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Résumé 

Une Interface Cerveau-Machine (ICM) est un système permettant de transformer 

l‘activité neurale du cerveau en une commande d‘effecteurs externes. Cette étude 

correspond à une étape vers une ICM totalement autonome fonctionnant dans un 

environnement naturel ce qui est d‘une importance cruciale pour les futures applications 

cliniques d‘une ICM. Pour représenter l‘environnement naturel, des expériences avec 

une ICM binaire asynchrone ont été réalisées avec des animaux libres de se mouvoir. En 

comparaison avec les études précédentes, des expériences sur le long terme ont été 

réalisées, ce qui est plus conforme aux exigences des applications de la vie réelle. 

L‘objectif principal de cette étude est de différencier le modèle spécifique neuronal lié à 

l‘intention d‘action de l‘activité de fond du cerveau chez des animaux libres de tous 

mouvements. Pour atteindre le niveau nécessaire de sélectivité, l‘analyse Multi-Voies 

PLS a été choisie sachant qu‘elle fournit simultanément un traitement du signal dans 

plusieurs domaines, à savoir, temporel, fréquentiel et spatial. Pour améliorer la capacité 

de l‘approche générique Multi-Voies PLS pour le traitement de données à grandes 

dimensions, l‘algorithme « Itérative NPLS » est introduit dans notre travail. En ayant 

des besoins plus faibles en mémoire, cet algorithme fournit des traitements de grands 

ensembles de données, permet une résolution élevée, préserve l‘exactitude de 

l‘algorithme générique et démontre une meilleure robustesse. Pour la calibration 

adaptative d‘un système ICM, l‘algorithme récursif NPLS est proposé. Finalement, 

l‘algorithme pénalisé NPLS est développé pour la sélection efficace d‘un sous-ensemble 

de fonctions, à savoir, un sous-ensemble d‘électrodes. Les algorithmes proposés ont été 

testés sur des ensembles de données artificielles et réelles. Ils ont démontré une 

performance qui est comparable à celle d‘un algorithme générique NPLS. Leur 

efficacité de calcul est acceptable pour les applications en temps réel. Les algorithmes 

développés ont été appliqués à la calibration d‘un système ICM et ont été utilisés dans 

des expériences d‘ICM avec bouclage en temps réel chez des animaux. Enfin, les 
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méthodes proposées représentent une approche prospective pour de futurs 

développements de systèmes ICM humains. 

 

Mots-clés : Interface Cerveau-Machine, Electrocorticographie, Traitement du signal, 

Multi-voies analyse, Modélisation adaptative, Ondelettes. 
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Abstract 

Brain Computer Interface (BCI) is a system for translation of brain neural 

activity into commands for external devices. This study was undertaken as a step toward 

the fully autonomous (self-paced) BCI functioning in natural environment which is of 

crucial importance for BCI clinical applications. To model the natural environment 

binary self-paced BCI experiments were carried out in freely moving animals. In 

comparison to the previous works, the long-term experimental sessions were carried 

out, which better comply with the real-life applications requirements. The main goal of 

the study was to discriminate the specific neuronal pattern related to the animal‘s 

control action against background brain activity of freely-moving animal. To achieve 

the necessary level of selectivity the Multi-Way Analysis was chosen since it provides a 

simultaneous signal processing in several domains, namely, temporal, frequency and 

spatial. To improve the capacity of the generic Multy-Way Partial Least Squares 

(NPLS) approach for treatment of high-dimensional data, the Iterative NPLS algorithm 

is introduced in the current study. Having lower memory requirements it provides huge 

datasets treatment, allows high resolution, preserves the accuracy of the generic 

algorithm, and demonstrates better robustness. For adaptive calibration of BCI system 

the Recursive NPLS algorithm is proposed. Finally, the Penalized NPLS algorithm is 

developed for effective selection of feature subsets, namely, for subset of electrodes. 

The proposed algorithms were tested on artificial and real datasets. They demonstrated 

performance which either suppress or is comparable with one of the generic NPLS 

algorithm. Their computational efficiency is acceptable for the real-time applications. 

Developed algorithms were applied for calibration of the BCI system and were used in 

the real-time close-loop binary BCI experiments in animals. The proposed methods 

represent a prospective approach for further development of a human BCI system. 
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Keywords: Brain–Computer Interface, Electrocorticography, Signal Processing, Multi-

Way Analysis, Adaptive Modeling, Wavelets. 
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Figure 1.1 General scheme of BCI system. Here 𝐬(𝑡) is a vector reflecting brain neural 

activity, 𝐮(𝑡) is a vector of control block command, and 𝐲(𝑡) represents the state of the 

effector at the moment 𝑡. The dotted arrow in the figure represents the connection 

which is active only at a certain period of the BCI‘s operation cycle. 

Chapter 1. FUNCTIONAL BRAIN COMPUTER 

INTERFACE 

1.1 Introduction 

Brain Computer Interface (BCI), also known as Brain Interface (BI), and Brain 

Machine Interface (BMI), is a system for translating the brain neural activity into 

commands to external devices (Wolpaw et al., 2002). In other words, BCI aims to 

provide an alternative communication pathway for subjects to interact with their 

environment without using muscles. Such a system could be helpful for people suffering 

from severe motor disabilities to control wheelchairs, prostheses, etc. High-level general 

scheme of BCI system is shown in Figure 1.1. 

 

Indeed, the operation cycle of a BCI system contains two stages: 1) calibration 

stage; 2) execution stage (also called the close-loop stage). In the close-loop mode, the 

system controls the external effector by means of the control signal  ( ) in the real-time 

on the basis of the recordings of the brain electrical activity  ( ). To create a control 

Effector 

 ( )  ( ) 

 ( ) 

Brain Control Block 
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model used at the second stage, the first stage, namely, calibration is applied. During the 

calibration stage, the BCI system receives the signal  ( ) from the brain as well as 

information about the effector‘s state  ( ) (the dotted arrow on the figure). This data is 

used for the BCI system parameterization, and identification of the model, representing 

the relation between the brain‘s signals and effector‘s state. Once all parameters of the 

model have been defined, the system can be switched to the next stage. In general, the 

feedback signal  ( ) is not available for the control block at the second stage. At the 

same time, the brain has access to the feedback information (e.g., video, audio, tactile, 

etc.) on both stages. 

Among different BCI systems, the movement-related BCIs are of great 

importance. Last decades several approaches were developed to face the problem of 

movement-related signal decoding. Promising results were obtained both in animal 

(Chapin et al., 1999; Wessberg et al., 2000) and in human (Leuthardt et al., 2004; 

Wolpaw et al., 2002) studies. To record neural activity, systems with scalp electrodes 

for electroencephalography (EEG) (Wolpaw et al., 1991; Birbaumer et al., 1999; 

Kubler et al., 1999), surface electrodes against the dura mater (epidural electrodes) 

(Rouse and Moran, 2009; Torres Valderrama et al., 2010), directly against the cortex 

(subdural electrodes) (Leuthardt et al., 2004), or microelectrode array for deep brain 

recording of single units (Chapin et al., 1999) have been used. Neural activity was 

analyzed using a variety of methods. Mainly the approaches were aiming at classifying 

of event-related electrical patterns (for instance, the case of the ‗event – non-event‘ 

classification). The detection of patterns allows triggering the effector, e.g., a cursor on 

a screen (Wolpaw et al., 1991), a motorized device (Chapin et al., 1999; Wessberg et al., 

2000), etc. Experiments were carried out either in rodents (Chapin et al., 1999; Jensen et 

Rouse, 2006), or in non-human primates (Wessberg et al., 2000; Serruya et al., 2002), or 

in human patients (Scherer et al., 2003; Leuthardt et al., 2006). Nevertheless, an 

effective solution of the problem still does not exist. Moreover, a set of simplifications 

is applied in these BCIs. For instance, the duration of the experiments usually does not 

exceed several minutes (for instance, see Müller-Putz et al., 2010). In addition, the 

subject is being given a cue to start performing a task (Wolpaw et al., 2002). And 

finally, experiment conditions significantly differ from the natural environment (motion 
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restriction, absence of significant external disturbances, and so on. See Zhao et al., 

2008). 

Thus, bringing a BCI out of the laboratory to real-life clinical application 

represents a challenging task. The development of a BCI system that meets the 

requirements of real applications is the main goal of the CLINATEC/LETI/CEA BCI 

project. The project includes development and application of implants as well as data 

acquisition, transferring and processing systems (Figure 1.2). The purpose of the 

presented work, in the frame of preclinical studying of the BCI project in Clinatec, 

consists in the development and implementation of methods and algorithms for the 

signal processing block of the BCI system. Namely, the study is dedicated to the major 

problems of the clinical applications of BCI: fully autonomous functioning of the system 

during long term in the real-life environment. 
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Figure 1.2 CLINATEC/LETI/CEA project: real-life human BCI. 

 

1.2 BCI for real-life applications 

BCI system for real-life clinical applications must meet a set of requirements, 

such as health safety, real-life conditions reliability, as well as long-term stability. The 

main requirements imposed on the system can be summarized as follows: 

 Safety 

As the system is interacting with the brain, the safety questions, connected with 

risks of surgical implantation, infection, etc., have a paramount value. The use of 

deeper brain layers for data acquisition by means of invasive techniques increases 

risks for health such as brain damage or infection. Besides the risks of surgery 

intervention, errors in signal interpretation by the BCI system could be dangerous 

for the user‘s health and life (e.g., spontaneous motion of wheelchair and so on). 

 Signal quality 

The question of the signal‘s quality is of great importance for BCI systems. Broad 

frequency band, good spatial resolution, as well as the signal-to-noise ratio of the 

recordings allow increase system reliability (e.g., decreasing the number of the false 

activations, etc.). 

 System‘s long-time stability 

The BCI system should operate for a long period (years). Over this time, the signal 

can change significantly due to numerous reasons, such as the brain plasticity, 

 

data 
acquisition data 

transferring 

signal 
processing 

effector 

 

feedback 
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degradation of electrodes, etc. All these effects have to be properly treated by the 

system. 

 Natural environment 

As opposed to the laboratory conditions when a subject is concentrated on the task, 

when external noises are minimized, and computational resources could be rather 

considerable, it is almost impossible to provide these circumstances in real-life 

environment. Thereby, the system must be robust enough to guarantee functionality 

of the BCI in presence of noise and spurious signals. 

 Real-time conditions 

Operation in real-time is essential for the majority of BCI applications. This 

requirement imposes a significant restriction on both algorithms and computational 

facilities. Examples of real-time BCIs could be found in Chapin et al. (1999); 

Schalk et al. (2008); Zhao et al. (2008). 

 Usability 

The system should work without everyday recalibration or this calibration should 

be acceptably simple and easy (for example, it takes less than several minutes per 

day and could be made in any conditions). 

 Autonomy 

The system should be used without any external cue, whenever the user intends. 

Thus, the informative component should be detected on the background of the 

arbitrary user‘s activity. 

 Equipment complexity and expensiveness 

Technical problems of the functional BCI system mainly consist in hardware, 

which should be suitable for the everyday usage in rather rigorous conditions. The 

BCI system must be fast enough to process all necessary information without 

significant time delays. From the other hand, it must be small and lightweight not to 

burden a person using it. Also, the questions of the long-term power supply as well 

as everyday stable work guarantee are of great importance. Moreover, mass 

production imposes limitations on the complexity and the cost of the system. 

Every block of the BCI system must be optimized according to the points 

mentioned above. The choice of the method for the brain signals recording is a 

compromise of the patient‘s safety, signal‘s quality, reliability and applicability in 
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natural environment. The methods of data acquisition and treatment must be fast and 

reliable to function properly in the real-time mode in real-life conditions, etc. 

In the following section, the methods and approaches of the signal recording, as 

well as neurological phenomena and BCI control paradigms, are compared and 

evaluated according to the requirements of BCI systems. 

1.2.1 Neural activity recording 

During the last decades, several methods were developed to measure the brain‘s 

activity. The methods range from recording activity of single neurons to large-scale 

brain processes analysis. 

A neuron is an electrically excitable cell, which processes and transmits 

information by means of electrical and chemical signals. The neuron consists in a cell 

body (soma), an axon, and dendrites (Figure 1.3). Different neurons are connected to 

each other to form a neural network. In this network, signals are sent from the axon of 

one neuron to dendrites of others by means of electrochemical pulse (action potential). 

 

Figure 1.3 Basic structure of a neuron. 
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In current BCIs there are different techniques for recording of the brain‘s neural 

activity: non-invasive, partially invasive and invasive. 

Non-invasive methods 

The non-invasive methods are widespread due to their usability and safety. At 

the same time, the non-invasive signal recording systems produce poor signal resolution 

because the skull dampens signals, dispersing and blurring the electromagnetic waves 

created by the neurons. 

 Electroencephalography 

Electroencephalography (EEG) is one of the most widespread non-invasive 

techniques for neural activity recording firstly proposed by H. Berger in 1929. Now it is 

widely used as a diagnostic tool in the clinical purpose (Birbaumer et al., 1999; Wolpaw 

et al., 2003; Blankertz et al., 2006). Popularity of the EEG could be explained also by 

the simplicity of the measurements process and cheapness of the necessary equipment. 

EEG measurements are made by means of special electrodes with radius about 5 mm. 

Electrodes are mounted in the cap which can be easily worn on a subject practically 

without any preliminary preparation. The EEG approach consists in measurement of the 

small potentials (up to 100 μV) between the electrodes placed in the different locations 

on the scalp. Figure 1.4 shows the electrode placement in the EEG cap according to the 

10-20 international system and demonstrates an example of the recorded signals. 

 

Figure 1.4 EEG cap with 10-20 international system of electrode placement on the 

scalp and general view of the recorded signals. 

On the physical level, the signal measured with the EEG is caused by the 

electrical activity at pyramidal neurons in the cerebral cortex (Martin, 1991). 

Summation of the currents from neurons can be detected in the EEG (Sanei and 

Chambers, 2007). For the reason of the tissue barrier, which is between the neurons and 
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the electrodes, it is practically impossible to register a low-energy brain activity, as well 

as the frequencies higher than 100 Hz. The low limit of the EEG spectrum is 0.1 Hz. 

Generally the range from 0.3 Hz to 70 Hz is used in practice (Nazarpour, 2008). 

Moreover, artifacts from eye blinks, movements and other muscle activities complicate 

the analysis of EEG data. The amplitude of the artifacts sometimes significantly exceeds 

the amplitude of the signal of interest. Hence, often artifact filtering must be applied to 

the signal before data will be used. 

Spectrum of the EEG is divided on several bands, which have special names 

(Nazarpour, 2008): 

 Delta (δ):   3.5 Hz 

 Theta (θ): 4-7 Hz 

 Alpha (α): 8-13 Hz. An amplitude ranges generally from 20 to 100 μV, mostly 

below 50 μV. The α rhythm has usually the sinusoidal waveform, it is rhythmic 

and regular. 

 Rolandic Mu (μ): 8-13 Hz. It has the same frequency band as the α rhythm but it 

is registered in the central and the parietal areas (see Figure 1.4). The μ rhythm 

has a sharp negative peak and rounded positive phase. 

 Beta (β): 14-35 Hz. Located mostly in the frontocentral regions. 

 Gamma (γ):   35 Hz. 

The EEG is one of the most used techniques for measuring the brain electrical 

activity due to its safety. It is applied, for example, on research of epilepsy, sleep stages, 

as well as numerous clinical tasks (Acar et al., 2007). Unfortunately, shortcomings of 

the EEG approach significantly restrict its application in BCI systems. For instance, 

position of the electrodes is unstable, which force frequent system recalibration. 

Furthermore, training of subjects is relatively long, and some subjects can never achieve 

appropriate results (Blankertz et al., 2010). In addition, EEG data frequency range 0.3–

70 Hz (Nazarpour, 2008) is rather low, whereas a spatial resolution (several 

centimeters) is too rough due to presence of the skull (Srinivasan, 1999), which 

dampens the signals. Moreover, as far as the recording‘s amplitude is rather low 

(≤100 μV), a significant influence of artifacts on the informative data occurs 



1.2. BCI for real-life applications 

 

Brain-Computer Interface with cortical electrical activity recording 
21 

21 

(Hoffmann, 2007). This leads to impossibility of realization of BCIs with many degrees 

of freedom. Thus, while currently the EEG is widely used for the BCI systems, its 

shortcomings lead for searching other methods for more reliable recording of neural 

activity. 

 Magnetoencephalogram 

Magnetoencephalogram (MEG) is a non-invasive method for measuring the 

intensity of a magnetic field (Figure 1.5). In comparison with the EEG, the MEG data 

are less disturbed by scalp. Thus, magnetoencephalography allows obtain a signal with 

better spatial resolution. In addition, the MEG is more sensitive to superficial cortical 

activity. It is useful for studying of the neocortical epilepsy. Signal-to-noise ratio 

coefficient for MEG is better than the EEG one. The difference is especially significant 

for the high frequency band (γ-band) (Kübler and Müller, 2007). 

 

Figure 1.5 The UUMSI MEG system from Elekta Neuromag Oy in Helsinki (Finland). 

The method cannot be used in real-life applications due to huge size of devices 

for magnetic field measurements. Moreover, the price of the equipment is very high that 

leads to impossibility of the MEG systems mass-production. However, some example of 

MEG-BCIs can be found in Hoffmann (2007); Kauhanen et al. (2006); Lal et al. (2005); 

Blankertz et al. (2006); Buch et al. (2008). 

 Functional Magnetic Resonance Imaging 

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive method for 

measuring the blood oxygen level dependent (BOLD) signal. This method is based on 
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the fact that local concentration of deoxygenated hemoglobin in the brain depends on 

the neural activity in the cells. In comparison to the EEG, the fMRI allows detecting 

activity not only in the cortex but also in deeper structures of the brain (Weiskopf et al., 

2004). Figure 1.6 demonstrates an example of the fMRI scanner as well as examples of 

the obtained brain images. 

 

Figure 1.6 Berkeley's 4T fMRI scanner and brain images example. 

Unfortunately, the fMRI like the MEG measurements are very complex and 

expensive. They can only be made in laboratory conditions and cannot be easily applied 

in practical BCI systems. 

 Near Infrared Spectroscopy 

Near Infrared Spectroscopy (NIRS) is a non-invasive method for the 

measurement of hemodynamic activity. NIPS uses near-infrared light, which depends 

on the amount of oxygenated and deoxygenated hemoglobin in the blood. In contrast to 

the fMRI, the NIRS is significantly cheaper and requires less technical effort, whereas 

the spatial resolution is almost the same. The method was applied for the motor imagery 

and the movement tasks in BCI systems (Coyle et al., 2004; Sitaram et al., 2005; 

Sitaram et al., 2007). However, an application of NIRS in the real-life BCI is still not 

possible nowadays due to the complexity of the equipment. 



1.2. BCI for real-life applications 

 

Brain-Computer Interface with cortical electrical activity recording 
23 

23 

Thus, among the non-invasive methods, mainly EEG is applied in the practical 

BCI systems. The other methods are mainly used for fundamental researches and 

medical purposes. 

 

Invasive methods 

 Microelectrode arrays 

Microelectrode arrays (MEA) are a technique for registering activity of small 

groups of neurons (local field potentials) or even a single neuron (single-unit action 

potentials). To record signals, needle-like electrodes are placed into the brain cortex 

during surgery. First arrays were implanted by C. Thomas in 1972 (for more 

information, see Pine, 2006). Electrode diameter ranges between 10 and 30 μm. The 

method allows recording of the signals with frequency up to 5000 Hz. Examples of the 

MEA electrodes and signal are given in Figure 1.7. On average, the microelectrode 

array is covering a surface up to about 50 mm
2
. 

 

Figure 1.7 The silicon-based microelectrode array: 100 electrodes spaced at 400-micron 

intervals (Normann et al., 1999) and an example of the registered signal (Williams et al., 

1999). 
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The main advantage of the MEA application in comparison with other 

approaches is its high spatial resolution, which gives opportunity to apply the 

microelectrode arrays for complex tasks, e.g., real-time 3D motion (Taylor et al., 2002) 

and robotic arm control (Wessberg et al., 2000; Schwartz, 2004). The action-potential 

firing rate allows estimation of the subject‘s intention of movement (Serruya et al., 

2002.). For instance, 96 electrodes were implanted in a human subject suffering from 

tetraplegia that makes possible to the subject to operate with a prosthetic hand and to 

accomplish other tasks (Hochberg et al, 2006). 

The main disadvantage of the MEA application is the penetration of the cortex 

to a depth of several millimetres (Nicolelis et al., 2003). Moreover, quality of the 

registering signals decays with individual neuron death over time (Biran et al., 2005). 

Besides that, the astrocytes and microglia adhere to the device begin to accumulate. 

They form a sheath surrounding the array. This both increases the space between the 

electrode probes and insulates the electrodes. In addition, this increases a measurement 

impedance. Thus, the data can be recorded only for several months. On the other hand, 

recent results (Hochberg et al., 2006) demonstrate that a stable recording over a long 

time (year) is possible but at the expense of losing the signal at numbers of electrodes 

(about 20 of 150 remained functioning). 

The MEA is a remarkable tool for the brain signal registration. Unfortunately, 

due to the safety questions the microelectrode arrays are used mainly in animals. 

Additional information about the method can be found in the review of Lebedev and 

Nicolelis (2006). 

Thus, the method provides a high quality signal with significant spatial and 

frequency resolutions, as well as a good signal-to-noise ratio. As far as response time of 

the system is small enough (Taylor, 2007), whereas the system is compact and relatively 

cheap, it could be effectively applied for BCI tasks. On the other hand, the method is 

rather dangerous due to presence of significant risks of the brain damages. In addition, 

the system long-term stability supply is rather laborious. Moreover, only a small region 

of the brain could be observed. 

Partially-invasive methods 

 Electrocorticography 
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The Electrocorticography (ECoG) uses an electrode grid or strip to record the 

electrical activity of the brain‘s cortex. The ECoG was pioneered by W. Penfield and 

H. Jasper in the 1950‘s and now it is considerably widespread (Huggins et al., 1999; 

Leuthardt et al., 2004; Felton et al., 2007; Schalk et al., 2008). Like the EEG, the ECoG 

is based on measuring of the potential activity in the cortical pyramidal neurons. The 

difference is that the electrodes are placed immediately on the cortex surface. Thus, the 

electrical signals must not be conducted through the skull, where their potentials 

diminish due to the low conductivity of the bone. It leads to increasing of the spatial 

resolution of the ECoG in comparison with the EEG (tens of millimeters versus 

centimeters), broader frequency bandwidth (above 300 Hz), and higher signal‘s 

amplitude (50-100 μV). In addition, the ECoG recordings are less influenced by 

artifacts (Leuthardt et al., 2004). 

Generally, the ECoG experiments are made in the context of the long-term 

clinical applications which require continuous monitoring and processing of the neural 

activity for epileptic patients. For reach the cortex, a craniotomy must be made for a 

patient, i.e., a part of the skull must be removed to expose the brain surface (see Figure 

1.8). This procedure is performed under general or local anesthesia. The electrodes 

arrays can be placed either on the surface of the dura mater (epidural) or beneath the 

dura mater (subdural). The electrodes are attached to a flexible frame. Standard spacing 

between the electrodes in the frame is 1 cm; diameter of the electrodes is up to 5 mm 

(Schuh and Drury, 1996). The electrodes are designed in the way to eliminate any injury 

of the brain during its movements. 

