Theorem 5.30: When the set of authorized editing scripts is such that the
editing scripts it induces on the views are k-synchronized, we can compute an
automaton for the set of all uniform view editing scripts.

Introduction Caveat: we only present the construction for view editing scripts
that rename or delete nodes (no insertion). We explain after why the construc-
tion can be extended to k-synchronized editing scripts, i.e. editing scripts that
restrict the number of insertions.

We use the fcns encoding of trees throughout the proof: all trees considered
are represented via the fcns encoding. Given any tree automaton A � pQ,F,∆q
and state q P Q of A, we denote by LA,q the language accepted by automaton

Aq � pQ, tqu,∆q. We write t
AÝÑ q if t P LA,q. Note that for bottom-up

deterministic automata, there is at most one q such that t
AÝÑ q.

We can compute automata AV � pΣ � Σε, Qv, Fv,∆vq and Ap � pΣ �
Σε, Qp, Fp,∆pq accepting languages V (fcnspV q, to be exact) and L � V (its
fcns encoding), where L is the set of all stable editing scripts from Us.

We further assume that every state ql of the tree automata AV and AP is
“productive”, i.e. there is some tree t and an accepting run ρ on that tree such
that the state ql is assigned to some node of t in ρ (hypothesis H1), and that
AV is bottom-up deterministic (therefore unambiguous) (hypothesis H2).

For the following construction without insertions, we could suppose Ap to
be also bottom up deterministic. In that case, the state set of the automaton
would become Q � PpQv � Qpq � PpQvq: the sets of states Sp would be
singletons. We do not make this assumption so that the proof remains similar
when insertions are (would be) added. Anyway, this does not make the proof
much heavier.

285

Appendix

Construction First, we define a few useful notions in order to simulate all
“hidden parts”.

The set of failures from pqv, Spq P Qv � PpQpq is Failpqv, Spq; the set of all
q1v P Qv such that there exists a P Σ, t P fcnspTΣ�Σε

q such that the following
two conditions hold:

• Dq2v .t
AVÝÝÑ q2v ^ pa, εqpq2v , qvq Ñ q1v P ∆v

• @q2p such that t
ApÝÑ q2p, @qp P Sp. Eq1ppa, εqpq

2
p, qpq Ñ q1p P ∆p.

We denote by ֌ the following relation onQv�PpQpq: for all qv, q
1
v P Qv, Sp, S

1
p �

Qp, pqv, Spq֌ pq1v, S
1
pq iff q1v R Failpqv, Spq and there are some q2v P Qv, q

2
p P Qp,

some tree t P fcnspTΣ�Σε
q, and a P Σ such that the following two conditions

hold:

• Dq2v .t
AVÝÝÑ q2v ^ pa, εqpq2v , qvq Ñ q1v P ∆v

• S 1
p � tq1p | Dqp P Sp, Dq2p.t

ApÝÑ q2p.pa, εqpq
2
p, qpq Ñ q1p P ∆pqu.

By ֌
� we denote the reflexive transitive closure of ֌.

A set C � Qv will be called persistent if for all qv P C, for all q1v, q
2
v P Qv,

and all a P Σ; pa, εqpq2v , qvq Ñ q1v P ∆v ùñ q1v P C.

Definition A.1. Given a persistent set C � Qv, a set E � Qv � PpQpq, the
C-guarded extension of E is the set:

EæCpEq � tpq1v, S
1
pq | q

1
v R C ^ Dpqv, Spq P E.pqv, Spq֌

� pq1v, S
1
pqu

Definition A.2. Given a persistent set C � Qv, a set E � pQvzCq�PpQpq is
said to be C-saturated if EæCpEq � E and for every pqv, Spq in E, Failpqv, Spq �
C.

We can now define automaton A � pQ,F, δq

• Q � PpQv � PpQpqq � PpQvq.

• F � P pFv � FinY pQvzFvq � PpQpqq � PpQvzFvq where Fin is the set
of all S � Qp such that S X Fp � H

• The transitions are defined as follows. We fix pE1, C1q P Q, pE2, C2q P Q,
a P Σ, β P Σε, C

1 � Qv. δ contains transition pa, βqpE1, C1qpE2, C2q Ñ
pE 1, C 1q iff there is a set G P PpQv � PpQpqq such that all the following
conditions are satisfied :

1. C 1 is persistent

2. for every qv P C1, for every d P Σ, q1v P Qv and q2v P Qv, if q2v P
C2 Y tq | DS.pq, Sq P E2u and pd, aqpqv, q2vq Ñ q1v P ∆v, then q1v P C.
And symmetrically for every qv P C2,d P Σ...

