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Résumé 

Les recherches avancées en acquisition d'image et les progrès effectués dans les méthodes 

de traitement d'image ont conduit les mathématiciens et informaticiens dans des domaines 

d’application cruciaux pour les médecins et les biologistes. Le diagnostic précoce de 

maladies (comme la cécité, le cancer et les problèmes digestifs) sont des domaines d'intérêt 

prioritaire en médecine et il repose en grande partie sur l’examen d’images 

microscopiques, dont l’acquisition a été favorisée par le développement considérable de 

nouveaux équipements, comme le microscope bi-photonique à balayage laser et le 

microscope de fluorescence par réflexion totale interne, qui  fournissent déjà une bonne 

idée des caractéristiques intéressantes de l'objet observé. Cependant, certaines images 

biomédicales ne sont pas appropriées { l’extraction rapide et aisée d’une quantité 

suffisante et pertinente d'information. Des méthodes de traitement d'image adaptées 

fournissent alors un soutien nécessaire { l’extraction d’informations utiles (en particulier 

au diagnostic) sur les objets d'intérêt dans ces images biomédicales. Des méthodes de 

calcul rapides permettent l'analyse complète, dans un temps très court, d'une série 

d'images, offrant une bonne estimation des caractéristiques souhaitées. La présente thèse 

porte sur l'application de ces méthodes à trois séries d'images destinées à trois différents 

types de diagnostic ou d'inférence. Tout d'abord, des images de rétine ont été traités pour 

la détection des cônes, en cas de disparition partielle ou totale des bâtonnets, dans la 

pathologie de la rétinite pigmentaire (RP). Le logiciel utilisé a été capable de détecter et de 

compter le nombre de cônes dans chaque image, puis de donner une estimation de leur 

distance moyenne, paramètres permettant le diagnostic de dégénérescence de type RP. En 

second lieu, le processus de gastrulation chez la drosophile a été étudié, afin d’observer les 

mouvements cellulaires et les mitoses éventuelles et les résultats sont cohérents avec les 

recherches récentes. Pour finir, une autre série d'images a été traitée, où la source est une 

imagerie vidéo, à partir d'un microscope bi-photonique à balayage laser. Dans cette vidéo, 

les objets d'intérêt sont des cellules biologiques. L'objectif est de suivre les cellules et 

d’observer si elles subissent une mitose. La position de la cellule, l'espacement 

intercellulaire et parfois le contour de la membrane cellulaire sont globalement des 

facteurs limitant la précision dans cette vidéo. Une méthode appropriée d'amélioration de 

l'image et de segmentation a donc été choisie, permettant de détecter et d’observer cette 

mitose, tout en proposant une intervention interactive humaine en cas d’échec, afin 

d’éliminer toute fausse inférence.  
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Abstract 

Advancement in Image Acquisition Equipment and the progress made in the Image 

Processing Methods have led mathematicians and computer scientists into areas which are 

critical for physicians and biologists. Early diagnoses of diseases (such as blindness, cancer 

and digestive problems) are priority areas of interest in medicine and it is largely based on 

examination of microscopic images. The acquisition of these images was facilitated by the 

considerable advancement in the development of a number of new equipment, like Two-

Photon Laser Microscope, Fluorescent Microscope, etc. which already provide a good idea 

of the interesting features of the object being viewed. However, some biomedical images 

are not suitable for fast and easy extraction of relevant information. Image Processing 

methods have been providing good support to deduce useful information about the objects 

of interest in these biological images. Fast computational methods allow complete analysis, 

in a very short time, of a series of images, providing a reasonably good idea about the 

desired characteristics. The thesis focuses on the application of these methods in 3 

independent series of images for 3 different types of diagnosis or inference. First, Images of 

retina were treated for the detection of cones, in case of total or partial loss of rods, , in the 

pathology of retinitis pigmentosa (retinitis pigmentosa, or RP). The method used was able 

to detect and count the number of cones in each frame, and to estimate their average 

distance, which are important parameters in the diagnosis of degenerative type of RP. 

Secondly, a gastrulation process in drosophila was studied to observe the movements and 

cell mitosis, and results were consistent with recent research. Finally, another series of 

images was treated where biological cells were observed to undergo mitosis. The source 

was a video from a photon laser microscope. In this video, objects of interest were 

biological cells. The idea was to track the cells if they undergo mitosis. Cell position, spacing 

and sometimes contour of the cell membrane are broadly the factors limiting the accuracy 

during the segmentation process. Appropriate method of image enhancement and 

segmentation were chosen to develop a computational method to observe this mitosis, 

while proposing human intervention in some cases to eliminate any false inference. 

  



viii 
 

Table of Contents 

SECTION I  INTRODUCTION 

………………..…………………………………………… 1 
 

SECTION II IMAGING AND MODELLING OF A DEGENERATIVE 

DISEASE OF RETINA 

………………..……………………………………………  5 
 

SECTION III MODELING AND IMAGE PROCESSING: 

GASTRULATION IN DROSOPHILA 

…………………..…………………………………………  48 
 

SECTION IV MITOSIS DETECTION 

…………………..…………………………………………  77 
 

APPENDICES 

…………………..…………………………………………  91 



ix 
 

  



SECTION I 

INTRODUCTION 

 

The bioinformatics is a branch of science which deals with the computer-based analysis of 

large biological data sets. It is a developing field helping in collecting, linking, and 

manipulating different types of biological information to discover new biological insight. 

Human science, ecological science and many other fields of biology are interlinked and 

have important information for each other. Bioinformatics emerged to integrate all these 

fields accelerating the research and development in the field of biology and medicine with 

the help of computer technology. 

 

After years of research and development, biologists and physicians manage to collect huge 

amount of valuable data from their experiments all over the world. These biologists and 

physicians need a tool that can link information from different areas like biology, statistics, 

genomics etc…, in order to make their research faster. For instance, they may need some 

data regarding effects of particular gene or protein on human being and their effect on 

experimental animal, so that they can interlink and generate some beneficial results or 

antidote that helps in human development or defence against pathogens. Eventually, 

bioinformatics provides that help in interlinking information from different fields or 

species and leads to quick new results. 

 

Digitizing the data is also an important aspect in bioinformatics, so that information could 

be transmitted wherever required. The format and size of data is an important factor in this 

regard. Storage and compilation of huge biological data so that it could be used by 

professional researchers in the field of medicine and biology is the primary objective of 

bioinformatics. Storage of raw data in the form of databases might not be a difficult task, 

but extraction of ‘only’ required information from the raw data is a real challenge for 

researchers. This challenge led scientists and engineers into development of bioinformatics 
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tools dedicated for biological applications. These tools are designed so as to help the 

biologists, with little knowledge of computers software, to analyze their raw data without 

any difficulty in using these tools. 

MOTIVATION 

A very important application of bioinformatics lies in the early diagnosis of fatal diseases as 

cancer and other diseases leading to permanent disability of any human organ. Early 

diagnosis, sometimes, decreases the chances of falling victim of these diseases. This aspect 

is a prime motivating factor for biologists as well as computer scientists. 

 

In view of above, we discuss in section II, processing of retinal images from an eye suffering 

from retinitis pigmentosa in which abnormalities of the photoreceptor cells (rods and 

cones) lead to progressive visual loss. Different phases for processing images of retinal 

explants are explained from scaling and contrasting to segmentation, inference and 

diagnosis. Histogram-thresholding technique has been used for segmentation of images in 

which decision about a pixel to be part of an object, or of its background or of its boundary, 

is determined from the histograms of the local image intensities in that region. After 

segmentation of cones, their geometric centres are calculated in order to determine the 

horizontal intercept distances between the cones. The main objective of this work is to 

identify the areas of macular degeneration where cones have disappeared. Research 

publications with supplementary illustration of this work have been included in 

Appendices A and B. 

 

In section III, we analyze by using image processing techniques the cell deformation and 

motion in the Drosophila melanogaster embryo searching to delimit the first period of 

invagination without proliferation of the gastrulation process and then propose a 

biomechanical model, based only on the consideration of elastic and contractile forces 

exerted on cell walls and on the centrosome through the combination of myosin 

contraction and cytoskeleton rigidity. Numerical simulations of this model made during the 

period of gastrulation without proliferation suggest that the model adequately simulates 

in-vivo cell behaviour, showing the start of the streak formation at the two extremities of 



- 3 - 
 

the embryo cylinder, followed by a propagation of the invagination to its central part. 

Appendices C and D provide further illustration of the work in this section. 

In section IV we explain how this work could be extended to different other fields within 

the wide domain of biology and medicine. 
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SECTION II 

IMAGING AND MODELLING OF A DEGENERATIVE 

DISEASE OF RETINA  
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CHAPTER 1 

INTRODUCTION 

1.1. RETINA AS A SYSTEM 

The rationale in choosing retina as a system to explore is based on both biological and 

medical reasons. Retina is an accessible part of the central nervous system (Fig. 1.1(a), [2]). 

It is accessible to biologists because of the laminar organization of different interconnected 

neurons of the outer and inner retina, and to physiologists that can test the function of the 

system. Retina is also one of the favorite systems for developmental and molecular 

biologists as the molecular mechanism of photoreceptor differentiation in the fly 

Drosophila melanogaster (most commonly used model organism) has been discovered 

with the elucidation of the RAS/MAP kinase signaling pathway. The genetic of inherited 

retinal degenerations (IRD) has been a field of intense research for the last 20 years, with 

more than 100 genes identified as cause of these diseases ([3]). For our society, the retina 

is of interest to medicine since the occurrence of a peculiar form of IRD, the aged-related 

macular degeneration (AMD) is increasing as our population ages. IRD will be amenable to 

gene therapy in the near future as dogs have been already effectively treated ([4]). 

From these many aspects of retinal biology, our system will deal with one of the most 

promising approach for therapy of retinitis pigmentosa (RP) a common form of IRD with 

sequential loss to rod and cone photoreceptors. The laboratory Inserm U592 led by J. Sahel 

has pioneered the protection of cones as an effective approach to treat RP ([6]). A novel 

tropic factor Rod-derived Cone Viability Factor (RdCVF) was shown to be necessary for 

cones to survive after rod death in a mouse model of the disease. This therapeutic approach 

would alleviate a common mechanism leading to blindness in several different conditions 

that initially affect rods, independent of the nature of the causative mutation. We intend to 

model the cellular interactions between rods and cones for better defining the biological 

properties of RdCVF signaling and for treatment of the disease.  
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Finally, additional reasons to select retina as a system and develop an image processing 

from the wealth of data generated in the frame of RdCVF research come from the functional 

genomic approaches: proteomic ([7]); transcriptomic ([8]) and images from the expression 

cloning platforms of the Inserm U592 ([6]). 

                                                     

 

Figure 1-1: (a) Schematic representation of the retina and cellular populations (b) SEM of 

cones and rods ([5]). 
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1.2. RETINITIS PIGMENTOSA AND MACULAR DEGENERATION 

Retinitis Pigmentosa (RP) is a group of hereditary diseases of retina of  the eye. Retina is a 

light sensitive delicate layer of cells which picks up the pictures and transmits them to the 

brain. In humans, there are two types of light sensitive cells in the retina: rod cells and cone 

cells. RP may be caused by a breakdown in the function of the rods or the cones in some 

part of the retina. The retina is so complex that breakdowns may occur in a variety of ways 

and so RP is not a single disorder. The breakdown of cone function may be called Macular 

Degeneration. 

The macula is located roughly in the center of retina, temporal to the optic nerve. It is a 

small and highly sensitive part of the retina responsible for detailed central vision. The 

macula allows us to appreciate detail and perform tasks that require central vision such as 

reading. Macular degeneration is a general term used to describe a number of diseases of 

the retina. Of these diseases, age-related macular degeneration is the most common, 

primarily affecting people over the age of 60. With macular degeneration, a spot called a 

scotoma may appear in the central vision. This scotoma may look light, or dark, or blurred.  

Figure 1-2: Cone Rod Density ([9]). 
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Fovea is the very center of macula. It measures about 1.5 mm in diameter equivalent to 5 

degree field of view represented in Figure 1-2. In Figure 1-3, the retinal fovea (A) measures 

1.5 mm in diameter and contains only 50,000 cones on a total of 5 millions cones in the 

whole retina. The retinal periphery (B) contains 120 millions rods. There is a blind spot in 

the field of vision where the optic nerve leads back into the brain (Figure 1-2 Left). There 

are no rods and cones at this point, so a small object becomes invisible if it lies in this field 

of vision.  

Figure 1-3: Distribution of rods and cones in fovea (left) and in the periphery (right) ([10]). 

Figure 1-4: 3D shadow projections of confocal images of the fluorescent cones. Scale bar: 
10µm ([11]). 
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In Figure 1-4, C and D represent 3D shadow projections of confocal images of the 

fluorescent cones in fixed retinal whole mounts. 

1.3. SPATIAL MODELING OF RETINAL DEGENERATION 

Our animal model of rod-cone interactions will be the rd1 mouse, a retinitis pigmentosa 

(RP) model that carries a mutation in a photoreceptor-specific rod, the phosphodiesterase 

gene (Pde6b), leading to sequential degeneration of rod and cone photoreceptors. In this 

model, rod photoreceptors degenerate through apoptosis between the first and fifth week 

post-natal, the cones die subsequently over a period that extends to three months ([12]) 

(see Figure 1-5 ). In that study the evolution of both cell populations has been studied at 

some limited time points. A more precise description of cell population evolution at 

different post-natal days will be obtained through image analysis involving cone counting 

together with the estimation of the cone density and homogeneity over the entire surface 

of the retina. 

The recent identification of the Rod-derived Cone Viability Factor (RdCVF) ([6]) has 

significantly increased the knowledge about the interaction between rods and cones and 

has contributed to the understanding of secondary cone degeneration and visual loss in RP. 

This trophic factor was identified by expression cloning using a high content screening 

approach. It is mainly produced by rod cells and is necessary for cone survival. After rod 

loss, cones die by lack of trophic support. The restoration of RdCVF expression in patients 

after rods have been lost is a current therapeutic treatment of RP ([12]). 

The aim of the retinal image study is to model the degeneration of cones from a spatial 

point of view together with images of flat-mounted retina of the rd1 mouse (Figure 1-5) 

and gene expression data for the same samples by Affymetrix Genechip hybridization (PN8, 

9,10, 11, to PN35). The cones are identified by their ability to bind specifically to the peanut 

agglutinin ([14)]. The U592 INSERM platform of cell counting has been used by T. 

Léveillard to generate images of the retinal explants of oriented (nasal-temporal) rd1 mice 

at post-natal days corresponding to the loss of both rods and cones. The orientation will be 

used to look for a gradient in the process of cone degeneration as it has been previously 
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reported ([15]). An objective will also be to complete the image series by analyzing the 

secondary cone degeneration (weekly from 5 weeks to 3 months). 

Figure 1-5: Rod and cone cell populations during the degeneration of rd1 mouse (processing done 
by T. Léveillard, U592 INSERM). 

Raw data in the mice retina already represent a huge number of images (about 500 GB) 

showing retinas affected by the retinal degeneration. These images, recorded with confocal 

microscopy at 9 levels of depth inside the neural retina, allow us to detect in the whole 

retina the positions of cones. 

1.4. STATISTICAL TEST ON THE UNIFORM DISTRIBUTION OF CONES 

To model the spatial degeneration of the retina it is necessary to assess if this degeneration 

is uniform or oriented in some direction. A gradient of degeneration from the periphery to 

the center is indeed suspected by some experts of the field. A common reference for the 

acquisition and representation of the retinal images is defined (based on the naso-temporal 

axis and on the blind spot position). This reference will permit registration of the images 

between individuals and for the same individual the in-depth quality control between 

neuro-retina slices. The determination of a radial grid will allow us to obtain the best 

framework for counting the cones present in each region and the best scale is the largest 

one, corresponding to the occurrence of at most one cell in each region. Beyond this 

uniformity test, a test will be done to detect a possible gradient of the presence of cones in 
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the naso-temporal axis or in the centrifugal direction (due to heterogeneity in the 

distribution of rod loss, responsible for the secondary cone degeneration). 

A mathematical model considers the influence of rods on cones on a semi-lattice Model. 

This model is an Ising like statistical structure ([16-17]). Cones are assumed to be at the 

nodes of a two-dimensional lattice whereas rods fill the interspaces. Cones are supposed to 

be either alive or dead. The reason of this modeling is that cones can be observed (see 

Figure 1-6), whereas rods can not be. Rods will be modeled in a relative way, considering 

the proportion of living rods compared to the initial rods population. This proportion will 

be assessed through the rod-specific gene expression (rhodopsin, rod-arresting). For the 

rd1 mouse retina, the transcriptomic temporal data are available over 11 time points from 

day 1 to day 35 post-natal. 

When the gene expression is maximum, we consider that 100% of rods are present in the 

interspaces. If the gene expression value is halved, we also consider that the presence of 

rods is halved.  

Figure 1-6: Cone mosaic as revealed by anti-cone opsin immunostaining (cones are absent in the 
circles) ([18]). 

The lattice can be re-indexed as: 



15 
 

𝑥 = (𝑥1 …𝑥𝑛)) 

If n cones are present, each variable 𝑥𝑖  (𝑖 = 1 …  𝑛) is equal to 1 if the corresponding cone i 

is alive, and to 0 otherwise. The probabilities that a state changes, are given by  

𝑃 𝑥𝑖 𝑡 + 1 = 1|𝑥(𝑡)  and 𝑃 𝑥𝑖 𝑡 + 1 = 0|𝑥(𝑡) . In this model, it is assumed that: 

𝑃 𝑥𝑖 𝑡 + 1 = 1|𝑥(𝑡) = 𝑓(𝑘) 

where k(t) is the number of rods alive in a certain range from i (a disk of a certain radius 

for example) and f a function increasing from 0 to a, with 𝑎 ≤  1. Different functions can be 

tried such as the affine function, sigmoid, etc. The model parameters will be chosen so as to 

maximize its maximum likelihood.  

This model is built under the hypothesis that cones and rods are uniformly distributed 

(hypothesis reinforced if the test above has proved the homogeneity of the occurrence of 

still alive cones) and exert positive interactions on the cones (through a trophic substance, 

RdCVF, secreted by rods and diffusing in the neural retina to the cones). However, the 

model should be changed in case of an orientation of the rods and cones distribution. The 

model chosen in the present study is an Ising-like or logistic model, with :  

𝑓(𝑘) =
𝑒𝑤𝑘

1 + 𝑒𝑤𝑘
=

1

1 + 𝑒−𝑤𝑘
 

or 

𝑤 = log

 
 
 
 
 log

1 − 𝑓(𝑘)      

𝑓(𝑘)      

𝑘

 
 
 
 
 

 

where w is the rod-cone interaction parameter. 

𝑤𝑆𝐸 =

−  

 
 
 
 log  

1 − 𝑓(𝑘)      

𝑓(𝑘)       

𝑘

 
 
 
 

𝑘=0...5

6
≅ 1.2 
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𝑤𝑁𝑊 =

−  

 
 
 
 log  

1 − 𝑓(𝑘)      

𝑓(𝑘)       

𝑘

 
 
 
 

𝑘=0...5

6
= 0 

where 𝑓(𝑘)       =
 𝑓(𝑘)𝑖=1,𝑛(𝑘)

𝑛(𝑘)
 =

 
 
 

 
 

5

10
 for 𝑘 = 0,

7

20
 for 𝑘 = 1

5

30
 for 𝑘 = 2,

5

25
 for 𝑘 = 3

2

10
 for 𝑘 = 4,

1

5
 for 𝑘 = 5

  

Figure 1-7: Cone-rod distributions in the two opposite quadrants NW and SE. 

In Figure 1-7; ki  is calculated for example in the lattice box i of the SE quadrant by counting 

the number of rods in its 8 neighbour boxes: this empirical number equals 3. It is easy to 

show that the two empirical meanswSE andwNW are significantly different (p=0.01), by 

using a Student t-test which allows concluding to the heterogeneity of the distribution of 

cones and rods between the quadrants NW and SE. 

1   2   3  

4    i   5 

6   7   8        

1   2   3  

4    i   5 

6   7   8        
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We will not present here definitive conclusions about estimations of w and homogeneity 

tests, because this part of the research program has been stopped 2 years ago by a 

dramatic event in the U592 INSERM (http://www.20minutes.fr/paris/296891-Paris-Un-

blesse-dans-l-incendie-a-l-hopital-des-Quinze-Vingts-a-Paris.php) interrupting suddenly 

the retina image production.  
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1.5. SHAPE MODELING DURING CONE DIFFERENTIATION 

Transplantation of retinal sheet in the rd1 retina restores visual response attributable to 

cone function [19] and RdCVF is able to prevent cone degeneration [6]. Nevertheless, 

RdCVF was identified by expression cloning using cell viability, not cell function, as assay. It 

is theoretically possible that a secreted differentiation factor not yet identified will 

complement the viability activity of RdCVF and that both will be required for effective 

restoration and maintenance of retinal function and potential treating of RP patients. So, 

we would like to take advantage of digitalized images from expression cloning experiments 

to look for factors directing cell differentiation. In the experiments, cone-enriched retinal 

cultures from chicken embryos are treated with pools of 100 clones. Each pool of 100 

clones from the retinal expression library was tested for its ability to maintain cone 

viability (live/dead kit from Invitrogen) in 8 independent wells.  

           

Figure 1-7: Cell morphology in cone-enriched cultures (image obtained by T. Léveillard, 

U592 INSERM). 

In these retinal cultures from chicken embryos, the morphology of viable cells is not 

uniform (Figure 1-7). The bipolar cells are cones, the long cell at the top left represents a 



19 
 

glial cell and the perfectly round cells are most likely not differentiated. When seeded at 

low density and in the absence of serum, retinal precursor cells adopt a cone differentiation 

state by a default differentiation pathway resulting in about 60 to 80% cone-enriched 

culture ([20]). 

We have developed a statistical method to define the different cell morphologies. The 

features used to classify the morphotypes are based on classical measurements such as cell 

perimeter/area ratio, elliptic ratio, etc. Next, a mixture model clustering is performed to 

identify all the different morphotypes. At least two are present: one for the living, but non-

functional cones and the other for the differentiated retinal progenitor cells. A further 

study could involve a more detailed modeling. For instance, for star-convex cells it is 

possible to represent cells by angular functions, and use distances between these functions 

to cluster the corresponding cells. In this process one must pay attention to have a method 

that is invariant under rotation. Even further we can model the cells by using all their 

surface intensity values descriptions and not only their contours. This would involve using 

functions with a two-dimensional support. 

