
HAL Id: tel-00746290
https://theses.hal.science/tel-00746290v1

Submitted on 28 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Réseaux d’interconnexion flexible pour architecture
reconfigurable dynamiquement

Ludovic Devaux

To cite this version:
Ludovic Devaux. Réseaux d’interconnexion flexible pour architecture reconfigurable dynamique-
ment. Traitement du signal et de l’image [eess.SP]. Université Rennes 1, 2011. Français. �NNT :
2011REN1E005�. �tel-00746290�

https://theses.hal.science/tel-00746290v1
https://hal.archives-ouvertes.fr

No d’ordre : 2011REN1E005 ANNÉE 2011

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de
DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Traitement du signal et télécommunications

Ecole doctorale MATISSE
présentée par

Ludovic Devaux
préparée à l’unité de recherche (6074 IRISA UMR)

(Institut de Recherche en Informatique et Systèmes Aléatoires)

Flexible interconnection

networks

for dynamically

reconfigurable

architectures

Thèse soutenue à Lannion

le 24 novembre 2011

devant le jury composé de :

M. Frederic Pétrot
Professeur, ENSIMAG / président

M. Fernando Moraes
Professeur, PUCRS / rapporteur

M. Jean-philippe Diguet
Directeur de recherche CNRS, UBS / rapporteur

M. Fabrice Muller
Maître de conférence, UNS / examinateur

M. Daniel Chillet
Maître de conférence, ENSSAT / examinateur

M. Didier Demingy
Professeur, IUT Lannion / directeur de thèse

M. Sébastien Pillement
Maître de conférence

IUT Lannion / co-directeur de thèse

Abstract : Dynamic and partial reconfiguration allows to dynamically allocate

the tasks constituting an application in the reconfigurable regions of an FPGA.

However, dynamic management of the tasks directly impacts the communications

since tasks are not always implemented at the same place in the FPGA. So, the

communication architecture must support high flexibility and significant qualities of

service (guaranteed bandwidth and/or latency).

In this PhD, several interconnection architectures were studied and evaluated

regarding their compliance with a dynamically reconfigurable system implemented

in FPGA. This study led to the proposal of the DRAFT network that fully supports

this concept. This network uses some specificities of the dynamically reconfigurable

systems to reduce its hardware resources consumption. Furthermore, if several con-

straints are verified, the performances are not influenced by the dynamic allocation of

the tasks. A network generator, DRAGOON, is also presented in order to implement

and simulate the DRAFT network.

Following the realization and characterization of this network which was com-

pared with two very popular networks, its integration inside a system was studied.

Consequently, a standard interface was designed in order to ease the interconnection

of elements such as microprocessors. Considering the degree of complexity of the

hardware parts of a reconfigurable system, an OS is often used to act as an abstrac-

tion layer. So, a service allowing to realize communications between the various

elements of a system while providing a complete abstraction of the DRAFT network

was designed in hardware.

Considering the various constraints on the use of DRAFT, the OCEAN network

was proposed. This network allows a simple interconnection of the elements con-

stituting a system with great flexibility. For this purpose, the OCEAN network is

based on two sub-networks, one being dedicated to data transfers, while the other

ensures its control. OCEAN network lies on dynamically created communication

paths following applicative requirements. This network particularly targets ASIC

implementations

All these networks were validated and characterized through experiments and

implementations in FPGA. Results demonstrate the adequacy between proposed

networks and the actual needs, also with the support of complex applications using

dynamic reconfiguration. The OCEAN network even proposes an evolution toward

future dynamic architectures.

Keywords : network-on-chip - FPGA - dynamic reconfiguration - flexible - ASIC

iv

Résumé : La reconfiguration dynamique partielle permet de placer dynamique-

ment les tâches d’une application dans des zones reconfigurables d’un FPGA. Cepen-

dant, la gestion dynamique des tâches impacte les communications du fait que

les tâches ne sont pas toujours allouées au même endroit dans le FPGA. Ainsi,

l’architecture d’interconnexions doit supporter une grande flexibilité et un large éven-

tail de qualité de service (bande passante ou latence garantie).

Dans cette thèse, plusieurs architectures d’interconnexion ont été étudiées et éval-

uées en fonction de leur compatibilité avec un système reconfigurable dynamique-

ment implémenté sur FPGA. Cette étude a conduit à proposer le réseau DRAFT qui

supporte pleinement ce concept. Ce réseau utilise certaines spécificités des systèmes

reconfigurables dynamiquement actuels pour réduire sa consommation de ressources.

De plus, si certaines contraintes sont vérifiées, les performances ne sont pas affectées

par l’allocation dynamique des tâches. Un générateur de réseaux, DRAGOON, est

aussi présenté afin d’implémenter et de simuler le réseau DRAFT.

Suivant la réalisation et la caractérisation du réseau DRAFT qui a été comparé à

deux réseaux très populaires, son intégration au sein d’un système a été étudiée. C’est

ainsi qu’une interface standard a été développée afin de faciliter l’interconnexion

d’éléments tels que des processeurs. Etant donné le degré de complexité des parties

matérielles d’un système reconfigurable, un OS est souvent utilisé pour en perme-

ttre l’abstraction. Ainsi, un service de communication permettant de réaliser des

échanges entre les différents éléments d’un système tout en ayant une abstraction

totale du réseau DRAFT a été conçu matériellement.

Considérant les différentes contraintes liées à l’utilisation de DRAFT, le réseau

OCEAN a été proposé. Ce réseau permet une simplification de l’interconnexion

des éléments d’un système avec une très grande souplesse d’utilisation. Ce réseau

est pour cela basé sur deux sous- réseaux, l’un étant dédié au transport des données

tandis que l’autre en assure le contrôle. Le réseau OCEAN repose sur des chemins de

communication créés dynamiquement en fonctions des besoins. Ce réseau dynamique

vise plutôt une cible ASIC.

L’ensemble des réseaux proposés ont été validés et caractérisés au travers d’expériences

et d’implantations sur FPGA. Les résultats montrent une adéquation avec les besoins

actuels, et le support efficace de la dynamicité des applications complexes. Le réseau

OCEAN propose même une évolution pour de futures architectures dynamique.

Mots-clés : réseau sur puce - FPGA - reconfiguration dynamique - flexible - ASIC

Summary

Introduction 1

1 State of the art - Definitions 11

1.1 Dynamic Reconfiguration . 12

1.1.1 General definition . 12

1.1.2 Xilinx partial reconfiguration . 13

1.2 Definitions . 18

1.2.1 Communication architecture . 18

1.2.2 NoC parameters . 19

1.2.3 Network performances . 23

1.3 Interconnection architectures . 25

1.3.1 Bus based interconnections . 26

1.3.2 Static NoCs . 28

1.3.3 Flexible NoCs . 38

1.4 Synthesis of the chapter . 39

2 The DRAFT network 41

2.1 Objectives and motivations . 42

2.2 Topology of the DRAFT network . 43

2.3 Router architecture . 50

2.4 Routing and Flow Control . 52

2.5 The DRAGOON environment . 58

2.5.1 DRAGOON main interface . 59

2.5.2 The NoC generator . 60

2.5.3 The traffic generator . 62

2.5.4 The NoC simulator . 63

2.5.5 The traffic evaluator . 63

2.6 DRAFT implementation advices . 64

vi Summary

2.7 DRAFT integration: interface DRAFT/AHB 67

2.8 DRAFT communication service . 70

2.9 Synthesis of the chapter . 75

3 Toward new flexible NoCs 77

3.1 Objectives and motivations . 78

3.2 Topology of the R2NoC network . 79

3.3 R2NoC switch architecture . 82

3.4 R2NoC Routing and Flow Control . 83

3.5 Constraints of the R2NoC network . 86

3.6 Motivations for the OCEAN network . 87

3.7 Topology of the OCEAN networks . 89

3.8 The data network . 90

3.8.1 Communication principles and interfaces 90

3.8.2 Data switches . 90

3.8.3 Discussions over the data network 93

3.9 The control network . 94

3.9.1 Operation principles and interfaces 94

3.9.2 OCEAN Routing algorithm . 96

3.9.3 Control switches . 99

3.10 Variations of the OCEAN network . 102

3.10.1 OCEAN v4.0 . 103

3.10.2 OCEAN v3.1 and v4.1 . 104

3.11 Discussions concerning the OCEAN networks 107

3.12 OCEAN test platform . 108

3.13 Synthesis of the chapter . 112

4 Results and comparisons 115

4.1 Objectives . 116

4.2 Experimental conditions . 117

4.3 DRAFT performances and comparison 120

4.3.1 Hardware resources consumptions 120

4.3.2 Network performances . 121

4.3.3 The scalability . 123

4.3.4 The data width . 124

Summary vii

4.3.5 Buffer depth . 126

4.3.6 Types of data traffics . 127

4.4 Ocean performances and comparison 128

4.4.1 Hardware resources consumption 128

4.4.2 Network performances . 130

4.4.3 FPGA validation . 136

4.4.4 ASIC implementation . 137

4.5 Synthesis of the chapter . 139

Conclusion and perspectives 143

Bibliographic references 159

Personal publications 161

Appendix 163

A Simulation files from DRAGOON 165

B In situ characterization platform 169

B.1 Need of an In-Situ characterization platform 169

C R2NoC measured performances 173

D ASIC implementation of OCEAN 177

Abbreviations and Acronyms

AHB Advanced High-performance Bus

AMBA Advanced Microcontroller Bus Architecture

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

BM Bus Macro

CAD Computer Assisted Design

CLB Configurable Logical Block

CMOS Complementary Metal Oxide Semiconductor

DCM Digital Clock Manager

DMA Direct Memory Access

DPR Dynamic and Partial Reconfiguration

DRAFT Dynamic Reconfiguration Adapted Fat-Tree

DRAGOON Dynamically Reconfigurable Architectures compliant Generator and

simulatOr Of Network

DSP Digital Signal Processor

FIFO First In First Out

FOSFOR Flexible Operating System FOr Reconfigurable devices

FPGA Field Programmable Gate Array

FSM Finite State Machine

GALS Globally Asynchronous Locally Synchronous

x Abbreviations and Acronyms

ICAP Internal Configuration Access Port

IO Input Output

IP Intellectual Property

LUT Look Up Table

NI Network Interface

NoC Network-on-Chip

OCEAN On-Chip Efficiently Adaptive Network

OPB On-chip Peripheral Bus

OS Operating System

PE Processing element

PLB Processor Local Bus

PRR Partially Reconfigurable Region

QoS Quality of Service

R2NoC Reconfigurable Routers based Network-on-Chip

RAM Random Access Memory

RSoC Reconfigurable System-on-Chip

RTL Register Transfer Level

SoC System-on-Chip

UART Universal Asynchronous Receiver Transmitter

VC Virtual Chanel

VHDL VHSIC Hardware Description Language

VHSIC Very-High-Speed Integrated Circuits

VLSI Very Large Scale Integration

Introduction

Since the very beginning of electronics in 1904, (year of ”electronic tube” invention,

the ancestor of the transistor), the complexity of electronic systems never ended

increasing. Over the years, more and more powerful systems were created. Indeed,

this computing power, which can be expressed as the number of operations per

time unit, continuously increases along with the needs of our modern society. This

research of more computing power led to the miniaturization process. The objective

is simple, since the speed of an electron is constant in a metal wire or in a transistor,

miniaturization reduces their length so that the electrons reach more rapidly their

destinations. So, each operation to be realized takes less and less time in a smaller

and smaller electronic system. It is then possible to realize more operations in the

same time unit. The fact that electronic systems are now ubiquitous in our life is a

direct consequence of this research of computing performances.

A digital electronic system is always composed of the same sets of elements. First

are the computing elements that can be processors running user defined software al-

gorithms, or blocks performing all the processing of some incoming data in hardware.

If the function computed by latter blocks can be modified, they are called reconfig-

urable. The second set concerns the storage capacities. Indeed, every application

requiring an electronic system embeds computing elements that process data. Con-

sequently these data should be memorized in order for the processing elements to

pick them up before processing, and then to store results. Finally, the last set con-

cerns the communication. In every system, a communication medium is required to

make the interconnection of the computing element(s) and the storage one(s). Fur-

thermore, interfaces are also necessary in order for the system to take information

(data) from their environment. These interfaces are often considered as computing

elements providing data by the communication architecture. For convenience pur-

pose, every interconnected element, either processors, computing blocks, memories,

and communication interfaces are denominated as Processing Elements (PEs) since

they participate to the processing of the overall application. First digital electronic

systems were composed of one PE per chip. However, following the miniaturization

process, chips have started to embed all the elements required to run the application.

2 Introduction

Thus, a single circuit can now embed one or several processors, computing blocks,

memories, communication architectures and interfaces. Communications were usu-

ally realized through metal wires. This is the definition of a System-on-Chip (SoC).

There are several ways to implement a SoC. The first one consists in designing

the system directly in silicon. The resulting chip is then dedicated to the originally

aimed application even if an embedded microprocessor can bring a certain flexibility:

software codes can evolve in the time. This implementation way, called Application-

Specific Integrated Circuit (ASIC) guarantees high performances but no flexibility in

the sense that no change can happen to the hardware architecture of the application.

The second way to implement a SoC consists in configuring a general purpose archi-

tecture. The principle is simple: the architecture embeds logical resources that can

be configured to realize a function in hardware. Using these configurable resources

and the interconnection wires between them, it is possible to produce the behav-

iour of all the elements constituting a SoC. At the cost of a loss in performances,

the flexibility is thus increased. Some chips like the Programmable Array Logics

(PALs) are one time programmable, they are usually used as chips performing a

permanent function but at a lower cost than ASICs. Indeed, they do not embed

sufficient programmable resources to implement a complete application. Most of

SoCs are implemented using reconfigurable chips called Field Programmable Gate

Arrays (FPGAs). FPGAs have the particularity that embedded hardware resources

are programmed at boot time. So, depending on the configuration that is applied to

the FPGA at the power-up, different applications can be implemented on the same

chip. This leads to the definition of a Reconfigurable System-on-Chip (RSoC).

Originally FPGAs were mostly used to prototype ASIC implementations. How-

ever, their reconfiguration ability leads them to be used inside industrial finite prod-

ucts. Reconfiguration of a chip is a key feature of present and future systems. Indeed,

when an application requires a wide range of performances that can only be attained

through hardware implementation, the reconfiguration takes all its sense. The re-

configuration is particularly useful at design time in order to reduce the financial

and temporal costs to verify the proper behaviour of the system: one or several

reconfigurable chips are used. PEs can then be configured inside these chips and re-

configured if an unexpected behaviour is detected. If chips were not reconfigurable,

then each time an error is detected a new chip would be designed. With a recon-

figurable circuit, the new PE is configured instead of the previous faulty one, thus

saving both time and money. If originally reconfigurable circuits were used for design

assistance purpose, they have demonstrated their interest in real life applications.

Indeed they allow the system to evolve in the time. Thanks to the reconfiguration,

PEs can be updated without any human direct intervention on the system, and fur-

thermore without changing any physical element (board, chip, etc.). Completely

Introduction 3

changing the behaviour of a system in order to re-use its components, providing a

better Quality of Service (QoS) reconfiguring a PE for fault tolerance purpose are

also key functionalities that are allowed thanks to the reconfiguration ability of the

chips.

Originally, the reconfiguration of a chip requires halting the execution of the

whole chip in order to configure every one of their logical elements. This is called

the static or total reconfiguration. This is the case for most of current and past

FPGAs. However, steady technological, scientific, commercial, financial, and finally

human evolutions lead desired application to become more and more complex every

day. This complexity attains such a level that required hardware resources to support

these applications overcome the capacity of present chips. More and more, single

chips are not powerful enough to handle present applications. This is why several

technological ways are explored. Facing the problem of the resources limitations,

three main paths are followed by both researchers and industrials:

• the conception and design of larger and larger chips embedding more and more

configurable resources,

• the use of several chips in parallel allowing to multiply the actions that can be

realized at a time,

• and the dynamic reconfiguration ability of the circuits.

The conception of larger and larger chips leads to more and more complex designs.

Designs become then both hard to debug and to maintain. This leads to the proposal

of new Computer Assisted Design (CAD) tools in order to ease both the conception

and the maintenance of complex applications. However, the use of several chips

is based on the parallelism of the applications. Indeed, following the observation

that usually applications are composed of several functions, it is possible to improve

performances processing these functions at the same time while using several chips of

reduced size. However, new mechanisms are required to guarantee a valid behaviour

of the application while exploiting as much as possible the parallelism. Thus, both an

Operating System (OS) and CAD tools are required in order to give to the designer

an abstraction of the physical components and their operation that steadily becomes

more complex.

A new feature appeared recently in the world of FPGAs. This is the Dynamic

and Partial Reconfiguration (DPR). Originally motivated by the constant increase of

SoCs’ complexity, the DPR of an FPGA consists in the possibility to reconfigure not

only the whole chip at boot time, but only a part of embedded logical resources during

the execution of the application. If previously more and more complex applications

required larger and larger SoCs (and thus chips), the DPR offers the possibility to

4 Introduction

sequentialize the applications. Indeed, every application can be divided into several

tasks. These tasks can be processed either in software (running on a hardware

processor), or directly in hardware using a computing block. As illustrated in Figure

1, storage elements, communication interfaces and an interconnection architecture

may also be required for the whole RSoC to operate properly. However, if the size

of the RSoC is too limited to implement the microprocessor and the two computing

blocks at a time, the DPR offers the possibility to swap a hardware element by

another one. Obviously, the DPR is efficient only if all the tasks do not need to

be executed simultaneously. In this example, all logical resources that are used by

both the microprocessor and the computing block dedicated to the task 3 can be

dynamically allocated at a different time to a different computing block: the one

dedicated to the task 2.

Aoolication

Task 1

Task 2 dedicated
comouting block

Microorocessor

Task 2 Task 3

Software task 1 Software Task 2

Task 3 dedicated
comouting block

Microorocessor
Task 3 dedicated
comouting block

Communication architecture

Storage memory Interfaces

Designer
level

Software
level

Hardware
level

RSoC
level

Figure 1 : Hierarchization of an application. An application can be divided into several tasks at the

designer level. Some tasks can then be implemented in software, or directly in hardware. Software

implemented tasks are processed on a hardware processor while hardware implemented ones lead

to dedicated computing blocks. All these hardware elements are allocated inside a RSoC along with

storage and communication elements. The resources are shared in the time.

The DPR allows reducing the size of the RSoCs, and thus their complexity. How-

ever, this concept of dynamic hardware implementation of the tasks has a significant

Introduction 5

impact over both the design and the functioning of a SoC. Indeed, the allocation

of hardware components of an application needs now to be scheduled, and their

placement must be controlled. Furthermore, it also impacts the communication ar-

chitecture. From the communication architecture point of view, every interconnected

element has specific communication requirements in terms of amount of data that

must be transferred, and of maximum time allowed to transfer these data. In SoCs,

it was possible to design a communication architecture optimally considering the

communication requirements inherent to each PE. However, due to the DPR, PEs

can be exchanged by others with different communication needs. Furthermore the

same PE is not guaranteed to be always located at the same place in the RSoC.

Indeed there is no obstacle for a PE to be relocated at a new place depending on the

applicative context. All of this avoids any possibility for the resulting data traffic or

the communication infrastructure to be predicted at design time.

If computing elements perform all the operations and make all the decisions,

most of present digital systems are limited by their interconnection [33]. Until the

late 1990s, the traditional way of interconnecting PEs such as computing blocks,

microprocessors and memories was to use dedicated links to minimize latencies or

shared buses for simplicity. With subsequent increases in number of interconnected

PEs on a single chip along with the length and delay of wires to cross a chip, it has

become important to share on-Chip interconnect bandwidth in a more structured

way. This leads to the notion of Networks-on-Chip (NoCs). Since then, numerous

NoCs have been proposed but the introduction of the DPR in RSoCs reveals a lack

of flexibility for lot of them. Communication architectures thus become a major

problem when designing RSoCs. This is why the research work presented in this

report proposes new flexible interconnection architectures. This work took place into

the scope of a PhD financed by the Agence Nationale de la Recherche (ANR) through

the Flexible Operating System FOr Reconfigurable devices (FOSFOR) project.

Applicative context

DPR compliant FPGAs

The three main FPGA manufacturers are Xilinx, Altera and Atmel. There are also

small societies that take advantage of niche markets like Achronix. Achronix pro-

vides asynchronous FPGAs where resources are distributed in small tiles working in

pipelined fashion [1]. However, only a small range of FPGAs are currently available

and the support of the DPR is not foreseen in their business plan. Atmel devices pro-

pose large varieties of FPGAs with a regular intrinsic structure [14]. However, when

compared with Altera and Xilinx devices, the number of reconfigurable resources

6 Introduction

is too limited to handle the implementation of large and complex applications. At

present time, Xilinx is the market leader concerning FPGAs. Xilinx is at the origin

of the first FPGAs supporting DPR: the XC6200. However, DPR is only supported

by Xilinx software tools since the ISE 9.1 and ISE 9.2 design suits [73] targeting the

Virtex II Pro FPGA. Even though, DPR could only be realized through early access

add-ons to these software tools. Much more series of dynamically reconfigurable

devices were proposed by Xilinx through the Virtex IV, V, VI, and the most recent

one VII [116], [117], [125], [123]. The first versions of ISE have evolved and now the

versions 12 and 13 offer the DPR ability to every designer without any add-on (at the

cost of the appropriate license) [122], [124]. Furthermore, the PlanAhead software

that is part of the ISE/EDK suit [121] offers interesting possibilities to designers to

control which PE should be dynamically reconfigurable.

From the beginning Xilinx has felt the interest of the DPR and invested a lot

of time, money, and manpower to offer viable devices to industrials and academics.

Since the DPR becomes a real market with growing interests and earnings, Altera re-

cently announced their first FPGAs supporting DPR [36]. In Stratix IV series, only

the input/outputs were already dynamically reconfigurable [8]. The programmable

resources inside the FPGA were not dynamically reconfigurable [9]. This is not the

case for the Stratix V series that is announced by Altera. Every programmable re-

source is dynamically reconfigurable, just like Xilinx FPGAs [10]. The use of the

DPR is proposed to designers through the well known Quartus II design suit [10] on

the same model as for Xilinx ISE/EDK recent versions. Altera recently published an

article presenting the interest of systems using DPR in order to reconfigure the hard-

ware architecture without rebooting the OS, even if it runs on an on-chip processor

[62]. It is particularly interesting to notice that Altera’s vision of applications using

DPR is very similar to Xilinx’s.

At the beginning of this PhD, only Xilinx devices were compliant with DPR.

This is why in this report, only Xilinx architectures are considered.

The FOSFOR project

The FOSFOR project aims to reconsiderate the structure of an OS which is usually

software, centralized, and static. The OS proposed by the FOSFOR project should

be flexible and distributed even if proposing an homogeneous interface from the ap-

plication point of view. For this purpose, the DPR ability of modern FPGA should

be applied to complex RSoCs and completely supported by the FOSFOR OS. In

these complex RSoCs, tasks can be either statically or dynamically implemented,

and even allocated in software or hardware. The FOSFOR project proposes mecha-

nisms of virtualization of the various services constituting an OS. This way, through

Introduction 7

these services, applicative tasks can be processed and can communicate without any

knowledge about their implementation (software or hardware) nor about their lo-

cation. More precisely, the FOSFOR project considers three fundamental services

of an OS: the scheduling and placement of the tasks, the communication and the

memory management. More than expected theoretical results, the FOSFOR project

aims to demonstrate the viability of presented concepts through a demonstrator.

This demonstrator is a hardware platform representative from future embedded ap-

plications [38].

A
H
B

B
U
S

AHB - network
bridge

interconnection network

Reconfi-
gurable
region

Inputs / outputs

Global
shared
memory

LEON 3
processor

core

Local shared
memory

Local shared
memory

Reconfi-
gurable
region

Reconfi-
gurable
region

Hardware OS services

Hardware Communication UnitSoftware Communication Unit

Hardware Abstraction Layer

Software OS services

Middleware
(virtualization, distribution, flexibility)

Applicationtask
task task task

H
A

R
D

W
A

R
E

S
O

FT
W

A
R

E

FO
S

FO
R

 O
S

Figure 2 : Presentation of the FOSFOR environment. Constituted of two parts (software and hard-

ware), the FOSFOR OS provides an abstraction of these two parts to the application. The services

of the OS are distributed both in software and in hardware. Through an hardware abstraction layer

and control interfaces, the OS manages the hardware platform. This platform consists in a LEON 3

processor core, a shared memory connected to the processor through an AHB bus, and reconfig-

urable regions interconnected by a network. PEs corresponding to hardware tasks are dynamically

implemented in the reconfigurable regions.

The FOSFOR environment presented in Figure 2 is constituted of the FOSFOR

OS whose services are distributed both in hardware and software. Through the spe-

cific block called middleware, the OS is able to make the relation between its various

services and to provide a uniformized interface to the application. Through the mid-

dleware, the application is executed without any knowledge of where the tasks are

8 Introduction

implemented (software or hardware). Through the hardware abstraction layer, the

OS manages the execution of the tasks allocating them on the LEON 3 processor

(if software) or inside the reconfigurable regions. Allocated tasks always have the

possibility to communicate together through the AHB bus and the interconnection

network. They can also communicate with the FOSFOR OS through software com-

mand units (if allocated on the LEON 3 processor), or the hardware one (if allocated

in a reconfigurable region).

Objectives and contributions of this work

The contribution of this PhD, lies in the proposal of an innovative interconnection

architecture. The proposed network should be compliant with the DPR paradigm

while being flexible supporting heterogeneous environments (software and hardware

implemented tasks). Furthermore, since it could be integrated in the FOSFOR

platform, this network should be able to efficiently interconnect the various PEs of

the FOSFOR demonstrator. The demonstrator is only representative from future

applications, this is why the proposed network should be as scalable as possible.

Finally, the integration of proposed interconnection architecture should be eased

providing a network with standardized interfaces.

However, the research works that took place during this PhD do not aim only in

providing a communication architecture to the FOSFOR project. Much more con-

tributions are expected. So, the second contribution should be to ease the use of the

proposed interconnection network through a dedicated generation and characteriza-

tion environment. This environment should provide to the designers an easy way to

parameterize and generate the network. Furthermore, using this environment, the

designer should easily receive estimations of the performances that are expected to

be obtained from chosen configuration.

In order to ease the use of proposed interconnection network, an efficient com-

munication manager is proposed. This manager should give to the tasks that wish

to communicate an abstraction of the hardware components. Through this manager

that acts as an OS communication service, tasks should be able to communicate in

an heterogeneous platform without taking care about if they are statically or dynam-

ically allocated, and even software or hardware implemented. Their location inside

the platform should not even be known by the tasks. the challenge with this commu-

nication service is then to make communicate the same way hardware and software

tasks. Furthermore, the communication service should provide efficient mechanisms

in order to take into account communication cases that can be induced by the DPR

ability of the RSoC. For example, the communication service should provide answers

to improve the communications when a task requests to send data to a non-allocated

Introduction 9

one. Even if proposed outside of the scope of the FOSFOR project, it would be in-

teresting for this communication service to be compliant with the FOSFOR OS.

Finally, considering the lack of flexibility of present interconnection networks,

along with their limited scalability, the other main contribution of this PhD is to

propose a NoC with very high network performances. This network should present

a reduced cost in order to be scalable enough to fit future large scale applications.

Furthermore, along with high bandwidth and low latency, this network should be

flexible enough to support the DPR of PEs with a significant increase in QoS. Finally,

since the need of performances is not reserved only to RSoCs, this network must be

fully compliant with future flexible ASIC implementations.

Organization of the report

This report is organized in four chapters. Chapter 1 provides an overview of current

dynamically reconfigurable architectures. FPGAs supporting DPR are presented

along with the available design flows. Furthermore, the advantages and drawbacks

of the DPR are also explained in this chapter. Then, before presenting some of the ex-

isting interconnection architectures, definitions are stated concerning every aspect of

the conception and characterization of an interconnection architecture. Using these

definitions also with the constraints induced by the DPR, existing interconnection

architecture are detailed and discussed.

In Chapter 2, the DRAFT Network-on-Chip designed for the FOSFOR project

is presented. Using both the constraints of the DPR and previously presented NoCs,

the particular topology of the DRAFT network is investigated. Next, the various

tools to make easier the use of DRAFT are detailed. Indeed, first is presented

the DRAGOON environment that allows to parameterize, generate, and simulate

networks. Then, a bridge making the relation between DRAFT and an AHB bus is

detailed. This bridge is particularly useful providing a standardized and largely used

interface. This allows for example the integration of DRAFT inside the FOSFOR

demonstrator. Finally, a communication service acting as an overlayer to the DRAFT

network is proposed. This communication service provides efficient mechanisms to

manage communications in heterogeneous applications (hardware and software) us-

ing DPR.

In Chapter 3, the R2NoC and OCEAN networks are presented. R2NoC is an

innovative NoC that uses the DPR ability of the FPGAs to provide high level per-

formances with a reduced cost. Constraints and technological drawbacks of R2NoC

are presented in this chapter. This leads to the definition of the OCEAN network

which is a high performances, scalable, flexible, and easy to use NoC. This network

auto-reconfigures its structure to provide maximum bandwidth and minimum laten-

10 Introduction

cies to the communications. As presented in this chapter, OCEAN aims both DPR

compliant FPGAs and future flexible ASIC implementations. In order to evaluate

the performances of OCEAN, a simulation environment is detailed.

In Chapter 4, characterizations of the proposed networks are presented. Exper-

imental conditions are first detailed. Next, DRAFT and OCEAN characterizations

are provided. All these networks are compared with existing and popular networks

that we characterized in exactly the same conditions. Finally, ASIC implementation

results of the OCEAN network are presented.

Finally, the last chapter concludes this work and proposes further researches.

Chapter 1

State of the art - Definitions

1.1 Dynamic Reconfiguration . 12

1.1.1 General definition . 12

1.1.2 Xilinx partial reconfiguration . 13

1.2 Definitions . 18

1.2.1 Communication architecture . 18

1.2.2 NoC parameters . 19

1.2.3 Network performances . 23

1.3 Interconnection architectures . 25

1.3.1 Bus based interconnections . 26

1.3.2 Static NoCs . 28

1.3.3 Flexible NoCs . 38

1.4 Synthesis of the chapter . 39

12 Chapter 1. State of the art - Definitions

This chapter aims to give an overview of modern dynamically reconfigurable

architectures. Both reconfigurable devices and reconfiguration techniques are pre-

sented. Following this presentation, a terminology is proposed in order to define every

parameter influencing the conception of an interconnection architecture. Character-

ization metrics are also defined. Following these definitions, most popular intercon-

nection architectures are presented and confronted to the dynamic reconfiguration

paradigm.

1.1 Dynamic Reconfiguration

1.1.1 General definition

The dynamic reconfiguration consists in the possibility to change only one part of

the chip while the other parts continue their execution. This is also called the DPR.

This reconfiguration is based on the observation that in most applications, several

functions do not need to be executed at the same time. This leads to a temporal

partition of the application. Following this temporal partition, the idea is then to

configure in the chip only the functions that need to be executed. At the end of their

execution, they can be removed, freeing resources to dynamically configure another

function. DPR significantly reduces the number of required hardware resources, and

thus the size of the chips. The difference between the various reconfiguration types

are presented in Figure 1.1.

F 1

F 2

F 3
R
e
c
o
n
f
i
g F 4

F 2 '

F 5

timet

F 1

F 2

F 3
R
e
c
o
n
f
i
g F 4

F 5

timet

F 1

F 2

F 3

F 4

F 5

timet

...

...

Reconfiguration Total Partial

Static

Dynamic

Figure 1.1 : Presentation of the various reconfiguration types. Two short functions F1 and F3 are

reconfigured respectively by functions F4 and F5. The reconfiguration occurs at last at the instant

”t”. A longer function F2 is configured and needs more than ”t” to complete its execution.

In the static and total reconfiguration, at reconfiguration times all functions are

1.1. Dynamic Reconfiguration 13

halted and removed. The reconfiguration delay is quite long because the entire chip

is reconfigured. The function F2 is un-allocated and reconfigured (equivalent to a

reset) in instance F2’. If specific mechanisms were not foreseen, the execution of

F2’ starts from the beginning and all actions performed by F2 are lost. The static

partial reconfiguration provides significant improvements compared with the total

one. Since it is a static reconfiguration all functions are halted at the reconfigura-

tion time, but only the functions that need to be reconfigured are un-allocated. This

way, the reconfiguration time is shorter: only the needed resources are reconfigured.

At the end of the reconfiguration process, F2 can resume its execution. The dynamic

total reconfiguration does not make sense since every function is reconfigured. It is

then similar to the static total reconfiguration. Finally, the dynamic partial recon-

figuration lead for the functions that finished their execution to be reconfigured at

once without disturbing the execution of the others. The reconfiguration process

is shorter than for other reconfiguration types since only the needed functions are

reconfigured at a time and longer functions are not halted. Thus DPR allow to best

use the temporal partition of the application limiting the delays for reconfiguration

purpose while ensuring that other functions are not impacted at all.

First industrial and academic applications using DPR were presented since 2001

[20], [49]. However, only the proposal of first chips proposing a DPR ability could

demonstrate the viability of these applications since 2005 [82]. In latter article,

issues were presented in order for the DPR to be more and more interesting for

both industrials and academics. Issues were notably the creation of design flows

supporting the DPR, larger scale FPGAs, and more FPGA vendors providing this

functionality. Furthermore complex applications requiring DPR already exist like

the real time video processing [28] and also automotive applications that are now

part of our daily life [19].

1.1.2 Xilinx partial reconfiguration

Xilinx DPR occurs in specific regions called Partially Reconfigurable regions (PRRs)

[26]. These regions are statically defined before place and route phase of the imple-

mentation. Partial reconfiguration can only occur inside these regions, thus dis-

tinguishing the dynamic parts from the static ones of the FPGA. Inside a PRR,

every Configurable Logical Block (CLB) is dynamically reconfigurable, thus form-

ing the smallest reconfigurable zones. As presented in Figure 1.2, these blocks are

constituted of two regions so called slices. CLBs are arranged in column, allowing

embedded slices to communicate with directly upper neighbours or with other parts

of the chip through the switch matrices.

In Xilinx Virtex V series, each slice is constituted of four 6-inputs Look Up Tables

14 Chapter 1. State of the art - Definitions

Switch
matrix

Slice
X0Y0

Slice
X1Y0

CLB

Switch
matrix

Slice
X0Y1

Slice
X1Y1

CLB

Cout Cout

Cout Cout

Cin

Cin

Switch
matrix

Slice
X2Y0

Slice
X3Y0

CLB

Switch
matrix

Slice
X2Y1

Slice
X3Y1

CLB

Cout Cout

Cout Cout

Cin

Cin

Figure 1.2 : Diagram of the resources embedded in Xilinx FPGAs. CLBs, composed of two slices,

are the smallest reconfigurable entities. CLBs are arranged in column: each slice can communicate

with upper neighbour one. Switch matrices allow the communication between a CLB and other

resources (CLBs, input/outputs, etc.) located in different regions of the chip.

(LUTs) that are generators of logic-functions, four registers (called FF), multiplexers,

and combinatorial logics. The diagram from a single slice is presented in Figure 1.3.

Some LUTs support extra functions: storing data using distributed Random Access

Memory (RAM), or shifting data with 32 bits registers [118].

During the DPR process, the function implemented inside the LUTs, the data in

registers, the connexion of the multiplexers, and the switch matrix of a CLB are all

reconfigured. A PRR can embed specific resources like RAM blocks (BRAMs) allow-

ing 36 Kbits data storage each, and DSP blocks that are specific signal processing

oriented units. This allows users to implement dynamically a complete PE using all

required resources. The configuration of a PRR is realized through a bit file called

partial bitstream. In order to reconfigure a PRR, a partial bitstream is loaded inside

a specific interface called Internal Configuration Access Port (ICAP) [117]. Partial

bitstreams are generated at compile time for every PRR regarding every possible

configuration they can take. This way, each partial bitstream configures a whole

PRR. This means that it is not possible to dynamically reconfigure only a part of a

PRR, the whole PRR is reconfigured. However, if a resource has the same config-

uration in the novel configuration as in the previous one, then it is not affected by

the reconfiguration process. This means that no glitch can occur, thus disrupting its

behaviour [73].

The communication between resources embedded inside a PRR and those from

1.1. Dynamic Reconfiguration 15

Figure 1.3 : Diagram of a single slice composed of four LUTs (LUT/ROM boxes of the left side), four

registers (FF boxes of the right side), multiplexers and combinatorial logics. This diagram is issued

from [118].

the static defined part of the FPGA are realized through interfaces called Bus Macros

(BMs). BMs are statically defined inside the PRRs. Each BM acts as a bridge

between dynamic and static parts of the FPGA. A single BM is implemented using

a full slice [115].

Using Xilinx ICAP interface through the genuine controller provided by Xilinx

usually leads to long reconfiguration delays. Indeed reconfiguration times from the

decade to several hundreds of milliseconds are commonly encountered depending

on the size of the PRRs. As an example, the dynamic reconfiguration of a PRR

requiring a bitstream of 22KB takes 11.3ms. However, for many applications with

hard real time constraints, such delays are not acceptable. This is why several

16 Chapter 1. State of the art - Definitions

works proposed optimized ICAP controllers leading to reconfiguration delays from

the decade to several hundreds of microseconds [72], [35]. With such rapid ICAP

controllers, expected reconfiguration times are between 50-60µs for a 22KB partial

bitstream. However, such rapid ICAP controllers can only be implemented at the

cost of a massive BRAM usage. Obviously, dynamically reconfiguring a PRR using

Xilinx genuine ICAP controller is much faster than reconfiguring statically the whole

FPGA.

Along with researches leaded in order to improve the dynamic reconfiguration

process, there are many studies aiming to better control this process. Indeed, usually

the DPR of a PRR is initiated by a software code running on an on-chip implemented

processor like a MicroBlaze or a powerPC [92]. However, some researches aim to

improve this DPR initiation through an object oriented control running along with

an OS like linux [45] or OS4RS [75], [88].

Many works like [18] take advantage of the new possibilities that are, or should

be, offered by the DPR. This way, placement of the PEs and of the PRRs is a key

research topic. Virtex II pro FPGAs were only compliant with 1D placement of

the PRRs [57]. This means that when reconfiguring a PRR, the whole column was

impacted. Consequently it was not possible to place two PRRs in the same columns

of resources. Presently, the 2D placement of the PRRs is fully supported. This means

that PRRs are defined as rectangular arrays that can be placed everywhere in the

FPGA matrix. Several PRRs can thus be placed in the same column of resources.

Concerning PEs, like PRRs they can be placed in 2D in the FPGA. When a PE is

dynamically implemented in a PRR, concerning the overall application, it leads to

the 3D placement where the third coordinate is the time [17]. Due to their column

based repartition of the resources, Xilinx FPGAs are not homogeneous in 2D, thus

constraining the placement of the PEs. For example, the organization of a Xilinx

FPGA also with placement of a PRR are depicted in Figure 1.4. Indeed, PEs are

then implemented as arrays that can be swapped depending on the moment they are

scheduled to be executed [105]. The online placement of the PEs in the PRRs was

investigated through several studies like [4] [5]. As a result of these works, a high

flexibility is provided to the applications because the initial placement of the PEs

can evolve depending on the applicative context. However, the flexibility concerning

the placement of the PEs directly impacts the communication architecture since it

must support this dynamic adaptation of the overall architecture.

The DPR proposed by Xilinx presents several advantages and constraints. The

first constraint lies in the number of PRRs that can be reconfigured at a time.

