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Abstract

Super heavy nuclei provide opportunities to study nuclear struc-

ture near three simultaneous limits: in charge Z, spin I and excita-

tion energy E∗. These nuclei exist only because of a fission barrier,

created by shell effects. It is therefore important to determine the

fission barrier and its spin dependence Bf(I), which gives informa-

tion on the shell energy Eshell(I). Theoretical calculations predict

different fission barrier heights from Bf(I = 0) = 6.8 MeV for a

macro-microscopic model [1, 2] to 8.7 MeV for Density Functional

Theory calculations using the Gogny or Skyrme interactions [3–5].

Hence, a measurement of Bf provides a test for theories.

To investigate the fission barrier, an established method is to

measure the rise of fission with excitation energy, characterised by

the ratio of decay widths Γfission/Γtotal, using transfer reactions [6,7].

However, for heavy elements such as 254No, there is no suitable tar-

get for a transfer reaction. We therefore rely on the complementary

decay widths ratio Γγ/Γfission and its spin dependence, deduced from

the entry distribution (I, E∗).

Measurements of the gamma-ray multiplicity and total energy for
254No have been performed with beam energies of 219 and 223 MeV

in the reaction 208Pb
�

48Ca, 2n
�

at ATLAS (Argonne Tandem Linac

Accelerator System). The 254No gamma rays were detected using

the Gammasphere array as a calorimeter – as well as the usual high-

resolution γ-ray detector. Coincidences with evaporation residues

at the Fragment Mass Analyzer focal plane separated 254No gamma

rays from those from fission fragments, which are > 106 more in-

tense. From this measurement, the entry distribution – i.e. the

initial distribution of I and E∗ – is constructed. Each point (I, E∗)

of the entry distribution is a point where gamma decay wins over
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fission and, therefore, gives information on the fission barrier.

The measured entry distributions show an increase in the max-

imum spin and excitation energy from 219 to 223 MeV of beam

energy. The distributions show a saturation of E∗ for high spins.

The saturation is attributed to the fact that, as E∗ increases above

the saddle, Γfission rapidly dominates. The resulting truncation of

the entry distribution at high E∗ allows a determination of the fis-

sion barrier height.

The experimental entry distributions are also compared with en-

try distributions calculated with decay cascade codes which take

into account the full nucleus formation process, including the cap-

ture process and the subsequent survival probability as a function

of E∗ and I. We used the KEWPIE2 [8] and NRV [9] codes to sim-

ulate the entry distribution.
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Stabilité des Éléments Trans-fermium à Haut Spin :
Mesure de la Barrière de Fission de 254No

Les noyaux super lourds offrent la possibilité d’étudier la structure

nucléaire à trois limites simultanément: en charge Z, spin I et énergie

d’excitation E∗. Ces noyaux existent seulement grâce à une barrière

de fission créée par les effets de couche. Il est donc important de

déterminer cette barrière de fission et sa dépendance en spin Bf(I),

qui nous renseigne sur l’énergie de couche Eshell(I). Les théories

prédisent des valeurs différentes pour la hauteur de la barrière de

fission, allant de Bf(I = 0) = 6.8 MeV dans un modèle macro-

microscopique [1, 2] à 8.7 MeV pour des calculs de la théorie de la

fonctionnelle de la densité utilisant l’interaction Gogny ou Skyrme

[3–5]. Une mesure de Bf fournit donc un test des théories.

Pour étudier la barrière de fission, la méthode établie est de

mesurer, par réaction de transfert, l’augmentation de la fission avec

l’énergie d’excitation, caractérisée par le rapport des largeurs de

décroissance Γfission/Γtotal, [6,7]. Cependant, pour les éléments lourds

comme 254No, il n’existe pas de cible appropriée pour une réaction

de transfert. Il faut s’en remettre à un rapport de largeur de décrois-

sance complémentaire: Γγ/Γfission et sa dépendance en spin, déduite

de la distribution d’entrée (I, E∗).

Des mesures de la multiplicité et l’énergie totale des rayons γ de
254No ont été faites aux énergies de faisceau 219 et 223 MeV pour

la réaction 208Pb
�

48Ca, 2n
�

à ATLAS (Argonne Tandem Linac Ac-

celerator System). Les rayons γ du 254No ont été détectés par le

multi-détecteur Gammasphere utilisé comme calorimètre – et aussi
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comme détecteur de rayons γ de haute résolution. Les coïncidences

avec les résidus d’évaporation au plan focal du Fragment Mass An-

alyzer ont permis de séparer les rayons γ du 254No de ceux issus

de la fission, qui sont > 106 fois plus intenses. De ces mesures, la

distribution d’entrée – c’est-à-dire la distribution initiale en I et E∗

– est reconstruite. Chaque point (I, E∗) de la distribution d’entrée

est un point où la décroissance γ l’a emporté sur la fission, et ainsi,

contient une information sur la barrière de fission.

La distribution d’entrée mesurée montre une augmentation du

spin maximal et de l’énergie d’excitation entre les énergies de fais-

ceau 219 et 223 MeV. La distribution présente une saturation de E∗

à hauts spins. Cette saturation est attribuée au fait que, lorsque

E∗ augmente au-dessus de la barrière, Γfission domine rapidement. Il

en résulte une troncation de la distribution d’entrée à haute énergie

qui permet la détermination de la hauteur de la barrière de fission.

La mesure expérimentale de la distribution d’entrée est également

comparée avec des distributions d’entrée calculées par des simula-

tions de cascades de décroissance qui prennent en compte le pro-

cessus de formation du noyau, incluant la capture et la survie, en

fonction de E∗ et I. Dans ce travail, nous avons utilisé les codes

KEWPIE2 [8] et NRV [9] pour simuler les distributions d’entrée.
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On a qu’à parler avec une robe et un bonnet, tout galimatias

devient savant, et toute sottise devient raison.

Molière
Le Malade imaginaire, Acte III, Scène 14.
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Chapter 1

Introduction

1.1 Nuclear Landscape: toward the Island of stability

1.1.1 Discovering the nucleus

The story of nuclear physics started a long time ago, already in the antiquity, the Greek
philosophers imagined that matter is made of very small blocks that Democritus called
átomos (ατoµoς), which means "uncuttable". Later in the Middle Ages and the 16 and

17th centuries, alchemists introduced the idea of chemical elements that can be separated.

In 1815, William Prout observed that the measured atomic weights were multiples of the

atomic weight of hydrogen. He presented the hypothesis that elements were composed

of hydrogen atoms which he called prolyte (a name that E. Rutherford made evolved to

protons in 1920) [10, 11]. In 1869, Dmitri Mendeleïev presented a periodic table of the

elements classifying them according to their chemical properties [12]. At the turn of the

19th century, in 1896, Becquerel discovered the natural radioactivity of Uranium ore [13].

Two years later, Thomson discovered the electron and suggested that the atom has an

internal structure [14, 15]. One hundred years ago, in 1911, Rutherford presented his

model of the atom with a central nucleus [16]. As quantum physics developed and the

experimental techniques improved, in 1932, Chadwick discovered the neutron and opened

the way for a description of the nucleus as we know it today.

From that point, the knowledge of nuclear physics expanded and models were developed

to describe and explain the new experimental measurements. George Gamow, proposed

to treat the nucleus as a drop of incompressible nuclear fluid; later Niels Bohr and John

Archibald Wheeler used this model to describe fission. Following the liquid drop idea, in
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1935, Carl Friedrich von Weizsaecker introduced a semi-empirical formula giving the mass
of the nucleus according to its number of protons (Z) and neutrons (N , the total number
of nucleons is A = Z + N). The mass is often given in terms of binding energy, EB, which
is the difference between the mass M(Z, N) of the nucleus and the sum of the masses of its
constituents Z ×mp and N ×mn, calculated by equation 1.1. The formula was completed
by Hans Bethe and is known as the Bethe-Weizsäcker formula (equation 1.2).

EB = Z · mp + N · mn − M(Z, N) (1.1)

EB = aV A − aSA2/3 − aC
Z(Z − 1)

A1/3
− aA

(A − 2Z)2

A
+ δ(A, Z) (1.2)

In equation 1.2, the different terms are : aV is the volume term, ≈ 14− 16 MeV , aS is the
surface term; aS ≈ 13 − 18 MeV , aC is the Coulomb term ≈ 0.6 − 0.7 MeV and reflects
the Coulomb repulsion between the electrically charged protons – the three first terms are
linked to the liquid drop model; aA is the asymmetry term ≈ 19−24 MeV , present because
the nuclear liquid is a mixture of protons and neutrons and δ is the pairing term, a first
step of treating the quantum nature of nucleons, equal to −11 − 33 MeV for even-even
nuclei, to +|δ| for odd-odd nuclei and to 0 MeV for odd-even nuclei.

The liquid drop model described by N. Bohr was successful at describing the capture
cross-sections and later the fission phenomena.

However, the liquid drop model failed to explain simple experimental observations such
as the natural abundance of elements in nature, which shows peaks for specific numbers
of neutrons or protons; similar peaks are observed in the binding energy of elements or
other macroscopic properties. As early as 1932, the idea of a shell structure in the nucleus
was introduced by W. Heinseberg and J. H. Barlett. The so-called magic numbers arise
from experimental evidence, but the theory was, at first, unable to explain them. The
consensus was that nucleons behave in the nucleus like electrons in the atom and are
organised in quantum levels. The spacing of the levels creates gaps leading to the observed
magic numbers: 2, 8, 20, 28, 50, 82, 126. Physicists failed to find an energy potential
that would reproduce all the magic numbers, until 1948, when Maria Goeppert-Mayer
(following a suggestion by Enrico Fermi) and independently J. Hans D. Jensen introduced
a spin-orbit coupling in the calculation of energy levels and reproduced the magic numbers
perfectly [17] – see figure 1.1. M. Goeppert-Mayer and J. H. D. Jensen shared the 1963
Nobel Prize in Physics with E. P. Wigner, for their contributions to theoretical nuclear
physics.

After the 1960s, more complex models will be developed: self-consistent approaches with
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Figure 1.1: Representation of the shell model and energy splitting introduced by the spin-
orbit term. On the left are the energy levels for a harmonic oscillator plus an orbital term
(�2). On the right, levels with spin-orbit splitting. The energy gaps between the level
groups lead to the magic number 2, 8, 20, 28, 50, 82, 126. The first magic numbers are
noted in blue.
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Hartree-Fock calculations, relativistic mean field approaches and ab-initio calculation with
effective interactions like Argonne v18.

1.1.2 The nuclear landscape today

Today, the landscape of nuclear physics has expanded both in theoretical understanding
and in experimental techniques. There are 118 elements (characterised by the number of
protons Z) known and more than 3000 isotopes (characterised by their mass A and charge
Z). Only about 100 isotopes are stable and 300 found in nature. Among the unstable

elements, about 20 have a half life of the order of the age of the Universe (1017 s).

The valley of stability

Along the centre of the nuclear landscape lies the valley of stability. Nuclei in the valley
are stable, whereas those on the edges are not and decay, mostly by β decay for light nuclei
and α decay for the heaviests – see figure 1.2. A parametrization of the position of the
stability valley can be derived from the Bethe-Weizsacker equation (1.2) by maximizing
the binding energy at a given A:

Z ≈ 1

2

A

1 + A2/3 aC

4aA

(1.3)

One notes that the valley connects the elements with N and Z equal to magic numbers.

Shell model and shell induced stability

On top of the liquid drop model, in which one considers the nucleus from a macroscopic
point of view, quantum effects exist, giving rise to shell structure. In the shell model, the
nucleons occupy quantum levels in the collective energy potential created by the nuclear
matter (mean field). The existence of energy gaps between levels creates extra stability
(manifesting by additional binding energy) [18]. Figure 1.3 shows the stabilisation of the
heaviests nuclei by the shell effects.

Nuclei at the limit(s)

Stable nuclei have been studied for years and are well known. In particular the shell model
is strongly verified around the magic numbers. However, the limits of the nuclear chart
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Figure 1.2: Chart of nuclei, arranged according to their number of protons Z and neutrons
N. The colour code indicates the decay mode. Magic numbers in N and Z are marked.
(From National Nuclear Data Center, Brookhaven National Laboratory).
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are still terra incognita and under intense investigation today.

On each side of the nuclear chart are the drip lines. The drip line represents the furthest in
terms of Z (protons) or N (neutrons) elements are bound and are the boundaries of nuclear
existence. The proton drip line is well established, up to Z ≈ 90. The neutron drip line is
known only up to oxygen, with 24O the heaviest possible oxygen isotope.

Other phenomena exist: halo nuclei [19], neutron skin [20], disappearance of magic numbers
[21,22], ... The nuclear landscape is still full of puzzles.

At the highest values of Z and N there is another limit of stability: the liquid drop model
predicts life times much shorter than the experimental observations for Z ≈ 100 and the
binding energy drops to and below zero around Z � 104. For the highest Z, the Coulomb
repulsion between protons prevails over the surface energy. This can be expressed, following
equation 1.2, with the fissility x :

x =
ECoulomb

2Esurface

=
aC

2aS

Z(Z − 1)

A1/3

1

A2/3
≈ 0.019

Z2

A
(1.4)

The fissility is widely used to characterise the tendency of elements to fission. The heavy
nuclei exist only because shell effects create gaps in the density of single particle states and
stabilise the nucleus against the liquid drop fission process: The potential energy surface
is modified and a minimum appears, where the nucleus can exist at a finite deformation,
protected from fission by a fission barrier whose height is noted Bf and which characterises
the stability of very high elements against fission. The elements above Z ≈ 100 are
generally called Super Heavy Elements (SHE) and the search for those is a hot topic in
nuclear physics today and laboratories around the world are working on the synthesis and
study of the heaviest elements [23,24].
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Figure 1.3: Illustration of shell effects on the potential energy surface against deformation,
calculated for 264108. With only the liquid drop approach (dotted line) there is no minimum
and the nucleus is unbound. When including the shell effects (full line), minima appear
making the existence of the nucleus possible.

27



1.1.3 From magic numbers to Super Heavy Elements

The theoretical justification of magic numbers is the formation of gaps in the density of
single particle states. In this picture, the series of magic number should go beyond 208Pb
— although with the density of levels increasing, the size of the gaps would diminish. In
the liquid drop model, stability significantly decreases above Pb, but the shell stabilisation
keeps the nuclei bound. Hence, specific combinations of Z and N should show a strong sta-
bility above the heaviest known magic nucleus, 208Pb. The hypothetical region of spherical
stability in the region of Z ≈ 120 is called island of stability. The position of the island
(determined by the next magic numbers) is not precisely predicted as different theories give
different values: N = 172 or 184, Z = 114, 120 or 126. In addition to the spherical island of
stability, theories predict a region where nuclei are stabilised by deformation, which mod-
ifies the orbitals order and spacing (see later section 1.2.1) and creates new gaps, around
Z ≈ 100 − 102 and N ≈ 152. Figure 1.4 shows the region of the heaviest known nuclei,
that we will call Very and Super Heavy Elements (V&SHE).

Figure 1.4: Nuclear chart: section of the heaviest element, for Z above 94. The position of
254No is marked. Element Z=117 is missing from this chart but has been discovered since.
(From AME2003)

SHE are stable only thanks to shell effects creating a fission barrier, as illustrated in
figure 1.3. Therefore, studying the fission barrier of such nuclei is key to understanding
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their stability.

1.1.4 Story of a very heavy nucleus: 254No

The first announcement of the observation of element Z=102 was made from the Nobel
Institute in Sweden in 1957; but the claim was later retracted. Between 1958 and 1961 a
team led by A. Ghiorso and G.T. Seaborg in UC Berkeley adopted the name Nobelium for
the element Z=102 formed in Cm + C reactions. Later, in 1966, the decay of 254No was
observed at FNLR, Dubna. The chemical properties of the element were studied there,
three years later.
Between 1961 and 1971, American teams in Berkeley and Oak Ridge confirmed the dis-
covery of the element and in 1992 IUPAC-IUPAP officially recognised the Dubna team as
discoverers of element Z=102. Two years later, IUPAC adopted the name Nobelium for
this element.
As of today, isotopes of Nobelium have been synthesised from A=250 to A=262. Prompt

spectroscopy of 254No was performed for the first time in 1998 at Argonne National Lab-
oratory, and shortly after confirmed at Jyväskylä. The measurements established the
rotational band and hence the deformed nature of this nucleus [25,26].

1.1.5 Motivation for measuring the fission barrier of 254No

The fission barrier of very heavy elements like 254No is a direct manifestation of shell effects
stabilising the nucleus. The measurement of the barrier height Bf is a way to investigate
the strength of shell effects in the heaviest nuclei. Furthermore, the V&SHE are produced
at high spin, hence the knowledge of the fission barrier at high spin is essential to under-
stand the synthesis of the heaviest nuclei.

Theoretical calculations give predictions for the fission barrier height at spin 0, but do
not agree: the microscopic-macroscopic method predicts Bf = 6.76 MeV [1] and the HFB
calculation predicts Bf = 8.66 MeV [3].

As of today, there was no experimental measurement of a fission barrier above 253Cf [27].
Our measurement is giving the first experimental information in the V&SHE region.
A previous measurement was conducted at Argonne National Laboratory and established
that Bf ≥ 5 MeV; which does not distinguish between the two theories. Our goal in the
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experiment presented in this thesis is to measure the fission barrier height and its spin
dependence.

1.2 Nuclear properties

1.2.1 Macroscopic and ground state properties

Nucleus mass

The primary property of the nucleus is its mass, or more precisely its binding energy (see
equation 1.1). The larger the binding energy, the more stable the nucleus. The Bethe-
Weizsacker equation (equation 1.2) describes the binding energy in the macroscopic way.
Extra binding energy can be obtained from shell effects. Hence a lighter mass than the
one predicted by the liquid drop model reveals the shell structure of the nuclei.

Nucleus shape

While the liquid drop model first assumed a completely spherical nucleus, it is natural
today to expand the concept to a deformed nucleus. This was not obvious in the early
times of nuclear physics, J Rainwater proposed the idea of deformed nuclei in 1950 [28]
and was awarded the 1975 Nobel Prize for his contribution. In general, the deformation
can be expressed in terms of spherical harmonics, with the radius at a given angle given
by

R(θ, ϕ) = R0

�

1 +
∞

�

�=1

�
�

m=−�

α�,mY�,m(θ, ϕ)

�

(1.5)

with � the multipole and m the order of the deformation. The 0th and 1st multipoles
do not contribute since they are not deformations (� = 0 is an expansion or contraction
of the sphere, � = 1 is a translation). The first significant multipole is � = 2, which is
quadrupolar. Assuming an axial symmetry, the simplest deformation can be expressed as
R (θ, ϕ) = R0 (1 + βY2,0 (θ, ϕ)) – see figure 1.5 for axis definition – which is an ellipsoid,
characterised by the deformation parameter β. The deformation can be parametrized in
different ways. The two most commons are β (as described above) and ε which is a measure
of the relative deviation from sphericity. If a and b are the semi-axis of the ellipsoid (as

described in figure 1.5), then ε = b−a
(b+a)/2

. ε is related to β as ε ≈ 3
4

�

5
π
β − 15

16π
β2. For
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β > 0 the nucleus is prolate, the major axis of the ellipsoid is along the symmetry axis, for
β < 0, the nucleus is oblate with the minor axis of the ellipsoid along the symmetry axis.

Figure 1.5: Visualisation of a deformed, axially symmetric nucleus. The ellipsoid semi-axis
a and b are marked in colour (blue and green). The angle parameters θ and ϕ are also
represented.

The deformation affects the electric moment of the nucleus Q0 which is a measure of
the charge distribution in the nucleus, Q0 is calculated by integrating the distribution of
charges in the nucleus: Q0 = e

�

ρ (3z2 − r2) dV . For an ellipsoidally deformed nucleus,
Q0 is related to β as Q0 = 3√

5π
ZR2β (1 + 0.36β). Experimentally, it is the expectation

value of Q0 that is measured Qs. The two quantities are related by Qs = f(I)Q0 with f(I)

a function of the spin of the nucleus.

Ground state spin and parity

The properties of nuclear states depend on the number of protons and neutrons and the
filling of the quantum levels in the nucleus.

For even-even nuclei: The ground state of an even-even nucleus always has a spin-
parity of 0+, as symmetry and pairing interactions between nucleons will favour this con-
figuration [29].

For odd-even nuclei: The ground state of an odd-even nucleus is determined by the
single particle level occupied by the last unpaired nucleon. For spherical nuclei, the shell
model developed by Goppert-Mayer and Jensen gives the orbital order and grouping. For
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deformed nuclei, the symmetry breaking lifts the energy degeneracy in the orbitals ac-
cording to Ω, the projection of the spin �J on the symmetry axis. This energy splitting
leads to a reorganisation of shell levels with deformation and a change in energy gaps. Or-
bitals of lower Ω are more bound for prolate nuclei – respectively, orbitals of high Ω have
lower energy for oblate nuclei. This degeneracy lifting has been introduced by S.G. Nilsson
and explains the stability, ground state and low lying excitation properties of deformed
nuclei [30]. Nilsson proposed to classify the orbitals in a deformed nucleus according to
the numbers Ω[NnzΛ] with N the main quantum number of the spherical shell (which
determines the parity), nz the number of excitation quanta on the symmetry axis and Λ

the projection of the angular momentum � on the symmetry axis. Figure 1.6 shows the
Nilsson-orbitals calculated with a wood-saxon potential for SHE.

Figure 1.6: Nilsson orbitals for protons 82 ≤ Z ≤ 114 (left) and neutrons N ≥ 126 (right)
as a function of the deformation (parametrized by ε). There are gaps at finite deformation
that stabilise the deformed nuclei. The position of the gaps and orbitals relevant for 254No
at Z = 102 and N = 152 are marked. (From [31])
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1.2.2 Excited states in the nuclei

Rotational excitation

Deformed nuclei gain an extra degree of freedom and can rotate, the axis of rotation being
different from the symmetry axis. On figure 1.5 or 1.7 the rotation axis would be z.

Figure 1.7: Schematic drawing of a deformed rotating nucleus. The nucleus rotates along
the z axis, perpendicular to the symmetry axis (y). The total spin of the nucleus is
�I = �R + �J with �R the rotation vector and �J the intrinsic excitation spin.

The energy associated with the rotation is Erot =
�R2

2J with �R the global rotation vector
(similar to a classical body rotation) and J the moment of inertia of the nucleus. For a
rigid-body rotation, the moment of inertia is derived from the classical value, and for a
sphere is Jsphere = 2/5 M R2. For an axially deformed nucleus, the moment of inertia
along the Z axis would be :

J = 2/5 M R2 (1 + β/3) (�2/MeV) (1.6)

The moment of inertia of the nucleus is generally reduced with respect to the rigid-body
values given above by the super-fluidity of the nuclear matter. The effective moment of
inertia of a nucleus is J = kJrigid with k ≈ 0.4 − 0.5 [32]. Moreover, J is not constant
over the all range of excitation and spin of the nucleus: particle alignment, orbital crossing
or change in deformation will modify the moment of inertia. That is why we define spin
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dependent kinematic J (1) and dynamic J (2) moment of inertias:

J (1) = I
�

dE(I)
dI

�−1

J (2) =
�

d2E(I)
dI2

�−1 (1.7)

Because of the necessary symmetry of the nuclear wave function, for even-even nucleus only
even I values are allowed. Therefore the sequence of energy levels follows E(I) = I(I+1)

2J
with I = 0, 2, 4, 6, ... This sequence of energy is a signature of rotational motion. The
rotational states with the lowest energy at a given spin is called the yrast line.

Intrinsic excitations

Rotation can be built on top of the ground-state and also on top of excited states. Such
excitations occur when one or more nucleons are excited to higher single particle levels
within a shell (or even across a shell gap). These excitations may change the nuclei shape,
spin and parity.

