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Segmentation d’Images IRM du Cerveau pour la Construction
d’un Modèle Anatomique destiné à la Simulation Bio-Mécanique

Résumé: «Comment obtenir des données anatomiques pendant une neuro-
chirurgie ?» a été ce qui a guidé le travail développé dans le cadre de cette
thèse. Les IRM sont actuellement utilisées en amont de l’opération pour
fournir cette information, que ce soit pour le diagnostic ou pour définir le
plan de traitement. De même, ces images pre-opératoires peuvent aussi être
utilisées pendant l’opération, pour pallier la difficulté et le coût des images
per-opératoires. Pour les rendre utilisables en salle d’opération, un recalage
doit être effectué avec la position du patient. Cependant, le cerveau subit des
déformations pendant la chirurgie, phénomène appelé Brain Shift, ce qui altère
la qualité du recalage. Pour corriger cela, d’autres données per-opératoires
peuvent être acquises, comme la localisation de la surface corticale, ou encore
des images US localisées en 3D. Ce nouveau recalage permet de compenser ce
problème, mais en partie seulement.

Ainsi, des modèles mécaniques ont été développés, entre autres pour ap-
porter des solutions à l’amélioration de ce recalage. Ils permettent ainsi
d’estimer les déformations du cerveau. De nombreuses méthodes existent
pour implémenter ces modèles, selon différentes lois de comportement et dif-
férents paramètres physiologiques. Dans tous les cas, cela requiert un modèle
anatomique patient-spécifique. Actuellement, ce modèle est obtenu par con-
tourage manuel, ou quelquefois semi-manuel. Le but de ce travail de thèse
est donc de proposer une méthode automatique pour obtenir un modèle du
cerveau adapté à l’anatomie du patient, et utilisable pour une simulation mé-
canique.

La méthode implémentée se base sur les modèles déformables pour seg-
menter les structures anatomiques les plus pertinentes dans une modélisation
bio-mécanique. En effet, les membranes internes du cerveau sont intégrées :
falx cerebri and tentorium cerebelli. Et bien qu’il ait été démontré que ces
structures jouent un rôle primordial, peu d’études les prennent en compte.
Par ailleurs, la segmentation résultante de notre travail est validée par com-
paraison avec des données disponibles en ligne. De plus, nous construisons un
modèle 3D, dont les déformations seront simulées en utilisant une méthode
de résolution par Éléments Finis. Le modèle mécanique obtenu est utilisé
pour étudier l’importance des membranes internes, l’effet de la variation des
paramètres mécaniques et les déformations du cerveau avec une craniotomie.

Mots-Clés: Brain Shift, Segmentation d’IRM du Cerveau, Méthode Élé-
ments Finis (MEF), Modélisation Bio-médicale, Maillage Simplex, Modèle De-
formable.





Brain MR Image Segmentation for the Construction of an
Anatomical Model Dedicated to Mechanical Simulation

Abstract: The general problem that motivates the work developed in this
thesis is: “how to obtain anatomical information during a neurosurgery?”.
Magnetic Resonance (MR) images are usually acquired before surgery to pro-
vide anatomical information for diagnosis and planning. Also, the same im-
ages are commonly used during the surgery, since acquiring MRI images in
the operating room is complex and expensive. To make these images useful
inside the operating room, a registration between them and the patient’s posi-
tion has to be performed. The problem is that the brain suffers deformations
during the surgery, in a process called Brain Shift, degrading the quality of
the registration. To correct this, intra-operative information may be used; for
example, the position of the brain surface or US images localized in 3D. The
new registration will compensate this problem, but only to a certain extent.

Mechanical models of the brain have been developed as a solution to im-
prove this registration. They allow to estimate brain deformation under cer-
tain boundary conditions. In the literature, there exist a variety of methods
for implementing these models, with different equation laws for continuum
mechanic, and different reported mechanical properties of the tissues. How-
ever, a patient specific anatomical model is always required. Currently, most
mechanical models get the associated anatomical model by manual or semi-
manual segmentation. The aim of this thesis is to propose and implement
an automatic method to obtain a model of the brain fitted to the patient’s
anatomy and suitable for mechanical modeling.

The implemented method uses deformable model techniques to segment
the most relevant anatomical structures for mechanical modeling. Indeed,
the internal membranes of the brain are included: falx cerebri and tentorium
cerebelli. Even though the importance of these structures is stated in
the literature, only a few publications include them in the model. The
segmentation obtained by our method is assessed using the most popular
online databases. In addition, a 3D model is constructed to validate the
usability of the anatomical model in a Finite Element Method (FEM). The
obtained mechanical model is used to study the importance of the internal
membranes, the effect of varying the mechanical parameters and the brain
deformations with a craniotomy.

Keywords: Brain Shift, MRI Brain Segmentation, Finite Element
Method (FEM), Biomechanical Modeling, Simplex Mesh, Deformable Model.
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General Context
The basis of modern medical imaging begin when the professor of physics Wil-
helm Conrad Röntgen accidentally discovered the X-rays on 8th November of
1895 (Fig. 1). The discovery of Röntgen was described by Henri Poincaré
at the French Academy of Sciences in January of 1986, inspiring Henri Bec-
querel. The same year, Henri Becquerel began new experiments discovering
the natural radiation in uranium salts. This type of emission was then called
Becquerel rays. In 1897, Marie Skłodowska Curie began, under the supervi-
sion of Henri Becquerel, the studies for her doctoral thesis which was presented
in 1903. With the help of her husband, Pierre Curie, she purified the Tho-
rium and discovered its radioactivity. Moreover, she purified and discovered
two new radioactive elements: Polonium and Radium. Joseph John Thomson
discovered in 1897 that the cathode ray used to generate X-rays are formed
of negative particles that he called “corpuscles”, but nowadays are know as
electrons. Ernest Rutherford studied the radiation and made a publication in
1899 where states that the Becquerel rays are composed of two different types
of radiation: α rays and β rays. Finally, Paul Villard discovered a new kind
of radiation in 1900. This radiation was more penetrating than the α and β
rays, and it was called γ by Rutherford in 1903. This is how different types of
radiation were identified in a few years since the discovery of X-rays. These
were the physical bases upon which the main types of medical imaging have
been developed.

Figure 1: Wilhelm Conrad Röntgen (1895) with the first x-ray of his wife’s hand.
(Source: [AccessExcell 2012]).

After these pioneering discoveries, medical imaging has considerably
evolved. Nowadays, medical imaging is used for many purposes such as re-
search, diagnosis, treatment, surgical planning, image guided surgeries, etc.
The concept of Image Guided Surgery (IGS) or Computed Assisted Surgery
(CAS) is explained more in details in section 1.1. However, to introduce the
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context of this thesis, we can say that, in the operating room, this concept
takes into account all the computational techniques deployed to assist the
surgeon. Images of the operation area, mechanical arms to manipulate tools,
or spatial localizers to know the positions of the tools, count amongst these
techniques. The main part of these systems are the images, which are used,
for example, to provide the surgeon with information or to guide other com-
ponents, e.g. a robot.

The general problem that motivates the work developed in this thesis is:
“how to obtain anatomical information in the operating room?”. Specifically,
we will consider Neurosurgery. In this kind of surgery, the anatomical infor-
mation is usually provided by Magnetic Resonance (MR) images, since they
permit to clearly visualize brain soft tissues. The MR images are acquired
before the surgery for diagnosis and planning. Moreover, MR images are also
required in the operating room in order that the surgeon to be able to develop
the planned surgery. However, to acquire MR images in the operating room
is difficult and expensive. Therefore, usually the preoperative images are also
used during the surgery. Nevertheless, a registration between these images
and the patient’s position must be carried out, in order to know the spatial
position of the anatomy shown in the images. The problem is that the brain
deforms during the surgery in a process called brain shift. These alterations
imply that the computed spatial position (registration) of the image loses
validity a short time after the beginning of the surgery. To correct the regis-
tration, information acquired in the operating room during the surgery may
be used, for example, the position of the brain surface or US images localized
in 3D. The new registration will compensate the problem to a certain extent.
Nevertheless, sufficient information is lacking, leading to flawed registration.

Mechanical models of the brain have been developed as a solution to im-
prove this registration. Using these models, it is possible to compute an
estimated brain deformation under certain boundary conditions. Even, the
boundary conditions can be updated using the same kind of information men-
tioned above to correct the registration. In the literature, there are a variety
of methods for implementing these models, with different equation laws for
continuum mechanic, and different reported mechanical properties of the tis-
sues. However, a patient specific anatomical model is always required. The
aim of this thesis is to propose and implement a method to obtain a model of
the brain fitted to the patient’s anatomy and suitable for mechanical model-
ing. The model will include external an internal brain structures, relevant for
mechanical simulations.
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Organization of the Document
Chapter 1 presents an introduction to the concepts used in this thesis and a
general description of the context. The concept of Computed Assisted Surgery
(CAS) is explained and the specific case of neurosurgery is covered in more
depth. Also, the basic principles of Magnetic Resonance Imaging (MRI) are
introduced.

The method proposed in this thesis is explained in Chapter 2. First, an
overview of the geometrical entities used in this work is presented, including
Triangle and Simplex meshes. Then, the segmentation of each anatomical
structure to built the whole anatomical model is explained.

In Chapter 3, the results of the proposed method are shown. The databases
used for validation are introduced, and the segmentation results of each struc-
ture are shown. Finally, a Finite Element (FE) model is built using the
obtained segmentation and used to simulate deformation of brain structures
under gravity.

The discussions and conclusions over this work are exposed in Chapter 4.





Chapter 1

Introduction

1.1 Computer Assisted Surgery
Computer Assisted Surgery (CAS) is the utilization of computational tech-
niques to assist the surgeon in all stages of the surgery: diagnosis, planning
and execution. This concept includes, for example, methods of image acquisi-
tion, visualization and simulation. CAS takes place conceptually between the
patient and the surgeon, without trying to replace him, that is still impossible
using current techniques.

CAS is also called Image-Guided Surgery, and as its name implies, its
main stage is the acquisition of images to provide the surgeon with additional
information [Peters 2006]. In some cases, this information may consist in
a model of the patient, that will contain anatomical information of the area
where the surgery take place, but may also incorporate functional information,
such as blood flow, pressure, temperature, etc.

Medical Image Modalities. Images used in CAS can be acquired by a
variety of methods or modalities, in 2D or 3D format. Among the most popu-
lar modalities or medical imaging systems able to acquire 3D images, you can
find: 3D UltraSound (US), Magnetic Resonance Imaging (MRI), Computed
Tomography (CT), Single Photon Emission Computed Tomography (SPECT)
or Positron Emission Tomography (PET) [Bankman 2000, Hendee 2002]. All
these systems provide different kind of information, that can be more or less
divided into functional and anatomical. Among images that provide anatom-
ical information, we can mention the CT in which the image gray level de-
pends on the tissue density. Even 3D US provides anatomical information
that depends on the tissue density, but in this case the image is formed us-
ing the reflection of sound waves caused by changes in the tissue density.
MRI is another imaging modality that can provide anatomical information.
This image system is based on the electromagnetic behavior of the tissue.
MRI is the most commonly used image modality in neurosurgery, because
of its great flexibility and its ability to provide different types of informa-
tion about the tissue. Among the most popular types of images produced
by this modality we can mention: T1-weighted, T2-weighted and spin den-
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sity weighted MRI (sec. 1.2). Moreover, this technique can be used to ob-
tain functional MRI (fMRI) [Belliveau 1991, Ogawa 1993] or diffusion tensor
imaging (DTI), which permits to follow the path of the fibers in the brain
tissue [Basser 1994, Heiervang 2006]. One of the medical imaging modalities
that can afford 3D functional information is the SPECT, which uses radioac-
tive tracers, i.e. substances that are introduced into the body and tend to
accumulate in specific organs without modifying their normal function. The
distribution of these tracers depends on the metabolic pathways they follow,
which can be seen through this imaging system. PET is another imaging
system based on the same concept. It uses radioactive isotopes; however,
radiation emission is different in this modality.

Image Processing. Images acquired by different modalities must be pro-
cessed to obtain as much information as possible. The image registration is
among the most common processing [den Elsen 1993, Maintz 1998], whereby
information provided by different imaging systems can be complemented. Im-
age registration is the process of transforming different images into the same
coordinate system such a way that the anatomical structures match. In this
way, the information provided by pixels or voxels located in the same position
but belonging to different images, corresponds to the information obtained
from the same position in the real space (the same place in the patient’s
body). Images to be registered may be of the same modality (monomodal
registration) or of different modalities (multimodal registration). Moreover,
inter-patient registration can be performed, for example to create anatomical
atlas. Segmentation is another typical processing performed on medical im-
ages [Pham 2000, Withey 2007, McInerney 1996]. Segmentation is the identi-
fication of a particular tissue or structure, recognizing its position and shape.
Geometric information of the anatomical structures can be obtained using
this processing, for example: relative location, size, volume, detection and
recognition of abnormal shapes, etc.

The process mentioned above can be used by themselves or in combination
with others, to create a 3D model of the patient. The information provided by
different modalities may be incorporated to the model, including anatomical
and functional information. This model can be first used for surgical planning.
At this stage, software and techniques for visualizing and manipulating images
are used to plan the surgery in a virtual environment. Using an anatomical
model and depending on the type of intervention, it is possible, for example,
to design the shape and position of an orthopedic piece suitable for implanta-
tion [Scharf 2009], to plan the access path to the operation area [Gering 2001],
to predict the problems that could occur depending on a particular anatomy,
and so on. In this way, the surgeon is able to anticipate most of the risks
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and difficulties that may occur during the surgery, and he can sketch how to
optimize the intervention.

The same patient model used for surgical planning can be used as well
to assist the surgeon during surgery. Nevertheless, if the model is not po-
sitioned in the same reference system localizing the patient position within
the operating room (real space), much of the geometrical information is lost.
If there is no spatial relationship between the image (or model) and the pa-
tient, the surgeon does not hold quantitative information and should base
his movements only on qualitative information. To avoid this, a new reg-
istration should be performed between the model and the patient position
in the operating room, i.e. set the image and the patient in the same ref-
erence system to match the anatomical structures [Audette 2003b]. Among
the methods used for this registration, the most common is the stereotac-
tic frame [Maciunas 1994] used in neurosurgery. Others utilized methods are
optical localizers using reflective markers or infrared diodes fixed to a rigid
body, such as the Optotrak R© and Polaris R© systems (Northern Digital Inc.,
Ontario, Canada) [Shahidi 2002, Shahidi 2002, West 2004, Sun 2005]. More-
over, passive articulated frames [Sandeman 1994] and the electromagnetic lo-
calizers [Raab 1979, Shahidi 2002] are popular solutions. Furthermore, the
same systems are used to track the position of surgical instruments, which are
usually based on optical or electromagnetic localizers [Atuegwu 2008]. Using
these localizers in combination with a model or an image, the surgeon can
know the precise position of the instruments in relation to anatomical struc-
tures, even without a direct view of the operation area. In addition to up-
date preoperative images registered with the patient position during surgery,
intraoperative images can also be used, e.g. US images with spatial localiza-
tion [Pennec 2005] or MRI [Nimsky 2001]. However, intraoperative imaging
are often expensive and difficult to acquire, actually preventing their use in
routine.

Virtual and Augmented Reality in CAS. Any data, such as instrumen-
tation’s position, anatomical models, functional information or path of surgi-
cal planning, can be provided to the surgeon using 3D visualization techniques.
These techniques can include, for example, Virtual Reality [Suzuki 2005] and
Augmented Reality [Shuhaiber 2004]. Using these methods, it is possible to
enrich the information coming from the real world. A way to perform this en-
richment is superimposing a model (reconstructed from 3D images) to the ac-
tual surgeon’s field-of-view in the operating room [Mellor 1995]. For instance,
a method of augmented reality is presented in [Liao 2008], which uses laser
guidance techniques and 3D autostereoscopic images (Fig. 1.1(a)). A method
of augmented reality that integrates CT and 3D US images in a splenectomy is
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described in [Konishi 2005] (Fig. 1.1(c)). In [Grimson 1996], MRI and CT are
integrated using a laser scanner (Fig. 1.1(b)). Augmented reality techniques
are quite frequent in neurosurgery and orthopedic surgery; however, their use
in other areas, such as heart or gastrointestinal surgery, is still in its infancy
because of the difficulty to handle large tissue deformations.

(a) (b)

(c)

Figure 1.1: Visualization by Augmented Reality techniques. (a) Image of an Augmented
Reality system for knee surgery, created using laser guidance techniques and 3D autostereo-
scopic images [Liao 2008]. (b) MRI brain image segmented and superimposition to the
patient position [Grimson 1996]. (c) Integration of CT and 3D US images in Augmented
Reality visualization [Konishi 2005].

Surgeries can be performed in a minimally invasive way using CAS meth-
ods, as far as large cuts or traumas to access the operation area are not
required. It is even possible to access the affected areas through natural
body openings, thereby avoiding scarring. The above advantages result in
less trauma to the patient, shorter recovery times and better prognosis.

CAS systems can be divided into passive and active [Cinquin 2011]. Pas-
sive systems, or surgical navigation systems, provide the surgeon with infor-
mation in the planning and execution stages (real time). On the other hand,
active systems have the ability to perform some automatic actions during op-
eration, for example, by the mean of a robot [Lee 2010]. The accuracy of
surgeon’s movements can be increased in robot-assisted surgeries, allowing
small-scale movements which would be difficult otherwise. In active CAS,
surgical planning must also take into account the operative conditions, such
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as the robot movements. One of the most popular surgery system assisted by
robots is the da Vinci system(Fig. 1.2, [daVinciSurgi ]) which is based on a
robot with multiple mechanical arms that can be controlled by the surgeon
through a console 1.2(a). This console provides the surgeon with stereo vision
of operating area 1.2(b).

(a) (b)

Figure 1.2: Da Vinci robotic surgery system created by Intuitive Surgical R©. This robotic
system for computer-assisted surgery is designed to perform minimally invasive surgeries.
The surgeon can operate the system through manual controls (a) that move robotic arms
holding the instruments (b). (Source: [daVinciSurgi ])

1.1.1 Images and Models in Computer Assisted Neu-
rosurgery

To give an overview and a better understanding of the subject, the technical
anatomical terms of location and the brain anatomy are presented in
Appendix A and B, respectively.

Neurosurgery is one of the surgical specialties in which accuracy is of
great importance, and therefore CAS has known great evolution in this
area [Barnett 2005]. Even minimal damage on anatomical structures may lead
to serious problems for the patient, even death. Although certain structures
can tolerate damages without seriously compromising the patient’s health,
for others this can cause, for example, serious movement or communication
problems, deteriorating the quality of life of the patient. However, before
that new imaging and 3D positioning techniques were commonly used, neuro-
surgery was based on qualitative approaches. These approaches were relying
on the surgeon’s manual skill guided by indirect information from projective
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radiography (ventriculography, pneumoencephalography, etc.) and clinical
evidence. For the above reasons, surgery operations were lasting longer, and
consequently were costly, being sometimes very difficult to localize the inter-
est area and causing serious consequences to the patient due to intense tissue
manipulation.

US and X-Ray systems are among the most common options for intra-
operative image acquisition of different parts of the body. These systems
permit to acquire 2D images in real time. Nevertheless, the type of images
they provide is not suitable for some surgeries of high complexity level, like
neurosurgery where high-quality 3D images are necessary due to the fragility
of the involved structures [Clatz 2005a]. Suitable intraoperative images can
be obtained by using systems such as intraoperative CT [Lunsford 1982] or
MRI [Sutherland 1999]; however both are expensive and involve additional
problems. CT systems release ionizing radiation and do not provide good
quality images of soft tissues, whereas MRI systems are incompatible with
conventional surgical instruments due to the high magnetic fields they gener-
ate.

Another option to dispose of images related to the patient position in the
operating room is to use preoperative images. However, for their use as a
reliable guide during the surgery, it is necessary to perform a registration be-
tween them and the patient position [Audette 2003b]. The brain has been a
historical candidate for this type of registration, because although being a soft
tissue, it almost keeps a rigid position relatively to the skull. Indeed, neuro-
surgery was one of the first areas in which reference systems were utilized to
provide the surgeon with quantitative information relating preoperative im-
ages with the patient position in the operating room. Those first reference
systems were based on stereotactic frames (Fig. 1.3). They consist of a rigid
structure that is fixed to the patient’s skull usually by screws. The structure
has a coordinate system with moving parts to locate any point in space. To
relate a point in the real space of the operating room to a point in the image,
the frame must also be visible in the image. Therefore, preoperative images
must be acquired with the fixed frame. However, the stereotactic frames are
uncomfortable for the patient and restrict the surgeon’s movements during
the operation. Many systems have been developed to solve the above prob-
lems, such as those mentioned previously in section 1.1. Moreover, although
a good initial registration may be obtained by a rigid transformation, this
registration loses validity as the brain undergoes deformation during surgery.
This phenomenon is called brain shift.

The Brain shift phenomenon. Brain deformation during the surgery, or
brain shift, is mainly caused by gravity [Miga 1999b, Nabavi 2001] and loss of
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Figure 1.3: Different types of stereotactic frames. (Source: [Maciunas 1994]).

cerebrospinal fluid. Other factors that may affect the deformation are: admin-
istered drugs, blood pressure, patient characteristics, extracted tissue, tissue
retraction, and so on. Moreover, the deformation occurs during the whole
surgery, and can take a variable course even on opposite directions through-
out the surgery [Nabavi 2001]. This deformation can influence the success,
for example, of surgeries for tumor extraction, such as in [Benveniste 2005]
where the probability of success in a surgery with brain shift is evaluated.

Brain shift has been measured in some works, and its characteristics
and causes have been largely studied. Some of the methods used to mea-
sure the deformation are: US [Buchholz 1997, Letteboer 2005], cortical dis-
placement [Roberts 1998, Sinha 2005], or MRI [Dickhaus 1997, Nimsky 2000,
Nabavi 2001, Penney 2002, Hartkens 2003, Hastreiter 2004]. Mean deforma-
tions of even 24.0 mm. have been reported [Nabavi 2001, Nimsky 2000], and
the degree of deformation changes from the cortex to the deeper areas of the
brain. In [Hastreiter 2004], deformations up to 30.9 mm. on the position of
tumors in the brain are reported. It is stated that the largest deformation
takes place in the ipsilateral side with respect to the surgery, and that the
deformation is larger when there is tissue extraction. It is also concluded
that the deformation of the cortex and the deeper structures are not strongly
related, showing the complexity of the phenomenon.

1.1.1.1 Brain Mechanical Models

A solution to avoid the problems derived from the brain shift, and allow
to update the registration between the preoperative image and the patient
position, is to use an intraoperative image that is easy to acquire. This lat-
ter is usually of low resolution, but the preoperative image can be register
with it, permitting to update its spatial transformation. Intraoperative US
imaging [Pennec 2005] is a good candidate. Nevertheless, intraoperative data
(provided by images or other means) may not be available or sufficient to
perform a suitable refresh of the registration. To compensate this, mechanical
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models of the brain have been developed. Using a proper mechanical model,
the brain deformation can be predicted by subjecting the model to restrictions
resulting from intraoperative measures. These models should incorporate the
biomechanical properties of the tissues in order to predict correctly their be-
havior [Franceschini 2006].

Bio-mechanical parameters. To model the deformation of the brain, it
is important to know its mechanical properties. Many studies to measure the
biomechanical properties of the brain have been developed. One of the differ-
ences between these studies is the way in which the measurement is performed.
In [Gefen 2004], changes in the tissue properties are studied depending on in-
vivo, in-situ or in-vitro measurements. In the mentioned study, a theoretical
model of hydrated soft tissue is used, in which the transient shear modulus is
approximated by a summation of constants with exponential decay controlled
by time constants. The conclusion is that the long-term relaxation constants
of the shear modulus are the only ones affected if the properties are mea-
sured in-vivo or in-situ. It is also concluded that the perfusion of the arteries
does not affect the mechanical properties; nevertheless the tissue is altered by
manipulation and when measurements are carried out in-vitro. These results
support those described in [Miller 2000], where the tissue’s properties are mea-
sured by indentation; nevertheless they do not agree with [Metz 1970], where
a cylinder is inflated inside of different tissues concluding that the elastic mod-
ulus of brain tissue increases after death. These differences could be due the
area where samples were taken. Most of the experiments were performed in
the brain cortex or in outer tissues of the brain, but the deeper tissue could
have different properties. Some differences have also been found by perform-
ing tension [Miller 2005a] and compression tests [Miller 2002]. Other works
on the subject can be found in [Franceschini 2006], where the measurement is
performed in vitro and the tissue is modeled according to the Consolidation
Theory, or in [Davis 2006] in which a fractional Zener derivative mode is used.
An approach by stain energy is employed in [Kohandel 2006]. Rotational shear
experiments are performed in [Hrapko 2006], assuming a differential viscoelas-
tic model. It should be emphasized that in-vivo measurements have even been
performed [Schiavone 2009], by using an aspiration device in the cerebral cor-
tex during surgery and modeling the tissue by a Mooney-Rivlin constitutive
law. In summary, the mechanical properties of the brain have been measured
in many ways and different theoretical models have been used, even though
no consensus has been reached yet.
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Continuous and discrete modeling. Besides the variety of ways in which
the mechanical properties of the brain tissue have been measured, there is a
range of models that have been used to simulate the deformation. Most of
them are based on the finite element method (FEM) in which the continuum
mechanics equations can be directly used, obtaining realistic results. However,
the amount of computation can be very large and some boundary conditions
are difficult to handle. The mass-spring models, which are widely used in
computer graphics, have also been employed. The mass-spring models are
very simple and fast, however they are heuristics ad-hoc models, and there-
fore realistic behavior is difficult to achieve. Moreover, the parameters of
mass-spring models are mesh-dependent. On the other hand, some boundary
conditions are easier to handle in mass-spring models than in FEM. Besides
these two main types of models there are others which have been employed to
a lesser extent. Bellow, a review of these models is presented, starting from
the mass-spring models which were the first used.

Early discrete models. One of the first attempts to model the brain shift
is presented in [Buchholz 1997], where localized intraoperative US images have
been registered with preoperative MRI and CT images. The tissue was classi-
fied into 3 classes accordingly to its level of deformation: low (skull), moderate
(brain parenchyma) and high (CSF). Then, some slices of the CT or MRI im-
ages were used to model the tissue by arrays of pre-compressed springs with
elastic constants consistent with the tissue classification. Particular points in
these slices were moved to the position reached after the brain shift (deduced
from US), the rest of the points are left free to move according to the internal
forces of the spring array. However, the deformation is only modeled in 2D in
this study, and with the assumption that the points movement is restricted
to the plane of the US slice, giving a result which is not applicable in the
operating room. Another early attempt of brain shift modeling can be found
in [Edwards 1997], where the preoperative image (CT and MRI) has been
segmented into 3 types of tissues: rigid (skull), deformable and fluid (CSF).
Then, the deformable tissue was modeled by a mesh of springs, leaving the
nodes belonging to the fluid to move freely. Nevertheless, this model was also
implemented only in 2D, and tested in one patient undergoing a surgery for
epilepsy.

A later work that uses a 3D mass-spring model is [Skrinjar 1999], in which
a Kelvin solid model [Pamidi 1978] is used, suitable for viscoelastic materials
subjected to slow and small deformations. Connections between nodes were
modeled by linear springs and dampers, and the mass of each node depended
on the relative volume and the material density. The reported error was
0.5 mm., and the maximum observed deformation was 3.3 mm. However, they
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changed their model in later works to a FE one [Ŝkrinjar 2001, Ŝkrinjar 2002].
This change of the model was due to the fact that the parameters in mass-
spring model depend on the mesh, which make them difficult to estimate;
and conversely, the equations of continuum mechanics can be used directly
in FE models. Only one hemisphere is modeled in the aforementioned study,
assuming no movement between hemispheres. Nevertheless, FE models of the
brain had been previously used. The first FE models for brain deformations
were developed for modeling high-speed traumas, such as [Voo 1996]. How-
ever, these high speed conditions are very different from those found in an
operating room, where the forces are smaller and applied for a longer time.

FE and Mechanical Behavior Laws. There are many ways in which the
tissue is modeled. Because the FE method can be used to solve any partial
differential equation, many continuum mechanics models can be implemented
using it. Among the implemented models, it can be mentioned the linear
(e.g., a linear elastic model) and nonlinear models. There are also monophasic
models, such as the elastic model, or biphasic models composed of a porous
elastic solid saturated by a fluid. Each of these models has its advantages and
drawbacks. Moreover, their respective scope can be debated. For example,
in [Taylor 2004] and [Miller 2005b], it is concluded that the biphasic models
are suitable for modeling slow deformations, such as those produced in the
course of a pathology, but that for faster deformations, such as those produced
in a surgery, the monophasic models are sufficient. Bellow, different models
based on FE are presented.

Some FE models are including linear elastic models of the brain tissue, be-
cause they are simpler and faster to solve. A work in which the model is driven
by the reconstruction of the exposed brain surface acquired using a pair of
cameras is presented in [Ŝkrinjar 2002]. An error of 1.4 mm. over a maximum
displacement of 3.8 mm. was measured in the mentioned publication. An-
other work that uses a linear elastic model is described in [Clatz 2003]. In this
work, deformations caused by gravity during long surgeries of patients suffer-
ing Parkinson are modeled using the level of cerebrospinal fluid. Nevertheless,
no quantitative results are given. Another linear elastic model is introduced
in [Warfield 2000, Ferrant 2001, Nabavi 2001, Ferrant 2002, Warfield 2002]
which was implemented using parallel computing in order to obtain real time
results to make possible its use during a surgery. The model was driven us-
ing the exposed surface of the brain. In [Hagemann 1999], a linear elastic
model is implemented in 2D, which necessitates 45 min. to find a solution.
Later, this model was improved in [Hagemann 2002], by including incompress-
ible fluid (cerebrospinal fluid) in addition to rigid (bone) and elastic tissues
(soft tissue). Navier equations were used to model elastic tissues, and Stoke
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equations for the incompressible fluid. This new model was implemented
in 2D and requires 35 hr. to reach a solution. Linear elastic models as-
sume small deformations. Although this could be reality for certain types
of surgeries, such as the implantation of electrodes for epilepsy treatment, it
is not valid in general. In some surgeries the tissue deformation is substan-
tial [Nimsky 2000, Nabavi 2001] and therefore the validity domain for linear
elastic model is not met. However, the model update during the surgery,
through the acquisition of points or surfaces, can reduce the importance of
these problems, making the boundary conditions and model constraints more
important.

A nonlinear model, based on FE and permitting large deformation and
small forces, is presented in [Xu 2001]. The above model is driven by the
localization of some structures (cortex, ventricles, corpus callosum) in MRI
images, and registered to an atlas. A linear hyper-viscoelastic model was
introduced in [Miller 1999, Miller 2000], which uses FE and polynomial equa-
tions with time-varying coefficients. The model constants were calculated by
means of unconfined compression experiments and in-vivo measurements of
pig brain tissue. The model was improved in [Miller 2002] by using a nonlinear
hyper-viscoelastic model, when they proved that the mechanical properties of
the tissue are different if it is subjected to pressure or tension. All the above
models assume that the brain tissue is homogeneous, not considering the cere-
brospinal fluid. A nonlinear model for large deformations that attempts to
model the interactions with surgical tools and which uses the same equations
of the above model is introduced in [Wittek 2004]. However, the model is
more focused on the feedback force applied to the tools than on the tissue
deformation. The model uses a generic mesh that is adapted to the patient
and does not take into account the CSF nor the ventricles. Later, a similar
model, valid for small deformations, has been used [Wittek 2007]. But this
time, it was focused on tissue deformations. The mesh was built manually,
and the ventricles were considered by changing the parameters to a very soft
and compressible elastic solid.

Brain tissue has also been modeled through a biphasic model based
on a porous solid and an interstitial fluid (called “Consolidation The-
ory”) [Nagashima 1990a, Nagashima 1990b, Tada 1994]. The attempts of a
research group to build a biomechanical model of the brain using the afore-
mentioned theory can be found in [Miga 1998, Miga 1999b, Miga 2000]. Their
models are based on FE, assume that the brain is uniform, and do not consider
the ventricles. They have performed in-vivo experiments on pigs, and tests on
humans, such as in [Miga 1999b], where deformations by gravity and loss of
CSF are modeled. The experiments on pigs include attempts such as inflat-
ing a balloon inside the brain, or retraction of one hemisphere, successfully
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modeling about 80% of the movement. An error of around 1.2 mm has been
obtained in the experiments with humans, considering a mean movement of
5.7 mm. in the gravity direction. On the other hand, the work of [Miller 1997]
states that the biphasic model is not suitable for modeling brain tissues. Their
experiments show that an applied load at high speed will increase tissue stiff-
ness, which is not consistent with a biphasic pattern, where there is a limit
to the ratio of the instantaneous real power and balance, and therefore the
strong dependency between strain rate and the applied force can disappear.
However, the deformation speeds of the brain in a surgery are very low, being
closer to the equilibrium state. Moreover, the main purpose of brain shift
modeling is to predict (and compensate) movements rather than forces.

