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Résumé

De nombreux travaux récents ont démontré I'importance de la stochasticité dans ’ex-
pression des genes a différentes échelles. On passera tout d’abord en revue les principaux ré-
sultats expérimentaux pour motiver I’étude de modeles mathématiques prenant en compte
des effets aléatoires. On étudiera ensuite deux modeles particuliers ou les effets aléatoires
induisent des comportements intéressants, en lien avec des résultats expérimentaux : une
dynamique intermittente dans un modele d’auto-régulation de I'expression d’'un gene; et
I’émergence d’hétérogénéité a partir d’'une population homogene de protéines par modifi-
cation post-traductionnelle.

Dans le Chapitre I, nous avons étudié le modele standard d’expression des genes a
trois variables : ADN, ARN messager et protéine. L’ADN peut étre dans deux états, res-
pectivement “ON“ et “OFF“. La transcription (production d’ARN messagers) peut avoir
lieu uniquement dans l’état “ON“. La traduction (production de protéines) est propor-
tionnelle a la quantité d’ARN messager. Enfin la quantité de protéines peut réguler de
maniere non-linéaire les taux de production précédent. Nous avons utilisé des théoremes
de convergence de processus stochastique pour mettre en évidence différents régimes de
ce modele. Nous avons ainsi prouvé rigoureusement le phénomene de production intermit-
tente d’ARN messagers et/ou de protéines. Les modeles limites obtenues sont alors des
modeles hybrides, déterministes par morceaux avec sauts Markoviens. Nous avons étudié
le comportement en temps long de ces modeles et prouvé la convergence vers des solutions
stationnaires. Enfin, nous avons étudié en détail un modele réduit, calculé explicitement
la solution stationnaire, et étudié le diagramme de bifurcation des densités stationnaires.
Ceci a permis 1) de mettre en évidence l'influence de la stochasticité en comparant aux
modeles déterministes; 2) de donner en retour un moyen théorique d’estimer la fonction
de régulation par un probleme inverse.

Dans le Chapitre 11, nous avons étudié une version probabiliste du modele d’agrégation-
fragmentation. Cette version permet une définition de la nucléation en accord avec les
modeles biologistes pour les maladies a Prion. Pour étudier la nucléation, nous avons
utilisé une version stochastique du modele de Becker-Déring. Dans ce modele, ’agrégation
est réversible et se fait uniquement par attachement/détachement d’un monomere. Le
temps de nucléation est définit comme le premier temps o un noyau (c’est-a-dire un
agrégat de taille fixé, cette taille est un parametre du modele) est formé. Nous avons alors
caractérisé la loi du temps de nucléation dans ce modele. La distribution de probabilité
du temps de nucléation peut prendre différente forme selon les valeurs de parametres :
exponentielle, bimodale, ou de type Weibull. Concernant le temps moyen de nucléation,
nous avons mis en évidence deux phénomenes importants. D’une part, le temps moyen de
nucléation est une fonction non-monotone du parametre cinétique d’agrégation. D’autre
part, selon la valeur des autres parametres, le temps moyen de nucléation peut dépendre
fortement ou tres faiblement de la quantité initiale de monomere . Ces caractérisations
sont importantes pour 1) expliquer des dépendances tres faible en les conditions initiales,
observées expérimentalement ; 2) déduire la valeur de certains parametres d’observations
expérimentales. Cette étude peut donc étre appliqué a des données biologiques. Enfin,
concernant un modele de polymérisation-fragmentation, nous avons montré un théoreme
limite d’'un modele purement discret vers un modele hybride, qui peut-étre plus utile pour
des simulations numériques, ainsi que pour une étude théorique.



Summary

The importance of stochasticity in gene expression has been widely shown recently. We
will first review the most important related work to motivate mathematical models that
takes into account stochastic effects. Then, we will study two particular models where sto-
chasticity induce interesting behavior, in accordance with experimental results : a bursting
dynamic in a self-regulating gene expression model ; and the emergence of heterogeneity
from a homogeneous pool of protein by post-translational modification.

In Chapter I, we studied a standard gene expression model, at three variables : DNA,
messenger RNA and protein. DNA can be in two distinct states, 7ON“ and "OFF*. Trans-
cription (production of mRNA) can occur uniquely in the "ON“ state. Translation (pro-
duction of protein) is proportional to the quantity of mRNA. Then, the quantity of protein
can regulate in a non-linear fashion these production rates. We used convergence theorem
of stochastic processes to highlight different behavior of this model. Hence, we rigorously
proved the bursting phenomena of mRNA and/or protein. Limiting models are then hybrid
model, piecewise deterministic with Markovian jumps. We studied the long time behavior
of these models and proved convergence toward a stationary state. Finally, we studied in
detail a reduced model, explicitly calculated the stationary distribution and studied its
bifurcation diagram. Our two main results are 1) to highlight stochastic effects by compa-
rison with deterministic model; 2) To give back a theoretical tool to estimate non-linear
regulation function through an inverse problem.

In Chapter II, we studied a probabilistic version of an aggregation-fragmentation mo-
del. This version allows a definition of nucleation in agreement with biological model for
Prion disease. To study the nucleation, we used a stochastic version of the Becker-Doring
model. In this model, aggregation is reversible and through attachment/detachment of a
monomer. The nucleation time is defined as a waiting time for a nuclei (aggregate of a
fixed size, this size being a parameter of the model) to be formed. In this work, we charac-
terized the law of the nucleation time. The probability distribution of the nucleation time
can take various forms according parameter values : exponential, bimodal or Weibull. We
also highlight two important phenomena for the mean nucleation time. Firstly, the mean
nucleation time is a non-monotone function of the aggregation kinetic parameter. Secondly,
depending of parameter values, the mean nucleation time can be strongly or very weakly
correlated with the initial quantity of monomer. These characterizations are important for
1) explaining weak dependence in initial condition observed experimentally ; 2) deducing
some parameter values from experimental observations. Hence, this study can be directly
applied to biological data. Finally, concerning a polymerization-fragmentation model, we
proved a convergence theorem of a purely discrete model to hybrid model, which may be
useful for numerical simulations as well as a theoretical study.
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10 Introduction Générale

1 Biologie, Rappels Historiques

La découverte de phénomenes aléatoires en biologie est relativement récente, contrai-
rement a d’autres domaines comme la physique ou la chimie. En biologie moléculaire plus
particulierement, une vision déterministe (proche du « déterminisme Laplacien ») pré-
valait il y a encore quelques années. En témoigne par exemple l'influent livre d’Erwin
Schrodinger, What is Life ([75], 1944), (voir aussi [80]) pour qui 'ordre macroscopique
d’un organisme vivant provient d’un méme ordre microscopique de ses constituants. Du-
rant un demi-siecle, ces idées ont été dominantes en biologie. Cette vision déterministe
en fait un domaine distinct de la physique, ol la notion d’ordre a partir du désordre est
connue depuis longtemps (notamment grace & Ludwig Boltzmann, James Clerk Maxwell,
et la théorie cinétique des gaz, dans la deuxieme moitié du 19e siecle, et plus généralement
par les approches de la physique statistique). Il faut bien voir que les ordres de grandeur
sont aussi radicalement différents. Dans un volume de gaz macroscopique —une mole—, il
y a de l'ordre de 6.10%* molécules (nombre d’Avogadro). Si le nombre de cellules dans 1’or-
ganisme humain est estimé & environ 10'4, certaines entités biochimiques ne sont présentes
que par centaines voir dizaines de copies dans une cellule !

Depuis la découverte de PADN et de son information génétique par James Watson,
Maurice Wilkins et Francis Crick (1962) et depuis les travaux de Jacques Monod, Fran-
cois Jacob et André Lwoff (1965) sur PARN messager et la notion d’opérons, la vision
dominante en biologie moléculaire est une vision mécaniste (voir par exemple [49]). Toute
I'information dans un organisme est contenue dans les genes, qui la transmettent via une sé-
rie (complexe) de réactions biochimiques & certaines protéines, qui vont a leur tour donner
des fonctions aux cellules. Cette vision est a la base de ce qu’on appelle la « cybernétique »,
théorie initiée par Norbert Wiener (voir par exemple [46]).

Les récents progres spectaculaires des méthodes et technologies expérimentales ont ac-
cumulé les preuves que la perception mécaniste des phénomenes biologiques ne s’accorde
plus aux observations expérimentales. Parmi les récentes technologies disponibles, on peut
citer la PCR (réaction en chaine par polymérase —Polymerase Chain Reaction— qui per-
met notamment de multiplier des fragments d’ADN pour les étudier), les puces d’ADN
(qui permettent de mesurer les niveaux d’expression d’un grand nombre de génes simulta-
nément), les nombreuses techniques d’observation et de détection de molécules dans une
cellule (voir par exemple [70]), ainsi que de leur dynamique et structure spatiales (via no-
tamment la spectroscopie de résonance magnétique nucléaire, voir par exemple [13]). Ces
technologies ont, entre autres, permis d’étudier les séquences de geénes (avec par exemple
le Human Genome Project (1)), les niveaux d’expression des genes et les interactions entre
protéines.

Parmi les expériences marquantes qui donnent de moins en moins d’importance a
Pentité « géne » et de plus en plus aux interactions avec l’environnement (intérieur et
extérieur a la cellule), on peut citer I'expérience d’Elowitz et al. [28]. Ces auteurs observent
I’expression de deux genes « identiques », situés a des endroits similaires dans le génome
d’une bactérie (en fait, ’ADN d’une bactérie étant circulaire, ils ont placé les deux geénes de
maniere symétrique par rapport a l'origine de réplication). Ces deux genes codent pour des
protéines fluorescentes que l'on peut distinguer. En observant une population de cellules
clones, mais avec des mesures sur cellule unique, ils ont mis en évidence que les niveaux
d’expression de ces genes varient considérablement d’une cellule a I'autre et a l'intérieur
d’une méme cellule (voir figure 1). Cette expérience, et de nombreuses autres, ont démontré
les effets stochastiques de I'expression des genes. Ce phénomeéne a bouleversé le domaine
de la biologie moléculaire. On peut citer notamment Ehrenberg et al. [26] :

1. http ://www.ornl.gov /sci/techresources/Human_Genome/home.shtml
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FIGURE 1: Observation expérimentale de population de bactéries. Image tirée de [27].
Le niveau de deux protéines fluorescentes (verte et rouge) est observé en simultané dans
chaque cellule. Les deux protéines sont exprimées par des genes qui possedent la méme
séquence d’initiation, et qui sont situés dans des endroits similaires du génome. Cette
expérience démontre que les effets de 'environnement sont primordiaux.

There is a revolution occurring in the biological sciences
ou Paldi [66] :

Is it possible that in biology also, just as in the physical world, macroscopic
order is based on the stochastic disorder of its elementary constituents ?

La précision des expériences permet de quantifier la variabilité dans I’expression des genes.
Une modélisation probabiliste est donc adéquate pour interpréter au mieux les expériences.
Notre contribution dans I’étude d’un modele d’expression des génes va dans ce sens (Cha-
pitre 1). Au-dela de la quantification de la stochasticité de ’expression des genes, beaucoup
de questions biologiques restent en suspens. En particulier, beaucoup de biologistes se de-
mandent si ’aléatoire dans I'expression des génes a une fonction propre, ou au contraire
est « inutile mais inévitable » (voir par exemple [27]). Il n’est pas str que la modélisa-
tion mathématique puisse répondre a cette question. En revanche, beaucoup de questions
concernent également les phases du développement des organismes et de la différenciation
cellulaire. Certains auteurs ont proposé des théories « Darwiniennes » pour le développe-
ment (au niveau du phénotype (quelles protéines sont exprimées) plutét que du génotype
(quels genes ou alleles sont présents), voir par exemple le travail de Kupiec et al. [47, 48].
Des modeles mathématiques « d’évolution », a I’échelle cellulaire, pourrait probablement
apporter une meilleure compréhension des phénomenes de différenciation cellulaire.

Une autre découverte importante en biologie moléculaire a été la mise en évidence
d’éléments pathogenes de nature protéique. Les maladies liées a ces éléments sont appe-
lées les maladies a prion. Elles peuvent étre transmissibles ou sporadiques, mais ne font
pas intervenir de virus, de bactéries ou de mutation de genes. S’il y a encore de nombreux
débats a ce sujet, I'hypothese la plus répandue actuellement est que les maladies a prion
font intervenir uniquement une protéine (appelée prion) qui, lorsqu’elle change de confor-
mation et s’agrege, devient pathogene. Cette hypothese a d’abord été avancée par Griffith
[35] en 1967, puis prouvée par Prusiner [69] en 1982. Depuis, de nombreuses expériences
ont été réalisées pour étudier la dynamique d’agrégation de cette protéine, qui est une
étape clé pour I'apparition de la maladie. Ces expériences peuvent étre réalisées in vivo
(& lintérieur de cellules) ou in vitro (dans des tubes & essai) (voir par exemple Liautard
et al. [54]). Une curiosité de ces expériences est la grande variabilité des résultats obtenus,
tant au niveau de la dynamique d’agrégation (temps d’apparition de grands polymeéres,
rapidité de la vitesse d’agrégation, voir figure 2) que de la structure obtenue a la fin de
Iexpérience (structure spatiale, propriétés physiques des polymeres). La encore, une mo-



12 Introduction Générale

ThT Fluorescence
ThT Fluorescence

FIGURE 2: Résultats d’expériences d’agrégation de protéines prion, obtenus dans les mémes
conditions expérimentales et avec la méme condition initiale. Les données de ces expé-
riences sont tirées de [54].

délisation probabiliste semble donc adéquate pour prendre en compte cette variabilité,
et tenter d’expliquer les phénomenes sous-jacents. Notre contribution dans ’étude d’un
modele d’agrégation-fragmentation de protéines va dans ce sens (Chapitre 2).

2 Modélisation Mathématique

C’est dans ce contexte de découverte de mécanismes aléatoires en biologie que s’ins-
crivent mes travaux de these. La modélisation mathématique en biologie est un domaine
relativement récent, qui a d’abord concerné surtout la dynamique des populations. Que
ce soit en dynamique des populations, ou dans les modeles de réactions biochimiques, la
modélisation mathématique apporte une approche qualitative et quantitative. Dans les
modeles de réactions biochimiques, la loi d’action de masse permet de représenter la dy-
namique d’un ensemble d’entités biochimiques, interagissant via des réactions cinétiques,
sous forme d’un systeme d’équations différentielles ordinaires. Une étude qualitative de ces
équations (comportement en temps long, états d’équilibre, bifurcations...) permet alors de
comprendre le comportement global du systeme, et de valider ou non le modele en fonction
des observations expérimentales. L’approche quantitative consiste a estimer les valeurs de
certains parametres, ou de variables non observables, soit grace a une résolution explicite
des équations, soit a ’aide de simulations numériques. Dans le contexte des modeles d’ex-
pression des geénes, le travail de Goodwin [34], rendu rigoureux mathématiquement peu
apres [36, 37, 65, 76, 84], est un exemple important. Cette série de travaux a montré que
le niveau d’expression d’un gene pouvait présenter un caractére monostable, bistable ou
oscillant suivant les hypotheses de régulation. Dans le contexte des modeles d’agrégation
de protéines, plus particulierement le modele de Becker-Déring [11], les travaux de [4]
illustrent également I’approche quantitative, en montrant les propriétés asymptotiques du
modele (convergence vers un état d’équilibre, ou explosion, en fonction de la condition ini-
tiale et des parametres). Pour une revue récente des techniques utilisées pour les modeles
déterministes de réactions chimiques, voir Othmer and Lee [64].

Des 1940, le biophysicien Max Delbriick a démontré que le faible nombre de molécules
enzymatiques dans une cellule pouvait donner lieu a de grandes fluctuations d’entités bio-
chimiques a l'intérieur d’une cellule, et avoir des impacts importants sur la physiologie des
cellules. Ces idées ont été largement utilisées pour étudier des modeles de réactions chi-
miques et caractériser les fluctuations possibles [77]. Bartholomay [9] a établi une analogie
entre ces modeles et les modeles de naissance et de mort en théorie des probabilités. Mc-
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Quarrie [56] a résumé les résultats analytiques connus, pour les réactions uni-moléculaires
principalement (voir aussi les récentes contributions de [32],[3]). L’approche classique tra-
duit ’évolution temporelle des entités chimiques en un systeme d’équations sur la proba-
bilité de trouver tel état du systéme au temps ¢ (équation maitresse). Ces équations étant
généralement compliquées, on cherche en général uniquement a résoudre les deux pre-
miers moments (moyenne et variance) pour quantifier les fluctuations. Une autre approche
concerne les processus stochastiques qui décrivent 1’évolution temporelle du nombre de
molécules. Dans les modeles biochimiques, les processus stochastiques sont des processus
de saut. Les équations stochastiques peuvent ainsi s’écrire a ’aide de processus de Poisson
standards. A chaque réaction chimique du type

alAl + 042A2 ++ anAn = /BlAl + /82-’42 ++ /BnAna

on associe un processus de saut d’intensité A (Xa,,Xa,, -+ ,X4,) et de saut X4, —
Xa, + (Bi — o) pour la réaction directe, et d’intensité A\_(X4,, Xa,,---,X4,) et de saut
Xa, — Xa, — (Bi — ;) pour la réaction inverse, ot X 4, est le nombre de molécules de
type A;. Un choix usuel pour l'intensité des réactions est donné par la loi d’action de
masse. L’intensité dépend alors du nombre de rencontres de molécules, donc du nombre de
a;-uplets que I'on peut former avec X4, molécules. Pour la réaction directe, par exemple,

on aurait
n

)‘+(XA17XA27 Tt 7XAn) = ka(ai7XAi)7
i=1

ou, pour a =0, f(a, X) = 1, et pour tout o € N*,

XX-1)-(X—-a+1)
a!

f(avx): )

et k représente la constante de vitesse de réaction (qui peut dépendre du volume, de la
température, etc.).

Exemple 1. Donnons un exemple simple, constitué des réactions

ki
A+A=2RB

ki
A— .

ko

La premiere réaction est une transformation de deuzr molécules A pour donner une molé-
cule B. La deuziéme réaction est une réaction de dégradation. L’évolution du nombre de
molécules (X 4, Xp) est donnée d’aprés la loi d’action de masse par le systéme d’équations
différentielles stochastiques suivant :

<
b
—
o~
p—_

Il

X4(0) — 2Y; ( Lt %XA(S)(XA(S) - 1)ds) 12, ( f: k;XB(s)ds)

3 - Y;,(fo k:QXA(s)ds),

Xp(t) = Xp(0)+ zyl(fot %XA(S)(XA(S) - 1)ds) - m(ﬂ k;XB(s)ds),

ot les Y;, i = 1,2,3, sont des processus de Poisson standards indépendants associés a
chaque réaction.
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Revenons au cas général. Si on note X le vecteur des quantités de molécules dans le
systeme, \;(X) Uintensité de la réaction i, et a;, 3; les vecteurs de steechiométrie associés
a la réaction ¢, I’évolution du systéeme se décrit par :

0

X() = X(0) + Y6, - avi( | X ()ds).

Remarque 1. Les hypothéses physiques sous-jacentes d’une telle approche sont :
— une diffusion rapide,
— un systeme bien mélangé,
— Pabsence de corrélation entre les positions des molécules ou entre les réactions.

Nous utiliserons au cours de cette these ce formalisme pour décrire nos modeles (voir
section 3). Notre but sera alors d’obtenir une caractérisation qualitative et quantitative des
modeles. En particulier, on s’intéressera aux comportements en temps long (convergence
vers un état d’équilibre), et & la recherche de solutions analytiques, exactes ou approchées.
Cette approche nous permettra en retour de pouvoir exploiter des données expérimentales.

Dans la suite de cette introduction, on présente plus précisément les travaux de cette
these (section 3), et les perspectives (section 4). Dans la derniére partie, on introduit les
différents outils mathématiques sur les processus Markoviens que 1’on a utilisés, principa-
lement des résultats de stabilité (section 6) et des théorémes limites (section 7), utilisant
des formalismes de semi-groupes et de martingales.

3 Reésultats de Cette These

Au cours de cette these, nous étudions deux modeles probabilistes appliqués a la biolo-
gie moléculaire. Bien que faisant partie du méme domaine d’application, ces deux modeles
sont assez distincts, et seront donc présentés séparément. Le premier modele est un modele
d’expression des genes, et a été principalement étudié lors de mes séjours (deux fois six
mois) & 1'Université McGill, & Montréal (Qc, Canada), sous la direction de Michael C.
Mackey. Le deuxieme modele est un modele d’agrégation de protéines, et a été principale-
ment étudié a I’Université Lyon 1, sous la direction de Laurent Pujo-Menjouet. Les deux
études font cependant intervenir des outils communs d’analyse mathématique de modeles
probabilistes (voir sections 6 et 7).

Dans le Chapitre I, nous étudions le modele standard d’expression des genes, a trois
étapes : ADN, ARN messager et protéines. L’ADN peut étre dans deux états, respective-
ment « ON » et « OFF ». La transcription (production d’ARN messager) peut avoir lieu
uniquement lorsque 'ADN est dans I'état « ON ». La traduction (production de protéine)
est proportionnelle a la quantité d’ARN messager. Enfin la quantité de protéines peut régu-
ler de maniere non linéaire les taux de production précédent. La version « deterministe »,
sous forme de systeme d’équations différentielles ordinaires, modélisant les concentrations
des especes biochimiques, a été étudiée dans les années 60. On connait maintenant pré-
cisément les comportements en temps long en fonction des parametres du modele. En
particulier, on sait que si la régulation est positive, et suffisamment non linéaire, il y a
une bifurcation fourche. Le systeme peut avoir deux états d’équilibres stables. Lorsque
la régulation est négative, et suffisamment non linéaire, il y a une bifurcation de Hopf.
Le systeme peut avoir des oscillations stables. Nous avons étudié une version « stochas-
tique » de ce modele, sous forme d’une chaine de Markov en temps continu. La difficulté
de ce modele est due au fait que certains taux de saut de la chalne de Markov sont non
linéaires, ce qui rend l'analyse mathématique plus délicate. Tout d’abord, nous dérivons
les cinétiques de Michaelis-Menten et de Hill, dans le formalisme des processus de saut,
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en utilisant des techniques de moyennisation. Ensuite nous donnons des conditions « rai-
sonnables » pour que la chaine de Markov soit exponentiellement ergodique, en utilisant
les criteres de stabilité usuels. Pour étudier quantitativement le modele, nous utilisons une
version réduite du modele, en dimension 1, et avec une production intermittente (bursting,
ce phénomene a été bien caractérisé expérimentalement). Ce modele peut-étre vu comme
un modele Markovien déterministe par morceaux. Nous donnons ici des conditions pré-
cises pour la convergence asymptotique vers un état stationnaire que 'on peut calculer
explicitement dans certains cas. Cette résolution explicite nous permet d’abord d’étudier
les P-bifurcations (nombre de modes (maxima) de la densité stationnaire) et de comparer
ainsi les diagrammes de bifurcations du modele stochastique avec celui du modele déter-
ministe. Nous mettons notamment en évidence des phénomenes relativement généraux, de
bifurcation avancée et élargie pour 'apparition de deux modes sur la densité stationnaire.
Cette étude du comportement en temps long nous permet également de nous intéresser
au probleme inverse : a partir d’'une densité de probabilité mesurée expérimentalement,
retrouver la fonction de régulation tout entiere (et pas seulement la valeur d’un para-
metre). Le traitement de données existantes et adaptées & notre modele est en cours de
réalisation. Enfin, pour compléter I’étude de ce modele, nous montrons rigoureusement,
par des techniques de convergence de processus stochastiques, le passage du modele initial
au modele réduit. En effectuant une mise a ’échelle, réaliste du point de vue biologique,
nous obtenons ainsi une convergence en loi vers le modele limite, ce qui donne les condi-
tions sur les parametres pour observer le phénomene de production intermittente d’ARN
messagers ou de protéines.

Dans le Chapitre II, nous étudions une version stochastique du modele d’agrégation-
fragmentation de polymeres. Dans un premier temps, nous regardons le modele sans frag-
mentation, de Becker-Doring, pour modéliser le phénomene de nucléation dans le processus
d’agrégation des protéines prion. La nucléation est le passage d’un état défavorable (ther-
modynamiquement) pour 'agrégation & un état favorable. La caractérisation quantitative
de cette étape est donc essentielle pour comprendre la dynamique d’agrégation des pro-
téines. La version stochastique du modele de Becker-Doring permet une définition de la
nucléation en accord avec les modeles biologistes pour les maladies a prion : le temps d’ap-
parition du premier agrégat de taille suffisante. Ces protéines ont une conformation telle
que, en-dessous d’une certaine taille, les agrégats ne sont pas stables, alors qu’au-dessus
d’une certaine taille, ils deviennent stables. La taille critique correspond a la taille du
noyau. Nous caractérisons alors la distribution des temps de nucléation dans les modeles
d’agrégation de protéines, en utilisant la théorie des temps de passage pour les chaines de
Markov. La difficulté de ce modele réside dans la grande taille de I’espace des états de la
chaine de Markov. Nous avons alors mis en évidence plusieurs approximations analytiques,
valables dans différentes régions de parametres. Nous avons validé ces approximations a
I'aide de simulations numériques de la chaine de Markov. Le comportement du temps de
nucléation a alors des propriétés a priori contre-intuitives. D’une part, il dépend de ma-
niere non-monotone avec les parametres cinétiques d’agrégation du modele. D’autre part,
dans une certaine région de parametre, il dépend tres faiblement de la quantité initiale de
protéines. Le phénomene de nucléation étant un phénomene tres répandu en biophysique,
ces résultats peuvent avoir un impact important (la dérivation de lois d’échelles permet
d’éviter un grand nombre de simulations, et une analyse plus rapide et plus simple de
modeles liés). Pour le modele particulier de I'agrégation des protéines prion, il permet une
étude quantitative des observations expérimentales (qui reste a faire).

Dans un deuxieme temps, nous étudions un modele de polymérisation-fragmentation, en
présence de grands polymeres déja formés (plus grands que la taille du noyau). Cependant,
sous sa forme discrete, au vu du grand nombre de protéines et des différences d’échelles de
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temps entre la polymérisation et la fragmentation, il n’est pas tres adapté a une approche
quantitative. Nous effectuons alors une mise a 1’échelle, pour obtenir un modele limite ou
la polymérisation est déterministe (donné par une dérive), et la fragmentation est repré-
sentée par un processus de saut. Dans ce modele limite, les protéines non agrégées sont
représentées par une variable continue, et le nombre de polymeres est discret. Ce modele
permet de prendre en compte la variabilité de la vitesse de polymérisation observée ex-
périmentalement. Sous une forme simple, ce modele est un processus de branchement. En
général, c’est un modele individu-centré avec une compétition indirecte entre les individus.
Enfin, lorsque les deux régimes sont mis bout a bout, la nucléation puis la polymérisation-
fragmentation, ce modele « hybride » peut facilement incorporer un phénomene récemment
observé expérimentalement : la possibilité d’apparition de différentes structures de poly-
meres. L’hypothese biologique sous-jacente est que la protéine prion peut se présenter sous
différentes conformations spatiales, et méne ainsi & des agrégats de structure spatiale dif-
férente. Ces différents polymeres ont des dynamiques de polymérisation et fragmentation
propres & leur structure. Notre approche quantitative peut alors aider & l'identification
des différents parametres de polymérisation et fragmentation, et confirmer (ou donner un
poids supplémentaire a) I'hypothese biologique.

4 Perspectives

Du point de vue de la modélisation en biologie, les études des deux modeles que j’ai me-
nées permettent une approche quantitative des données expérimentales. Le traitement des
données et I'application de mes résultats par confrontation avec des données expérimen-
tales est encore a finaliser. Pour le modeéle d’expression des genes, la possibilité de trouver
la fonction de régulation & partir de la densité stationnaire (et de la mesure d’autres para-
metres) devrait intéresser des biologistes expérimentaux. Cela permet en effet d’étudier les
interactions précises entre les protéines et les molécules d’activation du gene, qui peuvent
notamment étre modifiées expérimentalement par des modifications chimiques. Le traite-
ment de données existantes est en cours. Pour le modele d’agrégation des protéines prion,
la possibilité de prendre en compte la variabilité et ’émergence de différentes structures de
polymeres dans un méme modele permet de réinterpréter un certain nombre de résultats
expérimentaux.

Au cours de ce travail, j’ai démontré des théoremes de convergence pour certains mo-
deles Markoviens, en utilisant les techniques classiques de martingales. Les théoremes
limites obtenus au chapitre I et au chapitre II sont inhabituels dans le sens ou le modele
limite est un processus hybride, mélant un comportement déterministe et un comporte-
ment stochastique. Les approximations de second ordre pour ces limites sont intéressantes
a regarder. Pour le modele d’expression des genes en particulier, la caractérisation des
fluctuations autour du modele limite permettrait une meilleure approximation du modele
initial.

Une premiere extension, pour le modele d’expression des genes, serait d’étudier le mo-
dele avec switch (ON-OFF) et avec production intermittente (bursting). Ces phénomenes
ont été bien étudiés séparément, mais jamais (& ma connaissance) ensemble. Une étude
qualitative et quantitative présenterait un intérét non négligeable. En particulier, dans ce
modele, les temps entre production ne sont pas exponentiels (lors que le systeme est dans
létat OFF, il faut au moins deux étapes pour obtenir un événement de production). Ceci
peut en faire un modele plus réaliste, au vu des récentes mesures expérimentales [79] des
temps entre événements de production.

Pour le modele d’expression des genes toujours, la bifurcation que 1’on a obtenue sur le
modele réduit, de dimension un, est analogue a la bifurcation fourche du modele détermi-
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niste. En revanche, le modele en dimension un ne présente pas de bifurcation de Hopf. Une
étude quantitative du modele en dimension deux, ou a ’aide de simulations numériques,
devrait pouvoir caractériser la bifurcation de Hopf dans le modele stochastique. Ceci reste
un probleme délicat (voir par exemple dans le cas de modeles Browniens [10, 74, 14, 85])

Concernant le modele de polymérisation-fragmentation, le modele limite hybride que
I'on a obtenu est intéressant pour plusieurs raisons : d’abord, il peut donner des schémas
efficaces de simulation numérique; ensuite, il peut apporter des résultats quantitatifs sur
la vitesse de polymérisation, qui est facilement mesurable expérimentalement. D’un point
de vue plus théorique, ce modele n’a pas (4 ma connaissance) été étudié. En particulier,
le comportement en temps long, les phénomenes de gélation (perte de masse par création
d’une molécule géante) et de poussiere (perte de masse par création d’une infinité de
particules microscopiques) seraient intéressants a regarder et pourraient étre comparés avec
les modeles déterministes (type EDO ou EDP) et stochastiques (type chaine de Markov)
(62, 40].

Enfin, dans I’étude que nous avons mené sur le premier temps d’apparition d’un noyau,
dans le modele de Becker-Déring, il reste encore des comportements asymptotiques inté-
ressants a regarder. Nous avons caractérisé le temps de nucléation pour un nombre fini de
molécules dans les deux asymptotiques de taux de détachement tres faible et tres grand.
Nous avons aussi montré que le caractere discret de ce probleme donne des comportements
non monotones en fonction des parametres d’agrégation. Ces comportements apparaissent
surtout lorsque le nombre total de molécules M est comparable avec la taille du noyau
N. Une limite naturelle a regarder serait ainsi M — o et N — oo avec M/N < oo.
Les modeles limites de type champ-moyen pour les modeles d’agrégation-fragmentation
sont connus [1], et sont des variantes de 1’équation de Smoluchowski. En revanche, & ma
connaissance, le probleme de la nucléation n’a pas été étudié sur ces modeles. Par ailleurs,
pour ’ensemble des approximations du temps de nucléation que nous avons trouvées, et
validées numériquement, il reste le probleme de la quantification de ’erreur, qui est un
probleme intéressant tant au point de vue pratique que théorique.

5 Notations

Nous rappelons ici des notations usuelles et des résultats de théorie des semi-groupes.
Les semi-groupes que 'on regardera agiront sur les espaces de fonctions bornées (ou des
sous-espaces) ou sur les espaces de fonctions intégrables (ou des sous-espaces).

Soit (L, | - |) un espace de Banach. On note D(A) le domaine de 'opérateur linéaire
A. On dit que A € B, ou que B est une extension de A, si

e D(A) € D(B),

e Bu = Au pour u € D(A).

On identifie un opérateur A et son graphe

{(f,Af): fe D(A)}.

En particulier, un opérateur A est fermé si son graphe est fermé dans L x L. Un opérateur
A est dit fermable s’il a une extension fermée. Si A est fermable, alors la fermeture A de A
est la plus petite extension fermée de A, c’est-a-dire 'opérateur fermé qui a pour graphe
la fermeture dans L x L du graphe de A. Si A est tel que D(A) est dense dans L, alors A
est fermable.

Si (A, D(A)) est un opérateur linéaire fermé, alors un sous-espace D de D(A) est appelé
un core pour A si la fermeture de la restriction de A a D est égale a A, c’est-a-dire

Alp = A.
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Un opérateur A est dissipatif si
[Au — Aul = A|u|, pour tout u e D(A) et A > 0.

On note 'image d’un opérateur Im(A) := A(D(A)). Si A est dissipatif et Im(A4) < A,
alors A est fermable, et A est encore dissipatif.
Pour tout o > 0, on définit la résolvante de A par

R(o,A) = (0 — A)".

Une famille {T'(¢) : t > 0} d’opérateurs linéaires bornés sur L est un semi-groupe si
e T(0)=1,
o T'(t+s)=T(s)I'(t), pour tout t,s = 0.
Un semi-groupe {7T'(t)} est fortement continu si %i_ry%T(t)f = f pour tout f € L. Un

semi-groupe {7T'(t)} est un semi-groupe de contraction si |T'(¢)|| < 1 pour tout ¢t > 0. Le
générateur infinitésimal d’un semi-groupe {T'(t)} est 'opérateur linéaire A défini par :

1
Af = lim S[T()f = f].

Le domaine D(A) du générateur infinitésimal A est l'ensemble des f € L tel que cette
limite existe. Pour la théorie des semi-groupes, on se réfere a Engel and Nagel [29].

Dans la suite, (2, F,P) est un espace de probabilité, et E[] est 'intégrale sur ) suivant
P.

6 Etude Théorique de Modeles Stochastiques

Nous allons passer en revue dans cette section les résultats classiques mais fondamen-
taux sur les modeles Markoviens. Nous regarderons en particulier les problemes d’existence,
d’unicité et de comportement en temps long de ces modeles. Nous nous intéresserons uni-
quement aux modeles homogenes en temps. Nous voulons présenter dans cette partie les
différents types de formalisme utilisés au cours de cette these. Nous citerons alors des
résultats importants dans 1’étude du comportement de ces différents modeles, que nous
utiliserons dans les chapitres de cette these. Nous mettrons aussi en avant les liens entre
les approches probabilistes et analytiques que l'on a utilisées. En aucun cas cette partie
ne cherche a étre exhaustive concernant I’ensemble des résultats de la littérature!

6.1 Chaine de Markov a temps discret

Nous suivons dans un premier temps une référence classique pour les chalnes de Markov,
le livre de Brémaud [15] ainsi que des notes de cours de Bérard [12]. En temps discret,
une chaine de Markov (homogene) est une généralisation au cas aléatoire d’équations aux
différences du type x,+1 = f(x,). Pour une chaine de Markov & temps discret et & valeurs
dans un espace fini ou dénombrable, la définition est plus facile car il n’est pas nécessaire
de prendre en compte les questions de mesurabilité. Une chaine de Markov peut alors étre
définie simplement par la propriété de Markov et par une matrice (ou plus généralement
un noyau) de transition. Dans toute cette partie, E est un espace dénombrable.

Définition 1. [Chaine de Markov homogeéne a temps discret et espace d’états dénombrable]
Une suite de variables aléatoires (X,) définies sur un espace de probabilité (Q,F,P), a
valeurs dans E espace d’états dénombrable, est une chaine de Markov homogéne si pour
tout entier n = 0 et tous états ig, i1, -+ ,in_1,1,7,

]P){Xn+l =7 | Xn=1,Xpn1=1ln 1, ,X0= Z'0} = ]P){Xn+l =] | Xn = i}a
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et si le noyau de transition (indépendant de n) défini par p;; = ]P{Xn+]_ =j|X, = z}
vérifie les propriétés suivantes

pij = 0, Zpik =L
keE
Une telle chaine de Markov est alors entierement caractérisée par la donnée de sa loi
initiale et de son noyau de transition. Soit v la loi initiale de la chaine de Markov, c’est
a dire (i) = IP’{XO = 2} pour tout ¢ € E. Il vient directement de la propriété de Markov
que la loi v, de X,, vérifie la relation de récurrence

Vas1(3) = ), vn(k)pkj = v P(j), j€ EneN,
keE

ou P = (pij)ijer, vn = (Vn(i))icE. €t vT est la transposée de v. On a alors immédiatement

T Tpn
Vn:OP7

et plus généralement que la loi du k-uplet (Xo, X1, - Xp_1) vérifie
P{Xo =io, X1 = i1, -+, Xp—1 = ig—1} = v0(i0)Pigir ** * Pir_sin_1-

Bien qu’élémentaire, la notion de chaine de Markov est fondamentale dans toute la théorie
des processus de Markov. Elle est également largement utilisée dans de nombreux modeles,
notamment en biologie, avec le processus de Galton-Watson par exemple dans les modeles
de dynamique des populations (voir & ce sujet Kimmel and Axelrod [45])

Pour étudier le comportement en temps long d’une chaine de Markov, il est naturel de
regarder les distributions (ou lois) stationnaires (en temps).

Définition 2. [Distribution stationnaire] Une loi de probabilité © sur E est dite station-
naire pour la chaine de Markov de noyau de transition P, st

7l = 7TP. (1)

De maniéere plus générale, une mesure invariante est une mesure positive (non néces-
sairement finie) qui vérifie la relation (1). Si une chaine de Markov (X,,), de noyau de
transition P, est telle que Xy a pour loi 7, stationnaire pour P, alors X,, est de loi 7
pour tout temps n. Il est alors naturel de se demander ce qu’il en est si la loi initiale
est quelconque. Pour cela nous avons besoin de quelques définitions supplémentaires, qui
sont utiles pour enlever certaines « pathologies ». Premiérement, la chaine de Markov peut
visiter différents sous-ensembles de I'espace d’états suivant sa condition initiale. Pour cela,
on définit la notion d’irréductibilité.

Définition 3. [Irréductibilité] Une chaine de Markov est irréductible sur E si tous les
états i,j € £ communiquent, c’est a dire s’il existe un chemin fini i,41,--- ,ix,J tel que

DiiyPivio * " Pig_qixPirj > 0.

Deuxiemement, si tous les états de E ont une chance d’étre visités, une chaine de
Markov peut avoir un comportement périodique, « trop régulier » pour avoir de la densité.
Pour mesurer le comportement périodique, on définit la notion de période.

Définition 4. [Période] La période d; d’un état i € E est par définition
d; = p.g.c.d{n = 1,p;;i(n) > 0},

ot pi;(n) est la somme des probabilités des chemins de taille n reliant i a i, et d; = 00 si
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Pour une chaine de Markov irréductible, tous les états sont de méme période. Sid =1,
on dit alors que la chaine est apériodique.

Avec les notions d’irréductibilité et d’apériodicité, on est assuré que la chaine visite
tout 'espace, de fagon « non dégénérée ». De maniere informelle, on a alors la dichotomie
suivante pour le comportement en temps long. Soit la chalne « reste » essentiellement dans
un compact, soit elle « part » a 'infini. On définit pour cela les notions de récurrence et
transience, a I'aide des temps de premier retour

T, =inf{n>1,X, =i| Xog =1i}.
Définition 5. [Récurrence et Transience] Un état i € E est récurrent si
P{T; < o0} =1,
et transient sinon. Un état récurrent est positivement récurrent si
E[T;] < .

A nouveau, pour une chaine de Markov irréductible, si un état i € F est récurrent (respecti-
vement positivement récurrent), alors tous les états j € E sont récurrents (respectivement
positivement récurrents). On parle alors de chaine de Markov récurrente (respectivement
positivement récurrente). On a une relation forte entre la notion de récurrence et de mesure
invariante, donnée par la propriété de régénération suivante :

Proposition 1. [15, thm 2.1 p101] Soit (X,,) une chaine de Markov irréductible récur-
rente, et j € E un état quelconque. Alors

V(Z) = E[ Z 1{Xn=z'}1{n<T]-} | XO = j], 1 E E,

nz=1
est une mesure invariante pour (X,).

On peut alors montrer que pour une chaine de Markov irréductible récurrente, une
mesure invariante est toujours unique, a facteur multiplicatif pres. L’existence est donnée
par le critere suivant, tres utile dans la pratique :

Proposition 2. [15, thm 3.1 p104] Une chaine de Markov irréductible est positivement
récurrente si et seulement s’il existe une distribution stationnaire. De plus, si elle existe,
la distribution stationnaire est unique et strictement positive sur E.

Finalement, le principal théoréeme de convergence asymptotique pour les chaines de
Markov (homogenes) a temps discret sur un espace d’états dénombrable s’énonce ainsi :

Théoréme 2. [15, thm 2.1 p130] Soit (X,,) une chaine de Markov irréductible, positi-
vement récurrente et apériodique, de noyau P. Alors, pour tous p et v probabilités de
distribution sur E, on a

lim d(u”P*,vTP™) =0,

n—ao0
oiv d(u,v) = Y | ui) = (i) |.

=)
Ce théoreme donne donc une convergence en variation totale. Cette convergence im-

plique bien sir une convergence en loi. La convergence en variation totale ne fait intervenir
que les distributions marginales du processus. L’idée de la preuve est alors la suivante. On
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utilise des modifications X et X de X,, pour montrer la convergence ci-dessus. La conver-
gence en temps long revient a trouver deux modifications de X, tel que X, = X' apres
un temps aléatoire 7. On a alors en effet,

d(X), X)) < P{r > n}. (2)

En considérant la chaine produit (X, X/), on montre qu’elle est irréductible (on utilise
ici Papériodicité), et possede une distribution stationnaire (donnée par le produit des deux
distributions stationnaires). Par la proposition 2, on a ]P’{T < oo} = 1, et on conclut d’apres
I'éq. (2).

Cette méthode s’appelle la méthode de couplage. Elle peut étre étendue pour trouver la
vitesse de convergence vers I’état stationnaire [15].

Pour la généralisation & un espace d’états quelconque, nous suivons Durrett [25]. Soit
(S,S) un espace mesurable, et un espace de probabilité (2, F,P) muni d’une suite de
filtrations IF,, (que l'on peut penser comme les filtrations générées par (Xo, X1, -+, Xy)).
On définit maintenant une chaine de Markov a espace d’états quelconque.

Définition 6. (X,,) est une chaine de Markov par rapport a la filtration Fy, si X,, € F, et
satisfait la propriété de Markov

P{Xn-t-l €D | Fn} = p(XnaB)7

oup:S xS —R esttel que :
e pour tout x € S, A p(x, A) est une mesure de probabilité sur (S,S),
o pour tout A€ S, x — p(x, A) est une fonction mesurable.

Les lois de X, sont déterminées par la propriété de Markov, comme dans le cas d’'un
espace dénombrable. L’existence des chaines de Markov (X,,) est alors donnée par le théo-
reme d’extension de Kolmogorov (voir par exemple [25, thm 7.1 p 474]).

Pour une chaine de Markov a espace d’états quelconque, la notion d’irréductibilité est
remplacée par la notion de chaine de Harris.

Définition 7. [Chaine de Harris] Une chaine de Markov (X,,) est une chaine de Harris
st on peut trouver deux ensembles A, B € S, une fonction q et une mesure de probabilité p
sur B tels que :

e g(z,y) =€ >0 pour tousx € A, ye B ;

o siTy =inf{n >0: X, € A}, alors ]P’{TA < |Xy= z} > 0 pour tout z€S;

e size A etCc B, alors p(xz,C) > ch(az,y)p(dy).

L’avantage de cette notion est qu’on peut toujours supposer (quitte & modifier ’espace
S et la chaine X,,) qu'une chaine de Harris possede un point a qu’elle visite avec proba-
bilité 1. Les notions de périodicité, récurrence et transience peuvent alors s’étendre aux
chalnes de Harris en considérant ce point a. Nous donnerons simplement le théoreme de
convergence analogue au théoreme 2 (légerement moins fort) :

Théoréme 3. [25, thm 6.8 p 332] Soit (X,,) une chaine de Harris apériodique récurrente.
Si (Xy) a une distribution stationnaire 7, et si o est tel que

P{T, <o |Xg=2z}=1,

alors
lingodv(éfP“,w) =0.
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6.2 Chaine de Markov a temps continu

Nous allons commencer par rappeler la définition d’un processus ponctuel de Pois-
son (sur R™), puis introduire les chaines de Markov & temps continu, via Papproche des
semi-groupes de transition. Cette approche a 'avantage de se généraliser « facilement »
aux processus de Markov par morceaux (et a bien d’autres objets), que nous introduirons
ensuite. Tout comme les chalnes de Markov en temps discret sont une variante aléatoire
des équations aux différences, les chaines de Markov & temps continu peuvent étre vues
comme une généralisation des équations différentielles ordinaires. Le « second membre » de
I'équation différentielle ordinaire (autonome) % = f(z) se traduit par le générateur infini-
tésimal de la chaine de Markov (homogene). Nous suivons & nouveau le livre de Brémaud
[15]. Nous présentons d’abord les chaines de Markov & espace d’états dénombrables, pour
lesquelles une condition naturelle sur le générateur peut étre donnée pour que le processus
soit de saut pur (voir plus bas). Nous passerons enfin aux chaines de Markov a espace
d’états général (on parle plus généralement de processus de Markov), et présenterons les
techniques de martingales et de fonction de Lyapounov pour leur stabilité.

Définition 8. [Chaine de Markov homogéne a temps continu et espace d’états dénom-
brable] Une collection de variables aléatoires (Xi)i>o, indexée par R, définie sur un es-
pace de probabilité (U, F,P), a valeurs dans E espace d’états dénombrable est une chaine de
Markov homogéne si pour tout entier n = 0, tous états i1, -+ ,in,%,J, et pour tous temps
t,s>20,0<s1,--,8, <8

P{Xt1s =J | Xs =10, X5, =tn,+-, X, =1} =P{Xpps =7 | Xs =i},
des que les deuxr membres sont bien définis, et cette quantité ne dépend pas de s.

Soit P(t) = {pi;(t)}ijer ou pi(t) = P{X¢rs = j | Xs = i}. Alors P(t) est un semi-
groupe de transition, c’est-a-dire :
e P(t¢) est une matrice stochastique (Z pij(t) =1),
j
e P(0) =1,
e P(t+5s) =P()P(s).
Pour un semi-groupe continu, tel que }LIE%) P(h) = P(0) = I (convergence élément par

élément), les quantités suivantes existent toujours :

Définition 9. [Generateur| Pour tout état i € E, on définit

. 1—pi(h)
= lim ———= € [0,00
¢i = lim [0, o],
et pour tout i # j € E,
D
qZ] = fl}i}n ZJ}E ) [0, OO].
On pose également
qii = — i,

et la matrice A = {qi;}i jer est appelée générateur infinitésimal du semi-groupe (ou de la
chaine de Markov).

Remarque 4. En notation matricielle, on a

A = lig £ = PO)
h—0 h
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La notion « équivalente » de chaine de Markov a temps discret est la notion de processus
Markovien de saut pur (régulier), que 1’on rencontrera plusieurs fois par la suite :

Définition 10 (Processus de saut pur). Un processus stochastique (X¢)i=o @ valeurs dans
E (espace d’état général) est un processus de saut pur si, pour presque tout w € 2, ett = 0,
il existe e(t,w) > 0 tel que

X(t+s,w) = X(t,w), pour tout s e [t,t+e(t,w)).

Il est régqulier si I’ensemble des discontinuités D(w) de t — X (t,w) est o-discret, c’est-a-
dire, pour tout ¢ = 0,

card(D(w) n [0,¢]) < .

Etant donné une matrice A, on peut donner une construction tres simple d’un pro-
cessus Markovien de saut pur qui admette A pour générateur, en imposant une condition
supplémentaire sur A. Cette construction est a la base des modeles de réactions chimiques,
des modeles déterministes par morceaux (utilisés notamment dans le chapitre 1), et des
processus ponctuels (utilisés dans le chapitre 2). Nous détaillons donc cette construction
ci-dessous. L’ingrédient élémentaire est le processus de Poisson (homogene). Un processus
de Poisson est un processus de comptage d’événements sur R, qui ont lieu successivement
et indépendamment les uns des autres suivant une loi exponentielle. Plus précisément, on
peut prendre la définition suivante :

Définition 11. Un processus (N¢)i=o est un processus de Poisson homogéne d’intensité
A>0siNy=0, et
® pour tous temps 0 < t1 < -+ < ty, les variables aléatoires Ny, ., — Ny -+, Ny, — Ny
sont indépendantes ;
e pour tous 0 < a < b, N(b) — N(a) est une variable de Poisson de moyenne A(b— a).

Avec cette définition, on peut montrer qu'un processus de Poisson admet la représen-
tation équivalente,

N(t) = 2 Lo,773 (Th)

n=1

ou les temps d’événements T,, sont tels que 0 =Ty < T1 < Ty < --- et les variables S,, =
T, —T,_1 sont indépendantes et identiquement distribuées suivant une loi exponentielle de
parametre X\. On montre également avec cette définition que deux événements se produisent
en méme temps avec probabilité nulle (donc le processus de Poisson augmente de 1 en 1)
et qu’il n’y a pas d’explosion, c’est-a-dire

lim T,, = o0, presque sirement.
n—0o0

Finalement, si on a deux (ou plus généralement une famille dénombrable) processus de
Poisson indépendants, on montre aussi que deux événements ne se produisent pas en
méme temps (avec probabilité un) et que la somme des processus est encore un processus
de Poisson, d’intensité donnée par la somme des intensités (si elle est finie dans le cas
dénombrable).

Nous pouvons maintenant donner la construction d’un processus Markovien de saut pur
qui admette A pour générateur. On suppose pour cela :

Hypothese 1. ¢; <0, ¢; = 2 Qij-
J#i
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Soit {N; j}ijeE,i»; une famille de processus de Poisson d’intensités respectives
{di.j}i jer,izj, €t un état initial X (0) indépendant de cette famille de processus. On pose
alors
X(t) =X,, pourte [TnaTn+l)7

ou les couples (T},, X,,) sont définis récursivement par
o Tp =0, Xo = X(0),
et, pour tout n > 0, si T, < o0, et X,, = X(T},) =i € E, alors

e si g; =0, on pose X, .., = A (point cimetiere) et T}, 4, = 00, pour tout m > 1;

e sinon T},41 est le premier événement qui a lieu apres 7}, des processus {N; ;};-icE,
et X, 11 est donné par I'index k # 7 pour lequel le processus de Poisson N réalise
ce premier événement.

Cette construction est valide (7, X, sont bien définis donc X (¢) également) jusqu’au
temps d’explosion Ty, = lim,,_,4 15, On a alors la proposition suivante :

Proposition 3. [15, thm 1.2 p873] Si les conditions données par I’hypothése 1 sont va-
lables, et si Ty, = 00 presque surement, le processus construit ci-dessus est un processus
Markovien de saut pur régulier de générateur infinitésimal A.

La preuve repose sur le calcul de P{X(t =7 | X(0) = z} Sij # 14, alors T1 < t, et,
par indépendance, il vient
P{X(t) = j, Ty <t| X(0) =i} = (1 — e~at) L (3)
qi
Enfin, on montre que ]P’{Tg t] X(0) = z} est négligeable devant ¢, d’ou

1
%lj%gp{x(t =J | X(0) =14} = gi;.
[m]

Remarque 5. Cette approche des processus de saut pur est a la base des équations sto-
chastiques dirigées par des processus de Poisson, et plus généralement des systémes sto-
chastiques dirigés par des processus ponctuels. Cette approche donne aussi directement
une méthode de simulation des trajectoires du processus de saut pur, appelée algorithme
de Gillespie [33] dans le contexte des modéles de réactions biochimiques. La méthode de
construction décrite ci-dessus correspond a l'algorithme de « la prochaine réaction ». A
chaque événement, on simule uniquement le prochain temps d’événement du processus de
Poisson qui correspond a la transition que l’on vient d’effectuer. En gardant en mémoire
tous les prochains événements possibles (pour lesquels q;; # 0, si l'on est dans U'état i), on
avance alors le temps au minimum de tous ces prochains événements possibles, on effectue
la transition correspondante, et ainst de suite. Cette version a l'avantage d’étre largement
généralisable o des processus ponctuels non Markoviens (avec retard, ou distribution de
temps d’événement non exponentielle, voir par exemple [2]). Une autre version de cet
algorithme, appelée « méthode directe », vient de la formule (3) utilisée dans la preuve
ci-dessus. Le prochain temps d’événement est donné par une exponentielle de paramétre
q = Z#Z gij et la transition effectuée est déterminée par un autre nombre aléatoire qui

vaut j avec probabilité qq”

Cette méthode ne garde pas de valeurs en mémoire (autres que
I’état dans lequel on est) mais demande de générer deux nombres aléatoires a chaque pas

de temps.

Avant de passer a la description des processus de Markov plus généraux, citons un critere
de convergence en temps long pour les processus Markoviens de saut pur. De la description
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trajectorielle que ’on a donnée, on peut voir qu'un processus Markovien de saut pur est lié
a une chaine de Markov discrete, donnée par les valeurs apres les sauts X,,. On étend les
notions d’irréductibilité, de récurrence et de positive récurrence au processus Markovien
de saut pur. La méme forme régénératrice (voir proposition 1) est encore valable entre les
mesures invariantes (pour le semi-groupe P(t)) et les temps de premier retour, et on a
alors :

Théoreme 6. Un processus Markovien de saut pur régulier de générateur infinitésimal
A, irréductible, est positivement récurrent si et seulement s’il existe une loi de probabilité
w sur E telle que

7l A = 0.

Dans ce cas, on a tlim pij(t) = m(j) pour tous i,j € E.
—00

Remarque 7. Notons les différences entre les théorémes 2 et 6. Dans le cas continu, on
n’a pas besoin de supposer la chaine apériodique. Les temps de passage dans un état sont
suffisamment aléatoires pour éviter le comportement périodique. Notons aussi qu’il n’y a
pas forcément de relation entre la convergence en temps long du processus Markovien de
saut pur et de sa chaine de Markov en temps discret correspondante. En particulier, on
a la relation entre une mesure invariante v pour le processus Markovien de saut pur et u
pour la chaine discréte

w(i) = qiv(i),

qui montre que toutes les possibilités sont ouvertes pour les valeurs respectives de Z ()
=)
et Z v(i) en fonction du comportement de la suite (¢;)icE-
1€EE
Pour une théorie équivalente sur les processus Markoviens de saut pur a valeurs dans
un espace quelconque, voir par exemple [22]). Nous passons maintenant au processus de
Markov plus généraux.

6.3 Processus de Markov

Dans toute cette partie, E est un espace polonais (i.e. métrique séparable complet)
muni de sa structure borélienne B(E). L’ensemble des fonctions mesurables bornées sur E
est noté B(FE), que 'on munit de la norme « infini » usuelle. L’ensemble des fonctions a
valeurs réelles, continues a droite et avec limite finie a gauche (« cad-lag ») sur [0,0) est
noté Dg[0,00). On munit Dg[0,00) de la topologie de Skorokhod Sg. Nous suivrons dans
un premier temps principalement le livre de Ethier and Kurtz [30]. On utilise la définition
suivante :

Définition 12 (Processus de Markov homogene). Une collection de variables aléatoires
(Xt)t=0, indexées par R, définies sur un espace de probabilité (2, F,P) munie d’une filtra-
tion (Ft)i=0, a valeurs dans E, un espace polonais, est un processus de Markov homogéne
par rapport o (Fy)e=o si pour tous s,t >0 et B € B(B),

P{X;,s € B |F;} = P{X,, € B| X;} =: P(s,X(t), B),

La fonction P(t,z, B), définie sur [0,00) x E x B(B) est appelée fonction de transition et
satisfait :

o P(t,x,-) est une mesure de probabilité sur E, pour tous (t,x),

e P(0,z,) = d,, pour tout x,

e P(-,-,B) est mesurable sur [0,0) x E, pour tout B € B(B),
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e la relation de Chapman-Kolmogorov, pour tous s,t >0, x € E et B € B(B)
P(t+5,2,5) = | P(s.y. B)P(t.a.dy). ()

De maniere similaire au cas des chaines de Markov, les lois des n-uplets de X; sont
déterminées par la relation de Chapman-Kolmogorov eq. (4). La topologie sur E (polonais)
permet d’assurer que ces lois (dites de dimensions finies) déterminent de maniere unique
un processus de Markov sur E. Comme pour le cas des chalnes de Markov, la relation
de Chapman-Kolmogorov définit en un certain sens une structure de semi-groupe sur
les fonctions de transition. Cependant, peu de processus stochastiques ont des formules
connues pour les fonctions de transition (a I’exception du mouvement Brownien, ou de
quelques autres processus comme le Ornstein-Uhlenbeck), et il est plus facile de travailler
avec le semi-groupe sur les fonctions bornées de E, donné par

() (x) = f F@) Ptz dy) = E[f(X(1)) | X(0) = 2],

Il est classique que le semi-groupe {T'(¢)} sur B(F) (et méme sur un sous-ensemble suffi-
samment gros), avec une loi initiale, détermine de maniére unique les lois de dimensions
finies de X (¢). Aussi, de par sa définition, T'(t) est un semi-groupe de contraction sur
B(F) muni de la norme infini sur £. On cherche dans quel cas le générateur infinitésimal
de T'(t) caractérise le semi-groupe, et donc le processus de Markov X (¢). Pour utiliser la
théorie classique des semi-groupes, il faut des semi-groupes fortement continus. On va voir
que cela définit une sous-classe importante, mais restrictive, de processus de Markov. Ce
sont les processus de Feller. 11 suffit de regarder le semi-groupe {T'(t)} sur 'espace Cy(E)
des fonctions continues sur E et de limite nulle & Pinfini, muni de la norme « infini »,
sup | f(x) |- Si {T'(t)} est un semi-groupe positif de contraction sur Cy(E), fortement
zeE

continu (%in% T(t)f = f), le théoreme de Hille-Yosida caractérise alors le générateur de

T(t) et celui-ci détermine de maniére unique un processus de Markov. Le résultat précis,
dans le contexte des processus stochastique, est le suivant :

Proposition 4 (Processus de Feller). [30, thm 2.2 p165] Soit E localement compact et
séparable, et A un opérateur linéaire sur Cy(E), qui vérifie

e le domaine de A, D(A) est dense dans Cy(E),

e A satisfait le principe du mazximum positif :

si f(xo) =sup | f(z) |= 0, alors Af(xg) <O0.
TeE

o l'image de (A — A) est dense dans Co(E) pour un certain X > 0.
Soit alors T'(t) le semi-groupe de contraction positif, fortement continu sur Co(E) généré
par la fermeture de A. Alors il existe pour tout x € E un processus de Markov X, corres-
pondant a T'(t), de loi initiale 65 et de trajectoires dans Dg[0,00) si et seulement si A est
conservatif (c’est-a-dire (f,g) = (1,0) est dans la fermeture de A). Un tel processus est
appelé processus de Feller.

Une autre classe importante de processus pour lesquels le générateur est « facilement »
caractérisable sont les processus de saut pur, que l'on a déja rencontrés dans le cas d’'un
espace d’états dénombrable. Si p(z, B) est une fonction de transition et A\ € B(FE), alors

Af(@) = M) f () — @), dy)
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est un opérateur borné sur B(FE), et A est le générateur d’un processus de saut pur qui
peut étre construit de maniere analogue au cas d’un espace d’états dénombrable (voir pro-
position 3). En particulier, on peut lui associer une chaine de Markov Y,, & temps discret
sur E, de fonction de transition p(x, B) et les temps de saut sont déterminés par des lois
exponentielles de parametres A(Y;,).

Finalement, une approche plus générale, largement reconnue et utilisée actuellement
(notamment pour sa commodité avec les théoremes limites), est celle du probleme de
martingale, utilisé notamment par Stroock et Varadhan [78] pour caractériser les diffusions
sur R?, et Jacod et Shiryaev [39] pour des processus a accroissements indépendants. Elle
repose sur le générateur étendu, défini par :

Définition 13 (Générateur étendu). Soit {T'(t)} un semi-groupe de contractions sur B(E).
Son générateur étendu est défini comme 'opérateur (possiblement multi-valué)

A= {(r.9) € BE) < BE): 1] - £ = [ (s}

On a alors la proposition classique mais fondamentale :

Proposition 5. [30, thm 1.7 p162] Soit X (t) un processus de Markov a trajectoires dans
Dg|0,0) de fonction de transition P(t,z,B). Soient {T'(t)} son semi-groupe sur B(E)
associé, et A son générateur étendu. Alors, si (f,g) € A,

M) = F(X (1)) - j 9(X (5))ds,

est une martingale par rapport a la filtration IF}X canonique associée X (t).

L’hypothese sur les trajectoires de X (t) est suffisante pour que l'intégrale définissant
M (t) ait un sens (mais on peut faire mieux). L’idée de la preuve de cette proposition réside
dans un simple calcul :

BM( -+ | FY] = E[7(xX(e+) | EY] - [ " Eg(X(s)) | FX]ds,

=E[f(X(t+u) | X(8)] - L +UIEJ[Q(X(S)) | X()]ds — J 9(X(s))ds,

0
— T(u)f(X (1)) - fo T(s)g(X (£))ds — c.
= F(X(0) — E[g(X(s)) | FX] = M().

La deuxieéme ligne est donnée par la propriété de Markov (pour les deux premieres inté-
grales) et la propriété de l’espérance conditionnelle (pour la troisieme intégrale). Le reste
suit par définition du semi-groupe et de son générateur étendu.

Le probléeme de martingale consiste, étant donné un générateur A et une loi initiale u
sur F/, a trouver une mesure de probabilité P € IP’(DE [0, oo)) telle que le processus défini
sur 'espace (Dg[0, ), Sg, P) par

X(t,w)=w(t), weDg[0,0), t=0,

vérifie :
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est une martingale par rapport a la filtration IE‘tX canonique associé X (t), pour tout
(f,9) € A, et X(0) a pour loi pu.

Des conditions générales sur le générateur étendu A pour avoir existence et unicité de
la solution du probleme de martingale sont difficiles a obtenir. Ceci est le prix a payer
pour une théorie générale. Dans la pratique, par contre, si 'on se donne a priori la forme
du générateur, il est souvent possible de donner des conditions sur les coefficients du géné-
rateur pour que le probleme de martingale associé soit bien posé (voir par exemple le cas
des diffusions traité par Stroock et Varadhan [78], et des semi-martingales — comprenant
les processus ponctuels, les processus a accroissements indépendants, les diffusions avec
sauts— traité par Jacod et Shiryaev [39]).

On peut néanmoins dégager plusieurs principes généralement valables pour le probleme
de l'existence et 'unicité de la solution du probleme de martingale. L’existence peut étre
obtenue par une limite faible de solution d’un probleme de martingale approché, donnée
par la proposition suivante :

Proposition 6. [30, prop 5.1 p196] Soit A — Cy(E) x Cy(FE) et A, ¢ B(E) x B(E),
n=1,2,---. On suppose que pour tout couple (f,qg) € A, il existe (fn,gn) € Ay tel que

lim |f, — f]|=0, lim |g,—g|=0.

Soit alors X,, une solution du probléme de martingale pour A,, avec trajectoires dans
Dg[0,), st X,, = X (convergence en loi), alors X est une solution du probléme de
martingale pour A.

Une autre technique souvent utilisée est la localisation. Elle consiste a se ramener
au cas ou la solution du probleme de martingale est contenue dans un ouvert (que l'on
prendra borné en général) de F par un argument de troncature. Une solution du probleme
de martingale arrétée en un ouvert U est (formellement) une solution du probleme de
martingale pour tout temps plus petit que le temps de sortie de U.

Proposition 7. [30, thm 6.3 p219] Soit A  Cy(E) x B(E). Soit Uy c Uy € --- ouvert
de E. Soit v € P(E) une loi initiale, telle que pour tout k il existe une unique solution Xy,
au probléme de martingale (A,v) arrétée en Uy, avec trajectoires dans Dg[0,00). On pose

Tk = inf{t : Xp(t) ¢ Uk ou Xi(t7) ¢ Uk}

St pour tout t > 0,

lim P(7; <t) =0,

k—o0
alors il existe une unique solution au probléme de martingale (A,v) avec trajectoires dans
Dg [0, OO) .

Finalement, donnons un procédé qui sera utilisé dans le chapitre 2 pour obtenir I'unicité
de la solution du probléeme de martingale. Supposons que le générateur A soit le générateur
infinitésimal d’un semi-groupe fortement continu. Alors de maniere classique 1'opérateur
A est fermé, et la résolvante (A — A)~! est définie pour tout A > 0. Supposons que pour
tout x € F, il existe une solution au probleme de martingale (A, d,) (ce qui sera donné si
on sait qu’il existe un processus de Markov associé au semi-groupe fortement continu). Un
simple calcul montre que, pour tous (f,g) € A, A > 0,

t

e N f(Xa(t) + j e (A (Xa(s)) = 9(Xa(s)))ds (5)

0
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est une martingale. Il vient alors que

F@) = EL [ e P OSC6) — 90X (6))ds]

0

On en déduit alors A||f|| < |[A\f — ¢g]. On a donc la proposition :

Proposition 8. [30, prop 3.5 p178] Soit A opérateur linéaire, A ¢ B(FE) x B(E). S’il
existe une solution au probléme de martingale (A, ) pour tout x € E, alors A est dissipatif
(voir section 5).

Cette proposition permet de montrer de maniere simple qu’un opérateur est dissipatif.
On peut alors conclure & 'unicité de la solution du probléme de martingale en identifiant
une classe de fonctions séparatrice, comme dans le théoréeme suivant :

Théoréme 8. [30, corollaire 4.4 p187] Soit E séparable et A < B(E) x B(E) linéaire et
dissipatif. On suppose que pour un (et donc tous) X > 0, Im(A — A) D D(A), et qu’il existe
M c B(F) séparatrice, M < Im(XA — A) pour tout X > 0. Alors pour toute loi initiale L,
deuz solutions du probléme de martingale pour (A, p) a trajectoires dans Dg[0,0), ont
méme loi sur Dg|0, ).

L’ingrédient clé de cette preuve repose toujours sur l'identification de la martingale
donnée par 1'éq. (5). En particulier, pour tout h € M, si X et Y sont solutions du méme
probleme de martingale,

o0 o0
E[J e Mh(X (1))di] = f (0= A)Lhdy = E[J e (Y (8)di])
0 0

ce qui suffit, par propriété de la transformée de Laplace et de 'hypothese sur M, pour
identifier les lois de X et Y.

On termine cette section en discutant de la convergence en temps long pour les pro-
cessus de Markov. L’approche la plus générale et utile dans la pratique est donnée par les
fonctions de Lyapounov pour le générateur étendu. Voir les travaux de Meyn et Tweedie
dans une série de trois papiers [58, 59, 60]. Pour des modeles particuliers, les approches par
couplage peuvent s’avérer également tres puissantes, et donner des taux de convergence
explicites tres satisfaisants (voir par exemple Bardet et al. [8]). Les idées des méthodes de
fonctions de Lyapounov s’appuient sur des conditions de dérive du générateur pour des
fonctions bien choisies, qui transmettent des propriétés au processus grace a la formule
de Dynkin. Comme pour les chaines de Markov a temps discret et a espace d’états quel-
conque, il faudra supposer une certaine forme de régénération supplémentaire, similaire a
la propriété des chaines de Harris énoncée dans la définition 7. La puissance des théoremes
de Meyn et Tweedie réside dans 'utilisation d’une chaine discrete obtenue a partir d’un
échantillonnage (quelconque) du processus de Markov. Ceci rend leurs résultats largement
utilisables dans beaucoup de cas.

