Modélisation probabiliste en biologie cellulaire et moléculaire Thèse sous la direction de M. Adimy, M.C. Mackey & L. Pujo-Menjouet

Romain Yvinec

Institut Camille Jordan - Université Claude Bernard Lyon 1

Vendredi 05 octobre 2012

Bursting phenomenon in gene expression models Molecular biology Transcriptional/Translational Bursting Limiting model

Nucleation in Prion Polymerization Experiments

Prion diseases Prusiner-Lansbury model In vitro experiments Study of the nucleation time

Bursting phenomenon in gene expression models Molecular biology

Transcriptional/Translational Bursting Limiting model

Nucleation in Prion Polymerization Experiments

(日) (四) (분) (분) (분) 분

Prion diseases Prusiner-Lansbury model In vitro experiments Study of the nucleation time

Central Dogma

 Expression of a gene through transcription/translation processes.

Non-linear Feedback regulation.

- Bifurcation analysis in Ordinary Differential Equation.
- Application to synthetic biology.

[Goodwin, 1965],[Hasty et al., 2001].

Stochasticity in molecular biology

Much more accurate measurements

Bifurcation can be studied on probability distributions.

Much more accurate measurements

Trajectories can be analyzed on single cells.

New Central dogma

 Take into account gene state switching. Interpretation as stochastic processes.

[Berg, 1978], [Peccoud and Ycart, 1995], [Kepler and Elston, 2001], [Paulsson, 2005], [Lipniacki et al., 2006], [Paszek, 2007],

[Shahrezaei and Swain, 2008].

The bursting phenomena

 $Question \ 1)$ When does the stochastic model predict burst phenomenon ?

Question 2) What can we say in such cases?

Bursting phenomenon in gene expression models Molecular biology Transcriptional/Translational Bursting Limiting model

Nucleation in Prion Polymerization Experiments

(日) (四) (전) (전) (전) (전)

Prion diseases Prusiner-Lansbury model In vitro experiments Study of the nucleation time We consider the following 2d stochastic kinetic chemical reaction model (X='mRNA', Y='Protein')

with $\gamma_1(0, Y) = \gamma_2(X, 0) = 0$ to ensure non-negativity.

$$\mathbb{B}_{N}f(x,y) = \lambda_{1}(x,y) \Big[f(x+1,y) - f(x,y) \Big] \\ + N\gamma_{1}(x,y) \Big[f(x-1,y) - f(x,y) \Big] \\ + N\lambda_{2}(x,y) \Big[f(x,y+1) - f(x,y) \Big] \\ + \gamma_{2}(x,y) \Big[f(x,y-1) - f(x,y) \Big].$$

Theorem (R.Y.)

The degradation function on X satisfies

$$\inf_{x\geq 1,y\geq 0}\gamma_1(x,y)=\underline{\gamma}>0.$$

- The production rate of Y satisfies $\lambda_2(0, y) = 0$, for all $y \ge 0$.
- λ₁ and λ₂ are linearly bounded by x + y, and either λ₁ or λ₂ is bounded.

Then, for all T > 0, $(X^{N}(t), Y^{N}(t))_{t \ge 0}$ converges in $L^{1}(0, T)$ to (0, Y(t)), whose generator is given by

$$\begin{cases} \mathbb{B}_{\infty}\varphi(y) &= \lambda_{1}(0,y)\Big(\int_{0}^{\infty}P_{t}(\gamma_{1}(1,\cdot)\varphi(\cdot))(y)dt - \varphi(y)\Big) \\ &+ \gamma_{2}(0,y)\Big[\varphi(y-1) - \varphi(y)\Big], \\ P_{t}g(y) &= \mathbb{E}\big[g(Z(t,y)e^{-\int_{0}^{t}\gamma_{1}(1,Z(s,y))ds}\big], \\ Ag(z) &= \lambda_{2}(1,z)\big(g(z+1) - g(z)\big). \end{cases}$$

▶ We first show tightness and convergence of X based on

$$N\underline{\gamma}\mathbb{E}\big[\int_0^t \mathbf{1}_{\{X^N(s)\geq 1\}}ds\big] \leq \mathbb{E}\big[X^N(0)\big] + \mathbb{E}\big[\int_0^t \lambda_1(X^N(s), Y^N(s))ds\big].$$

