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Introdution
In this doument, we propose new models and resolution shemes for problems thatbelong to the family of Cutting and Paking (C&P) problems [90℄. The most "basi"NP-omplete problems in the C&P �eld are the bin-paking and the knapsak prob-lems. In the former, the objetive is to �nd the minimum number of bins needed topak all the items.Problem 1 (Bin-paking Problem (BPP)) Given a set I of items i of size ci,what is the minimum number of bins of size C needed to pak all the items of I?The BPP is the main problem addressed here, but di�erent knapsak problemsalso appear as subproblems throughout the doument. In this seond problem, allitems annot be paked in the ontainers, and the objetive is to maximize the pro�tassoiated with the input items.Problem 2 (Knapsak Problem (KP)) Given a set I of items i of size ci and pro�t
pi, and a knapsak of size C, �nd the subset of I whose total size is smaller than Cwhih maximizes the total pro�t of the seleted items.The rather simple struture of the lassial BPP has made this problem one of themost popular to test new methods, or to prove theoretial results. For example, itsvariant of utting-stok has been one of the �rst problems to be solved through olumngeneration methods [50,51℄, and BPP is one of the favorite subjets of approximabilitystudies (see for example [38℄). These basi (yet hard) C&P problems an be seenas "laboratories" in whih new tehniques are tested. Therefore, many results �rstproposed for these problems lead to improvements for the resolution of many others.For solving hard multi-dimensional paking problems e�iently, the literature showsthat the best results are ahieved using meta-heuristis, mathematial programmingand onstraint programming (CP). The �rst family of resolution method is e�etivefor large size instanes (see [72℄ for example), while CP an be more e�ient thanheuristis for problems involving one bin only (retangle plaement problems) [10℄.For some partiular utting problems, where there are many instanes of eah itemtype, mathematial programming an even be faster than greedy algorithms. Thisjusti�es the fat that most of our algorithms use di�erent resolution methods in aollaborative way to takle paking problems. 1



2 INTRODUCTIONIn this doument, we propose new models and methodologies that we apply to threefamilies of paking problems. In Chapter 1, we study deomposition methods and meta-heuristis based on so-alled strategi osillation. We apply these tehniques to pakingproblems with di�erent kinds of on�its. In Chapter 2, we deal with the oneptof dual-feasible funtions, whih are used to derive polynomial-time lower bounds forseveral bin-paking problems, and improve uts for integer linear programs. In Chapter3, we propose new models for two di�erent paking problems in two dimensions. We usethese models into methods that use a ombination of operations researh and onstraintprogramming tehniques.Throughout the doument, we follow a onsistent methodology. A �rst feature ofour work is to use tehniques from di�erent �elds: most notably integer programming,onstraint programming, meta-heuristis, and graph theory. Although "hybrid" wouldbe too strong a word, we always use these di�erent methods in a ollaborative way,whih improves the results that would be obtained by eah method separately.Chapter 1 is devoted to di�erent kinds of deomposition methods and so-alledstrategi osillation. We used these methods to design lower and upper boundingstrategies for paking problems with on�its. In partiular, we show that these de-omposition methods an lead to e�etive ollaborative resolution shemes. Our teh-niques rely on two types of deompositions: Dantzig-Wolfe deomposition [39℄ of linearprograms, and tree-deomposition [83℄ of graphs. We �rst propose a resolution methodfor the bin-paking problem with pairwise on�its [49℄, based on the deomposition ofthe on�it graph into several lusters. Eah luster an be solved independently if apartition based on the deomposition is omputed. This framework is exploited by atabu searh, whih assigns and remove items to/from lusters. The seond problemaddressed is a new bin-paking problem with on�its met in a multi-objetive ontext.The number of bins is limited, and we need to minimize the number of on�its in thebins. For this problem, we propose a method based on linear-programming and olumngeneration. Our method makes a good use of heuristi and meta-heuristi methods forgenerating the initial basis, and the olumns at eah step of the proess. Finally, weaddress the bin-paking problem with fragile items [5℄, in whih on�its are modelledby a level of fragility for eah item. We propose a olumn generation sheme for solvingthis problem. We designed a dynami programming sheme for generating iterativelythe olumns, and a meta-heuristi method for initializing the master problem. Thethree meta-heuristis proposed in this hapter are based on the onept of strategiosillation, in whih the searh osillates from feasible to unfeasible, or omplete toinomplete solutions.Chapter 2 is learly onneted to mathematial programming and heuristis. It isdediated to so-alled dual-feasible funtions (DFF) [75℄, related to olumn-generationtehniques for the bin-paking problem and duality. These funtions are used to derivelower bounds for paking problems, but they an also strengthen valid uts in integerprograms (see for example [1℄). This hapter gives an omprehensive overview of the



INTRODUCTION 3onept of DFF, and hints based on experimentation to determine the problems forwhih it an be generalized. In the �rst part of this hapter, we desribe the onept ofDFF and show how it is related to other onepts in the literature. Then we survey theliterature in whih dual-feasible funtions are used (sometimes impliitly, sometimesunder a di�erent name), and stress the link with superadditive funtions used in integerprogramming. We show that a few di�erent tehniques are su�ient to generate mostfuntions of the literature. The seond part of Chapter 2 deals with extensions of thisonept to various bin-paking problems (most notably two-dimensional problems, andthe addition of on�it-based onstraints).Chapter 3 deals with an important issue in two-dimensional utting/paking prob-lems: retangle plaement problems. This problem has been the subjet of a largenumber of ontributions [9, 10, 43�45,54, 67, 79, 82℄. To our knowledge, methods basedon onstraint programming are the most e�ient exat algorithms for these problems(see [10℄ for example). This an be explained by the fat that linear relaxations of theinteger models dediated to these problems are generally weak. We propose new mod-els for two di�erent retangle plaement problems: the regular ase, and the guillotinease. We �rst show that the regular ase is tightly linked with umulative shedulingproblems. This allows us to use powerful results from the sheduling �eld (energetireasoning [41℄, branhing shemes, et.). The obtained method relies on an e�etiveombination of operations researh and CP tehniques. We also propose the �rst e�e-tive graph-theoretial model for the guillotine ase, whih aptures the ombinatorialstruture of the patterns, and helps designing a CP-based resolution method. For bothproblems, the e�ienies of our methods, whih are able to ompete with the bestmethods of a large literature, rely on the strength of the new models, but also on thenew propagation and pruning algorithms.





Chapter 1Deomposition methods and strategiosillation for bin-paking problemswith on�its
The work desribed in this hapter has been published in an international journal [65℄.Two reports [31,64℄ are also submitted to international journals.1.1 IntrodutionIn this hapter, we desribe our lower and upper bounds for various bin-paking prob-lems with on�its using deomposition methods and meta-heuristis based on strategiosillation.Handling on�its is one of the �rst additional onstraints to be demanded in indus-trial appliations. Inompatibilities an be modelled in many ways. In this doument,we address three variants: hard on�its, soft on�its, and fragilities. Given the dif-�ulty of these problems, and the time that would be entailed by an exat resolution,we fous on heuristi and lower bounding methods.Paking problems with on�its are generally harder to solve than the lassial binpaking problem (BP). Whereas a simple Integer Linear Programming (ILP) formula-tion an �nd good solutions for BP and in many ases good lower bounds in a smallamount of time, this is generally not the ase with on�its. Sine these problems aredi�ult, a sensible way of addressing them is to deompose them into subproblemsthat will be hopefully easier to solve. We will fous on two partiular deompositionmethods: tree-deomposition of graphs and Dantzig-Wolfe deomposition of ILP.The methods that we desribe in this hapter share some similarities. The �rst,as hinted above, is to rely on deomposition methods. The seond is to generatesolutions using meta-heuristis based on so-alled strategi osillation. The idea isto osillate between two sets of solutions: omplete/inomplete for the �rst problem,over-onstrained/relaxed for the seond, and feasible/non-feasible for the third. Weused this osillation strategies beause, given a neighborhood, the on�its may forbidto travel simply from one good solution to a lose one in the solution spae (beause5



6 DECOMPOSITION AND STRATEGIC OSCILLATIONnon feasible or non omplete solutions are enountered on the shortest path betweenthem).The �rst problem onsidered is the lassial bin-paking problem with on�its(BPC). In this problem, on�its between two items are forbidden, and are modelledwith a graph. We show how tree-deomposition an be used to solve this problem. Ap-plying this deomposition to BPC is not straightforward, sine �nding a partition of theitems based on the tree deomposition is a hard problem. We propose several heurististo address this problem, and a tabu searh based on a onstrution/destrution shemewhere items are assigned to and de-assigned from lusters.The seond problem onsidered is a new problem, whih we name min-on�it pak-ing problem (MCBP). We met this problem in the ontext of multi-objetive optimiza-tion. The on�its are of the same type as the �rst problem, but this time, the numberof bins is limited, and the objetive is to minimize the number of violated on�its.We apply Dantzig-Wolfe deomposition to MCBP. Two di�ulties arise: generating agood initial basis and iteratively generating the olumns in an e�ient manner. Forthe initial basis, we designed a tabu-searh based on osillation between solutions usingdi�erent numbers of bins. We proposed heuristis, a loal searh method and two ILPmodels to generate the olumns iteratively. The former are improved by the means ofuts added to the models.The third problem features a di�erent variant of on�its. Eah item has a fragility,and the total size of the items in a bin annot be larger than the smallest fragility of anitem in the bin. We used a methodology similar to the previous problem (olumn gen-eration). Initial olumns are generated by a meta-heuristi, a Variable NeighborhoodSearh (VNS), based on an osillation between feasible and unfeasible solutions. Thesubproblem is solved through a new dynami programming sheme. It outperformsour two ILP models and it �nds a solution within a small amount of time for all ourinstanes.1.2 A tree-deomposition based resolution sheme forthe bin-paking with on�itsIn this setion, we deal with the lassial bin-paking problem with on�its. Themethod we propose is generi and an be used for both one- and multi-dimensionalases of the problem (the geometri onstraints are handled by sub-routines). In thisdoument, we fous on the two-dimensional ase.Problem 3 (Two-dimensional Bin-paking Problem with Con�its (BPC)) Let
I = {1, . . . , n} be a set of retangular items i of width wi and height hi, a bin B ofwidth W and height H, and G = (I, E) a on�it graph. Two items i and j are inon�it if (i, j) ∈ E. What is the minimum number of bins needed to pak all items of



A TREE-DECOMPOSITION BASED HEURISTIC FOR THE BPC 7
I in bins of type B in suh a way that two on�iting items are not paked in the samebin, and no two items overlap?The problem is de�ned with a on�it graph. In the following, we mainly use theompatibility graph Ḡ = (I, I × I \E). Our deomposition method will be applied onthis graph.Several heuristis have been proposed for the one-dimensional version of BPC [46,49℄. The most e�etive are based on lassial any-�t algorithms originally designedfor BP, and on the searh of liques in the graph. The �rst-�t dereasing algorithmsort the items by dereasing size, and pak the items one by one in this order in the�rst bin that an aommodate it. For the two-dimensional ase, the same approahan be used. It leads to a larger omputing time sine verifying that an item anbe paked into a bin is more di�ult in two dimensions. Pratially speaking, weuse the algorithm bottom-left of Co�man [37℄. Other heuristis an also be used (seethe methods desribed in [71, 73℄ for example). Unfortunately, in many ases, thesealgorithms do not lead to interesting results, sine they do not take into aount thestruture of the graph. In the sequel, we show how a deomposition method an helpsuh a algorithms to �nd a better solution.Some methods dediated to the one-dimensional ase of BPC [49℄ rely on maximalliques or stable sets in the graph. Finding a stable set in the ompatibility graph givesa subset of items that have to be paked in di�erent bins. On the ontrary, �ndinga lique gives a subset of ompatible items that an be paked together. This notionan be generalized using the onept of tree-deomposition applied to the ompatibilitygraph.In a tree-deomposition, the graph is deomposed into lusters of verties onnetedin a tree. Eah luster orresponds with a subproblem to solve. A property of thisdeomposition method is that eah lique of the graph is ontained entirely in at leastone luster. Consequently, even if some on�iting items remain inside the lusters,the ompatibility graph assoiated with eah subproblem should be denser, and thusalgorithms designed for the lassial BP should be more e�etive when applied to thedi�erent lusters.One a deomposition is omputed, our method solves the problem related to eahluster separately, and merges the solutions found. The most ruial issue is that agiven item/vertex an belong to several lusters of the deomposition. In a �rst phase,we assign eah item to a unique luster (and thus this item is removed from the otherlusters). We show that �nding the best partition of the items into the lusters isNP-hard and we desribe several heuristis to �nd good solutions.Finally a tabu searh based on our framework and strategi osillation is proposed.The idea is to alternate onstrution and destrution phases in whih items are re-spetively assigned and de-assigned from the lusters. Our methods are tested againstinstanes derived from the literature. Our omputational experiments show the e�e-



8 DECOMPOSITION AND STRATEGIC OSCILLATIONtiveness of our approah.1.2.1 Tree-deomposition and graph triangulationWe now de�ne the notion of tree-deomposition, whih will be applied to the ompati-bility graph of the BPC in the sequel.A tree-deomposition is a speial mapping of a graph into a set of lusters linkedin a tree.De�nition 1.2.1 (Robertson and Seymour [83℄) A tree-deomposition of a given graph
G = (V,E) is a pair (C, T ) where T = (N , A) is a tree with node set N and edge set
A, and C = {Ci : i ∈ N}, is a family of subsets of V suh that:1. ∪i∈NCi = V ,2. ∀(v, w) ∈ E, ∃Ci ∈ C ontaining both items v and w,3. ∀i, j, k ∈ N , if j is on the path from i to k in T , then Ci ∩ Ck ⊆ Cj.Figure 1.1 shows a graph G with eight verties, and a tree deomposition of G ontoa tree with six nodes. The set of lusters is C = {C1 = {0, 1}, C2 = {1, 2, 5, 6}, C3 =

{2, 3, 6}, C4 = {3, 6, 7}, C5 = {3, 4}}.
Figure 1.1: A graph G and a possible tree-deomposition for GThe width w(C, T ) of a tree-deomposition is equal to maxi∈N (|Ci| − 1). Thetreewidth tw(G) of a graph G is de�ned as min{w(C, T )} where the minimum is takenover all tree-deompositions (C, T ) of G. Whereas for some graph families, suh as treesand series-parallel graphs, one an ompute the treewidth in linear time, omputing thetreewidth of a general graph is a NP-omplete problem. Several papers are devoted toheuristis for this problem (see Koster et al. [68℄ or our paper [36℄. The most famous(and simple) method is Maximal Cardinality Searh (MCS) [85℄, whih will be used inthis doument.The notion of tree-deomposition is strongly onneted with the lass of triangulatedgraphs.De�nition 1.2.2 A graph is triangulated if every yle of length > 3 has a hord, i.e.an edge joining two non-onseutive verties of a yle.



A TREE-DECOMPOSITION BASED HEURISTIC FOR THE BPC 9Tarjan and Yannakakis [85℄ showed that any triangulated graph ontains at most nmaximal liques, and proposed an algorithm to enumerate these liques in linear time.Computing a tree-deomposition for a graph is equivalent to �nding a triangulationof this graph, i.e. �nding a suitable set of edges to add to the graph to obtain atriangulated graph. Then, the lusters are obtained by enumerating in linear time themaximal liques of the triangulated graph.1.2.2 A general sheme for applying a tree-deomposition tothe bin-paking problem with on�itsIn this setion, we present our framework for applying tree-deomposition to the BPC.One a tree-deomposition is obtained, whih means that the set of lusters was iden-ti�ed, eah item has to be assigned to a spei� luster to prevent items belongingto several lusters from being paked more than one. We all suh an assignment aluster-separation and show that �nding the best luster-separation is NP-omplete.Then we propose a �rst family of heuristis to �nd fast solutions for this problem.Given a on�it graph G = (I, E), let us denote by G = (I, I × I \ E) the orre-sponding ompatibility graph. Our method works as follows. The tree-deompositionis �rst applied to the ompatibility graph G. Eah luster is related to a set of itemsthat indues a smaller and hopefully less dense subproblem than the original problem.Then eah luster is solved independently. If the density of the graph has been sig-ni�antly dereased, algorithms dediated to the lassial bin-paking should be moree�etive. Finally, the partial solutions obtained are merged into a unique solution.Now suppose the graph of Figure 1.1 is a graph of ompatibility. We an notiethat a vertex may belong to several lusters. For example, vertex 6 belongs to C2, C3and C4. If the orresponding item is treated as many times as the vertex appears in aluster, the solution obtained will be of weak quality.Algorithm 1 shows a step-by-step desription of the new approah. At line 1, thegraph of ompatibility is tree-deomposed. A luster-separation is omputed at line 2.The separated lusters are then solved as subproblems by the means of any resolutionmethod at lines 4-5. Finally, at line 6, an improving heuristi is applied to the �nalsolution. This last step is not mandatory, but it allows us to partially orret the e�etsof a bad luster-separation.When the partition of the item set is realized, we use a heuristi to solve the induedsubproblem. We used an adaptation of the Bottom-Left algorithm [37℄.Note that although only heuristis are used in this doument, our framework allowsexat methods to be used in eah step of the algorithm (omputing the deomposition,partitioning, paking, improving). This would lead to better results, but also to muhmore time-onsuming methods.



10 DECOMPOSITION AND STRATEGIC OSCILLATIONAlgorithm 1: A Tree-Deomposition based framework for solving BPC.input : Set I of n items and G = (I, E) graph of on�its.output: A Paking of the n items in a set B of bins.
(C, T )←− TreeDecomposition(G);1
µ(C, T )←− ClusterSeparation(C, T );2
B ←− ∅;3 foreah Ci ∈ µ(C, T ) do4

B ←− B ∪ ResolutionMethod(Ci);5
B ←− ImprovingHeuristic(B);61.2.3 The luster-separation problemAn important issue in the new approah is to �nd a suitable partitioning of the itemsin the lusters. We all suh a partitioning a luster-separation.De�nition 1.2.3 Given a BPC instane with a ompatibility graph G = (I, E) andits tree-deomposition (C, T ), a luster-separation is a partition of the set of items I inthe set of nodes C suh that an item an be assigned to a node Ci only if it belongs to

Ci in the tree-deomposition.A possible luster-separation of the deomposition of Figure 1.1 is C1 = {0, 1}, C2 =
{2, 5, 6}, C3 = ∅, C4 = {3, 7}, C5 = {4}.The hoie of the luster-separation is the most ruial part of the algorithm. Wesay that a luster separation is ompatible with a given solution if, in this solution, twoitems assigned to two di�erent lusters are never paked in the same bin. We statebelow that there always exists a luster-separation that an lead to an optimal solution.Proposition 1.2.1 For any BPC instane D with a ompatibility graph G and its tree-deomposition (C, T ), there exists a luster-separation µ of (C, T ) that is ompatible withan optimal solution for D.We all the problem of �nding the best luster-separation the best-luster-separationproblem. We now state that this problem is NP-omplete for an arbitrary graph byreduing the partition problem [48℄ to it.De�nition 1.2.4 Let D be a BPC instane with a ompatibility graph G = (I, E)and (C, T ) its tree-deomposition and k an integer value. The best-luster-separationproblem onsists in �nding a luster separation of (C, T ) ompatible with to a solutionof value k, if it exists.Proposition 1.2.2 The best-luster-separation problem is NP-omplete.



A TREE-DECOMPOSITION BASED HEURISTIC FOR THE BPC 111.2.4 Greedy heuristis for the luster separation problemSine the best-luster-separation problem isNP-omplete, a reasonable way of taklingthis problem for dense graphs is to use heuristis. This phase is the most ruial of ourapproah sine hoosing a bad luster-separation would lead to bad solutions.The heuristis we propose belong to the family of greedy algorithms based on an ini-tial sorting of the lusters. Consider a tree-deomposition (C, T ). A luster-separationan be omputed as follows: 1) number the lusters aording to a given ordering, and2) for eah luster in the order hosen, assign all remaining items of the urrent luster
Ci to a new set Si and remove these items from the subsequent lusters.Several riteria have been proposed to explore the luster tree assoiated to a tree-deomposition (see e.g. [61℄). Two types of riteria were introdued in [61℄: loal andglobal. A loal (resp. global) riterion evaluates the relevane of a andidate lusterwithout (resp. by) taking into aount the interations with other lusters. The authorsalso proposed two riteria, the luster size (loal) and the luster neighborhood size(global) orresponding to the number of lusters onneted to it.In this doument we introdue a new global riterion, the demand D(i) of an item
i as to be the number of lusters that ontain i. This riterion an be generalized andapplied to lusters as follows: the demand of a luster Ck is the sum of the demandsof the items of Ck : D(Ck) =

∑
i∈Ck

D(i). A luster with a large demand shares manyitems with other lusters, and therefore this riterion identi�es the "entral" lustersof the deomposition. We also introdue another loal riterion that we all randorresponding to randomly sorting the lusters.The hoie of these simple heuristis may be justi�ed by the fat that they do notentail a large omputing time, sine the use of any ompliated heuristi for omputinga luster-separation would inrease the omputing time of algorithm 1.1.2.5 A tabu searh based on the tree deomposition and strate-gi osillationLoal searh algorithms are widely aknowledged as powerful tools for providing high-quality solutions to a wide variety of ombinatorial problems. In the previous setion,we have stated that the luster separation problem was the ore of our resolutionapproah. In order to improve the results obtained by the greedy heuristis, we designeda tabu searh that fouses on the luster separation phase.In this setion, we desribe the tabu searh algorithm, denoted as TS-TD in thefollowing. Tabu searh [52℄ has already been used to solve paking problems (see [56℄for example), using a so-alled osillation strategy. We use this onept of osillationby iteratively swithing from onstrution to destrution phases.



