
HAL Id: tel-00749092
https://theses.hal.science/tel-00749092

Submitted on 6 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions à la conception d’architectures matérielles
dédiées

Steven Derrien

To cite this version:
Steven Derrien. Contributions à la conception d’architectures matérielles dédiées. Architectures
Matérielles [cs.AR]. Université Rennes 1, 2011. �tel-00749092�

https://theses.hal.science/tel-00749092
https://hal.archives-ouvertes.fr

HABILITATION À DIRIGER DES RECHERCHES

présentée devant

L’Université de Rennes 1
Spécialité : Informatique

par

Steven Derrien

Plateformes, méthodologies et outils pour la conception
d’architectures matérielles reconfigurables

à soutenir le 13 décembre 2011 devant le jury composé de :

M. Tanguy Risset, Professeur INSA de Lyon, CITI/INRIA

M. Olivier Sentieys, Professeur Université de Rennes 1, IRISA/INRIA

M. Patrice Quinton, Professeur ENS Cachan, IRISA/INRIA

M. Jean-Philippe Diguet, Directeur de recherche CNRS, LasSticc-Lorient

M. Sanjay Rajopadhye, Professeur, Colorado State University, USA

et au vu des rapports de :

M. Pierre Boulet, Professeur Université Lille 1, LIFL/INRIA

M. Jurgen Teich, Professor University of Erlangen, Allemagne

M. Florent de Dinechin, Mâıtre de conférence HDR, ENS Lyon, LIP/INRIA

Contents

1. Introduction 5

1.1. Context of the work . 5

1.2. Summary of the contributions . 6

1.2.1. Synthesis of loop nests hardware accelerators 7

1.2.2. Reconfigurable platforms for high performance computing 7

1.2.3. Application specific parallel hardware accelerators 8

1.2.4. Tools for application specific architecture design 9

1.3. Organization of the manuscript . 11

2. Reconfigurable Accelerators for searching unstructured databases 13

2.1. Reconfigurable platforms for database processing 13

2.1.1. The case for Active Storage systems . 14

2.1.2. The RDISK platform . 15

2.1.3. The ReMIX Platform . 17

2.2. A case study: Multimedia Content-Based Image Retrieval 18

2.2.1. Similarity search algorithm . 19

2.2.2. Adapting the algorithm for hardware acceleration 19

2.2.3. Mapping CBIR on the RDISK platform 21

2.2.4. Mapping CBIR on the ReMIX platform 22

2.3. Discussion . 24

3. Massively Parallel Accelerator for HMM Profile Base Sequence search 27

3.1. Profile based sequence comparison . 27

3.1.1. The HMMER software suite . 28

3.2. Design space exploration for parallel HMMER . 29

3.2.1. Exploring scheduling/mappings . 29

3.2.2. Experimental validation . 31

3.3. Parallelizing through max-prefix inference . 34

3.3.1. Finding hidden parallelism in P7Viterbi kernel 34

3.3.2. Mapping the full HMMER3.0 pipeline to hardware 35

3.3.3. Experimental results . 36

3.4. Related Work . 37

3.5. Discussion . 38

4. Ultra Low Power Wireless Sensor Networks 41

4.1. WSN platforms design challenges . 41

4.2. A new hardware platform model for WSN . 43

4.3. Microtask based System Level Design flow . 45

4.3.1. Synthesizing microtasks from C code . 45

4.3.2. System-Level Synthesis . 47

4.4. Experimental results . 47

4.5. Discussion . 51

3

5. Synthesis of Hardware accelerator for regular computations 53
5.1. Representing loop nests as polyhedrons . 53
5.2. From processor arrays to process networks . 54
5.3. Efficient I/O management in processor arrays . 57

5.3.1. Conflict free I/O schedules in partitioned processor arrays 58
5.3.2. Experimental results . 58
5.3.3. Discussion . 60

5.4. Control generation for hardware Process Networks 61
5.4.1. Simple parameterized Controller . 62
5.4.2. Partitioned parameterized Controller . 62
5.4.3. Toward a Variant based controller . 63
5.4.4. Discussion . 64

5.5. Nested loop pipelining for HLS . 64
5.5.1. Checking pipelined coalescing legality . 66
5.5.2. Correcting coalescings by bubble insertion 67
5.5.3. Results and validation . 67
5.5.4. Related work . 69
5.5.5. Discussion . 70

6. Conclusion 71
6.1. Toward next generation of High-Level Synthesis tools 71

6.1.1. Revisiting hardware synthesis in the polyhedral model 72
6.1.2. Domain Specific Analyses for HLS . 72

6.2. Automatic parallelization for heterogeneous multi-cores 73
6.2.1. Constraint programming for automatic parallelization 73
6.2.2. Adaptive run-time parallelization for heterogeneous multi-core 73
6.2.3. Parallel programming tools for non parallel programmers 74

6.3. Model Driven Engineering and optimizing compilers 74
6.3.1. Domain Specific Languages for high productivity parallel computing . . . 74
6.3.2. Software reuse in MDE through model typing 75

A. Curiculum Vitae 77

B. Selected publications 81

C. Personal bibliography 93

D. General references 97

4

Chapter 1

Introduction

This manuscript summarizes my research activities since the defense of my PhD in December
2002. This work has been carried in several contexts, first as a post-doc at Leiden University in
the group of Ed Deprettere in 2003, then as an associate professor at University of Rennes 1, in
the R2D2 research group of IRISA, and then later in the CAIRN-INRIA/IRISA project-team.
Since September 2009, I am benefiting from an INRIA “délégation”, which helped me initiating
many new research projects and collaborations, and also allowed me to start supervising some
PhD students. This chapter is organized as follows, I will first start by presenting the context
in which my research takes place. This will be followed by a summary of the contributions
presented in the document and by a description of the organization of the manuscript.

1.1. Context of the work

The processor and computer design landscape is facing the toughest challenge it had to
confront since the introduction of the Intel 4004 processor in 1971. The reason behind this
upheaval stands in two words: parallelism and energy.

The days where software performance would grow just by magic, simply by benefiting from
processor clock speed (or micro-architectural) improvement are over, as the “clock speed race”
ultimately hit the “power dissipation wall”. With the resulting outbreak of multi-core (and soon
many-core) processors, the way we have been designing software (and the tools that we use for
doing it) for more than 20 years needs to be completely reconsidered.

It would be a mistake to consider that this threat is only geared at general purpose computing
systems, as embedded system designers are also confronted to similar problems. They however
face an additional challenge: because of tight power, cost and performance constraints, most
embedded platforms have to be based on heterogeneous multi-core systems. Such heterogeneous
platforms integrate, within a single die, tens, if not hundreds of computing cores, these cores
being significantly different in nature (programmable/extensible processors, custom hardware
Intellectual Property blocks, coarse grain reconfigurable co-processors, etc). As a consequence,
efficiently designing and programming such systems poses even greater challenges.

In the mean time, ubiquitous computing is becoming a reality, probably at a faster pace than
we realize it. We will soon be completely surrounded by tiny computing devices, whose role will
be to sense/watch and control our daily environment in a collaborative way. In addition to the
numerous ethical and legal issues that such devices may raise, they will also pose stringent new
challenges to computer and system architects. They will be expected to work autonomously
for months if not years, either by relying on extremely limited power supplies, or by harvesting
energy from their immediate environment. State of the art energy harvesting can provide at
most 20µW whereas the power budget of a low-power MCU such as the MSP430 is around
5mW at 16MHz. Satisfying these requirements means filling a two orders of magnitude gap
in terms of energy efficiency improvements. Here again, radically new approaches are needed.

Addressing these challenges requires combining techniques and knowledge from several fields
from Electrical Engineering (CAD tools, digital design, micro-electronics) to Computer Science
(processor architecture, operating systems, compiler design, software engineering). In such a
context, this work has been revolving around the definition of tools to help the design of complex

5

heterogeneous systems on chip. More precisely, this work has been focusing on automatic syn-
thesis of hardware co-processors, to improve the energy efficiency and performance of embedded
platforms. Using custom accelerators has shown to bring significant performance and energy
improvements (from ×10 to ×50), however their design is very tedious and time consuming as
it is done through Hardware Description Languages such as VHDL or Verilog.

Silicon compilers that can generate custom hardware from a high-level language, have been
advocated as an answer to address this design time issue. Even though the first of such tools
date back to the early 90s, it is only recently that they finally found their way in real design
flows, as their efficiency and usability remained limited for quite some time. Today, there exists
a large choice of robust and mature C to hardware tools [73, 30] that are used as production
tools by world-class chip vendor companies.

However, there is still room for improvement, as these tools are far from producing designs
with performance comparable to those of expert designers. The reason of this difference lies in
the difficulty, for automatic tools, to recover information that may have been lost during the
compilation process. The difficulty also stems from the lack of well defined target, as these tools
must jointly define the hardware architecture and map the algorithm onto that architecture.
This lead to some subtle trade-off between performance, resource usage, and energy efficiency.
Our contributions in this field focused on studying how to extract and take advantage of massive
parallelism and to improve energy efficiency of circuits designed using such silicon compilers.

We also investigated direct applications of reconfigurable computing, by proposing and de-
signing several massively parallel application specific accelerators for multimedia database search
and bioinformatics. These two fields involve many extremely computationally demanding al-
gorithms that are well suited to hardware acceleration. In particular we have studied how to
accelerate Markov based profile search, and specifically the HMMER software suite, a reference
tool for the whole bioinformatics community [63].

We also studied the hardware acceleration of content-based retrieval algorithm for multimedia
data, and in particular for image databases. These algorithms, whose goal is to search the nearest
neighbors of high dimensional vectors, suffer from what is known as“the curse of dimensionality”
and a search hence requires an exhaustive scan in the reference database. Here again, we have
shown that these applications were good fit for hardware acceleration.

Lastly, in the context of a close collaboration with Dominique Lavenier from the IRISA/IN-
RIA Symbiose team, we also contributed to the design and proposal of reconfigurable hardware
based on the concept of smart storage systems, targeted at searching information in large
database systems. This research work led to the construction of two prototypes: RDISK and
ReMIX.

It is noteworthy that these three topics mentioned above are tightly related to each other,
and addressing all these issues at once is unavoidable. As a matter of fact, the ability to im-
prove design tools requires two things: a deep understanding of hardware platforms and FPGA
technology, but also a deep knowledge of applications requirements so as to help pinpointing the
limitation of existing tools. Experience has shown that such an expertise can only be acquired
through recurring practical case studies on real life target platforms. Figure 1.1 illustrates the
contributions presented in this work, by showing how they are related to the aforementioned
topics.

1.2. Summary of the contributions

This section provides an overview of the research topics presented in this document. These
topics are presented in chronological order, starting from earlier work which took place during
my post-doc and/or that were in the direct continuation of my PhD work, to some very recent

6

CAD Tools

Applications Platforms

Control synthesis
in hardware

Process Networks

Hardware

acceleration

of HMMER

Content based

image retrieval

Efficicient I/O

interface for regular

processor arrays

Source to source
Nested pipelining

Ultra Low Power
Wireless Sensor Node

platforms

RDISK & ReMiXplatforms

Figure 1.1.: A visual representation of the contributions presented in this work.

work on source-to-source transformations for High-Level-Synthesis (HLS).

1.2.1. Synthesis of loop nests hardware accelerators

The first contribution after my PhD was a result of a stay as a post-doc in 2003 at Leiden
University in the group of Ed Deprettere, where we worked on the problem of automatic hard-
ware synthesis in the context of the Compaan/Laura framework [165, 153]. The goal was to
synthesize efficient hardware process networks [18] leveraging the Polyhedral Process Network
semantics [154]. To address the problem, we studied and investigated several approaches to
improve the scalability and efficiency of the hardware controllers generated from Compaan.

After my returning to University of Rennes, I have been working with Tanguy Risset and
Alain Darte on the problem of automatic synthesis of efficient hardware/software interface for
processor arrays, in the context of their integration as hardware IPs in a System on Chip.
Some of my earlier work with Tanguy Risset addressed the problem of interface synthesis for
one dimensional arrays, integrated as slave peripherals in a system. In this work, we extended
our previous results to support partitioned processor arrays with busmaster capabilities. In
particular, we proposed a technique, which is able to determine a static I/O pipeline scheme for
distributing the data among the boundary processors of the array, given a partitioning of the
array enforcing certain constraints,

1.2.2. Reconfigurable platforms for high performance computing

In the mean time, I also continued a collaboration started with Dominique Lavenier just
before the end of my PhD. Our joint work has focused in the design and utilization of application
specific reconfigurable platforms for high performance database processing. Two prototypes
have been designed during this period, namely the RDISK and ReMIX machines. The aim
of the RDISK project was to propose a new paradigm of reconfigurable hardware accelerators
based on the smart-disk principle [87, 131, 110], the goal being to move the computational
resource as close as possible to the data source. Our key idea was to attach the reconfigurable
accelerator directly to the disk output, so as to be able to perform on-the-fly data filtering. A
prototype RDISK cluster with 48 nodes was designed, and several bioinformatic applications
(BLAST [36], WAPAM) have been accelerated on the platform, with speedup ranging from 5 to
20 per node. The RDISK cluster platform has also been serving as a reference target platform

7

for three PhD students (S. Guyetant, M. Giraud et A. Noumsi), and the cluster was later added
to the processing resource of the GenOuest platform (http://www.genouest.org).

The ReMIX platform was in continuation of the RDISK, with a focus on large scale indexing,
where index size exceeds capabilities of current volatile memory technologies. The idea consisted
in coupling the FPGA resource to Nand Flash memory. Each node of the ReMIX cluster hence
contains a Xilinx FPGA combined with 64GB of Flash memory, organized in parallel banks to
maximize I/O throughput. The approach permits to combine the benefits of non permanent
storage system with those of random access memories (throughput, access latency). An 8-board
prototype was realized and validated, and several accelerators have been ported to the system,
with speedup factors of up to ×50 per node.

1.2.3. Application specific parallel hardware accelerators

While working on the RDISK and ReMIX platforms, we have also conducted several case
studies. The goal of this work was twofold. The first motivation was to demonstrate the rel-
evance of FPGAs for high-performance database applications. The other one was to see how
semi-formal design methodologies could help deriving more efficient accelerator architectures,
but also to search for interesting design tricks/optimizations that could be worth being inte-
grated in high-level synthesis tools. The target application domains in this work were content
based search in multimedia databases (image, video) and genomic sequence comparison in bioin-
formatics.

In the context of the PhD of August Noumsi (supervised by Patrice Quinton), we have been
working in collaboration with the IRISA/INRIA TexMex group on the hardware acceleration
of content based image retrieval algorithms. A detailed description of the work carried on this
topic is provided in Section 2.2. In particular, we have quantified the impact of some architec-
tural parameters (encoding accuracy, synchronization overhead) on the effective performance of
two hardware implementations (for the RDISK and ReMIX platforms), which have exhibited
important (more than ×100) performance improvements.

The other application domain we have studied in this context is bioinformatics, and more
particularly genetic sequence comparison algorithms. The contributions related to this work
are detailed in Chapter 3. These compute intensive kernels, based on dynamic programming
algorithms, are very good candidates for hardware acceleration. In addition, the fact that ge-
nomic sequence databases grow in size at a faster pace than processor performance raises a
need for high performance implementation of the algorithms. A number of such algorithms
and applications have already been successfully accelerated on FPGAs (Smith-Waterman [140],
BLAST [36]) with good performance improvements (speedup by ×100 over a software imple-
mentation). Some other algorithms turn out to be more difficult to accelerate in hardware, in
particular when there is no obvious parallelization scheme. This is the case for the HMMER
software suite, based on Markov models, used for sequence similarity searching.

We have proposed a scalable parallelization scheme for this algorithm, detailed in Section 3.2,
which is well suited to hardware acceleration. This scheme is based on space-time transforma-
tions formalized in the polyhedral model, and enables the derivation of a generic processor array
template that can easily be retargeted to different accelerator platforms, while retaining its effi-
ciency. The template is parameterized and supports different levels of fine grain pipelining, and
can handle resource constraints by allowing the designer to specify the number of processing
elements used in the architecture. This result was presented in 2007 to the IEEE International
Conference on Application-specific Systems, Architectures and Processors and received the best
paper award.

We continued investigating this topic in the context of the PhD of Naeem Abbas (funded by
the ANR BioWic project) and in close collaboration with Sanjay Rajopadhye from Colorado

8

http://www.genouest.org

State University. Our work focused on sophisticated program transformations leveraging alge-
braic properties of the algorithms which extensively use reduction operations. We have shown
that to the contrary of common beliefs, it is possible to parallelize the HMMER main algorithm
at the price of a moderate increase in computation volume. The idea, presented in Section 3.3,
is based on the uncovering of a hidden parallel prefix operation, for which there exists many
efficient parallel hardware implementations, as the topic is studied since the mid-70s. The par-
allelization of a prefix operation however comes at the price of a slight increase in computation
workload (O(N. log2N) instead of O(N)). The approach was validated on a high performance
FPGA accelerator (XD2000i) and demonstrated speedup by up to factors of 7.5 over the highly
optimized software implementation on a 3GHz Intel Dual Core. We are currently pursuing the
automation of some of these transformations within a C to hardware compilation tool.

1.2.4. Tools for application specific architecture design

In 2007, I decided to refocus my research activities on CAD tools, and to start working again
on automatic synthesis of parallel hardware accelerators. This decision was motivated by the
work of Ludovic L’Hours on the first version of the Gecos compiler [105], which opened new
interesting perspectives. Since 2008, Gecos serves as the reference compiler infrastructure for my
research activites and for the whole CAIRN group. Two different problems have been targeted:
the synthesis of ultra low-power controllers for wireless sensor networks, and source-to-source
loop transformations for HLS.

Ultra low power wireless sensor node platforms

Wireless Sensor Networks (WSN) are a very promising technology with potential applications
in many domains of daily-life, such as structural-health and environmental monitoring, medicine,
military surveillance, robotic explorations, and so on. A WSN is composed of a large number of
nodes deployed inside a region of interest. Designing a WSN node is challenging, as designers
must deal with strong form factor and energy constraints. For example, WSN nodes may need
to run autonomously for months using limited energy sources (between ten and a few hundred
mAh for small form factor Lithium batteries), or by harvesting energy from their environment
(power supply of at most 20µW).

Current WSN nodes are based on micro-controllers such as the MSP430 [150] with typical
power dissipation of a few mW , which are still orders of magnitude too high for many candidate
applications of WSN. In the context of the PhD of Adeel Pasha (graduated on December 15 th
2010) and in collaboration with Olivier Sentieys, we tackled the problem by using a radically dif-
ferent approach, combining hardware specialization with concurrent task-level processing. The
idea was to take maximum advantage of the opportunities of specialization by generating, for
each task of the system, its custom hardware controller. By combining this idea of specialization
with power gating, we have shown that it is possible to significantly reduce dynamic power while
maintaining very low levels of static power dissipation.

Our approach, detailed in Chapter 4, leverages tools and techniques from micro-electronics,
compiler/hardware synthesis and software engineering to offer a complete flow. This flow enables
the complete specification (and synthesis) of a hardware/software platform from a combined use
of C and of a platform description Domain Specific Language. The implementation of such a
complex toolchain was made possible thanks to the use of Model Driven Software Development
tools, which allowed us to benefit from many facilities for code generation and DSL design
provided by the Eclipse Modeling Framework. Very interesting experimental results have been
obtained, which showed that overall energy improvement by two orders of magnitude (w.r.t. to

9

the MSP430) is possible through this approach. This work has led to four publications including
a paper presented at the IEEE/ACM Design Automation Conference in 2010.

We are pursuing this research direction in the context of the PhD of Vivek D. Tovinakere
(under the supervision of Olivier Sentieys). His focus is on accurately modeling the impact
of fine grain power gating techniques, and on the introduction of hardware reconfiguration.
However, this work, still in progress, will not be presented in this document.

Source-to-source transformation for HLS

High-Level Synthesis tools, despite their progress over the last few years, do still suffer from
many limitations. The initial source code that is to be mapped on hardware almost always
requires to be heavily modified so that the tools are able to deal with it, but also (and mostly)
so that they can derive an efficient architecture out of it. Such transformations can have
significant impact on performance whenever the input code involves nested loops operating on
arrays, since it is often possible to rewrite the loop to expose additional parallelism or improve
locality by exploiting data reuse opportunities directly at the source code level.

I have been working with Antoine Morvan (PhD student supervised by Patrice Quinton) on a
source-to-source loop transformation toolbox based on polyhedral representations of loops since
late 2008. This work is part of the S2S4HLS project 1 funded by the INRIA-STMicroelectronics
Nano2012 program. In this work, we have been focusing on improving pipeline efficiency for
loop nests that can be represented in the polyhedral model.

Efficient hardware acceleration of compute intensive kernels generally involves pipelining the
execution of these kernels. This pipelining is applied to the innermost loops of the kernel and
consists in overlapping the execution of several iterations on the hardware resources. The tech-
nique significantly improves the throughput of the accelerator, at the price of a slight increase
in area and latency (related to the pipeline depth). It turns out that loop nests are well suited
for a pipelined execution, as they often carry a significant amount of iteration level parallelism.
However the efficiency of this pipelined execution degrades quickly as the number of iterations
within the inner loop goes below a certain threshold. The degradation is caused by the pipeline
fill/flush stages which then dominate execution time. This situation appears very frequently in
the context of high-level synthesis, as many algorithms exhibit low innermost loop trip counts
and since designers often try to derive deeply pipelined datapath, with long fill/flush stages.

In this work we propose to reduce this overhead by pipelining the execution of the whole loop
nest instead of restricting the pipelining to the innermost loop. The idea consists in coalescing
the loop nest hierarchy in to a single loop, that will be further pipelined. The key problems are
then (i) to build this coalesced loop, and (ii) to make sure the pipeline of this coalesced loop
is legal (i.e., that it does not alter the semantics of the original code). Ensuring the legality of
such a pipeline turns out to be difficult in the general case, especially for loop nests involving
non constant loop bounds.

Our contribution, detailed in Section 5.5, consists in a legality check taking advantage of
iteration instance wise dataflow analysis, associated with a correction technique. This correction
technique can make a pipeline legal by inserting extra dummy iterations in the coalesced loop,
these iteration then serving as wait states. Our technique was implemented in the Gecos source-
to-source compiler and has shown encouraging results, with performance improvement of up to
30% for matrix multiplication and QR decomposition.

1. Source-to-Source for HLS

10

1.3. Organization of the manuscript

The remainder of the document is organized as follows, Chapter 2 describes our work on
reconfigurable accelerators for unstructured databases, along with a case study application on
multimedia content based search. Chapter 3 continues to discuss the topic of unstructured
databases, with the focus on the design of a hardware accelerator for a sequence comparison
algorithm (HMMER), widely used in the bioinformatics community. In Chapter 4, we present
our work on ultra low power wireless sensor node platforms, and the design flow that supports the
idea of hardware microtasks. Chapter 5 provides an overview of all our contributions on the topic
of hardware synthesis in the polyhedral model. Chapter 6 summarizes our contributions, and
provides detailed research perspectives both in the short and long term. A complete Curriculum
Vitae, and a list of publications are also provided as appendix A and C.

11

Chapter 2

Reconfigurable Accelerators for

searching unstructured databases

The work described in this chapter took place between 2003 and 2006 in close collaboration
with Dominique Lavenier from the Symbiose team at IRISA. The goal was to see how recon-
figurable technology could be used for accelerating search operations in unstructured databases
(such as multimedia and genomic databases).

In this work, we tried to take a fresh look at reconfigurable accelerator platforms, by re-
considering the way the reconfigurable resource was coupled to the rest of the system. Our
approach was motivated by our earlier experiences which showed that I/O throughput and/or
latency were almost always performance bottleneck for FPGA platforms. To address this is-
sue, we proposed two original prototype systems where the FPGA processing power is set as
close as possible to the data source, following the principle of smart storage systems. We have
also evaluated how this type of platforms could benefit to multimedia content-based search
applications.

In Section 2.1, we discusses the idea of reconfigurable storage system and describe two plat-
form prototypes RDISK and ReMIX that we designed following this idea. We then detail two
different accelerators for our multimedia search algorithm. These implementations leverage both
coarse grain and fine grain parallelism to reduce the search time and were carefully designed to
maximize global (i.e., system level) performance. We illustrate the relevance of our approach
through a case study: content-based image retrieval for large databases.

2.1. Reconfigurable platforms for database processing

The use of reconfigurable hardware for accelerating general purpose and scientific computing
has been an active topic of research for now more than 20 years. In theory, reconfigurable
accelerators are able to offer the best of both worlds: flexibility, thanks to dynamic reconfigu-
ration, and performance thanks to parallelism and specialization. Seminal work in the domain
[157, 156, 82] that took place in the early 90s had shown very promising results, and set the
stage for what came to be known as the “Custom Configurable Computing” community.

However, in the late nineties, the lack of high-level design flows combined with ever increasing
processor performance and severe I/O bottlenecks in FPGA platforms somewhat brought to an
end most of the interest in reconfigurable computing. In particular, the steady improvements in
both clock speed and micro-architectures had raised the bar too high for FPGAs to be able to
compete with high-performance general purpose programmable processors. In the mid 2000s,
the so-called clock speed wall and raising concerns for power dissipation in processors renewed
interest for alternative technologies such as FPGAs. In the mean time, the outbreak of multi-core
and GPUs, and in particular the programming challenges that they would represent, contributed
to make FPGA design effort more acceptable, especially as many usable C to hardware compilers
became available during this period. As of today, it seems that Reconfigurable Computing has
found a small market niche, yet it remains to be seen whether this niche will survive in the
longer term.

Independently of these architectural evolutions, another interesting phenomenon was ob-

13

served during the last decade: the fast wide spreading and growth of what is known as un-
structured databases, carrying diverse types of information, from genomic to multimedia data.
Because they cannot benefit from traditional indexing techniques (i.e., those used in relational
databases), searching those databases often involves a complete scan of the dataset. This leads
to poor performance as the whole data has to be read from its permanent storage medium but
also since the selection algorithm has to be applied to every item, which (as far as genomic
and multimedia data are concerned) is usually computationally expensive. Given that these
databases size ranges from hundred of gigabytes to terabytes, and that their size tends to grow
exponentially, running these analyses requires large storage capabilities along with huge com-
puting power. In practice, only very few systems can provide both; supercomputers are geared
towards processing power and storage systems are geared towards data distribution. Hence the
user usually must sacrifice one for the other.

2.1.1. The case for Active Storage systems

Storage bottlenecks are solved through the use of High Performance data warehouses based
on Storage Area Network (SAN). SANs are built upon a high-speed special-purpose networks
interconnecting storage devices with servers on behalf of a larger network of users. The evolution
of storage systems technology has shown that more and more intelligence is embedded into these
systems (network protocols, cryptography, file systems management, etc.). While these tasks
are still mainly geared toward data management and availability, we believe that the growing
gap between the storage and processing capacity might induce a shift in the way these systems
are designed. In particular, we believe that they may start providing data processing oriented
services in the future. There are two reasons for this:

– In most cases the end user is only concerned with a small fraction of the original dataset
that contains relevant information to its query. This is typically the case in DNA sequence
similarity search and in multimedia content based retrieval problems. Filtering the data
at its source has many benefits, as it significantly lowers the I/O volume in the storage
system, hence decreasing its power consumption, and also improving its scalability.

– For such products, the cost overhead induced by additional embedded processing power
would remain small (many SAN infrastructures already embed FPGAs for I/O manage-
ment) with significant outcomes in terms of performance and energy.

Bringing computational power closer to the data source is not a new idea, and was explored
in the context of smart disk devices. The smart disk approach suggests to use a fraction of
computing power available within the hard-drive embedded controllers for data processing ap-
plications, based on the information that these processors, whose role is limited to disk head
scheduling or cryptography/security, are somewhat underutilized. This concept has been inves-
tigated by several research groups in the late 90s [87, 131, 110], and their work showed promising
results for a relatively wide panel of applications in which large datasets were involved. However
it appeared that the hard disk storage industry would not move toward such open embedded
CPU based smart disk devices, mostly because of security 1 and cost reasons. This is not true
for the storage systems industry which is based on more open protocols and infrastructures.

Following this vision, we propose a new type of storage system based on“networked intelligent
storage devices”, which could be assembled in order to build larger scale application specific
database systems. The intelligence of our system would lie in its ability to perform on-the-fly
filtering of the data as it is read from the storage device. The goal is to send a small superset
of the relevant data to the host. This superset will then be further analyzed to filter out

1. The software IP in hard-disk controllers is a key contributor to the actual hard disk drive performance, and
this expertise is highly protected.

14

�
�
�

�
�
�
��
�
��	
�

A�B	��	�C

D��	�EF�	

����C����	�C���

�
�
�
C�
�
�	
C

�
��
�

�
�
�
C�
�
�	
C

�
��
�

������� ��F���

�F���F�	C

ED��	�

�� !"

D��	�EF�	

A��	��	�C

 ���C�#$

%&�'C�D���(��������	�

	
�
�
�
ED
)
*

�	
+
�
	
�
�

�#,!C 	���ED)*C-���

�
F
��
(�
�D
.
	
C�
�
A
C�
�
�
�
	
�
��
�

'�"/��	C�� !"

!
�
��
C�
�
�	
)
�F
�	
�
C"
!
�
C

A
�B
	
��
	
�C
�
�
�
��
�
��	
�

��������	�ABCDEF�����E�E��F

��������	����F����E�E��F���������������������

�A������	���DEF���������������BF�F�E�E���

Figure 2.1.: The RDISK Node cluster and node prototypes, along with the node reconfigurable
System On Programmable Chip

false positives. Because the performance benefits of a CPU based smart disk is not expected
to justify its cost overhead and design complexity, the only way to be competitive is to use
hardware acceleration through reconfigurable technology.

In the following, we summarize the work (carried in close collaboration with Dominique
Lavenier) on RDISK and ReMIX , two intelligent storage prototypes designed between 2003
and 2006.

2.1.2. The RDISK platform

The first research project that we started aimed at proposing a smart disk platform leverag-
ing reconfigurable technology, and following the principles of Network Attached Storage (NAS):
a computer data storage device connected to a network that provides filesystem level services.
The following provides an overview of the work done on the RDISK platform design and imple-
mentation, both from the architectural and system level points of view.

One of the goal was to propose a low-cost and scalable system, competitive in prices (in
2003) with other Network Attached Storage devices. We therefore targeted a cost of roughly
$200 per RDISK node, including PCB and a middle range HDD. This led to the choice of a
platform based on a low cost $30 Xilinx SpartanII-200 FPGA coupled to a 100Mbit controller
with 32MB SDRAM memory and a 8051 controller for handling the device configuration. The
core of the RDISK system was a System on a Chip implemented on the FPGA, represented in
Figure 2.1.(c). Because of stringent resource constraints, we based the system on an open source
16 bit RISC soft-core processor, that requires less than 300 logic cells, leaving 2500 LUTs and 10
BlockRams for the data processing filter. This core was in charge of the network management
and implemented a custom light weight UDP protocol. To maximize throughput, the hard-drive
controller was implemented as an advanced autonomous state-machine that could handle most
of the IDE-ATA protocol, and perform complex I/O requests. Our file system services were
handled by the host server, to ease development.

15

To demonstrate the feasibility of our approach, we built a complete parallel storage system,
by assembling a cluster of 48RDISK nodes together, as shown in Figure 2.1.(a). The abstract
system-level view of this RDISK cluster is provided in Figure 2.2. In this system, all disks can
operate in parallel, and their results are sent to the host through the network. The aggregated
RDISK nodes output throughput must not saturate the host network link to guarantee the
absence of bottleneck. This puts a constraint on our hardware filter selectivity (the less selective
the filter is the more data has to be sent to the host). As an example, our prototype uses 48
boards, we assume that the host can handle at most 5MB/s (half the peak 100MBits), and
that each drive provides a sustained bandwidth of 15MB/s. This means that our hardware
filters should be able to filter out 99.3% of the data read from the disk, with each individual
disk output bandwidth being in the range of 100 kB/s.

parallel disk
access

(10 - 100 disks)

hardware
filter

switch

Host post-processing
(performed only on relevant data)

15MB/s

15MB/s

15MB/s ~100kB/s

~100kB/s
~100kB/s

parallel disk
access

(10 - 100 disks)

hardware
filter

switch

Host post-processing
(performed only on relevant data)

15MB/s

15MB/s

15MB/s ~100kB/s

~100kB/s
~100kB/s

Figure 2.2.: The RDISK cluster: system level view

Since the average network throughput requirements for each node are in the 100kB/s range,
we did not try to optimize our network firmware and chose an IP/UDP stack in order to simplify
the development of the network management layer. To minimize overhead, we used a simple
UDP based protocol to receive and send commands to and from the host machine. It is worth
noticing that most of this protocol could have been implemented in hardware using a complex
state machine similar to the one used for controlling the disk. It would have then been possible
to perform I/O access using the full 100Mbits Ethernet bandwidth.

An important feature of the RDISK system is the way it handles dynamic reconfiguration
management. All configurations for a given RDISK board are stored locally on its HDD, within
a specific partition of the file-system. These bitstreams are accessible to the 8051 microcontroller
that serves as a configuration manager and shares access to the HDD with the FPGA. When a
new hardware configuration is to be run on the system, the host simply sends a suicide command
to the selected boards, including the next configuration to be used. This message is forwarded
to the configuration manager, which reconfigures the FPGA using the corresponding bitstream
read from the disk, and loads its associated OS image (the whole operation lasts 800ms).

The RDISK served as a target platform for three PhDs (S. Guyetant, M. Giraud and A.
Noumsi). In 2006, the prototype was integrated to the pool of computing resources provided
by the Génouest platform 2. Several bioinformatic applications have been successfully ported to
the architecture 3, including a hardware accelerated version of the BLAST sequence alignment
by S. Guyetant and a similarity search tool based on Weighted Finite Automaton (WAPAM)
by Mathieu Giraud. In particular, the WAPAM program leveraged the dynamic reconfiguration
capabilities: the application would synthesize on the fly a custom hardware design tailored to

2. http://www.genouest.org

3. I was not directly involved in these contributions

16

http://www.genouest.org

�����

���	A���BACDE

�����

���	A���BACDE

EF��C�����

�B��A�C����

EF��C�����

�B��A�C����

�����

���	A���BACDE

�����

���	A���BACDE

EF��C�����

�B��A�C����

EF��C�����

�B��A�C����

���A	��C�C����

���A	��C�C����

EF�

����

EF�

����

EF�

����

EF�

����

F��

����

�
��

�
�

C�
�

�
	A�

��B
AC

D
E

�B� !