Figure 1.9 demonstrates electrodes arrangement in the brain. Figure 1.10 

represents the cortex with the electrodes placed for the subdural extraoperative ECoG. 
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Figure 1.8 Tissue layers covering the cortex. 

 

Figure 1.9 Spatial electrode arrangement shown through MRI image (Kutsy, 1999). 

 

Figure 1.10 Exposed cerebral cortex and electrode placement for the subdural ECoG 

(Miller et al., 2007). 
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Besides the clinical applications, the ECoG is considered as promising technique 

for the BCI systems. It does not penetrate the brain significantly, but has higher spatial 

and frequency resolutions in comparison with the EEG. Moreover, it has better signal-

to-noise ratio, which is the very important characteristic for BCIs. The BCI experiments 

are carried out in subjects with implanted matrix of electrodes. Therefore, the tests 

cannot be made in healthy humans. Commonly, ECoG is used to localize seizure 

activity in patients with epilepsy before they undergo surgery (Kübler and Müller, 

2007). The ECoG experiments have demonstrated that the users can learn to control the 

ECoG signals through motor imagery (Graimann et al., 2004; Hill et al., 2006), speech 

imagery (Leuthardt et el., 2006), auditory imagery (Wilson et al., 2006), as well as 

mental calculation (Ramsey et al., 2006). Most of ECoG BCI studies were carried out 

offline and performed open-loop analysis of data (Kübler and Müller, 2007; Huggins et 

al., 1999; Levine et al., 1999). Scherer et al. (2003) reported accuracy between 85 and 

91 percent for offline classification of data recorded during self-paced middle finger 

extension. Hill et al. (2006) achieved accuracies around 75 percent for motor imagery 

tasks. However, only in few studies close-loop was realized and feedback of ECoG was 

provided to the participants (Felton et al., 2007; Leuthardt et al., 2004; Leuthardt et al., 

2006; Wilson et al., 2006). Birbaumer (2006) implanted electrodes on the cortex of a 

completely paralyzed patient to classify motor imagery signals. Unfortunately, 

classification results were at the chance level. Nevertheless, the carried out experiments 

demonstrated that even more than one year after implantation 50 percent of the 

electrodes provide stable signal recording. The promising results from new designs of 

the ECoG matrix electrodes for the long-term registration of the neuronal activity were 

reported recently (Charvet et al., 2011; Ejserholm et al., 2011; Hirata et al., 2010). 

Contrary to the EEG-, ECoG-based BCIs avoid problems with muscular artifacts 

(Sutter, 1992; Zaveri et al., 1992), offers better localization of origin of the signals 

(Salanova et al., 1993), a wider frequency range (Leuthardt et al., 2004), and higher 

signal-to-noise ratio (Margalit et al., 2003). In addition, there is a benefit of shorter 

training times for the ECoG-based BCIs (Leuthardt et al., 2004; Wolpaw et al., 2002; 

Huggins et al., 2007). 

Thus, the quality of the signal recorded with the ECoG is appropriate to be used 

in the BCI project. The frequency band and the spatial resolution, as well as the signal-
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Figure 1.11 CNT electrodes on the flexible structure (Sauter-Starace et al., 2009). 

to-noise ratio surpass correspondent parameters of the non-invasive methods. The risk 

of implantation is not as high as for the microelectrode arrays. Furthermore, since the 

recording does not depend on a single or several neurons, the system provides better 

long-term stability than the invasive methods. Response time and size of the system 

allows its utilization in the real environment in the real-time mode. Hence, as a tradeoff 

between registered signal quality and safety, the ECoG was selected as the method for 

the brain activity recording in the Clinatec project. 

Nanostructured electrodes for the ECoG recordings 

One perspective direction for ECoG recording is application of nanostructured 

electrodes. The advantages of this approach (in particular, carbon nanotubes (CNT) on 

the surface of the electrodes) were reported recently by Sauter-Starace et al. (2009). The 

electrodes covered by CNT allow registration of higher current in comparison to the 

electrodes without CNT. Their signal-to-noise ratio is better (Keefer et al., 2008).  

A set of experiments were carried out to compare the quality of the signals 

recorded using CNT covered electrodes vs. usual electrodes. The electrode implant was 

made on a 2 cm x 4 cm flexible 120 μm-thick polyimide support. A copper layer, 

contacting pads and the electrode contact areas were included in polyimide layers. 

2 x 16 electrodes made of silicon with a surface of 1 mm² covered of titanium nitride 

(TiN) and CNTs were disposed in the contact areas (see photos in Figure 1.11). 

 

Carbon nanotubes were grown by chemical vapor deposition (CVD) technique, 

according to a protocol reported in details by Dijon et al., 2004. A 3 nm-thick layer of 

nickel was deposed on TiN samples to catalyze the carbon nanotubes synthesis. 

Analysis of obtained CNTs (see Figure 1.12 (A)) demonstrated that CNTs layer were 

around 2 μm thick with CNTs diameters ranging between 20 and 40 nm. 



1.2. BCI for real-life applications 

 

Brain-Computer Interface with cortical electrical activity recording 
29 

29 

To test the electrodes in vivo they were implanted in a monkey. Brain activity 

was recorded weekly over one year. Typical registered ECoG signal is demonstrated in 

Figure 1.12 (B). It could be seen from the figure that signals from CNTs electrodes are 

richer than ones from TiN electrodes. This observation was consistent over the course 

of the study, irrespective to variation in amplitude (between 50 μV and 200 μV) and in 

the level of noise (between 20 μV and 50 μV). Power spectra represented in Figure 1.13 

also demonstrates advantage of CNTs electrodes. 

 

Figure 1.12 (A) Scanning electronic microscopy (SEM) picture of carbon nanotubes 

(Sauter-Starace et al., 2009). (B) Typical recorded ECoG signal (Sauter-Starace et al., 

2009). Top and bottom pictures are sonograms of TiN and CNT electrodes, respectively 

(here, x: time in seconds, y: frequency in Hz). 

(B) 

(A) 

1.2 µm 
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Figure 1.13 Comparison of the power spectra of ECoG. CNTs electrode is blue, TiN 

(control) electrode is red (Sauter-Starace et al., 2009). 

The experiments demonstrated that during several months the implanted CNT 

electrodes were able to record neuronal signals. Any epileptic activity, which could be 

linked to brain irritation, was not observed. Nanostructuration with CNTs is reported as 

an effective way to improve signal quality by increasing the signal-to-noise ratio in 

ECoG. 

Thus, carbon nanotubes improve quality of the registration of the brain neuron 

electrical activity. Long-term biocompatibility tests were carried out in vitro by Sauter-

Starace et al (2006). At the same time, some long-term experiments in vivo were made 

to date. However, to have more reliable results the additional tests are required. 

1.2.2 Electrophysiological sources of control in BCIs 

Numerous neurological phenomena could be used to control the BCI system. 

These phenomena are characterized by voltage amplitude, latency, frequency and space 

distribution. Some of them are described below. 

 Slow Cortical Potentials (SCPs) 

SCPs are the slow potential changes generated by a user. Usually they 

have a non-movement source and reflect the changes in the cortical polarization 

lasting from 300 ms up to several seconds (Birbaumer et al., 1990). The CSP 

based BCI systems require users to achieve voluntary regulation of its brain 
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activity. They typically use the traditional S1-S2 paradigm which was proposed 

in the work of Walter et al. (1964). A negative SCP shift seen after a warning 

stimulus (S1) two to ten seconds before an imperative stimulus (S2) that requires 

participants to perform a task (e.g., a button press or cursor movement). An 

example of the SCP application for the BCI system could be found in Birbaumer 

et al. (1999). In this work patients suffering from amyotrophic lateral sclerosis 

(ALS) use the BCI to control a spelling device. 

 P300 

Auditory, visual and somatosensory stimuli can evoke a positive peak at 

about 300 ms after the stimulus is received. This positive signal deflection is 

called P300 (Squires et al., 1976). The P300 amplitude varies. It depends on 

discriminability of standard and target stimuli, overall probability of the target 

stimuli, and the preceding stimulus sequence, as well as the electrodes position 

(Squires et al., 1976). Mostly, the P300 is observed in the central and the parietal 

regions. 

Farwell and Donchin had shown that the event-related potential could be 

used to select items displayed on a computer monitor (Farwell and Donchin, 

1988). From users it was required that they were able to focus attention and gaze 

on the target letter for a considerable amount of time. 

For more information see Nieuwenhuis et al. (2005). 

 Visual Evoked Potentials (VEP) and Steady-State Visual Evoked Potentials 

(SSVEP) 

Small changes in the brain signal generated in response to a visual 

stimulus are called VEPs. Their characteristics depend on the type of the visual 

stimulus. If a visual stimulus is presented repetitively at a rate of 5-6 Hz or 

greater a response is termed SSVEP. Its amplitude and phase depend on such 

stimulus parameters as repetition rate and contrast. Like the P300, the SSVEP 

requires attention and intact gaze but no user training. 

The SSVEP-BCI was used, for instance, in the work of Wang et al. (2006). 

Three targets with different flickering frequencies were presented on a monitor. 

On general, up to 90% classification accuracy is reported. However, a 

shortcoming of all SSVEP approaches to the BCI control is their dependence on 
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intact gaze. Hence, the method is unsuitable for patients with restricted eye 

movement. Moreover, it cannot be used in long-term experiments. 

Description of the BCI systems using the SSVEP could be found in 

Herrmann (2001), Gao et al. (2003), and Lalor et al. (2005). 

 Sensorimotor rhythms (SMR) 

The sensorimotor rhythm is brain wave rhythm which appears over the 

sensorimotor cortex. SMRs are characterized by a decrease (desynchronizing) 

and increase (synchronizing) of the signal‘s energy in specific bands 

(Pfurtscheller and da Silva, 1999). Moreover, SMRs are evoked by the real 

movements and by the motor imagery (when no actual movement is required, 

which is the only possible solution for paralyzed patients). Voluntary modulation 

of SMR could be achieved by the subject after the first session (Blankertz et al., 

2006). Moreover, it was demonstrated by Kübler et al., 2005 that SMR 

regulation is possible even in the case of significant degeneration of cortical and 

spinal motor neurons. However, the amplitude of SMR is much higher in healthy 

individuals (Kübler and Müller, 2007). Some examples the BCI systems made 

on the base of the SMRs could be found in Blankertz et al. (2006), Pfurtscheller 

and Neuper (2001), Wolpaw and McFarland (2004). 

The objective of our BCI system is autonomous functioning in the real-time 

mode. Therefore, among all described above phenomena only sensorimotor rhythms 

could be utilized, whereas others occur with significant time lag and/or cannot be used 

in the real environment without external stimulation (SCP, P300, VEP, and SSVEP). 

1.2.3 Robustness and stability of BCI system 

Robustness and stability are important questions for real-life application of the 

BCI systems. Essential restrictions are imposed on the stability of the system due to a 

considerable variability of the registered signal. There are three main types of the 

signal‘s variability (Tangermann, 2008): 

 subject-to-subject variability 

 session-to-session variability for the same subject 

 trial-to-trial variability for the same session and the same subject 
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The detailed study of the neurological signal variability is presented in the work 

of Tangermann (2008). An example of the subject-to-subject variability is shown in 

Figure 1.14. The averaged brain patterns exhibit a great diversity for 6 subjects for the 

case of right and left hand finger typing. 

Characteristics of the signals, recorded from the same subject during the 

different sessions, i.e., in different days, could also vary (session-to-session variability) 

Figure 1.15. While in the short-time (one day) experiments this type of instability could 

be neglected, in the long-term experiments it should be taking into account. 

The trial-to-trial variability represents instability of the registered signal from 

one trial to another for the same subject and during the same session. Figure 1.16 

demonstrates an example of this type of variability. 

 

Figure 1.14 Example of the subject-to-subject variability (Tangermann, 2008). 

Represents the trial-averaged brain patterns made for the 6 subjects for the case of right- 

and left-hand finger typing. 

 

Figure 1.15 Example of the session-to-session variability (Tangermann, 2008). 

Represents an average across 140 trials made for the same subject (different sessions are 

shown on the different columns) for the case of right- and left-hand finger typing. 
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Figure 1.16 Example of the trial-to-trial variability (Tangermann, 2008). It represents 

the alpha-band power for twelve 3.5 seconds-length trials for the case of right- and left-

hand finger typing. 

The functional BCI system has to operate in the real-life. Therefore, the signal‘s 

variability should be taken into consideration. To take into account the effects of the 

session-to-session instability of the signal, all currently existing BCI systems require an 

everyday pre-calibration of the parameters. Moreover, online adaptation of the 

algorithm could allow adjustment of the method to the data variations during one 

session. Taking into account different types of the signal‘s instability, generally, the 

algorithm used in the BCI system must be sufficiently robust, i.e., its decisions should 

be made on the base of characteristics which are minimally exposed to the variability of 

the data recordings. 

1.2.4 BCI Control paradigms. Self-paced BCI 

BCI systems can be classified according to the way of the no control (NC) 

periods supporting, when the BCI system is expected to remain in the neutral state, in 

the other words, to be idle. Moreover, in the real BCI, the NC states happen more 

frequently than the intentional control (IC) states. Currently, several control paradigms 

are used in the design of the BCI systems. According to Mason and Birch (2005), they 

can be classified as: 

 self-paced (asynchronous) 
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Figure 1.17 Schematic representation of the different control paradigms (Mason and 

Birch, 2005). 

 system-paced 

 synchronized (cue-based) 

A scheme of the different control paradigms is represented in Figure 1.17. 

 

Only the self-paced and the system-paced paradigms support the NC states. On 

the other hand, the synchronized and the system paced control strategies use external 

cues for driving an interaction between a subject and the BCI system. As a result, users 

are supposed to generate commands only during specific periods. The signals outside 

the predefined time windows are ignored. However, in the real-life environment this 

restriction seems to be very burdensome as well as causes user frustration and fatigue. 

As opposed to the cue-paced systems, no stimulus is used by the self-paced BCIs, which 

is continuously available. Users control them at their own intention. However, the 

performance of the self-paced BCIs reported in the articles is still not suitable for 

practical application, in particular, because of high level of false system activations 

(Fatourechi et al., 2008). It also causes frustration of the user and limits the applications 

of the system. 

Different control paradigms are characterized by various neurological 

phenomena on which the BCI system is based. The self-paced paradigm can utilize the 

sensorimotor rhythm phenomenon so long as its nature is not connected with presence 

of any predefined cue. At the same time, the system-paced BCI can be based on the 
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slow cortical potentials, whereas the synchronized BCIs could work with the P300 or 

the visual evoked potentials (the steady-state visual evoked potentials) since all these 

phenomena are strictly connected with some predefined event which can be used as cue. 

The self-paced control approach is appropriate for the real BCI systems, as far as 

it provides more freedom and control flexibility to users. However, it is more difficult to 

realize such systems, since there are many different types of brain‘s activity (e.g., 

sleeping, eating, different mental tasks, etc.). As a result, lots of reported BCIs are 

synchronous, for instance, see Wolpaw et al. (2002). Nevertheless, recently several 

groups have pursued design of the self-paced BCI systems (e.g., Leeb et al. (2007); 

Scherer et al. (2008); Fatourechi et al. (2008); Müller-Putz et al. (2010); Qian et al. 

(2010)). 

To concentrate on the main problem, in this work we are considering the 

simplest case of the BCI system, i.e., the case of the binary self-paced BCI, also known 

as the brain-switch BCI. The brain-switch BCI was introduced by Mason and Birch 

(2000), as the system intended to detect only one brain state (brain pattern) in the 

ongoing brain activity and does not provide any output when the user does not intend to 

communicate (Pfurtscheller et al., 2010a). Mason and Birch system was able to 

distinguish voluntary motor-related potentials from ongoing EEG activity in 

asynchronous mode, by analyzing a low-frequency band. Last time single channel EEG-

based brain switch were realized by Pfurtscheller et al., (2005); Pfurtscheller and Solis-

Escalante, (2009); Solis-Escalante et al., (2010). A multiple-electrode brain-switch 

system was created recently by Barachant et al., (2011). Except EEG, NIRS (Coyle et 

al., 2007) also can be used for BCI. Pfurtscheller et al., (2004) demonstrated an ECoG-

based brain switch BCI system. Whereas all previously mentioned BCIs were exploiting 

SMR, brain switches were also realized on the basis of SSVEP (Cheng et al., 2002). 

Taking into account advantages of the brain-switch approach, it was chosen for the first 

version of our BCI system. At the same time, applied algorithms should be easily 

generalizing to the case of multi-states and continuous-states BCI system, which is the 

future goal of our project. 

In the next section criteria for the self-paced BCI performance evaluation and 

comparative analysis are discussed. 
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1.2.5 Evaluation of the self-paced BCI performance 

Criteria 

The binary BCIs classify incoming data epochs on two types, based on presence 

or absence of some specific activity. Epochs are classified as ‗event‘ or ‗non-event‘. 

For evaluation of the binary BCI, several approaches are used, for example, the 

error rate or the classification accuracy (Blankertz et al., 2004), mutual information and 

the information transfer rate (Kronegg et al., 2005), the receiver-operator-characteristics 

(ROC) and the area-under-curve (AUC) (Lal et al., 2005), the correlation coefficient 

(Gao et al., 2003) and the mean square error (MSE) (Wu et al., 2006). However, these 

criteria were mainly applied for the synchronous type of the BCI control. The specificity 

of the self-paced systems consists in significantly different probabilities of ‗event‘ and 

‗non-event‘ classes. Generally, long periods of the NC are interspersed with brief 

instances of the IC. It means that the NC states occur with a much higher probability 

than the IC ones, which contradicts the underlying assumption of equal a priori 

probability for a variety of the traditional performance estimation methods. 

Another important characteristic of the BCI performance, which should be taken 

into account, is the decision rate, i.e., a number of decisions produced per unit of time. 

It could be identical to the sampling rate of the input signal (e.g., Huggins et al., 1999) 

or could be decimated to some extent (e.g., Kübler et al., 2005). It is clear that the 

greater the decision rate is the more the absolute number of errors could be made if the 

probability of the error remains the same. It should be taken into account during 

interpretation of the performance properties. 

Following characteristics are used to evaluate classification: 

 True Positive (TP), which is equal to the number of correctly detected 

‗events‘; 

 True Negative (TN), which is equal to the number of correctly detected 

‗non-events‘; 

 False Positive (FP), which corresponds to the number of ‗non-event‘ 

situations detected as ‗events‘; 

 False Negative (FN), which is the number of the missed ‗events‘. 

These four characteristics are summarized in the confusion matrix (Table 1.1). 
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Table 1.1 Confusion matrix contains information about the number of the correct 

detections, event missings, false activations, and correct rejections. 

 ‘Event’ ‘Non-event’ 

‘Event’ detection TP (correct detection) FP (false activation) 

‘Event’ rejection FN (event missing) TN (correct rejection) 

Figure 1.18 gives a graphical representation of these characteristics for a case 

when the decision rate coincides with the signal sampling rate. 

 

Figure 1.18 Graphical representation of the decision characteristics. 

The ECoG signal could not be perfectly synchronized with the moments of the 

events (for instance, due to the response delay of the system). Thus, online quality 

evaluation of the self-paced (binary) BCI system should be made. In the current study it 

is realized in the following way. The event is considered to be detected correctly (TP) if 

the system has detected it during the certain (predefined) time interval from the real 

event (see Figure 1.19 (A)). After every generated detection the system is blocked and 

cannot produce any other detection during some predefined period of time (see Figure 

1.19 (B)). It is made to prevent the multiple system actuation for the same event. 
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Figure 1.19 (A) After each detection the system cannot generate other detections 

during the predefined time interval. (B) Detection is treated as True Positive (TP) if it 

is made during the certain time interval from the real event. 

 

On the basis of TP, TN, FP, and FN values, criteria for the system performance 

evaluation are introduced. Among the most frequently used are (Huggins et al., 1999; 

Rijsbergen, 1979; Schlögl et al., 2007; Fatourechi et al., 2007): 

 Accuracy of Classification:     
     

           
 

 Error Rate:           

 True Positive Rate (Hit Rate, Sensitivity):     
  

     
 

 False Positive Rate:     
  

     
 

 False Detection Rate:     
  

     
 

 False Activation per Minute 

 Positive Predictive Value (Precision):     
  

     
       

 Specificity:    
  

     
 

 Harmonic Mean of Precision (          ):     
       

       
 

    

          
 

 Hit/False-difference:                          

  

     
 

  

     
 

The accuracy of classification (   ) is a commonly used evaluation criterion in 

the BCI research. It shows the percentage of correctly classified samples. However, 

being efficient for the cue-paced BCIs,    , as well as the error rate    , fail to 

characterize the performance of a self-paced BCI due to highly unbalanced classes 
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(Schlögl et al., 2007). The True Positive Rate (   ), and the False Positives Rate 

(   ) are widely used in the self-paced BCIs. They show the relative amount of 

successfully detected events and of false activations. Let us note that     is influenced 

by the decision rate and the ratio of the classes. This complicates the BCI systems 

comparison. That is why additional criteria characterizing false activations of the self-

paced BCIs were proposed: the number of the False Activation per Minute (Mason and 

Birch, 2000), the Positive Predictive Value (   ) (Müller-Putz et al., 2010), etc. While 

    shows the percentage of successfully detected events,     corresponds to the 

percentage of correct detection. 

The confusion matrix and/or a set of criteria, for instance,     and    , allow 

characterizing the BCI performance. However, simultaneous comparison of several 

criteria is not convenient for the calibration purpose. Since standard     fails to 

evaluate the performance of the self-paced BCIs, numerous attempts were made to 

introduce a single metrics: the weighted     (Zhu and Yao, 2004), HF-difference 

(Huggins et al., 1999), F1-criterion (Rijsbergen, 1979),     at a fixed false positive rate 

(Borisoff et al., 2004), ratio         (Fatourechi et al., 2007) and others. In our study, 

the average value of     and     (referred as the Overall Performance,    

(       )  ) was chosen for the calibration purpose. We apply it to optimize the 

detection threshold in the BCI system (‗event‘ – ‗non-event‘). OP gives a single value 

for the BCI performance, balancing the False Positives and False Negatives types of 

errors. The choice of the criterion for the BCI system calibration reflects the goals and 

priorities of the given BCI study. 

Thus, by means of the Overall Performance characteristic, the quality of the BCI 

system could be measured by a single value. 

Whereas the BCI system has to work in the real-time conditions, the response 

time (RT) of the system generally is of great importance. It could be characterized by 

the probability of the different values of the response lags. An example of the response-

time histogram is represented in Figure 1.20. 
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Figure 1.20 An example of the Response-Time Histogram: represents the probability of 

the different response delays. 

 

Comparison 

One of the most significant problems of the self-paced BCI systems is high 

value of the False Positive Rate (Mason and Birch, 2000), i.e., the number of the false 

activation during the NC periods. While the current BCI realizations have rather good 

detection rate (the True Positive Rate or, in other words, the rate of the correct 

detections of the IC states, see Fatourechi et al., 2008), the False Positive Rate is still 

too high for practical applications. For example, if the system makes a decision every 

100 ms and has the FP rate equal to 1%, it will generate an error on average every 10 

seconds that is unacceptable in the numbers of the real applications due to user‘s 

frustration or other reasons. 