Having established the list of morphotypes that we will assume to represent different 

differentiation states, essentially rods and cones in the present study, we have looked for 

their distribution in the expression cloning experiment. The plan is to look for statistical 

enrichment of the morphotypes for certain pools of clones. If such aggregation is found, the 

interpretation will be that in these pools, a secreted factor will be driving the 

differentiation of retinal precursor to a peculiar differentiation fate, as seen by its 

morphotype. The selected pools are divided in sub-pools of 10 clones; the assay is repeated 

by using a limited dilution the cDNA encoding the differentiation factor. 

To validate the factor identified, the protein or a viral vector encoding for this factor has 

been injected in the eye of the rd1 mouse, allowing to follow the differentiation and the 

function (electro-retinogram) of the injected mice. These experiments conducted in 

conjunction with Rd- CVF tests could lead to a biotherapy of RP, involving RdCVF and the 

novel factor in order to maintain respectively cell viability and cell function. In the future 

an application could be possible on the human retina, if a non invasive procedure (like the 
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fluorescence of non-toxic membrane potential dependent optical dyes) could be performed 

on the still functional retinal cells, which would indicate the localization of the still living 

and functional cells during degeneration. 

1.6. IMAGE SEGMENTATION 

Enhancement algorithms have been used to reduce image noise and increase the contrast 

of desired objects. The idea is to extract a wealth of information from an image, which in 

our case would be to detect the abnormalities in a medical image. Accurate interpretation 

may become difficult in case noise levels are relatively high. 

Human Vision System has the capability to group the image into segments which contain 

pixels with some common characteristic (same grey level or colour). The goal of image 

segmentation is to detect and extract the regions which compose an image. Common 

requirements from a segmentation process suggest that it should be unsupervised, 

computationally efficient, flexible and robust. In many cases, the segmentation method 

decides the outcome of the entire analysis, since subsequent process is based on the 

segmented region(s) ([21-26]).  

Simple segmentation techniques include Thresholding and Clustering. In Thresholding 

technique, thresholds could be static and may be applied globally across the image; or 

dynamic which could be applied locally so that the threshold varies across the image 

(thresholds could be chosen using bi-modal and multimodal histograms). Not necessarily 

such thresholds would exist in an image or it could be difficult to infer an appropriate 

threshold from the image histogram. In places where noise and texture varies, this 

technique becomes inadequate for segmentation. In Clustering Technique, a collection of 

data points that have similar colour or texture are clustered together. This could be done in 

hierarchical manner or by partitioning the image into various disjoint “imagettes”.  

Clustering and Thresholding methods are global and do not retain positional information 

(invariant to spatial rearrangement of pixels). The resulting segments are not connected 

and could be widely scattered. 
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The segmentation techniques could also be classified as Region or Boundary-based. In 

Region-based Segmentation, Region Growing and Split-and-Merge methods exist, whereas 

in Boundary-based Segmentation, First-Order and Second-Order approaches are common. 

In First Order methods, a gradient mask is convolved with the image to obtain the gradient 

vector. Sobel Operator introduced a weighing local average measure on both ends of the 

central pixel. Canny proposed an analogue of the lateral inhibition retinal function, the 

derivative-of-Gaussian (d-o-G) filter as a near optimal filter with respect to three edge-

finding criteria, i.e., a good localisation of the edge, one response to one edge, and high 

probability of detecting true edge points and low probability of falsely detecting non-edge 

points. Deriche, based on Canny's criteria, used a filter with impulse response similar to 

that of d-o-G but which lends itself to direct implementation as a recursive filter.  

In Second Order methods, optimal edges are found by searching for places where the 

second derivative is zero, or where zero crossing occurs. Later these boundary elements 

are connected to form lines or curves (Hough Transform and hierarchical Hough 

Transform). 

In the following chapter, we will focus on a necessary step before the modeling, the image 

analysis. 
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CHAPTER 2 

IMAGE ANALYSIS 

2.1 IMAGE ACQUISITION AND FIRST TREATMENT 

The images of retina in mice have been obtained after dissection and 2D-mapping from 

confocal microscopy of retinal fragments. Here we will use only the first of the 9 levels of 

the confocal slices and we will assume that we observe only a typical imagette at the 

peripheral level on which we detect a transition to the cone degeneracy (consecutive to the 

primary rods disease, which causes the disappearance of the trophic factor secreted by 

rods ensuring the cones survival). Treatment done on the imagette has to be repeated all 

along retinal mapping, but the methodology is shown on this only one. Figure 2-1 shows 

the first contrasting step done on the imagette before the stereological study.  

2.2 STEREOLOGY APPROACH 

Statisticians regard stereology as a form of sampling theory for spatial populations. 

Stereology exploits the fact that some 3-D quantities can be determined without 3-D 

reconstruction. For example, the 3-D volume of any object can be determined from the 2-D 

areas of its plane sections, without reconstructing the object (this means that stereology 

only works for certain quantities, like volume, and not for other quantities). We assume 

that the altitudes of the cones, orthogonal to the retinal surfaces, are following Gaussian 

distribution with respect to a base plane tangent to the exterior of the retina. Hence, the 

distribution of the z-values of the cone-sections is supposed to be also Gaussian and same is 

true for the surface areas of the cone-sections. 
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Figure 2-1: Confocal microscopy images from the whole mouse pathologic retina with 236 
imagettes ([13]). 
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Figure 2-2: (a) Confocal microscopy images from the whole mouse pathologic retina with 236 
imagettes [13], (b) particular imagette, and (c) its skeletonization. Results after (d) Laplacian 
filtering, (e) Sobel Filtering, and (f) 5 x 5 Grey Histogram Thresholding. 
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2.2.1 SAMPLING PRINCIPLES ([1]) 

In order to extrapolate from a few plane sections to the 3-D material, essentially the 

sections must be ’typical’ or ’representative’ ones. In classical stereology, we assume that 

any plane section is typical. The material is supposed to be homogeneous. A statistical 3-D 

model of the material is built on these two assumptions. In modern stereology (design-

based), we select the plane sections according to a random sampling protocol, by choosing 

a random position to start cutting the material. This method is effective for non-

homogeneous materials as in biomedical sciences especially for lungs, kidneys, bones and 

brain. 

The intercept method is based on counting the number of segments determined within a 

set of objects cut by a set of parallel scan lines along a series of directions ([21-24]). The 

advantage of the method is that it still gives a statistical estimation of the grain size 

distribution even when individual contours are only partially outlined. This is particularly 

interesting as it matches the real operation conditions. A prerequisite however, is that the 

subset of contours revealed by etching is a dense and unbiased sample (e.g., no preferential 

etching due to crystallographic orientation). 

2.2.2 THE INTERCEPT METHOD 

The intercept method is a stereological tool defined on binary images. It is based on 

counting segments from objects of interest cut by scan lines along a series of parallel 

directions ([21-24]). This means that the preliminary image-thresholding-operations, to be 

performed, are totally independent.  

Hence, the binary intercept method uses simpler images and simpler algorithms, but it has 

some disadvantages. The result is not robust with respect to the grey-level threshold 

especially using absolute thresholding on images with non-uniform luminance. As a result, 

some boundaries are not detected whereas many spurious ones do appear. Image rotation 

has to be performed using an adequate interpolation algorithm which may lead to artificial 

intercept counts. These are required to be filtered out by applying additional processing 

such as the linear filters [25]. 
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The grey-level intercept method deals directly with the original grey-level image that 

contains more information than the binary-level image. This method analyzes the grey-

level profile or its derivative. Rotation is performed on the original grey-level image using a 

linear re-sampling algorithm that better preserves the information. The transitions along 

any direction can be selected with sub-pixel accuracy. 

2.2.3 DETECTION OF THE GREY-LEVEL TRANSITIONS 

Grey-level transitions can be analyzed at the sub-pixel scale using the tools implemented 

into the EasyGauge library (Euresys). A scan line is drawn in a portion of image with its 

associated profile and derivative (Figure 2-2). Peaks along the profile are identified to 

determine the transitions positions. A peak is the area comprised between the profile (or 

its derivative) and a horizontal user-defined threshold level. All pixel values within the 

peak are taken into account to compute the exact transition location. The parameters 

which help to detect valuable transitions include Threshold level, Amplitude of the 

transition, Minimal area of the transition, and Thickness (linked to the number of parallel 

segments used to extract the data profile). The three last parameters reduce the influence 

of noise. Transition detection can be improved by applying a Gaussian filter along the 

profile by removing the noise and keeping only real transitions.  

Two types of transitions can be relevant. ’White to black to white’ transitions correspond to 

light objects with darker boundaries. In this case, the transitions are detected along the 

profile. ’Black to white’ or ’white to black’ transitions correspond to dark objects in a light 

matrix or vice-versa. They are detected along the derivative profile. The pixels are not 

treated individually anymore but the relative difference between adjacent pixels is 

considered. 
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Figure 2-2: Detected transitions represented by crosses ([1]). 

2.3 IMPLEMENTATION OF THE METHOD 

A validation program can be implemented by following the three steps given below:  

 Figure 2-3: Left image shows light grains separated by darker boundaries. Right image shows a mix 
of light and dark phases ([1]). 

1. Circumscription of a circular area of interest within the image to prevent any anisotropy 

bias induced by the rectangular shape of the image frame, 
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2. Detection of the transitions inside the mask for a specified direction as explained in 

Paragraph 2.2.1 and measurement of intercept lengths, 

3. Repetition of step 2 by rotating the image and re-sampling the pixels by means of a linear 

transform. 

The 5x5 mask is obtained using a local grey-histogram thresholding: 

• we calculate the local histogram giving the grey level in a pixel and in each of its 24 

neighbors, 

• we decide a pixel is internal (and respectively external or frontier) if this local histogram 

is located below (and respectively above or with a part below and the complementary 

above) a certain grey threshold, 

• a pixel is not assigned to one of these 3 types, if its local histogram is not verifying any of 

the 3 threshold rules. 

 

                                                 

Figure 2-4: Local histograms and dispatching between internal (black), external (blue) and frontier 
(red) types. 

  



CHAPTER 3 

RESULTS 

As mentioned earlier, we are considering images of retina in mice obtained after dissection 

and 2D-mapping from confocal microscopy of retinal fragments. Currently we intend to 

process only the first of the 9 levels of the confocal slices and we assume to observe only a 

typical imagette at the peripheral level and on that imagette, we observe a transition to the 

cone degeneracy (consecutive to the primary rods disease, which causes the disappearance 

of the trophic factor secreted by rods ensuring the cones survival).  

Figure 3-1 shows the image from retinal explants. This image has been divided into 

imagettes each of dimensions 650x515 pixels. For the current task, these imagettes have 

been treated to be independent whereas they are actually dependent. The image mainly 

depicts macular degeneration, and it contains mostly cones in all regions because of the cell 

pathologic process observed in retinitis pigmentosa. A typical imagette is shown in Figure 

3-2. 

3.1 PROCESSING 

3.1.1 IDENTIFICATION OF CONES 

Having said that the images chosen are from an eye with retinitis pigmentosa, our objects 

of interest would be essentially cones. We intend to identify the cones and then explain 

their different geometries, their horizontal intercept distances, and if possible find their 

volumes, surface area and perimeters. 

3.1.2 CONTRAST ENHANCEMENT 

Images having low contrast may result from inadequate illumination, wrong lens aperture 

settings, or insufficient dynamic range in the image sensor. Contrast enhancement 

increases the dynamic range of the image. In contrast stretching, the existing grey-levels of 
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the original image are mapped to new levels. The image in Figure 3-2 is a 16-bit TIFF 

format image corresponding to 65536 grey levels suffering from low contrast. We intend to 

scale it down to only 256 levels. Further to enhance the total contrast of the image, we set 

the lowest pixel value in the imagette to zero (black) and the highest pixel value to our new 

scale of 255. Grey-levels between the upper and lower bounds are set to a linear ramp of 

values between 0 and 255. 

    

Figure 3-1: Retinal Explants ([13]). 
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Figure 3-2: A sample Imagette from Retinal Explants in Figure 3-1. 

Another method of contrast enhancement is the histogram equalization in which grey 

levels are stretched so that whole gray scale is smoothly used. If the grey-levels are not 

uniform for different blocks of the image, local histogram enhancement can be used. Here 

the image is divided into sub-blocks and the histogram equalization is done separately for 

each of the blocks. After the histogram equalization, all blocks are combined to reproduce 

the whole image. Interpolation might need to be done in order to make invisible the 

junction of the blocks. 

3.2 SEGMENTATION 

Segmentation is a technique to reduce the image only to useful information. Segmentation 

divides image into regions or objects of interest. The idea is to isolate these objects of 

interest which are cones in our case. The algorithms of segmenting images are based on 

discontinuity or similarity in pixel values. In discontinuity-based segmentation, an image is 

partitioned on the basis of abrupt changes in intensity. Thresholding, region-growing are 

examples of similarity-based segmentations. 

Edge detection reduces the amount of data and filters out useless information, while pre-

serving the important structural properties in an image. Gradient and Laplacian are two 

widely used methods in edge detection. The gradient method detects the edges by looking 
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for the maximum and minimum in the first derivative of the image. The Laplacian method 

searches for zero crossings in the second derivative of the image to find edges. The 

derivative represents the maximum change located at the center of an edge in the image.  

Sobel filter is a typical gradient filter. A pixel location is declared an edge location if the 

value of the gradient exceeds some threshold. As mentioned before, edges will have higher 

pixel intensity values than those surrounding it. So, once a threshold is set, we can compare 

the gradient value to the threshold value and detect an edge whenever the threshold is 

exceeded. Furthermore, when the first derivative is at a maximum, the second derivative is 

zero. As a result, another alternative to finding the location of an edge is to locate the zeros 

in the second derivative. This is known as the Laplacian method. 

3.2.1 SOBEL 

The Sobel operator performs a 2-D spatial gradient measurement on an image. Typically, it 

is used to find the approximate absolute gradient magnitude at each point in an input 

grayscale image. The simplest Sobel edge detector uses a pair of 3x3 convolution masks, 

one estimating the gradient in the x-direction (columns) and the other estimating the 

gradient in the y-direction (rows). A convolution mask is usually much smaller than the 

actual image. As a result, the mask is slid over the image, manipulating a square of pixels at 

a time. Sobel Masks are shown in Figure 3-3.  

 

Figure 3-3: Sobel with 3 x 3 and 5 x 5 Masks.  

The results of the filters are shown in Figure 3-4. 
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. 

Figure 3-4: Results after application of Sobel Filter (Left) using 3 x3 Mask, and (Right) using 

5 x 5 Mask. 

3.2.2 LAPLACIAN 

Similarly, Laplacian of the image detects intensity changes in an image and hence is often 

employed for edge detection. Before applying the filter to the image, the Gaussian image- 

smoothing is done to reduce the sensitivity to noise. Typical 3x3 and 5x5 masks being 

utilized in this filtering technique are shown in Figure 3-5 

The results of the two masks are shown in Figure 3-6. 

                                               

Figure 3-5: Laplacian Filter with 3 x 3 and 5 x 5 Masks. 
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Figure 3-6: Results after application of Laplacian Filter (Left) using 3x3 Mask, and (Right) 

using 5 x 5 Mask. 

After the image has been enhanced, the next task is the segmentation of the objects of 

interest (cones). The resultant image would be binary consisting of existing well-defined 

cones in the image and the background. The image can be converted to binary by choosing 

a threshold value after viewing the histogram of the imagette. To accomplish this task, the 

concept of histogram thresholding is employed. 

3.2.3 HISTOGRAM THRESHOLDING 

Thresholding is based on the assumption that the objects can be separated from the back- 

ground according to the grey-level values. Grey-levels within a defined range are selected 

as belonging to the foreground whereas grey-levels outside that range are considered as 

the background. As it is clear from histogram of scaled image (Figure 3-7), it is difficult to 

segment this image with a global threshold, whereas selection of an appropriate threshold 

is also a difficult task. We intend to pick a mask of 5 x 5, find its histogram, check whether 

all pixel values are low or high or otherwise, following the procedure given below: 

• If all the pixel values in the 5 x 5 mask lie in the right half, then the central pixel belongs to 

the inside of the object; 

• If all the pixel values in the 5 x 5 mask lie in the left half, then the central pixel belongs to 

the background; 

• If the histogram of the mask contains both low and high values, then the central pixel is 

the one corresponding to the edge of the object. 
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Figure 3-7: Histogram of the scaled image. 

Figure 3-8 depicts some histograms of adjacent masks. From these histograms, it is very 

easy to decide whether the pixel belongs to inside or outside of the object and also if it 

belongs to the frontier of the object. 

 

Figure 3-8: Local histograms of three different cases in Histogram-Thresholding. 

The resultant segmented image is shown in Figure 3-9, where 98 segments were detected 

and represented by the outlines. Same segments have been shown as solid in Figure 3-10 

for better perception. Later, we can determine the centers and areas of each segment. The 

centers are marked in Figure 3-11 as red. Some close neighboring segments have also been 

marked with distances approximately 2 times the diameter of a cone or less. The pixel 
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distance can be calculated using the Euclidean Formula for two points in 2D. If ((x1,y1) and 

(x2,y2) are pixel locations of the centers of two segments, their inter-distance ‘d’ is given by 

𝑑 =  (x2 − x1)2  +  (y2 − y1)2. 

 

Figure 3-9: Segmentation of cones using Histogram-Thresholding. 

 

Figure 3-10: Conversion of Segmented Cones to Solids. 

Treatment done on the imagette has to be repeated all along retinal mapping, as shown in 

the Figure 3-11. This Figure also depicts a common flaw in all imagettes. All the pixels 

treated have loss of information in the top-left corner. The problem occurred during the 

acquisition of images, so lost data could not be reproduced. Results otherwise were 

consistent with the biological study of RP. 
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In Figure 3-12, we represent the internal pixels organized in 98 connected components 

(black spots) with their barycenters in red. Note that the barycenters interdistance 

distribution shows the existence of 4 quadrants, the left superior LS being a typical 

degeneracy zone (with disappearance of the cones), the right inferior RI being a typical 

cones survival zone (without rods but with a conserved cones structure and a mean cones 

interdistance equal to about 2 times the mean cone diameter) and the 2 remaining 

quadrant presenting an intermediary feature (mild degeneracy with still the presence of 

some rods corresponding to small segmented cells) 

Histograms of the horizontal intercept distance length of the 98 connected components are 

shown in Figure 3-13, whereas the distribution in 4 quadrants is shown in Figure 3-14. 

Characteristics corresponding to the horizontal intercept distances in 4 quadrants are 

tabulated in Table 3.1. 

Figure 3-11: Segmentation of cones for complete retinal explants. 
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Figure 3-12: Representation of 98 objects from the connected components of the internal pixels set. 

 LI LS RS RI 

E(X) 45.4 47.4 36.95 32.15 

STDV(X) 26.6 28.8 25.00 18.47 

Table 3.1: Characteristics corresponding to the horizontal intercept distances in the 4 quadrants LS, 
RI, RS and LI of Figure 3.14. 
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Figure 3-13: Horizontal intercept histograms in the 4 quadrants LS (dark blue), RI (light blue), RS 
(violet) and LI (yellow) (processing done by Y. Usson, TIMC-IMAG). 

                        

Figure 3-14: Horizontal intercept distance Gaussian distribution in the 4 quadrants LS (dark blue), 
RI (light blue), RS (violet) and LI (yellow) ([26]). 



40 
 

CHAPTER 4 

DISCUSSION AND PERSPECTIVES 

4.1 DISCUSSION 

Focusing on the quadrant RI of Figure 3-12 (reproduced as Figure 4-1), we observe that the 

cone features and relationships between cones are approximately conserved: 

- the mean intercone distance (for both barycentric distances on Figure 3-12 and intercept 

distance on Table 3-1) is about 3.5 times the maximal cone diameter (10 µm, after Figure 1-

3) while it equals between 2 and 5 times this diameter on regular cones (Figures 1-3 and 1-

6), 

- the distribution of the objects diameters is about the same as in the slices of Figure 1-3. 

The number of sections of small diameter (less than 5 µm) is equal to 23, that is about 

twice the number of sections (11) of big diameter (more than 10 µm); these numbers are 

respectively 15 and 7 in Figure 1-3. 

Hence, we can consider the cones distribution in RI quadrant as practically normal (despite 

the small number of rods, which can be represented by the small cells). 

The situation is opposite in case of quadrant LS in which the mean intercone distance is 

about 4.5 times (Table. 3-1) the maximal cone diameter and where the big cell objects are 

absent. Thus quadrant LS presents a pathologic cone distribution typical of retina 

degeneracy.  
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Figure 4-1: Analysis of a Healthy Region.  

Figure 4.2: Analysis of a Region with Retinal Degeneracy.  

Figure 4-3: Analysis of a Region affected partially by Retinal Degeneracy. 
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The situation in the two remaining quadrants RS and LI is an intermediary between LS and 

RI, which shows that we have chosen to study an imagette of transition between cones 

degeneracy and cones survival zones. A fuzzy frontier of the degeneracy domain could be 

obtained by chaining these transition imagettes from the whole retina image of Figure 2-

1(a).  

After repeating this procedure on all imagettes of the retinal explants, one can identify the 

regions of macular degeneration, where the cones have disappeared. With the knowledge 

we have about cone densities in fovea and its periphery, we are in a position to infer the 

information about the different zones. For instance, we have the image for the retinal 

explants at day 1, which can be a reference for comparing the results of the image at day 7.  

Each imagette comprises a sick region, a healthy region or a combination of two. 

Practically, all sick portions in individual imagettes would combine to give a complete 

picture of the sick region in the complete image. Thus, boundaries of the sick region can be 

identified by a simple segmentation technique which would be marked along the junctions 

of the healthy and the sick region. 

4.2 PERSPECTIVES 

Raw data in the mice at the Day 35 after birth are representing a huge amount of images 

(about 500 GB, representing about 2000 mice retinas) showing retinas affected by the 

retinal degeneracy. These images recorded with confocal microscopy at 9 levels of depth 

inside the neural retina allow us to detect, in the whole retina, positions of the still alive 

cones (quadrant RI on Figure 3-12). Other images are coming from chicken (about 80 GB) 

and permit to see precisely the morphology of the cones at the cellular level. The treatment 

of these data will be done in the future through 7 steps: 

MOUSE 

1. define a common referential for the acquisition and representation of the retinal images 

(based on the naso-temporal axis and on the blind spot position). This referential  
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Figure 4-4: Idea of diagnosis of sick portion following the image processing. 

will permit the image registration between individuals and for the same individual, and the 

quality control in depth between neuro-retina slices, 

2. determine a grid scale for data representation with renormalization control and 

counting. This step will allow us to obtain the best framework for counting, at each vertex 

of the grid, the present cones or rods and the best scale would be the largest corresponding 

to the occurrence of at most one cell on each vertex, 

3. perform homogeneity test for the occurrence of the still alive cones (test of spatial 

uniformity for the localizations of the gravity centers of the cones, see Figure 3-12). This 

test will be done to detect a possible gradient for the presence of cones in the naso-

temporal axis or in the centrifugal direction (due to heterogeneity in the distribution of 

rods responsible of the secondary cones degeneracy), 

4. test the interaction of cones with a population of dying rods whose activating influence 

diminishes. This is a test on the significance of strictly positive values of interaction 
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coefficients in an Ising like statistical structure ([16]), by supposing that interactions are 

exerted in the framework of an Ising isotropic model, in which the interactions range, sign 

and intensity can be estimated (using the fact that the Gibbsian distribution of the Ising 

model with constant interaction weight leads naturally to an exponential structure). This 

test will be performed with a zero hypothesis in which rods were uniformly distributed 

(hypothesis reinforced if the step 3 above has proved the homogeneity of the still alive 

cones occurrence) and exerted positive interaction on the cones (through a trophic 

substance secreted by rods and diffusing in the neural retina up to the cones). The test will 

be performed for different values of the density characteristics of the uniform distribution 

of the rods. This step will also allow the estimation (of the maximum likelihood, convergent 

and without bias) of the interaction coefficients in the frame of an Ising like exponential 

structure. 