K quantum number

The global spin �I of the nucleus has two components: the first is the global rotational
angular momentum �R, along the rotational axis, the second is the spin of the intrinsic
excitation in the nucleus �J ; �I = �R + �J . One notes that, by definition and for an axially
deformed nucleus, the rotation axis is different (often perpendicular) than the axis of
symmetry. The projection of the total spin on the symmetry axis is noted K and is a good
quantum number for axially deformed nuclei, as strict selection rules exist for transitions.
For an even-even nucleus rotating along an axis perpendicular to the symmetry axis without
intrinsic excitation K = 0.

K isomers

When K is a conserved quantum number, transitions in the nucleus between states of
different K will be disfavoured. One can visualise the transition as a potential energy with
multiple minima at different values of K. The difference in K between the two minima
implies a small probability of electromagnetic transition. Hence, the high K states have
a long life-time and constitute isomers. The trans-uranium elements display such long
lived high K states [33]. Figure 1.6 shows the Nilsson orbitals and highlights the gaps for
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254No: the orbitals at the Fermi level have a large projection of angular momentum on the
symmetry axis, leading to the formation of high-K states and isomers.

1.2.3 Decay modes

Gamma decay

The decay of an excited nucleus by electromagnetic transition is associated with the emis-
sion of a photon (electro-magnetic radiation). This process does not change the mass or
charge of the emitting nucleus; however it reduces its excitation energy and the spin is
changed.

The angular momentum carried by the photon is determined by its multipolarity L. The
relation between the initial and final states spin Ii and If is �L = �Ii + �If , or :

|Ii − If | ≤ L ≤ Ii + If

Furthermore, the parity change ∆π = πi · πf is equal to +1 or −1. The transition is called
electric if ∆π = (−1)L and magnetic is ∆π = (−1)L+1 ; the table 1.1 summarises the
different transitions and their characteristics. Between two levels, the favoured transition
is the one with the lowest multipolarity.

Transition J ∆π

E1 1 -1
M1 1 1
E2 2 1
M2 2 -1
E3 3 -1
M3 3 1

Table 1.1: Characteristics of electro-magnetic transitions (angular momentum carried and
parity change), according to their names.

The selection rules in the transition come from the underlying quantum process: the re-
duced transition probability for a σL transition (with σ the type of transition, electric or
magnetic and L the angular momentum carried by the γ-ray) is B(σL) = 1

2Ii
|�If |M(σL)|Ii�|2

with M(σL) the matrix element for the transition. Within a rotational band, M1 and E2
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transition probabilities are:

B(M1) =
3

4π
(gK − gR)2K2|�IiK10|IfK�|2 µ2

N (1.8)

B(E2) =
5

16π
Q2

0K
2|�IiK20|IfK�|2 (eb)2 (1.9)

Here gR is the collective magnetic moment of the nucleus – independent on the intrinsic
excitation, gK the configuration magnetic moment which depends on the orbitals occupied
by the nucleons, and Q0 the quadrupole moment of the nucleus. The transition probabilities
are strongly dependent on the configurations of the initial and final levels. Transitions
between two I = 0 states are not possible with γ emission, as a photon must carry angular
momentum, but internal conversion is possible for 0 → 0 transitions.

Internal conversion

Internal conversion manifests itself by the emission of an electron. The process is a case
of electro-magnetic transition, even if it is not associated with the emission of a photon.
Internal conversion happens when the electro-magnetic transition energy is transmitted
to an electron of the atom which is removed from the electronic cloud and gains kinetic
energy. The process is in competition with γ emission, except for 0 → 0 transitions. The
internal conversion process is favoured when: Z is large, the γ transition energy is small
and the electron wave function has a higher probability to be inside the nucleus (it is the
case for K electron shells). The multipolarity of the γ transition and the wave function of
the electron also play a role in the conversion process. When an electron of binding energy
WB is ejected by internal conversion, the energy of the electron is Ee− = Eγ − WB.

The ratio of the number of internal conversion electrons emitted over the number of γ-rays
emitted is α = Ne

Nγ
and is called the internal conversion coefficient. It is established that

α ∝ Z3

Eγ
. The internal conversion coefficients are tabulated or can be calculated [34]. For

the ground state bands in 254No, the conversion coefficients for E2 transition can be as
large as 1545 at the lowest energy (44 keV). Table 1.2 gives the conversion coefficients for
the main known 254No transitions.

Following an internal conversion, the hole in the electronic shell is filled by electrons from
higher shells in the electronic cloud. This process is accompanied by X-rays emission and
ejection of low-energy electrons (called Auger electrons), leading to multiple ionized atoms.
The probability of emitting a X-ray is determined by the fluorescence yield ω which differs
depending on the electronic shells. For 254No, the ωK ≈ 1.
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Eγ (keV) α

44 1545
102 28.8
159 4
214 1.2
267 0.54
318 0.3
366 0.2
412 0.14
456 0.11
498 0.09
536 0.07
570 0.06

Table 1.2: Internal conversion coefficients for known 254No yrast E2 transitions. The α

coefficient decreases with Eγ.

β decay, Electron capture

β decay is the process in which the nucleus changes its charge by 1 unit; this is the
primary process in which a nucleus decays along an isobaric chain to a more stable element.
The weak interaction is responsible for the reaction n → p + e− + ν̄e for β− decay, or
p → n + e+ + νe for β+ decay. The transition from ZA to Z-1A can also occur via electron

capture, a process during which a proton is converted into a neutron via the capture of an
electron from the atomic electron cloud : p + e− → n + νe [35, 36].

Alpha decay

Heavy elements (Z � 50) can decay by emitting an α particle, i.e. a 4He nucleus.

The process of emitting an α particle from the nucleus is characterised by the Q-value
Q = M (A, Z)−M (A − 4, Z − 2)−M4He. The α particle energy can be approximated as:
Kα ≈ A−4

A
Q. For elements with A ≈ 250, Kα � 95% of Q. Furthermore, the problem of

α decay can be treated, in a very simplistic approximation, as a barrier penetration with
the α particle escaping across a potential barrier. The transmission is ∝ e−2∆

√
2Mα|V −Kα|/�

with ∆ the barrier width. In fact, in addition to the nuclear potential well from which the
α particle has to escape, there is a Coulomb and a centrifugal barrier. The alpha decay
problem, when solved, leads a relation between Q and the half-life of the nucleus T1/2 = ln 2

λα
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with T1/2 ∝ Z√
Q

. The combination of the Eα and T1/2 can be used to identify the parent
nucleus – See figure 1.8 and reference [37,38].

Figure 1.8: Plot of log (half life) vs. α energy for even-even heavy nuclei – from [37].

Spontaneous fission

Spontaneous fission is a decay process in which the nucleus breaks up in two fragments.
One has to separate spontaneous fission from induced fission and fission during a reaction
process when the excitation energy causes the nucleus to fission. Spontaneous fission is
characterised by the fissility x which is greater than 1 for elements with Z2/A � 47.
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Chapter 2

Synthesis of Super Heavy Elements

2.1 Fusion Evaporation Reactions

V&SHE are not found in nature – yet [39] – and must be produced in the laboratory.
Moreover their limited stability makes them short lived. Therefore, one needs to produce
them just beforehand and on location for study. Production of such elements is done either
by deep inelastic reaction [40] or by a type of reaction called “fusion-evaporation” which
is, as the name suggest, a multi-step process. Fusion-Evaporation is a reaction where a
projectile nucleus a collides with a target nucleus A to form a compound nucleus (CN)
C� that will evaporate light particles b to produce the nucleus of interest B, following the
equation :

a + A → C� → b + B� → B + γ

As the equation suggests, fusion-evaporation can be described in different steps [32]– see
also fig. 2.1 :

• Contact and capture between projectile and target

• Formation of the Compound Nucleus (fusion)

• Evaporation of particles to form the nucleus of interest.

• Emission of γ-rays in the decay to the ground state.
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2.1.1 Capture

The first step of fusion-evaporation is the capture: the two nuclei a and A have to touch

in order to form the compound nucleus – figure 2.1. In addition to obvious geometric
considerations to this phase of the reaction, there are conditions in terms of energy and
angular momentum that need to be met to get capture between the two nuclei. There is
a barrier that must be overcome: mainly from the Coulomb repulsion between the two
charged nuclei, plus a kinetic component: at low angular momentum �, the phase space
is small and makes it harder for the two nuclei to be in contact, whereas for very large
angular momentum the corresponding large impact parameter disfavours the contact. The
contact phase is characterised by a probability P a,A

contact(Ea, �) where Ea is the kinetic energy
of the projectile and � is the angular momentum in the system.

The characteristic values of importance in the contact phase are :

Size of the nuclei With the radius of a nucleus given by R = r0A
1/3 (r0 = 1.2 fm), the

distance between the two centres at contact is bcontact = Ra +RA +dinteraction (Ra and
RA are the radii of the nuclei a and A), with dinteraction ≈ 2 − 3 fm the distance of
interaction of the two nuclei. The impact parameter must therefore be smaller than
this value, otherwise the nuclei can not touch.

Angular Momentum The transferred angular momentum in the reaction is given by
�

�(� + 1) = 1
�

µ v b, where � is the angular momentum, µ is the reduced mass of
the system (µ = mamA

ma+mA
, ma and mA are the masses of the nuclei), v the speed of the

projectile (in the centre of mass frame) and b the impact parameter.

Coulomb barrier The Coulomb barrier is proportional to ZaZA

A
1/3

a +A
1/3

A

( Za, Aa and ZA, AA

are the charge and mass number of the nuclei) ; the energy in the centre of mass
must be above this value for the two nuclei a and A to get in contact.

R. Bass described the fusion process in a classical liquid drop potential model with no
deformation and showed that the interaction (contact) cross-section can be expressed in
terms of a one-dimensional barrier [41, 42], with σR = πR2

int

�

1 − V (Rint)
E

�

, with Rint =

Ra + RA + dinteraction and V (Rint) = 1.44 MeV ZaZA

Rint
− b RaRA

Ra+RA
(b ≈ 1 MeV). The potential

V (R) reflects the competition between Coulomb repulsion (∝ ZaZA/R) and the surface
tension energy (∝ RaRA/(Ra + RA)).
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Figure 2.1: Schematic view of the fusion-evaporation reactions process. The projectile
a impacts the target nucleus A with the impact parameter b. The pre-fusion system is
characterised by the interaction distance dinteraction. At each step of the process, the system
can fission, before forming the compound nucleus, or evolving to form the CN C∗, which
will evaporate neutrons and γ-rays to loose excitation energy and form the evaporation
residue B.
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2.1.2 Compound Nucleus: Fusion and Formation

The second step in a fusion-evaporation reaction is the formation of the CN; i.e. the
passage from 2 nuclei in contact into one excited nucleus at thermal equilibrium (C�).
The CN formation implies a change of the shape (see figure 2.1) often characterised by a
barrier the system needs to pass in order to make the transition. The transition to the CN
must happen on a time scale of the order of the time needed for the bombarding particles
to travel across the target nucleus (i.e. approximately 10−21s) [43]. The reaction energy
is shared among all the CN nucleons, leading to a nucleus with an excitation energy E�

equal to the total energy in the system plus the Q-value (negative) to form the CN. The
CN exists over a time scale of the order of 10−19 to 10−16s. The formation of the CN will
depend on the beam energy E, the angular momentum � and the entrance channel. The
probability to form the compound nucleus is given by PA+a→C�

CN (E, �) [44]. If the formation
of the CN fails, the pre-compound system a + A splits into target-like and projectile-like
fragments; this process is called quasi-fission – see figure 2.1.

Deformed nuclei barrier

The barrier described above considers only spherical nuclei. For a deformed nucleus, the
barrier, which depends on the interaction distance, cannot be expressed as simply for
deformed nuclei, it depends on the relative orientation η of the nuclei: Rint(η) = Ra +

RA + dinteraction(η). As the orientation η is not controlled, there is a distribution of barriers
spread over all the possible η configurations.

Coupled channel

To the simple geometrical approach, one must add the refinement of quantum mechanics.
During the reaction process, the nuclei can be excited to their internal excited levels [45].
The coupling between the internal excitation configurations will enhance or reduce the
fusion probability depending on the configuration, possible shape changes in excited states,
... This modifies the barrier distribution as a function of reaction energy.

For the 48Ca on 208Pb reaction, coupled channels calculations are necessary to reproduce
the experimental capture cross-sections below and around the fusion barrier. Without
coupling, there is only one barrier. Coupling to 1-phonon excitations in the nuclei makes
additional barriers appear and higher-order coupling lowers the secondary barriers, making
them reachable in experiment. Figure 2.2 shows an example of barrier distributions for
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254No. Therefore coupling creates a secondary maximum in partial fusion transmission at
lower angular momentum. Figure 2.3 shows calculations from [46].

Figure 2.2: Calculation of the barrier distribution as a function of centre of mass energy for
254No in the reaction 208Pb(48Ca,2n)254No with no coupling (red), excitation of one (black)
and excitation of two (blue) phonons in the target and projectile nuclei. The blue arrow
shows the centre of mass energy in our experiment at EBeam = 219 MeV and the red arrow
at EBeam = 223 MeV, which is below the second barrier with only one phonon coupling
but above it when coupling two phonons. From [46].

2.1.3 Evaporation

The last step of the fusion-evaporation reaction is the evaporation by the CN of light
particles (protons, neutrons, α particles) of emission of γ-rays to form evaporation residues.
When formed, the CN has an excitation energy E� = Ecm + Q, where Ecm is the total
energy available in the centre-of-mass frame (Ecm ∼ K + AA + Aa, with K the kinetic
energy of the projectile in the centre-of-mass frame) and Q the Q-value for forming the
CN (Q = BECN − (BEa + BEA)), Q being negative for typical reactions in the formation
of heavy nuclei.
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Figure 2.3: Partial transmission coefficient for the fusion of 48Ca with 208Pb at projectile
energy of 219 MeV (black) and 223 MeV(red) calculated without (left) and with (right)
coupled channels. The channel coupling creates a secondary peak from the higher barrier,
following Lmax ∝

√
ECN − B (with ECN the excitation energy of the compound nucleus

and B the fusion barrier height). From [46].
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The evaporation process happens on a long time scale (as long as 10−15s, compared to the
typical orbit time of a nucleon in the nucleus: 10−21 s). The process is statistical and the
evaporation channels are independent. Evaporation of neutrons is strongly favoured since
it is not hindered by the Coulomb barrier. Protons and α particles evaporation is usually
not observed from heavy CN, although it is theoretically possible. Fission will compete
with particle and γ emission.

Neutrons (or more generally particle) evaporation reduces the CN excitation energy by the
separation energy and the kinetic energy of the evaporated particle. However, evaporation
does not affect the angular momentum very much. Particles will be evaporated as long
as E� is above the particle separation energy. When E� < Sparticle for any particle, the
CN will emit statistical γ-rays, mainly of E1 multipolarity, carrying energy and very lit-
tle angular momentum, bringing the nucleus closer to yrast and other excited rotational
bands constituting the normal γ-decay path – see figure 2.1. The evaporation to a given
evaporation residue (ER) is characterised by the probability PC�

ER(E�, �).

Decay widths

The decay of the compound nucleus by emission of neutrons and other particles, γ-rays
or by fissionning is governed by the associated decay widths [47]. According to Fermi’s
golden rule, the width for a decay is Γ = 2π

�
|M |2ρ – where M is the transition matrix

element and ρ the phase space factor, measuring the density of final states. In terms of
global quantities, the width can be expressed as the ratio of the number of available final
states N over the level density at the initial state ρ: Γ = N

2πρ
. The number of available

final states is obtained by integrating the level density of the final states over the available
energy range.

Level Density The level density is a key parameter for the calculation of decay widths.
It is not an easy quantity to measure at intermediate energies and is parametrized from
theory [48]. A classical parametrization is [8, 48–51]:

ρ (E∗, J) =
2J + 1

24
√

2a1/4 (E∗ − Erot(J) − ∆)5/4
σ3

exp

�

2
�

a(E∗ − Erot(J) − ∆) − (J + 1/2)2

2σ2

�

MeV−1

(2.1)
Here a is the level density parameter, of the order of A/8, Erot(J) the rotational energy
= J(J+1)

2Jg.s.
, ∆ is the pairing gap, of the order of 24/

�

(A) for even-even nuclei, equal to 0 in

other cases and σ is the spin cut-off parameter: σ =
JrigidT

�
where Jrigid is the rigid body

moment of inertia and T the temperature of the system.
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More complex factors affect the level density: There is an enhancement of the level density
by collective excitations (ρenhanced(E

∗, I) = Kcollective(E
∗, I)ρ(E∗, I) [52, 53]). In addition,

damping of shell effects with excitation energy [8, 48], needs to be taken into account,
by using adamped = a[1 + δ 1−exp(−γDE∗)

E∗
] with δ the shell correction and γD the damping

parameter [50]. The way to implement such damping in the calculation is currently under
discussion, see appendix D.

Fission Potential Even if fission eventually leads to a gain in energy (the binding energy
of the two fragments is higher than the one of the initial nucleus) during the process, the
system has to overcome the fission barrier, noted Bf .

An easy way to represent the fission process is having the system moving along the energy
potential V as a function of deformation β. During the fission, the nucleus undergoes a
transition from inside the potential well, around βg.s., to a higher deformation β. In order to
get over the saddle at βsaddle (the deformation “threshold” over which the nucleus becomes
unbound and fissions) the system must go over Bf = Esaddle − Eg.s. – see figure 2.4. The
saddle energy can be parametrized by Esaddle = Bf (0) + �

2I(I+1)
2Jsaddle

, with Bf (0) the height of
the fission barrier at spin 0, and Jsaddle the moment of inertia of the saddle, assuming a
rotor behaviour, with Jsaddle linked to the saddle deformation βsaddle.

The quantum nature of the system implies that a tunnelling of the wave function through
the potential is possible when E∗ < Esaddle. Therefore, the transition from a non fissionning
nucleus to fission with increasing E� is not sharp but smooth; depending on how strong
the tunnelling is and the competition with other decay modes (given by Γfission/Γtotal).

The fission barrier Bf is a framework of calculation used to model the fission process and
is not directly observable. However, the fission barrier is computed and is used in all
calculations. Furthermore, the quantity Bf is linked to very experimental observables like
the maximum excitation energy one can put in the nucleus before it fissions, spontaneous
fission half-lives, fission probability in reactions, etc. Hence it is a parameter that can be
deduced from experimental data.

Fission decay width For the fission decay, the number of final states is given by in-
tegrating the level density above the saddle point energy up to the excitation energy. In
practice, due to the barrier penetration in the fission process, the integration goes from 0
to E∗ with a tunnelling factor, characterised by the energy �ω. The tunnelling parameter
�ω is linked to the curvature of the potential (supposed parabolic) around the saddle and
usually taken to be ≈ 1 MeV. The fission width grows rapidly above the threshold energy
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Figure 2.4: Schematic potential energy for fission against the deformation parameter (β).
The ground state, located at a finite deformation and the saddle point at higher deformation
define the fission barrier Bf . A schematic view of the shape of the nucleus is represented
above the potential.
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Bf and can be expressed as [54–56]:

Γfission =
1

2πρg.s.(E∗)

� E∗

0

ρsaddle(E
∗ − ε)

1 + exp
�

−2π(ε−Bf )

�ω

�dε MeV (2.2)

In the formula, the denominator is the transmission through the barrier (tunnelling).

Neutron decay width For the neutron decay, Weisskopf calculates the widths in the
frame of the equilibrium reaction AZ � n + A-1Z, following the transition state theory.
One has to introduce the cross-section of the reverse reaction (neutron capture) in the
calculation. The integration is done over the excitation energy above the neutron separation
energy Sn and for the level density of the A-1Z nucleus. A pre-factor appears due to the
kinematic degrees of freedom of the neutron and the spin degeneracy (g). There is no
tunnelling for neutron emission. This leads to [8]:

Γneutron =
gm

π2�2

1

ρA(E∗)

� E∗−Sn

0

ε σinverse (ε) ρA−1 (E∗ − Sn − ε) dε MeV (2.3)

The Weisskopf approach does not depend on the spin of the initial and final state. To
account for angular momentum and barrier penetration, the Hauser-Feshbach formalism is
better suited and considers the angular momentum carried by the emitted neutron [8,57].

γ decay width For γ decay, the width depends on the transition multipolarity and the
strength function specific to a nucleus (in particular the deformation).

For an E1 multipolarity transition, the strength function has a Lorentzian form, following
the Giant Dipole Resonance energy and width: fE1(Eγ) = C EγΓGDR

(E2
γ−E2

GDR)
2

+Γ2

GDR
E2

γ

, with C

a constant factor and ΓGDR and EGDR are the Giant Dipole Resonance width and energy.
The strength function typically has a value of a few 10−6 MeV−1. For axially deformed
nuclei, the strength function depends on β, the quadrupole deformation parameter and has
several maxima, compared to only one for spherical nuclei.

The γ decay width also depends on the γ energy to the power of 2L + 1, with L the γ

multipolarity. There is no threshold energy to emit a γ-ray. An E1 γ can carry one unit
of spin and one has to sum over the different final possible spins.

This leads to an E1 γ decay width of [58,59] :

ΓE1
γ =

1

ρ(E, I)

J=I+1
�

J=I−1

� E

0

ε3fE1(ε)ρ(E − ε)dε MeV (2.4)
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Decay probability The decay probability for a given decay channel is given, in term of
width as Pdecay =

Γdecay

Γtotal
, with Γtotal the sum of all decay channel widths [60]. In the case

of fusion-evaporation, the probability of fission is Pfission = Γfission

Γfission+Γneutron+Γγ
.

The probability to form an evaporation residue B by emitting two neutrons from the
compound nucleus C∗ will be given by: PC∗→B

ER = ΓC∗

n

ΓC∗

total

× ΓC∗
−n

n

ΓC∗
−n

total

.

2.1.4 Evaporation residue formation

The total probability of formation of an ER at a given excitation energy from the a + A

reaction is therefore characterised by the cross section [50] :

σER(E�) =
π�

2

2µE

∞
�

L=0

(2L + 1) · P a,A
contact(Ea, L) · PA+a→C�

CN (E,L) · PC�

ER(E�, L) (2.5)

µ is the reduced mass, as introduced in 2.1.1.

The fission barrier affects the term: PC�

ER(E�, L). Theoretical calculations, although they
manage to give rather good predictions for the cross section σER, fail to agree for the
different terms and steps of the process. This is a big limitation of the calculation since
the internal steps of calculation rely on complex process and hypotheses that cannot be
individually verified experimentally and that are not unique in their modelisation.

2.2 Hot and Cold Fusion

Fusion-evaporation can be hot or cold, depending on the excitation energy of the CN. The
choice of projectile-target combination determine which of the two regime happens.

2.2.1 Cold fusion

Cold fusion relies on magic or nearly-magic projectile and target (like 48Ca and 208Pb or
209Bi). As a consequence, the reaction Q-value is very negative (the magicity gives a large
binding energy and Q = EB(CN) − (EB(a) + EB(A)) is therefore large and negative) and
the CN excitation energy is low (around 10–20 MeV). The CN evaporates only one or two
particles (predominantly neutrons).
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In cold fusion, the capture is disfavoured by the high Z1Z2 term in the potential energy; but
the low excitation energy of the compound nucleus favour the survival of the evaporation
residues.

2.2.2 Hot fusion

For hot fusion, heavier targets and more asymmetric projectile / target combinations are
used (for example 244Cm on 12C to produce 254No). The CN excitation energy is usually
around 50 MeV and 4 or 5 neutrons are evaporated.

In hot fusion, the lower Z1Z2 favours the contact between projectile and target nuclei; but
the higher compound nucleus excitation energy reduces the survival probability of the ERs.

2.2.3 The case of 254No

254No can be produced via hot and cold fusion, the different beam-target combination give
different Q-values and production cross section, as shown in table 2.1.

