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Introduction

Aujourd’hui, le nombre de matériels électroniques croît rapidement dans le domaine
des transports: véhicules, avions et autres systèmes critiques.

Les dernières trente années du développement de l’industrie automobile sont em-
blématiques: la longueur des câbles embarqués sur un automobile a plus que décuplé
passant de près de deux cents à plus de quatre milles mètres. Ce phénomène est dû
à l’application des technologies "X-by-wire": les systèmes de contrôle mécaniques et
hydrauliques sont remplacés par des systèmes électroniques utilisant des câbles élec-
triques. L’application de telle technologie est présente aussi dans l’industrie aéronau-
tique.
La fiabilité des réseaux filaires et des connexions électriques devient toujours plus im-
portante: un système complet peut être mis en panne à cause des anomalies provenant
d’un connecteur ou d’une liaison électrique en mauvais état et les conséquences peu-
vent être catastrophiques.
Pour satisfaire les nouvelles exigences en matière de sécurité et de qualité de service, il
est nécessaire de développer des techniques pour la surveillance de ces lignes de trans-
missions électriques. Pendant les dernières années son importance a suscité l’intérêt
de différents groupes de recherche qui tentent d’élaborer des méthodes de surveillance
et diagnostic des réseaux électriques.
Il devient très important d’avoir une méthode qui permette de contrôler l’état de santé
des réseaux filaires, et de localiser une éventuelle anomalie pendant que le système est
en marche. Parmi les efforts de développement des systèmes fiables électriques, la
réflectométrie est la méthode diagnostique la plus prometteuse: basée sur l’injection
d’un signal électrique à l’une des extrémités du réseau et sur l’analyse des signaux
réfléchis, cette méthode nous permet de détecter et localiser des défauts électriques
dans la structure des transmissions. La réflectométrie est couramment utilisée pour la
détection et la localisation des défauts francs comme les court-circuits ou des circuits
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ouverts, mais l’analyse du signal réfléchi nécessite le débranchement du fil électrique
influençant le coût du diagnostic et la performance du système électrique. Il serait
alors intéressant d’élaborer des techniques qui permettent de surveiller et diagnosti-
quer le système de façon non invasive.

Utilisant la méthode diagnostique de la réflectométrie, notre motivation au début
de cette thèse était d’explorer les propriétés des mesures du réflectomètre pour obtenir
des informations utiles à la surveillance et au diagnostic des réseaux électriques. La
mesure de l’expérience de la réflectométrie est traduit par la connaissance du coeffi-
cient de réflexion défini de façon heuristique comme le rapport entre une onde électrique
réfléchie et une onde incidente.

Détection des défauts vu comme problème inverse de scattering

Les comportements des ondes électriques le long de la ligne sont décrits par le modèle
des télégraphistes: la transmission électrique est caractérisée par quatre paramètres de
la ligne, connus comme la résistance R, l’inductance L, la capacité C et la conductance
linéique transversale G. La modélisation des comportements des ondes électriques
stationnaires dépendante de la fréquence k et de l’espace z sur une ligne de transmission
est donnée, notamment, par les équations des télégraphistes:{

∂zV (k, z) + ikL(z)I(k, z) +R(z)I(k, z) = 0,

∂zI(k, z) + ikC(z)V (k, z) +G(z)V (k, z) = 0.

où V (k, z) représente la tension de courant et I(k, z) son intensité.
La méthode de la réflectométrie peut être vue comme un problème inverse de scat-
tering: à partir de la connaissance du coefficient de réflexion, on veut retrouver les
défauts électriques représentés par des variations des paramètres de la ligne.

Nous nous sommes inspirés dans un article de Jaulent [30] qui montre l’équivalence
entre le problème inverse des scattering pour les équations des télégraphistes et le
problème inverse de scattering pour les équations de Zakharov-Shabat donné par{

∂xν1(x, k) = (qd(x)− ik)ν1(x, k)− q+(x)ν2(x, k),

∂xν2(x, k) = −q−(x)ν1(x, k)− (qd(x)− ik)ν2(x, k),
x ∈ [0, l]



où les variables ν1 et ν2 sont des combinaisons linéaires de la tension V (x, k) et de
l’intensité I(x, k) des courants, alors que les potentiels q = {q+, q−, qd} dépendent des
paramètres de la ligne R,L,C et G.
À partir de la connaissance du coefficient de réflexion, Jaulent arrive à reconstruire la
quantité suivante en fonction du temps parcouru x:

q̃±(x) =

[
1

4

d

dx

(
ln
L

C

)
± 1

2

(
R

L
− G

C

)]
exp

(
∓
∫ ∞
−∞

(
R

L
+
G

C

)
ds

)
.

L’objet de cette thèse est donc de savoir si, sur des réseaux filaires, les coefficients
de réflexion peuvent nous donner des informations utiles à la surveillance et la détec-
tion des défauts.
Une première question se pose: la connaissance de ces coefficients est-elle suffisante
pour détecter des défauts électriques? Si oui, quels sont les types des défauts?
Le diagnostic sur un réseau électrique nécessite alors une classification des défauts:
nous distinguons les défauts francs, comme les court-circuits et des circuits ouverts,
des défauts non francs. Les défauts francs sont localisés sur des points spatiaux précis
et leur présence implique que le passage de courant est nié. Ainsi, la longueur élec-
trique d’une branche peut être modifiée de la présence d’un défaut franc. Les défauts
non francs sont créés par un changement local des paramètres le long de la ligne; ces
types de défauts ne sont pas ponctuels, mais se diffusent le long de la ligne.

Dans cette thèse, l’objet géométrique est un réseaux filaire composé par N branches
rejointes au noeud central. Le réseaux à étoile est le cas plus simple non trivial d’un
graphe planaire.
Notre modèle est donc donné par un système de Zakharov-Shabat défini sur chaque
branche{

∂xν1j(x, k) = (qj,d(x)− ik)ν1j(x, k)− qj,+(x)ν2j(x, k),

∂xν2j(x, k) = −qj,−(x)ν1j(x, k)− (qj,d(x)− ik)ν2j(x, k),
x ∈ [0, lj]

où lj représente la longueur électrique de la branche ej et le point x = 0 correspond
au noeud central. Toutes les fonctions serons indexées par le nombre j de la branche.
En générale, l’expérience de la réflectométrie est fortement reliée aux entrées disponibles:
nous examinerons le cas minimal où on a accès au réseau que pour une seule entrée. La
réflectométrie, basée sur une approche "far-field", consiste à brancher un fil uniforme



( avec les paramètres de la ligne constants) au noeud central du réseau. Sur cette
branche test, indexée par 0, les équations des télégraphistes se réduisent à un système
découplé {

∂xν10(x, k) = −ikν10(x, k),

∂xν20(x, k) = +ikν20(x, k),
x ∈ [−l0, 0]

Au noeud central, les conditions du système{
ν10(0, k) + ν20(0, k) = ν1j(0, k) + ν2j(0, k) ∀j ∈ {1, . . . , N}∑N

j=1 ν1j(0, k)− ν2j(0, k) = ν10(0, k)− ν20(0, k).

dérivent de les lois de Kirchhoff pour la conservation de l’énergie.
Les conditions générals aux noeuds externes x = lj sont données par

ν1j(l,k)− ρj(k)ν2j(lj, k) = 0,

où les coefficients ρj(k) caractérisent les différentes configurations à la fin de chaque
ligne. Naturellement, les choix des ρj(k) déterminent le coefficient de réflexion. À
travers une seule entrée, nous pourrons ainsi faire différentes expériences tant que
nous pouvons changer les valeurs de ces coefficients ρj.

Dans la suite de cette introduction, nous présentons un résumé des résultats obtenus
dans la thèse. Ces résultats sont volontairement simplifiés pour n’en garder que le
principe. Pour l’énoncé rigoureux des théorèmes, les hypothèses exactes de validité et
les démonstrations, le lecteur se rapportera aux chapitres correspondants.

Problèmes inverses de scattering pour l’operateur de Schrödinger

Nous avons d’abord traité le cas particulier d’un réseau électrique sans pertes, i.e.
Rj = Gj = 0 pour toutes les branches. Le système de Zakharov-Shabat sur Γ est
équivalent à l’équation de Schrödinger indépendant du temps sur chaque branche:

d2

d2x
yj(x, k)− qj(x) = k2yj(x, k), ∀j = 0, . . . , N

Le potentiel qj(x) est un agrégé des paramètres linéique Lj(x) and Cj(x)

qj(x) =

[
Cj(x)

Lj(x)

]− 1
4 d2

dx2

[
Cj(x)

Lj(x)

] 1
4

.



L’avantage de cette formulation est qu’on peut utiliser des techniques provenant de
la littérature académique sur les problèmes inverses de scattering pour l’opérateur de
Schrödinger. Par exemple, pour une ligne de transmission , il y a différentes méthodes
pour reconstruire le potentiel q(x) à partir du coefficient de réflexion [34],[17] [18].
Sur le réseau à étoile, nous sommes obligé de montrer que le problème direct de scat-
tering est bien posé: les potentiels qj(x) caractérisent le coefficient r(k).
Le premier résultat sur les problèmes inverses concerne l’identification géométrique.
La connaissance du r(k) est suffisante pour retrouver les longueurs des branches:

Theorem (Theorem 3 du Chapitre 3). On considère un réseau à étoile Γ+ fait de nj
branches de longueur lj. Alors la connaissance du coefficient r(k) détermine de façon
unique les paramètres (nj, lj)

N
j=1.

Pour la preuve, on a besoin des comportements à hautes fréquences des solu-
tions fondamentales et des propriétés des fonctions quasi-périodiques. Identifier les
longueurs se traduit dans l’expérience de la réflectométrie par la localisation des dé-
fauts francs, comme les circuits ouverts et fermés.
Les défauts non francs sont représentés par la connaissance des potentiels qj(x). Dé-
tecter la présence de ces défauts, appelés aussi "défauts d’isolement", et les localiser sur
le réseau implique l’identifiabilité des potentiels qj. Pour l’identification des potentiels
qj, une seul expérience n’est pas suffisante. En fait on a le résultat suivant:

Theorem (Theorem 4 du Chapitre 3). Sur un réseau à étoile Γ+ vérifiant

B1 les longueurs sont toutes différents, i.e. lj 6= li pour chaque i, j = 1, . . . , N tels
que i 6= j.

Si deux potentiels q = ⊗Nj=1qj(x) et q′ = ⊗Nj=1q
′
j(x) tels que

qj(0) = qi(0) j 6= i,

nous donnent le même coefficient de réflexion r(k) = r′(k), alors on a∫ lj

0

qj(s)ds =

∫ lj

0

q′j(s)ds j = 1, . . . , N.

La conditions sur les potentiels qj(0) = qi(0) j 6= i, est équivalent à dire qu’on
exclut des défauts électriques au noeud central.



Pour avoir l’identification complète des potentiels il faut deux expériences différentes
pour avoir deux coefficients de réflexion. Chaque expérience est associée à des condi-
tions différentes aux noeuds terminaux. Avec deux coefficients et quelques hypothèses
techniques, on a l’identifiabilité des potentiels.

Theorem (Theorem 5 du Chapitre 3). Sur un réseau à étoile Γ+. On suppose

A2 Pour chaque i, j = 1, . . . , N tel que i 6= j, lj/li est un nombre algébrique irra-
tionnel.

Si on a deux potentiels q = ⊗Nj=1qj(x) et q′ = ⊗Nj=1q
′
j(x) satisfaisant |q|Γ, |q′|Γ < ε,

nous donnent les mêmes coefficients de réflexion

rN (k) = r′N (k), rD(k) = r′D(k)

associés à deux expériences différentes, alors on a

q ≡ q′.

Dans ce cas, on parle d’une identification locale autour du potentiel nul que représente
la situation parfaite sans défauts. L’hypothèse A2 limite fortement l’application réel
de ce résultat, parce que cette supposition sur le rapport des longueurs n’est par véri-
fiable dans l’expérience réelle.
Les preuves de ces deux théorèmes passent pour un résultat d’équivalence entre le
problème inverse de scattering sur un réseau Γ+ et des problèmes spectraux inverses
sur la partie compacte de Γ: la connaissance du coefficient de réflexion est équivalent
à la connaissance des différentes spectra de l’opérateur de Sturm-Liouville défini sur
Γ.

Problèmes inverses de scattering pour les équations de Zakharov-

Shabat

Les problèmes inverses sur les réseaux des transmission avec pertes forment un autre
chapitre de cette thèse. Le problème direct de scattering est aussi bien posé dans cette
situation: une fois fixés les potentiels q = ⊗Nj=1(qj,+, qj,−, qj,d) sur le réseau à étoile, le
coefficient de réflexion est unique.



Pour la localisation des défauts francs on a le même résultat que dans le cas d’un
réseau sans pertes

Theorem (Theorem 6 du Chapitre 4). Sur un réseau à étoile Γ vérifiant la condition
B1 le coefficient r(k) determine les longueurs lj.

Aussi, dans ce cas, la preuve utilise les comportements à hautes fréquences des
solutions fondamentales et des propriétés des fonctions quasi-périodiques.
Les problèmes inverses pour retrouver les potentiels sont, a priori, plus compliqués: sur
chaque branche les potentiels sont trois (qj,+, qj,−, qj,d). Déjà sur la ligne Jaulent [30]
arrive à retrouver que des agrégés de potentiels, le coefficient r(k) permet de calculer
la quantité suivante

q̃±(x) = q±(x) exp(∓2

∫ ∞
−∞

qd(s)ds).

Le résultat plus important de ce chapitre regarde l’identification de la quantité∫ lj

0

qj,d(x)dx =
1

2

∫ lj

0

Rj

Lj
(x) +

Gj

Cj
(x)dx j = 1, . . . , N

appelée le factuer de dissipation de la ligne.

Theorem (Theorem 7 du Chapitre 4). On assume que pour un réseau à étoile Γ+,
la condition B1 est valide. Si on a deux potentiels q = ⊗Nj=1(qj,+, qj,−, qj,d) et q’ =

⊗Nj=1(q′j,+, q
′
j,−, q

′
j,d) qui nous donnent le même coefficient de réflexion r(k) = r′(k) on

a nécessairement ∫ lj

0

qj,d(x)dx =

∫ lj

0

q′j,d(x)dx.

L’idée de la preuve est similaire à la preuve des Théorèmes 4 et 5. Aussi dans
le cas avec pertes, on montre l’équivalence entre le problème inverse de scattering
pour le système de Zakharov-Shabat sur Γ+ et des problèmes spectraux inverses pour
l’opérateur de Zakharov-Shabat défini sur la partie compacte Γ.
Le dernier résultat concerne un cas particulier du réseau. Sur un réseau uniforme
de transmission où les paramètres de la ligne sont constants, les trois potentiels sont



donne sur chaque branche simplement par

qj,d(x) : = 1
2

(
Rj

Lj
+

Gj

Cj

)
,

qj,+(x) : = +1
2

(
Rj

Lj
− Gj

Cj

)
,

qj,−(x) : = −1
2

(
Rj

Lj
− Gj

Cj

)
.

Dans ce cas, on a le résultat suivant

Theorem (Théorème 8 du Chapitre 4). Sur un réseau Γ vérifiant l’hypothèse B1. Si
on a sur chaque branche

Gj

Cj
<
Rj

Lj
, ∀j = 1, . . . , N,

alors le coefficient de réflexion détermine de façon unique ces deux quantités

Gj

Cj
et

Rj

Lj
, ∀j = 1, . . . , N.

Organisation de la thèse

Ce manuscrit de thèse est composé de quatre chapitres:

Chapitre 1 Le premier chapitre est consacré aux problématiques industrielles et à leur mo-
délisations. L’expérience de la réflectométrie est modélisée par les équations des
télégraphistes, et la détection des défauts électriques peut être vue comme un
problème inverse de scattering: à partir de la mesure du coefficient de réflexion
on cherche à avoir des informations sur les paramètres de la ligne qui influencent
les comportements des ondes électriques.
Nous nous intéressons d’abord aux réseaux de transmission sans perte: dans
ce cas, les équations des télégraphistes peuvent être réduites à l’équation de
Schrödinger indépendante du temps. Ensuite, on montre que le cas général avec
perte est équivalent au système de Zakharov-Shabat, deux équations couplées de
premier ordre.
Le lecteur pourra bénéficier d’un tableau dans l’appendice A qui montre l’équivalence
des expériences d’ingénieurs avec les fonctions mathématiques.



Chapitre 2 Dans le deuxième chapitre nous présentons l’état de l’art de la recherche du
côté ingénieur et du côté mathématique. Si les ingénieurs ne perdent pas de vue
l’aspect d’application de la réflectométrie, la recherche académique sur l’opérateur
de Schrödinger et sur le système de Zakharov-Shabat concerne plutôt les aspects
délicieusement mathématiques et oublie l’application industrielle.

Chapitre 3 La résolution de quelques problèmes inverses pour l’opérateur de Schrödinger
fait l’objet du troisième chapitre. Dans une première partie, nous étudierons
le problème direct: une fois choisis les paramètres de la ligne, le coefficient de
réflexion est unique. Ensuite nous introduisons les différents problèmes inverses.
Plus précisément, on s’intéresse aux problèmes d’identification des paramètres
géométriques comme le nombre de branches et leur longueurs, et aux problèmes
d’identification partielle ou totale des potentiels, une agrégation des paramètres
de la ligne.

Chapitre 4 Dans le chapitre quatre, nous traitons le cas général des réseaux de transmission
avec perte. Ce chapitre est la généralisation du précédent: on cherche d’abord
à montrer que le problème direct est bien défini et après on passe à l’étude
des problèmes inverses. Le coefficient de réflexion nous permet de retrouver les
défauts francs et leur position sur le réseau, par la résolution d’un problème
d’inversion géométrique. Un deuxième problème est donné par l’identifiabilité
des taux d’amortissement le long de la ligne. Dans le cas d’un réseau uniforme,
on arrive à identifier deux quantités fondamentales pour les opérations de main-
tenance des compagnies de trains.



Chapter 1

Fault detection in electric networks as
inverse scattering problem

1.1 Examples of Industrial Problems

Electrical cables are widely used for power and signal transmissions in embedded
systems, buildings and infrastructures. Wired networks are often considered as well
known and reliable, so that research on cables diagnosis in critical systems is still
neglected.
We are going to illustrate two examples of industrial problems concerning the cables
diagnosis.

The main problem consists in detecting and locating electrical faults along the ca-
bles. For a better understanding, it is useful to classify them in two types: hard and
soft faults.

• The first one corresponds to the short and open circuits, external breakdown or
abnormal resistance. They cause a discontinuity of the impedance and so they
can be localized easily in space.

• Soft faults are also called "isolation faults" and they are not punctual in space,
but they are spread over the line. They caused by progressive degradations.

1



Figure 1.1: Hard faults: (0-DEFECT documentation)

Figure 1.2: Soft faults: conductor’s breakdown and sheathing degradation (0-DEFECT
documentation)

1.1.1 Embedded Automotive networks

An interesting example of industrial problems comes from the automotive industry.

The number of electronic equipments is increasing rapidly in automotive vehicles,
aircrafts, and many other safety critical systems. As well the complexity of wired
networks embedded in vehicles is growing up exponentially. For example a modern
car can contain up to 4 kilometers electrical wire, while in a civil airplane we can find
400 kilometers of electrical cables. The sensitivity to network’s defects evolves as the
network complexity increases and various problems can emerge at system level due to
the cables. For the automotive industry, a goal is to develop compact and easy to use
devices for the diagnosis of electric connection failures in garage or at the end of the
production chain. These diagnosis devices will be integrated to the vehicle in order to
detect failures under normal working conditions of the vehicle. To find faulty wiring
in such networks, it is not always possible to measure end-to-end cable impedances,
because the number of available diagnostic port plugs is limited, and furthermore, for



diagnosis purpose, it is not sufficient to detect a high end-to-end impedance as it is
also necessary to locate the fault within the cable.

The diagnostic methods affect in a consistent way the security and the economy of
the in car industry. In fact, a mechanic can take up to 2 days to find and repair a wiring
defect, sometimes after having changed healthy and expensive components. The 70%

of the calculators returned to the manufacturer are defect-free. The industrial part
proved the feasibility of an external diagnosis system in garage, which preindustrial
prototype is identified a commercial product before the end of the project. Automatic
fault detection and diagnosis using reflectometry methods is the subject of intense
research, both on the technologies of "smart wiring systems" and reflectometers on
the foundations of the Time/Frequency Domain reflectometry (TDR/FDR) methods.

0-DEFECT (0-DEFAUT: Outil de Diagnostic Embarqué de Faisceaux AUTomo-
biles) is project funded by the French National Research Agency (ANR). The goals of
this project are to study and to implement new methods more adapted to the problems
of embedded diagnosis. Technically, current methods make it possible to obtain about
ten centimeters accuracy on the localization of a hard defect, which is already appre-
ciable. On the other hand, it is not completely compatible with certain constraints
for embedded systems, in particular because of Electromagnetic compatibility (EMC)
and of the interaction of the diagnosis signals with those of the network.

The objects of Chapter 3 and part of Chapter 4 are to improve the hard faults
detection methods applied to electrical networks through reflectometry experiments.
The reflectometry methods described in Section 1.2 will give us useful informations
about the presences of possible electric faults. Looking at the application on the
embedded automotive networks, we restrain ourself to a minimal setup of an electrical
network where a single plug-in port is available for the reflectometry experiments.

1.1.2 Lossy long lines in railway’s systems

In railway systems, the reliability of signal cables is an important aspect for the econ-
omy and the security of a train company.
SNCF is France’s national state-owned railway company. SNCF operates the country’s
national rail services, including the TGV, France’s high-speed rail network. Its func-
tions include operations of rail services for passengers and freight, and maintenance



and signaling of rail infrastructure owned by Réseau Ferré de France. The french signal
cables network is more then 50.000 km long and the subdivision of the french railway
company, Infra SNCFm must deal with it. Since the train cables are spread all over
the french territory, the maintenance is difficult and expensive.
These maintenance operations are difficult, because there are thousands of kilometers
of different signal cables and maintenance teams must travel along the network. Each
year more then 10.000 hours are spent in the maintenance operations. Nowadays stan-
dard checking procedure is carried out unplugging parts of cable and then detecting
and locating electrical defaults. These procedures affect the traffic circulation in a
consistent way.
One of the most difficult type of defaults is the "isolation defaults". They are often
due to a degradation of the cable its-self. The principal characteristic of these failures
is that they are not located in one point of the line, but they are distributed along the
cable.

SNCF model cables

Train signal cables are 1500m long and they have been used in frequency range
0 − 3kHz. We are going to model these signals and diagnostic test signals by the
telegrapher’s equations, presented in Section 1.3. This model is characterized by the
inductance L and the linear capacitance C and by some loss terms. The loss terms are
represented by a distributed resistance R and a distributed shunt conductance G. The
latter one represents the "isolation faults" we like to detect. Even if this conductance
has a weak influence on the electrical transmissions (10 nS/km), a small variation
becomes unacceptable for train circulation: the accepted limit value is 100 nS/km.
The difficult of this problem comes from the weak influence of the conductance G over
the other line parameters R,L and C. The effect of the conductance G is very weak
for the dissipation 1/2(R/L+G/C) and the dispersion 1/2(R/L−G/C), because G/C
is very small compared to R/L. Detecting an abnormally high value of G is associated
to a carefully observation of both dispersion and dissipation. Modern techniques allow
us to see this phenomenon only at low frequencies and that’s why the maintenance
operations deals with unplugged signal cables.

Another difficulty of this problem comes from the fact that these faults are not
located on a single point as for the hard faults leading to breakdowns. Short and open
circuits are hard faults and can be located by simple reflectometry. For the isolation



faults preceding breakdowns, we can imagine that aging process or slow degradation
involves an entire cable zone. In this way, these faults won’t be nor localized in a
particular spot or uniform along the line cable: the variation of the conductance G
and possibly of C can be uniformly continuous in space.

SNCF Cables parameters

Train signal cables are copper lines, their section is 1 mm2 and they coupled in a twist
way. The transmission line parameters are

• Resistance R ∼ 37 ohm/km,

• Inductance L ∼ 0.9 mH/km,

• Capacitance C ∼ 200, 100, 40 nF/km,

Here the orders of magnitude for R/L and G/C are respectively of 0.025 ms and 1000 s.

The goal of INSCAN project (INfrastructure Safety Cable ANalysis) funded by the
French National Research Agency (ANR) is to develop a new method based on the
reflectometry experiments to detect abnormal values of G/C without using the low
frequency band reserved for the signalization. The new method should contribute to
the safety of the railway system, but also improve the ability to deliver on time railway
services. In terms of operations, the main challenge consists in the ability to perform
the cable diagnosis without train service interruptions while preserving the required
safety level for the end-equipments connected by the cables.

In Chapter 4 we study the reflectometry methods applied to an electrical lossy
network. Though the reflectometry, we will be able to identify the two quantities R/L
and G/C in the particular case of uniform transmission network.



1.2 Fault detection and localization by reflectometry

To improve the reliability of electrical network and facilitate the maintenance opera-
tions, the reflectometry is one of the most effective methods.
This method is based on the injection of test signal at one end of the network and on
the analysis of reflected signals. Reflectometry provides information on the presence
of faults on an electrical network (fault-detection), and also may be used to localize
the faults and to reveal their nature (fault-diagnosis).

1.2.1 Some elements of Linear Network Theory

In this section we are going to recall some basic properties of the N-port abstract
network that can be found in [66, 11].

In the following, we are going to use some standard notations:

• LN2 (R) is the set of N-dimensional vectors (f1(t), . . . , fN(t)), where each fj is a
real-valued square-integrable function of time t;

• fT denotes the function f × χ[−∞,T ], where χ is the characteristic function on
the interval [−∞, T ];

• LN2e is the set of all f with fT ∈ LN2 for all T ∈ R.

An N -port network (see figure 1.3), denoted by N , is represented by N pair of ex-
ternal time-dependent variables (ij(t), vj(t))

N
j=1 belonging to L2N

2e , here corresponding
to the current and voltage at each port. For each network we can consider various rep-
resentations, each one describing the relationship between these variables, depending
on which N of these variables are fixed, while the other N variables are derived.

A pair (i(t), v(t)) is called N -admissible signal pair in L2N
2e which may appear

across N .

A network N admits many possible representations: choosing N variables from the
set {i(t), v(t)}, we can associate the rest of the variables through a particular operator.
One may ask when a representation is well-defined.



N − Port Network

N

i1(t)

iN(t)

v1(t)

vN(t)

Figure 1.3: schematic N-Port Network

Let us consider the variables ξ and η related to v and i by[
v

i

]
= Ω

[
ξ

η

]
, (1.1)

where Ω is a real invertible 2N × 2N matrix.

Definition 1. We shall say that a network N has an Ω-representation if, for each
N -admissibile ξ(t), there is a unique N -admissible η(t), i.e there exists an operator Λ

such that
ξ = Λη.

Definition 2. Considering a network N and a well-defined Ω-representation, we say
that the network is linear time-invariant if the operator Λ is linear and satisfies

For any T ∈ R, η ∈ D(Λ) and ξ = Λη ⇒ η(· +T ) ∈ D(Λ) and ξ(· +T ) = Λη(· +T ).

Here D(Λ) denotes the domain of the operator Λ.

Through this section, we will always consider linear time-invariant (LTI) networks
and therefore whenever talking of a network we assume implicitly that it is LTI.

Two important examples of an Ω-representation are the impedance and the ad-
mittance representations. Setting Ω = Id2N (for the case of impedance), and Ω =



(
0 IdN

IdN 0

)
(for the case of admittance) we may have the following representa-

tions
v = Zi, i = Yv. (1.2)

Here Z is called the impedance operator, while Y is called the admittance operator.

Definition 3. N is passive if for any T > −∞ and for all N -admissible port current-
voltage pair (i, v) ∫ T

−∞
v(t)i(t)dt ≥ 0, (1.3)

where the symbol − denotes the conjugate transpose. The integral is finite as we
assume v(t) and i(t) in LN2e.

Boyd and Chua [11] introduce the following variables

a(t) = 1
2
v(t) + 1

2
i(t),

b(t) = 1
2
v(t)− 1

2
i(t),

(1.4)

We can reformulate (1.3) as

∀T ∈ R
∫ T

−∞
(a(t)a(t)− b(t)b(t))dt ≥ 0. (1.5)

Definition 4. We say that N is solvable if the set of N -admissible a’s includes LN2 .

For a passive solvable network N , it is a direct consequence of the linearity and
the inequality (1.5) that for each a ∈ LN2 , there is a unique b such that the pair (a, b)

is admissible. Furthermore by (1.5), ‖b‖LN
2
≤ ‖a‖LN

2
. Thus we may define a linear

bounded operator S on LN2 by
Sa = b. (1.6)

Theorem. The passivity of the network N implies that S is a causal operator, i.e.

a(t) = a′(t) for t < T ⇒ Sa(t) = Sa′(t) for t < T.

Proof. Since N is a linear network, it is sufficient to show if a(t) = 0 for t ≤ T , then



Sa(t) = 0 for t ≤ T . For fixed T , the passivity property implies∫ T

−∞
[a(t)a(t)− b(t)b(t)]dt ≥ −

∫ T

−∞
b(t)b(t)dt = −

∫ T

∞
|b|2dt ≥ 0.

We can conclude b(t) = Sa(t) = 0 for t ≤ T .

Here we recall an important criterium to verify the passive property of a network.

Theorem ((Youla et al) [66]). A solvable network N is passive if and only if

(1) N has a scattering matrix, i.e. for any ω there exists a matrix S(iω) such that
for any admissible pair (a, b) satisfying a ∈ LN2 ,

b̂(iω) = S(iω)â(iω).

Note that thanks to (1.5), a ∈ LN2 implies b ∈ LN2 and therefore both Fourier
transforms â(iω) and b̂(iω) are well-defined.

(2) S(iω) has the analytic extension S(z) in the open right half plane (RHP ) and
verifies

S(z)S(z) ≤ I ∀z ∈ RHP (1.7)

where I denotes the identity matrix.

A proof of this theorem can be found in [11].

Remark 1. The operators verifying (1.7) are called bounded-real operators.

Returning now to the impedance (admittance) representation, [11] proposes an-
other passivity criteria:

Theorem (Boyd and Chua [11]). Assuming that N is solvable, then N is passive if
and only if

• The impedance matrix Z(iω) satisfying v̂ = Zî for admissible pairs (v, i) ∈ L2N
2 ,

has an analytic extension in open right half plane (RHP ) and Z(s) + Z(s) is
positive there , i.e.

∀s ∈ RHP, <(c∗(Z(s) + Z(s))c) ≥ 0 ∀c ∈ CN . (1.8)

The same holds for the admittance matrix Y.



Remark 2. The impedance matrix Z(s) and the scattering matrix S(s) are related
through an homographic transformation given by

Z(s) = (S(s) + IdN)(S(s)− IdN)−1.

It can be shown that homographic transformations map bounded-real operators into
positive semidefinite operators.

1.2.2 Principles of reflectometry

Here we present the physics behind the reflectometry experiments. For example, the
Hewlett Packard notes [28] describes the functioning of the reflectometer using the
notion of power waves. Power waves have been introduced by Kurokawa [39] in order
to define the reflection coefficient from an energetic point of view. We have chosen
this presentation as it is closer to our theoretical approach, used later in this thesis.

Although a network may have any number of ports, we are going to explain network
parameters by considering a network with only two ports (fig. 1.4). Since we are

−

1 2
NETWORK

TWO − PORT

I1 I2

V1

+

−

V2

+

Figure 1.4: 2-Port Network

dealing with reflectometers, it is natural choice to consider the frequency as variable
instead of time t. Indeed, voltage V = (V1, V2) and current I = (I1, I2) depend on
frequency ω.

We are assuming that the 2-port is a LTI passive network an hence the impedance
representation is well defined. In this case, following [20] the impedance matrix Z(iω)

is defined as (
V1(ω)

V2(ω)

)
=

(
z11(iω) z12(iω)

z21(iω) z22(iω)

)(
I1(ω)

I2(ω)

)
(1.9)

where zij are assumed to be complex variable depending on the frequency ω.



Power waves and S-parameters

Generalized scattering parameters have been defined by Kurokawa [39]. These param-
eters are based on the concept of traveling power waves associated to the voltage Vi
and current Ii flowing into each port i of the network and to a reference impedance Zi
associated to each port. The bar symbol denoting the complex conjugate, we define,
following [39]:

(ν1)i =
Vi − ZiIi

2
√
|<Zi|

, (ν2)i =
Vi + ZiIi

2
√
|<Zi|

. i = 1, 2. (1.10)

where <Zi denotes the real part of Zi.
These two new variables (ν1, ν2)i are called respectively the reflected and incident
power waves associated to the port i (see Fig. 1.5). we can define the S-parameters

2(ν1)1

(ν2)1

(ν1)2

(ν2)2

1

Figure 1.5: 2-Port Network with power waves

s11, s21, s21 and s22 as matrix that relates the incident waves with the reflected ones:(
(ν1)1

(ν1)2

)
=

(
s11 s12

s21 s22

)(
(ν2)1

(ν2)2

)
. (1.11)

The matrix composed by the S-parameters is called S-matrix (see [20]).

Remark 3. A physically realizable scattering matrix S(ω) is one which represents a
LTI passive network N .

The parameters, called S-parameters for "scattering" parameters, are important in
microwave design because they are easier to measure and work with at high frequencies
than other kinds of parameters, like the Z-parameters.

It can be shown the following equivalence between the Z-parameters defined in



(1.9) and the S-parameters defined in (1.11). As soon as the inverse exists,

s11 =
(z11 − Z1)(z22 + Z2)− z12z21

(z11 + Z1)(z22 + Z2)− z12z21

, (1.12)

s12 =
2z12(<Z1<Z2)1/2

(z11 + Z1)(z22 + Z2)− z12z21

, (1.13)

s21 =
2z21(<Z1<Z2)1/2

(z11 + Z1)(z22 + Z2)− z12z21

, (1.14)

s22 =
(z11 + Z1)(z22 − Z2)− z12z21

(z11 + Z1)(z22 + Z2)− z12z21

, (1.15)

where Z1 is the source impedance at port 1 and Z2 the load impedance at port 2
(see Figure 1.7). The impedance Z1, Z2 are such that i.e. <Z1,<Z2 > 0.