5. test the interaction between cones. The still alive cones can interact between themselves 

by emitting inhibitors or activators and this possibility will be tested by using the same 

procedure as in phase 4. 

CHICKEN 

6. characterization of morphotypes of cones from the shape of their cellular membrane.  

The features used for classify the morphotypes will be based on classical measurements 

like nucleo-cytoplasmic index, cell perimeter/area ratio,…, followed by a non-hierarchical 

clustering procedure (like k-means method) searching at least for two morphotypes, one 

for the alive but no more functional cones and the other for the still functional cones, with a 

possible third population representing dedifferentiated neuro-retinal cells. 

7. counting the sizes of the morphotypes populations at different days during the retinal 

maturation for revisiting the classical curve of cones survival. 

In future, an application could be possible on the human retina, if a non-invasive procedure 

(like the fluorescence of non-toxic membrane potential dependent optical dyes) could be 

done on the still functional retinal cells giving, during the degeneracy, the localization of 

the still alive and functional cells. 
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SECTION III 

MODELLING AND IMAGE PROCESSING: 

GASTRULATION IN DROSOPHILA 
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CHAPTER 1 

INTRODUCTION 

1.1. SOME DEFINITIONS 

Morphogenesis is the biological process that causes an organism to develop its shape. It is 

one of three fundamental aspects of developmental biology along with the control of cell 

growth and cellular differentiation. The process controls the organized spatial distribution 

of cells during the embryonic development of an organism. 

Gastrulation is a phase early in the development of animal embryos, during which the 

morphology of the embryo is dramatically restructured by cell migration. Gastrulation 

varies in different phyla. Gastrulation is followed by organogenesis, when individual organs 

develop within the newly formed germ layers.  

 

Figure 1-1: Gastrulation of a diploblast: The formation of germ layers from a (1) blastula to a (2) 

gastrula. Some of ectoderm cells (orange) move inward, forming the endoderm (red) [33]. 

Invagination is the morphogenetic process by which an embryo takes form and is the initial 

step of gastrulation, the massive reorganization of the embryo from a simple spherical ball 

of cells, the blastula, into a multi-layered organism, with differentiated germ layers: 

endoderm, mesoderm, and ectoderm (Figure 1-1). More localized invaginations also occur 

later in embryonic development, to form coelom, etc. Invagination is the formation of a 

cleavage furrow during cytokinesis in animal cells.  
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During the early stages of development, the primitive streak is the structure that will 

establish bilateral symmetry, determine the site of gastrulation and initiate germ layer 

formation. To form the streak, reptiles, birds and mammals arrange mesenchymal cells 

along the prospective midline, establishing the first embryonic axis, as well as the place 

where cells will ingress and migrate during the process of gastrulation and germ layer 

formation. The primitive streak extends through this midline (Figure 1-2) and creates the 

antero-posterior body axis, becoming the second symmetry-breaking event in the embryo 

(the first being the spherical symmetry breaking due to the fecundation and the second the 

revolution symmetry breaking due to the streak formation), and marks the beginning of 

gastrulation. This process involves the ingression they will differentiate into the three germ 

layers (endoderm, mesoderm, ectoderm) that will give rise to all the tissues of the adult 

organism. 

Figure 1-2: Surface view of rabbit embryo ([33]). 

Koller's sickle is a local thickening of cells that acts as a margin separating sheets of cells 

from posterior margin of blastoderm as they migrate before to push primary hypoblast 

cells anteriorly to form a secondary hypoblast known as the endoblast.  

The Posterior Marginal Zone (PMZ) of Koller's sickle can induce a primitive streak (Figure 

1-2) and Hensen's node, acting as an organizer.  
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1.2. STATE OF ART 

During the morphogenesis of the gastrula - the second step of the embryogenesis after the 

blastula stage (Figure 1-1), we observe, in the majority of the animal development 

dynamics, the following phenomena: 

i) cell motion is partly guided by chemotaxis, in order to supply their substrate 

demand, and also to respect the epigenetic architecture ruled by morphogens,  

ii) cell shape is due to a constriction controlled by cell differentiation, and 

iii) final gastric tube is obtained from cell proliferation relaxing the forces exerted 

on the cell plasmic membrane and optimizing the cellular “nutritive Area / inner 

Volume” (A/V) ratio. 

Concerning the differentiation process in the gastrulation process, some cells of the embryo 

start to take the shape of a bottle (bottle or flask cells), decreasing the surface at the 

interface with their nourishment substrate in mammal (like chicken in Figure 1-3) and 

insect (like Drosophila in Figure 1-4) embryos. At the end of the gastrulation, these bottle 

cells start to divide and grow, increasing their A/V ratio. In this section,  

i) using image processing techniques, we try to follow, through pure cell motion, the 

first phase of the gastrulation, causing the invagination without any proliferation, 

and 

ii) we try to observe that the cell constriction results in a streak starting from the two 

extremities of the embryo and propagating subsequently towards the middle 

portion. 

In order to simulate the initiation of this phenomenon, authors in [37-38] use exclusively 

laws of physics and mechanics. For this purpose, the authors have created a three  

dimensional biomechanical model consisting of a group of cells, forming a structure with 

two areas: a cylindrical rigid area representing the main embryo body and two curved 

hemispheric areas constituting the embryo extremities. Each cell is modelled by a set of 

Newtonian contour particles defining the surface mesh and an inner particle, located at the 

geometric centre of the cell, mimicking the centrosome. Elastic forces are used to model the 

rigidifying effect of the tubulin and actin cytoskeleton, and contractile forces to model the 
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action of the myosin fibres. In addition, the authors have modelled the role of the cadherins 

by connecting contour particles of adjacent cells. Finally, in order to ensure the symmetry 

from a partial mesh representing only a part of the embryo, the authors have applied 

boundary conditions to the particles located at the lateral extremity edges of the simulated 

structure. This biomechanical model shows that the inner folding starts at the curved area 

and then propagates to the rigid one, in accordance with the in vivo process. To compare 

these results with in vivo experiments, the authors have monitored the displacement of the 

centrosome and the cell A/V ratio. Numerical experiments made during the time lag 

observed through the microscopic imaging without proliferation suggest that the model 

adequately simulates the in-vivo cell behaviour. In a first part, the authors present image 

processing techniques and results obtained by applying them on gastrulation microscopic 

recording of Drosophila melanogaster embryo from [2-6]. In a second part, we describe the 

biomechanical model of streak formation and the third section will be devoted to the 

presentation of numerical simulations confronted to real images of the first invagination 

stage of the gastrulation. 
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Figure 1-3: Transition from ectoderm convex cells to streak concave bottle cells in chicken (after 
http://www.gastrulation.org/). 

 

Figure 1-4: Transition from an ectoderm convex cell to a concave bottle cell in Drosophila (after 

http://www.gastrulation.org/). 
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CHAPTER 2 

IMAGE PROCESSING 

Localised or synchronously oriented cell divisions could locally expand the cell mass in the 

epiblast, displacing cells at other locations. Inhibition of cell division prevents this 

expansion, so the flow of cells from anterior and lateral epiblast regions towards the 

location of streak formation thins, causing finally ruptures of the epiblast. Thus, cell 

division in the early epiblast plays an essential permissive role in streak formation ([34]).  

Early streak formation could involve intercalation of cells in Koller’s sickle at the base of 

the forming streak, driving bidirectional extension along the future anterior–posterior axis 

([39]).The tip of the streak has to move forward actively, so streak formation must depend 

on more than just intercalation at the base of the streak. The planar polarity pathway also 

controls the cell–cell intercalation which drives germ band formation in Drosophila via 

preferential non-musclemyosin-mediated contraction of cell boundaries perpendicular to 

the axis of extension. The pair rule genes Snail and Twist (Figure 1-2) then control the 

extension of boundaries in the direction of elongation, which locally reshuffles cells and 

extends the germ band ([40-41]). 

Cells could also move in response to chemo-attractants/repellents. The cells in Koller’s 

sickle could aggregate towards the dorsal midline in response to a chemo-attractant that 

these cells themselves produce, resulting in their aggregation at the ventral meeting point. 

The cells at the tip of the forming streak could then acquire the ability to respond to a 

gradient of another chemo-attractant, for instance the one that all cells in the epiblast 

produced, resulting in their movement towards the midline of the embryo. 
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2.1. IMAGE PROCESSING TECHNIQUES: CELL CONTOURING AND COUNTING 

Localised or oriented cell divisions could locally expand the cell mass in the epiblast, 

displacing cells at other locations. However, the initial cell flows preceding streak 

formation occurred in the absence of cell division ([34]). 

Many cell-based research studies require the counting of cells prior to beginning an 

experiment. Estimation of cell density in various regions of embryo is thus an integral part 

of such studies. Profile counts or stereological techniques could be used to have an estimate 

of the cell density in a particular region. In regions where cell density increases 

enormously, care must be taken, if they occur in regions of interest for the embryo 

morphogenesis, i.e., zones with cell deformation and/or cell proliferation. In any case, 

image enhancement techniques need to be applied on the images to get well-defined cell 

contours. 

The available images ([3]) depict actin-myosin networks in colour. Here, we are focussing 

more on cell boundaries in particular regions, in order to have an idea of cell density and 

shape, as well as to observe whether cells divide in those regions. After evaluating the 

colour histogram of the image, we filter out the noise by selecting an appropriate  colour 

threshold value. In the absence of noise, cell boundaries are easily visualized and hence 

cells could be tracked.  

Cell boundaries are further enhanced by applying contrast algorithms ([35]) on the colour-

filtered image again by using simple threshold values after studying the gray-histogram. 

Cell proliferation results in increase in volume of the mother cell, thereby causing daughter 

cells to recurrently contract then stabilize. Older cells are more vulnerable to shrink 

themselves as a result of forces from the neighbouring cells, due to proliferation at the 

other end. Cell density, as expected, would increase enormously in such regions with 

respect to other regions (Figure 1-3), which could lead to invagination, closer to the point 

of maximum cell density. 

Observing the colour histogram of the original image (Figure 2-2 (bottom)) suggests we 

could start enhancement by filtering out the coloured objects which are not contributing to 
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the actual information in the image. Since we are interested only in the cell boundaries 

which are in red, implying we could filter out all colours other than red, which include 

mostly the green pixels in the image. 

After colour filtering, we observe the intensity image (gray-level) and observe its 

histogram. Using Sobel edge detection algorithm, we get the boundaries of the cells. 

Segmentation sometimes need be done in an iterative manner, where results are not 

sufficient after one treatment to deduce useful info from the image. Applying the edge filter, 

the resulting binary image observed might have discontinuities in cell boundaries. These 

discontinuities can be easily removed by applying a dilation technique, followed by some 

erosion technique to get well defined contours. Once the boundaries are well defined, all 

statistical methods could be applied, making it easy to automatically count the number of 

cells in that frame. Calculating the number of pixels in each cell gives an estimate of the 

mean size of cells, thus important parameters like cell density, cell shape, etc could be 

calculated. 

2.2. RESULTS OBTAINED FROM CELL CONTOURING AND COUNTING 

Available series of images were treated to observe the phenomenon of streak formation. 

The idea was to observe the cell movement and proliferation in the region where a 

constriction appeared at a later stage. The source of data was in the form of a video (in AVI 

format) from which frames (BMP images) have to be extracted at a reasonable frame rate. 

Thus a series of data images was obtained (resolution: 510 x 255 pixels). After following 

the image processing steps explained in 2.1., we were able to have an exact visual idea of 

how the cells move and how cell density changes in the region where invagination occurs 

experimentally, and also observe if there is any division of cell in that region before the 

development of constriction. 

We started from the observing the colour histogram of the image (Figure 2-2), applying a 

filter to remove the green pixels from the image, which do not bear any useful information 

for us. The resultant image (Figure 2-3 (Top)) is converted to 256 grey level image, to 

observe the intensities in the image (Figure 2-3 (Middle)) Applying simple contrast 

algorithms ([35]), helps us to have an exact visual idea of the number of cells in that region.  
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Figure 2-2: Original image with its colour histogram. 

As a first step, simple thresholding technique was applied to get the binary image. The 

value of threshold can be easily chosen from the grey histogram of the image in Figure 2-3 

(Middle). Due to noise in the image (green pixels in the original image in Figure 2-2), colour 

filtering might have removed some pixels on the boundary, hence the binary image might 

not have a continuous outline for each cell. An easy way to reproduce these pixels is 

through dilation process. A 3-by-3 mask is chosen to dilate the boundaries. The dilated 

image is shown in Figure 2-3 (Bottom). 
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Figure 2-3: Segmentation process: colour filtering (top), gray scale image (middle), dilation and 

closure (bottom). 
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Figure 2-4: Boundaries of cells with some intercellular objects (top). Intracellular objects removed 

(bottom). 

After dilation, cell boundaries could be drawn as shown in Figure 2-4 (Top). Objects not 

qualifying to be regarded as cell are removed by using number of pixels contained in each 

segment. Cell counting was done on the final image (Figure 2-4 (Bottom)). Similar process 

was employed for the rest of the images in the series. Some results are shown in Figure 2-5. 

All cells could be individually recognized, and changes in their forms are clearly observed. 

However, no division of cells was observed in the region where in the later stage, 

constriction appeared which is consistent with the previous studies ([34]). Instead, 

compaction and aggregation of cells occur, resulting in increase in cell density near the site 

of streak formation. Within that frame, we could spot two points in-line, across which this 

phenomenon occurred, leading finally to the development of a constriction.  
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Number of cells counted in the frame of Figure 2-1 was 55, whereas just before streak 

formation at 4.2 min they were 64, and after the start of streak formation process at 4.7 

min, the number of cells was 63. 

Figure 2-5: Invagination process between initial and final stage from available data ([2-6]) just 
before invagination, rectangle showing the area of interest. 
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CHAPTER 3 

THE BIOMECHANICAL MODEL 

3.1. THE EMBRYO ARCHITECTURE 

The embryo cylindrical cephalo-caudal structure (Figure 3-1) has two zones of cylindricity 

breaking, the two hemispheric extremities and the cells at the boundary between the two 

geometries presents a curvature due to a relaxation of the internal rigid properties of their 

cytoskeleton. The appearance of the gastrulation streak occurs at their level and later 

propagates to the central cylindrical part of the embryo. Taking this into account, the 

differential contractility of these boundary cells constitutes the model core and has been 

implemented over a 3D mesh representing the external embryo surface ([37],[38],[42]). 

3.2 THE MODEL (A. LONTOS) 

Each cell evolves following the following mechanical laws: 

1. The sum of the orthogonal forces exerted on the cell walls is equal to its mass 

(proportional to its inner area) times its orthogonal (to the wall) acceleration. The 

external forces are the resultant of the extracellular (Pext) and intracellular (Pint) 

pressure forces, i.e., the contact force exerted by the neighbouring cells (sharing a part 

or the whole of the wall) exerted by other cells and the internal force due to the cell 

pressure exerted via the cyto-skeleton and the plasmic membrane ([7]). Each force is 

equal to a coefficient (e.g., the physical pressure) times the length of the wall on which it 

is exerted. 

2. If we suppose that the initial cell configuration is in an equilibrium state, we calculate 

an admissible set of parameters values respecting this equilibrium. 

3. Then, we leave the cell system evolve depending on the energetic balance ruling the 

cytoskeleton apical polymerization ([4-6]) controlled by a specific genetic regulatory 

network comprising essentially concertina (cta), actin, myosin, Rho and RhoGEF genes 
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([7-10]), by choosing a small time step, by updating sequentially each cell and by 

calculating their displacements respecting the no-overlapping rule. At each step we 

update the cell common walls by supposing that cell contacts are close, ensured 

between cells by cadherins and gap junctions ([11-12]), and with the extracellular 

matrix by integrins and adhesins. Cell motion involves a change in its inner area: we 

suppose that growth occurs where internal forces Pint are larger than external ones Pext 

(cell has to be stretched), as for constrained growth in continuous media mechanics. 

When the external forces dominate, the cell is supposed to be compressible and can be 

constricted. The cells divide longitudinally or laterally when their ratio perimeter over 

area is too small ([13-17]). 

The revolution symmetry breaking consists in making two cylinders inside the embryo 

cylinder, one coming from the ventral furrow and giving the digestive tube (this phase is 

called gastrulation) and the other coming from the dorsal furrow and giving the neural 

tube (this phase is called neurulation). The first gastrulation step consists of an apical 

concentration over fluctuation of one of the cytoskeleton components (myosin, actin, 

tubulin,...) or one of the enzymes (ADenylateKinase - ADK - or Nucleoside Diphosphate 

Kinase - NDK) or one of the energy molecules (ATP, GTP) involved [18-23]. 

This apical overconcentration diffuses and reaches the extremities [11,12] of the cylindrical 

portion of the embryo at which gap junctions are less important with the cells of the 

"hemispheric" terminations. Then two first bottle cells can appear at the two extremities of 

the diffusion line, then this first contraction can propagate until the centre of the cylindrical 

part as noticed in [11,12] during the 6 first hours of the gastrulation in Drosophila 

melanogaster. After this first phase of the ventral furrow formation, for regularizing the 

tensegrity forces, based on a synergy between balanced tension and compression 

components of cells, first divisions occur from extremities to centre by applying the first 

Thom's cell law. We can simulate such a process on a transversal slice of the embryo and 

reproduce the invagination of the gastrulation from both the contraction and consecutively 

the proliferation phases. 
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Figure 3-1: Top: Cylindrical structure of Drosophila melanogaster embryo of length L and 
hemispheric left extremities. Middle: differentiation of the first bottle (or flask) cell. Bottom: 
equilibrium between external and internal forces. 

The end of the cell and tissue growth stops correspond to the end of the morphogenesis  

process: this can be observed when the second Thom's tissue law is applicable (the surface 

to volume ratio of an organ becoming adverse) or when the organ is completely covered by 

an anatomic boundary like an aponeurosis made of fibrous cells or an autoassemblage of 

extracellular ingredients. In both these cases, a couple of morphogens acting often 

simultaneously in opposite (e.g. a couple of activator and inhibitor like BMP-7 and BMP-2 

in feather morphogenesis in the chicken [24-27] can induce the chemotactic motion of 
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fibroblasts or the biosynthesis of the elements constituting the auto-assemblage (like 

proteins and phospholipids). The fact that for a certain value of their viscosity ratio, the 

morphogens can coexist for a relatively long time in a precise location can greatly favour 

the birth of anatomic organ boundaries. 
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CHAPTER 4 

NUMERICAL SIMULATIONS 

The myosin is supposed to diffuse in all directions from a cell in which an excess of myosin 

is synthesized caused by random fluctuations over-expressing its gene, notably along a 

directrix of the cylinder constituting the body of the embryo of Drosophila melanogaster. 

This directrix represents the shortest path until the hemispheric extremities of the embryo 

on the boundary of which cells change of curvature (yellow in Figure 4-1). The whole 

model mixes a Multi-Agents Model (MAM) responsible for cell growth, migration and 

proliferation with a Reaction-Diffusion Partial Differential Equation (RD-PDE) for myosin 

dispatching, mainly in charge of cell contraction. 

Figure 4-1: Left: cell contraction due to myosin (experiments in [36]). Centre: progressive invagination and 
streak formation. Right: myosin diffusion along a directrix of the cylindrical part of the embryo (green arrow) 
provoking the invagination before the tube closure (red star). The zero-diffusion domain for myosin is 
indicated in yellow. 
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Figure 4-2: Top: part of the embryo made of cells considered as polyhedra with 8 vertices common 
with neighbouring cells and a centre (the centrosome)related to the vertices by actin filaments and 
micro-tubules (constituting the elastic and rigid cytoskeleton) on which myosin using ATP exerts 
contraction forces. Dark blue points are fixed points of the whole structure. Middle: profile of the 
structure under the contractile action of the myosin showing the start of the streak at the boundary 
of the hemispheric extremity of the embryo (red arrow). Bottom: experimental observation of the 
activity of myosin (fluorescent) with distal invagination 

The results of simulation of the hybrid model are given on Figures 4-1 and 4-2 showing the 

same phenomena as those observed in experiments: the progressive invagination starts at 

the extremities of the embryo and after propagates to the central cylindrical part of the 

embryo. The final step of the gastrulation needs proliferation in order to close the internal 

of the cell differentiation in bottle (or flask) cells contracted at their apical extremity, 

provoking during the first minutes of gastrulation a reorganization of the superficial cell 

layer of the embryo without division, leading to the formation of a streak. Resulting 

invagination starts experimentally at the two extremities of the embryo and propagates to  
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Figure 4-3: Numerical Simulations showing the start of the streak at the boundary of the 
hemispheric extremity of the embryo 

its central part cylinder which will give birth to the intestinal tube of the adult animal. By 

following the progressive migration in embryo depth of the centrosomes it appears that the 

run is faster and deeper for curved cells at the extremities of the embryo than for central 

cells (Figure 4-4). The saturation curves representing this displacement behave like the 

curves representing the evolution of the cell diameter under progressively increasing 

forces applied externally to the cell, which is a way to induce cell contractions (possibly 
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periodic [30]) similar to those due to myosin (Figure 4.5) [31, 32]. Some divisions of the 

observed bottle (or flask) cells whose differentiation is due to myosin gene over-

expression, suffice to end the gastrulation process if they occur at critical locations as 

streak lips (red star on Figure 4-1), located at the boundary of the zero-diffusion domain 

both observed and simulated for myosin (in yellow on Figure 4-1). 

