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1. INTRODUCTION 
 

 

 

 

 

 

Undoubtedly, people have always been exposed to various nanoparticles via numerous natural 

phenomena, e.g. dust storms, volcanic ash, combustion, water evaporation, etc. At the same 

time, the human body has evolved to protect itself from potentially harmful influence of 

nanoparticles. However, from the technological point of view, for a long time we were not 

able to detect, control or use nanoparticles to any industrial application. The situation had 

changed with rapidly developing technologies in the last decades of the 20th century. 

Nowadays, nanoparticles and aggregates of nanoparticles are the subject of intensive research 

due to their unusual physical properties and potential technological impact. Basically, there 

are two primary factors that makes nanoparticles significantly different comparing to the bulk 

materials: surface effects and quantum effects (Buzea et al. 2007). Both of them influence any 

aspects related to the nanoparticles i.e. their chemical reactivity, mechanical, optical, electric 

and magnetic properties. In the same way, nanoparticles exhibit additional interesting and 

completely new properties, like strong ionic forces, unusual thermal diffusion or surface 

plasmons effects. They are also the subject of environmental and health concerns. Figure 1.1 

shows some examples of nanoparticle aggregates encountered in various fields. 

The surface effects are related to the fraction of atoms at the surface, which for nanomaterials 

is thousands of times larger than for the bulk ones. As an example, if we consider a single 

carbon microparticle with 60 mµ  in diameter and 0.3 gµ  mass, its surface area is equal to 
20.01 mm  (Buzea et al. 2007). To have the same mass in carbon nanoparticles with diameter 

60 nm we need to take 1 billion particles. Their surface area is 211.3 mm  giving the ratio 

surface area to the particles volume around 1000 times higher than for the single 

microparticle. As the particles reactivity is more and less determined by their surface, we can 
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clearly see that reactivity of nanoparticles increases significantly comparing to the ordinary 

bulk materials, even at the microscale. 

The quantum effects are related to the size of particles and appear as a sets of phenomena that 

are typical for single atoms rather than for particles or molecules (Roduner 2006). 

For instance, similarly as electrons in a single atom, quantum dots shows quantized energy 

spectra due to the electrons confinement. They demonstrate also quantified changes in their 

ability to accept or donate electrical charges. Yet another interesting result of the quantum 

confinement effect is that magnetic moments appear in nanoparticles of chemical compounds 

that are non-magnetic at a macroscale, e.g. gold, or platinum (Buzea et al. 2007). 

 
Figure 1.1. Nanoparticles in various fields: (a) thermonuclear reactor and dust produced during the 
nuclear reaction, (b) plasma reactor and nanopowder, (c) nozzle to produce aerosols with spray drying 
method and highly-ordered Buckyballs aggregates, (d) flame and soot, (e) suspension and aggregation. 

All the aforementioned issues cause that ultra-fine dry powders (nanometer-sized aggregates, 

ceramics and crystals, quantum dots), nano-colloidal suspensions (slurries, nanofluids, 

emulsions, gels) or nano-sized aerosols (various dusts, fine-droplet liquid paints, carbonaceous 

aggregates) are the milestones of the future science. 

As already pointed out above, nanoparticles and aggregates of nanoparticles are highly 

interesting from the scientific and technological points of view. Nonetheless, to understand, to 

monitor and to control their properties and formation mechanisms in various systems, it is 

fundamental to access to key parameters like particle size distribution (PSD) and particle 

number concentration (nC ). But, this is precisely a challenge from the metrological and 

experimental points of view. Sampling and off-line analyses (e.g. electron microscopy, 

electro-mobility, etc.) are the most widely used methods to characterize properties of nano 
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and microparticles (i.e. size, shape, elementary composition and specific surface area). 

However, for so reactive and fragile objects, the reliability and repeatability of such analyses 

may be questionable. For instance, the sampling procedure can be biased by the particle flow-

field dynamics or the smallest particles can remain trapped in micro roughness of the 

sampling tool or the substract (like in tokamaks). Apart from that, aggregates can be broken 

down due to the rolling and collapsing effects or by the sampling procedure itself. For all the 

above mentioned reasons, optical particle sizing techniques appear to be very suitable for the 

in-situ and the in-line characterization of the morphological properties of nanoparticle 

systems. 

Various optical methods have been developed to characterize particle systems, e.g. (Xu 2002). 

However, using them to characterize complex particles is not an easy and trivial task. In the 

next paragraphs, to illustrate our purposes, the advantage and limits of four optical techniques 

used to characterize nanoparticles form in combustion and plasma systems are briefly 

reviewed.  

 - Particle Imaging Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) 

techniques (Stanislas et al. 2004) allow to measure the velocity of submicron particles. Both 

techniques relies on the illumination of the particle flow by two intense and successive pulsed 

laser sheets. The particles “image”, recorded by a CCD camera localized at 90θ = ° , is just 

a bright spot whose size depends only on the point spread function (PSF) (Goodman 1996) of 

the imaging system. Using short time pulses (a few nanoseconds with a YAG laser) and 

a short time delays between the two successive pulses and images (down to few hundred 

nanoseconds with a typical PIV/PTV camera) allow to freeze particle motion and to measure 

velocities up to several hundred meters per second.  

The only difference between PIV and PTV relies on the numerical algorithm used to obtain 

the velocity field. PIV estimates this field by measuring the global displacement of all 

particles within small interrogation windows (i.e. raw PIV images are meshed). Thus, based 

on a local flow field continuity assumption, PIV provides an Eulerian description of 

particulate media. On the other hand, PTV tracks each particle motion, providing an 

Lagrangian description of the particulate media (e.g. (Ouellette et al. 2006)). Therefore, PTV 

appears to be more appropriate for analyzing the spatial distribution of particles or particle 

properties linked to their charge and dynamics. Particle imaging techniques are basically 

constrained by the diffraction limit (Goodman 1996), making it impossible to image the 

surface and structure of sub-micron aggregates. Indeed, depth of view, optical magnification 

and aberrations, pixel size, particle size and refractive index, are also fundamental parameters 

that limit imaging technique capabilities. 

However, imaging techniques can be used to characterize the size and the velocity of larger 

particles (see Figure 1.2 (a)). For this purpose, the PTV system must be operated in 

a backlight mode. In that configuration, the flow field is backlighted by a collimated beam, 
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produced by a double pulse flash lamp or a laser. When a laser is used, a diffusion plate or a 

fluorescence cell must be used to decrease the speckle noise level (Guenadou et al. 2008). The 

CCD camera is equipped with high magnification optics and placed in front of the lighting 

beam (i.e. 0θ = °). With conventional systems, the minimum particle size that can be 

“measured” is 4 mµ≈  for a working distance of 4 mm≈  and a field of view of 2400 400 mµ≈ ×
. These techniques have been extensively used to infer the size of nanoparticles in colloids or 

fusion plasmas (where the nanoparticles inter-distances or velocities are connected to their 

electrical charge, and then, their size) but they are not really of practical use for other systems 

(see Table 1.1) (Onofri et al. 2011b). 

 
Figure 1.2. Basic experimental optical setups for (a) Shadowgraph imaging, Laser Light Scattering 
(LSS) and Ellipsometry techniques; (b) Light Extinction Spectroscopy (LES) and Laser Induced 
Incandescence (LII) techniques (Onofri et al. 2011b). 

 - Laser Induced Incandescence (LII) occurs when a laser beam encounters solid 

absorbing particles (Melton 1984; Schulz et al. 2006; Michelsen et al. 2007; Vander-Wal 

2009). The absorbed energy causes an increase of the particle temperature. Simultaneously, 

particles lose energy via heat transfer with their surrounding. If the energy absorption rate is 

sufficiently high, the temperature can reach high levels where significant incandescence 

(essentially blackbody emission) and vaporization phenomena can occur. The inversion of the 

LII signal intensity and time-decay is done with a PSD model assumption, allowing the 

determination of the volume concentration and the mean size of all single particles (referred  

also as monomers) and all small aggregates within the measurement volume. It can be a local 

(the detector is a photomultiplier, PM) or a 2D measurement (the detector is a streak camera, 

with a time resolution of a few nanoseconds (De-Iuliis et al. 2005; Desgroux et al. 2008)), see 

Figure 1.2 (b). The LII basic setup is then composed of a pulsed laser, a focusing optics, a 

collection (1D) or an imaging optics. Although, this technique is still under development, it 

has been used with success in combustion science (i.e. to characterize soots). It is however 
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fundamentally limited to extremely small absorbing particles at low concentration (see Table 

1.1). 

 - The Laser Light Scattering (LLS) (referred also as the Nepholometry technique) 

analyzes the angular scattering patterns produced by a sample of particles illuminated by 

focused and continuous laser beam, randomly or a linearly polarized (Xu 2002).  

A LLS setup is generally, and basically, composed of a set of lenses, an interference filter 

centered onto the laser wavelength (to attenuate the optical background noise), a linear 

polarizer (to select parallel or/and perpendicular polarization), a spatial filter (to control the 

probe volume size) and a photomultiplier, see Figure 1.2 (a). Like most optical particle 

characterization techniques, LLS technique is limited to optically diluted particle systems 

although solutions have been proposed to correct multiple scattering effects with optical 

methods (Meyer et al. 1997; Onofri et al. 1999) or data inversion (Mokhtari et al. 2005; 

Tamanai et al. 2006). The main drawbacks of the LSS are that it cannot perform absolute 

particle concentration measurements, it requires wide optical accesses and a stationary 

process (i.e. regarding the scanning time). However, the LSS has two clear advantages: like 

the LII technique, it allows the detection of extremely small particles (e.g. monomers) at low 

concentration and, in addition, scattering diagrams are very sensitive to the morphology of 

aggregates (see Table 1.1 and reference (Onofri et al. 2011b) for additional inputs). 

 
Table 1.1. Summary of key features of the various optical techniques. 

Technique Shadow-imag. LES LII LSS Ellipsometry 

Illumination 
system 

Flash lamp, 
pulsed laser and 

flurosc. cell, 
0.1-100 mJ 

Stabilized 
thermal source, 

5-20 W 

Pulsed laser,   
50-700 mJ/cm2 

continuous 
wave  laser, 

0.5-5 W 

continuous 
wave  laser, 

0.5-5 W 

Detection 
system CCD camera Spectrometer 

PM or streak 
camera 

Rotat. system, 
PM and 
polarizer 

PM with rotat. 
polarizer 

Size range � 4 µm to cm 10 nm – 2 µm 2 nm – 0.5 µm 10 nm – 2 mm 10 nm – 2 µm 

Concentration Relative Absolute Relative Relative Relative 

Probe volume Slab, 10-2 mm3 – 
102 cm3 

Cylinder,         
cm3 – 104 cm3 

Cubic or Slab, 
10-3 mm3 – cm3 

Cubic,           
10-3 mm3 – cm3 

Cubic,           
10-3 mm3 – cm3 

Main   
advantage 

Flow pattern 
size-velocity 

Limited access, 
long distance 

Low 
concentration 

Fractal 
dimension, low 
concentration 

Morphology, 
low 

concentration 

Main  
drawbacks 

Only large par. 
depth of view, 
speckle noise 

Particle material 
spectrum 
needed 

Only monomers 
and dilute 
aggregates 

Wide optical 
access needed, 
Stationary flow 

Stationary flow, 
Local meas. 

 

 - Ellipsometry infers the properties of particles from their ability to modify the 

polarization state of the scattered light. For this purpose a continuous wave (CW) laser is used 
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to produce a focused and polarized beam (i.e. circularly or linearly) that illuminates the 

particles within a small probe volume, see Figure 1.2 (a). Like the LSS, and for the same 

reasons, the collection optics is composed of a set of lenses, an interference filter, a spatial 

filter and a photomultiplier. Ellipsometry collection optics is ordinarily set at 90θ = ° , and it 

integrates a computer controlled polarizing optics (e.g. a linear polarizer fixed on a motorized 

goniometer, or a liquid crystal linear polarizer). In most studies, the latter component is 

simply used to analyze the light polarization phase-angle � and amplitude � (e.g. (Hong and 

Winter 2006)). Based on the Lorenz-Mie calculations, the inversion procedure consists on 

searching for the particle mean diameter and refractive index that allow to minimize 

differences observed between the theoretical and experimental values of � and � 

(Mishchenko et al. 2000). Indeed, light polarization is very sensitive to particle roughness and 

heterogeneity, making polarization techniques suitable for particle morphology investigations 

provided that an appropriate scattering models (like the T-Matrix or the DDA ones) is used. 

Among the drawbacks of this technique there is the fact that the measurement is local and that 

it requires well defined optical accesses, see Table 1.1 (Onofri et al. 2011b). The latter 

constraint make this technique totally unsuitable to characterize, for instance, dust in fusion 

devices. 

One can conclude that very few methods allow the in-situ and time-resolved analysis, 

with limited optical accesses, of nanoparticle systems, and if there are, they usually use too 

simple light scattering model and inversion technique. 

 

So that, the goal of this Ph.D. work was to contribute to the development of the two 

aforementioned optical methods: the Light Extinction Spectrometry (LES) and the Laser 

Light Scattering (LLS), and this, by using realistic and as accurate as possible particle and 

light scattering models, by developing dedicated inversion methods and validation 

experiments. All this work has been done with the objective to propose in fine an optical 

diagnosis that can be used both to perform laboratory experiments (mainly on colloidal 

suspensions) and experiments at long distance (fusion devices, aerosols, combustion).  

Chapter 2 introduces the particle models we have developed to describes the morphology of 

two types of nanoparticle aggregates of interest, and with a fractal-like (plasmas, combustion 

systems) and buckyballs-like (aerosols, suspensions) shapes. 

Chapter 3 summarize all the work done to determine the morphological parameters of fractal-

like aggregates from electron microscopy images.  

Chapter 4 reviews and discuss the physical and mathematical backgrounds of all the theories 

used in this work to predict the light scattering properties of nanoparticle and their aggregates: 

Lorenz-Mie theory, Rayleigh-based approximations (RGD, RDG-FA) and T-Matrix method.  
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Chapter 5 presents the algorithms and results obtained for the extraction of the morphological 

parameters of fractal aggregates from their scattering diagrams, the influence of single 

particles or the superposition of different populations of aggregates. 

Chapter 6 details the basic principles as well as inversion techniques of extinction data 

recorded for fractal-like and buckyballs-like aggregates. Various experimental systems are 

considered and analyzed: aerosol of silica nanobeads and tungsten aggregates, dusty plasmas 

with silicone aggregates. 

Chapter 7 is a general conclusion with perspectives for this work. 

Chapter 8 contains references. 

Chapter 9 and 10 are extended abstracts of this work, in French and in Polish languages 

respectively. 
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2. MODELS FOR PARTICLE AGGREGATES 
 

 

 

 

 

 

2.1. Introduction 
Aggregation of nanoparticles occurs in numerous media and it has significant influence on the 

overall properties of the particle systems. For instance, although the chemical reactions and 

physical processes governing combustion systems, dusty plasmas or colloidal suspensions 

may be considered as rather different, they can lead to the formation of aggregates of 

nanoparticles with similar shapes. Nevertheless, from one case to another, the clusters may 

exhibit highly different dimensions or morphological properties. For example, they may 

contain from a few primary particles (called also monomers) up to several thousands of them. 

They may also take various shapes: from the dilute chain-like formations (Kim et al. 2003), 

through the typical fractal-like aggregates (Sorensen 2001), up to the dense and opaque 

cauliflower-like structures (Sharpe et al. 2003; Onofri et al. 2011b). To describe very dense 

and highly opaque aggregates with an overall shape close to the spherical one, buckyballs 

model (see section 2.5) (Toure 2010)  may be applied. For highly ordered crystal structures 

one can also use hexagonal compact particle model (Holland et al. 1998). 

The chapter is organized as follows. Section 2.2 presents a simplified overview of the 

physical background of the aggregation phenomena for colloidal suspensions according to the 

DLVO model. Section 2.3 is devoted to the numerical algorithm of the Diffusion Limited 

Aggregation (DLA) we have developed to reproduce the morphology of fractal-like 

aggregates. Section 2.4 compares DLA aggregates produced with our tunable algorithm with 

numerically generated DLCA aggregates provided by Dr. Jérôme Yon. Section 2.5 describes 

a mathematical and physical model to reproduce the morphology of highly ordered 

aggregates.  
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2.2. Physical basis of the aggregation in colloidal suspensions 
2.2.1. Aggregation regimes 

To characterize particle motion in a medium, the most commonly used parameter is the 

Knudsen number. It combines the mean free path l  and the radius pr  of the particle: 

 .
p

l
Kn

r
=  (2.1) 

We define also the diffusion Knudsen number as /D p pKn l r= , where pl  is the persistence 

length of the particle (i.e. the distance over which a particle moves effectively in a straight 

line). Depending on the values of the Knudsen number, three different aggregation regimes 

are defined (Pierce et al. 2006): the “continuum regime” (referred also as the “Stokes” or 

“hydrodynamic regime”, 1Kn� ), the intermediate regime (called also the “slip regime”,

~ 0Kn ) and the “free molecular regime” ( 1Kn� ). 

Most aggregation studies have been carried out in the continuum regime ( 1Kn� ), where 

particles motion between collisions is diffusive. This regime refers to aggregation in colloidal 

liquid suspensions or aerosols at low temperature and high pressure. In the continuum regime 

each particle experience a drag force that, for spherical particles, can be calculated as: 

 6 ,pf rπη=  (2.2) 

where η  is the dynamic viscosity of the medium. The diffusion constant for spherical 

particles is described by the Stokes-Einstein equation  (Pierce et al. 2006): 

 ,
6

B
SE

p

k T
D

rπη
=  (2.3) 

where Bk  is Boltzmann’s constant and T is the medium temperature. 

In the free molecular regime ( 1Kn� ) monomers have a similar mean free path as the 

molecules of the surrounding medium and the distance between monomers is significantly 

large. Due to the law describing the drag force of particles, this region is also called the 

Epstein regime. In this regime, the drag force of a single monomer is: 

 
1/2

2 28
1 ,

3 8
mB

p
m

k T
f r

m

β ππρ
� � � �= +� � � �

� �� �
 (2.4) 

where ρ is the medium mass density, mm  is the molecular mass of the particles and mβ  is the 

momentum accommodation coefficient. In the free molecular regime monomers move either 

ballistically or diffusively (Meakin 1984; Stasio et al. 2002; Babu et al. 2008). Usually, the 

limit between the diffusive and the ballistic motion, is found for diffusion Knudsen number 

smaller than 1DKn ≈ . In that case, the diffusion constant is given by (Pierce et al. 2006): 
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m B

Ep m
p

m k T
D

r

π β
ρ π

−
� � � �= +� �� �
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 (2.5) 

During the ballistic motion the root mean square velocity of the monomers with mass m  can 

be calculated as (Pierce et al. 2006): 

 
1/2

3
.Bk T

v
m

� �= � �
� �

 (2.6) 

The intermediate regime (slip regime) is observed for 0.1 10Kn≤ ≤  (Pierce et al. 2006). 

Particles motion in this regime may be described introducing the Cunningham correction 

( )C Kn  into the Stokes-Einstein equations. Therefore, the diffusion constant is given as: 

 ( ),SED D C Kn=  (2.7) 

with the corresponding drag force: 

 
( )

6
.prf

C Kn

πη
=  (2.8) 

Eqs. (2.1) – (2.8) refer to a single particle in various aggregation regimes. Nevertheless, they 

can be also apply to fractal aggregates. To do so, one must take into account that fractal 

aggregates are ramified, so to estimate the drag force or the diffusion constant, we must 

introduce the effective mobility radius mR . In that case, regardless of the aggregate 

morphology, we can use Eqs. (2.1) – (2.8) with the mR  instead of the pr . 

 

2.2.2. Aggregation models (DLA, DLCA, RLCA) 

In colloidal suspensions particles remain in a constant motion caused by the molecular 

collisions. This phenomenon, studied independently by Albert Einstein (1905) (Einstein 1956) 

and Marian Smoluchowski (1906) (Smoluchowski 1906), is widely known as the Brownian 

motion. Each particle experience a random walk like the one simulated on Figure 2.1. 

The latter figure shows 5000 steps of the motion of a single monomer in 3-dimensional space. 

Length scale in the presented figure is normalized by the step increment of the particle 

(i.e. increment step is equal to 1). 
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Figure 2.1. Simulated Brownian motion: 5000 steps of a single monomer in a 3-dimensional space 
(increment step equal to 1). 

According to the DLVO model, the suspension remains stable against the aggregation (Lin et 

al. 1989), if the repulsive energy barrier caused by the electrostatic forces is much greater than 

Bk T  (where Bk  is the Boltzmann constant and T is the temperature). In that case attractive, 

short-range van der Waals forces (proportional to the 61/ r , where r is a distance from the 

particle) are much weaker than the repulsive long-range, electrostatic forces between 

monomers (proportional to the 21 / r ). To make the suspension unstable and hence trigger 

aggregation phenomena, we can modify the ionic balance of the system by changing the pH 

(neutralize the surface charges of the particles) adding tensio-actives to reduce the range of 

the electrostatic forces, etc. When the attractive van der Waals forces are no more balanced – 

they predominate causing aggregation. For dilute particle system the dynamics of this 

aggregation process is fundamentally limited by the ability of the primary particles to diffuse 

within the continuous medium, so that it is usually referenced as the Diffusion Limited 

Aggregation (DLA, e.g. (Witten and Sander 1981; Jullien and Botet 1987)). In that case, due 

to large distances between particles, diffusion of aggregates within a continuous medium is 

negligible. It is important to notice that in the suspension where repulsive energy barrier is 

greater than several Bk T  particles are still able to stick together but significant number of 

collisions is necessary. This is the fundamental requirement for the Reaction-Limited Colloid 

Aggregation (RLCA) (Lin et al. 1989). In contradiction to that, for the DLA process 

probability that two colliding particles stick together is close to unity. During the aggregation 

not only single monomers but also previously formed aggregates may collide. The process in 

which the DLA phenomena and clusterization occur simultaneously is called the Diffusion-

Limited Cluster Aggregation (DLCA, e.g. (Weitz et al. 1985; Tang et al. 2000; Babu et al. 

2008)). Its dynamics is limited by the ability of the previously formed clusters to diffuse 

within the continuous medium. 
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In the current part of this work, to generate synthetic aggregates, an fully adjustable (tunable) 

DLA-type code has been developed rather than a DLCA one. The main reason for that is that 

presented research requires aggregates with precisely defined parameters, strict self-similarity 

and thus scale-invariant properties (Theiler 1990). This requirement is not precisely satisfied 

for small aggregates produced in DLCA model (i.e. the power law nature of Eq. (2.13) is not 

satisfied) (Heinson et al. 2010). Furthermore, DLCA models should take into account physical 

(e.g. van der Waals’, Coulomb's forces), mechanical (e.g. excluded volume, entanglement) 

and chemical (e.g. sintering, bonding) interactions and mechanisms that are not yet fully 

understood. But this is not the case as most DLCA as well as DLA models described in the 

literature assume only random motion of monomers and an irreversible sticking after their 

collision. They do not require any initial constraints regarding fractal dimension, fractal 

prefactor or number of monomers within aggregates. When simulation process is completed, 

the fractal parameters of the generated aggregates may be calculated.  

The biggest advantage of the tunable DLA code developed in the current work is that it 

preserves all the fractal parameters (with a given accuracy) at each step of the aggregation 

process. This allows to avoid generation of multi-fractal aggregates (i.e. aggregates with 

different parameters at different scale or in a different part of the particle) and assures 

reliability and repeatability of the results. The detailed description of the DLA software and 

algorithm applied in this work can be found in section 2.3. 

 

2.2.3. Scaling law for the aggregate growth rate  

A complete characterization of the aggregating system requires to define aggregation kinetics 

and the structure of the growing aggregate. The cluster-cluster aggregation kinetics is 

governed by Smoluchowski equation (Zift et al. 1985). For sufficiently dilute systems of 

monodisperse monomers the Smoluchowski equation may be expressed in the relatively 

simple form (Sorensen et al. 1998; Stasio et al. 2002): 

 21
,

2
n

c n

dC
K C

dt
= −  (2.9) 

where cK  is the aggregation kernel, which specifies the aggregation rates, and nC  is the 

particle number concentration. The aggregate structure is well described by the number of 

monomers pn , their mean radius pr  and the related PSD, as well as the fractal parameters: fD , 

fk  and gR  (see Eq. (2.13) and description later on). 

The aggregation kinetics may be characterized by the time evolution of the average mass of 

the aggregate zm t� . For the DLCA in colloidal suspension, the linear dependency of the 

aggregation kinetics was observed (Lin et al. 1989), so that 1z=  and ( )0/
z

m t t= . 

Characteristic time 0t  is given by ( )0 ,03 / 8 B nt k TCη= , where η  is the dynamic viscosity of the 

fluid and ,0nC  is the initial particle concentration. The aggregate mass distribution during the 

aggregation process may be found analytically using the Smoluchowski rate equations (Cohen 
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and Benedek 1982) which, with a good approximation, leads to the solution expressed by the 

following exponential form: 

 
1

1
( ) 1 ,

m

an
n m

m m

−
� �= −� �
� �

 (2.10) 

where ( )an n m=�  is the total number of aggregates and ( ) / am mn m n=�  is the mean mass of 

the aggregates. 

Although there are initial similarities between the diffusion-limited and the reaction-limited 

cluster aggregation phenomena, both processes appear to be considerably different. The time 

evolution of the average mass of the aggregate in the RLCA is defined as Atm e� , where A is 

a constant dependent on the sticking probability and the time between collisions of 

monomers. On the other way, the solution of Smoluchowski equations is given as: 

 /( ) ,cm mn m m eτ −−
�  (2.11) 

where τ  is a constant evaluated analytically, numerically and experimentally in the range 

1.5 1.9τ = −  (Lin et al. 1989). 

 

2.3. DLA aggregates 
We define here aggregates as objects made of small elementary particles (monomers) that are 

stuck together and form a larger structure. It was shown that to describe and analyze 

aggregated particles we can apply the fractal-like model (Witten and Sander 1981). Its main 

concept is based on the self-similarity and structure invariance at each scale. The fractal 

theory may be applied regardless of the particular aggregation phenomena and specific 

conditions that have led to the cluster formation (Weitz and Oliveria 1984). Following this 

approach, in the fractal-like model the mass of the cluster M  and its spatial dimension L , 

may be simply related as: 

 ,DM L�  (2.12) 

where D  is the Hausdorff or the so-called fractal dimension. It is always smaller than the 

Euclidian dimension. This relation describes the basic concept of the fractal-like aggregates 

and it is the fundamental dependency applied in the further morphological analysis. 

 

2.3.1. Numerical model and algorithm of DLA aggregates 

To define mathematically, and by a limited number of parameters, the morphology of particle 

aggregates, the so-called fractal equation (Forrest and Witten 1979; Bau et al. 2010) is 

commonly used: 

 ,
fD

g
p f

p

R
n k

r

� �
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� �
 (2.13) 
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where pn  and pr  represent respectively the number and the mean radius of the primary 

particles (monomers), fD  and gR  are the fractal dimension and the radius of gyration of the 

aggregate, and fk  is called the fractal prefactor (or structural coefficient). 

 
Figure 2.2. Numerically generated fractal aggregate with parameters: 100pn = , 1.80fD = , 1.593fk = , 

9.97gR = , 4.64vR = : (a) 3D rendering with POV-Ray software, (b) 2D projection of the aggregate. 

As an example, Figure 2.2 (a) shows a 3D visualization (created with the POV-Ray software 

(POV-Ray 2004)) of the aggregate defined by 100pn =  monomers, fractal dimension 

1.80fD = , fractal prefactor 1.593fk = , radius of gyration 9.97gR =  and equivalent radius in 

volume 4.46vR = . Figure 2.2 (b) shows a 2D projection (the image of the aggregate as it is 

obtained in the zy  plane). 

In Eq. (2.13), and more particularly in this work, the fractal dimension and the radius of 

gyration are thought to be the key parameters to describe the morphology of aggregates. 

To define the radius of gyration, the centre of mass of the aggregate ( ), ,a a ax y z  must be 

previously specified. For the group of particles it may be defined as follows: 

 ( )
1 1 1

1

1
, , , , ,

p p p

p

n n n

a a a n n n n n nn
n n n

n
n

x y z x m y m z m

m
= = =

=

� �
= � �� �

� �
� � �

�
 (2.14) 

where ( ), ,n n nx y z  is the vector pointing to the n th−  particle with mass nm . If we assume  that 

all particles have the same unitary mass and radius 0m  and 0r  respectively, we can define the 

mass of the n th−  particle with radius ,p nr  as 3
0 ,n p nm m r= . Using this assumption we can 

eliminate the mass of the particles in Eq. (2.14). The position of the centre of mass is now 

defined, so we can calculate the aggregate’s radius of gyration. The latter quantity 

characterize the spatial distribution of mass in the aggregate. It is defined as a mean square 

distance of the particles from the centre of mass: 

 2

1

1
( ) ,

pn

g
np

R
n =

= −� 0 nr r  (2.15) 
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where in the classical laboratory Cartesian and Spherical Coordinate Systems ( ), ,x y z  and 

( ), ,r θ ϕ , nr  and 0r  are vectors pointing respectively the n th−  particle and the centre of mass 

of the aggregate with radius of gyration gR . 

 

2.3.1.1. Aggregation algorithm 

Figure 2.3 shows a flow chart of the DLA algorithm. An overview diagram of the geometry of 

the DLA algorithm is shown in Figure 2.4 (a). In the aggregation process all the primary 

particles are generated successively at a large distance pR  (also called appearance sphere) 

from the centre of mass of the aggregating 

cluster: 

 
, ,

pp g nR R�  (2.16) 

where , pg nR  describes the temporary radius of 

gyration of the growing aggregate. If during its 

random march the new particle moves out of 

the external boundary sphere with radius eR , 

the particle is rejected and another particle is 

generated at the distance pR . The definition of 

the boundary sphere with radius eR , with 

eR pR≥  (ideally eR pR� ) is necessary to avoid 

particle’s roaming far from the aggregate since 

this will significantly increase computational 

time. It is important to notice that here, the 

radiuses of appearance and external boundary 

spheres are not fixed. These values are 

continuously optimized. To do so, they are 

calculated as the sum of the additional 

constants (p  and b  for the appearance and the 

boundary spheres respectively) and multiplied 

by the radius of the minimum bounding sphere 

and by a factor called “appearance sphere 

multiplier”. This procedure provides a wide 

range of possible relations between the bR , pR  

and eR . For example, it is possible to turn off 

the multiplication and use only a constant difference between radiuses of the defined spheres. 

 
Figure 2.3. Schematic diagram of the DLA 
algorithm.  



CHAPTER 2 - MODELS FOR PARTICLE AGGREGATES 

28 
 

 
Figure 2.4. (a) Schematic diagram of the Diffusion Limited Aggregation (DLA) steps and parameters  
and (b) Spherical Coordinate System. 

Figure 2.4 (b) presents the coordinate system of the DLA code. To avoid problems related 

with temporary position of the growing cluster at each step of the algorithm the centre of mass 

of the aggregate is relocated at the centre of the coordinate system. When the aggregation 

procedure is completed it is necessary to convert the spherical coordinates ( ), ,r θ ϕ  to the 

classical laboratory Cartesian Coordinate System ( ), ,x y z . To do so we can use the following 

mapping procedure: 

 
cos sin ,

sin sin ,

cos .

x r

y r

z r

θ ϕ
θ ϕ
ϕ

=
=
=

 (2.17) 

The random motion of the primary particles is simulated by the decomposition of their 

trajectories into small step increments (e.g. 2 pr ) with a statistically true isotropic orientation. 

The latter is obtained by generating at each step random inclination and azimuth angles ,ϕ θ  

with a uniform spherical distribution (Bird 1994). This procedure is not a trivial task because 

the intuitive approach is incorrect. Indeed, if we generate the inclination and azimuth angles 

,ϕ θ  in the range [ ]0,π  and [ ]0,2π  respectively and transform them to the Spherical 

Coordinate System using Eq. (2.17), the points are not distributed uniformly. As an example, 

Figure 2.5 shows 5000 points generated on the surface of a unit sphere. It can be seen that 

their spatial distribution is denser at the poles. This problem is caused by the mapping 

procedure between the spherical and the Cartesian coordinates which does not preserve area 

(i.e. initial space is pinched and compressed at the poles). It is clear that random numbers 

generated in this way would strongly affect aggregation procedure and thus generated 

aggregates would be statistically elongated and oriented (anisotropic). 
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Figure 2.5. 5000 points generated on a surface of a unit sphere with the Uniform Distribution in the 
Cartesian Coordinates mapped to the Spherical Coordinate System: (a) 3D view, (b) top view of the 
region of the “north” pole and (c) angular distribution of the points. 
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Figure 2.6. 5000 points generated on a surface of a unit sphere with the Uniform Spherical 
Distribution: (a) 3D view, (b) top view of the region of the “north” pole and (c) angular distribution of 
the points. 

To avoid orientation problem and to find equations necessary for the generation of random 

points with the Uniform Spherical Distribution, it is necessary to consider the Jacobian matrix 

of the mapping procedure (Bird 1994): 

 ( )
cos sin cos cos sin sin

, , sin sin sin cos cos sin .

cos sin cos
F

x x x

r
r r

y y y
J r r r

r
r

z z z

r

ϕ θ θ ϕ θ ϕ θ ϕ
ϕ θ θ ϕ θ ϕ θ ϕ

ϕ θ
ϕ ϕ ϕ

ϕ θ

� 	∂ ∂ ∂
A B∂ ∂ ∂A B −� 	
A B∂ ∂ ∂ A B= =A B A B∂ ∂ ∂A B A B−C DA B∂ ∂ ∂
A B∂ ∂ ∂C D

 (2.18) 

The Jacobian determinant is independent of the azimuth angle θ  but it is related with the 

inclination angle ϕ  and radius r . However, if we consider an unit sphere we can cut out 

variable r . For the probability density function given by the Jacobian matrix one can find the 
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cumulative distribution function. Finally, using its inverse we can generate the inclination and 

azimuth angles ,  ϕ θ  with uniform spherical distribution (Bird 1994): 

 
1

2

2 ,

2arcsin ,

θ πδ

ϕ δ

=

=
 (2.19) 

where, 1δ  and 2δ  are uniform distributions on [ ]0,1 . As an example, Figure 2.6 shows 5000 

points generated on a surface of a unit sphere. It is worth to compare the distribution of the 

angles ϕ  and θ  generated with both solutions (see Figure 2.5 (c) and Figure 2.6 (c)). It can be 

seen that now, the points are distributed equally on the entire surface of the given sphere 

(Figure 2.6). 

 

2.3.1.2. Sticking process 

Figure 2.7 shows a schematic diagram of a collision between a randomly marching monomer 

and an aggregating cluster. It should be noticed that for drawing considerations the increment 

step presented here (equal to 6 pr ) is significantly larger than the one used for our simulations 

(see Table 2.1). If the distance between the current position of the monomer (a) and any of the 

particles within the aggregating cluster is smaller than the increment step, the possibility of 

a collision must be considered. In that case, new coordinates of the monomer (b) are 

calculated with the typical procedure described above. However, the algorithm also verifies 

whether during the current increment step (i.e. between positions (a) and (b)) the monomer 

collides with the aggregate or not. If an intersection occurs (see Figure 2.7), the coordinates of 

the marching particle are recalculated the exact contact position (c). 

 
Figure 2.7. Schematic diagram of a collision between a randomly marching monomer and aggregating 
cluster: (a) current position of the monomer, (b) new position of the monomer without collision, 
(c) position of the monomer at the collision point. 

The procedure described above does not fulfill all requirements for the aggregation process. 

In fact, the collision and sticking between a single monomer and an aggregate of 1pn −  

particles, is only effective when the following inequality is satisfied: 

 
, ,

, 1 , 1

,
1

f f

p p

p p

D D

g n g np

g n p g n

R Rn

R n R
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where � is an accuracy parameter on the fractal dimension. In the DLA software this value 

may be adjusted on demand. Nevertheless, in the present study it was fixed at 210ε −=  as 

smaller values greatly increase computational time without noticeable improvements in 

morphological characteristics of the aggregates. Something important to understand is that 

Eq. (2.20) allows ensuring at each aggregation step that Eq. (2.13) is nearly verified and thus, 

that the scaling properties of all aggregates are conserved at all scales.  

During the aggregation process we assume that particles stick together like hard spheres in 

contact, i.e. exactly in one point and any additional displacement after their collision is 

impossible. From a macroscopic point of view both assumptions, especially the latter, seem to 

be incorrect. It is obvious that velocity of a fast moving object after a collision with a larger 

one decreases significantly but due to the principle of inertia and the law of conservation of 

the linear momentum, the colliding particle should in most cases remains in motion. This is 

not necessarily the case of nanoparticles which are mostly sensitive to adhesion and short 

range forces (e.g. Van der Waals forces). Nevertheless, it is common to simplify this problem 

and ignore particle displacement after collision (Witten and Sander 1981; Babu et al. 2008).  

 

2.3.1.3. Overlapping factor 

In some particle systems, due to additional processes (e.g. melting, polymerization, deposition 

or collision impact), primary particles may be entangled by more than a single point of 

contact, and they can also significantly overlap. For example, overlapping may be 

encountered when aggregation process occurs at high temperature (e.g. during combustion or 

in a plasma system), so it may be necessary to take into account and model this phenomenon. 

Figure 2.8 shows a schematic diagram of the overlapping of 2 particles with radiuses ,1pr , ,2pr  

and their centers of mass distant each other by 3Dd
��

. 

 
Figure 2.8. Schematic diagram of the three dimensional overlapping factor 3DCυκ  for 2 spherical 
particles with radiuses 1pr , 2pr  and their centers of mass distant each other by 3Dd

��
. 

To quantify overlapping effect, it is convenient to define a 3D overlapping factor based on the 

true Euclidian inter-distance 3Dd
��

 between the particles' centers of mass (Brasil et al. 1999): 

 
( ) 3

,1 ,23

,1 ,2

,
D

p pD

p p

r r d
C

r r

υκ
υκ

+ −
=

+
 (2.21) 
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where 3 0DCυκ <  for monomers that are not in contact, 3 0DCυκ =  for hard spheres in contact and 

( ]3 0,1DCυκ ∈  for partially to fully overlapped spheres. If we consider only monodisperse 

particles within an aggregate, Eq. (2.21) may be simplified to: 

 ( )3 32 / 2 .D D
p pC r d rυκ υκ= −  (2.22) 

As an example, for diesel soot aggregates, depending on the sampling and storage protocols, 

Wentzel et al. (Wentzel et al. 2003) have found an overlapping factor in the range 
3 0.10 0.29DCυκ = − , while Ouf et al. (Ouf et al. 2010) reported 3 0.16 0.30DCυκ = − . We have found 

similar value ( 3 0.20 0.05DCυκ = ± ) for the experimental sample of diesel soot particles (Yon et 

al. 2011) during the TEM-based analysis (see chapter 3). Estimated overlapping factor was 

also applied to model artificial fractal-like aggregates. 

In what follows, to numerically account for overlapping (Brasil et al. 1999), we first generate 

an aggregate of hard spheres in contact. Next, we can take into account for 3DCυκ  by 

progressively increasing the radiuses of monomers within an aggregate while maintaining the 

position of their centers. At the same time it is necessary to perform a scaling down procedure 

to keep the initial value of the particle radius. Described steps are depicted in Figure 2.9.  

 
Figure 2.9. Numerical procedure for overlapping: (a) an aggregate with hard spheres in contact, (b) the 
aggregate with expanded radiuses of monomers, (c) the aggregate after scaling down procedure. 

Figure 2.10 compares radius of gyration of the aggregates with fractal dimension equal to 

1.80 and various number of monomers for different overlapping factors (from 0 to 0.5). It can 

be seen that the overlapping factor has a linear influence on the radius of gyration. 
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Figure 2.10. Radius of gyration as a function of the number of monomers in the aggregate with fractal 
dimension equal to 1.80, for various overlapping factors. 

 

2.3.1.4. Fractal prefactor 

Another important parameter in the DLA model is the fractal prefactor fk  appearing in 

Eq. (2.13). The physical meaning and values of this constant has been extensively discussed 

in the literature. Even for the same particle system its value differ significantly between 

various authors. As an example, for soot aggregates it can vary from 1.23 to 3.5 (e.g. (Puri et 

al. 1993; Cai et al. 1995; Koylu et al. 1995; Ouf et al. 2010)). As already mentioned, there are 

many attempts to explain this spreading (Brasil et al. 1999; Sorensen 2001; Bau et al. 2010). 

The most common idea is that it accounts for monomers overlapping, as well as their shape 

which can also differ significantly from the spherical one (Puri et al. 1993).  

In this work, like some authors (Sorensen and Roberts 1997; Brasil et al. 1999; Bau et al. 

2010) did before, this parameter was set constant, with a value corresponding to the one found 

for an infinitely large hexagonal close packed (hexagonal compact, HC) aggregate of 

monodisperse hard spheres in contact. The underlying idea being that this aggregate has the 

highest possible compactness in a 3D space. Sorensen et al. (Sorensen and Roberts 1997)  

proposed a correlation between fk  and fD : 

 ( )
2

2
,

fD

f
f

f

D
k p d

D

� �+
= � �� �

� �
 (2.23) 

where ( )p d  is a compactness factor (called also sphere packing fraction): 

 ( ) ,SPH

PR

V
p d

V
=  (2.24) 

where PRV  and SPHV  are volumes of the elementary spatial object and volume of the particles 

contained in this object respectively. For monodisperse hexagonal compact aggregate 

( ) ( )/ 3 2 74%p d π= � . Thus using Eq. (2.24) in Eq. (2.23) the fractal prefactor for 

a monodisperse hexagonal compact aggregate is equal to: 
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 ( )( )3/2
/ 3 2 5 / 3 1.593.fk π= ≈  (2.25) 

The same argument has been found by Lapuerta et al. (Lapuerta et al. 2010) and also similar 

value was previously supported by Sorensen et al. (Sorensen and Roberts 1997). 

