

Analyse de données multivariées et surveillance des processus industriels par analyse en composantes principales

thèse présentée par

Baligh Mnassri

pour obtenir le grade de Docteur de l'Université d'Aix-Marseille

devant le jury composé de

José Ragot	Rappo
Abdessamad Kobi	Rappo
Jean-Marc Thiriet	Exam
Rachid Outbib	Exam
Mustapha Ouladsine	Direct
El Mostafa El Adel	Co-di
Jacques Pinaton	Invité

Rapporteur Rapporteur Examinateur Examinateur Directeur de thèse Co-directeur de thèse Invité

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

12 octobre 2012

Laboratoire des Sciences de l'Information et des Systèmes – UMR CNRS 7296

Motivation 00	ACP 00	Problématique O	Critères existants 0000000	Notre contribution	Détection et diagnostic	Résultats 0000000000	Conclusion
Con	tex	te					

Utilisation de l'ACP pour la détection et le diagnostic de défauts.

Deux aspects :

- Théorique :
 - Démonstration de quelques résultats;
- Application :
 - Données simulées ;
 - Données réelles (ST Microelectronics).

Motivation 00	ACP 00	Problématique O	Critères existants 0000000	Notre contribution	Détection et diagnostic	Résultats 0000000000	Conclusion
Plan							

- Introduction et motivation
- 2 Analyse en Composantes Principales
- **3** Problématique du choix de modèle optimal
- Etude de l'existant et proposition de notre contribution pour :
 - Le choix du modèle optimal
 - Le diagnostic de défauts

5 Conclusion & perspectives

Motivati 00	on ACP 00	Problématique O	Critères existants 0000000	Notre contribution	Détection et diagnostic	Résultats 0000000000	Conclusion
Pla	n						

Introduction et motivation

- 2 Analyse en Composantes Principales
- **3** Problématique du choix de modèle optimal

Etude de l'existant et proposition de notre contribution pour :

- Le choix du modèle optimal
- Le diagnostic de défauts

5 Conclusion & perspectives

Motivation ●○	ACP 00	Problématique O	Critères existants 0000000	Notre contribution	Détection et diagnostic	Résultats 0000000000	Conclusion

Introduction

3

Motivation

Motivation A	CP DO	Problématique ○	Critères existants	Notre contribution	Détection et diagnostic	c Résultats Conclu 000000000 000		

Plan

Introduction et motivation

2 Analyse en Composantes Principales

Problématique du choix de modèle optimal

Etude de l'existant et proposition de notre contribution pour :

- Le choix du modèle optimal
- Le diagnostic de défauts

5 Conclusion & perspectives

Principe de l'Analyse en Composantes Principales

• Matrice de données $\mathbf{X} = [\mathbf{x}(1), \dots, \mathbf{x}(k), \dots, \mathbf{x}(N)]^T \in \mathbb{R}^{N \times m}$ collectées sur le système en fonctionnement normal

ACP

$$\mathbf{T} = \mathbf{X}\mathbf{P} \in \mathbb{R}^{N \times m}$$

- $\mathbf{T} \in \mathbb{R}^{N \times m}$ matrice des composantes principales (CPs)
- $\mathbf{P} \in \mathbb{R}^{m \times m}$ matrice de projection

Décomposition en valeurs/vecteurs propres de la matrice de covariance

$$\Sigma = \mathbb{E}\left\{\mathbf{x}\mathbf{x}^{T}\right\} = \frac{1}{N}\mathbf{X}^{T}\mathbf{X} = \mathbf{P}\Lambda\mathbf{P}^{T}$$

Motivation	ACP	Problématique	Critères existants	Notre contribution	Détection et diagnostic	Résultats	Conclusion
	00						

Modélisation par ACP

• Le modèle ACP est constitué des ℓ premières CPs :

 $P = \begin{bmatrix} \hat{P} & \tilde{P} \end{bmatrix}$

où
$$\hat{\mathbf{P}} \in \mathbb{R}^{m \times \ell}$$
 et $\tilde{\mathbf{P}} \in \mathbb{R}^{m \times (m-\ell)}$

Décomposition

Partie principale :

$$\hat{\mathbf{X}} = \mathbf{X}\hat{\mathbf{C}}$$

où $\hat{\mathbf{C}} = \hat{\mathbf{P}}\hat{\mathbf{P}}^T$

Partie résiduelle :

$$\tilde{\mathbf{X}} = \mathbf{X}\tilde{\mathbf{C}}$$

où $\tilde{\mathbf{C}} = \tilde{\mathbf{P}}\tilde{\mathbf{P}}^T$

Quelle est la valeur de ℓ ?