In [Taylor 2004] and [Miller 2005b], it has also been developed a biphasic
model for slow deformations, such as the ones occurring in a pathology, e.g.,
hydrocephalus [Taylor 2004]. According to these works, the monophasic vis-
coelastic model is suitable for modeling fast deformations (e.g., surgery), and
the biphasic model for slow deformations (e.g., pathology). Another type of
biphasic model is proposed in [Lunn 2005, Lunn 2006], which also states that
the brain tissue can be modeled as a porous solid and an interstitial fluid;
however, the inverse problem is addressed in this case. Instead of restricting
the model to match mapped points after the tissue deformation, and assume
certain forces (e.g., gravity), the aforementioned study addresses the prob-
lem of finding the forces that will drive the points to that specific position.
There are also attempts to model two separate phases, putting emphasis on
the fluid/structure interaction between them. For example, in [Araya 2007],
a method is presented for modeling the CSF/parenchyma interaction within
the brain.

Modeling tissue cutting is not easy when using FE, as it implies discon-
tinuities that can not be handled within the elements. For this reason, most
of the models do not take into account neither tissue resection nor retraction.
An attempt to model these phenomena is presented in [Miga 2001]. Tissue re-
traction was handled by generating nodes along the retraction position before
separating the tissue; and tissue resection is achieved by manually selecting
all elements that need to be removed, and then applying boundary conditions
to the new surface. In [Serby 2001], a technique for modeling cuttings has also
been introduced. Here, the existing nodes are displaced, instead of inserting
new ones. A way to model resection and retraction by using Extended Finite
Element Method (XFEM) can be found in [Vigneron 2004, Vigneron 2009].

Apart from the models based on mass-spring modeling and FE, there are
other variants that have been studied. Some of them will be presented here.
A variant of the FE method is proposed in [Davatzikos 2001], which models
tissue deformation by using a statistical model combined with a linear elastic
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biomechanical FE model. However, the tests are performed in 2D computa-
tional phantoms, and a large database is needed to build the statistical model.
A Boundary Element Method (BEM) is used is [Ecabert 2003] for 2D model-
ing of brain shift. Another approach using an atlas built with pre-computed
deformations of a FE biphasic model is introduced in [Dumpuri 2007]. This
atlas includes the possible deformations due to factors such as gravity, cere-
brospinal fluid and drugs, combining them properly by using the exposed
surface of the brain captured thanks to a laser scanner.

1.1.1.2 Obtaining the Anatomical Model

Most of the works about the mechanical modeling of the brain, presented in
section 1.1.1.1, content themselves with obtaining the associated anatomical
model by manual segmentation or using a mix of semi-manual methods. When
creating the anatomical model, a crucial step is the brain extraction or “Skull
Stripping” process to eliminate all the tissues but the brain present in the
image. The Brain Extraction Tool (BET) [Smith 2002] is one of the most
popular Skull Stripping methods. In BET, a mask is initially created using two
thresholds estimated from the image histogram. Then, a spherical deformable
model is initialized at the gravity center of the mask. Finally, this deformable
model is pushed to the brain surface by “locally adaptive model forces”. The
Brain Surface Extractor (BSE) [Shattuck 2001] is another popular method of
Skull Stripping which uses a sequence of anisotropic diffusion filtering, Marr-
Hildreth edge detection, and morphological processing to segment the brain.
The Hybrid Watershed Algorithm (HWA) is introduced in [Ségonne 2004]. It
is a hybrid method that combines the Watershed algorithm and a deformable
surface model which includes shape restrictions based on an atlas.

When a brain mechanical model is created, some boundary conditions must
be applied at the brain surface to incorporate the interaction between the brain
and the skull. These boundary conditions are commonly defined manually or
using a segmentation of the inner surface of the skull. The segmentation of
this surface is also generally manual; however, automatic methods using T1-
weighted MRI exist. The method introduced in [Dogdas 2005], which uses
thresholds and morphological operators, is one of the above mentioned. The
BET can also perform this segmentation, but both a T1-weighted and T2-
weighted image registered with the first one, must be used to obtain a good-
quality segmentation. Although these methods can detect the inner surface
of the skull, they are not designed to provide a model suitable for mechanical
modeling. One of the common problems is that, for example, the segmented
cortical surface may intersects the skull. This problem must be corrected
before being able to use the segmentation into a mechanical model.
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Other structures have been incorporated more recently into the brain
shift modeling, i.e. the internal membranes of the brain: falx cerebri and
tentorium cerebelli. The falx cerebri is a membrane located between the
cerebral hemispheres; and the tentorium cerebelli is also a membrane, lo-
cated between the brain and cerebellum. A more detailed anatomy descrip-
tion of these membranes is presented in Appendix B.4.1. Although some
studies acknowledge that these structures should be included into the mod-
els [Maurer 1998, Warfield 2002], works in the literature generally do not
take them into account. In [Miga 1999a], the falx cerebri is manually seg-
mented in a sagittal view of the patient’s volume, and then is incorporated
into a biphasic model. The same method is used used in [Dumpuri 2007]
and [Dumpuri 2010]. In [Wittek 2005], the falx cerebri is manually marked
in the model. A more recent study that also incorporates the tentorium cere-
belli is introduced in [Garg 2010] and improved in [Chen 2011]. A manual
segmentation is used to obtain the brain surface, whereas a semi-manual seg-
mentation is performed for the tentorium cerebelli. To segment the tentorium,
a set of points is manually marked in the membrane to define a plane. Then a
3D thin plate spline algorithm is used to morph the plane into the tentorium
surface. The lack of reliable automatic segmentation methods for these mem-
branes does not allow a fast construction of anatomical models customized for
each patient.

It is common to use databases available online to measure the performance
of MRI segmentation methods [Center for Morphometric Analysis 1995,
Cocosco 1997, Shattuck 2009] . The original MRI images and its Ground
Truth segmentations are available in these databases, making it possible to
evaluate the performance of any method.

Simplex-based MRI segmentation. One of the main purpose of this
work is to develop a segmentation method suitable to be used in mechanical
simulation. Instead of using a generic mesh and to adapt the whole anatomy
to the patient’s one, our method segments every structure separately. This
approach provides greater flexibility to the method. It could even be possible
to substitute the segmentation of a particular structure without affecting the
rest of the process.

Deformable models have been widely used in image segmentation and Sim-
plex meshes are a good option to implement them. These meshes have great
properties to be used on deformable model techniques, such as simplicity
and stable computation of curvature-based internal forces. They have been
successfully and widely applied, for example, to the segmentation of 4D US
cardiac images [Gérard 2002] and cardiac SPECT images [Montagnat 2005].
Also, a semi-automatic segmentation of cardiac and lung MRI that uses sim-
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plex meshes is introduced in [Böttger 2007]. A simplex mesh diffusion snake is
used to segment MRI in [Tejos 2009]. More recently, multi-resolution simplex
meshes with medial representation are used to segment musculoskeletal MRI
in [Gilles 2010]. Even, there are works on renal segmentation [Galdames 2005]
and registration [Galdames 2007, Galdames 2011].

Another important property of this kind of meshes is that the contours of
a simplex mesh can be controlled independently of the surface (sec. 2.1.3.1).
Thus, the contours can be used as boundary conditions for the mesh deforma-
tion. This property is very important in our model, as explained below. As it
was aforementioned, the anatomical model developed in this work takes into
account the internal membranes of the brain, that are represented by open
surfaces and their borders have anatomical relationships with the neighboring
structures (Appx. B.4.1). To freely deform these meshes while maintaining
their anatomical relationships, it is necessary to apply restrictions on the
membrane’s borders. This is done by using contours at the borders of the
open meshes (sec. 2.3.7).

On the other hand, simplex meshes have another favorable characteristic.
They are topological duals of Triangle meshes, i.e. there is a direct relation
between both representations. Thus, the good properties of simplex meshes
as deformable models, can be very easily complemented with the good prop-
erties of triangle meshes for other tasks. Some of these tasks are computing of
intersections, rendering and construction of volumetric meshes. In our work,
starting by using Simplex mesh for segmentation, we need next to compute
intersections to integrate all the structures in a final mesh (Fig. 2.36), and
finally to construct volumetric meshes to build the FE model for mechanical
deformation (sec. 3.3.1). Therefore, conversion between the two representa-
tions will allow us to use the complementary characteristics of both meshes.
This duality has been noticed, such as [Audette 2003a] where simplex meshes
are used for segmentation and then transformed into a triangulation to build a
FE model. In [de Putter 2006], simplex meshes are used to segment and model
vascular walls, and next the dual triangle meshes are utilized as well to gener-
ate a FE model. Furthermore, we have developed a new, efficient and direct
method for converting Simplex and Triangle meshes, method that is presented
in section 2.2. For the above reasons, the dual pair Simplex/Triangle meshes
is the perfect platform to develop our segmentation method, focused on the
construction of an anatomical model for mechanical simulation of the brain.

1.1.1.3 Cortex Segmentation as a Skull Stripping Method

As we have just see, brain segmentation is an important step in the con-
struction of a mechanical model of the brain (section 1.1.1). As it will
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be explained in the following chapters, the surface of the brain (brain cor-
tex) is one of the structures considered in our model. The segmentation
of this structure also eliminates the non-brain tissue present in the image,
which is called brain extraction (or Skull Stripping) process. It is a re-
quired preliminary step for many other methods, before being able to em-
ploy these images in medical or research applications. Among these process-
ing methods, it can be mentioned: image registration [Klein 2010], inhomo-
geneity correction [Wels 2011], tissue classification [de Boer 2010, Jia 2011],
analysis of cortical structure [Thompson 2001], cortical surface reconstruc-
tion [Tosun 2006], cortical thickness estimation [MacDonald 2000], voxel-
based morphometry [Acosta-Cabronero 2008] and/or identification of brain
parts [Zhao 2010]. Therefore, it is imperative to have accurate Skull Strip-
ping methods available to avoid time consuming manual corrections, that are
even not systematic and thus can not be applied routinely. In addition, the
reliability of these processes is essential because any error at this first step
will be difficult to correct in subsequent processing steps.

Many Skull Stripping methods have been proposed [Kapur 1996,
Atkins 1998, Lemieux 1999, Dale 1999, Ashburner 2000, Yoon 2001,
Lemieux 2003, Shattuck 2001]. Among the most commonly used meth-
ods are the Brain Extraction Tool (BET) [Smith 2002, Jenkinson 2005],
Brain Surface Extractor (BSE) [Sandor 1997, Shattuck 2001] and the Hybrid
Watershed Algorithm (HWA) [Ségonne 2004]. In BET, a mask is initially
created using two thresholds estimated from the image histogram. Then, a
spherical deformable model is initialized at the center of gravity of the mask.
Finally, this deformable model is pushed to the brain surface by locally
adaptive forces. The BSE performs brain segmentation using a sequence of
anisotropic diffusion filters, Marr-Hildreth edge detection, and morphological
processing. The HWA is a hybrid method that combines the Watershed
edge detection algorithm with a deformable surface model which includes
shape restrictions based on a brain atlas. Another of the most commonly
used methods is the 3dIntracranial [Cox 1996, Ward 1999]. This method
first models the gray levels of different tissues using Gaussian functions,
and extracts upper and lower boundaries to identify brain voxels. Next,
a Connected Component Analysis is carried out slice-by-slice to identify
the brain, followed by a 3D envelope process over all the slices. Finally,
a neighborhood analysis is performed on each voxel to include or exclude
misclassified voxels.

Another example of Skull Stripping methods is the Watershed modified
algorithm proposed in [Hahn 2000]. The method presented in [Grau 2004]
is also based on a Watershed transformation that uses prior informa-
tion. Elastic deformations based on atlas [Sandor 1997], Level Set meth-
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ods [Baillard 2001, Zhuang 2006], and Region Growing algorithms [Park 2009]
have also been employed. In [Huang 2006], a hybrid method combining ex-
pectation maximization and geodesic active contours is used. A method based
on an implicit deformable model which is described by radial basis func-
tions is introduced in [Liu 2009]. A method that uses an intensity thresh-
olding followed by removal of narrow connections using a Bridge Burner al-
gorithm is presented in [Mikheev 2008]. A more recent example, also us-
ing removal of narrow connections but employing a graph theoretic image
segmentation technique, is [Sadananthan 2010]. A method that uses Wa-
tershed segmentation, Gaussian mixture model clustering and a modifica-
tion of BET is employed in [Merisaari 2009] to segment MRI images of pre-
mature infant brains. Techniques for combining different Skull Stripping
algorithms to improve the segmentation have also been proposed, such as
the Brain Extraction Meta Algorithm (BEMA) [Rex 2004]. Recently, the
Multi-Atlas Propagation and Segmentation (MAPS) method was presented
in [Leung 2011]. This method generates the brain segmentation by combining
many segmentations performed by atlas registration. Another recent method
which uses thresholding, length scheme, and morphological operators can be
seen in [Somasundaram 2011]. The Robust Learning-Based Brain Extraction
(ROBEX) system is presented in [Iglesias 2011], which is based on a Point
Distribution Model (PDM) adjusted by using a voxel classification with the
Random Forest Algorithm. A fast Level Set method which uses a speedup
operator is introduced in [Hwang 2011]. The Simple Paradigm for Extra-
Cerebral Tissue Removal (SPECTRE) that is based on a watershed principle
and combines elastic registration, tissue segmentation, and morphological op-
erators is described in [Carass 2011].

On Comparing Skull Stripping Methods. The first mentioned series
of methods are commonly used for comparison. BET, BSE, ANALIZE
4.0 [Richard 2000] and modified Region Growing (mRG) [Yoon 2001] meth-
ods are compared in [Lee 2003]. Boesen et al. compare their Minneapolis
Consensus Strip (McStrip) [Rehm 2004] method with Statistical Parametric
Mapping v2 (SPM) [Ashburner 2000], BET, and BSE in [Boesen 2004]. A
comparison among methods HWA, BET, BSE, and 3dIntracranial was carried
out in [Fennema-Notestine 2006]. More recently, a comparison study between
HWA, BET and BSE has been performed in [Shattuck 2009]. Among these
methods, HWA has the highest sensitivity in general but the lowest speci-
ficity [Fennema-Notestine 2006, Shattuck 2009]. HWA is prone to include
unwanted subarachnoid space and non-brain tissue, particularly dura, in the
segmentation. By contrast, HWA seems to be more robust to the change of pa-
rameters than other methods [Shattuck 2009]. Besides, there are two different
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indices usually used to measure the overall similarity between the Gold Stan-
dard and the proposed segmentation: the Jaccard Index (JI) [Jaccard 1912]
and the Dice Coefficient (DC) [Dice 1945].

In the literature, different databases and parameters have been used in the
comparisons, and therefore results vary. In [Shattuck 2009], the best perfor-
mance was obtained by BET closely followed by BSE, and the method with
worst performance was HWA. Nevertheless, BSE and HWA showed similar
performance in [Fennema-Notestine 2006], followed by BET and 3dIntracra-
nial. All methods show that the sagittal sinus and the posterior fossa are the
areas with the most false positives.

1.2 Magnetic Resonance Imaging
Magnetic Resonance Imaging (MRI) is a popular medical image modality,
permitting to visualize detailed internal structures of the brain. Therefore,
they have been naturally used as support in the present work. And a brief
introduction of this technique will be given in this section, aiming to help to
better understand how they are formed, and how their characteristics may be
exploited during a segmentation step, or any other application. The informa-
tion presented in this section can be found in [Gili 2007].

Since its early stages, when the first brain MR image was acquired in
1983 (Figure 1.4(a)), the field of neuroimaging has benefited the most of the
apparition of such images. Using this technique, it is possible to obtain high-
resolution images of soft tissues, at a level of details that can be hardly reached
using other 3D images modalities. Figure 1.4(b) shows a MRI scanner.

(a) (b)

Figure 1.4: (a) First Magnetic Resonance images of the brain, acquired in Spain
on December 14, 1983. Spin- Echo T1. Centre Diagnòstic Pedralbes. Barcelona.
(Source: [Gili 2007]). (b) MRI system Philips Achieva 1.5T A-series. (Source: Philip
website 2012, http://www.healthcare.philips.com/us_en/).
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Magnetic Resonance (MR) is a physical phenomenon present in some par-
ticles, such as electrons, protons; and in atomic nuclei with an odd number
of protons (Z) and/or and odd number of neutrons (N). These particles can
selectively absorb and re-emit electromagnetic energy if they are situated in
a magnetic field. The process of energy absorption is called resonance, and
relaxation is the process in which the excess of energy is released as radio
frequency waves. This waves can be detected by an antenna, and the received
signal can be used to construct an image (MRI), to perform a spectrometric
analysis (MRS), or a combination of both. From a general point of view, the
process is shown in Figure 1.5. Magnetic Resonance Imaging for clinical di-
agnosis utilizes the MR of the hydrogen nucleus (protons). Other nuclei, such
as Na23 have been studied to be used in neuroimaging, but they are not yet
commonly utilized.
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Figure 1.5: The MRI and MRS are two different ways to present the information obtained
through the nuclear magnetic resonance phenomenon.

1.2.1 Image acquisition
To acquire information about body tissues through MR, first the magnetiza-
tion ~M of the tissue in the body is aligned using a powerful magnetic field ~B

(Figure 1.6(a)). This magnetization ~M is the sum of the magnetic moment
of all the nuclei contained in a volume. The magnetic moment of the nuclei
~µ in this magnetic field can be in two states: UP (low energy) or DOWN
(high energy). Moreover, the magnetic moments precess around the direction
of ~B (Figure 1.6(b)) with a frequency of precession or resonance fp. With-
out intervention, the spin UP and DOWN follows a Boltzman distribution
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in thermodynamic equilibrium. However, while the nuclei are in this field,
they can absorb electromagnetic energy of the particular frequency fp in the
phenomenon called resonance. Thus, if an electromagnetic signal with the
appropriate frequency is emitted, the nucleus in state UP absorbs energy and
moves to state DOWN. As the nuclei change their states, the tissue mag-
netization ~M changes, and its electromagnetic momentum moves as shown
in Figure 1.7. This movement depends on the energy absorbed, i.e, on the
number of nuclei that change their state. Therefore, the displacement angle
α of the electromagnetic momentum depends on the energy emitted by the
electromagnetic pulse of frequency fp. When the direction of the tissue mag-
netization is orthogonal to the external magnetic field, the number of nuclei in
UP and DOWN states are equal. Moreover, after the emission of a radio fre-
quency pulse, all the magnetic moments of the nuclei ~µ are in phase; therefore
the magnetization ~M has a precession movement as shown in Figure 1.7 (if
nuclear moments have random orientation, ~M has no preferential orientation
in plane x,y and it has no precession).

(a) (b)

Figure 1.6: (a) Magnetic field ~B created by an helix-shaped conductor (solenoid) through
which direct current flows−→I . (b) Precession of the magnetic moments of the nuclei ~µ around
the direction of the magnetic field ~B. This scheme is an interpretation on classical mechanics
of the nuclei precession on quantum mechanics. The two states “UP” (low energy) and
“DOWN” (high energy) of the magnetic moments are shown. (Source: [Gili 2007]).

If the radio frequency signal stops, the tissue magnetization returns to
its initial state. This process is called relaxation. The relaxation continues
until the ratio between UP and DOWN nuclei reach a Boltzmann equilibrium.
The return of the magnetization to its initial state produces changes in the
magnetic field that can be detected with antennas, inducing a signal known as
the Free Induction Decay (FID) (Fig. 1.8(a)). The relaxation process depends
on many factors, such as the molecule in which are the nuclei, the material
(tissue) in which the molecule is immersed, or the external magnetic field. Five
different variables measures in the relaxation are used to construct images:
spin density, T1 and T2 relaxation times; and flow and spectral shifts. By
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Figure 1.7: Movement of the magnetization vector ~M when the nuclei of a volume ab-
sorb energy in the resonance induced by the radio frequency signal of frequency fp.
(Source: [Gili 2007]).

changing the parameters on the scanner, it is possible to weight the effect
of one of these parameters over others. This effect is used to create contrast
between different types of body tissue or between other properties. In addition
to the traditional anatomical images, images with physiological or biochemical
information can be acquired . Moreover, the new systems are faster, allowing
to acquire dynamic images. The most used types of MR images are explained
below.

(a) (b)

Figure 1.8: (a) Detection of the changes in the electromagnetic field when the magnetization
vector ~M returns to its initial position in the relaxation process. The signal induced in the
receiving antenna is known as the Free Induction Decay (FID). (b) The magnetization
vector ~M can be measured in the longitudinal z or transverse (x, y) plane. To obtain T1-
weighted or T2-weighted images, the magnetization vector is measured in the longitudinal
Mz or in the transverse plane Mx,y respectively. (Source: [Gili 2007]).

Spin density weighted MRI: These images are also called proton density
(PD) weighted. The value of the magnetization is proportional to the
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density of hydrogen nuclei. Therefore, when the relaxation starts, the
signal detected by the antenna is proportional to the density. Thus,
images of H density can be obtained.

T1-weighted MRI: As explained above, the magnetization vector ~M of the
tissue recovers its initial value, aligned with the magnetic field ~B, once
the relaxation is complete. Therefore, the projection of the magnetiza-
tion vector on the longitudinal axis −→Mz (longitudinal relaxation) will be
equal to the initial value of ~M when the relaxation is over (Fig. 1.8(b)).
Accordingly, the study of longitudinal relaxation shows how quickly the
initial state is reached. The longitudinal relaxation has an exponen-
tial form regulated by a time constant T1 measured in milliseconds. T1
is the time it takes for the magnetization to recover 63% of its initial
value. The lower the value of T1 is, the faster the initial state is reached.
Therefore, a short T1 means a faster release of energy.
From a biophysical point of view, the energy release is an energetic
exchange between the nucleus of H and the environment. The energy
release occurs because of the molecular structures which use this energy
in its Brownian motions of rotation, vibration or translation. Hence, the
T1 value is strongly dependent on the type and mobility of molecules in
interaction with H.

T2-weighted MRI: It is possible to obtain information related to the bio-
chemical structure of the tissue, by studying the projection of the mag-
netization vector on the transverse plane Mx,y (transverse relaxation)
during relaxation (Fig. 1.8(b)).
The magnetization vector ~M is aligned with the magnetic field ~B, when
Mx,y = 0. Remember that the magnetization vector is the resulting of
all the nuclear magnetic moments contained within the volume. When
Mx,y = 0, it means that the nuclear spins have reached their random
orientation. After a radio frequency pulse, the nuclear moments are in
phase (precession), but as time passes, they gradually go out of phase
because of differences in the magnetic field perceived by each nucleus.
The value of the magnetic field felt by each nucleus depends on the ex-
ternal magnetic field ~B, but also on biochemical environment because all
the moving electric charges of its environment modify locally the value
of the magnetic field, for example, the presence of ions. The evolution
in time of the transverse magnetization corresponds to a sinusoid at the
relaxation frequency, damped by an exponential decay (Fig. 1.8(b)). If
all the factors that influence the asynchronism of the nuclei are consid-
ered, the exponential decay of the transverse magnetization is governed
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by a time parameter called T∗2. If neither the influence of the external
magnetic field inhomogeneities, nor the local magnetic variations that
permanently act on the nuclei, are taken into account, the time param-
eter is called T2. The T2 parameter can be seen as the time it takes
to the transverse magnetization to lose 63% of its value. Usually T2 is
higher than T∗2, because when all causes that can produce asynchronism
are considered, the relaxation is more incoherent.

Figure 1.9 shows a scheme for comparing the gray level of different tissues
in the types of MR images explained above. These particularities will be
exploited during the segmentation (sec. 2.3.1.3).
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Figure 1.9: Comparison between the gray level of different tissues in spin density weighted,
T1-weighted and T2-weighted MR images. (Source: [Gili 2007]).
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Deformable models have proven to be a robust method to segment MRI im-
ages [Smith 2002, Ségonne 2004, Liu 2009]. In addition, Simplex meshes are
a simple and efficient way to implement these models and have yielded excel-
lent results in many applications [Delingette 1999, Matula 2002, Böttger 2007,
Tejos 2009, Gilles 2010, Galdames 2011]. The main advantage of this kind of
meshes over other techniques, is that they provide a convenient way to control
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the internal forces of the mesh in order to handle curvature and regularity.
Moreover, the contours of simplex meshes can be handled independently act-
ing as boundary conditions for surface mesh deformation (sec. 2.1.3.1). This
property is very useful to control the deformation of open surfaces, such as
those used in the present work to segment the internal membranes of the
brain. On the other hand, Triangle meshes, which are the topological duals
of Simplex meshes, can perfectly deal with actions like computing of intersec-
tions, rendering, construction of volumetric meshes. So, we have developed an
efficient and direct method of transformation between both types of meshes
(sec. 2.2). Thus the Simplex/Triangle mesh pairing gives us a perfect way to
address the segmentation of images by deformable models.

As a consequence, the segmentation method proposed in this work is fon-
damentally based on Simplex meshes. A generic mesh for each structural
part is previously inserted into the MRI image. And next, each anatomical
structure (Appx. B) is segmented individually. The external forces, which
control the mesh deformation to reach the borders of anatomical structures,
are computed using the image information and the position of the previously
segmented structures (relative neighborhood). The main image information
used here is the image gradient, and the relationship between local gray level
and gray level estimates of specific tissues in the image. Different tissues have
distinctive gray levels in MRI (as seen on Fig. 1.9), therefore the frontier be-
tween them is usually denoted by a higher gradient than inside the tissue.
Thus, the image gradient can be used to accurately find the borders of the
anatomical structures. Moreover, an estimation of the characteristic tissue
gray level in the image gives us information about the tissue that is present
at a certain point; and in which direction the border of the structure must
be searched. For reasons that will be detailed further, but mainly for their
mechanical importance, the considered anatomical structures will be: cortical
surface, internal skull surface, ventricles, falx cerebri and tentorium cerebelli.
As presented in section 1.1.1, most of the mechanical models of the brain
only take into account the cortex and skull surface (or boundary restrictions
similar to this surface), and some of them consider the ventricles. Never-
theless, only a few works consider the internal membranes: falx cerebri and
tentorium cerebelli [Miga 1999a, Wittek 2005, Dumpuri 2007, Dumpuri 2010,
Garg 2010, Chen 2011]. However, there are studies which state that these
structures must be imperatively integrated to obtain suitable mechanical mod-
els, e.g. [Maurer 1998, Warfield 2002]. Besides, when considered, these mem-
branes are segmented in a manually or semi-manually way. Thus, in this work,
our main goal is to obtain a method that adequately handle the construction
of a patient specific anatomical model which considers all the relevant struc-
tures. The method is presented as follows.
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Overview of the Proposed Method. Simplex meshes are introduced in
section 2.1. A general definition of these meshes (sec. 2.1.1) and how they
are deformed (sec. 2.1.2) is explained. Simplex meshes are closely related
to triangulations (meshes of triangles), and both mesh types are used for
different tasks in this work. Therefore, a new method to convert simplex
meshes into triangulations, and vice-versa, is presented in section 2.2. Then,
the segmentation method of MRI brain images is explained in section 2.3.

To segment the MRI brain images, a pre-segmentation is first carried out
to remove all non-brain tissue in the image (sec. 2.3.1). The elimination of
this tissue allows to find and optimal starting point for our deformable model,
initialization being often critical for this kind of methods. The deformable
model is based on a generic anatomical model of the brain which incorporates
all the relevant structures for mechanical modeling (sec. 1.1.1.2). Each struc-
ture is first represented in the model by an independent mesh (sec. 2.3.2).
These meshes are deformed to segment the anatomical structures in a partic-
ular T1-weighted MRI. Each mesh is deformed independently, but in a logical
sequence to take advantage of the position of the previously segmented struc-
tures as input information for the next one. When all the meshes have been
deformed, they are joined together into a final model representing the whole
brain anatomy. This scheme of segmentation provides great flexibility to our
method. The segmentation of any structure can be modified without affecting
the rest of the chain. Another method could even be used to segment a specific
structure, and then the new result could be integrated into the segmentation
chain. Also, the derived problem of handling complex non-manifold mesh is
avoided by using independent simplex meshes. A brief introduction to the
deformation process is presented below:

• First, each mesh of the generic model is geometrically adjusted using the
pre-segmented image (sec. 2.3.3). The geometric adjustment is mainly
driven by the cortex and ventricles mesh, as the borders of these struc-
tures become evident in the pre-segmentation.

• After the above mentioned adjustment, the meshes get close enough to
the searched structures to perform a more local deformation:

– The cortex mesh is the first to be deformed (sec. 2.3.4), because
the cortex is the structure that presents the most obvious edges in
the pre-segmented image. Thus, the cortex mesh is first deformed
using the pre-segmented image and next the original image.

– The skull mesh is the second to be deformed (sec. 2.3.5) thanks to
the original image. The cortex mesh is also used to drive the skull
mesh deformation, as those two meshes should not intersect.
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– After skull mesh deformation, the ventricle mesh is considered
(sec. 2.3.6) according to the image and the gray level information
acquired with the deformation of previous meshes.

– Finally, open meshes that represent internal membranes of the
brain are deformed. The tentorium cerebelli mesh is deformed first
(sec. 2.3.7.1) by using the image information and the skull mesh.
The tentorium cerebelli is attached to the skull, therefore its border
must slide over its surface.

– After the tentorium mesh deformation, the falx cerebri mesh is
deformed (sec. 2.3.7.2). The falx cerebri’s border is attached to the
skull and tentorium cerebelli, and the deformation is performed
accordingly.

• Finally, all deformed meshes are joined together (sec. 2.3.8) obtaining
the final patient-specific anatomical model of the brain.

As pointed out in this section, Simplex meshes are of great importance in
our method, therefore they will be introduced in the following, before explain-
ing the particular application developed.

2.1 Simplex Meshes

Simplex meshes [Delingette 1994, Delingette 1997, Delingette 1999,
Montagnat 1998] have good properties to be used in deformable models
techniques, e.g., easy handling and convenient way to model internal forces
(shape preservation) as well as external forces (driven by the image), as we
will see later. Thus, they have been successfully applied, for example, to the
segmentation of cardiac 4D US [Gérard 2002] and SPECT [Montagnat 2005]
images. A work on semi-automatic segmentation of cardiac and lung MRI
that uses simplex meshes is also presented in [Böttger 2007]. In [Tejos 2009],
a simplex mesh diffusion snake is used to segment MRI. A segmentation
of musculoskeletal MRI based on multi-resolution simplex meshes with
medial representation is introduced in [Gilles 2010]. Even, these meshes have
been used in previous works for renal segmentation [Galdames 2005] and
registration [Galdames 2007, Galdames 2011].

First, we will introduce a general description of the Simplex meshes, as
well as some tools to manipulate them.
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2.1.1 General Definition

In general, we can say that a k-simplex mesh has connectivity (k+1), i.e.
each vertex is connected with k+1 neighbors. In this way, simplex meshes
have constant connectivity. Formally, a k-simplex mesh M in Rd is defined
as (V (M), N(M)) where:

V (M) = {Pi} , {i = 1, . . . , n} , Pi ∈ Rd , (2.1)

N(M) : {1, . . . , n} → {1, . . . , n}k+1 ,

i→ (N1(i), N2(i), . . . , Nk+1(i)) (2.2)

∀i ∈ {1, . . . , n} , ∀j ∈ {1, . . . , k + 1} ,∀l ∈ {1, . . . , k + 1} , l 6= j .

Nj(i) 6= i; Nl(i) 6= Nj(i) . (2.3)

Thus, V (M) is the set of n vertices Pi ofM, i.e. it represents the geom-
etry ofM; and N(M) is the connectivity function that links each vertex Pi
with its neighbors. This connectivity function represents the topology ofM.
Moreover, we can notice that equation (2.3) prevents the existence of cycles.

The name of “simplex mesh” comes from the definition of a “simplex”. A
k-simplex is the convex hull of k+1 independent points, e.g. a segment is
a 1-simplex, a triangle is a 2-simplex and a tetrahedron is a 3-simplex. By
definition, a k-simplex mesh has a (k+1)-simplex in each vertex. For example,
a 1-simplex mesh is a contour in which each vertex and its two neighbors define
a triangle (Fig. 2.1(a)). This property defines the connectivity of the mesh,
i.e. the vertices of a k-simplex mesh have k+1 neighbors. The type of objects
that these meshes can represent depends on this connectivity, e.g., a k-simplex
with k=1 can represent a curve, k=2 a surface, k=3 a volume.

Another useful way to define a k-simplex is as a union of p-cells. Since these
cells are p-simplex meshes, the definition of a cell is recurrent. Therefore, a
0-cell in Rd is a point, a 1-cell is an edge, and so on. Similarly, if we follow the
recurrence, a p-cell C (with p ≥ 2) is the union of (p-1)-cells in the following
way:

• Each vertex belonging to C, belongs to p different (p-1)-cells.

• The intersection of 2 (p-1)-cells is empty or a (p-2)-cell.