Reaction Q-value (MeV) CN E∗ at max. σ (MeV) Max. σ (µb)
238U(22Ne,6n) [61] -93.9 57 15±7 × 10−3

208Pb(48Ca,2n) [61, 62] -166.8 21 2

Table 2.1: Table of Q-values and production cross section for hot and cold fusion to
produce 254No. The compound nucleus excitation energy at the maximum of cross section
is indicated. The difference between the hot and cold reactions are clearly visible in terms
of the Q-values, E∗ and σ.

Independently of the type of fusion-evaporation reaction, the production cross section in the
region of V&SHE falls exponentially with the atomic number Z of the produced element.
Figure 2.5 shows the evolution of production of SHE cross section with neutron number
for hot or cold fusion.
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Figure 2.5: Plot of cross section for cold and hot fusion reactions, as a function of the
compound nucleus neutron number (from [63]). The plot shows an exponential decrease
in cross-section for both hot and cold fusion up to N=170, above which values there is an
increase for 48Ca induced reactions. This increase corresponds to higher Bf predicted in
macroscopic-microscopic models (see chapter 3): Calculation predict Bf ≈ 7 − 8 MeV for
N � 170 while the fission barrier is lower around 6−7 MeV for N between 150 and 170 [1].
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2.3 The importance of Fission

In fusion evaporation, fission is in competition with every steps of the ER formation process:

• The a + A system can fission during the formation of the CN (quasi-fission).

• The excited CN C� can fission.

• The excited ER C − xn can fission.

For heavy elements, fission will be in strong competition with neutron evaporation and
other decay channels (because of the strong Coulomb repulsion in the large system). Hence,
the production of the ER will be weak and have very small cross sections, of the order of
µbarn of less. In fact, the evaporation residues cross-section is about 4 orders of magnitude
smaller than the capture; as shown in figure 2.6.

Figure 2.6: Capture (black) and ER (red) cross-section for 254No in the 48Ca + 208Pb
reaction. From [9].

2.3.1 The fission process

As much as the fusion-evaporation process is complex and multi-step, the same is true
for fission. During fission, the nucleus goes from one continuous body to two separated
fragments: A → F1 + F2 – fission to more than two fragments is possible, but significantly
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less probable. Emission of light particles (neutrons, protons, ...) and γ-rays can happen
as the fragments may be formed in an excited state. The process implies a deformation of
the nucleus from a null or limited value to an infinite one (see figure 2.4). [64–66]

A. Sierk describes the barrier in the frame of a macroscopic rotating nucleus model [67],
where nuclear energy, surface energy, Coulomb energy and shape energy compete, leading
to a macroscopic fission barrier value and its spin dependence. Deviation from the Sierk
barrier indicates strong shell effects that stabilise the nucleus [68,69].

2.3.2 Bf dependence on I

When the nucleus picks up angular momentum, the potential energy previously described
(figure 2.4) is modified. In particular, for deformed nuclei, the rotational energy will change
the position of the well (mostly its energy, but a change in β can happen). Similarly, the
saddle energy Esaddle will change, but with a trend different from the change of the well
minimum (βsaddle can also change) – see figure 2.7. In terms of moment of inertia, the
fission barrier and its spin dependence can be expressed as :

Bf (I) = Bf (0) − �
2I(I + 1)

2

�

1

Jg.s.

− 1

Jsaddle

�

(2.6)

with Jg.s. and Jsaddle the moment of inertia of the ground state and the saddle point and
Bf (0) = Esaddle − Eg.s. the fission barrier height at spin 0.

The spin dependence of Bf is a good way to probe the spin dependence of shell effects that
stabilise the ground state, since Bf (I) can also be expressed as Bf (I) = Esaddle(I)−Eg.s.(I),
with both quantities Esaddle(I) and Eg.s.(I) (the energy of the ground state band) depending
on shell effects.

2.3.3 Probing the fission barrier

For nuclei which can be populated by transfer reaction, probing the fission barrier is
straightforward: one observes the fission as E� increases [6, 7], which is a way to probe
Pfission = Γfission/Γtotal. For VHE and SHE such as 254No, it is not possible since there is
no suitable target-projectile combination to excite the nucleus by transfer reaction [70].
However, the γ and fission decay are in competition, and one can observe this competition
via Pγ = Γγ/Γtotal which provides information on Bf . In cases when Sn is larger than Bf

by at least ≈ 1 MeV, Pγ ≈ Γγ/ (Γγ + Γfission). The fission width rapidly dominates γ-decay
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Figure 2.7: Potential energy profile of 254No changing with the angular momentum (I, in
units of �). From [3].
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as E∗ increases. This causes a rapid drop of Pγ [27, 51, 71–74] which provides a sensitive
probe of Esaddle, as will be discussed in the next chapter.
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Chapter 3

Theoretical calculations

3.1 Theoretical predictions of the fission barrier height

and spin dependence

As mentioned earlier in section 2.1.3, the fission barrier, or the saddle energy, is a theoretical
construct, relevant because it is calculated in all models and for all processes related to
fission. There are several ways to calculate the position of the saddle Esaddle and the spin
dependence characterised by Jsaddle.

Liquid drop barrier

The barrier can be calculated in a purely liquid-drop framework, using the model developed
by A. Sierk [67]. These calculations do not include any shell effects and the height of the
fission barrier for 254No is very small (less than an MeV). The model also predicts a moment
of inertia for the saddle, but it is important to notice that it fails to reproduce the ground-
state rotational moment of inertia, as pairing is not included.

Macroscopic-microscopic calculation

A more complete way to calculate the fission barrier is to rely on a so called macroscopic-

microscopic calculation, which relies first on a liquid drop model in a 5-dimensions en-
vironment to account for the high-order deformations, plus shell effects introduced via
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single-particle energies [1, 2]. Such calculations predict larger fission barrier thanks to the
shell effects. However, they do not calculate properties at high spin and hence do not give
a moment of inertia for the saddle.

Hartree-Fock-Bogoliubov calculation

In the more complex theoretical frame, self-consistent calculations can be performed, for
example within the framework of the Hartree-Fock-Bogoliubov method [3–5]. This method
computes energies and deformations and can predict both the height of the barrier and its
spin dependence.

Table 3.1 gives a summary of all the calculated height and saddle moment of inertia for
the fission barrier in 254No. The scaled SD moment of inertia is calculated by scaling
the super-deformed band moment of inertia in 194Hg to the 254No mass and saddle defor-
mation βSaddle = 0.5; this method takes into account the effect of pairing in the saddle,
independently of any model.

Model Bf (I = 0) (MeV) Jsaddle (�2/MeV) Jg.s (�2/MeV)
Sierk (a) 0.9 152.0 135
Macro-Micro with folded Yukawa
potential [1]

6.76

Macro-Micro with Wood-Saxon
potential [2]

6.76

HFB with Gogny D1S force [3] 8.66 140
HFB with Gogny D1S force [75] 6 – 7
HFB with Sly4 force [5] 9.6
HFB with SkM* force [4] 8.6
Scaled SD 146
Rigid Body 181 160
Experimental value 75.0

Table 3.1: Table summarising the theoretical predictions for the 254No saddle energy. The
g.s. band (yrast) moment of inertia is reminded. (a) The Sierk model does not predict a
correct ground state moment of inertia.
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3.2 Entry distribution calculation

We will use computer codes to simulate the entry distribution in the 208Pb(48Ca, 2n)254No
reaction. The objective is to investigate the evolution of the entry distribution with beam
energy, the effect of the fission barrier on the distribution and have a point of comparison
with experimental measurements. Different codes have been tested: analytic calculations
and statistical simulations.

3.2.1 Analytic width calculations

Using the simple width formulas given previously (see section 2.1.3) one can calculate
Γneutron,Γfission and Γγ and extract Pγ (I, E∗). In particular, one can look at the E∗ when
Pγ falls below 50%: E1/2(I). These calculations can be done with Bf(I) arbitrarily set to
any value. One notes however that this calculations do not take the population of (I, E∗)

states in 254No in the reaction into account. Figure 3.1 shows the decay widths and the
decay probability as function of excitation energy in 254No.

3.2.2 evapOR calculation

The code evapOR [76] is an extension of the PACE2 code, which allows multi-particle evap-
oration in a Monte-Carlo framework. It takes as input the target and projectile information
and the beam energy. It has been modified [77] to output an entry distribution and so that
it is possible to vary the values of Bf . However, although evapOR manages to reproduce
fairly well previous experimental measurements like the entry distribution in 192Hg [78], the
results calculated for 254No are hard to interpret, as no evidence of fission barrier effects
are seen in the calculated entry distribution and no elements were available to validate
the evapOR results (for example, evapOR fails to reproduce production cross-sections for
254No). Figure 3.2 shows tentative calculation with evapOR with increasing beam energy
but no visible effect of fission, contrary to the expected behaviour. It was therefore decided
not to trust those calculations and attempts to use evapOR were dropped.

3.2.3 KEWPIE2

The code KEWPIE2 [8, 79, 80] was written at GANIL to study the fission time in SHE
synthesis. It contains a Hauser-Fesbach component, which calculates the population and
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Figure 3.1: Decay widths (Top) and Decay mode probability (bottom) for I = 0 � cal-
culated with analytic width formulas, the γ (red) and fission (blue) widths cross at E1/2

which is close to the saddle energy, represented by the blue line. The neutron evaporation
width is in black and kicks in at Sn = 7.71 MeV. The γ probability falls below 0.5 at E1/2

which is the energy where Γfission = Γγ and is slightly (≈ 1MeV) above Bf, marked with a
blue line.
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decay of nuclei at given (I, E∗). It takes as input the projectile and target nuclei and the
compound nucleus excitation energy, the fusion probability is obtained with a proximity
potential. Moreover, the code is available and can be modified to suit our needs. It is
therefore perfect for calculating entry distribution. As the code was not primarily created
to that end, modifications were made to take into account the nuclear deformation and
ensure a proper spin dependence of all parameters. KEWPIE2 uses mass, deformation and
fission barrier data from [1].

The population of states at (I, E∗) and the decay widths are computed by the modified
KEWPIE2 code and then processed into an entry distribution. The entry distribution
is populated according to which (I, E∗) states are populated by the neutron decay from
255,256No and which of those γ decay contribute to the entry distribution.

Figure 3.3 shows a calculation of the entry distribution for 254No. In particular, we look
at the energy where Γγ ≈ Γfission and Γγ ≈ Γneutron.

The KEWPIE calculations display an entry distribution spilling over Esaddle at low spin.
In other words, E(Pγ=0.5) = 0.5 is above Esaddle and E(Pγ=0.5) − Esaddle decreases with spin,
which is the same behaviour as suggested in the simple width calculation. The calculations
also indicate no effect of neutron evaporation is affecting the entry distribution since the
Γγ ≈ Γneutron line is largely above the saddle energy. Finally, the calculations indicate that
(I, E∗) states populated by neutron decay are high enough in energy to be directly affected
by the fission barrier. Therefore, the truncation of the entry distribution by the fission
permits Esaddle to be extracted.

Figure 3.4 shows examples of entry distribution at the two beam energies, calculated with
KEWPIE2.

3.2.4 NRV calculation

We also used the NRV calculations [9] to simulate an entry distribution. Through the NRV
website, one can compute the cross-section, partial fusion cross section and decay width for
a given nucleus as a function of I and E∗. By combining all these data, one can simulate
the fusion and decay in the 208Pb +48 Ca reaction down to the (I, E∗) states in 254No that
γ decay – hence reconstructing the entry distribution. The input is the compound nucleus
(I, E∗) distribution. For consistency, we used the same distribution as the one used in
KEWPIE2. This calculation method has two major drawbacks:

• It is not a fully integrated calculation but a code putting together elements from
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Figure 3.2: Plots of the evapOR calculation with Bf (I = 0) set at 7 MeV and the CN
excitation energy increasing from 219, to 221 to 223 MeV. The yrast line is represented in
black, the purple line is the saddle energy and the red dotted line is the neutron separation
energy. One can see that the spin distribution does not change and the energy distribution
is just shifted up. There is apparently no effect of the fission barrier.

Figure 3.3: Entry distribution of 254No at Ebeam = 219 MeV calculated with KEWPIE2.
The yrast line is in red, the saddle line used in the calculation is the purple line and the
neutron separation energy is the gray line. The energy where Pγ ≈ 0.5 is marked in orange
and the energies where Γγ ≈ Γfission and Γγ ≈ Γneutron are marked in blue (concurrent with
the orange line) and green.
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Figure 3.4: Comparison of the entry distribution (top), spin projection (middle) and energy
projection (bottom) for EBeam = 219 (left) and 223 MeV (right). In the energy projection,
the position of the saddle at the average spin is marked with a gray line.
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different sources.

• The decay procedure does not take into account pre-fission or pre-neutron γ emission
(although this is probably a very low probability).

Figure 3.5 shows and entry distribution calculated using NRV. Like the distribution from
KEWPIE2, it spills over the saddle at low spin and the falling point is shifted down in
respect to ESaddle with increasing spin.

Figure 3.5: Entry distribution of 254No at 223 MeV calculated using NRV. The yrast line
is in red, the saddle energy used in the calculations in purple and the neutron separation
threshold is the gray dotted line.

With this method, we do not have control of the position and spin dependence of the saddle
– or the implementation of shell effects damping, see appendix D. But we can change the
profile of the entrance channel partial fusion cross section. We can therefore verify the
independence of the final 254No entry distribution with the entrance channel, as shown on
figure 3.6: the evaporation-residue spin distribution changes somewhat with the input spin
distribution, but it is clear that partial waves higher than � ≈ 25 � do not survive against
fission. Therefore, the maximum spin reached by the evaporation residue is not dependent
on the high spins in the entrance distribution.
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.

Figure 3.6: Profile of entrance (black) and final (green) spin distributions calculated in
NRV for two different partial fusion cross section calculations; in particular, the bottom one
follows the double peaked distribution suggested by coupled-channel calculations (see 2.1.2
and [46]). The final distribution of spin slightly changes with the entrance distribution, in
particular the position of the maximum. The maximum spin in the evaporation residue
distribution is not changed: Imax ≈ 25 � for both entry spin distribution, because fission
depletes the highest partial waves.
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3.2.5 Calculations of entry distribution: results

The global characteristics of the entry distributions calculated with the two different codes,
for two different beam energies corresponding to the experimental measurements, are given
on table 3.2. We see that :

• The NRV calculations give slightly lower spin and excitation energy than KEWPIE2.

• The average spin of the entry distribution increases by ≈ 3 � when increasing the
reaction energy in both cases. The spin distribution width increases also by 1 �.

• The average excitation energy of the entry distribution increases by 0.7 to 1 MeV
when increasing the reaction energy. The energy distribution width increases only
slightly (by 0.1 MeV).

Code
Beam
Energy
(MeV)

Average
Spin (�)

Spin Width
(�)

Average
Energy
(MeV)

Energy
Width
(MeV)

NRV
219 9.8 6.1 5.2 1.2
223 12.4 7.2 5.9 1.3

KEWPIE2
219 11.5 5.7 5.9 1.2
223 14.8 6.7 6.9 1.3

Table 3.2: Comparison of the global characteristics of the calculations results from NRV
and KEWPIE2 calculations.

As the two codes use the same entrance spin and energy distribution in the CN, the
differences in results originate from the treatment of neutrons and γ-decay, in particular,
the choice of parametrization of the level density will have a huge influence (damping, spin
cut-off, ...). Therefore, the differences reflect the different theoretical approaches.

The two codes use the same saddle energy dependence, with a Jsaddle smaller than the
theoretical predictions: ≈ 80 �

2/MeV. But this can be changed in KEWPIE2 and we can
investigate the effect of a higher or lower saddle, and different spin dependence, in order
to determine how the parameters influence the entry distribution. Figures 3.7 and 3.8
show examples of entry distributions calculated with different parameters for the saddle.
Calculations with changing Bf (0), all other parameters being fixed, show that an increase in
Bf (0) increase the average energy of the entry distribution, as one would expect. Also, the
width of the energy distribution decreases and the average spin decreases. For Esaddle ≈ Sn,
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the competition with neutron evaporation stops the trend of decreasing average spin – see
figure 3.9. For increasing Jsaddle, all other parameters being fixed, we see a decrease of
average spin and energy, and a small reduction of spin and energy widths, see figure 3.10.

Figure 3.7: Entry distribution calculated by KEWPIE2 for Bf (0) = 5 (left) and 6.5 MeV
(right), with JSaddle = 80 �

2/MeV.

Figure 3.8: Entry distribution calculated by KEWPIE2 for Jsaddle = 117 (left) and
175 �/MeV2, with Bf (0) = 6.5 MeV.

Relation between E1/2 and Esaddle

In the calculations, we notice that at low spins, the entry distribution spills above the saddle
energy line. To understand why the γ-decay stays strong above ESaddle, we will consider the
quantity E1/2, defined as the energy where Pγ(E

∗) = 0.5, with Pγ = Γγ/ (Γγ + Γneutron + Γfission)

(see section 2.1.3). We will define an equivalent quantity in the experimental entry distri-
bution.
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Figure 3.9: Evolution of the global characteristics of the entry distribution simulated with
KEWPIE2 for different values of Bf (0). The neutron separation energy (Sn = 7.71 MeV)
is marked with a blue line. Average (left) and width (right) of the spin (top) and energy
(bottom) distributions.

68



Figure 3.10: Evolution of the global characteristics of the entry distribution simulated with
KEWPIE2 for different values of Jsaddle. Average (left) and width (right) of the spin (top)
and energy (bottom) distributions.
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The E1/2 energy is linked to the saddle energy and the relation between the two as a
function of spin ∆(I) = E1/2(I) − Esaddle(I) can be extracted from calculations. In the
limit of Esaddle < Sn, E1/2 is found by solving Γfission = Γγ. One can consider that Γγ

grows exponentially with excitation energy, while Γfission grows with E∗−Bf , therefore, for
spins where Bf is large (at low spins) Γγ is large when the excitation energy is around Bf

while the fission width is still small, and E1/2 will be higher than Esaddle. At higher spins,
where Bf is smaller, Γγ is not as large at Bf and the fission and γ widths are equal at an
excitation energy closer to Bf .

Figure 3.11: Profile of ∆(I) = E1/2(I) − Esaddle(I) obtained from analytic width calcula-
tions. The points are the calculated values, uncertainties come from integration steps, lines
represent quadratic fits. The red and blue series correspond to two different parametriza-
tion of the saddle: Bf (0) = 6 MeV and Jsaddle = 150 �

2/MeV in red and Bf (0) = 6.5 MeV
and Jsaddle = 170 �

2/MeV in blue.

Figure 3.11 shows the profile of ∆(I): One can see that the E1/2 points are above Esaddle

at low spin and this difference decreases at higher angular momentum. Those calculations
lead to ∆(I = 0) ≈ 1 MeV and falling to ∆(I ≈ 30 �) = 0.

It is very important to notice that ∆(I) is a calculated quantity that depends on the Bf (I)

used in the calculation, and also on the calculation model. In figure 3.11 we see that small
changes in the saddle energy parametrization affects ∆ only slightly. Also, as shown in
figure 3.12, each code gives a different behaviour for ∆(I). One will have to be careful of
the self-dependence of Bf extracted from experimental data using a calculated ∆.
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Figure 3.12: Values of E1/2 from different calculations: NRV (orange), KEWPIE2 (green)
and analytic calculation (blue) compared to the Esaddle parametrization (purple line). The
yrast line is the red line. The E1/2 points are above Esaddle by as much as 2 MeV at low
spin and decrease with respect to Esaddle with increasing spin.
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3.3 Conclusion on calculations

From the calculations, we learned:

• The average spin of the entry distribution is expected around 10 – 15 � and the
distribution extends up to spin 25 �.

• The average energy in the entry distribution is expected around 5 to 7 MeV with the
distribution extending up to 8 MeV.

• Increasing the beam energy from 219 to 223 MeV increases the average spin by up
to 3 � and the excitation energy by 1 MeV.

• With larger Bf (0), higher excitation energies in the entry distribution are obtained.
With larger moment of inertia Jsaddle, the maximum spin is reduced.

• The entry distribution is clearly truncated at E1/2 which is above Esaddle at low spin
and decrease with higher spins.

These calculations clearly show that the entry distribution is largely dependent on the
position of the saddle (it also slightly depends on the entrance spin distribution), and that
confirm the possible extraction of the fission barrier from an entry distribution measure-
ment.
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Chapter 4

Experimental measurement of Fission

Barrier

4.1 Experimental setup

4.1.1 Reaction

The reaction used to produce 254No is 208Pb(48Ca,2n)254No. This reaction is well docu-
mented and has been used since 1979 to produce 254No with a reasonable cross section.
References [62, 81, 82] gives the excitation function for the reaction, reproduced in figure
4.1. One can see the 254No can be produced with cross-section up to about 3 µbarn. The
beam energies used in the experiment are 219 and 223 MeV – respectively 178 and 181 MeV
in the Center of Mass frame. These energies are above the peak of the cross section. How-
ever, the energy loss in the target will bring the beam energy down to a corresponding
higher cross section, and more importantly, as we intend to populate 254No at the highest
spin possible the higher beam energy will bring more angular momentum to the system.
Due to energy spread in the target, the incoming 48Ca energy varies between 218.2 and
214.5 MeV (222.3 and 218.5 MeV respectively) in the laboratory frame. The corresponding
maximum excitation energy depends on the centre of mass energy and the Q value of the
reaction E∗

max = Ecm + Q. Table 4.1 gives the relevant energies. The maximum excitation
energy for the 254No is between 8 and 11.0 MeV (between 11 and 13.5 for 223 MeV beam).
At those energies, the cross-section are of the order of 2 µbarn for the 219 MeV beam and
1 µbarn for the 223 MeV beam (cross sections at mid-target energies)– see figure 4.1.
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Figure 4.1: Excitation function for the 208Pb(48Ca, 2n)254No reaction. The position of the
Bass barrier is marked by Ex [81, 82].
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208Pb + 48Ca → 256No Q−value -153.8 MeV
256No 2 neutrons separation 13.04 MeV
256No neutron separation 7.05 MeV
255No neutron separation 5.99 MeV
208Pb + 48Ca → 2n + 254No Q−value -166.6 MeV
254No neutron separation 7.71 MeV

Table 4.1: Q−values for the formation of the compound nucleus and the 254No residue.
The neutron separation energies are also given. The Q−value of the full reaction is equal
to QCN − S

256No
2n . By definition, S

256No
2n = S

256No
n + S

255No
n .

Reaction kinematics

The reaction kinematic characteristics are given in table 4.2. The kinematics of the reaction
are of importance for the separation of the recoils after the target (in the FMA see section
4.1.7) and the Doppler correction of the γ-ray energies. In addition to purely kinematic
considerations, the beam and recoils loose energy in the target. That influences the reaction
energy and recoil speed. For 254No recoils, the stopping power in matter is not known and
has to be extrapolated from the heaviest known nuclei to the appropriate mass with the
same kinematic energy per nucleon. The recoiling 254No have an angular dispersion (half
angle) of the order of 3.8 ◦ in the laboratory frame (this has to be compared with the
separator solid angle acceptance : 8 msr or 5.6 ◦ aperture – see section 4.1.7) – taking into
account the kinematic dispersion from the neutron evaporation and the straggling in the
target material.