"�A#$�ABC% �	BA

��$BA����&

���'B

E()C��C**�C���

�
�

�
+

)
�

�
�

+
)

�
�

�
+

)
�

�
�

+
)

�
�

�
+

)
�

�
�

+
)

�
�

�
+

)
�

�
�

+
)

�
�

�
+

)
�

�
�

+
)

�
�

�
+

)
�

�
�

+
)

�
�

�
+

)
�

�
�

+
)

�
�

�
+

)
�

�
�

+
)

�
�

�
+

)
�

�
�

+
)

�
�

�
+

)
�

�
�

+
)

�
�

�
+

)
�

�
�

+
)

�
�

�
+

)
�

�
�

+
)

�
�

�
+

)
�

�
�

+
)

�
�

�
+

)
�

�
�

+
)

�
�

�
+

)
�

�
�

+
)

�
�

�
+

)
�

�
�

+
)

Figure 2.3.: Simplified RMEM node architecture

the pattern at hand, and would then configure the platform with the problem instance specific
accelerator. This tool was later made publicly available to registered platform users from the
bioinformatics community. Even though I was not involved in these contributions, they show
the relevance and interest of our proof of concept.

Another application field that was explored in the context of RDISK is content-based mul-
timedia search. This topic is thoroughly described in Section 2.2, and will not be detailed
here.

I took an important part in the design of the RDISK architecture, which was the core
of S. Guyetant PhD thesis, as the node architecture was mostly based on one of my draft
design. This work was carried in 2002 and 2003, before that soft-core processors (and their
associated tools) would become commodity components. The development of the RDISK SoC
hence required a significant development effort, to which I also contributed a lot (in particular
on the soft-core CPU and on the SDRAM memory and cache controllers).

2.1.3. The ReMIX Platform

The ReMIX project was started in 2005, in continuation of the RDISK project, in the context
of a Action Concertée Incitative proposal. The design of ReMIX was mainly motivated by two
observations:

– Even if attached directly at the disk output, I/O bandwidth and/or random access time
still remained to be a bottleneck and prevented from fully utilizing the power of the FPGA.

– Nand-Flash memory did not suffer from the same limitations and its price had been de-
creasing at an exponential rate. We expected that this technology would soon become a
serious competitor to magnetic storage systems.

The idea behind ReMIX was to benefit simultaneously from the high data throughput and
the short access-time that can be obtained with the parallel use of Flash memory devices, and
from the high computing density of a high-end FPGA. The goal was to obtain the largest
possible storage capability and the smallest possible random access time.

Nand-Flash memory exhibits significant differences with respect to standard memory in
the way data is accessed. In Flash technology, data is addressed at the page level, each page
containing between 512 byte and 2KB. Each access suffers from a relatively long latency (20µs),
but which remains three orders of magnitude better than a hard disk drive. The main weakness
of this technology is the relatively slow write operation, which requires a page to be erased before
it is rewritten, and the fact that the number of erase operations for a page is limited. This puts
an upper bound on the lifetime of the device, and forces designers to resort to advanced wear

17

���� ����

���� ����

���� ����

���� ����

�����	

���ABCDEF�

��
�C�
�	�
���
�

���C��	�����

��
�C�
�	�����

���C��	�����

����	C���E��C�C�E���E����C

Figure 2.4.: ReMIX cluster architecture

leveling strategies as in modern Solid State Drives.
To minimize the hardware development effort, we based our design on a pre-existing third

party PCI board integrating a Xilinx Virtex-II Pro FPGA. We then designed an extension
board associating 64GB of Nand-Flash memory 4 and several smaller FPGAs for handling the
complex Nand-Flash protocol. In our system, the memory is organized in multiple parallel
banks as illustrated in Figure 2.3, enabling sustained I/O throughput of 640MB/s. A simple
host managed file system was used to allow the user to transparently manage the content of
the 64GB Flashmemory, while guaranteeing maximal throughput when accessing data during
processing stage. One weakness of this platform is the poor filter output throughput, which is
restricted to 5MB/s (the target PCI board only supporting slave I/O). A prototype cluster of
4ReMIX node (with two ReMIX board per node) was designed and validated. The cluster, rep-
resented in Figure 2.4 was used in several other projects [98], including a port of our Multimedia
application [3], that is described in the following section.

2.2. A case study: Multimedia Content-Based Image Retrieval

Content-Based Image Retrieval (CBIR) is a technique that is used to retrieve images from a
database that are (at least) partly similar to a given query image. CBIR is drawing increasing
interest due to its potential application to problems such as image and video copyright enforce-
ment. Indeed, the large use of the Internet resulted in a huge increase of multimedia content
available on the Web. Enforcing copyright has hence become a concern to its owners, and in
particularly identifying undue use of images is an important issue. Because Internet is a rapidly
changing support, there is a need for precise and fast image comparison algorithms that could
be used to inspect the web on a daily basis.

CBIR is mainly based on comparison of image descriptors of a query image with those of
database images. Descriptors may be either global, i.e., they represent some global feature of an
image (e.g., a grey level histogram) or local, in which case they describe special points of interest
in the image (e.g., corners, color changes, etc.) as depicted in Figure 2.5. In this work, we deal
with local descriptors as they were shown to be more robust since they are less dependent to
image variations than global descriptors [122].

4. In 2005, time of the design, only 32Gb Nand-Flash chips were available)

18

�����

�����

���	�

A���	B

��

A��B��

�

�

�

B

C

����	

A�����

�B���	

����B

���	B

�

�

�

B

C

�D�E��

�����

A�����

A��	B�

A�����

�

�

�

B

C

�� ��

Figure 2.5.: Local descriptors are constructed from interest points of the image

2.2.1. Similarity search algorithm

Retrieving an image is done in three steps. The first step consists in associating a set of
descriptors for the query image, typically, a few hundred vectors of 24 (or more) real components.
The second step then computes the distance between each one of the query descriptors and those
of the image database (we call this step the distance calculation stage). In the third step, we
construct, for each query descriptor, a k-nearest neighbor list which contains the k database
descriptors with the smallest distance to the query descriptor (selection stage). Finally, votes are
assigned to the images depending on their appearance in the k-nearest neighbor lists (election
stage): the image that has the largest number of votes is considered to be the best match.

The whole process is extremely time consuming: retrieving an image among a 30,000 image
database required about 1,500 seconds on a standard workstation (in 2005). This is obviously
impractical for many applications that would require low response time. The reason for this
inefficiency was 5 the lack of efficient indexing scheme for such high-dimensional space, caused by
what is known as the curse of dimensionality [37]. One solution to improve the performance of
CBIR systems was to resort to special purpose implementations. Parallelizing the application
on a parallel machine was the most natural choice, and has already been studied by a few
authors, including Robles et al. [45, 133].

In this work, we approached the problem by combining both parallelism and special-purpose
hardware. Our target architectures were the RDISK and ReMIX Platforms, and we therefore
proposed two very different hardware accelerators for the algorithm. Rather than proposing
ad-hoc solutions, we tried as much as possible to guide our design choice using high-level ana-
lytical performance models. The goal was to be able to take into consideration many different
constraints: FPGA resource constraints, bandwidth constraints, and also some statistical infor-
mation on the algorithm behavior (numerical value distribution, and run time profiling). These
models would be too complex to describe in details and we invite the reader to refer to our
publications on the topic [23, 3, 29].

2.2.2. Adapting the algorithm for hardware acceleration

The first step in porting the algorithm to hardware is to see whether it can be transformed in
order to make it more amenable to custom hardware acceleration. In the following, we describe
two of such transformations that we used in this work.

The first one is a conversion from floating-point encoding to short fixed-point integer arith-
metic. Even though floating-point operators can be implemented in programmable logic [57, 56],

5. The use of past tense is deliberate, as this fact does not hold anymore, as explained in the last section of
the chapter.

19

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

Values of descriptor components

D
a

ta
 r

e
p

a
rt

it
io

n

(a) Descriptor values distribution

5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Fixed point format bitwidth

F
ix

e
d
 p

o
in

t
im

p
le

m
e
n
ta

ti
o
n
 r

e
la

ti
v
e
 a

c
c
u
ra

c
y

(b) Accuracy as a function of encoding

Figure 2.6.: Descriptor values distribution search accuracy

their area efficiency and performance are still very far from that of fixed-point integer arith-
metic. Devising a custom (and short) fixed-point representation for the algorithm data has
several advantage: it improves the circuit clock speed, helps increasing the degree of parallelism
in the accelerator (more operators can be implemented for a same resource cost), and signifi-
cantly improves database scanning time, as the database size can also be reduced. Figure 2.6(a)
shows the distribution of CBIR descriptor values. The reader may notice that the range of these
values is concentrated within a narrow interval. This suggests that descriptor data is amenable
to short fixed-point encoding.

The second transformation was the choice of an alternative to the Euclidean distance metric
used to compute the distance score. In particular, a common substitute for the Euclidean (also
known as L2) distance, is the Sum of Absolute Difference (SAD) distance (also known as L1)
metric, which is more suited to hardware, and also widely used in image processing.

In the context of CBIR, there is no way to directly model the impact of a loss of accuracy (by
calculating the SQNR) of the search results. The only solution is to use extensive simulation
and to experimentally observe the impact of a given conversion scheme (scaling factor and
bitwidth) on the search results. This validation was realized through an accuracy test based
on the work of Amsaleg et al. [37]. This test considers a random image Iref taken from the
image database. From this image, it derives a set of image variations (including Iref) using
a set of transformations (cropping, rotation, JPEG encoding, etc.) taken from the Stirmark
benchmark [122]. Each one of these images is then used as a query for the database to evaluate
the accuracy of the retrieval. Experimental results for various fixed-point bitwidth format using
L1 distance are given in Figure 2.6(b). They have been obtained for a large set of images, and
correspond to several week of running time. They show that for 8 bits fixed-point encoding and
above, accuracy is similar to the original software (whose accuracy is 85%).

The original software implementation of the algorithm took advantage of a straight-forward,
but very efficient optimization. Whenever the current distance score between a query vector
and a database vector exceeds the score of the kth-nearest neighbor (in the following, we call
threshold this value), the later is sure to never appear in the list. It is therefore useless to
continue, and the algorithm can directly proceed to the next candidate vector.

Figure 2.7(a) illustrates the efficiency of this early exit approach, as it shows that in 80%
of the cases, only three iterations are enough to discard a candidate vector. However this only
translates into a moderate speedup [23], mostly because of micro-architectural side-effects (the
optimization induces many incorrect branch predictions). Taking advantage of this optimization

20

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Descriptor dimension

P
ro

b
a

b
ili

ty
 f

o
r

o
v
e

rf
lo

w
in

g
 t

h
e

 t
h

re
s
h

o
ld

 i
n

 t
h

is
 d

im
e

n
s
io

n

(a) Probability of early as a function of the iteration
number

10 20 30 40 50 60
0

5

10

15

20

Number of parallel processors

A
v
e

ra
g

e
 i
te

ra
ti
o

n
 s

te
p

s

(b) Average number of iterations as a function of
the number of processors

Figure 2.7.: Efficiency of the early exit optimization for CBIR

in hardware is far from trivial and may not always be the best design option.

As a matter of fact, such an optimization would be quite inefficient in practice, as the parallel
distance evaluation can only proceed to the next candidate vector once all the distances score
currently computed are discarded. The actual efficiency of the hardware would then decrease
as the level of parallelism would grow, as depicted in Figure 2.7(b).

2.2.3. Mapping CBIR on the RDISK platform

We implemented the CBIR algorithm for the RDISK prototype in 2005. The critical point in
the design of the filter was to optimize the workload balance in the execution pipeline represented
in Figure 2.8. This pipeline involves the hardware filter and the soft-core processor, but its
efficiency is also influenced by the disk I/O throughput (15MB/s) and the network throughput
(10 kB/s).

��������	

�ABCD����A�
E�F���

��������	��F��� �A����A��	���

��

����

��

!���

"�#�$	%A������	���!

��

!���
�A����&

Figure 2.8.: CBIR execution pipeline on the RDISK architecture

Although the details and motivations for all our design choices is out of the scope of this
document, we enumerate some of the most salient characteristics of our distance computation
accelerator, shown in Figure 2.9.

– The baseline architecture is a processor array, in which each processing element handles σ
independent query vectors, in a interleaved way (this corresponds to a LSGP partitioned
processor arrays as explained in Section 5.3). Hence, the array only needs a new database
vector element once every σ cycles. We chose the parameter σ such that the filter band-
width does not exceed hard-drive throughput to avoid I/O stalls. We also took advantage
of the embedded memory blocks available in the FPGA to store the query vectors and
their identifiers.

21

– Because the soft-core processor was not able to sustain the distance computation stage,
and because implementing a custom sorting within the FPGA would have required too
much resource, we made the choice of taking advantage of threshold optimization described
earlier, even though its efficiency is limited.

�

�

���

����

	AA

B
A

C
DE

F��

���

�EBA��

��D

�

�

���

����

	AA

B
A

C
DE

F��

���

�EBA��

��D

�
�

���

����

	AA

B
A

C
DE

F��

���

�EBA��

��D

����ED������F���F�

��DEB�C ��!

�"�����

��#F�#! �BACDEF$�!

% C"	 �C&ED' C(��E�EA��C)

B
*

�+

C
&

E
D' C

(

B
*

�+

C
&

E
D' C

(

B
*

�+

C
&

E
D' C

(

Figure 2.9.: Distance computation block for the RDISK architecture

We have been able to implement a 36 processors array in the FPGA, in spite of the relatively
limited resource available. The speedup over the software implementation is x5 for a single
RDISK node, leading to a global performance improvement between x100 and x200 for a full
48RDISK cluster, depending on the number of descriptors in the query image.

2.2.4. Mapping CBIR on the ReMIX platform

The second implementation targeted the ReMIX prototype where the architectural con-
straints were completely different. In particular, due the high bandwidth at the Flash memory
output (640MB/s), there was no need to use LSGP partitioning (see Section 5.3) to reduce the
architecture throughput as for RDISK. Additionally, the relative abundance of resource on the
FPGA allowed us to consider a massively parallel architecture, consisting of multiple pipelines
within a single FPGA, as illustrated in Figure 2.10.

�
�
�
��
��
��
�
	�A
�

B�CDE

F������

�D�F

B�CDE

�A�����D�F

���������� �	���

���

����������

C���

���� A���

��!��� ���A

DA������A�

����
���

����
��	���

��

C���

���� A���

��!��� ���A

DA������A�

����
���

����
��	���

��

C���

Figure 2.10.: System level view of the whole ReMIX CBIR search pipeline

The main difference, as shown in Figure 2.11, is that the ReMIX distance accelerator does
not leverage dynamic threshold as in the case of RDISK. Our motivation for disabling this
optimization was the area overhead induced by the handling of the threshold. This overhead
had in turn a negative impact of the number pipelines that could fit on the FPGA, and we

22

� �
��

� �
��

� �
��

� �
��
�

� �
��
�

�

���

���

��

�

� �
��

� �
��

� �
��

� �
��
�

� �
��
�

�

���

���

��

�

��	�ABCDEF

��BCDEF

� � �

� �
��

� �
��

� �
��

� �
��
�

� �
��
�

�

���

���

��

�

��

����	BCDEF

Figure 2.11.: Distance computation block for the ReMIX architecture

observed that the (limited) performance benefits of the optimization did not compensate for the
loss of parallelism. In our distance computation processor, a processing element outputs a new
score every 24 cycles. Therefore at most 24 processors can be implemented within a processor
array if we want to avoid I/O conflicts on the score output pipeline.

� � � � � � � � �

� � 	
 � �

� �

�

� � � � � � �
� � � �

� 	 � � �
� � � ! " #

$ % & &

' () � �
� � � ! " #

* � � � � � + � � (, - (
* � � � � � + . / 0 (�

(� . + (� 1
(� . + � � (� !" #

(� . + � � � � � 2 � !" #

3 4 5 6 7 8
5 9 7 8 : 4 ;

< = > ? @ A B C > = D C @ A @ E = F C
G = F C H E B = I C = G A B C J K

L M N N > O @ A @

P Q R P Q R

S T U U � � � � � � V
W X � Y V � Z � � V [\ �]

S T U U � � � � � � V
W X � Y V � Z � � V [\ ^

S T U U � � � � � � V
W X � Y V � Z � � V [\ �

Figure 2.12.: Filtering and sorting blocks for the ReMIX architecture

This continuous stream of results also poses additional challenges to the filtering and sorting
steps, which now also need to be performed on-the-fly. For this purpose, we have designed a
custom component described in Figure 2.12. This component holds (and updates) a list of 24
thresholds to filter out the results of the distance component. It is also in charge of updating
the sorted list of nearest neighbors for each of the 24 descriptors handled by the processor array.
Thanks to the highly selective nature of the filtering process, this sequential sorting component
is able to sustain the average throughput from the distance computation component, and does
not cause any stall in the pipeline.

Bitwidth 24 bits 16 bits 12 bits 8 bits 3 bits

Query Time (sec) 50 40 28.5 20 12.5

Speed-up factor 18 22 31 45 72

Number of pipelines 4 5 7 10 16

Table 2.1.: Search time and speed-up for varying bitwidth

The observed speed-up factor over the original software implementation (with the early exit

23

optimization) was 45. In other words a single ReMIX system is as efficient as a cluster of 45
PCs. While this acceleration factor only holds for descriptors encoded as 8 bit integers, we
estimated the corresponding results for different bitwidth by implementing as many processor
lines as possible on the FPGA and use this result to estimate the corresponding speed-up. These
performance projections are summarized in Table 2.1.

2.3. Discussion

In this section, we briefly discuss, in retrospect, the contributions and results presented in
this chapter, starting by our work on reconfigurable platforms.

Discussing the RDISK and ReMIX projects six years after their end turned out to be in-
structive and a bit disappointing at the same time. One observation is that, as we speculated,
Flash memory would replace magnetic drives sooner or later. While this prediction is not com-
pletely realized, it is definitely in its way, as the SSD market is literally booming. Still, only
few attempts have actually been made to fully take advantage of the opportunities they offer
as very high-performance custom mass storage, by fully utilizing the aggregate bandwidth of
several chips, rather than staying tied to a standard hard-disk interface such as SATA. A notable
exception is the Fusion-IO company 6, which provides high performance PCI-express solutions
based on flash memory.

Another observation is that, in spite of all its potential benefits, the idea of coupling process-
ing power to storage device (and to use FPGA for database processing) is still not mainstream.
Although FPGAs are commonly used in high performance storage systems, their role is still
restricted to low-layer error correction and/or arbitration. However, the idea of attaching a
FPGA to a hard disk drive for coprocessing was successfully demonstrated by the Netezza com-
pany [33] in 2006 (now owned by IBM), with their SPU blade, which is strikingly similar to our
RDISK prototype.

Nevertheless the impact of our work remained limited, and seems to have been ignored (in
spite of its obvious relevance and similarity) by almost all recent contributions advocating the
use of reconfigurable technologies for database processing platforms [141, 101, 49, 113]. This
is however not so surprising and actually shed the light on a questionable habit in the custom
computing community to often too quickly claiming for (re)inventing the wheel.

The work that we carried in these two projects required a huge investment in development
effort, and one may conclude that designing and proposing original and innovative custom
hardware architectures is not a viable research topic. Such as statement however need to be
nuanced. This remains an important research topic, which currently suffers from one big issue:
building real hardware prototypes for such systems is now out of reach for academic research.
In the mean time, providing quantitative evidence on a prototype to backup the relevance of a
new type of machine is mandatory. In my opinion, rather than trying to build real machines,
custom computer architects should follow the way processor architects have been doing for more
than a decade, and what supercomputer designers now also do: basing their experimentation
on accurate simulators and/or models. These simulations could be carried at several different
levels of abstraction of the machine (for example VPR for modeling the FPGA circuit [106],
SocLib [155] for gathering cycle accurate platform level performance metrics, Orion [160] for
modeling complex interconnect, etc).

Regarding our work on CBIR, it turns out to be of little practical interest today, as there is
no more need for hardware accelerators in CBIR systems. Over the last few years, the curse of
dimensionality was partially warded off and there now exist methods that reduce search time

6. http://www.fusionio.com

24

http://www.fusionio.com

by orders of magnitude (to a few ten of milliseconds) while enabling very accurate results [99].
As a matter of fact, the only place where the use of FPGAs could still make a lot of sense is
in the extraction of such descriptors, that requires a lot of processing power and relies on well
known image processing algorithms that would be a good match for hardware acceleration [81].

S
u
m
m
a
r
y

Supervision: Auguste Noumsi, graduated in 2010, 20%, now assistant professor at University
of Douala, Cameroon

Journal: Parallel Computing 2006 [20]

International Journal of Electronics 2007 [29]

Conferences: Engineering of Reconfigurable Systems and Algorithms 2003 [21]

26th IEEE International Parallel & Distributed Processing Symposium 2006 [23]

International Workshop on Applied Reconfigurable Computing 2007 [3]

25

Chapter 3

Massively Parallel Accelerator for

HMM Profile Base Sequence search

The following chapter discusses contributions on the design of hardware accelerators for
Hidden Markov Models (HMM) profile based sequence search, a widely used application in
bioinformatics. The work presented below started in late 2006 in the context of the ReMIX and
RDISK projects, while we were looking for new bioinformatics target applications. HMM based
profile search, and more particularly the HMMER suite, turned out to be a challenging problem
in terms of parallelization. I started working on the problem on my own (with support from
Patrice Quinton), and the results lead to an initial contribution [9, 10] presented in Section 3.2.
The results were later extended by Naeem Abbas (supervised by Patrice Quinton) in the context
of his PhD [1]. This later work was carried in close collaboration with Sanjay Rajopadhye from
Colorado State University.

This chapter is organized as follows, we will first start with a short presentation of the ap-
plication (namely HMM Profile Bases similarity search), by explaining its role in bioinformatics
and by detailing one of its most compute intensive kernel. In Section 3.2, we show how it is
possible to derive an efficient processor array architecture for this application, even though the
kernel does not admit any parallel schedule. The following section focuses on the kernel itself,
and proposes a rewriting of the algorithm to make it amenable to an efficient parallel execution
scheme based on prefix-scan operations. The chapter is closed by a survey of contributions
related to ours, followed by a discussion on the relevance of FPGA based hardware accelerators
in high performance biocomputing infrastructures.

3.1. Profile based sequence comparison

Sequence homology search tools are one of the most important kind of applications in com-
putational molecular biology. In such applications, the protein sequences of unknown character-
istics are compared against database of known sequences in order to predict protein functions
and to classify protein families.

For this problem, techniques based on profile Hidden Markov Models (HMMs) [127, 62, 93]
have shown to give very good results. Their strength stems from the fact that multiple sequence
alignments concentrate on the features or key residues conserved by the family of sequences.
As a consequence a profile based search can find a remote sequence homology that could not
be detected through a pairwise alignment using simpler sequence matching algorithms such as
BLAST [36] and/or Smith & Waterman [140].

A profile HMM is a regular HMM consisting of a sequence of columns. In each column, a
match state models the allowed residue, an insert state models the insertion of one or more
residues, and delete the deletion of a residue. An example of such a profile is given in Figure 3.1,
in which bold arrows represent a possible path for the target Amino acid sequence (CTTACGCTA).
Each path leads to a similarity score, the goal being the retrieval of the path with the highest
score using a modified Viterbi algorithm.

27

Deletion

Insertion

Match
C

C A
T

T

A

GCT

Deletion

Insertion

Match

Deletion

Insertion

Match
C

C A
T

T

A

GCT

C A
T

T

A

GCT

Figure 3.1.: Structure of a Plan7 profile HMM, as used in HMMER.

3.1.1. The HMMER software suite

One of the most commonly used program for profile based sequence analysis is the open source
software suite HMMER, developed at Washington University, St. Louis by Sean Eddy [61]. Two
versions of the tool are currently used by the community, HMMER2.0 and a recent (March 2010)
HMMER3.0.

In HMMER2.0, performance profiling shows that the program spends more than 97% of
the execution time in the P7Viterbi kernel. This kernel computes a similarity score between
the profile HMM and the sequence at hand using a Viterbi dynamic programming algorithm.
Matching a single HMM against a protein database is a very time consuming process, which is
repeated many times during intensive comparisons.

HMMER3.0 is a complete redesign of the program and of its algorithms. Among other
optimizations, it introduces a new heuristic routine called MSV, that is used as a pre-filtering step
to the more costly P7Viterbi algorithm. This new execution pipeline is described in Figure 3.2.
It is important to understand that this new version (and their corresponding algorithms) has
been carefully redesigned to benefit from an efficient implementation on recent x86 multi-cores
(this is discussed in more detail in Subsection 3.3.3).

MSV filter P7Viterbi P7Forward100%
5% 1%

Figure 3.2.: The HMMER3.0 pipeline, showing the effect of the MSV filter, with %95 of the
sequences being filtered out by the heuristic.

Performance figure in sequence comparison algorithms are generally measured in Giga Cells
Updates per Second (GCUP/s), where a cell update corresponds to one update of the equations
of the algorithm. Table 3.1 shows performance figures for HMMER 2.0 and HMMER 3.0 with
and without the use of Intel SSE - SIMD extensions. The reader may find that the impact of
SIMD extension on performance to be striking, as it alone brings more than ten fold improvement
over the non-SIMD version.

HMMER globin.hmm (M=143), Pkinase.hmm (M=255), rrm.hmm (M=77), fn3.hmm (M=84)

V2 ≈ 0.03 ≈ 0.03 ≈ 0.03 ≈ 0.03

V3-noSSE 0.3 0.37 0.3 0.26

V3-SSE 5.2 7.16 2.83 2.65

Table 3.1.: Performance in GCUPS for Pfam-B.fasta

28

Mi,k = max







eM (seqi,k) + max







Mi−1,k−1+TMMk

Ii−1,k−1 +TIMk

Di−1,k−1+TDMk

Bi−1 +trBk

−∞

(3.1)

Ii,k = max







eI(seqi,k) + max

{
Mi−1,k+TMIk

Ii−1,k +TIIk

−∞
(3.2)

Di,k = max







Mi,k−1 +TMDk

Di,k−1 +TDDk

−∞
(3.3) Ei = max

{
maxk∈[0,K](Mi,k) +trMk

−∞
(3.4)

Ni = max

{
Ni−1 +trCnst0[N]
−∞

(3.5) Ji = max







Ei +trCnst0[E]
Ji−1 +trCnst0[J]
−∞

(3.6)

Bi = max







Ni +trCnst1[N]
Ji +trCnst1[J]
−∞

(3.7) Ci = max







Ci−1 +trCnst0[C]
Ei +trCnst1[E]
−∞

(3.8)

Figure 3.3.: The system of recurrence equations defining the P7Viterbikernel

Figure 3.3 shows the system of recurrence equations defining the dynamic programming
algorithm used for comparing a sequence against a profile (known as P7Viterbi kernel), where L
denotes the protein sequence length and M the length of the profile HMM. The key observations
of the equations (3.1-3.8) are that

– there is a chain of dependences in the increasing order of k in computing the values of D
in any column;

– to compute the E for any column, we need all the values of M of that column, each of
which needs a D from the previous column; and

– the value of E of a column is needed to compute any M in the next column.
Because of this, there seems to be an inherent sequentiality to the algorithm, preventing its

parallelization. The same holds for the MSVroutine, even though the use of reduction operations 1

is a simple way for exposing more parallelism. The remainder of this chapter describes two
contributions, which target the same problem: How to accelerate the HMMER application in
spite of its apparent lack of parallelism ?

3.2. Design space exploration for parallel HMMER

In this section, we will show how to use well known results from the automatic parallelization
community, to derive an efficient parallel architecture for the P7Viterbikernel. This derivation
is done incrementally, by successive refinements of the initial parallelization.

3.2.1. Exploring scheduling/mappings

Deriving a regular parallel architecture from a System of Affine Recurrent Equation (SARE)
is a well studied problem, for which many techniques have been proposed. The derivation

1. A reduction corresponds to a min/max/sum operation on all elements of a collection.

29

generally uses affine (or quasi affine) space-time mappings. Space-time mappings associate to
every indexed variable of the SARE:

– A logical execution time instant that we call schedule. In the scope of this work, we target
one dimensional schedules, that take the form of an affine function of the indices written
as

s(i0, . . . , im) = s0i0 + . . .+ smim.

– A physical location, i.e, coordinates in a processor space. This location is also expressed
in the form of an affine function of the indices (that we call allocation function). In our
case, we are only interested in one-dimensional (i.e linear) arrays. We therefore have

p(i0, . . . , im) = α0i0 + . . .+ αmim.

Of course, this space-time mapping must satisfy several conditions.

– The chosen schedule must enforce all data dependencies present in the SARE. For u, v ∈ D
with v depending on u, the schedule function must guarantee that s(v) > s(u).

– The space-time mapping must be conflict-free, i.e, there must be no u and v in D such
that v 6= u, s(u) = s(v) and p(u) = p(v).

– The space-time mapping must be dense, which means that processors on the array are
active every cycle in steady state.

It can be easily shown that the best (i.e, the fastest) schedule 2 which can be found is
s(i, k) = Mi+ k, which corresponds to the original algorithm sequential schedule [126]. It has
little practical interest, apart from convincing us that there is, at first glance, no parallelism in
this algorithm.

Although loop level parallel schedules cannot be found in the P7Viterbi routine, we observe
that running the hmmsearch tool consists in completely independent matchings of a single HMM
against a large number of input sequences: these matchings can therefore run in parallel. We
model this additional parallelism by adding a new index to the SARE that identifies instances
of the kernel running in parallel. This transformation is illustrated in Figure 3.4.

M

i
L

1

k

1

Figure 3.4.: Adding a dimension to the schedule

We have taken advantage of this property to explore various scheduling/mapping strategies.
More precisely, we have obtained our final schedule through successive refinements of the space-

2. For the sake of readability, the constant M is left as a symbolic constant, in practice, M must be a compile-
time constant.

30

Design #PE Memory per PE (in bytes) #pipeline stages

Wave front (σ = 1, λ = 1) N O(MA) 1

Interlaced (σ = 1, λ = 1) M O(M +A) 1

Partitioned (λ = 1) ⌈M/σ⌉ O(M + σA)) 1

Pipelined ⌈M/σ⌉ O(λM + λσA) λ

Table 3.2.: Summary of the proposed Space-Time Mappings

time mappings. A graphical representation of these schedules is given in Figure 3.5. Detailing
these mappings is out of the scope of this document, we will limit ourselves to a short description
of their characteristics.

The first schedule in Figure 3.5.(a) is a Wavefront schedule, the most straightforward parallel
schedule that can be derived. It simply consists of running several independent instances of the
algorithm on the hardware. This approach suffers from conflicting memory accesses to the
transition score table, that impose these tables to be duplicated in every processing element.
Given the large size of these tables, this approach is impractical, and we therefore explored
alternative schedules to avoid such conflicts.

This was achieved in our second schedule, which we call an Interlaced schedule. In this
schedule, shown in Figure 3.5.(b), a given processor only accesses a small fraction of the tran-
sition table, enabling the distribution of this table among all the processors in the array. This
approach forces a mapping in which the number of processors is equal to the size of the profile
at hand. Given that the average profile size is 200 (see Figure 3.7(a)), this again makes the
approach impractical.

We hence applied a LSGP (Locally Sequential Globally Parallel) partitioning transformation
to address the issue. LSGP consists in tiling the iteration domain to merge several processors of
the virtual array obtained by the initial scheduling, into clusters of physical arrays, as illustrated
in Figure 3.5.(c). This transformation allows designers to control the amount of parallelism in
the application simply by choosing the cluster size (that we refer to as σ).

The last transformation is shown in Figure 3.5.(d); its role is to transform the partitioned
schedule to increase the delay (in cycles) between two dependant iterations in a given processor.
This extra delay is then used to pipeline the processor datapath to increase the array achievable
clock frequency.

A summary of the characteristics for the proposed space-time mappings is given in Table 3.2.
In this table, M is the length of the profile HMM, N is the number of instances, A is the number
of amino-acids (A = 25), σ is the size of the cluster, and λ is the number of pipeline stages
within each processor. The resulting processor array architecture, corresponding to the schedule
of Figure 3.5.(d), is given in Figure 3.6.

3.2.2. Experimental validation

Previous subsection has shown that the hardware resource usage (in terms of logic cells and
memory) of our hardware accelerator is highly dependent on the size M of the HMM model at
hand, and on design parameters such as the pipeline level λ, or the partitioning factor σ. In order
to have a more quantitative view of this resource cost, we implemented several configurations of
the processor array on a Xilinx Spartan3-4000. We tried, for each implementation, to maximize
the size of the processor array given some value of M and λ, for a chosen wordlength of 15 bits.
The results, shown in Table 3.3, indicate that for larger values of M , the limiting factor is the
number of embedded memory blocks available on the target FPGA device (BRAM column).

In our implementation, each PE performs one iteration per cycle, with clock frequencies
ranging from 40MHz to 60MHz. This has to be compared to the reported software performance

31

(a) Wavefront schedule

(d) Partitioned & Pipelined
schedule

(c) Partitioned schedule

(b) Interleaved schedule

Figure 3.5.: Space-time mappings for the P7Viterbi algorithm. The dashed blue lines represent
the schedule (i.e the order of visit) of iterations within the domain, whereas the
dotted lines correspond to iterations executed in parallel

32

��

������	AA

B	��
B	����

B	���� �

B	���

� �

�������	��A	B�

)1(−Mλ λ

λ

CD�AE

FD�� ���

����AA����AA

B	��� ����

�����	��AA

B	��
��

B	��
B	����

B	���� �

B	���

� �

�������	��A	B�

)1(−Mλ
λ

CD�AE

FD�� ���

����AA

B	��� ����

�����	��AA � �)1(−Mλ

��

�������	��A	B�λ

���� ���� ����

� ���� ��

�����AA

B���AA

��)1(−Mλ
B������� �AA

B������AA

���������AA

B���� �AA

B���AA

�������AA

Figure 3.6.: Architectural template for the HMMER processor array. The shift registers depths
and the number of processor are expressed as functions of σ, λ and M

M σ NPE λ BRAM Slices fmax GCUP/s speedup

60 2 30 3 60 / 63% 16453 / 59% 60 1.8 71

120 4 30 3 90 / 93% 16534 / 59% 55 1.7 68

190 6 32 2 96 / 100% 18640 / 67% 55 1.8 70

250 8 32 2 96 / 100% 18127 / 65% 55 1.8 70

380 11 32 1 96 / 100% 20682 / 74% 40 1.28 51

500 16 32 1 96 / 100% 20171 / 72% 40 1.28 51

600 38 16 1 96 / 100% 12844 / 46% 40 0.64 25

Table 3.3.: Resource usage and performance for various motif sizes

of HMMER V2.0 back in 2006, which was 24MCUP/s on an Intel P4CPU [117]. The last two
columns of Table 3.3 give peak performance estimates for our accelerator (we assume that
the hardware is clocked at its maximum clock frequency) and corresponding speedup over the
software implementation.