Starting from the Virtex V series, Xilinx DPR compliant FPGAs embed two ICAP

ports. However they can not operate at the same time. Partial bitstreams can be

forwarded to the ICAP controllers in parallel, but the effective reconfigurations will

1.1. Dynamic Reconfiguration 17

I/Os BRAMsDSPs
I/Os
ICAP

&

PRR

BMs

Slices

Figure 1.4 : Internal structure of a Xilinx Virtex V FPGA. Resources are distributed in columns.

Resources (slices and BRAMs) included inside the defined PRR can be dynamically and partially

reconfigured.

happen sequentially. So, two PRRs can not be reconfigured in parallel, but the

presence of a second ICAP interface allows to save time considering the transfers of

the partial bitstreams [117].

In every Xilinx Virtex FPGAs, partial bitstream are encrypted. Indeed, analyz-

ing the bitstreams would give information on involved resources starting from their

configuration bits as well as the implemented functions. However, this indispens-

able industrial protection is also a major constraint for researchers because it is not

possible to generate online a partial bitstream. Since bitstreams are encrypted, and

since FPGAs are not homogeneous in 2D, a small change between two configura-

tions can not be realized in situ: both configurations are to be generated at compile

time and stored in memory. Thus, this industrial protection has a dramatic effect

regarding the number of partial bitstreams to generate and then to store in complex

applications. Until the Virtex IV series, the addresses of the PRRs could be read at

the beginning of the partial bitstreams. This way, the addresses of a given partial

bitstream could be modified, and then the partial bitstream could be applied on

18 Chapter 1. State of the art - Definitions

another PRR. This leads to the relocation of a PE. This is why basic PEs relocation

and defragmentation could be realized [30]. Relocation were also realized using Xil-

inx more mature devices (XCV200) [42]. However, since the Virtex V series, Xilinx

encrypted not only the payload of the partial bitstreams but also the addresses. This

way addresses can not be modified and any relocation/defragmentation approach is

thus impossible.

1.2 Definitions

Sometimes in literature, researchers do not employ the same vocabulary. When

characterizing a PE or a communication architecture, the definition that lies behind

the performance metrics vary also quite often. This is why in this Section, all the

needed parameters in the conception of a communication architecture and all metrics

required for its complete characterization are defined. Definitions are issued from

both [33] and [46] that are reference publications in the domain of the communi-

cation architectures. Obviously, all stated definitions are carefully respected in the

remaining of this report.

1.2.1 Communication architecture

A digital system is composed of three basic building blocks: logic, memory, and com-

munication. Logic transforms and combines data, for example performing an arith-

metic operation or making decisions. Memory stores data for later retrieval. Com-

munication moves data from one location to another. The communication medium

linking the various logic and memory blocks, along with its dedicated control, is

called communication architecture. For a SoC, there are two main types of commu-

nication architectures: the buses and the Networks-on-Chip (NoCs). In this report,

Processing Elements (PEs) are composed of both the logic and the memory blocks

since they both participate to the processing of the data.

Bus

Communication architecture where interconnected elements (PEs) share a unique

medium of communication. Buses were historically composed of a set of parallel

wires with multiple connections. A bus is usually composed of data and address

wires. Every PE requiring to communicate must reserve the bus. When no other PE

uses the bus, data can be transmitted on the data wires while asserting the proper

destination address on the corresponding wires. Every connected PE accesses both

data and address wires so that only the one seeing its address on dedicated wires can

read the data. In order to improve performances in complex systems, communication

1.2. Definitions 19

architectures were created using several buses in parallel: they are called multiple

buses. This way several communications can occur at a time, one on each unitary bus.

Furthermore, segmented buses were also created. Segmented buses are composed of

several unitary or multiple buses serially linked by elements called bridges. Every

bridge makes the relation between one bus and another one. Examples of multiple

and segmented buses are provided in Figure 1.5. Further details are provided in

Section 1.3.

PE

PE

PE

PEPE

Controller Controller Controller

Controller Controller PE

PE

PE

PEPE

Bridge Bridge

PE

Figure 1.5 : Examples of a multiple bus (left) accessed through controllers, and of a segmented

bus whose segments are interconnected by bridges.

Network-on-Chip (NoC)

Networks-on-Chip are defined as a set of shared routing nodes and communication

links. There are two types of networks: direct and indirect. In a direct network,

each PE is connected to a dedicated routing node. In an indirect network, some

of the routing nodes are linked with one or several PEs while remaining ones are

only linked with neighbour routing nodes. Direct and indirect NoCs are presented in

Figure 1.6. A network is defined by its topology, its routing techniques, its switching

policy and its flow control.

1.2.2 NoC parameters

Topology

The topology refers to the static arrangement of links and routing nodes in an in-

terconnection network. The topology can be viewed as a road map. Data (like cars)

are transmitted on links (like roads) from a routing node to another one (like inter-

sections). Finally, the topology is not only the arrangement of the routing nodes and

links, it is also the size of these links (width of the roads). The topology is the first

choice when designing a network because the routing strategy and the flow control

method are highly correlated with it. A topology is chosen regarding its cost and

20 Chapter 1. State of the art - Definitions

PE

Router

PE

Router

PE

Router

PE

Router

PE

Router

PE

Router

PE

Router

PE

Router

Figure 1.6 : Direct (left) and indirect (right) networks. In a direct network every router connects a

PE while in an indirect one several routers do not connect directly any PE.

performance. The cost is defined as the number and the complexity of the routing

nodes also with the density and length of involved links. Performance has two com-

ponents: the bandwidth and the latency. A good topology is a trade off between

the cost that should be minimized and the performance that should fit applicative

requirements at minimum. Further details concerning topologies are provided in

Section 1.3.

Routing

The routing method employed in a network determines the path taken by a data

to reach its destination. If the topology is the road map of the network, routing is

the next logical step: choosing one road to reach the destination. A good routing

algorithm balances the load across the network links even in the presence of a non

uniformly distributed data traffic. The more balanced is the load, the more perfor-

mances will be close from ideal. A well designed routing algorithm also keeps the

path length as short as possible in order to reduce the overall latencies of the data.

There are three types of routing algorithms:

• Deterministic: the routing algorithm always chooses the same route for a spe-

cific couple source and destination PEs. This is for example the case of the XY

algorithm: in an array of routers, like the direct network presented in Figure

1.6, data always travel on the X axis until they reach the column the destina-

tion PE is connected to. When in the proper column, they follow the Y axis

reaching the line where the destination PE is located.

• Oblivious: this routing algorithm includes the deterministic routing as a sub-

set, the choice of the path is made without considering any information about

the network’s present state. As an example, an oblivious but not deterministic

1.2. Definitions 21

algorithm consists, considering an indirect network like in Figure 1.6, in ran-

domly choosing a path through upper level routers, then climbing down the

structure of the network to reach the destination PE.

• Adaptive: the routing algorithm adapts itself considering the state of the net-

work, for example avoiding congested areas. An example of adaptive routing

is the turn model: data travel using a deterministic algorithm, but if they

encounter a router that is already used for a communication, then they turn

on another direction, thus reaching the destination through a different path

(different lines and columns are used).

Circuit and packet switching

A network can be circuit switched or packet switched. In circuit switch, resources

(links, buffers, etc.) are first allocated for a communication forming a reserved

communication channel between the source and the destination PEs. When this

channel is created, data can be transmitted (one or several packets of data). In

circuit switch the routing node of the network are called switches while they are

called routers in packet switch. In packet switch, data are injected inside the network

with the destination address. The data path is allocated to this communication as

packets advance inside the network. This is in packet switch that the flow control

protocols presented in next section take all their sense. So, in packet switch, data

are divided in one or several packets. Each packet can follow a different data path.

For this purpose, usually each packet is composed of first sets of bits called flits

that contain for example source and destination addresses, as well as other control

informations (Cyclic Redundancy Check (CRC), etc.). These first flits are called

header. Usually the header is followed by a flit called count since it contains the

number of flits of data that are part of the packet. Data flits are called the payload.

Flow Control

The flow control protocol determines how resources of the network (links, buffers,

etc.) are allocated. A good flow control method allocates these resources in an ef-

ficient manner so the network achieves a high fraction of its ideal bandwidth while

delivering data with low predictable latencies. When two data arrive at a routing

node for the same destination, the flow control method allocates resources to a com-

munication while dealing with the other one. This way contentions are resolved.

There are three main flow control methods: the store and forward, the virtual cut

through, and the wormhole. In store and forward, every routing node stores the

whole packet in its buffer before sending it to the following neighbour or the des-

tination PE. In virtual cut through, the whole packet is also stored in a buffer of

22 Chapter 1. State of the art - Definitions

the routing node until the whole packet is successfully transmitted, but flits are for-

warded as soon as possible. In wormhole, only a small amount of flits are stored in a

buffer. Flits are forwarded as soon as possible freeing a memory space in the buffer.

This way, when a flit is forwarded, another can arrive. So, the packet is distributed

over several routing nodes along its route like a worm.

A flow control protocol also manages the functioning of the buffers. One man-

agement protocol is based on credits. Each buffer has a counter indicating if further

data can be received. Each time a flit is transmitted to next node (router or PE),

the counter of considered buffer is incremented. Similarly, each time a flit arrives

in the buffer, the counter is decremented. If the counter value is zero, the buffer is

full and a signal indicates to previous node (router or PE) that no further data can

be received. Another flow control protocol is the On/Off. A signal indicates to a

previous node if it is allowed to transmit data. If the buffer storing incoming data

contains more than a certain number of flits (called threshold), the ”Off” signal is

transmitted halting the communication in previous nodes. When the number of flits

in the buffer becomes less than the threshold value, the ”On” signal is asserted so

that further flits can be received. Finally, another flow control protocol reducing the

load of the buffers is the Ack/Nack (also called handshake). Each time a flit arrives

in a router, if it can be stored in a buffer an acknowledgment (Ack) is sent. If no

buffer is available, the flit is drop and a non-acknowledgment (Nack) is sent. When

receiving a ”Nack” signal, previous node sends the same flit again until it receives

an ”Ack”.

Traffic Patterns

The Traffic pattern is the main concern when performances of a network are to be

evaluated. Indeed, the topology of a network, the routing algorithm and the flow

control methods react differently depending on the traffic pattern. A random traffic

in which each source PE sends data with equal probability to each destination is the

most commonly used traffic. A completely random traffic do not stress a network

because, by making the traffic uniformly distributed, it balances data load inside

the structure of the NoC even for topologies and routing algorithms that normally

have very poor balance. Some very bad topologies and routing algorithms look good

if only evaluated with a random traffic. To stress a topology or routing algorithm,

permutation based traffic is typically used. In this pattern, each source PE sends

all of its traffic to a single destination. Because load are then concentrated on

individual source/destination pairs, permutations stress the load balance of topology

and routing algorithm. In such a traffic, destination addresses are calculated from

source addresses with a permutation or rotation of the bits.

1.2. Definitions 23

In addition with the choice of destination addresses that can notably be random

or permutation based, the temporal distribution of the communication is also im-

portant. So, a PE sending all its data at a constant data rates forms a Uniform

data traffic. The data rate can also vary in the time, reaching some peaks. Traffics

patterns with data rates following a Normal temporal distribution are commonly en-

countered in applications. Another temporal distribution characterize the function-

ing of most memories. This is the burst transfers: data are grouped and transmitted

sequentially without interruption. When all data are transmitted, periods of silence

occur.

Deadlock, livelock and contention

Deadlock occurs in a network when a group of packets are unable to progress because

they are waiting on another one to release resources (buffer, link, etc.). If a sequence

of packets forms a cycle in the network, then the network is deadlocked. A deadlock

is catastrophic because when few resources are occupied by deadlocked packets,

other packets will block on these resources thus completely paralyzing the network.

Furthermore the network would remain in this state until external intervention.

A closely related network pathology is livelock. In livelocks, packets continue on

moving inside the network but without making progress toward their destinations.

This becomes a concern for example when packets are allowed to take non minimal

paths through the network. Livelocks are as dramatic as deadlocks for a network.

Contentions are defined as delays imposed to a packet in order to wait for a

resource to be available. Contentions are not problematic like deadlocks and livelocks

because the network recovers from contention without any external intervention. It

recovers as soon as previous communication finishes or as soon as another path is

found.

1.2.3 Network performances

Latency

Latency is defined as the time elapsed between the moment the source PE sends

the first bit of a data and the moment the destination PE receives the last bit of

data. There are different types of latencies: the sender overhead, the time of flight,

the transmission time, and the receiver overhead. These latencies are presented

in Figure 1.7. The sender overhead corresponds to the time for the source PE to

prepare the packets that are to be injected in the network. The time of flight is

defined as the time for the first flit to cross the network, and thus to reach the

destination PE. Time of flight usually depends on the traffic inside the NoC, so it

may vary accordingly with the injected traffic. The transmission time corresponds

24 Chapter 1. State of the art - Definitions

to the time taken by the whole packet of data to pass through the network. The

transmission time do not include the time of flight. However, this time is highly

linked with the size of the packet in terms of number of flits. The receiver overhead

is defined as the time required by the destination PE to process the incoming data.

The sum of the time of flight and the transmission time is denominated as transport

latency. Transport latency thus corresponds to the time the packet spends inside the

network. Finally, the total latency is defined as the sum of the transport latency and

the sender/receiver overheads. Total latency represent from the PE point of view the

total time required for communication purpose. Usually, in network characterization,

only the transport latency is considered. This allows to extract the performances of

the network alone, or interconnecting ideal PEs.

Sender
overhead

Transmission
time

Time of
flight

Transmission
time

Receiver
overhead

Transport latency

Total latency

time

Sender

Receiver

Figure 1.7 : Presentation of the various delays constituting the total latency.

In the remaining of this report, the transport latency will always be considered

under the appellation ”latency”.

Injection rate

The injection rate, also called offered traffic, is defined as the number of packets

that are offered by every PE to the network. Offered traffic corresponds indeed to

the number of packets each PE would like to inject in the network per unit of time.

As in next section, offered traffic is often confronted to the accepted traffic, i.e. the

number of data the network can accept. When the accepted traffic is less than the

offered one, the network is not able to transfer all the data provided to it (this is

the saturation). Injection rates are usually expressed in percentage, as a fraction of

capacity which corresponds to the theoretical bandwidth of the network. If C is the

capacity of a network, Dw the width in bits of the data lines, and F the operating

1.3. Interconnection architectures 25

frequency of the NoC, then C is

C = Dw ∗ F (1.1)

Then, if Doffered corresponds to the number of data bits per second offered to the

network, then the injection rate Ir, in percentage, is

Ir =
Doffered ∗ 100

C
(1.2)

From this formula, PEs injecting packets using all the theoretical bandwidth of

the network define an injection rate of 100%. Similarly PEs injecting data using only

half of this theoretical bandwidth offer an injection rate of 50%.

Throughput

Throughput corresponds to the rate at which packets are delivered by the network.

It is measured counting the number of packets that arrive at destination over a time

interval. Usually presented in percentage as a fraction of network’s total capacity,

it is also sometime expressed as a data rate. Throughput represents the traffic that

is accepted by the network. This is why throughput is usually contrasted with the

injection rate (offered traffic). At traffic level less than saturation, accepted traffic

is proportional to offered traffic. However, when the network saturates the accepted

traffic either reaches a constant value or decreases. When a constant value is reached,

the network is called stable because accepted traffic is ensured to fit the offered traffic

until a maximum fraction of capacity. However, an accepted traffic decreasing when

the network saturates reveals an instability of this network: accepted traffic feats

the offered one until reaching a pick after which performances fall down. Stable and

instable networks are presented in Figure 1.8

1.3 Interconnection architectures

In previous sections, the impact of the DPR over the conception of Systems-on-Chip

was presented. Keeping in view the large range of applications that have to be imple-

mented, an interconnection architecture should support several constraints induced

by the DPR. Current applications are very complex and their task graphs exhibit

a large degree of parallelism. Thus, from the interconnection point of view, the ar-

chitecture must provide the possibility to realize several communications in parallel.

Furthermore, dynamic placement and scheduling of PEs in an FPGA require a high

level of flexibility. So, neither the location of PEs nor the data traffic (uniform, per-

mutation, etc.) can be predicted at compile time. These requirements of flexibility

should be considered by the network topology and the routing algorithm, and thus

26 Chapter 1. State of the art - Definitions

0 Injection rate (%)

Th
ro

ug
hp

ut
 (%

)

50

50

C=10025 75

25

stable network

Instable network

Saturation zone

Figure 1.8 : Presentation of the throughput compared with the injection rate for a stable (blue)

and an instable (red) network.

the available network performances. An application is typically split into tasks, and

there is no reason for every task to be implemented in homogeneously sized hardware

PEs. Heterogeneously sized PEs are considered in this work. Furthermore the matri-

ces of current FPGAs are highly heterogeneous when considering the 2D repartition

of the resources. So, both heterogeneously sized PEs and heterogeneous FPGAs

should be supported by the interconnection architecture. Finally, a communication

architecture should present an interesting trade off between the implementation cost

(used resources) and performances. Since a large range of applications is considered,

network performances can be sparingly privileged.

Some existing interconnection architectures are now presented. Considering the

very large amount of different architectures that were proposed in research, this

presentation can not be comprehensive. However, most popular interconnection are

presented and confronted to the constraints induced by the DPR.

1.3.1 Bus based interconnections

Buses are very popular in present on-Chip circuits. Since the sizes of most affordable

FPGAs are still limited in terms of CLBs number, the number of PEs constituting

an application is also limited. This is why Xilinx proposes bus based interconnection

architecture directly accessible from the ISE/EDK design environments. Thus, both

the Processor Local Bus (PLB) and the On-chip Peripheral Bus (OPB) are available

from these tools. These two buses provide high level performances with a reduced

cost. They are quite simple to implement into the scope of an application thanks

1.3. Interconnection architectures 27

to the ISE/EDK environments and to their well documented interfaces [120], [119].

Furthermore, thanks to the ISE/EDK environments, many IP cores are available to

be connected to these buses: MicroBlaze or PowerPC processors, memory controllers,

communication interfaces like PCI bridges, etc.

Others largely used bus based interconnections are the Advanced High-performance

Bus (AHB) that is inherited from Advanced Microcontroller Bus Architecture (AMBA)

[40], and the Wishbone bus [89]. Both AHB and Wishbone buses are open source.

Wishbone is provided by OpenCores while AHB is accessible through the GRLIB

library also with many IP cores that can be directly interconnected: LEON 3 proces-

sor, memory controllers, etc. AHB provides high level performances as demonstrated

in [12]. Considering these bus based interconnections along with their design envi-

ronment and existing compliant IP cores (PEs), designing complete applications is

substantially eased.

Several others bus based interconnections were proposed as NECoBus that is

very close from AMBA [13]. Some of them are used on-Chip like in 8032 or ARM

processors [112]. However, as every bus based interconnections, they suffer of a poor

scalability resulting in a fall of performances when the number of interconnected

cores increases. Furthermore, even if currently DPR is realized through statically

implemented interfaces, all these buses were foreseen to operate only with statically

allocated PEs.

Some buses have been designed in order to present both improved scalability and

higher performances. Segmented buses with different clocks per segment were pre-

sented in 1999 [84]. This is the Globally Asynchronous Locally Synchronous (GALS)

approach. Each segment has a dedicated clock reference allowing synchronous data

transfers. The clock adaptation between the various segments is realized through

the use of bridges. This way, the overall interconnection architecture seems asyn-

chronous. As demonstrated through an ASIC implementation, the proposed bus

presents interesting performances. Following the same idea, another segmented bus

was proposed for high performance compliance purpose in 2002 [102]. Finally, the

HIBI interconnection network was designed. Indeed, HIBI is based on segmented

buses and uses also the GALS approach [99]. Following the GALS approach, a fully

asynchronous bus was proposed in 2003 [56]. Latter bus is expected to provide better

performances than synchronous based ones because it does not take care about prop-

agation delays nor the parasitic effects that affect the physical layers of the chips.

Unfortunately, no comparison with synchronous buses was presented.

More researches were lead in order to design efficient buses. This is the case of

the bus presented in 2009 in [87], or of FLEXBUS [103]. However the introduction

of the DPR paradigm in the on-Chip design methodology has lead to DPR oriented

buses. This is the case for example for ReCoBus [64] which is defined as a shared

28 Chapter 1. State of the art - Definitions

bus interconnecting PRRs. The force of ReCoBus lies in its design framework that

allows it to be statically generated accordingly with aimed application [65].

However, even with segmented and GALS approaches, buses always suffer of a low

scalability. Performances fall down significantly when the number of interconnected

PEs grows up. This is due to the share of the communication mediums and their

controllers that scale badly and dramatically increase the delays for control purpose.

This way, as specified in [127], NoCs provide better performances than simple buses

starting from 16-25 interconnected PEs. Currently, applications present only a dozen

of simultaneously interconnected PEs, and rarely more than 15. Buses are then

particularly interesting despite of their drawbacks. However, applications with more

interconnected PEs must be foreseen to become a reality in a close future. This

is why NoCs are so popular in the research community. DPR significantly reduces

the numbers of PEs that must be interconnected, but 32 or even 64 simultaneously

connected PEs seems reasonable to be anticipated respectively at medium and long

term.

1.3.2 Static NoCs

There exist a very large variety of NoCs, such that even most comprehensive surveys

like [98] or [23] can not cover every proposed work. So, in this section we do not

aim to present all the existing NoCs, but only some representative ones. Motiva-

tions for using NoCs instead of buses are not new. Starting in 2001, several works

pointed out the interest of using NoCs [32], [21], [52]. Following these interests, NoCs

switched from being an emerging research topic to an active community. This way,

many publications were realized in order to explore all the various parameters of a

NoC (topology, routing, flow control, quality of service, etc.) and their impact over

performances [53], [22], [41], or even [68].

If there exists a large variety of NoCs, they can be classified in only few basic

families depending on their topology. Latter families are described in next sections.

Mesh and torus

Mesh and torus, presented in Figure 1.9, are two very common topologies for NoCs

[33]. Such topologies are commonly encountered in commercial high-performance

machines notably from IBM [46]. Due to the direct connection of the PEs, mesh

based networks appeared to be interesting solutions for improved scalability. Indeed,

if the number of connected PEs is N , then the number Rmesh of routers needed to

build a square mesh is

Rmesh =
⌈√

N
⌉2

= B2 (1.3)

1.3. Interconnection architectures 29

A) B)

PE

PE

PE

PE

PE

PE

PE

PE

R R R

R R R

R R R

PE

PE

PE

PE

PE

PE

PE

PE

PE

R R R

R R R

R R R

PE

Figure 1.9 : A) Mesh topology: routers ”R” are interconnected forming a regular matrix. Every

router is linked with a dedicated PE. B) Torus topology: each column and each line of router is

interconnected as a ring. For both topologies, connection links are bidirectional.

Where B is the base: number of router per line of a square mesh. Whereas the

number Lmesh of needed communication links is

Lmesh = N + 2(B2 − B) (1.4)

Concerning on-Chip implementations, HERMES is undoubtedly the most popu-

lar NoC in research community [81]. Based on a mesh topology, HERMES is both

simple to use and efficient considering produced network performances. Studies were

lead in order to formalize the performances so that they could be predicted into the

scope of as much applications as possible [34]. Following this formalization, several

mesh based networks were proposed [69], [110], but one is particularly interesting:

Ætheral [44]. This network has the particularity to guarantee levels of service and

performances. This way, applications can be designed with guaranteed performances

and reliability. When compared with an AHB bus, Ætheral reveals itself to be cost

efficient and to significantly reduce contentions [16]. A variant from Ætheral with

different flow control was proposed in [101].

If mesh based networks are foreseen with a regular structure interconnecting

homogeneously sized PEs, some studies deal with the problem of how interconnect-

ing heterogeneously sized PEs in heterogeneous FPGAs. An answer is DyNoC [25].

DyNoC interconnects homogeneously sized sets of logical resources. However, PEs

are implemented using one or several of these sets. This way heterogeneously sized

PEs can be interconnected. However this solution implies a significant waste of hard-

ware resources due to the unused routers, the granularity of the sets of resources, and

furthermore the communications between the various resources included inside the

sets constituting a single PE. the CuNoC network was recently proposed improving

30 Chapter 1. State of the art - Definitions

DyNoC with a routing algorithm taking into account the heterogeneity of the PEs

[55]. However, a significant hardware overhead is still induced by the connection of

these heterogeneous PEs. This is one of the main reasons why mesh based networks

are not fully compliant with applications using DPR in heterogeneous environments.

Another reason lies in the location of the shared element inside mesh structure. In-

deed overall performances of a mesh are very sensitive to their location. A shared

element located in the centre of a mesh induces a lot of contentions themselves

impacting the communications in the whole network.

However, the quality of service in a mesh can be significantly improved with

simple mechanisms such as adaptive routing algorithms or flow control strategies [66],

[104], [93]. Furthermore, some mechanisms were also proposed in order to support

multicast (sending of data to multiple destinations) [100]. This is particularly useful

for data flow oriented applications.

Improved performances and flexibility can also be attained through modification

of the topology. This leads notably to the torus topology [74]. Every line and

column of a mesh is replaced by a ring. These way additional data paths are created

with a small hardware overhead. This is the case for the DMESH network that is

based on the xmesh topology [109]. A xmesh is a standard mesh where diagonal

links are implemented in every set of four routers. However, these topologies face

the same problems as the regular mesh when facing the DPR paradigm. They

are still sensitive to the location of the shared PEs and to the heterogeneity of

both the size of the PEs and the FPGAs themselves. This is why they are more

adapted for statically implemented on-Chip applications. In this latter case they are

particularly interesting even considering the power consumption. As demonstrated

in [113], mesh based networks consume less power than buses when related to the

number of transmitted bits per second. Meshes are most power efficient. This

study also indicates that circuit switched NoCs reduce again the power consumption

because less buffers and simpler control mechanisms are required.

If mesh are usually designed for packet switching, several evolutions were pro-

posed to handle circuit switching [114]. Like PNoC [47] which is made of a set of

crossbar based switches, NoCs such as SoCBUS are based on the mesh distribu-

tion of the switches [111]. These networks only supporting circuit switching as well

as hybrid ones merging circuit and packet switching [80], [79] allow to significantly

improve network performances and power consumption. The complementarity of

circuit and packet switching in latter network allows to improve both the scalability

and the flexibility facing various data traffics that become the weakness of others

circuit switching networks. Since the support of circuit switching can improve net-

work performances, it could be interesting to consider carefully this switching policy

even with other network topologies.

1.3. Interconnection architectures 31

Ring and spidergone

A) B)

PE

PE

PE

PE

PE

PE

PE

R

R

R

R R

R

R

R

PE

PE

PE

PE

PE

PE

PE

PE

R

R

R

R R

R

R

R

PE

Figure 1.10 : A) Ring topology: every PE is interconneted through a dedicated router, itself linked

with neighbor routers forming a cycle. B) inherited from the ring topology, spidergone pocesses

additional diagonal links allowing to directly access the opposite side of the network.

Unlike bus based interconnection architectures, rings (Figure 1.10.A) can allow

”many” transfers simultaneously. Indeed the first PE can send data to the second

while the second sends data to the third and so on. However, as dedicated links do

not exist between nonadjacent PEs, data often travel through several routers until

they can reach their destinations. Thus significantly increasing the transport latency

[46]. Consequently, ring based networks are very sensitive to the localization of the

interconnected PEs. One way to achieve better performances is to use multiple rings.

Multiple rings like RMBoC [3], similarly to multiple buses, have the particularity that

several communication ways are available between every router. A comparison was

made in [24] between RMBoC and DyNoC. If no network performances comparisons

are presented, it appears that RMBoC presents a significant overhead considering

the use of hardware resources. Multiple rings constitute very efficient communication

architectures and are used in high performances machines like the CELL broadband

engine from IBM [51].

Another way to improve performances is to use hierarchical rings [29]. Using

several ring interconnected together allows to create sub-networks that significantly

reduce the number of routers involved in every communication. However, if PEs can

be optimally placed in a static environment, such interconnection network is quite

impractical in a DPR compliant architecture. Indeed, the dynamic placement of

some PEs that share a large amount of data on distinct sub-networks would result

in a significant fall of performances. This is why rings should not be used in the

context of an application using DPR.

Spidergones (presented in Figure 1.10.B) are very close from the ring based net-

32 Chapter 1. State of the art - Definitions

works. The difference lies in the additional links that make the relation between every

diametrically opposed routers. Spidergones are for example part of the Star-Wheels

network [43] or used in the QUARC NoC [78], [77]. All these networks present

an acceptable hardware cost while offering high network performances. However,

they both suffer from the same drawback as for ring based networks. They are not

flexible considering the dynamic location of the PEs that significantly impacts the

performances.

Tree and multi-stages network

B)A)

PE PE PE PE PE PE PE PE

R R R R

R R R R

R R R R

PE 1

PE 2

PE 3

PE 4

PE 5

PE 6

PE 7

PE 8
R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R
PE 1

PE 2

PE 3

PE 4

PE 5

PE 6

PE 7

PE 8

Figure 1.11 : A) Beneŝ network: multi-stages network in which output of the connected PEs are all

located at the left side while inputs are at the right side. Thus communications are uni-directional.

B) Fat-tree topology: PEs are connected to routers located at the base level of a tree. Since the

number of links is the same between each hierarchical level, the available bandwidth is constant

all along the network.

Multi-stages networks were initially proposed for telephone exchanges in the

1950s and have since been used to build the communication backbone for paral-

lel supercomputers, symmetric multiprocessors, and multi-computer clusters [46].

Multi-stages networks like Omega or the Beneŝ network that is presented in Figure

1.11.A are based on the same principle. The network is composed of routers (or

switches) forming several hierarchical levels. The connection of the various routers

allows data to reach any destination from any source. Usually, the source PEs (their

outputs) are located at the left side of the NoC while destinations (PEs’ inputs) are

at the right side. So, both links and router inside the network are unidirectional [33].

However some symmetrical networks like Beneŝ’ can be easily folded. This way links

and routers become bidirectional. Finally, a folded beneŝ network is equivalent to a

fat-tree as presented is Figure 1.11.B.

Just like mesh, the fat-tree topology and the Omega network have been used

in some high performances machines from both IBM and Intel [46]. However, the

main drawback of these networks when aiming an on-Chip implementation lies in

their scalability. Indeed their hardware resource consumption significantly increases

1.3. Interconnection architectures 33

with the number of connected PEs [15]. Considering only complete fat-trees, if the

number of connected PEs is N (N ≥ 2) and the number of communication ports for

each router is r, then the total number p of communication ports is

p = 2⌈log2(N)⌉ (1.5)

This leads to the number Rfat−tree of routers in a fat-tree [46] which is

Rfat−tree =
2p

r
(log r

2

p) (1.6)

Furthermore, the number Lfat−tree of connection links needed by the fat-tree topol-

ogy [46] is

Lfat−tree = N(log r

2

N) (1.7)

Comparisons between the numbers of routers and links involved in both fat-tree and

mesh based networks are presented in following chapter. However, since 1985 fat-

trees have been characterized for supercomputing purpose and it appeared that this

topology allowed to build near optimal networks [71]. Following this observation,

some researches were lead in order to characterize and implement fat-tree based net-

works aiming on-Chip applications [94]. This is the origin for example of the SPIN

network [2]. However, when comparing on-Chip implemented fat-trees to meshes,

despite of a higher hardware cost, fat-trees provide much better performances [86].

Higher bandwidths with lower latencies were measured for the fat-trees. Further-

more, since PEs are not distributed inside the structure of the network, fat-trees are

fully compliant with the interconnection of heterogeneous PEs in a heterogeneous

FPGA. This notably led to the on-Chip implementation of the SPIN network [11].

Considering the advantages of fat-tree topologies, many investigations took place

in order to further improve this topology. This is how some researchers modified the

fat-tree topology in order to improve the throughput [27] even if it implies an hard-

ware overhead (more wires and more buffers). Consequently this network does not

seem to be realistic for on-Chip implementations. However other researchers aimed

to reduce the hardware cost of fat-trees. Resulting network is the XGFT [59], [60].

Instead of directly connecting the PEs to the fat-tree, they are grouped in several

sets themselves connected to the NoC. This way the number of communication ports

needed for the fat-tree is reduced and so is the overall hardware cost [58]. Further-

more, XGFT was improved with fault tolerance mechanisms [61]. This is a very

powerful interconnection network that is compliant with heterogeneously sized PEs.

However, when considering the DPR paradigm, XGFT is not so good because of

the shared interconnection mediums that are embedded inside the sets of PEs. In-

deed since the placement of the PEs can not be predicted, the bandwidth that is

offered for intra-fat-tree communications is reduced compared with the number of

interconnected PEs.

34 Chapter 1. State of the art - Definitions

Finally, several researches were also lead in order to create a dynamic routing of

the data inside a fat-tree based network [7], [126]. This research aims to balance the

data traffic inside the structure of the NoC, thus allowing better performances, and

to improve its fault tolerance. In this latter case, some faulty routers can be avoided

by the data, thus allowing the communications to happen at the cost of only a little

higher latency (due to the probability of contentions that increases for a constant

offered traffic).

Considering all these studies, fat-tree based networks seems to be viable solutions

for on-Chip implemented applications using DPR if the hardware cost can be limited.

Crossbar

A single switch suffices to interconnect every simultaneously implemented PE of an

application if it possesses a sufficient number of communication ports: at least one

per PE. This simple network is usually referred to as a crossbar. Crossbars allows

high speed interconnections without any risk for a conflict, and then a contention,

to happen [33]. Indeed, as it can be seen from Figure 1.12, a direct and dedi-

cated data path exists between each couple of source/destination PEs. However, the

complexity of a crossbar increases quadratically with the number of interconnected

PEs [46]. This is why, despite of their very high network performances, crossbars

present a very poor scalability. Indeed, if a crossbar has a number p of ports, then

the number Nbcombination of possible routing combinations is equal to factorial(p):

Nbcombination = p!

PE 1

PE 2

PE 3

PE 4

PE 1 PE 2 PE 3 PE 4

PE 1

PE 2

PE 3

PE 4

PE 1

PE 2

PE 3

PE 4

Figure 1.12 : Functional (left) and symbolic (right) view of a crossbar interconnecting 4 PEs. A

crossbar is non-blocking meaning that no contention can occur between several communications if

destination PEs are different.

However, several networks were proposed for on-Chip implementations using

crossbars. This is for example the case of SCORE [54]. Even if not referenced

as a crossbar, through the architecture of the routers and the topology, this network

is no more than a crossbar. As expected, very high performances are provided by

1.3. Interconnection architectures 35

this network, but the hardware cost is too consequent to foresee a realistic on-Chip

implementation. Unfortunately, both the crossbars based NoC presented in [70] and

the MCNoC [39] lead to the same conclusion: large crossbars based interconnec-

tions present a cost that is prohibitive for on-Chip implementations. This is why

crossbars should not be used as the unique interconnection mean but combined with

an efficient network topology (embedded in the architecture of the routers). This

way, a trade off should be found between the size of the crossbars (that should be

minimized) and the resulting network performances (that should be maximized).

Hierarchical network

PE

PE

PE

PE

PE

PE

R

R

R

R R

R

R

R

PE

PE

PE

PE

PE

PE

PE

R R R

R R R

R R R

PE

PE

R R

R R

Figure 1.13 : Hierarchical network: a fat-tree based network interconnects both a PE and two

sub-networks. Each sub-network can have a dedicated topology that is chosen accordingly with

interconnected PEs.

Hierarchical networks are usually composed of several sub-networks linked di-

rectly together or interconnected through an over-layer network. Such a network is

presented in Figure 1.13, where mesh and ring based networks are interconnected

through a fat-tree based over-layer network. Hierarchical networks are particularly

suited for large scale applications with a large number of involved PEs. Assuming

that every PE do not share exactly the same amount of data with every others, they

can be grouped in several sets depending on their communication preferences. This

way, sub-networks can be chosen accordingly with the communication graph of the

PEs they interconnect. This is how optimal or at least near optimal interconnec-

tion sub-networks can be chosen. The advantage of an hierarchical network is also

to improve the scalability of the overall interconnection architecture. Indeed, very

36 Chapter 1. State of the art - Definitions

high-performances can be extracted from sub-networks with a very poor scalability.

Interconnecting only a part of the PEs with this sub-network allows to reduce its

size, and thus to improve the global scalability. This is the case for example with

the XGFT network where the over-layer network is a fat-tree while the sub-networks

are shared buses [58].

If hierarchical networks can be implemented in a single chip, they are also well

suited for multi-chips implementations. Indeed, each sub-network can be imple-

mented in a dedicated FPGA. Connections between the various FPGAs could be

provided through direct links or via a specific chip acting as the over-layer network.

So, hierarchical networks allow to foresee future large-scale applications. Further-

more, several researchers already proposed methodologies to guarantee deadlock free

routing algorithms in such networks [48]. However, in the case of an application

supporting the DPR of the various PEs, sub-networks can no longer be designed op-

timally. Since placement of the PEs is dynamic, data traffic is the same and finally

some inefficiencies can occur with a large amount of communications between several

sub-networks. Furthermore a routing algorithm supporting DPR can be quite diffi-

cult to embed in a hierarchical NoC. Hence, hierarchical networks should be avoided

as the unique interconnection architecture in a DPR system. However, there is no

obstacle for networks adapted to the DPR to be part of a hierarchical network (in a

multi-chips system).

Custom network

PE

PE

PE

PE

PE

PE

PE

RR R

R R R

R R

PE PE

PE

Figure 1.14 : Custom network: the irregular topology is chosen accordingly with the communica-

tion graph of the interconnected PEs.

In custom networks, the topology is defined depending on the communication

graph that characterizes the PEs. For example, two PEs that share a large amount

of data will have a direct link allowing fast communications with maximum band-

1.3. Interconnection architectures 37

width. This is the case for example for the iNoC network where the overall topology

is statically built considering the communication needs of the PEs [85]. However,

designing a reliable custom network is not so trivial because of the many inefficien-

cies that can occur. However key features to make reliable a custom network are

provided in [83]. Furthermore, some tools provide an automated framework to design

a custom NoC fitting the applicative requirements. This is the case of the µSpider

NoC proposed in [37] where the custom network is generated through a dedicated

environment using fully parameterizable routers.

Since the structure of the network is irregular, it can be not so trivial to propose

a compliant routing algorithm. In the case of custom NoCs, an adaptive routing

algorithm can thus be quite interesting. Indeed, such a routing algorithm would

adapt the path taken by the data to the structure of the network without for the de-

signer to statically foresee which path must be chosen. Adaptive routing algorithms

were already proposed for custom NoCs in [76], or even in [107] which targets the

HoneyComb network. This latter NoC is particular due to its octagonal routers in

which PEs are included.

In a statically implemented application, it is possible to create a dedicated cus-

tom NoC that best fits the communication requirements. However, when aiming a

dynamic application, things become even more difficult. Indeed, if the placement of

the tasks can not be foreseen at design time, then every possible placement should

be checked in order to define the most compliant custom topology. Considering the

number of PEs that keeps on growing and thus the number of possibilities, defining

a static custom topology of network seem to be quite impractical. This is the reason

why a ”general purpose” topology should be privileged.

Conclusion over static NoCs

As presented in this section, the choice of a NoC is always a trade off between

network performances and hardware costs (inducing the scalability). These trades

off were studied in [91] where the conclusion is that there is no ultimate NoC with

both maximal performances and minimal costs. In the case of applications using the

DPR paradigm, there is one more parameter that should be taken into account in the

global trade off: the flexibility of the network when facing dynamically reconfigurable

PEs. This latter parameter modified substantially the conclusion over many powerful

topologies that are a good trade off in a static context. At this point, there is no NoC

that seems to be perfectly adapted for an on-Chip application using DPR. However,

despite of its limited scalability, the fat-tree topology appeared to be interesting due

to both its high performances and its flexibility. However, its use in a DPR compliant

SoC would require significant improvements concerning its hardware cost.

