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Résumé

Une nouvelle approche de la description des champs aléatoires sur le réseau entier ν-

dimensionnel Z
ν est présentée. Les champs aléatoires sont décrits en terme de certaines

fonctions de sous-ensembles de Z
ν , à savoir les P -fonctions, les Q-fonctions, les H-

fonctions, les Q-systèmes, les H-systèmes et les systèmes ponctuels. La corrélation

avec la description Gibbsienne classique est montrée. Une attention particulière est

portée au cas quasilocal. Les champs aléatoires non-Gibbsiens sont aussi considérés.

Un procédé général pour construire des champs aléatoires non-Gibbsiens est donné. La

solution du problème de Dobrushin concernant la description d’un champ aléatoire par

ses distributions conditionnelles ponctuelles est déduite de notre approche.

Ensuite, le problème de l’estimation paramétrique pour les champs aléatoires de Gibbs

est considéré. Le champ est supposé spécifié en terme d’un système ponctuel local in-

variant par translation. Un estimateur du système ponctuel est construit comme un

rapport de certaines fréquences conditionnelles empiriques. Ses consistances exponen-

tielle et Lp uniformes sont démontrées. Finalement, le problème nonparamétrique de

l’estimation d’un système ponctuel quasilocal est considéré. Un estimateur du système

ponctuel est construit par la méthode de “sieves”. Ses consistances exponentielle et Lp

sont prouvées dans des cadres différents. Les résultats sont valides indépendamment de

la non-unicité et de la perte de l’invariance par translation.

Mots clés : champs aléatoires, champs aléatoires de Gibbs, champs aléatoires non-Gibbsiens,

localité, quasilocalité, P -fonctions, Q-fonctions, H-fonctions, Q-systèmes, H-systèmes, systèmes

ponctuels, estimation paramétrique, estimation nonparamétrique, méthode de “sieves”, consis-

tance.

Abstract

A new approach towards description of random fields on the ν-dimensional integer

lattice Z
ν is presented. The random fields are described by means of some functions of

subsets of Z
ν , namely P -functions, Q-functions, H-functions, Q-systems, H-systems

and one-point systems. Interconnection with classical Gibbs description is shown.

Special attention is paid to quasilocal case. Non-Gibbsian random fields are also

considered. A general scheme for constructing non-Gibbsian random fields is given.

The solution to Dobrushin’s problem concerning the description of random field by

means of its one-point conditional distributions is deduced from our approach.

Further the problems of parametric estimation for Gibbs random fields is considered.

The field is supposed to be specified through a translation invariant local one-point

system. An estimator of one-point system is constructed as a ratio of some empirical

conditional frequencies, and its uniform exponential and Lp consistencies are proved.

Finally the nonparametric problem of estimation of quasilocal one-point systems is

considered. An estimator of one-point system is constructed by the method of sieves,

and its exponential and Lp consistencies are proved in different setups. The results

hold regardless of non-uniqueness and translation invariance breaking.

Key words: random fields, Gibbs random fields, non-Gibbsian random fields, locality,

quasilocality, P -functions, Q-functions, H-functions, Q-systems, H-systems, one-point systems,

parametric estimation, nonparametric estimation, method of sieves, consistency.
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Introduction

Cette thèse est constituée de deux parties. La Partie I traite de la description des

champs aléatoires et la Partie II de l’identification des champs aléatoires.

Description des champs aléatoires

La théorie des champs aléatoires de Gibbs sur le réseau entier ν-dimensionnel Z
ν ,

ν > 1, trouve ses origines dans la physique statistique. Elle est devenue une théorie

mathématique rigoureuse principalement grâce aux travaux de R. L. Dobrushin

dans les années soixante. On pourra se référer à ses travaux précurseurs [8] – [10].

Une présentation exhaustive de la théorie des champs aléatoires de Gibbs peut

être trouvée dans le livre de H.-O. Georgii [12] où l’auteur, tout en restant dans

la plus grande généralité, donne un grand nombre d’exemples et de détails.

Dans la première partie de ce travail (Chapitres I–VI) on présente une nouvelle

approche de la description des champs aléatoires sur le réseau Z
ν à valeurs dans

un espace d’états fini X . Une attention plus particulière est portée au cas où

l’espace d’états est X = {0,1}.

L’idée sous-jacente utilisée en physique statistique est de décrire les champs

aléatoires par des spécifications de Gibbs exprimées par des potentiels d’in-

teraction. L’idée principale de notre approche est d’exprimer les spécifications

directement en terme des Hamiltoniens sans utiliser la notion de potentiel

d’interaction. C’est une approche très générale qui nous permet aussi de décrire

des champs aléatoires non-Gibbsiens.

On donne la représentation, en nos termes, de certains champs aléatoires non-

Gibbsiens. De plus, on présente un procédé général de construction de champs

aléatoires non-Gibbsiens. Notons que le rôle des champs aléatoires non-Gibbsiens

dans la physique statistique est de plus en plus important. Le sujet est actuelle-

ment devenu le centre d’intérêt de plusieurs travaux
(
voir par exemple R. B. Is-

rael [16], J. L. Lebowitz et C. Maes [18], R. H. Schonmann [23], A. van Enter,

R. Fernandez et A. Sokal [25]
)
.
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Remarquons aussi que l’approche proposée permet de donner la solution d’un

vieux problème posé par Dobrushin concernant la description d’un champ

aléatoire par ses distributions conditionnelles ponctuelles. On présente une con-

dition nécessaire et suffisante pour qu’un système de distributions conditionnelles

ponctuelles soit un sous-système d’une spécification.

Dans le Chapitre I, on rappelle des notions et des résultats bien connus de la

théorie des champs aléatoires, plus particulièrement de la théorie des champs

aléatoires de Gibbs.

Dans le Chapitre II, on donne une alternative équivalente à la description de

Kolmogorov des champs aléatoires. Cette description alternative, qui est basée

sur une généralisation de la notion de fonction de corrélation à volume infini, fait

apparâıtre la nature combinatoire de notre approche. La notion de P -fonction est

introduite dans le but d’effectuer cette généralisation.

Dans le Chapitre III, on montre que l’on peut construire des P -fonctions comme

limites de fonctions de corrélation à volume fini (ou plutôt leurs généralisations).

Ces dernières sont exprimées en terme de fonctions de partition généralisées

(Q-fonctions) ou, de manière équivalente, en terme de facteurs de Boltzmann

généralisés (H-fonctions). Dans notre cas les H-fonctions sont des fonctions posi-

tives arbitraires. Ensuite on introduit les systèmes de distribution de probabilités

consistants dans le sens de Dobrushin. Ces systèmes correspondent aux distribu-

tions conditionnelles dans les volumes finis avec condition extérieure vide (vac-

uum). On décrit ces systèmes en terme des Q-fonctions et/ou H-fonctions cor-

respondantes. Finalement, on donne en terme de développement “cluster” d’une

Q-fonction, une condition suffisante générale pour l’existence d’une P -fonction

limite.

Même si les Q-fonctions nous permettent de construire des P -fonctions (et

donc des champs aléatoires), elles sont insuffisantes pour décrire des champs

aléatoires car elles déterminent uniquement les distributions conditionnelles dans

les volumes finis avec condition extérieure vide, mais pas toute la spécification.

Pour remédier à cela, on introduit au Chapitre IV des systèmes consistants

de Q-fonctions (ou, de manière équivalente, de H-fonctions) que l’on appelle

Q-systèmes (respectivement H-systèmes). On prouve que les spécifications “vac-

uum” (ou, autrement dit, les spécifications faiblement positives) peuvent être

décrites par ces Q-systèmes et/ou H-systèmes. On montre que les spécifications
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que nous décrivons peuvent être non-Gibbsiennes et on donne un procédé général

pour construire des spécifications non-Gibbsiennes.

En regardant attentivement la définition d’un H-système (Q-système) consis-

tant on remarque que l’information contenue dans un H-système (Q-système)

est redondante. Ainsi, on peut envisager la description des spécifications par

des systèmes plus simples que les H-systèmes et/ou Q-systèmes. Effectivement,

on montre dans le Chapitre V que l’on peut décrire des spécifications “vac-

uum” par des sous-systèmes ponctuels de H-systèmes consistants que l’on ap-

pelle “systèmes ponctuels” (one-point systems). Notons ici qu’en introduisant ces

systèmes ponctuels on donne la solution d’un vieux problème posé par Dobrushin

concernant la description des champs aléatoires par ses distributions condition-

nelles ponctuelles. La condition figurant dans la définition de système ponctuel

n’est rien d’autre que la condition nécessaire et suffisante pour qu’un système de

distributions conditionnelles ponctuelles soit un sous-système d’une spécification.

Finalement on donne dans ce chapitre une condition nécessaire et suffisante pour

qu’un système ponctuel soit Gibbsien.

Dans le Chapitre VI on se concentre sur la description des spécifications quasi-

locales car elles sont très importantes dans la théorie des champs aléatoires.

D’abord on considère les spécifications “vacuum” et on applique les résultats des

Chapitres IV et V en donnant une condition nécessaire et suffisante pour qu’un

H-système (respectivement Q-système, système ponctuel) corresponde à une

spécification quasi-locale. Ensuite on remplace la condition “vacuum” (condition

de positivité faible) par une condition légèrement différente, et on montre que dans

ce cas on peut décrire les spécifications par des H-fonctions et/ou Q-fonctions qui

satisfont certaines conditions supplémentaires.

Toutes nos considérations sont menées dans le cas de l’espace d’états X = {0,1}.
Dans tous les chapitres, on montre les généralisations possibles dans le cas

d’un espace d’états fini arbitraire. La plupart des résultats pourraient aussi être

généralisés dans le cas d’un espace d’états infini, mais cela nécessiterait plus de

notations et d’hypothèses topologiques.

Cette première partie de la thèse a été effectuée en collaboration avec B. S. Na-

hapetian de l’Institut de Mathématiques, Érévan, Arménie. Certains résultats de

cette partie ont été présentés dans [4], [6] et [7]. Notons finalement qu’une ap-

proche similaire pour des processus ponctuels a été considérée dans le travail de
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R. V. Ambartzumian et H. S. Sukiasian [1].

Identification des champs aléatoires

L’inférence statistique pour les champs aléatoires de Gibbs est très intéressante

et très importante car les résultats peuvent être appliqués dans ce qui est com-

munément appelé le “traitement d’image”. L’inférence statistique paramétrique

pour les champs aléatoires de Gibbs est actuellement bien développée dans le

cadre Gibbsien classique. L’état actuel de cette théorie est bien présenté dans

le livre de X. Guyon [14]. On pourra aussi se rapporter à des références citées

dans ce livre sur les travaux de F. Comets, B. Gidas, M. Janžura, D.K. Pickard,

L. Younes, et al. Pour plus d’informations sur le traitement d’image et sur

l’inférence statistique paramétrique pour les champs aléatoires de Gibbs, un

lecteur intéressé peut aussi voir [3], [11], [15], [21], [22] and [26] – [112].

Contrairement à l’inférence statistique paramétrique pour les champs aléatoires

de Gibbs, l’inférence nonparamétrique parait être moins étudiée. On peut men-

tionner ici une prépublication de C. Ji [15] où l’auteur considère le cadre Gibb-

sien classique quand le champ aléatoire est décrit par un potentiel d’interaction

de paire à décroissance exponentielle. Pour ce modèle il étudie un estimateur

“sieve” de ce qu’il appelle les “caractéristiques locales”. La démonstration qu’il

présente nécessite quelques rectifications.

Dans la deuxième partie de ce travail (Chapitres VII–VIII), on considère le

problème de l’inférence statistique pour les champs aléatoires. Plus précisément

on se concentre sur les champs aléatoires spécifiés en terme de systèmes

ponctuels invariants par translation (stationnaires), ces derniers constituants une

paramétrisation des champs aléatoires appropriée à l’inférence statistique.

On considère d’abord le problème d’estimation des systèmes ponctuels lo-

caux. Évidemment, le problème est paramétrique dans ce cas. On suppose

que h ∈ H V
A,B est un système ponctuel inconnu qui induit un ensemble G (h)

de champs aléatoires de Gibbs (H V
A,B est ici une certaine classe de systèmes

ponctuels locaux). On observe une réalisation d’un champ aléatoire P ∈ G (h)

dans une fenêtre d’observation Λn (le cube symétrique de coté n centré à l’origine

de Z
ν) et, se basant sur les données xn = x

Λn
⊂ Λn générées par ce champ

aléatoire P, on veut estimer h.
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On construit un estimateur ĥn comme un rapport de certaines fréquences

conditionnelles empiriques et on démontre sa consistance exponentielle uniforme,

c’est-à-dire

sup
h∈H V

A,B

sup
P∈G (h)

P
(∥∥ĥn − h

∥∥ > ε
)

6 C e−α ε2 nν ,

et sa consistance Lp uniforme pour tout p ∈ (0,∞), c’est-à-dire

sup
h∈H V

A,B

sup
P∈G (h)

(
E
∥∥ĥn − h

∥∥p
)1/p

6 n−(ν/2−σ),

où σ est une constante strictement positive arbitrairement petite, la norme con-

sidérée est la norme de la convergence uniforme, n est supposé être suffisamment

grand, et les constantes C,α > 0 sont déterminées par A, B et V .

Notons ici que dans [3], F. Comets obtient aussi la consistance exponentielle de

l’estimateur du maximum de vraisemblance en utilisant la théorie des grandes

déviations.

En général, le problème d’estimation pour les champs aléatoires de Gibbs est

rendu difficile par des phénomènes classiques de la théorie des champs aléatoires

de Gibbs tels que la non-unicité (|G | > 1) et la perte de l’invariance par

translation. Dans notre travail les résultats sont établis sans se soucier de ces

aspects car ils sont valides uniformément sur G , indépendamment du fait que

|G | = 1 ou non.

Ensuite on considère le problème nonparamétrique d’estimation des systèmes

ponctuels dans le cas où ils sont quasi-locaux. On construit un estimateur en

combinant les idées utilisées dans le cas paramétrique et l’idée principale de la

méthode de “sieves”
(
introduit par U. Grenander dans [13]

)
qui consiste à approx-

imer un paramètre infini-dimensionnel par des paramètres fini-dimensionnels. On

démontre la consistance exponentielle et la consistance Lp de notre estimateur

“sieve” dans des cadres différents.

Certains aspects sont similaires au travail de C. Ji [15]. En effet, nos systèmes

ponctuels ressemblent effectivement aux “caractéristiques locales” et on étudie le

même estimateur “sieve”. Mais, contrairement à [15], on se situe dans un cadre

beaucoup plus général et on estime l’objet même (système ponctuel) qui décrit

le champ aléatoire.

Finalement notons ici que tous les résultats de cette deuxième partie sont valides

dans le cas d’un espace d’états fini arbitraire. Notons aussi que certains résultats

de cette partie ont été présentés dans [5].





Part I

Description of random fields





I. Auxiliary results from the theory of random fields

In this chapter we recall some well known notions and results from the theory of

random fields, and particularly from Gibbs random fields theory. The exposition

is based on the book of H.-O. Georgii [12]. We also set up in this chapter the

notations that will be used in the sequel throughout this work.

I.1. Random fields, conditional probabilities

We consider random fields on the ν-dimensional integer lattice Z
ν , i.e., probability

measures on (Ω,F ) =
(
X Z

ν

,F Z
ν

0

)
where (X ,F0) is some state space, i.e., space

of values of a single variable. Usually the space X is assumed to be endowed

with some topology T0, and F0 is assumed to be the Borel σ-algebra for this

topology.

In this work we concentrate on the case when X is finite, T0 is the discrete

topology (the topology consisting of all subsets of X ) and F0 is the total σ-

algebra (the σ-algebra consisting of all subsets of X ), that is F0 = T0 = exp(X ).

Note that in this case X can also be considered as a metric space with d(x, y) = 0

if x = y and d(x, y) = 1 otherwise. Note also that in this case the state space

is complete and compact, and hence (Ω,T ) =
(
X Z

ν

,T Z
ν

0

)
is also complete,

compact and metrizable. It seems that most of the results can be generalized to

the case of infinite state space X under some additional topological assumptions

like completeness, compactness, separability, etc.

A very important and the most interesting one is the {0,1} case, that is,

X = {0,1} and F0 = T0 = exp
(
{0,1}

)
. In this case, each element x ∈ X Λ is

uniquely determined by the subset X of Λ where the configuration x assumes the

value 1 (in physical terminology this subset is occupied by particles). Therefore

we can identify any configuration x on Λ with the corresponding subset X of

Λ. In the sequel, when considering the {0,1} case, we will not make difference

between this two notions and will write, for example, x ⊂ Λ for a configuration

x on Λ.
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Denote by E the set of all finite subsets of Z
ν , i.e., let E =

{
Λ ⊂ Z

ν : |Λ| <∞
}

where |Λ| is the number of points of the set Λ. Let us note that E is countable.

Note also that by definition F is the smallest σ-algebra on Ω containing all the

cylinder events {
x ∈ Ω : x

Λ
∈ A

}
, Λ ∈ E , A ∈ F

Λ
0 .

Here and in the sequel x
Λ

= {xt, t ∈ Λ} is the subconfiguration (restriction) on Λ

of the configuration x = {xt, t ∈ Z
ν}. Note that in the {0,1} case we can write

this as x
Λ

= x ∩ Λ. In general, if x ∈ X K and Λ ⊂ Z
ν , then x

Λ
is understood

as a configuration {xt, t ∈ K ∩ Λ} on K ∩ Λ.

For any Λ ∈ E \ /© let us consider the space X Λ of all configurations on Λ.

A probability distribution on X Λ is denoted by PΛ =
{
PΛ(x), x ∈ X Λ

}
. For

convenience of notations we agree that for Λ = /© there exists only one probability

distribution P/©( /©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©) = 1 on the space X /© = {/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©} where /©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/© is understood as a

configuration consisting of absolutely nothing (the only possible configuration on

the empty set).

For any Λ ∈ E and I ⊂ Λ we denote
(
PΛ

)
I
(x) =

∑

y∈X Λ\I

PΛ(x⊕ y), x ∈ X
I . (I.1)

The probability distribution
(
PΛ

)
I

on X I is the restriction of PΛ on I. Here

x ⊕ y is understood as a configuration on Λ equal to x on I and to y on Λ \ I.
Note that for the {0,1} case this corresponds to a usual set union, and so the

formula (I.1) can be rewritten as
(
PΛ

)
I
(x) =

∑

y⊂Λ\I

PΛ(x ∪ y), x ⊂ I.

DEFINITION I.1. — A system of probability distributions P = {PΛ, Λ ∈ E }
is called consistent in Kolmogorov’s sense if for any Λ ∈ E and I ⊂ Λ we have(
PΛ

)
I

= PI , i.e.,
(
PΛ

)
I
(x) = PI(x) for all x ∈ X I .

It is well known that any system of probability distributions consistent in Kol-

mogorov’s sense determines some probability measure on (Ω,F ) (or, equivalently,

some random field on Z
ν) for which it is the system of finite-dimensional distri-

butions.

Before introducing the concept of conditional distribution of a random field, let

us recall some combinatorial facts about nets (sequences) of real numbers indexed

by elements of E , as well as the notion of their convergence.
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Let b =
{
b
R
, R ∈ E

}
be a net, i.e., a real-valued function on E , and let us

define

a
Λ

=
∑

R⊂Λ

b
R
, Λ ∈ E . (I.2)

Then one can express the function b in terms of the function a =
{
a
Λ
, Λ ∈ E

}
,

by “inversing” the formula (I.2) in the following way:

b
R

=
∑

J⊂R

(−1)|R\J|a
J
, R ∈ E . (I.3)

The formula (I.3) is sometimes called inclusion-exclusion formula and sometimes

Möbius formula.

In our opinion this formula is very important in description of random fields.

Even if not used explicitly, it is implicitly present behind any approach. One can

encounter this formula in many works devoted to description of random fields(
see, for example, [2], [12], [17], [20], [24] and [25]

)
. Our approach, presented in

the following chapters, is heavily based on this formula.

Let us also remark, that an arbitrary real-valued function a =
{
a
Λ
, Λ ∈ E

}

on E can be represented in the form (I.2). For that, it is sufficient to define the

function b by the formula (I.3). Note that the representation is unique. Note

also, that this representation is noting but a generalisation to the case of nets of

the formula

an = a0 + (a1 − a0) + · · · + (an − an−1),

permitting to represent an arbitrary sequence as a series.

Let us now introduce the notion of convergence of nets.

DEFINITION I.2. — Let
{
a
Λ
, Λ ∈ E

}
be an arbitrary real-valued function

on E and let T ⊂ Z
ν be an infinite subset of Z

ν .

1) We say that lim
Λ↑T

a
Λ

= a
T

if for any sequence Λn ∈ E such that Λn ↑ T we

have the convergence lim
n→∞

a
Λn

= a
T

.

2) As we have already mentioned, there exists some unique function
{
b
R
, R ∈ E

}

such that a
Λ

=
∑

R⊂Λ

b
R

for all Λ ∈ E . We say that the convergence lim
Λ↑T

a
Λ

= a
T

is

“absolute” if the series
∑

R∈E : R⊂T

b
R

not only converges to a
T

but is also absolutely

convergent.
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Now we can finally introduce the concept of conditional distribution of a random

field.

Let P be a random field. It is well known that for any Λ ∈ E there exist for

PΛc -almost all x ∈ X Λc

the following limits

qxΛ(x) = lim
Λ̃↑Λc

P
Λ∪Λ̃

(x⊕ x
Λ̃
)

P
Λ̃
(x

Λ̃
)

, x ∈ X
Λ.

Any system

Q =
{
Qx

Λ, Λ ∈ E and x ∈ X
Λc
}

of probability distributions in various finite volumes Λ with various boundary

conditions x on Λc such that for all Λ ∈ E we have Qx
Λ = qxΛ for PΛc -almost

all x ∈ X Λc

is called conditional distribution of the random field P. Note that

if Q is a conditional distribution of a random field P then in general, for a

particular Λ ∈ E and x ∈ X Λc

, the conditional distribution Qx
Λ in the volume Λ

with boundary condition x is not necessarily equal to qxΛ even if the last one is

well-defined (i.e., the corresponding limits exist).

It is also well known that any conditional distribution Q of a random field P

satisfies P-almost surely the condition

Qx

Λ∪Λ̃
(x⊕ y) = Qx⊕y

Λ (x)
(
Qx

Λ∪Λ̃

)
Λ̃
(y) (I.4)

where Λ, Λ̃ ∈ E , Λ ∩ Λ̃ = /©, x ∈ X Λ, y ∈ X Λ̃ and x ∈ X (Λ∪Λ̃)
c

. In fact, this

is nothing but the elementary formula

P(A ∩B | C) = P(A | B ∩ C) P(B | C) (I.5)

written for our case.

I.2. Specifications, Hamiltonians, potentials

Let us consider an arbitrary system

Q =
{
Qx

Λ, Λ ∈ E and x ∈ X
Λc
}

of probability distributions in finite volumes with boundary conditions. If we

want this system to be a conditional distribution of some random field P, then

we need to suppose that it satisfies P-almost surely the condition (I.4). However,

we do not know a priori the random field P. Therefore we need to require that

the condition (I.4) holds always, rather than almost surely. This leads us to

introduce the following
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DEFINITION I.3. — A system

Q =
{
Qx

Λ, Λ ∈ E and x ∈ X
Λc
}

of probability distributions in finite volumes with boundary conditions is called

specification if for any Λ, Λ̃ ∈ E such that Λ ∩ Λ̃ = /© and for any x ∈ X Λ,

y ∈ X Λ̃ and x ∈ X (Λ∪Λ̃)
c

we have

Qx

Λ∪Λ̃
(x⊕ y) = Qx⊕y

Λ (x)
(
Qx

Λ∪Λ̃

)
Λ̃
(y). (I.6)

Sometimes such systems are also called systems of distributions in finite volumes

with boundary conditions consistent in Dobrushin’s sense.

In Gibbs random fields theory a random field is described through a specification

Q =
{
Qx

Λ, Λ ∈ E and x ∈ X Λc}
wich is assumed to have the following

Gibbsian form:

Qx
Λ(x) =

exp
(
−UxΛ(x)

)
∑

y∈X Λ

exp
(
−UxΛ(y)

) , Λ ∈ E , x ∈ X
Λ, x ∈ X

Λc

,

where the system U =
{
UxΛ(x), Λ ∈ E , x ∈ X Λ, x ∈ X Λc}

is called Hamilto-

nian, UxΛ(x) is called (total) conditional energy of x in Λ under boundary condi-

tion x, exp
(
UxΛ(x)

)
is called Boltzmann factor , the denominator is called partition

function, and the Hamiltonian is assumed to be given by the formula

UxΛ(x) =
∑

J : /© 6=J⊂Λ

∑

J̃∈E : J̃⊂Λc

Φ
(
x

J
⊕ x

J̃

)
, Λ ∈ E , x ∈ X

Λ, x ∈ X
Λc

,

where Φ =
{
Φ(x), x ∈ X J for some J ∈ E \ {/©}

}
is some function taking

values in R∪ {+∞} (sometimes only real-valued functions are considered) called

interaction potential. Here and in the sequel we admit that exp(−∞) = 0,

(+∞) + (+∞) = a+ (+∞) = (+∞) + a = +∞ for all a ∈ R and that any sum

over an empty space of indexes is equal to 0, i.e., Ux/©( /©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©) = 0 for all x ∈ Ω. Let us

note that in general, if one lets the potential to take the value +∞, the Gibbsian

form is not well-defined, since the denominator in the definition of Qx
Λ(x) can

be equal to 0 (say UxΛ(y) = +∞ for all y ∈ X Λ). So one needs to suppose the

potential to be reasonable enough to avoid such situations. Clearly this situation

does not occur if one considers a real-valued potential. Neither it occurs in the

case of the so-called “vacuum potentials” which will be considered below. Note

also that in general the system U is not well-defined, since in the second sum
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the summation is taken over an infinite space of indexes. For this reason the

interaction potentials are always supposed to be such that the limits

UxΛ(x) = lim
∆↑Zν

UxΛ,∆(x) (I.7)

exist and are in R ∪ {+∞} for all Λ ∈ E ,x ∈ X Λ and x ∈ X Λc

. Here

UxΛ,∆(x) =
∑

J : /© 6=J⊂Λ

∑

J̃⊂∆∩Λc

Φ
(
x

J
⊕ x

J̃

)
, Λ,∆ ∈ E , x ∈ X

Λ, x ∈ X
Λc

.

