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Bursting Nucleation Experiments Reduction Limiting model

Central Dogma

◮ Expression of a gene through transcription/translation
processes.

◮ Non-linear Feedback regulation.
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◮ Bifurcation analysis in Ordinary Differential Equation.

◮ Application to synthetic biology.

[Goodwin, 1965],[Hasty et al., 2001].
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Stochasticity in molecular biology

[Eldar and Elowitz, 2010].
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Much more accurate measurements

◮ Bifurcation can be studied on probability distributions.

[Song et al., 2010].
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Much more accurate measurements

◮ Trajectories can be analyzed on single cells.

[Yu et al., 2006].
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New Central dogma

◮ Take into account gene state switching. Interpretation as
stochastic processes.

[Berg, 1978],
[Peccoud and Ycart, 1995],
[Kepler and Elston, 2001],
[Paulsson, 2005],
[Lipniacki et al., 2006],
[Paszek, 2007],

[Shahrezaei and Swain, 2008].

The bursting phenomena

Question 1) When does the stochastic model predict burst
phenomenon ?
Question 2) What can we say in such cases ?
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Bursting Nucleation Experiments Reduction Limiting model

We consider the following 2d stochastic kinetic chemical reaction
model (X=’mRNA’, Y=’Protein’)

∅
λ1(X ,Y )
−−−−−→ X , Production of X at rate λ1(X ,Y )

X
Nγ1(X ,Y )
−−−−−−→ ∅, Destruction of X at rate Nγ1(X ,Y )

∅
Nλ2(X ,Y )
−−−−−−→ Y , Production of Y at rate Nλ2(X ,Y )

Y
γ2(X ,Y )
−−−−−→ ∅, Destruction of Y at rate γ2(X ,Y )

with γ1(0,Y ) = γ2(X , 0) = 0 to ensure non-negativity.

BN f (x , y) =λ1(x , y)
[

f (x + 1, y)− f (x , y)
]

+ Nγ1(x , y)
[

f (x − 1, y) − f (x , y)
]

+ Nλ2(x , y)
[

f (x , y + 1)− f (x , y)
]

+ γ2(x , y)
[

f (x , y − 1)− f (x , y)
]

.
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Theorem (R.Y.)
If

◮ The degradation function on X satisfies

inf
x≥1,y≥0

γ1(x , y) = γ > 0.

◮ The production rate of Y satisfies λ2(0, y) = 0, for all y ≥ 0.

◮ λ1 and λ2 are linearly bounded by x + y , and either λ1 or λ2 is
bounded.

Then, for all T > 0, (XN(t),Y N(t))t≥0 converges in L1(0,T ) to
(0,Y (t)), whose generator is given by







B∞ϕ(y) = λ1(0, y)
( ∫ ∞

0

Pt(γ1(1, · )ϕ(· ))(y)dt − ϕ(y)
)

+ γ2(0, y)
[

ϕ(y − 1)− ϕ(y)
]

,

Ptg(y) = E
[
g(Z (t, y)e−

∫
t

0
γ1(1,Z (s,y))ds

]
,

Ag(z) = λ2(1, z)
(
g(z + 1)− g(z)

)
.
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Sketch of the proof

◮ We first show tightness and convergence of X based on

NγE
[
∫ t

0
1{XN(s)≥1}ds

]
≤ E

[
XN(0)

]
+E

[
∫ t

0
λ1(X

N(s),Y N(s))ds
]
.
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Sketch of the proof

◮ We first show tightness and convergence of X based on

NγE
[
∫ t

0
1{XN(s)≥1}ds

]
≤ E

[
XN(0)

]
+E

[
∫ t

0
λ1(X

N(s),Y N(s))ds
]
.

◮ We identify the limiting martingale problem

λ2(x , y)
[

f (x , y+1)−f (x , y)
]

+γ1(x , y)
[

f (x−1, y)−f (x , y)
]

= 0.
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Sketch of the proof

◮ We first show tightness and convergence of X based on

NγE
[
∫ t

0
1{XN(s)≥1}ds

]
≤ E

[
XN(0)

]
+E

[
∫ t

0
λ1(X

N(s),Y N(s))ds
]
.

