Performance & Correctness Assessment of Distributed Systems

PhD Defense of Cristian Rosa

Université Henri Poincaré - Nancy 1, France

24/10/2011

C. Rosa (UHP - Nancy 1)

Distributed System

A system that consists of multiple autonomous computing entities that interact towards the solution of a common goal.

Some Examples:

- Facebook: 500 Millions of users
- eBay: idem Facebook + Money
- eMule, BitTorrent, Amazon

Distributed Systems are critical to many applications!

Complexity of Distributed Systems

Grid Computing

- Infrastructure for computational science
- Heterogeneous computing resources, static network topology
- Main issue: process as much jobs as possible
- Example: LHC Computing Grid 500K cores, 140 computing centers in 35 countries

• Peer-to-Peer Systems

- Exploit resources at network edges
- Heterogeneous computing resources, dynamic network topology
- Main issue: deal with intermittent connectivity, anonymity
- Example: BitTorrent, SETI@Home

LHC Computing Grid

Peer-to-Peer Network

Lack of knowledge about the global state
 → control decisions based only on local knowledge

• Lack of common time reference

 \rightsquigarrow impossible to order the events of different entities

Non-determinism

 \rightsquigarrow evolution of all non-local state impossible to predict

In general distributed systems are badly understood!

Distributed Systems characteristics are hard to assess:

• Performance

Must maximize it, but definition differs between systems

Correctness

Hard to find and reproduce bugs, lack of guarantees

• Theoretical approach

- ③ absolute answer
- © often simplistic, time consuming, experienced users

Real executions

- © accurate, real experimentation bias
- © difficult to instrument, limited to a few scenarios

Simulations

- © relative simple to use, many scenarios, fast
- © lack of real experimentation effects, requires validated models

• Direct Experimentation

- ③ no false positives
- © very limited, bugs hard to find and reproduce, difficult to instrument

Proofs

- © complete guarantee of correctness independent of system size
- © non automatic, time consuming, experienced users

Model Checking

- © automatic, relatively simple to use, counter-examples
- © state spaces grows exponentially with system size

	Execution	Simulation	Proofs	Model checking
Performance Assessment	٢	00	3	٢
Experimental Bias	00	٢	n/a	n/a
Experimental Control	٢	00	n/a	n/a
Correctness Verification	88	٢	00	٢
Ease of use	٢	00	٢	00

Simulation and Model Checking complement each other:

- Simulation to assess the performance
- Model Checking to verify correctness
- Both run automatically
- Low usability barrier

Often, simulators and model checkers require different system descriptions

Model Checking Versus Simulation

Model Checking idea:

- Exhaustive exploration of state space
- Check validity of every state

In a distributed setting:

- Run all interleavings of communications
- \rightsquigarrow interception of communication events
- \rightsquigarrow control the events' happening ordering

Model Checking Versus Simulation

Simulation idea:

- The platform is an additional parameter
- Compute a single run of the system

In a distributed setting:

- Always the same trace with timings
- \rightsquigarrow interception of communications events
- $\rightsquigarrow\,$ delay the events acording to the models

Model Checking Versus Simulation

Simulation idea:

- The platform is an additional parameter
- Compute a single run of the system

In a distributed setting:

- Always the same trace with timings
- \rightsquigarrow interception of communications events
- $\rightsquigarrow\,$ delay the events acording to the models

Objective

Develop the theory and tools for the efficient performance and correctness assessment of distributed systems.

Approach

Make model checking possible in the SimGrid simulation framework. Not reinvent the wheel: SimGrid is fast, scalable, and validated.

Contributions

- Correctness assessment:
 - SimGridMC: a dynamic verification tool for distributed systems
 - Custom reduction algorithm to deal with state space explosion
- Performance assessment:
 - Parallelization of the simulation loop for CPU bound simulations
 - Criteria to estimate the potential benefit of parallelism

Introduction

2 Bridging Simulation and Verification

- The SimGrid Framework
- SIMIXv2.0
- Experiments

3 SimGrid MC

- Architecture
- Coping With The State Explosion

PhD Defense

Experiments

Parallel Execution

- Architecture
- Cost Analysis
- Experiments

A collection of tools for the simulation of distributed computer systems

Main characteristics:

- Designed as a scientific measurement tool (validated models)
- It simulates real programs (written in C and Java among others)