Motivation 00	ACP 00	Problématique ○	Critères existants 0000000	Notre contribution	Détection et diagnostic	Résultats 0000000000	Conclusion 000
Plan							

- Introduction et motivation
- 2 Analyse en Composantes Principales
- **3** Problématique du choix de modèle optimal
- Etude de l'existant et proposition de notre contribution pour :
 - Le choix du modèle optimal
 - Le diagnostic de défauts
- 5 Conclusion & perspectives

Motivation	ACP	Problématique	Critères existants	Notre contribution	Détection et diagnostic	Résultats	Conclusion
00	00	•	0000000	0000000	000000	0000000000	000

- q : le nombre théoriquement optimal des CPs qui est inconnu ;
- ℓ_{op} : le nombre optimal des CPs obtenu par un critère donné.
- Si $\ell_{op} > q$: sur-estimation du modèle ACP (plus de CPs qu'il en faut)
- Si $\ell_{op} < q$: sous-estimation du modèle ACP (moins de CPs qu'il en faut)

Conséquences

Problème de détection et isolation de défauts donc un diagnostic incorrect

Quelle est la valeur de ℓ_{op} ? et comment l'obtenir?

Motivation A		ACP 00	Problématique O	Critères existants	Notre contribution	Détection et diagnostic	Résultats 0000000000	Conclusion
	Plan							

- 2 Analyse en Composantes Principales
- **3** Problématique du choix de modèle optimal

Etude de l'existant et proposition de notre contribution pour :
Le choix du modèle optimal

• Le diagnostic de défauts

5 Conclusion & perspectives

Motivation 00	ACP 00	Problématique ○	Critères existants ●000000	Notre contribution	Détection et diagnostic	Résultats 00000000000	Conclusion					
Le choix du	Le choix du modèle optimal											
Crit	ères	s consid	érés									

- Critère AIC (Akaike Information Criterion);
- Oritère MDL (Minimum Description Lenght);
- Critère IE (Imbedded Error);
- Ourcentage Cumulé de la Variance : PCV ;
- Sourcentage de la Variance Résiduelle (ou Scree Test) : PVR ;
- Oritère de Kaiser-Guttman : KG ;
- Autocorrélation : AC;
- Solution Variance Non Reconstruite : VNR.

Critère :		AIC	MDL	IE	PCV	PVR	KG	AC	VNR
	Minimisation	\checkmark	\checkmark	\checkmark					\checkmark
Choix de ℓ_{op} par :	Seuil						\checkmark	\checkmark	
	%				\checkmark	\checkmark			
Données non réduites		\checkmark	\checkmark	\checkmark					
Bruit indépendant et ide	ntiquement distribué	\checkmark	\checkmark	\checkmark			E N A I		
Baligh Mnassri (L	SIS-AMU)	Soutena	nce de thèse		1:	2 octobre 20	12		13/4

Motivation 00	ACP 00	Problématique O	Critères existants ○●○○○○○	Notre contribution	Détection et diagnostic	Résultats 0000000000	Conclusion 000					
Le choix du	Le choix du modèle optimal											
Con	Contributions numériques											

- Une CP significative peut correspondre à une faible valeur d'autocorrélation (AC);
- En augmentant la variance de bruit, la décroissance des valeurs propres devient régulière : inexistence du point d'inflexion pour le critère PVR ;
- Pour PCV, l'augmentation du nombre des variables peut aboutir à de nombreuses CPs qui expliquent +80% de la variabilité totale;
- **§** KG ignore les CPs qui correspondent aux variables quasi-indépendantes.
- SAIC surestime le nombre nécessaire des CPs;
- **MDL** dépend du nombre d'observations *N*.