The passivity property of 2-port network is a sufficient condition for the existence
of these equations: it is easy to see that if the impedance matrix Z verifies (1.8), the
denominators in (1.12)-(1.15) are different from zero . The transformations (1.12)-
(1.15) is is solving a direct scattering problem: from the impedances zij one gets the
scattering parameters sij.

The inverse transformation is solving an inverse scattering problem. From the
knowledge of the S-parameters we recover the impedance matrix Z as follows

z11 =
(Z1 + Z1s11)(1− s22) + Z1s12s21

(1− s11)(1− s22)− s12s21

, (1.16)

z12 =
2s12(<Z1<Z2)1/2

(1− s11)(1− s22)− s12s21

, (1.17)

z21 =
2s21(<Z1<Z2)1/2

(1− s11)(1− s22)− s12s21

, (1.18)

z22 =
(1− s11)(Z2 + Z2s22) + Z2s12s21

(1− s11)(1− s22)− s12s21

. (1.19)

An exemple: T-Network

Image impedance is a concept used in electronic network design and analysis and most
especially in filter design. The term image impedance applies to the impedance seen
looking in to ports of a network. Formally the image impedance is for a two-port



network is the impedance, Zim,1 , seen looking in to port 1 when port 2 is terminated
with the impedance, Zim,2, for port 2.

Z/2

21 Y

Z/2

Figure 1.6: A two-port model with 3 terminations

Let us consider the T -network with a series of impedances Z and an admittance
Y . This circuit defines naturally an application such that for any branched impedance
Z2 at port 2 it gives an image impedance Zim,1 at port 1:

Z2 7→ Zim,1.

The fixed points Zc of this application Zc 7→ Zc satisfy

Z2
c =

1

4
Z2 +

Z

Y
. (1.20)

It is natural to take as reference impedance one of the roots (usually the one with
< ≥ 0).

Remark 4. We can have a non-symmetric case for the T -model. The choice of Z/2, Z/2
is arbitrary and choosing two different impedances, we can have two different references
for the left side and the right side. This comes from the fact that the applications
Zim,2 7→ Zim,1 and Zim,1 7→ Zim,2 are not the same.

We note that the T -network is passive. It is sufficient to verify the criterium (1.8)
for impedance matrix. We compute explicitly the values zij. Using the Ohm’s laws,



we have

z11 =
1

Y
+
Z

2
,

z12 =
1

Y
,

z21 =
1

Y
,

z22 =
1

Y
+
Z

2
.

The impedance Z = (z11, z12, z21, z22) is definite positive matrix as long as the series
impedances verify Z > 0,∣∣∣∣∣ z11 z22

z12 z21

∣∣∣∣∣ =

(
1

Y
+
Z

2

)2

− 1

Y 2
=
Z

2

(
Z

2
+

2

Y

)
> 0.

That is enough to guarantee the passivity of the T -network.
The Z-parameters for the T-network have an important property:

z12 = z21. (1.21)

We say that the impedance matrix Z is reciprocal if it verifies (1.21). A directly con-
sequence of this property can be seen on the S-parameters, from the transformations
(1.13) and (1.14) we have

s12 = s21. (1.22)

Moreover if we assume that the loads are the same at both ends Z1 = Z2, using (1.12)
and (1.15) we have

s11 = s22. (1.23)

Symmetric configuration for the T -network implies that the two reflectometry experi-
ences at both ends give the same measurements.

Some properties of power waves

We explain now the physical meaning of the power waves defined in (1.10). Let us
consider a two-port network connected to a linear generator at Port 1 and to a load
at Port 2, as shown in Figure 1.7. The pair (E0, Z1) represents a linear generator: Z1

is its internal impedance and E0 is the open circuit voltage of the generator.



E0

Z1

V1 ↑

I1 → I2 →

V2 ↓ Z2

Figure 1.7: A 2-Port network connected to a linear generator (Port 1) and to a load
(Port 2)

The power PL = <(V1Z1) into a load Z2 is given by

PL = <Z2|I1|2 =
<(Z2)|E0|2

|Z2 + Z1|2
=

|E0|2

4<(Z1) + (Z2−Z1)2

<(Z2)

, (1.24)

Note that <(Z1) is positive, because it represents the generator source. It is interesting
to know what are the conditions for the terminal impedance Z2 to maximize the power
PL, i.e.

max
Z2

PL(Z2).

It can found easily we can see that the maximum power PL is achieved when

Z2 = Z1 (1.25)

and its value is
Pmax
L =

|E0|2

4<(Z1)
(<(Z1) > 0).

The maximum power is also called the "available" power of the generator.
The voltage at the generator terminal is given by

V1 = E0 − Z1I1.

Inserting this into (1.10), we have

|(ν2)1|2 =
|E0|2

4|<(Z1)|2
,



and we note immediately that

Pmax
L = |(ν1)1|2. (1.26)

Note that if there is no source, i.e. E0 = 0, then (ν2)1 becomes also zero.
Now let’s look at the difference |(ν2)1|2−|(ν1)1|2; direct substitution into (1.10) shows

<{V1I
∗
1} = |(ν2)1|2 − |(ν1)1|2. (1.27)

The left-hand side of (1.27) expresses the power which is actually transferred from
the generator to the load and this is called the actual power. The actual power is equal
to |(ν2)1|2−|(ν1)1|2: since −|(ν1)1|2 is always negative whether the load contains some
source or not, the magnitude of the power of a generator |(ν2)1|2 can be identify as
the maximum power that the generator can supply.
The generator is sending the power |(ν2)1|2 toward the load, regardless of the load
impedance. However, when the load is not matched, i.e. (1.25) is not satisfied, a
part of the incident power is reflected back to the generator. This reflected power
is given by |(ν1)1|2 so that the net power absorbed in the load is equal to |(ν2)1|2 −
|(ν1)1|2. Associated with incident and reflected power, there are waves (ν2)1 and (ν1)1

respectively.

1.2.3 The engineering state of art in reflectometry

Reflectometry experiments consist in sending a signal into a network and analyzing
the returning signals, composed by all signals reflected by the heterogeneities of the
line. In fact, when a signal comes across an electrical discontinuity, part of its energy
is sent back to plug-in port.

The basic reflectometry experiment on 2-port network consists in measuring, for
example at port 1, the quantity (ν1)1 when (ν2)2 = 0 and (ν1)2 6= 0, which is obtained
by using a voltage generator.

Being (ν2)2 = 0, from (1.11) we can compute the first s-parameter, the reflection
coefficient at port 1,

s11 =
(ν2)1

(ν1)1

.

As well, we are able to able to compute s21 measuring the signal (ν1)2.



(ν2)2 = 0(ν2)1

(ν1)1 (ν1)2

1 2

Figure 1.8: Reflectometry on a two-port network

To obtain the other two s-parameters, we need to consider the specular case. Assuming
that (ν2)1 = 0 and (ν2)2 6= 0 and measuring (ν1)1 and (ν1)2, we will able to compute
s12 and s22.

All reflectometry experiments consist in choosing a signal ν2 of a particular form to
inject into network and measuring ν1: each method has different advantages. In theory
all methods are equivalent, but in the real application, there are some constraints that
limit the experiments of each kind.

The reflectometry experiments are divided in two main domains: time domain
reflectometry (TDR) and frequency domain reflectometry (FDR) presented in this
section [21].

Frequency Domain Reflectometry (FRD)

FRD uses a high frequency signal to detect the faults of the network.
In this case the analysis is based on stationary waves. The signal used in the

frequency domain reflectometry is an harmonic signal which is stepped over a range
of frequencies from ω1 to ω2. The transmitted signal is generated by a voltage source
of the following form

V1 = Vs cos(ω(t)), (1.28)

where Vs is voltage source, ω(t) varies over the range (ω1, ω2);
There are three types of FDR can be adapted for the measurements of wires and

cables. These are:

(PDFDR) Phase Detection Frequency Domain Reflectometry system sends a set of stepped
frequency sine wave on cable where at the end there is load. A voltage control
oscillator (VCO) injects a sinusoidal signal of the form (1.28). Part of the signal



is sent to a mixer, while the remainder is sent to the cable. The incident signal
travels along the cable and it is reflected by the load at the terminal end. Iso-
lated by a directional coupler, the reflected wave is also sent to the mixer: the
mixer device "multiplies" the incident and the reflected waves. After filtering the
signal, a dc voltage is the output of the mixer used to detect and to determine
the length and the load of the cable.
The PDFDR method involves small and inexpensive components and for this
reason it has been chosen for “smart wiring system” that can be used to test the
integrity of aircraft cables nondestructively on board [21]. The method has been
conceived to test the integrity of aircraft cable on board. Thus this system will
test all critical wiring system prior to the flight.

(FMCW) Frequency-Modulated Continuous-Wave system send, using a VCO, a set of high-
frequency sine waves with frequencies that are increased in time [22]. Like the
PDFR, this method isolates the reflected wave from the incident. But if PDFDR
methods analyze the phase difference, FMCW methods measure the frequency
difference. By measuring the difference between the frequency of the reflected
wave and the new (ramped up) frequency of the incident wave, the elapsed time
and hence the length of the cable can be determined. A necessary condition is
the high frequency regime for the reflectometers (typically in the hundreds of
megahertz to few gigaherz range).

(SWR) Standing-Wave Reflectometry systems systems also sends a high frequency sig-
nal into the waveguide [45, 65]. The incident wave is not separated from the
reflected wave in this method. The magnitude of the standing wave depends on
the location and type of the load on the end of the cable and the frequency of
the incident wave. Multiple measurements are required in order to determine
the length and the load on the cable. This method can be sensitive to noise
and frequency dependent loads, but if frequencies are chosen conveniently, SWR
experiments can be reasonably cost effective.



Time Domain Reflectometry (TDR)

The incident and the reflected waves are both seen simultaneously, although their time
domain signatures are separated in time because of the travel time delay. The cable
impedance, termination, and length give a unique temporal signature that can be used
to determine the status of the cable.
Spread Spectrum Time Domain Reflectometry (SSTDR)[60] and Sequence Time Do-
main Reflectometry (STDR)[31] inject into the cable a recursive linear signal (RLS)
of the following form:

(ν2)1 =
∞∑

n=−∞

S[n]p(t− nTs) (1.29)

where S[n] is a recursive linear sequence of period K consisting of 1 and −1 and

p(t) =

{
1, 0 < t < Tc,

0, otherwise.

The recursive signal has period Ts = KTc, where Tc is the minimum of duration of 1

and −1. SSTDR and STDR have been demonstrated to be effective technologies for
locating on intermittent wiring failures such as open circuits and short circuits (hard
faults) [60].

Comparison between TDR and FDR

Time domain and frequency domain methods are strongly related. TDR uses short
pulses and, in theory, it provides information over an "infinite" range of frequencies.
In practice this range is limited by the rise time of the pulse. On the other hand
FDR uses stationary wave over a smaller set of frequencies then TDR. In theory, FDR
and TDR methods are equivalents: they provide the same kind of informations. In
practice, of course, differences in the sensitivities and accuracy of the electronics can
cause variation in how the different systems perform. Still, it is useful to know that
data received using a TDR can be replicated using an FDR method, and vice versa.

All reflectometry methods rely on a strong reflection on the spots where are the
faults on the cable in order to locate them. Open and short circuits provide the largest
reflection coefficient, so not surprisingly they are the easiest to detect. Fortunately for
detection and localization, many other faults of interest appear as very near open or
short circuits at the high frequencies commonly used in reflectometry methods.



1.2.4 Some challenging problems on reflectometry

As we have seen previously, reflectometry methods work well on the hard faults, but
there are still some challenging problems on soft-faults detections. Reflectometry ex-
periments shows to be accurate for location of "hard" faults, but the location of "soft"
faults such as frays and chafes remains elusive. Griffiths, Parakh, Furse and Baker [26]
analyze the impedance of several types of soft faults and their resultant reflectometry
returns, which are shown to be smaller than returns from other sources of physical
and electrical noise in the system. Through numerical simulations verified by mea-
surement, they show that soft faults are virtually impossible to locate using today’s
reflectometry methods including TDF, FRD, and SSTDR.

Another interesting class of problem is the application of reflectometry methods
directly onto electrical network. When wires contain many singularities, finding elec-
tric faults in a network becomes very complex. Furthermore, when complex networks
made of several junctions are diagnosed, classical fault detection leads to ambiguities
concerning the location. Different methods have been proposed to locate faults on
wiring network. In a baseline method, the response of the faulty network is compared
to the pre-measured of simulated response of its known healthy condition. Smail-et-
al [57, 58] propose a new technique to reconstruct faulty wiring network from TDR
responses and genetic algorithms.

In [41], Lelong et al introduce a new method for distributed wire diagnosis by re-
flectometry; distributed diagnosis consists in making reflectometry measurements at
several points of a complex network at the same time, thus allowing to isolate ambigu-
ities due to the existence of multiple paths. In fact, when the test points are properly
chosen, the association of these multiple measurements allows the exact location of a
singularity in the network.

Inspired by these two challenges, this thesis has for goal to study the fault-detection
and diagnosis on the electrical network. Using the FDR methods, our purpose is to
detect and locate both hard and soft faults along a network through the measurement
of one reflection coefficient. Next section will be devoted to the formulation of the
mathematical problem about reflectometry methods.



1.3 Telegrapher’s Equations and equivalent formula-

tions

In this section we describe the equations that model the transmission of electrical
waves through transmission lines [46]. The propagation of electrical signal along a
cable is modeled by the "Telegrapher’s equations".

R(z)

G(z)

L(z)

C(z)

Figure 1.9: Schematic representation of the elementary components of a transmission
line

One assumes that cable conductors are composed of an infinite series of two-port
elementary components, each representing an infinitesimally short segment of a trans-
mission line:

• The distributed resistance R of the conductors is represented by a series resistor
(expressed in ohms per unit length).

• The distributed inductance L (due to the magnetic field around the wires, self-
inductance, etc.) is represented by a series inductor (henries per unit length).

• The capacitance C between the two conductors is represented by a shunt capac-
itor C (farads per unit length).

• The conductance G of the dielectric material separating the two conductors is
represented by a shunt resistor between the signal wire and the return wire
(siemens per unit length). This resistor in the model has a resistance of 1 / G
ohms.

These parameters allow a rather complete and understandable description of trans-
mission lines and they are sufficient to represent the lines in the frequency range used



during reflectometry.

The behavior of electric signal depends upon the intensity of the current I(t, z)

and the voltage V (t, z). Both functions are parametrized by a space variable z and
the time t.
Eventually the telegrapher’s equations for a transmission line write{

∂
∂z
I(t, z) + C(z) ∂

∂t
V (t, z) +G(z)V (t, z) = 0,

∂
∂z
V (t, z) + L(z) ∂

∂t
I(t, z) +R(z)I(t, z) = 0.

(1.30)

1.3.1 Finite Line Model

Consider a transmission line of finite length `. Assume that the left end and the right
end of the line correspond respectively to z = zl and z = zr, such that |zl − zr| = `.
The generic boundary conditions are:{

V (t, zl) + Zl(t) ∗ I(t, zl) = Vl(t),
V (t, zr)−Zr(t) ∗ I(t, zr) = Vr(t),

(1.31)

where Vl and Vr are the voltage sources respectively at z = zl and z = zr. Zl and Zr
are the transmission line impulse response at z = zl and z = zr. The symbol ∗ denotes
the convolution product.

The linearity of the transmission line model allows to replace any test by an equiv-
alent test in harmonic regime. The harmonic regime of the solutions is imposed by a
choice of the source generator of the form:

Vl(t) = Vl(ω)eiωt, Vr(t) = Vr(ω)eiωt, (1.32)

where ω represents the pulsation of the source generators.
We are looking for the solution V (t, z) and I(t, z) of (1.30) of the form

V (t, z) = eiωtV (ω, z) I(t, z) = eiωtI(ω, z).

The variable ω is the time frequency and z is still the position coordinate. V (ω, z)



and I(ω, z) are solutions of the telegrapher’s equation in the harmonic regime.{
∂
∂z
V (ω, z) + iωL(z)I(ω, z) +R(z)I(ω, z) = 0,

∂
∂z
I(ω, z) + iωC(z)V (ω, z) +G(z)V (ω, z) = 0,

(1.33)

with boundary conditions{
V (ω, zl) + Zl(ω)I(ω, zl) = Vl(ω),

V (ω, zr)− Zr(ω)I(ω, zr) = Vr(ω).
(1.34)

where Zl and Zr are time-Fourier transformed of Zl and Zr and Vl(ω) and Vr(ω) are
defined in (1.32).

Characteristic Impedance

In order to define the characteristic impedance, let us consider the elementary compo-
nent of a semi-discretization for the space variable z (see Fig. 1.9) and let us suppose
that it has the form of a T -network, shown in Fig. 1.6.

Since the T -model represents the elementary component of a RLGC transmission
line, the impedances Z and the admittance Y are given by

Z = R + iωL, Y = G+ iωC.

Being an infinitesimally short segment z, we have Y dz and Zdz instead of Y and Z.
The fixed point of the image application (1.20) becomes, as dz goes to zero,

Zc =
√
Z/Y .

Now we are ready to introduce the following definition.

Definition 5 (Local Characteristic impedance). For the transmission line model based
on the telegrapher’s equations, the characteristic impedance Zc(ω, z) is defined by

Zc(ω, z) =

√
R(z) + iωL(z)

G(z) + iωC(z)
. (1.35)

Note that in the lossless case, i.e. R = G ≡ 0, the characteristic impedance Zc
does not depend on frequencies.



Particular boundary conditions

Boundary conditions (1.34) represents all possible electrical configurations for prob-
lems described in Section 1.1. In particular we privilege three particular boundary
conditions that we will fit to our experiments.

Vs(ω)

Zs(ω)

Zr(ω)

Figure 1.10: One generator source model

On the left end, we connect a source generator Vs(ω) of frequency ω with an internal
impedance Zs(ω). On the right terminal, there is no source.

V (ω, zl) + Zs(ω)I(ω, zl) = Vs(ω),

V (ω, zr)− Zr(ω)I(ω, zr) = 0 . (1.36)

We want to emphasize three possible configurations at right terminal node z = zl

• Open Circuit : open-circuit voltage is the difference of electrical potential between
two terminals of a device when there is no external load connected, i.e. the circuit
is broken or open. Setting Zr =∞ , the boundary condition becomes

I(ω, zr) = 0.

• Short circuit : a short circuit is simply a low resistance connection between
the two conductors supplying electrical power to any circuit. Short circuits can
produce very high temperatures due to the high power dissipation in the circuit.
This situation occurs when Zr(ω) = 0. The condition (1.36) is

V (ω, zr) = 0.

• Matched Load : impedance matching is the practice of designing the input impedance
of an electrical load or the output impedance of its corresponding signal source in



order to maximize the power transfer and minimize reflections from the load. In
this case we need to set the parameter Zr equal to the characteristic impedance
(1.35) at the terminal node, i.e.

Zr(ω) = Zc(ω, zr).

1.3.2 Network model

Graph

A wired network is mathematically represented by a tree Γ. A tree is a simply con-
nected metric graph and it is described by a partially ordered set of nodes V =

{v0, v1, . . . , vn−1}.
We consider a graph Γ with a unique minimal element, named v0. The set Vext of
maximal elements of V represents the boundary vertices. The elements which are nor
the minimal neither maximals are called internal vertices and they form a set denoted
by Vint.

V = Vext ∪ Vint ∪ v0.

When two distinct vertices are comparable, there exists an edge connecting these
two vertices. Given two consecutive vertices vi < vi′ the edge ej connecting these two
vertices, is parametrized through the position coordinate z varying from [zlj , zrj ] where
z = zlj corresponds to the vertex vi and z = zrj corresponds to vi′ .
We say that ej is external if one of its nodes is either minimal or maximal.

Remark 5. This formulation includes also non-compact graphs, where external edges
can be also semi-infinite. We note that in this case zrj can be also assumed to be
infinite.

Transmission line equations

Let Γ be the network and let E = {e0, e1, . . . en} be the set of branches. We define the
intensity of the current I and the voltage V on the network Γ as a set of functions
{Ij}nj=1 and {Vj}nj=1, where each intensity Ij and each voltage Vj is defined on the j-th
branch.
In general, all functions will be indexed by the edge numbers: for example Rj(z) will
denote the resistance R defined on the j-th branch.



On each branch ej, we define the telegrapher’s equation in harmonic regime indexed
by the letter j{

∂
∂z
Vj(ω, z) + iωLj(z)Ij(ω, z) +Rj(z)Ij(ω, z) = 0,

∂
∂z
Ij(ω, z) + iωCj(z)Vj(ω, z) +Gj(z)Vj(ω, z) = 0,

z ∈ [zlj , zrj ]. (1.37)

Boundary conditions at the nodes

In order to model the telegrapher’s equations on networks, we need to add some bound-
ary conditions at the central nodes Vint and to the external nodes Vext ∪ v0.

Terminal nodes Vext
At the terminal node vj ∈ Vext and on the edge ej connected to it , i.e. vj correspond
to z = zrj , the generic situation is represented by

Vj(ω, zrj)− Zj(ω)Ij(ω, zrj) = Vj(ω), (1.38)

where Zj is the impulsion response and Vj a possible voltage source generator.

Terminal node v0

The minimal element v0 is related to the branch indexed by 0 as its left end z = zl0

and the generic boundary condition for this node is

V0(ω, zl0) + Z0(ω)I0(ω, zl0) = V0(ω). (1.39)

Internal node
At any internal node Kirchhoff laws hold:

• we impose the continuity of the voltage,

• the sum of incoming currents must be equal to the sum of the outgoing currents.

Considering v an internal vertex of the network and E(v) the set of edges joining at v,
these matching conditions can be written as∑

e∈E(v)

Ie(ω, v) = 0 and Ve(ω, v) = Ve′(ω, v) ∀e, e′ ∈ E(v), (1.40)



where Ie(ω, v) and Ve(ω, v) denote the current and the voltage over the branch e at
the vertex v and where the symbol Σ corresponds to an algebraic sum.
The algebraic sum implies that the direction of current is needed to be taken into
account ∑

e∈Eout(v)

Ie(ω, v) =
∑

e∈Ein(v)

Ie(ω, v)

where Ein(v) and Eout(v) denotes the set of edges in E(v) such that the current’s di-
rection is respectively inward and outward with respect to v.

Remark 6. The direction of the currents Ij(ω, z) depends entirely upon the position
of the source. The generator source will be placed at the minimal vertex v0 in a such
way that the directions of the current will be oriented as the parametrization of the
branches.
In such situation, the outward and inward directions are related to the position of the
node v in the parametrization of the edge ej: given a parametrization [zlj , zrj ] of the
brach ej, the current will be consider inward if the node v corresponds to z = zrj ,
otherwise if v corresponds to z = zlj the current will be outward.

1.3.3 The Liouville transformation

Reflectometry experiments lead to observing voltages and currents along the time at
some position: only the traveling times and amplitudes of waves are accessible by
such experiments. A fault can only be localized in terms of the traveling time of the
reflected test wave starting from the test point. It becomes natural to work with the
traveling time instead of the spatial coordinates. For engineers, the traveling time is
also called electrical distance.
We introduce the Liouville transformation to change the nature of the position coor-
dinate z into the electrical distance x. For a finite line of length ` and parametrized
as [zl, zr], the Liouville transformation writes

x(z) =

∫ z

zl

√
L(z)C(z)ds+ xl z ∈ [zl, zr], (1.41)

which corresponds to the wave traveling time from the position zl to the position z.
The electrical distance l corresponds to the physical length ` . We can say that the



finite line [zl, zr] will be parametrized as [xl, xr] with |xl − xr| = l.

The inverse transformation is well defined and we will be able to write C(x) ≡
C(z(x)), L(x) ≡ L(z(x)), G(x) ≡ G(z(x)), R(x) ≡ R(z(x)), V (ω, x) ≡ V (ω, z(x)) and
I(ω, x) ≡ I(ω, z(x)).

The telegrapher’s equation (1.33) in the harmonic regime becomes
∂
∂x
V (ω, x) = − iωL(x)+R(x)√

L(x)C(x)
I(ω, x),

∂
∂x
I(ω, x) = − iωC(x)+G(x)√

L(x)C(x)
V (ω, x).

x ∈ [xr, xl] (1.42)

Since we are dealing with reflectometers, it is natural to choose as parameter the
frequency ω. On the other side, the mathematical literature rather uses the letter k
standing for the wave number.
From now on, we will use k = ω and this corresponds either to the case where there
is no dispersion phenomena, for example in the lossless case or to the case where we
are dealing with high frequencies k � 0. In general, these two parameters k and ω are
related through the dispersion relation.
Introducing the quantity Zc0(x) at the point x

Zc0(x) =

√
L(x)

C(x)
, (1.43)

we have that (1.42) writes
∂
∂x
V (k, x) = −

(
ik + R(x)

L(x)

)
Zc0(x)I(k, x),

∂
∂x
I(k, x) = −

(
ik + G(x)

C(x)

)
Z−1
c0 (x)V (k, x).

(1.44)

1.3.4 Lossy Network: Zakharov-Shabat system

Here we show the equivalence between the telegrapher’s equations and a Zakharov-
Shabat system, a first order coupled differential equation. This change of variables
is particularly interesting since the two new variables will represent backward and
foreword waves. The new formalism allows us to see clearly the relations between the
reflection coefficient and the potentials, depending on the line parameters.

Let’s consider telegrapher’s equations (1.44) in the harmonic regime after the Li-
ouville transformation.



Definition 6. Let’s set the variables ν1 and ν2 as follows
ν1(x, k) =

1√
2

[
Z
−1/2
c0 (x)V (k, x)− Z1/2

c0 (x)I(k, x)
]
,

ν2(x, k) =
1√
2

[
Z
−1/2
c0 (x)V (k, x) + Z

1/2
c0 (x)I(k, x)

]
.

(1.45)

The new variables verify the following coupled equations{
∂xν1(x, k) + ikν1(x, k) = +qd(x)ν1(x, k)− q+(x)ν2(x, k),

∂xν2(x, k)− ikν2(x, k) = −q−(x)ν1(x, k)− qd(x)ν2(x, k),
(1.46)

where

qd(x) =
1

2

(
R(x)

L(x)
+
G(x)

C(x)

)
, (1.47)

q−(x) =
1

4

d

dx

[
log

L(x)

C(x)

]
− 1

2

(
R(x)

L(x)
− G(x)

C(x)

)
, (1.48)

q+(x) =
1

4

d

dx

[
log

L(x)

C(x)

]
+

1

2

(
R(x)

L(x)
− G(x)

C(x)

)
. (1.49)

The set of equations (1.46) is called the Zakharov-Shabat system.

Note that the change of variables (1.45), introduced by Jaulent [30], looks like the
Kurokawa power waves (1.10). In these coordinates, ν1 and ν2 represent respectively
the backward and the foreword wave with respect to the sign of x.

Remark 7. The quantity Zc0(x) defined by (1.43) can be considered as the characteris-
tic impedance defined in (1.35) within high frequency regime (k � 0) and it coincides
with Zc(x) in the lossless case, when R = G = 0.
Instead of the high frequency characteristic impedance Zc0, we could have used the lo-
cal characteristic impedance Zc and we would obtain a two potential Zakharov-Shabat
system of the following form{

∂xν1(x, k) + ikν1(x, k) = +q1(x, k)ν1(x, k)− q2(x, k)ν2(x, k),

∂xν2(x, k)− ikν2(x, k) = −q2(x, k)ν1(x, k)− q1(x, k)ν2(x, k),

but the potentials q1, q2 would depend also on the frequency k and they are assumed
to be complex value functions.



Boundary conditions

Terminal nodes Vext
Let’s consider a terminal node vj ∈ Vext and let ej be the edge connected to this vertex.
The change of variables (1.45) implies that (1.38) becomes

(Zc0,j(xrj) + Zj(k))ν1j(xrj , k) + (Zc0,j(xrj)− Zj(k))ν2j(xrj , k) =
√

2Zc0,j(xrj)Vj(k).

Setting the following variables

ρj(k) =
Zj(k)− Zc0,j(xrj)
Zj(k) + Zc0,j(xrj)

,

ρ0(k) =
Z0(k)− Zc0,0(xl0)

Z0(k) + Zc0,0(xl0)
,

νj(k) =
Vj(k)√

2Zc0,j(xrj)
,

ν0(k) =
V0(k)√

2Zc0,0(xl0)
,

the generic boundary conditions at the terminal nodes write

ν1j(xrj , k)− ρj(k)ν2j(xrj , k) = (1− ρj(k))νj(k). (1.50)

Note that the boundary conditions at the external nodes depends on two parameters
ρj(k) and νj(k), an aggregates of the terminal impedance Zj(k), the high frequencies
characteristic impedance Zc0,j and a possible generator source Vj(k).

Remark 8. Note that, from its definition, ρj(k) can take values

|ρj(k)| ≤ 1 ∀k ∈ R. (1.51)

Terminal node v0

At the left end of the branch e0, corresponding to the terminal node v0, the boundary
condition (1.39) writes

ν20(xl0 , k)− ρ0(k)ν10(xl0 , k) = (1− ρ0(k))ν0(k). (1.52)



Remark 9. We are interested in the case where there is only one source generator at
the minimal node v0.

ν20(xl0 , k) = νS(k)

We describe three particular configurations at a generic terminal node vj without any
source, i.e. Vj(k) = νj(k) = 0.

• Open circuit : The open circuit corresponds to ρj(k) = +1, the boundary condi-
tion (1.50) is

ν1j(xrj , k)− ν2j(xrj , k) = 0.

• Short circuit : This case is verified when ρj(k) = −1. In the Zakharov-Shabat
coordinates, this is equivalent to

ν1j(xrj , k) + ν2j(xrj , k) = 0.

• Matched Load : Matching the internal impedance Zj(k) to the high frequency
characteristic impedance Zc0,j(xrj), we obtain the no reflection phenomenon and
this is equivalent to setting ρj(k) = 0.

ν1j(xrj , k) = 0.

Internal nodes.
Let v ∈ Vint be an internal vertex and let E(v) be the set of edges connected to v. The
Kirchhoff’s laws translate to

Z
1
2
c0,e(v)[ν1e(v, k) + ν2e(v, k)] = Z

1
2

c0,e′(v)[ν1e′(v, k) + ν2e′(v, k)] for e, e′ ∈ E(v)∑
e∈Eout(v)

Z
− 1

2
c0,e(v)[ν1e(v, k)− ν2e(v, k)] =

∑
e∈Ein(v)

Z
− 1

2
c0,e(v)[ν1e(v, k)− ν2e(v, k)]. (1.53)

where Eint and Eout represent the set of edges such that the current direction is respec-
tively inward and outward with respect to the node v.

Remark 10. It is interesting to remark that the boundary conditions at the internal
nodes depend only upon the quantity Zc0,e(v), i.e. the inductance Le and the capaci-
tance Ce.



Matrix formulation for the Zakharov-Shabat system

Here we present the matrix formulation for the Zakharov-Shabat system. It is useful
when we need to add indices for the branches, but its limit is given by the poor
formulation for the boundary conditions.
Let Y (x, k) be the column vector (ν1(x, k), ν2(x, k))tr and let Q(x) and σ3 be the
matrices defined as

Q(x) =

(
qd(x) −q+(x)

−q−(x) −qd(x)

)
, (1.54)

σ3 =

(
1 0

0 −1

)
. (1.55)

then the harmonic regime (1.46) writes

d

dx
Y (x, k) + ikσ3Y (x, k) = Q(x)Y (x, k), (1.56)

This notation will be helpful when we are dealing with lossy transmission line network.

Particular cases:

Non uniform lossless network.
A particular case of transmission line network is the non-uniform lossless network.
Let’s examine the lossless transmission line model for a segment x ∈ [xl, xr]. In this
case, the loss terms such as R(x) and G(x) are zero over the whole interval [xl, xr],
while the distributed parameters L and C vary. This implies that the Zakharov-Shabat
potentials are:

qd(x) ≡ 0,

q−(x) =
1

4

d

dx

[
log

L(x)

C(x)

]
q+(x) =

1

4

d

dx

[
log

L(x)

C(x)

]
.

The Zakharov-Shabat system involves, hence, only one potential −q−(x) = −q+(x) =



Q(x) and it writes

d

dx
Y (x, k) + ikσ3Y (x, k) =

(
0 Q(x)

Q(x) 0

)
Y (x, k). (1.57)

Uniform network
Another interesting case to study is the uniform lossy network. Their line parameters
R,L,G,C are constant along the branch. Hence there are two potentials

qd(x) = qd =
1

2

(
R

L
+
G

C

)
,

q−(x) = −ql = −1

2

(
R

L
− G

C

)
,

q+(x) = ql = +
1

2

(
R

L
− G

C

)
,

The Zakharov-Shabat system writes

d

dx
Y (x, k) + ikσ3Y (x, k) =

(
qd ql

−ql −qd

)
Y (x, k). (1.58)

1.3.5 Lossless Network: Schrödinger equation

We have shown the equivalence between the transmission line equations and the
Zakharov-Shabat system. Now we want to present a particular case of the trans-
mission lines: the lossless network.
Following a result by I.Kay [33], we see the equivalence between the lossless case
and the time-independent Schrödinger equation. The necessity of introducing another
equation for the transmission line model is due to the fact there exists an enormous
literature on the Schrödinger equation.
In the absence of dissipation, the transmission line equations (1.30) write in time
domain {

∂zI(t, z) + C(z)∂tV (t, z) = 0,

∂zV (t, z) + L(z)∂tI(t, z) = 0.
(1.59)



For a wave frequency k, i.e.

