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Résumé

Une nouvelle approche de la description des champs aléatoires sur le réseau entier v-
dimensionnel Z" est présentée. Les champs aléatoires sont décrits en terme de certaines
fonctions de sous-ensembles de ZY, a savoir les P-fonctions, les @Q-fonctions, les H-
fonctions, les Q-systémes, les H-systéemes et les systemes ponctuels. La corrélation
avec la description Gibbsienne classique est montrée. Une attention particuliere est
portée au cas quasilocal. Les champs aléatoires non-Gibbsiens sont aussi considérés.
Un procédé général pour construire des champs aléatoires non-Gibbsiens est donné. La
solution du probléme de Dobrushin concernant la description d’un champ aléatoire par
ses distributions conditionnelles ponctuelles est déduite de notre approche.

Ensuite, le probléeme de ’estimation paramétrique pour les champs aléatoires de Gibbs
est considéré. Le champ est supposé spécifié en terme d’un systéme ponctuel local in-
variant par translation. Un estimateur du systéme ponctuel est construit comme un
rapport de certaines fréquences conditionnelles empiriques. Ses consistances exponen-
tielle et L?P uniformes sont démontrées. Finalement, le probléme nonparamétrique de
I’estimation d’un systéme ponctuel quasilocal est considéré. Un estimateur du systéme
ponctuel est construit par la méthode de “sieves”. Ses consistances exponentielle et LP
sont prouvées dans des cadres différents. Les résultats sont valides indépendamment de
la non-unicité et de la perte de 'invariance par translation.

Mots clés : champs aléatoires, champs aléatoires de Gibbs, champs aléatoires non-Gibbsiens,
localité, quasilocalité, P-fonctions, Q-fonctions, H-fonctions, Q-systémes, H-systémes, systémes
ponctuels, estimation paramétrique, estimation nonparamétrique, méthode de “sieves”, consis-
tance.

Abstract

A new approach towards description of random fields on the v-dimensional integer
lattice Z" is presented. The random fields are described by means of some functions of
subsets of Z¥, namely P-functions, @Q-functions, H-functions, @-systems, H-systems
and one-point systems. Interconnection with classical Gibbs description is shown.
Special attention is paid to quasilocal case. Non-Gibbsian random fields are also
considered. A general scheme for constructing non-Gibbsian random fields is given.
The solution to Dobrushin’s problem concerning the description of random field by
means of its one-point conditional distributions is deduced from our approach.

Further the problems of parametric estimation for Gibbs random fields is considered.
The field is supposed to be specified through a translation invariant local one-point
system. An estimator of one-point system is constructed as a ratio of some empirical
conditional frequencies, and its uniform exponential and LP consistencies are proved.
Finally the nonparametric problem of estimation of quasilocal one-point systems is
considered. An estimator of one-point system is constructed by the method of sieves,
and its exponential and LP consistencies are proved in different setups. The results
hold regardless of non-uniqueness and translation invariance breaking.

Key words: random fields, Gibbs random fields, non-Gibbsian random fields, locality,
quasilocality, P-functions, Q-functions, H-functions, Q-systems, H-systems, one-point systems,
parametric estimation, nonparametric estimation, method of sieves, consistency.
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Introduction I

Cette these est constituée de deux parties. La Partie I traite de la description des

champs aléatoires et la Partie II de I'identification des champs aléatoires.

Description des champs aléatoires

La théorie des champs aléatoires de Gibbs sur le réseau entier v-dimensionnel Z",
v > 1, trouve ses origines dans la physique statistique. Elle est devenue une théorie
mathématique rigoureuse principalement grace aux travaux de R. L. Dobrushin
dans les années soixante. On pourra se référer a ses travaux précurseurs [8] — [10].
Une présentation exhaustive de la théorie des champs aléatoires de Gibbs peut
étre trouvée dans le livre de H.-O. Georgii [12] ou l'auteur, tout en restant dans

la plus grande généralité, donne un grand nombre d’exemples et de détails.

Dans la premieére partie de ce travail (Chapitres I-VI) on présente une nouvelle
approche de la description des champs aléatoires sur le réseau Z" a valeurs dans
un espace d’états fini 2. Une attention plus particuliere est portée au cas ou
I'espace d’états est 2" = {0,1}.

L’idée sous-jacente utilisée en physique statistique est de décrire les champs
aléatoires par des spécifications de Gibbs exprimées par des potentiels d’in-
teraction. L’idée principale de notre approche est d’exprimer les spécifications
directement en terme des Hamiltoniens sans utiliser la notion de potentiel
d’interaction. C’est une approche tres générale qui nous permet aussi de décrire

des champs aléatoires non-Gibbsiens.

On donne la représentation, en nos termes, de certains champs aléatoires non-
Gibbsiens. De plus, on présente un procédé général de construction de champs
aléatoires non-Gibbsiens. Notons que le role des champs aléatoires non-Gibbsiens
dans la physique statistique est de plus en plus important. Le sujet est actuelle-
ment devenu le centre d’intérét de plusieurs travaux (Voir par exemple R. B. Is-
rael [16], J. L. Lebowitz et C. Maes [18], R. H. Schonmann [23], A. van Enter,
R. Fernandez et A. Sokal [25]).
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Remarquons aussi que ’approche proposée permet de donner la solution d’un
vieux probleme posé par Dobrushin concernant la description d’un champ
aléatoire par ses distributions conditionnelles ponctuelles. On présente une con-
dition nécessaire et suffisante pour qu’un systeme de distributions conditionnelles

ponctuelles soit un sous-systeme d’une spécification.

Dans le Chapitre I, on rappelle des notions et des résultats bien connus de la
théorie des champs aléatoires, plus particulierement de la théorie des champs
aléatoires de Gibbs.

Dans le Chapitre II, on donne une alternative équivalente a la description de
Kolmogorov des champs aléatoires. Cette description alternative, qui est basée
sur une généralisation de la notion de fonction de corrélation a volume infini, fait
apparaitre la nature combinatoire de notre approche. La notion de P-fonction est

introduite dans le but d’effectuer cette généralisation.

Dans le Chapitre I1I, on montre que 1’on peut construire des P-fonctions comme
limites de fonctions de corrélation & volume fini (ou plutéot leurs généralisations).
Ces dernieres sont exprimées en terme de fonctions de partition généralisées
(Q-fonctions) ou, de maniere équivalente, en terme de facteurs de Boltzmann
généralisés (H-fonctions). Dans notre cas les H-fonctions sont des fonctions posi-
tives arbitraires. Ensuite on introduit les systemes de distribution de probabilités
consistants dans le sens de Dobrushin. Ces systemes correspondent aux distribu-
tions conditionnelles dans les volumes finis avec condition extérieure vide (vac-
uum). On décrit ces systemes en terme des Q-fonctions et/ou H-fonctions cor-
respondantes. Finalement, on donne en terme de développement “cluster” d’une
Q-fonction, une condition suffisante générale pour 'existence d’une P-fonction

limite.

Méme si les Q-fonctions nous permettent de construire des P-fonctions (et
donc des champs aléatoires), elles sont insuffisantes pour décrire des champs
aléatoires car elles déterminent uniquement les distributions conditionnelles dans
les volumes finis avec condition extérieure vide, mais pas toute la spécification.
Pour remédier a cela, on introduit au Chapitre IV des systéemes consistants
de @Q-fonctions (ou, de maniére équivalente, de H-fonctions) que 'on appelle
Q-systemes (respectivement H-systémes). On prouve que les spécifications “vac-
uum” (ou, autrement dit, les spécifications faiblement positives) peuvent étre

décrites par ces Q)-systémes et/ou H-systémes. On montre que les spécifications
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que nous décrivons peuvent étre non-Gibbsiennes et on donne un procédé général

pour construire des spécifications non-Gibbsiennes.

En regardant attentivement la définition d’un H-systéeme (Q-systéme) consis-
tant on remarque que l'information contenue dans un H-systeme (Q-systéme)
est redondante. Ainsi, on peut envisager la description des spécifications par
des systemes plus simples que les H-systémes et/ou @Q-systemes. Effectivement,
on montre dans le Chapitre V que l'on peut décrire des spécifications “vac-
uum” par des sous-systeémes ponctuels de H-systemes consistants que l'on ap-
pelle “systeémes ponctuels” (one-point systems). Notons ici qu’en introduisant ces
systemes ponctuels on donne la solution d’un vieux probleme posé par Dobrushin
concernant la description des champs aléatoires par ses distributions condition-
nelles ponctuelles. La condition figurant dans la définition de systeme ponctuel
n’est rien d’autre que la condition nécessaire et suffisante pour qu’un systeme de
distributions conditionnelles ponctuelles soit un sous-systeme d’une spécification.
Finalement on donne dans ce chapitre une condition nécessaire et suffisante pour

qu’un systeme ponctuel soit Gibbsien.

Dans le Chapitre VI on se concentre sur la description des spécifications quasi-
locales car elles sont tres importantes dans la théorie des champs aléatoires.
D’abord on considere les spécifications “vacuum” et on applique les résultats des
Chapitres IV et V en donnant une condition nécessaire et suffisante pour qu’un
H-systéme (respectivement ()-systeéme, systéme ponctuel) corresponde a une

¢

spécification quasi-locale. Ensuite on remplace la condition “vacuum” (condition
de positivité faible) par une condition légerement différente, et on montre que dans
ce cas on peut décrire les spécifications par des H-fonctions et/ou Q-fonctions qui

satisfont certaines conditions supplémentaires.

Toutes nos considérations sont menées dans le cas de 'espace d’états 2~ = {0,1}.
Dans tous les chapitres, on montre les généralisations possibles dans le cas
d’un espace d’états fini arbitraire. La plupart des résultats pourraient aussi étre
généralisés dans le cas d’'un espace d’états infini, mais cela nécessiterait plus de

notations et d’hypotheses topologiques.

Cette premiére partie de la these a été effectuée en collaboration avec B. S. Na-
hapetian de I'Institut de Mathématiques, Erévan, Arménie. Certains résultats de
cette partie ont été présentés dans [4], [6] et [7]. Notons finalement qu’une ap-

proche similaire pour des processus ponctuels a été considérée dans le travail de
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R. V. Ambartzumian et H. S. Sukiasian [1].

Identification des champs aléatoires

L’inférence statistique pour les champs aléatoires de Gibbs est tres intéressante
et tres importante car les résultats peuvent étre appliqués dans ce qui est com-
munément appelé le “traitement d’image”. L’inférence statistique paramétrique
pour les champs aléatoires de Gibbs est actuellement bien développée dans le
cadre Gibbsien classique. L’état actuel de cette théorie est bien présenté dans
le livre de X. Guyon [14]. On pourra aussi se rapporter a des références citées
dans ce livre sur les travaux de F. Comets, B. Gidas, M. Janzura, D.K. Pickard,
L. Younes, et al. Pour plus d’informations sur le traitement d’image et sur
I'inférence statistique paramétrique pour les champs aléatoires de Gibbs, un
lecteur intéressé peut aussi voir [3], [11], [15], [21], [22] and [26] — [112].

Contrairement a l'inférence statistique paramétrique pour les champs aléatoires
de Gibbs, I'inférence nonparamétrique parait étre moins étudiée. On peut men-
tionner ici une prépublication de C. Ji [15] ou 'auteur considere le cadre Gibb-
sien classique quand le champ aléatoire est décrit par un potentiel d’interaction
de paire a décroissance exponentielle. Pour ce modele il étudie un estimateur
“sieve” de ce qu’il appelle les “caractéristiques locales”. La démonstration qu’il

présente nécessite quelques rectifications.

Dans la deuxieme partie de ce travail (Chapitres VII-VIII), on considere le
probleme de l'inférence statistique pour les champs aléatoires. Plus précisément
on se concentre sur les champs aléatoires spécifiés en terme de systemes
ponctuels invariants par translation (stationnaires), ces derniers constituants une

paramétrisation des champs aléatoires appropriée a 'inférence statistique.

On considere d’abord le probleme d’estimation des systémes ponctuels lo-
caux. Evidemment, le probleme est paramétrique dans ce cas. On suppose

que h € ,%”A"/B est un systéme ponctuel inconnu qui induit un ensemble ¥ (h)

de champs aléatoires de Gibbs (%”AYB est ici une certaine classe de systemes
ponctuels locaux). On observe une réalisation d’un champ aléatoire P € ¥ (h)
dans une fenétre d’observation A,, (le cube symétrique de coté n centré a I'origine

de Z") et, se basant sur les données x,, = ©, C A, générées par ce champ

Ay
aléatoire P, on veut estimer h.
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~

On construit un estimateur h, comme un rapport de certaines fréquences
conditionnelles empiriques et on démontre sa consistance exponentielle uniforme,
c’est-a-dire
sup sup P<HiAzn—hH >5> <Ce_0‘52nu,
he#,Vy, PeY(h)
et sa consistance LP uniforme pour tout p € (0,00), c’est-a-dire
sup sup <E HiALn — th> e <n~W/2-o),
hex,V, PeY(h)
ou o est une constante strictement positive arbitrairement petite, la norme con-
sidérée est la norme de la convergence uniforme, n est supposé étre suffisamment

grand, et les constantes C', o« > 0 sont déterminées par A, B et V.

Notons ici que dans [3]|, F. Comets obtient aussi la consistance exponentielle de
I’estimateur du maximum de vraisemblance en utilisant la théorie des grandes

déviations.

En général, le probleme d’estimation pour les champs aléatoires de Gibbs est
rendu difficile par des phénomenes classiques de la théorie des champs aléatoires
de Gibbs tels que la non-unicité (|| > 1) et la perte de linvariance par
translation. Dans notre travail les résultats sont établis sans se soucier de ces
aspects car ils sont valides uniformément sur ¢, indépendamment du fait que

|| = 1 ou non.

Ensuite on considere le probleme nonparamétrique d’estimation des systeémes
ponctuels dans le cas ou ils sont quasi-locaux. On construit un estimateur en
combinant les idées utilisées dans le cas paramétrique et 1'idée principale de la
méthode de “sieves” (introduit par U. Grenander dans [13]) qui consiste & approx-
imer un parametre infini-dimensionnel par des parametres fini-dimensionnels. On
démontre la consistance exponentielle et la consistance LP de notre estimateur

“sieve” dans des cadres différents.

Certains aspects sont similaires au travail de C. Ji [15]. En effet, nos systemes
ponctuels ressemblent effectivement aux “caractéristiques locales” et on étudie le
meéme estimateur “sieve”. Mais, contrairement a [15], on se situe dans un cadre
beaucoup plus général et on estime ’'objet méme (systéme ponctuel) qui décrit

le champ aléatoire.

Finalement notons ici que tous les résultats de cette deuxieme partie sont valides
dans le cas d’un espace d’états fini arbitraire. Notons aussi que certains résultats

de cette partie ont été présentés dans [5].






Part 1

Description of random fields






I. Auxiliary results from the theory of random fields I

In this chapter we recall some well known notions and results from the theory of
random fields, and particularly from Gibbs random fields theory. The exposition
is based on the book of H.-O. Georgii [12]. We also set up in this chapter the

notations that will be used in the sequel throughout this work.

I.1. Random fields, conditional probabilities

We consider random fields on the v-dimensional integer lattice Z", i.e., probability
measures on ({2, #) = (%Zu, fozu) where (27, %) is some state space, i.e., space
of values of a single variable. Usually the space 2" is assumed to be endowed
with some topology 7, and .%, is assumed to be the Borel o-algebra for this

topology.

In this work we concentrate on the case when 2 is finite, .7, is the discrete
topology (the topology consisting of all subsets of 27) and %, is the total o-
algebra (the o-algebra consisting of all subsets of 27), that is Fy = J = exp(Z).
Note that in this case 2" can also be considered as a metric space with d(z,y) = 0
if x = y and d(x,y) = 1 otherwise. Note also that in this case the state space
is complete and compact, and hence (§2,.7) = (% Zr %ZU) is also complete,
compact and metrizable. It seems that most of the results can be generalized to
the case of infinite state space 2" under some additional topological assumptions

like completeness, compactness, separability, etc.

A very important and the most interesting one is the {0,1} case, that is,
2 ={0,1} and Fy = J = exp({0,1}). In this case, each element x € 24 is
uniquely determined by the subset X of A where the configuration & assumes the
value 1 (in physical terminology this subset is occupied by particles). Therefore
we can identify any configuration & on A with the corresponding subset X of
A. In the sequel, when considering the {0,1} case, we will not make difference
between this two notions and will write, for example, & C A for a configuration

x on A.
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Denote by & the set of all finite subsets of Z", i.e., let & = {A C Z" : |A| < o}
where |A| is the number of points of the set A. Let us note that & is countable.
Note also that by definition .%# is the smallest o-algebra on 2 containing all the
cylinder events
{reQ: oz, cA}, Ae&, Ac T

Here and in the sequel ¢, = {z:, t € A} is the subconfiguration (restriction) on A
of the configuration © = {z;, t € Z”}. Note that in the {0,1} case we can write
this as ¢, = x NA. In general, if x € 2K and A C Z¥, then x, is understood
as a configuration {xy, t € KN A} on K NA.
For any A € & \ ¢ let us consider the space 2" of all configurations on A.
A probability distribution on 2 is denoted by P = {PA(a:), T € %A}. For
convenience of notations we agree that for A = @ there exists only one probability
distribution Py (@) = 1 on the space 2% = {@} where @ is understood as a
configuration consisting of absolutely nothing (the only possible configuration on
the empty set).
For any A € & and I C A we denote

(Pa),(@)= > Prlzoy), zc2’ (L1)

ye M1

The probability distribution (P A) ;on 2 I'is the restriction of P, on I. Here
x @ y is understood as a configuration on A equal to « on I and to y on A\ .
Note that for the {0,1} case this corresponds to a usual set union, and so the
formula (I.1) can be rewritten as

(Pa), () = Z Py(xUy), x=Cl.
yCA\I

DEeFiNITION I.1. — A system of probability distributions P = {P,, A € &}

is called consistent in Kolmogorov’s sense if for any A € & and I C A we have
<PA)I =Py, ie., (PA)I(w) =P(x) forall z € 2.

It is well known that any system of probability distributions consistent in Kol-
mogorov’s sense determines some probability measure on (£2,.%) (or, equivalently,
some random field on Z") for which it is the system of finite-dimensional distri-

butions.

Before introducing the concept of conditional distribution of a random field, let
us recall some combinatorial facts about nets (sequences) of real numbers indexed

by elements of &, as well as the notion of their convergence.
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Let b = {bR, R € é"} be a net, i.e., a real-valued function on &, and let us
define

a,=>» b,, Aecé&. (1.2)

Then one can express the function b in terms of the function a = {a A Ae & },

by “inversing” the formula (I.2) in the following way:

b= > (-1)I"Va . Rees. (1.3)
JCR
The formula (1.3) is sometimes called inclusion-exclusion formula and sometimes

Mobius formula.

In our opinion this formula is very important in description of random fields.
Even if not used explicitly, it is implicitly present behind any approach. One can
encounter this formula in many works devoted to description of random fields
(see, for example, [2], [12], [17], [20], [24] and [25]). Our approach, presented in

the following chapters, is heavily based on this formula.

Let us also remark, that an arbitrary real-valued function a = {a X Ae & }
on & can be represented in the form (I.2). For that, it is sufficient to define the
function b by the formula (I.3). Note that the representation is unique. Note
also, that this representation is noting but a generalisation to the case of nets of

the formula
an =aog+ (a1 —ag) + -+ (ap —an_1),

permitting to represent an arbitrary sequence as a series.

Let us now introduce the notion of convergence of nets.

DeriNiTION 1.2. — Let {aA, A e 5} be an arbitrary real-valued function
on & and let T' C Z" be an infinite subset of Z".

1) We say that /l\iglﬁ(b = a,, If for any sequence A, € & such that A, T T we

A

have the convergence lim a, = a,
n—oo n

2) As we have already mentioned, there exists some unique function {b r L€ & }

such that a, = R;A by, for all A € &. We say that the convergence [1\1% a, =a,1Is

“absolute” if the series > b » 1ot only converges to a., but is also absolutely
Re&: RCT

convergent.
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Now we can finally introduce the concept of conditional distribution of a random
field.

