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Introduction

Distributed System

A system that consists of multiple autonomous computing entities that
interact towards the solution of a common goal.

Some Examples:

Facebook: 500 Millions of users

eBay: idem Facebook + Money

eMule, BitTorrent, Amazon

Distributed Systems are critical to many applications!
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Complexity of Distributed Systems

Grid Computing
Infrastructure for computational science
Heterogeneous computing resources, static
network topology
Main issue: process as much jobs as possible
Example: LHC Computing Grid – 500K cores,
140 computing centers in 35 countries LHC Computing Grid

Peer-to-Peer Systems
Exploit resources at network edges
Heterogeneous computing resources, dynamic
network topology
Main issue: deal with intermittent
connectivity, anonymity
Example: BitTorrent, SETI@Home Peer-to-Peer Network
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Challenges of Distributed Systems

Lack of knowledge about the global state
; control decisions based only on local knowledge

Lack of common time reference
; impossible to order the events of different entities

Non-determinism
; evolution of all non-local state impossible to predict

In general distributed systems are badly understood!
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Assessing Distributed Systems

Distributed Systems characteristics are hard to assess:

Performance
Must maximize it, but definition differs between systems

Correctness
Hard to find and reproduce bugs, lack of guarantees
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Assessing the Performance of Distributed Systems

Theoretical approach
, absolute answer
/ often simplistic, time consuming, experienced users

Real executions
, accurate, real experimentation bias
/ difficult to instrument, limited to a few scenarios

Simulations
, relative simple to use, many scenarios, fast
/ lack of real experimentation effects, requires validated models
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Assessing the Correctness of Distributed Systems

Direct Experimentation
, no false positives
/ very limited, bugs hard to find and reproduce, difficult to instrument

Proofs
, complete guarantee of correctness independent of system size
/ non automatic, time consuming, experienced users

Model Checking
, automatic, relatively simple to use, counter-examples
/ state spaces grows exponentially with system size
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Comparison of Methodologies

Execution Simulation Proofs Model checking
Performance Assessment , ,, / /
Experimental Bias ,, , n/a n/a

Experimental Control / ,, n/a n/a

Correctness Verification // / ,, ,
Ease of use / ,, / ,,

Simulation and Model Checking complement each other:

Simulation to assess the performance

Model Checking to verify correctness

Both run automatically

Low usability barrier

Often, simulators and model checkers require different system descriptions
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Model Checking Versus Simulation

Model Checking idea:

Exhaustive exploration of state space

Check validity of every state

In a distributed setting:

Run all interleavings of communications

; interception of communication events

; control the events’ happening ordering

C. Rosa (UHP – Nancy 1) PhD Defense 24/10/2011 9 / 42



Model Checking Versus Simulation

Simulation idea:

The platform is an additional parameter

Compute a single run of the system

In a distributed setting:

Always the same trace with timings

; interception of communications events

; delay the events acording to the models
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Objectives and Contributions of the Thesis

Objective

Develop the theory and tools for the efficient performance and correctness
assessment of distributed systems.

Approach

Make model checking possible in the SimGrid simulation framework.
Not reinvent the wheel: SimGrid is fast, scalable, and validated.

Contributions

Correctness assessment:

SimGridMC: a dynamic verification tool for distributed systems
Custom reduction algorithm to deal with state space explosion

Performance assessment:

Parallelization of the simulation loop for CPU bound simulations
Criteria to estimate the potential benefit of parallelism
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The SimGrid Framework

A collection of tools for the simulation of distributed computer systems

Main characteristics:

Designed as a scientific measurement tool (validated models)

It simulates real programs (written in C and Java among others)

Experimental workflow:
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A Simulation Example

function P1
//Compute...
Send()
...

end function

function P2
//Compute...
Recv()
...

end function

time ← 0
Ptime ← {P1,P2}
while Ptime 6= ∅ do

schedule(Ptime)
time ← solve(&done actions)
Ptime ← proc unblock(done actions)

end while

SimGrid’s Main Loop

C. Rosa (UHP – Nancy 1) PhD Defense 24/10/2011 12 / 42



A Simulation Example

function P1
//Compute...
Send()
...

end function

function P2
//Compute...
Recv()
...

end function

time ← 0
Ptime ← {P1,P2}
while Ptime 6= ∅ do

schedule(Ptime)
time ← solve(&done actions)
Ptime ← proc unblock(done actions)

end while

SimGrid’s Main Loop

C. Rosa (UHP – Nancy 1) PhD Defense 24/10/2011 12 / 42



A Simulation Example

function P1
//Compute...
Send()
...

end function

function P2
//Compute...
Recv()
...