Dans tout ce qui suit, on suppose que E est un espace polonais localement compact,
muni de sa structure borélienne B(F). On suppose que X (¢) est un processus de Markov
a trajectoires dans Dpg[0,00). On redéfinit les concepts d’explosion, d’irréductibilité, de
récurrence, de récurrence de Harris et de récurrence de Harris positive. On note O,, une
famille d’ouverts pré-compacts de E tel que O,, - E quand n — o0, et 7, les premiers
temps d’entrée de X; dans Of. On dit alors que X (¢) est non explosif (ou régulier) si

]P’{nh_r}gov'nzoo|X(O)=x}=1, Ve e E.
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On note {X; — 0} si X; € C° pour tout compact C € B(E) et ¢ suffisamment grand. On
dit alors que X (t) est non évanescent si

P{{X; > 0} | X(0) =z} =0, VzekE.

Pour un ensemble mesurable A, on définit
o6}
TA = 1nf{t = 0: Xt € A}, nap = J‘ 1{X,5€A}dt'
0

X(t) est ¢p-irréductible si pour une mesure o-finie ¢,
¢(B) >0=E|[Tp | X(0) =z| <o0,Vz € E.
X(t) est Harris récurrent si pour une mesure o-finie ¢,
¢(B) >0=P{np =0 |X(0) =z} =1,Vze E.

Une mesure invariante p pour un processus de Markov X(t), de fonction de transition
P(t,x, B), est telle que

H(A) = kP (t, - A) = [ Ptz (o)

Comme pour les chaines de Markov récurrentes, un processus de Markov Harris récurrent
possede, & un facteur multiplicatif pres, une unique mesure invariante. Si elle est finie, on
peut alors la normaliser en une distribution de probabilité, et on parle alors de processus
de Markov positivement Harris récurrent.

Un échantillonnage d’un processus de Markov est donné par les valeurs du processus
de Markov a certains temps, déterministes ou aléatoires. L’échantillonnage le plus simple
est celui donné par la résolvante, R : E x B(E) — [0, 1],

0
R(z,A) = J P(t,z, A)e 'dt. (6)
0
Si (tx) est une suite d’instants générés par des incréments indépendants entre eux (et
de X;) et distribués suivant une loi exponentielle de parametre 1, alors (Xy, ) est une
chaine de Markov a temps discret, de noyau R. Plus généralement, étant donnée une loi
de probabilité a sur R, , on définit

Q0
Ky(z,A) = J P(t,x, A)a(dt).

0
Pour (¢j) une suite d’instants d’accroissements indépendants suivant a, X3, est alors une
chaine de Markov & temps discret, de noyau K,. Meyn et Tweedie [59, 60, 58] ont prouvé
de nombreux liens entre le processus de Markov et les K,-échantillons.

Une classe importante de processus de Markov pour lesquels des résultats de stabilité

existent sont les T-processus :

Définition 14. Un processus de Markov est un T-processus s’il existe une mesure de
probabilité a sur Ry et une fonction non triviale T : E x B(E) — Ry (T'(z,E) > 0) tels
que :

e pour tout B € B(E), T(-, B) est semi-continu inférieurement ;

e pour tous x € E, Be B(FE), K,(x,B) > T(x, B).

En lien avec cette notion, nous avons également la notion d’ensemble petit :
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Définition 15. Un ensemble non vide C € B(F) est dit v-petit si v est une mesure non
triviale sur B(E), et s’il existe a une mesure de probabilité sur Ry tel que Kq(z,-) = v(-)
pour tout x € C'. On dit simplement que C' est petit si la donnée de v n’est pas importante.

La relation entre ces deux notions est donnée par la proposition suivante :

Proposition 9. [59, prop 4.1] Supposons ]P’{{Xt — o} | X(0) = x} <1 pour unz € F.
Alors tout ensemble compact est petit si et seulement si X; est irréductible et est un T-
ProCcessus.

Nous donnons maintenant les criteres de stabilité pour un processus de Markov basé
sur des fonctions de Lyapounov et sur les notions rappelées ci-dessus. On note O,, une
famille d’ouverts pré-compacts de F tel que O,, — E quand n — 00, et on note X" le
processus stochastique X (t) arrété en O, et A, son générateur. Dans toute la suite, V
est une fonction de Lyapounov £ — R, si elle est mesurable, strictement positive et telle
que V(z) — o quand & — oo. Un critére de non explosion s’énonce ainsi :

Proposition 10. [60, thm 2.1] S’il existe une fonction V' de Lyapounov, et ¢ > 0,d = 0
tels que
A V(z)<cV(z)+d, €0, n=1,

alors

X(t) est non explosif;

il existe une variable aléatoire D finie presque sirement tel que V(X;) < De ;

la variable aléatoire D satisfait la borne P{D > a | X (0) = 2} < V((f), a>0,reEF;
E[V(Xy) | X(0) = 2] < eV ().

Un critere de non-évanescence est donné par :

Proposition 11. [60, thm 3.1] S’il existe une fonction V de Lyapounov, d > 0 et C' un
compact tels que
AV (2) S dlyey(z), €0, n2=1,

alors X (t) est non évanescent.
Un critere de récurrence est donnée par :

Proposition 12. [60, thm 4.1] S’il existe une fonction V de Lyapounov, d > 0 et C' un
compact tels que
AV (2) S dlyey(z), €0, n2=1,

et tels que tous les ensembles compacts sont petit, alors X (t) est Harris récurrent.
Un critere de récurrence positive est donnée par :

Proposition 13. [60, thm 4.2] S’il existe c¢,d > 0, C un ensemble petit fermé, f > 1 et
V' =0 borné sur C tels que

AnV(2) < —cf(r) +dlicy(z), €0, n=1,

alors, si X (t) est non explosif, X (t) est positivement Harris récurrent et sa mesure inva-
riante est finie.

On termine par un critere d’ergodicité exponentielle :
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Proposition 14. [60, thm 6.1] S’il existe une fonction V de Lyapounov, ¢,d > 0, tels que
A)V(z) < —cf(x)+d, €0, n=1,
et tels que tous les ensembles compacts sont petit, alors, il existe 5 <1 et B < o0 tels que
|P(t,x, ) —7|f < Bf(z)8', zeE, t>0,

avec f =V +1 et ou |ulf = supyg<s | 1(g) |-

En revenant aux chaines de Markov & temps continu et & valeurs dans un espace dénom-
brable, cette derniere proposition 14 donne immédiatement le critere suivant :

Proposition 15. [60, thm 7.1] S’il existe une fonction V' de Lyapounov, c,d > 0, tels
que,

N aV(j) < —cV(i) +d, i€k,
J

et si X(t) est irréductible alors il existe m une distribution de probabilité invariante pour
X(t), p<1 et B<ow tels que

|P(t,i,-) —7ly <Bf@)B', weB, t=0,
avec f =V + 1.

Nous utiliserons les propositions 14 et 15 au Chapitre 1 de cette thése, pour donner des
conditions sur nos modeles Markoviens d’expression des génes pour qu’ils soient asympto-
tiquement stables.

6.4 Processus de Markov déterministes par morceaux

Les processus de Markov déterministes par morceaux (PDMP — piecewise determinis-
tic Markov processes) ont été formalisés rigoureusement par Davis [23], qui a notamment
montré qu’'une construction explicite d’un processus déterministe par morceaux définit une
solution d’un certain probleme de martingale. Ainsi, Davis a identifié tres précisément le
générateur étendu d’un PDMP et son domaine. Dans la pratique, comme on a pu le voir
dans les propriétés énoncées dans la partie précédente, la connaissance d’un sous-ensemble
de fonctions séparatrices inclus dans le domaine est cependant généralement suffisant.
Nous donnons la construction d’'un PDMP sans bord, c’est a dire que le flot déterministe
reste toujours inclus dans l'espace d’états. Nous supposerons aussi par la suite que le flot
déterministe a toujours la propriété d’existence et d’unicité globale.

Un PDMP (sans bord) est donné en tous temps ¢ > 0 par un couple (i(t),z(t)) ou
i(t) € J est une variable discrete, J c N et 2(t) € R? (on pourrait considérer des espaces
plus généraux sans difficulté). Un PDMP est décrit par trois caractéristiques locales :

e un champ de vecteur H;(x), pour tout i € J ;

e une intensité de saut A;(x), pour tout i € J;

e une mesure de transition @ telle que pour tout (i,z), Q(-, (i,z)) est une loi de

probabilité sur J x R
La construction d’'un PDMP suit celle d’un processus de saut pur, sauf que la variable x
n’est pas constante entre deux sauts, mais suit une équation différentielle déterministe.

On pose alors (in, x,) = (i(T),), z(T},)) ou (T}, iy, ,) sont définis récursivement par :

o Ty =0, i9 =i(0), zo = x(0) (conditions initiales données);
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o siT, <o, et (in,x,) = (i(Tn),z(Ty)), alors pour tous T, <t < Tpy1, t — z(t) =
Gi, (xn,t — T),) ou g;, (z,t) est donnée par la solution de ’équation différentielle
ordinaire

dt

{ Y~ H,w), t=0,
y(0) = =

La variable discrete ¢t — i(t) est constante égale i,, et T,y1 = T,, + 7, ou 7, est
déterminé par

P{r, > t} = E[e:r:p( - Lt i, (i, (T, S))ds)].

Si 7, = 00, on pose Ty, = A (point cimetiere) et T),4,, = 00, pour tout m > 1. Si-

non 7, < 0, et (in41,Tn41) est donné par la probabilité de transition Q(-, (in, #(T), ,;)).
Comme dans les processus de saut pur, cette construction est valable jusqu’au temps
d’explosion Ty, = lim,_, T),. Les conditions générales pour assurer que I’explosion n’a
pas lieu en temps fini sont difficiles & obtenir du fait de nombreuses possibilités entre les
évolutions déterministes et les transitions possibles. On peut cependant montrer facilement
que si :

Hypothése 2. Les intensités de saut \;(z) sont uniformément bornées sur R?,

alors Ty, = o0 presque stirement. Cette hypothese est bien trop forte dans la pratique, et
par la suite on supposera donc seulement que :

Hypothese 3.
E[Ni] <0, Vt=0,

ot Ny = Z 1>, est le nombre de sauts entre [0, ].
n

Pour utiliser les résultats suivants, dans la pratique, il faudra donc montrer que cette
hypothese 3 est vérifiée.

Hypotheése 4. On suppose que
o les champs de vecteurs H; sont C et tels que pour tout x € R?, ils définissent un
unique flot global ¢;(t,x) ;
o les intensités de saut sont telles que pour tout couple (i,x), \i(¢i(t, x)) est localement
intégrable en 0, c’est-a-dire qu’il existe £(i,x) > 0 tel que

(i)
f As(61(5, 2))ds < o.
0

Ces deux conditions impliquent que la construction donnée ci-dessus a un sens. Le flot
est toujours défini et on peut choisir un temps de prochain saut strictement positif. Avec
les hypotheses 3 et 4, Davis a montré que le processus de Markov (i, z;) sur J x R? ainsi
construit est solution du probleme de martingale associé au générateur A, qui s’exprime,
pour toute fonction bornée de classe C* de x (et de dérivée bornée),

Af(i,z) = Hi@)Vaf + Ni(2) f[f(j, y) — F6,2)]1Qd) x dy, (i,x)). (7)

L’opérateur adjoint donne (formellement) I’équation d’évolution sur les probabilités de
densité p(i, x,t) du processus

op(i, z,t)

5 = ~VHi@)p(i,z,1)) = Ai2)p(i, 2, ¢) + fkj(y)p(j,y,t)Q((ijw),dj x dy). (8)
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L’existence de solution au probleme de martingale est donc donné par la construction
explicite d’'un processus stochastique. D’apres la proposition 8 et le théoreme 8, si I'on
montre que le semi-groupe engendré par ce processus stochastique est fortement continu
(ce qui est le cas si les intensités \; sont bornées par exemple), on peut obtenir I'unicité de
la solution du probleme de martingale. Les techniques de localisation peuvent aussi étre
utilisées dans la pratique. Crudu et al. [21] ont montré ainsi, avec des hypotheses fortes
(mais qui peuvent étre surmontées par des techniques de localisation), le résultat suivant :

Théoréme 9. [21, thm 2.5] Supposons les hypothéses 3 et 4 ainsi que

Hypotheése 5. Les fonctions x — H;(z), x — \i(z) et z — Ni(2) § £, y)Q(dj x dy, (i,z))
pour f € C’l}, sont C’l} sur RY.

Alors, le PDMP déterminé par (H;, \i, Q) est l'unique solution du probléme de mar-
tingale associé a A défini a I’éq. (7).

Toujours pour le caractere bien posé du probleme de martingale, citons un résultat de
perturbation qui peut s’appliquer dans la pratique. L’idée est de découper le générateur
donné a 'éq. (7) en deux parties. De maniére naturelle (par rapport a la construction
explicite du processus) on peut séparer la partie dérive, donnée par I’évolution déterministe,
de la partie saut. Notons Ay la partie dérive, et A, la partie saut. Supposons que les
intensités de saut \; sont bornées. Alors 'opérateur A, est un opérateur borné. Si I'on
s’assure que A; est dissipatif, que pour un ¢ > 0, B(E) < Im(o — A;), alors B(FE)
Im(o — (A1 + Az)). Le théoreme 8 donné ci-dessus permet donc de conclure que 'unicité
a lieu pour A; + As. Pour l'existence, on peut utiliser le résultat suivant :

Proposition 16. [30, prop 10.2 p 256] Supposons que pour toute loi initiale v sur J x R?,
il existe une solution au probléme de martingale pour (A1,v) a trajectoires dans Dg|0,0),
alors il existe également une solution au probléme de martingale pour (A; + As,v) a
trajectoires dans Dg|0,00) (ot Ay est l'opérateur de saut, avec intensités bornées).

L’idée de la preuve suit la construction explicite du PDMP. On se rameéne d’abord au cas
A constant, puis on construit successivement une solution sur tout [T, Tk+1), avec la loi
de Ty 11 — T} donnée par une loi exponentielle indépendante du processus, et la condition
initiale donnée par la loi du saut @ en la condition finale de I’étape précédente, etc.

6.5 Equation d’évolution d’'un PDMP

Nous donnons maintenant une stratégie similaire, mais en regardant le semi-groupe
sur L', associé & I’équation d’évolution éq. (8). Cette stratégie sera largement utilisée au
chapitre 1, sur un modele PDMP en dimension un, lorsqu’il y a uniquement des sauts
dans la variable continue, et un seul champ de vecteurs (il n’y a pas de variable discrete).
Supposons donc pour simplifier qu’on est dans un cas ou le champ de vecteurs ne change
pas et qu’il n’y a pas de dynamique sur la variable discrete. Le générateur donné dans
I’éq. (8) est défini par un opérateur de dérive et un opérateur de saut sur la variable
continue.

Rappelons quelques notions spécifiques aux semi-groupes sur L!. Soit (E,&,m) un
espace mesuré o-fini et L' = LY(E,&,m) de norme| - ||;. Un opérateur linéaire P sur
L' est dit sous-stochastique (respectivement stochastique) si Pu > 0 et |[Pul; < |jul;
(respectivement |Pul; = |ull;) pour tout u > 0, u € L'. On note D l'ensemble des
densités de probabilité sur F :

D={uelLl': u>0, |[ul; =1}
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Ainsi un opérateur stochastique transforme une densité en une densité. Soit P: F x & —
[0,1] un noyau de transition stochastique, c’est-a-dire que P(z,-) est une mesure de pro-
babilité pour tout x € E et la fonction z — P(x, B) est mesurable pour tout B € £. Soit
P un opérateur stochastique sur L'. Si

J P(z, B)u(z)m(dz) = f Pu(y)m(dy) pour tous Be E,ue D,
E B

alors P est opérateur de transition associé a P. Un opérateur stochastique P sur L! est
dit partiellement intégral s’il existe une fonction mesurable p: E x E — [0,0) telle que

f f p(a.y) midy) m(dz) >0 et Pu(y) > j w(@)p(z,y) m(dr).
EJE E

pour toute densité u. De plus, si,

J p(x,y) m(dy) = 17 T € E7
E

alors P correspond au noyau stochastique
P.B) = | pag)midy). weE.Bee
B

et on dit que P est a noyau p. Dans le cas particulier d’'un ensemble dénombrable E avec
£ la famille de tous les sous-ensembles de E et m la mesure de comptage, 'espace L! sera
noté ¢! et les densités de probabilité sont des suites. Tout opérateur stochastique sur ¢! a
un noyau [p(z,y)|syer qui est donné par une matrice (stochastique).

Un semi-groupe {P(t)};>0 d’opérateurs linéaires sur L! est dit sous-stochastique (res-
pectivement stochastique) s'il est fortement continu et pour tout ¢t > 0 l'opérateur P(t)
est sous-stochastique (respectivement stochastique). Une densité u* est invariante ou sta-
tionnaire pour {P(t)}i=0 si u* est un point fixe de chaque opérateur P(t), P(t)u* = u*
pour tout ¢t > 0. Un semi-groupe stochastique {P(t)};>0 est dit asymptotiquement stable
s’il existe une densité stationnaire u, telle que

tlim |P(t)u — uxl1 =0 pour uwe D,
—00

et il est partiellement intégral si, pour un ty > 0, 'opérateur P(ty) est partiellement
intégral.

Théoréme 10 ([67, Thm 2]). Soit {P(t)}i=0 un semi-groupe stochastique partiellement
intégral. Si le semi-groupe {P(t)}1=0 a une unique densité invariante u* et u* > 0 presque
partout, alors

tli}ngo |P(t)u —u*|1 =0 pour tout u € D.

Dans notre étude sur un modele donné par un PDMP, il ne sera pas trop difficile de voir
que le semi-groupe est partiellement intégral. Les conditions pour obtenir un semi-groupe
stochastique (autre que le cas trivial d’intensités de saut bornées) sont plus délicates.
Enfin, Pexistence d’une densité invariante (c’est-a-dire une fonction mesurable invariante et
intégrable, qui peut donc étre renormalisée) sera donnée par des calculs sur une résolvante
et une chaine de Markov échantillonnée, que I'on présente plus bas.

Pour s’assurer que le semi-groupe donné par le générateur de 1’éq. (8) est stochastique,
on utilisera un résultat de perturbation. Ce résultat permet d’abord de construire un semi-
groupe sous-stochastique, généré par une extension du générateur associé a ’éq. (8). De
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plus, il caractérise la résolvante de ce semi-groupe, ce qui permet de déduire des criteres
suffisants pour le rendre stochastique.

On note Ay 'opérateur de transport associé au terme de dérive, et J I'opérateur sto-
chastique sur L' associé au noyau Q. L’équation d’évolution sur la densité peut se réécrire
du _ Aogu — Au + J(Au).
dt
Ap étant un opérateur de transport, il est raisonnable de penser qu’il est le générateur
infinitésimal d’un semi-groupe stochastique fortement continu (du moins on peut trouver
dans la pratique des conditions pour qu’il le soit). Alors, méme si A est non bornée,
Aju = Agu — Au est le générateur d’un semi-groupe sous-stochastique. Le domaine D(A;)
est inclus dans

LY ={uelL': J AMz) | u(x) | m(dx) < oo}.
E
Soit Ay = J(Au). L’'opérateur J est positif et stochastique, |J(Au)||; = |[Aul|1, et donc
D(A;) € D(Ag).

De plus, on a clairement
f (A1u + Asu)dm = 0.
E

On peut alors utiliser le résultat de perturbation suivant :

Théoreme 11 ([43, 86, 5]). Supposons que deuz opérateurs linéaires (A1, D(A1)) et
(Az, D(A3)) sur L' vérifient les hypothéses suivantes :

o (A1,D(A1)) géneére un semi-groupe sous-stochastique {S1(t)}i=o0 ;

e D(A;) c D(A2) et Agu = 0 pour tout u e D(Ay)y+ ;

e pour tout u € D(A1)+,

j (A1u + Agu)dm = 0.
E

Alors il existe un semi-groupe sous-stochastique {P(t)}s=o sur L' généré par une extension
C de (A1 + As, D(A1)). Le générateur est caractérisé par

N
R(o,C)u = lim R(0, A1) Y (A2R(0, A1))"u, uelL', o>0.
N—© 0

De plus, {P(t)}i=0 est le plus petit semi-groupe sous-stochastique dont le générateur est
une extension de (A1 + Az, D(A1)). Enfin, les conditions suivantes sont équivalentes :
o {P(t)}i=0 est un semi-groupe stochastique,
o le générateur C est la fermeture de (A1 + Ag, D(Ay)),
e pour un o > 0,
lim [[(A2R(o, A1))"u| =0, Vue L.

Tyran-Kaminska [83] a montré qu’une condition suffisante pour que {P(t)};=0 soit
stochastique est que 'opérateur K défini par

Ku = lir% AsR(o, Ar)u = lirrb J(AR(o, Ay)u), 9)
T o—
N—1
soit ergodique en moyenne, c’est-a-dire lim — Z K"u existe. Cette proposition vient
n—o0 N

simplement de la monotonie des résolvantes R(a Al) d’un opérateur sous-stochastique et
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du fait que 'ergodicité en moyenne s’hérite par domination. En pratique, on pourra donc
chercher a montrer que K possede une unique densité invariante, transférer cette propriété
a l'opérateur {P(t)}:+>0 et utiliser le théoreme 10 pour conclure. Pour finir, notons les
liens entre I’approche probabiliste et analytique sur les PDMP donnés par la proposition
suivante

Proposition 17. Tyran-Kamiriska [83, thm 5.2] Soient X (t) le PDMP de caractéristique
locale (H, \,Q), {P(t)}s=0 son semi-groupe sur L' associé¢, J lopérateur stochastique sur
L' associé¢ au noyau Q, et ¢¢(x) le flot global associé ¢ H. On note (T,,) la suite de temps
de sauts de X (t), avec Ty, = limy, o T, le temps d’explosion pour X (t). Alors :
e pour tous o > 0,
lim (J(AR(o, Ay)u))*" 1ipy(x) = E[e™™ | X(0) = 2] p.p. =.

n—ao0

e pour tous Be B(E), ue D(A); ett >0
f P(t)u(z)m(dz) = f P{X(t) € B,t < T | X(0) = z}u(z)m(dz),
B E

o lopérateur K défini a 'éq. (9) est l'opérateur de transition associé a la chaine de
Markov en temps discret (X (Ty,))n=0 de noyau

K(z,B) = LOO Q(B; pe(x)) N pe(x))e (i )‘((br(x))d’"dt, x € E,BeB(E).

On conclut avec une série de remarques

Remarque 12. Cet ensemble de résultats montre que l’'on peut ramener l’étude de I’équa-
tion d’évolution sur les densités du PDMP (en supposant que la loi initiale a une densité)
a l’étude des densités d’un opérateur associ€é a une chaine de Markov en temps discret.
On verra dans le chapitre 1 que pour un modéle simple, on peut calculer explicitement la
résolvante de Ay, lopérateur K, trouver un unique candidat pour la densité invariante, et
ainsi donner des conditions assez fines (sur les caractéristiques locales du PDMP) pour la
stabilité asymptotique du semi-groupe associé au PDMP. Les résultats de Tyran-Kaminska
[83] contiennent d’autres caractérisations importantes, notamment des conditions pour que
le semi-groupe soit fortement stable (perte de masse) qui ont été appliquées a différents
modéles de fragmentations (voir aussi [55]).

Remarque 13. L’étude d’un processus de Markov par une chaine de Markov en temps
discret est a la base des idées de Meyn et Tweedie présentées dans la sous-section 6.5.
Notons également que ces idées ont été appliquées sur les PDMP par Costa and Dufour
[20]. L’importance en pratique de ces résultats est de donner des opérateurs explicite-
ment calculables, contrairement aux résolvantes (en général). Comme on l'a vu a la sous-
section 6.3, ’échantillonnage donné par des temps aléatoires exponentiels de parameétre
1 correspond exactement a la résolvante (éq. (6)). Cependant, celui-ci est difficilement
calculable dans la pratique. L’approche de Marta Tyran-Kaminska donne des conditions
équivalentes (voir théoréme 11) pour les propriétés du semi-groupe {P(t)}i=0 sur L' et
Popérateur AsR(o,Ay). Ensuite, lopérateur K = lim,_,0 A2 R(0, A1), qui correspond a
un échantillonnage aux temps de saut du PDMP, donne des conditions suffisantes pour
les propriétés de stabilité du semi-groupe {P(t)}i=0. L’ échantillonnage utilisé par Costa et
Dufour (dans un cadre un peu plus général, avec bord, et avec une approche probabiliste,
en regardant le semi-groupe sur les fonctions bornées) correspond a des temps aléatoires
donnés par le minimum du temps de prochain saut et d’une exponentielle de parameétre 1.
Les auteurs obtiennent alors des conditions d’équivalence entre les propriétés de stabilité
de la chaine échantillonée et du PDMP.



38 Introduction Générale

Remarque 14. Enfin, ces approches de type « semi-groupe » pour étudier les propriétés
de stabilité d’un modéle donnent en général de mauvaises estimations sur les taux de
convergence vers [’état d’équilibre. Pour obtenir de « bons » taux de convergence explicites,
on utilise généralement des techniques dites de couplage. On renvoie a de récentes études
sur des PDMP dans les articles [8],[19] par exemple. On verra au chapitre 1 que cette
approche permet de trouver un taux de convergence explicite pour notre modele.

7 Théorémes Limites

Les idées des théoremes limites en probabilités reposent sur les deux théoremes fonda-
mentaux que sont la loi des grands nombres (LGN) et le théoreme de la limite centrale
(TCL). La LGN nous dit que si on somme un grand nombre n de variables indépendantes
et identiquement distribuées, intégrables, et que ’on divise par ce nombre n, alors la limite
est déterministe, égale a la moyenne de la loi commune des variables aléatoires. Le TCL
(pour des variables L?) caractérise les fluctuations autour de la limite de la LGN, qui sont
alors gaussiennes, centrées en la moyenne, de variance qui tend vers 0 en n=12,

Ces théorémes ont d’innombrables applications et généralisations, en particulier aux
processus stochastiques. Pour le processus stochastique qui nous intéressera le plus, le
processus de Poisson, ces théoremes se traduisent par la proposition suivante :

Proposition 18. Soit Y un processus de Poisson standard (d’intensité 1). Alors, pour
tout tg > 0,

) Y (nt) .
lim sup | ——= — ¢ |=0, presque stirement.
n—00 tStO n
De plus,
) Y (nt) —nt f” 1 e
lim P{—— — <z} = e v/ qy = P{W (t) < 2},
nl—>oo { \/ﬁ } _oo V2T Y { () }

ot W est un mouvement Brownien standard (de moyenne nulle et de variance t).

Pour ce qui nous intéresse, les conséquences et généralisations des ces théoremes aux
processus stochastiques ont principalement pour intérét de trouver et justifier des modeles
réduits et plus abordables analytiquement. On présente ci-apres deux approches de réduc-
tion de modeles, I'une basée sur la séparation d’échelles de temps, et ’autre basée sur des
passages en grandes populations (champ moyen, limite fluide, limite thermodynamique...).
Ces deux approches ne sont pas forcément disjointes.

Mais tout d’abord expliquons les outils principaux utilisés. L’approche la plus lar-
gement répandue pour prouver des théoremes limites sur des processus stochastiques,
satisfaisant une certaine équation différentielle stochastique, repose sur des arguments
topologiques, et notamment de compacité. Si une suite est relativement compacte, et pos-
sede une unique valeur d’adhérence, alors cette suite est convergente, vers 'unique valeur
d’adhérence. Notons que les convergences obtenues sur les processus stochastiques seront
des convergences en loi. Les processus stochastiques (sur Dg[0,00) en général) sont vus
comme des variables aléatoires d’un plus grand espace, que 1’on notera temporairement S,
muni d’une certaine topologie. Notons Cj(S) I'ensemble des fonctions continues bornées
de S. Notons P(S) I'ensemble des mesures de probabilités sur S. Une suite P, € P(S) de
mesures de probabilités sur S converge faiblement vers P si

lim | fdp, f FAP, ¥fe Cy(S).

n—00
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De maniéere équivalente, une suite de variables aléatoires X,, sur S converge en loi (ou en
distribution) vers X si

lim E[f(X,)] = E[f(X)], VfeGy(S).
Cette convergence n’est pas spécifique aux processus stochastiques. Un autre type de
convergence, beaucoup plus maniable, et spécifique aux processus stochastiques, est la
convergence en distribution de dimension finie. Cette convergence est la convergence en
loi de tout vecteur fini de variables aléatoires données par les évaluations du processus
stochastique en des temps finis. La convergence de dimension finie peut étre une maniere
d’identifier une unique limite via le résultat de Prokhorov :

Proposition 19. X, converge en loi vers X si et seulement si X,, converge en distribution
de dimension finie et X,, est relativement compact.

La preuve du sens direct de cette proposition utilise le théoréme de représentation de
Skorokhod, qui nous dit que si on a convergence en loi, alors on peut toujours trouver
(représenter) des variables aléatoires qui ont ces lois et qui convergent presque stirement.
La preuve du sens réciproque utilise le fait que les distributions de dimension finie carac-
térisent un processus stochastique.

Une deuxieme méthode pour caractériser de maniere unique la loi du processus limite,
largement répandue, est celle du probleme de martingale. Si ’'on montre que toute limite
de la suite de processus stochastiques doit vérifier un certain probleme de martingale, et
qu’on a unicité (en loi) de la solution du probleme de martingale, alors la loi limite est
caractérisée de maniére unique. On comprend alors que le caractere bien posé (en fait
I'unicité) d’un probleme de martingale est crucial pour cette approche.

On verra enfin au Chapitre 1 que ’on peut utiliser dans certains cas une généralisation
du théoreme de Lévy, le théoreme de Bochner-Minlos, qui montre que sous de bonnes
conditions, la fonctionnelle caractéristique d’un processus stochastique caractérise sa loi.

Apres avoir caractérisé la loi limite, la deuxieme étape consiste a montrer la relative
compacité du processus stochastique (dans 'espace dans lequel il vit). Cette propriété
dépend fortement de la topologie que I'on considere. Une notion proche de la compacité
pour les lois de probabilité, et trés maniable en pratique, est la tension.

Définition 16 (tension). Une suite de variables aléatoires X, a valeurs dans S un espace
topologique est tendue si pour tout € > 0, il existe un compact K € S, tel que

liminf P{X, e K} >1—e.
n—00
Le fameux théoreme de Prohorov caractérise la relative compacité par des criteres de

tension uniformes. En particulier, on peut montrer que si S est un espace métrique comp-
let séparable, une suite est tendue si et seulement si elle est relativement compacte (voir
par exemple [30, thm 2.2]). Si X, est une suite de processus stochastiques a valeurs dans
DEg|0,0), on cherche donc si cet espace est un métrique complet séparable. Si F est mé-
trique complet séparable, alors on peut munir Dg[0, ) d’une métrique (appelé métrique
de Skorohod) qui rende Dg[0,00) complet séparable. De plus, pour cette topologie, notée
Sg, on a le critere de tension suivant trouvé par Aldous (voir par exemple [39, thm 4.5 p
356]) :

Proposition 20. Une suite X,, est tendue dans (Dg|0,),Sg) si :
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e pour tous N € N*, ¢ > 0, il existe ng € N* et K > 0 tels que

(n=mnp)=P{sup | X' |> K} <e.
t<N

e pour tous N e N* >0, on a

lim limsup sup P{| X} —X§|>¢e} =0,
00 n - S<T<S+0

ot le supremum est parmi tous les temps d’arréts adaptés a la filtration canonique
associée a X,, bornés par N.

Citons également, toujours pour la topologie de Skorohod, le critére de Rebolledo pour
les semi-martingales de dimension finie

Proposition 21. [41, Cor 2.3.3 p 41] Si X,, est a valeurs dans un espace de dimension
finie, et X, = A, + M,,, avec A,, un processus a variation finie, M, une martingale locale
L?, et si les suites (A,) et (< M, >) (processus de variation quadratique) vérifient le
critere d’Aldous, alors X,, est tendue.

11 arrive que la suite de processus ne puisse étre tendue dans (Dg[0, ), Sg), notam-
ment lorsque le processus limite « a plus de discontinuités » que la suite de processus. 11
faut alors utiliser d’autres topologies, en s’assurant que le théoreme de Prohorov reste vrai
(ainsi que le théoreme de représentation de Skorokhod), pour pouvoir utiliser les mémes
arguments de compacité. C’est le cas pour la topologie de Jakubowski J sur Dg[0, 1], pour
laquelle on a le critere de tension suivant :

Proposition 22. Une suite X,, est tendue dans (Dg[0,1],J) si
e pour tout € > 0, il existe ng € N* et K > 0 tels que

(n =ng) = P{sup | X' |[> K} <e,
t<1

e pour tous a < b, il existe C' > 0 tel que

sup N**(X,,) < Cn,

ot N®b est le nombre de croisements de niveau a < b.
Un critere similaire est valable pour 'espace LP[0,1], 1 < p < o0 :

Proposition 23. Une suite X,, est tendue dans LP[0,1] si
e pour tous N € N*, ¢ > 0, il existe ng € N* et K > 0 tels que

(n =ng) = P{sup | X' |[> K} <e,
t<1

e pour tout € > 0, il existe ng € N* et K > 0 tels que
(n = no) = P{”X?”BV = K} < ¢,

ot |z||py = |x|1 +sup{d;; | f(tiz1) — f(ti) |, ti subdivision de [0,1]}.

Enfin, si M[0,00) est 'espace des fonctions réelles mesurables sur [0, 00), muni de la
métrique

doy) = | et max(t, ) = yt0) Dt

alors (M0, 00),d) est un espace métrique séparable, et on a le critere de tension suivant :
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Proposition 24. [52, thm 4.1] Une suite X,, est tendue dans (M[0,00),d) si :
e pour tous T,e > 0, il existe K > 0 tel que

T
SUPJ Ljawy >k} <6,
n Jo
e Pour toutT >0

T
}lbin%)supf max(1, | z(t + h) — z(t) |)dt = 0.
— n 0

7.1 Réduction de modeles par séparation d’échelles de temps

Les théoremes limites sont tres importants dans le contexte des modeles de réactions
biochimiques. En effet, il est courant que dans ces modeles certaines variables ou certaines
réactions évoluent & une vitesse beaucoup plus rapide que les autres. Dans ces cas la,
on peut soit « simplifier » la réaction (elle peut devenir déterministe, ou provoquer des
grands sauts) ou « éliminer » la variable rapide par des techniques de moyennisation. On
renvoie & deux récentes publications utilisant ce genre de techniques pour simplifier des
processus de saut pur [21],[42], ainsi qu’aux résultats du chapitre 1 sur la simplification du
modele d’expression des genes. Les techniques de moyennisation remontent a Kash’'minski
et Kurtz (voir par exemple [50]). De maniére heuristique, elles sont basées sur I’hypotheése
que la variable rapide est ergodique, et donc converge rapidement vers son état d’équilibre.
La variable lente, si elle dépend de la valeur de la variable rapide, ne dépendra alors a la
limite que des moments asymptotiques de la variable rapide.

On utilisera ces techniques de réduction dans les deux chapitres de cette these, soit pour
prouver rigoureusement des liens entre certains modeles, soit pour réduire la dimension
d’un modele et le rendre plus facile a analyser.

Des techniques de réduction similaires peuvent étre effectuées directement sur I’équa-
tion d’évolution de la densité des variables (Equation maitresse ou Fokker-Planck) en
« intégrant » sur la variable rapide, et par une hypothese d’ergodicité similaire. Voir pour
cette approche [38] ou plus récemment [73].

7.2 Reéduction par passage en grande population

Lorsqu’on a un modele discret, qui évolue par “de petits sauts”, si ’'on suppose que le
nombre d’individus a I’état initial devient grand, alors par une renormalisation appropriée,
on peut décrire le nombre d’individus par une variable continue qui vérifiera un modele
limite.

Cette idée remonte & Prokhorov [68] et Kurtz [51]. Pour une chaine de Markov X,
en temps continu & valeurs dans N, dont I’évolution est décrite par des intensités de saut
An(z) et une loi de répartition de saut py(z,-), le résultat classique de Kurtz [51] nous
dit que si on accélere les intensités de saut par A\, (z) = nA(x), et que 'on ne change pas
la loi de répartition de saut p,(z,-) = u(z,-), alors le processus stochastique renormalisé
Y, = % converge vers la solution de I’équation différentielle ordinaire (sous réserve qu’elle
soit bien posée) dirigée par

F(z) = A(x) JR 2= x| pla, dz).

Ces techniques ont été étendues & de nombreux modeles de population en biologie.
La stratégie est de décrire un modele de population discrete en utilisant des processus
ponctuels (la mesure empirique), et de prouver qu’ils convergent, avec une mise a 1’échelle
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adéquate et de bonnes hypotheses sur les coefficients, vers une mesure qui résout un certain
probleme limite. La convergence obtenue est une convergence en loi, et les preuves utilisent
généralement les techniques de martingales (on montre d’abord la compacité, et ensuite
que toute limite est uniquement déterminée, grace au probleme de martingale). Ces idées
remontent a Prokhorov [68], et ont été considérablement améliorées par de nombreux
auteurs [51, 63, 41, 81, 71, 53, 24]. Les intéréts de cette approche sont :

e premieérement, théorique. Cette approche peut étre utilisée pour prouver ’existence
d’une solution au probleme limite. Si on est capable de trouver un modele discret
particulier, qui possede une suite de solutions qui converge, et dont la limite résout
nécessairement le probleme limite, alors on a prouvé l'existence d’une solution du
modele limite ( voir par exemple [40, 62] dans le contexte de modele d’agrégation-
fragmentation) ;

e deuxiemement, numérique. Cette approche a été largement utilisée pour obtenir
des algorithmes rapides et efficaces d’'un modeéle continu non linéaire, comme les
nombreuses variantes des équations de Poisson-McKean-Vlasov [82]. Pour une telle
approche, le taux de convergence du modele stochastique vers le modele limite est
important pour s’assurer de la tolérance de 'approximation réalisée [16, 61];

e troisiemement, pour la modélisation. Dans un contexte physique ou biologique,
cette approche permet de justifier rigoureusement les bases et les hypotheses phy-
siques d’un modele particulier. En effet, dans les modeles de population discrets,
on peut spécifier précisément chaque réaction ou les régles d’évolution de la popu-
lation. Ensuite, avec des hypotheses sur les coefficients décrivant cette évolution, et
une mise a ’échelle particuliere (explicite, en général grande population, ou taux
de réactions rapides, etc...), on obtient un modele limite ou un autre. Ainsi, les hy-
potheses (parfois) implicites d’'un modele continu sont rendues plus explicites. On
peut aussi unifier certains modeles en les reliant entre eux avec des mises a 1’échelle
particulieres [44] ;

e enfin, du point de vue pratique. Cette approche peut étre utilisé pour simplifier des
modeles, en particulier quand les effets discrets rendent ’analyse du modele délicate.
On peut obtenir une bonne idée du comportement d’un modele initial en étudiant
plusieurs comportements limites.

Récemment, les approches de type « théoremes limites » appliquées aux modeles de
population en biologie mathématique ont été nombreuses, donnant un changement de
point de vue a la modélisation en biologie, d'une approche macroscopique a une approche
microscopique. On peut donner des exemples concrets :

e dans les modéles de population cellulaire. Bansaye et Tran [6] ont considéré
une population de cellules infectées par des parasites (le nombre de parasites donne
une variable de structure pour les cellules) et ont regardé la limite quand il y a un
grand nombre de parasites et une taille finie de population de cellules. On peut faire
des analogies entre ce modele et le modele de polymérisation-fragmentation que ’on
étudiera au chapitre 2. On peut considérer en effet les polymeres comme des cellules,
et les monomeres comme des parasites. On utilisera ainsi les résultats de ce papier,
et on considérera aussi la limite quand le nombre de petites particules (monomeres,
parasites) devient grand tandis que le nombre de grandes particules (polymeres,
cellules) reste fini, et évolue suivant une fragmentation (ou division) aléatoire. Pour
d’autres études similaires de modeles hotes-parasites, voir [7, 57].

e dans les modeles d’évolution. Champagnat et Méléard [17] ont étendu les mo-
deles d’évolutions (ou la population est structurée par un « trait » génotypique, qui
subit des mutations) avec interaction (voir [31, 18]) en rajoutant une structure d’es-
pace, typiquement une diffusion réfléchie sur un domaine borné. Les auteurs ont ainsi
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obtenu, dans la limite de grandes populations, une équation aux dérivées partielles
non- linéaire de type réaction-diffusion, avec condition au bord de Neumann. Leurs
hypotheéses impliquent que les taux de naissance et mort, et les coefficients de dérive
et de diffusion soient bornés et Lipschitziens, pour s’assurer du caractére bien posé
du modele limite. Nous utiliserons aussi cet article dans le chapitre 2, pour modéliser
le systeme d’agrégation-fragmentation de polymeres avec mouvement spatial.

Enfin, mentionnons juste que les approches de ce type sur ’équation d’évolution de

la densité, tres utilisées par les physiciens, portent souvent le nom d’expansion de Van
Kampen, ou de Kramers-Moyal (voir par exemple [72]).
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50 Hybrid Models to Explain Gene Expression Variability

1 Introduction

In neurobiology, when it became clear that some of the fluctuations seen in whole
nerve recording, and later in single cell recordings, were not simply measurement noise but
actual fluctuations in the system being studied, researchers very quickly started wondering
to what extent these fluctuations actually played a role in the operation of the nervous
System.

Much the same pattern of development has occurred in cellular and molecular biology
as experimental techniques have allowed investigators to probe temporal behavior at ever
finer levels, even to the level of individual molecules [110, 147]. Experimentalists and
theoreticians alike who are interested in the regulation of gene networks are increasingly
focused on trying to access the role of various types of fluctuations on the operation and
fidelity of both simple and complex gene regulatory systems. Recent reviews [74, 109] give
an interesting perspective on some of the issues confronting both experimentalists and
modelers.

Among the increasing number of paper that demonstrate stochasticity in gene expres-
sion, at the single cell level, we can quote the work of Elowitz et al. [34], who have used an
elegant experimental technique to prove inherent as well as environmental stochasticity.
In their work, they measure at a single cell level two different gene reporters that has equal
probability to be expressed. They quantify the difference between cells and through time
of the total amount of expression of both genes, as well as the difference of proportion
of expression of one gene among the two. Their results clearly demonstrate variability
coming from the environment as well as coming from intrinsic stochastic event inside cells.

In this chapter, we deal with a model of a single gene, that is able to self-regulate
its own expression. We model the dynamics of the level of expression of this gene in a
single cell, without taking into account cell division. This model has been extensively
used and studied in the last decades with different representations and approximations
(see section 7 for a review). The aim of this “minimal model” is to study stochasticity
in gene expression together with non-linear effect. Its advantage relies in the ability to
obtain analytic results and quantitative prediction (see section 8). Recent improvements
in molecular biology allow to identify and to measure precisely the level of gene expression
in very small gene network, including single gene network (see the next subsection 2.1).
For more complex (in the sense of large) gene network, such approach can be used as a
building block to understand nonlinearity and stochasticity in higher network. Even in
model of a single gene, the number of steps can vary considerably depending on the level
of description chosen. We consider here a model that includes 4 steps, namely the state of
the gene, the transcription, the translation and effector production. Again, improvements
of molecular biology tend to identify more and more elementary steps and some model
intend to take into account a more precise level of description, up to the nucleotide (see
subsection 7.9). Finally, the model we consider is a purely dynamical model, and we
don’t consider any spatial or delay effect (even though, it is clear now that intracellular
environment is not well-mixed, and that some processes inside cells take an incompressible
time to proceed).

Our choice of level of description allows us to include the pioneer work of Goodwin
[48] together with the important recently discovered switching and bursting effect in gene
expression (these terms will be made clearer in the following). The Goodwin [48] model
focuses on describing the time evolution of the concentration of gene product (mRNA,
protein), based on the molecular basics found earlier. For describing the time evolution of
a continuous variable, It is usually used an ordinary differential equation approach. When
it becomes clear that the evolution of concentration of gene product in single cells could
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not be described by deterministic laws, one then starts to consider stochastic description.
In order to take into account stochasticity, it can be used a Langevin equation (addi-
tive noise) or more generally stochastic differential equation (multiplicative noise) with
either Gaussian white noise (no time correlation) or Gaussian colored noise (with positive
time correlations, see Shahrezaei et al. [131]). However, in this latter representation, the
variable still evolves continuously. Whereas it has been well documented experimentally
[22, 47, 111, 150] that in some organisms the mRNA and/or protein production is inter-
mittent, and intense during relatively short periods of time. This phenomenon is called
bursting in molecular biology. The accuracy of experiments permits to characterize the
time interval between these production events, and permits to quantify the amount of
molecules produced in a single burst event. In particular, in the work referred above,
it has been found that in some organisms the bursting production is characterized by
an exponential waiting time between production events, and the burst size is exponen-
tially distributed as well. To reproduce such characteristics, it has recently been proposed
(Friedman et al. [39], Mackey et al. [91]) to use a stochastic differential equation driven
by a compound Poisson white noise, to model explicitly the discontinuous and stochas-
tic production. Such a process can also be viewed as a piecewise-deterministic Markov
process.

The mathematical foundation of piecewise-deterministic Markov processes (PDMP)
was given by Davis [27]. This class of stochastic process unifies deterministic processes
described by ordinary differential equation, and pure jump Markov processes, described
by a Markov chain. Such a class of model has found recently an important echo in mathe-
matical biology, since it allows to take into account different dynamics into a single model
(Hespanha [60]). The work of Davis [27] shows how we can use the martingale machinery
to study such stochastic processes. All the tools available to study convergence of stochas-
tic processes (Ethier and Kurtz [36]) can then be used to study limiting behavior of PDMP.
Two recent papers of Crudu et al. [25] and Kang and Kurtz [75] illustrate this approach,
and explore various limiting cases using time-scale separation in the context of molecular
reaction network. On another approach, PDMP brings new evolution equations on den-
sities, which are typically of integro-differential types (as opposed to second-order partial
differential equations associated to diffusion processes). Here, we will make use extensively
of the semigroup approach to study long-time behavior of such equation, following the work
of Lasota and Mackey [83], Mackey and Tyran-Kaminska [90], and Tyran-Kaminska [145].
In such approach, existence and stability of an invariant density is given by the existence
and uniqueness of a solution to a fixed point problem (which presents itself as a system of
algebraic equations or differential equations in our examples), associated to a discrete-time
Markov chain. We can compare this approach to more traditional results in stochastic pro-
cess given by Meyn and Tweedie [97], and recent contributions on convergence results of
PDMP by Costa and Dufour [23].

On the other hand, the molecular basis for stochasticity in gene expression is also
often attributed to low copy numbers of gene products. It is then needed to use discrete
variable models rather than continuous one, and to model molecular number rather than
concentration. Such ideas are widely used in biochemistry since the work of Gillespie
[45]. The recent contribution of Anderson and Kurtz [3] summarizes the foundation and
mathematical formulation of such models, as continuous-time Markov processes.

All the different models considered here use different mathematical formulations, namely
pure jump Markov process in a discrete state space, continuous state space ordinary dif-
ferential equation and hybrid models. We will attach an important part to prove these
different formulations relate to each other through rigorous limit theorem (see sections 9).
In particular, it’s quite remarkable that the so-called “ central dogma” of molecular biology
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(as a chemical reaction network) can explain much of the different experimental observed
behaviors, in different parameter space regions.

But first, it is important to emphasize the biochemical reaction network that is be-
hind all these different mathematical formulations, and give some background material in
molecular biology (see sections 2, 3 and 4). Once this is set up, we describe our model
through a pure jump Markov process in a discrete state space and studie its qualitative
behavior (section 5). Then we present its continuous deterministic version, namely the
Goodwin model (section 6) and recall how we can precisely study its long time behavior.
A review of (many) other linked or intermediate model is provided in section 7.

Then we present an analogous study of the Goodwin model, on a stochastic reduced
model (section 8), where we only keep one variable. We consider in detail the probability
distribution of the molecular number (with a discrete variable) or concentrations (hence,
with a continuous state variable) in generic bacterial operons in the presence of ‘burst-
ing’ using an analytical approach. As stated above, our work is motivated by the well
documented production of mRNA and/or protein in stochastic bursts in both prokary-
otes and eukaryotes [22, 47, 111, 150], and follows other contributions by, for example,
[104, 77, 39, 13, 129]. All the above mentioned work share common goal, that is to find
analytic characterization of a particular stochastic gene expression model, to be able to
deduce kinetic parameters from experimental observations and/or to explain qualitatively
and quantitatively the amount of variability measured experimentally. It is important
to also recognize the pioneering investigation of Berg [9] who first studied the statisti-
cal fluctuations of protein numbers in bacterial population (with division) through the
master equation approach, and introduced the concept of what is now called bursting.
The analytical solution of the steady state density of the molecular distributions in the
presence of bursting was first derived by Friedman et al. [39]. Our work extends these
results to show the global stability of the limiting densities and examine their bifurcation
structure to give a rather complete understanding of the effect of bursting on molecular
distributions. The originality of this work is then to give a bifurcation diagram for the
stochastic model of gene expression, in complete analogy with the deterministic Goodwin
model. As molecular distributions can now be estimated experimentally in single cells,
such theoretical framework may also be of importance in practice. We show in section 8.6
how one can estimate the regulation function (rather than a single parameter) using an
inverse problem approach ([29]). Such estimate may be of importance to understand de-
tail molecular interactions that determines the regulation function (see section 3). It has
been the subject of a published work (Mackey et al. [91]). Finally, our framework can be
extended to a discrete variable model (see subsection 8.1), and we also investigated the
fluid limit (subsection 9.4), which will be the subject of a further publication (Mackey
et al. [93]).

The fact that this one-dimensional “ bursting” model relies on fundamental molecular
basis of previously known mechanism in molecular biology is an important feature of
this model, and has been noticed by many authors (see for instance [102] for review).
Following recent theoretical contributions on reduction of stochastic hybrid system [25, 75]
we rigorously prove that one limiting behavior of the (now) standard model of molecular
biology gives a bursting model (see subsection 9.1 and 9.2) In our work, we can prove
slight generalization of such reduction, in order to understand the key feature associated
with such behavior. We also prove an adiabatic reduction for this bursting model (see
subsection 9.3), which will be the subject of a further publication (Mackey et al. [92]).
This work justifies the use of a reduce one-dimensional model when some variables are
evolving with a fast time scale, in a context of a continuous state hybrid model. The
originality of our work is to provide alternative proofs, using either partial differential
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equation techniques or probabilistic techniques. Up to our knowledge, adiabatic reduction
for stochastic differential equation with jumps hasn’t been investigated before.

2 Standard Model

2.1 Background in molecular biology

The so-called “central dogma” of molecular biology, based on the Nobel Prize winning
work of Jacob et al. [69] in which they introduced the concept of the operon (see subsec-
tion 2.2), is simple to state in principle, but complicated in its detail. Namely through
the process of transcription of DNA, messenger RNA (mRNA) is produced and, in turn,
through the process of translation of the mRNA, proteins ( or intermediates) are pro-
duced. There is often feedback in the sense that molecules (enzymes) whose production is
controlled by these proteins can modulate the translation and/or transcription processes.
In what follows we will refer to these molecules as effectors (see figure 1.1). Rather as-
tonishingly, within a few short years of the publication of the ground breaking work of
Jacob et al. [69] the dynamics of this simple feedback system was studied mathematically
by [48]. His formulation of the operon concept is now known as the Goodwin model.

We now consider both the transcription and translation processes in detail. We first
present these two processes in prokaryotes, and then explain the main differences with
eukaryotes. In the transcription process an amino acid sequence in the DNA is copied
by an enzyme called RNA polymerase (RNAP) to produce a complementary copy of the
DNA segment encoded in the resulting RNA. Thus this is the first step in the transfer of
the information encoded in the DNA. The process by which this occurs is as follows.

When the DNA is in a double stranded configuration, the RNAP is able to recognize
and bind to the promoter region of the DNA. (The RNAP /double stranded DNA complex
is known as the closed complex.) Through the action of the RNAP, the DNA is unwound
in the vicinity of the RNAP/DNA promoter site, and becomes single stranded. The
RNAP/single stranded DNA is called the open complex. Once in the single stranded
configuration, the transcription of the DNA into mRNA commences. A lot of interactions
between proteins can promote or block the closed complex formation and its binding to
the promoter region of the DNA. These proteins that interact with the RNAP are called
transcription factor (TF). There are many different known interactions between TF and
DNA and RNAP. Some TF can stabilize or block the binding of RNA polymerase to DNA.
They can also recruit coactivator or corepressor proteins to the DNA complex, in order
to increase or decrease the rate of gene transcription. In eukaryotes, TF can make the
DNA more or less accessible to RNA polymerase by modifying physically its configuration.
Obviously, when these TF interact with the DNA that controls its production, then they
coincide with the molecules we called above effectors. The interaction between effectors
and the DNA and RNAP polymerase then dictates the feedback mechanism (see section 3)
and are responsible for what is called the transcriptional regulation or the gene expression
regulation. All these interactions are supposedly sequence-specific meaning that specific
proteins will be able to bind to specific sequence of DNA, or to specific other proteins.
These concepts are however unreliable [80].

In prokaryotes, translation of the newly formed mRNA starts with the binding of a
ribosome to the mRNA. The function of the ribosome is to ‘read’ the mRNA in triplets
of nucleotide sequences (codons). Then through a complex sequence of events, initiation
and elongation factors bring transfer RNA (tRNA) into contact with the ribosome-mRNA
complex to match the codon in the mRNA to the anti-codon in the tRNA. The elon-
gating peptide chain consists of these linked amino acids, and it starts folding into its
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final conformation. This folding continues until the process is complete and the polypep-
tide chain that results is the mature protein. Although there are also many interactions
between proteins at the step of translation, there are much less studies reporting for post-
transcriptional regulation (see [72] that consider mRNA degradation regulation mechanism
and post-transcriptional regulator binding).

The situation in eukaryotes differs from 2 main things.

Firstly, the DNA is found in a structure that is called chromatin. The exact structure
of the chromatin is much out of the scope here, and we can keep in mind that the chromatin
‘packs’ the DNA in a smaller volume. Also, the chromatin prevents the DNA to be easily
accessible. Sequence of DNA can be more or less packed, depending on the gene. The
state of the chromatin (more or less packed) may also varies during time, leading to a very
complex dynamics. This dynamic modification of chromatin (called chromatin remodeling)
may be the result of interactions with enzymes and transcription factors (but would not
be considered here).

Secondly, mRNA molecules are synthesized inside the nucleus, whereas the ribosomes
are located outside the nucleus. Then proteins will be synthesized outside the nucleus,
and will have to enter the nucleus to interact with the DNA. These facts usually lead
to consider higher delays in the transcription/translation process modeling in eukaryotes
than in prokaryotes.

Our framework was conceived for gene expression model in bacteria (prokaryotes).
However, a growing number of people argue that similar models can be used for both
prokaryotes and eukaryotes, in different parameter space regions (see subsection 2.4).

A A
PRt ... ON "{; x }—}; - —|+> vV —+D' A
i “ ’ A mRNA Protein
- ; ||
Ll 2 eis J, T <
DNA mRNA Protein OFF\W—
L DNA
(a) “Central Dogma” (b) “New Central Dogma”

Figure 1.1: Schematic illustration of the so-called “central dogma”of molecular biology. (a)
Messenger RNA (mRNA) are produced through the transcription of DNA, and proteins
are produced through the translation of mRNA. There is a feedback directly by proteins
(or effectors) that can control the transcription of DNA. (b) Similar of the left panel,
except that the DNA can enter in an “OFF”state for which transcription is not possible.

2.2 The operon concept

An operon is a piece of DNA containing a cluster of genes under the control of a
single promoter. The genes are transcribed together into mRNA. These mRNA are either
translated together or separately in the cytoplasm. In most cases, genes contained in
the operon are then either expressed together or not at all. Several genes must be both
co-transcribed and co-regulated to define an operon. Operons were first discovered in
prokaryotes but also exist in eukaryotes. From the experimental and modeling point of
view, operons that contain a regulatory gene (repressor or activator) are very key concepts
because they provide a very small regulatory gene network. Most famous operon are

— The lactose (lac) operon ([135]) in bacteria is the paradigmatic example of this con-

cept and this much studied system consists of three structural genes named lacZ,
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lacY, and lacA. These three genes contain the code for the ultimate production,
through the translation of mRNA, of the intermediates S-galactosidase, lac perme-
ase, and thiogalactoside transacetylase respectively. The enzyme S-galactosidase is
active in the conversion of lactose into allolactose and then the conversion of allo-
lactose into glucose. The lac permease is a membrane protein responsible for the
transport of extracellular lactose to the interior of the cell. (Only the transacetylase
plays no apparent role in the regulation of this system.) The regulatory gene lacl,
which is part of a different operon, codes for the lac repressor. The latter is trans-
formed to an inactive form when it binds with allolactose. Hence, in this system,
allolactose acts as the effector molecule. See figure 1.2.

— The tryptophan (t¢rp) operon was also extensively studied ([58],[123],[89]). Trypto-
phan is an amino acid that is incorporated into proteins that are essential to bacterial
growth. When tryptophan is present in the growth media, it forms a complex with
the tryptophan repressor and the complex binds to the promoter of the trp operon,
effectively switching off production of tryptophan biosynthetic enzymes. In the ab-
sence of tryptophan, the repressor cannot bind to the promoter and the essential
tryptophan biosynthetic enzymes are produced. See figure 1.4.

— The bacteriophage A system was reviewed recently ([96],[57], [58]). It is a small
piece of viral DNA that encode for two proteins (cI and cro) that are mutually
antagonist. When a virus infects a bacteria like E. Coli, experiments show that the
system exhibits bistability. The system can be in two distinct states. Each state
implies a different behavior for the cell. In one state (called lysogenic), the virus
lies dormant, and is replicated only with the bacteria. In the other state, the virus
expresses proteins that are able to replicate the virus itself, then lyse (kill) the host
cell and release its progeny.

2.3 Synthetic network

The ability of design synthetic constructed gene network, reviewed by Hasty et al. [58],
provides also an excellent tool for modeling and experimental purposes. Approaches with
coupled modeling/experiments were indeed used to design specific small circuits with the
desired properties (bistability, oscillations etc...). Amongst the most popular synthetic
networks, one can find:

— the genetic toggle switch, such as the A-switch (Gardner et al. [43]). It consists of
two genes that encode for proteins that are co-repressive. It has been experimentally
demonstrated that this system displays bistability.

— the Repressilator. It consists of a loop of three genes. Each one inhibits successively
the next gene ([33]). It has been experimentally demonstrated that this system can
display oscillations.

— Synthetic positive autoregulatory gene ( tet-R system, [8], or A-phage system [67]).
It has been experimentally shown that this system displays bistability.

Obviously, it has also some interest on its own (cellular control, biotechnology, genetically
engineered microorganisms and so on).

2.4 Prokaryotes vs Eukaryotes models

Although the quite important differences between prokaryotes and eukaryotes, it has
been argued several times in the past that the standard stochastic model of gene expression
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is a priori suitable for both ([95, 115, 46]). The rate constants and the meaning of the
stochastic transition can be different though.

In particular, the On/Off switching rate of the gene state (see figure 1.1b) on prokary-
otes will usually reflect binding and unbinding events of molecule on the promoter or even
pausing of RNA polymerase, while the On/Off switching rate on eukaryotes will reflect
opening-closing of chromatin. Indeed, we saw that the presence of nucleosomes and the
packing of DNA-nucleosome complexes into chromatin generally make promoters inac-
cessible to the transcriptional machinery. Transition between open and closed chromatin
structures then correspond to active and inactive (repressed) promoter states, and can be
fairly slow ([74],[109],[115]) compared to the dynamics of binding and unbinding event of
molecules at the promoter region in prokaryotes. We refer to table 1.2 for some parameter
values taken from literature.

3 The Rate Functions

From what we presented above, it should be clear now that the transcription rate
(and the translation rate) is function of many cellular components, and specially protein
numbers/concentrations. Some modeling approaches take into account many details and
many variables in order to reflect faithfully the transcription process (see subsection 7.9 for
a brief review). However, these approaches increase drastically the number of parameters
and the dimension of the model. With some kinetic assumptions, it is possible to reduce
the complexity. The justification of it is an important stage of modeling. We detail here
some classical derivation of the transcriptional regulation in the deterministic context,
and (non-so) classical derivation in the stochastic context. There have been very different
mechanisms (for a review in prokaryotes see [154], in yeast [53] and in higher eukaryotes
[118]) proposed for the molecular basis of the regulation of the transcription rate by effector
molecules. These mechanisms also depends a lot of the system considered. We focus on one
particular system (feedback through complex formation) for simplicity. Depending on the
model in consideration (eukaryotes or prokaryotes in particular), the feedback mechanism
can be involved at different stages (activation/inactivation of the gene, or initiation of the
transcription).

During transcription initiation, the reversible binding of an RNAP to the promoter
region and subsequent formation of an open complex achieve rapid equilibrium: initia-
tion from the final open complex is the rate-limiting step ([142]). Transcription initiation
is therefore assumed to be a pseudo-first-order reaction with rate linearly proportional
to the amount of RNAP. In this section we examine the molecular dynamics of both
the classical inducible and repressible operon [148] to derive expressions for the depen-
dence of the transcription rate on effector levels. In this view, the effectors first interact
with other molecules (repressors) to form a molecular complex. These interactions will
modify the binding/unbinding event of repressors on the DNA, and then modify the bind-
ing/unbinding event of RNAP to the promoter region of the DNA. The effector molecules
can also act by binding directly on to the promoter region and shielding it from RNAP.
In all cases, the reactions with effector are considered to be in equilibrium and simply
change the fraction of RNAP bound as a closed complex, thereby changing the effective
transcriptional rate. See [120] and [148] for experimental evidence that such approach
reproduces accurately the rate function.
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3.1 Transcriptional rate in inducible regulation

For a typical inducible regulatory situation (such as the lac operon), in the presence
of the effector molecule the repressor is inactive (is unable to bind to the operator region
preceding the structural genes), and thus DNA transcription can proceed (see figure 1.2).
Let R denote the repressor, E the effector molecule, and O the operator. We assume that
the effector binds with the active form R of the repressor to form a complex RFE,. This
reaction is of the form

k&
R+nE <= RE,, (3.1)
ke

where n is the effective number of molecules of effector required to inactivate the repressor
R. Furthermore, the operator O and repressor R are assumed to interact according to

ky
O+ R <= OR. (3.2)
ky

Finally, the transcription takes place when RNAP binds the free operator O, thereby
leading to the reaction

O+ RNAP ™5 0 + RNAP + M, (3.3)

where M denotes the mRNA. The goal of this section is to derive the effective rate of
production of M in function of the effector molecules as the binding dynamics between ef-
fectors, repressors and operators quickly reach equilibrium. We first present the standard
way to derive this rate, using ordinary differential equation, and then using stochastic
differential equation. for simplicity, we do not include at his point the fact that effector
molecules are constantly degraded and produced. Hence its total level will change over
time. However, these variations will occur on a slower time scale than operator fluctua-
tions, so that it won’t change the reduction performed here.

Figure 1.2: Figure taken from Wikipedia. Schematic illustration of the lac operon, an
inducible operon. Top: Repressed , Bottom: Active. 1: RNA Polymerase, 2: Repressor,
3: Promoter, 4: Operator, 5: Lactose, 6: lacZ, 7: lacY, 8: lacA. In presence of lactose, the
repressor is unable to bind to the bind to the operator, and RNA polymerase can proceed.
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3.1.1 Deterministic description

The set of chemical reactions (3.1)-(3.2)-(3.3) can be described by the following system
of ODE (using standard chemical kinetics argument)

( TR = —k‘j:L‘R:L‘%-i-k‘g:L‘REn —/-C;:L‘o:L‘R-i-k‘;:L‘OR,
= —nk:jacRac% +nk, zRrE,,
TRE, = k:j:z:Ra:% — k. 2RE,,
To = —k;xolL‘R + /-Cb_:L‘OR,

. + —
Tor = ky oTRr — Kk TOR,

\ Tm = kMTOTRNAP,

where Tensities denotes the concentration of the given biochemical entities. Note that the
three following quantities are conserved through time:
— the total amount of operator Oy:

ZO.pr = TO + TOR-

— the total amount of repressor Rjy::

TRiot = TR + TRE, + TOR-

— the total amount of effector Ey:

TEypy = TE + NTRE,, -

+
We define the equilibrium rate constants K; = 2—’1 and K, = i—ci We now make specific
b (&
assumptions on reaction rates to prove the following

Proposition 15. Assume the kinetic reaction rate constants satisfies

Hypothesis 1. ky < kI, k2, k) Ky,

c Ve
and the total quantity of repressors and effectors are such that

Hypothesis 2. Kc:rRma:%; « 1.
Then, the effective mRNA production rate is a function of xg,,,, given by kyki(xg,,, ),

where if xg,,, » 1,

1+ Keal, ,

3.5
Kbetot ( )

k1 (xEtot) = TRNAPZOy0

. .p T
while if xgm > 1,
tot

1+ Keal, ,
= TRNAPZIOy, .
ot 4+ Kbetot + ch%tot

k1 (mEtot) (36)

Proof. By hypothesis 1, the reaction (3.3) occurs at a much slower rate than reactions (3.1)-
(3.2). We then modify the last equation of eq. (3.4) on xps by

Ty = ekmMToTRN AP,
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where ¢ « 1. On the slow time scale 7 = et, it is a standard result [143, 38] that the
fast dynamics approaches its equilibrium value as € — 0. The slow manifold associated is
given by the system of algebraic equations

(1 + Koo + Kbxo) = TR0

mo 1 + Kyzr ) = 20,

rp +nK.xpty = xp,,.

Now hypothesis 2 makes this system tractable, because the last equation becomes zgp =
xE,,, and the above system reduced to

R(l + ch%tot + bez’o) = TRyot» (3 7)
O(1 + KbajR) = TO¢ot+

It is easy to show that this system of equations has a unique strictly positive solution
(it can be transformed to a second order polynomial equation), and that this solution is
globally stable for the fast dynamics. Although this solution is rather complicated (as a
function of the parameters), it has two important asymptotic expressions. When zg, , > 1,
the expression of xp has the following leading term

1+ Kcm%m

TO = Oy
Kyrg
tot

. xr .
while when II;J » 1, the expression of xp reads
tot

1+ Keal, ,
O R Ty .
tot | + Kyzp,,, +KC$Et .

Considering that xpyap is constant, the effective mRNA production rate is then, on the
slow time scale, kyki(zg,,,), where in the first case,

1+ Kcm%m

kl (:L‘Etot) = xRNAPthOt
Kbetot
while in the second case,

1+ Keal, ,
LTRNAPZXOy, .
ot 4+ Kbetot + chEt .

k1 (mEtot)

O

In both cases, there will be maximal repression when £ = 0 but even then there will
still be a basal level of mRNA production (which we call the fractional leakage). In the
first case, the production rate of mRNA is unbounded with the level of effector, while it
is bounded in the second case. For biological motivation, the second expression eq. (3.6)
is rather used. However equation 3.5 is sometimes used with n = 1 (linear regulation).
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3.1.2 Stochastic description

We can also describe the set of chemical reactions (3.1)-(3.2)-(3.3) by the following
system of SDE (using standard chemical kinetics argument)

-

Xnlt) = Xn(0) ¥y ( f e X (s) (XEn(S)>ds) +vi f t 7 X, (5)ds)

0 0
Yy (L k;XO(s)XR(s)ds) Yy ( L k:;XOR(s)ds),
Xp(t) = Xgp(0)—nY;t ( f: kX Xg(s) (XEn (5)) ds) + Y, ( f: kT Xge, (s)ds) ,
} Xns, () = Xnn, )+ vy ( f: K+ Xn(s) (XEn (5)> ds) ¥y ( L ke X, (s)ds).

Xo(t) = Xo(0)— Y, ( Lt k;XO(s)XR(s)ds) + Y;( L k:;XOR(s)ds),

Xor(t) = Xor(0) +Y2+(£ k;XO(s)XR(s)ds) - Y{(E k:b_XOR(s)ds),

Xu(t) = XM(0)+Y3( LtkMXo(s)XRNAp(s)ds),

where Xentities denotes the number of the given biochemical entities, and

(XE(S)) _ Xp()(Xp(s) =1 - (Xp(s) =n+1)

n n!