◮ We identify the limiting martingale problem

Axg(y) = λ2(x , y)
[

g(y + 1)− g(y)
]

,

for any x ≥ 1. and we introduce the semigroup Px
t

Px
t g(y) = E

[
g(Z x ,y

t )e−
∫ t
0 γ1(x ,Z

x,y
s )ds

]
.

Now for any bounded function g , define f (0, y) = g(y) and

f (x , y) =

∫ ∞

0
Px
t (γ1(x , .)f (x − 1, .))(y)dt.

Then

λ2(x , y)
[

f (x , y+1)−f (x , y)
]

+γ1(x , y)
[

f (x−1, y)−f (x , y)
]

= 0.
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◮ A similar proof for a (continuous state) PDMP model, of
generator

Bf (x , y) =− Nγ1(x , y)
∂f

∂x
+ (Nλ2(x , y)− γ2(x , y))

∂f

∂y

+ λ1(x , y)

∫ ∞

0
(f (x + z , y)− f (x , y))h(z)dz .

◮ These proofs are based on a simple idea
([Debussche et al., 2011],[Kang and Kurtz, 2011]).

◮ Other proof : reduction on the Fokker-Planck equation.

◮ Different scalings lead to different models.
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We look at the stochastic process

dx = −γ(x)dt + dN(λ(x), h(x , ·)),

whose generator is

Af = −γ(x)f ′(x) + λ(x)
( ∫ ∞

0
f (x + y)h(x , y)dy − f (x)

)

,

and evolution equation on densities

∂u(t, x)

∂t
=

∂γ(x)u(t, x)

∂x
−λ(x)u(t, x)+

∫ x

0
u(t, y)λ(y)h(y , x−y)dy ,

and with

∫ ∞

0
h(x , y)dy = 1, for all x .
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Probabilistic techniques

If jumps are independent of positions, i.e. h(x , y) = h(y), we have :

Proposition

Suppose x 7→ λ(x) is continuous on (0,∞), λ(0) > 0, γ(x) = γx,
E
[
h
]
< ∞, and

lim
x→∞

λ(x)E
[
h
]

γx
< 1,

then there exist β < 1, B < ∞ and π (invariant measure) such that

‖P(t, x , ·) − π‖V ≤ BV (x)βt , x ∈ E , t > 0,

where ‖µ‖f = sup|g |≤f | µ(g) | and V (x) = x + 1.
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x→∞
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[
h
]
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then there exist β < 1, B < ∞ and π (invariant measure) such that

‖P(t, x , ·) − π‖V ≤ BV (x)βt , x ∈ E , t > 0,

where ‖µ‖f = sup|g |≤f | µ(g) | and V (x) = x + 1.

◮ Ax = −γx + λ(x)
( ∫∞

0 (x + y)h(y)dy − x
)

= −(1−
λ(x)E

[
h

]

γx
)γx
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Semigroup techniques

∂u(t, x)

∂t
︸ ︷︷ ︸

du
dt

=
∂γ(x)u(t, x)

∂x
− λ(x)u(t, x)

︸ ︷︷ ︸

Au=(A0−λ)u

+

∫ x

0
u(t, y)λ(y)h(y , x − y)dy

︸ ︷︷ ︸

Bu=J(λu)

(A,D(A)) ⇒ S(t)u(x) = P0(t)u(x)e
−

∫
t

0
λ(φr x)dr

Let C = A+ B. Denote the resolvent RS
s u =

∫∞
0 e−stS(t)udt.
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Semigroup techniques

∂u(t, x)

∂t
︸ ︷︷ ︸

du
dt

=
∂γ(x)u(t, x)

∂x
− λ(x)u(t, x)

︸ ︷︷ ︸

Au=(A0−λ)u

+

∫ x

0
u(t, y)λ(y)h(y , x − y)dy

︸ ︷︷ ︸

Bu=J(λu)

(A,D(A)) ⇒ S(t)u(x) = P0(t)u(x)e
−

∫
t

0
λ(φr x)dr

Let C = A+ B. Denote the resolvent RS
s u =

∫∞
0 e−stS(t)udt.