• Given two vertices of C, there exists a path that link them.
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2.1.1.1 Simplex Meshes and Triangulations

A k-triangulation or k-simplicial complex in Rd is a set of p-simplices (1 ≤
p ≤ k ≤ d), also called p-faces of the triangulation. The 0-faces are vertices,
1-faces are edges, 2-faces are triangles. The intersection between p-faces is
empty or a (p-1)-simplex. An important feature of a k-simplex mesh is that
it is the topological dual of a k-triangulation. Thus, the dual of the graph of
a k-simplex mesh is the graph of a k-triangulation.

A topological transformation between a k-simplex and a k-triangulation
can be defined (Figure 2.1). Basically, this dual transformation associates a
p-face of a k-triangulation with a (k-p)-cell of a simplex mesh (Table 2.1).
But the transformation is different for cells or faces belonging to the borders
of a triangulation or simplex mesh. Tables 2.1 and 2.2 show this relation for
k-simplex meshes with k=1 or 2.

(a) (b) (c)

Figure 2.1: A simplex mesh is the topological dual of a triangulation. The dark dots in
the figure form a simplex mesh, and the white dots form a triangulation. Figure (a) shows
a 1-simplex mesh. Figures (b) and (c) show two 2-simplex meshes, with and without the
borders of the simplex mesh. The duals of the borders are represented as black rectangles
in figure (c).

Table 2.1: Duality between a k-triangulation and a k-simplex mesh, for internal
faces. [Delingette 1999]

1-Tr ⇔ 1-SM 2-Tr ⇔ 2-SM
p=0 vertex ⇔ edge vertex ⇔ face
p=1 edge ⇔ vertex edge ⇔ edge
p=2 triangle ⇔ vertex

On one hand, a k-simplex mesh and a k-triangulation are not geometrical
duals. This can be easily proved because the geometry of a k-simplex mesh and
a k-triangulation is determined by the coordinates of its vertices. However,
for k > 1 the number of vertices VSM of a k-simplex mesh is different from
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Table 2.2: Duality between a k-simplex mesh and a k-triangulation, for boundary
faces. [Delingette 1999]

1-SM ⇒ 1-Tr 2-SM ⇒ 2-Tr 1-Tr ⇒ 1-SM 2-Tr ⇒ 2-SM
p=0 vertex ⇒ null vertex ⇒ null vertex ⇒ edge vertex ⇒ face

vertex ⇒ vertex vertex ⇒ edge
p=1 edge ⇒ null edge ⇒ edge

edge ⇒ vertex

the number of vertices VTr of its dual k-triangulation. This is easy to prove
for k = 2 and a triangulation without holes, using the Euler relation we have:

VTr −
VSM

2 = 2(1− g), (2.4)

where g is the genus of the mesh, which characterizes the topology of the sur-
face and corresponds to the number of handles. Because VTr 6= VSM , we cannot
build a homomorphism between the set of coordinates of a simplex mesh and
the set of coordinates of its dual triangulation. Therefore, k-simplex meshes
and k-triangulations are topologically, but not geometrically equivalent.

Since 3D surface meshes have to be considered in this work, we use only
2-simplex meshes and from now on, we will refer to 2-simplex meshes simply
as simplex meshes.

2.1.1.2 Local Geometry of 2-Simplex Meshes

Each vertex of these meshes has three neighbors, and these four points define
a tetrahedron

[
Pi, PN1(i), PN2(i), PN3(i)

]
(Fig. 2.2(a)). As explained in sec-

tion 2.1.1.1, simplex meshes are topologically dual of triangulations (meshes
of triangles); this allows to obtain a simplex mesh by applying a dual op-
eration to a triangulation, and vice versa (Fig. 2.1(b)). This property is of
great interest as it is sometimes more convenient to represent a surface with
a triangulation for some tasks, e.g. rendering, calculation of intersections or
construction of volumetric meshes.

Now, we will give a brief explanation on the local geometry of a simplex
mesh. As mentioned above, each vertex Pi of a simplex mesh has three neigh-
bors, positioned at PN1(i), PN2(i), PN3(i). Thus, the vertex and its neighbors
form a tetrahedron (see Fig. 2.2(a)). These neighbors define a plane πi, and
the unit normal vector to this plane is:

−→
Ni = PN1(i) × PN2(i) + PN2(i) × PN3(i) + PN3(i) × PN1(i)∥∥∥PN1(i) × PN2(i) + PN2(i) × PN3(i) + PN3(i) × PN1(i)

∥∥∥ . (2.5)
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Figure 2.2: (a) Local geometry of a 2-simplex mesh. The tetrahedron formed by a vertex Pi
and its 3 neighbors PN1(i), PN2(i), PN3(i) is illustrated. These four points (vertex Pi and its
neighbors) define the sphere of center Oi and radius Ri circumscribed to the tetrahedron.
Moreover, the three neighbors define the plane πi and the circle of center Ci and radius ri
in this plane. (b) Simplex angle ρi shown in the cut passing through the vertex Pi and the
axis of the sphere. The image shows the lines connecting Pi to the intersection between the
plane πi and the sphere in the cutting plane.

Also, we can calculate the sphere circumscribed to the tetrahedron, which
center is Oi = [xOi, yOi, zOi] and radius Ri = ‖Pi −Oi‖. The center Oi of this
sphere can be found by solving the determinant:

∣∣∣∣∣∣∣∣∣∣∣∣∣

x2
Oi + y2

Oi + z2
Oi xOi yOi zOi 1

x2
i + y2

i + z2
i xi yi zi 1

x2
N1(i) + y2

N1(i) + z2
N1(i) xN1(i) yN1(i) zN1(i) 1

x2
N2(i) + y2

N2(i) + z2
N2(i) xN2(i) yN2(i) zN2(i) 1

x2
N3(i) + y2

N3(i) + z2
N3(i) xN3(i) yN3(i) zN3(i) 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (2.6)

Moreover, the three neighbors of Pi define a circle with center:

Ci = Oi +−→Ni

(−−−−−→
OiPN1(i) ·

−→
Ni

)
, (2.7)

and radius ri =
∥∥∥PN1(i) − Ci

∥∥∥. This circle is the intersection between the
sphere of center Oi and the plane πi. With these definitions, the first of the
geometric entities that control the mesh deformation can be presented, the
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simplex angle ρi (see Fig. 2.2(b)):

ρi ∈ [−π, π]

sin(ρi) = ri
Ri

sgn
(−−−−−→
PiPN1(i) ·

−→
Ni

)
,

or

cos(ρi) = ‖OiCi‖
Ri

sgn
(−−→
OiCi ·

−→
Ni

)
, (2.8)

where sgn is the sign function. Therefore, the simplex angle ρi is defined
for each vertex Pi through its neighbors PN1(i), PN2(i), PN3(i), and it does not
depend on the position of the neighbors within the circle they define. The
simplex angle and the height L (Fig. 2.2(a)) of Pi over the plane πi defined
by its neighbors are related by:

L(ri, di, ρi) = (r2
i − d2

i ) tan(ρi)
χ
√
r2
i + (r2

i − d2
i ) tan2(ρi) + ri

,

χ =

 1 if |ρi| < π/2
−1 if |ρi| > π/2

, (2.9)

where di =
∥∥∥CiP⊥i ∥∥∥, and P⊥i is the projection of Pi over the plane πi

(Fig. 2.2(a)). Since the simplex angle is scale-invariant, it can be consid-
ered as a local and scale-invariant measure of the height L of Pi over the
plane πi.

The simplex angle is related with the surface curvature at Pi. The mean
curvature of a continuous surface can be calculated at point Pi by:

Hi = k1 + k2

2 , (2.10)

where k1 and k2 are the principal curvatures (the maximum and minimum
of the normal curvature) at Pi. This mean curvature can also be obtained
locally by approximating the surface by a sphere. The sphere that best fits
the surface at point Pi is called the “minimum sphere” and its curvature is
also the main curvature of the surface at Pi. If the radius of this sphere is Ri,
the main curvature at Pi is:

Hi = (1/Ri). (2.11)

This “minimum sphere” can be obtained at any point Pi on a simplex mesh
by using the neighbors PN1(i), PN2(i), PN3(i) of Pi, as it defined as the sphere cir-
cumscribed to the tetrahedron formed by the four points (Fig. 2.2(a)). Thus,
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the equation of the mean curvature (2.11) at point Pi can be expressed in terms
of the simplex angle [Delingette 1999] using the equation (2.8), obtaining:

Hi = sin(ρi)
ri

. (2.12)

Other important geometric entities that can be used to control the mesh
deformation are the metric parameters ε1i, ε2i, ε3i. These parameters are the
barycentric coordinates of the projection P⊥i of the vertex Pi on the triangle
defined by its neighbors (Fig. 2.2(a)):

P⊥i = ε1iPN1(i) + ε2iPN2(i) + ε3iPN3(i) ,

ε1i + ε2i + ε3i = 1 . (2.13)

At this point, we know the position of a vertex projection on the plane
defined by its neighbors by equation (2.13), and the height of the vertex over
this plane by equation (2.9). Therefore, the metric parameters and the simplex
angle completely determine the position of the vertex as follows:

Pi = ε1iPN1(i) + ε2iPN2(i) + ε3iPN3(i) + L(ri, di, ρi)
−→
Ni . (2.14)

2.1.1.3 Local Geometry of Contours in 2-Simplex Meshes

The contours on simplex meshes can be used as boundary conditions of the
deformation. They can be controlled independently of the surface, and thus
the mesh deformation may be restricted by the positions of its boundaries.

Contours in 2-simplex meshes are 1-simplex meshes in R3, i.e., a chain of
vertices Pi with i = {0, 1, 2, . . . } in 3D space. The definition of the geometric
entities that control the geometry of a 1-simplex mesh is analogous to the
previous case of 2-simplex meshes. Each vertex Pi of the contour and its two
neighbors Pi−1, Pi+1 define a triangle or 2-simplex (Fig. 2.3(a)). These vertices
also define the circle with center Oi and radius Ri = ‖Pi −Oi‖ circumscribed
to the triangle. The neighbors of Pi define a line segment with center Ci =
(Pi−1 + Pi−1)/2. Over this line, half of the distance between Pi−1 and Pi+1

equals to ri = ‖Pi−1 − Pi−1‖ /2. The vectors tangent −→Ti , binormal −→Bi and
normal −→Ni of the contour are defined as:

−→
Ti = Pi+1 − Pi−1

‖Pi+1 − Pi−1‖
, (2.15)

−→
Bi = (Pi − Pi−1)× (Pi+1 − Pi)

‖(Pi − Pi−1)× (Pi+1 − Pi)‖
, (2.16)

−→
Ni = −→Ti ×

−→
Bi . (2.17)
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The simplex angle ρi at Pi is defined by (Fig. 2.3(a)):

ρi = arccos
(
Pi − Pi−1

‖Pi − Pi−1‖
· Pi+1 − Pi
‖Pi+1 − Pi‖

)
. (2.18)
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Figure 2.3: Local geometry of a 1-simplex mesh. Contours on a 2-simplex mesh are 1-
simplex meshes. In 1-simplex meshes each vertex Pi has two neighbors: Pi−1, Pi+1. These
vertices form a triangle (a), and define the circumscribed circle, of center Oi, to the triangle.
Figure (a) shows the simplex angle ρi in these meshes. Figure (b) shows the angle ψi between
the normal vector −→Ni and

−→
Ri (2.20). The plane orthogonal to −→Ti and defined by vectors −→Ri

and −→Ti ×
−→
Ri is showed in Figure (b). The normal vector −→Ni lies in this plane.

In 1-simplex meshes, there are 2 metric parameters ε1i, ε2i. If P⊥i is the
orthogonal projection of Pi on the line defined by its two neighbors, the metric
parameters are the barycentric coordinates of P⊥i along the line:

P⊥i = ε1iPi−1 + ε2iPi+1 ,

ε1i + ε2i = 1 . (2.19)

Another metric parameter is defined for each vertex of a 1-simplex 3D
mesh: the angle ψi (Fig. 2.3(b)). This angle is computed by using the vector:

−→
Ri = Ti × ((Pi−1 − Pi−2)× (Pi+2 − Pi+1))

‖Ti × ((Pi−1 − Pi−2)× (Pi+2 − Pi+1))‖ . (2.20)

The angle ψi is defined as the angle between −→Ri and
−→
Ni. Therefore ψi can be

computed by:

ψi = arccos(−→Ri ·
−→
Ni) sgn(−→Ni · (

−→
Ti ×

−→
Ri)) . (2.21)

A normal plane orthogonal to −→Ti is defined by vectors −→Ri and
−→
Ti ×

−→
Ri.

Figure 2.3(b) shows the position of this plane, and the direction of vectors −→Ri
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and −→Ti ×
−→
Ri. Because the normal vector lies in the above defined plane, it can

be expressed as: −→
Ni = cos(ψi)

−→
Ri + sin(ψi)(

−→
Ti ×

−→
Ri) . (2.22)

The position of every vertex Pi of a 1-simplex mesh can be determined
similarly to the case of 2-simplex meshes. The position of Pi can be defined
by the simplex angle, the metric parameters and the ψi angle:

Pi = ε1iPi−1 + ε2iPi−2 + L(ri, di, ρi) cos(ψi)
−→
Ri + L(ri, di, ρi) sin(ψi)(

−→
Ti ×

−→
Ri),

(2.23)
where di =

∣∣∣P⊥i − Ci∣∣∣ = |2 ε1i − 1| ri, and L(ri, di, ρi) is defined by equa-
tion (2.9).

2.1.2 Mesh Deformation
The deformation of a simplex mesh can be controlled by internal and external
forces. External forces are computed from the image, and aim to push the
mesh to the desired borders. These forces can be computed in many ways.
For example, the external force can be represented by a vector field computed
using a potential −−→Fext = −∇P [Delingette 1997]. If the potential P is com-
puted using the image gradient P = −‖∇I‖2, the vector field push the mesh
toward areas of high image gradient which usually represent the borders of an
object. Also, the external force can be computed using rules over the image
gray level or the distance to some target point (sec. 2.1.4). Internal forces are
issued from the mesh, control the smoothness of the deformation and avoid
the mesh to lose its geometric regularity. In this work, these forces are locally
computed using the properties of simplex meshes (sec. 2.1.3). The dynamic
of the model can be controlled by means of a Newtonian law of motion:

m
∂2Pi
∂t2

= −γ ∂Pi
∂t

+−−→Finti +−−→Fexti , (2.24)

where m is the mass unit of a vertex (usually 1), γ ∈ [0, 1] is a damping factor
to prevent oscillations, Pi is the position of vertex i, −−→Finti and

−−→
Fexti represent

respectively the internal and external forces at vertex i. Considering discrete
time and using finite differences, and considering m = 1:

P t+1
i = P t

i + (1− γ)
(
P t
i − P t−1

i

)
+−−→Finti +−−→Fexti . (2.25)

The choice of γ is a compromise between model efficiency and stability.
When γ increase, the convergence becomes more stable but convergence gets
slower. In extreme case, when γ = 1, equation (2.25) represents a pure La-
grangian law of motion. On the other hand, if γ decreases, the effect of the
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acceleration increase. In the extreme case, when γ = 0, the model behaves
as a perfect oscillator. The importance of internal and external forces are
explained in the following sections.

2.1.3 Internal Forces
The internal force applied to the mesh can be decomposed into a tangential
and normal part. The normal force −−−−→Fnormi

controls the height of vertex Pi
with respect to the plane πi (Fig. 2.2); in other words, it permits to control
the curvature of the surface. The tangential force −−−→Ftangi

controls the position
of the vertex Pi in the plane defined by its neighbors, i.e., it monitors the
position of the projection P⊥i . The tangential force may be used to control
the accumulation of vertices in different zones, for example, in zones with high
curvature where more information is required to obtain an acceptable surface
description. Thus, the internal force of the mesh is:

−−→
Finti = λ

(−−−→
Ftangi

+−−−−→Fnormi

)
, (2.26)

where λ is a weight for the internal force. The tangential force pushes each
vertex Pi to move P⊥i to an ideal position. This position is defined by the
target metric parameters (ε∗1i, ε∗2i, ε∗3i). Thus, the tangential force at vertex Pi
is defined as:
−−−→
Ftangi

= (ε∗1i − ε1i)PN1(i) + (ε∗2i − ε2i)PN2(i) + (ε∗3i − ε3i)PN3(i) . (2.27)

As aforementioned, the tangential force can be used to concentrate vertices
in particular zones, for example, to have a better definition of the surface.
Nevertheless, this feature is not used in the present work, and all the target
metric parameters are set as ε∗ji = 1/3, to obtain a homogeneous mesh.

The normal force controls the local curvature by the simplex angle, and is
defined as: −−−−→

Fnormi
= (L(ri, d∗i , ρ∗i )− L(ri, di, ρi))

−→
Ni , (2.28)

where ρ∗i is the target simplex angle, and d∗i =
∥∥∥CiP⊥∗i ∥∥∥ is computed with

the vertex projection P⊥∗i calculated using the target metric parameters
(Eq. 2.13). The target simplex angle in each vertex can have a fixed value,
defining the mesh curvature, or can be computed to follow the mean curvature
in a neighborhood:

ρ∗i = arcsin
ri ∑

j∈QSi (i)
χij

sin(ρj)
rj

 ,
∑

j∈QSi (i)
χij = 1, 0 < χij < 1 , (2.29)
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where QSi(i) is a neighborhood of size Si around Pi. In this way, ρ∗i is obtained
by computing the weighted average of the mean curvature of the vertices be-
longing to the neighborhood QSi(i). This neighborhood is defined recursively,
so that the neighborhood QSi(i), with Si > 1, is the combination of the
neighborhood QSi−1(i) with the vertices that have any neighbor vertex on
QSi−1(i) (Fig. 2.4).

��
�� ��

Q0(i) Q1(i) Q2(i)

Figure 2.4: Neighborhood QSi(i) around of vertex Pi. [Delingette 1997].

Si corresponds to the notion of rigidity. If a large neighborhood is defined,
the mesh tends to keep the curvature in large zones, thus an external force
will cause a small deformation but in a large zone. On the other hand, a small
neighborhood allow deformations in small zones of the mesh without affecting
the rest of the mesh.

2.1.3.1 Internal Forces on a Contour

The contour deformation is independent of the surface deformation, and there-
fore, the contour acts as boundary conditions for the surface deformation.
This feature is particularly important for the deformation of open surfaces
used in our study. For example, when the internal membranes of the brain
are segmented (sec. 2.3.7), their boundaries are restricted to slide over other
structures. In this way, the mesh surface is deformed to segment the mem-
brane and the mesh borders keep the anatomical joint with the neighboring
structures.

As for the surface case, the internal force on the contour can be divided
into a normal −−−−→Fnormi

and tangential −−−→Ftangi
force:

−−→
Finti = λ

(−−−→
Ftangi

+−−−−→Fnormi

)
, (2.30)

where λ is the weight for the internal force of the contour. The tangential force
controls the position of the plane orthogonal to −→Ti passing through Pi (plane
defined by vectors −→Ri and

−→
Ti ×

−→
Ri in Figure 2.3(b)). The target position of

this plane is defined by two target metric parameters ε∗1i and ε∗2i, which were
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set to 1/2 in this work to obtain homogeneous contours. Thus, the tangent
force is computed as follows:

−−−→
Ftangi

= (ε∗1i − ε1i)Pi−1 + (ε∗2i − ε2i)Pi+1 . (2.31)

The normal force −−−−→Fnormi
controls the contour curvature. The target curva-

ture of the contour is defined by a target simplex angle ρ∗i , and a target angle
ψ∗i . The target simplex angle controls the height of Pi over the line defined
by its two neighbors, i.e. the contour curvature. The target angle ψ∗i controls
the direction of the contour normal at Pi with respect to the contour normal
in the neighborhood of the simplex (triangle) at Pi, both measured around
the contour tangent vector −→Ti . The normal force is computed as:

−−−−→
Fnormi

= (L(ri, d∗i , ρ∗i ) cos(ψ∗i )− L(ri, di, ρi) cos(ψi))
−→
Ri

+ (L(ri, d∗i , ρ∗i ) sin(ψ∗i )− L(ri, di, ρi) sin(ψi))
(−→
Ti ×

−→
Ri

)
, (2.32)

where d∗i =
∥∥∥CiP⊥∗i ∥∥∥ is computed with the vertex projection P⊥∗i calculated

using the target metric parameters (Eq. 2.19).

2.1.4 External Forces
External forces applied to the deformable model are computed from the image,
in order to push the mesh towards the edges of the structures that we want
to segment. These edges are usually characterized by a high image gradient.
In this work, the computation of the external forces of the mesh is usually
achieved by using the normal profile to each vertex, in a similar way to Active
Shape Models [Cooper 1995, Weese 2001]. However, an elastically deformable
model has been used in our case, avoiding the need of a training set. A set of
sampling points is defined over each normal profile of length 2l as:

xi,j = Pi + jδ
−→
Ni , (2.33)

where δ is a sampling distance, and j =
{[−l/δ], [−l/δ] + 1, . . . , [l/δ]− 1, [l/δ]}. Fig. 2.5 shows the normal pro-
files for a specific mesh. A target point xtargeti is computed for every profile
using different rules for each anatomical structure. These rules can involve
gray level, image gradient, position of other meshes, etc. Then, the vertices
are pushed toward their target points by the external force. To accomplish
this, the external force, −−→Fexti is computed using the target points, including
an exponential decay if the target point is farther than a distance, DF :

−−→
Fexti =

(
xtargeti − Pi

)
β , (2.34)
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where,

β =


1, if

∥∥∥xtargeti − Pi
∥∥∥ < DF

1
exp(‖xtarget

i −Pi‖−DF ) , if
∥∥∥xtargeti − Pi

∥∥∥ ≥ DF
. (2.35)

Figure 2.5: Search profiles on a Simplex mesh. Measurements of the image are taken on
these profiles to guide the mesh deformation.

2.1.4.1 External Forces on a Contour

Some open meshes are used in this work to segment the internal membranes
of the brain (Appx. B.4.1). The normal profiles to compute the external forces
of the border vertices of the open meshes must be computed in a different way
than for the vertices laying on the surface. The sampling points in a profile
of length 2l of a border vertex are defined as:

xi,j = Pi + jδ
−→
Mi , (2.36)

where δ is a sampling distance, j = {[−l/δ], [−l/δ] + 1, . . . , [l/δ]− 1, [l/δ]},
and −→Mi is computed as follows. Let −−−→NSNi be the normal vector to the surface
at the neighbor vertex of Pi that lies in the surface of the mesh, and −→Ti the
tangent vector to the mesh border (sec. 2.1.3), −→Mi is defined as (Fig. 2.6):

−→
Mi = −−−→NSNi ×

−→
Ti . (2.37)

The vector used to define the profiles of border vertices (Eq. 2.37) is com-
puted by using the surface normal because the position of the searched struc-
tures is related with the surface normal and not with the contour normal
defined in section 2.1.1.3. A target point xtargeti is also computed in each pro-
file and the border vertices are pushed over these target points using the same
definition of the external force employed for the surface vertices (Eq. 2.34).
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Figure 2.6: Scheme of the computation of vector −→Mi used to define the sampling points
of the contour vertices. Edges in the surface of the mesh are represented by dotted lines.
Edges in the external contour of the mesh are represented by continuous lines.

2.2 Transformation Between Triangulations
and Simplex Meshes

All the basic concepts related to simplex meshes have been introduced in the
previous section. However, as explained in the introduction (sec. 1.1.1.2),
the method developed in this work also uses triangle meshes for some tasks.
The relation between these two dual kinds of meshes was explained in sec-
tion 2.1.1.1. In the following section, a new and direct method developed
in this thesis for transforming between simplex meshes and triangulations is
explained.

Simplex meshes have good properties for being used on deformable models,
nevertheless Triangle meshes are better for some other tasks. In this work,
some of them are required, such as computation of intersections (Fig. 2.36) or
construction of volumetric meshes (Fig. 3.13). Therefore, a method to trans-
form a simplex meshes into its dual triangulation is needed, with minimal
geometric deterioration. A new method to perform these meshes transforma-
tions, is explained below, for both directions.

As explained in section 2.1.1.1, a simplex mesh can be seen as the topolog-
ical dual of a triangulation, each vertex of the simplex mesh corresponds to a
triangle in the related dual triangulation (Fig. 2.1). However, simplex meshes
and triangulations are not geometrically duals (sec. 2.1.1.1). Their geometry is
determined by the coordinates of their vertices, however the number of vertices
of a simplex mesh VSM and the number of vertices of its dual triangulation VTM
are different (Eq. 2.4). Therefore, it is not possible to build a homeomorphism
between each set of coordinates. Consequently, there is loss of information
and geometry deterioration whenever a transformation between these meshes
takes place. Currently, the most common way to perform this transformation
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is to determine the set of vertices for the final mesh as the gravity center of
each face of the initial mesh (Fig. 2.7(a)), e.g., [Delingette 1997, ITK 2011].
This technique is very fast, but unfortunately in this case, mesh smoothing
is generally very high; original shape (curvature) and volume is far to be ac-
curately respected. An alternative is to compute the gravity center of each
face and next insert this point in the mesh before triangulation, as shown
in Figure 2.7(b). Although this method reduces the geometry deterioration,
the resulting mesh is not dual to the initial simplex mesh, and moreover, the
number of points will rises considerably. It is also possible to consider only
the face vertices, but the resulting mesh will either not be topologically dual.
Moreover, the converse process to obtain a simplex mesh from a triangulation
is not straightforward. In [de Putter 2006], the authors show the importance
of such a transformation, especially in medical applications where simplex
meshes are of great use in the creation of the computational mesh based on
the segmented geometry. They propose an iterative curvature correction algo-
rithm for the dual triangulation of a two-simplex mesh. Their solution provide
optimal error distribution between the two dual surfaces while preserving the
geometry of the mesh, but at the price of an iterative global minimization
over the whole meshes.

For all these reasons, it is essential to have an efficient method to perform
transformations between these two types of meshes. In this thesis, a new
technique is presented, achieving reasonable computation cost and minimal
loss of geometric information.

(a) (b)

Figure 2.7: Two common ways to transform a simplex mesh into a triangulation. (a) Dual
triangulation using the gravity center of each face. This type of transformation causes a
geometrical degradation of the mesh. (b) Non-dual transformation in which the triangles are
constructed for each face of the simplex mesh, creating edges between the gravity center
and the vertex of the face. This transformation reduces the geometrical deterioration;
nevertheless the number of points rise, and the converse process starting from any simplex
mesh is not straightforward.

From a geometric point of view, the problem can be reduced to find an in-
terpolation of the center of each face, and to build the dual mesh accordingly to
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these points. Subdivision, variational surfaces, traditional splines or implicit
surfaces are amongst the most used techniques to find interpolating points
in a mesh. As the requirement here is to get a simple and straightforward
method, we propose to use a geometric interpolation, based on the distance
to the tangent planes of the vertices of each face. A similar measure has been
successfully used in [Ronfard 1996] to compute a local geometric error based
on the maximal distance to a set of planes, in order to perform triangular
mesh simplifications. An equivalent measure has been employed, using this
time a summation to obtain a quadratic error [Garland 1997, Heckbert 1999].
In a more recent work, a method for refining triangulations has been devel-
oped [Yang 2005]. It is based on face splitting and interpolation using distance
minimization over the neighboring triangles planes. Here, it is worth to point
out that our global objective is to perform a transformation between meshes,
and not to refine them. However, we mainly got inspiration from this last
work, but in our case the error measurement is applied to find the vertices of
a dual mesh, to permit conversion between simplex meshes and triangulations,
and conversely.

To perform transformations in any direction between these two types of
dual meshes, we have to find an associated vertex qu of the dual mesh M2 for
each face fu of the initial mesh M1. When dealing with triangulations, faces
are triangles; and conversely for simplex meshes, faces are polygons whose
vertices are generally not coplanar. The resulting mesh M2 should have a
regular shape and preserve the geometry defined by M1, what is far from
being straightforward. For trying to maintain the geometry, we can impose
that qu remains close to the tangent planes πi of each vertex pi defining the
face fu. ConstrainingM2 to have a regular shape, can be achieved by choosing
qu close to the center of the face fu, i.e. minimize the distance between qu
and all pi. Therefore, we must minimize the distance between a point qu and
a set of points and planes. Accordingly, the purpose of the present method is
to compensate the lack of existing techniques on these aspects. A technique
to perform the above mentioned goal is explained in the next section.

2.2.1 Interpolation Based on Tangent Planes
The equation of a plane π can be denoted as A · p = 0, where A = [a, b, c, d]
and P = [xp, yp, zp, 1]T is a point lying in the plane. The coefficients a, b, c are
the components of the unit vector −→N normal to the plane π, and d = −−→N · p.
Using the above definition, the distance between an arbitrary point q in the
space and the plane π, is |A · q|.

Considering now a set of planes πi represented by Ai · P = 0 with i =
{1, . . . , L}, the distance between any point q = [x, y, z, 1]T to each plane πi is
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|Ai · q|. On the other hand, consider a set of points Pj = [xj, yj, zj, 1]T with
j = {1, . . . ,M}. If we want to find the point q minimizing its distance to
planes πi and points pj, the function to be considered follows:

D(q) =
L∑
i=1

αi |Ai · q|2 +
M∑
j=1

βj |q − Pj|2 , (2.38)

where αi and βj are the weights for the distance to the planes (in order to
respect geometry and curvature) and points (controlling shape regularity),
respectively. Equation (2.38) can be rewritten in matrix form as:

D(q) = qTQq , (2.39)

where
Q =

L∑
i=1

αiA
T
i Ai +

M∑
j=1

βjQj , (2.40)

and

Qj =


1 0 0 −xj
0 1 0 −yj
0 0 1 −zj
−xj −yj −zj x2

j + y2
j + z2

j

 . (2.41)

Since Qj and ATi Ai are symmetric matrices, then Q is also symmetric and
can be written as:

Q =


q11 q12 q13 q14
q12 q22 q23 q24
q13 q23 q33 q34
q14 q24 q34 q44

 . (2.42)

To minimize the quadratic form of equation (2.39), let’s solve the following
system of equations:

∂D(q)
∂x

= 0, ∂D(q)
∂y

= 0, ∂D(q)
∂z

= 0 . (2.43)

Taking the partial derivatives of:

qTQq = q11x
2 + 2q12xy + 2q13xz + 2q14x+ q22y

2

+2q23yx+ 2q24y + q33z
2 + 2q34z + q44 , (2.44)

it can be noticed that the system in equation (2.43) can be rewritten in a
matrix form as: 

q11 q12 q13 q14
q12 q22 q23 q24
q13 q23 q33 q34
0 0 0 1



x

y

z

1

 =


0
0
0
1

 . (2.45)
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Finally, the solution of equation (2.45) follows:xy
z

 =

q11 q12 q13
q12 q12 q23
q13 q23 q33


−1 −q14
−q24
−q34

 , (2.46)

where q = [x, y, z]T . This system always has a unique solution (i.e. the matrix
is invertible) because function (2.38) is strictly convex and therefore has no
more than one minimum.

A way to minimize equation (2.38) was explained above, but we have not
mentioned how to choose the values for the weights αi and βj. The weights
αi should reflect the importance of each plane to the interpolation, a way for
computing their values is explained to transform triangulations into simplex
meshes (sec. 2.2.2) or vice-versa (sec. 2.2.3). The weights βj reflects how the
positions of points Pj are considered in the interpolation. A technique to
compute these weights βj is introduced in the next section.

2.2.1.1 Weights Computation

The solution of equation (2.38) can be understood as an affine combination of
the generalized intersection of all planes πi (first term) and the average of all
points Pj (second term). This affine combination is controlled by the weights
αi and βi. For example, let’s consider points P1, P2 and planes π1, π2 as shown
on Figure 2.8. Planes intersect at point Pα, and the average of the points (for
βi = β) is Pβ. The weights αi should reflect the importance of each plane to
the interpolation; and this importance will be estimated in a different way for
triangulations or simplex meshes, as this will be detailled in the next sections.

π1

���⃗ � ���⃗ �

π2P1 P2

Pα

Pβ

Figure 2.8: Solution of equation (2.38) as the affine combination of the generalized inter-
section of planes πi (Pα) and the average of all points pi (Pβ , for βi = β).

The weights βi can be calculated using an analogue method to the one
used for mesh refinement in [Yang 2005]. We are looking for an interpolated
point q at the center of each face. Assuming that points Pi define a face, and−→
Ni are the unit normal vectors to the mesh at Pi, then we can estimate the
position for q as:

q̄ = cu + w
L∑
i=1

((Pi − cu) ·
−→
Ni)
−→
Ni , (2.47)
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where w is a free positive parameter controlling the smoothness of the inter-
polation, and where:

cu = 1
L

L∑
i=1

Pi . (2.48)

Substituting q with its estimation q̄ in equation (2.45), it follows:

q11 q12 q13 q14
q12 q22 q23 q24
q13 q23 q33 q34
0 0 0 1



x̄

ȳ

z̄

1

 =


δx
δy
δz
1

 . (2.49)

Now, the weights βi that minimize the residues δ (ep. (2.49)) should be
found such that q̄ approaches the solution of equation (2.49). Because q should
lie close to the face center, the same weight can be assigned to all points, i.e.
βi = β. Then, using the notation πi = Ai · Pi to express the planes, the
residues δ can be written as:

δx =
L∑
i=1

αiai (Ai · q̄) + β

(
Lx̄−

L∑
i=1

xi

)
,

δy =
L∑
i=1

αibi (Ai · q̄) + β

(
Lȳ −

L∑
i=1

yi

)
,

δz =
L∑
i=1

αici (Ai · q̄) + β

(
Lz̄ −

L∑
i=1

zi

)
. (2.50)

Then, finding the weight β can be achieved by minimizing δ2
x + δ2

y + δ2
z .