4.1.2 Beam structure

The beam of 48Ca was delivered by the ATLAS accelerator with a charge state Q = 11+

as a 12.1 MHz (82.48 ns period) pulsed beam. The average intensity was 100 enA, varying
between 90 and 120 enA – giving a current of 8.2 to 10.9 pnA. Figure 4.2 shows the beam
structure visualised as time of γ-ray events. The current was held down to avoid saturating
Gammasphere with fission gammas and neutrons.
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Beam energy (MeV) 219 223

Projectile speed (c) 0.0989 0.0998
Min.– Max. Reaction Energy a (MeV) 215 – 219 218.5 – 222

Mid-target Reaction Energy (MeV) 217 220.5
Mid-target Recoil speed (c) 0.0179 0.0181
Mid-target Recoil energy (MeV) 38.0 38.7

Min.– Max. Recoil Energy b (MeV) 37.5–38.3 38.2–39.0

Table 4.2: Reaction kinematics characteristics, for the two beam energies. The energies
and recoil speed take into account the energy loss in the target and in the backing material.
a takes the loss of kinematic energy of the projectile in the target material and the front
target backing into account. b takes the projectile and recoil energy loss in the target, the
backing material and the reset foil into account; the recoil energy governs the time of flight
through the FMA and implant energy at the focal plane. See section 4.1.8.

Figure 4.2: Beam structure, seen in the spectrum of time difference between the events in
individual Gammasphere modules and the trigger signal when a certain multiplicity of γ

rays is reached. The red line shows a sinusoidal fit on the oscillations. The period is 82.48
ns, corresponding to the expected time between beam bursts.
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4.1.3 Beam spot

To avoid putting too much energy on the target at the risk of melting it, the beam was
slightly defocused in the horizontal direction (about 2 mm wide) and the beam was wobbled

in the vertical direction with a 2-3 mm range.

4.1.4 Target

The enriched 208Pb target used was ≈ 0.5 mg/cm2 thick with a 12C front (0.04 mg/cm2

thick) and back (0.1 mg/cm2 thick) backing.

The carbon backing of the target is used primarily as support: in the preparation process
the 208Pb is deposited by evaporation on the carbon foil. The second backing is added
on top of the target material to protect it from oxidation in the open air. During the
experiment, the backing also prevents the 208Pb from sputtering out from the target.

We used four quarter-of-a-circle targets mounted on a rotating wheel, as one can see on the
picture in figure 4.3. The wheel was rotating at 500-600 rpm. The beam was swept using
an electrostatic sweeper to avoid irradiating the wheel spokes. The beam was swept-off
about 27% of the time.

4.1.5 Reset foil

At the exit of the target, the recoiling nuclei have a broad distribution of charge states
between 16+ and 24+, centred on 19+ [83]. After the target, the electron cloud may be
perturbed by internal conversion and other atomic processes following the decay of long-
lived excited states. Those processes can increase the charge state by several units.

A 0.007 mg/cm2 thick carbon foil was placed about 5 cm after the target for charge reset-
ting. It brings the charge states back to an average Q ≈ 19 − 20+. The presence of the
reset foil does not influence the recoil kinematic energy by more than 0.52 %. The reset
foil was changed several times during the 10 days of experiment.
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Figure 4.3: Target chamber with the target wheel inside.
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4.1.6 Gammasphere

Gammasphere is the world’s most powerful gamma ray spectrometer for nuclear structure
research today1. It consists of up to 110 high-purity germanium detectors, arranged in a
sphere covering about 50 % of the solid angle and with an average detection efficiency of
14% (up to 22% at 300 keV, 9% at 1.3 MeV). A photography of a Gammasphere hemisphere
is visible on figure 4.4.

Figure 4.4: Target Chamber with an hemisphere of Gammasphere (the sphere is open).

The Ge crystals are enclosed in a Bismuth-Germanium-Oxide (BGO) shields divided into
six sectors, each served by a pair of photo-multipliers, plus one additional back plug sector
located behind the Ge crystal, that serves as a Compton suppressor. The Peak-To-Total
of the gamma ray detection is about 60% (up from ≈ 25 % for unsuppressed detection).
The large number of detectors allow the study of high multiplicity reactions [84,85]. A Ge
crystal and the enclosing BGO shield make a module. A schematic view of a module is
given on figure 4.5.

The BGO signal consists of the sum signal of all BGO sectors plus the hit pattern of
each indicating which BGO sectors fired. It is coded as a byte with each of the first 7

1Gammasphere was used as model in the 2003 movie The Hulk in which B. Banner is irradiated by a

device called Gammasphere looking exactly like the original. Unlike in the movie, the real Gammasphere

does not shoot γ-rays bu detect them.
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Figure 4.5: Schematic view of a Gammasphere module. The Ge crystal (Ge) (in green)
is surrounded by a BGO shield (in purple) around and at the back (back plug to catch
scattered γ rays escaping from the rear of the Ge crystal. An absorber foil is set at the
front of the module (not represented). A hevimet shield (orange) can be placed in front
of the BGO, but has been removed in our experiment. The Ge crystal is kept cold with
liquid nitrogen.
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bits standing for one sector (6 surrounding plus the back plug). Events in Gammasphere
modules come with a time for Ge and BGO signals; these are the intervals between the
detection of a γ in the Ge (or BGO) and the global trigger signal – see section 4.1.9. In
the following, we will mention these times as tGe and tBGO.

To attenuate for the intense 208Pb X-rays in the experiment – from passage of the beam
through the target material and to a smaller extent Coulomb excitation of the target nuclei
– absorbers of Cu (0.23 mm thick), Ta (0.05 mm thick) and Cd (0.51 mm thick) were placed
in front of the modules to decrease the low energy detection efficiency – see figure 4.6. The
X-rays are produced after atomic excitation or electronic conversion.

Figure 4.6: Transmission curve with different absorbers placed in front of the Gammasphere
modules. During the experiment, Cu, Ta and Cd where used to cut the X-rays of Pb.

During the experiment, Gammasphere comprised 108 BGOs (with at least one sector work-
ing) and 101 Ge crystals.

Calorimetric mode

We used Gammasphere in a special mode, to get calorimetric measurements. In this mode,
we measure for a single event the total energy deposited within all the active material of
Gammasphere and the number of detected hits. For this purpose the BGO shields are
not used as Compton suppressors, but as part of the detection system. The calorimetric
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measurement is described in detail in section 4.3.
The modules are usually fitted with hevimet shields in front of the BGO (composed of
80 % Tantalum, 13 % Nickel and 7 % Copper, with a density of 19 g/cm3.), so that
only the Ge crystal have a direct view of the target and the BGO are hit only by γ-rays
scattered from the Ge. But for the calorimetric measurement the shields were removed
from Gammasphere in order to allow all γ-rays to be directly detected.

4.1.7 Fragment Mass Analyzer

The Fragment Mass Analyzer (FMA) was used to sort the scattered beam and transfer
products from the evaporation residues. The FMA is installed at ATLAS and placed after
Gammasphere. It separates the primary beam from nuclear reaction products and disperses
those according to their mass-to-charge ratio (m/q) in the horizontal direction (thereafter
noted X). The separation of ions is obtained by a symmetric combination of two electric
dipoles and one magnetic dipole, plus two quadrupole doublets at the entrance and exit
of the separator for focusing. Moreover, the FMA is isochronous, i.e. the time of flight
of ions through the separator does not depend on the trajectory they follow, but only on
their velocity. The FMA acceptance is ≈ 8 msr and the overall transmission efficiency is
estimated to be ≈ 7% for this reaction. For other reactions, the FMA transmission can be
as high as 85 % [86,87]. The transmission of V&SHE in fusion-evaporation reaction by the
FMA is poor, due to the acceptance of only two charge states, compared to other facilities:
RITU at Jyvaskyla has a ≈ 40 % transmission, the Berkeley Gas Separator’s transmission
is around 70 %, – see appendix B. Figure 4.7 shows a schematic of the FMA layout.

Figure 4.7: Schematic view of the FMA. Gammasphere (GS, in red) surrounds the target
position (TGT) 4.1.4. The FMA is made of four quadrupoles (Q), two electric dipoles
(ED) and one magnetic dipole (MD). Detectors (DET, in blue) are located at the focal
plane for recoil identification and delayed spectroscopy. See 4.1.8 for focal plane detectors.

The FMA magnets system has been calibrated [88] so that it can be automatically set to
transmit a given nucleus with a given charge state to the focal plane. The dispersion is
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done in the horizontal direction. Therefore, the vertical wobbling of the beam does not
affect the recoil separation.

4.1.8 Focal plane detectors

At the focal plane of the FMA were placed detectors for recoil identification and delayed
spectroscopy. Figure 4.8 shows a schematic of the focal plane detectors.

Figure 4.8: Schematic drawing of focal plane detectors. The recoils first go through the
PPAC (in blue) where ∆E, x and y information are measured. The recoils implant in the
DSSD (chessboard square), where Eimplant and pixel information are measured. The time
of flight is measured between the DSSD and the PPAC.

PPAC

A multiwired proportional counter (called PPAC for Parallel Plate Avalanche Counter),
is placed at the focal plane and provides energy loss (∆E) and position (X, Y, in the
horizontal and vertical direction) information. It can be used to identify the recoil. The
PPAC consists in two Mylar windows surrounding the cathode-X-anode-Y electrode wires,
and is filled with isobutane (C4H10) at 3 Torr. The energy loss in the PPAC is of the order
of 9 MeV for a 254No recoil with a kinetic energy of 38 MeV.
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DSSD

The FMA focal plane implantation detector is a Double Sided Stripped Silicon detector,
with 160 strips on each side. Figure 4.9 shows a picture of the DSSD. The detector active
area is a 6.4×6.4 cm2 and the strips are 400 µm wide. The Si detector is 100 µm thick,
with a front dead-layer of 0.8 µm.

Figure 4.9: Picture of the 160x160 strips DSSD. The detector measures 6.4 cm for each
sides.

Recoils are implanted in the silicon and the front and back strips where the observed
signal is the highest are assigned to the event, defining an implantation pixel. The pixel
position will be used to follow the decay of the implanted nuclei over time inside the
Silicon. The time of flight (ToF) between the PPAC and the DSSD is measured for the
recoil identification. The recoil and decay events are processed by different electronic
chains.

4.1.9 Trigger

The data acquisition triggers on any event detected at the focal plane of the FMA. The
Gammasphere data is kept on the data bus for up to 2 µs waiting for the validation from
the PPAC as an external trigger.
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Thee are two types of event:

Decay event: A decay event is triggered by the overlap of a front and back signal in the
DSSD decay channel. The event is built from the DSSD decay signals and comprises
the pixel ID, the timestamp of the event and the energy in the DSSD. The Gamma-
sphere signals have no trigger conditions (whether in time, energy of multiplicity),
moreover, because of the calorimetric mode, there is no Compton suppression (but
the modules can be tagged as dirty offline).

Recoil Event A recoil event is triggered by a signal in the PPAC; it vetoes the trigger of
a decay event. Recoil events contains the PPAC information (X,Y, ∆E), the DSSD
information (pixel coordinates, energy), the time of flight and the Gammasphere
information, if any.

Figure 4.10 describes the trigger logic. During the experiment, the average global trigger
rate was 170 to 180 Hz, with a DSSD event rate around 1 – 2 Hz.
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Figure 4.10: Trigger logic schematic representation. The green lines represent the signals
read by the acquisition, the orange lines are the logical trigger signals. The two types of
event are associated with different trigger signals. The PPAC signal triggers the reading
of the Gammasphere information and the PPAC and DSSD recoil signals, while vetoing
the decay overlap trigger. The decay trigger initiates readout of the DSSD decay signals.
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4.2 Recoil and recoil decay tagging

The very small cross section of the reaction makes it hard to observe 254No γ-rays at the
target position, which we need for the calorimetric measurement. The information from
the PPAC is not quite enough to unambiguously identify the nuclei of interest and to select
the corresponding target-position events. The best signature of 254No is the α decay energy
and half life. The correlation between recoils and subsequent decays over time allows the
unambiguous identification of nuclei.

Target-position – focal plane correlation: Every implant event is associated with
the target-position events: γ energies detected by the Ge or BGO and time between the
detection in Gammasphere and the event trigger (PPAC signal). Implant events contain
the relevant prompt Gammasphere data. The only additional selection needed is the time
between the detection of the recoil at the focal plane and the detection of the γ-ray which
has to be the time of flight of the recoil.

Pixel correlation in the DSSD: The high pixelization of the silicon detector leads
to a low rate of implant and decay in each pixel. With an average 200 Hz experimental
rate of DSSD implant, there was a rate of the order of 8 mHz implants per DSSD pixel;
with an average decay rate around 2 Hz the average decay rate in a pixel is 80 µHz. With
an average 2.5 minutes between two pixel events and about 200 minutes between decays,
there is enough time to observe two subsequent decays of 254No or its daughter nuclei
(respectively 51 and 1800 seconds half lives).

The decays in the DSSD are correlated to a previous implant in the same pixel using the
pixel coordinates. A time condition is put on ∆T1st decay = Tdecay − Timplant restricting the
implant-to-decay correlation time to a few half lives of 254No (T1/2(

254No) = 51 s) to avoid
correlating with random events. One limit of the method is that the detection efficiency
of the α is about 55 % because the emitted α might escape from the silicon and leave only
a tiny fraction of its energy.
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4.3 Calorimetric measurement

4.3.1 Principle of measurement

The calorimetric measurement with Gammasphere is done by using the BGO shields as
part of the detection system. We measure the total energy detected at the target position
and the number of Gammasphere modules that fired – the fold. We will need to calibrate
the BGO energy reading precisely to find the original total energy and the number of γ-
rays emitted by the nucleus. The calibration has been performed sector by sector with
88Y, 203Hg, 207Bi and 137Cs sources, with energies at 898, 1836, 279, 569, 1063, 1770 and
662 keV. See later section 5.1.1 for calibration.

Gammasphere module: hit

For calorimetric measurements, the number of hits is either one or zero for one module. We
consider that a module has a hit if any of its BGO sectors or its Ge triggers are within the
appropriate time gate. Two γ-rays interacting in the same module will therefore register
as one hit only. For the energy deposited in the module, the Ge and BGO energies are
read and multiple gamma hits will naturally lead to the measure of the sum energy. For
the purpose of calorimetric measurement, it has been shown it is not useful to separate Ge
crystal, BGO shield and BGO sectors to increase the number of modules [85].

Selection of hits in time and energy

The γ-rays hits, whether in the Ge detectors or in the BGO, are selected according to the
time of the event, relative to the implantation of the recoil, in order to select precisely the
γ rays associated with a recoil and not any γ from background or another reaction (see
previously, section 4.2). It is also important to take the time walk of the time, coming from
the charge collection dynamics or the leading-edge discriminator, into account. Figure 4.11
shows the selection of events. The γ time peak is larger than for a source measurement
because of the energy dispersion in the target, implying a dispersion in ToF.

Building the k and H quantities

The number of hits detected – the fold, noted k – and the detected energy – noted H – are
built off-line from the events selected as previously described. In one individual module i,
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Figure 4.11: Selection of Ge (Top) and BGO (bottom) hits for the (k,H) distribution: the
red lines are the banana gates. The low energy events are shifted to later times (smaller
differences between global trigger and module trigger) due to the charge collection dynamics
or the leading-edge discriminator of the detector. The comparison with source data in figure
4.12 shows that the gates are wide enough to account for the time walk.
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Figure 4.12: Selection of Ge (Top) and BGO (bottom) on a 203Hg source: the red lines
are the banana gates. The source emits a 279 keV γ ray that is perfect to check the time
walk. The red lines are the graphic selections applied to the experimental data, shifted to
the centre of the time peak. 90



the individual fold and energy, ki and H i, are built following three possible scenarios :

• Ge time in Cut AND BGO time in Cut: H i = Ei
Ge + Ei

BGO, ki = 1.

• Ge time in Cut AND BGO time not in Cut: H i = Ei
Ge, ki = 1.

• Ge time not in Cut AND BGO time in Cut: H i = Ei
BGO, ki = 1.

Afterwards, the global fold and sum energy are simply k =
�

i k
i and H =

�

i H
i.

4.3.2 Partial loss of BGO and Ge signals

Electronic bus

The electronics has to hold the signal information (amplitude, time, ...) long enough to
wait for the delayed trigger signal coming from the PPAC at the FMA focal plane. The
FMA is 8.2 meters long, the recoil mass around 254 u and the average kinetic energy of
the recoils is approximately 38 MeV; therefore it takes about 1.54 µs for recoils to fly from
out of the target chamber to the PPAC. The electronics bus is designed to keep the BGO
signal for 2 µs – but in reality, it is observed that some channels have a bus width as short
as 1 µs. For Ge & BGO modules with an early bus end (tend), signals coming after tend

are lost. For those modules, both the Ge and BGO information are lost, except in a few
cases where the Ge signal is still present. The loss of those information is linked to short
cables between the Gammasphere modules and the acquisition, leading to an early arrival
of the module signal and a bus signal not long enough to hold the electronics information
until the arrival of the focal plane trigger signal.

The spectra on figure 4.13 explains the issue: some modules are completely missing the
recoil gated time peak. One can compute the fraction of the recoil time peak being lost
by a module. Let Precoil be a normalised Gaussian distribution reproducing the recoil peak
(see figure 4.14), the fraction of events seen by the BGO i is therefore fi =

� ti
end

0
P (t)dt

(where tiend is the bus end time for modules i) – this way, we compare the data loss with a
reference time distribution for 254No recoils tagged γ-rays.

One can calculate that 80 % of the modules keep more than 90 % of the signal, and the
global fraction of events kept ( 1

Nmodules

�Nmodules

i=1 fi) is 80.5 %. This fraction of data lost
is in agreement with the observed calorimetric efficiency of 63 %, compared to 78 % for
similar measurement without the problem of module loss [89].
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Figure 4.13: Visualisation of the early end of BGO bus. The blue spectrum of time event
shows a normal bus with time signal being detected up to more than 1800 ns. The red
spectrum shows a bus with an early end with a significant loss of data after 1580 ns. The
gray area is the time peak of recoil gated events, corresponding to the gamma in the 254No
reaction
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Figure 4.14: BGO (Top) and Ge (bottom) time spectra gated by recoils. One can see
the recoil peak around 1.54 µs at the end. The red line is a fit of the distribution with
a Gaussian and a linear background. The Gaussian parameters are used to calculate the
fraction lost for modules with a short bus signal.

93



Problem for response calibration

The information loss in the modules implies that part of the experimental data for k and
H will be lost, while they will be present in the calibration data since these data are
taken from a source and without the issue of waiting 1.54 µs before a trigger. Indeed, the
calibration data has a peak centred of t = 0 ns. We devised two ways to take into account
this problem.

Use of self-triggering Gammasphere To reproduce the condition of the experiment as
closely as possible in the response calibration, we took the source data with Gammasphere
triggering on an external signal, this signal was a delay of the OR of the modules. With
that, we could set the delay up to 1.54 µs like it is in the experimental data and observed
the same loss of data in module buses. However, this method could not be used entirely
due to the poor statistics of the source data taken with a delay self-trigger, as we were not
aware of the magnitude of the problem at the time.

Correction of source data To account for the partial loss of experimental data, we
have to remove the equivalent amount of data from the calibration data used to build the
Gammasphere response. As each detector sees a fraction of the signals in the experiment,
we have to remove the appropriate quantity of data from the source.
In the collection of fold and energy data from the source, we will randomly suppress each
detector according to the fraction fi defined earlier: a signal in the module i will be masked
(i.e. not read) with a probability 1 − fi. This decision is taken using a random number
generator, which provide a random float r between 0 and 1. If r ≤ fi the event is kept, if
r > fi the event is suppressed.
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Chapter 5

Data analysis

5.1 Calibration of detectors

5.1.1 Gammasphere

Calibration of Ge detectors

Energy The energy reading from the Ge detectors of Gammasphere is processed by
ADCs and calibrated using 88Y, 207Bi, 60Co, 152Eu, 137Cs, 203Hg and 56Co source; example
of background subtracted spectra are shown on figure 5.1. Each Ge crystal is calibrated
by a linear function. This leads to a 2.6 keV resolution at 1.3 MeV. The average threshold
in the Ge detector is 40 ± 10 keV.

The background spectra are collected in between source runs. The background lines come
from activation of the chamber and beam line during irradiation and also fission-product
activities. Some of the activities have quite short lifetimes and the corresponding back-
ground lines are not properly subtracted out. However, this will have little effect on our
construction of the calorimetric response (see section 5.8) as coincidences between γ rays
are used.

Efficiency The detection efficiency of the Germaniums is measured with 152Eu, 60Co,
207Bi and 88Y sources.

95



Figure 5.1: Background subtracted spectra of the sources used for energy calibration of
Gammasphere. 88Y (top), 207Bi (middle) and 60Co (bottom). The energy of the main
peaks are noted in red.
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Relative efficiency The relative efficiency profile is obtained by combining the γ

peaks areas information from sources, using the RADWARE gf3 and effit utilities [90].
The profile shows a maximum efficiency around 270 keV and falling to half its maximum
above 1 MeV.

Absolute efficiency The absolute detection efficiency has been obtained at different
energies using sources with coincident γ-rays, like for the Gammasphere response calibra-
tion. In a source where two γ-rays γ1 and γ2 are emitted in coincidence, the number of
coincidence detected is given by Nγ1&γ2

= Aλ(θ)ε1ε2 with A the source activity, λ(θ) the
angular correlation function characterising the geometry of the γ emission. λ(θ) depends
on the angle between the two γ-rays (averaging to 1 over all the Gammasphere detectors
combinations). εi, the detection efficiency at the energy Eγi

, verifies Nγi
= Aεi, with

Nγi
the number of full-energy Eγi

detected. Therefore, the ratio Nγ1&γ2
/Nγ1

= ε2 – after
correction for angular correlation and possible non-100% correlation between gamma-rays
(for example, converted transition in the 207Bi). Table 5.1 give the values obtained with
this method. This method works best for two γ-rays of close energies.

Source Energy E2 (keV) Coincidence Nγ1&γ2
Number γ1 Nγ1

Efficiency ε2 (%)
152Eu 121 3256 ± 57 19151 ± 44 17.0 ± 0.3
152Eu 344.8 27800 ± 260 142050 ± 380 19.7 ± 0.2
207Bi 570.1 142050 ± 1625 918800 ± 960 15.4 ± 0.2
88Y 898.4 101940 ± 1190 903710 ± 950 11.3 ± 0.15
60Co 1332.8 57415 ± 1085 602555 ± 365 9.5 ± 0.2
88Y 1836.4 122280 ± 1155 1436900 ± 1200 8.5 ± 0.1

Table 5.1: Absolute efficiency extracted from coincident γs data.

One can also get an absolute efficiency values by examining the sum peak for sources
emitting 2 coincident γ-rays, when they are detected in the same detector. The probability
of detecting both γ1 and γ2 in the same detector is given by λ0ε1ε2 where λ0 = λ(θ = 0).
The ratio of sum peak intensity and single γ intensity, corrected for λ0 is therefore a simple
way to measure the efficiency [91]. In 60Co, the λ0 coefficient is 1.074 [92].

Figure 5.2 shows the absolute efficiency profile with the experimental data points.

Energy in the BGOs

For our calorimetric measurement, we need to get the BGO sectors calibrated in energy.
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Figure 5.2: Absolute efficiency profile for Gammasphere. The black points are the absolute
efficiency measurement from correlated γ rays. The red points are the points used for
relative efficiency calibration, scaled down to match the absolute efficiency measurement.
The blue line is the relative efficiency profile scaled down to the absolute values.
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The energy read in each sector is not directly available from Gammasphere. Only the sum
of all sectors is given, and the hit pattern indicates which sectors fired. By selecting specific
hit patterns, sectors were calibrated one by one with the same sources as Ge crystals, see
figure 5.3 and 5.4.

Figure 5.3: Fit of the BGO energy, on a 88Y source. The seven sectors spectra are aligned
and overlaid at the bottom. The module energy is fitted.

In cases where more than one BGO sector fires, we divide the sum signal equally between
each sector and used the calibration on each sector. The final energy resolution of the
BGO is around 120 keV at 570 keV and 200 keV at 1.3 MeV. The relative resolution is
about 20 % FWHM. The average threshold in the BGOs is 120 ± 30 keV.