Such interaction potentials are called convergent. Usually some stronger con-

ditions on the interaction potential are supposed in order to guarantee that it

is convergent. For example, often the interaction potential is supposed to be

absolutely summable, i.e., to satisfy the condition
∑

J : t∈J∈E

sup
x∈X J

∣∣Φ(x)
∣∣ <∞

for each t ∈ Z
ν . This condition not only implies that Φ is convergent but,

moreover, that it is uniformly convergent, i.e., the limits (I.7) exist, are finite,

and the convergence is uniform with respect to x ∈ X Λc

.

Interesting class of potentials is the class of pair potentials, i.e., potentials Φ such

that Φ(x) = 0 if x ∈ X J with |J | > 2. Note that the similar condition with

|J | > 1 would imply the independence.

Another interesting class of potentials is the class of finite range potentials , i.e.,

potentials Φ such that Φ(x) = 0 if x ∈ X J with diam(J) > d for some fixed

d ∈ N. Here and in the sequel diam(J) denotes the diameter of the set J in the

metric ρ on Z
ν defined by the norm

∥∥∥
(
t(1), · · · , t(ν)

)∥∥∥ = max
{∣∣t(1)

∣∣, . . . ,
∣∣t(ν)

∣∣
}
,
(
t(1), · · · , t(ν)

)
∈ Z

ν .

Note that finite range potentials are necessarily convergent, and that real-valued

finite range potentials are absolutely summable.

The most simple class of potentials are the nearest neighbour potentials, i.e., pair

potentials Φ such that Φ(x) 6= 0 only if x is a singleton, or x = {s,t} where s

and t are nearest neighbours, that is they occupy two neighbour horizontal (or

vertical) sites of the lattice.

Now, let us introduce the class of so-called “vacuum potentials”.

Let us fix some element ∅ ∈ X which will be called vacuum and let us denote

X ∗ = X \ {∅} (for the {0,1} case this element is usually 0).
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DEFINITION I.4. — A potential Φ =
{
Φ(x), x ∈ X J for some J ∈ E \ {/©}

}

is called vacuum potential if we have Φ(x) = 0 for all x ∈ X J such that there

exist some t ∈ J satisfying xt = ∅.

The class of vacuum potentials plays very important role in Gibbs random fields

theory for two reasons. Firstly, for an arbitrary potential one can find a unique

vacuum potential giving the same specification as the initial one. Secondly,

vacuum potentials are easier to manipulate. From here on we consider only

vacuum potentials. In physical terminology xt = ∅ means that this site is

not occupied by any particle, while all other values represent different types of

particles. In the vacuum case a configuration x on X Λ is uniquely determined

by its subconfiguration y ∈ X ∗I where the set I ⊂ Λ is the set of sites occupied

by particles, i.e., I = {t ∈ Λ, xt 6= ∅}. In the sequel we will not make difference

between this two notions and will write, for example, x ∈ X ∗I , I ⊂ Λ for

a configuration x on Λ. Note that in {0,1} case there exists just one type of

particles, and hence we have just a set, as we have already seen earlier. Now we

can rewrite all the above formulas in these notations. The Gibbsian form is given

by the formula

Qx
Λ(x) =

exp
(
−Ux(x)

)
∑

y∈X Λ

exp
(
−Ux(y)

) , Λ ∈ E , x ∈ X
∗I , I ⊂ Λ, x ∈ X

∗K , K ⊂ Λc,

and the Hamiltonian U =
{
Ux(x), x ∈ X ∗I , I ∈ E , x ∈ X ∗K , K ⊂ Ic

}
is

given by the formula

Ux(x) =
∑

J : /© 6=J⊂I

∑

J̃∈E : J̃⊂K

Φ
(
x

J
⊕ x

J̃

)

where Φ =
{
Φ(x), x ∈ X ∗J for some J ∈ E \ {/©}

}
is the potential. Note

that the Hamiltonian no longer depends on Λ. In fact, condition of vacuumness

implies that for an arbitrary Λ ∈ E satisfying I ⊂ Λ ⊂ Kc we get the same value

of Hamiltonian. The relation (I.7) can be rewritten as

Ux(x) = lim
∆↑Zν

Ux∆(x)

and the condition of absolute summability as

∑

J : t∈J∈E

sup
x∈X ∗J

∣∣Φ(x)
∣∣ <∞.
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In {0,1} case the notations are even more simple. The Gibbsian form is given by

the formula

Qx
Λ(x) =

exp
(
−Ux(x)

)
∑
y⊂Λ

exp
(
−Ux(y)

) , Λ ∈ E , x ⊂ Λ, x ⊂ Λc,

and the Hamiltonian U =
{
Ux(x), x ∈ E and x ⊂ xc

}
is given by the

formula

Ux(x) =
∑

J : /© 6=J⊂x

∑

J̃∈E : J̃⊂x

Φ
(
J ∪ J̃

)

where Φ =
{
Φ(J), J ∈ E \ {/©}

}
is the potential. The condition of absolute

summability can be rewritten as
∑

J : t∈J∈E

∣∣Φ(J)
∣∣ <∞.

Let us finally note here that in the vacuum case we clearly have Ux( /©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©) = 0 for

all x ∈ Ω, and hence we have Qx
Λ( /©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©) > 0 for all Λ ∈ E and x ∈ X Λc

. Here /©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/© is

nothing but the configuration ∅Λ identically equal to ∅ on Λ.

This leads us to introduce the notion of a general “vacuum specification”.

DEFINITION I.5. — A system

Q =
{
Qx

Λ, Λ ∈ E and x ∈ X
Λc
}

of probability distributions in finite volumes with boundary conditions is called

vacuum specification if for all Λ ∈ E and x ∈ X Λc

we have Qx
Λ( /©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©) > 0 and if

it satisfies the condition (I.6). Sometimes vacuum specifications are also called

weakly positive specifications.

Note that for this case the condition (I.6) can be rewritten in an equivalent

form

Qx

Λ∪Λ̃
(x⊕ y) =

Qx

Λ∪Λ̃
(y)

Qx⊕y
Λ ( /©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©)

Qx⊕y
Λ (x). (I.8)

Note also that in the {0,1} case the condition of vacuumness is just Qx
Λ(/©) > 0

for all Λ ∈ E and x ⊂ Λc.
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I.3. Description of random fields by their conditional proba-

bilities

The main question of the Gibbs random field theory is the study (under different

conditions on the potential) of the set of all random fields having a given Gibbsian

specification Q as a conditional distribution. Is this set empty or not? If it is

not empty, is it a singleton or not, i.e., is the field having Q as a conditional

distribution unique or not? In the non-uniqueness case, what can be said about

the structure of this set? Another interesting question is the following. Suppose

that Φ (and hence Q) is translation invariant (i.e., invariant with respect to shift

operators on Z
ν or, in other words, stationary). Are all the random fields having

Q as a conditional distribution translation invariant or not? In the latter case

what can be said about the set of translation invariant random fields having Q

as a conditional distribution?

Below, we will state a theorem answering these questions in a more general setup,

when the specification Q is not supposed to have Gibbsian form, but rather is

supposed to be “quasilocal”. To state this theorem we need to introduce some

definitions and notations.

We start by giving the following

DEFINITION I.6. — Let g =
{
gx, x ∈ X ∗K for some K ⊂ Z

ν
}

be an

arbitrary real-valued function on (Ω,T ).

1) We say that the function g is local if it is FΛ
0 measurable for some Λ ∈ E ,

i.e., if it depends only on the restriction x
Λ

of x on Λ or, equivalently, if we have

gx = gxΛ for all x ∈ Ω.

2) We say that the function g is quasilocal if it satisfies one of the following four

equivalent conditions:

(q.l.1) the function g is continuous with respect to the topology T ,

(q.l.2) the function g is a uniform limit of local functions,

(q.l.3) we have lim
I↑Zν

gxI = gx uniformly on x ∈ Ω, i.e.,

sup
x∈Ω

∣∣gxI − gx
∣∣ −→

I↑Zν
0,

(q.l.4) we have

sup
x,y∈Ω :x

I
=y

I

∣∣gx − gy
∣∣ −→

I↑Zν
0.
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The equivalence of these four conditions is well known and easily follows from

the compactness of the space (Ω,T ). Note that quasilocal functions are bounded

functions, since they are continuous functions on a compact. Note also that local

functions are clearly quasilocal.

DEFINITION I.7. — A specification Q =
{
Qx

Λ, Λ ∈ E and x ∈ X Λc}
is

called (quasi)local if for all Λ ∈ E and x ∈ X Λ the function
{
Q
z
Λc

Λ (x), z ∈ Ω
}

is (quasi)local, i.e., if for all Λ ∈ E and x ∈ X Λ the quantity

ϕx,Λ(I) = sup
x∈X Λc

∣∣Qx
I

Λ (x) − Q
x

Λ(x)
∣∣

tends to 0 as I ↑ Z
ν (for the quasilocal case) or equals to 0 for I sufficiently large

(for local case). A random field P is called (quasi)local if it has a (quasi)local

conditional distribution.

Note that the quasilocality is obviously true, for example, for Gibbsian speci-

fications with uniformly convergent interaction potentials, and the locality, for

Gibbsian specifications with finite range interaction potentials.

Now let us introduce the following convergence in the space P of all random

fields defined on Z
ν and taking values in the state space X . We will say that

a sequence P(n) of random fields converges to some random field P if for all

Λ ∈ E and x ∈ X Λ we have lim
n→∞

P
(n)
Λ (x) = PΛ(x). Note that we obtain this

convergence if we consider the space P as a subset of the Banach space of all

bounded functions r =
{
r
Λ
(x), Λ ∈ E and x ∈ X Λ

}
with the norm

‖r‖ = sup
Λ∈E

1

2n(Λ)

∑

x∈X Λ

∣∣r
Λ
(x)
∣∣

where n(Λ) is some enumeration of elements of E (i.e., n is an arbitrary bijection

from E on N). Note also that the space P is a closed convex subset of this

Banach space and, moreover, can be shown to be a compact set by usual “diagonal

method”.

A random field P ∈ P is called tail-trivial if it is trivial on the tail σ-algebra

F∞ =
⋂

Λ∈E

FΛc

0 , i.e., for all A ∈ T we have P(A) = 1 or P(A) = 0.

A random field P ∈ P is called translation invariant if for all Λ ∈ E , x ∈ X Λ

and t ∈ Z
ν we have PΛ(x) = PΛ+t(x+ t). Here and in the sequel Λ + t denotes
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the set {s+ t : s ∈ Λ} and x+ t denotes the configuration y ∈ X Λ+t defined by

ys+t = xs for all s ∈ Λ. Similarly a specification Q is called translation invariant

if for all Λ ∈ E , x ∈ X Λ and x ∈ X Λc

we have Qx
Λ(x) = Qx+t

Λ+t(x+ t).

A random field P ∈ P is called ergodic if it is translation invariant and is trivial

on the σ-algebra I =
{
A ∈ F : A + t = A for all t ∈ Z

ν
}

of all translation

invariant events. Here A+ t = {x+ t : x ∈ A}. Let us note here that if P ∈ P

is translation invariant and tail-trivial, then it is also ergodic.

Let us now recall some notions from convex analysis. Let A be a convex subset

of some real vector space. An element α ∈ A is said to be extreme (in A) if

α 6= s β + (1 − s) γ for all 0 < s < 1 and all β, γ ∈ A with β 6= γ. The set of all

extreme elements of A is called extreme boundary of A and is denoted by exA.

The convex set A is said to be a simplex if any element α ∈ A can be represented

as

α =

∫

ex A

β µα(dβ)

with the unique weight µα which is a probability distribution on the space exA.

Recall also that for any set B the minimal convex set A containing B is called

convex hull of B and that the closure of A is called closed convex hull of B and

is denoted by c.c.h.(B).

Now, suppose we are given some fixed specification Q.

For each Λ ∈ E and x ∈ X Λc

let us consider a random field defined by Qx
Λ on Λ

and equal a.s. to x outside Λ. This random field is called random field in finite

volume Λ with boundary condition x.

Further, if for some sequence Λn ∈ E of finite volumes such that Λn ↑ Z
ν and some

sequence xn ∈ X Λc
n of boundary conditions these random fields converge to some

random field P, then this random field P is called limiting Gibbs random field for

random fields in finite volumes (or shortly limiting Gibbs random field) for Q. We

denote the set of all limiting Gibbs random fields for Q by Glim = Glim(Q).

On the other hand any random field P having the specification Q as a conditional

distribution is called Gibbs random field for Q. We denote the set of all Gibbs

random fields for Q by G = G (Q).

In the case when Q is translation invariant we also denote by Gt.i. = Gt.i.(Q) the

set of all translation invariant Gibbs random fields for Q.
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Note that above we use the traditional term “Gibbs” even though Q is not

necessarily Gibbsian.

Now we can finally state the following

THEOREM I.8. — Let the specification Q =
{
Qx

Λ, Λ ∈ E and x ∈ X Λc}
be

quasilocal.

1) The set G is a non-empty closed convex set. Moreover, G is a simplex and

we have ex G ⊂ Glim and G = c.c.h.(Glim) = c.c.h.(exG ). Finally, a random field

P ∈ G is extreme
(
i.e., P ∈ ex G

)
if and only if P is tail-trivial.

2) If Q is translation invariant then Gt.i. ⊂ G is also a non-empty closed convex

set. Moreover, Gt.i. is a simplex and we have Gt.i. = c.c.h.(exGt.i.). Finally,

a random field P ∈ Gt.i. is extreme
(
i.e., P ∈ exGt.i.

)
if and only if P is

ergodic.

3) The set G is a singleton, i.e., G = {P}, if and only if for any increasing

sequence of finite volumes and for any sequence of corresponding boundary con-

ditions the random fields in these finite volumes with these boundary conditions

converge to the random field P.

4) Suppose Q1 and Q2 are Gibbsian specifications corresponding to some uni-

formly convergent vacuum potentials Φ1 and Φ2 (and hence are quasilocal). Then

G (Q1) ∩ G (Q2) 6= /© ⇐⇒ Φ1 = Φ2 ⇐⇒ Q1 = Q2 ⇐⇒ G (Q1) = G (Q2).

REMARK I.9. — Non-uniqueness and translation invariance breaking are

possible. Non-uniqueness means that it is possible to have |G | 6= 1 and

even |Gt.i.| 6= 1. Translation invariance breaking means that it is possible to

have (in the non-uniqueness case) Gt.i. 6= G . Moreover, it is possible to have

exGt.i. \ exG 6= /© and exG \ Gt.i. 6= /©, i.e., the simplex Gt.i. is not necessarily a

face (subsimplex) of the simplex G .

Finally, to conclude this chapter let us give here a sufficient condition for

uniqueness of the Gibbs random field for a given quasilocal specification Q.

For the convenience of notations in the sequel we will often write t for the

set {t} consisting of just one point t.

Let us introduce the following
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DEFINITION I.10. — Let Q =
{
Qx

Λ, Λ ∈ E and x ∈ X Λc}
be some

specification. We say that it satisfies Dobrushin’s uniqueness condition if it is

quasilocal and we have

1

2
sup
t∈Zν

∑

s∈Zν\t

sup
x,y

∑

x∈X

∣∣Qx
t (x) − Qy

t (x)
∣∣ < 1. (I.9)

where the second sup is taken over all pairs x,y ∈ X Z
ν\t such that we have

xZν\{s,t} = yZν\{s,t}.

Now we can finally state Dobrushin’s uniqueness theorem.

THEOREM I.11. — Let the specification Q satisfy Dobrushin’s uniqueness

condition. Then G is a singleton, that is we have |G | = 1. If we suppose also

that Q is translation invariant then Gt.i. = G is also a singleton.

These results are synthesis of several theorems from [12]. Note that the main part

of the Theorems I.8 and I.11 was first formulated by R.L. Dobrushin in [8] — [10]

for Gibbsian case. Note also that the Theorems I.8 and I.11 hold in the case of

a finite state space X . The case of infinite state space requires more notations

and assumptions. Details for this case can be found in [12].





II. Random fields and P -functions

In this chapter we propose an approach towards description of random fields

which is based on a notion of P -functions. This notion is a generalization of

a notion of infinite-volume correlation functions well known in Gibbs random

fields theory. First two sections are devoted to the {0,1} case. The third section

shows the way one can generalize these results to the case of arbitrary finite state

space X .

II.1. Description of random fields by P -functions

Here we propose an approach towards description of random fields in the {0,1}
case. In the proposed approach the classical system of probability distri-

butions consistent in Kolmogorov’s sense is replaced by some function on E

(P -function) and the Kolmogorov’s consistency condition is replaced by some

“non-negativity” condition imposed on certain finite sums with alternating signs

of summands.

DEFINITION II.1. — A real-valued function f = {fJ , J ∈ E } on E is called

P -function if f/© = 1 and for any Λ ∈ E and x ⊂ Λ we have

∑

J⊂x

(−1)|x\J|fΛ\J > 0. (II.1)

THEOREM II.2. — A system P = {PΛ, Λ ∈ E } is a system of probability

distributions consistent in Kolmogorov’s sense if and only if there exists a

P -function f such that for any Λ ∈ E we have

PΛ(x) =
∑

J⊂x

(−1)|x\J|fΛ\J , x ⊂ Λ. (II.2)

Particularly, for any Λ ∈ E we have PΛ(/©) = fΛ.
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Proof : 1) NECESSITY. Let P = {PΛ, Λ ∈ E } be a system of probability

distributions consistent in Kolmogorov’s sense. Put fΛ = PΛ(/©) for all Λ ∈ E .

Clearly f/© = P/©(/©) = 1. Further we have
∑

J⊂x

(−1)|x\J|fΛ\J =
∑

J⊂x

(−1)|x\J| PΛ\J(/©) =

=
∑

J⊂x

(−1)|x\J|
(
PΛ

)
Λ\J

(/©) =

=
∑

J⊂x

(−1)|x\J|
∑

J̃⊂J

PΛ

(
J̃
)

=

=
∑

J̃⊂x

PΛ

(
J̃
) ∑

J : J̃⊂J⊂x

(−1)|x\J| = PΛ(x) > 0.

The last equality holds due to the following combinatorial relation
∑

A : B⊂A⊂C

(−1)|C\A| =
∑

A : B⊂A⊂C

(−1)|A\B| =

{
1 if B = C,
0 if B 6= C.

(II.3)

2) SUFFICIENCY. Let f be a P -function. For any Λ ∈ E and x ⊂ Λ let us

put

PΛ(x) =
∑

J⊂x

(−1)|x\J|fΛ\J > 0

and show that P = {PΛ, Λ ∈ E } is a system of probability distributions

consistent in Kolmogorov’s sense. For any Λ ∈ E we have
∑

x⊂Λ

PΛ(x) =
∑

x⊂Λ

∑

J⊂x

(−1)|x\J|fΛ\J =
∑

J⊂Λ

fΛ\J

∑

x : J⊂x⊂Λ

(−1)|x\J| = f/© = 1,

i.e., P is a system of probability distributions. Now let us verify its consistency.

For any Λ ∈ E , I ⊂ Λ and x ⊂ I we can write
(
PΛ

)
I
(x) =

∑

J⊂Λ\I

∑

J̃⊂x∪J

(−1)|(x∪J)\J̃ |f
Λ\J̃

=

=
∑

J⊂Λ\I

∑

J̃1⊂x

(−1)|x\J̃1| ∑

J̃2⊂J

(−1)|J\J̃2|f
Λ\(J̃1∪J̃2)

=

=
∑

J̃1⊂x

(−1)|x\J̃1| ∑

J̃2⊂Λ\I

f
Λ\(J̃1∪J̃2)

∑

J : J̃2⊂J⊂Λ\I

(−1)|J\J̃2| =

=
∑

J̃1⊂x

(−1)|x\J̃1|f
I\J̃1

= PI(x).

The theorem is proved. ⊓⊔
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II.2. Properties and examples of P -functions

Let B be the Banach space of all bounded functions defined on E with the

norm

‖b‖ = sup
J∈E

|bJ |
n(J)

, b = {bJ , J ∈ E } ∈ B,

where n(J) is some enumeration of elements of E and let B
(
[0,1]

)
be the subset of

B consisting of all functions taking values in [0,1]. Note that B
(
[0,1]

)
is a closed

convex subset of B and that the convergence of functions in B
(
[0,1]

)
is equivalent

to the “pointwise” convergence, i.e., to the convergence for any J ∈ E .

PROPOSITION II.3 [Properties of P -functions]. — 1) The space BP of all

P -functions is a closed convex subset of B
(
[0,1]

)
. Moreover BP is compact.

2) Let f be a P -function and fix some T ⊂ Z
ν . Then the function f |T defined by

f
|T
J = fT∩J , J ∈ E , is also a P -function. The corresponding random field is the

restriction of the original one on T and assumes a.s. the value 0 outside T .

3) Let f be a P -function. For any fixed B ∈ E such that fB > 0 consider the

function fB defined by fB
J = fB∪J

fB
, J ∈ E . Then fB is also a P -function. The

corresponding random field is the original one conditioned to be equal 0 on B

(and hence assuming a.s. the value 0 on B).

4) Consider a family F =
{
f (s)

}
of P -functions depending on the parameter

s ∈ (0,1) and let p(s), s ∈ (0,1), be a probability density. Then the function g

defined by

gJ =

∫ 1

0

f
(s)
J p(s) ds, J ∈ E ,

is also a P -function. Corresponding random field is a mixture of the original

ones.

5) Consider a P -function f and let ϕ : Z
ν −→ T ⊂ Z

ν be a bijection. Then

the function fϕ defined by fϕ
J = fϕ(J), J ∈ E , is also a P -function. The

corresponding random field can be viewed as the image of the original one by ϕ−1,

or rather by ϕ̃ : X Z
ν −→ X Z

ν

corresponding to each x ∈ X Z
ν

a configuration

ϕ̃(x) ∈ X Z
ν

defined by ϕ̃(x)t = xϕ(t), t ∈ Z
ν .

Proof : 1) The first assertion is evident. The compactness can be easily proved

using the usual “diagonal method”.
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2) and 3) Both this two assertions can be proved by considering the correspond-

ing random field, calculating in it the probabilities of empty configurations and

using the Theorem II.2. Note that we can also check directly the conditions of

the Definition II.1 using combinatorial formulas. For example, let us check these

conditions for the case of 2). We have obviously f
|T
/© = fT∩/© = f/© = 1. Further

we have

∑

J⊂x

(−1)|x\J|f
|T
Λ\J =

∑

J⊂x

(−1)|x\J|fT∩(Λ\J) =

=
∑

J1⊂x∩T

∑

J2⊂x∩T c

(−1)|(x∩T )\J1| (−1)|(x∩T c)\J2|f(T∩Λ)\J1
=

=
∑

J1⊂x∩T

(−1)|(x∩T )\J1|f(T∩Λ)\J1
×

∑

J2⊂x∩T c

(−1)|(x∩T c)\J2| > 0

because the first factor is positive by (II.1) and the second one by (II.3). Here

and in the sequel T c = Z
ν \ T denotes the complement of T .

4) On one hand we have

g/© =

∫ 1

0

f
(s)
/© p(s) ds =

∫ 1

0

p(s) ds = 1.

On the other hand we can write

∑

J⊂x

(−1)|x\J|gJ =
∑

J⊂x

(−1)|x\J|

∫ 1

0

f
(s)
J p(s) ds =

=

∫ 1

0

(∑

J⊂x

(−1)|x\J|f
(s)
J

)
p(s) ds > 0

because
∑

J⊂x

(−1)|x\J|f
(s)
J > 0 and p(s) > 0 for any s ∈ (0,1).

5) Obviously we have fϕ
/© = fϕ(/©) = f/© = 1. Further, using the fact that ϕ is a

bijection, we can write

∑

J⊂x

(−1)|x\J|fϕ
Λ\J =

∑

J⊂x

(−1)|x\J|fϕ(Λ\J) =
∑

J⊂x

(−1)|ϕ(x)\ϕ(J)|fϕ(Λ)\ϕ(J) =

=
∑

J1⊂ϕ(x)

(−1)|ϕ(x)\J1|fϕ(Λ)\J1
> 0

by (II.1) because f is a P -function. ⊓⊔
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EXAMPLES II.4. — 1) Let {ft, t ∈ Z
ν} be a family of real numbers such that

0 6 ft 6 1 for any t ∈ Z
ν . We put

fJ =
∏

t∈J

ft, J ∈ E .

Here and in the sequel any product over an empty space of indexes is considered

to be equal 1, i.e., f/© = 1. Then f = {fJ , J ∈ E } is a P -function and the

corresponding random field is a random field with independent components and

with P{t}(x) =

{
ft if x = 0

1 − ft if x = 1
for all t ∈ Z

ν . The case ft ≡ q on Z
ν ,

0 6 q 6 1, corresponds to Bernoulli random field with parameter p = 1 − q.

In particular, for q = 0 we get a random field which assumes a.s. the value 1 on

Z
ν , and for q = 1 a random field which assumes a.s. the value 0 on Z

ν .

2) Fix some τ > 0 and let, for all q ∈ [0,1], the function f (q) =
{
f

(q)
J , J ∈ E

}

be defined by f
(q)
J = q|J| (this is a Bernoulli random field from the preceding

example). Then the function b defined by

bJ = τ

∫ 1

0

q|J|+τ−1 dq =
τ

|J | + τ
, J ∈ E , (II.4)

is a P -function corresponding to a random field which is a mixture of the Bernoulli

random fields. This is an evident consequence of the Proposition II.3–4 where

the probability density p is taken to be p(q) = τqτ−1, q ∈ [0,1], and the family

F =
{
f (q)

}
is the family of Bernoulli random fields. The system of finite-

dimensional distributions of the mixture random field is given by

PΛ(x) =
τ

|Λ| + τ

|x|∏

i=1

i

|Λ| + τ − i

for all Λ ∈ E and x ⊂ Λ. This can be easily proved by induction over a number

of points of the set x using the formula (II.2). As we will see later, this random

field is non-Gibbsian (for demonstration see the Section VI.2).