The solution of ∂(δ2
x + δ2

y + δ2
z)/∂β = 0 leads to:

β = TB

B2 , (2.51)

where:

T =
L∑
i=1

αi(Ai · q̄)
−→
Ni ,

B =
L∑
i=1

(pi)− Lq̄ . (2.52)

To avoid a negative or zero value of β, and to keep a regular surface, β =
min(max(TB/B2, 0.1), 2).
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2.2.2 From Triangulation to Simplex Mesh
In this section, we will see the first case, i.e. when performing the mesh trans-
formation from a triangulation to a simplex mesh. In this case, an appropriate
point qu in the new simplex mesh must be calculated for each triangular face
tu. Then, we need information for each triangle tu about the curvature of
the mesh. Let us consider the tangent planes to the vertices Pi (i = 1, 2, 3)
composing triangle tu; these planes πi can be written as Ai · Pi = 0 as de-
fined previously. Moreover, the normal vectors that define these planes can
be calculated as:

−→
Ni =

∑Li
k=1 φk

−→
Nk∥∥∥∑Li

k=1 φk
−→
Nk

∥∥∥ , (2.53)

where −→Nk (k = 1, . . . , Li) are the normals of the triangles tk to which the
vertex Pi belongs, and φk is the angle of the triangle tk at vertex Pi (Fig. 2.9).

tu

P2

P1

P3

���⃗ �

���⃗ �

���⃗ �

π1

π2

π3

φk
a1

Figure 2.9: Scheme of triangle tu, planes and points used to find vertex qu of the dual
simplex mesh. The area ai is colored gray.

To approximate the surface, the distance between the new point qu and
planes πi is minimized. Again, qu should not lie too far from the center
of triangle tu to preserve a regular shape, therefore qu should minimize its
distance to vertices Pi. The direct minimization of equation (2.38) will provide
us with an appropriate qu.

Each weight αi is calculated based on the area ai corresponding to the sum
of the areas of all triangles tk sharing Pi (Fig. 2.9):

αi = ai∑3
j=1 aj

. (2.54)

This way, the distance to each plane is weighted according to the area of
triangles that were used to calculate it. The weights βi are calculated with
equation (2.51).
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2.2.3 From Simplex Mesh to Triangulation
In this section, we are dealing now with the converse case. A vertex qu of
the triangulation must be calculated for each face fu of the simplex mesh.
However, faces of a simplex mesh do not have a fixed number of vertices
Pi (i = 1, . . . , Nu), and moreover they are generally not coplanar. The dis-
tance between qu and the planes πi tangent to the vertices Pi, is minimized to
maintain the geometry of the mesh. These planes are defined by the vertices Pi
and the normal vector at each vertex. In a simplex mesh, normals are defined
by the plane containing the three neighbors PN1(i), PN2(i), PN3(i) (Fig. 2.2) of
the considered vertex Pi [Delingette 1999]. As in the inverse case, qu should
lie close to the center of the face fu to preserve a regular shape. Figure 2.10
illustrates these planes and vertices. As previously, equation (2.38) can be
used to calculate qu by minimizing the distance to planes πi and vertices pi.

P1P1

fu

P2

P3

P4

P5

���⃗ �

���⃗ �

���⃗ �

���⃗ �
���⃗ 	

π1

π2

π3

π4π5

Figure 2.10: Scheme of face fu, planes and vertices used to find the point qu of the dual
triangulation.

The surface of the circle defined by the neighbors at each vertex Pi is a
good estimation of the importance the plane πi has within the mesh, thus its
radius ri is used to calculate the weights αi for equation (2.38) (Fig. 2.2). It
follows:

αi = r2
i∑Nu

j=1 r
2
j

. (2.55)

Again, in this case, weights βi are calculated using the same technique
described in section 2.2.1, equation (2.51).

Results of the implemented method are shown in section 2.2.4.

2.2.4 Transformation Results
In section 2.2, a method for transforming between triangulations and simplex
meshes was introduced. In the present section, some results of this method
will be shown.
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When performing a transformation between simplex meshes and trian-
gulations (and conversely), a similar mesh to the original one is expected,
to result in a minimal geometric perturbation. To measure the quality of
the transformations in both directions, the set of successive transformations
(TM1 → SM1 → TM2 → · · · → TMk → SMk → TMk+1 → · · · → TMN →
SMN) is performed, where TMk is a triangulation and SMk a simplex mesh,
with (k = 1, . . . , N). It is obvious that such back and forth conversion will
never be required by any application, but successive transformations permit
to magnify, and thus pointing out, incorrect behaviors of a technique.

The present technique has been compared to the most commonly used at
this time, i.e., using the Center of Mass of each face to compute the corre-
sponding point of the dual mesh [Delingette 1999]. Since all meshes Tk and
Sk have respectively the same number of vertices, we have considered that the
most appropriate measure was a simple vertex-to-vertex distance computation
after each transformation cycle. In this way, each triangulation is compared at
each step to the first triangulation; and correspondingly, each simplex meshes
is considered accordingly to the first simplex mesh obtained.

Figure 2.11 shows the distance graph measured for the surface of cerebral
ventricles (1360 vertices/simplex faces, 2728 triangles/vertices), for 150 iter-
ations. The vertex-to-vertex mean distances are expressed as a percentage of
the bounding box diagonal of TM1 or SM1 for the triangulation or simplex
mesh, respectively. Curve 2.11(a) shows results using the Center of Mass tech-
nique, while 2.11(b) draws results with our original technique. If we compare
the results for a set of meshes, the Center of Mass technique produces high
degeneration in some parts of the mesh (Fig. 2.12(b), (c) and (d)), losing most
of the details present in the initial geometry. However, using an interpolation
based on the tangent planes, the initial geometry is much better preserved, as
it is shown in Figure 2.12(e), (f) and (g).

Figure 2.11: Curves of the mean error of the successive transformations of a cerebral ventri-
cles surface (a) Transformation based on the faces center of mass. (b) Interpolation based
on tangent planes.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 2.12: Cerebral ventricles mesh (a) after successive transformations between simplex
(lighter) mesh and triangulation (darker). Left: meshes obtained using the faces’ mass
centers, after (b) 5, (c) 15 and (d) 50 cycles. Right: meshes obtained using our technique,
after (e) 5, (f) 15 and (g) 50 cycles.

As a complementary result, the Hausdorff distance was also measured
between initial and transformed meshes by using the Metro [Cignoni 1998]
tool that adopts a surface sampling approach. This tool is integrated in the
free software Meshlab [Meshlab ] (GNU license). The Prism (92 vertices,
180 triangles; from the AIM@SHAPE Shape Repository [AIM@SHAPE ]),
Block (2132 vertices, 4272 triangles; from AIM@SHAPE), Horse (48485
vertices, 96966 triangles; from Cyberware, Inc [Cyberware ]), and Bunny
(34834 vertices, 69451 triangles; from the Stanford 3D Scanning Reposi-
tory [StanfordRep ]) meshes have been considered; and the distance was mea-
sured after a cycle of transformations, i.e. swapping to simplex mesh and back
to triangulation. Figure 2.13 shows the initial mesh with coloration accord-
ing to its distance to the resulting one, and Table 2.3 shows the well known
ratio between measured distances and the bounding box diagonal of the orig-
inal mesh. The mean and Root Mean Square (RMS) distances between two
surfaces M1 and M2 are defined as:

Mean distance(M1,M2) = 1
|M1|

∫
p∈M1

HD(p,M2)ds ,

RMS distance(M1,M2) =
√

1
|M1|

∫
p∈M1

HD(p,M2)2ds ,
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were HD(p,M) is the Hausdorff distance between point p and surface M , and
|M | is the area ofM . The computation time was multiplied by approximately
30 with our method; e.g. the computation time for the prism mesh was
7.161 ms with the center of mass and 0.27 seconds with our method 1. As
it can be expected, in both cases, the main error is concentrated in high
curvature areas. But, as previously seen, the error dramatically decreases
with our technique (Fig. 2.13, bottom row) compared to the Center of Mass
(Fig. 2.13, upper row).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.13: Prism, Block, Horse and Bunny meshes colored according to the Hausdorff
distance after a cycle of transformations. The blue-green-red (or black-white) color scale is
used, where red (white) represents the largest value. 1) Upper figures (a), (b), (c) and (d)
using the Center of Mass. 2) Lower figures (e), (f), (g) and (h) using our method based on
the Distance to the tangent planes.

Figure 2.14 shows a comparison between the initial (darker) and the result-
ing (lighter) meshes, using both methods. Errors are significantly lower in our
case (b) than for the Center of Mass technique (a). Moreover, the resulting
mesh tends to be inside (resp. outside) the initial mesh in areas with posi-
tive (resp. negative) curvature for the classic technique, while our technique
avoids this construction artifact, thanks to the introduction of an appropri-
ate weighting between element regularity and surface smoothness. Moreover,
from examining equation (2.38), the question of the topological validity of
the resulting mesh may arise. The solution is an equilibrium between shape

1developed in Python Language on AMD Athlon 62x2 Dual, 2GHz, 1Gb RAM
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Table 2.3: Hausdorff distances.

Center Distance Gain
of Mass to Planes [%]

min 0,003537 0,000016 99,54
Prism max 0.060099 0.037205 38.09
Mesh mean 0.033701 0.014088 58.20

RMS 0.036620 0,018715 48,89
min 0.0 0.0 0.0

Block max 0.019153 0.014321 25.23
Mesh mean 0.002397 0.001820 24.07

RMS 0.003855 0.002840 26.34
min 0.0 0.0 0.0

Horse max 0.004596 0.003873 15.74
Mesh mean 0.000126 0.000047 62.50

RMS 0.000205 0.000107 48.08
min 0.0 0.0 0.0

Bunny max 0.003321 0.002761 16.85
Mesh mean 0.000220 0.000096 56.36

RMS 0.000324 0.000160 50.62

preservation and mesh smoothing, that behaves properly (i.e. the point lays
inside the triangle). However, for extreme cases like spiky meshes with high
curvature areas, some additional feature preserving process may be required.

(a) (b)

Figure 2.14: Comparison between the bunny original mesh (darker) and after a cycle of
transformations (lighter). (a) Using Center of Mass. (b) Using our distance to the tangent
planes.
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Discussion on our conversion method. A method to carry out trans-
formations between triangulations and simplex meshes has been presented.
Compared to the ones proposed in the literature, our method is straight-
forward and does not require any iteration. It is intuitively based on the
interpolation of the initial mesh to find the corresponding vertices of the dual
mesh. The interpolation is based on a direct and local minimization of the
distance to tangent planes, and vertices of each face. Our transformation
technique was compared to the most frequently used method, which is based
on placing the dual vertices at the center of mass of the initial faces, and
the weaknesses of this latter have been illustrated. The performance of the
proposed method was measured using a vertex-to-vertex distance between
both triangulations and simplex meshes, after performing a chain of succes-
sive transformations. Moreover, we measured the Hausdorff distance between
meshes after performing a cycle of transformations, i.e. after carrying out a
transformation to simplex mesh and back to triangulation. The performance
of our method was satisfactory, providing a significant reduction of the error,
of nearly 50%, at reasonable linear time. The computation time was multiplied
by approximately 30 with our method compared to the center of mass. The
computational time is linear according to the number of vertices of the mesh
because our method is direct and performed locally for each vertex. From the
results we obtain, we believe it is worth paying an extra (but limited) amount
of computation to drastically improve the final quality of the dual mesh

Thus, the method has proven to be adequate to be used in any appli-
cation requiring topological mesh transformation while preserving geometry,
and without increasing complexity.

In the next section (sec. 2.3), the segmentation method itself is explained.
And we will see how our conversion method can be used adequately to take
advantage of Simplex or Triangle formulations for meshes. Of course, this
conversion is just a tool, and the main segmentation steps are fully detailed
in the following sections.

2.3 MRI Segmentation

In this section, our original method to segment a particular MRI brain image
is presented. Figure 2.15 shows a flow diagram of the method. The result of
this method is a patient-specific anatomical model of the brain suitable for
mechanical modeling. Evaluations of the different steps of the method are
presented in Chapter 3.
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Figure 2.15: Flow diagram of the segmentation method. Continuous lines represent the
direction of the process and dashed lines represents information that is passed from one
part of the process to another. The original T1W MRI image (a) is first pre-segmented (c).
Then, a generic anatomical model of the brain (b) is geometrically adjusted to the pre-
segmentation (c). After that, the meshes that conform this anatomical model are indepen-
dently deformed. The cortex mesh is the first to be deformed (e). Then, the skull mesh
is deformed using the deformed cortex mesh (f). Next, the ventricle mesh is deformed (g).
The deformation of the tentorium cerebelli mesh (h) is based on the deformed skull mesh,
and after its deformation both meshes are then joined (i) to control the deformation of the
falx cerebri mesh (j). Finally, the previously joined skull and tentorium meshes are joined
with the falx cerebri, ventricle and cortex meshes (k) obtaining a patient specific anatomical
model (l).

Our segmentation method can be divided into A) a pre-
segmentation (Fig. 2.15(c)) based on thresholds, histogram analysis
and morphological operators (sec. 2.3.1); and B) a segmentation based on
deformable models. The pre-segmentation is designed to eliminate most of
non-brain tissue. This pre-segmentation permits to get rid of initialization
hazard, for which all deformable model methods are known to be very
sensitive to. Moreover, the brain tissue lost in the pre-segmentation will be
recovered in the segmentation step.

A) The pre-segmentation includes three main steps:

1. Background elimination (sec. 2.3.1.1) with Otsu threshold [Otsu 1979].

2. Brain identification (sec 2.3.1.2): Application of a threshold computed
using the image histogram and a model mask of the brain. The brain
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tissue is selected using morphological operators and 3D Connected Com-
ponent Analysis.

3. Modeling by Gaussians (sec 2.3.1.3): Application of thresholds com-
puted using a Gaussian model of the image histogram. The brain tissue
is selected similarly as in the previous step.

B) In the segmentation by deformable models, a generic model of the brain
anatomy (sec. 2.3.2) is deformed to match the particular anatomy of the pa-
tient. Each structure of the brain anatomy is represented by an independent
mesh of the generic model. The segmentation can be divided into the following
steps:

1. Geometric adjustment (sec. 2.3.3): The adjustment of the model is
performed by using the pre-segmentation, and the cortex and ventri-
cle meshes, because the edges of these structures are explicitly defined
in the pre-segmentation (Fig. 2.15(d)).

2. Cortex segmentation (sec. 2.3.4): Due to its numerous convolutions,
this is the most complex structure of the model (Fig. 2.15(e)). The
deformation of the mesh in divided as follows:

(a) First deformation (sec. 2.3.4.1): The cortex mesh is adjusted to the
pre-segmentation by using deformable models techniques. This de-
formation allows to use the pre-segmentation as the starting point
of the segmentation.

(b) Second deformation (sec. 2.3.4.2): The mesh is deformed to reach
the GM-CSF interface. This deformation is designed to correct the
mesh in areas where the pre-segmentation has eliminated part of
the brain parenchyma.

(c) Third deformation (sec. 2.3.4.3): The mesh is more carefully ad-
justed to segment the cortical surface and to eliminate parts of cere-
brospinal fluid that may remain at the brain surface. The result of
this final deformation is an accurate segmentation that includes all
the brain tissue whereas it eliminates the CSF.

3. Skull segmentation (sec. 2.3.5): The skull mesh is deformed to segment
the internal surface of the skull. This deformation is also guided by the
deformed cortex mesh (Fig. 2.15(f)).

4. Ventricles segmentation (sec. 2.3.6): The ventricle mesh is deformed
using the original image (Fig. 2.15(g)).
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5. Tentorium cerebelli segmentation (sec. 2.3.7.1): The tentorium cere-
belli membrane is segmented by the corresponding open mesh. The
deformed skull mesh is also used to guide the segmentation, since this
membrane is joined to the skull and this anatomical relation must be
respected (Fig. 2.15(h)).

6. Falx cerebri segmentation (sec. 2.3.7.2): The falx cerebri membrane is
segmented using the corresponding mesh. To guide the deformation,
the skull and tentorium meshes are also used, because the falx cerebri
is related with these two structures (Fig. 2.15(j)).

7. Obtaining the final mesh (sec. 2.3.8): All deformed meshes are integrated
into a final mesh representing the patient’s brain anatomy (Fig. 2.15(k)).

Each step of the segmentation method is explained in details in the fol-
lowing sections.

2.3.1 Pre-segmentation
To perform this preliminary step, a method based on thresholds, morpho-
logical operators, and modeling by Gaussian function, has been used. This
type of methods are fast, robust and based on the fact that the brain is
the largest connected structure inside the head [Shan 2002, Kovacevic 2002,
Dogdas 2005, Chiverton 2007]. In the following, we propose an extension of
such approaches, by defining an adaptive threshold based on the image data.
Figure 2.16 shows a flow diagram of the proposed pre-segmentation. Since
the result will only be used as an optimal starting point for the segmentation
step, we do not need here to perform a precise Skull Stripping. Our goal here
is to eliminate all tissues except the brain, which it is composed mainly of
white and gray matter. At this point, no matter whether the quality of the
discrimination is not perfect, as it will be greatly improved in the next steps
to achieve a proper segmentation.

To compute the thresholds, the image histogram p(i) is seen as a proba-
bility density function of the image gray levels:

p(i) = ni
N
, (2.56)

where ni is the number of voxels with gray level i = {0, 1, 2, . . . ,W − 1}, and
N is the number of voxels in the image, i.e. p(i) is the probability for a voxel
to get intensity i. Usually the number of gray levels may change depending
on the image, but using a fixed number of bins W will allow standardizing
our analysis. We used W = 256 as in [Shan 2002], because no significant
improvement is reached when more levels are used.
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Figure 2.16: Flow diagram of the pre-segmentation method. The method can bee divided
into 3 steps. In step (I), a Otsu threshold TOtsu is applied to the original image (a) to
eliminate background, obtaining a masked image (b). In step (II), a threshold Ts and
morphological operators are applied to the masked image (b), obtaining a mask M2 (white
and light gray in (d)). The threshold Ts is adjusted by comparing the mask M2 with a
model mask Mm (c) [Rex 2003]. To perform the comparison, M2 and the model mask are
registered. Figure (d) shows the registration: white represents Mm and M2; dark gray
represents only Mm; and light gray represents only M2. Then, if the volume V outM2

(light
gray in (d)) of M2 that lies outside the model mask is inferior to 8% of the model mask
volume VM (dark gray and white in (d)), the image masked with M2 (e) is used in the next
step (III). Otherwise, Ts is modified to eliminate more non-brain tissue. In step (III), the
gray levels of different tissues are modeled using Gaussian functions. This modeling is used
to compute two thresholds TGLow and TGHigth which are used, together with morphological
operators, in the image (e). The result of this final step is a pre-segmented image (f).

2.3.1.1 Background Elimination

First, a threshold is used in order to remove the image background. This
threshold TOtsu is computed using the Otsu method [Otsu 1979] that is based
on the binarization of the image into two classes: CB and CF . Class CB
represents the image background, which in our case consists of air, bone and
part of the cerebrospinal fluid. Class CF represents the foreground, which
is composed of other tissues including the GM and WM of the brain. The
classes are defined using a threshold T : CB = {0, 1, 2, . . . , T − 1}, CF =
{T, T + 1, . . . ,W − 1}.

The Otsu method calculates the optimal threshold TOtsu minimizing the
dispersion within each class. Thus, TOtsu should minimize the weighted sum
of the variances of each class, this sum is called the within-class variance:

σ2
within(T ) = nB(T )σ2

B(T ) + nF (T )σ2
F (T ) , (2.57)
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where σ2
B(T ) and σ2

F (T ) are the variances of background and foreground vox-
els, respectively, and:

nB =
T−1∑
i=0

p(i) ,

nF =
W−1∑
i=T

p(i) . (2.58)

To find the minimum, the value of the within-class variance should be
computed for each possible threshold. But this calculation can be performed
in a more efficient way. If the within-class variance is subtracted from the
total variance of the image, the between-class variance is obtained:

σ2
between(T ) = σ2 − σ2

within(T )
= nB(T ) [µB(T )− µ]2 + nF (T ) [µF (T )− µ]2 , (2.59)

where σ2 is the total variance and µ is the overall image mean. The between-
class variance can be viewed as an indicator of the distance between the class
means. Substituting µ = nB(T )µB(T ) +nF (T )µF (T ) and simplifying, we get:

σ2
between(T ) = nB(T )nF (T ) [µB(T )− µF (T )]2 . (2.60)

This avoid to calculate differences between individual intensities and the class
means. The optimal threshold TOtsu is the one that maximizes the between-
class variance (or, conversely, minimizes the within-class variance). To opti-
mize the computation, the values of nB(T ), nF (T ), µB(T ) and µF (T ) can be
updated at every increase of T using recurrence relations:

nB(T + 1) = nB(T ) + nT ,

nF (T + 1) = nF (T )− nT ,

µB(T + 1) = µB(T )nB(T ) + nTT

nB(T + 1) ,

µF (T + 1) = µF (T )nF (T ) + nTT

nF (T + 1) .

(2.61)

After calculating the threshold TOtsu, the original image 2.17(a) is masked,
i.e. all voxels with lower gray value are ignored, leading to the mask,
M1, (see Fig. 2.16(b)). Figure 2.17(b) shows the image and its histogram
after applying the Otsu threshold. In this image the air, bone, and most of
the cerebrospinal fluid have been removed. The removal of very low intensity
voxels (background) allows focusing the processing on the tissues of interest
(foreground). Next, the brain can be identified as the largest structure inside
the head.
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(a)

(b)

(c)

(d)

Figure 2.17: Skull Stripping of MRI. The MRI image (left) and its histogram (right) are
shown at different steps of the skull stripping process. The histograms are represented as
probability density functions of the gray levels of the images (Eq. (2.56)). (a) Original MRI
image and its histogram. (b) Result of applying the Otsu threshold TOtsu. Peaks formed
by gray µgm and white µwm matter are shown. (c) Result after applying threshold Ts and
identifiying the brain. (d) Skull stripping image after the final step based on the modeling
of the image gray level by gaussian functions.

2.3.1.2 Brain Identification

The brain is first separated from other tissues by applying a threshold, Ts
based on an image histogram, and a brain model mask as will be explained in
this section.

Since the brain is the largest organ in the head, and is formed primarily
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of white and gray matter, we can infer that the two peaks in the histogram
of the image masked with M1 (Figure 2.16(b) in flow diagram) are the mean
gray level of the GM µgm, and WM µwm, respectively. Figure 2.17(b) shows
these peaks. The threshold for separating the brain is defined as:

Ts = TOtsu + ξ(µgm − TOtsu) . (2.62)

This definition is similar to the one proposed by Shan in [Shan 2002], where
ξ is fixed to 0.7. We have extended this definition, leading to a more flexible
threshold that can be adjusted depending on the image. ξ must be high
enough to separate the brain from other tissues, while preserving the removal
of brain tissue. To achieve this, the ideal Ts for each image is estimated
applying thresholds computed with increasing values of ξ as follows:

Given a value of ξ, the threshold Ts is computed using (2.62). Then, Ts is
applied to the image masked with M1 (Fig. 2.16(b)), and the resulting image
is binarized. In this binarized image, small connections between brain and
surrounding tissue may still remain. To eliminate them, a binary opening is
applied 2 times to the mask, using a 3D spherical structural element with a
3 mm radius. Next, the mask, M2 (Fig. 2.16(d)), is obtained by performing
a 3D connected component analysis using a square connectivity equal to one,
and keeping the largest element. To recover some tissue removed by the binary
opening, a binary dilatation is applied 2 times toM2 using the same structural
element. As M2 has to be brain-shaped, this idea is used to evaluate whether
enough tissue has been removed. For this, a fast and simple method is used:
the resulting volume is compared with a brain model mask. The model used
is a binary mask of the ICBM452 5th-order warp atlas from the Lab. of Neuro
Imaging at UCLA [Rex 2003] (Fig. 2.16(c)). The model mask is registered to
the mask, M2 before the comparison. Assuming the model mask andM2 have
the same orientation, a simple and direct transformation with 6 parameters
is used for the registration; 3 translations and 3 scaling operations. In the
coordinate axis, the transformation matches the limits of the upper part of
the brain. Because usually there are tissue remnants that can cause errors
when simply the “bounding box” (limits of the whole volume in the three
coordinate axis) of M2 is used, a careful selection of the limits is performed
as follows:

Upper limit: The rules to find the connected volume representing the brain
are designed to ensure that the head will always be recognized; hence the
upper reference limit is the top of the mask in the axial direction (sagittal
and coronal cuts in Figure 2.18(a)(b)).



2.3. MRI Segmentation 65
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(a)

(b)

vmax
vc

BBymin

(c)

sagittal coronal axial

Lbottom

Bpost

inspection

Figure 2.18: References used to register (a) the pre-segmentation Mask M2, and (b) the
Model Mask. This registration is used to estimate the value of ξ in the computation of
threshold, Ts. The limits used to compute the registration are marked in red. The bottom
of the frontal lobe, Lbottom, is used as the caudal limit, which is found using the central
sagittal slices marked in coronal and axial cuts (a)(b). A frontal profile (c) of the lateral
projection of the central slices is used to identify the bottom of the frontal lobe, the first
axial slice where vc < vmax − (vmax −BBymin)0.2 (section 2.3.1.2).

Lower limit: The lower reference limit is defined as the axial position,
Lbottom, of the bottom of the frontal lobe (sagittal cuts in Figure 2.18(a)(b)).
To identify this landmark, a set of sagittal slices in the center of the skull is
analyzed, because remaining tissue may be in the lateral parts of the head
(e.g., the eyes). The center of the mask bounding box is considered to be
the center of the skull; and the slices at a distance from the center less than
1/30 of the bounding box’s lateral length are selected (Fig. 2.18(a)(b)). The
bottom of the frontal lobe is identified in a profile constructed by projecting
the selected slices laterally (Fig.2.18(c)). The profile is inspected in a caudal
direction starting from the top of the head. At each step, the maximum value
found on the profile, vmax, is updated and compared with the current value,
vc. We estimate that the axial position Lbottom of the bottom of the frontal
lobe is the first axial slice where the current profile value, vc, has a significant
difference from the current maximum value, vmax. An appropriate difference
is 20% of the skull length in the posterior-anterior direction. To estimate
the length of the skull, vmax is taken as the anterior limit, and BBymin, the
posterior bound of the mask bounding box, is taken as the posterior limit.



66 Chapter 2. Methodology

Therefore, Lbottom (Fig. 2.18(c)) is reached in the first slice where:

vc < vmax − (vmax −BBymin)0.2 . (2.63)

Anterior and posterior bounds: The anterior reference limit for the regis-
tration is vmax. The posterior reference limit is the posterior limit, Bpost, of the
projection of the central slices at the slice where vmax was found (Fig. 2.18(c)).

Lateral limit: The lateral reference limits are the bounding box lateral
limits of the upper part of the mask, from the top of the head to the bottom
of the frontal lobe, Lbottom (axial cuts in Figure 2.18(a) and (b)).

After registration, M2 is compared to the model mask (see Fig. 2.16(d)) to
check whether the non-brain tissue has been properly removed. If the volume
(number of voxels) of M2 lying outside the model mask, V out

M2 (light gray in
Figure 2.19), is small enough compared to the volume of the model mask, VM
(dark gray and white in Figure 2.19), it is assumed that the tissue removal is
successful. Therefore, an empirical threshold of 0.08 is used, and the following
condition should be satisfied to accept the tissue removal:

V out
M2

VM
< 0.08 . (2.64)

( '

( ' �

���

Figure 2.19: Example of non-brain tissue in mask M2. A large volume of M2 lies outside
the model. This volume V outM2

is represented in light gray and corresponds to non-brain
tissue that must be removed. In this case, equation (2.64) is not satisfied, therefore the
threshold Ts must be increased by using a higher value of ξ in equation (2.62).

Equation (2.64) determines whether enough non-brain tissue has been re-
moved to proceed with the histogram analysis. The volume of mask M2 that
lies outside the model after registration, V out

M2 , is an estimate of the non-brain
tissue. When V out

M2 is large compared to the model’s volume VM , a significant
part of non-brain tissue is present in the mask M2. Figure 2.19 shows an
example in which the volume V out

M2 is large because the maskM2 includes non-
brain tissue. This non-brain tissue must be removed before performing the
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next step of our method. To remove the tissue, the threshold Ts is increased in
equation (2.62) by using a higher value of ξ in the set ξ = {0.1, 0.2, . . . , 0.9}.
If (2.64) is satisfied, no more values of ξ are tested and the current mask M2
is used in the next step of the pre-segmentation (Fig. 2.16(e)). Figure 2.17(c)
shows the image masked by M2 and its histogram. Note that there are some
voxels with gray value under TOtsu in the histogram, this is caused by the
dilation of the mask that included some voxels ignored in the first step. The
first value of Ts is lowest to avoid removing brain tissue. Moreover, if some
brain tissue is removed in this step, it is recovered in the second deformation
of the mesh as is explained in section 2.3.4.2.

After the brain identification described in this section, some parts of other
tissues, such as dura, still remain around the brain. Thus, other thresholds
are required, and they are computed by assuming that those tissues belong
to a class depending on their gray levels. The classes are modeled by Gaus-
sian functions, and the resulting model is used to compute the new thresh-
olds (sec. 2.3.1.3) and as part of the information to guide the deformable
model (sec. 2.3.4).

2.3.1.3 Modeling by Gaussians

Elimination of non-brain tissue is performed in this stage by the application
of thresholds computed using a Gaussian approximation of the image his-
togram. The brain tissue is also selected using morphological operators and
3D connected component analysis (Fig. 2.16(III)).

As explained in Appendix 1.2, there are different types of MR images
and the gray level of the tissues is different in each one of them. Figure 1.9
(p. 27) shows the approximate gray level of the tissues in the T1-weighted
MR images used in this thesis. Based on the above mentioned gray levels, it
can be assumed that image tissues belong to four classes that follow normal
distribution [Shan 2002, Kovacevic 2002, Chiverton 2007] (Fig. 2.20):

• C1: Background noise, cerebrospinal fluid and dura. It may form a peak
in the histogram, but often does not (green line in Fig. 2.20(a)).

• C2: Gray matter. It forms the central peak in the histogram (yellow
line in Fig. 2.20(a)).

• C3: White matter. It forms the peak at the right side of the histogram
(blue line in Fig. 2.20(a)).

• C4: Other tissues with high gray value. Consist of very few voxels and
never forms a peak.
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Figure 2.20: (a) Histogram as a probability density function and approximated by Gaussian
functions. The black dashed line represents the real image histogram, p(i), and the red line
is the approximated histogram, p′(i, v). The approximated histogram is the sum of the
estimated normal distributions of the gray levels of classes C1 (green line, left), C2 (yellow
line, center) and C3 (blue line, right) (sec. 2.3.1.3). (b) MRI image used to compute the
histogram.

An approximated histogram is constructed modeling these classes with
Gaussians. Because class C4 has very few voxels, only classes C1, C2, and C3
are modeled. Figure 2.20(a) shows the approximated histogram and classes.
Therefore, the approximated histogram is:

p′(i; v) =
3∑

k=1
pk exp

(
−1

2

[
i− µk
σk

]2)
, (2.65)

where i is a gray level, µk is the mean gray level of class k = {1, 2, 3}, pk is
the probability for a voxel of class k to obtain intensity µk, σk is the standard
deviation of the Gaussian function that represents the class k, v = (µk, σk, pk)
is the vector of parameters of the Gaussian functions, and p′(i; v) is the proba-
bility that a voxel has intensity, i, using the vector of parameters, v. Thus, the
values, µk, should correspond to the main peaks in the image histogram. The
parameters of the Gaussian functions are adjusted such that p′(·; v) fits the im-
age histogram. Therefore, the vector of optimal parameters v∗ = (µ∗k, σ∗k, p∗k)
is:

v∗ = argmin
v

W−1∑
i=0

[p(i))− p′(i; v)]2 , (2.66)

where W is the number of gray levels or bins in the histogram. This mini-
mization is performed using the Levenberg-Marquardt algorithm [Moré 1978],
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which is especially suitable for minimizing functions that can be expressed as
a sum of squared residuals. The initial vector of parameters for the minimiza-
tion is computed as follows.