Theorem ([Tyran-Kamińska, 2009])
There is a minimal substochastic semigroup P generated by an
extension of (C ,D(A)), and which resolvent is given by

R
P
s u = lim

n→∞

R
S
s

n∑

k=0

(J(λR
S
s ))

k
u,

and if K = limσ→0 J(λR
S
σ ) has a unique invariant density, then so

does for P (and P is stochastic).
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◮ Under good conditions, K is the transition operator for the
discrete Markov chain“post-jump”, and has for kernel







k(x , y) =

∫ x

0

1{(0,y)}(z)h(z , y − z)
λ(z)

γ(z)
eQ(x)−Q(z)dz ,

Q(x) =

∫ x

x

λ(z)

γ(z)
dz .

◮ Modulo integrability conditions, invariant density v∗ for K and
invariant density u∗ for P are related through







γ(x)u∗(x) =

∫ x

0

H(z , x − z)λ(z)u∗(z)dz , H(z , x) =

∫ ∞

x

h(z , y)dy ,

v∗(x) =

∫ x

0

h(z , x − z)λ(z)u∗(z)dz ,

u∗(x) =
1

γ(x)

∫ ∞

x

eQ(y)−Q(x)v∗(y)dy ,

v∗(x) =

∫ x

0

h(z , x − z)
λ(z)

γ(z)
e−Q(z)

∫ ∞

z

v∗(y)eQ(y)dydz .

14/40



Bursting Nucleation Experiments Reduction Limiting model

Condition for ergodicity in the exponential case

If jumps are independent of positions, i.e. h(x , y) = h(y) and
exponentially distributed, of mean b, i.e. h(y) = 1

b
e−y/b, then

Theorem (M. Tyran-Kamińska, M. Mackey, R.Y.)

Under technical assumptions (for integrability), and if

lim
x→∞

λ(x)

γ(x)
<

1

b
,

Q(0) :=

∫ x

0

λ(z)

γ(z)
dz = ∞,

then P is ergodic with unique invariant density

u∗(x) =
1

cγ(x)
e−x/b−Q(x).
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Bifurcation

This analytical approach allows us to deduce that the number of
modes of the stationary state is linked to the solution of

λ(x) =
γ(x)

b
+ γ′(x).
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Further results (not developed here)

◮ This can be used to find λ(x) and b from observations of
(u∗, γ).

◮ The convergence rate can be estimated from coupling
techniques.
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Further results (not developed here)

◮ This can be used to find λ(x) and b from observations of
(u∗, γ).

◮ The convergence rate can be estimated from coupling
techniques.

Perspectives

◮ Other jump size kernel h.

◮ Waiting time properties.

◮ Switch and bursting model.

◮ Include cell division and study population dynamics.

◮ Characterize oscillations in two-dimensional model.
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Bursting Nucleation Prion Model Experiments Nucleation time

Prion Diseases

◮ Creutzfeldt-Jakob : First
human prion disease
described (1929).

◮ Mad cow disease, Scrapie.

◮ Kuru (New Guinea)
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Prion Diseases

Epidemiology

◮ All prion diseases are
transmissible, i.e. infectious.

◮ Some prion diseases are
sporadic, they appear
spontaneously, without
cause.

◮ Some prion diseases are
genetic.

Symptoms

◮ Affect the structure of the
brain ;

◮ Convulsion, Dementia, Loss
of balance ;

◮ Always fatal.
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What is prion ?

A protein

◮ A protein called PRION is
the cause of this disease

◮ It is neither a bacteria, nor
an viroid like agent !

◮ Stanley Prusiner was
awarded Nobel price in
Physiology and Medicine in
1997 for his discovery.

Histopathology

◮ Accumulation of a protein in
the amyloid form.

◮ Spongiosis.
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Nucleation-Polymerization

Conformation change

Normal ⇔ Misfolded

Lansbury’s model

[Lansbury and Caughey, 1995].
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◮ In vitro spontaneous polymerization experiments.

◮ Time series of polymer mass.
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Statistics of nucleation time

◮ Relation between the nucleation time and the initial
concentration in log plots.

◮ Full distribution of the nucleation time.
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Questions

◮ Can a probabilistic model reproduce the observed variability ?

◮ Can it help to identify parameters ?

◮ Can a model include different strain structures ?
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Reversible aggregation model

Ci + C1

p
−⇀↽−
q
Ci+1

where

Ci = ♯{molecules of size i}.