12 DECOMPOSITION AND STRATEGIC OSCILLATION1.2.5.1 Details of our tabu searhIn our approah, a solution s is represented by a vetor v̄ of size n. Eah element v̄iof this vetor reords the urrent luster to whih item i is assigned. We denote by Dithe set of possible lusters that an aommodate i. For example, aording to �gure1.1, the domain of item 3 is D3 = {3, 4, 5}. The solution spae of TS-TD is de�ned asthe set of omplete and inomplete solutions. A solution is said to be omplete (resp.inomplete) when its variables are (resp. are not) all assigned. In our approah, anyomplete solution has to be feasible.The initialization phase generates an initial non-omplete solution vetor byassigning eah item i suh that |Di| = 1 (see Figure 1.2). The remaining items are setto −1 and will be assigned to lusters during the searh.

Figure 1.2: A vetor representing a solution and its initialization aording to �gure 1.1.A move is the assignment of a variable i to a value in its domain Di (assign) orthe value −1 (remove from the luster). The existene of two types of movementsis justi�ed by the fat that our TS involves two phases, onstrution and destrution.The onstrution phase guides the TS toward a omplete solution while the destrutionphase desinstantiates some variables. Alternating these two phases plays the role of adiversi�ation proess in order to enable the TS to explore new regions of the searhspae.Our objetive funtion uses two terms. In a bin paking ontext, hoosing solelythe real objetive funtion, whih is to minimize the number of bins, is rather pointless,sine many di�erent solutions still in general have the same number of bins. It is oftenbetter to extend this oarser grained measure by the gap value, omputed from thefree area in eah bin.In our implementation, the tabu list (TL) is a set of moves lassi�ed tabu duringsome iterations (tabu tenure). The tabu tenure is a stati value equal to the totalnumber of possible moves. For example, the size of TL for the example of Figure 1.1is equal to 14. One TL is full, it will be resized in a suh way that the oldest half iserased.



A TREE-DECOMPOSITION BASED HEURISTIC FOR THE BPC 131.2.5.2 Strategi osillationOur diversi�ation strategy onsists in alternating the onstrution and destrutionphases following some dynami riteria based on the number of iterations. Figure 1.3shows the behavior of our TS through the searh proess. We �rst start a onstrutionphase. We keep running our loal searh until all items of s are assigned. A destru-tion phase is then applied on s by de-assigning some items in order to enable the nextonstrution phase to explore new regions of the searh spae, and the proedure isrepeated while no stopping riterion holds. This strategy may be ontrolled by twoparameters: the amplitude a and the frequeny f . The amplitude represents the maxi-mal number of bakward moves to be performed during a destrution phase. The valueof the frequeny is equal to the minimal number of omplete solutions to reah duringthe searh proess.

Figure 1.3: A searh trajetory in the searh spae. The frequeny f is the number of times a omplete solution isobtained. The amplitude a represents the number of desinstatiations to perform in a destrution phase.Our intensi�ation phase onsists in applying an improving heuristi on eahomplete solution we �nd during the searh proess. It is based on the progressiveredution of the number of bins used by the urrent solution. The idea is to destroysome bins and redistribute their ontents to the remaining bins.1.2.6 Time omplexity of the methodFor graphs of bounded treewidth, the time omplexity of the algorithm is reduedompared to that of an equivalent onstrution heuristi.The time omplexity of omputing a luster-separation aording to an orderingriterion depends on the number of items n, the number of lusters |C| in the tree-deomposition and the width w(C, T ) of the tree-deomposition. If a loal sortingalgorithm is used, the time omplexity of this phase is in O(|C| × log(w(C, T ))), whihis in O(n × log(n)) for an arbitrary graph. For the global sorting strategies, the timeomplexity is O(n2), sine an initial phase with this time omplexity is needed toompute the size of the neighborhood of a luster, or its demand.



14 DECOMPOSITION AND STRATEGIC OSCILLATIONFor the two-dimensional ase of BPC, the time omplexity of BLC (a simple adap-tation of the bottom-left heuristi) is O(n3). If the graph is suh that there is analgorithm to �nd a tree-deomposition whose width is bounded by a onstant, it wouldlead to a O(1) time omplexity in our framework (sine the number of items in thesubproblems would be a onstant).The time omplexity of the improving heuristi is O(|IB| × n2) where IB is thenumber of items to repak. The time omplexity is entailed by the maximum numberof possible plaements at any step of a paking. A possibility for reduing this timeomplexity is to onsider a onstant number of items in IB and a number of open binssuh that the number of paked items is also bounded by a small onstant. In thisase, the time omplexity of this phase would also be O(1). Unfortunately, experimentsshowed that it also dramatially weakens the e�etiveness of the improving phase.Let us summarize these results by studying the ase of algorithm 1 applied usingMCS to ompute the tree-deomposition, a greedy algorithm based on a loal riterionto ompute the luster-separation, BLC for solving the resulting lusters and the im-proving heuristi, the overall time omplexity would be O(m+n×log(n)+n×w(C, T )3).If w(C, T ) is bounded by a onstant, the time omplexity beomes O(m+n×log(n)),whereas the original onstrutive algorithms are at least in O(n3). For huge instanes,one an even avoid the sorting algorithm, whih leads to a linear time omplexity(although the quality of the solution obtained is expeted to be weak).1.2.7 Synthesis of the omputational experimentsWe tested our approah on the two-dimensional version of the BPC. The test ases wereobtained from the lassial two-dimensional bin-paking benhmarks. We generatedon�it graph randomly following the method used in [46℄. We used instanes of sizeup to 120 items. We used the framework ParadisEO [16℄ to implement our tabu searh.For these instanes, the tree-deomposition framework improves signi�antly theperformane of the greedy algorithms with a slightly larger omputing time. The tabusearh outperforms the other methods, but needs a larger omputing time.We also generated huge instanes (2000 items) to validate the e�etiveness of thetree-deomposition. For this test, we used the greedy heuristis based on the tree-deomposition and we swithed o� the improvement heuristi that is used after thesolutions are merged. For sparse on�it graphs, the method does not bring any im-provement in term of omputing time, and deteriorates the quality of the solution,sine the width of the deomposition is lose to the number of items. When the on-�it graph is dense, the omputing time is dramatially redued, but there is a slightredution in the quality of the method.



COLUMN GENERATION FOR THE MIN-CONFLICT PROBLEM 151.3 A olumn-generation algorithm for the min-on�itpaking problemIn the ontext of a multi-objetive bin-paking problem, we studied a subproblem thatwe name the "min-on�it paking problem".Problem 4 (Min-Con�it Paking Problem (MCPP)) Given a set I of items,a bin type B, a value M and a on�it graph G = (I, E) where (i, j) ∈ E if i and j arenot supposed to be paked in the same bin, ompute the minimum number of on�itsthat must our if the set I is paked in M bins of type B.This problem is justi�ed by the fat that resoures (bins) are not always in in�nitenumber, and that the deision maker may favor a solution violating some onstraints ifits ost is small. The work we present is inserted in a general multi-objetive sheme,and we use the knowledge of solutions related to di�erent numbers of bins in ourresolution method.We �rst propose a ompat formulation for this problem. This model is weak andthus we propose a reformulation based on a olumn-generation sheme. The modelitself is an adaptation of the set-overing model of Gilmore and Gomory [50, 51℄. Thedi�ulty arises in the priing subproblem, a bilinear knapsak problem, whih is harderto solve than the lassial knapsak problem. We reformulate this problem with twodi�erent ILP models. These models demand too muh time, so we designed a greedyheuristi and a loal searh method based on swaps in order to �nd good solutions ina faster manner. In our method, the ILP solver is run only if the heuristis were notable to �nd a olumn of redued ost.A tabu searh is also proposed to generate a good initial basis for the LP. Like in theprevious setion, it is based on strategi osillation. For this method, we do not osillatefrom omplete to inomplete, but from a number of bins to another. This is justi�edby the fat that our method is run in the ontext of multi-objetive optimization, andthus we have reorded some good solutions related to di�erent numbers of bins. Whenthe number of bins is inreased, we will explore non-feasible solutions for our presentproblem. When the number of bins is dereased, it leads to valid yet more onstrainedsolution that will make a better usage of the spae in the bins (disregarding the numberof on�its entailed).1.3.1 A simple ompat modelA simple linearization of a diret quadrati model for the min-on�it problem leadsto the following ILP model. Variables xik are equal to 1 if i is paked in bin k, and 0otherwise. Variables yij are equal to 1 when items i and j are in the same bin. For anitem i, let N(i) be the set of items j suh that i and j are in on�it. Let also N+(i)



16 DECOMPOSITION AND STRATEGIC OSCILLATIONbe the items j of N(i) suh that j > i. This set is used to avoid ounting a on�ittwie in our models.
min

∑

i∈I

∑

j∈N+(i)

yij (1.1)
∑

k∈M

xik ≥ 1, i ∈ I (1.2)
n∑

i=1

cixik ≤ C, k ∈M (1.3)
yij ≥ xik + xjk − 1, i ∈ I, j ∈ N+(i), k ∈M (1.4)

yij ∈ {0, 1}, i ∈ I, j ∈ N
+(i) (1.5)

xik ∈ {0, 1}, i ∈ I, k ∈M (1.6)Constraints (1.2) ensure that all items are paked, whereas onstraints (1.3) verifythe apaity onstraint. Constraints (1.4) are su�ient to ensure that if i and j arepaked together, then yij will be equal to one.1.3.2 A set overing formulationThe linear relaxation of the ILP above is weak. Thus we used a formulation basedon a set overing model and the deomposition of Dantzig-Wolfe [39℄. The ILP isdeomposed into a restrited master problem initialized with a set of olumns, andoptimized to determine the value of the dual variables. The dual information is passedto a subproblem that evaluates if there is a olumn that an be added to the masterproblem and improve the urrent solution. If there is suh a olumn, the masterproblem is reoptimized, otherwise the proess stops.Let P be the set of possible patterns, i.e. the set of possible ways of paking itemsin a bin. Eah possible pattern is desribed by a olumn p = (a1p, . . . , aip, . . . , a|I|p)
T ,where aip is equal to 1 if item i is in the pattern p, 0 otherwise. A new variable Kpis introdued, whih orresponds with the number of on�its in on�guration p. Thedeomposition is a simple adaptation of the model of Gilmore and Gomory [50, 51℄dediated to the utting-stok problem.

min
∑

p∈P

xpKp (1.7)
s.t.

∑

p∈P

aipxp ≥ 1, ∀i ∈ I (1.8)
∑

p∈P

xp ≤M (1.9)
xp ∈ {0, 1}, ∀p ∈ P (1.10)



1.3. A COLUMN-GENERATION ALGORITHM FORTHEMIN-CONFLICT PACKING PROBLEM17Two families of onstraints are kept in the master: onstraints (1.8) ensure that allitems are ut, whereas (1.9) veri�es that the number of bins used is smaller than M .The apaity onstraint is left to the subproblem.The weak dual of (1.7)-(1.10) reads as follows.
max

∑

i∈I

πi − θM (1.11)
s.t.

∑

i∈I

aipπi − θ ≤ Kp, ∀p ∈ P (1.12)
πi ≥ 0, ∀i ∈ I (1.13)

θ ≥ 0 (1.14)Dual variables π are related to the demand onstraints, whereas the dual variable
θ is related to the number of bins.1.3.3 Solving the priing subproblem using loal searh andlinear programmingIn order to generate the best olumn to add to the urrent basis, the pattern to add isthe one with the smallest redued ost, i.e. the pattern p for whih θ+Kp−

∑
i∈I πiaipis minimized. The only onstraint for a pattern p is the apaity onstraint of the bin.This is equivalent to solving the following bilinear problem, alled priing subproblem.

max
∑

i∈I

(πiai −
∑

j∈N+(i)

aiaj)− θ (1.15)
s.t.

∑

i∈I

aici ≤ C (1.16)
ai ∈ {0, 1}, ∀i ∈ I (1.17)It is a generalization of the knapsak problem, where eah on�it between twoitems redues the value of the solution by one. The knapsak problem with hardon�its has been studied by, among others, Hi� and Mihrafy [60℄. In our problem,on�its may our, but they are penalized in the objetive funtion.Compared to the utting-stok problem, the priing subproblem is more di�ult tosolve. It transpired from our �rst experiments that solving the priing to optimality ateah step of the olumn generation algorithm leads to a large omputing time. Thuswe have developed a method that uses linear-programming, heuristis and loal searh.1.3.3.1 Two ILP models for the priing subproblemA �rst way of solving the priing subproblem is use a straightforward linearized versionof (1.15)-(1.17). For this purpose, we introdue variables bij that are equal to 1 if ai = 1



18 DECOMPOSITION AND STRATEGIC OSCILLATIONand aj = 1, and to 0 otherwise.
max

∑

i∈I

(πiai −
∑

j∈N+(i)

bij)− θ (1.18)
s.t.

∑

i∈I

aici ≤ C (1.19)
bij ≥ ai + aj − 1, ∀i ∈ I, j ∈ N+(i) (1.20)

bij ∈ {0, 1}, ∀i ∈ I, j ∈ N
+(i) (1.21)

ai ∈ {0, 1}, ∀i ∈ I (1.22)A better model an be proposed, using a di�erent type of variables bi for eah itemtype i. Eah variable bi is equal to the number of items of N+(i) that are paked with
i. Note that ai = 0 implies bi = 0. In this model the number of variables remainslinear, whereas it is quadrati in the previous model.

max
∑

i∈I(πiai − bi)− θ (1.23)
s.t.

∑
i∈I aici ≤ C (1.24)

∑
j∈N+(i) aj − |N

+(i)| × (1− ai) ≤ bi ∀i ∈ I (1.25)
ai ∈ {0, 1}, ∀i ∈ I (1.26)
bi ∈ N, ∀i ∈ I (1.27)Both models an be improved by the means of uts. We desribe these uts usingthe formalism of model (1.23)-(1.27). Sine one of the onstraints is a lassial knapsakonstraint, all tehniques related to this onstraint an be used. For example, if Nmaxis the maximum number of items that an be paked side by side, the following ut isvalid.

∑

i∈I

ai ≤ Nmax (1.28)Other hand-tailored tehniques an be used for this spei� problem. Note thatthese uts are valid beause we seek a solution of positive value. In otherwords, these uts may exlude the optimal solution if this solution has not a positivevalue.First, note that if bi ≥ πi, a better solution is obtained by removing item i (beauseit leads to more on�its than its value of pro�t). This leads to the following family ofuts.
bi ≤ πi − 1, ∀i ∈ I (1.29)This family of uts an be generalized by onsidering sets of items. Let If be a setof items suh that ∑i∈If

πi −
∑

i∈If
|N(i) ∩ If | ≤ 0. Clearly, this set annot belong to



1.3. A COLUMN-GENERATION ALGORITHM FORTHEMIN-CONFLICT PACKING PROBLEM19an optimal solution. Consequently, if we are able to detet suh a set If , we add thefollowing ut.
∑

i∈If

ai ≤ |If | − 1 (1.30)Another ut an be added. First we ompute the minimum number Nmin of itemsneeded to obtain a sum of pro�t greater than or equal to θ.
∑

i∈I

ai ≥ Nmin (1.31)An estimation of Nmin an be omputed by sorting the items by dereasing valueof πi and disregarding the on�its.1.3.3.2 Heuristi solutions for the subproblemEven with the uts above, and even if the searh is stopped as soon as a solution ofpositive ost is found, our two ILP models do not lead to fast solutions in many ases.Consequently, we developed heuristis and a loal searh method to fasten the olumngeneration proess.The greedy heuristis are based on an initial ordering on the items : dereasing πi/ci,dereasing (πi + |N(i)|)/ci, dereasing (πi +
∑

j∈N(i) πj)/ci We ompute the values ofdegrees in a dynami fashion (i.e. they are updated eah time an item is seleted orrejeted from the knapsak).In the ase where the greedy heuristis are not able to �nd a solution with negativeredued ost, a loal searh phase is applied. It is based on two simple operators:bit �ip (selet an unseleted item or remove a seleted item), and pairwise exhange(replae an item by another item). At eah step of the loal searh algorithm, allpossible bit-�ip moves are tested. If none improves the value of the objetive funtion,the swap moves are tested. The method stops when no improvement has been realizedin the last iteration.1.3.4 Computing the initial set of olumns using tabu searhand strategi osillationSine the priing phase has a large omputational ost, �nding a good initial basis isruial for our algorithm. Like in Setion 1.2, we use a strategi osillation in a tabusearh. This time, the osillation uses the fat that the searh is run in the ontextof multi-objetive optimization. The tabu searh iterates from a number of bins toanother, leading alternatively to unfeasible and over-onstrained solutions.



20 DECOMPOSITION AND STRATEGIC OSCILLATION1.3.4.1 Details of our tabu searhGiven a set I of n items, a solution is a number of bin assoiated with eah item of
I. A solution is a omplete paking in whih the apaity onstraint is not violated inany bin (the sum of the sizes of the items is not larger than the size of the bin). Thenumber of bins is initially �xed to M .The searh spae S is thus omposed of all possible on�gurations meeting thisonstraint. A neighbor of a solution s is obtained by hanging the bin assoiated to anitem in suh a way that the apaity onstraint remains satis�ed. A soft on�it (i, j)is said to be violated if i and j are paked in the same bin. Our objetive funtionis the number of violated soft on�its. When an item is moved from a bin to another,the number of on�its is updated only for the two bins involved in the move.We used three di�erent families of heuristi algorithms for the initialization phaseof the tabu searh. The �rst is the family of Any-Fit algorithms. The seond is basedon Soft Graph Coloring, and the third on a simple loal searh algorithm that tries toimprove iteratively an initial solution.Our tabu list (TL) onsists of a set of moves lassi�ed tabu during some iterations(tabu tenure). The tabu tenure is a stati value. One TL is full, it is resized in a suhway that the oldest half is erased.1.3.4.2 Strategi osillationWe developed a diversi�ation strategy based on two types of modi�ations (top-down or bottom-up). Let m be the number of bins used in the urrent solution sm. Ina top-down (resp. bottom-up) strategy, a solution sm is replaed by a solution sm+d(resp. sm−d) where d is a possible value for the number of bins. These diversi�ationstrategies are ontrolled by a parameter alled distane d. The diversi�ation distanerepresents the number of bins to add or remove from the urrent solution dependingon the hosen strategy.In ase of a top-down strategy, d bins are added to a solution sm and thus a solution
sm+d is obtained by distributing the ontents of m bins into m + d bins by means ofa lassial bin paking heuristi. In ase of a bottom-up strategy, d bins are removedfrom the solutions, and the items in these d bins are distributed among the remainingbins. The d bins are hosen following a given riterion, like the bins with the maximumnumber of on�its. Consequently, our method osillates between inrease phases, inwhih it adds bins in order to redue the number of on�its, and derease phases, inwhih bins are erased, and the algorithms fouses on the spae used in the bins.Figure 1.4 illustrates these two diversi�ation strategies. The blue (resp. red) arrowshows a top-down (bottom-up) diversi�ation of a solution sl (resp. sm) with a distane
dl (resp. dm).In the ontext of multi-objetive optimization, solution found at the previous stepsan be used to help diversifying e�etively the searh.
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Figure 1.4: Example illustrating the two diversi�ation strategies �top-down� and �bottom-up�.
1.3.5 Synthesis of the omputational experiments
We implemented the methods desribed above and tested them against benhmarksderived from the literature. We used instanes with up to 120 items, for whih wegenerated bounds for the whole Pareto front (more than 40 min on�it problems tosolve in the worst ase).We were able to solve a large number of instanes to optimality just by omputingour bounds. However, our omputational experiments on�rm the fat that the priingsubproblem to solve is muh harder than the lassial knapsak problem, even usingour seond ILP model. Even with this faster model, generating the olumns an taketime. The best results were obtained using the heuristis and the loal searh, andthen the seond ILP model. We improved the results by stopping the ILP as soon asit gets an improving solution. Finding better algorithms for the priing subproblemseems to be the main issue for improving the method. An e�ient branh-and-priemethod annot be designed before we are able to improve the priing phase.
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Figure 1.5: An instane of BPP-FO, a non-optimal solution with three bins and an optimal solution with two bins.Fragilities are represented by dotted retangles, and sizes with grey retangles.1.4 A olumn generation algorithm for the bin-pakingwith fragile objetsIn this setion, we deal with a variant of paking in whih on�its are modelled in adi�erent way. The problem is known in the literature as the Bin Paking Problem withFragile Objets (BPP-FO). The BPP-FO arises in the teleommuniation �eld and inpartiular in the alloation of ellular users to frequeny hannels (see Bansal et al. [5℄and Chan et al. [24℄).Problem 5 (Bin-paking Problem with Fragile Objets (BPP-FO)) Given a set
I of items i of size ci and fragility ψi, what is the minimum number of bins needed topak all the items of I in suh a way that in eah bin, the sum of the sizes is smallerthan the smallest fragility?An example of BPP-FO instane, and two solutions is given in Figure 1.5. Moreformally, let us denote I(k) as the set of items assigned to a bin k, we need to ensurethat

∑

i∈I(k)

ci ≤ min
i∈I(k)

{ψi} (1.32)for all possible bins k.The literature on the BPP-FO is still small. Bansal et al. [5℄ present approximationshemes and probabilisti analysis. They onsider approximations both with respetto the number of bins and to the fragility of a bin. They present results for the generalBPP-FO and for a speial ase, denoted the frequeny alloation problem, in whihweight and fragility are stritly orrelated one to the other. Chan et al. [24℄ onsiderinstead the on-line version of the BPP-FO, in whih an item arrives only after theprevious item has been paked and the deision annot be hanged. They study theases in whih the ratio between the maximum and the minimum fragility is bounded