The overall procedure described in this section allows to generate synthetic aggregates 

(i.e. sets of spheres coordinates) for a large range of fractal dimensions, radiuses of gyration 

and number of primary particles only limited by the computational time.  

 

2.3.1.5. Particle Size Distribution 

The size distribution of a large variety of particle systems can be approximated by analytical 

particle size distribution (PSD) like the Gaussian, log-normal, power, Gamma ones. For most 

results presented in the current work we have assumed that we have monodisperse particles. 

We did it since in a lot of systems (e.g. aerosol of nanoparticles, plasma) the radius of 

particles has a low standard deviation. Nevertheless, in some cases it may be also interesting 

to consider polydisperse particles. To do so, in this work, we use the log-normal distribution 

which depends on two parameters ,  s�  (Xu 2002): 

 
2

ln1 1
( ) exp .

22
p

p

p

r
f r

sr s

µ
π

� 	−� �
A B= − � �
A B� �C D

 (2.26) 

The parametersµ, s , the mean radius pr  and the related standard deviation pσ  are given by: 

 ( )2 2 2ln / 1,      ln / 2,p p ps r r sσ µ= + = −  (2.27) 

 ( )2 2 2 2exp / 2 ,     exp 1 .p p pr s r sµ σ � 	� 	= + = −C D C D  (2.28) 

Looking at Figure 2.14 and Figure 2.16, where aggregates with a high polydispersity                

( 0.5pσ = ) are presented, one may have the impression that there are too many large 

monomers and the given size distribution is not preserved. This is pure subjective effect – the 

observer is more sensitive to the larger objects than the smaller ones. To verify the correctness 

of the generated distribution, we have performed dedicated simulations. Figure 2.11 shows the 

particles size distribution estimated for 100 clusters of 1000 polydisperse monomers 

(i.e. 100 000 particles) with the log-normal distribution and the initial standard deviation 

equal to (a) 0.10pσ =   and (b) 0.30pσ = . Clearly, estimated values are in a perfect agreement 

with the initial ones. 



 CHAPTER 2 - MODELS FOR PARTICLE AGGREGATES 

  

35 
 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

 r
p
 = 0.999±0.001

   σ
p
 = 0.100±0.001

C
ou

nt

Dimensionless radius of monomers, r
p

 Count
 Log-Normal fitting

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1000

2000

3000

4000

5000

6000

7000

8000

(b)

 r
p
 = 1.000±0.004

   σ
p
 = 0.299±0.004

C
ou

nt

Dimensionless radius of monomers, r
p

 Count
 Log-Normal fitting

 
Figure 2.11. Particle Size Distribution (PSD) of monomers for 100 aggregates of 1000 polydisperse 
monomers with initial standard deviation (a) 0.10pσ =  and (b) 0.30pσ = . 

 

2.3.1.6. Diffusion Limited Aggregation Software 

A screen copy of the DLA software developed according to the algorithm described above is 

shown in Figure 2.12. In the main window six separate panels may be found. The most 

important is panel (a), which allows to specify the parameters of aggregation (e.g. number and 

radius of monomers, radius of gyration, radius of appearance and external boundary spheres, 

etc.). Panel (b) is used to rotate the aggregate on demand according to the laboratory 

coordinate system, while panel (c) enables to perform serial calculations (loop over pn , fD , 

gR , fk ). Panel (d) is a progress bar. All the coordinates of the aggregating monomers and the 

parameters of the forming cluster are displayed in the preview window (e). Finally, panel (f) 

gathers together general control buttons and enables to export and import data to various 

format files. Particularly, it is possible to generate output files that can be directly used with 

the POV-Ray 3D rendering software (POV-Ray 2004) and also text files that may be post-

processed and used as the input files for light scattering codes. 
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Figure 2.12. Screen copy of the DLA software main tab: (a) aggregation parameters, (b) cluster 
rotation panel, (c) serial simulation panel, (d) progress bar, (e) preview window and (f) general control 
buttons. 

 

2.3.2. Numerical results of the DLA aggregation – examples 

2.3.2.1. Aggregates with a 3D rendering view 

Figure 2.13 - Figure 2.19 show typical synthetic fractal-like aggregates generated with the 

DLA software. These aggregates were simulated for monodisperse monomers with  

dimensionless radius set to 1pr =  as well as polydisperse monomers with mean radius 1pr =  

and various fractal parameters (fractal dimension, radius of gyration, etc.). Their 3D 

renderings were generated with the POV-Ray software (POV-Ray 2004). 

Fractal aggregates presented in Figure 2.13 (a) and Figure 2.13 (b) have different fractal 

dimensions ( 1.50fD =  and 1.75fD =  respectively) and radiuses of gyration ( 32.85gR =  and   

19.95gR = ) although they contain the same number of monodisperse monomers ( 300pn = ) 

and thus they have the same radius in volume 3 6.69v p pR r n= ≈ . Figure 2.14 shows 

aggregates with the same parameters as in Figure 2.13 but with a significant polydispersity in 

radius of monomers (log-normal distribution with standard deviation 0.50pσ = ). The 2D 

images obtained for the 3 main projection planes (xy , xz  and yz) are also shown. The large 

disk sheathes the radius of gyration while the smaller one corresponds to the radius in volume. 
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Figure 2.13. Fractal aggregates of 300 monodisperse monomers with the same radius in volume     

6.69vR =  but various fractal dimensions and radiuses of gyration: (a) 1.50fD = , 32.85gR = , 
(b) 1.75fD = , 19.95gR = . 

 
Figure 2.14. Fractal aggregates of 300 polydisperse monomers (log-normal distribution, 0.5pσ = ) 
with the same radius in volume 6.69vR =  but various fractal dimensions and radiuses of gyration: 
(a) 1.50fD = , 32.85gR = , (b) 1.75fD = , 19.95gR = . 

Fractal aggregates presented in Figure 2.15 (a) and Figure 2.15 (b) have different fractal 

dimensions ( 2.00fD =  and 2.25fD =  respectively) and radiuses of gyration ( 12.87gR =  and   

17.71gR = ) but they have the same number of monodisperse monomers 500pn =  and thus the 

same equivalent radius in volume 3 7.94v p pR r n= ≈ . Figure 2.16 shows aggregates with the 

same parameters as Figure 2.15 but the PSD of monomers is polydisperse (log-normal 

distribution with standard deviation 0.50pσ = ). 



CHAPTER 2 - MODELS FOR PARTICLE AGGREGATES 

38 
 

 
Figure 2.15. Fractal aggregates of 500 monodisperse monomers with the same radius in volume 

7.94vR =  but various fractal dimensions and radiuses of gyration: (a) 2.00fD = , 17.71gR = , 
(b) 2.25fD = , 12.87gR = . 

 
Figure 2.16. Fractal aggregates of 500 polydisperse monomers (log-normal distribution, 0.5pσ = ) 
with the same radius in volume 7.94vR =  but various fractal dimensions and radiuses of gyration: 
(a) 2.00fD = , 17.71gR = , (b) 2.25fD = , 12.87gR = . 

 
Figure 2.17. Fractal aggregates of 500 monodisperse monomers with the same radius in volume 

7.94vR =  but various fractal dimensions and radiuses of gyration: (a) 2.50fD = , 9.98gR = , 
(b) 2.75fD = , 8.10gR = . 
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In the same way, fractal aggregates presented in Figure 2.17 (a) and Figure 2.17 (b) have 

different fractal dimensions equal 2.50fD =  and 2.75fD =  respectively, different radiuses of 

gyration 9.98gR =  and 8.10gR =  but the same number of monodisperse primary particles 

500pn =  and the same equivalent radius in volume 3 7.94v p pR r n= ≈ . 

Figure 2.18 and Figure 2.19 present aggregates with a much more significant number of 

monomers ( 10 000pn = ), the same equivalent radius in volume 3 21.54v p pR r n= ≈  but 

different fractal dimensions and radiuses of gyration. Figure 2.18 presents aggregates with 

(a) 1.75fD = , 147.97gR =  and (b) 2.00fD = , 79.22gR = . Figure 2.19 presents aggregates with 

(a) 2.25fD = , 48.73gR =  and (b) 2.50fD = , 33.06gR = . 

 
Figure 2.18. Fractal aggregates of 10 000 monodisperse monomers with the same equivalent radius in 
volume 21.54vR =  but various fractal dimensions and radiuses of gyration: (a) 1.75fD = , 

147.97gR = , (b) 2.00fD = , 79.22gR = . 

 
Figure 2.19. Fractal aggregates of 10 000 monodisperse monomers with the same equivalent radius in 
volume 21.54vR �  but various fractal dimensions and radiuses of gyration: (a) 2.25fD = , 48.73gR = , 
(b) 2.50fD = , 33.06gR = . 
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2.3.2.2. Morphological parameters 

Working with fractal aggregates one must be aware that aggregates with the same number 

of monomers, but various fractal dimensions may have totally different radiuses of gyration. 

Figure 2.20 shows the evolution of the radius of gyration (normalized by the mean radius of 

monomers) of aggregates versus the number of monomers. Results presented here were 

obtained for the aggregates of monodisperse particles with hard spheres in contact and a wide 

range of fractal dimensions (from 1.20 to 2.80). For instance, it can be seen that for two 1000-

monomer aggregates with a fractal dimensions equal to 1.20 and 2.80 respectively, the ratio 

between the radiuses of gyration is higher than 20. 
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Figure 2.20. Radius of gyration as a function of the number of monomers in the aggregate for various 
fractal dimensions and monodisperse monomers with a single point of contact. 

To describe the characteristic size of a fractal aggregate the radius of gyration is widely used. 

Nevertheless, it is not the only one characteristic length that can be used for this purposes. 

To do so, we can calculate the radius in volume vR  (i.e. the radius of a sphere with a volume 

equivalent to the volume of all the monomers within an aggregate), the radius of the minimum 

bounding sphere bR  (i.e. the sphere with the minimum radius which contains entire 

aggregate) or the maximum length of the aggregate in the 3-dimensional space 3DL . Figure 

2.21 shows a comparison between the aforementioned characteristic lengths as a function of 

the fractal dimension for aggregates with (a) 100pn =  and (b) 500pn =  monomers. 
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Figure 2.21. Comparison between 4 characteristic lengths of aggregates (radius of gyration gR , radius 
in volume vR , radius of minimum bounding sphere bR  and maximum length of aggregate 3DL ) versus 
the fractal dimension and for: (a) 100pn =  and (b) 500pn = . 
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Figure 2.22. Comparison between ( )3 / 2D

gL R   and /b gR R  ratios versus the fractal dimension and 
for: (a) 100pn =  and (b) 500pn = . 

Moreover, the ratio between the presented characteristic lengths is not constant. Figure 2.22 

shows that the values of ( )3 / 2D
gL R  and /b gR R  are changing as a function of the fractal 

dimension. Numerical simulations comparing the different solutions of the presented problem 

and the results obtained for the various light scattering models are presented and discussed in 

chapter 4 of the current work. 

 

2.3.2.3. Accuracy on aggregation parameters 

Created in this research DLA code is called fully adjustable (or tunable) because in 

contradiction to the ordinary DLA solutions it preserves fractal parameters at each step of the 

aggregation. As an example, Figure 2.23 (a) and Figure 2.23 (b) show the evolution of the 

fractal dimension during the aggregation process for 100pn =  monomers and fD  equal 

1.80 0.01±  and 2.50 0.01±  respectively. We can ensure that the generated aggregates are not 

multi-fractals and that they have true auto-similarity properties. 
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Figure 2.23. Accuracy of the fractal dimension for the following aggregation steps for clusters of 100 
monodisperse monomers with imposed values: (a) 1.80 0.01fD = ± and (b) 2.50 0.01fD = ± . 

However, for very low or very high fractal dimensions (e.g. 1.20fD =  or 2.80fD = ) the 

aggregation parameters cannot be preserved at the beginning of the aggregation. This comes 

directly from the fact that for so extreme parameters fractal equation (2.13) is not satisfied for 

a few monomers. In such case, the aggregation process may be stucked. The only way to deal 

with this problem is to decrease the accuracy imposed at the beginning of the aggregation 

process. This option allows to start aggregation with a lower (or higher) fD  than the initial 

one, afterwards, the code converges rapidly to the imposed value. As an example, Figure 2.24 

shows the evolution of the fractal dimension of an aggregation of 100 monodisperse 

monomers with 2.80 0.01fD = ±  when aforementioned option was used. 
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Figure 2.24. Accuracy of the fractal dimension for the following aggregation steps for cluster of 100 
monodisperse monomers with 2.80 0.01fD = ± . 

In some way we could say that this aggregate is multi-fractal for 25pn ≤ . However, it makes 

no sense to use (or apply) a fractal dimension for an object which do not contain more than 

tens of monomers. 
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2.3.2.4. Computational time of DLA algorithm 

Another important issue related to the DLA is the computational time. DLA algorithm is very 

time-consuming, especially if we use extreme parameters (i.e. very high or low fractal 

dimension, significant number of monomers, etc.) or if we impose a high accuracy of these 

parameters. As an example, Figure 2.25 shows the aggregation time of aggregates (a) with 

different fractal dimensions versus the number of monomers and (b) for a given number of 

monomers versus the fractal dimension. 
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Figure 2.25. Computational time of the DLA software: (a) aggregates with different fractal dimensions 
versus the number of monomers, (b) aggregates with different numbers of monomers versus the fractal 
dimension. 

The calculations were performed with an up-to date personal computer (dual core CPU 

2 2.8 GHz×  and 4 GB of RAM memory) for the parameters shown in Table 2.1. Figure 2.25 

(a) shows a power-law relation between the number of monomers and the computational time. 

This behavior of the DLA algorithm is partly due to the fact that the radius of appearance 

sphere pR  is calculated as a multiple value of the radius of gyration. In that case a fast 

increase of the radius of gyration versus the number of monomers (see Figure 2.20) causes the 

power-law growth of the volume fraction that may be explored by the randomly marching 

new monomer. Obviously, it significantly extends computational time. 

Figure 2.25 (b) shows the computational time of aggregates versus the fractal dimension. 

It should be noticed that an aggregate with a low fractal dimension has a large radius of 

gyration, which is growing fast for increasing number of monomers (see Figure 2.20). 

As a consequence it increases the radiuses of the appearance and the external boundary 

spheres. Moreover, a dilute aggregate occupies only a small fraction of the volume defined by 

the external boundary sphere so the probability of a collision with a randomly marching 

monomer is extremely low. Because of the aforementioned issues, computational time of the 

DLA algorithm might be significantly extended. The situation is opposite for aggregates with 

high fractal dimension. In that case, the external boundary sphere is several times smaller so 

numerous collisions between free monomers and an aggregate may occur. Nevertheless, due 
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to the high compactness of the aggregate only certain positions of particle satisfy equation 

(2.20), so most of the colliding monomers are rejected. This effect also extend aggregation 

time (see Figure 2.25). However, as mentioned previously, high precision of the fractal 

dimension or the other parameters does not cause significant improvements of morphological 

characteristics. Therefore, accuracy imposed during the extensive simulations should be 

a compromise between morphological requirements and algorithm execution time.  

Table 2.1 shows typical parameters used for the aggregation with our DLA code. Beside all 

the parameters that have already been explained, an additional field called “No restriction” is 

depicted. When checked, our code works as typical DLA software which during the 

aggregation process does not impose any constraints regarding the fractal dimension, fractal 

prefactor or radius of gyration. In that case, each collision between randomly walking 

monomer and aggregate results in a irreversible connection. 

 
Table 2.1. Typical parameters for the aggregation simulations. 

Df accuracy ± 0.01  Radius of appearance sphere (p)* 5.0 

Rg accuracy ± 0.01  Radius of boundary sphere (b)** 5.0 

fractal prefactor kf 1.593  Monomer step increment 2.0 

Multiple value of max distance for 
appearance and boundary spheres  

Yes 
 Force accurate value of Df Yes 

 Verify radius of gyration Yes 

Appearance  sphere multiplier (mult)* 2.0  No restrictions No 

* radius of appearance sphere is calculated as p bR mult R p= × + , where bR  is the radius of boundary sphere, 

mult is the “appearance sphere multiplier” and p is the input parameter. 

** radius of external boundary sphere is calculated as e pR R b= + , where b is the input parameter. 

 

2.4. A Comparison between DLA and DLCA aggregates 
Numerous computer simulations (e.g. (Meakin 1983; Weitz et al. 1985; Chakrabarty et al. 

2007)) have shown that the fractal dimension of DLCA aggregates is in the range 

1.70 1.80fD = − . Similar values have been found experimentally. As an example, the TEM-

based analysis (Koylu et al. 1995; Chakrabarty et al. 2007; Ouf et al. 2010), depending on the 

sampling and storage protocol, report 1.65 1.85fD = − . Investigations with static light 

scattering (Sorensen et al. 1992a; Wang and Sorensen 1999; Sorensen 2001) and small angle 

X-ray scattering (SAXS) (Rieker et al. 2000; Boffa et al. 2009) techniques have also reported 

similar values. 

 

2.4.1. Numerical test sample of the DLCA aggregates 

In this paragraph we analyze numerical test sample of the DLCA aggregates (Yon et al. 2008) 

provided by Dr. Jérôme Yon. The parameters of this sample correspond to those of real 
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aggregates produced by a diesel flame. The aggregates are composed of polydisperse 

monomers having a log-normal distribution with mean radius of monomers 17.10 pr nm=  and 

its standard deviation of 3.43 .p nmσ =  The test sample contains 7240 various aggregates 

(i.e. sets of coordinates of the monomers) with a number of monomers within aggregates from 

1 to 6725 and radius of gyration from 0.18g pR r�  to 92g pR r� . Figure 2.26 shows the 

distribution of (a) the number of monomers and (b) the normalized radius of gyration for the 

given population of aggregates. Looking at both figures, it can be seen that the test sample 

contains a significant number of very small aggregates (with 10pn <  and  2g pR r< ).  
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Figure 2.26. Distribution of (a) the number of monomers and (b) the normalized radius of gyration of 
the numerical test sample of DLCA aggregates. 

 

2.4.2. Estimation of the “global” fractal dimension 

The test sample of DLCA aggregates was generated during the spontaneous aggregation 

without any initial constraints regarding the fractal dimension and fractal prefactor. The only 

initially fixed parameters describe the size distribution of monomers (log-normal distribution 

with 17.10 pr nm=  and 3.43 p nmσ = ). Therefore, the fractal dimension and fractal prefactor 

are unknown and must be estimated. fD  can be evaluated from the slope of a linear 

regression, in log-log scale, of the number of monomers pn  versus the ratio /g pR r : 

 ( )ln ln ln .g
p f f

p

R
n k D

r

� �
= + � �� �

� �
 (2.29) 

With Eq. (2.29) we can only access to an average or "global" fractal dimension for the entire 

sample and it is not necessary to determine fk  to obtain fD . However, the fractal prefactor is 

simply estimated as an intersection point of the regression line and axisoy− .  

Figure 2.27 shows the number of monomers versus normalized radius of gyration for the 

numerical test sample of the DLCA aggregates in the log-log scale. It is clear that the curve 

shown in Figure 2.27 exhibits two different slopes for ( )log / 0.4g pR r <  (referred to as region 

“A” latter on) or ( )log / 0.4g pR r >  (referred as region “B”). It should be noticed that the first 
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range corresponds to the aggregates with ( )log / 0.4g pR r ≤  (i.e. / 2.512g pR r ≤ ). In this range, 

aggregates are very small (approximately with
 

8pn < ), so they do not exhibit true fractal 

properties. Thus, due to their size we cannot define them as self-similar objects, so it is 

doubtful to estimate their fractal properties. 

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

B

n
p
 = 2.370 (R

g
 / r

p
) 1.10 ± 0.01

n
p
 = 1.386 (R

g
 / r

p
) 1.75 ± 0.01

lo
g(

n p)

log( R
g
/ r

p 
)

A

 
Figure 2.27. Number of monomers versus normalized radius of gyration for the numerical test sample 
of the DLCA aggregates (Yon et al. 2008) in the log-log scale. 

This sample is not homogenous. The first slope may be interpreted as the first stage of the 

aggregation, where mainly DLA process occurs. The second slope could be attributed to 

aggregates produced simultaneously by DLA and DLCA phenomena. The “global” fractal 

dimension estimated in the region “A” is equal to 1.10 0.01fD = ±  with the fractal prefactor 

2.370fk � . Figure 2.28 shows the estimation of the fractal dimension for the selected 2654 

aggregates of the DLCA sample from the region “B”. The “global” fractal dimension 

estimated for these aggregates is significantly larger than for the previous case, it is equal to 

1.75 0.01fD = ±  with the fractal prefactor 1.386fk = . 
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Figure 2.28. Estimation of the fractal dimension for synthetic aggregates: raw data points and linear 
regression (the log-log scale) of the number of monomers versus the /g pR r  ratio. 
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An alternative way to determine fk  is to use the slope of a linear regression fitting pn  versus 

the ( )/
fD

g pR r . Figure 2.29 shows estimation of the fractal prefactor for the previous sample 

of aggregates. It can be seen that in this case, the estimation procedure is strongly biased by 

the strong non-linearity in the distribution of the raw data points. Thus, the fractal prefactor 

evaluated in this method equal to 1.518fk =  is mainly determined by the largest aggregates. 
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Figure 2.29. An alternative methods for estimation of the fractal prefactor: (b) raw data points and 
linear regressions of the plot of the number of monomers versus the ( )/

fD

g pR r . 

 

2.4.3. Non-homogeneity of the fractal dimension 

Looking at the high dispersion of the raw data points presented in Figure 2.28 one may 

conclude that the fractal dimension of the sample of the DLCA aggregates is not homogenous. 

Indeed, to fully characterize the aggregates, rather than a “global” fractal dimension, various 

fD  for each aggregate must be evaluated. To do so, we fixed fk  to 1.386 and use it in the 

fractal equation (2.13) for each aggregate separately. Figure 2.30 shows the histogram of the 

fractal dimensions evaluated for 2654 aggregates from the region “B” of the sample of DLCA 

aggregates. A similar histogram is obtained for all the aggregates (from both regions) 

satisfying the fractal equation (i.e. with 3pn ≥ ), see Figure 2.31.  

Analyzing Figure 2.30 and Figure 2.31 it can be noticed that the fractal dimension of DLCA 

aggregates is highly polydisperse. The average value evaluated for the aggregates with 

2.512g pR r>  is equal to 1.754fD =  and it is in a perfect agreement with previously estimated 

the “global” value 1.75 0.01fD = ± . The average value of the fractal dimension for all the 

aggregates with 3pn ≥  is significantly larger: 1.915fD = . Nevertheless, as mentioned 

previously, self-similarity properties of small aggregates are questionable. 
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Figure 2.30. Distribution of the fractal dimension of  the DLCA aggregates with ( )log / 0.4g pR r > . 
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Figure 2.31. Distribution of the fractal dimension of  the DLCA aggregates with 3pn ≥ . 

 

2.4.4. Sticking DLA aggregates  

The most intuitive way to generate DLCA aggregates is to stick together two (or more) DLA 

aggregates. Using this procedure (not so rigorous from the physical point of view), it is 

possible to generate DLCA aggregates and compare morphological differences between DLA 

and DLCA aggregates regarding their parameters. As an example, we stick together pairs of 

aggregates with 100pn =  monomers and various fractal dimensions ( 1.25fD � , 1.50, 1.75, 

2.00, 2.25, 2.50 and 2.75). For each fractal dimension we used 100 different pairs of 

aggregates and stick them for 1000 random orientations in 3-dimensional space. Distribution 

of the resulting fractal dimension is shown in Figure 2.32. 

Looking at the distributions of the fractal dimension presented in Figure 2.32 we conclude 

that collision between two aggregates with the same fractal dimension leads to the lower 

average value of fD  for aggregates with medium or high fractal dimension ( 1.50fD > ). For 

dilute aggregates ( 1.50fD < ) the average fractal dimension after collision is smaller than the 

initial one. At the same time, the standard deviation of the fD  is significantly decreasing 
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when fractal dimension increases. It is a direct consequence of the fact, that dilute aggregates 

may stick together in much more different configurations than the opaque ones. 
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Figure 2.32. Distribution of the fractal dimension of 10000 aggregates with the total number of 

200pn =  monomers generated by sticking 100 pairs of aggregates with 100pn =  for 1000 random 
orientations of each of them. Initial fractal dimension of aggregates: (a) 1.25fD =  (b) 1.50fD = ,     
(c) 1.75fD = , (d) 2.00fD = , (e) 2.50fD = , (f) 2.75fD = . 

As an example of the sticking procedure described above, Figure 2.33 - Figure 2.35 show 

some of the generated aggregates. All of them contain 200pn �  monomers and have the same 

equivalent radius in volume 5.85vR �  but different fractal dimensions. They were generated 

by sticking the aggregates with various fractal dimensions and radiuses of gyrations. 

 
Figure 2.33. Fractal aggregates with the total number of 200pn =  monomers and the same equivalent 
radius in volume 5.85vR =  but various fractal dimensions and radiuses of gyration: (a)

 
1.484fD = , 

25.93gR =  and (b)
 

1.662fD = , 18.31gR =  generated by sticking two aggregates of 100pn =
 monomers with: (a)

 
1.50fD = , 15.80gR =  and (b) 1.75fD = , 11.41gR = . 
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Figure 2.34. Fractal aggregates with the total number of 200pn =  monomers and the same equivalent 
radius in volume 5.85vR =  but various fractal dimensions and radiuses of gyration: (a)

 
1.866fD = ,  

13.32gR =  and (b)
 

1.977fD = , 11.52gR =  generated by sticking two aggregates of 100pn =
 monomers with: (a)

 
2.00fD = , 7.92gR =  and (b) 2.25fD = , 6.30gR = . 

 
Figure 2.35. Fractal aggregates with the total number of 200pn =  monomers and the same equivalent 
radius in volume 5.85vR =  but various fractal dimensions and radiuses of gyration: (a)

 
2.192fD = ,  

9.07gR =  and (b) 2.233fD = , 7.94gR =  generated by sticking two aggregates of 100pn =
 monomers with: (a)

 
2.50fD = , 5.23gR =  and (b) 2.75fD = , 4.51gR = . 
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2.5. Buckyballs aggregates 
2.5.1. Introduction 

The regular aggregates of silica nanobeads formed by the spray drying method (see Figure 

2.36) show strong, if not astonishing, similarity to the morphology of the "fullerene" or 

"buckyballs" molecules: (i.e. Carbon (60C , 540C ), Bore ( 80B , 92B ), etc.). 

 
Figure 2.36. Aggregates of silica nanobeads with a Buckyball shape (size: from few tens of 
nanometers to one or two micrometers). 

Each of the latter molecules is formed by a set of atoms localized at the vertices of a close and 

regular (but not fully) polyhedron having pentagons and hexagons faces (4, 6, 8,10), see 

Figure 2.37. On the other hand, it is known from Euler's Theorem ("12 pentagons rule") that 

any regular and close polyhedron must contains 12 pentagonal faces, whereas it can contains 

any number of hexagonal faces (i.e. the number of hexagon may follow other constraints like 

the overall sphericity of the polyhedron). Based on the clear evidence that the silica 

nanobeads observed are also organized in a pentagonal and hexagonal lattice, we naturally 

came to the idea that a geodesic dome model is the most suitable to describe the morphology 

of buckyballs of silica nanobeads that we were (initially) observed experimentally (Toure 

2010; Barbosa et al. 2012; Onofri et al. 2012a). 

If the geodesic dome model is commonly used to produce geodesic surfaces that fit rather 

well the spherical (or other convex) surfaces, the particularity and novelty of our model is that 

we place silica nanobeads almost in contact at the vertices of the regular and convex 

polyhedron generated with this method (Toure 2010). 

 
Figure 2.37. From left to right: fullerene (60C , 540C ) - Geodesic Domes (Eden, Germany) (Toure 

2010). 
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The equation of the intersection plain and the third coordinate of the vertices 1-5 are:  

 ( ) ( ) 12
1 5 . ./ 2 sin 2sin .Vert Vertz z R l R l α α −
−

� 	≡ = − = −
C D  (2.32) 

With Eqs. (2.30) and (2.32), and with the equation of the circumscribed sphere, we obtained 

for the radius of the circle passing by the vertices 1-5:  

 ( )2
1 5 1 1 .4cos 1r l α− = + −  (2.33) 

Finally, the coordinates of the vertices 1, 2, 3, 4, 5 are ( ), ,X Y Z = ( 1 5 cos( ),r nα− 1 5 sin( ),r nα−

)1 5z−  with n=0, 1, 2, 3, 4 respectively. By symmetry, the coordinates of the vertex 7 are equal 

to ( ).0,0, VertR−  and those of vertices 8, 9, 10, 11 and 12 to ( 1 5 cos( ),r nα π− + 1 5 sin( ),r nα π− +

)1 5z −−  respectively.  

By placing monomers at the icosahedron vertices, i.e. 2 pl r= , we obtain for the radius of the 

circumscribed sphere passing by the center of all monomers:  

 . 2 sin ,Vert pR r α=  (2.34) 

and the circumscribed sphere touching the buckyball of 12pn =  external diameter:  

 ( ).2sin 1e pR r α= +  (2.35) 

It may also be useful to derive the radius of the monomers from the external radius of the 

buckyball: 

 ( ) 1 .2sin 1p er Rα −= +  (2.36) 

 
Figure 2.39 Geodesic dome model: decomposition of the icosahedron elementary faces into smaller 
regular triangular faces. 

 

2.5.2.2. Building large and regular polyhedron  

To build larger buckyballs with the geodesic dome model, each edge of the icosahedron is 

divided into 1in +  line segments of equal length (see Figure 2.39), where 0in ≥  is an integer 

number corresponding to the number of new vertices introduced along each nominal edge 
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(noted a, b, c in Figure 2.39). By drawing line segments of equal length, passing through these 

new vertices and being at the same time parallel to the edges of the face of the icosahedron, 

we produce new regular triangles. These smaller triangles are defined by the vertices located 

on the edges of the face of the icosahedron face plus the ones that are inside the corresponding 

icosahedron face. So that for each face of the icosahedron we obtain 2
in  smaller identical 

equilateral triangular faces and a total number of vertices equal to .pn  As a first step, we 

evaluate empirically the relation between pn  and in , with 12,  42,  92,  162,  252,  362,...pn =  for 

0,  1,  2,  3,  4,  5,...in =  respectively (see Figure 2.39). It is easy to show that the values of pn  

evolve as: 

 
, 0 .

, 0 . ,

, 

3
,

2

i

i i

p n Vert

i
p n Vert Face c n

n n

n
n n n n

=

>

=

� �= + +� �
� �

 (2.37) 

where the coefficient 3/ 2 accounts for the fact that the vertices on the edges of the triangular 

faces of the icosahedron are common to two of its adjacent faces (green symbols in Figure 

2.37 (a)). , ic nn  stands for the number of vertices inside the considered icosahedron face 

(i.e. ball symbols in Figure 2.39) with , 0, 1,  3,  6,  15,  21,...c nin =  when 0,  1,  2,  3,  4,  5,...in =  

respectively. The number of the internal vertices obeys the arithmetic progression: 

 ( )
, 0 , 0 , , 1

1
0;   2 1 .

2i i i i

i i
c n c n c n c n

n n
n n n n= > −

−
= = − + =  (2.38) 

Finally, the total number of vertices of the buckyballs is:  

 ( )
0,   ,

2
0;   .

2

i p Ver

i i Face
i p Ver

n n n

n n n
n n n

= =E
F
� +

> = +F
�

 (2.39) 

Later on, it will be useful to have an expression relying 1in >  to pn :  

 1 2 1.p Ver
i

Face

n n
n

n

−� �
= + −� �

� �
 (2.40) 

The edge length of a buckyball of ( )p in f n=  monomers can be derived from its 

approximated1 edge length (in Figure 2.37 (a)): 

 ( )2 1 .i pl n r≡ +   (2.41) 

Thus we finally obtain for the external radius of the buckyball of pn  particles:  

  

 . 2
2 1 sin 1.1 2 1

5
p VerVert

p Face

n nR

r n

π� 	� �−� �
A B� �= + ++ −� �� �A B� �� �C D

  (2.42) 

The coordinates of the new vertices, are more particularly those located on the edges a, b, c: 

,  ,  ai bi ciS S S  (see Figure 2.39), can be derived with simple linear relations from the coordinates 

                                                 
1 It is only an approximation since the monomer will be not fully monodisperse (see later on). 
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of the icosahedron vertices. As an example, for the edge a, the coordinates of the vertices are, 

with 0,  1,  ...,  ii n= , given by: 

  

 ( ) ( ) ( )1 2 1 1 2 1 1 2 1;  ;  .
1 1 1ai ai ai

i i i

i i i
X X X X Y Y Y Y Z Z Z Z

n n n
= + − = + − = + −

+ + +
  (2.43) 

A similar procedure can be used to deduce the coordinate of the vertices inside each face of 

the icosahedron (Toure 2010; Onofri et al. 2012a).  

 

2.5.2.3. Projection of the circumscribed sphere 

To obtain large buckyballs with a spherical shape, the vertices of all small equilateral triangles 

are projected onto the circumscribed sphere. This is simply done with a homothetic 

transformation of center ( )0,0,0  and similitude ratio γ  (see Figure 2.40 (a)). We found for 

the coordinates ,  X Y′ ′  and Z′ of the projected vertices: 

 ² ² ²
.; ; ,  / .V ertX X Y Y X Z w ith R X Y Zγ γ γ γ′ ′ ′= = = = + +  (2.44) 

Figure 2.40 (a) shows the vertices on the regular polyhedron (in black) and their projected 

image onto the circumscribed sphere. At all of these projected vertices a monomer will be set. 

However, due to the projection onto the circumscribed sphere, the edges of the projected 

triangles are curved and they have slightly different lengths (i.e. in Figure 2.40 (a) the length 

noted � and �� are clearly different). For molecules this implies that the interaction forces are 

slightly different between each atom. For buckyballs, this distortion implies that the 

monomers are necessary slightly polydisperse and/or not fully in contact (5 or 6 points).  

 

Figure 2.40 Projection of the vertices on the circumscribed sphere (Toure 2010; Onofri et al. 

2012a). 

 

2.5.2.4. Optimization of the radius of each monomer  

As the buckyball of 12 monomers is directly build from the icosahedron, it is easy to 

conclude that all monomers are in contact with their five neighbors and that they are 
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monodisperse when .p Vertr R= . For larger buckyballs, one additional step is necessary to 

minimize gaps and overlapping between the monomers. To do so, keeping constant the 

position of each monomer, the size of each monomer is adjusted iteratively until we obtain 

each monomer is in contact with at least another one (the monomer size distribution remains 

narrow, see Figure 2.44). With this procedure, the maximum contact point is only ensured for 

the monomers that are at the center of the pentagon's (i.e. 5 contacts). The fact that all 

monomers are not strictly in contact could be a problem to simulate the scattering properties 

of metallic aggregates (i.e. plasmon resonances). However, for buckyballs of dielectric 

spheres, this accuracy is thought to be far enough.  

 

2.5.2.5. Filling Buckyballs  

Even if there are some experimental evidences that aggregates of silica nanobeads may be 

empty (like those produced with the geodesic dome model), the great majority of them seem 

to be filled with nanobeads. Unfortunately, we do not have any information about the internal 

packing structure. Then, as a first step and to make the things simple, we have developed two 

filling procedures using (i) hexagonal compact (HC) aggregate and (ii) fractal aggregate with 

the maximum compactness achievable with our DLA code (i.e. 2.88fD = ) imposed before the 

filling procedure. These two solutions, allow to obtain buckyballs with a volume fraction 

about 50%. For the HC case, the Buckyballs with 12,  42,  92,  162,  252,  362,...pn =  contain 

finally , 13,  44,  111,  249,p HCn = 509,  749,... nanoparticles. For the filling procedure with fractal 

aggregates, the buckyballs contain , 13,  44,  111,  234,  434,  709,...
fp Dn =  nanoparticles 

respectively. 

 

2.5.3. Numerical examples 

All the aforementioned algorithms, for the modeling of small to large buckyballs that are 

empty (shell) or filled, were implemented under MATLAB environment. Figure 2.41 shows 

3D-rendering views (with POV-Ray (POV-Ray 2004)) of shell-buckyballs containing 

12,  42,  ...,  1002pn =  monomers (normalized radiuses). All monomers with radius 1pr <  are 

pointed out in black. One can remark that the latter monomers are localized at the center of 

the pentagons whatever, for the largest buckyballs, they spread out all around the pentagons.  
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Figure 2.41. 3D-rendering of buckyballs with increasing number of monomers pn . 

Figure 2.42 shows a compact and dilated (1.5× ) buckyball with 92pn = . The bonds between 

each monomer and its closest neighbors are also illustrated. Figure 2.43 shows synthetic TEM 

images of a buckyball which is empty ( 162pn = ) or filled with hexagonal compact 

,( 162 87)p HCn = +  or fractal ( , 162 72
fp Dn = + ) aggregates. Figure 2.44 shows all inter-distances, 

and the related statistics, between the monomers of the buckyballs of 42pn =  and 362pn =  

monomers. For both cases, the standard deviation of the monomers inter-distances is below 

7.2% with a standard deviation of the radiuses of less than 11% and 8% respectively. 

 
Figure 2.42. Buckyball of 92pn =  monomers: dilated and compact forms with an illustration of 
monomers “bonds”. 

 
Figure 2.43. Synthetic TEM images generated for the same geodesic dome parameters. Buckyballs: 
(a) empty ( 162pn = , volume fraction 32%) or filled with (b) an hexagonal compact (, 162 87p HCn = +  
spheres, volume fraction 52%) or (c) a fractal aggregate (, 162 72

fp Dn = +  spheres, 2.88fD = , volume 
fraction 49%). 
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Figure 2.44. Normalized monomers inter-distances for empty buckyballs of 42pn =  and 362pn =  
monomers. 

 

2.6. Conclusion 
In this chapter we have introduced two particle models to describe the morphology of 

nanoparticle aggregates. The first of them, the fractal-like model, is based on the self-

similarity concept or structure invariance at each scale. Its basic assumptions are well known 

and widely used in the literature to describe DLA, DLCA or RLCA aggregates. However, we 

have developed a tunable DLA algorithm and code which deliberately avoid any complex 

physical, mechanical or chemical dependencies. It is however a universal and well-defined 

model, which provides reproducible results. This particle model is used throughout this 

manuscript to test the developed algorithms, to calibrate the morphological analysis obtained 

by electron microscopy (Chapter 3), to test the light scattering models (Chapter 4) as well to 

inverse experimental data (Chapter 6). The second model, referenced hare as the Buckyballs 

model, allows to produce highly symmetrical aggregates that have been observed 

experimentally. This model is used to inverse experimental light extinction spectra obtained 

for aerosol of silica nanobeads aggregates (Chapter 6). 
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3. TEM-BASED METHODS FOR THE ANALYSIS 
OF FRACTAL-LIKE AGGREGATES 

 

 

 

 

 

3.1. Introduction 
In this work the two privileged experimental approaches to investigate aggregates of 

nanoparticles are used: the light extinction and the small angle scattering techniques. They 

provide an on-line and in-situ analysis of various particle systems. However, up to now for 

most scientists, the Transmission Electron Microscopy (TEM) and X-ray scattering 

techniques remain the reference methods to characterize soot aggregates (e.g., (Hessler et al. 

2002; Braun et al. 2004; Mitchell et al. 2009)) or dust formed in plasma systems (e.g. (Sharpe 

et al. 2003; Arnas et al. 2005; Glenzer and Redmer 2009)). Indeed, even though TEM-based 

analyses are known to be partly biased due to sampling and storage procedures (e.g. (Koylu et 

al. 1995; Chakrabarty et al. 2009; Ouf et al. 2010)) they offer fundamental advantages over 

optical techniques. For instance, they allow a direct measurement of the two-dimensional 

(2D) projected image of each collected aggregate over a huge size range, while being at the 

same time only slightly sensitive to the properties of primary particle material. All the 

aforementioned issues explain why over the last decades a huge effort has been devoted to 

develop global Transmission Electron Microscopy (TEM) based method for estimating the 

size distribution and average fractal dimension of collected samples. However, this global 

approach is not suitable for aggregate samples that do not have homogeneous fractal 

dimension.  

As an example, Figure 3.1 (Wo�niak et al. 2012a; Wo�niak et al. 2012b) shows TEM-based 

analyses of 543 soot aggregates produced by a diesel flame (Yon et al. 2011). Several results, 

which will be detailed and discussed throughout this chapter, are presented in this figure: 
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(i) the number distribution of the normalized radius of gyration; (ii) typical binarized TEM 

images of soot aggregates with their fractal dimension estimated by the proposed Modified 

Box-Counting method (MBC, see below) and (iii) the fractal dimension of the whole sample 

estimated with the conventional Minimum Bounding Rectangle method (MBR, see below). 

With the MBR method we found a rather typical value for the average fractal dimension of 

diesel soot: 1.88 0.01fD = ±  (e.g. (Yon et al. 2011)). Nonetheless, from a quick view of TEM 

images, one may intuit that the smallest aggregates have a significantly greater fractal 

dimension than the largest ones. If such a correlation exists (i.e. the experimental sample is 

multi-fractal), this could have major implications for our understanding of aggregation and 

growing mechanisms. To clarify this point, one must be able to estimate the fractal dimension 

at different size scales (i.e. as we did with the MBC method) and to quantify the error made. 

 
Figure 3.1. TEM-based analyses of an experimental sample of diesel soot: number distribution of their 
normalized radius of gyration and estimated fractal dimension. The fractal dimension is obtained with 
the conventional Minimum Bounding Rectangle method (single value, in bold) and the Modified Box-
Counting method (for each aggregate, in italic) (Wo�niak et al. 2012b). 

Thus, in this chapter we present the work done to discuss and develop two approaches for 

detecting correlations between the fractal dimension and the radius of gyration of a limited 

sample of fractal-like nanoparticle aggregates (Wo�niak et al. 2012a; Wo�niak et al. 2012b). 