Motivation	ACP	Problématique	Critères existants	Notre contribution	Détection et diagnostic	Résultats	Conclusion			
			000000							
Le choix du modèle optimal										

Contributions théoriques

Hypothèses / IE :

- Bruit *i.i.d.* de variance σ^2 ;
- *m* : le nombre des variables considérées ;
- *q* : le nombre théoriquement optimal des CPs ;
- λ_q : la variance de la $q^{\text{ème}}$ CP en absence de bruit.

IE ne peut pas retenir la $q^{\text{éme}}$ CP si :

$$\mathring{\lambda}_q \geq \left(\frac{m-q+1}{q-1}\right)\sigma^2$$

• VNR ne peut pas prendre en compte la présence des variables indépendantes et quasi-indépendantes.

Motivation	ACP	Problématique	Critères existants	Notre contribution	Détection et diagnostic	Résultats	Conclusion					
00	00		000000	00000000	0000000	0000000000	000					
Le choix du modèle optimal												
Exer	Exemple simulé											

$$\begin{split} \mathring{x}_{1}(k) &= 3 + \exp(\cos(\frac{k}{15\pi})) & \mathring{x}_{9}(k) &= 10\cos(7\pi k) \\ \mathring{x}_{2}(k) &= \cos(\frac{1}{2\pi k})\sin(\frac{k}{2\pi}) & \mathring{x}_{10}(k) &= 2\mathring{x}_{8}(k) + \mathring{x}_{9}(k) \\ \mathring{x}_{3}(k) &= \arctan(50\pi k)\log(1 + \mathring{x}_{2}(k)^{2}) & \mathring{x}_{11}(k) &= -2\mathring{x}_{8}(k) + 3\mathring{x}_{9}(k) \\ \mathring{x}_{4}(k) &= \mathring{x}_{1}(k) + 3\mathring{x}_{2}(k) & \mathring{x}_{12}(k) &= \mathring{x}_{2}(k) + \mathring{x}_{8}(k) \\ \mathring{x}_{5}(k) &= \mathring{x}_{1}(k) - \mathring{x}_{2}(k) & \mathring{x}_{13}(k) &= (2 + \cos(0.2\pi k))^{-1} \\ \mathring{x}_{6}(k) &= \mathring{x}_{1}(k) + \mathring{x}_{3}(k) & \mathring{x}_{14}(k) &= \frac{40}{\pi}\cos(7\pi k)\arctan(\tan(\frac{9\pi}{200}(k - 900))) \\ \mathring{x}_{7}(k) &= \mathring{x}_{2}(k) + 3\mathring{x}_{3}(k) & \mathring{x}_{15}(k) &= \operatorname{sgn}(\sin(0.007\pi k)) \end{split}$$

- Bruit *i.i.d.* de variance σ^2 ;
- Données centrées non réduites pour AIC, MDL et IE;
- Données centrées réduites pour le reste des critères.

Motivation 00	ACP 00	Problématique O	Critères existants 0000●00	Notre contribution	Détection et diagnostic	Résultats 0000000000	Conclusion			
Le choix du modèle optimal										
Dén	naro	che								

Constitution de 4 ensembles de variables

- Ensemble \mathcal{A} est composé des 12 premières variables (5 CPs);
- Ensemble *B* est composé des 13 premières variables (6 CPs);
- Ensemble C est composé des 14 premières variables (7 CPs);
- Ensemble \mathcal{D} est composé de toutes les variables (8 CPs).

Chaque ensemble est généré selon 3 différentes variances de bruit

- $1^{\text{er}} \cos : \sigma^2 = 0.002$;
- $2^{\text{ème}} \cos : \sigma^2 = 0.2;$
- $3^{\text{ème}} \cos : \sigma^2 = 0.5.$

Motivation 00	ACP 00	Problématique ○	Critères existants	Notre contribution ●○○○○○○○	Détection et diagnostic	Résultats 0000000000	Conclusion 000				
Le choix du	Le choix du modèle optimal										
Nos	Nos contributions dans le choix du modèle optimal										