Figure 4-4: Displacement of centre particle (virtual centrosome) of a cell located on the cylindrical 
part of the embryo (blue), substantially smaller and slower than displacement of centrosome of cell 
located at the curved area (red).  
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Figure 4-5: Simulated virtual spherical red blood cell (RBC) suspended in an hypotonic solution. 
Optical tweezers double trap is simulated by exerting locally a force Fs on two opposite nodes of the 
cell object contour (upper insert). The variation with load of the cell object diameter D(F) (in μm) in 
a plane perpendicular to the loading direction is simulated and compared to experimental data 
published by [31] (black squares). With appropriate scaling of the force, it is possible to adjust the 
elasticity modulus such that experimental mechanical response of RBC is nicely fitted in the linear 
elastic regime (red). Increasing the elasticity modulus induces a stiffer response which qualitatively 
reproduces the departure from the linear regime at larger traction forces (violet). 
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CHAPTER 5 

CONCLUSION 

In this work, some examples (centred around the gastrulation process) concerning 

different steps of morphogenesis modelling are discussed, from experimental acquisition of 

pertinent data until the interpretation in a mathematical framework of dynamic or 

geometric features of observed forms and functions. 

In future, spatial and temporal resolution of the data could be increased by sampling in 3D. 

Spatial resolution can be improved using confocal or biphotonic microscopy. Temporal 

resolution can be improved using the high-frequency cine-imaging techniques. Raman or 

Infrared Spectroscopy could enhance the functional resolution of the data. These 

techniques will allow to detect, precisely, the frontiers between the successive phases of 

the morphogenetic processes which cause the symmetry breaking in the embryo, i.e., 

i) morphogen diffusion, 

ii) cell migration, 

iii) bottle-cell differentiation, 

iv) streak contraction, 

v) cell proliferation, 

vi) and tube closure. 
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CHAPTER 1 

INTRODUCTION 

After successful segmentation of cones [Section II] and cells [Section III], our interest was 

to see whether we are able to track cells. Detecting and tracking cells constitute an 

important research area for biologists and scientists to analyze cell-growth or death in 

response to different diseases. Knowing the lineage of a sick cell could help us to 

understand the causes of its disease. Cell tracking can be useful in the treatment of lots of 

diseases like cardiac cell based therapy [1] or gene therapy [2]. 

Viability of stem cells used to develop effective cell therapies needs to be evaluated in a 

noninvasive manner [3]. Although optical imaging methods allow tracking cells in real time 

[4], there could be a requirement to store the images and analyze later the characteristics 

of individual cells. In a relatively wide series of images, it is practically impossible to 

manually analyze all images and infer useful information from them. Automation of a series 

of thousands of such images could help biologists and physicians to save a lot of time. The 

limitations of such a method would be decided by the presence of noise in the images, 

continuous change in cell position, size and shape, and also spacing among the cells.  In view 

of these limitations various algorithms are applied stepwise to address each issue. Noise 

could be reduced by using contrasting and common noise removal techniques. Once we 

have considerably removed the noise from the images, next task would be to segment the 

cells from the background for each frame. After segmentation has been done successfully, 

the idea is to relate two consecutive frames for all segmented cells. In an ideal scenario, we 

should be able to find the same cells in the next frame, unless they have divided or 

disappeared. For this, the position of the centroid of a cell in consecutive frames is one of 

the criteria on the basis of which we could decide whether we are tracking the same cell. If 

we see no cell in the vicinity of ‘𝑑’ pixel radius from the previous position of centroid, we 

could decide that the cell has disappeared. The value of ‘𝑑’ could be chosen by analyzing the 

speed of cell movement in some frames for a series of images. After segmentation and cell 
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counting, an increase in cell density in a frame would depict an occurrence of cell division 

in that frame, assuming no cells entered from the exterior of the frame. 

1.1 PROCESS OF MITOSIS 

In Mitosis a replicated genetic material in a parent cell is equally distributed into two 

daughter cells. Figure 1-2 depicts several stages of mitosis. Interphase is the "holding" 

stage or the stage between two successive cell divisions. In prophase, changes occur in both 

the cytoplasm and nucleus of the dividing cell. In Metaphase, chromosomes align at the 

metaphase plate of the dividing cell. In Anaphase, the paired chromosomes separate and 

move to opposite ends of the dividing cell. In Telophase, the nucleus of one cell is divided 

equally into two nuclei. During cytokinesis, a cleavage furrow is formed perpendicular to 

the mitotic spindle and gradually splits the cytoplasm and its contents into two daughter 

cells [7,8]. 

 

Figure 1-1: Observing Mitosis With Fluorescence Microscopy; Mitosis In Rat Kangaroo Epithelial 
Kidney Cells [7] 
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CHAPTER 2 

IMAGE PROCESSING 

2.1 METHOD 

The developmental history of cells as traced from the first division of the original cell in the 

embryo constitutes an important domain of knowledge in investigation in the present 

research. Cells divide and subdivide and due to their continuous movement, it is somewhat 

difficult to track them and after a number of divisions, it is almost impossible to know the 

parent and grandparent for a newborn cell. 

The method proposed here involves different steps to track cells individually in a series of 

frames and also to detect when it divides. Available images were extracted from a recorded 

video of early mitotic cell divisions in a drosophila embryo. 

 

Figure 2-1: Block Diagram of Method 
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2.1.1 IMAGE ENHANCEMENT AND NOISE REMOVAL 

The primary task in the proposed method is to choose an appropriate method to remove 

unwanted objects. To separate the objects from background, the task gets difficult where 

the objects and background have the same grey level, because simple threshold techniques 

can not be applied directly. Even more difficult it becomes if we have different grey levels 

in different sections of the images. One way of tackling this issue is to divide the image into 

blocks (say 100x100 pixels) or imagettes and apply local thresholds instead of one global 

threshold for the entire frame. A good threshold value could be selected from individual 

histograms of those blocks. 

After we have sufficiently enhanced the image (cf. Section II), we need to remove the noise 

(and more generally any unnecessary object). From a typical frame, we could observe and 

decide ourselves which size and shape of cell we are expecting to segment in that frame. 

Based on that, any object not following that criteria won’t be regarded as a cell. For instant 

we chose to ignore objects below 16 pixels in area. So again applying this threshold, we 

remove all objects we don’t intend to detect as cells. 

2.1.2 SEGMENTATION OF CELLS 

After noise removal, we have the image ready to be segmented. We already could observe 

objects, which are expected to be our objects of interest, cells in our case. Segmentation 

techniques have been discussed in Sections II and III.  

2.1.3 CELL TRACKING 

Once cells have been segmented successfully, we can apply the tracking algorithm. Based 

on the position of any segmented cell, our intention is to follow its movement and observe 

whether it divides, and then follow the daughter cells. The position of the cell at current 

time instance is updated based on current and previous observations. Still, errors could be 

caused by background clutter and multi-object confusion [6]. Observing the data images, 

we can estimate the speed of motion of cells, and based on that we can estimate the size of 

the window beyond which the cell won’t move from one frame to another. Placing this 

window at the centroid of the segmented cell, the algorithm need be run only on this 
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window in the next frame to find the same cell. The position of centroid would be updated 

in each frame and hence position of the window would be updated. The method will detect 

the biggest segment in this area, unless there a division occurs whereby it will look for two 

cells. From Figure 1-1, we observe that the position of centroid of the cell changes, by a 

considerable distance, whenever a division actually occurs. Hence, the method looks for a 

second object in the vicinity at that point. The two objects could be labeled and tracked 

separately and then superimposed back on the original image 

A typical tracking algorithm is shown by the block diagram given in Figure 2-2. 

 

Figure 2-2: Cell Tracking Methodology 
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Figure 2-3 An example of mitotic division tracking of the early embryo starting at the mitotic 
spindle between the 2 cell blastomeric stage. [9] 
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2.2 RESULTS AND DISCUSSION 

2.2.1 DATA IMAGES 

Our source of images was a video file (Phase Contrast Microscopy) [10] which depicts 

kidney cell of a monkey undergoing mitotic division. The film follows the cell and its 

daughters. Images at 10 frames per second were extracted from the video in BMP format. 

Each frame size is 360x480 pixels. One isolated cell is easily segmented, whose movement 

will be followed in the subsequent frames.  

2.2.2 CELL TRACKING 

The method depicted in the block diagram of Figure 2-2 is applied to first segment in the 

treated image in Figure 2-3. Red circle indicates the position and size of the segmented cell 

during first iteration. Green circle indicates the updated position and size of the same cell. 

Figure 2-4 shows a series of results of image treatment depicting cell tracking, also 

indicating a case where the cell divides in Figure 2-4(f). Figure 2-5 shows positions of 

centroid of the segmented cell for the complete series of images. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 2-4 Mitosis confirmed through image treatment [10] 
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Figure 2-5 Successive positions of the centroid of the first segmented cell (x-coordinate in red, y-
coordinate in green). 

2.3 DISCUSSION 

From Figure 2-5, we observe that the centroid of the segmented cell changes abruptly 

when a division occurs. The interdistance ‘𝑑’ between the two consecutive centroids has 

been used as the indicator which is calculated as: 

𝑑 =  (𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2 

Whenever ‘𝑑’ increases to a value greater than a predefined value, we look for another 

segment in the vicinity of the current cell. 

2.3.1 SOME INTERMEDIATE IMAGES 

Although the method tracks the cells in most of the cases, there have been some cases 

where it was not effective. Figure 2-6 depicts a typical case. Most of these errors can be 

removed by employing a different segmentation technique, which might increase the pre-

processing but could provide more consistent and reliable results. Another way to improve 

the algorithm is to track back the position of the previous segment. 
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Figure 2-6: False Tracking 

2.3.2 CONCLUSION 

1. The tracking method proposed is very fast and works great when images have been 

properly segmented. 

2. Once algorithm has been tested to work on one segmented cell in an image, it could be 

applied to all other segmented cells, following the same procedure as presented in the 

previous sections. 

3. Segmentation is sometimes restricted due to low resolution images having poor 

contrast.  

4. Similarly if two cells are very close to each other, it is sometimes difficult to distinguish 

them as one or two. Observing same position in previous and next frame could 

elaborate the situation further. 

5. Since the cells are non-stationary, some cells could move out of frame, thereby effecting 

the counting of cells or cell density. Similarly some cells could enter the frame from 

outside. 

 

If the limitations could be addressed, we could have a very fast method to track cells in all 

frames and we could observe cell division or cell death which could be very useful for 

biologists and physicians. 

  



89 
 

References 

[1] Hung Q Ly, John V Frangioni and Roger J Hajjar, “Imaging in cardiac cell-based 

therapy: in vivo tracking of the biological fate of therapeutic cells”, Nature Clinical 

Practice Cardiovascular Medicine (2008), 5, S96-S102 

[2] Harvey R. Herschman, “PET reporter genes for non-invasive imaging of gene 

therapy, cell tracking and transgenic analysis, Critical Reviews in 

Oncology/Hematology”, (2004), 51, 191-204 

[3] Walter J Rogers, Craig H Meyer and Christopher M Kramer, “Technology Insight: in 

vivo cell tracking by use of MRI”, Nature Clinical Practice Cardiovascular Medicine 

(2006), 3, 554-562 

[4] Elizabeth J. Sutton, Tobias D. Henning, Bernd J. Pichler, Christoph Bremer, Heike E. 

Daldrup, “Cell tracking with optical imaging, Molecular Imaging”, Eur Radiol (2008), 

18, 2021-2032 

[5] Sarah J. Zhang and Joseph C. Wu, “Comparison of Imaging Techniques for Tracking 

Cardiac Stem Cell Therapy”, J Nucl Med(2007), 48,1916-1919 

[6] M. Han, W. Xu, H. Tao,  and Y. Gong,  "An Algorithm for Multiple Object Trajectory 

Tracking",  in Proc. CVPR (1), 2004, 864-871. 

[7] National High Magnetic Field Laboratory, Florida State University 

[8] Website: http://biology.about.com/ 

[9] Dr Mark Hill, “Embryo Mitosis” , UNSW Embryology,  2011  

[10] Ted Hinchcliffe (Univ. of Notre Dame), Kip Sluder (Univ. of Massachusetts Medical 

School), video file: “Mitoses en Directe”   

  



90 
 

  



91 
 

APPENDICES 

Research Publications 

Appendix A  

Imaging and Modeling of a Degenerative Disease of Retina 

 IEEE WAINA 2009 

Appendix B 

Understanding Physiological and Degenerative Natural Vision Mechanisms to Define 

Contrast and Contour Operators 

PLoS ONE 2009 

Appendix C 

Evolution of the Genetic Regulatory Networks: The Example of the Cell Cycle Control 

Network 

IEEE WAINA 2010 

Appendix D 

Modeling and Image Processing of Constriction and Proliferation in the Gastrulation 

Process of Drosophila melanogaster 

IEEE WAINA 2011 

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5136771
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0006010
http://www.computer.org/portal/web/csdl/doi/10.1109/WAINA.2010.82
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5763546


Appendix A  

Imaging and Modeling of a Degenerative Disease of Retina 

 IEEE WAINA 2009 

 

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5136771


Imaging and Modelling of a Degenerative Disease of Retina 

 
 

Muhammad Tayyab 
University J. Fourier, Grenoble 

TIMC-IMAG UMR CNRS 5525 

Faculty of Medicine 

38700 La Tronche France 

Muhammad.Tayyab@imag.fr 

 

Yves Usson 
University J. Fourier, Grenoble 

TIMC-IMAG UMR CNRS 5525 

Faculty of Medicine 

38700 La Tronche France 

Yves.Usson@imag.fr 

Thierry Léveillard 
University Paris VI, Paris 

CR INSERM 

Faculty of Medicine Saint Antoine 

75013 Paris France 

Thierry.Leveillard@st-antoine.inserm.fr 

Jacques Demongeot 
University J. Fourier, Grenoble 

TIMC-IMAG UMR CNRS 5525 

Faculty of Medicine 

38700 La Tronche France 

Jacques.Demongeot@imag.fr 

Abstract - Dynamical systems like neural networks based on 

lateral inhibition have a large field of applications in image 

processing, robotics and morphogenesis modelling. In this 

paper, we deal with a double approach, image processing and 

neural networks modelling both based on lateral inhibition in 

Markov random field to understand a degenerative disease, the 

retinitis pigmentosa. 

 

Keywords: neural networks, lateral inhibition, retinitis 

pigmentosa, image processing, Markov random fields. 
  

I. INTRODUCTION 

 

In the vertebrate retina, cones are hyperpolarized when 

illuminated by light, but also receive a depolarizing input 

when receptors some distance away are illuminated. This 

antagonistic center-surround response is mediated by 

amacrine horizontal cells (Fig. 1 and Fig. 3), through a sign-

reversing synapse to cones called feed-back synapse and a 

global mechanism, lateral inhibition [1], involved in edge 

enhancement and image contrasting [6,35], realizing 

concretely the Mach (boundary brightness overshoot) and 

Marr (Laplacian zero-crossing edge enhancement) effects. 

 

Fig. 1 - The retina inside the eye structure 

 

Multiple contrast illusions (Fig. 2) are based on the 

lateral inhibition principle. Here, we will study how 

functions of rods and cones are differentially affected during 

the retinal degeneration of the retinitis pigmentosa and how 

this pathologic process can be modelled. 

II. PHYSIOLOGICAL AND PATHOLOGICAL RETINA 

 

In physiological retina, lateral inhibition causes 

illusions like the perception of artefactual stripes or spots. 

The lateral inhibition causes a reinforcement (or a decline) 

of brightness in a pixel if its neighbours are black (resp. 

white). This illusion is easy to simulate by computer and is 

illustrated in Fig. 2. 

 

Fig. 2 - Contrast illusions: Hermann illusions (top); Mach bands illusion 

(bottom-left) and lateral inhibition with activation at short range (nearest 

neighbours neurons) and lateral inhibition at medium range (bottom-right) 

 

In Fig. 2, the Hermann illusion is provoked by the local 

organization of inhibition and activation between retinal 

cells (bottom-right) and shows bright points at the 

intersection of grey stripes (top-left) and grey squares at the 

intersection of white stripes (top-right). On the bottom-left, 

Mach band illusion gives an enhancement of the vertical 

lines separating the different grey zones. 



Fig. 3 - Physiological and pathological retina. Top-left: Lateral inhibition 

due to horizontal-cell synapses. Top-right: Confocal microscopy slice of 

mouse retina having retinitis pigmentosa [34]. Bottom-left: Segmentation of 

cones and rods showing an important cell deficit in the Left Superior 

quadrant (LS). Bottom-right: Histogram of the intercept distances showing 

a significant increase of the inter-cell distance in the LS quadrant (dark 

blue). 

 

Fig. 4 - Local organisation of cones and rods in macula (A) and retinal 

periphery (B) [38] 

 
The pathologies of the retina provoke a progressive 

death of the rods (like in retinitis pigmentosa in Fig. 3), 

which leads to cones apoptosis, due to non-secretion (by 

rods) of growth factor favouring the cones survival, causing 

the disappearance of the lateral inhibition, hence of the 

contrasting ability. Fig. 3 (Top-right and Bottom-left) shows 

a confocal slice of a sick retina where we can observe an 

important loss of both rods and cones in the left superior 

quadrant (LS). An analysis of the cells interdistance in the 

three other quadrants shows that the mean interdistance 

between cones in the peripheral retina (about 15�) is better 

conserved than the interdistance between rods (about 3�), 

proving the primary rod degeneracy. 
 

III. NEAREST NEIGHBOUR MODELS 

 

A formal deterministic neural network � of size � is 

defined by its state variables ��	
��
	��…�, where �	
�� 
denotes the state of the neuron � at time � (equal to ‘1’ if the 
neuron fires at this time and ‘0’ otherwise). Then the 

discrete iterative system ruling the change of states in the 

network is given by the following equations: 
 

�	
� � 1� � 1;  if �	
�� � �� � � �	���
��
�, !"
	�

� #	� ��
��� 
�� $ %, 
� 0;  otherwise 

 

where V(i) is a neighbourhood of �; �	
�� plays the role of 
the somatic electric potential; �� denotes an external field; 
�	� designates the synaptic weight resuming the interactions 

of the neuron . on the neuron �; #	�  is a non-linear effect 
coefficient (due to the presence of a triplet of neighbouring 

neurons firing together); and % is a firing threshold (Fig. 5). 
The updating of the neuronal states can be operated [11]: 

• either sequentially, after having chosen a certain order 

for the neurons, 

• or block-sequentially, by parallel updating of each sub-

network of partition � and then activating these sub-

networks sequentially, 

• or in a massively parallel way.  

Fig. 5 - Translation invariant isotropic 4�4 neural network with boundary 

neurons (violet), external field ��, synaptic weight �� � �	�, and non-linear 
effect coefficient �0 � #	�  
 

The updating rule can be randomized as follows: 

 

1 2�	
� � 1� � 13�� , . ! 4
��5 � 678
9� :⁄

1 � 678
9� :⁄  

 

We can easily show that this rule is the same as the 

deterministic rule above, when < � 0. The presence of a 

cone growth factor secreted by neighbouring rods will be 

taken into account by putting a ‘1’ in a square of 100�0, 
containing at least one cone (Fig. 6), and a ‘0’ if there is no 

cone. The deterministic or stochastic dynamics of such 

neural networks and their robustness has been extensively 

studied in [2-5] and [7-22]. 

 

u u 
0 0 

u u 
1 1 

u u 
2 2 



Fig. 6 - Top: Confocal slices of the retina: blue square indicates the slice of 

Fig. 3 (Top right). Bottom: Segmentation of the rods and cones of this slice 

Fig. 7 - Dependence of the core states on the boundary states ‘1’ and ‘0’ 

The occurrence of the values ‘1’ in a grid made of 

squares, each of 100�0, will be supposed to be ruled by a 

nearest neighbour Markov random field [24-32] and [36,37], 

which corresponds exactly to the fixed configuration of the 

random neural networks defined above. There exists a 

classical unbiased maximum likelihood inference procedure 

for estimating all the coefficients 
��, ��, �0� of the neural 
network (in the hypothesis of a translation invariant 

isotropic field with temperature ‘1’), since the 

corresponding statistical structure is exponential [18].  
 

In the example of Fig. 6, the estimates are significantly 

different between the quadrants LS and RI, showing the 

presence of a pathologic process. If we assume the network 

states determined by this nearest neighbour modelling, we 

have to check if there is an influence of the boundary 

neurons (in violet in Fig. 5). It is possible to systematically 

study this influence by searching phase transition parametric 

conditions, i.e. values of the coefficients ��, ��, �0 for which 

the states on the core depend on the states on the boundary. 

In the parametric circumstances where: 
 

�� � 2�� � �0 � 0, (cf. Fig. 8 where �� � >3),  
 

we observe a phase transition with the dependency of the 

core on the boundary, which proves that we have to be very 

careful in fixing the states on the frontiers of the retina 

[16,17]. 

 

IV. SPATIAL RENEWAL BINARY PROCESSES 

 

There exist different alternatives to the nearest 

neighbour random neural networks, like the reaction-

diffusion process, in which one can identify the diffusion 

coefficient and also the lateral inhibition parameters of the 

reaction part. There is also a way to escape the spatial 

Markovian character of the previous model, by supposing 

that the occurrence of the state ‘1’ at time � � 1 in the 

neuron �, given by �	
� � 1� � 1, is depending on the states 
on the first sphere (for the Manhattan distance ?�) centered 
at �, where we can meet a neuron in state ‘1’. 

 

Fig. 8 - Simulated configuration of the states of a 2-dimensional renewal 

spatial binary random field [23] 



A spatial random process verifying such a condition is 

called a renewal spatial random field [20,23] (analogous to 

the renewal temporal processes observed, for example, while 

tossing a coin) and we can estimate its parameters in the 

same way as for the spatial Markov random fields, that is by 

considering the associated statistical exponential structure in 

which estimates are of the maximum likelihood, unbiased 

and almost surely convergent. 

 

We can see, in Fig. 8, a simulation of such a renewal 

spatial random field, showing configurations sparser than 

those observed for a spatial Markovian field, correlating 

more to the data in Fig. 6. A test of data adequacy can be 

performed over the spatial Markovian and  renewal fields and 

we can retain the structure which best-fits the data, where the 

first model favours rod-cone interactions and the second 

model favours long-range interactions between cones. 

 

 

V. CONTRAST ENHANCEMENT 

 

Another way to detect an abnormality in the rod and 

cone distribution is to use the observed configuration as 

an artificial retina in order to contrast an input image. The 

latter can be made of pixels of different grey levels as in 

Fig. 9 (top-left). A normal retina treating the image must 

enhance homogeneous zones, by exploiting the fact that a 

square of pixels (or a peak)  having the same medium 

(respectively high) grey level is reinforced (respectively 

undermined) by the presence (respectively absence) of a 

local activation and its boundaries are contrasted because 

of the absence of external inhibition (Fig. 10). If the 

distribution of the weights follows the scheme given in 

Fig. 2 (bottom-right) and if the neurons are dispatched in 

the four quadrants as in Fig. 3 (bottom left), then the 

contrasting is realised only in RI quadrant as in Fig. 9 and 

Fig. 10. 