I(t, z) = I(k, z)e−ikt,

V (t, z) = V (k, z)e−ikt

the telegrapher’s equations (1.59) write in the harmonic regime as

d

dz

(
1

L(z)

d

dz
V (k, z)

)
− k2C(z)V (k, z) = 0. (1.60)

Applying the Liouville transformation (1.41) and setting

y(x, k) = [Zc(x)]−
1
2 V (k, x), (1.61)

where Zc(x) =
√
L(x)/C(x) denotes the characteristic impedance for a lossless trans-

mission line, the equation (1.60) becomes

− d2

dx2
y(x, k) + q(x)y(x, k) = k2y(x, k) (1.62)

where the potential q(x) is defined as follows

q(x) =

[
C(x)

L(x)

]− 1
4 d2

dx2

[
C(x)

L(x)

] 1
4

. (1.63)

Note that in these new terms, the electrical current is given by

I(k, x) =
1

ik

(
1

2

Z ′c(x)

Z
3/2
c (x)

y(x, k) +
1

Z
1/2
c (x)

d

dx
y(x, k)

)

where Z ′c(x) denotes the spatial derivative of the characteristic impedance.

Boundary conditions

Terminal nodes.
Consider the terminal node vj ∈ Vext without a source and let ej be the associated
edge. The boundary conditions are

Zj(k)y′j(xrj) = −
(
ikZcj(xrj) +

Zj(k)

2

Z ′cj(xrj)

Zcj(xrj)

)
yj(xrj). (1.64)



Internal nodes.
In the new formalism, the Kirchhoff rules become for each internal vertex v ∈ Vint

A−1
e (v)ye(k, v) = A−1

e′ (v)ye′(k, v) ∀e, e′ ∈ E(v),

∑
e∈E(v) A

′
e(v)ye(k, v) + Ae(v)y′e(k, v) = 0

(1.65)

where the functions Ae are defined as

Ae(x) =

[
Ce(x)

Le(x)

] 1
4

, ∀e ∈ E .

By A′e(v) we denote the derivative with respect to the coordinate x at the point x = v.

Between the Zakharov-Shabat system and Schrödinger equation

We have seen that the lossless transmission line equations are equivalent to two dif-
ferent equations: the Schrödinger equation (1.62) and the Zakharov-Shabat system
(1.57). Each formulation has its own advantage: if the Zakharov-Shabat system re-
quires less regularity for the line parameters for the definition of the potential (1.48)
and (1.49), the Schrödinger equation has been deeply studied by mathematicians and
physicists.
It is interesting to note although the two potentials Q and q require different regular-
ities for the R,L,C and G in the two cases, they are related by the following Riccati
equation

d

dx
Q(x)−Q2(x) + q(x) = 0.

1.4 Reflectometry, scattering data and inverse scat-

tering

Reflectometry methods presented in Section 1.2 show how to detect and to locate inho-
mogeneities in an electric wire. In this section we model the reflectometry experience
throughout the Zakharov-Shabat system and we will arrive at the formal definition
of the most important object for this thesis: the reflection coefficient. Together with
transmission coefficients, reflection coefficients form the scattering matrix, the starting
point for the scattering theory.



In this section we will introduce first the reflection coefficient for a finite line, then
we extend this definition for an infinite line and for a network. We will also see how
the reflectometry experience is translated into an inverse problem.

1.4.1 Reflection and Transmission coefficients for a finite line

ν2(x, k)

ν2(xl, k)− ρl(k)ν1(xl, k) = νl(k)

ν1(xr, k)− ρr(k)ν2(xr, k) = νr(k)

x = xrx = xl

ν1(x, k)

Figure 1.11: Zakharov-Shabat equations model

Let’s consider the Zakharov-Shabat system (1.46) on the interval I = [xl, xr] with
the generic boundary conditions{

ν1(xr, k)− ρr(k)ν2(xr, k) = (1− ρr(k))νr(k),

ν2(xl, k)− ρl(k)ν1(xl, k) = (1− ρl(k))νl(k).
(1.66)

Using the superposition of solutions for the Zakharov-Shabat system, we can write a
solution with the boundary condition (1.66) as a combination of two solutions verifying
respectively these two half-homogenous boundary conditions{

ν1(xr, k)− ρr(k)ν2(xr, k) = 0,

ν2(xl, k)− ρl(k)ν1(xl, k) = (1− ρl(k))νl(k).
(1.67)

and {
ν1(xr, k)− ρr(k)ν2(xr, k) = (1− ρr(k))νr(k),

ν2(xl, k)− ρl(k)ν1(xl, k) = 0.
(1.68)

The boundary conditions (1.67) and (1.68) being similar, we are going to prove the well-
posedness of the problem with boundary conditions (1.67). The condition νr(k) = 0

represents the absence of the right source generator.

Proposition 1. Let |ρl(k)| < 1 and let’s suppose that q = (q+, q−, qd) ∈ L1([xl, xr]).
Then there exists a unique solution for the Zakharov-Shabat system (1.46) with the
boundary conditions (1.67).



Remark 11. The hypothesis on the regularity of potentials corresponds to the situation
where we are excluding the rupture of the impedance Zc0(x) on the line.

Proof. In order to solve the two-point boundary value problem (1.46),(1.67), we will
use the Riccati transformation, a decoupling technique related to the invariant imbed-
ding method [8], [59], [7].
Let us introduce the following Riccati equation{

∂xrl(x, k) = q−(x)r2
l (x, k) + 2(qd(x)− ik)rl(x, k)− q+(x),

rl(xr, k) = ρr(k).
(1.69)

This ordinary differential equation has a unique local solution as soon as the functions
qd and q± are regular enough, say integrable.
We will show in Lemma 1 that the solution rl(x, k) is bounded, so that (1.69) has a
unique global solution defined for all x ≤ xr.
Now, we will change the variables in (1.46),(1.67), by setting

ν̃1(x, k) = ν1(x, k)− rl(x, k)ν2(x, k).

The new equivalent system is
∂xν̃1(x, k) = (qd(x)− ik + q−(x)rl(x, k))ν̃1(x, k),

∂xν2(x, k) = −q−(x)ν̃1(x, k)− (qd(x)− ik + q−(x)rl(x, k))ν2(x, k),

ν̃1(xr, k) = 0,

(1− ρl(k)rl(xl, k))ν2(xl, k)− ρl(k)ν̃1(xl, k) = (1− ρl(k))νl(k).

(1.70)

The unique solution of the first equation is ν̃1(x, k) ≡ 0, so that ν1(x, k) = rl(x, k)ν2(x, k)

and the second equation becomes{
∂xν2(x, k) = −(qd(x)− ik + q−(x)rl(x, k))ν2(x, k),

(1− ρl(k)rl(xl, k))ν2(xl, k) = (1− ρl(k))νl(k).

We have supposed that |ρl(k)| < 1 (which is not restrictive because this coefficient is
close to 0 in our applications), so that, with Lemma 1 (see below),

1− ρl(k)rl(xl, k) 6= 0



and this equation has also a unique solution. The proof is complete.

The proof of the proposition is constructive: it gives us a method to obtain the
solution of a Zakharov-Shabat system. In particular the Riccati coefficient rl(x, k)

plays an important role for the construction of the solutions.

Lemma 1. Let rl(x, k) be the solution of (1.69). If we suppose that q = (q+, q−, qd) ∈
L1([xl, xr]), then for all ρr(k) such that |ρr(k)| ≤ 1 ∀k ∈ R, we have

|rl(x, k)| ≤ 1 ∀x ≤ xr, ∀k ∈ R. (1.71)

Proof. In order to prove this lemma, we use some properties of the Riccati equation
(1.69) by introducing an auxiliary ODE:

rl(x, k) =
µ1(x, k)

µ2(x, k)
,

with
dµ1(x, k)

dx
= (qd(x)− ik)µ1(x, k)− q+(x)µ2(x, k),

dµ2(x, k)

dx
= −q−(x)µ1(x, k)− (qd(x)− ik)µ2(x, k),


µ1(xr, k) = ρr(k)

µ2(xr, k) = 1.

(1.72)

We have that

∂x|µ1(x, k)|2 = +2qd(x)|µ1(x, k)|2 − 2q+(x)<(µ1(x, k)µ2(x, k)), (1.73)

∂x|µ2(x, k)|2 = −2qd(x)|µ2(x, k)|2 − 2q−(x)<(µ1(x, k)µ2(x, k)),

In order to prove (1.71), we are going to show that

|µ1(x, k)|2 − |µ2(x, k)|2 ≤ 0 ∀x ≤ xr. (1.74)

For x = xr, (1.74) is valid, then it is sufficient to show

∂x(|µ1(x, k)|2 − |µ2(x, k)|2) ≥ 0, ∀x < xr



Using (1.73) and the representation of the potentials (q+, q−, qd) in terms of line pa-
rameters (1.47),(1.48),(1.49) we have

∂x(|µ1|2 − |µ2|2) = 2(q+ − q−)<(µ1, µ2)) + 2qd(|µ1|2 + |µ2|2)

= 2

(
R

L
− G

C

)
(µ1µ2 + µ1µ2) +

(
R

L
+
G

C

)
(µ1µ1 + µ2µ2)

=
R(x)

L(x)
|µ1(x, k) + µ2(x, k)|2 +

G(x)

C(x)
|µ1(x, k)− µ2(x, k)|2 ≥ 0

Being a sum of two non-negative numbers, ∂x(|µ1|2 − |µ2|2) ≥ 0 and therefore (1.74)
is valid. This concludes the proof.

Remark 12. We have given a simple proof of (1.71) in the previous lemma. This result
is a particular case of a more general result concerning the invariance of the Siegel disk
for the Riccati equation, i.e.

|rl(xr)| ≤ 1⇒ |rl(x)| ≤ 1, ∀x ≥ xr

Redheffer has proved the formula for the n-dimensional case in [53] and also in a more
general case in [54]. Let r a local solution (i.e. in a neighborhood of x0) for

d

dx
r(x) = a(x) + b(x)r(x) + r(x)d(x) + r(x)c(x)r(x),

Then the condition

<(η, a(x)ξ + b(x)η) + <(ξ, d(x)ξ + c(x)η) ≥ 0, ∀|η| = |ξ| ∈ CN , (1.75)

is necessary and sufficient for the invariance of the Siegel disk

|r(x0)| ≤ 1⇒ |r(x)| ≤ 1, ∀x ≥ x0.

In our situation, another proof of (1.71) consists in verifying that the condition (1.75)
holds for any choice of q = (q+, q−, qd). Since r(x) is scalar, it is enough to consider ξ
and η on the unitary disk.



Let η = eiθ1 and ξ = eiθ2 and for

a(x) = −q+(x), b(x) = d(x) = qd(x)− ik, c(x) = q−(x),

the condition (1.75) becomes

<(−q+(x)ei(θ2−θ1) + 2qd(x)− 2ik + q−(x)ei(θ1−θ2)) ≥ 0, ∀θ1, θ2.

In terms of line parameters, we have

−q+(x)ei(θ2−θ1) + q−(x)ei(θ1−θ2) = −
(
R

L
− G

C

)
cos(θ2 − θ1)− i

2

d

dx

(
L

C

)
sin(θ2 − θ1),

hence

<(−q+(x)ei(θ2−θ1) + 2qd(x)− 2ik + q−(x)ei(θ1−θ2)) =

R(x)

L(x)
(1− cos(θ2 − θ1)) +

G(x)

C(x)
(1 + cos(θ2 − θ1)) ≥ 0.

Remark 13. It is interesting to study the lossless case. When −q+ = −q− = Q and
qd ≡ 0 the coefficient rl(x, k) verifies

|rl(x, k)| < 1, for |ρr(k)| < 1,

|rl(x, k)| = 1, for |ρr(k)| = 1.

The coefficient rl(x, k) can be seen a Mobius transformation for the parameter ρr(k).

The solution of the auxiliary equation is given by

(
µ1(x, k)

µ2(x, k)

)
= Φ(x, k)

(
ρr(k)

1

)

with Φ(x, k) =

(
Φ1(x, k) Φ̄2(x, k)

Φ2(x, k) Φ̄1(x, k)

)
, where


dΦ1(x, k)

dx
= e−2ikxQ(x)Φ2(x, k),

dΦ2(x, k)

dx
= e2ikxQ(x)Φ1(x, k),


Φ1(xr, k) = 1

Φ2(xr, k) = 0.



Now we have
rl(x, k) =

Φ2(x, k) + ρr(k)Φ̄1(x, k)

Φ1(x, k) + ρr(k)Φ̄2(x, k)

Remark now det Φ(x, k) = |Φ1(x, k)|2 − |Φ2(x, k)|2 is constant along the segment:

d

dx
(φ1(x, k)φ̄1(x, k)− φ2(x, k)φ̄2(x, k)) = 0,

hence so that |Φ1(x, k)|2 − |Φ2(x, k)|2 = |Φ1(xr, k)|2 − |Φ2(xr, k)|2 = 1.

Note r0(x, k) =
Φ2(x, k)

Φ1(x, k)
is a solution for (1.69) with ρr(k) = 0. We have

|r0(x, k)|2 =
|Φ2(x, k)|2

1 + |Φ2(x, k)|2

rl(x, k) =
r0(x, k)Φ1(x, k) + ρr(k)Φ̄1(x, k)

Φ1(ω, x, τ) + ρr(k)r̄0(x, k)Φ̄1(x, k)

Note α(x, k) =
Φ1(x, k)

Φ̄1(x, k)
. It follows that

rl(x, k) = ᾱ(x, k)
ρr(k) + α(x, k)r0(x, k)

1 + ρr(k)ᾱ(x, k)r̄0(x, k)
. (1.76)

As |α| = 1 and |αr0| < 1, the mapping

ρr(k) −→ ᾱ
ρr(k) + αr0

1 + ρr(k)ᾱr̄0

is one-to-one from the unit circle (resp. the open unit disk) onto itself.
For |ρr(k)| = 1, then |rl(x, k)| = 1 for all x ≤ xr, for |ρr(k)| < 1 the solution |rl(x, k)| <
1.

Corollary 1. Let rl(x, k) be the solution of the Riccati equation (1.69). If there exists
a subinterval I1 ⊂ [xl, xr] such that

min
x∈I1

(
G(x)

C(x)
,
R(x)

L(x)

)
= c > 0, (1.77)

then, for any choice of |ρr(k)| ≤ 1, we have

|rl(xl, k)| < 1 ∀k ∈ R. (1.78)



Proof. Let us write the solution of the Riccati equation as

rl(x, k) =
µ1(x, k)

µ2(x, k)
,

where µ1(x, k) and µ2(x, k) are the solution of the auxiliary equation (1.72). To prove
(1.78) it is sufficient to show

|µ1(xl, k)|2 − |µ2(xl, k)|2 < 0.

Since |µ1(xr, k)|2 − |µ2(xl, k)|2 ≤ 0, following the proof of Lemma 1, it is sufficient to
prove that for some x

∂x(|µ1(x)|2 − |µ2(x)|2) > 0.

In the interval I1 where it is valid (1.77), we have

∂x(|µ1|2 − |µ2|2) =
R(x)

L(x)
|µ1 + µ2|2 +

G(x)

C(x)
|µ1 − µ2|2 ≥

≥ c(|µ1 + µ2|2 + |µ1 − µ2|2) > 0. ∀x ∈ I1.

The quantities |µ1(x, k) + µ2(x, k)|2 and |µ1(x, k) − µ2(x, k)|2 can not be zero at the
same time, because otherwise it implies µ1(x, k) = µ2(x, k) ≡ 0 contradicting the
initial condition at xr.

Left reflection coefficient and right transmission coefficient

Definition 7. Consider a Zakharov-Shabat system (1.46) on the interval I = [xl, xr]

with the boundary conditions (1.67) one can associated to the solution of this sys-
tem, the function rl(x, k) of the Riccati equation (1.69). We define the left reflection
coefficient rl(k) as

rl(k) = rl(xl, k). (1.79)

We have shown that the reflection coefficient rl(k) represents the ratio between the
reflected wave ν1(xl, k) and the incident wave ν2(xl, k). In particular we remark that
ν2(xl, k) 6= 0 as soon as the same is true for the source term, i.e. νl(k) 6= 0.
Heuristically, the reflection coefficient represents how much of a wave is reflected, it is
natural to define an equivalent term for the transmitted wave.



Definition 8. Let’s consider the Zakharov-Shabat system (1.46)-(1.67) on the interval
[xl, xr]. We define the right transmission coefficient tl(k) the following quantity

tl(k) =
ν2(xr, k)

ν2(xl, k)
. (1.80)

Note that the notation tl(k) underlines the presence of the source at the left end.

The transmission coefficient represents physically the ratio between the transmit-
ted wave over the incident wave.

Remark 14. In the case of lossless uniform transmission line, the matched load bound-
ary condition is equivalent to choose the parameter ρr(k) = 0; the solution of Riccati
equation (1.69) is the trivial one rl(x, k) ≡ 0. In particular the reflection coefficient
rl(k) is constantly equal to 0 and this situation corresponds to the case where the
entire signal is transmitted and nothing is reflected.

Right reflection coefficient and left transmission coefficient

Let’s consider the Zakharov-Shabat system (1.46) with the boundary conditions (1.68).
In this case, we are injecting a test signal through an external source on the right end
x = xr.
The existence and the uniqueness of the solution can be proved with the same ar-
guments of Proposition 1: the invariant imbedding method gives us an algorithm to
construct the solution of this system through the following Riccati equation{

∂xrr(x, k) = q+(x)r2
r(x, k)− 2(qd(x)− ik)rr(x, k)− q−(x),

rr(xl, k) = ρl(k).
(1.81)

Let (ν1(x, k), ν2(x, k)) be the unique solution of (1.46), (1.68). We are able to define
the right reflection coefficient and the left transmission coefficient.

Definition 9. We define the right reflection coefficient rr(k) as

rr(k) = rr(xr, k), (1.82)



In analogous way, the left transmission coefficient tr(k) is given by

tr(k) =
ν1(xl, k)

ν1(xr, k)
. (1.83)

Again we remark the index r denotes the position of the source at the right end.

In conclusion for the Zakharov-Shabat system defined on [xr, xl] we have defined
the scattering matrix S(k) as

S(k) :=

(
s11 s12

s21 s22

)
=

(
rl(k) tr(k)

tl(k) rr(k)

)
. (1.84)

For each interval [xl, xr], we have the solution of (1.46), (1.66). The associated scat-
tering matrix S(k) = S([xl, xr]; k) verifies[

ν1(xl)

ν2(xr)

]
= S([xr, xl]; k)

[
ν2(xl)

ν1(xr)

]

Remark 15. The scattering matrix depends on the particular choice of the decompo-
sition of the waves. For example, for the uniform transmission line, there is another
approach to decompose V and I into forward and backward waves different from
(1.45). We illustrate the decomposition presented in [52]. Let Zc(k) be the constant
characteristic impedance and let γ be the propagation constant defined as

γ(k) =
√

(R + ikL)(G+ ikC)/LC.

The voltage and current can be written as a sum of forward and reflected traveling
waves

V (k, x) = V +
0 (k)e−γ(k)x + V −0 (k)eγ(k)x,

I(k, x) =
I+

0 (k)

Zc(k)
e−γ(k)x − I−0 (k)

Zc(k)
eγ(k)x,

The total voltage and current are written as

V (k, x) = V +(k, x) + V −(k, x),

I(k, x) = I+(k, x)− I−(k, x).



The normalized voltage wave amplitudes can be written as V +(k, x) = V (x,k)+Zc(k)I(k,x)

2
√
<Zc(k)

,

V −(k, x) = V (x,k)−Zc(k)I(k,x)

2
√
<Zc(k)

.
(1.85)

xr

V −(xr)

V +(xl)

V −(xl)

Zr(k)
Zs(k)

V +(xl)

Vs(k)

xl

Figure 1.12: 2-port network with a source Vs(k)

Associated to this decomposition, we define the Š(k) scattering matrix as following
: [

V −(k, xl)

V −(k, xr)

]
=

(
Š11(k) Š12(k)

Š21(k) Š22(k)

)[
V +(k, xl)

V +(k, xr)

]
.

In the standard approach [51], the traveling waves and the associated reflection
coefficients and scattering matrices are used. The reflection coefficient is given by

Řl(k) = Š11(k) +
Š12(k)Š21(k)ρr(k)

1− Š22(k)ρr(k)
.

It is instructive to see the differences in the expression of the power gain for the
two approaches. For the traveling waves, the transducer power gain GT is given by

GT =
|Š21(k)|2(1− |ρl(k)|2)(1− |ρr(k)|2)

|1− ρl(k)Řl(k)|2|1− Š22(k)ρr(k)|2
.

For the Zakharov-Shabat approach, the expression of GT reduces to

GT = |s21|2.

Different wave decompositions yield to different scattering matrices. The scatter-



ing matrices Š(k) are used for representing the properties of microwave components
not taking into account the terminal impedances. In general, these scattering matri-
ces are not directly related to power. The characteristic impedance Zc is used as a
normalization factor in (1.85) and the scattering matrices describe the propagation of
power if all the transmission lines are terminated with matched loads, i.e. ρl = ρr = 0.
The Zakharov-Shabat approach gives a more natural expression, as the scattering ma-
trix element s21(k) (or equivalently tl(k)) is expected to describe the propagation of
power from the node xl to the node xr.

Remark 16. In Section 1.2, we have seen that the symmetry of T -model implies a
symmetry of the s-parameters ((1.22) and (1.23)).
Despite the fact that the T -model is the elementary component for the transmission
line model, heterogeneities of the line parameters break the symmetry of the scattering
matrix S(k): reflectometry experiments at two ends yield to two different values of
the reflection coefficients. In general, the right reflection coefficient differs from the
left one, so the two measures give us different information.

1.4.2 Scattering data for an infinite line

In practice setting the matched loads at both extremities is equivalent to emulate the
electrical propagation through an infinite line. The mathematical model of electri-
cal propagation is represented by the Zakharov-Shabat system (1.46) defined on the
interval −∞ < x <∞ with the potentials q+, q− and qd with compact support [xl, xr].

Here we want to extend the definition of the scattering data to the case where the
potentials do not have a compact support. It can be shown that this new definition is
equivalent to the definition given in the previous subsection. We consider the matrix
form of the Zakharov-Shabat system

d

dx
Y (x, k) + ik

(
1 0

0 −1

)
Y (x, k) =

(
+qd −q+

−q− −qd

)
Y (x, k) x ∈ R, (1.86)

and we will assume that the potentials q+(x), q−(x) and qd(x) are absolutely integrable
on the interval (−∞,∞).

The main problem is to find an equivalent expression for the boundary conditions
(1.66) at the infinities ±∞. As the potentials q = (q+, q−, qd) decay at the infinities,
a solution of (1.86) behaves as a linear combination of exponential functions eikx and



e−ikx.
In order to understand a scattering solution for (1.86), we need to introduce the Jost
solutions for the Zakharov-Shabat system.

Definition 10. Let’s assume that the potentials q+(x),q−(x) and qd(x) belong to
L1(R). We define as Jost solutions Fl(x, k) = (f1l(x, k), f2l(x, k))tr and Fr(x, k) =

(f1r(x, k), f2r(x, k))tr, the solutions of (1.86) verifying the following asymptotic bound-
ary conditions

lim
x→+∞

Fl(x, k)e−ikx =

(
0

1

)
, (1.87)

lim
x→+∞

F J
l (x, k)e+ikx =

(
1

0

)
, (1.88)

lim
x→−∞

Fr(x, k)e+ikx =

(
1

0

)
, (1.89)

lim
x→−∞

F J
r (x, k)e−ikx =

(
0

−1

)
. (1.90)

Note that F J =

(
0 1

−1 0

)
F := JF .

The Jost solutions are well-posed and they are the solutions of Volterra type equations.
For example, using (1.86) and (1.87), we obtain the Volterra equations for Fl(x, k):

f1l(x, k) = −
∫ ∞
x

e−ik(x−s)[qd(s)f1l(s, k)− q+(s)f2l(s, k)]ds, (1.91)

f2l(x, k) = eikx +

∫ ∞
x

eik(x−s)[qd(s)f2l(s, k)− q−(s)f1l(s, k)]ds.

Since the potentials belong to L1(R), for each k ∈ R it follows by usual iterative
techniques that these Volterra equations are well-posed and hence that the Jost so-
lution Fl(x, k) exists uniquely (see [16], Chapter 1.4). For the other Jost solutions
F J
l (x, k), Fr(x, k), F J

r (x, k), we apply the same arguments.

Remark 17. The integral formulation (1.91) can be adapted also for the case of the
segment [xl, xr]. The solution of the auxiliary problem (1.72), verifying the boundary



conditions µ1(xr, k) = 0, µ2(xr, k) = 1, can be written for x ∈ [xl, xr] as

µ1(x, k) = −
∫ xr

x

e−ik(x−s)[qd(s)µ1(s, k)− q+(s)µ2(s, k)]ds,

µ2(x, k) = eik(x−xr) +

∫ xr

x

eik(x−s)[qd(s)µ2(s, k)− q−(s)µ1(s, k)]ds.

The auxiliary problem (1.72) on the interval [xl, xr] can be extended easily to the case
of the half line (∞, xr]. Proposition 1 and Lemma 1 for the half line are still valid:
the associated Riccati equation (1.69) defined on (∞, xr] has a global solution and
moreover it verifies

lim
x→−∞

rl(x, k)e2ikx = 1.

It is well-known that the Jost solutions Fl(x, k), F J
l (x, k) are linearly independent

(as well as Fr(x, k), F J
r (x, k)). It is customary to define al(k), ar(k),bl(k) and br(k) as

the coefficients relating these two sets of linearly independent solutions:

Fr(x, k) = bl(k)F J
l (x, k) + al(k)Fl(x, k), (1.92)

Fl(x, k) = br(k)F J
r (x, k) + ar(k)Fr(x, k). (1.93)

It can be shown that the coefficients al(k), ar(k), bl(k), br(k) are given by the Wron-
skians of the solutions Fl(x, k), F J

l (x, k), Fr(x, k), F J
r (x, k) .

We are ready to define the scattering data for the Zakharov-Shabat system on the
line.

Definition 11. The reflection coefficients to the right and to the left rr(k) and rl(k)

and the related transmission coefficients tr(k) and tl(k) are defined for k ∈ R by

rl(k) :=
al(k)

bl(k)
, rr(k) :=

ar(k)

br(k)
, tl(k) :=

1

bl(k)
, tr(k) :=

1

br(k)
. (1.94)

Abusing the notation, we use the same symbols for the scattering data defined on
the interval and for the scattering data defined on the line.

Lossless case

With the same approach, we can define the scattering data for the Schrödinger equation
(1.62). We assume that the potential q(x) is real-valued function belonging to the space



L1
1(R) = {q ∈ L1(R) :

∫
R
(1 + |x|)|q(x)|dx <∞}, (1.95)

then the Jost solutions fl(x, k) and fr(x, k) can be seen as the generalized eigen-
solutions of operator H defined

H := −d2/dx2 + q(x), (1.96)

associated to the eigenvalues k2 and behaving

lim
x→+∞

fl(x, k)e−ikx = 1, (1.97)

lim
x→−∞

fr(x, k)e+ikx = 1. (1.98)

It is well known that fl(x, k) and fr(x, k) are analytic in k in the open upper
complex half plane as well fl(x,−k) and fr(x,−k) are analytic in the lower half plane.
Moreover for each k ∈ R− {0} the generalized eigen-solutions fl(x, k) and , fl(x,−k)

are linearly independent (as well as , fr(x, k) and fr(x,−k)), the space of the solution
to the Schrödinger equation being of dimension two. We can obtain the functions
ar,l(k) and br,l(k) such that for all x ∈ R

fr(x, k) = al(k)fl(x, k) + bl(k)fl(x,−k),

fl(x, k) = ar(k)fr(x, k) + br(k)fr(x,−k).

It can be proved (see [35]) that

(al(k)) = al(−k), (ar(k)) = ar(−k), br(k) = bl(k), (bl(k)) = bl(−k). (1.99)

Using the Jost solutions , we define the scattering solution y(x, k) by the boundary
conditions at ±∞

y(x, k) ∼ tl(k)eikx x→ +∞,

y(x, k) ∼ rl(k)e−ikx + eikx x→ −∞,



The solution y(x, k) describes a plane wave eikx sent from the left −∞, transmitting

tl(k)eikx

−∞ ∞

q(x)

eikx

rl(k)e−ikx

Figure 1.13: Schematic figure for the scattering data

tl(k)eikx to +∞ and reflecting rl(k)e−ikx to −∞.
Using the coefficients al(k), ar(k), bl(k) and br(k). one can define eventually the scat-
tering data for the Schrödinger equation.

Definition 12. The left and right reflection coefficients rl,r(k) and the associated
transmission coefficients tr,l(k) are defined as follows

tr(k) =
1

br(k)
, tl(k) =

1

bl(k)
, rr(k) =

ar(k)

br(k)
, rl(k) =

al(k)

bl(k)
.

Definition 13. The matrix

S(k) =

(
rl(k) tr(k)

tl(k) rr(k)

)
∀k ∈ R∗ (1.100)

is called the scattering matrix for the potential q.

The direct problem of scattering theory is to determine the properties of the scat-
tering matrix S(k) from those of a potential q. A classical result is that S(k) is unitary.

Remark 18. As a direct consequences of (1.99), we have that tr(k) = tl(k). The
transmission coefficients calculated at both ends are equivalent. In the lossless case,
the property of reciprocal scattering matrix for an elementary components (1.22) is
extended to the whole infinite line.

1.4.3 Scattering data for a network

Here we will give the definitions of scattering data on network.



In order to introduce the scattering data for a network, we need to understand the
nature of the network: the first step is to divide the network Γ into the external part
Γext and the internal part Γint, also called the compact part. The external part Γext

represents the set of the electric wires where we can inject the test signals. It plays a
crucial role for the dimension of the scattering matrix: from j-th eternal edges we can
inject the signal that will determine the j-th reflection coefficient and N transmission
coefficients, where N + 1 is the number of the external wires.
We use the formulation described in Section 1.3.2. Let Eext = {e0, e1, . . . , eN} be the
set of the external edges with the following parametrization:

• The branch e0 is parametrized as [xl0 , xr0 ], where xl0 corresponds to the minimal
element v0.

• The branch ej with j 6= 0 is parametrized as [xlj , xrj ], where xrj corresponds to
the external edge.

The Zakharov-Shabat system is defined on each branch of the network as

d

dx
Yj(x, k) + ikσ3Yj(x, k) = Qj(x)Yj(x, k), on ej, ∀ej ∈ E , (1.101)

and the boundary conditions for the internal vertices v ∈ Vint are defined by (1.53).
We will give the definition of the scattering data in the case where the external part
Γext is made by finite segment and in the case where Γext is non-compact, i.e. all
external branches are semi-infinite.

Finite external wires

When the network is compact, the Zakharov-Shabat system (1.101)-(1.53) needs also
boundary conditions for the external vertices

ν1j(xrj , k)− ρj(k)ν2j(xrj , k) = (1− ρj(k))νj(k) ∀j = 1, . . . , N (1.102)

ν20(xl0 , k)− ρ0(k)ν10(xl0 , k) = (1− ρ0(k))ν0(k). .

For the scattering data, we need to look at the solutions of the different scattering
problems. In the case of a segment, we are able to define two reflection coefficients
associated to two different experiments.



When we are dealing with networks, the number of the reflection coefficients is
related to the number of the external wires. Imposing only one source at the time
we are able to define the corresponding reflection coefficient. Let us consider the
Zakharov-Shabat system on Γ with the boundary conditions (1.53) and

ν1j(xrj , k)− ρj(k)ν2j(xrj , k) = 0, ∀j = 1, . . . , N (1.103)

ν20(xl0 , k) = ν0(k).

then we define the scattering data as follows:

Definition 14. The reflection coefficient r00(k) associated to the experiment (1.103)
is defined as

r00(k) =
ν10(xl0 , k)

ν20(xl0 , k)
, (1.104)

while the transmission coefficients are given, for j = 1, . . . , N , by

tj0(k) =
ν2j(xrj , k)

ν20(xl0 , k)
. (1.105)

As long as the source generator ν0(k) is different from zero, (1.104) and (1.105) are
well-defined.

The other reflection coefficients are associated to the experiments where a source
νj(k) is placed at the terminal node of the branch ej with j 6= 0.

ν1j(xrj , k) = νj(k), (1.106)

ν1i(xri , k)− ρi(k)ν2i(xri , k) = 0, ∀i = 1, . . . , N, i 6= j (1.107)

ν20(xl0 , k)− ρ0(k)ν10(xl0 , k) = 0. (1.108)

We have the following definitions:

Definition 15. The j-th reflection coefficient rjj(k) associated to the boundary con-
ditions (1.106) is given by

rjj(k) =
ν2j(xrj , k)

ν1j(xrj , k)
, j = 1, . . . , N



and the transmission coefficients are

tij(k) =
ν1i(xri , k)

ν1j(xrj , k)
i 6= j, i = 1, . . . , N

and
t0j(k) =

ν10(xl0 , k)

ν1j(xrj , k)
.

We are able to give the definition of the scattering matrix.

Definition 16. Let Γ be a network as above, the matrix N + 1×N + 1

S(k) :=


r0 0(k) t0 1(k) . . . t0 N(k)

t1 0(k) r1 1(k) . . . t1 N(k)

. . . . . . . . . . . .

tN 0(k) . . . tN N−1(k) rN N(k)


is called the scattering matrix.

Remark 19. The definitions of the scattering elements as the reflection and the trans-
mission coefficients are directly related to the existence and the uniqueness of the
solution for the Zakharov-Shabat equations (1.101)-(1.102). This will be proved for
the general case in Chapter 4.
As for the case of line, the proof will use the invariant imbedding method. A Riccati
equation defined on the network Γ will decouple the system (1.101). It will show that
the reflection coefficient rjj(k) is the value at the terminal end x = xrj (for r00(k) the
value at x = xl0) of the solution r(Γ, x, k) of the Riccati equation defined on network.
The chosen parametrization of Γ implies an analogy with the reflection coefficients on
the segment: r00(k) is the left reflection coefficient of the object Γ, while the set of
{rjj(k)}Nj=1 represents the right reflection coefficients.