The chapter is organized as follows. Section 3.2 presents the model developed to simulate 

synthetic TEM images of fractal aggregates, as well as the pre-processing schemes used to 

filter out TEM images and extract the overlapping factor of particle image pairs. Section 3.3 

details the principle of and improvements on two methods used to estimate the morphological 

properties of aggregates on the basis of their TEM images. Section 3.4 presents and discusses 
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the results obtained with these methods when applied to experimental and synthetic test 

samples. Section 3.5 is an overall conclusion. 

It should be noticed that, this chapter mostly presents analysis of the experimental diesel soot 

aggregates (Yon et al. 2011) as well as synthetic test samples generated with our DLA-TEM 

software. However we analyze also silicon carbide (SiC) nanoaggregates provided by CILAS 

company, which have, indeed, rather similar properties than diesel soot. 

 

3.2. Modeling and images pre-processing schemes 
3.2.1. Modeling of TEM images 

To obtain synthetic TEM images, a simple macroscopic model for electron absorption was 

used. Assuming a single scattering regime and amorphous primary particles, electron 

propagation and absorption were described by a ray path model and the Beer-Lambert law. 

It was further assumed here that TEM optical conversion and imaging systems are linear.  

Figure 3.2 outlines the modeling procedure, where 0 0x y  and xy are respectively the default 

emission and imaging planes, parallel to each other, while electrons (i.e. rays) propagate 

along z . L is the inter-distance between the planes that are both discretized into N M×  

elements, with 1,...,i N=  and 1,...,j M= . With 0I  being the initial intensity of an incident 

electron beam and LI  the intensity of the corresponding transmitted beam, the transmission 

rate T for the beam ( ),i j  is given by: 

 ( ) ( ) ( )( ), ,

, ,
1 10

,
, exp ,

p i j m i j
L

L p p n m m q
n q

I i j
T i j K l K l

I = =

� 	
= = − −A B

A BC D
� �  (3.1) 

where ,p nl , ,m ql , ( ),p i j , ( ),m i j , pK  and mK  respectively represent the electron path lengths 

within the n th−  primary particle and within the g th−  external medium gap, the number of 

primary particles and external medium gaps crossed by the ray ( ),i j , and the primary particle 

and external medium absorption constants. All the path lengths ,p nl , ,m ql  were determined by 

calculating the geometric intersection points between each incident ray and the surface of all 

primary particles within the aggregates. TEM images were simulated by transforming the 

transmission matrix into a gray-level image: 

 ( ) ( ), , ,TEM L TEMI i j gT i j δ= −  (3.2) 

where g is the overall gain of the optical conversion and imaging system, and TEMδ  the mean 

background noise and offset of the TEM image. Ideally, with an 8-bit camera and an infinite 

signal-to-noise ratio, we find that 255g =  and 0.TEMδ =  This simple model and the related 

Windows-based DLA-TEM code can also take into account parameters such as the contrast, 

brightness or gamma factor of the imaging system. Regarding the difficulty to find tabulated 

data for pK , we just estimate its value from experimental TEM images. For nearly spherical 

primary particles, by measuring their radius and the minimum gray levels of their 

experimental TEM image, we find that: 



CHAPTER 3 - TEM-BASED METHODS FOR THE ANALYSIS OF FRACTAL-LIKE AGGREGATES 

62 
 

 ( ){ }( ) 0ln , / / .p TEM TEM pK Min I i j gI rδ� 	= − +C D
 (3.3) 

Figure 3.2 shows a typical synthetic aggregate of hard spheres in contact (3D-rendering with 

POV-Ray software (POV-Ray 2004)) and its associated TEM image (produced with the 

algorithm described above, with 1.50fD = , 25pn = , / 6.27g pR r = , 1024N M= = , pK = 1, 

0mK = ). 

 
Figure 3.2. 3D rendering with the POV-Ray software and 2D TEM image (with our model) of 
a synthetic aggregate with: 1.50fD = , 25pn = , / 6.27g pR r = . 

This algorithm has been implemented in the DLA software, tab “TEM” (see Figure 3.3).  

The TEM tab of the software is composed of six separate panels. The most important is panel 

(a), that allows to specify the parameters of TEM-imaging (e.g. resolution, grayscale levels, 

values for pK , mK , etc.). Panel (b) is a progress bar, while panel (c) shows a preview of the 

TEM image. Panel (d) provides the information about the resolution of the final image. Panel 

(e) gathers together general control buttons and enables to import data (text files with 

coordinates of spheres produced in the DLA tab of the software) and export synthetic TEM 

images. Finally, panel (f) may be used to perform serial calculations for a set of input files 

(coordinates of monomers in each aggregate). 

Figure 3.4 shows example synthetic TEM images for various projection planes (columns) of 

the simulated aggregates of 200pn =  monomers with 1pr =  and different fractal dimensions 

(rows): (a) 1.60fD = , (b) 1.80fD = , (c) 2.00fD = . It can be seen that the morphological 

parameters of the presented aggregates vary significantly for different rotation angles (and 

thus the projection planes). The latter remark explains why to analyze aggregates from TEM 

images it is necessary to proceed a large number of samples. 
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Figure 3.3. Screen copy of the TEM software: (a) parameters of the TEM imaging, (b) progress bar, 
(c) preview window, (d) image resolution, (e) general control buttons, (f) serial simulation panel. 

 

 

 
Figure 3.4. Synthetic TEM images for various projection planes (columns) of DLA aggregates with 

200pn =  with 1pr =  and different fractal dimensions (rows): (a) 1.60fD = , (b) 1.80fD = , 
(c) 2.00fD = . 
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3.2.2. Overlapping factor and projection errors 

The zoom in Figure 3.2 highlights the fact that TEM images of neighbor particles ν  and κ , 

with a radius pr  and a Euclidian inter-distance 2D
vd κ  overlap with a two-dimensional 

overlapping factor: 

 ( )2 22 / 2 .D D
p pC r d rυκ υκ= −  (3.4) 

This overlapping may be attributed to physical reasons i.e. 3-dimensional overlapping of 

particles discussed previously in section 2.3.1 as well as 3D to 2D projection bias. In fact, for 

aggregates of spherical particles with statistically random orientations, the average 2D 

overlapping factor of all pairs ( ),υ κ  of neighboring hard spheres in contact does not depend 

on the fractal dimension. It is a pure geometrical coefficient that can be derived by averaging 

the inter-distance 3Ddυκ  with the help of Eq. (2.19) and the proper boundary values 1 0γ =  

and 2 1γ = : 

 ( )
2

1

2 3
2

2 1

1
.

2
D D

pd d dx r
γ

υκ υκ
γ

πϕ δ
γ γ

= =
− �  (3.5) 

Using Eqs. (2.22) and (3.5) we find that for two hard spheres in contact:  

 ( )2 2 2 / 2 0.215.D D
p pC r d rυκ υκ= − ≈  (3.6) 

The same procedure can be used for partially overlapping spheres. From numerical 

simulations performed on 1000 pairs ( ),υ κ  of spheres with random orientations and with 

various overlapping factors 3 0, 0.05, ...,  1DCυκ = , we find that the relation between the two 

overlapping factors is nearly linear: 

 3 2
1 2,

D DC Cυκ υκζ ζ= −  (3.7) 

where 1ζ  and 2ζ  are linear regression constants, with 1 1.27 0.01ζ = ±  and 2 0.27 0.01ζ = ± . 

The latter values are comparable with those found by Brasil et al. (Brasil et al. 1999).  

It now remains to find how we can estimate 2DCυκ  from TEM images. Image processing 

algorithms and blob analysis techniques fail to detect all primary particles within the TEM 

images of a fractal aggregate, especially when its fractal dimension approaches, and all the 

more when it exceeds 2. Consequently, all authors, including ourselves, try to estimate this 

inter-distance "manually". This is done by selecting a few branches of the fractal aggregate 

which are as far as possible both elongated and parallel to the TEM image projection plane. 

Obviously this is a totally subjective approach. However, in order to obtain a rough estimate 

of the degree of error, let us consider that we have managed to select branches that are not 

tilted more than 30± °  in respect to the projection plane. In that case, for 3 0DCυκ =  and by using 

Eq. (3.5) with the appropriate boundary values 1 0.25γ =  and 2 0.75γ = , we find that 
2 0.043DCυκ ≈ . The error made is only 4.3%. 
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Figure 3.5. Sketch of aggregates contact model: (a) single-contact point or (b) multi-contact points 
(with lengths b al l≥  for the 1D-projection).  

The aggregate of Figure 3.2 seems to be stuck onto the projection plane by a single contact 

point. For particles which are sensitive to the force of gravity, this position would clearly be 

unstable as it does not minimize the aggregate potential energy. This is not necessarily the 

case for nano- and small micro-aggregates that are mostly sensitive to adhesion and short-

range forces (e.g. Van der Waals forces when soot aggregates are deposited on a TEM grid). 

Thus, depending on the sampling procedure used to collect aggregates, the balance of 

adhesion forces and collapsing or rolling effects, we may be confronted with the two cases 

outlined in Figure 3.5. The single contact point case is a direct result of the DLA & TEM 

algorithms: aggregates are randomly oriented in space and consequently with regard to the 

projection plane (i.e. on the simulated TEM Grid). The multi-contact point case can be 

modeled roughly by iterating on all possible orientations of the aggregate until the distance 

H  (between its center of mass and the projection plane) reaches a minimum. It is obvious 

that the latter assumption leads to the greatest projection length and surface area. Comparison 

between projected lengths for randomly oriented aggregates and for aggregates with the 

multi-contact point scheme is shown in Figure 3.6. For each fD  the results were averaged 

over 50 different clusters. Something important to notice is also that aggregates with the same 

parameters may exhibit different projection lengths and surface areas. It is a direct 

consequence of their random orientation onto TEM grid. Of course, this effect is much less 

noticeable if the multi-contact point case is taken into account. So it is not surprising that, the 

standard deviation for the randomly oriented aggregates is significantly higher than for 

aggregates with the multi-contact points case. It can be also seen from Figure 3.6 that the 

differences between both approaches decrease rapidly when increasing fD  so that with a good 

accuracy we can neglect this issue for aggregates with a fractal dimension higher 

than 2.0fD = . 
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Figure 3.6. Comparison between maximum projection length averaged over 50 synthetic aggregates as 
a function of the fractal dimension for randomly oriented aggregates and for aggregates with the multi-
contact point scheme: clusters with (a) 100pn =  and (b) 400pn =  monomers. 

Similar questioning regarding influence of the collapsing or rolling effects to the estimation 

procedure have been discussed by Oh and Sorensen (Oh and Sorensen 1997) and by Brasil et 

al. (Brasil et al. 1999). Brasil et al. assumes that an aggregate after touching the collecting 

surface rolls until 2 and finally 3 contact points are reached. If these effect is not properly 

considered, the number of primary particles pn  and the fractal prefactor fk  may be 

overestimated up to 10 15%−  (Brasil et al. 1999). Due to the lack of information on aggregate 

deposition mechanisms, all results presented here (except those of Figure 3.25) were obtained 

with the single-contact point model. 

 
Figure 3.7. Example of large (1) and small (2-3) diesel soot aggregates (Yon et al., 2011): (a) raw 
TEM image (the contrast was enhanced for the purpose of publication); (b) pre-processed image 
showing the morphological parameters estimated for the largest aggregate. 

 

3.2.3. Pre-processing of TEM images 

Prior to perform a morphological analysis, each raw TEM image was pre-processed 

(i.e. spatially filtered out to remove background noise and low-frequency gradients) and 

binarized, see Figure 3.7. Next, the mean radius and overlapping factor of the primary 

particles were estimated “manually” by measuring several dozen of single, and pair, of 

particle images. Thus, for each aggregate, we looked for its bounding rectangle with a 
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minimal surface. Each minimum bounding rectangle was defined by its length 2DL , its width 
2DW  and its orientation within the original raw TEM image. Finally, each embedded TEM 

image was rotated to obtain conventional rectangular-shaped and oriented images (these steps 

are depicted in Figure 3.8 (a) and (b)).  

 
Figure 3.8. Chart of some of the pre-processing and morphological steps: (a) raw image; (b) pre-
processed image (filtered, rectangle bounded and rotated); (c) random sampling scheme of the MBC 
method; (d) image with additional bounders (hatched area); (e) classical box-counting algorithm with 
regular mesh. 

 

3.3. Methods for estimating the morphological parameters 
3.3.1. Minimum Bounding Rectangle (MBR) method 

Although the first method discussed here is the most widely used (e.g., (Samson et al. 1987; 

Megaridis and Dobbins 1990; Koylu and Faeth 1992; Cai et al. 1995; Chakrabarty et al. 2009; 

Ouf et al. 2010)), its name is not well established. Thus, for the sake of convenience and in 

view of the fact that it is fundamentally based on the determination of the properties of the 

smallest rectangle containing each aggregate, we will refer to it as the "Minimum Bounding 

Rectangle (MBR)" method. Example images of the raw aggregates (left column) and after 

binarization with visualization of the minimum bounding rectangles (right column) have been 

shown in Figure 3.9. 
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Figure 3.9. Example of SiC aggregates: raw images (left) and images after binarization with 
visualization of the minimum bounding rectangles (right). 

 

3.3.1.1. Radius of gyration 

The radius of gyration of a fractal aggregate can be estimated from its characteristic lengths in 

a two-dimensional space, and more particularly the length 2DL  of its minimum bounding 

rectangle. The value of the ratio ( )2 / 2D
gL R  is generally considered to be a constant 

nevertheless its value varies between 1.49 and 1.78 from one author to another (Puri et al. 

1993; Koylu et al. 1995; Brasil et al. 1999). In fact, our simulations reported in Figure 3.10 

show that for small aggregates (i.e. like those in Figure 3.1) with 1.40fD =  to 2.80, the ratio 

( )2 / 2D
gL R  varies from 1.26 to 1.53 with the mean value of ( )2 / 2 1.43 0.06D

gL R = ± . 
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Figure 3.10. Numerical estimation of the dependency of ( )2 / 2D

gL R  versus the fractal dimension and 
for various values of the number of primary particles within the aggregate. 

The radius of gyration can also be estimated from a characteristic length derived from the 

surface area of the minimum bounding rectangle. This characteristic length 2 2D DL W  is 

commonly used to relate the morphological parameters to each other thanks to an equation 

which is formally identical to the fractal equation (e.g.  (Koylu and Faeth 1992; Chakrabarty 

et al. 2009):  

 
2 2
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fD
D D

p LW
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 (3.8) 
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where LWk  is a 2D structural factor playing the same role than fk  in Eq. (2.13). Using Eqs.  

(2.13) and (3.8), it comes that the radius of gyration can be estimated with: 

 
2 2

,
D D

g

L W
R

β
=  (3.9) 

where ( )1/
/

fD

f LWk kβ = . The value of the latter parameter was estimated by Koylu et al. 

(Koylu et al. 1995) to be equal to 2.34β ≈  for rather large soot particles ( 1.70fD =  and 

100...1000pn ≥ ). However, it should be mentioned that although β  is explicitly fractal 

dimension dependent, a large number of authors have used this value of 2.34β ≈  for their 

own problems, forgetting that it was estimated for specific aggregates. Unfortunately, our 

simulations show that although β  is indeed fractal dimension dependent, it also depends 

slightly on the number of primary particles within the aggregates, see Figure 3.11). This is 

why, in what follows, we distinguish between the cases in which β  is either variable (as it 

needs to be and as it is ensured by using the calibration curves shown in Figure 3.11) or 

constant (only for comparison with the literature). 
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Figure 3.11. Numerical estimation of the dependency of β  versus the fractal dimension and for 
various values of the number of primary particles within the aggregate. 

Figure 3.12 compares the radius of gyration estimated with two different characteristic 

lengths. To evaluate gR  for the synthetic aggregates of (a) 100pn =  and (b) 400pn =  

monomers the ratios of ( )2 / 2 1.49DL ×  and 2 2 / 2.34D DL W  were used. The results have been 

compared with the initial values of the radius of gyration. It can be seen that in both methods 

the standard deviation is quite significant for small fractal dimension and it decreases rapidly 

for increasing value of fD . Projection errors caused by random orientation of the aggregates 

during TEM imaging are responsible for these effects. 
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Figure 3.12. Comparison between the radius of gyration estimated with two different characteristic 
lengths ( ( )2 / 2 1.49DL ×  and 2 2 1/2( ) / 2.34D DL W ) for synthetic aggregates with (a) 100pn =  and 
(b) 400pn =   monomers versus fractal dimension. 

 

3.3.1.2. Number of primary particles 

The number of primary particles within an aggregate was estimated from the measurement of 

its projected surface area aA  and that pA  of the primary particles, and also by using an 

equation which is formally identical to the fractal equation: 

 ,a
p a

p

A
n k

A

α
� �

= � �� �
� �

 (3.10) 

where α  and ka are parameters that have been evaluated experimentally (Megaridis and 

Dobbins 1990; Koylu et al. 1995) or numerically (Oh and Sorensen 1997; Brasil et al. 1999). 

Depending on the work and combustion systems considered, the values of these parameters 

are in the ranges: 1.07 1.10α = −  and 1.10 1.30ak = − . For all results presented below, to be 

consistent with other authors, we use the values 1.155ak =  and 1.095α =  derived by Koylu et 

al. (Koylu et al. 1995) since this work was found to be the most convincing. Nonetheless, 

according to the numerical results presented in Figure 3.13 the parameter α  significantly 

varies with the fractal dimension and the number of monomers. The average values evaluated 

from Figure 3.13 for 1.70fD =  and 1.88fD =  are equal to 1.091 0.008±  and 1.104 0.007±  

respectively. Estimations for these parameters are in a good agreement with the results 

supported by the aforementioned authors. This also explains why to be consistent with the 

literature, the parameter α  was set to 1.095α = . 
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Figure 3.13. Numerical estimation of the dependency of the exponent α  versus the fractal dimension, 
for various values of the number of monomers within the aggregate. 

 

3.3.1.3. Fractal dimension 

The fractal dimension can be estimated by posing the equality between Eqs. (3.8) and (3.10) 

and by measuring the properties pr , pA , aA  and 2 2D DL W  of many aggregates: 
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ln ln ln ln .
D D
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a p LW f

p p

A L W
k n k D

A r

α� 	 � �� �
A B = = + � �� �� � � �A B� � � �C D

 (3.11) 

With Eq. (3.11) we can only access to an average or "global" fractal dimension for the entire 

sample, since fD  is simply derived from the slope of a linear regression (see (Koylu et al. 

1995) and like it is done in Figure 3.1). It is not necessary to determine LWk  to obtain fD . 

However, with a view to the main aim of this work, we found it more meaningful in Figure 

3.1 (as in all other Figures) to display along the x-axis the values of the normalized radius of 

gyration /g pR r  rather than the quantity 2 2 /D D
pL W r . To do so, our procedure consists in 

obtaining fD  directly from the slope given Eq. (3.11), and then to use Eq. (3.9) (with β  

constant or variable) to obtain /g pR r . pr  is deduced, like pA , aA , 2DL  and 2DW , by means of 

a classical "blob" analysis performed in MATLAB environment.  

 

3.3.2. Modified Box-Counting (MBC) method 

The Box-Counting method is a well-established method for estimating the fractal dimension 

(Minkowski dimension) of infinite mathematical objects (such as the well-known Cantor and 

Sierpinski sets, and also strange attractors) (Theiler 1990). To do so, the 2D image of the 

object is successively binarized and covered with square boxes (i.e. interrogating windows) 

with a scale of sL , where 1,...,s S=  refers to the analyzing scale. At each scale s , sN  boxes 

contain a fragment of the fractal object (at least one dark pixel). Thus, the basic underlying 

idea is that the evolution of sN  versus sL  expresses the self-similarity properties of the fractal 

aggregate over the considered scales, which implies that (compare also with Eq. (2.12)): 
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 ,fD

s sN L−
�  (3.12) 

or, more formally (Theiler 1990), that  

 
0

ln
lim .

lns

s
f

L
s

N
D

L→
= −  (3.13) 

One major feature of this method is that it allows one to estimate the fractal dimension of 

single objects, making it very suitable for detecting a correlation between the morphological 

properties of all aggregates within a small sample. However, with real particle aggregates and 

their TEM images, we have to deal with their size and resolution limits. As a direct 

consequence, the limit of Eq. (3.13) (which is taken to ensure invariance over smooth 

coordinate changes) cannot be reached. Additionally, in most cases the images of fractal 

aggregates cannot be decomposed at all scales into an integer number of square boxes. 

Therefore the total surface area of the analyzing boxes is not the same at all scales. To solve 

these problems, we developed a Modified Box-Counting (MBC) algorithm which provides 

several major improvements. First, the minimum bounding rectangle method is used to reject 

any surrounding parts of the TEM image that contain no fractal elements but which could 

strongly influence the box-counting analysis (see example aggregate with surrounding parts 

and regular Cartesian meshes of boxes in Figure 3.8 (d)). Second, to overcome the problem 

related to multiple subwindows and blank zones, analyzing boxes are not generated along 

regular Cartesian meshes (like shown in Figure 3.8 (e)) but are distributed randomly with 

uniform distribution within the TEM image (this step is depicted in Figure 3.8 (c)). Thirdly, at 

each scale, the number of non empty boxes is normalized by the total surface area of all boxes 

generated at the corresponding scale. Finally, the fractal dimension of uniform fractal 

aggregates (i.e. which are not multi-fractal) (Theiler 1990) ) is no longer estimated from the 

limit given in Eq. (3.13) but from the slope (Foroutan-pour et al. 1999) of the linear regression 

performed on the raw data points obtained at all scales: 

 ( )2
ln ln ln ,s

f s
s

N
D L b

L

� �
= − +� �� �

� ��
 (3.14) 

where b is an arbitrary constant.  

For the conventional box counting method (Theiler 1990; Kaye 1994; Foroutan-pour et al. 

1999) as for the newly introduced one, the choice of the set of analyzing boxes, and more 

particularly the minimum and maximum box sizes, is a determining factor. For the sake of 

convenience, and since we are looking for self-similarity properties, we can use the dimension 

of one pixel as the unitary scale. For the minimum box size, the choice is guided by the need 

to maintain a reasonable signal-to-noise ratio and the capacity of the method to probe the low 

scale "porosity" of the aggregate image. The latter condition is particularly important for 

aggregates with a high fractal dimension (e.g. 2fD ≥ ). On the basis of the above remarks and 

also a stability analysis performed with the DLA-TEM algorithms, the smallest analyzing box 

size was set to 1 2L =  pixels. To set the maximum box size, we can first observe that the 
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maximum dimension of fractal aggregate images rarely exceeds a few hundred pixels. 

We also came to the conclusion, as did Foroutan-pour et al. (Foroutan-pour et al. 1999) for the 

conventional box-counting method, that problems linked to the maximum box scale can be 

ignored if the maximum box dimension does not exceed 25%�  of the maximum length scale 

of the aggregate image. In this work therefore, the maximum box scale was limited to / 4L . 

After several test with various sets of boxes and due to the form of Eq. (3.14) we finally chose 

to build a set of 17S=  boxes which were nearly logarithmically distributed with   [2,  3,=sL  

4,  5,  6,  8,  10,  13,  16,  20,  25,  32,  40,  50,  63,  79,  100]. As an illustration, Figure 3.14 shows the 

pre-processed image of a soot aggregate, together with the raw data points and the 

corresponding linear regression obtained with the MBC method. The uniformity at all scales 

of this aggregate is clear. However, when processing synthetic aggregates, we found 

a systematic shift between the nominal fractal dimension and that deduced from the slope of 

the linear regression. This shift, which depends both on fD  and pn , is attributed to the finite 

dimension of the aggregates considered here (i.e. / 20g pR r ≤  for all synthetic and 

experimental aggregates). Consequently, in order to obtain an accurate estimation of the 

fractal dimension we were obliged to use, as we did for the MBR method, numerical 

calibration curves. The latter were derived from the analysis of the TEM images of thousands 

of synthetic aggregates with different fractal dimensions ( 1.2,  1.3,  ...,  2.8fD = ) and numbers 

of primary particles ( 5,  10,  20,  30,  50,  100,  400pn = ). 

 
Figure 3.14. MBC method: raw data points and linear regression on the box count versus the box 
length scale of the boxes for a large diesel soot: (a) raw slope; (b) calibrated slope (i.e. fractal 
dimension); (c) corresponding pre-processed TEM image. 

Figure 3.15 (a) shows examples of these calibration curves. It can be seen that for reasonably 

large aggregates (i.e.  for 100pn ≥ )  the calibration curves of the MBC method are less and 

less dependent on the size of aggregates (as it must be for objects with auto-similarity 

properties). For smaller aggregates, MBC calibrations curves just tell us that we are not 

dealing with true fractal objects. It is the reason why, we have to use various calibration 

curves.  Figure 3.15 (b) compares the calibration curve of the optimal set of 17S=  boxes for 
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100pn =  monomers with some other possible solutions that were also tested. It is worth to 

notice that we set an almost constant sensitivity in a wide range of the raw slope D  (up to the 

initial fractal dimension equal to 2.40fD = ).  

Due to this overall procedure, the deviation between the mean estimated fractal dimension 

and the nominal one is typically less than 1% for numerical aggregates with / 2.5g pR r ≥  (see 

for instance Figure 3.21). It should be noticed that, with the MBC method there is no specific 

way to determine either the number of primary particles or the radius of gyration. Therefore, 

below, like with the MBR method, these morphological parameters are deduced using Eqs. 

(3.9) and (3.10). 
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Figure 3.15. (a) Some of the numerical calibration curves of the MBC method and (b) comparison 
between the numerical calibration curves for different sets of boxes sL . 

 

3.4. Results and Discussion 
All the previous models and methods were tested on an experimental test sample of 543 

images of soot aggregates produced by a diesel flame (Yon et al. 2011) (see Figure 3.1 and 

Figure 3.7) and silicon dioxide particles (CILAS company, e.g. see Figure 3.9) as well as 

synthetic aggregates generated with the DLA-TEM algorithm. The morphological properties 

of the synthetic aggregates were chosen to be as similar as possible to those obtained with the 

experimental soot sample: normalized radius of gyration ( / 1,  ...,  17.2,g pR r =  with 

8.2 );pr nm=  number of primary particles ( 1,  ...,  334)pn = ; size distribution in number (see 

Figure 3.1); a constant overlapping factor (3 0.20 0.05DCυκ = ± ); a fractal dimension which is 

either constant ( 1.88fD = , as we found with the classical MBR technique  in Figure 3.1), or 

variable (to cross-check the sensitivity of the MBC method). For both experimental and 

synthetic TEM images, the equivalent diameter of the primary particles was about 20 pixels.  

 

3.4.1. The Minimum Bounding Rectangle (MBR) method  

For small variations of the fractal dimension, one can assume that β  is nearly constant. 

In that case, the most direct way to detect correlations using the MBR technique is to calculate 
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the derivative of Eq. (3.11) with respect to ( )2 2ln /D D
pL W r . Thus, we can estimate the fractal 

dimension with:  
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 (3.15) 

Figure 3.16 shows the evolution of this derivative for the raw experimental data points (see 

Figure 3.1) that have been re-sampled and smoothed beforehand (i.e. adjacent-averaging with 

a bandwidth ( )log / 0.2g pR r = ± ). These results suggest that the fractal dimension of aggregates 

with a small to intermediate size ( )( )log / 0...0.8g pR r =  decreases as their size increases. For 

the largest aggregates ( )( )log / 0.8g pR r ≥ , the statistics are too poor to draw any reasonable 

conclusion on the evolution of the derivative. For the smallest aggregates ( )( )log / 0g pR r ≤ , 

which are statistically the most common in this experimental sample, the results seem to be 

biased too. This may be related to a classic data filtering problem or more probably to the fact 

that the smallest aggregates do not have a fractal structure. To our opinion, the derivative 

method is not of great help for analyzing such sample since this method is very sensitive to 

the statistical noise (a larger sample would be preferable) and it does not contain any 

calibration method which could take into account the doubtful auto-similarity of the smallest 

aggregates. 
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Figure 3.16. MBR with the derivative method: estimated fractal dimension versus the normalized 
radius of gyration of the experimental aggregates (the corresponding number-weighted size 
distribution is shown at the bottom). 

With the MBR method, a second way to detect a relationship between fD  and gR  is to 

perform low-pass and high-pass analyses, i.e. the linear regression is performed on limited 

aggregate size ranges. Figure 3.17 shows the results obtained for the following ranges: 

/ 2g pR r > , / 4g pR r > , / 6g pR r > , / 8g pR r < , / 6g pR r <  and / 3g pR r < . In Figure 3.17 (a) the 

parameter β  is set constant with 2.34β =  for the mean fractal dimension 1.88 0.01fD = ± , 

whereas in Figure 3.17 (b) β  is variable (i.e. full calibration curves are used, see Figure 

3.11). From Figure 3.17 (a) it appears that, as suggested by the derivative method, the largest 
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aggregates have a lower fractal dimension than the smallest ones, with 1.68 0.08fD = ±  for 

/ 6g pR r >  and 1.95 0.02fD = ±  for / 3g pR r <  respectively. However, this trend is much weaker 

when β  is variable.  
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Figure 3.17. MBR with the low- and high-pass methods: raw data points and linear regressions 
obtained for the experimental test samples of diesel soot when (a) β  is constant or (b) β  is variable. 
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Figure 3.18. MBR with the low- and high-pass methods: raw data points and linear regressions 
obtained for synthetic aggregates with the same fractal dimension ( 1.88fD =  as in Figure 3.17 (a)), 
when (a) β  is constant or (b) β  is variable. 

To clarify this point, Figure 3.18 (a) and (b) show the results obtained for similar synthetic 

aggregates with 1.88fD = . Surprisingly, we also find here that the largest aggregates have 

a larger fractal dimension than the smallest ones. In our opinion, the most convincing 

explanation for these rather destabilizing results is that the experimental sample is not 

homogeneous. From Figure 3.1 it was already possible to infer that, unlike large aggregates, 

small aggregates do not exhibit any self-similarity or scaling properties. In the same way, it is 

easy to show that fractal equation (Eq. (2.13)) is not verified for 1pn =  and 2. What we put 

forward with the latter arguments is that it is meaningless to look for a fractal dimension for 

the small aggregates considered here, or for an average fractal dimension for a non-

homogeneous sample (which is however typical for soot aggregates (Yon et al. 2011)). 

In other words, the results of Figure 3.18 are less confusing than we thought at first; they 
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simply rely on a set of parameters that are not consistent with our particle model (i.e. Eq. 

(2.13) is not satisfied over all the aggregates size range).  

Figure 3.19 shows the MBR analysis preformed for the experimental samples of silicon 

carbide (SiC) provided by CILAS company. In Figure 3.19 (a) the parameter β  is set 

constant with 2.34β =  for the mean fractal dimension 1.82 0.09fD = ± , while in Figure 3.19 

(b) β  is variable for the mean fractal dimension equal to 1.83 0.09fD = ± . The high standard 

deviation of the values found for fD  should be attributed to the small number of the 

experimental samples (only 48 aggregates!) and the narrow range of their radiuses of gyration          

( ( )0.7 log / 1.2g pR r< < ), compare with Figure 3.17). The problem is that, as a multi-scale 

analysis, the MBR method requires a large number of aggregates with a wide range of size 

(i.e. like those in Figure 3.17 and Figure 3.18). If those requirements are not satisfied, 

accuracy of the estimation significantly decrease. Analyzing Figure 3.19 (a) and Figure 3.19 

(b) it can be also noticed that regardless of the different assumptions for the parameter β , the 

estimations of the fractal dimensions are close. This is due to the fact that those aggregates are 

large enough (number of monomer of each cluster is higher than 30pn = ) to exhibit self-

similarity and scaling properties. 
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Figure 3.19. MBR: raw data points and linear regressions obtained for the experimental test samples of 
SiC aggregates when (a) β  is constant or (b) β  is variable. 

A third alternative to detect correlations with the MBR method is to perform a band-pass 

analysis, i.e. to analyze sub-samples with the same width. Figure 3.20 shows, for the 

experimental sample, the results obtained with a band width of ( )log / 0.2g pR r = ±  when β  is 

either constant or variable. fD  evolves roughly like a stair-stepped function. For a variable β  

and very small-sized aggregates ( )( )log / 0.2g pR r ≈  the average fractal dimension is about 

2.0fD ≈ ; whereas for intermediate-sized ( )( )log / 0.4 0.8g pR r ≈ −  and large-sized 

( )( )log / 0.8g pR r >  aggregates it is about 1.73fD ≈  and 1.69fD ≈  respectively. Although in 

the latter region the results are quite noisy they fit rather well with those presented in Figure 

3.16 and Figure 3.17. The error bars are large but this is the price to pay to obtain a local 
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estimation of the fractal dimension and thus to avoid smoothing and boundary effects 

observed with the derivative and the low-pass/high-pass methods. 

 

3.4.2. The Modified Box-Counting (MBC) method  

Figure 3.20 also shows statistical results found with the MBC method when applied to the 

experimental soot sample. The local median, mean values and related standard deviations of 

fD  were calculated for the sub-samples with a band width of ( )log / 0.05g pR r = ± . For mean 

values, two cases were considered depending on whether all data points were used for the 

statistics or only those with 3fD <  (i.e. other data points are considered as artifacts of the 

MBC method). Note that for drawing considerations, the raw data points are not shown in 

Figure 3.20 but they are visible in Figure 3.25.  
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Figure 3.20. MBC and MBR band-pass methods applied to the experimental test sample: comparison 
of the evolution of the fractal dimension versus the aggregates normalized radius of gyration. 

Several important remarks can be drawn from Figure 3.20. First of all, for rather small 

aggregates ( )( )log / 0.4g pR r ≤  the mean fractal dimension increases as /g pR r  decreases. For 

( )log / 0g pR r ≈  we obtain 2.05fD ≈  and 2.55fD ≈
 
when, respectively, either all data points are 

considered for the statistics or only those with 3fD < . A similar tendency was also brought to 

light with the MBR method. But since the minimum analyzing scale (1 2L =  pixels) in this 

region is no longer totally negligible compared to the diameter of the primary particles, the 

results obtained with the MBC method must be viewed with caution. One additional problem 

with this region is that the pre-processing procedure may also introduce a certain amount of 

bias by artificially decreasing the internal porosity, or by increasing the roughness, of TEM 

images. On the other hand, for intermediate- and large-sized aggregates, Figure 3.20 shows 

that the MBC method seems to predict a fairly constant value for the fractal dimension (based 

on either the two mean values or the median value) of about 1.66 0.04fD ≈ ±  for 

( )log / 0.4g pR r ≥ . 
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In order to determine whether or not we can be confident in the capacity of the MBC method 

to detect such small evolutions, we analyzed two new sets of synthetic aggregates with 

a slightly increasing and a slightly decreasing (number-weighted) fractal dimension, see 

Figure 3.21. The latter figure shows clearly the capabilities of the MBC method. 

The discrepancy observed for intermediate-sized aggregates in Figure 3.20 could also be 

attributed to a statistical weighting problem. In fact, with the MBC method the statistical 

values correspond to the moments of the number distribution of all estimated fractal 

dimensions. On the other side, with the MBR method, the nature of the statistical values is not 

so trivial since the fractal dimension is obtained from the slope of a linear regression applied 

to different aggregates. Additionally, these aggregates are ordered according to 

a characteristic length which is derived from a surface area. One clear advantage of the MBC 

method is that the number-weighted distribution of fD  can be easily converted to a volume-

weighted distribution (or mass-weighted, i.e. directly connected to the number of primarily 

particles within the aggregate). Thus, Figure 3.22 shows the number- and the volume-

weighted histograms for (a) all the analyzed samples and (b) for the aggregates with 

2.5 .g pR r>  Both figures confirm that the largest aggregates have smaller fractal dimensions. 

The average volume-weighted fractal dimension is equal to 1.74fD =  for all the aggregates 

and equal to 1.65fD =  for the aggregates bigger than 2.5g pR r> . 
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Figure 3.21. MBC methods applied to synthetic aggregates whose fractal dimension slightly increases, 
or slightly decreases, with the normalized radius of gyration. 

Similar histograms were also prepared for the synthetic TEM images of the aggregates with 

1.88fD =
 
(see Figure 3.23). The average and the average volume-weighted fractal dimensions 

are equal to 2.03fD =  and 1.83fD =  respectively. Those values seem to be in a contradiction 

with the initial fractal dimension 1.88fD = . Nevertheless, to evaluate the results we must take 

into account the limitations of the MBC method. As mentioned previously, it might be 

doubtful to estimate fractal dimension of the aggregates that do not satisfy fractal equation 

(Eq. (2.13)). We should also keep in mind that the MBC analysis of the “aggregates” 

consisting of only one particle is meaningless and as a result provides fractal dimension 
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3.00fD ≥ . Therefore, to interpret Figure 3.23 we should consider results of the estimation 

equal to 3.00fD =  or greater as artifacts of the MBC method and do not use them for statistics. 

In that case the average and the average volume-weighted values are equal to 1.88fD =  and 

1.86fD =  respectively, and they are in a perfect agreement with the initial fractal dimension. 

It should be also noticed that a wide spreading in the fractal dimensions shown in the 

histograms is mainly caused by the fact that aggregates with the same fD  may have very 

different projected images (as shown clearly in Figure 3.4). 
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Figure 3.22. MBC method: comparison of the number-weighted and volume-weighted distributions of 
the fractal dimension for (a) all the experimental samples of diesel soot aggregates and (b) for the 
aggregates with 2.5g pR r> . 
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Figure 3.23. MBC method: comparison of the number-weighted and volume-weighted distributions of 
the fractal dimension for the synthetic aggregates. 

 

Figure 3.24 shows the number- and the volume-weighted histograms for the experimental 

samples of silicon carbide. The average fractal dimension equal to 1.81fD =  is in a very good 

agreement with the previously evaluated with the MBR method results equal to 1.82fD =  and 

1.83fD =  for the constant and variable β  case respectively. The average volume-weighted 

fractal dimension is estimated as 1.89fD = . 
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Figure 3.24. MBC method: comparison of the number-weighted and volume-weighted distributions of 
the fractal dimension for the SiC samples. 
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Figure 3.25. MBC method: influence of the single-contact and multiple-contact models on the 
estimation of the fractal dimension of experimental aggregates. 

The differences observed in Figure 3.20, between the predictions of the MBR and MBC 

methods may also be related to the "problem" of single-contact or multi-contact points. Both 

methods require calibration curves derived from the prior analysis of synthetic TEM images, 

but we have then choose whether to generate the synthetic aggregates with a single-contact or 

with a multi-contact point model. Figure 3.25 examines the influence of this choice on the 

fractal dimension estimated with the MBC method (median value, as in Figure 3.20). As we 

intuited early on, we systematically obtain a higher fractal dimension with the multi-contact 

point model. But the most interesting thing here is that for this experimental sample, the 

differences are only significant for intermediate-sized aggregates, with 1.66 0.04fD ≈ ±  and 

1.71 0.02fD ≈ ±  respectively. This indicates once more that there is no point defining a global 

fractal dimension for this sample. The difference observed in Figure 3.25 could be considered 

as an indication that, depending on their size, the aggregates are not all deposited 

(i.e. collected and attached) in the same way onto the TEM grid. The latter remark could have 

considerable physical implications; however, for the moment we do not have any physical 
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criteria with which to choose whether the single-contact point model or the multi-contact 

point model is the more appropriate.  

 

3.5. Conclusion 
In this chapter we have developed various models and numerical tools to evaluate more 

accurately the morphological parameters of fractal-like aggregates from TEM images. This is 

important for the general scientific community as well to get necessary comparisons with 

optical methods. We have investigated and tested a classical method (called the “MBR 

method”) and we have introduced a new one, named “MBC method”. 

We found that, the classical MBR method is fundamentally inappropriate for detecting 

correlations between the morphological parameters of fractal-like particle aggregates as it is 

based on the analysis of their self-similarity properties over a large size range. To overcome 

this limitation of the MBR method we investigated solutions which are simple to implement, 

such as the calculation of a local derivative or the use of high-pass, low-pass or band-pass 

filters. However, the results obtained were found to be quite noisy and even questionable. 

In order to obtain a better resolution we introduced the MBC method, which estimates the 

fractal dimension of each aggregate from its own self-similarity properties. MBC validity was 

tested successfully on synthetic aggregates whose fractal dimension was independent of 

(constant) or correlated with (linear increase or decrease) aggregate size. For the experimental 

sample, the predictions of the MBC method were found to be much more convincing than 

those obtained with the MBR-based methods, and we show that the average fractal dimension 

of the soot samples is much lower (with 1.66 0.02fD = ±  for small to large aggregates and a 

single-contact point model) than that found with the classical MBR method ( 1.88 0.02fD = ± ). 

Nevertheless, the analysis of the silicon carbide samples shows that for aggregates large 

enough both methods provide very similar results ( 1.82 0.09fD � �  and 1.81 0.01fD � �  for 

the MBR and MBC methods respectively). 
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4. LIGHT SCATTERING THEORIES AND MODELS 
 

 

 

 

 

 

4.1. Introduction 
In this chapter we review and discuss the physical and mathematical backgrounds of all 

theories used in this work to predict the light scattering properties of nanoparticles and their 

aggregates: Lorenz-Mie theory, Rayleigh-based approximations (RGD, RDG-FA) and          

T-Matrix method. 

 

4.2. Lorenz-Mie theory 
Since it was introduced in the year 1908 by 

Gustav Mie (Mie 1908), the theory referred here 

as the “Lorenz-Mie theory” (LMT), is the most 

important and widely used theory for the 

description of the light scattering and absorption 

properties of small particles (e.g. (Bohren and 

Huffman 1998)). The LMT describes in an exact 

manner the interaction between an 

monochromatic electromagnetic plane wave and 

a homogeneous, isotropic, nonmagnetic and 

spherical particle defined by its diameter pd  and 

its complex refractive index pm� . It solves the 

Maxwell’s wave equations using the method of 

separation of variables, in the spherical 
Figure 4.1. Light scattering by an arbitrary 
particle (Bohren and Huffman 1998) 
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coordinates with appropriate boundary conditions. External medium must be nonabsorbing. 