2.3.1.3.1 Kernel Density Estimation The initial vector of param-
eters for the minimization of equation (2.66) is computed using a non-
parametric smoothing method. This method is based on kernel density esti-
mation [Rosenblatt 1956] which is a technique used to estimate the probability
density function of a random variable. In our case, this variable is the image
histogram, p(i). Thus, the kernel density estimation is:

p̂(i;h) = 1
Nh

W−1∑
j=0

K
(
i− j
h

)
, (2.67)

where K is the kernel function, h is the bandwidth parameter of the ker-
nel (Eq. (2.68)), and j is the internal variable of the summation over all the
W gray levels. The commonly used normal distribution with mean 0 and
variance 1 is used as the kernel function:

K
(
i− j
h

)
= p(j)√

2π
e−

(i−j)2

2h2 . (2.68)

In this way, the variance is controlled indirectly through parameter h. This
parameter controls the amount of smoothing of p̂(i;h), i.e., when h is high,
p̂(i;h) will be smoother. Since the image histogram is seen as a probability
density function, the peaks of each class correspond to main function modes.
In order to localize the modes of the function, the parameter, h, is adjusted
to obtain a smooth function whose number of peaks is equal to the number
of modes we want to identify. Figure 2.21 shows the kernel density estima-
tion of the histogram using different values of h. The larger the value of h,
the smoother the estimation p̂(i;h) and the fewer the number of local max-
ima. The adjustment of h to obtain a desired number of local maxima, m, is
explained as follows.

First, two limit values for h are fixed: hhigh and hlow. Since m modes
should be found, hhigh must be high enough to obtain m̂ < m modes when
it is used in the estimation, and hlow must be low enough to obtain m̂ > m

modes. Then, h is adjusted iteratively, providing a value, ht at each iteration,
t, starting with h0 = (hhigh + hlow)/2:

1. Compute p̂(·;ht) (Eq. (2.67))

2. Calculate the number of modes m̂ in p̂(·)
3. if m̂ ≤ m then
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hhigh = ht
else
hlow = ht

end if

4. Compute ht+1 = hhigh+hlow

2 .
5. if m̂ = m and |ht − ht+1| < ε then

return p̂(·;ht+1)
else
go to step 1.

end if

(a) (b) (c)

(d) (e) (f)

Figure 2.21: Histogram smoothing using “kernel density estimation”. Examples with differ-
ent values of h and local maximum (LM), are showed. (a) Original histogram, (b) h=1.0,
LM=[73, 101, 109, 135]. (c) h=2.507, LM=[75, 102, 107, 134]. (d) h=2.819, LM=[102, 106,
133]. (e) h=2.865, LM=[106, 133]. (f) h =3.756, LM =[104].

Now, we get back to the computation of the initial vector of parameters
to adjust the Gaussian functions. The class C1 does not always show a peak.
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Therefore, to compute the initial vector of parameters to adjust p′(i; v), the
best method is to find the peaks of classes C2 and C3. Because µ2 and µ3 are
the highest peaks in the histogram, they can be located using the algorithm
described above. Figure 2.21(e) shows a histogram smoothed using h = 2.865,
this histogram has two peaks [106, 133] which correspond to µ2 and µ3. Using
these estimations of the mean gray levels, the initial vector of parameters
v = (µk, σk, pk) for the adjustment of the Gaussian functions (Eq. (2.66)) is
obtained: v = [µ2 0.75, µ2, µ3,W/6,W/6,W/6, p̂(µ2 0.75), p̂(µ2), p̂(µ3)], where
W in the number of gray levels. The mean gray level µ̂1 of class C1 is estimated
using µ̂2 because class C1 usually does not present a peak, and the value 0.75
was empirically selected based on the typical form of the histogram. This
initial vector is used in the Levenberg-Marquardt algorithm to perform the
minimization of equation (2.66), and obtain the optimal vector of parameters
v∗ for the approximated histogram, p′(·, v) (Eq. (2.65)). Figure 2.20 shows the
image histogram, p(i) (black dashed line), and the approximated histogram,
p′(i; v∗) (red line) formed by the sum of the Gaussian functions representing
the gray level distributions of classes C1 (green line), C2 (yellow line), and
C3 (blue line). Because class C2 represents the gray matter and class C3 the
white matter, it can be assumed that the mean value and standard deviation
of the GM and WM gray level are, µgm = µ2, σgm = σ2; and µwm = µ3,
σwm = σ3, respectively.

Two final thresholds, TGLow and TGHigh, are computed using the estimated
gray level distribution of the tissues [Shan 2002]:

TGLow = µgm − 2.5σgm ,

TGHigh = µwm + 2.5σwm . (2.69)

A new mask is computed using these thresholds (Fig. 2.16(f)). The mask
is composed of all voxels, in the image masked with M2 (Fig. 2.17(c)), having
a gray level, i, that satisfies: TGLow ≤ i ≤ TGHigh. With the purpose of
disconnecting the remaining tissues with gray levels similar to the brain, a
binary opening is used in the mask. The opening operator is applied once,
using a 3D spherical structural element with a radius of 4 mm. Then, to
identify the brain, a 3D connected component analysis is performed in the
mask, using a square connectivity equal to one. The largest element is kept,
and it forms the mask, M3. The original image masked by M3 is the final
pre-segmentation of the brain. Fig. 2.22 shows two orthogonal slices of the
MRI pre-segmentation, in which tissues have been eliminated, except for the
cerebral parenchyma (Fig. 2.22(c)). Figure 2.17(d) shows a segmented image
and its histogram.
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(a) (b) (c)

Figure 2.22: (a) Coronal and (b) Axial slice of the MRI. (c) Extraction of the cerebral
parenchyma by the pre-segmentation method.

2.3.2 Initial Generic Meshes
Facing the problem of validating the techniques of quantitative analysis of MR
images, an anatomical model of the brain has been developed at the Mon-
tréal Neurological Institute (BrainWeb [Cocosco 1997, Kwan 1999]). And a
set of digital phantoms has been generated. Each phantom is defined by a
set of 3D fuzzy tissue membership volumes, which are next used to synthe-
size MR images (Fig. 2.23(b)), and an associated discrete anatomical model
(Fig. 2.23(a)). This discrete model consists in a class label associated to each
voxel, representing the tissue with the largest contribution.

We have slightly adapted it in order to construct an initial generic mesh
corresponding to the structures we want to take into account. This adaptation
consists, for example, in the edition of the ventricular cavities as they appear
as open structures in BrainWeb models (containing fuzzy information, and
certainly not a structured segmentation). Next, meshes have been created
using the well known marching cubes algorithm [Lorensen 1987] and proper
image segmentation techniques. The final model consists of five meshes recon-
structed from the same discrete model extracted from a BrainWeb synthetic
model:

1. Three closed meshes:

(a) Cortex,MC .

(b) Skull,MS.

(c) Ventricles,MV .

2. And two inner membranes:

(a) Tentorium cerebelli,MT .

(b) Falx cerebri ,MF .
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(a)

(b)

Figure 2.23: Example of a BrainWeb’s model. (a) Discrete anatomical model which consists
of 11 types of tissues. The gray level of each voxel in the model is a label to the tissue type.
(b) Synthetic image created using the model shown in (a).

Since the inner membranes are not specifically identified within the Brain-
Web model, they need to be marked before creating the meshes. As this oper-
ation has to be performed only once, there is no major restriction in achieving
this manually. The closed surfaces have genus 0 and, for simplification,MC

does not include sulci or gyri in details.
Finally, all these meshes can be joined together, resulting in a complete

brain anatomy (Fig. 2.24). Of course, depending on the aimed application,
any partial combination of the meshes is available, at any resolution.

After adjusting the simplex meshes to the patient’s anatomy, they can be
easily shifted to a triangulation (sec. 2.2). This allows performing junction
between the different meshes [Lo 2005], each one representing a part of the
whole cerebral structure. The resulting triangle mesh is defined adequately to
be integrated in a three-dimensional volume mesh generator. Thus, tetrahe-
dral or hexahedral meshes can be built, and next used for simulation purposes.
As stated previously, the main advantage of our technique is to produce com-
pliant volume meshes where inner structures have been well identified and
marked with different domain labels, which will help for defining the bound-
ary conditions for a Finite Elements resolution method.
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Figure 2.24: External transparency view of our Generic Brain Model, integrating outer and
inner structures.

2.3.3 Geometric Adjustment of the Meshes
After pre-segmentation, a global matching of the generic meshes (MC ,MS,
MV , MT , MF ), is carried out using geometric transformations. The mesh
MC represents the structure segmented in the pre-segmentation (brain), con-
sequently this mesh is used to compute the first geometric adjustment. First,
MC is scaled and translated to match the pre-segmented MRI. The references
used to carry out this transformation are found in the same way as the esti-
mation of threshold Ts that is described in section 2.3.1.2. The caudal limit
of the frontal lobe and the bounding box of the upper part of the brain in
M are matched with the same references in the pre-segmented image. Then,
this transformation computed usingMC is used on all the meshes: MC ,MS,
MV ,MT ,MF .

Next, an affine transformation is carried out minimizing the sum of
the square distances among the vertices of MC and the pre-segmented
MRI edges. The optimal transformation parameters are found using the
Levenberg- Marquardt minimization method. The distances in the pre-
segmented MRI image are pre-computed using the distance transformation on
the edges of the MRI segmentation after binarization. Figure 2.25(a) shows
the cortex mesh after the affine transformation. Then, this affine transforma-
tion is also applied to the other meshes: MC ,MS,MV ,MT ,MF .

The pre-segmentation has removed the CSF inside the brain, therefore the
ventricles are represented by holes. They are used to perform another geo-
metric adjustment ofMV . In the same way as forMC , the sum of the square
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distances between the vertices of MV and the pre-segmented MRI edges is
minimized using an affine transformation. The distance transformation and
Levenberg-Marquardt minimization method are also used to find the optimal
transformation parameters.

The mesh resulting from this step is close enough to its final position to be
transmitted as input to a more local deformable model technique. The defor-
mation of each mesh that represents an anatomical structure (cortex, skull,
ventricles, tentorium cerebelli and falx cerebri) is described in the following
sections.

2.3.4 Cortical Surfac Segmentation
2.3.4.1 First Mesh Deformation

After the geometric adjustment (sec. 2.3.3), the mesh, MC, is deformed in
order to match the pre-segmentation borders more accurately. This defor-
mation allows a better initialization by using the pre-segmentation. In equa-
tion (2.24), the external force definition is important as it will drive the mesh
to the image’s natural edges. To compute the external force, a target point
xtargeti is searched on the normal profile of each vertex, defined in section 2.1.4
(Eq. 2.33). The target point, xtargeti , defined as the first point inside the mask,
M3, is searched in each profile, starting from l to −l. Thus, using the target
point, the external force, −−→Fexti is defined in each vertex a:

−−→
Fexti =

 ∇M3(xtargeti )∥∥∥∇M3(xtargeti )
∥∥∥ ·
(
xtargeti − Pi

)−→Ni , (2.70)

where ∇M3(xtargeti ) is the gradient of M3 at xtargeti , i.e., the gradient of the
mask border. In this way, the vertex is pushed to the pre-segmentation border
more strongly if the normal of the mask border is in the same direction as the
mesh normal.

Because an affine transformation was used in the previous mesh geometric
adjustment, it can be assumed that the mesh did not lose its general shape.
Therefore, to avoid an excessive mesh deformation if there are errors in the
pre-segmentation, the initial simplex angles of the mesh are preserved as tar-
get simplex angles, ρ∗i during the deformation. Thus, the simplex angle of
every vertex, ρi is computed after the geometric adjustment and used in this
deformation as ρ∗i (Eq. 2.28). An example of the adjustment result to the
pre-segmentation is shown in Figure 2.25(b).

After this first deformation, the mesh matches the pre-segmented image
borders. Because the pre-segmentation is designed to remove most of the non-
brain tissue, the mesh lies mainly in the WM or near the GM-CSF interface.
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(a) (b)

(c) (d) (e)

Figure 2.25: Examples of deformation steps with the simplex mesh: (a) After geometric
adjustment by affine transformations (sec. 2.3.3). (b) After a first deformation to match
the pre-segmentation (sec. 2.3.4.1). (c) After a coarse second deformation to roughly match
the cortical surface. (sec. 2.3.4.2). (d) After a third refined deformation to match the sulci
and gyri (sec. 2.3.4.3. (e) Zoom image of the final deformation showing how the mesh can
follow the sulci and gyri.

2.3.4.2 Second Mesh Deformation

The second deformation is computed using the original MRI, and the goals are
to find the GM-CSF interface, and correct the mesh in those areas where the
pre-segmentation eliminated brain tissue. Therefore, the mesh moves mainly
inside the WM or near the GM-CSF interface in this deformation.

In a similar manner to the first deformation, a target point, xtargeti is
computed in each vertex profile. (See (2.33)). To compute the target point,
rules based on the image gray level are applied, as will be explained later in
this section (Fig. 2.26). In each iteration, the vertices are pushed toward their
target points by the external force, as explained in section 2.1.4.

Figure 2.26 shows a flow diagram of the rules employed to compute the
target points. First, whether the vertex Pi is outside the WM is estimated.
This is carried out by computing two values: an estimation of the WM gray
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Figure 2.26: Flow diagram of the rules to compute the simplex mesh external forces. The
inputs, represented by circles, are measures of the image gray level taken over the normal
profile of each vertex (Fig. 2.5). The outputs, at the end of the scheme, are the equations
used to compute the target point xtargeti of each vertex: (a) Equation (2.74) is used to push
the vertex toward the brain. (b) Equation (2.75) is used to push the vertex toward the
cortex border. (c) Equation (2.77) is used to push the vertex outward the brain.

value in each profile
Iwm(i) = max

j=[−l/δ],...,0
I(xi,j) , (2.71)

and the minimum gray level value over a distance, dmin in the direction, −−→Ni:

Imin(i) = min
j=[−dmin/δ],...,0

I(xi,j) . (2.72)

If Imin(i) ≤ 0.66 Iwm(i), it is assumed that the vertex, Pi is in the CSF or
the GM. In this case, another measurement is made over a distance dmean in
the direction, −−→Ni:

Imean(i) =
∑0
j=[−dmean/δ] I(xi,j)
[dmean/δ] + 1 . (2.73)

Using Imean(i), it is possible to determine whether the vertex, i, is near
the GM. If Imean(i) has a low value, the vertex, i, is in the CSF far from the
GM. In this case, Pi must be pushed to reach the GM. Imean(i) is analyzed
using the mean value µgm and standard deviation σgm of the GM gray level
computed in section 2.3.1.3. Accordingly, if Imean(i) < µgm−8σgm, the vertex
is pushed inward. Since each vertex is pushed over its target point, the target
point is defined as:

xtargeti = Pi − dp
−→
Ni , (2.74)

where dp is a distance that controls the applied force. Otherwise, if Imean(i) ≥
µgm − 8σgm, it is assumed that the vertex is near the interface between the
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GM and CSF, and must be pushed into it. This interface can be detected
looking for a high gradient in the search profile. A function, F , based on both
image and mesh, is defined as Fi(x) = −−→Ni · ∇I(x), where I(x) is the gray
value of the image normalized between the values [0,1] at point x, and ∇ is
the gradient operator. Then, the target point [Weese 2001] is defined as:

xtargeti = Pi + arg max
j=[−l/δ],...,[l/δ]

[
Fi(xi,j)−Dj2δ2

]
δ
−→
Ni , (2.75)

where D is a weight to give less importance to points that are far from Pi.
In contrast, if Imin(i) > 0.66 Iwm(i), it is assumed that the vertex Pi is inside
the WM. In this case, another measure is performed over a distance, dmax, in
the profile:

Imax(i) = max
j=0,...,[dmax/δ]

I(xi,j) . (2.76)

The purpose of Imax(i) is to determine whether the eyes are in front of
P (i). An area with high gray level values characterizes the region behind the
eyes, where the optic tracts are located. We estimated a threshold for Imax(i)
to be 130% of the WM intensity. If Imax(i) > 1.3 Iwm, it is assumed that the
eyes are in front of Pi, and the GM border is found using (2.75); otherwise,
the vertex Pi is inside the WM and must be pushed to reach the GM and the
GM-CSF interface. The vertex is pushed defining the target point xtargeti as:

xtargeti = Pi + dp
−→
Ni . (2.77)

In the second deformation, the mesh should be adjusted more precisely.
Therefore, it is allowed more freedom in the deformation by defining the target
simplex angle, ρ∗i , using a curvature continuity constraint [Delingette 1999]
computed over a neighborhood, QS(i), of size, S, around each vertex. The
neighborhood, QS(i), is defined as all the vertices that can be connected to
Pi by a path formed with S edges. Figure 2.25(c) shows an example of the
mesh obtained after the second deformation.

The pre-segmentation is designed to eliminate the non-brain tissue to be
able to find landmarks to register the generic mesh, MC, with the image
(sec. 2.3.3), but in some cases part of the brain is also removed. Therefore,
the purpose of the second deformation, in addition to reaching the GM-CSF
interface, is to correct the mesh in those areas where the pre-segmentation
eliminated brain tissue. Figure 2.27 shows an example in which part of the
brain was removed in the pre-segmentation and recovered in the second de-
formation.
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(a) (b)

(c) (d)

Figure 2.27: Example of brain tissue recovery by the second deformation. (a) The pre-
segmentation of an image in which the cerebellum has been removed because of a bias
problem in the image. (b) Mesh registered with the pre-segmentation by geometric trans-
formations. (c) Mesh deformed using the pre-segmented image. This first deformation re-
moves a great part of the cerebellum because it is based in the pre-segmentation. (d) Mesh
after the second deformation. This deformation recovers the cerebellum because the forces
that push the vertices if they are inside the brain tissue.

2.3.4.3 Third Mesh Deformation

A final deformation is carried out removing parts of the CSF that may re-
main outside the cortex or in the sulci, by mesh refinement, and using similar
forces to those described in the previous section. There are many well-known
algorithms to refine triangulations. Therefore, the simplex mesh is first trans-
formed into a triangulation using the method described in section 2.2. This
method is based on the computation of the dual mesh vertices by an inter-
polation that uses a direct minimization of the distance to both vertices of
each face and the tangent planes in these vertices. After the dual transfor-
mation, the triangulation is refined using the butterfly scheme [Zorin 1996],
and re-transformed into a simplex mesh (sec. 2.2). To improve this step, and
avoid to perform a mesh conversion back and forth, similar techniques as
in [Gilles 2010] for simplex mesh adaptation can be implemented.
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To deform the refined mesh, similar forces to those described in the previ-
ous section (sec 2.3.4.2) are utilized. The difference is that the value of Iwm(i)
is modified if it is very different from the estimation of the WM gray level
in the pre-segmentation stage. The objective of this correction is to make
sure that vertices over sulci will be pushed into the sulci. There are cases
in which the estimation of the WM local gray level Iwm(i) is excessively low
when the vertex is over a large sulcus, especially over the sagittal sinus. More-
over, in this stage the mesh has reached the cortex as a result of the second
deformation; therefore, it is more important to push the vertices into the sul-
cus. If Iwm(i) < µwm − 2σwm, its value is replaced by Iwm(i) = µwm − 2σwm.
Figure 2.25(d) shows an example of the final segmentation.

2.3.4.4 Mesh Self-intersection Control

Mesh deformations following complex shapes such as cortex sulci and gyri,
may generate errors due to mesh self-intersections. A self-intersection may
cause the surface normal vector to point toward inside the mesh instead of
outward. This error in the normal vector causes the mesh to be pushed in
the wrong direction, because the forces that deform the mesh depend on the
surface normal vector. The mesh internal forces avoid these intersections to
some degree, but in some cases they are not sufficient. For example, if two
neighboring surfaces get too close, but without causing a significant change
in the mesh curvature, the internal forces will not prevent an intersection
to appear. Also, if the mesh deforms too quickly in a zone, causing the
surface to fold over itself, the internal forces may not be able to correct the
problem properly. To prevent these auto-intersections, we check and correct
their occurrence every I = 10 iterations.

The vertices that form a face of a simplex mesh are not co-planar. Thus, to
detect intersections, a definition of the face’s surface is needed. This definition
can be given by a set of equations based on the face’s vertices, nevertheless
using planar faces is the easiest and direct method. Consequently, the simplex
mesh is first transformed into its dual triangulation (sec. 2.2) to have a mesh
formed by planar faces (Fig. 2.28(b)). Then, the intersections between tri-
angles can be computed easily. Because the topological dual triangulation is
used, each triangle corresponds to a vertex of the simplex mesh (Fig. 2.1(b)).
Therefore, if an intersection is detected in a triangle, the position of the cor-
responding simplex mesh vertex must be corrected. After all triangles with
intersections have been detected (Fig. 2.28(c)), areas enclosed by these trian-
gles are computed (Fig. 2.28(d)). The triangles of these areas have completely
crossed a part of the mesh. Therefore, the position of the simplex mesh ver-
tices related to triangles in the enclosed areas must also be corrected.
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(a) (b)

(c) (d)

(e)

Figure 2.28: Example of self-intersections control. When the mesh is deformed around
complex shapes, self-intersections may appear (a). Faces of a simplex mesh are not flat;
therefore it is better to transform the mesh into a triangulation to detect the intersections.
The dual transformation (sec. 2.2) of the simplex mesh is used to compute the triangula-
tion (b). In the triangulation, the triangles with intersections can be detected (c). A part
of the mesh can be crossed by another part of itself, and the intersections will be detected
only in the border of the crossed surface. Therefore, zones enclosed by intersection must
also be detected (d). To correct the self-intersections, a Laplacian smoothing is applied
to vertices of the simplex mesh that correspond to triangles with intersection or triangles
enclosed by they. In the dual triangulation of a simplex mesh, each triangle correspond to
a vertex of the simplex mesh. Figure (e) shows the simplex mesh smoothed and without
self-intersection.
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Consequently a set, G, is formed with the vertices related to intersected
triangles and triangles enclosed by intersections. To correct the intersections,
a Laplacian smoothing is applied to the vertices of G and to a neighborhood
around them. The smoothing is applied in stages k = {1, 2, . . . } to make sure
of the self-intersection problem correction, while changing the rest of the mesh
as little as possible. In each stage, the Laplacian smoothing is applied 50 times
or until the mean displacement of the vertices is less than 0.001. Because in
a simplex mesh each vertex Pi has 3 neighbors, the Laplacian smoothing is
performed assigning to each vertex the mean position of its neighbors:

Pi = PN1(i) + PN2(i) + PN3(i)

3 . (2.78)

Another detection of self-intersections and enclosed areas is performed at
the end of each stage. If there are still self-intersections, another set ,G, is
formed in the next stage and a Laplacian smoothing is carried out. The neigh-
borhood around G depends on the stage, k, defining increasing neighborhoods
to provide more freedom if the intersections were not corrected in the previ-
ous stage. Thus, in a stage k, the neighborhood QS(G) of G is of size S = k,
where QS(G) is defined as all the vertices that can be connected to any ver-
tex of G by a path formed with S edges. Figure 2.28(a) shows a mesh with
self-intersections, which are corrected in Figure 2.28(e).

2.3.4.5 Cortex Segmentation as a Skull Stripping Method

As explained in section 1.1.1.3, the brain segmentation obtained with the
cortex mesh can be seen as a Skull Stripping or brain extraction process. The
Skull Stripping eliminates the non-brain tissue present in the image, which is a
preliminary step for many methods, mandatory before employing these images
in medical or research application. Accordingly, the voxels in the image are
classified as brain or non-brain tissue. To perform this classification, a binary
mask is built using the final deformed cortex mesh. In this mask, voxels
inside the mesh are classified as brain tissue and as non-brain tissue those
voxels outside the mesh. The resolution of the mesh is sufficient to obtain a
satisfactory result for building a mechanical model. Nevertheless, some voxels
in the surface of the mask can be misclassified because the mesh has no sub-
voxel resolution to perform an efficient deformation. To refine the classification
of the aforementioned voxels, conditional morphological operators are applied
to the mask as follows.

The conditional morphological operators employ thresholds computed us-
ing the statistical gray level model built in the pre-segmentation (sec. 2.3.1.3)
and gray level estimates in the neighborhood of the voxel. Moreover, the
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structural element used in the morphological operators has 3×3×3 voxels,
because the misclassified voxels are only at the surface of the mask. First,
a conditional erosion is performed two times. This operation applies erosion
only if the gray value in the original image is below a threshold. The thresh-
old is the same employed in the mesh deformation (Fig. 2.26), thus the voxels
with gray levels in the original image i ≤ µgm − 8σgm, can be eroded in the
binary mask. This erosion removes voxels of CSF that were misclassified as
brain. Then, a conditional dilation is performed one time in the binary mask
using the same structural element. The conditional dilation is applied only
if the gray value in the original image is above a threshold. The threshold is
determined using the maximum gray level in the original image of the voxels
inside the structural element: Isemax. The value of Isemax is an estimate of the
gray level value of the brain parenchyma in the neighborhood of the voxel. If
the voxel is far from the parenchyma (e.g., in a sulcus) the threshold of the
conditional erosion is used. Then, the voxel may be dilated if its gray level
i > max(Isemax − 5σgm, µgm − 8σgm). This dilation recovers misclassified vox-
els of brain tissue. Figure 2.29 shows the correction performed in the binary
mask.

(a) (b)

Figure 2.29: Correction performed in the binary mask. (a) Image masked by the binary
mask built using the final deformed mesh. The image includes a zoom of the marked rect-
angular area. (b) Image masked by the mask after correction by conditional morphological
operators. Misclassified voxels in the surface of the mask are corrected by the conditional
morphological operators.

2.3.5 Skull Mesh Deformation
After the deformation of cortex mesh MC (sec. 2.3.4), the skull mesh MS

must be deformed to follow the internal surface of the skull. The starting
point for the deformation is the skull mesh after the geometric adjustment
explained in section 2.3.3 (Fig. 2.30(a)). The deformation of this mesh is
based on the image and on the position of the cortex mesh after deformation.
The deformation is controlled to avoid intersections between these two meshes
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(cortex and skull) and to ensure a minimal distance between them. Figure 2.31
shows an flow diagram of the rules used to compute the external forces of the
mesh.

(a) (b) (c)

Figure 2.30: Examples of deformation steps with the skull simplex mesh: (a) After geomet-
ric adjustment by affine transformations (sec. 2.3.3). (b) After deformation to match the
skull inner borders. (c) After deformation and with the cortex mesh inside it. The skull
mesh deformation has constraints to maintain a minimum distance from the cortex mesh.
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Figure 2.31: Flow diagram to compute the simplex mesh external forces to deform the skull
mesh. The external force is computed using the target point xtargeti , therefore this point is
computed in different ways depending the position of Pi. (a) If Pi is inside the cortex mesh
(2.79), xtargeti is computed (b) using (2.80) to push Pi outside mesh. (c) If Pi is outside
the cortex mesh but too close from it (2.81), xtargeti is computed (d) using (2.83) to push
Pi sufficiently far. (e) If Pi is outside the cortex mesh and sufficiently far away from it,
the search profile is validated (e). If the search profile is accepted, xtargeti is computed (f)
using (2.86) over the profile to find the skull border.

To make sure that the skull mesh does not intersect the cortex mesh, the
following procedure is performed. First, as simplex faces are not flat, the
deformed MC is transformed in its dual triangulation (section 2.2). Then,
for each vertex Pi ofMS, the closest point Pi,cortex in the surface defined by
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the cortex mesh is computed. The point Pi,cortex is used to check whether Pi
is inside the cortex mesh. The point Pi,cortex is in the surface defined by the
cortex mesh, and therefore is associated with a triangle Ti of MC . Pi,cortex
can be in the surface of Ti, nevertheless if Pi,cortex is in a vertex or an edge,
any triangle formed by the vertex or the edge can be taken as Ti. To check if
Pi is inside the cortex mesh, the following expression is used:

∥∥∥(Pi,cortex − Pi) · −→NTi

∥∥∥
> 0⇒ Pi is inside the cortex mesh
6 0⇒ Pi is outside the cortex mesh

, (2.79)

where −→NTi
is the unit normal vector of the triangle Ti. If Pi is inside the cortex

mesh, the equation (2.34) is used to push Pi outward by defining the target
point xtargeti as:

xtargeti = Pi + ‖(Pi,cortex − Pi)‖
−→
Ni . (2.80)

Using equation (2.80), Pi is pushed in the direction normal to the mesh,
and therefore the mesh deforms without affecting the parametrization. More-
over, the force applied to Pi is proportional to its distance to the cortex
mesh, and when Pi will be close enough to the cortex mesh the direction of
(Pi,cortex − Pi) and −→Ni will be similar.

The cortex and the skull mesh must not intersect, and furthermore there
must be a minimum space between them. This space is used in the mechanical
modeling and is full of CSF. Therefore, after confirming that Pi is outside the
cortex mesh (eq 2.79), it is checked whether Pi is sufficiently far away from
the cortex mesh using:

∥∥∥P⊥i,cortex − Pi∥∥∥
> Lmin ⇒ Pi is far enough from the cortex mesh
< Lmin ⇒ Pi is too close from the cortex mesh

,

(2.81)
where Lmin is the minimum distance allowed between the two meshes, that in
our case is Lmin = 1mm, and

P⊥i,cortex = Pi +
(
(Pi,cortex − Pi) ·

−→
Ni

)−→
Ni . (2.82)

Using the point P⊥i,cortex to measure the distance between the two meshes,
it is possible to maintain a constant minimum distance although Pi may be
over a sulcus (see Fig. 2.32). If Pi is too close from the cortex mesh, the target
point is defined as:

xtargeti = P⊥i,cortex + Lmin
−→
Ni . (2.83)

If Pi is outside the cortex mesh (2.79) and is sufficiently far away from it
(2.81), a set of measures are taken in search profiles normal to the mesh to
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localize the skull border. In this case, the search profiles are defined differently
than in our general definition presented in section 2.1.4. Each profile of length
ls starts near the surface of the cortex mesh and is normal to skull mesh. The
sampling points over the profiles are defined by:

xi,j = P⊥i,cortex + jδs
−→
Ni , (2.84)

where δs is a sampling distance, and j = {0, 1, . . . , [ls/δs]− 1, [ls/δs]}. In this
way, the search profiles are defined by the normal vector −→Ni and start near
the cortical surface but not into a sulcus. Figure 2.32 shows a scheme of the
search profiles.
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Figure 2.32: Search profile to compute the target points in the skull mesh. To define the
search profiles, the surface defined by the cortex mesh is used.

The first measurement taken over the search profile is the position jmax of
the maximum gray level Imax = I(xi,jmax):

jmax = arg max
j=0,...,[ls/δs]

I(xi,j) . (2.85)

The value of jmax is an estimation of the scalp position, outside the skull.
In this area, the subcutaneous tissue got high gray level intensity in the MRI
image. To make sure that jmax is actually the scalp position, two comparisons
are used:

1. If jmaxδs > 30mm, it is considered that the position is too far, and
maybe corresponds to the lower part of the skull. Therefore, the search
profile is rejected.

2. If Imax < σwm, it is considered that the gray intensity Imax is too low,
and therefore jmax cannot be considered a reliable estimation of the
scalp position. The mean value of the WM intensity σwm computed in
section 2.3.1.3 is used in this comparison.
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If the two comparisons are negative and hence the profile is not rejected,
another measurement is taken. Starting from 0 to jmax, the first position jmin
in which I(xi,jmin

) < 0.5 σgm is searched, where σgm is the mean value of the
GM intensity computed in section 2.3.1.3. This position should correspond to
CSF or bone, because both have a low gray value in the MRI. Therefore, the
bone-CSF interface can be searched near of xi,jmin

. To search the interface,
the image gradient is used. Because usually the gray value of the bone is lower
than that of the CSF, the following equation is used to compute the target
point xtargeti :

xtargeti = Pi + arg max
j=0,...,[ls/δs]

[
Fi(xi,j)−D(j − jmin)2δ2

s

]
δs
−→
Ni , (2.86)

where D is a weight to give less importance to points that are far from xi,jmin
,

Fi(x) = −−→Ni · ∇I(x), and I(x) is the gray value of the image normalized
between the values [0,1] at point x. Then the target point xtargeti , computed
to push the mesh or to find the skull border, is used to calculate the external
force applied to the mesh −−→Fexti (Eq. 2.34). Figure 2.30(b) shows an example
of the skull mesh obtained after deformation, and Figure 2.30(c) shows the
same mesh including the deformed cortex mesh inside it.

2.3.6 Ventricle Mesh Deformation
The ventricle meshMV is inside the cortex meshMC , and far away from it.
Therefore, it is not necessary to measure the distance between these meshes, as
for the skull mesh. To perform the deformation, local gray levels of the image
and the statistical gray level model built in the pre-segmentation (sec. 2.3.1)
are used. Search profiles (Eq 2.33), as explained in section 2.1.4, are used for
each vertex to obtain measures of the local gray level. Then a target point is
obtained and the external force is computed using equation (2.34).