3) Let f be a P -function. Using the Proposition II.3–2 with T = t × Z
ν−1 we

get a P -function fproj defined by fproj
J = fJ∩(t×Zν−1) where we have fixed some

t ∈ Z. This P -function corresponds to a random field obtained by projection

which may be non-Gibbsian even if the original random field is Gibbsian
(
see, for

example, [23] and [25]
)
.

4) Let f be a P -function. Then the function fdec defined by fdec
J = f2J

where 2J = {2t, t ∈ J} is a P -function. This is an evident consequence of
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the Proposition II.3–5. This P -function corresponds to a random field obtained

by “decimation” which is also known to be in general non-Gibbsian even if the

original random field is Gibbsian
(
see, for example, [16] and [25]

)
.

II.3. Generalizations to the case of arbitrary finite state

space

As we have seen in the previous sections, in the {0,1} case one can specify com-

pletely a random field by specifying just the probabilities of vacuum configura-

tions: fΛ = PΛ(/©). Clearly one could have specified a random field by specifying

rather the probabilities of configurations not containing vacuums, that is consist-

ing only of 1’s. So, one could have defined the P -functions as fΛ = PΛ(Λ). In this

case the Definition II.1 and the Theorem II.2 would be rewritten as follows:

DEFINITION II.5. — A real-valued function f = {fJ , J ∈ E } on E is called

P -function if f/© = 1 and for any Λ ∈ E and x ⊂ Λ we have

∑

J⊂Λ\x

(−1)|J|fx∪J > 0.

THEOREM II.6. — A system P = {PΛ, Λ ∈ E } is a system of probability

distributions consistent in Kolmogorov’s sense if and only if there exists a

P -function f such that for any Λ ∈ E we have

PΛ(x) =
∑

J⊂Λ\x

(−1)|J|fx∪J , x ⊂ Λ.

Particularly, for any Λ ∈ E we have PΛ(Λ) = fΛ.

The proof is similar to the one of the Theorem II.1.

This version of the theorem is easily generalized to a case of arbitrary finite state

space X . That is, in this case one can still specify completely a random field by

specifying just the probabilities of configurations not containing vacuums.

Let us consider the case of arbitrary finite state space X . As always we suppose

that there is some fixed element ∅ ∈ X which is called vacuum and we denote

X ∗ = X \ {∅}.
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DEFINITION II.7. — A real-valued function f =
{
fx, x ∈ X ∗I , I ∈ E

}

is called P -function if f/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/© = 1 and for any Λ ∈ E and x ∈ X ∗I , I ⊂ Λ we

have ∑

J⊂Λ\I

(−1)|J|
∑

y∈X ∗J

fx⊕y > 0.

THEOREM II.8. — A system P = {PΛ, Λ ∈ E } is a system of probability

distributions consistent in Kolmogorov’s sense if and only if there exists a

P -function f such that for any Λ ∈ E we have

PΛ(x) =
∑

J⊂Λ\I

(−1)|J|
∑

y∈X ∗J

fx⊕y, x ∈ X
∗I , I ⊂ Λ.

Particularly, for any x ∈ X ∗I , I ∈ E we have PI(x) = fx.

The proof for this general case is similar to the one corresponding to the {0,1}
case. All the properties of P -functions are also easily generalized for this general

case.





III. Random fields, Q-functions and H-functions

In the case of Gibbs random fields one can consider infinite-volume correlation

functions as limits of finite-volume correlation functions. In the first sections

we consider the {0,1} case. We show that in some cases P -functions can also

be considered as limits of finite-volume correlation functions (or rather their

generalization). The latter ones can be written down via generalized partition

functions (Q-functions) or, equivalently, via the generalized Boltzmann factors

(H-functions) which are arbitrary non-negative functions in our case. Then

we introduce systems of probability distributions (corresponding to conditional

distributions in finite volumes with vacuum boundary conditions) consistent

in Dobrushin’s sense and describe them via corresponding Q-functions and/or

H-functions. Further we give, in terms of cluster representation of Q-functions,

a general sufficient condition for existence of limiting P -functions. Finally in

Section III.4 we show the way one can generalize the notion of H-functions to

the case of arbitrary finite state space X .

III.1. Q-functions and H-functions

Let us start by giving the following

DEFINITION III.1. — A real-valued function θ = {θJ , J ∈ E } on E is called

Q-function if θJ 6= 0 for all J ∈ E , θ/© = 1 and for any S ∈ E we have
∑

J⊂S

(−1)|S\J|θJ > 0. (III.1)

Unlike P -functions, Q-functions are much easier to specify because they have the

following simple constructive description.

THEOREM III.2. — A function θ = {θJ , J ∈ E } is a Q-function if and only if

there exists a function H = {HS , S ∈ E }, HS > 0 for all S ∈ E , H/© = 1, such

that for any Λ ∈ E we have

θΛ =
∑

S⊂Λ

HS . (III.2)

This function H is called H-function.
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Proof : 1) NECESSITY. Let θ = {θJ , J ∈ E } be a Q-function. Put

HS =
∑

J⊂S

(−1)|S\J|θJ , S ∈ E . (III.3)

Since θ is a Q-function and according to the definition (III.3) of HS , we have

H/© = 1 and HS > 0 for all S ∈ E . Further, for any Λ ∈ E we can write

∑

S⊂Λ

HS =
∑

S⊂Λ

∑

J⊂S

(−1)|S\J|θJ =
∑

J⊂Λ

θJ

∑

S : J⊂S⊂Λ

(−1)|S\J| = θΛ.

2) SUFFICIENCY. Let H be a H-function and θΛ =
∑

S⊂Λ

HS . Clearly θ/© = H/© = 1

and θΛ > H/© = 1 > 0 for all Λ ∈ E . Finally, for all S ∈ E we have

∑

J⊂S

(−1)|S\J|θJ =
∑

J⊂S

(−1)|S\J|
∑

J̃⊂J

H
J̃

=

=
∑

J̃⊂S

H
J̃

∑

J : J̃⊂J⊂S

(−1)|S\J| = HS > 0

which concludes the proof. ⊓⊔

Since Hx > 0 for all x ∈ E we can denote U(x) = − lnHx

(
we permit the

function U = {U(x), x ∈ E } to take the value +∞
)
. Then (III.2) can be

rewritten in the following form

θΛ =
∑

x⊂Λ

exp
(
−U(x)

)

and we see that H is nothing but Boltzmann factors and θ is nothing but the

partition function defined through a general Hamiltonian U (without boundary

conditions) not using an interaction potential.

PROPOSITION III.3. — Let θ = {θJ , J ∈ E } be a Q-function. Then for any

Λ ∈ E the function

f (Λ) =
{
f

(Λ)
J =

θΛ\J

θΛ
, J ∈ E

}

is a P -function.

Proof : Let us fix some Λ ∈ E . Obviously f
(Λ)
/© = θΛ/θΛ = 1. Further, for any
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I ∈ E and x ⊂ I we have

∑

J⊂x

(−1)|x\J|f
(Λ)
I\J =

∑

J⊂x

(−1)|x\J| θΛ\(I\J)

θΛ
=

=
1

θΛ

∑

J1⊂x∩Λ

∑

J2⊂x∩Λc

(−1)|(x∩Λ)\J1| (−1)|(x∩Λc)\J2|θ(Λ\I)∪J1
=

=
1

θΛ

∑

J1⊂x∩Λ

(−1)|(x∩Λ)\J1|θ(Λ\I)∪J1
×

∑

J2⊂x∩Λc

(−1)|(x∩Λc)\J2|.

Let us denote the first sum by F1 and the second one by F2. For F2 we have

by (II.3)

F2 =
{

1 if x ⊂ Λ,
0 otherwise.

Hence F2 > 0 and we have to calculate F1 only for the case x ⊂ Λ. Since θ is a

Q-function, for all S ⊂ Λ \ I we have
∑

J⊂x∪S

(−1)|(x∪S)\J|θJ > 0 and hence

0 6
∑

S⊂Λ\I

∑

J⊂x∪S

(−1)|(x∪S)\J|θJ =

=
∑

J1⊂x

(−1)|x\J1|
∑

J2⊂Λ\I

θJ1∪J2

∑

S : J2⊂S⊂Λ\I

(−1)|S\J2| =

=
∑

J1⊂x

(−1)|x\J1|θ(Λ\I)∪J1
= F1.

So, we get (II.1) and hence f (Λ) is a P -function. ⊓⊔

Note that using the above mentioned notation U we can write

f
(Λ)
J =

∑
x⊂Λ\J

exp
(
U(x)

)

∑
y⊂Λ

exp
(
U(y)

)

which is the Gibbsian form for finite-volume correlation functions but for a general

Hamiltonian U . Note also that since the space BP of all P -functions is closed

then, if for some sequence Λn ∈ E such that Λn ↑ Z
ν the P -functions f (Λn)

converge as n → ∞ to some function f , this function f is a new P -function

which is a generalized limiting (infinite-volume) correlation function. This is a

limiting P -function and it corresponds to a limiting random field P.
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III.2. Consistency in Dobrushin’s sense

To any Q-function θ one can associate a system Q = {QΛ, Λ ∈ E } where

QΛ = {QΛ(x), x ⊂ Λ} and QΛ(x) is defined by the formula

QΛ(x) =
1

θΛ

∑

J⊂x

(−1)|x\J|θJ , Λ ∈ E , x ⊂ Λ.

This system turns out to be a system of probability distributions. Note that

using the notation U and the formulas (III.2) and (III.3) one can rewrite QΛ(x)

in the form

QΛ(x) =
exp
(
U(x)

)
∑
y⊂Λ

exp
(
U(y)

)

which is the classical Gibbsian form but for a general Hamiltonian U . In general,

the system Q is not consistent in Kolmogorov’s sense. It is rather consistent in

so-called “Dobrushin’s sense”.

DEFINITION III.4. — A system of probability distributions Q = {QΛ, Λ ∈ E }
is called consistent in Dobrushin’s sense if for all Λ, Λ̃ ∈ E such that Λ ∩ Λ̃ = /©

and for all x ⊂ Λ we have

Q
Λ∪Λ̃

(x) = QΛ(x)
(
Q

Λ∪Λ̃

)
Λ̃
(/©). (III.4)

Note that in the case when QΛ(/©) > 0 for all Λ ∈ E the condition (III.4) can be

rewritten in an equivalent form

Q
Λ∪Λ̃

(x) =
Q

Λ∪Λ̃
(/©)

QΛ(/©)
QΛ(x).

Note also that Dobrushin’s consistency condition (III.4) is just a particular case

of the condition (I.4) and is satisfied by the system of conditional distributions

in finite volumes with vacuum boundary conditions of a random field. Below

we will see that under some conditions the system of probability distributions

consistent in Dobrushin’s sense is indeed the system of conditional distributions

in finite volumes with vacuum boundary conditions for the limiting random field.

But before let us show how the systems of probability distributions consistent in

Dobrushin’s sense can be described.

THEOREM III.5. — A system Q = {QΛ, Λ ∈ E } is a system of probability

distributions consistent in Dobrushin’s sense and satisfying QΛ(/©) > 0 for all
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Λ ∈ E if and only if there exists a Q-function θ = {θJ , J ∈ E } such that for all

Λ ∈ E we have

QΛ(x) =
1

θΛ

∑

J⊂x

(−1)|x\J|θJ , x ⊂ Λ. (III.5)

Particularly, for all Λ ∈ E we have QΛ(/©) = 1/θΛ.

Proof : 1) NECESSITY. Let Q = {QΛ, Λ ∈ E } be a system of probability

distributions consistent in Dobrushin’s sense with QΛ(/©) > 0 for all Λ ∈ E .

Put θΛ = 1/QΛ(/©). We have obviously θΛ 6= 0 and θ/© = 1. Further, for any

Λ ∈ E and J ⊂ Λ we can write

1 =
∑

S⊂J

QJ (S) =
∑

S⊂J

QJ (/©)

QΛ(/©)
QΛ(S) =

QJ (/©)

QΛ(/©)

∑

S⊂J

QΛ(S)

or equivalently

θJ = θΛ
∑

S⊂J

QΛ(S).

Therefore
∑

J⊂x

(−1)|x\J|θJ = θΛ
∑

J⊂x

(−1)|x\J|
∑

S⊂J

QΛ(S) = θΛ QΛ(x)

and we obtain (III.1) and (III.5).

2) SUFFICIENCY. Let θ = {θJ , J ∈ E } be a Q-function. First of all, let us note

that for all Λ ∈ E we have θΛ =
∑

S⊂Λ

HS > H/© = 1 > 0. Now let us put for any

Λ ∈ E and x ⊂ Λ

QΛ(x) =
1

θΛ

∑

J⊂x

(−1)|x\J|θJ =
Hx

θΛ
> 0

and prove that Q = {QΛ, Λ ∈ E } is a system of probability distributions

consistent in Dobrushin’s sense. We have

∑

x⊂Λ

QΛ(x) =
1

θΛ

∑

x⊂Λ

Hx =
1

θΛ
θΛ = 1,

i.e., the system Q is a system of probability distributions. Now let us verify its

consistency. We have

Q
Λ∪Λ̃

(x) =
Hx

θ
Λ∪Λ̃

=
θΛ
θ
Λ∪Λ̃

Hx

θ
Λ

=
Q

Λ∪Λ̃
(/©)

QΛ(/©)
QΛ(x).

The theorem is proved. ⊓⊔
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Now we can state the theorem showing when the system of probability distribu-

tions consistent in Dobrushin’s sense is indeed the system of conditional distribu-

tions in finite volumes with vacuum boundary conditions for the limiting random

field.

THEOREM III.6. — Let θ = {θJ , J ∈ E } be a Q-function and Q be the

corresponding system of probability distributions consistent in Dobrushin’s sense.

For each Λ ∈ E we consider the above introduced P -function f (Λ).

1) Let Λ ∈ E and let P(Λ) be the random field corresponding to the

P -function f (Λ). The finite-dimensional distributions of this random field have

the following form: for each I ∈ E and x ⊂ I we have

P
(Λ)
I (x) =

{(
QΛ

)
Λ∩I

(x) if x ⊂ Λ,

0 otherwise.
(III.6)

2) One can choose a sequence Λn ∈ E such that Λn ↑ Z
ν and that the P -functions

f (Λn) converge as n → ∞ to a limiting P -function f , i.e., for all J ∈ E we

have

lim
n→∞

f
(Λn)
J = fJ .

3) Suppose moreover that for any J ∈ E the limit

lim
Λ↑Zν

f
(Λ)
J = fJ (III.7)

exists and the convergence is “absolute” in the sense of the definition I.2–2). Then

the function f is a limiting P -function and the corresponding limiting random

field P satisfies

q
/©
J (/©) = 1/θJ (III.8)

for any J ∈ E .

Proof : 1) Using details of the proof of the Proposition III.3 and formulas (II.2)

and (III.5) we get

P
(Λ)
I (x) =

∑

J⊂x

(−1)|x\J|f
(Λ)
I\J =

1

θΛ
F1 F2

with

F1 =
∑

S⊂Λ\I

∑

J⊂x∪S

(−1)|(x∪S)\J|θJ = θΛ
∑

S⊂Λ\I

QΛ(x ∪ S) = θΛ
(
QΛ

)
Λ∩I

(x).
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and

F2 =
{

1 if x ⊂ Λ,
0 otherwise.

Now the representation (III.6) is evident.

2) This is an obvious consequence of the compactness of the set BP of all

P -functions.

3) The fact that f is a P -function is also a consequence of the compactness of

the set BP . To verify the relation (III.8) let us fix some sequence Jn ↑ Jc. Using

the “absoluteness” of the convergence (III.7) we can write

q
/©
J (/©) = lim

n→∞

PJ∪Jn
(/©)

P Jn
(/©)

= lim
n→∞

fJ∪Jn

f Jn

= lim
n→∞

lim
m→∞

f
(J∪Jm)

J∪Jn

f
(J∪Jm)

Jn

=

= lim
n→∞

lim
m→∞

θ Jm\Jn

/
θJ∪Jm

θJ∪( Jm\Jn)

/
θJ∪Jm

= lim
n→∞

lim
m→∞

f
(J∪( Jm\Jn))
J =

= lim
n→∞

lim
m→∞

∑

R⊂J∪( Jm\Jn)

bR(J) = lim
n→∞

∑

R∈E : R⊂J
c

n

bR(J) =

=
∑

R⊂J

bR(J) = f
(J)
J =

1

θJ

which concludes the proof. ⊓⊔

REMARKS III.7. — 1) The relation (III.8) between the limiting random field

and the original system of probability distributions consistent in Dobrushin’s

sense (Q-function) can be rewritten in the form

q
/©
J (/©) = QJ(/©), J ∈ E .

Note that the relation

q
/©
J (x) = QJ (x), J ∈ E , x ⊂ J,

also holds. At first sight it seems to be more general than (III.8), but in reality

they are equivalent because the systems {q/©
J , J ∈ E } and {QJ , J ∈ E } of

probability distributions are both consistent in Dobrushin’s sense and hence

they are determined uniquely and in the same manner
(
more precisely by

the formula (III.5)
)

by the functions {q/©
J (/©), J ∈ E } and {QJ (/©), J ∈ E }

respectively.

2) In the relation (III.8) one cannot replace q
/©
J (/©) by Q

/©
J (/©) coming from an

arbitrary conditional distribution Q of the random field P, because in general
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Q
/©
J (/©) is not necessarily equal to q

/©
J (/©) although the last one is well-defined for

the random field P.

3) The “absoluteness” of the convergence in (III.7) is essential for the rela-

tion (III.8). If the convergence holds but is not “absolute” this relation can

fail as shows the following

EXAMPLE III.8. — Let τ > 0 and consider a function θJ = |J|+τ
τ . It is not

difficult to check that this is a Q-function and that the corresponding system

of probability distributions consistent in Dobrushin’s sense has the following

form

QΛ(x) =





τ
|Λ|+τ if x = /©,

1
|Λ|+τ if |x| = 1,

0 if |x| > 2.

For this Q-function the limits in (III.7) exist. In fact, for any J ∈ E we have

fJ = lim
Λ↑Zν

θΛ\J

θΛ
= lim

Λ↑Zν

|Λ \ J | + τ

|Λ| + τ
= 1.

As we see, the limiting random field is a random field assuming a.s. the value 0

on Z
ν . Obviously in this random field we have q

/©
J (/©) = 1 for all J ∈ E and the

relation (III.8) fails.

III.3. Cluster expansions

Now, let us give an example (or rather a whole class of examples) when the

convergence in (III.7) is “absolute”. This example is a generalization of a wide

class of models occurring in the Gibbs random fields theory and called “models

allowing cluster expansion”. For this we need to introduce some combinatorial

notions. For all Λ ∈ E \ {/©} let us fix an arbitrary point tΛ ∈ Λ and denote

Λ′ = Λ \ {tΛ}.

DEFINITION III.9. — 1) We define a partially ordering in E in the following

way. For A,B ∈ E we say that B 6 A if there exists an n ∈ N and a sequence

B = A1, A2, . . . , An = A of elements of E such that we have Ai−1 = Ai \ tAi for

all i = 2, . . . , n.

2) A sequence γ = {B1,Γ1; . . . ;Bn,Γn} such that we have B1 6 A ∈ E ,

Bi,Γi ∈ E and Γi ∩ Bi = tBi for all i = 1, . . . , n, and Bi 6 Bi−1 ∪ Γi−1 for
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all i = 2, . . . , n, is called path beginning at A. The number n is called length of

the path γ and the set Γ1 ∪ · · · ∪ Γn ∈ E is called support of the path γ. The set

of all pathes beginning at A and of length n will be denoted by Γ(n)(A) and the

set of all pathes beginning at A and with support R by ΓR(A).

3) A sequence δ = {Γ1, . . . ,Γn} such that we have Γi 6= /© and Γi ⊂ Λ ∈ E for

all i = 1, . . . , n, and Γi ∩ Γj = /© for any pair i, j = 1, . . . , n with i 6= j, is called

weak partition of Λ. Note that we allow the partition to be empty, i.e., n = 0.

The set of all weak partitions of Λ will be denoted by ∆w
Λ .

4) A weak partition δ = {Γ1, . . . ,Γn} of a set Λ ∈ E is called partition of Λ,

if we have Γ1 ∪ · · · ∪ Γn = Λ. The set of all partitions of Λ will be denoted

by ∆Λ.

THEOREM III.10. — 1) Let K = {KJ , J ∈ E } be a real-valued function such

that

F (Λ) =
∑

{Γ1,...,Γn}∈∆Λ

KΓ1
· · ·KΓn > 0, Λ ∈ E . (III.9)

Then the function θ = {θΛ, Λ ∈ E } defined by

θΛ =
∑

{Γ1,...,Γn}∈∆w
Λ

KΓ1
· · ·KΓn , Λ ∈ E .

is a Q-function.

2) If, moreover, there exist some λ, α > 0 such that λ (1 +
√
α )2 < 1, and for all

t ∈ Z
ν and n ∈ N we have ∑

Γ : t∈Γ and |Γ|=n

|KΓ| 6 αλn,

then for any J,Λ ∈ E we have the representation

f
(Λ)
J =

∑

R⊂Λ

bR(J)

where

bR(J) =
∑

{B1,Γ1;...;Bn,Γn}∈ΓR(J)

(−1)nKΓ1 · · ·KΓn

for all R, J ∈ E , and the series
∑

R∈E

bR(J) converges absolutely for any J ∈ E .

Hence, the conditions of the Theorem III.6–3 are satisfied and there exists a

limiting random field P satisfying (III.8) and corresponding to a P -function

f = {fJ , J ∈ E } defined by

fJ =

∞∑

n=0

∑

{B1,Γ1;...;Bn,Γn}∈Γ(n)(J)

(−1)nKΓ1 · · ·KΓn , J ∈ E .
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Proof : 1) First of all, for any Λ ∈ E , we have

θΛ =
∑

R⊂Λ

F (R) > F (/©) = 1 > 0

and θ/© = F (/©) = 1. It remains to verify the condition (III.1). Indeed, for any

S ∈ E , we have
∑

J⊂S

(−1)|S\J|θJ =
∑

J⊂S

(−1)|S\J|
∑

R⊂J

F (R) = F (S) > 0.

2) For an arbitrary t ∈ Z
ν and any V ∈ E such that t ∈ V we can write

θV =
∑

R⊂V

F (R) =
∑

R⊂V \{t}

F (R) +
∑

R : t∈R⊂V

F (R) =

= θV \{t} +
∑

Γ : t∈Γ⊂V

(
KΓ

∑

{Γ1,...,Γn}∈∆w
V \Γ

KΓ1
· · ·KΓn

)
=

= θV \{t} +
∑

Γ : t∈Γ⊂V

(
KΓ θV \Γ

)
.

For J = /© the assertion of the theorem is trivial, so let us suppose that |J | > 1,

and apply the last equality for V = Λ \ J ′ and t = tJ . We get

θΛ\J′ = θΛ\J +
∑

Γ : tJ∈Γ⊂Λ\J′

(
KΓ θΛ\(J∪Γ)

)

and hence

f
(Λ)
J = f

(Λ)
J ′ +

∑

Γ : tJ∈Γ⊂Λ\J ′

(
−KΓ f

(Λ)
J∪Γ

)
.

For any Λ ∈ E , we can write the last equation for all J ∈ E1(Λ) where E1(Λ)

denotes the set of all non-empty subsets of Λ. So, we will get a system of 2|V |−1

linear equations with 2|V | − 1 unknown variables f
(Λ)
J , J ∈ E1(Λ)

(
note that

f
(Λ)
/© = 1, and so we substitute this value in the equations

)
. Let us rewrite this

system in “operator-matrix” form. For this we introduce the space B(Λ) of vectors

f (Λ) =
(
f

(Λ)
J , J ⊂ E1(Λ)

)
indexed by non-empty subsets of Λ, endowed with

the norm
∥∥f (Λ)

∥∥ = sup
J∈E1(Λ)

(
M−|J|

∣∣f (Λ)
J

∣∣
)

where M > 1 is some fixed number

that we will specify later.

Let us introduce the basis
{
χ(J), J ⊂ E1(Λ)

}
in the space B(Λ), by putting

χ(J) =
(
χ

(J)
V , V ⊂ E1(Λ)

)
with χ

(J)
V = 1l{J=V }.
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We define the “generalized shift” operator by the matrix R = (rJV )J,V with

rJV = 1l{V =J ′}. Clearly this operator will associate to each f (Λ) ∈ B(Λ) the

vector

Rf (Λ) =
(
f

(Λ)
J ′ , J ⊂ E1(Λ)

)
−
∑

t∈Λ

χ({t}). (III.10)

We define also the operatorK by the matrix (kJV )J,V with kJV =−KV \J ′ 1l{J⊂V }.

Clearly this operator will associate to each f (Λ) ∈ B(Λ) the vector K f (Λ) with

coordinates

K f
(Λ)
J =

∑

V : J⊂V ⊂Λ

(
−KV \J ′ f

(Λ)
V

)
=

∑

Γ : tJ∈Γ⊂Λ\J′

(
−KΓ f

(Λ)
J∪Γ

)
. (III.11)

Combining (III.10) and (III.11) we see that our system of equations is nothing

but

f (Λ) = Rf (Λ) +
∑

t∈Λ

χ({t}) +K f (Λ)

or, equivalently,
[
E − (R+K)

]
f (Λ) =

∑

t∈Λ

χ({t}) (III.12)

where E is the unit matrix.