Indices de détection connus dans le cadre de l'ACP									
Indice de détection	Matrice caractéristique	Limite de contrôle							
γ	$\mathcal{M}^{rac{1}{2}}$	Γ^2							
T2	$\mathbf{\hat{P}}\hat{\Lambda}^{-rac{1}{2}}\mathbf{\hat{P}}^{T}$	τ^2							
SPE	$\tilde{\mathbf{P}}\tilde{\mathbf{P}}^T = \tilde{\mathbf{C}}$	δ^2							
SWE	$ ilde{\mathbf{P}} ilde{\Lambda}^{-rac{1}{2}} ilde{\mathbf{P}}^T$	ϵ^2							
φ	$\delta^{-1} ilde{\mathbf{C}} + au^{-1} \hat{\mathbf{P}} \hat{\Lambda}^{-rac{1}{2}} \hat{\mathbf{P}}^T$	β^2							
D	$\mathbf{P}\Lambda^{-\frac{1}{2}}\mathbf{P}^{T} = \Sigma^{-\frac{1}{2}}$	ϱ^2							

Tous les indices de détection ont des formes quadratiques. On peut travailler avec un seul indice généralisé γ :

$$\gamma(k) = \|\mathcal{M}^{\frac{1}{2}}\mathbf{x}(k)\|^{2} = \mathbf{x}^{T}(k)\mathcal{M}_{\mathbf{x}}(k)$$

• La variance non reconstruite utilisant l'indice γ :

$$\mathbf{VNR}_{\gamma}(\ell) = \sum_{j=1}^{m} \frac{\xi_j^T \,\mathcal{M}\,\Sigma\,\mathcal{M}\,\xi_j}{(\xi_j^T \Sigma\xi_j)(\xi_j^T\,\mathcal{M}\,\xi_j)^2}$$

VNR utilisant l'indice combiné : VNR_{φ}

$$\ell_{op} = \arg\min_{\ell} \left\{ \mathbf{VNR}_{\varphi}(\ell, \alpha) \right\}$$

VNR utilisant un nouvel indice combiné : VNR $_{\Psi}$

$$\ell_{op} = \arg\min_{\ell} \left\{ \mathbf{VNR}_{\Psi}(\ell, \alpha) \right\}$$

21/48

Motivation	ACP	Problématique	Critères existants	Notre contribution	Détection et diagnostic	Résultats	Conclusion			
				00000000						
Le choix du modèle optimal										
			-							

Nos contributions dans le choix du modèle optimal

- Considérons des nouvelles données $\mathbf{Y} = \mathbf{X}\Sigma^{-1}$ dont la matrice de covariance est Σ^{-1} ;
- En utilisant le principe de la variance non reconstruite, les CPs associées aux variables indépendantes et quasi-indépendantes seront considérées dans le sous-espace résiduel des données de **Y**.

Un changement de représentation des données : VNRVI

• Le nombre optimal des CPs dans les nouvelles données :

$$\kappa_{op} = \arg\min_{\kappa} \left\{ \mathbf{VNRVI}(\kappa) \right\}$$

• Le nombre optimal des CPs dans les données de X :

$$\ell_{op} = m - \kappa_{op} = m - \arg\min_{\kappa} \{ \mathbf{VNRVI}(\kappa) \}$$

Motivation 00	ACP 00	Problématique ○	Critères existants 0000000	Notre contribution ○○○●○○○○	Détection et diagnostic	Résultats 00000000000	Conclusion 000				
Le choix du modèle optimal											
Déd	Déductions										

- Les critères VNR_{φ} et VNR_{Ψ} sont empiriques ;
- VNRVI montre des résultats plus avantageux que tout le reste des critères ;
- Pour une sélection correcte du nombre optimal des CPs, le nombre d'observations N nécessaire pour VNRVI est largement inférieur à celui pour MDL.

Motivation 00	ACP 00	Problématique O	Critères existants	Notre contribution	Détection et diagnostic	Résultats 0000000000	Conclusion				
Le diagnosti	Le diagnostic de défauts										
Déte	ecti	on et dé	tectabili	ité de dé	fauts						

Détection de défauts

Le processus est considéré en fonctionnement anormal (présence d'un défaut) à l'instant *k* si :

$$\gamma(k) > \Gamma^2 = g_\gamma \chi^2_{(h_\gamma, \alpha)}$$

En présence d'un défaut $\mathcal{F}_{\mathcal{J}}$ affectant le $\mathcal{J}^{\rm ème}$ ensemble composé de r variables, on a

$$\mathbf{x}(k) = \mathbf{x}^*(k) + \Xi_{\mathcal{J}}\mathbf{f}(k)$$

où $\Xi_{\mathcal{J}} \in \mathbb{R}^{m \times r}$ et $\mathbf{f} \in \mathbb{R}^{r}$.