38 Chapter 1. State of the art - Definitions

1.3.3 Flexible NoCs

If some statically implemented networks can lack of flexibility when facing dynam-

ically reconfigurable PEs, applying the DPR directly to these NoCs could improve

their flexibility. The DPR could be used to adapt the routing algorithm depend-

ing on communication requirements, or even to the network topology itself. Several

researchers investigated this dynamic reconfiguration of the networks. This is no-

tably the case for the architecture presented in [31]. This architecture is fractioned

into several homogeneous tiles that can be dynamically reconfigured as a PE or a

router. This approach is very close from CoNoChi [96] which is presented in Figure

1.15. This latter NoC lies on the same principle: dynamically reconfigurable areas

are configured as PEs, routers, or links accordingly with the applicative needs. Both

networks provide high performances and CoNoChi is demonstrated in [95] to be more

adapted to the DPR paradigm than RMBoC or DyNoC. However, they both suffer

from a major drawback: they both use homogeneously sized reconfigurable regions

to implement PEs, routers, and even communication links. Since PEs are supposed

to heterogeneous, there is no reason for them to require as many hardware resources

as routers and moreover links. So, a lot of hardware resources are wasted by both

NoCs. Furthermore both of them are not compliant with present technology since

the connection of direct links between BMs is not feasible. Moreover the implemen-

tation of a PE using several PRRs is impossible: since BMs have to be used, such

implementation implies to define two sub-PEs communicating through the BMs.

PRR PRR PRR

PRR PRR

PRR

PRR PRR

PRR PRR PRR

PRR PRR

PRR

PRR PRR

PE 1

PE 2

PE 3

Figure 1.15 : CoNoChi network based on PRRs used to dynamically implement PEs, routers and

links.

1.4. Synthesis of the chapter 39

A different approach is the dynamically reconfigurable NoC which is implemented

inside a single PRR [97]. Depending on the applicative needs, the whole network

can be reconfigured. This way, topology, routing algorithms, or even flow control

techniques can be adapted. Since the network is always implemented in the same

PRR, there is no obstacle for PEs to be heterogeneous. However as the DPR can

not be applied only to a part of a PRR, this implies that every communication must

be halted each time the network is adapted. Or at least each communication whose

data path is adapted from the older configuration to the new one. Otherwise, if

hardware resources all along the data path are not modified, the communication is

guaranteed to happen without any glitch.

The DRNoC network is based on a mesh topology with diagonal links (xmesh)

[67]. This network interconnects homogeneously sized PRRs. Large PEs can be

implemented using one or several of these PRRs like in DyNoC. More than the

xmesh topology, the particularity of DRNoC lies in the reconfigurable routers and

network interfaces. So, DRNoC is highly flexible despite a significant hardware cost.

Another mesh based NoC is the one proposed in [80]. This network is based on two

sub-networks: the packet switched HERMES NoC for control purpose, and a circuit

switched mesh network for data transfers purpose. The main particularity comes

from the circuit switched network that is dynamically reconfigured by HERMES in

order to create direct and dedicated data paths. This way, fast data transfers are

achieved with an improved quality of service. This network is particularly interesting

even if it suffers from technological limitations such as the reconfiguration times that

are of 17.3ms per PRR. However, more reduced reconfiguration delays are expected

from improved ICAP interfaces. This way reconfiguration time from the order of

10 µs are expected. Another drawback is the number of partial bitstreams to be

stored since they can not be generated online nor relocated. However, this network

remains interesting in the use of a circuit switch sub-network that can be adapted

on demand.

1.4 Synthesis of the chapter

In this chapter a state of the art was proposed concerning the dynamically reconfig-

urable architectures. Techniques to use the DPR ability of these architectures were

presented along with their constraints. So, if Altera is currently starting to pro-

pose DPR compliant FPGAs, at the beginning of this PhD only Xilinx FPGAs were

dynamically reconfigurable. DPR occurs in statically defined regions called PRRs

through a reconfiguration interface called ICAP.

After the state of the art concerning dynamically reconfigurable devices, some of

present interconnection architectures were presented and contrasted with the con-

40 Chapter 1. State of the art - Definitions

straints induced by the DPR. Due to the very large number of communication

architectures that were proposed in the world, this state of the art could not be

comprehensive. However, most popular architectures were presented. So, if buses

are undoubtedly the most popular interconnection means, they face many problems

when considering both large scale applications and DPR. This is notably true con-

sidering present Xilinx FPGAs that can be reconfigured in 2D. This is why NoCs

emerged as being viable interconnection architectures with improved scalability.

Most popular topologies like mesh, torus, ring, tree, or even custom were detailed.

Many of them, such as the mesh one are very efficient in a static context but reveal

themselves to be quite sensitive to the dynamic location of the PEs. Indeed, depend-

ing on the placement of the PEs, data traffic can be concentrated in some areas of the

network, resulting in a drop of performances. Fat-tree networks are less sensitive to

these placement problems, and are thus more flexible, but they suffer from a signifi-

cant hardware cost. The design of an interconnection architecture is always a trade

off between the hardware cost, the network performances, and the offered flexibility.

So, a fat-tree can be interesting for DPR compliant on-chip implementations and

even more if the hardware cost can be reduced. Flexible interconnection networks,

in the sense that they can be dynamically reconfigured, were also investigated. If

some of them seem to be a bit far from present technology, some are very realistic

and were already implemented in FPGA. However, every one of these suffers from

the technological constraints that are notably important reconfiguration latencies,

and statically generated bitstreams that have thus to be stored in the architecture.

Chapter 2

The DRAFT network

2.1 Objectives and motivations . 42

2.2 Topology of the DRAFT network . 43

2.3 Router architecture . 50

2.4 Routing and Flow Control . 52

2.5 The DRAGOON environment . 58

2.5.1 DRAGOON main interface . 59

2.5.2 The NoC generator . 60

2.5.3 The traffic generator . 62

2.5.4 The NoC simulator . 63

2.5.5 The traffic evaluator . 63

2.6 DRAFT implementation advices . 64

2.7 DRAFT integration: interface DRAFT/AHB 67

2.8 DRAFT communication service . 70

2.9 Synthesis of the chapter . 75

42 Chapter 2. The DRAFT network

In this chapter, a new interconnection network is presented: the DRAFT net-

work. This network aims to be an interesting trade off between hardware resources

consumption, network performances, and flexibility. The utilization of this network

is also detailed into the scope of applications using dynamic and partial reconfigura-

tion. A dedicated bridge is presented in order for DRAFT to be directly connected

to a standard bus. Furthermore, a communication service that will be part of an

operating system is also presented in detail. This service provides an abstraction of

the communication and of the flexibility induced by the dynamic and partial recon-

figuration. This abstraction can improve the designers’ acceptance of the DRAFT

paradigm.

2.1 Objectives and motivations

The various blocks constituting an application may have different behaviours and

natures. For example, blocks can be either hardware or software implemented. An

hardware block can be a storage memory, an Intellectual Property (IP) block per-

forming in hardware a specific function, a microprocessor running software instruc-

tions, a communication interface allowing to send/receive informations to/from an

external component, etc. That is what we define as Processing Elements (PEs). In

this report, a software block can be composed of one or several software tasks, a

complete OS or subsets of its services, etc. Usually, software blocks are executed on

one or several hardware microprocessors.

Communications between software blocks are realized thanks to a storage mem-

ory in which data are stored until the destination block reads it. The storage memory

is often directly connected to the hardware processor. However, at least one shared

memory is required when several processors run in parallel, since every one of them

should be able to access it. In SoC, software blocks may also communicate with IP

blocks or communication interfaces. Furthermore, also with these software to hard-

ware and hardware to software communications, hardware to hardware ones must be

foreseen. Indeed, several IP blocks should be able to interact together, but also with

other hardware elements like communication interfaces. Since the cost of a memory

architecture dramatically increases with its number of input/output ports, a shared

memory with one port dedicated to every PE is not a realistic solution.

This is why hardware communication architectures are needed in real life appli-

cations. An appropriate communication architecture should interconnect every PE.

This way, hardware to hardware communications can take place without requiring

any shared memory, directly sending the data to the receivers. Furthermore, the

communication architecture eases software to hardware and hardware to software

communications allowing several PEs to access successively a unique memory port

2.2. Topology of the DRAFT network 43

or a single communication interface. Since the communication ports associated to

interconnected PEs are shared, their hardware cost can be significantly reduced (in

terms of used hardware resources). Since PEs are both rapid and efficient, very high

performances are required from the communication architecture while its hardware

cost should be reduced as much as possible.

However, steady technological evolutions, increasingly complex applications are

to be implemented. This led to the DPR of the PEs. DPR highly impacts the

communication architecture since dynamic PEs can be instantiated in various areas

of a DPR compliant architecture depending on available reconfigurable hardware

resources. So, nor the placement of the PEs nor the produced data traffic can be

foreseen at design time. Thus the fact that dynamic shared PEs can be placed

everywhere depending on the applicative context should not affect the overall per-

formances of the communication architecture.

In this chapter, a new communication architecture is presented in order to be

implemented in real life applications using the DPR ability of present FPGAs. Us-

ing definitions and networks presented in Chapter 1, an innovative NoC is proposed:

Dynamic Reconfiguration Adapted Fat-Tree (DRAFT). The objectives concerning

DRAFT are multiple. Indeed, DRAFT should provide very high network perfor-

mances with a reduced hardware overhead in the context of an application using

DPR. The compliance with the dynamic placement of the PEs is called flexibility.

A flexible enough NoC should not present network performances varying a lot de-

pending on the placement of the shared element. More than the definition of a

flexible NoC, its integration inside real life applications using DPR is also expected

in this chapter. For this purpose, communication interfaces are presented as well as

a communication service allowing to make a reality the management of software to

hardware, hardware to software, and hardware to hardware communications. Fur-

thermore this service supports communications where some of involved PEs are not

active/allocated in the RSoC.

2.2 Topology of the DRAFT network

As presented in Section 1.3, there are a lot of existing topologies and furthermore of

NoCs. Every topology has its own advantages and drawbacks. This is particularly

true when facing the DPR ability of some current FPGAs. However, the fat-tree

topology appeared to be flexible enough to support dynamic applications. This

topology is very popular in the static context of very large systems [46] but less when

aiming on-chip applications even if several fat-tree based networks were proposed

[98]. This is due to the scalability which is quite limited in the fat-tree topology.

Indeed, when the number of interconnected PEs scales up, the number of required

44 Chapter 2. The DRAFT network

routers dramatically grows up. However, using a fat-tree in an application using DPR

can make sense. The main goal of the DPR is to limit the number of simultaneously

implemented PEs. Consequently, the number of PEs to be interconnected is limited

and we can assume that a NoC interconnecting 64 to 128 PEs is more than enough

regarding present applications. Due to the indirect nature of the fat-tree networks, a

large amount of communication paths are provided to the PEs. Since these PEs are

not distributed inside the structure of the fat-tree, their placement do not impact

at all the overall performances of the network. The intrinsic nature of the fat-tree

topology ensures that used data paths are always minimal and that no deadlock

could occur. So, if its hardware cost could be significantly reduced (and thus its

scalability improved), fat-tree based networks would be an attractive interconnection

architecture for applications using DPR.

A) B)

PE 1 PE 2 PE 3 PE 4 PE 5 PE 6 PE 7 PE 8 PE 1 PE 2 PE 3 PE 4 PE 5 PE 6 PE 7 PE 8

Figure 2.1 : Presentation of two equivalent fat-tree topologies. If A) and B) offer the same number

of data paths, and thus the same bandwidth all along the networks, B) has generically defined

routers significantly reducing the hardware cost of involved crossbars.

This is the main objective of the DRAFT network: preserving the high level

network performances of a fat-tree based network while significantly improving its

hardware consumption. The fat-tree topology can be simplified in order to reduce its

hardware consumption. Indeed, the fat-tree presented in Figure 2.1.A is equivalent to

the one presented in Figure 2.1.B, but the second one has a much reduced hardware

overhead. If the number of links and thus of buffers is the same, the crossbars that are

embedded inside the routers scale badly with the number of ports to interconnect.

Consequently, each time a port is added to a router, its complexity and thus its

hardware cost dramatically increases (see Section 1.3.2). This is why the fat-tree

presented in Figure 2.1.B has a much reduced hardware cost due to its generic routers

with a limited number of ports (4 ports). In Figure 2.1.B, the network is called a

4−radix3−stages fat-tree where the radix represents the number of communication

ports per router (input/output), and where the stages are the number of hierarchical

2.2. Topology of the DRAFT network 45

levels of routers. As of now, only 4 − radixn − stages structures are considered for

the fat-tree topologies.

PE 1 PE 2 PE 3 PE 4 shared
memory

comm
interface

shared
memory

comm
interface

Figure 2.2 : Constrained placement of the shared elements (shared memories and communication

interfaces). This placement create a linear data traffic in the right side of the network: data never

turn back in the right half to reach an element of the same half of the network. Arrows depicted in

routers show the routing path followed by data.

In every application, all the PEs are not dynamically implemented: some of them

are static. This is notably the case of the shared memories and of the communication

interfaces. If they are always statically implemented, or at least part of them, these

elements also present some specificities regarding their communication schemes. In-

deed, two shared memories never receive/transmit data directly from/to each other

but only from/to microprocessors and IP blocks. This is the same for communi-

cation interfaces that never communicate directly with each other but always with

microprocessors or IP blocks. This is very important because thanks to both their

nature and their communication specificities, their placement can be constrained.

As presented in Figure 2.2, these elements can be located in one half of the network,

thus producing a purely ”vertical” traffic of data in this half. For example, a data

coming from a shared memory will climb the structure of the right half of the net-

work never turning back before the top level router. Indeed there is no PE in the

right half the shared memory can communicate with. Since it is the same for other

right half connected elements, transmitted data travel through the right half of the

network never turning back excepted at the top of the network.

Considering the only vertical directions taken by data in the right half of the

fat-tree, the idea came that the routing algorithm could be constrained. Indeed, it

46 Chapter 2. The DRAFT network

PE 1 PE 2 PE 3 PE 4 shared
memory

comm
interface

shared
memory

comm
interface

Figure 2.3 : Both constrained placement and routing algorithm. Each shared element has a

unique and reserved communication route. All the determination of the routes to take for end-to-

end communications is realized in the left half of the network.

is possible with an appropriate routing algorithm to create dedicated route for each

shared element. These routes should be accessible directly from the left half of the

tree. This way, every communication port of a top level router would be dedicated

to a single shared element. This principle is shown in Figure 2.3.

Considering both placement and routing constraints, the routing of the data

coming from/to the PEs would be determined in the left half of the network. Since

the routing is always the same in the right side of the network and in top level

routers, the main idea of DRAFT consists in removing these routers. Previously

right side connected PE are then connected directly to the new top level routers.

This leads to a r − radix(n − 1) − stages fat-tree with half of interconnected PEs

directly connected to the top level routers. The topology of the DRAFT network is

presented in Figure 2.4

The first advantage of the DRAFT network is the significant reduction of the

required number of routers to interconnect a same number of PEs when compared

with a conventional fat-tree based network. Thanks to this reduction, the scalability

of DRAFT is quite improved. Indeed, considering complete DRAFT networks, a

number N of interconnected PEs with N ≥ 3 leads to a number p of communication

ports which is determined by

p = 2⌈log2(N)⌉. (2.1)

If the radix of DRAFT is r, then the number RDRAFT of required routers is

RDRAFT =
p

r
((log r

2

p) − 1). (2.2)

2.2. Topology of the DRAFT network 47

PE 1 PE 2
PE 3 PE 4

shared
memory

comm
interface

shared
memory

comm
interface

PE 5
PE 6

PE 7 PE 8

PE 9
PE 10

PE 11 PE 12

router
00

router
10

router
20

router
30

router
31

router
21

router
11

router
01

router
02

router
12

router
22

router
32

Figure 2.4 : Presentation of the DRAFT network in its 4 − radix3 − stages configuration. Half of

the PEs are directly connected to the top level routers at the cost of following assumption: top level

connected PEs can not communicate together but only with base level connected ones.

Similarly, the number LDRAFT of communication links is

LDRAFT =
p

2
(log r

2

p). (2.3)

The scalability of DRAFT compared with these of a conventional fat-tree and a

square mesh is provided in Figure 2.5. From this figure, DRAFT appears with

a number of required routers significantly lower than for a conventional fat-tree.

Furthermore, this number of required routers is very close from the requirements of

a square mesh, even if higher between 32 and 64 PEs.

Concerning network performances, the routing of data inside the structure of

DRAFT is more constrained than in a conventional fat-tree. However, since the

number of routers to be crossed by the data is more reduced, overall performances

are still very high as presented in Section 4.3.

Definition0: DRAFT efficiency is based on a principle that must be respected

by application designers: top level connected PEs do not communicate together.

If the routing algorithm allowed communications between top level PEs, it would

result in a dramatic fall of overall performances due to the restriction of the number

of data paths. However, if this assumption is respected by designers, there is in

fact no limitation concerning the nature of the top level PEs. They can be either

48 Chapter 2. The DRAFT network

Figure 2.5 : Comparison of the number of required routers between the DRAFT network, a conven-

tional fat-tree, and a square mesh, according with equations 2.2, 1.6, and 1.3.

shared memories or communication interfaces but also microprocessors or IP blocks.

Furthermore, top level PEs can be either statically or dynamically implemented. In

the case of dynamically implemented PEs, the implementation of these components

is just constrained in order for the definition to remain valid.

Concerning the flexibility of DRAFT, there is no restriction for the communica-

tions of the dynamically implemented PEs as soon as they are connected to the base

level stage of the network. So, base level PEs have no restriction at all leading to

a flexibility similar to the one of a conventional fat-tree. Concerning the top level

PEs, the flexibility is limited due to the assumption concerning the communications.

DRAFT was built considering that half of connected PEs (including shared mem-

ories and communication interfaces) do not require to communicate together. The

case where more than half of the PEs do not communicate together is obvious: some

of them can be connected to the base level routers. However, the case where more

than half of the PEs require no communication restriction directly impacts the NoC.

In this latter case, the size (the n − stages value) of the network should be cho-

sen accordingly with the number of PEs simultaneously connected that require to

communicate together. Consequently, the overall flexibility of the DRAFT network

is less important than for the conventional fat-tree based networks. The definition

of the topology of DRAFT is more like a trade off between overall flexibility and

the scalability of the network. Furthermore, DRAFT is defined considering present

applicative requirements leading some PEs to have reduced communication needs

(in terms of number of PEs they communicate with).

Concerning the DRAFT network topology itself, one can see many similari-

2.2. Topology of the DRAFT network 49

ties with multi-stages networks. If a folded Beneŝ is similar to a conventional

4− radixn− stages fat-tree [46], a Butterfly network looks similar with the DRAFT

network [33]. The arrangement of the routers is similar in a Butterfly network and in

DRAFT. However, there is a major difference between these two networks: routers

and communication ports in a Butterfly network are unidirectional whereas they are

bidirectional in DRAFT. This induces that DRAFT interconnects two times more

PEs than the Butterfly network, and routing strategies are completely different (and

so are the data traffics). This is why even if they look similar, they are different

networks.

Table 2.1 : DRAFT API provided to each PE. Directions are defined considering the network, so an

input of the network should be connected to an output of the PE.

Region Signal name Size (bit) Direction Function

clock_rx 1 In clock reference on which others in-

coming signals are synchronized

Data

data_in 16/32/64 In data to be transmitted are in-

jected here

reception

rx 1 In notifies that valid data are present

on data_in

credit_out 1 out indicates to sender if further data

can be sent

clock_tx 1 Out clock reference on which outgoing

signals are synchronized

Data

data_out 16/32/64 Out transmitted data arrive here

emission

tx 1 Out notifies that valid data are present

on data_out

credit_in 1 In receiver indicates if further data

can be received

The topology of a network does not define only the way the routers are arranged

and interconnected, it also defines the transmitted signal along with their size. So,

every router has four communication ports that are each composed of two parts

namely the reception part ”rx” and the transmission part ”tx”. Thus, all links

inside the network are bidirectional. Both rx and tx parts have the same interface.

They are composed of a data line which size is user defined fitting the required data

sizes (16, 32, or 64 bits). Along with this data line, two control signals are provided.

50 Chapter 2. The DRAFT network

One (rx or tx) is to signify that a valid data is present on the data line. The other

signal can have two different significations and thus names. Depending on the flow

control strategy, this signal indicates that a valid data path was created from the

source to the destination of the data (ack), or that next node (either a router or a

PE) has sufficient storage capacities to receive the data (credit). Finally, a clock line

is also provided. All these signals are summarized in Table 2.1.

2.3 Router architecture

The DRAFT network is based on a 4− radixn− stages fat-tree topology composed

of generically defined routers. So, each router has exactly the same architecture.

Every router is composed of four input/output communication ports, a controller,

and a crossbar. The generic architecture of a router is presented in Figure 2.6. Each

router is identified by a unique address. This address gives the relative position of

the router inside the NoC through its XY coordinates. The first part of the address

correspond to the number of the router in its stage starting from the left, while

the second part correspond to the stage number. This addressing of the router is

presented in Figure 2.4.

Crossbar

Central
controller

control

Clock_router

Reset

data_in

clock_rxrx

credit_out

control

controlcontrol

data_in

clock_rx rx

credit_out

data_in

clock_rxrx

credit_out data_in

clock_rx rx

credit_outdata_out data_out

data_out data_out

tx
credit_in

clock_tx
credit_in

txclock_tx

tx
credit_in

clock_tx
credit_in

txclock_tx

Bottom left communication port Bottom right communication port

Top left communication port Top right communication port

Figure 2.6 : Generic architecture of DRAFT routers. A router is composed of four input/output

ports, a central controller and a crossbar. Inputs are buffered for asynchronous communications.

2.3. Router architecture 51

Each router receives clock and reset signals. If the reset signal can be used to

force the router in its initial state, the clock signal is very important. Indeed, each

input port of a router is composed of a bi-synchronous buffer making the relation

between the clock domains of the sender neighbour (clock_rx) and of the router

(clock_router). The central controller is synchronized on clock_router in order to

guarantee a valid behaviour. Transmitted data are always clocked using the router’s

internal clock reference: clock_tx = clock_router. This clock adaptation has two

goals: first it can realize the clock adaptation between the PEs and the network if

clock references are different, and second it improves the QoS of the NoC. Indeed,

providing exactly the same clock reference to all hardware resources embedded in a

chip is very difficult. Due to parasitic effects, clock signals can be degraded and skew

can occur between two regions of the chip. This phenomenon is called jitter. The

fact that each router synchronizes incoming data on its internal clock using buffers

guarantees the coherency of transmitted data and a valid behaviour of the central

controller. Furthermore, if a router is not solicited at all by the data traffic, its

frequency can be lowered (and even set to zero) for power consumption limitation

purpose.

The bi-synchronous buffers located at each input communication port are based

on a First In First Out (FIFO) strategy meaning that incoming data are stored and

read in their order of arrival. Each buffer has a capacity that is defined by designers

at synthesis time. A single buffer can store 4, 8, 16, or 32 incoming flits. When a

buffer is full, and so no further data can be stored until at least one is read, the credit

signal (if any) is set to ”0”. This indicates to the sender that no further data should

be transmitted. Each buffer has a dedicated controller that makes the relation with

both the central controller (for example informing that a new communication has

arrived), and the crossbar. When the central controller acknowledges the creation

of a data path, the buffer controller sends the first flit to the crossbar. Only made

of combinatorial logics, the crossbar is used to route data from an input port to

the appropriate output port accordingly with informations provided by the central

controller. If for some reasons a data can not be transmitted (incoming credit line

to zero), the information is immediately notified to the source buffer controller in

order for it to stop the reading (and thus the sending) of stored data. This permits

to handle 4 communications in parallel inside every router.

The central controller performs the routing algorithm, and manages accordingly

the crossbar in order to route incoming data to their destination. Further explana-

tions concerning how functions the central controller are provided in Section 2.4.

52 Chapter 2. The DRAFT network

2.4 Routing and Flow Control

Data are packet switched through the DRAFT network. It means that instead of

creating an exclusive communication link between source and destination PEs (cir-

cuit switch), DRAFT transmits data through its structure only using addresses that

are included at the beginning of each packet. So, data paths are used (successively)

by multiple couples of source/destination PEs. DRAFT is based on a Wormhole flow

control. This means that packets of data (composed of several flits) travel through

the network without being stored completely in one router. So, if a packet is com-

posed of sufficient flits, these ones are distributed in each router all along the chosen

data path. This strategy significantly reduces the requirements in terms of storage

capacities since routers do not need to store the whole packet nor a large amount of

flits.

(1)

(2)

available ctrl bits dest. @source @
31 16 15 8 7 0

Count = n-2

(3) First flit of payload

.

.

.

31 0

31 0

(n) Last flit of payload
31 0

Figure 2.7 : Presentation of the various flits composing a packet of data. The first one, called

header contains source and destination addresses. The second one (called count) contains the

number of following flits of data. Then next flits contain the payload.

Concerning the routing of data, two addresses are used: the source PE address

and the destination one address. These addresses are always included in the first half

of the first flit that is called Header (see Figure 2.7). These addresses are dependent

on where PEs are connected to the DRAFT network. Indeed, each communication

port of DRAFT, and thus each PE, is numbered linearly starting from the left of

the base level to the right of the top level. Binary addresses of both PEs and routers

are presented in figure 2.8.

The width of the addresses is defined by the scale of the network. However, these

addresses are also linked with the width of the flits, and thus the data width: the

size of an address represents a maximum of quarter of the header. Since large scale

networks require large addresses, the size of the network influences the minimal data

width. For example a DRAFT network interconnecting 32 PEs (4−radix4−stages)

2.4. Routing and Flow Control 53

0001

router
00/00

router
01/00

router
10/00

router
11/00

router
11/01

router
10/01

router
01/01

router
00/01

router
00/10

router
01/10

router
10/10

router
11/10

0000 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 1100 1101 1110 1111

Figure 2.8 : Addressing of both PEs and routers in a 4− radix3− stages DRAFT network.

do not support 16 bits data width because 5 bits are necessary to code the addresses

of connected PEs. 16 bits data are only compliant with DRAFT networks embedding

between 1 and 3− stages of routers (respectively from 2 to 4 bits necessary to code

the addresses of the PEs). The remaining half of the header is provided to PEs if

some control informations are to be transmitted. These control informations can be

the internal address inside a shared memory, a software process id, etc.

The routing algorithm is based on two phases. The first one is quite common

for fat-tree topologies, it is called the TurnBack algorithm [46]. This phase is used

for the communication between two bottom level connected PEs. Data are routed

toward upper stages until the destination PE is reachable only climbing down the

structure of the NoC. This algorithm is used for example in the conventional fat-tree

based network we used for comparison purpose, see Chapter 4. In this phase, when

a data should continue on climbing the structure of the tree to reach its destination

(bottom level connected PE), the emission port is chosen depending only on the

source addresses. A router from the first stage reads the first bit of the source

address starting from the right, i.e. the Least Significant Bit (LSB). If ”1”, data is

transmitted through the top right communication port of the router. If ”0”, the top

left communication port is chosen. A router located in the second stage of DRAFT

reads the second bit of source address, and so on to the top stage of routers. Since

the same destination PEs (base level ones) can be reached from both top left and

right communication ports, this algorithm allows to balance the data traffic: data

from different PEs always take different paths to climb the structure of the tree.

54 Chapter 2. The DRAFT network

Obviously, since only one path is possible to reach the destination PE when data

climb down the network, chosen data path is only dependent from the destination

addresses. To continue latter example, when a data climbs down the network and

arrives in a router located in the second stage, the second bit from the destination

address starting from the right is checked. If ”0” data is transmitted through the

bottom left communication port. If ”1”, the bottom right port is chosen. When

arriving in a router from the first stage, similarly the first bit of the destination

address is checked. This algorithm minimizes the likelihood of conflicts when data

climb down the structure of the tree. It also ensures that no deadlock nor livelock

can occur and chosen data paths are always minimal. This phase of the routing

algorithm is presented inside the DRAFT network in Figure 2.9.

0001

src @ 5555
dest @ 5155

5555 5515 5511 5155 5151 5115 5111

1555 1551 1515 1511 1155 1151 1115 1111

Bottom level
destination PE

src @ 5555
dest @ 5155

src @ 5555
dest @ 5155

src @ 5555
dest @ 5155

src @ 5555
dest @ 5155

Figure 2.9 : Routing of data toward a bottom level connected PE. The MSB of the destination

address indicates its connection at the base of the network. Source address is used to determine the

data path when data climb the structure of the network. When they climb it down, the destination

address is considered.

The second phase is specific to the DRAFT network since it consists in routing

the data from base level PEs to top level ones using the only one possible data path.

The routing is realized in each router using masks that are specifically generated

depending on their own addresses. Thanks to these masks, the location of the des-

tination PE is first determined depending on the destination address. For example,

in the case of the 4− radix3− stages DRAFT network presented in Figure 2.8, the

top level location of the PE is verified through the first bit starting from the left

of the destination address, i.e. the Most Significant Bit (MSB). The determination

of the data path in a 4 − radixn − stages DRAFT network is realized as follow: if

2.4. Routing and Flow Control 55

the router is part of the first stage of the network, the second bit of the destination

address (starting from the right) is checked. If the router is part of the second stage,

the third bit starting from the right of the destination address is checked. This con-

tinues the same way until the top stage routers. If the router is part of the top stage,

then the LSB of the destination address is checked. For every router, wherever they

are located, if checked bit is equal to ”0”, data is transmitted through the top left

communication port. If equal to ”1”, similarly, the data is routed toward the top

right port. This guarantees that the data can reach its destination for every couple

source/destination PEs. This routing is presented inside the DRAFT network in

Figure 2.10.

5551

dest @
1101

dest @
1101

dest @
1101

0000 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 1100 1101 1110 1111

Top level
destination PE

Figure 2.10 : Routing of data toward a top level connected PE. The MSB indicates the connection

at the top of the network, other bits of the destination address are used to define the data path.

The link between the two phases of the algorithm is realized by the central

controllers. Routing is performed as follow: if data are to be transmitted to a top

level PE, the second phase is used, else it is the TurnBack algorithm which is used. In

case of a conflict between two communications, the action depends on the destination

of the communication that encounters the conflict. If the destination PE is connected

to a top level router and the only possible communication port is already used, then

there is no other choice than waiting for its availability. However, if the destination

PE is located in the base of DRAFT and data should climb to upper stages, then

the communication uses the other top level communication port of the router. Due

to the 4− radix nature of DRAFT, since only the two bottom level ports can access

the two top level ones, the remaining top level communication port of the router is

56 Chapter 2. The DRAFT network

always available. Furthermore, the fat-tree based structure of DRAFT guarantees

that no deadlock, nor livelock can occur even in case of multiple conflicts. Finally,

also due to the fat-tree based structure of DRAFT, chosen data paths are always

ensured to be minimal.

Wait

request in FIFO

Read
request

Output port
available?

no

yes

Set
output port

busy

Determination
output port
TurnBack

Wait
available

available

Wait

incomming
communication

Store
request in

FIFO

Wait

end of
communication
in an output port

Set
output port
available

Figure 2.11 : Routing algorithm (TurnBack) from a conventional fat-tree based network.

Concerning the data that climb down the structure of DRAFT, if a conflict

happens between two communications trying to use the same data path (or a portion

of), then one is privileged by the concerned central controller and the second one

waits for the other to complete. Without minding if data climb up or down the

structure of the NoC, central controllers are based on FIFO scheduling policies giving

to the various communications a fair probability to be realized. Routing algorithm of

a conventional fat-tree based network is provided for comparison purpose in Figure

2.11. The complete routing algorithm of the DRAFT network is presented in Figure

2.12.

In order for the router to know when a communication is finished, a count infor-

mation is always included in the second transmitted flit. This count indicates the

number of following flits forming the payload. The count can not be inferior to 1

corresponding to at least one flit of payload. In each router, this count information is

used to calculate if a communication is completed depending on the number of trans-

mitted flits. As it could be seen from Figure 2.12, the central controller does not wait

for current communication to be completed before processing a new communication

2.4. Routing and Flow Control 57

Wait

request in FIFO

Read
request

Top level
destination

PE?

no

yes

Determination
output port

Output port
available?

no

yes

Set
output port

busy

Determination
output port
TurnBack

Output port
available?

no

yes

Wait
available

Output port
on top of router?no

yes

Use other
output port

available

Wait

incomming
communication

Store
request in

FIFO

Wait

end of
communication
in an output port

Set
output port
available

Figure 2.12 : Routing algorithm from the DRAFT network: the classical TurnBack phase is depicted

in black while the second phase is in blue. Conflicts resolution is pictured in red.

request. Excepted in case of a conflict, this permits to save a lot of time for routing

purpose. Thus, depending on destination addresses, up to four communications can

take place simultaneously in every router (4 − radix).

Chronograms of a communication are presented in Figure 2.13. In this scenario,

PE 1 initiates a communication toward PE 2. The initialization of DRAFT takes

3 clock cycles. So, reset should be set to ”1” during 3 clock cycles each time the

chip embedding DRAFT is powered on. The communication starts in (1) with the

rx_1 line indicating that a data is present on data_in_1 line: the header of the

communication. Count information and first payload flit are respectively transmitted

in (2) and (3). Routing can take several clock cycles, in this case if the input buffer

is full, credit_out_1 line is set to ”1” to prevent further data from arriving (4). In

(5) the header has been transmitted through communication port 2 (data_out_2)

so that the buffer from communication port 1 can receive one more data. Data are

transmitted until (6) where neighbour element connected to communication port 2

informs that no more data should be transmitted (credit_in_2 = 1). If the buffer

from communication port 1 becomes full, once again credit_out_1 line is set to ”1”.

Last data arrives to the router in (8) and is transmitted in (9), thus ending the

communication.

58 Chapter 2. The DRAFT network

Clpck

data_in_1

rx_1

credit_put_1

data_put_2

tx_2

credit_in_2

0x00000000 0xAA... 0x00... 0x01... 0x02ABCDEF 0x03... 0x04...

0x00000000 0xAA...

Reset

clpck_rx_1

clpck_tx_2

0x00... 0x01... 0x02...

0x05...

3 clpck cycles
netwprk initializatipn

(1) Cpmmunicatipn Header: 0xAAAA0001 (AAAA: user defined address ; 00: spurce PE 1 ; 01: destinatipn PE 2)
(2) Cpunt: 0x0000000A (10 transmitted flits pf paylpad)

(1) (2) (3)

(3) First flit pf paylpad: 0x01234567

(4) (5)

(4) Input (4 flits capacity) buffer is full, delay during rputing
(5) Header arrival time tp PE 2
(6) 1 clpck cycle saturatipn pf PE 2 fpr spme reaspns
(7) Input buffer is full, wait fpr PE 2 tp be available again
(8) End pf cpmmunicatipn fpr sender PE 1
(9) End pf cpmmunicatipn

0x000000000

0x0000000002 0x03... 0x04...

05 0x06... 0x090123450x07...

0x05135790 0x06... 0x07... 0x08...

0x08... 0x10...

0x09... 0x10...

(6) (7) (8) (9)

Clpck

data_in_1

rx_1

credit_put_1

data_put_2

tx_2

credit_in_2

Reset

clpck_rx_1

clpck_tx_2

Figure 2.13 : Chronograms presentation of DRAFT for a communication initiated by PE 1 (network

address 00) toward PE 2 (network address 01) with 4 flits depth buffers.

2.5 The DRAGOON environment

DRAGOON is an environment inherited from ATLAS [81] allowing automatic gener-

ation and simulation of networks. The development of the DRAGOON environment

was realized in parallel with the conception of the DRAFT network itself. Since

2.5. The DRAGOON environment 59

network performances of DRAFT had not been evaluated at this time, the choice

was made for DRAGOON not to generate directly DRAFT but a conventional fat-

tree. Indeed, the DRAFT structure can be easily extracted from a fat-tree, but the

reverse is not so trivial. This concept is explained in Figure 2.14.

PE 1 PE 2 PE 3 PE 4 PE 5 PE 6 PE 7 PE 8

router router router

router router router router

router router router router

router
PE 1 PE 2 PE 3 PE 4

router

router router

router

PE 5 PE 6 PE 7 PE 8

Conventional fat-tree DRAFT

Figure 2.14 : Conventional fat-tree generated by DRAGOON. This fat-tree embeds in its structure

the DRAFT network.

In the remaining of this section, the various functions composing DRAGOON are

detailed. Every time needed, further explanations will be given in order to switch

from the conventional fat-tree to DRAFT.

2.5.1 DRAGOON main interface

Figure 2.15 : Main panel from the DRAGOON environment. This is an overlayer for embedded

tools.

The DRAGOON environment is composed of four main functionalities that can

be chosen from the main panel. This panel, presented in Figure 2.15 is indeed an

overlayer for four distinguished tools: the NoC generator, the traffic generator, the

simulator, and the traffic evaluator. Using these tools requires to have a project

60 Chapter 2. The DRAFT network

that can be created from this main panel. In this first version of DRAGOON,

only the DRAFT type of network can be selected (generating a fat-tree). However,

improvements are scheduled in order to make this panel as an overlayer for both

the DRAFT network and the fat-tree, and also interfacing with the overall ATLAS

environment.

2.5.2 The NoC generator

Figure 2.16 : NoC generator tool allowing to parameterize the fat-tree that will be generated.

The NoC generator presented in Figure 2.16 allows users to automatically create

a conventional fat-tree with desired configuration. Produced fat-tree is generated at

the RTL level (coded in VHDL). Several parameters of the generated fat-tree can be

specified from this tool:

• The dimension: this parameter defines the number of hierarchical levels con-

stituting the fat-tree, and so the number of PEs that can be connected to it.

A representation of the fat-tree that will be generated is pictured on the right

side of this panel. Fat-tree can be generated interconnecting from 4 up to 128

PEs.

2.5. The DRAGOON environment 61

• The flit width: this is the width of the data that are exchanged through the

network. Three data width are available: 16, 32, and 64 bits.

• The buffer depth: this depth represents the number of data (flits) that can be

stored in every buffer. Buffer depths can be parameterized to 4, 8, 16, or 32

flits. This depth should be configured depending on the data traffic that can

be foreseen from the application.

• The number of virtual channels: for high network performances purposes, vir-

tual channels can be defined. Three values are possible: 1, 2, or 4 representing

respectively 0, 1, or 3 additional path(s) for every port of every router. This

parameter should be used with extreme caution because of resulting hardware

overhead that dramatically increases with the number of virtual channels.

• The flow control policy. By default CreditBased, this parameter can also be set

to Handshake, thus replacing the credit signals in every communication port.

• The Testbench option. This option, asserted by default, indicates if the gen-

erated code of the network will include additional signals (coded in SystemC)

for simulation purpose. These lines are only for simulation with the DRA-

GOON environment. For any other purpose, this option should be un-checked

or SystemC lines should be removed from the NOC.vhd file.

When clicking ”Generate”, a fat-tree is generated fitting user specifications in

the project directory. At this point, if the DRAFT network was expected to be

generated instead of a conventional fat-tree, modifications should be done manually

in the NOC.vhd file. Two cases should be distinguished:

• the NoC is to be simulated with the DRAGOON environment. In this case, ad-

ditional lines in SystemC are included at the end of the VHDL file (NOC.vhd).

These lines make the interface between the RTL level NoC and the simulator

connecting every router and every port of the network. In order to avoid any

problem and thus to save time, no routers should be removed. So, to obtain the

DRAFT network, all top level routers also with all routers from the right half

of the network should have their clock signals connected to a constant value

(0). Furthermore, input/output ports from the right half should be connected

in the same order directly to the top of remaining left half routers, thus in

place of top level routers.