Let P be a random field. It is well known that for any A € & there exist for

P c-almost all T € 272 the following limits

— P, ~(xdxr

gi(z) = lim 2 AZOTE)
ATAC P}((w”/{)

xe 2N

Any system
o= {Qi, Ae& and T e %“}

of probability distributions in various finite volumes A with various boundary
conditions & on A€ such that for all A € & we have Qi = g% for Ppc-almost
all T € 277 is called conditional distribution of the random field P. Note that
if @ is a conditional distribution of a random field P then in general, for a
particular A € & and T € 22", the conditional distribution Qi in the volume A
with boundary condition Z is not necessarily equal to g% even if the last one is

well-defined (i.e., the corresponding limits exist).

It is also well known that any conditional distribution @ of a random field P

satisfies P-almost surely the condition
Q) @y = Q™ (=) (QF 7):(v) (L.4)

where A,/N\ €&, ANA = O, xec 2N yc %K and T € %(AUX)C. In fact, this
is nothing but the elementary formula
P(ANB|C)=PA|BNC)P(B|C) (I.5)

written for our case.

I.2. Specifications, Hamiltonians, potentials

Let us consider an arbitrary system
o {Qi, Ac& and T € 5{“}

of probability distributions in finite volumes with boundary conditions. If we
want this system to be a conditional distribution of some random field P, then
we need to suppose that it satisfies P-almost surely the condition (I1.4). However,
we do not know a priori the random field P. Therefore we need to require that
the condition (I.4) holds always, rather than almost surely. This leads us to

introduce the following



Chapter 1. Auxiliary results from the theory of random fields 21

DEerFiNITION 1.3. — A system
o {Qi, Ae& and T € %AC}

of probability distributions in finite volumes with boundary conditions is called
specification if for any A,K € & such that AN A = ¢ and for any © € 2",

Yy € %X and T € %(AUX)C we have
Q} ;(z@y) = Q" (=) (QF 7)) (1.6)

Sometimes such systems are also called systems of distributions in finite volumes

with boundary conditions consistent in Dobrushin’s sense.

In Gibbs random fields theory a random field is described through a specification
Q = {Qf, AN e SandT € & AC} wich is assumed to have the following

Gibbsian form:

Ae& ze 2™ T,

where the system U = {UE(:B), ANe&, xc 2 Te %Ac} is called Hamilto-
nian, U%(x) is called (total) conditional energy of ® in A under boundary condi-
tion T, exp(Uf(:c)) is called Boltzmann factor, the denominator is called partition

function, and the Hamiltonian is assumed to be given by the formula

Ux(z) = Y oz, @z5), A zc2t T2,
J:pAICA  JEE: JCA®

where ® = {®(x), * € 27/ for some J € & \ {(p}} is some function taking
values in RU {400} (sometimes only real-valued functions are considered) called
interaction potential. Here and in the sequel we admit that exp(—oo) = 0,
(+00) + (+00) = a+ (+00) = (+00) + a = +oo for all @ € R and that any sum
over an empty space of indexes is equal to 0, i.e., Ug (@) =0 for all T € Q. Let us
note that in general, if one lets the potential to take the value +oo, the Gibbsian
form is not well-defined, since the denominator in the definition of Q% (z) can
be equal to 0 (say U%(y) = +oo for all y € 27*). So one needs to suppose the
potential to be reasonable enough to avoid such situations. Clearly this situation
does not occur if one considers a real-valued potential. Neither it occurs in the
case of the so-called “vacuum potentials” which will be considered below. Note

also that in general the system U is not well-defined, since in the second sum
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the summation is taken over an infinite space of indexes. For this reason the

interaction potentials are always supposed to be such that the limits

Uk(@) = Jim UF a() (L7)

exist and are in RU {+o0} forall A € &, ¢ € 2* and T € 2. Here
Uial@) = > Y oz, dz5), MAcs zec2t TN,

J:@#IJCA  JCANA®
Such interaction potentials are called convergent. Usually some stronger con-
ditions on the interaction potential are supposed in order to guarantee that it
is convergent. For example, often the interaction potential is supposed to be
absolutely summable, i.e., to satisfy the condition
Z sup |®(x)| < oo
J:teJes ©€ZY
for each t € Z". This condition not only implies that ® is convergent but,
moreover, that it is uniformly convergent, i.e., the limits (I.7) exist, are finite,

and the convergence is uniform with respect to @ € 27".

Interesting class of potentials is the class of pair potentials, i.e., potentials ® such
that ®(x) = 0 if x € 27 with |J| > 2. Note that the similar condition with
|J| = 1 would imply the independence.

Another interesting class of potentials is the class of finite range potentials, i.e.,
potentials @ such that ®(x) = 0 if x € 2/ with diam(J) > d for some fixed
d € N. Here and in the sequel diam(.J) denotes the diameter of the set J in the
metric p on Z” defined by the norm

H(tu),.._,t(w)“ - max{|t<1),,‘,_,‘t<u>|}, (t0, .o W) ez,

Note that finite range potentials are necessarily convergent, and that real-valued

finite range potentials are absolutely summable.

The most simple class of potentials are the nearest neighbour potentials, i.e., pair
potentials ® such that ®(x) # 0 only if = is a singleton, or © = {s,t} where s
and t are nearest neighbours, that is they occupy two neighbour horizontal (or

vertical) sites of the lattice.
Now, let us introduce the class of so-called “vacuum potentials”.

Let us fix some element () € 2" which will be called vacuum and let us denote

Z* =2\ {0} (for the {0,1} case this element is usually 0).
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DEFINITION L.4. — A potential ® = {®(z), © € 277 for some J € &\ {}}}
is called vacuum potential if we have ®(x) = 0 for all x € 2™/ such that there

exist some t € J satisfying x; = ().

The class of vacuum potentials plays very important role in Gibbs random fields
theory for two reasons. Firstly, for an arbitrary potential one can find a unique
vacuum potential giving the same specification as the initial one. Secondly,
vacuum potentials are easier to manipulate. From here on we consider only
vacuum potentials. In physical terminology x; = () means that this site is
not occupied by any particle, while all other values represent different types of
particles. In the vacuum case a configuration « on 2™ is uniquely determined
by its subconfiguration y € 2~ *I where the set I C A is the set of sites occupied
by particles, i.e., I = {t € A, z; # 0}. In the sequel we will not make difference
between this two notions and will write, for example, x € 2*!, I ¢ A for
a configuration & on A. Note that in {0,1} case there exists just one type of
particles, and hence we have just a set, as we have already seen earlier. Now we
can rewrite all the above formulas in these notations. The Gibbsian form is given

by the formula

_ _yT
Q% (z) = e (w_» , Ae&, xe 2, IcN Te 2™, KA,
> exp(=U%(y))
ye XA

and the Hamiltonian U = {U%(z), =z € 2+, Te & e 2%, KCI}is

given by the formula

U®(x) = Z Z CIJ(:I;J@wj)

J:p#ICI Je&:JCK

where ® = {®(x), x € 2+ for some J € &\ {@®}} is the potential. Note
that the Hamiltonian no longer depends on A. In fact, condition of vacuumness
implies that for an arbitrary A € & satisfying I C A C K¢ we get the same value

of Hamiltonian. The relation (I.7) can be rewritten as

U¥(x) = Ali&ly U®a(x)

and the condition of absolute summability as

sup |®(x)| < oco.
Jtejes T€ELT
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In {0,1} case the notations are even more simple. The Gibbsian form is given by

the formula

oo exp(—Uf(w)) B .
QX (x) = ;AeXp(—Uf(y)) ., Ae&, xC A TCAS,

and the Hamiltonian U = {U®(z), = € &and T C x°} is given by the

Ui(x) = ) > e(Jul)

J:p#ICx JEE:ICT
where ® = {®(J), J € &\ {(¢}} is the potential. The condition of absolute

summability can be rewritten as

Z ‘@(J)! < 0.

J:teJe&

formula

Let us finally note here that in the vacuum case we clearly have U*(@)) = 0 for

all Z € Q, and hence we have Q% (@) > 0 for all A € & and T € 22", Here @ is
nothing but the configuration (¢* identically equal to ) on A.

This leads us to introduce the notion of a general “vacuum specification”.

DerFiNITION I.5. — A system
o= {Qi, Ae & andT e %“}

of probability distributions in finite volumes with boundary conditions is called
vacuum specification if for all A € & and T € 2N we have Q% (@) > 0 and if
it satisfies the condition (I1.6). Sometimes vacuum specifications are also called

weakly positive specifications.

Note that for this case the condition (I.6) can be rewritten in an equivalent
form

Q7 7(v)
Q™ (@)
Note also that in the {0,1} case the condition of vacuumness is just Q% (¢)) > 0
for all A € & and @ C A°.

Q s(xzoy) = (). (L8)
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I.3. Description of random fields by their conditional proba-
bilities

The main question of the Gibbs random field theory is the study (under different
conditions on the potential) of the set of all random fields having a given Gibbsian
specification @ as a conditional distribution. Is this set empty or not? If it is
not empty, is it a singleton or not, i.e., is the field having @ as a conditional
distribution unique or not? In the non-uniqueness case, what can be said about
the structure of this set? Another interesting question is the following. Suppose
that ® (and hence Q) is translation invariant (i.e., invariant with respect to shift
operators on Z" or, in other words, stationary). Are all the random fields having
Q as a conditional distribution translation invariant or not? In the latter case
what can be said about the set of translation invariant random fields having Q

as a conditional distribution?

Below, we will state a theorem answering these questions in a more general setup,
when the specification Q is not supposed to have Gibbsian form, but rather is
supposed to be “quastlocal”. To state this theorem we need to introduce some

definitions and notations.

We start by giving the following

DeFINITION 1.6. — Let g = {¢*, = € 2" forsome K C Z"} be an
arbitrary real-valued function on (9, 7).
1) We say that the function g is local if it is .#{* measurable for some A € &,

i.e., if it depends only on the restriction , of  on A or, equivalently, if we have

A
g = g for all x € ().

2) We say that the function g is quasilocal if it satisfies one of the following four

equivalent conditions:
(q.1.1) the function g is continuous with respect to the topology 7,
(q.1.2) the function g is a uniform limit of local functions,

(q.1.3) we have Il%rzny g%t = ¢* uniformly on x € €, i.e.,

sup|g®r — ¢*| — 0,
swple™ ="l
(q.1.4) we have

xr
sup |g — gy’ — 0.
T,yeQ:x =y, nz
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The equivalence of these four conditions is well known and easily follows from
the compactness of the space (£2,.7). Note that quasilocal functions are bounded
functions, since they are continuous functions on a compact. Note also that local

functions are clearly quasilocal.

DeFINITION L.7. — A specification @ = {Q%, A € &andx € 2V} is
called (quasi)local if for all A € & and € 2 the function {Qi” (), Ze€ Q}

is (quasi)local, i.e., if for all A € & and x € Z* the quantity

QY (z) — Q) (z)|

Yz A(l) = sup
TEXAC

tends to 0 as I T ZV (for the quasilocal case) or equals to 0 for I sufficiently large
(for local case). A random field P is called (quasi)local if it has a (quasi)local

conditional distribution.

Note that the quasilocality is obviously true, for example, for Gibbsian speci-
fications with uniformly convergent interaction potentials, and the locality, for

Gibbsian specifications with finite range interaction potentials.

Now let us introduce the following convergence in the space & of all random
fields defined on Z" and taking values in the state space 2. We will say that
a sequence P™ of random fields converges to some random field P if for all

A€ & and x € 27 we have lim Pg\n)(m) = Pa(x). Note that we obtain this

convergence if we consider the space & as a subset of the Banach space of all
bounded functions r = {’I“A(a’,‘), A€ & and x € 27} with the norm

1
Irll = sup 5 w§A|TA<w>\

where n(A) is some enumeration of elements of & (i.e., n is an arbitrary bijection
from & on N). Note also that the space & is a closed convex subset of this
Banach space and, moreover, can be shown to be a compact set by usual “diagonal
method”.

A random field P € &7 is called tail-trivial if it is trivial on the tail o-algebra
Foo = (| F, ice., for all A€ T we have P(A) =1 or P(A) = 0.

Aeé&
A random field P € 2 is called translation invariant if for all A € &, & € ZA
and t € Z" we have Py(x) = Pay¢(x +t). Here and in the sequel A + ¢ denotes
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the set {s+t : s € A} and = +t denotes the configuration y € 2"+ defined by
Ys+t = T for all s € A. Similarly a specification Q is called translation invariant
if forall Ae &, e 2% and T € 22 we have Q% (z) = Qiﬁ(m +t).

A random field P € & is called ergodic if it is translation invariant and is trivial
on the o-algebra & = {A €e¥ : A+t=Aforallt € Z”} of all translation
invariant events. Here A+t ={x +t : x € A}. Let us note here that if P € &

is translation invariant and tail-trivial, then it is also ergodic.

Let us now recall some notions from convex analysis. Let A be a convex subset
of some real vector space. An element a € A is said to be extreme (in A) if
a#sf+(1—s)yforall 0 < s<1andall 5,7 € A with §# ~. The set of all
extreme elements of A is called extreme boundary of A and is denoted by ex A.
The convex set A is said to be a simplex if any element o € A can be represented
as
= / B pa(dB)
ex A
with the unique weight u, which is a probability distribution on the space ex A.

Recall also that for any set B the minimal convex set A containing B is called
convex hull of B and that the closure of A is called closed convex hull of B and
is denoted by c.c.h.(B).

Now, suppose we are given some fixed specification Q.

For each A € & and T € 2" let us consider a random field defined by Qi on A
and equal a.s. to T outside A. This random field is called random field in finite

volume A with boundary condition .

Further, if for some sequence A,, € & of finite volumes such that A,, T Z" and some
sequence &, € 2 of boundary conditions these random fields converge to some
random field P, then this random field P is called limiting Gibbs random field for
random fields in finite volumes (or shortly limiting Gibbs random field) for Q. We
denote the set of all limiting Gibbs random fields for Q by i = Dim(Q).

On the other hand any random field P having the specification Q as a conditional
distribution is called Gibbs random field for Q. We denote the set of all Gibbs
random fields for Q by ¥ = ¢(Q).

In the case when Q is translation invariant we also denote by 4 ;. = %.;.(Q) the

set of all translation invariant Gibbs random fields for Q.
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Note that above we use the traditional term “Gibbs” even though Q is not

necessarily Gibbsian.

Now we can finally state the following

THEOREM 1.8. — Let the specification @ = {Qi, Ae & andx € %AC} be

quasilocal.

1) The set ¢4 is a non-empty closed convex set. Moreover, ¢4 is a simplex and
we have ex¥ C Qim and 4 = c.c.h.(Qim) = c.c.h.(ex¥). Finally, a random field
P € ¢ is extreme (i.e., P e ex%) if and only if P is tail-trivial.

2) If Q is translation invariant then %, ; C ¢ is also a non-empty closed convex
set. Moreover, %, ;. is a simplex and we have %, ; = c.c.h.(ex% ;). Finally,
a random field P € %, ; is extreme (z’.e., P e ex%c_i,) if and only if P is

ergodic.

3) The set ¢ is a singleton, i.e., 4 = {P}, if and only if for any increasing
sequence of finite volumes and for any sequence of corresponding boundary con-
ditions the random fields in these finite volumes with these boundary conditions

converge to the random field P.

4) Suppose Q1 and Qs are Gibbsian specifications corresponding to some uni-
formly convergent vacuum potentials ®1 and ®4 (and hence are quasilocal). Then

G(Q1)NY(Q2) # P = B =Py <= Q) = Qs <= Y(Q1) =9(Q2).

REMARK I.9. — Non-uniqueness and translation invariance breaking are
possible.  Non-uniqueness means that it is possible to have |¢| # 1 and
even |% .| # 1. Translation invariance breaking means that it is possible to
have (in the non-uniqueness case) % ; # ¢. Moreover, it is possible to have
ex%.i \ex¥ # @ and ex¥9 \ %.;. # @, i.e., the simplex % ; is not necessarily a
face (subsimplex) of the simplex ¢.

Finally, to conclude this chapter let us give here a sufficient condition for
uniqueness of the Gibbs random field for a given quasilocal specification Q.
For the convenience of notations in the sequel we will often write t for the

set {t} consisting of just one point ¢.

Let us introduce the following
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DerFINITION L10. — Let @ = {Q}, A € Sandx € 2"} be some
specification. We say that it satisfies Dobrushin’s uniqueness condition if it is

quasilocal and we have

sup Z sup Z |Qf(x) - th(x)‘ < 1. (1.9)

1
2 v
L2 ezt BV zex

where the second sup is taken over all pairs ®,§ € 2 %2°\! such that we have

Tp\{s,t} = Yze\{s,t}-
Now we can finally state Dobrushin’s uniqueness theorem.

THEOREM I.11. — Let the specification @ satisfy Dobrushin’s uniqueness
condition. Then ¥ is a singleton, that is we have |¢4| = 1. If we suppose also

that Q is translation invariant then % ;. = % is also a singleton.

These results are synthesis of several theorems from [12]. Note that the main part
of the Theorems 1.8 and 1.11 was first formulated by R.L. Dobrushin in [8] — [10]
for Gibbsian case. Note also that the Theorems 1.8 and 1.11 hold in the case of
a finite state space 2. The case of infinite state space requires more notations

and assumptions. Details for this case can be found in [12].






II. Random fields and P-functions I

In this chapter we propose an approach towards description of random fields
which is based on a notion of P-functions. This notion is a generalization of
a notion of infinite-volume correlation functions well known in Gibbs random
fields theory. First two sections are devoted to the {0,1} case. The third section
shows the way one can generalize these results to the case of arbitrary finite state

space 2.

I1.1. Description of random fields by P-functions

Here we propose an approach towards description of random fields in the {0,1}
case. In the proposed approach the classical system of probability distri-
butions consistent in Kolmogorov’s sense is replaced by some function on &
(P-function) and the Kolmogorov’s consistency condition is replaced by some
“non-negativity” condition imposed on certain finite sums with alternating signs

of summands.

DEeFiNITION I1.1. — A real-valued function f = {f;, J € &} on & is called
P-function if fy =1 and for any A € & and * C A we have

> (=nlVifa g > 0. (IL1)
JCx
THEOREM II.2. — A system P = {P,, A € &} is a system of probability

distributions consistent in Kolmogorov’s sense if and only if there exists a

P-function f such that for any A € & we have

Puy(z)=> (-1)VIfny,, o cA (I1.2)
JCx

Particularly, for any A € & we have P (Q) = fa.
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Proof: 1) Necessity. Let P = {P),, A € &} be a system of probability
distributions consistent in Kolmogorov’s sense. Put fy = Pa(Q) for all A € &.
Clearly fy = Py(p) = 1. Further we have

Z(_l)lw\JlfA\J - Z(_l)m\Jl Py (@) =

JCx JCz
_ Z Ia:\JI PA A\J(@) _
JCx
=2 ()Y (P
JCx :]VCJ
=> Pa(J) > ()P =Py(x) > 0.
JCx J:JjCJCx
The last equality holds due to the following combinatorial relation
_1\le\4] _1\A\B| _ 1 if B=C,
A:BCACC A:BCACC

2) SurriciENCY. Let f be a P-function. For any A € & and * C A let us
put
Pa(x) =Y (1) fy ;>0

JCx
and show that P = {P,, A € &} is a system of probability distributions

consistent in Kolmogorov’s sense. For any A € & we have

Z Pa(z) = Z Z(_l)lw\JlfA\J — Z Favs Z (_1)|m\J| =fy=1,

TCA TrCAJCx JCA x: JCxCA
i.e., P is a system of probability distributions. Now let us verify its consistency.

ForaunyAEéa I C A and « C I we can write

Z Z \(a;uJ \J|f T

JCA\I JCzUJ

_ Z Z (_ a:\J1| Z |J\J2|fA\(J1UJ2) _

JCA\I JiCz JoCd
:B\Jl J\j; J—
D IIC LD DI AV ARD DI G LA B
Jicz JoCA\I J: JaCIJCA\I
= Z |m\J1’f1\a71 = P[(.’E)
J1C£B

The theorem is proved. O
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I1.2. Properties and examples of P-functions

Let % be the Banach space of all bounded functions defined on & with the

norm

b,
b|| = su , b={b;, Je &} e B,
b = sup % {bs )

where n(J) is some enumeration of elements of & and let ([0,1]) be the subset of
2B consisting of all functions taking values in [0,1]. Note that 2([0,1]) is a closed

convex subset of # and that the convergence of functions in % ([0,1]) is equivalent

to the “pointwise” convergence, i.e., to the convergence for any J € &.