Détectabilité de défauts

 $\mathcal{F}_{\mathcal{T}}$ est garanti détectable par l'indice γ si :

$$\|\mathcal{M}^{\frac{1}{2}}\Xi_{\mathcal{J}}\mathbf{f}(k)\| > 2\Gamma$$

ヨト・モラト

Méthode de reconstruction										
			0000000	0000000	000000	0000000000				
Motivation	ACP	Problématique	Critères existants	Notre contribution	Détection et diagnostic	Résultats	Conclusion			

Isolation et isolabilité de défauts par reconstruction

Reconstruction multidimensionnelle

$$\mathbf{x}_{\mathcal{I}}(k) = \mathbf{x}(k) - \Xi_{\mathcal{I}} \mathbf{\hat{f}}_{\mathcal{I}}(k)$$

Estimation de l'amplitude du défaut

$$\hat{\mathbf{f}}_{\mathcal{I}}(k) = \arg\min_{\mathbf{f}(k)} \{\gamma_{\mathcal{I}}(k)\}$$

où $\gamma_{\mathcal{I}}(k) = \|\mathcal{M}^{\frac{1}{2}}\mathbf{x}_{\mathcal{I}}(k)\|^2$

• Le vecteur de reconstruction en utilisant l'indice γ :

$$\mathbf{x}_{\mathcal{I}}(k) = (\mathbf{I}_m - \Xi_{\mathcal{I}} (\Xi_{\mathcal{I}}^T \mathcal{M} \Xi_{\mathcal{I}})^{-1} \Xi_{\mathcal{I}}^T \mathcal{M}) \mathbf{x}(k)$$

• Le \mathcal{I} *ème* ensemble des variables est reconstructible si $\mathcal{M}^{\frac{1}{2}} \Xi_{\mathcal{I}}$ est de rang plein.

Motivati 00	on ACP 00	Problématique ○	Critères existants	Notre contribution	Détection et diagnostic	Résultats 00000000000	Conclusion			
Méthode de reconstruction										
-	1		1 1 010. /	1 1/6			•			

Isolation et isolabilité de défauts par reconstruction

Identification de défauts

$$\hat{\mathcal{I}}_{\gamma} = \arg_{\mathcal{I} \in \mathfrak{I}} \left\{ \gamma_{\mathcal{I}}(k) \leq \Gamma_{\mathcal{I}}^2 \right\}$$

• $\Gamma_{\mathcal{I}}^2$: seuil de contrôle de $\gamma_{\mathcal{I}}$;

• \Im : ensemble des combinaisons des directions de reconstructions possibles.

Isolabilité de défauts

avec $\mathcal{M}^{\frac{1}{2}} \Xi_{\mathcal{T}} = \Xi_{\mathcal{T}}^{o} \mathbf{D}_{\mathcal{T}} \mathbf{V}_{\mathcal{T}}^{T}$.

 $\mathcal{F}_{\mathcal{J}}$ est garanti isolable ($\hat{\mathcal{I}}_{\gamma} = \mathcal{J}$) en utilisant l'indice γ si

$$|(\mathbf{I}_m - \Xi_{\mathcal{I}}^o \Xi_{\mathcal{I}}^{oT}) \mathcal{M}^{\frac{1}{2}} \Xi_{\mathcal{J}} \mathbf{f}(k)|| > 2\Gamma$$

Baligh Mnassri (LSIS-AMU)

Motivation	ACP	Problématique	Critères existants	Notre contribution	Détection et diagnostic	Résultats	Conclusion			
					0000000					
Méthode de reconstruction										
	-									

Analyse d'isolabilité de défauts

- $\mathcal{F}_{\mathcal{J}}$ est garanti isolable par :
 - l'indice *SPE* si $\|\tilde{\mathbf{u}}(k)\|^2 > 4\delta^2$
 - l'indice *T*2 si $\|\check{\mathbf{u}}(k)\|^2 > 4\tau^2$
 - l'indice φ si $\|\bar{\mathbf{u}}(k)\|^2 > 4\beta^2$

$$\|\bar{\mathbf{u}}(k)\|^{2} = (\delta^{-1}\|\tilde{\mathbf{u}}(k)\|)^{2} + (\tau^{-1}\|\check{\mathbf{u}}(k)\|)^{2} + \|\mathbf{u}(k)\|^{2} > (2\beta)^{2}$$