Let us now estimate ‖R+K‖. For this let us note that

∥∥Rf (Λ)
∥∥ 6 sup

J∈E1(Λ)

(
M−|J|

∣∣f (Λ)
J ′

∣∣
)

6 sup
J∈E1(Λ)

(
M−|J|M |J ′|

∥∥f (Λ)
∥∥
)

=
1

M

∥∥f (Λ)
∥∥

and

∥∥K f (Λ)
∥∥ 6 sup

J∈E1(Λ)

(
M−|J|

∑

Γ : tJ∈Γ⊂Λ\J ′

∣∣KΓ f
(Λ)
J∪Γ

∣∣
)

6

6
∥∥f (Λ)

∥∥ sup
J∈E1(Λ)

∑

Γ : tJ∈Γ⊂Λ\J′

∣∣KΓ

∣∣M
|J∪Γ|

M |J|
=

=

∥∥f (Λ)
∥∥

M
sup

J∈E1(Λ)

∑

Γ : tJ∈Γ⊂Λ\J ′

∣∣KΓ

∣∣M |Γ|
6

6

∥∥f (Λ)
∥∥

M
sup
t∈Zν

∞∑

n=1

Mn
∑

Γ : t∈Γ and |Γ|=n

∣∣KΓ

∣∣ 6

6
α
∥∥f (Λ)

∥∥
M

∞∑

n=1

(
Mn λn

)
=
α
∥∥f (Λ)

∥∥
M

M λ

1 −M λ
=

αλ

1 −M λ

∥∥f (Λ)
∥∥,
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if M λ < 1, i.e., λ < 1/M . Hence
∥∥R+K

∥∥ 6
∥∥R
∥∥+

∥∥K
∥∥ 6

1

M
+

αλ

1 −M λ
. The

last expression is smaller that 1 if

λ <
M − 1

M(M + α− 1)
6

1

M
. (III.13)

If we choose M = 1+
√
α, then

M − 1

M(M + α− 1)
=

1

(1 +
√
α )2

, and hence (III.13)

is satisfied.

So, we have proved that
∥∥R+K

∥∥ < 1, and hence the system (III.12) has a unique

solution given by

f (Λ) =
[
E − (R+K)

]−1∑

t∈Λ

χ({t}) =

∞∑

n=0

(R+K)n
∑

t∈Λ

χ({t}) =

=
∞∑

p=0

∑

(m1,...,mp+1) : mi>0, i=1,...,p+1

(
Rm1 K · · ·KRmp+1

∑

t∈Λ

χ({t})

) (III.14)

and satisfying

f
(Λ)
J 6 M |J|

∥∥∥
∑
t∈Λ

χ({t})
∥∥∥

1 −
∥∥R+K

∥∥ 6 M |J|−1 1

1 − 1
M − α λ

1−M λ

= C (III.15)

where the constant C does not depend on Λ, but only on J , α and λ.

Let us rewrite (III.14) coordinate by coordinate. For this let us note at first,

that the matrix Rm = (rm
JV

)
J,V

is given by rm
JV

= 1l{J=V (m)} where we denote

V (0) = V and V (m) =
(
V (m−1)

)′
. Now we can see that

f
(Λ)
J =

∑

t∈Λ

∞∑

p=0

∑

(m1,...,mp+1) : mi>0, i=1,...,p+1

(
Rm1 KRm2 · · ·KRmp+1 χ

({t})
J

)
=

=
∑

t∈Λ

∞∑

p=0

∑

(m1,...,mp+1) : mi>0, i=1,...,p+1

∑

(J1,V1;...;Jp,Vp) : Ji,Vi∈E1(Λ), i=1,...,p

(
rm1

JJ1
kJ1V1 r

m2

V1J2
· · · kJpVp r

mp+1

Vp{t}

)
=

=
∑(

(−KΓ1
) · · · (−KΓp)

)

where the last sum is taken over all sequences (J1, V1; . . . ; Jp, Vp) such that all the

sets are included in Λ, J1 6 J , Ji+1 6 Vi for all i = 2, . . . , n, and Vi = Ji ∪ Γi
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with some Γi such that Ji ∩ Γi = tJi for all i = 1, . . . , n; or, equivalently, over all

pathes beginning at J with support included in Λ. So, we have obtained

f
(Λ)
J =

∑

R⊂Λ

∑

{B1,Γ1;...;Bn,Γn}∈ΓR(J)

(
(−KΓ1

) · · · (−KΓn)
)

=
∑

R⊂Λ

bR(J).

The absolute convergence of the series from the last formula follows immediately

from the obvious remark, that if we change the signs of KΓ-s to make them

negative, the estimate of the norm of the matrix K remains unchanged, and

hence (III.15) is still valid, that is, partial sums of the series with absolute values

are bounded by the same constant C. ⊓⊔

This theorem was presented in [4], you can see it for more details. For general

ideas about cluster expansion and related techniques see, for example, [19]

and [20]. Note that the condition (III.9) is obviously satisfied when, for example,

we have KΓ > 0 for all Γ ∈ E .

III.4. Generalizations to the case of arbitrary finite state

space

As shows the Theorem III.5, in the {0,1} case one can specify completely a

system of probability distributions consistent in Dobrushin’s sense by specifying a

Q-function. Clearly this theorem can be reformulated in the terms of H-functions

in the following way.

THEOREM III.11. — A system Q = {QΛ, Λ ∈ E } is a system of probability

distributions consistent in Dobrushin’s sense and satisfying QΛ(/©) > 0 for all

Λ ∈ E if and only if there exists a H-function H such that for all Λ ∈ E we

have

QΛ(x) =
Hx∑

y⊂Λ

Hy

, x ⊂ Λ

This version of the theorem is easily generalized to a case of arbitrary finite

state space X . That is, in this case one can still specify completely a system of

probability distributions consistent in Dobrushin’s sense by specifying a suitably

defined H-function.

Let us consider the case of arbitrary finite state space X . As always we suppose

that there is some fixed element ∅ ∈ X which is called vacuum and we denote

X ∗ = X \ {∅}.
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DEFINITION III.12. — A real-valued function H =
{
Hx, x ∈ X ∗I , I ∈ E

}

is called H-function if H/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/© = 1 and Hx > 0 for all x ∈ X ∗I , I ∈ E .

THEOREM III.13. — A system Q = {QΛ, Λ ∈ E } is a system of probability

distributions consistent in Dobrushin’s sense and satisfying QΛ( /©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©) > 0 for all

Λ ∈ E if and only if there exists a H-function H such that for all Λ ∈ E we

have

QΛ(x) =
Hx∑

y∈X Λ

Hy

, x ∈ X
∗I , I ∈ Λ.

The proof for this general case is similar to the one corresponding to the {0,1}
case.

As in the {0,1} case one can put

θΛ =
∑

x∈X Λ

Hx

for all Λ ∈ E . The system θ = {θΛ, Λ ∈ E } so defined plays again the role

of partition function. But unfortunately it no longer determines completely the

system of probability distributions consistent in Dobrushin’s sense.

All the other properties of Q-functions, and all the properties of H-functions are

easily generalized for this general case.

III.5. The problem of uniqueness

So, in this chapter we have seen how a random field (P -function) can be con-

structed via its conditional distributions in finite volumes with boundary condi-

tions (or, equivalently, Q-function or H-function). The natural questions arise.

Is this random field uniquely determined by this Q-function (or H-function), i.e.,

is it the unique one satisfying (III.8) or there are some other random fields sat-

isfying it too? If no, can one describe the set of all such random fields (may

be in some class of random fields or under some conditions) as it was done by

Dobrushin in [8] – [10].

EXAMPLE III.14. — Let us consider the function θΛ ≡ 1 on E . Obviously

this is a Q-function and it satisfies all the conditions of this section (even it has a
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cluster expansion with arbitrary small λ). The limiting random field is obviously

the random field assuming a.s. the value 0 on Z
ν and for it we have

q
/©
J (/©) = 1, J ∈ E . (III.16)

But for any τ > 0 the random field from the Example II.4–2 also satisfies the

condition (III.16) because for any J ∈ E using (II.4) we obtain

q
/©
J (/©) = lim

J↑Jc

PJ∪J(/©)

P J(/©)
= lim

J↑Jc

bJ∪J

b J

= lim
J↑Jc

∣∣J
∣∣+ τ∣∣J ∪ J
∣∣+ τ

= 1.

This example shows that in order to answer the questions stated above we need to

study more carefully not only the conditional distributions in finite volumes with

vacuum boundary conditions but the whole conditional distribution of a random

field like it was done by Dobrushin in [8] – [10], i.e., to study specifications rather

than systems of probability distributions consistent in Dobrushin’s sense.





IV. Vacuum specifications, Q-systems and H-systems

In the previous chapter we have seen that systems of probability distributions

consistent in Dobrushin’s sense are described by Q-functions and H-functions.

In this chapter we show that vacuum specifications can be described by some

consistent systems of Q-functions (or, equivalently, of H-functions) which we call

Q-systems (H-systems) in approximately the same manner. In the first section

we introduce this description for the {0,1} case. In the second section we show

that the specifications we describe can be non-Gibbsian and give a general tool

for constructing such non-Gibbsian specifications. Particularly, this lets us to

show that the random fields from the Example II.4–2 are non-Gibbsian. Finally

in the last section we show the way one can generalize the notion of H-systems

to the case of arbitrary finite state space X .

IV.1. Q-systems and H-systems

Let us start by giving the following

DEFINITION IV.1. — A system Θ =
{
θxJ , J ∈ E and x ⊂ Jc

}
is called

Q-system if θxJ 6= 0 for all J ∈ E and x ⊂ Jc, if θx/© = 1 for all x ⊂ Z
ν and if for

any S ∈ E and x ⊂ Sc we have
∑

J⊂S

(−1)|S\J|θxJ > 0. (IV.1)

Just like Q-functions, Q-systems have the following simple constructive descrip-

tion.

THEOREM IV.2. — A system Θ =
{
θxJ , J ∈ E and x ⊂ Jc

}
is a Q-system

if and only if there exists a system H =
{
Hx

S , S ∈ E and x ⊂ Sc
}
, Hx

S > 0

for all S ∈ E and x ⊂ Sc, Hx
/© = 1 for all x ⊂ Z

ν , such that for any Λ ∈ E and

x ⊂ Λc we have

θxΛ =
∑

S⊂Λ

Hx
S . (IV.2)

This system H is called H-system.
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Proof : 1) NECESSITY. Let Θ =
{
θxJ , J ∈ E and x ⊂ Jc

}
be a Q-system.

Put

Hx
S =

∑

J⊂S

(−1)|S\J|θxJ , S ∈ E , x ⊂ Sc. (IV.3)

Since θ is a Q-system and according to the definition (IV.3) of Hx
S , we have

Hx
/© = 1 for all x ⊂ Z

ν and Hx
S > 0 for all S ∈ E and x ⊂ Sc. Further, for any

Λ ∈ E and x ⊂ Λc we can write
∑

S⊂Λ

Hx
S =

∑

S⊂Λ

∑

J⊂S

(−1)|S\J|θxJ =
∑

J⊂Λ

θxJ
∑

S : J⊂S⊂Λ

(−1)|S\J| = θxΛ.

2) SUFFICIENCY. Let H be a H-system and θxΛ =
∑

S⊂Λ

Hx
S . Clearly θx/© = Hx

/© = 1

for any x ⊂ Z
ν and θxΛ > Hx

/© = 1 > 0 for any Λ ∈ E and x ⊂ Λc. Finally, for all

S ∈ E and x ⊂ Sc we have

∑

J⊂S

(−1)|S\J|θxJ =
∑

J⊂S

(−1)|S\J|
∑

J̃⊂J

Hx

J̃
=

=
∑

J̃⊂S

Hx

J̃

∑

J : J̃⊂J⊂S

(−1)|S\J| = Hx
S > 0

which concludes the proof. ⊓⊔

The motivation of introducing Q-systems and H-systems is the fact that they

describe vacuum specifications in approximately the same manner in which

Q-functions andH-functions describe systems of probability distributions in finite

volumes consistent in Dobrushin’s sense.

DEFINITION IV.3. — A H-system H =
{
Hx

S , S ∈ E and x ⊂ Sc
}

is called

consistent if it satisfies the following condition: for any S1, S2 ∈ E such that

S1 ∩ S2 = /© and any x ⊂ (S1 ∪ S2)
c we have

Hx
S1∪S2

= Hx
S1
Hx∪S1

S2
. (IV.4)

A Q-system Θ =
{
θxJ , J ∈ E and x ⊂ Jc

}
is called consistent, if the

corresponding H-system is consistent.

THEOREM IV.4. — A system Q =
{
Qx

Λ, Λ ∈ E and x ⊂ Λc
}

is a vacuum specification if and only if there exists a consistent Q-system
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Θ =
{
θxJ , J ∈ E and x ⊂ Jc

}
such that for any Λ ∈ E and x ⊂ Λc we

have

Qx
Λ(x) =

1

θxΛ

∑

J⊂x

(−1)|x\J|θxJ , x ⊂ Λ. (IV.5)

Particularly, for any Λ ∈ E and x ⊂ Λc we have Qx
Λ(/©) = 1/θxΛ.

Proof : 1) NECESSITY. Let Q =
{
Qx

Λ, Λ ∈ E and x ⊂ Λc
}

be a specification

with Qx
Λ(/©) > 0 for all Λ ∈ E and x ⊂ Λc. Put θxΛ = 1/Qx

Λ(/©). We have

obviously θxΛ 6= 0 and θx/© = 1. Further, for any Λ ∈ E , J ⊂ Λ and x ⊂ Λc we can

write

1 =
∑

S⊂J

Qx
J (S) =

∑

S⊂J

Qx
J (/©)

Qx
Λ(/©)

Qx
Λ(S) =

Qx
J (/©)

Qx
Λ(/©)

∑

S⊂J

Qx
Λ(S)

or equivalently

θxJ = θxΛ
∑

S⊂J

Qx
Λ(S).

Therefore
∑

J⊂x

(−1)|x\J|θxJ = θxΛ
∑

J⊂x

(−1)|x\J|
∑

S⊂J

Qx
Λ(S) = θxΛ Qx

Λ(x)

and we obtain (IV.1) and (IV.5). It remains to verify the consistency of

the Q-system Θ. Let H =
{
Hx

S , S ∈ E and x ⊂ Sc
}

be the H-system

corresponding to this Q-system and let us fix some S1, S2 ∈ E such that

S1 ∩ S2 = /© and some x ⊂ (S1 ∪ S2)
c. On one hand we have

Hx
S1∪S2

=
∑

J⊂S1∪S2

(−1)|(S1∪S2)\J| θxJ = θxΛ Qx
Λ(S1 ∪ S2) =

Qx
S1∪S2

(S1 ∪ S2)

Qx
S1∪S2

(/©)

where we have chosen Λ = S1 ∪ S2. On the other hand, we obtain in the similar

manner the equalities

Hx
S1

=
∑

J⊂S1

(−1)|S1\J|θxJ = θxΛ Qx
Λ(S1) =

Qx
S1∪S2

(S1)

Qx
S1∪S2

(/©)
,

Hx∪S1

S2
=
∑

J⊂S2

(−1)|S2\J|θx∪S1

J = θx∪S1

Λ Qx∪S1

Λ (S2) =
Qx∪S1

S2
(S2)

Qx∪S1

S2
(/©)

,

and hence we have

Hx
S1
Hx∪S1

S2
=

1

Qx
S1∪S2

(/©)

Qx
S1∪S2

(S1)

Qx∪S1

S2
(/©)

Qx∪S1

S2
(S2) =

Qx
S1∪S2

(S1 ∪ S2)

Qx
S1∪S2

(/©)
= Hx

S1∪S2
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which concludes the proof of necessity.

2) SUFFICIENCY. Let Θ =
{
θxJ , J ∈ E and x ⊂ Jc

}
be a consistent

Q-system. First of all, let us note that for all Λ ∈ E and x ⊂ Λc we have

θxΛ =
∑

S⊂Λ

Hx
S > Hx

/© = 1 > 0 and for all Λ ∈ E , x ⊂ Λ and x ⊂ Λc put

Qx
Λ(x) =

1

θxΛ

∑

J⊂x

(−1)|x\J|θxJ =
Hx
x

θxΛ
> 0.

Now let us prove that Q =
{
Qx

Λ, Λ ∈ E and x ⊂ Λc
}

is a specification. We

have
∑

x⊂Λ

Qx
Λ(x) =

1

θxΛ

∑

x⊂Λ

Hx
x =

1

θxΛ
θxΛ = 1,

i.e., the system Q is a system of probability distributions in finite volumes with

boundary conditions. It remains to verify that the condition (I.8) is satisfied. We

have

Qx

Λ∪Λ̃
(x ∪ y) =

Hx
x∪y

θx
Λ∪Λ̃

=
Hx
y H

x∪y
x

θx
Λ∪Λ̃

=
Hx
y

θx
Λ∪Λ̃

Hx∪y
x

θx∪y
Λ

θx∪y
Λ

=
Qx

Λ∪Λ̃
(y) Qx∪y

Λ (x)

Qx∪y
Λ (/©)

.

The theorem is proved. ⊓⊔

REMARK IV.5. — Let us denote Ux(x) = − lnHx
x for all x ∈ E and x ⊂ xc

where we permit the system U to take the value +∞. Then clearly the system

U =
{
Ux(x), x ∈ E and x ⊂ xc

}
satisfies the following consistency property:

for all x,y ∈ E such that x ∩ y = /© and all x ⊂ (x ∪ y)c we have

Ux(x ∪ y) = Ux(x) + Ux∪x(y). (IV.6)

Now, using the formulas (IV.2) and (IV.3) we can rewrite (IV.5) in the form

Qx
Λ(x) =

exp
(
−Ux(x)

)
∑
y⊂Λ

exp
(
−Ux(y)

) , Λ ∈ E , x ⊂ Λ, x ⊂ Λc.

So, we see that our specifications are similar to the usual Gibbsian specifications

with only difference that in our case the Hamiltonian U is an arbitrary system

satisfying the condition (IV.6), while in the Gibbsian case it has an explicit

form in terms of an interaction potential. Note that in the Gibbsian case the

condition (IV.6) is automatically satisfied.
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IV.2. Non-Gibbsian random fields

In this section we will show that in our case the specifications may be non-

Gibbsian and will describe a simple general scheme for constructing such non-

Gibbsian specifications. For this we need the following

LEMMA IV.6. — Let Θ =
{
θxJ , J ∈ E and x ⊂ Jc

}
be a consistent

Q-system, H =
{
Hx

S , S ∈ E and x ⊂ Sc
}

be the corresponding consistent

H-system and R = {R(x), x ⊂ Z
ν} be a real-valued strictly positive function

such that R(x1) = R(x2) if x1 = x2 up to a finite number of lattice points. Then

the system

HR =
{(
Hx

S

)R(x)
, S ∈ E and x ⊂ Sc

}

is a consistent H-system and hence determines some consistent Q-system which

we denote by ΘR.

Proof : For any S1, S2 ∈ E and x ⊂ (S1 ∪ S2)
c we can write

(
Hx

S1∪S2

)R(x)
=
(
Hx

S1
Hx∪S1

S2

)R(x)
=

=
(
Hx

S1

)R(x) (
Hx∪S1

S2

)R(x)
=

=
(
Hx

S1

)R(x) (
Hx∪S1

S2

)R(x∪S1)

which concludes the proof. ⊓⊔

REMARK IV.7. — We require the function R to be real-valued and strictly

positive only in order for the system HR to be well-defined. But the lemma holds

under less restrictive conditions. For example, if the system H is strictly positive,

which is equivalent to say that the corresponding Hamiltonian U is finite, we can

consider R to be any real-valued function, and if the system H is less or equal

than 1 (respectively greater or equal than 1), which is equivalent to say that the

Hamiltonian U is positive (respectively negative), we can allow R to take the

value +∞ (respectively −∞). Here and in the sequel we admit that α+∞ = 0 for

any 0 6 α < 1, that β−∞ = 0 for any β > 1 and that 1±∞ = 00 = 1
(
note that

it is equivalent to admitting that (±∞) · a = a · (±∞) = ±∞ for any a > 0, that

(±∞) ·b = b ·(±∞) = ∓∞ for any b < 0 and that (±∞) ·0 = 0 ·(±∞) = 0
)
.

PROPOSITION IV.8. — Let Θ =
{
θxJ , J ∈ E and x ⊂ Jc

}
be a Gibbsian

Q-system corresponding to a finite Hamiltonian U =
{
Ux(x), x∈E and x ⊂ xc

}
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and R = {R(x), x ⊂ Z
ν} be a real-valued function such that R(x1) = R(x2) if

x1 = x2 up to a finite number of lattice points. We suppose that the following

condition holds: there exist at least one pair x ∈ E and x ⊂ xc such that

R(x) 6= R(/©) and that Ux(x) 6= 0. Then the specification determined by the

Q-system ΘR is non-Gibbsian.

Proof : Since Θ is Gibbsian, the corresponding H-system H has the form

H =
{

exp
(
−Ux(x)

)
, x ∈ E and x ⊂ xc

}

where the Hamiltonian U is given by some potential Φ =
{
Φ(J), J ∈ E \ {/©}

}
.

Hence

HR =
{

exp
(
−Ux(x)R(x)

)
, x ∈ E and x ⊂ xc

}
.

We need to show that the specification determined by HR is non-Gibbsian, i.e.,

that there exist no convergent potential Φ̃ =
{
Φ̃(J), J ∈ E \{/©}

}
such that

Ux(x)R(x) =
∑

J : /©6=J⊂x

∑

J̃∈E : J̃⊂x

Φ̃
(
J ∪ J̃

)
, x ∈ E , x ⊂ xc. (IV.7)

Suppose that the contrary is true, i.e., that (IV.7) holds. In this case we would

clearly have

Ux(x)R(x) = lim
I↑Zν

UxI (x)R(xI) = R(/©) lim
I↑Zν

UxI (x) = R(/©)Ux(x)

for any x ∈ E and x ⊂ xc. But the last relation contradicts with the conditions

of the proposition. ⊓⊔

REMARKS IV.9. — 1) Clearly, as in the Lemma IV.6 we can allow R to take

the value +∞ or −∞ under suitable conditions.

2) Let us denote N =
{
x ⊂ Z

ν
∣∣ ∃ x ∈ E such that x ⊂ x c and Ux(x) 6= 0

}
.

It is not difficult to check that the condition of the Proposition IV.8 holds if and

only if the function R = {R(x), x ⊂ Z
ν} is not constant on N. The sufficiency

is evident. For the proof of necessity note that as we know that there exists a

pair x ∈ E and x ⊂ xc such that R(x) 6= R(/©) and that Ux(x) 6= 0, then clearly

we have x ∈ N and also /© ∈ N, since otherwise we would have U /©(x) = 0 for all

x ∈ E which is possible if and only if Φ ≡ 0 on E \ {/©} which contradicts with

Ux(x) 6= 0.

3) If the specification Q corresponding to the Q-system ΘR is a conditional

distribution of some random field P and if the function R = {R(x), x ⊂ Z
ν}
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is not P-almost surely constant on N, then this random field P is clearly

non-Gibbsian, i.e., any conditional distribution Q̃ of P is not a Gibbsian

specification.

As we see, the Proposition IV.8 is a powerful tool for constructing non-Gibbsian

specifications and random fields. Note that non-Gibbsian specifications and

random fields constructed this way are not quasilocal. Note also that the

Proposition IV.8 can also be very useful for verifying that a given specification or

random field is non-Gibbsian. For example, let us verify that the random fields

considered in the Example II.4–2 are non-Gibbsian for all τ > 0. For this, let

us fix some τ > 0 and calculate the conditional distributions of the random field

P corresponding to this τ . For any p ∈ [0,1] let us denote by I
p the set of all

x ⊂ Z
ν such that

∃ lim
I↑Zν

|xI |
|I| = p(x) = p,

and put I = X Z
ν
∖( ⋃

p∈[0,1]

I
p
)
. Note that for any p ∈ [0,1] the set I

p has

measure 1 with respect to the Bernoulli random field with parameter p and

measure 0 with respect to all the other Bernoulli random fields. Hence, each

of the sets I
p and the set I have measure 0 with respect to the random field

P. Now let us take some Λ ∈ E and x ⊂ Λc such that x /∈ I and calculate the

limit

qxΛ(/©) = lim
I↑Λc

PΛ∪I(xI)

PI(xI)
= lim

I↑Λc

|I| + τ

|Λ| + |I| + τ

|xI |∏

i=1

|I| + τ − i

|Λ| + |I| + τ − i
=

= lim
I↑Λc

|xI |+|Λ|∏
i=1+|Λ|

(
|Λ| + |I| + τ − i

)

|xI |∏
i=1

(
|Λ| + |I| + τ − i

) = lim
I↑Λc

|xI |+|Λ|∏
i=1+|xI |

(
|Λ| + |I| + τ − i

)

|Λ|∏
i=1

(
|Λ| + |I| + τ − i

) =

= lim
J↑Zν

|Λ|∏
i=1

(
|J | + τ − i− |xJ |

)

|Λ|∏
i=1

(
|J | + τ − i

) =

|Λ|∏

i=1

(
1 − p(x)

)
=
(
1 − p(x)

)|Λ|
.

Note that this limit is strictly positive if 0 6 p(x) < 1 and that P
(
I

1 ∪ I
)

= 0,

and hence putting

θxΛ =

{
1 if x ∈ I

1 ∪ I,(
1 − p(x)

)−|Λ|
otherwise,
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we obtain a Q-system Θ corresponding to some specification Q which is a

conditional distribution of the random field P. In order to write down explicitly

this specification Q let us at first calculate the corresponding H-system H. For

x ∈ I
1 ∪I we have clearly Hx

/© = 1 and Hx
x = 0 for x 6= /© or, otherwise speaking,

Hx
x = 1l{x=/©}. For x /∈ I

1 ∪ I we can write

Hx
x =

∑

J⊂x

(−1)|x\J|θxJ =
∑

J⊂x

(−1)|x\J|
(
1 − p(x)

)−|J|
=

=
(
1 − p(x)

)−|x| ∑

J⊂x

(−1)|x\J|
(
1 − p(x)

)|x|−|J|
=

=

∑
J⊂x

(
p(x) − 1

)|x\J|

(
1 − p(x)

)|x| =

(
p(x)

1 − p(x)

)|x|

where we have used the combinatorial version of binomial formula. So the system

H has the form:

Hx
x =





1l{x=/©} if x ∈ I
1 ∪ I,

(
p(x)

1−p(x)

)|x|
otherwise,

and hence the specification Q is given by

Qx
Λ(x) =

Hx
x

θxΛ
=

{
1l{x=/©} if x ∈ I

1 ∪ I,
(
p(x)

)|x| (
1 − p(x)

)|Λ\x|
otherwise.

Now, let us remark that the system H can be rewritten in the form Hx
x =

(
H̃x
x

)R(x)
where H̃x

x = e−|x| is the Gibbsian H-system correponding to the

potential Φ =
{

Φ(J) = 1l{|J|=1}, J ∈ E \ {/©}
}

and the function R is given

by

R(x) =

{
+∞ if x ∈ I

1 ∪ I,

− ln p(x)
1−p(x) otherwise.