286

Appendix

3. for every pq1, S1q P E1, every pq2, S2q P E2, every q1v, d such that
pd, aqpq1, q2q Ñ q1v P ∆v, either q1v P C

1 or, posing Sp � tq1p | Dqp P
S1, q

2
p P S2.pd, βqpqp, q2pq Ñ q1p P ∆pu; Sp � H and pq1v, Spq P G.

4. E 1 � EæC1 pGq and E 1 is C 1-saturated.

For every pE,Cq P Q, δ contains transition K Ñ pE,Cq iff there are
(unique by hypothesis H2) qv P Qv, Sp � Qp such that K Ñ qv P ∆v,
Sp � tqp | K Ñ qp P ∆pu, C is persistent and E � EæC ppqv, Spqq.

Proof of the construction We must justify that
�

qPQf
LA,q is the set of

uniform view editing scripts.

Property 1 : Fix a (binary) tree t, such that t
AÝÑ pE,Cq. Then for every

t1 P V and qv P Qv such that π2pt1q � π1ptq and t1 AVÝÝÑ qv, either qv P C or
there is some Sp � Qp such that both pqv, Spq P E and there are some qp P Sp,

t2 P fcnspTΣedit
q such that t2

ApÝÑ qp and t P pt1q�1 � t2.

Property 2 : Fix a (binary) tree t accepted by A, such that t
AÝÑ pE,Cq. Then

for every t1 P V and q1 P Qv such that π2pt1q � π1ptq and t1 AVÝÝÑ qv, qv R C.
Discussion: Here we presented the construction when only deletions and

relabelings are allowed on the view. “Invisible” insertions are already treated:
they are dealt with in the composition Us � V . When there can be no more
than k insertions without a relabeling between them, we can remember in the
state qp the insertions that have been made since the last relabeling: we just
need to store into the state a k � uple of states from qp. This concludes the
proof.

Testing Determinism in Presence of Numeric Occurrences

In this section we explain how the algorithm to test determinism can be ex-
tended to regular expressions with numeric occurrences. We first observe that
the Kleene star is unnecessary when numeric occurrence indicators are allowed:
e� can be expressed as er0..�8s. Moreover, we can also assume that in every
numeric occurrence indicator rn..ms the value of m is at least 2: this is because
er0..1s is equivalent to e?, and er1..1s to e. The syntax of regular expressions with
numeric occurrence indicators is therefore:

e� a pa P Σq | peq d peq | peq � peq | peq? | peqrn..ms

with n ¤ m and m ¥ 2. We again assume the presence of virtual nodes # and
$ at the beginning and end of the expression. The definition of nullability and
that of the first and last sets is similar to the definition for standard expressions.
We assimilates each node of the parse tree with the subexpression it represents.
An iterative expression (or node) is an expression of the form peqrn..ms.

Kilpeläinen and Tukhanen define the notion of flexibility for numeric occur-
rence subexpressions of e, and show that one can compute in linear time all

287

Appendix

n P Ne that are flexible in e. They also define the relation foll e which in some
sense adapts the Follow relation to expressions with numeric occurrences, tak-
ing flexibility into account. The relation depends on the global expression e,
but we drop the subscript to simplify the notations, since its value is always e
in the following:

Definition A.3 ([KT07]). Let f a regular expression. The relation foll e �
Pospeq�Pospeq is defined for each subexpression f of e inductively as follows:

1. If f � a pa P Σq, then follpfq � r s

2. If f � g?, then follpfq � follpgq

3. If f � g �H, then follpfq � follpgq Y follpHq

4. If f � g �H, then follpfq � follpgq Y follpHq Y pLastpgq � FirstpHqq

5. If f � grm..ns then

follpfq �

"
follpgq Y pLastpgq � FirstpHqq if f is flexible in e
follpgq otherwise

The determinism of regular expressions with numeric occurrence indicators
can be characterized in terms of this relation:

Proposition A.6 ([KT07]). Let e a regular expression. e is non-deterministic
if and only if there are two distinct positions x, y P Pospeq such that labpxq �
labpyq and:

1. pz, xq, pz, yq P follpeq for some position z P Pospeq, or

2. pz, xq P follpgq, y P Firstpgq and z P Lastpgq for position z and some
subexpression of the form f � grm..ns in e.