In eq. (3.8), Yii, i = 1,2, 3 refers to independent unit Poisson processes, that are associated
to reactions (3.1)-(3.2)-(3.3). For instance, Y;" (respectively Y| ) gives the successive
instant the forward (respectively the backward) reaction (3.1) fires. Note that the three
following quantities are again conserved through time:

— the total amount of operator Oy:

X0 = Xo + Xor,
— the total amount of repressor Rj.::
XRie = Xr + XRE, + XOR,
— the total amount of effector Ey:
XE,,, = Xgp +nXgrg,-
We now make specific assumptions on reaction rates to prove the following

Proposition 16. Assume the kinetic reaction rate constants satisfies hypothesis 1 and
that the following scaling holds as N — oo,

Hypothesis 3.

X7 (0) ~ N%,
kc_ ~ Nna7
or some o > 0. We assume furthermore that ZN (0) = ngo) is such that it exists
[ E N

ZEtot > 0:
lim ZY(0) = Zg,,,.

N—



3 The Rate Functions 61

Then, as N — oo,the solution X3 (t) of eq. (3.8) converges to the solution of

Xar(t) = Xas(0) + Y3 ( Lt knE[Xo] (s)XRNAp(s)ds),

where E[Xo](s) is the asymptotic first moment of Xo on the fast dynamics given by
reactions (3.1)-(3.2), and is given by
1+ K.Z},
Xotot - n
1+ KyXg,, + K25, ,

E[Xo] = (3.9)
Proof. By hypothesis 1, the reaction (3.3) occurs at a much slower rate than reactions (3.1)-
(3.2). We then modify the last equation of eq. (3.4) on Xs by

t

Xar(t) = Xar(0) + Ya( |

Ek‘MXo(S)XRNAp(S)dS) s
0

where ¢ « 1. The fast dynamics consist of a closed system on a finite state space (due
to mass conservation constraint) and its associated Markov chain is irreducible, so that it
has a unique stationary distribution. By the averaging theorem (see [75, thm 5.1]), on the
slow time scale, the dynamics can then be reduced to

Xar(t) = Xas(0) + Ya ( Lt knE[Xo] (s)XRNAp(s)ds),

where E[X0](s) is the asymptotic first moment of X on the fast dynamics, and is a
function of Ky, K., Xg,,,(s), Xg,,,(s) and Xp,,,(s). Its exact expression is out of reach,
but we can derive analogous result as in the deterministic case. With hypothesis 3, we

N
define ZY = XE and rewrite the fast system as (with a slight abuse of notation)

&
XN(H) = X(0) - fN”“k*XR( 9751+ 0(572))ds)
Y] ( OtN”O‘k: XNy (s )ds)
vy ( L U X (5) X N(s)ds) + 5 ( f t k—XgR(s)ds),
Z¥@) = zZN(0) —nN- aW(LtN"anR( )ZN (1 +O(N ))ds)
! +nN=OY; f Nk XNg (s )ds)

X0 = X, 0) 437 ([ NRXFZY(+ 0 )s)
—Y*( L t Nk X, (s)ds)

xN@t) = Xo(0)— Y+(J ki X5 ()XY (s )ds) Yy jk XN (s )ds)

X0®) = Xor(0) + Yy (j kX5 ()X (9)ds) — vy ( f b, Xbn(s)ds).

.

With this scaling, the variable X g A g and Xgrg, then evolve at a faster time scale than
X]OV and X]OV R S0 that the averaging theorem again tells us that, at the limit N — oo,

Xo(t) = Xo(0) — Y5+ ( L t k;XO(S)E[XR]ds) Yy ( fot ki (Xoy,, — Xo(s))ds),
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so that immediately

E[Xo](t — o) =

To find the latter quantity IE[X R] we look at the time scale tN~("=1e  Let then v =
—(n—1)a. We define Zp"(t) = ZN (tN7) and similarly X" and ngn. The fast system
defined by reaction (3.1) becomes

-

X7 = Xa(0) = V(55 Nk X (5) 237 (1 + O(=))ds )
Y ( f: Nk XN (s)ds),

ZR) = ZH0) - Ny (NS XY (5) 257 (1 + O(=))ds )
+nN=OY] ( L t NekZ XN (S)ds),

XA () = Xe,(0) +Y;" ([ NOkEXRT (9)257 (1 + O(3))ds )

Y ( Lt Nek; XN (S)ds).

\

Define now Zggn =N _O‘ngn that satisfies the equation

t
—Q (67 ) ) 1
Zpi (t) = ZRg, (0) + N Yf(fo NekS X (s)Zp 7 (1 + O(Na))ds)

t
- N_O‘Yl_( f N2k ZN (S)ds),
0
so that N
= lim Zp; (¢
0 N1—1>noo RE"( )7
= lim N7°X};,

N—oo

t t
- ]\}i_l,noo ) kXN (s) 2y (s)ds — fo kC*ngl (s)ds.

Assuming that limy_,o Z5 (0) = Zg,,,, we obtain finally

. N,
]\}I_IPOO ZE ’y(t) = ZEtor-

so that at this time scale, ZJ{EV’AY is constant and contains the whole quantity of effector

molecules. Still at this time scale, ngl and Xg’v are fast varying variable, whose behavior
is best captured by the occupancy measure

t

Va 7(C x [0,1)) = L Loy (X7 (5))ds.

For any bounded function f, the following quantity is a Martingale

t
PN @) - p(x N (0) - N f j C i Fer)V (dag x ds),
N JO E
where

Cyxaf(ar) = kiarZy " (f(er = 1) = f(@r) + ke (Xn, — @) (F(@r+1) = f(2R)).
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Dividing by N, we see that its limiting measure must be solution of

¢
0= JNL Czp,,, f(@r)Vr(dzR % ds).

then Vg has a binomial law of parameter (Xg,,,, ﬁ) Taken all together,
T Biot

1+ K.Zg,

E[XO] (t - CD) = Xototl + KbXR + K Z% I
tot ¢ Eiot

which is then the analog result of the deterministic description. O
Remark 17. Note that with the scaling we have assumed,
K Xp o Xpl ~N <1

The scaling we chose also implies that complex formation reaction occurs at a faster time
scale than Repressor-Operator binding reaction. These arguments can then be used to
derive operator switching rate function as a function of the effector level. We illustrate
our results on figure 1.3, by calculating with a standard stochastic algorithm the statistical
asymptotic mean values of Xo for the subsystem of reaction (3.1)-(3.2). As the scaling
parameter N increases, the average values of Xo, as a function of Zg,,,, become closer
and closer of the eq. (3.9). We also show the similar behavior of the deterministic solution
of the non-linear system eq. (3.7).

Remark 18. Other scalings can of course yield similar result, for instance

Xp ~ N©,
k;r ~ anoc7

would produce another tractable limiting behavior.

04! L L . L L L . L L , 04

Figure 1.3: Numerical values of the first moment of the free operator variable Xp, as a
function of the effector level Zg, ,. In both figures, the black lines are given by the Hill
function, eq. (3.9), the dotted red lines are the numerical solution of the eq. (3.7), and
the red points are the numerical mean value of X given by the system of reaction (3.1)-
(3.2). Parameters are: (a) n = a =1, kI =k = 1.k, =100, Xo,,, = 1, Xg,,, = 100,
k, = N" Xpg,, = N% and from down to top, N = 1,10,100. (b) n = 2, a = 1,
k} =k =1k, =100, Xo,, =1, Xg,,, =100, k, = N"*, Xg,,, = N, and from down
to top, N = 1,5,10.
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3.2 Transcriptional rate in repressible regulation

In the classic example of a repressible system (such as the trp operon), in the presence
of effector molecules the repressor is active (able to bind to the operator region), and thus
block DNA transcription (see figure 1.4). We use the same notation as before, but now
note that the effector binds with the inactive form R of the repressor so it becomes active.
We assume that this reaction is of the same form as in eq. (3.1). The difference now is
that the operator O and repressor R are assumed to interact according to
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Figure 1.4: Figure taken from [123]. Schematic illustration of the Tryptophan operon,

a repressible operon. In presence of Trp, the repressor is active and able to bind to the
operator, which prevents RNA polymerase to bind.

by
O+ R-E" = ORE,,.
ky,

Similar argument as above yields the following transcription rate function. We only state
the deterministic result for simplicity.

Proposition 19. Assume the kinetic reaction rate constants satisfies hypothesis 1 and
that

Hypothesis 4. chRtoth'%;i(l + Kpxp) « 1.

Then, the effective mRNA production rate is a function of xg,,,, given by kyki(xg,,, ),
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parameter  inducible repressible

A 1+ Kbl'Rmt 1
A 1 1+ Kbetot
A1 EMTRNAPTO.,,

Table 1.1: Definition of the parameters A, A, used in eq. (3.12), as a general case of
eq. (3.6) (see subsection 3.1) and eq. (3.11) (see subsection 3.2).

where if xg,,, » 1,
n
LO¢tot (1 + KcmEtot)

L Riot KbKCm%tot

k1(B,) = TRNAP : (3.10)

. .p T
while if xgt"t > 1,
tot

1+ Kcm%m
1+ Kbemt)ch%mt '

k1(TE,p) = TRNAPTO, 0 50 (3.11)

3.3 Summary

The two bounded (above and below) functions given at eq. (3.6) and eq. (3.11) are
most commonly used and are special cases (up to a proportional constant) of the function

1+ ch%tot

T A+ AKah, (812)

k1 (xEtot)

where A, A > 0 are given in table 1.1. We will lump all constants of proportionality
that appeared previously in the derivation of the transcriptional rate function into a single
parameter, that we name A;. The two unbounded functions given at eq. (3.5) and eq. (3.10)
lead to ill-posed model, except eq. (3.5) for n = 1 which has been used in the past.

It is also important to bear in mind that such rate functions are very model-specific and
various different form appeared in the literature, depending on the molecular dynamics
considered (for a review in prokaryotes see [154], in yeast [53] and in higher eukaryotes
[118]). We provide in table 1.2 some classical parameters found on the literature relevant
for such models. This table is not meant to be exhaustive, but to give intuition of the order
of magnitude of the relevant process we look at, as well as the variation of the parameters
rate one can found on different organism. Hence, the derivation of the Hill kinetics we
provide might not always be justified (which explain partially the success of the ’on-off’
model which consider fluctuations at the level of the operator). In particular, we can see
that for the lac operon [135] or the tryptophan operon [89] the association equilibrium
constant is extremely small, making the derivation above safe, while it is not so the case
for the phage A system [67] or the TetR system [30]. Also, in the lac operon or the
tryptophan operon, complex constant are scarce, but binds efficaciously the promoter. We
also give some examples of number of molecules for the molecule in consideration (binding
sites, RNA polymerase, ribosomes, repressor molecules) to show that in some cases, a
probabilistic modeling is natural as the number of molecules is relatively small. We also
highlight the fact that new experimental techniques are now used to follow individual
molecules, and to characterize for example the search time of transcription factor for its
binding sites!
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Table 1.2: Parameters involved in the determination of the rate function. See subsec-
tions 3.1 and 3.2) for details. Note that we give all parameter values in molecule numbers,
as they are required for stochastic modeling. For typical cells like E. Coli, 1 molecule per
cell corresponds roughly ([142]) to a concentration of 1 nanomolar (nM)

Parameters References and comments

Complex formation binding constant Large variation of order of magnitude of
these rates relies on the fact that many
different complexes can be involved in the
interaction with promoter

Association Dissociation  Equilibrium

+

k;_ kc_ K. = %

(min—1) (min1)

12 x 1077 12 107 [135] LacI dimer (repressor) binding to Ef-
fector molecule in the lac operon. (Fast
dimerization of repressors is assumed).

3-9 1-5 x 1073 103-10* [30] aTc binding with TetR to prevent
TetR repression

0.05 [67] Dimer formation (A repressor protein)
in the phage A system. Value taken from
literature.

0.5 2 x 104 2.5 x 107 [89] Tryptophan Operon in E. Coli. Values
inferred from literature.

Complex/Promoter binding constant Again large variation of order of mag-

nitude reflects the diversity of the sys-
tem considered. Experimentalist may also
have the possibility to control affinity rate
on promoter.

Association Dissociation  Equilibrium

+
ki ky Ky = %
(min—1) (min~1!)
2000 2.4 833 [135] Lacl dimer repression by binding to

the operator, in the lac operon. Taken
from experimental data available on liter-
ature.
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1-10 6 x 1074103 10°-10—3

0.03-0.6

0.03-0.003

V102

1 102 102

[30] Direct repressor protein TetR binding
to operator and other complex binding.
[67] Dimer (A repressor protein) binding
to the operator, in the phage A system.
Value taken from Literature.

[142] X\ repressor protein binding to the op-
erator, in the phage \ system, for a coop-
erativity constant of n. Value taken from
literature.

[144] tetA protein binding to tetO pro-
moter, in the tet-Off system in S. cere-
visiae. The response curve is measured
experimentally and fitted to obtain kinetic
parameter.

[120] phage A system in E. Coli. The rate
of transcription is directly measured with
the concentration of effector. The kinetic
parameters are deduced by fitting.

[89] Tryptophan Operon in E. Coli. Values
inferred from literature.

Complex affinity (Hill coefficient)

n
1-30

1.4-2.7

[142] Typical biological values taken from
literature.

[144] tetA protein binding to tetO pro-
moter, in the tet-Off system in S. cere-
visiae. The response curve is measured
experimentally and fitted to obtain kinetic
parameter.

[120] phage A system in E. Coli. The rate
of transcription is directly measured with
the concentration of effector. The kinetic
parameters are deduced by fitting.

1.2

[89] Tryptophan Operon in E. Coli. Values
taken from literature

Number of binding sites

2-6 [144] tet-Off system in S. cerevisiae
Number of RNA polymerase
35+ 3.5 [78] Bacteria
1250 [89] E. Coli
3600 [30] E. Coli
30000 [113] Mammalian macrophage

RNA polymerase binding constant

Note that many authors consider this re-
action to be responsible of the switching
behavior of the gene state.
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Association Dissociation  Equilibrium

Aa Ai A2

(min—1) (min—1)

60-600 1 60-600 [30] The promoter strength can be var-
ied experimentally, and influence the RNA
polymerase association constant

10 600 1072 [78] LacZ gene in in the Lac Operon. Val-
ues taken from literature

102 [89] Tryptophan Operon in E. Coli. Values

inferred from literature.

Number of ribosomes

350 + 35 [78] Bacteria
1400 [89] E.Coli
6 x 106 [113] Mammalian macrophage
Ribosome binding constant

Association Dissociation  Equilibrium

(min—1) (min~1!)

10 120 101 [78] Association rate given by diffusion-
limited aggregation, and dissociation to
reproduce translation rate faithfully

1072 [89] Tryptophan Operon in E. Coli. Values

inferred from Literature.

Number of Repressor molecules
500
10

89] Tryptophan Operon in E. Coli.
135] Repressors dimer in Lac Operon in
E. Coli.

— —

Effective Diffusion constant

(pm?.min 1)
24 [32] Single Transcription factor detection
in single cells, E Coli.

Search time
(min)
1-6

[32] Single Transcription factor detection
in single cells, E Coli.

Cell Volume
(L)
1071510716
5 x 10712

[89],[135] E. Coli
[113] Mammalian macrophage

3.4 Other rate functions

In the standard model, only the steps before (and including) the transcription usually
consider nonlinear effect. In prokaryotes, ribosomes can begin binding the newly synthe-
sized ribosome-binding site (on the mRNA) almost immediately as transcription begins
(whereas in eukaryotes, a delay between translation and transcription may be relevant).
Analogous to transcript initiation, translation initiation of a single mRNA molecule is
assumed to proceed with a first-order rate Ao. We assumed that initiation and elongation
rates are such that ribosome queuing does not occur (Thattai and van Oudenaarden [142]).
We therefore take each transcription and translation initiation reaction to be independent,
and the translation rate would be proportional to the amount of mRNA molecules. Simi-
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larly, we assume effector production rate to be proportional to the amount of intermediate
protein molecules (with coefficient A\3). Finally, we assume that all molecules degrade lin-
early with rates v;, i = 1,2,3 for mRNA, proteins and effector respectively. A decay rate
v gives a half-life of In(2)/v. If growth in cell volume is exponential, the resulting dilution
of species concentrations can be incorporated by increasing v for all species (other than
the DNA, which is replicated at a rate exactly matching cell growth). The mRNA decay
rate depends on the ribosome-binding rate, because actively translating ribosomes shield
the mRNA molecules from the action of nuclease (Thattai and van Oudenaarden [142]).

4 Parameters and Time Scales

We summarize in table 1.3 the parameters used in our model, and the various range of
magnitude that have been measured or fitted from experiments. Again, this table does not
intend to be exhaustive, but rather to give intuitions. It is also clear that many parameters
are not independent within each other, and their values then depend on the model chosen.
For instance, an observation of the instantaneous rate of production of an mRNA, as a
first step process, or combined with an observation of the gene state kinetics, would not
lead to the same transcriptional rate. The mean number of molecules, and burst statistics
given at the end of this table, are also obviously function of other parameters. They can
however be measured directly. For instance, as individual molecules can be measured, the
authors in [20, 47, 150, 111] were able to “count” the number of molecules produced in
each burst production event, and to deduce statistics of the burst size event.

As a general trend, it can be noticed that synthesis rate of protein are usually higher

than synthesis rate of mRNA, while degradation rate of protein are several order of mag-
nitude lower. Switching rate of the gene state are highly variable, but may be quite slow.
Finally, the number of mRNA molecules may be of only dozens, while there may have
thousands or more proteins.
Table 1.3: Parameters involved in the standard model of molecular biology. Note that
we give all parameter values in molecule numbers, as they are required for stochastic
models. For typical cells like E. Coli, 1 molecule per cell corresponds roughly [142] to a
concentration of 1 nanomolar (nM)

Parameters References and comments

Gene state
Activation Inactivation These values depend a lot on modeling
rate rate choice. As we saw, transcription is a

multi-step process. Activation of the gene
may mean that an mRNA Polymerase is
bound to DNA, and then (almost) ready
to start transcription. We may also con-
sider that activation requires a (rare) tran-
scription factor to bound. Or in eukary-
otes it may requires chromatin opening.
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Aa Ai

(min—1) (min—1)

60-600 1 [30] TetR system in E. Coli. The promoter
strength can be varied experimentally, and
influence the RNA polymerase association
constant

0.2-1 1-2 [144] tet-Off system in S. cerevisiae.

0.1-1 500 [78] Lac operon in Bacteria

0.7-5x10"% 2.5 x 10~* [94] Interleukin protein in Lymphocytes.
These rates represent opening/closing of
chromatin, and were derived by fitting a
stochastic model to experimental data.

0.07—-0.3 0.68 — 5.3 [152]. Parameters inferred from experi-
mental data using single mRNA detection
technique in yeast (S. Cerevisiae)

0.02 0.1 [47] Real-time monitoring of lac/ara pro-
moter kinetics in E. Coli

2 x 1074 103 [111] statistical kinetics inferred from sin-
gle mRNA counting in mammalian cells.

mRNA

Synthesis Degradation  Transcriptional

rate rate efficiency

A1 g %

(min—1) (min—1)

24 0.3 2.4 [30] TetR system in E. Coli.

0.4-1 0.4 [135] Lac operon in E. Coli. Taken from
experimental data available on Literature

10 0.61 [89] Tryptophan Operon in E. Coli. Values
inferres from literature.

10 0.04 5-10 [144] tet-Off system in S. cerevisiae.

12 1-6 x 1073 [113] Mammalian Macrophage

50 18 0.1 [78] Lac operon in Bacteria

40 0.01 2 x 10° [94] Interleukin protein in Lymphocytes.
Experimentally deduced.

1.3-11 0.2-20 [152]. Parameters inferred from experi-
mental data using single mRNA detection
technique in yeast (S. Cerevisiae)

10731 2 x 1074-2 x [127] global gene quantification in mam-

1073 malian cells (mouse fibroblast)
0.23 2 x 1073 230 [111] Single mRNA counting in mam-
malian cells.
Protein
Synthesis Degradation  Transcriptional
rate rate efficiency
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A2 V2 %

(min—1) (min~1)

6 0.01 18 [30] TetR system in E. Coli. Protein
degradation rate equal the dilution rate.

15-30 0.2 30-60 [135] Lac operon in E. Coli.

20 0.01 30 [89] Tryptophan Operon in E. Coli. Pro-
tein degradation rate equal the dilution
rate.

23.1 0.007 500 [144] tet-Off system in S. cerevisiae.

11.3 4x 10741 x  103-10* [113] Mammalian Macrophage

1072

0.5-10 0.003 0.02-0.5 [78] Lac operon in Bacteria

4 0.02 400 [94] Interleukin protein in Lymphocytes.
Experimentally deduced.

1072-10 5x 10751 x  10-10° [127] global gene quantification in mam-

1073 malian cells (mouse fibroblast)
Effector

Synthesis Degradation

rate rate

A3 V3

(min—1) (min—1)

120 1072 [89] Tryptophan Operon in E. Coli. Ef-
fector degradation rate equal the dilution
rate

Mean Number

mRNA Protein

< X1 > < X9 >

1-30 100-300 [135] Lac operon in E. Coli

20-100 4 x 10° [113] Mammalian Macrophage

1000 5 x 10° [94] Interleukin protein in Lymphocytes.
Experimentally deduced.

2-15 [152]. Parameters inferred from experi-
mental data using single mRNA detection
technique in yeast (S. Cerevisiae)

1-1000 100-10° [127] global gene quantification in mam-
malian cells (mouse fibroblast)

Mean Burst size
mRNA Protein
8-20 [20] Real-time monitoring of f-

galactosidase in E. Coli. Their di-
rect measurement also coincide with
distribution fitting of a bursting model.
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4 [47] Real-time monitoring of lac/ara pro-
moter kinetics in E. Coli

4.2 [150] Tgr-Venus protein controlled by the
lac promoter in E. Coli.

10-300 [111] Single mRNA counting in mam-

malian cells.

Mean Burst frequency

mRNA Protein
(min—1) (min~1)
103 [20] Real-time monitoring of -
galactosidase in E. Coli. Their di-
rect measurement also coincide with
distribution fitting of a bursting model.
2 x 1072 [150] Tgr-Venus protein controlled by the
lac promoter in E. Coli.
0.2 [22] Real-time monitoring of a develop-

mental gene in a small eukaryotes.

5 Discrete Version

Based on the description above (section 2), we select 4 biochemical species involved in
different chemical reactions, namely DNA, mRNA, proteins and effectors. The simplest
discrete stochastic description of this system is a continuous time Markov chain, with the
state space being the number of each molecules of each species (or the state "ON/OFF”
for the DNA — we assume that there is a single DNA molecule), and with state transition
given by the biochemical reactions (the stoichiometry of the reaction gives the state space
jump, and its reaction rate gives the intensity of the jump). There are several equivalent
representations of a continuous time Markov chain with discrete state space (see Intro-
duction, part 0). We present below the transition function of this Markov chain, and its
generator. Then we deduce immediate consequences for the long-term behavior of this
model.

5.1 Representation of the discrete model

We now write for convenience X = (Xo, X1, X2, X3) for the state of the Markov chain,
with Xy being the state of the DNA, and X7, Xs, X3 respectively the numbers of mRNA,
proteins and effectors. Then the state space of the chain is {0,1} x N3. The one-step
transitions are summarized in table 1.4.

Note that some reactions are catalytic reactions, that is they do not consume any
species. Transition rates (or propensities) associated to first order reactions (degradation
and catalytic) are derived according to the Action-Mass law and are then linear with
respect to one variable. The other transition rates (ki,k;,k,) were derived in the previous
section 3 and can be non-linear functions of the variable X3. More detailed assumption
on these rate functions will be given in the following.

Let us introduce the following notation to simplify the writing.

Notation 1. For any function f(x) with v = (xg,x1,x2,23), we define the following
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Table 1.4:
(X07 X17 X27 X3)

Biochemical Reaction

State-space change vector

Propensity

Gene activation
Gene inactivation
Transcription

mRNA degradation

Translation

Protein degradation
Effector production
Effector degradation

operators:

EQf(x) = f
()

Ef f(x)

By f(z) = f

Ef f(z) = f

By f(z) = f

Ef f(x)

B3 f(z) =

(1,0,0,0)
(—1,0,0,0)
(0,1,0,0)
(0,—1,0,0)
(0,0,1,0)
(0,0, —1,0)
( ) 707 1)
(0,0,0,—1)

= f(wo, $1,9C2,9C3+1

f(xo, 21,22, 23 — 1

Aalix,=01ka(X3)
Ailix,=13ki(X3)
AMlixy=13k1(X5)

X1

Ao X1

Y2 X2

A3 X

13 X3

inactive state,

active state,

= f(xo, 21 + 1,22,23) mRNA production,
—1,z9,23) mRNA degradation,
o, 1, T2 + 1,x3) protein production,

protein degradation,

effector production,

effector degradation.

The generator associated to the Markov chain is then given by

= Aoka(23)(Ey f — f)()+>\/€(w3)(Eof f)(x)

+A1 1y 1yki(23) (BT f
+)\2x1(E2+f — (=
+Aszo(Ey f — f)(x

5.2 Long time behavior

Denote by 7; the "

)
)

@) +nx (B f = ()
+vox2(Ey f — f)(x)
+v3z3(E3 f — f)(2).

Transitions and Parameters used for the pure jump Markov process X =

jump times of the chain X. Firstly, we are going to show that,

under reasonable assumptions, the jump times do not accumulate, that is 7o, = 00. This
ensures that the model is well defined for all ¢ > 0.

Hypothesis 5. The function ky is linearly bounded, and specifically, there exists ¢ > 0
such that, for any r3 € N

kl (xg)

< z3+c

Now by a simple consequence of the Meyn and Tweedie [97, thm 2.1] criterion (see
also part 0 subsection 6.3, proposition 10), we obtain

Proposition 20. The Markov chain defined in subsection 5.1 is non-explosive.

Proof. Choose the test function f(x) = x; + x2 + x3, which is a norm-like function, it
comes directly that

Af(z) < max(Ai, A2, A3) f(x) + c.
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Secondly, we can show the irreductibility. All states communicate with each other as
soon as

Hypothesis 6. The function k., and ki are strictly positive for x3 = 0, and all rate
constants Ag, Ai, A\x and vx, k = 1,2,3, are positive.

Then it is classical that the Markov chain is irreductible.

Finally, for discrete state-space Markov process, a simple criterion for exponential
ergodicity is provided by [97, Theorem 7.1] (see also part 0 subsection 6.3, proposition
15). Assuming

Hypothesis 7. min~y; > max \;,

we then have, with the test function f(z) = z1 + x9 + x3, for all z,
Af(z) < (max \; — min~;) f(x) + Arc.

So the Markov process is exponentially ergodic. There exists an invariant probability
measure p*, B < o0 and S < 1 such that the following convergence in distribution holds

| P(z,) —p* [ly< Bf ()8,

where P!(x,-) denotes the semigroup

P'(e,g) = E.|g(Xe).

and

[ lly= sup [ u(g) |-
lgl<f

Despite we know the long-term behavior of this Markov chain, it’s hard to deduce any
quantitative information. To be able to concrete parameters values, one approach is to
consider constant or linear reaction rate, thus preventing any non-linearity. Thus, analytic
methods through the moment generating function can be used. With such tool, it can be
computed moment equations, and stationary probability density function (or at least, its
moment generating function). However, this techniques seems strictly limited to constant
and linear rate functions. See [104] for a typical example. We sketch some of these results
in section 7.

We will see on the next section that for the continuous deterministic version of this
model, namely the Goodwin model, the picture is much more complete, and can deal with
non-linear rate functions. In particular, bifurcation parameter analysis can provide infor-
mation on the bistability or oscillatory behavior of the model. To get analog information
on the stochastic model, we will have to reduce its dimension. Hence we will study a
one-dimensional stochastic model in section 8, and rigorously prove how to perform such
reduction in section 9.1.

6 Continuous Version - Deterministic Operon Dynamics

A continuous deterministic version of this model ignores the fluctuation in the DNA
state and considers that the three other chemical species (mRNA proteins and effectors)
are present in very large number. We will recall in section 9 standard results to show
that the stochastic discrete model converges to the continuous deterministic model, under
assumption of fast DNA switching and large molecule number. Note in particular that
this model does not represent a statistical mean behavior over a large population of cells,
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unless all rates are assumed linear. We refer to [107, 98] for an interesting survey of
techniques applicable to this deterministic approach, with in particular models that differs
from Ordinary Differential Equation.

We consider in this section the standard Goodwin [48] model. These results are not
new but included here for convenience and to illustrate its analogy with our results on
the stochastic model. Let (x1,x2,z3) denote mRNA, intermediate protein, and effector
concentrations respectively. Then for a generic operon with a maximal level of transcrip-
tion A1 (in concentration over time units), we have dynamics described by the system
48, 51, 52, 100, 128]

d

% = Mki(x3) — iz,

d

% = A1 — Y222, (6.1)
% = A\3T9 — Y3X

a 3L2 — V3T3-

Here we assume that the rate of mRNA production is proportional to the fraction of time
the operator region is active, and that the rates of intermediate and enzyme production
are simply proportional to the amount of mRNA and intermediate respectively. All three
of the components (z1,xz9,x3) are subject to linear degradation. The function k; was
calculated in the previous section 3 and then taken in this section in the form

1+ Keoy
£10m2) = F3 ARy

so that it’s a smooth bounded function, positive everywhere. Hence global existence and
uniqueness of this system is not a problem, and the solution lies in (Rj)?’ for all time.

It will greatly simplify matters to rewrite eq. (6.1) by defining dimensionless concen-
trations. To this end we define the dimensionless variable

A3
Y1 = ﬂ n\/ chlv
Y372

Ag
Y2 = — ch27
i

3
ys = A/ Kcxs,

and the system eq. 6.1 then becomes

dyr
i 1lkaf(y3) —yil,
dys
ZJ4 _ 6.2
dt ’72(91 y2), ( )
Ws _ Y3(y2 — y3)
7t 3(y2 — y3)-
where
o — A3 VK,
I Y2

is a dimensionless constant, and the function f is given by

14y

fys3) = m (6.3)

In each equation, ; for i = 1,2, 3 denotes a net loss rate (units of inverse time), and thus
eq. 6.2 are not in dimensionless form.
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The dynamics of this classic operon model can be fully analyzed. Let Y = (y1, y2,y3)
and denote by S¢(Y) the flow generated by the system eq. (6.2). For both inducible and
repressible operons, for all initial conditions Y9 = (y?,49,49) € R} the flow S;(Y?) € RS
for t > 0.

Steady states of the system eq. (6.2) are in a one to one correspondence with solutions
of the equation

Y

Kd
and for each solution y* of eq. (6.4) there is a steady state Y* = (yf,y5,vy3) of eq. (6.2)
given by

=y =ys=y"

Whether there is a single steady state y* or there are multiple steady states will depend
on whether we are considering a repressible or inducible operon. The detail derivation of
the steady-state and their stability is standard ([48, 146, 51, 52, 100, 133]) and is given
for an interesting comparison with the stochastic model discussed in section 8.

6.1 No control (single attractive steady-state)

In this case, f(y) = 1, and there is a single steady state y* = k4 that is globally
asymptotically stable.

6.2 Inducible regulation (single versus multiple steady states)

For an inducible operon with f given by eq. (6.3) with A = 1 and A > 1, there may
be one (Y* or Y5), two (Y7*,Y5 = Y5* or Y* = Y55, V5), or three (Y7*, Y5, Y5") steady
states, with the ordering 0 < Y}* < Y5* < Y5, corresponding to the possible solutions
of eq. (6.4) (cf. figure 1.5). The smaller steady state (Y7*) is typically referred to as an
uninduced state, while the largest steady state (Y5*) is called the induced state. The steady
state values of y are easily obtained from eq. (6.4) for given parameter values, and the
dependence on k4 for n = 4 and a variety of values of A is shown in figure 1.5. Figure 1.6
shows a graph of the steady states y* versus x4 for various values of the leakage parameter
A.

Analytic conditions for the existence of one or more steady states can be obtained by
using eq. (6.4) in conjunction with the observation that the delineation points are marked
by the values of k4 at which y/k4 is tangent to f(y) (see figure 1.5). Simple differentiation
of eq. (6.4) yields the second condition

1 ynfl

(A1) ~ (A1 g2 (6.5)

From eq. (6.4) and eq. (6.5) we obtain the values of y at which tangency will occur:

A-1 A+1 A+1
O e R 2 _ . .
Y+ 3 {[n 1] \/n 2n 1 +1} (6.6)

The two corresponding values of x4 at which a tangency occurs are given by

A+y%.
1+ y%

Rd+ = Yx

(Note the deliberate use of y+ as opposed to y+.)
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Figure 1.5: Schematic illustration of the possibility of one, two or three solutions of eq. (6.4)
for varying values of k4 with inducible regulation. The monotone increasing graph is the
function f of eq. (6.3), and the straight lines correspond to x/kq for (in a clockwise
direction) kg € [0,Kq_), Kd = Kd—,Kkd € (Ki—, Kd+), Kd = Kd+, and kg4 < kq. This figure
was constructed with n = 4 and A = 10 for which xk;_ = 3.01 and x4, = 5.91 as computed
from eq. (6.7). See the text for further details.
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05

1 2 3 4 5 6 7 8 910

Figure 1.6: Full logarithmic plot of the steady state values of y* versus x4 for an inducible
system, obtained from eq. (6.4), forn = 4 and A = 2,5, 10, and 15 (left to right) illustrating
the dependence of the occurrence of bistability on A. See the text for details.

A necessary condition for the existence of two or more steady states is obtained by
requiring that the square root in in eq. (6.6) be non-negative, or

A= (n+1>2. (6.8)

n—1

From this a second necessary condition follows, namely

n+1 /n+1
> A . .
n—1\Vn-—1 (6.9)

Rq =2

Further, from eq. (6.4) and (6.5) we can delineate the boundaries in (A, k4) space in which
there are one or three locally stable steady states as shown in figure 1.7. There, we have
given a parametric plot (y is the parameter) of k4 versus A, using

[A) +y"]
ny = [AGy) — 1]
for n = 4 obtained from eq. (6.4) and (6.5). As is clear from the figure, when leakage is

appreciable (small A, e.g for n = 4, A < (5/3)?) then the possibility of bistable behavior
is lost.

Ay) = yTET[Lyi J{)EJZ J: 11)] and  kq(y) =

Remark 21. Some general observations on the influence of n, A, and kg on the appearance
of bistability in the deterministic case are in order.

1. The degree of cooperativity (n) in the binding of effector to the repressor plays a
significant role. Indeed, n > 1 is a necessary condition for bistability.

2. If n > 1 then a second necessary condition for bistability is that A satisfies eq. (6.8)
s0 the fractional leakage (A1) is sufficiently small.

3. Furthermore, kq must satisfy eq. (6.9) which is quite instructive. Namely for n — o
the limiting lower limit is kq > 1 while for n — 1 the minimal value of kg becomes
fairly large. This simply tells us that the ratio of the product of the production rates
to the product of the degradation rates must always be greater than 1 for bistability
to occur, and the lower the degree of cooperativity (n) the larger the ratio must be.
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Figure 1.7: In this figure we present a parametric plot (for n = 4) of the bifurcation
diagram in (A, kg) parameter space delineating one from three steady states in a deter-
ministic inducible operon as obtained from eq. (6.4) and (6.5). The upper (lower) branch
corresponds to kg (k44 ), and for all values of (A, kq) in the interior of the cone there are
two locally stable steady states Y;*, Y5*, while outside there is only one. The tip of the cone
occurs at (A, kq) = ((5/3)2, (5/3)4/5/3) as given by eq. (6.8) and (6.9). For A € [0, (5/3)?)
there is but a single steady state.
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4. If n, A and kg satisfy these necessary conditions then bistability is only possible if
Kd € [Kq—, ka+] (c.f figure 1.7).

5. The locations of the minimal (y—) and mazimal (y4) values of y bounding the bistable
region are independent of kq.

6. Finally

(a) (y+ —y—) is a decreasing function of increasing n for constant rq, A

(b) (y+ —y—) is an increasing function of increasing A for constant n, k.

Local and global stability. The local stability of a steady state y* is determined by the
solutions of the eigenvalue equation [149]

A +7)A+72) A +73) —nveyskafs =0, fo = f'(y"). (6.10)
Set

3 3 3
ar= Y% ax= Y, vy as=1—rafi)] [
i=1 =1

i#j=1

o eq. (6.10) can be written as
)\3 + al)\2 + asA +az = 0. (6.11)

By Descartes’s rule of signs, eq. (6.11) will have either no positive roots for f € [0,;") or
one positive root otherwise. With this information and using the notation SN to denote a
locally stable node, HS a half or neutrally stable steady state, and US an unstable steady
state (saddle point), then there will be:
— A single steady state Y;* (SN), for k4 € [0, Kq—)
— Two coexisting steady states Y;* (SN) and Y5* = Y5* (HS, born through a saddle
node bifurcation) for kg = Kkgq—
— Three coexisting steady states Y;*(SN), Y5*(US),Y5* (SN) for kg4 € (Ka—, Kd+)
— Two coexisting steady states Y{* = Y;* (HS at a saddle node bifurcation), and Y5*
(SN) for kg = Ka+
— One steady state Y5* (SN) for kg < Kgq.
For the inducible operon, other work extends these local stability considerations and
we have the following result characterizing the global behavior:

Theorem 22. Othmer [100], Smith [133, Proposition 2.1, Chapter 4] For an inducible
operon with f given by eq. (6.3), define In = [L/A,1]. There is an attracting box By < R
defined by

Ba = {(y1,92,y3) 1 xi € In, i =1,2,3}

such that the flow Sy is directed inward everywhere on the surface of By. Furthermore, all
y* € Bp and

1. If there is a single steady state, i.e. Y* for kg € [0,kq_), or Y5* for kgy < kg, then
it 1s globally stable.

2. If there are two locally stable nodes, i.e. Yi* and Y5 for kg € (Ka—,Kat), then all
flows S(Y?) are attracted to one of them. (See [128] for a delineation of the basin
of attraction of Yi* and Y5'.)
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Figure 1.8: Schematic illustration that there is only a single solution of eq. (6.4) for
all values of k4 with repressible regulation. The monotone decreasing graph is f for a
repressible operon, while the straight lines are x/ky. This figure was constructed with
n =4 and A = 10. See the text for further details.
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6.3 Repressible regulation (single steady-state versus oscillations)

We now consider a repressible operon with f given by eq. (6.3) with A > 1 and A = 1.

As illustrated in figure 1.8, the repressible operon has a single steady state corresponding

to the unique solution y* of eq. (6.4). To determine its local stability we apply the Routh-

Hurwitz criterion to the eigenvalue eq. (6.11). The steady state corresponding to y* will

be locally stable (i.e. have eigenvalues with negative real parts) if and only if a; > 0
(always the case) and

aijag — az > 0. (6.12)

The well known relation between the arithmetic and geometric means
Lo n 1/n
n 4 :
=1 =1

when applied to both a; and as gives, in conjunction with eq. (6.12),

3
ajags — ag = (8 + /%df;) H%‘ > 0.
=1

Thus as long as f] > —8/kg, the steady state corresponding to y* will be locally stable.
Once condition eq. (6.12) is violated, stability of y* is lost via a supercritical Hopf bifur-
cation and a limit cycle is born. One may even compute the Hopf period of this limit
cycle by assuming that A = jwy (j = v/—1) in eq. (6.11) where wy is the Hopf angular
frequency. Equating real and imaginary parts of the resultant yields wy = +/as/a; or

3 .
TH:2_7T:27T><\/ izt i

wH 1 —wkaf) T v

These local stability results tell us nothing about the global behavior when stability is
lost, but it is possible to characterize the global behavior of a repressible operon with the
following

Theorem 23. [133, Theorem 4.1 & Theorem 4.2, Chapter 3] For a repressible operon with
¢ given by eq. (3.11), define In = [1/A,1]. There is a globally attracting box Ba < RY
defined by

Ba = {(y1,y2,y3) : x; € In, 1 =1,2,3}

such that the flow S is directed inward everywhere on the surface of Ba. Furthermore
there is a single steady state y* € Ba. If y* is locally stable it is globally stable, but if
y* is unstable then a generalization of the Poincare-Bendizson theorem [133, Chapter 3]
implies the existence of a globally stable limit cycle in Ba.

Remark 24. There is no necessary connection between the Hopf period computed from
the local stability analysis and the period of the globally stable limit cycle.

7 Bursting and Hybrid Models, a Review of Linked Models

We summarize here different models that appeared in the literature and review the
analytic results available on these models. For most of these models, these results concern
constant or linear reaction rates. All these models are linked with the standard model we
present in section 5. We also introduce our labeling for these models, that will be useful
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for naming them in section 9. Hence, capital letters D (respectively C') refers for a discrete
(respectively continuous) state-space model; capital letters S (respectively B) stands for a
model that includes gene switching (respectively bursting). The number (1,2, 3) refers to
the number of variables included in the model among mRNA, protein or effector molecules.
All variables and parameters are defined through table 1.4. Below, the stochastic models
are stated using a stochastic equation formalism. All Y; are assumed to be independent
unit Poisson processes, and are related to the number of times a given reaction fires (see
part 0, subsection 6.2, remark 5). When we refer to the case in the absence of regulation,
we mean that the three rate functions k,, k; and ki are taken constant equal to 1.

7.1 Discrete models with switch

This model is considered in section 5, and takes into account the four steps described
in section 2, namely gene state (Xp), mRNA (X;), protein (X2) and effector molecules

(X3).

( t t
Xo(t) = Xo(O) + Yi L )\al{XO(s)=0}ka(X3(8))d8) - Yé (JO )\il{XO(s)=1}ki(X3(8))d8),
t

(

< Xi(t) = Xi(0) +Y3(£ A o)1 K1 (Xa(s)ds ) _Y4(Jo X1 (5)ds),
(JZ A2 Xy (S)ds) - Y ( J: ’YQXQ(S)ds),
( t

L t )\3X2(s)ds) - Yg( L 73X3(8)d8).

Up to our knowledge, no one considered this model!

SD2 This model is more widely used, and consider three steps, namely gene state (Xp),
mRNA (X)), protein (X3) (which coincide here with effector molecules).

t

=
P
~
N—
Il

t
Xo(O) + Yi (L )\al{XO(s)=0}ka(X2(8))d8) - Yé (JO )\il{XO(s)=1}ki(X2(8))d8),

1 X = Xi0)+va( f:mm(s)1}k1(X2(s>>ds)—Y4( f:lel(sms),

X5(0) + Yg,(ﬂ A2X1(s)ds) - YG(f 72X2(s)ds).

0

<
no
P
~
N—

I

For a review of the behavior of this model without regulation, see [74],[130],[110]. In [102]
the author derived asymptotic expression of the moments (and of the measure of noise)



84 Hybrid Models to Explain Gene Expression Variability

and used it to interpret various model behavior in different kinetic parameter range

Aa
<Xog>=P{Xg=1t = Poy =
0 {o } ON FVEY
A
<X1>=P0N—1
4!
A
<X2>——2
V2
08 1_PON
<AXV()>2 PON
of _ 1 + a3 "N
<X1>? <X1> <Xo>2yi+A+N
2 2
1 1
% __ 2 i 2 " " £y

+ +
<Xy>? <Xo> <Xi>m+4+m <Xo>2mt+tmrtltAN Attt 7
In particular, it can be seen from the expressions above, that such model typically present
higher fluctuations than a single Poissonian model. Each successive steps brings a contri-
bution in the amount of noise (measured typically as variance over mean squared) of the
protein variable for instance.

SD1 This model consider a single variable among the gene products, to be either mRNA
or protein. It has the great advantage to be analytically solvable in the absence of non-
linearity.

t t
Xo(O) + Yi (JO )‘al{XO(s):O}ka(Xl (S))dS) — }/2 (JO )\il{XO(s):l}ki(Xl (S))dS),

X1(0) + Y3<£ )\11{X0(s)=1}k1(X1(3))d3) _ Y4(£ ’Yle(S)ds).

The authors in [104] computed the analytical steady-state distribution in the case without
regulation (kq, kg, k; constant) and time-dependent moment dynamics, assuming there’s
no gene product at time 0;

Xo(t)

X1(2)

)\a )\1 )\a)\l —( Ay 4\ )\a)\l _
<X;i>(@1) = =+ e~ (AatAi)t _ et
1> () Aat A (Ao +A)(Aa + A —m1) Y1(Aa + Xi —71)

2 Aa A1 N Aol M

I t) = A
eSO Rl wray vl S WS W O S W s &
g(z) = 1F1(c,a,b(z - 1))7

et & [z (a —c); , ,
D, zbml—!Z ( ,1>(—1)Z( ) 1Fi(a—c+i,a+1,b),

(a)i

E[X1(X1 —1)-- (X1 —n+1)] :bnc(c+1)"-(c+(n—1))

ala+1)---(a+n—-1)"

where g(z) denotes the asymptotic moment generating function of X1, py. its asymptotic
distribution and

i + A
Q= —
4!
po M
4!
Aa
C =

n
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Still in the case without regulation, the authors in [68] derived the time-dependent prob-
ability distribution (starting with zero mRNA)

g(z,t) = fl(t)lFl(ca a, b(z - 1)) + fQ(t)lFl(l +c— CL,2 - a7b(z - 1))
where

Fi(t) = 1P (¢ 1 — a, —be "1 C7Y)

f2(t) = %eaﬂfllfa(a ) 1+ a, _beii(Z7l))
The authors in [63] and [112] extended the result for linear regulation (ki,k, constant
and k;(X;) = z1). All studies put in evidence that this model contains two main time
scales, namely the gene switching and the gene product birth-and-death process, and that
the distribution of gene product can be seen as a superposition of Poisson distribution.
Roughly, when the two time scales are comparable, the probability distribution exhibits a
bimodal behavior.

The authors in [126] present numerical simulations of the model with non-linear neg-

ative regulation.

7.2 Continuous models with switch

SC3 This model is the continuous analog of SD3.

t t

Xo(t) = Xo(0) +Y1(f )\al{XO(s)zo}ka(xg(s))ds> - Yg(f )\il{XO(s)zl}ki(xg(s))ds>,

0 0
i1(t) = ligw=nMki(zs) —ma,

To = Ax1 — Y22,

T3 = A3T2 — Y3T3.

Here again, up to our knowledge, no-one considered this model!

SC2 This model is the continuous analog of SD2.

t t

Xo(t) = Xo(O) + Yi (L )\al{XO(s)=0}ka(IL’2(8))d8) - Yé (L )\il{XO(s)=1}ki(x2(3))ds)7
i1(t) = Lixom=13Aki(z2) — 1z,
Ty = AaT1 — V2.

The authors in [13] considered this model and proved asymptotic stability of the related
semi-group on L', for continuous function k, and k;, and constant function k;. They used
a method based on the “Foguel Alternative”. The authors in [87] considered numerical
simulation of this model with linear regulation (k4, k1 constant and k;(x2) = x2)

SC1 This model is the continuous analog of SD1.

t t

Xolt) = Xo(0)+Y1(j
0
1(t) = Lixgp=Mki(z1) —nxr.

)\al{Xo(s)=0}ka(331 (S))ds) -Y, ( L

>\¢1{Xo(s)=1}kz‘(3«“1(8))d8),
The authors in [87] computed the steady-state distribution of this model with linear reg-
ulation (kg, k; constant and k;(z1) = x1)

2a_1 A1 X

i
T
by = AR A
1
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where A is a normalizing constant. The authors in [144] computed the steady-state dis-
tribution of this model with non-linear regulation (k;, k1 constant and k,(x1) = ¢ + —2L-)

r1+K
A %5_1()\1 )%_1(1+x1)§—‘;
P ! gt ! K
while with (kg, k1 constant and k;(x1) = ¢ + m%)
Aa _q X (K(1+¢e)+e) M\ K
Py = Axy! (ﬁ —py) @ N1 4 2T
ga! K

where A is a normalizing constant. Each expression above can be used to determine which
are the conditions for the steady-state distribution to exhibit bimodality.

7.3 Discrete models without switch

In these models, the gene is now assumed to stay active for all times.

D3
r Xi(t) = X1(0) + YE),(J: Alkl(Xg(s))ds) ~ n(ﬂ flel(s)ds>,
{ Xo(t) = Xo(0)+Ys ( f: Ao X (s)ds) — Y ( f: 72X2(s)ds),
X3() = X3(0)+ Y ( Lt )\3X2(s)ds> Y ( Lt ’y;:,Xg(S)dS).

Note that in the absence of regulation, X is independent of X5,X3 and follows a one-
dimensional Markov-process, known as the immigration and death process. Its asymptotic
distribution is Poissonian. For the whole system, up to our knowledge, no study reported
its asymptotic distribution (see the case for 2 variables below). However, being an open
first-order reaction network, with both conversion and catalytic reaction, the study of
Gadgil et al. [40] allows to derive time-dependent first and second moment.

D2 , ,
Xi(1) = X,(0) +Y3(J Ay (Xa(s))ds ) — i ( f 71X (s)ds).
0 0
t ¢
Xo(t) = X(0) + Y5(J A2X1(s)ds) - Yé(f 72X2(s)ds).
0 0
In the absence of regulation, asymptotic moments are given by [142].
A
<X >= A
!
A1A
< Xy > = 212
Y172
A
Var(X;) = i
!
A1 A2 A2
Var(Xs) = 1+
(%2) Y172 ( ga! +’72)
ALA
COU(Xl,XQ = 172

Y1(v1 +72)
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A complete study of the asymptotic distribution is provided in [14], whose moment gen-
erating function is given by

o(z,y) = ea:p(a,@ f M(1,1+7,8(s — 1))ds + a(z — )M(1,1 +, By — 1))

where

n
V2
A1

st
A2

V2

8=

From this expression, the authors in [14] derived asymptotic different behavior of the
marginal protein distribution, including Poisson, Neymann, negative Binomial, Gaussian
and Gamma distribution.

For the non-linear regulation case, the authors in [142, 139, 140] used the linear noise
expansion and simulation to study the asymptotic and transient moment behavior with
respect to the regulation function. Their study show that negative regulation can increase
or decrease noise strength.

D1
X1(t) = X1(0) + Y},(J: Alkl(Xl(s))ds> . n(ﬂ flel(s)ds)

The authors in [132] derived approximation of the time-dependent first moments using
moment closure approximation, and successfully compared it with experimental data of
the A-repressor system. As a one-dimensional discrete Markov-chain, its asymptotic dis-
tribution can also be derived.

7.4 Continuous models without switch

These models were the first one introduced to model gene self-regulation.

C3
1 = Mki(xg) — iz,
To = Aowy — YoXg,
T3 = A3T2 — Y3T3.

This model was originally introduced by [48]. See subsection 6 for a complete study of the
asymptotic behavior of this model.

C2 _
{ 1 = Mki(x2) — iz,
To = Aoy — Yod2.

In absence of regulation, the above system can be analytically solved

z1(t) = Ay (a:l(O) — ﬁ)e_%t

Ba! Ba!

A1 A2 AtA2N oy A1
zo(t) = + [29(0) — —= 2 N 21(0) — —= ) F(t
2() Y172 ( 2( ) 7172> 2< 1( ) ’Yl) ()
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where

e~ V1t _eg=72t .
F(t) — 72771 lf 71 # ’}/27
te= 2t if 1 = o.
In the presence of positive regulation, this model has essentially similar asymptotic behav-
ior as the previous model C3. In the presence of negative regulation, however, oscillations

are not present any more when k; is a standard Hill function as in eq. (3.12).

C1
.fl = )\1]{31(1’1) — Y1T1-

In the presence of positive regulation, this model has essentially similar asymptotic behav-
ior as the previous model C3. In the presence of negative regulation, however, oscillations
are not present any more when k; is a standard Hill function as in eq. (3.12).

7.5 Discrete models with Bursting

We now turn to Bursting model. Below Ry is the counting process associated to the
number of times a bursting event happens. It is regulated by the effector or protein
molecules.

BD2 This model can be obtained from SD2 or D3, upon a particular scaling (see sec-
tion 9).

[ Rot) - Y(ﬂmlm(s))ds),
<Xw>=<&mwwdme@ma+2uxfu@hm@WHM%@,

0 i>1 0
t

Xo(t) = X(0) + Zl< L t A2X1(s)ds) - Zg(fo 72X2(s)ds).
BD1
Ro(t) — Y(Lt)\lkl(Xl(s))ds>,
Xi(t) = Xi1(0) —Yo(fflel(s)ds> + Zz’Yi(f1{(%_1,%]}(§RO(S_))dR0(s).
0 i=0 0

The authors in [129] presented stationary and time-dependent probability distribution
when k7 is constant and the jump size a geometric random variable, of mean parameter b.

1+ b(l — z)e’t/’Yl a
9(z1) = [ 1+b(1—2) ]
_ I'(a+n) b \n/1+ be~t/m
Pan () = C(n + 1)T(a) (1 +b) ( 1+0b
<X > (t) = ab(l — e*t/’Yl)
o (t) =< X1 > (1) (1 + b + be 1)

1+0 )

a
) 2F1(_n’_a’1_a_n’7b+e—f/71

where a = )‘—11 The authors in [4] computed the analytical stationary distribution for general
nonlinear regulation &y

r1—1 .
Po T k(i) b—-1
pr =0 | T (@757 257).

i=1 v



7 Bursting and Hybrid Models, a Review of Linked Models 89

7.6 Continuous models with Bursting

In continuous bursting model below, N (ds,dz,dr) stands for a Poisson random mea-
sure, of intensity dsh(z)dzdr where h is a probability density that gives the size of the
burst.

BC2 This model can be obtained from SC2 or BD2, upon a particular scaling (see
section 9). We will consider its adiabatic reduction in subsection 9.3.

t t oo oo
z1(t) = x1(0) —f v1z1(s—)ds +J f f 21k (o (s—))} NV (ds, dz, dr),
0 0,Jo Jo
t
xo(t) = x2(0) +j Xox(s—)ds —J Yoxa(s—)ds.
0 0

BC1

t t 0O 00
z1(t) = 21(0) — f Nzi(s—)ds + f f f 2Lk (o1 (s— )3V (ds, dz, dr).
0 0Jo Jo

The authors in [20] used this model without regulation to successfully fit data from the
[-galactosidase protein in E.Coli. The asymptotic distribution is the Gamma distribution

_ 1 a—1_—z/b
bel'(a)

Pzy

where a = % The authors in [39] computed the analytical expression of the steady-state
distributions for non-linear regulation rate ki, and exponential bursting size of mean b.

1 — k1(2)
pe, = Az e o/bea | 757 4z

where A is a normalizing constant.

7.7 Models with both switching and Bursting

These models can be obtained from SD2.

SBD1

-

Xo(t) = Xo(0)+ Y1<£ )\al{XO(s):O}ka(Xl(S))dS> - Y2<Jot )\il{XO(s):l}ki(Xl(S))dS>,

{ Ro(t) = Y(LtAll{xo(s)=1}k1(X1(8))d8),
X)) = X0 - jo twcl(s)ds) + Y v( fo L) e )ARo().
=1

\

The authors in [129] presented stationary probability distribution when k,, k;, k1 are con-
stant, and the burst size is a geometric random variable of mean b.

I'(a+n)['(B +n)I'(d)
I'(n+ 1)I'(a)I(B)T(d +n)

() (- 159)'

><2F1<a+n,d—,8,d+n,1;:b)

Pzy =
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where
A1
a = —
gs!
Aa
cC = —
B!
d= i+ A
gi!
1
1
p=3la+d=9)
¢* = (a + d)?® — dac
SBC1
t t
Xot) = Xo0) + H(L Aoy o)—op ka1 (9))ds) — Yo L MLy o)-1ykia1())ds).
t t oo OO
z1(t) = x1(0) - L Y1@1(s—)ds +L Jo L Z]-{r<A11{X0(5)=1}k1(zl(sf))}N(d&dzadr)'

7.8 Hybrid discrete and continuous models

Di1C1

Xi(t) = X1(0)+Ys ( i Ay (:cg(s))ds) — v ( {7 xy (s)ds),
To = XoXi— Yro.

In the absence of regulation, the asymptotic characteristic function of the protein variable
x2 has been found to be ([14])

w(s) = e:r:p(a JOSB M(1,1+ 7, z)dz)

where
_m
V2
A1
il
A2
V2

B =

This asymptotic expression include both the Gamma and Poisson distribution as limiting
behavior.

SD1C1

t t

Xo(t)

Xo(0) + Vi (L Aoy e)—op ka1 (9))ds) — Yo L MLy o)-1yki2()ds).

t
Xl(t) = X1(0) + Yé(fo All{XO(S):l}kl(,Z‘Q(S))dS) — }/4<L ’)/1X1(S)d8),
To = XXy — 7272,

The author in [101] considered this model as an approximation of the SD2 model, and
present moment calculation and numerical simulation of this model.
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Obviously, different model can again be built with similar features, and the list above
is not exhaustive. Although not directly related to our work, we present in the next
paragraph different approach of modeling. Such modeling review is intend to show the
variety of possible choices of modeling.

7.9 More detailed models and other approaches

We first review more detailed models of single gene, then models that take into account
other source of noise, and finally models with interaction between genes.

In its Ph.D. thesis work, Jia [71] makes the review of the standard model of gene expres-
sion and its different limiting behavior, in particular condition for occurrence of bursting.
Then he generalizes the model to consider non-exponential waiting time between burst
events, as well as non-geometric burst size distributions (see also Pedraza and Paulsson
[105]). He gives a specific example of model of post-transcriptional regulation with small
mRNA (a different from but related molecule to mRNA) that yields non-geometric burst
size distribution. For other models taking into account post-transcriptional regulation by
small mRNA, see Bose and Ghosh [15], Gorban et al. [49] and for a review of biological
mechanisms of post-transcriptional regulation, see Storz and Waters [136].

For models with more than two states of the promoter, see the pioneering work of
Tapaswi et al. [141]. Also, Blake et al. [11] used a model with four promoter states to
reproduce faithfully the GAL system in prokaryotes. In agreement with data, the main
finding is that the level of noise in gene expression is non-monotonic with respect to the
level of transcription efficiency. Coulon et al. [24] also considered a model with more than
two states for the promoter, and extensively studied the effect of promoter transition on
noise strength on protein level.

For models at a much finer scale, that explicitly take into account dynamics of mRNA
polymerase and complex formation, see Dublanche et al. [30], while for mRNA polymerase
and ribosome dynamics see Kierzek et al. [78], Gorban et al. [49]. A model that goes up to
the single-nucleotide level was proposed by Ribeiro [116]. For spatially extended model,
see Sagués et al. [122].

In the standard model we consider here, we implicitly assume that there is only one
“intrinsic” source of randomness. Indeed, the stochasticity in the model comes from the
random occurrences of the discrete events that constitute the reaction network directly
linked to the single gene model (or its product) we study. There are obviously many other
sources of randomness that can influence the stochasticity in the gene expression. Firstly,
the partitioning event at division is an evident source of randomness when we consider dis-
crete number of molecules. Daughter cells may have different sizes, and each molecule then
has to “choose” between the two daughter cells. Common model that include randomness
at partition consider a binomial partition law (see pioneering work of Berg [9], and more
recently Huh and Paulsson [65]), which has been supported experimentally [120, 47]. Sec-
ondly, a lot of experimental and modeling approaches have focused on “extrinsic” sources
of noise, in particular since the experimental paper of Elowitz et al. [34]. There, the
authors used two reporter genes (one with a red fluorescence, one with a green fluores-
cence), localized at very similar place in the genome, with the same promoter sequence,
and measured the fluorescence level of these two genes in single cells. If there were only
extrinsic noise, all cells should have the same proportion of red and green fluorescence, at
different global intensities. The observed fluctuations in these proportions from cell to cell
is attributed to the intrinsic noise. Lei [86] made a review of the different mathematical
formulations of extrinsic noise. Usually, the modeling of extrinsic noise includes fluctua-
tions of kinetic parameter, especially of the gene regulation function (see Rosenfeld et al.
[120] for experimental evidence), as a Gaussian colored noise [138, 85] (with a Langevin
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formalism). Noise due to randomness in the repressor molecule numbers can also be seen
as an extrinsic noise. Ochab-marcinek and Tabaka [99] consider this source of noise and
show that it can be responsible for bistability (using similar geometric construction-based
proof as in our case, in section 8). See also [30] for an experimental evidence that extrinsic
noise can have qualitative impact on the gene expression behavior.

For model with two genes in interaction see for instance the pioneering work of Kepler
and Elston [77], followed by instance by [87]. In such study, bifurcation characterization
is of importance. Indeed, interaction of two genes has been widely used to explain cell
differentiation fate, where each gene codes for a protein that is responsible of a particular
cell lineage. In case of bistability, each stable state then represent a stable cell fate. See
for example [79, 117, 137] for recent models applied to individuals cell data. For larger
network, experiments and modeling has mostly focused on the quantification on the noise
strength of the gene expression level (also called variability), as an output of the model,
and as a function of the parameters and rate function or functional motif, (see Cagatay
et al. [21]). Besides from extensive numerical simulations, the diffusion approximation of
the discrete model has been widely used, see for instance [16].

Finally El-Samad and Khammash [31], Karlebach and Shamir [76] review other ap-
proaches of modeling of gene regulatory network, including boolean, probabilistic boolean,
petri nets, discrete, continuous and hybrid models, See also the review of [1] for piecewise
linear ordinary differential equation and delayed differentiation equation approach. For
stochastic and delayed models, see Ribeiro [116], Galla [41]

8 Specific Study of the One-Dimensional Bursting Model

We detail here the study of the one-dimensional bursting model, either in a discrete
formalism (which is then a pure jump Markov process, subsection 8.1) and in a continuous
formalism (which is a piecewise deterministic Markov process, subsection 8.2). For both
formalism, we will recall the construction of the stochastic process (and then its existence),
and study its long time behavior, using a semigroup formalism (see part 0 subsection 6.5).
Once asymptotic convergence has been proved, we study the qualitative property of the in-
variant probability distribution. The advantage of the one-dimensional model is to possess
a probability distribution on the Gibb’s form. By analogy to the deterministic modeling,
we will speak of a bifurcation when the number of modes of the probability distribution
change (called P-bifurcation in the literature). This analogy allows a direct comparison
between bifurcation diagrams, and then to deduce the influence of the bursting produc-
tion on the qualitative dynamics of gene expression. Note that such stochastic bifurcation
concept has been applied to empirical measurement data by [134], where the authors ob-
tained an experimental bifurcation diagram by controlling experimentally a parameter
and estimating the probability distribution for each parameter value. Up to now, our an-
alytic treatment is restricted to the case of exponential (or geometric in the discrete case)
jump distribution. This case is probably the most interesting however, as it is (up to our
knowledge) the only case measured experimentally (see [22, 47, 111, 150]).

Finally, we show how can compute an explicit convergence rate towards the steady-state
measure in subsection 8.5, and as a corollary of our study of the asymptotic behavior of the
bursting model, we present in subsection 8.6 the inverse problem to recover the regulation
function from the invariant density. This latter part is an ongoing project, where we try to
collect experimental data to apply our theoretical study of the model. The inverse problem
may be very interesting in the sense that it permits to deduce molecular interactions that
governs the regulation function (see for instance section 3), which are not easily observable
experimentally.



8 Specific Study of the One-Dimensional Bursting Model 93

Reaction Propensity | State change vector
Degradation Yn -1
Burst Production r hyAn +r

Table 1.5: Definitions of the reactions, propensities and state change vector from the n
state in the discrete model. See text for more details.

The first subsection will be the object of a future publication ([93]), and the second
one was published in 2011 ([91]).

8.1 Discrete variable model with bursting BD1

In this section we model the number of gene products in a cell as a pure-jump Markov
process X = {X;};>0 in the state space £ = {0,1,2,...}. Thus a Chapman-Kolmogorov
governs the probabilities dynamics. A general one-dimensional bursting gene expression
model [129] (BD1, see subsection 7.5) may be constructed as follows: let n be the number of
gene products and P, (t) = Pr(X; = n) denote the probability for finding n gene products
inside the cell at a given time instant ¢. We shall include a loss (n — n — 1) and gain
(n — n+k) of functionality processes in terms of the general rates 7, and \,, respectively.
The step size assume the values k£ = 1,2,3,... and is a random variable (independent of
the actual number of gene product) with probability mass function h, so thatz,jg hi = 1.
Therefore, the Chapman—Kolmogorov equation (or master equation) describing the time
evolution of the probabilities P, to have n gene products in a cell is an infinite set of
differential equations

dpP, =
— = = Y1Post = WP+ D MdnckPack — AnPay n=0,1,..., (8.1)
dt =

where we use the convention that 22:1 = 0. We supplement eq. (8.1) with the initial
condition P,(0) = v,, n =0,1,..., where v = (v,)n>0 € ¢! is a probability mass function
of the initial amount X of the gene product. We give existence and uniqueness of solutions
of eq. (8.1) together with convergence to a stationary distribution.

We assume that

M>0, 9%0=0 >0, Ahy=0, n=12..., > hy=L (8.2)

The process X is the minimal pure jump Markov process with the jump rate function
o(n) = A\ + Yn,n = 0, and the jump transition kernel K given by

dn, lf]:—l,TLZl,
Kn,{n+j}) =< 1 —=qn)hj, ifj=1,n=>0, Gn = )\’}/7717 (8.3)
0, otherwise. n T

Firstly, we recall the construction of X. Let {{x}r>0, be a discrete time Markov chain in
the state space £ = Z, = {0,1,...} with transition kernel I and let {¢;};>1 be a sequence
of independent random variables exponentially distributed with mean 1. Set Ty = 0 and
define recursively the times of jumps of X as

Ty =Ty + ;
(&)
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Starting from Xg = £y we have
X = &, Tk<t<Tk+1, k‘ZO,l,Q,...,
so that the process is uniquely determined for all t < Ty,, where

Tw = lim Ty,
k—00

is called the explosion time. If the explosion time is finite, we can add the point —1 to the
state space and we can set X; = —1 for t > T,. The process X is called nonexplosive if
P;(To, = o0) =1 for all i € E, where P; is the law of the process starting from Xy = i.

We now rewrite eq. (8.1) as an abstract Cauchy problem in the space ¢!. We make
use of the results from [145]. Let K be the transition operator on ¢! corresponding to K
defined as in eq. (8.3). For v = (v,)n=0 € ¢! we have (Kv)g = q1v1 and

n
(Kv)n = Qn+1Un+1 + 2 hk(l - Qka)'Unfk) n=12....
k=1

Let us define the operator

0
Gu = —pu + K(pu) for ueﬁiz{ue£1:2¢n|un|<oo}.

n=0

There is a substochastic semigroup {P(t)};=0 on ¢! such that for each initial probability
mass function v € E}D the equation

du
= =Gw), t>0, u(0)=v, (8.4)

has a nonnegative solution u(¢) which is given by u(t) = P(t)v for t > 0 and
0
(P(t))n = D Pj(Xy =n,t <To)vj, n=0,1,....
j=0

The process X is nonexplosive if and only if the semigroup {P(¢)};>¢ is stochastic. Equiv-
alently, the generator of the semigroup {P(t)}:>0 is the closure of (G,E}p). In that case
the solution u(t) of eq. (8.4) is unique and it is a probability mass function for each t,
if v is such. In particular, if the operator K has a strictly positive fixed point, then the
semigroup {P(t)}:;>o is stochastic. Thus, we now look for fixed points of K.

The equation for the steady state p* = (p};)n=0 of eq. (8.1) is of the form

n
Vnt1Dps1 = TP + D) hkdn—kPi_p — Anph =0, n=0,1,.... (8.5)
k=1

Observe that y1p} = A\op§ and we can rewrite eq. (8.5) as

n—1
7n+1p:+1 - 'an: = )\np: - 2 hnkakp;:a n=12....
k=0
Summing both sides and changing the order of summation, we obtain

1 n 0

Z Z hj )\kpz, n = 0,1,..., (8.6)

Tntl 1 20 \ jon—k+1

* —
Prn+1 =
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Thus given pj eq. (8.6) uniquely determines p*. Consequently, there is one, and up to a
multiplicative constant only one, solution of eq. (8.5), and if p§ > 0 then p} > 0 for all
n > 1. Now, if

e 0] 0
Z pr =1 and Z (An + )y < 0, (8.7)
n=0 n=0

then p* € 630, G(p*) = 0, and K (pp*) = ¢p*, which implies the semigroup {p(t)}i>0 is

stochastic. Thus, we have proved the following result.