ProposiTioN I1.3 [Properties of P-functions]. — 1) The space B of all

P-functions is a closed convex subset of %8([0,1]). Moreover %" is compact.

2) Let f be a P-function and fix some T C Z". Then the function f!T defined by

(|]T = frns, J € &, is also a P-function. The corresponding random field is the

restriction of the original one on T and assumes a.s. the value 0 outside T

3) Let f be a P-function. For any fixed B € & such that fg > 0 consider the
function fP defined by [P = f?—;J, J € &. Then fP is also a P-function. The
corresponding random field is the original one conditioned to be equal 0 on B

(and hence assuming a.s. the value 0 on B).

4) Consider a family % = { f(s)} of P-functions depending on the parameter
s € (0,1) and let p(s), s € (0,1), be a probability density. Then the function g
defined by

1
gy = / Fp(s) ds, T €&,
0

is also a P-function. Corresponding random field is a mixture of the original

ones.

5) Consider a P-function f and let ¢ : ZV — T C Z" be a bijection. Then
the function f¥ defined by f7 = fo., J € &, is also a P-function. The
corresponding random field can be viewed as the image of the original one by ¢!,
or rather by @ : %" — 2" corresponding to each x € 2% a configuration

P(x) € X" defined by §(x): = Ty, tE€ L.

Proof: 1) The first assertion is evident. The compactness can be easily proved

using the usual “diagonal method”.
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2) and 3) Both this two assertions can be proved by considering the correspond-
ing random field, calculating in it the probabilities of empty configurations and
using the Theorem II.2. Note that we can also check directly the conditions of

the Definition II.1 using combinatorial formulas. For example, let us check these

conditions for the case of 2). We have obviously fg = frnp = fp = 1. Further

we have
Do (DAL = DD freang =
JCx JCx

= Z Z (—1)|(mT)\J1| (_1)|(mmTC)\J2|f(TﬂA)\J1 =

J1CxeNT JoCaxNT*©

=3 DIV g x D (e >0

J1CxnNT JoCaxNTe

because the first factor is positive by (II.1) and the second one by (II.3). Here
and in the sequel T° = Z” \ T denotes the complement of 7.

4) On one hand we have

1 1
_ [ @ _ B
99 = /O fy p(s) ds = /o p(s) ds = 1.

On the other hand we can write

SO (—1)eVlg, = 3 (-1l / F)p(s) ds —

JCx JCx 0

:/01 (Z(_1)|w\Jf§s))p(s) 05 >0

JCx

because (—1)|‘B\J|f§3) > 0 and p(s) > 0 for any s € (0,1).
JCx

5) Obviously we have fg‘g = fo(p) = fp = 1. Further, using the fact that ¢ is a

bijection, we can write

Z(—l)'””\‘”ffw _ Z(_l)m\ﬂfm\]) _ Z(—1)|‘p(m)\¢(“’)‘fso(A)\w(J) _

JCx JCx JCx
= > M 20
J1Cep(z)

by (I1.1) because f is a P-function. O
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ExampLEs 11.4. — 1) Let {f;, t € Z”} be a family of real numbers such that
0< fy <1 foranyteZ” Weput
fr=11#f Jeé.
teJ

Here and in the sequel any product over an empty space of indexes is considered
to be equal 1, i.e., fy = 1. Then f = {f;, J € &} is a P-function and the
corresponding random field is a random field with independent components and

with Py (z) = {1 {tft iiz? for all t € ZY. The case f; = q on Z,

0 < q < 1, corresponds to Bernoulli random field with parameter p = 1 — gq.
In particular, for ¢ = 0 we get a random field which assumes a.s. the value 1 on

Z¥, and for ¢ = 1 a random field which assumes a.s. the value 0 on Z".
2) Fix some 7 > 0 and let, for all ¢ € [0,1], the function f(9) = {f§q), J e é"}

be defined by fgq) = ¢l’l (this is a Bernoulli random field from the preceding
example). Then the function b defined by

1
by = =g = " Jeé&, 11.4
s=r [ a e = (11.4)

is a P-function corresponding to a random field which is a mixture of the Bernoulli
random fields. This is an evident consequence of the Proposition I1.3-4 where
the probability density p is taken to be p(q) = 7¢" %, ¢ € [0,1], and the family
F = { f(q)} is the family of Bernoulli random fields. The system of finite-
dimensional distributions of the mixture random field is given by

|z|

PA(QZ)

T i
NER: E|A|+T—i

for all A € & and & C A. This can be easily proved by induction over a number
of points of the set « using the formula (I1.2). As we will see later, this random

field is non-Gibbsian (for demonstration see the Section VI.2).

3) Let f be a P-function. Using the Proposition 11.3-2 with 7" = ¢ x Z*~1 we
get a P-function fP™J defined by ff;roj = fin(txzv—1) where we have fixed some
t € Z. This P-function corresponds to a random field obtained by projection
which may be non-Gibbsian even if the original random field is Gibbsian (see, for
example, [23] and [25]).

4) Let f be a P-function. Then the function f9°¢ defined by fd¢ = fo;

where 2J = {2t, t € J} is a P-function. This is an evident consequence of
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the Proposition I1.3-5. This P-function corresponds to a random field obtained
by “decimation” which is also known to be in general non-Gibbsian even if the

original random field is Gibbsian (see, for example, [16] and [25]).

I1.3. Generalizations to the case of arbitrary finite state
space

As we have seen in the previous sections, in the {0,1} case one can specify com-
pletely a random field by specifying just the probabilities of vacuum configura-
tions: fa = Pa(®). Clearly one could have specified a random field by specifying
rather the probabilities of configurations not containing vacuums, that is consist-
ing only of 1’s. So, one could have defined the P-functions as fo = P (A). In this

case the Definition II.1 and the Theorem II.2 would be rewritten as follows:

DeriNiTION I1.5. — A real-valued function f = {f;, J € &} on & is called
P-function if fy =1 and for any A € & and x C A we have

Z (_1)|J|fmuJ 2 0.

JCA\x

THEOREM II.6. — A system P = {P,, A € &} is a system of probability
distributions consistent in Kolmogorov’s sense if and only if there exists a
P-function f such that for any A € & we have

Py(z)= Y (-D)Vlfaus, xCA

JCA\z

Particularly, for any A € & we have P (A) = fa.

The proof is similar to the one of the Theorem II.1.

This version of the theorem is easily generalized to a case of arbitrary finite state
space 2. That is, in this case one can still specify completely a random field by

specifying just the probabilities of configurations not containing vacuums.

Let us consider the case of arbitrary finite state space Z". As always we suppose

that there is some fixed element () € 2 which is called vacuum and we denote

2 =2\ {0}
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DeFINITION IL.7. — A real-valued function f = {f,, z € 2, I € &}
is called P-function if fg = 1 and for any A € & and = € 2T c A we
have

Z (_1)|J| Z fm@y?o-

JCA\I yex=J
THEOREM II.8. — A system P = {P,, A € &} is a system of probability

distributions consistent in Kolmogorov’s sense if and only if there exists a
P-function f such that for any A € & we have

Pyz)= > (DY > fagy, ze2* ICA

JCA\T yex=J
Particularly, for any @ € 27*', I € & we have Pi(x) = fz-
The proof for this general case is similar to the one corresponding to the {0,1}

case. All the properties of P-functions are also easily generalized for this general

case.






ITI. Random fields, )-functions and H-functions I

In the case of Gibbs random fields one can consider infinite-volume correlation
functions as limits of finite-volume correlation functions. In the first sections
we consider the {0,1} case. We show that in some cases P-functions can also
be considered as limits of finite-volume correlation functions (or rather their
generalization). The latter ones can be written down via generalized partition
functions (@Q-functions) or, equivalently, via the generalized Boltzmann factors
(H-functions) which are arbitrary non-negative functions in our case. Then
we introduce systems of probability distributions (corresponding to conditional
distributions in finite volumes with vacuum boundary conditions) consistent
in Dobrushin’s sense and describe them via corresponding Q-functions and/or
H-functions. Further we give, in terms of cluster representation of -functions,
a general sufficient condition for existence of limiting P-functions. Finally in
Section III.4 we show the way one can generalize the notion of H-functions to

the case of arbitrary finite state space 2 .

II1.1. )-functions and H-functions

Let us start by giving the following

DEeFiNITION IIT.1. — A real-valued function @ = {0;, J € &} on & is called
Q-function if 0; # 0 for all J € &, 05 =1 and for any S € & we have
> (=i, > 0. (ITL.1)
Jcs

Unlike P-functions, Q-functions are much easier to specify because they have the

following simple constructive description.

THEOREM IIL.2. — A function @ = {0;, J € &} is a Q-function if and only if
there exists a function H = {Hg, S € &}, Hg > 0 for all S € &, Hy = 1, such
that for any A € & we have

0r =) Hs. (111.2)

SCA
This function H is called H -function.
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Proof: 1) NECEssITY. Let 8 ={6;, J € &} be a Q-function. Put

Hg=> (-1)"Vg,;, See. (I11.3)
JCS

Since 0 is a Q-function and according to the definition (II1.3) of Hg, we have
Hy =1and Hg > 0 for all S € &. Further, for any A € & we can write

D He=> Y -0V, => "0, > (-1 =4,

SCA SCAJCS JCA S:JCSCA

2) SurriciENCY. Let H be a H-function and 0y = > Hg. Clearly 0y = Hy =1
SCA

and 0y > Hy = 1> 0 for all A € &. Finally, for all S € & we have

Z(_l)IS\J\QJ - Z(_l)IS\JI Z H=

JcsS JcS JjcJ

D SIS

Jcs J:JcJCS

which concludes the proof. ]

Since Hy > 0 for all # € & we can denote U(x) = —InH, (we permit the
function U = {U(z), € &} to take the value +oc0). Then (IIL.2) can be

rewritten in the following form
Op = Z exp(—U(x))

and we see that H is nothing but Boltzmann factors and 6 is nothing but the
partition function defined through a general Hamiltonian U (without boundary

conditions) not using an interaction potential.

ProposriTioN II1.3. — Let 8 = {0;, J € &} be a Q-function. Then for any
A € & the function

0
(A) = f ) _ IS
FO == e s}

is a P-function.

Proof: Let us fix some A € &. Obviously fQ(;\) = 05 /0py = 1. Further, for any
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I € & and  C I we have

A 0/\ I
E ] T § T J

Jcw JCzx
LS 3 (plennal plenanelg, oo
chwﬂA J2CzNA°
1 x )
_ L Z (-1 )’( NAN 1’t9(A\I)UJ x Z (ﬂA Al
A JiCxNA Jacend

Let us denote the first sum by F; and the second one by Fy. For F, we have
by (IL.3)
1 ifeCA
Fy = { )
2 0 otherwise.
Hence F> > 0 and we have to calculate F; only for the case  C A. Since 0 is a

Q-function, for all S C A\ I we have > (-1 )|(“’US)\J|9J > 0 and hence
JCzUS

Z Z |(mu5)\J\8

SCA\I JCzUS

— Z (_1)|w\J1| Z 07,07, Z (_1)|S\J2| =

J1Cx J2CA\I S:JQCSCA\I
= Z (=)o s, = Fu
J1Czx
So, we get (IL.1) and hence (") is a P-function. O

Note that using the above mentioned notation U we can write

> exp(U(x))

(A) _ cCA\J
! > exp(U(y))
yCA

which is the Gibbsian form for finite-volume correlation functions but for a general
Hamiltonian U. Note also that since the space & of all P-functions is closed
then, if for some sequence A, € & such that A, T Z" the P-functions f»)
converge as n — oo to some function f, this function f is a new P-function
which is a generalized limiting (infinite-volume) correlation function. This is a

limiting P-function and it corresponds to a limiting random field P.
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II1.2. Consistency in Dobrushin’s sense

To any @Q-function @ one can associate a system Q = {Q,, A € &} where
Q) ={Qx(x), = C A} and Q, () is defined by the formula

Q(x) = kS Y (=n™le;, Aeé, @A

0
A JCx

This system turns out to be a system of probability distributions. Note that
using the notation U and the formulas (I11.2) and (II1.3) one can rewrite Q, ()

in the form
exp(U(a:))
> exp(U(y))

yCA

Qu(z) =

which is the classical Gibbsian form but for a general Hamiltonian U. In general,
the system Q is not consistent in Kolmogorov’s sense. It is rather consistent in

so-called “Dobrushin’s sense”.

DEerFINITION I11.4. — A system of probability distributions Q = {Q,, A € &}
is called consistent in Dobrushin’s sense if for all A, A € & such that AN A = )

and for all x C A we have

Q, (@) =Qx(@) (Q, 7):(D)- (I1L.4)

Note that in the case when Q,(®) > 0 for all A € & the condition (II1.4) can be

rewritten in an equivalent form

Q3(0) = B Qo).

Note also that Dobrushin’s consistency condition (II1.4) is just a particular case
of the condition (I.4) and is satisfied by the system of conditional distributions
in finite volumes with vacuum boundary conditions of a random field. Below
we will see that under some conditions the system of probability distributions
consistent in Dobrushin’s sense is indeed the system of conditional distributions
in finite volumes with vacuum boundary conditions for the limiting random field.
But before let us show how the systems of probability distributions consistent in

Dobrushin’s sense can be described.

THEOREM IIL.5. — A system Q = {Q,\, A € &} is a system of probability

distributions consistent in Dobrushin’s sense and satisfying Q, () > 0 for all
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A € & if and only if there exists a Q-function @ = {0;, J € &} such that for all

A € & we have
1

= - > (—pkVlg,, @A (II1.5)
A

JCx

Qx ()

Particularly, for all A € & we have Q, () = 1/04.

Proof: 1) NEcessity. Let Q = {Q,, A € &} be a system of probability
distributions consistent in Dobrushin’s sense with Q, (@) > 0 for all A € &.
Put 0y = 1/Qx(®). We have obviously 6z # 0 and 6 = 1. Further, for any
A € & and J C A we can write

1:ZQJ(S):Z

ScJ ScJ

QD) (o Q)
an@) B =g, 2N

or equivalently
0, =01 Qu(S).
ScJ
Therefore

DDVl = 0, (DY T Q,(S) = 64 Qu(2)

JCzx JCx SCJ
and we obtain (III.1) and (IIL.5).
2) SurFICIENCY. Let @ = {0, J € &} be a Q-function. First of all, let us note
that for all A € & we have 0y = Y Hg > Hy =1> 0. Now let us put for any
A€&and @ C A sch
1 H.
Vg, = 2 >
Qu(@) = 5 S (-1)Vlg, = 7

:9—
AJCm A

and prove that Q = {Q,, A € &} is a system of probability distributions

consistent in Dobrushin’s sense. We have
1 1
ZQA(CL'):Q—ZHwZH—QAZL
TCA A zca A

i.e., the system Q is a system of probability distributions. Now let us verify its

consistency. We have

Haj 9A % _ QAUX(®) QA(CU)
A

WA =5 =5 Qu(7)

The theorem is proved. O
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Now we can state the theorem showing when the system of probability distribu-
tions consistent in Dobrushin’s sense is indeed the system of conditional distribu-

tions in finite volumes with vacuum boundary conditions for the limiting random

field.

THEOREM III.6. — Let 8 = {0;, J € &} be a Q-function and Q be the
corresponding system of probability distributions consistent in Dobrushin’s sense.

For each A € & we consider the above introduced P-function f™).

1) Let A € & and let P™ be the random field corresponding to the
P-function f™. The finite-dimensional distributions of this random field have

the following form: for each I € & and * C I we have

(A) B (QA)AN(:E) if @ CA,
P (az) - { 0 otherwise. (IH'6)

2) One can choose a sequence A,, € & such that A,, T Z" and that the P-functions
fAn) converge as n — oo to a limiting P-function f, i.e., for all J € & we

have
lim f) = f;.

n—oo

3) Suppose moreover that for any J € & the limit
lim fY = f; (I11.7)

exists and the convergence is “absolute” in the sense of the definition 1.2-2). Then

the function f is a limiting P-function and the corresponding limiting random
field P satisfies

ah (@) =1/6, (IIL.8)
for any J € &.

Proof: 1) Using details of the proof of the Proposition II1.3 and formulas (II.2)
and (IIL.5) we get

A z A 1
PV (@)=Y (1) \‘]'ff(\3 =g P

JCx
with

F = Z Z (—1)|($US)\J’9J =0\ Z Qu(zUS) =04 (Qn) y; (@)

SCA\I JCzUS SCA\T
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and .
Py = { 1 ifxcC {X,
0 otherwise.
Now the representation (II1.6) is evident.
2) This is an obvious consequence of the compactness of the set Z of all

P-functions.

3) The fact that f is a P-function is also a consequence of the compactness of
the set B . To verify the relation (II1.8) let us fix some sequence .J,, T J¢. Using

the “absoluteness” of the convergence (I11.7) we can write

(JUT )
(@) = tim 292Dy T gy T
J n—o00 Pjn(®) n— 00 fjn n—o00 Mm—00 f(jjqu)

07..7. /007, b fim fPOTT0)
B n—oo m—oo J o

= lim lim
n—oo m—oo

J0(TNT) | 05T,

= lim lim Y br(J)=lim > ba(J) =

n—,oo m—oo n—oo

RCJU(Tm\Tn) Re&:RCJ
1
=> b =1" = -
J
RCJ
which concludes the proof. ad
ReEMARKS II1.7. — 1) The relation (II1.8) between the limiting random field

and the original system of probability distributions consistent in Dobrushin’s

sense (@-function) can be rewritten in the form

a5(@) = Q,(@), Jeé.
Note that the relation
¢/ (x)=Qyx), Jeé& xcl,
also holds. At first sight it seems to be more general than (II1.8), but in reality
they are equivalent because the systems {q?, J e &} and {Qy, J € &} of

probability distributions are both consistent in Dobrushin’s sense and hence
they are determined uniquely and in the same manner (more precisely by
the formula (IIL.5)) by the functions {q?(@), Je&} and {Q;(0), J € &}

respectively.

2) In the relation (II1.8) one cannot replace q?(@) by Q?(@) coming from an

arbitrary conditional distribution @ of the random field P, because in general
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Q?(@) is not necessarily equal to q?(@) although the last one is well-defined for

the random field P.

3) The “absoluteness” of the convergence in (III.7) is essential for the rela-
tion (II1.8). If the convergence holds but is not “absolute” this relation can
fail as shows the following

|J]+7

T

ExamMpPLE III.8. — Let 7 > 0 and consider a function 6; = . It is not
difficult to check that this is a @-function and that the corresponding system

of probability distributions consistent in Dobrushin’s sense has the following

form
|A|T+7' ifz =@,
QA(w) = |A|1+7- if |$| = 17

0 if x| >2.
For this @-function the limits in (II1.7) exist. In fact, for any J € & we have

f7=lim —= = lim 7|A\J|+T

=1.
ATZY Op azv A+ T

As we see, the limiting random field is a random field assuming a.s. the value 0

on Z". Obviously in this random field we have q?(@) =1 for all J € & and the
relation (IIL.8) fails.

II1.3. Cluster expansions

Now, let us give an example (or rather a whole class of examples) when the
convergence in (II1.7) is “absolute”. This example is a generalization of a wide
class of models occurring in the Gibbs random fields theory and called “models
allowing cluster expansion”. For this we need to introduce some combinatorial
notions. For all A € &\ {®} let us fix an arbitrary point t, € A and denote
A=A\ {tr}.

DEeFiNiTION II1.9. — 1) We define a partially ordering in & in the following
way. For A,B € & we say that B < A if there exists an n € N and a sequence
B = Ay,As,..., A, = A of elements of & such that we have A;_; = A; \ ta, for
alli=2,...,n.

2) A sequence v = {B1,I'1;...;B,,I',} such that we have By < A € &,
B,,I'; € &and 'y N B; = tp, foralli =1,...,n, and B; < B;_; UI';_; for
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all i = 2,...,n, is called path beginning at A. The number n is called length of
the path v and the set 'y U---UT,, € & is called support of the path ~y. The set
of all pathes beginning at A and of length n will be denoted by T'™(A) and the
set of all pathes beginning at A and with support R by T'r(A).

3) A sequence § = {I'y,...,I',,} such that we have I'; # ¢ and I'; C A € & for
alli=1,...,n, and I'; NT'; = @ for any pair i,j =1,...,n with i # j, is called
weak partition of A. Note that we allow the partition to be empty, i.e., n = 0.
The set of all weak partitions of A will be denoted by AY.