• the NOC is destined to hardware implementation or simulation in another

environment. In this case, all top level routers can be removed also with right

half routers. Input/output ports should then be connected to the new top level

routers (see Figure 2.14).

62 Chapter 2. The DRAFT network

This need to modify manually the vhdl file (NOC.vhd) is quite impractical for

designers. However, the direct generation of DRAFT will be integrated in the next

version of the tools that will also be compliant with ATLAS.

2.5.3 The traffic generator

Figure 2.17 : Overview of the traffic generator tool.

The traffic generator, presented in Figure 2.17 is undoubtedly one of the key

feature of DRAGOON. The traffic generator allows to generate a traffic pattern that

will be injected into the NoC for simulation purpose. Before generating a traffic, a

scenery should be created. This scenery is in fact a view of the NoC (pictures in

front end window) also with the configuration of the traffic. Every PE located at the

based level can be parameterized individual simply clicking on it in order to generate

a specific traffic. Otherwise, clicking on ”Configuration”, the traffic pattern will be

parameterized for all PEs. Several parameters can be configured:

• The frequency: this indicates the operating frequency of the PEs. It is usually

set to the frequency that is expected from hardware implementation.

• The targets: this parameters indicates if destination of generated data packets

should be chosen randomly or specifically.

• The number of packets: this represents the number of data packets that will

be sent by every PE.

• The packet size: this parameter indicates how many data (flits) should be

transmitted in every packet.

2.5. The DRAGOON environment 63

• The transmission rate. In bits per second, this value indicates at which rate

the generated packets should be injected in the network. This constitutes the

offered traffic.

• The distribution. This is the most important parameter to be configured.

Indeed it indicates how packets should be transmitted by each PE: uniformly

in the time, following a Normal distribution (periods of low emissions followed

by a peak of high emission, then returning to low emissions), or in burst mode

(bursts of data followed by periods of silence).

When generating the traffic, the generator creates a text file for each PE con-

taining data to be sent also with the instants they are to be injected in the network

(in clock cycles). An example is provided in Appendix A.

2.5.4 The NoC simulator

NoC simulations are not realized completely by DRAGOON. Indeed, the NoC simu-

lator is an overlayer using ModelSim 6.4c. The NoC simulator configures ModelSim

and provides generated network and traffic patterns. As presented in Figure 2.18,

users have the possibility to choose which generated traffic (if several) should be

injected in the NoC, also with the duration of the simulation.

Figure 2.18 : Presentation of the simulator of networks that acts as an overlayer fo ModelSim 6.4c

From ModelSim simulation, output text files are generated for each PE. These

files contain the received packets also with the time the last data of these packets

were received at. An example of simulation is provided in Appendix A.

2.5.5 The traffic evaluator

Finally, the last tool is the traffic evaluator which is presented in Figure 2.19. This

tool takes into account the files generated both by the traffic generator and ModelSim

64 Chapter 2. The DRAFT network

Figure 2.19 : View of the traffic evaluator and example of generated results.

in order to compute latencies and throughputs. These two parameters are summa-

rized in a web page giving performances both for each couple source/destination PEs,

and for the whole system. Number of received packets also with minimal, maximal

and average throughputs and latencies (with standard deviation) are the key results

provided by this tool.

All characterization results of DRAFT also with comparisons with traditional

fat-tree and HERMES are detailed in Chapter 4.

2.6 DRAFT implementation advices

Since many applications require data transfers between static and dynamic PEs,

they should be connected to DRAFT. For this purpose, designers can connect the

static PEs directly to the routers, or with a bus based sub network (multiple buses

for example) connected to a single router, like for the XGFT network. Then, the sub

network and its connected PEs (statically implemented shared memories, communi-

cation interfaces, etc.) are viewed by DRAFT as a single PE. On the other hand, the

static PEs which do not exchange data with dynamic ones should be interconnected

2.6. DRAFT implementation advices 65

through a separate communication architecture optimally designed for this purpose.

This communication architecture can be shared multiple buses, or NoC based. Sim-

ilarly, the shared elements which do not communicate with dynamic PEs but only

with static ones should be connected to a sub network rather than to DRAFT. These

principles are advised to reduce the size of DRAFT and so its resource consumption.

Doing so, DRAFT can be seen as an independent core of network or even as an IP

block interconnecting each part of the application.

For applications using the DPR, DRAFT does not directly connect the dynam-

ically implemented PEs through their network interfaces, but through Bus Macros

(BMs). This connection is presented in Figure 2.20.

Statically
implemented

DRAFT
network

Statically allocated PRR

Statically
allocated

BMs

Dynamically
implemented

NI

Dynamically
implemented

PE

Communication
port

Figure 2.20 : PRR receiving a dynamic PE connected to DRAFT through the dynamic NI and the

static BMs.

The concept of dynamically reconfigurable NIs is important because they can be

designed optimally for their corresponding PEs. This allows to reduce the hardware

cost of the NIs when a PE does not have the same interface as the others. So during

the dynamic reconfiguration of a given PRR, DRAFT interface remains the same

even if the newly allocated PE presents a specific interface. This concept makes

DRAFT more generic and more flexible considering the location of the PEs.

DRAFT placement is important in the conception of a system using the DPR,

because it impacts the use of the reconfigurable resources as well as the network

performances. Thus, the solution presented Figure 2.21 is to implement DRAFT as

a central column into the FPGA. This solution is particularly adapted to current

technologies supporting the DPR: Xilinx Virtex series. PEs (static or dynamic) are

implemented into both halves of the FPGA. Since DRAFT is not distributed into

66 Chapter 2. The DRAFT network

the FPGA, the designer is less constrained by the network for the definition of the

PEs in terms of sizes and locations. This is an advantage for the implementation of

heterogeneously sized PEs. Thus, the implementation of DRAFT is fully compliant

with current technology and the DPR requirements.

D
R
A
F
T

PRR 1

PRR 2

PRR 3

PRR 4
PRR 0

PRR 7

PRR 8

PRR 6

Figure 2.21 : Implementation of DRAFT as a central column interconnecting PEs located into both

halves of the FPGA. DRAFT implementation is captured from Xilinx PlanAhead 12.4 design software

targeting a Xilinx Virtex V implementation (XC5VSX50T).

Furthermore, in Xilinx FPGAs, communication interfaces should be located into

the central Input Output (IO) bank column. Similarly, we recommended to locate

the shared memories into the nearest BRAM columns of the central column (for

small capacities but high performances, otherwise DDR memory should be used).

Thereby, the communications between the PEs and the shared elements encounter

a minimal latency.

2.7. DRAFT integration: interface DRAFT/AHB 67

2.7 DRAFT integration: interface DRAFT/AHB

More than just defining a NoC adapted for applications using DPR, the integration

of this NoC into present applications is a key element of this PhD. For this purpose,

the compliance of DRAFT with existing communication architecture was studied.

Into the framework of the FOSFOR project, along with partners, the use of a LEON

3 processor for control purpose was decided. Indeed, LEON 3 processors are defined

using AHB buses for communication purpose. This is why a bridge making the rela-

tion between DRAFT and the AHB bus was designed. However, one should notice

that several bridges can be found on Internet making the relation between AHB and

PLB or OPB buses. This is important because through these bridges DRAFT is

directly accessible from MicroBlaze, PicoBlaze, or PowerPC microprocessors.

An AHB Bus typically contains the following components:

• AHB master: Bus masters initiate read or write operations providing address

and control signals. Only one bus master is allowed to actively use the bus at

once.

• AHB slave: Bus slaves respond to a read or write operation and signals back

to the master the success, failure or waiting of the data transfer.

• AHB arbiter: Bus arbiters ensure that only one master at a time is granted

access to the bus and to initiate data transfers.

• AHB decoder: The AHB decoder is used to decode the address of each transfer

and provide a select signal for the slave involved in the transfer.

General architecture of an AHB bus is presented in Figure 2.22. Data bursts are

supported by the AHB bus. Data burst is a transmission technique mainly used to

transfer data to/from shared memory. It consists in creating a data path on which

several packets are transmitted without any interruption. This avoids to request a

new data path for each packet. Data bursts can be of a predetermined length (4, 8

or 16 packets) or of undefined length otherwise. The bursts can be incrementing or

wrapping bursts. The difference between them is that in incrementing bursts, the

address is continuously incremented after each data packet sent, while a wrapping

burst wraps the address after the designated length of transfer. All burst transfers

are limited to a 1 kByte address boundary. A dedicated signal allows to configure

the bursts. This is particularly useful for memorization purpose of data. This way,

data transfers from software to hardware or hardware to software communications

are accelerated.

To successfully integrate a DRAFT network in a system based on an AHB Bus

it must contain an AHB slave interface so that data can be transferred to it. It also

68 Chapter 2. The DRAFT network

Master
1

Master
2

Master
3

Slave
1

Slave
2

Slave
3

Slave
4

Arbiter

Decoder

ADDR

W DATA

R DATA

ADDR

W DATA

R DATA

ADDR

W DATA

R DATA

ADDR

W DATA

R DATA

ADDR

W DATA

R DATA

ADDR

W DATA

R DATA

ADDR

W DATA

R DATA

read data mux

write data mux

address and
control mux

Figure 2.22 : Presentation of the general architecture of an AHB bus interconnecting 3 master to

4 slave elements.

must contain an AHB master interface in order to transmit the data received toward

other components. An AHB slave interface responds to data transfers initiated by

an external AHB master. The slave determines if it has been selected to perform

a communication by checking its selection signal. The address, control and data

signals are generated by the AHB master. After it detects the selection, the slave

processes the data available on its inputs and drives the appropriate response. In

case it does not manage to process the data in one cycle, it can request the master to

maintain the data available for one or more cycles by driving low a ”ready” signal.

An AHB slave requires an address, so it can be referenced by a master.

The AHB slave interface processes any incoming data and sends them to the

DRAFT network by driving the appropriate control signals needed by the network,

in the required order. This implies that the AHB to DRAFT bridge has AHB slave

inputs and outputs and also signals to connect to an input port of the DRAFT

network. The AHB to DRAFT bridge implements the functionality of responding

with a busy signal when the DRAFT network encounters a communication delay.

An overview of the AHB to DRAFT bridge is presented in Figure 2.23.A. An AHB

master wanting to send data through the DRAFT network should send the packets

presented in Figure 2.23.B.

Similarly, the overview of the DRAFT to AHB interface is presented in Figure

2.7. DRAFT integration: interface DRAFT/AHB 69

AHB to DRAFT interface

Generic
AHB
slave

Network
interface

Clock reset

AHB_slave_in

AHB_slave_out

clock_rx

data_in

rx

credit_out

A) B)

(1)

(2)

AHB slave @ dest. @source @
31 16 15 8 7 0

Count

(3) Payload

.

.

.

31 0

31 0

Figure 2.23 : A) Overview of the AHB to DRAFT bridge embedding an AHB slave that forwards data

received from an AHB master to the DRAFT network. B) Data transmitted by the AHB master to the

slave (and thus through DRAFT).

DRAFT to AHB interface

Generic
AHB

master

Network
interface

Clock reset

AHB_master_out

AHB_master_in

clock_tx

data_out

tx

credit_in circular
buffer

Figure 2.24 : Overview of the DRAFT to AHB bridge embedding an AHB master that forwards data

received from DRAFT to the AHB bus accordingly with the AHB arbiter.

2.24. An easy approach of building such an interface for the DRAFT network implies

the use of the generic AHB master interface provided by the GRLIB library [40].

Generic AHB slave interfaces are also provided by this library. The generic interface

of an AHB master contains the logic necessary for the handling of inputs and outputs

from AHB arbiter and AHB slave. The AHB master interface contains logic for

requesting access, driving addresses, data and control signals toward the AHB arbiter

and receiving response signals from it and from an AHB slave. Also an AHB master

contains logic to wait and maintain valid data until the AHB slave finishes processing

the current transaction.

In order to connect this generic master interface to the DRAFT network, a

DRAFT to AHB controller was built. The DRAFT to AHB controller has the

role of reading the input data received from DRAFT and driving the appropriate

control signals to the AHB master interface. It uses a buffer (FIFO) to store the data

packets received (an unknown number of data packets) and then it sends them to the

70 Chapter 2. The DRAFT network

master interface, driving the inputs as required by the AMBA AHB specification.

The whole bridge, with both AHB to DRAFT and DRAFT to AHB interfaces,

was validated in RTL simulations using ModelSim 6.6c and implemented in a Xilinx

Virtex V (XC5VSX50T) FPGA using the Xilinx ISE 12.4 design tool software. This

way, communications using bursts of data from a LEON 3 microprocessor to a shared

memory through the DRAFT network could be realized. For this purpose, the

automatic incrementation of destination addresses was used by the master part of

the bridge.

A
H
B

B
U
S

AHB - DRAFT
bridge

DRAFT network

PRR 1

Inputs / outputs

Global
shared
memory

LEON 3
processor

core

Local shared
memory

Local shared
memory

PRR 2 PRR 3

Figure 2.25 : Presentation of the FOSFOR platform using a LEON 3 processor core, a shared mem-

ory connected to the processor through an AHB bus, and PRRs interconnected by DRAFT. PEs corre-

sponding to hardware tasks are dynamically implemented in the PRRs. Communications between

the AHB bus and the DRAFT network are realized thanks to the AHB-DRAFT bridge.

Following the definition of a generic communication interface making the relation

between the DRAFT network and the AHB bus, DRAFT was implemented inside

the FOSFOR application. The global architecture of the considered hardware plat-

form is presented in Figure 2.25. It is composed of a LEON 3 processor core, which

manages the platform, and reconfigurable resources fully connected with DRAFT.

DRAFT also ensures the connection between the processor core and the reconfig-

urable resources through the AHB-DRAFT bridge. This permits to support data

exchange between software tasks (running on processor core), and hardware tasks (

PEs instantiated in the PRRs). The bridge should be at the base of the network to

have no communication restrictions.

2.8 DRAFT communication service

An OS supports numerous software communication techniques, such as signals, pipes,

semaphores and shared memory which are the usual techniques. Similarly, this kind

2.8. DRAFT communication service 71

of communications can be implemented for PEs to improve the flexibility of the

DPR compliant systems. In order to support such communications, an hardware

communication service was studied in order to enable and manage the communica-

tions between pairs of PEs. This communication service is particularly adapted to

the DRAFT network, thus easing its integration inside applications (FOSFOR plat-

form or other applications with a different OS). The communication is supported by

establishment of a communication channel between two tasks. The communication

service abstracts the information about the PRRs where the PEs are implemented

and establishes the data communication between the tasks. Thus, the communica-

tions are ensured without any designer’s knowledge about the location of the PEs.

The communication service provides several functions. The first one is the

”info/signal Handling”. The communication service has the information about the

current state of all the tasks (software or hardware) to take appropriate decisions

on the system calls or signals from the other tasks. The status is maintained in a

shared service table. This table is the central database where all the system calls are

registered. The communication service has a dedicated Finite State Machine (FSM)

for each port of DRAFT monitoring the communication specific system calls from

the running PEs. Thus, it can support the simultaneous communications between

different pair of tasks.

The second function concerns the service initialization and termination. The

communication service creates a virtual communication channel between the pair of

PEs which requires a connection. The PEs use the OPEN system call to open the

channel. If the communication service finds two open requests from PEs (one in send

mode, the other in receive mode) with the same channel number, a communication

channel is established between them. This is referred to as service initialization.

OPEN system call requests the communication service to open a particular channel

in either read or write mode. Whenever a PE requests to open a new channel, the

communication service acknowledges it with a channel ID for further communication

using this reserved communication channel. Once the data communication is over

between a pair of PEs, the communication channel is closed using a CLOSE system

call. This is referred as service termination. The communication channel checks

whether the data communication is over between the two PEs before closing the

channel. Once the channel is closed, it is available for the other PEs to establish a

new communication.

The third function concerns inter-task communications. Once the communication

channel is opened and acknowledged by the communication service, a Send-Data or

Receive-Data signal along with the Task ID, Memory Pointer, Port Address, Data

Size are sent to the communication service. These informations are updated in the

service table. SEND/RECEIVE system calls request the communication service for

72 Chapter 2. The DRAFT network

the physical address (NoC port address) of the receiving/sending PE along with the

channel ID received during OPEN call. The communication service acknowledges

the SEND/RECEIVE system calls with the physical addresses and initiates data

communications through DRAFT NoC.

To ensure the communication between two PEs, the communication service man-

ages the following configurations:

• The two PEs are instantiated at the same time. In this case, the data exchange

can be supported by DRAFT and no additional storage is needed for the data.

The data are directly transferred from (internal memory of) the sender PE to

(internal memory of) the receiver. These two internal storages are completely

masked, and the Network Interfaces use Direct Memory Access (DMA) to

exchange data at high speed. For this purpose, sender PE should receive from

the communication service the network address of the destination one.

• The source PE is not instantiated when the receiver one calls the communica-

tion in receive mode. In this case, the destination PE is suspended until the

sender calls the communication channel in send mode. At this moment, the

two DMAs can be initialized and the transfers between the two PEs can start.

• The destination PE is not instantiated when the sender starts the communi-

cation. In this case, the OS can suspend the sender until the receiver becomes

ready to receive data. This type of behavior delays the execution of the sender

PE.

Since the last case is not satisfactory, several new possibilities are offered to

the OS when the destination PE is not instantiated while the sender PE starts the

communication:

• A part of the global shared memory can be chosen for the temporary data

storage. In this case, the OS allocates sufficient space in the memory and

provides the address of this memory to the interface of the source PE. For

the source PE, it seems that the destination is ready and the data transfer

can start. The interface of sender PE sends the data through the NoC, and

DRAFT drives the data to the allocated global shared memory through the

bridge. This communication scheme is presented in Figure 2.26).

• A local shared memory can be chosen for the data storage. This case is very

similar with the previous one, but the allocation is done within a memory

placed in the reconfigurable area. In Figure 2.25, for example, this memory

is connected at the top of DRAFT. The OS provides local memory network

address to the source PE. So, for the source PE, it seems that the destination

2.8. DRAFT communication service 73

C mm_channel_send
(id, PtrSrc, size)

Get_network_address (id)

Memory allocate

@_dest (AHB_bridge)
Virtual_Malloc(PtrMem, size)

Communication

End_comm

End_comm

Communication AHB

Comm_channel_receive (id, PtrDest)

Find_send (id)

PtrMem, @dest, size
Read_message

End_comm

Communication

End_comm

Communication
service

Figure 2.26 : Sequence diagrams of communications between two PEs using the global shared

memory.

one is ready and the transfer can start. DRAFT drives the data to the allocated

local shared memory.

• DPR allows to propose a solution by the way of dynamic creation of tempo-

rary memory. To ensure a maximum flexibility to the application, the OS is

extended with temporary memory allocation within the available memories in

the platform. If a PRR is not used to support a PE during a time interval,

its logical resources can be used for temporary data storage. For example,

it is possible to use the memory blocks (BRAM) present in a PRR to store

locally data during task exchange. If no PRR are available, the global shared

memory can be used for this purpose. To do that, the memory capacity of

each PRR should be evaluated. This way, each PRR is defined compliant with

74 Chapter 2. The DRAFT network

C mm_channel_send
(id, PtrSrc, size)

Get_network_address (id)

Dynamic_Memory_PE_allocate

Not yet configured memory PE

Configure_memory_PE

Virtual_Malloc(PtrMem, size)@_dest

Communication

End_comm

Comm_channel_receive (id, PtrDest)

Find_send (id)

PtrMem, @dest
Communication

End_commEnd_comm

Virtual_free(PtrMem, size)

B)

Communication
service

Figure 2.27 : Sequence diagrams of communications between two PEs with creation of a memory

PE temporarily storing the data.

the instantiation of a set of PEs. The synthesis of each PE of a set leads the

synthesis tool to include BRAM within the PRR. When all PEs are mapped

in the PRR, the memory size included in the PRR is at least equal to the

maximum required internal memory from the PE set. In this case, an addi-

tional PE memory is defined for each PRR. A memory PE is a PE including

logic resources to ensure read and write operations within the BRAM memory

included in the PRR. Each set of PEs is then increased with this new module.

In this case, the OS can allocate and configure each PRR accordingly with the

application needs in terms of communication. The memory of one PRR can be

2.9. Synthesis of the chapter 75

chosen and a memory PE needs to be instantiated dynamically. In this case,

the OS finds, between the current available PRRs, which one have sufficient

memory space to temporary store the data. After the selection of one PRR,

the OS provides the network address of the selected PRR to the interface of

source PE. For this PE, it seems that the destination one is ready, and the

transfer can start (Figure 2.27). DRAFT drives the data to the selected PRR

previously configured as a memory PE.

2.9 Synthesis of the chapter

In this chapter, the DRAFT network is presented. This network is based on the

4 − radixn − stages fat-tree topology but the main difference lies in the fact that

DRAFT has n − 1 stages and half of interconnected PEs directly connected to the

top level routers. This simplification of the topology is based on the observation

that, in both current and foreseen applications, some of interconnected PEs do not

share data between themselves. These PEs can be shared memories, communication

interfaces, etc. Connecting these PEs directly to the top level routers allows to signif-

icantly reduce the hardware overhead of a fat-tree based topology, and so to improve

its scalability. Observing the assumption that no communication can take place be-

tween two top level connected PEs, there is in fact no limitation concerning their

nature: memories, processors, IP blocks, etc. These PEs can be ever statically or

dynamically implemented. DRAFT does not aim to optimize a performance criteria

compared with the others, but being a viable trade off between hardware resources

consumption, network performances, and flexibility when facing applications using

DPR. After defining the DRAFT NoC, the DRAGOON environment is presented.

DRAGOON is a framework allowing to generate and simulate both DRAFT and a

conventional fat-tree.

Then, the integration of DRAFT inside current applications was studied. For

this purpose, a DRAFT-AHB bridge was designed. This bridge makes the relation

between PEs connected to DRAFT and microprocessor(s) like the LEON 3 also

with shared memories that communicate through an AHB bus. Using both an AHB

slave and an AHB master interface, the bridge is compliant with bursts of data with

incremental addresses.

Finally, in order to ease the design of applications, an hardware communication

service was studied. The communication service that is part of an OS gives to users,

and thus designers, an abstraction of the communication architecture and protocol

also with the flexibility inherited from the use of the DPR. Based on communication

channels, the communication service handles the flexibility of the DPR using memory

spaces in the global or local shared memories. If for some reasons sufficient memory

76 Chapter 2. The DRAFT network

spaces can not be found in these memories and a PRR is not used, then a temporary

memory PE is instantiated. The memory PEs are in fact the definition of additional

PEs that use the BRAM resources included inside the PRR. Thus extra memory

spaces can be created on demand.

Chapter 3

Toward new flexible NoCs

3.1 Objectives and motivations . 78

3.2 Topology of the R2NoC network . 79

3.3 R2NoC switch architecture . 82

3.4 R2NoC Routing and Flow Control . 83

3.5 Constraints of the R2NoC network . 86

3.6 Motivations for the OCEAN network 87

3.7 Topology of the OCEAN networks . 89

3.8 The data network . 90

3.8.1 Communication principles and interfaces 90

3.8.2 Data switches . 90

3.8.3 Discussions over the data network . 93

3.9 The control network . 94

3.9.1 Operation principles and interfaces 94

3.9.2 OCEAN Routing algorithm . 96

3.9.3 Control switches . 99

3.10 Variations of the OCEAN network . 102

3.10.1 OCEAN v4.0 . 103

3.10.2 OCEAN v3.1 and v4.1 . 104

3.11 Discussions concerning the OCEAN networks 107

3.12 OCEAN test platform . 108

3.13 Synthesis of the chapter . 112

78 Chapter 3. Toward new flexible NoCs

This chapter presents new interconnection networks based on circuit switched

protocol. The efficiency of these networks is provided by the dynamic reconfiguration

of their switches. First presented network is called R2NoC. This network is designed

for applications running on dynamically reconfigurable FPGAs. Due to technologi-

cal constraints, several versions of the OCEAN network were inherited from R2NoC.

These networks aim both ASIC and FPGA implementations. OCEAN v3.0 and

OCEAN v4.0 are specially designed for FPGA implementations with a synchronous

control network reconfiguring an asynchronous data network. The difference be-

tween these two versions lies in the routing algorithm that impact the structure of

the data switches. The OCEAN v3.1 and OCEAN v4.1 versions are respectively

adaptations of the OCEAN v3.0 and OCEAN v4.0 networks in order to fit ASIC

implementations. A test platform was also created in order to characterize the four

versions of OCEAN and to compare them with a conventional fat-tree simulating an

FPGA implementation.

3.1 Objectives and motivations

When considering communication architectures, their hardware cost and required

performances steadily scale up along with applications. The main idea of this chap-

ter is thus to define new interconnection networks using the DPR to improve per-

formances, flexibility, and hardware costs. The objective is to design a network on

which connected PEs do not suffer any location constraint: one can communicate

with another one whatever are their respective locations and independently of cur-

rent data traffic. A high degree of flexibility would also be highly appreciated in

order to improve complex data flow graphs. For example, the ability for a PE to

send a packet of data to several destinations at a time (multicast) can dramatically

improve performances of parallel applications where a data is shared by multiple

PEs. This kind of flexibility is not supported by the DRAFT network. Furthermore,

this latter imposes that half of connected PEs (the top level ones) do not communi-

cate together. It should be particularly interesting for a new interconnection network

not to present such a limitation. This way this new network should be even more

flexible.

Concerning the hardware cost of an interconnection architecture, it is highly

linked with the number of PEs that are to be interconnected at a time. Considering

that this number is lightened by the DPR, even if interconnection architectures must

foresee an increase of the number of communication ports, best effort can be made

on low scaled interconnections to minimize their cost. Consequently to previously

enumerated drawbacks of DRAFT and of existing reconfigurable Networks-on-Chip

(NoCs), the Reconfigurable Routers based Network-on-Chip (R2NoC) network was

3.2. Topology of the R2NoC network 79

designed.

3.2 Topology of the R2NoC network

Just like for DRAFT, the way switches/routers are linked together is a major con-

cern in the definition of an interconnection network. It highly influences resulting

network performances and both routing and flow control algorithms must be defined

accordingly. For the R2NoC network, the main concern is to use the dynamic re-

configuration to reduce the interconnection logic. The first idea could be to use a

big crossbar on which every PE is connected and made of only one Partially Re-

configurable Region (PRR). This PRR should contain only direct links reconfigured

accordingly with desired communications. However, several concepts must be taken

into account:

• First, a PRR is not an empty region were direct links can be implemented.

Indeed, every set of four links entering or exiting a PRR have to pass through

a Bus Macro (BM) using one full slice of the FPGA. BMs are implemented

inside the PRR. Furthermore, a signal entering a PRR through a BM must

encounter dynamically implemented logics before exiting through another BM.

This is due to Xilinx design software tools that require every signal to be

modified or at least transferred between two BMs by some logic. So, the more

communication ports there are entering a PRR, and the larger they are in

terms of number of wires, the more hardware resources will be involved in

every possible configuration of the PRR.

• Second, a PRR is the finest dynamically reconfigurable area. When initiating

the reconfiguration of a PRR, the whole resources it contains are reconfigured.

However, during the reconfiguration process, if a configuration bit has the same

value in the novel configuration as in the previous one, dedicated resource is

not affected and no glitch disrupts its behaviour [73]. This is a major issue

because assuming that every dynamically implemented logic remains at the

same location, existing communications are not impacted by the configuration

of a new data path. However, the more logical resources are implemented in a

PRR, the more difficult it is to guarantee that they will remain exactly at the

same locations for every possible configuration of the PRR.

• Third, the number of possible configurations for a PRR is directly linked with

the number of communication ports. If the crossbar contains N communication

ports (with both input and output parts), the number of possible configura-

tions is equal to factorial(N) (usually noted N !). Every generation of Xilinx

80 Chapter 3. Toward new flexible NoCs

FPGAs contains hidden resources that are to be revealed only in subsequent

generations. So, for industrial protection of their technologies, Xilinx design

software tools only generate encrypted bitstreams. Bitstreams, also called con-

figuration files, can not be generated nor modified online. So, in the case of the

R2NoC network which should be compliant with present and future FPGAs,

every configuration file has to be generated offline and stored in the board.

Considering previous concepts, it appears that if the number of communication

ports is high for a single PRR, many logical resources are involved leading to the

generation of big configuration files. Furthermore, the number of these files to gen-

erate and to store increases dramatically with the number of communication ports.

Moreover consequent storage capacities are then required to store these configura-

tion files. Finally, configuration files become more and more difficult to generate

guaranteeing the constant placement of every logical resource. For all these reasons,

a crossbar like the one presented in Figure 3.1.A is not a viable solution due to

the 8! = 40320 configuration files required for its correct behaviour despite its low

number of communication ports. The number of port per switch/router must be

minimized.

A mesh topology based network was proposed defining each switch as a PRR

[80]. This network is composed of two sub-networks: one dynamically reconfigurable

transferring data and one statically implemented for control purpose. In Figure

3.1.B, only the data network is represented. Considering the number of communica-

tion ports for each switch, the number of configuration files necessary to perform all

possible data transfers between the 8 connected PEs is equal to 5!+4∗4!+3∗3! = 234.

In this particular case of 8 connected PEs, a 4x2 mesh based network would have

reduced the number of needed configuration files to 4 ∗ 4! + 4 ∗ 3! = 120. However,

a square mesh was chosen to show that the central switch which possesses 5 com-

munication ports heavily impacts the number of configuration files. Unfortunately,

such 5 ports switches can not be avoided in larger mesh based networks.

Mesh based networks are often preferred to fat-tree based ones because of the

hardware cost of such networks notably when they scale up. However, in the context

of dynamically reconfigurable applications, the limited size required from the inter-

connection architecture can be an advantage for the fat-tree topology. Indeed the

fat-tree topology presented in Figure 3.1.C uses unitary switches with only 4 com-

munication ports leading, for the connection of 8 PEs, to the generation and storage

of 8 ∗ 4! = 192 configuration files. Considering that the fat-tree topology allows high

network performances, the reduction of the configuration files is one more reason

leading this topology to be used for R2NoC.

3.2. Topology of the R2NoC network 81

PRR

PE 1 PE 2 PE 3 PE 4

PE 5 PE 6 PE 7 PE 8

BMs

A) Crossbar: 40320 configurations

PE 1

PRR

PE 3

PRR

PE 6

PRR

PE 7

PE 4

PE 2

PE 5

PE 8

B) Mesh: 234 configurations

PE 1

PE 2

PE 3

PE 4

PE 5

PE 6

PE 7

PE 8

PRR PRR PRR PRR

PRRPRRPRRPRR

C) Fat tree: 192 configurations

PRR PRR

PRR

PRRPRR

PRR

Figure 3.1 : Interconnection architectures based on dynamically reconfigurable switches (PRRs).

A) Crossbar network connecting 8 PEs. B) 3x3 square mesh based network with one communication

port remaining free. C) fat-tree topology used for R2NoC interconnecting 8 PEs

Remark 1: If Xilinx provided way to relocate easily a bitstream from a PRR to

another one, the number of configuration files to store should be of 8! = 40320 for a

crossbar, 5! + 4! + 3! = 150 for a mesh based network and only 4! = 24 for a fat-tree

taking advantage of its generic switches.

Each switch of the R2NoC network is composed of 4 communication ports them-

selves constituted of an input port and an output one. So, every switch has 4 inputs

and 4 outputs which is defined as the radix of the network. The version of R2NoC

presented in Figure 3.1.C embeds only two stages of switches. This version is then

a 4 − radix2 − stages fat-tree. Each port (ever input or output) is made of a data

line (32 bits width) and 3 control signals. So, each port has a width of 35 bits.

Switches of the R2NoC network are defined as PRRs in which routing config-

urations are dynamically configured. The objective is thus to create a direct path

between each couple source/destination PEs. So, data are circuit switched through

the R2NoC network. Originally, NoCs emerged embedding buffers allowing to store

data all along their paths from sources to destinations. However, DPR allows R2NoC

82 Chapter 3. Toward new flexible NoCs

PE 1

PE 2

PE 3

PE 4

PE 5

PE 6

PE 7

PE 8

PE 9

PE 10

PE 11

PE 12

PE 13

PE 14

PE 15

PE 16

Communication
service

PRR PRR PRR PRR

PRRPRRPRRPRR

PRR PRR PRR PRR

PRRPRRPRRPRR

PRRPRRPRRPRR PRRPRRPRRPRR

Figure 3.2 : Presentation of R2NoC in its 4 − radix3 − stages version (16 connected PEs) with its

dedicated communication service.

to circuit switch data so that buffers are no longer necessary. When configured, a

path is nothing else than a direct line interconnecting only the desired PEs. R2NoC

is designed for a relatively low number of connected PEs. Its reduced size avoids

any risk of long lines parasitic effects: fall of maximum frequency or transmission

errors. Indeed, the network interfaces (NIs) that are part of every PE connected

to R2NoC, embedding buffers and sequential logics, are enough to ensure that long

lines are avoided. However, if no buffer nor sequential logics are present along the

network, a communication service is required to compute the routing algorithm and

to reconfigure the PRRs. Communication service is directly linked with intercon-

nected PEs. Complete R2NoC network with its communication service is presented

in Figure 3.2. Further details about the switches and the communication service are

given in following sections.

3.3 R2NoC switch architecture

R2NoC switches are dynamically reconfigurable. This assumption greatly impacts

the hardware definition of their architecture. Indeed, the DPR allows to create

at ease direct routes between one port to another one. No buffer is necessary to

store incoming packets. Data should just be transferred directly to their destination

port. Each line entering or exiting a PRR is interfaced by a BM. Every BM is able to

interface 4 wires using 1 full slice of a Xilinx Virtex V FPGA. A switch interconnects

4 input to 4 output ports with 35 bits width each. Then, (4+4)∗35 = 280 lines must

be interfaced by BMs. So 70 BMs are used per switch consuming 70 slices (thus 35

3.4. R2NoC Routing and Flow Control 83

Configurable Logical Blocks (CLBs), that are defined as set of 2 slices, are used).

PRR

BMs BMs BMsBMs

BMsBMsBMs BMs

&

&

&

&

BMreset

PRR

BMs BMs BMsBMs

BMsBMsBMs BMs

BMreset

&

&

&

&

Figure 3.3 : Presentation of 2 possible configurations for a switch over the 24 possible. Each switch

is made of a PRR containing BMs as interfaces and dynamically instantiated AND gates. The extra

reset line is also pictured.

Direct links can not be instantiated between two BMs: logical elements must be

implemented. Taking advantage of these indispensable resources, extra functionali-

ties can be added. In the case of R2NoC switches, AND logical gates are dynamically

instantiated between every pair of BMs. Each AND gates receives a unique signal

acting as a reset line. If this signal is set to 0, no data can pass through the switch.

On the contrary, when it is set to 1, data are transferred without any modification

at the cost of the AND gate latency. The reset line should be controlled outside of

the switch, so an extra BM is necessary. The architecture of a switch is presented in

two different configurations (that can be dynamically exchanged) in Figure 3.3.

3.4 R2NoC Routing and Flow Control

Dynamic reconfiguration of the switches is performed by a centralized communica-

tion service linked to the PEs by direct links. The communication service can be

implemented as a fully hardware implemented service, or using a processor running

a software algorithm. A MicroBlaze processor running a software communication

protocol was implemented for practical reasons.

The hardware part of the communication service is composed of a MicroBlaze,

the ICAP interface, a configuration DDR memory, and an interface proposing general

purpose interfaces (GPIO) that are used to communicate directly with the PEs for

control purpose (Figure 3.4). The MicroBlaze computes and establishes the route

between source and destination PEs reconfiguring the involved switches through

84 Chapter 3. Toward new flexible NoCs

PRR

BMs BMs BMsBMs

BMsBMsBMs BMs

&

&

&

&

BM reset

R2NoC R2NoC

PE 1 PE 2

MicroBlaze
processor

ICAP interface

DDR configuration
memory

General purpose
input/outputs

PLB bus

Communication service

Figure 3.4 : Presentation of the communication service controlling the R2NoC network. For practi-

cal reasons, only 2 PEs are depicted here. The communication service is centralized and composed

of a MicroBlaze processor that performs the communication management, the routing algorithm,

and switches reconfiguration. Configuration files are stored in a DDR memory, and loaded by the

MicroBlaze processor directly to the ICAP interface.

the ICAP interface. For this purpose, configuration files are loaded from the DDR

configuration memory directly to the ICAP interface.

Communication protocol is proposed as follow. When a PE initiates a commu-

nication, it notifies the communication service to open a communication channel in

send mode. While the answer to this channel request is not acknowledged, the PE

suspends its execution (blocking communications). Since PEs are dynamic, the com-

munication service waits for the destination PE to request a communication channel

in receive mode. This point allows to synchronize the PEs and to make sure they

are both available for a communication. It also allows PEs not to have the knowl-

edge about their respective locations. This way, no distributed routing tables are

necessary because all the knowledge about implemented PEs, including their local

addresses, is centralized in the communication service. When both source and desti-

nation PEs have requested the same communication channel, before acknowledging,

the communication service performs the routing protocol.

The centralized communication service computes the routing protocol considering

the topology of the network. Since R2NoC is based on a fat-tree topology, the

routing protocol consists in a TurnBack algorithm. Data are routed toward upper

3.4. R2NoC Routing and Flow Control 85

PE 1

PE 2

PE 3

PE 4

PE 5

PE 6

PE 7

PE 8

1

2 3

1

2 3

1

2 3

1

2 3

3

2
1

2

1
3

Switching matrix

Input port 0
connected to
output port 3

Output port 3
connected to
input port 0

Figure 3.5 : Establishment of a one way communication route in the R2NoC network and the

corresponding switching matrix.

level switches until the destination is reachable only going down from this level.

The routing protocol is realized thanks to a matrix filed with the state of each

communication ports of each switch (parts of the switching matrix in Figure 3.5).

For the 4−radix2−stages R2NoC network presented in Figure 3.1.C, the switching

matrix consists in a 4x16 array of values. These values are coded using two bits

indicating the port number they are connected with. For example, a connection of the

PE1 and PE8 hardware elements (that can themselves be statically or dynamically

allocated) is presented in Figure 3.5.

When establishing a communication route, the algorithm uses the switching ma-

trix in order to recursively find an available way compliant with the TurnBack algo-

rithm. This guarantees that communication routes are always minimized in length.

For this purpose, a local array of 2x4 values is created corresponding to every commu-

nication port states of the switch the sending PE is connected with. Then, the possi-

bility to reach the destination PE directly from the ports of the switch is checked. If

not, using the TurnBack algorithm, the communication service uses the recursivity

to determine if a communication way can be created through available neighbour

switches. When an available path is found, the communication route is created up-

dating the switching matrix, and corresponding partial bitstreams are loaded from

the memory to the ICAP interface. The fat-tree based topology of R2NoC guaran-

tees that there is always a communication path available between two PEs requesting

to communicate: no livelock and no deadlock can occur. Furthermore, taken com-

munication path is ensured to be minimal. Thus, the communication service does

not need any priority mechanism to manage communication failures.

86 Chapter 3. Toward new flexible NoCs

3.5 Constraints of the R2NoC network

From the characterization of the R2NoC network concerning the network perfor-

mances and the hardware cost, several constraints appeared.

• First is the number of configuration files to generate and to store for correct

operation of the network. Every switch requires 4! = 24 configuration files.

Thus the scalability of R2NoC can be dramatically affected by the storage ca-

pacity: a 4 − radix2 − stages (connecting 8 PEs) requires 192 configuration

files, a 4− radix3− stages (connecting 16 PEs) necessitates 576 configuration

files, and a 4 − radix4 − stages (connecting only 32 PEs) implies the gener-

ation of 1536 bitstreams. Relocation of bitstreams should highly reduce the

configuration files to only 24 whatever is the size of the network, but it is not

currently supported by available FPGAs.