However, these performance gains should be balanced by the fact that, although it is possible
to use a HMM profile of size M with an architecture that accommodates a maximum model size
of Mmax, only a fraction M/Mmax of the computations actually contributes to the matching
score. For example, when M = 50 and Mmax = 64, the sustained performance slips to only
78% of the peak performance.

This situation favors the use of reconfigurability: for a given value of M , we can choose
among a library of preexisting bitstreams the configuration which offers optimal performance
for that very specific value of M . Of course, such a strategy induces a hardware reconfiguration
overhead. However, given current reconfiguration latencies (125ms for a Spartan3-1000) its
impact on overall performance is very limited. On the other hand, the fact that Mmax is
constrained by Mmax = σNPE strongly restricts the number of possible configurations, and
often prevents to find a perfect match for Mmax. To illustrate this side effect, we estimated

33

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

HMM Motif size

O
cc

ur
en

ce
s

PFam motifs

(a) HMM model size distribution

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

HMM motif size (M)

S
u

st
a

in
e

d
 s

p
e

e
d

−
u

p

(b) Speedup as a function of M

Figure 3.7.: Impact of profile model size on the resulting architecture

the optimal sustained performance that could be achieved by our accelerator for values of M
in the range [50, 640], for a clock speed of 33MHz. The results, given in Fig. 3.7(b), indicate
that sustained performance is significantly impacted by this phenomenon, especially for smaller
values of M .

3.3. Parallelizing through max-prefix inference

The approach that we presented in previous section relies on the fact that in practice, several
independent instances of the P7Viterbi kernels can be executed in parallel, providing additional
parallelism. This poses several problems in the case of large arrays with deeply pipelined
processors. For a 150 processor array with 3-stage pipelined processors, we have to handle 450
P7Viterbi instances. This results in huge memory costs, leading to a sub-optimal use of FPGA
computational resource.

In this work, done in collaboration with Sanjay Rajopadhye in the context of the PhD of
Naeem Abbas (supervised by Patrice Quinton), we propose a technique to rewrite the kernel
in such a way that it becomes amenable to parallel implementation at a price of a moder-
ate, constant factor increase in the computational volume. We then propose several strategies
for efficiently implementing this algorithm on an FPGA-based High Performance Computing
platform using High-Level Synthesis tools and discuss the performance that we obtained.

3.3.1. Finding hidden parallelism in P7Viterbi kernel

Rather than focusing on the dependency between X and M (related to the feed-back loop),
we have developed an alternate formulation of the equations enabling a scalable parallelization.
For our purposes, we shall focus on the equation of Di,j , defined as follows:

Di,k =







k = 1 :Mi−1[0] +A′[0]
k > 1 :max(Di[k − 1] +B[k],

Mi−1,k +A′[k])
(3.9)

We have shown that, using algebraic rewriting [1], it is possible to replace the chain of depen-
dency of Di,k on Di,k−1 by an expression involving a max-prefix operation. Prefix computation
is a general class of computations formally defined as follows. Given an input vector xi with
0 ≤ i < N we define its ⊕-prefix vector yi as

34

yi =

i⊕

k=0

xk = x0 ⊕ x1 ⊕ . . .⊕ xi,

where ⊕ is a binary operator with associativity (and possibly commutativity, see [91] for a
more detailed definition). Prefix computations are very interesting in our context, as they can
be easily parallelized. Parallel prefix networks is a well studied problem, and there is a wealth
of research dealing with fast (i.e, parallel) implementations of prefix adders [96, 47, 92, 76, 139]
some of them being illustrated in Figure 3.8. For a comprehensive classification, describing the
trade-offs in existing network topologies, we invite the reader to refer to the work of Harris [79].

(a) Brent Kung

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

(a) Brent-Kung (b) Sklansky

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

(b) Sklansky

Han Carlson

(b) Ladner-Fischer

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

(c) Ladner-Fischer

Figure 3.8.: Examples of parallel prefix implementation for N = 16

One of the most important aspects of these network topologies is that they allow the designer
to explore the trade-off between speed (i.e. critical path of the resulting circuit), area (number
of operators used to implement the prefix operation), and other metrics such as fan-out or
wiring length. For example, Figure 3.8.(a) shows a Brent-Kung [47] network that computes the
prefix in 2(log2N − 1) stages with 2(N − 1)− log2N operators. Similarly, Figure 3.8.(b) shows
a Sklansky network which implements a faster circuit (log2N stages) at a price of an increase
in area (N2 log2N operators).

To help the reader in understanding the benefits of this rewriting transformation, we provide
an illustration of the data dependence flow in the rewritten algorithm for a small problem size
(profile size N = 8) in Figure 3.9 . The reader can observe that the dependency Di,k −→ Di,k−1

in equation (3.3) is now converted to a max-prefix block, reducing the critical path from O(N)
to O(log2N) operations. Another consequence is that update operations for Mi,k, Ii,k and Di,k

can be executed in parallel for all values of k in the domain 0 ≤ k ≤ N .

3.3.2. Mapping the full HMMER3.0 pipeline to hardware

It can be easily seen from Figure 3.9 that in P7Viterbi, it is not possible to pipeline the
execution of consecutive stages —all the results of the ith stage are needed before any value in
the (i+1)th stage can be computed. Despite the fact we replaced the initial chain of dependency
of O(M) operations by a chain of O(log2(M)), the possibly large values of M may impact clock
frequency. Similarly, because of obvious resource constraints, it is not possible to directly map
the whole data-flow graph of Figure 3.9 on the FPGA.

We have used two circuit transformations to address these issues, namely C-Slow and Tiling.
The Tiling transformation is closely related to the partitioning of processor arrays presented in
Section 3.2. Similarly, C-Slow enables the overlapped execution of multiple kernel instances. A
summary (following the spirit of 3.2) of the impact of these transformations on the architecture
resource cost and performance is given in Table 3.4

35

Max selection tree

Max Prefix (Brent-Kung)

Dataflow graph for i
th

stage (M=8)

f7

f6

f5

f4

f3

f2

f1

f0

h7

h6

h5

h4

h3

h2

h1

h0Di-1,0

Di-1,1

Xi

Xi-1

Di-1,6

88

Di-1,7

Ii-1,0

Ii-1,1

Mi-1,7

Ii-1,7

Mi-1,0

Mi-1,1

8

Di,0

Di,1

Di,7g7

g6

g5

g4

g3

g2

g1

g0 Ii,0

Ii,1

Mi,0

Mi,1

Mi,7

Ii,7

Figure 3.9.: Dataflow graph for one stage of the kernel (N = 8) after rewriting.

Method Area Tclk throughput

Combinational O(M) O(log2 M) O(M

log2 M
)

Tiled O(M/P) O(log2
M

P
) O(M

log2
M

P

)

C-slow O(M) O(1) O(M)

Tiled + C-slow O(M/P) O(1) O(M/P)

Table 3.4.: Summary of the different architectures and their space-time characteristics

3.3.3. Experimental results

Our target execution platform consists of a high-end FPGA accelerator from XtremeData
(XD2000i-FSBFPGA) with two Stratix-III FPGAs. The circuit was entirely designed using a
commercial C to Hardware compiler (Impulse CoDeveloper C-to-FPGA). The use of a High-
Level Language as input specification helped us exploring large portions architectural design
space in a short amount of time, while staying very competitive in terms of performance and
resource usage compared to a HDL implementation.

A system level view of the full HMMER3 pipeline is given in Figure 3.10. It contains five
blocks, three MSV blocks communicating with two P7Viterbi blocks). In this implementation,
the role of Sequence MUX/DEMUX is to merge/distribute interleaved sequences among compu-
tation blocks and the role of the Filter blocks is to filter out all sequences with scores lower
than the threshold. Performance and area given in Table 3.5 show that speedups of ×7.5 over
a 3GHz dual-core can be achieved on a single 3 FPGA.

M P MSV P7Vit Logic Util. M9K MLAB MHz GCUPS

64 8 6 1 128K/ 63% 864 / 100% 215Kb 103 40.0

64 8 7 1 143K/ 70% 864 / 100% 269Kb 97 44.2

128 8 3 1 105K/ 52% 864 / 100% 181Kb 95 37.2

256 8 2 1 147K/ 72% 864 / 100% 203Kb 99 51.5

512 8 1 1 79K/ 39% 675 / 78% 66Kb 89 45.7

Table 3.5.: Performance and area for our system-level implementation

3. It turns out that the board does not support the combined use of the two FPGAs

36

HOST

Data
Reader

Data
Writer

MSV Process
A

MSV Process
B

MSV Process
C

Filter

Filter

Filter

P7Viterbi
Process

R

P7Viterbi
Process

S

Score
MUX

I & C data

I & C

I & C

I & C

I & C

* I&C = Intialization & Configuration

Sequence
DEMUX

Sequence
DEMUX

Sequence
MUX

All data

S
eq

u
en

ces

F
iltered

 S
eq

u
en

ces
F

iltered
 S

eq
u

en
ces

Score

Score

Score for each sequence

In
te

rl
ea

v
ed

 S
eq

u
en

ce
s

In
te

rl
ea

v
ed

 S
eq

u
en

ce
s

In
te

rl
ea

v
ed

 S
eq

u
en

ce
s

In
te

rl
ea

v
ed

 S
eq

u
en

ce
s

S
co

re fo
r each

 seq
u

en
ce

Figure 3.10.: System level view of a complete HMMER3 hardware accelerator

This modest speedup can be explained by the fact that the new SSE implementation of
HMMER is highly optimized. An important point to make is that HMMER 3.0 was not simply
ported to take advantage of SIMD extensions. As a matter of fact, there also exists such
a port for V2.0 that brings only marginal performance improvement. In the 3.0 version, the
entire algorithm, and in particular the data encoding, were completely re-engineered to perfectly
match the Intel SIMD extensions.

Another important point of discussion is how the performance of our FPGA implementation
would perform compared to an equivalent GPU implementation. This is an important question,
since GPU offer more flexibility at a much lower cost than a typical HPC FPGA platform,
albeit at a higher cost in power/energy consumption. Unfortunately, there is currently no GPU
version of HMMER3 available for comparing the two targets.

However, we believe that, contrary to HMMER2, a GPU version of HMMER3 would only
offer marginal speedup w.r.t. the optimized SSE version. The GPU speedup for HMMER2
were reported to be in the order of ×15−×35 [159] and ×20−×70 [70] for a single GPU over
the software implementation. When looking at HMMER3 speedup results (given in Table 3.1),
it turns out that the use of an optimized SSE software implementation alone brings a speedup
factor of 20 over the non SSE version, thanks to the systematic use of sub-word parallelism.
This is comparable to the reported speedup of GPUs implementation for HMMER2, and as
GPUs do not have support for short integer sub-word parallelism, it is therefore unlikely that
GPUs will do much better than the SSE implementation neither in term of performance nor in
terms of energy efficiency.

3.4. Related Work

Because of its execution time, and of its wide use the bioinformatics community, there have
been several attempts to accelerate the P7Viterbi kernel, either using SIMD extensions [104],
parallel machines [158], GPUs [83, 159, 70], Network Processors [162] or FPGAs [107, 117,
118, 147, 146, 9, 1]. We are however not aware of any work (other than ours) on the whole
HMMER3.0 pipeline. The following section provides a short review of these approaches, with
a focus on the way authors have dealt with the lack of apparent parallelism in the P7Viterbi

kernel.

37

In order to simplify its parallelization, some authors [117, 107] have suggested modifying the
original P7Viterbialgorithm by removing the outer loop carried dependency, which forbids the
use of loop level parallelism. However, this feedback-free modified algorithm induces a lot of
false-negative matches (some potentially interesting hits are missed by the algorithm). Oliver
et al. were the first to propose an approach [118] to handle the P7Viterbi feedback loop in
2007, however, their architecture is not scalable as it requires a crossbar for enabling concurrent
access of processors to transition cost tables.

In 2009, an approach based on speculative execution was proposed by Takagi et al. [147]
and Sun et al. [146]. Their idea is to speculatively ignore the dependency related to the
feedback loop, as it seldom contributes to the actual scores in the next column, and recompute
all mispredicted results whenever a mispeculation is detected. The approach has shown to be
very effective in practice, although its efficiency largely depends on the characteristics of the
query profile.

In 2010, Eusse Giraldo et al. [65] proposed another approach for accelerating P7Viterbi

on custom hardware. They use a simplified (without J state) Viterbi kernel as a filter and
passes only sequences with significant scores to the original Viterbi kernel along with divergence
algorithm [41] data. The divergence algorithm data reduces the number of cells that must be
calculated with the original Viterbi kernel by providing limits of the alignment region. The
alignment region defines where the alignment starts and ends. This approach yields an acceler-
ation of 5.8 GCUPS (Giga Cell Updates Per Second). However, the use of simplified Viterbi as
a filter may not detect multiple hit alignments, as in the case of the feed-back free approach.

Also in 2010, Ganesan et al. [70] proposed a GPU acceleration of P7Viterbi by breaking the
chain of dependency inside the kernel, following an approach that turns out to be very similar
to the one we presented in this chapter 4. The reported speed up over a factor of 100 times
on 4 Tesla C1060 GPUs in comparison with software implementation of HMMER2. However,
in contrast to their work, we leverage the full power of parallel prefix networks that provide
the freedom to explore the trade off between delay and area cost according to the architecture
requirements.

3.5. Discussion

This work has led to three publications, two in international conferences (ASAP 2007 [9],
FPT 2010 [1]) and one in an international Journal (JVLSI 2010 [10]). The article submitted in
2007 to ASAP received the conference best paper award.

One conclusion is that, even for short width integer arithmetics, FPGA accelerators may not
always significantly outperform handcrafted vectorized code. This is an important (negative)
result, yet it seems that the HPC custom computing community is still not ready to accept this
fact. Indeed, speedup claims of two order of magnitudes are often reported in the litterature.
However the performance of these FPGA implementations is only seldom compared against a
truly optimized software version (often simply because such an optimized implementation does
not exist) leading to artificial/unrealistic speedup. Interestingly, this phenomenon also holds
for GPGPUs.

We believe that the real strength of FPGA accelerators is their power efficiency more than
their performance (≈ 65W for a Intel Core Duo vs 20W for an FPGA accelerator). For our
application, the FPGA implementation represents an estimated energy efficiency improvement
of a factor of 25. However given the current relatively low cost of energy, this benefit alone does
not compensate for the high price of these accelerators (between $2k and $5k for a single FPGA

4. Our paper was submitted in June 2010, and their work was published in august 2010

38

board).
The other conclusion is that C to Hardware tools do not only help decreasing design time.

They can also lead to more efficient designs, as this increase in productivity allows the designer
to explore a wider design space, leading him/her to ultimately find an architectural solution
that he/she would have missed otherwise [4]. Nevertheless, these tools still do not hide the
complexity of hardware design, and should rather be considered as tools for micro-architectural
synthesis from C, rather than true C to gate compilers. This, even more than their limited
performance improvement, is the current weakness of FPGAs for high performance scientific.

In the same way software designers now benefit from refactoring tools, which help them
maintaining and restructuring their code, we believe there is a need for hardware refactoring
tools, that would help HLS users to refine their target micro-architecture through the use of
source-to-source transformations, a topic that we address in chapter 5.

S
u
m
m
a
r
y

Supervision: Naeem Abbas, graduation expected in 2012, 80%,

Journal: Journal of VLSI Signal Processing Systems, 2010 [10]

Conferences: Application Specific Architectures and Processors 2007 [9]

International Conference on Field Programmable Technology 2010 [1]

39

Chapter 4

Ultra Low Power Wireless Sensor

Networks

The research topic presented in this chapter originates from several earlier work: the work
carried on low power implementations of processor arrays carried during my PhD, the work of
Ludovic L’Hours [100] dealing with the synthesis of custom processors from C programs, and
other research activities of the CAIRN group on Wireless Sensor Networks (WSN). The main
idea behind this work was to see whether it would be possible to take advantage of a combination
of hardware customization and power gating to improve the power efficiency of current WSN
platform architectures. Most of this work is the result of the PhD of Adeel Pasha (graduated
in December 2010).

The chapter is organized as follows, we start by a description of wireless sensor network
platforms and discuss the design challenges they pose. We show that existing programmable
solutions are still not energy efficient enough to deal with these challenges. We then describe
our approach, based on the notion of hardware micro-tasks, and summarize the main features of
its supporting design flow. This presentation is followed by a quantitative analysis of the energy
improvements of our approach, demonstrating its relevance. We conclude by a discussion of the
merits, limitations, and research perspectives that our approach opened.

4.1. WSN platforms design challenges

Wireless sensor network (WSN) is a promising technology with potential applications in
many domains of daily-life, such as structural-health and environmental monitoring, medicine,
military surveillance, robotic explorations etc. A WSN is composed of a large number of sensor
nodes deployed inside a region of interest or very close to it.

WSN nodes are low-power embedded devices consisting of processing and storage components
(a processor connected to a RAM and/or flash memory) combined with wireless communication
capabilities (Radio transceiver) and some sensors/actuators. Designing a WSN node is chal-
lenging, as designers must deal with strong form factor and energy constraints. For example,
WSN nodes may need to run autonomously for months using only very limited energy sources
(between ten and a few hundred mAh for small form factor Lithium batteries), or by harvesting
energy from their environment (power supply of at best 20 µW).

Current WSN nodes are based on micro-controllers such as MSP430 [150] with typical power
dissipation of a few mW, which are still orders of magnitude too high for many candidate
applications of WSN. To address this power inefficiency, many WSN-specific controller imple-
mentations have been proposed by the academic community. These controllers try to exploit
WSN-specific event-centric behavior and/or rely on transistor or circuit level optimizations
(asynchronous logic, deep sub-threshold voltage) to achieve lower energy per instruction scores.
Table 4.1 summarizes the energy efficiency of state of the art approaches.

Although some of them show impressive energy efficiency improvements, they suffer from
many drawbacks. For instance, sub-threshold logic is highly susceptible to temperature, noise
and process variations. Also, asynchronous logic is difficult to integrate in conventional design-
flows. In some cases, it is the operating frequency range that becomes unacceptably slow (e.g.,

41

Processor Voltage (V) Frequency (MHz) Energy (pJ/inst) Normalized Energy (pJ/inst) Process
SNAP/LE [64] 0.60 23 75 52 180
Phoenix [136] 0.50 0.1 2.8 2.8 180
Charm [138] 1.03 8 96 23 130
BlueDot [128] NA 8 26 NA 130

MSP-like core [95] 0.50 0.4 27 27 65

Table 4.1.: Actual and normalized energy-efficiency for various ultra low-power WSN-specific
controllers.

Timer

100 ms

Ext.Event T

MT1
sendFrame()

WakeUp Beacon (Flash)

rIdx, rIdy (Flash)

MT2

beacon_Sent

receiveFrame()

Received Data (gated RAM)

tIdx, tIdy (gated RAM)

MT3

sendFrame()

Ack Frame (Flash)

tIdx, tIdy (gated RAM)

data_Received

MT4

lightOn()

Received Data (gated RAM)

Previous Data (gated RAM)

LED (I/O peripheral)

MT5

turnOff()

timeOut_WakeUp

timeOut_NoData

ack_Sent

Push

Button

Ext.Event B

MT7

receiveFrame()

rIdx, rIdy (gated

RAM)

wait_Beacon

MT8

wait()

Wait time (gated RAM)

MT9

received_Beacon

sendFrame()

Sent Data (gated RAM)

tIdx, tIdy (gated RAM)

rIdx, rIdy (gated RAM)

MT6
counter()

Counter period (Flash)

wait_Done

MT10
receiveFrame()

data_Sent

ack_notOK

MT11

turnOff()
ack_OK

not_received_Beacon

(a) TFG for receive mode (b) TFG for transmit mode

light_Switched

Figure 4.1.: TFGs presenting the micro-tasks running during a lamp switching application.

Phoenix processor can only operate at around 100 kHz). All of these approaches were manual
circuit level (i.e. transistor level) implementations, hence limiting their practical usability.
We believe that there is a need for an approach that relies on well understood circuit level
optimizations (s.a power gating) and that is as much automated as possible.

To help the reader understanding our approach, we will use in the following a simple toy
application (a remote lamp switching node). We assume that the application is modeled as
a Tasks Flow Graph (TFG), where task execution is triggered by events, such events being
external or produced by another task. We also restrict ourselves to tasks following a run-
to-completion semantic, as in the case of TinyOS [119], a widely used Operating System in
WSN. Figures 4.1.(a) and 4.1.(b) shows the TFGs of a lamp switching application (in receive
and transmit mode), where a transmitting node demands a receiving node to switch on/off
its lamp if a button is pressed at transmitter end. This application involves several tasks:
data transmission, data reception, wait for acknowledgment, and timer, push button and lamp
switching management, etc.

These control-oriented tasks involve sub-tasks that are spread across different layers of the
OS/communication stack. For instance, beacon and data packets (transmission and reception)
involve physical layer functions that exchange data, using a SPI-protocol, between the I/O

42

�����

����

�	A

�BA
	CD

EF�C���A

���B��

��
�
	
�
�

��
�
��

������	��

���	��

�
��
B
�
�
�
�

��
�
�
�

��
�
��

���B��

���B��

��B��

�
��
B
�

��������

��
�
��
�
�
�

 ��

��!AF

 ���

"���#�" "���#�E"���#�	

 $

 ��

 �� �� �� F���%�����

�����&�����

�����%����

Figure 4.2.: Architecture of a power gated generic micro-task (here with an 8-bit data-path).

peripherals of the MCU and the Radio transceiver. The control flow itself follows a simplified
version of RICER, a low-power MAC protocol [103].

4.2. A new hardware platform model for WSN

In this work, we propose to distribute the whole WSN node software framework into a
set of hardware micro-tasks (possibly running concurrently), to benefit from parallelism while
maintaining a high degree of specialization within each task. For example, a complete WSN
communication stack uses approximately 3500 instructions on a MSP430. By distributing the
stack functionality onto 7 micro-tasks, we can reach an average task size of 500 instructions, a
granularity level at which we can expect energy improvements. This may come at the price of
an increase in area and in static power dissipation, and we will show that our approach does
not suffer from these side-effects.

In this approach a micro-task is implemented in the form of a custom micro-architecture
synthesized from high-level behavioral (ANSI-C) specifications. The micro-architectural model
used in our flow is illustrated in Figure 4.2, and some of its characteristics can be customized
(ALU, datapath bitwidth, register file size, etc).

Although hardware customization is known to be a very efficient technique for reducing
dynamic power, it was mainly used in the context of regular and compute intensive kernels. In
this work, our interest rather goes to control dominated tasks (device drivers, MAC protocols,
routing, etc.) which form the bulk of WSN workload.

To cope with the increase of static power induced by the use of multiple hardware tasks,
we combine this customization with power-gating, a leakage power reduction technique, which
consists in turning-off the power supply of idle components. This is realized by adding a sleep
transistor between the actual Vdd (power supply) rail and the component’s Vdd as illustrated in
Figure 4.2. Needless to say, Power-gating is a valuable power reduction technique for WSNs,
which do exhibit long idle periods (with duty cycles often below 1%).

Our approach implies that all the micro-tasks are hard-wired into silicon as custom logic
blocks. This makes post-production upgrade or bug fixing costly, Although flexibility is often
of a great concern for WSN system designers. However, when looking more carefully at actual
design practices, we can observe that the need for flexibility and reprogrammability is essentially
geared towards the user application layer, which happens to represent only a small fraction
of the WSN node processing workload, this workload being almost entirely dedicated to the

43

MT4 MT3

Memory

M1

VddVdd

Vdd

lig
h

t_
S

w
itc

h
e
d

a
c
k
_
S

e
n
t

e
n

_
M

T
4

e
n
_

M
T

3

e
n

_
M

E
M

_
A

Application

core (MPU)

Vdd

E
n

_
M

P
U

Timer

I/O Port

L
E

D Memory

M2

Vdd

I/O Port

R
a
d

io
 c

h
ip

(e
.g

.
C

C
2
4
2
0
)

Memory

M3

Vdd Vdd

System Monitor

MT7 MT9

E
x
t. E

v
e

n
t T

e
n
_
M

T
7

re
c
e

iv
e

d
_

B
e

a
c
o

n

e
n
_
M

T
9

d
a
ta

_
S

e
n

t

I/O
 P

o
rt

Push Button

E
x
t. E

v
e

n
t B

I/O
 P

o
rt

M
P

U
_
fin

is
h

e
n
_
M

E
M

_
B

e
n

_
M

E
M

_
C

Vdd

Figure 4.3.: System-level view of a micro-task based WSN node platform

communication/OS stack.

Based on this observation, we propose to combine the best of both worlds: a small silicon
footprint instruction-set processor with a power-gating feature to implement the application
layer software, and a distributed system of micro-tasks to handle the OS-level services of the
WSN node as depicted in Figure 4.4.

This approach preserves most of the energy savings provided by specialization, while provid-
ing programmability at the application level. The system level view of such a platform is given
in Figure 4.3, its main components being detailed below:

– An application-level programmable instruction-set processor that is used to implement the
application-level code, so as to provide reprogrammability.

– A set of power-gated application micro-tasks accessing peripherals (RF, LED, sensor) and
shared memory blocks.

– A hardware System Monitor (SM) that controls and schedules the execution of all the
micro-tasks along with the application processor.

– Event triggering peripherals (e.g., wake-up timer) that send events to the SM.

A key component of the system is the System Monitor which takes the form of a hardwired
scheduler that powers on/off micro-tasks and memory blocks and prevents concurrent access to
shared resources. Because a detailed description of the SM is out of the scope of this document,
we invite the reader to refer to some of our work [27] for more details.

44

SW. Infrastructure

HW. System Monitor

Computation Subsystem

MCU
Micro-Task

based SoC

Application Layer

Network Layer

Link Layer

Mac Layer

Physical Layer

Figure 4.4.: Proposed solution to tackle the issue of loss of reprogrammability.

4.3. Microtask based System Level Design flow

Because such a platform model would be completely useless without its associated CAD
tools, we have prototyped a full system level design flow, illustrated in Figure 4.5. This flow
allows a WSN platform designer to derive the complete platform HDL description from (i)
the description of the tasks behavior in C and (ii) a system level description of the platform
expressed in a custom Domain Specific Language. In the following, we outline the main features
of the flow, with a focus on the micro-task synthesis stage.

4.3.1. Synthesizing microtasks from C code

While many tools enabling the synthesis of custom hardware structure from C specifications
exist, they are poorly suited for our purpose, as they focus on compute intensive kernels. On
the contrary, WSN workloads mostly consist of firmware/device driver tasks, with irregular
execution flow dominated by complex bit-level I/O operations.

To address the shortcoming of these tools, we designed a custom hardware synthesis flow by
extending and adapting the GeCoS compiler infrastructure [105], an open source retargetable
compiler framework developed in the group. GeCoS uses a simple intermediate representation
(IR) in the form of a Control and Data Flow Graph (CDFG) which is used as an input to a
highly flexible instruction selection framework, based on a simple 1 BURG-based tree-covering
technique [69].

The originality of our approach comes from the fact that our micro-tasks are not constrained
by a pre-defined processor instruction set architecture (ISA) and we can therefore leverage a rel-
atively large number of operation patterns to obtain an efficient covering (we call this the virtual
ISA). For example, our micro-tasks use several patterns involving complex memory operands
that are common in device driver code. They also use word length specific instructions (byte,
word or long operand) to efficiently determine the required bitwidth for the micro-architecture
datapath. Our micro-task virtual ISA is highly customizable with minimum development ef-
forts. As an illustration, Figure 4.6 shows some of the complex patterns that we try to match
in the IR. While being complex in terms of operations, such patterns can be easily mapped to
hardware, and hence are good candidates for being executed on custom functional units.

The machine-specific IR obtained through instruction selection and register allocation is then
transformed into a FSM, in which each instruction is mapped to a sequence of microcode (i.e.,
FSM states) used to control the micro-task datapath. This transformation stage also involves
a word length conversion step in which instructions operating on 16 bit or 32 bit operands
may be transformed into sequential byte and half-byte level microcode. This transformation

1. There exist very sophisticated approaches for instruction selection (e.g. instruction selection of DAG pat-
terns [102, 108]), but they are not very relevant for dynamic control dominated kernels.

45

Task

C

Task

B

Application

Task

ATask A Task BTask C

.c .c .c

C Front-End

Retargetable

Instruction Selector

(BURG)

FSM

Builder
Datapath

Builder

Task.c

FSM.vhd Datapath.vhd

Custom

Datapath

Model

GeCoS Design

Flow

Micro-task A Micro-task BMicro-task C

.vhd .vhd .vhd

DSL for

System-Model

Generation

Monitor

.vhd

Hardware Synthesis Tool

Task Flow Graph

(TFG)Software Tasks

Hardware Micro-Tasks

Final IC

Transistor Level

Insertion of Power

Gating

Figure 4.5.: Software design flow for the IC generation

Pattern Action Comments

SET(INDIR(INT), AND(INDIR(INT),INT)) andIO #ioPort, #const Performs an AND operation of an I/O port with a constant value

SET(INDIR(INT), INT) movIO #ioPort, #const Moves a constant value to an I/O port

SET(INDIR(INT), OR(INDIR(INT), reg8)) orIOB #ioPort, rByte_2 Performs an OR operation of an I/O port and an 8Ͳbit variable

ADD(mem, reg8) addGB @(rByte_3), rByte_2 Adds and stores an 8Ͳbit variable to a memory location

SET(GLOBAL, AND(GLOBAL, INT) andiG @(symbol), #const
Performs an AND operation of the memory contents pointed by a
symbol to a constant value

Figure 4.6.: Some of the rules followed in our instruction selection phase, where rByte 2 and
rByte 3 are 8-bit temporaries.

46

helps matching the characteristics of the underlying micro-task datapath, and exploring various
area/performance trade-off. This word length exploration turn out to be valuable in that it helps
determining the best trade-off between performance and area for a given task. For example, the
use of an 8 bit in place of a 16 bit datapath will decrease the performance and area cost but
increase the power energy efficiency of the controller.

From the set of instruction patterns used in the selection phase, and after the wordlength
transformation, we derive the template of the micro-task datapath. This datapath is trimmed
down to provide the minimum-required functionality (types of operators and number of registers)
to execute the task at hand.

The micro-task generation flow extensively uses the tools and facilities provided by the Eclipse
Modeling Framework (EMF), a Model-Driven Engineering (MDE) framework. More precisely,
we defined a meta-model enabling the specification of complex custom micro-architectures as
an assembly of a FSM and datapath components (e.g., register file, ALU operators, single-port
ROM, I/O ports). We also took advantage of the template based code generation facilities
provided by the Xpand [151] framework to develop a synthesizable VHDL back-end for the
micro-task description.

4.3.2. System-Level Synthesis

Because most power-gating task activation/deactivation policies are difficult to express in a
language such as C, we designed a Domain Specific Language (DSL) that is used to specify the
system-level platform model (e.g. micro-tasks, shared memories, peripherals, etc.). As detailing
the syntax of the language is out of the scope of this document, we will therefore only sketch
the construction of the language by providing a simple example shown in Figure 4.7.

In this DSL, each micro-task of the system is linked to a specific C function that specifies
the behavior of the task. It also specifies the event configuration that can trigger the task
activation and registers the events that can be produced by a task. Similarly, the DSL is used
to specify, for each task, which global variables are live (still used) or dead (e.g. their content
can be lost without harm) at the end of the task execution. This information is combined with
the allocation of variables and arrays to specific memory blocks in the platform.

Using the information mentioned above, it is possible to derive the complete platform descrip-
tion, including the System Monitor hardwired control logic. The DSL was entirely developed
using MDE tools, and in particular Xtext/Xpand [151], for specifying the DSL concrete syntax
and for the code generation stage.

Figure 4.5 shows the complete design-flow for micro-task based node generation: it takes as
inputs the application description modeled as a TFG using the DSL, and each tasks written in
C, outputs VHDL code for the node.

4.4. Experimental results

Providing a strong quantitative analysis of the approach through benchmarking is crucial for
our work. However, even if there has been several attempts to profile the workload of a generic
WSN node, only few of these research results are actually usable in our context.

We selected our benchmarks from the two benchmarks for WSNs workloads that we are
aware of: SenseBench [116] and WiSeNBench [115]. We also added additional tasks taken
from PowWow, an open-source WSN platform [84] developed in the group. The synthesis
was performed for both 130 nm and 65 nm CMOS technologies using Design Compiler from
Synopsys.

47

system send_receive_data {

include "send_receive.gecos"

events { extPB, extET, beacon_Sent, data_Received,

ack_Sent, timeOut0, timeOut1, timeOut2, receiver_OFF, transmitter_OFF,

counter_Start, beacon_Received, data_Sent, ack_OK, ack_NOK, radio_OFF}

memory memB [gated] {

contains globals {neigh_IdX,neigh_IdY, receiveFrame, sentFrame, pushButtonStatus}

};

memory memC [permanent] {

contains globals {my_IdX, my_IdY}

};

ioModule led {

contains ports { port LED 8}

};

ioModule pushButton {

contains ports { port PUSHBUTTON 7}

};

ioModule cc2420 {

contains ports { port P2IN 0, port P5OUT 1, port U1TCTL 2, port U1RXBUF 3,

port U1TXBUF 4, port URXIFG1 5, port IFG 6}

};

microTask receiveData {

activates With { beacon_Sent }

produces { data_Received }

reads ioModule { cc2420 }

writes memory { memB }

};

microTask sendBeacon {

activates With { extET }

produces { beacon_Sent }

writes ioModule { cc2420 }

reads memory { memC }

};

}

Figure 4.7.: An example of the system level DSL.