The LMT is used as a reference case for nearly all particle light scattering techniques 

(e.g. (Xu 2002)). Figure 4.1 shows the geometry and coordinate system of the problem solved 

LMT (Bohren and Huffman 1998). The plane wave propagates in the -axisz  direction. The 

center of the particle is considered as the origin point O of the Cartesian as well as the 

Spherical Coordinate Systems. The orthonormal basis vectors ̂ ˆ ˆ, ,x y ze e e  are in the directions of 

the positive , x y and z  axes. The scattering plane is determined by a scattering direction ̂ re  

and the forward direction ̂ze . It might be also defined in the spherical coordinates by the 

azimuthal angle φ . In the next paragraphs, we summarize the basic mathematics and results 

of this theory. 

 

4.2.1. Solutions to the vector wave equations   

The time harmonic electromagnetic field ( , )E H  in a linear, isotropic, homogenous medium 

must satisfy simultaneously two wave equations (for the electric E  and magnetic H  fields):  

 
2 2

2 2

0,

0.

k

k

E∇ + =F
�
∇ + =F�

E E

H H
 (4.1) 

where 2 2k ω εµ=  is the wave vector, ω  the wave pulsation, ε  and �  the medium electrical 

permittivity and permeability respectively. This problem can be solved by considering the 

scalar wave equation: 

 2 2 0,kψ ψ∇ + =  (4.2) 

where ψ  is a function related to the spherical harmonics by ( )ψ∇ × =r M  and ( ) / .k= ∇×N M  

The scalar wave equation may be expressed in the spherical coordinate system as: 
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θ θ θ θ φ
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 (4.3) 

The key idea of the Lorenz-Mie theory is to use a separation variable method (SVM) to find 

particular solutions of the equation (4.3):  

 ( ), , ( ) ( ) ( ).r R rψ θ φ θ φ= Θ Φ  (4.4) 

Using Eq. (4.4) in Eq. (4.3) three separated equations are derived (where m  and n are 

separation constants):  
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 (4.5) 

The linearly independent solutions of Eq. (4.5)-(a) are of the following type: 
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cos ,
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φ
φ

EΦ =F
�
Φ =F�

 (4.6) 

where subscripts e and o denote even and odd respectively. 

The solutions of Eq. (4.5)-(b) that are finite at 0θ =  and θ π=  are the Legendre’s 

polynomials ( )cosm
nP θ  and the associated Legendre’s functions.  To find the solutions of Eq. 

(4.5)-(c) the dimensionless variable krρ =  and the functionZ R ρ=  are introduced. Thus,  

Eq. (4.5)-(c) can then be rewritten as: 
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2 1
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d dZ
n Z

d d
ρ ρ ρ

ρ ρ
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� �� � A BC D
 (4.7) 

The linearly independent solutions of Eq. (4.7) are combinations of spherical Bessel’s 

functions of the first and second kind (1) (2),  ,  ,  n n n nj y k k . Thus, the solutions of Eq. (4.5) that 

satisfy the scalar wave equation in spherical coordinates are of the following form (Bohren 

and Huffman 1998): 
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4.2.2. The internal and scattered fields 

In the linear optics the scattered ( , )S SE H  and internal fields  1 1( , )E H  are simply proportional 

to incident field. They can be expanded in infinite series of vector spherical harmonics with 

complex coefficients: 
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 (4.9) 

where ( ) ( )0 2 1 / 1n
nE i E n n n= + + . 

In Eq. (4.9) the coefficients ,n na b  are referred as the “external scattering coefficients” or “Mie 

coefficients”. ,n nc d  are the “internal scattering coefficients”. Tangential components of the 

electromagnetic fields have to fulfill boundary conditions onto the particle surface: 
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which gives:  
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Introducing the  Ricatti-Bessel functions defined as:  
 ( ) ( ) ( ) ( )(1),      n n p n n pj x x h xψ ρ ρ ξ ρ= =  (4.12) 
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the following relations are derived for the external scattering coefficients (Bohren and 

Huffman 1998): 
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 (4.13) 

The coefficients ,n na b  can be computed efficiently by using the logarithmic derivatives of the 

Riccati-Bessel functions: 
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where 
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4.2.3. Expressions for the phase functions and extinction cross sections 

In the far field, the relations between the incident and scattered electrical fields can be 

expressed for the two main polarization components (parallel �  and perpendicular ⊥  to the 

scattering plane (see Figure 4.1)) as: 
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For a spherical particle we have 3 4 0S S= =  and 1 2,S S  are given by: 
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where: 

 
1 1

,     .
sin sin

n n
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P dPπ τ
θ θ

= =  (4.18) 

Using the Poynting vector it is possible to derive the relations for the scattering intensities 
2

|| 2i S�  and 2

1i S⊥ � . 

On the other way, the total scattering, extinction and absorption cross sections can be 

calculated as: 
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Numerically, the infinite expansion series are truncated for 

 1/34 2,stop p pn x x= + +  (4.20) 

where /p px dπ λ=  and λ  are the size parameter and the wavelength of the incident beam. 

Note that, according to the localization principle (van der Hulst 1957), the expansion term n 

may be interpreted as rays that impinge onto the particle surface at distance nR  from the axis:  

 
1

.
2 2nR n

λ
π

� �= +� �
� �

 (4.21) 

It is important to notice that since it was introduced, the Lorenz-Mie theory has been widely 

extended (see Gouesbet’s review (Gouesbet 2009)). Nowadays, this method may be used also 

for the scattering of an arbitrary beam by a homogeneous sphere (Barton et al. 1988; 

Gouesbet et al. 1988), a multilayered or heterogeneous sphere (Onofri et al. 1995), a circular 

cylinder or a spheroid (Ren et al. 1997). Numerous computer codes and applications using the 

LMT have been developed (see e.g. (Wriedt 2009)). 

 

4.3. Rayleigh theory and Rayleigh-Gans-Debye (RGD) theory 
If we deal with particles with a complex shape, usually it is impossible to solve the scattering 

problem in an exact manner (i.e. a SVM is not possible). Thus, one strategy is to find an 

approximate method that provides results with a satisfactory degree of accuracy. Usually, this 

kind of approximation is valid only for certain particles (e.g. small compared to the 

wavelength) and some specific conditions (e.g. angular range, refractive index close to unity, 

etc.). These limits are part of the price to pay to get a simple and numerically stable 

(approximate) solution. An example of such an approximation is the Rayleigh-Gans-Debye 

(RGD) theory, which is widely used to analyze fractal-like aggregates of nanoparticles. 

 

4.3.1. Rayleigh theory 

If we consider a particle much smaller than the wavelength, each part of the particle 

experiences almost the same homogeneous electric field (quasistatic field approximation). 

Therefore, the light scattered by this particle is the same as if it was scattered from an 

oscillating dipole radiating in nearly all directions. This scattering is called Rayleigh 

scattering. Its basic underlying assumptions are given by the following equations (Bohren and 

Huffman 1998; Xu 2002): 
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 (4.22) 

where 2 /p px rπ λ=  is the size parameter and pm�  is the complex refractive index of particles. 

The amplitude functions are described as: 

 1 4 3

3 2
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0 cosp

S S
ik x
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 (4.23) 

If the incident light is linearly polarized the angular distribution of the scattered light depends 

on the polarization: 

 
24 6 2

0 22 4 2

16 1 1 0
,

0 cos2
p p

p

I r m
I

I r m

π
θλ

⊥ −� � � �
=� � � �+ � �� ��

�

�
 (4.24) 

where r  is the observation distance. For unpolarized incident light we have:  

 ( ) ( )
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π
λ⊥= + =

�
�  (4.25) 

For latter convenience, the following optical factors are commonly introduced: 
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So that we get for the two main polarizations: 
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 (4.27) 

and the cross sections: 
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From Eq. (4.28) it can be seen that according to the Rayleigh theory the scattering cross 

section is proportional to 6pr , while the absorption cross section is proportional to 3
pr . Thus, 

for absorbing particles that are much smaller than the wavelength it is common to neglect the 

scattering cross section when calculating the extinction ( , ,p ext p absC C� ). As an example, Figure 

4.2 shows the cross sections of a single particle (monomer) of soot (complex refractive index 

1.57 0.56pm i= +�  (Dalzell and Sarofim 1969)) versus its radius. It can be seen that, for the 

Rayleigh calculations the ratio , ,/p abs p scaC C  is larger than 100 for the particle with 22 pr nm≤  

( 0.26)px ≤  and larger than 10  for 47 pr nm≤  ( 0.56px ≤ ). Figure 4.2 compares also Rayleigh 

to T-Matrix calculations, which are considered to be exact for this case (see section 4.5). 

Clearly, there is almost a perfect agreement between both theories for radius of particle up to 

several dozens of nanometers. 
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Figure 4.2. Comparison between the extinction, absorption and scattering cross sections of spherical 
particle of soot ( 1.57 0.56pm i= +� ) versus its radius and for the incident wavelength 532 nmλ =  - 
Rayleigh and T-Matrix calculations. 

The Rayleigh differential scattering cross section of a spherical particle (where Ω  stands for 

a solid angle) (Kerker 1969) is given as: 

 ( ), 4 6 .p sca
p p

dC
k r F m

d
=

Ω
�  (4.29) 

 

4.3.2. Rayleigh-Gans-Debye (RGD) theory 

The Rayleigh-Gans-Debye (RGD) theory is used for particles small compared to the 

wavelength and suspended in a medium with similar optical properties. Its applicability is 

limited to particle and media satisfy the following assumptions (Bohren and Huffman 1998): 
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 (4.30) 

where pd  is the particle diameter. The basic assumption of the RGD theory is that a particle 

initially too large to be treated as a single dipole can be decomposed into an assembly of 

single structureless scattering elements. Each of them separately satisfies the Rayleigh theory 

and thus may be successfully analyzed. Due to the small size of the particle we can neglect 

the phase shift corresponding to any element and assume that the phase difference between 

elements is determined only by their position. In the framework of the RGD theory, the  

amplitude functions are given by: 
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where ( ),f θ ϕ  is referred as a “form factor” that depends on the shape of the particle of 

volume V : 

 ( ) 1
, .i

V
f e dV

V
δθ ϕ = �   (4.32) 
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For a spherical particle, the volume integral given by Eq. (4.32) simplifies to a convenient 

analytical form: 

 ( ) ( )3

3
sin cos ,f u u u

u
θ = −  (4.33) 

where ( )2 sin / 2pu x θ= . Using Eqs. (4.31) and (4.33) we can derive the dependency for the 

scattering matrix elements. For the perpendicular and parallel polarization we get the 

following expressions for the scattered intensities: 
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 (4.34) 

Figure 4.3 shows the intensity scattered for the (a) perpendicular and (b) parallel polarization, 

by a spherical particle with 200 pr nm=  for an incident wavelength 200 nmλ =  according to 

the RGD theory. It should be noticed that a log-log scale is used to show the evolution of the 

scattering intensities versus the magnitude of the scattering wave vector q : 

 2 sin .
2

q k
θ� �= � �
� �

 (4.35) 

It is worth to notice, that for the perpendicular polarization we have a decay of the scattered 

intensity ( ) 4~I q q− . 
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Figure 4.3. Scattering of a spherical particle according to the RGD theory: (a) perpendicular and 
(b) parallel polarization. 

In the RGD framework, it is possible to estimate scattering properties of an aggregate of 

spherical particles2 that are small compared to the wavelength. To do so, it is necessary to 

consider that multiple scattering effects and self interactions between the particles are 

negligible, so that the  scattering intensity can be calculated as (Bohren and Huffman 1998): 

 ( ) ( )2
, , ,a p pI n Iγ γθ θ=  (4.36) 

                                                 
2 These particles are referred as “monomers” in the other chapters of this manuscript. 
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where   or γ = ⊥�  and ( ),pI γ θ  is the scattering intensity of the single particle (calculated with 

the Rayleigh theory, see Eq. (4.27)). The cross sections of the aggregate are expressed as: 

 
, ,
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, ,

           (a)

           (b)

a abs p p abs

a sca p p sca

C n C

C n C
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=
 (4.37) 

where ,p absC  and ,p scaC  are the cross sections of the single particle (see Eqs. (4.28)).  

As an example, Figure 4.4 compares results of the RGD theory and the T-Matrix. It shows the 

cross sections of soot aggregates of (a) 20pn =  and (b) 100pn =  monomers with fractal 

dimension 1.80fD =  and refractive index 1.57 0.56pm i= +�  (Dalzell and Sarofim 1969). It can 

be noticed that the RGD and Rayleigh theories use similar relations for the cross sections. For  

aggregates sufficiently small compared to the wavelength (with the small radius of particle 

and/or the limited number of monomers within the aggregate) the scattering cross section may 

be neglected ( , ,a ext a absC C� ). If we consider the soot aggregate with 20pn =  monomers and 

1.57 0.56pm i= +�  (see Figure 4.4 (a)) the ratio , ,/a abs a scaC C  is larger than 10  if 17 pr nm≤  

( 0.20)px ≤ . For this value of pr  and a fractal dimension of 1.80fD = , we derived as an 

estimation that 69.2 gR nm≤ . For the aggregate presented in Figure 4.4 (b) the critical value 

10 pr nm≤  ( 0.12px ≤ ) corresponds to 99.7 gR nm≤ . In addition, both subfigures clearly show 

that for sufficiently small size parameters, the RGD results are in a very good agreement with 

the T-Matrix solution. 
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Figure 4.4. Comparison between RGD and T-Matrix: cross sections of soot aggregates versus the 
radius of monomers ( 1.80fD = , 1.57 0.56pm i= +� , 532 nmλ = ) with (a) 20pn =  and (b) 100pn = . 

 

4.4. Rayleigh-Debye-Gans theory for Fractal Aggregates (RDG-FA) 
4.4.1. General assumptions 

One major limitation of the basic RGD theory for spherical particles is that it do not account 

for the morphology of aggregates. It should be also noticed that the RGD theory assumptions 

(Eqs. (4.30)) are rarely satisfied for soot, silicon, silicon dioxide or tungsten aggregates in 

which we are interested in (Chapters 5 and 6). In some cases, the RDG-FA solves the former 
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problem. In addition, it is compatible with the underlying idea that it is better to avoid 

requiring an a priori knowledge about the relative positions (i.e. sets of coordinates) of all 

monomers within the aggregate. Thus, it is more suitable to describe in a "global" way the 

structure of the aggregate by parameters such as fD , fk , ,gR  pn  and pr .  

 

4.4.2. Scattering intensity and cross sections 

According to the RDG-FA approximation, the intensity scattered at angle θ , by an aggregate 

of spherical particles, is given by (Dobbins and Megaridis 1991): 
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 (4.38) 

The form factor (known also as the shape factor) ( ), ,g ff q R D  of fractal aggregate has been 

widely investigated. According to Dobbins and Megaridis (Dobbins and Megaridis 1991) 

it has two forms depending on the scattering regime considered, i.e. the (a) Guinier (small-

angles) or the (b) power law (large-angles) regimes: 
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where q  is the amplitude of the scattering (wave) vector, defined in Eq. (4.35). 

The absorption, scattering and extinction cross sections are given by: 
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where ,p absC  and ,p scaC  are the absorption and scattering cross sections of a single particle and 

( ), ,g fG k R D  is a structure factor (Dobbins and Megaridis 1991). For a fractal aggregate this 

new factor is defined as follows: 

 ( )
/2

2 24
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g f g
f

G k R D k R
D

−
� �
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� �

 (4.41) 

As an example, Figure 4.5 shows a comparison between the extinction, absorption and 

scattering cross sections of soot aggregates with (a) 20pn =  and (b) 100pn =  monomers, 

the fractal dimension of 1.80fD =  and refractive index equal to 1.57 0.56pm i= +�  (Dalzell and 

Sarofim 1969). We found that for the small size parameters considered here, the RDG-FA fits 

pretty well the T-Matrix results. 
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Figure 4.5. Comparison between RDG-FA (Dobbins and Megaridis 1991) and T-Matrix: the cross 
sections of the soot aggregates versus the radius of monomers within the aggregate with (a) 20pn =  
and (b) 100pn = ; 1.80fD = , 1.56 0.57pm i= +� ; incident wavelength 532 nmλ = . 

If we compare results presented in Figure 4.4 and Figure 4.5, it can be noticed that according 

to the RDG-FA theory, the scattering cross section increases slower for increasing radius of 

monomers than with the RGD theory. This is a direct consequence of the structure factor, 

( ), ,g fG k R D  which appears in Eq. (4.40)-(b) and takes into account the radius of gyration and 

the fractal dimension of the aggregate. The scattering cross section for the aggregate of soot 

with 100pn =  monomers and fractal dimension 1.80fD =  calculated according to the RDG-

FA theory is compared with the RGD calculations in Figure 4.6. Additionally, the latter figure 

presents also structure factor ( ), ,g fG k R D  for the given aggregate. 
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Figure 4.6. Comparison between the scattering cross sections calculated according to the RGD and   
RDG-FA (Dobbins and Megaridis 1991) theories for the aggregate of soot with 100pn = , 1.80fD =  
and 9.97g pR r= . 

As clearly pointed out above, according to the RGD theory the scattering cross section is 

directly proportional to the 2
pn , so it rapidly increases as the number of monomers increases. 

But, as there is no assumption of multiple scattering effects between monomers in the RGD 

theory, the consequence is that the RGD strongly overestimates the scattering cross section of 
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large (and dense) aggregates. In contradiction to that, in the RDG-FA theory, the structure 

factor ( ), ,g fG k R D  introduces an "asymptotic saturation" of the scattering cross section for 

large values of gR  and fD , see Figure 4.7. We remark also that the structure factor decreases 

more rapidly as pr  increases, for aggregates with a large monomers and a large fractal 

dimension. 
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Figure 4.7. Evolution of the structure factor of the RDG-FA theory versus the radius of monomers. 

With the RDG-FA, the differential scattering cross section of an ensemble of aggregates is 

expressed by: 

 ,, 2 ( ),p scaa sca
p

dCdC
n S q

d d
=

Ω Ω
 (4.42) 

where ( )S q  is an structure factor: 
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where 1.0C�  is an empirical constant (Sorensen 2001). The intensity SI  of the scattered 

light measured by a detector, which subtends a given solid angle relative to the scattering 

volume in a given distance, is described as (Sorensen et al. 1992a): 

 ,
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dC
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d
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 (4.44) 

where nC  is a particles number concentration. Combining Eqs. (4.29) and (4.42): 
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Using equation (4.29) in Eq. (4.45) we obtain:  

 ( ) ( )2 4 6
0 0 .S n p p pI c I C n k r F m S q= �  (4.46) 

In the Rayleigh regime Eq. (4.46) is expressed as: 
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where 2M  is the second momentum (i.e. variance) of the distribution of the number of 

monomers within aggregates. 

 

4.4.3. Scattering-extinction analysis 

According to Sorensen et. al (Sorensen et al. 1992a) a comparison between the scattering and 

the extinction measurements enables to determine the volume-equivalent sphere radius (vR ) 

of the aggregate by combining scattering and extinction (SE) analysis SE vR R= . This relation 

can be used to estimate the fractal dimension of soot aggregates as well as the radius of single 

particles within aggregates. 

The extinction transmittance is given by the equation: 

 ( )0 ,T extI I exp Lτ= −  (4.48) 

where extτ  is the turbidity and L  is the probed length of the system (i.e. cloud of monodisperse 

aggregates). The total extinction is the sum of the absorption and scattering cross sections: 

 ( ), , , ,T
a ext n a abs a scaC C C C= +  (4.49) 

where nC  is the number density of particles. From Eqs. (4.40)-(a) and (4.40)-(b), Eq. (4.49) 

becomes: 

 ( )( )2
, , , .T

a ext n p p abs p p sca gC C n C n C G kR= +  (4.50) 

Using Eqs. (4.40) (a)-(b) and (4.28) (a)-(b) in Eq. (4.50) we obtain (Sorensen et al. 1992a): 

 ( )3 2 4 6
,

8
4 ( ) ( ) .

3
T
a ext n p p p p p p gC C n kr E m n k r F m G kRπ π� 	= +A BC D

� �  (4.51) 

If we consider the extinction in the Rayleigh limit where , ,a abs a scaC C�  (see Figure 4.2) then 

the total extinction expressed by Eq. (4.51) can be simplified to: 

 
( )

( )
3

,

3
, 1

4         monodisperse      (a)

4            polydisperse        (b)

a ext p n p p

a ext p p

C n C kr E m

C M kr E m

π

π

��

��
 (4.52) 

where 1M  is the first momentum of the PSD function, i.e. the total number of monomers per 

unit volume: 

 1 3

3
.

4
n p

p

C n
M

rπ
=  (4.53) 

Particles volume fraction is expressed by the following equations: 

 

3

3

1

4
         monodisperse     (a)

3

4
            polydisperse       (b)

3

p
v n p

p
v

r
C C n

r
C M

π

π

=

=

 (4.54) 

 Using Eqs. (4.52) (a-b) in Eqs. (4.54) (a-b) respectively, we obtain: 
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 (4.55) 

Combining Eq. (4.47)-(a) with Eq. (4.52) and using volume equivalent sphere radius 
3 3
v p pR n r=  we derive a set of two equations for the volume equivalent radius and the number 

particle density: 
 

 
( )
( )

3 3 3 3 0 02
3

1 ,

/4
,

p S
SE v p p p

a extp

E m I I cM
R R r r n

M k CF m

π= = = =
�

�
 (4.56) 

 
( )
( )

2 2
,1

2
2 0 0

,
4 /

p a ext
n

Sp

F m CM k
C

s I I cE mπ
� �= = � �
� �

�

�
 (4.57) 

It must be pointed out that Eq. (4.56) is based on the assumption that the ratio of any two 

consecutive moments of the distribution is a mean size. So that, in the latter case, the ratio 

2 1/M M  provides the average number of monomers per aggregate pn . 

Combination of Eq. (4.56) with the fractal equation (Eq. (2.13)) leads to the following 

expression (Sorensen et al. 1992a): 

 1/ 1/3 1/ .f fD D

SE f p gR k n R−=  (4.58) 

The latter equation shows that log-log plot of the experimental values of SER  (i.e. evaluated 

with the scattering and extinction measurements) versus gR  should be linear with / 3fD . 

The interception point between the given plot and the x− axis provides the estimate of pr . The 

approach described above was successfully used by Sorensen (Sorensen et al. 1992a; 

Sorensen 2001) to evaluate fractal dimension of the aggregates of soot using scattering data 

(particularly SI , gR  and ,a extC ) recorded at various positions above the burner. To cancel out 

influence of the fractal prefactor fk  and number of monomers pr , Sorensen performed 

relative analysis i.e. using fixed point in the flame as a reference point. One key assumption 

introduced in this model, which may be somehow questionable, is that the number of 

monomers is determined by the combustion reaction and it becomes constant afterwards. 

 

4.4.4. RDG-FA theory for soot aggregates 

We have shown in section 4.4.2, how the RDG-FA theory can be used to estimate optical 

properties of fractal-like aggregates. However, in the literature there exist several 

formulations for the structure factor ( ), ,g fG k R D  than the one used here (Sorensen 2001). The 

other formulation that is the most widely used was derived by Koylu and Faeth (Koylu and 

Faeth 1992; Farias 1997). Within the power-law regime ( 2 2 3 / 8g fk R D> ): 
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β ββ
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 (4.59) 

where:  

 2 2

3
.

8
f

g

D

k R
β =  (4.60) 

In the Guinier regime ( 2 2 3 / 8g fk R D≤ ) 1β = , Eq. (4.59) reduces to: 

 ( )
2 22

, , 1 ,     1.
3

g
g f g

k R
G k R D kR= − �  (4.61) 

If scattering diagram is dominated by the power-law regime (i.e. 0β ≅ ) Eq. (4.59) yields: 

 ( ) ( )( ) ( ) /22 23 12
, , 4 ,     1.

2 6 4

fD

g f g g
f f f

G k R D k R kR
D D D

−� �
� �= −
� �− − −� �

�  (4.62) 

The formulation derived by Koylu and Faeth is much more complex and formally quite 

different from the one introduced by Dobbins and Megaridis (see Eq. (4.41)). However, the 

numerical results obtained with both equations are not so different for small and medium size 

aggregates. 

 

4.4.4.1. Numerical examples for the cross sections 

As an example of the RDG-FA theory, Figure 4.8 and Figure 4.9 show the absorption and the 

extinctions cross sections predicted according to the RDG-FA (equations formulated by 

Dobbins and Megaridis as well as Koylu and Faeth) and the T-Matrix theories. It can be seen 

that for aggregates with 20pn =  monomers (Figure 4.8), both solutions of the RDG-FA 

theory are in a very good agreement with the T-Matrix for radius of single monomers 

increasing from 1 pr nm=  up to the 30 40 pr nm= −  (i.e. size parameter 0.35 0.47px −� ). 

The absorption cross section according to the RDG-FA is predicted accurately in the entire 

range of the pr , while significant differences appear only for extinction. If we consider larger 

aggregate (e.g. with 100pn = , see Figure 4.9) differences between the RDG-FA and T-Matrix 

theories can be already seen for 20 30 pr nm= −  ( 0.24 35px −� ). The latter behavior of the 

RDG-FA theory is caused by the fact that for large aggregates the power-low regime has 

a much larger influence to the total scattering that the Guinier regime. It can be also seen that 

in the given example extinction cross section calculated according to Koylu and Faeth for 

40 pr nm>  is significantly overestimated comparing to the other solution. 
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Figure 4.8. A comparison between the (a) absorption and (b) extinction cross sections of soot 
aggregates versus the radius of monomers with 20pn = , 1.80fD = , 1.57 0.56pm i= +� , 532 nmλ =  
according to RDG-FA theory and T-Matrix method. 
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Figure 4.9. A comparison between the (a) absorption and (b) extinction cross sections of soot 
aggregates versus the radius of monomers with 100pn = , 1.80fD = , 1.57 0.56pm i= +� , 532 nmλ =  
according to RDG-FA theory and T-Matrix method. 

Figure 4.10 evaluates the range of validity of the RDG-FA theory with the second formulation 

of the structure factor (Koylu and Faeth 1994) compared to the T-Matrix results. It presents 

isole-maps of the percent deviation of the absorption cross sections for aggregates with 

1.80fD =  and (a) 16pn = , (b) 64pn =  and (c) 256pn = . Size parameter and refractive index 

were chosen as 0.01 1.00px = −  and 1 0.1 2.0pm − = −�  (where p p pm m ik= +�  and 1p pm k= +� ) 

respectively. These parameters we chosen to compare our results with the simulations 

presented by Farias et al. (Farias et al. 1996; Farias 1997). The RDG-FA and T-Matrix 

theories agree within 10% in the region (1), 10 30%−  in the region (2) and more than 30% in 

the region (3). Figure 4.11 presents similar results, for scattering cross sections.  
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Figure 4.10. Percent deviation between RDG-FA approximation and T-Matrix results for the 
absorption cross section of fractal aggregates 1.80fD =  with various size parameters (px ) and 
various number of monomers. 

 
Figure 4.11. Like in Figure 4.10 but for scattering cross sections. 

From Figure 4.10 and Figure 4.11 it can be seen that the RDG-FA theory provides results 

with a reasonably good accuracy for aggregates with small size parameter and relatively small 

refractive index. When predicting absorption cross section, accuracy better than 10% can be 

reached for 1 1pm − <�  and 0.4px <  regardless of the number of monomers within aggregate. 

The same accuracy for scattering cross section can be obtained when 1 0.8pm − <�  and 

0.25px < . It should be noticed that accuracy better than 10% when predicting absorption as 

well as scattering cross section cover a wide variety of soot aggregates. For instance, size 

parameter equal to 0.25px �  corresponds to 21 pr nm�  if the incident wavelength 532 nmλ =  

is used. This value exceed typical radiuses of single monomers of soots aggregates generated 

during the combustion of various chemical compounds (Ouf 2006).  
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4.4.4.2. Numerical examples for the scattering diagrams 

Figure 4.12 compares the RDG-FA and T-Matrix results for intermediate size soot aggregates 

(i.e. 100pn = , 25 pr nm= , 249 gR nm=  and 322 gR nm= ) while Figure 4.13 and Figure 4.14 for 

the large ones ( 500pn = , 25 pr nm= , 515 909 )gR nm= − . The refractive index of particles is 

equal to 1.57 0.56pm i= +�  (Dalzell and Sarofim 1969). Aggregates are investigated with 

perpendicularly or parallel polarized incident plane wave with 532 nmλ =  (green laser diode). 

The scattering intensities are plotted versus the scattering vector q  (see chapter 5). 
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Figure 4.12. A comparison between RDG-FA and T-Matrix predictions for the scattering diagrams of 
soot aggregates with intermediate size (100pn = , 25 pr nm= ). 
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Figure 4.13. A comparison between RDG-FA and T-Matrix predictions for the scattering diagrams of 
soot aggregates with intermediate size ( 500pn = , 25 pr nm= ). 

From Figure 4.12 – Figure 4.14 it can be seen that scattering diagrams for the aggregates with 

small fractal dimensions ( 1.60fD = ) fit rather well for all the scattering angles. At the same 

time for the 1.80fD ≥  they significantly differ for the intermediate values of q . However, it 

should be noticed that for the larger values of the scattering vector q  the decay in the power-

law region are very similar with the RDG-FA and the T-Matrix. For a more quantitative 

comparison of this power-law region we can use the algorithm developed in chapter 5, see 

Table 4.1.  
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Figure 4.14. A comparison between RDG-FA and T-Matrix predictions for the scattering diagrams of 
soot aggregates with intermediate size ( 500pn = , 25 pr nm= ). 

Table 4.1 compares the results obtained with both light scattering model and the SSE 

algorithm. The results fit rather well. To our opinion, the differences between the expected 

and the estimated values must be attributed more to the SSE algorithm limitations than to the 

T-Matrix inaccuracy, see chapter 5. 

 
Table 4.1. Summary of the fractal dimension estimated for the scattering diagrams of soot aggregates 
predicted with T-Matrix and RDG-FA theories, analyzed with the SEE algorithm. 

Reference figure: Figure 4.12 Figure 4.13 Figure 4.14 

Initial Df  1.60±0.01 1.80±0.01 1.60±0.01 1.70±0.01 1.80±0.01 1.90±0.01 

Estimated Df  1.63±0.01 1.84±0.01 1.62±0.01 1.73±0.01 1.84±0.01 1.95±0.01 

 
Table 4.2. Summary of the radiuses of gyration estimated for the scattering diagrams of soot 
aggregates predicted with T-Matrix and RDG-FA theories, analyzed with the SEE algorithm. 

Reference figure: Figure 4.12 Figure 4.13 Figure 4.14 

Fractal dimension 1.60 1.80 1.60 1.70 1.80 1.90 

Initial Rg [nm] 322 249 909 736 610 515 

T-Matrix Estimated Rg [nm] 350 275 921 766 640 541 

Rg accuracy [nm] 19 17 51 42 33 25 

RDG-FA Estimated Rg [nm] 355 266 958 783 646 532 

Rg accuracy [nm] 21 18 55 45 30 29 
 

 

Results presented in Table 4.2 appear to be much more interesting. The latter table compares 

the radius of gyration estimated with the Guinier analysis (see chapter 5) for the scattering 

diagrams predicted by the RDG-FA as well as T-Matrix theories. It can be seen that generally, 

both approximation provide similar accuracy: the results typically do not differ more than 
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10%. What is more, systematic overestimation that can be seen in Table 4.2, is results of the 

Guinier analysis properties rather than the RDG-FA or T-Matrix predictions, see chapter 5. 

 

4.5. T-Matrix method 
4.5.1. Introduction 

The T-Matrix method (known also as Null-field Method or Extended Boundary Condition 

Method, EBCM) is one of the most powerful and commonly used methods to calculate light 

scattering by various nonspherical particles. Solution proposed by Waterman (Waterman 

1965) in 1965 has been widely extended and improved. Several different computational codes 

using T-Matrix approach have been developed (e.g. (Barber and Hill 1990; Mishchenko et al. 

1996; Auger et al. 2007; Nieminen et al. 2007)). They might be apply to the analysis of 

various particle systems (e.g. (Doicu et al. 2006; Martin 2006; Binek 2007)). In the present 

work we use the Fortran code developed by Mackowski and Mishchenko (Mackowski and 

Mishchenko 1996; Mishchenko et al. 1996; Mishchenko 2009). Different versions of this 

code are available on-line on the website of the NASA Goddard Institute for Space Studies 

(Mishchenko et al. 2012). We have slightly modified this code to allow, for instance, MPI 

parallelized calculations. 

The T-Matrix is based on the direct solution of the Maxwell’s equations. Therefore, it is an 

exact method to calculate scattering properties of rather complex-shaped particles or ensemble 

of spherical particles. It is very popular due to the fact that it provides high accuracy and 

relatively short computational time comparing to the other competitive solutions (e.g. discrete 

dipole approximation (Draine and Flatau 1994)) that can be used in order to solve such 

a complex scattering problems. 

 

4.5.2. T-Matrix assumptions 

The T-Matrix method is based on the principle that the electromagnetic field outside of 

a regular surface S containing a scattering object, is equivalent to that which would be 

produced by electric currents distributed on the surface S. Inside the surface S, the scatterer do 

not produce any electric or magnetic field (thus, the T-Matrix is also known as the null-field 

method). Therefore, we can express the total field (incident and scattered) outside of the 

surface S as surface integrals. The latter assumption is not valid on the surface S itself. It is 

valid only inside the inscribed sphere or outside of the circumscribed sphere of the surface S. 

The equivalent surface currents are then expressed as the sum of n-spherical harmonics with 

unknown coefficients. Within the inscribed sphere, the equation 0E =  is transformed into 

a linear system of equations which connects the unknown coefficients of the scattered field 

with known coefficients of the incident one. This relation is given in a matrix notation as 

a transition matrix, known also as a Matrix T. 
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The T-Matrix formulation can be extended to the multiple scatterers (i.e. particles)  problem. 

To do so, Matrix T must be associated to each particle of the system (Auger et al. 2007). 

Thus, it contains properties of the scattering particles and takes into account influence of the 

other particles. It leads to the N coupled linear equations, where N is equal to the number of 

particles to be analyzed.  

 

4.5.3. T-Matrix formulation 

If we consider an arbitrary nonspherical particle in the spherical coordinate system with the 

origin inside the particle, suspended in the homogenous, linear, isotropic and nonabsorbing 

medium, an incident plane electromagnetic wave can be expressed as (Mishchenko et al. 

1996): 

 ( ) exp( ) ( ) exp( ),inc incik E E ikinc inc
inc inc inc incE R E n R � � n Rθ ϕ= = +  (4.63) 

where R  is the radius vector with the origin at the origin of the coordinate system, incn  is the 

unit vector pointing the incident direction of the electromagnetic wave, inc�  and inc�  are 

perpendicular unit vectors such as inc inc incn � �= ×  and ( )exp i tω−  is the time factor. In the far-

field region ( 1kR� ), the scattered wave takes spherical shape and can be expressed as 

follows: 
 ( ) ( , ) ( , ) ,          / ,      1,sca scaE R E R R kRsca

sca sca sca sca scaE R n � n � n Rθ ϕ= + = �  (4.64) 

where sca sca scan � �= ×  and R = R . Moreover, the relation between the incident and the 

scattered wave can be expressed as: 

 ( ) 0,sca =RE R  (4.65) 
  

 ( )exp( )
, ,

sca inc

sca incsca inc

E EikR

E ER
S n nθ θ

ϕ ϕ

� 	 � 	
=A B A B

A B A BC D C D
 (4.66) 

where S is an ( )2 2×  amplitude scattering matrix which transforms linearly the incident 

electric vector components ,  inc incE Eθ ϕ  to the scattered ones. The incident and the scattered 

fields are expressed using the vector spherical functions mnM  and mnN  as follows 

(Mishchenko et al. 1996): 

 [ ]
1

( ) ( ) ( ) ,
n

mn mn
n m n

a k b k
∞

= =−

= +� �inc
mn mn� R RgM R RgN R  (4.67) 

 [ ] 0
1

( ) ( ) ( ) ,      ,
n

mn mn
n m n

p k q k R r
∞

= =−

= + >� �sca
mn mnE R M R N R  (4.68) 

where , mn mnp q  are the scattered field coefficients, , mn mna b  are the incident field coefficients 

and the vector spherical functions are: 

 ( ) ( ) ( ) ( ) ( )(1)1 exp ,
m

n nk d h kR immn mnM R C θ ϕ= = −  (4.69) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )(1) (1)1 1
1 ' exp .

m

n n n

n n
k d h kR kRh kR im

kR kRmn mn mnN R P Bθ θ ϕ
� + �

� 	= − +� �C D
� �

 (4.70) 
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where: 
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and 

 ( ) ( )0 / ,n
md RmnP Rθ θ=  (4.72) 

 ( )

1/2

2 1
,

4 1n

n
d

n nπ
� 	+= A B+A BC D

 (4.73) 

where 0r  is the radius of the circumscribed sphere containing ensemble of scattering particles 

(e.g. an aggregate) and ( )0
n
md θ  are the Wigner d-functions (Mishchenko et al. 1996). 

Functions mnRgM  and mnRgN  can be obtained from Eqs. (4.69) and (4.70) by replacing 

spherical Henkel functions (1)
nh  by spherical Bessel functions nj . 

The expansion coefficients for the plane incident wave are expressed as: 

 
( ) ( ) ( )
( ) ( ) ( )1

4 1 exp ,               (a)

4 1 exp ,             (b)

m n
mn n inc inc

m n
mn n inc inc

a i d im

b i d im

* inc
mn

* inc
mn

C E

B E

π θ ϕ

π θ ϕ−

= − −

= − −
 (4.74) 

where asterisk indicates complex conjugation. Finally, the relation between the scattered and 

the incident field coefficients is described by the transition matrix (Matrix T) as follows: 

 
'

11 12
' ' ' ' ' ' ' '

' 1 ' '

,
n

mn mnm n m n mnm n m n
n m n

p T a T b
∞

= =−

� 	= +C D� �  (4.75) 
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21 22
' ' ' ' ' ' ' '

' 1 ' '

.
n

mn mnm n m n mnm n m n
n m n

q T a T b
∞

= =−

� 	= +C D� �  (4.76) 

In a matrix notation Eqs. (4.75) and (4.76) can be expressed as: 

 .
� 	� 	 � 	 � 	
A BA B A B A B

C D C D C DC D

11 12

21 22

p a aT T
= T =

q b bT T
 (4.77) 

Eq. (4.77) shows one of the biggest advantages of the T-Matrix solution: the elements of the 

Matrix T depend only on the morphological parameters of the scattering particles (i.e. shape, 

size parameters, refractive index) and their orientation regarding the coordinate system 

(Onofri 2007). As a result, for a given aggregate, Matrix T has to be calculated only once and 

then it can be used to evaluate the particle scattering properties for any incident and scattering 

directions. Total extinction, absorption and scattering cross sections for an aggregate can be 

calculated with the following equations: 

 

11 22
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 (4.78) 
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4.5.4. The coordinate system and the displayed quantities 

During calculations, T-Matrix code uses spherical coordinate system. However, as an input 

parameters coordinates of monomers within an aggregate must be given in the classical 

laboratory Cartesian system. Thus, the coordinate system and the displayed quantities are as 

follows (see also Figure 4.15): 

•  The incident, plane wave with linear polarization, is propagating along the Z axis, (see 

Figure 4.15). The scattered intensity is calculated in the “scattering plane” XZ ( 0Y = ) for 

a given scattering angle θ . 

•  The polarization is parallel when 0E⊥ =  and E
�
 is parallel to axis X  (i.e. intensity 

usually written as I
�
 or 2S ). 

•  The polarization is perpendicular when 0E =
�

 and E Y⊥ =  (usually written as I ⊥  or 1S ). 

•  The degree of linear polarization of the scattered light is also given with 

( ) ( )12 11 1 2 1 2/ /P S S S S S S= − = − + , where 11S  and 12S  are two of the 16 real coefficients of 

the T-Matrix solution. 

 
Figure 4.15. Coordinate system for the light scattering calculations and particles orientation in the            

T-Matrix calculations (Onofri 2007). 

 

4.5.5. Example numerical results 

4.5.5.1. Optical characteristics of various fractal aggregates 

With linear optics, one of the most fundamental approach to characterize the size distribution 

of large particles is to analyze their scattering diagrams, i.e. the intensity I  versus the 

scattering angle θ  for large particles (e.g. in the Fraunhofer, the rainbow or critical angle 

regions) or versus the scattering vector q  for nano- and micro aggregates. 

Figure 4.16 compares the scattering diagrams of single aggregate of silicon dioxide monomers 

in water with various orientations. The incident plane wave is (a) perpendicular and 

(b) parallel polarized with wavelength 532 nmλ =  The parameters of the aggregate are: 
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1.80,fD =  101pn = , 55 pr nm= , 550 gR nm= . The scattering diagram averaged over 500 

various aggregates, with exactly the same parameters, is also shown. The influence of the 

aggregate orientation (with respect to the incident plane wave and the scattering plane) is 

really significant. At the same time, the main influence of the averaging procedure seems to 

damp all resonances.  
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Figure 4.16. Scattering diagrams for a single aggregate of silicon dioxide monomers rotated around 
the x axis by 0° , 90° , 180°  and 270°  and results average over 500 aggregates with the same 
parameters: (a) perpendicular and (b) parallel polarization of light. 
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Figure 4.17. Scattering intensity averaged over 500 fractal aggregates, for a single aggregate and 
single sphere with radius 3 218.8 v p pR r n nm= =  versus (a) scattering angle and (b) amplitude of the 
scattering wave vector q ; perpendicular polarization. 

Figure 4.17 compares the scattering diagrams of a single silicon dioxide aggregate in water 

with the one of a single sphere with radius equal to the radius in volume of the aggregate, with  

1.60fD = , 63pn = , 55 pr nm= , 550 gR nm= . Only the forward scattering exhibits some 

similarities. In some extent this may be understood with the RDG-FA approximation, as in 

that case we have ( ) 20 pI nθ = ∝ . For the other scattering regions, the scattering diagrams are 

totally different. 