end function

time ← 0
Ptime ← {P1,P2}
while Ptime 6= ∅ do

schedule(Ptime)
time ← solve(&done actions)
Ptime ← proc unblock(done actions)

end while

SimGrid’s Main Loop

C. Rosa (UHP – Nancy 1) PhD Defense 24/10/2011 12 / 42



A Simulation Example

function P1
//Compute...
Send()
...

end function

function P2
//Compute...
Recv()
...

end function

time ← 0
Ptime ← {P1,P2}
while Ptime 6= ∅ do

schedule(Ptime)
time ← solve(&done actions)
Ptime ← proc unblock(done actions)

end while

SimGrid’s Main Loop

C. Rosa (UHP – Nancy 1) PhD Defense 24/10/2011 12 / 42



A Simulation Example

function P1
//Compute...
Send()
...

end function

function P2
//Compute...
Recv()
...

end function

time ← 0
Ptime ← {P1,P2}
while Ptime 6= ∅ do

schedule(Ptime)
time ← solve(&done actions)
Ptime ← proc unblock(done actions)

end while

SimGrid’s Main Loop

C. Rosa (UHP – Nancy 1) PhD Defense 24/10/2011 12 / 42



A Simulation Example

function P1
//Compute...
Send()
...

end function

function P2
//Compute...
Recv()
...

end function

time ← 0
Ptime ← {P1,P2}
while Ptime 6= ∅ do

schedule(Ptime)
time ← solve(&done actions)
Ptime ← proc unblock(done actions)

end while

SimGrid’s Main Loop

C. Rosa (UHP – Nancy 1) PhD Defense 24/10/2011 12 / 42



A Simulation Example

function P1
//Compute...
Send()
...

end function

function P2
//Compute...
Recv()
...

end function

time ← 0
Ptime ← {P1,P2}
while Ptime 6= ∅ do

schedule(Ptime)
time ← solve(&done actions)
Ptime ← proc unblock(done actions)

end while

SimGrid’s Main Loop

C. Rosa (UHP – Nancy 1) PhD Defense 24/10/2011 12 / 42



A Simulation Example

function P1
//Compute...
Send()
...

end function

function P2
//Compute...
Recv()
...

end function

time ← 0
Ptime ← {P1,P2}
while Ptime 6= ∅ do

schedule(Ptime)
time ← solve(&done actions)
Ptime ← proc unblock(done actions)

end while

SimGrid’s Main Loop

C. Rosa (UHP – Nancy 1) PhD Defense 24/10/2011 12 / 42



The Architecture
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A Simulation Example in More Detail

function P1
//Compute...
Send()
...

end function

function P2
//Compute...
Recv()
...

end function

time ← 0
Ptime ← P
while Ptime 6= ∅ do

schedule(Ptime)
time ← solve(&done actions)
Ptime ← proc unblock(done actions)

end while

SimGrid’s Main Loop
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Limitations of the Architecture

This architecture not good enough:

Late interception of network operations
; Lack of control over the network state

User processes modify the shared state
; Parallel execution hard to achieve
; Renders reproducibility impossible
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A New Architecture for SimGrid

SIMIXv2.0

A new virtualization module designed to overcome previous limitations.

(Joint work with Christophe Thiéry).

Inspired by operating system design concepts:

Strict layered design:

Processes, IPC, and synchronization primitives
Encapsulated shared state

System call like interface:

Interaction with platform mediated through “requests”
The simulator answers the requests
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The New Architecture
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A Simulation Example with SIMIXv2.0

SIMIX Main Loop

time ← 0
Ptime ← P
while Ptime 6= ∅ do

schedule(Ptime)
time ← solve(&done actions)
Ptime ← proc unblock(done actions)

end while

SIMIXv2.0 Main Loop

time ← 0
Ptime ← {P1,P2}
while Ptime 6= ∅ do

schedule(Ptime)
handle requests()
time ← solve(&done actions)
Ptime ← proc unblock(done actions)

end while
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SIMIXv1.0 versus SIMIXv2.0

Master-Slaves experiment:

SIMIXv2.0 14% faster on average (with no loses)

Gains due to: simplification of code, less dynamic data
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Overview of SimGridMC

SimGridMC

A dynamic verification tool for SimGrid programs.

Design Goals:

Verification of unmodified SimGrid programs

Find bugs triggered by program’s nondeterministic behavior

Designed as a debugging tool

Capable of handling nontrivial programs

Simple to use by SimGrid users
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An Example of Bug

Message Delivery Order Bug

P1(){

Send(1,P3);

}

P2(){

Send(2,P3);

}

P3(){

Recv(&x,*);

Recv(&y,*);

ASSERT(x<y);

}
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The Design

Main characteristics of SimGridMC:

Exploration:

Explicit-state
Verification of local assertions
It actually executes the code

Roll-backs:

Stateless approach (replay)
No visited state storing nor hashing

Reduction techniques to cope with state space explosion
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The Exploration Loop

Explored Interleavings: 〈a, b, c , d〉, 〈a, b, d , c〉, . . .
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The State Explosion Problem

P1(){

Send(&x,P2);

}

P2(){

Recv(&y,P1);

}

P3(){

Send(&r,P4);

}

P4(){

Recv(&q,P3);

}

They are all the same happened-before relation!
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Partial Order Reduction

To explore different partial orders we must interleave dependent transitions

D(ta, tb) = ¬I (ta, tb)

How do we get the predicate D?