48

8-bit Micro-task
Task No. time Power Energy P. Gain E. Gain Area
Name States (µs) (µW) (pJ) (x) P1/P2 (x) E1/E2 (µm2)

130 nm65 nm130 nm65 nm 130 nm 65 nm 130 nm 65 nm 130 nm65 nm
crc8 71 4.4 30.09 8.0 132.4 35.3 292/32 1095/32 339/37 1272/37.3 5831.7 1762
crc16 103 6.4 46.92 12.4 300.3 79.2 187/20.4 710/21 140.5/15.3532.8/15.5 8732.5 2678

tea-decipher 586 36.6 84.5 22.6 3090 827 104/11.4 389/11.3 78/8.55 292.6/8.6 19950 6138
tea-encipher 580 36.2 87.3 23.3 3160 845 101/11 377/11 75/8.2 281/8.3 20248 6230

fir 165 10.3 75.3 20.4 775.6 209.7 116/12.8 432/12.5 123.8/13.4 458/13.3 13323.7 4124
calcNeigh 269 16.8 74.3 20.1 1248.2 337.8 118/12.9 437/12.7 142.4/15.5 526/15.4 14239.4 4454
snd2SPI 672 42 33.3 8.84 1400.3 371.3 264/28.8 995/29 198.5/21.7 748/21.7 10578 3434

rcvFromSPI 332 20.7 27.3 7.4 565 153.2 322/35 1189/34.6247.6/26.7 913/26.8 5075.3 1561

Table 4.2.: Power and energy gain of 8-bit micro-tasks over MSP430 (@ 16MHz). Here, P1 and
E1 are the power and energy gains w.r.t. tiMSP whereas P2 and E2 are the power
and energy gains w.r.t. openMSP.

16-bit Micro-task
Task No. time Power Energy P. Gain E. Gain Area
Name States (µs) (µW) (pJ) (x) P1/P2 (x) E1/E2 (µm2)

130 nm65 nm130 nm65 nm 130 nm 65 nm 130 nm 65 nm 130 nm65 nm
crc8 71 4.4 55.3 14.71 242.6 64.72 159.6/17.4 598.2/17.4 185.1/20.2693.7/20.3 10348 3097
crc16 73 4.56 55.0 14.69 251.0 66.98 159.8/17.4 599/17.4 168.1/18.3 630/18.4 10280 3102

tea-decipher 308 19.2 152.8 40.85 2940 784.3 57.6/6.2 215.4/6.3 82/9 308.5/9.04 27236 8380
tea-encipher 306 19.1 152.3 40.61 2910 776.0 57.8/6.3 216.7/6.3 81/8.93 306.2/9 27069 6211

fir 168 10.5 144.2 39.03 1514 409.8 61.02/6.7 225.5/6.56 63.4/6.9 234.3/6.8 23547 7164
calcNeigh 269 16.8 142.4 38.58 2392 648.1 61.8/6.7 228/6.4 74.3/8.1 274/8 24745 7613
snd2SPI 672 42 58.1 15.53 2440 652.2 151.5/16.5 566.6/16.5 114/12.4 426/12.52 14863 4771

rcvFromSPI 332 20.7 50.0 13.67 1036 283.0 175.8/19.2643.7/18.72 135/14.7 494/14.42 9485 2858

Table 4.3.: Power and energy gain of 16-bit micro-tasks over MSP430 (@ 16MHz). Here again,
P1 and E1 are the power and energy gains w.r.t. tiMSP whereas P2 and E2 are the
power and energy gains w.r.t. openMSP.

Power and area estimations are given in Tables 4.2 and 4.3. As expected, the power dissipated
by FSMs increases with their number of states, following a sub-linear relation. As a result, an
8 bit micro-task consumes nearly half the power and silicon area of a 16 bit micro-task, suggesting
that the FSM of a micro task consumes much less power than its associated datapath. For tasks
mostly involving word lengths greater than 8 bits, the total energy consumption of an 8 bit and
16 bit micro-task is nearly the same. On the other hand, for applications where 8 bit word length
operations dominate, an 8 bit micro-task consumes half the energy of a 16 bit micro-task.

We also synthesized the openMSP -core for 130 nm process to get an estimate of its silicon
footprint, which is 75000µm2. To evaluate the area overhead of our micro-task based decom-
position, we took as a baseline the cumulated area cost of all the microtasks of our case study,
that is roughly 48000µm2 (2/3 of the openMSP) for the same technology. This shows that our
approach is also competitive in terms of hardware resource usage. Of course, our main concern
is energy savings, and we also evaluated the savings that could be obtained against off-the-shelf
MCUs by considering two different versions of the MSP430:

– tiMSP, a TI MSP430F21x2 using the datasheet information (8.8mW @16MHz in active
mode) which includes memory and peripherals,

– openMSP, an open-source MSP430 processor core without accounting for program and
data memory. Statistical power for 130 nm technology was estimated to be 0.96mW @
16MHz.

The exact energy-efficiency in terms of Joules/instruction of micro-tasks cannot be measured,

49

crc8 crc16 tea-dec tea-enc fir calcNeig sndSPI rcvSPI0

5

10

15

20

25

30

35

40

En
er

gy
 e

ffi
ci

en
cy

 im
pr

ov
em

en
t f

ac
to

r
20

18

9 8
6

8

12
14

37

15

8 8

13
15

21

26

MicroTasks

16 bit microTask
8 bit microTask

Figure 4.8.: Energy improvements factors offered by 8 and 16 bits micro-tasks in 130nm w.r.t.
to the openMSP baseline.

Powerdynamic MSP = 8.8 mW

P
o
w

e
r

time

Tperiod = 100 ms

Tactive MSP

= 31.6 µs

Ton MSP = 1µs Toff MSP = 1µs

Powerdynamic MT = 33.34 µW

Ton MT = 38 ns Toff MT = 450 ns

Tperiod = 100 ms

Tactive MT

= 42 µs

Tstandby MSP =

99.96 ms

Tstandby MT =

99.957 ms

time

Figure 4.9.: Time distribution of snd2SPI task duty cycle.

as micro-tasks are not instruction-set processors. Hence, we used a notion of Joules/task as used
by Hempstead et al. [80] in their work. Since these micro-tasks are comparable to the MSP430
in terms of execution time, we used the instruction count for MSP430 implementation and the
actual energy consumption of the hardware micro-task (for each application and control task)
to estimate equivalent energy efficiency.

The results in terms of energy efficiency improvement (for the openMSP) are summarized
in Figure 4.8. They show significant energy efficiency improvements, ranging from a factor of 8
(in the most pessimistic case) to more than 35 (for the optimistic case). The results are roughly
ten time better for the TI-MSP430 as the openMSP core is ten times more energy efficient than
the latter (as a matter of fact, we expect the actual energy efficiency of the full MSP430 with its
memory to lie somewhere in between these two results). For the sake of completeness, and to
show that its impact on the energy budget is limited, we also synthesized the System Monitor
for our lamp-switching WSN node. Results confirmed our expectations, as the later dissipates
a mere 12µW at 16MHz.

Even though the above result are very encouraging, they only show the dynamic power sav-
ings obtained through specialization. In the context of WSN with low duty-cycles (as illustrated
in Figure 4.9), static power plays an important role in the global power budget. In particular,

50

(a) Parallel NAND gate model (b) Output turn-off delay TOFF

TOFF = 451 ns TON = 38 ns

VG 0->1

Vout 1->0

VG 1->0

Vout 0->1

In1

In2

Out1

Out4

Outn-2

In3

In4

Out2

Out5

Outn-1

In5

In6

Out3

Out6

Outn

Vdd

VG Vvdd

(c) Output turn-on delay TON

1580

Figure 4.10.: Time distribution of snd2SPI task duty cycle.

the ability to reduce the sleep and wake up delays from/to power gated mode can also contribute
to energy reduction, as components continue dissipating dynamic and static power during this
transient state.

To obtain accurate timing information, we have performed transistor level simulation using a
simple load model for micro-tasks (see figure Figure 4.10.(a)). The results of these simulations
are shown in Figure 4.10.(b) and Figure 4.10.(c). The estimated turn-on and turn-off delays
(between cut-off and active mode) are 38 ns and 451 ns for a 3000 gate equivalent component (a
representative area cost for a micro-task).

Considering this static power, a chosen time period of 100ms and by using a simple analytical
model (see the full paper [27] for more information) we calculated the overall energy saving for
snd2SPI micro-task over a complete period of task-activation. For this representative example
the combined use of specialization and power gating lead to an energy reduction of a factor of
138 over the MSP430, considered as a reference for its extremely low static power dissipation.

4.5. Discussion

The design flow presented in this chapter is a complete end-to-end flow, on which we started
working in late 2007 with the PhD thesis of Adeel Pasha. We first started studying the prob-
lem at the transistor level, to first evaluate the relevance of power-gating for fine to medium
grain circuits. As the results that we obtained were promising, we decided to prototype a com-
plete software flow starting from so-called system level specification [26] down to synthesizable
hardware [25].

This prototype helped us obtaining more solid quantitative evidence of the relevance of the
approach, and lead to the publication of four articles in conferences [26, 25, 24, 28], including a
paper presented at the IEEE/ACM Design Automation Conference in 2010. A journal article
has also been written and was accepted in July 2011 in the ACM Transactions on Design
Automation for Embedded Systems. The work done in this PhD is being continued by Vivek
Tovinakere, who is currently addressing the problem of providing accurate high-level analytical
timing and energy models for power gated blocks, to avoid complex and long transistor level
simulations [5, 6].

Designing a complete design flow in less than two years was definitely a challenge, especially
given the fact that the PhD student who did most of the implementation work 2 had little
experience in programming an no notion of compiler design. Even if this work did not lead to
outstanding contributions in terms of new synthesis techniques and/or algorithms (it was not
the topic of the work), it still looks to me like an achievement.

2. an Electrical Engineering major.

51

I believe part of this success was made possible by systematic use of Model Driven Software
Design, which helped us a lot in formalizing all the models (system-level, RT-level, etc.) used
in the flow and provided us with the adequate facilities for building their associated toolset
(parser, code generators, etc). This success also demonstrates that even non computer science
experts can (and should) make use of these technologies, which work both as productivity and
creativity boosters.

S
u
m
m
a
r
y

Supervision: Adeel Pasha, graduated in 2010, 70%, now assistant professor at University
of Engineering and Technology, Lahore (Pakistan)

Journal: ACM Transactions on Design Automation for Embedded Systems

(accepted for publication in July 2011) [27]

Conferences: IEEE/ACM Design Automation Conference 2010 [25]

Euromicro Conference on Digital System Design 2010 [26]

IEEE International Symposium on Circuits and Systems 2009 [24]

52

Chapter 5

Synthesis of Hardware accelerator

for regular computations

The contributions presented in this chapter are spread over a relatively large time frame
(from 2003 to 2011). They still tackle the same problem: how to automatically synthesize
parallel custom hardware from representations of programs based on the polyhedral model.

The chapter is organized as follows, we will first start by a short summary of the principles
behind the polyhedral model, along with an overview of existing techniques and tools used
for the synthesis of custom hardware from such representations. This survey is followed by a
detailed description of our three contributions, each of them being related to a distinct approach.
To the contrary of previous chapters, we discuss the results of our approaches in each section.

5.1. Representing loop nests as polyhedrons

Regular and repetitive computation patterns (such as those found in nested loops) are known
to be interesting candidates for hardware acceleration, as (i) they often represent the compute
intensive kernels in a program and (ii) their regular structure makes them amenable to advanced
analyses and transformations, such as those offered by the polyhedral model.

These analyses and transformations techniques leverage on theoretical foundations that date
back to the early 80s. However, this model only recently found its way within optimizing and
parallelizing compilers. This increasing adoption is mainly due to a recent renew of interest for
automatic parallelization techniques, mainly motivated by the outbreak of muti-core architec-
tures. This revival led to many breakthroughs (both practical and theoretical) over the last few
years [39, 44, 124, 125, 35].

The core idea behind the polyhedral model is to provide a compact iteration wise representa-
tion of static control loop nests using integer polyhedrons. The approach supports imperfectly
nested loops with affine array accesses and affine guards (Static Control Parts [40]), although
recent work has addressed its extension to wider classes of programs [43, 51]. In the following
we will call SCoPs such static control parts of programs.

The polyhedral model enables powerful analyses and transformations ranging from data lo-
cality optimizations to automatic parallelization. The model provides a unified framework in
which it is possible to express (and check the legality of) complex combinations of loop trans-
formations, leading to much more efficient generated code than those obtained by combining
independent transformations [71].

In the polyhedral model, all program transformations are expressed as affine (or quasi affine)
transformations of the statement domains. The transformed program is obtained through a code
generation phase that reconstructs the new loop nests from the transformed domains. Figure 5.1
illustrates such a transformation, where the chosen schedule expresses a combination of a loop
interchange transformation followed by a loop strip-mining. The reader may notice that in this
new program, the innermost loop can be easily vectorized as it does not carry dependencies.

Although most of the existing tools and techniques are geared toward general purpose and/or
parallel machines, they can also be used in the context of hardware synthesis, as explained in
the following subsection.

53

������� �����������	AB

C�DAEF����F����F��F���

��� ���� ����A�������	AB

C�D EF�����F����F��F���

�

�

�
�
�
��
��
��
�	
��
A
��
B
C
�
�
A
��
B
C
��

�

��

�
�
�
��
��
�	
��
�A
��
�B
�C
��

�

��

�
������� �����������	AB

��� ���� ����A��������	AB

��� ���� �����A���������	AB

�������	A

C�D EF���������F����F�������F���

��	�

C�D EF����������F����F�������F���AAAAAAAA

�

�

�

����

����	A�B�C

D��	EF�	�	����F

DC	�E�B�

����F

����C��	�B�C

�������

�CB�B	�F����FC���

��	C�������F����FC���

�A�����BC�

����������	���A�BAB����B

����������	���C�DEBAC�����C�B

Figure 5.1.: Illustration of a polyhedral based loop transformation flow. Each statement is
associated to a polyhedral domain. In the figure, dependencies between statement
instances are represented by arrows.

5.2. From processor arrays to process networks

There exist several different approaches (and tools) for synthesizing nested loops onto custom
hardware accelerators. Figure 5.2 provides an overview of the different approaches, detailed
below.

Synthesizing Regular Processor Arrays

The idea of exploiting the regularity of loop structures to derive parallel architectures is
not new, and this research problem has received a lot of attention in the 80s thanks to the
seminal work of Kung and Leiserson in 1978 [94]. This led to the concept of systolic arrays,
later generalized as regular processor arrays, that can be seen as a regular multidimensional
mesh of very simple processor cells, supporting a nearest neighbors communication topology.

The work on processor arrays also led to important contributions in automatic paralleliza-
tion [126, 161], and design automation [163], which led to semi automatic design tools such
as MMAlpha [74] and PARO [60, 77]. Many important applications in the field of signal pro-
cessing and linear algebra have shown to be well suited systolic arrays, and there exist some
application domains (in particular in wireless communications) where (small scale) processor
arrays are implemented as building blocks of more complex systems. However, it turns out that
processor array architectures (and their supporting design methodologies) suffer from important
limitations:

– Experience has shown that automatically determining a mapping and a scheduling that
would be competitive with a manual design is a difficult (and still open) problem.

– The constraints on the architecture are often too restrictive and limit the set of applications
and/or kernels amenable to efficient mappings.

– The architectures derived using those methodologies are poorly suited to a mapping on
heterogeneous multi-processor platforms.

54

����������

	ABCDA�CEF

�	F

������DC�

B[1,2]
B[2,1]

A[1,2]

A[2,1]

-

-

���DB��

	���

��� ���������

��� ���������

��	�A��B

CD�EF����	B�

��	���B

CD�E�����	B�

������D��	CDB�

�����

�

�

���������

��� C�F�������

��� �� ����

��!

������D�"	C#�B�

��	CA��B

E��$��	���B�

��	C��B

E��$��	���B�

�

�

��������	
��

��

��

	���DDCDF

��BC�BD��C
	�D��CE��DF	���C��F C�!��"F�		 �

#$���A����DF

%��&��&C�F

��DB��'(F	��D��

��)B���*	

���� ���	�A	�	B%"#�	B%�#�	B%&B�'

���	CD��C�F�CA����C((B�'

���	CD����F��A)����((B�'

&*C+*�+�F�

��� 	CD��,�F�,A-�,((B�'

�.$�"*C+*,+%�*,+*�+�

&*C+*�+(��.$�

�

�

�

�

#+���F�����

,����D�!F

���D��A�F��,��

�)BC���A-CFB��&��)

�.���A�F������DF	�����

/C���F*F���0�

����������

	ABCDA�CEF

�	F

������DC�

AB�CDB������������

%����F

.��CE�DA�&

1F)�BBA�&

������DF&C��

�����

����2

2��F)���C�F���C����CF

.��� .��� .���

����C,��D�/	CD�%"#�CD�%%%�#�CD�%&B'

���	C�F�CA����C((B�'

���	��F�0%�A)����((B�'����������

&*C+*�+�F�

���	,�F�,A-�,((B�'

�.$"���"*C+*,+�������

1$�2�.2�$C$�/CD��33��#�42��D���0

���	���F���A.CD)���0%�#0B���((B�'

�.$&*��+(��.$"%�*,+*�+*��+�

�

�

���	���F���A.CD)���0%�#0B���((B�'

&*C+*0%�(��+��.$&*��+�

�

�

�

�

���

���

	EF� �F� � ��

	EF� �F� �

�EF� � ���F� � �EF� �F� �

�3B
�
(B
�
4

��BBA�&

B��5C��A��

�C&�D��F	���C����F������F

EC�A&�F�D�!

6��E!��CF	���C��F C�!��"F

EC�A&�F�D�!

.����CF��F.����CF

	ABCDA�CEF���CDC�����F

EC�A&�F�D�!

D���	�CEDB��F�������BC

'-#5#67-��885��886���

����	 �	B "�'C#,7�FA�CA-�88�FA�,A5��

�	B �',#�7FA�,A5�88�FA��A6��

��B��	�

�	B &'C#�#,7FA�CA-88FA��A688,��5(���

���	�

�	B �.$'C#�#,7FA�CA-88FA��A688FA�,A�5��

B������

�.$*C#�#,+����D��

'7,�F�������.$9&*C#�#,��+�

(�"*C#,��+%�*,��#�+�

'7,��F����F��������������

��D��

&����.$*C#�#,��+�

�

�����F,����D�!F

���D��A�

��))��A���A��F

�D���A�A���A��

�����F,����D�!F���D��A�

	ABCDA�C*-C����A7��A��F8

�C)���F�B�A)A7��A��

6A&�F%C-CDF.����C�A�F

�C�&F����B�D�9��

Figure 5.2.: An overview of existing hardware synthesis flows based on the polyhedral model

55

Among these limitations, the later two are probably the most severe, and hence motivated
the search for alternative approaches, better suited to current hardware platforms.

Deriving Hardware Process Networks

Rather than trying to map the computation to a processor grid, the Compaan framework [153,
90, 152] instead proposes to produce a Process Network representation of the program, known
as Polyhedral Process Networks (PPN) [154]. In this approach, operations of the program
are mapped to different concurrent processes, communicating through FIFOs enforcing Kahn
Process Networks semantics [86] (blocking read, non blocking write). This model is much more
suited to an implementation on heterogeneous multi-core platform, as it focuses on more coarse
grain (task-level) parallelism and does not require shared memory.

An interesting property of PPN is that deriving such a model does not involve determining
a (legal) global schedule for the computations, something known to be difficult. Instead, the
PPN relies on data-flow synchronization (through FIFO buffers and local reordering memory)
to ensure that a process firing cannot happen before all its operands are available.

However, this flexibility is also one of the main weakness of the approach. Because every
statement of the program is mapped to its own process, the resulting process network is highly
dependant on the initial input program specification (and its implicit underlying schedule). This
may lead to network sizes that are not suited to the target platform and/or requirements (e.g.,
too many nodes will induce too much scheduling overhead, while to few nodes may underutilize
the platform resources). A lot of work has therefore been carried on process splitting/merging
transformations [109, 144], so that the designers have tighter control on the characteristics of
the generated network.

Optimizing Pipelined Accelerators

A more recent trend aims at taking advantage of the huge progress in High-Level Synthesis
in the last ten years, and also of the large choice of robust and mature tools that nowadays
exist [73, 30, 32].

All these “C to hardware tools” significantly slash down design time. However their ability
to generate efficient accelerators is still limited, and relies on the designer to expose parallelism
and to use appropriate data layout in its source program. Therefore, there is a growing interest
for source-to-source compilers, which could be used as front-end automatic parallelization tools,
to derive heavily pipelined (and possibly vectorized) hardware accelerators. This is the case for
Gecos-S2S4HLS [130] and Chuba [123] frameworks, which aim at providing a polyhedral based
loop transformation toolbox for improving the efficiency of HLS tools for nested loops.

Summary of the contributions

All contributions presented in this chapter are related to one of the three approaches depicted
in Figure 5.2.

The first work presented in this chapter (Section 5.3) is in the direct continuation of my
PhD, which focused on the synthesis of efficient processor arrays, through the use of partitioning
transformations [12, 15, 14, 11, 13] and on automatic interface synthesis for linear processor
arrays [16, 8]. The goal of this work was to study how to extend our previous results to handle
the derivation of efficient I/O interfaces for arbitrary dimensions partitioned processor arrays.

The second contribution (Section 5.4) was a result of my stay as a post-doc in 2003 at
Leiden University in the group of Ed Deprettere. During this period, I continued working on
the problem of automatic hardware synthesis, this time in the context of the Compaan/Laura

56

framework [165, 153]. More precisely, the goal was to synthesize efficient hardware process
networks [18] following the Polyhedral Process Network operational semantics [154].

Since late 2009, I have been working, in the context of the Nano 2012 research program
between Inria and STMicroelectronics, on nested loops source-to-source transformations for
High-Level Synthesis tools for GeCoS compiler infrastructure. The topics addressed in this
work revolve around nested loop pipelining and efficient code generation and are developed as
part of the PhD thesis topic of Antoine Morvan.

5.3. Efficient I/O management in processor arrays

The high-level synthesis research community has mostly focused on deriving efficient dedi-
cated hardware accelerators from high-level specifications. The problem of automatically gen-
erating interfaces between these accelerators and the rest of the hardware system has received
only little attention.

However, as most designers can tell, such interface is often a very tedious and error-prone
part of a design. Moreover, a poorly designed interface can drastically reduce the actual accel-
erator performance. This problem is even strengthened for stream processing applications; huge
parallelism present in the accelerator can be ruined by an inefficient handling of data-stream
communications.

RAM

CPU

PE

PE

PE PE PE

PE

PE

??????
Main
Arbiter

Local arbiter

Local arbiter

Localarbiter

Localarbiter

PE

PE PE

PE

PE

DMA

(a) Dynamic I/O management

Static scheduler

FI
FO

FI
FO

FI
FO

FI
FO

PE

PEPEPE

PEPEPE

PEPE

PE

PE

PE RAM

CPU

DMA

(b) Static I/O management

Figure 5.3.: Two different approach for interfacing 2D processor arrays

In this work, we tackled the problem for multi-dimensional partitioned processor arrays. Pure
systolic architectures are impractical because of the huge throughput and resource requirements.
As a consequence, several strategies have been proposed to derive processor arrays under re-
source or I/O constraints [137, 112, 85, 53, 52, 55], leading to a deep understanding of the
partitioning transformation [149, 67, 55, 15, 12].

However, these approaches did not address the interface issue, which is how to efficiently
integrate the resulting architectures within a complete system. This problem was studied in the
case of linear processor arrays [120, 121, 8, 68], where data is entering the array from a single
processor element. However the problem of multi-dimensional processor arrays did not receive
much of attention, but from the PARO project [42] and the Pico tool [135].

Interfacing multi-dimensional arrays is more difficult than 1D arrays because many data can
enter the array simultaneously. At some point, this data have to be sequentialized in a FIFO-like
channel that can be connected to a memory through a bus or a network on chip with reduced
scalability.

By carefully choosing the partitioning parameters, the designer can adapt on average the
bandwidth required by the processor array to the bandwidth available on the communication

57

medium [12]. However, there is no guarantee that two processors of the array will not access the
bus simultaneously. A natural solution is to implement a dynamic resolution of the conflicting
accesses with an arbitration mechanism, as suggested in [135] and as illustrated in Figure 5.3(a).

In this work, we have proposed an alternative solution by showing that a static schedule
without conflicts can be found for I/Os of partitioned array processors. More precisely we pro-
pose a technique to derive a conflict free I/O pipeline along the processor array boundaries.
Thanks to this static I/O schedule, the hardware area can be made smaller by using small
shift registers rather than dynamic arbiters, as shown in Figure 5.3(b). Moreover, the fact that
the I/O schedule is known in advance enables more advanced burst mode communications and
prefetching techniques. Our methodology was experimentally validated by a vhdl implemen-
tation of a partitioned matrix-product array, and its results compared to a bus arbiter based
approach.

5.3.1. Conflict free I/O schedules in partitioned processor arrays

To illustrate the techniques used in this work, it is necessary to briefly describe the main
ideas behind processor partitioning techniques. The goal of partitioning is to reduce the level of
parallelism in processor arrays by partitioning the original processor array into parallelepipedic
tiles, using a family of hyperplanes. Two partitioning strategies have been proposed, which can
be combined through a hierarchical partitioning approach.

– Locally Parallel Globally Sequential (LPGS) [111] partitioning, consists in executing all
computations within a partition in parallel and atomically. This execution is performed
on a smaller processor array, whose size corresponds to the partition size.

– Locally Sequential Globally Parallel (LSGP) [48, 52, 54] partitioning consists in executing
the partitions concurrently, by using a single processor per partition, which scans all the
iterations within that partition.

In this work, we are interested in the LSGP scheme. LSGP is a very efficient transformation
to reduce the I/O bandwidth of the processor array, as the I/O throughput decreases as the size
of the partition grows. The LSGP transformation is illustrated in Figure 5.4 and Figure 5.5,
where the partition is a simple 2× 3 rectangle. In this example the three processors along the
vertical axis perform an I/O only once every three cycles instead of every cycle in the original
array, hence matching (in average) the FIFO throughput.

However, as depicted in Figure 5.4, if we assume that data is broadcasted from the FIFO to
each processor, the resulting schedule may lead to some conflicts, as several processors need to
access the FIFO output at the same time instant. On the other hand, if we assume another
communication mechanism, for example a pipeline in reverse order of the processors vertical
axis (with one register per processor) as in Figure 5.5, the I/O schedule is now conflict free.

We proposed a method to determine automatically the set of legal (i.e, conflict free) data
pipelines, by expressing constraints on the pipeline direction (forward or reverse) and on the
number of registers between processors. These informations are derived from both the processor
array initial schedule and partitioning parameters.

5.3.2. Experimental results

To illustrate the benefits of our approach, we compared our interface implementation to an
alternative one based on a run-time management of the I/O conflicts. In this case, whenever two
or more processors have to perform an I/O for the same stream at the same time, a hardware
arbiter is used to select the access to be scheduled first. We prototyped (in vhdl) the two
approaches for a matrix-matrix product. The choice of this basic example does not affect the

58

Figure 5.4.: Conflicting I/O schedule: at time t = 1, 2, 7, 8, several processors access the FIFO
(conflicts shown as large black circles).

Figure 5.5.: The I/O schedule is dense (FIFO accessed every cycle) and conflict free (at most
one access to the FIFO at a given cycle).

59

Matrix size Physical Area
array static run-time
shape lut/dff/srl16 lut/dff

32× 32× 32 2× 2 116 96 128 285 266

32× 32× 32 4× 4 116 96 256 539 508

64× 64× 64 4× 4 132 102 256 603 532

64× 64× 64 8× 4 132 102 320 784 672

64× 64× 64 4× 8 132 102 448 1048 888

128× 128× 128 8× 8 156 108 512 1454 1160

128× 128× 128 8× 4 156 108 320 970 768

128× 128× 128 16× 8 156 108 640 1811 1472

Table 5.1.: Experimental results for interface area: number of logic cells (LUT), of registers
(DFF), and of Xilinx shift registers primitives (SRL16) (not used in the run-time
approach).

validity of the results, as any two dimensional processor array will use a similar interface 1.

For both approaches, we synthesized a set of architecture instances that only differ by some
parameters. A summary of the results is given in Table 5.1; to make a fair comparison, one
should compare the sum of LUT and SRL16 (for the static interface) to the number of LUT in
the run-time approach, and the DFF for both approaches. Experiments show that our approach
based on a static I/O schedule leads to significant area savings: while the number of flip-flops
(DFF) required to implement the interface is roughly the same in both approaches, the number
of LUT resources is much lower in our approach especially for larger processor arrays.

It is also worth noticing that the selected values for the rj parameters do not affect the area
cost of the interface. This is due to the use of the shift-register primitives provided by Xilinx
architectures, which allow shift-registers; up to 16-bit deep; to be packed into a single logic cell.

5.3.3. Discussion

I started thinking about this problem during my PhD thesis, but had to wait until 2004
to actually to start working on it. After several discussions with Tanguy Risset, and after we
realized that the problem could benefit from Alain Darte formalization of the so-called Juggling
problem, we started working together on the topic. Interestingly, a work addressing a problem
similar to ours was also published in 2005 (one month before ours) by Hannig et al. [78].

In retrospect, the main weakness of this work is that it remained theoretical, in the sense
that it was never implemented in the MMAlpha framework since the MMAlpha did not support
Z-polyhedral domain (a prerequisite for managing partitioned processor arrays).

The questions and issues raised by this work (in particular the idea of reordering buffer
memory) however led the co-authors of this work (Alain Darte and Tanguy Risset) to start a
PhD on the topic (PhD Alexandru Plesco) at LIP in Lyon. However, they tried to tackle the
problem from a higher abstraction level by a combined use of High-Level Synthesis tools and
source-to-source transformations [123].

S
u
m
m
a
r
y

Conferences: IEEE ASAP 2005 [7]

Collaborations: LIP - ENS Lyon

1. Things are slightly more complicated for three dimensional arrays and above, see the full paper for more
details [7].

60

if i <= j,

FIFO1.Put(token);
end

if x <= y,

token = FIFO1.get();
end

FuncB(token);
if i > j,

FIFO2.Put(token);
end

if x <= y,

end
token = FIFO0.get();

end
end

token = FuncA(i,j);

for j = 3:1:N,
for i = 1:1:N−2,

end
end

for y = 2:1:N−1,

for x = 2:1:N−1,

OPD1

IPD2

OPD2

IPD1

IPDs

OPDs

Process BProcess A

FIFO0

FIFO1

FIFO2

(a)

Controller

Execution Unit

IP Core

M
U

X
s

D
e

M
U

X
s

FIFO

FIFO

FIFO

FIFO

DATA FLOW

Read Unit Write Unit

(b)

Figure 5.6.: (a) Two processes taken out from a Compaan generated PN, (b) Hardware realiza-
tion of a process

5.4. Control generation for hardware Process Networks

As mentioned in the beginning of the chapter, the goal of the Compaan framework [89, 145,
132] is to automatically transform applications in the field of signal and image processing to
Process Networks. Compaan operates on a small subset of Matlab and produces a Polyhedral
Process Network [154] model of the program.

In Figure 5.6(a), we show a fragment of a process network obtained from Compaan, where
processes A and B communicate data over FIFO channel FIFO1. In both processes, nesting of
for-loops indicate the schedule in which the functions FuncA and FuncB are being executed,
affine guards determine which FIFO is used as source or sink.

The Laura tool serves as a back-end and transforms the process network into a synthesizable
VHDL description. During this conversion, each process is mapped to a hardware process,
as shown in 5.6(b), whose schedule is handled by a local hardware controller. Because of
the inherent complexity of the schedules handled by Compaan, deriving a low footprint and
fast hardware realization for this control is mandatory for obtaining an efficient and practical
implementation of this processor.

The initial implementation of the control in Laura was based on ROMs, which would contain
a compressed control sequence of an unrolled execution of each process, using a simple Run
Length Encoding Technique. Some results obtained with this technique for a few representative
applications are given in Table 5.2. In spite of its relative efficiency for small iteration domains,
the technique does not scale for large and/or complex domains (e.g., those that can be found
in image processing applications).

N T direct RLE % of mem
bytes bytes FPGA

QR 16 64 7680 4160 0.9
(node 4/5) 64 256 516096 78080 17.12

W H simple RLE % of mem
Stereo vision 640 400 1941576 1698240 372.42
(node 4/5) 1024 640 5072328 4437264 973.08

Optical Flow 640 480 3808860 29850 6.54
(node 3/7) 1024 764 9780540 47850 10.4

Table 5.2.: Control ROM size for three different applications

This work has hence consisted in investigating different strategies for deriving hardware
realizations for the controller and in exploring the trade-offs between speed and resources usage.

61

5.4.1. Simple parameterized Controller

The first approach that we studied consists in building an optimized dataflow graph out of
the guard and loop bounds expressions available in the process control flow. This graph is then
directly mapped onto a simple datapath structure, following the template given in Figure 5.7(a),
where each operation is mapped to its own operator.

Because of the class of nested-loop programs that Compaan accepts, all predicates and
bounds consists of quasi affine expressions of the loop indices and parameters. These expression
offer many simple optimizations opportunities. In particular, we combined redundancy elimina-
tion to remove redundant operations and bit accurate wordlength analysis using Integer Linear
Programming to determine the exact number of bits needed to encode the actual range of loop
indices.

To READ Unit To WRITE Unit

IPD1 IPDn OPDnOPD1

iterator iterator

Loop iterator update
datapath

FIFO activation
datapath

(a) Simple controller

nxt_loop_rdyend_loop

Parallel combinational
evaluation of inner loop index

dependent predicates

Da
ta

 R
AM

+1

PC

Pr
og

ra
m

 R
OM

ALU

To READ Unit To WRITE Unit

IPD1 IPDn OPDnOPD1

in
de

x
co

m
pu

ta
tio

n
M

os
t i

nn
er

 lo
op

+1

idx

=

 T value
 N value

 k index
 j index

 tmp

Exec(n5)

l1: Exec(n1)

Goto L1
Exec(n20)

Exec(n3)

(b) Partitioned controller

Variant distance

to load
value

empty

Da
ta

 R
AM

+1

PC

Pr
og

ra
m

 R
OM

ALU

FIFO1 FIFO2

Variant decoder Counter

 T value
 N value

 k index
 j index

 tmp

Exec(n5)

l1: Exec(n1)

Goto L1
Exec(n20)

Exec(n3)

To READ Unit To WRITE Unit

IPD1 IPDn OPDnOPD1

(c) Variant based controller

Figure 5.7.: The three types of controller under study in this work: the parameterized simple
controller, the partitioned controller and the variant based controller

5.4.2. Partitioned parameterized Controller

The parameterized controller, depicted in previous subsection, is sensitive to the amount
of linear expressions that need to be evaluated in each iteration. To reduce the amount of
computations, we use the fact that only expression depending on the innermost loop index
have to be evaluated at every cycle. Following this observation, we split the control in two
different blocks: a parallel datapath that evaluates all expressions depending on the innermost
loop-iterator and a sequential micro-coded controller for the remaining ones, as depicted in
Figure 5.7(b).