Time

To analyse the γ-rays, one has to select the hits corresponding to a specific beam burst.
Each Ge and BGO channel has its own TAC that gives tGe and tBGO – see section 4.1.6
for description. The TAC channels have to be aligned and calibrated. The time alignment
is performed using Gammasphere self-triggering on the delayed OR of all modules. With
that, it is easy to get a set of values of times between γ detection and trigger. Using
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Figure 5.4: From top to bottom: 88Y, 60Co and 207Bi sources. Overlay of calibrated BGO
(orange line) and Germanium (blue line) energy spectra.
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different values of delay, the linearity of the time signal in the modules is calibrated. To
account for the width of the peak, we choose to offset the time t = 0 by 1000 ns. Figure 5.5
shows the alignment of Ge time signals. The similar process has been made for BGOs.

Figure 5.5: Time distribution of events for a 88Y source. The uncalibrated time is on
the left, the aligned time on the right. (Top) distribution of events for each Ge detector.
(Bottom) projection of the total time distribution. The data compression (bin width)
differs between calibrated an uncalibrated spectrum.
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5.1.2 DSSD calibration

Decay channels

The DSSD decay channels have been calibrated using an external α-source and the α-
decays of reaction products implanted in the silicon during the experiment – in particular
during the test reaction, see section 5.3.

The channel alignment is done with a classical 3-α source, whose energies are well tabulated
– see table 5.2. Because the α from the source have to go through the detector dead-layer,
the energy loss in it is taken into account. The source is located about 20 cm in front of the
DSSD, therefore the effective dead-layer is at most 2 % thicker for the pixels on the edge
of the silicon; no correction for the pixel location is made since the difference in energy is
significantly smaller than the resolution.

Radio nuclide α Energy (MeV) α energy after the DSSD dead-layer

240Pu
5.105 5.00
5.156 5.05

241Am 5.485 5.39

244Cm
5.763 5.66
5.805 5.70

Table 5.2: α energies in the PuAmCm 3-α source. We give the energies of the α and the
energy deposited in the active volume of the DSSD after an energy loss in the dead-layer.

After aligning the channels, the experimental decay of implanted nuclei is used to set the
energy scale. The final energy resolution is about 35 keV FWHM. Figure 5.6 shows the
calibration of the front and back side of the DSSD with the α source.

The DSSD events are triggered by an overlap between the front and back strip within
a 250 ns time window. Even if the two sides of the DSSD are calibrated, we will use
the measurement from the front side which is more precise because the recoil nuclei are
implanted in the front side (The average implantation depth is below 5 µm). Hence, the
decays happen mainly close to the front strip and the charge carriers have to drift to the
back side through a larger thickness of matter and are spread between strips at the back.
Figure 5.7 shows the calibrated front and back energy for the experimental decay of 254No.
The better charge collection on the front side is clearly illustrated by the tails on the left
side of the diagonal.
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Figure 5.6: DSSD channels front (right) and back (left), before (top) and after (bottom)
channel alignment with 3-α source. The uncalibrated spectra show important number
of counts at low energy, implying the need of significant thresholds: the average energy
threshold is 160 ± 15 keV.
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Recoil channels

As for the decay, the recoil energies have been calibrated too. The implantation energy in
the DSSD is around 30 MeV, but the dynamic of charge creation in the silicon reduces the
measured energy: around the implanting ion, a plasma is created and the holes-electron
pairs recombine before being collected. This effect called Pulse Height Deficit reduced the
measured energy by about 50 % [93].

For the recoil calibration, the gains has been aligned with a pulser and the 3-α source has
been used to set roughly the energy scale.
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Figure 5.7: Plot of the front vs. back energy in the DSSD for experimental 254No α decays
with no conditions on the signals. The front side sees more energy than the back side.
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5.2 Recoil selection at the focal plane

The FMA transports to the focal plane all recoils of a given m/Q. The recoil velocity
can also be used for extra selection via the time of flight. At the target position, 254No is
produced and enters the FMA. We set up the FMA to transmit the charge state 20.5+ at
the centre of the focal plane, charge states Q = 20+ and Q = 21+ will be collected. Along
with 254No, all particle with m/Q around the set up value ( 254

20.5
≈ 12.4) will be transmitted,

although with a different mass, kinetic energy, time of flight, ... Therefore, separation is
possible using the following measurements :

• X dispersion in the horizontal direction at the focal plane, corresponding to the m/Q

ratio, measured by the PPAC.

• Time of Flight (ToF), between the PPAC and the focal plane DSSD.

• Energy Loss in the PPAC (∆EPPAC).

• Implantation Energy in the DSSD (Eimplant).

5.2.1 Contaminants

Given the low production cross section of 254No, the nucleus of interest is a small fraction
of all the recoils getting to the focal plane. It is therefore very important to sort through
all the events at the focal plane. Three types of elements gets to the focal plane:

• The nuclei of interest: 254No.

• Target like products: scattered target and transfer products (Pb, Po, Bi, ...).

• Scattered beam and beam like products from transfer reactions.

Beam like products

The scattered beam and beam like products undergo multiple scattering in the target and
on the walls of the FMA. Therefore their charge state and energy are not well defined.
However, we know they are light (A around 48) and very energetic, therefore fast. The
scattered beam will be characterised by a high and broad recoil energy, a low ToF and a
low energy loss in the PPAC (because of the Bethe-Bloch formula : ∆EPPAC ∝ AZ2

Eimplant
).
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Furthermore, the scattered beam will be the dominant contaminant, by many orders of
magnitude.

Target like products

In the target, the 208Pb atoms may undergo elastic scattering giving them a kinetic energy
of about 40 MeV. Also, inelastic reactions between the beam and target may lead to transfer
products with A ≈ 208 scattering to the focal plane. The heavy mass of the target element
will lead to a ToF lower but of the same order of magnitude than the ToF of the recoils of
interest; the energy loss in the PPAC will be less than for 254No.

5.2.2 254No recoils

The kinetic energy of the 254No recoils is around 38.7 MeV for Ebeam = 223 MeV (38 for
Ebeam = 219 MeV). The recoils are heavy (the heaviest of everything that gets to the end
of the FMA) and with a large Z (102, charge state around 20+). The time of flight of 254No

recoils will be about the same as forward scattered target atoms (since v =
�

2·K
M

– with
K the kinematic energy of the recoil and M its mass, the ratio of scattered target speed
over recoil speed is ≈

�

KPb

208
254
KNo

≈ 1.13). However, the energy loss in the PPAC will be
larger for the Nobelium recoils due to the higher Z.

5.2.3 Cuts and Selections

The selection is made by combining several cuts on the quantities. To be more selective
without cutting the events of interest, the 2D plots and banana gates are preferred. To
visualise where to put the gates, it is helpful to plot decay tagged events (see section 4.2).

Primary selection: data completion

The first selection on all the events is to make sure all the needed quantities are available.
Due to thresholds in the detectors and electronics, some events are incomplete: quantities
such as X or Eimplant are 0). A proper selection is impossible for these events. Table 5.3
gives the selection budget with the count of valid events. A large fraction of events have
∆EPPAC information missing, therefore, this quantity has been removed from the comple-
tion selection, and these events were kept.
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Condition Number of recoils %

No Selection 100116 100
Invalid ToF 4482 4.5
Invalid Implant Energy 2288 2.3
Invalid X,Y 0 0
Any Invalid parameter 30261 8.2

Valid Events 91106 91
In Eimplant-ToF 3105 3.4
In X-∆EPPAC 3644 4
In Eimplant-ToF and X-∆EPPAC 915 0.91

Table 5.3: Selection budget for the data set at EBeam = 219 MeV. The number of event of
interest is just a fraction of the total.

Time of flight and implant energy

The time of flight and energy of the implanting recoil are two very selective parameters,
since they are tied in the kinematic relations by the mass of the recoil: ToF = L

�

m
2Eimplant

,

with L the distance of flight.

Figure 5.8: Selection of recoils on the Energy, Time of Flight map. The black line is the
graphic cut applied to select recoils. The red points are the α-decay gated events.
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The distribution of events on a (ToF, Eimplant) plot gives a large group of events with
a broad recoil energy distribution and a long time of flight. We associate this with the
scattered beam and light transfer products. Above the scattered beam, events with higher
ToF are associated with heavier recoils (longer flight for the same energy). Figure 5.8
shows the selection of events on the Energy, Time of Flight map.

Energy loss in the PPAC and X position

The energy loss in the PPAC and the X position at the FMA focal plane provide additional
selectivity according to charge state and mass. The FMA is set on a precise value of m/Q.
The distribution of (X, ∆EPPAC) shows the recoil of interest with peaks in the X direction
and ∆EPPAC somewhat larger that the beam and target-like recoils. Combining the PPAC
energy loss with the ToF measurement (which is also related to the recoil energy and mass)
gives a way of identifying the recoils – figure 5.8. The 254No recoils are expected to have
larger ∆EPPAC than scattered beam and target. Figure 5.9 gives the selection of events on
the X, ∆EPPAC map and figure 5.10 gives the selection of events on the X, Time of Flight
map.

Figure 5.9: Selection of recoils on the X and Energy loss map. The black lines are the
graphic cuts applied to select recoils. The red points are the α-decay tagged events.

Figure 5.11 shows the final X distribution of the selected events. It shows the two charge
states peaks for Q = 20+ and 21+. The peak at higher X is smaller because of a poorer
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transmission of those charge states in the FMA and smaller population of the Q = 21+

charge state.
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Figure 5.10: Selection of recoils on the X and Time of Flight map. The red points are the
decay gated events. The black lines represent the selection.

Figure 5.11: Selection of recoils in X. The black histogram is the distribution of X for all
the PPAC events, normalised to 1. The red filled histogram is for decay tagged events, it
is scaled up by a factor 10 (unscaled integral is 0.0097).
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5.3 Test reaction: 176Y b
�

48Ca, 4 − 5n
�220,219

Th

We tested the setup using a reaction with a larger cross section. We chose to produce
220Th because in addition to presents prompt γ-rays and α-decay its entry distribution has
been measured previously with the same setup and presents a good comparison point to
validate the calorimetric measurement – see appendix C.

5.3.1 Reaction and production cross section

The 48Ca + 176Yb reaction is not the preferred way to produce 220Th but it has a large
cross-section (compared with the production of 254No) and has the advantages of using the
same beam and same energy as for the 208Pb(48Ca, 2n) reaction. However, at this energy,
both 220Th and 219Th are produced at the same time with cross sections of the order of 10
to 100 µbarns.

During a little less than one day (≈ 17±2 hours) of test run with a beam intensity averaging
30 pnA, we accumulated about 3950 219,220Th events, which, assuming a 7 % transmission
efficiency through the FMA gives 20 ± 10 µbarn in agreement with the production cross
section values.

5.3.2 γ and decay spectroscopy of 220Th

The two isotopes 220Th and 219Th can be separated on the X distribution (see figure 5.12)
and we can check the γ spectra associated with each. In particular, the 220Th X-gated
spectrum is in agreement with references [94]. See figure 5.13 for the spectrum.

The Thorium isotopes produced are implanted in the DSSD at the FMA focal plane and
undergo α decay inside the DSSD. One can follow the decay and identify the decaying
nuclei by the combination of decay energy and half life – see section 4.2 and figure 5.14.
However, the short lifetimes of the species (≈ 1 − 10 µsec) make it difficult to observe
all the decays. It is possible to identify clearly the decays of 215Ra and 212Rn by their α

energies and half-lives, as shown on figure 5.15.
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Figure 5.12: Distribution of X positions for 219,220Th recoils. The two isotopes can be
separated in mass, in particular at low Xs where there is more population. The line in blue
show the distribution for 219Th and the one in orange for 220Th.

Figure 5.13: Prompt γ rays spectrum for 220Th. The known transition energies are marked
in red, following [94]. The corresponding level scheme is on the right. Two higher energy
lines come from 219Th, marked in blue.
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Figure 5.14: Decay path of 220Th (orange) and 219Th (blue). The half-life of nuclei are
written in the squares. The red arrows represent electron capture decay. The black arrows
stand for the α decay, with the tabulated α energy in MeV indicated over the arrow. For
211Rn and 211At, the size of the arrow indicates the branching ratio between the two decay
modes.
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Figure 5.15: Energy and time of the decay of 215Ra (top) and 212Rn (bottom) inside the
DSSD. The selection on the two decays have been done by correlation time condition. The
α energy and lifetime correspond to the expected values of 8.7 MeV and 1.6 ms for 215Ra,
and 6.2 MeV, 24 minutes for the Rn isotope.
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5.4 Cross section

The first quantity we check in the data collected for 254No during the experiment is the
production cross section at the two energies.

We collected respectively 915 ± 40 and 1475 ± 60 events for the experiment at 219 and
223 MeV (uncertainty comes from the data selection); assuming a transmission cross section
from the target position to the FMA focal plane of 7%, with a beam exposure of 43 hours
at EBeam = 219 MeV and 118 hours at EBeam = 223 MeV, with an average beam intensity
of 10 pnA, and a duty cycle of 73% (due to the target wheel spokes), plus a 60 % efficiency
of recoil tagging at the focal plane – due to geometrical consideration, the focal plane
chamber being not setup in the most ideal configuration during the experiment – we can
estimate the production cross section of 254No. Table 5.4 gives the results and compare
them to references. See also figure 5.16.

Beam Energy (MeV) Counts Observed σ (µbarn) Expected σ (µbarn)
219 915 2.1 ± 0.6 1.85

223 1475 1.2 ± 0.4 1.15

Table 5.4: Summary of observed 254No production cross section compared to the references.
Expected cross section are taken at the mid-target energy.

Figure 5.16: Plot of the 254No production cross section — red line is the reference calculated
by the NRV code [9]. Black points are our experimental value, with energy taken at mid-
target.
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5.5 Prompt γ spectroscopy

The prompt γ information collected during the experiment allows us to check the pro-
duction of 254No and also to directly observe the spin population via the yrast decays
associated with known angular momentum [25, 26, 95–97]. Figure 5.17 shows the recoil-
gated γ spectrum for all data. Figure 5.18 shows the spectra at both beam energies.

Figure 5.17: Recoil-gated γ ray energy spectrum for all data (EBeam=219 MeV and EBeam =

223 MeV). The known yrast transitions γ energies are marked in red; 254No X-rays are
marked in blue. We observed the yrast transitions up to 14+. The ratio of 254No X-rays
to the peak at 600 keV in the spectrum is 4.3± 1.2, consistent with the spectrum collected
during the previous experiment where it was 5.3 ± 1 [98].

Decay-gated spectra In order to remove background and close in on the 254No data, we
can use additional conditions in the γ ray spectrum. In particular, recoil-α and recoil-α-α
correlation. The additional condition removes background, but it also reduces the statistic
by the efficiency of α or α− α detection, for example. Figure 5.19 shows the γ spectra for
recoil-gated, recoil-α gated and recoil-α-α gated events.

Spin population

Since we are interested in the spin distribution of formed 254No, we can get a first estimate
of the profile by looking at the yrast transitions and their intensities. Once corrected for
efficiency and electron conversion, it is a good measure of how much of the nuclei were
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Figure 5.18: γ energy spectra for the two beam energies: EBeam = 219 MeV (top) and
223 MeV (bottom).
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Figure 5.19: γ energy spectra for different conditions. From top to bottom: Recoil-gated,
Recoil-α gated, Recoil-α-α gated.
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formed at a given spin. Figure 5.20 gives the intensity profile for the two beam energies of
the experiment; it shows the population stays above 20 % up to spin ≈ 18 �. No sizeable
increase at high spin is seen between the two beam energies.

Figure 5.20: Intensity in each yrast transition, corrected for detection efficiency and conver-
sion. The black points correspond to data taken from a high-statistics spectrum measured
with Jurogam [31]; red for the data set at EBeam = 219 MeV and blue for EBeam = 223 MeV.
The values are normalised to the 8+ → 6+ transition (Eγ = 214 keV). The data combine
our experiment and a previous measurement at the same energy.

5.6 Alpha spectroscopy

5.6.1 Decay chain

The implantation of 254No recoils in the DSSD pixels allows to follow the decay path over
time. Figure 5.21 shows the decay path of 254No; due to the low statistic of the events,
only the α branch is visible, the small electron capture branch is too weak.

Contaminants from test-reaction: Decay products from the test reaction (219,220Th)
have a long combined half life (several hours and more). Their decays are visible in the
alpha spectrum. When looking at the spectrum run-by-run, one see that the intensity of
these contaminant-peaks decreases.
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Figure 5.21: Decay path of 254No, with the α energies and nuclei half-lives marked. 254No
presents a small branch (≈ 10%) of electron capture leading to the α decay of 254Fm,
however, the small probability should not lead to any significant peak. The decay chain is
stopped by nuclei of very long half lives.
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End of the decay chain: 246Cf decays with a half-life of about 1.49 days into 242Cm –
that explains the lower population of the peaks – and 242Cm with a half-life of 162 days,
hence, the Cm decay at Eα = 6.1 MeV is not visible. That reduces the observation of such
decays and the ability to correlate them over time. Over an 8 hours window (the average
length of an acquisition run), only about 14% of 246Cf events can be correlated. However,
on a course of 7 days (total duration of the experiment) we will see about 90% of the 246Cf
decays, therefore, the uncorrelated decay spectrum should show the corresponding events.

Figure 5.22 shows the energy spectrum in the DSSD.

Figure 5.22: α energy spectrum for all decays in the DSSD, with no conditions. The three
decays associated with 254No are visible, in addition to long lived products of the test
reaction.

5.6.2 Decay energy and time

The α-decay is characterised by an energy and a half-life, both being tied together (see
section 1.2.3). One can plot the map of decay energy and Log(∆T ) which is a very nice way
to identify the groups of specific decays. The maximum of the events Log(∆T ) distribution
relates to the half-life of the decay as described in [99,100].
Figure 5.23 shows such map for the alpha decays for 254No, and figure 5.24 shows the same
for the decay of 250Fm.

The half-life of each nucleus can be measured from the implant-decay and decay-decay
correlations. Table 5.5 gives the measured half lives compared to the references.
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Figure 5.23: α energy and log of the time difference between recoil implantation and the
first decay in the DSSD. 254No is clearly identified, as are the isomer events. At lower
energy than the 254No αs, events with life-time in agreement with 250Fm are seen: they
correspond to correlation for which the decay of 254No was missed.

Nucleus Measured Half-life Reference
254No 52 ± 3 s 51 s
250Fm 29 ± 7 min 30 min
246Cf 35.7 h

Table 5.5: Summary of the measured half-lives for the 254No α, and the decay of daughter
nuclei. Uncertainty on 250Fm come from 211Po contamination.
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Figure 5.24: α energy and log of the time difference between first decay and second decay
in the DSSD. 250Fm is clearly identified.
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Correlation deficit from implant to decay In the DSSD events, we observe that only
40 % of the 254No decays – identified by the full α energy (8.1 MeV) – are correlated to
an implant event. In the same way, 26 % of the 254No decays are correlated to a 250Fm
(full energy), while 55 % are expected. There is a ≈ 50 % correlation deficit between
recoil-decay and decay-decay events.
We tried to understand the origin of the issue, in particular, we investigated the possibility
of a recoil-decay electronic mapping mismatch (since recoils and decays have different
electronics); but nothing supports this hypothesis. It is not a threshold effect since the
deficit is seen at high energy. We also tried to locate subsequent decays in neighbouring
pixels, but this did not solve the problem.
It is possible that a bad front-back signal overlap, required for decay and recoil events in
order to locate the pixel, is at the origin of the problem.

5.7 Isomer decays

There are two known isomeric states in 254No:

• One 2 quasi-particle K=8 long lived isomer identified at Argonne and Jyväskylä
[40, 101] and confirmed by Berkeley and GSI [95, 97]. This isomeric state is highly
populated (about 30 %).

• A short lived isomer at higher energy, less populated. It is likely a 4 quasi-particle
excitation with K > 14.

It is also possible to observe isomer decays in the DSSD. If 254No is implanted in the
DSSD in an isomeric excited states, the subsequent decay to the ground state will produce
conversion electrons, Auger electrons and X-rays. Those will contribute to a low energy
sum signal (a few hundred keV) [102] that can be detected in the DSSD. Unfortunately,
our high thresholds made the detection of isomer decay events difficult and only a few of
those events were seen.

In figure 5.23, we see the two event groups corresponding to isomer decay; it will be
possible to select specifically isomeric events by putting a gate around these points on the
plot. Table 5.6 gives the half-lives found for the isomer.
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Isomer Measured Half-life Reference
Long lived isomer 298 ± 75 ms 266 ± 10 ms
Short lived isomer 113 ± 63 µs 171 ± 9 µs

Table 5.6: Summary of the measured half lives for the 254No isomer decays (reference
from [40,95,97,101]).
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5.8 Principle of calorimetric measurement and calibra-

tion

The calorimetric measurement gives the number of emitted γ transitions in the nucleus
(multiplicity) and the associated total energy: m and Etotal

γ . Although Gammasphere
is a great detector is not perfect and the measured quantities: k (the fold) and H (the
measured energy) are correlated to m and Etotal

γ but not in a simple way. In fact, the
relation is neither direct nor reciprocal: to a given m correspond several k and a given k

can be detected associated with different values of m – same for the energy. Therefore, it
is impossible to simply associate each 254No event to a

�

m, Etotal
γ

�

. We have to work with
a global distribution and averages. We will use a statistical method that will reconstruct
the most likely

�

m, Etotal
γ

�

distribution that leads to a given (k, H) distribution.

5.8.1 Measured quantities

Energy

The quantity H is the total energy measured by Gammasphere for a 254No event. Due to
the limited detection efficiency of the HPGe crystal (maximum ≈ 22% at 300 keV and 10
% at 1.3 MeV), we rely also on the BGOs to measure this energy. In our experiment, the
total detection efficiency was 63%.

Fold

k is the number of measured hits in Gammasphere, defined as one module firing within a
given time window and with an energy over the thresholds (see section 4.1.6). One notes
that a hit will correspond to a wide range of BGO sector and Ge firing combinations. It
is important that the time window and hit definition stays the same for calibration and
measurement.

5.8.2 Fold and Energy calibration

The fold and energy response of Gammasphere to events of given multiplicity and energy
(m, E) is calibrated using sources with coincident γ-decays. In practices, one uses a source
emitting two γ-rays γ1 (E1) and γ2 (E2) with an (ideally) 100% correlation and gates on
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the full energy detection of γ1 in any one Ge detector. Whatever is detected in GS in
coincidence is the response of Gammasphere to one γ-ray of energy E2. The coincidence
requirement removes practically all the background from the relevant source spectra.

Figure 5.25: (Left) Coincident γ decays, schematic level and decay scheme showing the
ideal case of fully correlated decays. We use sources with decay pattern close to this to
calibrate the fold and energy response of Gammasphere. (Right) Response calibration in
Gammasphere: γ1 is gated on with Ge detector (in blue) and γ2 is detected (or not) by
the rest of Gammasphere (the separation of BGO and Ge is not represented).

We calibrated the response in fold and energy, with 88Y, 60Co, 207Bi and 152Eu. Table 5.7
gives the sources used for calibration and the energies of the γ-rays involved in the cali-
bration and figure 5.26 shows the decay pattern of the sources.

One has to correct the number of γ-rays observed for the branching of decay to the levels
involved in the cascade used for the response calibration and also for possible electron
conversion of the transition. Table 5.7 shows the correlation and conversion factor for the
used sources. The correction factor (= Nγ2

/Nγ1
) accounts for the difference between the

number of gated γ1 and the expected number of emitted γ2. Those have to be taken into
account in building the response.