Experimental workflow:

end function

function P2 //Compute... Recv()

end function

end function

function P2 //Compute... Recv()

end function

 $\begin{array}{l} time \leftarrow 0 \\ P_{time} \leftarrow \{P_1, P_2\} \\ \text{while } P_{time} \neq \emptyset \quad \text{do} \\ \text{schedule}(P_{time}) \\ time \leftarrow \text{solve}(\&done_actions) \\ P_{time} \leftarrow \text{proc_unblock}(done_actions) \\ \text{end while} \end{array}$

end function

function P2 //Compute... Recv()

end function

 $\begin{array}{l} time \leftarrow 0 \\ P_{time} \leftarrow \{P_1, P_2\} \\ \text{while } P_{time} \neq \emptyset \quad \text{do} \\ \text{schedule}(P_{time}) \\ time \leftarrow \text{solve}(\&done_actions) \\ P_{time} \leftarrow \text{proc_unblock}(done_actions) \\ \text{end while} \end{array}$

end function

function P2 //Compute... Recv()

end function

 $\begin{array}{l} time \leftarrow 0 \\ P_{time} \leftarrow \{P_1, P_2\} \\ \text{while } P_{time} \neq \emptyset \quad \text{do} \\ & \text{schedule}(P_{time}) \\ & time \leftarrow \text{solve}(\&done_actions) \\ P_{time} \leftarrow \text{proc_unblock}(done_actions) \\ \text{end while} \end{array}$

end function

function P2 //Compute... Recv()

end function

 $\begin{array}{l} time \leftarrow 0 \\ P_{time} \leftarrow \{P_1, P_2\} \\ \text{while } P_{time} \neq \emptyset \quad \text{do} \\ & \text{schedule}(P_{time}) \\ & time \leftarrow \text{solve}(\&done_actions) \\ & P_{time} \leftarrow \text{proc_unblock}(done_actions) \\ \text{end while} \end{array}$

end function

end function

 $\begin{array}{l} time \leftarrow 0 \\ P_{time} \leftarrow \{P_1, P_2\} \\ \text{while } P_{time} \neq \emptyset \quad \text{do} \\ & \text{schedule}(P_{time}) \\ & time \leftarrow \text{solve}(\&done_actions) \\ & P_{time} \leftarrow \text{proc_unblock}(done_actions) \\ \text{end while} \end{array}$

end function

function P2 //Compute... Recv()

end function

 $\begin{array}{l} time \leftarrow 0 \\ P_{time} \leftarrow \{P_1, P_2\} \\ \text{while } P_{time} \neq \emptyset \quad \text{do} \\ \text{schedule}(P_{time}) \\ \underline{time} \leftarrow \text{solve}(\& \textit{done_actions}) \\ P_{time} \leftarrow \text{proc_unblock}(\textit{done_actions}) \\ \text{end while} \end{array}$

function P2 //Compute... Recv()

end function

 $\begin{array}{l} time \leftarrow 0 \\ P_{time} \leftarrow \{P_1, P_2\} \\ \text{while } P_{time} \neq \emptyset \quad \text{do} \\ \text{schedule}(P_{time}) \\ time \leftarrow \text{solve}(\&done_actions) \\ P_{time} \leftarrow \text{proc_unblock}(done_actions) \\ \text{end while} \end{array}$

A Simulation Example in More Detail

• Late interception of network operations \rightsquigarrow Lack of control over the network state

- Late interception of network operations
 → Lack of control over the network state
- User processes modify the shared state
 → Parallel execution hard to achieve
 → Renders reproducibility impossible

- Late interception of network operations
 → Lack of control over the network state
- User processes modify the shared state
 → Parallel execution hard to achieve
 → Renders reproducibility impossible

- Late interception of network operations
 → Lack of control over the network state
- User processes modify the shared state
 → Parallel execution hard to achieve
 → Renders reproducibility impossible

SIMIXv2.0

A new virtualization module designed to overcome previous limitations.

(Joint work with Christophe Thiéry).

Inspired by operating system design concepts:

- Strict layered design:
 - Processes, IPC, and synchronization primitives
 - Encapsulated shared state
- System call like interface:
 - Interaction with platform mediated through "requests"
 - The simulator answers the requests

SIMIX Main Loop $time \leftarrow 0$ $P_{time} \leftarrow P$ while $P_{time} \neq \emptyset$ do schedule(P_{time}) $time \leftarrow solve(\&done_actions)$ $P_{time} \leftarrow proc_unblock(done_actions)$ end while