Infinite external wires

As for the line, we can define the scattering data on non-compact graphs: the external
edges are assumed to be of infinite length. Since the experiments (1.103) and (1.106)
require the matched load at the source, it comes natural to consider the external edge
ej as a semi-infinite line.
In particular e0 is parametrized (−∞, xr0 ], while the rest of the external branches are
oriented toward the increasing x, i.e. [xlj ,∞).



The scattering data are, hence, related to the scattering solutions. There are
N +1 scattering solutions {Yj(x, k)}Nj=0 = {{Y j

l (x, k)}Nl=0}Nj=0 of the Zakharov-Shabat
system on Γ satisfying (1.101)-(1.53). The asymptotic behaviors for the solutions
{Yj(x, k)}Nj=1 are

Y j
j (x, k) = rjj(k)

(
0

1

)
eikx +

(
1

0

)
e−ikx, as x→ +∞

Y j
l (x, k) = tjl(k)

(
0

1

)
eikx, as x→∞ for l 6= j, l = 1, . . . , N

Y j
0 (x, k) = tj0(k)

(
1

0

)
e−ikx, as x→ −∞

(1.109)
while for the scattering solution Y0(x, k), we have

Y 0
0 (x, k) = r00(k)

(
1

0

)
e−ikx +

(
0

1

)
eikx, as x→ −∞

Y 0
j (x, k) = t0j(k)

(
0

1

)
eikx, as x→∞ for j = 1, . . . , N.

The existence and uniqueness of the scattering solutions will be proved for the
lossless case in the third chapter.

In conclusion we see that the size of the scattering matrix is determined by the
number of external channels in the graph. The scattering matrix depends on the
structure of the graph, on the boundary conditions and on the potentials appearing
in the Zakharov-Shabat system.

1.4.4 Fault detection as inverse scattering problem

In this section, we explain the connection between the reflection coefficient calculated
by engineers and the mathematical object presented in the previous section. In the
paper [71] and [62], Zhang, Sorine and their students have filled the gap between the
inverse scattering transform and its application to electric transmission line fault diag-
nosis. Their work clarifies and completes the computation of the theoretic scattering
data required by the inverse scattering transform from the practically measured engi-
neering scattering data.



We gave two different definitions for the scattering data and now we show their
equivalence. We introduced the scattering data for the interval because it represents
the engineering scattering data, denoted here by rle , rre and tle . The main discrep-
ancy between the two definitions is related to the fact that the engineering scattering
data {rle , rre , tle} are defined at the ends of a finite length transmission line whereas
the theoretic scattering data rl, rr and t are related to the limiting behaviors of Jost
solutions.

To solve this problem, Zhang has shown that the finite length transmission line can
be extended with arbitrarily long extra line segments in a way such that the voltage
and the current remain unchanged in the original part of the transmission line. Let us
consider the transmission line equations after the Liouville transformation (1.44) on
the interval [xl, xr] with the generic boundary conditions (1.34) (ω = k){

V (k, xl) + Zs(k)I(k, xl) = Vs(k),

V (k, xr)− Zr(k)I(k, xr) = 0.

Vs(k)

Zs

R

G

L

C Zr

Figure 1.14: Transmission line model with one source generator

Lemma 2. As shown in the Figure 1.14 , we can extend the circuit as follows:

• Insert a uniform lossless transmission line of length a with R(x) = G(x) = 0

and the characteristic impedance Z0(xl) = Zl between the source and the left end
of the original circuit.

• Insert a uniform lossless transmission line of length b with R(x) = G(x) = 0 and
the characteristic impedance Z0(xr) = Zr between the right end of the original
circuit and the load.



• Add a phase shift −ka to the source voltage.

Then for any positive values of a and b, this extended circuits is equivalent to the
original one in the sense that they have the same values of V (k, x) and I(k, x) for all
z ∈ [xl, xr].

For arbitrary positive values a and b, the quantities V (k, x), I(k, x), and Z0(x)

of the extended circuit are well-defined for all x ∈ (−a, l + b). The solution of the
Zakharov-Shabat equation (1.46) is also valid for x ∈ R, when a and b tend to +∞.
Hence we have the following result:

Proposition 2. We have the following relationship between the engineering scattering
data and theoretic scattering data of the Zakharov-Shabat system:

rl(k) = rle(k), t(k) = te(k)e−ikl, rr(k) = rree
−2ikl. (1.110)

The proofs of Lemma 2 and Proposition 2 can be found in [62].

Remark 20. It is important to remark that the latter results can be obtain directly
from the Riccati equation (1.69). For a uniform transmission line (1.69) is reduced to
the following equation

∂xrl(x, k) = −2ikrl(x, k).

So the reflection coefficients evolve on the uniform transmission line turning only the
phase.

This manuscript has for goal to propose fault detection methods based on reflec-
tometry experiments. Hence the problem is to retrieve as much information as possible
on an electrical network from the measurements of the scattering data. A natural ques-
tion arises here: what kind of faults are we able to detect? We have seen that faults
are identified as variations of lines parameters and the measurements are equivalent
to the knowledge of reflection coefficients.

In the simple case of the line, for example, Furse et al [21] propose a method to
retrieve the position of possible hard faults on a uniform transmission line. Using
the Phase Detection Frequency Domain Reflectometry (PDFDR) (see Section 1.2.3)
on a uniform transmission line where the load is assumed to be either short, open or
resistive, the reflectometry experiment yields to the measure of the continuous voltage



at the mixer

Vdc(k) = |Aeik` +Be−ik`|2 = A+ A

(
B

A

)2

+ 2A

(
B

A

)
cos(2k`)

where A is the amplitude of the incident voltage,
(
B
A

)
the reflection coefficient and `

is the position of the hard fault. Through the Fourier analysis, the authors are able
to calculate `, knowing the function Vdc(k).

The inverse scattering problems defined on graphs form a wider class with respect
to inverse scattering problems for the single transmission line: the scattering matrix
depends also on the structure of the graph and the boundary conditions. Hence the
scattering data contains theoretically informations about the geometry and the topol-
ogy of the network.

Due to the nature of the experiments, we have access only to a part of the scattering
data: the transmission coefficients are not taken into account and the knowledge of
the reflection coefficients are restrain to a limited number of plug-in ports.

In this thesis, we restrict ourself to the case where there is only one plug-in port
for the reflectometry measurements and hence we dispose of one reflection coefficient.
We will investigate what information can be retrieved from the measurement of such
reflection coefficient.

1.5 Outline of the work

This thesis is devoted to explore the relationship between the reflection coefficients
and the parameters of the network.

1.5.1 Inverse Scattering on a star-shaped network for LC trans-

mission line

Having in mind the application of on-board diagnosis and wire fault detection for a
lossless network, we consider some inverse scattering problems for Schrödinger opera-
tors over star-shaped graphs.

We are interested in locating hard faults and soft faults: the first type is repre-
sented by the lengths of the branches, while soft faults are described by the hetero-
geneities of q(x) (see (1.63)) along the branches. Indeed, in the perfect situation, the



parameters L(x) and C(x) are constant on the network and therefore the potential
q(x) = (L/C)1/4 d

dx
(C/L)1/4 is uniformly zero on the whole network.

We consider the case of star-shaped network. This particular choice implies that
the set of internal vertices Vint is reduced just to one node. We also assume that there
are no failures in the connector at the central node. This is equivalent to assume the
continuity of the characteristic impedance Zc(x) =

√
L(x)/C(x) at the central node.

We restrict ourselves to the case of minimal experimental setup consisting in measur-

Figure 1.15: Star-shaped network

ing, at most, two reflection coefficients corresponding to two different experiments. We
consider the case where the reflectometry experiment is based on a far-field method
consisting in adding a uniform infinite wire joined at the central node of the network.
The first result concerns the detection and the localization of hard faults on the lossless
network. In terms of the Schrödinger operator, we are exploring the identifiability of
the geometry of this star-shaped graph: by studying the asymptotic behavior of only
one reflection coefficient in the high-frequency limit, we will be able to recover some
geometrical information such as the number of edges and their lengths.
Next, we study the potential identification problem by inverse scattering, noting that
the potentials represent the inhomogeneities due to the soft faults in the network. The
main result states that, under some assumptions on the geometry of the graph, the
measurement of two reflection coefficients, associated to two different sets of boundary
conditions at the external vertices of the tree, determines uniquely the potentials; it
can be seen as a generalization of the theorem of the two boundary spectra on an
interval.



1.5.2 Inverse Scattering on a star-shaped network for RLGC

transmission line

We generalize some results obtained for the lossless case to the general lossy case on
the star-shaped network.

We are interested in the detection and the eventual localization of the hard and
soft faults. The hard faults, as for the Schrödinger case, are represented by the lengths
of the branches while the soft faults are described as variations of the three potentials
q = ⊗Nj=1(qj,+, qj,−, qj,d).

As in the lossless case, we are considering the minimal experimental setup for a
star-shaped network. Only one source generator is connected to the network and we
have access to the measurement of one reflection coefficient. First, we focus on the
well-posedness of the direct scattering problem for the Zakharov-Shabat operator on a
star-shaped network: the reflection coefficient is uniquely determined by the potentials
q = ⊗Nj=1(qj,+, qj,−, qj,d).

As a first result, we show the identification of hard faults. We give a constructive
algorithm to retrieve the lengths of the branches. As in the lossless case, this result
uses the asymptotic behavior of the reflection coefficient.

We investigate some inverse scattering problems concerning the variations of the
potentials. The main result states that, the knowledge of one reflection coefficient
allows to identify the following quantities:∫ lj

0

qd,j(x)dx =

∫ lj

0

Rj

Lj
(x) +

Gj

Cj
(x)dx.

This quantity is called the loss line factor.
The last result concerns a particular case of a uniform lossy network. Having in mind a
possible application for the train railway’s maintenance, we prove, under the assump-
tion of the weak influence of G/C on the electrical transmission, the identifiability of
these two quantities

Rj

Lj
and

Gj

Cj
.

from the measurement of a reflection coefficient.



Chapter 2

Elements of the inverse scattering
theory for 1− d Schrödinger and
Zakharov-Shabat equations

This chapter is divided in two sections. In Section 2.1, we illustrate the state of art for
the 1− d time independent Schrödinger equation, while in Section 2.2 we provide the
main results for some inverse scattering problems for the Zakharov-Shabat system.

2.1 Inverse scattering theory for Schrödinger equa-

tion

According to Reed and Simon [55], scattering theory is the study of an interacting
system on a time and distance scale which is large compared to the scale of the actual
interaction. In this section we focus the mathematical aspects of scattering theory for
the Schrödinger operator

− d2

dx2
+ q(x).

We exhibit the main results of the huge literature of the inverse scattering on Schrödinger
operator. First we recall an important result by Deift and Trubowitz exploiting the
dependence on the potential q of the left and right coefficients. The inverse problem
can be divided in three parts: the uniqueness of the potential for a given reflection
coefficient, the algorithm to construct the potential q from the scattering data and the
characterization of the class of the reflection coefficients.
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The last part of this section is devoted to some inverse problems on network. The
inverse scattering theory on graphs becomes much more complicated and the number
of inverse problems increases. The scattering data contains also informations about
the topology and the geometry of the network. As one can imagine, the results on
this direction are relatively few and they involve only networks without cycles. Our
results concern the simplest network without cycles: the star-shaped graph.

2.1.1 Inverse scattering on a line

Here we present the result by Deift and Trubowizt [17]. We give the solution to the
inverse scattering problem for the one-dimensional Schrödinger operator on the line.

Let H be a self-adjoint Schrödinger operator (1.96) with a real potential q(x) in

L1
2 = {q(x) :

∫ ∞
−∞
|q(x)|(1 + x2)dx <∞}. (2.1)

H admits an absolutely continuos spectrum [0,∞) and a finite number of bound states
−β2

n < . . . < −β2
1 below the continuum.

Using the Jost solution for the Schödinger operator (1.97),(1.98), it is possible to
define the scattering matrix S(k)(see (1.100)). The inverse scattering problem is to
retrieve the potential q from the knowledge of the scattering matrix S(k). It is a well
known result that the knowledge of one reflection coefficient rl(k) (or rr(k)) and the
bound states −β2

n < . . . < −β2
1 determine uniquely the scattering matrix S(k) (see,

for example, the Aktosun’s survey in [47]).

The inverse problem of scattering theory is to determine the dependence of q on
the reflection coefficients rr(k) and rr(k). There are three important questions to be
answered:

I UNIQUENESS. Do the bound states and a reflection coefficient determine uniquely
the potential q?

II RECONSTRUCTION. To find an algorithm for recovering the potential q from
the bound states and a reflection coefficient.



III CHARACTERIZATION. Give necessary and sufficient conditions for a matrix(
a(k) b(k)

c(k) d(k)

)

to be the scattering matrix of a potential q in L1
2.

Remark 21. Note that the scattering matrix S(k) differs from the original notation.
Deift and Trubowitz define the scattering matrix as follows

S(k) =

(
tr(k) rl(k)

rr(k) tl(k)

)

Uniqueness

The knowledge of one reflection coefficient and the bound states isn’t enough to re-
trieve the potential q. In the simplest case, if two potential q and q′ have no bound
states and give rise to the same reflection coefficients r(k) = r′(k), then they are iden-
tical [15]. If the operator H has n bound states −β2

n < . . . < −β2
1 with associated

eigenfunctions f1(x, iβ1), . . . , fn(x, iβn), there is an n-dimensional family of potentials
with the same bound states and reflection coefficient r(k). In order to ensure the
complete identification of the potential, we need to know also the norming constants

cj =

(∫ ∞
−∞

f 2(x, iβi)dx

)−1

, j = 1, . . . , n. (2.2)

Eventually a potential is determined by its bound states, norming constants and re-
flection coefficient [19].

Recontruction

This inverse problem was solved by Faddeev [18]. Let q(x) ∈ L1
2 and let r(k) be the

reflection coefficient. Let consider the following transformation

F (y) =
1

π

∫ ∞
−∞

r(k)e2ikydk (2.3)



and let’s define the following quantity

Ω(y) = F (y) + 2
n∑
j=1

cje
−2βjy (2.4)

where cj are the norming constants defined in (2.2) and −βj the bound states.

Here, we apply the function Ω to define a new auxiliary function B(x, y).

Theorem 1 ( Theorem 4.4.2 in [35]). The integral equation

B(x, y) + Ω(x+ y) +

∫ ∞
0

Ω(x+ y + t)B(x, t)dt = 0 ∀y ≥ 0 (2.5)

admits a unique solution B(x, ·) ∈ L2 for all x ∈ R. This integral equation is often
called Gelfand-Levitan-Marchenko equation. Moreover, its solution satisfies q(x) =

−∂xB(x, 0+).

Deift and Trubowitz have proved another method to retrieve the potential called
the trace formula.
For simplicity’s sake, we show the algorithm for the case with potential without any
bound states.
The first step is to write the trace formula

q(x) =
2i

π

∫ ∞
−∞

kr(k)f 2(x, k)dk, (2.6)

the potential q(x) is function of r(k) and the unknown variable f .
Now we look at the Schrödinger equation

−f ′′ + qf = k2f

with two unknown variables f and q. The strategy is to use the trace formula (2.6)
to obtain an equation for f alone and solve it. It is convenient to use the auxiliary
function m(x, k) defined as

m(x, k) = e−ikxf(x, k).



The Schrödinger equation becomes

d2

dx2
m(x, k) + 2ik

d

dx
m(x, k) = q(x)m(x, k), (2.7)

where q(x) is expressed in terms of m through the trace formula

q(x) =
2i

π

∫ ∞
−∞

kr(k)e2ikxm2(x, k)dk.

In conclusion, to recover q(x) from the reflection coefficient r, we need to solve (2.7)
with initial values at ∞

lim
x→∞

m(x, k) = 1,

lim
x→∞

m′(x, k) = 0.

Characterization

The problem of the characterization of a scattering matrix S(k) has been solved by
Faddeev [18] and completed by Deift and Trubowitz [17].
One starts with the Marchenko equation (2.5) with r, {βi}, {cj} and hence Ω given
by (2.4). One shows that the equation has a solution B(x, ·) for all x ∈ R and then
setting q(x) := ∂xB(x, 0), one show that q(x) is a potential in certain class with
reflection coefficient r(k), bound states {−β2

j } and norming constants {cj}.
The more general inverse characterization problem is given in terms of scattering data

S(k) = {rl(k), rr(k), tl(k), tr(k)}

where rl(k) and rr(k) represent respectively the reflection coefficients from the right
and from the left (the same for the transmission coefficient tl(k) and tr(k)). It can be
shown that one can obtain the scattering data from the reflection coefficient r(k), the
bound states and the norming constants remaining in a certain class of potential.
The theorem can be stated as follows:



Theorem 2 (Deift and Trubowizt [17]). A matrix(
rl(k) tr(k)

tl(k) rr(k)

)
∀k ∈ R

is a scattering matrix for a real piecewise absolutely continuous potential q ∈ L1
2 with

its derivative in L1 and without bound states if and only if

(i) (Symmetry) tl(k) = tr(k) = t(k).

(ii) (Unitary) |t(k)|2 + |rl(k)|2 = |t(k)|2 + |rr(k)|2 = 1 and

rl(k)t(k) + rr(k)t(k) = 0.

(iii) (Analycity) t(k) is analytic in the open upper half-plane and continuous down to
the axis.

(iv) (Asymptotics)

t(k) = 1 +O
(

1

|k|

)
, =k ≥ 0,

ri(k) = O
(

1

k

)
, i = l, r for k ∈ R.

(v) (Rate at k = 0)|t(k) > 0|, =k ≥ 0, k 6= 0 and either

(1) 0 < c < |t(k)| for all =k ≥ 0

(2) t(k) = ṫ(0)k + o(k) with ṫ(0) 6= 0, =k ≥ 0,
1 + ri(k) = ρik + o(k), i = r, l, k ∈ R with ρi real.

(vi) (Reality) ri(k) = ri(−k) ti(k) = ti(−k) for i = r, l,

(vii) The functions Fi(y) defined as

Fi(y) =
1

π

∫
R
ri(k)e2ikydk i = r, l,

are absolutely continuous with∫ a

−∞
| d
dt
Fi(t)|(1 + t2)dt ≤ a <∞ i = r, l,



for all a ∈ R.

We have shown how the potential q is related to the scattering data in the case of
the line.

2.1.2 Inverse scattering on Network

The scattering problem on branching graphs attracted attention of many scientists and
recently it had been becoming more popular since it has different possible applications.
The problem can be considered as a generalization of the classical inverse scattering
problem for the Schrödinger operator on the line. It appears that this problem is much
more complicated than the inverse scattering problem on a simple line. Therefore one
can expect that the inverse scattering problem on non compact graphs has several new
features compared with the inverse problem on the line.

We have shown the equivalence between the lossless transmission line equations
and the Schrödinger equation in the case of a line and a network, but it is useful to
know that the equation

− d

dx
y(x, k) + q(x)y(x, k) = k2y(x, k) x ∈ [xl, xr], (2.8)

restrained on a segment with the generic boundary conditions

α1y(xr) + α2y
′(xr) = 0, (2.9)

β1y(xl) + β2y
′(xl) = 0, (2.10)

with α1, α2, β1, β2 ∈ R, is also called Sturm-Liouville equation. Indeed, given a loss-
less transmission line network, the restriction of the Schrödinger operator to a single
branch becomes a "Sturm-Liouville" equation.
Finding the value of k for which there exists a non-trivial solution of (2.8) satisfying
the boundary condition (2.9) and (2.10) is part of the "Sturm-Liouville" boundary
value problem. The inverse Sturm-Liouville boundary problem consists in retrieving
the potential q from the set of k’s such that there exists a non-trivial solution of (2.8).

The rather extensive literature concerning the “inverse scattering problem” and the
“inverse Sturm-Liouville problem” on graphs have mostly followed separate pathways
except for a very few results [25, 24, 2].



The first work for the scattering theory on network has been written by Gerasimenko
and Pavlov in [24] and [25] and it contains the first mathematically rigorous definition
of the Schrödinger operator on branching graphs. In [25] the direct scattering problem
for a Schrödinger operator on a non-compact graph was posed and solved. It shows that
the specification of a non-compact graph, the potentials on its rays and the boundary
conditions at the vertices makes possible to determine a self-adjoint operator, which
Gerasimenko defines as the "Schrödinger operator", together with the scattering data.
In [24], Gerasimenko tries to solve the simplest inverse problem: from some set of
scattering data for a given non-compact graph, he can find the potentials on its rays.
For a non-compact star-shaped graphs, the knowledge of each reflection coefficient
rj(k) associated to the j-th ray and the amplitudes of the eigenfunctions corresponding
to the eigenvalues allow to retrieve the potentials qj(x) on the rays of given graph.
In the case where the non-compact graph has a non-degenerate compact part, the
procedure for recovering the potentials from the scattering data decomposes into two
steps. The first is the recovery of the potentials on the infinite rays that emanate form
the vertices of the graph. The next stage is to recover the potentials on the compact
part of the graph (without cycles) and this can be done through the knowledge of the
two spectra associated to the Sturm-Liouville boundary problem on each segment for
the compact parts.

Inverse scattering problem on non-compact graphs

A first set of results [44] and [43] deals with inverse scattering problems over graphs.
Harmer studies the matrix Schrödinger operator with self-adjoint boundary conditions
and he presents a solution of the inverse problem using a Marchenko type equation.
The motivation for studying the matrix Schrödinger operator is that, in the case of
diagonal potentials, it may be identified with the Schrödinger operator on a non-
compact star-shaped graph. Although these are really two different operators, for
the purposes of the inverse problem they may be identified: each component of the
vector on which the matrix Schrödinger operator acts is identified with the value of
the function on of the rays of the graph.

The inverse scattering problem investigated in [44] is to recover the potentials on
each branch through the knowledge of the reflection coefficients rj(k) associated to
each branch j and the normalization constants. In particular in [43], the author shows
that if a self-adjoint boundary condition at central node that preserves the "flux" is



given, then it is possible to recover the potentials with only N−1 reflection coefficients
and normalization constants, where N is the number of the branches.

The paper [38] copes with the relations between the scattering data and the topol-
ogy of the graph. The authors show that the knowledge of the scattering matrix is
not enough to determine uniquely the topological structure of a generic graph. All
counter examples have one common feature: there exists a nontrivial automorphism
which preserves the external edges. This condition guarantees the impossibility to
identify the topological structure through the scattering data.

In [2], Avdonin and Kurasov consider a star-shaped graph with N finite branches.
They prove that the knowledge of a diagonal element of the response operator allows
one to reconstruct the graph, i.e. the total number of edges and their lengths. This
result is very similar to Theorem 3 of Chapter 3 and can be seen as a time-domain
version of Theorem 3 (see the remarks after Theorem 3 for further details). Further-
more, they prove, through the same paper [2], that the knowledge of the diagonal
elements of the response operator over all but one external nodes is enough to identify
the potentials on the branches. At last they prove an extension of the result to the
more generic tree case where they need the whole response operator.

The two more recent papers [4, 3] consider other types of inverse scattering prob-
lems on trees. The first paper considers the case of potential-free Schrödinger operators
over the branches of a co-planar tree where the matching conditions at the internal
nodes of the graph depend explicitly on the angles between the branches. The authors
prove, for the case of star graph, that the knowledge of the diagonal elements of the
Titchmarsh-Weyl matrix at the external nodes is enough to reconstruct the lengths
and the angles between the branches. This result is then extended to the more generic
tree case, where further elements of Titchmarsh-Weyl matrix are needed. The second
paper [3], based on a previous one [37], considers the inverse problem of characterizing
the matching conditions for the internal node of a star graph through the knowledge
of a part of the scattering matrix.

Inverse spectral problem for Sturm-Liouville operators on compact graphs

As mentioned above, in parallel to the research on inverse scattering problems, another
class of results considers the inverse spectral problem for Sturm-Liouville operators on
compact graphs. These results can be seen as extensions of the classical result provided



by Borg [10], on the recovering of the Sturm-Liouville operator from two spectra on a
finite interval.

A first set of results has been obtained by Yurko [67, 68, 69]. The article [67] deals
with the inverse spectral problem on a tree. It provides a generalization of the Borg’s
result in the following sense: for a tree with n boundary vertices, it is sufficient to
know n spectra, corresponding to n different settings for boundary conditions at the
external nodes, to retrieve the potentials on the tree.
In a recent work [69], the same kind of result is proposed for a star-shaped graph
including a loop joined to the central node. Finally, [68] provides a generalization
of [67] to higher order differential operators on a star-shaped graph.

Pivovarchik and co-workers provide a next set of results in this regard [48, 49, 50,
12]. In particular, in [50], the author proves that under some restrictive assumptions
on the spectrum of a Sturm-Liouville operator on a star-shaped graph with some
fixed boundary conditions, the knowledge of this spectra can determine uniquely the
Sturm-Liouville operator.

A third set of results deal with the problem of identifying the geometry of the
graph [27, 64]. In particular, [27] provides a well-posedness result for the identification
of the lengths of the branches through the knowledge of the spectrum. This result is
to be compared with Theorem 3 of Chapter 3. While [27] considers a more general
setting of generic graphs, it assumes the Q-independence of lengths, an assumption
that has been removed in Theorem 3 for the simpler case of a star-shaped graph.

Another interesting class of results concern the potential-free Sturm-Liouville oper-
ator on graphs. Belishev considers the potential-free case over a tree and proves that
the knowledge of the eigenvalues and the normal derivatives of the Dirichlet eigen-
functions at the external node is enough to identify the geometry of the tree up to a
spatial isometry [5]. Together with his co-workers, he further provides an identification
algorithm and numerical simulations [6]. Carlson considers the potential-free case over
a directed graph and provides information on the boundary conditions at the external
nodes as well as the lengths through the spectrum of the operator [14]. Finally Kursov
and Nowaczyk consider the potential-free case over a finite graph and similarly to [27]
treat the problem of identifying the geometry through the spectral data, provided that
the branch lengths are rationally independent [36].



2.2 Inverse scattering theory for Zakharov-Shabat sys-

tem on the line

2.2.1 General theory of inverse scattering problem

In 1972 Zakharov and Shabat introduced their coupled system in order to solve some
nonlinear partial differential equations [70]. They applied the inverse problem method
discovered by Gardner, Green, Kruskal and Miura [23]: this method is applicable to
equations of the type

∂

∂t
u(x, t) = Ŝ[u] (2.11)

where Ŝ is a nonlinear differential operator. The equation (2.11) can be represented
in the form

∂

∂t
L̂ = i[L̂, Â], (2.12)

where the bracket [ , ] denotes the commutator operator (Lax’s pair, [40]).
Here L̂ and Â are linear differential operator containing the sought function u(x, t)

in the form of a coefficient. If the condition (2.12) is satisfied, then the spectrum of
the operator L̂ does not depend on the time, and the asymptotic characteristics of its
eigenfunctions can easily be calculated at any instant of time form their initial values.
The reconstruction of the function u(x, t) at an arbitrarily instant of time is realized
by solving the inverse scattering problem for the operator L̂.

Studying the solutions of a particular equation, Zakharov and Shabat introduced
as operator L̂ their particular system on the interval −∞ < x <∞{

∂xν1(x, k) + iξν1(x, k) = q(x)ν2(x, k)

∂xν2(x, k)− iξν2(x, k) = −q∗(x)ν1(x, k).
(2.13)

where q∗ denote the complex conjugate of the potential q. The authors solved the
associated inverse scattering problem.

The scattering problem of this system (2.13) is analogous to the problem of scatter-
ing for the one-dimensional Schrödiger equation. Despite this system is not self-adjoint,
it has an interesting property: if v = (v1, v2)tr is a solution for ξ = ξ1, then

vJ =

(
v2

−v1

)



is a solution for ξ = ξ1.
For k = ξ ∈ R the Jost solutions Fl(x, k) and Fr(x, k) for (2.13) behave asymptotically
as

Fr(x, ξ) ∼

(
1

0

)
e−iξx as x→ −∞,

F J
r (x, ξ) ∼

(
0

−1

)
e−iξx as x→ −∞,

Fl(x, ξ) ∼

(
0

1

)
e+iξx as x→ +∞,

F J
l (x, ξ) ∼

(
1

0

)
e+iξx as x→ +∞.

Since Fl and F J
l form a basis for the solutions space, the scattering data a(ξ) and b(ξ)

are defined as
Fr = a(k)F J

l + b(k)Fl (2.14)

The coefficients a(k) and b(k) admit an analytic continuation in the complex plane and
the points ξj for j = 1, . . . , N in the upper-complex plane where a(ξj) = 0, correspond
to the eigenvalues of (2.13). Therefore at these points, the Jost solutions are linearly
dependent

Fr(x, ξj) = cjFl(x, ξj).

The set {a(k), b(k), k ∈ R, cj j = 1, . . . , N} forms the scattering data.

Eventually the potential q is reconstructed from the scattering data a(k), b(k) and
cj in two steps [70]: the first step consists in solving a system of 2N + 2 equations
relative to the Jost solutions Fr(x, k) and Fl(x, k).
Let c(x, ξ) = b(ξ)e2iξx/a(ξ) and c̃k = ck/a

′(ξk). Then the system writes

Fr1 −
c(x, ξ)

2

(
F r2 +

1

πi

∫ +∞

−∞

F
′
r2(ζ)

ζ − ξ
dζ

)
= −c(x, ξ)

N∑
j=1

e−iξjx

ξ − ξj
c̃jF l2(x, ξj)

c(x, ξ)

2

(
Fr1 −

1

πi

∫ +∞

−∞

F ′r1(ζ)

ζ − ξ
dζ

)
− F r2 = c(x, ξ) + c(x, ξ)

N∑
j=1

eiξjx

ξ − ξj
c̃jF l1(x, ξj)



and for j = 1, . . . , N

Fl1(x, ξj)e
−iξj +

N∑
h=1

e−iξhx

ξj − ξh
c̃hF l2(x, ξh) =

1

2πi

∫ +∞

−∞

F r2(x, ζ)

ζ − ξj
dζ,

−
N∑
h=1

eiξhx

ξj − ξh
c̃hFl1(x, ξh) + F l2(x, ξj)e

iξjx = 1 +
1

2πi

∫ +∞

−∞

Fr1(x, ζ)

ζ − ξj
dζ,

The knowledge of the scattering data allows to obtain the Jost solutions. The potential
q(x) is recovered by the following formula

q(x) = −2i
∑
n

cnexp(−iξnx)F l2(x, ξn)− 1

π

∫ ∞
−∞

F r2(x, k)dk∫ ∞
x

|q(s)|2ds = −2i
∑
n

cnexp(iξnx)Fl1(x, ξn) +
1

π

∫ ∞
−∞

Fr1(k)dk.

where Fx1 (resp. Fx2) denotes the first (resp. second) component of the vector Fx.

Few years later, Ablowitz, Kaup, Newell and Segur published an article [1] on
classes of evolution equations which can be solved by the inverse scattering method.
In particular they made a comprehensive study of the direct and inverse scattering
problem for two potentials Zakharov-Shabat system on the interval −∞ < x <∞{

∂xν1(x, ξ) + iξν1(x, ξ) = q(x)ν2(x, ξ)

∂xν2(x, ξ)− iξν2(x, ξ) = r(x)ν1(x, ξ).
(2.15)

The assumption is that the potentials r and q vanish sufficiently rapidly as x→ ±∞
so that in these limits, the right hand side in (2.15) can be neglected. The nature of
(2.15) is such that we can define four Jost solutions Fl, F J

l , Fr, F
J
r . For k ∈ R, these

solutions have the asymptotic behavior as (1.87)-(1.90). It is customary to let the
scattering data , a(k), b(k), aJ(k), bJ(k) be the coefficients relating these two sets of



linearly independent solutions

Fr = aF J
l + bFl →

(
ae−ikx

beikx

)
as x→ +∞,

F J
r = bJ F J

l − aJF J
l →

(
bJe−ikx

−aJeikx

)
as x→ +∞.

Not surprisingly, the coefficients a(k) and aJ(k) can be analytically extended respec-
tively in the upper and lower half plane. Indeed the discrete eigenvalues {ξj}Nj=1 in the
upper half plane are given by the zeros of a(ξ) at which Fr(ξj) = bjFl(ξj). Similarly
the zeros of aJ(ξ) in the lower half plane are also eigenvalues. At these points we have
F J
r (ξj) = bJj F

J
l (ξj).

Remark 22. It is important to note that the coefficients a(k), b(k), aJ(k), bJ(k) differs
from the (1.92) and (1.93). In Section 1.4, the choice of the coefficients al(k), ar(k), bl(k)

and br(k) is related to the choice of the two Jost solutions to be determined in (1.92)
and (1.93): we favored Fl and Fr representing the two reflectometry experiments at
both sides of the line.

The inverse scattering problem for the two potentials Zakharov-shabat system is
also solved in two steps: exploiting the integral representations for the four Jost func-
tions and then solving of the associated Marchenko type equations [1].

The integral representation of the Jost solutions

Fl(ξ, x) =

(
0

1

)
e+iξx +

∫∞
x
K(x, s)e+iξsds,

F J
l (ξ, x) =

(
1

0

)
e−iξx +

∫∞
x
KJ(x, s)e+iξsds,

Fr(ξ, x) =

(
1

0

)
e−iξx −

∫ x
−∞ L(x, s)e−iξsds,

F J
r (ξ, x) = −

(
0

1

)
e+iξx −

∫ x
−∞ L

J(x, s)e−iξsds.

defines the kernel vectorsK,KJ , L and LJ . Inserting these coefficients in the Zakharov-



Shabat integral representations, we obtain four Marchenko type equations.