An additional correction has to be applied for the fact that one module is blind because it
is gating on the γ1 transition (a clean Ge is required, i.e. no hit in the surrounding BGO).
Therefore, the probability of missing one γ is increased by a factor 1/Ndetectors.
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Figure 5.26: Level and decay scheme of the sources used for response calibration. Only
the levels and γ-rays of interest for the response calibration are shown. The γ transition
marked in red are the ones on which we gate to build the response.
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Source E1 (keV) E2 (keV)
Correlation
factor (%)

γ2

Conversion
coefficient

Global correction
factor (%)

88Y 1836 898 94 < 0.0005 94
60Co 1173 1332 100 < 0.0005 100
207Bi 1063 569 100 0.0217 97.9
152Eu 778 344 100 0.0398 96.2

Table 5.7: Correlation and conversion coefficients for the source used for response cali-
bration. The global correction factor Nγ2

/Nγ1
gives the ratio of expected calibration γ2 in

respect to the number of gated γ1.

Event Mixing method

To build the response matrices to multiplicities higher than 1 and energies larger than Eγ2
,

an event mixing technique is used. With this method a pseudo event of multiplicity M
is built by grouping M one-γ events into a one M-γs event. In other words, for an event
of multiplicity M and energy M · Eγ2

, we consider a set of M events of multiplicity and

energy (1, Eγ2
) and sum the measured energy : H(M,M ·Eγ2

) =
M
�

1

H(1,Eγ2
). For the fold of

the (M, M · Eγ2
) event, the k of the pseudo-event is not the sum of individual ks but it is

built from the list of IDs of the modules contributing to the fold to account for the fact
that k = 0 or 1. In this method, the correction coefficient from table 5.7 and the correction
for the blind module are a scaling of the axes, done after the response building.

Random Generation

One can reduce the dependence on a limited number of events and implement the correla-
tion and conversion corrections in a different manner by reproducing the characteristics of
individual events from the one-γ fold and energy spectra. In practice, the individual fold
(k) and energy (H) of a pseudo event is not read from the data but randomly selected from
the distributions of those quantities. In this method, the correction of the spectrum for the
missing γ-rays from non-100% correlation and conversion electron is done by down-scaling
the counts in the k = 0 and H = 0 bins of the spectra. This method offers an unlimited
number of events by sampling the distributions. The IDs of the module triggering are also
simulated using such statistical method, in order to correctly reproduce the experiment
and account for the blind module.
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Comparison of the two methods

Figure 5.27 shows the responses from the two methods. Although they are very similar
the randomly generated response is slightly under the event-mixing one.

Figure 5.27: Comparison of the responses – energy (top) and fold (bottom) – built by event
mixing (blue) and random generation (red). The responses are very similar, however, small
differences are visible : the randomly generated response is slightly below the event mixing
one, it is particularly visible at high energy and multiplicity.

The single γ events used to make the response, are the same, except for corrections for the
background and correlation correction. For the event mixing, correlation corrections are
an axis scaling while the statistical method allows a better correction by applying them
from the source. Furthermore, the background, particularly visible at high energy, can be
removed in the statistical method, which cannot be done in event mixing – see figure 5.28
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Figure 5.28: Distribution of fold (top) and energy (bottom) of one γ events used to build the
response by event mixing (blue) and random generation (red). The background subtraction
at high energy and fold is clearly visible. One should note the high number of counts at 0
in the H spectrum.
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Random γ contribution We want to determine the importance of the contribution of γ-
rays from background radiation, multiple reactions in the same beam burst (the probability
of a fission reactions at the same time as the formation of a 254No is about 2 %), ... to the
(k,H) distribution.
The average rate of γ events in the Ge detectors of Gammasphere being RγGe ≈ 12 kHz,
accounting for the average multiplicity of events (M = 6), the module detection efficiency
εmod ≈ 80 % and a 140 ns time window, we expect an average RγGe × M × εmod

εGe
≈

0.07 random γ/recoil. This number is consistent with what is seen in the data. In plots
like in figure 4.14, we extract from the background at low times a rate of randoms of ≈
0.5 10−3 /ns, or ≈ 0.04 random γ/recoil. The contribution of randoms to the measurement
is weak, of the order of a few per cent, but can not be neglected. Moreover, the energy
contribution of random γ-rays is unknown and hard to quantify.

Mathematical parametrization

The shape of the responses is rather simple and can be parametrized assuming a Gaussian
distribution with the centroid and width functions of the energy or multiplicity :

(�H�, σH) =

�

H0 + b · E,
�

σ2
0 + (σ1 · E1/3)2

�

(5.1)

(�k�, σk) =

�

N

�

1 −
�

1 − ε

N

�M
�

,
�

σ2
0 + (σ1 · M1/3)2

�

(5.2)

In equation 5.1 the average energy H is a proportional to the total energy emitted E. In
equation 5.2 the average fold is determined by the number of modules N , the multiplicity
of events M and the multiplicity efficiency ε and can be seen as a probability of not missing
k out of M events in N detectors. The width parametrization is arbitrary. The modelling
is a simplification and can not be used as a proper method to build a response. However,
the mathematical formulae, in particular for efficiency, is a good way to characterised a
response.

5.8.3 Response characteristics

For different energy

The simplest way to characterise the response is to look at snapshot quantities, for given
values of the multiplicity and energy, the distribution of relative fold (k) and observed
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energy (H) is a good value to look at. These quantities follow the same pattern: the relative
fold (k/M) and energy (H/E) increases from low values (≈ 35 %) for low γ energies, peaks
at ≈ 60 − 75 % around 800-1000 keV and decrease for higher energies. Figures 5.29 show
this evolution. The rise of efficiency with energy at low energies is due to the detection
thresholds and the low probability of scattering. We see that the fold response saturates at
high energy while the energy does not. The decrease in energy efficiency is possibly linked
to the missing modules since γ-ray scattering becomes more important at higher energy.

Figure 5.29: Relative fold (k/M) [Top] and energy (H/E) [Bottom] for different sources
used for the response, at multiplicities 5 (blue), 10 (red) and 15 (green), plotted as a
function of the energy of the γ-ray detected in the one-γ events (the points are slightly
shifted proportionally to the corresponding multiplicity to distinguish them).

There is small dependence of the relative fold and energy measurements with increasing
multiplicity (see figure 5.29). This evolution is much less significant than the energy depen-
dence, and the decrease in detection efficiency with increasing multiplicity can be explained
by the fragmenting of the total energy into several γ-rays. This shows that there is a clear
dependence of the response on the energy of the γ-rays, while the multiplicity does not

134



change the response in any significant extent. This is expected since detector thresholds
and scattering depend very much on the energy of the γ-rays.

Decoupling of fold and energy response

As we saw previously, the energy of the γ ray used for the response calibration changes
the response in multiplicity and energy. So far, however, we have considered these two
quantities to be independent. This goes against the natural idea that the response to one
γ-ray of very high energy will differ from the one for many γ-rays of small energies.

In a very complex γ environment, with a broad distribution of multiplicities and γ energies,
it becomes virtually impossible to calibrate the response to match perfectly the experimen-
tal conditions and we have to rely on our best estimate of the fold and γ energies to pick the
adequate source to build the response – nothing is against using the multiplicity response
form one source and the energy response from another – to match as best as possible the
experimental conditions. We choose to use the response from 88Y because the average
γ energy detected in the Ge and BGO detectors is of the order of 900 keV. For this re-
sponse, the energy efficiency is 63 % and the multiplicity efficiency,obtained from a fit of
the average k as a function of M as in equation 5.2, is 71 %.

The best way would be to calibrate in a 4-dimensions space (E,M, H, k) and not two 2-
dimensions spaces as we do (E,H), (M, k). But the unfolding in 4D would be very hard
to perform since no source allow us to control independently E and M; moreover, the
unfolding would become extremely long due to the bi-quadratic size of the space needed
to solve the unfolding system.

5.9 The unfolding procedure

To go from the (k, H) distribution to (M, E), one has determine the original distribution
which gave the measured (k,H). The relation k → m and H → E is not straightforward,
therefore, a stochastic trial and error method is used. This method will allow the recon-
struction of the most likely distribution of multiplicity and energy (M, E) that would lead
to the observed (k,H) distribution.
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5.9.1 Principle of the unfolding

The response matrices only allow the transformation from multiplicity to fold or energy
to observed energy (H). The unfolding process will therefore rely only on the M → k and
E → H direction. This method has been described in [103, 104]. The iterative process
finds the relevant (M,E) points that, once folded, give a (k,H) combination that is in
the measured distribution. Repeating the operation until all the (k,H) points have been
matched by a (M,E) point, the whole distribution is unfolded. The final (M,E) distribution
contains the points that reproduce the measured (k,H) distribution.

5.9.2 Formal description of the unfolding

In mathematical terms, the unfolding involves the following quantities:

• Nfolded(k,H): the number of counts in the folded distribution at fold k and observed
energy H; this is the experimental measurement.

• PM(k) the probability distribution of k values associated with the multiplicity M .

• PE(H) the probability distribution of H values associated with the energy E.

• N (i)(M, E) the number of counts in the unfolded distribution at multiplicity M and
energy E for the unfolding iteration i.

The goal is to get the unfolded distribution Nunfolded(M, E) so that Nfolded(k,H) =
�

M,E

Nunfolded(M, E)

× PM(k) × PE(H). The unfolding iteration represented in figure 5.30, follows these steps:

• Starting from a test distribution N (i)(M, E), we prepare an empty next-iteration
N (i+1)(M, E).

• As long as
�

M,E

N (i+1)(M, E) <
�

M,E

N (i)(M, E), the following loop is performed:

– Test multiplicity and energy Mtest and Etest are random obtained from the dis-
tribution of N (i)(M, E) ((a) in figure 5.30).

– If N (i)(Mtest, Etest) > 0 :

∗ The associated ktest and Htest are randomly obtained from the distributions
PMtest

(k) and PEtest
(H) (step (b) in figure 5.30).
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∗ If Nfolded(ktest, Htest) > 0 :

· Counts of Nfolded(ktest, Htest) is decremented by one ((c) in figure 5.30).

· Counts of N (i+1)(Mtest, Etest) is incremented by one ((d) in figure 5.30).

Figure 5.30: Schematic view of one unfolding step: A test multiplicity Mtest is randomly
selected (a), and a test fold ktest is obtained from the response at Mtest (b). If The folded
(experimental) distribution has a count at ktest, the experimental distribution is decre-
mented at this fold (c) and the unfolded distribution is incremented at Mtest (d). The
limits in the experimental distribution (kmin and kmax) determine the limits on multiplicity
to consider Mmin and Mmax

The starting distribution N (0)(M, E) is arbitrarily set to a uniform distribution; it has
been observed that unfolding procedure converges after only a few iterations. A uniform
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distribution is therefore good enough and has the merit of introducing no bias in the
unfolding by letting all the (M, E) space open for the final distribution. The range of M
and E to consider in the unfolding can be limited in order to reduce the time and memory
necessary to perform the operation – see figure 5.30.

5.9.3 Validation of the unfolding

To validate the unfolding process, one simply has to generate a test distribution (M, E), fold
it using the response to obtain a (k, H) distribution, and unfold it back for comparison with
the original. The differences that may arise between the original test distribution and the
corresponding unfolded distribution will be an indication of how good the unfolding process
can be. Figures 5.31 and 5.32 show such distributions and compare their projections.
The unfolded distribution matches the source test distribution position and width but
the unfolded result is smoother : the sharp edges of the source distribution are not well
reproduced. This is a very important aspect of the unfolding: due to the spread in the
response, it is impossible to get sharp edges in the unfolded distribution.
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Figure 5.31: Validation of the unfolding: A test distribution (top) is folded (middle) then
unfolded (bottom). The unfolded distribution (with 18 iterations) reproduces the global
properties of the original test distribution (average quantities, widths) but not the sharp
edges.
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Figure 5.32: Overlay of the multiplicity and energy projections of the original test distri-
bution (black) and unfolded distribution (red), as described in 5.31.
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Effect of the number of iteration

A key parameter of the unfolding is the number of iterations. An insufficient number of
iterations will lead to a broad and undefined distribution. Figures 5.33 and 5.34 show
the result of unfolding with only 3 iterations. And too much iteration will lead to a
deformed distribution – see figure 5.35 for the distribution unfolded with 100 iterations
and figure 5.36 for the projections: the average values, like the distribution centroid and
width are in agreement with the original distribution, but some sub structure appear that
should not be there. This is because the unfolding tends to gather the points around local
maxima and therefore will aggregate the data around statistical fluctuations.

In general, we get good results with a number of iteration around 20. In fact, we can look at
the widths and average of the distribution as a function of the iteration number. Figure 5.37
shows the evolution of projection centroid and width of the distribution evolution over 50
iterations. Both quantities drop quickly over the few first iterations, then stabilise. An
exponential decay fit gives a decay constant of ≈ 5 iterations, indicating that the procedure
converges quickly.
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Figure 5.33: Same test distribution as in figure 5.31 (top), folded (middle) and unfolded
(bottom) after 3 iterations.
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Figure 5.34: multiplicity and energy projections of the original test distribution (black)
and unfolded distribution after 3 iterations (red), as described in figure 5.33.
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Figure 5.35: Same test distribution as in figure 5.31 (top), folded (middle) and unfolded
(bottom) after 100 iterations.
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Figure 5.36: multiplicity and energy projections of the original test distribution (black)
and unfolded distribution after 100 iterations (red), as described in figure 5.35.
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Figure 5.37: Evolution of the average energy (top) and the width of the multiplicity distri-
bution (bottom) as a function of the unfolding iteration number (black points). The red
curves are fits of double exponential decays plus a constant.
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Effect of the prescaling

The initial data distribution can be scaled up (or down) before unfolding. This means in
practice that each point will be unfolded several times. It is a good way to make up for a
low statistic and try all the possible unfolded configuration associated with the measured
(k,H) distribution.

Figure 5.38: Unfolded distribution with a pre-scaling factor of 1 (left), 50 (center) and 150
(right).

Figure 5.38 shows an unfolded distribution for a pre-scaling factor of 1, 50 and 150. One
notice that the larger the pre-scaling the smoother the final distribution is. It is there-
fore important not to scale too much up, for that may smooth out sub-structures in the
distribution. On the opposite side, not enough scaling will lead to important statistical
fluctuations.

There is no rule to choose the pre-scaling factor. The good factor would depend on many
parameters such as the number of iterations, the number of counts in the original distribu-
tion, the size of the matrix, the dispersion of points in the distribution, even the response
matrices will influence the need for a pre-scaling. It is generally recommended to get a
number of point in the starting (k, H) distribution of the order of a few thousands. As
an arbitrary rule of thumb, we choose to scale up the input distribution by the size of the
matrix (i.e. 32 for a 32-by-32 matrix).

Separation of peaks

We also want to check if and with what precision the unfolding can separate two distinct
peaks, as the distributions we study may have structures.

In practice, neighbouring peaks in a distribution may be fused together in the folded
distribution because of the loss of resolution and that will lead to the two peaks being
unresolved or connected in the unfolded distribution. More iterations will be needed to
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get a separation, and the shape of the peaks will be incorrectly reproduced. Figure 5.39
and 5.40 show different examples for two peaks distributions.

In general, we conclude that the unfolding procedure fails to reproduce sub-structures for
not clearly separated peaks. Peaks that are too close together are distorted and their
relative intensity is not conserved in the unfolding. Therefore, we should regard all visible
sub-structure as possible artefact and be careful in the interpretation of the shape of
the distribution: only the average quantities (centroid, widths, possible tilts, ...) can be
considered certain.
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Figure 5.39: Source (top), folded (middle) and unfolded (bottom) distributions for two
peaks, with the peak at lower multiplicity having less counts. The separation between the
peaks is still visible in the unfolded distribution, but they are distorted and their relative
intensity has changed.
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Figure 5.40: Source (top), folded (middle) and unfolded (bottom) distributions for two
peaks. The separation is good in the source distribution, but are deformed in the unfolded
distribution.
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Macroscopic quantities

It is possible to determine the goodness of the unfolding by inspection of global parameters
of the distribution: mean value, widths, position of the maximum, shape, ... In particular,
we can verify the agreement between the original (k, H) distribution and the refolded matrix
from the unfolded result. Figure 5.41 shows the evolution of the average multiplicity of
the refolded distribution as a function of the iteration number and how it compares to the
source (k, H).

Figure 5.41: Average multiplicity of the refolded distribution (black points) compared to
the original (k, H) distribution (red points) as a function of the iteration number. The two
quantities agree for iteration above ≈ 8.

χ2 between distribution

We can compare two distributions precisely using a measurement of the difference be-
tween the two. For two distributions N (1)(M, E) and N (2)(M, E), we calculate χ2 =
�

M,E

�

N (2)(M, E) − N (1)(M, E)
�2

; χ2 is zero for equal distributions and positive for differ-

ent distributions.

First, the difference between a test (M, E) distribution (as in 5.31) and the unfold of the
folded source has been measured as a function of the iteration number on figure 5.42: the
χ2 drops for the first ≈ 10 iterations, is minimal for ≈ 12− 15 iterations and grows again.
This suggest that the best unfolding result is obtained for a number of iteration between
10 and 15.
For the experimental distribution, we don’t have a distribution to compare the unfolded
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response to, but it is possible to compare the source (k, H) distribution to a refold of the
unfolded distribution, and compare the two distribution. Figure 5.43 shows the evolution of
χ2 with iteration number. The differences between the distributions decrease exponentially
over the ≈ 10 first iterations. Contrary to the test distribution, the χ2 does not grow at
high iteration number but is rather stable. This confirms that at least ≈ 10 iterations are
necessary to get a proper unfolding and that additional iteration above ≈ 20 are at best
not useful (figure 5.43), and possibly harmful (figure 5.42).

Figure 5.42: χ2 of the source (test) and unfolded distribution as a function of the iteration
number. The red line is an exponential decay plus a linear function fitted on the data
(black points).

Figure 5.43: χ2 : difference between the experimental (k,H) distribution and the refolded
unfolded distribution, as a function of iteration number. The χ2 stabilises above niteration ≈
15. The red line is a double exponential decay fitted on the data. Note the log scale in χ2.
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Choice of parameters

As we showed, the choice of unfolding parameters is of importance: too much smoothing
(via a large pre-scaling) will hide possible sub-structures, while not enough statistics or
too many iterations may create artefacts from statistical fluctuations. The good set of
parameters depends on the entrance distribution, the size of the matrices, the precision
of the response, ... it is therefore hard to fix one good set of parameters to perform the
unfolding.

Based on the test of the unfolding procedure, we find that the optimum parameters are:
about 20 iterations and a pre-scaling factor of the order of 30. But to account for the
possible artefacts and consider only the persistent features in the unfolded distribution,
we will scan over several set of parameters and consider only the characteristics of the
unfolded distribution that are independent of the unfolding parameters.

5.10 Experimental Calorimetric measurements

5.10.1 (k,H) distribution

For 254No, we obtained the calorimetric distributions of fold and observed energy : (k, H),
at the two beam energies. We isolated in particular the recoil-gated (k,H) distribution
and the recoil-α-gated (k,H) distribution. Figure 5.44 shows the (k, H) distributions for
EBeam = 219 and 223 MeV, the recoil-α-gated distributions are shown on figure 5.45. The
isomer-gated distributions are on figure 5.46. To obtain these distributions, the selection
is done on ∆Timplant - decay and EDecay in the DSSD, see figure 5.23. They have only about
30 counts in total, while up to 300 were expected. The high thresholds in the DSSD and
the issue with correlation explains the poor statistic for isomer events. The unfolding of
those events will likely not be relevant, due to the low number of counts.

In figure 5.44 we see that some events have a significant contribution at (0, 0), which
correspond to a recoil being detected at the focal plane of the FMA but no γ-ray is de-
tected in Gammasphere; those events account for about 6 % of the population. In both
figures 5.44 and 5.45, we also observe events with larger high (k, H) which correspond to
event contaminated by random γ-rays, those events, correspond to about 3 % of the total
distribution, in agreement with the rate of random γ-rays.
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Figure 5.44: Recoil gated (k,H) distributions for EBeam = 219 (left) and 223 MeV (right).

Figure 5.45: Recoil-α gated (k,H) distributions for EBeam = 219 (left) and 223 MeV (right).
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5.10.2 Unfolding

The (k,H) distributions are afterward unfolded using the responses as described earlier (see
section 5.9). Figure 5.47 shows an example of an unfolded distribution (M, E), compared to
the original (k,H) distribution; plus the refold of the result, in order to check at the folding
of the obtained (M, E) distribution reproduces the experimental (k, H). The unfolding
gives the multiplicity and sum energy distribution (M,E): the number of γ-rays emitted by
the nucleus and the total energy carried by those γ-rays.

5.10.3 Multiplicity to Spin and ESum to E∗ conversion

The conversion from Multiplicity and Esum to spin and excitation energy is based on general
hypothesises on the formation and γ decay process in the excited nucleus. Figure 5.48 shows
the general picture of the γ decay process. The nucleus is supposed to be formed at an
excitation energy above the yrast line. It decays first by emitting statistical γ that carry
an important energy (of the order of 1 MeV) and a small angular momentum (≈ 0.5 �);
afterward, the γ decay connects with the yrast line or close to yrast bands, and follow it
by emitting yrast γs with smaller energy (≈ 200− 600 keV and larger angular momentum
(2 � per γ).

From this model of γ decay, we can separate the multiplicity in two : the statistical
and yrast multiplicities; such as M = nstat + nyrast. From what we described of the
angular momentum for each type of γ decay, we can assert the spin of the original state
as I = nyrast × ∆Iyrast + nstat × ∆Istat. In practice, we cannot differentiate between yrast
and statistical decays, that is why we will use an average value for nstat. This lead to
I = ∆Iyrast × (M − nstat) + ∆Istat × nstat. The yrast γ-rays are identified as E2 transition,
therefore ∆Iyrast = 2 �.

Statistical γ-rays

The number of statistical γ-rays nstat is extracted from the γ-ray spectrum. The high energy
part of the spectrum is consider the range where only statistical gamma-rays are detected.
Therefore a function describing such γ-rays can be fitted and extrapolated. Comparing the
integral of the statistical spectrum to the area of a known transition„ one can extract the
ratio number of statistical γ-rays per de-excitation cascade in the nuclei [104,105]. We did
the calculations on a high statistic spectrum from Jurogam [31, 106]. The spectrum was
unfolded to remove the Compton contribution and efficiency corrected. We determined
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Figure 5.46: Isomer gated (k,H) distributions for EBeam = 219 (left) and 223 MeV (right).

Figure 5.47: Example of unfolded experimental distribution. The original (k,H) distribu-
tion is on the left, the unfolded (M,E) distribution is in the centre, a refold of (M, E) is
on the right and clearly similar in shape to the original (k, H). The distribution unfolded
was the recoil gated (k,H) for EBeam = 219 MeV, unfolded with the response from 88Y.
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Figure 5.48: Schematic illustration of the γ decay process. The distribution of entry (I, E∗)

points is represented by the colour ellipses and a typical yrast γ decay chain is represented:
statistical γ-rays in green and the rotational band transitions in blue. The light green and
orange arrows represent the decay path through an off-yrast band.
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that 2.4 ≤ nstat ≤ 5.9 depending on the shape of the statistical spectrum. The higher
bound contains non-statistical events and so the actual number of statistical gamma-rays
is expected to be much lower than 5.9. Previous experimental measurement suggests
nstat = 3 [107]. A simple statistical model can be used to check the compatibility of nstat

with the resulting entry distribution.
For our experiment, we obtained nstat = 3.0± 0.4. We also assume ∆Istat = 0.25± 0.50 �.