Low performance of the current self-paced BCI systems (Müller-Putz et al., 

2010; Mason and Birch, 2000; Yom-Tov and Inbar, 2003; Townsend et al., 2004; 

Bashashati et al., 2006; Fatourechi et al., 2006; Bashashati et al., 2007a; Fatourechi et 

al., 2008) is the main restriction for the practical BCI applications. Most of the reported 

BCIs achieve less than 60% of the control intention detection (TP) with several false 

positives (FP) activations per minute (Mason and Birch, 2000; Yom-Tov and Inbar, 

2003; Townsend et al., 2004; Bashashati et al., 2006; Bashashati et al., 2007a). The BCI 

system reported by Fatourechi et al. (2008) achieved 56% of correct detection, with 0.7 

FP per minute: this was obtained by offline analysis of short recordings of only several 

(2-5) minutes length and of non-control periods when a subject was resting. These 

results were obtained from the scalp EEG recordings in highly restricted conditions and 

time 

 (  ) 

0 
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are not satisfactory in the context of the needs of the long-term clinical applications 

which require continuous monitoring and processing of the neural activity. 

1.2.6 Functional BCI in natural environment 

Stable functioning in the natural environment conditions is required for the 

applications of the BCI systems. Previous BCI experiments were carried out in the 

laboratory conditions, which distinguish significantly from the natural environment 

where subjects are not concentrated properly, can be disturbed by external noises, etc. 

As an approximation to the natural conditions, the BCI experiments in freely moving 

animals (rats and non-human primates) were carried out. The animals continue their 

general behavior during the experiments. The self-paced BCI system in freely moving 

animals gives an opportunity to avoid any external control cues, i.e., the animal could 

control the BCI system barely based on its own intention. Thus, the BCI experiments in 

freely moving animal were carried out since they model the real-environment 

conditions. 

1.2.7 BCI cognitive tasks. Motor imagery 

It is known that paralyzed patients have difficulties in operating with the BCI 

because of absence of sensory feedback. Nevertheless, it is still possible to use a 

phantom movement as a basis of the BCI system (BCI cognitive task). Imagination of 

the movements produces similar to the real-movement activity in the brain; however 

specificity of the patterns is smaller (Anderson et al., 1995; Gu et al., 2009; 

Pfurtscheller and da Silva, 1999; Beisteiner et al., 1995; Wolpaw et al., 2003). An 

example is given in Figure 1.21. 
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Figure 1.21 Topographies for mu- and beta-band activity. (A) Left-hand movement 

versus rest and right-hand movement versus rest. (B) Left-hand imagery versus rest. 

(C) Movement versus rest and imagery versus rest. (D) Right- versus left-hand 

movement and imagery. Taken from McFarland et al., (2000). 

In the current study, we concentrate on the case of real motions, because of 

difficulty to organize the motor imagery experiments in animals. However, simplicity of 

the SMR responses for the real and imagery motions allows us to hope for future 

successful use of the developed methods for the cognitive BCI tasks. 

1.2.8 Conclusions 

In the frame of the preclinical study of the human BCI system in the context of 

the Clinatec project, the goal of this thesis is development of algorithms for the signal 

processing block for the long-term experiments with ECoG-based self-paced binary BCI 

in freely moving animals. 

The ECoG recording of the neural electrical activity is made directly from the 

surface of the brain cortex. Contrary to other invasive or partially invasive methods, it 

guarantees high level of safety for subject. The risk of brain damage or infecting is 

sufficiently moderate. At the same time, the recorded electrical signals are not 
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conducted through the skull. Thus, high spatial and frequency resolutions of the 

recorded data are provided. Moreover, influence of the artifacts considerably diminishes 

while the informative signal‘s amplitude increases. The response time of this 

registration method is small enough to use the electrocorticography in the real-time 

mode. In addition, the ECoG system is rather convenient for the everyday use. It is 

cheap and can be mass-produced relatively easy. Therefore, it was chosen as method of 

the data acquisition in the Clinatec project. 

The self-paced control paradigm is best suited to the experiment when no 

driving cues are used and a subject takes actions at its own intention. This paradigm 

provides to the user more freedom and command flexibility in comparison to the other 

control paradigms. Even taking into account difficulties in development and 

implementation of the self-paced methods, this approach was chosen for the project as 

the most promising and the best appropriate for the concept of the planned experiments. 

While this work is making as the preclinical prototype of the system operating 

with patients under the natural conditions, it is crucial to create the system able to 

function adequately in the environment close to the real-life conditions. The absolute 

majority of the previously carried out experiments have been essentially limited to the 

laboratory conditions, at the same time, the whole experiments as well as each their 

session were relatively short. Contrary to this, our goal is the BCI system which treats 

properly different forms of animal‘s behavior, such as eating, sleeping, resting and so 

on during the long-term experiments. Thus, it could be taken as a satisfactory model of 

the human long-term real-life BCIs. 

For the clinical purpose, significant number of BCI systems should continuously 

handle an external effector (e.g., prosthesis, wheelchair, etc.). At the same time, the 

discrete control can approximate the continuous control with any level of precision. We 

have chosen the binary BCI, which utilizes the simplest case of the discrete control. 

Thus, we can concentrate on other problems. 

Therefore, the long-term functional ECoG-based self-paced binary BCI in freely 

moving animal unites applicability and large practical importance. The problem 

statement lets us focus on the most significant issues of the task of development of the 

preclinical prototype of the BCI system. 
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Chapter 2. BCI experiment setup 

2.1 Installation setup for rodents 

The BCI experiments are carrying out by the neurophysiology group of Clinatec. 

The author was participating in definition of the experiments‘ protocol and assisted in 

the experiments. The experiments are based on a simple reward-oriented task. Freely 

moving in the ABETT® behavioral cage (Abett II Starter kit, Campden Instruments; 

Lafayette Instrument Co., Leicestershire, UK) rat has an opportunity to push a pedal, 

mounted in a wall of the cage, see Figure 2.1. Every pushing event activates a food 

dispenser and the rat obtains a reward (a food pellet). The rat is trained to press the 

pedal without any cue or conditioning stimulus. 

 

Figure 2.1 Photo of the installation for the experiments in rats 

(CLINATEC/LETI/CEA). 
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The ECoG signals from the brain of the rat were simultaneously recorded 

through 14 transcranial screws. Three additional electrodes were used as references, i.e., 

to distinguish and eliminate a common source noise. Data were continuously recorded 

by Micromed® system (Micromed SD64, Micromed Italy) as well as by BioMEA 

system (modular 256-channel Micro-Electrode Array, Biologic, France) compatible 

with Matlab® based signal processing. The acquisition scheme was developed and 

implemented by CEA/LETI/DTBS/LE2S, Grenoble, France (Charvet et al., 2011). 

Preliminary visual inspection of the recorded signals was made in Spike2® software 

(Cambridge Electronic Design Limited, UK). 

Positions of the electrodes implanted in the brain of the rat are demonstrated in 

Figure 2.2, whereas Figure 2.3 gives an example of the recorded signals (visualization 

made by Spike2® software). The lines ##1-11 of Figure 2.3 represent the ECoG 

recordings of the rat. The specificity of the data consists in plenty of chewing artifacts, 

which are produced by the rat‘s jaw muscles. These artifacts mainly are located after 

pressing event and have different duration. The 12th line demonstrates the state of the 

pedal (‗pressed‘ or ‗released‘). 
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Figure 2.2 Position of the electrodes implanted in the rat‘s brain. Anatomical 

distribution of the electrodes on atlas (L. Swanson plates) coronal sections (A) and on 

sagittal view (C). (B) from back to front, the electrodes are situated over the cerebellum 

(retro-lambdatic: 8, 15), the occipital (visual area: 6, 13), the postcentral (4, 12), the 

precentral (3, 10), and the prefrontal (2, 9) cortices. 4 additional electrodes are temporal, 

left and right: anterior (5,12), and posterior(7,1). (D) Skull distribution. (E) and (F) 

represent X-Ray images of the implanted electrodes (CLINATEC/LETI/CEA). 

    
 

 

 

 

 

 

(A) 

Precentral 

Poscentral 

Cerebellar  

 

 

 

Occipital 

(B) 

(D) (C) 

(E) (F) 

8/15 

6/13 

4/11 

3/10 2/9 



Chapter 2. BCI experiment setup 

 

Brain-Computer Interface with cortical electrical activity recording 48 

48 

Figure 2.3 Fragment of the registered signal represented by Spike2® software 

(Cambridge Electronic Design Limited, UK). 

 

2.2 Installation setup for non-human primates 

The BCI experiments in monkeys are carrying out by the neurophysiology group 

of Clinatec (the author was participating in definition of the experiments‘ protocol). 

Data was collected from behavioral experiments in non-human primates (Rhesus 

Macaque) based on a simple reward-oriented task. During the experiment the monkey is 

sitting in a custom made primate chair minimally restrained, its neck collar hooked to 

the chair, see Figure 2.4. The monkey has to push a pedal which can be mounted in for 

different positions (‗left‘, ‗right‘, ‗up‘, and ‗down‘) on a vertical panel facing the 

monkey (Figure 2.5). Every correct push event activates a food dispenser and the 

monkey obtains a reward (fruit juice). No cue or conditioning stimulus were used. A set 

of ECoG recordings was collected from 32 surface electrodes chronically implanted on 

the surface of monkey‘s cortex (see Figure 2.6). The electrode matrix was produced by 

the Ad-Tech Medical Instrument Corporation (Racine, USA). Diameter of the 

electrodes is 2 mm. Figure 2.7 gives an example of the recorded signals. Information 

about the state of the pedal was stored simultaneously with ECoG data. 

pedal 

ECoG 
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Figure 2.4 Photo of the installation for the experiments in monkeys. 

 

Figure 2.5 Four possible positions of the pedal on the panel (not to scale). 



Chapter 2. BCI experiment setup 

 

Brain-Computer Interface with cortical electrical activity recording 50 

50 

 

Figure 2.6 (A) Position of the electrodes implanted in the monkey‘s brain. (B) The 

photo of the implant. (C) X-Ray images of the implanted electrodes 

(CLINATEC/LETI/CEA). 

(B) 

(A) 

(C) 
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Figure 2.7 A fragment of the recorded signal represented by Micromed® SystemPlus 

Evolution® software (Micromed SD64, Micromed, Italy). 

2.3 Experimental setup for rodents 

The BCI experiment in rat consists of two stages (see Figure 2.8). The first one 

is the Training Stage. During this stage the freely moving rat can voluntary press the 

pedal without any external cues. The food dispenser is activated by pressing the pedal. 

Thus, after every pushing the rat obtains a reward, namely one food pellet. During the 

experiment session the ECoG data from the rat‘s brain (denoted as   in Figure 2.8) is 

recorded simultaneously with information about state of the pedal ( ( ) equals to 1 if 

the pedal is pressed at the moment   and 0, otherwise). Those experiments, which 

contain less than 50 pushes, are neglected. One of the others forms a training set which 

is used for the offline BCI system calibration. Identified model is applied for the 

‗pushing-event‘ prediction. 

At the second stage, namely the Close Loop Real-Time BCI, the predictor is 

directly applied to the signal from the rat‘s brain in the real-time. On this stage, the 

pedal is disconnected from the reward distributor. Thus, the rat presses the pedal but it 

obtains a reward only in the case when the predictor detects a ‗pushing-event‘ (whatever 

the position of the pedal is) and generates required control signal  ( ). 
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Figure 2.8 General scheme of the BCI experiments in rats. The training stage aims at the 

BCI system calibration resulting in a decision rule, which is applied immediately to the 

signal from the rat‘s brain during the Close Loop Real-Time experiments to activate the 

reward distributor. Here,  ( ) characterizes the state of the pedal at the moment  ,   

contains the signal from the brain recording during the experiment,   is used for internal 

representation of the signal in the system, and  ( ) is a command signal generated by the 

system to control the food dispenser. 

2.4 Experimental setup for non-human primates 

Since experiments in monkeys were carried out to verify the approaches applied 

in rats, the schemes of the experiments are the same (Figure 2.9). During the first stage, 

namely, the Training Stage, the monkey can voluntary activate a fruit juice dispenser by 

pressing a pedal. After identification of the model, it is applied on the second stage to 

activate a reward distributor, whereas the pedal is disconnected. 
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Figure 2.9 General scheme of the monkey‘s BCI experiments. The training stage aims 

at the BCI system calibration resulted in a decision rule, which is applied immediately 

to the signal from the monkey‘s brain during the Close Loop Real-Time experiments to 

activate the reward distributor. Here,  ( ) characterizes the position of the pedal at the 

moment  ,   contains signal from the brain recording during the experiment,   is used 

for internal representation of the signal in the system, and  ( ) is a command signal 

generated by the system to control the juice dispenser. 

2.5 Conclusion 

The BCI experiments were carried out in two animals, namely, the rat and the 

monkey. Neural activity of the animals‘ brains was recorded by means of the sets of 

ECoG electrodes which were preliminary implanted on the surfaces of their cortexes. 

To modulate the natural environment, the animal was either freely moving (the case of 

the rat), or minimally restrained during the experiments (the case of the monkey). 

During the experimental the animal had different types of activity to model the real-life 

conditions. 
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Chapter 3. BCI CONTROL SYSTEM 

A general block-scheme of the BCI system consists in two main parts: the 

Control Block and the Object (Figure 3.1). The Control Block contains the Detector and 

the Controller BCI sub-blocks; the Object consists in the Effector (the pedal and the 

reward distributor in the Clinatec BCI experiment) and the Subject (a rat or a monkey). 

The Effector, characterized by its state (position of the pedal)  ( )  *   + at the 

moment  . It can affect the Subject according to the control signal  ( ) (the reward 

distributor gives a food pellet if  ( )   , otherwise  ( )   ). The signals from the 

Subject  ( ) (the recordings of the rat‘s or the monkey‘s brain activity) as well as 

information about the state of the Effector  ( ) are received by the Detector. During the 

first stage of the BCI experiment these data are used to estimate an unknown relation 

between the signals  ( ) and  ( ). During the second stage, the Detector controls the 

Effector by means of the Controller BCI according to the estimated Effector‘s state 

 ̂( ). 
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Figure 3.1 Block-scheme of the BCI Control Block. (A) corresponds to the training 

stage, (B) represents the second stage of the BCI system (the Close-Loop Real-Time 

Mode). 𝑠(𝑡) is the signal from the Subject at the moment 𝑡, 𝑦(𝑡) and 𝑦̂(𝑡) characterize 

the real- and estimated state of the Effector, correspondently. 𝑢(𝑡) is the signal to 

control the Effector. The Subject interacts with the Effector: arrows i (influence) and r 

(response/feedback). In our experiments, the influence of the Subject on the Effector is 

a pressing event, whereas the response of the Effector to the Subject is reward 

distribution. On the second stage of the experiment (B), the influence i is not taken 

into account (dotted arrow) and the response is determined by the Controller BCI, at 

the same time the Detector BCI no longer has an access to the state of the Effector 

𝑦(𝑡) (dotted arrow). 

 

3.1 Mathematical model of BCI system 

Taking into account that the system is observed in the discrete moments of time 

*       +, let us denote     (  ),     (  ), and     (  ), for all         . 

Mathematical model of the BCI system can be described as: 

{
    (       )     

    (            ) 
 (3.1) 

here,  ( ) is an unknown function, which defines relation between the recorded signal 

 ( ) and the state of the Effector  ( );  ( ) is an additive noise;  ( ) is a predefined 

 ( ) 

r r 
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function, which on the base of the Effector state and previous control commands gives 

the new control command. 

The unknown function  ( ) is estimated during the training stage on the basis of 

the preliminary collected training set             {  
        

   
        

}
             

 

(see Figure 3.1 (A)). The estimation  ̂( ) of the unknown function  ( ) is applied at the 

second stage of the BCI experiment, namely, the Close-Loop Real-Time Mode (see 

Figure 3.1 (B)). 

{
 ̂   ̂(       ) 

    ( ̂           ) 
 (3.2) 

Finally,  ̂ , which is the estimation of the Effector state   , is used in the 

Controller BCI (the predefined function  ( )) to produce the control signal    (3.2). 

3.2 Control Block 

The Control Block is a part of the BCI system (Figure 1.1). The goal of the 

Control Block is to translate the Subject‘s brain activity  ( ) into a control command 

for the Effector  ( ) according to a predefined set of rules and previous states of the 

system. The Control Block consists in two sub-blocks: the Detector BCI and the 

Controller BCI (Figure 3.1). 

3.2.1 Detector BCI 

The Detector consists in the Signal Preprocessing, the Feature Extraction, the 

Model Calibration, and the Model Application (Figure 3.2). In addition, the Model 

Adaptation block could be included in the Detector. 

Preprocessing Sub-Block 

In general, the main purpose of the preprocessing is amplification of the internal 

signal, increasing of the signal-to-noise ratio, as well as artifacts processing (the Block 

either can remove artifacts from the signal or simply marks some epochs as artifact-

contaminated). Several methods and approaches are frequently applied on this stage for 

ECoG/EEG data preprocessing: 

 Spectral Filtering 
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Finite and Infinite Impulse Response Filters transform the source signal   into the 

filtered one      : 

 ( )     ( )   ( ) ( )   ( ) (   )     (  ) (      ) 

  ( )     (   )     (  )     (      ), 

for all  . Here, two sequences   and   with length    and   , respectively, can be 

calculated in several ways according to desired frequency band restrictions 

(Antoniou, 1993; Shenoi, 2006). This filter is called the Infinite Impulse Response 

Filter (IIR). In the special case of     , the filter is called Finite Impulse 

Response Filter (FIR). IIR filters can produce steeper slopes between pass- and 

stop-bands, however, they can become unstable. FIR filters are always stable. 

Impulse Response Filters are widely used for the signal preprocessing in the BCIs 

(Dornhege et al., 2007; Zhang and Guan, 2010; Pistohl et al., 2008). 

Another method used for the BCI‘s signal preprocessing is the Fourier-Base Filter 

(Dornhege et al., 2007). The method is based on the switching of the signal from 

the temporal to the spectral domain by calculating the short-time Fourier transform 

(STFT) (Oppenheim and Schafer, 1989). In the spectral domain the relevant 

frequencies are weighted and the Inverse Fourier transform (IFT) is applied. 

 Spatial Filtering 

Together with the Spectral Filtering, the Spatial Filtering is one of the fundamental 

approaches for the BSI signals preprocessing. Bipolar Filtering, Common Average 

Reference, and Laplace Filtering are the most common methods for the Spatial 

Filters. 

To make the Bipolar Filtering all channels are recorded as voltage difference 

between electrode pairs (McFarland et al., 1997; Essl and Rappelsberger, 1998; 

Ramoser et al., 2000). Thus, the local voltage gradient is calculated, which 

emphasis a local activity while activity of the distant sources is suppressed. 

In the Common Average Reference (CAR) method the mean of all channels is 

subtracted from each individual channel (McFarland et al., 1997; Essl and 

Rappelsberger, 1998; Ramoser et al., 2000). CAR reduces influence of far sources, 
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but at the same time artifacts from one channel could be spread over all other 

channels. 

Laplace Filtering consists in subtraction of the average of the surroundings signals 

from each individual channel (McFarland et al., 1997; Essl and Rappelsberger, 

1998; Ramoser et al., 2000). The choice of the set of the surroundings electrodes 

defines the properties of the filtering. 

In this study we have applied a band-stop filter (IIR notch filter) to cut off the 

50 Hz noise (the frequency coming from the power supply) and a CAR filter (to reduce 

influence of the background noise). Applied methods provide satisfactory quality of the 

output data by means of significant elimination of irrelevant components of the signal. 

At the same time they are computationally efficient and fast enough to satisfy the severe 

restrictions imposed on the real-time BCI systems. Since quality of the ECoG signal is 

better than EEG one, artifact removal is absent on the preprocessing stage. 
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Figure 3.2 The general scheme the Detector Block. (A) During the first stage the signal 

from the Subject is used for the calibration of the model. (B) During the second stage 

the estimated model is used to evaluate the state of the Effector. 

 

Feature Extraction Sub-Block 

The purpose of the Feature Extraction sub-block is the mapping of the input 

signal to the feature space:  ( )   ( ). This feature space should be related to the 

underlying neurological phenomena correlated with the BCI task (e.g., user‘s intention 

of control). The most widespread methods for feature extraction in the ECoG based BCI 

studies are: time and/or frequency signal representation and parametric modeling 

(Bashashati et al., 2007b). 

 Time and/or frequency methods 
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The most common method to estimate power-spectral density (PSD) features of the 

signal is the Fast Fourier Transform (FFT) (Sanei and Chambers, 2007), which has 

good computational efficiency and provides direct interpretation of the results. A 

drawback of the method is that it does not provide any time-domain information 

and, therefore, could not be efficiently applied for non-stationary signals. A 

windowed version of FFT (short-time Fourier transform, STFT) analyzes the time-

varying spectral components of the data. The one-dimensional signal is mapped 

into a two-dimensional space of time and frequency. Unfortunately, frequency 

resolution is decreased, and estimated results do not reliably converge to the true 

PSD peaks (Tangermann, 2007). At the same time, the fixed time-window leads to 

limitation of the temporal resolution in the higher frequencies. Examples of the 

Fourier Transform applications in the BCI systems could be found in Kellis et al., 

2010; Pfurtscheller et al., 2010b; Galán et al., 2008. 

To overcome the temporal-resolution limitation of STFT, Wavelet Transform (WT) 

is often applied. The method maps the signal into a two-dimensional space of time 

and scales by means of the particular function, called the ‗mother wavelet‘. The 

choice the ‗mother wavelet‘ is a crucial factor for WT. Like Fourier Transform, WT 

allows analyzing of both amplitude and phase components of the signal. For more 

information, see Section 5.2. Wavelet Transform is widely applied in BCI systems, 

for example see Chao et al., 2010, Fatourechi et al., 2008; Zhao et al., 2008; 

Hinterberger et al., 2003; Sherwood and Derakhshani, 2009; Cabrera et al., 2010. 

The Correlative Time-Frequency Representation (CTFR) method provides 

information about the time-frequency interactions between the components of the 

input signal (Bashashati et al., 2007b) in addition to the spectral information. For 

instance, in the case of EEG, data samples are not analyzed independently, like in 

the case of FT or WT, but their relationship is also taken into account. However, the 

method is sensitive to noise (Garcia et al., 2003a; Garcia et al., 2003b). 

 Parametric modeling 

The method assumes that the analyzed time series to be the output of a given linear 

model. The structure and order of the model should be chosen a priori (Weitkunat, 

1991). For short signals parametric modeling results in better frequency resolution 
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in comparison with FT. However, estimation of the model‘s parameters is very 

sensitive to artifacts (Birch, 1988). A widely used example of the parametric model 

is the autoregressive (AR) model:  ( )   ∑  ( ) (   ) 
   , here   is the order 

of the model, and   ( ( )    ( )) are AR-coefficients. The vector of 

coefficients   is used further as the feature vector. Parametric models were applied 

for BCI, for instance, by Scherer et al., 2007; Kubánek et al., 2009. 

In this study Continuous Wavelet Transform (CWT, see Section 5.2) is chosen, 

since this method allows efficiently revealing of underlying neurological phenomena 

correlated with BCI tasks. Unlike STFT, WT has no fixed time-window that leads to 

absence of limitation of the temporal resolution in the high frequencies. At the same 

time, contrary to discrete WT, continuous WT allows analyzing of the frequency range 

with better resolution. 

Model Calibration Sub-Block 

The goal of the Model Calibration sub-block is the estimation of the unknown 

function  ( ) (see Equation (3.1)). For this purpose, during the first stage of the 

experiment (the calibration stage) the system records the signals  ( ) and  ( ) to form 

the training set             {  
        

   
        

}
             

. On the base of           

the function  ̂( ) is found in a class of functions   (e.g., linear, quadratic, polynomial 

functions, etc.) in such a way to minimize a functional   (e.g., approximation error): 

 ({  
        

  ̂ }
             

)     
 ̂  

  (3.3) 

where,  ̂   ̂(    
        

     
        

). 