 



CHAPTER 4 - LIGHT SCATTERING THEORIES AND MODELS 

  

107 
 

4.5.5.2. Averaging procedure for the scattering diagrams 

From the previous results we can really conclude that to model the scattering diagrams of 

aqueous colloidal suspension or aerosols of complex-shaped aggregates, it is necessary to 

cancel out orientation effects using a numerical averaging procedure. This is particularly 

important because in practice we are usually probing thousands of millions of nanoparticles 

and aggregates, not a single aggregate with a particular orientation. 

Therefore, as a standard procedure, all the scattering diagrams presented in this work were 

averaged over 500 different aggregates with exactly the same fractal properties. This sample 

was chosen as a compromise between calculation accuracy and computational time.  
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Figure 4.18. Scattering diagrams of the aqueous suspension of SiO2 aggregates with 55 pr nm= , 

550 gR nm= , (a) 1.60fD = , (b) 2.00fD = , (c) 2.40fD =  and (d) 2.80fD = ; perpendicular 
polarization. 

As an example, Figure 4.18 shows the scattering diagrams of the aqueous suspension of 

silicon dioxide (SiO2) monomers with 55 pr nm= , 550 gR nm=  and 1.60 2.80fD = − . 

We present scattering diagrams averaged over 500 various aggregates with the same 

parameters and the standard deviations (STD) related to the averaging procedure. We found 

that for aggregates with low and medium fractal dimensions the differences are non-

negligible. The standard deviation decreases as the fractal dimension increases. For 2.80fD =  

it is almost insignificant for the small scattering angles (small values of q ) and it becomes 

noticeable only for the larger ones. 
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Similar conclusions can be drawn from Figure 4.19. The latter presents the relative 

differences between the scattering diagrams of the silicon dioxide aggregates ( 55 pr nm= , 

550 gR nm= , 1.6fD = , 64pn = ) depending on the number of aggregates used for the 

averaging procedure (i.e. 500, 100 400− ; 500 being considered as a reference case). 

The relative difference between the results averaged over  500 and 400 aggregates is smaller 

than 1% for the entire scattering diagram. Moreover, the improvements related to the 

increasing number of aggregates by 100 are relatively smaller at each step. It clearly shows 

that averaging over 500 aggregates provides enough high accuracy. This value of 500 was 

found to be a good compromise for all cases (aerosol, plasmas, etc.) threaded in this 

Ph.D. work. 
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Figure 4.19. (a) Scattering diagrams of silicon dioxide aggregates ( 55 pr nm= , 550 gR nm= , 

1.6,fD =  64pn = ) averaged over 500 different aggregates with the same parameters and 
(b) deviation between the scattering diagrams averaged over a smaller number of monomers. 

 

4.5.5.3. Averaging procedure for the extinction profiles 

It is also necessary to average extinction spectra to cancel out orientation effects as well as 

any sensitivity to aggregates with a non fully representative shape. However, the total cross 

sections (and thus extinction and scattering coefficients) are much less sensitive to the 

orientation of aggregates than scattering diagrams (see previous section). We found that an 

averaging over 50 aggregates is a good compromise. As an example, Figure 4.20 shows the 

extinction coefficient (i.e. extinction cross section normalized by the surface of the sphere 

with volume equivalent to the one of the aggregate, see section 6.4.1 for more details) 

of aggregates of amorphous silicon monomers 3.5 pr nm=  with 35 gR nm=  and fractal 

dimension equal to (a) 1.50fD =  or (b) 2.80fD = . In both figures the maximum, minimum 

and average extinction for the group of 50 various aggregates are shown. The standard 
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deviation divided by the average value of the extinction coefficient ( )a,ext a,extSTD(Q ) 100 / Q×  is 

also plotted. 
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Figure 4.20. Comparison between maximum and minimum extinction coefficients for a group of 50 
various aggregates of amorphous silicon monomers with the same parameters: 3.5 pr nm= , 

35 gR nm= , (a) 1.5fD = , 51pn =  and (b) 2.8fD = , 1000pn = . 

It can be seen that the standard deviation is strongly dependent on the fractal dimension. 

For aggregates with 1.50fD =  its mean value is equal to 6.33% and typically do not exceed 

8% for the wavelength ranging from 200 to 900 nm. For aggregates with 2.80fD =  the 

standard deviation is more than one order of magnitude smaller with mean value 0.33%. This 

behavior of the extinction coefficient is a direct consequence of the fact that dilute aggregates 

with the same parameters may have much more varied shapes than the compact ones. They 

can be also situated in numerous different positions regarding the incident wave. It is also 

worth to notice that for very dense aggregates (as presented in Figure 4.20 (b)) even results of 

the calculations for one aggregate might be meaningful. 

Figure 4.21 presents differences between extinction coefficient of the silicon dioxide 

aggregates ( 3.5 pr nm= , 35 gR nm= , 1.5fD = , 51pn = ) averaged over 50 and 10 40−  

aggregates respectively. It can be seen that relative difference between results averaged over 

50 and 40 aggregates is for the entire wavelength range smaller than 0.5%, Moreover, the 

improvements related to the increasing number of cases by 10  are relatively smaller at each 

step. It clearly means that averaging over 50 aggregates provides enough high accuracy. 
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Figure 4.21. Deviation between extinction coefficient of the silicon dioxide aggregates ( 3.5 pr nm= , 

35 gR nm= , 1.5fD = , 51pn = ) averaged over various number of aggregates. 

 

4.5.5.4. Extinction cross section of single monomers within fractal aggregates 

The effective extinctions of each monomers within an aggregate are also quite different 

depending on their position in the agregate. As an example Figure 4.22 shows grey-level 

coded images of the extinction coefficients of the monomers within two aggregates of soot 

with 200pn = , 17.1 pr nm=  (a) 1.8fD = , 251 gR nm=  and (b) 2.2fD = , 154 gR nm=  for the 

incident wavelength 300 nmλ =  (note that the incident plane wave propagates along the        

z-axis). 

 
Figure 4.22. Gray-scale images of extinction coefficients of single monomers within aggregates of 
soot with 200pn = , 17.1 pr nm=  (a) 1.8fD = , 251 gR nm=  and (b) 2.2fD = , 154 gR nm= . 
Incident wave propagates parallel to the z-axis. 
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4.5.5.5. Extinction cross section of Buckyballs-like aggregates 

Figure 4.23 – Figure 4.25 show the extinction spectra of buckyballs-like aggregates with 

parameters similar to the ones observed experimentally (see section 6.5):  30 50K R , 30 25K R  

and 30 12K R  with radiuses of single monomers
 

40.5 pr nm= , 33.6 pr nm=  and 15.7 pr nm=  

respectively. Each spectra was obtained by averaging the T-Matrix results for the randomly 

oriented aggregates and 91 wavelengths equally distributed between 200 and 1100 nm. 

The averaging procedure was performed over 100 aggregates. 

Figure 4.23 compares extinction coefficients calculated for (i) buckyballs aggregates with an 

3D hexagonal compact internal structure (see section 2.5) and (ii) a single spherical particles 

with a radius equal to the external radius of the buckyballs and the refractive index calculated 

with an effective medium approximation (i.e. Maxwell-Garnet model (Bohren and Huffman 

1998)): 
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where f  is the volume fraction of monomers within the aggregates, ε  and mε  are the 

relative permittivities of the inclusions (monomers) and the bulk material (i.e. air)  

respectively. For buckyballs presented in Figure 4.23 – Figure 4.25, we have used a volume 

fraction of 0.51 0.54f = −  (these values were estimated with the geodesic dome model (Onofri 

et al. 2012a)). 
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Figure 4.23. Comparison of extinction spectra of buckyballs aggregates (of silica nanobeads) with 
a 3D hexagonal compact internal structure: T-matrix calculations versus Lorenz-Mie theory with 
an effective medium approximation, 40.5 pr nm= . 

Surprisingly, we found that results obtained with the Lorenz-Mie theory and the Maxwell-

Garnet model fit rather well with the T-Matrix calculations for buckyballs of intermediate size 

of the aggregates (i.e. with 42,  92,  162pn = ) and for the VIS-NIR spectral range, see Figure 

4.23. For the larger and smaller buckyballs significant differences appear when incident 
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wavelengths shorter than 500 nm is used. Similar conclusions may be drawn from Figure 

4.24. Finally, from Figure 4.25 we conclude that for such small aggregates differences 

between the T-Matrix with a full buckyball model and the Lorenz-Mie theory with the 

effective refractive index are really small. In the latter case, the mean difference is only of 

2.3 1.2%±  for buckyballs with 362pn =  (total number of , 749p HCn = ) monomers to 6.6 2.5%±  

for 162pn =  (total number of , 249p HCn = ). Maximum difference equal to 15% was observed 

for buckyballs with 12pn =  and incident wavelength 200 nmλ = . Results presented in the 

latter figures clearly shows that it is not always necessary to perform very time-consuming T-

Matrix calculations.  
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Figure 4.24. Like Figure 4.23 but for 33.6 pr nm= . 
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Figure 4.25. Like Figure 4.23 but for 15.7 pr nm= . 

 

4.5.5.6. Extinction cross section of single monomers within Buckyballs aggregates 

Like for fractal aggregates, we can calculate the effective cross section of the each monomers 

within a buckyballs-like aggregate. Figure 4.26 and Figure 4.27 show the extinction 

coefficients (i.e. normalized extinction cross section) of each single monomers within 

a buckyball of 252pn =  monomers filled with a 3D hexagonal compact internal structure 
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(total number of monomers , 509),p HCn =  and 362pn =  monomers (total number of monomers 

, 749p HCn = ) respectively. The mean radius of the monomers is equal to 40.5 pr nm=  and the 

incident wavelength is equal to (a) 300 nmλ = , (b) 400 nmλ =  and (c) 500 nmλ = . 

 
Figure 4.26. Extinction coefficients of each single monomers within the equatorial plan of a buckyball 
of 252pn =  monomers with a 3D hexagonal internal structure (total number of monomers 

, 509)p HCn =  with 40.5 pr nm=  – (a) 300 nmλ = , (b) 400 nmλ = , (c) 500 nmλ = ; external diameter 
783 extd nm= . 

 
Figure 4.27. Extinction coefficients like in Figure 4.26 for 362pn =  (total number of monomers 

, 749p HCn = ); external diameter 922 extd nm= . 

Among the interesting behaviors shown here, we can notice that the monomers exhibit some 

negative values for the extinction coefficients. They appear when incident wavelength is 

relatively short comparing to the size of the monomers (see Figure 4.26 (a) and Figure 4.27 

(a)-(b)). It is probably the result of some internal multiple scattering and "focusing" effects. 

It can be noticed that the layout of the extinction cross sections presents some analogy with 

the one observed for a homogeneous sphere (Barber and Hill 1990). 

 

4.5.5.7. Computational time with the T-Matrix code (Mackowski and Mishchenko 1996) 

Another important issue related to the T-Matrix code is the computational time. We have 

parallelized the Fortran code developed by Mackowski and Mishchenko (Mackowski and 

Mishchenko 1996; Mishchenko et al. 2012) to get a better compromise between the accuracy 

and the computational time. This parallel version runs on the computer clusters available in 

the IUSTI Laboratory (a few dozens of cores were used in general). However, the simulations 

are still time-consuming and they require large storage capacities. As an example of the 

typical computational time associated to the T-Matrix, Figure 4.28 shows the time evolution 
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of the scattering simulations for the aggregates with 1.80fD =  and different size parameters 

( 0.1,  0.2,px = 0.5, 1.0,2.0) versus the number of monomers within aggregates (20,pn =
40, ...,  1000). For a comparison purposes, the calculations presented here were performed on 

the single, typical up-to date computer (dual core CPU 2 2.8 GHz×  and 4 GB of RAM 

memory). 
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Figure 4.28. Computational  time of the T-Matrix code for various size parameters of the aggregate 
with 1.80fD =  versus number of monomers. 

From Figure 4.28 it can be deduced that the computational time of the T-Matrix code strongly 

depends on the number of monomers within aggregate. However, a non-negligible influence 

has also the size parameter of the monomers (e.g. the ratio between the computational time for 

the aggregates with the same properties but 2.0px =  and 0.1px =  is higher than 16). It should 

be noticed that, with the parallelized version, the total computational time is roughly divided 

by the number of cores being used. 

 

4.6. Conclusion 
Despite that numerous light scattering theories and methods to characterize particle systems 

are available in the literature, only few of them are appropriate when considering the in-situ 

and time-resolved analysis of fractal aggregates of nanoparticles. In this chapter we briefly 

introduced only those of them that have been used in the current work.  

In fact, only some of the theories (e.g. the LMT theory or the T-Matrix method) provide exact 

solution of the scattering phenomena, while the others give approximate results with some 

degree of accuracy (e.g. the RGD or RDG-FA theories). The biggest competition between 

exact solutions and approximate methods usually relay on the computational time and 

efficiency. Therefore, each time we have to choose appropriate model regarding size 

parameters, number of particles and scattering conditions (i.e. wavelength and scattering 

angles accessible during the analysis) of our problem. It is also necessary to take into account 

computational time.  
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5. ANALYSIS OF THE SCATTERING DIAGRAMS 
 

 

 

 

 

 

5.1. Introduction 
For the characterization of fractal-like particle aggregates, the most powerful approach is 

based on the recording and afterwards the analysis of their visible (X-ray and even neutrons) 

scattering diagrams with respect to the scattering vector q  (see Eq. (4.35)) (e.g. (Sorensen 

2001; Bushell et al. 2002). The quantity ( )I q  is sometimes referred as the "optical structure 

factor (OSF)" (Sorensen et al. 1992b; Sorensen 2001).  

In this chapter we discuss methods and algorithms to estimate the main parameters of fractal-

like particle aggregates from their OSF and some related issues. The current chapter is 

organized as follows. Section 5.2 introduces two main algorithms to analyze OSF. The first 

one, referenced as the Second Slope Estimation (SSE) method is based on a direct and simple 

method, but its applicability is limited to aggregates with rather large size parameter and 

intermediate fractal dimension. The second algorithm, called the First Slope Estimation (FSE) 

method, requires building calibration curves based on accurate particle agglomeration and 

particle light scattering models. It allows analyzing the optical structure factor of much 

smaller aggregates, regardless their fractal dimension and the size of the single particles. 

Therefore, this algorithm, as well as the introduction of a criteria curve to detect the different 

scattering regimes, are thought to be powerful tools to perform reliable and reproducible 

analysis. Section 5.3 presents influence of free monomers (non aggregated) around the 

aggregates of interest to the results estimated with our algorithms. 

Finally, Section 5.4 shows a comparison between scattering diagrams of DLA and DLCA 

aggregates. It presents numerical results obtained on the ground that both aggregation 
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algorithms differ from the physical point of view (see section 2.2.2) and therefore it may be 

questionable if the optical properties of the corresponding aggregates are similar or not. 

However, we show that scattering characteristics of DLA and DLCA aggregates do not differ 

significantly as soon as they exhibit a power-law regime. 

 

5.2. Estimation of fractal parameters from scattering diagrams 
5.2.1. Introduction 

OSF analysis is a powerful approach to estimate parameters of various particles. However, in 

the literature the method used to process the OSF is never detailed and evaluated, whatever 

the processing scheme (as it will be shown later on) strongly influence the quality and 

reliability of the analysis. Regarding the previous remarks, the aim of the present work was to 

develop reliable algorithms to estimate in a comprehensive and reproducible ways the fractal 

parameters from OSF (Mroczka et al. 2012).  

 

5.2.2. Light scattering properties 

Figure 5.1 (a) shows the numerical simulation of the evolution of the OSF of a water 

suspension of silicon dioxide aggregates (results averaged over 500 different aggregates with 

parameters: 100pn = , 1.80fD = , 55 pr nm= , 550 gR nm= , 1.47 0pm i= +� ). Three scattering 

regimes (or zones) may be identified in this OSF: namely, the Guinier, the fractal (or power-

law) and the Porod zones. Behavior of the OSF in each zone is totally different and related to 

different aggregate properties. The OSF in the Guinier zone is essentially dependent on the 

overall size of aggregates (i.e. the length of this zone, with respect to the scattering vector, 

gives information about gR ). In the fractal zone, the power-law decay of the OSF (and the 

associated slope) depends mostly on the aggregate’s morphology and thus, fD . The behavior 

of the OSF in the Porod zone is known to be mainly sensitive to monomers size (Sorensen 

2001) but this zone is usually only accessible with X-rays. 
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Figure 5.1. (a) Evolution of the optical structure factor (OSF) of silicon dioxide aggregates ( 100pn = , 

1.80fD = , 55 pr nm= , 550 gR nm= ) and (b) criteria curve obtained with the FSE algorithm 
(Mroczka et al. 2012). 

 

5.2.3. Radius of gyration estimation 

We basically use the Guinier equation (Sorensen 2001) to estimate the radius of gyration from 

the normalized OSF: 

 
( )

( )
2 20

1 ,      for      1.
3

g
g

R qI q
qR

I q

=
+ <�  (5.1) 

In the previous equation the power-law term indicates that from the normalized OSF plotted 

versus 2q  we can estimate directly the radius of gyration. To do so, the algorithm works in 

a two-step process. Firstly, the OSF is low-pass filtered and normalized. Secondly, a linear 

least square fitting method is used to estimate the slope coefficient in the Guinier zone 

(symbolized here by the parameter a and the related accuracy a∆ ). To correctly estimate the 

radius of gyration it is necessary to use only data in the range ( ) ( )0 / 4 / 3I q I q= < . Finally, 

the radius of gyration is evaluated as 3gR a= , with: 

 
3

.
2 3

g
g

R
R a a

a a

∂
∆ = ∆ = ∆

∂
 (5.2) 

 
5.2.4. Algorithms for estimating the fractal dimension 

5.2.4.1. Second Slope Estimation (SSE) Algorithm 

In the fractal zone, the power-law decay of the OSF provides both quantitative and qualitative 

information about the fractal dimension of the aggregates. To get directly the value of fD , 

only data values in the range 5gqR >  must be used (Sorensen 2001). In fact, below this limit 

the power-law regime is not clearly observed. Like previously done for the radius of gyration, 
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the fractal dimension can be obtained directly from the slope coefficient estimated with 

a linear least square fitting procedure. However, this procedure and the related algorithm are 

only valid for rather larger aggregates, i.e. ( ) ( )5 / 4gR λ π> . 

On the other hand to get a correct estimation of Df a minimum number of data points are 

necessary. They must also cover a minimum scattering angles range. Numerical simulations, 

not reported here, have shown that the criterion introduced by Sorensen must be reinforced at 

least by a factor of two, (5 ) / (2 )gR λ π>  and that the predictions obtained are only satisfactory 

for fractal-like aggregates whose dimension are restricted to the range 1.6 2.0fD = − .  

 

5.2.4.2. First Slope Estimation (FSE) Algorithm 

The "First Slope Estimation (FSE)” algorithm was developed to process OSF with a scattering 

vector that do not necessarily satisfies the 5gqR >  condition (Mroczka et al. 2012). The 

biggest advantage of this second algorithm, which uses calibration curves, is its applicability 

to all kind of aggregates, regardless fractal dimension, wavelength or radius of gyration. This 

algorithm works in a five-step process. 

•  (A) Signal (optical structure factor) interpolation. 

To compensate the huge range of variation of the scattering vector and its non-linearity with 

respect to the scattering angle (e.g. which both induce a non constant sampling rate of the 

optical structure factor) the OSF is resampled with a linear interpolation scheme. The  number 

of interpolating points is chosen arbitrary, as a compromise between accuracy and algorithm 

execution time. Basically, it is set to 1000 points per one order of magnitude of q. So that, 

depending on the incident wavelength, the OSF is sampled in 2000 3000−  data points. 

•  (B) Linear least square fitting. 

One of the most important parts of the FSE algorithm relies on the construction and analysis 

of a set of criteria curves. The latter uses a local linear least square (LLS) fitting procedure of 

the OSF. At each iteration step of the algorithm, a moving window with fixed length analyzes 

the local slope of the OSF. The LLS is performed according to the minimalization procedure 

described by the equation: 

 
2

min ,      ,m n

x
RAx b A ×− ∈   (5.3) 

where x represents the experimental vector containing windowed data of the OSF and A, b 

are matrixes containing regression coefficients. At the beginning of the algorithm, the length 

of the initial window is set to a relatively large value (usually 600 points) and it may be 

changed depending on the criteria described at point C. 
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•  (C) Criteria curve construction. 

For each fitting step, and as a measure of the solution quality, the norm of the overall 

residual is calculated. Looking for the minimum residual corresponding to each position of 

the analysis windows, a criteria curve is build. It gives information about fitting results in 

each part of the optical structure factor. Figure 5.1 (b) shows the best fitting line and criteria 

curve corresponding to the analysis of the OSF displayed in Figure 5.1 (a). It is easy to notice 

that the norm of the residuals of Eq. (5.3) varies depending on the window position with 

respect to the scattering vector, i.e. the scattering regimes. It is close to zero in the Guinier 

zone, and it increases significantly during the transition between the Guinier and Fractal 

zones. In the same way, the central part of the fractal zone is well identified by a local 

minimum. This local minimum is defined as the one that just follows the first local maximum 

for increasing q. The latter maximum identifies the transition between the Guinier and fractal 

zones. Figure 5.1 (b) shows also that in the Porod zone, the criteria curve is continuously 

increasing (i.e. the size parameter of these aggregates is too small to allow the observation of 

the Porod regime). Note that, depending on the width used for the analysis windows, the 

shape and behavior of the criteria curve may be slightly different. The polarization state of the 

incoming plane wave influences also the shape of the criteria curve but, in all calculations 

presented here, we use the perpendicular one since it is more appropriate to detect the fractal 

regime (the parallel polarization produces harmful oscillations). 

•  (D) Analysis of the criteria curve 

To find the best solution from the fitting procedure, it is necessary to select the right local 

minimum of the criteria curve. An additional criterion is used for this purpose. This local 

minimum must satisfy the “absolute value criteria” , i.e. the absolute value of the minimum 

point is at least two times smaller than the value of the first maximum. 

•  (E) Algorithm iteration 

If the local minimum detected at the previous step does not satisfy the “absolute value 

criteria”, the entire procedure (i.e. points B-D) is repeated for smaller and smaller windows 

widths. If after several iterations this criteria is still not satisfied, the algorithm stops. 

It usually means that the OSF do not exhibits any characteristic fractal zone. This situation 

occurs for small size parameters aggregates (i.e. / 2gR λ π< ). Typically, as a limit value that 

stops algorithm, length of the window 10 times smaller than the initial value is taken (i.e. 60 

points of the OSF). 

 

5.2.5. Results and discussion 

For computational efficiency, we built an extensive database with the scattering properties of 

various aggregates. To further demonstrate the validity of the algorithm introduced above, 

two typical particle systems and parameters were considered:   
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•  An aqueous colloidal suspension of aggregates, composed of silicon dioxide (SiO2) 

nanobeads with radius 55 pr nm= , refractive index 1.47 0pm i= +�  (Sopra.S.A. 2010), radius 

of gyration 110 550 gR nm= −  (with step equal to 11 nm), fractal dimension 

1.4,  1.6,  ..., 2.8fD = , and number of monomers 4 1000pn = −  (according to the other 

parameters, see fractal equation, i.e. Eq. (2.13)). The probing beam is a local plane wave 

with perpendicular polarization and nominal wavelength 409 nmλ =  (violet laser diode). 

•  A gas flow of soot aggregates, composed of carbonaceous monomers with radius 

25 pr nm= , refractive index 1.71 0.56pm i= +�  (Tourbin 2006), 188 1625 gR nm= − , 

1.4,  1.6,...,  2.8fD =  and 450,  500pn =  and 550. The probing beam is a local plane wave 

with perpendicular polarization and nominal wavelength 532 nmλ =  (frequency doubled 

Nd-YAG laser). 

 

5.2.5.1. Estimation of the radius of gyration 

To estimate the radius of gyration of the silicon dioxide and soot aggregates, the Guinier zone 

is first analyzed. Figure 5.2 presents the results of the analysis of 5 colloidal suspensions 

containing aggregates with increasing radiuses of gyration. The estimated radiuses of gyration 

were found to be 236, 296, 356, 418 and 595 nm for the initial values 220, 275, 330, 385 and 

550 nm respectively. It should be noticed that, the linear regression fit really well the data 

points (regression coefficient equal 0.9985, 0.9986, 0.9986, 0.9984 and 0.9983 respectively), 

even if all the estimated values are slightly, but systematically, overestimated. 
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Figure 5.2. Guinier analysis of the SiO2 aggregates. 

Figure 5.3 summaries some results for the radius of gyration of silicon dioxide aggregates  

versus their initial radiuses of gyration. It can be seen that, as previously reported, the 

overestimation depends on the fractal dimension. It varies between 3.5% for 1.40fD =  up to 

9% for 2.80fD = . Despite the latter bias, we can clearly say that Guinier analysis assures 

good reliability of the results and that it is fairly accurate. 
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Figure 5.3. Summary of the radiuses of gyration estimated for silicon dioxide aggregates with various 

parameters. 

Table 5.1 resumes the parameters estimated for different systems of soot aggregates with the 

following parameters: 500pn = , 25 pr nm=  and 1.71 0.56pm i= +� . Here also the estimated 

values fit pretty well the expected ones, so that the overestimation of the radius of gyration, 

similarly as for silicon dioxide aggregates, evolves from 1 to 9% for aggregates having 

2.0.fD ≤  

 
Table 5.1. Summary of the radiuses of gyration estimated for soot aggregates of 500pn =  monomers. 

Fractal dimension 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 

Initial Rg [nm] 1518 1155 909 736 610 515 443 386 

Estimated Rg [nm] 1541 1167 954 794 662 540 483 425 

Rg accuracy [nm] 73 53 50 41 34 26 23 20 
 

Fractal dimension 2.2 2.3 2.4 2.5 2.6 2.7 2.8 

Initial Rg [nm] 341 304 274 250 229 211 195 

Estimated Rg [nm] 380 343 312 288 270 255 241 

Rg accuracy [nm] 17 16 14 12 11 11 10 

 

5.2.5.2. Estimation of the fractal dimension  

Figure 5.4 presents results obtained for the fractal dimension of soot aggregates, with initial 

fractal dimension 1.80fD � . The fractal dimension estimated with the SSE algorithm, 

1.82 0.01fD = ±  is in a very good agreement with the expected one. However, as already 

mentioned, we must keep in mind that the applicability of the SSE method is limited to OSF 

with 5gqR > . Table 5.2 summarizes the fractal parameters estimated with the SSE algorithm 

for the soot aggregates with increasing number of monomers. Note that, with the SSE 

algorithm is was impossible to analyze smaller aggregates than those considered in this table 

(i.e. due to 5gqR >  limitation). In an opposite way, Figure 5.4 shows also that the raw slope 
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found in the fractal zone with the FSE algorithm, i.e. 2.74 ± 0.02, differs significantly from 

the expected fractal dimension. 
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Figure 5.4. Comparison between the SSE and raw FSE (without calibration curves) algorithms for soot 
aggregates with initial fractal dimension 1.8fD =  and for 10pr nm=  and 250pn = . 

 
Table 5.2. SSE algorithm: estimation of the radius of gyration and fractal dimension of soot 

aggregates. 

Number of monomers, np 160 180 200 220 240 242 

Radius of gyration Rg [nm] 127.6 137.4 146.1 155.5 163.6 172.1 

Initial fractal dimension, Df 1.80 1.80 1.80 1.80 1.80 1.80 

Estimated fractal dimension 1.997 1.941 1.838 1.812 1.772 1.795 
 

Number of monomers, np 246 246 248 249 250 

Radius of gyration Rg [nm] 172.1 173.9 174.8 175.3 175.7 

Initial fractal dimension, Df 1.80 1.80 1.80 1.80 1.80 

Estimated fractal dimension 1.802 1.818 1.828 1.829 1.831 

 

As an example, Figure 5.5 and Figure 5.6 show the fractal dimension estimated with the FSE 

algorithm for silicon dioxide aggregates. Figure 5.5 presents the optical properties of the 

aggregates with the radius of gyration increasing from 110 nm to 550 nm and an initial fractal 

dimension of (a) 1.80 and (b) 2.20. Figure 5.6 shows the various slope coefficients estimated 

for the aggregates with constant radius of gyration 550 gR nm=  but different fractal 

dimensions and number of monomers. 
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Figure 5.5. Typical results for the fractal dimension estimated for SiO2 particle aggregates with 
nominal fractal dimension: (a) 1.80,  and (b) 2.00. 
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Figure 5.6. Typical results for the fractal dimension estimated for SiO2 particle aggregates with 
nominal fractal dimension 1.80 2.60fD = −  and constant radius of gyration 550 gR nm= . 

Figure 5.7. shows the slopes (line equation coefficient) estimated for 8 different fractal 

dimensions ( 1.4,  1.6,  ..., 2.8fD = ) and a wide range of radiuses of gyration 2 10g p pR r r= −   

( 110 550 )gR nm= − . For 2.80fD = , the values estimated with the FSE method were 

ambiguous and could not be proceed. However, all the other coefficients present clear trends 

and can be effectively analyzed. It is also worth to notice that as the radius of gyration 

increases the estimated slope decreases but, later on, for larger aggregates (around 

6 330 g pR r nm≥ = ) it become almost constant. 
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Figure 5.7. FSE algorithm: summary of the slope extraction for aggregates of SiO2 monomers. 

From Figure 5.7 and complementary results (e.g. as depicted in Figure 5.6), we derived 

calibration curves for the FSE algorithm that relate the raw slope associated to the fractal zone 

with the nominal fractal dimensions and radiuses of gyration, see Figure 5.8. A 3rd order 

polynomial fitting improve the resolution of these calibration curves. It should be noticed that, 

in Figure 5.8 all the curves are almost superimposed for aggregates with radius of gyration 

higher than  6rp, i.e. the fractal dimension of large aggregates can be determined without any 

prior knowledge (or analysis) of the radius of gyration. Obviously, from Figure 5.7 one may 

easily deduce that it is also the case for the other fractal dimensions. 
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Figure 5.8. Estimated slope as a function of the fractal dimension for silicon dioxide aggregates (the 
FSE algorithm). 

Figure 5.9 shows that by combining the FSE algorithm and the calibration curves (like the 

ones presented in Figure 5.8), the estimation of the aggregates fractal dimension is 

significantly improved even when 0.1% and 1% of white noise is added to the OSF. In fact, 

the fractal dimension is estimated over a large range and with an accuracy of 5% with 0.1% of 

additive white noise and about 10% for 1% of additive white noise. Additionally, we found 
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that the accuracy decreases as the fractal dimension decreases, so that this dependency 

provides even better results for commonly encountered aggregates (e.g. soots). 
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Figure 5.9. FSE algorithm with calibration curves: automatic estimation of the fractal dimensions from 
noisy optical structure factors. Parameters: soot aggregates with fractal dimension from 1.40 to 2.80 
and constant number of 500 monomers. 
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Figure 5.10. Fractal dimensions extracted automatically from the optical structure factors of various 
aggregates with the FSE algorithm for silicon dioxide aggregates with a constant number of 500pn =
monomers with 55 pr nm=  and initial fractal dimension (a) 1.80fD =  and (b) 2.20fD = . 

In addition to the previous results, Figure 5.10 shows some results for the fractal dimension of 

silicon dioxide aggregates that were obtained with the FSE algorithm and the calibration 

curves other than the ones presented in Figure 5.8. The accuracy is here also very good. It is 

better than 2.5% over almost the entire range of radiuses of gyration. We get about the same 

accuracy for the mean fractal dimension.  

 

5.2.6. Conclusion 

We have introduced a modeling procedure and numerical algorithms to estimate the fractal 

dimension and radius of gyration of fractal-like aggregates from the analysis of their optical 

structure factor. All numerical results provided here are based on rigorous particle 

agglomeration and light scattering models. The Second Slope Extraction (SSE) algorithm is 
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based on the Guinier analysis. It provides a simple and direct estimation of the fractal 

dimension. However, its applicability is limited to large size parameters aggregates. The First 

Slope Extraction (FSE) algorithm can be used to analyze much smaller aggregates than the 

SSE algorithm, even when we are dealing with the range 5gqR ≤ . Its application is more 

complicated than the SSE algorithm, as it requires to create look-up tables and to produce 

numerical calibration curves. However, the FSE algorithm is applicable to all kinds of 

aggregates, regardless their morphology. Therefore, it is thought to be a much more powerful 

and universal solution. The criteria curves is also a useful approach to identify the different 

scattering regimes and to obtain more reproducible results. At least all our analysis procedure 

is described in detail, which is not the case for the works found in the open literature.  

 

5.3. Influence of free monomers on the analysis of the OSF  
5.3.1. Physical background 

In the open literature, most numerical investigations related to the prediction and the analysis 

of the OSF are performed on monodisperse aggregates with the same fractal dimension. Very 

few studies consider the influence of aggregates polydispersion and polymorphology. What 

may be even more astonishing is that we did not found any work dealing with the influence of 

free monomers (non aggregated) around the aggregates of interest.  

In a combustion system, it means that researcher assumes (consciously or not) that at the 

measurement point all monomers (primary particles) are already aggregated. One can accept, 

in some extent, that this could be true in a perfectly laminar flame and far from the reactive 

zone. But, if we look in details for some TEM images of soot samples (e.g. see chapter 3), it is 

clear that there is a non-negligible amount of free monomers deposited on TEM grids. These 

free monomers could be the results of the disintegration of some aggregates, but this is not 

sure at all. In addition, as most light scattering measurements are performed within the flame 

(to avoid further aggregation and chemical effects during the exhaust gas cooling phase), we 

can have some doubts that all monomers are always aggregated at the measuring point. If now 

we think about dusty plasmas or destabilized colloidal suspensions, where there is no strong 

convective processes (like in flames), the hypothesize of a fully aggregated system becomes 

more and more questionable. For colloidal suspensions, where the sedimentation process can 

be rather slow, the problem appears to be even more drastic. So that, at least, it is necessary to 

evaluate the influence of the presence of some free monomers onto the analysis of the OSF 

and this is precisely the aim of this section. 
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5.3.2. Results and discussion 

To fix the idea, Figure 5.11 shows the OSF of a cloud of 2SiO  aggregates surrounded by 20% 

and 100% (in number) of free monomers (not aggregated). The SiO2 aggregates are all 

identical with 250pn =  monomers. They are probed with incident wavelength  266 nmλ = . 

It is clear that even 20% (50 over 250) single monomers change the raw slope coefficient 

estimated with the FSE method (particularly, from 2.631a= −  to 2.147a= − ). For 100% of free 

monomers (250 over 250), the decay constant is divided by a factor of almost 2 ( 1.344a= − ). 
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Figure 5.11. Example results of the fractal dimension extraction for aggregates of SiO2 monomers with 
fractal dimension 1.80 and various number of free monomers in the experimental setup. 

A direct consequence of these results is that the fractal dimension estimated with the FSE 

method will be strongly biased by the presence of these monomers. In fact, the fractal 

dimension is more and more overestimated as the number fraction of free monomers 

increases. To analyze quantitatively this effect, we built an extensive database with different 

aggregates and number fractions of monomers. This data were processed automatically with 

the algorithm introduced in the previous section. Figure 5.12 summaries the fractal dimension 

estimated for SiO2 aggregates with 1.80fD =  and 50 250pn = −  versus the number fraction 

(2 100%)�  of free monomers. Figure 5.13 and Figure 5.14 show similar results for aggregates 

having 2.00fD =  and 2.20fD =  respectively. 

 



CHAPTER 5 - ANALYSIS OF THE SCATTERING DIAGRAMS 

128 
 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.4

1.5

1.6

1.7

1.8

E
st

im
at

ed
 fr

ac
ta

l d
im

en
si

on
, D

f

Number of free monomers normalized by 
number of monomers in the aggregate

Number of monomers 
in the aggregate, n

p
:

 50  160
 70  180
 100  200
 120  220
 140  250

SiO
2
, D

f
= 1.80, λ = 266 nm

r
p 
= 25 nm, m

p 
= 1.469+0i

 
Figure 5.12. Fractal dimensions extracted automatically from the optical structure factor of the 
aggregates of SiO2 ( 1.80fD = , 25 pr nm= , 50 250pn = − ) with the FSE algorithm for various 
number of free monomers in the experimental setup. 
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Figure 5.13. Like Figure 5.12 but for 2.00fD = . 
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Figure 5.14. Like Figure 5.12 but for 2.20fD = . 

Analyzing Figure 5.12 – Figure 5.14 we deduce that influence of the scattering properties of 

the single monomers to the OSF of the aggregates depends not only on the number of free 

monomer but also on the total number of monomers within aggregates. Thus, as clearly 
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shown in Figure 5.12 – Figure 5.14, OSF of the smaller aggregates are much more affected by 

the scattering properties of the free monomers than the larger ones. As an example, if we 

compare properties of the aggregates of 50pn =  and 250pn =  monomers with respect to the 

50 and 250 free monomers respectively, we can see that estimated fractal dimensions for the 

initial value of 1.80fD =  are equal to the 1.36 and 1.55. Obviously, a similar trend is 

observed for the other fractal dimensions. This behavior is the consequence of the fact that the 

scattering of the aggregate is strongly related to the number of monomers. In the Guinier zone 

the influence of the monomers is rather weak in comparison to what is observed in the fractal 

zones. Figure 5.15 shows the corresponding error on the estimated fractal dimension for the 

aggregates of (a) 50pn =  and (b) 200pn = . The relative error is maximal for 2.20fD =  and 

minimal for 1.80fD = . 
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Figure 5.15. Estimation error of the fractal dimension predicted for the optical structure factor of the 
aggregates of SiO2 with (a) 50pn =  and (b) 200pn =  with the FSE algorithm for various numbers of 
free monomers in the experimental setup. 

One may argue that an error of 15 25%�  is somewhat acceptable. However, we have to 

remember that for a large variety of systems (e.g. soots) the fractal dimension varies only in 

the range 1.60 to 2.00. In the other hand, we can found a large literature discussing 

improvements of few percent in the determination of fD  whatever this free monomer effects 

is totally neglected a priori. The analysis of OSF without an a priori knowledge of the 

number fraction of free monomers is an interesting perspective of this work.  

 

5.4. A comparison between scattering properties of DLA and 
DLCA aggregates 

To compare scattering properties of DLA and DLCA aggregates from the test sample of 

DLCA aggregates (Yon et al. 2008) we selected 3 sub-samples with various number of 

monomers and aggregate whose size is large enough, so that the fractal zone can be observed. 

The latter criterion is about to be satisfied if / 2gR λ π> . Therefore, with a significant margin, 

we selected aggregates with 10g pR r>  (i.e. 171 gR nm> ): (1) 31 aggregates with 
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1.75 180fD = − , (2) 27 aggregates with 1.80 1.85fD = −  and (3) 26 aggregates with 

1.85 1.90fD = − . Several dozens of aggregates are not enough to infer there OSF, therefore 

each aggregate was randomly rotated 1000 times. Then, using T-Matrix method we calculated 

the averaged scattering diagrams of all these synthetic samples (referred also as (1); (2) and 

(3)). To do so, relatively short incident wavelength (quadrupled Nd: YAG laser, 266 nmλ = ) 

was used. Next, using our tunable code, we generated DLA aggregates with exactly the same 

parameters (i.e. pn , fD  and fk ) as the DLCA aggregates. For this study, the fractal prefactor 

was set to the value found for the DLCA aggregates 1.386fk =  (see section 2.4). Figure 5.16 

compares the OSF of the sample (1) generated with the DLA and DLCA models. Figure 5.17 

shows results for the sample (2) and Figure 5.18, for the sample (3). 
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Figure 5.16. Comparison of the OSF of DLA and DLCA aggregates – sample (1): 1.75 1.80fD = −  
and number of monomers 94 916pn = − . 
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Figure 5.17. A Comparison of the OSF of DLA and DLCA aggregates – sample (2): 1.80 1.85fD = −  
and number of monomers 98 907pn = − . 
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Figure 5.18. Comparison of the OSF of DLA and DLCA aggregates – sample (3): 1.85 1.90fD = −  
and number of monomers 112 886pn = − . 

Comparing OSF presented in Figure 5.16 – Figure 5.18 it can be seen that there are no 

significant differences between DLA and DLCA aggregates, i.e. the corresponding OSF 

almost overlap. If some slight and increasing differences can be observed for higher fractal 

dimensions (compare Figure 5.16 and Figure 5.18), the slopes related to the fractal zone are 

nearly identical. Thus, through these examples, we can conclude that the global parameters 

describing an aggregate (i.e. fractal dimension, fractal prefactor, radius of gyration, number 

and radius of single monomers) are unambiguous regardless aggregation phenomena that 

leads to their formation.  

Our conclusions are in a very good agreement with results presented by Oh and Sorensen (Oh 

and Sorensen 1998) who compared optical structure factor ( )I q  of DLA and DLCA 

aggregates. They reported also that ( )I q  of DLA aggregates does not show simple scaling 

behavior described by fDq−  relation in the range 1 1
g pR q r− −≤ ≤ . However, � �I q  is essentially 

identical for DLA and DLCA aggregates in the range of 10.1 pq r−≥ . In our case (i.e. for 

17.1 pr nm=  and 266 nmλ = ) this requirement is satisfied for 65.85 10q ≥ ×  (i.e. for the 

scattering angle 15θ ≥ ° ). It also clearly explains the good accuracy found for DLA and DLCA 

samples over the entire range of the scattering angles. These results emphasize also the 

generic trend of most results presented in this work (that have been obtained with a DLA 

model). 

 

5.5. Conclusion 
In this chapter we have discussed algorithms and methods to estimate morphological 

parameters of fractal aggregates from the analysis of their scattering diagrams. The fractal 

dimension is evaluated from the exponent of the power-law decay of these diagrams in the 

fractal zone. To evaluate the radius of gyration the Guinier analysis was used. 