Effect of conversion electron

The electron conversion of some transitions, for example at the bottom of the yrast band,
means that some γ-rays will not contribute to the observed multiplicity and Esum. To
corrected for that, we introduce the averages spin and energy carried out by the converted
electrons: ICE and ECE. The excitation energy and spin are corrected for the conversion
electrons by adding these quantities:

I = ∆Iyrast × (M − Mstat) + ∆Istat × Mstat + ICE (5.3)

E∗ = Esum + ECE (5.4)

The contribution of electrons is calculated according to the known structure of 254No [25,
26, 95–97, 108]. The three bands listed are not actually the only bands in 254No, but they
capture most of the γ flux and it is a good approximation to evaluate the contribution of
electrons. The table 5.8 gives the contribution of the conversion electron in three bands of
254No.

Band Population (%) ICE ECE MeV
g.s. 44 7.9 0.594
8− 30 6 0.896
3+ 26 13.6 1.256

Total 100 8.8 0.857

Table 5.8: Table of coefficients for the electron contribution to the energy and spin.

The parameters chosen for the multiplicity to spin transformation are ∆Iyrast = 2 �,
∆Istat = 0.25 �, nstat = 3.0,ICE = 8.8 � and ECE = 857 keV.
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Effect of isomers

For isomer events, the γ decay as described previously is changed: the decay-path is stuck

in a level at a finite spin and energy. Figure 5.49 shows the decay for an isomer.

Figure 5.49: Schematic illustration of the γ decay process. The distribution of entry (I, E∗)

points is represented by the colour ellipses and a typical γ decay chain leading to an isomer
is represented: statistical γ-rays in green and the rotational band transitions in blue. The
γ decay stops at a finite excitation energy and spin.

In that case, the prompt detection of γ-rays will miss all the transitions below the long lived
state in which the decay is stuck. An additional correction is needed for those events: the
previous formulae are modified into: I = ∆Iyrast×(M − nstat)+∆Istat×nstat +ICE +Iisomer

and E∗ = Esum + ECE + Eisomer. One notes that, if not properly corrected with Iisomer and
Eisomer, isomer events will be assigned to a lower spin and excitation energy in the entry
distribution. This placement will be incorrect, for up to 30 % of events in the case of
254No. However they do not affect the region of interest for the determination of the fission
barrier.
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5.11 Entry distribution

Following the procedure described above, the (k, H) distributions are unfolded and trans-
formed into a (I, E�) distribution. Figure 5.50 shows an example of the unfolded (M, E)
distribution and the corresponding entry distribution. The points in the entry distribution
will be compared to Eyrast, Sn and E�

max (see section 4.1.1), and the evolution of the dis-
tribution with spin will be investigated to determine the position of the saddle energy in
the next chapter.

Figure 5.50: (Left) Multiplicity and sum energy distribution (right) and the corresponding
entry distribution (spin, excitation energy).

5.11.1 Comparison with previous measurement

The previous measurement by P. Reiter et al. [98] established a lower limit on the fission
barrier height, via the entry distributions at beam energies of 215 and 219 MeV.
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Experimental setup

The previous measurement of 254No was also performed with Gammasphere and the FMA,
but some details of the experimental setup were significantly different than for the present
experiment : The number of detector modules was different (101 modules, against 101 full
modules – Ge and BGO shield – plus 7 modules with only the BGO shield in the present
work). Moreover, a different set of absorbers were placed before the detectors: Cu and
Ta (against Cu, Ta and Cd for our work), which increases the detection efficiency at low
energy (� 200 keV) – in particular, the X-rays will be more efficiently detected. Finally,
the trigger mode was different – this prevented the loss due to data falling off the bus –
with a Gammasphere trigger requiring nclean Ge ≥ 2. This is a very strong requirement in
the trigger and that will impact the shape of the distribution largely by favouring higher
multiplicity and energy.

The response in multiplicity and energy of the previous measurement show clearly a higher
detection efficiency in the original measurement, with a calorimetric efficiency of 70.2 %
(63 % for our work). See figure 5.51. The change in efficiency comes not only from the
change in absorbers and trigger mode, but the ageing of the detectors, in particular the
photo-multiplier tubes of the BGOs, is a source of decrease in efficiency. Our responses
have lower resolutions than the previous one, which will affect the unfolded distribution, in
particular this will lead to unresolved sub-structures and larger width of the distributions.

Analysis

At the time of the previous experiment, only the yrast rotational band was known for
254No and the electron conversion was considered only for this band in the multiplicity to
spin conversion. For those reasons, the published entry distribution in [98] will be overall
in agreement with our measurement but not necessarily exactly like it. It is possible to
compare the unfolded (M, E) distributions and check if the data are compatible.

Figure 5.52 compares the (M, E) distribution for EBeam = 219 MeV from [98] and the
equivalent distribution from our experiment with a software requirement of 2 clean Ge.
No multiplicity to spin conversion has been done. The two distributions have strong
similarities:

• The energy range is about the same for the two distribution: from ≈ 1.5 − 2 to
≈ 10 MeV.
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• The distribution in multiplicity are very similar: in the 2 to 11 range, with a maximum
at ≈ 6.5.

• The average energy of the two distribution are about the same: 5.2 MeV for P.
Reiter, 5.3 MeV for our work, and the maximum of the distributions are 5.7 MeV
and 6.0 MeV respectively.

• In the original measurement, the average multiplicity is 7 against 6.5 in our work.

In short, for two distributions taken in the same conditions (nclean Ge ≥ 2), the unfolded
(M, E) distribution are very similar, indicating the agreement between the two data set
and validating the unfolding procedure.
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Figure 5.51: Comparison of the energy (left) and multiplicity (right) responses for the
entry distribution measurement by P. Reiter (blue) and our work (red). The previous
measurement clearly had a better calorimetric efficiency.
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Figure 5.52: Comparison of the (M, E) distribution measured in P. Reiter’s experiment
(left) and our work (right) : distribution (top), multiplicity projection (middle) and energy
projection (bottom).
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Chapter 6

Entry distribution and fission barrier of
254No

In this chapter, we will examine the entry distribution produced following the procedures
described in sections 5.8, 5.9 and 5.10 and determine the height and spin dependence of
the fission barrier.

6.1 Entry distribution: measurement and analysis

6.1.1 Measured unfolded distributions

The (k, H) distributions are unfolded and converted to entry distribution according to
the transformation explained earlier – see sections 5.8, 5.9 and 5.10. Figures 6.1 and 6.2
show the entry distributions for recoils, α and isomer-gated events. As mentioned in
section 5.9.3, we will analyse the results of several unfoldings for each (k, H) distribution,
with iteration numbers between 10 and 20 and different scalings; this to avoid any artefact
that a particular set of unfolding parameter could create.

Contribution of the isomers to the entry distribution

In the recoil-gated distribution, the isomeric events are unfolded using the same parameters
as for the general distribution. This is technically incorrect: γ cascades feeding isomeric
states will yield a lower value of spin and excitation energy, since the isomer decays outside
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Figure 6.1: Entry distributions for EBeam = 219 MeV (left) and 223 MeV (right) for recoil-
gated events, unfolded with 88Y statistically built response. The yrast line is drawn in red,
the neutron separation is the dotted line in gray and the range of maximum excitation
energy is marked with two dotted blue lines. For each spin bin, the point of half maximum
E1/2 is marked.
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of Gammasphere (at the FMA focal plane). The isomer-gated entry distributions allow
us to determine where on the (I, E∗) distribution the isomer events lie – figure 6.3. The
isomer-gated distributions show that the associated events sit at low energy (≈ 2−4 MeV)
and spin (≈ 5 − 17 �). Below the average of the recoil or α-gated distribution. Therefore,
γ cascades populating the isomers contribute to the entry distribution at artificially low
spin and excitation energy, and will not modify its profile at high (I, E∗), which is where
we expect to see effects of the fission barrier. However, the average and maximum of the
distribution could be shifted down by those events. But we will see that the isomer effect
is small in the spin range of interest for our measurement.

6.1.2 Analysis of the Entry Distribution

To analyse and qualitatively compare the entry distributions, we need to choose specific
observables to look at and be able to quantitatively compare different distribution. We
choose values that give information on the shape of the distribution and how it extends.

Global quantities

We first consider quantities that are global :

Position of the maximum: The first quantities of interest is the point with maximum
population: (I, E∗)max.

Average Spin and Energy: The projections on the I and E∗ axes lead to an average spin
and excitation energy that is, a priori, different from the position of the maximum.

Width and asymmetry of the distribution: Finally, the distribution extends in the
spin and excitation energy in a certain way, characterised by the width of the pro-
jected distribution and the asymmetry (measured with the skewness, which is the
ratio of the third moment of the distribution over the cube of the standard devia-
tion).

These global quantities are basic and simple to extract but give us very valuable information
on the distribution. Table 6.1 gives these values for the recoil-gated distributions. We see
that increasing the beam energy increases the average spin by 2.5 � and changes the position
of the maximum spin from 13 � to 19 �. The average energy is increased by 1 MeV, the
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Figure 6.2: Entry distributions for EBeam = 219 MeV (left) and 223 MeV (right) for α-gated
events, unfolded with 88Y statistically built response. The distribution at EBeam = 219 MeV
has only 51 % of the statistics at EBeam = 223 MeV.

Figure 6.3: “Entry distributions” for EBeam = 219 MeV (left) and 223 MeV (right) for
isomer-gated events, unfolded with 88Y statistically built response. The very low statistic
of isomer events makes it difficult to interpret the entry distribution, but demonstrates
that they are artificially shifted in spin and energy.
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EBeam (MeV) 219 223
(I, E∗)max (13 ± 0.31, 3.1 ± 0.2) (19.3 ± 0.7, 6.3 ± 0.5)

Average spin (�) 15.9 ± 0.6 18.3 ± 0.7

Spin width (�) 4.0 ± 0.2 4.17 ± 0.1

Spin Skewness 0.25 ± 0.1 0.0 ± 0.1

Average energy (MeV) 5.2 ± 0.1 6.2 ± 0.2

Energy width (MeV) 2.7 ± 0.1 3.1 ± 0.1

Energy Skewness (MeV) 1.2 ± 0.3 0.8 ± 0.1

Table 6.1: Global characteristics of the recoil-gated entry distribution. The values are
average over several unfold with 88Y response and different number of unfolding iterations
and pre-scaling factor. The error bars reflects the dispersion of values for different unfolds.

maximum energy is up by 3 MeV. Furthermore, the distribution gets more symmetric at
higher beam energy.

α-gated events show the same behaviour for the average values, but the maximum point
does not change and the shape of the distribution is very different. The change in shape
can be explained in part by the better selectivity of the α-tagging (rejection of possible
contamination) and mostly low statistics (The α-gated distribution have 60 % less statistics
than the recoil-gated ones, see section 5.6.2). Table 6.2 give the values for α-gated entry
distributions.

EBeam (MeV) 219 223
(I, E∗)max (18.7 ± 0.9, 6.2 ± 0.8) (19 ± 1, 5.9 ± 0.3)

Average spin (�) 16.4 ± 0.1 19.2 ± 0.1

Spin width (�) 4.3 ± 0.2 4.9 ± 0.1

Spin Skewness −0.1 ± 0.2 −0.1 ± 0.1

Average energy (MeV) 5 ± 0.1 6.5 ± 0.1

Energy width (MeV) 2.2 ± 0.1 3.5 ± 0.1

Energy Skewness (MeV) 0.7 ± 0.3 0.9 ± 0.1

Table 6.2: Global characteristics of the α-gated entry distribution.

Spin dependent quantities

In addition to the global characteristics of the distribution, we are particularly interested
in the spin dependence of the energy distribution. For this purpose, we will look at the
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projection on the excitation energy axis for each spin slice (the spin slices are 2 � wide
because of the multiplicity to spin transformation that multiplies M by 2). For each spin
slices, we will look at similar quantities: average excitation energy, distribution width, ...

Evolution of spin population As hinted from the average and width of the spin dis-
tribution, the spin increases with beam energy: the average spin is higher at higher beam
energy. However, the comparison of the spin population on figure 6.4 shows that the two
spin population both fall to 1/10 of the maximum above spin 26 �. This behaviour is

Figure 6.4: Spin distribution profile for EBeam = 219 MeV recoil gated (blue) and
EBeam = 223 MeV recoil gated (red). The blue and red arrows mark the spins for which
the distribution at EBeam = 219 and 223 MeV falls to 10 % of the maximum.

an indication that a limit is reached in 254No since adding more energy in the reaction
increases the average spin, but does not increase the maximum spin by much.

Half maximum points A key quantity we are examining is the half maximum energy
E1/2, i.e. the energy at which the distribution falls below half of its maximum. In particular,
we are looking above the maximum of the distribution – the way to determine this energy
is described in appendix F. In previous measurements, the E1/2 points have been used as
estimates of the fission barrier height [71,98] – or at least a lower limit.

We will also consider Emax, the energy with the maximum population at each spin. Fig-
ure 6.5 shows the energy distributions at spin 20 � for the recoil-gated entry distributions
at EBeam =219 and 223 MeV.
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Saturation of energy with spin In the plots of E1/2 and Emax as a function of spin,
we observe a saturation of these quantities at high spins – see figures 6.6 and 6.7. For spins
17 to 23 � there is a clear saturation of E1/2 ≈ 8 MeV and Emax ≈ 6 MeV, which is visible
in the recoil and α-gated distributions.
This is a clear indication that although the increased beam energy makes possible a larger
excitation energy in the nucleus, the excitation energy is limited. This saturation is at-
tributed to fission: with E∗ getting closer to ESaddle, the fission width becomes important
and reduces the γ-decay probability Pγ = Γγ/ (Γγ + Γfission).

Below spin ≈ 15 �, the E1/2 points do not have a trend following the saddle energy. This
can be explain by several factors: The entry distribution could be artificially shifted down
to lower excitation energy by isomer events, as suggested by figure 6.3. The lowest spin
distribution could be depleted by the 3 neutron evaporation channel. Finally, in the excited
nucleus, at low spin, the E∗ − Erot(I) is larger which translates into a larger temperature
T , therefore the neutrons emitted by the 255No∗ at low spins to form 254No will remove
more kinematic energy following < Kneutron >∝ T [109].

For spins � 25 �, we do not consider the E1/2 or Emax points relevant as less than 5 % of
the total population is above spin 25 �, the width of the energy distribution increases up
to 4 MeV, larger than the response width (≈ 2 MeV) and the values are not independent
on the unfolding (in particular in figure 6.7). Moreover, these points originate from the
events suffering from random summing in the (k, H) distributions. The behaviour of those
points is likely a pure effect of low statistics in the tail of the distribution and random
effects in the unfolding.
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Figure 6.5: Energy distribution at spin 20 � for the recoil-gated entry distributions at
EBeam =219 (blue) and 223 MeV (red). The E1/2 and Emax points of the distributions are
marked. The Emax values are the same for the two beam energies (7 MeV), the E1/2 values
differ(8 and 9 MeV). The blue and red arrows mark the energies for which the distribution
at EBeam = 219 and 223 MeV falls to 10 % of the maximum.
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Figure 6.6: Saturation of the E1/2 (purple) and Emax (green) with spin for EBeam (Top)
219 MeV (Bottom) 223 MeV in recoil-gated distributions. The yrast line is shown in red
and the neutron separation energy in gray. Points are gathered from different unfolds and
dispersed around the corresponding spin for better visibility.
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Figure 6.7: Saturation of the E1/2 (purple) and Emax (green) with spin for α-gated distri-
bution at EBeam (Top) 219 MeV (Bottom) 223 MeV. The yrast line is shown in red and the
neutron separation energy in gray. Like in figure 6.6, the energies saturates at respectively
8 and 6 MeV from spin 14 to ≈ 24 �.
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6.2 Extraction of the saddle energy

From the experimental data, it is possible to extract the value of Esaddle, which can indi-
rectly give the height of the fission barrier Bf = Esaddle − Eyrast; in particular, at spin 0,
Bf (0) = Esaddle(0) .

6.2.1 Fit on E1/2

We assume that the experimental E1/2 points in the distribution correspond to the the-
oretical E1/2 points (see section 3.2.5) for which Pγ(E1/2) = 0.5. Therefore, using the
calculated relation ∆(I) = E1/2(I) − Esaddle(I), we can deduce the height of the saddle
energy and its spin dependence.

We will fit the saddle parametrization Esaddle = Bf (0) + I(I+1)
2Jsaddle

(see also equation 2.6)
on the experimental E1/2 − ∆(I) points, with ∆(I) chosen from the ones calculated in
chapter 3. We restrict the fit to the points where a saturation of E1/2(I) is observed
because it is the only range where we expected a direct relation between E1/2 and ESaddle.
This means the behaviour of ESaddle at lower spins and in particular the value of Bf (0) will
be extrapolation. Figure 6.8 shows the fit on recoil-gated data.

We found Bf (0) = 6.2± 0.8 MeV, in good agreement with macroscopic-microscopic model
calculation (6.76 MeV [1, 2]) and JSaddle = 145 ± 60 �

2/MeV for the saddle moment of
inertia, just between the rigid body value (180.7 �

2/MeV) and the value calculated in the
HFB framework (140 �

2/MeV) or the scaled SD band moment of inertia (142 �
2/MeV, see

section 3.1). We note that the value of JSaddle is the same for all spins. Table 6.3 gives the
results of the fit on different data set (beam energies and α-gated) as well as the average
value.

6.2.2 Mapping the best parameters

We propose to visualise what parameters for the saddle energy Bf (I = 0) and Jsaddle

are compatible with our experimental data. We establish a measure of the compatibility
with the experimental data and E

Bf (0),Jsaddle

saddle : χ2 is defined in 6.1 as the squared difference
between our experimental Esaddle = E1/2 − ∆(I) and a calculated E

Bf (0),Jsaddle

saddle .

χ2 =
n

�

0

��

E
(n)
1/2 − ∆(I(n))

�

− E
Bf (0),Jsaddle

saddle (I(n))
�2

(6.1)
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Figure 6.8: Fit of the E1/2 −∆ ≈ Esaddle experimental data point for recoil gated events at
EBeam = 219 MeV (top) and 223 MeV (bottom). The yrast line is represented in red and
the neutron separation threshold in gray. The data points (from several unfolding results)
are in blue, the thick black line is the fitted Esaddle, for which the parameters are given in
table 6.3.
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Data set Bf (0) (MeV) MoI (�2/MeV )
Ebeam = 219 MeV 5.41 ± 0.5 66 ± 25

Ebeam = 219 MeV, α gated 5.7 ± 0.6 113 ± 35

Ebeam = 223 MeV 6.8 ± 0.5 179 ± 25

Ebeam = 223 MeV, α gated 5.7 ± 0.5 147 ± 40

All data combined 6.6 ± 0.6 183 ± 35

Average 6.2 ± 0.8 145 ± 60

Table 6.3: Results of the fit on E1/2 −∆(I) data, to extract the saddle height and moment
of inertia. All data combined is a fit done on all the data. The average values are average
on the fit results, weight by the uncertainties and the number of events for each data set.

When scanning over all the possible Bf (I = 0) and Jsaddle, the regions of lowest χ2 are the
most likely parameters for the saddle. Figure 6.9 shows the map of χ2 values and compares
it with predictions and our experimental measurement.

One notes that this method is just a visualisation of the fit procedure and does not bring
new information. But it clearly shows why the uncertainty on Bf (0) is rather small while
the uncertainty on the moment of inertia is important: this is linked to the topology of the
χ2 surface.
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Figure 6.9: Map of χ2 value calculated for all the data points in our experiment. The
moment of inertia of the yrast line is marked in red, the predictions for moment of inertia
(by HFB or scaled SD, see 3.1) is in purple, the rigid body moment if inertia is in orange.
The neutron separation energy is in black, the predicted Bf (0) by Macroscopic-Microscopic
calculations is in blue, and the value from HFB calculations in purple (see 3.1). The values
from the fit and the uncertainties are represented with the black ellipse.
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6.3 Conclusions on the Fission barrier

The fit on E1/2 give a saddle parametrization with Bf (0) = 6.2 ± 0.8 MeV and Jsaddle =

145 ± 60 �
2/MeV, in agreement with predictions. Our result favours the fission barrier

height calculated by microscopic-macroscopic model and the measured moment of inertia
is between the HFB result and the rigid body values – see section 3.1. Figure 6.10 shows

Figure 6.10: Plot of the fission barrier spin dependence. The two external thin lines
correspond to the limits and the thick line is the average. Bf (I) stays sizeable up to spin
30 �, but could drop below 2 MeV above 30 �. The uncertainty on Bf is lower between
I = 15 and 20 � since the fit was performed on this region.

the height of the fission barrier as a function of spin. It is in agreement with previous
measurement [98] with Bf (20) = 4.8 ± 0.5 MeV and stays sizeable up to spin 30 �.

6.3.1 Agreement with ∆(I)

As mentioned in chapter 3, the ∆(I) is a calculated quantity dependent both on the
saddle energy and the model used for the calculation. However, the effect will be less
dramatic since we are considering points around spin 15 to 20 � where ∆(I) is smaller
and the different models agree better – see figure 3.2.5. We tried different height and spin
dependence of ∆(I) and extracted the saddle energy each time and found that the variation
of Bf (0) is less than 0.1 MeV and and the variation of JSaddle is less than 5 �

2/MeV. This
weak dependence on ∆ is explained by the uncertainties on E1/2 and the dispersion of the
points on which the fit is done. In the end, the dependence on ∆ is shadowed by other
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uncertainties.

6.3.2 Agreement with calculation

There is a general agreement with the calculations for the global quantities. Although the
average spins do not agree in absolute values but the ≈ 2.5 � increase between EBeam = 219

and 223 MeV is consistent with what was seen in calculation. For the energies, the 5 and
6 MeV average and ≈ 1 MeV increase between the two beam energies is consistent with the
calculations. Although the details of the shape of the calculated distributions were some-
what different from the experimental measurement, as visible on figure 6.11, there is a
general agreement within our experimental uncertainty. This allows us to validate our con-
clusion and affirm that the saddle energy in 254No is determined by Bf (0) = 6.2± 0.8 MeV
and a moment of inertia Jsaddle = 145 ± 60 �

2/MeV.

We successfully performed the first experimental measurement of a fission bar-

rier in the Transfermium region.
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Figure 6.11: Comparison of the experimental (top) and calculated with KEWPIE2 (bot-
tom) entry distribution for 254No at Ebeam = 219 (left) and 223 MeV (right).
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Chapter 7

Perspectives

7.1 Measurement improvement: digital electronics

The main limitation in our experiment is the limited amount of statistics. This is due in
part to the beam intensity kept down to keep the count rate in Gammasphere at ≈ 10 kHz,
below the acceptable limit. It is also due to the FMA poor transmission.

The move from analog to digital electronic for detectors will reduce the dead time in data
acquisition and allow the use of higher intensities on target (Jurogam in Jyväskylä accepts a
rate up to 40 khz). For small cross-section, this will easily bring a 2 to 4 gain in production
rate. This offer to the experimentalist options to perform experiment faster or collect more
statistics or explore regions of the nuclear landscape where production cross sections are
smaller. See appendix B.1.

The Argonne Gas Filled Analyzer (AGFA) project at Argonne National Laboratory will
be a high transmission separator for such studies.

7.2 Neutron effect

In this analysis, we did not take into account the effect of neutrons in the (k, H) distribution.
Indeed, two neutrons are emitted in coincidence with the 254No γ-rays and interact with
the environment and the Gammasphere detectors: we see γ-rays energy from neutron
scattering on Ge in the prompt spectra, proving that neutrons contribute to the fold and
measured energy. The question is: how much is the (k,H) distribution affected by neutrons?
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We have started running GEANT4 simulation of neutron in Gammasphere, including de-
tectors thresholds, data loss, ... The simulated γ efficiency is in agreement with experi-
mental measurements. Simulation of the response to neutrons is underway, but one needs
to be careful especially since GEANT4 has some trouble with neutron scattering at low
energy [110].

The effect of neutron is believed to be small enough so that the bulk of the distribution is
not changed significantly and the changes are expected to be smaller than the differences
in (k, H) distribution observed at the two beam energies. See appendix A for more details.