Fig. 9 - Contrast enhancement. Bottom-left: Lateral inhibition causes the local contrast enhancement of the yellow square (with medium level in false colors) 

into a contrasted bright orange square. Top-right: Evolution in time of the DOG function representing an activation near the central neuron, �� (green links) 
and an inhibition (red links) farther away. Bottom: Same processing in grey level with initial image in the middle and contrasted on the right. 



 

Fig. 10 - Contrasting and contouring medical images. Top-left: initial NMR image of a brain tumour. Top-middle: contrast enhancement with apparition of a 

central activity (blue arrows). Top-right: boundary of the compressed tissue (external snake-spline). Bottom-left: tumour segmentation. Bottom-right: tumour 

boundary (internal snake spline) 

VI. CONCLUSION 

 

We have shown in this paper that a retinal pathology, 

as in retinitis pigmentosa, could be studied by identifying 

from observed data, either a Markovian or a renewal 

spatial random field, leading to the hypothesis of local 

rod-cone interactions or of a long-range cone-cone 

interactions. In the first case, the interactions diminishing 

due to vanishing of rods depicts existence of an action by 

rods, like the secretion of a specific cone growth factor, 

which is in agreement with the genetic studies. The 

conservation of the contrasting retinal function can be 

tested for the still healthy zones by using, as input, a 

reference image having a homogeneous zone inside to 

enhance (This is being extensively used in image 

processing applications as in Fig. 10). The absence of 

contrasting power could constitue a good test of loss of 

this major functionality related to the integrity of the 

lateral inhibition rod-cone architecture. 
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Abstract

Background: Dynamical systems like neural networks based on lateral inhibition have a large field of applications in image
processing, robotics and morphogenesis modeling. In this paper, we will propose some examples of dynamical flows used
in image contrasting and contouring.

Methodology: First we present the physiological basis of the retina function by showing the role of the lateral inhibition in
the optical illusions and pathologic processes generation. Then, based on these biological considerations about the real
vision mechanisms, we study an enhancement method for contrasting medical images, using either a discrete neural
network approach, or its continuous version, i.e. a non-isotropic diffusion reaction partial differential system. Following this,
we introduce other continuous operators based on similar biomimetic approaches: a chemotactic contrasting method, a
viability contouring algorithm and an attentional focus operator. Then, we introduce the new notion of mixed potential
Hamiltonian flows; we compare it with the watershed method and we use it for contouring.

Conclusions: We conclude by showing the utility of these biomimetic methods with some examples of application in
medical imaging and computed assisted surgery.
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Introduction

‘‘In nova fert animus mutatas dicere formas corpora…’’ I want to speak about

bodies changed into new forms… (Ovid, Metamorphoses, Book 1st, 10 AD).

In the vertebrate retina, cones are hyperpolarized when

illuminated by light, but also receive a depolarizing input when

receptors some distance away are illuminated. This antagonistic

center-surround response is mediated by amacrine and horizontal

cells (Figure 1), through a sign-reversing synapse to the cones often

called feedback synapse, the global mechanism being called lateral

inhibition [1–3]. This surround response is involved in edge

enhancement and image contrasting [4–16] realizing concretely

the Mach (boundary brightness overshoot) and the Marr

(Laplacian zero-crossing edge-enhancement) effects, used in many

image processing applications [17]. A number of contrast illusions

(Figures 2, 3, 4) have been described [18] based on the lateral

inhibition principle. In order to examine how rod and cone

functions are differentially affected during retinal degeneration

(abolishing the contrast), many studies have been done on the

genetic level showing that these two cell types have complemen-

tary roles during both development and degenerative processes

[19–21]. For understanding the retinal physiology as well as this

pathology, many models [22–34] are now available which try to

mimic relevant adaptation behaviours of the human visual system,

like lightness/colour constancy and contrast enhancement,

corresponding to the ability of the visual system to increase the

appearance of large-scale light-dark or inter-colour transitions,

similar to how sharpening with an ‘‘un-sharp mask’’ increases the

appearance of small-scale edges.

These models use theoretical developments [35–44] in dynam-

ical systems, especially the study of their attractors. An attractor

represents the ultimate evolution of a dynamical system when time

tends to infinity; after perturbations, an attractor recovers its stable

dynamical features, like its period and amplitude. That requires a

rigorous mathematical framework for defining the continuous flow

and its convergence speed to attractors, and after its discrete

version, i.e. an iteration process representing the succession of

states of the dynamical system. These theoretical advances have

permitted the development of fast image processing algorithms

used in rapid contrasting methods [45–58] implemented in real-

time processors [59–68], and the development of contouring

methods like snakes, snake-splines, d-snakes, which allow a global

definition of the boundaries of objects of interest in an image.

These algorithms have emphasized the role played by computer

implemented procedures, starting from an initial compact, e.g. a

sphere, and ending at the final shape of the object’s contours after

a certain number of iterations [69–80]. The corresponding flow is

a compact set valued flow, the simplest deriving from a potential
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[81–86]. In general, this methodology allows one to rapidly and

automatically obtain 3D contours, which is necessary in medical

imaging to perform computer aided medical interventions. If the

dynamics are conservative in a neighbourhood of an attractor, the

flow becomes Hamiltonian, so we then will define the notion of

mixed potential Hamiltonian flow. This flow gives a theoretical

support to the Waddington’s notion of chreod, particularly

relevant in embryonic morphogenesis modeling [87–91], but also

serves in image contouring.

Using the previously introduced theoretical notions, we study an

enhancement method for contrasting medical images, using either

a discrete neural network approach, or its continuous version, i.e. a

reaction-diffusion partial differential system [92–99]. Indeed,

having the goal of providing for a rapid and efficient action

[100–142] in precise surgical robotics as well as in disease

diagnosis and satellite control imaging, such pre-treatments are

performed for contrasting and then contouring images. The

medical community, for example, often uses pre-treated

anatomical images coming from imaging devices, like MRI or

CT-scanner, whose pre- processing involves two fundamental

steps: contrasting and contouring. The natural vision executes

these two tasks, the first one being based on the architecture of

the retina, which uses lateral inhibition to reinforce the

perception of the contours of homogeneous objects in a scene.

Because the objects of medical interest are homogeneous with

respect to their environment (a tumour or an organ are made

of cells coming from the same cellular clone), they are well

enhanced by using operators processing as in the natural vision.

Therefore, we introduce continuous operators generalizing

discrete neuromimetic approaches using lateral inhibition as

well as analogs of the Hebbian rule for the evolution of synaptic

weights.

Figure 1. Physiological and pathological retina. Top left: lateral inhibition due to horizontal cell synapses [after 3]. Top right: confocal
microscopy slice of mouse retina with retinitis pigmentosa coming from T. Léveillard & J.A. Sahel [19]. Bottom left: segmentation of cones and rods
with a cell deficit in the quadrant Left Superior (LS) [34]. Bottom right: histogram of the intercept distances showing an augmentation of the inter-cell
distance in the quadrant Left Superior with respect to others Left Inferior (LI), Right Superior and Inferior (RS & RI) [34].
doi:10.1371/journal.pone.0006010.g001

Contrast and Contour Operators
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Results

The results presented in this Section involve consecutive phases

of contrasting and segmenting in order to identify objects of

interest in an image. The important features of a scene are the

prey, predators, and sexual partners. For the detection of these

features, the major characteristics are the ‘‘phaneres’’, this word

coming from the Greek phaneros: visible. The ‘‘phaneres’’ in

animals and plants are prominent visible tegumentary formations

like feathers, scales, hair, petals, skin spots and stripes of various

forms and colours. The role of the contrasting pre-treatment in the

retina is to rapidly enhance the characteristics (luminance, colour

and texture) on the boundaries of the homogeneous zones in a

scene in order to improve their perception and extract the features

associated to the vital functions like the nutrition, the survival and

the reproduction. This process can trigger very fast actions (like

escaping a predator) after a stimulus of about 150 ms [136]. Such

fast sensory-motor loops need a very simple and rapid mechanism

well encoded in the anatomy and in the physiology of the retina

(like the center-surround response of cones and rods [1–3]), early

before a semantic recognition and denomination of the prey or of

the predator. We will give first some results concerning the natural

contrasting process both in a natural and in a simulation context.

Pathologic retina
The lateral inhibition mechanism in the retina is due to the

presence of feedback synapses of horizontal cells [1,2], which

reverse the sign from activation of the cells surrounding that were

illuminated (Figure 1 top left). The retina pathologies provoke a

progressive death of rods (as in retinitis pigmentosa) followed by

the apoptosis of the cones; then, the non-secretion by rods of a

growth factor favouring the cones survival, causes the disappear-

ance of the lateral inhibition, hence of the contrasting ability

[4,19,20,21]. As shown in the top right and bottom left of Figure 1

on a confocal slice of a sick retina, we observe an important loss of

both rods and cones in the left superior quadrant. An analysis of

interdistances among cells in the three other quadrants shows that

the mean interdistance between cones in the peripheral retina

(about 20 m) is better conserved than the corresponding value

between rods (about 3 m), proving the primary rod degeneracy.

Contrast illusions
The perception of artefactual stripes or spots comes from the

lateral inhibition effect, which causes a reinforcement (respectively

decline) of brightness in a pixel if its neighbours are black

(respectively white). This illusion effect is visible on the Figures 2 to

4. In Figure 2 (top-left), the Hermann illusion is provoked by the

local organization of inhibition and activation between retinal

cells, which is described bottom right. The illusion shows bright

squares at the intersection of grey stripes and grey squares at the

intersection of white stripes. In Figure 2 (bottom-left), the Mach

bands illusion gives an enhancement of the vertical lines separating

the different grey zones. In Figure 3 top-left, the tangential vision

(which allows to escape the macular vision) gives the illusion of a

bright reinforcement at the extremities and middle of the white

stripes. On the top right, a progressive change of the vertical bright

stripe into bright spots (in false colours) is observed during the

feathers morphogenetic process in chicken due to a lateral

inhibition effect between morphogens (model and simulation are

given in [91]). On the bottom left, we can observe bright and grey

activities respectively near the center (vertical black line) and the

extremities of the white horizontal diamonds. For explaining these

illusions, we can simulate a very simple threshold formal neural

network (cf. infra) made of 7 neurons, with a lateral inhibition

mechanism defined by the parameter values h= wii = 2, wii21 = -

wii+1 = 20.5, and a sequential updating from the left to the right

hand side. The spots activity appears after 3 iterations as a stable

Figure 2. Contrast illusions. Top left: Hermann illusion with bright points at the intersection of grey stripes. Top right: Hermann illusion with grey
squares at the intersection of white stripes. Bottom left: Mach bands illusion with enhancement of the vertical lines separating the different grey
zones. Bottom right: lateral inhibition with activation at short range (nearest neighbour neurons) and inhibition at medium range (second Manhattan
sphere)
doi:10.1371/journal.pone.0006010.g002
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steady configuration, and is the discrete analog that the feature

created by simulating the continuous reaction-diffusion operator

used for modelling feathers morphogenesis [91]. In Figure 4, the

sensation of seeing a 3D pyramid is the generalization of the well

known Kanizsa polygon effect. It is due to the artefactual

prolongation of the white square extremities as white (respectively

black) lines in a black (respectively white) dominant neighbour-

hood. The illusion effects described above are easy to simulate by

computer and can serve as external efficacy criterion when

different contrasting methods are benchmarked.

Contrasting and contouring images
The enhancement of the grey level on its maximal gradient lines

(identical to the geometric locus formed by all the points where the

mean Gaussian curvature on the grey surface vanishes) is due to

the retinal processing and causes the sensation of contours. By

using an enhancement procedure based on the lateral inhibition

effect in an formal neural network receiving as input the grey level

of an image, we have obtained a good contrast on the boundaries

of homogeneous zones either on simulated or on real images.

Figure 5 (respectively 6) shows the result obtained after applying a

contrasting algorithm on an artificial image (respectively on the

NMR slice of a brain tumour).

The contouring step follows the contrasting one, and we see in

Figures 5, 6 and 7 contours of homogeneous (in grey level) zones

resulting from a snake-spline procedure (i.e. an external snake-

based procedure with the constraint to keep a spline closed curve

at each step) applied over an artificial isolevel square (Figure 5), a

brain tumour (Figure 6) and a forest (Figure 7) made of the same

species of elements (pixels, cells and trees respectively).

The two steps of contrasting and contouring are based on

classical algorithms of neural networks [24,31,32] and snake spline

[69–76], but they can involve new methods coming from

biomimetic procedures. We will describe rapidly four such new

methodologies and give examples of their application to real

satellite or medical images.

1) A chemotactic operator. If we denote, at time t and pixel

x, g(x,t) as the grey level function, we can consider g as a

food or substrate, which living entities (like bacteria) can eat,

being attracted from the image boundaries (where they are

first located) by a chemical gradient linked to the substrate.

Figure 3. Contrast illusions. Top left: illusion of bright reinforcement at extremities and middle of white stripes in tangential vision. Top right:
progressive change of a vertical bright stripe into bright spots (in false colours) during a morphogenetic process with lateral inhibition of
morphogens [91]. Bottom left: bright and grey activities, respectively, near the center (vertical black line) and the extremities of the white horizontal
diamonds. Bottom right: lateral inhibition simulated by a simple threshold neural network with h= wii = 2, wii21 = wii+1 = 20.5 and a sequential
updating from the left to the right hand side
doi:10.1371/journal.pone.0006010.g003
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Let us denote the bacterial concentration by b(x,t). We can

consider the following equations, which constitute a new

image processing operator [85,142]:

Lb=L t~Lb +gj jmaxDb{x+ b+gð Þ

Lg=Lt~LgDg{Kg bzeð Þ= bz1ð Þ
ð1Þ

with Neumann conditions on the image boundary, where

+gj jmax denotes the maximum value of the g gradient norm,

x is the attractive chemotactic constant, Lb (respectively Lg) is

the diffusion coefficient of the bacterial concentration

(respectively grey level), K (respectively Ke) is the maximal

(respectively minimal) grey consumption rate of bacteria.

These equations imply that the bacteria move towards the

concentration of grey considered as a chemo-attractant to

consume. They also diffuse as the grey level with respectively

the diffusion constants Lb and Lg. The Figure 7 bottom shows

the progressive treatment of the image of a Chilean forest

presenting the same characteristics of internal homogeneity as

a tumour (the trees replacing the cells); due to the fact that the

trees (like cells) belong to the same genetic lineage. After

reaching their asymptotic values, the dynamics of contrasting

implemented in a discrete scheme of the partial differential

equations (PDE) (1), stops and this processing step can be

followed by a snake spline contouring step.

Figure 4. Contrast illusions. Kanizsa pyramid: the lateral inhibition
causes the sensation of seeing a 3-dimensional pyramid.
doi:10.1371/journal.pone.0006010.g004

Figure 5. Contrast enhancement. Left: the lateral inhibition causes the enhancement of the yellow square (with medium level in false colours) in a
contrasted bright orange square [48]. Top right: temporal evolution of the Difference of Gaussian function representing an activation near the central
neuron i0 (green links) and an inhibition (red links) farther from i0 [47]. Bottom right: same processing in grey level with initial image on the left and
contrasted on the right [49]
doi:10.1371/journal.pone.0006010.g005
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Figure 6. Contrasting and contouring medical images. Top left: initial NMR image of a brain tumour [48,49]. Top middle: contrast
enhancement with occurrence of a central activity (blue arrows). Top right: boundary of the compressed tissue (using a snake spline). Bottom left:
tumour segmentation. Bottom right: tumour boundary (internal snake spline)
doi:10.1371/journal.pone.0006010.g006

Figure 7. Contrasting and contouring satellite images. Top left: compact flow initialization [83]. Top right: contour of Suez Canal [83]. Bottom
left: image of Chilean forest. Bottom right: contrasted image using chemotactic operator and snake-spline contouring [85,142]
doi:10.1371/journal.pone.0006010.g007

Contrast and Contour Operators

PLoS ONE | www.plosone.org 6 June 2009 | Volume 4 | Issue 6 | e6010



2) A viability contouring operator. If we minimize the

following function,

aS K tð Þð ÞzbV K tð Þð Þzc

ð
LK tð Þ

1= +g xð Þk k½ � dx ð2Þ

we obtain a new snake operator [75,85], where K(t) is a

compact object of interest moving toward a limit set K(‘),

whose external surface S as well as its inner volume V are

minimized, allowing a contouring with real gloves (precise

contour) contrarily to mittens (convex envelop) often observed

with the Mumford-Kass-Terzopoulos algorithm in Figure 7

[69,70]. We see in Figure 7 (top and bottom right) the

contouring done by imposing a bicubic spline to the boundary

at each time step [71,72], followed by a 3D spline smoothing.

Many other approaches can also be used for controlling the

active-shape models. This is the case in the level set methods

used for computing and analyzing the motion of an interface

in two or three dimensions by modelling the velocity vector

field through Euler-Lagrange or Hamilton-Jacobi PDE’s

[77,78,79,80]. These PDE’s can be used to model the

segmentation of a moving 3D object (like the heart) giving a

particular status to the pixels having a maximal velocity or

acceleration of their grey levels. This procedure has been used

for segmenting the pericardium [131].

3) A non-isotropic reaction-diffusion operator. If we

consider the grey level function g(x,0) as the initial image, we

can follow the transient behaviour of the non-linear diffusion

operator defined in [93]:

Lg=L t~ Ldiv 1 0,s½ � +(G � gj j:+g
� �� �

ð3Þ

Here G is a Gaussian kernel of fixed variance and with

Neumann conditions. Its asymptotes correspond to a

constant grey level suppressing the objects of interest inside

the image. For that reason, we consider now a non-isotropic

reaction-diffusion operator defined in [93,95,96]:

Lg=Lt{div L+gð Þ~0,dL=dtzL=t~s2P+g=t, if +gjj ws

~ +gjj 2
P+gz3 s2{ +gjj 2

� �
Id=2, if +gjj ƒs

ð4Þ

where L is a 262 matrix and P=g is the orthogonal

projection matrix:

P+g~1= +gjj 2 Lg=Lxð Þ2 - Lg=Lxð Þ Lg=Lyð Þ
- Lg=Lyð Þ Lg=Lxð Þ Lg=Lxð Þ2

 !
ð5Þ

In the equations above, the diffusion constant L becomes

variable with the time t and its evolution equation is similar

to the Hebbian rule of a discrete neural network operator.

Treated images are obtained at the asymptotic state of the

PDE dynamics as for neural networks [48,49] with lateral

inhibition (Figure 6). A comparison done in [96] shows that

the asymptotes of this non-isotropic operator are better than

for some of the operators described earlier. More generally,

we can notice in the other PDE approaches:

a) The application of the pure heat operator [145] quickly leads

to a constant grey level

b) In the Perona-Malik operator [92], the viscosity is different

within a region and across its boundary in order to encourage

smoothing inside the region of interest; this operator can be

used transiently for this purpose before the non-isotropic

reaction-diffusion operator

c) The Catté-Lions-Morel-Coll algorithm [94] gives a good

contrasting during the transient behaviour of the operator,

but has the same asymptotes as for the pure heat algorithm

(even it is reached more slowly)

d) The non-isotropic reaction-diffusion operator [93,95,96]

offers a reasonable asymptotic processing

e) The Weickert operator [97] permits the completion of

interrupted lines or the enhancement of flow-like structures

by choosing the appropriate smoothing direction in aniso-

tropic processes in spirit to the Cottet–Germain filter [95]

f) The Tschumperlé-Deriche operator [98,99] allows the

regularization of velocity vectors fields in 4D imaging

(acquired for example during the motion of a 3D camera).

4) An attentional focus operator. For focusing on only one

region of interest, we have to change the image input on an

artificial neural network [56]. This input can be constant

[24,31,32], stochastic [47–54] or deterministic periodic [56].

This last coding mimics the information storage inside the

hippocampus in which the functional unit, made of two

neurons in mixed inhibition/activation interaction (Figure 8

top left) has an attractor limit cycle. We can locally

synchronize, using an evocation stimulus, and desynchro-

nize, by introducing noise on the inter-unit interactions, the

periodic activities corresponding to initially non phase-

locked neurons. In this way, we enhance considerably (by

forcing the units to add their maximal activities at the same

time) the grey level on the zones of local synchronization

(Figure 8 E bottom right). Then, by thresholding and

segmenting, we get the parts of the initial image (Figure 8 A

top right) on which the attentional focus has been exerted

(Figure 8D, E, F top right).

Computer assisted interventions
For introducing and driving medical or surgical tools (like

needles, electrodes, bistouries) into the human body [118–135],

one needs to segment and contour (after contrasting) zones of

interest to avoid (as indicated by red zones in Figure 9 left

representing tissues of lungs on the top and cardiac muscle on the

middle and bottom) or to reach (blue arrow in Figure 9 right

indicating a pericardial effusion). This example gives a good

illustration of what can be exploited from the contrasting and

contouring operators in order to go farther than the descriptive

level for diagnosis. That is to really improve some medical

procedures, one must automate the process completely, thus

replacing the human actor without any loss of speed or precision

[119–130].

Discussion

Interest of the biomimetic approach
The biomimetic approach used in numerous methods presented

in this paper, especially for the contrasting phase, exploits the

efficiency of visual data processing procedures that have been

selected by natural evolution. These procedures represent an

optimum in terms of economy of implementation (small number of

living elements involved, like cells, tissues, vessels, etc), speed and

precision. They also are based on operations that come after

processing by the retina and visual areas, thus providing high level

semantic neural networks that define the symptomatology related
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to the observed medical reality. The extraction of semiotic

characteristics of objects of medical interest that have been

enhanced and contoured using biomimetic methods allows

medical signs and symptoms to be organized in syndromes, thus

facilitating the diagnosis process. The concept of biological

information encoded in a genetic program that controls develop-

ment forms a major part of the semiotic metaphor in biology. The

development plan is seen as being analogous to a computing

program, and ‘‘semiotics of nature’’ studies the structural relations

as explored by molecular and evolutionary biology [137]. Y.L.

Kergosien [138] advocates a semiotics of nature in an epistemo-

logical sense for analysing interacting biological systems, in order

to increase the precision of terms such as ‘‘signal’’ in biology or

‘‘symptom’’ in medicine, and to develop new themes of inquiry

into the nature of their biological or medical signification. The

Kergosien approach indeed allows for a concept of natural

signification. The adaptation of an animal to a specific function is

seen as the realization of the natural metaphor [137]. This is the

case for retinotopically arranged neuronal sets that code for

homogeneity features (brightness, colour, texture, etc), oriented

contours, and corners of an object. Simultaneous representation

by colour neurons, complex model neurons (with oriented

receptive fields), and hypercomplex model neurons (responding

to corners) makes attention and recognition robust and reliable, in

the framework of emergent abilities of optimized complex systems

[139–141].