We investigated also the influence of the free monomers (not aggregated) on the conventional 

analysis of the OSF. As clearly shown, only 20% of free single monomers can significantly 
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biased estimation of fD . All the algorithms and methods were tested on two totally different 

particle systems: colloidal suspensions of optically transparent aggregates (silicon dioxide) as 

well as clouds of highly absorbing aggregates (carbonaceous soots). 

In the last part of the chapter, we compared scattering properties of DLA and DLCA 

aggregates. The few examples considered here have proven that both aggregation models lead 

to the aggregates with very similar optical properties. Our conclusions are also in a very good 

agreement with results presented in the literature (e.g. (Oh and Sorensen 1998)). 
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6. LIGHT EXTINCTION SPECTROMETRY (LES) 
 

 

 

 

 

 

6.1. Introduction 
For historical reasons, the technique describes in this section is also referred as the 

turbidimetric technique. However, it is called here the Light Extinction Spectrometry (LES) 

due to its fundamental analogy with the well known light absorption spectrometry. The latter 

technique relies on the light molecular absorption, while the LES is based on the particle light 

extinction (absorption and scattering).  

The chapter is organized as follows. To begin with, in section 6.2 we briefly introduce the 

principle of the LES technique under a single scattering regime. Subsequently, we present the 

core part of the technique, i.e. the numerical inversion procedure (section 6.3). Next, in 

section 6.4 we show numerical results (extinction and transmission spectra) obtained for 

various aerosols and suspensions. After a description of the basic experimental setup, several 

experimental results are presented (Section 6.5). Section 6.6 is an overall conclusion. 

 

6.2. Principle 
Basically, the LES technique measures the extinction spectra of a particle system illuminated 

by a collimated and polychromatic light beam. Thus, this optical technique requires to pass 

a beam with spectral intensity ( )0 iI λ  and wavelengths iλ  through the cloud of particles 

(monomers, aggregates, etc.) to be analyzed. The transmitted spectral intensity ( )iI λ  is 

collected by an optical system (with a small solid angle aperture) and analyzed via 

a spectrometer. If the multiple scattering phenomenon is negligible (e.g. (Xu 2007)), the beam 

transmission ( )iT λ  is given by: 
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 ( ) ( ) ( ) ( )0/ expi i iT I I Lλ λ λ τ= = −  (6.1) 

where L  is the path length of the beam through the cloud of particles and ,n p extC Cτ =  is the 

turbidity of the particulate medium. ,p extC  is an integral quantity which represents the mean 

extinction cross section of the particles (Onofri et al. 2009) and nC  is the particle medium 

concentration in number. If ,p extQ  is the extinction efficiency (referred also as the extinction 

coefficient) of a single spherical particle characterized by its diameter pd  and its refractive 

index pm�  we have that: 

 ( ),max

,min

2

, , , ( ) .
4

p

p

d p
p ext p ext p p p pd

d
C Q d m f d dd

π
= � �  (6.2) 

A schematic diagram of the LES technique is shown in Figure 6.1 (see also the experimental 

setup presented in Figure 6.18 and in Figure 6.22). 

 
Figure 6.1. Schematic diagram of the Light Extinction Spectrometry: (1) broadband light source, 
(2) broadband achromatic focusing/collimating optics (3) spatial filter, (4) broadband spectrometer. 

LES setup is mainly composed of (1) a broadband light source, (2) broadband achromatic 

focusing/collimating optics, (3) a spatial filter and (4) a broadband spectrometer for extinction 

analysis. In principle, LES measurements can be performed using only two optical accesses 

and at long distance. This is highly suitable to investigate systems with limited optical access, 

like for instance dusty or fusion plasmas (Shiratani et al. 1999; Onofri et al. 2009). However, 

this technique has also some drawbacks. Firstly, as mentioned previously, its transmission 

equation (6.1) is only valid if the collection of multiple scattered photons is negligible 

(e.g. (Xu 2002)). To ensure partially the validity of the latter requirement, it is necessary to 

avoid the diffraction peak (the angular aperture of the collection optics must be as small as 

possible) and the particle diameter cannot exceed several wavelengths. The optical thickness 

(or turbidity) of the system must also be rather weak. In addition, the LES technique is very 

sensitive to the particle optical dispersion (complex refractive index over a large spectrum) 

(e.g. (Onofri et al. 2009)). Finally, when LES is applied to a system with a long optical path, 

only highly diluted particle systems can be analyzed (Ouf et al. 2008).  
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6.3. Inversion procedure 
The inversion procedure is a key part of the LES technique. It requires to discretize the 

transmission equation (Onofri et al. 2009; Onofri et al. 2010c) and to minimize the differences 

between the measured transmission and the numerically predicted one. Eq. (6.2) is 

a Fredholm integral equation of the first kind (Hansen 1994).  

Our goal is to estimate the particle number concentration nC  and the particle number size 

distribution ( )pf d , from the experimentally measured transmission spectrum ( )iT λ . To do 

so, it is necessary to calculate the kernel of the Fredholm equation � �, ,p ext p pQ d m� . It leads to an 

ill-posed and predetermined problem (Mroczka and Szczuczy�ski 2009) that requires 

regularization and inversion procedures. Generally, a problem is defined as an ill-posed if the 

solution is not unique or if it is not a continuous function of the data, i.e. if an arbitrarily small 

perturbation of the data can cause an arbitrarily large perturbation of the solution (Hansen 

2008). 

Basically, in the literature, there are two main approaches to solve ill-posed problem. In most 

studies, it is still solved by imposing a model for the PSD (e.g. Log-Normal) and by iterating 

on the mean diameter and the standard deviation. The second approach is more powerful as it 

does not impose strong constraints onto the PSD. However, it is numerically unstable and 

it requires a specific regularization scheme to stabilize the inversion procedure (e.g. (Hansen 

2008)). Applying the second approach it is preferable to use the particle concentration in 

volume rather than in number. If, as an equivalent particle model, the spherical one is used, 

the particle size distribution in volume ( )pV d  depends on the particle number concentration 

as follows (Onofri et al. 2010a; Onofri et al. 2010b): 

 ( ) ( ) ( ) ( )3/ 6p v p n p pV d C v d C d f dπ= =  (6.3) 

where ( )pv d  is the normalized particle size distribution in volume. If we introduce the 

constant 3 / 2LΛ= , Eq. (6.2) can be rewritten in the following linear form: 

 ( ) ( ) ( ),max

,min
,ln , , .

p

p

d p

i p ext i p pd
p

V d
T Q d m

d
λ λ− � 	 = ΛC D � �  (6.4) 

The above equation may be discretized as follows: 

 
( ) ( ),max

,min

,

,1

, ,
,

p

p

d Mp ext i p p

p p i j jjd
p
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V d dd S V

d

λ
=

=��
�

 (6.5) 

where the vector jV  to be determined is the discrete form of ( )pV d , with 1,  2,  ...,j M= . 

The element ,i jS  is equal to ( ), , i , ,,m , /i j p ext p p j p jS Q d dλ= �  for wavelengths ,  1,  2,. ..,i i Nλ = .     

S is a N M×  matrix referenced here as the “extinction matrix”, which has to be calculated 

only once with: 

 
� �,

, 1

,

,

� , ,
.

p j

p j

d p ext i p p

i j p
d

p

Q m d
S dd

d�
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�

  (6.6) 
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If we represent a measured transmission spectrum as a vector T  whose element iT  

corresponds to the beam transmission for the wavelength iλ  and a cloud of particles with size 

distribution in volume V ; then, to find ,V the following linear algebraic equation  has to be 

solved:  

 .≡ ⋅T S V  (6.7) 

Solution of the equation is given as: 

 ( ) .≡
-1T TV S S S T  (6.8) 

The ratio between the largest and the smallest nonzero singular values of matrix S is large. 

This implies that the matrix S  is ill-conditioned and numerically unstable, i.e. that the 

solution is potentially very sensitive to perturbations. A way to solve this problem is to 

iteratively minimize the square of the difference ⋅ −S V T  taking into account that the PSD is 

always a nonnegative function. It leads to a minimalization procedure of a Non-Negative 

Least-Square problem: 
2

20 LSQV
Min

��
	 �S V T . This can be done using orthogonal numerical 

algorithms (Lawson and Hanson 1974; Hansen 1994; Hansen 2008). 

LES deals with particles sizes ranging from the Rayleigh to the Mie scattering regimes 

(Onofri et al. 2009), therefore extinction coefficients can vary of several orders of magnitude 

from the lower to the upper boundary of the PSD. It leads to a large condition number of the 

matrix S . To limit the underlying problems, it is convenient to introduce a smoothing 

(or regularization) matrix H and a Lagrangian parameter (i.e. smoothing factor (Twomey 

1979)). The corresponding algebraic equation is then expressed by: 

 ( ) .T TS S +�H V = S T  (6.9) 

Finally, the solution of the discretized ill-posed problem may be found by minimization of the 

following quantity: 

 ( )
2

2

0
.

LSQV
Min

−>
−T TS S +�H V S T  (6.10) 

This can be performed using several numerical tools, we did it under MATLAB environment. 

As mentioned previously, the algebraic solution of this inverse problem requires to compute 

the extinction matrix. To do so, depending on the particle morphology and size range, 

different methods and theories can be used. In the present study, for spheres we used the 

Lorenz-Mie theory, while for aggregates of nanospheres (fractal-like aggregates as well as 

buckyballs aggregates), we used essentially the T-Matrix method (Mackowski and 

Mishchenko 1996). As mentioned previously, this code is very time-consuming (see section 

4.5.5.7), so it cannot be used on-line to inverse the measured spectra. However, it was used to 

calculate look-up tables. 
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6.4. Numerical results 
6.4.1. Extinction spectra and scattering diagrams 

In the current section we present and discuss results of T-Matrix calculations for the 

extinction and scattering cross sections of a cloud of various aggregates. We consider 

aggregates composed of amorphous silicon and silicon dioxide monomers with radius 3.5, 

40.5 and 55 nm. We show also transmission spectra for different number concentrations 

of aggregates. From the T-Matrix code and an aggregate of pn  monomers we get an 

extinction coefficient (i.e. extinction cross section normalized by the surface of the sphere 

with volume equivalent to the one of the aggregate): 

 2
, , / ,T M T M

a ext a ext vQ C Rπ− −=  (6.11) 

where the radius in volume vR  of the equivalent sphere is given by: 

 1/3 .v p pR n r=  (6.12) 

Using Eqs. (6.11) and (6.12) we get the extinction cross section of the aggregate: 

 2 2/3
, ,

T M T M
a ext p p a extC r n Q�
� ��   (6.13)  

By analogy, the scattering and absorption cross sections may be calculated too. 

To compare extinction and scattering spectra of aggregates with various parameters, we show 

the evolution of the extinction and scattering coefficients rather than cross sections. It should 

be noticed also that calculations of the extinction spectra is a very time-consuming task. As an 

example, to perform simulations for the wavelengths ranging from 200 to 1000 nm with 

10 nm step and an averaging procedure over 50 aggregates, we have to compute 4050 

different cases. If we consider large aggregates (e.g. with 1000pn =  monomers) with large 

monomers (e.g. 55 pr nm= ) it takes 1000 hours (about 15 minutes for each case) on an up-to 

date computer and one full day on a cluster of 40 cores (see section 4.5.5). 

 

6.4.1.1. Aggregates of Amorphous Silicon 

Figure 6.2 shows the results of the T-Matrix calculations for the mean extinction coefficient 

of a cloud of monodisperse aggregates composed of amorphous silicon nanoparticles, versus 

the incident wavelength. In both subfigures the fractal dimension and the number of 

monomers increase from 1.5 to 2.8 and 51 to 1000 respectively, whereas the radius of 

gyration is kept constant (equal to 10g pR r= ). The radius of single monomers equal to 

3.5 pr nm=  corresponds to particles generated in a low-pressure Argon-Silane discharge 

(Boufendi and Bouchoule 1994; Onofri et al. 2011b). 

Figure 6.2 (a) shows the evolution of the extinction coefficient versus the wavelength while 

(b) shows the sensitivity of the extinction coefficient to the fractal dimension. This sensitivity 

is defined as the ratio of the extinction coefficient of the aggregates with the extinction 

coefficient of a single monomer. Both figures indicates that extinction is not very sensitive to 
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the fractal dimension, in contrary to the scattering diagrams (Farias et al. 1996; Sorensen 

2001). 
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Figure 6.2. Extinction spectra of aggregates of amorphous silicon for various fractal dimensions and 
numbers of monomers but with a constant radius of gyration: (a) raw extinction coefficient and 
(b) sensitivity to the fractal dimension. 
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Figure 6.3. Extinction spectra of aggregates of amorphous silicon with various sizes (i.e. different  
numbers of monomers and radiuses of gyration) but constant fractal dimension: (a) raw extinction 
coefficient and (b) sensitivity to the size of the aggregates. 

Figure 6.3 shows the (a) evolution of the extinction coefficient versus the wavelength and 

(b) its sensitivity to the size of the aggregates; amorphous silicon monomers with 3.5 pr nm= . 

In the presented case, the fractal dimension remains constant 2.80fD = , while the size of the 

aggregates increases (i.e. number of monomers and radius of gyration). Comparing Figure 6.2 

and Figure 6.3 it turns out that extinction is more sensitive to the radiuses of gyration of 

aggregates than to their morphology. It is also interesting to notice that the sensitivity of the 

extinction is different depending on the wavelength. It is significantly higher for wavelengths 

above 750 nmλ =  and below 450 nmλ =  than in the intermediate zone. For large wavelength, 

due to the small size of the aggregates compare to the wavelengths, only macroscopic 

properties of the aggregates seems to be important, while for the wavelength below 

750 nmλ =  more physical insight about the aggregates morphology is probably accessible. 
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Analyzing Figure 6.2 and Figure 6.3 we must also remember that extinction spectra are 

changing not only due to the geometrical properties of the aggregates (size and shape) but also 

due to the dispersion spectra of the particle material. The latter effect is particularly important 

for amorphous silicon since its refractive index is rapidly changing in the range 

200 900 nmλ = − , see Figure 6.4. 
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Figure 6.4. Dispersion spectra used for (a) amorphous silicon, (b) silicon dioxide and (c) silicon 
carbide particles (Sopra.S.A. 2010). 

The influence of the imaginary part of the refractive index can be seen when extinction 

coefficients presented in Figure 6.2 and Figure 6.3 are compared with scattering coefficients 

calculated for exactly the same aggregates, see Figure 6.5 and Figure 6.6 respectively. These 

figures confirms what is predicted by the RDG-FA model: for small aggregates, the extinction 

coefficient is mainly sensitive to the imaginary part of the refractive index of monomers. 
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Figure 6.5. Scattering coefficient of aggregates of amorphous silicon with various fractal dimensions 
and number of monomers but a constant radius of gyration: (a) raw coefficient and (b) sensitivity to 
the fractal dimension. 
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Figure 6.6. Scattering coefficient of aggregates of amorphous silicon with various sizes (i.e. different 
numbers of monomers and radiuses of gyration) but constant fractal dimension: (a) raw coefficient 
versus the wavelength and (b) sensitivity to the size of the aggregate. 

 

6.4.1.2. Aggregates of Silicon Dioxide 

Figure 6.7 (a) shows the evolution of the extinction coefficient of a cloud of aggregates 

composed of silicon dioxide monomers. The fractal dimension and the number of monomers 

increase from 1.5 to 2.8 and 51 to 1000 respectively, whereas the radius of gyration is kept 

constant (equal to 10g pR r= ). The radius of single monomers is equal to 40.5 pr nm=  and 

corresponds to the particles generated in our experimental setup (see section 6.5.2). Figure 6.7 

(b) shows the same results but with linear-logarithmic scales. 
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Figure 6.7. Extinction coefficient of aggregates of silicon dioxide monomers with various fractal 
dimensions and number of monomers but constant radius of gyration: (a) linear scale and (b) linear-
logarithmic scale. 

Figure 6.8 shows similar evolution of the extinction coefficient for the aggregates with 

constant fractal dimension 2.80fD =  but various sizes (i.e. different numbers of monomers 

12 1000pn = −  and radiuses of gyration 110 550 gR nm= − ) and slightly larger radius of single 

monomers 55 pr nm= . 
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Figure 6.8. Extinction coefficient of aggregates of 2SiO  with various sizes (i.e. numbers of monomers 
and radiuses of gyration) but constant fractal dimension: (a) linear and (b) linear-logarithmic scale. 

In addition to the rapid increases of the extinction coefficients with the number of monomers, 

the most interesting result shown in Figure 6.7 and Figure 6.8 is that, like for spheres, some 

low frequency (LF) resonances appear in the extinction diagrams. They can be clearly 

observed when the size of aggregates is large enough compare to the wavelength and when 

aggregates are sufficiently dense. Resonances appear in Figure 6.7 when the fractal dimension 

is higher than 2.50fD =  and for the wavelength ~ / 2gRλ . For aggregates with 2.80fD =  the 

position of the first resonance is significantly related to the total size of the aggregate. 

It appears when aggregate is about the wavelength ~ gRλ . 

Figure 6.9 (a) compares the sensitivity of the extinction coefficient to the fractal dimension of 

the aggregates composed of silicon dioxide monomers with 40.5 pr nm=  (like in Figure 6.7). 

Figure 6.9 (b) shows the sensitivity of the extinction coefficient to the total size of the 

aggregates, for a constant fractal dimension 2.80fD = , 55 pr nm=  and for various size of the 

aggregates (like in Figure 6.8). 
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Figure 6.9. (a) Sensitivity of the extinction coefficient to the size of the aggregates composed 
of silicon dioxide monomers with 40.5 pr nm=  and (b) sensitivity to the total size of the aggregates 
for constant fractal dimension of aggregates with 55 pr nm= . 
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Figure 6.10. Extinction coefficient of aggregates of silicon dioxide in water: (a) evolution of the 
extinction coefficient versus the wavelength and (b) sensitivity to the fractal dimension. 

Figure 6.10 shows results for an aqueous suspension of silicon dioxide aggregates. Figure 

6.10 (a) shows the evolution of the extinction coefficient, while Figure 6.10 (b) shows its 

sensitivity to the fractal dimension. Like previously, in both figures the fractal dimension and 

the number of monomers increase from 1.5 to 2.8 and from 51 to 1000 respectively, whereas 

the radius of gyration is kept constant (equal to 10g pR r= ). Radius of single monomers is equal 

to 55 pr nm= . The most interesting conclusion that can be drawn from both subfigures, when 

they are compared to Figure 6.7, is that we do not observe resonances. Moreover, the 

maximum of the extinction coefficient is strongly reduced compared to the previous case. 

Figure 6.11 presents the evolution of the extinction coefficient predicted for aggregates with 

a 3D hexagonal compact (HC) structure and an increasing number of monomers 

(i.e. aggregates growing with a constant shape, see Figure 6.12). In this case, the resonances 

are clearly more intense. For these aggregates the first low frequency oscillation appears when 

the size of the aggregates is about the wavelength ( ~gR λ ). Additionally, we can observe high 

frequency oscillations (in some extent, like for a sphere). 
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Figure 6.11. Evolution of the extinction coefficient of 3D hexagonal compact aggregates of silicon 
dioxide monomers versus the wavelength: (a) linear and (b) linear-logarithmic scale. 

 



CHAPTER 6 - LIGHT EXTINCTION SPECTROMETRY (LES) 

  

143 
 

 
Figure 6.12. 3D hexagonal compact aggregates (3.00fD = , 1.593fk = ) with different numbers of 
monomers and different external radiuses: (a) 19pn = , 3e pR r= , (b) 387pn = , 8e pR r=  and 
(c) 955pn = , 11e pR r= . 

In contradiction to the previous results, the ones presented in Figure 6.11 were averaged not 

for 50 different aggregates but for 50 random orientation of the same 3D hexagonal compact 

aggregate with 5,  19,  55,  87,  151,  257,  387,  527,  727pn =  and 955. Averaging is necessary 

even for so dense aggregates due to their high internal symmetry. Moreover, the external 

surface is not smooth, which has strong influence especially for small aggregates. 

 

6.4.1.3. Aggregates of Silicon Carbide 

Figure 6.13 shows the evolution of the extinction spectra of diluted aqueous suspension of 

silicon carbide aggregates (SiC) in water. In both subfigures the fractal dimension and the 

number of monomers increase from 1.7 to 2.5 and 80 to 503 respectively, whereas the 

radius of gyration is kept constant (equal to 10g pR r= ). Radius of single monomers is equal to 

55 pr nm= . For wavelengths shorter than 450 nmλ � , the spectra exhibit large oscillations. 

They are caused by a rapid decay of both the real and the imaginary parts of the refractive 

index of silicon carbide (see Figure 6.4 (c)). 
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Figure 6.13. Extinction coefficient of aggregates of silicon carbide monomers with various fractal 
dimensions and numbers of monomers but constant radiuses of gyration: (a) linear and (b) linear-
logarithmic scale. 
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6.4.2. Spectral transmission 

With the above calculations, we can predict the transmission spectra of various particle 

systems at different concentrations. For this purpose we use equation (6.1). We have also 

assumed that the optical thickness of the particulate media is small enough to limit multiple 

scattering phenomena, 1 Lτ − <  (Xu 2002). To do so, we used particles concentrations in 

number in the range 11 13 31 10 2 10  m−× − ×  (depending on the diameter of the monomers and the 

total size of the aggregates) for a probing length of 1 L m= , which corresponds to the typical 

length of our experimental setup (see section 6.5.1). 

As an example, Figure 6.14 shows simulated transmissions for amorphous silicon aggregates 

with 3.5 pr nm=  and (a) various fractal dimensions and numbers of monomers but constant 

radius of gyration and (b) various sizes but constant fractal dimension. We assumed particles 

concentration in number 13 32 10  nC m−= × . Figure 6.15 shows transmission for aggregates of 

silicon dioxide with various fractal dimensions and numbers of monomers but constant radius 

of gyration and 11 31 10  nC m�� A : (a) 40.5 pr nm=  in air and (b) 55 pr nm=  in water. 
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Figure 6.14. Simulated transmissions for amorphous silicon aggregates with (a) various fractal 
dimensions and numbers of monomers and (b) various sizes with constant fractal dimension. 
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Figure 6.15. Simulated transmissions for silicon dioxide aggregates with various fractal dimensions 
and numbers of monomers: (a) 40.5 pr nm�  in air and (b) 55 pr nm�  in water. 
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Figure 6.16 shows transmission spectra of silicon dioxide aggregates with various sizes 

(i.e. different numbers of monomers and radiuses of gyration) but (a) constant fractal 

dimension 2.80fD =  and (b) compact hexagonal internal structure ( 3.00fD � ). These spectra 

exhibit also some oscillations trends. 
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Figure 6.16. Simulated transmissions for silicon dioxide aggregates with various size (i.e. different 
numbers of monomers and radiuses of gyration) but (a) constant fractal dimension 2.80fD =  and 
(b) compact hexagonal internal structure. 

Figure 6.17 presents transmission spectra of fractal aggregates of silicon dioxide with fractal 

dimension (a) 1.80fD =  and (b) 2.80fD =  but various particle concentrations in number 

ranging from 101 10×  to 11 31 10  m−× . The main effect of particle concentration is the scale down 

or up the transmissions. 
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Figure 6.17. Simulated transmissions for various concentrations in number of silicon dioxide 
aggregates with the same radius of gyration and number of monomers: (a) 1.80fD =  and 
(b) 2.80fD = . 
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6.5. Experimental investigations 
During this Ph.D. work, we have developed a LES-optical setup that have been tested on 

different particle systems: aerosols of buckyballs of silica nanobeads with various radiuses of 

single monomers and eternal diameters, aerosols of tungsten aggregates, as well as silicon 

aggregates produced by low-pressure discharges (plasma system). 

 

6.5.1. Optical setup 

Figure 6.18 shows an overall schematic diagram of the LES-optical setup. The latter is mainly 

composed of (1) a stabilized Halogen-Deuterium lamp (see also Figure 6.19 (a)), (2) solarized 

UV-NIR fibers, (3) an on-line intensity attenuator (see also Figure 6.19 (b)), (4) several 

coupling and positioning optics (see also Figure 6.20), (5) achromatic optics (50 mm focal 

length parabolic mirrors) to collimate and collect (6) the probing beam (with diameter 5 mm) 

that passes through (7) silica optical windows, (8) an high quantum efficiency and low noise 

UV-NIR spectrometer (see also Figure 6.19 (b)) and (9) a computer with acquisition and 

processing software. The intensity attenuator might be also situated between coupling optics 

and spectrometer (see Figure 6.22). 

 
Figure 6.18. Schematic diagram of the experimental setup to generate and analyze aerosol of  
nanoparticle aggregates: (1) stabilized Halogen-Deuterium lamp, (2) solarized UV-NIR fibers, (3) on-
line intensity attenuator, (4) coupling and positioning optics, (5) achromatic optics (50 mm focal 
length parabolic mirrors) to collimate and collect (6) the probing beam, (7) silica optical windows to 
close test chamber, (8) UV-NIR spectrometer, (9) computer with acquisition and post-processing 
software, (10) pressurized air source, (11) atomizer, (12) drier, (13) multiple inlets and outlets, 
(14) experimental chamber made of Plexiglas, (15) bottom traps to collect TEM/SEM samples, 
(16) pressure gauges, (17) suck-up air pump. 
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Figure 6.19. (a) Stabilized Halogen-Deuterium lamp and (b) UV-NIR spectrometer Maya 2000 Pro. 

In the LES experimental setup we use a Balanced Deuterium Tungsten Halogen Light Source 

DH-2000-BAL produced by Ocean Optics (see Figure 6.19 (a)). It provides stable output with 

spectral range 215 2000 nmλ = −  ( 215 400 nmλ = −  on deuterium bulb and 360 2000 nmλ = −  

on tungsten halogen bulb). Figure 6.20 presents picture of the optical part of the experimental 

setup. It consists of (2) solarized UV-NIR fibers (transmission from UV to NIR: 

180 1150 nmλ = − ), (4) coupling and positioning 

optics and (5) achromatic mirror that are used to 

collimate and collect the probing beam. 

Achromatic mirrors are used rather than lenses 

to limit chromatic aberrations. For acquisition of 

the experimental spectra we use a spectrometer 

Maya 2000 Pro produced by Ocean Optics (see 

Figure 6.19 (b)). It measures the input signal 

with a spectral range 175 1050 nm−  and a global 

half-height optical resolution of 2 3 nm� . 

Detector with 2068 70×  pixels (active 2048 64× ) 

and A/D converter provide 16 bit−  accuracy and 

integration time between 6.2 ms and 5 s . 

To control the spectrometer as well as to 

perform acquisition and data processing, and to 

prepare look-up tables for data inversion, we 

developed MS-Windows based software under 

Delphi-Borland Environment. Figure 6.21 shows a screen copy of the main window of the 

developed tool. It allows to record single and multiple spectra (finite or infinite loop), remove 

dark and background noises, record reference and calculate transmission spectra. The 

software enables also to average results over several spectra and control spectrometer  

integration time, and to inverse the extinction spectra. 

 
Figure 6.20. Details of the LES emission 
and collection optics: (2) solarized UV-NIR 
fibers, (4) coupling and positioning optics, 
(5) parabolic mirrors. 
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In practice, the experimental transmission is measured as: 

  (6.14) 

where darkI  and backI  refer to the dark and background noises of the spectrometer respectively. 

Similarly as previously,  and  are the probing and the reference spectra in air 

(without particles in the test chamber) respectively. 

 

 
Figure 6.21. “Acqui Maya” – acquisition and preprocessing software. 

 

6.5.2. Aerosol of silicon dioxide buckyballs 

6.5.2.1. Setup: fluid loop and colloidal suspensions 

Figure 6.22 presents a picture of the entire experimental setup. Aerosol of aggregates of 

nanoparticles is generated using (10) pressurized air with (11) a Laskin nozzle aerosol 

generator (ATM220 by TOPAS company, see also Figure 6.23 (a)) using various colloidal 

silica suspensions. A cloud of nano- and micro droplets containing both water and 

nanoparticles is obtained at (11) the atomizer output. To fully evaporate water, the cloud is 

directed to (12) a drier filled with silica gel. The aerosol of dried aggregates is then injected 

into the test chamber. The latter is made of Plexiglas, and it is mainly composed of a tube 
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with a circular internal diameter of 90 mm and a length of 1000 L mm= . The (13) test chamber 

is equipped with multiple (14) inlets and outlets with mixing grids to create a homogeneous 

aerosol across the test chamber. On the bottom side of the test chamber additional (15) traps 

to collect samples for the reference TEM and SEM measurements. The one used aerosol flow-

rate is measured by (16)  pressure gauges at the chamber output as it is sucked out with (17) 

an air pump. Figure 6.23 presents (a) the Laskin nozzle aerosol generator and (b) the drier 

filled with silica gel. 

 
Figure 6.22. Picture of the experimental setup: (1) stabilized Halogen-Deuterium lamp, (2) solarized 
UV-NIR fibers, (3) on-line intensity attenuator, (4) coupling and positioning optics, (5) achromatic 
optics to collimate and collect the (6) probing beam, (7) silica optical windows to close test chamber, 
(8) UV-NIR spectrometer, (9) computer with acquisition and post-processing software, 
(10) pressurized air source, (11) atomizer, (12) drier, (13) experimental chamber made of Plexiglas 
equipped with (14) multiple inlets and outlets, (15) bottom traps to collect TEM/SEM samples, 
(16) pressure gauges, (17) suck-up air pump. 
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Figure 6.23. (a) Laskin nozzle aerosol generator and (b) drier filled with silica gel. 

Figure 6.24 shows typical LES transmissions (i.e. , see Eq. (6.4)) measured with the 

experimental setup. Comparing the reference spectra in air and the probing one it can be seen, 

that the presence of particles within the test chamber is more clear in the deep UV zone. On 

the other hand, in this spectral range, LES sensitivity to the particle shape and material is 

expected to be higher. Therefore, special care must be taken when deep UV is used to 

reconstruct the PSD (Onofri et al. 2011b). 
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Figure 6.24. LES: Typical spectra and transmission 

During experimental studies we considered three different suspensions. They all contain silica 

nanobeads at  in mass, but with a mean diameter centered, according to the manufacturer 

specifications on (i) , (ii)  and (iii) 100 nm. These suspensions are referenced further on 

as ,  and  respectively. It should be noticed that our TEM and SEM 

analyze (see section 6.5.2.4) have shown that the mean diameters of the particles is 
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significantly different from the values given by the manufacturer, so we have found 

31.4 5.6pd nm� � , 67.2 6.6 pd nm� �  and 81 16 pd nm� �  respectively. In addition, to 

prepare various aerosols of nanoparticles, we used water dilution of the initial suspensions. 

 

6.5.2.2.  Inversion procedure 

To inverse experimental spectra we have developed necessary procedures according to Eqs. 

(6.7) – (6.10) under MATLAB environment. They might be used independently or as an 

executable file in the “Acqui Maya” software. 

To inverse spectra recorder for various aerosols of silica aggregates, the following parameters 

were used: spherical silicon dioxide particles with dispersion spectra (see also Figure 6.4 (a)) 

according to the database provided by Sopra S.A. (Sopra.S.A. 2010), particles diameter in the 

range 1 1000 nm−  and a probing distance of 1000 L mm� . To calculate extinction matrix we 

applied a wavelength range spanning from 175 to 1100 nm and discretized in  bands. 

To inverse data we used  size classes for the size boundaries 1 1200 nm� . The 

Lagrangian parameter was set constant with . It should be noticed here that the 

number of size classes was reduced to prevent the instability of the inversion procedure. 

The latter drastically increases when the spectral bandwidth of the incident beam is not 

significantly larger that the PSD width (indeed, it is the case with the aerosols generated here). 

LES inversion is rather unstable for widely polydisperse PSD. 

 

6.5.2.3. Sampling procedure and electron microscopy analyses 

As a reference for the LES analysis, the aggregates produced in the test chamber are analyzed 

with Transmission Electron and Scanning Electron Microscopes (TEM and SEM). For this 

purpose, aggregates samples are collected on carbon tips after a sedimentation process 

(several hours). Usually, for images of single particles it is possible to proceed them 

automatically with a blob analysis (classical 2D image processing and measuring tools). 

However, for silica aggregates the aforementioned processing methods were not suitable, so 

we were obliged to process the images “manually”. It is also important to keep in mind that 

with SEM analyses the statistics are always poor (no more than several dozen up to few 

hundred of aggregates were analyzed for each case) and it is impossible to ensure that we are 

analyzing exactly the same aggregates, in shape and number, than the ones that are present in 

the test chamber when the aerosol is flowing in. 

 

6.5.2.4. Experimental results  

Suspension of K30R50 

During the experiment we used various input pressures (1, 2 and 3 bar ) and a fixed pressure 

of the output (sucking out the air from the test chamber) equal to 200 mbar. Typical spectra 

926

20 40−
810γ −=
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for different pressures of the aerosol 30 50K R  pure silica suspension (without any previous 

dilution) are shown in Figure 6.25 (a). Figure 6.25 (b) presents aerosol transmissions versus 

time for three selected wavelengths (300,  600λ =  and 800 nm) when the pump pressure was 

gradually increasing. 
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Figure 6.25. Typical spectra measured for aerosol of 30 50K R  with a dilution 1:5 (a) raw spectra for 
various pressures of atomizer and (b) transmissions for three selected wavelengths. 

It should be noticed that for an input pressure of only 3 bar  the transmission is very small, 

just little larger than ( ) 1
iT eλ −=  for 250 nmλ � . Transmissions higher than the given value 

clearly indicates that the optical thickness of the particulate media is weak enough to satisfy 

the multiple scattering criteria 1 Lτ − <  (Xu 2002). 

As previously introduced, during the experiment we collected samples for the SEM and TEM 

reference analysis. In the present case sedimentation time was equal to 3  hours and 30 

minutes. We analyzed collected images manually by measuring the diameter of 229 different 

TEM and SEM images of aggregates (Barbosa et al. 2011). Figure 6.26 and Figure 6.27 show 

respectively some SEM and TEM images of the collected aggregates. 

 
Figure 6.26. Example SEM images of aggregates of 30 50K R . 

 



CHAPTER 6 - LIGHT EXTINCTION SPECTROMETRY (LES) 

  

153 
 

 
Figure 6.27. Example TEM images of aggregates of 30 50K R . 

Figure 6.28 and Figure 6.29 illustrate the different steps used to inverse experimental LES 

spectra. Figure 6.28 (a) presents a typical LES spectrum measured for the aerosol of 30 50K R  

suspension and an input pressure of 3 bar . Figure 6.28 (b) shows the wavelengths selected to 

inverse the spectrum. It can be seen that the raw spectrum and the reconstructed one match 

almost perfectly (i.e. the residual norm is lower than 73 10−× ). Figure 6.29 presents the “raw” 

extinction matrix S and (b) the filtered extinction matrix ( )γ+TS S H V. 

200 300 400 500 600 700 800 900 1000

-0.8

-0.6

-0.4

-0.2

0.0  Raw transmission spectra

(a)

ln
(T

) 
(-

)

Wavelength, λ [nm]

300 400 500 600 700 800
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

(b)

ln
(T

) 
(-

)

Wavelength, λ [nm]

 Experimental points selected for inversion
 Reconstructed transmission

 
Figure 6.28. Experimental spectrum measured for an aerosol 30 50K R : (a) raw spectrum and 
(b) wavelengths selected for the inversion procedure. 
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Figure 6.29. (a) The “raw” extinction matrix S corresponding to the wavelengths selected to inverse 
experimental spectra and the related  (b)  filtered extinction matrix ( )TS S +�H V . 

Figure 6.30 compares the PSD in volume and number estimated by TEM off-line analyses 

with on-line and real-time LES. The PSD measured with the LES system, in volume, is also 

converted in a particle distribution number (assuming a spherical particle model). For the PSD 

measured with TEM analyses, in particle number, a reverse procedure was applied. In Figure 

6.30 we depicted also the mean and median values as well as the corresponding standard 

deviations.  

Table 6.1 compares statistics of TEM and LES measurements for various experimental 

conditions. Note that with TEM analysis it is impossible to estimate the particle concentration 

neither in number, nor in volume. 
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Figure 6.30. Comparison between TEM and LES analysis of the aerosol of 30 50K R  without initial 
dilution: (a) PSD in volume and (b) PSD in number.  
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Table 6.1. Comparison of TEM and LES statistics for the aerosol of 30 50K R  without initial dilution. 
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2 bar 544 503 245 62.9 10−×  293 249 130 141.2 10×  

3 bar 481 421 228 63.1 10−×  116 83 98 153.5 10×  

TEM 
(3bar) 

438 466 216 --- 130 90 115 --- 

 

The most interesting result shown in Table 6.1 is that for an increasing pressure in the test 

chamber the mean diameter of the aggregates decreases. It concerns both results in volume 

and number. Although the increasing particle concentrations are rather obvious consequences 

of the increasing pressure in the test chamber, the estimated values clearly proof the 

capabilities of the developed method. 

 

Suspension of K30R50 with dilution 1:5 

Figure 6.31 shows a few TEM images of obtained for the 30 50K R  suspension. These 

aggregates were produced by atomizing 5 ml  of the 30 50K R  silica suspension diluted with 

25 ml  of water. Samples for the TEM analysis were collected after 3 hours of sedimentation. 

133 aggregates have been analyzed (Barbosa et al. 2011). 

 
Figure 6.31. TEM images of aggregates of 30 50K R  (dilution 1:5). 
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Figure 6.32. Comparison between TEM and LES analysis of the aerosol of 30 50K R  – dilution 1:5: 
(a) PSD in volume and (b) PSD in number.  

Figure 6.32 compares results of the off-line TEM analysis with the LES results for a pressure 

of 2 bars: (a) PSD in volume and (b) PSD in number. The mean and median values as well as 

the corresponding standard deviations are reported. Table 6.2 compares TEM and LES 

statistics for various experimental conditions. Here also, we note that an increasing pressure 

produces smaller aggregates at a higher concentration. 

 

Table 6.2. Comparison of TEM and LES statistics for the aerosol of 30 50K R  with dilution 1:5. 
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Suspension of K30R50 with dilution 1:20 

Figure 6.33 shows some TEM images of the 30 50K R  aggregates obtained after a dilution of 

1: 20 and 15 hours of sedimentation. We analyzed 46  different aggregates (Barbosa et al. 

2011). 
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Figure 6.33. TEM images of aggregates of 30 50K R  (dilution 1:20). 

Figure 6.33 compares results of the off-line TEM analysis with LES inversion procedure for 

the atomizer pressure 3 bar . It shows histograms of the (a) PSD in volume and (b) PSD in 

number for both measurement methods. The related statistics are shown in Table 6.3.  
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Figure 6.34. Comparison between TEM and LES analysis of the aerosol of 30 50K R  after a dilution 
1: 20: (a) PSD in volume and (b) PSD in number.  

Table 6.3. Comparison of TEM and LES statistics for the aerosol of 30 50K R  with dilution 1: 20. 
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Suspension of K30R25  

Figure 6.35 and Figure 6.36 show SEM and TEM images of the 30 25K R  aggregates (no 

dilution). For TEM analysis, 168 different aggregates were investigated for a sedimentation 

time of 3 hours (Barbosa et al. 2011). Figure 6.37 compares the PSD (a) in volume and (b) in 

number at 2 bars. The statistics are shown in Table 6.4. 

 
Figure 6.35. SEM images of aggregates of 30 25K R  (no dilution). 

 
Figure 6.36. TEM images of aggregates of 30 25K R  (no dilution). 
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Figure 6.37. Comparison between TEM and LES analyses of the aerosol of 30 25K R  (no dilution): 
(a) PSD in volume and (b) PSD in number.  
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Table 6.4. Comparison of SEM and LES statistics for the aerosol of 30 25K R  without dilution. 
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Comparing results presented in Table 6.1 - Table 6.4, one can notice that, for a few 

experiments there exist some discrepancies between TEM/SEM and LES analyses. But, 

it would be an error to consider TEM/SEM results as the true ones, since they are necessarily 

biased by the sampling procedure and their accuracy is strongly limited by the limited size of 

the samples analyzed. The collection of samples by a sedimentation process is probably not 

the more appropriate procedure and we even came recently to the conclusion that 

a sedimentation time of 3 hours is not enough (even if we have developed a correction 

method, based on the Stokes sedimentation regime, to correct this problem (Toure 2010)). 

Nevertheless, it is also clear is that the aggregates generated with the non-diluted suspensions 

are pretty large, and probably very close to the limit that can be managed with the LES system 

operating only in the UV-NIR range. The previous results show also that the LES technique, 

with the appropriate model and inversion procedures, can be already used to perform time 

resolved and non-invasive investigations, concentration measurements and parametric studies 

that are definitely not possible with SEM/TEM analyses (very time consuming or basically 

impossible). 

 

6.5.3. Aerosol of tungsten aggregates  

The goal of the study presented in this section was to bring some insights about the 

capabilities of the LES technique to characterize, in fusion devices and more particularly for 

ITER, tungsten aggregates at the vicinity of plasma-facing components (PFC, i.e. tiles) 

or realized by laser cleaning methods. This section gives only a very short overview of the 

results obtained. More details can be found in the published work (Onofri et al. 2012b). 

 

6.5.3.1. Setup: fluid loop and powders  

We basically use the same setup than for silicon dioxide buckyballs, the main difference was 

that we use water-ethanol suspensions of spherical tungsten nanoparticles (supplied by 

SkySpring Nanomaterials, Inc.). One additional difference is that a metallic plate was 
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introduced in the test chamber to test the wall proximity on LES probing beam and thus, on its 

capabilities to size particles at the vicinity of plasma facing materials (PFC). In the same way, 

to test the influence of shock waves and the broadband emission induced by laser cleaning 

method, we use a pulsed (5 ns, 25 Hz) and frequency doubled high-energy Nd:YAG laser 

(110 mJ , 532 )nmλ =  to generate plasma plumes (i.e. laser induced breakdown of air) within 

the test chamber (Onofri et al. 2011a; Onofri et al. 2012b). 

 

6.5.3.2. Inversion procedure 

The inversion procedure was similar to the one described for silicon dioxide buckyballs, 

except that we use the fractal equation to describe the morphology of the tungsten aggregates. 