▶ We first show tightness and convergence of X based on

$$\frac{N_{\underline{\gamma}}\mathbb{E}\big[\int_0^t \mathbf{1}_{\{X^N(s)\geq 1\}}ds\big] \leq \mathbb{E}\big[X^N(0)\big] + \mathbb{E}\big[\int_0^t \lambda_1(X^N(s), Y^N(s))ds\big].$$

We identify the limiting martingale problem

▶ We first show tightness and convergence of X based on

$$\frac{N_{\underline{\gamma}}\mathbb{E}\big[\int_0^t \mathbf{1}_{\{X^N(s)\geq 1\}}ds\big] \leq \mathbb{E}\big[X^N(0)\big] + \mathbb{E}\big[\int_0^t \lambda_1(X^N(s), Y^N(s))ds\big].$$

We identify the limiting martingale problem

$$\lambda_2(x,y) \Big[f(x,y+1) - f(x,y) \Big] + \gamma_1(x,y) \Big[f(x-1,y) - f(x,y) \Big] = 0$$

▶ We first show tightness and convergence of X based on

$$\underbrace{\mathsf{N}\underline{\gamma}\mathbb{E}\big[\int_0^t \mathbf{1}_{\{X^N(s)\geq 1\}}ds\big] \leq \mathbb{E}\big[X^N(0)\big] + \mathbb{E}\big[\int_0^t \lambda_1(X^N(s),Y^N(s))ds\big].$$

We identify the limiting martingale problem

$$A^{x}g(y) = \lambda_{2}(x,y) \Big[g(y+1) - g(y)\Big],$$

for any $x \ge 1$. and we introduce the semigroup P_t^x

$$P_t^{\mathsf{x}}g(y) = \mathbb{E}\big[g(Z_t^{\mathsf{x},y})e^{-\int_0^t \gamma_1(\mathsf{x},Z_s^{\mathsf{x},y})ds}\big].$$

Now for any bounded function g, define f(0, y) = g(y) and

$$f(x,y) = \int_0^\infty P_t^x(\gamma_1(x,.)f(x-1,.))(y)dt.$$

Then

$$\lambda_2(x,y) \left[f(x,y+1) - f(x,y) \right] + \gamma_1(x,y) \left[f(x-1,y) - f(x,y) \right] = 0$$

9/40

 A similar proof for a (continuous state) PDMP model, of generator

$$\mathbb{B}f(x,y) = -N\gamma_1(x,y)\frac{\partial f}{\partial x} + (N\lambda_2(x,y) - \gamma_2(x,y))\frac{\partial f}{\partial y} \\ + \lambda_1(x,y)\int_0^\infty (f(x+z,y) - f(x,y))h(z)dz.$$

- These proofs are based on a simple idea ([Debussche et al., 2011],[Kang and Kurtz, 2011]).
- Other proof : reduction on the Fokker-Planck equation.
- Different scalings lead to different models.

Bursting phenomenon in gene expression models

Molecular biology Transcriptional/Translational Bursting Limiting model

Nucleation in Prion Polymerization Experiments

(日) (四) (전) (전) (전) (전)

Prion diseases Prusiner-Lansbury model In vitro experiments Study of the nucleation time We look at the stochastic process

$$dx = -\gamma(x)dt + dN(\lambda(x), h(x, \cdot)),$$

whose generator is

$$Af = -\gamma(x)f'(x) + \lambda(x)\Big(\int_0^\infty f(x+y)h(x,y)dy - f(x)\Big),$$

and evolution equation on densities

$$\frac{\partial u(t,x)}{\partial t} = \frac{\partial \gamma(x)u(t,x)}{\partial x} - \lambda(x)u(t,x) + \int_0^x u(t,y)\lambda(y)h(y,x-y)dy,$$

and with $\int_0^\infty h(x,y)dy = 1$, for all x .