The bio-inspired image processing methods also have a

tendency to use an information encoding that provides for

optimum information storage and query, as done in mnemonic

structures like hippocampus. In general these structures possess

Figure 8. Image attention processing. Top left: hippocampus-like neural network with lateral mixed action. Top-right: from A to F, progressive
attentional focus by locally synchronizing the periodic signal associated to each pixel [56]. Bottom-right: desynchronization process between periodic
activities of the neurons Xi (i from 1 to n)
doi:10.1371/journal.pone.0006010.g008

Figure 9. Computer assisted interventions. Left: Use of the confinement tree for delimitating security regions (red) in an ultra-sound image
before computer assisted puncture [131,132]. Right: zone chosen for introducing an external needle for puncturing a pericardial effusion [132]
doi:10.1371/journal.pone.0006010.g009
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their own formats of information encoded in periodic temporal

neuronal activities that we can mimic to optimize both

compression and retrieving procedures [40]. All these neural

treatments can induce illusions and artefacts. But the knowledge

about their origin can be used for preventing such abnormalities in

the low level (contrasting and contouring) as well as in the high

level (semantic assignation and recognition) image processing

steps. The neural treatments need also to avoid pathologic

processing, due to a non-optimal number of their neurons and/

or interactions and to a non robust value of their parameters. To

that precise purpose, a deep scientific knowledge about the

physiology and the pathology of the retina constitutes an

unavoidable inheritance.

Limits of the biomimetic approach
In order to be faster, the methods mimicking the natural

process of vision need to be made parallel as in the real neuronal

systems. But the attractors of the dynamical systems permitting

contrasting and contouring of the images are highly dependent

on their modality of implementation, particularly on their

updating mode. In general, the fixed configurations obtained

by simulating such systems are robust with respect to the mode

of updating, but it is not the case for the periodic neural activity

we have used in attentional focusing (Figure 8). Hence it is

convenient to be very careful until the final step of algorithmic

implementation.

The imitation of nature does not push to avoid theoretical

studies on the spatio-temporal processes used in artificial vision

[142]. Only this fundamental approach is able to finally guide the

methodological choice with arguments as fast calculation speed

[143], precision, accuracy, and minimal algorithmic complexity.

Indeed, these good properties constitute the main criteria for

selecting robust, fast and precise image processing tools for reliable

procedures of computer aided surgical and medical intervention

[118–135].

Materials and Methods

Discrete operators
Contrast enhancement. A large number of methods of

contrast enhancement have been used in the past to reinforce the

grey level gradient on the boundaries of objects of interest. These

methodologies can be classified following a typology, based on the

mathematical tools underlying algorithms:

- classical filtering (e.g. Gaussian [28]), PDE filtering [77,78,79]

the simplest being the heat operator analog for the Gaussian filter,

grey histogram thresholding [26,30], entropy techniques [25],

adaptive filtering [64]

- multi-scale, in particular wavelets [84]) approach [27,31]

- fuzzy clustering [29]

- specific hardware implementation [60,62] for real-time

procedures [22], using either the simplest PC based [23] or the

most sophisticated architectures (SIMD [32,52] or MIMD [68])

- neural networks techniques both discrete [48–55] and

continuous [93,95,96].

We will focus in the next Section on the neural networks

techniques which are the closest to the natural vision processing.

Definition of a formal neural network. A formal

deterministic neural network R of size n is defined by its state

variables {xi(t)}i = 1, …,n, where xi(t) denotes the state of the neuron

i at time t (equal to 1 if the neuron fires at this time and to 0 if not).

Then the discrete iterative system ruling the change of states in the

network is given by the following equations:

xi tz1ð Þ~1, if Hi tð Þ~
X

wij xj tð Þwh,

j [ V ið Þ

~0, if not,

where V(i) is a neighbourhood of i, Hi(t) plays the role of the

somatic electric potential, wij designates the synaptic weight

representing the influence of the neurone j on the neurone i and h
is a firing threshold. The updating of the neuronal states can be

operated:

- either sequentially, after having chosen a certain order for the

neurones,

- or block-sequentially, by operating the updating in parallel in

each sub-network of a partition of R and by afterwards activating

these sub-networks sequentially,

- or in a massively parallel fashion if only one sub-network

exists.

Input in a neural network
If an input Ii(t) is sent to neuron i at time t, it is merged with the

information coming from the neighbourhood V(i) in order to build

the somatic potential Hi(t):

Hi tð Þ~
X

wij xj tð ÞzIi tð Þ

j[V ið Þ

A very simple way of generating such inputs is to choose, for

each time interval Ek (supposed to be independent of the others)

between the two consecutive inputs 1, the kth and the (k+1)th, the

truncated geometric distribution: Prob({Ek#Ti}) = 0 and Pro-

b({Ek = m . Ti}) = pi(12pi)
m2Ti21, where Ti and pi denote

respectively the refractory period and the spike occurrence

frequency on the afferent fiber i bringing the electric input to

the neuron i. The truncated geometric processes are independent

or correlated between fibers. In Figure 5, we can see the activity of

a formal neural network activated by a non-homogeneous input

representing the initial image (top-left), and after iterating the

neuronal firing, we obtain as mean asymptotic behaviour (bottom-

left). The coding is obtained by taking Ti and pi proportional to the

grey level of the initial image. Image on the top-right is

representing the dynamics of the synaptic weights {wi0j(t)}jMV(i)

which follows a Hebbian rule reinforcing the weight wi0j(t) if i0 and

j had the same firing activity at time t:

wi0j tð Þ~F
wi0j t{1ð Þza xi tð Þxj tð Þ{
b 1{xi tð Þð Þ xj tð Þz 1{xj tð Þ

� �
xi tð Þ

� �
 !

where F is a sigmoidal function of arc-tangent type. The initial

distribution {wi0j(0)}jMV(i) is chosen dog-like (i.e. a difference of

Gaussian distribution centred at i0, the negative Gaussian having

the greatest variance as shown in the red dog G in Figure 5 (top-

right)), for mimicking the lateral inhibition. The image treated is

shown in grey level in Figure 5 (bottom-right), from initial to

treated asymptotic image. We see that the square having a medial

activity is enhanced by the lateral inhibition expressed by the dog

function and its final level after iterating the network until it

reaches its asymptotic firing regime, has a level clearly augmented

(see the orange square on the bottom left and the enhanced
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‘‘mesa’’ on the bottom right). Such a simulation highly suggests

that an analogy between pixels and neurons can be made allowing

the transfer of neural filtering techniques in image processing

[24,31,48].

Gradient enhancement by a neural network
Image enhancement procedure. We now present in 4

steps, the essentials of a method, easy to parallelize based on the

same principles as proposed in [31]:

1) reduction of a 5126512 NMR image in a 2566256 image

by averaging each block of 4 neighbour pixels, in order to

obtain the input image (cf. Figure 6 top left).

2) use of this image as the mean configuration of an input

geometric random field transformed by a 2566256 uni-layer

neural network implemented in parallel; this network has an

internal evolution rule, realizing a treatment of the input

signal very close to a cardinal sine convolution, mimicking

the lateral inhibition and favouring the occurrence of a very

steep gradient on the boundary of homogeneous (in grey

level) objects of interest in the processed image. In Figure 6,

the object of interest is a brain tumour, its homogeneity

coming from the same clonal origin of all its tumour cells.

3) use of the gradient, built by the neural network as the

potential part of a mixed potential Hamiltonian differential

system, whose Hamiltonian part is given by the initial grey

level (before the action of the neural network).

4) obtaining boundaries of homogeneous objects as limit cycles

of the differential system by simulating trajectories of the

system in the different attraction basins.

The step 2 consists of defining the input from a geometric

random field, i.e. a collection of geometric random processes such

that, if pi(t) denotes the probability to generate a spike on the

afferent fiber i to the neuron i at time t, we have: pi(t) = 0, if

t2si#Ti, where si is the time of the last 1 on the fiber i before time

t and Ti denotes the refractory period, chosen as a constant equal

to R. pi(t) = ai sin+(vi(t2si2R)), if t2si .R, where sin+ denotes the

positive part of the sine.

In order to incorporate an adaptation learning effect, a Hebbian

evolution of the wij’s is chosen based on the reinforcement of equal

grey activities in the same neighbourhood:

wij tz1ð Þ~log
X

pi sð Þpj sð Þ
.

t
� �

,

sƒt

where wij(0) values come from a dog (difference of Gaussian)

distribution of j centred at i, for each i, for mimicking the lateral

inhibition. This formula corresponds to the fact that wij(t) is just

the non-centred covariance function between the pi(s)’s and the

pj(s)’s; if vi2vj and R are small, wij(t), when t tends to infinity,

tends to log((aiaj/2)sin(vi2vj)/(vi2vj)).

Image coding
After normalization of the grey level g(i) in the pixel i between 0

and 1, we take:

ai~g ið Þ and vi~l g ið Þ

and we start the procedure by iterating the deterministic neural

network. It is easy to prove that the probability pi to have 1 as

output of the neuron i at time t, just before renormalization, is

about proportional to:

p’i~
X X

pi sð Þpj sð Þ=t
h i

j[V ið Þ sƒt

This last formula has been used to make the gradient

enhancement visible in Figure 6 (top-middle). The behaviour of

the function p’i is similar to a convolution by a cardinal sine

function, because of the approximate asymptotic formula:

p0i~
X

j[V ið Þ log aiaj

�
2

� �
sin vi-vj

� ��
vi-vj

� �� �

It is easy to verify that this convolution reinforces the ‘‘plateau’’

or ‘‘mesa’’ activities in grey level (or white if necessary). Such

activities correspond, in medicine, to pathological objects to be

considered as targets during the treatment (like tumour in which

the same clone of cells gives a homogeneous response in

absorbance or resonance) or to physiological objects (like a tissue

made of cells having the same function) to be avoided during the

treatment. Figure 6 shows the result of a gradient enhancement by

the network for a brain tumour. Let us finally remark that we get

objects treated at the asymptotes of the network dynamics. We do

not need a stop criterion after few steps of processing and the

method is easy to parallelize [55,61].

Continuous operators
The final aim of these methods is to offer a set of continuous

operators adapted to segmentation of grey singularities or grey

peaks (0-dimensional objects like micro-calcifications), grey

anticlines (1-dimensional objects like vessels) or grey ‘‘mesas’’ (2-

dimensional objects like tumours or functional regions). The

problem of segmentation of more complicated objects (fractal

objects like diffused tumours affecting, for example, the conjunc-

tive tissue) is open and demands that other variables like texture

based one’s (e.g. the local fractal dimension or the wavelets

coefficients) need be taken into account instead of or along with

the grey level.

Let us consider now a compact state set E included in R2 and a

temporal set T included in R+ or N, depending on the continuous

or discrete version of time used. Let K(E) denotes the set of all

compacts of E. If we provide K(E) with the Hausdorff topology

(defined by the Hausdorff distance d between subsets), we can

define a compact set valued (csv) flow Ø as a continuous

application of K(E).T to K(E), which is a semi-group:

V K,tð Þ [ K Eð Þ:T,V s [ T, � � K,tð Þ,sð Þ~ w K,tzsð Þ

Because K(E) is a metric space, which is compact if E is

compact, we can apply the operators limit and basin as defined in

[36,37] to the set valued flow Ø, and hence define the notions of

attractor and of stability basin. We will give some examples of csv

flows, whose attractors are objects to be contoured in image

processing, or final shapes to be obtained at the end of any

morphological development, these targets being often the same.

Potential flows. In snake contouring [69–72], the aim is to

obtain the boundaries of an object of interest by progressively

deforming the boundaries of an initial well-known set K(0) (e.g., a

sphere) placed outside (respectively inside) the object, and whose
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deformation K(t) causes the decrease (respectively increase) of a

potential function P [75] such as:

P K tð Þð Þ~aS K tð Þð ÞzbV K tð Þð Þzc

ð
LK tð Þ

1= +g xð Þk k½ �dx

in which S(K(t)), V(K(t)), hK(t), and g(x) denote respectively the

external area, the inner volume, the boundary, and the grey level

at the point x of the compact K for iteration t. The gradient

iterations of P correspond to a discrete potential flow. For

obtaining the continuous version, it suffices to use a potential

‘‘mutational’’ equation [81–83]. We can also add splines- like

terms, e.g. d#hK(t)C(x)dx, where C(x) = (h2g/hx1
2)(h2g/hx2

2 is the

mean Gaussian curvature at x (in order to minimize the total

variation of the local curvature like for the splines functions), plus a

mean square criterion forcing hK(t) to pass in the vicinity of points

known a priori with fixed curvatures (in particular singular

parabolic or saddle points, if their localization is known a priori).
Mixed potential Hamiltonian Segmentation. The

continuous modelling allows stable evolution of differential

operators such as gradient or Laplacian. Our segmentation

consists in building a differential equation system whose stable

manifold is the surface of the object we are looking for. Finding

this manifold turns out to be a particular case of the surface

intersection problem and provides an immediate analytical

representation of the surface. The other major advantages of this

method are to perform segmentation and surface tracking

simultaneously, to describe complex structures in which

branching problems can occur if the segmentation is purely

local, and to provide accurate and reliable results.

Let us first consider the 2D problem. The central idea of the

method is based on the Thom-Sebastiani conjecture [35]

concerning the differential system:

x0 tð Þ~F x,yð Þ, y0 tð Þ~G x,yð Þ

In the neighbourhood of a stable singularity or of a limit cycle of

the corresponding velocity vector field supposed to be continuous,

let us suppose that we can decompose the system into two parts, a

potential and a Hamiltonian one, such as:

x0 tð Þ,y0 tð Þð Þ~{grad P x,yð Þzham H x,yð ÞzR x,yð Þ,

where the residue R(x,y) tends to 0 when (x,y) tends to the stable

singularity or to the limit cycle. Such decomposition has been

proven for a large class of Liénard systems [41–44]. The Thom-

Sebastiani conjecture assumes that this result still holds by

considering sufficiently regular systems. We will exploit systemat-

ically in the following, this possibility to consider a contour as the

limit-cycle of a mixed potential Hamiltonian system. In fact, we

consider now the boundary surrounding a 2D object with an

approximately homogeneous grey level g, thus verifying:

g x,yð Þ~k, where k is a constant

The corresponding curve is represented with parametric

coordinates by:

x~x tð Þ; y~y tð Þ

The continuous modelling implies the existence of the first

derivatives of g; so a solution should verify the following equation

obtained by differentiation of g(x,y) = k:

x0 tð ÞLg=Lxzy0 tð ÞLg=Ly~0

A particular solution of this equation is: x’(t) = hg/hy, y’(t) =

- hg/hx, but this system does not provide a stable solution; a

perturbation (due to noise) moving the curve away from the initial

contour line could not be corrected. That is why we add a

component which brings the curve back to the contour line

defined by g(x,y) = k, according to the steepest slope line of the

function (g-k)2. We thus obtain:

x0 tð Þ~Lg=Ly{bLg=Lx= +g xð Þk k,

y0 tð Þ~{Lg=Lx{bLg=Ly= +g xð Þk k

This system consists in two parts: the first one corresponds to an

‘‘edge tracking’’ component and the second one is a kind of

‘‘elastic force’’ which allows noisy image processing. The b
parameter allows to balance these two terms. The system may be

solved by numerical analysis methods with initial conditions, like

the Runge-Kutta-Gear method. The parametric representation of

the curve is then directly obtained. This continuous method can be

applied in 3-dimensions to look for particular features of the

surface of an object of interest. Let us consider such a surface

defined by: f(x,y,g) = constant, parameterized by:

x~x t,hð Þ, y~y t,hð Þ, g~h

Our boundary tracking method can be implemented as follows:

the algorithm starts with a point on the surface with a grey value h.

For each slice of level h, the differential system is solved in order to

obtain a closed curve. From some points of this curve, we follow the

object surface until the next (k+1) slice by building new 2D

differential systems in slice level planes. The algorithm stops when

all slices have been processed or when the object surface has been

entirely described. This method allows to find automatically all the

components of a complex object in which branching problems may

occur and to determine how they are linked together. This

possibility is one of the major advantages of the method because

surface reconstruction from a set of contours is a critical step for

complex structures. Classically, interpolation between contours is

performed by triangulation techniques or by creating intermediate

contours with dynamic elastic interpolation. But these methods need

sometimes interaction with the user. In our method the surface

modelling is performed in the segmentation step. This algorithm has

been tested on MRI images for stereotaxy before stimulation needle

introduction or brain tumour puncture [118–129].

The remarkable Gaussian line. Homogeneity is not always

a stable characteristic of an anatomical structure. So we present

now a differential system performing H(g) = 0, where H is an

operator similar to the Laplacian or Marr-Hildreth detectors. Let

us define the remarkable Gaussian line of a peak as the set of

points where the mean Gaussian curvature of the peak vanishes

(Figure 10). Its equation writes [41]:

H x,yð Þ~ L2g
�
Lx2

� �
L2g
�
Ly2

� �
{ L2g

�
LxLy

� �2
~0
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If H’ = |H|, let consider the mixed potential Hamiltonian

system [42–44] obtained as follows:

dx=dt~{aLH’
.

Lx H x,yð Þ
.

grad gð Þk k2
h i

zbLH=Ly

dy=dt~{aLH’
.

Ly H x,yð Þ
.

grad gð Þk k2
h i

{bLH=Lx

We consider in Figure 10 bottom right the new grey function

H(x,y) instead of the function g(x,y) at each pixel (x,y) and we

display bottom left the mixed potential Hamiltonian differential

system above of which the characteristic line is a limit cycle, called

the Hamiltonian contour. Its first term is of steepest descent

dissipative nature and along the flow, the trajectories converge to

the zeros of H’(x,y). On the set of the zeros of H’(x,y), the second

Hamiltonian term of the differential system which is of

conservative type, becomes preponderant. Parameters a and b

can be used to tune the speed of convergence of the differential

system to the limit cycle. The usual Runge-Kutta-Gear discretiza-

tion scheme yields ultimately for the differential system an

algorithm which is quite easy to implement. On each pixel

(boundary effects are neglected), the function H(i,j) reads:

H i,jð Þ~ g iz2,jð Þ{2g iz1,jð Þzg i,jð Þ½ �

g i,jz2ð Þ{2g i,jz1ð Þzg i,jð Þ½ �

{ g iz1,jz1ð Þ{g i,jz1ð Þ{g iz1,jð Þzg i,jð Þ½ �2

An important property of the remarkable Gaussian line is that

in the case of a Gaussian peak, it contours the projection of a

volume equal to 2/3 of the total volume of the peak. This property

remains available with a good approximation in case of moderate

kurtosis and skewness of the peak. An advantage of this technique

is that we do not perform a direct segmentation of the grey level.

Thus the segmentation is much finer than the corresponding one

performed by the watershed lines method or by its variant with

markers [103]. We only segment the upper part of the peak and

then we multiply by 3/2 the activity integrated inside the

remarkable line. This approach is interesting because the lower

part of the peak is often noisy. The method seems particularly

efficient when the peaks are well separated. If they are close (see

Figure 10 bottom right), then we need to tune the parameters a
and b and to start the trajectories inside the peaks. For finding a

contour line inside, we can:

1) calculate the total variation V(h) = #C(h)||=g(x)||dx of the

gradient norm||2=g|| along a contour line C(h) of level h

2) both decrease and increase h towards two limits h1,h and

h2. h in order to find an intermediary value of V(h) greater

than the two values V(h1) and V(h2) calculated at the

extremities h1 and h2. Then C(h1) and C(h2) constitute an

annulus whose intersection with the remarkable line is not

empty

3) choose the initial condition on C(h2) for starting the

simulation of the differential system.

Eventually, we can notice that the remarkable Gaussian lines

can serve for matching images or objects of interest, for example,

in the case of comparing images to a reference coming from an

atlas. They constitute a feature in general more robust than

parabolic or saddle singularities sensitive to perturbations causing

local skewness of the grey peaks.

Figure 10. Discrete segmentation and continuous contouring. Left: confinement tree [111]. Top-middle: level sets of the confinement tree in
a brain tumour NMR slice [111]. Top-right: watershed tree [103]. Middle-left: level sets of the watershed tree [110]. Middle-right: watershed tree and
landscape with different water levels. Bottom-left: on the left (respectively right) successful (respectively failed) contour of the remarkable Gaussian
line in case of one (respectively two) isolated (respectively close) grey level peak(s) [41]. Bottom-right: 3D image of two close peaks [41]
doi:10.1371/journal.pone.0006010.g010
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Watershed contouring. The watershed line is a concept

firstly defined by geographers in order to characterize the main

features of a landscape: a drop of rain that reaches the ground will

flow down to a sea or an ocean. In the case of France, the

watershed line splits the country in two parts, the Atlantic zone

and the Mediterranean zone. Those zones are called ‘catchment

basins’, and the oceans are the minima of them, i.e. the attraction

basins of the gradient operator which corresponds to the

gravitational dynamics of the drop on the steepest gradient lines

of the relief surface. They define a partition of this relief, and the

boundaries of catchment basins define on the pixels plane the

watershed lines [105–109]. These lines are confounded in regular

cases with the crest lines surrounding the catchment basin. It is

easy to understand the interest of this concept in image processing:

grey level images can be considered as relief structures, and the

watershed lines are a good way to separate light (low grey level)

zones from dark (high grey level) ones. It is particularly interesting

to determine the watershed lines of the symmetrical reverse

landscape obtained by considering the new grey level 1-g, where g

is the initial normalized grey level obtained after the contrasting

step and after fixing the maximum of g as a normalized value

equal to 1. The watershed lines verify variational principles: i)

when progressively fulfilling with water a catchment basin, its

inner area passes through a series of inflexion points corresponding

to the successive saddle points reached by the water. Each

inflexion point corresponds to a local maximum of the second

derivative of the inner area; ii) for a given inner area, the

watershed lines are those containing the maximum of water. The

watershed line is computed on a discrete image, by immersion

simulation, locating it on the meeting points of several catchment

basins (Figure 10). First discrete algorithms of watershed lines

computed by immersion simulation were proposed in [105–109]

with a discrete operator. In [103,110], the watershed line is

computed on the reverse image, in order to have one and only one

local maximum of the original image into each catchment basin of

the reverse image. The resulting labelling (still not a partition) is

done on the original image. We used the Vincent-Soille algorithm

[105] on discrete images with a linear complexity (about 7,25 n,

where n denotes the number of pixels in the image). It can be used

also in 3 dimensions.

Reaction-diffusion contrasting. Several methods of image

contrasting by using differential linear or non-linear operators

have been proposed [92–99]. These methods can be parallelized

as for the neural networks and we will show in the following that

there exists a deep relationship between the discrete neural

network approach and the continuous differential operator

approach.