The fractal dimension of the letters was estimated to 2.7fD = , with a log-normal distribution 

for the number-weighted PSD for both, the primary particles ( 31 41 pd nm= ± ) and aggregates 

( 45 37 )ad nm= ± . 

Figure 6.38 shows three synthetic TEM images over the 30 000 numerical aggregates with 

morphological properties (fractal dimension and PSDs) similar to the experimental ones. This 

figure shows also the relation between the radius of gyration of these aggregates and their 

external radius (i.e. geometrical radius). This database of numerical aggregates was also used 

to calculate their light extinction matrix S (i.e. 30 size classes and 30 wavelength bands) 

averaged over 300 orientations. For the refractive index of tungsten, we use the data base 

provided by the Ioffe Institute (Ioffe.Institute 2012). 

 
Figure 6.38. Numerical aggregates (simulated TEM images) with morphological parameters similar to 
the experimental tungsten aggregates, and relation between two of their characteristic radiuses. 

 

6.5.3.3. Example results 

Figure 6.39 shows a comparison of the PSDs of tungsten aggregates, measured with the LES 

and SEM techniques. The results are in a pretty good agreement (see the discussion on bias 
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induced by our electron microcopy sampling procedure). In this study we have also shown 

that LES measurements are not significantly affected by the proximity of a wall, as well as the 

broadband emission, the shock wave and gas expansion induced by a plasma plume (Onofri et 

al. 2012b). 

 
Figure 6.39. Comparison of LES and SEM results for the PSDs of an aerosol of tungsten aggregates 
with fractal dimension equal to 2.7fD = . 

 

6.5.4. Low-pressure discharge (dusty plasma) 

6.5.4.1. Background of the study  

This study was performed in the framework of the project “CARMINA” between four 

laboratories and institutes, supported by the French National Research Agency (ANR). 

The results presented in this section were obtained in cooperation with Prof. Laifa Boufendi 

and his research group (GREMI UMR n°6606 CNRS, Université d'Orléans). They deal with 

the one-line, and time-resolved, characterization of the growing rate of nanoparticles and 

aggregates in a dusty plasma (low pressure Argon-Silane discharge) (Boufendi and Bouchoule 

1994).  

Reactive plasmas lead to the formation of nanoparticles that tend to grow and aggregate, by 

complex series of chemical and physical reactions (e.g. (Berndt et al. 2009)). Depending on 

the physical conditions and reactive gas being used, the shape and the size of these aggregates 

may differ significantly (e.g. (Schweigert et al. 1995; Ozaki et al. 1999; Fortov et al. 2005)). 

In this study we have investigated the formation of cauliflower-like aggregates of typically 

5 100 nm−  produced by gas mixtures of Argon and Silane (SiH4, i.e. reactive gas) at different 

pressures, temperatures and for different electrical powers. 

As an example, Figure 6.40 shows a transmission electron microscopy image of aggregates 

produced in a Argon-Silane low-pressure after 20s. Note that, according to Orleans' group, in 
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the plasma reactor the aggregates (the small aggregates with a cauliflower-shape) are not 

agglomerated like their appear to be on TEM image. They agglomerate during deposition due 

to some residual charges and latter on, Coulomb’s attractive forces. 

 
Figure 6.40. TEM of the aggregates produced by a low-pressure Argon-Silane discharge after 20s. 
Note that in the plasma, the aggregates (with a cauliflower-shape) are not agglomerated like in this 
image. 

Scientifically, the starting point of this work is the results obtained by the group in Orleans in 

1994, from the off-line analysis of TEM samples collected from the low-pressure discharge 

(Boufendi and Bouchoule 1994). This pioneer work, which was one of the first to report the 

dust formation phenomena, is referred below as “TEM-1994” results, whereas their common 

analyses of TEM samples are referred as “TEM-2011” results.  
 

6.5.4.2. Setup: plasma reactor and optical setup 

The reactor used in this experiment produce a capacitive discharge generated by 

a radiofrequency generator. It was designed for the study of silicon dust particle formation in 

low pressure cold plasmas. The pressure can range from 10 to 100 Pa  and the electrical 

power can vary from 10 to 50 W . At low power, it is possible to slow down the particle 

formation in order to follow in real time their growth and to study the transition from one 

growth phase to another. 

To perform measurements we rebuild the initial LES experimental setup. The main 

improvements consist of mechanical changes, particularly we added a special frame, optical 

choppers and adjusting system to ensure optical access to plasma reactor (see Figure 6.41 and 

Figure 6.42). The optical part of the system was not modified. Figure 6.42 shows a picture of 

the LES setup during measurements of the Low-pressure discharge. 
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Figure 6.41. Picture of the experimental setup adapted to the LES analysis of the low-pressure 
discharge (plasma system). 

 
Figure 6.42. LES measurements in a Low-pressure discharge (plasma reactor in GREMI UMR n°6606 
CNRS, Université d'Orléans). 

 

6.5.4.3. Experimental results 

As an example, Figure 6.43 (a) presents typical LES transmission spectra measured in a low-

pressure Argon-Silane discharge. T∆  refers to the starting time of the plasma discharge. 

To inverse these data, the following parameters were used: spherical amorphous silicon 

particles with diameter in the range 1 1000 nm−  and a probing distance of 130 L mm= .  

To calculate extinction matrix we choose refractive index (dispersion spectra) of amorphous 

silicon according to the database provided by Sopra S.A. (Sopra.S.A. 2010). 
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Figure 6.43. Light Extinction Spectrometry of low-pressure Argon-Silane discharge: transmissions for 

different operating times. 

Figure 6.44 and Figure 6.45 illustrate the different steps used in the inversion procedure of the 

experimental data. Figure 6.44 shows (a) a spectrum obtained for 3.024 T sB � , as well as the 

wavelengths selected for the inversion procedure; while (b) shows the corresponding 

reconstructed PSD. Figure 6.45 (a) illustrates the “raw” extinction matrix S as well as the 

reduced (i.e. selected points) and (b) the filtered extinction matrix ( )TS S +�H V . 
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Figure 6.44. Example (a) experimental and reconstructed spectra measured in Argon-Silane low 
pressure discharge and (b) the corresponding reconstructed PSD. 

Important issue encountered during the inversion procedure is that exact value of the 

refractive index of the aggregating monomers is not precisely known. As mentioned 

previously to calculate extinction matrix, we use the one of amorphous silicon. However, the 

internal composition of the monomers produced in the low-pressure Argon-Silane discharge is 

complex, so they might contain various chemical elements. Difficulties with obtaining the real 

value of the refractive index induce some differences between experimental spectra and the 

inversed ones. As can be seen in Figure 6.44 (a) they can differ significantly and induce 

instabilities. 
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Figure 6.45. (a) The “raw” extinction matrix S reduced to the selected points of the transmission 
spectra and (b) the filtered extinction matrix ( )TS S +�H V . 

Figure 6.46 compares LES on-line measurements, with the off-line SEM analysis (Boufendi 

and Bouchoule 1994), for the aggregates mean volume-diameter and standard deviation, ad  

and dσ  respectively. Results of the LES analysis were obtained by the inversion of 1155 

transmission spectra recorded during the measurement sequence lasting 17.37s from the start 

of the plasma discharge. The particle number and volume concentrations estimated with LES, 

are also shown. Clearly speaking, in Figure 6.46 LES results match rather well SEM results 

(Onofri et al. 2011b). 
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Figure 6.46. Light Extinction Spectrometry: temporal evolution of the particle size and concentrations 
measured in a low-pressure Argon-Silane discharge  

Important drawback of these experiments is that they are not synchronized with plasma 

reactor and thus it is impossible to fix exactly the starting point of the plasma discharge and 

the optical analysis. As an example, Figure 6.47 shows the temporal evolution of the particle 

size measured in the low-pressure Argon-Silane plasma but for two different reference points. 

In addition to the previous figure, results of the LES measurements are compared also with 

the recent off-line TEM analysis of the Orleans’ group (refereed as TEM-2011 and have not 
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published yet). It can be seen that result of the LES match better when the starting point is 

adjusted. 
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Figure 6.47. Temporal evolution of the particle size measured in a low-pressure Argon-Silane 
discharge for two different reference points. 

 

6.6. Conclusion 
In this chapter we have introduced the principle of the Light Extinction Spectrometry (LES). 

As shown previously, this technique relies on the analysis of the total extinction spectra of all 

particles illuminated by a collimated and polychromatic beam. It leads to an ill-posed problem 

requiring inversion of a Fredholm integral of the first kind, which was solved with a least-

square algorithm with a non-negative constraint. We have proved that LES technique can be 

successfully apply to characterize the PSD and to estimate the concentration in nanoparticles 

aggregates with totally different optical properties. Despite that, there are some limitations in 

the applicability of the LES (concerning particles concentration and refractive index), we have 

proved that it is a powerful technique. Although we do not know exactly refractive index of 

the monomers aggregating in low-pressure Argon-Silane discharge, we are still able to 

accurately estimate aggregation dynamics as well as particles concentration and PSD. 

Both particle systems have been investigated with a well agreement to the off-line TEM and 

SEM reference analysis.  

Further developments of the LES technique requires improvements of the inversion 

procedure, particularly application of the different regularization schemes (e.g. (Mroczka and 

Szczuczy�ski 2010; Mroczka and Szczuczy�ski 2012)). The latter works present the 

constrained regularized least-squares (CRLS) method introduced by means of an active set 

algorithm of quadratic programming. This approach shows considerably better results than the 

typical regularized least-squares (RLS) method for reconstruction of PSD in terms of better 

fidelity and smaller uncertainties. Therefore, its application may be profitable for the 

inversion procedures presented in this chapter.  



  

  

167 
 

 

 

 

 

 

��������F�

7. GENERAL CONCLUSION AND PERSPECTIVES 
 

 

 

 

 

 

This manuscript presents the Ph.D. work completed as a co-shared thesis (French: 

“Cotutelle”) between the laboratory IUSTI UMR CNRS n°7343, Aix-Marseille University in 

Marseille, France, and the Chair of Electronic and Photonic Metrology Wrocław University of 

Technology in Wrocław, Poland.  

The main objective of this work was to develop electromagnetic models and experimental 

methods to characterize the morphology of nanoparticles and their aggregates. The latter are 

commonly encountered in systems of high scientific and technological interest: sooty flames, 

aerosols, suspensions, dusty plasmas, etc. 

The first part of this Ph.D. work was devoted to review aggregation phenomena, and more 

particularly, Diffusion-Limited, Diffusion-Limited Cluster and Reaction-Limited Cluster 

Aggregation. We developed a fully adjustable (tunable) DLA-type code to generate fractal-

like aggregates with precisely defined morphological parameters, strict self-similarity and 

thus scale-invariant properties at each scale. To model very dense and highly opaque 

aggregates observed in aerosol of nanoparticles, a completely new Buckyballs-like model was 

developed. As a reference for scattering techniques and aggregates modelling, we have 

developed two TEM-based methods. Among them, a newly introduced algorithm (Modified 

Box-Counting Method, MBC) for the analysis of self-similarity properties of each aggregate 

was compared with an average, multi-scale analysis (widely used in the literature). The MBC 

method provides less noisy estimation for the evolution of the fractal dimension with the size 

of aggregates, giving at the same time a criterion to reject the aggregates with insufficient 

self-similarity properties.  
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The second part of this Ph.D. was devoted to the simulation of the light scattering properties 

by aggregates of various particles. To do so, several light scattering theories were considered. 

Particularly, we compared results of the Lorenz-Mie theory, Rayleigh-based approximations 

(RGD, RDG-FA), as well as the T-Matrix solution. We have found that the T-Matrix theory 

is the only one that is sufficiently accurate to describe all the scattering problems encountered 

in this work. To estimate parameters of the fractal aggregates from the scattering diagrams 

we developed several algorithms. Additionally, we investigated also the influence of the 

presence of free monomers on the estimation of the fractal parameters. The latter task, 

although quite intuitive, is surprisingly missing in the literature. 

In the third part of this Ph.D. we review various optical techniques to characterize particle 

systems. It appears that, a few of them allow in-situ and time-resolved analyses with limited 

optical accesses. In the framework of various projects related to the plasma  we developed 

a Light Extinction Spectrometry (LES) technique. 

Finally, the last part of this Ph.D. work was focused on the application of all the models and 

methods we have developed to study nanoaerosols (nanosilica beads and tungsten), 

combustion systems and dusty plasmas. Thus, the results obtained during this analysis clearly 

proofs the validity of developed algorithms and shows the potential of our experimental 

methods. 

 

This Ph.D. was performed in the framework of collaborative work. Therefore, some results 

presented in this thesis were achieved in a cooperation with different researchers and with 

support of my supervisors. So that, in this paragraph, I would like to point out my main 

contributions.  

I performed all the numerical results presented in this manuscript. Particularly, it includes 

development of the DLA and TEM-modeling software, methods to fill and optimize 

buckyballs aggregates, algorithms to derive morphological parameter of fractal aggregates 

from TEM pictures, as well as algorithms to analyze optical structure factors and to perform 

the Guinier analysis of fractal aggregates. I carried out also the light scattering simulation 

presented in this manuscript. I developed numerous applications using various light scattering 

theories whose results are presented.  

Experimental part of this thesis concerning LES analysis of various particle systems was 

performed in a cooperation with the other researchers. My participation in this work includes 

numerical study of the light scattering properties of particles corresponding to the 

experimental systems, as well as contributions in the laboratory work. Particularly, it concerns 

taking part in building, preparation and development of the experimental setup, performing 

various measurements as well as collecting samples for reference TEM/SEM analysis. 
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It includes also data gathering, post-processing and inversion with different particle models. 

Finally, I performed analysis and interpretation of the presented results.  

 

Further perspectives of this Ph.D. include the use the Discrete Dipole Approximation (DDA) 

to calculate scattering properties of the fractal-like and buckyballs-like aggregates. 

Subsequently, these results will be compared with the T-Matrix predictions. We suppose that 

such a validation should be especially interesting for highly melted particles in combustion 

systems or plasma. In the case of the aggregates produced by the aerosol drying method, the 

T-Matrix algorithm seems to be more accurate since the shape of single monomers within 

aggregates is nearly spherical. 

Perspectives for the development of the LES technique assume improvements of the inverse 

method being used. Particularly, it is highly interesting to advance the non-negative least 

square algorithm by different regularization schemes (e.g. Tikhonov Regularization, various 

SVD algorithms or iterative methods). Further perspectives include also extended tests of the 

LES technique for aerosols of various nanoparticles. It is important to perform additional 

validations and experiments in order to investigate capabilities of the LES method to study 

different plasma systems.  
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RÉSUMÉ EN FRANCAIS 
(ABSTRACT IN FRENCH LANGUAGE) 

 
 

 

 

 

Chapitre 1: Introduction 

On observe la formation ou la présence de nanoparticules dans de très nombreux systèmes 

naturels ou industriels (voir la Figure F.1) : aérosols, suspensions colloïdales, flammes, 

plasmas (froids thermiques et de fusion), les milieux interstellaires,... Les propriétés 

particulières des nanoparticules,  par rapport à celles de leur matériau (échelle 

macroscopique), sont souvent liées aux effets dits, de surface, et aux effets quantiques (Buzea 

et al. 2007). 

 
Figure F.1. Les systèmes nano particulaires sont observés dans milieux très différents : (a) réacteurs de 
fusion (tokamak JET) ; (b) décharges dans un gaz à basse pression ; (c) certaines pulvérisations ; (d) 
flammes et (d) suspensions colloïdales déstabilisées. 

Ces effets confèrent aux systèmes nano particulaires une réactivité chimique, des propriétés 

thermo physiques, mécaniques, optiques, électriques et magnétiques inégalées et parfois très 

insolites. Les effets de surface sont liés à la fraction importante d'atomes à l'interface avec le 
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milieu environnant, qui est sans commune mesure avec ce que l'on peut obtenir à l'échelle 

microscopique et, à fortiori, macroscopique. Les effets quantiques sont directement liés aux 

dimensions de ces particules, dont certaines, comme les quantum dots, ne sont composées que 

de quelques dizaines ou centaines d'atomes ou molécules (Roduner 2006). Dans ce dernie cas, 

c'est le confinement des électrons qui est à l'origine des bandes étroites d'absorption et 

d'émission (Buzea et al. 2007). 

Pour comprendre, produire et contrôler ces systèmes, il faut disposer d'outils de 

caractérisation et notamment, de leur granulométrie et de leur concentration. Les techniques 

de laboratoire (comme la microscopie électronique) ne répondent que partiellement à ce 

besoin, dans la mesure où elles sont très intrusives et peu adaptées à des études paramétriques 

résolues temporellement. Les résultats obtenus peuvent également être biaisés par la 

procédure de prélèvement, la taille limitée de l'échantillon ou même la difficulté d'analyser de 

manière statistique les images obtenues (comme nous le montrons dans ce travail). 

 
Figure F.2. Agrégats fractals composés de (a) 500 monomères polydisperses (distribution log-normale, 

0.5p� � ) avec 7.94vR = , 2.00fD � , 17.71vR � ; (b) 10000 monomères monodisperses avec 
2.00fD �  et 79.22gR = . 

Pour l'analyse des systèmes micro particulaires (Xu 2002), il existe de nombreuses techniques 

optiques qui permettent de s'affranchir des limites que nous venons d'évoquer. Les choses se 

compliquent à l'échelle nanométrique de par la complexité morphologique des agrégats 

formés par les nanoparticles ; la nécessité de disposer à la fois de modèles de particules, de 

modèles de diffusion de la lumière et procédures d'inversion ad hoc, ainsi que d'une 

instrumentation adaptée. C'est précisément l'objectif de ce travail de thèse que d'apporter 

différentes solutions dans ce domaine avec, comme contrainte supplémentaire, de privilégier 

un diagnostic pouvant opérer à longue distance et sur des systèmes aussi différents que des 

suspensions, des aérosols et des plasmas poussiéreux.  

En accord avec cette démarche, le chapitre 2 introduit deux modèles permettant de décrire 

simplement la morphologie d'agrégats fractals ou réguliers. Le chapitre 3 présente les travaux 

réalisés pour améliorer les analyses morphologiques reposant sur la microscopie électronique 

et ceci, afin de pouvoir mieux comparer ces résultats avec ceux des techniques optiques. Le 
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chapitre 4 décrit et commente les différentes approximations physiques et théories utilisées 

pour modéliser les propriétés de diffusion et d'absorption de la lumière par des agrégats de 

formes complexes. Le chapitre 5 introduit et valide numériquement les deux modèles 

développés pour analyser les diagrammes de diffusion (facteur de structure optique) de 

systèmes nano particulaires. Le chapitre 6 présente les travaux numériques et expérimentaux 

menés sur la spectrométrie d'Extinction (LES). Le chapitre 7 est une conclusion générale avec 

perspectives.  

 

Chapitre 2: Modèles d'agrégats de particules  

Pour calculer puis inverser les propriétés optiques de nano-agrégats, il nous faut au préalable 

disposer d'un modèle les décrivant le plus simplement possible. Après quelques rappels sur les 

phénomènes d'agrégation, ce chapitre présente les deux modèles d'agrégats développés : un 

modèle d'Agrégation Limité par la Diffusion (DLA) (Wo�niak et al. 2012b) et un modèle de 

dôme géodésique (Buckyballs) (Onofri et al. 2012a). 

Agrégation Limité par la Diffusion (DLA) 

En résumé, le modèle DLA repose sur une description : de la morphologie des agrégats, basée 

sur l'équation fractale (Witten and Sander 1981); et sur les hypothèses que les monomères 

(particules primaires constituant l'agrégat) ont une marche aléatoire (Brownienne) et qu'elles 

s'agrègent au premier contact, avec ( )/
fD

p f g pn k R r= . Où pn  et pr  représentent le nombre et le 

rayon des monomères de l'agrégat en cours de formation, fD  et gR  la dimension fractale et le 

rayon de giration de ce dernier, et fk  un pré-facteur fractal (ou coefficient de structure). A 

titre d'exemple, la Figure F.2 montre, pour deux agrégats, une visualisation 3-D (créé avec le 

logiciel POV-Ray (POV-Ray 2004)), les projections 2D associées ainsi que celles des rayons 

de giration et en volume (disques). Ce modèle et le code de calcul associé prennent en compte 

différents effets, comme l'interpénétration des monomères (pour simuler un phénomène de 

frittage), une polydispersion du rayon de ceux-ci (type : log-normale), la distance d'apparition 

des monomères, etc. Une étude numérique a été conduite pour qualifier ce modèl et comparer 

différentes représentations utilisées pour définir les caractéristiques des agrégats (voir par 

exemple la Figure F.3). 
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Figure F.3. Comparaison de quatre longueurs caractéristiques d'agrégats générés avec le code DLA : 
rayons de giration gR , rayons en volume vR , rayons de la sphère circonscrite bR  et longueur 
maximale de l'agrégat 3DL ) ; 500pn = . 

Modèle de dôme géodésique (Buckyballs) 

Ce modèle a été développé pour décrire la structuration en réseau, pentagonal et hexagonal, 

des agrégats de silice formés par évaporation de suspensions colloïdales (voir la Figure F.4). 

En effet, l'analogie formelle avec les fullerènes (ou Buckyballs), nous a conduit à modéliser 

ces agrégats comme des dômes géodésiques basés sur l'icosaèdre (composé de 20Facen =  

faces, . 30Edgn =   segments et . 12Vertn =  sommets) (Toure 2010). Dans ce modèle, les côtés de 

l'icosaèdre sont divisés en 1in +  segments de même longueur. Ces derniers servent à la 

définition des triangles réguliers qui divisent les faces de l'icosaèdre. Nous avons montré 

qu'en plaçant une nano sphère à chaque sommet du polyèdre ainsi formé, on forme une 

Buckyballs de pn  monomères : , 0ip n Vern n= =  ; ( ), 0 2 / 2
ip n Ver i i Facen n n n n> = + + . Celle-ci est 

inscrite dans une sphère (ou diamètre externe de la Buckyball) dont l'expression du rayon a 

été établie. Vient ensuite une étape de projection des centres des nano sphères sur cette sphère 

circonscrite et une étape d'ajustement des diamètres des monomères, de façon à maximiser le 

nombre de contacts entre les monomères.  

 

 

 

          
 

Figure F.4. A gauche : buckyball de 92pn �   nano particules (forme dilatée et forme compacte) ; 
A droite, image MET synthétiques de buckyballs (a) creuse ( 162pn � ), ou pleines : (b) Cœur 
hexagonal compact ( 162 113pn = +  sphères, fraction volumique 52%) ou (c) Cœur fractal 
( 162 72pn = +   sphères, 2.88fD � , fraction volumique 49%). 
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Chapitre 3: Modèles pour l'analyse fractale des images obtenues par 
microscopie électronique en transmission  

L'analyse de la morphologie des agrégats, fractals ou non, est encore essentiellement basée 

sur le traitement d'images obtenues par microscopie électronique en transmission (MET). En 

effet, bien que les résultats obtenus sont souvent biaisés par la procédure d'analyse (Koylu et 

al. 1995; Chakrabarty et al. 2009; Ouf et al. 2010), cette approche permet d'accéder 

directement aux projections 2D de la morphologie des agrégats, tout en étant peu sensible aux 

propriétés de leur matériau (souvent mal connues). Ajoutons que les analyses fractales 

couramment réalisées sont incapables d'appréhender correctement les agrégats multi-fractals 

et les échantillons non homogènes. Dans la mesure où les résultats des techniques optiques 

sont souvent comparées aux analyses MET, ce chapitre est consacré à la remise à plat de la 

technique d'analyse fractale la plus utilisée, et l'introduction d'une nouvelle technique de 

traitement des images MET (Wo�niak et al. 2012b). La résolution de ces techniques est testée 

sur des échantillons synthétiques et sur des données expérimentales (i.e. des suies formées par 

une flamme diesel (Yon et al. 2011)).  

   
Figure F.5. (a) Visualisation avec le logiciel POV-Ray et image TEM simulée d'un agrégat synthétique 
avec 1.50fD = , 25pn = , / 6.27g pR r = ; (b) Résultat de l'analyse des images-MET d'un échantillon 
expérimental de suies; avec les méthodes MBR et MBC (Wo�niak et al. 2012b); 

Modélisation des images MET 

Dans une première partie, nous détaillons un modèle très simplifié de la formation des images 

MET. Dans celui-ci, le code DLA est utilisé pour produire des agrégats synthétiques dont les 

images en transmission sont déterminées à l'aide d'une loi d'absorption (des électrons) de type 

Beer-Lambert. Différents effets sont étudiés numériquement, comme les superpositions 

induites par la projection 2D, le seuillage des images MET, l'extraction de longueurs 

caractéristiques, etc.  
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Méthode d'analyse basée sur les caractéristiques du rectangle circonscrit (MBR) 

La première méthode repose sur l'extraction et l'analyse des caractéristiques du rectangle 

circonscrit (MBR, longueur 2DL  et largeur 2DW ) à chaque agrégat fractal (Samson et al. 

1987). Nous montrons que la relation couramment utilisée pour obtenir le rayon de giration 

des agrégats 2 2 / ,D D
gR L W β=

 
avec 2.34β ≈  (Koylu et al. 1995), n'est valable que pour de très 

petits agrégats dont la dimension fractale est de l'ordre de 1.80β ≈ . De même, nous avons 

clairement établi que la dimension fractale, déduite de la pente d'une relation (linéaire) du 

type ( )2 2ln /D D
p p

n f L W r=  est une estimation fortement biaisée par la présence de 

monomères et très petits agrégats (dont la nature fractale est mise en doute). Ces travaux ont 

également permis d'obtenir des courbes de calibration numériques qui peuvent être utilisées 

pour corriger en partie ces biais (dépendance de β  avec la dimension fractale mais aussi le 

nombre de monomères) (Wo�niak et al. 2012b). 
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Figure F.6. Évolution de la dimension fractale d'échantillons de suies en fonction de leur 
granulométrie, selon la technique MBC et la technique MBR. 

Méthode basée sur une modification de la méthode par comptage de boîtes (MBC).  

La méthode par comptage de boîtes (Theiler 1990) consiste à établir le taux d'occupation d'un 

agrégat au sein du rectangle qui lui est circonscrit et ceci, à différentes échelles (analyses avec 

des boîtes de plus en plus petites : sN  boîtes à d'échellesL ) : ( )
0

lim ln / ln .
s

f s s
L

D N L
→

= −  

L'intérêt fondamental de cette approche est qu'elle permet de déterminer la dimension de 

chaque agrégat observé. En principe, elle permet donc d'analyser directement des échantillons 

non homogènes. En pratique, cette analyse multi-échelle est limitée par la taille finie des 

monomères et de l'agrégat lui-même. Pour pallier ces problèmes, nous avons introduit 

différents modifications à l'algorithme originel : les images MET des agrégats ne sont plus 

analysées que dans chaque rectangle circonscrit, les boîtes ne sont plus générées suivant un 

maillage cartésien mais suivant un schéma aléatoire (pour limier les effets de bord) et à 

chaque échelle le nombre de boîtes est normalisé; la dimension fractal n'est plus déduite du 

calcul d'une limite (physiquement inaccessible, (Foroutan-pour et al. 1999)) mais de la pente 
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de la courbe associée); au final, le code DLA est utilisé pour générer des courbes de 

calibration reliant cette pente à la dimension fractale attendue (Wo�niak et al. 2012b). 

Comparaison des deux méthodes 

Toute une étude numérique est réalisée, à l'aide d'agrégats synthétiques, pour déterminer la 

résolution que l'on peut espérer avec ces deux méthodes (Figure F.6). Ces dernières ont 

également été testées sur un échantillon expérimental (suies, voir également les Figures F.1 et 

F.5). Les résultats de la Figure F.6 sont emblématiques de tous ceux obtenus. Avec la 

méthode MBR, l'estimation est anormalement bruitée et totalement différente suivant que l'on 

traite globalement l'échantillon ou que l'on réalise des analyses sur des sous-échantillons. A 

contrario, la méthode MBC restitue une estimation beaucoup plus continue (et donc 

physique), par ailleurs la dimension fractale estimée pour les agrégats intermédiaires et grands 

est également beaucoup plus faible ( 1.66 0.02fD = ± ) que celle obtenue avec la méthode 

MBR globale ( 1.88 0.02fD = ± ). Ce résultat va dans le sens de travaux récents reposant sur 

une approche différente (Chakrabarty et al. 2009). 

 

Chapitre 4: Théories électromagnétiques et modèles de diffusion  

Ce chapitre passe en revue les différents outils utilisés dans ce travail, pour modéliser les 

propriétés de diffusion des agrégats et inverser les données expérimentales.  

La théorie de Lorenz-Mie 

Cette théorie fait référence dans bien des domaines et notamment, pour la caractérisation 

optique de systèmes particulaires. La diffusion d'une onde plane harmonique par un diffuseur 

sphérique, isotrope, homogène, à matériau linéaire et sans propriété magnétique est résolu 

avec une méthode de séparation des variables.  Cette théorie s'applique à des particules de 

toutes tailles et de tous indices, mais uniquement sphériques.  

Théories de Rayleigh et Rayleigh-Gans-Debye (RGD) 

Ces modèles asymptotiques ne sont valident que pour des particules dont le paramètre de 

taille x et l'indice complexe pm�  sont tels que, respectivement, 1, 1px m x�� �  et 1 1pm −� � , 

1 1p pkd m −� � . En principe, la forme de la particule peut s'écarter de celle de la sphère. Leurs 

avantages principaux résident surtout dans la rapidité du calcul des diagrammes de diffusion 

et des section efficaces, ainsi que la description des comportements asymptotiques (p. ex. 

l'extinction des très petites particules est surtout liée à leur absorption avec 3
,p abs pC r∝  et 

6
,p sca pC r∝ ).

 

 

Théorie de Rayleigh-Debye-Gans théorie pour les agrégats fractals (RDG-FA) 

Cette théorie est une extension de la Théorie de Rayleigh-Debye-Gans. Elle permet de 

prendre en compte la nature fractale d'une particule. Pour ce faire, et en résumé, Dobbins et 
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Megaridis (Dobbins and Megaridis 1991) introduisent un facteur de forme ( ), gf q R  qui 

corrige, des effets morphologiques, les relations obtenues avec la RGD classique. On obtient 

notamment pour l'intensité diffusée par des agrégats éclairés par une onde de polarisation 

parallèle ou perpendiculaire: ( ) ( ) ( )2
, , ,  ; a p p gI n I f q Rθ θ⊥ ⊥=

 
( ) ( ) 2

, , cosa aI Iθ θ θ⊥=
�  

et les sections 

efficaces correspondantes : , , ;  a abs p p absC n C= ( )2
, , , , ;a sca p p sca g fC n C G k R D=  , , ,a ext a abs a scaC C C= + . 

Avec pour le facteur de forme, selon que l'on est dans le régime de Guinier  ( )2 2 1.5g fq R D≤  : 

( ) ( )2 2, exp / 3g gf q R q R= −  ou fractal ( )2 2 1.5  g fq R D> : ( ) ( ) /22 2,
fD

g gf q R q R
−

= , où ( )2 sin / 2q k θ=  

est le vecteur diffusion, k  et θ  le vecteur d'onde et l'angle de diffusion respectivement. 

Nous avons mené une étude numérique pour évaluer le domaine de validité de la RDG-FA, en 

utilisant les résultats de la T-Matrice (voir plus loin) comme référence. Conformément aux 

hypothèses de base de la RGD (qui s'applique uniquement aux objets déphasant), on retrouve 

que ce domaine est très réduit et qu'il se limite aux agrégats petits et/ou peu denses (faible 

dimension fractale).  

 
Figure F.7. Section efficace d'absorption de suies de dimension fractale 1.8fD = : écart entre les 
prédictions de la RDG-FA et ceux de la T-Matrice. 

Théorie (ou méthode) de la T-Matrice 

Cette méthode introduite par Watermann (Waterman 1965), qualifiée aussi de méthode 

d'annulation du champ (null-field method), permet de calculer les propriétés de diffusion des 

ondes électromagnétiques par des particules complexes (Mishchenko et al. 1996; Bohren and 

Huffman 1998; Auger et al. 2007). Elle est fondée sur le principe d'équivalence selon lequel 

le champ électromagnétique à l'extérieur d'une surface régulière S, est équivalent à celui qui 

serait produit par une distribution de courants superficiels électrique et magnétique portée par 

la surface S. A l'intérieur de S, les sources produisent un champ nul. On peut ainsi exprimer le 

champ total (incident + diffusé) à l'extérieur de S sous la forme d'intégrales de surfaces. Les 

champs incidents et la fonction de Green sont développés en harmoniques sphériques. Ce 

développement n'est pas valable sur S ; il l'est à l'intérieur d'une sphère inscrite dans S, ou à 

l'extérieur d'une sphère circonscrite à S. On fait alors l'approximation d'écrire les courants 

superficiels équivalents comme la somme des N premières harmoniques sphériques avec des 
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coefficients inconnus. A l'intérieur de la sphère inscrite, l'équation E=0 se transforme en un 

système linéaire qui relie les coefficients inconnus des courants aux coefficients connus des 

champs incidents. On obtient d'autres relations en utilisant les conditions aux limites. Les 

coefficients du système matriciel (T-Matrice) résultant sont des combinaisons d'intégrales 

d'harmoniques sphériques sur S. Une fois ce système résolu, on connaît les courants 

superficiels et donc le champ diffusé. Le nombre N à utiliser dépend de la forme, de la taille et 

de l'indice de réfraction du diffuseur (sphère, ellipsoïde, cylindre tronqué, agrégat de sphères).  

 
Figure F.8. Visualisations, dans le plan équatorial, du coefficient d'extinction net (positif ou négatif)  
des monomères au sein d'un buckyball composé de , 749p HCn =   monomères de rayon 40.5pr nm= ; 
(a) 300nmλ = , (b) 400nmλ = , (c) 500nmλ = . 

Différents codes de calcul sont en libre accès, pour ce travail nous avons utilisé celui 

développé par Mackowski et Mishchenko (Mackowski and Mishchenko 1996) et qui est mis à 

disposition sur le site internet du Goddard Institute for Space Studies de la NASA. Ce code, 

que nous avons nous même parallélisé, permet de calculer les propriétés globales de diffusion 

et d'absorption d'agrégats composés de plusieurs centaines de nano sphères. Il permet 

également de calculer les sections effectives d'extinction de chaque nano sphères, voir par 

exemple la Figure F.8. 

 

Chapitre 5: Analyse des diagrammes de diffusion d'agrégats fractals 

Ce chapitre traite de l'analyse des diagrammes de diffusion d'agrégats fractals, dans le but d'en 

déduire laeur dimension fractale et leur rayon de giration. Cette approche peut sembler très 

classique, néanmoins, dans la littérature, on ne trouve aucun détail sur une quelconque 

procédure d'extraction de ces deux quantités. Le but de ce chapitre est donc également de 

proposer des solutions (automatisées et reproductibles) et des éléments de réflexion sur cette 

approche.  

Dans une première partie, nous introduisons deux algorithmes pour extraire la dimension 

fractale. Le premier algorithme, désigné par l'acronyme SSE (pour Second Slope Estimation), 

consiste à déduire directement la dimension fractale de l'analyse du taux de décroissance du 

diagramme de diffusion (ou Facteur Optique de Structure, OSF), au centre de la zone fractale. 

Cette dernière est simplement définie comme la zone située entre la zone de Guinier et la zone 
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de Porod. Le rayon de giration est obtenu à l'aide de l'analyse dite de Guinier (voir la Figure 

F.9 (a)), qui est bien documentée dans la littérature (Sorensen 2001). Cette approche ne donne 

des résultats satisfaisants que pour des agrégats dont le paramètre de taille est important 

( 5)gqR > . Le second algorithme, désigné par l'acronyme FSE (pour First Slope Estimation), 

intègre une méthode itérative de recherche du centre de la zone fractale et l'utilisation de 

courbes de calibration (basées sur le modèle DLA et les résultats de la T-Matrice). Plus lourd 

à mettre en oeuvre que l'algorithme SSE, il est plus précis et permet d'analyser des agrégats 

beaucoup plus petits. De ce fait, le modèle FSE est considéré comme plus universel (voir la 

Figure F.9 (b)).  
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Figure F.9. (a) Analyse de Guinier d'agrégats fractals de SiO2 ; (b) Dimension fractale estimée avec 
l'algorithme FSE (avec ou sens ajout d'un bruit blanc ; agrégats fractals de suies composées de 500 

monomères). 

Dans la deuxième partie de ce chapitre, nous nous intéressons à un problème qui semble avoir 

été totalement négligé dans la littérature : l'existence (et donc l'influence) de monomères 

libres sur l'analyse des diagrammes de diffusion des agrégats. Nos travaux révèlent 

l'importance des monomères libres. En effet, pour un taux de : un monomère libre pour un 

agrégat, la dimension fractale des agrégats peut en effet être sous-estimée de près 25%. Ces 

résultats préliminaires pourraient remettre en question bon nombre de travaux publiés.  

 

Chapitre 6: Spectrométrie d'extinction 

Ce chapitre détaille les travaux numériques et expérimentaux réalisés sur la spectrométrie 

d'extinction (LES), pour obtenir la distribution granulométrique et la concentration de 

différents systèmes nano particulaires.  

Principe et principe d'inversion des spectres de la technique LES  

En résumé, la technique LES repose sur une mesure de la transmission spectrale d'un faisceau 

collimaté, à large spectre, ayant traversé le milieu particulaire (défini par sa largeur, la 

concentration et l'extinction des particules). En régime de diffusion simple, cette transmission 
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est simplement modélisée par une loi de type Beer-Lambert. L'extinction d'un nuage 

polydisperse est décrite comme une intégrale de Fredholm du premier type qui dépend de la 

distribution granulométrique et des propriétés optiques intrinsèques des particules. Le noyau 

(matrice d'extinction) de l'intégrale est calculé en utilisant la T-Matrice avec au choix, le 

modèle DLA ou celui des Buckyballs, voire celui d'une sphère (milieu effectif). La procédure 

de régularisation principale repose repose sur la méthode introduite par Twomey-Philips 

(Twomey 1979). L'inversion est réalisée au moyen d'une méthode de moindres carrés à 

solutions positives.  

Résultats numériques  

Une étude numérique apporte des éléments d'appréciation sur l'évolution des spectres 

d'extinction et de transmission avec la dimension fractale, le rayon de giration et l'indice de 

réfraction des agrégats. Celle-ci montre que la LES est assez peu sensible à la dimension 

fractal des agrégats. En régime de diffusion simple, la plage de mesure des concentrations est 

de l'ordre de  en nombre et  en volume (ces concentrations 

sont données, à titre indicatif, pour les buckyballs de silice et une distance de 1m). 

 Études expérimentales  

Après une description du montage optique, cette dernière partie présente les travaux 

expérimentaux réalisés avec la technique LES sur des aérosols de buckyballs et des agrégats 

de nano particules de tungstène, puis sur des nano agrégats formés dans des plasmas 

poussiéreux.  
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Figure F.10. Granulométrie des Buckyballs selon les analyses MET et LES : (a) en volume et (b) en 
nombre. 

Les premiers agrégats sont formés par pulvérisation, sous forme de gouttelettes microniques, 

de différentes suspensions colloïdales de silice. Il semble que nous ayons été les premiers à 

avoir observé et proposé un mécanisme de formation de ces agrégats dotés d'un pavage de 

surface pentagonal/hexagonal. Nous qualifions ceux-ci de buckyballs de silice (voir aussi les 

Figures F.1, F.5 et F8). La Figure F.10 montre une comparaison type entre analyses MET et 

13 151 10 5 10× − × 8 65 10 5 10− −× − ×
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LES (Barbosa et al. 2012). Les travaux expérimentaux, plutôt satisfaisants, ont également 

confirmé la nécessité d'augmenter la plage spectrale (vers l'infrarouge) de nos analyses si l'on 

veut pouvoir caractériser les agrégats produits par les suspensions non diluées (diamètres 

supérieurs au micromètre).  

 
Figure F.11. Exemple de courbe de calibration numérique et comparaisons des analyses 
granulométriques MEB/LES des agrégats de tungstène.  

L'étude expérimentale menée sur les agrégats de tungstène avait pour but d'apporter des 

éléments d'appréciation sur l'applicabilité de la technique LES à la caractérisation d'agrégats 

(poussières) de tungstène au voisinage des composants faces au plasma (parois des tokamaks) 

et/ou lors du nettoyage de ces surfaces par les techniques d'ablation laser. Les aérosols de 

tungstènes étaient formés par évaporation de suspensions de nano billes de tungstène. La forte 

luminance et les ondes de choc générées par les techniques d'ablation ont été simulées par la 

génération de plumes (à l'aide d'un laser Nd-YAG de forte fluence) juste au-dessus d'une 

paroi métallique. Ces investigations ont établi que la technique LES fonctionne très bien en 

proche paroi (malgré le blocage et la diffraction de plus de 80% de l'énergie du faisceau 

sonde) et que, pour les paramètres testés, les effets induits par la plume étaient négligeables (a 

l'exception de la raie d'émission du laser de puissance, dont la contribution au spectre LES 

doit être soustraite avant inversion). La Figure F.11 illustre deux résultats types des analyses 

morphologiques (analyses d'images MEB et d'agrégats synthétiques) et granulométrique (à 

plus de 10mm de la paroi) (Onofri et al. 2012b). 

Dans le cadre d'une collaboration avec l'équipe du prof. Boufendi, nous avons réalisé 

différentes études sur les mécanismes de croissance des poudres dans un plasma poussiéreux 

(décharge Argon-Silane basse pression, (Boufendi and Bouchoule 1994)). La technique LES 

possède l'incomparable avantage, face aux analyses MEB/MET classiques, de permettre un 

suivi temporel de la croissance des poudres, et de restituer des concentrations en nombre et 

volume. Elle nous a également permis de mener des études paramétriques (variation de la 

puissance électrique, mélange et pression des gaz,...) qui seraient quasiment impossibles à 

réaliser avec les analyses par prélèvement. La Figure F.12 montre une image TEM des 
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poudres obtenues après 10 s, ainsi qu'un profil de croissance type. On constate que l'accord est 

très bon (le décrochage vers 10 s est attribué aux analyses MEB). Ces travaux ont également 

montré qu'à l'avenir, il serait souhaitable de mener études ciblées sur la détermination de la 

l'indice de réfraction des poudres (Onofri et al. 2011b). 