The architecture of this controller is derived in two steps. The DAG partitioning step first
isolates all subgraph patterns that do not depend on the innermost loop index. This step
is followed by a scheduling step, that computes the schedule to derive the micro-code of the
sequential controller. The parallel datapath is derived using the same principle as in the Simple
Parameterized Controller approach, except that all arguments depending on values calculated
by the sequential controller are mapped to communication ports.

To observe the benefits of our approaches, we used the same benchmarks as in Table 5.2.
Results are given in Table 5.3 and show that the partitioned approach is only useful for large
and complex domains, and induces a (small) performance penalty (in terms of clock speed).

62

Size Non partitioned Partitioned
N T MHz Area MHz Area
8 16 140 29 100 112

QR factorization 16 64 133 68 85 133
64 256 121 89 74 163
W H MHz Area MHz Area
320 200 97 133 65 120

Stereo-vision 640 400 100 148 74 123
1024 640 100 153 71 126
W H MHz Area MHz Area
320 200 129 97 76 98

Optical-flow 640 400 118 110 72 103
1024 640 126 113 75 106

Table 5.3.: Experimental results for three representative examples.

5.4.3. Toward a Variant based controller

Looking at the code in Figure 5.6(a), one can notice that, in most cases, a given configuration
of active FIFO will stay the same for a certain number of consecutive iterations. In the following,
we call such a configuration a variant as proposed by Kienhuis [88]. Taking advantage of this
regularity is an attractive solution, but the problem does not have a straightforward solution.

1

3

2

0

876

0 1 2 3 4 5 6

1

0

2

3

4

5

T=6

N=7

15 2 3 4 5 6 7 8

1

0

2

3

4

5

6

8

1

7

N=

0

5

6

8

4

7

1

0

2

3

4

5

6

8

7

N=

0 1 2 3 4 5 6 7 8

1

0

2

3

4

5

6

8

7

N=

0 1 2 3 4 5 6 7 8

1

0

2

3

4

5

6

8

7

N=

0 1 2 3 4 5 6 7 8

3

N=

2 0

4

Variant domains

k

j

k

j

k

j

j

k

j

k

V1

V2

V3

V4

V5

V6

V7

V8

V9

k

j

L1 − in0 arg list L2 − in1 arg list

L5 − out2 arg listL4 − out1 arg listL3 − out0 arg list

Argument lists

IPD1

IPD2

OPD2
OPD1

IPD4

OPD3

IPD3

Figure 5.8.: Deriving the variant domains corresponding to a process

We proposed a partial solution to this problem in the latter part of this work. We use the
fact that in Compaan, variant domains are always polyhedra (or union of polyhedra), and that
all the variants occurring in a process can be obtained by a cross-product of all FIFO activity
domains (the product operation here being a polyhedral intersection operation) as depicted in
Figure 5.8. Our technique, applicable only for non parameterized domains, generates the control
for a given process through the following steps:

1. build a controller that scans all variants in their order of appearance in the schedule. We
use a technique based on parametric integer programming.

2. build a function that associates a distance to each transition between a variant to another
one. This distance corresponds to the number of iterations in which the new variant is
active. In this work, we proposed to construct this function using parametric polyhedral

63

counting operations based on Ehrhart [50] polynomials.

Because detailing the technical contribution is out of the scope of this overview, we will only
outline the architectural model for the distance based controller (in Figure 5.7(c)).

5.4.4. Discussion

This work was done during the first months of my stay at Leiden University. Although it
does not leverage sophisticated techniques, it helped significantly improve the efficiency (area,
scalability) of the circuits obtained from the Compaan/Laura toolset, which was turned into a
commercial product after 2005.

In retrospect, the techniques used in these papers are a bit naive and would certainly have
benefited from a better background in optimizing compilers. There exist many algorithms
for efficiently implementing some of the optimizations mentioned in this work (common sub-
expression elimination in DAGs in particular). It also turns out that the approach based on
program variants is extremely close to the technique proposed of Boulet et al. [46] that was
used to address the problem of hardware control generation by Guillou et al. [75] in the same
period. The algorithm of Boulet et al. is more powerful than the one sketched in this work,
as it is better formalized and supports parameterized domains. Sadly, we were unaware of this
work at the time.

Another missed optimization opportunity was the use of strength reduction techniques, which
could have been used to reduce the complexity of many affine expression of loop indices and
parameters, by using an equivalent recursive formulation. This idea was partially addressed
by Zissulescu et al. [164] in 2005 and by Hannig et al. [59] in 2007 (but with a restriction to
unidimensional schedules). However, we believe that there still remains a lot of work to be
carried on this topic.

S
u
m
m
a
r
y Journal: International Journal of Embedded Systems (Interscience publisher) 2008 [18]

Workshop: Workshop on Systems, Architectures, Modeling, and Simulation 2003 [17]

Collaborations: LIACS, Leiden University

5.5. Nested loop pipelining for HLS

The contributions presented in this section are the result of the work carried in 2011 by
Antoine Morvan (supervised by Patrice Quinton). This work was carried in the context of
the INRIA/STMicroelectronics Nano2012 program. In this work, we addressed the problem of
nested loop pipelining 2, a valuable transformation for hardware synthesis, which has received
only limited attention so far. We use throughout the remainder of this section a running toy
loop-nest example shown in Figure 5.9, to better illustrate our contributions.

In the iteration domain of Figure 5.9, the inner loop (along the j index) exhibits no de-
pendencies between calculations. Its execution can therefore be pipelined by overlapping the
execution of several iterations along the j loop. Loop pipelining is characterized by two impor-
tant parameters:

– The Initiation Interval (denoted II in the following), that corresponds to the number of
clock cycles separating the execution of two loop iterations.

– The latency (denoted ∆) that gives the number of clock cycles required to completely
execute one iteration of the loop.

The rightmost part of Figure 5.9 depicts the pipelined execution of our example, with an
initiation interval II=1 and a latency of ∆ = 4. Loop pipelining is a key transformation in

2. Not to be confused with multidimensional pipelining or outer loop pipelining

64

���������	A�B�C�DE�D�FE���

������� ��������������

������� ���������������

��	A�����������

��������� �����!����

"

"
����� �����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����	ABCDE�

	ABCDE�

	ABCDE�

	ABCDE�

F�FAFB�F�BAF�� �����

� � � � � � � �� �� ��� � � �� �� ��

F�FAFB�F�BAF�� �����

����D��

�

Figure 5.9.: Motivating example, with its pipelined execution for N = 5, II=1 and ∆ = 4.

High-Level Synthesis tools, as it helps maximizing the computation throughput and because
it improves hardware utilization. Thus, fully pipelining the loop (that is choosing II=1) is a
very common practice. For loops with large iteration count this leads to almost 100% hardware
utilization.

However, when the iteration count of the loop is comparable to the pipeline latency ∆, one
may observe a significant performance degradation, as the pipeline flushing phases dominate
the execution time. This is the case of our example in Figure 5.9. For a value of N = 5 and
∆ = 4, we obtain a hardware utilization rate of only 50%. This schedule is far from being
efficient, and the reader can see that there is not reason to wait until t = 8 to start the second
iteration of the outer loop, and that the whole loop nest execution might be pipelined. Such
an optimization is known as nested loop pipelining [114], and can be realized through a loop
coalescing transformation that flattens a loop nest into a single loop that scans the original
iteration domain. Nested loop pipelining can then be done by pipelining this coalesced loop.
Implementing nested loop pipelining (and in particular enforcing its correctness) is far from
trivial and requires a lot of attention.

As an example, Figure 5.10 shows a coalesced version of the loop nest of Figure 5.9. One
can observe that the array accesses in the coalesced version do not depend on loop indices as
in Figure 5.9. They are hence more difficult to analyze. As HLS tools rely on simple data-
dependency analysis algorithms, they will fail to detect that this loop can be pipelined. They
hence offer compiler directives (i.e., #pragma) that can be used to force the tool to ignore user-
specified memory references in its dependency analysis, to enable pipelining. Of course, this
comes with the risk of generating illegal pipelined schedules.

In our example, we may be tempted to bypass some of the dependence analysis through a
#pragma ignore_mem_dep Y directive to ignore the dependency over Y[j] and enable the whole
loop pipelining.

��������

���������	 A

���	AB	 �BCDEF��F���F��� �

CDEF�����������

������	�������������

��������� ��! "	�

�����

����

���#����

$

����� �����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����
	ABCDE

F���D��

F���D��

F���D��

F���D��

������C�������

�����

�����

�����

�����

�����

�����

�����

�����

�����

� � � � � � � �� ��� � � ��

����� ����� �����

����� �����

�����

�����

�����

�����

�����

�����

�����

�C�E�

Figure 5.10.: Illegal nested loop pipelining for N = 5, II = 1 and ∆ = 4. Bold arrows show
broken dependencies.

65

Although the scheduling seems correct at the first glance, that some Read after Write de-
pendencies are violated for i ≥ 3, as shown in Figure 5.10. For example, the memory read
operation on Y[0] of (i = 3, j = 0) scheduled at t = 12 happens before Y[0] is updated by the
write operation of (i = 2, j = 0), also scheduled at t = 12 on the last stage.

Among the numerous commercial and academic C to hardware tools that we have evaluated,
only Catapult-C from Mentor Graphics actually provides the ability to perform such automatic
nested loop pipelining. However, its current implementation in the tool suffers from severe flaws
and generates illegal schedules whenever the domain is not rectangular and/or has non constant
loop bounds (from what we understand the tool fails for the very same reasons as depicted in
Figure 5.10).

Our contribution in this work is threefold. We provide a formalization of the conditions under
which nested loop pipelining is legal with respect to data dependencies for SCoPs programs [40].
In addition to this legality check, we also propose a technique to correct a priori illegal nested
pipeline schedules by inserting bubbles in the coalesced loop, to derive the most efficient legal
pipelined schedule. Finally, we also propose an implementation of our polyhedral bubble insertion
technique in a source-to-source compiler, to remain as vendor independent as possible.

5.5.1. Checking pipelined coalescing legality

In the following, we outline the idea behind our nested pipelining legality check. For a more
detailed technical description of our solution, we incite the reader to refer to the article by
Morvan et al. [22] provided 3 in appendix B. Consider a sink reference to an array (i.e., a read
array reference in a statement), and let ~y denote its iteration vector. Let ~x be the iteration
vector of the source of this array reference. Let us define d to be a function that maps ~y to ~x,
such that ~x = d(~y). We can formulate the lagality conditions of loop coalescing as follows: for a
nested pipeline schedule with a latency of ∆ and II = 1, the schedule violates data dependencies
if the reuse distance (in number of iteration points) between the production of the value (at
iteration ~x, the source) and its use (at iteration ~y, the sink) is less than ∆.

We build a function next∆D(~x) that computes, given an iteration vector ~x, its successor ∆
iterations away in the loop nest iteration domain. To test this condition, we then check that all
the sink iteration vectors ~y = d−1(~x) of the dependency d occur after next∆D(~x). We derive the
next∆D function by using earlier results by Boulet et al. [46] who provide a technique to compute
the immediate successor in D of an iteration vector ~x according to the lexicographical order.
Because we only need to look for a constant number of iterations ahead (the latency of the
pipeline that we call ∆), we can easily build the next∆D function. This is done by applying the
function to itself ∆ times. Let us compute the nextD(~x) function for the example of Figure 5.9,
with ~x = (i, j). We have

nextD(i, j) =







(i, j + 1) if j < N − i− 1
(i+ 1, 0) elseif i < N − 1
⊥ otherwise

Note that ⊥ represents the absence of successor in the loop. Applying the function four times

3. Because it was not yet presented at the conference at the time of this writing, we provide a draft of the
camera ready version in this document

66

to itself gives the next4D(i, j) function:

next4D(i, j) =







(i, j + 4) if j ≤ N − i− 5
(i+ 1, 3) elseif i ≤ N − 5 ∧ j = N − i− 1
(i+ 1, 2) elseif i ≤ N − 4 ∧ j = N − i− 2
(i+ 1, 1) elseif i ≤ N − 3 ∧ j = N − i− 3
(i+ 1, 0) elseif i ≤ N − 4 ∧ j = N − i− 4
(N − 1, 0) elseif i = N − 3 ∧ j = 1 ∧N ≥ 3
(N − 2, 0) elseif i = N − 4 ∧ j = 3 ∧N ≥ 4
⊥ otherwise

(5.1)

An interesting property of this approach is that it allows us to determine the domain of the
iterations causing a data dependency violation. In the following, we call this domain D†. This
domain can be automatically derived using simple polyhedral operations, and whenever this
domain is empty, nested pipelining is legal. In our example, we obtain:

D† = {i, j|(i, j) ∈ D ∧N − 4 < i < N − 1 ∧ j < N − i− 1}

When we substituteN by 5 (the chosen value in our example), we haveD† = {(2, 0), (2, 1), (3, 0)},
which is the set of points that causes a dependency violation in Figure 5.10.

5.5.2. Correcting coalescings by bubble insertion

While a legality condition is an important step toward automated nested loop pipelining, we
would also like to correct a given schedule to make the coalescing legal. This is achieved by
inserting at compile time dummy iterations (or bubbles) in the iteration domain, that delays the
execution of the iterations causing dependency violations. The key question in this problem is
to determine how many of such wait states are actually required to fix the schedule, as adding
a single wait state in a loop may incidentally fix/correct several violated data-dependencies.
We have proposed two different approach to the problem, illustrated in Figure 5.11(a) and
Figure 5.11(b)

The simplest solution is to pad every inner loop containing an iteration in D† with ∆−1 wait-
states (this boils down to flushing the pipeline only when needed). The approach is illustrated
in Figure 5.11(a), but turns out to be too conservative. For example, the inner loops for indices
i = 2 in the example of Figure 5.9 do not need ∆ − 1 = 3 additional cycles. In this case, only
one cycle of wait state is needed, and similarly, for i = 3, only two cycles are needed.

An alternative approach, illustrated in Figure 5.11(a), is to build the set of additional wait
states by first looking to the source iterations in D† that cause a schedule violation by exactly 1
cycles and then pad the inner loop corresponding to these iterations with exactly 1 wait-state.
We then focus on the source iterations that fail by exactly 2 cycles and pad the inner loop
corresponding to these iterations with exactly 2 wait states, possibly overlapping some of the
wait states previously introduced. The algorithms then proceeds until it has inserted wait states
for the iterations that fails by ∆− 1 cycle, i.e., until all schedule violations are resolved.

5.5.3. Results and validation

In this section, we describe how the transformation is implemented within a compiler frame-
work. We also provide quantitative evidence showing that the approach is practical and leads
to performance improvements at the price of a moderate increase in area.

67

i=0;j=0;

while(i<N) {

#pragma ignore_mem_depcy Y

 if(j<N-i)

S0: Y[j] = A[i]

 +(i==0)?0:Y[j]/B[j];
 if((i>N-4&&j<N-i+3&&i<N-1)

||j<N-i-1)

 j++;

 else

 j=0,i++;

}

i

j

(a) Conservative pipeline correction

i

ji=0;j=0;

while(i<N) {

#pragma ignore_mem_depcy Y

 if(j<N-i)

S0: Y[j] = A[i]

 +(i==0)?0:Y[j]/B[j];
 if((i>N-4&&j<3&&i<N-1)

||j<N-i-1)

 j++;

 else

 j=0,i++;

}

(b) Optimized pipeline correction

Figure 5.11.: Two examples of pipeline correction through bubble insertion

Implementing the loop coalescing transformation

Implementing the loop coalescing transformation amounts to a rewriting of the loop nest
structure into a software finite state machine expressed as a loop. There are two possible
approaches for implementing this rewriting.

The first approach uses the Control Flow Graph (CFG) corresponding to the loop nest as
an input. The problem with this approach is that the automaton is built from an implicit
representation of the iteration domain rather than from its formal representation as a polyhe-
dron. As a consequence, the automaton contains extra idle states that do not correspond to an
actual iteration of the loop nest. From what we understand, this is the approach followed by
Catapult-C when implementing the nested loop pipelining transformation.

The second approach follows the approach by Boulet et al. [46] and consists in building a
finite state machine directly out of the loop nest iteration domain. With this technique, the
generated code visits the exact loop nest iteration domain, leading to a more efficient approach.
However, the resulting code tends to be more complex in term of guards and induces some area
overhead.

Because one generally does not want to coalesce the full loop nest, our approach allows the
designer to choose (by using a compiler directive) how many of the innermost loops should be
coalesced.

Experimental results

The efficiency of our approach is sensitive to the trip count of innermost loops. It is therefore
more sensitive to the iteration domains size and domain shapes than to the structure of the
application itself. In this work, we limited ourself to two representative kernels (QR factorization
and matrix multiplication) that provide a good illustration of the benefits and drawbacks of the
approach.

For each of these kernels, we used varying fixed and parameterized iteration counts. We
also used different fixed point arithmetic word length sizes for the algorithm, to be able to
precisely quantify the trade-off between performance improvement and area overhead. The
kernels underwent aggressive pipelining (with II=1 and ∆ varying from 4 to 12).

The quantitative evaluation of the area cost induced by the use of nested pipelining is pro-
vided in Figure 5.12(a). Our results show that the area overhead remain limited when larger
functional units are being used. Also, our approach does not significantly impact the clock
frequency (less than 5% difference in all cases).

The improvement in execution time due to latency hiding are given in Figure 5.12(b), it
can be seen that for larger iteration counts, the performance improvements are limited and

68

(a) Area cost (b) Normalized execution time

Figure 5.12.: Experimental results (area and speed) for our nested pipelining approach. The
label <a,b> stands for a a bit wide fixed point format with b bit for integer part)

barely justify the area overhead. When no correction is needed (e.g., constant size matrix
multiplication) our coalescing transformation is more efficient in performance and area than
the nested pipeline feature of Catapult-C. In addition, for the QR kernel, any attempt to use
this feature leads to an illegal schedule if the iteration domain is parameterized. Thus, our
experiments provide results for a non-nested pipelined version of the QR kernel.

5.5.4. Related work

Loop pipelining is a well studied problem, with numerous contributions since the seminal
work of Lam in 1988 [97]. In the following, we describe some closely related work.

Rong et al. [134] have already studied the problem of nested loop software pipelining. Their
goal is clearly the same as ours, except that they restrict themselves to a narrow subset of
loops (only constant bounds, rectangular domains) and do not leverage exact instance-wise
dependence information. They also do not address the problem from a hardware synthesis
point of view. In this work, we tackle the problem for a wider class of programs (known as
Static Control Parts), and we also relate the problem to loop coalescing.

Another related contribution is the work of Fellahi et al [66]. They address the problem of
prologue/epilogue merging in sequences of software pipelined loops. Their work is also motivated
by the fact that the software pipelining overhead tends to be a severe limitation as many
embedded-multimedia algorithms exhibit low trip count loops. Again, our approach differs
from theirs in the scope of its applicability, as we are able to deal with loop nests (not only
sequences of loops), and as we solve the problem in the context of HLS tools at the source level
through a loop coalescing transformation. Their approach handles the problem at machine code
level, which is not possible in our context.

A recent work by Alias et al. [34] tackles a problem similar to ours, as they try to address the
problem of generating efficient nested loop pipelined hardware accelerators leveraging custom
floating point datapaths. Their approach (also based on the polyhedral model) consists in
finding a parallel hyperplane for the loop nest, and then deriving a tiling (hyperplanes and
tile sizes) such that a pipeline of depth ∆ is legal. The approach only targets perfectly nested
loops and also requires incomplete tiles to be padded to behave like full-tiles. They also restrict
themselves to uniform dependencies, to guarantee that the reuse distance (i.e., the number of

69

points separating a source and a sink) is always constant for a given tile size. In contrast, our
framework is more general and supports imperfectly nested loops with affine dependencies. In
addition, in the case of tiled iteration domains, we can provide a more precise correction that
does not require the padding of all incomplete tiles.

5.5.5. Discussion

The results presented in this section correspond to an on-going work, and we are currently
working on extending the applicability and relevance on the approach.

The improvements offered by the approach may not be obvious, as the area overhead caused
by the extra bubbles control may not always compensate for the improvements of performance.
Nevertheless, the ability to prove the legality of the nested pipeline transformation remains a
valuable tool. Besides, as mentioned in Subsection 5.4.4 we believe that there are still many
unexplored opportunities for reducing this area overhead by improving the quality of the gen-
erated code. Another interesting consequence of nested pipelining is that it allows designers
to consider using deeper pipelines, a strategy they are often reluctant to follow because of the
possibly large fill/flush overhead.

We are also planning to evaluate our approach on vectorized pipelined accelerators. In these
accelerators, parallelism is also expressed at a coarser grain, by using distinct datapaths for
several iterations of the parallel innermost loop. In such a scenario, our approach is likely to be
even more effective, for the two reasons given below.

– Because of this parallel execution, the number of iterations within this pipelined and
vectorized innermost loop will be smaller, increasing the (negative) impact of the pipeline
latency on the overall performance.

– Because the accelerator will then instantiate several datapath (one for each parallel it-
eration), the impact of the control logic on the overall area budget will become almost
negligible.

However, the ability to derive vectorized and pipelined accelerators poses additional chal-
lenges (especially in terms of conflicting memory accesses) that need to be addressed before we
can extend our approach. We are currently investigating this topic.

70

Chapter 6

Conclusion

As explained in the first chapter, the work presented in this document addresses several
closely related topics: the proposal of original hardware platforms (Chapters 2 and 4), the
evaluation of design methodologies through cases studies (Chapters 2 and 3), and several con-
tributions to design automation tools (Chapters 4 and 5). The reader may have noticed that
most of my recent contributions focus on design tools. Indeed, my research interests since 2003
have been slowly shifting away from high performance reconfigurable platforms to CAD tools
and parallelizing compilers.

This evolution was made possible thanks to the work of Ludovic L’Hours on the Gecos
compiler, which allowed me to benefit from a solid software infrastructure which we have been
able to extend to carry several new research projects. Gecos now serves as a prototyping
framework for many CAIRN members and enabled new research activities within the group.
Another enabling factor was the start of a collaboration with the Triskell group at IRISA, which
studies and researches Model Driven Software Design practices.

In the remaining of this chapter, I will sketch my shorter and longer term research perspec-
tives, which focus on three topics:

– Improving the efficiency of High-Level Synthesis tools, by tackling HLS compiler
specific problems directly at the front-end level, through source-to-source transformations.
In particular, I believe that it is time to revisit hardware synthesis techniques based on poly-
hedral representations of programs, by taking advantage of the numerous breakthroughs
occurred in the last few years. I also plan to study how formal static analysis techniques
could be used to improve the efficiency of HLS tools.

– Efficient parallelization on heterogeneous embedded multi-cores. I plan to study
how constraint-based programming approaches can help automatic parallelization in the
polyhedral model for heterogeneous platforms, with a focus on runtime adaptivity. I would
also like to pursue the work started in collaboration with Colorado State University on
the design of programming tools to help software developers designing correct and efficient
parallel programs.

– Model Driven Engineering and optimizing compilers. This research direction is
very recent and is the result of a new collaboration with the Triskell Group at IRISA.
The main goal of this of this research direction is to contribute to the cross-fertilization of
Model Driven Engineering and optimizing compiler design techniques and in particular to
propose techniques to ease the design of domain specific optimizing compilers, by enabling
the reuse of complex analyses and transformations over families of languages.

6.1. Toward next generation of High-Level Synthesis tools

While High-Level-Synthesis has made huge progresses over the last decade, most tools are
still very far from being actual C to hardware compilers, and should rather be seen as micro-
architectural specification languages based on C/C++. In these tools, the designer implicitly
exposes the target micro-architecture in its source code and has to rely on complex annotations
to help the tool infering an efficient circuit out of this specification.

There is therefore still a long way to go to make HLS tools more widely usable and more

71

efficient when it comes to deriving customized circuits. The following topics address parts of
this problem and aim at contributing to the design of next generation HLS tools.

6.1.1. Revisiting hardware synthesis in the polyhedral model

As mentioned in Section 5.1, the polyhedral model has experienced several breakthroughs
over the last 10 years, which significantly improved its efficiency and applicability. Most of these
breakthroughs focused on improving the performance of programs on parallel programmable
machines (multi-cores and GPUs) with a shared memory parallel programming model. In par-
ticular the Pluto compiler [44], proposed in 2008, set a new landmark in terms of automatic
parallelization, as it was the first to address parallelism and data reuse within the same frame-
work.

Given these achievements, we believe that there is a need for revisiting the way we have
been tackling hardware synthesis in the polyhedral model. In particular, it seems to us that
source-to-source transformations used as front-end of HLS tools, is a very interesting approach.
It first avoids spending too much effort on the hardware back-end, leaving it to the HLS tools
and permits to remain vendor neutral. It also makes the contribution more widely usable by
the HLS research and user community.

Very interesting preliminary results have been obtained for communication optimizations
by Plesco et al. [123], but many other topics remain to be addressed before the power of the
polyhedral based transformations can be fully utilized by HLS tools. The contribution presented
in Section 5.5 is a first step in this direction, and we plan to continue exploring the above
mentioned problems during the third PhD year of Antoine Morvan.

6.1.2. Domain Specific Analyses for HLS

Interestingly, the nested pipelining presented in Section 5.5 is an optimization that bears
little interest in the context of a standard optimizing compiler, but has significant added value
in the scope of a hardware synthesis tool. We believe that there exists many other analyses/op-
timizations that fall into this category, and HLS tools could benefit a lot from more domain
specific compiler optimizations, as they could leverage their results to generate faster and/or
smaller circuits.

Because compilation runtime is not so critical for HLS as compared to a standard compiler
(compile times in the order of several minutes for a small program is common), very aggressive
analyses and optimizations could be considered. Such analyses could, among other possibilities,
take advantage of the large choice of open, and high quality formal verification tools (Frama-
C [31], InterProc [142], Aspic [72]) and libraries (SMT solvers such as Yices [58]), which are
currently used for verification purposes, but whose results may prove to be very valuable to
HLS.

A typical example is a bit-level wordlength analysis of the expressions and variables of a
program. This information can be used in the scheduling/binding process to reduce the hardware
footprint. While simple algorithms exist to estimate such bitwidth, they do suffer from very
limited accuracy, and it would certainly be worth studying how more advanced formal techniques
(such as those based on abstract interpretation) could help addressing such problems.

In spite of its importance, this niche remains currently unexplored, this for simple reasons.
Most researchers in HLS focuses on back-end issues, they hence tend to ignore higher level
optimizations and analyses, and tend to consider that “this is the front-end compiler job”. On
the other hand, compiler research is faced with so many challenges that very few researchers
are interested in such niche problems. As a consequence, they tend to consider on their side
that “this is a hardware synthesis issue, not a compiler issue”.

72

We believe that such problems make a very attractive research topic, with many interesting
and open research problems. This is a research topic that I clearly plan to continue investigating
in both short and long term.

6.2. Automatic parallelization for heterogeneous multi-cores

As mentioned in the introduction, embedded system designers are also now confronted to
the outbreak of multi and many-core architectures. Efficiently designing and programming such
systems poses significant challenges, mostly because of the heterogeneity of these platforms. In
the following, we sketch three directions that we would like to pursue in the future.

6.2.1. Constraint programming for automatic parallelization

Over the last few years, iterative compilation techniques have become very popular for gen-
eral purpose computing, as it has been acknowledged that the subtle interplay between compiler
optimizations and modern general purpose processors micro-architectures has become too com-
plex to be captured by (even very complex) explicit performance models. For example, the
work of Pouchet et al. [124] studies the applicability of iterative compilation to the polyhedral
model, by using a meta heuristic to explore the space of legal transformations for a loop nest.
The goal is to find the best transformations for a given architecture/compiler combination, with
a direct performance measurement for each of the transformed program (thousands of program
instances can be explored).

While being very powerful, such an approach is not possible in the context of embedded
platforms, since the hardware is generally designed jointly with the software. Performance
evaluation is then performed through complex platform level simulators 1, whose limited speed
prevents the exploration of thousands of program instances. On the other hand, because the
behavior of these platforms is generally more predictable than that of general purpose machine,
the use of partial explicit performance models remains relevant. The problem is then to be able
to use those performance models to efficiently guide the design space exploration, so as to pick
up the most profitable transformations.

The work of Prof. Wolinski (PhD of Kevin Martin and Antoine Floc’h), which studied
the application of constraint based programming for solving compilers related combinatorial
optimization problems, has clearly demonstrated the relevance of this technique for this type
of problems. In this context, we would therefore like to study how it is possible to use these
techniques to solve the numerous non convex optimization problems that arise in a polyhedral
based exploration approach, in particular when fine grain resource constraints are involved.

6.2.2. Adaptive run-time parallelization for heterogeneous multi-core

Loop Tiling (and more specifically the choice of the tile size) is an effective (and well known)
technique for coarse-grain parallelization. The choice of the tile dimensions is often the result
of subtle trade-off between the amount of parallelism (decreasing as tile size grows) in the
tiled program and the overhead of communications and cache-misses (also decreasing as tile
size grows). Recent work on Parameterized Tiling code generators [129, 38] open interesting
perspectives, as they do not impose anymore the choice of tile size at compile time. In particular
some authors have advocated to change the tile size at runtime [148], directly during the tiled
loop nest execution, to be able to adaptively optimize the program performance by monitoring

1. Based on Instruction Set Simulators for programmable processors to cycle accurate models for custom
co-processors.

73

the execution of the program trough performance counters. We believe this is a promising
research direction, and plan to explore this technique in the context of adaptive heterogeneous
multiprocessors where computing and storage resource may evolve in time.

6.2.3. Parallel programming tools for non parallel programmers

Software designers do nowadays benefit from highly sophisticated Integrated Design Envi-
ronments that provide very valuable tools (e.g. refactorings, static analysis), which helps them
reducing development time. Because of the generalization of multicore, these users will sooner
or later be exposed to some form of parallel programming, and will hence need similar tools for
parallel programs. The role of such tools will be to help the programmer finding functional or
performance bugs 2 in their parallel implementation. Following the idea developed in subsection
6.1.2, we believe that there are many cases where advanced static analysis tools can be used to
that purpose.

In the context of a collaboration with Colorado State University, we already started ad-
dressing the problem, and have designed a static analysis tool called ompVerify [2]. This tool,
integrated within the Eclipse IDE, checks for the correctness of openMP programs, by looking
for possible data races in the program. Although the analysis, based on very well known re-
sults in the domain of loop parallelization, is quite straight forward, it was perceived as being
very useful by many openMP programmers. Interestingly, and despite the large openMP users
community, such a tool did not exist 3 so far. We are currently considering extending the ap-
plicability of the analysis by using Satisfiability Modulo Theory solvers, which could permit to
handle a much wider class of programs, in particular those using non affine array accesses.

6.3. Model Driven Engineering and optimizing compilers

This new research topic is the consequence of a recent collaboration with the Triskell research
group at IRISA, which focuses on software engineering issues and on Model Driven Engineering
and software design. MDE offers tools and facilities to ease the definition, analysis and tooling
of Domain Specific Modeling languages (by languages, we mean either a textual or graphical
notation, following well defined syntax and semantics). The techniques turned out to be also
very useful in the context of optimizing compiler infrastructures. We have been extensively
using MDE within the Gecos compiler framework since 2008, which helped us a lot in trying
to prototyping new compilers and CAD flows. This work has also led to a publication at the
ACM/IEEE International Conference on Model Driven Engineering Languages and Systems [19]
in 2011.

In particular, facilities such as Xtext, which allow programmers to create new Domain Specific
Languages and their corresponding IDEs in a matter of days open very exciting perspectives
from a Compiler/CAD point of view, that we discuss below.

6.3.1. Domain Specific Languages for high productivity parallel computing

Programming complex parallel system in an efficient way will remain out of reach for most
developers. A more systematic use of highly Domain Specific Languages, tailored to match the
expertise domain of the user, can be an (partial) answer to the problem.

In such a specialized language, it becomes possible for its associated compiler to take ad-
vantage of the domain specific semantics of the DSL, for discovering and/or taking advantage

2. By performance bug, we mean an ill designed programmed with suffer from very low performance.
3. Syntactic static analyses do exist but are unable to handle array accesses for example.

74

of potential source of parallelism and data reuse that would otherwise have been missed by a
compiler operating on a general purpose programming language.

We have started investigating this topic in the context of the Grappas Project, in collabora-
tion with the IETR research laboratory. Our goal is to see how a DSL approach could be used
to help antenna designers to generate efficient parallel implementations for GPUs and multicore
of numerical simulation codes based on the FDTD algorithm, a stencil based computational
pattern.

6.3.2. Software reuse in MDE through model typing

At first glance, the ability to create new languages is a very attractive solution, it however
suffers from a significant weakness: development effort. As every language will need its own op-
timizing compiler toolchain, this makes the approach quite unrealistic. However, this limitation
could be partially circumvented if it was possible to reuse common compiler optimizations and
analyses over all these languages (or at least among families of languages). This is of course
a challenging problem, as in addition to the semantics variations occurring among languages,
their intermediate representations can also be very different. This means that, even if the target
transformation is relevant (from a semantic point of view) with respect to a given language,
reusing the algorithm as is is generally not possible. In the context of the PhD topic of Clément
Guy (supervised by J.M. Jezequel), we are currently looking at extending the notions of Model
Typing [143], which captures the substitutability relation among languages, in order to address
this reusability issue.

Appendix A

Curiculum Vitae

Personnal Informations Contact

Steven Derrien
29 Rue Durafour
35000 Rennes
37 ans.