In this proposition we essentially distinguish two situations that provide a wit-
ness for non-determinism. A third situation was actually considered in [KT07,
Kil11]: when both x and y belong to Firstpeq they also form a witness for non-
determinism, but this situation is ruled out in our setting by the introduction
of the virtual nodes # and $.

What results carry over from standard expressions?

We do not modify the definitions of SupFirst and SupLast in presence of nu-
meric occurrences. Lemma 6.6 still holds and Lemma 6.7 can be adapted as
follows: if q belongs to follppq then we have the two following properties: (1)
parentpSupFirstpqqq ¤ p and (2) parentpSupLastppqq ¤ q. Lemma 6.8, how-
ever, does not hold in presence of numeric occurrences: consider for instance
the positions p and q with label b and c in pappb�cqr2..3sqqd. Then SupFirstpqq is
non-nullable, although q P follppq and SupLastppq ¤ parentpSupFirstpqqq. The

288

Appendix

consequence of this is essentially that we have to consider more cases when
testing determinism: the witness for color a of a node whose right child is non-
nullable may still cause non-determinism in presence of numeric occurrences.
However, we can weaken Lemma 6.8:

Lemma A.7. Let p and q be two positions of e such that q P Followdppq. If
SupLastppq ¤ parentpSupFirstpqqq then SupFirstpqq is nullable.

We again observe that an expression must satisfy property (P1) to be deter-
ministic, and henceforth assume the expression satisfies (P1) since the property
can be tested in linear time. The definition of FirstPospn, aq and Witnesspn, aq
are not modified. The definition of Nextpn, aq needs only a minor modification:
star expressions are replaced by flexible iterative expressions: instead of testing
labpnq � � at line 8 of Algorithm 2, one tests if n is a flexible expression in
e. Then every deterministic regular expression again satisfies property (P2),
which is tested within Algorithm 2.

Then Lemma 6.11 carries over (using foll instead of Follow). However,
Proposition A.6 tells us that one must also consider non-flexible iterations
in addition to the foll relation (case 2). We therefore define NextNFlex pn, aq
to take those into account. For every node n with color a, NextNFlex pn, aq
is defined as the lowest ancestor n1 of n that satisfies the following two con-
ditions: (1) n1 is a non-flexible iterative expression and (2) there exists an
a-labeled position in Firstpn1q. We can easily compute in linear time a pointer
NextNFlex pn, aq for all n of color a.

Remark A.2. We observe that one may have NextNFlex pn, aq � Null and
Nextpn, aq � Null simultaneously even within deterministic expressions: con-
sider the expression e � ppaaqr2.2sqa, with p1, p2, p3 denoting the a-labeled posi-
tions from left to right, and with the node n denoting the subexpression paaq,
with witness p2. Then NextNFlex pn, aq is the parent of n, Nextpn, aq � p3 and
yet e is deterministic.

We adapt Lemma 6.12 according to Proposition A.6:

Lemma A.8. An expression e with numeric occurrences is non-deterministic
iff one of the following four conditions is satisfied: (1) (P1) is false, (2) (P2)
is false, (3) there exist a P Σ, a node n P Nta of color a, and a position q in
tFirstPospn, aq,Nextpn, aqu such that foll�1pqqXfoll�1pWitnesspn, aqq contains
at least one position. (4) there exist a P Σ, a node n P Nta of color a such that
LastpNextNFlex pn, aqq X foll�1pWitnesspn, aqq contains at least one position.

Algorithm Testing Determinism

In presence of numeric occurrences, it becomes slightly harder to determine if
Conditions (3) and (4) of Lemma A.8 are satisfied, because we do not have an
equivalent for Lemma 6.8. We therefore define a function HighestFlex pn, n1q

289

Appendix

which takes as input two nodes n and n1 in e such that n1 ¤ n, and re-
turns the highest flexible iteration n2 such that n1 ¤ n2 ¤ n (and n1 �
n2). If there is no such n2 then HighestFlex pn, n1q � Null . For instance
in apbpppcr0..4sq.dqr0..8sqq, if the nodes n and n1 stand for the subexpressions
c and bpppcr0..4sq.dqr0..8sq, then HighestFlex pn, n1q is the node corresponding
to the subexpression ppcr0..4sq.dqr0..8s. Using techniques from [BP11], we can
preprocess the parse tree of the expression in linear time so that each query
HighestFlex pn, n1q can be answered in constant time:

Lemma A.9. After a linear preprocessing of the expression e, each query
HighestFlex pn, n1q can be answered in constant time.