Clearly the conditions of the Proposition IV.8 are satisfied and hence the

specification Q is non-Gibbsian. Moreover, according to the Remark IV.9–3

the random field P is also non-Gibbsian.
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IV.3. Generalizations to the case of arbitrary finite state

space

The generalization is done just in the same way it was done for H-functions. First

off all we note the Theorem IV.4, in the {0,1} case shows that one can specify

completely a vacuum specification by specifying a Q-system. Clearly this theorem

can be reformulated in the terms of H-systems in the following way.

THEOREM IV.10. — A system Q =
{
Qx

Λ, Λ ∈ E and x ⊂ Λc
}

is a vacuum

specification if and only if there exists a consistent H-system H such that for any

Λ ∈ E and x ⊂ Λc we have

Qx
Λ(x) =

Hx
x∑

y⊂Λ

Hx
y

, x ⊂ Λ.

This version of the theorem is easily generalized to a case of arbitrary finite

state space X . That is, in this case one can still specify completely a vacuum

specification by specifying a suitably defined consistent H-system.

Let us consider the case of arbitrary finite state space X . As always we suppose

that there is some fixed element ∅ ∈ X which is called vacuum and we denote

X ∗ = X \ {∅}.

DEFINITION IV.11. — Let H =
{
Hx
x , x ∈ X ∗I , I ∈ E , x ∈ X ∗K , K⊂Ic

}

be some real-valued function. It is called H-system if Hx
/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/© = 1 for all x ∈

X ∗K , K ⊂ Z
ν and Hx

x > 0 for all x ∈ X ∗I , I ∈ E , x ∈ X ∗K , K ⊂ Ic.

This H-system is called consistent if it satisfies the following condition: for any

x ∈ X ∗I , I ∈ E , y ∈ X ∗J , J ∈ E such that I ∩ J = /© and any x ∈ X ∗K ,

K ⊂ (I ∪ J)
c

we have

Hx
x⊕y = Hx

x H
x⊕x
y .

THEOREM IV.12. — A system Q =
{
Qx

Λ, Λ ∈ E and x ∈ X Λc}
is a

vacuum specification if and only if there exists a consistent H-system H such

that for any Λ ∈ E and x ∈ X Λc

we have

Qx
Λ(x) =

Hx
x∑

y∈X Λ

Hx
y

, x ∈ X
Λ.
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The proof for this general case is similar to the one corresponding to the {0,1}
case.

As in the {0,1} case one can put

θxΛ =
∑

x∈X Λ

Hx
x

for all Λ ∈ E and x ∈ X Λc

. The system θ =
{
θxΛ, Λ ∈ E , x ∈ X Λc}

so

defined plays again the role of partition function. But unfortunately it no longer

determines completely the specification.

All the other results concerning Q-systems and H-systems are easily generalized

for this general case.



V. Vacuum specifications and one-point systems

As we have seen in the previous chapter, consistent Q-systems and H-systems are

convenient tools for description of vacuum specifications. But this systems are

“too rich”, since taking a closer look on the consistency condition (IV.4) we see

that the information contained in a H-system is redundant, and hence one can

think about describing specifications by more simple systems than Q-systems or

H-systems. In fact, in this chapter we will show that one can describe vacuum

specifications by one-point subsystems of consistent H-systems, and in the next

chapter we will consider in more details the case of quasilocal specifications and

will show that in this case one can describe specifications by H-functions or

Q-functions satisfying some additional conditions. In the first section we consider

the {0,1} case. In the second section we give a necessary and sufficient condition

for a one-point system to be Gibbsian. Finally in the last section we show the

way one can generalize the notion of one-point systems to the case of arbitrary

finite state space X .

V.1. One-point systems

We start by introducing the following

DEFINITION V.1. — A system h =
{
hxt , t ∈ Z

ν and x ⊂ Z
ν \ t

}
is called

one-point system if for all t ∈ Z
ν and x ⊂ Z

ν \ t we have hxt > 0 and for all

s, t ∈ Z
ν and x ⊂ Z

ν \ {s,t} we have

hxs h
x∪s
t = hxt h

x∪t
s . (V.1)

As shows the following theorem these one-point systems correspond one-to-one

to consistent H-systems. In fact they are nothing but one-point subsystems of

consistent H-systems and hence, just like H-systems, describe vacuum specifica-

tions.
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THEOREM V.2. — A system H=
{
Hx
x , x∈E and x⊂xc

}
is a consistentH-sys-

tem if and only if there exists a one-point system h=
{
hxt , t ∈ Z

ν and x ⊂ Z
ν \ t

}

such that for all x ∈ E and x ⊂ xc we have

Hx
x = hxt1 h

x∪t1
t2 · · · hx∪t1∪···∪tn−1

tn (V.2)

where n = |x| and t1, . . . , tn is some arbitrary enumeration of elements of the

set x. Particularly, for all t ∈ Z
ν and x ⊂ Z

ν \ t we have Hx
t = hxt .

Proof : 1) NECESSITY. Let H =
{
Hx
x , x ∈ E and x ⊂ xc

}
be a consistent

H-system and put hxt = Hx
t > 0 for all t ∈ Z

ν and x ⊂ Z
ν \ t. Since H-system

H is consistent, using the formula (IV.4) we obtain

Hx
{s,t} = Hx

s H
x∪s
t = hxs h

x∪s
t .

In the same manner Hx
{s,t} = hxt h

x∪t
s , and hence h is a one-point system. Again

using the formula (IV.4) we obtain easily

Hx
x = Hx

t1 H
x∪t1
{t2,...,tn}

= Hx
t1 H

x∪t1
t2 Hx∪t1∪t2

{t3,...,tn}
= · · · = hxt1 h

x∪t1
t2 · · · hx∪t1∪···∪tn−1

tn

which concludes the proof of the necessity.

2) SUFFICIENCY. Let h =
{
hxt , t ∈ Z

ν and x ⊂ Z
ν \ t

}
be a one-point system

and for all x ∈ E and x ⊂ xc put

Hx
x = hxt1 h

x∪t1
t2 · · · hx∪t1∪···∪tn−1

tn > 0. (V.3)

First of all let us verify that this definition is correct, i.e., that it does not depend

on the enumeration of the set x. For this let us fix some enumeration t1, . . . , tn

and let ϕ =
{
ϕ(1), . . . , ϕ(n)

}
and ψ =

{
ψ(1), . . . , ψ(n)

}
be two permutations of

the set {1, . . . , n}. We need to show that

h
x

tϕ(1)
h
x∪tϕ(1)

tϕ(2)
· · · hx∪tϕ(1)∪···∪tϕ(n−1)

tϕ(n)
= h

x

tψ(1)
h
x∪tψ(1)

tψ(2)
· · · hx∪tψ(1)∪···∪tψ(n−1)

tψ(n)
. (V.4)

It is well known that any permutation of the set {1, . . . , n} can be decomposed in

a product of transpositions of nearest neighbours, and hence it suffice to consider

only the case where ψ = ϕ ◦ (k, k + 1) with some k ∈ {1, . . . , n − 1}, i.e.,

ψ =
{
ϕ(1), . . . , ϕ(k− 1), ϕ(k+ 1), ϕ(k), ϕ(k+ 2), . . . , ϕ(n)

}
. But in this case the

relation (V.4) is reduced to

h
x∪tϕ(1)∪···∪tϕ(k−1)

tϕ(k)
h
x∪tϕ(1)∪···∪tϕ(k−1)∪tϕ(k)

tϕ(k+1)
=

= h
x∪tϕ(1)∪···∪tϕ(k−1)

tϕ(k+1)
h
x∪tϕ(1)∪···∪tϕ(k−1)∪tϕ(k+1)

tϕ(k)
.
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which is an evident consequence of (V.1). Now we can finally check the

consistency of the H-system H. For this let us take some S1 = {t1, . . . , tn} ∈ E

and S2 = {s1, . . . , sm} ∈ E such that S1 ∩ S2 = /© and some x ⊂ (S1 ∪ S2)
c. We

have S1∪S2 = {t1, . . . , tn, s1, . . . , sm} and hence using the definition (V.3) of the

H-system H we get

Hx
S1

= hxt1 h
x∪t1
t2 · · · hx∪t1∪···∪tn−1

tn ,

Hx∪S1
S2

= hx∪S1
s1

hx∪S1∪s1
s2

· · · hx∪S1∪s1∪···∪sm−1
sm ,

Hx
S1∪S2

= hxt1 · · · hx∪t1∪···∪tn−1
tn hx∪t1∪···∪tn

s1
· · · hx∪t1∪···∪tn∪s1∪···∪sm−1

sm ,

and hence the relation (IV.4) holds. The theorem is proved. ⊓⊔

Note that since hxt > 0 for all t ∈ Z
ν and x ⊂ Z

ν \t we can denote ux(t) = − lnhxt

permitting the system u =
{
ux(t), t ∈ Z

ν and x ⊂ Z
ν \ t

}
to take the

value +∞. This system is clearly nothing but one-point subsystem of some

general Hamiltonian U including also Gibbsian case.

Let us also note that by properties of one-point systems and H-systems we

have

Qx
t (t) =

Hx
t∑

y⊂t
Hx
y

=
Hx

t

Hx
/© +Hx

t

=
hxt

1 + hxt
,

Qx
t (/©) =

Hx
/©∑

y⊂t
Hx
y

=
Hx

/©

Hx
/© +Hx

t

=
1

1 + hxt
,

and hence

hxt =
Qx

t (t)

Qx
t (/©)

. (V.5)

Using the last formula we see that in fact the Theorem V.2 shows when a system

of one-point distributions with boundary conditions is a subsystem consisting

of one-point distributions of some specification. This question is an old open

problem posed by Dobrushin who, in his paper [8], shows that under some

positivity condition (clearly satisfied for the vacuum case) the whole specification

can be determined by its subsystem consisting only of one-point distributions, but

does not answer the question: “when a given system of one-point distributions

with boundary conditions is a subsystem consisting of one-point distributions

of some specification”. In fact the Theorem V.2 shows that a necessary and
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sufficient condition for that is the condition (V.1) or, rewritten in the term of the

specification using the formula (V.5), the condition

Qx
s (s) Qx∪s

t (t) Qx
t (/©) Qx∪t

s (/©) = Qx
t (t) Qx∪t

s (s) Qx
s (/©) Qx∪s

t (/©).

The problem of description of a specification by its subsystem consisting of one-

point distributions is very important because Dobrushin’s uniqueness condition

is taking into account only one-point distributions. For the same reason,

the description of vacuum specifications by one-point systems that we have

proposed in this section is very important and interesting. Clearly we can

rewrite Dobrushin’s uniqueness condition in terms of one-point systems, by

substituting Q by its values expressed by h in the formula (I.9). In the {0,1}
case, after obvious simplification this formula rewrites in the following form:

sup
t∈Zν

∑

s∈Zν\t

sup
x⊂Zν\{s,t}

∣∣hxt − hx∪s
t

∣∣
(
1 + hxt

) (
1 + hx∪s

t

) < 1. (V.6)

V.2. Gibbsian one-point systems

Let us at first give some examples of one-point systems.

EXAMPLES V.3. — 1) Let Φ =
{
Φ(J), J ∈ E \ {/©}

}
be a convergent inter-

action potential. Then the system h =
{
exp
(
−ux(t)

)
, t ∈ Z

ν and x ⊂ Z
ν \ t

}

defined by

ux(t) =
∑

S∈E : S⊂x

Φ
(
S ∪ t

)
.

is clearly a one-point system corresponding to Gibbsian specification with the

interaction potential Φ. We call such one-point systems Gibbsian.

2) Let h =
{
hxt , t ∈ Z

ν and x ⊂ Z
ν \ t

}
be a non-negative system such that

hx1
t = hx2

t if x1 = x2 up to a finite number of lattice points. Then h is clearly a

one-point system.

3) Let h =
{
hxt , t ∈ Z

ν and x ⊂ Z
ν \ t

}
be a one-point system and

R = {R(x), x ⊂ Z
ν} be a real-valued strictly positive function such that we have

R(x1) = R(x2) if x1 = x2 up to a finite number of lattice points. Let us consider

the system

hR =
{(
hxt
)R(x)

, t ∈ Z
ν and x ⊂ Z

ν \ t
}
.
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For this system the condition (V.1) is clearly satisfied, and hence this is a

one-point system. This system corresponds to H-system considered in the

Lemma IV.6. The considerations of the Remark IV.7 hold.

The last example gives us a way to construct from, for example, Gibbsian

one-point systems some new one-point systems, and the latter ones can be

clearly shown to be non-Gibbsian under some condition analogous to that of

the Proposition IV.8 and Remark IV.9. Now let us do better and give a general

necessary and sufficient condition for a one-point system to be Gibbsian.

THEOREM V.4. — A one-point system h =
{
hxt , t ∈ Z

ν and x ⊂ Z
ν \ t

}
is

Gibbsian if and only if the following two conditions are satisfied:

(h1) for all t ∈ Z
ν and x ⊂ Z

ν \ t we have lim
I↑Zν

hxIt = hxt ,

(h2) for all t ∈ Z
ν and x ⊂ Z

ν \ t we have hxt = 0 if there exist some T ∈ E

such that hxTt = 0.

Proof : 1) NECESSITY. We suppose that the one-point system h is Gibbsian, i.e.,

that for all t ∈ Z
ν and x ⊂ Z

ν \ t we have hxt = exp
(
−ux(t)

)
with

ux(t) =
∑

S∈E : S⊂x

Φ
(
S ∪ t

)

where Φ is some convergent interaction potential. We need to check the

conditions (h1) and (h2). The first condition follows obviously from the fact

that interaction potential Φ is convergent. To check the second one let us take

some t ∈ Z
ν and x ⊂ Z

ν \ t and suppose that there exists some T ∈ E such that

hxTt = 0. We need to show that hxt = 0. We have

uxT (t) = − ln
(
hxTt

)
= +∞ =

∑

S∈E : S⊂xT

Φ
(
S ∪ t

)
=
∑

S⊂xT

Φ
(
S ∪ t

)
.

But the last sum contains finite number of summands and hence at least one of

them is equal to +∞. This implies that for any I ∈ E such that I ⊃ T we have

uxI (t) = +∞, and since Φ is convergent we have also ux(t) = +∞, and hence

hxt = exp
(
−ux(t)

)
= 0 which concludes the proof of the necessity.

2) SUFFICIENCY. We suppose that the one-point system h satisfies the conditions
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(h1) and (h2) and that u is one-point subsystem of the corresponding Hamilto-

nian. Let us consider the interaction potential Φ defined by

Φ(J) =





+∞ if ∀ ξ ∈ J we have uJ\ξ(ξ) = +∞,

∑

R⊂J\ξ

(−1)|(J\ξ)\R|uR(ξ) if ∃ ξ ∈ J such that uJ\ξ(ξ) ∈ R.

Note that the last sum is well defined since the number of summands is finite and

by the condition (h2) all the summands are finite. We can also show that this

definition is correct, i.e., that if uJ\ξ(ξ), uJ\ζ(ζ) ∈ R then

∑

R⊂J\ξ

(−1)|(J\ξ)\R|uR(ξ) =
∑

R⊂J\ζ

(−1)|(J\ζ)\R|uR(ζ).

Indeed, we have

∑

R⊂J\ξ

(−1)|(J\ξ)\R|uR(ξ) =
∑

R⊂J\{ξ,ζ}

(−1)|(J\ξ)\R|uR(ξ)+

+
∑

R⊂J\{ξ,ζ}

(−1)|(J\ξ)\(R∪ζ)|uR∪ζ(ξ)=

=
∑

R⊂J\{ξ,ζ}

(−1)|(J\ξ)\R|(uR(ξ) − uR∪ζ(ξ)
)
,

and in the same manner
∑

R⊂J\ζ

(−1)|(J\ζ)\R|uR(ζ) =
∑

R⊂J\{ξ,ζ}

(−1)|(J\ζ)\R|(uR(ζ) − uR∪ξ(ζ)
)
.

Since all the terms in these sums are finite and using the condition (V.1) we see

that the sums are term by term equal.

It remains to check that the potential Φ indeed corresponds to our one-point

system h, i.e., that

ux(t) =
∑

S∈E : S⊂x

Φ(S ∪ t) (V.7)

for all t ∈ Z
ν and x ⊂ Z

ν \ t. Since the condition (h1) holds it is sufficient to

verify this relation only in the case when x ∈ E . Let us at first suppose that the

l.h.s. of (V.7) is finite. In this case by (h1) we have uS(t) < +∞ for all S ⊂ x.

Then by definition of Φ we have

Φ(S ∪ t) =
∑

R⊂S

(−1)|S\R|uR(t),
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and hence

r.h.s. of (V.7) =
∑

S⊂x

∑

R⊂S

(−1)|S\R|uR(t) = ux(t).

Now let us consider the case when the l.h.s. of (V.7) is infinite, i.e., when

ux(t) = +∞. We need to show that the r.h.s. of (V.7) is also infinite. Two

cases are possible:

• We have u/©(t) = +∞. In this case by the definition of Φ we obtain

Φ(t) = +∞ and since Φ(t) is one of the summands in the r.h.s. of (V.7) the latter

is infinite.

• We have u/©(t) ∈ R. In this case clearly there exists some S ⊂ x such that

S 6= /©, uS(t) = +∞, and for all ξ ∈ S we have uS\ξ(t) ∈ R. Hence, for all ξ ∈ S

we can write

uS\ξ(t) + u(S\ξ)∪t(ξ) = uS\ξ(ξ) + uS(t) = uS\ξ(ξ) + (+∞) = +∞.

But uS\ξ(t) ∈ R, and hence we have u(S\ξ)∪t(ξ) = u(S∪t)\ξ(ξ) = +∞ for all

ξ ∈ S. Clearly we have also u(S∪t)\t(t) = uS(t) = +∞. Thus, by definition of Φ

we have Φ(S ∪ t) = +∞ and hence the r.h.s. of (V.7) is infinite. ⊓⊔

Note that this theorem can obviously be reformulated in terms of H-systems,

i.e., a H-system is Gibbsian if and only if the conditions (h1) and (h2) hold.

Clearly in this case the conditions (h1) and (h2) can be replaced by equivalent

conditions:

(H1) for all x ∈ E and x ⊂ xc we have lim
I↑Zν

HxI
x = Hx

x ,

(H2) for all x ∈ E and x ⊂ xc we have Hx
x = 0 if there exist some T ∈ E

such that HxT
x = 0.

Let us finally note here that the Theorem V.4 shows when a vacuum specification

has a Gibbs representation. A similar problems were considered in [2], [17], [24]

and [12] in less general setup, e.g., for local, quasilocal and/or strictly positive

specifications.
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V.3. Generalizations to the case of arbitrary finite state

space

As shows the preceding sections, in the {0,1}consistent H-systems (and hence

vacuum specifications) are completely determined by their one-point subsystems

(one-point systems). This assertion generalizes straightforwardly to the case of

arbitrary finite state space X . That is, in this case one can still determine

completely a H-system by its one-point subsystem.

Let us consider the case of arbitrary finite state space X . As always we suppose

that there is some fixed element ∅ ∈ X which is called vacuum and we denote

X ∗ = X \ {∅}.

DEFINITION V.5. — A system

h =
{
hxt (x), t ∈ Z

ν , x ∈ X
∗, x ∈ X

∗K , K ⊂ Z
ν \ t

}

is called one-point system if for all t ∈ Z
ν , x ∈ X ∗ and x ∈ X ∗K , K ⊂ Z

ν \ t we

have hxt (x) > 0 and for all s, t ∈ Z
ν , x, y ∈ X ∗ and x ∈ X ∗K , K ⊂ Z

ν \ {s,t}
we have

hxs (y)hx⊕ys
t (x) = hxt (x)hx⊕xt

s (y).

Here and in the sequel xt denotes a configuration on the set t taking value x in

the point t.

THEOREM V.6. — A system H is a consistent H-system if and only if there

exists a one-point system h such that for all x ∈ X ∗I , I ∈ E and x ∈ X ∗K ,

K ⊂ Ic we have

Hx
x = hxt1(xt1) h

x⊕xt1
t2 (xt2) · · · hx⊕xt1⊕···⊕xtn−1

tn (xtn)

where n = |I| and t1, . . . , tn is some arbitrary enumeration of elements of the

set I. Particularly, for all t ∈ Z
ν , x ∈ X ∗ and x ∈ X ∗K , K ⊂ Z

ν \ t we have

Hx
xt = hxt (x).

The proof for this general case is just the repetition of the proof corresponding

to the {0,1} case. All the other results concerning one-point systems
(
except the

simplified form (V.6) of Dobrushin’s uniqueness condition
)

are easily generalized

for this general case.
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In this chapter we concentrate on the description of quasilocal specifications

since, as we have already seen in the first chapter, they are very important

in the theory of random fields. In the first section we will consider the case

of vacuum specifications and we will apply the results of the two previous

chapters. In the second section we will replace the condition of vacuumness

by some slightly different condition and we will show that in this case one can

describe specifications by H-functions or Q-functions satisfying some additional

conditions.

VI.1. Case of vacuum specifications

Let us at first consider the {0,1} case and study how quasilocal vacuum specifi-

cations can be described in this case.

Clearly, as before, one can describe them by consistent Q-systems, consistent

H-systems and/or one-point systems. Note that it is evident that in this case

the specification will be local if and only if corresponding Q-system (H-system,

one-point system) is local. Analogously the specification will be quasilocal if and

only if corresponding Q-system (H-system, one-point system) is quasilocal with

respect to the variable x, i.e., satisfies corresponding quasilocality condition

αJ(I) = sup
x⊂Jc

∣∣θxIJ − θxJ
∣∣ −→

I↑Zν
0, J ∈ E ,

βx(I) = sup
x⊂xc

∣∣HxI
x −Hx

x

∣∣ −→
I↑Zν

0, x ∈ E ,

γt(I) = sup
x⊂Zν\t

∣∣hxIt − hxt
∣∣ −→

I↑Zν
0, t ∈ Z

ν .

This can be easily proved using the following obvious observation. Since the

space (Ω,T ) is compact then any quasilocal function on it is bounded, and if

it is strictly positive then it is uniformly strictly positive, i.e., it is greater than

some c > 0.
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Let us mention here that a specification Q corresponding to some H-system

(one-point system) is Gibbsian with uniformly convergent interaction potential if

and only if this H-system (one-point system) is quasilocal and strictly positive.

Note also, that under the condition of strict positivity of a H-system (one-point

system), its quasilocality is clearly equivalent to the quasilocality of its logarithm,

i.e., to the quasilocality of Hamiltonian (one-point Hamiltonian).

Note that everything exposed in this section (except Q-systems) generalizes

straightforwardly to the case of vacuum specifications with arbitrary finite state

space X . Clearly, in this case the quasilocality condition forH-system (one-point

system) looks like

βx(I) = sup
x∈X Ic

∣∣HxI
x −Hx

x

∣∣ −→
I↑Zν

0, x ∈ X
∗I , I ∈ E ,

γt,x(I) = sup
x∈X Zν\t

∣∣hxIt (x) − hxt (x)
∣∣ −→

I↑Zν
0, t ∈ Z

ν , x ∈ X
∗.

VI.2. Quasilocal specifications, Q-functions and H-functions

Now let us propose an alternative approach towards description of quasilocal

specifications based not on Q-systems, H-systems and/or one-point systems, but

on Q-functions and H-functions. For instance we consider the {0,1} case.

THEOREM VI.1. — Let Q =
{
Qx

Λ, Λ ∈ E and x ⊂ Λc
}

be a quasilocal

specification satisfying

(Q1) Q
/©
Λ(/©) > 0 for all Λ ∈ E ,

(Q2) Q
/©
Λ(x) + Q

/©
Λ(x ∪ t) > 0 for all Λ ∈ E \ {/©}, t ∈ Λ and x ⊂ Λ \ t.

Then there exists a H-function H = {Hx, x ∈ E } satisfying

(H1) Hx +Hx∪t > 0 for all x ∈ E and t /∈ x,

(H2) for all Λ ∈ E \ {/©} and x ⊂ Λ there exists uniformly on x ⊂ Λc the

limit

lim
I↑Zν

Hx∪xI∑
z⊂Λ

Hz∪xI

,

and such that for all Λ ∈ E \ {/©} and all y ∈ E such that y ⊂ Λc we have

Qy
Λ(x) =

Hx∪y∑
z⊂Λ

Hz∪y
, x ⊂ Λ. (VI.1)
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Conversely, if H is a H-function satisfying (H1) and (H2), then one can find

a quasilocal specification Q satisfying (Q1), (Q2) and (VI.1).

Proof : 1) NECESSITY. Let Q =
{
Qx

Λ, Λ ∈ E and x ⊂ Λc
}

be a quasilocal

specification satisfying (Q1) and (Q2). The system Q =
{
Q

/©
Λ, Λ ∈ E

}
is

clearly a system of probability distributions consistent in Dobrushin’s sense,

and hence by the Theorems III.5 and III.2 there exists some H-function H

corresponding to some Q-function θ such that for all Λ ∈ E and x ⊂ Λ we

have

Q
/©
Λ(x) =

Hx

θΛ
.

Further, for all x ∈ E and t /∈ x we can write

Hx +Hx∪t = θx∪t Q
/©
x∪t(x) + θx∪t Q

/©
x∪t(x ∪ t) =

= θx∪t

(
Q

/©
x∪t(x) + Q

/©
x∪t(x ∪ t)

)
> 0,

and hence the condition (H1) holds. In order to verify (VI.1) and the condi-

tion (H2) let us at first note that by (H1) for all Λ ∈ E \ {/©} and all y ∈ E

such that y ⊂ Λc we have
∑

z⊂Λ

Hz∪y > Hy +Hy∪t > 0

where we have chosen some t ∈ Λ, and hence

(
Q

/©
Λ∪y

)
y
(y) =

∑

z⊂Λ

Q
/©
Λ∪y(z ∪ y) =

∑

z⊂Λ

Hz∪y

θΛ∪y
=

1

θΛ∪y

∑

z⊂Λ

Hz∪y > 0.