ISTIC/IRISA
Campus de Beaulieu
35000 Cedex Rennes
sderrien@irisa.fr

Current Position

Since sept. 2009 Associate professor at Université de Rennes 1, in INRIA sabbatical

Previous positions

Since sept. 2003 Associate professor in Computer Science, Université de Rennes 1

September 2001 Assistant professor in Computer Science, Université de Rennes 1
to august 2003 ATER at IFSIC

October 1998 to PhD student at Université de Rennes 1, within the
december 2002 COSI research group at IRISA.

March to August Master internship at the Stanford Research Institute (Palo Alto, USA).
1998 Topic: stereovision using panoramic imaging devices for mobile robots.

Academic background

1998 - 2002 PhD in Computer Science from Université de Rennes 1 under
the supervision of Sanjay Rajopadhye. Title: Etude quantitative des
techniques de partitionnement de réseaux de processeurs pour
circuits FPGA.

Defended December 2nd, 2002. Jury composition Anne Mignotte (reviewer),
Eric Martin (reviewer), Patrice Quinton (Jury Chair), Olivier Sentieys,
François Charot

1997 - 1998 DEA Signal Telecommunication Image Radar University of Rennes I

1995 - 1998 Diplôme d’ingénieur ENSSAT Lannion, Computer Engineering Major.

Awards

2007 Best paper award at 18th IEEE International Conference on Application-
specific Systems, Architectures and Processors (ASAP 2007)

77

Teaching activities

I have been teaching within the Computer Science Department 1 of University of Rennes 1 since
2003. Before that period, I also had the chance to work as a teaching assistant (Moniteur) and
as assistant professor (ATER).
Since I was hired as associate professor in 2003, I have mostly been teaching courses in computer
architecture with a focus on embeded systems and in operating system design (hardware/soft-
ware interface). More recently, I started participating to “software projects” at the master
level.
I also participated to some introductory courses to computer programming (in Java) for second
year students, many of whom study computer science as a minor.
A summary of my teaching activities (along with the corresponding number of teaching hours)
is given below, in particular Courses (Courses/CM, Practice/TD, Labs/TP, Projects) which I
completely supervised and/or that I created or significantly modified are shown in bold font.

– L2 Informatique
– API: Imperative programming in Java (2003-2009)(TD: 24h, TP: 48h)

– L3 Informatique
– SYR1: Operating Systems 1 (2003-2009)(TD: 28h, TP: 24h)
– SYR2: Operating Systems 2 (2003-2009)(TD: 38h, TP: 32h)

– M1 Informatique
– Hardware architectures for Embedded Systems (2009)(CM: 24 h, TD: 12 h,

TP: 12 h)
– Software development project (PROJ) (2008-2010)(TD: 20h, TP: 20h)

– Engineering degree DIIC-ARC, 2nd year (2003-2009)
– Embedded System Design (2009) (module CSE, 2003-2009) (TP: 48h)

– Engineering degree DIIC-ARC, 3rd year (2003-2009)
– Final year student project (2003-2008)(TP: 24h)

– Master in Computer Science (components and software systems)
– Hardware System Synthesis (CSS)(CM: 4h)

1. which used to be IFSIC and is ISTIC

78

Projects and grants

International projects

• Head of the LRS INRIA international research team with the Mélange group of professor
Sanjay Rajopadhye at Colorado State University since 1/1/2010. The LRS research group fo-
cuses on automatic parallelisation techniques and tool for heterogeneous embeded multi-core
architectures and GPUs.

• Participant to the FP7 ALMA project (starting in October 2011). The goal of the project is
to propose a complete design flow for embedded heterogeneous multi-core architectures from
a Matlab-like language.

National projects

• French National Research Agency (ANR) project: COMPA (Model of Computation Driven
Design for Adaptive Multi Processors), starting in 2011. One PhD funded for a topic in
collaboration with M. Raulet from INSA Rennes.

• S2S4HLS project (2009-2012), Source-to-Source transformations for High-Level Synthesis (1
PhD grant + 2 Yrs Engineers). The project is a collaborative project between INRIA and
STMicroelectronics in the context of the Nano 2012 funding.

• French National Research Agency (ANR) project: BioWic (Bioinformatics Workflows for In-
tensive Computation), started in 2009, ending in 2012. One PhD student funded (Naeem
Abbas).

• French National Research Agency (ANR) project Sémim@ges (2007-2009) one year post-doc
funded

• ACI ReMIX (2003-2006), Reconfigurable Memory for Indexing Huge Amount of Data

Community service:

• Reviewer for the following conferences and journals: DAC, DATE, FPL, ASAP, ERSA, IEEE
Transaction on VLSI, IEEE Design and test of computers, ACM Transaction of reconfigurable
computing and Transaction on Embeded systems.

• Publicity chair for the 2010 ASAP conference

• Program Committee member for the French Sympa 2011 conference

• Program Committee member for the Architecture of Computing Systems International con-
ference in 2009.

79

Supervision

ăPhD Students & post-docs

• Clément Guy, PhD Student (under the supervision of Jean Marc Jezequel) and in close collab-
oration with Benoit Combemale since 1/10/2010. PhD topic: Generic Definition of Domain
Specific Analysis using Model-Driven Engineering (MDE). Involvement 20%, defense sched-
uled by the end of 2013.

• Vivek Tomare, PhD Student (under the supervision of Olivier Sentieys) since le 1/10/2009,
PhD topic: Reconfigurable Low Power Wireless Sensor Network Nodes. Involvement 20%,
defense scheduled by the end of 2012.

• Antoine Morvan, PhD Student (under the supervision of Patrice Quinton) since le 1/10/2009,
PhD topic: Source-to-source transformations for High Level Synthesis. funded by INRIA/-
Nano2012. Involvement 80%, defense scheduled by the end of 2012

• Naeem Abbas, PhD Student (under the supervision of Patrice Quinton) since 5/2/2009, PhD
topic: Reconfigurable architectures for accelerating bioinformatic Workflows. Funded by an
ANR Grant (BioWic). Involvement 80%, defense scheduled first half of 2012.

• Adeel Pasha, PhD Student (under the supervision of Olivier Sentieys), PhD topic: Ultra-Low
Power Controllers for Wireless Sensor Network Nodes, MESR funding, defended December
15th 2010. Involvement 70%.

• Auguste Noumsi, PhD Student (under the supervision of Patrice Quinton), PhD topic: Ar-
chitectures for multimedia content retrieval, defended November 10th 2010. Involvement 30%.

• Florent Berthelot, post-doct from 1/10/2007 to 31/8/2008, funded by the ANR Semim@ge
project. Involvement 80%.

Research engineers

• Amit Kumar, from 1/11/09 to 1/11/11 funded by the S2S4HLS/Nano2012. Involvement
100%.

• Maxime Naullet, from 15/10/10 till 15/10/12 in the context of the Kergecoz INRIA ADT,
which focuses on using MDE to help building compiler infrastructures. Involvement 90%.

Masters student

• Youcef Barigou, from 1/2/11 to 31/6/11, topic: Parallelization of real life stencil codes on
GPU architectures. Involvement 50%.

• Nina Engelhardt, stagiaire M2R du 1/2/10 au 31/6/10, topic: Multi-mode synthesis applied
to the automatic generation of programmable processor datapaths. Involvement 100%.

• Clément Guy, from 1/2/10 to 31/6/10, topic: Extending the datapath merging algorithm to
regular architectures. Involvement 100%.

• Antoine Morvan, from 2/09 to 06/09, topic: Synthesis of hardware controllers for scanning
loop nests. Involvement 100%.

• Jean-Baka Domelevo, from 2/05 to 06/05, topic: Energy optimization in nested loop acceler-
ators using bit-level data correlation. Involvement 100%.

80

Appendix B

Selected publications

In this section we provide the camera ready version of the article describing the work detailed
in Section 5.5 that will be presented at the International Conference on Field-Programmable
Technology (FPT’11) on December the 14th, 2011. This appendix will be removed from the
final manuscript and is provided for the sake of completeness.

authors Antoine Morvan and Steven Derrien and Patrice Quinton

title Efficient Nested Loop Pipelining in High Level Synthesis using
Polyhedral Bubble Insertion

conference International Conference on Field-Programmable Technology (FPT’11)

date December 2011

pages proceedings not yet available

81

Efficient Nested Loop Pipelining in High Level

Synthesis using Polyhedral Bubble Insertion

Antoine Morvan 1, Steven Derrien 2, Patrice Quinton 1

1 INRIA-IRISA-ENS Cachan
2 INRIA-IRISA-Université de Rennes 1

Campus de Beaulieu, Rennes, France
{amorvan,sderrien,quinton}@irisa.fr

Abstract—Loop pipelining is a key transformation in high-
level synthesis tools as it helps maximizing both computational
throughput and hardware utilization. Nevertheless, it somewhat
looses its efficiency when dealing with small trip-count inner
loops, as the pipeline latency overhead quickly limits its efficiency.
Even if it is possible to overcome this limitation by pipelining
the execution of a whole loop nest, the applicability of nested
loop pipelining has so far been limited to a very narrow subset
of loops, namely perfectly nested loops with constant bounds. In
this work we propose to extend the applicability of nested-loop
pipelining to imperfectly nested loops with affine dependencies
by leveraging on the so-called polyhedral model. We show how
such loop nest can be analyzed, and under certain conditions,
how one can modify the source code in order to allow nested loop
pipeline to be applied using a method called polyhedral bubble
insertion. We also discuss the implementation of our method in
a source-to-source compiler specifically targeted at High-Level
Synthesis tools.

I. INTRODUCTION

After almost two decades of research effort, High-Level

Synthesis (HLS) is now about to hold its promises : there

now exists a large choice of robust and mature C to hardware

tools [1], [2] that are even now used as production tools by

world-class chip vendor companies. However, there is still

room for improvement, as these tools are far from produc-

ing designs with performance comparable to those of expert

designers. The reason of this difference lies in the difficulty,

for automatic tools, to discover information that may have

been lost during the compilation process. We believe that this

difficulty can be overcome by tackling the problem directly at

the source level, using source-to-source optimizing compilers.

Indeed, even though C to hardware tools dramatically slash

design time, their ability to generate efficient accelerators is

still limited, and they rely on the designer to expose parallelism

and to use appropriate data layout in the source program.

In this paper, our aim is to improve the applicability (and

efficiency) of nested loop pipelining (also known as nested

software pipeling) in C to hardware tools. Our contributions

are described below:

• We propose to solve the problem of nested loop pipelin-

ing at the source level using an automatic loop coalescing

transformation.

• We provide a nested loop pipelining legality check,

which indicates (given the pipeline latency) whether the

pipelining enforces data-dependencies.

• When this condition is not satisfied, we propose a cor-

rection mechanism which consists in adding, at compile

time, so-called wait-states instructions, also known as

pipeline bubbles, to make sure that the aforementioned

pipelining becomes legal.

The proposed approach was validated experimentally on

a set of representative applications for which we studied

the trade-off between performance improvements (thanks to

full nested loop pipelining) and area overhead (induced by

additional guards in the control code).

Our approach builds on leading edge automatic loop paral-

lelization and transformation techniques based on the poly-

hedral model [3], [4], [5], and it is applicable to a much

wider class of programs (namely imperfectly nested loops with

affine bounds and index functions) than previously published

works [6], [7], [8], [9]. This is the reason why we call this

method polyhedral bubble insertion.

This article is organized as follows, Section II provides an

in depth description of the problem we tackle in this work,

and emphasizes the shortcomings of existing approaches.

Section III aims at summarizing the principles of program

transformations and analysis in the polyhedral framework.

Sections IV and V present our pipeline legality analysis and

our pipeline schedule correction technique and Section VI

provides a quantitative analysis of our results. In section VII

we present relevant related work, and highlight the novelty of

our contribution. Conclusion and future work are described in

section VIII.

II. MOTIVATIONS

A. Loop pipelining in HLS tools

The goal of this section is to present and motivate the

problem we address in this work, that is nested loop pipelining.

To help the reader understand our contributions, we will use

throughout the remaining of this work a running toy loop-

nest example shown in Figure 1; it consists in a double nested

978-1-4577-1740-6/11/$26.00 c© 2011 IEEE

82

/* original source code */

for(int i=0;i<N;i++) {

 for(int j=0;j<N-i;j++){

S0: Y[j] = A[i]
+(i==0)?0:Y[j]/B[j];

 }

}
(0,0) (0,1)

(0,1)

(0,2)

(0,1)

(0,2)

(0,3)

(0,1)

(0,2)

(0,3)

(0,4)

(0,2)

(0,3)

(0,4)

(0,3)

(0,4)

(0,4)

(1,0)

(1,0)

(1,1)

(1,0)

(1,1)

(1,2)

(1,0)

(1,1)

(1,2)

(1,3)

(1,1)

(1,2)

(1,3)

(1,2)

(1,3)

(1,3)

(0,0)

(0,0)

(0,0)

(2,0)

(2,0)

(2,1)

t (Clock cycles)

Stage 1

Stage 2

Stage 3

Stage 4

initialization flush flushinitialization initialization

(2,0)

(2,0)

(2,1)

(2,1)

(2,1)

(2,2)

(2,2)

(2,2)

(2,2)

flush

0 1 2 3 4 8 9 10 11 15 165 6 7 12 13 14 17 18 19 20

Fig. 2. Motivating example, with a representation of its pipelined execution for N = 5, II = 1 and ∆ = 4. The arrows reprensent dependences between
operations.

i

/* original source code */

for(int i=0;i<N;i++) {

 for(int j=0;j<N-i;j++){

S0: Y[j] = A[i]

 +(i==0)?0:Y[j]/B[j];

 }

}

j

Fig. 1. Motivating example, with its iteration domain and data dependencies
(black arrows) for N = 5. The red dashed arrow represents the execution
order. .

loop operating on a triangular iteration domain – the iteration

domain of a loop is the set of values taken by its loop indices1.

The reader can observe that the inner loop (along the j
index) exhibits no dependencies between calculations done at

different iterations (also called loop carried dependencies). As

a consequence, one can pipeline the execution of this loop,

by overlapping the execution of several iterations. However,

there exists a dependence between i iterations, since Y[j]

(left-hand side) depends on Y[j] (right-hand side) that was

modified during the previous i iteration. Therefore, overlap-

ping the execution of two successive i iterations has to be

done with care, in order to respect this dependency.

Loop pipelining is characterized by two important parame-

ters:

• The initiation interval (denoted II in the following), that

corresponds to the number of clock cycles separating the

execution of two loop iterations.

• The latency (denoted ∆) that gives the number of clock

cycles required to completely execute one iteration of the

loop.

As an illustration, Figure 2 depicts the pipelined execution

of the example of Figure 1 with an initiation interval II =
1 and a latency of ∆ = 4. In practice the value of II is

constrained by two factors:

• the presence of loop carried dependencies, which prevents

1This toy loop is actually a simplified excerpt from the QR factorization
algorithm.

loop iterations to be completely overlapped;

• resource constraints on the available hardware since for a

complete pipelined execution, each operation executed in

the loop has to be mapped on its own hardware functional

unit.

Because it helps maximizing the computation throughput

and because it improves hardware utilization, loop pipelining

is a key transformation in High-Level Synthesis tools. Be-

sides, as designers generally seek to get the best performance

from their implementation, fully pipelining the loop (that is

initiating a new inner loop iteration every cycle by choosing

II = 1) is a very common practice. The use of very deep

pipeline is even more common when targeting FPGAs devices,

as it is often a way to compensate for their relative lower

clock speed compared to ASICs. Besides, because the register-

cost overhead of pipelining can be easily absorbed by the

large amount of flip-flop available on most devices, deeply

pipelining FPGA datapath is a very profitable optimization.

However, the performance improvements obtained through

pipelining are often hindered by the fact that these tools rely

on very basic data-dependency analysis algorithms, and hence

they may fail to detect when such a pipelined execution is

possible, especially when the inner loop involves complex

memory access patterns.

To help designers cope with these limitations, most tools

hence offer the ability to bypass part of this conservative

dependency analysis through the use of compiler directives

(generally in the form of #pragma). These directives force

the tool to ignore user-specified memory references in its

dependency analysis. Of course, this possibility comes at the

risk of generating an illegal pipelined schedule and then an

incorrect circuit, and hence puts the burden to the designer.

B. The Pipeline Latency Overhead

For loops with large iteration count – we call loop iteration

count the number of iterations executed by a loop –, the impact

of the pipeline latency on performance can be neglected, and

the hardware is then almost 100% utilized. However, whenever

the iteration count of the loop becomes comparable to its

latency ∆, one may observe a very significant performance

degradation, as the pipeline flushing phases dominate the

execution time. This is the case of our example in Figure 2.

For a value of N = 5 and ∆ = 4, we obtain a hardware

83

i=0;j=0;

while(i<N) {

#pragma ignore_mem_depcy Y

S0: Y[j] = A[i]

+(i==0)?0:Y[j]/B[j];

 if(j < N – i - 1)
 j++;

 else

 j=0,i++;

}

(0,0) (0,1)

(0,1)

(0,2)

(0,1)

(0,2)

(0,3)

(0,1)

(0,2)

(0,3)

(0,4)

(0,2)

(0,3)

(0,4)

(0,3)

(0,4)

(0,4)

(1,0)

(1,0)

(1,1)

(1,0)

(1,1)

(1,2)

(1,0)

(1,1)

(1,2)

(1,3)

(1,1)

(1,2)

(1,3)

(1,2)

(1,3)

(1,3)

(0,0)

(0,0)

(0,0)

(2,0)

(2,0)

(2,1)

t (Clock cycles)

Stage 1

Stage 2

Stage 3

Stage 4

initialization

(2,0)

(2,0)

(2,1)

(2,1)

(2,1)

(2,2)

(2,2)

(2,2)

(2,2)

0 1 2 3 4 8 9 10 11 15 165 6 7 12 13 14 17

(3,0) (3,1) (4,0)

(3,0) (3,1)

(3,0)

(3,0)

(3,1)

(3,1)

(4,0)

(4,0)

(4,0)

flush

Fig. 3. Illegal nested loop pipelining for N = 5, II = 1 and ∆ = 4. Bold arrows show broken dependences.

utilization rate of only 50%. Indeed, the dependency between

two successive i iterations prevents the end of the inner loop

pipeline to be overlapped with the beginning of the next

pipeline.

Returning to our example, had it to be mapped to custom

hardware by experienced designers, it would have certainly

reached a hardware utilization close to 100% thanks to a

handcrafted schedule, in which the execution of successive

iterations of the i loop would have been carefully overlapped.

C. Nested loop pipelining & coalescing

It turns out that such an optimization actually corresponds

to a nested loop pipelining as initially proposed by Doshi et

al. [6]. Such nested loop pipelining can be realized through a

loop coalescing transformation, that flattens a loop nest into a

single loop that scans the original loop nest domain, and then

pipelines the new loop.

It is worth noticing that nested loop pipelining was only

studied in the scope of a very restrictive subset of loop

nests (perfectly nested loop with constant bounds and uniform

dependencies) or with relatively imprecise dependency infor-

mation, which significantly restricts its applicability and/or

efficiency. While these restrictions may seem over precautious,

it happens that implementing nested loop pipelining (and more

particularly enforcing its correctness) is far from trivial and

requires a lot of attention.

As an example, Figure 3 shows a coalesced version of

the loop nest of Figure 1. Here, because the array accesses

in the coalesced version are now more difficult to analyze

(they do not depend on loop indices as in Figure 1), we are

tempted to bypass some of the dependence analysis through a

#pragma ignore_mem_dpcy Y directive to enable loop

pipelining, as explained in subsection II-A. This directive tells

the scheduler to ignore data dependences related to the Y[j]

array accesses in the statement following the directive. Without

such directive, the conservative dependence analysis forbids

pipelining.

While this scheduling seems correct at the first glance, it

appears that some Read after Write dependencies are violated

when i ≥ 3, as shown in Figure 3. For example the memory

read operation on Y[0] of (i = 3, j = 0) scheduled at t = 12
happens before Y[0] is updated by the write operation of

(i = 2, j = 0) also scheduled at t = 12 on the last stage.

As an illustration of this difficulty, among the numerous

commercial and academic C to hardware tools that we have

evalutated, only one of them (let us call it Trebuchet-C++)

actually provides the ability to perform such automatic nested

loop pipelining. However, its implementation in the tool suf-

fers from severe flaws and generates illegal schedules when-

ever the domain is not rectangular and/or has non constant loop

bounds. From what we understand, even without directives

to ignore data dependences, the tool fails for the very same

reasons as depicted in Figure 3, that is the tool’s analysis

is assuming that there are no dependencies carried by the

outerloop over the Y array.

It can be argued that a simple solution for handling non

rectangular loop domains is to resort to a linearization of

the loop nest prior to pipelining. This linearization consists in

padding the iteration domain with wait states iterations so as to

ensure that the domain scanned by the loop nest is rectangular.

This approach turns out to be very inefficient in practice: in

our example, the execution overhead (50 %) would be as large

as for the non nested pipeline case, beside it does only solve

the problem in the case of uniform data dependencies.

D. Contributions of this work

In what follows, we provide a formalization of the condi-

tions under which nested loop pipelining is legal w.r.t data

dependencies in the case of imperfectly nested loops with

affine dependencies (so called SCoPs [3]), where exact (i.e.

iteration wise) data dependence information is available.

In addition to this legality check, we also propose a tech-

nique to correct an a priori illegal nested pipeline schedule

by inserting wait states in the coalesced loop, so as to derive

the most efficient legal pipelined schedule. These wait states

correspond to properly inserted bubbles in the pipeline, so the

name polyhedral bubble insertion of our method.

Finally, to enable experimentation and to remain as vendor

independent as possible, we propose an implementation of the

polyhedral bubble insertion in the context of a source-to-source

compiler that can be used as a preprocessing tool to be used

in front of third parties HLS compilers.

III. BACKGROUND

In order to do the analysis and the cycle-accurate schedule

correction, an iteration-wise dependence analysis as well as

a new intermediate representation of loops is necessary. The

84

polyhedral model is a robust mathematical framework to rep-

resent loops; it also comes with a set of techniques to analyze

and transform loops and to generate code. In this section,

we briefly present the background needed to understand our

method.

A. Structure and Limitations

The polyhedral model is a representation of a subset of

programs called Static Control Parts (SCoPs), or alternatively

Affine Control Loops (ACLs). Such programs are composed

only of loop and conditional control structures and the only

allowed statements are array assignments of arbitrary ex-

pressions with array reads (scalar variables are special cases

viewed as zero-dimensional arrays). The loop bounds, the

conditions and array subscripts have to be affine expressions

of loop indexes and parameters.

Each statement S surrounded by n loops in a SCoP has an

associated domain DS ⊆ Z
n. The domain DS represents the

set of values the indices of the loops surrounding S can take.

Each vector of values in DS is called an iteration vector, and

DS is called the iteration domain of S. DS is defined by a

set of affine constraints, i.e. the set of loop bounds and con-

ditionals on these indexes. In what follows, we call operation

a particular statement iteration, i.e., a statement with a given

iteration vector. Figure 1 shows the graphical representation of

such a domain, where each full circle represents an operation.

The domain’s constraints for the only statement of Figure 1

are as follows:

D = {i, j|0 ≤ i < N ∧ 0 ≤ j < N − i} .

The polyhedral model is limited to the aforementioned class

of programs. This class can be however extended to a larger

class of programs at the price of a loss of accuracy in the

dependance analysis [10], [11].

B. Dependences and Scheduling

The real strength of the polyhedral model is its capacity

to handle iteration wise dependence analysis on arrays [12].

The goal of dependence analysis is to answer questions of

the type “what is the statement that produced the value being

read at current operation, and for what iteration vector?” For

example, in the program of Figure 1, what is the operation that

wrote the last value of the right-hand side reference Y[j]?

Iterations of a statement in a loop nest can be ordered by the

lexicographic order of their iteration vectors. The combination

of the lexicographic order and the textual order gives the

precedence order (noted ≻) of operations, that gives the

execution order of operations in a loop nest. When considering

sequential loop nests, the precedence order is total.

The precedence order allows an exact answer to be given

to the previous question: “the operation that last modified an

array reference in an operation is just the latest one in the

precedence order.” In the example of Figure 1, the operation

that modified right-hand side reference Y[j] in operation

S0(i, j) is just the same statement of the loop, when it was

executed at previous iteration S0(i− 1, j).

In the polyhedral model, building this precedence order

can be done exactly. Therefore, transformations of the loop

execution order, also known as scheduling transformations, can

be constrained to enforce dataflow dependences. This feature

may be used to check the legality of a given transformation,

but also to automatically compute the space of all possible

transformations, in order to find the “best” one. However this

is not the topic of this paper, and the reader is referred to

Feautrier [13] and Pouchet et al. [5] for more details.

C. Code generation

Once a loop nest has been scheduled (for example, to

incorporate some pipelining), the last step of source-to-source

transformation consists in re-generating a sequential code. Two

approaches to solve this problem dominate in the litterature.

The first one was developed by Quillere and al. [14] and later

extended by Bastoul in the context of the ClooG software [3].

ClooG allows regenerated loops to be guardless, thus avoiding

useless iterations at the price of an increase in code size. With

the same goal, the code generator in the Omega project also

tries to regenerate guardless loops, but also provides options

to find a trade-off between code size and guards [15].

The second approach, developed by Boulet et al. [16] aims

at generating code without loops. The principle is to determine

during one iteration the value of the next iteration vector, until

all the iteration domain has been visited. Since this second

approach behaves like a finite state machine, it si believed to

be it is more suited for hardware implementation [17], though

there is still very few quantitative evidences to back-up this

claim.

IV. LEGALITY CHECK

In this section, we propose sufficient conditions for ensuring

that a given loop coalescing transformation is legal w.r.t to the

data-dependencies of the program.

Consider a sink reference to an array (i.e. a right-hand side

array reference in a statement), and let ~y denote its iteration

vector. Let ~x be the iteration vector of the source reference

for this array reference. Let us write d the function that maps

~y to ~x, so that ~x = d(~y).
We define ∆ as the highest latency, in the pipeline datapath,

between a read and a write inducing a dependence. We can

formulate the conditions under which a loop coalescing is

legal w.r.t to this data-dependency as follows: for a pipelined

schedule with a latency of ∆, the coalescing will violate data

dependencies when the distance (in number of iteration points)

between the production of the value (at iteration ~x, the source)

and its use (at iteration ~y, the sink) is less than ∆.

This condition is trivially enforced in one particular case,

that is when the loops to be coalesced do not carry any

dependences, that is when the loops are parallel. This is

possible since one may want to pipeline only the n− 1 inner

loops of the loop nest in which the dependences are only

carried by the outermost loop. In such a case, the pipeline is

flushed at each step of the outermost loop, hence the latency

does not break any dependence.

85

i

j D1 = D ŀ {i,j | j ≥ N-i-1, i < N-1}

nextD(i,j) = (i+1,0)

D2 = D ŀ {i,j | j < N-i-1}

nextD(i,j) = (i,j+1)

Dᄧ = D ŀ {i,j | i >= N-1}

nextD(i,j) = ᄧ

Fig. 4. Sub-domains D1 and D2 have different expressions for their
immediate successor.

Let p be the depth of the loop that carries a dependence, the

coalescing is ensured to be legal if the loop to be coalesced

are at a depth greater than p. In practice, the innermost loop

is the only depth carrying no dependence, as shown in the

example of Figure 1.

Determining if a coalescing is legal then requires a more

precise analysis, by computing the number of points between a

source iteration ~x and its sink ~y. This indeed amounts to count

the number of integral points inside a parametric polyhedral

domain and corresponds to the rank function as proposed

by Turjan et al. [18], for which we can obtain a closed

form expression using the Barvinok library [19]. However

these expressions are in the form of parametric multivariate

pseudo-polynomials, and checking whether the value of such

polynomials admits a given lower bound is impossible in the

general case.

Because of this limitation, we propose another technique

which does not involve any polyhedral counting operation. In

this approach, we construct a function next∆D(~x) that computes

for a given iteration vector ~x its successor ∆ iterations away

in the coalesced loop nest’s iteration domain D. We then

check that all the sink iteration vectors ~y = d−1(~x) of the

dependency d are such that ~y � next∆D(~x). In other words,

we make sure that the value produced at iteration ~x is used at

least ∆ iterations later.

The only difficulty in this legality check lies in the con-

struction of the next∆D(~x) function. This is the problem we

address in the following subsection.

A. Constructing the next∆D(~x) function

We will derive the next∆D function by leveraging on a

method presented by Boulet et al[16] to compute the imme-

diate successor in D of an iteration vector ~x according to the

lexicographical order. This function is expressed as a solution

of a lexicographic minimization problem on a parametric

domain made of all successors of ~x.

The algorithm works as follows: we start by building the

set of points for which the immediate successor belongs to the

same innermost loop (say at depth p). This set is represented as

D2 in the example of Figure 4. We then do the same for the set

of points of D for which no successors were found at previous

step, but this time we look for their immediate successors

along the loop at depth p− 1 as shown by the domain D1 in

Figure 4. This procedure is then repeated until all dimensions

of the domain have been covered by the analysis. At the end,

the remaining points are the lexicographic maximum (that is

the end) of the domain, and their successor is noted as ⊥ (D⊥

on Figure 4).

The domains involved in this algorithm are parameterized,

therefore the approach requires the use of a Parametric Integer

Linear Programming solver [20], [16] to obtain a solution

which is in the form of a quasi affine mapping function that

defines the sequencing relation. Because it is a quasi-affine

function2, and because we only need to look for a constant

number of iterations ahead (the latency of the pipeline that

we call ∆), we can easily build the next∆D function. This is

done by applying the function to itself ∆ times as shown in

Equ. (1) :

next∆D(~x) =

∆
︷ ︸︸ ︷

nextD • nextD • . . . • nextD(~x) . (1)

Example: Let us compute the nextD(~x) predicate for the

example of Figure 4, where we have ~x = (i, j)

nextD(i, j) =







(i, j + 1) if j < N − i− 1
(i+ 1, 0) elseif i < N − 1
⊥ otherwise

Note that ⊥ represents the absence of successor in the loop.

Applying the relation four times to itself we then obtain the

next4D(i, j) predicate, which is given by the mapping below :

next4D(i, j) =






(i, j + 4) if j ≤ N − i− 5
(i+ 1, 3) elseif i ≤ N − 5 ∧ j = N − i− 1
(i+ 1, 2) elseif i ≤ N − 4 ∧ j = N − i− 2
(i+ 1, 1) elseif i ≤ N − 3 ∧ j = N − i− 3
(i+ 1, 0) elseif i ≤ N − 4 ∧ j = N − i− 4
(N − 1, 0) elseif i = N − 3 ∧ j = 1 ∧N ≥ 3
(N − 2, 0) elseif i = N − 4 ∧ j = 3 ∧N ≥ 4
⊥ else

(2)

B. Building the violated dependency set

As mentioned previously, a given dependency is enforced

by the coalesced loop iff we have ~y � next∆D(~x) with

~y = d−1(~x). When next∆D(~x) ∈ {⊥}, that is when the

successor ∆− 1 iterations later is out of the iteration domain,

the dependence is obviously broken. We can then build D†

the domain containing all the iterations sourcing one of these

violated dependencies, using the equation below

D† =

{

~x ∈ Dsrc

∣
∣
∣
∣

d−1(~x) ≺ next∆D(~x)
or next∆D(~x) ∈ {⊥}

}

(3)

2Quasi affine function are affine functions where division (or modulo) by
an integer constant are allowed.

86

where Dsrc is the set of sources of a dependency in D.

It is important to note that in case of a parameterized do-

main, the set of these iterations may itself be a parameterized

domain. Checking the legality of a nested loop pipelining then

sums up to check the emptiness of this parameterized domain,

which can easily be done with ISL [21] or Polylib [22].

a) Example: In what follows, we make no difference

between relations and functions, following the practice used

in the ISL tool. In our example, we have the following

dependency relation :

d(i, j → i′, j′ : i, j ∈ D ∧ i ≥ 1 ∧ i′ = i− 1 ∧ j′ = j)

which can easily be reverted as

d−1(i, j → i′, j′ : i′, j′ ∈ D ∧ i ≥ 0 ∧ i′ = i+ 1 ∧ j′ = j)

which corresponds to the data-dependency.

Using the next4D(i, j) function obtained in (2), we can then

build the domain D† of the source iterations violating a data

dependency using (3).

In our example, and after resorting to the simplification of

this polyhedral domain thanks to a polyhedral library [21], we

then obtain :

D† = {i, j|(i, j) ∈ D ∧N − 4 < i < N − 1∧ j < N − i− 1}

When we substitute N by 5 (the chosen value in our

example), we have D† = {(2, 0), (2, 1), (3, 0)}, which is the

set of points that causes a dependency violation in Figure 3.

V. BUBBLE INSERTION

While a legality condition is an important step toward

automated nested loop pipelining, it is possible to do better

by correcting a given schedule to make the coalescing legal.

Our idea is to determine at compile time an iteration domain

where wait states, or bubbles, are inserted in order to stall

the pipeline to make sure that the coalesced loop execution

is legal w.r.t data dependencies. Of course we want this set

to have the smallest possible impact on performance, both in

terms of number of cycles, and in terms of overhead caused

by extra guards and housekeeping code.

We already know from the previous subsection the domain

D† of all iterations whose source violates the dependency rela-

tion. To correct the pipeline schedule we can insert additional

wait-state iterations in the domain scanned by the coalesced

loop. These wait state iterations should be inserted between

the source and the sink iterations of the violated dependency.

One obvious solution is to add these extra iterations at the end

of the inner loop enclosing the source iteration, so that this

extra cycle may benefit to all potential source iteration within

this innermost loop.

The key question in this problem is to determine how many

of such wait states are actually required to fix the schedule, as

adding a single wait state in a loop may incidentally fix/correct

several violated data-dependency. In the following we propose

a simple technique to solve the problem.

i=0;j=0;

while(i<N) {

#pragma ignore_mem_depcy Y

 if(j<N-i)

S0: Y[j] = A[i]

 +(i==0)?0:Y[j]/B[j];
 if((i>N-4&&j<N-i+3&&i<N-1)

||j<N-i-1)

 j++;

 else

 j=0,i++;

}

i

j

Fig. 5. Corrected pipeline (conservative) for N = 5 and ∆ = 4. White
points correspond to pipeline epilogue inserted only for the iterations that
need it.

i

ji=0;j=0;

while(i<N) {

#pragma ignore_mem_depcy Y

 if(j<N-i)

S0: Y[j] = A[i]

 +(i==0)?0:Y[j]/B[j];
 if((i>N-4&&j<3&&i<N-1)

||j<N-i-1)

 j++;

 else

 j=0,i++;

}

Fig. 6. Corrected pipeline (optimized) for N = 5 and ∆ = 4. White points
correspond to the inserted pipeline bubbles in the iteration domain.