Dimensionality reduction and/or feature selection (for instance, narrowing of the 

frequency range, estimation of the most informative channels, etc.) can be made 

preliminary (independently) or directly included in the optimization problem ((3.3). 

In our case, as well as in the majority of other BCIs,  ( ) is a discrete variable. 

Mostly, different classifiers were applied to solve optimization problem (3.3), for 

instance, see a review of Lotte et al., (2007). 

Linear Classifiers 
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Linear classifiers use linear functions to distinguish classes. The most used in the 

BCI tasks are Linear Discriminant Analysis (LDA, or Fisher‘s LDA) and Support 

Vector Machine (SVM). 

 Linear Discriminant Analysis 

LDA assumes normal distribution of the data and uses hyperplanes to separate the 

data from the different classes (Fukunaga, 1990; Duda, et al., 2001). The method 

has low computational requirements, thus it could be effectively used for the online 

BCIs (Pfurtscheller, 1999; Bostanov, 2004; Garrett et al., 2003; Scherer et al., 

2004). At the same time, on the data of complex non-linear structure the method 

has demonstrated poor results (Garcia et al., 2003b). 

To additionally penalize outliers and improve generalization capabilities of LDA 

regularization parameters could be introduced. A regularized Fisher‘s LDA 

(RFLDA) was used by Blankertz et al., (2002) and Müller et al., (2004). 

 Support Vector Machine 

To identify classes SVM uses a discriminate hyperplane, selected in the way to 

maximize the distance between the nearest training points from the different classes 

(Cortes and Vapnik, 1995; Burges, 1998; Bennett and Campbell, 2000). SVM is 

known to have good generalization properties and to be steady to over-fitting effect 

(Jain et al., 2000). The method is widely applied in BCI (Rakotomamonjy et al., 

2005; Garrett et al., 2003; Blankertz et al., 2002). At the same time, SVM allows 

natural generalization to the non-linear case by using the ‗kernel trick‘ (Aizerman et 

al., 1964; Burges, 1998). Kernel SVM has also demonstrated good results in BCI 

applications (Kaper et al., 2004; Garrett et al., 2003). 

Neural Networks 

Neural Networks (NN) were used in BCIs for a long time (e.g., Hiraiwa et al., 

1990). Among different NN the most widespread is the Multilayer Perceptron 

(MLP). 

 Multilayer Perceptron 

MLP is an assembly of several layers of artificial neurons: an input layer, hidden 

layers, and an output layer. When composed of enough neurons MLP can 
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approximate any continuous function (Bishop, 1996). The negative side of this 

property is its sensitivity to overtraining, especially for such noisy and instable data 

like brain‘s neuronal activity (Balakrishnan and Puthusserypady, 2005). A MLP 

without any hidden layer is called a perceptron and it could be shown that it is 

equivalent to LDA. 

MLPs were applied in variety of BCI tasks: binary (Palaniappan, 2005), multiclass 

(Anderson and Sijercic, 1996), synchronous (Haselsteiner and Pfurtscheller, 2000), 

and asynchronous (Chiappa and Bengio, 2004). A perceptron without hidden layers 

were used by Wang et al., (2004) and Congedo et al., (2006). 

 Other Neural Networks Architectures 

Other Neural Networks used in BCI systems are: Gaussian classifier NN (Millán et 

al., 2000; Millán et al., 2004; Solhjoo and Moradi, 2004; Cincotti et al., 2003), 

Learning Vector Quantization NN (Kohonen, 1990; Pfurtscheller et al., 1993), fuzzy 

ARTMAP NN (Carpenter et al., 1992; Palaniappan et al., 2002), dynamic NN 

(Haselsteiner and Pfurtscheller, 2000; Barreto et al., 1996), RBF NN (Duda et al., 

2001; Hoya et al., 2003), Bayesian Logistic Regression NN (BLRNN) (Penny et al., 

2000), Adaptive Logic Network (ALN) (Kostov and Polak, 2000), Probability 

Estimating Guarded Neural Classifier (PeGNC) (Felzer and Freisieben, 2003). 

Non-Linear Classifiers 

Non-linear classifiers uses non-linear decision boundaries therefore they can more 

efficiently reject uncertain samples. At the same time, they are more sensitive to 

overtraining, more resource consumption, and therefore they are less often applied 

in BCI systems. 

 Bayes Quadratic 

In this approach the Bayes rule is used to compute a posteriori probability that a 

future vector belongs to a given class (Duda et al., 2001; Fukunaga, 1990). The 

class of the feature vector is estimated by the Maximum a posteriori probability 

(MAP) rule. It is assumed that the data in the different classes have different normal 

distribution, which leads to quadratic decision boundary. The method was applied 



3.2. Control Block 

 

Brain-Computer Interface with cortical electrical activity recording 
65 

65 

by Lemm et al., (2004), Solhjoo and Moradi, (2004), Keirn and Aunon, (1990), 

Barreto et al., (2004). 

 Hidden Markov Model 

Hidden Markov Model (HMM) is a statistical model in which the system is 

assumed to be a Markov process with unobserved (hidden) states (Rabiner, 1989). 

HMM are efficiently used for classification of the time series. HMM were realized 

in BCI systems by Obermeier et al., (2001), Cincotti et al., (2003), Obermaier et al., 

(2000), Solhjoo et al., (2005), Chiappa and Bengio, (2004). 

Nearest neighbor Classifiers 

Classifiers of this type assign a feature vector to a class according to its nearest 

neighbors. These classifiers are non-linear. 

 k-Nearest Neighbors 

A feature vector is assigned to the dominant class among the k nearest neighbors in 

the training set (Duda et al., 2001). The algorithm was applied in a set of BCIs 

(Blankertz et al., 2002; Müller et al., 2004; Schlögl et al., 2005), however it is too 

sensitive to the curse-of-dimensionality (Friedman, 1997). At the same time, in the 

case of BCI with low dimensional feature vectors, kNN was efficient (Borisoff et 

al., 2004). 

 Mahalanobis Distance 

The classifier assumes a Gaussian distribution  (     ) for each prototype of the 

class  . A feature vector   is assigned to the class that corresponds to the nearest 

prototype according to the Mahalanobis distance   ( ) (Cincotti et al., 2003): 

  ( )  √(    )    (    ) . The method gives simple and robust classifier 

which was used for the BCI systems by Schlögl et al., (2005) and Cincotti et al., 

(2003). 

Combinations of Classifiers 

A recent trend in the BCI systems consists in combination of different classifiers. 

There are several strategies of combination. Here, we are referring to the most 

popular. 
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 Boosting 

Several classifiers are applied in cascade, each classifier is focusing on the errors 

committed by the previous ones (Duda et al., 2001). Thus, from the several weak 

classifiers, a powerful one could be constructed. At the same time, it will not be 

sensitive to overtraining. From the other hand, the method is sensitive to mislabels 

(Jain et al., 2000). Boosting was applied in BCI by Boostani and Moradi, (2004); 

Hoffmann et al., (2005). 

 Voting 

Several classifiers are applied independently and final decision will be that of 

majority (Jain et al., 2000). Voting is very popular way of classifiers combination 

(Pfurtscheller et al., 1993; Rakotomamonjy et al., 2005; Qin et al., 2005). 

 Stacking 

Two levels of classifier are used: level-0 and level-1.The outputs of a set of 

independent level-0 classifiers are used as an input for a level-1 (meta) classifier, 

which makes a final decision (Wolpert, 1992). The method was efficiently applied 

in the BCI research by Lee and Choi, 2003. 

Regression 

Although classifiers are used in the majority of the BCIs, regression methods are 

also applied to solve optimization problem (3.3) (McFarland et al., 2006; Kubánek et 

al., 2009; Chao et al., 2010). Generally regression approaches are used for continuous 

values of  ( ). For instance,  ( ) can describe motion of object in the space (see 

Kubánek et al., 2009; Chao et al., 2010). However, the regression methods can be 

applied also for the discrete case (McFarland et al., 2006). Regression and classification 

algorithms for the discrete BCI control demonstrate comparative results (McFarland et 

al., 2006). In our study we utilize a linear regression approach with simultaneous 

projection to a low dimensional feature space and further binarization. The regression 

was chosen because it allows natural generalization from the case of the binary response 

variable  ( )  *   + to the discrete ( ( )  *   + ,    ) or continuous vector 

 ( )    ,    , which correspond to the discrete multiclass or continuous control. 
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They are the perspectives of our study. In addition, time-lag information can be easily 

introduced in both dependent and independent variables. 

More precisely the proposed method will be discussed in the next chapter. 

Model Application Sub-Block 

Founded during the first stage of the experiment estimation  ̂( ) is applied to the 

signal in the Model Application sub-block during the second stage of the BCI 

experiment. As a result, the estimation of the system state  ̂( ) is generated and sent as 

an output of the Detector BCI to the Controller BCI. 

Model Adaptation Sub-Block 

The Model Adaptation sub-block is intended for adaptation of the BCI system to 

the different types of changes in the signal over time due to the brain plasticity or other 

external reasons. During the adaptation stage the sub-block has a temporal access to 

 ( ), which describes the real state of the Effector (in Figure 3.2 (B) shown as a dashed 

arrow). The Model Adaptation sub-block activates occasionally and adjusts the function 

 ̂( ) to minimize a misalignment between the Effector state estimation  ̂( ) and its real 

state  ( ). 

3.2.2 Controller BCI 

The Controller BCI translates the features into the control signals by means of 

the preliminary established function  ( ) (see Equation (3.1)). In the case of the binary 

BCI, the generated control signal  ( ) is logical: 0 denotes the NC states (the ‗non-

event‘ situations when no food is given) and 1 indicates the IC states (the ‗event‘ 

detection situations when food is given). The sub-block includes a post-processing of 

the output control signal to reduce the number of activation of the system (for instance, 

it could block the system for some time after activation). 
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Chapter 4. MULTI-WAY ANALYSIS FOR BCI 

SYSTEMS 

4.1 Introduction 

A common approach for the brain signal processing, intended for event 

detection/prediction, consists in the extraction of the event-related features of the 

neuronal activity. Information from spatial (Rakotomamonjy et al., 2005), frequency 

(Schlögl et al., 2005), and temporal (Vidaurre et al., 2009) domains could be analyzed 

by means of the Principal Component Analysis (PCA) (Kayser et al., 2003), the 

Independent Component Analysis (ICA) (Makeig et al., 1999), the Linear Discriminant 

Analysis (LDA) (Scherer et al., 2004), the Common Spatial Patterns (CSP) (Zhao et al., 

2008), the Partial Least Squares (PLS) (Chao et al., 2009), etc. Let us note that the 

standard methods are designed mainly for vector input variables which present either 

one domain of analysis or several domains unfolded in one line. Using only one domain 

usually does not provide satisfactory results. Combination of several domains is thus 

necessary. In most cases, two or three ways of analysis are applied sequentially. For 

example, see Galán et al., (2008), where first stable frequency components are 

determined and second the best electrodes are chosen. A multi-way analysis allows 

simultaneous treatment of several domains, by means of a tensor-based data 

representation. In recent years, it was applied in several BCI studies and demonstrated 

promising results (e.g., tensor factorization with PARAFAC (Nazarpour et al., 2006), 

Tucker (Zhao et al., 2009), Non-negative Tensor Factorization (Mørup et al., 2008), 

Multi-way Partial Least Squares (NPLS) (Bro, 1996), General Tensor Discriminant 

Analysis (Li et al., 2009), Regularized Tensor Discriminant Analysis (Li and Zhang, 

2010)). Therefore, it is chosen for the ECoG data representation in the current study. 

The signals from the different electrodes are mapped by a continuous wavelet 

transform to the temporal-frequency-spatial space. As a result, every time epoch is 
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represented by a cube (a third-order tensor). All cubes are stored in a tensor of 

observations (a fourth-order tensor). 

The Multi-way Partial Least Squares (N-way Partial Least Squares, NPLS) (Bro, 

1996) presents an effective approach for tensor data analysis. Namely, NPLS is a 

statistical method for a linear regression identification in the case of tensor input or/and 

output variables. It is particularly suited for high dimensional data. While NPLS works 

without any prior knowledge, it can be efficiently applied for automatic identification of 

the model aimed at prediction of the BCI events from the measurement of the brain 

neuronal activity. In comparison to the ordinary Partial Least Squares or other vector 

oriented algorithms that can be applied to the tensor data after unfolding, NPLS 

preserves the multimodality of the data in a robust way (Bro, 1996). In addition, it 

allows identifying how much each feature contributes to the decision rule (for instance, 

which electrode is the most informative). NPLS is based on tensor factorization and 

data projection to a low dimensional feature space. In comparison to other tensor-based 

methods that were previously applied to BCI studies recently, NPLS involves 

supervised tensor decomposition which significantly increases the efficiency of 

modeling. At the same time, whereas others methods are restricted to discriminative 

task, NPLS can be applied for both classification and regression. Besides that, NPLS 

was successfully used for epilepsy seizure recognition (Acar et al., 2007). That is why it 

was chosen as the basic approach in our work. However, the NPLS algorithm has a set 

of drawbacks connected with possible excessive complexity of the identified model, 

method‘s computational efficiency and resources consumption. To overcome these 

drawbacks, penalized, iterative and recursive versions of the algorithm are proposed, 

which allow informative subsets selection, huge datasets processing, and online 

adaptation, correspondently. Detailed description of the NPLS approach as well as of its 

modifications are given in this chapter. 

4.2 Tensor notations and preliminaries 

In this section, some background information about tensors is given. For more 

details see, for example, Kolda and Bader (2007) or Comon (2002). 

Tensors (multi-way arrays) are higher-order generalization of vectors and 

matrices (this notion of tensors must be distinguished from tensors in physics (e.g., 
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Figure 4.1 A third-order tensor 𝐗   𝐼1×𝐼2×𝐼3. 

stress tensors), which are generally referred to as tensor fields in mathematics). Let us 

denote tensors by boldface underlined capital or lowercase letters ( ,  ), matrices are 

represented by boldface capital letters ( ), vectors are denoted by boldface lowercase 

letters ( ), and for scalars, we will use lowercase letters ( ). An element of a tensor 

    1× 2× ×   is referred to as   1  2     . Here,   is the order of the tensor, i.e., its 

number of dimensions, also known as ways or modes. Vectors and matrices are tensors 

of order one and two, respectively. The number of the variables    in the  -th mode 

shows dimensionality of this mode (indices typically range from 1 to their capital 

version, e.g.,          ). An example of a third-order tensor is given in Figure 4.1. 

 

4.2.1 Rank of tensor. Rank-one tensors 

A tensor     1× 2× ×   always admits a decomposition into a sum of outer 

products as (Comon and Berge, 2006): 

  ∑  
    

      
 

 

   

  (4.1) 

where for each   the vector   
 
    , and ― ‖ denotes the outer product. For more 

information see Kolda and Bader (2007).  

Each tensor‘s element of Equation (4.1) could be written as: 

  1 2    ∑    1
     2

       
 

 

   

                      (4.2) 

where,      
 

 is the   -element of the vector   
 
    . 

The rank of the given tensor   is the minimal integer number   such that this 

decomposition (4.1) is exactly satisfied (Comon and Berge, 2006). 
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Figure 4.2 The third-order rank-one tensor 𝐗   𝐼1×𝐼2×𝐼3: 𝐗  𝐚𝟏  𝐚𝟐  𝐚𝟑. 

The tensor     1× 2× ×   is rank-one if   *     1          +, such that 

it is possible to represent the tensor as: 

             (4.3) 

In the current manuscript graphically the rank-one tensors are represented as 

shown in Figure 4.2. 

 

For example, the tensor  :        .
    
  

/,        .
  
    

/ is the rank-one 

tensor:   .
 
  
/  .

 
 
/  .

  
 
/. 

4.2.2 Tensor operations 

 Unfolding (tensor → matrix) 

Tensor unfolding, also known as matricization or flattening, is the mapping of a 

tensor into a matrix. The mode-  unfolding  ( ) of a tensor     1× 2× ×   arranges 

the mode-  fibers (see Figure 4.4) to be the columns of the matrix. Namely, a tensor 

element   1  2      is mapped to a matrix element      :     ∑ (    )  
 
       , 

where    ∏   
   
        (     if    ,      if     and    ). The unfolding 

operation is illustrated for a third-order tensor in Figure 4.3. 
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Figure 4.3 Different ways to unfold a third-order tensor 𝐗   𝐼1×𝐼2×𝐼3. 

 

Figure 4.4 Fibers for a third-order tensor     1× 2× 3. 
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 Vectorization (matrix → vector) 

Vectorization of a matrix  , denoted as    ( ), is a column-wise unfolding of   

into a column vector. For example, if   ,       - then  

   ( )  [

  
 
  
]. 

 Norm 

The norm of a tensor     1× 2× ×   is generalization of the Frobenius norm: 

‖ ‖
 
 √∑  ∑|  1   |

 

  

    

 1

 1  

 (4.4) 

  -mode (vector) product 

The  -mode (vector) product of a tensor     1× 2× ×   and a vector       

is denoted as  ×  . The result tensor has (   ) order and its size is   ×  ×     ×

    ×  ×   . Elementwise, 

( ×  ) 1    1   1   
 ∑   1      

  

    

 (4.5) 

4.3 Multi-way representation of ECoG data 

To form the BCI feature tensor, the ECoG signal (see Figure 2.3 and Figure 2.7) 

is mapped to the temporal-frequency-spatial space by Continuous Wavelet Transform 

(CWT) (Figure 4.5). The observation tensor   is formed from a set of epochs, such as 

for each epoch   (determined by its final moment   ), electrode  , frequency   and time 

shift  , elements          of the tensor were calculated as absolute value of CWT 

coefficients of the ECoG signal. 
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Figure 4.5 The multi-channel ECoG recording is mapped to the temporal-frequency-

spatial feature space. 

The size of the tensor   (multiplication of tensor‘s dimensions) can be very 

large. For instance, 14 electrodes are used in our experiments in rat, 32 electrodes are 

implanted on the cortex of monkey, and up to 128 are foreseen for the future human 

implant. At the same time, frequency and time modalities should provide appropriate 

data resolution (in our analysis, dimensions are equal to 146 and 51, correspondently). 

Therefore, the size of the observation point   is equal to               (rat 

experiments). During training we use up to 1400 epochs. Thus, the size of the 

observation tensor   is                   . 

4.4 Statement of problem of BCI system calibration from 

experimental data 

The goal of the Calibration stage in BCI experiments consists in the 

determination of dependency between the brain neural activity signal (an observed 

multivariate variable) and the state of the system (a response binary variable). Let us 

denote the explanatory variable as  ( ) and the response variable as  ( ). A model of   

as a function of   is estimated during the calibration stage, by solving the optimization 

problem (3.3). To this purpose training data {   } are formed from   observed data 

samples. In the case of regression, the minimization functional   is often taken as sum 

of squares of residual norms: 
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∑ ‖  
        

  ̂ ‖
 

             

    
 ̂  

  

 ̂   ̂(  
        

     
        

). 

(4.6) 

In the present study, specificity of optimization task (4.6) consists in tensor 

representation of the data and high dimensionality (more variables than observations). 

Moreover, the variables are highly correlated. The methods, applied for the model 

identification, should take into account these peculiarities. In particular, to reduce the 

dimensionality a set of projections, saving tensor data structure, should be applied. The 

regression is determined either simultaneously with projecting or after it. 

4.5 Two-way modeling 

Before the description of regression approaches for tensor data, we consider the 

matrix methods in the case of large dimension and highly correlated variables. Let 

     and      be vectors of observations of explanatory and response variables, 

respectively. Observation of   data samples gives matrices     ×  and     × . 

Two projection-based methods, namely, Principal Component Analysis (PCA)/ 

Principal Component Regression (PCR) and Partial Least Squares Regression (PLS), 

are often used for dimension reduction and regression identification. 

4.5.1 Principal Component Analysis (PCA) and Principal 

Component Regression (PCR) 

Principal Component Analysis is a standard approach to transform a number of 

possibly correlated observed variables into a smaller number of uncorrelated variables 

called principal components. With this transformation, the first principal component 

accounts for as much of variability in the data as possible, and each following 

component accounts for as much of the remaining variability as possible. Algebraic 

decomposition of the matrix of the observed variables     ×  could be expressed as 

  ∑    
   

 

   

        

‖ ‖      

(4.7) 

where,   ,       - is a matrix of the     extracted score vectors (vectors of latent 

variables),   ,       - represents a matrix of the extracted loadings, and   is a 
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Figure 4.6 Graphical representation of the PCA decomposition of a matrix 𝐗. 

matrix of residuals. In addition, prior to application of the PCA decomposition, the 

variables in   must be column mean-centered. 

Graphical representation of the PCA approach is shown in Figure 4.6. 

 

Each consecutive principal component is chosen to maximize the decrease of 

variation of the matrix  . It can be shown that in PCA the loading vectors   ,   

      are the sorted eigenvectors of the matrix    , whereas the scores   ,   

      are the sorted eigenvectors of the matrix     (Geladi and Kowalski, 1986). 

Thus, PCA is theoretically the optimal linear scheme, in terms of the least mean 

square error, for compressing a set of high dimensional vectors into a set of lower 

dimensional vectors. The solution defined by PCA is not unique, there is a rotational 

freedom. Therefore, it should be made some type of post-processing to select the most 

appropriate decomposition for the task. 

After the principal components for the matrix   have been found, a regression   

on   can be identified. For example, it could be a linear regression (PCR)  ̂    ̂ . In 

this case, the least square solution gives  ̂  (   )     . 

4.5.2 Partial Least Squares Regression (PLS) 

Partial Least Squares (PLS) regression is a statistical method for vector-based 

data analyses, particularly appropriate to the case of high dimension (Geladi and 

Kowalski, 1986). As opposed to other widely used projection-based methods, like PCA, 

PLS uses for factorization not only the matrix of the independent variables   but also 

the matrix of the dependent variables  , this increases the efficiency in selection of the 

most relevant to   features. A PLS model tries to find such principal components to 
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explain the maximum variance of   and   simultaneously. Algebraically it could be 

shown as: 

  ∑    
   

 

   

        

  ∑    
   

 

   

        

   (     )     ,        . 

(4.8) 

where,   ,       -,   ,       - are matrices of the     extracted score 

vectors,   ,       - and   ,       - represent matrices of the extracted 

loadings, and  ,   are matrices of residuals. In addition, like in the case of PCA, prior to 

application of the PLS decomposition, the variables in   and   must be column mean-

centered. 

Graphical representation of the PLS approach is shown in Figure 4.7. 
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Figure 4.7 Graphical representation of the PLS decomposition of the matrices 𝐗 and 𝐘. 

 

Finally, PLS properly handles situations when the matrix of observations   

contains more variables   than observations   and the variables are highly correlated 

(Geladi and Kowalski, 1986). 

4.5.3 Recursive Partial Least Squares Regression (RPLS) 

Several Recursive PLS algorithms were invented to take into account time-

dependent changes of data as well as to be able to handle large data sets. Qin (1998) and 

Dayal and MacGregor (1997) introduced the most known approaches. The method 

introduced by Dayal and MacGregor has better performance and does not suffer from 

problems concerned with short data windows (for more information, see Dayal and 

MacGregor, 1997). However, Dayal‘s algorithm stores in the active memory the 

covariance matrix    , which dimension is equal to square of  . This requirement is 

excessively difficult for high dimensionality tasks. In our study, data dimensionality is 

extremely large (    ). Therefore, we focus ourselves on Qin‘s algorithms (Qin, 1998). 