2*B*

 $\|\tilde{\mathbf{u}}(k)\|\delta$

2

||u(k)|

 $\|\mathbf{\check{u}}(k)\|\tau^{-1}$

Motivation	ACP	Problématique	Critères existants	Notre contribution	Détection et diagnostic	Résultats	Conclusion		
					0000000				
Méthodes des contributions									

Les différentes contributions

Méthode	Indice						
	SPE	T2	φ				
CDC	[Miller et al.1998]	[Wise <i>et al.</i> 2006]	[Alcala and Qin2011]				
PDC	[Mnassri <i>et al</i> .2008, Mnassri <i>et al</i> .2009]	[Nomikos and MacGregor1995]	[Alcala and Qin2011]				
DC	[Alcala and Qin2011]	[Qin et al.2001]	[Cherry and Qin2006]				
RBC	[Alcala and Qin2009]						
ABC	[Raich and Çinar1996] et	[Yoon and MacGregor2001]	[Alcala and Qin2011]				

Les contributions se calculent par rapport aux indices de détection.

Diagnostic de défauts en utilisant les contributions

• Contributions par décomposition complète : CDC

$$CDC_i^{\gamma}(k) = \mathbf{x}^T(k) \,\mathcal{M}^{\frac{1}{2}} \,\xi_i \xi_i^T \,\mathcal{M}^{\frac{1}{2}} \,\mathbf{x}(k)$$

• Contributions par décomposition partielle : PDC

$$PDC_i^{\gamma}(k) = \mathbf{x}^T(k) \,\mathcal{M}\,\xi_i\xi_i^T\mathbf{x}(k)$$

• Contributions diagonales : DC

$$DC_i^{\gamma}(k) = \mathbf{x}^T(k)\xi_i\xi_i^T \mathcal{M}\xi_i\xi_i^T \mathbf{x}(k)$$

• Contributions par reconstruction : *RBC*

$$RBC_{i}^{\gamma}(k) = \frac{\mathbf{x}^{T}(k)\,\mathcal{M}\,\xi_{i}\xi_{i}^{T}\,\mathcal{M}\,\mathbf{x}(k)}{\xi_{i}^{T}\,\mathcal{M}\,\xi_{i}}$$

RBC multidimensionnelle

$$\operatorname{RBC}_{\mathcal{I}}^{\gamma}(k) = \mathbf{x}^{T}(k) \,\mathcal{M}^{\frac{1}{2}} \,\Xi_{\mathcal{I}}^{o} \Xi_{\mathcal{I}}^{oT} \,\mathcal{M}^{\frac{1}{2}} \,\mathbf{x}(k)$$

RBC ratio

$$RBCr_{\mathcal{I}}^{\gamma}(k) = \frac{\gamma(k)}{RBC_{\mathcal{I}}^{\gamma}(k) + \Gamma_{\mathcal{I}}^{2}}$$

• Identification de défauts par RBCr

$$\hat{\mathcal{I}}_{RBCr} = \arg_{\mathcal{I} \in \mathfrak{I}} \left\{ RBCr_{\mathcal{I}}^{\gamma}(k) \leq 1 \right\}$$

Motivation	ACP	Problématique	Critères existants	Notre contribution	Détection et diagnostic	Résultats	Conclusion
00	00	0	0000000	0000000	0000000	•000000000	000

Exemple numérique

•
$$\mathbf{x}(k) = \mathbf{\dot{x}}(k) + \mathbf{v}(k)$$
, où $\mathbf{\dot{x}}(k) = \begin{bmatrix} \mathbf{\dot{x}}_1(k), \dots, \mathbf{\dot{x}}_8(k) \end{bmatrix}^T$ et $\mathbf{v}(k) \sim \mathcal{N}(\mathbf{0}_8, (0.7)^2 \mathbf{I}_8)$