Theorem 25. Assume condition eq. (8.2) and suppose that p* = (p})n=0 given by eq. (8.6)
satisfies eq. (8.7). Then for each initial probability mass function v = (vy)n>0 € 6310 eq. (8.1)
has a unique solution which is a probability mass function for each t > 0 and satisfies

t—00

lim > |(P(t)v)n — p}| = 0.
n=0

Next, we give sufficient conditions for eq. (8.7) in the case when h is geometric

hpy=(1—-bb1 k=12, (8.8)
with b € (0,1). Since
e 6}
Dby =0"h
j=n—k+1

we obtain the following equation for p* = (p¥),>0

f Andb
Dot _ AnF00m g (8.9)

j Tn+1

Corollary 26. Suppose that h is geometric as in eq. (8.8). Then p* = (pk)n=0 is given by

n
Mot + by
p;:ngM, n=12.... (8.10)
bl Vk

In particular, if

lim =2 <1—b and lim n
n—0o0 ’)/n n—00% 'Yn—i—l

then the conclusions of theorem 25 hold.

:1’

Remark 27. [Bifurcation] The relation eq. (8.9) can be used to derive bifurcation property
in terms of number of modes of the steady-state distribution as a function of parameters.
The number of modes are indeed linked to the number of sign change of

n = Ay + 0¥ — Ynt1-

Remark 28. Usually one would consider the functionality loss v, as a degradation rate
with linear dependence on n and the bursting rate A, to characterize the regulation the sys-
tem is submitted to: external for independence on n, positive (or negative) self interaction
for monotonically increasing (or decreasing) dependence with n. The functional shape of
auto regulation is usually taken as a non-linear Hill function, resulting on a quasi steady
state assumption of effectors and/or repressors molecules (see section 3 )

In the following examples we assume that h is geometric with parameter b and ~,, = yn,
n = 0, with v > 0. In all examples, the conditions of corollary 26 are satisfied. The
following examples are meant to show that analytical formula may be found for a variety
of different jump rate function, all restricted to a geometric jump size distribution, however.
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Example 1 (Negative binomial). Suppose that A, = Ao+ An with \g > 0,\ = 0. We have
An = 0 for each n. Plugging vy, and A into eq. (8.10) gives

*nfl n
A
pr =20 O Lwk) (AERY) ) o0
n!k:0 by + A ~

Thus p* € ' if and only if

A+by <n.

In that case we obtain the negative binomial distribution

p;: = ((:l)'npn(l _p)a7 n = 07 17 ceey

where
A+ by Ao
p = 9 a = 9
g by + A
and (a)y, is the Pochhammer symbol defined by
I'(a +
(a)n = % =ala+1)(a+2)...(a+n—-1), (a)=1.

This was previously obtained in [129].

Example 2 (Mixture of logarithmic distribution). Suppose that Ao > 0 and X\, = 0 for

n>1. Then

= = 1 2 o« e
DPn Do y n ) n 9 4y )
which can be rewritten as
b by
=~ (1 —pj =1,2,..., pi=
The distribution
bTL
pg = 0 Dy = ————— =12 ...
Po 5 Pn nln(l — b), n 5 &y )

1s called a logarithmic distribution.
If we assume that A, = 0 for n > m, then we obtain the following distribution

|
nl. o by
and
m bn
* *
pn_(l_]zop])aa n>m,

b . MC
c= Z — and Epj +pmb—m:1.
, oy

In particular, this type of distribution will be obtained if we take A\g > 0, A <0, and

\ o= Ao+ An, if n < =X/,
"o, otherwise.
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Example 3. We now look at

1+ Kin
Ko+ Kin’

where A > 0, K1 > 0,Ky > 1. We find that, for each n,

An = A =0,1,...,

Ap by b(n +a1)(n + ag)

v n + by ’
where K, ) !
bl:E’ alzi(a—,ﬁ), agzi(a—i-,é’),
and Ko A o o 4
" T T T Ky

Since Koy = 1, we can find a nonnegative 3, thus ag = a1 > 0. Consequently, the stationary
distribution is of the form

p* _ 1 (al)n(a2)nﬁ
" 9P (a1, a2;0150) (b)), nl

n=201,...,
where o F is the Gauss’s hypergeometric function

A (a1)n(a2), @
2 F1 (a1, az; b1 ) :r;o%_"

Example 4 (Generalized hypergeometric distributions). The generalized hypergeometric
function I, is defined to be the real analytical function on R given by the series expansion

< (a1) (ap)n x
Fy(ar, ... apby,... byz) =Y —nrpinz
ptq P q nZ::O (b1)n - - (bg)n n!

The negative binomial distribution in example 1 for the case of X = 0 has the probability
generating function s — 1Fy(aq;bs)/1Fp(a1;b) with a1 = A\o/by. The distribution obtained
in example 3 has the probability generating function s — oF (a1, ag; b1;bs)/2F1(a1,az;b1;b).
Extending both of these examples we suppose that X\, = 0 is a rational function of n sat-

1sfying
A +byn  (n+ar)...(n+agi1)b

= , n=0,1,2,....
y (n4+b1)...(n+by)
Then p* = (p})n=0 has the probability generating function of the form
q+1Fq(a1, e ,aq+1; bl, ey bq; bS)
griFyar, .. agia;br,. . bgb)

Example 5. Consider A\, as a Hill function of the form

1+ KlnN
Ky +K1nN’

where K1, Ko, A >0 and N > 1. If h is geomelric and

Ap = A

lim v, =00, lim n
n—0 n—0 'Yn-t—l

:1’

then irrespective of b there always exists p* = (p}:)n=0 satisfying eq. (8.6).
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8.2 Continuous variable model with bursting BC1

In this section we consider a continuous state space version of the model presented in
section 8.1 (BC1, see subsection 7.6), which is a piecewise deterministic Markov process
Y = {Y;}+>0 with values in E = (0,0) where Y; denotes the amount of the gene product
in a cell at time ¢, ¢ > 0. We assume that protein molecules undergo the process of
degradation with rate v that is interrupted at random times

th <ty <...

occurring with intensity A and both A and v depend on the current amount of molecules.
At t; a random amount of protein molecules is produced, independently of the current
number of proteins, so that the process changes from Y;, ~toY;, =Y, _+ep, k=1,2,...,
where {ex}r>1 is a sequence of positive independent random variables with probability
density function h, which are also independent of Yy. The time-dependent probability
density function u(t,z) is described by the continuous analog of the master equation

011,5;, x) _ 0(’}’@2;;(15, x)) CA@ultz) + J: Mo = y)ult, 2 — )h(y)dy (8.11)

with the initial probability density u(0,z) = v(z), z > 0.
We assume that ~ is a continuous function and that A is a nonnegative measurable
function with A/ being locally integrable on (0, o) and

O dx _ 5M _
v(z) >0 for x>0, JO @) " +00, L ’y(a:)dx = 400, (8.12)

for some § > 0. From eq. (8.12) it follows that the differential equation
Z'(t) = —y(z(t)), x(0)=z>0,
has a unique solution which we denote by mx, t = 0, z > 0. For each x > 0 we have
mx — 0 as t — o0 and
t T
A
J AM7sx)ds = J Maly — 00, ast— .
0 me V()

We now recall the construction of the minimal piecewise deterministic Markov process Y.

Let {ex}r>1 be a sequence of independent random variables exponentially distributed with

mean 1, which is also independent of {e;}r>1. Set to = 0. For each k = 1,2,... and given
Y;, , the process evolves as

Tty Yt iy the1 ST <1

Y, = k=17 k=10 ’ 8.13

K { Y;Ek_ + ek, t =1, ( )

where t;, = t;,_1 + Aty and Aty is a random variable such that
t
Pr(Aty <t|Y;,_, =x)=1—¢€" fo Mrsz)ds ¢ 4> 0.

The random variable At can be defined with the help of the exponentially distributed
random variable € trough the equality in distribution

Aty
€k = f )\(Ws}/tk_l)dsy
0
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which can be rewritten as

€k = Q(WAthikfl) - Q(Y;fkﬂ%

where the nonincreasing function @) is given by

T A\y)
Qz) = f dy, (8.14)
+ 7Y)
and Z = 400, when the integral is finite or any > 0 otherwise. Since Y;, - = mas, Y4, _,»

we obtain the following stochastic recurrence equation for {Y3, }x>0
Vi = Q7N (QYs, ) +er) +er, k=12,

where Q! is the generalized inverse of Q, Q 1(r) = sup{z : Q(x) > r}. Consequently,
Y; is defined by eq. (8.13) for all t < to, where to = limy_, o, ¢y is the explosion time. As
in the discrete state space we can extend the state space E by adding the point —1 and
define Y; = —1 for t > t. Let P, be the law of the process Y starting at Yy = = and
denote by E, the expectation with respect to P,.

Remark 29. Note that if Q(0) = oo then the amount of the gene product {Y, }x=0 at the
Jump times is a discrete time Markov process with transition probability function given by

K(z,B) = L} k(z,y)dy, B e B((0,0)),

where . \
k(z,y) = eQ(r)J Lio,y)(2)h(y — z)ﬁe_Q(z)dz, x,y > 0. (8.15)
0 7(2)
We rewrite eq. (8.11) as an abstract Cauchy problem in L'

du
= = 1
o Cu, u(0) =, (8.16)

where the operator

d(y(x)u(x v
Cute) = D \@yua) + [ A = pute - i)y

is defined on the domain

D={uelL':yueAC, (yu) e L', hTm(fy(a:)u(a:)) =0, \ue L'},
xToo
and yu € AC means that the function x — y(z)u(z) is absolutely continuous. From [90,
145] it follows that there is a substochastic semigroup {P(t)};>0 on L' such that for
each initial density v € D eq. (8.16) has a nonnegative solution wu(t) which is given by
u(t) = P(t)v for t > 0 and

f UL (Y€ Bt < ty)o(x)dz = f P(t)v(z)dz
0 B

for all Borel subsets B of (0,00). The semigroup {P(t)}+>0 is stochastic if the transition
operator K on L' with kernel k as in eq. (8.15) has a strictly positive fixed point. Let us
consider the case of the exponential bursting size

1
hy) = ge_y/b, y >0, (8.17)

where b > 0.
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Theorem 30. Assume that condition eq. (8.12) holds and that h is exponential as in
eq. (8.17) with b > 0. Suppose that

Q0 1 o0
_ j L eh-Q@) gy < oo, j —2/0=Q() g < op. (8.18)
0 ’Y(l") 0

Then the semigroup {P(t)}i=0 is stochastic and for each initial density v we have
. T
Jim [P0 = uli =0,

where

1
_ —z/b—Q(x)
ug(2) =@ e (8.19)

is the unique stationary density of {P(t)}i=o0-
Proof. Let k be as in eq. (8.15) and let v*(x) = e=*/*=Q(®) 2 > 0. The function v* satisfies

v¥(y) = LOO v¥(x)k(x,y)dz, y >0,

since for each y > 0 we have

JOO v¥(x)k(x,y)dr = Ly h(y — z)%eQ(z)dz JOO e bdx

y y
and ” ” . \
J v*(x)k(x,y)dx = J ez/bf h(y — z)ﬁe*Q(z)dzdx,
0 0 0 7(2)

which, by making use of the form of h and changing the order of integration, can be
transformed to

4 Y
f v*(@)k(z, y)dz = e‘y/bf (1—bh(y — z))Me—Q(z)dz
0 0 7(2)
= ¢ Y/be=QW) _ pe—v/b Jy h(y — Z)Me_Q(Z)dz.
0 7(2)
By eq. (8.18) the function
Rov*(z) := . weQ@)—Q(%*(y)dy _p L eh—Q)
V() Jo ()

is integrable, which implies that u* € D and C(u*) = 0. The rest of the proof is as
in [90). O

Remark 31. Note that if Q(0) = c© and

lim M < 1,
T—00 fy(;p b

then the function x — e %/*=Q@) 4s integrable on (0,0). If, additionally,
)

<o, and J y(z)" " tdr < oo
0

imsupy(z) >0, lim
:c—»ooply z—0 /Y(x)T

for some 6,r > 0, then condition eq. (8.18) holds.
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Remark 32. [Bifurcation] The relation given at eq. (8.19) can be used to derive bifurcation
property in terms of number of modes of the steady-state distribution as a function of
parameters. The number of extrema are indeed linked to the number of solution of (if this
expression has a sense)

Az) 1 (=)
=t
(z) b y(x)
The following examples are meant to show that analytical formula may be found for a
variety of different jump rate function, all restricted to an exponential jump size distribu-

tion, however.

Example 6. Consider the case of linear requlation with the function A of the form
Az) = X + Az,

where \g, X are nonnegative constants, and y(x) = vyzx. If

1 A
—>— and X >0,
b v
then uy 1s integrable and is the gamma distribution
1 1 A Ao/y 20_g (12
u(r)= =—— |- —— T e b
@) I'(Xo/7) (b 7)

which is a continuous approrimation of the negative binomial distribution previously ob-
tained, as in [129].

Example 7. Let y(x) = v2” with v > 0 and 8 < 1. Suppose that A\(z) = Az with X > 0.
Then Q(0) = o if and only if « < 8 —1. For a« < f — 1 we have

A
o a—pB+1
r)=——"—=x .
Q@) (B —-1-aq)
Let v(z) = vz with v > 0

Theorem 33. [90, Theorem 7]. The unique stationary density of eq. (8.11), with A\ a
measurable bounded function above and under and h an exponential distribution given by

eq. (8.17), is
x ot y

where C is a normalizing constant such that SSO uy(x)dx = 1. Further, u(t,x) is asymptot-
ically stable.

Remark 34. Note also that we can also represent u, as

) -can [ (2211,

where C is a normalizing constant.

Example 8. . Consider the function A of the form

A
M) = TRy

where A\, K1 > 0. Then

Q) =~y logla™ + K1)

and
’LL*(QJ‘) _ (C’)/)*leix/bl‘)\/’yil(l + leN)f)\/('yN).
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Example 9. Consider the function X of the form [91]
L+ A A 1
S Nl 1 =)
A@) = AT Aw A+)‘( A>A+AocN’

where A\, A, A are positive constants and N is a positive integer. Let v(xz) = ~ya with v > 0.
The stationary density is given by

u®(z) = c_le_r/bm“b(A)_l_l(A + Az, (8.20)

where ¢ is a normalizing constant and

A
Rp = —
v

Rp A

The solution on the last example has been extensively studied in terms of numbers of
modes (P-bifurcation) in [91], which we reproduce below. We will constantly make the
analogy with the deterministic bifurcation study in section 6.

The first two terms of eq. (8.20) are simply proportional to the density of the gamma
distribution. For 0 < k3 A~! < 1 we have u,(0) = oo while for kA~ > 1, u,(0) = 0 and
there is at least one mode at a value of z > 0. We have u,(x) > 0 for all z > 0 and from
remark 34 it follows that

W (2) = s () (W(x) 1 1) a0 (8.21)

Observe that if k, < 1 then u, is a monotone decreasing function of x, since kpf(x) < 1
for all z > 0. Thus we assume in what follows that «; > 1.

Since the analysis of the qualitative nature of the stationary density leads to different
conclusions for the uncontrolled, inducible or repressible operon cases, we consider each in
turn.

8.2.0.1 Protein distribution in the absence of control When A = A = 1, the
density u* is that of a gamma distribution, as obtained in [39)].

1

_ kp—1_,—xz/b
pol(ry) . ¢

U (1‘) )
where I'(+) denotes the gamma function and p = % For kp € (0,1), uy(0) = 00 and uy is
decreasing while for x; > 1, u,(0) = 0 and there is a mode at x = b(kp — 1).

8.2.0.2 Bursting in the inducible operon When A =1 and A > 1, we have § > 0
and the third term of eq. (8.20) is a monotone increasing function of x and, consequently,
there is the possibility that u, may have more than one mode, indicative of the existence
of bistable behavior. From eq. (8.21) it follows that we have v/ (z) = 0 for > 0 if and

only if

1 /x 142"

—(T+1) = . 8.22

Kp (b A+ zn ( )
Again, graphical arguments (see figure 1.9) show that there may be up to three roots of
eq. (8.22). For illustrative values of n, A, and b, figure 1.10 shows the graph of the values
of z at which v/ (z) = 0 as a function of k,. When there are three roots of eq. 8.22, we
label them as 71 < Z9 < Z3.
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Figure 1.9: Schematic illustration of the possibility of one, two or three solutions of
eq. (8.22) for varying values of x; with bursting inducible regulation. The straight lines
correspond (in a clockwise direction) to sy € (0,Kp—), kKp = Kp—, Kb € (Kp—, Kp+) (and re-
spectively ky < A, Ky = A, A < Kyp), Kp = Kpy, and Ky < Kp. This figure was constructed
with n = 4, A = 10 and b = 1 for which s, = 4.29 and kp; = 14.35 as computed from
eq. (8.25). See the text for further details
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Generally we cannot determine when there are three roots. However, we can determine
when there are only two roots 1 < &3 from the argument of subsection 6.2. At Z; and Z3
we will not only have eq. (8.22) satisfied but the graph of the right hand side of eq. (8.22)
will be tangent to the graph of the left hand side at one of them so the slopes will be
equal. Differentiation of eq. (8.22) yields the second condition

[kt 1

A+ a2 T mpb(A—1) (8:23)

We first show that there is an open set of parameters (b, A, kp) for which the stationary
density u, is bimodal. From eq. (8.22) and (8.23) it follows that the value of x4 at which
tangency will occur is given by

T+ = b(/ﬁb — 1)Zi

and z4 are positive solutions of equation

z A(kp — 1)
Zo1-2-B(1-2)? wh = )
- z—pB(1—2)*, where S D=
We explicitly have
1 2
= — — + —
Z4 55 (Zﬁn (n+1)£4/(n+1) 4ﬁn)
provided that
(TL + 1)2 A(Hb - 1)
— > = . .24
4n p (A —1)rp (8:24)

The eq. (8.24) is always satisfied when x, < A or when k;, > A and A is as in the
deterministic case, eq. (6.8). Observe also that we have z, > 0 > z_ for k, < A and
zy > z_ > 0 for K, > A. The two corresponding values of b at which a tangency occurs

are given by
1 A
by = i —A and zy >0.
ST Dz \ B2 §

If Kk < A then u,(0) = 0 and uy is decreasing for b < by, while for b > b, there is a
local maximum at z > 0. If K, > A then u,(0) = 0 and u, has one or two local maxima.
As a consequence, for n > 1 we have a bimodal steady state density u, if and only if the
parameters s, and A satisfy eq. (8.24), k, > A, and b e (by,b_).

We now want to find the analogy between the bistable behavior in the deterministic
system and the existence of bimodal stationary density u,. To this end we fix the param-
eters b > 0 and A > 1 and vary k; as in figure 1.9. The eq. (8.22) and (8.23) can also be
combined to give an implicit equation for the value of x4 at which tangency will occur

A+1

22— (A —1) [n—m

]m” —nb(A—1)z" '+ A=0

and the corresponding values of k4 are given by

[z +b\ (A +ah
o= (0) (2222). -

There are two cases to distinguish.
Case 1. 0 < K < A. In this case, u,(0) = oo. Further, the same graphical considerations
as in the deterministic case show that there can be none, one, or two positive solutions
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Figure 1.10: Full logarithmic plot of the values of z at which /() = 0 versus the param-
eter Ky, obtained from eq. (8.22), for n = 4, A = 10, and (left to right) b = 5,1 and b = 1—10.
Though somewhat obscured by the logarithmic scale for x, the graphs always intersect the
Kp axis at kp = A. Additionally, it is important to note that u/ (0) = 0 for A < kp, and
that there is always a maximum at 0 for 0 < k; < A. See the text for further details.



106 Hybrid Models to Explain Gene Expression Variability

to eq. (8.22). If Kk, < Kp—, there are no positive solutions, u, is a monotone decreasing
function of z. If Ky > Ky, there are two positive solutions (Z2 and Z3 in our previous
notation, Z; has become negative and not of importance) and there will be a mode in wu,
at 3 with a minimum in u, at Zs.
Case 2. 0 < A < Kp. Now, u4(0) = 0 and there may be one, two, or three positive
roots of eq. (8.22). We are interested in knowing when there are three which we label as
T1 < Ty < T3 as Z1, 23 will correspond to the location of mode in u, while Zo will be the
location of the minimum between them and the condition for the existence of three roots
is Kp— < Kp < Kpt-

We see then that the different possibilities depend on the respective values of A, kp_,
Kpo, and Kp. To summarize, we may characterize the stationary density u, for an inducible
operon in the following way:

1. Unimodal type 1: u,(0) = o0 and u, is decreasing for 0 < kp < Kp— and 0 < kK < A
2. Unimodal type 2: u,(0) = 0 and u, has a single mode at

(a) &1 >0 for A < Ky < Kp— oOr

(b) at &3 > 0 for Ky < kp and A < Ky,
3. Bimodal type 1: u,(0) = o0 and u, has a single mode at 3 > 0 for rkp_ < kp < A

4. Bimodal type 2: u,(0) = 0 and u, has two modes at &1,Z3, 0 < &1 < &3 for
Kp_ < Kp < Kpy and A < Ky

Remark 35. Two comments are in order.

1. Remember that the case n = 1 cannot display bistability in the deterministic case.
However, in the case of bursting in the inducible system whenn = 1, if%+1 < Kp <A
and b > ﬁ, then u4(0) = 00 and uy also has a mode at T3 > 0. Thus in this case
one can have a bimodal type 1 stationary density.

2. Lipshtat et al. [88], in a numerical study of a mutually inhibitory gene arrangement
(which is dynamically equivalent to an inducible operon), provided numerical evi-
dence that bistability was possible without cooperative binding (i.e. m = 1). The
demonstration here of bistability gives analytic support to their conclusion.

We now choose to see how the average burst size b affects bistability in the density wu.
by looking at the parametric plot of x(z) versus A(x). Define

" +1
Then
A, b) = LETE@D) 4 e b) = (A b) + 2] (8.27)

1 - F(z,0) b + 1)

The bifurcation diagram obtained from a parametric plot of A versus k; (with = as the
parameter) is illustrated in figure 1.11 for n = 4 and two values of b. Note that it is
necessary for 0 < A < k3 in order to obtain Bimodal type 2 behavior.

For bursting behavior in an inducible situation, there are two different bifurcation
patterns that are possible. The two different cases are delineated by the respective values
of A and kp, as shown in figure 1.10 and figure 1.11. Both bifurcation scenarios share the
property that while increasing the bifurcation parameter k; from 0 to oo, the stationary
density u, passes from a unimodal density with a peak at a low value (either 0 or %) to
a bimodal density and then back to a unimodal density with a peak at a high value (Z3).
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Figure 1.11: In this figure we present two bifurcation diagrams (for n = 4) in (A, k)
parameter space delineating unimodal from bimodal stationary densities u, in an inducible
operon with bursting as obtained from eq. (8.27) and (8.26). The upper cone-shaped plot
is for b = % while the bottom one is for b = 1. In both cone shaped regions, for any
situation in which the lower branch is above the line x; = A (lower straight line) then
bimodal behavior in the stationary solution u.(x) will be observed with modes in u, at

positive values of x, 1 and 3.



108 Hybrid Models to Explain Gene Expression Variability

59 Y.
4.44F 4
Kb 4 / ” s

35 LA
3.29- // — ]

3 - ]
2 ! J." ! !
15 2 2.5 3 3.5 4

Figure 1.12: This figure presents an enlarged portion of figure 1.11 for b = 1. The various
horizontal lines mark specific values of x; referred to in figures 1.13 and 1.14.
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Figure 1.13: In this figure we illustrate Bifurcation type 1 when intrinsic bursting is
present. For a variety of values of the bifurcation parameter ;, (between 3 and 6 from
top to down), the stationary density u, is plotted versus x between 0 and 8. The values
of the parameters used in this figure are b = 1, A = 4, and n = 4. For k; < 3.5, u, has a
single mode at x = 0. For 3.5 < Kk < 4, uy has two local maxima at x = 0 and 23 > 1.
For 4 < kp £ 5.9, us has two local maxima at 0 < 1 < T3. Finally, for k; = 5.9, u, has a
single mode at 3 > 1. Note that for each plot of the density, the scale of the ordinate is
arbitrary to improve the visualization.

In what will be referred as Bifurcation type 1, the maximum at z = 0 disappears
when there is a second peak at = Z3. The sequence of densities encountered for increasing
values of kj is then: Unimodal type 1 to a Bimodal type 1 to a Bimodal type 2 and finally
to a Unimodal type 2 density.

In the Bifurcation type 2 situation, the sequence of density types for increasing
values of k; is: Unimodal type 1 to a Unimodal type 2 and then a Bimodal type 2 ending
in a Unimodal type 2 density.

The two different kinds of bifurcation that can occur are easily illustrated for b = 1 as
the parameter x; is increased. An enlarged diagram in the region of interest is shown in
figure 1.12. In figure 1.13 we illustrate Bifurcation type 1, when A = 4, and x; increases
from low to high values. As k; increases, we pass from a Unimodal type 1 density, to a
Bimodal type 1 density. Further increases in x; lead to a Bimodal type 2 density and
finally to a Unimodal type 2 density. This bifurcation cannot occur, for example, when
b=+ and A < 15 (see figure 1.11).

In figure 1.14 we show a Bifurcation type 2, when A = 3. As k; increases, we pass
from a Unimodal type 1 density, to a Unimodal type 2 density. Then with further increases
in Ky, we pass to a Bimodal type 2 density and finally back to a Unimodal type 2 density.

Remark 36. There are several qualitative conclusions to be drawn from the analysis of
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Figure 1.14: An illustration of Bifurcation type 2 for intrinsic bursting. For several
values of the bifurcation parameter k; (between 2.8 and 5 from top to down), the stationary
density u, is plotted versus xz between 0 and 8. The parameters used are b = 1, A = 3,
and n = 4. For kp < 3, u, has a single mode at = 0, and for 3 < k; < 3.3, us has a
single mode at £1 > 0. For 3.3 < kp < 4.45, u, has two local maxima at 0 < T < I3,

and finally for x; = 4.45 u, has a single mode at T3 > 0. Note that for each plot of the
density, the scale of the ordinate is arbitrary to improve the visualization.

this section.

1. The presence of bursting can drastically alter the regions of parameter space in which
bistability can occur relative to the deterministic case. In figure 1.15 we present the
regions of bistability in the presence of bursting in the (A,b - Ky) parameter space,
which should be compared to the region of bistability in the deterministic case in the
(A, kq) parameter space (bky is the mean number of proteins produced per unit of
time, as is Kq).

2. When 0 < kp < A, at a fired value of Ky, increasing the average burst size b can lead
to a bifurcation from Unimodal type 1 to Bimodal type 1.

3. When 0 < A < Ky, at a fixed value of ky, increasing b can lead to a bifurcation from
Unimodal type 2 to Bimodal type 2 and then back to Unimodal type 2.

8.2.0.3 Bursting in the repressible operon The possible behaviors in the station-
ary density u, for the repressible operon are easy to delineate based on the analysis of the
previous section, with eq. (8.22) replaced by

1 /x 142"
S (T ) - 8.28
Kb (b 1+ Ax™ ( )
Again graphical arguments (see figure 1.16) show that eq. (8.28) may have either none or
one solution. Namely,

1. For 0 < kp < 1, ux(0) = o0 and uy is decreasing. Eq. 8.28 does not have any solution
(Unimodal type 1).

2. For 1 < Ky, u(0) = 0 and u, has a single mode at a value of x > 0 determined by
the single positive solution of eq. (8.28) (Unimodal type 2).
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Figure 1.15: The presence of bursting can drastically alter regions of bimodal behavior
as shown in this parametric plot (for n = 4) of the boundary in (K,b - k) parameter
space delineating unimodal from bimodal stationary densities u, in an inducible operon
with bursting and in (K, kg) parameter space delineating one from three steady states
in the deterministic inducible operon. From top to bottom, the regions are for b = 10,
b=1,b=0.1and b= 0.01. The lowest (heavy dashed line) is for the deterministic case.
Note that for b = 0.01, the two regions of bistability and bimodality coincide and are
indistinguishable from one another.

8.2.0.4 Recovering the deterministic case We can recover the deterministic be-
havior from the bursting dynamics with a suitable scaling of the parameters and limiting
procedure. With bursting production there are two important parameters (the frequency
kp and the amplitude b), while with deterministic production there is only k4. The natural
limit to consider is when

b— 0, kp—>o0 with bry=ky.

In this limit, the implicit equations which define the maximum points of the steady state
density, become the implicit eq. (6.4) and (6.5) which define the stable steady states in
the deterministic case.

The bifurcations will also take place at the same points, because we recover eq. (6.7)
in the limit. However, Bimodality type 1 as well as the Unimodal type 1 behaviors will
no longer be present, as in the deterministic case, because for x, — 00 we have k;, > A.
Finally, from the analytical expression for the steady-state density, eq. (8.20), u, will



112 Hybrid Models to Explain Gene Expression Variability

0 05 1 15 2

Figure 1.16: Schematic illustration that there can be one or no solution of
eq. (8.28),depending on the value of kj, with repressible regulation. The straight lines
correspond (in a clockwise direction) to k; = 2 and k; = 0.8. This figure was constructed
with n =4, A =10 and b = 1. See the text for further details.

became more sharply peaked as b — 0. Due to the normalization constant (which depends
on b and ky), the mass will be more concentrated around the larger maximum of ..

8.3 Fluctuations in the degradation rate only

We now look at a model analog to the one studied in section 8.2, but where the noise
is included in the degradation rate rather than in the production rate. Such model can be
justified in some sense by a limiting procedure. We then look at the stochastic differential
equation in the form

dz = y[kg\(z) — z]dt + ov/zdw.
Within the Ito interpretation of stochastic integration, this equation has a corresponding
Fokker Planck equation for the evolution of the ensemble density u(t,z) given by [84]

ot oz 2 Ox2

As by hypothesis A(0) > 0, it is natural to consider the boundary at = = 0 reflecting and
the stationary solution of eq. (8.29) is then given by

= ge*2’yx/a2 exp [Q’Y_'de‘ Mdy] )
g

du _ 0[(yraA@) —ya)u] | o® OP(au) (8.29)

x y
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Set ke = 2vkq/0?, and take
1+ a2V
A+ AzN

Then the steady state solution is given explicitly by

AMz) = A

ux(z) = Ce_%’r/“zm“eA_l_l[A + Az"]?, (8.30)

where A, A > 0 and 6 are given in table 1.1. Note that this density has the same expression
as eq. (8.20)

Remark 37. Two comments are in order.

1. Because the form of the solutions for the situation with bursting and Gaussian white
noise are identical, all of the results of the previous section can be carried over here
with the proviso that one replaces the average burst amplitude b with b — o2 /27 = by,
and Ky — ke = 2YKq/0% = Kq/by.

2. We can look for the regions of bimodality in the (K, kq)-plane, for a fized value of
by. We have the implicit equation for x4

K+1
K-1

" — (K —1) [n— ]x”—nbw(K—l)ajnl—l-K:O

and the corresponding values of kq are given by

K +x%
= - b R .
Rz ($++“’)(1+z1)

Then the bimodality region in the (K, kq)-plane with noise in the degradation rate is
the same as the bimodality region for bursting in the (K, bky)-plane.

We have also the following result.

Theorem 38. [106, Theorem 2]. The unique stationary density of eq. (8.29) is given by
eq. (8.30). Further u(t,x) is asymptotically stable.

8.4 Discussion

In trying to understand experimentally observed distributions of intracellular compo-
nents from a modeling perspective, the norm in computational and systems biology is
often to use algorithms developed initially by Gillespie [45] to solve the chemical master
equation for specific situations. See [87] for a typical example. However these investiga-
tions demand long computer runs, are computationally expensive, and further offer little
insight into the possible diversity of behaviors that different gene regulatory networks are
capable of.

There have been notable exceptions in which the problem has been treated from an
analytical point of view, c.f. [77], [39], [13], and [129]. The advantage of an analytic
development is that one can determine how different elements of the dynamics shape
temporal and steady state results for the densities u(¢,z) and u,(z) respectively.

Here we have extended this analytic treatment to simple situations in which there is
bursting transcription and/or translation (building on and expanding the original work of
[39]), (for the fluctuations in degradation rates case, see subsection 8.3), as an alternative
to the Gillespie [45] algorithm approach. The advantage of the analytic approach that we
have taken is that it is possible, in some circumstances, to give precise conditions on the
statistical stability of various dynamics. Even when analytic solutions are not available
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for the partial integro-differential equations governing the density evolution, the numerical
solution of these equations may be computationally more tractable than using the Gillespie
[45] approach.

The results we have reported here in section 8.2 concern convergence towards a sta-
tionary density for a continuous model in the presence of bursting noise. The source noise
considered is then in the production term, and was modeled as a compound Poisson pro-
cess. We have focused on qualitative properties of the stationary density, in particular
the number of modes. In subsection 8.3, we have studied a continuous stochastic model
where the source noise is in the degradation term, and has been modeled as multiplicative
Gaussian white noise. We have focused on convergence towards steady-state, as well as
qualitative properties of the stationary density. A surprising result of the work reported
here is that the stationary densities in the presence of bursting noise are analytically indis-
tinguishable from those in the presence of degradation noise. We had expected that there
would be clear differences that would offer some guidance for the interpretation of exper-
imental data to determine whether one or the other source of noise was of predominant
importance. Of course, the next obvious step is to examine the problem in the presence
of both noise sources simultaneously.

In terms of the issue of when bistability, or a unimodal versus bimodal stationary
density is to be expected, we have pointed out the analogy between the bistable behavior in
the deterministic system and the existence of bimodal stationary densities in the stochastic
systems. Our analysis makes clear the critical role of the dimensionless parameters n, x
(be it kg, k), b, and the fractional leakage A~!. The relations between these defining the
various possible behaviors are subtle, and we have given these in the relevant sections of
our analysis.

The appearance of both unimodal and bimodal distributions of molecular constituents
as well as what we have termed Bifurcation Type 1 and Bifurcation Type 2 have been
extensively discussed in the applied mathematics literature (c.f. [64], [37] and others)
and the bare foundations of a stochastic bifurcation theory have been laid down by [5].
Significantly, these are also well documented in the experimental literature as has been
shown by many authors [43, 2, 39, 59, 151, 94, 134] for both prokaryotes and eukaryotes.
If the biochemical details of a particular system are sufficiently well characterized from a
quantitative point of view so that relevant parameters can be estimated, it may be possi-
ble to discriminate between whether these behaviors are due to the presence of bursting
transcription/translation or extrinsic noise.

8.5 Ergodicity and explicit convergence rate

In this subsection, we want to obtain an explicit convergent rate towards the asymptotic
distribution. Such rate may be used experimentally to determine if the observations are
at steady-state or not. We will use here probabilistic arguments. We will first present a
result that shows exponential ergodicity using a classical Lyapounov criterion argument.
Then, we give an explicit lower bound for the convergent rate using a coupling strategy.

Here we use the semigroup defined on bounded continuous function. The semigroup
associated to the BC1 model (see subsection 8.2) has for strong generator

Q0
Af(@) = =12+ 2@) | (F0) = F@)hiy = )y (8.31)
xr
where we have assumed, for simplicity, that v(z) = v is a linear function. Using Lya-
pounov criteria for stability of Markov processes (for an introduction of this field, see
subsection 6.3), it is easy to see that under reasonable assumption such process is expo-
nentially ergodic. Specifically, we have the
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Proposition 39. Suppose z +— A(x) is continuous on [0,00), A(0) > 0, y(z) = 7z,
Sz h(dy) > 0 for all a < b and that

o A@E[R]

<1, (8.32)
T—00 yx

then it exists 5 < 1, B < o0 and 7 (invariant measure) such that
|P(t,x,) — 7|y < BV(2)8", zeE, t>0,
where July = supy<s | u(g) | and V(z) = = +1.
|P(t,x,") — 7|y < BV(z)8', zeE, t>0,

ot |y = supyg <y | 1(9) |-

Proof. We are going to use the criterion given by [97, thm 6.1] (see part 0, subsection 6.3,
proposition 14). We first show that every compacts set are petite, and then exhibits a
Lyapounov function that satisfy the drift condition. To show that all compact sets are
petite, we show that the stochastic process is a T-process, and use [97, prop 4.1] (see
part 0, subsection 6.3, proposition 9).

We first show that the bursting process (X¢);>0 is a T-process. Starting at x > 0 at
time ¢ = 0, the transition function satisfies, at time ¢ = 1, for any set B € B(R),

P(1,z,B) > P{X; € B,T} > 1} (8.33)

where T} is the first instant time. Now, conditioning by the fact that T} > 1, we have

AMX:) < max  A(y). (8.34)
ye[ze™7,z]
Hence, we deduce B
P(1,z,B) = e **§,.-+(B) =: T(z, B) (8.35)

where \, = MaXye[ze—,2] A(y). By definition, X is then a T-process (with a = d1).
Finally, let us exhibits a Lyapounov function that satisfy the drift condition. Take
V(z) =x +11in (8.31), we have

A(z)E|[h]
V = — )\ E h < - 1- V 9
AV (@) = = + ME[] < —(1 = = V@) +
so that due to condition (8.32), V is a Lyapounov function. O

The above criterion states that the stochastic process generated by eq. (8.31) is expo-
nentially ergodic, with more general condition in A (but with y(x) = v linear) than in
subsection 8.2. However the convergent rate is still not explicit. For that, we are going
to use a coupling technique and get an explicit convergence rate in Wasserstein distance.
Let us remark that if we take f(z) = 2P in eq. (8.31), we get

Q0

AxP = —ypz? + \(z) [j (x + y)Ph(y)dy — acp]

0

Then if A\(x) < Ag + A1z, we have, for p = 1,

Az < ME[R] — (v — ME[R])z
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so that the first moment is exponentially convergent with speed (y — AE[h]) as soon as
v > M E[R]. All p-moment are similarly exponentially convergent if i has finite p-moment.
Now if A\g = 0, the first moment is exponentially convergent towards 0. This suggest that
the difference between two stochastic processes generated by eq. (8.31), with a well-chosen
coupling, goes to 0 exponentially fast with an explicit speed. The p-Wasserstein distance
is defined by

W (pi1, p2) = inf E(| X Y [P)'7,
p(p1; p2) (X,Y)eMarg(un,p2) ( ¥

We can then prove the

Theorem 40. Suppose \ is globally Lipschitz with Lipschitz constant A. If % < E[h],
then for any u, v, we have

Wi (P vBy) < e~ 2ElDeyy, 40,

Proof. We follow similar ideas as [7]. For any z,y, we define X¥ and Y} the stochastic
processes that starts at z and y and whose coupling generator is defined by

Lf(z,y) = (=y2zf(z,y) — 10, f(z,y))
Fmin(\) M) ( [+ 242 = f)h)i:)

+ [ Alz) — Ay) | [SSO(f(x + 2,9 @)@y T (@Y + 2) L) a@)y)h(2)dz — f(a:,y)],

(8.36)

that is, X} and ;Y jump together as most as they can, and the one that has a higher jump

rate jumps alone occasionally. With f(x,y) =| 2 — y |=: u, the drift part of the generator
gives (first line of eq. 8.36)

—vu.

The second line vanishes, and, by the triangle inequality and hypothesis on A, the third
one is dominated by

Au[ JOO g(u+ z)h(z)dz — g(u)]

0

Hence,
o0

Lu < —’yu+Au[J

) (u+ z)h(2)dz — u],

and the calculus on moment bounds above show that
E[| X7 — XV |]<e 0l 4y
which achieves the proof, by the definition of the Wasserstein distance. ]

Remark 41. This coupling strategy can be adapted to get an explicit convergence rate in
total variation distance (see [7]).

Remark 42. The same demonstration holds for the discrete model as well.

8.6 Inverse problem

In subsection 8.2, we have shown that for any set of parameters function v(x), A(x), h
that satisfies particular assumption, then there exists a unique invariant density for the
evolution equation, eq. (8.11). Let us summarize our condition,
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Proposition 43. Assume h is an exponential distribution of mean parameter b, v is a
positive continuous function on (0,00), A a non-negative measurable function on (0, 0)
such that % 1s locally integrable. Denote

_ MMy
Qe) = L v(y)dy’

and, suppose that for some d,7 > 0,

51
f_dm .
0 7(95)

limsupy(z) > 0,

xr—00
)
j’y(:r)T_ldac < oo,
0
)
dem = 00,
0 V(@)
lim —— < oo,
z—0 fy(;L'T
. Az) 1
lim 227/ -
T (x < b’

then there exists a unique globally attractive invariant density for eq. (8.11) given by

L ap-Q)
Uy () = ——e
STy
We can invert these property to obtain

Proposition 44. Assume h is an exponential distribution of mean parameter b, v is a
positive continuous function on (0,00), and u is an integrable positive function such that
for some 6,1 > 0,

51
f_dm .
0 v(x)

limsupy(z) > 0,

6%—7@
y(z) ldz < oo,
0

@) A,

e = -
e0y@y 1 ="

(@) | Y (2)
A T <Y
then the function A defined by
Ma) = 19(a) + L) (337

is such that the function u is the invariant density for eq. (8.11) associated with h,~y, \.
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Proof. We need to invert the operator given by

d(—y(@)u())
dx

T

= —A(@)u(z) + fo Mz —y)u(z — y)h(y)dy.

Taking Laplace transform, and noting that by assumption lim,_,o y(z)u(xz) = 0, we obtain
L(Au)(s)L(h — d0)(s) = —sL(yu)(s),

so that )
L(u)(s) = (s + 3)Lyu)(s)-

By inverting the Laplace transform, we get eq. (8.37). That such \ satisfies all the prop-
erties of proposition 43 follows then by the assumption and the formula eq. (8.37). ]

A series of remark follows.

Remark 45. The assumption on admissible density u of the last proposition 44 are simply
integrability condition in 0 and exponential decay at oo, that can be seen from the analytical
expression eq. (8.19). The result given below could have been more easily obtained by the
derivation of (y(z)u) thanks to analytical expression eq. (8.19). However, the demonstra-
tion given here show that such inversion of the operator is not restricted to exponential
Jump distribution, as long as we know its Laplace transform. Hence, to be applicable for
more general jump distribution, characterization of the stationary state and convergence
condition of the direct problem needs to be investigated for general jump distribution.

Remark 46. In practice, the formula eq. (8.37) has been shown to be tractable by using
for example statistical kernel estimator of the density. The difficulty relies in estimating
properly the deriwatives of such function. The authors in [28] have shown statistical esti-
mator bounds in a similar problem (for the aggregation-fragmentation problem). Estimates
of the jump rate function will then be accurate in domain where the density is not near 0.

Remark 47. Such inverse formula may have a great interest to analyze experimental data.
Indeed, from the jump rate function, it is possible to guess the mechanism involved in the
requlation (see for instance section 3), which is not necessarily observable experimentally.
From the result in proposition 44, it can be deduced the jump rate function \(x) if we
have experimental observations in steady-state and if the other parameters v(xz) and b are
known. As the steady-state is invariant by a time scale change, we cannot deduce all
parameters from steady-state observations. The degradation function is however usually
well caracterized experimentally using knock-out experiments. In the absence of regulation,
the result in paragraph 8.2.0.1 shows that, at steady-state,

- Var(X)

<X >
Such relation between asymptotic moments were previously used to deduce parameter fitting
in different models of gene regulation (see [104, 102]). In the presence of requlation there’s
no simple formula to find back the mean burst size parameter b. However, if \(x) is
assumed to be bounded, the mean burst size parameter can be found using the tail of the
asymptotic probability distribution. Indeed, from the analytical expression eq. (8.19), we
see that
b= — lim z/log(u*(x))
T—0
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9 From One Model to Another

In this section, we are going to prove how all the models presented in section 7 are
linked within each other. Briefly, the switching dynamic can lead either to an averaging
behavior (if both activation and inactivation rate goes to infinity within the same order,
see paragraph 9.1.1) or to a bursting behavior (large jumps appear) (if the inactivation rate
and the synthesis rate go to infinity within the same order, see paragraph 9.1.2). However,
the switching dynamic is not the only possible scenario to lead to bursting behavior. In
the discrete state space model, the adiabatic reduction of mRNA can lead to a bursting
production of protein, in a similar manner than the switching model actually (see subsec-
tion 9.2). Finally, this bursting behavior can be averaged through the different variables
or transmitted (when the degradation rate of a variable go to infinity, see subsection 9.3).
We will make extensively use of the notation of section 7 for naming each model and its
parameter.

These limiting behavior are well known of modelers and experimentalists. The review
paper of Kaern et al. [74] details assumptions for the ODE C2 to be a good approxima-
tion of SC2 (macrocscopic limit and fast switching kinetics), and the kinetics assumption
that lead from SC2 to transcriptional bursting BD2 and translational bursting SBDI1.
The authors in [77] show how to take advantage of specific limiting behavior of the SD1
model (fast operator fluctuation, and large quantity of molecules) to rigorously study its
qualitative behavior (bifurcation, escape time), and extend their method to the mutual
repressor system. The authors in [87] considered similar techniques and validate these
approximations by numerical simulations. Importantly, the authors in [115] reported that
different genes in eukaryotes can have different kinetics, so that each limiting model can
be applicable to different gene kinetics.

On a more theoretical side, the author in [12] used a semi-group theoretical proof to
show the averaging reduction of model SC2 to C2, and the adiabatic reduction from SC2 to
SC1. The authors in [25, 75] give clues to derive rigorously limiting model in the context of
stochastic hybrid model. We recall the available reduction results of the switching model in
the first subsection 9.1 and rely on them to extend it to the 2-dimensional variable model,
in the discrete state space model in subsection 9.2 and in the continuous state space model
in subsection 9.3. In this last case, we derived alternative proofs, based either on partial
differential equation and on probabilistic techniques. These have been the subject of a
preprint [92]. It is important to mention that the theoretical and rigorous justification
of the reduction of a given model towards a bursting limit model actually follows natural
ideas that are used by many authors to obtain a simplified model. For instance, the authors
in [66] show that different extensions of the standard model of gene expression (without
regulation) all leads to bursting model with geometric jump size distribution, basically
reasoning by how many proteins can be produced before mRNA is degraded. Firsly, this
reasoning suggests that such reduction is a general framework of catalytic reaction, where
the reactant is needed for the reaction to occur, but is not consumed by the reaction
(so that a new reaction may happen directly). The identification of the limit martingale
problem we performed in subsections 9.2 and 9.3 uses a test function that exactly matches
with the heuristic above. The idea is to follow the catalytic reaction up to the time the
reactant is consumed. See also [129] where the authors used a reduction technique based on
the characteristic method associated to the evolution equation of the moment generating
equation. Again, in such models, the characteristic method exactly follows the production
of the second variable up to the time the first variable vanishes.

Finally, we show in subsection 9.4 how the links between the discrete and the continuous
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bursting model, using well known fluid limit techniques ([36]).

9.1 Limiting behavior of the switching model
9.1.1 Averaging results

In the context of model of gene expression, the author in [12] used a result on de-
generate convergence of semigroup to show the averaging reduction of model SC2 to C2.
The degeneracy means here that the limiting semigroup act on a proper subspace of the
starting space. The author considered the special (but biologically natural) case where
the transcriptional rate function k; is a constant function. In such case, the deterministic
part of the model can be solved exactly. But its main advantage is in fact that in such
case the dynamics is constrained in a compact subset. Hence, this result could easily be
extended to the case where ki is a smooth bounded function. With k; and k, continuous
function, which are then bounded on compact set, the semigroup acting on continuous
function of the full model can be constructed by the Philipps perturbation theorem (see
[35]) from the deterministic semigroup. The obtained semigroup is a Feller semigroup. We
rewrite the limiting theorem with our notation (section 7) below, for the reduction from
SC1 (see paragraph. 7.2) to C1 (see paragraph 7.4) (which has obvious extension to 2 and
3 variables).

Theorem 48. Bobrowski [12, Theorem 2 p. 356] Assume ki is a continuous Lipschitz on
R* and bounded. Then there exists a compact subset K < R such that x1(t) € K for all
t >0 as soon as x1(0) € K. Assume ko and k; are continuous Lipschitz functions, positive
such that one of them is strictly positive. Let \; and A sequences of positive numbers
such that

lim A = lim A} = o
n—00 n—00
n

L Aa
1}1_130 N c>0.
For any continuous function f,g on K, i€ {0,1}, x € K, and t > 0, let

T"(t)(f,9) (i, 2) := By [ f(@1(8) L x0(0=0y + 9(21(#)1x0()=1}]
the semigroup acting on continuous function associated to any solution of SC1 (see para-
graph. 7.2), starting at (i,x), with parameters X} and A}'. Similarly, write T'(t)(f)(x) the
semigroup defined by C1 (see paragraph 7.4), with ki being replaced by
X ckq(z1)
ckq(1) + ki(x1)
Then, using norm of uniform convergence,
— For any continuous function f on K,

lim T(@)(f, f) = T@)(f)

uniformly on time on all compact interval of [0, 0).

k‘l (1‘1)

— For any continuous function f,g on K,
Tim T"(1)(f.9) = T((Q(/.9))

uniformly on time on all compact interval of [0, ), where

ckq,
Q(f,9) f+ P

" ko + K
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The analog result given in [25] requires only that k; is such that C1 defines a global
flow, not necessarily restrict to evolve in a compact. However, their result requires that the
fast motion given by the switch defines an ergodic semigroup, exponentially mixing, and
uniformly with respect to the slow variable z;. Here, it is easy to see that this semif;roup is
ergodic, with unique invariant law given by a Bernoulli law of parameter #ﬁi%m
Its convergent rate is exponential with rate A\ kq (1) + Aiki(z1). Hence, it is needed to
suppose additionally that these rates are bounded with respect to x1. As before, we rewrite
the limiting theorem given in [25] with our notation (section 7) below, for the reduction
from SC1 to C1 (which has obvious extension to 2 and 3 variable).

Theorem 49. Crudu et al. [25, Theorem 5.1 p. 13] Assume ki € CY(RT) and such that
the model in paragraph 7.4 defines a global flow. Assume k, and k; are C* on R* and
bounded, positive such that one of them s strictly positive. Let N, = n), and A\}' = n\; with
n — . Let (X§(t), 1 (t))=0 the stochastic process defined by SC1 (see paragraph 7.2),
and (x1(t))e=0 the solution of C1 (see paragraph 7.4) with ki being replaced by

Aaka (:L'l)

A
"Noka(z1) + Aiki (1)

kl (.’El)

Assume x7(0) converges in distribution to x1(0) in RY, then (X3(t),z7(t))i=0 converges
in distribution to (x1(t))e=o in D(RT;RT).

The restriction of bounded rate k, and k; in [25] is essentially to ensure that the fast
dynamics stay in a compact in some sense. Here, because the fast dynamics is on a compact
state space, this assumption can be released easily. The only remaining restrictions are
then that the limiting model posses a unique global solution. These results have very
analog counterpart in discrete models SD1 and D1. See also [75] for general results on
averaging methods.

9.1.2 Bursting

The limit from a switching (SB1,SC1) model to a continuous bursting model (BC1)
was treated explicitly in [25] (together with a fluid limit). Now we let A\? = n)\; and
AT = nA1. Intuitively, the switching variable X will then spend most of its time in state
0. However, transition from XJ = 0 to X§ = 1 will still be possible (and will not vanish
as n — o). Convergence of X to 0 will hold in L!(0,¢) for any finite finite time ¢. When
Xy = 1, production of x; is suddenly very high, but for a brief time. Although z; follows a
deterministic trajectory, the timing of its trajectory is stochastic. At the limit, this drastic
production episode becomes a discontinuous jump, of a random size. All happen as the
two successive jumps of Xy (from 0 to 1 and back to 0) coalesce into a single one, and
create a discontinuity in x1. In such case, convergence cannot hold in the cad-lag space
D(R*;R*) with the Skorohod topology. The authors in [25] were able to prove tightness
in LP([0,T],RT), 1 < p < oo. Their result requires the additional assumption that all
rates k1,k; and k, are linearly bounded, and either k, or k; is bounded with respect to xy.
This is needed to get a bound on x in L*([0,7],R"). The limiting theorem reads

Theorem 50. Crudu et al. [25, Theorem 6.1 p. 17] Assume ki € CH(RT) and let \ = n)\;
and N} = nAy with n — o0o. Let (Xj5(t), 27 (t))t=0 the stochastic process defined by SC1
(see paragraph 7.2). Assume z7(0) converges in distribution to x1(0) in RT, and X3(0)
converges in distribution to 0. The reaction rates ki,k; and ko are such that

— there exists a > 0 such that k;(z1) = « for all 21 ;
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— there exists My > 0 such that

ki(x1) < Myi(zy + 1),
ko(z1) < Mi(z1 + 1),
ki(x1) < Mi(zy + 1);

— In addition either k, or ky is bounded with respect to x1 .
Then (X (t))i=0 converges in distribution to 0 in L([0,T],{0,1}) and (z}(t))i=0 converges
i distribution to the stochastic process whose generator is given by

0

©
A =y 2L
o(z1) Y121 P

+ Aaka(xl)f

0

0

(P(1(t20) = plan) ) Aiki (61 (t,an))e oMb mgy, - (9.1)

for every o € CH(RT) and where ¢1(t,x1) is the flow associated to
:i‘ = )\1]{,‘1 (:L‘),
z(0) = ;.

Analogous result on the SD1 model holds as well. The fact that this limiting model is
indeed related to BC1 is now detailed in the three following examples.

Example 10. Consider the special case where both requlation rates ki and k; are constant,
with ki(x1) = ki(x1) =1, for all x1 > 0. Then the flow ¢1 is easily calculated and we have

o1(t, 1) =z + Mit, t =0,
¢
j Niki(p1(s,x1))ds = Ait,
0

and the generator eq. (9.1) becomes

0

)\i f%z
(gp(ml +z) — gp(ml)))\—e 17dz,

0
Ap(xy) = —ylazl—w + )\aka(acl)j 5

01'1 0

which is the BC1 model, with an exponential jump size distribution of mean parameter i—i
Such rate has an easy interpretation, being the number of molecules created during an ON
period of the gene.

Other choice of regulation rate leads to different model, as illustrated in the next two
examples.

Example 11. Let ky =1 and Njk;(z1) = Niz1 + ko (linear negative regulation), so that
¢1(t,$1) =T + )‘lt7 t 2 07

t A
J )\ik‘i(qbl(S,ZL‘l))dS = ()\Z'ZL‘l + k‘o)t + th2,
0

and the generator eq. (9.1) becomes

iz + ko *L;fl [Aiizgzl +k’o]
—Q——¢ dz

Ap(zy) = _%3310_80 + Aoka(x1) JOO (90(2) - 90(951)) A

(9{131 1

The limiting model is then a bursting model where the jump distribution is a function of
the jump position, and has a Gaussian tail.
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Example 12. Let ki(x1) = x1 and k;i(z1) =1 (positive linear requlation), so that
G1(t,a1) = 21, =0,

t
f Xiki(p1(s,x1))ds = Ait,
0

and the generator eq. (9.1) becomes

Q0 A A

)\7; AV B4
(¢(2) = plan) Tarrz" dz,

0
Ap(xy) = —’ylazla—gp + Aaka(acl)f
1 1

1

This time, the limiting model is a bursting model where the jump distribution is a function
of the jump position with a power-law tail.

9.2 A bursting model from a two-dimensional discrete model

The fact that bursting models arise as a reduction procedure of a higher dimensional
model was already observed in [129]-[25]. In [129], the authors show that, within an
appropriate scaling, the time-dependent distribution of a 2-dimensional model converge
to the time-dependent distribution of a 1-dimensional bursting model. The authors used
analytics methods through the transport equation on the generating function. Their result
seems to be restricted to first-order kinetics. The first variable is a fast variable that induces
infrequent kicks to the second one. In [25], the authors show that, within an appropriate
scaling, a fairly general discrete state space model with a binary variable converge to a
bursting model with continuous state space. The authors obtained a convergence in law
of the solution through martingale techniques. The binary variable is a fast variable that
induces kicks to the other variable.

We present below analogous result of [25] when the fast variable is similar to the one
of [129]. These results are more precise than the one of [129], and more general (some
kinetics rates can be non-linear). We used martingales techniques, with a proof that is
similar to [25] and also inspired by results from [75].

We consider the following 2d stochastic kinetic chemical reaction model, that general-
izes the D2 model (see paragraph 7.3)

%] Auk1 (X1, X2) X1, Production of X at rate A1k (X1, X2) (92)
X1 RECSIREIN &, Destruction of X at rate v; (X7, X2) (9:3)
%] A2ka (X1, Xz) X9, Production of Xs at rate Aoka (X1, Xo) (9-4)
Xo 02(X1,X2), &, Destruction of Xy at rate (X1, X2) (9-5)

with v1(0, X2) = 72(X1,0) = 0 to ensure positivity. This model can be represented by a
continuous time Markov chain in N2, and is then a general random walk in N2. It can be
described by the following set of stochastic differential equations

Xi(t) = X1(0) + Y ( Lt Ak (X1(s), XQ(S))ds) —Y, ( Lt (X1 (s), Xg(s))ds),

Xo(t) = X2(0) + Y},(J: Aok (X1(s), XQ(S))ds) _y, ( Lt (X1 (s), Xg(s))ds),

where Y;, for ¢ = 1...4 are independent standard Poisson processes. The generator of this
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process has the form
Bf (X1, X2) =)\1k‘1(X1,X2)[f(X1 +1,X2) — f(X17X2)]
o (X1, X0) [ (X1 = 1, X5) = F(X1, X0) |
+ >\2/€2(X1,X2)[f(X1,X2 +1) — f(X1,X2)]

(X1, Xo) | (X1, X2 = 1) = F(X1, Xo) |,

for every bounded function f on N2.

Example 13. We obviously have in mind the mRNA-Protein system given by the D2
model defined in paragraph 7.3, where v;( X1, X2) = v X;, k2(X1, Xo) = X7 and k1(X1, X) =
k1 (X2).

We suppose the following scaling holds

M (X1, X2) = Ny (X1, Xa),
AY = N,

where N — oo that is reactions eq. (9.3)- (9.4) occur at a faster time scale than the two
other reactions. Then X is degraded very fast, and induces also as a very fast production
of X5. The rescaled model is given by

X0 = xN0) + i f: My (X1 (3), X3 (9))ds) — ¥a f: N (X7 (), X0 (5))ds ).

X3 0) = x50+ Ya( [ Mk 60,33 (s~ [ 7206 (1,3 ().

(9.7)
and the generator of this process has the form
By f(X1, X2) =>\1/€1(X17X2)[f(X1 +1,X5) - f(XlaX2)]
+ N7 (X1, Xo)| f(X1 =1, Xe) = f(X1, Xa) |
(9.8)

+ N)\2/€2(X1,X2)[f(X1,X2 +1) — f(X17X2)]

(X1, Xa) | F(X0, X = 1) = F(X0, X0)|
We can prove the following reduction holds:

Theorem 51. We assume that
1. The degradation function on Xy satisfies v2(X1,0) = 0.
2. The degradation function on X1 satisfies v1(0, X2) =0, and

inf X, X5) =~ > 0.
X1>11I71X22071( 1,X2) =7

3. The production rate of Xy satisfies ko(0, X2) = 0.
4. The production rate function ki and ko are linearly bounded by X + Xo.
5. FEither ki or ko is bounded.
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et (X{V, XY) the stochastic process whose generator is By (defined in eq. (9.8)). Assume
that the initial vector (Xi¥(0), X3V (0)) converge in distribution to (0,X(0)), as N — oo.
Then, for all T > 0, (XN (), X2 (t))t=0 converge in L'(0,T) (and in LP, 1 < p < ) to
(0, X (t)) where X (t) is the stochastic process whose generator is given by

Boop(X) = Mk (0, X) L " P (1, () (X)dt (X)) + 7200, X) [ (X = 1) = ()]
(9.9)
where .
Pog(X) = E[g(Y (t, X)e S (Y (=X0)ds]

and Y (t, X) is the stochastic process starting at X at t = 0 whose generator is given by
Ag(Y) = Xoka(1,Y) (g(Y + 1) — g(Y)).

Remark 52. The first three hypotheses of theorem 51 are the main characteristics of the
mRNA-protein system (see paragraph 7.3). Basically, they impose that quantities remains
non-negative, that the first variable has always the possibility to decrease to 0 (no matter
the value of the second variable), and that the second variable cannot increase when the
first variable is 0. Hence these three hypotheses will guarantee that (with our particular
scaling) the first variable converge to 0, and will lead to an intermittent production of
the second variable. The last two hypotheses are more technical, and guarantee that the
Markov chain is not explosive, and hence well defined for all t = 0, and that the limiting
model is well defined too.

We divide the proof in several steps.

step 1: moment estimates Because production rates are linearly bounded, it is
straightforward that with f(X1, Xs) = X; + X5 in eq. (9.8), there is a constant Cy
(that depends on N and other parameters) such that

By f(X1,X2) < On(X1 + Xo).

Then E[X{V(t) + X2'(t)] is bounded on any time interval [0,7] and

FX (), X2 (1) — F(XT7(0), X3'(0)) —LBNf(XfV(S),XéV(S))dS
is a L'-martingale.

step 2: tightness Clearly, from the stochastic differential equation on X{V , we must
have X{V(t) — 0. We can show in fact that the Lebesgue measure of the set {t < T :
X (t) > 0} converge to 0. Indeed, taking f(X1,X2) = X3 in eq. (9.8), we have

t

X7 (1) = X77(0) _L()\lkl(X{V(S)7XéV(S)) — N (X7 (5), X3 (5)))ds (9.10)

is a martingale. Thanks to the lower bound assumption on 7, we have

t

t
B[ Lpymds] <E [ 0080 X5 (s

Then, by the martingale property, we deduce

1NE[J

0

t t

1y oy ds] < E[XN(0)] + A L E[ky (XN (s), X2V (s))ds. (9.11)
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And for XV we obtain from the the eq. (9.7),

t

X0 < o + (|

ANy g k(X (), X8 (9)ds ).

Let us now distinguish between the two cases.
— If kg is bounded (say by 1), we have

t

E[Xy ()] <E[X5(0)] + AQNE[L LixN(o)=1395]-

As ki is linearly bounded (say by 1) by X{¥ + X%, the upper bound eq. (9.11)
becomes

ZNE[J

0

t t

sl < EDO] 0 [ (BN 6] + B ()]

0
Finally, with eq. (9.10), it is clear that

E[XY ()] <E[X](0)] + N\ f

O (E[XY (9)] + E[X3'(5)] ) ds.

Hence, with the three last inequalities, we can conclude by the Gronwall lemma that
E[X2(t)] is bounded on [0,T], uniformly in N. Then

T
NE[JO L(xN(s)=1} 5]

is bounded and X{¥ — 0 in L*([0,7],N). By the law of large number, +Y3(N) is
almost surely convergent, and hence almost surely bounded. We deduce then there
exists a random variable C' such that

t
X0 < X0+ NC | Lo

almost everywhere. By Gronwall lemma and Markov inequality

P{ sup X3'(t) > K} —0
t€[0,T]

as K — oo, uniformly in N.
— Now if k1 is bounded (say 1). By the martingale eq. (9.10) (and the same lower
bound hypothesis on 1, it is clear that

T
NE[JO L(xN(5)=1} 5]

is bounded and X{¥ — 0 in L!([0,T],N). Now, let us denote UM (¢) = +X{¥(t),
VN = LXN(t) and WV = N1ixn =1 (which is then bounded in L([0,T[)).
From eq. (9.7), and from the linear bound on ks (say by 1)

VN () < VV(0) + %Yg(fot MNWN U () + V'V (5))ds ).

Then, still by the law of the large number there exists a random variable C' such
that

VNG < VN0) + C f N (s) + VN (s))ds)).
0
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and hence
XN (1) < X (0) + cf WYX () + X5 (3))ds ).
0

By Gronwall lemma,

sup X2V (t) < (XN (0) + X (0)) exp (CJ WN(s)ds),
[0.77] 0

which is then bounded, uniformly in N.
For any subdivision of [0,7], 0 =ty <t3 <---<t, =T,

n—1 n—1
NEACHESABIIEISRA()
=0 =0

T
< Y},(L )\2N1{x{V(s)>1}k2(XfV(8)7Xév(s))ds)

tit1
i

NN L (o o (X7 (5), X5 (5))ds )

so by a similar argument as above, we also get the tightness of the BV norm (see propo-
sition 23 part 0)
P{|X3" o) = K} — 0

as K — 0, independently in N. Then X2 is tight in LP([0,T]), for any 1 < p < o0.

step 3: identification of the limit We choose an adherence value (0, X2(t)) of the
sequence (X{¥(t), XV (t)) in L'([0,T]) x LP([0,T]). Then a subsequence (again denoted
by) (X (t), X2V (t)) converge to (0, X2(t)), almost surely and for almost ¢ € [0, T]. We are
looking for test-functions such that

t
FOE @), XY (1) — XN (0), X5 (0) - jo B £ (0, X ()L (5o
t
_ jo By f (X1 (5), X3 () Ly (=1 s
is a martingale and By f(X{V(s), X3'(s)) is bounded independently of N when X; > 1.

The following choice is inspired by [25]. We introduce the stochastic process Y;"", starting
at y and whose generator is

A%g(y) = Aokl )| gy + 1) = 9(v) .
for any = > 1. and we introduce the semigroup P defined on B,(R™), for any = > 1, by
Prg(y) = B[ g1 ¥)e™ o=y | (9.12)

Then the semigroup P satisfies the equation

dP7gly s po .

tdit() = A"Fg(y) —m(z,y) g (y)-
Now for any bounded function g, define recursively

f0,y) = 9(y),

0

faw) = | Prnte ) f@ = 1)t

0



128 Hybrid Models to Explain Gene Expression Variability

Such a test function is well defined by the assumption on ;. We then verify that
o0
B f(0.) = M0 ( | P11 00 0t = 9(0) +22(0.9) ol = ) = 900 |

B f(2,y) = Mki(0,9)| F@ + 1y) = f(2.) | +2(e.9) | fla,y = 1) = f(@.0)].
Indeed, for any z > 1,
A:Of(%y) —m(z,y)f(x,y)
fo ATPE (a2, ) f (2 = 1,))(y) = (2, 9) B (n (e, ) f @ — 1) ()dt,

| e s - 1w

Jim P (yi () f (2,))(y) =z ) f (@ = 1,y),
= —n(z,y)f(z - 1Ly).

Then
Noka(ey)| £y + 1) = (@ y) | + @y @ = Ly) - F@p] =0

Hence By f(x,y) is independent of N, and, taking the limit N — oo in

FIXT (), X5 (1) — £(X1Y(0), X3'(0)) — L By f (X1 (s), X5 (s))ds,

we deduce .

a(Xa(t)) — g(Xa(0)) — fo Boog(Xa)

is a martingale where

Bang(y) = Mka(0,)( fo "Rt~ ) + 2209 oy~ 1) - 9(w)]

Uniqueness Due to assumption on k1 and ks, the limiting generator defines a pure-jump
Markov process in N which is not explosive. Uniqueness of the martingale then follows
classically.

Remark 53. The above expression eq. (9.9) is a generator of a bursting model for a
“general bursting size distribution®. For instance, for constant function 1, and ke = 1,
we have

Fi(m()e()(p) = 1nFi(e)(p),
= le[w(lﬁy)e‘”lt],
=yie Y p(2)P{YY = 2},

zz2y
B ()\2t)z—ye—)\2t
=ye ) p(z)
;y (z =)

It follows by integration integration by parts that

[ PonOe@ar = =22 3 e+ ()

0 Mt A2 o A2 +m

which gives then an additive geometric burst size distribution of parameter p = )\2)33% , as
expected.
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9.3 Adiabatic reduction in a bursting model

In continuous dynamical systems, considerable simplifications and insights into the
behavior can be obtained by identifying fast and slow variables. This technique is especially
useful when one is initially interested in the approach to a steady state. In this context
a fast variable is one that relaxes much more rapidly to a conditional equilibrium than a
slow variable [54]. In many systems, including chemical and biochemical ones, this is often
a consequence of differences in degradation rates, with the fastest variable the one that
has the largest degradation rate. We employ this strategy here to obtain approximations
to the two-dimensional bursting model BC2 as a one-dimensional bursting model BC1.