4) A weak partition 6 = {I'y,...,I',} of a set A € & is called partition of A,
if we have I'y U ---UT,, = A. The set of all partitions of A will be denoted
by AA.

THEOREM II1.10. — 1) Let K = {K;, J € &} be a real-valued function such
that
F(A) = >  Kp,---Kp, >0, A€é. (I11.9)

is a Q-function.
2) If, moreover, there exist some \,« > 0 such that \ (1 ++/a)? < 1, and for all
t € Z¥ and n € N we have
> |Kr| < a\™,
I:tel and |T|=n
then for any J,A € & we have the representation

W= Z br(J)

RCA
where

br(J) = > (-1)" Kr, --- K,

for all R,J € &, and the series > br(J) converges absolutely for any J € &.
Re&

Hence, the conditions of the Theorem II1.6-3 are satisfied and there exists a
limiting random field P satisfying (II1.8) and corresponding to a P-function
f=A{fs,, J €&} defined by

oo

fr=>_ > (-1)"Kp, - Kp., JeE&.
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Proof: 1) First of all, for any A € &, we have
o= F(R)> F(g) =150
RCA

and 0y = F(¢) = 1. It remains to verify the condition (III.1). Indeed, for any
S € &, we have

Z(—l)'s\‘”&] _ Z(_l)ls\Jl Z F(R)=F(S) > 0.

JCS JCS RCJ

2) For an arbitrary t € Z” and any V € & such that t € V' we can write

by=> F(R)= Y FR+ > FR)=

RCV RCV\{t} R:teRCV

=0nm+ D (KF > Kfl“‘KFn>:

r:tel'cV {T1,.. Th}eAY,

=0+ D, (Krfnr)
r':ter’'cv

For J = @ the assertion of the theorem is trivial, so let us suppose that |J| > 1,
and apply the last equality for V.= A\ J" and t =¢;. We get
Oavg = 0a\g + Z (KT 0a\(sur))
I:t;eTCA\J’

and hence

A A A
= Y (R f).
T:ty;eTCA\J’

For any A € &, we can write the last equation for all J € & (A) where & (A)
denotes the set of all non-empty subsets of A. So, we will get a system of 21V —1
linear equations with 2!Vl — 1 unknown variables fSA), J € &(A) (note that

féA) = 1, and so we substitute this value in the equations). Let us rewrite this

system in “operator-matrix” form. For this we introduce the space ™ of vectors
f) = ( gA), J C £’1(A)) indexed by non-empty subsets of A, endowed with

the norm Hf(A)” = sup (M"‘” ‘fb(,A)D where M > 1 is some fixed number
Jeé&i(A)

that we will specify later.

Let us introduce the basis {X(‘]), J C & (A)} in the space 2™ by putting
XD =, v e&n) with x =12y
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We define the “generalized shift” operator by the matrix R = (r,,),, with

r;v = lgy—yy. Clearly this operator will associate to each fN) e M) the

vector

RN = (f9, Jcam) - xt. (IIL.10)

teA

We define also the operator K by the matrix (ky,) ; |, with k ;, = —Ky\ 5 Iy 5cv)-
Clearly this operator will associate to each f) € B the vector K f) with
coordinates

KiV= 3 CKeo i) = 3 (CKefiln). i

V:JCVCA I:t;eTCA\J’

Combining (II1.10) and (II1.11) we see that our system of equations is nothing
but
FO = RO £ 37U 4 )
teA

or, equivalently,

[E— (R+ EK)]f™) =3 "y (I11.12)

teA

where E is the unit matrix.

Let us now estimate ||R + K|. For this let us note that

HRf(A)H< sup <M_|J|‘f§i\)‘>< sup <M_|J|M|Jl|
Je&r(A) Je&1(A)

1
FON) = 179
and

N CAD SR Vi )

Je&i(N) I:t;€NCA\J’
MIJOr
<[ s | Sy =
Je&(A) . tJle:CA\Jf M
7] F
=11 sup |KF| M <
M Jeé’i(A)F;tJegcA\J’
(A) >
ey

A S Z M" Z |Kr| <
PR =1 I':ter and |T|=n

£,

SV g gmy — AIVN Ay
s M ;(MA)_ M 1—M)\_1—M)\H
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it MA <1, he, A< 1/M. Hence | R+ K|| < |||+ || < 5 + -~ The
last expression is smaller that 1 if

M-1 < i
MM+a—-1) ~ M’

M —1 B 1
MM+a—1) (14 a)?’

A<

(111.13)

If we choose M = 1+ +/a, then and hence (I11.13)

is satisfied.

So, we have proved that HR—FKH < 1, and hence the system (II1.12) has a unique

solution given by

fA) = [E (R+ K ZX({t}) - Z (R+ K)" ZX({t}) -
n=0

teA teA
~ (I11.14)
-3 S e )
p=0 (my,...mpy1):m;>0, i=1,...,p+1 teA
and satisfying
3 X({t})“
I V(I S Ry N/ D SRS (IIL.15)
L [r ] R

M 1-M A\

where the constant C' does not depend on A, but only on J, o and A.

Let us rewrite (II1.14) coordinate by coordinate. For this let us note at first,

that the matrix R™ = (r]

V)Jy is given by r™

v ]I{J:wm)} where we denote

VO =V and V(™ = (V(m_l)) . Now we can see that

w_oy 3y 3 (B K R o K R () =

teA p=0 (m1 ..... mp+1):mi>0, i=1,..., p+1
oo

mi me Mp+1
> (TJJl kv vy, kv, {t}>
(Jl,Vl;...;Jp,Vp):Ji,vieéal(/\), izl,...,p

=> ((-Kr,)--(-Kr1,))

where the last sum is taken over all sequences (J1, Vi;...; Jp, V) such that all the
sets are included in A, J1 < J, Jizi <Viforalli=2,...,n,and V; = J; UT
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with some I'; such that J; NI, =+¢,, for all i =1,...,n; or, equivalently, over all
pathes beginning at J with support included in A. So, we have obtained
= Z Z ((=Kr,)---(=Kr,)) = Z br(J).
RCA {By,I'1;...;Bn, T }eTR(J) RCA
The absolute convergence of the series from the last formula follows immediately
from the obvious remark, that if we change the signs of Kp-s to make them
negative, the estimate of the norm of the matrix K remains unchanged, and
hence (IT1.15) is still valid, that is, partial sums of the series with absolute values

are bounded by the same constant C'. O

This theorem was presented in [4], you can see it for more details. For general
ideas about cluster expansion and related techniques see, for example, [19]
and [20]. Note that the condition (II1.9) is obviously satisfied when, for example,
we have Kr >0 forallI' € &.

I11.4. Generalizations to the case of arbitrary finite state
space

As shows the Theorem IIL5, in the {0,1} case one can specify completely a
system of probability distributions consistent in Dobrushin’s sense by specifying a
Q-function. Clearly this theorem can be reformulated in the terms of H-functions

in the following way.

THEOREM III.11. — A system Q = {Q,, A € &} is a system of probability
distributions consistent in Dobrushin’s sense and satisfying Q, () > 0 for all
A € & if and only if there exists a H-function H such that for all A € & we

have

This version of the theorem is easily generalized to a case of arbitrary finite
state space 2. That is, in this case one can still specify completely a system of
probability distributions consistent in Dobrushin’s sense by specifying a suitably
defined H-function.

Let us consider the case of arbitrary finite state space Z". As always we suppose

that there is some fixed element () € 2 which is called vacuum and we denote

2 =2\ {0}
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DEFINITION ITL.12. — A real-valued function H = {H,, x€ 2*', I €&}
is called H-function if Hy =1 and Hy >0 forall x € ', 1 € &.

THEOREM III.13. — A system Q = {Q,, A € &} is a system of probability
distributions consistent in Dobrushin’s sense and satisfying Q, (@) > 0 for all
A € & if and only if there exists a H-function H such that for all A € & we

have

Qr(z)= —=2—, 22 TeA

The proof for this general case is similar to the one corresponding to the {0,1}

case.

As in the {0,1} case one can put

0= > H,
zeX N
for all A € &. The system 6 = {0y, A € &} so defined plays again the role
of partition function. But unfortunately it no longer determines completely the

system of probability distributions consistent in Dobrushin’s sense.

All the other properties of Q-functions, and all the properties of H-functions are

easily generalized for this general case.

II1.5. The problem of uniqueness

So, in this chapter we have seen how a random field (P-function) can be con-
structed via its conditional distributions in finite volumes with boundary condi-
tions (or, equivalently, @Q-function or H-function). The natural questions arise.
Is this random field uniquely determined by this @Q-function (or H-function), i.e.,
is it the unique one satisfying (II1.8) or there are some other random fields sat-
isfying it too? If no, can one describe the set of all such random fields (may
be in some class of random fields or under some conditions) as it was done by
Dobrushin in [8] — [10].

ExampPLE II1.14. — Let us consider the function 5 = 1 on &. Obviously

this is a @Q-function and it satisfies all the conditions of this section (even it has a
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cluster expansion with arbitrary small A). The limiting random field is obviously

the random field assuming a.s. the value 0 on Z" and for it we have
hp)y=1, Jeé&. (I11.16)

But for any 7 > 0 the random field from the Example I1.4-2 also satisfies the
condition (II1.16) because for any J € & using (I1.4) we obtain

P,3(®) _ 1 bJu7: lim ‘7‘_+T _
Jtre P3(@)  Frge b3 Jrge [JUJ|+7

This example shows that in order to answer the questions stated above we need to
study more carefully not only the conditional distributions in finite volumes with
vacuum boundary conditions but the whole conditional distribution of a random
field like it was done by Dobrushin in [8] — [10], i.e., to study specifications rather

than systems of probability distributions consistent in Dobrushin’s sense.






IV. Vacuum specifications, ()-systems and H-systems I

In the previous chapter we have seen that systems of probability distributions
consistent in Dobrushin’s sense are described by @-functions and H-functions.
In this chapter we show that vacuum specifications can be described by some
consistent systems of Q-functions (or, equivalently, of H-functions) which we call
Q-systems (H-systems) in approximately the same manner. In the first section
we introduce this description for the {0,1} case. In the second section we show
that the specifications we describe can be non-Gibbsian and give a general tool
for constructing such non-Gibbsian specifications. Particularly, this lets us to
show that the random fields from the Example I1.4-2 are non-Gibbsian. Finally
in the last section we show the way one can generalize the notion of H-systems

to the case of arbitrary finite state space 2 .

IV.1. Q-systems and H-systems

Let us start by giving the following

DEFINITION IV.1. — A system © = {#%, J € & andT C J°} is called
Q-system if 6% #+ 0 for all J € & and T C J, if 9; =1 for all ® C Z" and if for
any S € & and © C S° we have
> (=pisVIeT > 0. (IV.1)
JCS

Just like Q-functions, @-systems have the following simple constructive descrip-

tion.

THEOREM IV.2. — A system © = {63, J € & and T C J°} is a Q-system
if and only if there exists a system H = {Hg, Se & andx C SC}, HE >0

forall S € & and T C S°, Hg =1 for all ® C Z¥, such that for any A € & and
T C A° we have
0% =) HE. (IV.2)
SCA
This system ‘H is called H -system.
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Proof: 1) Necessity. Let © = {63, J € &andT C J°} be a Q-system.
Put
HE =Y (-1)I5V165, See, zcse (IV.3)
JCS
Since 0 is a Q-system and according to the definition (IV.3) of HE, we have
HZ =1 for all T C Z¥ and HE > 0 for all S € & and T C S°. Further, for any

)
A € & and T C A€ we can write

S H =Y N CRVIE = E Y (-0 =6

SCA SCAJCS JCA S:JCSCA

2) SurFicIENCY. Let H be a H-system and 0% = 3> HE. Clearly % = HY = 1
SCA

for any T C Z” and 6% > Hg =1>0 for any A € & and * C A°. Finally, for all
S e & and T C S we have

Z(_l)\S\JI@ - Z(—1)|S\J| Z H?:

JcsS Jcs JcJ
S D SR Y
Jjcs J:JcJcS

which concludes the proof. O

The motivation of introducing @-systems and H-systems is the fact that they
describe vacuum specifications in approximately the same manner in which
@-functions and H-functions describe systems of probability distributions in finite

volumes consistent in Dobrushin’s sense.

DEFINITION IV.3. — A H-system H = {H%, S €& and T C S} is called
consistent if it satisfies the following condition: for any Sp,Ss € & such that
S1 NSy =@ and any T C (51 U S2)°¢ we have

HE s, = HE, HE5 (IV.4)

A Q-system O = {9?, J € andx C JC} is called consistent, if the

corresponding H-system is consistent.

THEOREM IV.4. — A system Q = {Qf, A € SandxT C AC}

is a vacuum specification if and only if there exists a consistent (Q-system
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= {9, JEé"andECJC} such that for any A € & and © C A° we

have

T 1 x T
Q% (x) = e D (=n=Vlgg, xc A (IV.5)
A Jce

Particularly, for any A € & and T C A° we have Q% (¢) = 1/6%.

Proof: 1) NecessiTy. Let @ = {Q}, A € & and T C A°} be a specification

with Q%(¢) > 0 for all A € & and T C A°. Put 6% = 1/Q%(p). We have
obviously 6% # 0 and 9® = 1. Further, for any A € &, J C A and T C A° we can

write

1= 57 qQ7(s) ZQJ

scJ ScJ scJ
or equivalently

7=0%> Qi(9).
ScJ
Therefore

Y DEVIgT =67 Y (1Y QR(S) = 6% QR (=)

JCx JCx ScJ
and we obtain (IV.1) and (IV.5). It remains to verify the consistency of
the @Q-system ©. Let H = {Hg, S € Sandx C SC} be the H-system
corresponding to this @-system and let us fix some 57,5 € & such that
S1 N Se =@ and some & C (S7 U S3)°. On one hand we have

z S;US
H§1U52 = Z ( )|(51U52)\J| 9517 — 0/\ QA(SI U SQ) QSlUSQ( 1 2)
JCS1US2 QsluSQ(@)

where we have chosen A = S; U S5. On the other hand, we obtain in the similar

manner the equalities

z Q% us, (S1)
Hg = )BT — T QF(5,) = 5 L
S1 k;ggl( ) A A( 1) (231U52«$)
QE;”*(S2)

Hg® = 3 (—)!F VG505 = 030% QR9 (S2) = —25——
ng Qg (@)

and hence we have

Y

_ 1 Q% Us, (51 )qusl( Sy) = Q?lu_SQ(SlUSE)
Q%,us, (D) QL (@) Q%,us, (D)

wUSl o o
Hsl H = - HSlUSQ
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which concludes the proof of necessity.
2) SurriciENcY. Let ©® = {#%, J € &andT C J°} be a consistent

Q@-system. First of all, let us note that for all A € & and ® C A° we have
0% = H§2H§:1>Oandf0rallAEéa,mCAandiCAC put
SCA

A Jce A

Now let us prove that Q = {Qf, Ae SandxT C AC} is a specification. We
have

S Qi@ ==Y HE= k=1,
A A

zCA zCA
i.e., the system Q is a system of probability distributions in finite volumes with

boundary conditions. It remains to verify that the condition (I.8) is satisfied. We

have
T T pyEU T gz T TUy
G ooy M HEHEY L, Qf 50 Q@)
AUA 6T _ z z _ grYy A muy(®)
AUA AUA AUA A A
The theorem is proved. O
REMARK IV.5. — Let us denote U%(x) = —In HZ for all x € & and T C z¢

where we permit the system U to take the value +0o. Then clearly the system
U={U"x), x€c&andT C x°} satisfies the following consistency property:
for all &,y € & such that z Ny = @ and all T C (x U y)°® we have

U*(xUy) = U (z) + U™ (y). (IV.6)
Now, using the formulas (IV.2) and (IV.3) we can rewrite (IV.5) in the form

T () — exp(—UE(a:))
> exp(=U=(y)) ’

yCA

ANe &, xC A TCA°.

So, we see that our specifications are similar to the usual Gibbsian specifications
with only difference that in our case the Hamiltonian U is an arbitrary system
satisfying the condition (IV.6), while in the Gibbsian case it has an explicit
form in terms of an interaction potential. Note that in the Gibbsian case the

condition (IV.6) is automatically satisfied.
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IV.2. Non-Gibbsian random fields

In this section we will show that in our case the specifications may be non-
Gibbsian and will describe a simple general scheme for constructing such non-

Gibbsian specifications. For this we need the following

LEmMMA IV.6. — Let ©® = {6’?, J € &andxT C JC} be a consistent
Q-system, H = {Hg, S € &andx C SC} be the corresponding consistent
H-system and R = {R(xT), ® C Z"} be a real-valued strictly positive function
such that R(T1) = R(®3) if T1 = T2 up to a finite number of lattice points. Then
the system

R(z)

Hr = {(Hg)

is a consistent H-system and hence determines some consistent ()-system which

) Seéaandicsc}

we denote by Og.

Proof: For any S1,S52 € & and & C (51 U S3)¢ we can write

(1F,5) " =15, H3%)" -
~(HE) " (HE) ) =
()" (g
which concludes the proof. O
REMARK IV.7. — We require the function R to be real-valued and strictly

positive only in order for the system Hg to be well-defined. But the lemma holds
under less restrictive conditions. For example, if the system H is strictly positive,
which is equivalent to say that the corresponding Hamiltonian U is finite, we can
consider R to be any real-valued function, and if the system H is less or equal
than 1 (respectively greater or equal than 1), which is equivalent to say that the
Hamiltonian U is positive (respectively negative), we can allow R to take the
value +o0o (respectively —oo). Here and in the sequel we admit that a™>° = 0 for
any 0 < a < 1, that 7> =0 for any 8 > 1 and that 1¥° =0 =1 (note that
it is equivalent to admitting that (£00)-a = a- (£o0) = too for any a > 0, that
(£00) b= b-(+o0) = Foo for any b < 0 and that (£o00)-0 = 0-(+o0) = 0).

PROPOSITION IV.8. — Let ©® = {6%, J € & and T C J°} be a Gibbsian
Q-system corresponding to a finite HamiltonianU = {U%(z), x€& and T C x°}
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and R = {R(T), © C 7"} be a real-valued function such that R(®,) = R(Zs) if
X1 = Ty up to a finite number of lattice points. We suppose that the following
condition holds: there exist at least one pair * € & and ® C x° such that
R(Z) # R(Q) and that U®(x) # 0. Then the specification determined by the
Q-system ®p is non-Gibbsian.

Proof: Since © is Gibbsian, the corresponding H-system H has the form
H = {exp(—Uf(a:)), x €& and T C azc}

where the Hamiltonian U is given by some potential ® = {®(J), J € &\ {P}}.
Hence

Hr = {exp(—UE(a:) R(®)), €& andTC wC}.
We need to show that the specification determined by Hpg is non-Gibbsian, i.e.,
that there exist no convergent potential & = {ff)(J ), J € E\{P}} such that

UP(z)R(E) = Y Y ®(JulJ), wes TCal (IV.7)
J:p#JCx JEE:ICT

Suppose that the contrary is true, i.e., that (IV.7) holds. In this case we would

clearly have

U®(x) R(T) = Hm U™ (x) R(Fr) = R(() fm U™ (x) = R(}) U™ (x)

for any « € & and T C x°. But the last relation contradicts with the conditions

of the proposition. O

REMARKS IV.9. — 1) Clearly, as in the Lemma IV.6 we can allow R to take

the value +00 or —oo under suitable conditions.

2) Let us denote M = {T C Z" | 3 & € & such that « C T® and U®(x) # 0}.
It is not difficult to check that the condition of the Proposition IV.8 holds if and
only if the function R = {R(Z), ® C Z"} is not constant on M. The sufficiency
is evident. For the proof of necessity note that as we know that there exists a
pair z € & and T C z¢ such that R(Z) # R(() and that U%(z) # 0, then clearly
we have Z € M and also () € N, since otherwise we would have U?(z) = 0 for all
x € & which is possible if and only if ® = 0 on & \ {¢} which contradicts with
UZ(x) # 0.

3) If the specification Q corresponding to the Q-system @p is a conditional
distribution of some random field P and if the function R = {R(Z), = C Z"}
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is not P-almost surely constant on D1, then this random field P is clearly
non-Gibbsian, i.e., any conditional distribution é of P is not a Gibbsian

specification.