Probabilistic techniques

If jumps are independent of positions, *i.e.* h(x, y) = h(y), we have :

Proposition

Suppose $x \mapsto \lambda(x)$ is continuous on $(0,\infty)$, $\lambda(0) > 0$, $\gamma(x) = \gamma x$, $\mathbb{E}[h] < \infty$, and

$$\lim_{x\to\infty}\frac{\lambda(x)\mathbb{E}\lfloor h\rfloor}{\gamma x}<1,$$

then there exist eta < 1, $B < \infty$ and π (invariant measure) such that

$$\|P(t,x,\cdot)-\pi\|_V \leq BV(x)\beta^t, \quad x\in E, \quad t>0,$$

where $\|\mu\|_{f} = \sup_{|g| \le f} |\mu(g)|$ and V(x) = x + 1.

Probabilistic techniques

If jumps are independent of positions, *i.e.* h(x, y) = h(y), we have :

Proposition

Suppose $x \mapsto \lambda(x)$ is continuous on $(0,\infty)$, $\lambda(0) > 0$, $\gamma(x) = \gamma x$, $\mathbb{E}[h] < \infty$, and

$$\lim_{x\to\infty}\frac{\lambda(x)\mathbb{E}\lfloor h\rfloor}{\gamma x}<1,$$

then there exist $\beta < 1$, $B < \infty$ and π (invariant measure) such that

$$\|P(t,x,\cdot)-\pi\|_V \leq BV(x)\beta^t, \quad x \in E, \quad t > 0,$$

where $\|\mu\|_f = \sup_{|g| \leq f} |\mu(g)|$ and V(x) = x + 1.

•
$$Ax = -\gamma x + \lambda(x) \left(\int_0^\infty (x+y)h(y)dy - x \right) = -\left(1 - \frac{\lambda(x)\mathbb{E}[h]}{\gamma x}\right)\gamma x$$

Semigroup techniques

$$\frac{\frac{\partial u(t,x)}{\partial t}}{\frac{du}{dt}} = \underbrace{\frac{\partial \gamma(x)u(t,x)}{\partial x} - \lambda(x)u(t,x)}_{Au=(A_0-\lambda)u} + \underbrace{\int_0^x u(t,y)\lambda(y)h(y,x-y)dy}_{Bu=J(\lambda u)}$$

$$(A, D(A)) \Rightarrow S(t)u(x) = P_0(t)u(x)e^{-\int_0^t \lambda(\phi_r x)dr}$$

Let C = A + B. Denote the resolvent $R_s^S u = \int_0^\infty e^{-st} S(t) u dt$.

Semigroup techniques

$$\underbrace{\frac{\partial u(t,x)}{\partial t}}_{\frac{du}{dt}} = \underbrace{\frac{\partial \gamma(x)u(t,x)}{\partial x} - \lambda(x)u(t,x)}_{Au=(A_0-\lambda)u} + \underbrace{\int_0^x u(t,y)\lambda(y)h(y,x-y)dy}_{Bu=J(\lambda u)}$$

$$(A, D(A)) \Rightarrow S(t)u(x) = P_0(t)u(x)e^{-\int_0^t \lambda(\phi_r x)dr}$$

Let C = A + B. Denote the resolvent $R_s^S u = \int_0^\infty e^{-st} S(t) u dt$.

Theorem ([Tyran-Kamińska, 2009]) There is a minimal substochastic semigroup P generated by an extension of (C, D(A)), and which resolvent is given by

$$R_s^P u = \lim_{n \to \infty} R_s^S \sum_{k=0}^n (J(\lambda R_s^S))^k u,$$

and if $K = \lim_{\sigma \to 0} J(\lambda R_{\sigma}^{S})$ has a unique invariant density, then so does for P (and P is stochastic).