1) The Catté-Lions-Morel-Coll non-linear diffusion
operator. It is well known that the solution of the heat

differential operator:

Lu=Lt~k:Du~k:div grad uð Þð Þ

is the Gaussian kernel, with variance equal to s2 = 2 kt, by

choosing as initial conditions u(.,0) the grey level. This

Figure 11. Continuous contrasting operators. Left: comparison between heat diffusion (a), Catté-Lions (b) [94] and non-isotropic (c) [93,95,96]
contrasting operators. Right: non-isotropic contrasting operator and snakes contouring of the cardiac ventricular cavities with initial image (a), Canny-
Deriche treatment [146] (b), non-isotropic processing (c), snakes splines contouring (d–f)
doi:10.1371/journal.pone.0006010.g011
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property has suggested [94] the use of another differential

non-linear diffusion operator:

Lu=Lt~div g grad G � uð Þkkð Þ:grad uð Þð Þ,

where G is a Gaussian kernel and g is a non-negative non-

increasing function on R+ verifying g(0) = 1 and g tends to 0

at infinity; in practice, we can choose for g a set function,

whose value is 1 on the interval [0,S] and 0 on]S, +‘[: there

is diffusion if and only if ||grad(G*u)||#S and, after a

certain transient, it remains a gradient only on the boundary

of sufficiently discriminable objects. For example, Figure 11

presents images after some hundreds of iterations, showing

the gradient on the boundary of brain structures. The end of

the procedure as for the heat operator (Figure 11 left (a))

shows that diffusion wins, giving a constant grey level at the

asymptotic state. In order to improve the method of getting

the contrasted image at the asymptotic state of the simulation,

we must add a reaction term in order to obtain the final

expected image as the attractor of a differential reaction-

diffusion operator, like for the iterative discrete neural

network as in Figure 11 left (c).

2) The non-isotropic reaction-diffusion operator. By

searching a continuous operator having as discrete finite

elements scheme a deterministic neural network system

similar to that presented in Section 2, it has been proposed

[93,95,96] with direct reference to the discrete neural

network approach [48,49,52] a new reaction-diffusion

operator. Let us recall the deterministic neural network with

threshold 0 defined by:

xi tz1ð Þ~1,

if Hi tð Þ~
X

wijxj tð Þ w 0,

j[V ið Þ

~0, if Hi tð Þ~
X

wijxj tð Þ ƒ 0,

j[V ið Þ

where V(i) is a neighbourhood of i. If we suppose the neural

network to be 2D and infinite, lets us denote by (i1, i2) the

position of the neuron i, where i M Z2; if wij are symmetrical

and translation invariant with finite range R, where R is the

radius of the neighbourhood V(0) of 0, there exists T defined

on [21,1]2 and valued in [21,1] such as:

wij~T i1{j1ð Þh=R, i2{j2ð Þh=Rð Þ,

where h is a strictly positive real number, T has as mean value

m,

m~

ð
T y1,y2ð Þdy1dy2w0

and variance

s2~M{m2,

wherein

M~

ð
T2 y1,y2ð Þdy1dy2:

Let us denote now by f a continuous regularized version of

the Heaviside function (like the arc-tan) and let us take

F~f{1,

a uð Þ~lR4S
�

h2F’ uð Þ
� �

,

b uð Þ~ {F uð ÞzlR2
�

h2mu
� ��

F’ uð Þ

then the reaction-diffusion operator defined by:

Lu=Lt~a uð ÞDuzb uð Þ

has a natural discretization corresponding to the neural

network above, by identifying xi(t) and u(ih,t) and by

remarking that the neural network system has the same

asymptotic behaviour as the differential system:

dxi tð Þ=dt~ l
X

wij xj tð Þ{H xi tð Þð Þ
� �.

H0 H xi tð Þð Þð Þ,

when l is sufficiently large. In [93], it is shown that, for

adapted values of R, homogeneous in grey, 1D objects can be

enhanced in a heterogeneous environment, in the same way

as for a neural network system. In [96] and in Figure 11

(right), the same proof is given for 2D objects like the internal

cavities of the heart, where a snakes splines procedure is used

after contrasting.

3) Proposal for a new image reaction-diffusion-chemo-
taxis operator. In order to have, like for the previous

operator, the final treated image as asymptotic of a

differential operator, we propose to consider the grey level

u as a chemotactic substrate concentration consumed by

animals whose concentration will be denoted by v

[84,85,144]. The principle of this method consists in locating

initially a uniform concentration v(0) of animals on the initial

grey level image u(0) or on its boundary: the substrate u can

diffuse with a term eDu and is consumed with a saturation

rate equal to: 2Kuv/(u+k); the animal concentration v can

diffuse attracted by the substrate with the term DDv, is

submitted to a drift in the direction of substrate peaks with the

chemotactic term - xdiv(vgradu) and increases (because of the

reproduction) with the term K’uv(u+k’). Let us remark that

the two first terms ruling the animal motion can be replaced,

if we do not want to introduce a drift term, by an attraction-

diffusion term like:

D L2v
�
Lx2:Lu=LxzL2v

�
Ly2:Lu=Ly

� �
The corresponding differential partial derivative operator is

then given by:

Lu=Lt~eDu{Kuv= uzkð Þ,

Lv=Lt~DDv{xdiv vgraduð ÞzK0uv uzk0ð Þ

or by the following PDE:

Lu=Lt~eDu{Kuv= uzkð Þ

Lv
�
Lt~D L2v

�
Lx2:Lu=LxzL2v

�
Ly2:Lu=Ly

� �
zK0uv= uzk0ð Þ
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In the two cases above, the asymptote of u is 0 and the

asymptotes of v give the ‘‘treated image’’. The corresponding

image processing leads to a contrast enhancement before

segmentation: in Figure 7, we can see the initial image on the

bottom left and the contrasted one on the bottom right. The

contours have been then easily obtained by applying a snakes

splines procedure [71,72]. If we are adding to the second

equation of the differential system a Dupin term like Kv/Du,

we will encourage animals to follow Dupin lines, i.e. inflexion

curves, which is very suitable for a grey anticlines segmen-

tation (for example in vessels segmentation).

Conclusion
The neuro-mimetic lateral inhibition mechanism and the set

valued snakes-like flows allow the generation of various image

processing methods (essentially contrast enhancement and con-

touring). We have given numerous applications of this method-

ological approach in image processing essentially dedicated to

medical imaging and surgical robotics. Further both theoretical

and numerical studies have to be completed, in order to show the

utility of these new tools in morphogenesis modelling, allowing to

generate artificial objects of biological and/or medical interest (like

cells, tissues, organs) by using the same operators as for

recognizing them in a real image. We conjecture that the spatial

information about anatomic organs obtained from the biomimetic

image-processing methods, has to do with the morphogens

localization, which results from the morphogenetic processes

creating these organs combining robust genetic regulatory

networks [145,146] ruling their metabolic reactions and cell

proliferation, with classical diffusion [147] of morphogens inside

their tissues. In particular, the main patterns observed during the

embryonic formation can be found in the biomimetic processing of

the images by the final adult organ.

Acknowledgments

We are indebted to J. Mattes for helpful discussions and comments and to

E. Greene for many suggestions and improvements.

Author Contributions

Analyzed the data: YF MT NV. Wrote the paper: JD.

References

1. Hammond P (1971) Chromatic sensitivity and spatial organization of cat visual

cortical cells: cone-rod interaction. J Physiol 213: 475–494.

2. Attwell D, Werblin FS, Wilson M, Wu SM (1983) A sign-reversing pathway
from rods to double and single cones in the retina of the Tiger Salamander.

J Physiol 336: 313–333.

3. Signal Processing. Initial Processing of Visual Input in the Retina http://

education.vetmed.vt.edu/curriculum/VM8054/EYE/CNSPROC.HTM.

4. Eysel UT, Wörgötter F, Pape HC (1987) Local cortical lesions abolish lateral

inhibition at direction selective cells in cat visual cortex. Exp Brain Res 68:

606–612.

5. Chubb C, Sperling G, Solomon JA (1989) Texture interactions determine

perceived contrast. Proc Natl Acad Sci USA 86: 9631–9635.

6. Burr DC, Morrone M (1990) Feature Detection in biological and artificial
visual systems. In: Blakemore C, ed. Vision Coding and Efficiency. Cambridge:

Cambridge Unversity Press. pp 185–194.

7. Solomon JA, Sperling G, Chubb C (1993) The lateral inhibition of perceived

contrast is indifferent to on- center/off-center segregation, but specific to
orientation. Vision Res 33: 2671–2683.

8. Li Z (2000) Pre-attentive segmentation in the primary visual cortex. Spatial

Vision 13: 25–50.

9. Meir E, von Dassow G, Munro E, Odell G (2002) Robustness, Flexibility, and

the Role of Lateral Inhibition in the Neurogenic Network. Current Biology 12:

778–786.

10. Petrov Y, Carandini M, McKee S (2005) Two Distinct Mechanisms of

Suppression in Human Vision. J Neuroscience 25: 8704–8707.

11. Goldberg SH, Frumkes TE, Nygaard RW (1983) Inhibitory influence of
unstimulated rods in the human retina: evidence provided by examining cone

flicker. Science 221: 180–182.

12. Lyubarsky AL, Lem J, Chen J, Falsini B, Iannaccone A, et al. (2002)

Functionally rodless mice: transgenic models for the investigation of cone
function in retinal disease and therapy. Vision Res 42: 401–415.

13. Bilotta J, Powers MK (1991) Spatial contrast sensitivity of goldfish: mean

luminance, temporal frequency and a new psychophysical technique. Vision
Res 31: 577–585.

14. Williams GA, Daigle KA, Jacobs GH (2005) Rod and cone function in coneless

mice. Vis Neurosci 22: 807–816.

15. Umino Y, Solessio E, Barlow RB (2008) Speed, Spatial, and Temporal Tuning

of Rod and Cone Vision in Mouse. J Neuroscience 28: 189–198.

16. Kawamura S, Tachibanaki S (2008) Rod and cone photoreceptors: Molecular
basis of the difference in their physiology. Comparative Biochemistry and

Physiology Part A 150: 369–377.

17. Burr EG (1947) Illumination for Concealment of Ships at Night Transactions.

Royal Soc Canada 41: 45–54.
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Acad Sci Mathématique 344: 253–258.
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Evolution of the genetic regulatory networks: the 
example of the cell cycle control network. 

From gastrulation modelling to apocatagenesis 
 

F. Caraguel, M. Tayyab, F. Giroud, J. Demongeot*  
 

Abstract — The regulatory genetic networks obtained from the 
evolution and dedicated to important cell physiologic functions 
like the control of the progression in the cell cycle are often 
obtained as random networks with some circuits in the core of 
the associated interactions graphs fed by an upper multi-rooted 
directed tree coming from sources which represent the 
controlling genes or microRNAs, and giving orders to a pending 
multi-rooted directed tree until leaves which express the ultimate 
proteins necessary at the control points of the cell growth and 
maturation. We show on this exemple that during the 
complexification of the living organisms (from worms to 
mammals passing through insects), the cell cycle is controlled by 
a genetic interactions graph, which has multiplied the roots of its 
upper tree, as well as the leaves of the pending tree as control 
points of the progression in the cycle; but this graph kept a core 
which conserved about the same dynamical properties. Certain 
genes or microRNAs sources of the graph are involved in 
mammals in negative retrocontrol loops allowing if necessary a 
modulation of their inhibitory control from the frontier of the 
graph. We will use this knowledge about the graph dynamics to 
study a simple model of the development of the primary digestive 
tube obtained during the gastrulation process. We conclude by 
proposing a model for the control of the compensatory 
proliferation after accidents of ageing leading to a functional 
and/or anatomic partial or total amputation of an organ, which 
requires a repair morphogenesis in order to obtain a restitutio in 
integrum, we will call homeogenesis at the organ level (i.e. 
respecting the organ homeostasis) or apocatagenesis at the cell 
level (i.e. compensating exactly the dead cells). 

Keywords: genetic regulatory networks, cell cycle control, 
microRNAs, graph frontier, circuits, gastrulation  

The living organisms are very complex – part digital and part 
analogy mechanisms. J. von Neumann [1]. 

I.  INTRODUCTION 
Recent advances in the knowledge about the regulatory genetic 
networks, in particular in the field of the control by micro-
RNAs of central functions like the progression in the cell cycle 
have shown that the architecture of genetic interactions graphs 
is often made of a central core which is a circuit between genes,  
Manuscript received 15th November 2009.  
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surrounded by an upper tree with multiple roots whose leaves 
are the genes of the circuit, and of a pendant tree whose roots 
are these genes and the leaves are the final control genes ruling 
the progression of the cell in its cycle. 

II. DISTANCES BETWEEN GRAPHS 
2.1. Mathematical distances between trees  
Let G=(V,E), where V is a set of vertices - or nodes, like genes 
i,j,... - and E a set of weighted edges - or interactions like wij, 
where wij>0 (resp. wij>0)  means that the protein expressed by 
the gene j induces (resp. represses) the activity of the gene i.  
G is a finite undirected graph, supposed to be without self-
circuits, but containing circuits (or loops, i.e. paths between 
genes i and itself passing through at least one intermediate 
gene) and multirooted trees and it is possible to calculate, if G 
is random, the expectation of the circuits and trees numbers 
[2]. Let us suppose that there is only a circuit (genes G1 to G8 
on Figure 1) with an upstream and a downstream tree, called 
respectively in the following uptree (genes G9, G10) and 
downtree (genes G11, G12). 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

Figure 1. Circuit (genes G1 to G8), uptree (G9, G10) and downtree (G11, G12)  

Within the framework of this study, we will now introduce 
distances between trees and circuits: 
A. Nodal distances between trees [3] 
Two multirooted phylogenetic trees T, T' on the same set S of 
genes are isomorphic with a nodal distance equal to 0, if, and 
only if, for every pair of genes (i,j), the distances between i 
and j (i.e. the length of the minimal paths between i and j, 
denoted L(i,j) and L'(i,j) in the undirected trees corresponding 
to T and T') are the same in T and T'. Any distance d between 
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the matrices L and L' is called nodal distance between T and T'. 
If T' is defined on a subset B of the genes set of T, the distance 
between T' and T is equal to those between T' and the 
restriction of T to B, the same paths length as in T being kept. 
 
B. p-uplet distance between trees [4] 
The quartet distance is the number of p-uplets – sub-trees 
induced by p leaves – that differs between the trees. The other 
distances between trees are more complicated; we can use the 
pq-gram distance [5], the general edit distance between trees 
[6] or the edge shift distance [7] between trees. 

2.2. Mathematical distances between circuits 
The nodal distances between circuits have the same definition 
as above in A.  
 

III. EVOLUTION OF THE REGULATORY NETWORKS: THE 
EXAMPLE OF THE CELL CYCLE CONTROL 

3.1. The cell cycle control network 
The cell cycle is controlled in all realms where prokaryotic or 
eukaryotic cells are present, i.e. practically everywhere in life 
systems. In mammals, the first spheric symmetry breakdown 
of the ovule is due to an irreversible reaction-diffusion process 
organizing spatial waves of calcium [8], caused by the shock 
of the spermatozoid head on the pellucid membrane of the 
ovule: it leads after equiploid cell divisions (the others leading 
in general to abortive mitoses [9]) occurring on the spatial 
nodes of calcium on which diffuse many cytoskeleton 
components as tubuline [10,15], giving to the embryo a 
cylindric cephalo-caudal structure (Figure 2). 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Top: the first shock of a spermatozoid head on the pellucid 
membrane of the ovule gives calcium waves (in green). Middle: tubulin waves 
in an artificial cell. Bottom: cylindric structure of an embryo  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 
 
 
 
 
 
 
 
 
 

  
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 3. Top: the core circuits of the interaction graph controlling the G1/S 
transition of the cell cycle. Middle: explicitation of the up- and down-stream 
control trees with indication (in red) of the neo-circuits. Bottom: different 
ways of the G1/S transition control for different species, Coenorhabditis 
elegans, Drosophila melanogaster and mammals 
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The progressive apparition during the evolution of many 
upstream controllers until the mammals microRNAs or p27 
[16] and p53 [17], by keeping nodal distance at the value 0 
between Drosophila melanogaster and mammals, thus giving 
a robust [18-21] Rb-E2F control (Figure 3). 

IV. GASTRULATION  
The initial embryonic growth of an organ defined inside its 
biological boundary is exponential between blastula and 
gastrula stages [22]. The cell divisions are ruled by the 
following constraints limiting the cells and embryo growth 
duration: 
 
1) Thom's laws [23] 
- A cell  divides when its ratio S/V (Surface divided by the 
Volume inside the cell boundary) reaches a critical value 
- An organ stops its growth when its ratio S/V reaches a 
critical value 
 
2) Hayflick's laws [24,25] 
- A cell lineage in a cell culture stops before a fixed finite 
number of cell divisions; this number is called the Hayflick's 
limit k and goes from 7 in C. elegans, to 15 in mice and 110 in 
Galapagos tortoise. If the embryonic growth is stopped by the 
Thom's constraint, then we will denote by h the number of 
divisions remaining for the adult phase. If Ne denotes the 
number of cells observed at the end of the embryonic growth, 
then h ≈ k - Log2Ne (by neglecting the apoptosis during the 
embryonic phase)  
- A cell population in a stationary organ has an apoptosis rate 
which compensates the cell divisions. 
On Figure 4, we have in blue the initial pattern and in black 
the pattern after mechanical perturbations due to the first bottle 
(or flask) cell differentiation : the most basal cell is supposed 
to be the first to differentiate and to present an apical 
constriction due to an overconcentration of myosin at this cell 
pole. Then each cell evolves following the mechanical laws:  
1) the sum of the orthogonal forces exerted on the cell walls is 
equal to its mass (proportional to its inner area) times its 
orthogonal (to the wall) aceleration. The external forces are 
the resultant of the extracellular (Pext) and intracellular (Pint) 
pressure, the contact forces being exerted by the neighbouring 
cells (sharing a part or the whole of the wall) exerted by other 
cells and the internal force is due to the cell pressure exerted 
via the cyto-skeleton and the plasmic membrane [26]. Each 
force is equal to a coefficient (e.g. the physical pressure) times 
the length of the wall on which it is exerted 
2) If we suppose that the initial cell configuration is in an 
equilibrium state, we calculate an admissible set of parameters 
values respecting this equilibrium (Figure 4) 
3) Then, we leave the cell system evolve depending on the 
energetic balance ruling the cytoskeleton apical 
polymerization [27-29] controlled by a specific genetic 
regulatory network comprizing essentially concertina (cta), 
actin, myosin, Rho and RhoGEF genes (Figure 5), by choosing 
a small time step, by updating sequentially each cell and by 
calculating their displacements respecting the no-overlapping 

rule (Figure 6). At each step we update the cell common walls 
by supposing that cell contacts are close, ensured between 
cells by cadherins and gap junctions [30], and with the extra-
cellular matrix by integrins and adhesins. Cell motion involves 
a change in its inner area: we suppose that growth occurs 
where internal forces Fint are larger than  external ones Fext 
(cell has to be stretched), as for constrained growth in 
continuous media mechanics. When the external forces 
dominate, the cell is supposed compressible and can be 
constricted. The cells divide longitudinally or laterally when 
their ratio perimeter over area is too small (Thom's first law). 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 4. Top: differentiation of the first bottle (or flask) cell. Middle: cells 
equilibrium between external and internal forces. Bottom: successive divisions 
of the first bottle cell leading to a progressive invagination of the furrow slice  
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Figure 5. Structure of the genetic network controlling the gastrulation. D 
denotes the frontier of the graph and the ADK and NDK ways constitute an 
incoherent feedforward path, leading to 4 attractors in parallel updating mode 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 6. Top: growth without interpenetration but with area conservation and 
constitution of a common wall with gap junctions shared with the 
neighbouring cell. Bottom: lateral (left) and longitudinal (right) divisions 

The revolution symmetry breaking consists in making two 
cylinders inside the embryo cylinder, one coming from the 
ventral furrow and giving the digestive tube (this phase is 
called gastrulation) and the other coming from the dorsal 
furrow and giving the neural tube (this phase is called 
neurulation). The first gastrulation step consist in an apical 
concentration overfluctuation of one of the cytoskeleton 
components (myosin, actin, tubulin,...) or one of the enzymes 
(ADenylate Kinase - ADK - or Nucleoside Diphosphate 

Kinase - NDK) or one of the energy molecules (ATP, GTP) 
involved. This apical overconcentration diffuses and reaches 
the extremities [31,32] of the cylindric portion of the embryo 
at which gap junctions are less important with the cells of the 
"hemispheric" terminations [30]. Then two first bottle cells 
can appear at the two extremities of the diffusion line (Figure 
7), then this first contraction can propagate until the center of 
the cylindric part as noticed in [31,32] during the 6 first hours 
of the gastrulation in Drosophila melanogaster. After this first 
phase of the ventral furrow formation, for regularizing the 
tensegrity forces, based on a synergy between balanced 
tension and compression components of cells, first divisions 
occur from extremities to center by applying the first Thom's 
cell law. We can simulate such a process on a transversal slice 
of the embryo and reproduce the invagination of the 
gastrulation from both the contraction and consecutively the 
proliferation phases (Figure 8). The application of the 
following automaton reproduces rather well the reality (Figure 
9) : 
1) each cell i has a state at time t represented by 2 bits 
(xi(t),yi(t)), where xi equals 1 (resp. 0) when it is contracted 
(resp. normal) and yi equals 1 (resp. 0) in presence of an 
overconcentration of at least one actor (called generically 
gastrulation morphogen) of the bottle cell differentiation 
2) the initial state of all the cells is initialize at the value (0,0) 
and any cell state cannot change if a cell is surrounded by 4 
cells in the same state 
3) in a cell i0 from the cylindric part of the embryo (in blue on 
Figure 9) occurs for the first time a fluctuation in morphogen 
concentration passing over a certain threshold, then xi(0)=1 
4) after a diffusion time equal to d, the first transition cell k 
(located at the interface between the cylindric and hemispheric 
parts of the embryo) receives an overconcentration of the 
morphogen, then xk(d)=0 and yk(d)=1. After a diffusion time d' 
(equal to d if the cell i is central), the second interface is 
reached by the diffusing morphogen at a cell k', then xk'(d')=0 
and yk'(d')=1 
5) k and k' have one intercell wall with less gap junctions (in 
red on Figure 9), hence they can be transversally contracted 
after a time c>sup(d,d'), then: xk(c)=0 and yk(c)=1, xk'(c)=0 
and yk'(c)=1 
6) at time c+1, the left wall of the cells k and k' is contracted 
then the cell at the right (resp.left) hand size of k (resp. k') then 
they can contract and take the same state as k (resp. k') 
7) at time p, the cells k a,d k' differentiated as bottle cells start 
to divide into 2 sister cells having the same state as their 
mother (for respecting the first Thom's cell law) 
8) the mitosis wave is coming from the extremities of the 
streak toward the center and causes the invagination (see the 
slices of the Figure 8). 
The automaton above is very caricatural but it renders into 
account the essential features of the ventral furrow formation. 
It has to be implemented on a 3D mesh in order to become 
more realistic and to be able to perform a final closure of the 
tube from the invaginated streak. A way to obtain it after the 
morphogen diffusion phase on the 2D manifold corresponding 
to the embryonic surface consists in using a diffusion reaction 
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equation with at least a Laplacian and a logistic term [26], and 
moving boundary conditions depending on the new frontier 
obtained after cell growth and proliferation. 