COLUMN GENERATION FOR BP WITH FRAGILE OBJECTS 23or unbounded, and present, for both ases, algorithms with asymptoti ompetitiveratios.For the BPP-FO, we �rst propose simple ompat models, whih are able to solveexatly many random instanes in a fast manner. However, for some lasses of hardinstanes, these models are not su�ient anymore. For this reason, we propose areformulation of the problem using the Dantzig-Wolfe deomposition and olumn gen-eration. The priing subproblem to solve is a knapsak problem with fragile objetsdesribed above.Problem 6 (Knapsak Problem with Fragile Objets (KP01-FO)) Given n items
i with pro�t pi, weight ci and fragility ψi (i = 1, . . . , n) and a single unapaitated bin,�nd the subset of items of largest total pro�t whose total weight is not larger than thefragility of any item in the bin.Being able to solve this problem e�iently is the most ruial issue in our olumn-generation algorithm. We propose two ILP models and a dynami-programming shemefor KP01-FO. As we will see below, the dynami-programming sheme outperformsboth ILP models for all the instanes we used.For generating a suitable initial basis, we designed a variable-neighborhood searh(VNS) method based on strategi osillation. We osillate from feasible to non-feasiblesolutions using di�erent perturbation strategies. Our overall algorithm allows to �ndtight lower and upper bounds in a fast manner and lose the integrality gap for manydi�ult instanes that were not solved by the ompat models within the allowed timelimit.1.4.1 Compat modelsWe �rst present two ompat formulations for BPP-FO requiring a polynomial numberof variables and onstraints. We then disuss a third formulation using an exponentialnumber of variables.1.4.1.1 A simple formulationLet us de�ne ψmax = maxi=1,...,n{ψi} to be the maximum fragility of an item. Wede�ne yk as a binary variable taking value 1 if bin k is used, 0 otherwise (k = 1, . . . , n).We also de�ne xik as a binary variable taking value 1 if item i is assigned to bin k, 0otherwise (i, k = 1, . . . , n). The BPP-FO an be modeled as the following ILP:



24 DECOMPOSITION AND STRATEGIC OSCILLATION
min

n∑

k=1

yk (1.33)
n∑

k=1

xik = 1 i = 1, . . . , n (1.34)
n∑

j=1

cjxjk ≤ ψmax + xik(ψi − ψmax) i, k = 1, . . . , n (1.35)
xik ≤ yk i, k = 1, . . . , n (1.36)

yk ∈ {0, 1} k = 1, . . . , n (1.37)
xik ∈ {0, 1} i, k = 1, . . . , n. (1.38)

Constraints (1.34) impose that eah item is assigned to a bin. Constraints (1.35)require that the sum of the weights of the items paked in a bin does not exeed thefragility of any item paked in the same bin (if item i is paked in bin k the right handside of the onstraint is equal to ψi, otherwise the onstraint is redundant). Constraints(1.36) are used to tighten the model linear relaxation.Model (1.33)�(1.38) is derived from the lassial BPP ompat model. It has a leardisadvantage that omes from the O(n2) Constraints (1.35), that model the non-linearrestrition (1.32) by using a large value (ψmax). This value an worsen onsistently themodel linear relaxation, and makes the formulation very dependent from the fragilityof the last item.
1.4.1.2 A better formulationWe reall that the items are sorted by non-dereasing values of ψi, breaking ties by non-inreasing values of ci. We de�ne yi as a binary variable taking value 1 if item i is theitem with smallest fragility in the bin in whih it is paked, 0 otherwise (i = 1, . . . , n).We also de�ne xji as a binary variable taking value 1 if item j is assigned to the binhaving item i as item with smallest fragility (bin i for short in the following), 0 otherwise(i = 1, . . . , n, j = i+ 1, . . . , n). The BPP-FO an be modeled as the following ILP:
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min

n∑

i=1

yi (1.39)
yi +

i−1∑

j=1

xij = 1 i = 1, . . . , n (1.40)
n∑

j=i+1

cjxji ≤ (ψi − ci)yi i = 1, . . . , n (1.41)
xji ≤ yi i = 1, . . . , n, j = i+ 1, . . . , n (1.42)

yi ∈ {0, 1} i = 1, . . . , n (1.43)
xji ∈ {0, 1} i = 1, . . . , n, j = i+ 1, . . . , n. (1.44)Constraints (1.40) impose that either an item is the smallest item in its bin, eitherit is assigned to a bin ontaining an item with smaller fragility. Constraints (1.41)require that the sum of the weights of the items paked in a bin does not exeed thesmallest fragility in the bin. Constraints (1.42) are again used to tighten the modellinear relaxation.1.4.2 A set overing formulationWe present a model that builds upon the lassial deomposition method by Gilmoreand Gomory [50, 51℄. We de�ne a pattern as a feasible ombination of items. Wedesribe the pattern, say p, by a olumn (a1p, . . . , aip, . . . , anp)T , where aip takes value

1 if item i is in pattern p, 0 otherwise. Let P be the set of all valid patterns, i.e., theset of patterns p for whih ∑n
i=1 ciaip ≤ mini=1,...,n{ψiaip}.Let also zp be a binary variable taking value 1 if pattern p is used, 0 otherwise(p ∈ P ). The BPP-FO an be modeled as the following Set Covering problem:
min

∑

p∈P

zp (1.45)
∑

p∈P

aipzp ≥ 1 i = 1, . . . , n (1.46)
zp ∈ {0, 1} ∀p ∈ P. (1.47)Constraints (1.46) impose that eah item j is paked in at least one bin.As the number of possible patterns may be very large, even solving the linearrelaxation of Model (1.45)�(1.47) may be di�ult. We approah this problem, as it isusually done in the literature, by means of a olumn generation method.We initialize the model by a subset P̃ ⊆ P of patterns. We then drop the integralityrequirements (1.47) by replaing them with zp ≥ 0, ∀p ∈ P̃ . Note that we are allowed



26 DECOMPOSITION AND STRATEGIC OSCILLATIONto drop the onditions zp ≤ 1 sine redundant (indeed we an always replae a solutionin whih there exists a zp > 1 with a better one having zp = 1). We �nally assoiatedual variables πi (i = 1, . . . , n) to onstraints (1.46).We operate in an iterative way. We solve the linear model just outlined and hekif a pattern (i.e., a olumn) with negative redued ost exists. If it exists, then we addit to the model and re-iterate, otherwise we proved the optimality of the (eventuallyfrational) solution obtained. The redued ost of a pattern p is de�ned by
cp = 1−

n∑

i=1

πiaip. (1.48)A pattern is added to the model if it satis�es the fragility requirement and has anegative redued ost. The existene of suh pattern an thus be determined by solvinga KP01-FO with objetive funtion
max

n∑

i=1

πiaip (1.49)and subjet to
n∑

i=1

ciaip ≤ min
i=1,...,n

{ψiaip} (1.50)
aip ∈ {0, 1}, ∀i ∈ I (1.51)Note that one of the main issues in olumn generation is a long tail onvergene,during whih the value of the optimum is only marginally improved. Several methodshave been proposed to deal with this issue. One of the most promising is the notion ofdual uts introdued by Valerio de Carvalho [86℄. The idea is to add dual uts to themaster problem (olumns in the primal) to exlude dual solutions that are dominatedby others. This notion an be extended to the BPP-FO as follows.Proposition 1.4.1 For a given item i, if there exists a set S ⊂ I suh that ∑j∈S cj ≤

ci and minj∈S ψj ≥ ψi then ∑

j∈S

πj ≤ πi (1.52)is a valid dual ut for (1.45)-(1.47).Many uts of this type an be applied. Pratially speaking, we use the of TypeI and II desribed in [86℄. In the uts of type I, the set S above is of size one. Theuts of type II onsider two items in S. If the number of uts of type II is too large,only a subset of them an be applied. Pratially speaking, for the BPP-FO, this sizeis not so large, sine the onditions for S is more restritive than for the utting-stok.Consequently, we applied all uts of type II.



COLUMN GENERATION FOR BP WITH FRAGILE OBJECTS 271.4.3 Solving the Priing Subproblem using dynami program-ming and linear programmingWe solve the KP01-FO problem arising in the priing phase by means of two ILPmodels and a dynami programming algorithm. Insights in the omputational resultswe obtained by using these three approahes will be given in Setion 1.4.5 below.
ILP ModelsWe presented two ompat ILP models to solve the BPP-FO, the latter (Model (1.39)�(1.44)) being better than the former (Model (1.33)�(1.38)). A similar result an beobtained for the KP01-FO.A �rst ILP model an be obtained by using a binary variable xi taking value 1 ifitem i is paked in the knapsak, 0 otherwise (i = 1, . . . , n). The KP01-FO an bemodeled as:

max
n∑

i=1

πixi (1.53)
n∑

j=1

cjxj ≤ ψmax + xi(ψi − ψmax), ∀i ∈ I (1.54)
xi ∈ {0, 1} ∀i ∈ I (1.55)The main di�erene with respet to the lassial ompat model for the KP01 isthat here we need n onstraints to impose the maximum apaity. Indeed, Constraints(1.54) impose that whenever an item i is paked in the knapsak, then the sum of theweights of all the items paked annot exeed the value ψi.A better ILP model an be obtained as follows. First, let us reall that items aresorted by non-dereasing values of ψi, breaking ties by non-inreasing values of ci. Wede�ne yi as a binary variable taking value 1 if item i is the item with smallest fragilityin the knapsak, 0 otherwise (i = 1, . . . , n). We also de�ne xi as a binary variabletaking value 1 if item i is paked in the knapsak, but it is not the item with smallestfragility (i = 1, . . . , n). We obtain:
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max

n∑

i=1

πi(xi + yi) (1.56)
n∑

i=1

yi = 1 (1.57)
n∑

i=1

cixi ≤
n∑

i=1

yi(ψi − ci) (1.58)
xi +

n∑

j=k

yj ≤ 1, ∀i ∈ I (1.59)
xi ∈ {0, 1}, ∀i ∈ I (1.60)
yi ∈ {0, 1}, ∀i ∈ I (1.61)Constraint (1.57) imposes the existene of just one item with smallest fragility insidethe knapsak. Constraints (1.58) impose that the sum of the weights of the items inthe bin does not exeed the fragility of the smallest item in the bin.By the de�nition of the two sets of variables it follows that xi + yi ≤ 1, for i =

1, . . . , n. This simple onsideration is generalized by onstraints (1.59), that imposethat if an item i is paked in the bin but is not the item with smallest fragility (i.e.,if xi = 1), then no other item having larger fragility an be the item with smallestfragility in the bin.Dynami programmingThe KP01-FO an also be solved through dynami programming. A trivial (but none�ient) method is to onsider all possible values of fragility ψi in turn and eah timesolve the related KP01 with the set of items {i : ci ≤ ψi} and a bin of size ψi. With thisapproah, in the worst ase, the dynami programming method is run n times (onefor eah di�erent value of fragility), leading to a omplexity of O(n2 ∗ ψmax).A more e�ient method an be used if the items are sorted by dereasing fragility.The algorithm is the following: onstrut the regular dynami programming tablerelated to a knapsak of size ψmax, and take the maximum value obtained among a setof dominant states. The validity of this method is based on the following proposition.Note that the item with the largest fragility an be paked in a bin of any fragility.This an be generalized as follows: the k �rst items an be paked in a bin of fragility
fk. This an be repeated for any value of k. This means that the lassial dynamiprogramming sheme an be used if states related to unreahable states are not on-sidered.Let ψ(i, α) be a dynami programming state for KP01 related to the i �rst items anda knapsak of size at most α. To simplify the notation, we will onsider that ψ(i, α) =
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−∞ if α < 0 or if the state (i, α) annot be reahed. We denote by OPT (KP01−FO)the optimal value of the knapsak problem with on�its.Proposition 1.4.2 If the items are sorted by dereasing fragility, we have:

OPT (KP01−FO) = max
α=0,...,ψmax

{ψ(max{i : ψi ≥ α}, α)} (1.62)Eah state (j, α) has to be explored only one. Using the same lassial reursiveformula as KP01, we obtain a omplexity of O(n logn+ψmax ∗n) or O(ψmax ∗n) if theitems are initially sorted by dereasing fragility.
i ci ψi πi1 2 8 12 4 8 13 6 8 14 4 6 25 2 4 1Tableau 1.1: A small instane of KP01-FOIn �gure 1.6 we report the dynami programming table used to solve the instaneof BP01-FO of Table 1.1. Note that the states related to item 4 (resp. 5) and total sizegreater than ψ4 (resp ψ5) are forbidden. Following Proposition 1.4.2, we know that anoptimal state an be found in the set of "rightmost" states in the table.When item 1 is onsidered, only two states are possible: paking item 1 (pro�t 1)or not (pro�t 0). One the �rst olumn is omputed, the seond an be omputed byadding or not item 2 to eah state of olumn 1. Eah olumn is omputed in turnfollowing the same idea until all items have been onsidered.1.4.4 Computing the initial set of olumns using Variable-NeighborhoodSearh and strategi osillationIn the two preedent setions, we proposed tabu searh methods based on strategiosillation. Another method that is able to implement this strategy is the VariableNeighborhood Searh (VNS). We refer to Hansen et al. [57℄ for a reent and ompletesurvey on VNS, and to Fleszar and Hindi [47℄ for a �rst suessful appliation to theBPP.The general idea behind this methodology is to iteratively modify the inumbentsolution using a neighborhood whih is initially small but beomes larger and largerduring the iterations. Eah new solution obtained in this way is optimized throughloal searh and is possibly used to replae the inumbent one. We use the VNS toosillate from feasible solutions to unfeasible solutions.
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Figure 1.6: Table of states illustrating the dynami programming proedure used to solve the instane of KP01-FO desribed in Table 1.1. Eah line orresponds with a fragility level going up from 0 to ψmax and eah olumn iorresponds with the i �rst objets of I. Eah ell orresponds with a state. It is split in two sub-ells: in the lower onewe report the set of objets plaed in the knapsak and in the upper one we report the orresponding pro�t. The darkgray ells represent dominant states (whih ontain an optimal solution), light grey ells are forbidden.We start by omputing a heuristi solution, say σ, using U(σ) bins. Thesolution used as a starting point in the VNS is the one using the minimum number ofbins among those found by di�erent families of greedy algorithms.We then enter a loop in whih we modify σ using a perturbation method thatdepends on a parameter k, initially set to 1. We de�ne the neighborhood Nk(σ) asthe set of solutions that are obtained by: (i) removing k bins from σ and (ii) reassigningthe orresponding items in a way that possibly violates the fragility requirements butuses U(σ)− 1 bins. By using di�erent riteria to perform steps (i) and (ii) we reate anew solution, say σ′, belonging to Nk(σ).The new solution σ′ is possibly infeasible, beause the sum of the weights of theitems assoiated to one or more of the U(σ) − 1 bins may exeed the fragility of themost fragile items in the bins. We then try to minimize the sum of these weightsexesses by using a set of loal searh algorithms. The new solution obtained afterthe loal searh appliation is denoted by σ′′.If we manage to restore feasibility in all bins of σ′′, then we found a new heuristi



COLUMN GENERATION FOR BP WITH FRAGILE OBJECTS 31solution using one bin less. We thus update the inumbent solution and restart with
k = 1. Otherwise, we reiterate the proess until a maximum number of niter iterationshas been elapsed. If σ′′ remains infeasible after niter iterations, then we inrease k byone unit, so as to perform a searh in a larger solution spae. Whenever k exeeds agiven limit kmax, we set again k = 1.The algorithm is stopped whenever it �nds an upper bound equal to the lowerbound or after the maximum omputing time is elapsed.1.4.4.1 Strategi osillationAs brie�y disussed above, the aim of our perturbation method is to modify theinumbent solution σ so as to generate a new solution σ′ belonging to the neighborhood
Nk(σ). This neighborhood is the set of solutions that an be obtained from σ by meansof (i) the removal of k bins and (ii) the reassignment of the items originally pakedin the removed bins to U(σ) − 1 bins. The U(σ) − k bins that remain in σ after theremoval of the k bins are opied diretly into σ′; k − 1 new empty bins are opened in
σ′; all the U(σ)− 1 bins obtained in this way are �lled with the items originally to the
k removed bins by aepting violations of the fragility requirements.On the basis of omputational outome we use a two-level objetive funtion toredistribute the removed items, whih depends on the number of items on�iting withthe fragility of a bin, and the weight exess in a bin.The solution obtained after the exeution of the perturbation method is usuallyinfeasible, as some weight exess may exist in one or more bins. We try to restorefeasibility by means of a loal searh proedure that swaps items between pairs ofbins. We operate in a �rst improvement poliy, i.e., as soon as an improving moveis found we perform it and re-iterate. We developed several types of swaps involvingone, two, three and four items. We perform the swaps in non-dereasing order oftheir omplexity. The loal searh phase is halted when all the weight exess has beenremoved from the bins or when no improving move is found for any type of swap.This strategi osillation proved to be very pro�table also for the BPP-FO, beauseit allowed to quikly move from a solution to another by temporarily disregarding thefragility requirements, whih may be partiularly strit, hene failitating loal searh.1.4.5 Synthesis of the omputational experimentsSine no benhmarks existed for the BPP-FO, we proposed a set of hallenging instanesbased on our experimentations. These instanes are derived from BP instane of theliterature [84℄. We generated instanes where fragilities are strongly-orrelated, weakly-orrelated, and unorrelated. We generated instanes with up to 500 items. We keptthe instanes for whih the ompat model desribed in this setion was no able to �nda solution in �ve minutes.



32 DECOMPOSITION AND STRATEGIC OSCILLATIONStrongly orrelated instanes are very easy and an be all (but one) solved bythe ILP model within the given time limit. Unorrelated instanes are instead moredi�ult. It is worth noting that for two lasses the model is not even able to solve 20%of the instanes to optimality. Weakly orrelated instanes are even more di�ult, withthree lasses for whih the 20% ratio of optimal solutions is not reahed. The averageperentage gaps are a bit higher than those noted for the unorrelated ones.Our overall algorithm outperforms the mathematial model, as it manages to obtain78 optima out of 135, against the 51 obtained the model. Also the omputational e�ortis smaller (163 seonds against 380) and the average perentage gap is redued by ahalf. The mathematial model is very e�etive for solving the small instanes with 50items, but is weaker when solving the larger ones. The proposed algorithm an insteadsolve an interesting number of larger instanes.1.5 Conlusions, future worksWe applied several deomposition methods (tree-deomposition and Dantzig-Wolfedeomposition) to paking problems with di�erent kinds of on�its (hard on�its,soft on�its and fragility). We showed that, using these deompositions and meta-heuristis based on strategi osillation, we were able to design e�ient methods forsolving these di�ult ombinatorial problems.Applying tree-deomposition to problems that do not only inlude graph onstraintsis not straightforward, but we have shown that it leads to interesting results for thebin-paking problem with on�its. Our framework allows to make ollaborate di�erentkinds of methods, and an be easily parallelized. Using exat methods for solving thedi�erent subproblems ould be viable if the lusters are not too large.Conerning olumn generation, it transpires from our experiments that the min-on�it problem is muh harder than the bin-paking with fragile objets. This is dueto the di�ulty to solve the priing subproblem of the MCBP. On the ontrary, in theBPFO, the priing subproblem is takled e�iently by our dynami program sheme.Di�erent issues arise for the reation of exat methods for these two problems. For themin-on�it problem, better ILP formulation (or better uts) have to be proposed tofasten the resolution of the priing subproblem. We are now studying the appliation ofmethods designed for the quadrati knapsak problem. For the bin-paking with fragileobjet, the di�ulty is to �nd a branhing sheme that does not break the strutureof the subproblem, and allows our dynami programming sheme to be used.Conerning heuristi solutions, our experiments show that strategi osillation iswell suited to paking problems with on�its. It allows the meta-heuristi to gofrom one good solution to another good solution quikly by using non-omplete, ornon-feasible solutions. It also allows e�ient diversi�ation and intensi�ation phases,whih are among the most important ingredients in a meta-heuristi based on loal
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Chapter 2Dual-feasible funtions andextensions
The work presented in this hapter has been published [28, 29, 33, 66℄ in several inter-national journals. A report [31℄ will also be submitted soon to a journal.2.1 IntrodutionThis hapter deals with fast lower bounds for several bin-paking problems. A largepart of our work deals with the variant alled utting-stok problem. This problem issimilar to the lassial bin-paking problem: the main di�erene is that eah item sizeis repeated many times. It an be written as follows.Problem 7 (Cutting-Stok Problem (CSP)) Given a set I of item types i of size
ci and demand bi, how many rolls of size C are needed to ut bi times eah item i of Iin suh a way that the sum of their sizes in eah bin is smaller than or equal to C?It an be modeled exatly like the bin-paking problem. However, the fat thatitems are repeated many times is a feature that helps linear programming based meth-ods to solve this problem e�iently. The best model to date is due to Gilmore andGomory [50,51℄ (see Chapter 1). This model has a strong linear relaxation (the famousMIRUP property1, see [81℄), and is able to take into aount a large number of possiblevariants of bin-paking, sine all onstraints related to items in a given bin belong to thepriing subproblem, whih dynamially generates feasible olumns (paking patterns)for the model.For large size instanes, the omputation of the LP relaxation of the model ofGilmore and Gomory an be expensive in time. Moreover, in some real-life appliations,bin-paking lower bounds are omputed repeatedly a large number of times. In theseases, fast alternative tehniques have to be used. Several authors have foused onsuh tehniques [18, 58, 69℄.1The modi�ed integer round-up property (MIRUP) for a linear integer minimization problemmeansthat the optimal value of this problem is not greater than the optimal value of the orresponding LPrelaxation rounded up plus one. Whether CSP has the MIRUP property or not remains an openproblem in the general ase. 35