As we see, the Proposition IV.8 is a powerful tool for constructing non-Gibbsian
specifications and random fields. Note that non-Gibbsian specifications and
random fields constructed this way are not quasilocal. Note also that the
Proposition IV.8 can also be very useful for verifying that a given specification or
random field is non-Gibbsian. For example, let us verify that the random fields
considered in the Example I1.4-2 are non-Gibbsian for all 7 > 0. For this, let
us fix some 7 > 0 and calculate the conditional distributions of the random field
P corresponding to this 7. For any p € [0,1] let us denote by J? the set of all
x C Z¥ such that

1ze |1
and put J = %ZV\< U ar ) Note that for any p € [0,1] the set JP has
p€(0,1]
measure 1 with respect to the Bernoulli random field with parameter p and
measure 0 with respect to all the other Bernoulli random fields. Hence, each
of the sets JP and the set J have measure 0 with respect to the random field
P. Now let us take some A € & and & C A° such that ¢ J and calculate the

limit

_ Py(®)) I+ 7 =l I 47—
() = lim —— " = lim -
AP =5 &) mMpH+HHw'£{MHJH+T—i

@14 1Al Al -

T (1Al + 1] +7 1) ST (1A )

— L EHA = lim i =
ITAe  |z,] ) ITAc A
1 (1A + 7]+ 7 - 1) [T (1A + 111+ 7~ i)
=1

=1

Al
.1(U\ tr—i-fE,l) N
= =g =[]0 -»@) = (1 -p@)"

o(+r—i) =

i=1
Note that this limit is strictly positive if 0 < p(€) < 1 and that P(J*UJ) =0,
and hence putting

b 1 ifz eIt Uy,
AT (1 —p(i))_IAI otherwise,
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we obtain a @-system O corresponding to some specification @ which is a
conditional distribution of the random field P. In order to write down explicitly
this specification Q let us at first calculate the corresponding H-system H. For
Z € J' UJ we have clearly Hg =1 and HZ = 0 for & # () or, otherwise speaking,

HZ = 1{y—py. For T ¢ 3' UT we can write

HZ =" (-1)leVIgT = 3" (—1)l=\VI (1 - p(@) ! =

JCx JCx

=(1-p@) " Y () (1 p@) " =

JCx
N
:J;m<p( )~ :( p(Z) )m'
(1-p@)" 1 —p(@)

where we have used the combinatorial version of binomial formula. So the system

H has the form:

ﬂ{m:®} ifzedlu j,

p@ " :
<7) otherwise,
and hence the specification Q is given by
s, HE Lipegpy ifzed' Uy,

CoE (p(i))'gc| (1—p(5))|A\w| otherwise.

Now, let us remark that the system H can be rewritten in the form HZ =
(ﬁf)R(z) where ﬁf = ¢ 1*l is the Gibbsian H-system correponding to the
potential ® = {CI)(J) = ]1{\J|:1}’ J e &\ {@}} and the function R is given
by

p(T)

R 400 ifzeJtugd,
€r) =
—In T—p(@) otherwise.

Clearly the conditions of the Proposition IV.8 are satisfied and hence the
specification @ is non-Gibbsian. Moreover, according to the Remark IV.9-3

the random field P is also non-Gibbsian.
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IV.3. Generalizations to the case of arbitrary finite state
space

The generalization is done just in the same way it was done for H-functions. First
off all we note the Theorem IV .4, in the {0,1} case shows that one can specify
completely a vacuum specification by specifying a ()-system. Clearly this theorem

can be reformulated in the terms of H-systems in the following way.

THEOREM IV.10. — A system Q = {Qf, ANe & andx C AC} is a vacuum
specification if and only if there exists a consistent H-system H such that for any
A € & and T C A°® we have

This version of the theorem is easily generalized to a case of arbitrary finite
state space 2. That is, in this case one can still specify completely a vacuum

specification by specifying a suitably defined consistent H-system.

Let us consider the case of arbitrary finite state space Z°. As always we suppose

that there is some fixed element ) € 2  which is called vacuum and we denote

2= 2\ {0).

DEFINITION IV.11. — Let H = {HZ, x¢€ 2 1e&, T 2K, KcI¢}
be some real-valued function. It is called H-system if Hg =1 for all © €
2K K czv and HZ > 0 for all z € 2 1e & T e 2K K c I
This H-system is called consistent if it satisfies the following condition: for any
e X 1e& ye 3&”*‘],JEé"suchthatIﬂJz@andanyiE 2K
K C (IUJ)° we have

T _ T gIoe
HZ,, = HE H?®®.
THEOREM IV.12. — A system Q = {Qf, A€ &andx € %AC} is a

vacuum specification if and only if there exists a consistent H-system H such
that for any A € & and T € 2" we have

QX (x) = ﬁ, xe 2
y
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The proof for this general case is similar to the one corresponding to the {0,1}

case.

As in the {0,1} case one can put

0= > H

zeX A

for all A € & and T € 27", The system 6 = {Of, ANe & x¢€ ,%”AC} SO
defined plays again the role of partition function. But unfortunately it no longer

determines completely the specification.

All the other results concerning Q-systems and H-systems are easily generalized

for this general case.
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As we have seen in the previous chapter, consistent )-systems and H-systems are
convenient tools for description of vacuum specifications. But this systems are
“too rich”, since taking a closer look on the consistency condition (IV.4) we see
that the information contained in a H-system is redundant, and hence one can
think about describing specifications by more simple systems than ()-systems or
H-systems. In fact, in this chapter we will show that one can describe vacuum
specifications by one-point subsystems of consistent H-systems, and in the next
chapter we will consider in more details the case of quasilocal specifications and
will show that in this case one can describe specifications by H-functions or
Q-functions satisfying some additional conditions. In the first section we consider
the {0,1} case. In the second section we give a necessary and sufficient condition
for a one-point system to be Gibbsian. Finally in the last section we show the
way one can generalize the notion of one-point systems to the case of arbitrary

finite state space 2 .

V.1. One-point systems

We start by introducing the following

DEFINITION V.1. — A system h = {h¥, t € Z” and T C Z" \ t} is called

one-point system if for all t € Z¥ and T C Z" \ 't we have h¥ > 0 and for all
s,t € Z¥ and ® C Z" \ {s,t} we have

hZ hF9® = b h2Y". (V.1)

As shows the following theorem these one-point systems correspond one-to-one
to consistent H-systems. In fact they are nothing but one-point subsystems of
consistent H-systems and hence, just like H-systems, describe vacuum specifica-

tions.
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THEOREM V.2. — A system H={HZ

F,xeband TC .’IZC} is a consistent H-sys-

tem if and only if there exists a one-point system h = {htz, teZ”and T C 7"\ t}

such that for all € € & and T C ¢ we have
HE = BE pZ9h ... pFUhU Uln (V.2)

where n = |x| and t1,...,t, is some arbitrary enumeration of elements of the
set x. Particularly, for all t € Z* and T C Z* \ t we have HF = h¥.

Proof: 1) Necessity. Let H = {HZ, x € &and T C x°} be a consistent
H-system and put h¥ = HF > 0 for all t € Z" and T C Z" \ t. Since H-system

‘H is consistent, using the formula (IV.4) we obtain
HY, ,, = HY HPY® = b3 {2,

In the same manner H ﬁ, = h¥ h®t, and hence h is a one-point system. Again

using the formula (IV.4) we obtain easily

HE — HE HEUtl — HE HEUtl HEUtlth — = hi hEUtl hEUtlLJ”-Utn_l
x t1 " {tg,. tn} iy "7t {ts,...,tn} i1 Tt tn

which concludes the proof of the necessity.

2) SurrICIENCY. Let h = {h¥, t € Z” and ® C Z" \ t} be a one-point system
and for all x € & and ® C x° put

HE = h{, h?t - i dinet >, (V.3)

First of all let us verify that this definition is correct, i.e., that it does not depend
on the enumeration of the set . For this let us fix some enumeration t4,...,%,
and let ¢ = {¢(1),...,¢(n)} and ¢ = {¢(1),...,9%(n)} be two permutations of
the set {1,...,n}. We need to show that

x Eutcp(l) EUt@(l)U"'Utap(nfl) x EUtTP(l) futw(l)un'utw(n,l)
t t Ty = hy t Ty ~(V-4)
P(1) te(2) »(n) $(1) e (2) P(n)
It is well known that any permutation of the set {1,...,n} can be decomposed in

a product of transpositions of nearest neighbours, and hence it suffice to consider
only the case where ¥ = ¢ o (k,k + 1) with some k € {1,...,n — 1}, i.e.,

P ={p1),...,0(k=1),p(k+1),0(k), p(k+2),...,0(n)}. But in this case the
relation (V.4) is reduced to

Uty Utp—1) Tt UUtoe—nUtem)
b (k) Lo (k+1)

h

Uty (1)U Utpk—1) hEU%u)U"'Utwk—l)Utap(Hl)
Lo (k+1) to(k) '
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which is an evident consequence of (V.1). Now we can finally check the
consistency of the H-system H. For this let us take some S1 = {t1,...,t,} € &
and Sy = {s1,...,8n} € & such that 51 NSy = @ and some T C (57 U S2)°. We
have S;USy = {t1,...,tn,S1,...,Sm} and hence using the definition (V.3) of the
H-system H we get

Hgl — h’til htEQUtl . htE:L_JtlU...Utn_17
HEQLJSl — hflusl hiLJSlUsl hfisluslu'"usmfl,
HE g, = hE +oo hEURU-Utaoy pBULU-Ut, | pEUL DUt Us U US|
and hence the relation (IV.4) holds. The theorem is proved. O

Note that since h¥ > 0 for all t € Z¥ and T C Z" \t we can denote u®(t) = — In h¥
permitting the system u = {u®(t), t € Z" and® C Z" \ t} to take the
value +o0o. This system is clearly nothing but one-point subsystem of some

general Hamiltonian U including also Gibbsian case.

Let us also note that by properties of one-point systems and H-systems we

have
QF(t) = Hy _  Hf W
t %Hg HY+Hf  1+h7’
Yy
) P S
! % g HI+HF 1+hf’
Yy
and hence
_ Z (4
hf—Lt() (V.5)

QF (D)
Using the last formula we see that in fact the Theorem V.2 shows when a system
of one-point distributions with boundary conditions is a subsystem consisting
of one-point distributions of some specification. This question is an old open
problem posed by Dobrushin who, in his paper [8], shows that under some
positivity condition (clearly satisfied for the vacuum case) the whole specification
can be determined by its subsystem consisting only of one-point distributions, but
does not answer the question: “when a given system of one-point distributions
with boundary conditions is a subsystem consisting of one-point distributions

of some specification”. In fact the Theorem V.2 shows that a necessary and
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sufficient condition for that is the condition (V.1) or, rewritten in the term of the

specification using the formula (V.5), the condition
QI (s) QF7°(1) Q7 (D) Q:7'(@) = QF () QT (s) QI () QF*().

The problem of description of a specification by its subsystem consisting of one-
point distributions is very important because Dobrushin’s uniqueness condition
is taking into account only one-point distributions. For the same reason,
the description of vacuum specifications by one-point systems that we have
proposed in this section is very important and interesting. Clearly we can
rewrite Dobrushin’s uniqueness condition in terms of one-point systems, by
substituting Q by its values expressed by h in the formula (I1.9). In the {0,1}

case, after obvious simplification this formula rewrites in the following form:

> ity V.o
sup sup = P .
tezv L\, BCL\{s.t} (L+ A7) (1+h72)

V.2. Gibbsian one-point systems

Let us at first give some examples of one-point systems.

ExampLES V.3. — 1) Let ® = {®(J), J € &\ {¢}} be a convergent inter-

action potential. Then the system h = {exp(—u®(t)), t€Z" and T C Z" \ t}
defined by

ut(t) = > @(Sut).

Se&:ScE

is clearly a one-point system corresponding to Gibbsian specification with the
interaction potential ®. We call such one-point systems Gibbsian.
2) Let h = {h¥, t € Z"and T C Z" \ t} be a non-negative system such that
hf1 = ht§2 if 1 = T2 up to a finite number of lattice points. Then h is clearly a
one-point system.
3) Let h = {hf, t € Z"andT C Z" \ t} be a one-point system and
R = {R(Z), T C Z"} be areal-valued strictly positive function such that we have
R(Z1) = R(@2) if T1 = T2 up to a finite number of lattice points. Let us consider

the system
hp — {(h?)R@, teZ’ and z C ZV \t}.
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For this system the condition (V.1) is clearly satisfied, and hence this is a
one-point system. This system corresponds to H-system considered in the
Lemma IV.6. The considerations of the Remark IV.7 hold.

The last example gives us a way to construct from, for example, Gibbsian
one-point systems some new one-point systems, and the latter ones can be
clearly shown to be non-Gibbsian under some condition analogous to that of
the Proposition IV.8 and Remark IV.9. Now let us do better and give a general

necessary and sufficient condition for a one-point system to be Gibbsian.

THEOREM V.4. — A one-point system h = {hf, teZ” andxT C 7"\ t} is

Gibbsian if and only if the following two conditions are satisfied:

(h1) for allt € Z¥ and ® C 7V \ t we have II%IZn R = hE,

(h2) for all t € Z¥ and ® C Z¥ \ t we have h¥ = 0 if there exist some T € &
such that h¥™ = 0.

Proof: 1) NEcEssiTY. We suppose that the one-point system h is Gibbsian, i.e.,
that for all ¢ € Z¥ and T C Z" \ t we have hf = exp(—u®(t)) with

uT(t) = > 2(Sut)

Sef:SCx

where ® is some convergent interaction potential. We need to check the
conditions (h1) and (h2). The first condition follows obviously from the fact
that interaction potential ® is convergent. To check the second one let us take
some t € Z¥ and T C Z¥ \ t and suppose that there exists some T' € & such that
hET = 0. We need to show that h¥ = 0. We have

uPT(t) = —Im(hfT) =400 = > @(SUt) = ) ®(SUt).
Se&: SCTr SCZr
But the last sum contains finite number of summands and hence at least one of
them is equal to +o00. This implies that for any I € & such that I D T we have
u®1(t) = +oo, and since ® is convergent we have also u®(t) = +o00, and hence

h¥ = exp(—u®(t)) = 0 which concludes the proof of the necessity.

2) SurrIictENCY. We suppose that the one-point system h satisfies the conditions
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(h1) and (h2) and that u is one-point subsystem of the corresponding Hamilto-
nian. Let us consider the interaction potential ® defined by
+o0 if V ¢ € J we have u”\¢(€) = 400,

o(J) =
(J) S (~DINONER(e) if 3¢ € J such that u”\E(€) € R.

RCJ\¢

Note that the last sum is well defined since the number of summands is finite and
by the condition (h2) all the summands are finite. We can also show that this
definition is correct, i.e., that if u/\¢(€),u”\¢(¢) € R then

> (IO uRg) = 3T (- E Q).

RCJ\¢ RCJ\¢

Indeed, we have

>0 (IO = 37 (DO () +

RCJ\E RCI\{£.C}
+ > (=) NONBUO[ R (¢) =
RCI\{£,¢}
= > (DI - u(g)),
RCI\{£.C}

and in the same manner

> )INNER() = 37 (DI NONE W) — ().
RCJ\C RCJ\{¢,C}
Since all the terms in these sums are finite and using the condition (V.1) we see

that the sums are term by term equal.

It remains to check that the potential ® indeed corresponds to our one-point
system h, i.e., that

u(t) = Y @(SUt) (V.7)

Se&:SCE

for all t € Z¥ and T C Z" \ t. Since the condition (h1) holds it is sufficient to
verify this relation only in the case when T € &. Let us at first suppose that the
Lh.s. of (V.7) is finite. In this case by (h1) we have u®(t) < +oo for all S C Z.
Then by definition of ® we have

BSUL) = Y (1) uf(e)

RCS
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and hence

r.h.s. of (V.7) Z Z DI\ B () = 4 (t).

SCcx RCS
Now let us consider the case when the Lh.s. of (V.7) is infinite, i.e., when
u®(t) = +oo. We need to show that the r.h.s. of (V.7) is also infinite. Two

cases are possible:

e We have u?(t) = +oo. In this case by the definition of ® we obtain
®(t) = 400 and since ®(¢) is one of the summands in the r.h.s. of (V.7) the latter

is infinite.

e We have u?(t) € R. In this case clearly there exists some S C @ such that
S # @, u®(t) = +o0, and for all £ € S we have u®\é(t) € R. Hence, for all £ € S

we can write
uSN () + uSOU(E) = uS\E(€) + uB(8) = N (E) + (+00) = +oo.

But v¥\é(t) € R, and hence we have u(S\OV(¢) = u(SYIN\E(¢) = +oo for all
¢ € S. Clearly we have also u(SYO\t(t) = u¥(t) = +o00. Thus, by definition of ®
we have ®(S Ut) = 400 and hence the r.h.s. of (V.7) is infinite. O

Note that this theorem can obviously be reformulated in terms of H-systems,
i.e., a H-system is Gibbsian if and only if the conditions (k1) and (h2) hold.
Clearly in this case the conditions (h1) and (h2) can be replaced by equivalent

conditions:

(H1) for all x € & and T C ¢ we have Ilgzn H* = HZ,

(H2) for all x € & and T C ¢ we have HZ = 0 if there exist some T € &
such that HZT = 0.

Let us finally note here that the Theorem V.4 shows when a vacuum specification
has a Gibbs representation. A similar problems were considered in [2], [17], [24]
and [12] in less general setup, e.g., for local, quasilocal and/or strictly positive

specifications.
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V.3. Generalizations to the case of arbitrary finite state
space

As shows the preceding sections, in the {0,1}consistent H-systems (and hence
vacuum specifications) are completely determined by their one-point subsystems
(one-point systems). This assertion generalizes straightforwardly to the case of
arbitrary finite state space 2. That is, in this case one can still determine

completely a H-system by its one-point subsystem.

Let us consider the case of arbitrary finite state space Z°. As always we suppose

that there is some fixed element ) € 2  which is called vacuum and we denote

2 =2\ {0}.

DEeFINITION V.5. — A system
h:{hf(a:) tez’, ze X, we 2K, KcZ”\t}

is called one-point system if for allt € 2V, x € Z* and T € PALN de 7V \t we
have h¥(z) > 0 and for all s,t € Z¥, z,y € 2* and ® € 2%, K c 7"\ {s,t}
we have

hE(y) by () = W (2) BT (y).

Here and in the sequel x; denotes a configuration on the set ¢ taking value z in

the point ¢.

THEOREM V.6. — A system H is a consistent H-system if and only if there
exists a one-point system h such that for all x € Z*!, I € & and T € 2*F,
K C I¢ we have

Hg = hi, (e,) b2 (we,) - By P00 @70 (2, )
where n = |I| and ti,...,t, is some arbitrary enumeration of elements of the

set I. Particularly, for allt € Z¥, x € X* and T € 25, K c 7" \ t we have
HZ? = hi(x).

The proof for this general case is just the repetition of the proof corresponding
to the {0,1} case. All the other results concerning one-point systems (except the
simplified form (V.6) of Dobrushin’s uniqueness condition) are easily generalized

for this general case.
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In this chapter we concentrate on the description of quasilocal specifications
since, as we have already seen in the first chapter, they are very important
in the theory of random fields. In the first section we will consider the case
of vacuum specifications and we will apply the results of the two previous
chapters. In the second section we will replace the condition of vacuumness
by some slightly different condition and we will show that in this case one can
describe specifications by H-functions or @)-functions satisfying some additional

conditions.

VI1.1. Case of vacuum specifications

Let us at first consider the {0,1} case and study how quasilocal vacuum specifi-

cations can be described in this case.

Clearly, as before, one can describe them by consistent (Q-systems, consistent
H-systems and/or one-point systems. Note that it is evident that in this case
the specification will be local if and only if corresponding Q-system (H-system,
one-point system) is local. Analogously the specification will be quasilocal if and
only if corresponding Q-system (H-system, one-point system) is quasilocal with

respect to the variable &, i.e., satisfies corresponding quasilocality condition

ay(I) = sup|0§l —9?’ — 0, Je&,
zTCJC Iz
B (1) IESSEC\H? —HD| 20, €d,

v(I) = sup |ht51 —hf|—0, tezZ”
TCZV\t Izy
This can be easily proved using the following obvious observation. Since the
space (€2,.7) is compact then any quasilocal function on it is bounded, and if
it is strictly positive then it is uniformly strictly positive, i.e., it is greater than

some ¢ > 0.
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Let us mention here that a specification @ corresponding to some H-system
(one-point system) is Gibbsian with uniformly convergent interaction potential if
and only if this H-system (one-point system) is quasilocal and strictly positive.
Note also, that under the condition of strict positivity of a H-system (one-point
system), its quasilocality is clearly equivalent to the quasilocality of its logarithm,

i.e., to the quasilocality of Hamiltonian (one-point Hamiltonian).