Now, since Q is a specification we can write

Qy
Λ(x) =

Q
/©
Λ∪y(x ∪ y)
(
Q

/©
Λ∪y

)
y
(y)

=

Hx∪y

θΛ∪y

1

θΛ∪y

∑

z⊂Λ

Hz∪y

=
Hx∪y∑

z⊂Λ

Hz∪y
,

and hence (VI.1) holds. Condition (H2) holds obviously since the specification

Q is quasilocal. The necessity is proved.

2) SUFFICIENCY. LetH = {Hx, x ∈ E } be a H-function satisfying the conditions

(H1) and (H2) and θ = {θJ , J ∈ E } be the corresponding Q-function. First of

all, let us note that by (H1) the denominators in (VI.1) and (H2) are strictly

positive. Now, for all Λ ∈ E \ {/©} and all x ⊂ Λc we can put

Qx
Λ(x) = lim

I↑Zν

Hx∪xI∑
z⊂Λ

Hz∪xI

> 0,
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and for Λ = /© as always we consider Qx
/©(/©) = 1 for all x ⊂ Z

ν . Clearly (VI.1)

is satisfied. Further, for all Λ ∈ E \ {/©} and all x ⊂ Λc we have

∑

x⊂Λ

Qx
Λ(x) =

∑

x⊂Λ

lim
I↑Zν

Hx∪xI∑
z⊂Λ

Hz∪xI

= lim
I↑Zν

∑
x⊂Λ

Hx∪xI

∑
z⊂Λ

Hz∪xI

= 1,

and for all Λ ∈ E \ {/©}, Λ̃ ∈ E such that Λ ∩ Λ̃ = /© and all x ⊂ Λ, y ⊂ Λ̃ and

x ⊂
(
Λ ∪ Λ̃

)c
we can write

Qx∪y
Λ (x)

(
Qx

Λ∪Λ̃

)
Λ̃
(y) = lim

I↑Zν

Hx∪(x∪y)I∑
z⊂Λ

Hz∪(x∪y)I

×
∑

z⊂Λ

Qx

Λ∪Λ̃
(z ∪ y)

= lim
I↑Zν

H(x∪y)∪xI∑
z⊂Λ

H(z∪y)∪xI

×
∑

z⊂Λ

lim
I↑Zν

H(z∪y)∪xI∑

R⊂Λ∪Λ̃

HR∪xI

=

= lim
I↑Zν

H(x∪y)∪xI∑

R⊂Λ∪Λ̃

HR∪xI

= Qx

Λ∪Λ̃
(x ∪ y)

where we suppose I to be sufficiently grand, so that I ⊃ y. Thus, the system

Q =
{
Qx

Λ, Λ ∈ E and x ⊂ Λc
}

is a specification. Its quasilocality follows

obviously from its definition and from the condition (H2). It remains to verify

the conditions (Q1) and (Q2). For all Λ ∈ E we have

Q
/©
Λ(/©) =

H/©∑
z⊂Λ

Hz

=
1

θΛ
> 0,

and for all Λ ∈ E \ {/©}, t ∈ Λ and x ⊂ Λ \ t we can write

Q
/©
Λ(x) + Q

/©
Λ(x ∪ t) =

Hx∑
z⊂Λ

Hz

+
Hx∪t∑
z⊂Λ

Hz

=
1

θΛ
(Hx +Hx∪t) > 0.

The theorem is proved. ⊓⊔

Note that this theorem can be reformulated in terms of Q-functions in the

following way.

COROLLARY VI.2. — Let Q =
{
Qx

Λ, Λ ∈ E and x ⊂ Λc
}

be a quasilocal

specification satisfying the conditions (Q1) and (Q2). Then there exists a

Q-function θ = {θJ , J ∈ E } satisfying
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(θ1)
∑

S⊂x

(−1)|x\S|θS∪t > 0 for all x ∈ E and t /∈ x,

(θ2) for all Λ ∈ E \ {/©} and J ⊂ Λ there exists uniformly on x ⊂ Λc the

limit

lim
I↑Zν

∑
S⊂xI

(−1)|xI\S|θJ∪S

∑
S⊂xI

(−1)|xI\S|θΛ∪S
,

and such that for all Λ ∈ E \ {/©} and all y ∈ E such that y ⊂ Λc we have

Qy
Λ(x) =

∑
R⊂x∪y

(−1)|(x∪y)\R|θR

∑
S⊂y

(−1)|y\S|θΛ∪S
, x ⊂ Λ. (VI.2)

Conversely, if θ is a Q-function satisfying (θ1) and (θ2), then one can find a

quasilocal specification Q satisfying (Q1), (Q2) and (VI.2).

Proof : First of all, let us note that if θ is some Q-function and H is the

corresponding H-function, then using (III.3) we get
∑

z⊂Λ

Hz∪y =
∑

z⊂Λ

∑

J⊂z

(−1)|z\J|
∑

S⊂y

(−1)|y\S|θJ∪S =

=
∑

S⊂y

(−1)|y\S|
∑

z⊂Λ

∑

J⊂z

(−1)|z\J|θJ∪S =
∑

S⊂y

(−1)|y\S|θΛ∪S

(VI.3)

for all Λ ∈ E and all y ∈ E such that y ⊂ Λc.

1) NECESSITY. By the preceding theorem there exists a H-function H satisfying

(H1), (H2) and (VI.1). Let θ be the corresponding Q-function, and let us verify

that it satisfies (θ1), (θ2) and (VI.2). For all x ∈ E and t /∈ x we have
∑

S⊂x

(−1)|x\S|θS∪t = Hx +Hx∪t

where we have used the formula (VI.3) with Λ = t and y = x. Hence the

condition (θ1) is equivalent to the condition (H1). Again by (VI.3) we get

∑
S⊂xI

(−1)|xI\S|θJ∪S

∑
S⊂xI

(−1)|xI\S|θΛ∪S
=

∑
x⊂J

Hx∪xI

∑
z⊂Λ

Hz∪xI

=
∑

x⊂J

Hx∪xI∑
z⊂Λ

Hz∪xI

,

and hence the condition (θ2) follows from the condition (H2). The rela-

tion (VI.2) is clearly equivalent to (VI.1) using (III.3) and (VI.3).
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2) SUFFICIENCY. Let H = {Hx, x ∈ E } be the H-system corresponding to the

Q-system θ. Let us verify that H satisfies the conditions (H1) and (H2). For

the first one see the proof of necessity. For the second one, using (III.3) and (VI.3)

we can write

Hx∪xI∑
z⊂Λ

Hz∪xI

=

∑
R⊂x∪xI

(−1)|(x∪xI)\R|θR

∑
z⊂Λ

Hz∪xI

=

∑
J⊂x

(−1)|x\J|
∑

S⊂xI

(−1)|xI\S|θJ∪S

∑
z⊂Λ

Hz∪xI

=
∑

J⊂x

(−1)|x\J|

∑
S⊂xI

(−1)|xI\S|θJ∪S

∑
S⊂xI

(−1)|xI\S|θΛ∪S

and hence the condition (H2) follows from the condition (θ2). Thus, by the

preceding theorem there exists a quasilocal specification Q satisfying (Q1), (Q2)

and (VI.1). Hence it satisfies (VI.2) too, which concludes the proof. ⊓⊔

Let us note here that the class of specifications that we have considered in this

section, i.e., the class of all quasilocal specifications satisfying the conditions (Q1)

and (Q2), includes the class of Gibbsian specifications with uniformly convergent

interaction potentials as the particular case when we have Qx
Λ(x) > 0 for all

Λ ∈ E , x ⊂ Λ and x ⊂ Λc.

Finally let us turn to consider the case of arbitrary finite state space X . As always

we suppose that there is some fixed element ∅ ∈ X which is called vacuum and

we denote X ∗ = X \ {∅}. The generalization of the Theorem VI.1 to this case

is quite straightforward.

THEOREM VI.3. — Let Q =
{
Qx

Λ, Λ ∈ E and x ∈ X Λc}
be a quasilocal

specification satisfying

(Q1) Q
/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©
Λ( /©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©) > 0 for all Λ ∈ E ,

(Q2) Q
/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©
Λ(x) +

∑

y∈X ∗

Q
/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©/©
Λ(x⊕ yt)>0 for all Λ ∈ E \ {/©}, t ∈ Λ and x ∈ X Λ\t.

Then there exists a H-function H =
{
Hx, x ∈ X ∗J , J ∈ E

}
satisfying

(H1) Hx +
∑

y∈X ∗

Hx⊕yt > 0 for all x ∈ X ∗J , J ∈ E and t /∈ J ,
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(H2) for all Λ ∈ E \ {/©} and x ∈ X Λ there exists uniformly on x ∈ X Λc

the limit

lim
I↑Zν

Hx⊕xI∑
z∈X Λ

Hz⊕xI

,

and such that for all Λ ∈ E \ {/©} and all y ∈ X ∗J , J ∈ E such that J ⊂ Λc we

have

Qy
Λ(x) =

Hx⊕y∑
z∈X Λ

Hz⊕y
, x ∈ X

Λ. (VI.4)

Conversely, if H is a H-function satisfying (H1) and (H2), then one can find

a quasilocal specification Q satisfying (Q1), (Q2) and (VI.4).





Part II

Identification of random fields





VII. Parametric estimation

In the preceding chapters we have seen different approaches towards description

of random fields (P -functions, Q-functions, Q-systems, H-systems and one-point

systems). In the remaining part of this work we will consider the problem of

statistical identification of random fields. More precisely, we will concentrate on

the random fields specified through translation invariant (stationary) one-point

systems, since the latter ones provide a parametrization of random fields suitable

for statistical inference.

In this chapter we consider the problem of estimation of local one-point systems.

The problem is clearly parametric in this case. In the next chapter we will

consider the nonparametric problem of estimation of one-point systems in the

case they are quasilocal.

For simplicity of notation we will consider the {0,1} case but, as we will

mention in the last section, the results holds in the case of arbitrary finite state

space X . We will construct an estimator as a ratio of some empirical conditional

frequencies and prove its exponential consistency and its Lp-consistency for all

p ∈ (0,∞).

Let us note here, that for maximum likelihood estimators F. Comets in [3] also

gets exponential consistency using the theory of large deviations.

Note also, that in general the problem of estimation for Gibbs random fields is

complicated by such classical phenomenons of Gibbs random fields theory as non-

uniqueness (|G | > 1) and translation invariance breaking. In our work the results

are established irrespectively of this aspects of Gibbs random fields theory, since

they hold uniformly on G , independently of |G | = 1 or not.

Finally, let us remark that the problem of estimation for Gibbs random fields is

very interesting and important, since the results can be used in so-called “image

processing”. Parametric statistical inference for Gibbs random fields is now quite

well developed in classical Gibbsian setup. The actual state of the theory is well

presented in the monograph by X. Guyon [14] and the references therein. For
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more information on image processing and parametric statistical inference for

Gibbs random fields, the interested reader can also see [3], [11], [15], [21], [22]

and [26] – [112].

VII.1. Statistical model

We consider vacuum specifications with state space X = {0,1} specified through

one-point systems. Let us at first note that a vacuum specification Q is

translation invariant if and only if the corresponding one-point system h is

translation invariant, i.e., if we have

hxt = hx+s
t+s

for all t, s ∈ Z
ν . In this case, clearly one needs to know only the subsystem{

hx, x ⊂ Z
ν \ 0

}
, where hx = hx0 and 0 is the origin of Z

ν . This subsystem will

be the object of statistical interest in the remaining part of this work. Since it

determines the whole one-point system we will use the same notation h for it.

Condition of the quasilocality in this case will be written in the form

γ(I) = sup
x⊂Zν\0

∣∣hxI − hx
∣∣ −→

I↑Zν
0.

We denote H =
{
h : h is quasilocal and translation invariant

}
. To any h ∈ H

we associate some specification Q and hence some sets G (h) = G (Q) and

Gt.i.(h) = Gt.i.(Q) of random fields described by the Theorem I.8. Recall that

non-uniqueness and translation invariance breaking are possible. Note that if

h ∈ H is strictly positive, then Q is Gibbsian (for some uniformly convergent

potential), and hence we have G (h1) ∩ G (h2) = /© if h1 6= h2, which is nothing

but identifiability condition for our model.

In this chapter we consider the subclass

H loc =
{
h : h is local and translation invariant

}
⊂ H .

Suppose h ∈ H loc is some unknown one-point system. As we already know,

h induces a set G (h) of Gibbs random fields. In the sequel Λn will denote the

symmetric cube with the side size n centred at the origin 0 of Z
ν . Here without

loss of generality we assume that n is odd. We observe a realisation of some

random field P ∈ G (h) in the observation window Λn. That is, based on the

data xn = x
Λn

⊂ Λn generated by some random field P ∈ G (h) we want to

estimate h. More formally, the statistical model is
{
Ω, F , P ∈ G (h), h ∈ H

V
A,B

}
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where 0 < A 6 B <∞ are some constants, 0 ∈ V ∈ E is some fixed finite set, and

H V
A,B is the space of one-point systems satisfying the following conditions.

(C1) h ∈ H loc, i.e., h is local and translation invariant.

(C2) For all x ⊂ Z
ν \ 0 we have A 6 hx 6 B.

(C3) The “neighbourhood of locality” is included in V ∗ = V \ 0, i.e.,

sup
x⊂Zν\0

∣∣hxI − hx
∣∣ = 0

if I ⊃ V ∗.

Let us remark that our statistical model is a bit unusual, in the sense that

the probability measure P is not determined by the parameter h. Rather, h

determines some set G (h) of probability measures. The observations come from

an arbitrary element of this set but we are not interested in this element, the

only object of interest is the parameter h itself. That is, we want to identify the

class G (h) corresponding to (unknown) one-point system h, and not a particular

element of this class. In fact, this is the reason for which our results hold

irrespectively of non-uniqueness and translation invariance breaking. In some

sense, if |G (h)| > 1, then P ∈ G (h) can be viewed as P = P(h, µ), and only h

is the parameter of interest (something like semiparametric statistical problem),

while all our considerations will be performed on conditional distributions, the

latter ones depending only on h, and not on µ.

Remark also, that since (C1) and (C2) imply that we are in the Gibbsian case,

by the Theorem I.8–4 our model is identifiable: G (h1)∩ G (h2) = /© for h1 6= h2.

Finally note, that this identifiability will not be used explicitly in establishing

our results.

Any real-valued random function hn =
{
h
x

n , x ⊂ Z
ν \ 0

}
constructed from xn

is said to be an estimator of h. The distance between the estimator hn and the

true value h is measured in the supremum norm:

∥∥hn − h
∥∥ = sup

x⊂Zν\0

∣∣∣hxn − hx
∣∣∣.

The estimator hn is said to be consistent, if for any h ∈ H V
A,B we have

∥∥hn−h
∥∥ −→

n→∞
0 in probability, uniformly over P ∈ G (h), i.e., if for any h ∈ H V

A,B
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and any ε > 0 we have

sup
P∈G (h)

P
(∥∥hn − h

∥∥ > ε
)

−→
n→∞

0.

The estimator hn is said to be uniformly consistent, if it is consistent uniformly

on h ∈ H V
A,B , i.e., if for any ε > 0 we have

sup
h∈H V

A,B

sup
P∈G (h)

P
(∥∥hn − h

∥∥ > ε
)

−→
n→∞

0.

The estimator hn is said to be Lp-consistent for some p ∈ (0,∞), if for any

h ∈ H V
A,B we have

∥∥hn − h
∥∥ −→

n→∞
0 in Lp, uniformly over P ∈ G (h), i.e., if for

any h ∈ H V
A,B we have

sup
P∈G (h)

E
∥∥hn − h

∥∥p −→
n→∞

0.

The estimator hn is said to be uniformly Lp-consistent for some p ∈ (0,∞), if it

is Lp-consistent uniformly on h ∈ H V
A,B , i.e., if we have

sup
h∈H V

A,B

sup
P∈G (h)

E
∥∥hn − h

∥∥p −→
n→∞

0.

Let us finally note here, that if the random field corresponding to a one-point

system h is unique, then all the statistical model, the identifiability and all

the notions of consistency regain their classical statistical sense. To guaranty

uniqueness one can suppose, for example, that h satisfies the Dobrushin’s

uniqueness condition.

VII.2. Construction of the estimator

Let us at first note that by (V.5) we have

hx = hx0 =
Qx

0(0)

Qx
0(/©)

=
Qx

0(1)

Qx
0(0)

. (VII.1)

Further, we see that the conditional probabilities Qx
0(x), x ∈ {0,1}, are equal

to P0|V ∗

(
x
∣∣ xV ∗

)
= P

(
ξ0 = x

∣∣ ξV ∗ = xV ∗

)
. In fact, using total probability

formula and the condition (C3) we get

P0|V ∗

(
x
∣∣ xV ∗

)
=

∫

X V c

Q
x
V ∗∪y

0 (x) PV c|V ∗

(
dy
∣∣ xV ∗

)
=

=

∫

X V c

Qx
0(x) PV c|V ∗

(
dy
∣∣ xV ∗

)
= Qx

0(x).
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Now, if n is large enough, then P0|V ∗

(
x
∣∣ xV ∗

)
can be estimated by the “empirical

conditional frequency” of the value x observed in some point t ∈ Λn given that

xV ∗ + t is observed on the set V ∗ + t.

More precisely, let x(n) be the periodization on Z
ν of the observation xn, that is,(

x(n)
)
Λn+n t

= xn + n t for all t ∈ Z
ν . Note that equivalently periodization can

be viewed as wrapping the observation xn on a torus. Now, for every x ⊂ Z
ν \0,

let us put

A1 =
{
y ⊂ Z

ν : yV = xV ∗ ∪ 0
}

and A0 =
{
y ⊂ Z

ν : yV = xV ∗

}
.

Let us also put

N1 =
∑

t∈Λn

1l{x(n)−t∈A1} and N0 =
∑

t∈Λn

1l{x(n)−t∈A0}.

Clearly, N1 and N0 are the total numbers of subconfigurations of xn of the

“form” V and equal to xV ∗ ∪ 0 and xV ∗ respectively.

Now we define our estimator ĥn by

ĥxn =





N1
/
N0 if N0 > 0 and N1 > 0,

A if N1 = 0,

B if N0 = 0 (and N1 > 0).

Note that the cases N0 = 0 and N1 = 0 are asymptotically not important.

Moreover, we could have not considered at all the second case, that is, we could

have put the estimator still to be N1
/
N0 = 0. Our definition of the estimator

pursues rather practical aims, and is motivated by the following reasons: N0 = 0

means that Qx
0(0) ≈ 0 and hence hx is “large”, while N1 = 0 means that

Qx
0(1) ≈ 0 and hence hx is “small”; but we know a priori that A 6 hx 6 B.

Let us note here, that the idea of using empirical conditional frequencies to

construct estimators, as well as some results on consistency of estimators of

such type for parametric models in the classical Gibbsian setup, can be found

in [21], [22], [11], [15] and [14].

VII.3. Asymptotic study of the estimator

In this section we will show the uniform exponential consistency of our estimator,

as well as its uniform Lp-consistency. The first one is given by the following
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THEOREM VII.1 [Uniform exponential consistency of the estimator]. — As-

sume that h ∈ H V
A,B and ĥn is our estimator. Then there exist some positive

constants C,α > 0 such that

sup
h∈H V

A,B

sup
P∈G (h)

P
(∥∥ĥn − h

∥∥ > ε
)

6 C e−α ε2 nν

for all ε ∈ (0 , 1/2) and all n ∈ N, i.e., the estimator ĥn is uniformly exponentially

consistent.

Proof : All throughout the proof C and α denote generic positive constants which

can differ from formula to formula (and even in the same formula).

The first component of the proof is the following lemma, giving us a uni-

form lower bound for the conditional probabilities Qx
Λ(x) and for the proba-

bilities PΛ(x).

LEMMA VII.2. — Let P ∈ G (h) for some h satisfying the condition (C2).

Then, uniformly on x ⊂ Λ and x ⊂ Λc, we have

Qx
Λ(x) > e−b⋆ |Λ| and PΛ(x) > e−b⋆ |Λ|

where b⋆ = max
{
ln(1 +B) , ln(1 +B) − lnA

}
.

Proof : The second assertion clearly follows from the first one using the total

probability formula. By the same formula and properties of conditional distribu-

tions the first assertion clearly can be derived from the bound Qx
0(x) > e−b⋆ for

all x ⊂ Z
ν \ 0 and x ∈ {0,1}. But by (C2) we have

Qx
0(1) =

hx

1 + hx
>

A

1 +B
and Qx

0(0) =
1

1 + hx
>

1

1 +B

and hence

Qx
0(x) > min

{
A

1 +B
,

1

1 +B

}
= emin{ln A−ln(1+B),−ln(1+B)} = e−b⋆ .

The lemma is proved. ⊓⊔

Now, let us decompose Λn in the following way. We denote γ = sup
t∈V

‖t‖ and, for

technical reasons, we suppose that n = m (3 γ + 1) for some m ∈ N. Then Λn

is partitioned into mν = nν/(3 γ + 1)ν cubes D1, . . . , Dmν with side 3 γ + 1.

Each Di contains (3 γ + 1)ν lattice sites. We order sites of each Di in the
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same arbitrary way. Hence, every t ∈ Λn can be referred to as a pair (i, j),

i = 1, . . . ,mν , j = 1, . . . , (3 γ+1)ν , which means j-th site in the cube Di. In the

sequel we will use both the notations t and (i, j) for points of Λn.

If we define

Y 0
ij = 1l{x(n)−(i,j)∈A0} and Y 1

ij = 1l{x(n)−(i,j)∈A1}

and

N0
j =

mν∑

i=1

Y 0
ij and N1

j =
mν∑

i=1

Y 1
ij ,

then N0 and N1 from the definition of the estimator will have the form

N0 =

(3 γ+1)ν∑

j=1

N0
j and N1 =

(3 γ+1)ν∑

j=1

N1
j .

Note that all Y 0
ij , Y

1
ij , N

0
j , N1

j , N0 and N1 depend on n, on xV ∗ and on the

observation xn.

Now, for any x ⊂ Z
ν \ 0, we can write∣∣∣ĥxn − hx

∣∣∣ =
∣∣∣ĥxn − hxV ∗

∣∣∣ =

= 1l{N0=0 or N1=0}

∣∣∣ĥxn −hxV ∗

∣∣∣+ 1l{N0>0, N1>0}

∣∣∣∣∣∣∣

(3 γ+1)ν∑

j=1

N1
j

N0
−hxV ∗

∣∣∣∣∣∣∣
6

6 1l{N0=0}

∣∣∣B − hxV ∗

∣∣∣+ 1l{N1=0}

∣∣∣A− hxV ∗

∣∣∣+

+ 1l{N0>0, N1>0}

(3 γ+1)ν∑

j=1

∣∣∣∣
N1

j

N0
−
N0

j

N0
hxV ∗

∣∣∣∣ =

= 1l{N0=0}

∣∣∣B − hxV ∗

∣∣∣+ 1l{N1=0}

∣∣∣A− hxV ∗

∣∣∣+

+

(3 γ+1)ν∑

j=1

1l{N0>0, N1>0, N0
j
=0}

N1
j

N0
+

+

(3 γ+1)ν∑

j=1

1l{N0
j
>0, N1>0}

1

N0

∣∣∣N1
j −N0

j h
x
V ∗

∣∣∣ =

= D1
n(x) +D2

n(x) +D3
n(x) +D4

n(x) (VII.2)

with evident notations.

To estimate this four summands we need the following
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LEMMA VII.3. — Denote Γ = e−b⋆ |V |, let λn = Γmν and fix some r ∈ {0,1}.
Then there exist some positive constant α > 0 such that

P

(
Nr

j

λn
< 1 − ε

)
6 e−α ε2 nν ,

uniformly on ε ∈ (0,1), n ∈ N, j = 1, . . . , (3 γ + 1)ν and xV ∗ ∈ X V ∗

.

Proof : For definiteness let us take r = 0. We denote by Vij a cube with

side 2 γ + 1 centred at (i, j), i = 1, . . . ,mν , j = 1, . . . , (3 γ + 1)ν , and let

Vj = Z
ν \ (V1j ∪ · · · ∪ Vmνj). Note that Y 0

ij depends only on the restriction of

our periodized observation x(n) on the set Vij , and that for i1 6= i2 we have

ρ(Vi1j , Vi2j) > γ + 1 > γ. So, the restrictions of our random field on Vi1j and on

Vi2j are conditionally independent, and hence, for any λ > 0, we have

E
(
e−λ N0

j

∣∣∣ xVj

)
=

mν∏

i=1

E
(
e−λ Y 0

ij

∣∣∣ xVj

)
. (VII.3)

Clearly, using the Lemma VII.2, definition of Y 0
ij and total probability formula,

we have

E
(
Y 0

ij

∣∣ xVj

)
> e−b⋆ |V | = Γ.

Furthermore, using Taylor expansion formula, we get

E
(
e−λ Y 0

ij

∣∣∣ xVj

)
= e

−λ E(Y 0
ij|xVj

)
E

(
e
−λ
(
Y 0
ij−E(Y 0

ij|xVj
)
) ∣∣∣∣ xVj

)
6

6 e−λ Γ

(
1 +

λ2

2
eλ

)
6 exp

(
−λ
(
Γ − λ

2
eλ
))

.

(VII.4)

Finally, combining (VII.3), (VII.4), and using Chebychev’s inequality and total

probability formula, we get

P

(
N0

j

λn
< 1 − ε

)
6 eλ (1−ε)λn E e−λ N0

j 6

6 eλ (1−ε) Γ mν

exp

(
−λ
(
Γ − λ

2
eλ
)
mν

)
=

= exp

(
−λmν

(
εΓ − λ

2
eλ
))

.

Now, choosing λ = εΓ/e < 1, we get

P

(
N0

j

λn
< 1 − ε

)
6 exp

(
−εΓ

e
mν
(
εΓ − εΓ

2

))
= e−α ε2 nν
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with α =
Γ2

2 e (3 γ + 1)ν
. The lemma is proved. ⊓⊔

Using this lemma we clearly get

P
(
Nr

j = 0
)

6 P

(
Nr

j

λn
< 1 − ε

)
6 e−α ε2 nν

for all j = 1, . . . , (3 γ + 1)ν and r ∈ {0,1}. Therefore we have

P
(∥∥D1

n(·)
∥∥ > ε/4

)
= P

(
sup

x⊂Zν\0

∣∣D1
n(x)

∣∣ > ε/4
)

6

6
∑

x
V ∗∈X V ∗

P
(
N0 = 0

)
6 C e−α ε2 nν

(VII.5)

where we take into account that N0 depends only on xV ∗ , and hence the

supremum over x ⊂ Z
ν \ 0 is in fact a maximum over xV ∗ ∈ X V ∗

, i.e., a

maximum over 2|V
∗| = C elements.