36 CHAPTER 2. DUAL-FEASIBLE FUNCTIONS AND EXTENSIONSIn this hapter, we fous on lower bounding tehniques based on so-alled dual-feasible funtions (DFF). This onept has been studied in the literature and suess-fully applied to the lassial bin-paking problem. We foused on two aspets of DFF:the generation of useful DFF, and their generalization to more ompliated pakingproblems.Our �rst ontribution is to survey the di�erent dual-feasible funtions that were usedin the literature, some expliitly, other hidden behind a more ompliated formalism.We also gather results onerning these DFF and superadditive funtions, and give aninsight into the simple frameworks that are generally used to generate DFF.Our seond ontribution is a uni�ed view and a simple formalism for dual-feasiblefuntions applied to other paking problems. Then we give some appliations of thisonept to di�erent variants of paking problems, namely the bin-paking problem, thebin-paking problem with on�its, the bin-paking problem with fragile items, andthe two-dimensional bin-paking problem with and without rotation.2.2 Classial dual-feasible funtionsThe onept of dual-feasible funtion (DFF) has been used to improve the resolutionof several utting/paking (C&P) problems, and more generally any problem involvingknapsak inequalities (sheduling problems, vehile or network routing). It was usedfor the �rst time for deriving algorithmi lower bounds for bin-paking problems byLueker [75℄. Sine then, several researhers have proposed new funtions to improvethe results obtained by the initial method.2.2.1 De�nitions and propertiesDe�nition 2.2.1 A funtion f : [0, 1]→ [0, 1] is dual-feasible if for any �nite set S ofreal numbers, we have
∑
x∈S

x ≤ 1⇒
∑
x∈S

f(x) ≤ 1.Dual-feasible funtions are generally de�ned in [0, 1]. However, when data areinteger, using disrete values instead may lead to simpler formulations. Carlier andNéron [21�23℄ propose a disrete version of DFF. They use the designation of redundantfuntions to denote suh funtions. They are de�ned from [0, C] to [0, C ′] (C and C ′stritly positive integers) instead of being de�ned from [0, 1] to [0, 1].In this doument, we onsider disrete funtions in general. We now de�ne formallythese disrete DFF. For the sake of simpliity, for a given integer value C, we de�nethese funtion from {0, . . . , C} to [0, 1].De�nition 2.2.2 For a given integer value C, a funtion f : {0, . . . , C} → [0, 1] is adisrete dual-feasible funtion if for any �nite set S of values in {0, . . . , C}, we have
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∑
x∈S

x ≤ C ⇒
∑
x∈S

f(x) ≤ 1.In the following, unless it is learly spei�ed, all funtions onsidered will be disrete.We now introdue a dominant subset of the DFF, alled Maximal DFF (MDFF).De�nition 2.2.3 A DFF f is a Maximal Dual Feasible Funtion (MDFF) if theredoes not exist any other DFF f ′ suh that f(x)
f(C)
≤ f ′(x)

f ′(C)
for all x ≤ C and there existsa value y suh that f(y)

f(C)
< f ′(y)

f ′(C)
.Let us give a simple example of DFF, and how it is applied to produe a lowerbound for the utting-stok problem.Example 2.2.1 We onsider an instane with a bin of size 10. The item set is om-posed of one item of size 2, ten items of size 3, one item of size 7, and ten items ofsize 8. A simple bound is obtained by summing the sizes of the items and divide itby the size of the bin. The result is rounded up sine the number of bins is integer.

L0 = ⌈(1∗2+10∗3+1∗7+10∗8)/10⌉= 12. This bound an be improved by applying adisrete DFF to the instane as a preproessing. We give below an example of disreteDFF de�ned from {0, . . . , 10} to [0, 1]. For eah value x in {0, . . . , 10}, we report thevalue of f(x).
x 0 1 2 3 4 5 6 7 8 9 10

f(x) 0 0 0 1/3 1/3 1/2 2/3 2/3 1 1 1When this funtion is applied to the instane, the following new bound is obtained:
⌈1 ∗ 0 + 10 ∗ 1/3 + 1 ∗ 2/3 + 10 ∗ 1⌉ = 14.Several properties haraterize the MDFF funtions. In the following, we rewritea result proved by [23℄ using our formalism. Reall that a funtion f is said to besuperadditive if for any x, y suh that f(x), f(y) and f(x+y) are de�ned, f(x)+f(y) ≤
f(x+ y).Proposition 2.2.1 (Theorem 1. of [23℄). A dual-feasible funtion is maximal if andonly if f(0) = 0, f is monotonously inreasing, f is superadditive, and f is suh thatfor all i = 1, . . . , C/2 it holds that f(i) + f(C − i) = 1.2.2.2 Data-dependent DFFWe introdued data-dependent dual-feasible funtions (DDFF) in [20℄ to generalizea result proposed by Boshetti and Mingozzi [13℄. The di�erene between DFF andDDFF is that DFF have to be valid for any instane, whereas DDFF are omputed fora given instane (and thus annot be applied to another instane). The de�nition ofDDFF is the following.



38 CHAPTER 2. DUAL-FEASIBLE FUNCTIONS AND EXTENSIONSDe�nition 2.2.4 Let I = {1, . . . , n}, c1, c2, . . . , cn n integer values and C an integersuh that C ≥ ci for i = 1, . . . , n. A Data-Dependent DFF (DDFF) f assoiated with
C and c1, c2, . . . , cn is a disrete appliation from I to {0, . . . , C ′} suh that

∀I1 ⊂ I,
∑

i∈I1

ci ≤ C ⇒
∑

i∈I1

f (i) ≤ C ′Note that DFF are applied to indies. Two items of same size may have di�erentimages.DDFF have proved to be e�etive when applied to two-dimensional bin-pakingproblems. They an lead to bounds that ould not be reahed by the appliation ofDFF.2.2.3 Appliations of DFFAs explained above, the lassial appliations of DFF are related to the omputationof lower bounds for the bin-paking problem. Formally, a bound is obtained as follows.Let f be a disrete DFF de�ned from {0, . . . , C} to [0, 1], ⌈∑x∈S f(x)⌉ is a lower boundfor BPP.Dual-feasible funtions an also be used for problems in two or three dimensionsby applying them independently on eah dimension (see [44℄). To our knowledge, DFFhave only been omputed for bin-paking problems.Apart from omputing fast lower bounds, any dual-feasible funtion an be usedto generate valid inequalities for integer programs de�ned over the sets S = {x ∈ Zn+ :∑n
j=1 aijxj ≤ bi, i = 1, . . . , m} suh that bi ≥ aij ≥ 0 and bi > 0 for any i, j.Proposition 2.2.2 Let S = {x ∈ Zn+ :

∑n
j=1 aijxj ≤ bi, i = 1, . . . , m}, with bi ≥ aij ≥

0 and bi > 0 ∀i, j. For any i, if f : {0, . . . , bi} → [0, 1] is a DFF, then ∑n
j=1 f(aij)xj ≤ 1is a valid inequality for S.The term DFF is hardly used in the ontext of uts for linear programs (with thenotable exeptions of [4℄ and [2℄). Note also that even if we fous on lower boundingstrategies for bin-paking problems, our work on dual feasible funtions (and the or-responding dual solutions of the utting stok) have also allowed to propose tehniquesto stabilize olumn generation algorithms for this problem [29℄.2.2.4 Disrete DFF and the model of Gilmore and GomoryDisrete DFF are tightly linked with the model of Gilmore and Gomory [50,51℄ for theutting-stok problem. We already used this model in Chapter 1. We just reall somedetails.A ombination of items of I in a roll is alled a pattern. Eah possible uttingpattern is desribed by a olumn labelled p: (a1p, . . . , aip, . . . , a|I|p)

T , where aip is the



2.2. CLASSICAL DUAL-FEASIBLE FUNCTIONS 39number of items of width ci in the pattern p. The model of Gilmore and Gomory [50,51℄is the following model (already de�ned in Chapter 1) applied to the set of patterns Pdesribed just above.
min

∑

p∈P

zp (2.1)
∑

p∈P

aipzp ≥ bi i ∈ I (2.2)
zp ∈ {0, 1} ∀p ∈ P. (2.3)Here, a valid utting pattern is suh that

∑

i∈I

aipci ≤ C, ∀p ∈ P (2.4)
aip ∈ N, ∀p ∈ P, i ∈ I (2.5)As explained in Chapter 1, the olumns of (2.1)-(2.3) are generated iteratively bysolving the priing subproblem. In our ase, this problem is the lassial knapsakproblem.The weak dual of (2.1)-(2.3) reads:

max
∑

i∈I biπi (2.6)s.t. ∑
i∈I

aipπi ≤ 1, ∀p ∈ P (2.7)
πi ≥ 0 (2.8)One an notie that the ondition for a solution π to be valid for this dual is∑

i∈I aipci ≤ C =⇒
∑
i∈I

aipπi ≤ 1 for any pattern p, whih is the de�nition of disretedual-feasible funtions.An alternative de�nition an be given for disrete DFF assoiated with a size C:a funtion f is a disrete dual-feasible funtion if for any instane of utting-stokwhere the size of the bins is C, there exists a valid solution π of (2.6)-(2.8) suh that
f(i) = πi for any value i in I.An alternative de�nition of DDFF is that f is a DDFF dependent on a giveninstane D if there exists a valid dual solution π of (2.6)-(2.8) applied to D suh that
f(i) = πi for any value i in D. The main di�erene with DFF is that the dual problemhere is less onstrained than for the DFF, sine some patterns do not belong to P ,whereas for the DFF, all possible patterns related to the size C have to be onsidered.This explains why the DFF are named dual-feasible.



40 CHAPTER 2. DUAL-FEASIBLE FUNCTIONS AND EXTENSIONS2.3 A general point on view on DFFWe �rst propose a generalization of the onept of DFF to any problem that an bemodeled with a set-overing model and a subproblem. This name this onept Set-Covering-DFF (SC-DFF).Let I = {1, . . . , n} be a set of indies, and P the set of all possible patterns prelated to a given problem P. We denote by aip the number of items of type i thatappear in pattern p and v(p) the ost of pattern p. Note that P is of exponential, yet�nite size.De�nition 2.3.1 Let P be the set of all possible patterns de�ned for set I and agiven problem P. A Set-Covering-DFF (SC-DFF) for (I, P ) is a mapping g de�nedfrom I to R+ suh that
p ∈ P ⇒

∑

i∈I

aip ∗ g(i) ≤ v(p) (2.9)The main di�erene with the lassial DFF is that it applies to indies i instead ofthe sizes ci. This is due to the fat that two items with the same size may be di�erent(take the problem with on�its for example).In this formalism, geometri onstraints of paking appliations are modeled as aset of feasible patterns (the set of instane vetor). Pratially speaking, being able toharaterize this (possibly exponential size) set without enumerating all its elements isruial.For most bin-paking problems, where the goal is to minimize the number of binsused, the value v(p) is equal to 1 for all patterns p.Now we give a de�nition of data-dependant set-overing DFF. This time the set ofpatterns P (D) is restrited to those possible with the item sizes in D.De�nition 2.3.2 Let I be a set of items and D an instane of problem P. Let P (D)be the set of valid patterns related to instane D. A Set-Covering-DDFF (SC-DDFF) related to instane D is a mapping g de�ned from I to R+ suh that
p ∈ P (D)⇒

∑

i∈I

aip ∗ g(i) ≤ v(p) (2.10)Note that for two di�erent instanes of the same problem, a SC-DDFF an be validfor one and not for the other.This formalism is ompatible with onstraints added during a branh-and-ut-and-prie algorithm. This means that SC-DFF ould be used in any node of a searh tree,and not only at the root node as it is done up to now.From now on, we will name CS-DFF the lassial DFF (Cutting-Stok DFF). Theterm CS-MDFF will be used for Maximal CS-DFF.Note that when the onstraints of the initial problem are equality onstraints (set-partitioning problem instead of set-overing problem), the only di�erene is that the



2.4. COMPUTATION OF CS-DFF 41values of f(i) an be negative. Pratially speaking, this is rarely useful for pakingproblems, sine in these partiular ases, set-partitioning models an be relaxed intoset-overing problem without modifying the value of an optimal solution. However, theonept of "set-partitioning DFF" ould be interesting to introdue for some spei�problems outside the �eld of bin-paking problems.2.4 Computation of CS-DFFSeveral papers propose CS-DFF ("lassial" dual-feasible funtions), sometimes impli-itly when they are used to improve uts in linear programs. Identifying the funtionsunderlying ompliated formulations is far to be easy in some ases. We surveyed theliterature and gathered two literatures that were somehow disonneted. The goal wasto propose a guide for generating CS-DFF.2.4.1 Frameworks for reating valid CS-DFFA simple way of ombining two funtions is to ompute a linear ombination, or toompose two CS-DFF (see [42℄ for example).Proposition 2.4.1 A omposition, or a positive linear ombination of superadditivefuntions is superadditive.More partiularly, it is shown in [80℄ that if f and g are superadditive, then, for
λ ≥ 0, λf , ⌊f⌋, f + g, min{f, g} are superadditive. Note that for λ > 0, max{0, x−λ}is also superadditive, whereas x+ λ is not.A omposition or a positive linear ombination of CS-MDFF is also an CS-MDFF.Funtion min{f, g} is not maximal, unless f = g. As funtion f(x) = ⌊x⌋ is not aCS-MDFF, in general ⌊f(x)⌋ is not dominant either.In this paragraph, we address the funtions that apply on rational values. When xis rational, rx will denote the frational part of x (rx = x−⌊x⌋). Pratially speaking,if the data are integer, one an divide all values by a given rational to obtain rationalvalues.The following result shows that a way of assoiating two CS-DFF is to apply themseparately to the integer part and to the frational part of the values. This is valid ifthe onditions of Lemma 2.4.1 are veri�ed.Lemma 2.4.1 Let f and g be two superadditive funtions respetively de�ned on [0, C]and [0, 1]. If f(x + 1)− f(x) ≥ v∗ for all x ∈ [0, C − 1], and for all y, y′ ∈ [0, 1] suhthat y + y′ > 1, g(y + y′ − 1) ≥ g(y) + g(y′)− v∗, the funtion de�ned as follows

h(x) = f(⌊x⌋) + g(rx)is superadditive on [0, C].



42 CHAPTER 2. DUAL-FEASIBLE FUNCTIONS AND EXTENSIONSThe ondition of the lemma is restritive, sine only stritly inreasing funtions fan lead to a superadditive funtion. However the onditions on funtion g are not toostrong, and many funtions an be used. For example, if g is a lassial CS-DFF de�nedfrom [0, 1] to [0, 1], f has to be stritly inreasing and suh that f(x)−f(x−1) > 1 forall x in [0, C]. We will show in the next setion that funtions proposed in [15℄ and [70℄use this framework.The eiling funtion is not superadditive. However it an lead to superadditivefuntions if it is minored by a suitable value. We now generalize several results usedimpliitly in [87℄ and [70℄.Lemma 2.4.2 Let f be a superadditive funtion. If β ≥ 1, g(x) = max{0, ⌈f(x)⌉−β}is superadditive.In the literature, several superadditive and nondereasing funtions are proposed,whih are not maximal. The following results aim at reating a CS-MDFF when oneknows a non-maximal superadditive funtion f .A dominating maximal CS-DFF f̂ an be built by keeping the images of the valuessmaller than C/2 and omputing the images of the values larger than C/2 by symmetry.This is a generalization of what is done impliitly by Carlier et al. in [20℄.Theorem 2.4.1 Let f be a superadditive and nondereasing disrete funtion de�nedfrom {0, . . . , C} to [0, 1], and suh that f(0) = 0. The following funtion is a maximalCS-DFF.
f̂ : {0, . . . , C} → [0, 1]

x 7→





f(C)− f(C − x), for C ≥ x > C
2
,

1/2, for x = C
2
,

f(x), for x < C
2
.Theorem 2.4.2 shows another way of obtaining an CS-MDFF from a non-maximalsuperadditive funtion f . The ase we onsider ours when for some value x where f isnot ontinuous, the value of f(x) an be inreased without modifying the other values.This tehnique leads to an improved funtion with some singular values x suh that

lim
ε→0−

f(x+ε) < f(x) < lim
ε→0+

f(x+ε). This tehnique is impliitly used by [40,42,87℄ forexample. Theorem 2.4.2 is used in the sequel to show that some funtions are maximal.For the sake of simpliity, for a given funtion f and a given value x∗ for whih
f is de�ned, we de�ne f̄x∗ the funtion de�ned as follows: f̄x∗(x) = f(x) if x 6= x∗,and f̄x∗(x∗) = f(x∗) + ε with ε a real value as small as needed. Note that when f isa CS-DFF, f̄x∗ may or may not be a CS-DFF. In the following theorem, for a givenCS-DFF f , I2 is the set of values x∗ suh that f̄x∗ is also a CS-DFF, i.e. the set ofvalues for whih the image an be inreased. In the sequel we say that a funtion f isright-ontinuous in x if lim

ε→0+
f(x+ ε) = f(x).



2.4. COMPUTATION OF CS-DFF 43Theorem 2.4.2 Let f be a superadditive and nondereasing non-disrete funtion de-�ned from [0, C] to [0, f(C)] suh that f(0) = 0. We denote by I2 the subset of values xfrom [0, C] suh that f̄x is a CS-DFF, and I1 the set of remaining values. We supposethat I2 is a disrete set of values {x1, . . . , xk} and that f is right-ontinuous on eahset [0, x1), (x1, x2), . . . (xk, 1] of I1.For a given funtion g, the following funtion
h : [0, C]→ [0, f(C)]

x 7→

{
f(x) if x ∈ I1
g(x) if x ∈ I2is a superadditive nondereasing funtion if the following onditions are true.1. f(x) ≤ g(x) ≤ lim

ε→0+
f(x+ ε) for any x in I22. g(x) + g(y) ≤ g(x+ y) if x, y, x+ y ∈ I23. g(x) + f(y) ≤ g(x+ y) if x ∈ I2, x+ y ∈ I2 and y ∈ I12.4.2 A omparative analysis of CS-DFFIn the following, we desribe several CS-DFF that were used in the literature (expliitlyor impliitly). These funtions are de�ned for the values {0, . . . , C}. The image domainwill depend on the funtion. We will use the formalism that simpli�es the most thepresentation.Fekete and Shepers [42℄ propose three dual-feasible funtions. Two are maximal,but the third is not an CS-MDFF.The �rst funtion fk0 is used impliitly by Martello and Toth [78℄ in their L2 lowerbound for the bin-paking problem. Funtion fk0 , with k ∈ {0, . . . , C

2
}, onsists inremoving all values of size less than a given threshold k, and symmetrially inreasingto one the size of the large values.

fk0 : {0, . . . , C} → [0, 1]

x 7→





1, for x > C − k,

x/C, for k ≤ x ≤ C − k,

0, for x < k.It has been shown that this funtion is superadditive and nondereasing [2,35℄, andeven maximal [35℄. Only values k ≤ C/2 suh that C − k is the size of a large item areinteresting. Note than when k is small enough, fk0 is equivalent to the identity funtion,and so the lower bounds for the bin-paking problem obtained using this funtion arenever smaller than the initial ontinuous bound.
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✲ x

✻

f(x)

b

b

Figure 2.1: Funtion fk
0

for C = 10 and k = 3The seond funtion fkFS,1, k ∈ N∗, an be seen as a speial rounding proedure. Itis an improvement on a funtion proposed by Lueker [75℄, using Theorem 2.4.2. Therelative sizes of values equal to C/(k + 1), C/(k + 2), . . ., C/(k + 1) are not modi�ed.
fkFS,1 : {0, . . . , C} → [0, 1]

x 7→

{
x/C, for x(k + 1)/C ∈ N,

⌊(k + 1)x/C⌋ 1
k
, otherwise.Proposition 2.4.2 Funtion fkFS,1 is a maximal CS-DFF.The authors also propose a funtion fkFS,2, whih is not superadditive (see [2℄).Several funtions of the literature dominate this funtion (see [14, 20℄).Boshetti and Mingozzi [14℄ and Boshetti [12℄ respetively propose bounds for thetwo- and three-dimensional bin-paking problems. For the two-dimensional bin-pakingproblem, they impliitly use funtion fk0 and fkBM,1, an improved disrete version of

fkFS,2. We do not report the formulation of this funtion, as a slightly improved version( [20℄) is desribed next. In [35℄, it is shown that any iterative omposition of fki0 and
f jiBM,1 is dominated by a funtion of the form fkBM,1 ◦ f

l
0.Carlier et al. propose a slight improvement on the funtion of Boshetti [20℄, byenforing the image of C

2
to be 1/2. This funtion an also be obtained by applyingTheorem 2.4.1 to funtion ⌊x/k⌋. Note that as for fk0 , when k = 1, this funtion isequivalent to the identity funtion. Let k ∈ [1, C/2].

fkCCM,1 : {0, . . . , C} → [0, 1]

x 7→





1− ⌊(C−x)/k⌋
⌊C/k⌋ , if x > C

2
,

1/2, if x = C
2
,

⌊x/k⌋
⌊C/k⌋ , if x < C

2
.Proposition 2.4.3 Funtion fkCCM,1 dominates fkFS,2.In [87℄, Vanderbek uses a superadditive and nondereasing funtion fkV B,1, k ∈

{2, . . . , C}, to derive valid inequalities for the pattern minimization problem whih arestronger than the rank 1 Chvátal-Gomory uts [27℄. His funtion states as follows.
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Figure 2.2: Funtion fk
CCM,1

for k = 3

fkV B,1 : {0, . . . , C} → [0, 1]

x 7→
max{0,

⌈
kx
C

⌉
− 1}

k − 1Funtion fkV B,1 is a CS-DFF, and it is also superadditive (it is diret using Lemma2.4.2). In [2℄, it is shown that fkFS,1 dominates fkV B,1.Using Theorem 2.4.1, we have reated a funtion fkV B,2 that dominates fkV B,1.Proposition 2.4.4 The following funtion is a maximal CS-DFF:
fkV B,2 : {0, . . . , C} → [0, 1]

x 7→





1− fkV B,1(C − x) if x > 1/2

1/2 if x = 1/2

fkV B,1(x) if x < 1/2For the two following funtions, the disrete formalism leads to ompliated formu-lations, so we use non-disrete funtions instead. When integer data are used, one hasto divide all values by a real value in [1, C] before applying these funtions.In [15℄, Burdett and Johnson propose a funtion de�ned for rational values. Whenvalid inequalities are onsidered, the data we have to deal with are often rational. Ifone wants to use this funtion for bounding (where data are in general integer), onean multiply the initial values by a rational onstant. For a given value x, let rx bethe frational part of x. The funtion of Burdett and Johnson is given next.
fBJ,1 : [0, C]→ [0, 1]

x 7→ ⌊x⌋/⌊C⌋ +max

{
0,

(rx − rC)/(1− rC)

⌊C⌋

}
.Any value α 6= 1 an replae rC in this funtion, but it appears [80℄ that thestrongest inequality is obtained when α = rC . If rC = 0, the funtion is equal to theidentity funtion. In [80℄, the authors show that this funtion is superadditive. Analternative immediate proof of superadditivity derives diretly from Lemma 2.4.1.