• Second is the waste of hardware resources just to implement BMs: a 4 −
radix2− stages uses 280 CLBs for the bus macros while a 4− radix3− stages

consumes 840 CLBs, and a 4 − radix4 − stages 2240 CLBs which represents

merely half of the CLB provided in middle sized Virtex V FPGAs.

• Third is the constant placement of BMs and logical gates inside every PRR.

Until ISE 11, BMs had to be located manually using the PlanAhead 10.1

software. This is a very long and boring work for designers. From ISE 11,

BMs are placed automatically. This was a very welcomed improvement of

design tools but the constant location of the logical gates remains an important

drawback for industrial applications.

• Fourth is the use of a centralized communication service that scales badly with

the network inducing latency to perform the routing algorithm thus limiting

the parallelism of the communications. However a centralized communication

service was implemented because only two ICAP interfaces are embedded in

most recent FPGAs. The restricted number of ICAP interfaces is indeed the

major bottleneck for the R2NoC network since the various dynamic reconfigu-

rations needed when creating a data path have to be made sequentially.

• Fifth is the reconfiguration latencies. Indeed, we measured a reconfiguration

delay of 11.3ms for each 22KB configuration files. Some works like [72], or [35]

obtained much better reconfiguration times modifying the hardware ICAP.

Accordingly with their results, reconfiguration times from the order of 50-

60µs can be reached. However, a reconfiguration time of 50µs represents 6250

clock cycles with a frequency of 125MHz. This latency per switch is too much

3.6. Motivations for the OCEAN network 87

important in order for R2NoC to have an interest in a real life application.

If considering R2NoC and a equivalent conventional fat-tree interconnecting

8 PEs, the average time of flight in the fat-tree can be estimated to be close

from 50 clock cycles. However, if 4 switches of R2NoC must be reconfigured,

the reconfiguration delay is at least of 4 ∗ 6250 = 25000 clock cycles with an

optimized ICAP. So, even if when configured the time of flight is inferior to

one clock cycle, R2NoC is only interesting if more than 25000
50 = 500 successive

communications occur using the same data path. Similarly, with genuine Xilinx

ICAP, more than 113000 successive communications are required for R2NoC

to be attractive.

Further implementation results are provided in Appendix C, but it is important to

notice that all these constraints are caused by current technologies. However, unless

technologies evolve in the future, R2NoC (like other networks using Xilinx dynamic

reconfiguration to perform circuit switched data transfers) will remain impractical

for most of industrial applications.

3.6 Motivations for the OCEAN network

Currently, most of present digital systems are limited by their interconnection [33].

This observation is notably due to the constant increase of both density and perfor-

mances of the computational logics embedded in Systems-on-Chip (SoCs). Conse-

quently, interconnection architecture are more and more solicited for data transfer

purpose. These architectures become a bottleneck when the amount of offered data

outperforms their capacity of communication. Foreseeing more and more complex

applications with larger numbers of involved PEs and larger communication needs

leads to search for new interconnection networks.

A NoC adapted to current and future applications should present following char-

acteristics:

• a reduced consumption of hardware resources,

• high level network performances in the sens of extremely low latencies along

with high bandwidth,

• a high degree of flexibility in order to support a large range of application,

• and finally no induced configuration memory.

The main idea of the R2NoC network was to use the DPR to create data paths

dedicated to each communication. This idea had the advantage of significantly re-

ducing the number of hardware resources required by the switches. Furthermore, the

88 Chapter 3. Toward new flexible NoCs

fact that data are circuit switched in a fat-tree based NoC was expected to induce

high level network performances. Indeed, the offered bandwidth remains constant

between each hierarchical level of the NoC all along from the base to the top. Conse-

quently, if each PE (located at the base level) has a dedicated connection link, at least

one data path is guaranteed to exist between two PEs requesting to communicate.

Thus, dynamically reconfigurable switches combined with the advantages inherent

to the fat-tree topology seem very interesting to fit the first three requirements.

However, R2NoC suffers many constraints that are caused by currently available

industrial solutions. Consequently, the main idea for a new interconnection should be

to reproduce the behaviour of a network with dynamically reconfigurable switches,

but independently from industrial devices. Indeed, an efficient NoC should be able

to dynamically reconfigure its switches without using the Xilinx DPR. Furthermore,

it should do so with reduced hardware and temporal overheads. The independence

from any industrial solution leads to another motivation: the benefits of a DPR like

behaviour should not only be reserved to systems implemented in FPGA. It would

be very interesting for a new NoC to be compliant with both FPGAs and ASICs

implementations.

The requirement of flexibility does not imply only the compliance with dynami-

cally and partially reconfigurable PEs. Indeed it also implies for the NoC to support

several modes of data transfers. For example, the communications between an IP

block and a shared memory would be significantly improved if the interconnection

network supports the use of a DMA. DMAs are commonly encountered in applica-

tions receiving a constant flow of data that must be stored in memory. DMAs are

characterized by very long transmission times so that the bandwidth offered by the

network becomes more important than data time of flight. The opposite example

should be the possibility for a microprocessor to send control informations to a PE

with a minimal latency. In latter example, only a few data are transmitted so that a

minimized time of flight is much more important than a large bandwidth. There is

another communication scenario that should be supported by a flexible NoC. Due to

the increasing parallelism of the applications, it becomes more and more necessary for

some PEs to send the same data to several others. It should thus be very interesting

for the interconnection network to be able to transfer data to multiple destinations

simultaneously (multicast). In addition to being more flexible, a network supporting

multicast would provide significantly better network performances.

All these motivations for a new NoC led to the On-Chip Efficiently Adaptive

Network (OCEAN) network. In remaining of this chapter, the OCEAN network is

presented in detail along with the answers it brings to current and foreseen intercon-

nection challenges.

3.7. Topology of the OCEAN networks 89

3.7 Topology of the OCEAN networks

The fat-tree topology presents numerous advantages concerning offered flexibility

and performances. For R2NoC, the choice of a fat-tree topology was made consid-

ering the constraints imposed by Xilinx partial DPR and notably the number of

needed configuration files. The OCEAN network aims to be independent from in-

dustrial solutions concerning DPR exactly to avoid these reconfiguration files. So,

the main reason for OCEAN to use the fat-tree topology lies in the large and con-

stant bandwidth it implies. This way, direct data paths can be created to make

PEs communicate without any risk of livelock, deadlock, or even of non-minimal

path. Furthermore, the fat-tree topology ensures that there is always an available

data path between PEs requesting to communicate. Consequently, thanks to this

topology, the high performances expected from circuit switched data transfers can

become a reality.

data
0

crtl
0

PE 0 PE 1 PE 2 PE 3 PE 4 PE 5 PE 6 PE 7

data
1

crtl
1

data
2

crtl
2

data
3

crtl
3

data
7

crtl
7

data
6

crtl
6

data
5

crtl
5

data
4

crtl
4

Figure 3.6 : Presentation of the OCEAN network with its two sub-networks. The data network

depicted in blue is dynamically reconfigured to circuit switch data. The control network (in black)

distributively manages the dynamic reconfiguration of the data network through reconfiguration

interfaces (in red).

Hence, just like R2NoC, OCEAN is composed of a 4 − radixn − stages network

whose switches are dynamically reconfigured. The first main idea of the OCEAN net-

work lies in the management of this dynamic reconfiguration of the switches. Indeed,

a centralized communication service using a unique reconfiguration interface (ICAP)

rapidly appeared to be a limiting factor of scalability. This is why, in OCEAN, the

control and thus the dynamic reconfiguration of each switch is realized by dedicated

controllers. Consequently, the communication service is no longer centralized but

distributed all along the data network. This is why OCEAN is in fact composed of

two sub-networks. One is dedicated to the transportation of data through dynam-

90 Chapter 3. Toward new flexible NoCs

ically reconfigured dedicated routes. This is the data network. The second one is

dedicated to the control and the management of the data network. This is the control

network. In order for each switch of the control network to manage one switch of the

data network, both sub-networks have the same 4 − radixn − stages topology with

n the number of hierarchical levels. Furthermore, each switch of the control network

masters the dynamic reconfiguration of its associated switch from the data network

through a specific reconfiguration interface. The structure of the OCEAN network

with its two sub-networks linked through reconfiguration interfaces is presented in

Figure 3.6.

3.8 The data network

3.8.1 Communication principles and interfaces

The main particularity of the data network is to transmit data through dynamically

configured data paths. Each switch of the data network can be dynamically recon-

figured independently from the others. Each switch presents four data interfaces

(communication ports), and one reconfiguration port. Depending on informations

arriving on the reconfiguration port, data paths are dynamically created between the

communication ports. This way, data incoming from a port are forwarded to one or

several other ports through a dedicated data path. Reconfiguring every switch from

source to destination PEs creates a direct route between these elements.

Interfaces of the data network are constituted of two ports each. One port is for

data emission (generically noted ”tx”), and one port for data reception (generically

noted ”rx”). The set of these two ports allows full-duplex communications (simulta-

neous communications in both ways: emission and reception). Both rx and tx ports

have the same architecture: a 32 bits width data line plus 2 control signals each.

These 2 control signals are respectively to notify the receiver PE(s) that a data is

available on dedicated line, and to notify the sender that a new data can be received.

Data interfaces for both emission and reception of data from the OCEAN network

point of view are presented in Table 3.1.

3.8.2 Data switches

The objective for data switches was to define an architecture dynamically recon-

figurable but without using any component linked to present industrial solutions.

Wished behaviour for these switches is only to directly connect its 4 reception to the

4 emission ports depending on required configuration. Since Xilinx DPR of direct

wires revealed itself to induce numerous constraints, a solution producing the same

behaviour but without any constraints was looked for. This solution, the second

3.8. The data network 91

Table 3.1 : OCEAN API provided to each PE concerning the emission/reception of data. Directions

are defined considering the network, so an input for the network should be connected to an output

for the connected PE.

Region Signal name Size (bit) Direction Function

Data

rx_data 32 In data to be transmitted are in-

jected here

reception

rx 1 In notifies that valid data are present

on rx_data

rx_credit 1 In receiver indicates if further data

can be received

Data

tx_data 32 Out transmitted data arrive here

emission

tx 1 Out notifies that valid data are present

on tx_data

tx_credit 1 Out indicates to sender if further data

can be sent

main idea of the OCEAN network, is inherited from FPGA reconfiguration. In-

deed, inside the reconfigurable fabric of an FPGA, there are small resources called

switch-matrices allowing to connect a CLB to a metal made wire linking desired

region of the FPGA: for example another CLB. Switch-matrices are configured de-

pending on witch metal wire should be used, and so which CLB should be reached.

Switch-matrices are not directly user programmable, their behaviour is programmed

by design tools during the place and route phase of design compilation. Then their

configuration is included in partial bitstreams with user programmable components

i.e. CLBs [118].

Concerning OCEAN data switches, the principle remains the same. Each data

switch is defined as a switch-matrix allowing to select a data path accordingly with

received dynamic configuration. Configurations are online generated by the switches

from the OCEAN control network and transmitted on the fly to data switches

through the reconfiguration port. As presented in Figure 3.7, in a data switch,

only logical gates AND and OR are necessary to route a reception port toward cor-

rect emission port(s). For example, we consider a data switch located at the base

stage of the data network. A data coming from a PE must have the possibility to

be routed toward one or several of the three other communication ports. For this

purpose, three AND gates are connected to each wire of the reception port the data

92 Chapter 3. Toward new flexible NoCs

&

Reconfiguration
port

& &

>1

>1 & & & >1

& & >1& &

34bits 34bits 34bits 34bits

34bits34bits34bits34bits

communication port 0 communication port 1

communication port 2 communication port 3

Figure 3.7 : Data switch from the OCEAN network. Appropriate emission ports are dynamically

connected to the reception ones through logical gates OR and AND. Latter ones assuming the se-

lection of the route(s) accordingly with configurations issued from the reconfiguration port.

comes from. Each AND gate receives as second input a wire coming from the re-

configuration port. Every AND gate addresses a specific emission port. So, if the

three wires coming from the reconfiguration port are set to ”1”, the incoming data is

routed toward the emission part of the three other communication ports. Similarly,

if only one AND gate receives a ”1” from the reconfiguration port (”0” for the two

others), data are only allowed to cross this gate, and then to reach the dedicated

communication port. Every wire coming from a reception port should be routed

toward the same destination(s). So, only a unique wire from the reconfiguration

port is required to route the 34 wires of reception port toward dedicated emission

port. Finally, since emission port can receive data from several reception ports, OR

gates are implemented on each wire. This way, assuming that wires coming from the

reconfiguration port do not allow several reception ports to access simultaneously

the same emission port, data are transmitted without any change.

In a fat-tree topology, a data climbing down the structure of the tree before going

up in a switch does not make sense. It would result in non-minimal data paths and

a significant waste of bandwidth. This is why, in Figure 3.7, only two emission ports

are accessible from communication ports 2 and 3. This saves both logical gates and

wires from the reconfiguration port. So, the reconfiguration port is defined with a

width of 10 bits.

Remark 2: Hardware resources are statically implemented. However, in Xilinx

like architectures, configurable elements are physically engraved inside the chip and

3.8. The data network 93

only the resulting behaviour is dynamic accordingly with configuration bits. This is

exactly the same principle in OCEAN data switches.

3.8.3 Discussions over the data network

Considering the structure of data switches, a data reaching its destination PE only

encounters combinatorial logics along the data path. No buffer nor sequential logics

are used to synchronize the data. Thus data are transferred asynchronously through

the network. This is a major specificity from OCEAN network. Even if data are

injected in and read from the network using a clock reference, no further synchro-

nization is made during the transmission. This allows to reduce the time of flight

to logic and wires propagation delays. For applications using DMA or transmitting

large volumes of data, the time of flight is not so important. However, for control

informations requiring extremely low latencies, time of flight minimized to propaga-

tion delays is very interesting. Furthermore, since every bit of data crosses the same

logic gates and follows the same data path (same wire length), very short transitory

states are expected at data arrival time.

Another consequence from data paths made only of combinatorial logics lies in

the reconfiguration time. Indeed, the drawbacks from Xilinx DPR are completely

avoided in OCEAN since the reconfiguration latency is equal to the respond time of

the AND gates.

Furthermore, the data network has the particularity that no clock signals are

transmitted as references along with data. This is why data interfaces do not in-

clude any clock signal. This particularity lies on the observation that it is more cost

efficient to synchronize the Network Interfaces (NIs) that send/receive data on/from

the network, than to propagate clock references. Indeed, even if OCEAN data net-

work propagated clock references, different communication frequencies from the PEs

would require asynchronous buffers to be implemented inside their NIs. So, unify-

ing the communication frequency, which can be different from PEs’ does not imply

an important hardware overhead. Furthermore, the absence of propagated clock

references allows to save hardware resources all over the network. Considering the

steadily increase of the chip size, it is more and more difficult to provide exactly the

same clock to all embedded resources. This is why a convention is asserted: data are

both transmitted and read on the rising edge of the communication clock (in NIs) so

that the impact of propagation delays and of clock jitter are less sensitive. Indeed,

the maximal communication frequencies (that depend of the size of the OCEAN net-

work) presented in Chapter 4 guarantee that data are stable and then can be read at

each falling edge assuming ideal clocks. Since in real life clocks are not ideal, reading

data on rising edges increases the jitter tolerance. As demonstrated in Subsection

94 Chapter 3. Toward new flexible NoCs

4.4.2, this convention is sufficient to ensure the coherency of transmitted data with

0% error.

Consequently to these observations, from the data transmission point of view,

OCEAN answers well to the initial motivations:

• low hardware cost because only combinatorial logics are implemented (no

buffers, no sequential logic, size of the switches limited to 4 communication

ports),

• high network performances due to both the fat-tree topology (ensuring the

availability of a least one data path) and the time of flight reduced to propa-

gation delays,

• independence from industrial solutions concerning DPR (extremely low recon-

figuration times),

• high flexibility due to both the absence of control logics along the data path (no

specific communication protocol is imposed) and the times of flight allowing

transfers of critical control informations,

• and finally the support of the multicast (several destinations can be accessed

at a time depending on informations issued from the reconfiguration ports).

3.9 The control network

3.9.1 Operation principles and interfaces

The control network performs the dynamic reconfiguration of the data network. For

this purpose, every control switch disposes of a reconfiguration interface allowing to

dynamically load desired configurations in associated data switches. To prevent in-

efficiencies, dynamic reconfiguration of a data switch is initiated by a control switch

only when an end-to-end route has been found and acknowledged. The control net-

work operates as follow. Before starting the transmission of data, a PE requests

the control network to create a data path toward destination PE(s). First switch

receiving the request along with destination address(es) computes the routing algo-

rithm and forward the request to appropriate neighbour switch(es). The propagation

of the request continues until it reaches destination PE(s), thus creating a control

route. Destination PE acknowledges the request when it is ready to receive data.

Receiving the acknowledgment, every switch reconfigures its associated data switch

and propagates it along the control route. This way a data path is created and kept

valid until the source PE cancels the request returning in to ”0”.

3.9. The control network 95

In addition to the reconfiguration port (10 bits width), each control switch has

4 control ports. Each control port is composed of two parts: the reception part

(rx) to receive requests and destination address(es), and the emission part (tx) to

transmit these control signals. The reception part also embeds an acknowledgment

signal which is to be transmitted to the source PE. Similarly, the emission part is

able to receive the acknowledgment from destination PE(s). One of the motivations

for the OCEAN network is to support multicast. When a PE wants to send data

to multiple PEs at a time, it should not transmit their addresses sequentially to the

control switches. This is why the address signals contain as much wire as there are

interconnected PEs. Every wire designates a particular PE. So, if several wires of the

address signal are set to 1, every corresponding PE will receive the data (multicast).

On the contrary, if only one wire is set to one, corresponding PE will be the only one

to receive the data (unicast). The multicast functionality from OCEAN networks

is very practical for parallel applications, but it has an hardware cost: the number

of wires for the address signals scales exactly the same way as the network itself.

For example, the 4 − radix2 − stages version of OCEAN uses 8 bits width address

signals while the 4 − radix5 − stages version requires 64 bits width address signals.

Interfaces provided to PEs by the control network are presented in Table 3.2

Table 3.2 : OCEAN control interface provided to each PE. Directions are provided considering the

network, PEs should then oppose their outputs to the inputs of OCEAN. The size of the addresses

are given for the 4− radixn− stages versions of OCEAN interconnecting ”N” PEs.

Region Signal name Size (bit) Direction Function

Control

rx_task_id N In destination address(es)

reception

rx_req 1 In requests a data path toward des-

tination address(es)

tx_enable 1 Out acknowledgment when data path

is configured

Control

tx_task_id N Out destination’s own address + co-

receivers’ if any

emission

tx_req 1 Out a data path toward receiver is re-

quested

rx_enable 1 In acknowledgment, receiver is ready

to receive data

OCEAN control network operates synchronously using on a clock signal which is

96 Chapter 3. Toward new flexible NoCs

distributed to every switch. Furthermore, a reset signal is also required to initialize

all transmitted signals along with embedded control logics.

3.9.2 OCEAN Routing algorithm

Since data should cross a network to reach their destinations, a routing algorithm

is needed. An adaptive routing algorithm is particularly interesting because it can

significantly improve the QoS. Indeed, thanks to an adaptive routing the more

solicited areas of a network can be avoided, thus contributing to make the traffic

repartition more uniform. Furthermore, if for some reasons a switch or a link of

the network becomes faulty (no transmission occurs through this switch/link), an

adaptive routing will automatically search for another route. However, the difficulty

in packet switching lies in the fact that the first data packets (containing control

information (header, etc.) and the beginning of the payload) are already inside the

network. So most common solution consists in trying to foresee through additional

signals the condition of neighbour switches in order to detect which one of them

is less stressed by the data traffic. In the case of OCEAN, an adaptive routing

algorithm can be much more simple and cost effective to implement. Indeed, all its

functioning is based on requests and acknowledgments (handshake). So, a request

can be forwarded to multiple neighbour switches. The route without any faulty

switch will be acknowledged as soon as the request reaches destination PEs. When

acknowledged, every other path that was tested sees its request signal returning to

”0”, thus making previously solicited emission parts of the control ports available

for other communications. This selection of multiple control routes, as well as the

configuration of the data switches and the cancelling of the unused control route are

presented in Figure 3.8.

The particularity concerning the routing of requests in the OCEAN control net-

work lies in the fact that the routing algorithm is distributed in every switch, but

moreover in every control port of every switch. In a switch, the bottom level control

ports are noted 0 (bottom left) and 1 (bottom right) while the top level ones are

noted 2 (top left) and 3 (top right).

This kind of adaptive routing strategy is interesting to be implemented in OCEAN

in order to improve its reliability making it more fault tolerant. The routing algo-

rithms implemented in reception parts of the control ports 0 and 2 are presented in

Figure 3.9. In the case of the control port 0, the routing algorithm can be explained

as follow:

• First, when receiving a request signal, the destination address is read. Every

control port has two specific masks (specifically defined for each switch) indi-

cating which PEs can be reached from top level control ports (2 and 3) and

3.9. The control network 97

data
0

crtl
0

PE 0 PE 1 PE 2 PE 3 PE 4 PE 5 PE 6 PE 7

data
1

crtl
1

data
2

crtl
2

data
3

crtl
3

data
7

crtl
7

data
6

crtl
6

data
5

crtl
5

data
4

crtl
4

data
0

crtl
0

PE 0 PE 1 PE 2 PE 3 PE 4 PE 5 PE 6 PE 7

data
1

crtl
1

data
2

crtl
2

data
3

crtl
3

data
7

crtl
7

data
6

crtl
6

data
5

crtl
5

data
4

crtl
4

A)

B)

Figure 3.8 : Adaptive selection of control routes in the OCEAN network. In A) multiple routes

are tested by control switch 0. So, if for some reasons one switch (4, 5, 6, or 7) becomes faulty,

PE 0 is guaranteed to find another control route to reach PE 6. In B), when PE 6 acknowledges a

communication request, the route that first transmitted the request configures corresponding data

switches, while the remaining request from switch 0 is cancelled.

bottom level ones (0 and 1). Simply comparing incoming address with these

two masks allows to know if a route should be requested toward top level

neighbour switches, bottom level ones, or both in case of multicast. As it was

assumed by both data and control switches, in order to avoid any problem of

cyclic testing a request coming from top level neighbours can only be routed

toward bottom level ones.

• If the comparison indicates that the request should be forwarded toward a

top level switch, in fact it is always forwarded to both control ports 2 and

3, themselves transmitting the request to neighbour switches. Since there are

98 Chapter 3. Toward new flexible NoCs

Initialization
Wait

comparison
@ vs masks

request = 1

transmit request
out-controller 2,3

ack(x)
synchronization
depending on

requests

if (req(1) = 0) then
 ack(2) OR ack(3)
else
 (ack(2) OR ack(3))AND ack(1)

acknowledgment

request = 0

request = 0

bottom mask
result ≠ 0

Bottom level In-controller 0

transmit request
out-controller 1

cancel
request 2 or 3
depending on
ack(x) signals

top mask
result ≠ 0

Initialization
Wait

comparison
@ vs masks

request = 1

transmit request
out-controller 0

ack(x)
synchronization
depending on

requests

if (req(1) = 0) then
 ack(0)
else if (req(0) = 0) then
 ack(1)
else
 ack(0) AND ack(1)

acknowledgment

request = 0

request = 0

right mask
result ≠ 0

Top level In-controller 2

transmit request
out-controller 1

left mask
result ≠ 0

Figure 3.9 : Adaptive routing algorithms processed in control ports 0 (bottom level In-controller)

and 2 (top level In-controller) of the OCEAN control switches.

2 top level control ports, and since they can only be accessed from the two

bottom level ones, at least one of the control ports 0 or 1 is sure to see its

request transmitted immediately. Thanks to the fat-tree topology, the same

PEs are always accessible through the two top level control ports. So, as soon

as control port 2 or 3 receives an acknowledgment, it informs requesting control

port (0 or 1). This latter will immediately cancel its un-acknowledged request.

For example, if control port 2 receives the acknowledgment, requesting control

port 0 cancels the request it transmitted to control port 3. In this example

control port 3 is now available to transmit a request from control port 1.

• If the comparison indicates that request should be forwarded toward bottom

level neighbour switch(es) or PE(s), no multiple paths can be tested. Indeed,

each bottom level control port permits to access different PEs. So, if requests

3.9. The control network 99

are sent to the two bottom level control ports, then both acknowledgments are

required to acknowledge the control route. When two requests reach a unique

bottom level control port, the first arrived takes the priority.

Considering this adaptive routing algorithm, combined with the fat-tree topol-

ogy of the control network, an acknowledgment from a PE is ensured to be always

transmitted through a unique and minimal control route which is reserved for the

communication. Since the data network has the same topology, the configured data

path is also ensured to be unique and minimal. Furthermore, this algorithm ensures

that no deadlock nor livelock could occur whatever the data traffic is.

3.9.3 Control switches

Control switches are both the heart and brain of the OCEAN network. Indeed they

propagate incoming requests and compute the routing algorithm. Control switches

have two main particularities making OCEAN an original and innovative network.

Usually in NoCs, each switch has a unique control block performing the routing

algorithm and configuring accordingly a unique crossbar. In OCEAN, each part

(emission and reception) of each control port has a dedicated controller. So, any

critical section is avoided. The second particularity lies in the fact that control

switches do not possess any buffer. All the operation of a control switch is based

on handshake. The architecture of a control switch with its embedded controllers is

presented in Figure 3.10.

The 8 controllers work in parallel, only sharing signals based on the handshake

functioning. Controllers have different functions depending on if they are affected to

an emission or a reception part of a communication port. So, they are respectively

referred as In-controllers and Out-controllers.

In-controllers perform the routing algorithm accordingly with incoming address

and request signals. After computing the routing algorithm, they first transmit the

request to appropriate Out-controllers. As explained in previous section, the routing

algorithm of In-controllers 0 and 1 has the possibility to test several routes to reach

a destination. This is only possible when the request climbs the structure of the con-

trol network. Thus, several requests can be generated. As soon as acknowledgments

are received from Out-controllers (coming from all aimed PEs), remaining requests

(if any) are cancelled. Furthermore, at this point, dedicated lines of the reconfig-

uration port are configured and an acknowledgment is sent answering the inputted

request signal. This propagates the dynamic reconfiguration of the data path. When

acknowledgments reach the source PE, the overall data path is configured and the

communication can take place in the data network. As soon as the request signal

coming from source PE returns to ”0”, the lines of the reconfiguration port are

100 Chapter 3. Toward new flexible NoCs

Recon-
figuration

port

@ request
acknowledge @ request

acknowledge @ request
acknowledge @ request

acknowledge

@ request
acknowledge @ request

acknowledge @ request
acknowledge @ request

acknowledge

In-controller 0 Out-controller 0 In-controller 1 Out-controller 1

In-controller 2 Out-controller 2 In-controller 3 Out-controller 3

@ req ack @ req ack @ req ack @ req ack

@ req ack @ req ack @ req ack @ req ack

Control port 2 Control port 3

Control port 0 Control port 1

clock

reset

Figure 3.10 : Control switch from the OCEAN network. This switch is composed of 8 controllers

each dedicated to a part (emission or reception) of a control port. Controllers work in parallel.

re-initialized to ”0” (cutting off the data path), transmitted requests are cancelled,

and the In-controller waits for a new request to arrive. The FSM performing this

functioning of the In-controllers 0 and 1 is presented in Figure 3.11.

When a request climbs down the fat-tree based structure of the control network,

assuming it will not go up again, only one route can be taken to reach destination

PEs. Consequently, all requested routes must be acknowledged before the acknowl-

edgment to be sent to previous control switches. This is why In-controllers 2 and 3

presented in Figure 3.12 do not possess the ”cancel not-acknowledged requests” step

in their FSMs.

Out-controllers can receive requests from all In-controllers they are connected

with. For example, Out-controller 0 receives requests and addresses from In-controllers

1,2,3 while Out-controller 2 receives these signals only from In-controllers 0 and 1

(U-turn not allowed when requests climb down). The rule of an out-controller is to

3.9. The control network 101

Initialization
Wait

routing
algorithm

request = 1

transmit
request

cancel
not-acknowledged

requests

ack = 1

dynamic
reconfiguration

acknowledgment

request = 0

request = 0

request = 0

In-controllers 0 or 1

Initialization
Wait

verification
req(0)

verification
req(1)

verification
req(2)

req(0) = 1
req(0) = 0
req(1) = 1

req(0) = 0
req(1) = 0
req(2) = 1

transmit
request

transmit
request

transmit
request

1

0 0

1 1

acknowledgment acknowledgment acknowledgment

acknowledge = 1 acknowledge = 1 acknowledge = 1

req(0) = 0 req(1) = 0 req(2) = 0

re
q(

0)
 =

 0

re
q(

1)
 =

 0

req(2) = 0

Out-controllers 0 or 1

0

Figure 3.11 : Presentation of the FSMs defining the functioning of In-controllers and Out-controllers

0 or 1 from OCEAN control network.

forward received requests to neighbour switch or PE. Since all requests can not be

forwarded at the same time, the FSM of Out-controllers cyclically and sequentially

considers the requests, thus giving a fair priority to every In-controller. If at least

one request signal is set to ”1”, the FSM is always the same:

• First, the request signal is verified to be equal to 1.

• Second, request and address signals are transmitted to neighbour control switch

or PE.

• Third, an acknowledgment is waited from neighbour switch or PE.

• Fourth, the acknowledgment is forwarded to the In-controller that initiated the

request.

• Fifth, if received request signal returns to ”0”, the transmitted request is can-

celled and next In-controller is checked.

102 Chapter 3. Toward new flexible NoCs

Initialization
Wait

routing
algorithm

request = 1

transmit
request

ack = 1

dynamic
reconfiguration

acknoiledgment

request = 0

request = 0

In2controllers A or o

Initialization
Wait

.erification
req(0D

.erification
req(1g

req(0D = 1 req(0D = 0
req(1g = 1

transmit
request

transmit
request

1 1

acknoiledgment acknoiledgment

acknoiledge = 1 acknoiledge = 1

req(0D = 0 req(1g = 0

req(0D = 0

req(1g = 0

Rut-controllers A or v

req(0D = 0 req(1g = 0

Figure 3.12 : FSMs implemented in In-controllers and Out-controllers 2 or 3 from OCEAN control

network.

The FSMs characterizing Out-controllers 0 and 1 are presented in Figure 3.11

while those corresponding to Out-controllers 2 and 3 are presented in Figure 3.12.

Due to the 4−radixn−stages fat-tree based structure of the control network, latter

Out-controllers could be simplified. Indeed, when a request is climbing down the

structure of the tree, assuming it does not go up again, Out-controllers 2 and 3 can

only be accessed from In-controllers 0 and 1.

3.10 Variations of the OCEAN network

The OCEAN network that has just been presented corresponds in reality to the

version 3.0 of the network. Three other versions are issued from OCEAN v3.0:

OCEAN v3.1, v4.0, and v4.1. Since these three versions are directly inherited from

OCEAN v3.0, their specificities are now presented.

3.10. Variations of the OCEAN network 103

3.10.1 OCEAN v4.0

The main difference between OCEAN v4.0 and OCEAN v3.0 lies in the routing algo-

rithm. Indeed, an adaptive algorithm confers a better reliability to the network, but

may results in decreasing network performances in normal functioning conditions.

When several routes are tested for adaptive routing purpose, they are reserved during

the test phase and so are not available for other incoming communication requests.

This is why OCEAN v4.0 embeds an oblivious (and deterministic) routing algorithm:

the Turnback algorithm. The general functioning is quite simple: a request climbs

the structure of the control network (ascendant route) until all destinations (if sev-

eral) are reachable only climbing down the appropriate routes (descendant routes).

In order to avoid conflicts, taken ascendant route only depends on the source PE. So,

every PE has a dedicated ascendant route: every In-controller 0 transmits requests

to Out-controller 2 while In-controller 1 only uses Out-controller 3. Naturally, de-

scendant routes are chosen accordingly with destination addresses. This algorithm

has the advantage to make uniform the repartition of the control routes inside the

structure of the control network (and consequently also the data one). This algo-

rithm is only made possible thanks to the fat-tree topology and the induced constant

bandwidth. Just like for the adaptive algorithm, this strategy guarantees that no

deadlock nor livelock can occur. Furthermore, contentions only occur when two PEs

want to communicate with the same destination. In this case, obviously the sec-

ond communication will have to wait for the first one to be finished. The routing

algorithms processed in In-controllers 0 and 2 of OCEAN v4.0 control switches are

presented in Figure 3.13.

Consequently to the change of routing algorithm, several improvements are pro-

vided by OCEAN v4.0 concerning its hardware cost. The first one concerns the

controllers embedded inside the control switches. Indeed, if an ascendant request ar-

riving to the In-controller 0 can only be routed up to Out-controller 2 or down to Out-

controller 1 (and similarly for In-controller 1), the architecture of all in-controllers

can be defined generically. Their FSM is then the same as the one presented in

Figure 3.12 for all In-controllers. Out-controllers 0 and 1 can still receive requests

from In-controllers 2, 3, and 1 or 0 respectively. Their FSMs are thus the same

as the ones presented in Figure 3.11. However, Out-controllers 2 and 3 are deeply

impacted. Indeed Out-controller 2 can only receive requests from In-controller 0,

and respectively for Out-controller 3. Corresponding FSMs could thus be simplified

to the one presented in Figure 3.14.

The data network from OCEAN v4.0 is also impacted by this oblivious routing

algorithm. Indeed, a data incoming a data switch from the communication port

0 will never be transmitted through the port 3. Same goes for data arriving from

104 Chapter 3. Toward new flexible NoCs

In-controller 0

Wait

comparison
@ vs masks

request = 1

transmit request
out-controller 0

ack(x)
synchronization
depending on

requests

if (req(1) = 0) then
 ack(0)
else if (req(0) = 0) then
 ack(1)
else
 ack(0) AND ack(1)

acknowledgment

ack(x) = 0
OR
request = 0

request = 0

right mask
result ≠ 0

In-controller 2

transmit request
out-controller 1

left mask
result ≠ 0

Wait

comparison
@ vs masks

request = 1

transmit request
out-controller 2

ack(x)
synchronization
depending on

requests

if (req(1) = 0) then
 ack(2)
else if (req(2) = 0) then
 ack(1)
else
 ack(2) AND ack(1)

acknowledgment

ack(x) = 0
OR
request = 0

request = 0

bottom mask
result ≠ 0

transmit request
out-controller 1

top mask
result ≠ 0

Figure 3.13 : Oblivious routing algorithms processed in In-controllers 0 and 2 of OCEAN v4.0 control

switches.

communication port 1. So, as presented in Figure 3.15, only two AND gates are

required for each of the bottom level reception ports. Furthermore, the number of

wires coming from the reconfiguration can thus be reduced to 8.

3.10.2 OCEAN v3.1 and v4.1

As it can be expected from their names, OCEAN v3.1 and v4.1 are both small evolu-

tions respectively from OCEAN v3.0 and v4.0. Indeed, OCEAN v3.0 and v4.0 target

FPGA implementations while OCEAN v3.1 and v4.1 are for ASIC implementations.

This impacts how the controllers operate. Since there is no buffer embedded in the

control sub-network from the OCEAN versions, a particular care had to be taken

concerning parasitic effects that can be caused by transitory states of the various

control signals. Transitory states can not be avoided due to hardware reasons (dif-

ferent length of metal wires, propagation delays of the gates, etc.). This is why the

synchronization of the controllers is particularly important. For this purpose, FSMs

3.10. Variations of the OCEAN network 105

verification
req

transmit
request

req = 1

acknowledgment

acknowledge = 1

req = 0
OR

acknowledge = 0

req = 0

Out-controllers 2 or 3

Figure 3.14 : Presentation of the FSM defining the functioning of Out-controllers 2 or 3 from OCEAN

v4.0 control switches.

&

Reconfiguration
port

& >1 & & >1

& & & &

34bits 34bits 34bits 34bits

34bits34bits34bits34bits

Communication port 0 Communication port 1

Communication port 2 Communication port 3

Figure 3.15 : Data switch from OCEAN v4.0 network. The reduction of the number of possible

configurations leads to a minimization of the combinatorial gates.

from all OCEAN versions were written as Moore machines. A Moore machine is

defined as a finite state machine where outputs only depend on current state and

not on inputs (this is the difference with the Mealy machines). Usually, a Moore

machine is composed of three main parts:

• The input logic. This logic is composed of combinatorial gates determining the

future state that the machine will take depending on the current state and the

inputs .

106 Chapter 3. Toward new flexible NoCs

• The state register. Composed of flip-flops, the state register updates, at a

specified clock edge, the current state of the machine using the future state

calculated by input logic. Current state is sent to the input logic in order to

determine again the future state of the machine.

• The output logic. this logic is composed of combinatorial gates. It determines

the output of the system considering the current state.

Concerning OCEAN v3.0 and v4.0, FSMs are defined as very classic Moore ma-

chines (3.16.A) but OCEAN v3.1 and v4.1 received an extra synchronization layer

after the output logic, as presented in Figure 3.16.B. This ensures that all output

signals are transmitted only when they are stable. However, in order to minimize

the delay to generate an output, synchronization edges of the machine were adapted.

The state register operates on a falling edge of the clock reference, while the final

synchronization of outputs is realized on a rising edge. This extra synchronization

implies an increase of both hardware cost and transmission latencies, but it signifi-

cantly improves the reliability.

In t combinatorial logicInputs State
register

Future state Current state Output combinatorial logic Outputs

CLK

Synchronization

Input combinatorial logicInputs State
register

Future state Current state Output combinatorial logic Outputs

CLK

A)

B)

Figure 3.16 : A) Traditional Moore machine used for the FSMs from OCEAN v3.0 and v4.0 control

switches. B) Extra synchronization is provided to output signals from OCEAN v3.1 and v4.1 avoiding

the propagation of transitory states.

Considering previously defined Moore machines, for all OCEAN versions, but

moreover for ASIC oriented ones, a convention was asserted: PEs wanting to create

a communication route should send informations (address and request or acknowl-

edgment) to their control switch on a rising edge of their clock reference. However,

detection of requests by receiving PEs (and acknowledgments by sending ones) should

3.11. Discussions concerning the OCEAN networks 107

be performed on a falling edge of the clock. This convention ensures signals to be

stable a long time before and after the moment they are read. This way, control

switches are more tolerant with jitter and parasitic effects.

sys_clk

tx_data_1

tx_1

rx_credit_1

tx_task_id_1

tx_req_1

rx_enable_1

rx_data_2

rx_2

tx_credit_2

rx_task_id_2

rx_req_2

tx_enable_2

rx_data_3

rx_3

tx_credit_3

rx_task_id_3

rx_req_3

tx_enable_3

0x00000000 0x01... 0x02... 0x03... 0x04ABCDEF 0x05... 0x06... 0x000000000

00 0b00001100 0b00000000

0x00000000 0x01... 0x02... 0x03... 0x04ABCDEF 0x05... 0x06... 0x00 000000

000000 0b00001100 0b00000000

0x00000000 0x01... 0x02... 0x03... 0x04ABCDEF 0x05... 0x06... 0x00 000000

000000 0b00001100 0b00000000

open channel
request from PE 1

toward PEs 2 and 3
PE 2 and PE 3

acknowledgments

acknowledgment,
channel is opened,

communication starts
no more data can be received
by PE 3: communication delay

channel closure
end of request

end of
acknowledgments

//
//

//
//

//
//
//
//
//
//
//
//
//
//
//
//
//
//

//
//

//
//
//
//

//
//
//
//
//
//
//
//
//
//
//
//
//

//
//

//
//
//
//

//
//
//
//
//
//
//
//
//
//
//
//
//

PE 1

PE 2

PE 3

//

Figure 3.17 : Chronograms presentation of the OCEAN network for a multicast communication

initiated by PE 1 toward PEs 2 and 3.