Using the semantics of the transitions

”Independence theorems” for each pair of transitions
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Formal Semantics of Communication Primitives

No communication API in SimGrid had a formal specification.
; Manual specification required (tedious, time consuming)

The solution explored in this thesis:

A core set of four basic networking primitives (SIMIXv2.0 IPC)
User-level APIs written on top of these
Full formal specification of their semantics (in TLA+)
Theorems of independence between certain primitives
State-space exploration at primitives’ level
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The Communication Model of the IPC

Communication model based on mailboxes:

processes post send/receive request into mailboxes

requests queued/matched in FIFO order

Four primitives:

Send – asynchronous send request

Recv – asynchronous receive request

WaitAny – block until completion of a communication

TestAny – test for completion without blocking

Can express large parts of MPI, GRAS (socket), and MSG (CSP)
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Semantics of Communication Primitives
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Independence Theorems

6 theorems of the form:

I (A,B)
4
= Enabled A ∧Enabled B ⇒ ∧ A⇒ (Enabled B)′

∧ B ⇒ (Enabled A)′

∧ A · B ≡ B · A

Proofs expand definitions and use commutativity

The following actions are independent:

Local actions with any other action
Send and Recv
Two Send or two Recv in different mailboxes
Wait or Test for the same communication
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MPI Experiments

Processes multiple of 3 receive a message from their next two successors

if (rank % 3 == 0) {

MPI_Recv (&val1 , MPI_ANY_SOURCE );

MPI_Recv (&val2 , MPI_ANY_SOURCE );

MC_assert(val1 > rank);

MC_assert(val2 > rank);

} else {

MPI_Send (&rank , (rank / 3) * 3);

}

#P
Without reductions With reductions

States Time Peak Mem States Time Peak Mem

3 520 0.247 s 23472 kB 72 0.074 s 23472 kB

6 >10560579 >1 h - 1563 0.595 s 26128 kB

9 - - - 32874 14.118 s 29824 kB
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Chord Experiments

Chord P2P DHT protocol

SimGrid implementation:

500 lines of C (MSG interface)

Spotted a bug in big instances

SimGrid MC with two nodes:

DFS: 15600 states - 24s

DPOR: 478 states - 1s

Simple Counter-example!

One line fix
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Motivation of Parallelization Work

Scaling-up memory bound simulations; easy ; more RAM

Speedup CPU bound simulations; difficult

Processors increase almost only in parallel power (cores)
The simulation problem is really hard to parallelize

We envision two scenarios:

Applications with processes that perform big computations
Applications with a large amount of processes
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Classical Parallelization Approach

Avoiding out of order events:

Conservative: no out of order event can happen
/ very platform dependent (latency)

Optimistic: rewind to a consistent state on out of order events
/ expensive checkpoints
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Parallelization of the Simulation Loop

Our Approach

Keep the simulation sequential but parallelize some steps of the main loop

Parallel Main Loop

time ← 0
Ptime ← P
while Ptime 6= ∅ do

parallel schedule(Ptime)
handle requests()
time ← surf solve(&done actions)
Ptime ← process unblock(done actions)

end while

This is possible thanks to the shared state encapsulation of SIMIXv2.0
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Cost of parallel execution

Sequential execution

Parallel execution

∑
ti

(
Csurf (R,M) + Csmx(|Pti |) + Cusr (Pti )

)

∑
ti

(
Csurf (R,M) + Csmx(|Pti |) + Cthr (|T |) + max

w∈T
(Cusr (Pw

ti
))
)
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Good Parallelization Scenarios

K ·Cthr (|T |) + max
w∈T

(Cusr (Pw
ti

)) < Cusr (Pti )

This can happen when ∑
p∈Pti

C (p)→∞

C (p)→∞

|Pti | → ∞
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Experimental Results I

Good scenario: Parallel Matrix Multiplication

9 nodes (3x3 grid)

Matrices of size 1500 (doubles)

Simulation results (LV08):

Sequential execution : 31s
Parallel execution (4T): 11s (speedup = x2.8)
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Experimental Results II

Chord: SimGrid vs. OverSim

300,000 nodes

OverSim (simple): 10h

SimGrid (LV08): 38 min

2,000,000 nodes (SG only)