The simplest solution is to pad every inner loop containing

an iteration in D† with ∆− 1 wait-states. As a matter of fact,

this amounts to recreate the whole epilogue of the pipelined

loop, but only for the outer loops that actually need it. The

approach is illustrated in Figure 5, but turns out to be too

conservative. For example, the reader will notice that the inner

loops for indices i = 2 in the example of Figure 1 do not

actually need ∆ − 1 = 3 additional cycles. In that case only

one cycle of wait state is needed, and similarly, for i = 3,

only two cycles are needed.

This solution is obviously not optimal, as one could easily

find a better correction (that is with fewer bubbles), as the

one shown in Figure 6. In this particular example, the lower

overhead (in terms of wait-state) does not come at the price of

an increase in the complexity of the code. This is however not

the case in general, and there exist subtle trade-offs between

the reduction of bubble count and the complexity of the control

logic. We are currently investigating this topic.

VI. RESULTS AND VALIDATION

In this section, we describe how the transformation is

being implemented within a compiler framework, and provide

quantitative data showing that the approach is practical and

lead to significant performance improvements at the price of

a moderate increase in area.

87

A. The Gecos source to source compiler

GeCoS (Generic Compiler Suite) is an open source-

to-source compiler infrastructure [23] integrated within the

Eclipse framework and entirely based on Model Driven Soft-

ware Development tools. GeCoS is specifically targeted to

HLS back-ends, and provides (among other features) built-

in support for Mentor Algorithmic Data types C++ templates

(ac_int<>, etc.).

GeCoS also provides a loop transformation framework

based on the polyhedral model, that extensively uses third

party libraries (ISL for manipulating polyhedral domains [24]

and solving parametric integer linear problems, and Cloog [3]

for polyhedral code generation). All the transformations pre-

sented in this work have been implemented within this frame-

work.

B. Implementing the loop coalescing transformation

Implementing the loop coalescing transformation amounts

in a rewriting of the loop nest structure into a software

finite state machine expressed in a while loop. There are two

possible approach for implementing this rewriting.

The first approach uses the Control Flow Graph (CFG)

corresponding to the loop nest as an input. The problem in

this approach is that the automaton is built from an implicit

representation of the iteration domain rather than from its

formal representation as a polyhedron. As a consequence the

resulting automaton contains extra idle states which do not

correspond to an actual iteration of the loop nest. On the other

hand the main advantage of this approach is its simplicity.

From what we understand, this is the approach followed by

our reference HLS tool when implementing the nested loop

pipelining transformation.

The second approach follows the approach of Boulet et

al. [16] and consists in building a finite state machine directly

out of the loop nest iteration domain3 using the nextD(~x)
mapping introduced in Section IV. Because it is the only way

to ensure that the generated code visits the exact loop nest

iteration domain, it is actually more efficient than the approach

based on the CFG. However, the resulting code tends to be

more complex and induces area overhead as the number of

guards grows as the number of dimension of domain increases

and its shape gets more complex.

Because one does generally not want to coalesce the full

loop nest, our approach allows the designer to choose (by using

a source code directive) how many of the inner most loops

should be coalesced, and then use a combination of Cloog

with the algorithm of Boulet & Feautrier to regenerate the

transformed loop nest structure.

C. Experimental results

The efficiency of our approach is obviously very sensitive to

the trip count in inner loops sizes. As such it is very efficient

for improving the performance of non perfectly tiled codes

3It is to note that the method can accommodate with imperfectly nested
loops thanks to the use of additional (scalar) dimensions which model textual
ordering as in the Cloog library [3].

and of non rectangular domains. It is therefore more sensitive

to the iteration domains size and domain shapes than to the

structure of the application itself.

In this work, we limited ourself to two representative kernels

(QR-Cordic, MatMul described below) that provide a good

illustration the benefits and drawbacks of the approach.

• The QR decomposition is a key building block for wire-

less MIMO communication systems. The QR kernel oper-

ates over (small) non rectangular 3-dimensional iteration

domain and is a good candidate for the approach. In the

QR, only the most inner loop (index k) is parallel, and

this loop has a non constant iteration count (Indeed the

two innermost loops of the QR kernel resembles a lot our

running toy example). As a consequence, direct nested

pipelining causes dependence violation, and the kernel

must therefore undergo a bubble insertion step.

• A Matrix Multiplication kernel, in which we performed

a loop interchange to enable the pipelining of the 2

innermost loops. In this case the iteration domain is

very simple (rectangular), but we allow in some cases

the matrix sizes to be parameterized (i.e not known at

compile time).

Because our reference HLS tool does not support division

nor square root operations, we replaced these operations in the

QR algorithm with deeply pipelined multipliers. We insist on

the fact that this modification does not impact the relevance

of the results given below, since our coalescing transformation

only impacts the loop control, the body being left untouched.

For each of these kernels, we used varying fixed and

parameterized iteration counts, and also used different fixed

point arithmetic wordlength sizes for the loop body operations

so as to be able to precisely quantify the trade-off between

performance improvement (thanks to nested pipeline) and area

overhead (because of extra control cost).

For each application instance, we compared the results

obtained when using :

• Simple loop pipelining by our reference HLS tool.

• Nested loop pipelining by our reference HLS tool.

• Nested loop pipelining through loop coalescing and bub-

ble insertion.

For all examples, we derived deeply pipelined datapaths

(with II = 1 in all cases) and with latency values varying

from 4 to 6 in the case of Matrix Multiplication, and from 9

to 12 in the case of the QR factorization depending on the

fixed point encoding.

We provide three metrics of comparison: the total accelera-

tor area cost (in LUT and registers), the number of clock cycles

required to execute the program, and the clock frequency

obtained by the design after place and route. All the results

were obtained for an Altera Stratix-IV device with fastest

speed-grade, and are given in Table I.

The quantitative evaluation of the area overhead induced

by the use of nested pipelining is provided in Figure 7. Our

results show that this overhead remains limited and even

negligible when large functional units are being used (in the

figure, <a,b> stands for a a bit wide fixed point format with

88

LUTs Registers DSPs Freq (MHz) Clock Cycles

Benchmark Latency Size HLS Coal. HLS Coal. HLS Coal. HLS Coal. HLS Coal.

MM<48,16> 6 cycles

param 512 579 657 677 10 10 160 164 n.a. n.a.
128 437 392 542 458 10 10 161 163 2114304 2097157
32 388 351 486 426 10 10 164 160 33984 32773
8 333 313 429 442 10 10 164 164 624 517

MM<24,6> 4 cycles 32 239 200 170 130 4 4 240 250 33920 32771

QR<48,16> 12 cycles

param 999 1190 1114 2169 10 10 166 166 n.a. n.a.
128 1944 3262 7209 7891 10 10 162 164 902208 797050
32 1229 1534 2562 3230 10 10 167 165 23312 17370
8 1018 1951 1662 2297 10 10 166 167 868 746

QR<24,6> 9 cycles 32 620 823 1064 1240 4 4 231 229 20336 15552

TABLE I
PERFORMANCE AND AREA COST FOR OUR NESTED PIPELINE IMPLEMENTATIONS

Fig. 7. Area overhead due to the loop coalescing and bubble insertion, this
overhead is caused by extra guards on loop indices.

b bit devoted to the integer part). Also, the approach does

not significantly impact the clock frequency (less than 5%

difference in all cases).

The improvement in execution time due to latency hiding

are given in Figure 8. Here one can observe that the efficiency

of the approach is highly dependant on the loops iteration

count. While the execution time can decrease by up to 34% in

some case, the benefits quickly decrease as the domain sizes

grow. For larger iteration counts, the performance improve-

ment hardly compensates the area overhead.

One interesting observation is that when no correction is

needed (e.g constant size matrix multiplication) our coalescing

transformation is more efficient in term of both performance

and area than the nested pipeline feature provided with the

tool, a result which is easy to explain (see VI-B).

In addition to this quantitative analysis, it is also interesting

to point out which examples did cause our reference leading

edge commercial HLS tools to either find a good nested loop

pipelined schedule or to generate an illegal schedule violating

the semantic of the initial program. For the QR example, the

reference tool would systematically fail to generate a legal

nested pipeline schedule for the algorithm. Furthermore it

gives an illegal schedule whenever its iteration domain is

Fig. 8. Normalized execution time (in clock cycles) of the two innermost
coalesced pipelined loops (with bubbles for QR) w.r.t to the non-coalesced
pipelined loop.

Benchmark next next15

ADI Core 1391 71517

Block Based FIR 697 131284

Burg2 1166 36757

Forward Substitution 59 734

Hybrid Jacobi Gauss Seidel 15 3065

Matrix Product 187 29245

QR Given Decomposition 72 4554

SOR 2D 90 30151

TABLE II
next AND next15 RUNTIME EVALUATION (IN ms)

parameterized.

Last, we also evaluated the runtime needed to perform

the nextk operations for several examples. The goal is to

demonstrate that the approach is practical in the context of

a HLS tool. Results are given in Table II, and show that the

runtime (in ms) remains acceptable in most cases.

89

VII. RELATED WORK AND DISCUSSION

A. Loop pipelining in hardware synthesis

Earlier work on systolic architectures addressed the problem

of fine grain parallelism extraction. Among others Derrien et

al. [8] proposed to use iteration domain partitioning to help

combine operation level (pipeline) and loop level parallelism.

A somewhat similar problem was addressed by Teich and

al.[9] who proposed to combine modulo scheduling with

loop-level parallelization techniques. The main limitation of

these contributions is that they only support one-dimensional

schedules [25], which significantly limit their applicability.

A recent work by Alias et al. [26] tackles a problem very

similar to ours, as they try to address the problem of generating

efficient nested loop pipelined hardware accelerators leverag-

ing custom floating point datapaths. Their approach (also based

on the polyhedral model) consists in finding a parallel hyper-

plane for the loop nest, and then derive a tiling (hyperplanes

and tile sizes) which is chosen such that a pipeline of depth ∆
is legal. The approach only targets perfectly nested loop and

also requires incomplete tiles to be padded to behave like full-

tiles. Besides they restrict themselves to uniform dependencies,

so as to guarantee that the reuse distance (i.e the number of

points separating a source and a sink) is always constant for

a given tile size. In contrast, our framework is more general

and supports imperfectly nested loops with non-uniform (i.e

affine) dependencies. In addition, in the case of tiled iteration

domains, we can provide a more precise correction (in terms

of extra bubbles) that does not requires padding all incomplete

tiles.

The Compaan/Laura [18] toolset takes another view on the

problem, as it does not try to find a global schedule for the

program statements. Instead, each statement of the program is

mapped on its own process. Dependencies between statements

are then materialized as communication buffers which fol-

low the so-called Polyhedral Process Network semantic [27].

Because the causality of the schedule is enforced by the

availability of data on the channel output, there is no need

for taking statement execution latency into account in the

process schedule [28]. On the other hand, the approach suffers

significant area cost overhead as each statement requires its

own hardware controller plus possibly complex reordering

memory structure. To our opinion, the approach is geared

toward task level parallelism rather than toward fine grain

parallelism/pipeline.

B. Nested loop software pipelining

Software pipelining has proved to be a key optimization for

leveraging the instruction level parallelism available in most

compute intensive kernels. Since its introduction by Lam et

al. [29] a lot of work has been carried out on the topic (a survey

is out of scope of this work). Two directions have mainly been

addressed:

• Many contributions have tried to extends software pi-

pelining applicability to wider classes of program struc-

tures, by taking control flow into consideration [30].

• The main other research direction has focused on inte-

grating new architectural specificities and/or additional

constraints when trying to solve the optimal software

pipelining problem [31].

Among these numerous contributions, some of them have

been tackling problems very close to ours.

First, Rong et al. [7] have already studied the problem of

nested loop software pipelining. Their goal is clearly the same

as ours, except that they do restrict themselves to a narrow

subset of loop (only constant bound rectangular domains) and

do not leverage exact instance-wise dependence information.

Besides they do not address the problem from a hardware

synthesis point of view. In this work, we tackle the problem

for a wider class of programs (known as Static Control Parts),

and also we relate the problem to loop coalescing.

Another related contribution is the work of Fellahi et al [32],

who address the problem of prologue/epilogue merging in

sequences of software pipelined loops. Their work is also

motivated by the fact that the software pipeline overhead

tends to be a severe limitation as many embedded-multimedia

algorithms exhibit low trip count loops. Again, our approach

differs from theirs in the scope of its applicability, as we are

able to deal with loop nests (not only sequences of loops), and

as we solve the problem in the context of HLS tools at the

source level through a loop coalescing transformation. On the

contrary their approach handles the problem at machine code

level, which is not possible in our context.

C. Loop coalescing and loop collapsing

Loop coalescing was initially used in the context of par-

allelizing compilers, for reducing of synchronization over-

head [33]. Since synchronization occurs at the end of each

innermost loop, coalescing loops reduces the number of syn-

chronization during the program execution. Such an approach

is quite similar to ours (indeed, one could see the flushing

of the innermost loop pipeline as a kind of synchronization

operation). However, in our case we can benefit from an exact

timing model of the synchronization overhead, which we can

be used to remove unnecessary synchronization steps.

D. Correcting illegal loop transformations

The idea of applying a correction on a schedule as a

post-transformation step is not new, and was introduced by

Bastoul et al [34]. Their idea was to first look for interesting

combination of loop transformations (be they legal or not),

and then try to fix possible illegal schedule instances through

the use of loop shifting transformations. Their result was later

extended by Vasilache et al. [35], who considered a wider

space of correcting transformations.

Our work differs from theirs in that we do not propose to

modify the existing schedule, but rather add artifact statements

whose goal is to model so called wait state operations, which

will then make loop coalescing legal w.r.t data dependencies.

VIII. CONCLUSION

In this paper, we have proposed a new technique for support-

ing nested loop software pipelining in C to hardware synthesis

90

tools. The approach extends previous work by considering a

more general class of loops nests. In particular we propose

a nested pipeline legality check that can be combined with a

compile time bubble insertion mechanism to enforce causality

in the pipelined schedule. Our nested loop pipelining technique

was implemented as a proof of concept and our preliminary

experimental results show promising results for nested loops

operating on small iteration domains (up to 30 % execution

time reduction in terms of clock cycles, with a limited area

overhead).

As a side-note, we believe that our approach can easily be

adapted to be used in a more classical optimizing compiler

back-ends. Of course, our approach would only makes sense

for deeply pipelined VLIW machines with many functional

units. In that case we simply need to use the value of the

loop body initiation interval as an additional information to

determine which dependencies may be violated.

ACKNOWLEDGEMENT

The authors would like to thanks Sven Verdoolaege, Cedric

Bastoul and all the contributors to the wonderful pieces of

software that are ISL and ClooG. This work was founded by

the INRIA-STMicroelectronic Nano2012 project.

REFERENCES

[1] M. Graphics, “Catapult-c synthesis,” http://www.mentor.com.

[2] “Autoesl design technologies,” http://www.autoesl.com/.

[3] C. Bastoul, “Code Generation in the Polyhedral Model Is Easier Than
You Think,” in PACT’13 IEEE International Conference on Parallel

Architecture and Compilation Techniques, Juan-les-Pins, France, Sep.
2004, pp. 7–16.

[4] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “PLuTo:
A practical and fully automatic polyhedral program optimization sys-
tem,” in Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation. Tucson, AZ: ACM, June 2008.

[5] L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos, “Iterative op-
timization in the polyhedral model: Part II, multidimensional time,”
in ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI’08). Tucson, Arizona: ACM Press, June 2008,
pp. 90–100.

[6] K. Muthukumar and G. Doshi, “Software pipelining of
nested loops,” in Proceedings of the 10th International

Conference on Compiler Construction, ser. CC ’01. London,
UK: Springer-Verlag, 2001, pp. 165–181. [Online]. Available:
http://portal.acm.org/citation.cfm?id=647477.727775

[7] H. Rong, Z. Tang, R. Govindarajan, A. Douillet, and G. R. Gao,
“Single-dimension software pipelining for multidimensional loops,”
ACM Trans. Archit. Code Optim., vol. 4, March 2007. [Online].
Available: http://doi.acm.org/10.1145/1216544.1216550

[8] S. Derrien, S. Rajopadhye, and S. Kolay, “Combined instruction and
loop parallelism in array synthesis for fpgas,” in The 14th International

Symposium on System Synthesis. Proceedings., 2001, pp. 165 – 170.

[9] J. Teich, L. Thiele, and L. Z. Zhang, “Partitioning processor arrays under
resource constraints,” VLSI Signal Processing, vol. 17, no. 1, pp. 5–20,
1997.

[10] M. W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul,
“The polyhedral model is more widely applicable than you think,” in
Compiler Construction. Springer, 2010, pp. 283–303.

[11] J. F. Collard, D. Barthou, and P. Feautrier, “Fuzzy array dataflow
analysis,” in Proceedings of the fifth ACM SIGPLAN symposium on

Principles and practice of parallel programming. ACM, 1995, pp.
92–101.

[12] P. Feautrier, “Dataflow analysis of array and scalar references,” Inter-

national Journal of Parallel Programming, vol. 20, no. 1, pp. 23–53,
1991.

[13] ——, “Some efficient solutions to the affine scheduling problem. Part II.
Multidimensional time,” International Journal of Parallel Programming,
vol. 21, no. 6, pp. 389–420, 1992.

[14] F. Quilleré, S. Rajopadhye, and D. Wilde, “Generation of efficient
nested loops from polyhedra,” International Journal of Parallel

Programming, vol. 28, pp. 469–498, 2000. [Online]. Available:
http://dx.doi.org/10.1023/A:1007554627716

[15] W. Kelly, W. Pugh, and E. Rosser, “Code generation for multiple
mappings,” pp. 332–341, February 1995.

[16] P. Boulet and P. Feautrier, “Scanning Polyhedra without Do-loops,” in
PACT ’98: Proceedings of the 1998 International Conference on Parallel

Architectures and Compilation Techniques. Washington, DC, USA:
IEEE Computer Society, 1998, p. 4.

[17] A.-C. Guillou, P. Quinton, and T. Risset, “Hardware Synthesis for Multi-
Dimensional Time,” in ASAP. IEEE Computer Society, 2003, pp. 40–
50.

[18] A. Turjan, B. Kienhuis, and E. F. Deprettere, “Classifying interprocess
communication in process network representation of nested-loop pro-
grams,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 6, no. 2, 2007.

[19] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and M. Bruynooghe,
“Counting Integer Points in Parametric Polytopes Using Barvinok’s
Rational Functions,” Algorithmica, vol. 48, no. 1, pp. 37–66, 2007.

[20] P. Feautrier, “Parametric integer programming,” RAIRO Recherche

opérationnelle, vol. 22, no. 3, pp. 243–268, 1988.
[21] S. Verdoolaege, Integer Set Library: Manual, 2010. [Online]. Available:

http://www.kotnet.org/ skimo/isl/manual.pdf
[22] D. Wilde, “A library for doing polyhedral operations,” IRISA, Tech.

Rep., 1993.
[23] The Gecos Source to Source Compiler Infrastructure. [Online].

Available: http://gecos.gforge.inria.fr/
[24] S. Verdoolaege, “ISL: An Integer Set Library for the Polyhedral Model,”

in ICMS, ser. Lecture Notes in Computer Science, K. Fukuda, J. van der
Hoeven, M. Joswig, and N. Takayama, Eds., vol. 6327. Springer, 2010,
pp. 299–302.

[25] P. Feautrier, “Some efficient solutions to the affine scheduling problem. I.
One-dimensional time,” International journal of parallel programming,
vol. 21, no. 5, pp. 313–347, 1992.

[26] Automatic Generation of FPGA-Specific Pipelined Accelerators, Mars
2011.

[27] S. Verdoolaege, Handbook of Signal Processing Systems, 1st ed. Hei-
delberg, Germany: Springer, 2004, ch. Polyhedral process networks.

[28] C. Zissulescu, B. Kienhuis, and E. F. Deprettere, “Increasing Pipelined
IP Core Utilization in Process Networks Using Exploration,” in FPL,
ser. Lecture Notes in Computer Science, J. Becker, M. Platzner, and
S. Vernalde, Eds., vol. 3203. Springer, 2004, pp. 690–699.

[29] M. S. Lam, “Software Pipelining: An Effective Scheduling Technique
for VLIW Machines,” in PLDI, 1988, pp. 318–328.

[30] H.-S. Yun, J. Kim, and S.-M. Moon, “Time optimal software pipelining
of loops with control flows,” International Journal of Parallel

Programming, vol. 31, pp. 339–391, 2003, 10.1023/A:1027387028481.
[Online]. Available: http://dx.doi.org/10.1023/A:1027387028481

[31] C. Akturan and J. M. F., “Caliber: a software pipelining algorithm
for clustered embedded vliw processors,” in Proceedings of the 2001

IEEE/ACM international conference on Computer-aided design, ser.
ICCAD ’01. Piscataway, NJ, USA: IEEE Press, 2001, pp. 112–118.
[Online]. Available: http://dl.acm.org/citation.cfm?id=603095.603118

[32] M. Fellahi and A. Cohen, “Software Pipelining in Nested Loops with
Prolog-Epilog Merging,” in HiPEAC, ser. Lecture Notes in Computer
Science, A. Seznec, J. S. Emer, M. F. P. O’Boyle, M. Martonosi, and
T. Ungerer, Eds., vol. 5409. Springer, 2009, pp. 80–94.

[33] M. T. O’Keefe and H. G. Dietz, “Loop Coalescing and Scheduling
for Barrier MIMD Architectures,” IEEE Trans. Parallel Distrib.

Syst., vol. 4, pp. 1060–1064, September 1993. [Online]. Available:
http://portal.acm.org/citation.cfm?id=628913.629222

[34] C. Bastoul and P. Feautrier, “Adjusting a program transformation for
legality,” Parallel processing letters, vol. 15, no. 1, pp. 3–17, Mar. 2005,
classement CORE : U.

[35] N. Vasilache, A. Cohen, and L.-N. Pouchet, “Automatic correction
of loop transformations,” in Proceedings of the 16th International

Conference on Parallel Architecture and Compilation Techniques, ser.
PACT ’07. Washington, DC, USA: IEEE Computer Society, 2007, pp.
292–304. [Online]. Available: http://dx.doi.org/10.1109/PACT.2007.17

91

Appendix C

Personal bibliography

The references given below correspond to all the publictaion that I co-authored and which are referenced

in this document. The complete list is available at http://www.irisa.fr/cosi/HOMEPAGE/Derrien/.

[1] Naeem Abbas, Steven Derrien, Sanjay Rajopadhye, and Patrice Quinton. Accelerat-
ing HMMER on FPGA using Parallel Prefixes and Reductions. In IEEE International
Conference on Field-Programmable Technology (FPT’10), pages 37–44, Beijing, China,
December 2010. 〈 pp. 27, 34, 37, 38, 39 〉

[2] V. Basupalli, Tomofumi Yuki, Sanjay V. Rajopadhye, Antoine Morvan, Steven Derrien,
Patrice Quinton, and David Wonnacott. ompVerify: Polyhedral Analysis for the OpenMP
Programmer. In 7th International Workshop on OpenMP, IWOMP 2011, pages 37–53,
2011. 〈 p. 74 〉

[3] Rayan Chikhi, Steven Derrien, Auguste Noumsi, and Patrice Quinton. Combining Flash
Memory and FPGAs to Efficiently Implement a Massively Parallel Algorithm for Content-
Based Image Retrieval. In Reconfigurable Computing: Architectures, Tools and Applica-
tions, Third International Workshop, ARC 2007, pages 247–258, 2007. 〈 pp. 18, 19,
25 〉

[4] Alexandre Cornu, Steven Derrien, and Dominique Lavenier. HLS Tools for FPGA: Faster
Development with Better Performance. In Reconfigurable Computing: Architectures, Tools
and Applications - 7th International Symposium, ARC 2011, pages 67–78, 2011. 〈 p. 39 〉

[5] Vivek D, Tovinakere, Olivier Sentieys, and Steven Derrien. A Polynomial Based Approach
to Wakeup Time and Energy Estimation in Power-Gated Logic Clusters. Journal of Low
Power Electronics, 2011. Accepted for publication on July 30th, 2011. 〈 p. 51 〉

[6] Vivek T D, Olivier Sentieys, and Steven Derrien. Wakeup Time and Wakeup Energy
Estimation in Power-Gated Logic Clusters. International Conference on VLSI Design,
0:340–345, 2011. 〈 p. 51 〉

[7] Alain Darte, Steven Derrien, and Tanguy Risset. Hardware/Software Interface for Multi-
Dimensional Processor Arrays. In 16th IEEE International Conference on Application-
Specific Systems, Architectures, and Processors (ASAP 2005), 23-25 July 2005, pages
28–35, 2005. 〈 p. 60 〉

[8] Steven Derrien, Anne-Claire Guillou, Patrice Quinton, Tanguy Risset, and Charles Wag-
ner. Automatic Synthesis of Efficient Interfaces for Compiled Regular Architectures. In
Workshop on Systems, Architectures, Modeling, and Simulation (SAMOS), 2002. 〈 pp. 56,
57 〉

[9] Steven Derrien and P. Quinton. Parallezing HMMER for Hardware Acceleration on FP-
GAs. In 18th IEEE International Conference on Application-Specific Systems, Architec-
tures, and Processors (ASAP 2007), pages 10–17, Montreal, Quebec, July 2007. 〈 pp. 27,
37, 38, 39 〉

[10] Steven Derrien and P. Quinton. Hardware Acceleration of HMMER on FPGAs. Journal
of Signal Processing Systems, 58(1):53–67, October 2010. 〈 pp. 27, 38, 39 〉

93

http://www.irisa.fr/cosi/HOMEPAGE/Derrien/

[11] Steven Derrien and Sanjay Rajopadhye. FCCMs and the Memory Wall. In IEEE Sympo-
sium on FPGA Custom Computing Machine, pages 329–330, April 2000. 〈 p. 56 〉

[12] Steven Derrien and Sanjay Rajopadhye. Loop Tiling for Reconfigurable Accelerators.
In Proceedings of the 11th International Conference on Field-Programmable Logic and
Applications, pages 398–408, 2001. 〈 pp. 56, 57, 58 〉

[13] Steven Derrien and Sanjay Rajopadhye. Energy/Power Estimation of Regular Processor
Arrays. In International Symposium on System Synthesis (ISSS), Kyoto, pages 50–55,
2002. 〈 p. 56 〉

[14] Steven Derrien, Sanjay Rajopadhye, and Susmita Sur-Kolay. Optimal Partitionning for
FPGA Based Regular Array Implementations. In IEEE PARELEC’00, pages 155–159,
August 2000. 〈 p. 56 〉

[15] Steven Derrien, Sanjay V. Rajopadhye, and Susmita Sur-Kolay. Combining Instruction
and Loop Level Parallelism for Array Synthesis on FPGAs. In International Symposium
on System Synthesis (ISSS’01), Montreal, pages 273–282, 2001. 〈 pp. 56, 57 〉

[16] Steven Derrien and Tanguy Risset. Interfacing Compiled FPGA Programs: the MMAlpha
Approach. In PDPTA2000: Second International Workshop on Engineering of Reconfig-
urable Hardware/Software Objects, pages 189–195. CSREA Press, June 2000. 〈 p. 56 〉

[17] Steven Derrien, Alex Turjan, and Claudiu Zissulescuand Bart Kienhuis. Deriving Efficient
Control for Process Networks. In Workshop on Systems, Architectures, Modeling, and
Simulation (SAMOS), 2003. 〈 p. 64 〉

[18] Steven Derrien, Alexandru Turjan, Claudiu Zissulescu, Bart Kienhuis, and Ed F. Depret-
tere. Deriving efficient control in Process Networks with Compaan/Laura. International
Journal of Embedded Systems, 3(3):170–180, 2008. 〈 pp. 7, 57, 64 〉

[19] Antoine Floch, Tomofumi Yuki, Clement Guy, Steven Derrien, Benoit Combemale, Sanjay
Rajopadhye, and Robert B. France. Model-Driven Engineering and Optimizing Compil-
ers: A bridge too far ? In ACM/IEEE 14th International Conference on Model Driven
Engineering Languages and Systems (Models’11), pages 608–622, October 2011. 〈 p. 74 〉

[20] Stéphane Guyetant, Mathieu Giraud, Ludovic L’Hours, Steven Derrien, Stéphane Ru-
bini, Dominique Lavenier, and Frédéric Raimbault. Cluster of Re-configurable Nodes for
Scanning Large Genomic Banks. Parallel Computing, 31(1):73–96, 2005. 〈 p. 25 〉

[21] Dominique Lavenier, Stéphane Guyetant, Steven Derrien, and Stéphane Rubini. A Re-
configurable Parallel Disk System for Filtering Genomic Banks. In Proceedings of the
International Conference on Engineering of Reconfigurable Systems and Algorithms, June
23 - 26, 2003, Las Vegas, Nevada, USA, pages 154–166, 2003. 〈 p. 25 〉

[22] Antoine Morvan, Steven Derrien, and Patrice Quinton. Efficient Nested Loop Pipelining
in High Level Synthesis using Polyhedral Bubble Insertion. In International Conference on
Field-Programmable Technology (FPT’11), Beijing, China, 2011. To appear in December
2011. 〈 p. 66 〉

[23] Auguste Noumsi, Steven Derrien, and Patrice Quinton. Acceleration of a Content-Based
Image-Retrieval application on the RDISK cluster. In 20th International Parallel and
Distributed Processing Symposium (IPDPS 2006), pages 109–109, 2006. 〈 pp. 19, 20, 25 〉

[24] Muhammad Adeel Pasha, Steven Derrien, and Olivier Sentieys. Ultra Low-Power FSM
for Controlled Oriented Applications. In ISCAS ’09: IEEE International Symposium on
Circuits and Systems 2009, pages 1577 – 1580, May 2009. 〈 pp. 51, 52 〉

94

[25] Muhammad Adeel Pasha, Steven Derrien, and Olivier Sentieys. A Complete Design-
Flow for the Generation of Ultra Low-Power WSN Node Architectures Based on Micro-
Tasking. In Proc. of the IEEE/ACM Design Automation Conference (DAC), pages 693
–698, Anaheim, CA, USA, June 2010. 〈 pp. 51, 52 〉

[26] Muhammad Adeel Pasha, Steven Derrien, and Olivier Sentieys. System-Level Synthesis
for Ultra Low-Power Wireless Sensor Nodes. In Proc. of the 13th Euromicro Conference
on Digital System Design: Architectures, Methods and Tools (DSD), pages 493–500, Lille,
France, September 2010. 〈 pp. 51, 52 〉

[27] Muhammad Adeel Pasha, Steven Derrien, and Olivier Sentieys. System Level Synthesis
for Wireless Sensor Node Controllers: A Complete Design Flow. ACM Transactions on
Design Automation of Electronic Systems, 2011. Accepted for publication on July the
19th 2011. 〈 pp. 44, 51, 52 〉

[28] Muhammad Adeel Pasha, Steven Derrien, and Olivier Sentieys. Toward Ultra Low-Power
Hardware Specialization of a Wireless Sensor Network Node. In INMIC 2009. IEEE
International Multi Topic Conference, 2009, pages 1 – 6, submitted. 〈 p. 51 〉

[29] Rayan Chikhi and Steven Derrien and Auguste Noumsi and Patrice Quinton. Combining
Flash Memory and FPGAs to Efficiently Implement a Massively Parallel Algorithm for
Content-Based Image Retrieval. International Journal of Electronics, 95(7):621 – 635,
July 2008. 〈 pp. 19, 25 〉

95

Appendix D

General references

[30] Autoesl design technologies. http://www.autoesl.com/. 〈 pp. 6, 56 〉

[31] Frama-C, a Framework for Modular Analysis of C programs. http://frama-
c.com/download.html. 〈 p. 72 〉

[32] Impulse codeveloper. http://www.impulseaccelerated.com/. 〈 p. 56 〉

[33] The Netezza FAST Engines Framework. http://www.netezza.com/documents/whitepapers/fastengines.pd
2009. 〈 p. 24 〉

[34] Automatic Generation of FPGA-Specific Pipelined Accelerators, Mars 2011. 〈 p. 69 〉

[35] Christophe Alias, Fabrice Baray, and Alain Darte. Bee+cl@k: an implementation of
lattice-based array contraction in the source-to-source translator rose. In Proceedings of
the 2007 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES’07), San Diego, California, USA, June 13-15, 2007, pages
73–82, 2007. 〈 p. 53 〉

[36] S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J.
Lipman. Gapped BLAST and PSI-BLAST: a New Generation of Protein Database Search
Programs. Nucleic Acids Research, pages 3899–3402, 1997. 〈 pp. 7, 8, 27 〉

[37] Laurent Amsaleg and Patrick Gros. Content-based retrieval using local descriptors:
problems and issues from a database perspective. Pattern Analysis and Applications,
4(2/3):108–124, 2001. 〈 pp. 19, 20 〉

[38] Muthu Manikandan Baskaran, Albert Hartono, Sanket Tavarageri, Thomas Henretty,
J. Ramanujam, and P. Sadayappan. Parameterized tiling revisited. In Proceedings of
the 8th annual IEEE/ACM international symposium on Code generation and optimiza-
tion, CGO ’10, pages 200–209, New York, NY, USA, 2010. ACM. 〈 p. 73 〉

[39] C. Bastoul. Efficient code generation for automatic parallelization and optimization. In
ISPDC’03 IEEE International Symposium on Parallel and Distributed Computing, pages
23-30, Ljubljana, 2003. 〈 p. 53 〉

[40] Cédric Bastoul. Code Generation in the Polyhedral Model Is Easier Than You Think.
In PACT’13 IEEE International Conference on Parallel Architecture and Compilation
Techniques, pages 7–16, Juan-les-Pins, France, September 2004. 〈 pp. 53, 66 〉

[41] Rodolfo Bezerra Batista, Azzedine Boukerche, and Alba Cristina Magalhaes Alves
de Melo. A parallel strategy for biological sequence alignment in restricted memory space.
J. Parallel Distrib. Comput., 68:548–561, April 2008. 〈 p. 38 〉

[42] M. Bednara and J. Teich. Interface synthesis for FPGA-based VLSI processor arrays.
In International Conference on Engineering of Reconfigurable Systems and Algorithms
(ERSA-02), Las Vegas, Nevada, U.S.A., 2002. 〈 p. 57 〉