Chronograms of a multicast communication are presented in Figure 3.17. In this

scenario, PE 1 initiates a communication toward PE 2 and PE 3. Latter receivers

acknowledge the communication only when they are ready to do so. Chronograms

are exactly similar for every version of the OCEAN network

3.11 Discussions concerning the OCEAN networks

When considering the whole OCEAN network (whatever the version is) with both

data and control sub-networks, an extra functionality is supported: the creation of

communication channels. Indeed, an OS always gives an abstraction of communica-

tion architecture providing communication channels to the applicative tasks (either

hardware or software). When a task wants to communicate with another one, it

requests a communication channel (access to the physical medium reserved for its

data transfers). Using this channel, the task can send its data to the destination one

with a complete abstraction of routing protocols. This is exactly the same principle

108 Chapter 3. Toward new flexible NoCs

in OCEAN. A PE (hardware element analogue to the OS vision of an applicative

task) requests a communication channel to communicate with one or several others

PE(s) through the control network. When channel is created, source PE receives an

acknowledgment and can start communicating on this channel (reserved data path)

independently from any imposed protocol. So, if the source PE creates a channel

toward several destination PEs but wants to send data to only one of them, a bus

like protocol of communication can be used. Communication protocol is up to source

and destination PEs but does not impact OCEAN data network at all. Similarly,

once a communication channel is created, source PE can keep it open even after the

end of its data transfer if it wants to send new data in the future. Naturally, it

should verify if the data flow graph of the application indicates that it is the only

one PE sending data to this destination. This is a significant gain of flexibility for

the OCEAN network compared with other proposed NoCs.

The control network that is part of OCEAN versions is synchronized on a clock

reference, but the data network remains asynchronous. This has two consequences:

first, data can be injected inside the data network at a frequency superior to control

network’s. Second, the creation of communication channels takes all its sense in

this context where its creation induces higher latencies than communications. An

opened channel can then be used for several sequential communications with minimal

latencies each. This is notably useful for transmissions of control informations where

the time of flight is critical. Indeed, in reality the dynamic reconfiguration delay of

the data path is negligible compared with the control route establishment time.

3.12 OCEAN test platform

OCEAN is a very innovative network with both interfaces and internal architecture

completely different from already existing NoCs. As far as we could investigate, no

existing NoC simulator supporting the OCEAN network paradigm could be found.

This is why a new test platform was designed. However, since the comparison of

different NoCs is always difficult due to their specific interfaces and protocols, the

designed test platform aims to be generic (thus supporting as much different NoCs

as possible).

The main idea behind this platform is to create a system, defined at the RTL level,

in which NoCs are incorporated and characterized from the network performances

point of view. The platform contains generic PEs generating a data traffic. Since

NoCs may have different interfaces and communication protocols, the injection of

data in the network is realized through NoC specific NIs. One PE is connected to

every communication port of the network to characterize using these specific NIs.

Every PE has the same behaviour: an emission part generates and injects a data

3.12. OCEAN test platform 109

traffic in the network, and a reception part interprets received data.

Every PE is synchronized on a global clock signal. This forbids PEs to operate

at different frequencies. This point can seem to be a drawback for the platform, but

it is most cost efficient for an application to possess synchronous communications

(additional signal are then avoided in the network) even if PEs have different fre-

quencies. The clock adaptation is realized in the NIs through asynchronous buffers.

So, if in real life applications PEs can thus have specific frequencies depending on

the function they realize, in this platform they can be synchronized in order to avoid

additional buffer implementations.

The emission part of a PE needs several informations that should be provided

through a standard interface:

• The source address (needed by several routing algorithms, this is the address

of the emission part of the PE).

• The destination address of the packet to generate.

• The number of data (flits) that have to be transmitted in this packet.

• A delay information, in clock cycles, indicating the time that should be elapsed

between the end of a transmission and the beginning of the following one.

Indeed, with this platform, users should be able to master the data rate of

the traffic injected in the NoC: the offered traffic. For example, if delay is set

to 0, every communication starts immediately at the end of the previous one.

The offered traffic is thus maximal, corresponding to an injection rate of 100%.

Similarly, if the number of data to transmit is equal to the delay information,

data are injected half of the time, leading to a 50% injection rate.

• A counter: in order for the receiving parts of the PEs to calculate latencies,

time informations should be included in transmitted data packets. This is

why a 32 bits counter was created. Shared by every PE (and both emission

and reception parts), this counter brings coherent time values that are used

to date the various phases of a communication: emission and reception of the

very first control signal (header, channel request, etc.), the emission of the first

data packet, and the reception of the last transmitted data.

In order for the emission part of a PE to produce different data traffics, an

additional signal is defined: every PE indicates to an address controller when the

destination address can be changed for next packets. This address signal is used to

guarantee the integrity of sent destination addresses making sure that this address

will not change during its transmission.

110 Chapter 3. Toward new flexible NoCs

The reception part of a PE computes several informations from received data.

Comparing the emission time of the first control signal with the counter at the time

it arrives, the latency corresponding only to the path creation is determined. In some

networks like DRAFT, HERMES or the conventional fat-tree, it corresponds to the

time of flight of the first flit: the header. However for networks like the four versions

of OCEAN, it indicates the time in which a data path (communication channel)

is configured for incoming communication(s). Similarly, comparing the time from

which the first data flit was sent and the moment the last arrives gives informations

about transmission times. Some delays could result for example from contentions

in the network structure during the time data were going through it. Finally, the

addition of these two latencies gives the transport latency: time elapsed between

the beginning of the communication and the reception of the last data. This is the

latency that will be presented in Chapter 4.

The reception part also calculates two values: the number of clock cycles during

which data arrived giving information about the number of received flits (and thus

of received bytes), and the number of clock cycles with no incoming data. When

related with the simulation time, the number of clock cycles with incoming data is

used to calculate the data rate provided by the NoC. This is the accepted traffic.

When normalized, in percentage, this gives the throughput of the network. In case

the simulation time would be unknown, the number of clock cycles elapsed without

receiving any data allows to calculate the same throughput.

The reception part of a PE thus provides following informations:

• The transport latency.

• The number of clock cycles with incoming data.

• The number of clock cycles without incoming data.

The platform is presented in Figure 3.18. Since results (latencies and numbers of

clock cycles) are produced by every PE for each packet of data, they are assigned as

outputs of the platform. When simulated with ModelSim 6.6b, all the results can be

stored in a list file (containing every result from every packet that has been trans-

mitted through the network). Then, global network performances can be calculated

from the list file using Matlab.

Network performances are highly linked with injected data traffic. Depending

on the distribution of the traffic, in time and space, the network will be more or

less stressed. For this platform, a traffic fully repeatable was expected in order

to test different NoCs in exactly the same conditions. In this first version of the

platform, the destination addresses are cyclically chosen. This principle is pictured

in Figure 3.19 for a PE numbered n interconnected through a network with m − 1

3.12. OCEAN test platform 111

NoC under test

Emission
part 0

Reception
part 0

Emission
part 0

Reception
part 0

Emission
part 0

Reception
part 0

Emission
part 0

Reception
part 0

@
generator

@
generator

@
generator

@
generator

Reference counter

delay,
count

delay,
count

delay,
count

delay,
count

latency,
nb clk data,

nb clk no data

latency,
nb clk data,

nb clk no data

latency,
nb clk data,

nb clk no data

latency,
nb clk data,

nb clk no data

Figure 3.18 : Presentation of the characterization platform for a NoC with 4 input/output ports.

The entire platform is coded in VHDL. In can be simulated with ModelSim or implemented in FPGA.

Generated results should be processed with Matlab in order to extract global network performances.

PEs. Furthermore, if PEs are numbered from 0 to m-1, the PE number n always

starts sending packets to the (m-1)-n address. In order to stress even more the

network, increasing the probability of conflicts and of contentions, several sizes of

packets are injected. This traffic is called Permutation. Quarter of PEs will send

packets of 8 flits, another quarter will send 16 flits per packet, another one will send

32 flits per packet, and finally the last quarter will send 64 flits per packet. This will

create a pseudo random data traffic. If the number of flits per packet differs from a

PE to another, delay informations are chosen accordingly in order for every PE to

inject exactly the same rate of data in the network.

Finally, there are two main differences between network performances measured

from DRAGOON (presented in Chapter 3) and the characterization platform. The

first one is obvious, generated data traffics are different so that obtained perfor-

mances such as latencies will differ. This is why, the conventional fat-tree generated

with DRAGOON will be characterized along with OCEAN networks using this plat-

form. The conventional fat-tree was chosen instead of HERMES because its topology

is exactly the same as for the four versions of OCEAN, so that the same data traffic

112 Chapter 3. Toward new flexible NoCs

@ = 0

@ = 1

@ = n-1@ = n+1

@ = m-1

Figure 3.19 : Cyclic addressing of the packets’ destination injected by the PE number n.

can be used. The second difference concerns the dating of the packets. In DRA-

GOON, the dating is generated with the traffic before the simulation, accordingly

with desired injection rate. With such dating, when a network saturates, many pack-

ets are injected a very long time after the moment they should have been in an ideal

network. Resulting latencies explode. However, even when a network saturates, data

are still transmitted even if the accepted traffic is lower than the offered one. Since

the saturation of a network can also be observed with the number of transmitted

packets (reaching a maximum in stable networks, or decreasing although offered traf-

fic increases in unstable networks), the choice was made to date the packets at the

time they are really transmitted. This way, calculated latencies are only those of the

transmissions. Thus, informations can be gathered from behaviour of the networks

when they saturate. This is a fundamental difference with most of research papers:

it is normal, and done on purpose, that latencies do not explode when a network

saturates. Complete characterization results are presented in Chapter 4.

3.13 Synthesis of the chapter

In this chapter, several new interconnection networks were presented. First was pre-

sented the R2NoC network. This network is designed for DPR compliant FPGAs.

Main particularity of R2NoC lies in the definition of its switches that are only con-

stituted of a PRR where direct links are dynamically configured. This network is

controlled by a centralized communication service. Data are circuit switched through

the network. However, technological limitations make this network quite impracti-

cal for industrial utilization. This is why the OCEAN network was proposed. The

four OCEAN versions embed two networks, one dynamically reconfigurable circuit

switching data, and one processing the communication service while managing the

reconfiguration. OCEAN v3.0 is characterized by an adaptive routing algorithm. It

3.13. Synthesis of the chapter 113

is particularly designed for FPGA implementations. The OCEAN v3.1 in an adapta-

tion of OCEAN v3.0 in order to be compliant with ASIC implementations. OCEAN

v4.0 is inherited from OCEAN v3.0 but possess an oblivious routing algorithm al-

lowing a significant reduction of its hardware cost. OCEAN v4.0 is also designed for

FPGA implementations. Finally, the OCEAN v4.1 is an adaptation of the OCEAN

v4.0 network in order to be ASIC compliant. OCEAN networks are independent

from any industrial technology concerning dynamic reconfiguration. The behaviour

of dynamically reconfigured data paths is provided by combinatorial logics. From

the control point of view, OCEAN networks dispose of a deadlock free, and mini-

mal routing algorithm. Multicast also with creation of communication channels are

supported by the OCEAN networks. A specific platform was also created in order

to compare the OCEAN networks with a conventional fat-tree simulating an FPGA

implementation.

Chapter 4

Results and comparisons

4.1 Objectives . 116

4.2 Experimental conditions . 117

4.3 DRAFT performances and comparison 120

4.3.1 Hardware resources consumptions . 120

4.3.2 Network performances . 121

4.3.3 The scalability . 123

4.3.4 The data width . 124

4.3.5 Buffer depth . 126

4.3.6 Types of data traffics . 127

4.4 Ocean performances and comparison 128

4.4.1 Hardware resources consumption . 128

4.4.2 Network performances . 130

4.4.3 FPGA validation . 136

4.4.4 ASIC implementation . 137

4.5 Synthesis of the chapter . 139

116 Chapter 4. Results and comparisons

In this chapter, all previously presented NoCs are characterized and compared.

The DRAFT network is first compared with a conventional fat-tree (from which it

is inherited), and to the most popular NoC: the mesh topology based HERMES

[81]. Details concerning the hardware overhead induced by these networks when

implemented in FPGA are also provided. Furthermore, the four versions of the

OCEAN network are characterized in FPGA. They are compared with the same

conventional fat-tree that was used for DRAFT. The two versions of OCEAN which

are ASIC oriented were also characterized specifically for these architectures.

4.1 Objectives

The comparison of different topologies of networks leads to some problems that

must be considered before any experimentation. When the number of intercon-

nected Processing Elements (PEs) varies, the size of the networks should be chosen

accordingly. However, if considering a mesh based network interconnecting 8 PEs,

there are several ways to do so: designing a 4x2 mesh, or a 3x3 one but with an

unconnected router. Similarly, a fat-tree interconnecting 9 PEs have many routers

that will remain unused, and that could be removed for optimization purpose. This

leads to a very high number of configurations to be tested. In order to avoid that, we

evaluate only full networks. It means that whatever the number of connected PEs

is, the networks will always have a complete structure: a complete binary tree for

fat-trees, and a square matrix for meshes. Thus, sometimes, several routers will not

connect any PEs but the comparison will be fairer. Unconnected routers are always

located in the same corner of a mesh based network (south east), at the bottom right

end of the trees, and at the top right end of DRAFT.

When characterizing networks, several parameters must be evaluated:

• the hardware resources consumption,

• the scalability,

• the latencies,

• the throughput,

• the maximum data rates.

However, comparing existing networks is a very difficult task. Indeed, most of

existing Networks-on-Chip (NoCs) are proposed with a dedicated environment for

generation and simulation purpose. As an example, this is the case for HERMES

with the ATLAS environment. The two most famous simulator of networks are un-

doubtedly NS2 and Orion [106], [108]. These two simulators are very powerful and

4.2. Experimental conditions 117

allow to simulate a large variety of networks. However, they are based on models for

general networks but not for NoCs. Making them supporting NoCs would require

a very significant investment in both manpower and time. Several simulator were

designed for NoCs, such as GpNoCsim [50], Nirgam [6], and Noxim [90]. GpNoCsim

was designed to support several topologies of NoCs: butterfly fat-tree, mesh, torus,

and extended fat-tree. However, this simulator is based on models concerning both

the behavior of every component of a NoC, and the performances estimation. Imple-

menting new NoCs, with new topologies and novel router architectures would require

to re-design every models. This is also the case for the simulator based on SystemC

models presented in [63]. Nirgam and Noxim (which is the most popular simulator in

research community and was extended to support new routing algorithms) are very

limited in offered possibilities of simulation. Noxim does not use models for perfor-

mance estimation but is compliant only with routers composed of 5 communication

ports related to mesh based networks. Nirgam is very close from Noxim, notably

adding the support of torus based topologies. Latter simulator supports only Sys-

temC written NoCs and is not compliant with RTL level designed networks. This

drawback, combined with the limited number of supported topologies (that may lead

to require substantial improvements of the simulators themselves) are the reasons

why these simulators were not retained as practical solutions for NoC simulation

purpose. Considering this problem of simulation environments, only HERMES and

a conventional fat-tree are used for comparison purpose. More networks should have

been of a high interest to be compared with, but the lack a generic characterization

environment supporting a large variety of NoCs avoids such comparisons.

The Dynamically Reconfigurable Architectures compliant Generator and sim-

ulatOr Of Network (DRAGOON) environment was designed in order to measure

performances of both DRAFT and the conventional fat-tree. Further details on the

DRAGOON environment are presented in Chapter 2, .

4.2 Experimental conditions

This section describes the conditions in which all networks were characterized and

compared. The hardware resources consumption of the networks highly depends on

the targeted chips. Indeed used resources are different between an FPGA and an

ASIC so that implementation results will differ (hardware resources consumption,

maximal frequency, etc.). Furthermore, even considering the same target, results

can differ between two versions of the software design tools even if they target the

same chip. Every network is characterized in FPGA. Since DPR is the leitmotiv

of this PhD, Xilinx architectures and in particular the Virtex V ”XC5VSX50T” is

considered for all FPGA implementations. Furthermore, the Xilinx ISE 12.4 design

118 Chapter 4. Results and comparisons

suit is used to measure hardware costs along with maximal operating frequencies

targeting this specific FPGA. Two versions of the OCEAN network (versions 3.1 and

4.1) were designed for ASIC implementations. So, results are specifically provided for

these two versions targeting the 130nm CMOS technologies from STMicroelectronics.

Concerning network performances, DRAFT and the conventional fat-tree were

evaluated and compared using the DRAGOON environment (see Section 2.5). Sim-

ilarly, the HERMES mesh network is evaluated through its dedicated ATLAS envi-

ronment. Both environments allow to create similar data traffics since DRAGOON

is directly inherited from ATLAS. Furthermore, they both use the same external

simulator for performance evaluations: ModelSim 6.4c. Unfortunately, OCEAN ver-

sions could not be characterized inside DRAGOON or at the cost of a complete

re-design of the whole environment. This is why a new platform was designed (see

Section 3.12). This platform supports both the four versions of OCEAN and the

same conventional fat-tree as for the comparison of DRAFT. A repeatable data traf-

fic is generated thanks to this platform, thus allowing to simulate and compare NoCs

with exactly the same data. Raw simulation results are provided by ModelSim 6.6c.

They are then processed using Matlab R2010b leading to final results.

Latencies, throughput, and accepted data rates are the main expected results

(see Section 1.2). The main problem for the comparison of network performances

is the data traffic. Indeed, all these metrics are intrinsically linked with the data

traffic: number of simulated PEs requesting to access the same destination at a

time, length of transmitted data, uniform repartition of the traffic in terms of couple

source/destinations, etc. For the comparisons between DRAFT, the conventional

fat-tree and HERMES, network performances are evaluated using a basic data traf-

fic with randomly chosen destination addresses and a uniform temporal distribution

of the communications. Transmitted data packets are composed of 16 flits of pay-

load with a data with of 32 bits. Concerning DRAFT, since no communication is

allowed between top level communication ports, destination addresses of the top

level simulated PEs were constrained aiming only bottom level destinations. For the

comparison of the four versions of OCEAN with the conventional fat-tree, a data

traffic stressing more the networks was chosen. This so called permutation traffic is

based on cyclically permuted destination addresses. Data packets injection is real-

ized following a uniform temporal repartition but with various lengths (8, 16, 32, 64

data flits respectively per quarter of the connected PEs).

For all networks, simulations are realized at a frequency of 100MHz during 10ms.

This frequency is assigned to both injected data (simulated PEs) and network in-

ternal clock references. However, when expressed in µs, final results are provided

taking into account the maximal frequencies that can be obtained from FPGA im-

plementations.

4.2. Experimental conditions 119

router
00

router
10

router
11

router
01

1 2 3 4

5 6 7 8

router
00

router
10

router
11

router
01

router
20

router
30

router
31

router
21

router
12

router
02

router
32

router
22

1 2 3 4 5 6 7 8
A) B)

Figure 4.1 : A) Basic DRAFT network from which characterizations and comparisons are performed.

B) Conventional fat-tree used for comparison purpose.

1 2 3 4 5 6 7 8
router
00

router
10

router
11

router
01

router
20

router
21

router
12

router
02

router
22

1 2

3 4 5

6 7 8

A) B)

data
0

crtl
0

data
1

crtl
1

data
2

crtl
2

data
3

crtl
3

data
7

crtl
7

data
6

crtl
6

data
5

crtl
5

data
4

crtl
4

Figure 4.2 : A) Square mesh network with 8 communication ports. B) Basic OCEAN network from

which characterizations and comparisons are performed.

Every network is evaluated starting from a basic configuration with well defined

characteristics. Only one characteristic is changed at a time so that its influence can

be isolated. Every basic version of the various networks interconnects 8 simulated

PEs, as presented in Figures 4.1 and 4.2. These basic networks are implemented

and simulated with 32 bits data width, a buffer depth of 4 flits (for packet switched

ones), and no virtual channels. The credit based flow control protocol was chosen

for DRAFT, the fat-tree and HERMES.

120 Chapter 4. Results and comparisons

4.3 DRAFT performances and comparison

In this section, main results concerning DRAFT performances are presented. For

each evaluated performance, a comparison is realized with the HERMES NoC and

a conventional fat-tree. Experimental conditions are always the same for the three

networks.

4.3.1 Hardware resources consumptions

In order to compare the hardware consumption of the DRAFT, fat-tree and HER-

MES NoCs, several configurations were generated in order for every one to inter-

connect from 2 to 64 PEs. As presented in Section 4.1, only complete networks are

implemented: square meshes and complete trees. This principle is sometime more

favorable to a network compared with another one (and sometime it is the opposite)

because different topologies do not scale the same way with the number of PEs to

interconnect. However, globally, it allows a fair comparison. Results are presented

in Figure 4.3.

The number of used links is the only results that is not generated by ISE. Indeed

it corresponds to the number of full-duplex links required to interconnect both the

routers and the PEs. So, every link is made of 70 wires. This result is provided

because FPGA matrices are designed with more and more CLBs, but the inter-

connection wires are starting to become a bottleneck for on-Chip implementations.

From the results, links and CLBs consumptions of DRAFT and HERMES are very

close. DRAFT consumes less CLBs and less links from 2 to 16 connected PEs. Then

from 16 to 25 PEs, the mesh has a lower but very close hardware cost. From 25 to

64 PEs, hardware consumptions remain very similar, denoting a scalability almost

identical for both networks. Indeed DRAFT allows only an average gain of 0.3% of

required CLBs compared with HERMES. This is a very important result for DRAFT

because the minimization of its hardware cost was a key challenge for its conception.

As it could be expected, a fat-tree uses more hardware resources (both CLBs and

links) than the two other networks, notably between 32 and 64 connected PEs. In

average, DRAFT presents an hardware cost 55% less than the conventional fat-tree.

Furthermore, DRAFT reduces by 52% the number of used links compared with the

fat-tree. Even though, between 2 and 32 PEs, the fat-tree remains a viable candidate

for on-Chip implementations.

ISE also provides informations concerning the maximal frequencies that are sup-

ported by the networks. From these results, it appears that both DRAFT and the

fat-tree can operate at similar frequencies that are higher than for HERMES. The

difference is never more than 8MHz but increases network performances of both

DRAFT and the fat-tree. Indeed, maximal operating frequencies of both DRAFT

4.3. DRAFT performances and comparison 121

Figure 4.3 : Hardware costs to implement the DRAFT, fat-tree, or HERMES NoCs depending on the

number of connected PEs.

and the fat-tree present an average gain factor of 5% compared with HERMES.

4.3.2 Network performances

Considered network performances are both average latencies and throughputs. Since

offered data are dated from the moment they are generated, and not from the mo-

ment the network can accept them, resulting latencies explodes when the networks

saturate. Indeed, when a network saturates, no more than a limited number of pack-

ets are accepted (and then transmitted). If more packets are offered to the network,

since they can not be immediately accepted, they induce long delays. Since some of

them will never be transmitted, resulting latency tends to the infinite. Saturation

of a network can also be noted from the throughput which is the expression of the

accepted traffic normalized in percentage.

As presented in Figure 4.4, DRAFT provides lower latencies and supports higher

throughputs than the other networks. Due to its reduced number of routers, data

122 Chapter 4. Results and comparisons

Figure 4.4 : Average latencies and throughputs depending on the offered transfer rates per PE. All

PEs and networks are clocked at 100 MHz.

reach their destinations with lower latencies (in average) than in a fat-tree or in

HERMES. From the latencies point of view, HERMES and DRAFT are very close

while the conventional fat-tree suffers from its higher number of routers. The sat-

uration zone is almost the same for every type of networks: latencies significantly

increase between 25 and 30% of injection rates corresponding respectively to 800 and

960 Mbit/s transfer rate per PE. When networks do not saturate, DRAFT offered

latencies present an improvement of 10% compared with these of a fat-tree and 3%

compared with HERMES.

From the throughput point of view, the networks start saturating in the same

range of injection as for latencies (obviously) but limit values are reached between

30% and 35% injection rates (corresponding respectively to 960 and 1120 Mbit/s

per PE). For practical reasons, performances corresponding to Injection rates higher

than 40% (corresponding to 1280 Mbit/s) were not pictured, but average through-

puts remain stable for every networks. Networks are then qualified to be stable.

4.3. DRAFT performances and comparison 123

Furthermore, before data rates reach the saturation zone, DRAFT throughput is

28% higher than for the fat-tree and also 35% higher than for HERMES. This tra-

duces higher accepted traffics. When considering the saturation zone, from 1120 to

3200 Mbit/s (the maximum possible data rate per simulated PE clocked at 100 MHz

with a data width of 32 bits), DRAFT accepted traffic is 15% and 16% higher re-

spectively than conventional fat-tree and HERMES. However, these very interesting

performances should be balanced with the traffic limitation inherent to the DRAFT

network that top level connected PEs can not communicate together.

4.3.3 The scalability

The scalability is the study of performances when the number of interconnected PEs

increases. The impact on hardware resources consumption was already presented

in Section 4.3.1. This is why only network performances: average latencies and

maximum data rates per PE are considered here. Results are presented in Figure

4.5.

Figure 4.5 : Average latencies measured for an offered traffic of 800 Mbits/s per PE, and maximum

achievable data rates depending on the number of connected PEs.

124 Chapter 4. Results and comparisons

From these results, the conventional fat-tree supports higher data rates per PE

than the other networks, notably when their number increases. This observation

could be expected because fat-tree based networks are mostly designed to support

high number of connected elements with high network performances. So, at a fixed

data rate per PE of 800 Mbit/s, a fat-tree supports 31% more connected PEs then

HERMES and 23% more than DRAFT. When fixing the number of connected PEs

and observing the maximal accepted data rates, until 10 connected PEs DRAFT

supports respectively 9% and 16% higher data rates than the fat-tree and HERMES.

However starting at 10 connected PEs, the fat-tree outperforms DRAFT supporting

7% higher data rates. In the same range of connected PEs, DRAFT is compliant

with 14% higher data rates per PE than HERMES. However, the ability of a fat-

tree to support efficiently high number of connected PEs is counter-balanced by a

significant hardware cost. Considering the close hardware resources consumption

of HERMES and DRAFT, from the scalability point of view this latter appears to

be an interesting trade off between achievable network performances and hardware

resource consumption.

4.3.4 The data width

The data width directly impacts the architecture of a network. Indeed, all the

router architecture depends on this width. Obviously, the buffers are dramatically

impacted since they have to store several data. Crossbars performing the routing of

data also depend on the data width. To a lesser extent, switching controllers are also

impacted since the size of used addresses and masks is defined accordingly with the

data width (width of both header and count flits). To determine the influence of the

data width over both hardware resources consumption and network performances,

the offered data rate per PE could not be fixed to 800 Mbits/s because the three

networks saturates with a data width of 16 bits. This is why network performances

are obtained from an offered data rate equal to 400 Mbits/s per connected PE.

Results are presented in Figure 4.6.

From the hardware results, DRAFT appears to be just a bit less impacted by

the data width than HERMES when considering the CLBs consumption. This is

due to its reduced number of routers. If increasing the data width from 16 to 64 bits

implies an hardware overhead of 62% for HERMES, the overhead is of 61% for both

DRAFT and the fat-tree. However, the main difference between the three networks

concerning hardware implementation concerns the maximum operating frequencies

which decrease when the data width scales up. Frequencies are very close but it is

interesting to observe that HERMES frequency (that is lower than those of DRAFT

and the fat-tree) is less influenced by increasing data widths. HERMES maximum

4.3. DRAFT performances and comparison 125

Figure 4.6 : Impact of the data width over hardware resources consumption (used CLBs and

operating frequencies), and average latencies with an offered data rate of 400 Mbits/s per PE.

frequency becomes even higher than those of DRAFT and fat-tree for a 64 bits

data width. Indeed the maximum frequency of HERMES only decreases from 12%

although those of DRAFT and the fat-tree respectively decrease from 19 and 22%.

Concerning network performances, at 400 Mbits/s, the influence of the data

width is only relevant between 16 and 32 bits. With this offered data rate, config-

uring the data width to 32 bits decrease average latencies (thus increasing network

efficiency). Increasing the data width from 16 to 64 bits decreases the average la-

tencies of a fat-tree from 16%. However, concerning DRAFT and HERMES, they

decrease respectively their transport latencies by a factor of 4% and 14%. So, at 400

Mbit/s per PE, reducing the data width in DRAFT impacts less performances than

for other networks. This is interesting because considering the significant hardware

overhead induced by the data width, this overhead can be minimized in DRAFT

with similar performances. However, the interest of large data widths (like 64 bits)

is much more interesting when an application requires data rates per PE reaching

126 Chapter 4. Results and comparisons

limit values presented in the Section 4.3.3 (for example 960 Mbit/s for a DRAFT

connecting 8 PEs). Only in this applicative case 64 bits data width is advantageous.

4.3.5 Buffer depth

Just like for the data width, the influence of the the buffer depth is now studied. The

depth of buffers defines their capacity to store 4, 8, 16, or 32 flits. Contrarily to data

width experimentations, concerning buffer depths network performances could be

obtained from simulation with 800 Mbits/s per PE. Results are presented in Figure

4.7.

Figure 4.7 : Impact of the buffer depth over hardware resources consumption (used CLBs and

operating frequencies), and average latencies with an offered data rate of 800 Mbits/s per PE.

From these results, it appears that the buffer depth much less impacts the hard-

ware resources consumption than the data width. Only buffers are impacted, not

the crossbars nor the switching controllers. So, the hardware overhead induced by

increasing the buffer depth is reduced to 8% for both DRAFT and the conventional

fat-tree, and to 7% for HERMES. Furthermore, maximum operating frequencies are

4.3. DRAFT performances and comparison 127

not influenced at all by the buffer depth. The impact over networks performances

is much significant in the low capacities: between 4 and 16 data. Higher capacities

can be useful when expected offered data rates are close from limit rates presented

in Section 4.3.3. Like for the data width, DRAFT is less influenced concerning net-

work performances when the buffer depth is minimized. Indeed both fat-tree and

HERMES present an impact of 9% over average latencies between buffer depths of

4 and 32 flits, while DRAFT presents only a difference of 2%.

From the applicative point of view, when expected data rates reach the limits of

the networks, the buffer depth should be configured to reach and guarantee required

performances more than the data widths. The objective is to limit the hardware

impact while supporting desired performances. When high buffer capacities are

not sufficient to support required performances, then data width can be adapted.

Otherwise, both parameters should be minimized, thus taking advantage of DRAFT

which is less influenced regarding the network performances.

4.3.6 Types of data traffics

Thanks to DRAGOON and ATLAS, several data traffics could be generated for each

network. Their influence over network performances (average latencies) is now stud-

ied. Two data rates are studied: 400 and 800 Mbits/s per PE in order to differently

stress the networks. Source and destination addresses are randomly generated, so

that the types of traffic represent the distribution in the time of the communications.

Results are presented in Table 4.1.

Table 4.1 : Influence of the different data traffics over the latency (average clock cycles). The ∆

ranges corresponds to the latency difference between Uniform traffic and corresponding traffic.

Networks DRAFT fat-tree HERMES

Type of traffic Latency ∆ Latency ∆ Latency ∆

(clk) (%) (clk) (%) (clk) (%)

Uniform (800Mbit/s) 48.27 0 58.22 0 51.91 0

Normal (800Mbit/s) 43.40 4.87 56.71 1.51 49.21 2.7

Burst (800Mbit/s) 33.11 15.16 42.42 15.80 38.40 13.51

Uniform (400Mbit/s) 46.20 0 51.07 0 46.87 0

Normal (400Mbit/s) 35.58 10.62 43.28 7.79 38.65 8.22

Burst (400Mbit/s) 31.43 14.77 39.83 11.24 35.64 11.23

From these results, the three types of traffics are supported by the networks,

even at 800 Mbits/s. However, when calculating the difference between performances

128 Chapter 4. Results and comparisons

obtained with a Uniform traffic and those from other traffic (∆ ranges with ∆ =

Latencyuniform−Latencyconsideredtraffic), DRAFT appears to be more sensitive than

the other networks. This is a good point for DRAFT because it denotes decreasing

communication latencies. For example, DRAFT supports a bit more bursts of data

than HERMES and even the fat-tree at 400 Mbit/s due to a fall close of 15% of the

latencies. Even if the difference between the three networks is quite low, it is normal

for a network with a reduced number of routers (thus concentrating more the data

traffic) to be more sensitive to the traffic types. Since this higher sensitivity indicates

transport latencies decreasing more than for other networks, DRAFT is well adapted

for applications presenting various types of traffics, even with high data rates.

4.4 Ocean performances and comparison

In this section, the four versions of the OCEAN network are characterized and com-

pared with the same fat-tree as for the comparison of DRAFT. Since all compared

networks have thus the same topology, they can be compared using exactly the same

data traffic. All versions of OCEAN, including ASIC oriented ones (OCEAN v3.1

and OCEAN v4.1), are first evaluated considering FPGA implementations using Xil-

inx Virtex V architectures. Then specific results will be presented concerning the

implementation in ASIC of these two versions.

4.4.1 Hardware resources consumption

The hardware resources consumption of the four versions of the OCEAN network

are presented in Figure 4.8. For comparison purpose, the hardware costs of the

conventional fat-tree as well as those of DRAFT and HERMES are also presented

in this figure.

From these results, it appears that the four versions of the OCEAN network

along with both DRAFT and HERMES have similar resources consumptions between

2 and 32 interconnected PEs. So, even if OCEAN versions are composed of two

fat-tree based sub-networks, the conventional fat-tree presents an higher hardware

cost. Indeed, in average, the original version of OCEAN (OCEAN v3.0) presents an

hardware gain of 48% compared with a conventional fat-tree. DRAFT presents only

a gain of 6% of hardware resources compared with OCEAN v3.0. Furthermore, when

confronting the various versions of OCEAN, it appears that the version v4.0 with

its oblivious routing algorithm allows an average gain of 8% of hardware resources

compared with the version v3.0 and its adaptive routing algorithm. The ASIC

oriented versions (v3.1 and v4.1), although requiring more registers, take less LUTs

and then less CLBs than FPGA oriented ones. Average gains of 5% and 6% are

4.4. Ocean performances and comparison 129

Figure 4.8 : Hardware resources consumption of OCEAN networks compared with the conventional

fat-tree, DRAFT, and HERMES NoCs. Results are provided for FPGA implementations targeting the

Xilinx Virtex V (XC5VSX50T).

observed respectively between OCEAN v3.0 and v3.1, and between OCEAN v4.0

and v4.1.

All these results are provided in average from 2 up to 64 connected PEs. However,

if considering only small regions like between 32 and 64 PEs, gain percentages are

quite different. In this specific range, for example DRAFT presents a hardware gain

of 14% compared with OCEAN v3.0. So, OCEAN versions are more cost efficient

for low numbers of connected PEs (between 2 and 32). However, in this range of 32

to 64 PEs, OCEAN networks present still a much reduced overhead than the fat-tree

(18% gain for OCEAN v3.0).

Considering these hardware results, OCEAN networks are very well suited for

on-Chip implementations due to their limited hardware overheads. Furthermore, it is

very interesting to notice that the improved reliability characteristic from OCEAN

v3.0 (and its ASIC oriented version) only implies a 8% overhead compared with

130 Chapter 4. Results and comparisons

version v4.0. This is a major result because thanks to the specific structure of the

OCEAN networks, an improved reliability can be implemented with very affordable

overheads compared with conventional networks. Table 4.2 presents the maximum

operating frequencies of both OCEAN networks and the conventional fat-tree.

Table 4.2 : Maximum operating frequencies (in MHz) measured through ISE 12.4 depending on the

size of the networks (number of connected PEs).

Network sizes 8 PEs 16 PEs 32 PEs 64 PEs

max frequency max frequency max frequency max frequency

(MHz) (MHz) (MHz) (MHz)

OCEAN v3.0 196.23 176.30 173.53 173.18

OCEAN v3.1 157.68 155.52 153.36 151.70

OCEAN v4.0 171.17 173.13 170.80 170.45

OCEAN v4.1 178.76 167.67 161.24 152.21

fat-tree 101.15 100.38 100.20 97.75

From these results, the OCEAN networks appear to support much higher op-

erating frequencies than the conventional fat-tree. Indeed maximum frequencies of

OCEAN v3.0 are in average 44% higher than those of the fat-tree. Similarly the

fat-tree has a maximum frequency 41% lower then OCEAN v4.0. The additional

synchronization process, characteristic from ASIC oriented versions of OCEAN, also

impacts their maximum frequencies compared with FPGA oriented ones. So, op-

erating frequencies of OCEAN v3.1 are 14% lower than those of OCEAN v3.0.

Similarly OCEAN v4.1 has 3% lower operating frequencies than the version v4.0.

This difference of operating frequencies will significantly impact the overall network

performances such as latencies and data rates.

4.4.2 Network performances

As presented in Section 3.12, every network is tested with exactly the same Permu-

tation data traffic.

Average latencies

The main performances criteria used to characterize NoCs is the transport latency.

Results are presented in Figures 4.9 and 4.10. All these results are presented in

µs taking into account the maximum operating frequencies obtained from FPGA

4.4. Ocean performances and comparison 131

implementations. Four sizes of networks are studied: 8, 16, 32, and 64 connected

PEs. Results are presented depending on the standardized injection rate.

Figure 4.9 : Average latencies expressed in µs depending on the injection rate for 8 and 16

connected PEs. These results take into account the different operating frequencies of the networks.

The main thing that may seem strange is that latencies do not explode when

the networks saturate. This is due to the dating of the packets that is done on

the fly. So it is interesting to see that the latencies of transmitted packets reach

some ”kind” of limit values specifically for each network. Concerning the results

themselves, measured latencies of OCEAN versions are inferior to those of the fat-

tree. Indeed, considering results obtained for 8 PEs, OCEAN v3.0 presents a 45%

average gain of transport latencies compared with the fat-tree. Furthermore the

version v4.0 of OCEAN has a gain of 52% compared with the same fat-tree. However,

if the gain of OCEAN v4.0 remains relatively the same for 16, 32, and 64 connected

PEs (respectively 60%, 63%, and 62% gains), the behaviour of the version v3.0 is

different. Indeed the performance gain of this version compared with the fat-tree

decreases when networks scale up. This leads for 64 connected PEs to the reverse

132 Chapter 4. Results and comparisons

Figure 4.10 : Average transport latencies expressed in µs depending on the injection rate for 32

and 64 connected PEs.

situation where the fat-tree provides 9% lower latencies than OCEAN v3.0.

When comparing OCEAN v3.0 and v4.0, it appears that the difference between

them scales up along with their scale. Indeed, if the version v4.0 presents a 11%

gain of performances compared with the v3.0 for 8 connected PEs, the difference

increases reaching 65% for 64 connected PEs. Thus, it is interesting to notice that if

an improved quality of service (fault tolerance) has a low hardware overhead, it im-

pacts performances increasing average latencies. However, from these comparisons,

OCEAN networks and moreover the versions with an oblivious routing algorithm

significantly outperform the conventional fat-tree. This constitutes a major result

for the OCEAN networks: they both use less hardware resources and provide lower

average latencies than a conventional packet switched fat-tree.