SIMIXv2.0 Main Loop

```
\begin{array}{l} time \leftarrow 0 \\ P_{time} \leftarrow \{P_1, P_2\} \\ \textbf{while} \ P_{time} \neq \emptyset \ \textbf{do} \\ \quad schedule(P_{time}) \\ \quad \textbf{handle_requests()} \\ \quad time \leftarrow solve(\&done\_actions) \\ \quad P_{time} \leftarrow \text{proc\_unblock}(done\_actions) \\ \textbf{end while} \end{array}
```


SIMIXv1.0 versus SIMIXv2.0

Master-Slaves experiment:

- SIMIXv2.0 14% faster on average (with no loses)
- Gains due to: simplification of code, less dynamic data

Introduction

2 Bridging Simulation and Verification

- The SimGrid Framework
- SIMIXv2.0
- Experiments

3 SimGrid MC

- Architecture
- Coping With The State Explosion

PhD Defense

Experiments

Parallel Execution

- Architecture
- Cost Analysis
- Experiments

SimGridMC

A dynamic verification tool for SimGrid programs.

Design Goals:

- Verification of *unmodified* SimGrid programs
- Find bugs triggered by program's nondeterministic behavior
- Designed as a debugging tool
- Capable of handling nontrivial programs
- Simple to use by SimGrid users

Message Delivery Order Bug

```
P1(){
   Send(1,P3);
}
P2(){
   Send(2,P3);
}
P3(){
   Recv(&x,*);
   Recv(&y,*);
   ASSERT(x<y);
}</pre>
```

Message Delivery Order Bug

```
P1(){
   Send(1,P3);
}
P2(){
   Send(2,P3);
}
P3(){
   Recv(&x,*);
   Recv(&y,*);
   ASSERT(x<y);
}</pre>
```


Message Delivery Order Bug

```
P1(){
   Send(1,P3);
}
P2(){
   Send(2,P3);
}
P3(){
   Recv(&x,*);
   Recv(&y,*);
   ASSERT(x<y);
}</pre>
```


Main characteristics of SimGridMC:

- Exploration:
 - Explicit-state
 - Verification of local assertions
 - It actually executes the code
- Roll-backs:
 - Stateless approach (replay)
 - No visited state storing nor hashing
- Reduction techniques to cope with state space explosion

The Exploration Loop

Explored Interleavings: $\langle a, b, c, d \rangle, \langle a, b, d, c \rangle, \dots$

The State Explosion Problem

```
P1(){
  Send(&x,P2);
}
P2(){
  Recv(&y,P1);
}
P3(){
  Send(&r,P4);
}
P4(){
  Recv(&q,P3);
}
```


They are all the same happened-before relation!

```
C. Rosa (UHP - Nancy 1)
```

To explore different partial orders we must interleave dependent transitions

$$D(t_a, t_b) = \neg I(t_a, t_b)$$

How do we get the predicate D?

- Using the semantics of the transitions
- "Independence theorems" for each pair of transitions

No communication API in SimGrid had a formal specification.
 → Manual specification required (tedious, time consuming)

- No communication API in SimGrid had a formal specification.
 → Manual specification required (tedious, time consuming)
- The solution explored in this thesis:
 - A core set of four basic networking primitives (SIMIXv2.0 IPC)
 - User-level APIs written on top of these
 - Full formal specification of their semantics (in TLA⁺)
 - Theorems of independence between certain primitives
 - State-space exploration at primitives' level

Communication model based on mailboxes:

- processes post send/receive request into mailboxes
- requests queued/matched in FIFO order

Four primitives:

- Send asynchronous send request
- Recv asynchronous receive request
- WaitAny block until completion of a communication
- TestAny test for completion without blocking

Can express large parts of MPI, GRAS (socket), and MSG (CSP)

Semantics of Communication Primitives

• 6 theorems of the form:

$$\mathcal{A}(A, B) \stackrel{ riangle}{=} \operatorname{Enabled} A \wedge \operatorname{Enabled} B \Rightarrow \wedge A \Rightarrow (\operatorname{Enabled} B)' \land B \Rightarrow (\operatorname{Enabled} A)' \land A \cdot B \equiv B \cdot A$$

- Proofs expand definitions and use commutativity
- The following actions are independent:
 - Local actions with any other action
 - Send and Recv
 - Two Send or two Recv in different mailboxes
 - Wait or Test for the same communication

Processes multiple of 3 receive a message from their next two successors

```
if (rank % 3 == 0) {
    MPI_Recv(&val1, MPI_ANY_SOURCE);
    MPI_Recv(&val2, MPI_ANY_SOURCE);
    MC_assert(val1 > rank);
    MC_assert(val2 > rank);
} else {
    MPI_Send(&rank, (rank / 3) * 3);
}
```