In exactly the same way we have

P
(∥∥D2

n(·)
∥∥ > ε/4

)
6 C e−α ε2 nν , (VII.6)

and similarly we get

P
(∥∥D3

n(·)
∥∥ > ε/4

)
= P

(
sup

x⊂Zν\0

∣∣D3
n(x)

∣∣ > ε/4
)

6
∑

x
V ∗∈X V ∗

(3 γ+1)ν∑

j=1

P
(
N0

j = 0
)

6 C e−α ε2 nν .

(VII.7)

Finally, the last summand is estimated by the following lemma.

LEMMA VII.4. — There exist some positive constants C,α > 0 such that

P
(∥∥D4

n(·)
∥∥ > ε/4

)
6 C e−α ε2 nν (VII.8)

for all ε ∈ (0 , 1/2) and all n ∈ N.

Proof : As before, it is sufficient to show that

P

(
N0

j > 0,
1

N0

∣∣∣N1
j −N0

j h
x
V ∗

∣∣∣ > ε

4 (3 γ + 1)ν

)
6 C e−α ε2 nν .
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We have obviously

P

(
N0

j > 0,
1

N0

∣∣∣N1
j −N0

j h
x
V ∗

∣∣∣ > ε

4 (3 γ + 1)ν

)
6

6 P

(∣∣∣∣
mν∑

i=1

(
Y 1

ij − Y 0
ij h

x
V ∗

)∣∣∣∣ >
εN0

4 (3 γ + 1)ν

)
6

6 P

(
(3 γ+1)ν∑

j=1

N0
j

λn
6 (1 − ε) (3 γ + 1)ν

)
+ P

(∣∣∣∣
mν∑

i=1

Wij

∣∣∣∣ > τ λn

)

where τ = ε (1 − ε)/4 and Wij = Y 1
ij − Y 0

ij h
x
V ∗ . The estimate of the first

term easily follows from the preceding lemma. To estimate the second one let

us at first note that using translation invariance, total probability formula, the

formulas (I.5), (VII.1) and the condition (C3) we have

E
(
Y 0

ij

∣∣∣ xVj

)
hxV ∗ = P

V
∣∣Vj−(i,j)

(
xV ∗

∣∣∣ xVj
− (i, j)

)
hxV ∗ =

= Q
x
V ∗∪
(
x
Vj

−(i,j)
)

0 (0) P
V ∗
∣∣Vj−(i,j)

(
xV ∗

∣∣∣ xVj
− (i, j)

)
×

× Q
x
V ∗

0 (1)
/

Q
x
V ∗

0 (0) =

= P
V ∗
∣∣Vj−(i,j)

(
xV ∗

∣∣∣ xVj
− (i, j)

)
Q
x
V ∗

0 (1)

= P
V ∗
∣∣Vj−(i,j)

(
xV ∗

∣∣∣ xVj
− (i, j)

)
×

× Q
x
V ∗∪
(
x
Vj

−(i,j)
)

0 (1) =

= E
(
Y 1

ij

∣∣∣ xVj

)
.

This implies that

E
(
Wij

∣∣∣ xVj

)
= E

(
Y 1

ij

∣∣∣ xVj

)
− E

(
Y 0

ij

∣∣∣ xVj

)
hxV ∗ = 0

and hence, for any λ > 0, using the fact that |Wij | 6 B′ = max {1,B} and Taylor

expansion formula, we get

E
(
eλ Wij

∣∣∣ xVj

)
6 1 +

λ2B′2

2
eλ B′

6 exp
(λ2B′2

2
eλ B′

)
.

Finally, using Chebychev’s inequality and total probability formula, we get

P

(
mν∑

i=1

Wij > τ λn

)
6 e−λ τ λn E exp

(
λ

mν∑

i=1

Wij

)
=
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= e−λ τ Γ mν

E

(
mν∏

i=1

E
(
eλ Wij

∣∣∣ ξVj
))

6

6 exp

(
−λmν

(
τ Γ − B′2

2
λ eλ B′

))
.

Now, choosing λ =
τ Γ

B′2 eB′
< 1, we get

P

(
mν∑

i=1

Wij > τ λn

)
6 exp

(
− τ Γ

B′2 eB′
mν
(
τ Γ − τ Γ

2

))
6 e−α ε2 nν

with α =
Γ2

128B′2 eB′ (3 γ + 1)ν
.

By the same argument we have

P

(
−

nν/2∑

i=1

Wij > τ λn

)
6 e−α ε2 nν

which concludes the proof of the lemma. ⊓⊔

Now, combining (VII.5), (VII.6), (VII.7), (VII.8), and taking into account the

inequality (VII.2), we get the assertion of the theorem. The uniformity with

respect to P ∈ G (h) and h ∈ H V
A,B is trivial. The Theorem VII.1 is proved. ⊓⊔

Let us note, that taking a closer look on the proof we can give some explicit

constants C and α, even if they are not necessarily the optimal ones. For example,

one can take

C = 2|V
∗|
(
(3 γ + 1)ν + 1

)(
(3 γ + 1)ν + 2

)
and α =

Γ2

128B′2 eB′ (3 γ + 1)ν
.

Now let us turn to Lp-consistency. The uniform Lp-consistency of our estimator

is given by the following

THEOREM VII.5 [Uniform Lp-consistency of the estimator]. — Assume that

h ∈ H V
A,B , ĥn is our estimator, and fix some p ∈ (0,∞). Then, for sufficiently

large values of n, we have

sup
h∈H V

A,B

sup
P∈G (h)

(
E
∥∥ĥn − h

∥∥p
)1/p

6 n−(ν/2−σ)

where σ is an arbitrary small positive constant, i.e., the estimator ĥn is

uniformly Lp-consistent.
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Proof : Let us consider εn = n−(ν/2−σ) with an arbitrary small positive con-

stant σ. Using the preceding theorem we get

E
∥∥ĥn − h

∥∥p
=

∫

‖ĥn−h‖>εn

∥∥ĥn − h
∥∥p

dP +

∫

‖ĥn−h‖6εn

∥∥ĥn − h
∥∥p

dP 6

6 (max{nν ,B} +B)p P
(∥∥ĥn − h

∥∥ > εn

)
+ εp

n 6

6 C nν p e−α ε2
n nν + εp

n =

= C nν p e−α n2 σ

+ n−(ν/2−σ) p
6 C n−(ν/2−σ) p

for sufficiently large values of n, where we use the fact that h is bounded by B

and ĥ by max{nν ,B}. The assertion of the theorem follows trivially. ⊓⊔

REMARK VII.6. — Note also, that if one enlarges the class H V
A,B to the

class H V by replacing the condition (C2) by a weaker condition of strict

positivity

(C2′) for all x ⊂ Z
ν \ 0 we have hx > 0,

then for any h ∈ H V there exist some constants A = A(h) and B = B(h)

such that the condition (C2) is satisfied, and hence one can still obtain (no

longer uniform) exponential and Lp consistencies of our estimator. Clearly, in

this setup the definition of our estimator needs to be slightly modified for the

cases N1 = 0 and N0 = 0. For example, we can put the estimator to be equal to

some arbitrary fixed h̃ > 0 in this cases.

VII.4. Generalizations to the case of arbitrary finite state

space

Now let us consider the case of arbitrary finite state space X . As always we

suppose that there is some fixed element ∅ ∈ X which is called vacuum and we

denote X ∗ = X \ {∅}.

As in the {0,1} case, we consider subsystems
{
hx(x), x ∈ X ∗, x ∈ X Z

ν\0
}
,

where hx(x) = hx0(x), of translation invariant one-point systems. The statistical

model is {
Ω, F , P ∈ G (h), h ∈ H

V
A,B

}
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where 0 < A 6 B <∞ are some constants, 0 ∈ V ∈ E is some fixed finite set, and

H V
A,B is the space of one-point systems satisfying the following conditions.

(C1) h ∈ H loc, i.e., h is local and translation invariant.

(C2) For all x ∈ X ∗ and x ∈ X Z
ν\0 we have A 6 hx(x) 6 B.

(C3) The “neighbourhood of locality” is included in V ∗ = V \ 0, i.e.,

sup
x∈X ∗

sup
x∈X Zν\0

∣∣hxI (x) − hx(x)
∣∣ = 0

if I ⊃ V ∗.

The distance between the estimator hn and the true value h is measured in the

supremum norm:
∥∥hn − h

∥∥ = sup
x∈X ∗

sup
x∈X Zν\0

∣∣∣hxn (x) − hx(x)
∣∣∣.

As before, we let x(n) be the periodization on Z
ν of the observation xn, and for

every x ∈ X ∗ and x ∈ X Z
ν\0 we put

Ax =
{
y ∈ X

Z
ν

: yΛk
= xΛ∗

k
⊕ x0

}
and A∅ =

{
y ∈ X

Z
ν

: yΛk
= xΛ∗

k

}
.

We also put

Nx =
∑

t∈Λn

1l{x(n)−t∈Ax} and N∅ =
∑

t∈Λn

1l{x(n)−t∈A∅}.

Now we define our estimator ĥn by

ĥxn (x) =





Nx
/
N∅ if N∅ > 0 and Nx > 0,

A if Nx = 0,

B if N∅ = 0 (and Nx > 0).

In this setup, the theorems corresponding to the {0,1} case hold in the general

case without reformulation. That is, we have the following theorems.

THEOREM VII.7 [Uniform exponential consistency of the estimator]. — As-

sume that h ∈ H V
A,B and ĥn is our estimator. Then there exist some positive

constants C,α > 0 such that

sup
h∈H V

A,B

sup
P∈G (h)

P
(∥∥ĥn − h

∥∥ > ε
)

6 C e−α ε2 nν

for all ε ∈ (0 , 1/2) and all n ∈ N, i.e., the estimator ĥn is uniformly exponentially

consistent.
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THEOREM VII.8 [Uniform Lp-consistency of the estimator]. — Assume that

h ∈ H V
A,B , ĥn is our estimator, and fix some p ∈ (0,∞). Then, for sufficiently

large values of n, we have

sup
h∈H V

A,B

sup
P∈G (h)

(
E
∥∥ĥn − h

∥∥p
)1/p

6 n−(ν/2−σ)

where σ is an arbitrary small positive constant, i.e., the estimator ĥn is

uniformly Lp-consistent.

Let us note, that here again one can give some explicit constants C and α. They

will be given by the same formulas as in the {0,1} case, except that the first term

in the expression for C will be equal to |X ||V ∗|, and in the Lemma VII.2 we will

have b⋆ = max
{
ln(1 + |X ∗|B), ln(1 + |X ∗|B) − lnA

}
.

Finally note, that the considerations of the Remark VII.6 clearly hold in this

general case.



VIII. Nonparametric estimation

In this chapter we consider the problem of nonparametric estimation of quasilocal

one-point systems. We construct an estimator by combining the ideas of the

previous chapter with the main idea of the method of sieves
(
introduced by

U. Grenander [13]
)
: approximation of infinite-dimensional parameter by finite-

dimensional ones. We prove exponential consistency and Lp-consistency, for all

p ∈ (0,∞), of our sieve estimator in different setups.

Let us note here, that unlike parametric statistical inference for Gibbs random

fields, the nonparametric one seems to be less investigated. We can mention here

a preprint by C. Ji [15]. He considers a classical Gibbsian setup where the random

field is described by an exponentially decreasing pair-interaction potential. For

this model he studies the sieve estimator of “local characteristics”. The proof

presented there needs some rectifications. Our work is similar to [15] in that our

one-point system is in fact something similar to local characteristics, and in that

we study the sieve estimator. But unlike [15], our setup is much more general

and in our case we estimate the object (one-point system) which itself describes

the random field.

Let us finally note here, that though we consider in this chapter only the {0, 1}
case, in the setup of the last section of the previous chapter all the results of

this chapter are generalized to the case of arbitrary finite state space X without

reformulation.

VIII.1. Statistical model

We adopt here all the notations of the Section VII.1.

Suppose h ∈ H is some unknown translation invariant quasilocal one-point

system. As we already know, h induces a set G (h) of Gibbs random fields. As

before, we observe a realisation of some random field P ∈ G (h) in the observation

window Λn. That is, based on the data xn = x
Λn

⊂ Λn generated by some
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random field P ∈ G (h) we want to estimate h. More formally, the statistical

model is
{

Ω, F , P ∈ G (h), h ∈ H
exp

A,B

}

where 0 < A 6 B < ∞ are some constants and H
exp

A,B is the space of one-point

systems satisfying the following conditions.

(C4) h ∈ H , i.e., h is quasilocal and translation invariant.

(C2) For all x ⊂ Z
ν \ 0 we have A 6 hx 6 B.

(C5) The “rate of quasilocality” is exponential in the sense that

γ(I) = sup
x⊂Zν\0

∣∣hxI − hx
∣∣ 6 c e−a ρ(Ic\0 , 0)ν+δ

where c, a and δ are some positive constants.

Note that c, a and δ are not supposed to be known a priori and may differ for

different h ∈ H
exp

A,B .

Sometimes we would rather use the equivalent form of the condition (C5)

ϕ(d) = sup
I : ρ(Ic\0 , 0)>d

sup
x⊂Zν\0

∣∣hxI − hx
∣∣ 6 c e−a dν+δ

and we will call the function ϕ(·) rate of quasilocality .

Note that (C4) and (C2) imply that we are in the Gibbsian case, and hence

by the Theorem I.8–4 we have identifiability: G (h1) ∩ G (h2) = /© for h1 6= h2.

Finally note, that as before this identifiability will not be used explicitly in our

demonstrations.

VIII.2. Construction of the sieve estimator

The main idea of the estimator is to take some k = k(n) and approximate hx by

the ratio of the conditional probabilities with condition in the volume Λ∗
k. For

this we use the formula (VII.1) and we approximate the conditional probabili-

ties Qx
0(x), x ∈ {0,1}, by P0|Λ∗

k

(
x
∣∣ xΛ∗

k

)
where Λk is called sieve and k = k(n)
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is called sieve size and is supposed to grow fast enough. In fact, using total

probability formula and quasilocality condition, we have

P0|Λ∗
k

(
x
∣∣ xΛ∗

k

)
=

∫

X
Λ
c
k

Q
x
Λ
∗
k
∪y

0 (x) PΛc
k
|Λ∗
k

(
dy
∣∣ xΛ∗

k

)
≈

≈ Qx
0(x)

∫

X
Λ
c
k

PΛc
k
|Λ∗
k

(
dy
∣∣ xΛ∗

k

)
= Qx

0(x).

On the other hand, if k grows much slower than n, then P0|Λ∗
k

(
x
∣∣ xΛ∗

k

)
in

its turn can be estimated as before by empirical conditional frequency of the

value x observed in some point t ∈ Λn given that xΛ∗
k

+ t is observed on the set

Λ∗
k + t.

More precisely, we define

A1 =A1
k =
{
y ⊂ Z

ν : yΛk
= xΛ∗

k
∪ 0
}

and A0 =A0
k =
{
y ⊂ Z

ν : yΛk
= xΛ∗

k

}
.

Further, just as in the parametric case, we put

N1 =
∑

t∈Λn

1l{x(n)−t∈A1} and N0 =
∑

t∈Λn

1l{x(n)−t∈A0},

and finally we define the sieve estimator ĥn by

ĥxn =





N1
/
N0 if N0 > 0 and N1 > 0,

A if N1 = 0,

B if N0 = 0 (and N1 > 0).

VIII.3. Asymptotic study of the sieve estimator

Note that the definition of the sieve estimator depends on the choice of k.

Choosing k too large may result in insufficient number of repetitions of the

subconfiguration xΛ∗
k

in xn, i.e., one can have too often N0 = 0 or N1 = 0.

On the other hand, choosing k too small may result in poor quality of the

approximation Qx
0(x) ≈ P0|Λ∗

k

(
x
∣∣ xΛ∗

k

)
. The following theorem shows a “good”

choice of k. As before, we denote b⋆ = max
{
ln(1 + B) , ln(1 + B) − lnA

}
. We

denote also d⋆ = ν
/
(2 b⋆).
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THEOREM VIII.1 [Exponential consistency of the sieve estimator]. — As-

sume that h ∈ H
exp

A,B and ĥn is the sieve estimator with k =
[
(d lnn)1/ν

]
and

d ∈ (0,d⋆). Then, for any h ∈ H
exp

A,B and any ε > 0, there exist some positive

constant α > 0 and some n0 ∈ N such that

sup
P∈G (h)

P
(∥∥ĥn − h

∥∥ > ε
)

6 e−α nν−2 d b⋆/ ln n

for all n > n0, i.e., the estimator ĥn is exponentially consistent.

Proof : All throughout the proof C,α and n0 denote generic positive constants

which can differ from formula to formula (and even in the same formula).

The main component of the proof of the theorem is the so-called “conditional

mixing lemma”.

LEMMA VIII.2 [Conditional mixing]. — Let P ∈ G (h) for some h ∈ H
exp

A,B

and let ϕ(·) be the corresponding rate of quasilocality. Let also L = L(n) ∈ N

and let the sets R1 = R1(n), . . . , RL = RL(n) be finite subsets of Z
ν such that

ρ(Rℓ1 , Rℓ2) > βn for ℓ1 6= ℓ2 where βn −→
n→∞

∞ and

lim
n→∞

max
16ℓ6L

|Rℓ|ϕ(βn) = 0.

Denote R = Z
ν \ (R1 ∪ · · · ∪RL) and suppose uℓ : X Rℓ −→ R, ℓ = 1, . . . , L, are

some bounded measurable functions. Then

ER1∪···∪RL|R

(
L∏

ℓ=1

uℓ

(
xRℓ

)
∣∣∣∣∣ xR

)
=

(
L∏

ℓ=1

ERℓ|R

(
uℓ

(
xRℓ

) ∣∣∣ xR

))
(1 + δn)L

(VIII.1)

where ERℓ|R
is the expectation with respect to PRℓ|R

and

δn = O
(

max
16ℓ6L

|Rℓ|ϕ(βn)
)
. (VIII.2)

Proof : First of all let as note that if xt = yt for all t such that ρ(t,0) > d then

by (C2) and (C5) we have
∣∣∣∣ln

hy

hx

∣∣∣∣ =
∣∣lnhy − lnhx

∣∣ 6 C
∣∣hy − hx

∣∣ 6 C ϕ(d).

Now suppose K1 = K1(n), K2 = K2(n) and K3 = K3(n) form a disjoint

decomposition of Z
ν such that K1 ∈ E and ρ(K1,K2) > βn. Then, using
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translation invariance and the formula (V.2), for all x,x′ ⊂ Z
ν we easily get

∣∣∣∣∣∣∣
ln
H
x
K3

∪x′

K2
x
K1

H
x
K3

∪x
K2

x
K1

∣∣∣∣∣∣∣
6 C |xK1

|ϕ(βn) 6 C |K1|ϕ(βn).

If, moreover, |K1|ϕ(βn) −→
n→∞

0, then clearly

∣∣∣∣∣∣∣

H
x
K3

∪x′

K2
x
K1

H
x
K3

∪x
K2

x
K1

− 1

∣∣∣∣∣∣∣
= O

(
|K1|ϕ(βn)

)
.

Now we can see that for all x,x′ ⊂ Z
ν

Q
x
K3

∪x′

K2

K1
(xK1

)

Q
x
K3

∪x
K2

K1
(xK1

)
=

H
x
K3

∪x′

K2
x
K1

∑
S⊂K1

H
x
K3

∪x
K2

S

H
x
K3

∪x
K2

x
K1

∑
J⊂K1

H
x
K3

∪x′

K2

J

=

=
H
x
K3

∪x′

K2
x
K1

H
x
K3

∪x
K2

x
K1

∑

S⊂K1

H
x
K3

∪x′

K2

S

∑
J⊂K1

H
x
K3

∪x′

K2

J

H
x
K3

∪x
K2

S

H
x
K3

∪x′

K2

S

=

=



(
H
x
K3

∪x′

K2
x
K1

H
x
K3

∪x
K2

x
K1

− 1

)
+ 1


 ∑

S⊂K1

Q
x
K3

∪x′

K2

K1
(xK3

)



(
H
x
K3

∪x
K2

S

H
x
K3

∪x′

K2

S

− 1

)
+ 1


=

=

(
H
x
K3

∪x′

K2
x
K1

H
x
K3

∪x
K2

x
K1

− 1

)
∑

S⊂K1

Q
x
K3

∪x′

K2

K1
(xK3

)

(
H
x
K3

∪x
K2

S

H
x
K3

∪x′

K2

S

− 1

)
+

+

(
H
x
K3

∪x′

K2
x
K1

H
x
K3

∪x
K2

x
K1

− 1

)
+
∑

S⊂K1

Q
x
K3

∪x′

K2

K1
(xK3

)

(
H
x
K3

∪x
K2

S

H
x
K3

∪x′

K2

S

− 1

)
+ 1 =

= ∆n + 1 (VIII.3)

where ∆n = O
(
|K1|ϕ(βn)

)
. Using the last formula and the total probability

formula we get for all ℓ = 1, . . . , n

PRℓ|R∪R1∪···∪Rℓ−1

(
xRℓ

∣∣ xR ∪ xR1
∪ · · · ∪ xRℓ−1

)
= PRℓ|R

(
xRℓ

∣∣ xR

)
(1 + δn)

where δn satisfies (VIII.2). Multiplying this relations over ℓ = 1, . . . , n we

get

PR1∪···∪RL|R

(
xR1

∪ · · · ∪ xRL
| xR

)
=

(
L∏

ℓ=1

PRℓ|R

(
xRℓ

∣∣ xR

)
)

(1 + δn)L
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which implies (VIII.1). The lemma is proved. ⊓⊔

In order to use the conditional mixing lemma, let us decompose Λn in the

following way. For technical reasons suppose n = 2mk for some m ∈ N.

Then Λn is partitioned into mν = nν/(2 k)ν cubes D1, . . . , Dmν with side 2 k.

Each Di contains (2 k)ν lattice sites. We order sites of each Di in the same

arbitrary way. Hence, every t ∈ Λn can be referred to as a pair (i, j),

i = 1, . . . ,mν , j = 1, . . . , (2 k)ν , which means j-th site in the cube Di. In the

sequel we will use both the notations t and (i, j) for points of Λn.

If we define

Y 0
ij = 1l{x(n)−(i,j)∈A0} and Y 1

ij = 1l{x(n)−(i,j)∈A1}

and

N0
j =

mν∑

i=1

Y 0
ij and N1

j =
mν∑

i=1

Y 1
ij ,

then N0 and N1 from the definition of the sieve estimator will have the form

N0 =

(2 k)ν∑

j=1

N0
j and N1 =

(2 k)ν∑

j=1

N1
j .

Note that all Y 0
ij , Y

1
ij , N

0
j , N1

j , N0 and N1 depend on n, on xΛ∗
k

and on the

observation xn.

Now, for any x ⊂ Z
ν \ 0, we can write

∣∣∣ĥxn − hx
∣∣∣ 6

∣∣∣h
x
Λ∗
k − hx

∣∣∣+
∣∣∣ĥxn − h

x
Λ∗
k

∣∣∣ =

=
∣∣∣h
x
Λ∗
k − hx

∣∣∣+ 1l{N0=0 or N1=0}

∣∣∣ĥxn − h
x
Λ∗
k

∣∣∣+

+ 1l{N0>0, N1>0}

∣∣∣∣∣

∑(2 k)ν

j=1 N1
j

N0
− h

x
Λ∗
k

∣∣∣∣∣ 6

6

∣∣∣h
x
Λ∗
k − hx

∣∣∣+ 1l{N0=0}

∣∣∣B − h
x
Λ∗
k

∣∣∣+ 1l{N1=0}

∣∣∣A− h
x
Λ∗
k

∣∣∣+

+ 1l{N0>0, N1>0}

(2 k)ν∑

j=1

∣∣∣∣
N1

j

N0
−
N0

j

N0
h
x
Λ∗
k

∣∣∣∣ =

=
∣∣∣h
x
Λ∗
k − hx

∣∣∣+ 1l{N0=0}

∣∣∣B − h
x
Λ∗
k

∣∣∣+ 1l{N1=0}

∣∣∣A− h
x
Λ∗
k

∣∣∣+
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+

(2 k)ν∑

j=1

1l{N0>0, N1>0, N0
j
=0}

N1
j

N0
+

+

(2 k)ν∑

j=1

1l{N0
j
>0, N1>0}

1

N0

∣∣∣N1
j −N0

j h
x
Λ∗
k

∣∣∣ =

= D1
n(x) +D2

n(x) +D3
n(x) +D4

n(x) +D5
n(x) (VIII.4)

with evident notations.

First of all, by (C5) we have

∥∥D1
n(·)

∥∥ = sup
x⊂Zν\0

∣∣∣h
x
Λ∗
k − hx

∣∣∣ 6 ϕ(k) 6 c e−a kν+δ −→
n→∞

0

and hence

P
(∥∥D1

n(·)
∥∥ > ε/5

)
= 0 (VIII.5)

for n > n0.

To estimate the remaining summands we need the following

LEMMA VIII.3. — Denote Γ(n) = n−d b⋆ , let λn = Γ(n)mν = nν−d b⋆/(2 k)ν

and fix some r ∈ {0,1}. Then, for any ε ∈ (0,1), there exist some positive

constant α > 0 and some n0 ∈ N such that

P

(
Nr

j

λn
< 1 − ε

)
6 e−α nν−2 d b⋆/ ln n,

uniformly on n > n0, j = 1, . . . , (2 k)ν and xΛ∗
k
∈ X Λ∗

k .

Proof : For definiteness let us take r = 0. We denote by Vij a cube with side k cen-

tred at (i, j), i=1, . . . ,mν , j=1, . . . , (2 k)ν , and let Vj = Z
ν \ (V1j ∪ · · · ∪ Vmνj).