KJ(x, y) +

(
0

1

)
F (x+ y) +

∫ ∞
x

K(x, s)F (s+ y)ds = 0, (y > x)

K(x, y)−

(
1

0

)
F J(x+ y)−

∫ ∞
x

KJ(x, s)F J(s+ y)ds = 0, (y > x)

LJ(x, y) +

(
1

0

)
G(x+ y)−

∫ x

−∞
L(x, s)G(s+ y)ds = 0, (y < x)

L(x, y) +

(
0

1

)
GJ(x+ y) +

∫ x

−∞
LJ(x, s)GJ(s+ y)ds = 0, (y < x)

where F, F J , G and GJ are functions depending on the scattering data.
To be more precisely, the four functions are given by the following formula

F (z) ≡ 1

2π
C

∫
b(ζ)

a(ζ)
eiζzdζ, F J(z) ≡ 1

2π
CJ

∫
bJ(ζ)

aJ(ζ)
e−iζzdζ,

G(z) ≡ 1

2π
C

∫
bJ(ζ)

a(ζ)
e−iζzdζ, GJ(z) ≡ 1

2π
CJ

∫
b(ζ)

aJ(ζ)
eiζzdζ.

where C is the contour described in the figure 2.2.1. We define C to be the contour

a(ξ2)

C

a(ξ1)

a(ξn)

Figure 2.1: Contour C in the complex plane C



in the complex ξ-plane, starting from ξ = −∞ + i0+ passing over all zeros a(ξ) and
ending at ξ = +∞ + i0+. Similarly, CJ is the contour starting from ξ = −∞ + i0−

passing over all zeros aJ(ξ) and ending at ξ = +∞+ i0−.
As before, the solutions K,KJ , L and LJ give us the potentials r and q

K1(x, x) = −LJ1 (x, x) = −1

2
q(x),

K2(x, x) = KJ
1 (x, x) =

1

2

∫ ∞
x

q(s)r(s)ds,

L1(x, x) = −LJ2 (x, x) =
1

2

∫ x

−∞
q(s)r(s)ds,

L2(x, x) = KJ
2 (x, x) =

1

2
r(x).

In conclusion we have shown how to recover the potentials q and r from the scattering
data.

2.2.2 Application to the telegrapher’s equations: theoretical

and numerical results

In this part we present the results of Jaulent [30]. In particular we show that the
inverse scattering problem for RLGC non-uniform transmission lines can be reduced
to the inverse scattering problem for the Zakharov-Shabat system.
On the interval −∞ < z <∞ we consider the telegrapher’s equations in the harmonic
regime (1.33). Applying the Liouville transformation (1.41), and setting the variables
as in Section 1.3.4

ν1(x, k) =
1√
2

[
Z
−1/2
c0 (x)V (k, x)− Z1/2

c0 (x)I(k, x)
]
,

ν2(x, k) =
1√
2

[
Z
−1/2
c0 (x)V (k, x) + Z

1/2
c0 (x)I(k, x)

]
.

(1.45)

the telegrapher’s equations become equivalent to the Zakharov-Shabat system (1.46)
denoted by (Z)[q+, q−, qd].

Remark 23. Note that ν1(k, x) differs by a negative sign from the corresponding no-
tations in [30]. Consequently having the same definition for the three potentials, the
matrix Q differs by a negative sign on the anti diagonal elements from the definition
(1.54).



The assumptions on the three potentials q+(x), q−(x) and qd(x) are that they are
sufficiently regular functions going to 0 fast enough as |x| → ∞. It is convenient to
consider both systems (Z)±[q+, q−, qd]:

d

dx
Y ± + ikσ3Y

± =

(
±qd −q±
−q∓ ∓qd

)
Y ± (2.16)

Note that if Y −(k, x) is a solution for (Z)−, then

(
0 1

1 0

)
Y −(−k, x) is a solution

of (Z)+. This symmetry property allows to reduce the study of two types of Jost
Solutions at −∞ to only one.
The right and left Jost solutions of (Z)±, F±r (k, x) and F±l (k, x) are defined as

F±r (k, x) ∼

(
0

1

)
e+ikx as x→∞,

F±l (k, x) ∼

(
1

0

)
e−ikx as x→ −∞,

As usual, one can prove that F±r (k, x) and F±l (k, x) are analytic in k and they form a
fundamental system of solutions of (Z)± for k ∈ R.
The reflection coefficients to the right and to the left , r±r (k) and r±l (k) and the
transmission coefficients t±(k) associated to (Z)± are defined for each real value of k
by

F±l (k, x) =
r±r (k)

t±(k)
F±r (k, x) +

1

t±(k)
σ1F

±
r (−k, x),

F±r (k, x) =
r±l (k)

t±(k)
F∓l (k, x) +

1

t±(k)
σ1F

∓
l (−k, x).

The scattering matrix associated to (Z)± is defined as

S±(k) =

(
r±l (k) t±(k)

t±(k) r±r (k)

)
, k ∈ R. (2.17)

and their components represent also the scattering data for the transmission line equa-
tion. The inverse scattering problem for the line is the construction of quantities con-
necting L,C,R and G from S+(k), L(−∞), L(∞), C(∞) and C(−∞). It can



be proved the existence of solutions(
Il(k, z)

Vl(k, z)

)
and

(
Ir(k, z)

Vr(k, z)

)
,

such that

Il(k, z) ∼
[
C(−∞)
L(−∞)

]1/4

t+(k)e−ikx(z) z → −∞

∼
[
C(∞)
L(∞)

]1/4

(r+
r (k)e+ikx(z) + e−ikx(z)) z → +∞

Vl(k, z) ∼
[
L(−∞)
C(−∞)

]1/4

t+(k)e−ikx(z) z → −∞

∼
[
L(∞)
C(∞)

]1/4

(−r+
r (k)e+ikx(z) + e−ikx(z)) z → +∞

Ir(k, z) ∼
[
C(−∞)
L(−∞)

]1/4

(r+
l (k)e−ikx(z) + eikx(z)) z → −∞

∼
[
C(∞)
L(∞)

]1/4

t+(k)e+ikx(z) z → +∞

Vr(k, z) ∼
[
L(−∞)
C(−∞)

]1/4

(r+
l (k)e−ikx(z) − eikx(z)) z → −∞

∼
[
L(∞)
C(∞)

]1/4

t+(k)e+ikx(z) z → +∞.

Jaulent reduces the inverse scattering problem for three potential Zakharov-Shabat
system (Z)±[q+, q−, qd] to the more classical two potentials Zakharov-Shabat system
(2.15) through the following change of variables

Ỹ ±(k, x) =

(
exp(∓i

∫∞
x
qd(s)ds) 0

0 exp(±i
∫∞
x
qd(s)ds)

)
Y ±(k, x). (2.18)

The new variables Ỹ ±(k, x) are solutions of the Zakharov-Shabat system (Z)±[q̃+, q̃−, 0]

d

dx
Ỹ ± + ikσ3Ỹ

± =

(
0 −q̃±
−q̃∓ 0

)
Ỹ ±, (2.19)

with
q̃± = q±exp(∓2i

∫ ∞
x

qd(s)ds).



It is easy to obtain the connection between the scattering data
r̃±r (k) = r±r (k),

r̃l
±(k) = r±l (k)exp(±2i

∫∞
−∞ qd(s)ds),

t̃±(k) = t±(k)exp(±i
∫∞
−∞ qd(s)ds).

(2.20)

Using the result of Gardner, Green, Kruskal and Miura [1], Jaulent found that it is
possible to reconstruct from the scattering data the potential q±(x) as a function of
the wave’s traveling time x:

q̃±(x) =

[
1

4

d

dx

(
ln
L

C

)
± 1

2

(
R

L
− G

C

)]
exp

(
∓
∫ ∞
−∞

(
R

L
+
G

C

)
ds

)
. (2.21)

Numerical simulation for the inverse scattering problem for telegrapher’s
equation

Tang and Zhang have shown some numerical results for the inverse scattering problem
for the lossy transmission line [62].
Using the the relationship between the inverse problem for the general lossy electric
transmission lines and the inverse scattering problem for the two potential Zakharov-
Shabat system established by Jaulent [30], they have studied the soft fault diagnosis
for such lines by clarifying and completing the computation for the theoretic scattering
data required by the inverse scattering transform (IST) from the practically measured
engineering scattering data.
The (IST) computation requires the left reflection coefficient r̃+

l (k) for (Z)+[q̃+, q̃−, 0]

defined by (2.19) and also the left coefficient r̃−l (k) for (Z)+[q̃−, q̃+, 0]. It is important
to remark that, r̃−k (k) is the reflection coefficient for (Z)−[q̃−, q̃+, 0], that it does not
physically exist. Hence r̃−l (k) cannot be directly measured.
While r̃+

l (k) can be easily obtained from the engineering reflection coefficient, r̃−l (k)

can be related to the measured engineering scattering data, but it requires the knowl-
edge of transmission line length l and the integral value of dispersion

∫
R qd(y)dy.

As we have seen above, the inverse scattering problem for (Z)±[q̃+, q̃+, 0] is solved
using two reflection coefficients r̃±l (k). Unfortunately, the knowledge of the scattering
data r̃±l (k) cannot be retrieved from the reflectometry measurament.



Chapter 3

Inverse scattering for loss-less
star-shaped network

We consider a class of inverse scattering problems on star-shaped graphs, having in
mind certain applications such as the fault-detection and diagnosis of electrical net-
works through reflectometry-type experiments. Even though a part of the obtained
results, Theorem 3 and 4, can be directly applied to such applications, some of them
(see Theorem 5 and assumption A2), remain preliminary results and need significant
improvement. However, from a theoretical insight all the results are original and pro-
vide some new uniqueness results for the solutions of inverse scattering problems on
networks.

Note that, similarly to the case of a simple line [17], the existence of a solution
to the inverse scattering problem (i.e. classifying the scattering data for which there
exists a solution to the inverse scattering problem) remains for itself a complete subject
apart and we do not consider here such existence problems. In other words, we assume
that the scattering data (and notably the reflection coefficient) are precisely obtained
from a real physical system and therefore the existence of the solution to the inverse
scattering problem is ensured by the existence of the physical system.

We consider the particular case of star-shaped network, where the reflectometry
experiment is based on a far-filed method consisting in adding a uniform infinite wire
joined at the central node of the network. Once again, connecting a matched load
to the external node of a finite line is sufficient to emulate the electrical propagation
through an infinite line.

The results of this chapter has been published as a journal paper in "Journal of

79



Mathematical Analysis and Applications" [63].

3.1 Main hypothesis and physical interpretation

The linearity of the transmission line model allows to replace any test by an equivalent
test in harmonic regime. We can therefore start by stating the Telegrapher’s equation
in the harmonic regime,

∂

∂x
V (k, x)− ikL(x)I(k, x) = 0, (3.1)

∂

∂x
I(k, z)− ikC(x)V (k, x) = 0.

Through this chapter, we assume that

A1 the distributed parameters C(x) and L(x) are twice continuously differentiable on
the transmission lines;

A2 they are strictly positive, C(x) > 0, L(x) > 0;

A3 the characteristic impedance Zc(x) :=
√
L(x)/C(x) is continuous at the central

node of the star-shape network;

A4 the transmission lines are uniform in a neighborhood of the extremities of the
branches.

The network under test.

Throughout this chapter Γ represents the compact star-shaped network consisting of
the branches (ej)

N
j=1 joining at the central node and Γ+ is the extended graph where

the test branch e0 is also added to the graph. We have N + 1 equations of the form

−d
2yj
dx2

+ qj(x)yj = k2yj x ∈ (0, lj), (3.2)

where lj is the wave traveling time associated to the branch number j (l0 = ∞ as
the added branch e0 is assumed to be an infinite line). In particular note that,
as the infinite branch e0 is assumed to be a uniform transmission line, we have
q0(x) = 0, x ∈ (0,∞).



Boundary conditions

Boundary condition for the reflectometer.

As explained in the section 1.3, the test branch e0 is parametrized as [−∞, 0] where
x = 0 represent the central node. Our reference forward wave on e0 is then in the
direction of the increasing x. Supposing e0 of infinite length, the boundary condition
for the reflectometer is:

y(x, k) ∼ r(k)e−ikx + eikx as x→ −∞ on e0. (3.3)

The two sets of boundary conditions at the network extremities.

In order to recover the potential of the star-shape network, we will need to consider
two experimental settings, with open circuit or short circuit boundary conditions at the
extremities of the branches. This will lead to a problem similar to solving an inverse
spectral problem for the Sturm-Liouville operator when two spectra are known.

The first setting corresponds to open circuit configuration at the extremities of
the finite branches ((ej)Nj=1). This, together with the Assumption A4 on the local
uniformity of the lines around lj’s, leads to Neumann type boundary conditions:

y′j(lj) = 0 j = 1, · · · , N. (3.4)

The second setting corresponds to the short circuit configuration at the extrem-
ities of the finite branches ((ej)Nj=1). This leads to boundary conditions of the form
Vj(ω, lj) = 0, or equivalently, we obtain the setting called, the Dirichlet configuration:

yj(lj) = 0 j = 1, · · · , N. (3.5)

Remark 24. In some of the applications that we have in mind, the reflectometry ex-
periment has to take place without perturbing significantly the normal utilization of
the transmission network, so that using open or short circuits conditions would be
impossible. There is a way to circumvent this problem by computing the results of the
open or short circuit experiments from results of two less invasive experiments. The
idea is to use nonlinear superposition properties of solutions of Riccati equations as in
[61], in order to get a closed-form representation of the reflection coefficient, solution



of (1.69), as a function of a general load impedance (value of Z at the extremity of a
branch) and of two particular solutions corresponding to two load impedances more
compatible with the network utilization.

The boundary conditions at the central node.

The boundary conditions at the central node write

yi(0, k) = yj(0, k) =: ȳ(k) i, j = 0, · · · , N,
N∑
j=1

y′j(0, k)− y′0(0, k) = −1

2

∑N
j=1(Zj

c )
′(0)

Z0
c

ȳ(k),

where y′j(ω, 0) and (Zj
c )
′(0) denote the spatial derivatives at the point x = 0 and Zj

c

is the characteristic impedance of the branch number j. Note, in particular, that we
have applied the continuity of Zj

c ’s at the central node (Assumption A3): Zj
c (0) = Z0

c ,
∀j.

Formulation of the model

In conclusion, in order to study the LC-transmission line equations on the graph Γ+,
we can study the Schrödinger operators

L+
N ,D = ⊗Nj=0(− d2

dx2
+ qj(x)),

D(L+
N ,D) = closure of C∞N ,D in H2(Γ+), (3.6)

where C∞N (Γ+) (resp. C∞D (Γ+)) denotes the space of infinitely differentiable functions
f = ⊗Nj=0fj defined on Γ+ satisfying the boundary conditions at central node

fj(0) = fj′(0) j, j′ = 0, · · · , N,
N∑
j=1

f ′j(0)− f ′0(0) = Hf0(0), H = −1
2

(
∑N

j=1(Zj
c )′(0))

Z0
c

, (3.7)

More over we assume for C∞N (Γ+) (resp. for C∞D (Γ+)), we assume the Neumann con-
dition (resp. Dirichlet condition) at all boundary vertices:

f ′j(lj) = 0 (fj(lj) = 0 for C∞D (Γ+)) (3.8)



for j = 1, · · · , N .

3.2 Direct scattering problem

Here we show that the direct scattering problem for the Schrödinger operator acting
on Γ is well posed. If the reflectometry experiments give us the measurements of the
reflection coefficient, we need to define reflection coefficients for the Schrödinger oper-
ator and we have to prove their existence and their uniqueness.
The operators (L+

N ,D, D(L+
N ,D)) are essentially self-adjoint. To prove this fact we ob-

serve first that these operators are a compact perturbation of the operators⊗nj=0

(
− d2

dx2

)
with the same boundary conditions. Now, we apply a general result by Carlson [13]
on the self-adjointness of differential operators on graphs. Indeed, following Theorem
3.4 of [13], we only need to show that at a node connecting m edges, we have m
linearly independent linear boundary conditions. At the terminal nodes of {ej}Nj=1

this is trivially the case as there is one branch and one boundary condition (Dirichlet
or Neumann). At the central node it is not hard to verify that (3.7) define N + 1

linearly independent boundary conditions as well. This implies that the operators
(L+
N ,D, D(L+

N ,D)) are essentially self-adjoint and therefore that they admit a unique
self-adjoint extension on L2(Γ+).

We are interested in the scattering solution where a signal of frequency k is applied
at the infinite extremity of the infinite branch. In such a case, we will be seeking a
solution satisfying the asymptotic behavior

y0(x, k) ∼ e−ıkx + r(k)eıkx, for x→∞.

The reflection coefficients rN ,D(k) for L+
N ,D are defined by the following proposition:

Proposition 3. Under the assumptions A1 through A4, for almost every k ∈ R,
there exists a unique solution

ΨN ,D(x, k) = ⊗Nj=0y
j
N ,D(x, k),

of the scattering problem and associated to it, a unique reflection coefficient rN ,D(k).
This means that for almost every k ∈ R, there exists a unique function ⊗Nj=0y

j
N ,D(x, k)



and a unique constant rN ,D(k) satisfying

• − d2

dx2
yjN ,D(x, k) + qj(x)yjN ,D(x, k) = k2yjN ,D(x, k) for j = 0, · · · , N ;

•
(
yjN ,D(x, k)

)N
j=0

satisfy the boundary conditions (3.7) and (3.8) ;

• y0
N ,D(x, k) = e+ikx + rN ,D(k)e−ikx.

Finally, the reflection coefficient rN ,D(k) can be extended by continuity to all k ∈ R.

Proof. This proof gives us a concrete method for obtaining scattering solutions. In-
deed, we will propose a solution and we will show that it is the unique one.
In this aim, we need to use Dirichlet/Neumann fundamental solutions of a Sturm-
Liouville boundary problem.

Definition 17. Consider the potentials qj as before and extend them by 0 on (−∞, 0)

so that they are defined on the intervals (−∞, lj]. The Dirichlet (resp. Neumann)
fundamental solution ϕjD(x, k) (resp. ϕjN (x, k)), is a solution of the equation,

− d2

dx2
ϕjD,N (x, k) + qj(x)ϕjD,N (x, k) = k2ϕjD,N (x, k), x ∈ (−∞, lj),

ϕjD(lj, k) = 0, (ϕj)′D(lj, k) = 1,

ϕjN (lj, k) = 1, (ϕj)′N (lj, k) = 0.

Consider, now, the function

ΨD,N (x, k) = ⊗Nj=0Ψj
D,N (x, k),

where

Ψ0
D,N (x, k) = e+ıkx + rD,N (k)e−ıkx, x ∈ (−∞, 0],

Ψj
D,N (x, k) = αjD,N (k)ϕjD,N (x, k), x ∈ [0, lj], j = 1, · · · , N.

Here the coefficients rD,N and αjD,N are given by the boundary conditions (3.7) at
the central node:

rD,N (k) + 1 = αjD,N (k)ϕjD,N (0, k), j = 1, · · · , N, (3.9)
N∑
j=1

αjD,N (k)(ϕjD,N )′(0, k) + ık(1− rD,N (k)) = H(rD,N (k) + 1). (3.10)



One sees that this ΨD,N is in D(L+
N ,D), the domain of the operator, and satisfies the

conditions of the proposition. This, trivially, provides the existence of a scattering
solution. Here, we show that ΨD,N is actually the unique one.
Assume that there exists another YD,N = ⊗Nj=0Y

j
D,N (x, k) solution of the scattering

problem. Since Y j
D,N (·, k) and Ψj

D,N (·, k) are solutions of the same Sturm-Liouville
equation over each branch and they (or their derivatives for Neumann case) vanish at
lj, Y j

D,N (., k) and Ψj
D,N (., k) are co-linear:

Y j
D,N (x, k) = βjD,N (k)ϕjD,N (x, k), x ∈ [0, lj], j = 1, · · · , N.

Over the branch e0, as Y 0
D,N (., k) satisfies a homogeneous Sturm-Liouville equation

(q0 = 0), it necessarily admits the following form

Y 0
D,N (x, k) = e+ıkx + r′D,N (k)e−ıkx.

We need to show that one necessarily has r′D,N (k) ≡ rD,N (k) and similarly βjD,N (k) ≡
αjD,N (k). Indeed, for almost all k ∈ R, the equations (3.9) and (3.10) provide N + 1

linear relations for the N + 1 unknown coefficients rD,N and
(
αjD,N

)N
j=1

. Trivially,

as soon as, the coefficients
(
ϕjD,N (0, k)

)N
j=1

are non-zero, these linear relations are

independent and there exists a unique solution for the unknowns rD,N and
(
αjD,N

)N
j=1

.

However, the zeros of each one of the coefficients
(
ϕjD,N (0, k)

)N
j=1

correspond to isolated

values of k (square-root of the eigenvalues of the operator − d2

dx2
+ qj(x) with Dirichlet

boundary condition at x = 0 and Dirichlet or Neumann boundary condition at x = lj).

We can compute explicitly these coefficients for all k except for a set K of isolated
values: dividing (3.10) by (1 + rD,N (k)) and inserting (3.9), we find

1− rD,N (k)

1 + rD,N (k)
=
H

ık
− 1

ık

N∑
j=1

(ϕjD,N )′(0, k)

ϕjD,N (0, k)
∀k ∈ R\K. (3.11)

Finally, inserting the value of rD,N (k) into (3.9), we find

αjD,N (k) =
rD,N (k) + 1

ϕjD,N (0, k)
∀k ∈ R\K.

What remains to be shown is the extendibility of reflection coefficient rD,N (k) to



whole real axis. Let k ∈ K be one of the isolated values where rD,N is not defined:
ϕjN ,D(0, k) = 0 for some j. Then we have to show the continuity of rD,N (k) at k, i.e.

lim
k→k+

rD,N (k) = lim
k→k−

rD,N (k) =: rD,N (k),

with |rD,N (k)| <∞ (even more |rD,N (k)| = 1 here).
Indeed, through (3.11), and by the fact that fundamental solutions are analytic

with respect to k, the reflection coefficient rD,N (k) can be written as a fraction of two
analytic functions, at least for k’s where it is well defined. Furthermore, for these k’s
we have |rD,N (k)| = 1. These two facts, together, ensure the existence of the limit
when k → k and that |rD,N (k)| = 1.

3.3 Inverse problems and main results

As a first inverse problem, we consider the inversion of the geometry of the graph. In
fact, we will prove the well-posedness of the inverse problem of finding the number of
branches N and the lengths (lj)

N
j=1 of a star-shaped graph through only one reflection

coefficient rN (k) (the case of Dirichlet reflection coefficient can be treated similarly).

Theorem 3. Consider a star-shaped network Γ composed of nj branches of length lj
(j = 1, · · · ,m) all joining at a central node so that the whole number of branches N
is given by

∑m
j=1 nj. Let assume for the potential q on the network to be C0(Γ) and

that it takes the value zero at the central node. Then the knowledge of the Neumann
reflection coefficient rN (k) determines uniquely the parameters (nj)

m
j=1 and (lj)

m
j=1.

The problem of identifying the geometry of a graph through the knowledge of the
reflection coefficient has been previously considered by many authors: in Section 3.4
we resume the literature about this identification problem and we will give the proof
of this theorem.

A second inverse problem can be formulated as the identification of the potentials
on the branches. The following theorem provides a global uniqueness result concerning
the quantities qj :=

∫ lj
0
qj(s)ds or in terms of line parameters

∫ lj

0

[
Cj(x)

Lj(x)

]− 1
4 d2

d2x

[
Cj(x)

Lj(x)

]+ 1
4

dx.



The moment
∫ lj

0
qj(s)ds can also be written as

∫ lj

0

qj(s)ds =
1

4

∫ lj

0

|(Zj
c )
′(s)|2∣∣Zj

c (s)
∣∣2 ds− 1

2

(
(Zj

c )
′(lj)

Zj
c (lj)

− (Zj
c )
′(0)

Zj
c (0)

)
, (3.12)

where Zj
c denotes the characteristic impedance over the branch j.

Theorem 4. Assume for the star-shaped graph Γ that

B1 lj 6= lj′ for any j, j′ ∈ {1, · · · , N} such that j 6= j′ .

If there exist two potentials q = ⊗Nj=1qj and q′ = ⊗Nj=1q
′
j in H1(Γ), satisfying qj(0) =

q′j(0) = 0, and giving rise to the same reflection coefficient, rN (k) ≡ r′N (k), one
necessarily has ∫ lj

0

qj(s)ds =

∫ lj

0

q′j(s)ds j = 1, · · · , N.

This theorem allows us to identify the situations where the soft faults in the network
cause a change of the quantities qj. In particular, it allows us to identify the branches
on which these faults have happened. A next test, by analyzing these branches sep-
arately, will then allow the engineer to identify more precisely the faults. A proof of
this theorem will be provided in Section 3.6.

Remark 25. In the case where the connectors are assumed to be reliables, the char-
acteristic impedances in the neighborhoods of these connectors can be assumed to be
uniform. Therefore

(Zj
c )
′(lj) = (Zj

c )
′(0) = 0 ∀j.

This, together with (3.12) implies that we have identified∫ lj

0

|(Zj
c )
′(s)|2∣∣Zj

c (s)
∣∣2 ds

over each branch.
Now, note that in the perfect (no fault) case, the lines are uniform and therefore
(Zj

c )
′ ≡ 0 for all j. Thus by identifying the value

∫ lj
0
qjds and as soon as we observe

this to be different from 0, we detect soft faults that appear as hetereogenities of the
corresponding branch,



Next, we will consider the situations where the faults in the network, do not affect
the quantities q̄j. Keeping in mind the application to the transmission line network,
this means that:

A5 q̄j =
∫ lj

0
qj(s)ds = 0 for j = 1, · · · , N ;

as for the perfect setting, we had assumed uniform transmission lines: L and C con-
stant.

In order to provide a well-posedness result for such situations, we need more re-
strictive assumptions on the geometry of the graph:

B2 For any j, j′ ∈ {1, · · · , N} such that j 6= j′, lj/lj′ is an algebraic irrational number.

Under this assumption, the value

M(Γ) := max

{
m ∈ N

∣∣∣ ∣∣∣∣ lilj − 1

m

∣∣∣∣ < 1

m3
, for some i 6= j

}
(3.13)

is well defined and is finite. In fact, by Thue-Siegel-Roth Theorem [56], for any irra-
tional algebraic number α, and for any δ > 0, the inequality

|α− p/q| < 1/|q|2+δ, (3.14)

has only a finite number of integer solutions p, q (q 6= 0).
Before stating the final theorem, we give a lemma on the asymptotic behavior of the
eigenvalues of the Sturm-Liouville operator − ∂2

∂x2
+ q(x) on the segment [0, l], with

Dirichlet boundary condition at 0 and Neumann boundary condition at l (the case of
Dirichlet-Dirichlet boundary condition can be treated similarly). This lemma allows
us to define a constant C0(l) which will be used in the statement of the final theorem.

Lemma 3. Assume for the potential q(x) ∈ H1(0, l) that q(0) = 0, that ‖q‖L∞(0,l) <
π2

4l2

and that
∫ l

0
q(s)ds = 0. Then, there exists a constant C0(l) such that λn, the n-th

eigenvalue of the operator − ∂2

∂x2
+ q(x) on the segment [0, l], with Dirichlet boundary

condition at 0 and Neumann boundary condition at l, satisfies∣∣∣∣λn − (2n− 1)2π2

4l2

∣∣∣∣ ≤ C0(l)
‖q‖H1(0,l)

2n− 1
.

A proof of this lemma, based on the perturbation theory of linear operators [32],
will be given in the Appendix B.



In order to state the final theorem, we define the following constants only depending
on the geometry of the graph Γ (lengths of branches):

C1(Γ) := min

{
π2

4l
5/2
j

∣∣∣ j = 1, . . . , N

}
, (3.15)

C2(Γ) := min

{
π2

4lilj(C0(li) + C0(lj))

∣∣∣ i 6= j, i, j = 1, . . . , N

}
, (3.16)

C3(Γ) := min
{ π2

C0(li) + C0(lj)
·

∣∣∣∣∣(2n− 1)2

l2j
− (2n′ − 1)2

l2i

∣∣∣∣∣
∣∣∣ n = 1, 2 . . . ,M(Γ),

n′ = 1, 2, . . . ,

i 6= j i, j = 1, . . . , N

}
, (3.17)

C(Γ) := min(C1(Γ), C2(Γ), C3(Γ)). (3.18)

Note, in particular that C3(Γ) is strictly positive as the lengths li and lj are two-by-two
Q-independent. We have the following theorem:

Theorem 5. Consider a star-shaped graph Γ satisfying the geometrical assumption
B2. Take the strictly positive constant C(Γ) as defined by (3.18) and consider two
potentials q and q′ belonging to H1(Γ), satisfying qj(0) = q′j(0) = 0, the assumption
A5, and

‖q‖H1(Γ) < C(Γ) and ‖q′‖H1(Γ) < C(Γ).

If they give rise to the same Neumann and Dirichlet reflection coefficients:

rN (k) ≡ r′N (k) and rD(k) ≡ r′D(k),

then q ≡ q′.

A proof of this theorem will be given in Section 3.7. We end this section by a
remark on the assumption B2.

Remark 26. The assumption B2 seems rather restrictive and limits the applicability
of Theorem 5 in real settings. In fact, such kind of assumptions have been previously
considered in the literature for the exact controllability of the wave equations on net-



works [72]. In general, removing this kind of assumptions, one can ensure approximate
controllability results rather than the exact controllability ones. Theorem 5 can be
seen in the same vein as providing a first exact identifiability result. However, in order
to make it applicable to real settings one needs to consider improvements by relaxing
the assumption B2 and looking instead for approximate identifiability results. This
will be considered in future work.

Finally, we note that the only place, where we need the assumption B2, is to ensure
that there exists at most a finite number of co-prime factors (p, q) ∈ N×N, such that
the Diophantine approximation (3.14) holds true. However, this is a classical result of
the Borel-Cantelli Lemma that for almost all (with respect to Lebesgue measure) posi-
tive real α’s this Diophantine approximation has finite number of solutions. Therefore
the assumption B2 can be replaced by the weaker assumption of lj/lj′ belonging to
this set of full measure.

3.4 Detection and localization of hard faults

Thanks to Theorem 3, we will be able to detect and to locate hards faults like the open
circuits and short circuits. The analysis of the reflection coefficient at high frequencies
allows us to locate the positions of hard faults.

This inverse problem can be formulated as the identification of the lengths of the
network Γ where the extremities represent the hard faults. The knowledge of one
reflection coefficient allows to identify the number of the branches and their lengths,

The problem of identifying the geometry of a graph through the knowledge of the
reflection coefficient has been previously considered in [27, 36, 2]. Through the two
first papers, the authors consider a more general context of any graph and not only
a star-shaped one. However, in order to ensure a well-posedness result, they need to
assume a strong assumption on the lengths consisting in their Q-independence. The
third result [2] states a very similar result to that of Theorem 3 for time domain
reflectometry (see Lemma 2 of [2]). The authors also provide a frequency-domain
version of their result (see Lemma 3 of [2]); however their proof is strongly based
on the proof of the time-domain result. We believe that the proof provided in this
thesis, exploring the high-frequency regime of the reflection coefficient and providing a
frequency-based constructive method, can be useful from an engineering point of view,
where we are interested in detecting the faults without stopping the normal activity of



the transmission network (we therefore need to apply test frequencies that are much
higher than the activity frequencies of the transmission network).

The method is rather constructive and one can think of an algorithm to identify
the lengths, at least approximately. The proof is based on an asymptotic analysis in
high-frequency regime of the reflection coefficient and some classical results from the
theory of almost periodic functions (in Bohr sense).
Before proving Theorem 3, we need the following lemma:

Lemma 4. Consider a star-shaped network Γ composed of nj branches of length lj for
j = 1, · · · ,m all joining at a central node so that the whole number of branches N
is given by

∑m
j=1 nj. Assume the potential q on the network to be 0 (q ≡ 0). Then

the knowledge of the Neumann reflection coefficient RN (k) determines uniquely the
parameters (nj)

m
j=1 and (lj)

m
j=1.

Proof. We need to apply the explicit computation of the reflection coefficient provided
by (3.11). The fundamental solutions are given, simply, by ϕjN (x, k) = cos(k(lj − x)).
Therefore:

rN (k)− 1

rN (k) + 1
=

1

ık
H − 1

ık

m∑
j=1

nj
k sin(ljk)

cos(ljk)
.

The knowledge of rN (k) determines uniquely the signal:

f(k) :=
m∑
j=1

nj tan(klj).

Assuming, without loss of generality, that the lengths lj are ordered increasingly
l1 < · · · < lm, the first pole of the function f(k) coincides with π/2lm and there-
fore determines lm. Furthermore,

nm = lim
k→π/2lm

cos(klm)f(k),

and therefore one can also determine nm. Now, considering the new signal g(k) =

f(k) − nm tan(klm), one removes the branches of length lm and exactly in the same
manner, one can determine lm−1 and nm−1. The proof of the lemma follows then by a
simple induction.

Now we are able to prove the main theorem.



Proof of Theorem 3. Assume that, there exist two graph settings (lj, qj)
N
j=1 and (l′j, q

′
j)
N ′
j=1

(the lengths lj are not necessarily different) giving rise to the same Neumann reflection
coefficients: rN (k) ≡ r′N (k). By the explicit formula (3.11), we have

1

k

N∑
j=1

d
dx

(ϕjN )(0, k)

ϕjN (0, k)
≡ 1

k

N ′∑
i=1

d
dx

(ϕ′iN )(0, k)

ϕ′iN (0, k)
.

This is equivalent to:

N ′∏
j=1

ϕ′
j
N (0, k)

(
N∑
i=1

d

dx
(ϕiN )(0, k)

∏
l 6=i

ϕlN (0, k)

)
−

N∏
j=1

ϕjN (0, k)

(
N ′∑
i=1

d

dx
(ϕ′

i
N )(0, k)

∏
l 6=i

ϕ′
l
N (0, k)

)
= 0. (3.19)

Now, we use the fact that the high-frequency behavior of the Neumann fundamental
solutions (ϕjN )Nj=1 is given as follows (see [19], page 4):

ϕjN (0, k) = cos(klj) +O
(

1
k

)
, as k →∞,

d
dx

(ϕjN )(0, k) = k sin(klj) +O (1), as k →∞,
(3.20)

Defining the function:

F (k) :=
N ′∏
j=1

cos(kl′k)

(
N∑
i=1

sin(kli)
∏
l 6=i

cos(kll)

)
−

N∏
j=1

cos(klj)

(
N ′∑
i=1

sin(kl′i)
∏
l 6=i

cos(kl′l)

)
.

The asymptotic formulas (3.20) together with (3.19) imply

F (k) = O (1/k) as k →∞.