Proof. We compute in a simple traversal of e a pointer from each node in e to
its lowest ancestor that is a flexible iteration (or the root of the tree if there
is no such ancestor). Then we compute in linear time the skeleton tflex of e,
i.e., the tree whose nodes are the root of e plus all nodes of e that represent
a flexible iteration. The tree tflex is an unranked tree. We additionally keep a
pointer LCpxq from each node x of tflex to the last (rightmost) child of x in tflex.
We can view tflex as a binary tree, since the fcns encoding Bflex of tflex can be
computed in linear time. We then index Bflex for LCA queries. As observed in
Fact 9.1 of [BP11], LCABflex

pLCpxq, yq returns the child of x that is an ancestor
of y in tflex, for any nodes x ¤ y in tflex.

This allows us to compute HighestFlex pn, n1q in constant time: we follow
the precomputed pointers to retrieve the lowest ancestors y (resp. x) of n
(resp. n1) that are flexible iterations. If y � x then HighestFlex pn, n1q � Null .
Otherwise HighestFlex pn, n1q is obtained as LCABflex

pLCpxq, yq.

We next introduce a last notation. Let us denote by x the lowest of SupLastpnq
and SupFirstpnq. We then define Iterpn, aq as follows. If HighestFlex pn, xq �
Null then Iterpn, aq � HighestFlex pn, xq. Else Iterpn, aq � NextNFlex pn, aq if
NextNFlex pn, aq � Null and NextNFlex pn, aq is a descendant of both SupLastpnq
and SupFirstpnq. Otherwise, Iterpn, aq � Null .

Theorem A.10. An expression e with numeric occurrences is non-deterministic
if and only if it does not satisfy (P1) or (P2), or there exists a P Σ and a
node n with color a such that one of the following conditions is satisfied:

1. Nextpn, aq, NextNFlex pn, aq and Iterpn, aq are not all equal to Null ,
and one of the following two conditions is satisfied

• Rchildpnq is nullable or

• SupLastpHighestFlex pWitnesspn, aq, nqq ¤ n.

2. or SupLastpHighestFlex pFirstPospn, aq, nqq ¤ Lchildpnq, and FirstPosp q
is not equal to Null .

290

Appendix

Proof sketch. The theorem follows from Lemma A.8 and the following charac-
terization:

• foll�1pNextpn, aqq X foll�1pWitnesspn, aqq � H iff Nextpn, aq � Null and
one of the following two conditions is satisfied:

A1 Rchildpnq is nullable or

A2 SupLastpHighestFlex pWitnesspn, aq, nqq ¤ n.

• LastpNextNFlex pn, aqqXfoll�1pWitnesspn, aqq � H iff NextNFlex pn, aq �
Null and one of the following conditions is satisfied:

B1 Rchildpnq is nullable

B2 SupLastpHighestFlex pWitnesspn, aq, nqq ¤ n.

• foll�1pFirstPospn, aqq X foll�1pWitnesspn, aqq � H iff FirstPospn, aq �
Null and one of the following conditions is satisfied:

C1 SupLastpHighestFlex pFirstPospn, aq, nqq is an ancestor of Lchildpnq
(possibly Lchildpnq itself)

C2 Iterpn, aq � Null and Rchildpnq is nullable

C3 Iterpn, aq � Null and SupLastpHighestFlex pWitnesspn, aq, nqq is an
ancestor of n

From this theorem we get immediately a linear algorithm to test determinism.
Theorem 6.15: Determinism of a regular expression e with numeric occur-
rences can be tested in linear time Op|e|q, for an arbitrary alphabet.

Testing Determinism of Regular Languages

Theorem 3 from [BGMN09]: Given a regular expression e, the problem of
deciding whether Lpeq is deterministic is Pspace-hard

The proof in [BGMN09] is a one-page long reduction from Corridor Tiling.
We therefore give a shorter proof, along the lines of Proposition 3.4 and there-
fore inspired from [HU79]. In the eventuality that testing determinism might
prove Exptime-hard (which we have no inclination to believe), the proof
in [BGMN09] will stand on its own merit, because some versions of the Corri-
dor Tiling problem are Exptime-hard, suggesting the possibility to adapt the
proof of [BGMN09]. But this remains an open question.