Each vertex of MV can be in the cerebral parenchyma, or in the CSF
into the ventricles. The cerebral parenchyma around the ventricles is com-
posed of WM, thalamus, basal ganglia and hippocampus. Therefore, the gray
level of this tissue may vary, nevertheless the gray level of the CSF is always
lower. First, a measure Imean(i) is taken over the profile to estimate the vertex
position:

Imean(i) =
∑[+dmean/δ]
j=[−dmean/δ] I(xi,j)
[dmean/δ] + 1 . (2.87)

To analyze Imean(i), the mean value µgm and standard deviation σgm of the
GM gray level computed in section 2.3.1.3 are used. If Imean(i) < µgm−8σgm,
it is assumed that Pi is inside the CSF and must be pushed to reach the
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ventricle borders. Therefore, the target point is defined as:

xtargeti = Pi + dp
−→
Ni , (2.88)

where dp is a distance that controls the force applied. Otherwise, the ventricle
border can be found looking for a high gradient. To find this high gradient,
the target point xtargeti is defined as:

xtargeti = Pi + arg max
j=[−l/δ],...,[l/δ]

[
Fi(xi,j)−Dj2δ2

]
δ
−→
Ni , (2.89)

where D is a weight to give less importance to far points, and Fi(x) = −→Ni ·
∇I(x). Then the target point xtargeti , computed to push the mesh or to find
the ventricle border, is used to calculate the external force applied to the mesh−−→
Fexti . Figure 2.33(b) shows an example of the ventricle mesh obtained after
deformation.

(a) (b)

Figure 2.33: Examples of deformation steps with the ventricle simplex mesh: (a) After
geometric adjustment by affine transformations (sec. 2.3.3). (b) After deformation to match
the ventricle borders in the MRI image.

2.3.7 Open Meshes
The falx cerebri MF , and tentorium cerebelli MT meshes represent mem-
branes, and must be treated as open meshes. It must also be considered
that a part of these membranes is attached to the skull, or slides over other
structures (Fig. 2.34). Therefore, a special deformation control of the points
belonging to the external borders of these meshes is necessary. Such points
can be classified into two types:

Attached Vertices: Vertices belonging to the junction between the mem-
brane’s edge and another structure.
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(a) (b)

Figure 2.34: (a) Constraints on the tentorium cerebelli (green) border along the skull (blue).
(b) Restriction on falx cerebri (red) borders and extremities along both tentorium cerebelli
and skull.

Free Vertices: Vertices belonging to the free border of the membrane.

Attached vertices P att
i are restricted to move along the surface of another

structure, S. The attached vertices of the tentorium cerebelli move along the
internal surface of the skull mesh; and the attached vetices of the falx cerebri
move along both the internal surface of the skull mesh and the surface of the
tentorium cerebelli (Fig. 2.34). To achieve this kind of movement, the position
of the closest point to P att

i , on the surface of S is computed at each iteration
of the deformation. This point Ci, on the surface of S, is used to compute the
external force which is applied to P att

i in order to keep it on the surface of S.
To obtain this external force, the point Ci is used as target point: xtargeti = Ci.
In this way, the attached border of the mesh moves along the surface of S,
letting the rest of the mesh to fit freely the target structure.

The deformation of the two open meshesMF , andMT is explained in the
following sections.

2.3.7.1 Tentorium Mesh Deformation

The tentorium meshMT has to be considered first. In effect, due to the local
deformation of the skull in the previous step (section 2.3.5), some parts ofMT

may intersect MS. This might cause problems during the deformation, and
must be corrected. To compute the intersections, both simplex meshes are
transformed into its dual triangle mesh (section 2.2). Then, the intersections
are computed [Lo 2005], and the outer extension ofMT is eliminated. After
cutting MT , the mesh is shifted back into a simplex mesh, in order to be
deformed.
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The attached vertices P att
i , in the border of the tentorium cerebelli mesh

MT , lie on the junction between the inner skull surface and the tentorium
cerebelli. The free vertices of MT lie between the brain and cerebellum
(Fig. 2.34(a)). To differentiate between free and attached vertices, the dis-
tance between the border vertices of MT and the skull mesh MS surface is
calculated. First, the distance threshold to differentiate free and attached
vertices is set in such a way that 1/3 of the vertices are defined as free ver-
tices, i.e., 1/3 of the vertices have a distance to the skull mesh larger than the
threshold. Next, the largest section of the mesh border with consecutive free
vertices is found, and all the vertices that are not in this section are considered
attached vertices. Using this definition of the attached vertices, the surface
will be folded if some vertices in the limits of the attached section of the bor-
der are pushed toward the surface defined by MS. Figure 2.35(a) shows an
example of this situation, where the tentorium mesh will be folded if point P2
is pushed toward the skull mesh. To avoid this fold, the classification is refined
in the limits of the attached zone. Starting from the center of the attached
section, it is searched the first point, Pleft, to the left (left hemisphere) where
the following expression is satisfied:

−→
Mi · (Ci − P att

i ) ≤ 0 , (2.90)

where −→Mi is computed using the normal vector to the surface at the neighbor
vertex of P att

i that lies in the mesh surface −−−→NSNi and the tangent vector to
the mesh border −→Ti (Eq. (2.37) in sec. 2.1.4.1):

−→
Mi = −−−→NSNi ×

−→
Ti . (2.91)

The same procedure is used in the right (right hemisphere), to find the point
Pright. The attached section of the border is finally defined as all the vertices
P att
i between Pright and Pleft. Figure 2.35 shows a scheme of the procedure to

compute Pright and Pleft.
The internal force −−→Finti applied to the vertices in the mesh surface is com-

puted as in the case of closed meshes. Nevertheless, the internal force applied
to contour vertices is computed as explained in section 2.1.3.1. The external
force −−→Fexti is computed as follows.

To compute the external force applied to the surface vertices and free
border vertices, some measures of the image gray level are taken over nor-
mal profiles. The normal profiles for the surface vertices are defined as ex-
plained in section 2.1.4 (Eq. 2.33), and for the border vertices as shown in
section 2.1.4.1 (Eq. 2.36)

First, the position jmin of minimum gray value is computed in each profile:

jmin = arg min
j=[−l/δ],...,[l/δ]

I(xi,j) . (2.92)
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(a) (b)

Figure 2.35: (a) Scheme of the attached vertices P atti selection. The right limit of the tento-
rium mesh border is shown. In this example, the first point Pi that satisfies equation (2.90)
is P2. Therefore P2 is considered as Pright. The mesh border (closed contour) can be di-
vided into two sections by vertex Pleft and its counterpart, Pright, in the right hemisphere.
Vertices in the border section nearest the skull meshMS are considered attached vertices
P atti . (b) Tentorium mesh with vertices P atti highlighted. The marked rectangular area
correspond to the scheme shown in (a).

The value of jmin is an estimation of the CSF position in the normal
profile. The interface between the cerebellum and the brain contains CSF,
therefore jmin is a first estimation of its position. Then, a target point xtargeti

is computed to estimate the precise position of the interface. This target point
is computed in a similar way to that used for the skull deformation:

xtargeti = Pi + arg max
j=0,...,[l/δ]

[
Fi(xi,j)−D(j − jmin)2δ2

]
δ
−→
Ni . (2.93)

Nevertheless, the function Fi(x) to search the largest gradient is different in
the present case. The interface between brain and cerebellum has lower gray
value than both structures. Therefore, the function is defined as: Fi(x) =∥∥∥−→Ni · ∇I(x)

∥∥∥.
The external force applied to the attached vertices P att

i is designed to
ensure that these vertices move on the skull mesh surface. Therefore the
target point is computed as:

xtargeti = P att
i + min

(∥∥∥Ci − P att
i

∥∥∥ , dlim) Ci − P att
i

‖Ci − P att
i ‖

, (2.94)

where Ci is the closest point to P att
i on the surface ofMS, and dlim = 4mm.

is a threshold distance to restrict the force applied. The external force is
computed using the target points as explained in section 2.1.4 (Eq. 2.34).

After deformation, MT is joined to the skull meshMS. To join the two
meshes,MT is transformed into its dual triangulation (sec. 2.2). Next, the free
borders ofMT are stretched in the −→Mi direction to intersect both meshes. The
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intersection points are searched [Lo 2005] and the zone is remeshed. Finally,
the part ofMT which is outside the skull surface is discarded. The result of
this union is the triangle mesh MST . Figure 2.36 shows the joining process.
The mesh MST is used in the deformation of the falx mesh MF .

(a) (b) (c)

Figure 2.36: Joining process of two meshes, using to join the open meshes of the model.
(a) Open mesh that has its border near the surface defined by another mesh. (b) The
open mesh’s border is stretched, and both meshes intersect. (c) The intersection points are
computed and the zone is remeshed. The result is a new mesh which is the union of the two
previous meshes. After remeshing, the part of the open mesh that lies beyond the other
mesh can be discarded.

2.3.7.2 Falx Mesh Deformation

After the tentorium mesh deformation, the falx meshMF is deformed. This
mesh is the second open mesh and its attached vertices must lie in the surface
of the meshMST formed by the union of the skull meshMS and tentorium
meshMT . Similar to the previous case, some parts ofMF may intersectMST ,
because the deformation. To correct this problem, MF is transformed into
a triangulation (sec. 2.2), the intersection with MST is computed [Lo 2005],
and the outer extension ofMF is discarded. After cuttingMF , the mesh is
shifted back into a simplex mesh, in order to be deformed.

The falx cerebri is joined with two structures: the inner skull surface and
the tentorium cerebelli. Therefore, the attached vertices P att

i ofMF lie in both
junctions. The free vertices lie between the two cerebral hemispheres, around
the corpus callosum. To differentiate between free and attached vertices, a
similar approach to that used for the tentorium mesh is utilized. The distances
between the border vertices in MF and the surface of MST are computed.
First, the free vertices are defined as the half of the edge vertices farthest
to MST . Next, the largest section of the mesh border with consecutive free
vertices is found, and all the vertices that are not in this section are considered
attached vertices. This definition of the vertices must be refined in the limits
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of the attached segment. In the more frontal limit, the mesh will be folded
if some vertices are pushed toward the surface of MST . To avoid this fold,
the same technique used in the tentorium mesh is employed. Starting in
anterior direction from the center of the attached section, it is searched the
first vertex Pant where the expression (2.90) is satisfied. Pant is the anterior
limit of the attached border segment. In the posterior limit of the attached
segment the vertices lie in the tentorium surface, and the last vertex must
lie in the border of the tentorium mesh (Fig. 2.34(b)). To define the best
vertex to be attached to the mesh, the distances between vertices P att

i , and
the surface and border of the tentorium are computed. Let Ci be the closest
point to P att

i on the surface of MST , and Si the closest point to P att
i in the

border ofMST (Fig. 2.37(a)). Starting in anterior direction from the center
of the attached section, it is searched the first border vertex Ppost at which
the following expression is satisfied:

‖Ci − Si‖ < dPlim , (2.95)
where dPlim is a threshold distance empirically defined as 1mm. Note that Ci
and Si are not vertices, they are points of the surface and on the border of
MST ; therefore, they are searched by computing distances between vertices
P att
i and the surfaces or edges of the triangles that formMST . Vertex Ppost is

the posterior limit of the attached border segment. All vertices between Pant
and Ppost are defined as attached vertices P att

i .
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Figure 2.37: (a) Scheme of the attached vertices P atti selection in the falx mesh. The upper
part of the tentorium cerebelli is shown. This area is marked with a rectangular frame
in (b). In the example, the first point Pi that satisfies equation (2.95) is P2. Therefore P2
is considered as Ppost. The mesh border is divided into two segments by Pant and Ppost.
(b) Falx cerebri mesh with vertices P atti highlighted.

The internal force −−→Finti applied to the vertices in the mesh surface is com-
puted as explained in the section 2.1.3, and for the vertices in the mesh border
as explained in section 2.1.3.1.
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The external force −−→Fexti for the surface and border vertices is computed
in the same way as for the tentorium mesh (sec 2.3.7.1). Nevertheless, the
external force applied to Ppost has a small difference. Ppost is attached to
the tentorium border (Fig. 2.34(b)), therefore, the target point of Ppost is
computed as:

xtargeti = Ppost + min (‖Si − Ppost‖ , dlim) Si − Ppost
‖Si − Ppost‖

. (2.96)

Figure 2.38(a) shows the deformed falx mesh, MF , with the tentorium
mesh in an MRI image. After deformation, MF is joined toMST using the
same technique employed for the tentorium mesh (Figure 2.36). The result is
a meshMSTF which includes the skull, tentorium cerebelli and falx cerebri.
These meshes must be joined because both membranes are attached to the
skull. Figure 2.38(b) shows the deformed falx mesh inside the mesh MST .
Figures 2.38(c) and (d) show the meshMSTF .

(a) (b)

(c) (d)

Figure 2.38: (a) Tentorium and falx mesh deformed in an MRI image. (b) Falx mesh
deformed inside the meshMST (green). MeshMST is cut to allow visualization. (c) Falx
mesh transformed into a triangulation and joined withMST . (d) Same mesh from another
point of view.
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2.3.8 Final Mesh
After all meshes have been deformed, a final mesh is built combining all the
surfaces. The cortex mesh MC and ventricles mesh MV are transformed
into their dual triangulations (sec. 2.2); and then they are joined withMSTF .
The intersection points between MC and other meshes are computed and
the zone is remeshed [Lo 2005]. In this way, the final model is a complex
mesh that includes all relevant anatomical structures for mechanical modeling.
Moreover, there are no intersecting faces and a 3D meshing algorithm can be
used to obtain a volumetric mesh suitable for finite element modeling. One
may notice that each mesh is labelled separately, that will help in the further
definition of specific border conditions in the simulation. Figure 2.39 shows
the deformed final mesh.

Figure 2.39: Final deformed mesh. The cortex and ventricle meshes are transformed into
their dual triangulations and then are joined with the MSTF mesh. The intersections
between the cortex mesh and MSTF are computed and remeshed. This final mesh is
suitable to obtain a volumetric mesh using a meshing algorithm. Then, the volumetric
mesh can be used for 3D finite element modeling.

Evaluations of each step of the method explained in this chapter are pre-
sented in the next chapter 3.
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In this chapter, the developed method is assessed. First, the online
databases, indices to measure the performance, and methods used for com-
parison are introduced in section 3.1. Then, results for the segmentation are
shown in section 3.2. The segmentation of each anatomical structure is eval-
uated separately: cortex (sec. 3.2.1), skull (sec. 3.2.2), ventricles (sec. 3.2.3)
and membranes (sec. 3.2.4). Finally, the suitability of the proposed method
to be used in mechanical modeling is evaluated by constructing a FE mechan-
ical model (sec. 3.3). The FE model is built using a tetrahedral mesh, as
explained in section 3.3.1, and in section 3.3.2, we present how we introduced
mechanical properties. The model is subjected to an acceleration of gravity,
and the importance of the internal membranes of the brain on the deformation
is evaluated. The deformation results are shown in section 3.3.3. Finally, a
study of the model mechanical behavior when the mechanical properties of
the tissue are changed is presented en section 3.3.4.
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3.1 Databases and Performance Measure-
ments

To evaluate the performance of the proposed method, databases available
online were used. By using these commonly used databases, it is possible to
compare the method with other ones found in the literature. For the same
reason, the most common performance indices were used in this assessment.

T1W MRI Online Databases. A review of online databases, used for the
evaluation of our segmentation method, follows:

• 20 simulated T1W MR images from the BrainWeb web-
site [Cocosco 1997, Aubert-Broche 2006] (Fig. 3.1(a)), with 1 mm
isotropic voxel size. This database includes Ground Truth segmenta-
tions available for 12 tissues, including GM, WM and CSF (Fig. 3.1(b)).
Table 3.1 shows those labels.

Table 3.1: BrainWeb Labels of Ground Truth segmentations.

0=Background 6=Muscle/Skin
1=CSF 7=Skull
2=Gray Matter 8=Vessels
3=White Matter 9=Around fat
4=Fat 10 =Dura matter
5=Muscle 11=Bone marrow

• 18 real T1W MR images (Fig. 3.1(c)) from the Internet Brain Segmenta-
tion Repository (IBSR) [Center for Morphometric Analysis 1995], slice
thickness 1.5 mm. This database has two different types of available
Ground Truth segmentations. The first one is a manual segmentation
of three types of tissues (Fig. 3.1(d)): GM, WM and CSF. The second
one is a manual segmentation of 84 brain structures (Fig. 3.1(e)).

• 40 real T1W MR images from the Segmentation Validation Engine
(SVE) website, with 1.5 mm slice thickness and in-plane voxel resolu-
tion of 0.86 mm (38 subjects) or 0.78 mm (2 subjects) [Shattuck 2009].
No Ground Truth segmentations are available for this data set. How-
ever, segmentation masks can be sent to the website for performing an
online comparison with manually edited brain mask volumes.
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(a) (b)

(c) (d) (e)

Figure 3.1: Examples of images from the BrainWeb and IBSR databases. (a) MRI image of
the BrainWeb database. (b) Ground Truth segmentations of 11 tissue types available in the
BrainWeb database. (c) MRI image of the IBSR databse. (d) Ground truth segmentations
of GM, WM and CSF available in IBSR database. (e) Ground Truth segmentations of 84
structures available in IBSR database.

The above databases were segmented by our method using the parameters
shown in Table 3.2. Then, the segmentation of each structure was evaluated
independently: cortical surface, skull, ventricles, tentorium cerebelli, falx cere-
bri. Nevertheless, the way to evaluate the segmentation of closed and open
meshes is different, as explained in the following sections.

3.1.1 Evaluation of Closed Meshes Segmentation

As explained above, the segmentation of each structure has been evaluated
independently, by using the databases presented in the last section. The closed
meshes were evaluated using volumetric measures (Dice, Jaccard, Sensitivity,
Specificity) explained below in this section. To use these volumetric measures,
voxels in the image must be classified as belonging or not to the segmented
structure. Therefore, a binary mask of each structure was built using the
final mesh after segmentation. The masks were built by classifying the voxels
that lie inside a particular closed mesh as part of the structure represented by
the mesh. However, the case of the cortex mesh is special. As explained in
section 1.1.1.3, the segmentation obtained with the cortex mesh can be seen
as a Skull Stripping process. Therefore, the segmentation of this structure has
been compared with the most popular Skull Stripping methods, and the binary
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Table 3.2: Parameters used to segment the databases. The anatomical structures and the
equations where the parameters are used are indicated.

Cortex def. 1 Eq. Cortex def. 2 and def. 3 Eq.
λ = 0.4 (2.26) λ = 0.4 (2.26)
γ = 0.65 (2.25) γ = 0.65 (2.25)
δ = 0.5 (2.33) δ = 0.5 (2.33), (2.75)
l = 15 (2.33) l = 8, (2.33)
DF = 10. (2.35) DF = 1. (2.35)

S = 2 (2.29)
dmax = 5 (2.76)
dmin = 4 (2.72)
dmean = 2 (2.73)
dp = 0.5 (2.74),(2.77)
D = 0.3 (2.75)

Skull Eq. Ventricle Eq. Tentorium Eq. Falx Eq.
λ = 0.4 (2.26) λ = 0.4 (2.26) λ = 0.4 (2.26) λ = 0.4 (2.26)
γ = 0.65 (2.25) γ = 0.65 (2.25) γ = 0.9 (2.25) γ = 0.9 (2.25)
δs = 0.5 (2.84) δ = 0.5 (2.33) δ = 0.5 (2.33) δ = 0.5 (2.33)

(2.86) (2.89) (2.36) (2.36)
(2.93) (2.93)

ls = 40 (2.84) l = 8 (2.33) l = 4 (2.33) l = 4 (2.33)
(2.36) (2.36)

DF = 1 (2.35) DF = 1 (2.35) DF = 2 (2.35) DF = 2 (2.35)
S = 3 (2.29) S = 2 (2.29) ρ∗i = 0. (2.28) ρ∗i = 0. (2.28)

(2.32) (2.32)
D = 0.3 (2.86) dp = 0.2 (2.88) ψ∗i = 0. (2.32) ψ∗i = 0. (2.32)

mask has been constructed as explained in section 2.3.4.5. The volumetric
measures used in the evaluations are explained in what follows.

Volumetric measures for evaluation. To measure the segmentation per-
formance of the closed meshes, the two volumetric measures most used in
the literature were employed: the Jaccard similarity [Jaccard 1912] and the
Dice coefficient [Dice 1945]. These volumetric measures can be computed
using the concepts of True Positive (TP), False Positive (FP), True Negative
(TN) and False Negative (FN). In our case the TP and FP are defined as the
number of voxels correctly and incorrectly classified as part of the segmented
structure, respectively. Similarly, TN and FN are defined as the number of
voxels correctly and incorrectly classified as non-part of the structure, respec-
tively. The Jaccard similarity, also termed the Tanimoto coefficient, measures
the similarity of two sets S1, S2, as the ratio of the size of their intersection
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divided by the size of their union:

J(S1, S2) = |S1 ∩ S2|
|S1 ∪ S2|

= TP

TP + FP + FN
. (3.1)

The Dice coefficient measures the similarity of two sets S1, S2, as the ratio of
twice the size of their intersection divided by the sum of their sizes:

κ(S1, S2) = 2 |S1 ∩ S2|
|S1|+ |S2|

= 2TP
2TP + FP + FN

. (3.2)

The Dice coefficient is related to the Jaccard similarity by:

κ = 2J
J + 1 . (3.3)

The sensitivity and specificity percentages were also computed, which show
the percentage of brain and non-brain voxels recognized respectively:

Sensitivity = TP

TP + FN
,

Specificity = TN

TN + FP
. (3.4)

Methods for comparison. As mentioned above, the cortex mesh segmen-
tation has been compared with the most popular skull stripping methods.
These methods are:

The Brain Extraction Tool (BET) [Smith 2002] that segments the brain
using deformable models. The image is binarized using estimations of
the minimum and maximum intensities of the brain. Next, the cen-
ter of the head is estimated in the binarized image and the deformable
model is initialized with a sphere shape in this position. The model
is deformed using locally adaptive forces. BET v2.1 is free and avail-
able in the FMRIB FSL software library [FMRIB ]. The recommended
default parameters were used for the evaluation: fractional intensity
threshold = 0.5, threshold gradient = 0. BET2 also performs skull
segmentation [Jenkinson 2005, Pechaud 2006]. Although better skull
segmentations can be obtained using registered T1 and T2-weighted im-
ages, the algorithm also works using only a T1-weighted image. To find
the inner skull surface, a set of points are detected in normals profiles
from the first segmentation. Then, the deformed model is again adapted
according to forces computed using the set of points. Because BET also
performs this skull segmentation, it was used as a comparison to our
technique.
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The Brain Surface Extractor (BSE) [Shattuck 2001] uses Marr-Hildreth
edge detection to identify the border of the brain. Before applying them,
anisotropic diffusion filtering [Perona 1990] is used to de-noise the im-
age. This spatially adaptive filter permit to smooth noisy regions while
preserving edge boundaries. After applying the edge detection, the im-
age is binarized using the computed edges, and the brain is found using
morphological operators. Binary erosion is applied to separate the ele-
ments and a 3D connected component analysis is carried out to identify
the brain. Next, a morphological dilation is applied to the selected ele-
ment (brain) to revert the effects of the erosion, and a closing operation
is performed to close the small holes that may exist in the volume. BSE
is freely available as part of the BrainSuite [BrainSuite ] from the Labo-
ratory of Neuro Imaging (LONI) at UCLA. Two sets of parameters were
used in our evaluations: the default parameters (diffusion iterations = 3,
diffusion constant = 25, edge constant = 0.64, erosion size = 1), and the
parameters suggested in [Hartley 2006, Sadananthan 2010] (diffusion it-
erations = 3, diffusion constant = 35, edge constant = 0.62, erosion
size = 2).

The Hybrid Watershed Algorithm (HWA) [Ségonne 2004] is a hybrid
method that combines a watershed algorithm [Hahn 2000], and a de-
formable surface model [Dale 1999], which includes shape restrictions
based on an atlas. First, a watershed algorithm that uses the concept
of pre-flooding (the connectivity path between two points can contain
a lower intensity than the darker of the two points up to a maximum
difference) is used to segment the brain. Then, the deformable model is
initialized with a balloon shape using this segmentation. A first defor-
mation of the model is carried out using the watershed segmentation and
global parameter estimations. Next, an atlas is used to verify the result-
ing surface and correct it if there are errors. Finally, a deformation using
estimations of local parameters is performed to find the brain borders.
HWA v5 is included in the FreeSurfer software package [FreeSurfer ]
developed at the Martinos Center for Biomedical Imaging. The de-
fault parameters and the “-atlas” option to use basic atlas information
to correct the result of the deformations, were used in our tests. The
default parameters are: weight for the atlas = 0.85; probability of merg-
ing = 0.32; pre-flooding height = 10; seed points using atlas information;
template deforming using atlas information; use of pre-weighting for the
template deformation.

The method used to evaluate the segmentation of the open meshes is in-
troduced in the next section.
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3.1.2 Evaluation of Open Meshes Segmentation
The volumetric measures explained in the previous section can not be used to
evaluate the segmentation of open meshes, because the segmented structures
are membranes. Moreover, the segmented internal membranes of the brain are
not explicitly marked in the ground truths of the used databases. Nevertheless,
their location can be deduced by using the segmentation of other structures.
Therefore, to measure the segmentation performance of the open meshes, we
have computed the distance between the deformed mesh and the position
where the corresponding structure is expected to be.

It can be assumed that the tentorium cerebelli lies between the cerebel-
lum and the brain. Similarly, the falx cerebri is assumed to lie between
both brain hemispheres. In the IBSR, the brain hemispheres and cerebel-
lum can be identified using the available ground truth segmentations of 84
structures (Fig. 3.1(e)) in both brain hemispheres. Therefore, the IBSR is the
only one among the used databases that can be employed to evaluate the seg-
mentation of the membranes. The method to compute the distance between
the deformed mesh and the estimate position of the membrane in the ground
truth is explained in the following.

Distance Computation. To compute the distance between the deformed
mesh and the estimated position of the membrane according to the ground
truth segmentations, a sampling in profiles normal to the mesh was used. The
normal profiles were defined by equation (2.33), in the same way as for the
segmentation in section 2.3.7. The sampling distance was δ = 0.25, and the
nearest neighbor sampling method was used. Figure 3.2 shows a scheme of
the sampling in the normal profile of a vertex Pi, and two voxels with centers
VA and VB belonging to different structures A and B, respectively. The last
sampling point inside the structure A is represented by xi,A, and the first
sampling point inside the structure B is xi,B. Thus, the distance derri from a
vertex Pi of the deformed mesh to the interface between structures is defined
as:

derri = ‖Pi − xerri ‖ , (3.5)
where

xerri =xi,A + (xi,B − xi,A)

(
VA+VB

2 − xi,A
)
· ê

(xi,B − xi,A) · ê ,

ê = VB − VA
‖VB − VA‖

. (3.6)

The structures in the ground truth segmentations of IBSR database were
separated as belonging to: left brain hemisphere, right brain hemisphere,
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Figure 3.2: Scheme of the sampling points in a normal profile to find the midpoint between
two structures A and B. The dashed line represents the normal profile, and xi,A, xi,B , are
two sampling points in it. The values of the sampling points are computed using the nearest
neighbor sampling method. The last sampling point inside the structure A is represented by
xi,A, and the first sampling point inside the structure B by xi,B . VA and VB are the centers
of voxels belonging to structures A and B, respectively. The point in the normal profile
considered as the position of the membrane between A and B is xerri , which is computed
by (3.6).

and cerebellum. Then, the above method was used to measure the distance
between the mesh representing the falx and the interface between both hemi-
spheres. In the same way, the distance between the mesh representing the ten-
torium and the interface between the brain and the cerebellum was measured.
Finally, a weighted mean distance was computed for every mesh. The distance
derri computed for every vertex Pi of the simplex mesh was weighted using the
radius ri of the circle defined by the neighbors of Pi (Fig. 2.2, Eq. (2.7)). This
weighting was used because the surface of this circle is a good estimation of
the importance the vertex Pi has withing the mesh. Therefore the weighted
mean distance is:

WMD =
N∑
i=1

derri
r2
i∑N

j=1 r
2
j

, (3.7)

where N is the number of vertices in the mesh.
The results of the segmentations of each structure in the corresponding

databases are presented in the next section.

3.2 Segmentation Results

In this section, the segmentation results of the method are presented. The
used databases and performance measurements were introduced in section 3.1.
The segmentation of each structure is evaluated independently: cortical sur-
face (sec. 3.2.1), skull (sec. 3.2.2), ventricles (sec. 3.2.3), and membranes
(sec. 3.2.4).



3.2. Segmentation Results 105

3.2.1 Cortex Segmentation

As was explained in section 1.1.1.3, the segmentation obtained with the cortex
mesh can be seen as a Skull Stripping process. Therefore, this segmentation
is compared to the most popular skull stripping methods, and using the most
used publicity available databases (BrainWeb, IBSR, SVE) (sec. 3.1.1). To
evaluate the cortex segmentation in the IBSR and BrainWeb databases, the
ground truth was the union of GM and WM using the available segmenta-
tions. Because the IBSR database provides 2 types of segmentations, the
one based on tissues (GM, WM and CSF) was used (Fig. 3.1(d)). Tables 3.3
and 3.4 show the performance of the different segmentation methods using
the BrainWeb and IBSR databases, respectively. In the SVE database, the
ground truth is not available, but the segmentation can be evaluated by an in-
dependent online assessment that provides all used volumetric measurements.
Additionally, the performance of the other methods is available online for
this database. Table 3.5 shows the performance of the methods in the SVE
database. In addition to the segmentations using the methods default param-
eters, segmentation performances with different parameters can be found on
the SVE website. The segmentation results with better performance for each
method are also shown in Table 3.5 marked with an *.

Table 3.3: Performance Comparison among Different Methods using the BrainWeb
database [Cocosco 1997, Aubert-Broche 2006]. The best results are shown in bold.

Method Jaccard Dice Sensitivity Specificity
mean (SD) mean (SD) mean (SD) mean (SD)

BET2.1 0.812 (0.020) 0.896 (0.012) 0.997 (0.002) 0.964 (0.004)
BSE (def.) 0.823 (0.091) 0.900 (0.061) 0.995 (0.003) 0.964 (0.027)
BSE (Hard.) 0.875 (0.049) 0.932 (0.031) 0.991 (0.004) 0.979 (0.012)
HWA 0.685 (0.017) 0.813 (0.012) 1.000 (0.001) 0.928 (0.005)
Our method 0.904 (0.011) 0.950 (0.006) 0.990 (0.003) 0.985 (0.002)

Table 3.4: Performance Comparison among Different Methods using the IBSR
database [Center for Morphometric Analysis 1995]. The best results are shown in bold.

Method Jaccard Dice Sensitivity Specificity
mean (SD) mean (SD) mean (SD) mean (SD)

BET2.1 0.882 (0.092) 0.935 (0.060) 0.985 (0.012) 0.982 (0.019)
BSE (def.) 0.749 (0.152) 0.848 (0.101) 0.988 (0.011) 0.941 (0.049)
BSE (Hard.) 0.848 (0.065) 0.916 (0.038) 0.945 (0.072) 0.984 (0.014)
HWA 0.814 (0.036) 0.897 (0.022) 1.000 (0.000) 0.966 (0.012)
Our method 0.902 (0.030) 0.948 (0.017) 0.993 (0.009) 0.984 (0.010)
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Table 3.5: Performance Comparison among Different Methods using the SVE
database [Shattuck 2009]. The results marked with * are the best on the website for each
method, and the parameters used for these segmentations are given below the table. Best
results are shown in bold.

Method Jaccard Dice Sensitivity Specificity
mean (SD) mean (SD) mean (SD) mean (SD)

BETv2.1 0.892 (0.054) 0.942 (0.032) 0.986 (0.006) 0.980 (0.014)
BETv2.1* 0.940 (0.009) 0.969 (0.005) 0.962 (0.012) 0.996 (0.001)
BSEv08a (def.) 0.596 (0.207) 0.727 (0.150) 0.980 (0,014) 0.854 (0.094)
BSEv08b* 0.943 (0.028) 0.970 (0.016) 0.975 (0.033) 0.994 (0.002)
HWA3 0.851 (0.019) 0.919 (0.011) 0.999 (0.000) 0.969 (0.006)
HWA3* 0.854 (0.018) 0.921 (0.011) 0.999 (0.000) 0.969 (0.005)
Our method 0.946 (0.010) 0.972 (0.005) 0.987 (0.006) 0.992 (0.003)
parameters for BSEv08b*: -n 5 -d 15 -s 0.65 -p –noneck
parameters for BETv2.1*: -B
parameters for HWA3*: -less

Figures 3.3 and 3.4 show a comparison among different segmentations of
an IBSR and BrainWeb image, respectively. Figure 3.4 also includes an im-
age of the ground truth segmentation, and a zoom of the cortex for better
comparison. The HWA has a low specificity for both databases (see Table 3.4
and 3.5), nevertheless, the specificity of BSE is lower for the IBSR database
when the default parameters are used (Fig. 3.3(d)). Also, the specificity of
BET is low for the BrainWeb database (Fig. 3.4(d)) obtaining a low overall
performance even though its sensitivity is good. The best performance was
obtained by our method (Figs 3.3(f) and 3.4(g)), followed by BET2.1 for the
IBSR database; and BSE.0.8b and BETv2.1 for the SVE database.