Under good conditions, K is the transition operator for the discrete Markov chain "post-jump", and has for kernel

$$\begin{cases} k(x,y) = \int_0^x \mathbf{1}_{\{(0,y)\}}(z)h(z,y-z)\frac{\lambda(z)}{\gamma(z)}e^{Q(x)-Q(z)}dz, \\ Q(x) = \int_x^x \frac{\lambda(z)}{\gamma(z)}dz. \end{cases}$$

Modulo integrability conditions, invariant density v* for K and invariant density u* for P are related through

$$\begin{split} \gamma(x)\boldsymbol{u}^*(x) &= \int_0^x \overline{H}(z, x - z)\lambda(z)\boldsymbol{u}^*(z)dz, \ \overline{H}(z, x) = \int_x^\infty h(z, y)dy, \\ \boldsymbol{v}^*(x) &= \int_0^x h(z, x - z)\lambda(z)\boldsymbol{u}^*(z)dz, \\ \boldsymbol{u}^*(x) &= \frac{1}{\gamma(x)}\int_x^\infty e^{Q(y) - Q(x)}\boldsymbol{v}^*(y)dy, \\ \boldsymbol{v}^*(x) &= \int_0^x h(z, x - z)\frac{\lambda(z)}{\gamma(z)}e^{-Q(z)}\int_z^\infty \boldsymbol{v}^*(y)e^{Q(y)}dydz. \end{split}$$

Experiments Reduction Limiting model

Condition for ergodicity in the exponential case

If jumps are independent of positions, *i.e.* h(x, y) = h(y) and exponentially distributed, of mean b, *i.e.* $h(y) = \frac{1}{b}e^{-y/b}$, then

Theorem (M. Tyran-Kamińska, M. Mackey, R.Y.) Under technical assumptions (for integrability), and if

$$\lim_{x \to \infty} rac{\lambda(x)}{\gamma(x)} < rac{1}{b},$$
 $Q(0) := \int_0^{\overline{x}} rac{\lambda(z)}{\gamma(z)} dz = \infty,$

then P is ergodic with unique invariant density

$$u^*(x) = \frac{1}{c\gamma(x)}e^{-x/b-Q(x)}.$$

Bifurcation

This analytical approach allows us to deduce that the number of modes of the stationary state is linked to the solution of

$$\lambda(x) = \frac{\gamma(x)}{b} + \gamma'(x).$$

(ロト (日) (王) (王) (王) (日)

Further results (not developed here)

- ► This can be used to find λ(x) and b from observations of (u^{*}, γ).
- The convergence rate can be estimated from coupling techniques.

Further results (not developed here)

- ► This can be used to find λ(x) and b from observations of (u^{*}, γ).
- The convergence rate can be estimated from coupling techniques.

Perspectives

- Other jump size kernel *h*.
- Waiting time properties.
- Switch and bursting model.
- Include cell division and study population dynamics.
- Characterize oscillations in two-dimensional model.

Bursting phenomenon in gene expression models

Molecular biology Transcriptional/Translational Bursting Limiting model

Nucleation in Prion Polymerization Experiments

(日) (四) (분) (분) (분) 분

Prion diseases

Prusiner-Lansbury model In vitro experiments Study of the nucleation time

Prion Diseases

- Creutzfeldt-Jakob : First human prion disease described (1929).
- Mad cow disease, Scrapie.
- Kuru (New Guinea)

We may be skinny, but at least we're not MAD !

Prion Diseases

Epidemiology

- All prion diseases are transmissible, *i.e.* infectious.
- Some prion diseases are sporadic, they appear spontaneously, without cause.
- Some prion diseases are genetic.

Symptoms

- Affect the structure of the brain;
- Convulsion, Dementia, Loss of balance;
- Always fatal.

Bursting phenomenon in gene expression models

Molecular biology Transcriptional/Translational Bursting Limiting model

Nucleation in Prion Polymerization Experiments

(日) (四) (전) (전) (전) (전)

Prion diseases

Prusiner-Lansbury model

In vitro experiments Study of the nucleation time

What is prion?

A protein

- A protein called PRION is the cause of this disease
- It is neither a bacteria, nor an viroid like agent !
- Stanley Prusiner was awarded Nobel price in Physiology and Medicine in 1997 for his discovery.

Histopathology

- Accumulation of a protein in the amyloid form.
- Spongiosis.

Nucleation-Polymerization

Conformation change

$\mathsf{Normal} \Leftrightarrow \mathsf{Misfolded}$

Lansbury's model

[Lansbury and Caughey, 1995].

Bursting phenomenon in gene expression models

Molecular biology Transcriptional/Translational Bursting Limiting model

Nucleation in Prion Polymerization Experiments

(日) (四) (분) (분) (분) 분

Prion diseases Prusiner-Lansbury model In vitro experiments Study of the nucleation tim

- In vitro spontaneous polymerization experiments.
- Time series of polymer mass.