According to Qin‘s algorithm, the matrices   and   are decomposed by the 

batch-wise PLS algorithm with orthonormal latent variables. In general, the PLS model 

is constructed as: 

       ,         , (4.9) 

where       *       +. The matrix of latent variables   is orthonormal (see Qin, 

1998): 

    

   

   

    

   

   

    

    

   

   

    

   

   

    

   (   (     ))    (   (     )) 
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      , (4.10) 

where    is an   by   identity matrix. In addition,   is orthogonal to both residuals 

matrices: 

     , (4.11) 

     , (4.12) 

In his work, Qin has shown that if the number of factors   is large enough to provide 

the condition      , then         and         . This yields that for the new 

data pair *         +, the regressions on the next data sets will be equivalent: 

{[
 
    

]  [
 
    

]}  {[
  

    
]  [
   

    
]}. (4.13) 

Thus, the old data   and   are captured by the loading matrices   and  , as well 

as by the coefficient matrix  , whereas the new data are concatenated to their 

combination. As the result, the algorithm always keeps the size of the stored in the 

active memory datasets. In addition, this approach represents an effective tool for the 

adaptive learning, by introducing weights for the old and new data (see Qin, 1998). 

4.6 Generic multi-way approaches 

PCA and PLS methods were originally designed for the vector input variables. 

In practice for a wide variety of tasks several domains must be analyzed simultaneously 

to obtain proper results (e.g., time-series analysis, chromatography, spectral data, etc.). 

The methods described in this section, namely PARAFAC and NPLS, are 

generalization of the PCA and PLS approaches, discussed in Section 4.5. They provide 

the multi-modal data treatment. Unlike the vector oriented algorithms that can be 

applied to the multi-way (tensor) data after unfolding, the multi-way models preserve 

the structure of the data, improve robustness of the results as well as allows identifying 

relative impact of each feature. 

In this section explanatory and response variables are represented by the   and 

 -order tensors, respectively:     1× ×   and     1× ×  . After observation of   

data samples of both types of variables, tensors are formed by means of concatenation 

of the data samples along the first modality:     × 1× ×   and     × 1× ×  . 



4.6. Generic multi-way approaches 

 

Brain-Computer Interface with cortical electrical activity recording 
81 

81 

4.6.1 PARAFAC 

PARAFAC (Parallel Factor analysis) is a generalization of the PCA approach to 

data structures of high orders (Harshman, 1970). It is used for decomposition of the 

tensor into sets of score and loading vectors, that describes the data in a compressed 

way. 

The PARAFAC decomposition of the observation tensor     × 1× ×   is 

expressed in the form of outer product (Bro, 1996): 

  ∑     
      

    

 

   

 

 ‖ ‖
 
     

(4.14) 

where,   ,       - is a matrix of the     extracted score vectors,    

,  
      

 - represents a matrix of the extracted loadings for  -th modality (  

     ), and   is a tensor of residuals. The tensor   assumed to be mean-centered along 

its first modality. As in the case of PCA, the loadings are chosen in a such way to 

minimize the norm of the residual tensor ‖ ‖
 

. Thus, PARAFAC provides the best 

approximation of the tensor   by the sum of   rank-one tensors. 

To find the solution of the problem (4.14) the Alternating Least Squares (ALS) 

algorithm (Yates, 1933) could be applied (Bro, 1996). ALS fixes all parameters except 

one, which is estimated in a least square sense. The procedure is repeated for all 

parameters until convergence. Unfortunately, the ALS algorithm, as well as its simple 

modifications, suffers from unstable convergence properties, moreover, the solution is 

quite sensible with respect to noise (Bro, 1998; Cichocki et al., 2009; Albright et al., 

2006). However, the algorithm is often utilized because of its programming simplicity 

(Comon, 2002). 

To explain PARAFAC and ALS algorithms in details, let us consider the case of 

third-order tensor     × 1× 2. 

Algorithm 4.1 PARAFAC 

Input:  , number of factors  . 

Outputs: {     
    

 }
   

 
. 
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1.      

2. for     to   

3.   {     
    

 } = ALS(    ) 

4.                
    

   // deflation 

5. end for 

a
  The vector outer product is denoted as     (see Section 4.2.1). 

 

Algorithm 4.2 Alternating Least Square (ALS) 

Input:  . 

Outputs:   ,   ,   . 

1. Initialization of   ,   ,   . 

2. while not converge   ,   , and    do 

3.         ( 
 (  ) ) 

4.       ( )  (  
   )

   // least square solution 

5.         ( 
 (  ) ) 

6.       ( )  (  
   )

   // least square solution 

7.         ( 
 (  ) ) 

8.       ( )  (  
   )

   // least square solution 

9. end while 

a
     ( ) is vectorization of a matrix   (see Section 0). 

b
   ( ) is the mode-  unfolding of the tensor   (see Section 0). 

c
     is the Moore–Penrose pseudoinverse of   (Golub and Van Loan, 1996). 

 

Let us note that the PARAFAC solution is unique up to an arbitrary factor (Bro, 

1996). Thus, PARAFAC has no rotation freedom unlike PCA, and, therefore, no post-

processing is needed to detect the most appropriate solution. 

Graphical representation of the PARAFAC approach is shown in Figure 4.8. 
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Figure 4.8 Graphical representation of the PARAFAC decomposition of a tensor 𝐗. 

 

After decomposition of the tensor  , a regression of the response tensor   on the 

matrix   is build. For simplicity, we will consider the vector case of response variable: 

    . Then, for example, a linear regression could be constructed  ̂    ̂,  ̂  

(   )     . 

4.6.2 Multi-linear PLS Regression (NPLS) 

Multi-linear or N-way PLS Regression (NPLS) was introduced as generalization 

of the two-way PLS to data of higher orders (Bro, 1996). The goal of this method is the 

model the relation between the explanatory tensor     × 1× ×   and the tensor of 

responses     × 1× ×  . 

The NPLS decomposition of the observation tensor     × 1× ×   and the 

response tensor     × 1× ×   is expressed as: 

 

  ∑     
      

   

 

   

  

  ∑     
      

    

 

   

 

   (     )     ,         

(4.15) 

 

General scheme of NPLS is depicted in Figure 4.9. 
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Figure 4.9 Graphical representation of the NPLS decomposition of the tensors 𝐗 and 𝐘. 

 

Let us consider the NPLS algorithm in the particular case of a fourth-order 

tensor of observations     × 1× 2× 3 and a vector of observations of the dependent 

variable     . This case was chosen since it corresponds to our BCI experiments. A 

set of latent variables     
  is extracted consequently from the first mode of  . It 

provides maximum covariance between    and    (     ) at the iteration  . In 

parallel, by means of the ALS (Algorithm 4.2) a set of vectors *     1       2  

     3+ , related to the second, the third, and the fourth modes of  , respectively , is 

formed in such a way that projection of the tensor   on these vectors results in   . 

Coefficients    of the linear regression of  , depending on the current set of latent 

variables *  +   
 

, are calculated. This regression is used for   deflation on each 

iteration. Besides that, the tensor   is also deflated according to the decomposition. Let 

us note that there are modifications of NPLS (e.g., de Jong, 1998), where deflation of 

the tensor   is not applied. The procedure is repeated a pre-defined number   of times. 

In details, the pseudo-code of the method is presented by Algorithm 4.3. 

Algorithm 4.3 NPLS 

Input:  ,  , number of factors  . 

   (   (     ))    (   (     )) 
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Outputs: {  
    

    
 }
   

 
, {  }   

 
. 

1. Centering of {   } 

2.      

3.      

4. for     to   

5.        ×    

6.   {  
    

    
 } = ALS(  ) 

7.     
    

  ‖  
 ‖             

8.        ×   
 ×   

 ×   
  

9.      [       ] 

10.      (  
   )

  
  
    

11.                

12.                
    

    
   // deflation 

13. end for 

a
  The  -mode vector product of a tensor   and vector       is denoted as 

 ×   (see Section 0). 

b
  The vector outer product is denoted as     (see Section 4.2.1). 

Sets of the regression coefficients {  }   
 

 and the projection vectors 

2  
    

    
 3
   

 
 formed by Algorithm 4.3 are used for prediction of the output variable 

 ̂    for the new data. 

In details, the prediction steps are shown in Algorithm 4.4. 

Algorithm 4.4 NPLS Prediction 

Input:        × 1× 2× 3, {  
    

    
 }
   

 
, {  }   

 
. 

Outputs:  ̂      . 

1. Centering of      in the same way as on the training set 

2.   
         

3. for     to   
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4.        
   ×   

 ×   
 ×   

  

5.      [       ] 

6.       
      

         
    

    
   // deflation 

7. end for 

8.  ̂   
    ∑     

 
    

9. De-centering of  ̂   
    

a
  The  -mode vector product of a tensor   and vector       is denoted as 

 ×   (see Section 4.2.1). 

b
  The vector outer product is denoted as     (see Section 4.2.1). 

Both PARAFAC and NPLS are widespread projective methods for the case of 

highly correlated tensor data of high dimensionality. However, contrary to PARAFAC, 

NPLS constructs a set of projectors taking into account information about the response 

variables. Thus, it was chosen as the basis approach for our BCI experiments. 

4.6.3 Modality Influence Analysis 

The elements of the input data have an implicit impact on the NPLS regression 

model through the latent variables. The Modality Influence (MI) analysis (Cook and 

Weisberg, 1982; Martens and Næs, 1989; Bro, 1996; Nilsson et al, 1997) allows 

estimating the relative importance of the elements of each mode for the final model. For 

example, in BCI experiments MI analysis can be applied to estimate the importance of 

electrodes, frequency bands, and time intervals (Eliseyev et al., 2011a). 

Estimation  ̂ of the dependent variable   according to the model  ̂  ∑     
 
    

can be represented as: 

 ̂  ∑    

 

   

 ∑    

 

   

 ∑(  ‖  ‖)
  

‖  ‖

 

   

 

 ∑  
 
  

‖  ‖

 

   

  

For the given mode  , which is characterized by the set of the projectors    

{  
 }
   

 
, the matrix    [  

   
      

   
 ] is formed. The vector of leverages for the  -

th modality is defined as        .  (  )
 
/. All the elements of the vector    are 
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non-negative. Moreover, the elements of the leverage which are close to zero have not 

affected the model very much, while the elements with high values are more important. 

This information could be useful for reduction of the modality dimension. Those 

components of the modality which have relatively small weights in the vector of 

leverages can be excluded from the further analysis. 

4.6.4 Shortcomings of the generic NPLS approach 

Despite many positive properties, the generic NPLS method has drawbacks. For 

instance, the identified model is of excessive complexity. Other shortcoming of the 

generic approach consists in its significant consumption of memory resources. The 

method continuously keeps in the active memory the tensor  , size of which could be 

too great. Finally, generic NPLS cannot be used online for adaptive adjustment of the 

identified model to changings in the data flow. 

In this study three modifications of the generic NPLS approach are proposed. A 

penalized version of the generic algorithm, providing an opportunity for selection of 

informative features, is represented in Section 4.7. An iterative version of the generic 

algorithm, which allows storing only part of the tensor   in the active memory, is 

described in Section 4.8. Presented in Section 4.9 a recursive NPLS algorithm provides 

an opportunity of online treatment of the data. 

4.7 L1-Penalized N-PLS algorithm (PNPLS) 

In this study we propose generalization of the NPLS algorithm which gives us an 

opportunity to impose the additional constrains on feature selection. For this purpose, 

the Alternating Least Squares (Algorithm 4.2) can be substituted for its penalized 

version and used for decomposition of the tensor    ×   in the NPLS algorithm 

(see Algorithm 4.3; Eliseyev et al., 2012). In the general case, the optimization problem 

for the Penalized ALS algorithm has the form: 

* ̂   ̂   ̂ +        
 1  2  3

(‖          ‖ 
 
   (        )) (4.16) 

here,     1× 2× 3      
            ( ) is a penalization term, and      is a 

nonnegative regularization parameter, which quantifies the relative importance of the 

penalization. Depending on the penalization operator  ( ), several formulations of the 

optimization task can be considered. Detailed description of different optimization 
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problems could be found in the work of Martínez-Montes et al. (2008). One particular 

case is the well-known Ridge regression, where the penalty function is    ( )  

‖     ‖
 , with    and    being two operators that operate on the columns and rows of 

 , respectively (see, Hoerl and Kennard (2000)). However, to have a sparse solution 

 ( ) could be chosen as a non-convex function with a singularity at the origin. For 

example,   -norm penalty can be often used: ‖ ‖  ∑ |   |   . Some particular cases of 

the function  ( ) are: 

       ( )  ‖ ‖ , the Least Absolute Shrinkage Selection Operator (LASSO) 

(Tibshirani, 1996); 

    ( )  ‖  ‖ , the ―Fusion Lasso‖ (Land and Friedman, 1996). Here,   is the 

first order difference operator; 

 the Smooth Clipped Absolute Deviation (SCAD) (Fan, 1997); 

      ( )    ‖   ‖    ‖   ‖
 , the Elastic Net (Enet) (Zou and Hastie, 

2005). 

To obtain a sparse solution, the   -norm penalty (LASSO) is often used. The 

LASSO can be easily implemented providing a sufficient level of selectivity. In the 

present study, the   -penalty was integrated into the ALS (Algorithm 4.2). At each step 

of the ALS algorithm, all the projectors are fixed except one leading to the optimization: 

 ̂        
  

.‖          ‖ 
 
  ‖  ‖ /           (4.17) 

For the particular case    : 

 ̂        
 1

.‖          ‖ 
 
  ‖  ‖ /  (4.18) 

The optimization problem (4.18) can be rewritten in the matrix notation: 

 ̂        
 1

.‖        
 ‖

 

 
  ‖  ‖ /  (4.19) 

where    ( ) is unfolding of the tensor  , and         (     ) (see Section 0). 

A possible approach to solve this optimization problem with the   -penalization 

is the Gauss-Seidel algorithm (Shevade and Keerthi, 2003; Schmidt, 2005). The 

advantages of this algorithm are its simplicity and low computational cost, as well as 

low memory consumption which is of great importance for BCI tasks. We have applied 

this approach to solve the optimization task (4.19). Namely, the anti-gradient of the 
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penalized residuals squares sum function      ‖        
 ‖

 

 
  ‖  ‖  was 

considered:   (  )       
 (         

 )       (  ), where       ( ) is a 

vector with elements        if     , and      , otherwise. For the first iteration, 

   is set equal to zero consequently the anti-gradient   ( )       
      . Then, the 

element of    with the largest magnitude of the anti-gradient is added to a set of ‗free‘ 

variables. These ‗free‘ variables are optimized in a ‗one at a time‘ way. For details see 

Shevade and Keerthi, 2003. Note, that if           (     
   ), the method 

returns as a solution  ̂   . 

To automatically select the optimal value of   different approaches can be used: 

Cross-validation (Devijver and Kittler, 1982), generalized cross-validation (Golub et al., 

1979), Akaike‘s Information Criterion (Akaike, 1974), or Schwartz‘s Bayesian 

Information Criterion (Schwartz, 1978). 

Penalized decomposition of the tensor    ×   results in a set of sparse 

factor *        +  * ̂   ̂   ̂ + (see Algorithm 4.3). 

Thus, in the work the task of Penalized NPLS algorithm is formulated. For its 

solving the Alternative Penalized Least Squares is proposed. 

The L1-Penalized NPLS algorithm combines computational simplicity and 

moderate memory consumption with sufficient selectivity. Thus, it could be applied for 

BCI system calibration and for electrode subset selection. 

4.8 Iterative N-PLS algorithm (INPLS) 

In spite of efficiency, the curse-of-dimensionality has significant influence on 

the application of NPLS to the BCI systems. The amount of data increases 

exponentially with dimensionality of the feature tensor/vector. Thus, restrictions on the 

data set size considerably limits frequency/temporal resolution of the signal 

decomposition, as well as the number of simultaneously analyzed electrodes, due to 

huge storage consumption for saving the tensor   in the active memory. To overcome 

the problem, we proposed the Iterative Multi-way Partial Least Squares (INPLS) 

algorithms (Eliseyev et al., 2011a), which properly treat the data set of huge dimension. 

It is based on fragmentation of the initial dataset on several subsets and their sequential 

treatment. Thus, at each instant only a small part of the data is stored in the active 
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memory. The algorithm was tested with artificial and real datasets and demonstrated 

efficiency and robustness (see Sections 4.8.2 for artificial and Section 6.1 for real 

datasets). 

4.8.1 Algorithm description 

The main steps of the INPLS are shown in Algorithm 4.5. The training dataset is 

preliminary segmented on   subsets { ( )     × 1× 2× 3   ( )     }. A set of three 

projection vectors *        + (according to the number of modalities) is constructed 

by successive refinement of their values on every subset { ( )  ( )}. For this purpose 

the iterative Tensor Factorization is used (see Algorithm 4.6). It is again based on the 

ALS algorithm (see Algorithm 4.2) in which previously calculated tensor 

decomposition is taken as initial estimation. The current approximation of the projection 

vectors is obtained as a weighted sum of the weights generated by ALS on the current 

iteration and the vectors from the previous iteration. After the set of projectors 

*        + is identified, the generic NPLS algorithm is applied for determination of 

the regression coefficients in the space of the latent variables (see Algorithm 4.3: steps 

8-12). This procedure is repeated a pre-defined number   of times. The set of 

coefficients vectors {  }   
 

 and projection vectors {  
    

    
 }
   

 
 are used for 

prediction in the same way as in traditional NPLS (Algorithm 4.4). Graphical 

representation of the algorithm is shown in Figure 4.10. 

 

Figure 4.10 Graphical representation of the INPLS algorithm applied to the tensors   

and   (the general case:   and   are the tensors of the orders   and  , respectively). 
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Algorithm 4.5 Iterative NPLS 

Input: { ( )  ( )}
   

 
, number of factors  . 

Outputs: {  
    

    
 }
   

 
, {  }   

 
. 

1. Centering of {   } 

2.      

3.      

4. for     to   

5.   {  
    

    
 }  *  1 ‖  1‖   2 ‖  2‖   3 ‖  3‖+ 

6.   for     to   

7.       
( )
   

( )
×   

( )
 

8.     {  
    

    
 } = Tensor Factorization .  

( )
 {  

    
    

 }  / 

9.   end for 

10.     
    

  ‖  
 ‖             

11.        ×   
 ×   

 ×   
  

12.      [       ] 

13.      (  
   )

  
  
    

14.                

15.                
    

    
  

16. end for 

a
  The  -mode vector product of a tensor   and vector       is denoted as 

 ×   (see Section 0). 

**  
b
  The vector outer product is denoted as     (see Section 4.2.1). 

 

Algorithm 4.6 Tensor Factorization 

Input:     1× 2× 3, *        +,  . 

Outputs: *    
      

      
 +. 

1. {    
      

      
 } = ALS(  *        +) 
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2.     
  (    

  (   )  )               

a
  ALS(  *        +) means computation of ALS (see Algorithm 4.2) for 

factorization of the tensor   from the initial approximation *        +. 

4.8.2 Test of algorithm with simulated data. Comparison 

INPLS with generic NPLS 

This test intends to study performance and prediction accuracy of INPLS in 

different conditions including the noise level and to compare the iterative algorithm 

(INPLS) with traditional one (NPLS). Taking into account the task specificity, i.e., 

‗event‘–‗non-event‘ detection, the test was performed for binary output variables. An 

artificial data set 2    
   ×       *   +3

   

    

 was formed in the following way. 

Binary    *   + was randomly generated with equal probabilities. Tensors    were 

calculated according to the rule:     (  )     , where  (  )   
   ×    is set as 

       ((     )     ) if     , and        ((     )     ) if     . 

The random noise     
   ×    was drawn from a multivariate normal distribution 

 (   ), which is a generalization of Gaussian distribution for tensors (Hamedani and 

Tata, 1975). Parameter   is introduced to control the signal-to-noise ratio (SNR). The 

noise has the same amplitude as the signal  (  ) in the case of    . Figure 4.11 

shows the examples of graphical representation of tensors   for different values of  . 

 

Figure 4.11 Example of points   , for        with different noise levels:       

      presenting the artificial dataset used for INPLS performance study. 
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Generated data points were split into the training and the test datasets with 100 

points {     }   
   

 and 1000 points {  
       

    }
   

    
, respectively. From these datasets 

the training and the test tensors {      ×   ×      *   +   }, {      

     ×   ×          *   +    } were formed. 

A prediction accuracy of the iterative algorithm was compared to NPLS 

depending on the training data fragmentation manner (i.e., the number of points in the 

subsets), the level of the noise, and the number of factors used by the algorithms. The 

training set was split in four ways   ,    ,    , and      with 5, 10, 20 and 100 points 

per subset, respectively: 

   { ( )    ×   ×     ( )  *   + }
   

  
, 

    { ( )     ×   ×     ( )  *   +  }
   

  
, 

    { ( )     ×   ×     ( )  *   +  }
   

 
, 

     { ( )      ×   ×     ( )  *   +   }
   

 
. 

Here,      corresponds to traditional NPLS. The number of factors   equal to 

2, 5, and 10 was considered. The noise amplitude   varied from 1 to 4, i.e., from 100% 

to 400% of noise. Resulted regression models were validated on the test dataset. 

General performance of the algorithm was estimated by comparison of predicted  ̂  

with    using Euclidian distance: (∑      ̂  
     

   )        . 

In all the tests, INPLS either demonstrated comparable results or surpassed 

traditional NPLS. Moreover, INPLS noticeably outperformed NPLS in the case of large 

factor number and high noise level(    ,    ) (Figure 4.12). This advantage can 

be explained by overfitting effect suppression in INPLS. Proposed iterative algorithm 

demonstrated good accuracy and was applied for the BCI system calibration. 
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Figure 4.12 Comparison of INPLS vs. NPLS for the different noise level  , the factor 

number   and data fragmentation manner   ,    ,    , and     . Here,      

corresponds to generic NPLS. 

4.9 Recursive N-PLS algorithm (RNPLS) 

One of the major problems in BCI studies is the variability of the neuronal signals, 

in particular, due to the brain plasticity. These changes in the neuronal activity require 

recalibration of the BCI systems. The full system recalibration is a time and labor 

consuming procedure. Adaptive calibration aims to provide a fast adjustment of the BCI 

system to mild changes of the signal. Although INPLS allows treating data arrays of 

huge dimension, this method cannot be applied for adaptive learning. In this section the 

Recursive NPLS (RNPLS) algorithm is proposed (Eliseyev et al., 2011b). It allows 

online processing of the multi-modal data. Moreover, weighted RNPLS can be applied 

for adaptive learning to treat time-dependent recordings. 

4.9.1 Algorithm description 

The RNPLS algorithm unites the RPLS scheme of recursive calculation with 

multimodal data representation of NPLS. To apply the recursive approach to the NPLS 

algorithm described above, orthonormality of the latent variables as well as 

orthogonality of the latent variables to the residuals should be provided (see conditions 

(4.10), (4.11), and (4.12)). 