The BrainWeb database requires a special comment about the sensitivity
index. The ground truths of the BrainWeb database are digital phantoms
to synthesize MR images instead of real segmentation of the brain structures.
For the above reason, some tissue of other structures, such as meningeal mem-
branes, is also included in the ground truth for the skull stripping evaluation
if all the white and gray matter in the digital phantoms is considered as brain
parenchyma. Therefore, a method with sensitivity close to 1 in this database
means that there are many false positives in the segmentation. These are the
cases of the methods shown in Table 3.3 which have a high sensitivity but a
low specificity.

Figure 3.5 is provided by the SVE website and show the projections of FN
and FP of the best result obtained by each method for the SVE database
(methods marked with an * in Table 3.5). In the same way as in the
other databases, the HWA has the lowest specificity with a high number
of FP (Fig. 3.5(b)). Conversely, the HWA has the highest sensitivity with
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(a) Original (b) HWA (c) BET

(d) BSE (default) (e) BSE (Hartley) (f) Our method

Figure 3.3: Comparison among different automatic segmentations of an image from the
IBSR database (a). The BSE method has the lowest specificity when the default parameters
are used (d). The HWA (b) also has a low specificity but its sensitivity is better, obtaining
better overall performance. Although the performance of BSE rises considerably when
Hartley’s parameters are used (e), does not exceed the BET performance (c). Nevertheless,
our method (f) has better performance than BET.

very few FN (Fig. 3.5(a)). Nevertheless, it has the worst overall performance
(Jaccard and Dice in Table 3.5). The best performance is obtained by our
method (Figs. 3.5(g) and 3.5(h)).

An analysis of variance (ANOVA) and post-hoc comparisons were used
to verify the statistical significance (p < 0.05) of the differences among the
results (Jaccard and Dice) of our method and those of others. The Games-
Howell method, that assumes that population variances may be different, was
used for the post-hoc comparisons. Using the union of the results obtained in
the IBSR and BrainWeb databases for comparison, our method exhibits a sta-
tistically significant difference with respect to the others. Also, the difference
is statistically significant if the segmentation results in the IBSR and Brain-
Web databases are used together with the results obtained with the default
parameters in the SVE database. The difference is not statistically significant
with only the BSEv0.8b* method if all the results for the SVE database are
taken into account.

We compared the results of our method to those of recent methods in
the literature that use the same publicly available databases. In [Park 2009],
a region growing algorithms is presented, which obtains better overall re-
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(a) Model

(b) Original (c) HWA

(d) BET (e) BSE (default)

(f) BSE (Hartley) (g) Our method

Figure 3.4: Comparison among different automatic segmentations of an image from the
BrainWeb database (b). (a) Shows the ground truth segmentation with a marked zoom
rectangular area. It can be seen that the HWA (c) is the method that leaves most non-
brain tissue, mainly CSF. For this reason the HWA has the lowest specificity among the
methods. The HWA has the highest sensitivity, because most of the brain tissue is included
in the segmentation. Nevertheless, its overall performance (Jaccard and Dice) is lower than
that of the other methods. The best performance was obtained by our method (g), which
also has the highest specificity, followed by the BSE using Hartley’s parameters.

sults than our method in the IBSR database: Jaccard index (J)=0.915
and Dice coefficient (κ)=0.955. Besides, its False Negative Rate (FNR
= FN/(TP + FN + FP )) is 0.0620 and False Positive Rate (FPR =
FP/(TP + FN + FP )) is 0.0229. The FNR and FPR of our method in
the IBSR is 0.0079 and 0.087 respectively. Therefore, this method has more
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HWA3*
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BETv2.1*

(c) (d)

BSEv0.8b*
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Figure 3.5: Projections of the FN (left) and FP (right) provided by the SVE web-
site [Shattuck 2009]. The FN and FP projections of the different methods best segmen-
tation results are shown (see Table 3.5). The methods shown in this figure are: HWA3*,
BSEv0.8b*, BSEv0.8b*, and our method. The color scale represents the sum of the FN or
FP along the direction orthogonal to the figure plane.

FN and less FP than our method. The above mentioned difference in the
indices could be relativized to some extent because, as stated by many au-
thors, it is more important to preserve the brain tissue instead of removing
part of the CSF. Another method that also uses the IBSR database is the
Graph Cuts Skull Stripping (GCUT) presented in [Sadananthan 2010], which
obtains: J=0.84 and κ=0.91. The Robust, Learning-Based Brain Extraction
system (ROBEX) introduced in [Iglesias 2011] is evaluated using the SVE. The
indices obtained by ROBEX are: κ=96.6, Sensitivity=95.6, Specificity=97.7.
Another method evaluated in the SVE database is the Brain Extraction based
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on nonlocal Segmentation Technique (BeaST) [Eskildsen 2012], obtaining κ=
0.9781. The performance of this method is better than that of ours. Never-
theless an advantage of our method is that no templates are required. The
Multi-Atlas Propagation and Segmentation (MAPS) [Leung 2011] is also eval-
uated in the SVE database, obtaining J=0.955. The performance of the above
mentioned method is also better than that of our method, nevertheless re-
quires a template library and a long computational time (19 hrs). Compared
to the above mentioned methods, our method provides an accurate segmen-
tation without removing brain tissue. On the other hand, the methods with
a higher performance than our method, such as BeaST and MAPS, are based
on comparisons with template libraries and requires a large amount of compu-
tation, and obviously need suitable templates for the segmentation. Besides,
our method is mainly based on deformable models and only uses a simple
comparison with an atlas in the pre-segmentation. There are other methods
published with results on non-public databases which can not be compared.
Moreover, some authors use different performance measures such as Hauss-
dorff distance or mean symmetric surface-to-surface distance [Iglesias 2011].

3.2.2 Skull Segmentation
Not all databases can be used to evaluate the skull segmentation, because
IBSR and SVE databases provide only with brain segmentations. Neverthe-
less, the BrainWeb database propose ground truth segmentations of the whole
head, including skull and scalp. The union of GM, WM and CSF was consid-
ered as the skull ground truth segmentation. Table 3.6 shows the performance
of BET and our skull segmentation method. Our method achieved the best
performance in all indices but the sensitivity. Figure 3.6 shows a graph of
Jaccard and Dice indices along all the subjects in BrainWeb database, and
Figure 3.7 shows a comparison between a skull segmentation performed by
BET and our method. To verify the statistical significance (p < 0.001) of the
difference between the results, a paired t-test has been performed upon the
four indices employed.

Table 3.6: Performance Comparison among BET and our skull segmentation method using
the BrainWeb database [Cocosco 1997, Aubert-Broche 2006]. The best results are shown
in bold.

Method Jaccard Dice Sensitivity Specificity
mean (SD) mean (SD) mean (SD) mean (SD)

BET2.1 0.935 (0.016) 0.966 (0.009) 0.991 (0.003) 0.988 (0.004)
Our method 0.945 (0.015) 0.972 (0.008) 0.983 (0.008) 0.992 (0.003)
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Figure 3.6: Graph of Jaccard and Dice indices of the Skull segmentation along all the
subjects in BrainWeb database. The BET and our method are shown.

(a)

(b)

Figure 3.7: Comparison between BET (a) and our (b) skull segmentation of an image of
the BrainWeb database. Our method has the best performance in all the indices except the
sensitivity (see Table 3.6).
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3.2.3 Ventricles Segmentation

Among IBSR, SVE and BrainWeb databases, only IBSR has available ven-
tricle ground truth segmentations. Therefore, the manual segmentation of 84
structures in the IBSR has been used (Fig. 3.1(e)), and the structures corre-
sponding to the ventricles in both hemispheres have been selected as ground
truth. Table 3.7 shows the performance of the ventricle segmentation. Fig-
ure 3.8 shows a graph of Jaccard and Dice indices along all the subjects in
IBSR database. Figure 3.9 shows an example of ventricle segmentation.

The performance of the ventricle segmentation is lower than those obtained
by the other open meshes due to the low sensitivity. The low sensitivity
reflects the occurrence of false negatives. This false negatives occur because
the ventricle mesh does not have as high resolution to capture every detail
of the ventricular system, and does not include all its structures either. For
example, the ventricle mesh does not include the cerebral aqueduct, the central
canal (Appx. B.5.1) or other channels that are included in the ground truth
of the IBSR database. These anatomical details were not included to avoid
adding complexity to the mesh and because they are not relevant for the
mechanical modeling of the brain.

Table 3.7: Performance of the ventricle segmentation in the IBSR database.

Method Jaccard Dice Sensitivity Specificity
mean (SD) mean (SD) mean (SD) mean (SD)

Our method 0.623 (0.065) 0.766 (0.050) 0.757 (0.062) 1.000 (0.000)
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subject

Figure 3.8: Graph of Jaccard and Dice indices of the ventricle segmentation along all the
subjects in IBSR database.
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Figure 3.9: Example of a ventricle segmentation with our method in the IBSR database.

3.2.4 Tentorium Cerebelli and Falx Cerebri Segmenta-
tion

As explained in section 3.1.2, the distance between the estimated position of
the membranes in the ground truth segmentations of the IBSR, and the de-
formed meshes has been used to evaluate the segmentation of tentorium cere-
belli and falx cerebri. Table 3.8 shows the weighted mean distance (Eq. 3.7)
achieved by the segmentations, and the graph in Figure 3.10 shows the dis-
tances along all subjects in the database. Figure 3.11 shows an example of
deformed meshes colored according to their distance to the ground truth. The
falx mesh obtained better performance in all segmentations, probably because
the contrast in the interface between the cerebral hemispheres is usually larger
than between the brain and cerebellum.

Table 3.8: Performance of the tentorium cerebelli and falx cerebri segmentations in the
IBSR database.

Structure Weighted Mean Distance (SD) (Eq. 3.7)
[mm]

Tentorium Cerebelli 1.673 (0.758)
Falx Cerebri 0.745 (0.229)
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Figure 3.10: Graph of the weighted mean distances between all ground truth segmentations
in the IBSR and both open meshes: falx cerebri and tentorium cerebelli.

(a) (b)

Figure 3.11: Meshes of the internal membranes of the brain colored according to their
distance to the ground truth. (a) Tentorium cerebelli mesh. (b) Falx cerebri mesh.

3.3 Mechanical Deformation
In order to evaluate the usability of the geometric model in mechanical defor-
mation, we used Abaqus [SIMULA ] that is a suite of software applications for
finite element analysis and computer-aided engineering. Our anatomical brain
model must first be transformed into a volumetric mesh to be used within a
finite element method. Tetgen [Si 2006] is a software that allows to generate
tetrahedral meshes using a PLC (Piecewice Linear Complex) as input. There-
fore, this tool was used to generate the volumetric mesh, as explained in the
following section.

3.3.1 Generation of a Volumetric Mesh
The FE method is a technique for finding solutions of partial differential equa-
tions, such as those employed in mechanical modeling. It is based on dividing
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the problem domain into simple elements where the differential equations
are solved. Therefore, to create a FE model, it is first necessary to set the
domain definition. In our case, the domain is the spatial volume covered
by the anatomical model. To divide this domain, it is required to build
a volumetric mesh (mesh of tetrahedral, hexahedral, mix of volumetric el-
ements, etc...) which follows the surface meshes that represent our anatom-
ical model. There are many methods to generate volumetric meshes for FE
modeling [Yáñez 2009]. We have chosen to use the Tetgen software [Si 2006],
because it is free, open source, and provides good results. Tetgen generates
tetrahedral meshes using a PLC (Piecewice Linear Complex) as input. PLC
are sets of vertices, segments and facets. Facets are non-convex polygonal re-
gions with any number of sides, and may have holes, segments and vertices in
them. The elements of a PLC must be closed under intersection, i.e., the in-
tersection between elements must be part of these elements. For example, two
segments only can intersect at a common vertex. Moreover, the point set used
to define a facet must be coplanar. Any polyhedron is a PLC and, in particu-
lar, triangles meshes also are PCL. Therefore, Tetgen can be used to obtain a
tetrahedral mesh from our patient-specific anatomical model represented by
triangle meshes.

Each part of the segmentation is labelled when introduced into Tetgen:
skull, cortex, ventricles, falx cerebri and tentorium cerebelli. Two quality
measures can be used on Tetgen to ensure a good result: radius-edge ratio
and dihedral angle.

The radius-edge ratio is a quality measure proposed in [Miller 1995]. Let
R(t) be the radius of the sphere circumscribed to the tetrahedron t, and L(t)
the length of the shortest edge of t. The radius-edge ratio of t is:

Q(t) = R(t)
L(t) . (3.8)

The radius-edge ratio is small in well-shaped tetrahedra, and its minimum
is reached in the regular tetrahedron with equal length edges and circumcenter
laying at its barycenter. The radius-edge ratio of the regular tetrahedron
is Q =

√
6/4 ≈ 0.612. Conversely, the radius-edge ratio is large for most

of badly-shaped tetrahedra. Figures 3.12(a), (b) and (c) show examples of
badly-shaped tetrahedra and their radius-edge ratio. Nevertheless, a type of
badly-shaped tetrahedon called sliver which are very flat, have small radius-
edge ratio (Fig. 3.12(d)). Therefore, this quality measure is not proper for
this type of degenerate tetrahedron. The second quality measure provided
by Tetgen is a minimum internal dihedral angle. The dihedral angle of the
regular tetrahedron is around 70.53o. Using this measure can prevent the
occurrence of sliver in the tetrahedral mesh.
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(a) (b) (c) (d)

Figure 3.12: Examples of the radius-edge ratio Q of badly-shaped tetrahedra. The radius-
edge ratio is high for most badly-shaped tetrahedra except for the sliver (d). To prevent
the occurrence of slivers, another quality measure must be used, e.g., the dihedral angle.
(Source: [Si 2006]).

To built the tetrahedral mesh of our model, the maximum radius-edge ratio
was set to 1.4, and the minimum dihedral angle to 10o. Figure 3.13(a) shows
the surface triangle meshes used to build the tetrahedral mesh by Tetgen.
Figures 3.13(d), (e) and (f) show the tetrahedral mesh built by Tetgen. The
legend of color used in these meshes is shown in Figure 3.13(b) and (c). Four
different regions are identified in the model: Cerebral parenchyma, CSF in
subarachnoid space, CSF in lateral and third ventricles, and CSF in fourth
ventricle. The CSF in different compartments is actually connected by small
channels that allow its circulation. However, the level of details of these
channels is very high and our study is not focused on the CSF circulation.
Therefore, this channels are not included in the model, and the compartments
with CSF are considered separately. The effect of CSF circulation is taken into
account on the definition of the mechanical properties of the compartments.
The tetrahedral mesh has 70661 nodes, 392152 elements (tetrahedral) and
85438 faces to define surfaces.

The mechanical properties used to deform the mesh are presented in the
next section.

3.3.2 Integration of Mechanical Properties
The tetrahedral mesh built using Tetgen has been imported in Abaqus to
perform a finite element analysis, and the mechanical properties of the model
were defined as follows.

As discussed in section 1.1.1.1, the mechanical properties of the brain have
been measured in many ways and there are many models for the mechanical
modeling, nevertheless there is still no consensus. In this study, a linear
elastic model has been considered, and the tissues have been assumed to be
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Figure 3.13: (a) Surface meshes used in the Tetgen software to build a tetrahedral mesh
for finite element modeling. Meshes represent the anatomical structures segmented: Skull,
cortex, ventricles, tentorium cerebelli and falx cerebri. (b) Legend of the colors used in
the surfaces of (a). (d) Axial, (e) coronal and (f) axial cuts of the tetrahedral mesh build
using Tetgen. (c) Legend of the colors used in the figures of the tetrahedral mesh. The
tetrahedral mesh is divided into four compartments. One compartment represents the brain
parenchyma and the other three are different anatomical cavities with CSF. The tetrahedral
mesh contains 70661 nodes, 392152 elements (tetrahedra) and 85438 faces to define surfaces.

isotropic materials. In the literature, very different values of the Young’s
modulus (E [Pa]) and Poisson’s ratio (v) for the brain parenchyma have been
proposed, for example:
• E=2100, v=0.45 in [Miga 1999b, Dumpuri 2007, Garg 2010];

• E=1440, v=0.45 in [Schiavone 2009];

• or E=694, v=0.4 in [Clatz 2005b, Prastawa 2009].
To perform the first sequence of simulations, we have chosen values used in
many publications: E=2100, v=0.4.
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The CSF has mechanical properties similar to water. This behavior has
been approximated by assigning properties of a soft compressible elastic solid
and a low Poisson’s ratio to allow volume decrease [Kang 1997, Horgan 2003,
Wittek 2007] (Table 3.9). The Young’s modulus and Poisson’s ratio of the
CSF also have been defined using a wide range of values found in the litera-
ture, e.g.:

• E=12E+03, v=0.49 in [Belingardi 2005];

• or E=10, v=0.1 in [Wittek 2007].

Table 3.9: Mechanical properties of the tissues defined for modeling.

Anatomical Density Young’s modulus Poisson’s ratio
structure [Kg/m3] [Pa]
Brain parenchyma 1140 2.1E+03 0.4
CSF 1040 1E+03 0.3
Membranes1 1133 210E+03 0.45
Membranes2 1133 31.5E+06 0.45
1,2 Two different mechanical properties were used for the internal
membranes of the brain to demonstrate their role in the deformation.

The deformation is slow (no impact) and the head is closed in the present
experiment. Accordingly, the Young’s modulus of CSF was defined as about
half of the parenchyma value, and the Poisson’s ratio was set at 0.3 to simulate
some change in the volume.

The mechanical properties of the brain membranes also have a wide range
of values in the literature, e.g.:

• E=210E+03, v=0.45 in [Dumpuri 2007];

• E=2E+05 in [Clatz 2005b];

• E=2E+06 in [Prastawa 2009];

• E=31.5E+06, v=0.49 in [Horgan 2003, Belingardi 2005].

To demonstrate the role of brain membranes, three different simulations were
carried out using the mechanical properties shown in Table 3.9:

Simulation 1: The values of Table 3.9 were used, nevertheless, membranes
were not included. (Fig. 3.14).

Simulation 2: Membranes were included and the values shown in Table 3.9
Membranes1 were used. (Fig. 3.15).
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Simulation 3: Membranes were included using the values shown in Table 3.9
Membranes2. A higher rigidity was assigned to membranes in this
simulation to check whether it has any influence on the deformation.
(Fig. 3.16).

Boundary conditions were assigned to the vertices of the skull mesh surface.
These vertices were defined as pinned to prevent displacement and allow the
movement of the CSF elements that are in contact to the skull. The internal
membranes were modeled as structures with 0.5 mm of thickness embedded in
the brain parenchyma. These membranes are attached to the skull surface,
therefore boundary conditions were assigned to the vertices of the membranes
that lie on the skull surface. These vertices were defined as encastrated to
simulate attachment. The model was subjected to an acceleration of gravity
of 9.81m/s2 in a lateral direction. The results obtained after the mechanical
deformation are presented in the next section.

Nevertheless, to perform a better evaluation of the mechanical model of
the brain, real images acquired before and after deformation would be of
great help. For example, using corresponding preoperative image and post-
or intraoperative image, it should be possible to compute the deformation and
compare this deformation with that predicted by the model. Unfortunately,
because the inherent restrictions of a health system, to obtain these images
is not easy and until the end of this work, we have not been able to obtain
them. We hope to have more images in the future, in order to perform a more
complete assessment.

3.3.3 Results of the Mechanical Deformation
The three different simulations explained in section 3.3.2 were performed to
evaluate the importance of the internal membranes in the deformation. Fig-
ure 3.14 shows the simulation performed without taking into account the
internal membranes. Figures 3.15 and 3.16 show simulations considering the
internal membranes using two different values for the Young’s modulus. Ta-
ble 3.9 shows the used values: Membranes1 for the simulation in Figure 3.15;
Membranes2 for the simulation in Figure 3.16. To facilitate comparison, fig-
ures of the three simulations were colorized using the same color scale for the
deformation in millimeters (Figure 3.14(f)). Table 3.10 shows the maximum
deformation for each simulation.

As it is shown on the figures, the internal membranes reduce the amount of
deformation. Although the variation of the the maximum strain among simu-
lations is not very high (Table 3.10), the extent of the deformation is consid-
erably reduced by introducing the membranes in the model. Figures 3.16(a)
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Table 3.10: Maximum deformation in each simulation.

Simulation Max. deformation
[mm]

Sim. 1 6.257
Sim. 2 5.687
Sim. 3 5.745

and (b) clearly show that the tentorium cerebelli restricts brain movements,
decreasing the strain in the cerebellum. It seems that the tentorium has a
greater influence in the strain reductions, especially in the posterior central
part of the brain (Fig. 3.16(a)). This is due to the fact that the tentorium
cerebelli and the falx cerebri are joining there. Therefore, the geometric con-
figuration of the membranes leads to high resistance in this zone, that seems
realistic.

Figures 3.15(g),(h) and 3.16(g),(h) show that the falx cerebri suffers larger
deformation than the tentorium cerebelli. The central internal border of the
falx as the lowest resistance because it is a free border. Conversely, the pos-
terior border is attached to the tentorium which increases the resistance of
both tentorium and falx. It can also be noted that the presence of mem-
branes and their rigidity push the zone of largest deformation to an anterior
position. This movement becomes evident in the ventricle deformation. The
largest ventricle strain appears in the posterior part of the third ventricle
when membranes are not considered (Fig. 3.14(e)). When membranes are
taken into account (Fig. 3.15(e)), the largest deformation takes place in the
central part of the third ventricle; and the anterior zone of the lateral ventri-
cles suffers a significant amount of deformation when the membranes’ rigidity
is increased (Fig. 3.16(e)).

3.3.4 Variation of Mechanical Properties

The influence of the internal membranes of the brain on the mechanical de-
formation has been investigated in the last sections, and we have shown that
internal structures should be integrated in the mechanical modeling to obtain
realistic results. In this section, the variation of the mechanical properties of
the tissue is explored. As seen previously, no consensus as been reached yet
on brain tissue physiological parameters. Thus, we try to demonstrate that
our model could be used as an appropriate tool to validate the choice of me-
chanical law and parameters. The Young’s modulus of the brain parenchyma
is modified without altering the other parameters. The simulations of this
section use the same parameters as Simulation 3, as detailed in section 3.3.2
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(a) (b) (c)

(d) (e) (f)

Figure 3.14: Simulation 1. Brain without internal membranes deformed by gravity in a
lateral direction. Figures are colorized according to the magnitude of deformation (f). (a)
Sagittal cut. (b) Coronal cut y posterior position. (c) Coronal cut in anterior position. (d)
Axial cut. (e) Ventricles. (f) Color scale that corresponds to the magnitude of deformation
in millimeters.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.15: Simulation 2. Brain with internal membranes deformed by gravity in a lateral
direction. Figures are colorized according to the magnitude of deformation (f). (a) Sagittal
cut. (b) Coronal cut y posterior position. (c) Coronal cut in anterior position. (d) Axial
cut. (e) Ventricles. (f) Color scale that corresponds to the magnitude of deformation in
millimeters. (g) Tentorium cerebelli. (h) Falx cerebri.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.16: Simulation 3. Brain with highly rigid internal membranes, deformed by gravity
in a lateral direction. Figures are colorized according to the magnitude of deformation (f).
(a) Sagittal cut. (b) Coronal cut y posterior position. (c) Coronal cut in anterior posi-
tion. (d) Axial cut. (e) Ventricles. (f) Color scale that corresponds to the magnitude of
deformation in millimeters. (g) Tentorium cerebelli. (h) Falx cerebri.
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(Table 3.9 and Fig. 3.16). The parameters for the brain parenchyma used
in Simulation 3 were: E=2100[Pa], v=0.4. This parameters will be altered,
performing two new simulations:

Simulation 4: The Young’s modulus of the brain parenchyma is defined as
in [Schiavone 2009]: E=1440 [Pa]. Actually, a Mooney-Rivlin consti-
tutive law is used to define the mechanical properties in the mentioned
publication; nevertheles, we use a linear model and therefore only the
lineal part of the mentioned model is considered here. (Fig. 3.17)

Simulation 5: The Young’s modulus of the brain parenchyma is defined as
in [Clatz 2005b, Prastawa 2009]: E=694 [Pa]. This simulation is per-
formed to study the effect of a soft parenchyma compared to those de-
fined in the other simulations. (Fig. 3.18).

Figures 3.17 and 3.18 show the results of Simulation 4 and 5, respectively.
Each figure has been colorized according to the magnitude of the deforma-
tion in millimeters (unfortunately, for technical reasons, different color scales
should have been used). Table 3.11 shows the maximum deformation in each
simulation.

Table 3.11: Maximum deformation in each simulation. Only the Young’s modulus has been
modified, all other parameters remain unchanged.

Simulation Max. deformation
[mm]

Sim. 3 6.257
Sim. 4 7.684
Sim. 5 13.837

We can see that the deformation increases significantly on these simula-
tions compared to those of section 3.3.3; particularly if they are compared to
Simulation 3 which has the same parameters except the Young’s modulus of
the brain parenchyma (Table 3.11). Deformation in Simulation 5 is especially
large and concentrated in the central part of the brain. This phenomenon is
probably due to the presence of internal membranes. They limit the defor-
mation by dividing the brain parenchyma into smaller areas. This seems to
corroborate what will normally be expected as a realistic behavior.

Figure 3.19 shows a comparison between meshes in the initial and de-
formed state for Simulation 5, highlighting the role of the membranes. Fig-
ure 3.19(a) shows that the ventricles are more deformed than the membranes.
Figure 3.19(b) and (c) also show that the third ventricle is more deformed than
the laterals and fourth ones. This difference in the deformation magnitude
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.17: Simulation 4. Brain deformation by gravity acceleration in a lateral direction.
The Young’s modulus of the brain parenchyma was defined according to [Schiavone 2009].
Figures are colorized according to the magnitude of deformation (f). (a) Sagittal cut.
(b) Coronal cut y posterior position. (c) Coronal cut in anterior position. (d) Axial cut.
(e) Ventricles. (f) Color scale that corresponds to the magnitude of deformation in millime-
ters. (g) Tentorium cerebelli. (h) Falx cerebri.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.18: Simulation 5. Brain deformation by gravity acceleration in a lateral direction.
The Young’s modulus of the brain parenchyma was defined according to [Clatz 2005b,
Prastawa 2009]. Figures are colorized according to the magnitude of deformation (f).
(a) Sagittal cut. (b) Coronal cut y posterior position. (c) Coronal cut in anterior posi-
tion. (d) Axial cut. (e) Ventricles. (f) Color scale that corresponds to the magnitude of
deformation in millimeters. (g) Tentorium cerebelli. (h) Falx cerebri.
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is caused by the effect of the internal membranes, guiding and concentrating
the deformation in the space between the membranes. The structure formed
by the union of both membranes offers major resistance, which is shown in
Figure 3.20. Figures 3.20(a) and (b) show that the deformation is minimized
in the point where the falx cerebri is attached to the tentorium cerebelli.

In summary, the greater rigidity of the internal membranes of the brain pre-
vents the deformation of the brain parenchyma. Moreover, these membranes
divide the parenchyma into smaller compartments, in which the deformation
is minimized. The effect of the membranes is increased by the fact that they
are joining together, forming thus a stronger structure.

(a) (b)

(c) (d)

Figure 3.19: Membranes and ventricles of Simulation 5 before (gray) and after (color)
deformation. Figures of the deformed structures are colorized according to the magnitude
of deformation in millimeters (d). (a) Ventricles and internal membranes of the brain.
(b) Ventricles in a bottom view. (c) Ventricles in a lateral view. It can be seen that most
of the deformation is concentrated near the third ventricle, far away from the membranes.
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(a) (b) (c)

Figure 3.20: Membranes of Simulation 5 before (gray) and after (color) deformation. Fig-
ures of the deformed structures are colorized according to the magnitude of deformation in
millimeters (c). Image (a) shows that the falx cerebri suffer its greater deformation in its
free border. Nevertheless, the closer the border is to the tentorium, the lesser the defor-
mation. Image (b) shows a zoom of the falx cerebri mesh in the marked rectangular area
of (a), where the falx cerebri is attached to the tentorium. It is clearly identifiable as the
point with minimal deformation.

3.3.5 Craniotomy Simulation

In the last two sections, the influence of the internal membranes and vari-
ation of mechanical properties of the tissue have been investigated. In this
section, the skull is opened and some part of the CSF is removed to explore
how the brain is deformed when submitted to similar conditions of a surgery.
The skull is opened over the parietal and temporal lobe of the left hemi-
sphere (Fig. 3.21(a)). A volume of 0.04 liters of CSF is removed from a total
of 0.28 liters in the subarachnoid space. The mechanical properties of the tis-
sues are the same as in Simulation 3 (Section 3.3.2, Fig. 3.16), and the model
is subjected to a gravity acceleration of 9.81m/s2 in a lateral direction.

Figure 3.21 shows the deformed brain colorized according to the magnitude
of the deformation in millimeters (Fig. 3.21(e)). The maximum deformation
is 10.39 mm. Figure 3.21(b) shows how the area of maximum deformation
is pushed in a frontal direction by the internal membranes, in the same way
observed in previous simulations. Nevertheless, the area of maximum defor-
mation is near the craniotomy in the present simulation, whereas it was in the
central part of the brain in the previous ones. This difference in the defor-
mation is caused by the craniotomy and the CSF extraction. The boundary
conditions of the brain parenchyma are different near the craniotomy. In our
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model, the CSF is modeled using elements with properties similar to a soft
elastic solid, making the brain parenchyma to be joined to the skull. When
these elements are removed, the surface of the brain is no more attached to
the skull and can deform more freely. This can also be understood as a change
in the pressure inside the skull. If the skull is closed, the skull internal vol-
ume cannot change and this set a limit to the deformation. Nevertheless, if
the skull is opened, air can enter and the volume (or pressure) is no longer
a limit to the deformation. The above behavior is similar to that observed
in surgery. In [Elias 2007], potential predictive, intraoperative, and postop-
erative variables are analyzed and correlated with the amount of brain shift
in MRI. It was concluded that cortical and subcortical brain shift occurs as
a direct function of the pneumocephalus, i.e. air invasion into the cranial
cavity. It is also stated that the pneumocephalus probably reflects the volume
of lost CSF. The brain shift in surgeries for bilateral electrode implantation
is studied in [Datteri 2011] using CT. The results of the above publication
reinforce the hypothesis of [Elias 2007]. A burr hole technique to minimize
the brain shift is presented in [Coenen 2011], which is based on the reduction
of the pneumocephalus during the surgery.

Figure 3.21(d) shows the membranes and ventricles before and after defor-
mation. As in the previous simulations, the largest deformation takes place
in the third ventricle. Moreover, the membranes present the same behavior
that in previous sections. The deformation is minimized in the joint of the
membranes because the reinforcement that this structure presents.

These simulations complete the results obtained in this thesis. The con-
clusions and discussion of the whole work are presented in the next chapter.
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(a) (b) (c)

(d) (e)

Figure 3.21: Deformation of the brain with craniotomy and subjected to gravity acceleration
in a lateral direction. Figures are colorized according to the magnitude of deformation in
millimeters (e). (a) Location of the craniotomy. (b) Axial cut in the craniotomy location.
(c) Coronal cut in the craniotomy location. (d) Membranes and ventricles before (gray)
and after (color) deformation.
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This thesis presents the results of my work realized within the LIRIS lab-
oratory at l’Université Claude Bernard. The work in this laboratory has
been developed in collaboration with the TIMC-IMAG laboratory of the
l’Université Joseph Fourier, as part of the doctoral program of the EDISCE
doctoral school. The work was developed in the LIRIS laboratory by a con-
vention between both institutions. A joint supervision has also taken place
with the Universidad de Chile.

The aim of my work was to obtain an automatic method to create a
patient-specific anatomical model suitable for mechanical simulation. The
particular motivation for the mechanical modeling was to simulate the brain
shift phenomenon. The simulation of this phenomenon can be used to update
preoperative images, making them suitable for their use in the operating room
(sec. 1.1.1). Unfortunately, due to the difficulty to obtain intra-operative data,
this goal has been slightly revisited during my thesis.

The result of my work is an automatic method that segments all the rel-
evant structures for the mechanical modeling of the brain. Particularly, the
internal membranes of the brain were included. These structures are taken
into account in very few publications, however it has been stated that they
play a major (if not indispensable) role in the mechanical behavior of the
brain. Moreover, they are usually segmented manually, or semi-manually in
the best case. Additionally, our method has been evaluated with the most
common online databases, obtaining most of the time the best results. Be-
sides, its usability for mechanical modeling has been assessed constructing a
FE mechanical model which has been deformed by applying a gravity accel-
eration.

In the future, we hope to improve the model including other characteristics
relevant for the mechanical modeling, such as the anisotropy of the brain tissue
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and the modeling of tissue cutting or extraction. Furthermore, we expect to
finally obtain real images to perform a more accurate assessment of the model.

The conclusions and discussions of this thesis are presented in the next
sections.

4.1 Discussion
A method to build a patient specific anatomical model of the brain, suitable
for mechanical simulation, has been proposed in this thesis. The method takes
into account the main brain structures, which have been proven to play an
important role on the mechanical behavior of the brain: skull internal surface,
cortex, ventricles, falx cerebri and tentorium cerebelli. The method is based
on a generic model built from digital phantoms for generation of synthetic
MRI, which is next deformed to segment the specific anatomy of the patient.
The patient’s anatomy information is obtained from T1-Weighted MRI images.
This imaging modality is the most used in neurosurgery, as it provides high
quality anatomical images of brain soft tissues.