#P	Without reductions			With reductions		
	States	Time	Peak Mem	States	Time	Peak Mem
3	520	0.247 s	23472 kB	72	0.074 s	23472 kB
6	>10560579	>1 h	-	1563	0.595 s	26128 kB
9	-	-	-	32874	14.118 s	29824 kB

Chord Experiments

Chord P2P DHT protocol

SimGrid implementation:

- 500 lines of C (MSG interface)
- Spotted a bug in big instances

Chord Experiments

Chord P2P DHT protocol

SimGrid implementation:

- 500 lines of C (MSG interface)
- Spotted a bug in big instances

SimGrid MC with two nodes:

- DFS: 15600 states 24s
- DPOR: 478 states 1s
- Simple Counter-example!
- One line fix

Introduction

2 Bridging Simulation and Verification

- The SimGrid Framework
- SIMIXv2.0
- Experiments

3 SimGrid MC

- Architecture
- Coping With The State Explosion

PhD Defense

Experiments

Parallel Execution

- Architecture
- Cost Analysis
- Experiments

- Scaling-up memory bound simulations; easy \rightsquigarrow more RAM
- Speedup CPU bound simulations; difficult
 - Processors increase almost only in parallel power (cores)
 - The simulation problem is really hard to parallelize
- We envision two scenarios:
 - Applications with processes that perform big computations
 - Applications with a large amount of processes

Classical Parallelization Approach

Avoiding out of order events:

- Conservative: no out of order event can happen
 - very platform dependent (latency)
- Optimistic: rewind to a consistent state on out of order events
 - © expensive checkpoints

Our Approach

Keep the simulation sequential but parallelize some steps of the main loop

Our Approach

Keep the simulation sequential but parallelize some steps of the main loop

This is possible thanks to the shared state encapsulation of SIMIXv2.0

$$T_{2} \left\{ \begin{array}{c} U_{4} \\ U_{3} \\ T_{1} \left\{ \begin{array}{c} U_{2} \\ U_{1} \\ U_{3} \\ U_{1} \\ U_{1} \\ U_{2} \\ U_{1} \\ U_{2} \\ U_{3} \\ U_{5} \\$$

$$\sum_{t_i} \left(C_{surf}(R, M) + C_{smx}(|P_{t_i}|) + C_{usr}(P_{t_i}) \right)$$

$$\sum_{t_i} \left(C_{surf}(R, M) + C_{smx}(|P_{t_i}|) + C_{thr}(|T|) + \max_{w \in T} (C_{usr}(P_{t_i}^w)) \right)$$

Good Parallelization Scenarios

$$\mathsf{K} \cdot C_{thr}(|\mathcal{T}|) + \max_{w \in \mathcal{T}}(C_{usr}(\mathcal{P}^w_{t_i})) < C_{usr}(\mathcal{P}_{t_i})$$

Good Parallelization Scenarios

$$\mathsf{K} \cdot \mathcal{C}_{thr}(|\mathcal{T}|) + \max_{w \in \mathcal{T}} (\mathcal{C}_{usr}(\mathcal{P}^w_{t_i})) < \mathcal{C}_{usr}(\mathcal{P}_{t_i})$$

This can happen when

$$\sum_{\mathsf{p}\in P_{t_i}} C(\mathsf{p}) \to \infty$$

Good scenario: Parallel Matrix Multiplication

- 9 nodes (3x3 grid)
- Matrices of size 1500 (doubles)
- Simulation results (LV08):
 - Sequential execution : 31s
 - Parallel execution (4T): 11s (speedup = x2.8)

Chord: SimGrid vs. OverSim

300,000 nodes

- OverSim (simple): 10h
- SimGrid (LV08): 38 min
- 2,000,000 nodes (SG only)
 - Seq (LV08): 7h40
 - 24T (LV08): 6h55 (x1.30)
 - Seq (Const): 5h42
 - 24T (Const): 4h (x1.45)

Correctness Assessment:

- Novel approach that integrates a simulator and a model checker
- SimGridMC a model checker for unmodified distributed C programs
- Effective state reduction with support for multiple APIs
- Capable of finding bugs in realistic programs like Chord

Performance Assessment:

- Classical parallelization approaches are not well suited
- Alternative approach: parallelize user processes
- Cost analysis of the approach
- SimGrid is scalable, accurate, and fast

Correctness assessment:

- Implement and evaluate a stateful exploration
- Add support for *liveness* properties verification
- Experiment with a hybrid roll-back mechanism (checkpoint + replay)

Performance assessment:

- Simulation and model checking combined (performance checking)
- Parallelize other steps of the simulation loop
- Refinement of the communication primitives

 S. Merz, M. Quinson, and C. Rosa.
 Simgrid MC: Verification Support for a Multi-api Simulation Platform.
 In 31th Formal Techniques for Networked and Distributed Systems – FORTE 2011, pages 274–288, Reykjavik, Iceland, June 2011.