Note that everything exposed in this section (except (-systems) generalizes
straightforwardly to the case of vacuum specifications with arbitrary finite state
space £ . Clearly, in this case the quasilocality condition for H-system (one-point

system) looks like

Be(I)= sup |[HZ —HZ| — 0, €2, I€8,
T 1° ne

Yex(I) = sup |ht51(ac) —hf(z)| — 0, t€Z’, v X"
TEL LY\ Iz

VI1.2. Quasilocal specifications, Q)-functions and H-functions

Now let us propose an alternative approach towards description of quasilocal
specifications based not on Q-systems, H-systems and/or one-point systems, but

on @Q-functions and H-functions. For instance we consider the {0,1} case.

TueoreM VL1. — Let @ = {Q}, A € &and T C A°} be a quasilocal

specification satisfying
(Q1) QX(h) >0 for all A € &,
(Q2) Q%(z) + QL(zUt) >0 forall A &\ {(}, t € A and & C A\ t.

Then there exists a H-function H = {H,, x € &} satisfying
(H1) Hy + Hyy >0 for all x € & and t ¢ x,
(H2) for all A € &\ {Q} and © C A there exists uniformly on T C A° the

limit
lim Moz,
1zy Yy Houg,
zCA
and such that for all A € &\ {Q} and all y € & such that y C A° we have
_ H.. -
] xUy
. R VL1
QA( ) Z qu@ ( )

zCA
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Conversely, if H is a H-function satisfying (H1) and (H2), then one can find
a quasilocal specification Q satisfying (Q1), (Q2) and (VIL.1).

Proof: 1) NECEsSITY. Let Q = {Qf, A e &andxT C AC} be a quasilocal
specification satisfying (Q1) and (Q2). The system Q = {Q%, A € 5} is
clearly a system of probability distributions consistent in Dobrushin’s sense,
and hence by the Theorems III.5 and III.2 there exists some H-function H
corresponding to some @-function € such that for all A € & and * C A we

have
H,
A

Further, for all x € & and t ¢ x we can write

Hy + Hyut = Ozt Q%ut(w) + Ot qut(w Ut) =

= bt (Qui(@) + Qhuy( U1) >0,
and hence the condition (H1) holds. In order to verify (VI.1) and the condi-
tion (H2) let us at first note that by (H1) for all A € &\ {p} and ally € &
such that y C A° we have

Z H. > Hy + Hy: > 0

zCA
where we have chosen some ¢t € A, and hence

]qu_ 1
(quy)g@) = Z Qﬁug(z Uy) = Z Y — Z H.5 > 0.
zCA

Oris  Oaum
2CA AUy AUy 2CA

Now, since Q is a specification we can write

? B }fmuﬁ
QY () = QuugrVy) Orug _ Hauy
AT =g T = —
(QAuy)y@) Z H.y Z;A Huy
9AU§ zCA

and hence (VI.1) holds. Condition (H2) holds obviously since the specification

Q is quasilocal. The necessity is proved.

2) SurrICIENCY. Let H = {H,, = € &} be a H-function satisfying the conditions

(H1) and (H2) and 8 = {0;, J € &} be the corresponding Q-function. First of

all, let us note that by (H1) the denominators in (VI.1) and (H2) are strictly
positive. Now, for all A € &\ {@¢} and all T C A® we can put

T fyw T

Q% (x) = lim P>,

~ 7 =
iz Y H,uz,
zCA
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and for A = @) as always we consider Qg(@) =1 for all ® C Z". Clearly (VI.1)
is satisfied. Further, for all A € &\ {®} and all € C A° we have

H Z H:BUE]

T . T . A

Z Qi (x) = lim —29%1  _ jjyp &2 1,
zCA con 12 z;A Huz, 112 Z;A Heuz,

and for all A € &\ {}}, A € & such that ANA =@ and all z C A, y C A and
T C (AUK)C we can write

_ _ H. . = _
xU x : zU(TUY) T
V@) Q)W) = Jim s m e ) ) QY (= UY)
2U@EY) oA
zCA
— lim H(wa)UEI % lim H(ZUy)U:B] _
11z Y Hizuyyuz, o > ~HRu§I
ZCA RCAUA
fﬁmu)ui T
— 1 Y 1 — T U
iz Y. Hgus, QAUA(w v)
RCAUA

where we suppose I to be sufficiently grand, so that I D y. Thus, the system
o = {Qi, A e &andxT C AC} is a specification. Its quasilocality follows
obviously from its definition and from the condition (H2). It remains to verify
the conditions (Q1) and (Q2). For all A € & we have

H 1
? P
= = — O
zCA

and for all A € &\ {Q}, t € A and « C A\ t we can write

@ @ H:v HwUt 1
Ut) = = — (H,+ H, 0.
zCA zCA
The theorem is proved. O

Note that this theorem can be reformulated in terms of @Q-functions in the

following way.

CoroOLLARY VI.2. — Let Q = {Qi, Ae & andT C AC} be a quasilocal
specification satisfying the conditions (Q1) and (QZ2). Then there exists a
Q-function @ = {0;, J € &} satisfying
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(61) Z(—1)|m\s|95ut >0 forallx € & and t ¢ x,
SCx

(02) for all A € &\ {Q} and J C A there exists uniformly on T C A° the

limit
> (=)0,
lim SCxr
I1zv Z (—1)‘EI\S|9AU5 ’
SCxr

and such that for all A € &\ {Q} and all y € & such that y C A° we have

> (_1>|(wU§)\R|gR

I . RCzUy

> (=1)WSloyus
SCy

x C A. (VI1.2)

Conversely, if 0 is a Q-function satisfying (01) and (02), then one can find a
quasilocal specification Q satisfying (Q1), (Q2) and (VI.2).

Proof: First of all, let us note that if @ is some @-function and H is the

corresponding H-function, then using (I11.3) we get

Y Hag=Y, Y ()P (1)l s =

zCA zCAN JCz SCy
~ - (VL.3)
— Z(_l)ly\s\ Z Z(_l)IZ\JIQJUS — Z(_1)|y\sl‘9AUS
SCy zCA JCz SCy

for all A € & and all y € & such that y C A°.

1) NEcessiTYy. By the preceding theorem there exists a H-function H satisfying
(H1), (H2) and (VI.1). Let 8 be the corresponding Q-function, and let us verify
that it satisfies (01), (62) and (VI.2). For all ¢ € & and t ¢ x we have

S ()05, = Hy + Hou
SCz

where we have used the formula (VL.3) with A = ¢t and ¥ = x. Hence the
condition (61) is equivalent to the condition (H1). Again by (VI.3) we get

> (=0FS05us Y Haus,

SCxr . xCJ . Hmuf[

T - - ;
> (_1)‘$I\S|9AUS > H.uz, zCJ >, H.uz,
SCxr zCA zCA

and hence the condition (62) follows from the condition (H2). The rela-
tion (VI.2) is clearly equivalent to (VI.1) using (II1.3) and (VI.3).
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2) SurriciENcy. Let H = {H,, © € &} be the H-system corresponding to the
Q-system 6. Let us verify that H satisfies the conditions (H1) and (H2). For
the first one see the proof of necessity. For the second one, using (II1.3) and (VI.3)

we can write

> (—nlEEn g, (e (<)l

Hyuz,  Rcauz _ JCw SCa;
Z HZUEI Z HZUEI Z HZUE[
zCA zCA zCA

S (—D)lEnSlg g

= (=pi= SSI( YENS]
—1)IZ1\>10, 5
JCx SCxr

and hence the condition (H2) follows from the condition (62). Thus, by the
preceding theorem there exists a quasilocal specification Q satisfying (Q1), (Q2)
and (VI.1). Hence it satisfies (VI.2) too, which concludes the proof. 0

Let us note here that the class of specifications that we have considered in this
section, i.e., the class of all quasilocal specifications satisfying the conditions (Q1)
and (Q2), includes the class of Gibbsian specifications with uniformly convergent
interaction potentials as the particular case when we have Q% (z) > 0 for all
Ae &, xC Aand T C A°.

Finally let us turn to consider the case of arbitrary finite state space Z". As always
we suppose that there is some fixed element () € 2~ which is called vacuum and
we denote Z27* = 2"\ {0}. The generalization of the Theorem VI.1 to this case

is quite straightforward.

THEOREM VI.3. — Let Q = {Qi, ANe & andx € %AC} be a quasilocal

specification satisfying
(Q1) Q%(@) >0 forall A € &,

Q2) Q%)+ QPx®y) >0 forall A€ &\ (P}, t € A and @ € 27N\

ye*
Then there exists a H-function H = {Hw, xe 2, Je é"} satisfying

(H1) Hy+ Y Hygy, >0forallze 27, J€ & and t ¢ J,
yeA*
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(H2) for all A € &\ {p} and = € 2 there exists uniformly on ® € 2

the limit
lim —Hm@z[
nzv %VA H.ez, '
z€

and such that for all A € &\ {¢} and all j € 2*7, J € & such that J C A® we

have

QY(x) = Hﬂ’i@@_ xe 2 (V14)

Conversely, if H is a H-function satisfying (H1) and (H2), then one can find
a quasilocal specification Q satisfying (Q1), (Q2) and (VI.4).






Part 11

Identification of random fields






VII. Parametric estimation I

In the preceding chapters we have seen different approaches towards description
of random fields (P-functions, Q-functions, Q-systems, H-systems and one-point
systems). In the remaining part of this work we will consider the problem of
statistical identification of random fields. More precisely, we will concentrate on
the random fields specified through translation invariant (stationary) one-point
systems, since the latter ones provide a parametrization of random fields suitable

for statistical inference.

In this chapter we consider the problem of estimation of local one-point systems.
The problem is clearly parametric in this case. In the next chapter we will
consider the nonparametric problem of estimation of one-point systems in the

case they are quasilocal.

For simplicity of notation we will consider the {0,1} case but, as we will
mention in the last section, the results holds in the case of arbitrary finite state
space Z . We will construct an estimator as a ratio of some empirical conditional
frequencies and prove its exponential consistency and its LP-consistency for all

p € (0,00).

Let us note here, that for maximum likelihood estimators F. Comets in [3] also

gets exponential consistency using the theory of large deviations.

Note also, that in general the problem of estimation for Gibbs random fields is
complicated by such classical phenomenons of Gibbs random fields theory as non-
uniqueness (|¢| > 1) and translation invariance breaking. In our work the results
are established irrespectively of this aspects of Gibbs random fields theory, since

they hold uniformly on ¢, independently of |¢4| = 1 or not.

Finally, let us remark that the problem of estimation for Gibbs random fields is
very interesting and important, since the results can be used in so-called “image
processing”. Parametric statistical inference for Gibbs random fields is now quite
well developed in classical Gibbsian setup. The actual state of the theory is well

presented in the monograph by X. Guyon [14] and the references therein. For
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more information on image processing and parametric statistical inference for
Gibbs random fields, the interested reader can also see [3], [11], [15], [21], [22]
and [26] — [112].

VII.1. Statistical model

We consider vacuum specifications with state space 2" = {0,1} specified through
one-point systems. Let us at first note that a vacuum specification Q is
translation invariant if and only if the corresponding one-point system h is
translation invariant, i.e., if we have
i = s

for all t,s € Z”. In this case, clearly one needs to know only the subsystem
{hf, T CZY\ 0}, where h® = hZ and 0 is the origin of Z". This subsystem will
be the object of statistical interest in the remaining part of this work. Since it
determines the whole one-point system we will use the same notation h for it.

Condition of the quasilocality in this case will be written in the form

I)= sup |h® —h®| — 0.

We denote 77 = {h : h is quasilocal and translation invariant}. To any h € 7
we associate some specification Q and hence some sets 4(h) = ¥(Q) and
“.i.(h) = 4. (Q) of random fields described by the Theorem 1.8. Recall that
non-uniqueness and translation invariance breaking are possible. Note that if
h € 7 is strictly positive, then Q is Gibbsian (for some uniformly convergent
potential), and hence we have ¥4(h1) N¥(hy) = @ if hy # ho, which is nothing

but identifiability condition for our model.

In this chapter we consider the subclass
Hoe = {h : h is local and translation invariant} C .

Suppose h € /. is some unknown one-point system. As we already know,
h induces a set ¥(h) of Gibbs random fields. In the sequel A,, will denote the
symmetric cube with the side size n centred at the origin 0 of Z¥. Here without
loss of generality we assume that n is odd. We observe a realisation of some
random field P € ¢(h) in the observation window A,,. That is, based on the

data ®, = *, C A, generated by some random field P € 4(h) we want to

An
estimate h. More formally, the statistical model is

{Q, F, Pe¥Y(h), he )5}
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where 0 < A < B < oo are some constants, 0 € V € & is some fixed finite set, and

%AYB is the space of one-point systems satisfying the following conditions.
(C1) h € JAqc, i.e., h is local and translation invariant.
(C2) For all T C Z” \ 0 we have A < h® < B.

(C3) The “neighbourhood of locality” is included in V* =V '\ 0, i.e.,
sup ‘hil —hf‘ =0
TCZ¥\0

it DOV*.

Let us remark that our statistical model is a bit unusual, in the sense that
the probability measure P is not determined by the parameter h. Rather, h
determines some set ¢4 (h) of probability measures. The observations come from
an arbitrary element of this set but we are not interested in this element, the
only object of interest is the parameter h itself. That is, we want to identify the
class 4(h) corresponding to (unknown) one-point system h, and not a particular
element of this class. In fact, this is the reason for which our results hold
irrespectively of non-uniqueness and translation invariance breaking. In some
sense, if |4(h)| > 1, then P € 4(h) can be viewed as P = P(h, ), and only h
is the parameter of interest (something like semiparametric statistical problem),
while all our considerations will be performed on conditional distributions, the

latter ones depending only on h, and not on wu.

Remark also, that since (C1) and (C2) imply that we are in the Gibbsian case,
by the Theorem 1.8-4 our model is identifiable: ¥ (h1) N¥Y(hy) = @ for hy # hs.
Finally note, that this identifiability will not be used explicitly in establishing

our results.

Any real-valued random function h,, = {E: , TCZLV\ 0} constructed from x,,

is said to be an estimator of h. The distance between the estimator h,, and the

true value h is measured in the supremum norm:

|7, — h|| = sup |hn —WF

ZCZ\0

The estimator h, is said to be consistent, if for any h € %AYB we have

| Ry —h| e 0 in probability, uniformly over P € ¢ (h), i.e., if for any h € 5,5
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and any € > 0 we have
sup P(Hh —h|| > 6) — 0.
Pe¥(h) n—00
The estimator h,, is said to be uniformly consistent, if it is consistent uniformly
on h € ,%”AYB, i.e., if for any € > 0 we have

sup sup P(Hh —hH >5) — 0.
het,V, Ped(h) e

The estimator h,, is said to be LP-consistent for some p € (0,00), if for any
h € %AYB we have HE hH — 0 in LP, uniformly over P € 4(h), i.e., if for

n—oo

any h € %”AYB we have
Sup E Hh — th — 0.
The estimator h,, is said to be uniformly LP-consistent for some p € (0,00), if it

is LP-consistent uniformly on h € %AVB, i.e., if we have
sup sup EHh —th — 0.
het,V, Ped(h) el
Let us finally note here, that if the random field corresponding to a one-point
system h is unique, then all the statistical model, the identifiability and all
the notions of consistency regain their classical statistical sense. To guaranty
uniqueness one can suppose, for example, that h satisfies the Dobrushin’s

uniqueness condition.

VII1.2. Construction of the estimator

Let us at first note that by (V.5) we have
e QB0 _ QE()
0

h® = hE = 22 =

Qo(@)  Qg(0)
Further, we see that the conditional probabilities Q%(z), z € {0,1}, are equal

(VIL1)

to PO|V* (x ‘ EV*) = P(§0 =x | e = EV*). In fact, using total probability
formula and the condition (C3) we get

PO\V* x ‘ “’v* / Qov*uy Py (dy ‘ Ev*) =
e
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Now, if n is large enough, then P0|V* (:c ‘ EV*) can be estimated by the “empirical
conditional frequency” of the value x observed in some point t € A,, given that
Ty, +t is observed on the set V* 4 t.

More precisely, let (n) be the periodization on Z" of the observation x,,, that is,
(z(n)) A, gnt = Tn +ntforall t € Z”. Note that equivalently periodization can
be viewed as wrapping the observation @,, on a torus. Now, for every T C Z" \ 0,

let us put

Alz{yCZ” : yV:EV*UO} and Aoz{yCZ” : yvzfv*}.

Let us also put

N' = Z Lia(n)—teary and N° = Z La(n)—teaoy-
teA, teA,
Clearly, N! and NV are the total numbers of subconfigurations of x, of the

“form” V' and equal to T,. U0 and T . respectively.

Now we define our estimator ;\Ln by
N'/NY if N° >0 and N* > 0,
hE = A ifN'=0,
B if N9=0 (and N > 0).

Note that the cases N = 0 and N' = 0 are asymptotically not important.
Moreover, we could have not considered at all the second case, that is, we could
have put the estimator still to be N! / N® = 0. Our definition of the estimator
pursues rather practical aims, and is motivated by the following reasons: NY = 0
means that Q3(0) ~ 0 and hence h® is “large”, while N' = 0 means that

QZ(1) ~ 0 and hence h® is “small”; but we know a priori that A < h* < B.

Let us note here, that the idea of using empirical conditional frequencies to
construct estimators, as well as some results on consistency of estimators of
such type for parametric models in the classical Gibbsian setup, can be found
in [21], [22], [11], [15] and [14].

VII.3. Asymptotic study of the estimator

In this section we will show the uniform exponential consistency of our estimator,

as well as its uniform LP-consistency. The first one is given by the following
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THEOREM VIIL.1 [Uniform exponential consistency of the estimator]. — As-
sume that h € JKAYB and h,, is our estimator. Then there exist some positive
constants C, « > 0 such that
sup sup P(H/ﬁn—hH >5> <C’e_o‘52nv
het,V, PeY(h)
for alle € (0,1/2) and all n € N, i.e., the estimator h,, is uniformly ezponentially

consistent.

Proof: All throughout the proof C' and « denote generic positive constants which

can differ from formula to formula (and even in the same formula).

The first component of the proof is the following lemma, giving us a uni-
form lower bound for the conditional probabilities Q% (x) and for the proba-
bilities P (x).

LEMmMA VII.2. — Let P € 9(h) for some h satisfying the condition (C2).
Then, uniformly on & C A and ® C A°, we have
Qi(x) = e VA and  Pu(x) =e N

where b* = max{In(1 + B), In(1 + B) —In A}.

Proof: The second assertion clearly follows from the first one using the total
probability formula. By the same formula and properties of conditional distribu-
tions the first assertion clearly can be derived from the bound Qg (z) > =" for
allz C Z¥ \ 0 and = € {0,1}. But by (C2) we have

Qg(l):1ihf>1f3 and Q§(0):1+1h5>1j3
and hence
Qi(x) > min{ A 1 } — emin{ln A=In(1+B),~In(1+B)} _ ~b*
oz 1+B 1+B -
The lemma is proved. 0

Now, let us decompose A,, in the following way. We denote v = sup ||t|| and, for
teV

technical reasons, we suppose that n = m (3y + 1) for some m € N. Then A,
is partitioned into m” = n"/(3y + 1)” cubes Dy,...,Dy,» with side 3~ + 1.
Each D; contains (3 + 1)V lattice sites. We order sites of each D; in the
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same arbitrary way. Hence, every ¢t € A, can be referred to as a pair (i,7),
i=1,...,m", j=1,...,(3v+1)", which means j-th site in the cube D;. In the
sequel we will use both the notations ¢ and (7, j) for points of A,,.

If we define

0 __ 1 _
Yi; = La(n)—(ij)eac} and Yij = Lan)—(ij)eary

and
0_ 0 1_ 1
N)=)> Y} and  Nj=) Vi
i—1 i—1
then NY and N! from the definition of the estimator will have the form
B~y+1)" (3v+1)¥
0 0 1 1
N'= > N} and N'= > N
Jj=1 j=1
Note that all Y3, Y;5, N7, Nj, N° and N' depend on n, on @, and on the

observation x,,.