Proof. Brüggeman-Klein and Wood [BKW98] show that the language of ex-
pression pa�bq�apa�bq is not deterministic. Let e an expression over an alpha-
bet Σ and # a symbol outside Σ. Clearly, the language of Σ�#pa � bq�apa �
bq�e#Σ� is deterministic if and only if Lpeq � Σ�, which completes the reduc-
tion. Hence the Pspace-hardness of testing determinism, by reduction from
universality of regular expressions, a problem known to be Pspace-complete.

291

Appendix

The DFA representation for the subwords of a regular
language cannot be polynomial in general

Lemma 6.28: There exist a family of DFA An with size n such that any
deterministic expression accepting the subwords of LpAnq has size nΩplog lognq.

We denote by An the DFA called the “half-complete graph” in [EZ74]. The
DFA An � pΣ, Q, i, F,∆q has states Q � t1, . . . , nu, initial state i � 1, final
state n, alphabet Q2, and transitions ∆ � tpi, pi, jq, jq | i, j P Qu. Let en a
regular expression accepting the subwords of LpAnq.

Claim: The size of en is at least nΩplog lognq.

Proof. We assume that expressions are given by their parse tree. We need to
adapt the proof of [EZ74] because their lower bounds are obtained only for
particular regular expressions (those that can be represented by sheaves). One
cannot assume that a minimal expression for the subwords of Lpanq is of that
particular form. However, we show that the proof still holds in our setting.

For every word w P Lpenq, one can build a parse tree of w with respect to
en. This parse tree P pen, wq (or simply P pwq) is a binary tree with internal
nodes labeled by internal nodes of en whose label is d, and leaves labeled by
positions of en. Formally, the parse tree P pe, uq of a word u with respect to e is
defined as follows, where we identify subexpressions with their corresponding
node:

• if the root of e is labeled � then P pe, uq is defined as P pLchildpeq, uq
when u P LpLchildpeqq, and as P pRchildpeq, uq otherwise

• if the root of e is labeled d then let s, t two words such that st � u, s
is accepted by the left subexpression of e and r by the right. Then the
root of P pe, uq is the root of e, and its left and right subtrees are formed
by the corresponding parse trees for s and t.

• if the expression consists of a single position, then the parse tree of u
consists of this single position (in that case u has a single letter, which is
the label of the position)

Clearly, the parse tree of a word w of length k � 1 has k � 1 leaves which are
positions of en, plus k internal nodes, which are the d-labeled ancestors in e of
those positions. As in [EZ74], we map each node of en to a state of An: node
x P Nen is mapped to the highest natural σpxq ¤ n for which there exists a
position of the form pz, σpxqq below x. We extend the mapping σ to trees: σ
relabels any internal node x with σpxq, and deletes the leaves.

The crux of the proof is the following observation: for any pair of distinct
words w,w1 of the form p1, i1qpi1, i2q . . . pik, nq, the trees σpP pwqq and σpP pw1qq
(considered as terms) are distinct. That is, not only do these trees have distinct
sets of nodes, but there cannot be an isomorphism (preserving the labels)

292

Appendix

between them. In other words, the term σpP pwqq determines w. In our setting,
unlike for the sheaves of [EZ74], the property would not hold if we considered
arbitrary words in Lpenq. The property holds for words like above because a
node x with label ij in σpP pwqq determines the second component in the last
letter of the word s matched by its left child, as well as the first component
of the first letter of the word t matched by its right child. This implies by
induction that i1, . . . , ik are all determined by σpP pwqq.

This property is sufficient to apply the remainder of the proof from [EZ74].
Following faithfully [EZ74]3, we next show that there there must be many such
trees, and that this huge number of trees implies a lower bound on the size of
en.

There are
�
n�2

k

�
words of the form above, which is more than pn � 2qk{kk.

Therefore, pn � 2qk{kk is a lower estimate for the number of different trees
σpP pwqq. We next derive for that number of trees an upper estimate which
involves the size of en. The upper estimate is obtained by counting the number
of non-isomorphic binary trees with k internal nodes over a unary alphabet, and
then multiplying this number by the maximum number of ways to label those
trees. There are at most

�
2k

k

�
{pk � 1q and for our purpose at most 4k binary

trees with k internal nodes. To obtain a bound for the number of labelings,
Ehrenfeucht and Zeiger observe that this labeling is determined by the pair
formed by

• the labeling of all nodes along the path from the root to some maximally
deep internal node x,

• and the labeling of every node outside this path.