The adiabatic reduction technique gives results that justifies to reduce the dimension of
a system and to use an effective set of reduced equations in lieu of dealing with a full, higher
dimensional model. This techniques essentially requires that different time scales occur in
the system. Adiabatic reduction results for deterministic systems of ordinary differential
equations have been available since the very precise results of [143] and [38]. The simplest
results, in the hyperbolic case, give an effective construction of an uniformly asymptotically
stable slow manifold (and hence a reduced equation) and prove the existence of an invariant
manifold near the slow manifold, with (theoretically) any order of approximation of this
invariant manifold. Such precise and geometric results have been generalized to random
systems of stochastic differential equation with Gaussian white noise ([10], see also [42] for
previous work on the Fokker-Planck equation). However, to the best of our knowledge,
analogous results for stochastic differential equations with a jump process have not been
obtained. We recall how this strategy works in ordinary differential equation, and specially
in the model we consider. It is often the case that the degradation rate of mRNA is much
greater than the corresponding degradation rates for both the intermediate protein and
the effector (y1 » v2,73) so in this case the mRNA dynamics are fast and we have from
eq. (6.2) the relationship

0 =raf(ys) —y1-
It is easy to see that such relation defines a uniformly asymptotically stable slow manifold

(with eigenvalue —1). Consequently the three variables system describing the generic
operon reduces to a two variables one involving the slower intermediate and effector:

Wa  aliaf () ) (913)
% = 73(y2 — ¥3)- (9.14)

In our considerations of specific single operon dynamics below we will also have occasion
to examine two further sub-cases, namely

Case 1. Intermediate (protein) dominated dynamics. If it should happen that
Y1 » 3 » 2 (as for the lac operon), then the effector also qualifies as a fast variable so

0292—93,

and thus from eq.(9.13) and (9.14) we recover the one dimensional equation for the slowest

variable, the intermediate:
dy

d—tQ = yolkaf(y2) — yol-

Case 2. Effector (enzyme) dominated dynamics. Alternately, if 73 » 72 » 3 then
the intermediate is a fast variable relative to the effector and we have

0 = raf(ys) — y2,
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so our two variable system eq. (9.13) and (9.14)) reduces to a one dimensional system

dys

= slraf(ys) = ysl.

for the relatively slow effector dynamic.

The present section gives a theoretical justification of an adiabatic reduction of a par-
ticular piecewise deterministic Markov process (and has been the subject of a preprint
[92]). The results we obtain do not give a bound on the error of the reduced system,
but they do allow us to justify the use of a reduced system in the case of a piecewise
deterministic Markov process. In that sense, the results are close to the recent ones by
[25] and [75], where general convergence results for discrete models of stochastic reaction
networks are given. In particular, these papers give alternative scaling of the traditional
ordinary differential equation and the diffusion approximation depending on the different
scaling chosen (see [6] for some examples in a reaction network model). After the scal-
ing, the limiting models can be deterministic (ordinary differential equation), stochastic
(jump Markov process), or hybrid (piecewise deterministic process). For illustrative and
motivating examples given by a simulation algorithm, see [55, 114, 50].

Our particular model is meant to describe stochastic gene expression with explicit
bursting [39]. The variables evolve under the action of a continuous deterministic dynami-
cal system interrupted by positive jumps of random sizes that model the burst production.
In that sense, the convergence theorems we obtain in this paper can be seen as an example
in which there is a reaction with size between 0 and oo, and give complementary results
to those of [25] and [75]. We hope that the results here are generalizable to give insight
into adiabatic reduction methods in more general stochastic hybrid systems [60, 18]. We
note also that more geometrical approaches have been proposed to reduce the dimension
of such systems in [17].

9.3.1 Continuous-state bursting model

The models referred to above have explicitly assumed the production of several molecules
instantaneously, through a jump Markov process, in agreement with experimental obser-
vations. In line with experimental observations, it is standard to assume a Markovian
hypothesis (an exponential waiting time between production jumps) and that the jump
sizes are exponentially distributed (geometrically in the discrete case) as well. The inten-
sity of the jumps can be a linearly bounded function, to allow for self-regulation.

Let 1 and x5 denote the concentrations of mRNA and protein respectively. A simple
model of single gene expression with bursting in transcription is given by (SC2 model)

dx .

d—tl = —mz1 + N(h, Ak (z2)), (9.15)
d

% = —vTa + Aax1. (9.16)

Here 1 and v, are the degradation rates for the mRNA and protein respectively, Ao is the
mRNA translation rate, and N(h, A k1(z2)) describes the transcription that is assumed
to be a compound Poisson white noise occurring at a rate Ajkj(x2) with a non-negative
jump size Axq distributed with density h.

The eq. (9.15) and (9.16) are a short hand notation for

l‘l(t)

t t (oo oo
) — L yix1(s)ds + L L L Liran b (aa(s—))1 2N (ds, dz, dr),  (9.17)

xo(t) 9 — Lt Yoo (s~ )ds + Lt Aoz (s~ )ds. (9.18)
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where X, = lim;_,,- X(t), and N(ds,dz,dr) is a Poisson random measure on (0,00) x
[0,00)? with intensity dsh(z)dzdr, where s denotes the times of the jumps, r is the state-
dependency in an acceptance/rejection fashion, and z the jump size. Note that (z1(¢)) is
a stochastic process with almost surely finite variation on any bounded interval (0,7"), so
that the last integral is well defined as a Stieltjes-integral.

Hypothesis 8. The following discussion is valid for general rate functions k1 and density
functions h(-) that satisfy
— k1 € CY, ky is globally Lipschitz and linearly bounded with

0 < ki(z) < c+ k.
~ heC® and ) zh(z)dz < .
For a general density function h, we denote the average burst size by
Q0
b= f xh(z)dz. (9.19)
0

If k1 =1 is independent of the state zs, the average transcription rate is bA1, and the
asymptotic average mRNA and protein concentrations are

b
o= Elm( )] = T (9.20)
A bA1 s :
25l = Elzo(t > = Zpf= 2=
2 [2( ) 2t e

9.3.2 Statement of the results

In the following discussion, we consider the situation when mRNA degradation is a
fast process, i.e. 71 is “large enough” , but the average protein concentration z5! remains
unchanged. In what follows, we denote by 7', AT, Ay sequences of parameters, and A"
sequence of density function that will replace v1, A1, A2, h in eq. (9.17)- (9.18). We then
denote (z7,xh) its associated solution. We will always assume one of the following three
scaling relations:

(S1) Frequent production rate of mRNA, namely 7" = nvyi, Al = nAy, and Ay = Ay
h"™ = h are independent of n;
(S2) Large burst of mRNA, namely 7§ = nyy, h"(2) = L1h(2) and A} = A, A5 = Xy
remain unchanged;
(S3) Large production rate of protein, namely 77 = ny1, Ay = nhg, and AT = A\ A" =h
are independent of n;
In this section we determine an effective reduced equation for eq. (9.16) for each of

the three scaling conditions (S1)-(S3). In particular, we show that under assumption (S1),
eq. (9.16) can be approximated by the deterministic ordinary differential equation

dx
d—; =~y + Aok(z2), (9.21)

where
k(l’g) = b)\lkl(mg)/’yl.
We further show that under the scaling relations (S2) or (S3), eq. (9.16) can be reduced

to the stochastic differential equation

d.T o —
d—t2 = —7Y2Ig + N(h7 Akq ($2)) (9.22)
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where h is a suitable density function in the jump size Azs (to be detailed below).

We first explain, using some heuristic arguments, the differences between the three
scaling relations and the associated results. When n — o0, 7{ — o0 and applying a
standard quasi-equilibrium assumption we have

dz?

— =0,

dt
which yields
1

n

1

27 (t) ~ — N(h" (), ATk («5)) = N A" (0), ATha (a5)),

and therefore the second eq. (9.16) becomes

dxl n A3y n n 5
dt2 ~ —yexl + %N(h (.), ATk1(3)),
n o /Yn n /Yn n n
~ —mry + N ()x_hh (A_h)’)\lkl(%)) '
2 2

Hence in eq. (9.22), h(xz2) = (Ma/v1) 'h((A2/71) 'x2) under the scaling (S2) and (S3).
Furthermore, we note that the scaling (S2) also implies nh"™(n-) = h(-), while in (S1),
nh"(n-) = nh(n-) so that the jumps become more frequent and smaller.

We denote (D[0,0),S5) the cad-lag function space of function defined on [0,00) at
values in Rt with the usual Skorohod topology. Similarly (D[0,T],J) is the cad-lag
function space on [0,T], with the Jakubowski topology. Also, LP[0,T") the space of L
integrable function on [0,7"), with 7" > 0, which we endowed with total variation norm,
and M (0, 00) is the space of real measurable function on [0, 00) with the metric

d(z,y) = J: e '"max1,| z(t) —y(t) |dt.

Our main results can be stated as follows

Theorem 54. Consider the eq. (9.17)-(9.18) and assume hypothesis 8. If the scaling (S1)
is satisfied, i.e., \} = n)1, and if z3(0) — 23, then when n — o,
1. The stochastic process x7(t) does not converge in any functional sense;

2. The stochastic process x4(t) converges in law in (D[0,0),S) towards the determin-
istic solution of the ordinary differential equation

dz
d—t2 = —YoT2 + Aok(r2), 2(0) = 388, (9-23)

where
k‘(l‘Q) = b)\lk‘l (:L‘Q)/’)/l.

Theorem 55. Consider the eq. (9.17)-(9.18) and assume hypothesis 8. If the scaling (S2)
is satisfied, i.e., h"(z) = 2h(2), and if 25(0) — 29, then when n — oo,

~n
1. The stochastic process %(t) converges in law in LP, 1 < p < o and in (D[0,T],J)
to the (deterministic) fixed value 0;

2. The stochastic process x%(t) converges in law in LP, 1 < p < o and in (D[0,T],J)
to the stochastic process defined by the solution of the stochastic differential equation

d o —
% = —yom9 + N(h, Mk1), 22(0) =29 >0, (9.24)

where h(x2) = (A2/71) " h((A2/71) " a2).



9 From One Model to Another 133

Moreover, in the constant case ki = 1, the stochastic process x}(t) converges in law in
M (0,00) to the compound Poisson white noise N(h,\1);

Theorem 56. Consider the eq. (9.17)-(9.18). and assume hypothesis 8. If the scaling
(S3) is satisfied, i.e., \§ = nlq, and if x%(0) — 23, then when n — oo,
1. The stochastic process x(t) converges in law in LP, 1 < p < o and in (D[0,T],J)
to the (deterministic) fixed value 0;

2. The stochastic process x4 (t) converges in law in LP, 1 < p < o0 and in (D[0,T],J) to
the stochastic process determined by the solution of the stochastic differential equation
dxg

E = —7Y2X9 + ]\7(}37 SO)? :1:2(0) = .’Eg = O’

where h(z2) = (A2/y1) " h((A2/71) " a2).

Remark 57. Note that scalings (S2) and (S3) give similar results for the equation gov-
erning the protein variable xo(t) but very different results for the asymptotic stochastic
process related to the mRNA. In particular, in theorem 55, very large bursts of mRNA are
transmitted to the protein, where in theorem 56, very rarely is mRNA present but when
present it is efficiently synthesized into a burst of protein.

In this section, we provide three different proofs of the results mentioned above. In
particular, we prove the results using a master equation approach (the Kolmogorov forward
equation) as well as starting from the stochastic differential equation. Note that both
techniques have been used in the past, in particular within the context of discrete models
of stochastic reaction networks. For the master equation approach, see [56, 153, 124] while
for the stochastic differential equation approach, we refer to [25, 75].

In paragraph 9.3.4 we first show the tightness result for all three theorems. We then
identify the limit using martingale approach in paragraph 9.3.5. In the others section,
we provide alternative proof to identify the limit. In paragraph 9.3.6, we consider the
situation without auto-regulation so the rate k; is independent of protein concentration 5.
In this case the two eq. (9.15)-(9.16) form a set of linear stochastic differential equations.
We use then the method of characteristic functionals to identify the limit. Finally in
paragraph 9.3.7 we give a similar result on the evolution equation on densities .

9.3.3 General properties and moment estimates

We first summarize the important background results on the stochastic processes used
in the next.

9.3.3.1 One dimensional equation For the one-dimensional stochastic differential
equation (9.22) perturbed by a compound Poisson white noise, of (bounded) intensity k(z2)
and jump size distribution h, the extended generator of the stochastic process (w2(t))i=0
is, for any f € D(A), (see [27, Theorem 5.5))

Aaf(@) = =ran )+ k@) [ e - )7 - f@)
D(A1) = {feM(0,0): t f(xe ") is absolutely
continuous for t € R* and
E Y £(wa(T) = fl@s(T;))] < oo for all ¢ > 0}

T;<t
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where M(0, ) denotes a Borel-measurable function of (0,00) and the times 7; are the
instants of the jump of z5. It is an extended domain containing all functions that are
sufficiently smooth along the deterministic trajectories between the jumps, and with a
bounded total variation induced by the jumps.

The operator A; is the adjoint of the operator acting on densities v(¢,x) given by [90]

T

011(;7; ) — g_x[’yzmv(t,x)] + Jo k(2)v(t, 2)h(z — 2)dz — k(x)v(t, x).

For any f € D(A;), we have

%Ef(xg(t)) =EA; (f(z2(t))).

9.3.3.2 Two dimensional equation Consideration of the two-dimensional stochastic
differential equation (9.15)-(9.16) perturbed by a compound Poisson white noise, of inten-
sity A1k1(z2) and jump size distribution h follows along similar lines. Its infinitesimal
generator and extended domain are

0 0
Agg(xr,z2) = —’719610—9691 + (Moz1 — ’72332)8—52

x1

+ Aik1(x2) (Jw h(z —x1)g(z,x2)dz — g(a:l,:rg)> , (9.25)
D(As) = {ge M((0,00)%): t > g(¢¢(x1,22)) is absolutely (9.26)

continuous for t € R™ and
E > lg(a1(Ty), 2a(Ty) — g(a1 (T;7), xa(T;7))| < oo for all ¢ > 0}

T;<t

where ¢, is the deterministic flow given by eq. (9.15) and (9.16).
The evolution equation for densities u(t,x1,x2) is

0 ta ) 0 0
W - a—m[’hﬂmu(t,xl,m)] - a—@[(Agl‘l — yawa)ult, x1, 22)]
1
+ j Mk (zo)u(t, z, m0)h(z1 — 2)dz — Aky (@2)u(t, z1, x2).
0

For any f € D(A3), we have

S (1(0), 22(1)) = EAo(f 10, 22(0). (027)

Using stochastic differential equations (9.17) - (9.18), we can deduce moment esti-
mates, needed to be able to use unbounded test function (namely f(z1,22) = 1 and
f(z1,29) = x2) in the martingale formulation. By taking the mean into eq. (9.17) - (9.18)
and neglecting negatives values,

0 < E[ai(t)] < fot ABE [y (2(s))|ds < L Al + TiE[wa(s)])ds

t

0 < E[za(t)] < Jo ME[z1(s)]ds
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where we note b = E[h] = SSO zh(z)dz. By Gronwall inequalities, there exist a constant C
such that
E[ sup 21(t)] < C(E[z1(0)] + e“T)
t€[0,77]

E[ sup z3(t)] < C(E[x2(0)] + )
te[0,T]

(9.28)

Then we claim that f(x1,x2) = 21 is in the domain of the generator As. We only have to
verify (see eq. (9.26))

E2|a:1 ) —x1(T7)| < oo for all t > 0.
T;<t
By eq. (9.17)
t Q0 o0
E Y. |e(Ty) — 2o (T7)] = EJ f f Lk (aa(s—)) 2N (ds, dz, dr),
o 0 Jo Jo

t
< b)qE[J ¢ + kiza(s)ds].
0
which is finite according to the previous estimates.

9.3.4 Tightness

S1 We first show the tightness property for the scaling (S1) corresponding to theorem 54.
In such case 27 does no converge in any functional sense because it fluctuates very fast, as
more and more jumps appears of size that stay of order 1 (given by h). However, E[#7(t)]

remains bounded, =+ goes to 0, and by eq. (9.18),

t
| 23(t) [<] 22(0) | +L Az [ 27 (s) | ds.

For any n, let N,, be a compound Poisson process associated to eq. (9.17), with {7}, ;}°,
the jump times which occur at a rate nAi1k;(z5(s)), and {Z,,;}2, the jump sizes that are
iid random variables with density h (with the convention T}, o = 0 and Z,, o = Xo). Then

2Pty = Y Znge ") 1 .

Tn,igt

By integration,

Then,

Now, by a time change, there exists a process Y such that N, (t) = Y ( S(t) nAiky (23 (s))ds)
with Y an unit rate compound Poisson process of jump size iid (with density h). As
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E[h] < oo, by the law of large number, 1Y (nt) is almost surely convergent (to E[A]¢).
Then 1Y (nt) is almost surely bounded, on a compact time interval [0,7]. We deduce
then that there exists a random variable C' such that

)\ t
21(t) < 23(0) + fof ks (2 (s))ds.
1 0

By Gronwall lemma and Markov inequality

P{ sup ) (t) > K} — 0.
te[0,77]

Similarly, for any t¢1,ts € [0,71],

A
| 23 (t2) — 25 (1) |[< —= | Nu(t2) — Na(t1) | -
nm

to
Again, N, (t2) — Ny (t1) = Y(J nA1ki (25 (s))ds) and, still by the law of large number
t

1

A t2
| 2B (t2) — 2B (1) |< 7j0 Ak (25 (5))ds,
t1

so that , for any € > 0

limlimsup  sup  P{|a25(S2) —25(S1) |= e} =0,
6—0 n S1<52<51+60

where the supremum is over stopping times bounded by 7. Then by Aldous’ tightness
criterion ([70, thm 4.5 p 356]), x4 is tight in (D0, %), S).

S3 Now we show the tightness property for the scaling (S3) corresponding to theorem 56,
with Aj = nAs. In such case x7 converges to 0 in L', and we get a control over n S(t) x}(s)ds.
Indeed using g(x1,x2) = 1 in eq. (9.25), we get

22(t) — 27(0) - f (=l (s) + Ak (2(s))bds),
0

is a martingale so that due to hypothesis 8, there is a constant C' such that

ylE[nJ 2} (s)ds] < E[aT(0)] + A (ct —i—k_lj E[25(s)]ds)

0 0
By eq. (9.18),
¢
ay(t) < E[a5(0)] + )\an x7(s)ds.
0
then
T
sup z3(t) < E[25(0)] —i—)\gnf x(s)ds.
te[0,T] 0

Reporting into the estimates for z7 yields

t

ylE[nL zi(s)ds| < E[z7(0)] + Mi(ct + ki (E[25(0)] + t)\gnfo E[27(s)]ds)),

< Ch+ C’%E[nf 2 (s)ds],
0
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for two constants C’%, C% that depends solely on T'. By Grénwall inequality, E[n Sé ! (s)ds]
is bounded uniformly in n so that 2} converges to 0 in L! and

P{ sup Y (t) >K}—0.
te[0,77]

Now for any subdivision of [0,T], 0 =ty <t1 <--- <t, =T,

n—1 t
3 a3 (te) =a3(t) | < E[50)]+dan | af(s)as.
i=0

so that we also get the tightness of the BV norm,
P{[l2% .y = K} — 0,

as K — 0, independently in n. Then z7 is tight in LP([0,T]), for any 1 < p < oo.

S2 Now we show the tightness property for the scaling (S2) corresponding to theorem 55,
with h" = 1n(1). Remark that on such case, denoting 2" = %, the variables (2", z%)
satisfies eq. (9.17) - (9.18) with the (S3) scaling, so we already know that z¥ is tight in
LP([0,T1]), for any 1 < p < o0.

For z7, note that each jumps gives a contribution for Sm? of ﬁ/—bl so there’s no hope for
a convergence to 0 in L'. However, we still have

2P(t) = D) Znge T g

Tn,i <t

where T),; appears with rate A\ik(z5(s)), and {Z,;}°, are iid random variables with
density h™. Then

_ L
) < N Zui(Lqg g pp TV L),

Tn,i <t

But for K >0
nb

oY
P{Z, ;e 1> K} < ol <e,

for any € and n sufficiently large. Then, conditioning by the jump times,

fp{x’f(s)>K|Tn,i}< >

1
—1 t=T, + E(t - 1T 7)]. t=T, S g.
0 Tn,iSt\/ﬁ (=t 2 s

Tn,igt

for n large. Because Sé x5 (s)ds has been shown to be bounded independently of n, we can

drop the conditioning, and S(t) P{z7(s) > K} is arbitrary small. We show also similarly
that

T
}lbin%)supf max(1, | z7(t + h) — 27 (¢) |)dt = 0,
— n 0

so that = is tight in M(0,00) ([82, thm 4.1]).
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9.3.5 Identification with the martingale problem

The three theorems below can be proved using martingale techniques, with similar
spirit. For each scaling, the generator A3 can be decomposed into a fast component, or
order n, and a slow component, of order 1. In each case, one need to find particular
condition to ensure that the fast component vanishes. For the scaling (S1), the fast
component acts only in the first variable, so ergodicity of this component will ensure that
it vanishes. For the other two, the fast component acts on both variables, and we will
have to find the particular relation between both variable that ensures this component
vanishes.

9.3.5.1 Proof of theorem 54 For any B € B(R,), ¢t > 0, we define the occupation
measure

V(B x [0,1]) = fo 15 (27 (5))ds,

and we identify V" as a stochastic process with value in the space of finite measure on
R*. Because E[z7(t)] remains bounded uniformly in n on any [0,7], it is stochastically
bounded and V; then satisfies Aldous criterion of tightness. Now take a test function f
that depends only on x1, so that

A3 f(z1) = nCy, f(21),
with
Coy f(x1) = =21 f'(21) + Aik1(22) (J h(z —x1) f(2)dz — f(x1)>-

Then .
M = J@H) = F@O) =n | | Coggo o)V dar

is a martingale. Dividing by n, for any limiting point (V1,z2), we must have, for any
f € Ob(RJr)a

E[Jﬂh L Coos) f (x1)Vi(dzy x ds)]| = 0.

Because for any xo, the generator Cy, is (exponentially) ergodic (see paragraph 8.5) Vj
is uniquely determined by the invariant measure associated to C,. In particular, for any

t>0
t . t b>\1
V' (dxy x ds) = | —ki(xa(s))ds.
Ry JO 0o M

Then for f that depends only on x,

f(@3(t)) — f(z3(0) — fR L (Noz1 — Y225 (s)) f (25 (s)) Vi (dy x ds)

converges to

f2(t)) = f(22(0)) — f ( ki (w2(s)) — v2m2(s)) f'(w2(s))ds

0o M

Due to the assumption on k1, there exists a unique solution associated to the (determin-
istic) eq. (9.21) so 2 is uniquely determined.
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9.3.5.2 Proof of theorem 56 We already seen that 27 converge to 0 in L([0,T])
and 2% is tight in LP([0,T]). Doing similarly as in subsection 9.2, we take a subsequence
(2 (t), x5 (t)) that converge to (0,z2(t)), almost surely and for almost ¢ € [0,T']. Then we
consider the fast component of the generator A%, given in this case by

of of
—MT15— + Az
7171 Fr 215 vy
This defines a transport equation. Starting at (z1,z2) at time 0, the asymptotic value of
the flow associated to the transport equation is (0,y) where

* 1 \gz A
y=$2+f Aox1(s)ds :m2+f 2220y = a9 + 22y
0 0o 7% T

We then consider \
2
f(xl,l’Q) = g(.TQ + —5131),
!
that satisfies, for any x1, x2,

0 0
—’Ylml—f + Xox1 5 /

P oy = 0.

Now taking the limit n — o0 into

[t (t), z3 (1) = f(21(0), 23 (0)) — L Az (7 (s), 23 (s))ds,

yields

t

9(x2(t))=g(a2 (0))—f —7Y22g (22(s)) + A1k (2(s)) ( Jw h(2)g(xa(s)+2)dz—g(z2 (8))) ds,

0 0

where h(x) = (A2/71)"'h((X2/71) 'z2). Hence the limiting process xo must satisfy the
martingale problem associated with the generator

dg
Acgla) = —aa e + M @) [z - 2)f )tz — 1)),
for which uniqueness holds for bounded k; (see [25, thm 2.5] or theorem 9 in Chapter 0).
A truncation argument allows then to conclude.

9.3.5.3 Proof of theorem 55 As noticed before, (2", z}) with 2" (t) = z?( ) satisfies
the scaling (S3) so similar conclusion holds for z%. The last conclusion on ml is differed
to the next subsection.

9.3.6 The case without auto-regulation

In this subsection, we give an alternative proof of the identification of the limit, using
the characteristic functional of the stochastic process. This can works when there’s no non-
linearity, and eq. (9.15) - (9.16) can actually be seen as generalized Langevin equation.
We consider the equations

dry
dt

dzs
dt

= —ma1+ N, AL, 21(0) =29 >0, (9.29)

= —yox9 + Nowy, 29(0) =23 >0, (9.30)
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where N(h, 1) is a compound Poisson white noise. The solutions z(t) and za(t) of
eq. (9.29) - (9.30) are stochastic processes uniquely determined by the equation parameters
and the stochastic process N.

For a stochastic process & (¢ > 0), the characteristic functional C¢ : ¥ — R is defined
as

Celf] =E [eSK‘ if(t)ftdt] ,

for any function f in a suitable function space X so that the integral
SSO if(t)&dt is well defined. Before continuing, we need to introduce some topological
background as well as properties of the Fourier transform in nuclear spaces (see [44])

9.3.6.1 Stochastic process as a distribution We are going to recall here the contin-
uous correspondence between a stochastic process and a distribution. We define D(R™),
the space of smooth functions with compact support, with the inductive limit topology
given by the family of semi-norms (k = 0,1,2...) px(f) = sup|f*)| on every D([0,n]),
n €N (cf. [125, Example 2, page 57]). Let f € D(R"), and define & in the dual space
D'(R™) such that

o0
z(f) = f x(t) f(t)dt (9.31)
for any  in D[0, o), and analogous definition for x € L”[0,T"] or M (0, c0).

Lemma 58. The map
(D[0, ), 5) —» D'(R™)

(@4)e=0 — T,

where T is defined by eq. (9.31), is continuous.

Proof. 1t is a classical result that z € D has at most a countable number of discontinuity
points so that z is locally integrable, the integral in eq. (9.31) is well defined for all
feD(R"), e D'(R") and

T
EOINGRECIES Iy
for any f with support in [0,7"] [121, Section 6.11, page 142]. We conclude by noticing
that

| 2(f) I< sup | 2(s) Il f llo T,

and x — sup,<p | z(s) | is continuous for the Skorohod topology [70, Proposition 2.4, page
339] for all T such that T is not a discontinuity point. O

Similar continuity property holds respectively in D((O, ), J ), L?[0,T], M][0, 0].

9.3.6.2 Bochner-Minlos theorem for a nuclear space Let F be a nuclear space.
We state a key result that will allow us to uniquely identify a measure on the dual E’ of
E.

Bochner-Minlos Theorem. [/4, Theorem 2, page 146] For a continuous functional C
on a nuclear space E that satisfies C(0) = 1, and for any complex z; and elements x; € A,
5L k=1,..n,

n
Z ZjZkC(l‘j - l‘k) =0,
J=1k=1



9 From One Model to Another 141

there is a unique probability measure y on the dual space E', given by
C) = [ e“anto)

Note that the space D(R™) is a nuclear space [125, Example 2, page 107].

9.3.6.3 The characteristic functional of a Poisson white noise The use of the
characteristic functional allows us to define a generalized stochastic process that does
not necessarily have a trajectory in the usual sense (like in D for instance). Indeed a
(compound) Poisson white noise is seen as a random measure on the distribution space
D', associated with the characteristic functional (given in [61], here f € D(R™))

Cylf] = exp [90 L N L Oo(eizf@ — 1)h(z)dzdt] : (9.32)

where ¢ is the Poisson intensity and A the jump size distribution. It is not hard to see that
Cxlf —g] and Cy[g — f] are conjugate to each other, C[0] = 1 and C[.] is continuous
for h € LY(R*), so the conditions in the Bochner-Minlos theorem 9.3.6.2 are satisfied and
therefore C', uniquely defines a measure on D'(R™).

Remark 59. To see that this measure indeed corresponds to the time derivative of the
compound Poisson process, consider the following
E[ei<N,f>] — lim E[eiij(tj)AjN:l7
1A4;1—0

where AjN = N(t;j+1) — N(t;) denotes the increment of a compound Poisson process, and
(tj) is some subdivision of R* of mazimal step size A;. Due to the independence of the
increments of the Poisson process, this limit can be re-written as

E [ei<N’f>] = lim E [eif(tj)AjN] .
|AJ“_’O j

Now, because of the independence of the jump size and the number of jumps, and the fact
that all jumps are independent and identically distributed (with distribution given by h),

E [eif(tj)AjN] _ ZE :eif(tj)AjN | AN = n]

- YE i/ 6)(Z1+20) | AN = n]

= DE[e@ 2| BN = n)

N [eif(tj)z] )"P(A;N = n)

n

0 A\n
= e_ﬂoAj Z (J‘ eif(tj)zh(z)dz)” (@ﬁ{)
n 0 :

Q0
= exp [@Aj(f 2 p(2)dz — 1)] ,
0

SO

o o0
E [eZ<N’f>] = lim exp
0

Am @ZA]-(J eif(tj)zh(z)dz—l)]
gl j

= exp [cp LOO fooo(eizf(t) - 1)h(z)dzdt] .
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We refer to [108, 61, 62] for further material on characteristic functionals and general-
ized stochastic processes.

9.3.6.4 Identification of the limit using characteristic functional The proofs
of theorems 54 to 56 are based on the idea of Levy’s continuity theorem. However in
the infinite-dimensional case, the convergence of the Fourier transform does not imply
convergence in law of the random variable, and one needs to impose more restrictions,
namely a compactness condition. We will use the following lemma

Lemma 60. Let X™ be a sequence of stochastic processes in (D[0,0),S5). Suppose X"
is tight in (D[0,00),S) (respectively in D((O,oo),J), LP[0,T], M[0,o]) and that there

exists a random variable X such that, for all f in D(R"), as n — oo,

Cxn[f] = Cx[f]

Then X™ converges in law to X in D((O, oo),S) (respectively in D((O, ), J), Lr[0,11],
M]0,0]).

Proof. The convergence of the characteristic functional, the Bochner-Minlos theorem 9.3.6.2
and the continuity lemma 58 ensure that the sequence X™ has at most one limiting law,
which has to be the law of X. The classical Prokhorov Theorem [70, Corollary 3.9, page
348] states that tightness of X™ in (DJ[0, ), S) is equivalent to relative compactness of
the law of X™ in P(D), the space of probability measures on D (with the topology of
the weak convergence). Then X" converges in law to X in (D][0,),S). The continu-

ity lemma and Prokhorov theorem are also valid in D((O, ), J ), LP[0,T], M0, 0] (see
part 0 section 7).

Note that the tightness property has already been done in paragraph 9.3.4. Now, we
give the identification property of the limit for theorems 54 through 56. The strategy is
similar for each, and we only present a detailed proof for theorem 54 and sketch the main
differences in the proofs for theorems 55 and 56.

For any f € D(RY), from eq. (9.29) - (9.30) and noting that the initial conditions z{
and 79 are deterministic, it is not difficult to verify that (see also [19])

Cor[f] = €97 [Fi(1)],  Cuo[f] = €9278C,, o fo(1)], (9.33)

where

Q0 Q0
i = J e " f(s)ds,  fi(t) = f e N f(s)ds, (i =1,2).
0 t

Note that for any function f € D(R™") the functions f;(t) also belong to D(R*) and there-
fore the characteristic functionals in eq. (9.33) are well-defined. Furthermore, the charac-
teristic functional of the compound Poisson white noise has been derived in eq. (9.32).
Proof of theorem 54.

Recall that AT = n\;. We omit the dependence in n of function g; and ﬁ for simplicity.
Now, we are ready to complete the proof by calculating the characteristic functionals Cyrn

and Cpp when n — o from eq. (9.33) and (9.32). Firstly, we note that g; = £:(0), and
when f e D(R") and n — 0o,

Filt) = —— (1) + O(). (934

nyl
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Furthermore, from eq. (9.33) - (9.34), we have

ixd (= L 1
Cylf] = SOOI [—f() o3|

= O [ f f dxdt)] + 0(%). (9.35)
0
Thus, from eq. (9.20), we have
o6}
hngoC f]=exp [ZJ f(t)xith] , VfeD. (9.36)
n— 0

Therefore, eq. (9.33) yields
lim Cyup[f] = eP"2exp [i)\gf fg(t)xith]
0
= "2 exp [ZJ f(s)(1— e_VQS)xSqu] . (9.37)
0
Now, it is easy to verify that the right hand sides of eq. (9.36) and (9.37) give, respectively,
the characteristic functional of z;(t) = ] and z2(t) of the solution of eq. (9.23). Hence
we are done.
Proof of theorem 55. Recall that h"(z) = 2h(%). The proof is similar to the proof
)

of theorem 55. Note simply from the scaling (S2) that eq. (9.35) becomes, still from
eq. (9.33) - (9.34)

Con[f] = €' “HO+0Ga [Al f f o fOH0G, —1)h"(z)dzdt].

Thus, by a change of variable z = z/(7y1n), we have

Cx’f[f] _ eir’lnx(l)f( )+O( % |:>\1J f zxf(t)-t—O(% _ 1)}~l($)dﬂj‘dt:| ’

where h(z) = y1h(y12). Then

tm Caglf] = e [on [ [ @07 - Dotz
ol

where N is a compound Poisson white noise of intensity A1 and jump size distributed
according to h. Furthermore, from eq. (9.33)

lim Cpn[f] = eigﬂgaﬁ[)ﬂﬁ(t)]
o 0 oo -
A - [Ml f f (ePanha) _ 1)h(w>dwdt]
— ZQQZQ exp |:Z)\l J f Z$f2(t) ( )dazdt] (938)
where E(mg) = ()\2/71)_1}1(()\2/’}'1)_13:2) It is easy to verify that eq. (9.38) is just the

characteristic functional of the stochastic processes given by solutions of eq. (9.24).
Proof of theorem 56 Here, \j = n)y. we have

o0 o0
lim Cpn[f] = lirréo exp [Alf J (etfWz/(nm) _ 1)h(a:)dxdt] =

n—a0
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and

Q0 Q0 ~
lim ng [f] — eiggxg exp |:)\l J‘ J (ei(A2/'71)$f2(t) — 1)h(x)dxdt:|
= io27) exp [)\1 f J ””fQ 1)h(z )dxdt] ,

7 M,
Aw) = 3Rl o).

where

9.3.7 Reduction on the evolution equation

We conclude by a third proof for the reduction, working on the partial differential
equation for the evolution equations on densities. Because we work directly on the strong
form, results are weaker. In particular,

Hypothesis 9. In addition of hypothesis 8, we assume that
(H1) The density function h € C*®, and for all k > SOO 2Fh(2)dz < 0.
(H2) The rate function ki € C*, and ki is bounded above and under,

0<ﬁ<kl($) gkla

Theses assumption are needed to ensure that evolution equation on densities is well
defined (see section 8.2), and allow us to derive scaling laws for arbitrary moments, that are
needed for calculus. Regularity will allow us to derive at any order the density functions,
which is also needed for the calculus. We start by a scaling property of the moments,
which is crucial for the convergence results.

9.3.7.1 Scaling of the marginal moment Using the generator Ay for the two-
dimensional stochastic process defined by eq. (9.25), we can deduce the scaling laws of
the marginal moment of x;(t)" as " — 0.

Proposition 61. Let (m?(t),mg( )) be the solutions of eq. (9.15) - (9.16), and pp(t) =
E[z7(t)*] and v (t) = E[z5(t)a7(t)F]. Suppose pui(0) < o and v}*(0) < o for alln > 1,
then pp(t) < oo cmd I/k( ) < oo for all t, n = 1. Moreover, for fired t > 0,

1. If the scaling (S1) holds, then both pjl(t) and v (t) stay uniformly bounded above
and below as n — 0.

2. For the scaling (S2), then, for k > 1
pr(t) ~ 0"t () ~ T (n - o)

and vy (t) is uniformly bounded above and below as n — oo.

3. If (S3) holds then, for k > 1

pr(t) ~n™h () ~ Tl (n o> o)

and v (t) is uniformly bounded above and below as n — .
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Proof. The proposition is proved using the evolution equation for the marginal moment
obtained from the generator Aj.

Firstly, we claim that functions z¥ and 2¥zy (Vk € N*) are contained in D(A%), for all
n = 1. To show this, we only need to verify that

B Y [ (TP (T0) — e (T Rab(TY] < oo, V> 0,k € N1 = 0,1,
T;<t

where the T; are jump times (that also depends on the scaling n). Since 24 () is continuous
and from estimates eq. (9.28), E[sup[(J,T] 25 (t)] is bounded. Then we only need to verify
the case with [ = 0. Now by eq. (9.17),

E ) i (T)* —ai ()"

T;<t

f J f 1{r<)\"k1(x (s— ))}Z N (dS dz d?“)

b"A"E[f k(23 (5))ds],

0

where we note b} = SSO ZEh"(2)dz (so bf = 1 and b} = b"). As k; is assumed to be linearly
bounded, still by estimates eq. (9.28) we conclude that

E > [0 (T)F = 2} (T7)F <00, VE>0, Vn>1

T;<t

Now, A%x% and A5z}xy are well defined, for all £ > 0 and n > 1. A straightforward
calculation yields

0
Al = Pkl + ATk (29) (J (2 — 1) (2 — x1 + 21)"dz — a;]f>

1

1 - '
= —kak 4+ ATk (2o Z () J R (z — 1) (2 — 1) ldz

z1

= Pkt + ATk (4 Z ( )x’l [

;?-s
»—Ao

Then the k'™-marginal moment uf(t) of the first variable 27 depends only on the lower
moment i (t), i < k. We then obtain, with hypothesis eq. (9) and eq. (9.27)

k—1
—1kur(t) + ATk Z (Z)Mz (0)br—i < p(t),

=0
. k=1
HE(E) <~ () + AT S ( )uz(t) ; (9.39)
=0

Recall that in all scalings 7' = nv;.
Assume scaling (S1), A = nAq, and A" A} are independent of n. Inequalities eq. (9.39)
for k =1 yields, for all ¢t > 0,

nArkyb < pi(t) + nypf () < ngksb.
Multiplying by €™t a direct integration yields

A1k1b
(M = 1) < () - (0) < T - 1),
1
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so finally

Ak1b 1 ) 1
— + O(—) < pf(t) < +O(—-).
0 <) < TUE 1 00)

Iteratively, for all ¢ > 0 and k > 1, there is a constant cx(t) > 0 independent of v; (where
c(t) depends only on the moment of h and lower moments 47 (t), j < k ) such that

Alklck(t) 1 )\1]{5_10143(25) 1
———+0(=) < pp(t) S ————= + 0(—).
- () <t < == ()

Assume (S2) i.e. b = n*b. The case k = 1 follows directly from the above calcula-
tions, and for all £ > 1 and ¢ > 0,

A1kin®b kynk
ML L 0@t < () <

+ O(n*=2).
kny ny ( )

Finally, assume (S3). The same method shows that for all £ > 0 and k£ > 1, there is a
constant ¢ independent of v; (¢, depends of the moment of h and of A1) such that

Ck, 1 Ck 1
— +0(=) <pp(t) £ — +0(—=).
40l <) < £ +0()

A similar calculation with g(z1,z2) = xgm’f gives analogous scaling. Namely, we have

k—1
k .
Agoter = (-atk = adekes + et 42tk 3 () etti
1=0

so that, for k > 1,

k—1
n n n,n n k n 7
(AR =) + s + Atk X ()0
=0

k—1
: Kk
<) < (k=0 + M+ 0 Y () ot
=0
while for k£ = 0, we obtain
vy = =210 + AG .

Then vy is uniformly bounded for each scaling (S1),(S2), and (S3). Then, using iteratively
the inequalities for v}, the scaling of yj;, ; and direct integration yields the desired result
for each scaling. O

9.3.7.2 Density evolution equations Let u"(¢,21,22) be the density function of
(1 (t), x5 (t)) at time ¢ obtained from the solutions of eq. (9.15) - (9.16). The evolution of
the density u"(t,x1,x2) is governed by

ou™(t, x1, 0 n n 0 n n
w = a—xl[’h zu" (¢, x1,22)] — 6—x2[()\2x — Yox2)u" (t, x1,72)]
)h"

1
+ f ATk (xo)u™ (t, 2, x2
0

(1 — 2)dz — ATky (z2)u"(t, 21, 22)

(9.40)
when (t,21,72) € (0,+00)3. In this subsection, we prove that when n — oo the density
function u" (¢, z1, x2) approaches the density v(, z2) for solutions of either the deterministic
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eq. (9.21) or the stochastic differential eq. (9.22) depending on the scaling. Evolution of
the density function for eq. (9.21) is given by [83]

ov(t,x 0
% = —a—xz[—’}/gl‘guO + )\2]{5(1‘2)’&0]. (9.41)

Here we note that
k(l’g) = b)\lkl(mg)/’yl.

Evolution of the density for eq. (9.22) is given by

% = aa—@[fygxgv(t, x9)] + J:Q A k1 (2)v(t, 2)h(xg — 2)dz — Mki(z2)v(t, z2) (9.42)

when (¢, 3) € (0, +00)2. Here h is given by

h(x2) = I—;h(z—;@). (9.43)

When hypothesis 9 is satisfied, existence of the above densities have been rigorously proved
in [90, 145]. In particular, for a given initial density

w(0, 21, 22) = p(r1,22), 0<z,y <400 (9.44)

that satisfies
o0 o0
p(z1,22) =0, J J p(z1, ro)dxidre = 1,
0o Jo

there is a unique solution u(t, 1, x2) (we drop the indices n for now, the following is valid
for any n > 1) of eq. (9.40) that satisfies the initial condition eq. (9.44) and

Q0 o0
u(t,x1,x9) = 0, j J u(t, x1, x9)drrdre = 1
o Jo
Moreover, if the moments of the initial density satisfy

o0
ug(ze) = J a¥p(xy, xo)dey < +00, Vay>0k=0,1,---, (9.45)
0

then the marginal moments

o0
ug(t, x2) = j aiu(t, z1, z0)dzy,
0
are well defined for ¢ > 0 and a.e. x93 > 0, since moments stay finite from the discussion
in paragraph 9.3.7.1. Therefore

lim abu(t,zy,29) =0, Vit a.e xo. (9.46)
T1—0
Here, we will show, using semigroup techniques as in [90, 145], that under the hypothesis 9,
the densities are smooth. We will use the following result

Proposition 62. [103, Corollary 5.6, page 124] Let Y be a subspace of a Banach space
X, with (Y, || . |ly) a Banach space as well. Let T(t) be a strongly continuous semigroup
on X, with infinitesimal generator C. Then Y is an invariant subspace of T(t) if

— For sufficiently large X, Y is an invariant subspace of R(\,C)
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— There exist constants ¢y and co such that, for A > co,

| RACY |y<a(A—e) 7, j=1,2.
— For A > ¢y, R(\,C)Y is dense in Y.
Then, we have

Lemma 63. Assume hypothesis 9. If the initial condition v(0,13) € C® (L' then the
unique solution of eq. (9.42) (respectively eq. (9.41) ) v(t,x3) € C® (\Lt. Similarly if the ini-
tial condition u(0,21,x2) € (C®)? (L' then the unique solution of eq. (9.40) u(t,xy,x5) €

C®)2 N L.

Proof. Because the dynamical system given by eq. (9.21) is smooth and invertible, the
result for eq. (9.41) is standard [83, Remark 7.6.2 page 187]. We will show that the result
for eq. (9.42), and the result for eq. (9.40) will follow in a similar fashion. We need to
show that the subspace C < L! is invariant under the action of the semigroup defined
by eq. (9.42). According to [90] (and references therein), we know that the semigroup
defined by eq. (9.42) is a strongly continuous semigroup whose infinitesimal generator C'
is characterized by the resolvent

N
R(\,C)v = lim R(), A) Z (MEk1R(), A))) v (9.47)

for all v € L', A > 0, where the limit holds in L' and A and P are the operators given by

d(y272v)

Av(x2) s

— Mk (z2)v(22),

Pu(xzy) = J:Q v(z)h(zy — 2)dz,

and the resolvent R(\, A) is given by, for all v € L!,

0
R(A, A)v(za) = f ! e@E) = @2)y(2)dz
zo V272

with Qx(x2) = _Alnfra) _ . A1ky (z)dz. We also know that for
72 V2%

d
veD(A) = {ve L' : (x9v) is absolutely continuous and ( (;;U)) e L'},
2

we have
Cv = Av + P(\kyv). (9.48)

We will now use the result from by proposition 62 above to complete the proof. Note
that according to hypothesis 9, @) is a C* decreasing function, so that for v € C°,
R(\, A)v € C3°. Moreover, a simple computation yields, for all A > ~,

1 1
R\ Av(x < sup |v(z)| — <||wv .
RO A | < s [0 5 <ol 5

Then L
Ak

(P Ak R(A, A)) lleo <l v oo 5 —
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and

Ak )j’

| (PO RO ANV o< 0 o (55

so that convergence in eq. (9.47) holds in C* and C{° is invariant for R(A, C'). The second
condition in proposition 62 follows then by the previous calculations. Finally, because
R(\,C) = (A= C)71, to show that R(\, C)CE is dense in CP, it is enough to show that

A =0O)Cy < CF.
According to eq. (9.48) and hypothesis 9, this is true. O

The main result given below shows that when n is large enough,

0

ug (t,z2) = J u"(t, z1, x2)dx;
0]

gives an approximate solution of eq. (9.41) or eq. (9.42).

Theorem 64. Assume hypothesis 9. Let u™(0,x1,22) € (C*)2(L', for alln > 1. For
any n =1, let u™(t, 1, x2) be the associated solution of eq. (9.40), and define

0

ug (t, x2) = L u"(t, z1, x0)dxy.

(1) Under the scaling (S1), when n — o, uf(t,x2) approaches the solution of eq. (9.41).

(2) Under the scaling (S2) or (S3), when n — oo, ug(t,z2) approaches the solution of
eq. (9.42) with h defined by eq. (9.43).

In all cases, convergence holds in C3°, uniformly in time on any bounded time interval.

Proof. Throughout the proof, we omit indices n on u"(t, 1, z2) and in the marginal density
ug (t, x2), and keep in mind that they depend on the parameter n through eq. (9.40) and
the particular scaling considered. The first calculus is independent of the particular scaling

chosen. Let
400

ug(t,x9) = J x]fu(t,xl,xg)dxl, k=0,1,---
0

which are well defined from the previous discussion. From eq. (9.40) and (9.46), we have

Ik
ot

OUg 11 o(xauy)
8:1:2 2 8:1:2

o6} L1
+ f J Ak (@2)xu(t, 2, 20) W™ (x1 — 2)dzdry — Ak (22)ug.
0o Jo

= —kyfur — A3

Since

o6} T1 k k,
j J Ny (z9)a¥u(t, z, 29) W™ (21 — 2)dzdx, = Z (j))\qfkl(xg)ukjb?,
0o Jo j=0
where b} = SSO 2Fh"(2)dz. We have

uk
ot

Ouk41 N O(xauy)

k
n k 3
82 gt 3 (ot

j=1

= —ky'u, — Ay



150 Hybrid Models to Explain Gene Expression Variability

In particular, when k& = 0,

g ouq O(x2up)
il R ¥ it | s 9.49
o 200 2 or, (9.49)
When k > 1, we have
1 auk )\g 0uk+1 Y2 8(:132uk) 1 K (k‘)
— — = —kup — —= + = + — ki (z Cup_ b7 9.50
ot F VP 0z v?  Ox2 7" th( 2); J k=i% ( )

Proposition 61 allows us to identify the leading terms of eq. (9.50) as n — o0 as given
below. ) When k > 1 and n — oo, note that all the right hand-side terms are bounded,
and we apply the quasi-equilibrium assumption to eq. (9.50) by assuming

1 Jux
n ot

~

when t > ty > 0, and hence

. )\g 0uk+1 Y2 8(:132uk)
kv 0xo knt o Oxg

k
1 k 1

_ Ak _pn - kE>1).

ug, + i 1(352);=1 (j)uk " +O(n)’ (v )

(9.52)
Now, we are ready to prove the results for the three different scalings.
(S1). For the scaling (S1), A} = nA; and we have

1 Ak (2z2) < <k> 1
U = ————= CJug_ib; + O(=),
FT T ]21 ;)b ()

SO
b)\lk‘l (1‘2)
!
Substituting eq. (9.53) into eq. (9.49), we obtain

a’LL() 0

1
e 6—:132[72332100 — Xak(x2)uo] + O(E)

with k(z2) = bA\1ki(x2)/y1. Finally, note that

+ 0(%), (9.53)

U1

T
uo(T, :L’g) = J 78100 (t’ 1‘2) dt,

o ot

so point (1) in theorem 64 follows and convergence holds in C§°, uniformly in time on any
bounded time interval.

1. However, to be more exact, one needs to consider the weak form associated with eq. (9.50) to have
integrals of u,, as in proposition 61. The weak form reads, for any smooth function f € C{°

1 d

S |, et = [ s e = 2 [ @) G

0
(9.51)

o0

" 1 k(g 5
+3—; L yug (z2) f (z2)dwo + %kl(mg); <J> byL up—j(z2) f(x2)dzs.

Since uy is a smooth function, there is an equivalence between the strong form (9.50) and its weak form
(9.51). Here, as f (and all its derivatives) is bounded, similar estimates as in Proposition 61 can be
performed, which justifies the identification of leading order terms. To keep the equations simple, we then
perform our calculations on the strong form, while keeping in mind that the identification of leading terms
is justified by the weak form and Proposition 61.
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(S2). We assume the scaling (S2) so h"(z) = 1h(£) and b} = n*b; and the re-scaled k™
moment
bk = Tl_kbz

is independent of n. Hence, from eq. (9.52) and proposition 61, we have

k—1)

(ke A2 O(nFupyq) Yo A(zan~E"Dyy) A
(k—1) _ _N2 E+1 2 2 k) | AL
" Uk k1 0x9 + knyy 0x9 + k1 g

1 "k
E —(k—j—1
+n—71)\1]€1($2) (])’I’L( J )Uk,]bj

Ay O(nFup ) +O(1)

k1 0x9 n

(z2)ugby,

Therefore,

_ i I GA®) A
S+ )T ok

Ok ()0) + 0(%).

Thus, when n — o0, we have, using Taylor development series of ug,

ouy S (=A)F o
A — b ) — (M k
anz kz=:1 k! (’Yl k)ﬁxé( 1 1((132)'U,O)
1 Ay k © & ok
_ ;g(‘q) (L b)) g (Cuba(a)m)
007 0 1 . 0k
= JO h(%l) I;lg(—l’l) a—x’g()\lkl(xg)uO) dxl

(here we note k1(z) = 0 when z < 0). Therefore, from eq. (9.49), when 71 — 0, wug
approaches to the solution of eq. (9.42), and the desired result follows.
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(S3). Now, we consider the case of scaling (S3) so Ay = nAa. From eq. (9.52) and
proposition 61, we have

1 Xy Qg1 V2 0(x2uk)+ 1

=———= Mk b
b kfyl 0o knyy,  0Oxo knyi ko (2)uob
k1o
k Alkl(mg)jZ:l (j)uk_jbj
1 1)\2 6uk+1
= Ak b — —— —).
e 1(z2)uoby [ (ng)
Therefore,
1 Ay 0O 1
= —M\k by — —— O(—
U1 — 1k1(x2)upby " 8x2u2 + (ng)
1 Ay 0O 1 1My 0 1
= —M\k by — —— Mk by — =——— 0
" 1k1(x2)upby 1 072 2nfy 1k1(z2)ugbe — 2, 0z uz] + ( )
1 L A
= — Mk b — [k
M 1(w2)ugby — ST 26332[ 1k1(w2)uo]
1 Ay, @ . 1 1A 0 1
—(—=)"— Ak b O(—
2!(71) 0xy -3ny k(@) uobs — 37 03:1u4]+ (n2)

1 &1, Ay, o1 1
= ——kglﬁ(—z) bkaxlg [)\1]€1((1)2)U0] +O( )

Thus, when n — o0, in a manner similar to the above argument, we have

8u1 O 1 2 ak
—nA H(== Mk
oy T ;;1 k! 71 a o Mk (@2)uo]

Y _
= J h(y — 2)A1ki(2)uo(t, 2)dz — Ak (z2)uo(t, z2),
and the result follows. O

9.4 From discrete to continuous bursting model

We show here that the discrete bursting model BD1, converge either to a continuous
deterministic model or to a continuous bursting model, when an appropriate scaling is
used. The precise result is stated in paragraph 9.4.6.

We are going to state here results of convergence of Pure-Jump Markov processes using
standard techniques [36]. We will look from now on the semigroup defined on the space of
bounded measurable function, rather than on L'. While going from the discrete model to
the continuous model, one needs to make the local jumps smaller and smaller so that they
will eventually becomes continuous, whereas the non-local jumps will stay discontinuous.
Appropriate assumptions on the coefficient needs to be made. We give here a rigorous
proof of the validity of the continuous approximation, using a classical generator limit.
We obtain a convergence of the stochastic process, that contains more information than
solely the asymptotic distribution. As said, these techniques are not knew, but seems to
have been rarely used for Piecewise deterministic process with jumps (see for instance the
recent reference [25], where various limiting processes are obtained in a general settings
for a finite number of reaction).
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For the sake of completeness, and to make apparent the specificity on the choices of
scaling of coefficient, we first state a mean-field limit where the pure-jump Markov process
converges to the solution of an Ordinary Differential Equation (theorem 65) and then state
the convergence of the pure-jump Markov process towards the Piecewise deterministic
process with jumps (theorem 66).

9.4.1 Discrete model

We look at the continuous-time Markov Chain X; on the positive integer space, with
transition kernel given by

K(z,dy) = v(z)d_1(dy) + M=) D hed,(dy)

r=1

where §; denotes the Dirac mass in 7. Let F; be the natural X;-adapted filtration. Then
the following expression holds

t

X, = Xo + f ( — (X)) + )\(XS)E[h])ds + M,

0

where M, is a F;-Martingale, and
M, = )| AX, JJ yK (X s, dy)ds
Jn<t
where J,, are jump times of (X;);>9. Then M; has for quadratic variation

<M >= f (V(Xs) + )\(XS)E2[h])ds

0

9.4.2 Normalized discrete model
We change the reaction rates v,A and jump size probability , respectively by AN AN RN,

We note the associated solution X and define the process

1 -~
XN(t) = NXN

Then it is easy to see that XV is a continuous-time Markov chain of transition kernel

EN(z,dy) = v™ (N2)5_1 (dy) + AN (Nz) > hiY 6 (dy)

r=1

1
N

and
¢ 1 1
xN=x} + L ( — NVN(NXSN) + N)\N(NXSN)E[hN])ds +MN (9.54)

where M}V is an L2-Martingale

Z AXN — f fw yKN (XN dy)ds

JN<t

and M} has for quadratic variation

t
1
<MY >t=f0 (Nﬂ (NXN) + W)\N(NXN)EQ[hN])d
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9.4.3 Limit model 1
We look at the deterministic process defined by

xf =0 + Lt ( —y(zl) + )\(xi)E[h])ds

9.4.4 Limit model 2
We look at the process defined by

ze = 20 + Lt ( — () + A(a:s)E[h])ds + M, (9.55)

where M; is an L?-Martingale

¢
M; = Z Az, —L JRJr yK(xs,dy)ds

Jn<t

and K (xs,dy) = XMxs)ly=z h(y — x5). M, has for quadratic variation

<M >;= f Mz)E2[h]ds
0

9.4.5 Convergence theorem 1

The first result concern a classical fluid limit (or thermodynamic limit) when the jump
intensity is faster and faster and the jump size smaller and smaller, such that the mean
velocity stays finite. Because we include unbounded jump rate function, we need to restrict
to convergence on compact time interval.

Theorem 65. Let A\ and v be nonnegative locally Lipschitz functions on [0,00), and h
be a density function on (0,00) with a finite first moment, i.e. E[h] = SSO xh(z)dr < oo.
Take any T > 0 such that there is a unique solution to the ordinary differential equation
on [0,T], starting at xo = 0,

X = A@EIH] - 5(x).
Now take a closed set D that contains the trajectory up to T, i.e. (x¢)o<i<r < D. Let S

be a relatively open set of D, S < D. Suppose we have the following scaling laws, for any
N >0andz >0,

v(z) = Ny(z)
An(z) = NA(x)

x+1
@ = [

For any sequence N — oo, let XN be the associated Pure-Jump Markov Process described
above by eq. (9.54). Let Ty be the exit time of S, i.e. Tn = inf{t = 0, X} ¢ S}. Then
lim XV (0) = x¢ implies that, for every § > 0,

lim ]P’( sup |XN — Tsnryl >5) =0

SAT,
N—o 0<t<T N
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Proof. This result is contained in many text books (see for instance [81, thm 2.11], or for
the corresponding martingale method [26, thm 2.8]) and is the consequence of the three
followings facts (according to [81, thm 2.11]). For any N, let Sy = S()(+N).

— The time-averaged rate of change is always finite,

sup sup (@) [y =l Ko dy)

N xESN ~

< sup sup [y(z) + A(z)E[h]]
N IESN

< @

— There exists a positive sequence o — 0 such that

lim sup )\N(:L")j ly — x| KN (z,dy) =0
ly—z[>dn

N—00 z€SN

Indeed, for any n > 0, consider dy = max(M, 1)% and M is such that

o0
sup(e) | yhl)dy <1
T€S M

— The difference between the deterministic dynamical system and the time-averaged
rates of change does to zero

fim, sup [(A@ED] = () = Aw(e) || (=2 KN @ dy)] =0

N—oo
xESN N

9.4.6 Convergence theorem 2

We are now going to show that the re-scaled discrete model converge to the limiting
model 2 as N — oo under the specific assumptions

Hypothesis 10. — YN(Nz) = Ny(x), for all z > 0,

-~ AN(Nz) = \M=), for all z >0,

~ Drs1 er%hfy oo, SSO e’ h(y)dy.

We also suppose that the rates X\ and ~y are linearly bounded and v(0) = 0, namely

- Og)\(ZL‘) <>\0+>\11‘

- 0 < y(x) <y + 7z and v(0) =0
The second hypothesis guarantee that the process stay non-negative, and the first one gives
non-explosion property. We finally make the additional assumption

® 2
L y~h(y)dy < oo,

which will allow us to get a control of the second moment.
We prove now that

Theorem 66. Under hypotheses 10, the process X} solution of eq. 9.54 converges in
distribution in D([0, T],R™) towards ¢, solution of eq. 9.55, for any T > 0, as N — o0.

We will use standard argument and decompose the proof in 3 steps: tightness, identi-
fication of the limit and uniqueness of the limit.
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Step 1: Tightness We start by proving some moment estimates. Using the expression
of the transition kernel KV, it follows that

B0 < B + [ BB RN
0

Then, due to the assumption on A,
¢

E[X]] < E[X?] +J E[R™N] (Ao + ME[X])ds
0

Note that due to assumption on A", E[hV] is convergent, hence bounded. Then, by
Gronwall inequality, for any 7" > 0, if IEX(])V < o0, we have

sup EX}N <o
te[0,T]

For any p > 2, note that

Z(az—i— N)th P = Z (i (i)mp_ka—i)hiv,
k

r=1 r=z1 k=1

Then, we deduce

BOGYL < B+ [0+ nep 3 (7)o e

Hence, according to the assumption on 2" and Gronwall inequality, we show by recurrence
on p, if E[(X{)P] < oo, then

sup E[(XM)P] < 0.
te[0,T7]

We prove by similar argument that

supE[ sup XN < oo,

n te[0,T]
N2
supE[ sup (X;')7] < .
n te[0,T]

Now note that X}V is the semi-Martingale, with finite variation part

t E hN
v = [ e s aa) H-as
0

and Martingale M} of quadratic variation
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Then using moment estimates above and assumptions on rates v and A, it comes
supE[ sup | VN |] < oo,
N t€[0,T]

supE[ sup < MY >;] < oo
N te[0,T]

Similarly, for any 6 > 0, for any sequence (Sy,Tn) of couples of stopping times such that
S, <T, <T and T, < 5, + J, we can show that

supE[| VAL — V&[] < Cs,
N
supE[|< MY >p, — < MY >g,]] < O,
N

where C' is a constant that depends only of \g,A\1,70,71,h and T
Then by Aldous-Rebolledo and Roelly’s criteria ([73],[119]), this ensures that X}V
tight in D(R™,R™) with the standard Skorokhod topology.

step 2: Identification of the limit Let’s consider an adherence value z of the sequence
X% and denote again XV the subsequence that converges in law to = in D([0,T], R*).
For any £ > 0, let 0 < t; < ... <t < s <t < T and ¢1,...,¢0p € Cp(RT,R). For
y € D([0, T],R"), we define, for suitable f

t

W) = 1(0m) - Sulon) [ £~ F00) = [ (=10 (w)

s

+ A(Yu) LOO h(y) f(yu +y)dy — f(yu))du].

Then | E[¥(z)] |< A+ B + C where

A = |E[¥(z)] - E[¥(X™)]],
B = |E[W(X™)]-E[¢u(X)) ... on(X)(M]N - MM,
C = |E[p(X)... on(X) MY = MM .

By the Martingale property, C = 0. The map y € D([0,T],R*) — ¥(y) is continuous as
soon (ti,...,tx,s,t) does not intersect a denumerable set of points of [0, 7] where y is not
continuous. Then the convergence in distribution of X to z implies that A converges to
0 when N — co. Finally,

t|’7(X1]LV)| " N EZ
| e+ 2

A | (S rad + - | " h) () + ) | du],

r=1

with ¢! € [0,1]. Then B — 0 as N — oo according to the assumptions above.

step 3 : Uniqueness In step 2, we have shown that adherence values of X,, has to be
solution of the Martingale problem associated to the generator A,

Af@) = 2@ 3@ ([ Fe 4 s - 1)),

It is known ([27]) that under our assumption we have a strong solution of eq. (9.55), so
uniqueness of the solution of the martingale problem associated to A holds, using [36,
corollaire 4.4 p187] (see part 0 proposition 8).
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9.4.7 Interpretation

Lets consider the master equation eq. (8.1) in the specific example 5. We can see this
master equation as a biochemical master equation ([45]). Then, the degradation reaction
being a first order reaction, the propensity -, is independent of the “size* of the cell. But
the burst production reaction is a zero-order reaction, and hence is proportional to the
size, that is

1+ KnV
A+ AKnN

Note that in the last expression, the Hill function occurred as an elimination procedure
of the repressors molecule (see for instance [91]). Parameters A and A are dimensionless
parameters, and the parameter K is the reaction rate constant of the binding of N proteins
to a single repressor molecule, and then is the reaction rate constant of an (N + 1)-order
reaction. Then

An = AV

K =KoV
. e 1/NX, . kN
Now let define the rescaled variable X© = K" 7+, we get, with ¢ = —§—,
e 7
Plz—z—clX; =x) = P
1/N N
MK, 14+ _
Plz >z +relX; =2) = ; A—i—Aa;N(l_b)br !

The mean burst size of this rescaled variable is then %5. Hence the jumps become smaller
and more frequent as € — 0. We recover in the limit a continuous and deterministic pro-
cess, the situation of the theorem 65.

Now suppose the burst production rate does not increase with the size of the cell, but
the burst size does. With the scaling of theorem 66, if A is an exponential distribution
of mean parameter b, then h. is a geometric distribution of parameter 1 — e~b/e
€ — 0, and then the mean burst size increases inversely proportional to €.

— 1 as

Remark 67. In practice, if we don’t know a priori the size of the system, we expect the
following ¢ to be appropriate, depending on the case,

- v Degradation rate

Xo  Burst frequence

e ~ K" = (Binding Rate constant)"
1-b 1

° b mean burst size

Much caution must be taken while choosing the €, because in practice the size of the system
doesn’t go into infinity, so that a too small € would lead to misunderstanding. For instance,
In [153], one can found the following rates taken from other literatures:

AmRNA ~ 1, Omin

YmrNA ~ 1,0min”!
1
VYprotein ™~ 0,01lmin

Number of protein for one mRNA ~ 30

so that the continuous approximation with ¢ = 0.01 would give a degradation rate of order
1 min~t, a bursting rate of order 1min~" and a mean burst size of 0.3.
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This chapter deals with protein aggregation models. These models are dealing with
the dynamics of the formation of polymers (aggregates) formed of proteins, and related to
a number of applications in physics and biology.

In section 1, the biological problem associated to prion diseases is presented, along
with the experimental observations, obtained by the biologists who work with us, and
the interesting questions they raised. We also review the literature on aggregation kinetic
models. The application of our theoretical work (to be described below) to the specific
model of prion diseases, was done in a collaboration with a team of biologists, directed by
Jean-Pierre Liautard (Centre de Recherche sur les Pathogenes et Biologie pour la Santé
(CPBS), Université Montpellier-2). In wvitro nucleation-polymerization experiments has
been analyzed quantitatively, and specially their heterogeneity.

In section 2, the formulation of the chosen model is presented, in order to investigate the
questions raised by the experimental observations. This model is composed of a discrete
size Becker-Doéring model with finite maximal size, and a discrete size polymerization-
fragmentation model. Then, a time-scale reduction is performed, based on biological
hypotheses, to reduce the complexity of the model. This reduction highlights links between
a conservative form and a non-conservative form of the Becker-Déring model.

In section 3, the first assembly time of a given fixed size aggregate is studied. Both
a conservative and non-conservative form of a Becker-Doring model are used. Our main
findings is that the stochastic and finite particle formulation gives different results from the
deterministic and infinite particle formulation. In particular, we are able to characterize
some discrepancies, to highlight finite system-size effect and to quantify the stochasticity in
the first assembly time. In a stochastic formulation, the first assembly time may never be
reached (and hence has an infinite mean time), and displays surprising non-monotonicity
with respect to aggregation rates. Also, it is found that the mean first assembly time has
very different relationship with respect to the initial quantity of particle, depending on the
parameter region. Indeed, the mean first assembly time may be strongly correlated with
the initial quantity of particle or very weakly. Finally, the distribution of this first assembly
time can have various different forms (Exponential, Weibull, bimodal), and may be far from
a symmetric Gaussian, as a typical mean-field approach would have predicted. Then, such
findings may have significant importance when analyzing aggregation experiments, and
help us to understand the experimental observations on prion experiments. This study
has been the subject of a preprint, with Maria R D’Orsogna and Tom Chou.

In section 4, the large population limit is investigated. Starting from a purely indi-
vidual and stochastic polymerization-fragmentation model (sometimes called the direct
simulation process), a convergence towards a hybrid infinite monomer population / finite
polymer population is shown. This study follows many recent contributions on limit the-
orem from discrete to continuous model. In particular, standard martingale techniques
are used to obtain a convergence in law of the stochastic process. The novelty lies in
the fact that the asymptotic model seems to have never been applied in such field. Its
hybrid structure may be a good balance between fully discrete and fully continuous model,
and may be well adapted to quantify the heterogeneity of the prion proliferation observed
experimentally. This work is an ongoing project with Erwan Hingant (Université Lyon 1).