Let us consider a fourth-order tensor     × 1× 2× 3 of observations and a vector 

of observations     . At the first step, the tensor   is represented by a set of factors 

{  
 }
   

 
: 
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     (4.20) 

constructed by the NPLS algorithm (Algorithm 4.3). For simplicity of notation, let us 

unfold the tensor   along the first mode into the matrix     ×( 1 2 3) (Kolda and 

Bader, 2007). At the same time let us denote as     
 1 2 3 vectorization of a tensor 

     
    

    
 . The score vector    is a projection of the observation matrix   

on   :       . In this matrix notation, Equation (4.20) can be rewritten in the form 

      
     (on iteration  :       

    ). 

In general, the NPLS latent vector variables are not orthogonal, but this 

restriction is necessary for the recursive scheme of calculation (see Qin, 1998). Let us 

apply orthonormalization of the latent variables:   
      , (  

 )
 
  
    . Here,    

is a matrix of orthonormalization. It could be obtained from the QR decomposition 

procedure (Golub and Van Loan, 1996), where any rectangular matrix     ×    

  could be represented as a product of two matrices      (    ×         , 

    ×  is an upper triangular matrix). There are several methods for computing the 

QR decomposition, such as the Gram–Schmidt process (Golub and Van Loan, 1996), 

Householder transformations (Householder, 1958), or Givens rotations (Givens, 1958), 

each has a number of advantages and disadvantages. For the new orthonormal latent 

variables the matrix   could be decomposed as       
       

   
    , where 

  
    

    
 . The Ordinary Least Squares (OLS) coefficients of regression of    on 

the orthonormal latent variable      
   
     equal to   

    
   
 . After   iterations: 

         ,          . 

At this step conditions (4.10) and (4.12) are satisfied: (  )       and (  )     . 

Then to provide orthogonality of the matrix    and the residual matrix    (4.11), let us 

subtract from the residual matrix its projection on all latent variables {  
 }
   

 
:  ̃  

   ∑   
 (  

 )
 
  

 
   . Thus,      ̃   ̃ , with a new matrix of loadings  ̃  

, ̃     ̃ -,  ̃       
   
 . The relation (  )  ̃    holds now. Since conditions 

(4.10), (4.11) and (4.12) are satisfied, we get      ̃ ̃  and      ̃  . Similar to 

RPLS for a new data pair {     } regressions on the next data sets will be equivalent: 

{[
 

  
]  0
 
  
1}   {[

 ̃ 

  
]  [
  

  
]}. 



Chapter 4. MULTI-WAY ANALYSIS FOR BCI SYSTEMS 

 

Brain-Computer Interface with cortical electrical activity recording 96 

96 

The tensor  ̃ is obtained from the matrix  ̃, with   as dimensionality of the first mode. 

Dimensions of the other modes are equal to the dimensions of the other modes of the 

tensor  . Thus, the RNPLS algorithm inherits the tensor representation of data from 

NPLS and allows effective adaptive learning, which is the property of the recursive 

PLS. 

In addition to identification of the tensor  ̃ and the vector   , which contain 

information about the training sets on the previous iterations, the algorithm generates 

also sets of the vectors {  }   
 

 and the projection vectors {  
    

    
 }
   

 
, which are 

used on the prediction stage for determination of an estimation of the depended variable 

 ̂ in the same way as in the traditional NPLS approach (Algorithm 4.3). 

The graphical representation of the RNPLS algorithm is shown in Figure 4.13 

(see details in Algorithm 4.7). 

 

Figure 4.13 The RNPLS scheme. Information used for decomposition of the tensors of 

observation   and   is captured by their loading tensors   and   as well as by the 

coefficient matrix   (the general case:   and   are the tensors of the orders   and  , 

respectively). In addition, on every iteration the algorithm generates the current sets of 

the coefficient vectors {  }   
 

 as well as of the projection vectors {  
      

 }
   

 
 and 

{  
      

 }
   

 
, which are used on the prediction stage for determination of the 
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estimation of the depended variable  ̂ in the same way as in the traditional NPLS 

approach (see Algorithm 4.3). 

Algorithm 4.7 RNPLS 

Input:            ̃   ; parameters of centering  ̅,  ̅, and  ; number of 

factors  . 

Outputs: {  
    

    
 }
   

 
, {  }   

 
,  ̃   , (  )   ,  ̅   ,  ̅   . 

1.  ̅    (   ) ̅        ( 
   ) 

2.             
            

     ̅    

3.  ̅    (   ) ̅        (  
   ) 

4.       
      

     ̅    

5.    [
 ̃ 

    
]     [

  

    
] 

6. for     to   

7.        ×    

8.   {  
    

    
 } = ALS(  ) 

9.     
  

  
 

‖  
 ‖
             

10.     =   ( )
 

11.          (  
    

    
 ) 

12.           

13.      [       ] 

14.   {  
    }    -             (  )    

           (  
 )
 
  
    , 

  
  [  

      
 ]    [       ] 

15.     
    

    
  

16.     
    

   
  

17.     
  [  

      
 ]
 
 

18.          
  

19.             
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20.        ×   
 ×   

 ×   
  

21.                
    

    
  

22. end for 

23. for     to   

24.            ( ) 

25.    ̃         
   

  

26. end for 

27.  ̃    , ̃     ̃ -, ( 
 )      

 . 

a
       ( ) is an average of the tensor   along the first mode. 

b
  The  -mode vector product of a tensor   and vector       is denoted as 

 ×   (see Section 0). 

c
   ( ) is the mode-  unfolding of the tensor   (see Section 0). 

d
     ( ) is vectorization of the tensor   (see Section 0). 

e
  The vector outer product is denoted as     (see Section 4.2.1). 

4.9.2 Test of algorithm with simulated data. Comparison 

with generic NPLS 

To study performance and prediction accuracy of RNPLS, we compared it with the 

traditional NPLS algorithm on simulated data sets with different noise level and for 

different number of factors. Taking into account specificity of the binary-BCI task 

(‗event‘—‗non-event‘ discrimination), the tests were performed only for binary output 

variables. An artificial data set 2    
   ×       *   +3

   

    

 was created in the 

following way. Binary    were randomly generated with equal probabilities. Tensors    

were calculated according to the rule     (  )     , where  (  )   
   ×    is set 

as        (    (      )   ) if     , and        (    (      )   ) if 

     (Figure 4.14). The random noise     
   ×    was drawn from a multivariate 

normal distribution  (   ). It was added to the templates with a parameter   

introducing the signal-to-noise ratio:   *                +. The noise has the same 
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amplitude as the signal  (  ) in the case when    . The entire data set was split into 

the training and the test data sets of equal size. 

 

Figure 4.14 Example of points {     } from the artificial dataset, with different levels 

of noise. 

The NPLS algorithm processed the whole training set. For the recursive calculation 

with RNPLS, the training set was split into 20 disjoint windows, each one containing 40 

points. For all conditions (the noise level and the number of factors), the experiment 

was repeated 10 times with new realizations of noise. Then the predictions of the output 

variable were averaged over these 10 experiments. The resulting percentage of 

prediction errors is shown in (Figure 4.15). In all the tests, RNPLS demonstrated 

significantly smaller number of factors, which are necessary for efficient prediction. 

Moreover, it showed better robustness. Variation of the prediction errors was essentially 

smaller for the recursive algorithm for small number of factors for noise level up to 

500%. Advantages of RNPLS can be explained by overfitting effect suppression. 
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Figure 4.15 Comparison of prediction errors (root mean squared error, RMSE) for the 

NPLS and the RNPLS algorithms on the test sets for different levels of noise  and 

different number of used factors F. 

4.9.3 Convergence of RNPLS 

To study convergence properties of the RNPLS method, a set of computational 

experiments were carried out with artificial data described in Section 4.9.2. 

At each iteration the RNPLS algorithm generates the current sets of coefficients 

{  }   
 

 as well as projection vectors {  
      

 }
   

 
 and {  

      
 }
   

 
 (see Figure 

4.13), which can be used to predict of an estimation  ̂( ) of the dependent variable  ( ) 

from the independent variable  ( ). The model can be represented as linear in the 

original variables  ( ) and  ( ). For the case of scalar  ( )    and matrix  ( )  

  1× 2 (see the dataset from Section 4.9.2) linear relations between them can be 

represented as: 

In our computational experiments       ×   ,   *   +, and the regression 

coefficient matrix       ×   . To analyze the convergence of the set of matrixes *  + 

we introduce the distance between two matrices    and    as: 

where, ‖ ‖  is the Frobenius norm (see Equation (4.4)). 

To study the convergence of the RNPLS algorithm computational experiments 

were carried out. A training set consisting of 800 points was split on 40 disjoint subsets 

 ̂( )   ∑    ( )    
   

   {    }     

 (     )  
‖     ‖ 
 1  2

, 
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(each one contains 20 points). The level of noise was taken equal to 1000% of the signal 

amplitude (    ). The number of factors     was chosen in a way to minimize the 

average RMSE on the test set over 10 realizations of the training set (see Figure 4.15). 

Convergence of the matrixes is represented in Figure 4.16. As it could be seen from 

Figure 4.17, the changes in the regression coefficients matrix   become insignificant 

after the 10-th iteration. 

 

Figure 4.16 Convergence of the coefficient matrices versus the iterations of the RNPLS 

algorithm. The distance   between two successive coefficient matrices decreases 

significantly after the first 10 iterations. 

 

Figure 4.17 The regression coefficients   depending on the iteration number   of the 

RNPLS algorithm. 
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To compare RNPLS and NPLS, both algorithms were applied to 10 realizations 

of the training set (the level of the noise     ). The factor numbers were chosen equal 

to 9 and 17 for RNPLS and NPLS, respectively, in a way to minimize the average 

RMSE on the test set over 10 realizations of the training set (see Figure 4.15). Images of 

the obtained regression coefficients {  
     }

   

  
 and {  

    }
   

  
 are represented in 

Figure 4.18. Variability of the NPLS results (             
  ) is 2.4 times greater 

than variability of the RNPLS results (             
  ). It can be explained by the 

fact that NPLS is more affected by noise as well as overfitting effect. 

 

Figure 4.18 The regression coefficients defined by the RNPLS and NPLS algorithms in 

the 10 realization of the training set (    ). 

For comparison, the ordinary PLS coefficients were computed for the training set 

without noise (   ). Figure 4.19 represents the regression coefficients for the RNPLS 

and the NPLS methods (average over 10 realizations,     ), they are compared to the 
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PLS coefficients. It could be seen by visual expectation that the result generated by 

RNPLS is more close to the PLS one than the NPLS solution. 

 

Figure 4.19 Comparison of the regression coefficients defined by the RNPLS and the 

NPLS algorithms (average over 10 realizations,     ) with the ones generated by 

PLS for undisturbed classes (noise is absent). 

The next step is the comparison of the estimations found by the NPLS and the 

RNPLS approaches with the one obtained by the PLS methods. Behavior of the mean 

values and the standard deviations of the  (    
        

     ) for the different noise levels 

  over the algorithms iterations are shown in Figure 4.20 (the statistics calculated for 10 

data realizations). In parallel, the means and the standard deviations of  (    
        

    ) 

computed for the data generated by the NPLS algorithm is represented for every level of 

noise. As it could be seen, the mean value of the distances between the RNPLS and PLS 

regression coefficients already after 1-2 iterations (20-40 points) are significantly less 

than the ones between the NPLS and PLS regression coefficients computed for the 

whole training sets (800 points). In addition, the standard deviations of the RNPLS 

results are generally less than those obtained by NPLS.  
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Figure 4.20 Red lines: the mean values and the standard deviations (for 10 

experiments) of the distances between the regression coefficients generated by the 

RNPLS and the ordinary PLS  (           ) for different noise levels over the 

RNPLS algorithms recursive iterations. Blue lines: the mean values and the standard 

deviations (for 10 experiments) of the distances between the regression coefficients 

generated by the NPLS (applied for whole training sets) and the ordinary PLS 

 (          ) for different levels of noise. 

In conclusion, as it was shown in the set of computational experiments, both the 

RNPLS and the NPLS algorithms approximate the PLS solution obtained in the case 

when the noise was absent. RNPLS approach demonstrates faster convergence (20-40 

points instead of 800 for NPLS) and is considerably noise-steady. For all tested levels of 

noise the disturbance in the RNPLS solution was appreciably less relatively to NPLS. 
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4.10 Conclusions 

Multi-way approach is promising for BCI tasks. It allows simultaneous analysis 

of different modalities, preserves the structure of the data, improves robustness of 

results, as well as allows identifying relative impact of each feature on the final model. 

PARAFAC and NPLS are widespread project methods for the case of highly correlated 

multi-way (tensor) data of high dimensionality. However, NPLS constructs the 

projectors by taking into account information about the response variables. Thus, it was 

chosen as the basis approach in this study. The shortcomings of the NPLS algorithm are 

excessive complexity of the identified model, method‘s computational efficiency and 

resources consumption. A set of modifications of NPLS were proposed in this chapter: 

L1-Penalized NPLS (providing an opportunity for selection of informative features), 

Iterative NPLS (allows storing only part of the processing data in the active memory) 

and Recursive NPLS (provides an opportunity for online treatment of the data). 

Suggested algorithms were tested in the computational experiments on artificial 

datasets. Experiments demonstrated promising results. Thus, the methods could be 

efficiently applied for the BCI tasks. However, the proposed approaches have some 

drawbacks. For instance, the INPLS algorithm cannot treat data flow, L1-Penalized 

NPLS gives a sparse solution that could be not appropriate for some modalities (e.g., 

frequency), and RNPLS could bring to some deterioration of the prediction quality. 
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Chapter 5. APPLICATION OF MULTIMODAL 

ANALYSIS TO BCI EXPERIMENTS 

BCI experiments (see Chapter 2), based on a simple reward oriented task, were 

carrying out by the Clinatec neurological team. Each animal has the opportunity to push 

a wall-mounted pedal. Every pushing event activates the food dispenser and the animal 

obtains a reward (food pellet or juice). The animal was trained to press the pedal 

without any cue or conditioning stimulus. 

According to Chapter 2, BCI experiment consists of two stages. The first one is 

the Training Stage. During this stage, the training dataset is collected for the following 

BCI system calibration. Namely, the ECoG signals and the pedal signal are recorded 

simultaneously during the behavior experiments described in Chapter 2. During the first 

stage, the food dispenser is activated by the pedal. Those training sets which contain 

less than 50 pushes are neglected. The offline calibration procedure based on the 

collected recordings results in the event predictor computation. 

During the second stage, the Close Loop Real-Time BCI, the predictor is applied 

immediately to the signal from the animal‘s brain in real-time. The animal presses the 

pedal but it obtains the reward only in the case when the predictor detects the pushing 

event. More precise description of the experimental setup is given in Chapter 2. 

5.1 Signal acquisition and pre-processing 

A set of electrodes was implanted on the surface of the rat‘s and the monkey‘s 

cortex for the neural activity recording. The ECoG signals were registered at 6.5 kHz, or 

13 kHz sampling rate either with the Biomea® system (Biologic, Grenoble, France), or 

at 1 kHz by the Micromed® system (Micromed SD64, Micromed Italy). In parallel, the 

SD32 system (Micromed, Italy) records and displays the signals. During the 

experiments the rat was freely moving in the Abet II behavioral cage whereas the 
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monkey was sitting in a custom made primate chair minimally restrained and its neck 

was collar hooked to the chair. 

The signal was downsampled to 1.3 kHz or 1 kHz. The Common Average 

Reference (CAR) filter was applied to the signal of the rat, i.e., average signal among all 

the electrodes was subtracted to eliminate a ‗common source‘ (Ludwig et al., 2009). 

Application of this filter is made due to the presence of the strong noise signal sources 

whereas the signal of interest is relatively weak in the case of the rat. 

5.2 Feature extraction 

Continuous Wavelet Transform (CWT) was applied for feature extraction: 

 ( )    * +(   ), 

  * +(   )  (      )     
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where   and   represent the scale and the shift in the time-frequency domain, 

respectively.  ( ) is a wavelet function, which effectively limits duration and has an 

average value of zero. For more information, see Teolis (1998). 

In the present study, Meyer wavelet (Figure 5.1) was chosen as a mother wavelet 

taking into account its computational efficiency (Sherwood and Derakhshani, 2009). 

Analytical representation of the wavelet in the frequency domain is given by equation 

(5.2). 
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Figure 5.1 Meyer wavelet. 

5.3 Tensor representation of the ECoG data 

To form the BCI feature tensor, each ECoG epoch sample was mapped to the 

temporal-frequency-spatial space by CWT. For each epoch   (determined by its final 

moment  ), electrode  , frequency   and time shift  , elements          of the tensor   

were calculated as the norm of CWT coefficients of the ECoG signal (see Figure 5.2). 

Frequency band ,      - Hz with step      Hz was chosen for both monkey and 

rat. The analyzed time interval was equal to      s (with resolution         s) for 

the rat and        s (with resolution         s) for the monkey (according to the 

biological point of view). For the case of the rat       , and        for the case of 

the monkey. The resulting dimensions are (   ×   ×   ) and (   ×   ×   ), 

respectively. The binary dependent variable was set to one,     , if the pedal was 

pressed at the moment  , and     , otherwise. 
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Figure 5.2 Time epoch of the multi-channel ECoG recording mapped by continuous 

wavelet transform to the temporal-frequency-spatial feature space. 

5.4 BCI system calibration 

The tensor   and the vector  , representing the training dataset, were used for 

the BCI system calibration. Because of huge dimension of the feature tensor  , an 

iterative method was employed. In order to apply the INPLS algorithm, the training 

dataset was split into subsets in such a way that each one consisted of 30 points. Total 

number of the points in the training dataset was       , including all event-related 

points and randomly selected non-event ones. The number of factors was chosen by ten-

fold cross validation (    for the rat and     for the monkey). On the basis of the 

given data INPLS identified a predictive regression model between the dependent 

variable   and the tensor   of independent variables. In addition a set of projection 

vectors for each modality was generated. Let us note that each factor could be 

considered as a spatial-frequency-temporal filter, formed as outer product (Kolda and 

Bader, 2007) of particular filters related to each modality: spatial, frequency, and 

temporal. 

The overall goal of our study was to calibrate the BCI system using the signal of 

a single electrode. For this purpose, in the case of experiments in rats, the most 

informative electrode was chosen according to the Modality Influence Analysis, as the 

one with the highest weight across all the electrodes (see Section 4.6.3). In the case of 

monkey, the Recursive NPLS algorithm was applied to select the most informative 

electrode, since RNPLS has demonstrated better efficiency in comparison with MI 

mapping 
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analysis when number of electrodes was great. The training tensors related to the 

selected electrodes were analyzed with INPLS to construct the single-electrode 

predictors. 

Let us note that we estimate the dependent variable  ̂( ) as a linear combination 

of the components of the ECoG signal decomposition at the time moment  :  ̂( )  

∑ ∑       (   )     . Here,   ( ) is the absolute value of the continuous wavelet 

decomposition coefficient for the frequency   at the moment  . Thus, the resulting 

model presets a dynamical filter. 

For binarization of the predicted output variable  ̂( ), a scalar threshold was 

chosen maximizing the overall performance (   (       )  ⁄ , see Section 1.2.5) 

of the BCI algorithm on the training data set running in the online mode simulation. 

Calibration was made on one recording. The resulting model was tested in all 

recorded datasets as well as in the online experiments. 

5.5 Simulation of BCI experiments 

Offline emulations of BCI experiment, were fully reproducing online sessions 

and were carried out to study a generalization ability of the predictive model. For this 

purpose, the set of recordings of behavioral experiments were played back. The 

decisions (‗event‘ or ‗non-event‘) were made sequentially for each half-a-second-length 

buffer of the recordings. This corresponds to the real-time data acquisition in the 

CLINATEC/LETI/CEA BCI experimental platform. The predictors were calculated 

every 0.125 s, i.e., 4 times per buffer. The buffer was considered as containing the 

‗event‘ if at least one of these predictors surpassed the threshold of binarization. After 

each detection, the system was blocked for 5 seconds in the case of the rat and 1.5 

seconds in the case of the monkey to prevent multiple activations. Following to 

(Fatourechi et al., 2008) the real event was considered as detected (True Positive, see 

Section 1.2.5) if the time interval between the real event and its detection did not exceed 

1.5 s (Figure 1.19). 

5.6 Proof and comparison of solutions 

To confirm the selected approaches and implementations, a set of comparative 

experiments were carried out. 
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The present section consists of three parts. In the first one, several mother 

wavelets were compared by means of correlation between the wavelet coefficients and 

the signal of the pedal. For this purpose, we used the series of recordings, made during 

the long-term experiments in the rat freely moving in the natural-like environment. The 

second part is a comparison of the unsupervised (PARAFAC) and supervised (INPLS) 

approaches for classification of the real BCI data recorded in the experiment in monkey. 

The last part is devoted to the study of the efficiency of different classifiers in the space 

of the INPLS latent variables. Simulations of the online experiments were made on the 

basis of 9 recordings of the experiments in the rat. 

5.6.1 Comparison of different mother wavelets 

To project recorded data to the feature space continuous wavelet transform is 

applied. To found the most effective function for this projection several mother 

wavelets   were compared, namely, Meyer, Morlet, Symlet ‗7‘ and ‗8‘, 2
nd

 and 10
th

 

orders Debauchies, Coiflets ‗5‘, and Haar (Figure 5.3). 

 

Figure 5.3  -functions of the examined mother wavelets. 

Evaluation of the wavelets was made in a set of simulations of the BCI 

experiments. Altogether, 4 different recordings of the rat‘s brain neural activity received 

9/7/2009 and 16/7/2009 were used for the test. Comparison was made according to the 

maximum level of correlation between the absolute value of the wavelet‘s coefficients 
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  (   ) (taking over the scale factors   and the time shifts  , see Section 5.2), and the 

signal of the pedal  : 
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where   corresponds to the frequencies of the band ,      - Hz and  ( )  *   + 

represents the position of the pedal at the moment  . 

Comparison of the mother wavelets shows that 2
nd

 order Daubechies and Haar 

lead to a relatively low level of correlation, whereas the performance of all other 

wavelets is comparable. Meyer wavelet was chosen for the present study as the mother 

function, due to its computational efficiency (Sherwood and Derakhshani, 2009). 

Results are shown in Figure 5.4. 

 

Figure 5.4 Maximum of correlation between the wavelet coefficients and the signal of 

the pedal for different types of the mother wavelets. 

5.6.2 Comparison of unsupervised and supervised 

classifiers 

Unsupervised methods, like PARAFAC, Tucker Decomposition, or Non-

negative Tensor Factorization are often used to form a feature space in the tasks with 

multimodal data (Nazarpour et al., 2006; Zhao et al., 2009; Mørup et al., 2008). These 

approaches could be effectively applied for dimensionality reduction by means of 

selection of a set of directions with largest variation of the data. At the same time, these 
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methods do not take into account distribution of the classes along the considered 

directions. Thus founded projectors could be not effective enough for the purposes of 

separation of different classes. For this reason, supervised methods of the feature space 

formation (e.g., General Tensor Discriminant Analysis (Li et al., 2009), Regularized 

Tensor Discriminant Analysis (Li and Zhang, 2010), N-way PLS (Bro, 1996)) are 

preferable for the BCI tasks. In this section we compare effectiveness of PARAFAC 

combined with a linear regression and the NPLS algorithm on the real data recorded in 

the experiment in monkey. The main difference in the applied approaches is that 

whereas the NPLS algorithm simultaneously finds the space of latent variables and 

builds a linear regression, PARAFAC independently projects data into the space of 

latent variables (identified without any information about the classes) and after we 

perform a linear multiple regression on the obtained projections. 