The nucleation time is given by a waiting time problem,

Tlag = inf{t ≥ 0 : CN(t) = 1},

with initial condition C1(0) = M, Ci(0) = 0, i ≥ 2.
N is the nucleus size.
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Constant monomer formulation

If we suppose
C1(t) ≡ M

We can solve exactly the probability distributions (Poisson) and we
deduce

S(t) := P
{
CN(s) = 0, s ≤ t

}
= P

{
CN(t) = 0

}
= e−cN (t),

where (ci )i=2..N are solution of the linear deterministic system (cn
is absorbing) :







ċ2 = pM(12M − c2)− q(c2 − c3),
ċi = pM(ci−1 − ci )− q(ci − ci+1), 3 ≤ i ≤ N − 2,
ċN−1 = pM(cN−2 − cN−1)− qcN−1,

ċN = pMcN−1.
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Nucleation time distribution (C1(t) ≡ M)

M → ∞ : Weibull MN

2(N−2)!t
N−2 exp(− MN

2(N−1)! t
N−1)

q → ∞ : exponential MN

2qN−2 exp(−
MN

2qN−2 t)

N = 6,
M = 1000,

q =







102,

103,

4.103,

104.
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Mean nucleation time versus initial monomer quantity in
log scale (C1(t) ≡ M)
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Nucleation time distribution in log scale (C1(t) ≡ M)

M → ∞ : Weibull MN

2(N−2)!t
N−2 exp(− MN

2(N−1)! t
N−1)

q → ∞ : exponential MN

2qN−2 exp(−
MN

2qN−2 t)

N = 6,
M = 1000,

q =







102,

103,

4.103,

104.
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Mass conservative formulation

We now suppose
N∑

i=1

iCi(t) ≡ M.

Kolmogorov backward equations ⇒ Linear system on

S(t, {C 0}) = P
{
CN(t) = 0 | Ci(0) = C 0

i

}

Problem : Dimension of the system

♯{configuration {C 0},
N∑

i=1

iC 0
i = M,C 0

N = 0} ≈
MN

N!
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In general, we look for approximate solution for extreme parameter
values : q ≫ M and q ≪ M. We use

◮ known deterministic solution ;

◮ time scale separation ;

◮ scaling laws ;

◮ phase space dimension reduction ;

◮ linear model ;

◮ numerical simulation.
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Trajectories in the unfavorable case q ≫ M

Pre-equilibrium hypothesis (ex : M = 200,N = 8,q = 1000).
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Nucleation time distribution in the unfavorable case
q ≫ M : exponential law

Tlag ∼ exponential law, of parameter

< C1CN−1 >t→∞ (M) ≈ c1(t → ∞)cN−1(t → ∞) ≈
MN

2qN−2
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Trajectories in the favorable case M >> q and N large

“Metastable“ trajectory (ex :M = 30000,N = 10,q = 1).
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Trajectories in the favorable case M >> q and N large

“Metastable“ trajectory. Known phenomenon for the deterministic
model ([Penrose, 1989],[Wattis, 2006])

1. irreversible
aggregation
(up to c∗i )

2. slow ”diffusion”
with constant
monomer
C1(t) ≡ c∗1

3. convergence to
equilibrium
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Nucleation time distribution in the favorable case M >> q

and N large, c∗N < 1 : bimodal distribution

c∗N < 1 : Linear model with C1 ≡ c∗1 , Ci (0) = c∗i (solid line).
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Nucleation time distribution in the favorable case M >> q

and N small, c∗N > 1 : Weibull law

c∗N > 1 : Linear model with C1 ≡ M, Weibull law (dashed line).
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Mean nucleation time versus initial monomer quantity in
log scale : 2 or 3 phases according nucleus size N

1. exponential

2. Linear
model
(starting
from c∗i )

3. Weibull
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Mean nucleation time versus initial monomer quantity in
log scale : 2 or 3 phases according nucleus size N
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Conclusion/Perspectives

◮ Different behavior of the nucleation time

◮ Parameter Identifiability depending on parameter region
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Conclusion/Perspectives

◮ Different behavior of the nucleation time

◮ Parameter Identifiability depending on parameter region

Perspectives

◮ Different nucleation regime ⇒ Different polymerization regime

◮ Possibility to take into account different polymer structures

◮ Study the nucleation time for size-dependent rates
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