46 CHAPTER 2. DUAL-FEASIBLE FUNCTIONS AND EXTENSIONSProposition 2.4.5 (diretly dedued from Lemma 2.4.1 and [80℄) Funtion fBJ,1 is amaximal CS-DFF.Lethford and Lodi [70℄ propose another way of strengthening Chvátal-Gomoryuts [27℄ and Gomory frational uts [53℄ in linear programs. In the remainder, wesuppose that the frational part of C is suh that rC > 0. In [70℄, the authors do notpreise that their improvement is based on a dual-feasible funtion. In this doument,we expliitly formulate the dual-feasible funtion that underlies their method. As fBJ,1,it is based on Lemma 2.4.1.Proposition 2.4.6 Let ζ be equal to ⌈ 1
rC
⌉ − 1. The following funtion is a CS-DFF.

fLL,1 : [0, C]→ [0, 1]

x 7→ ⌊x⌋/⌊C⌋ +max



0,

⌈
rx−rC
1−rC

ζ
⌉

(ζ + 1)⌊C⌋



 .We use Lemma 2.4.2 to show that this funtion is superadditive. However, it is notmaximal.Proposition 2.4.7 Funtion fLL,1 impliitly used by Lethford and Lodi [70℄ is super-additive, but not maximal.This means that one an propose an improved version of this funtion by applyingTheorem 2.4.1.Proposition 2.4.8 The following funtion is a maximal CS-DFF, and dominates fLL,1.

fLL,2 : [0, C]→ [0, 1]

x 7→





1− fLL,1(C − x), if x > C/2,

1/2, if x = C/2,

fLL,1(x), if x < C/2.Note that Dash and Günlük [40℄ have proved that ζ an be replaed in fLL,1 by anyinteger value k greater than ζ . We will use fkLL,1 for this extension.A partiular ase of the so-alled extended 2-step Mixed-Integer Rounding (MIR)inequalities of Dash and Günlük [40℄ leads to a ut that an be obtained by applying aCS-MDFF. This funtion also dominates fkLL,1, yet it is not equal to fkLL,2. Again, wesuppose that the frational part of C is suh that rC > 0.Proposition 2.4.9 Let k be an integer greater than or equal to ⌈ 1
rC
⌉−1. The followingfuntion is a CS-DFF.

fkDG,1 : [0, C]→ [0, 1]

x 7→





⌊x⌋/⌊C⌋ + (rx−rC)/(1−rC )
⌊C⌋

if k 1−rx
1−rC

∈ N and rx > rC ,

⌊x⌋/⌊C⌋ +max

{
0,

⌈

rx−rC
1−rC

k
⌉

(k+1)⌊C⌋

}
, otherwise .



2.4. COMPUTATION OF CS-DFF 47This funtion is maximal, sine it is obtained from fkLL,1 using Theorem 2.4.2.Proposition 2.4.10 Funtion fkDG,1 is inreasing, superadditive, and symmetri andhene is a CS-MDFF.2.4.3 Summary of our literature studyIn this paragraph, we sum up the di�erent results stated in the urrent setion. Wereall several kind of results: dominane, maximality, and the di�erent tehniquesunderlying eah family of funtions.In Table 2.1, we report a lassi�ation of the di�erent funtions. For eah funtion,we reall the paper in whih ontext it was proposed ('-' means that it is a trivial CS-DFF). We also report the type of appliation for whih it has originally been designed(olumn Appli.: lb for lower bounding, and uts for improved valid inequalities). Thenwe give informations for eah funtion: if it is a CS-MDFF, if it expliitly uses Lemmas2.4.1 and 2.4.2, or Theorem 2.4.1.Funtions ⌊
x
k

⌋ (k 6= 1), fkFS,2, fkLL,1 and fkV B,1 are not maximal, whereas fkBM,1is almost maximal. Only the image of C
2
makes the latter non-maximal. All theother funtions are maximal. Among all the funtions onsidered, only fkFS,2 is notsuperadditive.Funtions fkBJ,1, fkLL,1 and its improved versions fkDG,1 fkLL,2 are the only ones to useLemma 2.4.1. Note that these funtions were originally proposed to derive uts, whihan explain the fat that the frational part is treated apart.Lemma 2.4.2 is used to modify the frational part in fkLL,1, fkLL,2 and fkDG,1. Itunderlies funtion fkV B,1, and the funtion that dominates it, fkV B,2. Funtion fkFS,1does not use expliitly Lemma 2.4.2, but its struture is lose to it (it "almost" usesLemma 2.4.2, sine the integer values x are treated separately).Theorem 2.4.1 is used by fkCCM,1, fkLL,2 and fkV B,2, and almost by fkBM,1 (only theimage of C/2 has to be modi�ed). Theorem 2.4.2 is used by fkFS,1 and fkDG,1 to obtaina maximal funtion, and by fkV B,1 to obtain a non-maximal funtion.We have ompared the di�erent CS-DFF analyzed above against several types ofinstanes for the one-dimensional bin-paking problem generated in a lassial way.We used instanes with up to 10000 items. Even for these large instanes, eah lowerbound is omputed in less than 1 seond.As expeted, maximal funtions lead to improved results ompared to non-maximalfuntions. What is more surprising is the fat that funtion fkCCM,1 is stritly betterthan fBM,1 for many test ases, although it only modi�es the image of C

2
. This an beexplained by the fat that the instanes are generated randomly, and thus items of size

C
2
may appear several times in an instane.Only the bounds based on the rounding funtion (fkBM,1 and fkCCM,1) are betterthan fk0 on average. This means that if one wants to use a unique funtion, fkCCM,1would be this one (sine it dominates the other rounding-based funtions). But if one



48 CHAPTER 2. DUAL-FEASIBLE FUNCTIONS AND EXTENSIONSFuntion Paper Appli. CS-MDFF lem. 2.4.1 lem. 2.4.2 thm. 2.4.1 thm. 2.4.2identity - - yes no no no no
fk0 [42℄ lb yes no no no no
⌊xk ⌋ - - no no no no no
fkFS,2 [42℄ lb no no no no no
fkBM,1 [14℄ lb almost no no almost no
fkCCM,1 [20℄ lb yes no no yes no
fkV B,1 [87℄ uts no no yes no yes
fkFS,1 [42℄ lb yes no almost no yes
fkBJ,1 [15℄ uts yes yes no no no
fkLL,1 [70℄ uts no yes yes no no
fkDG,1 [40℄ uts yes yes yes no yes
fkLL,2 [29℄ - yes yes yes yes no
fkV B,2 [29℄ - yes no yes yes noTableau 2.1: Summary of the properties of the funtions analyzed in this doumentis looking for the best results, he will have to use all the maximal CS-DFF desribedin this doument.2.5 Extensions of DFF for various bin-paking prob-lemsIn this setion, we desribe the extensions of DFF to other paking problems that wehave proposed. The problems addressed are all bin-paking problems. We onsider theases where on�its between items an our (pairwise on�its, or a so-alled fragilityonstraint). We also onsider several variants of the two-dimensional ase.2.5.1 DDFF for the bin-paking problem (BP-DDFF)In the following, we present DDFF designed for the bin-paking problem. For ourstudy, the only di�erene between bin-paking and utting-stok will the fat that thenumber of items for eah type is small and thus paking ⌊C/ci⌋ instanes of a givenitem i may not be allowed. This means that the set P of valid patterns is di�erent.In BP-DDFF, the number of times an item is repeated in the instane is taken intoaount.2.5.1.1 De�nition and link with CS-DFFTo our knowledge, the �rst impliit use of BP-DDFF for omputing lower bounds forbin-paking problems is due to Boshetti and Mingozzi [13℄. We originally de�ned this



2.5. EXTENSIONS OF DFF FOR VARIOUS BIN-PACKING PROBLEMS 49onept under the name of data-dependent dual-feasible funtions (DDFF) [20℄. In thisdoument, we will use the term BP-DDFF (DDFF de�ned for bin-paking problem).We now de�ne formally this onept of BP-DDFF.De�nition 2.5.1 [20℄ Let I be a set of items i of size ci, and C a size of bin. Abin-paking DDFF (BP-DDFF) g assoiated with this instane is a mapping from I to
[0, 1] suh ∑

i∈I1⊆I

ci ≤ C ⇒
∑

i∈I1

g(i) ≤ 1 (2.11)Any CS-DFF (or "lassial" DFF) is tightly related to BP-DDFF.Proposition 2.5.1 Let f : {0, . . . , C} → [0, 1] be a disrete CS-DFF. Funtion g :

I → [0, 1] de�ned as follows: g(i) = f(ci) is a BP-DDFF for any instane.However, some BP-DDFF are not BP-DFF, and only apply on spei� instanes.We now give an example of DDFF to illustrate the fat that DDFF an lead tovalues that would not be valid for a DFF.Example 2.5.1 Consider an instane with a bin of size 100, and two items: item 1of size 5 and item 2 of size 96. A valid DDFF de�ned from I to [0, 100] an map item
1 to value 99 and item 2 to value 1. Note that with a DFF, the image of an item ofsize 1 annot be larger than 1/100.2.5.1.2 A general BP-DDFFThe �rst BP-DDFF has been proposed by [20℄. It uses a speial parameter k. Thismethod generalizes the work of [13℄ and gives a di�erent viewpoint on the method. Wenow propose a way of omputing a more generi family of BP-DDFF.Let I = {1, . . . , n} be a set of indies, C an integer value, and c1, c2, . . . , cn a listof integer values less than or equal to C, and J a subset of I. The following familyof funtions uses an arbitrary set of parameters α = {αi ∈ N : i ∈ I}. We denoteby KP (C, J, c, α), the value of an optimal solution to the lassial one-dimensionalknapsak problem (Problem 2). The value C is the size of the bin, J the set of items
i, eah of size ci, and α is a funtion that assoiates a pro�t to the items of J .Formally, KP (C, J, c, α) an be stated as follows.

KP (C, J, c, α) = max
J ′⊆J,

∑

i∈J′ ci≤C
{
∑

i∈J ′

αi}Proposition 2.5.2 The following funtion g1 is a BP-DDFF de�ned for a given in-stane D.
g1 : I → [0, 1]

i 7→

{
1−KP (C − ci, J, c, α)/KP (C, J, c, α) if i ∈ J
αi/KP (C, J, c, α) if i ∈ I \ J



50 CHAPTER 2. DUAL-FEASIBLE FUNCTIONS AND EXTENSIONSThe values of the small items are equal to αi, and the sizes of the bin and of thelarge items are omputed by solving the knapsak problem desribed above. Then allvalues are divided by KP (C, J, c, α) to obtain a funtion in [0, 1].When applying a CS-DFF on D, removing an item may derease the value ofthe lower bound obtained. When BP-DDFF are used, this observation does not holdanymore sine the value of other items may be inreased using the knapsak problem.The knapsak problems involved are NP-hard in the general ase. However theyan be solved in pseudo-polynomial time using dynami programming (see [78℄ forexample). When the size of the bin is large, it may entail a large omputing time. Inthis ase, the set of parameters α should be hosen in a way to re-enable the resolutionof the knapsak problem in a polynomial time. We investigated this idea in [35℄ byhoosing αi = 1, ∀i ∈ J , similarly to what is impliitly done in [13℄. The optimal valueof the knapsak problem is then equal to the maximum number of items that an beput together in a knapsak of size C. It an be solved in linear time if the items aresorted by inreasing order of size. However, the general form g1 is more e�ient foromputing lower bounds than the method of [35℄. The best results on average wereobtained by using αi = ci, ∀i ∈ J .2.5.1.3 Pratial usefulnessPratially speaking, these funtions were able to improve the quality of the lowerbounds for well-known two-dimensional benhmarks from the literature. For the one-dimensional benhmarks, the improvement is small. This is due to the fat that intwo-dimensional benhmark the number of items of eah type is generally smallerthan in the one-dimensional ase. Consequently, taking into aount the fat that thenumber of small items is limited helps omputing the quantity of lost spae in the bins.2.5.2 DDFF for the bin-paking with on�its (BPC-DDFF)We now propose DDFF for the bin-paking with on�its. Note that we onsider thegeneri ase without speifying the geometri onstraint applied to the problem. Sim-ilarly to BP-DDFF, we will name BPC-DDFF the DDFF designed for BPC. We onlypropose funtions that depend on the data, sine it seems di�ult (if not impossible)to design e�etive methods that would be valid for any graph.Both tehniques we propose are based on graph onepts: graph triangulation forthe �rst, tree-deomposition for the seond. A formal de�nition of these onepts isgiven in Chapter 1.2.5.2.1 Knapsak-based BPC-DDFFThe �rst BPC-DDFF is a generalization of funtion g1 de�ned in Proposition 2.5.2 forBP.



2.5. EXTENSIONS OF DFF FOR VARIOUS BIN-PACKING PROBLEMS 51Proposition 2.5.3 Let h1 be the funtion obtained from funtion g1 where the knap-sak problem KP is replaed by the disjuntive knapsak problem. Funtion h1 is anBPC-DDFF.To our knowledge, no dynami programming sheme exists for the disjuntive knap-sak problem with general graph. A �rst solution to solve these problems is to use anILP solver like ILOG plex. We used other methods, based on graph onepts and arelaxation of the problem.When a on�it graph G is onsidered, only stable sets of G an be solutions ofthe knapsak problem with on�its (KPC). Thus a (possibly not pratially tratable)solution for the KPC is to ompute all maximal stable sets of the on�it graph, andthen to solve for eah stable set the assoiated knapsak problem. The maximum valueobtained for all stable sets is the optimal value for KPC. This solution is tratableonly if 1) the number of stable sets is small and 2) they an be omputed with asmall omplexity. Neither of the two onditions are ful�lled when a random graph isonsidered.For this method to be tratable, we relax our problem by removing edges to ouron�it graphs in suh a way that its omplementary graph beomes triangulated (seeChapter 1). Tarjan and Yannakakis proved in [85℄ that any triangulated graph Ghas at most n maximal liques. In addition, they desribed a linear algorithm toreognize a triangulated graph and to enumerate its maximal liques. In our ase, theompatibility graph G is rarely triangulated. Finding the minimum set of edges to addin order to obtain a triangulated graph is a NP-hard problem, so we use the heuristialled Maximum Cardinality Searh (MCS) [85℄ to triangulate the initial ompatibilitygraph.In Figure 2.3, we give an example of triangulated ompatibility graph and theorresponding knapsak problems to solve. To ompute the size of the bin, the sixknapsak problems have to be solved. To ompute the size of item 10, only the knapsakproblems KP3 KP4, KP5 and KP6 have to be solved.2.5.2.2 A BPC-DDFF based on graph deompositionSuppose the set I of items an be deomposed into two sets I1 and I2 of pairwiseinompatible items. In this ase, two di�erent DFF f and g an be applied to I1 and
I2, sine the instane an be deomposed into two distint sub-instanes. Now, if thereis a third set I3 where eah item is ompatible with some items of I1 and I2, a lowerbound an be obtained as follows: ⌈∑

i∈I1

f(i) +
∑
i∈I2

g(i) +
∑
i∈I3

min {f(i), g(i)}

⌉. This istrue sine eah item of I3 will be paked either with items of I1, items or I2 but notboth. We have used this tehnique to derive lower bounds during a branh-and-boundmethod for the bin-paking problem [30℄.
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Figure 2.3: Knapsak problems to solve to ompute the knapsak-based BPC-DDFFUsing our formalism, it is equivalent to applying the following BPC-DDFF, whihdepends on two CS-DFF f and g.
h(f, g) : I → [0, 1] (2.12)

i 7→





f(ci) if i ∈ I1
g(ci) if i ∈ I2
min{f(ci), g(ci)} otherwise (2.13)This tehnique an be generalized by deomposing the graph into di�erent inter-seting subsets. Funtion h2 is based on the onept of tree-deomposition (see Chapter1), whih aptures the possible assoiations of items.Let G = (I, I × I \ E) be the ompatibility graph of the instane, and T = (S,A)a tree-deomposition of G. The basi idea of h2 is to assign a given DFF fs to eahnode s ∈ S of the tree-deomposition T .Let F be a list of valid disrete DFF f1, . . . , f|S| de�ned from {0, . . . , C} to [0, 1],one for eah node of the tree deomposition. For eah vertex i in the graph we de�ne

Si the set of nodes of the tree deomposition ontaining i. Clearly there is always a setof funtions f1, . . . , f|S| that allows to dominate the appliation of a single DFF (e.g.
f1 = f2 = . . . = f|S|).Proposition 2.5.4 The following funtion h2 is a BPC-DDFF.

h2 : I → [0, 1] (2.14)
i 7→ min

s∈Si
{fs(ci)} (2.15)



2.5. EXTENSIONS OF DFF FOR VARIOUS BIN-PACKING PROBLEMS 53An issue is to hoose a suitable set of funtions to be applied to the nodes of thetree deomposition. We use the following heuristi. For eah node s, we ompute thevalue of the bound assoiated with eah funtion of our initial set F and we reord thefuntion that leads to the best value. This strategy may not be optimal but it leads tofast bounds.If this tehnique is applied to an instane with the graph of Figure 2.3, sine thegraph is triangulated, the optimal tree-deomposition uses the six maximal liques ofthe graph. Only one DFF is applied to items 1, 2, 3 and 4. Sine item 10 belongs tofour lusters (four maximal liques), four funtion will be applied to its size (one perluster), and the minimum will be kept.2.5.2.3 Pratial usefulnessThese funtions helped improving the results for the two-dimensional ase of BPC. Forthe one-dimensional ase, the bounds were already tight. The results are somehowdisappointing, sine the funtions are not su�ient to obtain ompetitive results (evenif they improved the previous best ombinatorial lower bounds). More ompliatedbounds (involving the resolution of a transportation problems) were used after theappliation of the DFF.Considering the fat that the olumn-generation method returns good results forthis problem, we think that there is room for improvement for this variant of bin-paking. Note that �nding a DDFF for this problem is equivalent to �nding a heuristisolution for the dual problem. This would require using tehniques from both ontin-uous and disrete optimization �elds.2.5.3 DFF for the bin-paking problem with fragile items (BPFI-DFF)In this setion, we propose DFF for the bin-paking problem with fragile items (seeChapter 1). Reall that the fragility of an item i is denoted ψi.The only lower bound previously dediated to this problem is the so-alled "fra-tional lower bound". This bound is obtained by paking iteratively the items by in-reasing fragility, allowing several parts of an item to be paked in two onseutive bins(see [5℄). It is a diret adaptation of the linear lower bound for the lassial bin-pakingproblem.2.5.3.1 De�nition and propertiesWe �rst de�ne formally the notion of dual-feasible funtions for BPFI (BPFI-DFF).De�nition 2.5.2 A mapping g de�ned from I to [0, 1] is a BPFI-DFF if
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∑

i∈S⊆I

ci ≤ min
j∈S
{ψj} =⇒

∑

i∈S

g(i) ≤ 1 (2.16)When a BPFI-DFF is omputed, it an be diretly used to derive a lower boundfor BPFI.Proposition 2.5.5 If g is a BPFI-DFF and I a set of items to pak in a BPFI instane
D, Lg = ⌈∑i∈I g(i)⌉ is a valid lower bound for the minimum number of bins to use for
D. The following proposition diretly follows from Equation (2.16) and the de�nitionof a CS-DFF.Proposition 2.5.6 If λ is a CS-DFF and g and BPFI-DFF, λ ◦ g is a BPFI-DFF.This means that a CS-DFF an be applied as a postproessing when a BPFI-DFFis applied to the original instane, and may improve the results obtained.The following results show a relation between superadditive funtions and BPFI-DFF. Note that without loss of generality, we onsider that the fragilities are stritlygreater than 0.Proposition 2.5.7 Let λ be a superadditive and inreasing funtion suh that λ(0) =
0. The following funtion g is a BPFI-DFF.

g : i 7→ λ(ci)/λ(ψi) (2.17)Note that all maximal CS-DFF desribed in this hapter are superadditive andinreasing. Consequently, all useful funtions de�ned for the utting-stok an be usedfor the bin-paking with fragile items. If they are de�ned independently of a size ofbin, they an be applied in a straightforward way. However some CS-DFF a de�nedaording to a size of bin. In this ase, ψmax an be used as a �tive size of bin, orhand-tailored tehniques an be applied to improve this value.The result of Proposition 2.5.7 an be improved by inreasing the image of the largeitems (i ∈ I, ci > ψi/2) to the largest possible size that is allowed when the small itemshave been transformed using funtion λ.Proposition 2.5.8 Let λ be a superadditive and inreasing funtion suh that λ(0) =
0. The following funtion ḡ is a BPFI-DFF.