$$\begin{aligned} \mathring{x}_{1}(k) &= 1 + u(k)^{2} + \sin(\frac{k}{3}) & \mathring{x}_{5}(k) &= \mathring{x}_{1}(k) - \mathring{x}_{2}(k) \\ \mathring{x}_{2}(k) &= 2\sin(\frac{k}{6})\cos(\frac{k}{4})\exp(-\frac{k}{N}) & \mathring{x}_{6}(k) &= 2\mathring{x}_{1}(k) + \mathring{x}_{2}(k) \\ \mathring{x}_{3}(k) &= \log(\mathring{x}_{2}(k)^{2}) & \mathring{x}_{7}(k) &= \mathring{x}_{1}(k) + \mathring{x}_{3}(k) \\ \mathring{x}_{4}(k) &= \mathring{x}_{1}(k) + \mathring{x}_{2}(k) & \mathring{x}_{8}(k) &\sim \mathcal{N}(0,1) \end{aligned}$$

avec $u(k) \sim \mathcal{N}(0, (0.02)^2)$

- N = 3000 observations.
- Un défaut simple $(\mathcal{F}_{\{3\}})$ affectant x_3 dans l'intervalle [1550, 1800] ;
- Un défaut multiple ($\mathcal{F}_{\{1,7\}}$) affectant simultanément x_1 et x_7 dans l'intervalle [2000,2400] ;
- Un défaut multiple (\$\mathcal{F}_{{6,8}}\$) affectant simultanément \$x_6\$ et \$x_8\$ dans
 l'intervalle [2600,2900].

00	00	0	0000000	00000000	OOOOOOOO	Resultats 000000●000	000
Rési	ılta	ts du di	iagnosti	c en utili	sant la rec	ronstruc	rtion
et la	RB	Cr					

Défaut	Indice						
	SPE	SWE		T2		φ	D
${\cal F}_{\{1,7\}}$	{1,7} et -	{1,3}	$\left \begin{array}{c} \{1,7\},\\ \{3,7\} \end{array}\right.$	{1,3}	et	{1,7}	{1,7}
$\mathcal{F}_{\{6,8\}}$	$\{1,6\}, \{4,6\}, \{5,6,8\}$	2,6}, {3,6}, ,6}, {6,7} et	{6,8}			{6,8}	{6,8}

TABLE: Ensembles des variables identifiés responsables des défauts multiples par la reconstruction et la *RBCr* en utilisant les différents indices de détection

Motivation	ACP	Problématique	Critères existants	Notre contribution	Détection et diagnostic	Résultats	Conclusion
			0000000	0000000	0000000	00000000000	

Résultats du diagnostic en utilisant la *RBC*

Défaut	Indice							
	SPE	SWE	T2	$ \phi$	D			
$\mathcal{F}_{\{1,7\}}$	{1,7} et	{1,3}	$\{1,7\}$ et $\{1,3\}$	{1,7}	{1,7}			
$\mathcal{F}_{\{6,8\}}$	{6,8} dans [2820,2900] {6,8}			{6,8}	{6,8}			

TABLE: Ensembles des variables identifiés responsables des défauts multiples par la

 RBC en utilisant les différents indices de détection

Motivation	ACP	Problématique	Critères existants	Notre contribution	Détection et diagnostic	Résultats	Conclusion
			0000000	0000000	0000000	0000000000	

Résultats en utilisant des données réelles

- Une base de données fournie par ST Microelectronics (m = 70 variables et N = 2760 observations);
- Le modèle ACP est constitué de 18 CPs;
- SPE et T2 de Hotelling sont utilisés pour la détection de défauts.

Résultats en utilisant des données réelles

• Considération de *PDC*^{SPE} et *PDC*^{T2} pour le diagnostic du défauts lors de la 2717^{ème} observation ;

Motivation 00	ACP 00	Problématique O	Critères existants	Notre contribution	Détection et diagnostic	Résultats 0000000000	Conclusion
D1							

Plan

- Introduction et motivation
- 2 Analyse en Composantes Principales
- **3** Problématique du choix de modèle optimal

Itude de l'existant et proposition de notre contribution pour :

- Le choix du modèle optimal
- Le diagnostic de défauts

5 Conclusion & perspectives

Motivation	ACP	Problématique	Critères existants	Notre contribution	Détection et diagnostic	Résultats	Conclusion
							000

Conclusion & perspectives

Conclusion

- Démonstrations théoriques montrant la limitation dans l'utilisation de deux critères ;
- Trois nouveaux critères de variance non reconstruite basés sur le classique indice combiné, un nouvel indice combiné et un changement de représentation des données;
- Les contributions et l'approche de reconstruction sont utilisées pour l'isolation de défauts ;
- Analyse de l'isolabilité de défauts par reconstruction de l'indice combiné, *SPE* et *T*2;
- Une nouvelle contribution à l'indice *SPE* est proposée pour le diagnostic des défauts simples ;
- Deux nouvelles méthodes sont proposées pour le diagnostic des défauts multiples.