🚺 C. Rosa, S. Merz, and M. Quinson.

A Simple Model of Communication APIs – Application to Dynamic Partial-order Reduction.

In 10th International Workshop on Automated Verification of Critical Systems – AVOCS 2010, pages 137–151, Dusseldorf, Germany, September 2010.

Taxonomy of Distributed Systems – Part II

• High Performance Computing

- Lead CS and IT world's research
- Homogeneous nodes with many cores, high-speed local links
- Main issue: do the biggest possible numerical simulations
- Example: K Computer 548352 Cores, Riken, Japan

Cloud Computing

- Large infrastructures underlying commercial Internet
- Heterogeneous computing resources, static network topology
- Main issue: optimize costs, keep up with the load
- Example: Amazon's Cloud

K Computer

Amazon's Cloud

Asynchronous Communication Bug

```
P1(){
  c = iSend("ok", P2);
  Wait(c);
}
P2(){
  c1 = iRecv(\&buff, P1);
  c2 = iSend(\&buff, P2);
  Wait(c1);
  Wait(c2);
}
P3(){
  c = iRecv(\&buff, P2);
  Wait(c);
  ASSERT(buff=="ok");
}
```

Asynchronous Communication Bug

Asynchronous Communication Bug

State and Transitions

- The states are the global states of the system
- The transitions are the communication actions
- The exploration consists of interleaving the communication actions

SimGridMC's Architecture

D can be over-approximated by a D' such that

$$D(A,B) \Rightarrow D'(A,B)$$

If we don't know if $I(t_i, t_j)$ holds we assume $D'(t_i, t_j)$ (for soundness).

Theorem

Any two Send and Recv transitions are independent.

 $\forall A, B \in Proc, rdv_1, rdv_2 \in RdV, \&x, \&y \in Addr, c_1, c_2 \in Addr : I(Send(A, rdv_1, \&x, c_1), Recv(B, rdv_2, \&y, c_2))$

Theorem

Any two Send and Recv transitions are independent.

 $\forall A, B \in Proc, rdv_1, rdv_2 \in RdV, \&x, \&y \in Addr, c_1, c_2 \in Addr : I(Send(A, rdv_1, \&x, c_1), Recv(B, rdv_2, \&y, c_2))$

Any two Send and Recv transitions are independent.

Classical Parallelization Approaches

There are two classical parallelization approaches:

Multiple time lines

Classical Parallelization Approaches

There are two classical parallelization approaches:

- Multiple time lines
- Risk of out of order events
- Conservative: advance when no event out of order can happen
- Optimistic: rewind to a consistent state when out of order events happen

Classical Parallelization Approaches

There are two classical parallelization approaches:

- Multiple time lines
- Risk of out of order events
- Conservative: advance when no event out of order can happen
- Optimistic: rewind to a consistent state when out of order events happen

- Time divided in intervals
- Intervals simulated in parallel

Classical Parallelization Approaches

There are two classical parallelization approaches:

- Multiple time lines
- Risk of out of order events
- Conservative: advance when no event out of order can happen
- Optimistic: rewind to a consistent state when out of order events happen

- Time divided in intervals
- Intervals simulated in parallel
- Must guess initial states
- Re-computation needed when states do not match

Resolution of the Model

A simulation defines a discretization of the simulated time:

Each event has a timestamp that is computed using the resource models.

$$T_{M,R}: E \rightarrow [0, t], \text{ with } t \in \Re$$

Resolution (ε)

The minimal time increment possible between two timestamps.

C. Rosa (UHP - Nancy 1)

Importance of the Model's Resolution

The model resolution ε has an impact on the size of P_{t_i}

The model resolution ε has an impact on the size of P_{t_i}

- Chord 100,000 nodes
- Simulation of 1000s
- 25,000,000 messages exchanged

ε	10 ⁻⁵	10 ⁻³	10 ⁻¹	Constant network
Average $ P_{t_i} $	10	44	251	7424

Chord: SimGrid vs. OverSim

Chord 2,000,000 nodes

- $\varepsilon = 10^{-1}$
- Sequential execution: 8h15
- Parallel execution: 7h15
- speedup = 1.13 (24 threads)