However, the function F (k) is a trigonometric polynomial and almost periodic in the
Bohr’s sense [9]. The function F 2(k) is, also, almost periodic and furthermore, we
have

M(F 2) := lim
k→∞

1

k

∫ k

0

F 2(k)dk = lim
k→∞

1

k

(∫ 1

0

F 2(k)dk +

∫ k

1

F 2(k)dk

)
≤ lim

k→∞

1

k

(
C1 + C2

∫ k

1

1

k2
dk

)
= 0.



This, trivially, implies that F = 0 (one only needs to apply the Parseval’s Theorem
to the generalized fourier series of the function F ). However, the relation F (k) ≡ 0 is
equivalent to

N∑
j=1

tan(klj) =
N̂∑
j=1

tan(kl′j),

and therefore, by Lemma 4, the two settings are equivalent and the theorem follows.

3.5 From inverse scattering to inverse spectral prob-

lem

Here we present some auxiliary propositions that we will need for the proof of Theorems
4 and 5. The main objective of this subsection is to show the equivalence between the
inverse scattering problem on Γ+ and some inverse spectral problem on Γ.
So, as before, we consider a general star-shaped graph Γ (of N finite branches) and
a potential q = ⊗Nj=1qj belonging to H1(Γ). We will see that the knowledge of the
reflection coefficient rN (k) for L+

N (resp. rD(k) for L+
D) is equivalent to the knowledge

of different positive spectra of Sturm-Liouville operators defined on Γ with Neumann
(resp. Dirichlet) boundary conditions at terminal nodes and for various boundary
conditions at the central node. In fact, defining the function

hN ,D(k) = H +
ık(1− rN ,D(k))

(1 + rN ,D(k))
,

where H is given by (3.7), we have the following result

Proposition 4. Fix k ∈ R and define the Schrödinger operators LN ,D(k) on the
compact graph Γ as follows:

LN ,D(k) = ⊗Nj=1(− d2

dx2
+ qj(x)),

D(LN ,D(k)) = closure of C∞k;N ,D(Γ) in H2(Γ),

where C∞k;N (Γ) (resp. C∞k;D(Γ)) denotes the space of infinitely differentiable functions



f = ⊗Nj=1fj defined on Γ satisfying the boundary conditions

fj(0) = fj′(0) =: f̄ j, j′ = 1, · · · , N,
N∑
j=1

f ′j(0) = hN ,D(k)f̄ ,

f ′j(lj) = 0 (fj(lj) = 0 for C∞k;D(Γ)), j = 1, · · · , N.

Then we are able to characterize the positive spectrum of LN ,D(k) as a level set of the
function hN ,D(k):

σ+(LN ,D(k)) =
{
ξ2 | ξ ∈ R, hN ,D(ξ) = hN ,D(k)

}
.

Remark 27. As it can be seen through the proof, the above proposition holds for the
generic case of any compact graph, where a test branch of infinite length is added to
an arbitrary node of the graph.

Proof. We prove the proposition for the case of Neumann boundary conditions. The
Dirichlet case can be treated exactly in the same manner. We start by proving the
inclusion

σ+(LN (k)) ⊆
{
ξ2 | ξ ∈ R, hN (ξ) = hN (k)

}
.

Let ξ2 ∈ σ+(LN (k)), then there exists Ψ eigenfunction of the operator LN (k) associ-
ated to ξ2. In particular, it satisfies

N∑
j=1

Ψ′j(0) = hN (k)Ψ̄,

where Ψ̄ is the common value of Ψ at the central node.

Now we extend Ψ to the extended graph Γ+, such that Ψ+ is a scattering solution
for L+

N (see Proposition 3). In particular, the function Ψ+ must satisfy, at the central
node,

Ψ+
j (0) = Ψ+

0 (0), j = 1, · · · , N,
N∑
j=1

(Ψ+
j )′(0)− (Ψ+

0 )′(0) = HΨ+
0 (0).



Noting that Ψ is an eigenfunction of (LN (k), D(LN (k)), we have

hN (k)Ψ+
0 (0)− (Ψ+

0 )′(0) =
N∑
j=1

(Ψ+
j )′(0)− (Ψ+

0 )′(0) = HΨ+
0 (0). (3.21)

Now, noting that Ψ+ over the infinite branch admits the following form

Ψ+
0 (x) = rN (ξ)e−ıξx + e+ıξx x ∈ (−∞, 0],

the relation (3.21) yields to

hN (k)(rN (ξ) + 1)− ıξ(1− rN (ξ)) = H(rN (ξ) + 1),

or equivalently

hN (k) = H +
ıξ(1− rN (ξ))

(rN (ξ) + 1)
= hN (ξ).

This proves the first inclusion. Now, we prove that

σ+(LN (k)) ⊇
{
ξ2 | ξ ∈ R, hN (ξ) = hN (k)

}
.

Let ξ ∈ R be such that hN (ξ) = hN (k). We consider a scattering solution Ψ+ of the
extended operator L+

N (defined by (3.6)) associated to the frequency ξ2. We, then,
prove that the restriction of Ψ+ to the compact graph Γ is an eigenfunction of LN (k)

associated to the eigenvalue ξ2. This trivially implies that ξ2 ∈ σ+(LN (k)).

In this aim, we only need to show that this restriction of Ψ+ to Γ is in the domain
D(LN (k)). Indeed, this is equivalent to proving that the boundary condition:

N∑
j=1

(Ψ+
j )′(0) = h(k)Ψ+

0 (0), (3.22)

is satisfied. As Ψ+ is a scattering solution of L+
N , it satisfies

N∑
j=1

(Ψ+
j )′(0) = HΨ+

0 (0) + (Ψ+
0 )′(0) =

(
H +

(Ψ+
0 )′(0)

Ψ+
0 (0)

)
Ψ+

0 (0).



Furthermore,

Ψ+
0 (0) = rN (ξ) + 1 and (Ψ+

0 )′(0) = ıξ(1− rN (ξ)),

and so

N∑
j=1

(Ψ+
j )′(0) =

(
H +

ıξ(1− rN (ξ))

rN (ξ) + 1

)
Ψ+

0 (0) = h(ξ)Ψ+
0 (0) = h(k)Ψ+

0 (0).

This proves (3.22) and finishes the proof of the proposition.

The following proposition provides the characteristic equation permitting to iden-
tify the eigenvalues of the operator LN ,D(k):

Proposition 5. The real λ2 > 0 is an eigenvalue of the operator LN ,D(k) if and only
if

ΨN ,D(λ) = hN ,D(k)ΦN ,D(λ),

where

ΦN ,D(λ) :=
N∏
j=1

ϕjN ,D(0, λ) and ΨN ,D(λ) :=
d

dx

(
N∏
j=1

ϕjN ,D(x, λ)

)∣∣∣
x=0

, (3.23)

ϕjN ,D(x, λ) being the fundamental solutions on different branches.

Proof. We give the proof for the Neumann boundary conditions, noting that the Dirich-
let case can be treated, exactly, in the same manner. Assume λ2 to be a positive eigen-
value of LN (k). The associated eigenfunction, yλ(x) = ⊗Nj=1y

j
λ(x), has necessarily the

following form:
yjλ(x) = αjϕ

j
N (x, λ),

where αj’s are real constants and the vector (α1, · · · , αN) is different from zero. The
function yλ, being in the domain D(LN (k)), it should satisfy the associated boundary
condition at the central node. This implies that the vector (α1, · · · , αN) is in the



kernel of the matrix:

M :=



ϕ1
N (0, λ) −ϕ2

N (0, λ) 0 · · · 0
0 ϕ2

N (0, λ) −ϕ3
N (0, λ) · · · 0

0 0 ϕ3
N (0, λ) · · · 0

· · · · · · · · · · · · · · ·
−hN (k)ϕ1

N (0, λ) + ψ1
N (0, λ) ψ2

N (0, λ) ψ3
N (0, λ) . . . ψNN (0, λ)


where ψjN (0, λ) denotes d

dx
ϕjN (x, λ)|x=0. This means that the determinant det(M) is

necessarily 0. Developing this determinant we find:

ΨN (λ) = hN (k)ΦN (λ).

Corollary 2. Consider two potentials q = ⊗Nj=1qj and q′ = ⊗Nj=1q
′
j and denote by L+

N

and (L′)+
N , the associated Neumann Schrödinger operators defined on the extended

graph Γ+. Assuming that the reflection coefficients rN (k) and r′N (k) are equivalent
rN (k) ≡ r′N (k), we have

ΦN (k)Ψ′N (k) = Φ′N (k)ΨN (k), ∀k ∈ R, (3.24)

where ΦN , ΨN , Φ′N and Ψ′N are defined through 3.23 for the potentials q and q′.

Proof. By Proposition 4, k2 is an eigenvalue of the operators LN (k) and L′N (k). Ap-
plying the Proposition 5, this means that

ΨN (k) = hN (k)ΦN (k) and Ψ′N (k) = h′N (k)Φ′N (k).

As rN (k) ≡ r′N (k), we have hN (k) ≡ h′N (k) and thus the above equation yields
to (3.24).

The above corollary is also valid when we replace the Neumann by Dirichlet bound-
ary conditions. Finally, this corollary yields to the following proposition on the differ-
ence between the two potentials q and q′.

Proposition 6. Consider two potentials q = ⊗Nj=1qj and q′ = ⊗Nj=1q
′
j and denote by

L+
N and (L′)+

N , the associated Neumann Schrödinger operators defined on the extended



graph Γ+. Assuming that the reflection coefficients rN (k) and r′N (k) are equivalent
rN (k) ≡ r′N (k), we have

N∑
j=1

∏
i 6=j

ϕiN (0, k)ϕ′
i
N (0, k)

∫ lj

0

q̃j(x)ϕjN (x, k)ϕ′
j
N (x, k)dx = 0, ∀k ∈ R, (3.25)

where q̃j = q′j − qj.

Proof. For j = 1, · · · , N , we have:∫ lj

0

q′j(x) ϕ′jN (x, k)ϕjN (x, k)dx−
∫ lj

0
qj(x)ϕjN (x, k)ϕ′jN (x, k)dx =

= ϕjN (x, k) d
dx
ϕ′jN (x, k)

∣∣x=lj

x=0
− d

dx
ϕjN (x, k)ϕ′jN (x, k)

∣∣x=lj

x=0

= ψjN (0, k)ϕ′jN (0, k)− ϕjN (0, k)ψ′jN (0, k). (3.26)

Here the second line has been obtained from the first one, replacing qj(x)ϕjN (x, k)

by d2

dx2
ϕjN (x, k) + k2ϕjN (x, k) and integrating by parts. Using (3.24) and the above

equation, we have:

N∑
j=1

∏
i 6=j

ϕiN (0, k)ϕ′
i
N (0, k)

∫ lj

0

q̃j(x)ϕjN (x, k)ϕ′
j
N (x, k)dx =

= ΨN (k)Φ′N (k)− ΦN (k)Ψ′N (k) = 0.

Before finishing this subsection, note that, once more, the above proposition is also
valid for the case of Dirichlet boundary conditions and rD(k) ≡ r′D(k) implies:

N∑
j=1

∏
i 6=j

ϕiD(0, k)ϕ′
i
D(0, k)

∫ lj

0

q̃j(x)ϕjD(x, k)ϕ′
j
D(x, k)dx = 0, ∀k ∈ R. (3.27)

We are now ready to prove Theorems 4 and 5.

3.6 Proof of Theorem 4

In this section we prove Theorem 4 applying the characteristic equation (3.25) and
high-frequency behavior of ϕjN ,D(x, k). Again, for simplicity’s sake, we give the proof



only for the case of Neumann boundary conditions, noting that the Dirichlet case can
be done similarly.

We know the asymptotic behavior of fundamental solutions ϕjN (x, k)

ϕjN (x, k) = cos(k(lj − x)) +O
(

1

k

)
.

In particular the product writes

ϕjN (x, k)ϕ′
j
N (x, k) = cos2(k(lj − x)) +O

(
1

k

)
.

Applying the characteristic equation (3.25) and developing the products ϕjN (x, k)

ϕ′jN (x, k), we have:

N∑
j=1

(∏
i 6=j

cos2(kli)

)∫ lj

0

q̃j(s) cos2(k(lj − s))ds = O
(

1

k

)
,

N∑
j=1

(∏
i 6=j

cos2(kli)

)∫ lj

0

q̃j(s)

(
1 + cos 2(k(lj − s))

2

)
ds = O

(
1

k

)
,

N∑
j=1

(∏
i 6=j

cos2(kli)

)
1

2

∫ lj

0

q̃j(s)ds = O
(

1

k

)
. (3.28)

In the last passage, we applied the fact that
∫ lj

0
q̃j(s) cos 2(k(lj−s))ds = O (1/k), since

q̃ is in H1(Γ).
The left side of (3.28) is an almost periodic function with respect to k, in the Bohr’s
sense. Following the same arguments as those of Theorem 3 we obtain

N∑
j=1

(∏
i 6=j

cos2(kli)

)
1

2

∫ lj

0

q̃j(s)ds = 0 ∀k ∈ R.

Assume, without loss of generality, that the lengths are ordered increasingly l1 < . . . <

lN and choose kN = π/2lN :

cos(kN lj) 6= 0 for j 6= N.



Indeed, we have

∏
i 6=N

cos2(kN li)

∫ lN

0

q̃N(s)ds = 0⇒
∫ lN

0

q̃N(s)ds = 0.

Then, the characteristic equation can be rewritten

cos2(klN)
N−1∑
j=1

(∏
i 6=j

cos2(kli)

)
1

2

∫ lj

0

q̃j(s)ds = 0,

and, since it is a product of two analytic functions w.r.t k, we have

N−1∑
j=1

(∏
i 6=j

cos2(kli)

)
1

2

∫ lj

0

q̃j(s)ds = 0 ∀k ∈ R,

and we finish the proof of Theorem 4, repeating the same argument N − 1 times.

3.7 Proof of Theorem 5

In this section, we consider two potentials q = ⊗Nj=1qj and q′ = ⊗Nj=1q
′
j, satisfying

the assumptions of Theorem 5. Assuming that they give rise to the same Neumann
and Dirichlet reflection coefficients, RN (k) ≡ r′N (k) and RD(k) ≡ r′D(k), we have the
characteristic equations (3.25) and (3.27).

Let us define the operators LjN ,D to be the operator − d2

dx2
+ qj(x) over [0, lj] with

the domain
D(LjN ,D) = closure of C∞N ,D(0, lj) in H2(0, lj),

where C∞N (0, lj) (resp. C∞D (0, lj)) denotes the space of infinitely differentiable functions
f defined on [0, lj] satisfying Dirichlet boundary condition at 0 and Neumann (resp.
Dirichlet) boundary condition at lj.
Noting that, we have assumed for the potential qj(x) to satisfy ‖qj‖H1(0,lj) < C(Γ) ≤
C1(Γ) := minj=1,...,N

π2

4l
5/2
j

and that qj(0) = 0, we have ‖qj‖L∞(0,lj) <
π2

4l2j
(one has

the Sobolev injection ‖qj‖L∞(0,lj) ≤
√
lj‖qj‖H1(0,lj)). This implies that the eigenvalues

of LjN remain positive. In fact, π2

4l2j
is the minimum eigenvalue of the potential-less

Schrödinger operator (with Neumann boundary conditions) and therefore by adding a
potential whose L∞-norm is smaller than this eigenvalue, the eigenvalues of LjN remain



positive.
Considering ((λjn)2)∞n=1 (λjn > 0) the sequence of eigenvalues of LjN , (3.25) implies

for each j = 1, · · · , N,

∏
i 6=j

ϕiN (0, λjn)ϕ′
i
N (0, λjn)

∫ lj

0

q̃j(x)ϕjN (x, λjn)ϕ′
j
N (x, λjn)dx = 0, ∀n = 1, 2, · · · (3.29)

where we have applied the fact that ϕjN (0, λjn) = 0.
At this point, we will use the assumption B2 on the lengths lj to obtain a lemma

on the non-overlapping of the eigenvalues for different branches:

Lemma 5. Under the assumptions of Theorem 5, for all j = 1, · · · , N ,∏
i 6=j

ϕiN (0, λjn)ϕ′
i
N (0, λjn) 6= 0 ∀n ∈ N.

Proof. In order to prove this lemma, we only need to show that (λjn)2 is not an eigen-
value of LiN nor L′iN for i 6= j.

In this aim, we first show that, if ‖q‖H1 , ‖q′‖H1 < C2(Γ) and assumption B2 holds,
then there are at most a finite number of overlapping eigenvalues for different branches.
Indeed, forM(Γ) defined by (3.13), we show that taking n1, n2 > M(Γ), λin1

is different
from λjn2

and λ′jn2
the eigenvalues of LjN and (L′)jN (j 6= i). Assume, contrarily, that

there exist n1, n2 > M(Γ) and i 6= j, such that

λin1
= λjn2

or λin1
= (λ′)jn2

. (3.30)

Without loss of generality, we consider the first case. Applying Lemma 3, we have∣∣∣∣λin1
− (2n1 − 1)2π2

4l2i

∣∣∣∣ < C0(li)C2(Γ)

2n1 − 1
,∣∣∣∣λjn2

− (2n2 − 1)2π2

4l2j

∣∣∣∣ < C0(lj)C2(Γ)

2n2 − 1
. (3.31)

Therefore, the relation (3.30) implies that,∣∣∣∣(2n1 − 1)2π2

4l2i
− (2n2 − 1)2π2

4l2j

∣∣∣∣ < C2(Γ)

(
C0(li)

2n1 − 1
+

C0(lj)

2n2 − 1

)
.

Taking (without loss of generality) n1 ≤ n2, and dividing the above inequality by



(2n1 − 1)2π2/4l2j , we have∣∣∣∣ l2jl2i − (2n2 − 1)2

(2n1 − 1)2

∣∣∣∣ < C2(Γ)
4l2j (C0(li) + C0(lj))

π2

1

(2n1 + 1)3
.

Applying the trivial inequality∣∣∣∣ l2jl2i − (2n2 − 1)2

(2n1 − 1)2

∣∣∣∣ =

∣∣∣∣ ljli +
2n2 − 1

2n1 − 1

∣∣∣∣ ∣∣∣∣ ljli − 2n2 − 1

2n1 − 1

∣∣∣∣ > lj
li

∣∣∣∣ ljli − 2n2 − 1

2n1 − 1

∣∣∣∣ ,
we have ∣∣∣∣ ljli − 2n2 − 1

2n1 − 1

∣∣∣∣ < C2(Γ)
4lilj(C0(li) + C0(lj))

π2

1

(2n1 + 1)3
≤ 1

(2n1 + 1)3
,

where we have applied the definition of C2(Γ). This leads to a contradiction with the
definition of M(Γ).

Now assume that, there exist n1 ∈ {1, · · · ,M(Γ)} and n2 ∈ N such that for some
i 6= j, λin1

= λjn2
and we will find a contradiction with the fact that ‖q‖H1 < C3(Γ)

(the case of λin1
= λ′jn2

can be treated exactly in the same manner). In this aim, we
apply once again Lemma 3. If λin1

= λjn2
, we have∣∣∣∣(2n1 − 1)2π2

4l2i
− (2n2 − 1)2π2

4l2j

∣∣∣∣ < C3(Γ)

(
C0(li)

2n1 − 1
+

C0(lj)

2n2 − 1

)
≤

≤ C3(Γ)(C0(li) + C0(lj)).

This, trivially, is in contradiction with the definition of C3(Γ).

Applying Lemma 5 to the (3.29), we have:∫ lj

0

q̃j(x)ϕjN (x, λjn)ϕ′
j
N (x, λjn)dx = 0, ∀j = 1, · · · , N, ∀n ∈ N

From Equation (3.26) we have

∫ lj

0

q̃j(x)ϕ′
j
N (x, λjn)ϕjN (x, λjn)dx = ψjN (0, λjn)ϕ′

j
N (0, λjn)− ϕjN (0, λjn)ψ′

j
N (0, λjn) = 0.

This leads to ψjN (0, λjn)ϕ′jN (0, λjn) = 0, since (λjn)2 is an eigenvalue of LjN . Further-



more, The value ψjN (0, λjn) is different from 0, because otherwise we would have a
non-zero fundamental solution ϕjN (x, λjn) with three zero boundary conditions. Thus
ϕ′jN (0, λjn) = 0 which implies that (λjn)2 is also an eigenvalue of L′jN . Therefore, the
eigenvalues of LjN and L′jN coincide. In the same manner, we can show that the eigen-
values of LjD and (L′)jD coincide as well.
It is well-known result [10, 29] that the specification of two spectra of Sturm-Liouville
boundary value problem uniquely determines the potential on the segment ej, i.e.

q̃j(x) ≡ 0 ∀x ∈ [0, lj] j = 1, . . . , N.

This completes the proof of Theorem 5.

3.8 Summary and further directions

In this chapter we have shown some results about the fault-detection and fault-
localization on a electric star-shaped network.
A first result is the localization of open and short circuits on the network.

Theorem (Theorem 3). Consider a star-shaped network Γ composed of nj branches
of length lj (j = 1, · · · ,m) all joining at a central node so that the whole number of
branches N is given by

∑m
j=1 nj. Let assume for the potential q on the network to be

C0(Γ) and that it takes the value zero at the central node. Then the knowledge of the
Neumann reflection coefficient rN (k) determines uniquely the parameters (nj)

m
j=1 and

(lj)
m
j=1.

Through the analysis of the reflection coefficient r(k), we are able to retrieve ge-
ometrical informations such as the number of the branches and their lengths. The
knowledge of the lengths is equivalent to localize the hard faults on the branches of
the electric network.
A second class of results is toward the identification of the heterogeneities. The first
type is a heterogeneities test based on the comparison of reflection coefficients. The
measured reflection coefficient is compared with nominal one and this will let us to
discover any eventual soft faults.

Theorem (Theorem 4). Assume for the star-shaped graph Γ that

B1 lj 6= lj′ for any j, j′ ∈ {1, · · · , N} such that j 6= j′ .



If there exist two potentials q = ⊗Nj=1qj and q′ = ⊗Nj=1q
′
j in H1(Γ), satisfying qj(0) =

q′j(0) = 0, and giving rise to the same reflection coefficient, rN (k) ≡ r′N (k), one
necessarily has ∫ lj

0

qj(s)ds =

∫ lj

0

q′j(s)ds j = 1, · · · , N.

This result allows to identify the quantities

1

4

∫ lj

0

∣∣ d
ds

(Zj
c )(s)

∣∣2∣∣Zj
c (s)

∣∣2 ds− 1

2

(
d
dx

(Zj
c )(lj)

Zj
c (lj)

−
d
dx

(Zj
c )(0)

Zj
c (0)

)
,

on each branch. Supposing the reliability of the connectors at the central node and at
the terminal nodes, i.e. d

dx
(Zj

c )
′(lj) = d

dx
(Zj

c )(0) = 0, the measurement of a reflection
coefficient allows to identify all soft faults causing line parameters variations. This
test classify all soft faults with respect the quantity

∫ lj
0
q(s)ds.

To have a complete identification of the heterogeneities we have to go further: the last
result concerns the identifiability of the potentials.

Theorem (Theorem 5). Consider a star-shaped graph Γ satisfying the geometrical
assumption

B2 For any j, j′ ∈ {1, · · · , N} such that j 6= j′, lj/lj′ is an algebraic irrational number.

Take the strictly positive constant C(Γ) as defined by (3.18) and consider two po-
tentials q and q′ belonging to H1(Γ), satisfying qj(0) = q′j(0) = 0, the assumption

A5 q̄j =
∫ lj

0
qj(s)ds = 0 for j = 1, · · · , N ;

and
‖q‖H1(Γ) < C(Γ) and ‖q′‖H1(Γ) < C(Γ).

If they give rise to the same Neumann and Dirichlet reflection coefficients:

rN (k) ≡ r′N (k) and rD(k) ≡ r′D(k),

then q ≡ q′.

The result is only at a theoretical stage, because the assumptions B2 limit the
applicability in the real settings.
Indeed, the assumption of having the ratios between the electrical lengths that are



irrational algebraic numbers is not verifiable in a real setting. This hypothesis has
been previously considered in control literature to ensure the exact controllability of
wave equations over networks. In such problems, removing such assumption one can
still hope to prove the approximate controllability.
Following the same idea, we may look for a similar approximate identifiability result,
when such assumption is relaxed.



Chapter 4

Inverse scattering for lossy
star-shaped network

In this chapter we consider a class of inverse scattering problems on the star-shaped
graphs for the Zakharov-Shabat system, having in mind the reflectometry experiments
on a lossy electrical network.

Theorem 6 and Theorem 7 can directly applied to the fault-detection and diagnosis
of such networks, while Theorem 8 is a preliminary results towards the detection of
isolation faults for the train transmission line.

4.1 Main hypothesis and physical interpretation

After the Liouville transformation, the lossy transmission lines equations write
∂
∂x
V (k, x) = −

(
ik + R(x)

L(x)

)
Zc0(x)I(k, x),

∂
∂x
I(k, x) = −

(
ik + G(x)

C(x)

)
Z−1
c0 (x)V (k, x).

(1.44)

Through this chapter, we assume that

C1 The distributed parameters C(x) and L(x) are continuously differentiable on the
transmission line, while the loss terms R(x) and G(x) are continuos;

C2 The line parameters are strictly positive

L(x) > 0, C(x) > 0, R(x) > 0, G(x) > 0;
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C3 The high-frequency characteristic impedance Zc0(x) =
√
L(x)/C(x) is continu-

ous at the central node of the star-shaped network;

The assumption C1 is needed for the definitions of the three potentials

qd(x) =
1

2

(
R(x)

L(x)
+
G(x)

C(x)

)
, (1.47)

q−(x) =
1

4

d

dx

[
log

L(x)

C(x)

]
− 1

2

(
R(x)

L(x)
− G(x)

C(x)

)
, (1.48)

q+(x) =
1

4

d

dx

[
log

L(x)

C(x)

]
+

1

2

(
R(x)

L(x)
− G(x)

C(x)

)
. (1.49)

Network under test

As in Chapter 3, we consider a star-shaped graph Γ with N edges. Each edge ej
connects the extremity lj to the central node (see Figure 4.1).
Let Γl0 be the star shaped graph Γ where a branch e0 = [−l0, 0] is added to the central
node. On each branch ej ∈ Γ, the variables

−l0

l1

l2

lN−1lN

0
e1

e2

eN−1
eN

e0

Figure 4.1: The graph Γl0


ν1j(x, k) = 1√

2

[
Z
−1/2
c0,j (x)Vj(k, x)− Z1/2

c0,j(x)Ij(k, x)
]
,

ν2j(x, k) = + 1√
2

[
Z
−1/2
c0,j (x)Vj(k, x) + Z

1/2
c0,j(x)Ij(k, x)

]
,

(1.45)



solve the Zakharov-Shabat system

d

dx
Yj(x, k) + ikσ3Yj(x, k) = Qj(x)Yj(x, k), x ∈ [0, lj] (1.101)

where lj is the length of each interval. As before, the branch e0 represents a matched
load uniform lossless wire: the three potentials {q0,+, q0,−, q0,d} are zero. We have a
linear decoupled first-order system for x ∈ [−l0, 0]{

∂xν10(x, k) = −ikν10(x, k),

∂xν20(x, k) = +ikν20(x, k).
(4.1)

Central node

The continuity of the characteristic impedance Zc0 at the central node (assumption
C3) excludes certain type of faults that can happen at the level of the connector. Here
we are only interested in detecting the faults on wires.
Indeed, the continuity of the high-frequency characteristic impedance Zc0,j(x) at cen-
tral node simplify the central boundary conditions (1.53) for Zakharov-Shabat formu-
lation {

ν10(0, k) + ν20(0, k) = ν1j(0, k) + ν2j(0, k) ∀j ∈ {1, . . . , N}∑N
j=1 ν1j(0, k)− ν2j(0, k) = ν10(0, k)− ν20(0, k).

Boundary conditions at the network extremities.

In order to develop diagnostic techniques for electric networks, we need to consider
an experimental setting with open circuits boundary conditions.
On each terminal node lj we are imposing Ij(lj, k) = 0 and this is equivalent to
choosing ρj(k) = 1 for the boundary conditions (1.50) at all terminal nodes:

ν1j(lj, k)− ν2j(lj, k) = 0 ∀j ∈ {1, . . . , N}.

Boundary condition at the source node l0

At the minimal node l0, we connect a source generator νS(k)

ν20(−l0, k) = νS(k).



We will show in the next section how to relate the source generator to the reflection
coefficient.

Formulation of the model.

In order to study the lossy transmission line equations on the extended graph Γl0 , we
consider the Zakharov-Shabat equations defined on each branch ej, j = 0, . . . , N as
follows{

∂xν1j(x, k) = (qj,d(x)− ik)ν1j(x, k)− qj,+(x)ν2j(x, k),

∂xν2j(x, k) = −qj,−(x)ν1j(x, k)− (qj,d(x)− ik)ν2j(x, k),
x ∈ [0, lj]. (4.2)

with the boundary conditions at the central node{
ν10(0, k) + ν20(0, k) = ν1j(0, k) + ν2j(0, k) ∀j ∈ {1, . . . , N}∑N

j=1 ν1j(0, k)− ν2j(0, k) = ν10(0, k)− ν20(0, k),
(4.3)

and at all boundary vertices

ν1j(lj, k)− ν2j(lj, k) = 0 ∀j ∈ {1, . . . , N}, (4.4)

ν20(−l0, k) = νS(k). (4.5)

4.2 Direct scattering problem

We will consider the Zakharov-Shabat equations and we prove the existence and the
uniqueness of the solution. As for the case of a segment (see Section 1.4), we introduce
the Riccati equation in order to define the reflection coefficient r0(−l0; k).
Next we construct the scattering data for the extended graph with l0 = ∞. A new
reflection coefficient r(k) will be given by asymptotic boundary conditions on the test
branch e0 and we will see how r(k) is related to r0(−l0; k).

Lemma 6. Let Γl0 be a star-shaped graph. Let {qj,+, qj,−, qj,d}Nj=1 be in the class

C+
0 (Γ) = {qj,+, qj,−, qj,d ∈ C0([0, lj]), ∀j = 1, . . . , N} .

and let {q0,+, q0,−, q0,d} be zero on the 0-th branch. The Zakharov-Shabat system (4.2)
with boundary conditions (4.3),(4.4) and (4.5) admits a unique solution.



Proof of Lemma 6. In order to prove the well-posedness of the problem defined by
(4.2),(4.3),(4.4) and (4.5), we will use the decoupling technique of the invariant imbed-
ding method [8], [59],[7].
Let us introduce the following Riccati equation on Γ0 defined on each branch ej as
following:

drj
dx

(x, k) = qj,−(x)r2
j (x, k) + 2(qj,d(x)− ik)rj(x, k)− qj,+(x), (4.6)

with the boundary condition at central node

r0(0, k) =
1−

∑N
j=1

1−rj(0,k)

1+rj(0,k)

1 +
∑N

j=1
1−rj(0,k)

1+rj(0,k)

, (4.7)

while at the terminal nodes l1, . . . , lN we have

rj(lj, k) = 1
(

= ρj(k)
)

∀j = 1, . . . , N. (4.8)

We remark that, thanks to Lemma 1, the restriction of solution rj(x, k) exists and it
is unique on each branch ej. The assumption C2 satisfies the hypothesis of Corollary
1 (page 41) and consequently the coefficients rj verify

|rj(0, k)| < 1 ∀j = 1, . . . , N,

so the boundary condition (4.7) at central node is well-defined for all k in R.
Hence the Riccati equation (4.6) admits a unique global solution defined for all x ∈ Γ0.

Now, we will change the variables in (4.2),(4.3),(4.4) and (4.5), setting

ν̃1j(x, k) = ν1j(x, k)− rj(x, k)ν2j(x, k).

The new equivalent system is given by

{
∂xν̃1j(x, k) = (qj,d(x)− ik + qj,−(x)rj(x, k))ν̃1j(x, k),

∂xν2j(x, k) = −qj,−(x)ν̃1j(x, k)− (qj,d(x)− ik + qj,−(x)rj(x, k))ν2j(x, k)
(4.9)



where the boundary conditions at the central node are
ν̃10(0, k) + (r0(0, k) + 1)ν20(0, k) = ν̃1j(0, k) + (rj(0, k) + 1)ν2j(0, k)

ν̃10(0, k) + (r0(0, k)− 1)ν20(0, k) =
N∑
j=1

ν̃1j(0, k) + (rj(0, k)− 1)ν2j(0, k)
(4.10)

and at the terminal nodes, we have{
ν̃1j(lj, k) = 0 j = 1, . . . , N

ν20(−l0, k) = νS(k).

Note that the system (4.9) is decoupled: the first equation is independent from the
second one, because at the central node the boundary conditions involve only the first
variable ν̃1j(x, k). From (4.7) and (4.10) we obtain

ν̃10(0, k) =
N∑
j=1

r0(0, k) + 1

rj(0, k) + 1
ν̃1j(0, k).

Now it is clear that the first equation of (4.9) depends only on the variables {ν̃1j}nj=1

and, being a Cauchy problem, it has a unique solution {ν̃1j(x, k)}Nj=0 ≡ 0. Indeed, we
have ν1j(x, k) = rj(x, k)ν2j(x, k).
The second equation becomes simply

∂xν2j(x, k) = −(qj,d(x)− ik + qj,−(x)rj(x, k))ν2j(x, k)

with the boundary conditions ν20(−l0, k) = νS(k),

ν2j(0, k) =
(r0(0, k) + 1)

(rj(0, k) + 1)
ν20(0, k).

Also the second equation has also unique solution.
We have shown the existence and the uniqueness of the solutions of (4.9),(4.10).

This complete the proof for the well-posedness of (4.2), (4.3), (4.4) and (4.5).