Preoperative images are often used by the surgeon to plan the surgery, as
well as a guide in the operating room. These images need to be registered with
the position of the patient in the operating room in order to be employed as
a reliable reference. Although a good initial registration may be obtained by
rigid transformations, the brain is deformed during the surgery in a process
called brain shift and, as a consequence, the registration loses validity. At
this point, preoperative data becomes no more usable in the operating room,
and the surgeon can only count on his experience. The motivation to build
mechanical models of the brain is that they can help predict the brain de-
formation and then update the registration between the preoperative image
and the position of the patient. This is important as it has been proven that
realistic updated feedback will greatly help the surgeon during the operation,
reducing operation time, and improving chances of success.

To build a mechanical model of the brain, a patient-specific anatomical
model must be first obtained. In the literature, most of these anatomical
models are obtained by manual segmentation, or using a mix of semi-manual
methods. Which in both case is very time consuming, and not routinely
applicable. Moreover, the internal membranes of the brain are usually not
taken into account; and when considered, they are issued from a manual seg-
mentation [Dumpuri 2010, Garg 2010]. The method presented in this work
is automatic and takes into account the internal structures: ventricles and
membranes. Each anatomical structure is independently segmented. How-
ever, the segmentation follows a logical order, such that successive structure
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segmentations are guided by the preceding one. This segmentation scheme
provides flexibility to the method. Moreover, combining topological informa-
tion altogether a generic mesh will improve the robustness of the method, that
should be confirmed by segmenting images with pathological cases. Even, a
particular structure could be segmented by another method, and next being
incorporated without problem into the segmentation chain. Or conversely, one
part of the segmentation can be used in other applications, for example, as was
explained in section 1.1.1.3, the cortex segmentation can be used as a excellent
Skull Stripping method. Finally, all the specific structure segmentations are
joined in a final segmentation of the whole brain anatomy.

On the segmentation method. The proposed segmentation method is
based on a pre-segmentation, and specific segmentations of each structure
by deformable models. The pre-segmentation (sec. 2.3.1) employs thresholds
and morphological operators; it is based on previous work but incorporates
new estimations of the optimal thresholds, based on comparisons with a brain
atlas. Thus this pre-segmentation makes it possible to find an optimal initial-
ization for the deformable models, providing robustness to the segmentation.
Moreover, a statistical model of the tissue gray level is obtained in the pre-
segmentation and then used to drive the segmentation by deformable models.

• The cortical surface is the first structure to be segmented (sec. 2.3.4).
The deformation of the cortex mesh combines 3 steps which make it
possible: 1) to use the pre-segmentation to find the optimal starting
point for the deformation; 2) to recover brain tissue missed in the pre-
segmentation; and 3) to decrease the amount of CSF and sub-arachnoid
space in the segmentation. The result of these steps is an accurate
segmentation that minimizes the amount of non-brain tissue, without
missing brain parenchyma.

• The skull’s internal surface is the second structure to be seg-
mented (sec. 2.3.5). The deformation of the skull mesh is guided by the
image gray levels, the statistical model built in the pre-segmentation,
and the cortex mesh.

• The final closed mesh to be deformed is the ventricle mesh (sec. 2.3.6).

• Then, the open meshes, which correspond to the internal membranes
of the brain, are segmented (sec. 2.3.7). The deformation of the tento-
rium cerebelli mesh (sec. 2.3.7.1) is guided by the image gray levels and
the skull mesh, because the tentorium cerebelli is attached to the skull
(Appx. B.4.1). Next, the falx cerebri mesh is deformed (sec. 2.3.7.2)
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using the skull and tentorium cerebelli meshes. The flax cerebri is at-
tached to the skull and tentorium cerebelli; therefore, its deformation
must be consistent with them.

On the use of Simplex meshes. Simplex meshes are a good option to
implement deformable models; nevertheless, meshes of triangles are better for
other tasks such as computing intersections, rendering or computing distances
to the surface of the mesh. In our case, the intersections between the meshes
must be computed before to join them. And computing intersections between
triangulations is easier than with simplex meshes. Therefore, the simplex
meshes used in the segmentation are transformed into their dual triangula-
tions before joining them to form the final mesh representing the whole brain
anatomy.

In order to cause minimal geometry degradation, a new method of trans-
formation between simplex meshes and triangulations (and vice-versa) has
been developed (sec. 2.2). Our transformation method is straightforward and
does not use iterations. This is achieved thanks to an interpolation of the
initial mesh to find the corresponding vertices of the dual mesh. The interpo-
lation is based on a direct and local minimization of the distance to tangent
planes, and points of each face.

In section 2.2.4, our transformation technique was compared to the most
frequently used method, which is based on placing the dual vertices in the
center of mass of the initial faces, and the weaknesses of this latter have been
illustrated. The performance of the proposed method was measured using
a vertex-to-vertex distance between both triangulations and simplex meshes,
after performing a chain of transformation. Moreover, we measured the Haus-
dorff distance between meshes after performing a cycle of transformations,
i.e., after carrying out successive transformation to simplex mesh and back
to triangulation. The performance of our method was satisfactory, providing
a significant reduction of the error, improving the quality of no more than
50%. Thus, our method has proven to be adequate to be used in any appli-
cation requiring topological mesh transformation while preserving geometry,
and without increasing complexity.

On validating the method. The segmentation method has been assessed
using international MRI databases available online: the BrainWeb, the Inter-
net Brain Segmentation Repository (IBSR), and the Segmentation Validation
Engine (SVE). The segmentation of each structure has been evaluated inde-
pendently. The performance of the segmentations by closed meshes has been
measured by using Jaccard Index (J) and Dice Coefficient (κ). The perfor-
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mance of the segmentations of open meshes has been evaluated by measuring
the distance between the deformed mesh and the estimated position of the
structure in the ground truth.

• In order to evaluate the cortical surface segmentation, our method has
been compared to three of the most popular Skull Stripping methods
in the literature: the Brain Extraction Tool (BET), the Brain Surface
Extractor (BSE), and the Hybrid Watershed Algorithm (HWA). Our
method achieved the best performance and the difference was statis-
tically significant (p < 0.05): J=0.904 and κ=0.950, for BrainWeb;
J=0.905 and κ=0.950 for IBSR; J=0.946 and κ=0.972 for SVE. The
obtained segmentations were accurate for all databases, with low per-
formance variance.

• The performance of the skull internal surface segmentation was com-
pared to BET v2.1. To evaluate the skull segmentation, the BrainWeb
database was used because it is the only one with a ground truth in-
cluding the skull. Our method achieved the best performance and the
difference was statistically significant (p < 0.05): J=0.945 and κ=0.972.

• The ventricle segmentation was evaluated using the IBSR because the
ground truth of this database includes the ventricles. The performance
of our method was: J=0.623 and κ=0.766. The performance of this
segmentation was lower that obtained with the other meshes due to a low
sensitivity. The low sensitivity was because the ventricle mesh does not
have as high resolution to capture every detail of the ventricular system,
and does not include all its structures either. The structures that were
not included are not relevant for mechanical modeling. Therefore, their
inclusion only adds unnecessary complexity to the mesh.

• The performance of membrane segmentations was evaluated using the
IBSR because the ground truth of this database incorporates the seg-
mentation of many structures in both hemispheres, allowing to estimate
the position of the membranes. The mean distance measured for the
tentorium cerebelli mesh was 1.673 mm., and for the falx cerebri mesh
it was of 0.745 mm.

A mechanical model of the brain was built using the anatomical seg-
mentation in order to check its usability in mechanical deformation mod-
eling (sec. 3.3). Three different mechanical conditions were imposed on the
model to evaluate the effect of the internal membranes of the brain (sec. 3.3.3).
Even a simulation without internal membranes was performed. The mechan-
ical modeling was successfully performed and the influence of the internal
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membranes was correctly showed. In addition, simulations with different me-
chanical properties of the brain parenchyma were carried out (sec. 3.3.4). The
results show that the membranes have a large influence in the mechanical
behavior of the brain by limiting its deformation. Moreover, the importance
of the structure formed by the joint of both membranes is highlighted. This
joint increases the strength of the system by forming a stronger structure. Fi-
nally, a craniotomy simulation was performed in section 3.3.5. The skull was
opened and a volume of the CSF was extracted. This simulation shows the
differences in the deformation when the skull is open and the internal volume
of the skull is not a restriction.

4.2 Conclusions and Prospects
In this section, the relative weaknesses and possible improvements of the
method are considered.

A delicate part of the method is the union of triangle meshes. When the
meshes of different structures are joined, the remeshing may create triangles
with irregular shapes in the intersection zone. These triangles can lead to the
construction of degenerated tetrahedra by the volumetric meshing algorithm.
To solve this problem, the remeshing algorithm can be modified to ensure the
quality of the new triangles. Another solution is to use a method to repair the
mesh after performing the fusion of the different meshes. In a similar way, a
method to improve the quality of the tetrahedral mesh and reduce the number
of volumetric elements can be incorporated. However, another solution, that
would even be better, is to use only simplex meshes through the whole process.
We expect to develop a method to compute intersections between simplex
meshes in a simple way, avoiding the conversion into triangulations in this
task. Additionally, the use of simplex meshes in the volumetric mesh could
be studied. The 3-simplex meshes are volumetric meshes formed by vertices
with four neighbors, and their duals are the tetrahedral meshes. Therefore,
an alternative is to use a 3-simplex meshing associated with a tetrahedral
mesh; or to develop a method to directly incorporate simplex meshes in the
Finite Element or Finite Volume method, or any other method for mechanical
modeling.

In our work, the brain has been considered as an isotropic mate-
rial. Nevertheless, it has been argued in the literature that brain tissue
might be anisotropic [Ferrant 2002, Warfield 2002], especially the white mat-
ter [Ŝkrinjar 2002]. Nevertheless, only a few works have addressed the prob-
lem [Prange 2002], usually using diffusion tensor MRI (DT-MRI) images to in-
corporate the anisotropy into a mechanical model [West 2002, Kemper 2003].
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We believe that our method should incorporate the tissue anisotropy in the
future. As mentioned above, DT-MRI images may provide information about
the preferred direction of the fibers in each voxel. A representation of the fiber
tracts or tractography can even be obtained using DT-MRI. Figure 4.1 shows
a tractography computed using a DT-MRI image acquired in the Instituto de
Neurocirugía Asenjo (INCA, Santiago, Chile), with which we are in contact.
On the other hand, the anatomical model obtained in the frame of this work
has been used for modeling the interaction fluid(CSF)/structure(parenchyma)
in [Araya 2007], and a linear elastic model was used in this thesis to check
the feasibility of the simulation. Nevertheless, other mechanical models can
be tried (sec. 1.1.1.1), such as hyper-viscoelastic [Wittek 2007] or bipha-
sic [Miga 2000, Lunn 2005]. Even the anatomical model could be used in
other methods for deformation and mechanical modeling, such as the Finite
Volume method or mass-spring models.

Figure 4.1: Tractography obtained by using a DT-MRI acquired in the Instituto de Neu-
rocirugía Asenjo (INCA, Santiago, Chile). The position of a set of fiber tracts can be seen
from the brainstem to the cortex of both hemispheres. A set of fibers that pass from one
hemisphere to the other through the corpus callosum is also shown. Colors represent the
tract orientation: blue for axial orientation; green for coronal orientation; red for sagittal
orientation.

Another improvement to be carried out in the future is the segmenta-
tion and incorporation of tumors in the mechanical model. A large num-
ber of brain surgeries are performed to extract tumors. These tumors have
particular mechanical properties, and therefore must be incorporated in the
model [Dumpuri 2007, Wittek 2007, Joldes 2009], preferably by using an au-
tomatic segmentation. The incorporation of intra-surgical information is also
important. This information can be acquired, for example, by using spa-
tial localized US [Pennec 2005], laser-range scanner [Sinha 2005] or stereop-
sis [Sun 2005].

To use the present method into a proper surgery simulation protocol,
a way to simulate craniotomy, tissue extraction [Bailet 2011] and retrac-
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tion [Vigneron 2009] would be very useful. We have performed a simulation
of craniotomy, however a method to simulate it by using intra-operative data
has not been developed. Using a intraoperative method of simulation, the
model can be updated during the surgery to take into account the tissue
manipulation. Even, all the surgery could be simulated before performing it,
to prevent errors and anticipate problems.

It is important to note that, although the method presented in this thesis
was developed thinking in the brain shift problem, the proposed anatomi-
cal brain model can be used for other types of simulations. For example,
mechanical impacts in the head [Horgan 2003, Belingardi 2005], or hydro-
cephalus [Dutta-Roy 2008].

4.3 Publications
The following publications resulted from the work of this thesis:

• R. Araya, G.R. Barrenechea, F.J. Galdames, F. Jaillet and R.
Rodríguez. Adaptive mesh and finite element analysis of coupled
fluid/structure: application to brain deformations. In Third Interna-
tional Conference SURGETICA 2007: Gestes médico-chirurgicaux as-
sistés parordinateur: outils et applications, pages 117–121, Chambéry,
France, 19-20-21 September 2007.

• Francisco J. Galdemes, Fabrice Jaillet. From Triangulation to Sim-
plex Mesh, and Vice-Versa, a Simple and Efficient Conversion. In In-
ternational Conference on Computer Graphics Theory and Applications
- VISIGRAPP-GRAPP 2012, pages 151-156, feb 2012.

• Francisco J. Galdames, Fabrice Jaillet, Claudio A. Perez. An Accu-
rate Skull Stripping Method Based on Simplex Meshes and Histogram
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Appendix A

Anatomical Terms of Location

Some directional terms and anatomical planes are mentioned in the present
work. These anatomical location terms are employed to have a reference
framework to explain relative positions into the human body. The definitions
of these terms can be found in [Rouviere 1999] and are as follow.

A.1 Directional Terms
A number of specific terms [Rouviere 1999] have been defined and accepted by
convention to help on the effectively study of anatomical structures. Starting
from the anatomical position (Figure A.1(a)), these terms are:

Superior or cephalic or cranial: Towards the head or towards the upper
part of a structure or above. For example: the pectorals are superior to
the abdominals.

Inferior or caudal: The direction towards the feet or towards the lower part
of a structure or below. For example: the abdominals are inferior to the
pectorals.

Anterior or ventral: It refers to a structure that is in front of another, or
closer to the frontal part of the body. For example: the liver is anterior
to the kidneys

Posterior or dorsal: It refers to the back of the subject, or closer to the
shoulders. For example: The knuckles are located dorsally on the hand.

Mid line: Line that divides the body into left and right halves.

Medial: Towards the mid line of the body. Also, It refers to something
located near the mid line of the body or structure. For example: the
trunk is medial to the arms.

Lateral: Away from the mid line of the body or structure. For example: the
arms are lateral to the torso.
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Proximal: It refers to a position closer to the trunk or to the origin point of
a part of the body. For example: of the knee and ankle, the knee is the
more proximal to the pelvis.

Distal: It refers to a position farther to the trunk or to the origin point of a
part of the body. For example: of the elbow and wrist, the wrist is the
more distal to the shoulder.

Superficial: Close to the outer surface of the body, or more external in re-
lation to something. For example: the muscle is superficial to bone.

Deep: Not close to the outer surface of the body, or less superficial in relation
to something. For example: the bone is deep compared to the muscle.

Parietal: Related to or forming the walls of the organs or body cavities. For
example: the parietal bones form the roof of the cranium.

Visceral: Related to the the body cavities, or the internal organs such as
those withing the chest or abdomen. For example: the intestine is a
viscus within the abdominal cavity.

Midsagital plane
(mid line)

Coronal
plane

Axial
plane

Inferior

Superior

Medial

Lateral

Posterior

Anterior

(a) (b)

Figure A.1: Anatomical terms of location. (a) Human body in anatomi-
cal position with anatomical planes superimposed. (b) Some anatomical direc-
tional terms. (Source: Dr. Gary Farr. Anatomy / Anatomical Terminology.
www.becomehealthynow.com/article/anatom/704/)

A.2 Anatomical Orientation Planes
There are three primary or cardinal planes that pass through the
body [Rouviere 1999], and correspond to the three spatial dimensions (Fig-
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ure A.1(a)). These planes can be traced from the anatomical position (Fig-
ure A.1(a)):

Sagittal plane: It divides the body into sinister and dexter (left and right)
portions. When the plane is in mid line, it is called midsagittal or
median plane.

Coronal or frontal plane: It divides the body into dorsal and ventral (back
and front, or posterior and anterior) portions.

Axial or transverse plane: It divides the body into cranial and caudal
(head and tail) portions.





Appendix B

Brain Anatomy

Since the problem addressed in this work is related to the brain, some knowl-
edge of brain anatomy will be introduced in the present section. The infor-
mation presented in this section can be found in [Gray 1918, Marieb 2006,
Netter 2010].

B.1 General Brain Anatomy
The brain together with the spinal cord form the central nervous system
(CNS). The basic pattern of the CNS consists of a central cavity surrounded
by a gray matter core, external to which is white matter (myelinated fiber
tracts). The brain exhibits this basic design but has additional regions of
gray matter not present in the spinal cord (Figure B.1). Both the cerebral
hemispheres and the cerebellum have an outer layer or “bark” of gray matter
consisting of neuron cell bodies called a cortex. This pattern changes with
descent through the brain stem. The cortex disappears, but scattered gray
matter nuclei are seen within the white matter. At the caudal end of the brain
stem, the basic pattern is evident.

The average adult man’s brain has a mass of about 1600 g (3.5 lb); that
of a woman averages 1450 g (3.2 lb). In terms of brain mass per body mass,
however, males and females have equivalent brain sizes. The brain can be
divided in:

Cerebral hemispheres: They form the telencephalon, the largest part of
the brain (sec, B.2).

Diencephalon: It includes the thalamus, metathalamus, hypothalamus, epi-
thalamus, prethalamus or subthalamus and pretectum. The diencephalon
is located near the midline of the brain, above the mesencephalon (mid-
brain).

Brain stem: Posterior part of the brain, adjoining and structurally continu-
ous with the spinal cord. It is usually described as including the medulla
oblongata (myelencephalon), pons (part of metencephalon), and mid-
brain (mesencephalon)
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Cerebellum: It is main involved in the coordination of voluntary motor
movement, balance and equilibrium and muscle tone. It is located just
above the brain stem and toward the back of the telencephalon. (see
sec. B.3)

Figure B.1: Arrangement of gray and white matter in the CNS (highly simplified). Cross
sections at three CNS levels. In each section, the dorsal aspect is at the top. In general,
white matter lies external to gray matter; however, collections of gray matter migrate
externally into the white matter in the developing brain (see black arrows). The cerebrum
resembles the cerebellum in its external cortex of gray matter. (Source: [Marieb 2006]).

The brain’s parts of interest for the present work are the cerebral hemi-
spheres and cerebellum. These parts are the anatomical structures modeled in
this study, and they will be explained in the follow sections. Moreover, other
anatomical structures related with the CNS which are as well of interest for
the work, such as the meninges (sec. B.4) and cerebrospinal fluid (sec. B.5),
will be also explained.

B.2 Cerebral Hemispheres
Nearly the entire surface of the cerebral hemispheres is marked by elevated
ridges of tissue called gyri, separated by shallow grooves called sulci. The
singular forms of these terms are gyrus and sulcus. Deeper grooves, called
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fissures, separate large regions of the brain. The more prominent gyri and
sulci are similar in all people and are important anatomical landmarks. The
hemispheres are separated medially by a deep cleft, named the longitudinal
cerebral fissure, and each possesses a central cavity, the lateral ventricle (Fig-
ure B.7). Another large fissure, the transverse cerebral fissure, separates the
cerebral hemispheres from the cerebellum below.

Several sulci divide each hemisphere into five lobes

• Frontal

• Parietal

• Temporal

• Occipital

• Insula

All these lobes but the last are named for the cranial bones that over-
lie them (Figure B.2(a)). The central sulcus, which lies in the frontal plane,
separates the frontal lobe from the parietal lobe. Bordering the central sul-
cus are the precentral gyrus anteriorly and the postcentral gyrus posteriorly.
More posteriorly, the occipital lobe is separated from the parietal lobe by the
parieto-occipital sulcus, located on the medial surface of the hemisphere.

(a) (b)

Figure B.2: Principal fissures and lobes of the brain. Figure (a) shows the frontal, parietal,
temporal and Occipital. The insula, covered by portions of the temporal, parietal, and
frontal lobes, is shown (b). (Source: [Gray 1918]).

The deep lateral sulcus or Sylvian fissure outlines the temporal lobe and
separates it from the parietal and frontal lobes. A fifth lobe of the cerebral
hemisphere, the insula, is buried deep within the lateral sulcus and forms
part of its floor ( B.2(b)). The insula is covered by portions of the temporal,
parietal, and frontal lobes.
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The cerebral hemispheres fit snugly in the skull. Rostrally, the frontal
lobes lie in the anterior cranial fossa. The anterior parts of the temporal lobes
fill the middle cranial fossa. The posterior cranial fossa, however, houses the
brain stem and cerebellum; the occipital lobes are located well superior to
that cranial fossa.

Each cerebral hemisphere has three basic regions: a superficial cortex of
gray matter; an internal white matter; and the basal nuclei, islands of gray
matter situated deep within the white matter.

B.2.1 Cerebral Cortex
The cerebral cortex is the executive suite of the nervous system, where our
conscious mind is found. It enables us to be aware of ourselves and our sensa-
tions, to communicate, remember, and understand, and to initiate voluntary
movements. The cerebral cortex is composed of gray matter : neuron cell
bodies, dendrites, associated glia and blood vessels, but no fiber tracts. It
contains billions of neurons arranged in six layers. Although it is only 2-4 mm
(about 1/8 inch) thick, it accounts for roughly 40% of total brain mass. Its
many convolutions effectively triple its surface area.

Specific motor and sensory functions are localized in discrete cortical areas
called domains. However, many higher mental functions, such as memory and
language, appear to have overlapping domains and are spread over large areas
of the cortex. The cerebral cortex contains three kinds of functional areas:
motor areas, sensory areas, and association areas.

Motor Areas: As shown in Figure B.3 (red), the following motor areas of
the cortex, which control voluntary movement, lie in the posterior part
of the frontal lobes: primary motor cortex, premotor cortex, Broca’s
area, and the frontal eye field.

Sensory Areas: Areas concerned with conscious awareness of sensation, the
sensory areas of the cortex, occur in the parietal, insular, temporal,
and occipital lobes (see Figure B.3). These areas can be divided in:
primary somatosensory cortex, somatosensory association cortex, visual
areas, auditory areas, olfactory (smell) cortex, gustatory (taste) cortex,
visceral sensory area, and vestibular (equilibrium) cortex.

Multimodal Association Areas: The association areas (light red or blue
in Figure B.3) are all tightly tied to one kind of primary sensory or
motor cortex. Most of the cortex, though, is more complexly connected,
receiving inputs from multiple senses and sending outputs to multiple
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areas. All these areas are called multimodal association areas (white in
Figure B.3).

Figure B.3: Functional areas of the brain. Motor areas in red; sensory areas in blue;
auditori areas in green; visual areas in yellow. Association areas are in light colors.
(Source: [Gray 1918]).

In general, information flows from sensory receptors to the appropriate
primary sensory cortex, then to a sensory association cortex and then on to
the multimodal association cortex. Multimodal association cortex allows us to
give meaning to the information that we receive, store it in memory if needed,
tie it to previous experience and knowledge, and decide what action to take.
Once the course of action has been decided, those decisions are relayed to the
premotor cortex, which in turn communicates with the motor cortex. The
multimodal association cortex seems to be where sensations, thoughts, and
emotions become conscious.

B.2.2 White Matter
The second of the three basic regions of each cerebral hemisphere is the in-
ternal cerebral white matter. The white matter (Figure B.4) deep to the
cortical gray matter is responsible for communication between cerebral areas
and between the cerebral cortex and lower CNS centers. White matter consists
largely of myelinated fibers bundled into large tracts. These fibers and tracts
are classified according to the direction in which they run as commissural,
association, or projection:

Commissures: Tracts composed of commissural fibers, connect correspond-
ing gray areas of the two hemispheres, enabling them to function as
a coordinated whole. The largest commissure is the corpus callosum,
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which lies superior to the lateral ventricles, deep within the longitu-
dinal fissure. Less prominent examples are the anterior and posterior
commissures (see B.4).

Association fibers: They connect different parts of the same hemisphere.
Short association fibers connect adjacent gyri. Long association fibers
are bundled into tracts and connect different cortical lobes.

Projection fibers: These fibers are those that enter the cerebral hemi-
spheres from lower brain or cord centers, and those that leave the cortex
to travel to lower areas. They tie the cortex to the rest of the nervous
system and to the body’s receptors and effectors. In contrast to com-
missural and association fibers, which run horizontally, projection fibers
run vertically as Figure B.4 (rigth) shows. At the top of the brain stem,
the projection fibers on each side form a compact band, the internal
capsule, that passes between the thalamus and some of the basal nuclei.
Beyond that point, the fibers radiate fanlike through the cerebral white
matter to the cortex. This distinctive arrangement of projection tract
fibers is known as the corona radiata.

Figure B.4: Fibers tracts in white matter. (Source: [Marieb 2006]).

B.3 Cerebellum
The cerebellum, exceeded in size only by the cerebrum, accounts for about
11% of total brain mass. The cerebellum is located dorsal to the pons and
medulla (and to the intervening fourth ventricle). It protrudes under the
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occipital lobes of the cerebral hemispheres, from which it is separated by the
transverse cerebral fissure.

By processing inputs received from the cerebral motor cortex, various brain
stem nuclei, and sensory receptors, the cerebellum provides the precise timing
and appropriate patterns of skeletal muscle contraction for smooth, coordi-
nated movements and agility needed for our daily living. Cerebellar activity
occurs subconsciously; that is, we have no awareness of its functioning.

The cerebellum is bilaterally symmetrical; its two cerebellar hemispheres
are connected medially by the vermis. Its surface is heavily convoluted, with
fine, transversely oriented pleatlike gyri known as folia. Deep fissures subdi-
vide each hemisphere into anterior, posterior, and flocculonodular lobes. The
small propeller-shaped flocculonodular lobes, situated deep to the vermis and
posterior lobe, cannot be seen in a surface view.

B.4 Meninges

Nervous tissue is soft and delicate, and neurons are injured by even slight
pressure. However, the brain is protected by bone (the skull), membranes (the
meninges), and a watery cushion (cerebrospinal fluid)(sec. B.5). Furthermore,
the brain is protected from harmful substances in the blood by the blood-brain
barrier.

The meninges are three connective tissue membranes that lie just external
to the CNS organs. They cover and protect the CNS, protect blood vessels
and enclose venous sinuses, contain cerebrospinal fluid, and form partitions in
the skull. From external to internal, the meninges (singular: meninx) are the
dura mater, arachnoid mater, and pia mater (Figure B.5(a)).

B.4.1 Dura Mater

The leathery dura mater, meaning “tough mother”, is the strongest meninx.
Where it surrounds the brain, it is a two-layered sheet of fibrous connective
tissue. The more superficial periosteal layer is attached to the inner surface
of the skull (the periosteum) (Fig B.5(a)). (There is no dural periosteal layer
surrounding the spinal cord.) The deeper meningeal layer forms the true
external covering of the brain and continues caudally in the vertebral canal
as the dural sheath of the spinal cord. The brain’s two dural layers are fused
together except in certain areas, where they separate to enclose dural sinuses
that collect venous blood from the brain and direct it into the internal jugular
veins of the neck.
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Figure B.5: (a) Relationship of the dura mater, arachnoid, and pia mater. The meningeal
dura forms the falx cerebri fold. The superior sagittal sinus, is enclosed by the dural
membranes superiorly. (Source: [Netter 2010]). (b) Partitioning folds of dura mater: falx
cerebri and tentorium cerebelli. (Source: [Gray 1918]).

In several places, the meningeal dura mater extends inward to form flat
partitions that subdivide the cranial cavity. These dural septa, which limit
excessive movement of the brain within the cranium, include the following
(Fig. B.5(b)):

Falx cerebri: A large sickle-shaped (falks = sickle) fold that dips into the
longitudinal fissure between the cerebral hemispheres. Anteriorly, it
attaches to the crista galli of the ethmoid bone.

Falx cerebelli: Continuing inferiorly from the posterior falx cerebri, this
small midline partition runs along the vermis of the cerebellum.

Tentorium cerebelli: Resembling a tent over the cerebellum, this nearly
horizontal dural fold extends into the transverse fissure between the
cerebral hemispheres (which it helps to support) and the cerebellum.

B.4.2 Arachnoid Mater
The middle meninx, the arachnoid mater, or simply the arachnoid, forms
a loose brain covering, never dipping into the sulci at the cerebral surface
(Fig. B.5(a)). It is separated from the dura mater by a narrow serous cavity,
the subdural space, which contains a film of fluid. Beneath the arachnoid
membrane is the wide subarachnoid space. Weblike extensions span this space
and secure the arachnoid mater to the underlying pia mater. (Arachnida
means “spider” and this membrane was named for its weblike extensions.)
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The subarachnoid space is filled with cerebrospinal fluid and also contains
the largest blood vessels serving the brain. Because the arachnoid is fine and
elastic, these blood vessels are poorly protected.

Projections of the arachnoid mater called arachnoid granulations protrude
superiorly through the dura mater and into the superior sagittal sinus. Cere-
brospinal fluid is absorbed into the venous blood of the sinus by these granu-
lations (sec. B.5).

B.4.3 Pia Mater
The pia mater, meaning “gentle mother”, is composed of delicate connective
tissue and is richly invested with tiny blood vessels (Fig. B.5(a)). It is the only
meninx that clings tightly to the brain, following its every convolution. Small
arteries entering the brain tissue carry ragged sheaths of pia mater inward
with them for short distances.

B.5 Cerebrospinal Fluid
Cerebrospinal fluid (CSF), found in and around the brain and spinal cord,
forms a liquid cushion that gives buoyancy to the CNS structures (Fig B.6).
By floating the brain, the CSF effectively reduces brain weight by 97% and
prevents the brain from crushing under its own weight. CSF also protects the
brain and spinal cord from blows and other trauma. Additionally, although
the brain has a rich blood supply, CSF helps nourish the brain, and there is
some evidence that it carries chemical signals (such as hormones and sleep-
and appetite-inducing molecules) from one part of the brain to another.

CSF is similar in composition to blood plasma, from which it is formed.
However, it contains less protein than plasma and its ion concentrations are
different. For example, CSF contains more Na+, Cl−, and H+ than does
blood plasma, and less Ca2+ and K+. CSF composition, particularly its pH,
is important in the control of cerebral blood flow and breathing.

The choroid plexuses that hang from the roof of each ventricle form CSF
(Figure B.6). These plexuses are frond-shaped clusters of broad, thin-walled
capillaries (plex = interwoven) enclosed first by pia mater and then by a layer
of ependymal cells lining the ventricles. These capillaries are fairly perme-
able, and tissue fluid filters continuously from the bloodstream. However,
the choroid plexus ependymal cells are joined by tight junctions and have ion
pumps that allow them to modify this filtrate by actively transporting only
certain ions across their membranes into the CSF pool. This sets up ionic
gradients that cause water to diffuse into the ventricles as well. In adults, the
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Figure B.6: Circulation of the CSF, produced in the choroid plexus and absorbed in the
arachnoid granulations or villus (Fig. B.5(a)). (Source: [Marieb 2006]).

total CSF volume of about 150 ml (about half a cup) is replaced every 8 hours
or so; hence about 500 ml of CSF is formed daily. The choroid plexuses also
help cleanse the CSF by removing waste products and unnecessary solutes.
Figure B.6 shows the circulation of the CSF in the central nervous sistem.

B.5.1 Ventricles
The ventricles are continuous with one another and with the central canal of
the spinal cord (Figure B.7). The hollow ventricular chambers are filled with
cerebrospinal fluid (sec. B.5) and lined by ependymal cells, a type of neuroglia.

Figure B.7: Ventricles of the brain. (Source: [Marieb 2006]).
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The paired lateral ventricles, one deep within each cerebral hemisphere, are
large C-shaped chambers. Anteriorly, the lateral ventricles lie close together,
separated only by a thin median membrane called the septum pellucidum.
Each lateral ventricle communicates with the narrow third ventricle in the di-
encephalon via a channel called interventricular foramen (foramen of Monro)
(Fig. B.7). The third ventricle is continuous with the fourth ventricle via
the canal-like cerebral aqueduct that runs through the midbrain. The fourth
ventricle lies in the hindbrain dorsal to the pons and superior medulla. It is
continuous with the central canal of the spinal cord inferiorly. Three open-
ings mark the walls of the fourth ventricle: the paired lateral apertures in its
side walls and the median aperture in its roof. These apertures connect the
ventricles to the subarachnoid space, a fluid-filled space surrounding the brain
(sec. B.5).
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