ḡ : i 7→




1− max

ρ=0,...,ψi−ci
{ λ(ρ)
λ(ci+ρ)

} if ci > ψi/2

λ(ci)
λ(ψi)

if ci ≤ ψi/2
(2.18)



2.5. EXTENSIONS OF DFF FOR VARIOUS BIN-PACKING PROBLEMS 552.5.3.2 A spei� family of BPFI-DFFCreating BPFI-DFF from lassial CS-DFF an be done using the results of Propo-sitions 2.5.6,2.5.7 and 2.5.8. We now give an appliation of these theoretial resultsto a simple superadditive funtion: ⌊.⌋. We also show a way of using two di�erentBPFI-DFF to a given instane by using a deomposition method.Corollary 2.5.1 Let k be a given parameter (1 ≤ k < minj∈I{ψj}), the followingfuntion is a BPFI-DFF.
gk2 : i 7→

⌊ci/k⌋

⌊ψi/k⌋
(2.19)Note that using gk2 yields bounds that are better than L0 and L1, sine taking k = 1leads to the same value as L1. It an also be stritly greater than L2. Take n items ofwidth C/2 + ε and fragility C. In this ase, L2 = n/2 − 1, while the bound obtainedfrom g

C/2+ε
2 is equal to ∑

i∈I 1/1 = n (whih is the optimal result).Funtion gk2 an be improved by inreasing the image of the large items (i ∈ I,
ci > ψi/2) to the largest possible remaining spae when the other items have beentransformed using gk2 .Corollary 2.5.2 Let k be a given parameter (1 ≤ k < minj∈I{ψj}), the followingfuntion is a BPFI-DFF.

ḡk2 : i 7→




1− max

ρ=1,...,ψi−ci
{ ⌊ρ/k⌋
⌊(ci+ρ)/k⌋

} if ci > ψi/2

⌊ci/k⌋
⌊ψi/k⌋

if ci ≤ ψi/2
(2.20)Let us give an example to illustrate the improvements that an be ahieved usingBPPFO-DFF.Example 2.5.2 Take an instane with 100 items of width 5 and fragility 8 and 100items of width 2 and fragility 7. Let L2 be the frational bound.

L2 = 92 (the 28 �rst bins are used to pak the 98 �rst items of size 2, then one binontains two items of size 2 and 3 units of an item of size 5. Finally, the remainingitems of size 5 are frationally paked in 63 bins.
Lgk

2
with k = 2 : ⌈100 ∗ ⌊5/2⌋

⌊8/2⌋ + 100 ∗ ⌊2/2⌋
⌊7/2⌋⌉ = ⌈100 ∗ 1/2 + 100 ∗ 1/3⌉ = 84

Lḡk
2
with k = 2 : ⌈100 ∗ (1− ⌊2/2⌋

⌊(5+2)/2⌋
) + 100 ∗ ⌊2/2⌋

⌊7/2⌋
⌉ = ⌈100 ∗ 2/3+ 100 ∗ 1/3⌉ = 1002.5.3.3 Knapsak-based BPFI-DDFFOne again, funtion g1 de�ned in Proposition 2.5.2 an be used. In this ase, theknapsak problems to solve to ompute the size of the bin and the size of the largeitems is a knapsak problem with fragile items. A dynami programming method forthis problem is desribed in Chapter 1.



56 CHAPTER 2. DUAL-FEASIBLE FUNCTIONS AND EXTENSIONS2.5.3.4 Pratial usefulnessThe funtions proposed lead to bounds that are lose to the value returned by themodel of Gilmore and Gomory. However, they are also lose to the simple frationallower bound. The small gap between this latter bound and the olumn-generation oneleaves small room for improvements for the DFF.2.5.4 DFF for two-dimensional bin-paking problems (2BPP-DFF)We now onsider the two-dimensional bin-paking problem with and without rotation.We show that CS-DFF an be used to derive new 2BPP-DFF. The result for theoriented ase is due to Fekete and Shepers [44℄ (we just rewrite their result to �t ourformalism). Our main ontribution here is the improvement for the ase with rotation.Problem 8 (Two-dimensional Bin-Paking Problem (2BPP)) Given a set I ofretangular items i of size (wi, hi), what is the minimum number of bins of size (W,H)needed to pak all the items of I in suh a way that in eah bin, the items an be pakedinside the boundaries of the bin without overlapping? If the rotation of the items isallowed, we have a 2BPP with rotation (2BPP-R), otherwise, we have a 2BPP with�xed orientation (2BPP-O).We avoid the repetitive formal de�nition of a 2BPP-O-DFF and 2BPP-R-DFF.Just reall the fat that, using suh a DFF, for any valid pattern P for 2BPP, the sumof the images of the items in P is smaller than 1.2.5.4.1 DFF for the oriented ase [44℄ (2BPP-O-DFF)Fekete and Shepers [44℄ have shown that two DFF ould be applied to eah dimensionof an instane of 2BPP-O to obtain a lower bound. Using our formalism, their resultan be written as follows.Proposition 2.5.9 Let f and g be two disrete CS-DFF respetively de�ned from
{0, . . . ,W} to [0, 1] and {0, . . . , H} to [0, 1]. The following funtion is a 2BPP-O-DFF.

ϕ : i 7→ f(wi) ∗ g(hi) (2.21)If the identity funtion is used for f and g, the bound based on the surfae of thebins is obtained. Note that the value of the image depends on the two dimensionsindependently. No atual two-dimensional DFF were derived in the literature. Thisan be explained by the fat that haraterizing the set of feasible patterns is hard.Even verifying that a pattern is feasible is NP-omplete (see Chapter 3).



2.5. EXTENSIONS OF DFF FOR VARIOUS BIN-PACKING PROBLEMS 57To our knowledge, there are no lower bounding tehniques for 2BPP that do not relyon tehniques dediated to the one-dimensional ase. However, they have shown theire�etiveness on hard two-dimensional instanes. This has been on�rmed by Capraraet al. [17℄. In this paper, the authors have proposed a bilinear programming methodfor �nding the best pair of DFF to apply to a bin-paking instane. This method leadsto results that are lose to those obtained by olumn-generation algorithms.2.5.4.2 DFF for the ase with rotation (2BPP-R-DFF)The two following results are rewritings of those proposed in [33℄. The �rst is a gener-alization of a bound of [14℄, the seond is a truly original result.The �rst result derives from a simple fat. For two given CS-DFF f and g, if alower bound for the oriented ase based on these two funtions is run for all possibleorientations of the items, and if the minimum is reorded, a valid lower bound isobtained. Of ourse, the bound obtained would need an exponential time, sine it wouldlead to 2n lower bounds to ompute. Nevertheless a lower bound an be omputed byonsidering the following relaxation: for eah item i, keep the smallest image that itan have for its possible orientations. This leads to the following result.Proposition 2.5.10 (impliitly used in [14℄) Let f and g be two disrete CS-DFF re-spetively de�ned from {0, . . . ,W} to [0, 1] and from {0, . . . , H} to [0, 1]. The followingfuntion is a 2BPP-R-DFF.
ϕ1 : i 7→ min{f(wi) ∗ g(hi), g(wi) ∗ f(hi)} (2.22)A better DFF, that dominates the previous one (if f and g are inreasing andsuperadditive), is now desribed.Proposition 2.5.11 Let f and g be two CS-DFF de�ned as above. The followingfuntion is a 2BPP-R-DFF.
ϕ2 : i 7→

f(wi) ∗ g(hi) + g(wi) ∗ f(hi)

2
(2.23)The result is not intuitive, but is beomes obvious when the following relaxation isonsidered. From a 2BPP−R, onstrut a 2BPP−O instane I ′ of size 2 ∗ n whereeah item is repeated one for eah of its orientation. Clearly, the value of an optimalsolution for this new problem annot be more than twie the value of an optimalsolution for the original 2BPP−R instane. Take an optimal solution for 2BPP−Rwith z bins, keep the z bins and reate z new bins by rotating the z �rst bins. Youobtain a feasible solution for the new 2BPP−O instane with 2 ∗ z bins (see Figure2.4).The last result only holds when the bin is a square. It an be adapted for the asewhere the bin is a retangle by introduing dummy items (and thus onstruting an
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9Figure 2.4: An optimal solution for 2BP−R with z bins (the two upper bins) and a solution for the 2BP−O relaxationusing 2 ∗ z bins (the two lower bins)instane where the bins are square). Unfortunately, doing so breaks the dominaneresult between ϕ2 and ϕ1. Note that the fat that some items an only have oneorientation is not taken into aount in this result.2.5.4.3 Pratial usefulnessFor the two-dimensional ases, the DFF lead to surprisingly good results when thenumber of bins is large. When the number of bins dereases, the geometri onstraintbeomes more important and the DFF are weaker. However, the results remain ofgood quality (see Chapter 3 for a disussion on the redution of the omputing timeobtained using DFF). For the ase with rotations, the bounds are rather simple, butdominate the other bounds from the literature and are pratially tight when the binis a square. However, in some ases, onsidering a retangular bin an derease thequality of the bound by a wide range.2.6 Conlusions, future worksIn this hapter, we foused on lower bounding tehniques for bin-paking problem usingthe onept of dual-feasible funtions. It is important to note that the link betweenthe theory of superadditive funtions and dual-feasible funtions also helps improvingutting planes algorithms by enforing some uts with maximal funtions. Therefore,we give a tool for improving many previous methods in a straightforward manner.Suessfully generalizing the onept of dual-feasible funtion for several pakingproblems hints that this methodology an be applied to problems that lie outside the�eld of C&P problems. We plan to study and analyze suh solutions for new prob-lems. We will fous on problems for whih set-overing models and olumn generationgive good lower bounds (variants of vehiule routing or sta� sheduling problems forexample). An interesting fat is that the de�nition of SC-DFF an diretly be appliedto a large variety of problems. One of the main di�ulties is to handle the set ofonstraints de�ned in the subproblem, whih an be muh more ompliated than the



2.6. CONCLUSIONS, FUTURE WORKS 59one-dimensional knapsak problem involved in the utting-stok problem. Charater-izing the set of feasible patterns is also a hallenging issue.





Chapter 3Mixing onstraint-programming andOR tehniques for solving retangleplaement problems
The work of this hapter has been published in an international journal [32℄ and in aninternational onferene [34℄ (an extended version is submitted to INFORMS Journalon Computing).3.1 Retangle plaement problemsWhen the two-dimensional bin-paking problem is addressed, verifying if a given subsetof items an be paked into a bin is NP-omplete (whereas for the one-dimensional asethe answer is straightforward). This problem has been addressed under several names.In the following, we will use the term retangle plaement problem. Figure 3.1 is anexample of solution for an instane of RPP with 12 items.Problem 9 (Retangle Plaement Problem (RPP)) Given a list of retangularitems, and a unique large retangle, is it possible to pak all the items into the retanglewithout overlapping?RPP not only ours as a subproblem in two-dimensional paking problems (bin-paking or knapsak problems), but also alone when retangular piees of steel, wood,or paper have to be ut from a larger retangle, and in many industrial appliations(VLSI design for example).When RPP has to be repeatedly solved in a more general optimization problem,researhers have foused on avoiding to solve this problem (see [19℄ for the knapsakproblem or [30℄ for the bin-paking problem). For example, bounds based on DFF anbe useful to detet non-feasible problems. As we will see in this hapter, onsiderablepratial di�ulties arise in ases where solving RPP is unavoidable.Di�erent variants of RPP have been studied in the literature. In this doument, wefous on the regular ("unonstrained" retangle paking problem), and on a lassialvariant alled guillotine-utting problem. In this spei� ase of RPP, the retangles61
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1 28 394 511 106 12

7
Figure 3.1: A solution for an instane of RPP321 4 56 7 89 1011Figure 3.2: A guillotine patternhave to be ut using guillotine uts only. A guillotine ut is parallel to one of thesides of the retangle, and must go from one edge all the way to the opposite edge ofa urrently available retangle.Problem 10 (Guillotine Cutting Problem (GCP)) Given a list of retangular items,and a large retangle, is it possible to ut the items from the large retangle withoutoverlapping, and using only guillotine uts?Figure 3.2 pitures an example of guillotine pattern. A �rst ut separates items1, 2 and 3 from the others, then a ut separates 4 and 5 from items 6 to 11 and soon. Note that the pattern of Figure 3.1 is not guillotine, sine no set of items an beseparated from the others without utting an item.Although GCP is onsidered as a "utting" problem, the guillotine onstraint analso be relevant when one needs to pak items on shelves. Atually we have met thispartiular problem during an industrial ontrat on an automati storage devie.Surprisingly enough, although its ombinatorial struture seems easier (with a niereursive pattern), GCP is harder to solve in pratie than RPP for both heuristiand exat methods. For the former, most of the researhers have restrited the searhspae to so-alled two-stage patterns, where the reursive struture is limited to a depthof two (strips are ut from the large retangles, and then eah strip is ut to obtainthe �nal items). There are also works about three-stage patterns. These variants arepopular beause they are relevant from a pratial point of view, and an be modelled



3.2. CONSTRAINT PROGRAMMING 63as e�etive ILP (see [76℄ for example). In our work we do not restrit our patterns tobe two-stage.RPP has been the topi of many researh papers, in the OR literature under thename of feasibility problem [79,82℄, or orthogonal paking problem (in [43�45℄ for exam-ple), and in the onstraint programming ommunity [9,10,54,67℄. In the CP ommunity,RPP is muh more addressed than GCP. This an be explained by the fat that thestruture of GCP is far to be straightforward to apture in a CP model, and that mostof the propagation algorithms are only e�etive when many retangles have alreadybeen paked.For both versions (RPP and GCP), our ontributions are twofold: they onernnew models and hybridization of CP and OR tehniques based on these models. Ournew models are able to apture e�etively the struture of the problems addressed, butit transpires that an e�etive use of OR tehniques is mandatory to be able to prunesolutions and fasten the searh.For RPP (Setion 3.3), we have exploited the fat that the problem is tightlylinked to a lassial umulative sheduling problem. Our model reates two shedulingproblems in addition to the original problem. This allows us to adapt several methodsfrom the sheduling �eld to the paking �eld (energeti reasoning, ...).For GCP (Setion 3.4), we have proposed a brand new graph model, whih apturesthe reursive struture of a guillotine pattern. This model leads to a CP algorithm,whih uses the graph to hek the guillotine onstraint, and our RPP model to verifythat the items are paked into the boundaries of the large retangle.3.2 Constraint programmingConstraint programming is a paradigm aimed at solving ombinatorial problems thatan be desribed by a set of variables, a set of possible values for eah variable, and aset of onstraints between the variables.The set of possible values of a variable V is alled the variable domain, denoted as
D(V ). It might be, for example, a set of numeri or symboli values {v1, v2, . . . , vk}, oran interval of onseutive integers [α..β]. In the latter ase the lower bound of D(V )is denoted as V − = α and the upper bound is denoted as V + = β.A onstraint between variables expresses whih ombinations of values for the vari-ables are allowed. The question is whether there exists an assignment of values tovariables, suh that all onstraints are satis�ed. The power of the onstraint program-ming method lies mainly in the fat that onstraints an be used in an ative proesstermed �onstraint propagation� where ertain dedutions are performed, in order toredue omputational e�ort. Constraint propagation removes values from the domains,dedues new onstraints, and detets inonsistenies.Constraint propagation alone is rarely su�ient to solve hard problems. The
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Figure 3.3: Modeling a retangle plaement with two interval graphsonstraint propagation algorithms are generally run at eah node of an enumerativemethod.3.3 The retangle plaement problem (RPP)The �rst OR methods for the retangle plaement problem onsist in paking itemsone by one in the bin [55, 79℄. They rely on the so-alled bottom-left dominane rule(see [26℄), whih states that eah item an be paked in a leftmost and downwardorner. Eah item is either adjaent to another item, or a side of the bin.In [43,45℄, Fekete et al. propose a new model for the feasibility problem. They showthat a pair of interval graphs an be assoiated with any paking lass (i.e., a set ofpakings with ommon properties). The interest of this onept is that a large numberof symmetries are removed, sine only one paking is enumerated per lass. A graph
Gd = (I, Ed) is assoiated with eah dimension (I is the set of items) and d ∈ {w, h} isthe dimension onsidered. An edge is added in the graph Gw (respetively Gh) betweentwo verties i and j if the projetions of items i and j on the horizontal (respetivelyvertial) axis overlap (see Figure 3.3). They also provide a branh-and-bound [45℄to seek a pair of interval graphs with suitable properties, and then dedue a feasiblepaking. In omparison with lassial methods, this method avoids a large number ofredundanies, and outperforms the best previous OR method [79℄.The model of Fekete and Shepers has been improved by onsidering a betterrepresentation of interval graphs (using so-alled onseutive 1 matries [62℄ or PQ-trees [63℄). Note that, even with these re�nements, the methods based on intervalgraphs are still outperformed by state-of-the-art CP methods. The CP ommunity hasstudied the RPP with several di�erent models. In the �rst, the deision variables are



3.3. THE RECTANGLE PLACEMENT PROBLEM (RPP) 65the relative plaement of eah pair of items i and j (see [67,82℄ for example). Beldieanuand Carlsson [9℄ have shown that with a good propagation (performed by the SWEEPalgorithm), the non-overlapping onstraints alone an lead to good results [11℄. Thebranhing sheme onsists in testing eah possible position in the bin for eah item inturn.Our work on retangle plaement lies between the OR and CP ommunities. Weuse a onstraint-programming sheme, whih is based on sheduling tehniques, andadd several pruning proedures based on OR tehniques (resolution of small knapsakproblems, and original appliations of dual-feasible funtions).3.3.1 A onstraint-based sheduling model for RPPWe now desribe our onstraint-based sheduling model for RPP. We �rst reall alassial model for the non-overlapping onstraint, and then explain how it an berelaxed into a sheduling problem. This leads to a model that uses so-alled umulativeonstraints in addition to the non-overlapping onstraints.3.3.1.1 A basi onstraint programming modelIn onstraint programming, RPP an be lassially enoded in terms of variables andonstraints. Two variables Xi and Yi are assoiated with eah item i. They representthe oordinates of i in the bin. We denote as D(Xi) = [Xmin
i , Xmax

i ] and D(Yi) =

[Y min
i , Y max

i ], respetively the domains of variables Xi and Yi, in whih Xmin
i , Xmax

i ,
Y min
i and Y max

i are the lower and upper bounds of the domains. Initially, the domainsof these variables are respetively set to [0, . . . ,W − wi] and [0, . . . , H − hi]. For eahpair of items i and j, we assoiate the following onstraint: [Xi+wi ≤ Xj] or [Xj+wj ≤

Xi] or [Yi+hi ≤ Yj] or [Yj+hj ≤ Yi], whih expresses the fat that items i and j annotoverlap in the bin.This model is su�ient to ensure that the solution is valid, one the domains ofvariables have been redued to only one value suh that all onstraints are satis�ed.We will refer to this model as the �basi model�. Generally, this model is pratiallyine�etive to solve the problem. However, note that the use of the �sweep� algorithmof Beldieanu and Carlsson [9℄, whih propagates e�iently the above-desribed on-straint, gives ompetitive results.3.3.1.2 A new relaxation into a sheduling modelIn a previous work, we onsidered a new relaxation for the RPP. We remove the on-straints related to the height of the items and replae them by a lassial umulativeonstraint. Pratially speaking, it means that several horizontal strips of an item areallowed not to be ontiguous on the vertial axis. Eah solution of the relaxed problem
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Figure 3.4: A relaxation of RPP into a CuSPorresponds with a set of patterns for RPP. If there is no solution for the relaxed prob-lem, there is no solution for RPP. A partial solution of the relaxed problem is pituredin Figure 3.4. This problem is known in the sheduling ommunity as the umulativesheduling problem (CuSP).Problem 11 (Cumulative sheduling problem (CuSP)) We are given a set of nativities {A1, . . . , An} and a set of resoures {R1, . . . , Rm}. Eah ativity Ai has aproessing time, requires a partiular amount of a resoure Rk and has to be exeutedwithin a time window [esti, leti). Resoures have a given apaity that annot be ex-eeded at any point in time. The resoure an exeute several ativities, provided thatthe resoure apaity is not exeeded. The problem to be solved onsists in deidingwhen eah ativity is exeuted, while respeting the resoure onstraints, and withoutinterruption.In the following, we show how this relaxation is used to enfore our CP model, andhow onstraint-based sheduling algorithms an be adapted to our models.3.3.1.3 A onstraint-based sheduling modelThe relaxation desribed above an be applied to the width instead of the height. Inthis ase, another CuSP is obtained. Atually, our method uses both CuSP (one foreah dimension) to strengthen the original model.We now desribe formally the two CuSP addressed. The two onsidered resouresare termed Rw and Rh. The resoure apaity of Rw is equal to H and the resoureapaity of Rh is equal to W . We de�ne a set {Aw1 , . . . , Awn}. Eah ativity Awi has aproessing time wi, requires an amount hi of the resoure Rw, and has to be exeutedwithin the time window [0,W ). Similarly, we de�ne a set {Ah1 , . . . , Ahn} of ativities.Eah ativity Ahi has a proessing time hi, requires an amount wi of the resoure Rhand has to be exeuted within the time window [0, H).We introdue a variable start(A) for eah ativity A, representing the start time of

A. Initially, the domain of variables start(Awi ) is set to [0, . . . ,W −wi] and the domain



3.3. THE RECTANGLE PLACEMENT PROBLEM (RPP) 67of variables start(Ahi ) is set to [0, . . . , H − hi]. Resoure onstraints represent the fatthat ativities require some amount of a resoure throughout their exeution. In ournon-preemptive umulative ase, the resoure onstraints an be expressed as follows:
∀t ∈ [0, . . . ,W ],

∑

Aw
i /start(A

w
i )≤t<start(Aw

i )+wi

hi ≤ H.