We define the reflection coefficient for the Zakharov-Shabat system (4.2) on Γl0 as

rl(k) = r0(−l0, k). (4.11)



Let Γ+ be the union of Γ whit the half-line (−∞, 0], i.e. the length l0 of the branch
indexed by 0 is chosen to be infinite. According to the classical scattering theory,
we look for a solution of the Zakharov-Shabat system on Γ+ such that it verifies the
asymptotic limit(

ν1(x, k)

ν2(x, k)

)
∼

(
0

1

)
eikx + r(k)

(
1

0

)
e−ikx as x→ +∞

In terms of experiment, we are interested in the scattering solution where a signal of
frequency k is applied at the extremity of the test branch e0. Note that the asymptotic
limit is a sum of exponentials and this can be represented as sum of a incident and
reflected waves. We are implicitly choosing a normalized incident wave. In this case,
the reflection coefficient r(k) is defined by the following proposition

Proposition 7. Let Γ+ be the star-shaped graph and let assume that the assumptions
C1 through C3 hold. Let q = ⊗Nj=1(qj,+, qj,−, qj,d) be in the class

C+
0 (Γ) = {qj,+, qj,−, qj,d ∈ C0([0, lj]), ∀j = 1, . . . , N} ,

then there exists a unique continuous (with respect to k) solution

Y(x, k) := {Yj(x, k)}Nj=0 =

{(
y1j(x, k)

y2j(x, k)

)}N

j=0

of the scattering problem. This means that for every k ∈ R , Y(x, k) satisfies

• the Zakharov-Shabat equations (4.2),

• Y(x, k) satisfies the boundary conditions (4.3) and (4.4);

• For each k ∈ R there exists r(k) such that

Y0(x, k) =

(
0

1

)
eikx + r(k)

(
1

0

)
e−ikx, x→ −∞. (4.12)

The reflection coefficient r(k) appears to be unique.

Proof. In order to prove the well-posedness of the problem (4.2)-(4.4) verifying (4.12),
we consider the same problem defined on a subgraph and we extend analytically the



solution.
Let fix l0 > 0 and let consider a Zakharov-Shabat system (4.2) defined on the subgraph
Γl0 ⊂ Γ+, defined as above, with the boundary conditions at central node (4.3), at the
terminal nodes (4.4) and on the 0-th branch

ν20(−l0, k) = νs(k).

Thanks to Lemma 6, the problem is well posed and it admits a unique solution
⊗Nj=0(ν1j(x, k), ν2j(x, k)) and moreover there exists a unique coefficient rl(k) such that

ν10(−l0, k) = rl(k)ν20(−l0, k). (4.13)

Let’s consider the system (4.1) on the half line (−∞,−l0), Adding the half line at the
node x = l0 of the graph Γl0 and imposing the continuity of the solution we obtain on
the 0-th branch(

y10(x, k)

y20(x, k)

)
= ν20(−l0, k)eikl0

(
0

1

)
eikx + ν10(−l0, k)e−ikl0

(
1

0

)
e−ikx.

From the boundary condition at x = −l0 and from (4.13), it follows(
y10(x, k)

y20(x, k)

)
= νS(k)eikl0

(
0

1

)
eikx + νS(k)e−ikl0rl(k)

(
1

0

)
e−ikx.

Normalizing the first vector we obtain(
y10(x, k)

y20(x, k)

)
=

(
0

1

)
eikx + e−2ikl0rl(k)

(
1

0

)
e−ikx.

This is equivalent to (4.12), where the reflection coefficient r(k) is related to the
coefficients rl(k) defined in (4.11) by the formula

r(k) = e−2ikl0rl(k). (4.14)

The latter formula is the same as (1.110), where we had shown the equivalence between
the engineering scattering data and the theoretic scattering data for the Zakharov-
Shabat equations.



4.3 Inverse problems and main results

As a first inverse problem, we consider the inversion of the geometry of the graph. We
will be able to find the lengths lj of the branches of a star-shaped graph through the
knowledge of the reflection coefficient r(k).

Theorem 6. Assume for the star-shaped graph Γ+ that

B1 lj 6= lj′ for any j, j′ ∈ {1, · · · , N} such that j 6= j′ .

C4 We assume for the potentials to satisfy

qj,+, qj,−, qj,d ∈ H1(0, lj) ∀j = 1, . . . , N.

The knowledge of the reflection coefficient r(k) determines uniquely the lengths (lj)
N
j=1.

Remark 28. As we will see through the proof, the inversion method is constructive: it
allows to recover at least approximately the lengths for each branch. A proof of this
theorem will be provided in Section 4.4.

A second inverse problem is related to the detection of soft faults in the network.
It can be formulated as the identifiability of loss line factors. We will prove the well-
posedness of the inverse problem of finding the loss line factors defined as∫ lj

0

qj,d(x)dx =
1

2

∫ lj

0

(
Rj(x)

Lj(x)
+
Gj(x)

Cj(x)

)
dx

on each branch. If any of these quantities changes, we know that there is a variation of
the line parameters in the corresponding branch. By performing the inverse scattering
technique [62] on the branch we can identify the soft faults causing such variations.

Theorem 7. Assume for the star-shaped graph Γ+ that B1 is valid.
If there exist two potentials q = ⊗Nj=1(qj,+, qj,−, qj,d) and q′ = ⊗Nj=1(q′j,+, q

′
j,−, q

′
j,d) sat-

isfying C4 and the condition Zc0j(0) = Z ′c0j(0) for all j = 0, . . . , N and giving rise to
the same reflection coefficient, r(k) ≡ r′(k), one necessarily has:∫ lj

0

qj,d(s)ds =

∫ lj

0

q′j,d(s)ds j = 1, · · · , N.



Remark 29. The condition about the characteristic impedance Zc0j(0) at the central
node excludes faults of the connector.

Defining the following factor

Qj,d(x1, x2) :=

∫ x2

x1

qj,d(s)ds,

we have shown we are able to identify the loss line factor Qj,d(0, lj). This theorem
allows to identify the situations where the soft faults cause a variation of the loss line
factor. The proof can be found in Section 4.6.

The last result concerns the identifiability of the line parameters R/L and G/C

on the uniform transmission line network. The hypothesis of constant line parameters
and their comparison such that R/L > G/C allows to identify two aggregates of line
parameters

R

L
and

G

C

on each wire of a star-shaped network.

Theorem 8. Let us consider a star-shaped network Γ+ with the geometric assumption
B1. Let the potentials q = ⊗Nj=1(qj,+, qj,−, qj,d) be of the following forms:

qj,d(x) : = 1
2

(
Rj

Lj
+

Gj

Cj

)
, (4.15)

qj,+(x) : = +1
2

(
Rj

Lj
− Gj

Cj

)
, (4.16)

qj,−(x) : = −1
2

(
Rj

Lj
− Gj

Cj

)
. (4.17)

where Rj, Lj, Gj and Cj are constant parameters uniformly defined on each branch.
If Gj/Cj < Rj/Lj on each branch, then the reflection coefficient r(k) allows to identify
uniquely these two quantities

Rj

Lj
and

Gj

Cj

on all branches ej of the star-shaped network Γ.

This theorem investigates the identifiability problem of the "isolation faults". As
described in Section 1.1, the french railway’s SNCF is interested in the detection of
these faults as long as the technique is not invasive. The hypothesis Gj/Cj < Rj/Lj



is given by the small influence in the shunt conductance G over the resistance R; in
real applications Gj/Cj � Rj/Lj. This result states the measurement of the reflection
coefficient at high frequency is enough to retrieve the quantities R/L and G/C. The
proof can be found in Section 4.7.

4.4 Identification of Geometry

Theorem 6 allows us to detect and locate any possible hard faults. Through the
analysis of the reflection coefficient r(k) we will be able to compute the position of
any eventual hard faults.

This section is devoted to the proof of Theorem 6. The proof is based on an
asymptotic analysis in the high frequency regime of the reflection coefficient and some
classical results from the theory of the almost periodic functions.
Before proving the theorem, we need to introduce the fundamental solutions of the
following Cauchy problem.

Definition 18. Let’s consider the potentials qj,+, qj,− and qj,d be in the class C+
0 (Γ).

The fundamental solutions Φj(x, k) :=(φ1j(x, k), φ2j(x, k)) and Ψj(x, k) := (ψ1j(x, k), ψ2j(x, k))

are solutions of the same system defined on [0, lj]:{
∂xν1j(x, k) = (qj,d(x)− ik)ν1j(x, k)− qj,+(x)ν2j(x, k),

∂xν2j(x, k) = −qj,−(x)ν1j(x, k)− (qj,d(x)− ik)ν2j(x, k),
(4.18)

verifying the initial values at x = lj{
φ1j(lj, k) = 1,

φ2j(lj, k) = 1,

{
ψ1j(lj, k) = 1

ψ2j(lj, k) = −1.

Remark 30. In Appendix C, we show that the system of fundamental solutions Φj

and Ψj forms a basis for the vector space of the restrictions to the j-th edge of the
solutions of the Zakharov-Shabat system on Γ+. For any boundary conditions at the
external vertices, a solution of the Zakharov-Shabat system on Γ+ can be described
on each branch as a linear combination of the fundamental solutions .
It is not difficult to see that the fundamental solution Φj(x, k) is co-linear with
the restriction of the scattering solution Yj(x, k) for the Zakharov-Shabat system



(4.2),(4.3),(4.4) to the j-branch. Their Wronskian

Wj(x) := ν1j(x, k)φ2j(x, k)− φ1j(x, k)ν2j(x, k) (4.19)

is constant along the edge and it is equal to zero because of the boundary conditions at
the external vertex lj and this is enough to guarantee the co-linearity between Yj(x, k)

and Φj(x, k).

Next lemma shows the high-frequency behavior of the fundamental solution.

Lemma 7. Let φ1(x, k), φ2(x, k) be a fundamental solution associated to the Zakharov-
Shabat system on [0, l] verifying the Cauchy boundary condition

φ1(l, k) = 1 φ2(l, k) = 1.

We have the following asymptotic behavior as k tends to infinity

φ1(x, k) = eQd(x,l)−ik(l−x) +O (1/k),

φ2(x, k) = e−Qd(x,l)+ik(l−x) +O (1/k),
(4.20)

where the quantity Qd(x, l) represents the dissipation along the line, i.e.

Qd(x, l) =

∫ l

x

qd(s)ds =

∫ l

x

1

2

(
R(s)

L(s)
+
G(s)

C(s)

)
ds.

Proof. The proof of high frequency behavior can be found in Section C.2 of the Ap-
pendix.

Before passing to the proof of theorems, we further need the following Lemma:

Lemma 8. Let us consider a star-shaped network Γ+ satisfying B1. Let’s assume that
the potentials q = ⊗Nj=1(qj,+, qj,−, qj,d) are of the following forms

qj,d(x) ∈ H1(Γ+), qj,+(x) = 0, qj,−(x) = 0. (4.21)

Then the knowledge of the reflection coefficient r(k) determines uniquely the parame-
ters {lj}Nj=1.

Remark 31. The assumption about potentials corresponds to the situation, where

• the line parameters L and C are constants along the network,



• the loss parameters Rj and Lj are such that on each branch

Rj(x)

L
=
Gj(x)

C
, x ∈ [0, lj], ∀j = 1, . . . , N.

Proof. From the boundary conditions at the central node (4.3) we have

ν10(0, k)− ν20(0, k)

ν10(0, k) + ν20(0, k)
=

N∑
j=1

ν1j(0, k)− ν2j(0, k)

ν1j(0, k) + ν2j(0, k)
. (4.22)

Noting that the solution on each branch is co-linear with Φj(x, k) and the relation
(4.12) together with the explicit solutions for ν10(x, k) and ν20(x, k), we have

r(k)− 1

r(k) + 1
=

N∑
j=1

φ1j(0, k)− φ2j(0, k)

φ1j(0, k) + φ2j(0, k)
. (4.23)

When the potentials qj,+(x) and qj,−(x) are zero, the fundamental solutions φ1j(x, k)

and φ2j(x, k) write explicitly as{
φ1j(x, k) = eQj,d(x,lj)−ik(lj−x),

φ2j(x, k) = e−Qj,d(x,lj)+ik(lj−x),

therefore we have

r(k)− 1

r(k) + 1
=

N∑
j=1

eQj,d(0,lj)−iklj − e−Qj,d(0,lj)+iklj

eQj,d(0,lj)−iklj + e−Qj,d(0,lj)+iklj
=

N∑
j=1

tanh(Qj,d(0, lj)− iklj). (4.24)

The knowledge r(k) determines uniquely the signal

f(k) =
N∑
j=1

tanh(Qj,d(0, lj)− iklj)

For k being real, the hyperbolic tangent is periodic: a fourier transform of the signal
f(k) reveals the different periods of the hyperbolic tangents.

We are ready to prove Theorem 6.

Proof of theorem 6. Let’s suppose that there exist two graph settings {lj}Nj=1 and
{l′j, }Nj=1 giving rise to the same reflection coefficient.



Using (4.23), we have

N∑
j=1

φ1j(0, k)− φ2j(0, k)

φ1j(0, k) + φ2j(0, k)
=

N∑
j=1

φ′1j(0, k)− φ′2j(0, k)

φ′1j(0, k) + φ′2j(0, k)
.

This is equivalent to

N∏
j′=1

[φ′1j′(0, k) + φ′2j′(0, k)]

(
N∑
j=1

(φ1j(0, k)− φ2j(0, k))
∏
p 6=j

(φ1p(0, k) + φ2p(0, k))

)
−

N∏
j=1

[φ1j(0, k) + φ2j(0, k)]

(
N∑
j′=1

(φ′1j′(0, k)− φ′2j′(0, k))
∏
p 6=j′

(φ′1p(0, k) + φ′2p(0, k))

)
= 0.

(4.25)

Now using the asymptotic behavior of the fundamental solutions shown in Lemma 7
and defining the function

F (k) :=
N∏
j′=1

cosh(Q′j′,d(0, l
′
j)−ikl′j′)

 N∑
j=1

sinh(Qj,d(0, lj)− iklj)
∏
p 6=j

cosh(Qp,d(0, lj)− iklp)

+

−
N∏
j′=1

cosh(Qj′,d(0, l
′
j)− iklj′)

 N∑
j=1

sinh(Q′j,d(0, lj)− ikl′j)
∏
p6=j

cosh(Q′p,d(0, lj)− ikl′p)

 ,

the formula (4.25) can be written as

F (k) = O
(

1

k

)
, as k →∞.

The function F (k) is almost periodic in the Bohr’s sense [9] and moreover also F 2(k)

is an almost periodic function and its mean valueM(F 2) is well defined. Furthermore,

M(F 2) := lim
k→∞

1

k

∫ k

0

F 2(ξ)dξ = lim
k→∞

1

k

(∫ 1

0

F 2(ξ)dξ +

∫ k

1

F 2(ξ)dξ

)
≤

≤ lim
k→∞

1

k

(
C1 + C2

∫ k

1

1

k2
dk

)
= 0.

The mean value equals to zero implies F (k) = 0 and so we have for each k ∈ R



N∑
j=1

tanh(Qj,d(0, lj)− iklj) =
N∑
j=1

tanh(Q′dj(0, lj)− ikl′j).

and, therefore, by Lemma 8, the two settings are equivalent.

4.5 From inverse scattering to inverse spectral prob-

lem

Here we present some auxiliary proposition in order to prove Theorem 7 and Theorem
8. With the next proposition we show the equivalence between the inverse scattering
problem defined on the extended graph Γ+ and some inverse spectral problems defined
on the compact part Γ.

We will see the knowledge of the reflection coefficient r(k) defined in (4.12) is
equivalent to the knowledge of different spectra of a Zakharov-Shabat operator defined
for Γ associated to different boundary conditions at the central node.

Let’s define the function
h(k) =

r(k)− 1

r(k) + 1
. (4.26)

For fixed k ∈ R, we define the Zakharov-Shabat operator L(k) acting on the
compact graph Γ

L(k) = ⊗Nj=1

(
−∂x + qj,d −qj,+
+qj,− ∂x + qj,d

)
(4.27)

D(L(k)) = closure of C∞k (Γ) in H1(Γ)×H1(Γ), (4.28)

where C∞k (Γ) denotes the space of infinitely differentiable functions ⊗Nj=0(f1j, f2j)
tr

defined on Γ satisfying the boundary conditions

f11(0, k) + f21(0, k) = f1j(0, k) + f2j(0, k) ∀j ∈ {2, . . . , N}
N∑
i=1

f1j(0, k)− f2j(0, k) = h(k)(f11(0, k) + f21(0, k)), (4.29)

f1j(lj, k)− f2j(lj, k) = 0, j = 1, · · · , N.

Remark 32. The only dependence on k of the operator is through the boundary con-



dition (4.29) at the central node.

Definition 19. An eigenvalue of operator L(k) is a complex number ξ, with =(ξ) ≥ 0,
such that there exists a nontrivial solution called eigensolution

Y(x, ξ) = ⊗Nj=1

(
y1j(x, ξ)

y2j(x, ξ)

)
.

verifying
L(k)Y(x, ξ) = ξY(x, ξ).

Proposition 8. We are able to characterize the set of pure imaginary eigenvalues of
L(k), denoted by σi(L(k)), as a level set of the function h(k):

σi(L(k)) = {ζ ∈ C : ζ = iξ, ξ ∈ R+ such that h(ξ) = h(k)}

where h is given by (4.26).

Proof. We start by proving the inclusion

σi(L(k)) ⊆ {ζ ∈ C : ζ = iξ, ξ ∈ R+ such that h(ξ) = h(k)}.

Let ζ ∈ σi(L(k)), then there exists a non-zero solution associated to the eigenvalue
ζ = iξ. Hence we have

N∑
i=1

y1j(0, ξ)− y2j(0, ξ) = h(k)(y11(0, ξ) + y21(0, ξ)).

We extend this solution to the Zakharov-Shabat equations defined on Γ+ imposing the
boundary condition at the central node

h(k)(y11(0, ξ) + y21(0, ξ)) =
N∑
j=1

y1j(0, ξ)− y2j(0, ξ) = y10(0, ξ)− y20(0, ξ)

We use the continuity at the central node, i.e. y11(0, ξ)+y21(0, ξ) = y10(0, ξ)+y20(0, ξ)

and therefore
h(k)(y10(0, ξ) + y20(0, ξ)) = y10(0, ξ)− y20(0, ξ).



Thus
h(k) =

y10(0, ξ)− y20(0, ξ)

y10(0, ξ) + y20(0, ξ)
=
r(ξ)− 1

r(ξ) + 1
= h(ξ).

In the last line, we used the representation (4.12) of the scattering solution for the
0-th branch. This proves the first inclusion.

Now, we prove that

σi(L(k)) ⊇ {ζ ∈ C : ζ = iξ, ξ ∈ R+ such that h(ξ) = h(k)}.

Let ξ ∈ R be such that h(ξ) = h(k). We consider a scattering solution of Zakharov-
Shabat equations on Γ+ associated to the frequency ξ and we prove that the restriction
of this scattering solution to L is an eigen-solution of eigenvalue iξ.
In this aim we only need to show that this restriction is in the domain D(L(k)). The
boundary conditions (4.29) are verified:

N∑
j=1

y1j(0, ξ)− y2j(0, ξ) = y10(0, ξ)− y20(0, ξ)

=
y10(0, ξ)− y20(0, ξ)

y10(0, ξ) + y20(0, ξ)
(y10(0, ξ) + y20(0, ξ))

=
r(ξ)− 1

r(ξ) + 1
(y11(0, ξ) + y21(0, ξ)) = h(ξ)(y11(0, ξ) + y21(0, ξ)).

This concludes the proof.

Now we provide the characteristic equation for the operator L(k). In order to
complete this task, we need to use the fundamental solutions defined in (4.18).

Proposition 9. Let k be a real positive number. Then ik is an eigenvalue of the
operator L(k) if and only if

h(k) =
N∑
j=1

φ1j(0, k)− φ2j(0, k)

φ1j(0, k) + φ2j(0, k)
, (4.30)

where Φj(x, k) = (φ1j(x, k), φ2j(x, k)) are the fundamental solutions on different branches.

Proof. Assume that ik is a pure imaginary eigenvalue of L(k), then the associated
eigenfunction ⊗Nj=1(y1j(x, k), y2j(x, k)) has necessarily the form:

(y1j(x, k), y2j(x, k)) = αj(φ1j(x, k), φ2j(x, k)),



where αj are real constants and the vector (α1, . . . , αN) is different from zero. The
function ⊗Nj=1(ν1j(x, k), ν2j(x, k)) should satisfy the associated boundary conditions at
the central node, or equivalently the vector (α1, . . . , αN) is in the kernel of the matrix
associated to the boundary conditions at the central node :

M :=



φ11(0) + φ21(0) −φ12(0)− φ22(0) 0 · · · 0
0 φ12(0) + φ22(0) −φ13(0)− φ23(0) · · · 0
0 0 φ13(0) + φ23(0) · · · 0
· · · · · · · · · · · · · · ·
−h(k)(φ11(0) + φ21(0))

+φ11(0)− φ21(0)
φ12(0)− φ22(0) φ13(0)− φ23(0) . . . φ1N (0)− φ2N (0)


where for simplicity of notations we have removed the dependence on k of the fun-
damental solutions, i.e. φij(0) = φij(0, k). The determinant of M has to be zero:

N∑
j=1

(φ1j(0, k)− φ2j(0, k))
∏
i 6=j

(φ1i(0, k) + φ2i(0, k) = h(k)
N∏
j=1

(φ1j(0, k) + φ2j(0, k)).

(4.31)
Let’s denote by Ψ(k) and Φ(k) the following expressions

Ψ(k) =
N∑
j=1

(φ1j(0, k)− φ2j(0, k))
∏
i 6=j

(φ1i(0, k) + φ2i(0, k)),

Φ(k) =
N∏
j=1

(φ1j(0, k) + φ2j(0, k)).

The equation (4.31) can be written simply as

Ψ(k) = h(k)Φ(k).

Corollary 3. Let us consider two potentials q = ⊗Nj=1(qj,+, qj,−, qj,d) and q′ = ⊗Nj=1(q′j,+, q
′
j,−, q

′
j,d)

and denote by L+ and L′+, the associated Zakharov-Shabat systems defined on the
extended graph Γ+. Assuming that the reflection coefficients r(k) and r′(k) are equiv-
alent

r(k) ≡ r′(k),



then we have
Φ′(k)Ψ(k) = Ψ′(k)Φ(k), ∀k ∈ R+. (4.32)

Proof. By Proposition 8, ik is an eigenvalue of the operators L(k) and L′(k). Applying
Proposition 9, we have

Ψ′(k) = h′(k)Φ′(k) and Ψ(k) = h(k)Φ(k).

As the reflection coefficients are the same r(k) = r′(k) and consequently h(k) = h′(k),
the above equation yields to (4.32).

Eventually we arrive at the following proposition concerning the error between q
and q′.

Proposition 10. Consider two potentials q = ⊗Nj=1(qj,+, qj,−, qj,d) and
q′ = ⊗Nj=1(q′j,+, q

′
j,−, q

′
j,d) and denote by L+ and L′+ the associated Zakharov-Shabat

systems defined on the extended graph Γ+. Assuming that the reflection coefficients
r(k) and r′(k) are equivalent r(k) ≡ r′(k), we have for all k ∈ R+

N∑
j=1

∏
i 6=j

(φ′1i(0, k) + φ′2i(0, k))(φ1i(0, k) + φ2i(0, k))×

×
[∫ lj

0

q̃j,d(x)
(
φ1j(x, k)φ′2j(x, k) + φ′1j(x, k)φ2j(x, k)

)
dx+

+

∫ lj

0

q̃j,−(x)φ1j(x, k)φ′1j(x, k)− q̃j,+(x)φ2j(x, k)φ′2j(x, k)dx

]
= 0. (4.33)

where the sign ∼ denotes the error terms:

q̃j,x = qj,x − q′j,x, x := +,−, d.

Proof. From Corollary 3, we have

Ψ(k)Φ′(k)−Ψ(k)Φ′(k) = 0



or equivalently

N∑
j=1

∏
i 6=j

(φ′1i(0, k) + φ′2i(0, k))(φ1i(0, k) + φ2i(0, k))×

×
[
φ1j(0, k)− φ2j(0, k))(φ′1j(0, k) + φ′2j(0, k))+

− (φ1j(0, k) + φ2j(0, k))(φ′1j(0, k)− φ′2j(0, k)
]

= 0. (4.34)

Now we develop the terms between square brackets. Let us fix a single branch, omitting
the index j and the dependence of k, i.e. φ1(0) = φ1j(0, k) and φ2(0) = φ2j(0, k) we
have

(φ1(0)− φ2(0))(φ′1(0) + φ′2(0))− (φ1(0) + φ2(0))(φ′1(0)− φ′2(0)) =

=

∫ l

0

d

dx
[(φ1(x)− φ2(x))(φ′1(x) + φ′2(x))− (φ1(x) + φ2(x))(φ′1(x)− φ′2(x))]dx

=

∫ l

0

d

dx
[−2φ′1(x)φ2(x) + 2φ1(x)φ′2(x)]dx.

Now we note that fundamental solutions Φ(x, k) and Φ′(x, k) solve the Zakharov-
Shabat system (4.18), hence

(φ1(0)− φ2(0))(φ′1(0) + φ′2(0))− (φ1(0) + φ2(0))(φ′1(0)− φ′2(0)) =

= 2

∫ l

0

[−(q′d − ik)φ′1φ2 + q′+φ2φ
′
2 + q−φ1φ

′
1 − (−qd + ik)φ′1φ2 +

+(qd − ik)φ1φ
′
2 − q+φ2φ

′
2 − q′−φ1φ

′
1 + (−q′d + ik)φ1φ

′
2

= 2

∫ l

0

q̃d(x)φ′1(x, k)φ2(x, k)dx+ 2

∫ l

0

q̃d(x)φ1(x, k)φ′2(x, k)dx+

−2

∫ l

0

q̃+(x)φ2(x, k)φ′2(x, k)dx+ 2

∫ l

0

q̃−(x)φ1(x, k)φ′1(x, k)dx.



The formula (4.34) writes for any k ∈ R+

2
N∑
j=1

∏
i 6=j

(φ′1i(0) + φ′2i(0))(φ1i(0) + φ2i(0))×

[∫ lj

0

q̃j,d(x)
(
φ1j(x, k)φ′2j(x, k) + φ′1j(x, k)φ2j(x, k)

)
dx+∫ lj

0

−q̃j,+(x)φ2j(x, k)φ′2j(x, k) + q̃j,−(x)φ1j(x, k)φ′1j(x, k)dx

]
= 0. (4.35)

This concludes the proof.

We are now ready to prove Theorems 7 and 8.

4.6 Identification of the line loss factor

In this section we prove the identifiability of the line loss factor defined as

Qj,d(0, lj) =

∫ lj

0

qj,d(s)ds

for each branch ej.
Here we prove Theorem 7 applying the characteristic equation (4.35) and the high-

frequency behaviors of Φj(x, k) (see Lemma 7).
We define the function:

F (k) :=
N∑
j=1

∏
n6=j

(eQn,d(0,ln)−ikln + e−Qn,d(0,ln)+ikln)(eQ
′
n,d(0,ln)−ikln + e−Q

′
n,d(0,ln)+ikln)×

×
∫ lj

0

q̃j,d(x)(eQ̃j,d(x,lj) + e−Q̃j,d(x,lj))dx,

where Q̃j,d(x, lj) denotes the difference Qj,d(x, lj)−Q′j,d(x, lj). The asymptotic formula
(4.20) applied to the equation (4.35) implies

F (k) = O
(

1

k

)
as k →∞.

Since F (k) is almost periodic function with respect to the frequency k, the behavior
at infinity as 1/k implies F (k) = 0 and this is equivalent to



N∑
j=1

∏
n 6=j

(eQn,d(0,ln)−ikln + e−Qn,d(0,ln)+ikln)(eQ
′
n,d(0,ln)−ikln + e−Q

′
n,d(0,ln)+ikln)×

×
∫ lj

0

q̃j,d(x) cosh(Q̃j,d(x, lj))dx = 0.

The integral can be easily calculated, hence we have for all k ∈ R+

N∑
j=1

∏
n 6=j

(eQn,d(0,ln)−ikln + e−Qn,d(0,ln)+ikln)(eQ
′
n,d(0,ln)−ikln + e−Q

′
n,d(0,ln)+ikln)×

× (sinh(Q̃j,d(0, lj))) = 0. (4.36)

Under the assumption B1 and ordering the branch lengths so that l1 < l2 <

. . . < lN , there is only one term in the expression (4.35) whose frequency is given
by 2(l2 + . . . + lN). Considering this term and indentifying it to zero, we have easily
sinh(Q̃1,d(0, l1)) = 0 which implies

Q̃1,d(0, l1) = 0.

Consequently we can identify the quantity∫ l1

0

q1,d(s)ds =

∫ l1

0

q′1,d(s)ds.

Now the equation (4.35) can be simplified to:

N∑
j=2

∏
n 6=j

(eQn,d(0,ln)−ikln + e−Qn,d(0,ln)+ikln)(eQ
′
n,d(0,ln)−ikln + e−Q

′
n,d(0,ln)+ikln)×

× (sinh(Q̃j,d(0, lj)) = 0.

and we conclude the proof of Theorem 7 repeating the same argument N − 1 times.

Remark 33. We have identified the quantity Qj,d(0, lj) for each branch. Getting back



to the line parameters, it writes

Qj,d(0, lj) =

∫ lj

0

1

2

(
Rj(x)

Lj(x)
+
Gj(x)

Cj(x)

)
dx

and this is called the line loss factor.

4.7 Identifiability of R
L and G

C

In this section we examine the case of a uniform transmission line network and we
show that under the assumption of weak conductance

G

C
<
R

L
,

we can identify these two parameter ratios.
In order to prove Theorem 8, we introduce an auxiliary proposition:

Proposition 11. Consider a star-shaped graph Γ satisfying the geometrical assump-
tions B1. Let’s consider two potential sets q = ⊗Nj=1(qj,+, qj,−, qj,d) and q′ = ⊗Nj=1(q′j,+, q

′
j,−, q

′
j,d)

satisfying the hypothesis:

C5 At the extremities x = lj and x = 0, the potentials verify{
qj,+(lj) = −qj,−(lj) = alj,

qj,+(0) = −qj,−(0) = a0
j .

j = 1, . . . , N

C6 We assume for the potentials to satisfy:

qj,−, qj,+, qj,d ∈ H2(0, lj) ∀j = 1, . . . , N.

If they give rise to the same reflection coefficients r(k) ≡ r′(k), then the following
quantity

Q̃j(q, q′) :=

∫ lj

0

cosh(Q̃j,d(0, x))
(
q′j,+(x)q′j,−(x)− qj,+(x)qj,−(x)

)
dx. (4.37)



is equal to zero on each branch. Here

Q̃j,d(0, x) = Qj,d(0, x)−Q′j,d(0, x) =

∫ x

0

(qj,d(s)− q′j,d(s))ds.

Remark 34. The auxiliary proposition is a generalization of Theorem 7. Indeed, in
order to obtain (4.37), we will need to simplify (4.35) within high-frequency regimes
by considering higher order approximation of (φ1j(x, k), φ2j(x, k)) than (4.20).

Remark 35. The condition C5 represents the case where at the extremities, the trans-
mission lines are uniform, i.e. the line parameters R,L,C and G are constant. In this
case we are implicitly excluding any possible electric fault of the connectors.

Before passing to the proof of the proposition, we further need a lemma on the
fundamental solutions and their asymptotic behaviors. For simplicity’s sake, let’s
parametrize each branch in the opposite sense x 7→ lj − x. This choice is useful, since
we are dealing with fundamental solutions. In the new coordinates 0 represents the
terminal node, while lj is the central node.
The lemma describes the high frequency behavior of the fundamental solutions up to
the second order on a segment [0, l].

Lemma 9. Let φ1(x, k) and φ2(x, k) be the fundamental solution associated to the
Zakharov-Shabat system defined on the interval [0, l] with the Cauchy boundary condi-
tion

φ1(0, k) = 1 φ2(0, k) = 1.

Moreover let’s suppose that the potentials (q+, q−, qd) verify the following condition

C5.I At the extremity x = 0, the potentials verify

q+(0) = −q−(0) = a.

Their asymptotic behavior at the second order is given by
φ1(x, k) = eQd(0,x)−ikx [1 + a

2ik

]
− 1

2ik
e−Qd(0,x)+ikxq+(x) +O

(
1
k2

)
φ2(x, k) = e−Qd(0,x)+ikx

[
1 + a

2ik

]
+ 1

2ik
e+Qd(0,x)−ikxq−(x) +O

(
1
k2

) (4.38)

where Qd(0, x) =
∫ x

0
qd(s)ds .



We also have the following high frequency behaviors for k tending to +∞:

φ1(x)φ′2(x) + φ′1(x)φ2(x) =
[
eQ̃d(0,x) + e−Q̃d(0,x)

] (
1 +

a

ik

)
+O

(
1

k2

)
, (4.39)

φ2(x)φ′2(x) = e−(Qd(0,x)+Q′d(0,x)+2ikx) +
1

2ik
e−Q̃d(0,x)q′−(x)

+
1

2ik
eQ̃d(0,x)q−(x) +O

(
1

k2

)
, (4.40)

φ1(x)φ′1(x) = e(Qd(0,x)+Q′d(0,x)−2ikx) − 1

2ik
eQ̃d(0,x)q′+(x)

− 1

2ik
e−Q̃d(0,x)q+(x) +O

(
1

k2

)
. (4.41)

As usual, the symbol ∼ denotes the error terms.

Proof. The proof can be found in the Appendix C.2.

Proof of Proposition 11. The idea of the proof is basically the same as Theorem 7: we
apply to the characteristic equation (4.35) the asymptotic behavior of the fundamental
solutions up to the second order. The characteristic equation for Zakharov-Shabat
system write for all k ∈ R+

N∑
j=1

∏
i 6=j

(φ′1i(li, k) + φ′2i(li, k))(φ1i(li, k) + φ2i(li, k))×

[∫ lj

0

q̃j,d(x)
(
φ1j(x, k)φ′2j(x, k) + φ′1j(x, k)φ2j(x, k)

)
dx+∫ lj

0

−q̃j,+(x)φ2j(x, k)φ′2j(x, k) + q̃j,−(x)φ1j(x, k)φ′1j(x, k)dx

]
= 0.