Motivation	ACP 00	Problématique O	Critères existants	Notre contribution	Détection et diagnostic	Résultats 0000000000	Conclusion

Conclusion & perspectives

Perspectives

- Validation sur des données expérimentales (ST Microelectronics);
- Extension :
 - ACP dynamique;
 - ACP robuste;
 - ACP à noyaux.

47/48

Motivation	ACP	Problématique	Critères existants	Notre contribution	Détection et diagnostic	Résultats	Conclusion
			0000000	0000000	0000000	0000000000	000

Merci pour votre attention

48/48

Motivation	ACP	Problématique	Critères existants	Notre contribution	Détection et diagnostic	Résultats	Conclusion
							000

🔋 C. F. Alcala and S. J. Qin.

Reconstruction-based contribution for process monitoring. *Automatica*, 45(7):1593–1600, 2009.

C. F. Alcala and S. J. Qin.

Analysis and generalization of fault diagnosis methods for process monitoring.

Journal of Process Control, 21(3):322–330, 2011.

G. A. Cherry and S. J. Qin.

Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis.

IEEE Transactions on Semiconductor Manufacturing, 19(2):159–172, 2006.

P. Miller, R. E. Swanson, and C. E. Heckler. Contribution plots : A missing link in multivariate quality control. *Applied Mathematics and Computer Science*, 8(4) :775–792, 1998.

B. Mnassri, E.-M. El Adel, and M. Ouladsine.
 Fault Localization Using Principal Component Analysis Based on a New
 Contribution to the Squared Prediction Error.

00	tion ACP 00	Problématique O	Critères existants 0000000	Notre contribution	Détection et diagnostic	Résultats 0000000000	Conclusion ○○●
	In 16t Ajacci	h <i>Mediterrar</i> 0, France, 2	nean Confere 1008. IEEE.	nce on Contro	l and Automatic	on, pages 65	5–70,
	B. Mn Fault I Plots. In 7th Proces	assri, EM. Detection a <i>IFAC Sympo</i>	El Adel, B. nd Diagnos osium on Fat 34–839, Bar	Ananou, and is Based on F ilt Detection, celona, Spair	M. Ouladsine CA and a New Supervision and	e. v Contribut ! Safety of Te	ion echnical
	P. Nomikos and J. F. MacGregor. Multivariate SPC Charts for Monitoring Batch Processes. <i>Technometrics</i> , 37(1):41–59, 1995.						
	S. J. Q On un proces <i>Journa</i>	in, S. Valle, aifying mult as monitorin al of Chemory	and M. J. P tiblock anal ng. <i>uetrics,</i> 15(9)	iovoso. ysis with app :715–742, 200	olication to dec	entralized	
	A. Rai Statist Multiv	ich and A. Q ical Process variable Co	Çinar. 5 Monitorin; ntinuous Pr	g and Distur ocesses.	oance Diagnos	is in	
\bigcirc	Ba	ıligh Mnassri (L <u>SIS-A</u>	.MU)	Soutenance <u>de thè</u>	 Image: A contract of the second secon	< ■ > < ■ >	≡ ∽९ペ 48/48

Motivation	ACP	Problématique	Critères existants	Notre contribution	Détection et diagnostic	Résultats	Conclusion
			0000000	0000000	0000000	0000000000	000

AIChE Journal, 42(4) :995–1009, 1996.

B. M. Wise, N. B. Gallagher, R. Bro, J. M. Shaver, W. Windig, and R. S. Koch.

PLS Toolbox User Manual.

Eigenvector Research, Inc., Wenatchee, USA, 2006.

S. Yoon and J. F. MacGregor.

Fault diagnosis with multivariate statistical models part I : using steady state fault signatures.

Journal of Process Control, 11(4):387–400, 2001.