 
Figure F.12. A gauche : image TEM des poudres déposées (et agrégées) sur la grille d'analyse ; A 
droite : comparaison des analyses TEM par prélèvement des mesures LES in-situ dans une décharge 
Argon-Silane basse pression.  

 

Chapitre  7: Conclusion et Perspectives  

Ce travail de thèse évalue et apporte différentes solutions pour caractériser optiquement la 

granulométrie et la concentration de suspensions, aérosols et plasmas poussièreux. Différents 

outils ont ainsi été développés pour décrire la morphologie d'agrégats à partir d'images de 

microscopie électronique. Ces outils ont également été utilisés pour produire des agrégats 

synthétiques, eux-mêmes utilisés pour comparer les prédictions des modèles de diffusion.  

Nous avons également developpé différentes solutions et algorithmes pour analyser de 

manière reproductible les diagrammes de diffusion (facteur de structure optique) ainsi que 

pour inverser les spectres d'extinction. Les tests expérimentaux réalisés avec la technique LES 

(aérosols de silice et tungstène, aggrégats de silicium) ont confirmé le bien fondé de notre 

démarche et les potentialités de la technique LES. Outre les applications, les perspectives à ce 

travail portent sur l'amélioration des techniques de régularisation et d'inversion, des études 

expérimentales sur la détermination de l'indice de réfraction complexe des nano agrégats. 
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Rozdział 1: Wst�p 

Nanocz�stki i agregaty nanocz�stek s� obecnie przedmiotem intensywnego zainteresowania 

o	rodków naukowych na całym 	wiecie. Jest to 	ci	le zwi�zane z ich unikalnymi i niezwykle 

interesuj�cymi wła	ciwo	ciami znajduj�cymi coraz szersze zastosowanie w wielu dziedzinach 

Aycia. Istniej� dwa zasadnicze czynniki, które sprawiaj�, Ae nanocz�stki wykazuj� odmienne 

wła	ciwo	ci od materiałów makroskopowych: efekty powierzchniowe oraz efekty kwantowe 

(Buzea et al. 2007). Na rysunku P.1 przedstawiono przykładowe agregaty nanocz�stek. 

 
Rysunek P.1. WystBpowanie nanocz�stek: (a) reaktor termoj�drowy (tokamak), (b) piec plazmowy do 
produkcji nanoproszków, (c) aerozol nanocz�stek, (d) płomie� i sadza, (e) roztwór koloidalny 
i przebiegaj�cy w nim proces agregacji. 

Efekty powierzchniowe s� 	ci	le zwi�zane z bardzo duAym stosunkiem powierzchni czynnej 

nanocz�stek do ich objBto	ci. Sprawia to, Ae substancje chemiczne w postaci nanocz�stek s� 

znacznie bardziej reaktywne niA te same zwi�zki w postaci makroskopowej. Efekty kwantowe 

s� natomiast spowodowane niewielkimi rozmiarami cz�stek i objawiaj� siB jako szereg 
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zjawisk, które zwykle charakteryzuj� atomy lub molekuły (Roduner 2006). Przykładowo, 

podobnie jak pojedyncze atomy, kropki kwantowe przyjmuj� okre	lone warto	ci spektrum 

energetycznego z uwagi na pułapkowanie elektronów, a zmiany ich całkowitego ładunku s� 

moAliwe jedynie o skwantowane warto	ci (Buzea et al. 2007). 

Kluczowym zadaniem niezbBdnym do zrozumienia i monitorowania, a co za tym idzie 

kontroli mechanizmów agregacji nanocz�stek w róAnych systemach jest charakterystyka 

rozkładu wielko	ci cz�stek (particle size distribution, PSD) oraz ich koncentracji ( ). 

Do niedawna najczB	ciej stosowanymi metodami w charakterystyce wła	ciwo	ci nano- 

i mikrocz�stek były próbkowanie i analiza off-line (np. mikroskopia elektronowa, dyfrakcja 

elektromagnetyczna, itp.). Niemniej jednak dla bardzo reaktywnych i delikatnych obiektów 

jakimi s� omawiane agregaty, niezawodno	C i powtarzalno	C tego typu pomiarów jest wysoce 

dyskusyjna. Dlatego teA optyczne układy pomiarowe jako nieinwazyjne i wystarczaj�co 

szybkie zapewniaj� wiBksz� dokładno	C pomiarów. 

Opracowano szereg róAnych metod optycznych umoAliwiaj�cych analizB układów cz�stek 

(Xu 2002). Ich wykorzystanie do opisu agregatów nie jest jednak zadaniem łatwym. Analiza 

optyczna wymaga bowiem zastosowania odpowiedniego modelu morfologicznego cz�stek 

wystBpuj�cych w analizowanym układzie oraz wła	ciwego modelu rozproszenia 	wiatła. 

Rozdział 2 niniejszej pracy wprowadza dwa modele opisuj�ce morfologiB agregatów 

nanocz�stek: model fraktalny i tzw. model „Buckyballs”. W rozdziale 3 przedstawiono 

algorytmy zrealizowane w celu udoskonalenia opartych na mikroskopii elektronowej 

sposobów analizy agregatów. Opracowane metody stanowi� punkt odniesienia dla wyników 

uzyskiwanych technikami optycznymi. Rozdział 4 omawia róAne teorie i aproksymacje 

wykorzystywane do modelowania wła	ciwo	ci rozproszenia i absorpcji 	wiatła przez agregaty 

cz�stek. Rozdział 5 wprowadza dwa algorytmy opracowane w celu analizy diagramów 

rozproszenia i estymacji parametrów fraktalnych. Rozdział 6 pracy omawia numeryczne 

i eksperymentalne wyniki uzyskane za pomoc� Spektrometrii Ekstynkcji Dwiatła (LES) dla 

róAnych o	rodków do	wiadczalnych. Rozdział 7 zawiera wnioski i rekomendacje dla 

przyszłych prac badawczych wynikaj�ce z niniejszej pracy. 

 

Rozdział 2: Modele agregatów cz	stek 

Rozdział 2 niniejszej pracy przedstawia fizyczne podstawy procesu agregacji nanocz�stek. 

W szczególno	ci traktuje on o agregacji limitowanej dyfuzj� (DLA), agregacji klastrów 

limitowanej dyfuzj� (DLCA) oraz agregacji klastrów limitowanej reakcj� (RLCA). W celu 

opisu morfologii agregatów nanocz�stek zrealizowano optymalizowane oprogramowanie 

DLA oraz opracowano model do opisu tzw. agregatów „Buckyballs”. 

 

nC
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Agregacja Limitowana Dyfuzj� (DLA) 

Klasyczny model DLA zakłada mniej lub bardziej dokładn�, symulacjB zjawisk zachodz�cych 

w układzie cz�stek (ruchy Browna, kolizje, nierozerwalne ł�czenie siB pojedynczych cz�stek, 

itp.), lecz nie kontroluje parametrów agregatów na etapie ich tworzenia. Optymalizowane 

oprogramowanie wykonane w ramach niniejszej pracy umoAliwia natomiast zachowanie 

wszystkich parametrów fraktalnych (z okre	lon� dokładno	ci�) na kaAdym etapie agregacji. 

Pozwala to na unikniBcie generacji multi-fraktali (tzn. agregatów o róAnych parametrach 

w róAnej skali b�d� róAnym obszarze agregatu) oraz zapewnia powtarzalno	C uzyskiwanych 

wyników. Aby opisaC matematycznie morfologiB agregatów cz�stek wykorzystano tzw. 

równanie fraktalne (Witten and Sander 1981): 

  (P.1) 

w którym  jest liczb� pojedynczych cz�stek w agregacie (zwanych równieA monomerami), 

 	rednim promieniem cz�stek,  wymiarem fraktalnym,  współczynnikiem 

skaluj�cym, a  promieniem bezwładno	ci agregatu. Promie� bezwładno	ci jest wymiarem  

charakterystycznym agregatu okre	laj�cym w ogólny sposób rozkład masy w jego strukturze. 

Definiowany jest on jako 	redniokwadratowa odległo	C cz�stek od 	rodka masy układu: 

  (P.2) 

gdzie  i  s� wektorami okre	laj�cymi odpowiednio pozycjB 	rodka masy układu i n-tego 

monomeru w trójwymiarowej przestrzeni euklidesowej. Wobec licznych rozbieAno	ci 

wystBpuj�cych w literaturze dotycz�cych warto	ci współczynnika skaluj�cego fk , przyjBto 

jego stał� warto	C 1.593fk =  wyznaczon� z wykorzystaniem układu heksagonalnego 

monodyspersyjnych cz�stek (wymiar fraktalny agregatu 3.00fD = ). Rysunek P.2 przedstawia 

przykładowe agregaty wygenerowane za pomoc� wykonanego oprogramowania. 

 
Rysunek P.2. Wygenerowane numerycznie agregaty fraktalne o nastBpuj�cych parametrach: 
(a) 500pn =  monomerów (rozkład logarytmiczno-normalny, 0.5pσ = ), 2.00fD = , 17.71,gR =  
(b) 10000pn =  monomerów monodyspersyjnych, 2.00fD = , 79.22gR = . 
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Na rysunku P.3 porównano róAne wymiary charakterystyczne agregatów wygenerowanych za 

pomoc� oprogramowania DLA: promie� bezwładno	ci gR , promie� objBto	ci vR , promie� 

najmniejszej sfery ograniczaj�cej agregat bR , oraz maksymaln� długo	ci agregatu 

w przestrzeni 
3DL . 
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Rysunek P.3. Porównanie róAnych wymiarów charakterystycznych agregatów zawieraj�cych  

500pn =  monomerów wygenerowanych z wykorzystaniem oprogramowania DLA: promie� 
bezwładno	ci gR , promie� objBto	ci vR , promie� najmniejszej sfery ograniczaj�cej agregat bR  oraz 
maksymalnej długo	ci agregatu w przestrzeni 

3DL . 

Model „Buckyball” 

GBsto upakowane agregaty o regularnej strukturze (patrz rysunek P.1 (c)) wytworzono na 

stanowisku pomiarowym podczas osuszania aerozolu zawieraj�cego roztwór koloidalny 

dwutlenku krzemu (krzemionki) (Onofri et al. 2012a). Do opisu ich morfologii opracowano 

model oparty na dwudziesto	cianie foremnym (Toure 2010). UmoAliwia on budowanie 

szeregu agregatów o skwantowanej liczbie cz�stek. Pierwszy z szeregu jest agregat 

zawieraj�cy 12pn =  monomerów. Powstaje on przez umieszczenie pojedynczych monomerów 

w kaAdym wierzchołku dwudziesto	cianu. W celu budowy wiBkszego agregatu, kaAda 

krawBd� dwudziesto	cianu jest dzielona na 1in +  odcinków równej długo	ci, gdzie 0in ≥  jest 

liczb� naturaln� okre	laj�c� now� liczbB wierzchołków wprowadzanych na kaAdej krawBdzi. 

Nowe wierzchołki s� ł�czone za sob� za pomoc� linii równoległych do istniej�cych krawBdzi. 

W ten sposób na kaAdej 	cianie powstaje 2
in -nowych trójk�tów równobocznych, a całkowita 

liczba wierzchołków jest równa pn . MoAna zauwaAyC, Ae liczba pn  zmienia siB w nastBpuj�cy 

sposób:  

 , 0 . , 0 . ,

3
;     ,

2i i i

i
p n Vert p n Vert Face c n

n
n n n n n n= >

� �= = + +� �
� �

 (P.3) 

gdzie .Vertn  oznacza liczbB wierzchołków, Facen  liczbB 	cian, a , ic nn  jest liczb� nowych 

wierzchołków powstałych na 	cianie dwudziesto	cianu foremnego. W celu uzyskania duAych 

agregatów o kształcie sferycznym wierzchołki trójk�tów równobocznych znajduj�ce siB 

wewn�trz 	cian dwudziesto	cianu s� rzutowane na sferB opisan� na dwudziesto	cianie. 

Ostatnim elementem algorytmu jest optymalizacja promienia monomerów, który jest 
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zwiBkszany iteracyjnie od zera do momentu aA nast�pi styk monomeru, z którym	 z 

s�siaduj�cych.  

Podczas prac eksperymentalnych zauwaAono, Ae wiBkszo	C agregatów jest wypełniona 

monomerami, dlatego teA opracowano dwie metody wypełniania pustych struktur. Pierwsza 

z nich polega na wykorzystaniu agregatu fraktalnego o najwiBkszym moAliwym do 

wygenerowania wymiarze fraktalnym w opracowanym oprogramowaniu DLA ( 2.88fD = ). 

Druga wykorzystuje agregat o układzie heksagonalnym monomerów ( 3.00fD = ). Rysunek 

P.4 przedstawia przykładowy agregat zawieraj�cy 92pn =  monomery oraz syntetyczne 

obrazy TEM wykonane za pomoc� opracowanego oprogramowania. 

 
Rysunek P.4. Agregat „Buckyball” o 92pn =  monomerów: (a) rozszerzony, (b) wła	ciwy agregat. 
Sztuczne obrazy TEM wykonane z wykorzystaniem zrealizowanego oprogramowania: (c) pusty 
agregat, (d) agregat wypełniony heksagonaln� struktur� monomerów ( 162 113pn = + ) oraz (e) model 
wypełniony agregatem fraktalnym ( 162 72pn = + ). 

 

Rozdział 3: Metody analizy agregatów fraktalnych oparte na zdj�ciach 
TEM 

W rozdziale 3 niniejszej pracy omówiono dwie metody wykrywania zaleAno	ci pomiBdzy 

wielko	ci� oraz wymiarem fraktalnym niewielkich agregatów cz�stek w oparciu 

o dwuwymiarowe zdjBcia z Transmisyjnej Mikroskopii Elektronowej (TEM) (Wo�niak et al. 

2012b). Zostały one opracowane jako metoda referencyjna dla pomiarów wykorzystuj�cych 

rozproszenie 	wiatła. Pierwsza z metod (powszechnie stosowana w literaturze) nazwana 

w pracy metod� Najmniejszego Kwadratu Ograniczaj�cego (MBR) oparta jest na całkowitej 

analizie wszystkich agregatów w róAnej skali, podczas gdy druga z nich (Zmodyfikowany 

Algorytm Pudełkowy, MBC) polega na analizie samopodobie�stwa kaAdego z agregatów. 

Obie metody zostały przetestowane z wykorzystaniem próbek eksperymentalnych agregatów 

sadzy (Yon et al. 2011) jak równieA obrazów TEM wygenerowanych numerycznie z pomoc� 

wykonanego oprogramowania. 

Rysunek P.5 (a) przedstawia wizualizacjB 3D wygenerowanego numerycznie agregatu 

fraktalnego oraz powstawanie syntetycznego obrazu TEM. Rysunek P.5 (b) przedstawia 

wyniki pomiarów dla 543 agregatów z badanej próbki, w szczególno	ci: (i) rozkład wielko	ci 

znormalizowanego promienia bezwładno	ci, (ii) typowe obrazy agregatów po binaryzacji 
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1.66 0.04fD � �  dla  oszacowanej wcze	niej jako 	rednia z wszystkich 

pomiarów. 

 
Rysunek P.6. Algorytm MBC i pasmowy MBR  zastosowane do próbek eksperymentalnych: 
porównanie zmian w wymiarze fraktalnym w funkcji znormalizowanego promienia bezwładno	ci. 

Na podstawie przedstawionych pomiarów i symulacji zauwaAono, Ae algorytm MBC 

zapewnia mniej zaszumion� estymacjB zmian wymiaru fraktalnego w funkcji wielko	ci 

agregatów, daj�c równocze	nie kryterium do odrzucenia agregatów nie spełniaj�cych 

wymogów samopodobie�stwa. Stosuj�c tB metodB uzyskano 	redni wymiar fraktalny 

w próbce sadzy znacznie mniejszy ( 1.66 0.02fD = ± ) niA w klasycznej analizie 

( 1.88 0.02).fD = ±  

 

Rozdział 4: Teorie i modele rozproszenia Awiatła 

Rozdział 4 stanowi przegl�d teorii i metod wykorzystywanych do wyznaczania rozproszenia 

	wiatła przez róAnego rodzaju cz�stki. W szczególno	ci skupiono siB na algorytmach 

pozwalaj�cych wyznaczenie charakterystyk rozproszenia 	wiatła przez agregaty nanocz�stek. 

Przedstawiono zatem teoriB Lorenza-Mie oraz oparte na teorii Rayleigha aproksymacje, 

tj. RGD i RDG-FA. W ostatniej czB	ci rozdziału 4 omówiono teoriB T-Matrix oraz pokazano 

przykładowe wyniki uzyskane z jej wykorzystaniem. 

Teoria Lorenza-Mie (LMT) 

Teoria LMT jest jedn� z najpopularniejszych teorii rozproszenia 	wiatła. CzBsto stosowana 

jest jako rozwi�zanie referencyjne podczas tworzenia nowych teorii i aproksymacji. W celu 

wyznaczenia rozproszenia 	wiatła przez sferyczn�, izotropow�, homogeniczn� cz�stkB, LMT 

wykorzystuje metodB separacji zmiennych w sferycznym układzie współrzBdnych. Teoria ta 

moAe byC uAywana w celu opisu rozproszenia 	wiatła przez cz�stki wykonane z róAnych 

materiałów, o róAnej wielko	ci i dla bardzo szerokiego zakresu długo	ci padaj�cej fali 

	wietlnej. NajwiBkszym ograniczeniem jest kształt cz�stek, który moAe byC tylko sferyczny. 
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Teoria Rayleigha 

Zakłada, Ae homogeniczna i izotropowa cz�stka sferyczna, której promie� jest duAo mniejszy 

od długo	ci padaj�cej fali 	wietlnej, moAe byC traktowana jako oscyluj�cy dipol generuj�cy 

fale elektromagnetyczne w okre	lonym kierunku. Warunki stosowalno	ci teorii Rayleigha 

wyraAaj� nastBpuj�ce zaleAno	ci (Bohren and Huffman 1998; Xu 2002): 1px �  oraz 

1p pm x� � , gdzie 2 /p px rπ λ=  oraz pm�  wyraAaj� odpowiednio parametr Mie oraz zespolony 

współczynnik załamania 	wiatła danej cz�stki. 

Teoria Rayleigha-Gansa-Debyea (RGD) 

Teoria RGD jest rozwiniBciem teorii Rayleigha poszerzaj�c� moAliwo	ci jej stosowania. 

Powstała w celu opisu układów, w których cz�stki s� na tyle duAe, Ae nie mog� byC 

traktowane jako pojedyncze dipole. JeAeli jednak cz�steczka spełnia warunki wyraAone przez 

nastBpuj�ce równania: (Bohren and Huffman 1998): 1 1pm −� �  1 1p pkd m −� �  (w których pd

okre	la 	rednicB cz�stki a 2 /k π λ=  jest tzw. liczba falow�), to moAe byC analizowana jako 

zbiór pojedynczych dipoli i po uwzglBdnieniu elementu okre	laj�cego przesuniBcie fazowe, 

rozproszenie 	wiatła da siB opisaC za pomoc� relatywnie prostych zaleAno	ci. NajwiBksz� 

zalet� teorii RGD jest moAliwo	C wyznaczania diagramów rozproszenia oraz profili 

ekstynkcji w bardzo krótkim czasie. Dla małych cz�stek w porównaniu do długo	ci padaj�cej 

fali 	wietlnej ekstynkcja wynika głównie z absorpcji ( 3
,p abs pC r∝  oraz 6

,p sca pC r∝ ). 

Teoria Rayleigha-Debya-Gansa dla agregatów fraktalnych (RDG-FA) 

Teoria RDG-FA stanowi rozszerzenie teorii RGD umoAliwiaj�ce analizB agregatów 

nanocz�stek. Idea leA�ca u podstaw teorii RDG-FA zakłada, Ae do analizy agregatów nie jest 

konieczna znajomo	C połoAenia wszystkich monomerów. Parametry agregatu s� opisane 

w sposób „globalny” za pomoc� parametrów fraktalnych takich jak fD , fk , ,gR  pn  oraz pr .  

Zgodnie z aproksymacj� RDG-FA natBAenie 	wiatła rozproszonego w funkcji k�ta 

rozproszenia θ , moAe zostaC wyznaczone dla prostopadłej i równoległej polaryzacji 	wiatła 

jako (Dobbins and Megaridis 1991): 

 
( ) ( ) ( )
( ) ( )

2
, ,

2
, ,

, ,           (a)

cos                           (b)

a p p g f

a a

I n I f q R D

I I

θ θ

θ θ θ
⊥ ⊥

⊥

=

=
�

 (P.4) 

gdzie ( ),pI θ⊥  wyraAa rozproszenie 	wiatła dla pojedynczej cz�stki sferycznej według teorii 

Rayleigha. Funkcja ( ), ,g ff q R D  w zaleAno	ci od analizowanego obszaru (Dobbins and 

Megaridis 1991), (tj. (a) w obszarze Guiniera (dla małych k�tów rozproszenia) oraz 

(b) w obszarze fraktalnym (dla duAych k�tów rozproszenia)) dana jest równaniem: 
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2 2
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gdzie q  jest amplitud� wektora rozproszenia opisan� zaleAno	ci� ( )sin / 2q k θ= , w której k  

i θ  oznaczaj�c odpowiednio liczbB falow� i k�t rozproszenia. Całkowita absorpcja, 

rozproszenie i ekstynkcja 	wiatła dla agregatu zawieraj�cego pn  cz�stek s� opisane 

nastBpuj�c� zaleAno	ci�: 

 ( )
, ,

2
, ,

, , ,

                               (a)

, ,           (b)

                       (c)

a abs p p abs

a sca p p sca g f

a ext a abs a sca

C n C

C n C G k R D

C C C

=

=

= +

 (P.6) 

gdzie ,p absC  oraz ,p scaC  s� absorpcj� i rozproszeniem pojedynczej cz�stki, a funkcja
 

( ), ,g fG k R D  jest dla agregatów fraktalnych wyraAona jako (Dobbins and Megaridis 1991): 

 ( )
/2

2 24
, , 1 .

3

fD

g f g
f

G k R D k R
D

−
� �

= +� �� �
� �

 (P.7) 

W niniejszej pracy przeprowadzono symulacje okre	laj�ce stosowalno	C teorii RDG-FA dla 

róAnych przypadków przyjmuj�c wyniki uzyskane w symulacjach T-Matrix za �ródło 

odniesienia. Jako przykład uzyskanych wyników, rysunek P.7 przedstawia bł�d aproksymacji 

RDG-FA absorpcji 	wiatła wzglBdem metody T-Matrix przez agregaty fraktalne 1.80fD =  

dla róAnej warto	ci parametru Mie ( px ) i róAnej liczby cz�stek w agregacie: (a) 16pn = , 

(b) 64pn =  and (c) 256pn = monomerów. Parametr Mie i współczynnik załamania 	wiatła 

zmieniaj� siB według nastBpuj�cych zaleAno	ci 0.01 1.00px = − , 1 0.1 2.0pm − = −�  (gdzie 

p p pm m ik= +�  oraz 1p pm k= +� ). 

 
Rysunek P.7. Bł�d aproksymacji RDG-FA absorpcji 	wiatła wzglBdem metody T-Matrix przez 
agregaty fraktalne 1.80fD =  dla róAnej warto	ci parametru Mie ( px ) i róAnej liczby cz�stek 
w agregacie. 

Teoria (metoda) T-Matrix 

Rozwi�zanie T-Matrix wprowadzone przez Watermana (Waterman 1965) do wyznaczenia 

wła	ciwo	ci 	wiatła rozproszonego przez róAne cz�stki jest równieA zwane metod� zerowego 

pola (null-field method). (Mishchenko et al. 1996; Bohren and Huffman 1998, Auger et al. 

2007). Teoria T-Matrix polega na bezpo	rednim rozwi�zaniu równa� falowych Maxwella, 
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dziBki czemu wyniki otrzymane przy jej pomocy s� uznawane za dokładne. T-Matrix 

umoAliwia badanie rozproszenia 	wiatła zarówno na cz�steczkach o bardzo zróAnicowanym 

kształcie. NajwiBksz� zalet� rozwi�zania jest niezaleAno	C elementów macierzy T od 

padaj�cej i rozproszonej fali 	wietlnej, a jedynie ich powi�zanie z parametrami 

analizowanych cz�stek: kształtem, parametrem Mie, współczynnikiem załamania 	wiatła oraz 

orientacj� cz�stek w przestrzeni. Pozwala to na wyznaczenie macierzy przej	cia T jedynie raz 

dla danego zagadnienia, a nastBpnie wykorzystanie dla dowolnych k�tów padania 

i rozproszenia 	wiatła.  

W literaturze dostBpne s� róAne kody wykonane w oparciu o algorytm T-Matrix. W niniejszej 

pracy wykorzystano oprogramowanie napisane w jBzyku Fortran przez MaCkowskiego 

i Mischenko (Mackowski and Mishchenko 1996) dostBpne na stronie internetowej Goddard 

Institute for Space Studies NASA (Mishchenko et al. 2012). W celu przyspieszenia symulacji 

kod ten został zrównoleglony z wykorzystaniem protokołu MPI i był wykorzystywany na 

klastrze obliczeniowym dostBpnym w laboratorium IUSTI. 

Wykorzystuj�c oprogramowanie T-Matrix moAna wyznaczyC diagramy rozproszenia, 

całkowite rozproszenie, absorpcjB i ekstynkcjB 	wiatła, jak równieA parametry 	wiatła 

rozproszonego przez pojedyncze cz�stki wchodz�ce w skład agregatów. Jako przykład, 

rysunek P.8 przedstawia ekstynkcjB 	wiatła dla pojedynczych monomerów w płaszczy�nie 

przekroju agregatu Buckyball zawieraj�cego 252pn =  monomerów na powierzchni, 

wypełnionego układem heksagonalnym (całkowita liczba , 509p HCn = ) o promieniu 

40.5 pr nm=  dla długo	ci fali padaj�cej (a) 300 nmλ = , (b) 400 nmλ = , (c) 500 nmλ = . 

 
Rysunek P.8. Znormalizowana ekstynkcja pojedynczych monomerów w płaszczy�nie przekroju 
agregatu Buckyball zawieraj�cego 252pn =  monomerów na powierzchni wypełnionego układem 
heksagonalnym  monomerów (całkowita liczba monomerów , 509p HCn = ) o promieniu 40.5 pr nm=  
dla długo	ci fali padaj�cej (a) 300 nmλ = , (b) 400 nmλ = , (c) 500 nmλ = ; 	rednica zewnBtrzna 

783 extd nm= . 

 

Rozdział 5: Analiza diagramów rozproszenia 

Rozdział 5 omawia wykorzystanie diagramów rozproszenia 	wiatła w funkcji amplitudy 

wektora rozproszenia 	wiatła q (zwanych w literaturze Optycznymi Współczynnikami 

Struktury, OSF) do wyznaczenia parametrów agregatów. W pracy wprowadzono dwa 
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algorytmy umoAliwiaj�ce wyznaczenie wymiaru fraktalnego fD  w oparciu o nachylenie 

charakterystyki w obszarze fraktalnym OSF (Mroczka et al. 2012). Promie� bezwładno	ci 

agregatów gR  oszacowano za pomoc� algorytmu wykorzystuj�cego tzw. analizB Guiniera.  

Pierwszy z opracowanych algorytmów, nazwany SSE (Second Slope Estimation) z uwagi na 

analizB drugiej czB	ci obszaru fraktalnego (dla wiBkszych k�tów rozproszenia) oparty jest 

na załoAeniu podanym przez Sorensena (Sorensen 2001) mówi�cym, Ae spadek natBAenia 

w obszarze fraktalnym OSF równy jest liczbowo wymiarowi fraktalnemu agregatu gdy 

spełnione jest załoAenie 5gqR > . Algorytm ten moAe byC zatem stosowany jedynie dla 

stosunkowo duAych agregatów o duAych warto	ciach parametru Mie. Jego działanie polega na 

zastosowaniu regresji liniowej dla punktów OSF spełniaj�cych podane kryterium. 

Drugi z opracowanych algorytmów, nazwany FSE (First Slope Estimation)  z uwagi na 

analizB pierwszej czB	ci obszaru fraktalnego OSF umoAliwia pomiary agregatów niezaleAnie 

od warto	ci gR  oraz promienia pojedynczych monomerów pr . Wymaga on jednak 

zastosowania bardziej złoAonej metody poszukiwania prostej najlepiej dopasowanej do OSF 

w obszarze fraktalnym oraz krzywych kalibracyjnych ł�cz�cych oszacowane nachylenie 

charakterystyki i rzeczywistym wymiarem fraktalnym. 

Na rysunku P.9 (a) przedstawiono przykładowe wyniki wyznaczania promienia bezwładno	ci 

agregatów za pomoc� analizy Guiniera. Rysunek P.9 (b) przedstawia wykorzystanie algorytm 

FSE do automatycznego wyznaczenia wymiaru fraktalnego z zaszumionych OSF. Parametry 

agregatów: cz�steczki sadzy, 1.40 2.80fD = − , 500pn = . 
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Rysunek P.9. (a) Wyznaczanie promienia bezwładno	ci agregatów za pomoc� analizy Guiniera, 
(b) algorytm FSE z krzywymi kalibracyjnymi: automatycznie wyznaczony wymiar fraktalny z 
zaszumionych OSF. Parametry: agregaty sadzy o wymiarze fraktalnym 1.40 do 2.80 oraz stałej liczbie 
500 monomerów (Mroczka et al. 2012). 

W drugiej czB	ci niniejszego rozdziału skupiono siB na problemie zaniedbywanym 

w literaturze: wpływie pojedynczych monomerów, które nie uległy agregacji, a znajduj� siB 

w układzie pomiarowym na dokładno	C pomiarów z wykorzystaniem OSF. Przykładowo, 

stosunek pojedynczych monomerów do monomerów w agregacie sadzy o 50pn =  i 1.80fD =  

równy 1:1 powoduje niedoszacowanie warto	ci wymiaru fraktalnego o ok. 25%. 
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Rozdział 6: Spektrometria Ekstynkcji Bwiatła (LES) 

Z powodów historycznych metoda pomiarowa opisana w tym rozdziale bywa nazywana 

turbidymetri�. Niemniej jednak jest ona tutaj nazwana Spektrometri� Ekstynkcji Dwiatła 

(Light Extinction Spectrometry, LES) z uwagi na fundamentaln� analogiB do powszechnie 

stosowanej spektrometrii absorpcji 	wiatła (Light Absorption Spectrometry). Spektometria 

absorpcji 	wiatła wykorzystuje absorpcjB molekularn� cz�stek, podczas gdy LES ekstynkcjB 

(absorpcjB i rozproszenie) 	wiatła. 

Zasada działania LES polega na analizie całkowitej ekstynkcji (osłabienia) 	wiatła po 

przej	ciu przez badany układ cz�stek o	wietlony przez skolimowan� i polichromatyczn� 

wi�zkB promieniowania elektromagnetycznego (Onofri et al. 2010b). Dlatego teA technika 

ta wymaga, aby wi�zka o natBAeniu  i długo	ciach fali  przebiegała przez chmurB 

cz�steczek (monomerów, agregatów, itp.) które chcemy analizowaC. NatBAenie 

promieniowania po przej	ciu przez o	rodek  jest zbierane przez układ optyczny, 

a nastBpnie analizowane przez spektrometr. JeAeli zjawisko wielokrotnego odbicia jest 

pomijalnie małe (np. (Xu 2007)), transmitancja wi�zki jest dana równaniem: 

 ( ) ( ) ( ) ( )0/ expi i iT I I Lλ λ λ τ= = −  (P.8) 

gdzie  jest długo	ci� drogi optycznej przez chmurB cz�stek oraz  okre	la 

turbidymetriB medium.  jest wielko	ci� całkow�, która wyraAa 	redni� ekstynkcjB 

cz�stek (Onofri et al. 2009) oraz  jest koncentracj� cz�stek. JeAeli  to efektywno	C 

ekstynkcji (zwana równieA współczynnikiem ekstynkcji) pojedynczej cz�steczki sferycznej 

opisanej przez jej promie�  i współczynnik załamania 	wiatła , to mamy: 

 ( ),max

,min

2

, , , ( ) .
4

p

p

d p
p ext p ext p p p pd

d
C Q d m f d dd

π
= � �  (P.9) 

Procedura inwersji numerycznej jest najwaAniejsz� czB	ci� techniki LES. Wymaga ona 

dyskretyzacji równania transmitancji o	rodka (Onofri et al. 2009) oraz minimalizacji róAnic 

pomiBdzy transmitancj� mierzon� eksperymentalnie i przewidzian� numerycznie. Problem ten 

moAe zostaC wyraAony matematycznie przez równanie (P.9), zwane w literaturze równaniem 

całkowym Fredholma pierwszego rodzaju (Hansen 1994).  

JeAeli zmierzona transmitancja przedstawiona zostanie w postaci dyskretnej jako wektor , 

którego elementy  odpowiadaj� transmitancji wi�zki dla długo	ci fali 	wietlnej , 

a objBto	ciowy rozkład wielko	ci cz�stek wyrazimy jako ; to aby znale�C  musi zostaC 

rozwi�zane nastBpuj�ce liniowe równanie algebraiczne: T = SV , w którym S jest 

wyznaczon� numerycznie macierz� ekstynkcji. Rozwi�zanie omawianego problem 

odwrotnego sprowadza siB do minimalizacji nastBpuj�cej wielko	ci:  

 ( )
2

2

0
,

LSQV
Min

−>
−T TS S +�H V S T  (P.10) 

które moAe zostaC znalezione z wykorzystaniem róAnych narzBdzi numerycznych, 

w szczególno	ci 	rodowiska MATLAB. 
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Wyniki symulacyjne 

Przeprowadzone w pracy badania symulacyjne dotyczyły okre	lenia wpływu wymiaru 

fraktalnego, promienia bezwładno	ci oraz współczynnika załamania 	wiatła badanych 

agregatów na zmiany widma absorpcji, ekstynkcji i rozproszenia 	wiatła, jak równieA 

transmitancje o	rodka. Uzyskane wyniki pokazuj�, Ae LES nie jest bardzo wraAliwa na 

zmiany wymiaru fraktalnego, lecz jedynie na całkowit� wielko	C agregatów. 

LES moAe byC wykorzystywana przy koncentracji cz�stek w zakresie  oraz 

objBto	ci  (parametry oszacowane dla agregatów dwutlenku krzemu oraz 

długo	ci komory pomiarowej 1 m). 

Wyniki eksperymentalne 

Badania eksperymentalne technik� LES przedstawione w niniejszej pracy zostały wykonane 

dla agregatów Buckyballs dwutlenku krzemu oraz wolframu, jak równieA dla agregatów 

nanocz�stek w zanieczyszczonej plazmie.  

Pierwsz� grup� cz�stek analizowan� w niniejszej pracy były tzw. agregaty Buckyballs. S� one 

wytwarzane za pomoc� rozpylania i osuszania mikrokropelek zawieraj�cych roztwory 

koloidalne krzemionki o róAnym stBAeniu i róAnej wielko	ci pojedynczych monomerów, 

( 15.7 pr nm= , 33.6 pr nm=  oraz  40.5 pr nm= . Rysunek P.10 przedstawia porównanie analizy 

LES i TEM (tj. przeprowadzonej w oparciu o zdjBcia z mikroskopii transmisyjnej) (Barbosa 

et al. 2012). Jak moAna zauwaAyC wyniki LES w znacznym stopniu pokrywaj� siB 

z pomiarami TEM. 
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Rysunek P.10. Porównanie analizy TEM i LES aerozolu zawieraj�cego agregaty nanocz�stek 
dwutlenku krzemu: (a) objBto	ciowy rozkład wielko	ci oraz (b) liczbowy rozkład wielko	ci. 

Drug� grup� cz�stek analizowan� w niniejszej pracy były agregaty wolframu. Badania miały 

na celu sprawdzenie wpływu blisko	C przeszkód na pomiary LES, jak równieA na jej 

zdolno	ci do analizy wielko	ci cz�stek w plazmie, w szczególno	ci w reaktorze ITER. 

Badane agregaty został wygenerowane z wykorzystaniem wodno-alkoholowego roztworu 

sferycznych nanocz�stek wolframu. W układzie pomiarowym dodatkowo zainstalowano 

poprzeczn� płytkB metalow� maj�c� na celu sprawdzenie wpływu s�siedztwa przeszkody 

13 151 10 5 10× − ×
8 65 10 5 10− −× − ×
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(wall proximity) na  pomiary LES. Dodatkowo, w celu weryfikacji wpływu fali uderzeniowej 

oraz emisji szerokopasmowej generowanej przez metodB czyszczenia laserem uAyto 

impulsowego lasera (5 ns, 25 Hz) o wysokiej mocy (Nd:YAG, 110 mJ, 532 nmλ = ) do 

generowania plazmy (Onofri et al. 2011a; Onofri et al. 2012b). 

 
Rysunek P.11. Przykładowa krzywa kalibracyjna oraz porównanie rozkładów wielko	ci agregatów 
wyznaczonych z wykorzystaniem techniki SEM I LES. 

Na podstawie przeprowadzonych pomiarów stwierdzono, Ae technika LES działa bardzo 

efektywnie w s�siedztwie przeszkód (nawet w przypadku blokowania lub dyfrakcji ok. 80% 

energii wi�zki pomiarowej) oraz, Ae jest odporna na efekty zwi�zane z emisj� plazmy. 

Podczas pomiarów naleAy jedynie zwróciC uwagB na widmo lasera, które musi zostaC usuniBte 

z całkowitego widma analizowanego przez spektrometr przed wykonaniem inwersji. Rysunek 

P.11 przedstawia dwa typowe wyniki pomiarów: (a) numerycznie wygenerowane obrazy 

SEM agregatów odpowiadaj�cych tym na stanowisku pomiarowym, oraz (b) porównanie 

rozkładów wielko	ci agregatów uzyskanych za pomoc� analizy LES i SEM. 
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Rysunek P.12. LES: zmiana rozmiaru cz�stek oraz ich koncentracji podczas niskoci	nieniowego 
wyładowania argonowo-silanowego. 

Trzeci� grup� agregatów analizowan� w niniejszej pracy były cz�steczki ulegaj�ce agregacji 

w zanieczyszczonej plazmie. Rysunek P.12 (a) przedstawia zdjBcie TEM przykładowych 

agregatów powstaj�cych podczas niskoci	nieniowego wyładowania w plazmie argonowo-
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silanowej. Na rysunku przedstawiono równieA zmiany koncentracji oraz rozkładu wielko	ci 

agregatów w funkcji czasu. Analizuj�c uzyskane wyniki stwierdzono duA� zgodno	C 

pomiBdzy pomiarami TEM i LES.  Ponadto wykazano, Ae niniejsza technika pomiarowa jest 

bardzo czuła na niedokładno	C okre	lenia współczynnika załamania 	wiatła analizowanych 

agregatów (Onofri et al. 2011b). 

 

Rozdział 7: Podsumowanie i wnioski 

W niniejszej pracy przedstawiono róAne rozwi�zania maj�ce na celu analizB rozkładu 

wielko	ci oraz stBAenia agregatów nanocz�stek z wykorzystaniem technik rozproszenia 

	wiatła. Do opisu morfologii agregatów wykorzystano model fraktalny oraz tzw. model 

Buckyballs. Ponadto w celu pomiarów referencyjnych opracowano algorytmy i modele 

umoAliwiaj�ce dokładn� analizB agregatów w oparciu o zdjBcia TEM. 

Dodatkowo, opracowano algorytmy umoAliwiaj�ce analizB diagramów rozproszenia w funkcji 

amplitudy wektora rozproszenia q. Przeprowadzono równieA symulacje maj�ce na celu 

okre	lenie wpływu pojedynczych monomerów, które nie uległy agregacji, a znajduj� siB 

w układzie pomiarowym na dokładno	C uzyskiwanych wyników. 

Opracowana została technika pomiarowa LES. Polega ona na analizie całkowitej ekstynkcji  

	wiatła po przej	ciu przez badany układ cz�stek o	wietlony polichromatyczn� wi�zkB 

promieniowania elektromagnetycznego. Walidacja eksperymentalna została przeprowadzona 

dla róAnych aerozoli zawieraj�cych agregaty krzemionki i wolframu oraz dla cz�stek 

ulegaj�cych agregacji w zanieczyszczonej plazmie. 

Perspektywy dalszego rozwoju przeprowadzonych bada� zakładaj� udoskonalenie metod 

inwersji zastosowanych w technice LES, w szczególno	ci aplikacjB róAnych metod 

regularyzacji odwracanych numerycznie macierzy (Hansen 1994). Ponadto planuje siB 

wykorzystanie Dyskretnej Aproksymacji Dipolowej (Discrete Dipole Approximation, DDA) 

do wyznaczenia charakterystyk 	wiatła rozproszonego przez agregaty nanocz�stek. 
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This Ph.D. work provides and evaluates various solutions to characterize, with 

optical/electromagnetic methods nanoparticles and aggregates of nanoparticles found in 

suspensions, aerosols and dusty plasmas. Two main models are introduced to describe the 

morphology of particle aggregates with fractal-like (for particles in plasmas and combustion 

systems) and Buckyballs-like (aerosols, suspensions) shapes. In addition, the author proposes 

various solutions and methods (T-Matrix, Rayleigh type approximations) to calculate  the 

scattering diagrams (optical structure factors) of fractal aggregates as well as algorithms 

to inverse extinction spectra. As a reference case for the performed analysis, several tools to 

describe the morphology of fractal aggregates from electron microscopy images have been 

also developed. The experimental validation carried out with the Light Extinction 

Spectrometry (LES) technique (for nano silica beads, tungsten, dusty plasma and silicon 

aggregates) clearly proves the validity of the algorithms developed as well as the potential of 

the LES technique. 
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