Note that Y 0
ij depends only on the restriction of our periodized observation x(n)

on the set Vij and that for i1 6= i2 we have ρ(Vi1j , Vi2j) > 2 k − k = k. So, for

any λ > 0, it follows from the conditional mixing lemma that

E
(
e−λ N0

j

∣∣∣ xVj

)
= (1 + δn)mν

mν∏

i=1

E
(
e−λ Y 0

ij

∣∣∣ xVj

)
(VIII.6)

with δn = O
(
kν ϕ(k)

)
= O

(
d lnn c e−a kν+δ

)
= o
(
n−β

)
for all β > 0.

Clearly, using the Lemma VII.2, definition of Y 0
ij and total probability formula,

we have

E
(
Y 0

ij

∣∣ xVj

)
> e−b⋆|Λk| > e−b⋆d ln n = Γ(n).
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Furthermore, using Taylor expansion formula, we get

E
(
e−λ Y 0

ij

∣∣∣ xVj

)
= e

−λ E(Y 0
ij|xVj

)
E

(
e
−λ
(
Y 0
ij−E(Y 0

ij|xVj
)
) ∣∣∣∣ xVj

)
6

6 e−λ Γ(n)

(
1 +

λ2

2
eλ

)
6 exp

(
−λ
(
Γ(n) − λ

2
eλ
))

.

(VIII.7)

Finally, combining (VIII.6), (VIII.7), and using Chebychev’s inequality and total

probability formula, for sufficiently large values of n we get

P

(
N0

j

λn
< 1 − ε

)
6 eλ (1−ε)λn E e−λ N0

j 6

6 eλ (1−ε) Γ(n) mν

exp

(
−λ
(
Γ(n) − λ

2
eλ
)
mν

)
(1 + δn)mν

6

6 C exp

(
−λmν

(
εΓ(n) − λ

2
eλ
))

.

Now, choosing λ = εΓ(n)/e = ε n−d b⋆/e < 1, for sufficiently large values of n we

get

P

(
N0

j

λn
< 1 − ε

)
6 C exp

(
−ε n

−d b⋆

e

nν

2ν d lnn

(
ε n−d b⋆ − ε n−d b⋆

2

))
6

6 e−α nν−2 d b⋆/ ln n

with an arbitrary α <
ε2

2ν+1 e d
. The lemma is proved. ⊓⊔

Using this lemma we clearly get

P
(
Nr

j = 0
)

6 P

(
Nr

j

λn
< 1 − ε

)
6 e−α nν−2 d b⋆/ ln n

for all j = 1, . . . , (2 k)ν , r ∈ {0,1} and for sufficiently large values of n. Therefore,

for sufficiently large values of n, we have

P
(∥∥D2

n(·)
∥∥ > ε/5

)
= P

(
sup

x⊂Zν\0

∣∣D2
n(x)

∣∣ > ε/5
)

6

6
∑

x
Λ∗
k

∈X
Λ∗
k

P
(
N0 = 0

)
6 e−α nν−2 d b⋆/ ln n

(VIII.8)

where we take into account that N0 depends only on xΛ∗
k
, and hence the

supremum over x ⊂ Z
ν \ 0 is in fact a maximum over xΛ∗

k
∈ X Λ∗

k , i.e., a

maximum over 2|Λ
∗
k| 6 2d ln n elements.
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In exactly the same way we have

P
(∥∥D3

n(·)
∥∥ > ε/5

)
6 e−α nν−2 d b⋆/ ln n, (VIII.9)

and similarly we get

P
(∥∥D4

n(·)
∥∥ > ε/5

)
= P

(
sup

x⊂Zν\0

∣∣D4
n(x)

∣∣ > ε/5
)

6

6
∑

x
Λ∗
k

∈X
Λ∗
k

(2 k)ν∑

j=1

P
(
N0

j = 0
)

6 e−α nν−2 d b⋆/ ln n.

(VIII.10)

Finally, the last summand is estimated by the following lemma.

LEMMA VIII.4. — For any ε ∈ (0,1) there exist some positive constant α > 0

and some n0 ∈ N such that

P
(∥∥D5

n(·)
∥∥ > ε/5

)
6 e−α nν−2 d b⋆/ ln n (VIII.11)

for all n > n0

Proof : As before, it is sufficient to show that

P

(
N0

j > 0,
1

N0

∣∣∣N1
j −N0

j h
x
Λ∗
k

∣∣∣ > ε

5 (2 k)ν

)
6 e−α nν−2 d b⋆/ ln n.

We have obviously

P

(
N0

j > 0,
1

N0

∣∣∣N1
j −N0

j h
x
Λ∗
k

∣∣∣ > ε

5 (2 k)ν

)
6

6 P

(∣∣∣∣
mν∑

i=1

(
Y 1

ij − Y 0
ij h

x
Λ∗
k

)∣∣∣∣ >
εN0

5 (2 k)ν

)
6

6 P

(
(2 k)ν∑

j=1

N0
j

λn
6 (1 − ε) (2 k)ν

)
+ P

(∣∣∣∣
mν∑

i=1

Wij

∣∣∣∣ > τ λn

)

where τ = ε (1 − ε)/5 and Wij = Y 1
ij − Y 0

ij h
x
Λ∗
k . The estimate of the first term

easily follows from the preceding lemma. To estimate the second one let us at
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first note that using translation invariance, total probability formula and the

formulas (I.5), (VII.1) and (VIII.3) we have

E
(
Y 0

ij

∣∣∣ xVj

)
h
x
Λ∗
k = P

Λk

∣∣Vj−(i,j)

(
xΛ∗

k

∣∣∣ xVj
− (i, j)

)
h
x
Λ∗
k =

= Q
x
Λ∗
k

∪
(
x
Vj

−(i,j)
)

0 (0) P
Λk∗
∣∣Vj−(i,j)

(
xΛ∗

k

∣∣∣ xVj
− (i, j)

)
×

× Q
x
Λ∗
k

0 (1)
/

Q
x
Λ∗
k

0 (0) =

= (1 + ρn) P
Λk∗
∣∣Vj−(i,j)

(
xΛ∗

k

∣∣∣ xVj
− (i, j)

)
Q
x
Λ∗
k

0 (1)

= (1 + ρn)2 P
Λk∗
∣∣Vj−(i,j)

(
xΛ∗

k

∣∣∣ xVj
− (i, j)

)
×

× Q
x
Λ∗
k

∪
(
x
Vj

−(i,j)
)

0 (1) =

= E
(
Y 1

ij

∣∣∣ xVj

)
(1 + ρn)

where ρn = O
(
ϕ(k)

)
= O

(
c e−a kν+δ

)
= o
(
n−β

)
for all β > 0.

This implies that

E
(
Wij

∣∣∣ xVj

)
= E

(
Y 1

ij

∣∣∣ xVj

)
− E

(
Y 0

ij

∣∣∣ xVj

)
h
x
Λ∗
k = O(ρn)

and hence, for any λ > 0, using the fact that −B 6 Wij 6 1 and Taylor expansion

formula, we get

E
(
eλ W 0

ij

∣∣∣ xVj

)
= e

λ E(W 0
ij|xVj

)
E

(
e
λ
(
W 0
ij−E(W 0

ij|xVj
)
) ∣∣∣∣ xVj

)
6

6 eλ O(ρn)

(
1 +

λ2 (B + 1)2

2
eλ (B+1)

)
6

6 exp

(
λO(ρn) +

λ2 (B + 1)2

2
eλ (B+1)

)
.

Finally, using Chebychev’s inequality, total probability formula and conditional

mixing lemma, we get

P

(
mν∑

i=1

Wij > τ λn

)
6 e−λ τ λn E exp

(
λ

mν∑

i=1

Wij

)
6

6 e−λ τ Γ(n) mν

E

(
mν∏

i=1

E
(
λ eWij

∣∣∣ ξVj
))

(1 + δn)mν

6
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6 C e−λ τ n−d b⋆ mν

(
exp

(
λO(ρn) +

λ2 (B + 1)2

2
eλ (B+1)

))mν

6

6 C exp

(
−λmν

(
τ n−d b⋆ − (B + 1)2

2
λ eλ (B+1) −O(ρn)

))
.

Now, choosing λ =
τ n−d b⋆

(B + 1)
2
eB+1

< 1, we get

P

(
mν∑

i=1

Wij > τ λn

)
6 C exp

(
− τ n−d b⋆

(B + 1)
2
eB+1

nν

2ν d lnn

τ n−d b⋆

2

)
6

6 e−α nν−2 d b⋆/ ln n

with an arbitrary α <
τ2

2ν+1 (B + 1)
2
eB+1 d

.

By the same argument we have

P

(
−

mν∑

i=1

Wij > τ λn

)
6 e−α nν−2 d b⋆/ ln n

which concludes the proof of the lemma. ⊓⊔

Now, combining (VIII.5), (VIII.8), (VIII.9), (VIII.10), (VIII.11) and taking into

account the inequality (VIII.4), we get the assertion of the theorem. The

uniformity on P ∈ G (h) is trivial. The Theorem VIII.1 is proved. ⊓⊔

Let us note, that from the details of the proof it clearly follows some explicit

expression for the constant α. For example, if ε ∈ (0,1), then one can take an

arbitrary

α <
τ2

2ν+1 (B + 1)
2
eB+1 d

.

Note also, that taking a closer look on the proof we can give a “more precise”

bound on the rate of consistency, showing explicitly the dependence of the rate

on ε. That is, for ε ∈ (0 , 1/2), we have the bound

1l{6 c n−a d (d lnn)δ/ν>ε} + ψn exp
{
−α ε2 nν−2 d b⋆/ lnn+O(ρn)β εnν−d b⋆/ lnn

}

where α =
1

25 · 2ν+3 (B + 1)
2
eB+1 d

, β =
1

5 · 2ν+1 (B + 1)
2
eB+1 d

and the

sequence ψn is given by ψn = 2d ln n
(
2ν d lnn+ 1

) (
2ν d lnn+ 2

)
.
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Using this last bound, just as in the parametric case, we easily obtain the

following

THEOREM VIII.5 [Lp-consistency of the sieve estimator]. — Assume that

h ∈ H
exp

A,B , ĥn is the sieve estimator with k =
[
(d lnn)1/ν

]
and d ∈ (0,d⋆), and

fix some p ∈ (0,∞). Then, for any h ∈ H
exp

A,B and for sufficiently large values

of n, we have

sup
P∈G (h)

(
E
∥∥ĥn − h

∥∥p
)1/p

6 n−(ν/2−d b⋆−σ)

where σ is an arbitrary small positive constant, i.e., the estimator ĥn is Lp-

consistent.

Remark, that unlike the parametric case, the condition (C2) is really important

here, that is, the considerations of the Remark VII.6 do not hold in this case.

Indeed, the constants A and B are present in the rates of consistency (under

the form of b⋆) and even in the definition of the estimator (under the form

of d⋆).

Let us finally note here, that the consistencies of the sieve estimator proved in

the Theorems VIII.1 and VIII.5 can be trivially straightened to be uniform, if we

consider a narrower class of one-point systems by fixing not only the constants A

and B from the condition (C2), but also the constants a, c, and δ from the

condition (C5). More precisely, let H̃ = H̃
(
A,B, a, c, δ

)
be the class of one-

point systems satisfying (C4), (C2) and (C5) with some a priori fixed constants

A, B, a, c and δ. Then the following theorems hold.

THEOREM VIII.6 [Uniform exponential consistency of the sieve estimator]. —

Assume that h ∈ H̃ and ĥn is the sieve estimator with k =
[
(d lnn)1/ν

]
and

d ∈ (0,d⋆). Then there exist some positive constant α > 0 and some n0 ∈ N such

that

sup
h∈H̃

sup
P∈G (h)

P
(∥∥ĥn − h

∥∥ > ε
)

6 e−α nν−2 d b⋆/ ln n

for all ε ∈ (0 , 1/2) and all n > n0, i.e., the estimator ĥn is uniformly

exponentially consistent.

THEOREM VIII.7 [Uniform Lp-consistency of the sieve estimator]. — Assume

that h ∈ H̃ , ĥn is the sieve estimator with k =
[
(d lnn)1/ν

]
and d ∈ (0,d⋆),
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and fix some p ∈ (0,∞). Then, for sufficiently large values of n, we have

sup
h∈H̃

sup
P∈G (h)

(
E
∥∥ĥn − h

∥∥p
)1/p

6 n−(ν/2−d b⋆−σ)

where σ is an arbitrary small positive constant, i.e., the estimator ĥn is

uniformly Lp-consistent.

VIII.4. About a different choice of the sieve size

Let us note that all the bounds on the rates of consistency obtained in the previous

section are “slowered” by the constant d from the definition of the sieve size k.

Hence, one can think about getting rid of the terms containing d by slightly

modifying the choice of the sieve size k. In fact, we will show below that in the

case of the space H̃ , by putting k =
[
(lnn)1/(ν+δ/2)

]
, one can get almost the

same bounds on the rates of consistency as in parametric case. Note that we no

longer put d in the definition of k. The reason for this is the fact that even if we

have put it, it would not be present in the rates of consistency.

As before, we denote b⋆ = max
{
ln(1+B), ln(1+B)−lnA

}
. We also denote

Γ(n) = n−b⋆ (ln n)−δ/(2 ν+δ) , γ(n) = (lnn)1−δ/(2 ν+δ) and κ(n) =
Γ2(n)

γ(n)
.

One can easily verify that the functions Γ(n), γ(n) and κ(n) are slowly vary-

ing (in the sense of Karamata), i.e., for any c > 0 we have, for example,

κ(c n)
/
κ(n) −→

n→∞
1. Moreover, we have Γ(n) −→

n→∞
0 and κ(n) −→

n→∞
0. Let

us note here, that since Γ(n) and κ(n) are slowly varying functions, then they

tend to 0 slower than n−β for all β > 0. Similarly, we have γ(n) −→
n→∞

∞, and

this convergence is slower than nβ for all β > 0.

THEOREM VIII.8 [Uniform exponential consistency of the sieve estimator]. —

Assume that h ∈ H̃ and ĥn is the sieve estimator with k =
[
(lnn)1/(ν+δ/2)

]
.

Then, for any ε > 0, there exist some positive constant α > 0 and some n0 ∈ N

such that

sup
h∈H̃

sup
P∈G (h)

P
(∥∥ĥn − h

∥∥ > ε
)

6 e−α κ(n) nν

for all n > n0, i.e., the estimator ĥn is uniformly exponentially consistent.
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Proof : All throughout the proof C,α and n0 denote generic positive constants

which can differ from formula to formula (and even in the same formula).

As in the proof of the theorem VIII.1, we apply the conditional mixing lemma

by doing the same decomposition of Λn as before. The inequality (VIII.4) and

the estimate (VIII.5) of the first summand are clearly still valid.

To estimate the remaining summands we need the following

LEMMA VIII.9. — Let λn = Γ(n)mν and fix some r ∈ {0,1}. Then, for

any ε ∈ (0,1), there exist some positive constant α > 0 and some n0 ∈ N such

that

P

(
Nr

j

λn
< 1 − ε

)
6 e−α κ(n) nν ,

uniformly on n > n0, j = 1, . . . , (2 k)ν and xΛ∗
k
∈ X Λ∗

k .

Proof : For definiteness let us take r = 0. We denote by Vij a cube with side k cen-

tred at (i, j), i=1, . . . ,mν , j=1, . . . , (2 k)ν , and let Vj = Z
ν \ (V1j ∪ · · · ∪ Vmνj).

Note that Y 0
ij depends only on the restriction of our periodized observation x(n)

on the set Vij and that for i1 6= i2 we have ρ(Vi1j , Vi2j) > 2 k − k = k. So, for

any λ > 0, it follows from the conditional mixing lemma that

E
(
e−λ N0

j

∣∣∣ xVj

)
= (1 + δn)mν

mν∏

i=1

E
(
e−λ Y 0

ij

∣∣∣ xVj

)
(VIII.12)

with δn = O
(
kν ϕ(k)

)
= O

(
γ(n) c e−a kν+δ

)
= o
(
n−β

)
for all β > 0.

Clearly, using the Lemma VII.2, definition of Y 0
ij and total probability formula,

we have

E
(
Y 0

ij

∣∣ xVj

)
> e−b⋆|Λk| > e−b⋆ γ(n) = Γ(n).

Furthermore, using Taylor expansion formula, we get

E
(
e−λ Y 0

ij

∣∣∣ xVj

)
=e

−λ E(Y 0
ij|xVj

)
E

(
e
−λ
(
Y 0
ij−E(Y 0

ij|xVj
)
) ∣∣∣∣ xVj

)
6

6e−λ Γ(n)

(
1 +

λ2

2
eλ

)
6 exp

(
−λ
(
Γ(n) − λ

2
eλ
))

.

(VIII.13)

Finally, combining (VIII.12), (VIII.13), and using Chebychev’s inequality and
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total probability formula, for sufficiently large values of n we get

P

(
N0

j

λn
< 1 − ε

)
6 eλ (1−ε)λn E e−λ N0

j 6

6 eλ (1−ε) Γ(n) mν

exp

(
−λ
(
Γ(n) − λ

2
eλ
)
mν

)
(1 + δn)mν

6

6 C exp

(
−λmν

(
εΓ(n) − λ

2
eλ
))

.

Now, choosing λ = εΓ(n)/e < 1, for sufficiently large values of n we get

P

(
N0

j

λn
< 1 − ε

)
6 C exp

(
−εΓ(n)

e

nν

2ν γ(n)

(
εΓ(n) − εΓ(n)

2

))
6

6 e−α κ(n) nν

with an arbitrary α <
ε2

2ν+1 e
. The lemma is proved. ⊓⊔

Using this lemma we clearly get

P
(
Nr

j = 0
)

6 P

(
Nr

j

λn
< 1 − ε

)
6 e−α κ(n) nν

for all j = 1, . . . , (2 k)ν , r ∈ {0,1} and for sufficiently large values of n. Therefore,

for sufficiently large values of n, we have

P
(∥∥D2

n(·)
∥∥ > ε/5

)
= P

(
sup

x⊂Zν\0

∣∣D2
n(x)

∣∣ > ε/5
)

6

6
∑

x
Λ∗
k

∈X
Λ∗
k

P
(
N0 = 0

)
6 e−α κ(n) nν

(VIII.14)

where we take into account that N0 depends only on xΛ∗
k
, and hence the

supremum over x ⊂ Z
ν \ 0 is in fact a maximum over xΛ∗

k
∈ X Λ∗

k , i.e., a

maximum over 2|Λ
∗
k| 6 2γ(n) elements.

In exactly the same way we have

P
(∥∥D3

n(·)
∥∥ > ε/5

)
6 e−α κ(n) nν , (VIII.15)
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and similarly we get

P
(∥∥D4

n(·)
∥∥ > ε/5

)
= P

(
sup

x⊂Zν\0

∣∣D4
n(x)

∣∣ > ε/5
)

6

6
∑

x
Λ∗
k

∈X
Λ∗
k

(2 k)ν∑

j=1

P
(
N0

j = 0
)

6 e−α κ(n) nν .

(VIII.16)

Finally, the last summand is estimated by the following lemma.

LEMMA VIII.10. — For any ε ∈ (0,1) there exist some positive constant α > 0

and some n0 ∈ N such that

P
(∥∥D5

n(·)
∥∥ > ε/5

)
6 e−α κ(n) nν (VIII.17)

for all n > n0

Proof : As before, it is sufficient to show that

P

(
N0

j > 0,
1

N0

∣∣∣N1
j −N0

j h
x
Λ∗
k

∣∣∣ > ε

5 (2 k)ν

)
6 e−α κ(n) nν .

We have obviously

P

(
N0

j > 0,
1

N0

∣∣∣N1
j −N0

j h
x
Λ∗
k

∣∣∣ > ε

5 (2 k)ν

)
6

6 P

(∣∣∣∣
mν∑

i=1

(
Y 1

ij − Y 0
ij h

x
Λ∗
k

)∣∣∣∣ >
εN0

5 (2 k)ν

)
6

6 P

(
(2 k)ν∑

j=1

N0
j

λn
6 (1 − ε) (2 k)ν

)
+ P

(∣∣∣∣
mν∑

i=1

Wij

∣∣∣∣ > τ λn

)

where τ = ε (1 − ε)/5 and Wij = Y 1
ij − Y 0

ij h
x
Λ∗
k . The estimate of the first term

easily follows from the preceding lemma. To estimate the second one let us at

first note that using translation invariance, total probability formula and the
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formulas (I.5), (VII.1) and (VIII.3) we have

E
(
Y 0

ij

∣∣∣ xVj

)
h
x
Λ∗
k = P

Λk

∣∣Vj−(i,j)

(
xΛ∗

k

∣∣∣ xVj
− (i, j)

)
h
x
Λ∗
k =

= Q
x
Λ∗
k

∪
(
x
Vj

−(i,j)
)

0 (0) P
Λk∗
∣∣Vj−(i,j)

(
xΛ∗

k

∣∣∣ xVj
− (i, j)

)
×

× Q
x
Λ∗
k

0 (1)
/

Q
x
Λ∗
k

0 (0) =

= (1 + ρn) P
Λk∗
∣∣Vj−(i,j)

(
xΛ∗

k

∣∣∣ xVj
− (i, j)

)
Q
x
Λ∗
k

0 (1)

= (1 + ρn)2 P
Λk∗
∣∣Vj−(i,j)

(
xΛ∗

k

∣∣∣ xVj
− (i, j)

)
×

× Q
x
Λ∗
k

∪
(
x
Vj

−(i,j)
)

0 (1) =

= E
(
Y 1

ij

∣∣∣ xVj

)
(1 + ρn)

where ρn = O
(
ϕ(k)

)
= O

(
c e−a kν+δ

)
= o
(
n−β

)
for all β > 0.

This implies that

E
(
Wij

∣∣∣ xVj

)
= E

(
Y 1

ij

∣∣∣ xVj

)
− E

(
Y 0

ij

∣∣∣ xVj

)
h
x
Λ∗
k = O(ρn)

and hence, for any λ > 0, using the fact that −B 6 Wij 6 1 and Taylor expansion

formula, we get

E
(
eλ W 0

ij

∣∣∣ xVj

)
= e

λ E(W 0
ij|xVj

)
E

(
e
λ
(
W 0
ij−E(W 0

ij|xVj
)
) ∣∣∣∣ xVj

)
6

6 eλ O(ρn)

(
1 +

λ2 (B + 1)2

2
eλ (B+1)

)
6

6 exp

(
λO(ρn) +

λ2 (B + 1)2

2
eλ (B+1)

)
.

Finally, using Chebychev’s inequality, total probability formula and conditional

mixing lemma, we get

P

(
mν∑

i=1

Wij > τ λn

)
6 e−λ τ λn E exp

(
λ

mν∑

i=1

Wij

)
6

6 e−λ τ Γ(n) mν

E

(
mν∏

i=1

E
(
λ eWij

∣∣∣ ξVj
))

(1 + δn)mν

6
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6 C e−λ τ Γ(n) mν

(
exp

(
λO(ρn) +

λ2 (B + 1)2

2
eλ (B+1)

))mν

6

6 C exp

(
−λmν

(
τ Γ(n) − (B + 1)2

2
λ eλ (B+1) −O(ρn)

))
.

Now, choosing λ =
τ Γ(n)

(B + 1)
2
eB+1

< 1, we get

P

(
mν∑

i=1

Wij > τ λn

)
6 C exp

(
− τ Γ(n)

(B + 1)
2
eB+1

nν

2ν γ(n)

τ Γ(n)

2

)
6

6 e−α κ(n) nν

with an arbitrary α <
τ2

2ν+1 (B + 1)
2
eB+1

.

By the same argument we have

P

(
−

mν∑

i=1

Wij > τ λn

)
6 e−α κ(n) nν

which concludes the proof of the lemma. ⊓⊔

Now, combining (VIII.5), (VIII.14), (VIII.15), (VIII.16), (VIII.17) and taking

into account the inequality (VIII.4), we get the assertion of the theorem. The

uniformity with respect to P ∈ G (h) and h ∈ H̃ is trivial. The Theorem VIII.8

is proved. ⊓⊔

Let us note, that from the details of the proof it clearly follows some explicit

expression for the constant α. For example, if ε ∈ (0,1), then one can take an

arbitrary

α <
τ2

2ν+1 (B + 1)
2
eB+1

.

Note also, that taking a closer look on the proof we can give a “more precise”

bound on the rate of consistency, showing explicitly the dependence of the rate

on ε. That is, for ε ∈ (0 , 1/2), we have the bound

1l{6 c n−a (lnn)δ/(2 ν+δ)>ε} + ψn exp
{
−ακ(n) ε2 nν +O(ρn)β

Γ(n)

γ(n)
ε nν

}
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where α =
1

25 · 2ν+3 (B + 1)
2
eB+1

, β =
1

5 · 2ν+1 (B + 1)
2
eB+1

and the se-

quence ψn is given by ψn = 2γ(n)
(
2ν γ(n) + 1

) (
2ν γ(n) + 2

)
.

Using this last bound, as before, we easily obtain the following

THEOREM VIII.11 [Uniform Lp-consistency of the sieve estimator]. — As-

sume that h ∈ H̃ , ĥn is the sieve estimator with k =
[
(lnn)1/(ν+δ/2)

]
, and fix

some p ∈ (0,∞). Then, for sufficiently large values of n, we have

sup
h∈H̃

sup
P∈G (h)

(
E
∥∥ĥn − h

∥∥p
)1/p

6 n−(ν/2−σ)

where σ is an arbitrary small positive constant, i.e., the estimator ĥn is

uniformly Lp-consistent.

Let us finally note here, that only the constant δ is important in the definition of

the sieve estimator. Hence we can apply the considerations of the Remark VII.6

by “releasing” the constants A, B, a and c, i.e., by enlarging the class H̃ to the

class H̃ δ defined by the conditions (C4), (C2′) and (C5) with some a priory

fixed constant δ. We will still obtain (no longer uniform) exponential and Lp

consistencies of the sieve estimator. The problem with this approach is that the

slowly varying function κ(n) present in the bounds on the rates of consistency

will depend on h (by the way of b⋆). To avoid this, one can “release” only the

constants a and c, i.e., consider the class H̃ δ
A,B defined by the conditions (C4),

(C2) and (C5) with some a priory fixed constants A, B and δ. In this case

we still obtain (no longer uniform) exponential and Lp consistencies of the sieve

estimator.
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ponctuels de Gibbs”, prébub. de SAMOS (Univ. Paris 1), no. 6, 1991.
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