Now, for any & C Z" \ 0, we can write

Tlf—hf = Tlf—hzv* =
(3y+1)"
1
> N
77T _ T =1 z
= Iyno—o or N1=0} [Pty —h"V | + Lynoso, N1>0) JT—h Vel S

< ]I{NOZO}‘B — hPv+ +

+ Loy |4 — BV

By+1)", 71 0
N; N? _
+ ]1{N0>O, N1>O} Z N—JO — N_jo hmv*

j=1
- ]I{No:()}‘B 1| o H{leo}‘A _ pe- |
(37+1)" N1
+ Z Ignoso, N1>0, NO=0} N_j()+
j=1
(By+1)¥ 1 ~
+ D woso, nisop g [N — N ATV
j=1
= D) () + D}(Z) + D3 (=) + D) (%) (VIL2)

with evident notations.

To estimate this four summands we need the following
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LEMMA VIL.3. — Denote I = e IVl Jet \,, = 'm” and fix some r € {0,1}.
Then there exist some positive constant o > 0 such that

NT 2 v
P )\—J<1—8 Le ¥ "

uniformly one € (0,1),n €N, j=1,...,(3y+1)” and T,. € V.

Proof: For definiteness let us take » = 0. We denote by V;; a cube with
side 2 + 1 centred at (i,7), ¢ = 1,...,m", 7 = 1,...,(37 + 1)”, and let
V; =2"\ (Vi;U---UV,v;). Note that V) depends only on the restriction of
our periodized observation x(n) on the set V;;, and that for iy # iy we have
p(Viij s Visi) = v+ 1> 7. So, the restrictions of our random field on V;, ; and on
Vi,; are conditionally independent, and hence, for any A > 0, we have

ml/

_ H -AY)

a:vj> = E(e J
i=1

E(e_)‘NJQ

mw>. (VIL3)

Clearly, using the Lemma VII.2, definition of ng and total probability formula,

we have
B(YS | @y,) > e V- T.

Furthermore, using Taylor expansion formula, we get

B(e%S | 2y, ) = o BODIR) E( (v B3

wv))

J

:ij> <
—AT A2 A A
<e 1+—Qe < exp —)\(F—§e) .

Finally, combining (VII.3), (VII.4), and using Chebychev’s inequality and total

(VILA)

probability formula, we get

N7 A A AN?
P(A—j<1—€> <t Eem AN

< e)\(lfs)l_‘m" exp (_)\ (1—1 _ %6)\) mzl) _

:eXp<—)\m” (eF— %e»).

Now, choosing A = eT'/e < 1, we get

N? r r .
Pl <1—¢) <exp —g—m”<5F—€—) —ac’n
An e 2
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1‘\2
with a = m. The lemma is proved. O

Using this lemma we clearly get

N7 2
P(N}”:O)<P()\” <1—5) Le @™

forall j=1,...,(3v+1)” and r € {0,1}. Therefore we have
P<||D}L(-)H > 5/4) - P( sup |DL(®)| > 5/4> <
TCZY\0

, (VIL5)
< ) P(N°=0)<Ce "
Z, eV
where we take into account that N° depends only on Z., and hence the
supremum over * C Z" \ 0 is in fact a maximum over . € 2V e, a

maximum over 2!Vl = C elements.

In exactly the same way we have

2

P(||D2()] > e/a) < Cemo, (VILG)

and similarly we get

P(||D3()] > e/4) = P( ECSEP\JDQ(@)} > e/4)

(VIL.7)
(3v+1)” ,
< Y, Y PN)=0)<Ce ™.
F .2V =1
Finally, the last summand is estimated by the following lemma.
LEMmMA VII.4. — There exist some positive constants C, « > 0 such that
P(HD;‘;(.)H > 5/4) < Cemas™n” (VILS)

for all e € (0,1/2) and all n € N.

Proof: As before, it is sufficient to show that

1 - 15 2 v
PN} >0,— [N/ =N} hPve| > ————— | <Ce @™,
( J> > NO J J v >4(3,y+1>1/ ©
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We have obviously

3
P NO>O—‘N1 NP h¥ve|> ———— | <
( 4(37+1)V
e NO
<P > —— 0 | S
( 4(37-!—1)“)

By+1) NO
<P< )\—J (1—¢e)(3v+1) >+P<

Jj=1

mY

1 01T, .
Z(Yij—Yz‘jth )

=1

ij

T)\n>

where 7 = (1 —¢)/4 and Wy; = Y} — Y h®v+. The estimate of the first
term easily follows from the preceding lemma. To estimate the second one let
us at first note that using translation invariance, total probability formula, the
formulas (I.5), (VIL.1) and the condition (C3) we have

E(YS [y, ) 1 =P @y, — (i.4)) WV =

ij

. . E *
V’W-(m)( v

z  Ulz, —(i,7)
= OV ( g )( ) Vo

T, — (i,j)) X

V(i) (EV*

X Qp*" (1) / Qg" (0) =

P [, ) G0

V*

=P .

V;=(.5) <EV* Ty T (i’j)> x

% QiV*U<mVj_(’L’J)) (1) _

1
~E(Y} | 2,,).

This implies that
E (Wi

1) ~B(3 | ) - B(38 | ) =
and hence, for any A > 0, using the fact that |W;;| < B’ = max {1,B} and Taylor

expansion formula, we get

E <e’\ Wij

2 /2 2 /2

:ij> <1+

Finally, using Chebychev’s inequality and total probability formula, we get

P< ZWZ] 2 T)\n> < e*’\T”\” Eexp()\ ZWZ]> =
i=1 i=1
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:e—)\TFmV E(HE(GAWU é-Vj)) <

B
< exp(—)\m” (TI‘ - —

Now, choosing A = B2 < 1, we get
- o 7T 2
F2

with o = 5 .
128 B2 eB' (3~ + 1)V

By the same argument we have

nu/2

2 v

P(— ZWZJ 27’)\71) ée_o‘a "
=1

which concludes the proof of the lemma. O

Now, combining (VIL5), (VIL.6), (VIL.7), (VIL.8), and taking into account the
inequality (VIL.2), we get the assertion of the theorem. The uniformity with
respect to P € ¢(h) and h € ¢, is trivial. The Theorem VIL1 is proved. O

Let us note, that taking a closer look on the proof we can give some explicit
constants C' and «, even if they are not necessarily the optimal ones. For example,
one can take

F2
128 B2 eB’ (3y + 1)V

C:ziv*i((37+1)y+1) ((37+1)”+2) and o=

Now let us turn to LP-consistency. The uniform LP-consistency of our estimator

is given by the following

THEOREM VIL.5 [Uniform LP-consistency of the estimator]. — Assume that

h € %”AYB, /ﬁn is our estimator, and fix some p € (0,00). Then, for sufficiently

large values of n, we have

sup sup <E H/ﬁn — th>1/p < n~w/2=0)
het,V, Ped(h)

where o is an arbitrary small positive constant, i.e., the estimator h, is

uniformly LP-consistent.
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Proof: Let us consider e, = n~(#*/279) with an arbitrary small positive con-

stant 0. Using the preceding theorem we get
Elf~hl"= [ Jha-h?aP 4 [ |- h7dP<
[ = |>n [ —h]|<en
< (max{n”,B} + B)? P([[fon — b > &) + 21, <
< Cnl/pe—aeiny +€7Z; —
— Cnupe—anQJ + n—(u/Q—o)p < Cn—(u/Q—a)p

for sufficiently large values of n, where we use the fact that h is bounded by B

and h by max{n”,B}. The assertion of the theorem follows trivially. O

REMARK VII.6. — Note also, that if one enlarges the class JKAYB to the

class 2"V by replacing the condition (C2) by a weaker condition of strict
positivity

(C2’) for all T C Z¥ \ 0 we have h® > 0,

then for any h € 7V there exist some constants A = A(h) and B = B(h)
such that the condition (C2) is satisfied, and hence one can still obtain (no
longer uniform) exponential and LP consistencies of our estimator. Clearly, in
this setup the definition of our estimator needs to be slightly modified for the
cases N' = 0 and N° = 0. For example, we can put the estimator to be equal to

some arbitrary fixed h > 0 in this cases.

VII.4. Generalizations to the case of arbitrary finite state
space

Now let us consider the case of arbitrary finite state space 2. As always we

suppose that there is some fixed element () € 2" which is called vacuum and we
denote 27 = 2\ {0}.

As in the {0,1} case, we consider subsystems {h%(z), z € 27, T € ZL\0},
where h®(x) = h&(x), of translation invariant one-point systems. The statistical

model is

{Q, F, Pe¥(h), he )5}
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where 0 < A < B < oo are some constants, 0 € V € & is some fixed finite set, and

%AYB is the space of one-point systems satisfying the following conditions.
(C1) h € JAqc, i.e., h is local and translation invariant.
(C2) For all z € 2 and ® € 272"\% we have A < h®(z) < B.

(C3) The “neighbourhood of locality” is included in V* =V '\ 0, i.e.,
sup  sup |h§f(m) — hf(x)‘ =0
T€EX* TeLLV\O
if I D V™.

The distance between the estimator h,, and the true value h is measured in the

supremum norm:

B () — h‘”(x)‘.

||En - hH = sup sup
T€EX* TeLTV\o
As before, we let x(n) be the periodization on Z" of the observation x,,, and for
every x € 2 and T € 272"\0 we put
— zv . — 0 _ V. —
Aw_{ye% .yAk—ch;@xo} and A —{yE% .yAk_ch*}.

We also put

N = Z Liz(n)—teas} and N’ = Z Lia(n)—teany-
teA, teA,

Now we define our estimator IAzn by
N=/N® if N? >0 and N® > 0,
hE(z) = A ifNT=0,

B if N =0 (and N* > 0).

In this setup, the theorems corresponding to the {0,1} case hold in the general

case without reformulation. That is, we have the following theorems.

THEOREM VIL.7 [Uniform exponential consistency of the estimator]. — As-

sume that h € %AYB and iAln is our estimator. Then there exist some positive
constants C, « > 0 such that

2nu

sup sup P(HiAzn—hH >€> <Ce ¢
heij‘fB Pc¥%(h)

foralle € (0,1/2) and all n € N, i.e., the estimator h,, is uniformly exponentially

consistent.
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THEOREM VIIL.8 [Uniform LP-consistency of the estimator]. — Assume that
h € %AYB, i\zn is our estimator, and fix some p € (0,00). Then, for sufficiently
large values of n, we have
~ 1/p
sup sup <E th — th> < n~W/2=0)
hex,", PeY(h)

where o is an arbitrary small positive constant, i.e., the estimator h,, is

uniformly LP-consistent.

Let us note, that here again one can give some explicit constants C' and a. They
will be given by the same formulas as in the {0,1} case, except that the first term
in the expression for C' will be equal to |.2°|!V"|, and in the Lemma VII.2 we will
have b* = max{In(1 + [27*| B),In(1 4+ |2™*| B) —In A}.

Finally note, that the considerations of the Remark VII.6 clearly hold in this

general case.



VIII. Nonparametric estimation I

In this chapter we consider the problem of nonparametric estimation of quasilocal
one-point systems. We construct an estimator by combining the ideas of the
previous chapter with the main idea of the method of sieves (introduced by
U. Grenander [13]): approximation of infinite-dimensional parameter by finite-
dimensional ones. We prove exponential consistency and LP-consistency, for all

p € (0,00), of our sieve estimator in different setups.

Let us note here, that unlike parametric statistical inference for Gibbs random
fields, the nonparametric one seems to be less investigated. We can mention here
a preprint by C. Ji [15]. He considers a classical Gibbsian setup where the random
field is described by an exponentially decreasing pair-interaction potential. For
this model he studies the sieve estimator of “local characteristics”. The proof
presented there needs some rectifications. Our work is similar to [15] in that our
one-point system is in fact something similar to local characteristics, and in that
we study the sieve estimator. But unlike [15], our setup is much more general
and in our case we estimate the object (one-point system) which itself describes
the random field.

Let us finally note here, that though we consider in this chapter only the {0, 1}
case, in the setup of the last section of the previous chapter all the results of
this chapter are generalized to the case of arbitrary finite state space 2~ without

reformulation.

VIII.1. Statistical model

We adopt here all the notations of the Section VII.1.

Suppose h € J¢ is some unknown translation invariant quasilocal one-point
system. As we already know, h induces a set ¢ (h) of Gibbs random fields. As
before, we observe a realisation of some random field P € ¢4 (h) in the observation

window A,. That is, based on the data =, = x, C A, generated by some

An
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random field P € 4(h) we want to estimate h. More formally, the statistical

model is

{0, 7, Peyn), her}

where 0 < A < B < oo are some constants and %Ae)g is the space of one-point

systems satisfying the following conditions.
(C4) h € S, i.e., h is quasilocal and translation invariant.
(C2) For all T C Z” \ 0 we have A < h® < B.

(C5) The “rate of quasilocality” is exponential in the sense that

7(I> = Sup |h§[ — h5 < cefap(jc\oﬂ))”_(S
TCZ\0

where ¢, a and § are some positive constants.

Note that ¢, a and ¢ are not supposed to be known a priori and may differ for
exp

different h € %A,B )

Sometimes we would rather use the equivalent form of the condition (C5)

p(d) = sup sup ‘hif - hi‘ <ce @™
I:p(I°\0,0)>d =CZ"\0

and we will call the function ¢(-) rate of quasilocality.

Note that (C4) and (C2) imply that we are in the Gibbsian case, and hence
by the Theorem 1.8-4 we have identifiability: ¥ (h1) N9 (hy) = @ for hy # ha.
Finally note, that as before this identifiability will not be used explicitly in our

demonstrations.

VIII.2. Construction of the sieve estimator

The main idea of the estimator is to take some k = k(n) and approximate h* by
the ratio of the conditional probabilities with condition in the volume Aj. For
this we use the formula (VII.1) and we approximate the conditional probabili-
ties Q& (x), = € {0,1}, by P0|A; (z | EAZ) where Ay is called sieve and k = k(n)
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is called sieve size and is supposed to grow fast enough. In fact, using total

probability formula and quasilocality condition, we have

*Uy
PO\A* z | ‘”A* / Qo PAC\A* (d7 | *’EA*) ~

~ Q) [ Py (@ ]3,;) = Q5

C
2k

On the other hand, if k£ grows much slower than n, then P0|A* (ac ‘ EA*) in
k k

its turn can be estimated as before by empirical conditional frequency of the

value = observed in some point ¢t € A,, given that T,. + t is observed on the set
k

A+t
More precisely, we define

Further, just as in the parametric case, we put

N' = Z Liw(n)—teary and N® = Z Lie(n)—teaoy,
teA, teA,

and finally we define the sieve estimator iAzn by
Nl/NO if N> 0and N! > 0,
hE = A ifN'=0,
B if N9 =0 (and N* > 0).

VIIIL.3. Asymptotic study of the sieve estimator

Note that the definition of the sieve estimator depends on the choice of k.
Choosing k too large may result in insufficient number of repetitions of the
subconfiguration EAZ in x,, i.e., one can have too often N = 0 or N! = 0.
On the other hand, choosing k& too small may result in poor quality of the
approximation QZ(z) ~ Py, Ax (:E ‘ E3 AZ)' The following theorem shows a “good”
choice of k. As before, we denote b* = max{In(1 + B), In(1 + B) —In A}. We
denote also d* = v/(2b*).
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THEOREM VIII.1 [Exponential consistency of the sieve estimator]. — As-
sume that h € ,%”Ae’);p and h,, is the sieve estimator with k = [(d Inn)'/¥] and
d € (0,d*). Then, for any h € %Ai;p and any € > 0, there exist some positive
constant o > 0 and some ng € N such that

~ v—2db*
sup P(th—hH >€> L<e " /Inn
Pc¥%(h)

for all n > nyg, i.e., the estimator /f;,n is exponentially consistent.

Proof: All throughout the proof C,a and ny denote generic positive constants

which can differ from formula to formula (and even in the same formula).

The main component of the proof of the theorem is the so-called “conditional
mixing lemma”.
LEmMa VIIL.2 [Conditional mixing]. — Let P € ¢ (h) for some h € (%”Aej;;p
and let ¢(-) be the corresponding rate of quasilocality. Let also L = L(n) € N
and let the sets Ry = Ri(n),..., R, = Ry(n) be finite subsets of Z" such that
p(Ry,, Ry,) = [y, for {1 # £y where (3, — oo and

lim max |Ry|¢(6,) = 0.

n—oo 1<l<L

Denote R = 7%\ (R1U---URy) and suppose uy : Z % — R, £=1,...,L, are

some bounded measurable functions. Then

L L
Er U URL R ( H ue(zp,) 9372) = ( H Erir (w (zg,) ’ acR>> (14 6,)F
=1 =1
(VIIL.1)
where ERg\’R is the expectation with respect to PRMR and
n = n) |- I11.2
6, = O e |Rel (5,)) (VIIL2)

Proof: First of all let as note that if &; = y; for all ¢ such that p(t,0) > d then
by (C2) and (C5) we have

ln%' = |Inh¥ —Inh*| < C|hY — h*| < Cp(d).

Now suppose K1 = Ki(n), Ko = Ks(n) and K3 = Ks3(n) form a disjoint

n)
decomposition of Z¥ such that Ky € & and p(K;,K3) > (,. Then, using
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translation invariance and the formula (V.2), for all &, ' C Z" we easily get

’

H:BK?’ UwKz

lnﬁ < Clag, [¢(Bn) < CK1|[o(Bn).

If, moreover, |K1|p(B8,) — 0, then clearly

/
T Ux
K3 Ko

—om — 1 = O(IKule(8n))-

Now we can see that for all =, 2’ C Z"

’

x, Uz T Uz
/ K3 T Ky K3 Ko
KSU:BKQ _Hle Z HS
Qp, (Tg,) o SCK: _
T Uz - Uz’ —
K3 " Ky x, . Uz %
Qxk, (Tg,) H o = H, ™
) N
CK1
x, Uz’ /
K K T Uz T Ux
H,? 2 H.K3 K2 H KK
_ K1 E : S S _
- T, Uz z Uz’ x Uz’
K3z 7 K2 K3 Tk, K3 7Ky
HmKI ScKr > H, Hyg
JCK1

Hng U-"U/KQ U’ HmKsusz
;UK iEK xr S
= (W”) +1] D0 QM) (W‘Q +1

H,™3 K3~ Ky
le SCK1 HS
wK3U ;<2 x, Uz
Hy z, Uz’ H. 53 K2
$K3U2EK2 : : K, K3 z, Ux’
Hle SCK; H™® e

T
H:cKS 2 z, Uz’ HmKSU$K2
+<mKl—UmK2_1 + Z QK13 KQ(wK:’,) ﬁ_l +1
H

SCK; g

= A, +1 (VIIL3)

where A,, = O<|K1| gp(ﬂn)>. Using the last formula and the total probability

formula we get forall / =1,....n

P o, lRUR U LR, (ng | rpUxp U---U ng_l) = PRZ\R(ZBRe | ‘”R) (14 6n)

where §,, satisfies (VIII.2). Multiplying this relations over £ = 1,...,n we

get

L
PRlu..-URL|R(wR1 U-Uzg, |og) = (HPRZIR(CER@ | a:R)> (14 6,)F

(=1
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which implies (VIIL.1). The lemma is proved. O

In order to use the conditional mixing lemma, let us decompose A, in the
following way. For technical reasons suppose n = 2mk for some m € N.
Then A, is partitioned into m” = n"/(2k)" cubes Dq,..., Dy with side 2k.
Each D; contains (2k)” lattice sites. We order sites of each D; in the same
arbitrary way. Hence, every t € A, can be referred to as a pair (i,j),
i=1,....m", j=1,...,(2k)", which means j-th site in the cube D;. In the

sequel we will use both the notations ¢ and (i, 7) for points of A,,.

If we define

0
Yii = Wa(n)—(i,5)c a0} and Yii = Na(m)—(ij)ear

and
0 0 1 1
N)=>Y) and  Nj=) YV}
=1 =1

then NY and N! from the definition of the sieve estimator will have the form

(2h)" (2h)"

0 _ 0 1 _ 1

N'=>"N) and N'= ) N/
j=1 j=1

Yl

YK

Note that all Y2

s NJ, Nj, N and N' depend on n, on T). and on the

observation x,,.