The aim of our analytical study developed in both sections 3 - 4 is to quantify the
amount of stochasticity, to validate or invalidate kinetic hypotheses, and to deduce pa-
rameter values from experiments. This work is an ongoing project with Teresa Alvarez-
Martinez, Samuel Bernard, Jean-Pierre Liautard and Laurent Pujo-Menjouet.
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1 Introduction

In this chapter, mathematical models of protein aggregation kinetics are studied. These
models are conceived to represent faithfully the aggregation dynamics of a particular pro-
tein, the prion protein, and to explain the experimental observations. Thus, we start to
introduce the necessary biological concepts and motivations, before going to the mathe-
matical study. Firstly, the diseases linked to the dynamics of aggregation of this prion
protein are reviewed in section 1.1. Secondly, the main kinetic hypotheses for this protein
aggregation model are introduced in subsections 1.1.0.1 - 1.2. Thirdly, to motivate the
mathematical study of such a model, the different experimental techniques used for prion
modeling are presented in subsection 1.3. The specific in vitro experiments we used on
prion aggregation kinetic are described in subsection 1.4, and the main unusual feature
associated to it is explained. Finally, we end up this introduction by a mini literature
review on coagulation-fragmentation model, in order to give an overall picture of the field.

1.1 Biological background: what is the prion?

Diseases such as Creutzfeldt-Jacob or Kuru for human, and bovine spongiform en-
cephalopathies (BSE), scrapie (in sheep) or chronic-wasting disease for animals are all
spongiform encephalopathies and belong to a larger class of neurodegenerative disorders
([103]). The key features of spongiform encephalopathies are the followings:

e they are transmissible, and the agent responsible for such transmission is a protein
(rather than a virus, bacteria...), called prion. It is usually referred to the protein-
only hypothesis, and to any disease related to it as a “prion disease”;

e they are characterized by a long incubation time (up to 50 years in humans). This
phase is followed by a rapid and dramatic clinical phase (some months or a few years),
leading to brain damage and death. Symptoms are convulsions, dementia, ataxia
(balance and coordination dysfunction), and behavioral or personality changes;

e they affect the structure of the brain or other neural tissue, and amyloid plaques,
formed of protein aggregates, are observed. Such region are spongiform. No immune
response has been detected;

e No treatments are known, and no diagnostic during the incubation time are known.
From an historical point of view, the biologist Tikvah Alper and mathematician John
Stanley Griffith ([64]) first developed the hypothesis during the 1960s that some transmis-
sible spongiform encephalopathies are caused by an infectious agent consisting solely of
proteins. This hypothesis had lots of impact, in molecular biology, for its potential contra-
diction with the so-called “central dogma” (see chapter 1). It was in 1982 that Stanley B.
Prusiner announced that his team had purified the hypothetical infectious prion, and that
the infectious agent consisted only of a specific protein ([123]). Nowadays, prion diseases
are still a major public health issue. Such diseases are then transmissible, within a same
species or from species to species (including from animals to human), or can also appear
spontaneously. The control of occurrences and transmissions of such diseases is related to
a better understanding of involved mechanism inside organisms. The difficulty is that the
mechanisms involved occur at very different time scale, including large time scale, hardly
captured by experimental observations. Then there have been numerous theoretical mod-
eling approaches to help understanding such mechanisms (see subsection 1.5 for a small
review).

It has generally been accepted that spongiform encephalopathies result from the ag-
gregation of an ubiquitous protein, the so-called prion protein, into amyloids ([29], [39],
[123]). It is also believed that the formation of prion amyloid is due to a change of the
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prion protein conformation ( [97], [38]). The normal (or non-pathological) conformation
of this protein is called PrP¢ (standing for cellular Prion Protein). This protein can
misfold (change conformation), and the misfolded protein has a tendency to form aggre-
gates. These aggregates are referred as PrP>¢ (standing for Scrapie Prion Protein). The
aggregation process leads to a decrease of PrPC¢ level by a conversion mechanism. One
difficulty of understanding the cause of the pathology relies on the very different form prion
aggregates can take, and the many different possible kinetic pathways that lead to such
aggregates (see the next paragraph for aggregation kinetics controversy). In particular, to
the best of our knowledge, it is not sure what is the exact cause of the disease. It could
be due either to some specific form of aggregates — it is not known actually which of the
different aggregate forms of the prion could be toxic, and what are the exact pathogenic
mechanisms leading to the disease [74] — or, as said above, it could be due to a PrP¢
monomer decay. The protein population decreases is indeed the consequence of protein
polymerization to the PrPS¢ polymers after a specific conformation change. However,
in any case, the overall dynamic of the process is still relevant to understand the main
features of the disease.

1.1.0.1 Debates on different aggregation kinetics. In the previous decades, the
kinetic of amyloid formations has been the subject to extensive researches and is still
currently under investigation. For a good review on protein aggregation kinetics, see [110]
for instance. One of the particularity of prion protein aggregation is that the different and
many possible pathways leading to the formation of amyloid fibers from single proteins
(monomers) or pre-formed seeds (polymers) are not fully understood and still subject to
controversy [83], [72].

The early process of transconformation of prion protein is also subject to debate. It
is generally accepted that this process does not involve any other molecules although it
could be mediated by another misfolded protein ([94], [123], [5]). Recent studies using
dynamic models tried to explain possible routes of spontaneous protein folding ([20],[41]).

1.2 The Lansbury’s nucleation/polymerization theory

The main stream molecular theory to explain the prion polymer dynamic is the one
introduced by Lansbury et al. in 1995 [29]. In this paper, the authors investigate the
formation of large aggregates of proteins ordered by specific contacts. The model, based
on nucleation-dependent protein polymerization, describes various well-characterized pro-
cesses, including protein crystallization, microtubule assembly, flagellum assembly, sickle-
cell hemoglobin fibril formation, bacteriophage procapsid assembly, actin polymerization
and amyloid polymerization.

Inspiring different groups of biologists and mathematicians who tried later on to improve
this first model, their ideas are based on the following biological assumptions. The normal
PrPC protein does not aggregate by itself. But a misfolded form of it is able to aggregate,
and the aggregates are called PrP5¢. Such misfolded form can appear spontaneously from
spatial and chemical modification of PrP®. When PrP>¢ are present, they start to aggre-
gate the misfolded protein by addition of one by one protein. Firstly, the early aggregation
formation requires a series of association steps that are thermodynamically unfavorable
(with an association constant K « 1). These aggregation steps are unfavorable up to a
given size (that is not currently known), which is referred to the nucleus size. Secondly,
once a nucleus is formed, further addition of monomer becomes thermodynamically favor-
able (with an association constant K » 1) resulting in rapid polymerization/growth ([49],
[26], [4], [6]). The model is the named nucleation-dependent polymerization model, be-
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cause the overall polymerization dynamic depend strongly on whether a nucleus is present
or not. Starting from a homogeneous pool of monomer, the formation of the first nucleus
(an event called nucleation), leads to a drastic change in the dynamic. The first step,
corresponding to nucleation, is a very unstable process and can be more stochastic than
deterministic, while the second and further steps would be quite straightforward and more
deterministic.

According to this theory, because of its high stochasticity, nucleus formation would be
considered as a kinetic barrier to sporadic prion diseases. But this barrier could be over-
come by infection with a large polymer. The disease would not be spontaneous anymore,
it could be transmitted (on purpose or not) by a PrP5¢ polymer (called seed) which would
directly lead to the second deterministic step since no formation of the first nucleus would
be required.

Finally, long PrPS¢ polymers are also subject to fragmentation. They can break to
smaller polymers, which lead to a multiplication of aggregation sites, and then to an
exponential growing phase of the total protein mass contained in polymers [29].

1.3 Experimental observations available

There are mainly four levels on which experimental data on prion diseases can be

collected.

e A first level is a population level. The number of infected people can be recorded
and followed along time. For humans, due to the difficulty of the diagnostic and
the long incubation time, few significant and robust data exists. The situation
is slightly better for animals, specifically on bovines (mostly in Europe) or deers
(North-America) [143].

e A second level is the cellular level. It is possible to follow an in wvivo cell population
in animals, or to make a culture of cells, infected by PrP¢ aggregate. However,
for both, the great complexity of cell dynamics (extra cellular interactions, different
feedbacks, etc.) make it hard to collect pertinent information on the dynamics of
the event that lead to cell infection. An open question concerned the interaction
between the prion amyloids and the subcellular environment (where the prions are
formed? how does it depends on the cell behaviour? and so on...). See [101] for
some related questions.

e A third level, which we will be interested in, is the protein level. The progress of
physical methods and techniques has made possible to partially study the structure
of prion protein, for both the PrP¢ and the PrP%. Then a variety of different
structures of prion amyloids have been characterized (see [109, 121] for some review
of what is known on the molecular basis). However, due to the highly unstable form
of the misfolded prion monomer, and its small size aggregates, the intermediate
form (between the monomer to large polymer) are not well characterized. Still at
this level, recent techniques allow to perform in vitro conversion of prion protein into
PrP5¢ polymer, and to follow the dynamic of this conversion through fluorescence
markers. These techniques requires to use a modified form of the PrP¢, called the
recombinant PrP¢. From a homogenecous pool of recombinant PrP¢ protein, the
formation of polymer and larger amyloids is observable. The amount of mass (or
rather the intensity of fluorescence, supposedly linearly correlated) that is present in
polymers can be recorded trough time, within a time scale that is conceivable in a
laboratory (typically 24h or a week). The main drawbacks of such method is that the
recombinant PrP¢ protein has been modified chemically, and may not hence repro-
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duce faithfully the feature of the original prion PrP® protein. It also requires high
protein concentration, to a level that exceeds physiological concentration. Whether
or not the obtained amyloids are able to generate infectiousity is also still unclear
[138]. Finally, let us mention that some techniques also permit to measure the size
of the amyloid obtained experimentally.

e A fourth level, even smaller, concern the atomic level of the protein. The idea is to
precisely understand the physical and spatial structure of the protein , to characterize
its stability and investigate all possible transconformation [20].

In vitro polymerization experiments of prion protein give some interesting insights of
what could be the different mechanisms involved in the process. Interestingly, a main
dynamical characteristic of the mechanism is used experimentally. Indeed, the PMCA
(Protein Misfolding Cyclic Amplification) consists of successive phase of incubation and
sonication in order to obtain lot of polymer fragments. During incubation, the polymer
are supposed to growth by aggregation, and the sonication breaks large polymers, and
hence speed up the next incubation phase, and so on. Agitating during polymerization
experiments also speed up the polymerization process. We discern between two kinds of
in vitro polymerization experiments:

e Those started with a homogeneous pool of protein recombinant are called nucleation
experiments. In these experiment, the time required for the polymerization to truly
start can be measured. According to Lansbury’s theory, such time is related to the
waiting time for one nucleus to appear. We refer either to the first assembly time,
to the nucleation time, or to the lag time.

e A second kind of experiments is the seeding experiment. In such experiments, a pre-
formed seed (a large polymer) is present initially with and a pool of recombinant
prion protein.

In both experiments, as well as in nucleation experiments, we can record through time
the intensity of fluorescence, which relates to the total mass present in polymers. Such
measures allow in particular to look at the speed of the polymerization process. We
present more in detail in the next section the qualitative and quantitative behavior of the
nucleation-polymerization process.

For in vitro polymerization experiments, one of the challenges resides in the low sensi-
tivity to the dynamical properties of the polymerization on initial concentration of prion
protein ([13], [54], [115], [120]), as well as to the high heterogeneity of the outcomes. But
before precisely defining such concept, the result of polymerization experiments are shown
in details.

1.4 Observed Dynamics

We present here the in vitro polymerization experiments performed by the biologists
who work with us. All experiments were previously published [100], [3]. Firstly, we
give details about the experimental set up. Secondly, we present a typical outcome of
a polymerization experiments. Thirdly, we show statistics on the nucleation time and
polymerization speed deduced from the nucleation experiments. Finally, we explain the
qualitative features of the seeding experiments, and the information that can be extracted
from it.

Nucleation-Polymerisation experiments were performed with an initial population of
recombinant Prion protein (rPrP) from Syrian hamster (Misocricetus auratus) and pro-
duced as described previously([100]). Protein concentrations were determined by spec-
trophotometry (Beckman spectrophometer) using an extinction coefficient of 25 327 M-
lem-1 at 278 nm and a molecular mass of 16,227 kDa. Samples containing 0.4 to 1.2
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mg/ml of the oxidized form of HaPrP90-231 (recombinant PrPC, rPrP) were incubated
for 1-5 days with phosphate-buffered saline (PBS), 1M GdnHCI, 2.44 M urea, 150 mM
NaCl (Buffer B). The rPrP spontaneously converted into the fibrillar isoform upon con-
tinuous shaking at 250 rpm in conical plastic tubes (Eppendorf). The kinetics of amyloid
formation was monitored in SpectraMax Gemini XS (Molecular Devices). Samples con-
taining 0.1 to 1.2 mg/ml of the oxidized form of HaPrP90-231 (rPrP) were incubated
upon continuous shaking at 1350 rpm in 96-well plates and in the presence of ThT (10
uM). The kinetics was monitored by measuring the fluorescence intensity using 445 nm
excitation and 485 and 500 nm emission. Every set of measurements was performed in
triplicates, and the results were averaged.

In figure 2.1a are presented results of several nucleation experiments performed as de-
scribed above. The ThT fluorescence is used as a measurable quantity, correlated (suppos-
edly linearly) to the total mass of polymers during experiments. A population of monomer
recombinant Prion protein (rPrP) at a given concentration (from 0.1 to 1.2 mg/mL) is
present initially, together with ThT fluorescent. The rPrP spontaneously converts into
fibrillar isoform (polymer), upon which the ThT binds. Then the polymerization kinetic
is monitored by measuring the fluorescence intensity for 1 — 5 days. From figure 2.1a
the diversity and heterogeneity (to be explained further) of the experimental results can
be immediately observed. However, experiments were performed in same experimental
conditions, with the same recombinant prion protein. The aim of quantitative analysis
of polymerization kinetics is to validate or invalidate kinetic hypotheses and to determine
parameters values. For this, quantitative information has to be determined from experi-
mental results. For this, the experimental curve is fitted with the general equation of a
sigmoid (figure 2.1b).

160

1400r

1200r

=
Q
S
=

1400
800-

ThT Fluorescence
D
(@)
=

ThT Fluorescence

g

400-

200¢

0 20 40 60 80 0 10 20 30 -
Hours Hours Time

(a) Time Experimental Series (b) Fitting Curve

Figure 2.1: (a) Time (in hours) evolution of the ThT fluorescence (arbitraty units) in var-
ious spontaneous polymerization. The ThT fluorescence is used as a measurable quantity,
correlated to the total mass of polymers. The experiments were performed in two different
conditions (left and right panel), with an initial population of recombinant prion protein
(PrPc). Each type of symbol corresponds to one experiment, and each symbol corresponds
to a time measurement. For each experiment, the experimental set of measurements was
fitted according to a sigmoid given by eq. (1.1) and shown in solid lines. (b) The solid line
is a sigmoid function given by eq. (1.1). We can see the definition of the key parameters
on this curve: V4, is the maximal slope of the sigmoid, which is achieved at the inflexion
point. The tangent at this point is represented in dotted line. We note % the maximal
speed, normalized by the mass that polymerized, which is named by a on the figure. Then
Tlag is the waiting time for the polymerization to start. See the text for more details.
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We first note that the mass of polymer follows an evolution shaped as a sigmoid (fig-
ure 2.1b) given by the general following sigmoid equation,

F=yy+ (1.1)

—(t=T3) °

1+e =

This equation is phenomenological but gives a rather good estimate of some parameters
used to compare the models with the experiments. Four quantities appear to be character-
istic of the prion aggregation dynamic. Firstly, Fy,.. = a + yo is the maximal fluorescent
value reached asymptotically, at the end of the experiment (while yg is the initial level
of fluorescence). Secondly, % is the (normalized) maximal polymerization rate, which is
achieved at ¢ = T, the inflexion point. Finally, the lag time 7j,, is the waiting time for
the true start of polymerization. In our stochastic model, the start of the polymerization
is due to a discrete event (the first nucleation). However, this supposedly discrete event
is not observable experimentally, and the continuous and smooth sigmoid curve we used
to fit experimental results cannot give such information. Then, in agreement with the
literature, the lag time is defined as the time required to measure a given fraction of the
maximum value, say 10%. This time can only be measured on the sigmoid curve. This
time is actually very close () to the formula given by Lee et al. ([95]), which linked the

lag time to T; and 7 by the equation (see figure 2.1b) as
Ty = T, — 2.

All these quantities (Finqz, Yo, @, T, Tj, Tiqg) can be measured on each experimental curve
as sampled in figure 2.1a. We can see on figure 2.1a that the dynamic of prion amyloid
formation on each experiment is high heterogeneous, even if they were obtained under
the same experimental conditions. Namely, each of the three quantities Tj,4, 7 and Fy4z,
on which we mainly focus, are highly variable from one experiment to another. Let us
first present statistics for each one, how they correlate with the initial concentration of
protein, and finally how they correlated within each other. We will see that such analysis
suggests a stochastic formulation of a nucleation-polymerization model, which gives rise
to a heterogeneity in the dynamics of polymerization, as well as in the obtained structure
of polymers. This analysis is partially described in a recent paper [3].

1.4.1 Nucleation Time Statistics

The initial concentration of protein and the lag time are usually inversely correlated
in protein nucleation experiments ([54], [40], [13]). This feature is common in different
fields of physics and biology (polymer, crystallization). However, in these experiments,
these two quantities are very poorly correlated: we found a correlation coefficient of —0.08
and a p-value of 0.49. (figure 2.2 A). These results show that the lag time and the
initial concentration are not correlated between each other. Such a phenomenon has been
observed previously for prion protein nucleation experiments ([40], [13]).

We look also at the variability of the lag time while repeating experiments in the same
conditions. The coefficient of variability (standard deviation over the mean) is respectively
0.77, 0.72 and 0.55 for my = 0.4, 0.8, 1.2 mg/L, over 29, 24 and 19 experiments.

The distributions of lag time in experiments are shown in figure 2.2 B. As the ini-
tial concentration increase, the main peak is sharper and the tail is fatter (the Kurtosis
coefficient varies from —0.07, 4.46 and 0.64). The distribution is very asymmetric for in-
termediate concentration (the skewness varies from 0.91, 2.1 and 1.03). We note however
that the number of experiments is too small to deduce any distribution fitting.

1. *note: the ten percent value is actually given by T; — In(9)7
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Figure 2.2: Analysis of the 7j,, in spontaneous polymerization in vitro experi-
ments. A Each triangle represents the Tj,, (in hours) found by fitting one experimental
curve with eq. (1.1), as shown in figure 2.1b. Experiments are performed with the same
condition, with respectively initial concentration of 0.4, 0.8 and 1.2 mg/L of » Pr P protein.
The black squares represent the mean and the dashed line is obtained by a linear fit of
these means as a function of the initial concentration. The slope is —0.13 hours~!.mg~!.L.
The correlation coefficient between the lag time and the initial concentration is —0.08, with
a p-value of 0.49. B Histograms of the lag time in spontaneous polymerization experi-
ments. From left to right, the initial concentration of protein is 0.4, 0.8 and 1.2 mg/L.
The histograms are constructed based on the points on the left figure, with respectively
29, 24 and 19 experiments.

1.4.2 Polymerization Speed Statistics

The (normalized) maximal polymerization rate is also poorly correlated with the initial
concentration of protein (see figure 2.3a). The high heterogeneity of the growth rate (the
coefficient of variability are respectively 0.58, 0.23 and 0.55 for 0.4, 0.8 and 1.2 mg/L initial
concentration) may explain this weak relationship. We also compute the distributions of
polymerization rate in experiments (figure 2.3b).

1.4.3 Maximal Fluorescence Statistics

For a specific set of experiment, the maximal fluorescence get concentrated in two
distinct regions, whatever the initial concentration protein is (figure 2.4). Indeed, in
independent samples obtained in the same experimental conditions, the histogram of the
final fluorescence value was bimodal, with peaks around 520 or 2280 (arbitrary units). We
showed that segregating experiments with those giving a low Fj,,, value and those giving
a high F,4, value, increased significantly the correlation coefficient (from 0.42 to 0.7 and
0.6, see figure 2.4A) between F,,,, and the initial concentration.

1.4.4 Correlation with each other

The figures and analysis presented here were the subject of a publication [3]. It has
been shown that the maximum value F),, is not correlated with the remain quantity of
monomers at the end of the experiment, neither with the lag time or the maximum growth
rate (figure 2.5a - 2.5b).

We also note that the lag time and the maximal growth rate are apparently uncorre-
lated (figure 2.5¢)
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Figure 2.3: Normalized maximal polymerization rate. (a) Normalized maximal polymer-
ization rate with initial quantity of PrP protein (in log scale). Each triangle represents
the rate 1/7 (in hours 1) found by fitting the experimental curve with eq. (1.1), as ex-
plained in the subsection 1.4. Experiments are performed with the same condition, with
respectively 0.4, 0.8 and 1.2 mg/L of PrP protein. The black squares represent the
mean of the experimental values, for each concentration. The dashed line is obtained by
a linear fit of these means as a function of the initial concentration. The slope is 0.33
hours™'.mg=1.L . (b) Histograms of the polymerization rate in spontaneous polymeriza-
tion experiments. From left to right, the initial concentration of protein is 0.4, 0.8 and 1.2
mg/L. The histograms are constructed based on respectively 29, 24 and 19 experiments.

1.4.5 Seeding experiments and conclusion

1.4.5.1 Heterogeneity of the structure. Such a difference in the F),,; value, ob-
tained in repeated experiments, cannot be explained by a difference in the polymerized
mass, but only by a difference in the final polymer structure, as argued in [3]. The
electron microscopy analysis gives a clue to interpret this heterogeneity: we can clearly
see that different polymers may appear (figure 2.6a). Actually, it has been shown that
different polymers with different structures have a different binding affinity with the ThT-
fluorescence. Direct measurements of the size of polymers have indeed confirmed that
the relation between the size of polymer with its fluorescence response to ThT highly de-
pends on the structure of the polymer (figure 2.6b). This explains why we observed in
paragraph 1.4.3 two distinct peaks for the final fluorescence value F,,; in polymerization
experiments. Intermediate values within this two ranges of values can be explained either
by an additional structure or the presence of both structures (figure 2.4B).

1.4.5.2 Seeding experiments. We have seen that there is an heterogeneity in the
polymer structure. Further analysis of the experimental results reveals that the different
polymer structures are the result of a heterogeneous process before nucleation takes place.
For this, we need to look at results of seeding experiments.

It has long been suggested that the seeding experiments explain the infectiousity of
the prion disease. Indeed, experiments with increased initial quantity of seed exhibit
subsequent reduction of lag time (figure 2.7a). It is also interesting to note how these
seeding experiments bring some information into the overall polymerization process.

Firstly, it has to be noticed that this lag time does not disappear, suggesting that it
exists a conformational mechanism that could not be suppressed before the polymerization
can take place. Secondly, successive seeding experiments (the polymers obtained at the
end of an experiment is used as seeds for the next seeding experiment) increase the poly-
merization growth rate (figure 2.7b). However, it has been shown that successive seedings
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Figure 2.4: Maximal fluorescent values in spontaneous polymerization. A Each
point represent the experimentally measured final value of fluorescence (arbitrary unit),
as a function of the initial concentration of proteins. All experiments are performed in the
same conditions with initial concentration of proteins respectively 0.4, 0.8 and 1.2 mg.L™!.
We then segregate arbitrarily the values in two categories: the “highest values”’and the
“lowest values”. The higher dashed line shows a linear fit of the mean among the highest
value (as a function of the initial concentration), and the lower solid line shows a linear
fit of the mean among the lowest value (as a function of the initial concentration). The
slopes are respectively 2.5 x 1073 and4.4 x 10? L.mg~!. We also calculated the correlation
coefficient between the final value of fluorescence I, and the initial concentration. Before
separating the values, the correlation value is 0.42 (p-value 2.1072). After separating the
values in two distinct sets, correlation values are 0.72 (p values 5.10*9) for the lowest Fj,00
value set, and 0.6 (p value 1.1073 ) for the highest F,4, value set. B. Histogram of final
value of fluorescence of the same data set as in the left figure. We then fit this histogram
with the superposition of two Gaussians, centered in the two peaks, namely 520 and 2280.
The fitted variance are respectively 252 and 1362 (arbitrary units).

do not change the structure of the polymers, which suggest that the nucleation formation
is predominant in the choice of structure of prion amyloids. The structure of polymers
depends on the nucleation process more than on the polymerization process.

1.4.5.3 Conclusion: suggested model All these observations suggest that an intrin-
sic conformational change process takes place before the nucleation, and is determinant
for the following kinetic. As different polymers structure may appear, it is reasonable that
different misfolded monomers may be present. Then a possible mechanism is that each
kind of misfolded protein only aggregates with a similar misfolded protein, and lead to
possibly different nucleus structures. The first nucleus formed dictates the dynamic and
probably the polymers structure (figure 2.8). Because the nucleation process is longer
than the polymerization, if there is already a given formed polymer, it grows and leads
(by fragmentation) to multiple growing polymers of the same structure, making more and
more unlikely the formation of a nucleus of a different structure.
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Figure 2.5: Correlation between F,,.., 1j,, and % in nucleation experiments. The
figures are taken from [3]. For each experiment, the time data series are fitted according
to eq. (1.1), and the values of F,qz, Tiqg and % are then deduced as explained in subsec-
tion 1.4. The values of these parameters are plotted in : (a))Fq, (arbitrary unit) as a
function of T (hours) (b) Fyna, (arbitrary unit) as a function of 7 (hours) (c) Tj4q (hours)
as a function of 1 (hours !). See [3] for more details.
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Figure 2.6: Heterogeneity of the observed structure. The figures are taken from
[3]. (a) Electron microscopy analysis that shows “pictures’of the polymers obtained at
the end of nucleation experiments. (b) Each point corresponds to the measurement of the
fluorescence versus the size of an individual polymer. See [3] for more details.

Thus, the nucleation experiment would lead to a possible coexistence of different strains
in theory while the seeding experiment has small chance to lead to such a phenomenon. A
stochastic formulation of the Lansbury’s nucleation-polymerization model (subsection 1.2)
can easily incorporate the possibility of different structures in competition for the appari-
tion of the first nucleus, and then seems appropriate for the mathematical formulation of
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Figure 2.7: Seeding experiments. The figures are taken from [3]. Each type of symbol
corresponds to a time data series of a seeding experiment. The time data series was fitted
according to eq. (1.1), and the obtained curve is reported here. (a) For down (red line)
to up (green line), the initial amount of polymers used as seeds is increased. (b) From
right (black line) to left (blue line), the polymers used as a seed come from an increasing
number of successive seeding experiments. See [3] for more details.
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Figure 2.8: Model suggested by [3]. Figure taken from [3]. Each color corresponds to a
particular misfolded protein or a polymer structure. This figure illustrates that a con-
formational change occurs before the polymerization, and during the nucleation process.
This conformational change is determinant for the kinetic of the polymerization.

the model shown in figure 2.8 and given by Alvarez-Martinez et al. [3].

What kind of different information a stochastic model gives compare to a deterministic
model? Is it more appropriate to describe the dynamic of Prion nucleation? Is it possible
to get coexistence of several strains in a same experiment? Is it possible to reproduce this
with a mathematical model, starting from an homogeneous population of PrP® monomer?
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Answering these question is the purpose of this work. These questions are fundamental
for the next goal: to understand the toxicity of different strains, and to estimate useful
parameters.

Indeed different strains would cause different levels of toxicity for the systems, and their

dynamics could be totally different from one to another. That is why the overall behavior
should be deeply investigated since it may be strongly correlated to the parameters involved
in the process, each set of parameters representing a specific strain.
A primary necessary step to the study of a model with multiple strains structure is the
study of a stochastic model with one single structure.Thus, we start by studying in section 3
a stochastic formulation of a nucleation model, in order to understand the stochasticity in
the nucleation time, as a function of parameters (initial quantity of monomers, aggregation
kinetic rates, nucleus size). We continue by studying the polymerization-fragmentation
model in section 4.

1.5 Literature review

For each of the four levels of experimental observations mentioned in subsection 1.3,
some theoretical mathematical modeling have been used, for which we now briefly give
some references. Then, we spend more time on coagulation-fragmentation model, and
finally review the specific literature on nucleation modeling that is useful for us.

For the smallest scale, the atomic description of protein configuration, people mostly
use molecular dynamic simulations (coarse-grained model, random-coil peptides) for which
we can refer to [16, 117, 112, 66]. These techniques allow to combine precise chemical and
physical properties of the protein conformation and spatial mechanistic rule of the attach-
ment/detachment of proteins within each other. Hence, in such models, both physical
properties and mechanic rule influence the aggregation dynamic.

For the cellular level, models usually take into account the spatial dynamic inside cells,
and the cell characteristics (protein synthesis rate, cellular density, cell cycle, cell death ...)
together with prion strains characteristics (aggregation dynamic, diffusivity,...). See for
instance [116, 131]. If these models usually lead to interesting modeling and mathematical
questions, the lack of experimental data, however, is quite problematic (this may change
quickly).

For the population level, epidemiologist model can be used to represent the propagation
of the disease in an animal population, taking into account possible rules of transmission
between animals, within their environment. For an example on a deer population, see [2].

1.5.1 General Coagulation-Fragmentation model

We now review coagulation-fragmentation models, that are mostly adapted to the pro-
tein level experimental data. In general, in a coagulation-fragmentation model, each par-
ticle is characterized by its size (or mass). It can hence be seen as a structured population
model, where the structure variable is the size (or the mass) of the particle. Popula-
tion model are usually defined in terms of birth and death of particles. In coagulation-
fragmentation model, two particles die simultaneously when they coagulate (attach) with
each other, and a new particle is born also simultaneously. If the two old particles are
of size respectively x and y, such event appears with rate given by a coagulation kernel
K (z,y), and the new particle is of size x + y. The fragmentation process is the reverse
process. A particle of size x die and gives birth to two new particles of size y and = — v,
at a rate F'(x,y). The mathematical formulation of these mechanistic rule can be deter-
ministic, as a systems of ordinary differential equations or partial differential equations,
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or stochastic, as a finite particle model (given by point process) or a superprocess. For
every formalism, the typical questions that arise in a mathematical study are the condi-
tions for well-posedness of the model (depending on condition on kernel K, F' and initial
condition), its long-time behaviour, and particular phenomenon of gelling and dusting so-
lution: while reasonable conditions on the initial condition and on the kernel K, F' can be
given to ensure that the solution is mass-conservative for all time (the “sum” of mass of all
particles of the system stays constant over time), some degeneracy cases have been shown
to lead to solutions for which the mass is not conserved during a finite time interval. The
gelling phenomena corresponds to the (physical) situation where a single giant particle is
created, and a phase transition lead to a gel. The dust phenomena corresponds to the
situation where an infinity of particle of mass 0 are created. Apart from deterministic and
stochastic models, the size of particles may be of different nature between models. Namely
in systems of ordinary differential equations, the size is treated as a discrete variable, and
there is one equation for each size of particle. While in partial differential equation model,
the size is treated as a continuous variable (the model is usually refer to the Smoluchowski
model). The same dichotomy holds as well for stochastic model.

For a review of results on deterministic discrete coagulation-fragmentation model, we
refer to Wattis [139]. General results on existence, uniqueness and mass conservation
has been first derived by Ball and Carr [8], while Hendriks et al. [70] considered the
case of purely coagulation and gave condition for gelation. Since then, results have been
improved by Laurengot and Mischler [92], while Canizo [24], Fournier and Mischler [59]
gave conditions for exponential trend to equilibrium.

The study of stochastic pure-coagulation model was first developed by Hendriks et al.
[71], Lushnikov [98], Marcus [102]. Such models are usually refer to the “stochastic co-
alescent” model or the Marcus-Lushnikov model. For an interesting survey of results on
pure-coagulation model, see the very popular work of [1], which contains a wide variety
of applications, reviews available exact solutions, gelation phenomena, various examples
and types of coagulation kernel, and mean-field limit. This author raises a certain num-
ber of interesting open problems related to these model. In [113], the author derived
the fluid limit of the stochastic coalescent model, namely the Smoluchowski’s coagulation
equation. The author used such approach to derive a general result of existence of the
mean-field Smoluchowski model (K(z,y) < ¢(z)¢(y), with sub-linear function ¢, and
o(x)to(y) LK (z,y) — 0 as (z,y) — o). The author also provided a review and new
result of uniqueness of the mean-field Smoluchowski model for similar aggregation kernel,
with an extra assumption on the initial distribution of particle mass. Importantly, he also
gave an example of an aggregation kernel for which uniqueness does not hold, by exhibiting
two conservative solution of the same equation. Finally, in the special case of discrete mass
particle, the author provided a bound of the convergence rate of the stochastic coalescent
to the mean-field Smoluchowski model. See also [56] for other results on well-posedness of
Smoluchowski’s coagulation model, with homogeneous kernel and [30] for a convergence
rate of the Marcus-Lushnikov model towards the Smoluchowski’s coagulation model, in

Wasserstein distance (in ﬁ)

For pure-fragmentation model we refer to Wagner [136, 137]. The author considers a
general pure fragmentation model (with example including binary fragmentation, homoge-
neous fragmentation). In particular, the author reviews conditions on the fragmentation
kernel so that the discrete stochastic model (and its deterministic counterpart) almost
surely undergoes an explosion in finite time. As in the pure aggregation model, these
conditions involved a lower bound condition, such as the fragmentation kernel explodes
sufficiently rapidly in 0. See also [10] for a review on analytical techniques to characterize
such phenomenon.
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Finally, for the general coagulation-fragmentation model, the first rigorous results
seems to have been obtained by Jeon [78]. This author used the stochastic formula-
tion model to study the gelling phenomena of the mean-field Smoluchowski’s coagulation-
fragmentation equation. In particular, he derived conditions on coagulation kernel K (x,y)
and fragmentation kernel F(z,y) to show the tightness of the stochastic coagulation-
fragmentation model, and hence existence of solution of Smoluchowski’s coagulation-
fragmentation equation. His condition on the kernel involved xﬂfﬁ OOK (x,y)/zy = 0 and

there exists G such that F(x,y) < G(z + y) — 0 with hI%O G(xz) = 0. Results on gela-
T—

tion phenomena involve a lower bound condition such as the existence of M,e > 0, and
eij < K(i,7) < Mij. Fluid limit results in the case where gelation occurs were recently
obtained in [55, 57] where the authors show that different limiting models are possible,
namely the Smoluchowski model and a modified version, named Flory’s model.

1.5.2 Becker-Doéring Model

A special case of the coagulation-fragmentation model is the Becker-Doéring Model,
which was originally used by [14]. In such model, aggregation and fragmentation occur
only one monomer by one monomer, that is, in a discrete-size description,

Kx,y)#0ex=1, ory=1

and similarly for the fragmentation kernel. The theoretical foundations of such models
have been laid down by Ball et al. [9], followed by other contributions [7, 28, 127] for the
well posedness of the model and its asymptotic behaviour. Convergence rates towards
equilibrium have been obtained by Jabin and Niethammer [75].

1.5.3 Prion model

According to the Lansbury’s theory, during the nucleation phase, addition of monomer
occurs one-by-one but are unfavorable, so that detachment of monomer are also important.
Then the Becker-Déring Model seems the most adapted to the nucleation phase. For the
polymerization phase, when nuclei are already there, the coagulation still occurs one-by-
one, but detachment is negligible. However fragmentation of large polymer does occur.
Thus, we use a coagulation-fragmentation model, where coagulation occurs only with single
monomer, and fragmentation occurs with a general kernel.

1.5.4 Finite maximal size and Stochastic nucleation models

All the models quoted above do not use any maximal size for the particles, and mostly
study the long-time behavior of the system. However, to capture the nucleation phase,
it seems more natural to study a model where there is a maximal size, and to study the
waiting time for the solution to reach this maximal size. Such approach has been taken in
[120] using a maximal size deterministic Becker-Déring Model. In particular, the authors
derive general scaling laws for the nucleation, as a function of initial condition and kinetic
parameters. Our approach in section 3 can be seen as a generalization of their study to
the stochastic version of the Becker-Déring Model.

Previous stochastic models have been used to study the nucleation time, within protein
aggregation fields ([132], [53], [73], [87]). In [53], they use a simple autocatalyic conversion
kinetic model to get the distribution of incubation time. Under the assumption that the
involved constant rate is a stochastic variable, log normally distributed, the incubation
time is then also shown to be log normal. In [73],[132], the authors get the distribution
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shape of lag time using assumptions on probabilities of nucleus formation event. Hofrichter
[73] end up with a delay exponential distribution, while Szabo [132] found a S-distribution,
useful to experimentally deduce the rate of single nucleation formation. In [87] the authors
used a phenomenological model to get the mean waiting time to reach a certain amount a
polymer, from one initial seed and under assumptions on distribution of aggregation and
fissioning times. This expression allows them to discuss the influence of initial dose or
other parameters on the incubation time. Using a purely stochastic model for sequential
aggregation of monomers and dimers, they obtain different waiting time distributions, as
a v-distribution, a g-distribution or a convolution of both.

Our approach is rather different, also close to that last one exposed in [87]. Indeed, for
the nucleation phase, we use a purely stochastic Becker-Doring kinetic model, under the
assumption that the first polymer is formed by successive additions and disassociations of
one misfolded monomer. This discrete stochastic model allows us to define the nucleation
time as the waiting time to reach the first nucleus (a polymer of a given size). After the
first nucleus is formed, our stochastic kinetic model includes aggregation through monomer
additions and fragmentations of polymers (similar to previous prion model).

1.6 Outline

We present in detail the formulation of our model in the next subsection 2. There
we give the biochemical reaction steps underlying this model, and its deterministic and
stochastic version (both with discrete size). Then, we focus on the misfolding process, and
obtain two limiting models by performing a time-scale reduction. These limiting models
are easier to handle, in particular to study the nucleation time.

In section 3, we study the nucleation time in a stochastic version of the Becker-Déring
Model. We attach importance in finding analytical solutions, either exact or approximate,
in order to get general scalings laws as well as quantitative informations on the behavior
of the system, with respect to parameters. We show that the stochastic formulation leads
to several unexpected features for the nucleation time. Finally, we apply this study to the
prion modeling and compare our theoretical results to the experimental data.

In section 4, we focus on the polymerization-fragmentation phase of the model. We
consider a slight generalization of the model, including spatial movement, and study the
limit when the number of monomer is very large compared to the number of polymer.
Using stochastic limit theorem, we show that our purely discrete model converge to a
hybrid model, where polymerization is deterministic and fragmentation is a jump process.

2 Formulation of the Model

2.1 Dynamical models of nucleation-polymerization

We use a simplified version of the model introduced by Lansbury et al. in 1995 ([29]).

The dynamic is composed of a set of chemical reactions involving only the prion protein.
Firstly, it is based on the assumption that the protein is able to spontaneously misfold and
unfold again (figure 2.9a). The misfolded form is supposedly very unstable, and this process
of folding/unfolding very fast. The misfolded protein is the only form able to actively
contribute to the aggregation process, by addition of one monomer at each step [40].
Secondly, the early steps of the aggregation process (figure 2.9b) are thermodynamically
unfavorable, meaning that the forward polymerization reaction rate is several orders of
magnitude lower than the backward depolymerization reaction rate. These reaction rates,
p, q, are supposed to be independent of the size of the aggregates. We called the species
formed during this process the oligomers. There are small aggregates of size less than a
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Figure 2.9: In this figure we present the successive reactions steps of the nucleation-
polymerization model. (a) Fast equilibrium between normal and transconformed monomer.
(b) Nucleation reaction steps . Here n = 5. All the steps are composed of unfavorable addi-
tion of a single monomer. (c) Polymerization reaction steps. All the steps are composed of
irreversible addition of a single monomer. (d) Fragmentation process. The fragmentation
rate is proportional to the mass of the polymer. The two parts have equal probability to
be of a size between one and the size of the initial polymer minus one. When it gives birth
to an oligomer (size less than n) this last one is supposed to break into small monomers
immediately due to the instability of the oligomer).

given number, n. At this size, the kinetic steps change, and the aggregation of monomer
is irreversible. The particular oligomer size n at which the kinetic steps change is called
the nucleus. We emphasize that we use a constant-size nucleus model, which does not
necessarily correspond to the most unstable species, as it has been well explained [120].
Finally, the rest of the dynamic (figure 2.9¢ - 2.9d) is followed by a classical polymerization-
fragmentation model [110], resulting in rapid polymerization/growth. The fragmentation
process is responsible of the auto-catalytic form of the prion polymerization. We focus on
the lag time, so on the early steps of the nucleation-polymerization process. Because we
are interested in the time scale of the monomer disappearance (and not of the polymer
relaxation), the irreversibility hypothesis on the polymer growth is fairly acceptable [62]
(the depolymerization reactions are negligible after the first nucleus is formed because the
polymerization reactions are fast). Table 2.1 summarizes the different parameters involved
in this model.

According to this theory, because of its high stochasticity, nucleus formation would
be considered as a kinetic barrier to sporadic prion diseases. But this barrier could be
overcome by infection. The disease would not be spontaneous anymore, it could be trans-
mitted on purpose or not by a PrP3¢ polymer seeding which would directly lead to the
second step since no formation of the first nucleus would be required. Once again, our
main focus here is the sporadic appearance of the first nucleus, rather than its transmission.
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Table 2.1: Definitions of variables and parameters. We use small letters for the continuous
variables involved in the deterministic model, and capital letters for the discrete variables
involved in the stochastic model. We keep the same notation for the parameters in both
models, in order to avoid many different notations, although the parameters for second-
order reaction has different units.

Name Definition

m/M Concentration/Number of Native Monomer

fi/Fi Concentration/Number of Misfolded Monomer

fi/ F; i =2..N — 1, Concentration/Number of aggregates of size i
N Nucleus size

0% Folding rate

~y* Unfolding rate

co = % Equilibrium constant between monomers

P Elongation rate in nucleation steps

q Dissociation rate in nucleation steps

o Dissociation equilibrium constant in nucleation steps
k, Elongation rate in polymerization steps

ky Fragmentation rate in polymerization steps

We look at the following set of chemical reactions defined by (variable and parameter
are defined in table 2.1):

me= fi (spontaneous conformation) (2.1)

q{*
i+ % f2 (dimerization) (2.2)
fro1+f1 2 fi ((k)-mer formation) (2.3)

v+ D uy (nucleus formation) (2.4)
u; + f1 LR Uig1 (1= N) (elongation) (2.5)
TN uji—j +u; (1 = N,1 <j<i—1) (polymer break) (2.6)

and up —> kf (fk <N-1) (oligomer instability) (2.7)

The system of chemical reactions (2.1) - (2.7) defines our full model and consists of four
steps: misfolding, nucleation, polymerization, and fragmentation. All reaction rates are
assumed to follow the law of Mass-Action, with kinetic constant indicated on each re-
action. The reversible reaction (2.1) represents the misfolding process between normal
and misfolded protein, occurring at rate v and v*. The reaction (2.2) - (2.3) represent
the aggregation process during the nucleation phase, and consist of reversible attach-
ment/detachment of misfolded monomer to aggregate of size k, k = 1...N — 2, at rate
respectively p and ¢. Such rates are assumed to be independent of the size of the ag-
gregate. The reaction (2.4) is irreversible and represents the formation of a nucleus, by
attachment of one misfolded monomer to an aggregate of size N — 1, at rate p. The irre-
versibility hypothesis comes from the assumption that all aggregates of size greater than
the nucleus size N are stable. These aggregates are called polymers. Then, reaction (2.5)
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consists of irreversible polymerization, by addition of one by one misfolded monomer, at
rate k,, also assumed to be independent of the size of the polymer. Reaction (2.6) is the
fragmentation process, occurring at rate linearly proportional to the size of the polymer.
For a linear polymer of size 4, there is ¢ — 1 connection between monomer, and we take the
fragmentation rate to be k(i — 1). The size repartition kernel of the new-formed polymer
is taken uniform along all possible pairs of polymers. Thus, the total fragmentation kernel
F(i,7), which gives the probability per unit of time that a polymer of size i breaks into
two polymers of size j and ¢ — j, is

F(ir) = holi — 1)tz = 2kl oy (2.8)
The factor 2 comes from the symmetry condition between the pairs (j,7 —j) and (i — j, j).
Finally, if due to a fragmentation event, a polymer of size less than IV appears, we suppose
that it breaks instantaneously in monomers, which is represented by reaction (2.7).

This model can be seen as a coagulation-fragmentation model, where the coagulation
kernel K(x,y) is constant equal to p for z = 1, y = 1..N (and vice-versa), and con-
stant equal to k, for x = 1 and y > N + 1 (and vice-versa), and zero otherwise. The
fragmentation kernel is F'(i,7) = 2kp1;43-

2.1.1 Deterministic model of prion polymerization

The above chemical reactions system can be quantitatively studied by law of action-
mass and transformed into a set of ordinary differential equations. Although it involves an
infinite number of species (one for each size), it is known that this system can be reduced
to a finite set of differential equations, as we recall below. It has one equation for each
species of size lower than the nucleus size, in addition to two equations for the number of
polymers and their mass.

Firstly, a system of an infinite number of differential equations is built based on the
reactions (2.1-2.7) with the action-mass law. We get, with the same notations as above:

( dm
— = —ym+
pl ’Ym—’Y*fl—pf1<f1+ Z fk) +Q<2f2+ Z fk)
- k=2 " k=3
- pf1< > Uk) +N(N = Dky Y w,
df R =
) g_; = ph(5 = f) = a2~ fs),
d_ti = pfilfio1—fi) —a(fi — fiy1), 3<i< N -2
dfgt—1 = pfilfn—2 — fn=1) — afn—1,
BN pfva —kypfru By (N = Duy +2k D
k=N
s = kpfl(uz’—l —ui) = kp(i — Du; + 2k Z up, = N+1L
\ dt k=i+1

Secondly, with the variables y = .° \ u;, 2 = >0y iu;, it is standard ([104]) to transform
this set of infinite number of differential equations into the following finite set of differential
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equations

s dm
—_— = —’}/m‘i"y*fla
7, S S
= ’ym—’Y*fl_pfl<fl+ ka>+q<2f2+ ka>

k=2 k=3

p — pfly + N(N - 1)kby7

) gi; = pfl(% — f2) —a(f2 = f3), (2.9)

) d—; = pfilfica = fi) —q(fi = fiy1), 3<i<N =2,
fgtfl = ph(fn2—fyn1)—afn1,
d_g = pflfN—l + kpz — (2N — 1)]{51)%
| d—j = Npfifn-1+kpfiy — N(N — 1kpz.

In this model, the lag time I}‘izt is defined as the waiting time for the mass of polymer to
reach ten percent of the total initial mass (cf figure 2.10a). In our simulation, a sigmoid
shape is observed for the time evolution of the mass of polymers, which is qualitatively in
good agreement with the experiment and previous studies.

Note that this model is a slight modification of the deterministic model studied by
Masel ( [104] ) adapted to the in vitro experiments. In this deterministic framework, ordi-
nary differential equations are used to model the evolution of concentrations of the species.
Based on biological observations, we introduce a concentration of abnormal monomer (f1)
corresponding to a small proportion of the concentration of normal monomer (m). This
low concentration of misfolded protein actively contributes to the aggregation process while
the high concentration of normal protein still remains inactive.

2.1.2 Stochastic model of prion polymerization

Let us now give an insight of the stochastic model. To that purpose, we take the
same reactions steps as previously explained, but use now a continuous time Markov chain
to describe its time evolution. This stochastic model can be treated using the theory of
Markov processes. From the reaction (2.1) - (2.7), we can write down a system of stochastic
differential equation driven by Poisson processes. However, its complete expression is
complicated due to the fragmentation term for small aggregate. We only write down the
system for reaction (2.1) - (2.4), that is before nucleation takes places. In that case, the
system is described by
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t

M@t) = M(0) —Yl(jot ’}/M(S)dS) +Y2<j 'y*Fl(s)dS),
)

t Ot
R = R0 +vi( L M (s)ds) —)a(fo +*F (5)ds
—2Y;3 ( Jot gFl(S)(Fl(S) - 1)d8) - NZ:l Y21 ( Lt pF1(3)Fz'(3)dS)
=2

t N t
w203 J| amsons) + 3 v [ a0,
B(t) = No(0)+Ys ( f: gFl (5)(Fy (s) — 1)ds) ~Ys ( L t pFl(s)Fg(s)ds)
([ aras) + i [ aratsias),

" 0
R = FO) Yo | pRG)Fds) Vi (|

0
t t

_}/%(j qFZ'(S)dS) + }/21'_1,_2([ qFZ'_,_l(S)dS), 3<t1 <N -2,
0 0

t t
23 (S)FN—zdS) —Yon-1 (J
0

pFy (3)E(3)d8)

Fxaa(t) = F(O)+Yova( |

—Yon 2 ( L qFNfl(S)d(S) ;

Uv(t) = Ux(0) + Yoy ( f:

pF1(s)Fn—1 (S)ds)

pF1 (S)FN_ldS) .

\

(2.10)
where Y;, 1 < i < 2N — 1, are independent standard Poisson process. This system may
be simulated through a standard stochastic simulation algorithm or Gillespie algorithm
([60]).

The details of the stochastic model allow us to exactly identify the first discrete nucle-
ation event (figure 2.10b ). Then, in the stochastic model, the lag time is defined as the
waiting time to obtain one nucleus, that is one aggregate of the critical size at which the
dynamic entirely changes, due to the irreversibility of the nucleus and larger polymers. In
our simulation, we can observe how the dynamic drastically changes after the first nucle-
ation event (figure 2.10b). This is solely due to the hypothesis of parameters change at
that point, and in particular to the irreversible aggregation hypothesis. We notice also
that the time evolution of the mass of polymers follows roughly a sigmoid, due to the
polymer breaks.

2.2 Misfolding process and time scale reduction

The introduction of the misfolding protein makes the analysis of the nucleation time
more delicate. Thus, we use a time scale reduction, based on two different biological
hypothesis, to eliminate one of the two variables between the normal and the misfolded
protein.

Firstly, if the misfolding process occurs at a very fast time scale, compared to the other
time scale of the system, both normal and misfolded protein equilibrate within each other.
At the slow time scale, the system only sees the averaged quantity of each protein. In
particular, in the deterministic model, the rate of aggregation depends of a fraction of
the total quantity of monomers. In the stochastic model, the fast subsystem made up of
normal and misfolded monomers converges to a binomial distribution, and the slow system
only depends on the first two moments of this binomial distribution. We note that the
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Figure 2.10: (a)Deterministic Simulation and definition of the lag time in the
deterministic model. One simulation of the deterministic model, with the concentration
of normal and folded protein, concentration of oligomers and polymers. The lag time
is defined as the waiting time to convert a given fraction of the initial monomers into
polymers, here 10%. We used here m(0) = 1000, v*/y = 10, 0 = 1000, n = 7. The time
(in log scale) has been rescaled by 7 = pt. (b) Stochastic Simulation and definition
of the lag time in the stochastic model. One simulation of the stochastic model,
with the numbers of normal and misfolded protein, the mass of oligomers and the mass of
polymers. The lag time is defined as the waiting time for the formation of the first nucleus
. We used M(0) = 1000, v*/y = 10, o = 1000, n = 7. The time (in log scale) has been
rescaled by 7 = pt.

reduced model can be seen as an original Becker-Déring model where the total mass is
conserved.

Secondly, another biological hypothesis is to assume that the misfolded protein is very
unstable and hence present in very small quantity compared to the normal protein. Specif-
ically, if we assume that the total quantity of protein is very large, and that the misfolded
protein is highly unstable, we obtain a further reduced model where the quantity of mis-
folded protein is constant over time, and aggregation takes place with constant monomer
quantity. Such reduced model can be seen as a Becker-Doring model where the quantity
of monomer is conserved (but not the total mass).

For both scaling, we present the derivation of the limiting model in the deterministic
and stochastic formulation.

2.2.1 Deterministic equation

2.2.1.1 Fast misfolding process From the initial system of differential equation (2.9),
we first consider the following scaling

Yy = n
*

S

where n — o0 and all other parameters remain unchanged. We define the free monomer
variable m ¢yee(t) = m(t) + fi(t). Then m(t) and fi(t) are fast variable, but m pc(t) (and
all other variables f;, i > 2, p and u) are slow variables. To see that, consider the fast
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time scale 7 = tn, so that the previous system writes

( dm .
o = TymETh,
-
dfi 1 N= N1
4 - om- 7f1+n —pf1 Z:: +q +]§fk
_pf1y+NN_ kbya
dmfree 1[ pf (f ]VZl f>+q(2f +le>
— = —| —ph k p &
dr n \ = P
{ —pf1<2uk>+N(N—1)kauk],
df At =
g_; = ph(5 —f2) —alf2— f3).
d—Ti = %_pfl(fz’—l_fi)_Q(fi_fi+1)]> 3<i< N -2
df;\; - = % »pfl(foQ — fn-1) — Qfol],
@ _ 1 7pf1fN—1 + kpz — (2N — 1)/€by],
% Tr
| @ - on »prlfol + kpfiy — N(N — 1)kbz].

Due to the total mass conservation, all concentrations remain bounded as n — oo, and the
fast subsystem becomes

dm
_ x 2.11
e ym +~* fi, (2.11)
d
By —h (2.12)
=

This system has a unique asymptotic equilibrium, that depends solely on m .ce(0) =
m(0) + f1(0) ans is given by

*

m(T — o) = =M free(0),

=M free(0).

Ty

Alr = o) =73

Going back to the original time scale, the slow system becomes now

( dmf Ap ~y N-1 N-1
ree
—Jree _ __ T + +ql 2f> +
R R CEe N WA LY CA Y
k
_,y,:_i/* M freely + N(N - 1)kby7
@ = lmfree(#mfree_fé) _Q(f2 _f3)
gll]g v+ 2(y + %) ’
. p .
) d_tZ = 1 ,Y*mfree(fi—l —fi) —q(fi — fi+1), 3<i<N -2
dfn - D
71 = Viv*mfree(foQ_fol) —qfn-1,
dy P
@ = 1 —ree N1+ s = N = Dy,
dz D k
— = N i mfreefol + L Mfreel — N(N — 1)]%2’.

. dt v+ * v+ *
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Remark 68. In the slow scale system, the variables fi and m are instantaneously equili-
brated with each other and with mfre. following relation eq. (2.11) - (2.12). Re-writing the
system in terms of the variable f1, we obtain an original Becker—DO’m’ng system where the
monomer variable evolves at a slower time scale (given by *t) than all other species.

Finally, with the time change 7 =

t, and with the following notations

v+v*
q
o=-,
p
&
Co = la
v
oo = o(1 + cp), (2.13)
k
Kb —b(l +CQ)
p
ik
p

the system becomes

.
dmfree 1
7{17’ = —mfree(l T Mfree + Z fk) + 09 (2f2 + 2 fk)
—Kmyreey + N(N - 1)Kby,
ifs
Z_T = mfree(z(l +Co)mfree f2) JO(f2 f3),
) d_];} = mfree(fz’—l - fz) — U()(fz' — fi-i-l)y 3<i<N -2, (2.14)
dfn_
fCJiVT L= mpee(fno2 — fno1) —oofn-1;
d
z
L - Nmifreefn-1 + Kmgreeyy — N(N — 1)Kz

This system can be seen as a Becker-Déring system where the dimerization occurs at as
slower rate than all other aggregation rates. This comes from the fact that this reaction
is a second-order reaction, and hence depends on the square of the available quantity of
active monomers, while other reaction solely depends linearly on the quantity of active
monomers.

2.2.1.2 Very large normal monomer and rare transconformed monomer We
continue from the system of eq. (2.14), and assume a further scaling, namely that m . is
a large quantity and the rate of de-transconformation v* is also very large. We specifically
suppose

mfree(o) - mfree(o)na
7 - .

and n — o0. The system of eq. (2.14) is best described in the time scale 7 = pt and with
the variable

Y
fln = Wmfree,
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so that we get

T [—f?(f?+]v211fk>+a(2f2+N21fk>
dr v+ ny* =, P
—Kf?yﬁLN(N—l)Kby],
) Céi; = fl(]i— 2) —o(f2 — f3),
— = HUia—f)—olfi=finr), 3<i<N-2,
% = fil(fn—2—fn-1) —ofn-,
% = fi'fnv-1+ Kpz — (2N — 1)Ky,
d_i = Nfi'fn-1+Kfl'ly— N(N —1)Kpz.

Then, as n — o0, df—f — 0 and so f{'(t) — lim f(0) is constant over time. So the system

behaves as the quantity of active monomers is constant over time. The resulting equations
are

fld(]é) = fl(%
o = h(G —f)—alfa=fs),
% = flfici = fi) —o(fi = fiyr), 3<is<N -2
< df;\;—l = filfn—2—fn-1)—ofn-1, (2.15)
d—‘Z = fifvo1+ Kpz — (2N — 1)Ky,
| = nfvoa K- NN - DEe,

Note that these equations do not have any more the mass conservation property. We
expect them to faithfully reproduce the early step of the nucleation process when o » f1(0),
because in such case the mass created during nucleation is negligible. The latter condition
is easily verified when there are a small amount of transconformed protein.

The nucleation part of the system of eq. (2.15) is a linear system with a source term.

namely
df
—=A B
i A
, with
-fi—o o
f —fi—o o
a=| 7 L
h —fi—-o
and
1
2
0
B: .
0

where f = (fi)i=2,. N1-
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2.2.2 Stochastic equation

The same two scalings can be applied similarly to the stochastic formulation. As the
system of equation becomes quite unfriendly, we only sketch the main differences.

2.2.2.1 Fast misfolding process From the system of eq. (2.10), we now consider the
following scaling

Yy = n
ES

v o=

where n — o0 and all other parameters remain unchanged. We define the free monomer
variable Myyee(t) = M(t) 4+ Fi(t). Then M(t) and Fi(t) are fast variable, but My,c.(t)
(and all other variables F;, i > 2, Uy) are slow variables. To see that, consider the fast
time scale M"™(t) = M(tn~1), F" = F;(tn"!). Due to the total mass conservation, all
quantities remains bounded as n — o0, and, neglecting terms in O(%), the fast subsystem
becomes

t t

wﬂu>=ﬂwwm—4a(f V*FY (s)ds),

0

'yM"(s)ds) + Y (J

0

F (1) = F10) + v L t M7 s)ds) — Vi f: T F ()ds).

This system has a unique asymptotic equilibrium distribution, that depends solely on

M;}me(o) = M"™(0) + F{*(0) ans is given by a Binomial distribution
n ol
M" ~ B(M?ree(0)7 v+ ’Y*)’
F{' = M}, . (0) = M ~ B(M},,..(0), —'—).

e

Thus F7' is a fast switching variable and the asymptotic first two moments of interest are

~y
<FP > = M (0=,
0% 2
< FP(FP = 1) > = M7, oo (0) (Mo (0) = 1) (== )
v+
Going back to the original time scale, with the time change 7 = %t, and with the
following notations
q
g =,
p
*
Co = lv
Y
o9 = o(1 + ¢p),
k
Ky = —(1+c),
p
k
K —

S |3
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the slow system becomes now (see Theorem 5.1 Kang and Kurtz 2011)

-

Mfree(T) = Mfree(o) - 2)/3 ( LT meree(s)(Mfree(s) - 1)d8)
_ Ni Yoo ( J ’ MfTee(s)E(s)ds)

=2
+2Y4<JOT 0‘0F2 ) 2 Ygz(j ook; S)dS),

Fy(r) = N2(0)+Y3(JT L Mfree(s)(Mfree(s)—l)ds)

. 0 2(1+co) )
< -Y; J Mf,«ee S)FQ(S)dS) —Y4(J 0'0F2 +Yé f 0'0F3
0 0
E(T) = (O)+Y27, 1 J Mfree ) i— 1d3> YélJrl J Mfree 3) 2() )
—Y2z<j UOFz‘(S)dS) +Y2¢+2(f ooFi1(s )ds) 3<i< N -2,
0 0

FN_l(T)

F0)+ Yov-a( | Mprec)Py-ads) = Yawor (| Mprel)Froae)ds).

—Yon_2 ( J ooFN -1 (S)dS) ,

0
Un(t) = Un(0)+ Y2N—1(SS Mfree(S)FN—1d3)7

\

which is, as in the deterministic case, a Becker-Déring model where the dimerization occurs
at a slower time scale than other reaction.

2.2.2.2 Very large normal monomer and rare transconformed monomer As
in the deterministic case, we now make the additional assumption that My, is a large
quantity and the rate of de-transconformation v* is also very large, i.e.

Mfree (O) - Mfree (O)na

*

S (¥
Then, as n — o0, The resulting equations are

( Fi(t) = F(0), ,
Ry(r) = N2(0)+Y3<F—217) Y5<f Fng(s)ds)

—YQZ( ( +Y22+2< "B (s )d) 3<i<N -2,
Fy_i(r) = Fy(0) + Yan_ f FiFy_a(s )ds) Yanoi f FiFy_i(s)ds),
Yoo fo oFy 1()ds).
| Unv) = UN(O)+Y2N_1(ggF1FN_1(s)ds).

(2.16)
The system of eq. (2.16) is a first-order reaction network, namely



3 First Assembly Time in a Discrete Becker-Doring model 197

£t
== F, (dimerization) (2.17)

g
F 4 EiN Fi. ((k)-mer formation) (2.18)
Fy_1 25 Uy (nucleus formation) (2.19)

where ¢ denotes the fact that monomers are not consumed. The time-dependent solution
of such a system has been solved by Kingman [85], and is known as a linear Jackson
queueing network. We show in the next section 3 that this allows us to deduce the
analytical solution of the first assembly time for this model.

3 First Assembly Time in a Discrete Becker-Doring model

This work has been done in collaboration with Maria R. D’Orsogna and Tom Chou,
and have been the subject of a preprint.

During this section we deal with the Becker-Déring model (with a fixed maximal size).
We deeply study the first assembly time problem, which is defined as a waiting time
problem. We use classical tools for such study (scaling laws, dimension reduction methods,
time-scale reduction, linear approximation). With the help of analytic approximations
and extensive numerical simulations, we end up with a general picture for the different
behavior of the first assembly time, as a function of the model parameters. Particularly, we
are able to characterize parameter space regions where the first assembly time has distinct
properties. Our main findings implies the non-monotonicity of the mean first assembly
time as a function of the aggregation rate, and give rise to three different behavior (the
following will be made clearer in the next subsections):

e for small quantity of initial particles, the first assembly time follows an exponential
distribution, and the mean first assembly time is strongly correlated to the initial
quantity of particles;

e for intermediate quantity of initial particles (and large enough nucleus size), the
first assembly time has a bimodal distribution, and the mean first assembly time is
almost independent of the initial quantity of particles;

e for large quantity of initial particles, the first assembly time has a Weibull distribu-
tion, and the mean first assembly time is weakly correlated to the initial quantity of
particles

3.1 Introduction

The self-assembly of macromolecules and particles is a fundamental process in physical and
chemical systems. Although particle nucleation and assembly have been studied for many
decades, interest in this field has recently been intensified due to engineering, biotechno-
logical and imaging advances at the nanoscale level [141, 142, 65]. Aggregating atoms
and molecules can lead to the design of new materials useful for surface coatings [35],
electronics [145], drug delivery [52] and catalysis [81]. Examples include the self-assembly
of DNA structures [34, 107] into polyedric nanocapsules useful for transporting drugs [17]
or the self-assembly of semiconducting quantum dots to be used as quantum computing
bits [86].
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Other important realizations of molecular self-assembly may be found in physiology
or virology. One example is the rare self-assembly of fibrous protein aggregates such as
BS—amyloid that has long been suspected to play a role in neurodegenerative conditions
such as Alzheimer’s, Parkinson’s, and Huntington’s disease [129]. Here, individual Prp¢
proteins misfold into PrPS¢ prions which subsequently self-assemble into fibrils. The aggre-
gation of misfolded proteins in neurodegenerative diseases is a rare event, usually involving
a very low concentration of prions. Fibril nucleation also appears to occur slowly; however
once a critical size of about 10-20 proteins is reached, the fibril growth process accelerates
dramatically.

Oc. LI ® " V=1
e "o ° LA o L
® o.' e .‘
* * o
° .”. oo \ [ 4 / § ’
... . .. “., oo L4
t=20 o<t<tr t=t*

Figure 2.11: Illustration of an homogeneous self-assembly and growth in a closed unit
volume initiated with M = 30 free monomers. At a specific intermediate time in this
depicted realization, there are six free monomers, four dimers, four trimers, and one cluster
of size four. For each realization of this process, there is a specific time ¢* at which a
maximum cluster (N = 6 in this example) is first formed (blue cluster).

Viral proteins may also self-assemble to form capsid shells in the form of helices, icosa-
hedra, dodecahedra, depending on virus type. A typical assembly process involves several
steps where dozens of dimers aggregate to form more complex subunits which later co-
operatively assemble into the capsid shell. Usually, capsid formation requires hundreds
of protein subunits that self-assemble over a period of seconds to hours, depending on
experimental conditions [147, 148].

Aside from these two illustrative cases, many other biological processes involve a fixed
“maximum” cluster size — of tens or hundreds of units — at which the process is completed
or beyond which the dynamic change [99]. Developing a stochastic self-assembly model
with a fixed “maximum” cluster size is thus important for our understanding of a large
class of biological phenomena.

Theoretical models for self-assembly have typically described mean-field concentrations
of clusters of all possible sizes using the well-studied mass-action, Becker-Doring equations
[119, 140, 128, 36]. While Master equations for the fully stochastic nucleation and growth
problem have been derived, and initial analyses and simulations performed [18, 125], there
has been relatively less work on the stochastic self-assembly problem. Two collaborators of
this present work have recently shown that in finite systems, where the maximum cluster
size is capped, results from mean-field mass-action equations are inaccurate and that in
this case a stochastic treatment is necessary [47].

In previous work of equilibrium cluster size distributions derived from a discrete,
stochastic model, the authors in [47] found that a striking finite-size effect arises when
the total mass is not divisible by the maximum cluster size. In particular, they identified
the discreteness of the system as the major source of divergence between mean-field, mass
action equations and the fully stochastic model. Moreover, discrepancies between the two
approaches are most apparent in the strong binding limit where monomer detachment is
slow. Before the system reaches equilibrium, or when the detachment is appreciable, the
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differences between the mean-field and stochastic results are qualitatively similar, with
only modest quantitative disparities.

In this section, we are interested in determining the distribution of the mean first
assembly times towards the completion of a full cluster, which can only be done through a
fully stochastic treatment. Specifically, we wish to compute the mean time required for a
system of M monomers to first assemble into a complete cluster of size N. Statistics of this
first passage time [124] may shed light on how frequently fast-growing protein aggregates
appear. In principle, one may also construct mean self-assembly times starting from the
mean-field, mass action equations, using heuristic arguments. We show however that these
mean-field estimates yield mean first assembly times that are quite different from those
obtained via exact, stochastic treatments, thus showing their inaccuracy.

In the next subsection 3.2, we review the Becker-Doring mass-action equations for
self-assembly and motivate an expression for the first assembly time distribution. We also
present the Backward Kolmogorov equations for the fully stochastic self-assembly process
and formally develop the associated eigenvalue problem that defines the survival proba-
bility and first assembly time distributions. In subsection 3.3, we look at very simple,
yet instructive, example were analytical solutions can be found. In subsection 3.4, we
study the first assembly time for the constant monomer formulation. Such model is a
linear model, and can be solved analytically. In the next four subsections, we explore
various limits of the stochastic self-assembly process and obtain analytic expressions for
the mean first assembly time in both the strong (see subsections 3.5 and 3.6) and weak
(subsections 3.7 and 3.8) binding limits. Then, we adopt a different point of view in subsec-
tion 3.9 and look at the limit where initial monomers are present in large quantity. Results
from stochastic simulation algorithm (SSA) are presented in subsection 3.10. There, we
also discuss the implications of our results and further extensions in the Summary and
Conclusions, section 3.10.6. Finally, in the last section 3.11, we comment the implications
of these theoretical results for the interpretation of the prion experimental data (shown in
previous section 1.4).

3.2 Formulation of the model

We look at a chemical model that is described by the following set of reactions (3.1),
where M denotes the monomer specie, and each M}, k = 2..n, denotes the k-mer specie,
that is an aggregate composed of k monomers. In this model, N represents the maximal
size allowed for such aggregate, called the nucleus size.