Seq (LV08): 7h40

24T (LV08): 6h55 (x1.30)

Seq (Const): 5h42

24T (Const): 4h (x1.45)
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Conclusions I

Correctness Assessment:

Novel approach that integrates a simulator and a model checker

SimGridMC a model checker for unmodified distributed C programs

Effective state reduction with support for multiple APIs

Capable of finding bugs in realistic programs like Chord
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Conclusions II

Performance Assessment:

Classical parallelization approaches are not well suited

Alternative approach: parallelize user processes

Cost analysis of the approach

SimGrid is scalable, accurate, and fast
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Future Work

Correctness assessment:

Implement and evaluate a stateful exploration

Add support for liveness properties verification

Experiment with a hybrid roll-back mechanism (checkpoint + replay)

Performance assessment:

Simulation and model checking combined (performance checking)

Parallelize other steps of the simulation loop

Refinement of the communication primitives
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Taxonomy of Distributed Systems – Part II

High Performance Computing
Lead CS and IT world’s research
Homogeneous nodes with many cores,
high-speed local links
Main issue: do the biggest possible numerical
simulations
Example: K Computer – 548352 Cores, Riken,
Japan

K Computer

Cloud Computing
Large infrastructures underlying commercial
Internet
Heterogeneous computing resources, static
network topology
Main issue: optimize costs, keep up with the
load
Example: Amazon’s Cloud Amazon’s Cloud
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SimGridMC
An Example of Bug 2

Asynchronous Communication Bug

P1(){

c = iSend("ok",P2);

Wait(c);

}

P2(){

c1 = iRecv (&buff ,P1);

c2 = iSend (&buff ,P2);

Wait(c1);

Wait(c2);

}

P3(){

c = iRecv(&buff ,P2);

Wait(c);

ASSERT(buff=="ok");

}
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The Model

State and Transitions State Space

The states are the global states of the system

The transitions are the communication actions

The exploration consists of interleaving the communication actions
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SimGridMC
The Architecture

SimGridMC’s Architecture
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Approximating Dependency

D can be over-approximated by a D ′ such that

D(A,B)⇒ D ′(A,B)

If we don’t know if I (ti , tj) holds we assume D ′(ti , tj) (for soundness).
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SimGridMC
Independence Theorems

Theorem

Any two Send and Recv transitions are independent.

∀A,B ∈ Proc, rdv1, rdv2 ∈ RdV ,&x ,&y ∈ Addr , c1, c2 ∈ Addr :
I (Send(A, rdv1,&x , c1),Recv(B, rdv2,&y , c2))

Network

{}

A B

Network

{[id,"send",A,_,&x,_]}

A B
Send(&x);id

Network

{[id,"ready",A,B,&x,&y]}

A B
Send(&x);id

Recv(&y);
id

Network

{}

A B

Network

{[id,"recv",_,B,_,&y]}

A B
Recv(&y); idNetwork

{[id,"ready",A,B,&x,&y]}

A B

Send(&x);
id

Recv(&y); idNetwork

{[1,s],[2,s],...,[i,s]}

A B

Network

{[1,s],[2,s],...,[i,s],[i+1,s]}

A B
Send(&x);

Network

{[1,rdy],[2,s],...,[i,s],[i+1,s]}

A B
Send(&x);

Recv(&y);
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Parallelization of the Simulation Loop
Classical Parallelization Approaches

There are two classical parallelization approaches:

Space Decomposition

Multiple time lines

Risk of out of order events

Conservative: advance when no event out
of order can happen

Optimistic: rewind to a consistent state
when out of order events happen

Time divided in intervals

Intervals simulated in parallel

Must guess initial states

Re-computation needed when states do
not match
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Resolution of the Model

A simulation defines a discretization of the simulated time:

Each event has a timestamp that is computed using the resource models.

TM,R : E → [0, t], with t ∈ <

Resolution (ε)

The minimal time increment possible between two timestamps.
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Importance of the Model’s Resolution

The model resolution ε has an impact on the size of Pti

Higher resolution

|Pt1 | = 1, |Pt2 | = 1
|Pt3 | = 2, |Pt4 | = 1
|Pt5 | = 1, |Pt6 | = 1

Lower resolution

|Pt1 | = 2
|Pt2 | = 3
|Pt3 | = 2
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Impact of the resolution ε on |Pti |

Chord 100,000 nodes

Simulation of 1000s

25,000,000 messages exchanged

ε 10−5 10−3 10−1 Constant network

Average |Pti | 10 44 251 7424
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Experimental Results III

Chord: SimGrid vs. OverSim

Chord 2,000,000 nodes

ε = 10−1

Sequential execution: 8h15

Parallel execution: 7h15

speedup = 1.13 (24 threads)
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