Now, for any T C Z" \ 0, we can write

hT T < [ — BT 4 [hT RN =
B hi‘ + A no—o or N1y |RE — R |4
+ Inoso, N1>0} % A <
< |0 = 1|+ Aoy | B = 07|+ T[4 — 27 |+
j=1
N ‘h% B ’ﬂ + lgvo=o) ]B — B 4 gy ‘A — T+
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(k)" N1

+ Z Iy noso, N1>0, NO=0} N—JO"‘

(2K)"

1 *
+ Z ]l{N0>O N1>0} NO le Noh Ak =
j=1

= D, (z) + D:(z) + D3 (z) + D(z) + D2(%) (VIIL4)
with evident notations.
First of all, by (C5) we have

D5 ()] = sup )hmA; — 17| < plk) <ce ™ — 0
TCZ¥\0 n—oo
and hence
P(||DL()] > 2/5) =0 (VIIL5)

for n > ny.
To estimate the remaining summands we need the following
LEMMA VIIL3. — Denote I'(n) = n=%"" let A\, = T'(n)m” = n*~4"" /(2 k)"

and fix some r € {0,1}. Then, for any ¢ € (0,1), there exist some positive

constant « > 0 and some ng € N such that

P(ﬁ <1 _6) Lean 2 /inn
X\ S ’

n

uniformly on n > ng, j =1,...,(2k)” and EAZ e 2Nk,

Proof: For definiteness let us take » = 0. We denote by V;; a cube with side £ cen-
tred at (4,7), t=1,...,m", j=1,...,(2k)",and let V; = Z" \ (V1; U--- U V).
Note that Yg depends only on the restriction of our periodized observation x(n)
on the set V;; and that for i1 # iy we have p(V;,;,Vi,;) = 2k — k = k. So, for

any A > 0, it follows from the conditional mixing lemma that

wvj) (14 6,) m” ﬁE( Y3
=1

with 8, = O(k” ¢(k)) = O(d Innce kVH) =o(n™?) for all 8> 0.

E(e_)‘NJQ

2, ) (VIILG)

Clearly, using the Lemma VIIL.2, definition of Yg and total probability formula,

we have
E(YO | mvj) > efb*\Ak| > efb*dlnn _ F(n)
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wvj) <
(VIIL.7)

A2 A
<e 1+ 5 ¢ ) Sexp A(I‘(n) 2e>

Finally, combining (VIIIL.6), (VIIL.7), and using Chebychev’s inequality and total

probability formula, for sufficiently large values of n we get

N? 0
P <1-o) i menn

n

Furthermore, using Taylor expansion formula, we get

B(e78 [ay,) = B0 (o 002

mvj))

g e)\ (1—&)(n) m” exp <_)\ <F(n> o %e)\> ml/) (1 + 5n)my <

<C exp(—/\m” <6F(n) - %e/\)).

Now, choosing A = eT'(n)/e = en=%"" /e < 1, for sufficiently large values of n we

get

/A

NO R . epdb
P2 <1-¢)<Cexp(— ( —db )
(An < E) eXp( e 22dln\" >

<e @ n”_2db*/lnn
X

2

?fm. The lemma is proved. 0

with an arbitrary a <

Using this lemma we clearly get

r

N' v—2 *
P(N! =0) <P(A—J < 1—5) Lemon P

forallj =1,...,(2k)”, r € {0,1} and for sufficiently large values of n. Therefore,

for sufficiently large values of n, we have

P(||D3;(.)H > e/5> - P<5CS;£)\O|DEL(§)‘ > 5/5) <

. (VIILS)
< Z P(NOZO) ge—an”7 /1nn

_ A*
ccA*Efl k
k

where we take into account that N® depends only on EAZ, and hence the

— . . . — * .
supremum over * C Z” \ 0 is in fact a maximum over T,. € M e, a
k

maximum over 2/8% < 24107 glements.
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In exactly the same way we have
P(HD?;(-)H > 5/5) eman” M/, (VIIL9)

and similarly we get

P(|D0)]| > =/5) =P( _sup |Di@)| > </5) <

FCZY\0
VIII.10
e ( )
v—2db*
< XY P@Iop <o
EAZGEK% g=1
Finally, the last summand is estimated by the following lemma.
LEmMA VIII.4. — For any € € (0,1) there exist some positive constant o > 0
and some ng € N such that
(O ) R (Vi)

for all n > ng

Proof: As before, it is sufficient to show that

> € < efan"_2db*/lnn
502k ) '

P<N0>0 —‘Nl Noh

We have obviously

P<N0>O —‘Nl NO R

<P mzy(yl—th%) T I
S Ry 52k ) S

=1

(2k)” mY
(Z = 1—5)(2k)”>+P( mn>
=1

where 7 = ¢ (1 —€)/5 and Wy; = Y} — Y h"%k. The estimate of the first term

easily follows from the preceding lemma. To estimate the second one let us at

ij| =
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first note that using translation invariance, total probability formula and the
formulas (I.5), (VIL.1) and (VIIL.3) we have

T, — (@J)) K =

E<ng ‘ "%) n =P

J

BN 7
Ak|Vj—(m)< AL

z,.U(,, —(0.4))

—Q," (0) P

Ak*}Vj—(i,j) (EAZ Ty, — (Z’j)> %
Q" (1) /@y (0) =
=1+ pn) PAMM_(LJ.) (EAZ T, — (Z-,j)) QiA;(l)
=40 Py (@a; | @0, = ()
i) g
=B(Y) |2y, ) (1+00)

where p, = O(p(k))

O(ce_“ ky+6> = o(n_ﬁ) for all 8 > 0.
This implies that
E<Wi' ‘ ww) - E<Yz; ’ f”w) - E<Yi(3)‘ f”vj) n = O(pn)

and hence, for any A > 0, using the fact that —B < W;; < 1 and Taylor expansion
formula, we get
wv]) <

E(eAWin w]}.) :e)‘ E(WZOJ mvj))

a:vj) B (eA (W;’j—E(W{}

2 2
< A O(pn) (1 n A (B+1) o (B+1)) <
2

A2 (B+1)?
< exp ()\ O(pn) + % o (B+1)>_

Finally, using Chebychev’s inequality, total probability formula and conditional
mixing lemma, we get

P( > Wi > mn) <e M Eexp()\ ZWM) <
=1 =1

v

< e*)\TF(’I’L)m“ E( HE()\GW”
i=1

gvj)) (1+8.)"" <
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v

e 2(B 4 1)2 "
<Cef/\7'n 4% m (eXp<)\O(pn)+)\ ( 2+ ) e>\(B+1)>> <

x 1)?
< C exp (—)\ m” (7’ n =10 — % Aer (B O(Pn)))

*
Tn_db

(B + 1) eB+1

m” —db* v —db*
TN n TNn
P Wi =21 | <C — <
( ; o ) exp( (B+1)%eBtt 27dInn 2 )

_ *
—an?"24% /Inn

Now, choosing \ = < 1, we get

<e

7_2

2v+1 (B + 1)2 eB+1 g

with an arbitrary a <

By the same argument we have

ml/
v—2db*
P(—E:Wij27)\n><e_°‘” /e
=1

which concludes the proof of the lemma. O

Now, combining (VIIL5), (VIIL.8), (VIIL.9), (VIII.10), (VIIL.11) and taking into
account the inequality (VIIL.4), we get the assertion of the theorem. The
uniformity on P € ¢ (h) is trivial. The Theorem VIII.1 is proved. 0

Let us note, that from the details of the proof it clearly follows some explicit
expression for the constant «. For example, if € € (0,1), then one can take an

arbitrary

,7_2

o< 5 .
2v+1 (B + 1)%eB+1

Note also, that taking a closer look on the proof we can give a “more precise”
bound on the rate of consistency, showing explicitly the dependence of the rate
on e. That is, for € € (0,1/2), we have the bound

ﬂ{Gcn—“d(d /v ) + Yy exp{—a e2n’"24 /Inn 4+ O(p,) Bsn”*db*/lnn}

1 1
where a = , B = and the

25.2v+3 (B 4 1)%eB+1d 5.2v+1 (B +1)%eBt+1d
sequence 1, is given by 1, = 2417 (2” dlInn+ 1) (2” dlInn+ 2).
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Using this last bound, just as in the parametric case, we easily obtain the

following

THEOREM VIIL5 [LP-consistency of the sieve estimator]. — Assume that
h e 4%”;};), h,, is the sieve estimator with k = [(d Inn)*/*] and d € (0,d*), and
fix some p € (0,00). Then, for any h € %Ai)g) and for sufficiently large values
of n, we have

sup (B [f, —h[[") " <n-tr/zmar o
Pc¥(h)

where o is an arbitrary small positive constant, i.e., the estimator /f;n is LP-

consistent.

Remark, that unlike the parametric case, the condition (C2) is really important
here, that is, the considerations of the Remark VII.6 do not hold in this case.
Indeed, the constants A and B are present in the rates of consistency (under

the form of b*) and even in the definition of the estimator (under the form
of d*).

Let us finally note here, that the consistencies of the sieve estimator proved in
the Theorems VIII.1 and VIIL5 can be trivially straightened to be uniform, if we
consider a narrower class of one-point systems by fixing not only the constants A
and B from the condition (C2), but also the constants a, ¢, and § from the
condition (C5). More precisely, let H = A (A, B, a,c, (5) be the class of one-
point systems satisfying (C4), (C2) and (C5) with some a priori fixed constants
A, B, a, c and §. Then the following theorems hold.

THEOREM VIII.6 [Uniform exponential consistency of the sieve estimator]|. —
Assume that h € # and h,, is the sieve estimator with k = [(d Inn)*/*] and
d € (0,d*). Then there exist some positive constant o > 0 and some ny € N such
that
T —an”fzdb*/lnn

sup  sup P(th — hH > 8) <e

he# PcY(h)
for all ¢ € (0,1/2) and all n > ng, ie., the estimator h, is uniformly

exponentially consistent.

THEOREM VIIL.7 [Uniform LP-consistency of the sieve estimator|. — Assume
that h € #, h, is the sieve estimator with k = [(d Inn)'/*] and d € (0,d*),



Chapter VIII. Nonparametric estimation 109

and fix some p € (0,00). Then, for sufficiently large values of n, we have

sup  sup <E HiAzn _ th> e < (/2= —0)
he# Ped(h)

~

where o is an arbitrary small positive constant, i.e., the estimator h, is

uniformly LP-consistent.

VII1.4. About a different choice of the sieve size

Let us note that all the bounds on the rates of consistency obtained in the previous
section are “slowered” by the constant d from the definition of the sieve size k.
Hence, one can think about getting rid of the terms containing d by slightly
modifying the choice of the sieve size k. In fact, we will show below that in the
case of the space j/iz, by putting k = [(ln n)l/(”+5/2)], one can get almost the
same bounds on the rates of consistency as in parametric case. Note that we no
longer put d in the definition of k. The reason for this is the fact that even if we

have put it, it would not be present in the rates of consistency.
As before, we denote b* = max{In(1+B), In(1+B)—In A}. We also denote

and x(n) = I:y((:))

I'(n) = p 0" (Inn)=0/Evo) )1_5/(2 )

, 7(n) = (lnn
One can easily verify that the functions I'(n), v(n) and s(n) are slowly vary-
ing (in the sense of Karamata), i.e., for any ¢ > 0 we have, for example,

»#(cn)/x(n) — 1. Moreover, we have I'(n) — 0 and »(n) — 0. Let

us note here, that since I'(n) and s(n) are slowly varying functions, then they

tend to 0 slower than n=” for all 3 > 0. Similarly, we have y(n) — oo, and

n—oo

this convergence is slower than n? for all 8 > 0.

THEOREM VIIL.8 [Uniform exponential consistency of the sieve estimator]|. —
Assume that h € S and h,, is the sieve estimator with k = [(In )t/ (/2]
Then, for any € > 0, there exist some positive constant a > 0 and some ng € N
such that

sup  sup P(HiALn - hH > 5) L e axmn”

he# PeY(h)

-~

for all n > ng, i.e., the estimator h,, is uniformly exponentially consistent.
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Proof: All throughout the proof C,a and ng denote generic positive constants

which can differ from formula to formula (and even in the same formula).

As in the proof of the theorem VIII.1, we apply the conditional mixing lemma
by doing the same decomposition of A,, as before. The inequality (VIII.4) and
the estimate (VIIL.5) of the first summand are clearly still valid.

To estimate the remaining summands we need the following

LemMa VIIL9. — Let A, = I'(n)m” and fix some r € {0,1}. Then, for
any € € (0,1), there exist some positive constant o > 0 and some ng € N such
that

NT y

P(—J <1 —e) Le axmn ,

An

uniformly onn > ng, j=1,...,(2k)” and T,. € LAk
k

Proof: For definiteness let us take r = 0. We denote by V;; a cube with side k cen-
tred at (,7), i=1,...,m", j=1,...,(2k)",and let V; = Z" \ (V1; U--- U Vo).
Note that Y£ depends only on the restriction of our periodized observation x(n)
on the set V;; and that for i1 # iy we have p(V;,;,Vi,;) = 2k — k = k. So, for

any A > 0, it follows from the conditional mixing lemma that

:cvj> (1+6,) HE( Y3

with &, = O (k¥ ¢(k)) = O<’y(n) ce ® kwﬂs) =o(n?) for all 8> 0.

E(e_A N}

> (VIIL12)

Clearly, using the Lemma VII.2, definition of Y;Y and total probability formula,

ij
we have

—b*|A —b*
E(Y |@y,) >e "M 2 e =T (n).
Furthermore, using Taylor expansion formula, we get
_ 0 — 0 _ 0
a:v):e r BV m"j) E(e A(Y” B 33\;.) <
J J

)\2 )\
<e <1+ 5 e ) \exp( A(I‘(n) 2e ))

E(e_)‘yi(; mvj))

(VIIL13)

Finally, combining (VIII.12), (VIII.13), and using Chebychev’s inequality and
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total probability formula, for sufficiently large values of n we get

NO 0
P()\—] <1 —5) <t 179A e AN <

v A v
< = Tm)m” oy (—A (F(n) -3 e>‘> m”) (1+0.)™ <

<C exp(—)\m” <6I‘(n) - %e»).

Now, choosing A = T'(n)/e < 1, for sufficiently large values of n we get

P(JI—E <1 —g) <C exp(—gre(n) 2“7;?71) (s7(m) - 8FW)) <

< e x(n)n

2

with an arbitrary a < . The lemma is proved. O

€
2vtle
Using this lemma we clearly get
-

P(NJ =0) < P(A—j <1 —5) L emomn”

forall j =1,...,(2k)", r € {0,1} and for sufficiently large values of n. Therefore,

for sufficiently large values of n, we have
P(HDZ(~)|| > s/5> - P( sup | D2(z)| > 5/5) <
ZTCZY\O

(VIIL14)
< Y P(N°=0) e mn”

_ A*
mA*G% k
k

where we take into account that N° depends only on Z,., and hence the
k

supremum over € C Z" \ 0 is in fact a maximum over T,. € M e, a
k

maximum over 2/8% < 27(") elements.

In exactly the same way we have

P([|D3()|| > ¢/5) <emoxtmn, (VIIL15)
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and similarly we get

P(HDg(.)H > s/5> - P(iCSZP DA ()| > 5/5> <

\0
VIIIL.16
e ( )
0 —ax(n)n”
< P(N? =0) e *M
Ty €L M a=1
Finally, the last summand is estimated by the following lemma.
LEmMA VIII.10. — For any € € (0,1) there exist some positive constant o > 0
and some ng € N such that
P(HD;’;(-)H > 5/5) L emaH )’ (VIIL17)

for all n > nyg

Proof: As before, it is sufficient to show that

>

P N0>O _‘Nl Noh € < —ax(n)n”
( 52k | S°

We have obviously

P<N0>0 —‘Nl Noh

<P i(Y.l—Y.QhEAZ> S N )
S i~ i 52k | S

(2;) mY
(Z = 1—5)(2k)”>+P< 27)\n)

where 7 = ¢ (1 —¢)/5 and Wy; = Y} — Y} h"%k. The estimate of the first term

easily follows from the preceding lemma. To estimate the second one let us at

(]

first note that using translation invariance, total probability formula and the
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formulas (I.5), (VIL.1) and (VIIL.3) we have

0 T, _ o) 2 Tar
E(Yij mvj> hoth = PAkIVj—u,j) (’”AZ v T (”)> hon =
EA*U(mVj—(z',j)) a .
=Q " (0) PAk*‘Vj_(ivj) (mA}Z Tv; ~ (Z’j)>x

< Qy (1) / QpF(0) =

T, .

2y, = (i,7)) Qo (1)

= (1+pn) PAk*\vj—(z’J) (ff\z

= (1+pn)2 P

Ly, — (%J)) X

BN I
Ak*‘Vj—(l,J)< Ay

z,. U(mvj (i)

X Qg *

=B(Y} | 2y,) 0 +0.)

(1) =

where p, = O(p(k))

O(ce_“ ky%) = o(n_ﬁ) for all 5 > 0.

This implies that

E(W

mw) B E<Yz§ ’ ww) B E<Y£ mvj) B = O(pn)
and hence, for any A > 0, using the fact that —B < W,;; < 1 and Taylor expansion
formula, we get

ww) <

E(eAWin w]} ) — eA E(WZOJ mvj))

a:vj) B (eA (W;’j—E(W{}

2 2
< A O(pn) (1 n A (B+1) o (B+1)) <
2

A (B +1)?

Finally, using Chebychev’s inequality, total probability formula and conditional
mixing lemma, we get

P( > Wy 27)\n> <e A Eexp()\ ZW,,) <
=1

=1

< e*}\TF(Tb)mV E( HE()\eW”
i=1

a@)> (1+6)"" <
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v

2 2 m
< CoATTm? (exp()\O(pn) n @ex <B+1>>> <

< Cexp (—)\ m"” <7' I'(n) — @ et (B _ O(pn)>)

7I'(n)
(B +1)%eB+1

o 7T'(n) n’ 71T(n)
E > < — <
P( — Wiy 2 TA”) s¢ eXp( (B+1)%eB+1 2y(n) 2 )~

Now, choosing A = < 1, we get

<e @ »x(n)n

7_2

2+1 (B 4 1)% eB+1’

with an arbitrary a <

By the same argument we have

(- o) cem
=1

which concludes the proof of the lemma. O

Now, combining (VIIL5), (VIII.14), (VIII.15), (VIIL.16), (VIII.17) and taking
into account the inequality (VIII.4), we get the assertion of the theorem. The
uniformity with respect to P € ¢4(h) and h € J is trivial. The Theorem VIIL8

is proved. O

Let us note, that from the details of the proof it clearly follows some explicit
expression for the constant «. For example, if € € (0,1), then one can take an
arbitrary

7_2

o< 5 :
v+ (B 4 1)2 eBH1

Note also, that taking a closer look on the proof we can give a “more precise”
bound on the rate of consistency, showing explicitly the dependence of the rate
on . That is, for € € (0,1/2), we have the bound

Ugenmatmsress )+ exp{—as(n) &0 + Olpn) s e |
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1 1
where a = 5 , B = 5 and the se-
25 2v+3 (B 4+ 1) eB+1 5.2vH+1 (B4 1)2 eB+1

quence 1, is given by 1, = 27" (2Vy(n) + 1) (2" v(n) + 2).

Using this last bound, as before, we easily obtain the following

THEOREM VIII.11 [Uniform LP-consistency of the sieve estimator]. — As-
sume that h € jfiz, h.,, is the sieve estimator with k = [(ln n)l/(”+5/2)}, and fix

some p € (0,00). Then, for sufficiently large values of n, we have

sup  sup (E Hﬁn — h”p) 1/p < n—(w/2=0)
he# Pc¥(h)

~

where o is an arbitrary small positive constant, i.e., the estimator h,, is

uniformly LP-consistent.

Let us finally note here, that only the constant ¢ is important in the definition of
the sieve estimator. Hence we can apply the considerations of the Remark VII.6
by “releasing” the constants A, B, a and c, i.e., by enlarging the class H to the
class S % defined by the conditions (C4), (C2') and (C5) with some a priory
fixed constant §. We will still obtain (no longer uniform) exponential and L”
consistencies of the sieve estimator. The problem with this approach is that the
slowly varying function »(n) present in the bounds on the rates of consistency
will depend on h (by the way of b*). To avoid this, one can “release” only the
constants a and ¢, i.e., consider the class f%/’\;‘?B defined by the conditions (C4),
(C2) and (C5) with some a priory fixed constants A, B and 0. In this case
we still obtain (no longer uniform) exponential and L? consistencies of the sieve

estimator.
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