∀t ∈ [0, . . . , H ],
∑

Ah
i /start(A

h
i )≤t<start(A

h
i )+hi

wi ≤W.In other words, the sum of resoure requirement of ativities Awi (respetively Ahi )exeuted at time t has to be lower than or equal to the resoure apaityH (respetively
W ) of resoure Rw (respetively Rh).Finally, the sheduling problem is linked to the onstraint programmingmodel of theoriginal RPP (see above) with the following onstraints: for eah item i, [start(Awi ) =
Xi] and [start(Ahi ) = Yi]. It is easy to see that one the variables start(Awi ) and
start(Ahi ) are instantiated in suh a way that all onstraints are satis�ed, the orre-sponding solution is valid.To desribe our branh-and-bound algorithm, we use the start(Awi ) and start(Ahi )variables. We use a shedule-or-postpone method, whih works as follows: at eahstep of the proedure, we hoose an unsheduled ativity and we shedule it as earlyas the previous ativities sheduled on the same resoure will allow. We obtained thebest experimental results by working �rst on a given resoure exlusively and then onthe other. Note that our work has now been extended by [54℄, who used the samemodel, with an improved branhing sheme based on the same ideas (in fat they usedihotomy instead of testing eah value of X in turn).Sine RPP has been modeled as a sheduling problem, it is now possible to use pow-erful onstraint-based sheduling propagation tehniques spei� to non-preemptivesheduling problems (see for instane [6℄). These tehniques allow us to tighten thedomains of variables and to detet inonsistenies during the proedure. However, notethat edge-�nding propagation tehniques [6℄ were not useful for our problem.3.3.2 Two-dimensional energeti reasoningWe now desribe the onept of energeti reasoning, originally developed by Ershleret al. [41, 74℄ to solve umulative sheduling problems. We suggest a generalization ofenergeti reasoning, whih allows the feasibility of orthogonal paking patterns to betested, and new adjustments to be found.3.3.2.1 Feasibility tests and bounds adjustmentsFor sheduling problems, dedutions made using energeti reasoning are based on theonsumption of resoures by ativities during given time intervals. For a given time



68 RECTANGLE PLACEMENT PROBLEMSinterval [α, β), α < β, energy is supplied by a resoure and onsumed by an ativity.The energy supplied by a resoure of apaity C in this interval is equal to (β−α)×C,and the energy onsumed by an ativity of demand ci is equal to ci × ∆i, where ∆iis the part of ativity i sheduled in [α, β). If the starting time of the ativity isnot yet �xed, we determine the mandatory energy onsumption in interval [α, β). It isobtained by onsidering the positions in whih the proessing of the ativity is minimalin [α, β). By onsidering the quantities of energy supplied and onsumed within givenintervals, the energeti approah aims at developing satis�ability tests and time-boundadjustments to ensure that either a given shedule is not feasible or to derive someneessary onditions that any feasible shedule must satisfy.Unlike ativities in sheduling problems, the position of an item has to be �xedwith respet to both the horizontal and vertial dimensions. We therefore suggest thefollowing generalization of energeti reasoning. Instead of onsidering an interval [α, β),we onsider a retangular window. We de�ne the retangular window [α, β, γ, δ), α < βand γ < δ, in whih [α, β)× [γ, δ) is the area under onsideration.Energy is now supplied by the bin and onsumed by items. Energy supplied by thebin in window [α, β, γ, δ) is equal to (β − α) × (δ − γ). The energy onsumed by anitem an be omputed onsidering the bottom left and top right positions aordingto the domains of its oordinate variables, in whih the item's onsumption is minimal(see Figure 3.5). Let ŵi(α, β) and ĥi(γ, δ) be respetively the width and the height ofthe mandatory part of item i in the window [α, β, γ, δ) (see Figure 3.5). We have:
ŵi(α, β) = max (0,min {wi, β − α,X

min
i + wi − α, β −X

max
i })and

ĥi(γ, δ) = max (0,min {hi, δ − γ, Y
min
i + hi − γ, δ − Y

max
i }).Energy onsumed by item i in window [α, β, γ, δ) is then Êi(α, β, γ, δ) = ŵi(α, β) ×

ĥi(γ, δ). Therefore, the total energy onsumed by all items in window [α, β, γ, δ) is
Ê(α, β, γ, δ) =

∑
i∈I Êi(α, β, γ, δ). As in basi energeti reasoning, the following propo-sition holds.Proposition 3.3.1 If there is a feasible paking, then ∀α, β ∈ [0,W ), ∀γ, δ ∈ [0, H),suh that α < β and γ < δ, we have Ê(α, β, γ, δ) ≤ (β − α)× (δ − γ).This means that for every possible window, energy supplied by the bin has to beat least as large as minimal energy onsumed by items. To perform feasibility tests,we an test this inequality at eah node of the searh tree algorithm for all relevantwindows in the bin. If there exists a window for whih the inequality does not hold,then the onsidered node annot lead to a feasible solution and an onsequently bepruned.The values of Ê(α, β, γ, δ) an also be used to adjust domain variable bounds of Xiand Yi. Let i be an item and let [α, β, γ, δ) be a window suh that β < Xmax

i +wi. We
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Figure 3.5: Mandatory part of item i in the retangle [α, β, γ, δ) by onsidering its two extreme positions.verify whether i an be fully paked before β, i.e., if i an be paked at a oordinate
Xi suh that Xi + wi ≤ β. If i is fully paked before β, then its energy onsumptionis obtained by onsidering its leftmost position. If this total energy onsumption isgreater than (β − α)× (δ − γ), it means that item i annot be fully paked before β.In this ase, we update the domain of Xi to take into aount this fat.Baptiste et al. [7℄ studied the umulative sheduling problem and showed that it issu�ient to alulate energies for intervals belonging to a haraterized set in order to�nd all possible dedutions. We generalized their result to the two-dimensional ase.Pratially speaking, only a subset of possible intervals are used, sine using all of themis too time-onsuming.3.3.3 Using DFF in feasibility testsDFF have been de�ned in details in Chapter 2. In this setion, we fous on thetransformations applied to the partial instanes of RPP to allow an e�etive usage ofDFF. The bounds applied on these instanes are desribed in details in Chapter 2.Note that when DFF are applied to the instane, a lower bound for the bin-pakingproblem is obtained. If this value is greater than one, then the instane has no solution.The problem with lassial DFF is that they annot take into aount the fat thatsome items are already paked. If DFF are applied on a partial solution, the valuereturned will be the same as initially. Consequently, we operate some modi�ations onthe instane, based on the position of the paked items, to allow the DFF to produe



70 RECTANGLE PLACEMENT PROBLEMSbetter pruning methods.In the �rst tehnique, we use DFF to improve the feasibility test based on energetireasoning. It relies on the fat that a small 2OPP instane is reated when energetireasonings are used. In the seond tehnique, we merge items that have been pakedto reate a more onstrained instane for whih DFF may be able to show that thereis no solutions.3.3.3.1 Using BP-DFF in Energeti ReasoningConsider virtual items (ŵi(α, β), ĥi(γ, δ)) obtained from the widths and the heights ofitems in window [α, β, γ, δ). The set of items orresponding to the mandatory parts ofthe items of I in [α, β, γ, δ) is denoted by Î(α, β, γ, δ).Proposition 3.3.2 Let (I, B) be a RPP. For four integer values α, β, γ and δ, and adomain variable for the x- and y-oordinates of the items of I, if the 2OPP problemde�ned by Î(α, β, γ, δ) and B̂ = (β−α, δ−γ) has no solution, then there is no solutionfor the original RPP with the urrent domain variables.Several methods an be used to show that a partiular 2OPP problem obtainedis not feasible, the quikest being to hek that the ontinuous lower bound does notexeed one. This orresponds to the feasibility test desribed in previous setion. Inour ase, we use the lower bounds based on DFF and desribed in Chapter 2. Weould use preproessing methods or an exat method. Nevertheless, experimentationhas shown that the omputation time required for this latter method is too great withrespet to the redution of the searh spae.3.3.3.2 Using BP-DFF on a onstrained instaneThe idea is to aggregate the items whih are paked side-by-side to reate new instaneswhih are more onstrained than the initial instane (Figure 3.6). The lower boundsand the redution proedures are applied to these instanes to obtain better results.The method is based on a geometri observation. Consider the polygon ψ formed bythe set I1 of items paked in the bin. If I1 is replaed in the initial instane D byanother set I ′1 suh that items of I ′1 an be paked in ψ, the following property holds:Proposition 3.3.3 If there is no feasible solution for I \ I1 + I ′1 in B, then there isno feasible solution for I in B suh that items of I1 are paked in ψ.Given a set of paked items I1, we reate a set I ′1 whih is more onstrained than
I1. The idea is to maximize the height or the width of the reated items to obtain twoinstanes (Figure 3.6). If several transformed items whih are paked side by side areshallow they an be paked one above the other in the new instane. To avoid thissituation we operate a seond modi�ation on the items. If the paked items have been



3.3. THE RECTANGLE PLACEMENT PROBLEM (RPP) 71
123 4 1' 2' 3' 1�2�3�

Figure 3.6: Computing suitable instanes for applying the DFFut into vertial strips, we add to the new items a height equal to H and the heightof the bin is updated to 2H . So the bounds an take into aount the fat that theseitems annot be paked one above the other. If the paked items do not �t the widthof the bin a dummy item with size (w∗, H) is reated, w∗ being the free width to theright of the paked items (Figure 3.6). Note that after the seond transformation, item
3′ annot be paked above item 2′. The same operation an be realized when the widthis onsidered. We denote the new instane obtained as D′′. The results are improvedbeause the problem is more onstrained as the number of large items inreases.3.3.4 Knapsak-based feasibility testsWe now show how reasoning an be done for pruning the searh tree using the solutionof subset-sum problems. The subset-sum problem is a partiular ase of the knapsakproblem (Problem 2), where the size of eah item is equal to its pro�t. It has been usedby Boshetti and Mingozzi [13℄ in a preproessing, and by Fekete and Shepers [44,45℄in their exat method.In our method, the main idea is to make use of the information that is givenby the domains of the variables in our onstraint programming model. Similarly toenergeti reasoning, our algorithm allows to prune partial solutions, but also to realizeadjustments on the domains of the variables. An important part of our work is to avoidomputing non-neessary information to realize our tests, using dominane rules.Let P be a partial solution for a RPP instane, and x a given x-oordinate. Wedenote by Hx the sum of the heights of the items whose variable has been �xed (Xmin

i =

Xmax
i ) and suh that x ∈ [Xi, Xi + wi). If Hx < H , additional items an be pakedin [x, x + 1). However, if there is no unpaked item j suh that hj < H − Hx, thenneessarily some area has been lost. Consequently, the value H −Hx an be added tothe total area of the items to strengthen any reasoning based on the remaining area.This idea an be generalized when items an be paked in [x, x + 1) without thepossibility of perfetly �tting the free spae. Let Ix be the subset of items i whosevariable Xi has not been �xed (Xmin

i < Xmax
i ) and suh that x ∈ [Xmin

i , Xmax
i + wi),i.e., a piee of i ould be paked in [x, x + 1). We want to determine the minimum



72 RECTANGLE PLACEMENT PROBLEMSheight loss in interval [x, x+1). This an be done by solving a lassial one-dimensionalknapsak problem, where the size of the bin is H−Hx, the set of items Ix, eah of sizeand pro�t hi.We �nely tuned this method by: 1) onsidering intervals instead of all oordinates(time optimization); 2) performing all possible dedutions; 3) taking into aount themandatory parts of the items.3.3.5 Computational experiments: a synthesisThe main onlusions that an be drawn from our omputational experiments is thatinluding the umulative onstraints in the model and giving a priority in the branhingsheme for one of the two dimensions is su�ient to lead to ompetitive results. Theseonlusions have been on�rmed later by [54℄ in their omputational experiments.The two-dimensional energeti reasoning allows some additional dedutions, butthe omputing time is in general too large ompared to its e�etiveness. This is duein part to our branhing sheme, whih �rst works on one dimension. However, forsome instanes, the omputing time is redued, in partiular instanes for whih somesolutions of CuSP do not have a orresponding RPP solution.All our new feasibility tests redue both the number of explored states and theomputing time. The best ompromise between the redution of the searh spaeand the time required seems to be the method used with one-dimensional energetireasoning and subset-sum reasoning. The size of the bin is small in the instanes weused. For larger bins, the subset-sum based methods have to be avoided, sine theiromputing time beomes too large.We have ompared the best previous algorithms in the literature with our method[9,45℄. For this purpose, we used di�ult benhmarks with up to 20 items. Our method,using improving tehniques, dramatially redues the searh spae in omparison withall previous algorithms. Even in the absene of improving tehniques, we are almostompetitive with the previous approahes. All instanes an now be solved in lessthan seven seonds, unlike the previous results, where some instanes annot be solvedwithin one hour.3.4 The guillotine-utting problem (GCP)In the literature to date we �nd two alternative methods for solving the guillotineutting problem (see [59℄). The �rst approah [25℄ onsists in iteratively utting thebin into two retangles, using horizontal or vertial uts, until all the required retanglesare obtained. The seond approah [88℄ reursively merges items into larger retangles,using so-alled horizontal or vertial builds [89℄. The most reent work on the subjetis by Bekrar et al. [8℄, and provides an adaptation of the branh-and-bound method of



3.4. THE GUILLOTINE-CUTTING PROBLEM (GCP) 73Martello et al. [77℄. An adaptation of an RPP algorithm to the GCP is also proposedby Amossen and Pisinger [3℄.To our knowledge, the only existing CP proedures are based on methods that hekalgorithmially at eah node if the paked retangles violate the guillotine onstraint.Our implementation of this method did not lead to interesting results.In this doument, we use another approah. We propose a new graph-theoretialmodel for GCP. A �rst idea is to use a tree to represent a pattern. When a solution isfound, it an indeed be modeled as a tree, where the leaves orrespond with items andthe inner verties to uts. This is a suitable representation for a �nal solution, but weonsidered that it was not suitable for building a solution, sine the number of vertiesis not known in advane, and represent di�erent kinds of objets (uts or items).Another way of modeling a guillotine pattern with a graph would be to adapt themodel of [43℄, using algorithms to detet whether the guillotine onstraint is satis-�ed. This is not how we have hosen to proeed. Instead, we propose a novel graph-theoretial model that takes into aount the spei� ombinatorial struture of theguillotine-utting problem.We �rst desribe the new onept of guillotine-utting lasses, whih models equiva-lent patterns for the GCP. Then we desribe our new ar-olored oriented graph model,and show the equivalene between �nding a suitable graph and �nding a feasible so-lution for GCP. Finally, we study the ombinatorial struture of our model, obtainedby removing olors and diretions of the ars. These non-direted multi-graphs havea speial struture, whih is used to design e�ient algorithm to reognize them andomputing the patterns assoiated with them. Finally, we desribe roughly the CPapproah based on our model, and omment our omputational experiments, whihshow that our model allows to improve previous results by a wide range.3.4.1 Guillotine-utting lassesIn order to avoid equivalent patterns in the RPP, Fekete and Shepers [43℄ proposedthe onept of paking lass. Paking lasses are general, and an model any pattern.When only guillotine patterns are sought, paking lasses may not be suited to theproblem, sine two di�erent paking lasses may give rise to patterns having the sameombinatorial struture. We introdue the onept of guillotine-utting lass to inludeall guillotine patterns. This takes into aount the fat that exhanging the positionsof two retangular bloks of items does not hange the ombinatorial struture of thesolution. The de�nition uses the notion of builds that we de�ne below.A build [89℄ involves reating a new item by ombining two other items (see Figure3.7). The result of a horizontal build of two items i and j, denoted build(i, j, horizontal),is an item labeled min{i, j}, of width wi+wj and height max{hi, hj}. A vertial buildis de�ned similarly.



74 RECTANGLE PLACEMENT PROBLEMS21 21 2 1Figure 3.7: Vertial and horizontal builds of two items 1 and 2.
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Figure 3.8: A guillotine-utting lassDe�nition 3.4.1 Two solutions belong to the same guillotine-utting lass if they anbe obtained from a same sequene of horizontal and vertial builds.Figure 3.8 shows a guillotine-utting lass. Clearly, if one member of a guillotine-utting lass is feasible, then so are the other members. In this ase we say that theguillotine-utting lass is feasible. This onept redues dramatially the number ofequivalent patterns in omparison with a diret appliation of the model of [43℄. This ishardly surprising, sine the onept of paking lasses was not designed for this spei�problem.Note that there still remain redundanies. Two di�erent sequenes of builds maylead to solutions with the same ombinatorial struture, for example when there is apartial pattern that an be obtained with either a horizontal or a vertial �rst ut.This means that a given pattern may belong to several guillotine-utting lasses.3.4.2 A new graph-theoretial modelWe study a new lass of direted and ar-olored graphs, and show that suh graphs anbe assoiated with guillotine-utting lasses. We all these graphs guillotine graphs.In order to de�ne this new lass, we introdue the onept of iruit ontration,analogous to the lassial onept of ar ontration used in graph theory.
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(a) initial graph (b) after yle-ontrationFigure 3.9: Cyle-ontrationDe�nition 3.4.2 Let G = (V,E) be a graph, and µ = [vi1 , vi2, . . . , vik , vi1 ] a yle of

G. Contrating µ is equivalent to iteratively ontrating eah edge of µ.When referring to an undireted graph we use the term yle-ontration. Thesame onept an be applied to direted graphs, in whih ase we use the term iruit-ontration. In Figure 3.9, ontrating the blak yle in the left-hand graph leads tothe right-hand graph. The index of the vertex obtained by ontrating a iruit µ isthe smallest index of an item in µ.In our new model, a vertex is assoiated with eah item i, and a iruit is assoiatedwith a list of horizontal or vertial builds. Let G = (I, A) be a direted graph. We usea onept of ar oloring de�ned as follows. An ar oloring of a graph G is a mapping
ξ from A to a set of k olors. In order to distinguish between horizontal and vertialbuilds, we equate horizontal builds with the olor red, and vertial builds with theolor green. Thus in this doument we fous on bioloring (and ar-biolored graphs),i.e., we onsider a mapping from A to {red, green}.We say that a iruit is monohromati if all ars of the iruit have the same olor.In the graph, iruit-ontrating a red (resp. green) iruit orresponds to a list ofhorizontal (resp. vertial) builds. When a iruit µ is ontrated, the size assoiatedwith the residual vertex is the size of the item built, and its label is the smallestvertex label in µ. We now give a de�nition of guillotine graphs, whih model guillotinepatterns.De�nition 3.4.3 Let G be an ar-biolored direted graph. G is a guillotine graph if Gan be redued to a single vertex x by iterative ontrations of monohromati iruitswith the following properties:1. there are no steps in whih a vertex belongs to two di�erent monohromati ir-uits2. when a iruit µ is ontrated, either the urrent graph is a iruit, or exatlytwo verties of µ are of degree stritly greater than two.
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Figure 3.10: Modeling the pattern in Figure 3.2 with a dominant guillotine graphNote that the de�nition an be diretly generalized for higher dimensions (just byonsidering k olors instead of two).Many equivalent graphs an be assoiated with a given guillotine-utting lass, andso we introdue di�erent levels of dominane for these graphs.In a normal guillotine graph, the two verties xi and xj of degree greater than twoin a monohromati iruit µ are suh that xj follows xi in µ, xi annot be the tail ofany ar outside µ, and xj annot be the head of any ar outside µ.De�nition 3.4.4 Let G be a guillotine graph. G is a normal guillotine graph ifat any step of the iterative ontration proess, in eah monohromati iruit µ =

(x1, x2), . . . , (xk−1, xk), if there are two verties xi and xj of degree stritly greater thantwo, then (xi, xj) ∈ µ and |N+(xi)| = 1 and |N−(xj)| = 1.In dominant guillotine graphs, verties have to be sorted by inreasing index in anyiruit.De�nition 3.4.5 Let G be a normal guillotine graph. G is a dominant guillotinegraph if in all graphs obtained by applying iruit-ontrations to G, verties in amonohromati iruit are ordered by inreasing index.Figure 3.10 shows the dominant graph that models the on�guration of Figure 3.2.Theorem 3.4.1 If G is a dominant guillotine graph, G an be assoiated with a uniqueguillotine-utting lass. Moreover, for eah normal sequene of builds, there is exatlyone dominant guillotine graph.If several normal sequenes of builds lead to the same guillotine pattern, then severalgraphs will be assoiated with the same pattern. This ours in ases where a vertialand a horizontal ut produe items of the same size, irrespetive of the order in whihthe two uts are performed. Handling these symmetries is an issue that an only bedone using algorithmi methods. However, it has to be noted that from a pratialpoint of view, these utting patterns are atually di�erent, sine they are related totwo di�erent sequenes of uts for an automati utting devie.
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Figure 3.11: A yle-ontratable graph3.4.3 Cyle-ontratable graphsWe now look at the ombinatorial struture of our model when olors and orientationsare removed. This non-direted and unolored version of guillotine graphs helps �ndinglinear algorithms for reognizing guillotine graphs, and may be easier to use in heuris-tis or meta-heuristis. We name yle-ontratable graphs these undireted unoloredguillotine graphs.We �rst de�ne the yle-ontratable graphs, and show that they are undiretedunolored guillotine graphs.Let G = (V,E) be an undireted multigraph. If there is a Hamiltonian yle
µ = [v1, v2, . . . , vn, v1], a orresponding ordering σ an be assoiated with the vertiesof V (σ(vk) = k) for k = 1, . . . , n. Hereafter, when a graph G has a Hamiltonian yle,we shall refer to any edge that is not inluded in the yle as a bakward edge.De�nition 3.4.6 Let G = (I, E) be an undireted multigraph. G is a yle-ontratablegraph if G ontains a Hamiltonian yle µ with a orresponding ordering σ suh that1. G does not inlude two equivalent bakward edges [i, j] and [i, j]2. G does not inlude two bakward edges [i, j] and [k, l] suh that σ(i) < σ(k) ≤

σ(j) < σ(l)The graph in Figure 3.11 is a yle-ontratable graph. It an be depited as airle of verties and non-rossing hords.In the following, we show that dominant guillotine graphs and yle-ontratablegraphs are similar. A �rst important property is that guillotine graphs ontain aHamiltonian iruit. This result will be used throughout this hapter.Lemma 3.4.1 If G is a guillotine graph, it ontains a Hamiltonian iruit.This allows us to show that dominant guillotine graphs have the struture of yle-ontratable graphs. For this purpose we onsider the graph obtained by removing theolor and the orientation of the ars of the onsidered guillotine graph.