The difference between ASIC and FPGA oriented versions of OCEAN can be

clearly observed for large scale networks: every ASIC oriented version presents higher

average latencies than FPGA oriented ones. However, the difference between these

4.4. Ocean performances and comparison 133

ASIC oriented versions and the networks from which they are inherited remains

constant whatever is the size of the networks. So, OCEAN v3.0 presents in average

18% gain compared with the v3.1, while between versions v4.0 and v4.1, the gain is of

16% for the v4.0. However, versions vx.1 do not target FPGA implementations. The

ASIC implementation of these networks allows them to operate at higher frequencies.

Further details are provided in following sections.

Data rates

Usually throughputs are given as an indicator of network performances. Through-

put corresponds in fact to the data traffic transferred by a network (also called

accepted traffic) normalized in percentage. Since throughputs are normalized, they

do not depend on operating frequencies. Regarding networks like DRAFT, HER-

MES, or the conventional fat-tree, since their operating frequencies are pretty sim-

ilar, throughputs are the exact reflections of accepted data rates. However, when

comparing OCEAN networks with the conventional fat-tree, significant differences

can be observed between throughput and accepted data rates. This is due to the

operating frequencies that are very different: for example the maximum frequency

of the fat-tree is 44% lower than these measured for OCEAN v3.0. This is why, for

fair comparison purpose we do not compare throughputs but accepted data rates (in

MByte/s). Corresponding results are presented in Figures 4.11 and 4.12.

From these results, OCEAN v4.x networks accept much higher data rates than

the conventional fat-tree. Indeed, 65% and 60% average gains were measured be-

tween the v4.x versions and the fat-tree for respectively 8 and 16 connected PEs.

For 32 and 64 PEs, the performance gains are a little bit lower (48 and 41%) but

these versions are very efficient and scalable. Indeed they substantially reduce the

hardware costs while offering lower latencies and higher accepted data rates than a

packet switched fat-tree even for 64 connected PEs. This is a major contribution of

this PhD answering initial motivations.

Concerning OCEAN v3.x and their adaptive routing algorithm, it appears that

accepted data rates become lower than for the fat-tree when the networks scales

up. Indeed, if version v3.0 presented a gain of 62% concerning data rates when

compared with the fat-tree, this gain decreases to 41% and 7% respectively for 16

and 32 connected PEs. Furthermore, for 64 connected PEs, the conventional fat-

tree outperforms the versions v3.x from a gain factor of 27%. This is an interesting

result concerning the impact of an improved quality of service: when more and more

PEs are interconnected, the number of tested control routes scales up leading to a

decrease of overall performances. However, even if accepted data rates become lower

than fat-tree’s for 64 connected PEs, OCEAN v3.x remain very interesting due to

134 Chapter 4. Results and comparisons

Figure 4.11 : Average accepted data rates per PE expressed in Mbytes/s depending on offered

injection rate. This figure presents results obtained for the 8 and 16 connected PEs versions of the

networks.

their reduced hardware costs, their low latencies, and supported QoS.

Concerning the saturation zones, despite of their different routing algorithms,

their different switching protocols and the absence of any buffer in OCEAN versions,

every network saturates at the same offered traffics. This denotes a similar behaviour

from all these networks which is due to the fat-tree topology.

Maximum accepted data rates are summarized in Table 4.3.

From these results, the significantly improved scalability of OCEAN v4.0 is

demonstrated. This network is very well adapted for on-Chip implementations,

including ASICs with its v4.1 variation. These two versions outperform conven-

tional packet switched fat-tree considering all performance metrics (hardware cost,

latencies, data rates). Furthermore, even if the conventional fat-tree accepts higher

data rates than OCEAN v3.x, these latters are also very well adapted to be imple-

mented inside SoCs and RSoCs. Thanks to their specific architectures, OCEAN v3.x

4.4. Ocean performances and comparison 135

Figure 4.12 : Average accepted data rates for 32 and 64 connected PEs depending on offered

injection rate.

constitutes an affordable way to improve the quality of service of a communication

architecture with very low hardware overheads, even when compared with OCEAN

v4.x.

The fault tolerance that improves the QoS of OCEAN v3.0 and OCEAN v3.1

was not characterized in terms of performances when one or several switches become

faulty. However, excepted if one switch on which PEs are directly connected become

faulty, every couple source/destination can communicate with one faulty switch (or

link). Performances would be impacted due to a restriction of available data paths,

but communications can still happen. The maximum number of bearable faulty

switches depends both on the size of the network and on where they are located

into the structure of the networks. The more switches are high in the structure of

OCEAN v3.x, the more they are allowed to become faulty without isolating PEs.

While there is at least one data path reaching every connected PEs, communication

can occur in OCEAN v3.x.

136 Chapter 4. Results and comparisons

Table 4.3 : Maximum accepted data rates per connected PE (expressed in MBytes/s) depending

on the size of the networks.

Network sizes 8 PEs 16 PEs 32 PEs 64 PEs

data rate data rate data rate data rate

(MB/s) (MB/s) (MB/s) (MB/s)

OCEAN v3.0 326,06 150,30 73,45 36,34

OCEAN v3.1 239,41 125,71 61,71 30,33

OCEAN v4.0 378,22 260,70 148,64 98,70

OCEAN v4.1 361,94 177,39 123,16 85,92

fat-tree 120,42 92,97 71.81 56.78

4.4.3 FPGA validation

ISE design tools provide maximum operating frequencies considering the sequen-

tial logics like registers that are embedded inside the NoC. However, the data sub-

network do not includes such registers but only combinatorial logics. this is why a

test application was implemented in a Xilinx Virtex V FPGA (ML506 development

platform). In fact this application is directly inherited from the platform that was

used for characterization and comparison purpose (see Section 3.12). The difference

between this platform and the test application lies in both its hardware implemen-

tation (instead of a simulation at the RTL level), and in the role of generic PEs.

Instead of using informations included in the flits to calculate performances, generic

PEs read the first flit and verify that following one are well incremented. If a received

flit do not corresponds to the value of the previous one plus ”1”, then an error signal

is turned on.

Similarly to the test platform, a permutation based traffic is injected in the NoC.

However very much larger packets of data were also injected in addition to small

ones (until 1024 flits). Since PEs could not be clocked at higher frequency than

282 MHz, transmissions over the data network were realized at this frequency. For

these experimentations, the control sub-network was clocked at 125 MHz. In order

to verify the good behaviour of the application, some transmission errors can be

injected on demand. All these errors injected on purpose were well detected. Then,

with this simple application, data were injected successively in the four OCEAN

versions (without user generated errors) during at least a dozen of minutes and

sometimes even merely an hour. This way, during these one hour experimentations

representing more than 40 billion communications, no error was detected leading to

0 % transmission errors.

4.4. Ocean performances and comparison 137

In all this section concerning network performances, only one to one communi-

cations where created. So, the extra functionalities supported by OCEAN networks,

such as multicast or communication channels handling several communications, were

not presented. Indeed these functionalities can highly improve performances depend-

ing on the application requirements. For example, latencies can be reduced to 1 clock

cycle thanks to already opened communication channels. Indeed the time of flight

is then reduced to only the propagation delays on the data sub-networks. All the

Handshake phase for control purpose is realized only once. Using already opened

communication channels allow PEs to inject data at full speed which corresponds in

FPGA with an injection frequency of 282 MHz (the maximum we could validate) to

1.1280 GB/s.

Furthermore, accepted data rates can also be significantly increased thanks to the

compliance of the networks with the multicast. However, the use of this mechanism

is intrinsically linked with the real life applications in which the networks are imple-

mented. Furthermore, no comparison could be done since the fat-tree, DRAFT, or

HERMES networks do not support multicast. Further characterizations concerning

the impact of these mechanisms are expected from future applications embedding

an OCEAN network.

4.4.4 ASIC implementation

OCEAN v3.1 and v4.1 have an internal structures adapted for ASIC implemen-

tation. These two networks could be synthesized and validated at the gate level.

Unfortunately neither implementation on silicon could be realized nor simulation at

the transistor level. However, in this section, results and first characterizations at

the gate level are presented. For practical reasons, syntheses were realized through

Synopsys DesignVision 2007.03 using the 130nm CMOS technology from STMicro-

electronics.

The architecture of both an out-controller and an in-controller from OCEAN v4.1

are presented in Figure 4.13. Remaining hardware block constituting a full network

are presented in Appendix D.

Concerning performances, results provided by both the synthesis tool and sim-

ulations at the gate level through Modelsim 6.6c are summarized in Tables 4.4 and

4.5. The Ports column represents the number of input/output wires constituting

the interface of the OCEAN networks. The Nets column is to signify the number of

wires used inside the network. The Area column indicates the total area taken by

logical gates. The ”Fmax ctrl” column indicates the maximum operating frequency

that can be taken by the control part of the networks. These values were obtained

from simulation at the gate level with modelsim with a resolution of 1ps. Obviously,

138 Chapter 4. Results and comparisons

results take into account all the timing informations provided by both STMicro-

electronics and Synopsys. These frequencies guarantee that the networks operate

with 0% error. The control delay column indicates the maximum number of clock

cycles a request can take to reach its destination (if there is no conflict with another

existing communication). The data delay column indicates the propagation delay

of a data using the longest path of the network (worst case). Just like for ”Fmax

ctrl”, the ”Fmax data” column indicates the maximum frequency on which data can

be transmitted through the networks. These frequencies guarantee that data reach

their destination and are perfectly stable in one clock cycle. Indeed data reach their

destination before half of the clock period, but this allows to guarantee the stability

of these data when they are read. Higher frequencies can be used by designers (until

two times indicated Fmax data) counting on low skews concerning the clocks of the

PEs, and low parasitic effects. Hence, the use of such frequencies is at designers’

own risks and are not ensured to lead to 0% error communications.

Table 4.4 : Synthesis results at the gate level concerning OCEAN v3.1 and OCEAN v4.1.

Ports Nets Area

(mm2)

OCEAN v3.1 8 PEs 706 1844 0.227

OCEAN v3.1 16 PEs 1666 6068 1.019

OCEAN v3.1 32 PEs 4354 20228 3.959

OCEAN v3.1 64 PEs 12802 72004 16.151

OCEAN v4.1 8 PEs 706 1828 0.219

OCEAN v4.1 16 PEs 1666 6020 0.851

OCEAN v4.1 32 PEs 4354 20100 3.310

OCEAN v4.1 64 PEs 12802 71684 13.515

As it could be expected from FPGA implementations, OCEAN v4.1 uses fewer

nets and fewer gates than OCEAN v3.1. However, the overhead of OCEAN v3.1

concerning both area and power is quite reduced. This is particularly interesting

considering the improved QoS (fault tolerance) of this network. Concerning network

performances measured in simulation at the gate level, very high data rates from 800

MB/s for OCEAN v3.1 (32 bits data width; 64 PEs) to 2.5 GB/s for OCEAN v4.1

(32 bits data width; 8 PEs) are supported per PE also with very low latencies (from

0.8 ns to 2.5 ns times of flight). From simulations, it is interesting to notice that

thanks to appropriate timing constraints at synthesis time, there is always less than

1ps delay between the various wires constituting a signal. So, transitory states are

4.5. Synthesis of the chapter 139

Table 4.5 : Simulation results at the gate level concerning OCEAN v3.1 and OCEAN v4.1.

Fmax ctrl Control delay Fmax data Data delay

(MHz) (clk cycle) (MHz) (ps)

OCEAN v3.1 8 PEs 416.67 9 500 1000

OCEAN v3.1 16 PEs 416.67 13 333 1500

OCEAN v3.1 32 PEs 416.67 24 250 2000

OCEAN v3.1 64 PEs 416.67 39 200 2500

OCEAN v4.1 8 PEs 454.54 9 625 800

OCEAN v4.1 16 PEs 454.54 13 417 1200

OCEAN v4.1 32 PEs 416.67 24 313 1600

OCEAN v4.1 64 PEs 416.67 39 250 2000

limited to less than 1ps. This is important when designing a complete application

aiming ASIC implementation.

From these results, OCEAN v4.1 and OCEAN v3.1 are flexible network providing

very high level performances with a reduced hardware cost to ASIC implemented

SoCs. Due to their support of multicast, communication channels, and improved

fault tolerance for OCEAN v3.1, new high performances applications requiring flex-

ibility from the communication architecture can be foreseen. This is also a major

contribution of this PhD.

4.5 Synthesis of the chapter

In this chapter, a characterization and comparison of all created networks was made.

From the comparisons, DRAFT appeared to be a viable way to reduce significantly

the hardware resources consumption of fat-tree networks. Sometime DRAFT reveals

itself to be as advantageous as a mesh topology based network. Concerning network

performances, under the assumption that there is no data traffic between the top

level connected PEs, DRAFT provides high levels of performances. Both hardware

consumption and network performances make DRAFT a viable solution for real life

applications using DPR in current FPGAs.

In order to design a network with no restriction concerning the data traffic and

with extra functionalities like multicast compliance, the OCEAN networks were eval-

uated. The OCEAN networks appeared as being efficient solutions to reduce the

hardware cost of a fat-tree topology (thus increasing the scalability) while proposing

very high levels of performances. OCEAN v3.0 proposes an improved QoS and is

140 Chapter 4. Results and comparisons

adapted for FPGA implementations. OCEAN v3.1 is the same network but adapted

for ASIC implementations. OCEAN v4.0 is a simplified version of OCEAN v3.0

with an oblivious routing algorithm allowing higher level performances (hardware

consumption and network performances). Finally, OCEAN v4.1 is the adaptation of

OCEAN v4.0 targeting ASIC implementations. Characterizations of these networks

were realized both in FPGA and in ASIC (at the gate level). These networks are

particularly interesting for applications requiring very high level performances, and

where data traffics can not be predicted. The use of communication channels or the

multicast can even significantly improve offered performances.

4.5. Synthesis of the chapter 141

Figure 4.13 : Presentation of an In-controller (left) and an Out-controller (right) of the OCEAN v4.1

network at the gate level (90ř rotated.

Conclusion and perspectives

The first objective of this PhD was to propose an innovative interconnection architec-

ture in order, into the scope of the FOSFOR project, to provide an efficient solution

for communications in a DPR environment. For this purpose, the DRAFT network

was proposed. DRAFT is based on a fat-tree topology but it has the particularity

that some of the PEs are directly connected to the top level router. Indeed, DRAFT

takes advantage of the existing SoCs and more precisely RSoCs where some elements

never share data directly. This is for example the case for two shared memories or

two communication interfaces. These sample elements are always accessed by com-

puting ones like microprocessors or IP blocks, either for read and write operation.

When interconnected by a network, this results in several data paths that are never

used and can thus be simplified. Constraining the placement of these elements to the

top of DRAFT allows to save one scale factor compared with a traditional fat-tree

while providing high level performances. The flexibility of DRAFT is inherited from

fat-tree’s because of both the indirect nature of the network (avoiding PEs to be

located inside its structure), and the bandwidth offered to the PEs that is constant

all over the network. The internal architecture of DRAFT is more common than the

topology. DRAFT is based on a packet switching politic with a routing algorithm in-

herited from a classic TurnBack but adapted to the new topology. When compared

with a traditional fat-tree also with the mesh based network HERMES, DRAFT

reveals itself to present a hardware cost similar to mesh’s at least until 64 simultane-

ously connected PEs. Concerning network performances, DRAFT provides similar

or just higher performances than HERMES. At fixed data rate concerning the offered

traffic, DRAFT gives also better results than the traditional fat-tree. However, this

latter reveals its strength concerning the maximum accepted data rate, notably when

the number of interconnected PEs increases. Since the performances of a traditional

fat-tree are so at the cost of a significant hardware cost, DRAFT appeared to be

an interesting trade off between costs, performances, and flexibility. Considering its

characteristics, DRAFT fits the expectations from the FOSFOR project. Further-

more, the integration of DRAFT in the FOSFOR demonstrator was significantly

eased by the design of a bridge making the relation between an interface of DRAFT,

144 Conclusion and perspectives

and the standardized and well known interface of an AHB bus. This bridge uses both

master and slave controllers in order to respectively send and receive data from an

AHB connected element. The DRAFT-AHB bridge is also compliant with transfers

of bursts of data.

The second objective of this PhD was to ease the parameterization, the genera-

tion, and the performance evaluation of the DRAFT network. For this purpose the

DRAGOON environment was inherited from ATLAS. DRAGOON does not answer

completely to this objective since it does not generate the DRAFT network but a

traditional fat-tree. However, the DRAFT network can be obtained easily from gen-

erated fat-tree changing two VHDL files. However, even if this transformation should

be realized manually, DRAGOON allows to simulate both fat-tree and DRAFT net-

works. The generation of DRAFT is then possible with user control over notably

the number of interconnected PEs, the width of exchanged data, and the depth of

the buffers. The perspectives for DRAGOON and so for DRAFT are double. Indeed

we aim to improve DRAGOON in order to directly generate DRAFT without any

human intervention, and we also would like to merge DRAGOON with the ATLAS

environment from which it is inherited. Doing so, the resulting environment would

offer more choice concerning the network topologies to the designers. Hence, they

should be able to choose the one that best fits their application. We deeply would

like this to happen shortly after the end of this PhD. However, for this purpose

DRAFT is already part of the FPL benchmark.

The third objective was to propose a communication service, dissociated from the

FOSFOR OS, acting as an overlayer to the DRAFT network. This communication

service was also proposed providing new features that are allowed by the DPR ability

of the FPGAs. The proposed service is based on virtual communication channels.

When a task, either software or hardware, requires to communicate through its

dedicated PE, it request the communication service to open a channel. When the

other PE it wants to communicate with also opens the channel, the service provides

the physical addresses to both PEs so that the communication can start. However,

in the case that the destination PE is not allocated on the platform, or not ready

to communicate, the service offers the possibility to store temporarily the data in a

shared memory if there is enough free place to do so. When the destination PE is

allocated and requests to open the communication channel, the service makes the

relation between the PE and a shared memory. This way, the storage of the data in

shared memory is completely transparent for the PEs. Furthermore, if not enough

free place could be found in interconnected memory, the service offers the possibility

to use the storage logics embedded in free PRRs allocating a temporary memory PE

in this PRR. This PE acts then as a shared memory, thus increasing the memory

space of the platform. Obviously it is removed once data have been collected by the

Conclusion and perspectives 145

genuine receiver PE.

Finally, the last but not least objective from this PhD was to propose a very high

performance NoC that does not impose any constraints over the PEs. For example

this network was expected not to induce placement constraints like for the top level

connected PEs of the DRAFT network that can not share data with each others.

Since the scalability was also a key feature for the aimed NoC, the R2NoC network

was proposed. The idea behind R2NoC was to perform a circuit switching of the

data dynamically reconfiguring the routers of a fat-tree. This way, the size of the

router was expected to be reduced, and thus the scalability improved. Respecting

technological issues imposed by present technology, this network is feasible but the

storage of all needed configuration partial bitstreams also with the very important

latency required for reconfiguration purpose make R2NoC impractical for industrial

applications. This is why the OCEAN network was designed. OCEAN is composed

of two fat-tree based sub-networks. One is dedicated to data while the other is for

control purpose reconfiguring the first one. Indeed, the data network circuit switches

the data through direct and minimal paths that are dynamically reconfigured by the

control network. In order to avoid the drawback of R2NoC, OCEAN performs its

own dynamic reconfiguration: configuration bits are generated online by the control

routers and forwarded to corresponding data routers. In these latters, only combi-

natorial logics are implemented allowing data to come from a port to another one

depending on the configuration bits. So, transfers of data on the data network are

realized asynchronously while the control is performed synchronously. This allows a

real quality of service thanks to the synchronous control while providing very high

performances due to the asynchronous data transfers. OCEAN was not only sim-

ulated but implemented and validated in FPGA, and also at the gate level aiming

ASIC implementations. Resulting performances are really promising because perfor-

mances are significantly better than those of a traditional packet switched fat-tree

with a far lower hardware cost. Furthermore, the version 3 of the OCEAN network

was also proposed embedding adaptive routing algorithms that improves the relia-

bility of the network. Indeed, if for some reason a router becomes faulty, the routing

algorithms automatically searches for other data paths to reach the destination(s).

However this improved quality of service is provided at the cost of network perfor-

mances that are similar or even a little bit lower than those of the traditional fat-tree.

It is also important to notice that every version of OCEAN is compliant with mul-

ticast which is particularly interesting for data flow based applications. OCEAN

answers completely to the objective of the PhD due to its high level network per-

formances, its scalability merely similar to these of a mesh network, its flexibility

considering DPR environments, and its efficiency considering the data transfers on

which no constraint nor protocol is imposed. Designers are then free to choose the

146 Conclusion and perspectives

protocol that best fits their application, for example performing DMA transfers.

Considering the perspectives to this research work, in addition to the improve-

ment of the DRAGOON environment and its integration inside ATLAS, it should

be of high interest to propose, like for DRAFT, a communication service able to

exploit all the possibilities offered by the OCEAN network. The multicast combined

with the non-closure of the data paths between two communications from the same

couple source/destination PEs should be particularly interesting to improve commu-

nications. Furthermore, the high flexibility concerning the data transfers should be

exploited to improve the performances of applications. We also think that a parame-

terization and generation environment dedicated to OCEAN should be particularly

welcome in order to ease its integration inside industrial products. In addition with

all of this, the evaluation of the fault tolerance in real life situations of OCEAN v3.x

should be particularly interesting. More generally, it should of a very high interest to

implement the various versions of OCEAN in a real RSoC with multiple processors

in order use them in real environments.

Finally, the problem of the characterization environments has been a constant

brake to the research process. Indeed it is very difficult to compare different networks

because most of them have a specialized simulator which is not compliant with other

networks. Furthermore, present generic simulators are not adapted to the simulation

of a large range of NoC with different topologies. This is why it should be interesting

to create a standardized on-Chip platform on which NoCs could be implemented

independently from their structure and protocols. Performances should then not be

estimated but in situ measured. This way, the platform should not be of interest

only inside the research community, but also for industrials. Indeed they could verify

the real performances that can be extracted from their communication architectures

reproducing the behaviour of their application. The first specifications for such a

platform were proposed in this PhD (see Appendix B). We think it would deserve

both improvements and manpower to become a reality.

Bibliographic references

[1] Achronix (S. C.). Speedster FPGA Family, DS001 Rev. 1.2 - October 16,

2009. (referenced page 5)

[2] Agarwal (A.), Iskander (C.) and Shankar (R.), « Survey of network on

chip (NoC) architectures & contributions », Journal of Engineering, Computing

and Architecture, 3, 2009, p. 21–27. (referenced page 33)

[3] Ahmadinia (A.), Bobda (C.), Ding (J.), Majer (M.) and Teich (J.), « A

Practical Approach for Circuit Routing on Dynamic Reconfigurable Devices »,

Workshop on Rapid System Prototyping., 2005, p. 84–90. (referenced page 31)

[4] Ahmadinia (A.), Bobda (C.), Bednara (M.) and Teich (J.), « A New

Approach for On-line Placement on Reconfigurable Devices », Proceedings of

the 18th International Parallel and Distributed Processing Symposium (IPDPS

04), 2004, p. 134–140. (referenced page 16)

[5] Ahmadinia (A.) and Teich (J.), « Speeding up Online Placement for XILINX

FPGAs by Reducing Configuration Overhead », Proceedings of the IFIP Inter-

national Conference on VLSI-SOC, Darmstadt, Germany, 2003, p. 118–122.

(referenced page 16)

[6] Al-Hashimi (M. G. B.), Laxmi (V.), Navaneeth (R.), Choudhary (N.),

Jain (L.), Ahmed (M.), Paliwal (K.), Varsha, Rekha and Vineetha.

NIRGAM: A Simulator for NoC Interconnect Routing and Applications’ Mod-

eling. EPSRC (UK) grant EP/C512804/1, 2010. (referenced page 117)

[7] Ali (M.), Welzl (M.) and Hellebrand (S.). « A dynamic routing mecha-

nism for network on chip ». In 23rd Nordic Microelectronics event (NORCHIP)

Conference, p. 70–73. IEEE, 2005. (referenced page 34)

[8] Altera. Stratix IV Dynamic Reconfiguration, 2005. (referenced page 6)

[9] Altera. Stratix IV Device Handbook - Volume 1&2, ver 4.0, Nov 2009., 11

2009. (referenced page 6)

148 Bibliographic references

[10] Altera. « Increasing Design Functionality with Partial and Dynamic Re-

configuration in 28-nm FPGAs (WP-01137-1.0) ». Technical report, Altera

corporation, 2010. (referenced page 6)

[11] Andriahantenaina (A.) and Greiner (A.). « Micro-network for soc: Im-

plementation of a 32-port spin network ». In Proceedings of the conference on

Design, Automation and Test in Europe-Volume 1, p. 11128. IEEE Computer

Society, 2003. (referenced page 33)

[12] Angiolini (F.), Meloni (P.), Carta (S.), Benini (L.) and Raffo (L.),

« Contrasting a NoC and a Traditional Interconnect Fabric with Layout Aware-

ness », Proceedings of the conference on Design,Automation and Test in Europe

: Proceeding, 1, 2006, p. 124–129. (referenced page 27)

[13] ANJO (K.), OKAMURA (A.), KAJIWARA (T.), MIZUSHIMA (N.),

OMORI (M.) and KURODA (Y.). « NECoBus: A high-end SOC bus with a

portable & low-latency wrapper-based interface mechanism ». In IEEE 2002

custom integrated circuits conference, 2002. (referenced page 27)

[14] ATMEL. AT40K05/10/20/40AL. 5K - 50K Gate FPGA with DSP Optimized

Core Cell and Distributed FreeRam, Enhanced Performance Improvement and

Bi-directional I/Os (3.3 V)., 2006. revision F. (referenced page 5)

[15] Baklouti (M.), Aydi (Y.), Marquet (P.), Dekeyser (J.) and Abid (M.),

« Scalable mpNoC for massively parallel systems - Design and implementation

on FPGA », Journal of Systems Architecture, 56(7), 2010, p. 278 – 292. Special

Issue on HW/SW Co-Design: Systems and Networks on Chip. (referenced

page 33)

[16] Bartels (C.), Huisken (J.), Goossens (K.), Groeneveld (P.) and van

Meerbergen (J.), « Comparison of An Æthereal Network on Chip and A

Traditional Interconnect for A Multi-Processor DVB-T System on Chip », Pro-

ceeding, IFIP Conference on Very Large Scale Integration (VLSI-SoC), 2006.

(referenced page 29)

[17] Bazargan (K.), ICastner (R.) and Sawafzadeh (M.), « Fast Template

Placement for Reconfigurable Computing Systems », Design & Test of Com-

puters, IEEE, 17, 2000, p. 68–83. (referenced page 16)

[18] Becker (J.), Donlin (A.) and Huebner (M.). « New tool support and

architectures in adaptive reconfigurable computing ». In Very Large Scale

Integration, 2007. VLSI-SoC 2007. IFIP International Conference on, p. 134–

139. IEEE, 2007. (referenced page 16)

Bibliographic references 149

[19] Becker (J.), Hubner (M.), Hettich (G.), Constapel (R.), Eisenmann

(J.) and Luka (J.), « Dynamic and Partial FPGA Exploitation », Proceedings

of the IEEE, 95, 2007, p. 438–452. (referenced page 13)

[20] Becker (J.), Pionteck (T.) and Glesner (M.), « Adaptive Systems-on-

Chip: Architectures, Technologies and Applications », Proceedings of the 14th

Symposium on Integrated Circuits and Systems Design, 2001, p. 2. (referenced

page 13)

[21] Benini (L.) and Micheli (G. D.), « Networks on Chips: A New SoC Para-

digm », Computer, 35, 2002, p. 70–78. (referenced page 28)

[22] Bertozzi (D.), Kumar (S.) and Palesi (M.), VLSI Design: Networks-on-

Chip. Hindawi Publishing Corporation, 2007. (referenced page 28)

[23] Bjerregaard (T.) and Mahadevan (S.), « A Survey of Research and Prac-

tices of Network-on-chip », ACM Computing Surveys (CSUR), 38, 2006, p. 1–

51. (referenced page 28)

[24] Bobda (C.) and Ahmadinia (A.), « Dynamic Interconnection of Reconfig-

urable Modules on Reconfigurable Devices », Design & Test of Computers,

22(5), 2005, p. 443–451. (referenced page 31)

[25] Bobda (C.), Ahmadinia (A.), Majer (M.), Teich (J.), Fekete (S.) and

van der Veen (J.), « DYNOC: a dynamic infrastructure for communication

in dynamically reconfigurable devices », Field Programmable Logic and Appli-

cations., 2005. (referenced page 29)

[26] Bobda (C.), Ahmadinia (A.), Rajesham (K.), Majer (M.) and Niyonkuru

(A.), « Partial Configuration Design and Implementation Challenges on Xilinx

Virtex FPGAs », 18th International Conference on Architecture of Computing

Systems, ARCS, 2005, p. 61–66. (referenced page 13)

[27] Bouhraoua (A.) and Elrabaa (M.), « A High-Throughput Network-on-Chip

Architecture for Systems-on-Chip Interconnect », International Symposium on

System-on-Chip, 2006, p. 1–4. (referenced page 33)

[28] Braun (L.), Gohringer (D.), Perschke (T.), Schatz (V.), Hubner (M.)

and Becker (J.), « Adaptive real-time image processing exploiting two dimen-

sional reconfigurable architecture », Journal of Real-Time Image Processing,

4, 2009, p. 109–125. (referenced page 13)

150 Bibliographic references

[29] Chou (S.), Chen (C.), Wen (C.), Chen (T.) and Lin (T.), « Hierarchical

circuit-switched NoC for multicore video processing », Microprocessors and

Microsystems, 35, 2011, p. 182–199. (referenced page 31)

[30] Compton (K.), Li (Z.), Cooley (J.), Knol (S.) and Hauck (S.), « Config-

uration Relocation and Defragmentation for Run-Time Reconfigurable Com-

puting », IEEE Transactions on Very Large Scale Integration (VLSI) systems,

10(3), 2002, p. 209–220. (referenced page 18)

[31] Cozzi (D.), Farè (C.), Meroni (A.), Rana (V.), Santambrogio (M.) and

Sciuto (D.), « Reconfigurable NoC design flow for multiple applications run-

time mapping on FPGA devices », Proceedings of the 19th ACM Great Lakes

symposium on VLSI, 2009, p. 421–424. (referenced page 38)

[32] Dally (W. J.) and Towles (B.), « Route Packets, Not Wires: On-Chip Inter-

connection Networks », Design Automation Conference (DAC), 2001, p. 684–

689. (referenced page 28)

[33] Dally (W. J.) and Towles (B.), Principles and Practices of Interconnection

Networks. Morgan Kaufmann, 2004. (referenced pages 5, 18, 28, 32, 34, 49

and 87)

[34] Dally (W.), « Performance analysis of k-ary n-cube interconnection net-

works », IEEE Transactions on Computers, 39, 1990, p. 775–785. (referenced

page 29)

[35] Delorme (J.), Nafkha (A.), Leray (P.) and Moy (C.), « New OPBHW-

ICAP interface for realtime Partial reconfiguration of FPGA », International

Conference on Reconfigurable Computing and FPGAs, 2009, p. 386–391. (ref-

erenced pages 16, 86 and 174)

[36] EETimes. « Altera to offer partial reconfiguration at 28-nm ».

http://www.eetimes.com/showArticle.jhtml?articleID=222600544. (referenced page 6)

[37] Evain (S.), Diguet (J.) and Houzet (D.). « µSpider: a CAD Tool for

Efficient NoC Design ». In Proceedings of the Norchip Conference, p. 218–221,

2004. (referenced page 37)

[38] FOSFOR. « http://users.polytech.unice.fr/˜fmuller/fosfor/ », 2008. (referenced

page 7)

[39] Freitas (H.) and Navaux (P.). « Evaluating on-chip interconnection archi-

tectures for parallel processing ». In 11th IEEE International Conference on

Bibliographic references 151

Computational Science and Engineering Workshops (CSEWORKSHOPS’08),

p. 188–193, 2008. (referenced page 35)

[40] Gaisler (A.). GRLIB IP Core User’s Manual v1.1.0, 2011. (referenced

pages 27 and 69)

[41] Gebali (F.), Elmiligi (H.) and El-Kharashi (M.), Networks-on-chips: The-

ory and Practice. CRC Press, Inc., 2009. (referenced page 28)

[42] Gericota (M. G.), Alves (G. R.), Silva (M. L.) and Ferreira (J. M.),

« Run-Time Management of Logic Resources on Reconfigurable Systems »,

Proceedings of the Design, Automation and Test in Europe Conference and

Exhibition (DATE 03), 2003, p. 974–979. (referenced page 18)

[43] Gohringer (D.), Liu (B.), Hubner (M.) and Becker (J.). « Star-Wheels

Network-on-Chip featuring a self-adaptive mixed topology and a synergy of a

circuit- and a packet-switching communication protocol ». In Field Program-

mable Logic and Applications, FPL’09, 2009. (referenced page 32)

[44] Goossens (K.), Dielissen (J.) and Radulescu (A.), « Æthereal network

on chip: concepts, architectures, and implementations », Design & Test of

Computers, IEEE, 22, 2005, p. 414–421. (referenced page 29)

[45] Hecht (R.), Kubish (S.), Michelsen (H.), Zeeb (E.) and Timmermann

(D.), « A Distributed Object System Approach for Dynamic Reconfigura-

tion », Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.

20th International, 2006, p. 8. (referenced page 16)

[46] Hennessy (J. L.) and Patterson (D. A.). Computer Architecture: A Quan-

titative Approach, chapter Appendix E : Interconnection Networks. Morgan

Kaufmann, 2006. (referenced pages 18, 28, 31, 32, 33, 34, 43, 49 and 53)

[47] Hilton (C.) and Nelson (B.). « Pnoc: a flexible circuit-switched noc for

fpga-based systems ». In Computers and Digital Techniques, IEE Proceedings,

2006. (referenced page 30)

[48] Holsmark (R.), Kumar (S.), Palesi (M.) and Mejia (A.). « HiRA: A

Methodology for Deadlock Free Routing in Hierarchical Networks on Chip ». In

3rd ACM/IEEE International Symposium on Networks-on-Chip (NOCS 2009),

p. 10, 2009. (referenced page 36)

[49] Horta (E. L.), Lockwood (J. W.), Taylor (D. E.) and Parlour (D.),

« Dynamic Hardware Plugins in an FPGA with Partial Run-time Reconfigu-

152 Bibliographic references

ration », Design Automation Conference (DAC), 2002, p. 343–348. (referenced

page 13)

[50] Hossain (H.), Ahmef (M.), Al-Nayeem (A.), Islam (T. Z.) and Akbar

(M. M.). « gpNoCsim - A general purpose simulator for network-on-Chip ».

In International Conference on Information and Communication Technology

(ICICT), 2007. (referenced page 117)

[51] IBM. Cell Broadband Engine Programming Handbook, 2008. Version 1.11.

(referenced page 31)

[52] Ivanov (A.) and Micheli (G. D.), « The Network-on-Chip Paradigm in Prac-

tice and Research », Design & Test of Computers, IEEE, 22(5), 2005, p. 399–

403. (referenced page 28)

[53] Jantsch (A.) and Tenhunen (H.), Networks on Chip. Kluwer academic Pub-

lishers, 2003. (referenced page 28)

[54] Jara-Berrocal (A.) and Gordon-Ross (A.), « SCORES: A Scalable and

Parametric Streams-Based Communication Architecture for Modular Recon-

figurable Systems », Design, Automation and Test in Europe Conference and

Exhibition, 2009. Proceedings, 2009. (referenced page 34)

[55] Jovanovic (S.), Tanougast (C.), Bobda (C.) and Weber (S.), « CuNoC:

A dynamic scalable communication structure for dynamically reconfigurable

FPGAs », Microprocessors & Microsystems, 33, 2009, p. 24–36. (referenced

page 30)

[56] Jung (E.-G.), Choi (B.-S.) and Lee (D.-I.), « High performance asynchronous

bus for SoC », Proceedings of the 2003 International Symposium on Circuits

and Systems. ISCAS ’03., 5, 2003, p. 505–508. (referenced page 27)

[57] Kalte (H.), Porrmann (M.) and Rückert (U.), « System-on-

Programmable-Chip Approach Enabling Online Fine-Grained 1D-Placement »,

Proceedings of the 18th International Parallel and Distributed Processing Sym-

posium (IPDPS 04), 2004. (referenced page 16)

[58] Kariniemi (H.). On-Line Reconfigurable Extended Generalized Fat Tree

Network-on-Chip for multiprocessor System-on-Chip Circuits. PhD Thesis,

Tampere university of Technology, 2006. (referenced pages 33 and 36)

[59] Kariniemi (H.) and Nurmi (J.). « New adaptive routing algorithm for ex-

tended generalized fat trees on-chip ». In International Symposium on System-

on-Chip, p. 113–118, 2003. (referenced page 33)

Bibliographic references 153

[60] Kariniemi (H.) and Nurmi (J.), « Reusable XGFT interconnect IP for

Network-on-Chip implementations », Symposium on System-on-Chip., 2004,

p. 95– 102. (referenced page 33)

[61] Kariniemi (K.) and Nurmi (J.). « Fault tolerant XGFT network on chip

for multi processor system on chip circuits ». In International Conference

on Field Programmable Logic and Applications (FPL2005), p. 203–210. IEEE,

2005. (referenced page 33)

[62] Khalaf (M.) and Jagtiani (A.), « Making hardware more like software »,

Embedded Systems Design (ESD), 24(5), June 2011, p. 22–28. (referenced

page 6)

[63] Khan (G.) and Dumitriu (V.), « A modeling tool for simulating and design

of on-chip network systems », Microprocessors and Microsystems, 34, 2010,

p. 84–95. (referenced page 117)

[64] Koch (D.), Beckhoff (C.) and Teich (J.), « ReCoBus-Builder - A novel

tool and technique to build statically and dynamically reconfigurable systems

for FPGAs », Field Programmable Logic and Applications., 2008, p. 119–124.

(referenced page 27)

[65] Koh (S.) and Diessel (O.), « COMMA: A Communications Methodology for

Dynamic Module Reconfiguration in FPGAs (Extended Abstract) », Dagstuhl

Seminar Proceedings 06141, Dynamically Reconfigurable Architectures, 2006,

p. 1–17. (referenced page 28)

[66] Kohler (A.) and Radetzki (M.). « Fault-Tolerant Architecture and Deflec-

tion Routing for Degradable NoC Switches ». In 3rd ACM/IEEE International

Symposium on Networks-on-Chip (NOCS 2009), 2009. (referenced page 30)

[67] Krasteva (Y. E.), de la Torre (E.) and Riesgo (T.), « Reconfigurable

Networks on Chip: DRNoC architecture », Journal of Systems Architecture,

56(7), 2010, p. 293 – 302. Special Issue on HW/SW Co-Design: Systems and

Networks on Chip. (referenced page 39)

[68] Kumar (R.), Zyuban (V.) and Tullsen (D. M.), « Interconnections in multi-

core architectures: Understanding mechanisms, overheads and scaling », Pro-

ceedings of the 32nd Annual International Symposium on Computer Architec-

ture (ISCA’05), 2005, p. 408–419. (referenced page 28)

[69] Kumar (S.), Jantsch (A.), Soininen (J.-P.), Forsell (M.), Millberg (M.),

Oberg (J.), Tiensyrja (K.) and Hemani (A.), « A network on chip architec-

154 Bibliographic references

ture and design methodology », IEEE Computer Society Annual Symposium

on VLSI, 2002, p. 105–112. (referenced page 29)

[70] LEE (S.), LEE (C.) and LEE (H.-J.). « A new multi-channel on-chip-bus

architecture for system-on-chips ». In IEEE International SOC Conference,

Proceedings., p. 305–308, 2004. (referenced page 35)

[71] Leiserson (C. E.), « Fat-trees: universal networks for hardware-efficient su-

percomputing », IEEE Transactions on Computers, 34, 1985, p. 892–901. (ref-

erenced page 33)

[72] Liu (M.), Kuehn (W.), Lu (Z.) and Jantsch (A.), « Run-time partial re-

configuration speed investigation and architectural design space exploration »,

Proceedings of the International Conference on Field Programmable Logic and

Applications (FPL’09), 2009, p. 439–444. (referenced pages 16, 86 and 174)

[73] Lysaght (P.), Blodget (B.), Mason (J.), Young (J.) and Bridgford (B.),

« Enhanced architectures, design methodologies and cad tools for dynamic

reconfiguration of xilinx fpgas », Field Programmable Logic and Applications.