During it the monkey was pressing the pedals which were located in different 

positions. The recorded data for two positions of the pedal (‗left‘ and ‗up‘) were split on 

the training and the test datasets of the same size. Comparison of the methods consists 

of two parts. The first one is separation of the background monkey‘s activity from the 

pressings of the ‗left‘ pedal. The second one is discrimination of the ‗left‘ pressings 

from the ‗up‘ ones. The number of factors was ranging from 1 to 20. 

Figure 5.5 demonstrates the root mean squared error (RMSE) calculated on the 

test set by both methods for separation of the ‗non-event‘ and the ‗left-event‘ epochs. 

The training and the test sets contain 350 points (50 ‗events‘ and 300 ‗non-events‘. The 

optimum achieved by the NPLS approach outperforms the one of PARAFAC in terms 

of the RMSE, at the same time NPLS requires less number of factors to achieve the 

extremum. 
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Figure 5.5 Comparison of RMSE values for classification ‗non-event‘ vs. ‗left-event‘ 

performed by the NPLS and the PARAFAC approaches for different numbers of factors. 

NPLS outperforms PARAFAC in terms of RMSE, moreover it requires less number of 

factors to achieve the optimal classification results. 

Figure 5.6 represents the RMSE calculated on the test for discrimination of the 

‗up-events‘ from the ‗left-events‘. The training consists of 100 points (50 ‗left-events‘ 

and 50 ‗up-events‘), the test set holds 100 points (50 ‗left-events‘ and 50 ‗up-events‘). 

This experiment also has demonstrated better efficiency of the NPLS algorithm for 

classification tasks in comparison with PARAFAC approach. 

 

Figure 5.6 Comparison of RMSE values for classification ‗up-event‘ vs. ‗left-event‘ 

performed by the NPLS and the PARAFAC approaches for different number of factors. 
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5.6.3 Comparison of different classifiers 

The NPLS algorithm is based on the data projection to the low dimensional 

feature space (the space of latent variables), with simultaneous construction of a linear 

regression. The binary BCI leads to the problem of two-classes discrimination. 

Although the PLS algorithm (as well as NPLS and its derivations) was not inherently 

designed for classification, it is widely applied to solve this problem (Barker and 

Rayens, 2003). In particular in the studies (Eliseyev et al., 2011a; Chao et al., 2010; 

Acar et al., 2010) the NPLS linear regression was applied for classification using binary 

output variables. Otherwise PLS was used as a dimensionality reduction tool and 

coupled with different classifiers in the space of latent variables (for more details see 

Barker and Rayens, 2003). The goal of the present section is to study the efficiency of 

different classifiers in the space of the INPLS latent variables in the context of the 

binary self-paced BCI. For the comparison of classifiers, we used the recordings from 

the series of 9 long-term experiments in the rat freely moving in the nature-like 

environment. 

Different types of classification methods have been applied in the BCI tasks 

(Lotte et al., 2007). Several linear and non-linear classifiers widely used in the BCI 

research were chosen in this study. They were compared using a given set of the INPLS 

features. 

Linear classifiers: 

 Linear Discriminant Analysis (Fisher’s LDA): in the space of the latent variables 

it constructs a hyperplane to separate two classes (Duda et al., 2001; Fukunaga, 1990). 

The method assumes normal distribution of the data, as well as equal covariance matrix 

for both classes. The separation hyperplane is seeking to maximize the distance between 

the classes and minimize the interclass variance. 

 INPLS regression with binarization: the INPLS algorithm generates a linear 

regression model in the latent variables space to predict  ̂ corresponding to the output 

variable  . For binarization of  ̂ a scalar threshold was found using the training set by 

means of maximization of the Overall Performance (OP). 

Non-linear classifiers: 

 Quadratic Discriminant Analysis: the method assumes different normal 

distributions of data in the different classes (Duda et al., 2001; Fukunaga, 1990). The 
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Bayes rule is used to compute a posteriori probability that point belongs to a given 

class. The task leads to a quadratic decision surface, which explains the name of the 

classifier. 

 Logistic Regression: the method assumes binomial distribution of the data 

(Hilbe, 2009). The model supposes that probability that the point belongs to the first 

class can be expressed as   (     )    (     (  )), where   is a linear function 

of  . The unknown parameters of this linear function are usually estimated on the 

training set by maximum likelihood procedure. 

 Kernel Support Vector Machine: the method uses a discriminant hyperplane to 

identify the classes (Cortes and Vapnik, 1995), which is found in the way to maximize 

the margin, i.e., the distance between the nearest training points belonging to the 

different classes. By using a ‗kernel trick‘ (Aizerman et al., 1964) the method could be 

applied as non-linear classifier, by mapping of the data points to higher dimension 

space. In the experiment we have chosen the Gaussian kernel (radial basis function, 

RBF) with the parameter    . 

Training of all classifiers was carried out using the training dataset. Then the 

efficiency of the classifiers in the BCI task was estimated by simulation of the BCI 

experiments using the test recordings. Binary discriminators were applied offline to 9 

recordings (lasting from 10 minutes to 1 hour). 

Table 5.1 summarizes the results of comparison of classifiers in the simulation 

of the online BCI experiments. The simulations show that the quadratic classifier 

(QDA) applied to the INPLS latent variables is the most efficient. Nevertheless, this 

method does not significantly outperform the linear regression with binarization 

threshold used by INPLS. Thus, using of the INPLS algorithm without application of 

any additional classifier is reasonable. The values of the Overall Performance (Section 

1.2.5) for 9 test datasets and all classifiers are shown in Figure 5.7. 
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Table 5.1 Performance of the simulated self-paced BCI experiments with different 

classifiers in the space of the latent variables. 

  TPR (%) PPV (%) FPR (%) ERR (%) OP (%) FP min
-1 

INPLS 80 ± 14 87 ± 9 0,36 ± 0,16 0,91 ± 0,33 84 ± 11 0,42 ± 0,19 

LDA 77 ± 13 81 ± 13 0,55 ± 0,21 1,21 ± 0,37 79 ± 13 0,64 ± 0,25 

QDA 85 ± 13 86 ± 9 0,45 ± 0,29 0,85 ± 0,31 85 ± 10 0,52 ± 0,34 

KSVM 76 ± 12 81 ± 13 0,57 ± 0,43 1,31 ± 0,43 79 ± 11 0,67 ± 0,50 

Logit 83 ± 14 83 ± 11 0,52 ± 0,27 0,97 ± 0,31 83 ± 12 0,61 ± 0,31 

 

Figure 5.7 The Overall Performance (OP) for the series of the simulated self-paced BCI 

experiments using different classifiers in the space of the INPLS latent variables. Black 

circles represent the average value over all the experiments. 

5.7 Conclusion 

In this chapter, structural parameters of the applied method were compared in 

the simulation of the online BCI experiments. 

Comparison of different mother wavelets used for mapping of the ECoG signals 

has demonstrated similar performance of all bases of decomposition. Thus, taking into 

account its computational efficiency, Meyer wavelet was chosen. 

A set of test experiments has confirmed that supervised classifier (INPLS), 

which took into account information about classes, was preferable than unsupervised 

classifier (based on PARAFAC). Thus, the initial choice of the supervised method was 

justified. 

Different classifiers in the space of the latent variables were compared in a set of 

simulations of the online BCI experiments. The quadratic classifier has demonstrated 
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the best overall performance. However, it did not significantly outperform the linear 

regression with binarization threshold resulted from the INPLS algorithm. Thus, 

application of INPLS without any additional classifier is preferable. 
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Chapter 6. BCI EXPERIMENTS RESULTS  

6.1 Experiments in rats 

Experimental data were collected during the behavioral experiments in a rat 

based on a simple reward-oriented task (see Chapter 2). Three series of behavioral 

experiments, 34 experiments in total (see Table 6.1), were collected over more than 8 

months. The experiments lasted from 5 min up to 1 h (22 min in average). A part of one 

recording (#1 in Table 6.1) was used for calibration to identify the predictive model. 

The training data set included all event-related epochs and randomly selected ‗non-

event‘ epochs. The threshold of binarization was adjusted to every recording. 

6.1.1 Calibration results 

For calibration purposes, the signal of the training data set was mapped to the 

temporal–frequency–spatial space. Then, eight factors and the corresponding latent 

variables   ,      , were extracted by INPLS. All modalities of the first and the second 

factors are shown in Figure 6.1. Besides that, the predictive model for the pedal‘s 

position was constructed:  ̂  ∑     
 
      , where    is a parameter of centering. 

While INPLS extracts task-related factors, the influence of the factors is different. The 

coefficients   
 , of the normalized model  ̂  ∑   

   
  

      , correspond to the weights 

of related factors in the final decomposition (see Section 4.6.3). These coefficients were 

                                                (Figure 6.2). The MI analysis 

revealed the leverages of each element for each modality (Figure 6.3). In particular, 

applied to the spatial modality, the MI analysis indicates occipital electrode number 15 

as having the highest impact on the decision rule (~57% of the extracted information). 

High frequencies [100, 300] Hz provide the main contribution to the decision in the 

frequency modality (~86%). In the time domain the interval [−0.5, 0] s before the event 

is the most significant (~68%). 
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To verify different frequency bands, the calibration procedure was applied 

separately for ECoG signal filtered in  - (10-15 Hz),  - (15-40 Hz), and  - (55-300 Hz) 

bands. The relative weights of these bands in the final decomposition are:        , 

       ,          (Figure 6.3). MI analysis applied to identified models revealed the 

leverages of elements of each modality and for every frequency band (Figure 6.4). In  -

band the most informative are: frequency ~147 Hz, moment 290 ms before event, and 

occipital electrode #15. In  -band the most informative are: frequency 10.5 Hz, moment 

390 ms before event, and occipital electrodes #8 and #15. In  -band the most 

informative are: frequency ~33 Hz, occipital electrodes #8 and #15, the moment is rather 

defused and random (it could be explained by insignificance for BCI system of 

information contained in the  -band). 

The temporal–frequency analysis for the best electrode (#15, over the cerebellar 

cortex) was the next step. Six factors were extracted by INPLS. The first three of them 

are shown in Figure 6.5. The relative weights of all six factors in the final 

decomposition are                                     (Figure 6.6). 

Like in the case of all electrodes, the calibration procedure was applied 

separately for ECoG signal filtered in  - (10-15 Hz),  - (15-40 Hz), and  - (55-300 Hz) 

bands for the electrode #15. MI analysis applied to identified models revealed the 

leverages of elements of each modality and for every frequency band (Figure 6.7). In  -

band the most informative are: frequency ~110 Hz, moment 290 ms before event. In  -

band the most informative are: frequency 10.5 Hz, moment 410 ms before event. In  -

band the most informative are: frequency ~33 Hz, like in the case of all electrodes the 

time moment is rather defused and random. 

Comparison of the BCI performances (all electrodes versus single electrode) 

demonstrates that using of all electrodes does not significantly improve the 

approximation of the output variable on the training data set (Figure 6.8). The difference 

in RMSE is less than 2% for the number of factors   . Projections of the points of 

observation into the first and the second factors (Figure 6.9) show good separability of 

the classes ‗event‘ and ‗non-event‘ in the single-electrode case even over almost eight 

months. From a computational point of view, the single-electrode predictive model was 

chosen. The calibration procedure resulted in the predictor of the pedal pressing events 
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and the threshold-based decision rule. The maximum of the OP criterion identifies the 

threshold balancing false activations and correct detections (Figure 6.10). 

Then, the identified model was applied to predict the rat‘s control intention in 

the series of offline simulations as well as in the close-loop real-time BCI system. 

 

Figure 6.1 The first and the second factors (which are the most contributive out of 

eight): frequency, temporal and spatial projections; the values of elements of the spatial 

projector are shown in colors according to the color bar; positions of the electrodes are 

indicated by numbers. 

 

Figure 6.2 Factor‘s weights in the final decomposition. 

 

Figure 6.3 Impact on the predictive model of different modalities components according 

to MI analysis; the spatial modality is represented by the graph and the corresponding 

color map. 
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Figure 6.4 Impact on the predictive model of the components of different modalities 

according to the MI analysis; the spatial modality is represented by the graph and the 

corresponding color map. The predictive models are identified for three frequency bands: 

 -band (10-15 Hz),  -band (15-40 Hz), and  -band (55-300 Hz). 
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Figure 6.5 The best-electrode-calibration: frequency and temporal projections of the first 

three factors. 

 

Figure 6.6 The best-electrode-calibration: weights of the factors in the final 

decomposition. 
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Figure 6.7 Impact on the predictive model of the components of different modalities 

according to the MI analysis. The predictive models are identified for three frequency 

bands:  -band (10-15 Hz),  -band (15-40 Hz), and  -band (55-300 Hz). 
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Figure 6.8 The best-electrode-calibration: comparison of the relative approximation 

errors, calculated on the training data set for the different numbers of factors: all 

electrodes versus the best electrode. 

 

Figure 6.9 The best-electrode-calibration: projections of the ‗event‘ and ‗non-event‘ 

points of observations from the training recording to the first and the second factors. 

Even in eight months the quality of the separation remains considerable. 

 

Figure 6.10 The best-electrode-calibration: the threshold of event detection is 

identifying according to the OP = (TPR+PPV)/2 criterion: TPR represents the rate of the 

detected events; (1–PPV) corresponds to the number of FP related to the number of 

system activations. 
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6.1.2 Offline and open-loop validation of the BCI system 

For offline validation of the BCI system, the predictive model identified at the 

calibration stage is applied to the previously recorded data. This type of verification is 

preferable at the initial stages of the experiments when the animal is not trained enough 

and false activations of the distributor as well as misses of the pedal pushing 

significantly confuse the rat. 

In the simulation mode, a decision about event/non-event state of the system was 

made every half a second buffer: the predictors were calculated each 0.125 s, i.e., 4 

times per buffer. The buffer was considered as containing the ‗event‘ if at least one of 

these predictors surpassed the threshold of binarization. After each detection, the system 

was blocked for 5 s to prevent multiple activations. Following to (Fatourechi et al., 

2008) the real event was considered as detected (True Positive) if the time interval 

between the real event and its detection did not exceed 1.5 s. 

For the first two groups of the BCI experiments (carried out in July and October, 

2009; see from #1 to #12 in Table 6.1, Figure 6.11) the BCI performance and the delay 

of detection were evaluated. The mean overall performance OPsim = 81.06% (79.65% 

excluding the training recording) was achieved with 0.51 false activations per minute 

(0.53 excluding the training record). Detections were made 0.18 s (on average) before 

the appearance of the real event. A fragment of one simulated experiment is shown in 

Figure 6.12. Delay time histograms for all these experiments are shown in Figure 6.13. 

The open-loop experiments were carried out in the third session (the 

experiments of February and March, 2010; Table 6.1, Figure 6.11). In these experiments 

the rat obtained rewards after every pressing regardless decision of the predictive 

model. The answers generated by the system were analyzed independently afterwards. 

Like in the case of the offline validation, this type of the experiment was made to 

prevent the animal to be confused by false activation and pushing omissions. 

Experiments have demonstrated rather considerable decreasing of the quality: mean 

overall performance OPol = 50.34% was achieved with 1.46 false activations per minute. 

However, further examination of the rat‘s brain and the implanted electrodes, made after 

death of the animal, showed that this decreasing of the BCI performance was 

significantly caused by the electrodes degradation. 



6.1. Experiments in rats 

 

Brain-Computer Interface with cortical electrical activity recording 
129 

129 

 

 

Figure 6.11 The Overall Performance (OP) and the number of false activation per 

minute calculated over 8 months (offline validation, open- and close-loop real-time 

experiments). 

 

Figure 6.12 10-minutes-length fragment of the experiment #11 (from 20/10/09). 

 

Figure 6.13 Time delay histograms of detection for the experiments from #1 to #12, 

zero moment corresponds to the real event time. 

6.1.3 Close-loop real-time BCI experiments 

In the close-loop real-time BCI experiments a food dispenser was controlled by 

the animal‘s brain activity. These tests were carried out during February and March, 
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2010 (Figure 6.11, Table 6.1). To clarify the organization of the experiments, some 

photos of one close-loop experiment are represented in Figure 6.14. Figure 6.15 

demonstrates a 25 s length example of the close-loop detection made by the system in 

the real-time mode. 

Like in the simulation mode and open-loop mode, the decision about event/non-

event state of the system was made every half a second buffer (4 predictors per buffer, 

the buffer contained the ‗event‘ if at least one of the predictors surpassed the threshold 

of binarization). The real event was considered as detected if distance between the real 

event and its detection did not exceed 1.5 s; the system was blocked for 5 s after the 

detection. 

The mean overall performance of the close-loop experiments OPcl = 53.61% 

with 1.52 false activations per minute. It should be especially emphasized that 

performances of the open-loop and the close-loop tests are similar at the same period of 

time (OPol = 50.34% and 1.46 false activations per minute, see Section 6.1.2). This 

conclusion has one significant practical consequence. Carrying out of the close-loop 

experiments in animals is connected with considerable difficulties: contrary to humans, 

the animals are very confused by the errors of the BCI system that could bring to 

impossibility of the experiment continuation. At the same time, the open-loop 

experiments could be easily implemented in animals without any considerable influence 

on the model‘s quality evaluation. 

Another important requirement imposed on the BCI system is its possibility to 

function in the real-time conditions. Carried out experiments have confirmed 

satisfactory computation efficiency of the algorithm for the practical applications. The 

time for processing 0.5 second-buffer does not surpass 0.1 s (Intel Dual Core, 

3.16 GHz; RAM 3.25 Gb). In addition, the evaluation experiments allow estimation of 

the response time of software that is on average 0.31 s including data collecting and data 

processing time: 0.25 and 0.06 s, respectively. 
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Figure 6.14 The close-loop real-time stage of the experiment. The rat presses the pedal 

but decision whether to give a reward is made on the basis of the ECoG signal. 

 

Figure 6.15 25 second-length example of the close-loop BCI experiment: two real 

events were detected by the system. 
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Table 6.1 Performances of both open-loop and close-loop BCI experiments. 

No Date No. of events 
Time 

(s) 
FP FN TP TN 

TPR 

(%) 

PPV 

(%) 

FPR 

(%) 

ERR 

(%) 

OP 

(%) 

FP 

min
-1 Conditions 

1
a 

09.07.2009 73 592 2 3 70 1109 95,89 97,22 0,18 0,42 96,56 0,20 s 

2 09.07.2009 74 895 9 13 61 1707 82,43 87,14 0,52 1,23 84,79 0,60 s 

3 09.07.2009 56 895 11 24 32 1723 57,14 74,42 0,63 1,96 65,78 0,74 s 

4 09.07.2009 68 537 6 11 57 1000 83,82 90,48 0,60 1,58 87,15 0,67 s 

5 16.07.2009 37 310 0 7 30 583 81,08 100,00 0,00 1,13 90,54 0,00 s 

6 16.07.2009 33 427 3 6 27 818 81,82 90,00 0,37 1,05 85,91 0,42 s 

7 13.10.2009 49 599 3 5 44 1146 89,80 93,62 0,26 0,67 91,71 0,30 s 

8 15.10.2009 46 964 15 18 28 1867 60,87 65,12 0,80 1,71 62,99 0,93 s 

9 15.10.2009 28 397 6 10 18 760 64,29 75,00 0,78 2,02 69,64 0,91 s 

10 19.10.2009 99 3587 32 40 59 7043 59,60 64,84 0,45 1,00 62,22 0,54 s 

11 20.10.2009 169 3600 18 17 152 7013 89,94 89,41 0,26 0,49 89,68 0,30 s 

12 23.10.2009 114 1808 14 18 96 3488 84,21 87,27 0,40 0,88 85,74 0,46 s 

13 19.02.2010 33 2400 73 17 16 4694 48,48 17,98 1,53 1,88 33,23 1,83 c 

14 19.02.2010 37 940 29 26 11 1814 29,73 27,50 1,57 2,93 28,61 1,85 o 

15 22.02.2010 30 385 10 14 16 730 53,33 61,54 1,35 3,12 57,44 1,56 c 

16 22.02.2010 33 715 17 21 12 1380 36,36 41,38 1,22 2,66 38,87 1,43 o 

17 23.02.2010 45 800 24 16 29 1531 64,44 54,72 1,54 2,50 59,58 1,80 c 
a
This recording was used for calibration. 

s – simulation mode, o – open-loop mode, c – close-loop mode. 
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Table 6.1 Performances of both open-loop and close-loop BCI experiments. 

No Date No. of events 
Time 

(s) 
FP FN TP TN 

TPR 

(%) 

PPV 

(%) 

FPR 

(%) 

ERR 

(%) 

OP 

(%) 

FP 

min
-1

 
Conditions 

18 23.02.2010 77 2050 43 23 54 3980 70,13 55,67 1,07 1,61 62,90 1,26 c 

19 23.02.2010 31 535 14 14 17 1025 54,84 54,84 1,35 2,62 54,84 1,57 o 

20 24.02.2010 112 1980 40 59 53 3808 47,32 56,99 1,04 2,50 52,16 1,21 c 

21 24.02.2010 30 490 8 12 18 942 60,00 69,23 0,84 2,04 64,62 0,98 o 

22 25.02.2010 152 2500 66 55 97 4782 63,82 59,51 1,36 2,42 61,66 1,58 c 

23 25.02.2010 31 505 9 12 19 970 61,29 67,86 0,92 2,08 64,57 1,07 o 

24 26.02.2010 28 480 9 15 13 923 46,43 59,09 0,97 2,50 52,76 1,13 c 

25 26.02.2010 115 2170 58 59 56 4167 48,70 49,12 1,37 2,70 48,91 1,60 c 

26 26.02.2010 39 615 17 14 25 1174 64,10 59,52 1,43 2,52 61,81 1,66 o 

27 01.03.2010 180 3000 81 62 118 5739 65,56 59,30 1,39 2,38 62,43 1,62 c 

28 01.03.2010 29 540 16 18 11 1035 37,93 40,74 1,52 3,15 39,34 1,78 o 

29 02.03.2010 163 2350 54 74 89 4483 54,60 62,24 1,19 2,72 58,42 1,38 c 

30 02.03.2010 30 500 15 13 17 955 56,67 53,13 1,55 2,80 54,90 1,80 o 

31 03.03.2010 247 3600 78 159 88 6875 35,63 53,01 1,12 3,29 44,32 1,30 c 

32 03.03.2010 31 700 17 15 16 1352 51,61 48,48 1,24 2,29 50,05 1,46 o 

33 04.03.2010 140 2400 79 68 72 4581 51,43 47,68 1,70 3,06 49,56 1,98 c 

34 04.03.2010 59 800 13 40 19 1528 32,20 59,38 0,84 3,31 45,79 0,98 o 

s – simulation mode, o – open-loop mode, c – close-loop mode. 
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6.1.4 Validation of the RNPLS algorithm with real data 

The RNPLS algorithm was tested with the real data sets which were collected 

during the BCI experiments in freely moving rat. The data were extracted from the 

record #1 (see Table 6.1). 1000 randomly selected points (700 correspond to ―non-

events‖ and 300 to ―events‖) formed the training set, whereas 400 points (300+100) 

were used as the test set. The intersection of the training and the test data sets was 

empty. The NPLS algorithm was trained on the whole training set. For the RNPLS the 

training set was split into disjoint subsets with 10 and 100 points. Then the projectors 

and the predictive models were identified. Figure 6.16 represents the first two factors 

(the total number of factors was taken equal to 5 by cross-validation procedure) 

calculated by the RNPLS (10). The relative weights of the factors in the final 

decomposition are demonstrated in Figure 6.17. Figure 6.18 shows the percentage of the 

resulting prediction errors. With respect to NPLS, the RNPLS algorithm demonstrates 

minimal deterioration in the prediction quality: for RNPLS (100) it is about 0.1%, 

whereas for RNPLS (10) it is about 0.2%. 