э

Statistics of nucleation time

 Relation between the nucleation time and the initial concentration in log plots.

Full distribution of the nucleation time.

글 🕨 🖌 글 🕨

Questions

- Can a probabilistic model reproduce the observed variability?
- Can it help to identify parameters?
- Can a model include different strain structures?

Bursting phenomenon in gene expression models

Molecular biology Transcriptional/Translational Bursting Limiting model

Nucleation in Prion Polymerization Experiments

(日) (四) (전) (전) (전) (전)

Prion diseases Prusiner-Lansbury model In vitro experiments Study of the nucleation time

Reversible aggregation model

$$C_i + C_1 \stackrel{p}{\underset{q}{\leftarrow}} C_{i+1}$$

where

$$C_i = \#\{\text{molecules of size i}\}.$$

The nucleation time is given by a waiting time problem,

$$T_{lag} = \inf\{t \ge 0 : C_N(t) = 1\},\$$

with initial condition $C_1(0) = M$, $C_i(0) = 0$, $i \ge 2$. *N* is the nucleus size.

Constant monomer formulation

If we suppose

$C_1(t)\equiv M$

We can solve exactly the probability distributions (Poisson) and we deduce

$$S(t) := \mathbb{P}\big\{C_{N}(s) = 0, s \leq t\big\} = \mathbb{P}\big\{C_{N}(t) = 0\big\} = e^{-c_{N}(t)},$$

where $(c_i)_{i=2..N}$ are solution of the linear deterministic system $(c_n \text{ is absorbing})$:

$$\begin{cases} \dot{c}_2 = pM(\frac{1}{2}M - c_2) - q(c_2 - c_3), \\ \dot{c}_i = pM(c_{i-1} - c_i) - q(c_i - c_{i+1}), & 3 \le i \le N - 2, \\ \dot{c}_{N-1} = pM(c_{N-2} - c_{N-1}) - qc_{N-1}, \\ \dot{c}_N = pMc_{N-1}. \end{cases}$$

(ロ)(四)(日)(日)(日)(日)

Nucleation time distribution $(C_1(t) \equiv M)$

Mean nucleation time versus initial monomer quantity in log scale $(C_1(t) \equiv M)$

Nucleation time distribution in log scale $(C_1(t) \equiv M)$

Mass conservative formulation

We now suppose

$$\sum_{i=1}^{N} iC_i(t) \equiv M.$$

Kolmogorov backward equations \Rightarrow Linear system on

$$S(t, \{C^0\}) = \mathbb{P} \{C_N(t) = 0 \mid C_i(0) = C_i^0\}$$

Problem : Dimension of the system

$$\sharp \{ \text{configuration } \{C^0\}, \sum_{i=1}^N iC_i^0 = M, C_N^0 = 0 \} \approx \frac{M^N}{N!}$$

(ロト・西ト・モト・モー シック

In general, we look for approximate solution for extreme parameter values : $q \gg M$ and $q \ll M$. We use

- known deterministic solution ;
- time scale separation ;
- scaling laws;
- phase space dimension reduction;
- linear model;
- numerical simulation.

Trajectories in the unfavorable case $q \gg M$

Pre-equilibrium hypothesis (ex : M = 200, N = 8, q = 1000).

Nucleation time distribution in the unfavorable case $q \gg M$: exponential law

 $T_{lag} \sim$ exponential law, of parameter

Trajectories in the favorable case M >> q and N large

"Metastable" trajectory (ex : M = 30000, N = 10, q = 1).

Trajectories in the favorable case M >> q and N large

"Metastable" trajectory. Known phenomenon for the deterministic model ([Penrose, 1989],[Wattis, 2006])

- 1. irreversible aggregation (up to c_i^*)
- 2. slow "diffusion" with constant monomer $C_1(t) \equiv c_1^*$
- 3. convergence to equilibrium

Nucleation time distribution in the favorable case M >> qand N large, $c_N^* < 1$: bimodal distribution

 $c_N^* < 1$: Linear model with $C_1 \equiv c_1^*$, $C_i(0) = c_i^*$ (solid line).