7.3 Complementary measurements

7.3.1 Prompt electron spectroscopy

The prompt spectroscopy of conversion electrons in 254No performed with the SACRED
array confirmed the ground state rotational band low spin levels. This experiment also
highlighted the conversion of electrons from high-K bands [111].

A proposal for “Study of high-K states in 254No using the SAGE spectrometer” has been
accepted at JYFL and will yield extra information on the electrons from high-K bands. As
we saw in the data analysis, a good understanding of the electron conversion is necessary to
correctly reconstruct the entry distribution. The configuration of identified and expected
bands lead to large M1 admixtures in ∆I = 1 intraband transitions, which are highly
converted (section 5.10.3).

7.3.2 Formation of 254No by other reactions

A measurement of the entry distribution of 254No produced in a different reaction would
be a good way to test our results. In addition, 254No formed in, for example, the hot fusion
reaction 238U (22Ne, 6n) will likely be populated in a different region of spin (and maybe
excitation energy). Exploration of a different spin range would be a good way to confirm
the extrapolated values of Bf (0).
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7.3.3 Measure of partial fusion cross section

As mentioned in chapter 2, the sub-processes in fusion-evaporation reactions are still mostly
unknown and could influence the final spin (and energy) distribution of the evaporation
residues.

The current experimental measurements of such fusion cross section are scarce and focus
mostly on energies above the fusion barrier [112,113]. More measurement around the bar-
rier would give valuable information on the barrier distribution, validate coupled-channel
calculations and lead to better simulation of the compound nucleus spin and energy dis-
tribution.

7.3.4 Improvement of cascade code and simulations

Following the previous point, there is no code today that can calculate from the compound
nucleus to the evaporation residue and provide an entry distribution. We started creating
such codes with our modifications of KEWPIE2 and the cascade code using NRV data. A
fully integrated code that would compute cross sections and entry distributions, with the
possibility of changing the saddle energy or entrance spin distribution according to different
models, would be very helpful to interpret entry distribution data. Moreover, coupling such
code to a γ-decay cascade calculation and the GEANT4 simulation of Gammasphere that
has been developed for this work would give a full simulation framework for such studies.

7.3.5 Systematic spin measurement in other facilities

In order to build a systematic of measurements over a wide range of excitation energies
and nuclei, it might be possible to collect fold information and reconstruct the entry spin
distribution.

For any detector array registering γ-rays in Ge and anti-Compton shields, it is possible
to get a fold measurement and a proper fold response calibration. Realistic simulations
for the Jurogam array suggest a multiplicity response as in figure 7.1. The detection
efficiency is clearly much smaller than for Gammasphere (of the order of 25 %), but for γ

multiplicity above 5, it will be possible to extract a correct average entry spin. Moreover,
the high transmission of a separator like RITU would bring high statistics data. This has
to be confirmed by more developed calculations (for example within GEANT4) and source
measurement to build an actual response.

185



Figure 7.1: Simulation of the multiplicity response in a multi-Ge detector like Jurogam.
The detection efficiency is poor but still enough for multiplicities above 5.

186



7.3.6 Measurement of 255Lr entry distribution

Following our measurement of 255No fission barrier, we proposed to measure the same
quantity for 255Lr. This measurement in an odd-A nucleus will provide information on the
role of the odd nucleon, on the K quantum number and the reduced pairing. In addition,
investigating the evolution of the fission barrier for increasing Z, is a natural next step.
The proposal has been approved by the ATLAS PAC.

For 255Lr, Möller et al. [1] predicts a barrier height of 6.6 MeV. This is close to the 255No
value and that makes it a good case for comparison. Moreover, it is expected that the odd
nucleon will increase the stability of the nucleus and an experimental measurement of this
effect is of great interest [114].

We already ran theoretical calculations for the proposed reaction in order to assess the
possible observations – see figure 7.2. We expect the same competition between γ and
fission decay than for 254No and it is very likely that it will be possible to extract a fission
barrier value from the experiment. Moreover, the upgrade of Gammasphere to digital
electronic will help us by allowing a more intense beam on target and greater statistics by
a factor 3 to 5.

7.3.7 Insight on the reaction mechanism from the entry distribu-

tion

The entry distribution is primarily sensitive to the position of the saddle, but it can also
give some insights on the whole reaction mechanism. It is possible to extract the average
energy removed by the neutrons emitted by the compound nucleus following E� = ECN −
S2n − Kn1

− Kn2
. The low population of low spins may be a consequence of depletion

of those partial waves in the reaction mechanism. More work on the entry distribution
and theoretical interpretation is needed to decelerate between reaction mechanism and
experimental effects.
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Figure 7.2: Theoretical calculations of an entry distribution for 255Lr in the reaction
209Bi(48Ca, 2n) using KEWPIE2 [8,80]. The yellow represent the excitation energy where
the widths for γ and fission decay are approximately equal.
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Appendix A

Effect of neutrons

In the fusion-evaporation reaction used to populate 254No, two neutrons are ejected from
the compound nucleus and carry energy. Those neutrons may interact with the Gamma-
sphere detectors, deposit energy and register hits. This cannot be removed in the data
analysis since the neutron hits are obviously coincident with the 254No γ-rays. Therefore,
a correction of the neutron contribution has to be applied in the (k, H) distribution before
unfolding.

A.1 GEANT4 Simulation of the neutron contribution

The response of Gammasphere to neutrons with a Maxwellian distribution of kinetic ener-
gies with < E >= 2 MeV has been simulated with GEANT4 [115]. The neutron induced
signals are qualitatively well reproduced by the simulation, as shown on figure A.1. But
we still have to verify the absolute intensity of the neutron contribution.

The average energy deposited in Gammasphere by one neutron of energy 2 MeV is Hneutron ≈
560 keV and the average fold is kneutron ≈ 1.0. Figure A.2 shows the energy and fold re-
sponse for one-2 MeV neutron.

189



Figure A.1: Overlay of an experimental and simulated neutron induced spectra. In black,
the experimental spectrum (from [116]), in blue the simulated spectrum. The γ-ray energies
marked in orange are the ones not seen in experiment because of the time cut and detection
thresholds. The energies marked in red correspond to the materials not included in the
GEANT4 simulation because our experiment did not use hevimet shields (see section 4.1.6).
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Figure A.2: (Top) Gammasphere response in energy and fold to neutrons with a Maxwellian
distribution of energy and < Eneutron >= 2 MeV. The distribution does not show the (0, 0)
point with 37 % of the population. (Bottom) Distribution of fold from neutrons with a
Maxwellian distribution of energy and < Eneutron >= 2 MeV.

191



A.2 Correction of the neutron contribution

The neutron contribution is statistically removed from the measured (k,H) distribution,
taking into account that k and H need to stay positive. The correction for 2 MeV neutrons
reduces the average fold by 28 % and the average energy measured by 16 %. Figure A.3
shows the (k,H) distribution before and after correction for the neutrons. The average
neutron correction applied is 1.1 for the fold (up to 5) and 550 keV (up to 4 MeV). Using
a Maxwellian distribution for the neutron energies reduces the neutron fold contribution
by 15 %.

Figure A.3: (k,H) distribution without (left) and after (right) neutron contribution removal.
Although the bulk of the distribution is not changed, the slope is slightly shifted up and
the distribution is denser at lower folds.

A.3 Caveat

The GEANT4 simulation is doing a good job at reproducing the gamma-ray efficiency
(simulation finds a calorimetric efficiency of 63 %) - but further work is required to test the
neutron response. There is a known issue in GEANT4 that low-energy neutron inelastic
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scattering is not correctly reproduced (cross sections, angular distributions and energy
of recoils and neutrons, gamma lines...) [110]. Until all the issues are resolved, it is not
judicious to attempt a correction of the neutron effects.

Another issue is that we do not know what the kinetic energy distribution of the neutrons,
the kinetic energies of the neutron evaporated by 256No and 255No being probably different.
The measured entry distribution can give indication on the sum energy spectrum of the
two emitted neutrons.
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Appendix B

New and upgraded facilities for the

study of SHN

B.1 Digital Gammasphere and FMA

Gammasphere suffers from some technical limitations: The Germanium signal shaping
time is ≈ 10µsec, which leads quickly to pile-up as the count rate increases (40% pile-up
at 50kHz). Moreover, the acquisition dead-time is of the order of 25µsec per event, hence
a one- or two-fold γ trigger saturates the DAQ capabilities.

To allow higher beam intensity on target, increased rates and a more flexible trigger,
Gammasphere is being upgraded with digital electronic1. This will reduce the shaping
time down to 2µsec and enable the observation of γ-rays with rates as high as 40 kHz
(compared to 10kHz now). In addition, the FMA electronic is also being upgraded with
digital electronic.

B.2 Gretina

GRETINA is the first phase of an American project of γ-ray tracking detector called
GRETA (Gamma Ray Energy Tracking Array) [117]. This detectors use pulse shape
analysis in a large highly-segmented Germanium crystal to determine the interaction point

1The digital electronic used in Digital Gammasphere is the same as the one designed for Gretina. See

B.2
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of the γ-ray in the crystal. Moreover, this type of detector does not use BGO shield to
suppress Compton scattering, but uses a full array of Germanium crystals and tracking is
performed to reconstruct scattering events.

The Gretina array is under commissioning at the Berkeley Gas Separator at Berkeley and
has been tested mainly on the 208Pb (48Ca, 2n)

254 No reaction.

A similar tracking array is under development in Europe under the name AGATA (Ad-
vanced GAmma Tracking Array) [118]. AGATA has not been used in V&SHN reactions
yet, but a V&SHE study program is schedule with the Exogam and the VAMOS separator
when AGATA will be installed at GANIL.

B.3 Jurogam, Ritu, GREAT

The University of Jyväskylä hosts a very efficient setup for the study of V&SHN.

Jurogam is a γ-ray multi-detector array composed of 39 Germanium detectors – 24
clovers and 15 mono-crystals – Compton suppressed with BGO shields. The detection
efficiency is 6% at 1.33 MeV.

Digital electronics have recently been installed on Jurogam, allowing an energy resolution
around 2.6% at 1.33 MeV even at count rates as high as 70 kHz in one clover detector.

RITU The Recoil Ion Transport Unit (RITU) is a gas-filled magnetic separator. It
is composed of a quadrupole, a magnetic dipole for separation and a horizontal-vertical
quadrupole doublet for focusing. In a gas filled separator, the recoil charge state is the re-
sult of an electron exchange equilibrium in the gas and depends only on the atomic charge
and the recoil velocity ; hence the recoils are separated according to an average charge state.

RITU’s transmission is between 2 and 35% depending on the recoil. The overall length
of the separator is only 4.8m, and that favours the study of short lived isomers with the
reduced flight time.

GREAT The focal plane detection system GREAT (Gamma Recoil Electron Alpha Tag-
ging) is used to identify the recoils and perform decay spectroscopy. It is composed of one
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Figure B.1: Jurogam, RITU, GREAT facility at the University of Jyväskylä.
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Multi-wire proportional counter for energy loss, time of flight and focal plane position
measurements, one DSSD to implant the recoils and observe subsequent electrons and α

decays, one Silicon tunnel to measure escape electrons and αs, one segmented planar Ge
detector for detection of low energy γ-rays and X-rays correlated with the DSSD pixels,
and BGO suppressed clover Ge detectors to detect γ rays.

SAGE The Silicon And GErmanium (SAGE) spectrometer combines the Jurogam γ

detectors and an electron detection system. This spectrometer aims to measure converted
electrons at the target position, for the spectroscopy of highly converted transition in
V&SHN.

B.4 JINR

The Flerov Laboratory for Nuclear Reaction, at the Joint Institute for Nuclear Research in
Dubna, Russia, hosts the GABRIELA spectrometer, placed after the VASSILISSA sepa-
rator. The spectrometer is designed for delayed spectroscopy and provides Time-of-Flight
measurement, implant and decay detection in a DSSD, escape detection with a Silicon
tunnel and γ-ray spectroscopy with Compton suppressed Germanium mono-crystals.

Figure B.2: Schematic view of the VASSILISSA separator.
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The VASSILISSA separator is being upgraded in order to increase its transmission and the
GABRIELA focal plane detectors will be improved with a bigger DSSD and more strips.

B.5 S3

The GANIL laboratory facilities in France are being upgraded to SPIRAL2. Part of the
project is the new separator S3 (Super Separator Spectrometer), for studying the synthesis
and spectroscopy of V&SHN, with a focal plane detection system specifically designed that
will feature a 10 cm by 10 cm DSSD, with a silicon detector tunnel for the escaped electrons
and α and clover Germanium detectors. S3 is expected to start running in 2015.

Figure B.3: Blue print of the S3 installation in an experimental hall at GANIL.
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Appendix C

220Th entry distribution

The entry distribution of 220Th has been previously measured using the same technique
as described in this thesis. The test reaction 176Yb(48Ca,4n)220Th was therefore a great
opportunity to check the setup.

C.1 Data

For the data collected in the test reaction, we used the same selection on the recoils as
for the γ-ray spectrum presented in section 5.3. This led to a (k, H) distribution with a
statistics similar to the one observed for 254No. Figure C.1 shows the fold and measured
energy distribution. One notes that it extends to larger k and H than for 254No.
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Figure C.1: Distribution of (k, H) for recoil-gated 220Th events.
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C.2 Multiplicity to spin transformation

The multiplicity to spin parameters are different for 220Th than for 254No. Following the
example of [71], the M → I transformation was :

I = ∆I(M − nstat) + ∆Istat × nstat + Ielec

With ∆I = 1.75, nstat = 4.0, ∆Istat = 0.5 and Ielec = 0. The coefficients are different than
from 254No because the bands in 220Th have a different structure.

C.3 Results

After unfolding and transformation in an entry distribution, we obtain the distribution
showed in figure C.2. The entry distribution extends up to spin ≈ 20 � and the energy
extends up to ≈ 30 MeV but the half maximum point is at about 9-10 MeV.

Figures C.3 and C.4 compare the entry distribution measured in [71] and our test reaction.
The two data set agree very well. The spin distribution peaks around 8 � and falls to 1/10

of the maximum above 20 �; the energy distribution has a maximum around 6 MeV and
falls below 1/10 of the maximum above 14 - 16 MeV.
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Figure C.2: Entry distribution for recoil-gated 220Th unfolded with 88Y randomly generated
response. The yrast energy is shown in red, the adopted saddle energy is in blue and the
neutron separation energy in thin red line.
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Figure C.3: Overlay of the entry distribution measured in [71] and our measurement in the
test reaction. Our data set agrees very well with the previous measurement.
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Figure C.4: Comparison of the entry distributions and projections from the previous mea-
surement [71] and our test reaction. The contour of the entry distribution agree (see figure
C.3), the projections are not exactly the same but share similar characteristics.
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C.4 Conclusions

The two entry distribution agree well. There are some limitations to the measurement:
There could be a small contamination from 219Th, even if the cut in X is quite clear (as
showed in the γ-ray spectrum of 220Th, figure 5.13). On an absolute scale, both analyses
would benefit from an analysis of the discrete structures in 220Th as well as the statistical
spectrum. This would improve the multiplicity-to-spin conversion parametrization. Fi-
nally, as 4 neutrons are emitted in the reaction, the effect of the neutron correction should
be investigated.

As a test reaction, this result shows that our calorimetric measurements are good and
compatible with previous ones.

207



208



Appendix D

Damping of shell effects

At high excitation energy, the strength of shell effects decreases. This is incorporated
in calculation by using A. V. Ignatyuk’s prescription [48], the level density parameter a

depends on the excitation energy E:

a = a0

�

1 − δW
1 − e−E/Ed

E

�

with a0 the asymptotic value, δW the shell correction energy and Ed the damping param-
eter.

The level density parameter is used in the calculation of the level density, which, in it
simplest form, is ρ(E) ∝ exp

�

2
√

aE
�

, subsequently used in widths calculations.

D.1 Expected consequences for fission width

In the case of fission, the fission barrier is expressed in terms of liquid drop and shell
correction energy:

Bf = BLD − δW

In the calculation of fission width, one expects that :

• At low excitation energy, shell effects are strong and the fission width is close to the
undamped one: Γdamped

f ≈ Γundamped
f .

• At high excitation energy, shell effects disappear and the fission width is equivalent
to the one with no shell effect: Γdamped

f ≈ ΓLD
f .
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In fact, the fission width calculation can be approximated at high excitation energy with
an effective barrier [8]: Beff = BLD − δWe−E/Ed . However, this is only an approximation
and a consequence of the damping in the level density.

To obtain this effective barrier expression, one can do a simple calculation. By keeping
only the exponential part of the level density in the width calculation, the fission width is:

Γf ≈
exp

�

2
�

a0E(1 − Bf/E)
�

exp

�

2
�

a0E(1 − δW 1−e−E/Ed

E
)

�

The numerator part is not damped because it corresponds to the saddle point where there
are no shell effects. The denominator is the starting point, i.e. in the potential well,
affected by the shell effects.

If we consider this width at high excitation energy so that E � δW and E � Bf , then we
can approximate in the square-roots:

Γf ≈
exp

�

2
√

a0E[1 − Bf

2E
]
�

exp
�

2
√

a0E[1 − δW 1−e−E/Ed

2E
]
�

Then, the ratio can be expressed:

Γf ≈ exp

�

−
�

a0

E

�

BLD − δWe−E/Ed
�

�

This expression is similar to the Bohr and Wheeler formula : Γf ∝ exp(−BF

T
) with T =

�

E
a0

. Therefore, we have an effective barrier depending on the excitation energy :

Beff = BLD − δWe−E/Ed

D.2 Simple proof of principle calculation

To illustrate the differences between level density and fission barrier damping, one can
compute fission widths using simple expressions and reasonable values. Following the
formulae in [50], we use :
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The level density: ρ(E) = exp(2
√

aE)

The fission width: Γf = 1
ρ(E)

E
�

0

T (ε)ρsaddle(E − ε)dε

in the integral the transmission is : T (E) = 1/
�

1 + exp
�

−E−Bf

�ω

��

Furthermore, there is no damping of the level density in the integral, as we neglect the
shell effects at the saddle.
We used BLD = 6 MeV, δW = −2 MeV, a0 ≈ 20 MeV−1 and Ed = 18 MeV.

Making the calculation of fission width with (1) no damping, (2) damping in the level
density (via the parameter a), (3) damping in the fission barrier, (4) damping in the level
density and the fission barrier and (5) no damping and a liquid drop barrier without shell
effects, we can see the effect of the damping.

In figure D.1 showing the different calculations value as a function of excitation energy.
One can clearly notice the following features :

• The undamped width (black) and the level density damped width (red) are similar
at low excitation energy, as expected.

• The width with a damped fission barrier (blue) and the damped level density (red)
widths are similar at high excitation energy.

• The width with damped fission barrier (blue) and damped level density (red) widths
are similar to the fission width (gray) without shell effects at high energy, as expected.

• The width with damping of both fission barrier and level density (green) are similar
only to the fission barrier damped width (blue) at low excitation energy and do not
match the expected trend (no shell effects, in gray) at high energy.
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Figure D.1: Comparison of calculated fission widths for different damping parametrization.
In black, the width with no damping, expected to reproduce the behaviour of Γfission at
low excitation energy. In gray, the width with no shell effects, expected to have the good
behaviour at high excitation energy. The red line is the width with damping of the level
density, the blue one is the width with a damped fission barrier and the green line the
width with damping both in the level density and Bf .
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D.3 Conclusions:

The calculation clearly indicate the equivalence of level-density damping (via the parameter
a) and fission barrier damping at high excitation energy.
But only the level density damping can reproduce the expected transition from full to no
shell effects.
The use of damping in both level density and fission barrier, which is adopted in some
approaches, seems incorrect and lead to an overestimate of the value of the fission width
at all the excitation energies.
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Appendix E

Random selection of value from a

probability distribution

In many situations, in particular in the unfolding procedure (5.9), we have to randomly
select a number from a probability distribution. We will describe here the procedure.

E.1 Probability and cumulative probability distribution

Starting from a distribution of probability P (x) defining the probability of choosing the

value x between xlow and xhigh so that
xhigh
�

xlow

P (x) = 1, we need the associated cumulative

probability distribution defined as C(x) =
x
�

xlow

P (x) – see figure E.1.

The cumulative distribution is defined so that C(xlow) = 0 and C(xhigh) = 1.
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Figure E.1: Probability distribution (top) and the associated cumulative probability dis-
tribution (bottom).

E.2 Computer random number generator

The random selection of value relies on computer pseudo-random number generator that
provides floating number in the interval [0, 1[. Each call to the appropriate function
random() returns a new random number r – see example of samples in figure E.2.
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Figure E.2: Example of random generated numbers from a computer pseudo-random gen-
erator.

E.3 Choosing a value from the probability distribution

The cumulative probability distribution is used in conjunction with the random number
generator according to the following procedure, shown on figure E.3:

1. A random number r is obtained from the generator.

2. The cumulative probability distribution is scanned by increasing x as long as C(x) <

r.

3. The first x so that C(x) ≥ r is the selected value xfound.
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Figure E.3: Steps for choosing a random point according to a probability distribution.
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Appendix F

Determining the half maximum point in

a distribution

The analysis of the entry distribution relies on the half maximum point of the energy
distribution at each spin. The value E1/2 is then used to characterise the gamma / fission
competition.

F.1 Procedure

The half maximum point is determined in the histogram by a simple interpolation of the
bin population. The procedure goes as follows :

1. The bin containing the maximum number of counts is found (bin number noted
Bmax), its content is Amax, and its centre value (xmax).

2. The half maximum value will be Ahalf.

3. Starting from xmax and going up to the upper the limit of the histogram, the last bin
with a number of counts above Ahalf is found. Its content is Aabove, its bin number
Babove and its bin centre xabove.

4. Starting from the upper limit of the histogram, down toward xmax, the last bin with
a number of counts below Ahalf is find. Its content is Abelow, its bin number Bbelow

and its bin centre xbelow.
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5. The bin counts can therefore be parametrized as a function of x between xabove and
xbelow with the function :

A = Aabove + (Abelow − Aabove)
x − xabove

xbelow − xabove

6. The previous interpolation can be reversed and used to find xhalf as :

xhalf = xabove + (xbelow − xabove)
Ahalf − Aabove

Abelow − Aabove

Figure F.1 shows examples of xhalf determination for different distributions.

F.2 Uncertainty on x1/2

F.2.1 Uncertainty from bin width

The uncertainty from the bin width (∆bin width
x ) applies for all x quantities : δx = ∆bin width

x .

Therefore, δxhalf
bin width = ∆bin width

x

�

1 + 2 Ahalf−Aabove

Abelow−Aabove
+ 2

�

Ahalf−Aabove

Abelow−Aabove

�2

F.2.2 Uncertainty from bin count

Assuming a purely statistical uncertainty on the bin count, each A value is associated with
an error

√
A that propagates to xhalf :

• δxhalf
Amax =

√
Amax
2

xbelow−xabove

Abelow−Aabove

• δxhalf
Aabove =

√
Aabove

xbelow−xabove

Abelow−Aabove

�

1 + 1
Abelow−Aabove

�

• δxhalf
Abelow =

√
Abelow

xbelow−xabove

Abelow−Aabove
2

The uncertainty expressions show that it is better to work on histogram with small bins
and sharp fall around xhalf (i.e. large Abelow − Aabove). In general, the dominant source of
uncertainty is the bin width.
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Figure F.1: Examples of half maximum finding. The top left shows a good determination
with an uncertainty of the order of the bin width. The top right shows an example with
a less ideal distribution, but still good determination. As the statistical fluctuations grow
more important, or the distribution gets less clearly defined, the xhalf determination is not
as good, the uncertainties are larger.

F.3 Case of multiple half maxima

In cases of multiple maxima (or half maxima) – also in presence of large statistical fluc-
tuations – the determination of a single half maximum becomes impossible. One has to
choose which is the relevant one.
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