Applying (4.39),(4.40) and (4.41), the latter expression becomes

N∑
j=1

∏
n6=j

(eQn,d(0,ln)−ikln + e−Qn,d(0,ln)+ikln)(eQ
′
n,d(0,ln)−ikln + e−Q

′
n,d(0,ln)+ikln)×

×
{(

1 +
a

ik

)∫ lj

0
q̃j,d(x)

(
eQ̃j,d(0,x) + e−Q̃j,d(0,x)

)
dx +

−
∫ lj

0
q̃j,+(x)

[
eQj,d(0,x)+Q′j,d(0,x)+2ikx +

eQ̃j,d(0,x)

2ik
qj,−(x) +

e−Q̃j,d(0,x)

2ik
q′j,−(x)

]
dx

+

∫ lj

0
q̃j,−(x)

[
eQj,d(0,x)+Q′j,d(0,x)−2ikx − eQ̃j,d(0,x)

2ik
q′j,+(x)− e−Q̃j,d(0,x)

2ik
qj,+(x)

]
dx

}
= O

(
1

k2

)
.



We note that the second line is zero. In fact, the integral can be computed explicitly,
applying the results of Theorem 7,

(
1 +

a

ik

)∫ lj

0

q̃j,d(x)
(
eQ̃j,d(0,x) + e−Q̃j,d(0,x)

)
dx =

(
1 +

a

ik

)
sinh(Q̃j,d(0, lj)) = 0.

Re-ordering the terms, the characteristic equation can be simplified to:

N∑
j=1

∏
n 6=j

(eQn,d(0,ln)−ikln + e−Qn,d(0,ln)+ikln)(eQ
′
n,d(0,ln)−ikln + e−Q

′
n,d(0,ln)+ikln)×

+

{∫ lj

0

(
−q̃j,+(x)e−Qj,d(0,x)−Q′j,d(0,x)+2ikx + q̃j,−(x)eQj,d(0,x)+Q′j,d(0,x)−2ikx

)
dx+

−
∫ lj

0

q̃j,+(x)

2ik

[
e−Q̃j,d(0,x)q′j,−(x) + eQ̃j,d(0,x)qj,−(x)

]
dx+

−
∫ lj

0

q̃j,−(x)

2ik

[
+eQ̃j,d(0,x)q′j,+(x) + e−Q̃j,d(0,x)qj,+(x)

]
dx

}
= O

(
1

k2

)
. (4.42)

We define

B̃j(q,q′; k) :=

∫ lj

0

(
−q̃j,+(x)e−Qj,d(0,x)−Q′j,d(0,x)+2ikx + q̃j,−(x)eQj,d(0,x)+Q′j,d(0,x)−2ikx

)
dx.

and

Q̃1
j(q,q

′) := −
∫ lj

0

q̃j,+(x)
[
e−Q̃j,d(0,x)q′j,−(x) + eQ̃j,d(0,x)qj,−(x)

]
dx+

−
∫ lj

0

q̃j,−(x)
[
+eQ̃j,d(0,x)q′j,+(x) + e−Q̃j,d(0,x)qj,+(x)

]
dx.

The equation (4.42) can be rewritten as

N∑
j=1

∏
n 6=j

cosh2(Qn,d(0, ln)− ikln)

[
B̃j(q,q′; k) +

1

2ik
Q̃1
j(q,q

′)

]
= O

(
1

k2

)
.

A simple integration by parts togher with the assumptions C5 and C6 implies

B̃j(q,q′; k) = O
(

1

k2

)
.



Therefore we have

N∑
j=1

∏
n6=j

cosh2(Qn,d(0, ln)− ikln)
[
Q̃1
j(q,q

′)
]

= 0. (4.43)

As in the proof of Theorem 7, we suppose that l1 < . . . < lN . We note that there
is only one term in expression (4.43) whose frequency is given by 2(l2 + . . . + lN).
Considering this term and identifying it to zero, we arrive to

Q̃1
1(q,q′) = 0.

Now the expression (4.43) can be simplified as

N∑
j=2

∏
n6=j

cosh2(Qn,d(0, ln)− ikln)
[
Q̃1
j(q,q

′)
]

= 0. (4.44)

Repeating this argument N − 1 times, we obtain

Q̃1
j(q,q

′) = 0, ∀j = 1, . . . , N.

It remains to show that
Q̃1
j(q,q

′) = Q̃j(q,q′).

Developing the Q̃1
j(q,q′) we have:

Q̃1
j =

∫ lj

0

eQ̃j,d(0,x)
(
− q̃j,+(x)qj,−(x)− q̃j,−(x)q′j,+(x)

)
+

+ e−Q̃j,d(0,x)
(
− q̃j,+(x)q′j,−(x)− q̃j,−(x)qj,+(x)

)
dx.

For simplicity’s sake, we look only at the integrands omitting the index j and the



dependence on the variable x, i.e. qj,+(x) = q+, qj,−(x) = q−, and Qj,d(0, x) = Qd

eQ̃d

(
− q̃+q− − q̃−q′+

)
+ e−Q̃d

(
− q̃+q

′
− − q̃−q+

)
=

= eQ̃d

(
− (q+ − q′+)q− − (q− − q′−)q′+

)
+ e−Q̃d

(
− (q+ − q′+)q′− − (q− − q′−)q+

)
= eQ̃d

(
− q+q− + q′+q

′
−

)
+ e−Q̃d

(
+ q′+q

′
− − q−q+

)
= (e−Q̃d + eQ̃d)

(
q′+q

′
− − q−q+

)
= cosh(Q̃d(0, x))

(
q′+(x)q′−(x)− q−(x)q+(x)

)
.

So this concludes the proof of the proposition.

In terms of line parameters the quantity (4.37) represents

Q̃j(q,q′) =

∫ lj

0

cosh(

∫ x

0

(
R̃(s)

L(s)
+
G̃(s)

C(s)
ds

)
)

[
1

16

(
d

dx
log

L(x)

C(x)

)2

+

− 1

16

(
d

dx
log

L′(x)

C ′(x)

)2

+

(
R′(x)

L′(x)
− G′(x)

C ′(x)

)2

−
(
R(x)

L(x)
− G(x)

C(x)

)2
]
dx

Remark 36. If we are restrained to the lossless network, the expression (4.37) is equiv-
alent to the result obtain in Theorem 4 of Chapter 3. Imposing the potentials qj,d ≡ 0

and qj,− = qj,+ := qj, Qj = 0 implies that∫ lj

0

(
d

dx
logZc,j(x)

)2

dx =

∫ lj

0

(
d

dx
logZ ′c,j(x)

)2

dx,

We finish this section giving the proof of Theorem 8. We are in the case where the
network transmission line are uniform and we want to prove the identifiability of two
aggregates of line parameters.

Proof of Theorem 8. We recall that the potentials for a uniform network are given by

qj,d(x) = +
1

2

(
Rj

Lj
+
Gj

Cj

)
, (4.15)

qj,−(x) =− 1

2

(
Rj

Lj
− Gj

Cj

)
, (4.17)

qj,+(x) = +
1

2

(
Rj

Lj
− Gj

Cj

)
. (4.16)



Theorem 7 states the identifiability of the loss line factor∫ lj

0

qj,ddx =
lj
2

(
Rj

Lj
+
Gj

Cj

)
= αj, ∀j = 1, . . . , N

The uniform parameters verify the conditions C5 and C6 and, thanks to Proposition
11, we have∫ lj

0

cosh(αj)(q
2
lj)dx =

∫ lj

0

cosh(αj)
1

4

(
Rj

Lj
− Gj

Cj

)2

dx = βj, j = 1, . . . , N

for some βj.
To identify the two aggregate parameters R/L and G/C, we have to show the unique-
ness of the solution of the following system:

lj
2

(
Rj

Lj
+

Gj

Cj

)
= αj,

lj
4

cosh(αj)
(
Rj

Lj
− Gj

Cj

)2

= βj.

The above system is equivalent to the two systems of equations

S± :=

{
Rj

Lj
+

Gj

Cj
= α̌j

Rj

Lj
− Gj

Cj
= ±β̌j

(4.45)

where α̌j = 2αj/lj and (β̌j)
2 = 4βj/(cosh(αj)lj). A priori we have two possible

solutions, but only the solution of S+ given by

Rj

Lj
=

1

2
(α̌j + β̌j);

Gj

Cj
=

1

2
(α̌j − β̌j);

verifies the condition
Gj

Cj
<
Rj

Lj
.

Hence it is the only admissible solution.



4.8 Summary and further directions

In this chapter we have presented some results for the inverse scattering problem on
the lossy transmission network.

We have shown the direct scattering problem for both lossy transmission network:
the transmission line parameters determine uniquely the reflection coefficient r(k).
The proof can be easily adapted to the case of a tree network.
For the lossy case, the presence of dissipation avoids the phenomenon of resonant
frequencies: we have shown that the condition

min
x∈I1

(
G(x)

C(x)
,
R(x)

L(x)

)
= c > 0, (1.77)

is necessary for the well-posedness of the direct scattering problem. A further direction
could be to investigate on the sufficient condition to have no resonant phenomenon.

The first result concerns the identification problem related to the geometry of the
star-shape network. Once again, the knowledge of the reflection coefficient allows to
identify the lengths of the branch of the network.

Theorem (Theorem 6). Assume for the star-shaped graph Γ+ that

B1 lj 6= lj′ for any j, j′ ∈ {1, · · · , N} such that j 6= j′ .

C4 We assume for the potentials to satisfy

qj,+, qj,−, qj,d ∈ H1(0, lj) ∀j = 1, . . . , N.

The knowledge of the reflection coefficient r(k) determines uniquely the lengths (lj)
N
j=1.

A possible application is the detection and localization of hard faults, appearing
as open circuits, on a star-shaped wired network.

This result improves the engineering state of art: Furse [21] retrieve the position
of a load (open, short or resistive) on a single uniform transmission line through a
PDFDR system.



We have studied the identifiability of the potential on each line: through the anal-
ysis of the reflection coefficient r(k) we can retrieve the loss line factor defined

Qj,d(0, lj) =

∫ lj

0

(
Rj

Lj
(x) +

Gj

Cj
(x)

)
dx

on each line.

Theorem (Theorem 7). Assume for the star-shaped graph Γ+ that B1 is valid.
If there exist two potentials q = ⊗Nj=1(qj,+, qj,−, qj,d) and q′ = ⊗Nj=1(q′j,+, q

′
j,−, q

′
j,d) sat-

isfying C4 and the condition Zc0j(0) = Z ′c0j(0) for all j = 0, . . . , N and giving rise to
the same reflection coefficient, r(k) ≡ r′(k), one necessarily has:∫ lj

0

qj,d(s)ds =

∫ lj

0

q′j,d(s)ds j = 1, · · · , N.

Supposing the reliability of the connectors at the central node Zc0j(0) = Z ′c0j(0), the
measurement of a reflection coefficient allows to identify all soft faults causing line pa-
rameters variations. This test classify all soft faults with respect the quantity Qj(0, lj).

A third result is the identifiability of two parameter aggregates

Rj

Lj
and

Gj

Cj

for the case of the uniform transmission network. For the railway’s maintenance opera-
tion, the detection of the isolation faults is related to the identification of the quantity
Gj/Cj: the main difficult is due to the fact this term has a weak influence on the
electric transmission.

Theorem (Theorem 8). Let us consider a star-shaped network Γ+ with the geometric
assumption B1. Let the potentials q = ⊗Nj=1(qj,+, qj,−, qj,d) be of the following forms:

qj,d(x) : =
1

2

(
Rj

Lj
+
Gj

Cj

)
, (4.15)

qj,+(x) : = +
1

2

(
Rj

Lj
− Gj

Cj

)
, (4.16)

qj,−(x) : = −1

2

(
Rj

Lj
− Gj

Cj

)
. (4.17)



where Rj, Lj, Gj and Cj are constant parameters uniformly defined on each branch.
If Gj/Cj < Rj/Lj on each branch, then the reflection coefficient r(k) allows to identify
uniquely these two quantities

Rj

Lj
and

Gj

Cj

on all branches ej of the star-shaped network Γ.

The assumption G
C
< R

L
becomes natural in the context of Theorem 8 . The

measurement of one reflection coefficient determines uniquely these two quantities.



Chapter 5

Conclusions and Perspectives

The initial goal of this thesis was to determine the information contained in the re-
flectometry measurements used for fault-detection and fault diagnosis on electrical
networks. This led us to formulate the basic reflectometry technique as a mathemati-
cal inverse problem and to study its wellposedness. Following [30], we have been able
to model the reflectometry experiments through the inverse scattering for Zakharov-
Shabat system and 1−d Schrödinger equation. Motivated by some industrial problems,
we have considered the reflectometry experiment on networks: we restrict ourself to
the case where we have only one reflectometer on a star-shaped network.
This manuscript presents multiple results for the inverse scattering problems on a star-
shaped graph for both Zakharov-Shabat system and Schrödinger equation: we have
studied the identifiability of potentials and geometric parameters.

Despite our results on the identifiability of hard and soft faults, fault detection and
diagnosis require significant improvements. While we have discussed the identification
of potential from a single reflection coefficient, it is necessary to find a method for
the reconstruction of the potentials from a larger scattering data set. An interesting
direction of research could be expanding the scattering data for a network: we have
considered only one plug-in port for reflectometry measurements omitting measure-
ments for transmitted signals. A larger scattering data set, including other reflection
and transmission coefficients could lead to better results in the identification problems.

Hard faults detection problem has been solved in the lossy case for a star-shaped
network. Research needs to be performed toward the generalization of this results on
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a tree. It seems that the number of matched load branches can be retrieved using a
high frequency analysis of reflection coefficient.

We suggest, also, to develop a numerical algorithm to retrieve hard faults on a star
shaped graph. In real application, only a limited frequency range is available and so, it
would be interesting to investigate what result can be obtained from a partial knowl-
edge of reflection coefficients for a possible implementation on the on-board diagnosis
device.

The results for the identification of soft faults improve in a significant way the state
of art of research. On the other hand, these identifications together with technical
limitations are not yet sufficient for a real industrial application.

Looking at the reflectometry applications, we propose to find an algorithm to re-
trieve from the reflection coefficient information on potential such as the loss line factor
or, for the lossless case, the quantity

∫ lj
0
qj(s)ds. The knowledge of such information

allows to detect, at least, a certain class of soft faults.
In this thesis, we have always supposed the continuity of the line parameters (see

assumption A1 and C1), while in the real setting it is common to have piecewise
continuous transmission line parameters. As for the future research, it would be fruitful
to relax the potential’s hypothesis.

Finally, another limitation for the applicability of all the results of this manuscript
is due to the fact that we are generally interested in non-invasive fault detection.
Indeed, one would like to be able to detect and localize the faults without disturbing
the normal activity of the network. However, the tests proposed in this chapter assume
open or short circuit boundary conditions at the extremities of the branches. One
should be able to replace two such experiments by two less invasive ones. This idea
has been discussed in Remark 24 of Chapter 3 and should be studied in a future work.



Appendix A

Useful Formulas

Generic boundary conditions

Vl(k)

Zl

zl
R

G

L

C

Vr(k)

Zr

zr

Figure A.1: Transmission line model with two source generators

• Telegrapher’s equation in harmonic regime of frequencies k{
∂xV (k, z) + ikL(z)I(k, z) +R(z)I(k, z) = 0,

∂xI(k, z) + ikC(z)V (k, z) +G(z)V (k, z) = 0.
(1.33)

• Telegrapher’s generic boundary conditions:{
V (k, zl) + Zl(k)I(k, zl) = Vl(k),

V (k, zr)− Zr(k)I(k, zr) = Vr(k).
(1.34)

One source Vs(k) (after the Liouville transformation)
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Source

Vs(k)

Zs

xl
R

G

L

C Zr

xr

Figure A.2: Transmission line model with one source generator

• Zakharov-Shabat variables
ν1(x, k) = 1√

2

[
Z
−1/2
c0 (x)V (k, x)− Z1/2

c0 (x)I(k, x)
]
,

ν2(x, k) = 1√
2

[
Z
−1/2
c0 (x)V (k, x) + Z

1/2
c0 (x)I(k, x)

]
.

(1.45)

• Zakharov-Shabat system{
∂xν1(x, k) + ikν1(x, k) = qd(x)ν1(x, k)− q+(x)ν2(x, k),

∂xν2(x, k)− ikν2(x, k) = −qd(x)ν2(x, k)− q−(x)ν1(x, k),
(1.46)

• Zakharov-Shabat potentials

qd(x) =
1

2

(
R(x)

L(x)
+
G(x)

C(x)

)
, (1.47)

q−(x) =
1

4

d

dx

[
log

L(x)

C(x)

]
− 1

2

(
R(x)

L(x)
− G(x)

C(x)

)
, (1.48)

q+(x) =
1

4

d

dx

[
log

L(x)

C(x)

]
+

1

2

(
R(x)

L(x)
− G(x)

C(x)

)
. (1.49)

• Boundary parameters

ρr(k) =
Zr(k)− Zc0(xr)

Zr(k) + Zc0,(xr)
,

ρs(k) =
Zs(k)− Zc0(xl)

Zs(k) + Zc0((xl)
,

νs(k) =
Vs(k)√
2Zc0(xl)

.



• Boundary conditions for the Zakharov-Shabat system

ν1(xr, k)− ρr(k)ν2(xr, k) = 0,

ν2(xl, k)− ρs(k)ν1(xl, k) = (1− ρs(k))νs(k).
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Appendix B

Asymptotic behavior of eigen-values
for Schrödinger equations

B.1 Proof of Lemma 3

In this section we are going to prove Lemma 3 of the Chapter 3. We recall it.

Lemma 10. Assume for the potential q(x) ∈ H1(0, l) that q(0) = 0, that ‖q‖L∞(0,l) <
π2

4l2
and that

∫ l
0
q(s)ds = 0. Then, there exists a constant C0(l) such that λn, the n-th

eigenvalue of the operator − ∂2

∂x2
+ q(x) on the segment [0, l], with Dirichlet boundary

condition at 0 and Neumann boundary condition at l, satisfies∣∣∣∣λn − (2n− 1)2π2

4l2

∣∣∣∣ ≤ C0(l)
‖q‖H1(0,l)

2n− 1
.

Proof. We, basically, use a classical result from the perturbation theory of linear op-
erators (see [32], Chapter VII, Example 2.17). The assumption ‖q‖L∞(0,l) <

π2

4l2
allows

us to apply the Taylor expansion of the eigenvalues of the above operator as a per-
turbation of the Laplacian operator with the same boundary conditions. Therefore,
following [32], we have∣∣∣∣λn − (2n− 1)2π2

4l2
+ 2

∫ l

0

q(s) sin2

(
(2n− 1)π

2l
s

)
ds

∣∣∣∣ ≤ c0(l)
‖q‖2

L∞

2n− 1
,
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for some constant c0(l), only depending on the length l. This leads to∣∣∣∣λn − (2n− 1)2π2

4l2

∣∣∣∣ ≤ c0(l)
‖q‖2

L∞

2n− 1
+ 2

∣∣∣∣∫ l

0

q(s) sin2

(
(2n− 1)π

2l
s

)
ds

∣∣∣∣ =

= c0(l)
‖q‖2

L∞

2n− 1
+ 2

∣∣∣∣∣∣
∫ l

0

q(s)
1− cos

(
(2n−1)π

l
s
)

2
ds

∣∣∣∣∣∣ <
< c0(l)

π2

4l3/2
‖q‖H1(0,l)

2n− 1
+

∣∣∣∣∫ l

0

q(s) cos

(
(2n− 1)πs

l

)
ds

∣∣∣∣ =

= c0(l)
π2

4l3/2
‖q‖H1(0,l)

2n− 1
+

l

(2n− 1)π)

∣∣∣∣∫ l

0

q′(s) sin(
(2n− 1)πs

l
)ds

∣∣∣∣ ≤
≤
(
c0(l)

π2

4l3/2
+

l3/2

π
√

2

)
‖q‖H1(0,l)

2n− 1
.

In the above computations, for passing from the second to the third line, we have
applied the facts that ‖q‖L∞ < π2

4l2
, that ‖q‖L∞ ≤

√
l‖q‖H1 (as q(0) = 0) and that∫ l

0
q(s)ds = 0 . For passing from the third to the fourth line, we have integrated

by parts and finally for passing from the fourth line to last one, we have applied a
Cauchy-Schwartz inequality. Therefore, the constant C0(l) of the Lemma is given as
follows:

C0(l) = c0(l)
π2

4l3/2
+

l3/2

π
√

2
.



Appendix C

Complement to the Zakharov-Shabat
system

C.1 Fundamental solutions associated to the Zakharov-

Shabat system

In this section we study the fundamental solutions Φ(x, k) := (φ1(x, k), φ2(x, k)) and
Ψ(x, k) := (ψ1(x, k), ψ2(x, k)) for the following system defined on the interval [0, l]{

∂xφ1(x, k) = (qd(x)− ik)φ1(x, k)− q+(x)φ2(x, k),

∂xφ2(x, k) = −q−(x)φ1(x, k)− (qd(x)− ik)φ2(x, k),
(C.1)

with the Cauchy boundary conditions

φ1(0, k) = 1 φ2(0, k) = 1.

ψ1(0, k) = 1 ψ2(0, k) = −1.

Proposition 12. Let Φ(x, k) and Ψ(x, k) be the fundamental solutions defined above,
then they form a basis for the space of solutions of the Zakharov-Shabat system

∂x

(
ν1

ν2

)
= −ikσ3

(
ν1

ν2

)
+

(
qd −q+

−q− −qd

)(
ν1

ν2

)
σ3 =

(
1 0

0 −1

)
.

(C.2)
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ν1(l, k)− ρs(k)ν2(l, k) = (1− ρs(k))νs(k), (C.3)

ν2(0, k)− ρl(k)ν1(0, k) = 0.

Proof. The solutions Φ and Ψ are linearly independent, because the wronskian

W (Φ,Ψ)(x) = φ1(x, k)ψ2(x, k)− ψ1(x, k)φ2(x, k)

is always different from zero.
To see W (Φ,Ψ) 6= 0, it is enough to compute the derivative with respect to the x and
observe that

d

dx
W (Φ,Ψ)(x) ≡ 0 ∀x ∈ [0, l].

Hence
W (Φ,Ψ)(x) ≡ W (Φ,Ψ)(l) = −2 6= 0 ∀x ∈ [0, l].

The dimension of the solution’s space of the Zakharov-Shabat system (C.2)-(C.3) is
two, so consequently any solution Y (x, k) can be written as

Y (x, k) = α(k)Φ(x, k) + β(k)Ψ(x, k),

with α and β are real value functions depending from the frequency k. The proof is
complete.

We have chosen the Cauchy boundary conditions

Φ(0, k) =

(
1

1

)
, Ψ(0, k) =

(
1

−1

)
,

but we could have chosen any other linearly independent couples. The more conven-
tional choice is

Φ̃(0, k) =

(
1

0

)
, Ψ̃(0, k) =

(
0

1

)
,

but in our case the physical interpretation plays a crucial role. The fundamental
solutions Φ and Ψ correspond to the situation when there is respectively an open and
short circuits.
The fundamental solutions Φ̃ and Ψ̃ represents physically the adaptation of line. In
fact the Φ̃(x, k) behaves as the load at the right end x = 0 is matched, while the



fundamental solution Ψ̃(x, k) is equivalent to the matched load at the left end x = l.

C.2 High frequency behavior of fundamental solu-

tions for Zakharov-Shabat system

In this section we study the behavior at high frequency for the solutions of the
Zakharov-Shabat system (1.46) with three potentials and so we will be able to prove
the Lemma 9 of Chapter 4.

For simplicity sakes, we will split the result in two propositions: in the first proposi-
tion we are going to show the asymptotic behavior of solutions to the Zakharov-Shabat
system. Next we are going to prove the Lemma 9 applying the previous results to the
fundamental solutions

Proposition 13. Let ν1(x, k) and ν2(x, k) a solution of the Zakharov Shabat equations
verifying the Cauchy boundary conditions

ν1(0, k) = ν1, ν2(0, k) = ν2, (C.4)

for some real ν1 and ν2. Their asymptotic behavior at the second order is given by

ν1(x, k) = eQd(0,x)−ikxν1 − 1
2ik
e−Qd(0,x)+ikxq+(x)ν2

+ eQd(0,x)−ikx

2ik
q+(0)ν2 +O

(
1
k2

)
, (C.5)

ν2(x, k) = e−Qd(0,x)+ikxν2 + 1
2ik
e+Qd(0,x)−ikxq−(x)ν1

− e−Qd(0,x)+ikx

2ik
q−(0)ν1 +O

(
1
k2

)
. (C.6)

where Qd(0, x) =
∫ x

0
qd(s)ds.

Proof. In order to compute the asymptotic limit of fundamental solutions for three
potentials Zakharov-Shabat system (q+, q−, qd), we study first the solutions of the
classical Zakharov-Shabat equations with two potentials r(x) and q(x) and through
the change of variable proposed by Jaulent [30] seen in Chapter 2 we will arrive to
(C.5) and (C.6).

Let Y (x, k) be the solution vector (y1(x, k), y2(x, k))tr and let σ3 be the Pauli matrix



defined in (1.55), the two-potential Zakharov-shabat equation is

d

dx
Y (x, k) + ikσ3Y (x, k) =

(
0 q

r 0

)
Y (x, k). (C.7)

The Duhamel’s formula is(
y1(x, k)

y2(x, k)

)
= e−ikσ3x

(
y1(0, k)

y2(0, k)

)
+

∫ x

0

e−ikσ3(x−s)

(
0 q

r 0

)(
y1(s, k)

y2(s, k)

)
ds.

(C.8)
Noting that

eikσ3x = cos(kx)Id+ i sin(kx)σ3.

the explicit integral solutions are{
y1(x, k) = e−ikxy1(0, k) +

∫ x
0
q(s)e−ik(x−s)y2(s, k)ds

y2(x, k) = eikxy2(0, k) +
∫ x

0
r(s)eik(x−s)y1(s, k)ds.

(C.9)

Integrating by parts, we find that for k 7→ ∞ the development of a solution to the
two-potential Zakharov-Shabat system is

y1(x, k) = e−ikxy1(0, k) +
eikx

2ik
q(x)y2(0, k)− e−ikx

2ik
q(0)y2(0, k) +O

(
1

k2

)
y2(x, k) = eikxy2(0, k)− e−ikx

2ik
r(x)y1(0, k) +

eikx

2ik
r(0)y1(0, k) +O

(
1

k2

)
.

Using the Jaulent change of variables, we write the solution to the Zakharov-Shabat
equations (1.46) in terms of two-potential Zakharov-Shabat equations.
Setting

M−(x) =

(
exp(+

∫ x
0
qd(s)ds) 0

0 exp(−
∫ x

0
qd(s)ds)

)
,

we have that (
ν1(x, k)

ν2(x, k)

)
= M−(x)Y(x, k)

are solutions of the Zakharov-Shabat system (1.46) with boundary condition (C.4).



In particular we have the following equivalences between the potentials

r(x) = −e2Qd(0,x)q−(x),

q(x) = −e−2Qd(0,x)q+(x),

where Qd(0, x) =
∫ x

0
qd(s)ds.

We are able to write the asymptotic behavior of the solutions of the Zakharov-
Shabat system. As k goes to ∞

ν1(x, k) = eQd(0,x)−ikxν1 −
1

2ik
e−Qd(0,x)+ikxq+(x)ν2 +

eQd(0,x)−ikx

2ik
q+(0)ν2 +O

(
1

k2

)
,

ν2(x, k) = e−Qd(0,x)+ikxν2 +
1

2ik
e+Qd(0,x)−ikxq−(x)ν1 −

e−Qd(0,x)+ikx

2ik
q−(0)ν1 +O

(
1

k2

)
,

and this concludes the proof.

We are now able to prove the Lemma 9 used in Chapter 4.

Lemma 11. Let (φ1(x, k), φ2(x, k)) be the fundamental solution of the Zakharov-Shabat
system defined on [0, l] satisfying with the boundary condition

Φ(0, k) =

(
1

1

)
.

Let assume that the potentials q− and q+ verify

C5.I q+j(0) = −q−j(0) = a .

We have the following high frequency behaviors for the fundamental solution

φ1(x, k) = eQd(0,x)−ikx
[
1 +

a

2ik

]
− 1

2ik
e−Qd(0,x)+ikxq+(x) +O

(
1

k2

)
(C.10)

φ2(x, k) = e−Qd(0,x)+ikx
[
1 +

a

2ik

]
+

1

2ik
e+Qd(0,x)−ikxq−(x) +O

(
1

k2

)
. (C.11)

Let Φ′(x, k) be a fundamental solution associated to the Zakharov-Shabat system{
∂xφ

′
1(x, k) = (q′d(x)− ik)φ′1(x, k)− q′+(x)φ′2(x, k),

∂xφ
′
2(x, k) = −q′−(x)φ′1(x, k)− (q′d(x)− ik)φ′2(x, k),



verifying the same Cauchy boundary conditions Φ(0, k) =

(
1

1

)
. We have the follow-

ing asymptotic behaviors as k → +∞

φ1(x)φ′2(x) + φ′1(x)φ2(x) =
[
eQ
′
d(0,x) + e−Q

′
d(0,x)

] (
1 +

a

ik

)
+O

(
1

k2

)
, (C.12)

φ2(x)φ′2(x) = e−(Qd(0,x)+Q′d(0,x)+2ikx) +
1

2ik
e−Q

′
d(0,x)q̃−(x)

− 1

2ik
eQ
′
d(0,x)q−(x) +O

(
1

k2

)
, (C.13)

φ1(x)φ′1(x) = e(Qd(0,x)+Q′d(0,x)−2ikx) − 1

2ik
eQ
′
d(0,x)q̃+(x)

− 1

2ik
e−Q

′
d(0,x)q+(x) +O

(
1

k2

)
. (C.14)

Proof. For the behavior of the fundamental solution Φ(x, k) it is enough to apply the
boundary conditions to (C.5) and (C.6). The asymptotic limit of the products of
fundamental solutions are given by

φ1(x)φ′2(x) + φ′1(x)φ2(x) =

=

(
eQd(0,x)−ikx

[
1 +

a

2ik

]
− 1

2ik
e−Qd(0,x)+ikxq+(x)

)
×
(
e−Q

′
d(0,x)+ikx

[
1 +

a

2ik

]
+

1

2ik
e+Q′d(0,x)−ikxq̃−(x)

)
+

(
eQ
′
d(0,x)−ikx

[
1 +

a

2ik

]
− 1

2ik
e−Q

′
d(0,x)+ikxq+(x)

)
×
(
e−Qd(0,x)+ikx

[
1 +

a

2ik

]
+

1

2ik
e+Qd(0,x)−ikxq−(x)

)
=
[
eQ
′
d(0,x) + e−Q

′
d(0,x)

] (
1 +

a

2ik

)2

+O
(

1

k2

)
=
[
eQ
′
d(0,x) + e−Q

′
d(0,x)

] (
1 +

a

ik

)
+O

(
1

k2

)
.



φ2(x)φ′2(x) =

=

(
e−Q

′
d(0,x)+ikx

[
1 +

a

2ik

]
+

1

2ik
e+Q′d(0,x)−ikxq̃−(x)

)
×
(
e−Qd(0,x)+ikx

[
1 +

a

2ik

]
+

1

2ik
e+Qd(0,x)−ikxq−(x)

)
= e−(Qd(0,x)+Q′d(0kx)+2ikx)

(
1 +

a

2ik

)2

+
1

2ik

(
e−Q

′
d(0,x)q̃−(x) + e+Q′d(0,x)q−(x)

) [
1 +

a

2ik

]
+O

(
1

k2

)
= e−(Qd(0,x)+Q′d(0,x)+2ikx) +

1

2ik

(
e−Q

′
d(0,x)q̃−(x) + eQ

′
d(0,x)q−(x)

)
+O

(
1

k2

)

φ1(x)φ′1(x) =

=

(
eQd(0,x)−ikx

[
1 +

a

2ik

]
− 1

2ik
e−Qd(0,x)+ikxq+(x)

)
·

·
(
eQ
′
d(0,x)−ikx

[
1 +

a

2ik

]
− 1

2ik
e−Q

′
d(0,x)+ikxq̃+(x)

)
=

= e(Qd(0,x)+Q′d(0,x)−2ikx)
(

1 +
a

2ik

)2

− 1

2ik

(
eQ
′
d(0,x)q̃+(x)+e−Q

′
d(0,x)q+(x)

) [
1 +

a

2ik

]
+O

(
1

k2

)
=

= e(Qd(0,x)+Q′d(0,x)−2ikx) − 1

2ik

(
eQ
′
d(0,x)q̃+(x) + e−Q

′
d(0,x)q+(x)

)
+O

(
1

k2

)
.

This concludes the proof.
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Abstract

In this thesis, having in mind applications to the fault-detection/diagnosis of electri-
cal networks, we consider some inverse scattering problems for the Zakharov-Shabat
equations and time-independent Schrödinger operators over star-shaped graphs.
The first chapter is devoted to describe reflectometry methods applied to electrical
networks as an inverse scattering problems on the star-shaped network. Reflectometry
methods are presented and modeled by the telegrapher’s equations. Reflectometry
experiments can be written as inverse scattering problems for Schrödinger operator in
the lossless case and for Zakharov-Shabat system for the lossy transmission network.
In chapter 2 we introduce some elements of the inverse scattering theory for 1 − d

Schrödinger equations and the Zakharov-Shabat system. We recall the basic results
for these two systems and we present the state of art of scattering theory on network.
The third chapter deals with some inverse scattering for the Schrödinger operators.
We prove the identifiability of the geometry of the star-shaped graph: the number of
the edges and their lengths. Next, we study the potential identification problem by
inverse scattering.
In the last chapter we focus on the inverse scattering problems for lossy transmis-
sion star-shaped network. We prove the identifiability of some geometric informations
by inverse scattering and we present a result toward the identification of the hetero-
geneities, showing the identifiability of the loss line factor.

Keywords: Transmission Line Network, Reflectometry, Inverse scattering, Schrödinger
operators, Zakharov-Shabat equations.
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