The number of possible labelings for the path from the root to x is at most
|en|. This is because when we fix x to some node of en, we determine its label
and the label of its ancestors: the kth ancestor of x in the path is then the
kth d-labeled ancestor of x in en, and their label is then obtained from σ.
Furthermore, the path from the root to x contains at least logpk � 1q nodes.
Therefore the number of nodes outside this path is at most k � logpk � 1q,
hence an upper bound of pn�2qk�logpk�1q for the number of ways to label those
nodes. Summing up, we obtain that pn� 2qk{kk ¤ 4k � |en| � pn� 2qk�logpk�1q.
Consequently, |en| ¥ pn � 2qlogpk�1q{p4kqk, which, for k � 1{3 logpnq, yields
|en| ¥ pn� 2q2{3plogp1{3 logpn�2qq�1q.

We observe that Ehrenfeucht and Zeiger obtained a larger blowup for the
simpler expressions they call the “complete graph”. This family cannot be used
directly to improve our result because the corresponding automaton has a single
strongly connected component, and therefore the subword approximation for
that language is trivial. It is not yet clear to us whether further ideas from
this paper or from [GJ08, GH08] can be exploited to tighten the gap.

3Actually, we follow the version from the technical report (available online), where the
analysis is a little more detailed

293

	1 Introduction
	1.1 Motivation
	1.2 Security Views and Query rewriting as a model for Access Control
	1.3 Our Contributions
	1.4 Organization of the Manuscript

	2 State of the art
	2.1 Access control specification for XML
	2.2 Access control models for XML
	2.3 Queries on views
	2.4 Views and Policies in Presence of Updates
	2.5 Schema Approximation

	3 Models for XML Reasoning
	3.1 Words, XML, and Unranked Trees
	3.1.1 General Notations and Tools
	3.1.2 Words and Trees as a Model for XML Documents
	3.1.3 Regular Expressions and Word Automata
	3.1.4 Grammars

	3.2 Tree Languages
	3.2.1 Tree Automata and Visibly Pushdown Automata
	3.2.2 Decision Problems for Tree Automata
	3.2.3 Pumping Lemmas for VPAs
	3.2.4 Schema Languages for XML

	3.3 Query Languages, Views and Updates
	3.3.1 First Order and Monadic Second Order Logic
	3.3.2 XPath Dialects
	3.3.3 Expressivity and Decision Problems
	3.3.4 Tree Alignments, a Model for Queries, Views and Updates
	3.3.5 XQUF
	3.3.6 From RegularXPath to Automata

	4 XML Security Views
	4.1 Specifying the Security Views
	4.1.1 Annotated DTDs and RegularXPath
	4.1.2 Restrictions on the views
	4.1.3 Evaluation by Query Composition
	4.1.4 Annotated DTD Models for Query Rewriting

	4.2 Comparing Policies
	4.2.1 How can we Compare Policies?
	4.2.2 Preliminary Results Relating the Different Comparisons
	4.2.3 Undecidability Results for Comparisons 2 and 3.
	4.2.4 Determinacy for MSO
	4.2.5 From MSO Queries to Views that Relabel Nodes
	4.2.6 Comparing XReg Policies
	4.2.7 Other XPath Dialects

	4.3 Beyond Pairwise Comparison
	4.3.1 Policy Comparison in Presence of Multiple Views
	4.3.2 Beyond Monadic Queries: n-ary Queries
	4.3.3 Verifying Security Properties of a View

	5 The View Update Problem
	5.1 Formalization
	5.1.1 Equivalence of Editing Scripts
	5.1.2 Composition of Editing Scripts
	5.1.3 Propagation of a View Update

	5.2 Update Functions
	5.2.1 Functionality and Disambiguation
	5.2.2 Update Translation
	5.2.3 Solution in the Unconstrained Case

	5.3 Translating Update Functions Under Constraints
	5.3.1 The General Case

	6 The View Schema
	6.1 Computing the View Schema
	6.2 Determinism in View Schema: XML DTDs
	6.2.1 Linear Algorithm to Test Determinism
	6.2.2 ``Determinizing'' Non-deterministic Expressions

	6.3 Approximation
	6.3.1 Subset, Subword, and Parikh Approximations
	6.3.2 Indistinguishability of Approximation

	Conclusion
	6.3.3 Summary of the Contributions
	6.3.4 Further directions of study

	Notations
	Index
	List of Figures
	Bibliography
	A Appendix