My + My 2 M5 (dimerization)

{ My_1+M, = M; (k-mer formation) (3.1)

My_1+ M LN My (nucleus formation)

We repeat that such model has been originally used by Becker and Déring [14], and
can be seen as a particular case of a general coagulation-fragmentation model, where
coagulation and fragmentation only involves monomers (no coagulation of two particles of
size larger than 1, and no fragmentation into two particles of size larger than 1 are allowed).
In such case, we usually speak of polymerization and depolymerization. It is used to model
the spontaneous, homogeneous self-assembly of particles in a closed system of volume V'
(we take V' =1 for simplicity). In particular, no interactions with other particles (solvant,
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etc...) are taken into account, neither the spatial structure of the system. There’s no loss
of particles (through degradation for instance) and no gain neither, so that the total mass
is conserved.

Name symbol

Concentration/Number of Native Monomer c1 or C}

Concentration/Number of aggregate of size i =2..n — 1 | ¢; or C;
Nucleus size N

Aggregation rate D

Dissociation rate q

o=

Equilibrium constant

Total Mass M

q
p

Table 2.2: Definitions of variables and parameters. We use small letters for the
continuous variables involved in the deterministic model, and capital letters for the discrete
variables involved in the stochastic model. We keep the same notation for the parameters
in both models, in order to avoid many notation, although the parameters has different
units in deterministic or stochastic formulation.

3.2.1 Deterministic Becker-Doring system

Using the law of mass-action, the chemical reaction system (3.1) can be formulated as
a system of ordinary differential equation given by

alt) = —pd —pa it e +2qe + g XN 5 ci,

éQ(t) = —pcica + %C% — gc2 +qcs, (3 2)
éG(t) = —peie +peicicn —qei + ey, 3<i< N —1, '
¢n(t) = peienv—1 —qen.

where ¢; denotes the concentration of chemical entities M;. This system of differential
equation defines a global unique semi-flow in (R, )" and has the important property of
conservation of mass

Proposition 69. For allt > 0, the total mass is conserved,
N N
Dlici(t) = ) ici(0) =: M.
i=1 i=1

In this section, we will frequently be concerned by the initial condition ¢;(0) = MJ; 1,
that is starting with only monomers. We can observe that, as soon as t > 0, the semi-flow

is at values in ]0, M ["V, or more precisely in the simplex
N
S%TN = {(¢i)1<in, ¢ > 0, Zci = M}.
i=1

For the asymptotic behavior of this system, we have the following
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Proposition 70. For every initial data (c;)1<i<n € S§; v, there is a unique global solution
to eq. (3.2), which converges at t — o0 to the unique equilibrium given by

i =5(2) @ (33)

for all 2 <i < N, and c§ is the unique solution in |0, M| of

N ,
* 1 (P i1 Y
4+ 5;;1(5) (€)' = ¢1(0) = M. (3.4)
The proof is based on a Lyapounov function ([9]) given by V () = Zfil ai(t)( ln(CZQ—(f_)) -
i1
1), where Q; = %(%) . For the unicity of the equilibrium, note that eq. (3.4) defines a

strictly increasing continuous function.

Remark 71. The standard results on Becker-Déring equation with infinite mazximal size
involve similar argument, where an additional difficulty (for general aggregation coefficient)
comes from the infinite sum associated to eq. (3.4). The convergence of such infinite sum
is critical for the existence and convergence or not towards an equilibrium (see [139] for a
review on these results). We refer also to [15] for the rate of convergence to equilibrium,
using entropy methods.

Then, at equilibrium, all concentration ¢ can be expressed as a function of cj, and the
latter is a function of M (and p and ¢). These considerations allow to have an estimate of
the flux of each reaction, given by

Ji(t) = gcl t)? =~ g(c’l")2, (Dimer formation)

Jy (1) := qca(t) R g(cf)2, (Dimer destruction)

J(t) = per(t)ei(t) ~ g(g)i_l(cf)iﬂ, (i-mer formation) (3.5)
J7(t) == qeia(t) = g(g)Zl(c’f)”l, (i-mer destruction)

3.2.2 Stochastic Becker-Doring system

The chemical reaction system (3.1) can also be formulated as a system of stochastic
differential equation, given by

Ci(t) = C1(0) —2v; ( {20y (s)(C(s) — 1)ds) B AL ( {! pCy (s)CZ-(s)ds),
+2Y, ( Sé qCs (s)ds) + 2513 Yoi_o ( S(t) qCZ-(s)dS) ,
Co(t) = Cn(0) +Y: ( §\ 2Cy(s)(C(s) — 1)ds) - y;,(gg pC’l(S)C'g(s)dS),
] Y § aCals)ds ) +Ya( 55 aCs(s)ds),
Ci(t) = Ci(0) + Yo 3 ( Sé pC1 (S)Ci,lds) — Y21 ( Sé pC1 (S)C’i(s)ds),
—ngg(% qC’i(s)ds) + Y2i<% qCHl(s)ds), 3<i<N-1,
On(t) = On(0) + Yan_3 ( {f pCl(S)C’N_lds) ~ Yan—s ( {f qC’N(s)ds),
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where (Y;)1<on—2 are independent unit Poisson process. Odd indices ¢ correspond to ag-
gregation event, and even indices ¢ to detachment. Note that contrary to the deterministic
formulation for the dimerization process, the propensity of the reaction is given by w

2
rather than %1 The system of eq. (3.6) defines a unique pure-jump Markov process at
values in NV, The mass conservation property still holds

Proposition 72. For allt > 0, the total mass is conserved,

N N
DiCi(t) = Y iCi(0) =1 M
i=1 i=1
The Markov process takes its value in a finite state space, given by all admissible
configurations in N,

N
Su,n = {(ni)1<i<n,n; €N, Z in; = M}
i=1
As soon as p and q are strictly positive, all states in Sy, v communicate and the Markov
chain is irreducible. We use the notation {n} for a typical admissible configuration in
Swm,n. We have

Proposition 73. For every initial measure on Syrn, the Markov process defined by
eq. (3.6) is asymptotically convergent to the unique invariant probability measure m, that
satisfies the balance condition and is given by (see [82] p 167 Ex 1)

m({n}) = Bu,n (%)Z?lm ﬁ ! (3.7)

nil’
i=1 v

for all admissible combination {n} € Sy,n, and where By n is a normalizing constant.
This latter constant can be calculated recursively

N
-1 q -1
MBy 'y = , Z rByl,
r=1

with By = 1 and Bj =0 for j <0.

Analytical expression (for any M, N) of this normalizing constant, and of the asymp-
totic moments are unfortunately out of reach, even for N = 2. However, asymptotic
expression when g — 0 for the first moment has been calculated in [47]. We note p = [%J
the maximal possible number of largest cluster, so that M = pN + 5,0 < j < N —1. In

the limit o = % — 0, the asymptotic first moments are given by ([47])

plp—1)
p+(i—1)
plo =D G 1)

<CN >0 =

< Cn_p >0 = — , 1<k<N-1,
[1= 1 klp+1)
forany 0 < j < N —1. While for j = N — 1,
flp—1,N —1)
=(p—1
D TR
E—1 N—1—k .
o N -1-D[[iZ "(p—2+74)
_ = 1< N -1
< Cn_p > © N - 1) , k<
2(N = 1)!

<(Ci>w=

f(p7N_1)
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with f(p,7) = j! + 1—[{:—11 (p +1). Tt has been show that such formulas differ significantly
from mean-field formulas eq. (3.3) for M /N finite and relatively small [47]. Other works
(see [27] among others) give way to approximate first (and higher) moments in the case
N = 2, using a moment-closure approximation. For instance, for N = 2, < Cy >4 can
be approximate by its mean-field deterministic value, and the second moment using a
Gaussian truncation. We obtain (see [27])

<C2>, = %((QM +q/p) —/(2M + q/p)? — 4M2)

q<Co>q
—4p < Cy > +p(2M + 3) +
Such formulas are expected to be valid for large M. the extension for larger N is limited
as one need to solve nonlinear equation such as eq. (3.3).
As in the deterministic case, these considerations allow to estimate the flux of each reaction,
given by

<0105 > ~ M<Cy > — — <0y >%

Ji(t) =< gcl(t)(cl(t) -1 >~ g < (C1(C1 — 1) >x, Dimer formation  (3.8)
Jy (t) = < qCs(t) > ~q < Oy >, Dimer destruction (3.9)
JF(t) = < pCy()Ci(t) > rp < Ci1Cj >, (i-mer formation) (3.10)
J;(t) = < qCipi(t) > ~q < Ciy1 >, (i-mer destruction) (3.11)
for 2 <7 <n—1, where < X > are the asymptotic mean value of X. Note that all these

asymptotic moments are function of M ,p,q and V.
Finally, let A be the matrix of transition rates between the configurations and

P(ni,na,...,ny;tlmi,me,...,my;0)

the probability that the system contains n; monomers, ny dimers, ng trimers, etc, at time
t, given that the system started in some initial configuration (mi,ma,...my) at t = 0.
The Master equation in this representation is given by [47]

P({n};t|{m},0) = —A({n})P({n};t|{m},0)
+2(ny + 2)(n1 + )W WWy P({n};t|{m},0)

+q(na + YWF W Wi P({n}; t|{{m},0)
(3.12)

=

-1
+ p(ny + 1)(n; + 1)W+W+WZ+1P({n};t|{m},O)
2

~.
I

=

+ > q(n; + YW W=, W P({n}; t|{m},0),

)

=3

where P({n},t) = 0 if any n; < 0, where

N—1 N
A({n}) = —nl(nl -1)+ 2 pnin; + Z qni,
=2 =2

is the total rate out of configuration {n}, and I/Vji are the unit raising/lowering operators
on the number of clusters of size j. The latter are defined as

W Wi Wiy P({n}; tl{m}; 0)

=Pni+1,....,n;+1,n;41 — 3 t[{m};0).
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3.2.3 Nucleation time

The nucleation time (or first assembly time) is defined as the waiting time for Cy ()
to reach one, i.e.

Definition 1 (Stochastic nucleation time). Let M, N > 0, and (C;(-))i<i<n the solution
of eq. (3.6). The stochastic nucleation time, starting at a configuration {m} € Sy N is

ry(fm}) = mf{t > 0;0n(t) = 1] Cy(0) = 6,1 < i < NV,
The mean nucleation time is

Tn({m}) = E[rn({m})]. (3.13)

It is a first-passage problem. Note that because the Markov chain is at value in a finite
state-space, the first passage time is finite with probability one as soon as p,q > 0 (we
will see the case ¢ = 0 later on) and M > N. When not specified, we speak of the first
passage time of Cn(t) = 1 for the specific initial condition of all monomers

C,(0) = M, 1.

To accurately compute entire assembly time distributions, particularly for small particle
numbers M, it is convenient to consider the state-space shown in figure 2.12, where we
consider the explicit cases N =3 and M =7 or M = 8.

Here, the problem is to evaluate the time it takes for the system to reach an “absorbing”
state — a cluster of maximal size N is fully assembled — having started from a given initial
configuration. For example, for N = 3, absorbing states are those where ny—3 > 1.
The arrival time from a given initial configuration to any absorbing state depends on the
specific trajectory taken by the system. Upon averaging these arrival times over all paths
starting from the initial configuration {m} and ending at any absorbing state, weighted
by their likelihood, we can find the overall probability distribution of the time it takes to
first assemble a complete cluster of size V.

The natural way to compute the distribution of first completion times is to consider
the “Backward” equation for the probability vector of initial conditions, given a fixed final
condition {n} at time ¢. The Backward equation in this representation is simply P = ATP,
where AT is the adjoint of the transition matrix A defined above, so that

P({nstl{m}.0) = ~A({m})P({n};t]{m}:0)
g (my — DWW P({n): | m):0)

+q2m2W27W1+W1+P({n}; t|{m};0)

(3.14)
N-1
+ Z pimam; Wi W Wik P({n}; t|{m};0)
i=2
N
+ > amaWWE W P({n}; tl{m};0).
i=3

Here, the operators VVZ-J—r operate on the m; index. It is straightforward to verify that

eq. (3.14) is the adjoint of eq. (3.12). The utility of using the Backward equation is that
eq. (3.14) can be used to determine the evolution of the “survival” probability defined as
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S({mpt) = > P({nkt|{m};0),

{n},nn=0

where we consider now that states {n} with ny > 1 are absorbing. Thus, the sum is
restricted to configurations where the final states {n} are set to ny = 0 so as to include
all and only “surviving” states that have not yet reached any of the absorbed ones where
ny = 1. S({m};t) thus describes the probability that no maximum cluster has yet been
formed at time t, given that the system started in the {m} configuration at t = 0. By a
summation of eq. (3.14) over all final states with ny = 0, it is possible to find an equation
for S({m};t). Upon performing this sum, we find that S({m};t) also obeys eq. (3.14) but
with P({n};t|{m},0) replaced by S({m};t), along with the definition S(my,ma,...,my =
1;t) = 0 and the initial condition S(m1,ma,...,my = 0;0) = 1. Thus, the general vector
equation for the survival probability is S = ATS, where we consider only the subspace of
A" on non absorbing states. In this representation, each element S({m};t) in the vector
S({m};t) is the survival probability associated with a particular initial condition. The
above vector equation may be solved for S, leading to the vector of first assembly time
distributions

0S({m};1)

ot ’
from which all moments of the assembly times can be constructed. To this end, it is often
useful to recast eq. (3.15) in Laplace space

G({m}t) = - (3.15)

G({m};s) = 1 —sS({m};s),

where G is the Laplace transform of G and similarly for S. The vector 1 is the survival
probability of any initial, non-absorbing state, and consists of 1’s. Its length is given by
the dimension of AT on the subspace of non-absorbing states. Using this representation
we may evaluate the mean assembly time T ({m}) for forming the first cluster of size N
starting from the initial configuration {m} at t =0

R

- [ stompnar
0

= S({m};s =0). (3.16)

Similarly, the variance vary({m}) related to the first assembly time can be calculated as

(o)) = - [P0 g gy,

= 2 JOO tS({m};t)dt — Ty ({m})?,
0 ~
_ [_2 ) (o
s=0

The Laplace-transform of the survival probability can be found via S = A'S which, in
Laplace space, is written as
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S = [sI-Af]11, (3.17)
so that

G=1-s[sI-Af]7'1.

The mean first assembly time for a specific configuration {m} is thus given as

Tn({m}) = S({m};s =0) = —[(AT)'1] (3.18)

{m} "
where the subscript {m} refers to the vector element corresponding to the {m}*™ initial
configuration. Similar expressions can be found for the variance and other moments.

In order to invert the matrix AT on the subspace of non-absorbing states we first note
that its dimension D(M, N) rapidly increases with M. In particular, we find that the
number of distinguishable configurations with no maximal cluster obeys the induction:

Proposition 74. for any M, N > 0, the dimension of the matriz AT is given by

D(M,N +1) = i D(M — jN, N), (3.19)
j=0

with p = |M/N| the integer part of M/N.

For example, in eq. (3.19), D(M,2) = 1, and the only “surviving” configuration is
(M,0). The next term is D(M,3) = 1 + |M /2] which, for M /N — oo yields D(M,3) ~
M /2. Similarly D(M,4) can be written as

[M/3]
DO = Y DM —35.3) ~ | My L A0
=0

where the last two approximations are valid in the large M /N limit. By induction, we
find

Corollary 75. In the large M /N limit, the dimension of the matriz AT is approzimated
by
MN72

D(M,N) ~ N

From these estimates, it is clear that the complexity of the eigenvalue problem in
eq. (3.18) increases dramatically for large M and N. Then the theoretical formulation of
the first passage problem is of no help to derive quantitative formula and to understand
the influence of parameters.

Finally, note that the nucleation time is usually defined in the mean-field context ([120])
as the waiting time for ¢y (t) to reach a given fraction of the total mass. However, to allow
a direct comparison with the stochastic formulation case, we take the following definition
for the deterministic nucleation time. Consider the modified (irreversible) Becker-Doring
System
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My + My 2 My (dimerization)

< M1+ M, LN M, (k-mer formation) (3.20)
q

My_1+ M, — My (nucleus formation)
\ p

where the last reaction is now considered irreversible. Its deterministic formulation is now

alt) = —pd —per 35 e+ 200 +a X

Ca(t) = —peica + 56 — qer + qes

CZ(t) = —pcic; —i—pclci,l — qc; + qci+1, 3 § 7 § N — 2, (321)
¢n—1(t) = —peien—1 +pcieN—2 — qeN—1,

en(t) = pcieN—1,

so that the asymptotic equilibrium is now ¢} = %52-, N-

Definition 2 (Deterministic nucleation time). Let M, N > 0, and (¢;(+))1<i<n the solution
of eq. (3.21). The deterministic nucleation time T, starting at configuration {c} € Sﬁj’tN

18
T ({c}) = inf{t = 0,cn(t) =1 ¢i(0) = ¢;,1 <7 < N} (3.22)

Remark 76. T ({c}) < oo as soon as M > N.

3.3 Example and particular case

3.31 N=2

As a first trivial remark, we treat the case N = 2. In such case, the “surviving”
configuration is (M, 0), and so the nucleation time is given by the following proposition.

Proposition 77. When N =2 and M > 2, the first assembly time, starting from config-
uration {M,0} is an exponential random variable of mean parameter

2

T>({M,0}) = M= 1)

This exponential time is given by the first time the dimerization reaction occurs. Note
that a direct integration of eq. (3.21) yields the deterministic nucleation time, for any

M > 2,

T3 ({M,0}) = m

3.3.2 N=3

In the case of N = 3, the “surviving” configuration are {M — 2i,7,0}, 1 < i < |¥].
These configurations can be well ordered so that the matrix A that defines the first
passage problem is tridiagonal, of order m = [%J + 1, whose elements a; j take the form

allk_l = (k_l)% 2<k< 1+l%J7

M —2k+2)(M—3k+2
a};’k - _J\/E 2% 2+J§ 2% 1+ )p—(k:—l)q7 1<k<1+l%J’
afpyy = WEEHEMERED, 9 <k <1+ Y

A recurrence relationship can be derived to invert this matrix. However, there’s no “simple”
close form for the mean assembly time, so we do not write its expression here.
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333 N=3, M=18

As a simple, yet instructive example, we consider the case N = 3 and M = 7 or 8.
The entire dynamic is represented in figure 2.12.

(7,0,0) (8,0,0)
(5J1T0) (GUO)
TN NN
I [N
@20 (4,o£1) 420 (5,o£1)
“ \ \ “ \ \
(1,3,0)\ [(2,1‘,1)] (230 [(3,1‘,1)]
N \\\ N \\\

[(dﬂj (1,0,2) (0,4,0) [@j (2.0,2)
N

@ ®w 7
Figure 2.12: Allowed transitions in stochastic self-assembly starting from an all-monomer
initial condition. In this simple example, the maximum cluster size is N = 3. (a) Allowed
transitions for a system with M = 7. Since we are interested in the first maximum cluster
assembly time, states with ng = 1 constitute absorbing states. The process is stopped
once the system crosses the vertical red line. (b) Allowable transitions when M = 8. Note
that if monomer detachment is prohibited (¢ = 0), the configuration (0,4,0) (yellow) is
a trapped state. Since a finite number of trajectories reach this trapped state and never
reach a state where ng = 1 if ¢ = 0, the mean first assembly time diverges, T' = 0.

For M = 7, the equations for the survival probability S(ni,ng2,ns3,t) can be written in
terms of the backward Kolmogorov equations which in this case are

W — 19(5,1,0)— 5(7,0,0)],

w _ q[5(7,0,o)_5(5,1,0)]+5—;1[5(3,2,0)—5(5,1,0)]+5[S(4,0,1)—S(5,1,0)],
% - 2q[5(5,1,0)—5(3,2,0)]+%[5(1,3,0)—5(3,2,0)]+3-2[S(2,1,1)—S(3,2,0)],
% = 3¢[S(3,2,0) — 5(1,3,0)] + 3[S(0,2,1) — 5(1,3,0)],

where we have assumed that time is now renormalized so that p = 1 and ¢ is unitless.
These equations can be numerically solved as a set of coupled (linear) ODEs. The solution
to the above ODEs leads to the full survival distributions. If we are only interested in the
mean first passage time 7', starting from configuration {ni, n2.n3}, we compute the matrix
At
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and using eq. (3.18),

1 744 +487¢ + 60q + 2¢°

T5({7,0,0}) = 3.23
3({7,0,01) 105 27 +20q + 2¢2 (3.23)
1 609 + 387¢ + 50¢° + 2¢°
T5({5,1,0}) = —
3(15,1,0}) 105 27 + 20q + 2¢2
1 630 + 357q + 44¢% + 2¢3
T5({3,2,0}) = —
3(13,2,0}) 105 27+ 20q + 2¢2
1 945 + 385q + 42¢° + 2¢3
T5({1,3,0}) = —
3({1,3,0}) 105 27+ 20q + 2¢2
Similarly,
Ty((8.0.0)) = 105 + 1526q + 488¢> + 40¢> + ¢*
U - 168¢(49 + 16¢ + ¢2)
105 4 1232¢ + 392¢> + 34¢° + ¢*
T5({6,1,0}) =

168¢(49 + 16¢ + ¢?)

147 + 11764 + 350¢° + 30¢> + ¢*
168¢(49 + 16¢ + ¢?)

343 4 1386¢ + 350¢> + 28¢> + ¢*
168q(49 + 16q + ¢2)

2401 + 2058¢ + 392¢° + 28¢% + ¢*
168¢(49 + 16q + ¢2)

T3({4’ 2, 0}) =

T3({2’ 3, 0}) =

T3({0’ 4, 0}) =

In figure 2.13, we plot the mean first assembly time for N =3, M =7 and M = 8 as a
function of the relative detachment rate ¢, starting in initial condition (M,0,0). These
two examples share a qualitative properties. Firstly, the mean first assembly time is non-
monotonic with respect to ¢. This is a surprising result, that comes from the discrete effect
(similar to reported by [47] for asymptotic first moment). This means that for some specific
parameters, the system goes faster towards a maximal cluster for higher detachment rate.
The cause of such result is the presence of traps, as it will be explain in the following
subsections 3.5 and 3.6. For M = 8, we even have T' — o as ¢ — 0 (whatever the initial
configuration). This is due to the fact that the state {0,4,0} becomes also an absorbing
state in the limit ¢ = 0. Then, in such case, we need to calculate conditional time assembly
(see subsection 3.5). Secondly, both mean first assembly times go to infinity as ¢ — oo (as
expected), both at an asymptotic linear rate with respect to g. This asymptotic behaviour
as ¢ — oo will be investigated further in subsection 3.7 and subsection 3.8.
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Figure 2.13: (a) Mean first assembly times for N = 3, M = 7. (b) Mean first assembly
times for N =3, M = 8.



210 Hybrid Models to Explain Protein Aggregation Variability

3.4 Constant monomer formulation

In this section, we study the first assembly time for a distinct model, that is the Becker-
Doéring model with constant monomer. We already encounter such model in subsection 2.2
(see eq. 2.15 for the deterministic model, and eq. 2.16 for the stochastic model). The main
advantage of the constant monomer formulation is to be analytically solvable (within
our specific choice of parameters, independent of cluster size). The constant monomer
formulation can be seen as an open linear Jackson queueing network, where the last queue
is absorbing. Entry in the system occurs from the first queue (creation of a dimer, C9)
and every individuals move (an aggregate change of size size) independently of each other
between queues according to the transition rates written above. They can leave the system
from the first queue or stay in the last absorbing queue (Cy). The propensities of the
reaction being linear, it is known that the time-dependent probabilities to have a given
number of aggregate of size ¢ are given by a Poisson distribution (see [85]). In particular,
the number of individuals in the last queue also follows a Poisson distribution. Because
the last queue is absorbing, the survival time of Cy = 0 follows

S(t) = P{Cn(s) = 0,0 < s < t} = P{Cn(t) = 0} = exp ( - <CN>(t)).
Such distribution is characterized by a single parameter, its mean for instance. Again, the

model being linear, the mean number of aggregates of size ¢, at time ¢, is given by the
solution of a deterministic ordinary differential equation which can be rewritten as

dc
% = Ac + B
den (3.24)
dt — C16n—1,
where
—0 — Cl g 2
N C1 —0 — C1 g 01/2
C3 0
C = . 5 A. = s B =
Cno1 C1 —0 — (C1 g 0

C1 —0 — C1
(3.25)
In the equations above, ¢; is the constant quantity of monomers, and ¢;(t) = (C;(t)) is
the mean number of aggregates of size i > 2, and we have rescaled the time by 1/p and
denoted o = ¢/p for simplicity. The system of eq. (3.24) above is a linear system and can
be solved to find ¢y (t), and the first assembly time. A general form for cy_1(t) is given
by

N-—
en—1( Z MV, — (A71B)y s,

where \y = —(¢1 + 0) + 2 /c10 cos(%) are the eigenvalues of A, V%) the associated
(k)

eigenvector (for a general form, see [146]) (V) , denotes its last components), and «y, are
constant given by the initial condition ¢;(t = 0) =0, 2 < i < N — 1. By integration,

NS —1
[ Z T (A*lB)N,Qt].
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We detail below two asymptotic expressions, which are of interest for their own, as well
for the initial Becker-Doring model. The two limits we look at are ¢ >> M and M >> o.
In such cases the mean lag time is given by

(2(N — 1)HV/IN=1)
TN ~M>»o MN/(N*].)

20’N_2
TN ~M<«o W

(3.26)

Similarly, there is two different asymptotic distributions for the lag time, given respectively
by a Weibull and an exponential distribution,

dSN M~ N-2 M N-1
T TN —a eXp(_ (N 1) ) (327
dSy MN MN '

TN o i M(AT?B _)
dt to°2|detA|eXp< oaeta] ML Jn-2

Remark 78. The large time asymptotic of the linear model eq. 3.24 is of interest to
interpret previous formula. At equilibrium, one have indeed, for all 2 <i < N — 1, (given
by the calculus of A™1)

N
1
eq _ k—1_N-k 9
¢ Jdet A] kzi;rlcl o (3.28)

i—1
Hence, for o >> M, ch ~ %(%) , the equilibrium repartition is exponential, and
en(t) ~ Mci?_lt ~ ﬁv—N_Qt. For M >> o, however, all quantities at equilibrium become
equal, to ch ~ % In such case, the lag time is reached before equilibrium takes place, and

the asymptotic expression corresponds to an irreversible aggregation (thus independent of

o).

3.5 Irreversible limit (¢ = 0)

We come back to the original formulation of the first assembly time, described for
conservative the Becker-Doring model in subsection 3.2. We consider here the irreversible
case ¢ = 0. We have already seen in one example that the mean first assembly time is
not necessarily finite any more. We first explore the case N = 3 and then the general N
case. This derivation will be extended in a perturbative manner for small 0 < ¢ « 1 in
subsection 3.6.

3.5.1 N=3

So let us first restrict ourselves to N = 3 and the ¢ = 0 case of irreversible self-assembly.
Upon setting ¢ = 0, the matrix AT becomes bi-diagonal and a two-term recursion can be
used to solve for the survival probability S(M —2n,n,0; s) as follows. If the entries of the

bidiagonal matrix AT are denoted Qi there are all zero except

M -2 2)(M — 2 M
CL};k:—( k + )2( 3k + )p7 1<k<1+l?,
+ (M —2k+2)(M —2k+1) M

A k1 = 5 P, 2<ks<l+]|<]
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The elements b; ; of the inverse matrix B = [SI — AT]_1 are given by

1
b — 7
ot 5 — aT
bi,j = 0, ifi> 7,
HJ Lol
b ; M7 if i < 4. (3.29)
) 7 T
ji(s — A &

The survival probability in Laplace space, according to eq. (3.17) is the sum of entries of
each row of [sI — AT]_1 so that

[M/2]+1
1 [Ti=

S(M —2n,n,0;s) =
S0 =i+l Hk z(s_akk)

where i = n + 1 is the (n + 1) row of [SI - AT]_I. Upon taking the Inverse Laplace
transform of eq. (3.30) we can write the survival probability S(M — 2n,n,0;t) as a sum
of exponentials, since all poles are of order one. The full first assembly time distribution
can be obtained from this quantity, with —dS(M —2n,n,0;t)/dt. Similarly, the mean first
assembly time, according to eq. (3.18) is given by T3(M —2n,n,0) = S(M —2n,n,0;s = 0).
In particular, from eq. (3.29) we find

i
Oprrr (M —2k+2)(M —2k+1)
R4 Ju Ty v Y (3.31)

i
Opy1k+1

so that inserting eq. (3.31) into eq. (3.30) for s = 0 we obtain

Proposition 79. For N = 3, the mean assembly time starting from the initial condition
(M —2n,n,0), 0 <n < M/2is

9 [M/2] 4

(M —2k+2)(M —2k+1)
Gr—2myi=1) |1 T 2 1l (M —2k) (M — 1)

T3(M —2n,n,0) = (3.32)

Note that the mean first assembly time is finite when M is odd, but is infinite if M is even
as in the case of M = 8 and N = 3, where a trapped state arises. In these case, there is a
finite probability that the system arrives in the state (0,1 /2,0), and since the assembly
process is irreversible, such realizations remain in (0, M /2,0) forever: detachment would
be the only way out of it. Therefore, averaged over trajectories that include traps, the
mean assembly time is infinite.

3.5.2 Traps for N >4

We now show that when ¢ = 0, trapped states exist for any M and N > 4, yielding
infinite mean assembly times, starting from any configuration.

Definition 3 (Traps). For any M,N > 0, a trap state is a configuration {m} € Sy n
such that

T~ ({m}) = o0, almost surely.
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A trapped state arises whenever a maximum cluster has not been assembled (ny = 0),
and all free monomers have been depleted (ny = 0). In this case the total mass must be
distributed according to

N—-1
M=) jn;. (3.33)
=2

It is not necessarily the case that this decomposition is possible for all M and N, but if
it is, then we have a trapped state and the first assembly time is infinite. To show that
the decomposition holds for N > 4 and for all M, we write M = p(N — 1) + j where p is
the highest divisor between M and N — 1, so that 1 < j < N — 2. Now, if j # 1, then the
decomposition is achieved with ny_1 = p, nj = 1, and all other nj, = 0 for k£ # j,(N —1).
We have thus constructed a possible trapped state. If instead 7 = 1, then we can rewrite
M= (p—1)(N —1) + (N — 2) + 2 so that the decomposed state is at ny_1 = p — 1,
ny_o = 1 and ny = 1, with all other values of ny = 0. This proves that

Proposition 80. for all M > 4, N > 4, there are trapped states for ¢ = 0.

The only exception is when N = 3, when the last decomposition does not hold, since
N —2 =1 for N = 3 and by definition, monomers are not allowed in trapped states.
Indeed, for N = 3, eq. (3.33) becomes M = 2n;, which is possible only for M even. Such
case has been treated in paragraph 3.5.1 above.

According to our stochastic treatment, the possibility of trajectories reaching trapped
states for ¢ = 0 exists for any value of M, N > 4, giving rise to infinite first assembly
times. This is not mirrored in the mean-field approach for ¢ = 0, where cy(T) = 1 for
finite 7' (depending on initial conditions), always occur if M is large enough (larger than
N) as can be seen in figure 2.14b. For N =4, M =9, indeed T can be evaluated from
eq. (3.22) as c4(1.7527) = 1. In the irreversible binding limit, we may thus find examples
where the stochastic treatment yields infinite first assembly times due to the presence of
traps, while in the mean-field, mass action case, the mean first assembly time is finite.

0.4 +— : : : 2 e Lt

— exact H 1 — exact [
--- heuristic 154 --- heuristic F

T;(700)

0.1 ‘ ‘ ‘ 0 ‘

L)
SRS

Figure 2.14: Mean first assembly times evaluated via the heuristic definition eq. (3.22)
(pink line) and as a function of ¢; = g for M =7, N = 3 (top) and for M =9, N =4
(bottom). Here p; = p = 1. We also show the exact results (blue line) obtained via the
stochastic formulation in eq. (3.16) which we derive in paragraph 3.2.3. Parameters are
chosen as above. Qualitative and quantitative differences between the two approaches
arise, which become even more evident for N > 3 ¢ — 0, as we shall discuss. These
discrepancies underline the need for a stochastic approach.

Remark 81. If we want to count the number of trapped states for general M, N we can do

this iteratively. Certainly for N = 3 there is only one trapped state, at the configuration
(0, M/2,0) where of course M must be even.
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In the case of N = 4, the traps are found by writing the number of ways one can write
M = 2a + 3b, with a,b integers. We need to distinguish now between M odd or even. If
M is even, then the only possible values of b are even ones, so that b =20, v =0,1,2...
up until bl .. = |M/6| and amaz =0 0T s = 1. We thus can explicitly write

M
M = 6|‘€J + 2amam
M
M = 6 (lEJ - 1) + 2(amaz + 3)

M =6 ([%J — 2) + 2(amaz + 6)

M = 6 ([%J - [%J) +2 (amax + 3[%0

These are exactly Ny(M,4) = |M /6| + 1 states. For instance, if M=18, we have

18=6x3+2x0
18=6x2+2x3
18=6x1+2x6
18=6x0+2x9

which is exactly |18/6] + 1 = 4 combinations.

In the case of M odd we note that, by necessity b = 2b' + 1 must be odd so that
M =2a+3(2b' + 1) and so the problem reduces to finding the values of a and b’ such that
M — 3 = 2a + 60'. This is the same as what we just did, but replacing M with M — 3,
which is now even, so that there are now exactly 1 + [Mg 3| states.

So, in summary we can write the number of traps Np(M,N) for N = 4 and general

M as follows

M
Nr(M,4) =1+ [EJ, if M even,
M -3

Np(M,4) =1+ |, if M odd.

Now, let us try to iterate for, let’s say N = 5. In this case, we need to write M =
2a+ 3b+4c. We can decide to use c =0, c =1, ¢ = 2 up until the largest value of ¢ which
18 [%J For every chosen c, thus the problem reduces to arranging M — 4c units into traps
of order N = 4, that is we need to find a,b such that M — 4c = 2a + 3b. The only value
of ¢ we cannot accept is when M — 4c is equal to one. In this case, no values of a or b
will exist to satisfy the above identity. We thus need to arrest our choice of ¢ values at the
point ¢ = [%J -1 M —4[%] = 1.

In general we can thus say that

Proposition 82. for all M, N > 0, the number of traps Np(M, N) satisfy the induction

|M/N]

Np(M,N+1) = > Np(M—jN,N), if M # | 5N +1,
j=0
|M/N]-1

Nr(M,N +1) = Nr(M — jN,N), if M = |[¥|N +1.

7=0
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For instance, if M =19, N =7, the above yields

7(19,7) 7(19 —64,6) = 36

HM[\D

as can be verified by direct substitution.

3.5.3 Conditional first assembly times for ¢ =0

Given the above result — namely that the presence of traps yields infinite first assembly
times when g = 0 — it is a natural question what is the mean first assembly time conditioned
on traps not being visited.

Definition 4 (mean conditioned nucleation time). The mean conditioned nucleation time
18
Tn({m})* = E[ry({m}) | Tn({m}) < o],

which is well defined for any configuration {m} that are not traps.

To this end, we explicitly enumerate all paths towards the absorbed states and average
the mean first assembly times only over those that avoid such traps (we note that a
similar approach was derived by Marcus [102] to compute the time-dependent probability
function). To be more concrete, we first consider the case N = 3.

3.5.3.1 N =3 Here, in order to reach the absorbing state where n3 = 1, one or more
dimers must have been formed. Let us thus consider the specific case 1 < ng < [%]
Here, the last bound arises from noting that after ny dimers are formed, at least one free
monomer must exist, so that it can attach to one of the ns dimers, thus creating a trimer.

Since at every iteration both the formation of a dimer or of a trimer can occur, the

probability of a path that leads to a configuration of exactly ny dimers is given by

e (M — 2k)(M — 2k — 1
1—[ )( )

. 34
M —2k)(M — 2k — 1) + 2(M — 2k)k (3:34)

The above quantity must be multiplied by the probability that after these no dimerizations
a trimer is formed, which occurs with probability

’I’LQ(M — 2’1’L2)
(M — 2’1’L2)(M —2ng — 1) + 2(M — 2712)712.

(3.35)

Upon multiplying eq. (3.34) and (3.35) and simplifying terms we find that the probability
W, for a path where ny dimers are created before the final trimer is assembled is given
by

277,2 na—1
W, = Ar 1y H — 2k —1). (3.36)
Note that if M is even, we must discard paths where 2ny = M, since, as described

above, this case represents a trap with no monomers to allow for the creation of a trimer.
According to eq. (3.36) the realization 2ny = M occurs with probability
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W = MM =N (3.37)

5 M
2

© (M-

Thus for M even, W represents the probability the system will end in a trap. Hence the
2
probability that a 3-mer is ever formed is

M(M - 3)!

P{Tg({M,0,0}) < OO} =1- 1{M even} (M _ 1)% .

We must now evaluate the time the system spends on each of the paths void of traps. Note
that the exit time from a given dimer configuration (M — 2k, k,0) is a random variable
taken from an exponential distribution with rate parameter given by the dimerization
rate, A\gr = (M — 2k)(M — 2k — 1)/2. However, the formation of a trimer is also a
possible way out of the dimer configuration, with rate Ay, = (M — 2k)k. The time to exit
the configuration (M — 2k, k,0) is thus a random variable distributed according to the
minimum of two exponentially distributed random variables which is still exponentially
distributed according to the sum of the two rates

(M —2k)(M —1)
5 .

A=Ak + A =

The typical time out of configuration (M — 2k, k,0) is thus given by i Upon summing
over all possible 0 < k < ng values we find the mean time for the system to go through no
dimerizations

n2 na
T = 5 PN
k:O k=0 a Qk - 1)
Finally, the mean first assembly time can be calculated as

Proposition 83. For N = 3, The conditioned mean nucleation time is given by

[1\1—1]

T3(M,0,0)* = > Wy, T, (3.38)
no=1
and M(M — 3)!
P{r3({M,0,0}) <o} =1—1qy even}m

It can be verified that for M odd, eq. (3.38) is the same as eq. (3.32), since the integer
part that appears in the sum in eq. (3.38) is the same as its argument, thus including
all paths. For M even instead paths with 2no, = M are discarded, yielding a mean first
assembly time averaged over trap-free configurations. These calculations obviously hold
as well starting at a configuration {M — 2n,n, 0}.

3.5.3.2 N >4 Similar calculations can be carried out in the case of larger N; how-
ever, keeping track of all possible configurations before any absorbed state can be reached
becomes quickly intractable (see [102]). For example, in the case N = 4 one would need
to consider paths with a specific sequence of nj;, dimers formed between the creation of
k and k + 1 trimers until ng trimers are formed. The path would be completed by the
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formation of a cluster of size N = 4. We would then need to consider all possible choices
for 1 < ng < [%] such that traps are avoided and evaluate the typical time spent on
each viable path. Because of the many branching possibilities, it is clear that the enumer-
ation becomes more and more complicated as IV increases. For the sake of completeness,
we briefly describe this procedure below.

We choose to start from the initial configuration (M,0,0,0). Choose first ng such
1 <ng < [%] Then for any k = 0...n3, we create ng ;41 dimers and a trimer (or a

4-mer at the last step k = ng3), where we start with an initial condition
(nl7 ng,ns, n4) = (Mk7 y2,k7 k7 O)
where My, = M — 2ys;, — 3k and y9 = Zfzo na; — k, g being the number of dimers

formed between step £ —1 and k. Note that nog = 0 and My = M. For any k =1,--- ,ng3,
the mean time spent in such path is given by

2,k +
n2k: E

where for i = 1...ng ;, + 1, the parameter of the waiting exponential time is

Nk = p(Mg—1—2(i —1))(Mg—1 —2i +1)/2 + p(Mg_1 — 2(i — 1)) (y2x—1 +i—1)
+ p(My—1—2(i —1))(k — 1),
= p(Mig—1—2(i = 1))(M —k)/2.

The weight of such a path is, for kK = 1...n3

W ~ 2(nok +Yok1 nng 0i 4 1
"k (M — k)n2etl q k-1 = 20+ 1).
1=
while for £ = n3 + 1, the weight is
2(k — e
Wiy = ¥HM;€1—22+1)

(M — k)rzstl

To sum up, for any number n3 € {1,... [M 1]} and acceptable numbers (ngk)1<k<ns+1
(such that Z"3+1 2ny 1 + ng < M), the time and weight of such path are given by

T(nz,k)1<k<n3+1 = g
k=1 i=1 7Bk
n3+1

W(”2,k)1<k<n3+1 = W"2,k’
k=1

and the total mean time is given by (given that a 4-mer is ever formed)

T4(M,070’0)*: Z W(nz,k)1<k<n3+1T(n2,k)1<k<n3+1’

(n2,k),n3

where the sum ranges over admissible configuration.
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3.6 Slow detachment limit (0 < ¢ « 1)

We are going now to extend our calculation of the mean assembly time for irreversible
cases above to 0 < g << 1 by a perturbative treatment.

Although mean assembly times are infinite in an irreversible process (except when M
is odd and N = 3), they are finite when ¢ > 0. For M even and small ¢ > 0, we can
find the leading behavior of the mean first assembly time 7'(M,0,0) perturbatively by
considering the trajectories from a trapped state into an absorbing state with at least one
completed cluster.

Since for ¢ = 0 the mean arrival time to an absorbing state is the sum of the probabil-
ities of each pathway, weighted by the time taken along each of them, we expect that the
dominant contribution to the mean assembly time in the small ¢ limit can be approximated
by the shortest mean time to transition from a trapped state to an absorbing state. This
assumption is based on the fact that the largest contribution to the mean assembly time
will arise from the waiting time to exit a trap, of the order of ~ 1/g, since only detachment
is possible from traps. The time to exit any other state instead, when both attachment
and detachment are possible, will be much faster, and of order 1. For sufficiently small
detachment rates g, we thus expect that the dominant contribution to the mean assembly
time comes from the paths that go through traps and that T (M,0,...,0) ~ 1/q.

3.6.1 N=3

Again, first consider the tractable case N = 3 and M even, where it is clear that the
sole trapped state is (0, M/2,0) and the “nearest” absorbing state is (1, M /2 —2,1). Since
the largest contribution to the first assembly time occurs along the path out of the trap
and into the absorbed state, we pose

M M
o 0)TR(0. 2=
2 70) 3(07 2 )

where P*(0, M /2,0) is the probability of populating the trap, starting from the (£, 0,0)
initial configuration for ¢ = 0. This quantity can be evaluated by considering the different
weights of each path leading to the trapped state. An explicit recursion formula has been

derived in a previous work [47, Section 4, eq. A.23]. In the N = 3 case however, the paths
are simple, since only dimers or trimers are formed, leading to

T3(M,0,0) ~ P*(0, 0),

M M(M —3)!!
P*(07 _70) = ( M (339)
2 (M —1F

which corresponds to eq. (3.37). The first assembly time 7°(0, M /2,0) starting from state
(0, M /2,0) can be evaluated as

M 1 M
T3(0, —,0) = M— + T3(2, - — 1,0) (340)
2 My 2

Here, the first term is the total exit time from the trap, given by the inverse of the
detachment rate ¢ multiplied by the number of dimers. The second term is the first
assembly time of the nearest and sole state accessible to the trap. This quantity can be
evaluated, to leading order in 1/q, as

T3(27 % - = !

M
. Ty0,2 ), 3.41
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where we consider that the trap will be revisited upon exiting the state (2, M /2—1,0) with
probability 1/(2(2 — 1) + 1). Other terms to be included in eq. (3.41) would have been
the total time to leave state (2, M /2 — 1,0) and the possibility of reaching the absorbing
state. The contribution of the first term however would be of lower order than 1/g, since
attachment events are of order O(1) « O(1/q); the contribution of the second term is zero.
Upon combining eq. (3.40) and (3.41) we find

M 2(M —1) 1
T3(0,7,0) >~ m;

Finally, T5(M,0,0) can be derived by multiplying the above result by eq. (3.39). We can
generalize this procedure to find

Proposition 84. the dominant term for the mean assembly time starting from any initial
state (M — 2n,n,0) in the limit ¢ — 0, N = 3 and for M even is given by

2(M — 3)!! 1
(M —2)(M —1)M2-1¢°
2M —2n -1 1
(M —2)(M —1)M2-—n ¢’
2(M —1) 1
M(M—-2)q

T5(M,0,0) = Ts(M —2,1,0) ~

T3(M —2n,n,0)

12

2<n<M/2,
T3(0,M/2,0) ~

The next order terms do not have an obvious closed-form expression, but are inde-
pendent of g. Note that when ¢ is small and increasing, the mean first assembly times
decrease. This is true for M odd cases as well. An increasing ¢ describes a more rapid
dissociation process, which may lead one to expect a longer assembly time. However due
to the multiple pathways to cluster completion in our problem, increasing g actually allows
for more mixing among them, so that at times, upon detachment, one can “return” to more
favorable paths, where the first assembly time is actually shorter. This effect is clearly
understood by considering the case of ¢ = 0 when, due to the presence of traps, the first
assembly time is infinite. We have already shown that upon raising the detachment rate
q to a non-zero value, the first assembly time becomes finite. Here, detachment allows for
visiting paths that lead to adsorbed states, which would otherwise not be accessible. This
same phenomenon persists for small enough ¢ and for all M, N values. The expectation
of assembly times increasing with ¢ is confirmed for large ¢ values, as we shall see in the
next section. Taken together, these trends indicate the presence of an optimal ¢* value
where the mean assembly time attains an optimal, minimum value.

3.6.2 N=>4

We can generalize our estimation of the leading term in 1/q for the first assembly time
and for larger values of N via

Tn(M,0,...,0) = Y P*({p}) T ({1}), (3.42)
{n}

where p labels all trapped states. The values of P[f can be calculated as described above
using the recursion formula presented in [47]. The mean first assembly times Tn({u})
instead may be evaluated by considering only the shortest sub-paths that link traps to each
other. For instance, in the case of M = 9, N = 4 the only trapped states are (0,3, 1,0) and
(0,0,3,0), corresponding to P*(0,0,3,0) = 921/5488 and P*(0,3,1,0) = 2873/24696. The
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shortest path linking the two traps is (0,3,1,0) — (2,2,1,0) — (1,1,2,0) — (0,0, 3,0),
which yields, to first order, 7(0,1,3,0) = 7°(0,0,3,0) = 1/(2q). Finally, from eq. (3.42)
we find that 7°(9,0,0,0) = 2005/(14112¢) which can be verified upon constructing the
corresponding transition matrix AT of dimension D(9,4) = 12. The task at hand however
becomes increasingly complex as M and N increase since more traps arise, leading to the
identification of more entangled sub-paths connecting them.

Remark 85. We conjecture the leading term to be of order 1/q. This comes from the
fact that leaving a trapped states requires a single step of parameter q. By definition, two
trapped states cannot be directly connect to each other, preventing the possibility of having
a higher power of q, and so, independently of M, N. We will see that this will be confirm
by a different approach in subsection 3.9 and by numerical simulation in subsection 3.10.

3.7 Fast detachement limit (¢ — o) - Cycle approximation

We turn now to approximation of assembly times in the limit of large detachment rate
q. We expect here the mean assembly time to increase monotonically with . We consider
here a similar approach to the previous subsection 3.6 and try to identify the leading path
that contribute to the first assembly time. In the limit ¢ — 00, we expect trajectories
involving small numbers of monomers to be rarely sampled so that the full assembly of a
cluster is a rare event. Looking at the general form of the invariant distribution eq. (3.7),
we see that the most probable states, in the stationary regimes, are those for which ZZ]\L 1M
is maximal. This tells us that the most likely states, in the stationary regime, is, without
surprise, (M,0,---,0). The next likely one is (M —2,1,0,--- ,0). We assume the leading
path that contributes to the first assembly time is the path that contain the most likely
states. Let us first consider the case of N = 3, as usual.

3.71 N=3

For N = 3, the overwhelmingly dominant path (leading to a maximal cluster size) is
then:
(M,0,0) = (M —2,1,0) = (M —3,0,1)

These states yield a reduced 2 x 2 transition matrix A that can be easily inverted to yield
(see definition 5 below)

2q
TS(M =
3(M,0.0) MM —1)(M —2)’
2
TS(M —2,1,0) = a

MM — 1) (M —2)’

where the equality refers to the reduced configuration space, valid only for ¢ » pM.
3.7.2 N=>4

This dominant direct path can be generalized to any N for ¢ » M as follows

(M,0,0,..,0) = (M—21,0..,00 = --- = (M—N,0,..0,1).
(3.43)

The state space of such system, called the cycle system, is now

St = {(ni)1<i<nv € Sy nsuch that there is at most one i > 2,n; = 1}
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We extend the definition of nucleation time and mean nucleation time for the path given
by eq. (3.43).

Definition 5. Let M, N > 0, and (C;i(-))1<i<n the solution given by the chemical reaction
steps eq. (3.43). The cycle stochastic nucleation time, starting at configuration {m} € S§; v
18

v ({m}) = inf{t = 0;Cn(t) = 1| C;(0) = 0py,;, 1 <7 < N}

The mean nucleation time is

Ty ({m}) = E[rx ({m})].

For N > 3, the corresponding matrix AT is of dimension (N — 1) and tridiagonal. Its

I elements are given as 7{1 = —1{2 =—-M(M —1)/2, and for 2 < k < (N - 1)

@i j
i _
Opk—1 = 4,
a;k =—q— (M —k),

az’kﬂ = (M — k).

The inverse of A can be computed by a three-terms induction formula [135]. While we
could consider all initial configurations {m}, we focus only on the case {m} = (M,0,...,0),
in order to simplify the notation. Results for other choices of {m} can be obtained by
following the same reasoning here illustrated. After some algebraic manipulations on the
recurrence formula [135], we have

Proposition 86. For any M > N, the mean cycle nucleation time is given by

9 N-2 k
T§(M,0,...,0) = T =) [ = (N =1)gV 2+ (3.44)
i=0 YL k=01=1
N—2j-1 N—j—1 k
MDY TTor-0 3, T]or - (v ===+,
j=2 1=2 k=0 1=1

Hence we expect the expression T, (M, 0,...,0) to be an approximation of T (A, 0,...,0)
for ¢ » M. We will see in subsection 3.10 with numerical simulation that this is indeed
the case. The highest term in ¢ the above is given by

2qN72
TN—1/17
Hizol(M — i)
For M » N on the other hand, one can approximate M —i ~ M so that eq. (3.44) becomes

TS (M,0,...,0) ~ (3.45)

N-1[ N—-1 k N=2 5k
q ZkM +22%.

MN | A gk

TS (M,0,...,0) ~ e .
k=2 q qk=0 q

Finally, using the symmetry properties of the associated matrix AT we can find the Laplace
transform of the first assembly time distribution G¢((M, 0, ..., 0); s) [33] in the limit ¢ » M

~e . _ %Hi\ial(M_Z)
GU((M,0,.....0);5) = 200

where dx_1(s) is a unitary polynomial of degree N — 1, given by the following recurrence

(3.46)



222 Hybrid Models to Explain Protein Aggregation Variability

dl = s+ %’
B = (s (M=2) + gy g =Y, (3.47)
d; = (8 + (M — 2) + q)di_l — q(M — (’L — 1))di_2, for i > 2

Thus dy—_1(s) = sV 1+ .. +8s* +as+1 HﬁBI(M —1i). Note that the first assembly time
is given by

Tn(M,0,...,0) = lim L= G50, 0)i5)

s—0 S

By comparing eq. (3.46) with eq. (3.44) we note that the term « in the above expansion
for dn_1(s), corresponds to the quantity in the square brackets in eq. (3.44) so that

20
[T (M —i)

One can also calculate the variance of the first assembly time distribution to obtain

T§(M,0,...,0) =

a? _ 203
[T (M —i)2 [T, (M —i)

and similarly all other moments of the distribution. Finally, we can also estimate the first
assembly time distribution G°((M,0...,0),t) by considering the Inverse Laplace trans-
form of eq. (3.46), specifically by evaluating the dominant poles associated to dy_1(s).
In the large ¢ limit, dy_1(s) as evaluated via the recursion relations eq. (3.47) can be
approximated as

)

vary (M,0,...,0) =

dn-1(s) = qN*QS +

N-1
H (M - 2)7
1=0

N =

yielding the slowest decaying root Ay

1 N—-1
T 7 i

Then

Proposition 87. Asq — o, the cycle nucleation time 15,({m}) converge to an exponential
random variable of parameter —\y defined in eq. (3.48),

N-1

G°((M,0,...,0);t) ~ (M —i)e*?,
0

DN =

1=
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Remark 88. Note that with the recurrence formula for the d;, eq. (3.47), we can show
that all roots of d; are simple, real and that, if i, ..., i and A1, ..., \i_1 are respectively
the roots of d; and d;_1, the following holds (see [126][p.119])

1 <A < prg < s < Ajo1 <

Because G is a distribution one must get additionally p; < 0. Moreover, dy_1 has the
asymptotic representation

N-—1

[Tor-i [1+2 Dyt

DO | =

dy-1 ~ [(¢" 2 +0(¢" ?)s +

.
o

the last relation shows that the highest root of dy_1 has the asymptotic, as ¢ — o0,

1 N
N—2 H(M_i)
2q i

1=

Ay = —

and that all other roots diverge to —o0 as ¢ — 0. So we conclude that there is one leading
exponential, so that G is asymptotically an exponential distribution of parameter —Ay.

3.8 Fast detachment limit (¢ — ) - Queueing approximations

In this section we consider a different approach to the fast detachment, ¢ — oo limit
by using the well-known “pre-equilibrium” or “quasi steady-state” approximation (which
has been used in the deterministic context in [120], see also [62]) essentially a separation
of time scales between fast and slow varying quantities. We will use the pre-equilibrium
approximation on the stochastic formulation of eq. (3.6), however, to illustrate the method,
we will first apply it to the Becker-Doring system in eq. (3.21). To illustrate the qualitative
differences between a system that satisfies the pre-equilibrium assumption and one that
doesn’t, we refer to figure 2.15.

3.8.1 Deterministic Pre-equilibrium

To understand the time scale of each reaction, we recall the stationary flux values
calculated in eq. (3.5), for 1 <i < N — 1,
P

~ qu—l (CTQ)z#l’

Note that as ¢ — oo all fluxes decrease and that JZ.i (t) is one order of magnitude larger in
q than J;{l(t): this is the condition for the quasi-steady state approximation to hold.

3.8.1.1 Complete pre-equilibrium We may thus consider the first NV — 1 reactions
to be at equilibrium so that eq. (3.21) can be rewritten as a function of the mass contained
in all clusters except the largest one. For this, let us define

N-1
2 ici(t
that is the mass of species (c1,--- ,cny—1). By the mass conservation property,

xz(t) = M — Nen(t),
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Figure 2.15: Pre-equilibrium hypothesis in deterministic and stochastic model.
A Pre-equilibrium in deterministic simulations. M = 100, ¢ = 1000, N = 7. Each
oligomer species quickly reaches a threshold, and then stays in equilibrium with the con-
centration of monomers during the nucleation process. Axis are in log scale. B No pre-
equilibrium in deterministic simulations. M = 10°, ¢ = 1000, N = 7. The dynamic
is much more rapid, there is a large excess of production of oligomers, and the nucle-
ation starts before each oligomer concentration reach their maximal values. Oligomers
and monomers are not in equilibrium during nucleation. C Pre-equilibrium in stochastic
simulations. M = 100, ¢ = 1000, N = 7. The number of oligomers fluctuates widely, al-
though it quickly reaches its mean value. D No pre-equilibrium in stochastic simulations.
M =10°, o = 1000, N = 7. With a large initial number of monomers, the time evolution
of each species becomes regular. Nucleation starts before each oligomer numbers reach
their maximal values.
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where M is the total initial mass (c1(0) = M). It comes from the system of differential
equations eq. (3.21) (remember that we consider the last reaction to be irreversible, to
allow a direct comparison with the stochastic definition)

{ #(t) = —pNciey—1,
¢n(t) = peien-a.
The system composed of (¢1,---,cn—1), as an isolated Becker-Doring system (of maximal

size N—1), has a unique and asymptotically stable equilibrium value (see subsection 3.2.1),
that depends smoothly on the total mass x. Indeed, we saw that all concentrations of
oligomer and monomer concentration can be expressed as a function of the total mass x (
eq. (3.3) - (3.4) ). Assuming that the subsystem reaches instantaneously its equilibrium,
the previous system becomes

i(t) = -N

N2 (3.49)
in(t) = 3(%

where ¢ (z) is the solution of

z’(g)i_l(cl)i = z. (3.50)

By analogy to definition 2, we have the

Definition 6. Let (x(t),cn(t)) the solution of eq. (3.49). Then we define
T ({e}) = inf{t = 0,en(t) = 1| (0) = i, 1 <i < N}

Upon solving eq. (3.50) we can obtain ¢;(x), which can then be used in eq. (3.49) to
determine ¢y (t). A crude approximation for ¢ — o0 is ¢1 (z) = x, however, a more accurate
result can be found by allowing the sum in eq. (3.50) to go to infinity so that

N=b oy & pnil
;z(a) (cl)lz;i(a) (c1)

-1

where 0 = 4. Thus, we have

p

Cl( c10 )
D+ 22 ) =g
2\ T =) "

For large o, we can approximate this last equation by

cl(l—l-c—l) =x
o

The relevant root is given by

—0 +VAdox + o2
b

5 (3.51)

Cl1 =

which, as can be verified easily, goes to z as ¢ — 0.
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For practical use and to find a tractable approximation of the first assembly time, we
solve eq. (3.49) with ¢1(z) = x, which gives

M

z(t) =
NN PNy

and by conservation of mass Ney(t) = M — x(t). The time for which ¢y (t) = 1 is then

found to be Voo
det,q 2 o

N T pN (M —N)N-1

While taking ¢1(z) = M as a constant function, a direct integration gives

N-2
Tdet,q ~ 20-
N p MN

Both expression are found to be substantially improved by replacing M by c¢; given by
eq. (3.51) (see [120]).

3.8.1.2 Pre-equilibrium between r < N oligomer species We can also consider
that only the r first species c¢q,co,...c, quickly equilibrates between each other, because the
reaction flux between these first r species are of higher magnitude than the reaction flux
between the N —r other species. We can separate the time scale of the first r species from
the remaining ones. For this, we define the quantity

T
x(t) = Y ici(b),
i=1
and the system of differential equations eq. (3.21) reduce to

i = —p<r+1>c1(x>cr(x>—pc1<sz‘,}+1ck> +q(r + 1) + (zﬁf‘éac’c)

i = pei(x)(cio1 — ) —qlei —cip1), r+1<i<N -2,
¢N-1 = —pei(x)en-1 +pe(T)en -2 —gen-1,
cn o = pe(@)en-1,
(3.52)
where ¢; is a function of z determined by the relevant roots of
T i—1 ,
c1 + %ZZQZ(S) ()" ==, (3.53)

and

To get a rough, nevertheless tractable approximation with this approach, we consider
that

Hypothesis 11. c¢i(x) is a constant over time,

given by the solution of eq. (3.53) at ¢ = 0. The system of eq. (3.52) above is a linear

system, namely .
Y =AY +B
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with
—q — pc
q—pci q peie,
pci —q —pc q 0
A= - SRS , B=| .
—q — 0 ’
pa q — pc1 0

0 pcy 0

As in subsection 3.4, this system can be solved to find ¢y (), and then the nucleation time.

3.8.2 Stochastic Pre-equilibrium

A separation of time scales can also be performed in stochastic systems, where the
basic assumptions for pre-equilibration are the same as for the deterministic case. In par-
ticular, we require the “fast” subsystem to be ergodic and to possess a unique equilibrium
distribution. The dynamic of the “slow” subsystem is obtained by averaging the fast vari-
ables over their equilibrium distribution; the basic assumption is that while slow variables
evolve, the fast ones equilibrate instantaneously to their average values [80].

Equivalently, due to the equilibrium hypothesis, integrating eq. (3.12) over the variables
that constitute the fast subsystem, will lead to the vanishing of all terms that do not modify
the slow variable, and all remaining terms will involve averages of the fast variable [68].

3.8.2.1 Complete Pre-equilibrium We thus take the same approach as in the de-
terministic system, by allowing the first N — 1 cluster sizes to equilibrate among each
other. We define for this the quantity

N—
X(t) = Zl iCi(t) = M — NCy(t),
i=1

which is the total mass contained in the cluster of size less than NV —1. It then comes from
the system of stochastic differential equations (3.6)

X(t) = X(0)—NYaon-s3 ( 5 pcl(S)CNfldS) + NYan 2 ( X qC’N(s)ds),
Cn(t) Cn(0) + Yon_3 ( Sé pCh (S)CNfldS) —Yon_9o ( Sé qCN(S)dS),

and the pre-equilibrium assumption lead to the asymptotic system

X(1)
Cn(t)

X(0) — NYay_3 ( i p<010N,1>w(X(s))ds) + NYay_» ( i qON(s)ds),

Cn(0) + Yoy 5 ( J (CI1CN Do(X(5))ds) = Yan ( § aCn(s)ds ),

(3.54)
where (C1CN_1)x(X) denotes the asymptotic moment value of C;Cxn_1, given that the
mass of the subsystem is X.

Remark 89. A direct integration of eq. (3.12) over all configurations with ny fized, yields
P(ny;t|{m},0) = —(p{nany—1)(M — Nny) + qny) P(ny; t|{m},0)
+pl{niny_1)(M — N(ny — 1)) P(ny — 1;t|{m},0)

+q(ny +1)P(ny + 1;t|{m},0),
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where

P f{m},0) = [ P({nkit]{m), 0)dns -+ dny .
and the pre-equilibrium hypothesis reads

P({n};t|{m},0)
{minyn_1)(M — Nny) = JnlnN_lP({n};t — olny)dny ---dny_1.

P({n};t = wolny)P(ny;t|{m},0),

We extend similarly the definition of the stochastic nucleation time for the solution of
eq. (3.54).

Definition 7 (Stochastic nucleation time). Let M, N > 0, and (X (-),Cn(-)) the solution
of eq. (3.54). The queueing stochastic nucleation time is

T =inf{t > 0;Cn(t) =1 | X(0) = M, Cn(0) = 0}.
The mean queueing nucleation time is
TK, = E[TK;].
Note that the calculus of the queueing stochastic nucleation time does not require
more approximation at this point, as the nucleation time is defined as the first instant the

Poisson process Ya,_3 fires. And it is clear that X(s) = X(0) = M before that point.
Then the survival time is,

¢
S4(t) = P{rd >t} = exp ( - f p < CiCh1 >o (M)),
0
and, we have the

Proposition 90. For any M, N > 0, the queueing nucleation time T]qV s an exponential
random variable of parameter p < C1CN_1 >« (M),

G((M,0,...,0);t) ~ p < C1CN_1 >q (M)e P<C1ON-1==(M)t

The remaining difficulty lays in determining the quantity (niny_1)(M), a second mo-
ment value, at equilibrium, of a stochastic Becker-Doring system of maximal size N — 1,
and total mass M. We may resort to a (very) crude approximation, by using a mean field
assumption and Becker-Doring results as follows

(C1CN-1) = (C1)XCn-1)

<30 e

5

Other approximation involve moment closure approximation ([27]), or one require the use
of numerical simulation to calculate such moment.

%
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3.8.2.2 Pre-equilibrium between r < N — 1 oligomer species Upon performing
numerical simulations (see next subsection 3.10), it is clear that first assembly time distri-
butions may not necessarily be exponentially distributed, even in the case of large q. We
thus perform a less drastic approximation by allowing only the first r species, 1 <r < N,
to equilibrate instantaneously. Define for this X (t) = > ;_; iC;(t), with the pre-equilibrium
assumption, the system of stochastic differential equations (3.6) reduces to

t

XW) = X0~ + Do ( | KOC)Xds)

N-1 . 0
| f KC1)en((X)Ci(5)ds )

i=r+1 0
t

+(r+1)Ys, (J

N Ot
+) Y f 4Ci(s)ds))
i=r+2 0

] Contl®) = Cria(0) + Yoo [ pC1C)oo( X, )ds )

Virar( | pODR(X)Cn(5)s)

—Yo, ( Lt qCr i1 (S)ds) + Yo, 40 ( Jo qu+2(S)ds) ;
Gty = Ci{0) + Yai s f

0

qC’rH(s)ds)

t

p<cl>w(xs)ci,lds) ~ Yo, ( L p<Cl>oo(X8)C’i(s)ds)

Yy ( f: qC’i(s)ds) + Yo, ( f: qcm(s)ds), r+2<i<N-1,
\ Cn(t) = Cn(0)+ Yaon_3 ( J: p<01>oo(Xs)CN_1ds) —Yon_2 ( J: qCN(S)ds).

Now if we assume
Hypothesis 12. X (t) = M to be constant over time,

the nucleation problem can be treated as a first order reaction network, with the
transition rate being:

C1Cry(M C1yw(M ©
q q

Indeed, if X is constant over time, all reactions are first-order reaction. We define
Definition 8 (Stochastic nucleation time). Let M, N > 0,1 <r < N—1, and (C;(*))r+1<i<nN
the solution of the first-order reaction network eq. (3.55). The r-queueing stochastic nu-
cleation time is

T =inf{t 2 0;Cn(t) =1]Ci(0) =0, 7+ 1 <i < N}
The mean r-queueing nucleation time is

TV = E[+%].

Again, as in subsection 3.4, we can solve this system to get
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Proposition 91. For any M,N >0, 1 <r < N —1, the survival time ST’ (t) = P{r}" >
t} s given by

q;r 2 & oy —t M1
SY0 = e |~ PO T AL (5 + ) | @56)
where A, = —(p(C1)oo(M) + q) + 24/P{C1)eo(M)qcos(Z-) are the eigenvalues of the

N — 1 —r-upper block ofA, V) the associated eigenvector ([146]) (V]S,kzl,r denotes its last
components), and By are constant given by the initial condition.

3.8.3 Example

We illustrate the result of this section with the case N = 3. Note that the above
formula eq. (3.56) is valid for any M, N. There is analytical formulas for eigenvalues and
eigenvectors, so that the formula can be used in practice if we determine the asymptotic
moment values. For this last point, however, there’s no other choice than performing a
moment closure approximation or numerical simulation. We will consider the numerical
results in the next section

3.8.3.1 N=3,r=2 Deterministic The complete pre-equilibrium assumption (r = 2)
reads in the deterministic context

i) = —3?(?)@(@«)3,
(t) = ?(g)cl(a;)?’,

2
with 2(t) = ¢1(t) + 2c2(t), and the pre-equilibrium quantity ¢; (z) satisfies ¢; + 2 = z and

is given by
—0 +Vdox + o2
5 .

The above system can not be exactly solved. Taking ¢;(x) = z, we get

_ My, 1
C3(t)_?< _\/m)v

c1(x) =

so that

Taking ¢; (z) = M,

and
detq 2 O
3 P M3

Stochastic In the stochastic context, we have

t

X(t) = M - QYB(L P < C10 > (X(5))ds) + 3Y4<J0

th’;:,(s)ds), (3.57)

t

Ci(t) = Y;,(L p < C1Cs >0 (X(s))ds) - n(f

0

t q03(s)ds) : (3.58)
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and the nucleation time (first time for which C5(¢) = 1) is an exponential random variable
of parameter p < C1Cy >4 (M). This last quantity can not be evaluated exactly, We
have, by the mass conservation property, < C1Cy >o (M) = M < Cy > —2 < 022 >0
The mean value < Cy >4 can be approximate by the deterministic value, and the second
moment using a Gaussian truncation (see [27]). We then obtain

<C2> = i(@ﬂf+q@)—v“WW4ﬂﬂm2—4NP}

qg<Cy >
—4p < Cy > +p(2M +3) + ¢

< 10y > M < Cy>— — <y >2.

3.8.3.2 N=3, r=1 This case consists in taking ¢; (or () as constant over time.
Deterministic We obtain

&) = pM? —(q+pM)cs,

ég(t) = pMCg.
The solution is given by
pM? ~(q+pM
t — 1— q+pM)t
aft) = B e,
2173
p~M 1 —(g+pM)t
t) = t+ a+pM)t _ 1)),
alt) = Lo (e )

and c3(t) ~ Z’QTMBtQ as t —» 0. Then an approximated expression for the assembly time
reads

V2
P M3/2°

Stochastic In the stochastic context, we look at the queueing network

~

det,q,1 __
T3

pM(M—1)/2 pM
q

and the forward Kolmogorov equation
P=AP,

with P(0,7) = 61(¢), and
. —q—pM 0
A= ( pM 0 )

so that P(2,t) = qf-]z‘fM (1 - e_(qﬂ’M)t), and the surviving probability is

ﬁM%M—n(_ 1
2(q + pM) q+pM

IP’{7'3’1 >t} = exp ( - (1-— e_(qﬂ’M)t))).