78 RECTANGLE PLACEMENT PROBLEMSAlgorithm 2: Finding the Hamiltonian yle in a yle-ontratable graphData: G = (V,E): multigraph;
µ← ∅;1
L← ∅;2 forall edge that appears twie in E do delete one of the two edges [vi, vj];3 forall i suh that |N(vi)| = 2 do L← L ∪ {vi};4 repeat5 Let vi be a vertex in L and let vj and vk be its two neighbors;6

L← L \ {vi};7 if [vi, vj] is not bakward then µ← µ ∪ {[vi, vj]};8 if [vi, vk] is not bakward then µ← µ ∪ {[vi, vk]};9
G← G \ {vi};10 if [vj , vk] 6∈ G then G← G ∪ {[vj, vk]};11 mark [vj , vk] as bakward ;12 if |N(vj)| = 2 then L← L ∪ {vj};13 if |N(vk)| = 2 then L← L ∪ {vk};14 until n = 3 or L is empty ;15 if n > 3 then exit with the FAIL status;16 add eah remaining edge in µ if it is not bakward;17 return µ;18Theorem 3.4.2 An ar-unolored undireted guillotine graph is a yle-ontratablemultigraph.3.4.4 Computing the patterns assoiated with a yle-ontratablegraphWe now propose an algorithm to reognize yle-ontratable graphs. When suhgraphs are onsidered, the �rst step is to determine whih edges belong to the Hamil-tonian yle µ, and whih edges are bakward (i.e. edges that do not belong to µ).Algorithm 2 �nds the yle µ in linear time.The validity of Algorithm 2 below is based on the two following lemmas, whihdiretly indue a reursive algorithm for �nding the Hamiltonian yle if the graph isyle-ontratable. The idea is to remove all "double edges" and then to iterativelydelete the verties of degree two. If there is only one vertex at the end of the proess,then the graph is yle-ontratable.Lemma 3.4.2 The graph G′, obtained from the yle-ontratable graph G by perform-ing one of the two following modi�ations,1. removing an edge [vj , vk] that appears twie in G;



3.4. THE GUILLOTINE-CUTTING PROBLEM (GCP) 792. deleting a vertex vi of degree two and its two inident edges [vi, vj ] and [vi, vk],and adding an edge [vj , vk] if it is not already in the graph.is a yle-ontratable graph. Moreover, any edge belonging to the Hamiltonian yleof G′ and to G also belongs to the Hamiltonian yle of G.Lemma 3.4.3 Let G be a yle-ontratable graph. If G has at least three verties andno yle of size two, it has at least one vertex of degree two.Proposition 3.4.1 Algorithm 2 �nds the Hamiltonian yle of G if and only if G isyle-ontratable.We have shown that a given dominant guillotine graph leads to a unique yle-ontratable graph. In this setion we show that a given yle-ontratable graphleads to exatly two guillotine-utting lasses. The �rst step is to dedue the onlypossible valid orientation of the edges. Then a hoie remains for the oloring of thears. The two possible ar-olorings lead to two possible guillotine graphs, and thus totwo possible guillotine patterns.Depending on the ordering of the verties in the yles, not all yle-ontratablegraphs give rise to dominant guillotine graphs. In order to avoid non-dominant so-lutions we introdue the dominant yle-ontratable graphs, whih yield dominantguillotine graphs.De�nition 3.4.7 Let G be a yle-ontratable graph. If for one of the two possibleorientations, for all obtained ars (xi, xj) of the Hamiltonian iruit (j 6= 1), theneither i < j, or there is a bakward ar (xl, xi) suh that l < j, G is a dominantyle-ontratable graph.Proposition 3.4.2 A yle-ontratable graph yields a dominant guillotine graph ifand only if it is a dominant yle-ontratable graph.Algorithm 3 returns true if and only if the input yle-ontratable graph is domi-nant (heked using Proposition 3.4.2). In this ase, the algorithm visits the verties vof the obtained direted graph following the Hamiltonian iruit σ. Eah time a newiruit is entered or leaved, the urrent olor is hanged.Proposition 3.4.3 Algorithm 3 olors the ars of a dominant yle-ontratable graph
G in suh a way that the biolored graph H obtained is a dominant guillotine graph.Corollary 3.4.1 Given the olor of one ar, there is only one valid oloring for ayle-ontratable graph.Theorem 3.4.3 Eah dominant yle-ontratable graph is related to two guillotine-utting lasses, and every dominant sequene of builds is related to one dominant yle-ontratable graph.



80 RECTANGLE PLACEMENT PROBLEMSAlgorithm 3: Orienting and oloring a yle-ontratable graphData: G = (V,E): a yle-ontratable graph;Use Algorithm 2 to determine the bakward edges;1 Choose an orientation for the edges that is onsistent with the hamiltonian yle;2
test← true;3 forall ar (vi, vj) of the Hamiltonian iruit do4 if j < i and ∄k < j s.t. (vk, vi) is a bakward edge then test← fail;5 if test = fail then6 hoose the other orientation for the edges;7 forall ar (vi, vj) of the Hamiltonian iruit do8 if j < i and ∄k < j s.t. (vk, vi) is a bakward edge then return false;9 ompute the orresponding ordering σ;10 hoose a olor;11 for i : 1→ n do12

v ← σ(i);13 Let S+ be the set of bakward ars a suh that a = (u, v);14 forall a ∈ S+ do hange the urrent olor;15 Let S− be the set of bakward ars a suh that a = (v, u);16 foreah bakward ar a of S− by dereasing value of label do17 olor a with the urrent olor;18 hange the urrent olor;19
u = σ(i+ 1);20 olor the ar (v, u) with the urrent olor;21 return true;22 Algorithm 4 omputes the width and the height of the guillotine pattern assoiatedwith the guillotine graph G. First the ordering σ is omputed using Algorithm 2. Thenthe verties are onsidered following σ. Initially a dummy build b is reated, with theurrent item only. When there is a bakward ar, the new build assoiated with theorresponding iruit is omputed and stored in b, and then pushed onto the top of S.At the end of the algorithm, S ontains only one element, whih orresponds to theguillotine pattern.Proposition 3.4.4 For a given initial olor, Algorithm 4 omputes the size of thepattern assoiated with the guillotine graph G.The following theorem summarizes the di�erent omplexity results related to yle-ontratable graphs and guillotine graphs.Proposition 3.4.5 Let G be a guillotine graph with at least two verties. The number

m of ars in G is in [n, 2n− 2], and the bounds are tight.



3.4. THE GUILLOTINE-CUTTING PROBLEM (GCP) 81Algorithm 4: Computing the size of the guillotine pattern related to a guillotinegraphData: G: a valid guillotine graph;
σ: the orresponding ordering on the verties (σ(1) = 1);Let S be an initially empty stak of builds bk;1 for i : 1→ n do2

vj ← σ(i);3 Let bj be a new build of size wj × hj and of label j;4 foreah bakward ar (vj , vk) of olor  by dereasing value of σ−1(vk) do5 repeat6 remove from S its top element bt;7
bj ← build(bj , bt, c);8 until bj has for label vk;9 push bj on the top of S;10 Let bj be the iterative build of all elements of the stak;11 return bj ;12 Using this property, we dedue that the algorithms desribed above take O(n) timeand spae.Theorem 3.4.4 Reognizing a yle-ontratable graph, and omputing the two guillotine-utting lasses related to this graph takes O(n) time and spae.Note that our exat approah below uses the olored and direted version of ourmodel. However, we are planning to use our model in a meta-heuristi and in thisase, we will use the unolored undireted version. Indeed when an ar is added to thegraph, it may hange the olor of many other ars. When the unolored version of ourmodel is onsidered, one just has to use the oloration algorithm desribed above toompute the new set of olors.3.4.5 A onstraint-programming approahWe designed an exat approah based on our new model for the guillotine-uttingproblem. The basi idea of the method is to seek a guillotine graph orresponding to aon�guration that �ts within the boundary of the input bin. Our model is embeddedinto a onstraint-programming sheme, whih seeks a suitable set of ars. The modelis omposed of two parts: a graph part, whih veri�es the guillotine onstraint, anda retangle plaement part, whih veri�es that the retangles an be paked into thebin. For the latter, we use the model desribed for the RPP.



82 RECTANGLE PLACEMENT PROBLEMS3.4.5.1 VariablesWe now desribe how the guillotine-utting problem an be modeled in terms of twosets of variables and onstraints. The �rst variable set is related to the graph underlyingthe pattern, to ensure that the on�guration is guillotine, while the seond is relatedto geometri onsiderations, to ensure that the retangles an be plaed within theboundaries of the large retangle.The �rst set of variables is related to the ars of the guillotine graph to be built.It spei�es the state of eah ar. The state of an ar is determined by its existene, itsorientation (bakward or forward) and its diretion (horizontal or vertial).Reall that a guillotine graph an be redued to a single vertex by iterative ontra-tions of monohromati iruits. Thus, eah time suh a monohromati iruit µ isfound in the graph under onstrution, µ is ontrated. In order to prevent ontratedverties from being revisited, a state is assoiated with eah vertex, speifying whetheror not it has been ontrated, and giving its urrent dimensions. Thus, a vertex irepresents an item or an aggregation of items. Its dimensions are either the dimensionsof the original retangle i, or the dimensions of a build of items orresponding to theontrations in the graph.A valid dominant guillotine graph may lead to a guillotine-utting lass that doesnot �t within the boundaries of the bin. Consequently we use a seond set of vari-ables whih represent the oordinates of a spei� member of the guillotine-uttinglass under onstrution. We use the model designed for the unonstrained retangleplaement problem (see Setion 3.3.1.3).3.4.5.2 Exploration of the searh spaeIn our method, the branhing sheme modi�es only the graph variables diretly: thevalues of the geometri variables X and Y are dedued from onstraint propagation.At eah node of the searh tree an ar must be hosen for possible inlusion inthe graph. We use a depth-�rst strategy giving priority to the inlusion of bakwardars in the urrent partial Hamiltonian path σ = σ1, . . . , σk. The bakward ar (σj, σi)is seleted from among all the possible bakward ars, with j and i respetively thesmallest and the largest index. If no bakward ar is possible in σ, then σ is expandedby adding a forward ar between σk and another vertex.3.4.5.3 Constraint-propagation tehniquesDuring the searh, onstraint-propagation tehniques are used to redue the searhspae by eliminating non-relevant values from the domain of the variables. Thesetehniques perform di�erent dedutions: they eliminate potential ars that annotlead to a dominant guillotine graph or to a valid solution; they eliminate potentialoordinates that annot lead to a valid solution; they add some ars that are mandatory



3.5. CONCLUSIONS, FUTURE WORKS 83for obtaining a dominant guillotine graph and a valid solution; they update the possibleorientations or the bakward status of ars. These tehniques are used to adjust thedomains of graph variables to the domains of oordinate variables, and vie versa.3.4.6 Computational experiments: a synthesisWe have ompared our methods for GCP with algorithms in the literature, using 25instanes [59℄ derived from strip-utting problems. In this problem, the width of thebin is �xed and the minimal feasible height for the bin must be determined. Thereforethis problem leads to a set of feasible or unfeasible deision problems. The number ofitems in these instanes is less than 25.A �rst remark is that the omputing time required by the algorithms is large om-pared to the time required by our methods to solve the non-guillotine version. In manyases, it is even more interesting to run the RPP solver before. We found that solvingthe feasibility problems by inreasing value of height led to the fastest results. Thissuggests that our method is better at proving that a problem has no solutions than at�nding a feasible solution.We also ompared our methods to the best method of the literature [59℄. Wewere able to solve eah test ase in less than three seonds. For several instanes, thedi�erene in terms of nodes in the searh tree is large. For example the IMVB methodof [59℄ needs 40909 branhing points to solve an instane, whereas our method needsonly 293. On average, our method needs 15 times fewer nodes that the best approahBMVB of [59℄. These results show that the additional information added by our modelenhanes the exploration of branhes in a tree searh.3.5 Conlusions, future worksOur experimentations on RPP and GCP on�rm that CP tehniques annot be ignoredfrom the OR ommunity when ompetitive results are sought. Moreover, methodology-wise, we have shown that oupling OR and CP, paking and sheduling tehniques wasof great interest.Another strong onlusion is that even if CP models may be e�ient for small ormedium sizes of problems, they may fail to �nd a solution for large instanes. Clearly,good heuristis and lower bounding proedures (based on DFF for example) remainruial to avoid running an expensive exat RPP or GCP proedure.In our future works, we will fous on GCP. It transpires from our experiments thateven for medium size instanes, exat methods an take a large omputing time to �nda solution. Another issue is that our CP-based exat method for this problem is hardto implement. Many onstraints have to be hand-tailored and annot be integrated"out of the shelf" in a CP algorithm. We plan to work on a more CP-oriented methodbased on the same ideas, whih would mostly use onstraints implemented in most CP



84 RECTANGLE PLACEMENT PROBLEMSsolvers. Using our new graph-theoretial model for designing heuristi methods is alsoa work in progress. The �rst works in this diretion are already promising.



Conlusions and future work
In this doument we have desribed new models and methods that we applied tovarious paking problems. The main feature of our work is to use in a ollaborativeway tehniques from the mathematial programming, onstraint programming, graphs,dynami programming and meta-heuristi ommunities.Our work on deomposition methods has on�rmed the fat that these methods,when applied e�etively, are helpful to solve hard ombinatorial problems. We �rstshowed that tree-deomposition an be applied suessfully on some paking problems.It leads to a generi framework that an be used in many hybrid methods. For example,taking into aount the struture and the size of the subproblems, a di�erent exat orapproximated method ould be used for eah luster of the deomposition. We alsostudied di�erent ways of helping olumn generation using heuristis (for generating aninitial set of olumns and for solving the priing subproblem). Another onlusion isthat strategi osillation is a suitable tool for solving paking problems in whih somepatterns are exluded. It allows our meta-heuristis to travel from good solutions togood solutions in a fast manner by relaxing some onstraints.We now plan to fous our work on hybrid methods. A �rst perspetive is a tighterollaboration between olumn-generation methods and meta-heuristis. It has beenshown that re-optimization and multiple olumn generation redued the omputinge�ort by a wide range. Several questions arise from this statement. What are the wishedproperties of an initial pool of olumns? How meta-heuristis an help applying suitablesets of dual uts to stabilize olumn generation? Can multi-objetive optimization helpgenerating a suitable set of olumns in the priing phase? Another researh path is todesign a olumn-generation sheme based on the tree-deomposition, where the masterproblem would onsist of assigning items to lusters. For paking problems, a diretappliation would lead to a better linear relaxation, but the priing subproblem wouldbe harder to solve.A seond perspetive on hybrid methods is to study heuristis based on math-ematial programming (so-alled matheuristis). We are now designing suh amethod for the quadrati knapsak problem of Chapter 1, where the role of the loalsearh is played by a mathematial programming based method. We are also workingon generi matheuristis based on pseudo-polynomial formulations, whih are im-proved in an iterative proess. The �rst experiments on time-dependent formulationsare already promising. 85



86 CONCLUSIONS AND FUTURE WORKOur work on dual-feasible funtions and their extensions learly shows that thisonept is useful for many di�erent paking problems. It transpires that the e�e-tiveness of the DFF depends on the onstraints added to the original struture of thepaking problem. If these onstraints weaken the quality of the linear relaxation ofthe model of Gilmore and Gomory, the bounds obtained using DFF are expeted to beweak. Another onlusion is that the di�ulty to handle the additional onstraints alsohas a large impat on the e�ieny of the method. For the bin-paking with on�its,for example, the olumn generation lower bound is strong, but our heuristis are notable to approximate this bound e�etively. This is due to the fat that eah optimaldual solution is highly data-dependent (beause of the graph struture). For the otherproblems we addressed, the lower bounds are muh more e�etive.Up to now, tehniques based on DFF are only used for omputing an initial lowerbound (at the root node of a branh-and-prie method for example). When additionaluts are added, their results are weakened, and thus no e�etive exat methods anbe based on DFF only. Fousing on onstraints related to uts and branhingonstraints seems to be one of the most hallenging and useful researh path (thiswould avoid solving repeatedly huge linear programs). Studying on�its involvingmore than two items is the main issue to handle. An e�etive solution would be todesign the branhing sheme in suh a way that the underlying on�it graph hassuitable properties.Another di�ult hallenge is to generalize the DFF to other problems, suhas vehile routing problems, where the struture of the "patterns" (routes) is moreompliated. Our �rst experiments tend to show that this issue needs a large amountof work before any useful result is sought.For retangle plaement problems, our work has on�rmed that onstraint program-ming is one of the most useful tehniques to solve this family of highly ombinatorialproblems. We stressed the fat that OR tehniques, suh as DFF, are helpful to quiklydetermine that a pattern is not feasible, and to prune nodes in a searh method. Ourgraph-theoretial model for the guillotine utting problem has also proved to be usefulin the design of an exat method. It allows to represent and gather patterns in a waythat failitates dedutions and pruning during the searh.As a �rst perspetive for this work, we plan to exploit our graph model in heuristiand meta-heuristis frameworks. Our �rst experiments tend to show that this is aviable approah, when the unolored undireted model is used. A more CP-orientedimplementation, using lassial implemented onstraints, would also help our work tobe used and extended.We are also studying real-life plaement problems, and it transpires from our expe-riene that fousing on the initial plaement is not su�ient. One has to be aware thatitems will be paked and removed repeatedly, deeply modifying the struture of theinitial paking pattern. Thus we plan to deal with the dynami versions of theseproblems, where robustness and real-time re-optimization have to be studied. Exat



CONCLUSIONS AND FUTURE WORK 87methods should be more di�ult to apply. However, we believe that hybrid methodsbased on our paking models will be useful. We are also interested in an extensionof our models into a bi-level ontext. We are now onduting a preliminary studyon this subjet, fousing on reformulations, graph models and dynami programmingshemes.More generally, we are now applying our optimization tehniques to problems thatlie outside the �eld of C&P problems. We have already obtained results on a variant ofthe vehile routing problem, �ight sheduling, and sta� sheduling problems.In partiular, we are studying speial ases of multi-objetive problems, where addi-tional onstraints or objetives added by the deision maker involve hard subproblemsfor whih we expet our hybrid resolution tehniques to be useful.
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Title New ollaborative approahes for bin-paking problemsAbstrat This doument desribes new models and methodologies that we apply tothree families of paking problems. We �rst study deomposition methods and meta-heuristis based on so-alled strategi osillation. We apply these tehniques to pakingproblems with di�erent kinds of on�its. We also deal with the onept of dual-feasible funtions, whih are used to derive polynomial-time lower bounds for severalbin-paking problems. Finally, we propose new models for two di�erent retangleplaement problems. We used these models into a onstraint programming framework.Keywords operations researh, utting and paking, mathematial programming,heuristis,meta-heuristis, onstraint-programming, deomposition methods, dual-feasiblefuntionsTitre Nouvelles approhes ollaboratives pour des problèmes de onditionnementRésumé Ce doument dérit de nouvelles modélisations et approhes de résolutionque nous appliquons à des problèmes de déoupe et de onditionnement. Nous étu-dions dans un premier temps plusieurs tehniques de déomposition alliées à di�érentesméta-heuristiques basées sur des stratégies d'osillation. Nous étudions ensuite le on-ept de fontions dual-réalisables qui permettent d'obtenir des évaluations par défautpolynomiales pour des problèmes de onditionnement. Finalement, nous proposons desmodèles originaux pour des problèmes de plaement de retangles. Nous utilisons esmodèles dans des méthodes de programmation par ontraintes.Mots-lés reherhe opérationnelle, déoupe et onditionnement, programmationmathématique, heuristiques, méta-heuristiques, programmation par ontraintes, méth-odes de déomposition, fontions dual-réalisables