Nucleation time distribution in the favorable case M >> qand N small, $c_N^* > 1$: Weibull law

 $c_N^* > 1$: Linear model with $C_1 \equiv M$, Weibull law (dashed line).

Mean nucleation time versus initial monomer quantity in log scale : 2 or 3 phases according nucleus size N

Mean nucleation time versus initial monomer quantity in log scale : 2 or 3 phases according nucleus size N

Conclusion/Perspectives

- Different behavior of the nucleation time
- Parameter Identifiability depending on parameter region

Conclusion/Perspectives

- Different behavior of the nucleation time
- Parameter Identifiability depending on parameter region

Perspectives

- Different nucleation regime \Rightarrow Different polymerization regime
- Possibility to take into account different polymer structures
- Study the nucleation time for size-dependent rates

Berg, O. G. (1978).

A model for the statistical fluctuations of protein numbers in a microbial population.

J. Theor. Biol., 71(4) :587-603.

Debussche, A., Crudu, A., Muller, A., and Radulescu, O. (2011).

Convergence of stochastic gene networks to hybrid piecewise deterministic processes.

Ann. Appl. Probab. (to appear).

- Eldar, A. and Elowitz, M. B. (2010).

Functional roles for noise in genetic circuits. Nature, 467(7312) :167-73.

```
Goodwin, B. C. (1965).
```

Oscillatory behavior in enzymatic control processes. Adv. Enzyme. Regul., 3:425-437.

Hasty, J., McMillen, D., Isaacs, F., and Collins, J. J. (2001).

Bursting Nucleation

Computational studies of gene regulatory networks : in numero molecular biology.

Nat. Rev. Genet., 2(4) :268-279.

Kang, H.-W. and Kurtz, T. G. (2011). Separation of time-scales and model reduction for stochastic reaction networks.

Ann. Appl. Probab. (to appear).

Kepler, T. and Elston, T. (2001).
 Stochasticity in transcriptional regulation : Origins, consequences, and mathematical representations.
 Biophys. J., 81 :3116–3136.

Lansbury, P. J. and Caughey, B. (1995).

The chemistry of scrapie infection : implications of the 'ice 9' metaphor.

Chem. Biol., 2(2) :1-5.

Lipniacki, T., Paszek, P., Marciniak-Czochra, A., Brasier, A. R., and Kimmel, M. (2006). Transcriptional stochasticity in gene expression. *J. Theor. Biol.*, 238(2) :348–367.

Paszek, P. (2007).

Modeling stochasticity in gene regulation : characterization in the terms of the underlying distribution function. *B. Math. Biol.*, 69(5) :1567–601.

Paulsson, J. (2005).

Models of stochastic gene expression. *Phys. Life Rev.*, 2(2) :157–175.

Peccoud, J. and Ycart, B. (1995).
 Markovian modelling of Gene Product Synthesis.
 Theor. Popul. Biol., 48(2) :222-234.

Penrose, O. (1989).

Metastables states for the becker-döring cluster equations.

Prion Model Experiments Nucleation time Bursting Nucleation

> < 프 > < 프 >

Commun. Math. Phys., 541 :515-541.

- Shahrezaei, V. and Swain, P. (2008). Analytic distributions for stochastic gene expression. Proc. Natl. Acad. Sci., 105 :17256–17261.
- Song, C., Phenix, H., Abedi, V., Scott, M., Ingalls, B. P., Perkins, T. J., and Kaern, M. (2010). Estimating the Stochastic Bifurcation Structure of Cellular Networks.

PLoS Comput. Biol., 6 :e1000699/1-11.

- Tyran-Kamińska, M. (2009).

Substochastic semigroups and densities of piecewise deterministic markov processes.

J. Math. Anal. Appl., 357(2) :385-402.

Wattis, J. A. D. (2006).

An introduction to mathematical models of coagulation-fragmentation processes : a discrete deterministic mean-field approach. *Physica D*, 222(1-2) :1–20.

Yu, J., Xiao, J., Ren, X., Lao, K., and Xie, X. (2006). Probing gene expression in live cells, one protein molecule at a time.

Science, 311 :1600–1603.