FPL’06., 2006, p. 12–17. (referenced pages 6, 14 and 79)

[74] Marescaux (T.), Bartic (A.), Verkest (D.), Vernalde (S.) and Lauw-

ereins (R.), « Interconnection Networks Enable Fine-Grain Dynamic Multi-

tasking on FPGAs », Proceedings of the 12th International Conference on

Field-Programmable Logic and Applications (FPL), LNCS 2438, M. Glesner,

P. Zipf, and M. Renovell (Eds.), 2438, 2002, p. 795–805. (referenced page 30)

[75] Marescaux (T.), Mignolet (J.-Y.), Bartic (A.), Moffat (W.), Verkest

(D.), Vernalde (S.) and Lauwereins (R.), « Networks on Chip as Hardware

Components of an OS for Reconfigurable Systems », Field-Programmable Logic

and Applications, 177, 2003, p. 595–605. (referenced page 16)

[76] Markovsky (Y.), Patel (Y.) and Wawrzynek (J.). « Using Adaptive Rout-

ing to Compensate for Performance Heterogeneity ». In 3rd ACM/IEEE In-

ternational Symposium on Networks-on-Chip (NOCS 2009), 2009. (referenced

page 37)

[77] Moadeli (M.) and Vanderbauwhede (W.). « A communication model of

broadcast in wormhole-routed networks on-chip ». In International Confer-

ence on Advanced Information Networking and Applications, p. 315–322. IEEE,

2009. (referenced page 32)

Bibliographic references 155

[78] Moadeli (M.), Vanderbauwhede (W.) and Shahrabi (A.). « A perfor-

mance model of communication in the quarc noc ». In 14th IEEE International

Conference on Parallel and Distributed Systems, p. 908–913, 2008. (referenced

page 32)

[79] Modarressi (M.), Sarbazi-Azad (H.) and Arjomand (M.). « A hybrid

packet-circuit switched on-chip network based on sdm ». In Proceedings of

the Conference on Design, Automation and Test in Europe, p. 566–569, 2009.

(referenced page 30)

[80] Moller (L.), Fischer (P.), Moraes (F.), Indrusiak (L. S.) and Glesner

(M.), « Improving QoS of Multi-Layer Networks-on-Chip with Partial and

Dynamic Reconfiguration of Routers », Field Programmable Logic and Appli-

cations. FPL’10., 2010, p. 1–5. (referenced pages 30, 39 and 80)

[81] Moraes (F.), Calazans (N.), Mello (A.), Moller (L.) and Ost (L.),

« HERMES: an infrastructure for low area overhead packet-switching networks

on chip », Integration, the VLSI Journal, 38, 2004, p. 69–93. (referenced

pages 29, 58 and 116)

[82] Moraes (F.), Calazans (N.), Möller (L.), Brião (E.) and Carvalho (E.).

New Algorithms, Architectures and Applications for Reconfigurable Computing,

chapter Dynamic and Partial Reconfiguration in FPGA SoCs: Requirements

Tools and a Case Study, p. 157–168. Springer US, 2005. (referenced page 13)

[83] Murali (S.), Designing Reliable and Efficient Networks on Chips, volume 34.

2009. (referenced page 37)

[84] Muttersbach (J.), Villiger (T.), Kaeslin (H.), Felber (N.) and Ficht-

ner (W.), « Globally-Asynchronous Locally-Synchronous architectures to

simplifythe design of on-chip systems », ASIC/SOC Conference, 1999. Pro-

ceedings. Twelfth Annual IEEE International, 1999, p. 317–321. (referenced

page 27)

[85] Neeb (C.) and Wehn (N.), « Designing efficient irregular networks for hetero-

geneous systems-on-chip », Journal of Systems Architecture, 54, 2008, p. 384–

396. (referenced page 37)

[86] Ngo (V.-D.) and Choi (H.-W.), « Analyzing the Performance of Mesh and

Fat-Tree Topologies for Network on Chip Design », Computeur Science, 3824,

2005, p. 300–310. (referenced page 33)

156 Bibliographic references

[87] Nikolic (T.), Stojcev (M.) and Djordjevic (G.), « CDMA bus-based

on-chip interconnect infrastructure », Microelectronics Reliability, 49, 2009,

p. 448–459. (referenced page 27)

[88] Nollet (V.), Marescaux (T.) and Verkest (D.), « Operating-System Con-

trolled Network on Chip », Design Automation Conference, 41st Conference

on (DAC’04), 35, 2004, p. 256–259. (referenced page 16)

[89] OpenCores. Wishbone B4, WISHBONE System-on-Chip (SoC) Interconnec-

tion Architecture for Portable IP Cores, 2010. (referenced page 27)

[90] Palesi (M.), Patti (D.) and Fazzino (F.). Noxim: the NoC simulator, User

Guide. University of Catania, 2010. (referenced page 117)

[91] Pande (P. P.), Grecu (C.), Jones (M.), Ivanov (A.) and Saleh (R.), « Per-

formance Evaluation and Design Trade-Offs for Network-on-Chip Interconnect

Architectures », IEEE Transactions on Computers, 54, 2005, p. 1025–1040.

(referenced page 37)

[92] Park (K.) and Kim (H.). Remote FPGA Reconfiguration Using MicroBlaze

or PowerPC Processors. Xilinx, Application Note: XAPP441 (v1.1) edition,

2006. (referenced page 16)

[93] Patooghy (A.), Miremadi (S. G.) and Fazeli (M.), « A low-overhead and re-

liable switch architecture for Network-on-Chips », Integration, the VLSI Jour-

nal, 43, 2010, p. 268–278. (referenced page 30)

[94] Petrini (F.) and Vanneschi (M.). « k-ary n-trees: High Performance Net-

works for Massively Parallel Architectures ». In Parallel Processing Symposium,

1997. Proceedings., 11th International, p. 87–93, 1997. (referenced page 33)

[95] Pionteck (T.), Albrecht (C.), Koch (R.), Maehle (E.), Hubner (M.) and

Becker (J.). « Communication Architectures for Dynamically Reconfigurable

FPGA Designs ». In IEEE International Parallel and Distributed Processing

Symposium, p. 174–182, 2007. (referenced page 38)

[96] Pionteck (T.), Koch (R.) and Albrecht (C.), « Applying Partial Reconfig-

uration to Networks-on-Chips », Field Programmable Logic and Applications.,

2006, p. 1–6. (referenced page 38)

[97] Rana (V.), Atienza (D.), Santambrogio (M.), Sciuto (D.) and Micheli

(G. D.). « A reconfigurable network-on-chip architecture for optimal multi-

processor SoC communication ». In VLSI-SoC: Design Methodologies for SoC

and SiP, p. 232–250. Springer, 2010. (referenced page 39)

Bibliographic references 157

[98] Salminen (E.), Kulmala (A.) and Hamalainen (T. D.),

« Survey of Network-on-chip Proposals », OCP-IP White Paper,

http://www.ocpip.org/whitepapers.php, 2008. (referenced pages 28

and 43)

[99] Salminen (E.), Kangas (T.), Hämäläinen (T. D.), Riihimäki (J.), Lahti-

nen (V.) and Kuusilinna3 (K.), « HIBI Communication Network for System-

on-Chip », The Journal of VLSI Signal Processing, 43, 2006, p. 185–205. (ref-

erenced page 27)

[100] Samman (F.), Hollstein (T.) and Glesner (M.). « Planar adaptive router

microarchitecture for tree-based multicast network-on-chip ». In Network on

Chip Architectures, 2008. (referenced page 30)

[101] Schuck (C.), Lamparth (S.) and Becker (J.). « artNoC - A novel Multi-

Functional router architecture for Organic Computing ». In Field Program-

mable Logic and Applications, FPL’07, 2007. (referenced page 29)

[102] Seceleanu (T.), Plosila (J.) and Liljeberg (P.), « On-Chip Segmented

Bus: A Self Timed Approach », IEEE ASIC/SOC Conference, 2002, p. 216–

220. (referenced page 27)

[103] Sekar (K.), Lahiri (K.), Raghunathan (A.) and Dey (S.), « Dynamically

configurable bus topologies for high-performance on-chip communication »,

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 16, 2008,

p. 1413–1426. (referenced page 27)

[104] Song (W.), Edwards (D.), Nunez-Yanez (J. L.) and Dasgupta (S.).

« Adaptive Stochastic Routing in Fault-tolerant On-chip Networks ». In

3rd ACM/IEEE International Symposium on Networks-on-Chip (NOCS 2009),

2009. (referenced page 30)

[105] Steiger (C.), Walder (H.), Platzner (M.) and Thiele (L.), « Online

Scheduling and Placement of Real-time Tasks to Partially Reconfigurable De-

vices », Real-Time Systems Symposium, RTSS 2003, 24th IEEE, 2003, p. 224–

225. (referenced page 16)

[106] The VINT project. The ns Manual. UC Berkeley, LBL, USC/ISI, Xerox

PARC, 2000. (referenced page 116)

[107] Thomas (A.) and Becker (J.), « Dynamic Adaptive Runtime Routing Tech-

niques in multigrain reconfigurable Hardware Architectures », Conference on

Field-Programmable Logic And Applications, 3203, 2004, p. 115–124. (refer-

enced page 37)

158 Bibliographic references

[108] Wang (H.-S.), Zhu (X.), Peh (L.-S.) and Malik (S.). Orion: A Power-

Performance Simulator for Interconnection Networks. Princeton University,

2002. (referenced page 116)

[109] W.H.Hu, Lee (S.) and Bagherzadeh (N.). « DMesh: a Diagonally-Linked

Mesh Network-on-Chip Architecture ». In Network on Chip Architectures,

p. 14. citeseer, 2008. (referenced page 30)

[110] Wiklund (D.) and Liu (D.), « Design of a system-on-chip switched network

and its design support », IEEE 2002 International Conference on Communica-

tions, Circuits and Systems and West Sino Expositions, 2, 2002, p. 1279–1283.

(referenced page 29)

[111] Wiklund (D.) and Liu (D.). « Socbus: switched network on chip for hard real

time embedded systems ». In Parallel and Distributed Processing Symposium,

2003. (referenced page 30)

[112] Winegarden (S.), « Bus architecture of a system on a chip with user-

configurable system logic », IEEE Journal of Solid-State Circuits, 35(3), 2000,

p. 425–433. (referenced page 27)

[113] Wolkotte (P. T.), Smit (G. J.), Kavaldjiev (N.), Becker (J. E.) and

Becker (J.), « Energy Model of Networks-on-Chip and a Bus », International

Symposium on System-on-Chip : Proceedings, 2005, p. 82–85. (referenced

page 30)

[114] Wolkotte (P.), Smit (G.) and Becker (J.). « Energy-Efficient NoC for Best-

Effort Communication ». In International Conference on Field Programmable

Logic and Applications (FPL2005), p. 197–202, 2005. (referenced page 30)

[115] Xilinx. Difference-Based Partial Reconfiguration, Application Note XAPP290,

2007. (referenced page 15)

[116] Xilinx. Virtex-4 FPGA Configuration User Guide, v1.10 edition, April 8 2008.

(referenced page 6)

[117] Xilinx. Virtex-5 FPGA Configuration User Guide, 2008. v3.5. (referenced

pages 6, 14 and 17)

[118] Xilinx. Xilinx : Virtex-5 User Guide, v4.3 edition, September 23 2008. (ref-

erenced pages 14, 15 and 91)

[119] Xilinx. LogiCORE IP On-Chip Peripheral Bus V2.0 with OPB Arbite, 2010.

v1.00b. (referenced page 27)

Bibliographic references 159

[120] Xilinx. LogiCORE IP Processor Local Bus (PLB) v4.6, 2010. v1.05. (refer-

enced page 27)

[121] Xilinx. PlanAhead User Guide (v12.4), december 2010. (referenced page 6)

[122] Xilinx. Synthesis and Simulation Design Guide (v12.4), september 2010. (ref-

erenced page 6)

[123] Xilinx. 7 series FPGAs Configuration user Guide, march 2011. (referenced

page 6)

[124] Xilinx. Partial Reconfiguration of Xilinx FPGAs Using ISE 12 Design Suite,

july 2011. (referenced page 6)

[125] Xilinx. XST User Guide for Virtex-6 and Spartan-6 Devices, December 2,

2009. UG687 (v 11.4). (referenced page 6)

[126] Yuan (X.), Nienaber (W.), Duan (Z.) and Melhem (R.), « Oblivious rout-

ing for Fat-Tree based system area networks with uncertain traffic demands »,

SIGMETRICS ’07 Conference Proceedings, 35, 2007, p. 337 – 348. (referenced

page 34)

[127] Zeferino (C. A.), Kreutz (M. E.), Carro (L.) and Susin (A. A.). « A

study on communication issues for system-on-chip ». In 15th Symposium on

Integrated Circuits and Systems Design, p. 121–126, 2002. (referenced page 28)

Personal publications

[128] Devaux (L.), Chillet (D.), Pillement (S.) and Demigny (D.). « Flexible

communication support for dynamically reconfigurable FPGAs ». In Southern

Programmable Logic, 2009.

[129] Devaux (L.), Sassi (S. B.), Pillement (S.), Chillet (D.) and Demigny

(D.). « DRAFT: Flexible interconnection network for dynamically reconfig-

urable architectures ». In Field Programmable Technologies, 2009.

[130] Devaux (L.), Sassi (S. B.), Pillement (S.), Chillet (D.) and Demigny

(D.). « Réseau d’interconnexion flexible pour architecture reconfigurable dy-

namiquement et partiellement ». In RenPar’19 / SympA’13 / CFSE’7, 2009.

[131] Devaux (L.), Pillement (S.), Chillet (D.) and Demigny (D.). « Mesh

and Fat-Tree comparison for dynamically reconfigurable applications ». In

Reconfigurable Communication-centric Systems on Chip (ReCoSoC’10), 2010.

[132] Devaux (L.), Pillement (S.), Chillet (D.) and Demigny (D.). « OS

services for Reconfigurable System-on-Chip Communication ». In Proceedings

of the XXV Conference on Design of Circuits and Integrated Systems (DCIS),

2010.

[133] Devaux (L.), Pillement (S.), Chillet (D.) and Demigny (D.). « R2NoC

: dynamically Reconfigurable Routers for flexible Networks on Chip ». In In-

ternational Conference on ReConFigurable Computing and FPGA’s, ReCon-

Fig’10, 2010.

[134] Pham (H.-M.), Devaux (L.), Pillement (S.) and Demigny (D.). « Dy-

namic NOC-based MPSoC with Fault-Tolerance Support ». In DAC Workshop

on "Diagnostic Services in Network-on-Chips (DSNoC), 2010.

[135] Devaux (L.), Sassi (S. B.), Pillement (S.), Chillet (D.) and Demigny

(D.), « Flexible Interconnection Network for Dynamically and Partially Recon-

figurable Architectures », International Journal of Reconfigurable Computing,

2010(390545), 2010, p. 15.

162 Personal publications

[136] Muller (F.), Rhun (J. L.), Lemonnier (F.), Miramond (B.) and Devaux

(L.), « A Flexible Operating System for Dynamic Applications », Xcellence in

New Applications (Xcell), 73, 2010, p. 30–34.

[137] Narayanan (S.), Devaux (L.), Chillet (D.), Pillement (S.) and Sourdis

(I.). « Communication Service for hardware tasks executed on dynamic and

partial reconfigurable resources ». In International Conference on Very Large

Scale Integration (VLSI-SoC), 2011.

[138] Pham (H.-M.), Devaux (L.) and Pillement (S.). « Re2DA: Reliable and

Reconfigurable Dynamic Architecture ». In Reconfigurable Communication-

centric Systems on Chip (ReCoSoC’11), 2011.

Appendix

Appendix A

Simulation files from DRAGOON

1
6
6

A
p
p
e
n
d
ix
A
.
S
im

u
la
tio

n
fi
le
s
fro

m
D
R
A
G
O
O
N

Injection date header count
source PE injection date packet number

1 00000106 0000000E 00000001 00000000 00000000 00000000 00000001 00000000 00000139 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
141 00000100 0000000E 00000001 00000000 00000000 00000000 00000141 00000000 0000013A 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
281 00000106 0000000E 00000001 00000000 00000000 00000000 00000281 00000000 0000013B 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
3C1 00000100 0000000E 00000001 00000000 00000000 00000000 000003C1 00000000 0000013C 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
501 00000102 0000000E 00000001 00000000 00000000 00000000 00000501 00000000 0000013D 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
641 00000100 0000000E 00000001 00000000 00000000 00000000 00000641 00000000 0000013E 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
781 00000100 0000000E 00000001 00000000 00000000 00000000 00000781 00000000 0000013F 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
8C1 00000106 0000000E 00000001 00000000 00000000 00000000 000008C1 00000000 00000140 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
A01 00000100 0000000E 00000001 00000000 00000000 00000000 00000A01 00000000 00000141 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
B41 00000106 0000000E 00000001 00000000 00000000 00000000 00000B41 00000000 00000142 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
C81 00000103 0000000E 00000001 00000000 00000000 00000000 00000C81 00000000 00000143 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
DC1 00000100 0000000E 00000001 00000000 00000000 00000000 00000DC1 00000000 00000144 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
F01 00000100 0000000E 00000001 00000000 00000000 00000000 00000F01 00000000 00000145 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E

1041 00000107 0000000E 00000001 00000000 00000000 00000000 00001041 00000000 00000146 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
1181 00000103 0000000E 00000001 00000000 00000000 00000000 00001181 00000000 00000147 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
12C1 00000100 0000000E 00000001 00000000 00000000 00000000 000012C1 00000000 00000148 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
1401 00000103 0000000E 00000001 00000000 00000000 00000000 00001401 00000000 00000149 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
1541 00000102 0000000E 00000001 00000000 00000000 00000000 00001541 00000000 0000014A 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
1681 00000102 0000000E 00000001 00000000 00000000 00000000 00001681 00000000 0000014B 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
17C1 00000100 0000000E 00000001 00000000 00000000 00000000 000017C1 00000000 0000014C 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
1901 00000103 0000000E 00000001 00000000 00000000 00000000 00001901 00000000 0000014D 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
1A41 00000102 0000000E 00000001 00000000 00000000 00000000 00001A41 00000000 0000014E 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
1B81 00000100 0000000E 00000001 00000000 00000000 00000000 00001B81 00000000 0000014F 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
1CC1 00000102 0000000E 00000001 00000000 00000000 00000000 00001CC1 00000000 00000150 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
1F41 00000102 0000000E 00000001 00000000 00000000 00000000 00001F41 00000000 00000152 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
2081 00000100 0000000E 00000001 00000000 00000000 00000000 00002081 00000000 00000153 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
21C1 00000100 0000000E 00000001 00000000 00000000 00000000 000021C1 00000000 00000154 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
2301 00000106 0000000E 00000001 00000000 00000000 00000000 00002301 00000000 00000155 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
2441 00000106 0000000E 00000001 00000000 00000000 00000000 00002441 00000000 00000156 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
2581 00000107 0000000E 00000001 00000000 00000000 00000000 00002581 00000000 00000157 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
26C1 00000107 0000000E 00000001 00000000 00000000 00000000 000026C1 00000000 00000158 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
2801 00000100 0000000E 00000001 00000000 00000000 00000000 00002801 00000000 00000159 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
2941 00000107 0000000E 00000001 00000000 00000000 00000000 00002941 00000000 0000015A 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
2A81 00000103 0000000E 00000001 00000000 00000000 00000000 00002A81 00000000 0000015B 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
2BC1 00000100 0000000E 00000001 00000000 00000000 00000000 00002BC1 00000000 0000015C 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
2D01 00000107 0000000E 00000001 00000000 00000000 00000000 00002D01 00000000 0000015D 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
2F81 00000100 0000000E 00000001 00000000 00000000 00000000 00002F81 00000000 0000015F 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
30C1 00000100 0000000E 00000001 00000000 00000000 00000000 000030C1 00000000 00000160 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
3201 00000107 0000000E 00000001 00000000 00000000 00000000 00003201 00000000 00000161 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
3341 00000103 0000000E 00000001 00000000 00000000 00000000 00003341 00000000 00000162 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
3481 00000105 0000000E 00000001 00000000 00000000 00000000 00003481 00000000 00000163 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
35C1 00000107 0000000E 00000001 00000000 00000000 00000000 000035C1 00000000 00000164 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
3701 00000105 0000000E 00000001 00000000 00000000 00000000 00003701 00000000 00000165 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
3841 00000104 0000000E 00000001 00000000 00000000 00000000 00003841 00000000 00000166 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
3981 00000105 0000000E 00000001 00000000 00000000 00000000 00003981 00000000 00000167 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E
3AC1 00000106 0000000E 00000001 00000000 00000000 00000000 00003AC1 00000000 00000168 00000008 00000009 0000000A 0000000B 0000000C 0000000D 0000000E

payload
PE 1 input file

Fig
u
re

A
.1

:
In
p
u
t
s
im

u
la
tio

n
fi
le

e
x
a
m
p
le

g
e
n
e
ra
te
d
b
y
D
R
A
G
O
O
N
fo
r
a
P
E
(P
E
1
)
c
o
n
n
e
c
te
d
to

D
R
A
F
T.
A
t
e
a
c
h
s
p
e
c
ifi
e
d
in
je
c
tio

n
d
a
te
,
th
e
c
o
rre

s
p
o
n
d
in
g
p
a
c
k
e
t
is
o
ffe

re
d
to

th
e
n
e
tw

o
rk
.
T
h
is

p
a
c
k
e
t
is
m
a
d
e
o
f
a
h
e
a
d
e
r
c
o
n
ta
in
in
g
s
o
u
rc
e
a
n
d
d
e
s
tin

a
tio

n
a
d
d
re
s
s
e
s
,
th
e
c
o
u
n
t
fo
r
a
to
ta
l
o
f

1
6
tra

n
s
m
itte

d
fl
its
,
a
n
d
th
e
p
a
y
lo
a
d
.
P
a
y
lo
a
d
s
ta
rts

fi
rs
t
w
ith

th
e
s
o
u
rc
e
a
d
d
re
s
s
,
th
e
n
fo
llo
w
e
d
b
y

th
e
in
je
c
tio

n
d
a
te

a
n
d
a
n
u
m
b
e
r
(id

e
n
tifi

e
r)
s
p
e
c
ifi
c
to

th
is
p
a
c
k
e
t.

R
e
m
a
in
in
g
o
f
p
a
y
lo
a
d
fl
its

a
re

n
o
t
re
le
v
a
n
t.

167

header source PE injection date packet number
00000701 00000007 00000141 0000088A 321 398 77
00000501 00000005 00000641 0000061E 1601 1650 49
00000601 00000006 00000781 00000757 1921 1970 49
00000201 00000002 000008C1 00000278 2241 2280 39
00000601 00000006 00000A01 00000759 2561 2605 44
00000201 00000002 00000B41 0000027A 2881 2920 39
00000301 00000003 00000B41 000003B2 2881 2943 62
00000601 00000006 00000B41 0000075A 2881 2975 94
00000301 00000003 00000C81 000003B3 3201 3235 34
00000001 00000000 00000DC1 0000000C 3521 3545 24
00000701 00000007 00000DC1 00000894 3521 3573 52
00000401 00000004 00000DC1 000004EC 3521 3600 79
00000701 00000007 00001181 00000897 4481 4535 54
00000301 00000003 000012C1 000003B8 4801 4840 39
00000301 00000003 00001401 000003B9 5121 5155 34
00000701 00000007 00001541 0000089A 5441 5490 49
00000201 00000002 00001901 00000285 6401 6445 44
00000701 00000007 00001901 0000089D 6401 6468 67
00000501 00000005 00001901 0000062D 6401 6491 90
00000701 00000007 00001CC1 000008A0 7361 7405 44
00000201 00000002 00001E01 00000289 7681 7715 34
00000501 00000005 00001E01 00000631 7681 7742 61
00000601 00000006 00001F41 0000076A 8001 8050 49
00000701 00000007 00002081 000008A3 8321 8397 76
00000001 00000000 000021C1 0000001C 8641 8665 24
00000401 00000004 00002301 000004FD 8961 9005 44
00000501 00000005 00002441 00000636 9281 9325 44
00000501 00000005 00002801 00000639 10241 10317 76
00000001 00000000 00002941 00000022 10561 10590 29
00000001 00000000 00002A81 00000023 10881 10910 29
00000001 00000000 00002BC1 00000024 11201 11230 29
00000201 00000002 00002BC1 00000294 11201 11255 54
00000601 00000006 00002BC1 00000774 11201 11310 109
00000401 00000004 00002D01 00000505 11521 11565 44
00000501 00000005 00002F81 0000063F 12161 12263 102
00000601 00000006 00003201 00000779 12801 12855 54
00000301 00000003 00003341 000003D2 13121 13155 34
00000201 00000002 00003481 0000029B 13441 13475 34
00000701 00000007 000035C1 000008B4 13761 13810 49
00000501 00000005 000035C1 00000644 13761 13833 72
00000001 00000000 00003701 0000002D 14081 14110 29
00000201 00000002 00003981 0000029F 14721 14755 34
00000301 00000003 00003C01 000003D9 15361 15400 39
00000501 00000005 00003D41 0000064A 15681 15752 71
00000301 00000003 00003E81 000003DB 16001 16035 34
00000701 00000007 00003E81 000008BB 16001 16062 61
00000501 00000005 00003FC1 0000064C 16321 16365 44

PE 1 simplified output file
timing arrival informations

Figure A.2 : Simplified presentation of the output file generated by Modelsim. This file contains

all the packets that reached the destination (here PE 1). Relevant informations are for each packet,

the header, a reminder of the source address, the injection date, the identifier of the packet, and

finally timing informations (injection and arrival dates in decimal, clock cycles elapsed (latency)).

Appendix B

In situ characterization

platform

B.1 Need of an In-Situ characterization platform

Every existing simulator requires an amount of modifications that can be important

to support new networks. Such modifications can be delicate to guarantee the validity

of the comparisons (different models, etc.) and can result in a very significant loss of

time. This is how the idea of a standardized platform for characterization was born.

Since every researcher uses its own methodology on designing NoCs, there are many

different networks coded in many different languages, from RTL (VHDL or verilog)

to object oriented languages such as java or C++. Many models were created to

estimate performances but they can not cover the scope of all available NoCs. Since

the finality of a NoC is not to be defined with a high level of abstraction but to

be implemented in hardware, the idea came to create an open hardware platform.

This platform would be on reconfigurable chip implemented, so that performances

would not be estimated but measured in-situ. It is obvious that such a platform

is not to be used during the definition of a network (high level simulators would

save time in this context), but to efficiently compare an enough matured network

with others. To do so, this platform should provide a standard interface. This way

designers should only design a network interface (that is always specific to a NoC)

making the link between this standard interface and the NoC. This platform would

offer the possibility to create a testbench regrouping as much NoCs as possible.

Every NoC would be characterized in the same conditions of traffic, of hardware

target, etc. It would also provide the possibility to experiment in hardware the good

functioning of a real life application from its data flow graph. Indeed, more than

generating only random traffics of data, the possibility to specify specific traffics (in

terms of source/destinations, data rates, etc.) would allow to replicate applications

170 Appendix B. In situ characterization platform

from the communication point of view. NoC designers should then find an interest

in such a platform, but also application designers! For example, determining a

satisfying placement of shared elements like memories in a network would be easily

experimented thanks to this platform. Moreover, verifying the compliance between

an interconnection architecture and an application, just starting from its data flow

graph, would help saving time.

The general architecture of this in-situ characterization platform is presented in

Figure B.1.

NoC

NI

PRR

NI

NI

NI

Traffic controller

@ count delay

Traffic controller

Traffic controller

Traffic controller

Traffic analyzer Traffic analyzer Traffic analyzer Traffic analyzer

latency used unused

Final analyzer

MicroBlaze
processor

PLB 1

UART ICAP
Configuration

memory

Variable clock
generator

Reset Counter

PLB 2

Figure B.1 : Architectural presentation of the in-situ NoC characterization platform.

The NoC to characterize is implemented inside a PRR. Doing so, several ver-

sions/configurations of the network can be evaluated without disturbing the remain-

ing of the platform including user specified data traffics. Since Bus Macros (BMs)

are required to enter/exit a PRR, they constitute the standard interface. NIs are

specific for each NoC, this is why they are also implemented inside the PRR. Since

only NIs have the knowledge of the communication protocols, they are responsible

of the calculation of performances: latencies of the packet, number of clock cycles

B.1. Need of an In-Situ characterization platform 171

with and without incoming data. Their standard interface is defined as follow:

• a 6 bits width address used to specify the destination of the message to send

(input),

• a 16 bits width count signal specifying the number of data to transmit (input),

• a 16 bits width delay information indicating the delay to observe between the

end of current communication and the beginning of the following one (input),

• a 1 bit line specifying when address and count values can be changed without

creating instability (output),

• a 1 bit line specifying when the delay information can be changed (output),

• a 16 bits width control latency, measured from the moment a communication

is requested to the moment the first data can be sent (output),

• a 16 bits width global latency, measured from the moment a communication is

requested to the moment the last data arrives at destination (output),

• a 16 bits width used count indicating the number of clock cycles during which

data are received (output),

• a 16 bits width unused count indicating the number of clock cycles during

which no data is received (output).

This standard interface is provided to each NI, thus one for each port of the

network. In the in-situ platform, until 64 ports networks are supported. Thus,

this interface is instantiated 64 times with a unitary cost of 13 Configurable Log-

ical Blocks (CLBs). Furthermore, several signals are provided to the whole PRR

(instantiated one time only):

• a variable clock that is user specified from 20 to 450MHz,

• a reset signal,

• a 32 bits width counter value for the time reference, clocked using the variable

clock signal.

Thus, 4 additional CLBs are used for this interface. Behind these interfaces, the

platform is organized as follow:

• a 32 bits counter clocked on a user configured clock reference,

• a clock generator, and a reset controller which are both linked by a PLB bus

to a MicroBlaze processor,

172 Appendix B. In situ characterization platform

• a MicroBlaze processor with three functions: controlling the dynamic recon-

figuration of the PRR, receiving from the user the configuration to analyze

(traffic, frequency, etc.), and displaying measured performances.

• an Universal Asynchronous Receiver Transmitter (UART) make the interface

between the user and the MicroBlaze processor,

• an ICAP interface performing the reconfiguration of the PRR with configura-

tions stored in a dedicated memory,

• several traffic controllers composed of 3 buffers: 1 storing a sequence of des-

tination addresses, 1 for the count informations dedicated to each address in

first buffer, and 1 for the delay informations,

• several traffic analyzers calculating average and maximal latencies (both con-

trol and global), the number of received data, and the elapsed time from their

dedicated interfaces,

• a final analyzer centralizing informations from traffic analyzers and calculating

final performances (latencies, data rates, throughput) weighting results by the

number of received data and elapsed time.

Traffic controllers are one the most important part of the platform because they

manage the data traffic of their dedicated NI. Every traffic controller is composed

of three buffers allowing to store 64 informations each. Thus, through the UART

and the MicroBlaze processor, users can specify a sequence of addresses that will

be repeated until a new one is specified. Corresponding count and delay values acts

the same way. With the knowledge of every PE’s own data flow graph, the whole

behavior of an application can be reproduced this way (or at least a typical test

scenario). If more than 64 addresses are needed to characterize the behavior of a

particular PE, informations are stored by the MicroBlaze in its memory and sent

to traffic controllers at the time they are about to loop. If users do not want to

specify a sequence of addresses, each traffic controller will have a random generator

of addresses, even if informations in count and delay buffers are still required to

control the offered data rate.

Appendix C

R2NoC measured performances

The generation of R2NoC induces 24 configurations (and so 24 partial bitstreams) per

switch. Considering the limitations of present design tools, we decided to characterize

first a single switch and the communication service (MicroBlaze processor) from the

hardware consumption point of view. This way, the number of configurations to

generate could be limited.

Implementation of the switch and the communication service were realized on

a Xilinx ML506 development platform using a Xilinx XC5VSX50T FPGA. It was

implemented using the Xilinx ISE 12.4 design software tool. Definition of the PRR

corresponding to the switch is provided thanks to the Xilinx PlanAhead 12.4 soft-

ware. To obtain the exact values of resource utilization, the Xilinx FPGA Editor

software is used.

The Bus Macros used for communication between static and dynamic parts of

the system represents the main resource utilization in the dynamic switches. They

use 284 Look Up Tables (LUTs) while AND gates are implemented using only 140

LUTs. So, a total of 424 LUTs and no registers are used for the whole switches. The

same switch, statically implemented, from the conventional fat-tree network have a

cost of 657 LUTs and 207 registers. Resources utilizations of the switch and the

communication service are summarized in Table C.1. The resources consumption of

the communication service seems important when compared with a switch. However,

when designing the R2NoC network, the cost of the routing part is multiplied by the

number of switches while the cost of the communication service remains unchanged.

This is true as the MicroBlaze processor is powerful enough to handle the control

of the whole network. In small networks, the cost of the communication service can

be significantly reduced by not using a MicroBlaze processor but a fully hardware

implemented service, or at least a PicoBlaze processor.

To configure the switch, partial bitstreams of 22KB are generated whatever the

chosen configurations. First, just after the initial configuration of the FPGA, bit-

174 Appendix C. R2NoC measured performances

Table C.1 : Hardware resources consumption of the R2NoC network.

R2NoC communication switch from

switch alone service static fat-tree

Used % Used % used

Registers 0 0% 1221 4% 207

LUT 424 1% 1622 5% 657

DSP48E 0 0% 3 1% 0

BRAM36 0 0% 0 0% 0

streams are loaded from the original CompactFlash card to the DDR memory. We

measured this operation to 951ms for the 24 bitstreams. Next, partial bitstreams

are loaded from the DDR to the ICAP interface when the partial reconfiguration

occurs. Each bitstream has the same size, thus we measured a reconfiguration time

of 11.3ms for each configuration. This reconfiguration delay is very large considering

present applications. However, in this implementation, we used the genuine ICAP

interface provided by Xilinx. Some works like [72], or [35] obtained much better

reconfiguration times modifying the hardware ICAP. Accordingly with their results,

reconfiguration times from the order of 50-60µs can be reached. However, a reconfig-

uration time of 50µs represents 6250 clock cycles with a frequency of 125MHz. This

latency per switch is too much important: in order for R2NoC to have an interest in

a real life application, latencies from the range of conventional networks’ (50 clock

cycles for a conventional fat-tree interconnecting 8 PEs) are required.

When a switch is configured, it acts like a direct link with less than 1 clock

cycle delay. This is an important result because when the pairs of sources and

destinations do not often vary in a given application, the establishment time of the

communications and the latencies are reduced to 1 clock cycle. If we consider a

real life application requiring a network interconnecting 8 PEs, the establishment

time of a communication with an ideal communication service should be of the order

of 25000 clock cycles (200 µs). Considering the 1 clock cycle delays when a data

path is already established, R2NoC is only interesting if more than 500 successive

communications (considering the equivalent conventional fat-tree) occur using the

same data path. Using Xilinx genuine ICAP interface, more than 113000 successive

communications are required for R2NoC to be attractive.

Considering previous results, R2NoC is not adapted for real life applications

using DPR, but only with statically implemented applications (in order to foresee the

number of successive communications with the same couples source/destinations).

175

However, considering the 32 bits data width and the 125 MHz operating frequency,

a bandwidth of 500 Mbytes/s per PE can be of an interest for pipelined applications

where specialized PEs often communicate with the same destinations. Since we

limited the scope of this PhD to applications using DPR where data traffics can

not necessarily be predicted, no further investigations where realized on the R2NoC

network.

176 Appendix C. R2NoC measured performances

Appendix D

ASIC implementation of OCEAN

178 Appendix D. ASIC implementation of OCEAN

Figure D.1 : Presentation of an In-controller of the OCEAN v4.1 network at the gate level.

179

Figure D.2 : Bottom level Out-controller from the OCEAN v4.1 network.

180 Appendix D. ASIC implementation of OCEAN

Figure D.3 : Top level Out-controller from the OCEAN v4.1 network.

181

Figure D.4 : Overview of a single switch from the control part of the OCEAN v4.1 network. This

switch uses both In and Out-controllers defined in previous figures.

182 Appendix D. ASIC implementation of OCEAN

Figure D.5 : Overview the data sub-network from the OCEAN v4.1 network.

183

Figure D.6 : Presentation of the complete OCEAN v4.1 network interconnecting 8 PEs.

	Abstract
	Summary
	Abbreviations and Acronyms
	Introduction
	1 State of the art - Definitions
	1.1 Dynamic Reconfiguration
	1.1.1 General definition
	1.1.2 Xilinx partial reconfiguration

	1.2 Definitions
	1.2.1 Communication architecture
	1.2.2 NoC parameters
	1.2.3 Network performances

	1.3 Interconnection architectures
	1.3.1 Bus based interconnections
	1.3.2 Static NoCs
	1.3.3 Flexible NoCs

	1.4 Synthesis of the chapter

	2 The DRAFT network
	2.1 Objectives and motivations
	2.2 Topology of the DRAFT network
	2.3 Router architecture
	2.4 Routing and Flow Control
	2.5 The DRAGOON environment
	2.5.1 DRAGOON main interface
	2.5.2 The NoC generator
	2.5.3 The traffic generator
	2.5.4 The NoC simulator
	2.5.5 The traffic evaluator

	2.6 DRAFT implementation advices
	2.7 DRAFT integration: interface DRAFT/AHB
	2.8 DRAFT communication service
	2.9 Synthesis of the chapter

	3 Toward new flexible NoCs
	3.1 Objectives and motivations
	3.2 Topology of the R2NoC network
	3.3 R2NoC switch architecture
	3.4 R2NoC Routing and Flow Control
	3.5 Constraints of the R2NoC network
	3.6 Motivations for the OCEAN network
	3.7 Topology of the OCEAN networks
	3.8 The data network
	3.8.1 Communication principles and interfaces
	3.8.2 Data switches
	3.8.3 Discussions over the data network

	3.9 The control network
	3.9.1 Operation principles and interfaces
	3.9.2 OCEAN Routing algorithm
	3.9.3 Control switches

	3.10 Variations of the OCEAN network
	3.10.1 OCEAN v4.0
	3.10.2 OCEAN v3.1 and v4.1

	3.11 Discussions concerning the OCEAN networks
	3.12 OCEAN test platform
	3.13 Synthesis of the chapter

	4 Results and comparisons
	4.1 Objectives
	4.2 Experimental conditions
	4.3 DRAFT performances and comparison
	4.3.1 Hardware resources consumptions
	4.3.2 Network performances
	4.3.3 The scalability
	4.3.4 The data width
	4.3.5 Buffer depth
	4.3.6 Types of data traffics

	4.4 Ocean performances and comparison
	4.4.1 Hardware resources consumption
	4.4.2 Network performances
	4.4.3 FPGA validation
	4.4.4 ASIC implementation

	4.5 Synthesis of the chapter

	Conclusion and perspectives
	Bibliographic references
	Personal publications
	Appendix
	A Simulation files from DRAGOON
	B In situ characterization platform
	B.1 Need of an In-Situ characterization platform

	C R2NoC measured performances
	D ASIC implementation of OCEAN