Thus, the proposed recursive algorithm demonstrated the excellent performance 

in comparison to the NPLS approach in terms of accuracy and convergence rate on the 

real data. At the same time, taking into account that requirements for computation 

resources (memory) are low and do not depend on size of the processed data, the method 

is favorable for the BCI application. 



6.1. Experiments in rats 

 

Brain-Computer Interface with cortical electrical activity recording 
135 

135 

 

Figure 6.16 Frequency, temporal, and spatial projectors of the first and the second 

factors identified by RNPLS (10). 

 

Figure 6.17 Weights of the factors in the final decomposition (evaluated by the 

RNPLS (10) algorithm). 
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Figure 6.18 Comparison of the test data prediction error (RMSE). RNPLS (10) – the 

training set is split into 10-points disjoint subsets; RNPLS (100) – the training set is 

split into 100-points disjoint subsets, NPLS (1000) – generic NPLS using the whole 

training set. 

6.2 Experiments in monkeys 

Experimental data were collected during the behavioral experiments based on a 

simple reward-oriented task (see Chapter 2). The model was applied to the data 

recorded in 24 experiments (see Table 6.2, Figure 6.25). The experiments lasted from 

4 min up to 20 min, 8 min in average. Parts of four recordings were used for the 

calibration that is to identify the predictive models. The training data sets included all 

event-related epochs and randomly selected ‗non-event‘ epochs. The threshold of 

binarization was adjusted to each recording. 

6.2.1 Results of the calibration 

The monkey‘s brain activity signal of the training data set was mapped to the 

temporal–frequency–spatial space for the calibration purposes. Then, five factors (the 

number is defined by the cross-validation procedure) and the corresponding latent 

variables   ,      , were extracted by the L1-Penalized NPLS algorithms (see Section 

4.7,          ) separately for all four positions of the lever. The algorithm was 

chosen taking into account computation restrictions of the real-time model application 

to find a subset of electrodes mostly participating in the final model. The coefficients 

  
 , of the normalized predictive model  ̂  ∑   

   
  

      , correspond to the weights 

of the related factors in the final decomposition (see Section 4.6.3). These coefficients 

are represented in Figure 6.19 for all positions of the pedal. The values of the 

coefficients are: 
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‗left‘:                              ; 

‗right‘:                              ; 

‗up‘:                              ; 

‗down‘:                              . 

All modalities of the first factor are shown in Figure 6.20 for each position of the pedal. 

The MI analysis revealed the leverages of elements of each modality (Figure 6.21). 

Applied to the spatial modality, the MI analysis indicates that the electrode #22 

located in the motor primary cortex has the highest impact on the decision rule (84%, 

97%, 89%, and 75% of extracted information for ‗left‘, ‗right‘, ‗up‘, and ‗down‘ 

positions of the pedal, respectively). High frequencies (     Hz) make significant 

contribution to the decision in the frequency modality, however, contrary to the rat, the 

influence of the low frequencies (     Hz) is also rather considerable, especially, in 

the case of the ‗left‘ position of the pedal. In the time domain the interval [−0.2, 0] s 

before the event is the most significant for all positions of the lever. The temporal–

frequency analysis for the best electrode (#22) was the next step. Seven factors were 

extracted by INPLS. The first one of them is shown in Figure 6.22 for every position of 

the pedal. The relative weights of all seven factors in the final decomposition are 

(Figure 6.23): 

‗left‘:                                          ; 

‗right‘:                                          ; 

‗up‘:                                          ; 

‗down‘:                                          . 

The MI analysis revealed the leverages of elements of each modality for the best 

electrode case (Figure 6.24). Like in the case of the rat, taking into account the 

computational cost, the single-electrode predictive model was chosen for the BCI 

system. 

The calibration procedure results in the predictor of the pressing events and the 

threshold-based decision rule. Calibration-based model was applied for prediction of the 

animal‘s control intention in the series of offline simulation BCI experiments. 
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Figure 6.19 Factors weights in the final decomposition for every position of the pedal. 
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Figure 6.20 The first factor (according to the influence on the final decision): frequency, 

temporal and spatial projections for every position of the pedal. The values of elements 

of the spatial projectors are shown in colors according to the color bar; the electrodes 

positions are indicated by numbers. 



Chapter 6. BCI EXPERIMENTS RESULTS 

 

Brain-Computer Interface with cortical electrical activity recording 140 

140 

 

Figure 6.21 Impact on the predictive model of the components of different modalities 

according to the MI analysis of the LPNPLS predictive models for each pedal position; 

the spatial modalities are represented by the graphs and the corresponding color map. 
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Figure 6.22 The best-electrode-calibration: frequency and temporal projections of the 

first factors for each position of the pedal. 
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Figure 6.23 The best-electrode-calibration: the factors weights in the final 

decomposition for each position of the pedal. 
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Figure 6.24 Impact on the predictive model of the components of the different 

modalities according to the MI analysis for each pedal position. 

6.2.2 Offline validation of the BCI system 

The event prediction procedure was validated in a set of simulations of the real-

time experiments. A decision was made every 0.5 s buffer: the predictors were 

calculated each 0.125 sec. The buffer was considered as containing an ‗event‘ if at least 

one of these predictors surpassed the threshold of binarization. After each detection, the 

system was blocked for 1.5 s to prevent multiple activations, the real event was 

considered as detected if the time interval between the real event and its detection did 

not exceed 1.5 s. 

To make calibration of the BCI system and assess performance of the predictive 

models 24 experiments (from 4 to 20 min, 8 min in average) were carried out (see Table 

6.2, Figure 6.25). Four recordings were used for calibration. Identified models were 

tested in all 24 recordings. 
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Table 6.2 Performance of the BCI experiments. 

 
No Date No. of events 

Time 

(s) 
FP FN TP TN 

TPR 

(%) 

PPV 

(%) 

FPR 

(%) 

ERR 

(%) 

OP 

(%) 

FP 

min
-1 

L
ef

t 

1
 

10.03.2011 85 468,5 29 27 58 823 68,24 66,67 3,40 5,98 67,45 3,71 

2
a
 14.03.2011 109 845,5 32 31 78 1550 71,56 70,91 2,02 3,73 71,23 2,27 

3 18.03.2011 83 347 23 24 59 588 71,08 71,95 3,76 6,77 71,52 3,98 

4 24.03.2011 109 506 32 39 70 871 64,22 68,63 3,54 7,02 66,42 3,79 

5 14.04.2011 83 515 30 30 53 917 63,86 63,86 3,17 5,83 63,86 3,50 

6 19.04.2011 19 276 5 9 10 528 52,63 66,67 0,94 2,54 59,65 1,09 

R
ig

h
t 

7 10.03.2011 82 498,5 36 27 55 879 67,07 60,44 3,93 6,32 63,76 4,33 

8 11.03.2011 94 1107 65 55 39 2055 41,49 37,50 3,07 5,42 39,49 3,52 

9 30.03.2011 62 283 12 10 52 492 83,87 81,25 2,38 3,89 82,56 2,54 

10 04.04.2011 85 304,5 32 33 52 492 61,18 61,90 6,11 10,67 61,54 6,31 

11
a 

14.04.2011 88 227,5 9 10 78 358 88,64 89,66 2,45 4,18 89,15 2,37 

12 18.04.2011 78 353,5 26 20 58 603 74,36 69,05 4,13 6,51 71,70 4,41 

U
p

 

13
a 

15.03.2011 104 535 27 31 73 939 70,19 73,00 2,80 5,42 71,60 3,03 

14 17.03.2011 69 672 29 35 34 1246 49,28 53,97 2,27 4,76 51,62 2,59 

15 24.03.2011 32 336 14 8 24 626 75,00 63,16 2,19 3,27 69,08 2,50 

16 25.03.2011 63 380,5 23 26 37 675 58,73 61,67 3,30 6,44 60,20 3,63 

17 30.03.2011 90 339,5 21 26 64 568 71,11 75,29 3,57 6,92 73,20 3,71 

18 14.04.2011 70 361,5 11 23 47 642 67,14 81,03 1,68 4,70 74,09 1,83 

D
o
w

n
 

19 10.03.2011 38 521,5 27 29 9 978 23,68 25,00 2,69 5,37 24,34 3,11 

20 28.03.2011 85 824,5 45 42 43 1519 50,59 48,86 2,88 5,28 49,73 3,27 

21
a 

30.03.2011 53 322,5 20 20 33 572 62,26 62,26 3,38 6,20 62,26 3,72 

22 14.04.2011 47 341,5 17 18 29 619 61,70 63,04 2,67 5,12 62,37 2,99 

23 18.04.2011 52 516 26 29 23 954 44,23 46,94 2,65 5,33 45,58 3,02 

24 19.04.2011 76 390,5 27 34 42 678 55,26 60,87 3,83 7,81 58,07 4,15 
a
These recordings are used for calibration. 
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The means of the performance characteristics are (values computed without the 

training records are given in the brackets): 

left: OP = 66.69±4.52% (65.68±4.40%), FP/min = 3.06±1.14 (3.21±1.20), 

right: OP = 68.03±17.58% (73.74±11.91%), FP/min = 3.92±1.45 (3.99±1.61), 

up: OP = 66.63±8.90% (69.63±5.61%), FP/min = 2.88±0.72 (2.94±0.79), 

down: OP = 50.39±14.46% (50.53±16.16%), FP/min = 3.38±0.46 (3.40±0.52). 

A fragment of one simulated experiment as well as its time-delay histogram are 

shown in Figure 6.26. In average, the event prediction was made 0.04 s before the 

event. Figure 6.27 demonstrates a set of photos of the real-time experiment. 

 

Figure 6.25 The Overall Performance (OP) and the number of false activations per 

minute obtained in the experiments for each pedal position. 

 

Figure 6.26 1.5 min length fragment of the experiment #2 (from 14/03/2011) and the 

time-delay histogram of detections. 
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Figure 6.27 Photos of the real-time stage of the experiment. 

6.2.3 Validation of the LPNPLS algorithm with real data 

The L1-Penalized NPLS (LPNPLS) method was tested with real data collected 

during the BCI experiments in monkey. For validation of the LPNPLS algorithm it was 

compared with generic NPLS. Four files were used for calibration (#2 for ‗left‘, #11 for 

‗right‘, #13 for ‗up‘, and #21 for ‗down‘ pedal positions, see Table 6.2, Section 6.2.1). 

The factors number in the predictive models ranges from 1 to 5. Identified models were 

applied to the test files (one file for each pedal position). 

The computational experiments demonstrated that results of L1-Penalized NPLS 

are comparable with NPLS ones or outperform them in terms of root mean squared 

error (RMSE). The comparison was carried out for all positions of the pedal and number 

of factors ranging from 1 to 5 (Figure 6.28). At the same time, it should be emphasized 

that the LPNPLS algorithm identifies the sparse predictive model. Contrary to the NPLS 

approach, only few electrodes are used for decision making (6, 6, 7, and 9 for ‗left‘, 

‗right‘, ‗up‘, and ‗down‘ positions of the pedal, respectively). Results of the MI analysis 

are represented for each pedal position in Figure 6.21 for LPNPLS, and in Figure 6.29 

for NPLS (number of factors    ). Thus, the Penalized NPLS algorithm effectively 

reduces the number of utilized electrodes without loss of prediction quality. Moreover, 

due to the reduction of the feature space, a considerable prediction improvement can be 

achieved. 
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Figure 6.28 Comparison of prediction errors (root mean squared error, RMSE (∑      

 ̂  
 )   ) for the NPLS and the LPNPLS algorithms on the test set for different number 

of factors and different pedal positions. 
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Figure 6.29 Impact on the predictive model of the components of different modalities 

according to the MI analysis of the NPLS predictive models for each pedal position; the 

spatial modalities are represented by the graphs and the corresponding color map. 



6.3. Discussion 

 

Brain-Computer Interface with cortical electrical activity recording 
149 

149 

6.3 Discussion 

6.3.1 Experiments in rodent 

The experiments in rodents have demonstrated that the most posterior electrodes 

have the strongest influence on the resulting model. These electrodes are located in the 

region of cerebellum. Additional experiments in several animals will allow better 

studying the location of zone of interest, its stability, evolution over time, 

neuroplasticity, etc. 

The identified factors can be interpreted taking into account their influence on 

the final model. The first factor is responsible for almost 57% of extracted information 

(see Section 6.1.1). For this factor the weights in the frequency-modality are positive for 

the low and high frequencies ( - and  -bands: 10-15 and 55-300 Hz), and negative for 

 -band [15-40] Hz. The signs of weights can be resulted from the changes of the signal 

energy in the corresponding frequency bands. The decrease of signal intensity in the  -

band could be associated with a motor related potential (MRCP) (e.g., Nascimento et 

al., 2006; Boye et al., 2008; Gu et al., 2009; Cabrera et al., 2010). At the same time, the 

MI analysis demonstrates that high frequencies (>100 Hz) have the most significant 

influence on the decisions. However, in the low frequency (~10.5 Hz) the event-related 

activity appears approximately 100 ms before the activity in  -band. In parallel, the MI 

analysis determined one electrode in the occipital cortex which has the greatest 

influence on the decision. It was demonstrated that the detection model, using only this 

electrode, has comparable prediction quality with the one, using all electrodes. Thus, 

taking into account the question of computational efficiency, the one-electrode 

predictive model seems preferable for the future implementation in the real-time BCI 

system. 

While the training data set in the rat‘s experiments was composed from 10-

minutes recording (about 1.3% of all available data), the observations of more than 750 

minutes (12.5 hours) were used for test. The same predictive model was applied in all 

tests. The only adjusted parameter was the detection threshold. It was slightly varying 

daily, that could be explained by instability of the acquisition chain as well as by 

variability of the brain activity. This parameter remains stable during the day of 

experiment. It can be adjusted from the first several minutes (3-5 min) of the 
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experimental session of the real-time BCI. Three groups of experiments were carried 

out over almost eight months. In the first two groups of experiments (simulation mode, 

Table 6.1) about 80% of the correct event detections were achieved (TPR = 78±13% in 

average), while the level of the false activations was acceptably low (FPR = 

0.44±0.24% in average). In almost eight months after the calibration model was 

obtained (the last group of the experiments in Table 6.1), TPR = 48±13%, FPR = 

1.25±0.29% in the open-loop and TPR = 54±10%, FPR = 1.30±0.23% in the close-loop 

experiments. The deterioration of the system‘s performance could be explained by 

significant degradation of electrodes. At the same time, it should be mentioned that both 

the open- and the close-loop tests gave similar results. Moreover, at least part of the 

false positives of all the groups of experiments resulted from artifacts produced along 

the recording chain (connectors and so on) and can be eliminated using wireless data 

transferring (Charvet et al., 2011). However, additional experiments in several animals 

are necessary to make more reliable conclusions. Finally, carried out close-loop real-

time experiments have demonstrated efficiency of implementation of the proposed 

method in the real BCI systems. Moreover, data collecting and processing time (for a 

0.5 s buffer of data: 0.25 s and 0.06 s, respectively) allows application of the proposed 

approach for several degrees of freedom. 

6.3.2 Experiments in monkey 

The experiments in the monkey were carried out to verify the proposed 

approaches in other animals. The experiments have shown that contrary to the rat, the 

strongest influence on the resulting model have electrodes located in the motor primary 

cortex. However, to determine a long-term stability, time evolution, neuroplasticity, 

etc., additional experiments should be carried out. 

The one-electrode model calibration was made on the basis of data from the 

primary motor cortex electrode, determined by the L1-Penalized NPLS algorithm. The 

MI analysis applied to the identified model has shown that, similar to the case of the rat, 

the low frequency band (<45 Hz) had relatively small influence on decision, whereas 

the high frequencies (>100 Hz) contain the most significant data. Thus, although the 

informative electrodes are located in the different parts of the rat‘s and monkey‘s brains 
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(cerebellum region in the case of rat, and motor primary cortex in the case of monkey), 

the identified activity responsible for the pedal-pressing events is rather similar. 

The training data set in the monkey‘s experiments were composed from four 

recordings (30-minutes length in total, which is about 17% of all available data), the 

observations of more than 180 minutes (3 hours) duration were used for testing. The 

only adjusted parameter was the detection threshold. Like in the case of the rat, it was 

slightly varying daily. During the tests, up to 70% of the correct event detections were 

achieved in average (       
       

      ,         
       

       , 

     
       

       , and        
       

       ), while the average level of 

the false activations was acceptably low (       
       

         ,         
       

 

        ,      
       

         , and        
       

         ). Some part of 

the false positives can be also eliminated by means of the wireless data transferring. 

Additional experiments should be carried out to make more reliable conclusions about 

other possible reasons of the quality deterioration. 
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Chapter 7. CONCLUSIONS 

7.1 Summary 

This study was undertaken as a step toward the fully autonomous (self-paced) 

BCI functioning in natural environment which is of crucial importance for efficient BCI 

clinical applications. The self-paced BCI in noisy natural environment requires a high 

level of selectivity for identification and discrimination of the specific neuronal activity 

against the background brain functioning during continuous monitoring. To approach 

this goal, we have studied the binary self-paced BCI in animals (rats freely moving in 

the cage and monkeys sitting on chair). Namely, we have analyzed the recordings of the 

series of the behavioral experiments in rodents and primates controlling a food 

dispenser by pushing a lever. Contrary to experiments carried out previously, the long-

term tests were realized in the present study. The short-term experiments allow the 

subject to be concentrated on the task that significantly simplifies data analysis. 

However, the long-term experiments are required for the real-life applications. 

Durations of our tests varied from 5 minutes up to 1 hour. Let us stress that in average 

feeding was taking about 40% of the experimental session in the case of the rats and 

35% in the case of the monkeys, the rest of the time was spent by the animals in 

spontaneous various activities. While the main goal of the study was to discriminate the 

specific neuronal pattern related to the control action, the additional goals were to make 

the decision using the single electrode recordings and to predict the control actions 

rather than detect them. Single electrode classification is desirable for the following 

self-paced BCI applications with multiple degrees of freedom. Early detection 

(prediction) allows avoiding the delays of execution. 

To achieve the necessary level of selectivity the Multi-way Analysis was chosen 

since it provides a simultaneous signal processing in several domains. In the present 

study, we have applied the mapping of the ECoG signal to the temporal-frequency-
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spatial space. However, additional modalities, like the phase information, can be easily 

incorporated. To extract knowledge from the experimental data, a variety of machine 

learning methods was applied in the BCI research. We have chosen NPLS as a basic 

approach of multi-modal analysis for extraction the BCI features and for the BCI system 

calibration. Specially developed for high dimensional and highly correlated 

observations, this method requires neither exhaustive search of the model nor 

regularization of the task. It does not depend on the metrics of the BCI system 

comparison. In our study we have only applied the criterion of the BCI performance to 

determine the threshold of binarization. 

To improve the capacity of the NPLS approach for treatment of high-

dimensional data, the Iterative NPLS algorithm (Eliseyev et al., 2011a; patent received) 

is introduced in the current study. Having lower memory requirements it allows huge 

datasets treatment, allows higher resolution of analyses, and preserves the accuracy of 

the generic algorithm. Moreover, INPLS demonstrates better robustness against noise 

which can be explained by the overfitting effect suppression. The method was 

implemented in the BCI system, which demonstrated successful results in series of the 

close-loop real-time experiments in rats. 

Selecting an effective subset of features could significantly optimize efficiency 

of the model. Proposed L1-Penalized NPLS algorithm (Eliseyev et al., 2012; patent 

received) directly includes feature selection in the modeling process. Contrary to other 

approaches which lead to a linear combination of all features, the L1-PNPLS provides a 

sparse solution. Applied in the BCI experiments with non-human primates, the method 

demonstrated efficient selection of the optimal subset of electrodes. 

One of the major problems of the BCI studies is significant variability of the 

neuronal signals, in particular, due to the brain plasticity. These changes in the recorded 

neuronal activity require recalibration of the BCI systems. The full system recalibration 

is a time and labor consuming procedure. The adaptive calibration aims to provide a fast 

adjustment of the BCI system to handle the time changes of the signal. Although the 

INPLS algorithm allows treating data arrays of huge dimension, this method cannot be 

applied for the adaptive learning. To overcome the problem, the Recursive NPLS 

algorithm (Eliseyev et al., 2011b) is proposed in the study. It allows online processing 

of the multi-modal data. The method can be efficiency applied for the adaptive learning 
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to treat the time-dependent recordings. Moreover, the proposed recursive algorithm 

demonstrated an excellent performance in comparison with NPLS in terms of accuracy 

(the difference in prediction quality in the real-data experiments did not surpass 0.2%) 

and convergence rate (in the model experiments the method converged after the first or 

the second iteration). The requirements for computation resources (memory) are low 

and do not depend on size of processed data, since the data is treated in the flow. In the 

real-data experiments, the same predictive quality (less than 0.2% prediction 

deterioration) was achieved with storing in the active memory only 10 points instead of 

the whole training set of 1000 points. Thus, RNPLS can be efficiently applied in the 

BCI systems, which is the perspective of the current study. 

The proposed approaches were tested in a set of long-term binary self-paced BCI 

experiments in animals (rats and non-human primates) and demonstrated promising 

results for the offline as well as for the open- and close-loop real-time modes (about 

80% of correct detections for the rat and up to 70% for the monkey, with acceptably low 

level of false activation: 1% and 3%, respectively). High frequencies are the most 

significant for decision making in the cases of both animals. Event-prediction was 

achieved ~100 ms before the moment of event for the rat, and ~20 ms, for the monkey. 

Whereas experimental conditions are more complicated than in experiments of other 

groups, performance characteristics of our methods either surpass or are comparable 

with others. Detection of event-intention instead of event-detection was achieved. 

Moreover, only one electrode was used for decision. Computational efficiency of the 

algorithms allowed their application in the real-time BCI systems. Thus, the suggested 

approaches provide the essential basis for further development of a human BCI system. 

At the same time, additional experiments will allow following studying of the 

long-term robustness or/and instability of the predictive models, effects of the brain 

plasticity, etc. Moreover, the experiments in different animals will make it possible to 

evaluate the discriminative efficiency of the methods for different BCI tasks. 

7.2 Perspectives 

In the current study a set of methods have been proposed for the binary close-

loop real-time BCI. However, the binary BCI represents a particular case of the 

applications of the suggested approaches. The same methods can be applied for the 
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multi-class BCI with minimal modifications. The computational efficiency of the 

proposed algorithms is sufficient enough for the BCI system with multiple degrees of 

freedom and using a standard portable computer. Moreover, it is possible to apply these 

methods for the continuous control (    ). 

The Recursive NPLS algorithm was tested with real data but in the simulation 

mode. The method showed itself to good advantage and should be applied for the 

adaptive calibration of the BCI system. 

The L1-Penalized NPLS algorithm was used for selection of the effective subset 

of electrodes. The next step would be the application of this method for other modalities 

(e.g., frequency). 

In the present study, we have applied the INPLS/RNPLS/L1-PNPLS 

regressions, which are combinations of projection techniques with linear regression. 

However, the NPLS projections can be coupled with other regression and/or 

classification techniques that can provide further improvement. 

Finally, additional computational optimization should be provided in real-time 

BCI system. Internal structure of the proposed methods allows an effective code 

parallelization which will be included in further implementation of our BCI. 
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