[43] M. W. Benabderrahmane, L-N. Pouchet, A. Cohen, and C. Bastoul. The polyhedral
model is more widely applicable than you think. In Compiler Construction, pages 283–
303. Springer, 2010. 〈 p. 53 〉

[44] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. PLuTo: A practical
and fully automatic polyhedral program optimization system. In Proceedings of the ACM

97

SIGPLAN Conference on Programming Language Design and Implementation, Tucson,
AZ, June 2008. ACM. 〈 pp. 53, 72 〉

[45] J.L. Bosque, O.D. Robles, A. Rodriguez, and L. Pastor. Study of a Parallel CBIR Imple-
mentation using MPI. In IEEE International Workshop on Computer Architectures for
Machine Perception (CAMP’00), 2000. 〈 p. 19 〉

[46] Pierre Boulet and Paul Feautrier. Scanning Polyhedra without Do-loops. In PACT ’98:
Proceedings of the 1998 International Conference on Parallel Architectures and Compila-
tion Techniques, page 4, Washington, DC, USA, 1998. IEEE Computer Society. 〈 pp. 64,
66, 68 〉

[47] R.P. Brent and H.T. Kung. A regular layout for parallel adders. IEEE Transactions on
Computers, C-31(3):260 –264, march 1982. 〈 p. 35 〉

[48] J. Bu, E.F. Deprettere, and P. Dewilde. A design methodology for fixed-size systolic ar-
rays. In S.Y. Kung and E. Swartzlander, editors, International Conference on application
Specific Array Processing, pages 591–602, Princeton, New Jersey, September 1990. IEEE
Computer Society. 〈 p. 58 〉

[49] Yu Cai, Erich F. Haratsch, Mark McCartney, and Ken Mai. Fpga-based solid-state drive
prototyping platform. In Proceedings of the 2011 IEEE 19th Annual International Sym-
posium on Field-Programmable Custom Computing Machines, FCCM ’11, pages 101–104,
Washington, DC, USA, 2011. IEEE Computer Society. 〈 p. 24 〉

[50] Philippe Clauss and Vincent Loechner. Parametric Analysis of Polyhedral Iteration
Spaces. VLSI Signal Processing, 19(2):179–194, 1998. 〈 p. 64 〉

[51] J. F. Collard, D. Barthou, and P. Feautrier. Fuzzy array dataflow analysis. In Proceedings
of the fifth ACM SIGPLAN symposium on Principles and practice of parallel programming,
pages 92–101. ACM, 1995. 〈 p. 53 〉

[52] A. Darte. Regular partitioning for synthesizing fixed-size systolic arrays. Integration, The
VLSI Journal, 12:293–304, December 1991. 〈 pp. 57, 58 〉

[53] A. Darte and J.-M. Delosme. Partitioning for array processors. Technical Report 90-23,
LIP, École normale supérieure de Lyon, France, 1991. 〈 p. 57 〉

[54] A. Darte, R. Schreiber, B. Ramakrishna Rau, and F. Vivien. Constructing and exploiting
linear schedules with prescribed parallelism. ACM Trans. Des. Autom. Electron. Syst.,
7(1):159–172, 2002. 〈 p. 58 〉

[55] Alain Darte, Rob Schreiber, Bob Ramakrishna Rau, and Frédéric Vivien. Construct-
ing and Exploiting Linear Schedules with Prescribed Parallelism. ACM Transactions on
Design Automation of Electronic Systems, 7(1):159–172, 2002. 〈 p. 57 〉

[56] Florent de Dinechin, Jérémie Detrey, Octavian Cret, and Radu Tudoran. When FPGAs
are better at floating-point than microprocessors. In Proceedings of the ACM/SIGDA 16th
International Symposium on Field Programmable Gate Arrays, page 260, 2008. 〈 p. 19 〉

[57] Florent de Dinechin, Cristian Klein, and Bogdan Pasca. Generating high-performance
custom floating-point pipelines. In 19th International Conference on Field Programmable
Logic and Applications, pages 59–64, 2009. 〈 p. 19 〉

[58] B Dutertre and L De Moura. Yices: An SMT Solver. http://yices.csl.sri.com/, 2006.
〈 p. 72 〉

[59] Hritam Dutta, Frank Hannig, Holger Ruckdeschel, and Jürgen Teich. Efficient Control
Generation for Mapping Nested Loop Programs onto Processor Arrays. Journal of Systems
Architecture, 53(5–6):300–309, May 2007. 〈 p. 64 〉

98

[60] Hritam Dutta, Frank Hannig, and Jürgen Teich. PARO – A Design Tool for Synthesis of
Hardware Accelerators for SoCs. Tool Presentation at the University Booth at Design,
Automation and Test in Europe (DATE), Dresden, Germany, March 2010. 〈 p. 54 〉

[61] Sean Eddy. HMMER3: a new generation of sequence homology search software.
http://hmmer.janelia.org/. 〈 p. 28 〉

[62] Sean R. Eddy. Profile hidden markov models. Bioinformatics, 14(9):755–763, 1998.
〈 p. 27 〉

[63] Sean R. Eddy. Accelerated profile HMM searches (preprint), 2011. 〈 p. 6 〉

[64] Virantha Ekanayake, Clinton Kelly, IV, and Rajit Manohar. Anultra low-power processor
for sensor networks. SIGOPS Oper. Syst. Rev., 38(5):27–36, 2004. 〈 p. 42 〉

[65] Juan Fernando Eusse Giraldo, Nahri Moreano, Ricardo Pezzuol Jacobi, and Alba Cristina
Magalhaes Alves de Melo. A hmmer hardware accelerator using divergences. In Proceed-
ings of the Conference on Design, Automation and Test in Europe, pages 405–410, 2010.
〈 p. 38 〉

[66] Mohammed Fellahi and Albert Cohen. Software Pipelining in Nested Loops with Prolog-
Epilog Merging. In High Performance Embedded Architectures and Compilers, Fourth
International Conference, HiPEAC 2009, Paphos, Cyprus, January 25-28, 2009. Pro-
ceedings, pages 80–94, 2009. 〈 p. 69 〉

[67] Dirk Fimmel. Generation of Scheduling Functions Supporting LSGP-Partitioning. In
IEEE International Conference on Application-specific Systems, Architectures and Pro-
cessors (ASAP’00), pages 349–358, Boston, July 2000. 〈 p. 57 〉

[68] A. Fraboulet and T. Risset. Efficient on-chip communications for data-flow IPs. In IEEE
International Conference on Application-specific Systems, Architectures and Processors
(ASAP’04), pages 293–303, 2004. 〈 p. 57 〉

[69] Christopher W. Fraser, Robert R. Henry, and Todd A. Proebsting. BURG: Fast Optimal
Instruction Selection and Tree Parsing. SIGPLAN Not., 27(4):68–76, 1992. 〈 p. 45 〉

[70] Narayan Ganesan, Roger D. Chamberlain, Jeremy Buhler, and Michela Taufer. Acceler-
ating hmmer on gpus by implementing hybrid data and task parallelism. In Proceedings of
the First ACM International Conference on Bioinformatics and Computational Biology,
BCB ’10, pages 418–421, New York, NY, USA, 2010. ACM. 〈 pp. 37, 38 〉

[71] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David Parello, Marc
Sigler, and Olivier Temam. Semi-automatic composition of loop transformations for
deep parallelism and memory hierarchies. International Journal of Parallel Programming,
34(3):261–317, 2006. 〈 p. 53 〉

[72] L. Gonnord and N. Halbwachs. Combining widening and acceleration in linear relation
analysis. In 13th International Static Analysis Symposium, SAS’06, Seoul, Korea, August
2006. 〈 p. 72 〉

[73] M Graphics. Catapult-C Synthesis. http://www.mentor.com. 〈 pp. 6, 56 〉

[74] A.-C. Guillou, P. Quinton, T. Risset, C. Wagner, and D. Massicotte. High-level design
of digital filters in mobile communications. DATE Design Contest 2001, March 2001.
2nd place, available at http://www.irisa.fr/bibli/publi/pi/2001/1405/1405.html.
〈 p. 54 〉

[75] Anne-Claire Guillou, Patrice Quinton, and Tanguy Risset. Hardware Synthesis for Multi-
Dimensional Time. In IEEE International Conference on Application-specific Systems,
Architectures and Processors (ASAP’03), pages 40–50, 2003. 〈 p. 64 〉

99

http://www.irisa.fr/bibli/publi/pi/2001/1405/1405.html

[76] T. Han and D. A. Carlson. Fast area-efficient vlsi adders. In Proceedings of the 8th
Symposium on Computer Arithmetic, pages 49–55. IEEE, 1987. 〈 p. 35 〉

[77] Frank Hannig, Holger Ruckdeschel, and Jürgen Teich. The PAULA Language for
Designing Multi-Dimensional Dataflow-Intensive Applications. In Proceedings of the
GI/ITG/GMM-Workshop – Methoden und Beschreibungssprachen zur Modellierung und
Verifikation von Schaltungen und Systemen, pages 129–138, Freiburg, Germany, March
2008. Shaker. 〈 p. 54 〉

[78] Frank Hannig and Jürgen Teich. Output serialization for fpga-based and coarse-grained
processor arrays. In Proceedings of The 2005 International Conference on Engineering
of Reconfigurable Systems and Algorithms, ERSA 2005, Las Vegas, Nevada, USA, pages
78–84, 2005. 〈 p. 60 〉

[79] D. Harris. A taxonomy of parallel prefix networks. In Thirty-Seventh Asilomar Conference
on Signals, Systems and Computers, volume 2, pages 2213 – 2217 Vol.2, nov. 2003. 〈 p. 35 〉

[80] Mark Hempstead, Gu-YeonWei, and David Brooks. An Accelerator-BasedWireless Sensor
Network Processor in 130nm CMOS. In CASES’09: Proceedings of the 2009 international
conference on Compilers, architecture, and synthesis for embedded systems, pages 215–222,
New York, NY, USA, 2009. ACM. 〈 p. 50 〉

[81] Rob Hess. An open-source siftlibrary. In Proceedings of the international conference on
Multimedia, MM ’10, pages 1493–1496, New York, NY, USA, 2010. ACM. 〈 p. 25 〉

[82] D.T. Hoang. Searching genetic databases on splash 2. In FPGAs for Custom Computing
Machines, 1993. Proceedings. IEEE Workshop on, pages 185 –191, apr 1993. 〈 p. 13 〉

[83] D. R. Horn, M. Houston, and P. Hanrahan. ClawHMMER: A Streaming HMMer-Search
Implementation. In SC’05 : Proceedings of the 2005 ACM/IEEE conference on Super-
computing, 2005. 〈 p. 37 〉

[84] INRIA. PowWow, Protocol for Low Power Wireless Sensor Network,
http://powwow.gforge.inria.fr/. 〈 p. 47 〉

[85] F. Irigoin and R. Triolet. Supernode partitioning. In 15th Annual ACM Symposium
on Principles of Programming Languages, pages 319–329, San Diego, CA, January 1988.
〈 p. 57 〉

[86] Gilles Kahn. The Semantics of a Simple Language For Parallel Programming. In Proceed-
ings of the IFIP Congress 74. North-Holland Publishing Co., 1974. 〈 p. 56 〉

[87] Kimberly Keeton, David A. Patterson, and Joseph M. Hellerstein. A case for intelligent
disks (idisks). SIGMOD Rec., 27(3):42–52, 1998. 〈 pp. 7, 14 〉

[88] A.C.J. Kienhuis. Design Space Exploration of Stream-based Dataflow Architectures:
Method and Tools. PhD thesis, Delft University of Technology, January 1999. 〈 p. 63 〉

[89] Bart Kienhuis, Edwin Rijpkema, and Ed F. Deprettere. Compaan: Deriving Process
Networks fromMatlab for Embedded Signal Processing Architectures. In 8th International
Workshop on Hardware/Software Codesign (CODES’2000), San Diego, USA, May 2000.
〈 p. 61 〉

[90] Bart Kienhuis, Edwin Rijpkema, and Ed F. Deprettere. Deriving Process Networks from
Nested Loop Alogorithms. In Proc. 8th International Workshop on Hardware/Software
Codesign (CODES’2000), San Diego, CA, USA, May 3-5 2000. 〈 p. 56 〉

[91] S. Knowles. A family of adders. In ARITH ’99: Proceedings of the 14th IEEE Symposium
on Computer Arithmetic, page 30, Washington, DC, USA, 1999. IEEE Computer Society.
〈 p. 35 〉

100

[92] Peter M. Kogge and Harold S. Stone. A parallel algorithm for the efficient solution of a
general class of recurrence equations. IEEE Transcation on Computers, 22(8):786–793,
1973. 〈 p. 35 〉

[93] A. Krogh, M. Brown, I. S. Mian, K. Sjölander, and D. Haussler. Hidden Markov Models
in Computational Biology: Applications to Protein Modeling. Journal Molecular Biology,
235:1501–1531, February 1994. 〈 p. 27 〉

[94] H T Kung and Charles E Leiserson. Algorithms for VLSI Processor Arrays. Addison
Wesley, 1978. 〈 p. 54 〉

[95] J. Kwong, Y.K. Ramadass, N. Verma, and A.P. Chandrakasan. A 65 nm Sub-Vt Mi-
crocontroller With Integrated SRAM and Switched Capacitor DC-DC Converter. IEEE
Journal of Solid-State Circuits, 44(1):115 –126, jan. 2009. 〈 p. 42 〉

[96] Richard E. Ladner and Michael J. Fischer. Parallel Prefix Computation. Journal of ACM,
27(4):831–838, 1980. 〈 p. 35 〉

[97] M. Lam. Software pipelining: an effective scheduling technique for VLIW machines. In
Proceedings of the ACM SIGPLAN 1988 conference on Programming Language design and
Implementation, PLDI ’88, pages 318–328, New York, NY, USA, 1988. ACM. 〈 p. 69 〉

[98] D. Lavenier, G. Georges, and X. Liu. A reconfigurable index flash memory tailored to seed-
based genomic sequence comparison algorithms. J. VLSI Signal Process. Syst., 48:255–269,
September 2007. 〈 p. 18 〉

[99] Herwig Lejsek, Björn ór Jónsson, and Laurent Amsaleg. Nv-tree: nearest neighbors at
the billion scale. In Proceedings of the 1st ACM International Conference on Multimedia
Retrieval, ICMR ’11, pages 54:1–54:8, New York, NY, USA, 2011. ACM. 〈 p. 25 〉

[100] Ludovic L’Hours. Generating efficient custom fpga soft-cores for control-dominated appli-
cations. In 16th IEEE International Conference on Application-Specific Systems, Archi-
tectures, and Processors (ASAP 2005), 23-25 July 2005, Samos, Greece, pages 127–133,
2005. 〈 p. 41 〉

[101] Teng Li, Miaoqing Huang, Tarek El-Ghazawi, and H. Howie Huang. Reconfigurable Active
Disk: An FPGA Accelerated Storage Architecture for Data-Intensive Applications. In
Symposium on Application Accelerators in High-Performance Computing (SAAHPC’09),
2009. 〈 p. 24 〉

[102] S. Liao, S. Devadas, K. Keutzer, and S. Tjiang. Instruction selection using binate covering
for code size optimization. In IEEE/ACM International Conference on Computer-Aided
Design, ICCAD’95, pages 393–399, Nov 1995. 〈 p. 45 〉

[103] E.-Y.A. Lin, J.M. Rabaey, and A. Wolisz. Power-efficient rendez-vous schemes for dense
wireless sensor networks. In Communications, 2004 IEEE International Conference on,
volume 7, pages 3769–3776 Vol.7, June 2004. 〈 p. 43 〉

[104] Eric Lindahl. HMMer Altivec Implementation. http://lindahl.sbc.su.se/software/altivec/altivec-
hmmer,-version-2.html, 2005. 〈 p. 37 〉

[105] L.L’Hours. Generating Efficient Custom FPGA Soft-Cores for Control-Dominated Ap-
plications. In Proceedings of the IEEE International Conference on Application-Specific
Systems, Architecture Processors: ASAP ’05, pages 127–133, Washington, DC, USA, 2005.
IEEE Computer Society. 〈 pp. 9, 45 〉

[106] Jason Luu, Ian Kuon, Peter Jamieson, Ted Campbell, Andy Ye, Wei Mark Fang, and
Jonathan Rose. Vpr 5.0: Fpga cad and architecture exploration tools with single-driver
routing, heterogeneity and process scaling. In Proceeding of the ACM/SIGDA interna-
tional symposium on Field programmable gate arrays, FPGA ’09, pages 133–142, New
York, NY, USA, 2009. ACM. 〈 p. 24 〉

101

[107] R. P. Maddimsetty, J. Buhler, R. D. Chamberlain, M. A. Franklin, and Brandon Har-
ris. Accelerator Design for Protein Sequence HMM Search. In Proceedings of the ACM
International Conference on Supercomputing, Cairns, Australia, 2006. ACM. 〈 pp. 37,
38 〉

[108] Kevin Martin, Christophe Wolinski, Krzysztof Kuchcinski, Antoine Floch, and Fran-
cois Charot. Constraint-Driven Instructions Selection and Application Scheduling in the
DURASE System. IEEE International Conference on Application-Specific Systems, Ar-
chitectures and Processors, ASAP’09. 〈 p. 45 〉

[109] Sjoerd Meijer, Hristo Nikolov, and Todor Stefanov. On compile-time evaluation of pro-
cess partitioning transformations for kahn process networks. In Proceedings of the 7th
IEEE/ACM international conference on Hardware/software codesign and system synthe-
sis, CODES+ISSS ’09, pages 31–40, New York, NY, USA, 2009. ACM. 〈 p. 56 〉

[110] Gokhan Memik, Mahmut T. Kandemir, and Alok Choudhary. Design and evaluation
of smart disk cluster for dss commercial workloads. Journal of Parallel and Distributed
Computing (JPDC), 61(11):1633–1664, 2001. 〈 pp. 7, 14 〉

[111] Dan I Moldovan and Jose A. B Fortes. Partitioning and Mapping Algorithms into Fixed
Size Systolic Arrays. IEEE Transactons on Computers, 35(1):1–12, 1986. 〈 p. 58 〉

[112] D.I. Moldovan and J. A. B. Fortes. Partitioning and mapping algorithms into fixed-size
systolic arrays. IEEE Transactions on Computers, 35(1):1–12, jan 1986. 〈 p. 57 〉

[113] Rene Mueller and Jens Teubner. Fpgas: a new point in the database design space.
In Proceedings of the 13th International Conference on Extending Database Technology,
EDBT ’10, pages 721–723, New York, NY, USA, 2010. ACM. 〈 p. 24 〉

[114] Kalyan Muthukumar and Gautam Doshi. Software pipelining of nested loops. In Pro-
ceedings of the 10th International Conference on Compiler Construction, CC ’01, pages
165–181, London, UK, 2001. Springer-Verlag. 〈 p. 65 〉

[115] S. Mysore, B. Agrawal, F.T. Chong, and T. Sherwood. Exploring the Processor and ISA
Design for Wireless Sensor Network Applications. In 21st International Conference on
VLSI Design, 2008. VLSI’08, pages 59–64, Jan. 2008. 〈 p. 47 〉

[116] L. Nazhandali, M. Minuth, and T. Austin. SenseBench: Toward an Accurate Evalua-
tion of Sensor Network Processors. In Proceedings of the IEE International Workload
Characterization Symposium, 2005, pages 197–203, Oct. 2005. 〈 p. 47 〉

[117] T. Oliver, B. Schmidt, Y. Jakop, and D. L. Maskell. Accelerating the Viterbi Algorithm
for Profile Hidden Markov Models Using Reconfigurable Hardware. In International Con-
ference on Computational Science, 2006. 〈 pp. 33, 37, 38 〉

[118] T. Oliver, L. Y. Yeow, and B. Schmidt. High Performance Database Searching with
HMMer on FPGAs. In HiCOMB 2007, Sixth IEEE International Workshop on High
Performance Computational Biology, march 2007. 〈 pp. 37, 38 〉

[119] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill,
M. Welsh, E. Brewer, and D. Culler. TinyOS: An Operating System for Sensor Networks
. Book Chapter in Ambient Intelligence by Springer, 2005. 〈 p. 42 〉

[120] Joonseok Park and Pedro C. Diniz. Synthesis of pipelined memory access controllers for
streamed data applications on FPGA-based computing engines. In International Sympo-
sium on System Synthesis (ISSS’01), pages 221–226, 2001. 〈 p. 57 〉

[121] Joonseok Park and Pedro C. Diniz. Synthesis and estimation of memory interfaces for
FPGA-based reconfigurable computing engines. In International Symposium on FPGA
Custom Computing Machines, 2003. 〈 p. 57 〉

102

[122] Fabien A.P. Petitcolas, Ross J. Anderson, and Markus G. Kuhn. Attacks on copyright
marking systems. In Information Hiding, pages 218–238, 1998. 〈 pp. 18, 20 〉

[123] Alexandru Plesco. Program Transformations and Memory Architecture Optimizations for
High-Level Synthesis of Hardware Accelerators. PhD thesis, Ecole normale supÃl’rieure
de Lyon, 2010. 〈 pp. 56, 60, 72 〉

[124] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and John Cavazos. Iterative opti-
mization in the polyhedral model: Part II, multidimensional time. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’08), pages 90–
100, Tucson, Arizona, June 2008. ACM Press. 〈 pp. 53, 73 〉

[125] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J. Ramanujam,
P. Sadayappan, and Nicolas Vasilache. Loop Transformations: Convexity, Pruning and
Optimization . In 38th ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages (POPL’11), pages 549–562, Austin, TX, January 2011. ACM Press.
〈 p. 53 〉

[126] Patrice Quinton. Automatic synthesis of systolic arrays from uniform recurrent equations.
In Proceedings of the 11th annual international symposium on Computer architecture,
ISCA ’84, pages 208–214, New York, NY, USA, 1984. ACM. 〈 pp. 30, 54 〉

[127] L. Rabiner and B. Juang. An introduction to hidden markov models. IEEE ASSP Mag-
azine, 3(1):4 – 16, jan 1986. 〈 p. 27 〉

[128] Raval, R. K. et al. Low-Power TinyOS Tuned Processor Platform for Wireless Sensor
Network Motes. ACM Transactions on Design Automation of Electronic Systems, 15(3):1–
17, 2010. 〈 p. 42 〉

[129] Lakshminarayanan Renganarayanan, DaeGon Kim, Sanjay Rajopadhye, and
Michelle Mills Strout. Parameterized tiled loops for free. In Proceedings of the
2007 ACM SIGPLAN conference on Programming language design and implementation,
PLDI ’07, pages 405–414, New York, NY, USA, 2007. ACM. 〈 p. 73 〉

[130] CAIRN-INRIA research group. The gecos: The generic compiler suite.
http://gecos.gforge.inria.fr/. 〈 p. 56 〉

[131] Erik Riedel, Christos Faloutsos, Garth A. Gibson, and David Nagle. Active disks for
large-scale data processing. IEEE Computer, june 2001. 〈 pp. 7, 14 〉

[132] Edwin Rijpkema. From Piecewise Regular Algorithms to Dataflow Architectures. PhD
thesis, Delft University of Technology, 2001. 〈 p. 61 〉

[133] Oscar D. Robles, Jos̈ı£¡ L. Bosque, Luis Pastor, and Angel Rodr̈ı£¡guez. Performance
Analysis of a CBIR System on Shared-Memory Systems and Heterogeneous Clusters.
In IEEE International Workshop on Computer Architectures for Machine Perception
(CAMP’05), 2005. 〈 p. 19 〉

[134] Hongbo Rong, Zhizhong Tang, R. Govindarajan, Alban Douillet, and Guang R. Gao.
Single-dimension software pipelining for multidimensional loops. ACM Trans. Archit.
Code Optim., 4, March 2007. 〈 p. 69 〉

[135] Robert Schreiber, Shail Aditya, Bob Ramakrisha Rau, Vinod Kathail, Scott Mahlke, San-
tosh Abraham, and Greg Snider. High-level synthesis of non programmable hardware
accelerators. In IEEE International Conference on Application-specific Systems, Archi-
tectures and Processors (ASAP’00), pages 113–126, Boston, July 2000. 〈 pp. 57, 58 〉

[136] Seok, Mingoo et al. The Phoenix Processor: A 30pW Platform for Sensor Applications.
In VLSI’08: Proceedings of the IEEE Symposium on VLSI Circuits, pages 188–189, 2008.
〈 p. 42 〉

103

[137] W. Shang and J. A. B. Fortes. Independent partitioning of algorithms with uniform
dependencies. In International Conference on Parallel Processing (ICPP’88), pages 26–
33, 1988. 〈 p. 57 〉

[138] M. Sheets, F. Burghardt, T. Karalar, J. Ammer, Y.H. Chee, and J. Rabaey. A power-
managed protocol processor for wireless sensor networks. In Symposium on VLSI Circuits,
2006. Digest of Technical Papers, pages 212 –213, 0-0 2006. 〈 p. 42 〉

[139] J. Sklansky. Conditional-sum addition logic. IRE Transactions on Electronic Computers,
EC-9(2):226 –231, june 1960. 〈 p. 35 〉

[140] T.F. Smith and M.S. Waterman. Identification of common molecular subsequences. J.
Mol. Biol, 147:195–197, 1981. 〈 pp. 8, 27 〉

[141] Clinton Wills Smullen, IV, Shahrukh Rohinton Tarapore, Sudhanva Gurumurthi,
Parthasarathy Ranganathan, and Mustafa Uysal. Active storage revisited: the case for
power and performance benefits for unstructured data processing applications. In Proceed-
ings of the 5th conference on Computing frontiers, CF ’08, pages 293–304, 2008. 〈 p. 24 〉

[142] Pascal Sotin and Bertrand Jeannet. Precise Interprocedural Analysis in the Presence of
Pointers to the Stack. 〈 p. 72 〉

[143] Jim Steel and Jean-Marc Jézéquel. Model Typing for Improving Reuse in Model-Driven
Engineering. In S. Kent L. Briand, editor, Proceedings of MODELS/UML’2005, LNCS,
pages –, Berlin, Heidelberg, 2005. Springer-Verlag. 〈 p. 75 〉

[144] Todor Stefanov, Bart Kienhuis, and Ed Deprettere. Algorithmic transformation techniques
for efficient exploration of alternative application instances. In Proceedings of the tenth
international symposium on Hardware/software codesign, CODES ’02, pages 7–12, New
York, NY, USA, 2002. ACM. 〈 p. 56 〉

[145] Todor Stefanov, Claudiu Zissulescu, Alexandru Turjan, Bart Kienhuis, and Ed Deprettere.
System design using kahn process networks: The compaan/laura approach. In Proceedings
of DATE2004, Paris, France, Feb 16 – 20 2004. 〈 p. 61 〉

[146] Yanteng Sun, Peng Li, Guochang Gu, Yuan Wen, Yuan Liu, , and Dong Liu. HMMER Ac-
celeration Using Systolic Array Based Reconfigurable Architecture. In IEEE International
Workshop on High Performance Computational Biology, 2009. 〈 pp. 37, 38 〉

[147] Toyokazu Takagi and Tsutomu Maruyama. Accelerating HMMER Search Using FPGA.
In International Conference on Field Programmable Logic and Applications, September
2009. 〈 pp. 37, 38 〉

[148] Sanket Tavarageri, Louis-Noël Pouchet, J. Ramanujam andAtanas Rountev, and P. Sa-
dayappan. Dynamic Selection of Tile Sizes . In 18th annual IEEE International Con-
ference on High Performance Computing (HiPC’11), Bangalore, India, December 2011.
IEEE Computer Society Press. 〈 p. 73 〉

[149] Jürgen Teich, Lothar Thiele, and Lee Z. Zhang. Partitioning Processor Arrays under
Resource Constraints. VLSI Signal Processing, 17(1):5–20, 1997. 〈 p. 57 〉

[150] Texas Instruments. MSP430 User Guide. Technical report, 2006. 〈 pp. 9, 41 〉

[151] The Eclipse Foundation. Xtext, a framework for development of textual domain specific
languages (DSLs), http://www.eclipse.org/Xtext/. 〈 p. 47 〉

[152] Alexandru Turjan, Bart Kienhuis, and Ed F. Deprettere. Classifying interprocess commu-
nication in process network representation of nested-loop programs. ACM Transactions
on Embedded Computing Systems (TECS), 6(2), 2007. 〈 p. 56 〉

104

[153] Alexandru Turjan, Todor Stefanov, Bart Kienhuis, and Ed Deprettere. The Compaan
Tool Chain: Converting Matlab into Process Networks. In In Designers’ Forum ”Design,
Automation and Test in Europe (DATE 2002)”, Paris, France, 2002. 〈 pp. 7, 56, 57 〉

[154] Sven Verdoolaege. Handbook of Signal Processing Systems, chapter Polyhedral process
networks. Springer, Heidelberg, Germany, 1 edition, 2004. 〈 pp. 7, 56, 57, 61 〉

[155] Emmanuel Viaud, François Pêcheux, and Alain Greiner. An efficient tlm/t modeling
and simulation environment based on conservative parallel discrete event principles. In
Proceedings of the conference on Design, automation and test in Europe: Proceedings,
DATE ’06, pages 94–99, 3001 Leuven, Belgium, Belgium, 2006. European Design and
Automation Association. 〈 p. 24 〉

[156] J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, and P. Boucard. Programmable
Active Memories: Reconfigurable Systems Come of Age. IEEE Transactions on VLSI
Systemes, 4(1), March 1996. 〈 p. 13 〉

[157] Jean E. Vuillemin. On computing power. pages 69–86, 1994. 〈 p. 13 〉

[158] J. P. Walters, B. Qudah, and V. Chaudhary. Accelerating the HMMER Sequence Analysis
Suite Using Conventional Processors. In AINA ’06: Proceedings of the 20th International
Conference on Advanced Information Networking and Applications - Volume 1 (AINA’06),
2006. 〈 p. 37 〉

[159] John Paul Walters, Vidyananth Balu, Suryaprakash Kompalli, and Vipin Chaudhary.
Evaluating the use of gpus in liver image segmentation and hmmer database searches.
In IPDPS ’09: Proceedings of the 2009 IEEE International Symposium on Paral-
lel&Distributed Processing, pages 1–12, Washington, DC, USA, 2009. IEEE Computer
Society. 〈 p. 37 〉

[160] Hang-Sheng Wang, Xinping Zhu, Li-Shiuan Peh, and Sharad Malik. Orion: a power-
performance simulator for interconnection networks. In Proceedings of the 35th annual
ACM/IEEE international symposium on Microarchitecture, MICRO 35, pages 294–305,
Los Alamitos, CA, USA, 2002. IEEE Computer Society Press. 〈 p. 24 〉

[161] D. Wilde. A library for doing polyhedral operations. Technical report, IRISA, 1993.
〈 p. 54 〉

[162] Ben Wun, Jeremy Buhler, and Patrick Crowley. Exploiting Coarse-Grained Parallelism to
Accelerate Protein Motif Finding with a Network Processor. In PACT ’05: Proceedings of
the 14th International Conference on Parallel Architectures and Compilation Techniques,
2005. 〈 p. 37 〉

[163] Jingling Xue and Christian Lengauer. The Synthesis of Control Signals for One-
Dimensional Systolic Arrays. Integration, 14:1–32, 1992. 〈 p. 54 〉

[164] Claudiu Zissulescu, Bart Kienhuis, and Ed F. Deprettere. Expression Synthesis in Process
Networks generated by LAURA. In 16th IEEE International Conference on Application-
Specific Systems, Architectures, and Processors (ASAP 2005), pages 15–21, 2005. 〈 p. 64 〉

[165] Claudiu Zissulescu, Todor Stefanov, Bart Kienhuis, and Ed F. Deprettere. Laura: Leiden
Architecture Research and Exploration Tool. In Field Programmable Logic and Applica-
tions (FPL’03), pages 911–920, 2003. 〈 pp. 7, 57 〉

105

	Introduction
	Context of the work
	Summary of the contributions
	Synthesis of loop nests hardware accelerators
	Reconfigurable platforms for high performance computing
	Application specific parallel hardware accelerators
	Tools for application specific architecture design

	Organization of the manuscript

	Reconfigurable Accelerators for searching unstructured databases
	Reconfigurable platforms for database processing
	The case for Active Storage systems
	The RDISK platform
	The ReMIX Platform

	A case study: Multimedia Content-Based Image Retrieval
	Similarity search algorithm
	Adapting the algorithm for hardware acceleration
	Mapping CBIR on the RDISK platform
	Mapping CBIR on the ReMIX platform

	Discussion

	Massively Parallel Accelerator for HMM Profile Base Sequence search
	Profile based sequence comparison
	The HMMER software suite

	Design space exploration for parallel HMMER
	Exploring scheduling/mappings
	Experimental validation

	Parallelizing through max-prefix inference
	Finding hidden parallelism in P7Viterbi kernel
	Mapping the full HMMER3.0 pipeline to hardware
	Experimental results

	Related Work
	Discussion

	Ultra Low Power Wireless Sensor Networks
	WSN platforms design challenges
	A new hardware platform model for WSN
	Microtask based System Level Design flow
	Synthesizing microtasks from C code
	System-Level Synthesis

	Experimental results
	Discussion

	Synthesis of Hardware accelerator for regular computations
	Representing loop nests as polyhedrons
	From processor arrays to process networks
	Efficient I/O management in processor arrays
	Conflict free I/O schedules in partitioned processor arrays
	Experimental results
	Discussion

	Control generation for hardware Process Networks
	Simple parameterized Controller
	Partitioned parameterized Controller
	Toward a Variant based controller
	Discussion

	Nested loop pipelining for HLS
	Checking pipelined coalescing legality
	Correcting coalescings by bubble insertion
	Results and validation
	Related work
	Discussion

	Conclusion
	Toward next generation of High-Level Synthesis tools
	Revisiting hardware synthesis in the polyhedral model
	Domain Specific Analyses for HLS

	Automatic parallelization for heterogeneous multi-cores
	Constraint programming for automatic parallelization
	Adaptive run-time parallelization for heterogeneous multi-core
	Parallel programming tools for non parallel programmers

	Model Driven Engineering and optimizing compilers
	Domain Specific Languages for high productivity parallel computing
	Software reuse in MDE through model typing

	Curiculum Vitae
	Selected publications
	Personal bibliography
	General references