 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 7 (from [31]). Formation of the ventral furrow in Drosophila 
melanogaster with the propagation of the contraction wave from embryo 
extremities to center. Last picture shows the concentration of myosin (green) 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Left: in blue, the progressive invagination due to the first bottle cell 
differentiation followed by its consecutive divisions. Left (in green): 
gastrulation steps with the increase of the intracellular myosin level 
(http://www.molbio1.princeton.edu/wieschaus/). Right: gastrulation steps 
from the apical constriction of bottle cells to the constitution of the tube. 

On Figure 10, we see the simulation of a pathologic 
proliferation (after branch lopping or parastic attack) 
compensating in regions of accumulation of the morphogen 
auxin. Because the ordinary convexity of peripheral cells fed 
in the tree  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9. Results of an automaton simulation mimicking the progression from 
embryo extremities to center of the streak contraction and of the proliferation 
inside the ventral furrow 
 
 
 
Figure 9.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Plant dysgenesis showing an absence of restitio ad (and a fortiori 
in) integrum during the correction of a gysgenesis due to a parasite (Top left: 
Cronartium ribicola) or to a branch lopping (Bottom right: Pinus radiata). 
The proliferation is supposed to be more important in the concave parts of the 
tree (the concavity is defined with respect to the sap canals) and less (resp. 
more) important in the zones of least diffusion (resp. accumulation) of the 
plant morphogen (auxin) 
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by the sap canals (equivalent to the external feeding of the 
cylindric embryo by the amniotic liquid in mammals or by the 
egg vitellus in insects) gives a normal proliferation, the 
cambial cells blocked in their growth by a pathologic process 
(branch lopping or parasitic attack) will have an adverse 
surface to volume ratio in 3D (resp. perimeter to area ratio in 
our 2D simulations) and then will divide for increasing this 
ratio [33]. The essential difference between trees and embryo 
is due to the fact that the "concave" bottle cells have a 
permanent shape due to their differentiation and hence their 
divisions will stop only after internalization of the primitive 
digestive tube, but the peripheral tree cambial cells are 
concave only due to the differential proliferation of the zones 
non involved in growth perturbation like parasitic attack or 
branch lopping. Then the responses are different: in embryo, 
the bottle cells proliferation leads to a revolution symmetry 
breaking by creating a small cylinder inside the primitive one; 
on the contrary, the cambial cells proliferation leads to a 
revolution symmetry breaking due to a overproduction of cells 
in the tree vertical concavity causing an absence of restitutio 
neither in nor ad integrum (compensatory process called also 
"apocatagenesis"), but a pathologic S shaped tree (see Figure 
10 and [34-38]). 

Figure 11. Coexistence of two agonist (in blue) and antagonist (in red) 
morphogens with indication of the zones of least diffusion. When these zones 
coincide (top) for an precise viscosity ratio, the mean co-presence time is 
large, which can favor autoassemblages of functional structures (like 
transmembrane proteins inside a phospholipidic matrix) whose elements are 
induced by the morphogens  

The end of the cell and tissue growth stops correspond to the 
end of the morphogenesis process: this can be observed when 
the second Thom's tissue law is applicable (the surface to 
volume ratio of an organ becoming adverse) or when the organ 
is completely covered by an anatomic boundary like an 
aponeurosis made of fibrous cells or an autoassemblage of 
extracellular ingredients. In both these cases, a couple of 
morphogens acting often simultaneously in opposite (e.g. a 
couple of activator and inhibitor like BMP-7 and BMP-2 in 
feather morphogenesis in the chicken [39-41] can induce the 
chemotactic motion of fibroblats or the biosynthesis of the 
elements constituting the auto-assemblage (like proteins and 
phospholipids). The fact that for a certain value of their 
viscosity ratio, the morphogens can coexist for a relatively 
long time in a precise location can greatly favor the birth of 
anatomic organ boundaries. 

 
V. CONCLUSION  

 
The deep understanding of complex morphogenetic processes 
like the gastrulation needs the explicitation of multiple 
interconnected levels. In this paper, we dealt with some of 
them: 
 
1) the genetic level comprises regulatory networks which have 
evolve until robust architectures, weakly sensitive to boundary 
changes (in the graph sense, that is external transcription 
factors like proteins coming from other metabolisms or 
traduction factors like RNE-binding oligopetides and micro-
Rnas) or to endogeneous perturbation (over or under-
expression of a gene leading to an up- or down-regulation of a 
protein directly involved in the morphogenesis). Some 
networks are specific even they have general characteristics, 
like a great proportion of inhibitions among their genes 
interactions [42-45] and some other networks are generic, like 
those controlling the cell-cycle [46] or the nycthemeral 
rhythms associated with the morphogenesis [47] 
 
2) the cell level is essentially  depending on the entrance or not 
in the cell cycle. The cells blocked in G0 phase can serve 
secondarily when the cohorte of divinding cells will finished 
their divisions authorized by the Hayflick's rules, then will 
stop their lineages and consequently desinhibit a new cohorte 
of cells in resting state [22]. The cell growth is also under the 
dependence on the first Thom's law which obliges the cell to 
respect a surface to volume ratio threshold 
 
3) the tissue level is organized by morphogens acting as 
chemo-effectors (attractant or repulsant): when they share 
privilegiated zones in which they present a small diffusion, 
they are able to favor the coexistence of cells or bricks of 
future layers, membranes or aponeuroses needed for building 
the organ anatomic architecture from the functional core to the 
protective boundary. 
 
The association of this level has to influence the experimental 
protocol in which only the crucial (needed for understand the 
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mechanisms) as well as critical (causing deep changes in he 
shape or in the dynamics observed during the morphogenesis) 
variables [48]. A model driven acquisition process will also 
allow an easy extraction of the model architecture like the 
interaction graph of a genetic network [49], and after the study 
of the mathematical model corresponding to this architecture 
(well posed direct and inverse problem) [49-52]. 
 
We given in this paper some examples (centered around the 
gastrulation process) concerning these different steps from 
experimental acquisition of pertinent data until the 
interpretation in a mathematical framework of the dynamic or 
geometric features of the observed forms and functions. We 
will in the future increase the spatial and temporal resolution 
of the data by sampling in 3D with a good precision in space 
(e.g. by using confocal or biphotonic microscopic 
information), in time (e.g. by using the cinemicroscopy) and in 
function (e.g. by using the Raman, vibrational, infrared,..., 
spectromicroscopy). We will study physiologic morphogenetic 
processes occurring in the development as well as dysgenetic 
processes observable during ageing, and also in between 
regenerative processes (healing or compensation after loss of 
organ due to an infarctus or to a fracture or an ablation) which 
can lead to a partial reparation (restitutio ad integrum) until a 
complete rehabilitation, both anatomic and functional 
(restitutio in integrum or apocatagenesis). 
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Abstract — The initial stage of gastrulation, an early stage of 
embryogenesis, is called invagination, or primitive streak 
formation. In the first part of the paper, we analyse by using 
image processing techniques the cell deformation and motion in 
he Drosophila melanogaster embryo searching to delimit the first 
period of invagination without proliferation. Then, in a second 
part, we propose a biomechanical model, based only on the 
consideration of elastic and contractile forces exerted on cell 
walls and on the centrosome through the combination of myosin 
contraction and cytoskeleton rigidity. Numerical simulations of 
this model made during the period of gastrulation without 
proliferation suggest that the model adequately simulates in-vivo 
cell behaviour, showing the start of the streak formation at the 
two extremities of the embryo cylinder, followed by a 
propagation of the invagination to its central part. 
  
Keywords: cell contouring, cell counting, gastrulation, 
biomechanical model, streak formation, invagination simulation  

The living organisms are very complex – part digital and part 
analogy mechanisms. J. von Neumann [1]. 

I.  INTRODUCTION 
During the morphogenesis of the gastrula, the second step of 
the embryogenesis after the blastula stage, we observe in the 
majority of the animal development dynamics, the following 
phenomena: i) the cell motion is partly guided by chemotaxis, 
in order to supply their substrate demand, and also to respect 
the epigenetic architecture ruled by morphogens, ii) the cell 
shape is due to a constriction controlled by cell differentiation 
and iii) the final gastric tube is obtained from cell proliferation 
relaxing the forces exerted on the cell plasmic membrane and 
optimizing the cellular “nutritive Area / inner Volume” (A/V) 
ratio. Concerning the differentiation process, some cells of the 
embryo start to take the shape of a bottle (bottle or flask cells), 
decreasing the surface at the interface with their nourishment 
fluid. At the end of the gastrulation, these bottle cells start to 
divide and grow, increasing their A/V ratio. In this paper, we 
are attempting firstly to follow by using image processing 
techniques the first phase of the gastrulation made of pure cell 
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motion causing the invagination without any proliferation, and 
secondly to show that the cell constriction results in a streak 
starting on the two extremities of the embryo and propagating 
secondly to its central part. In order to simulate the initiation 
of this phenomenon, we use exclusively laws of physics and 
mechanics. For this purpose, we have created a three-
dimensional biomechanical model consisting of a group of 
cells, forming a structure with two areas: a cylindrical rigid 
area representing the main embryo body and two curved 
hemispheric areas constituting the embryo extremities. Each 
cell is modelled by a set of Newtonian contour particles 
defining the surface mesh and an inner particle, located at the 
geometric centre of the cell, mimicking the centrosome. 
Elastic forces are used to model the rigidifying effect of the 
tubulin and actin cytoskeleton, and contractile forces to model 
the action of the myosin fibers. In addition, we have modelled 
the role of the cadherins by connecting contour particles of 
adjacent cells. Finally, in order to ensure the symmetry from a 
partial mesh representing only a part of the embryo, we have 
applied boundary conditions to the particles located at the 
lateral extremity edges of the simulated structure. This 
biomechanical model shows that the inner folding starts at the 
curved area and then propagates to the rigid one, in accordance 
with the in vivo process. To compare these results with in vivo 
experiments, we have monitored the displacement of the 
centrosome and the cell A/V ratio. Our numerical experiments 
made during the time lag observed through the microscopic 
imaging without proliferation suggest that our model 
adequately simulates thge in-vivo cell behaviour. In a first 
part, we present image processing techniques and results 
obtained by applying them on gastrulation microscopic 
recording of Drosophila melanogaster embryo from [2-6]. In a 
second part, we describe the biomechanical model of streak 
formation and the third Section will be devoted to the 
presentation of numerical simulations confronted to real 
images of the first invagination stage of the gastrulation. 

II. IMAGE PROCESSING 
2.1. Image processing techniques: cell countouring and 
counting 
Many cell-based research studies require the counting of cells 
prior to beginning an experiment.  Estimation of cell density in 
various regions of embryo is thus an integral part of such 
studies. Profile counts or stereological techniques could be 
used to have an estimate of the cell density in a particular 
region. The regions where cell density increases enormously 
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care, if they occur, our regions of interest. Image enhancement 
techniques need to be applied on the images to get well-
defined cell contours. The available images depict actin-
myosin networks in colour. Here, we are focussing more on 
cell boundaries in a particular region, in order to have an idea 
of cell density; and to observe cells whether they divide in 
those regions. After evaluating the colour histogram of the 
image, we filter out the noise by selecting an appropriate 
colour threshold value. In absence of noise, cell boundaries are 
easily visualized and hence cells could be tracked. Cell 
boundaries are further enhanced by applying contrast 
algorithms on the colour-filtered image again by using simple 
threshold values after studying the gray-histogram. Cell 
proliferation results in increase in volume, thereby causing 
cells to recurrently contract then stabilize. Older cells are more 
vulnerable to shrink themselves as a result of forces from the 
neighbouring cells, due to proliferation at the other end. Cell 
density, as expected, would increase enormously in such 
regions with respect to other regions (Figure 1), pushing them 
due to proliferation. Cell density increasing enormously in 
such regions with respect to other regions which could lead to 
invagination, close to the point of maximum cell density. 

2.2. Results obtained from cell contouring and counting 
Available series of images were processed to have an idea of 
change of cell density in the region where a constriction 
appeared at a later stage. After following the image processing 
steps explained in 2.1., we were able to have an exact visual 
idea of how the cells move and how changes the cell density in 
the region where invagination occurs experimentally, and also 
to observe if there is any division of cell in that region before 
the development of constriction. This included removal of 
noise from the images and then applying contrast and contour 
algorithms, to have an exact visual idea of the number of cells 
in that region. All cells could be individually tracked, and 
change of their forms are clearly observed. However, no 
division of cells was observed in the region where in the later 
stage, constriction appeared. Instead, cells get squeezed and 
cell density increased in that particular region before we could 
see two points in-line, across which this phenomenon 
occurred, leading finally to the development of a constriction. 

I. THE BIOMECHANICAL MODEL 

3.1. The embryo architecture 
The embryo cylindric cephalo-caudal structure (Figure 2) has 
two zones  of cylindricity breaking, the two hemispheric 
extremities and the cells at the boundary between the two 
geometries presents a curvature due to a relaxation of the 
internal rigid properties of their cytoskeleton. Tha appearnce 
of the gastrulation streak occurs at their level and after 
propagates to the central cylindric part of the embryo. Taking 
into account the differential contractility of these boundary 
cells constitutes the model core and will be implemented over 
a 3D mesh representing the external embryo surface. 
 
 
 
 
 

Figure1. Invagination process between initial and final stage from available 
data, [2-6] just before invagination, rectangle showing area of interest 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 

 
 

 
 
 
 
 
 
 

  
 
 
Figure 2. Top: Cylindric structure of Drosophila melanogaster embryo of 
length L and hemispheric left extremityies. Middle: differentiation of the first 
bottle (or flask) cell. Bottom: equilibrium between external and internal forces   
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3.2 The model 
Each cell evolves following the mechanical laws:  
1) the sum of the orthogonal forces exerted on the cell walls is 
equal to its mass (proportional to its inner area) times its 
orthogonal (to the wall) acceleration. The external forces are 
the resultant of the extracellular (Pext) and intracellular (Pint) 
pressure, the contact forces being exerted by the neighbouring 
cells (sharing a part or the whole of the wall) exerted by other 
cells and the internal force is due to the cell pressure exerted 
via the cyto-skeleton and the plasmic membrane [7]. Each 
force is equal to a coefficient (e.g. the physical pressure) times 
the length of the wall on which it is exerted 
2) If we suppose that the initial cell configuration is in an 
equilibrium state, we calculate an admissible set of parameters 
values respecting this equilibrium 
3) Then, we leave the cell system evolve depending on the 
energetic balance ruling the cytoskeleton apical 
polymerization [4-6] controlled by a specific genetic 
regulatory network comprizing essentially concertina (cta), 
actin, myosin, Rho and RhoGEF genes [7-10], by choosing a 
small time step, by updating sequentially each cell and by 
calculating their displacements respecting the no-overlapping 
rule. At each step we update the cell common walls by 
supposing that cell contacts are close, ensured between cells 
by cadherins and gap junctions [11,12], and with the extra-
cellular matrix by integrins and adhesins. Cell motion involves 
a change in its inner area: we suppose that growth occurs 
where internal forces Fint are larger than  external ones Fext 
(cell has to be stretched), as for constrained growth in 
continuous media mechanics. When the external forces 
dominate, the cell is supposed compressible and can be 
constricted. The cells divide longitudinally or laterally when 
their ratio perimeter over area is too small [13-17]. 

 
Figure 3: Left: cell contraction due to myosin (experiments [36]). Centre: 
progressive invagination and streak formation. Right: myosin diffusion along 
a directrix of the cylindric part of the embryo (green arrow) provoking the 
invagination before the tube closure (red star). The zero-diffusion domain for 
myosin is indicated in yellow. 
 
The revolution symmetry breaking consists in making two 
cylinders inside the embryo cylinder, one coming from the 
ventral furrow and giving the digestive tube (this phase is 
called gastrulation) and the other coming from the dorsal 
furrow and giving the neural tube (this phase is called 

neurulation). The first gastrulation step consist in an apical 
concentration overfluctuation of one of the cytoskeleton 
components (myosin, actin, tubulin,...) or one of the enzymes 
(ADenylate Kinase - ADK - or Nucleoside Diphosphate 
Kinase - NDK) or one of the energy molecules (ATP, GTP) 
involved [18-23]. This apical overconcentration diffuses and 
reaches the extremities [11,12] of the cylindric portion of the 
embryo at which gap junctions are less important with the 
cells of the "hemispheric" terminations. Then two first bottle 
cells can appear at the two extremities of the diffusion line, 
then this first contraction can propagate until the center of the 
cylindric part as noticed in [11,12] during the 6 first hours of 
the gastrulation in Drosophila melanogaster. After this first 
phase of the ventral furrow formation, for regularizing the 
tensegrity forces, based on a synergy between balanced 
tension and compression components of cells, first divisions 
occur from extremities to center by applying the first Thom's 
cell law. We can simulate such a process on a transversal slice 
of the embryo and reproduce the invagination of the 
gastrulation from both the contraction and consecutively the 
proliferation phases. 

The end of the cell and tissue growth stops correspond to the 
end of the morphogenesis process: this can be observed when 
the second Thom's tissue law is applicable (the surface to 
volume ratio of an organ becoming adverse) or when the organ 
is completely covered by an anatomic boundary like an 
aponeurosis made of fibrous cells or an autoassemblage of 
extracellular ingredients.  
In both these cases, a couple of morphogens acting often 
simultaneously in opposite (e.g. a couple of activator and 
inhibitor like BMP-7 and BMP-2 in feather morphogenesis in 
the chicken [24-27] can induce the chemotactic motion of 

fibroblats or the biosynthesis of the elements constituting the 
auto-assemblage (like proteins and phospholipids). The fact 
that for a certain value of their viscosity ratio, the morphogens 
can coexist for a relatively long time in a precise location can 
greatly favor the birth of anatomic organ boundaries. 

II. NUMERICAL SIMULATIONS  
The myosin is supposed to diffuse in all directions from a cell 
in which an excess of myosin is synthesized caused by random 
fluctuations over-expressing its gene, notably along a directrix 

475



of the cylinder constituting the body of the embryo of 
Drosophila melanogaster. This directrix represents the 
shortest path until the hemispheric extremities of the embryo 
on the boundary of which cells change of curvature (yellow on 
Figure 3). The whole model mixes a Multi-Agents Model 
(MAM) responsible for cell growth, migration and 
proliferation with a Reaction-Diffusion Partial Differential 
Equation (RD-PDE) for myosin dispatching, mainly in charge 
of cell contraction. 

 
 
 
 

 
Figure 4: Top: part of the embryo made of cells considered as polyhedra with 
8 vertices common with neighbouring cells and a center (the centrosome) 
related to the vertices by actin filaments and micro-tubules (constituting the 
elastic and rigid cytoskeleton) on which myosin using ATP exerts contraction 
forces. Dark blue points are fixed points of the whole structure. Middle: 
profile of the structure under the contractile action of the myosin showing the 
start of the streak at the boundary of the hemispheric extremity of the embryo 
(red arrow). Bottom: experimental observation of the activity of myosin 
(fluorescent) with distal invagination 
 
The results of simulation of the hybrid model are given on 
Figures 3 and 4 showing the same phenomena as those 
observed in experiments: the progressive invagination starts at 
the extremities of the embryo and after propagates to the 
central cylindric part of the embryo. The final step of the 
gastrulation needs proliferation in order to close the internal of 
the cell differentiation in bottle (or flask) cells contracted at 
their apical extremity, provoking during the first minutes of 
gastrulation a reorganization of the superficial cell layer of the 
embryo without division, leading to the formation of a streak. 
Resulting invagination starts experimentally at the 2 

extremities of the embryo and propagates to its central 
part.cylinder which will give birth to the intestinal tube of the 
adult animal. By following the progressive migration in 
embryo depth of the centrosomes it appears that the run is 
faster and deeper for curved cells at the extremities of the 
embryo than for central cells (Figure 5). The saturation curves 
representing this displacement behave like the curves 
representing the evolution of the cell diameter under 
progressively increasing forces applied externally to the cell, 
which is a way to induce cell contractions (possibly periodic 
[30]) similar to those due to myosin (Figure 6) [31, 32]. Some 
divisions of the observed bottle (or flask) cells whose 
differentiation is due to myosin gene over-expression, suffice 
to end the gastrulation process if they occur at critical 
locations as streak lips (red star on Figure 3), located at the 
boundary of the zero-diffusion domain both observed and 
simulated for myosin (in yellow on Figure 3).  
 
 
 

 
 

 
 

 
 

 
 
 
 
 
Figure 5: Displacement of centre particle (virtual centrosome) of a cell located 
on the cylindrical part of the embryo (blue), substantially smaller and slower 
than displacement of centrosome of cell located at the curved area (red). 

Figure 6: Simulated virtual spherical red blood cell (RBC) suspended in an 
hypotonic solution. Optical tweezers double trap is simulated by exerting 
locally a force Fs on two opposite nodes of the cell object contour (upper 
insert). The variation with load of the cell object diameter D(F) (in µm) in a 
plane perpendicular to the loading direction is simulated and compared to 
experimental data published by [31] (black squares). With appropriate scaling 
of the force, it is possible to adjust the elasticity modulus such that 
experimental mechanical response of RBC is nicely fitted in the linear elastic 
regime (red). Increasing the elasticity modulus  induces a stiffer response 
which qualitatively reproduces the departure from the linear regime at larger 
traction forces (violet). 

476



V. CONCLUSION 
 

We given in this paper some examples (centred around the 
gastrulation process) concerning different steps of 
morphogenesis modelling from experimental acquisition of 
pertinent data until the interpretation in a mathematical 
framework of the dynamic or the geometric features of  
observed forms and functions.  
 
We will in the future increase the spatial and temporal 
resolution of the data by sampling in 3D with a good precision 
in space (e.g. by using confocal or biphotonic microscopic 
information), in time (e.g. by using the cine-microscopy) and 
in function (e.g. by using the Raman vibrational, infrared,..., 
spectro-microscopy), in order to detect precisely the frontiers 
between the successive phases of the morphogenetic process 
of revolution symmetry breaking in the embryo, i.e., i) the 
morphogen diffusion, ii) the cell migration, iii) the bottle cell 
differentiation, iv) the streak contraction and v) cell the 
proliferation ensuring vi) the tube closure.  
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