3.9 Large initial monomer quantity

We end up our analysis using the correspondence between the stochastic formulation
and its deterministic version as M is large. It is known that for the deterministic Becker-
Déring model, time trajectories present a metastable property [118, 139]. Indeed, the
system has different characteristic time scales. In the first time scale, of order 1/M, the
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system behaves as a pure-aggregation system, up to the time where ¢; becomes of order
q, and small aggregates are present in a very large quantity. Then, in a second time scale,
the quantity of monomer c¢; stays roughly constant, as well as larger cluster. Such period
have been named a metastable state. In the third time scale (of order 1/q), quantity of
monomer stays roughly constant but the cluster distribution evolves following a diffusion
with a fixed left boundary, making larger and larger cluster appear. In the infinite maximal
size Becker-Doring model, the fourth and final time scale corresponds to the relaxation
towards an exponential equilibrium cluster size distribution. In a Becker-Doring with an
absorbing maximal size state, the system tends toward a Dirac mass located at the largest
cluster size. The lag time depends on whether appreciable quantity of maximal cluster size
is reached before, during or after the metastable state. If N is small (to become clearer
latter) we expect ¢y (t) to reach one in the pure-aggregation period. In such case, the Lag
time is close to the constant monomer formulation

2(N — HYIN=1)
TN ~M>»q,N small ( ( MN/()]\2—1) (359)

Such approximation can be improved using the exact solution of the pure-aggregation
model (see remark below).

If N is larger, however, we expect the nucleus to be reached in the diffusion period.
During this period, ¢; is almost constant, of same order as g. To obtain an expression of
the value of the metastable value of ¢;, we can let ¢; = 0 in the system 3.2, to obtain (we
took p = 1 for simplicity)

N—1 s
cf = qCHNZfTQC (3.60)
it G

where all ¢ are given by the asymptotic value of the irreversible aggregation period (see
remark 92 below). Now the problem reduces to a linear one, as in subsection 3.4. Specifi-
cally, the same equations as eq. (3.25) can be used, with ¢; replaced by ¢}, and the initial
condition given by ¢;(0) = ¢¥, i > 2. As a consequence, the lag time depends on M only
by the initial condition ¢}, i > 2, and is found to be (see the numerical subsection 3.10)
almost independent of M.

Now criteria to know whether Cy will reach one or not before the metastable period
can be easily obtained, by comparing with the deterministic value c}. (see remark 92
below). To precisely know what should be a large N or not, one have to calculate the
intermediate cluster distribution at the end of irreversible stage. Such value are linearly
proportional to the total quantity of monomers, leading thus to a threshold for M, and
are decreasing with N. Note that as ¢ — 0, depending on the relative values of M and N,
the deterministic lag time then diverges to +oo (if ¢} < 1) or remains finite (if ¢}, > 1).

Finally, arguing as in the linear model (subsection 3.4), we can calculate the distribu-
tion of the lag time in the condition M >» q and ¢} < 1, for which the survival probabilities
is given by

S(t) = e~en(® (3.61)

where ¢y () follows the deterministic linear system described above (with ¢; = ¢f). As
¢ (0) > 0, such formula gives in some sense a bimodal distribution. The first peak is given
by Dirac mass at 0 (which should be actually of order 1/M), with a weight given by c};,
and the second peak is given by the linear deterministic system.

In the limit M — oo, for fixed N, we have eventually c} > 1, and a maximal cluster
will be reached during the pure-aggregation period. Then the mean lag time is close to
the deterministic lag time, and the distribution may be approximated by the Weibull
distribution found in the monomer-conservative subsection 3.4.



3 First Assembly Time in a Discrete Becker-Doring model 233

Remark 92. Using 7 = Sé c1(s)ds, the system of eq. 3.2 (with p = 1,q = 0) becomes

él (T) = - 2517111 Ci,y
Co(T) = —ca+zc,

3.62
¢(r) = —c+ca, 3<is<N-1, ( )

¢n(T) = en-1.

Upon taking Laplace transform, z;(s) = SSO e *T¢;(T)dr, letting N large and using the mass
conservation property, we obtain the exact formula

als) = w2,
° M s . (3.63)
{Zi(s) = Fraeslare T 2Sh

Taking Laplace inverse transform, we have
e (r) = Me™™/? ( cos(7/2) — sin(7‘/2)), (3.64)

which goes to 0 as T — w/2. The exact expression of c1(t) in the original time scale can
now be obtained (at least, numerically) by the inversion of the nonlinear transformation
that defines 7. We can proceed similarly for each c; to obtain an expression for the lag
time in the irreversible aggregation period. Also, we can use the inverse Laplace transform
of eq. (3.63) and letting 7 — /2 to obtain asymptotic values c; during the irreversible
aggregation period. If cn(T — w/2) » 1, then a sufficient quantity of nucleus will be
reached during the irreversible aggregation period.

3.10 Numerical results and analysis

In this section we present the numerical results obtained by simulating our stochastic
assembly system for various values of {M, N, q} and compare and contrast these results
with the analytical expressions evaluated in the previous sections. We use an exact stochas-
tic simulation algorithm (SSA or Gillespie algorithm) to calculate the first assembly times
[60, 22]. For each set of {M,N,q} we sample at least 10* replicas and follow the time
evolution of the cluster populations (given by eq. (3.6)) until Cy = 1, when the simulation
is stopped and the first assembly time recorded. Each run starts with the same initial
cluster population {m} = (M,0,---,0), which we won’t mention any more as a conse-
quence. Quantities such as histograms, means and variances are determined via standard
statistics methods.

We start by presenting the good agreement between the exact solution calculated in
subsection 3.3 and the numerical solutions, in paragraph 3.10.1. To make our analysis
easier to follow, we present the behavior of the mean first passage time T as a functions
of each parameter separately. Firstly, we look at T as a function of the detachment rate ¢
in paragraph 3.10.2 . In particular we verify that the two asymptotics we gave in previous
section, for small ¢ values and large ¢ values, are in good agreement with the simulations,
and confirm that T is non-monotonic with respect to ¢q. Secondly, we look Tx as a
function of M in paragraph 3.10.3. Such dependence is important in practice, because the
initial mass M is a parameter that can be controlled experimentally. T is decreasing with
M, with very different relationship however depending on other parameters. For large ¢
values, Ty behaves as M, as predicted by our approximation. For very large value of M,
Tx decreases as M ! approximately, as in the linear model (3.4). For intermediate value
of M, and if N is sufficiently large, Ty decreases only as M ~%, with a < 1. Thirdly, we
present T as a function of N in paragraph 3.10.4. We find that T increases exponentially
with N. Finally, we present the distribution of the first passage time and its qualitative
change with respect to parameters in paragraph 3.10.5.
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3.10.1 Agreement between simulation and theory

As an example, to show the good agreement between our numerical solution and the
exact solution, we consider the case M = 7, N = 3. We recall that we already noticed the
discrepancies between the deterministic formulation given by eq. (3.22) and the stochastic
formulation given by eq. (3.13). Indeed, we showed in figure 2.14 the differences between
both formulation. What clearly arises from figure 2.14 is that while the mean first assem-
bly times obtained stochastically and via the mean-field equations are of the same order
of magnitude, they are also quite different and show even qualitative discrepancies. For
example, the stochastic mean first assembly time is non-monotonic in ¢, while the simple
mean-field estimate is an increasing function of ¢ for M =7, N = 3.

We show in figure 2.16 the mean first assembly time 75(7,0,0) as a function of ¢
obtained via our exact results eq. (3.23) and by runs of 10° numerical simulations. Nu-
merics and analytical results are in very good agreement. In the same figure 2.16 we also
plot the probability distributions derived from our numerical results for the same case of
M =7, N = 3. Note that as ¢ increases, the distribution approaches a single parameter
exponential with decay rate A3 as estimated by eq. (3.48).
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Figure 2.16: Comparison of theory with simultions, M = 7, N = 3. The red line is
obtained from eq. (3.23), blue circle are average time obtained from 10* simulations, and
green cruces from 10° simulations. The left figure show a range of ¢g-value from 0 to 5, the
right from 0 to 100. Inset are histograms of the waiting time for different value of ¢, as
indicated of the figures.

3.10.2 Mean assembly time as a function of ¢

We generalize this analysis by plotting numerical estimates of T (M, --- ,0) as a func-
tion of ¢ for various values of M, and with N = 10 in figure 2.17. As expected, for small
q, the mean first assembly time will scale as 1/q. For M = 200, the expression given in
eq. (3.61) (subsection 3.9) is found to be in good agreement with numerical simulation as
soon as ¢ < 10. The first assembly time presents a minimum, for all values of M, due to
the previously described “opening” of quicker pathways upon increasing ¢ for small values
of q. For large ¢ instead we expect the most relevant pathways towards assembly to be
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the ones constructed along the linear chain described in eq. (3.43). Indeed, we find that in
accordance with eq. (3.45), Ty(M,0,---,0) ~ 2¢V=2/M" as ¢ — co. For M = 200, the
pre-equilibrium expression (with r» = 2) given in eq. (3.56) (subsection 3.8) is found to be
in good agreement with numerical simulation as soon as ¢ > 10.
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e e
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Figure 2.17: Mean first passage time as a function of ¢, for various values of M and with
N = 10. The crosses are the result of numerical simulation. (a) M = 200 The dashed line
is given by the pre-equilibrium expression (with r = 2) given in eq. (3.56), and the solid
line is given by the metastable expression given in eq. (3.61) (b) Here M = 50 to 1000, as
indicated by the legend. We only plot the numerical results, to show the overall similar
qualitative behavior.

3.10.3 Mean assembly time as a function of M

We now present the numerical estimates of T (M, --- ,0) as a function of M for vari-
ous values of N, and with ¢ = 100 in figure 2.18. For N = 10, we also plot the analytical
approximation eq. (3.44) given by the linear chain eq. (3.43). As expected, such approxi-
mation is a very good approximation for small M, for which ¢ >> M. The approximation
breaks down for M of order ¢. For M > g but ¢}, < 1, the expression given in eq. (3.61)
(subsection 3.9) is found to be in good agreement with numerical simulation. Finally, for
larger M, ¢} > 1 and the linear approximation as M — oo, given by eq. (3.26), becomes
more accurate.

We also notice that the slope of T (M,---,0) with respect to M, in log scale, is of
order —N for ¢ >> M, while it is close to —0.5 for intermediate M, and finally close to
—1 for large M. Hence, such the slope is not monotonic with respect to M.

3.10.4 Mean assembly time as a function of NV

Finally, we present the numerical estimates of T (M,---,0) as a function of N for
various values of ¢, and with M = 1000 in figure 2.19. All cases calculated here present
a power law increase of the mean first passage time with respect to N. The asymptotic
exponent, for large IV, increases with q.

3.10.5 Probability distribution of the assembly time

As for the distribution of the first assembly time, we present two figures that illustrates
the qualitative behaviour of such distribution. In figure 2.20, we show histograms obtained
from 10° simulations, with N = 8 and M = 200 and ¢ increasing from 0.01 to 1000. The
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Figure 2.18: Mean first passage time as a function of M, for various values of N and with
g = 100. The crosses are the result of numerical simulation. (a) N = 10. The dotted line
is given by the cycle approximation eq. (3.44) (subsection 3.7), the solid line is given by the
metastable expression given in eq. (3.61) and the dotted-dashed line is given by the linear
approximation as M — o0, eq. (3.26). (b) N =4 to N = 15, as indicated by the legend.
We only plot the numerical results, to show the overall similar qualitative behavior.

computed histogram are bimodal for low g values, a phenomenon that we can relate to
the analysis of the slow detachment rate in subsection 3.6, and to the analysis of large
initial monomer M, in subsection 3.9. In such cases, there are mainly two different path.
Those that encountered a “traps”, and the others (or those that create a nucleus before the
metastable period, and the others). This lead to a separation of time scale, as exit from a
trap is penalized by a factor at least 1 over ¢ (the metastable period is also of the same order
of time). We can notice that indeed the second peak of the histograms for low ¢ value are of
order %. As ¢ becomes large, one recover the fact that the distribution is exponential, given
by the parameter An found in the cycle approximation, subsection 3.7. The distribution
given by the queueing approximation (we computed numerically the asymptotic moments
by a Gaussian moment closure approximation) becomes also accurate for large ¢ values.
We also notice that there is only small differences for all 2 < r < N — 2 between such
distribution, and the cases r = 1 and r = N — 1 are clearly distinct from the others.

In figure 2.21, we show histograms obtained from 10° simulations, with N = 8 and
q = 100 and M increasing from 50 to 10000. As expected, the computed histograms
are exponential for small M values, and very asymmetric. As M increases, they comes
symmetric. The analytical approximation are in good agreement with the simulation for
small M values. If it may appear that our various approximation captures somehow the
distribution of the first passage time for larger M, it is still unclear exactly how and is
very dependent of particular values of M, q, N.

3.10.6 Summary and Conclusions

Let us first recall the discrepancies between the deterministic and stochastic results for
the first passage time, by reconsidering the case M = 9, N = 4 also shown in figure 2.14.
Here, most notably we can point out that for ¢ = 0, while the exact mean first assembly
time calculated according to our stochastic formulation diverges, it remains finite in the
deterministic derivation. This illustrates what we saw in subsection. 3.5 and show the
deterministic approach does not yield accurate estimates. A stochastic treatment is thus
necessary.
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Figure 2.19: Mean first passage time as a function of N, for various values of ¢ and with
M = 1000. Cruces are the result of numerical simulation, and errorbars given by statistical
estimates. (a). in linear scale (b). in log scale.
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Figure 2.20: Normalized histogram of first assembly time, obtained with 10 simulations,
and probability density functions computed numerically from the cycle approximation
eq. (3.46) (black dashed lines) and from the queueing approximation eq. (3.56) (plain
color lines, with r given by the legend). Here N = 8 and M = 200. The parameter g
increases in [0.01,0.1,0.5,1,5, 10,100, 1000] from top left to down right. Each analytical
distribution computed are indicated by the legend.

Then, we’d like to point out that the various estimates (¢ =0,¢ < 1, ¢ > 1, M » 1) we
provided for the stochastic first passage time used well known techniques for the study of
stochastic models in a large state space. Namely we used several times a reduction of the
state space by considering the most likely states. We also used a separation of time scales
and an averaging technique to transform our problem into a simpler one. See [91, 111, 80]
for further presentation of these techniques. And we finally used the similarity with the
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Figure 2.21: Normalized histogram of first assembly time, obtained with 10° simulations,
nd probability density functions computed numerically from the cycle approximation
eq. (3.46) (black dashed lines) and from the queueing approximation, eq. (3.56) (plain
color lines, with r given by the legend). Here N = 8 and ¢ = 100. The parameter M in-
creases in [50, 100, 200, 500, 1000, 2000, 10000] from top left to down right. Each analytical
distribution computed are indicated by the legend.

deterministic model, and the constant monomer formulation.

We analyzed the first passage time for the Becker-Déring model with constant ag-
gregation and fragmentation rate. This is a strong limitation, that seems however rea-
sonable when a tractable analytical solution is wanted. We have to mention however
that non-constant rates should give also interesting behavior, as meta-stability has been
demonstrated by Penrose [118] (see also [139] for a review on the available results for this
subject). As the first passage time is a key notion for meta-stability, it will be of interest
to develop techniques to quantify first passage time for the Becker-Doéring model with
non-constant rates.

Our theoretical analyses mainly captures the behavior of the first passage time for
small detachment rate and very large detachment rate, confirmed by numerical analysis.
We pointed out the presence of traps in the limit ¢ — 0 that makes the mean first passage
time to be non-monotonic with respect to ¢ and to diverge to +o0 for N > 4 or N = 3 and
M even. The presence of traps also lead to bimodal distribution for the first passage time.
A different interpretation for this last fact is possible by looking at the limit of M large.
As M is large, the stochastic model becomes initially closer to the deterministic system.
As metastable period are known for the deterministic model, we have a dichotomy for
the first assembly time, when M is large and N too. There are two types of trajectories.
The first type of trajectories is such that the first nucleus is formed before the metastable
period. The second type of trajectory is such that the first nucleus is formed after (or
rather during) the metastable period, where very few monomer are present. Finally, as
q — o0, the first passage time converges to an exponential distribution for which we could
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computed exactly the mean parameter.

3.11 Application to prion

As we already pointed out, we have for now too few data of the nucleation time to
be able to deduce quantitative parameters from our theoretical analysis. However, even
if we dispose of such sufficient data, it may still be hard to deduce all parameters values.
If the quantity of total protein is known experimentally, the actual number of misfolded
protein, that actively participate to the aggregation process (in the model) is not currently
known (no values for misfolding parameters  or 4* are known for now). The reduction we
performed in subsection 2.2 is due to biological hypothesis and remains to be confirmed
experimentally. Apart from the time scale parameter p, we are lead with the parameter
q, N and M. Nevertheless, we can already exclude some parameter regions, from the
experimental data we have. Indeed, the fact that the total quantity of protein and the
experimental nucleation time are weakly correlated suggests that the detachment ¢ rate
cannot be very large compared to M (this would imply a nucleus size of less than 1!).
This is also confirmed by the fact that the distributions of the nucleation time are clearly
not exponentials. Our theoretical analysis suggests rather that M > ¢ and N is not too
small. Indeed, the very weak correlation between the total quantity of protein and the
experimental nucleation time could be explained by kinetic parameter that satisfies M > g,
cy < 1 for which we found that Ty = M ¢, with a > 1 (a = 0.5 with N = 10, a = 0.1
with N = 15 for the example we considered in figure 2.18). Moreover, the nucleation
distribution time found experimentally seems asymmetric for small quantity of protein,
and becomes slightly more symmetric for larger M. Such qualitative behaviour is in
agreement with the model of stochastic first passage time, as M increases. The condition
cy < 1 also suggests that the ratio M /N is not too large, leading to potential traps and
asymmetry or bimodality in the distribution of nucleation time.
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4 A lengthening-fragmentation equation for configurational
polymer under flow, from discrete to continuous

This section is an ongoing work with Erwan Hingant (Université Lyon 1).

In this section, we construct an hybrid model from a purely discrete model of polyme-
rization-fragmentation, that is adapted to our prion experimental data described in sec-
tions 1 and 2, after nucleation, that is, when some large polymers are present. In this
problem, we study however a slightly more general model, with an additional spatial
structure, that is important in other experimental contexts.

In subsection 4.1 we introduce our problem, and recall some results of limit theorem for
stochastic processes. In subsections 4.2 - 4.4, we present the mathematical formulation of
the model, as an individual and discrete size polymer model. We first derive the evolution
equation for a single monomer and a single polymer, based on the laws of physics, and
then give the stochastic differential equation on the empirical measure process, together
with its properties. Finally, in subsection 4.5, we prove that this model converges to a
limiting hybrid model, with continuous and deterministic polymerization and intermittent
and stochastic fragmentation.

4.1 Introduction

In this section, we are interested in polymers under flow and particularly, biological
polymers composed of proteins. In Ciuperca et al. [37], an ad hoc model has been derived
to describe polymerization and fragmentation of rod like polymers. This model takes its
origin from biological experiments where polymers are studied under flow. The polymers
under consideration are formed, for instance, by proteins aggregation. They look like
rigid rod polymers thus the model was based on the theory developed in Bird et al.
[19], Doi and Edwards [46] for rod-like polymers. This theory involves polymers with a
fix length. But, our biological polymers are also subjected to polymerization (addition
one by one of proteins) hence the length may increase. Moreover, these polymers can
break-up into smaller pieces (fragmentation). A polymerization-fragmentation model has
been used in Greer et al. [63] to model prion (protein responsible for several diseases)
proliferation. The model in [37] combines both these models: rigid-rod polymers under
flow and polymerization-fragmentation, in order to obtain a new brand model to study
such polymers.

Here, we present a discrete size and individual model which allows us to write equations
for each polymer and monomer and their relative interactions wrt to the law of physics.
Once the discrete model is established the aim is to justify the mean-field equations of [37].
Another aim is to provide a hybrid model, suitable for quantitative analysis of experimental
data of prion aggregation dynamic. For now, only the second goal has been achieved. To
clarify the relationship between the models, consider the following diagram in table 2.3

We now discuss the method related to this approach. Our topic here is to prove a limit
theorem for a particular stochastic process given by a discrete population model. The
strategy is to describe our discrete population model using a point process (the empirical
measure), and to prove its convergence under appropriate scaling and coefficient assump-
tions to a measure that solve a limiting model. The convergence holds in law, and the
proof uses martingale techniques (we first show that a certain compacity condition holds,
and then prove a unique limit is possible). Such ideas come back to [122, 88, 133] among
others. The interest of this approach are multiple.

1. Firstly, for a theoretical interest, this approach can be used to prove existence of
solution of the limiting model. If there is a particular discrete model, that has a
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Individual and discrete-size =— Individual and continuous-size
(Direct simulation process) (Marcus-Lushnikov process,
CTMC 98, 1]. Stochastic coalescent) Jump pro-

cess, hybrid process, [102, 113, 1].

J U
Mean-field and discrete-size =— Mean-field and continuous-size
(Discrete  Smoluchowski  model, (Continuous Smoluchowski model)
Becker-Déring model) ODE PDE [113, 63].

[14, 78, 104, 139].

Table 2.3: In polymerization-fragmentation models, there are mainly two types of vari-
ables: monomers and polymers. All models referred in this diagram have the mass conser-
vation property. Discrete or continuous refer to the size variable of polymers, and individ-
ual or mean-field refers the number of polymers (discrete in individual model, continuous
in mean-field model). In individual and discrete-size model, we can use a continuous-
time Markov chain (CTMC) formalism, to describe coagulation and fragmentation events.
Some particular case of these models reduce to branching process. In individual and
continuous-size model, we can use a jump Markov process, or a hybrid process if, as in
our case, coagulation is deterministic and fragmentation stochastic. In a mean-field and
discrete-size approach, the system is described by an infinite set of ordinary differential
equation. In a mean-field and continuous-size approach, the system is described by a
partial differential equation for polymers evolution (and an ordinary differential equation
for monomers). The arrows mean that we can pass from one formalism to another by a
limit theorem. The link between individual and discrete-size model and mean-field and
discrete-size can be proved using the approach of Kurtz [88] to show that a Markov chain
converges to the solution of an ordinary differential equation using a suitable scaling. The
link between a mean-field and discrete-size model and a mean-field and continuous-size
model was proved in a context of a prion model by [48]. We are going to show a limit the-
orem between an individual and discrete-size model and a individual and continuous-size
model. Such approach was also taken by Bansaye and Tran [11] in a cell population model.
Finally, limit theorem between individual and continuous-size model and mean-field and
continuous-size was proved in a coagulation-fragmentation model by [113].

sequence of solutions that converges, and such that the limit needs to solve the
limiting model, then existence is proved (see for instance [78, 113] in the context of
aggregation-fragmentation model).

2. Secondly, such approach has been widely used to obtain accurate and fast algorithms
of a fully non-linear continuous model, such as many of the variant of Poisson-
McKean-Vlasov equations ([134]). For such approach, the convergence rate of the
stochastic model is of importance to assess the tolerability of the approximation
made ([30, 108]).

3. Thirdly, in physical or biological context, this approach allows to give rigorous basis
of a particular model. Indeed, in the discrete population model, one have to specify
each reaction or evolution rules very properly. Then, according to the assumption
on coefficient describing this evolution, along with a particular scaling (usually large
population, or fast reaction rates and so on), one end up with a limiting model
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or another. Then the (sometimes) implicit assumptions of a continuous model are
made explicit. Different models can be unified by relating each other with particular
scalings ([84]).

4. Finally, this approach can be used to simplify models, when the discreteness makes
the model intractable analytically. Several limiting behavior of a particular model
can be studied to get an overall picture of the behavior of the original model.

Our main goal combines some of these interests. From a particular continuous model
[37] (see also [50]), we wanted to give precise and rigorous justification of this model based
on physical laws. Also, we are looking to a formulation that could be easier to simulate
numerically, as well as to derive analytical results. We ended up with a hybrid model,
between the fully discrete population model, which would have a too large population for
any realistic values, and a fully continuous model, which does not capture stochastic effect
and is hard to simulate.

In the context of coagulation-fragmentation, a limit theorem was proved by Norris
[113]. The author derived the fluid limit of the “stochastic coalescent” model (or Marcus-
Lushnikov model), towards the mean-field Smoluchowski’s coagulation equation. Recently,
the authors in [30] provided a bound on the convergence rate of the Marcus-Lushnikov
model towards the Smoluchowski’s coagulation model, in Wasserstein distance (in ﬁ)

Fluid limit results in the case where gelation occurs were recently derived in [55, 57], where
the authors showed that different limiting models are possible, namely the Smoluchowski
model and a modified version, named Flory’s model. See also [1] for a review of the link
between probabilistic and mean-field approaches in these models.

For model with coagulation-fragmentation and spatial structure (with Brownian mo-
tion of particles) we can mention the collision-annihilating model (particle are killed as
soon as they encounter another particle. The authors in [89] derived the mean-field ki-
netic equation on the particle number density, assuming that particles are smaller and
smaller as they are present in a larger number. Particles undergo Brownian motion in
R3, with constant diffusion (with respect to the scaling parameter). More recently, the
author in [114] considered general Brownian-coagulation model, where particles undergo
free diffusion and coagulate once they collide. Using specific scaling between radius and
diffusivity of the particles, the author derived the mean-field reaction-diffusion equation.
Both studies mentioned above made use of results on the waiting time of collision between
two particles driven by Brownian motion, and are then strongly dependent on the partic-
ular assumption on diffusion. See also [67] for recent spatially inhomogeneous model of
coagulation particles system. Let us also mention that deterministic discrete size system
of coagulation-fragmentation with diffusion (infinite system of spatially structured PDE)
were looked by [144, 93, 92] where the authors derived existence results (for gelation phe-
nomena, see [25, 45]), and for deterministic continuous size analog results, see [44, 37].
Finally, for a physical discussion on the validity of the protein aggregation and diffusion
kinetic treated as rigid body, we refer to [19, 46, 77] and for experiments on Brownian
coagulation kinetic, see [23].

We also take inspiration of limit theorems proved in a different context, mostly from
Bansaye and Tran [11] in a cell population model. The authors considered a cell popu-
lation with division infected by parasites (which act then as a structure variable for the
cell population), and considered a limit model with a large number of parasites within
a finite population of cells. It is possible to make an analogy between this model and
the polymerization-fragmentation model, considering polymers as cells and parasites as
monomer. We will then make extensively used of the results in this paper, as we will
also consider a limit where the small particles (monomers, parasites) are present in a
large number, while the large particles (polymers, cells) are present in a finite number,
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and follows a stochastic fragmentation (or division) model. Other similar studies of host-
parasite include [12, 106]. We also mention evolution models and the work of Champagnat
and Méléard [31] In this works, the authors extended evolution population models (struc-
tured by a “trait“ that undergoes mutation) with interaction (see [59, 32]) by including
a space structure, namely a reflected diffusion in a bounded domain, and obtained, in
the large population limit, a nonlinear reaction-diffusion partial differential equation with
Neumann’s boundary condition. They prove then a law of large number, with boundedness
and Lipschitz assumption on birth and death rates, and on drift and diffusion coefficient
to ensure well-posedness of the limiting model. We will make extensively used of this work
in the next, as our initial stochastic model could be reformulated as a special case of their
model. Note that similar to our case, drift and diffusion coefficient are independent of the
scaling.
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Some notations used through this paper:

t time

Space

r bounded open set in R3
S? Unit sphere in R3

Function Space

D(R-H E)
Ck17~~~7kn (E].
X oo X En)

Cl]:lvmvkn (El
X oo X En)

Measure Space

cadlag E-valued functions
Continuous functions with k;

continuous derivatives according to the variable

belongs to E;, for alli =1,...,n

idem with bounded functions and derivatives

M(E) Measure on E

Mp(E) The space of finite measure

Ms(E) Finite sum of Dirac measures
MT(E) The cone of non-negative measure
Monomers

i labeled one single monomer

X} Center of mass in I' of a single monomer
T Continuous space variable in I’

N Number of monomer

Polymers

j Labeled one single polymer

Y/ Center of mass in I' of a single polymer
H} Orientation in S? of a single polymer
R} Length in N* of a single polymer

Z (R}, 1, ¥7)

Y Continuous space variable in I"

n Continuous orientation variable in S2.
r Continuous length variable in R,

z (r,n,y)

N? Number of polymer

Others

u(x,t)

R3-valued fluid velocity at z € T’
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4.2 An individual and discrete length approach

We are concerned in modeling polymers under flow and particularly dilute solution of
rigid rod polymers arising in biology, see [37]. Precisely, we will derive equations standing
for polymers formed by protein aggregation and subject to fragmentation. The spatial
domain of the problem will be denoted by I' a bounded open set of R3, the time by ¢ > 0
and the velocity field of the fluid by u : I' x R, +— R3, that is u(x,t) € R? is the velocity
at point x € I' and time ¢ > 0. We assume incompressibility of the given fluid:

Vie-u(z,t) =0, V(x,t) e T xRy,
and impermeability of the boundary (Neumann type boundary condition):
Veu(z,t)-n=0 V(x,t) € oL x R,.

The polymer is described by the position of its center of mass Y; € I' at time ¢ and
a configuration variable (R;, H;) € R* x S? | where R; > 0 is the length of the polymer,
while H; € S? is its orientation. The monomers forming the polymer will belong to a
certain type of proteins, thus seen as elementary particles. We assume that each polymer
is assimilated to perfect rigid-rod with length R; that can be regarded as the number of
monomers (proteins) that compose it. We describe the motion of a free protein in the fluid
by its position X; € I' at time ¢t > 0. We assume that the free monomers are identical, and
assimilated to perfect spheres of radius a > 0.

In this section we obtain a model of evolution and motion of the polymers and monomers
inside the fluid. However, since it involves several mechanisms, let us first describe the
four steps of the method, that will lead to the establishment of the different equations in
the model.

- Firstly, we derive in paragraph 4.2.1 the equation of motion of an individual free

monomer;

- Secondly, we get in paragraph 4.2.2 equation of motion of an individual polymer.
Both these equations are obtained thanks to general laws of physics [19, 46].

- Thirdly, the elongation process of polymers is presented in paragraph 4.2.5. Indeed,
to fit with the model introduced in [37] , we have to include in the model that such
polymers formed of protein can lengthen: proteins (free monomers) aggregate at
both ends of one polymer, successively one by one.

- Finally, another mechanism is involved, a fragmentation process of the polymers,
presented in paragraph 4.2.6. Considering a finite population of monomers and
polymers, these two last processes will be introduced in term of jump Markov pro-
cesses.

We want to emphasize here that our model has the advantage of providing explicit equa-
tions for a single monomer and a single polymer. These are therefore the starting point, in
order to bring a complete justification of future models. We will adopt the point process
approach to describe the whole discrete population in subsection 4.4. Then, we will use
limit theorem and martingale technique to prove convergence towards a limiting model
when there an infinity of monomers, but still a finite number of polymers, in subsection 4.5.

In the following we introduce the equations of the motion and configuration for monomers
and polymers. As we use white noise forces for particles interactions with the fluid and
jump Markov process for the elongation and fragmentation of the polymers, the unknown
of the system will be given by in terms of stochastic processes. In order to defined them,
we always refer to a stochastic process with respect to a probability space (€2, F, P), suf-
ficiently large, that stands for the realizations.
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4.2.1 Individual monomer motion

For this process, we naturally use the Langevin equation [90]. Namely, we consider
one single monomer, represented by a microscopic rigid sphere of radius a > 0, moving in
a fluid domain I' € R3, itself moving with velocity u € R?. The equation of motion of the
monomer reads

mdVi = —€ (V; — u(t, X)) dt + /2%5TE aW™,

where m is the mass of the monomer and ¢ is the drag constant, while (V;);=0 < R?
and (X;)i=0 < R3 are two stochastic processes, corresponding respectively to its velocity

and its position. (Wt(m))t>0 is a standard 3-dimensional Wiener process with independent
components and normal reflexive boundary ([130]), representing the interaction of the
monomer with the surrounding fluid domain. The constant in front of the increments of
the Wiener process follows the Nernst-Einstein relation with kp the Boltzmann constant
and T the temperature, see [46].

Now, assuming that the time scale m/¢ tends to zero (see subsection 4.3), we approach
the problem by the following stochastic differential equation (see [69, 21, 15] for more
details)

dX; = u(Xy,t)dt + V2D dW;. (4.1)

In the case of a spherical particle (the protein), the Einstein-Stokes equation leads to a

diffusion coefficient
D— kT  kgT

& 6rva’
in a fluid of viscosity v and at small Reynolds number, where a is the radius of the sphere
[46]. The generator of this process is denoted by L, and defined as follow

Lnf =u-Vf+DAf, VfeD(Ly), (4.2)

where D(L,,) is the domain of the operator L,,. Note that function f € C?(T) with
vanishing normal derivatives belongs to D(L,,) and are dense into C(T') ([31]). We will
then only consider such function on the next.

Now the motion of a single monomer is well described. We treat next the motion of a
single polymer.

4.2.2 Individual polymer equations

Here, we establish the equation for the motion of a single polymer, represented as
a rigid rod in the fluid domain T', with the same velocity field as above v € R3. Since
there is no more spherical symmetry of the object considered, we need to describe both
the rotational motion and the translational motion. Moreover, for now, no lengthening or
splitting of the polymer is considered, hence the length of the polymer is fixed equal to
R > 0. Therefore, its evolution equation reduces simply to

dR; = 0. (4.3)

4.2.3 Rotational motion

The configuration of a polymer is given by its length and orientation. Since its length

R; = R > 0 is fixed, there is only its orientation, given by a stochastic process (H;)¢=o < S?

for which we need to write the evolution equation. The increments of the orientation are
given by

dHt = Mt VAN Ht dt, (44)
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where (M;);=0 is the stochastic process giving the angular velocity of the polymer in R3,
which satisfies the Langevin equation,

[J]dM; = T dt + A/2kpT¢, dB;, (4.5)

where (Bi)t>0 is a standard 3-dimensional Wiener process with independent components,
[J] the moment of inertia, T' the total torque and &, the rotational friction coefficient [46].
Since we consider the polymer as a rigid rod, in the velocity field u, the torque T' (for
instance derived in [43, 46]) is given by

T = _gr(Mt - Ht 74 qu(t, Yi)Ht), (46)

where the stochastic process (Y;); < I' represents the position of the center of mass of the
polymer, which equation of motion will be derived later. Moreover, the moment of inertia
is given by:
mR?

12 7

where m is the mass of the rod. Then, as for the motion of one single monomer, we

simplify eq. (4.4) when assuming that £* tends to zero (see subsection 4.3). Thus, using
eq. (4.5) and (4.6), it yields

dHt = _Ht A (Ht A vzu(}Q,t)Ht dt + V 2D7” dBt) ) (47)

where the rotational diffusion coefficient D, is defined by

 2%pT  3kpT(In(L/b) — )
g5 mvL3 ’

D,

where b = 2a the thickness of the polymer (a is the radius of the monomer) and L = bR is
the physical length of the polymers. Here, v is a constant standing for a correction term,
see [46].

4.2.4 Translational motion

Due to the nature of the polymer (rod), it feels an anisotropic translational friction,
whose coordinates are denoted by 1 and |, ¢.e. its perpendicular and parallel components
respectively, wrt to the orientation Hy, see [46]. Let (V;);=0 = R?® be the stochastic
process governing the translational velocity of the center of mass of the polymer ( and
(Wt(p ))t>0 a standard 3-dimensional Wiener process with independent components. Thus,
the perpendicular velocity Vti = (Is — H;® H,;) V; satisfies again a Langevin equation,
namely

mdVit = (I = Hy ® Hy) (—€1(Vi — u(t, Y2)) dt +/2kpTE dW),

which is the projection of the dynamic onto the perpendicular space to H;. Also, the
parallel velocity VtH = (H; ® H;) V; satisfies

mdv;” = (H; ® Hy) (—EH(W —u(t,Yy)) dt + \/m th(p)) .
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As remarked in [46], drag coefficients satisfy £; = 2¢)|, we reduce again these equations by
taking m/&; — 0 (see subsection 4.3). It leads to

-

(13 — Ht ® Ht) V;g dt = (13 — Ht ® Ht) ’LL(t, Y;) dt
4/ 28T (I3 — H, @ Hy) dW,

4
(Ht ®Ht) ‘/t dt = (Ht ®Ht) ’U,(t,Yi) dt
+/ 2L (Hy @ Hy) dW".

Thus, for the position of the center of mass we get:
dY, = u(Ys,t) dt ++/2D; (I — H, ® Hy) dW.”) + /2D (H,® H;) dW?),  (4.8)

with
]CBT _ kBT ln(L/b)

D = =
I EH 2mvL

and D| = %DH.
Finally, the generator of the process (R¢, Hy, Y:)i=0, denoted by Ly, is
Lyg=u-Vyg+ [Din®n+ D (I3 —n®@n)| Vy - Vyg
+ (Pn_LVy'U/ n— 4Dm) Vg + D, V, -V,g, (4.9)
Vg e D(L,).

where D(Lp) is the domain of the operator Lp and 7 denotes the spherical variable.
Similarly, note f € C%2(T, S?) with vanishing normal derivatives belongs to D(L,) and are
dense into C(T,S?) ([31]). We will then only consider such function on the next.

Next we treat the polymerization and fragmentation processes, which will be seen
as discrete events in time, governed by jump Markov processes. Their descriptions will
therefore introduce survivor functions, in order to model when these events happen (see
[61, 105] for chemical justifications ).

4.2.5 Lengthening process

Let us consider first a single monomer, labeled by 4, and a single polymer, labeled by j,
in the fluid. As said before, they are characterized by a position X? € I' for the monomer
(and a given volume constant wrt time), while it is a vector Z7 = (R, H7,Y7) e Nx§2xT
that holds for the polymer j, where R is its length, H7 its orientation and Y7 its position.
This latter defines actually a given volume occupied by the polymer, and may change by
the elongation process.

Then one can define a probability per unit of time that the monomer and the polymer
will encounter and polymerize, depending on their relative position and on the size of the
polymer:

(X', Z9).

Thus the survivor function associated to this will be

- t . .
Fi () =1- e;vp(—fo (X1, Z7)ds).



4 Polymer Under Flow, From Discrete to Continuous Models 249

Let Sg ong be the stopping time corresponding to F4 elong . For all t < Sg ong’ the motion of
the monomer is governed by eq. (4.1), while for the polymer it holds the three equations
for the length, eq. (4.3), the orientation, eq. (4.7) and the translation of its center of mass,
a. (4.3).
At t = Sg ong(w) (w € € being “the chosen stochastic realization”), the process is
stopped. The monomer is killed, and the polymer is changing through a deterministic
transition:

Zi(t) = Z(E) + e, (4.10)
where e; = (1,0,0). In other words, the length of the polymer increases of one monomer.

Remark 93. The assumption made here is that the polymerization process does not change
the position of the center of mass of the polymer, neither its orientation. One can introduce
non-local transition for the elongation.

Consider now a single polymer j in an environment of N!* monomers around wrt
time s. For all 1 <4 < N[", this polymer can interact with a monomer . Because the
monomers are present in a finite number, the stopping time for the polymer to elongate
will simply be the minimum of all the stopping time of the elongation of the polymer
with each monomer. These events are supposed to be independent from each other. The
survivor function associated to the minimum of these stopping times is then:

Fio(t) = 1—em< j

Similarly for a single monomer i with N? polymers

tNm

(X1, Z0)ds )

eilong( ) =1- exp f XZ Z])d

Finally, for the whole population, the stopping time S¢jony defined as the next elongation
event is associate to the survivor function

tNm Np

Felong( ) =1- exp f (X;,Zg)ds
1=1 =1

Hence, as said before, at time ¢ = S¢jong(w), one monomer i is killed, so the number
of monomers satisfies
= NI — (4.11)
4.2.6 Fragmentation process

One can use the same reasoning for the fragmentation process. We define a probability
per unit of time for a polymer, labeled by j, to break up. This probability depends on its
position and configuration given by Z7 € N x S§? x I' and is

B(Z).

Then for each polymer j, we can define a stopping time given by the survivor function

=1 (- [ 520,
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At time t = S (w) the stopping time corresponding to F’ 7 the polymer j is changing

frag frag’
through the transition

Zl, = ([6R]_], H,Y), (4.12)
and a new polymer is created
N . . .
7" = (L= 0)R) HL, VL), (4.13)
with the population of polymers incremented by
N, = N{ +1. (4.14)

The notation [r] denotes the closest integer from r and 6 € (0,1) is chosen according to a
probability density function kg satisfying the symmetry condition, namely

k‘o(e) = kO(l - 0)7 Vo e (07 1)7
and truncated upon the condition that

[6RI_] > Ro,
(1~ 0)RL] > Ry.
Ry being a given critical length that ensures no polymers of size 0 is created.

Remark 94. The assumption made here is that the fragmentation does not change the ori-
entation and the center of mass of the resulting polymers from the original one. Here again,
the tramsition could involve non-local fragmentation. After the fragmentation process, the
two resulting polymers will evolve independently of each other according to equations of
motion eq. (4.7) - (4.8), with independent Brownian motion.

The stopping time Sejong defined as the next fragmentation event is associated to the
survivor function

t Ns '
Feiong(t) =1 —exp —J B(Z))ds
0 j=1

Finally, since elongation and fragmentation event are both independents we construct
the survivor function of the whole system as

¢ [N NY N?
F(t) =1 — eap —f SN r(xi z0) + Y Bz |ds
=1

0 \j=1j=1

4.3 Some necessary comments on the model

We can give an algorithmic point of view of the model. Let ¢ > 0 be a given time
with (ka)izl,m,Ngz the position of the monomers and (ng7Hth7Y;2) N the position-
configuration of the polymers. Boundedness assumption on coefficient allows to simulate
this stochastic process in an acceptance-reject manner, which we briefly recall below, see
[31]. Simulation of Brownian trajectories with reflexion conditions have been discussed in
[96]. The algorithm is

i) Let 41 > tx be the next possible stopping time associated to the survivor function

F.

i=1,..
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ii) For all ¢ € (tg,txy1) the motion of the monomers is given by eq. (4.1) and the

polymers are governed by eq. (4.3) for the size, eq. (4.7) for the orientation and
eq. (4.8) for the center of mass.

iii) If ¢4 is associated to an elongation event, the system changes following the tran-

sition eq. (4.10) for the corresponding polymer that elongates and eq. (4.11) for the
monomers population.

iv) If tx41 is associated to a fragmentation event, the system changes following the

transition eq. (4.12-4.13) for the two resulting polymers and eq. (4.14) for the pop-
ulation of polymers.

v) If tx 41 is not associated to any event, the system does not change and no transition

happens.

vi) We go back to step i).
Because all stochastic differential equations involved in the equation of motion of monomers
and polymers have global existence and uniqueness property, this description ensures the
existence and unicity of the solutions of this model up to the explosion time, that is the
accumulation point of the jump times (see next section).

The model describes above needs some comments:

4.4

Neglecting the inertial effects in the motion of monomers and polymers will be
justified later by the fact that the mass will be chosen converging to zero. For a
model (without elongation-fragmentation) that take it into account we can refer to
[43].

The modeling of the Brownian intensity is valid under low Reynolds number, thus
the fluid model should be a Stokes flow.

The Brownian motion on the sphere is introduced here as a 3-dimensional Wiener
process on the rotational velocity. It is interpreted as all the interaction with sur-
rounding particles, in a different way than [43, 19, 46] where it is derived from a
Brownian potential from a given a prior: density of polymers.

Due to the difference of order of size between monomers, polymers and the spatial
domain, the fact that fragmentation and elongation do not change the center of mass
of the polymer could be justified. But one could consider non-local elongation and
fragmentation.

The above choice of the repartition kernel (self-similarity and definition with a ref-
erence function kg) is mainly made to simplify notation on the stochastic differential
equations below. More general probability kernel k(R, R’) from a polymer of size R
providing a polymer of size R’ could be taken without any difficulties.

The measure-valued stochastic process

First of all, let us introduce some technical notations for this section. Consider F a
measurable space, we denote by Mp(FE) the set of finite measures on E equipped with
the topology of the weak convergence. Moreover, for any u € Mp(FE) and h a measurable
bounded function on F, we write

Also,

() = | hohutdo)

we introduce the space
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that is the finite sum of Dirac masses which will be useful to describes the configuration
of the system.

The last notation is Ckt»Fn(E; x --- x E,) for the space of continuous functions with
k; continuous derivatives according to the variable belongs to E;, for all¢ = 1,...,n. Also
if C is replace by Cp, we consider bounded functions as well as all their derivatives.

4.4.1 The empirical measure

Our study focus on describing the evolution of the population of monomers and poly-
mers. To that, we represent the population of monomers and polymers, respectively, with
the following measures at time ¢:

Ny Ny
m _ ) P _ .
= 3 G and = 335,
i=1 Jj=1

with N® = (uf*,1) the total number of monomers and N/ = (u?, 1) of polymers. As
the dynamic of the two populations is coupled, we introduce what we call the empirical
measure of the system:

e = (', 1) € M(T) x Ms(N x S? x T). (4.15)

This point of view define (p):>0 as measure-valued stochastic process that entirely contains
the information of the system. The aim of this section is thus to construct the stochastic
differential equation of this process, that describes the evolution of our model.

For that, Ms(T") x Ms(N x S? x I') is equipped with the topology product. Until it is
mentioned, h stands for a couple of functions

h=(f,g)eCT) x Cp™*(N x §? x T)
with vanishing normal derivatives on I' and ¢ a function
b e CZ(R,R).
Also, we denote by

<N7 h> = <:u‘m7f>1" + <:u‘p7.g>N><SQ><F :

If no doubt remains, we drop the space on which act (,). Finally, for technical reason, the
evolution is regarding with respect to test functions ¢p defines, for all measure u € Mp,
by

On(1) = O(< b >). (4.16)
These functions are know to be convergence determining on the space of finite measure,
see [42].

4.4.2 Continuous motion

In order to derive the evolution of (p¢)i>0 the empirical measure product eq. (4.15),
we first focus on the continuous motion between to consecutive stopping time. For sake
of clarity let us introduce two operators, first L be

Lh = (me7Lpg)7 (4.17)
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where L, and L, are respectively given in eq. (4.2) and (4.9), and A such that

Ah = (Dvx IV f 2 (Veg™R) (RTV,9)

(4.18)
+ 15D (21%5) + 1 (7D) (9705 )
where D) = /2D, (I3 — n®n), D) = 4/2Dn®n and R = —v/2D,;n A -. Now we are

in position to introduce the following lemma which states the evolution of the empirical
product measure between jump (stopping) time.

Lemma 95. Let Ty, and Ty.1 be two consecutive jump time. We assume that p; is the
empirical product measure defined by eq. (4.15). The evolution of u; with respect to the
functions ¢, defined in eq. (4.16) is given, for any s,t € (T, Tk+1), by

¢
onlie) = on(us) + [ Loon(pa)dor + M
where My ¢ is a process starting in s and Loy defined by

£O¢h(u) = ¢,(<N7 h>) (N? Lh> + (b”((:uﬂ h>) <N7 Ah> )

with L and A respectively given in eq. (4.17) and eq. (4.18).

This lemma is a straightforward consequence of Ito6 calculus. Indeed, between two
jumping time, the number of monomers N and polymers N are constant. Moreover, the
size of each polymer is constant thus from the SDE on the motion of the monomers eq. (4.1)
and its infinitesimal generator L,, defined in eq. (4.2), together with the SDE on the motion
of the polymers eq. (4.8), on their orientation eq. (4.7) and the infinitesimal generator
L, defined in eq. (4.9), so we get by computation of the It6 rules the above lemma.
Furthermore, the computation allow us to get the exact expression of the martingale M; g
which is decomposed as

My s = M + Mfs, (4.19)

with My and ij s two processes given by

M, = j () § (V2D F(x)aw i),

i=1
and
M, = J &' ({to 1)) D (\/ZDTWQ(Z?,) +dB} A H}
S j=1

+Vy9(23) - [\/ZDL(I?, ~ HI@HI) + /2D H. ® Hg,'] dW;p)j> ,

We notice that Ws(m)i, Ws(p )i and BZ are a family of 3-dimensional Wiener process with
independent components corresponding to each monomers and polymers, respectively la-
beled by ¢ and j.
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4.4.3 The stochastic differential equation

In the previous section we write the evolution of the empirical measure between stop-
ping times. The aim of this section is to describe the whole evolution of this measure with
an SDE. To do that, we assume that we have a sequence 0 =Ty <171 <Th < --- <Tn <
Tn 41 of consecutive stopping times and we suppose that the time ¢ belongs to (T, Tn+1)-
Consequently, the empirical product measure p; satisfies, for any t € (T, Tn+1)

Nl Tt t
bn(pe) = 1;) <A¢h(HTk) + ka débh(us)) + Agn(pry) + JTN don(ps),

where A¢p(pr,) = on(pr,) — ¢h('“T,;) and the convention pg- = 0. Consequently, re-
marking that the above equality is true for any sequence of stopping time, from lemma 95
we get the evolution of u; for any ¢ > 0 given by

On(p) = X (nlps + D) = 0n(p ) + | Lodnu)ds + P, (420)

s<t

with M} := M; o where M, o satisfies eq. (4.19) and Aps = ps — p; . In order to define
the transition Aug we introduce the following notation

Notation 2. We use the purely notional maps S, and Sg; for all i,5 € N, such that for
1= (ttms pip) € Ms(T) x Ms(N x S* x T)

Sp(p) = X' and Sj(p) = (R, H,Y").
In order to have a consistent definition of these two maps, we refer to [32].

Let s be a stopping time corresponding to an elongation event, where the monomer ¢
elongate with the polymer j, the transition defines by eq. (4.10) - (4.11) leads to

— AbI, . ) ) )
A,us - AI /-’LS .— (_55571(;"5_)’ _55‘177(“5_) + 55{7(HS—)+91) . (421)
This formally means that monomer ¢ is killed, polymer j gets a length incremented by
one. Now, when s is a stopping time with a fragmentation event, where the polymer j
breaks up, the transition defined by eq. (4.14) and eq. (4.12) - (4.13) leads to

5 (4.22)

Apg = Apg = (0’ %0(0.59(n,-)) T %01-0.5(u,-))

Si(us—)) ’
where ©(0,Z) = ([0R],H,Y) for all Z = (R,H,Y) € N x S? x I'. This formally means
that polymer j of size R breaks up into two new polymers of size [#R] and [(1 — §)R].
Nothing happens to the monomers. Finally, Aus = (0,0) for all non-jump time.

Similarly as in [59, 32], the transition events of elongation and fragmentation will
be described in term of Poisson point measures. Let us define them, together with the
probabilistic objects of the model.

Definition 9 (Probabilistic objects). Let (2, F, P) a sufficiently large probability space.
We defined on this space the two independent random Poisson point measures
i) The elongation point measure Q' (ds,di,dj,du) on Ry x N x N x R, with intensity

E[Qu(ds, di, dj, du)| = dsdu( Y, 6(di))( )] 6k(d)))-

k=1 k>1
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ii) The fragmentation Poisson measure. Qs(ds,dj,df,du) on Ry x N x (0,1) x Ry
with intensity

E [Qa(ds, dj, df, du)] = dsduko(6)d6( ) 6 (dj))
k=1

where ds and du are Lebesque measure on R, df is the Lebesgue measure on (0,1) and
D k=1 0x(di) is the counting measure on N. Moreover, we define a family of 3-dimensional
Wiener process with independent components (and independent of the Poisson measures),
indexed by 1 € N and j € N:

W™ 0, (W) i20, and (B])i=o-

=U)

Finally, let uy € My an initial random measure, independent of the above processes and
the canonical filtration (Fy)i=0 associated to these processes.

From eq. (4.20) together with eq. (4.21) - (4.22) and the probability objects given in
definition 9, we are able to state the discrete-individual polymer-flow model that is the
SDE on (u¢)i=0 for the function ¢, that reads

oni) = dnlo) + f Coon(p)ds

+f | IS ¢h<u;>)

X L r(8h, (= 0,83 (g ) LN N

X Ql(d87 dZ, d]? du)

" fot fo(O,l)x]Ih (th('u“( * A%MS) B Qbh(ll;))

x 1

(4.23)

0(8,57(11,-)) , (18,57 (1.~ ))>Ro

X 1Sy Lisn?

X QQ (d87 dja d07 dU)
+ MY,
where L is the generator of the piecewise continuous motion defined in lemma 95 and

MY := M, is the process given by eq. (4.19). Now, we can compute the infinitesimal of
the process that is:

Lemma 96 (Infinitesimal generator). The infinitesimal generator L associated to the SDE
n ()¢ for the function ¢y, given by (4.23) is decomposed as follows

L=Ly+ L1+ Lo
where Ly is defined in lemma 95 and
contu) = [ | @) Gul + A = nls)
NxS2xI

Xl (dr)ul(dz),
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with A1(x,z) = (=g, =0, + 24e,) and

1
Lantu) = [ |G @l + B0) = ()
X 1[9y1,[(1=0)r]> Ro Ko (0)dOp!_ (dz),

with Az(z) = (0,0e(g,2) + de(1-0,2) — 02)-

This lemma is obtained by Markov properties. Indeed, by taking expectation in the
eq. (4.23) and the definition of the random Poisson point measure, we identify the generator
([59, 32]). Thus the evolution of the empirical measure y; can be re-written as

t
on(112) = Sn (o) + jo Cén(s)ds + Mot

where
Mt = MY + M + M, (4.24)

with M := M, the process given by eq. (4.19) and M}, M? the compensated random
Poisson measure that are for £ = 1,2:
¢
M = f f - (Q1(dsdidjdu) — E[Q1(dsdidjdu)])
% NxNxR4
M2~ f f o (Qs(dsdjdbdu) — E[Qs(dsdjdodu)])
0 JNx(0,1) xR+

with dots standing for the terms behind Qj_1 2 in the eq. (4.23).

4.4.4 Existence, Uniqueness

In this section we study the well-posedness of the discrete-individual polymer-flow
model eq. (4.23). For that we assume the following hypothesis:

(H1) Let 7 and § be continuous non-negative function, uniformly bounded respec-
tively by C > 0 and B > 0, that is

7(x,2) <Cand B(z) <B, Vrel,VzeNxS?xT.

(H2) We recall that ko : (0,1) — R, is a symmetrical probability density function,
1.€.

f ko(6)d0 = 1 and ko(0) = ko(1 — 0), V6 € (0,1).
0

In order to state well-posedness of the problem we introduce the following definition of
admissible solution. Solution are given in terms of a martingale problem. Its advantage
relies on the fact that the limiting problem will be identified as a martingale problem.

Definition 10 (Admissible Solution). Assuming that the probabilistic objects of defini-
tion 9 are given. An admissible solution to the discrete-individual polymer-flow model
eq. (4.23) is a (Ft)i=0-adapted measure-valued Markov process:

p=(u", @?) € D ([0,00), Ms(T") x Ms(N x §* x I)),
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such that, for all ¢ € C2(R,R) and h € CZ(T) x 62’2’2 (N xS%xT),

o (1e) — D1 (410) — fo Lon(ps)ds (4.25)

is a L' — (F)i=0 martingale starting in t = 0 given by M} defined in eq. (4.24) and
where L the infinitesimal generator derived in lemma 96. Moreover, it satisfies

|+ [ v = [+ [ ),
r NxS2xI' T NxS2xI'

The last equation in the above definition stands for the mass balance of the system.
Indeed, since neither production, nor degradation of monomers and polymers is assumed,
together with the impermeability condition at the boundary (Neumann type boundary
condition on u), the system preserves the total number of monomers. Now, we are able to
state the following proposition:

Proposition 97. Assuming that the probabilistic objects of definition 9 are given, hypoth-
esis (H1-H2) are fulfilled, and
E ({(uo, 1)) < 400,

then there erists a unique admissible solution (u¢)i=o to the discrete-individual polymer-
flow model eq. (4.23).

Furthermore, if for some a > 1,
E ({10, 1)%) < 400,
then for any T < oo,

E ( sup {(ug, 1>°‘> < +o0.

t€[0,T]
Proof. Following [59, 32], we only have to check the last point, and that the mass conserva-
tion holds. Indeed, we gave a constructive description of the stochastic process, based on
the existence and uniqueness of equation of motion for individuals and on the Poisson mea-
sures. That the martingale property holds is a consequence of the generator identification
above.

In order to prove the mass conservation, let ¢ = I'd and h = (1,r) withr: (r,n,y) — r,
then

onlpe) = [ i)+ | ),

NxS2xI'

In that case we have
On s+ A ) — dn(u7) = < b, (17r)> =0,
and ) .
Ot + Apts) = dnlns) = (A, (1,r)) = 0.

Moreover,
‘Cquh(:us) = <lu8_7 (Lmlv Lpr)> = 07

and Mlt0 = 0. Using the SDE eq. (4.23) on the empirical measure, we get the mass
conservation.
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We now show that jump times do note accumulate, thanks to moment estimates. We
note 7, = inf{t > 0, (u,1) = n}. With eq. (4.23) and taking ¢p(pn) = ((u,1))* (and
truncating ¢ with (n + 1)® to be more correct) we get, neglecting the negative terms,

sup  (us, D < (po, 1)

SE[0,t ATH]

tATR
7 (g 1) + 1) — (1g=r 1)°]
0 Nx(0,1)xR4
X L, g5,y Li<n? Q*(ds, dj, df, du).

Using the standard estimates (z+1)% — 2% < Cy (1 +2*71) for all z > 0 for some constant
C, > 0, we deduce

sup  (us, 1) < (po, 1)

SE[0,t ATH]
tATR ot
el [1+ (e
0 Nx(0,1)xR4

X L, gisi (- Li<n? Q*(ds, dj, do, du).

Taking expectations, since Nf_ = <,up 1>, B is bounded by B (cf. hypothesis (H1)) and

8—7

the initial moment is finite, F[{ug,1)%] < 0, we have, for some constant C,, := Cy (110, B)
(changing from line to line) depending on «, pg and B

E[Se[sup (s, 1>”] <C, (1 + th E [(1 + 1>“‘1) - 1>] ds).

0,t ATn] 0

Now remarking that (u” ,1) < (us-,1) and (ue-,1) < (ug-,1)" since & > 1 and N¥ € N,
we have

E[Se[sup (b, 1>p] < C, (1 +2 JOW" E [{ps-, 1)°] ds).

0,t ATn]

Using first this inequality with o = 1, and then for some o« > 1, and using Grénwall’s
lemma, we can conclude that

E[ sup (s, 1>a] < Ca(1). (4.26)
s€[0,t ATy ]

Then the sequence 7, needs to tends a.s to infinity. If not, we can find Ty < oo such

that € = P (sup,, 7, < Tp) > 0. This implies E[supse[O,TOMn] (,us,1>o‘] > en®, which

contradicts eq. (4.26). So 7, goes to infinity and we conclude by letting n to infinity in

eq. (4.26) thanks to Fatou’s lemma.
O

We will also need to derive our results to use ¢ unbounded and particularly some ¢
being like z — x®. For that we introduce the following corollary:

Corollary 98. Assume (H1-H2) and for some o > 2

E ({no, 1)) < +o0.
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1. If for all measurable functions
¢ e C*(R,R) and h e CZ(T) x CI?’2’2(N x §% x T),
such that, for all u € Ms(T) x Ms(N x S x T')
|6n ()] + 1£6n] < C(1 + (p, 1)),

2. Orif
¢ x> 2 with a =1 and h e C}(T) x C2’2’2(Nx82><f),

then the process

mwwwwm—ﬁwmmw

is a L' — (F})s=0 martingale starting from 0.

Proof. The first point is immediate thanks to proposition 97. For the second one, we’ll
use the conservation mass property to get a finner upper bound. The only term that could
be a problem is the one given by £;. Take ¢(z) = 2, so that

|mmwn=|fkwwxzwa A1)~ on(ps-)
pl (do)u? - (d2) |
<ka@ ) {pa ) i ()l (d2),
< 7O s (s, 1) 1) (k1)
< TOM)E (g, 1) sup (s, 1) (2, 1)
<

7C ()t (ug", 1) sup (us, 1),
[o.4]

where used the conservation of mass property in the last but one line. All other term are
similarly bounded by supjg (s, 1)*, so that proposition 97 allows to conclude. ]
4.4.5 Coupled weak formulation and Martingale properties

The evolution of the empirical product measure, can be write in term of a system of
two equations, one on the monomers measure and another on the polymers measure. We
first remind some notations for this problem. The generator £ is decomposed as follows

L=°L0+c+ L2
with £° given in lemma 95 and £¢=%2 in lemma 96. The martingale is given by
Mot = MY+ M} + ME,

with ]\It0 := M; o given in eq. (4.19) and Mtkzl’2 from the compensated Poisson wrt Q-1 2.
Now we decompose the martingale in several processes. Firstly, taking ¢ = Id and
g = 0 in the total martingale, we get

M™ := M (¢ = Id, g = 0) = M>™ + MM™ + MP™, (4.27)
and secondly, with ¢ = Id and f =0,
MP := M"Y ¢ = Id, f = 0) = MP + MM + M2, (4.28)
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where M"™ := Mi(¢ = Id,g = 0) and M"* := Mi(¢ = Id, f = 0) for i = 0,1,2. We also
notice that
Mot (¢ = Id) = M™ + M?.

We are now ready to state our system as a coupled system of two equations. Let us
take ¢ = Id the identity function in eq. (4.25), then we identify each equation by taking
on one hand h = (f,0) and on the other hand h = (0, g), together with the definition of £
in lemma 96 we get the weak formulation:

-

t

W) = <u6“,f>+f<u?,me>ds

0

_J f (WP () f@)u™ (da)ds + M,
0JI

Whg) = (o) + fo (Wl Lyg) ds

| ] ) (ot e g2 - d2)ds
t 1

—f f f B(2)1[gr1,[(1—0)r]>Ro K0 (0)g(2)dOp”_ (dz)ds
0 JNxS2xT" Jo

t 1
+2 J j j B(2) 100, [(1-0)r]> Ro K0 (0)9(O (0, 2))dOp’_ (dz)ds
0 JNxSZ2xI" Jo

+ M?.

.

(4.29)
We note that the integral with the factor 2 in front of it, is obtained by changing of variable
and using the symmetry property on ko (H2).

The next proposition gives the quadratic variation of all these process.

Proposition 99. Assume (HI1-H2) and that
E (<M0, 1>2) < +o0.

Then the process M (¢ = Id) = M™ + M} defined in eq. (4.27) and (4.28) is an
L? — (Fy)t=0 martingale starting from 0 with quadratic variations:

(Mt = (M), + (MP), + (M M),
such that:
The quadratic variation of M™ is
<Mm>t — <M0,m>t + <M1,m>t’

with
MO™) =2D th | Vf(z)|? p™(dx)ds
< >t , 0 Jr Mg ’

Lmy = Por(x,-)) f2(z) ™ (dx)ds.
(. LL%,(,)N()MS(d)d
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Then for MP it is
(), = (102),+ (1), + (20,

with
0p\ _ ' T T
<M >t JO JNXSQXF<(vng R) (R Vng)
+ (V40" Dy) (D940) + (V0" D1) (DLV,0) b (d2)ds,
(M), = | [, 057620 0o+ 00) =g )t

), f f f 2) o], [(1-0)r]> Ro Ko (0)
NxS2xTI

x (9(0(6,2)) + g(O(1 = 0,2)) — g(2))? b (dz)dbds.
Finally the cross variation is

(M™, MP), = (M M"P),

LT e

< (g(= + e1) — g(=)) W2 (da)b (d=)ds.

Proof. The proof is standard. Lets take ¢(x) = 22, such that ¢p(u) = ({(u,1))%. With
corollary 98 we get that

(<Mt7h>)2 /.L(), J E MS7

is a martingale. Then we use It6 formula to compute ({u,h))? from eq. (4.29), which
gives

(s B2 — ((pio, 1)) — 2 fo (1 1)) A((pas BY) — (M + MP),

is a martingale. Now, by unicity of the Doob-Meyer decomposition, comparing these two
expressions leads to the quadratic variations given in the proposition. ]

Remark 100. We notice that all the cross variations which are not given in the proposition
are in fact equal to zero.
4.5 Scaling equations and the limit problem

4.5.1 Infinite monomers approximation with large polymers

Let us introduce a scaling parameter n € N* that will be discussed later. We consider
a set of parameter
7" and " satisfying (H1),

ko satisfying (H2) and Ry > 0,

that depends on this parameter n, thus £1 and L9 are changed in consequences, that leads
to a generator denoted by L™ defined as in lemma 96 but with rescaled parameters.
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Remark 101. We note here that £L° is unchanged, indeed, we assume that the diffusion
coefficients D, D, D) and D, are constant. It seems to be a strong hypothesis but the
scaling of these coefficients are currently not derived, maybe one could inspired by [46].
We believe that the mathematical analysis is similar when the diffusion is rescaled.

Now, we rescale the initial condition from this parameter, let fij € Ms(I") x Ms(N x
S? x T') from a quantity My of monomers, Ny of polymers, such that

[nMo] No
g = 2 Oxir ), 0zim
i=0 §=0

with Zé’" = (Ré" = [nRé], H 3, YOJ) This transformation is nothing but considering a large
number of monomers and large size of polymers (in terms of numbers of monomers in the
polymers). For all n € N*| we have a unique solution i}’ given by the eq. (4.23) where the
coefficients (7, 8, ky) and initial condition (i are respectively replaced by (77, ", ki) and
fig. The aim of the scaling is now to study the problem when the mass (or the size) of one
monomer is given by the parameter 1/n.

Let us now rescale the solution for a large population of monomers by taking a mass
of monomer in 1/n, thus

e
L mn
py = Elu’t " Z 5Zti’n ) (4.30)
=0

with NP" = (a?™ 1) (idem for N;") and
. . . 1
Z"™ = (RI" = R /n, H],Y{) € ~N S x T.

Remark 102. We notice that the size of the polymers (numbers of monomers in the
polymers) is rescaled from the size of the monomers, this suggests that the size will describe
now a physical length.

Now, the rescaled empirical measure belongs to a different space that is
1
p € Ms(T) x Ms(=N x §? x T') e Ms(T) x Ms(R, x S* x T).
n

The injection is used to stay in a same state value for the stochastic processes p'.
From this scaling, we denote several relations that will be used in the next:

(", 1) n(p 1),
(A", 1) = w1,
(""" 2) = (" T 2), (4.31)
(" (@) = (" (@, (n, 1,1)))
(", B ) = "™ 8" (0, 1,1))

where (n,1,1) - (r,n,y) = (nr,n,y). The three first ones are the consequences of the fact
that the number of monomers increases by a factor n, but not the number of polymers.
And the two last ones are the consequences of the fact that the number of monomers in
the polymers increases by a factor n. The following proposition is a consequence of these
relations eq. (4.31) and proposition 99:
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Proposition 103. Assume that (7", B") satisfy (H1), ki satisfies (H2) and
E ((ug, 1>2) < +o0.

Then the rescaled measure py defined in eq. (4.30) is solution, for all f € C*(T) and
g€ C£’2’2(R+ x S§? x T') (still with vanishing normal derivatives), of

-

t
N f (8, Lo f) ds

0
j J s (n,1,1))) f(@)p 2" (dx)ds + M™",

W™ g) = (" 9) + L( ", Lpg) ds

) " Lt JIRerS?xI‘n pet 7 (0 1,1) - 2)) (9(2 + %61) - g(z))

x P (dz)ds
¢ 1
+2f f J B™((n, 1,1) - 2) 1601, [(1=6)nr]>Ro K0 (0)
0 JRy xSZxT JO
x (29(0"(0,2)) — g(2)) dOu" (dz)ds

+ MP",

.

(4.32)
where ©™(0,Z) = ([0nR]/n, H,Y) and M"" = M™™ + MP™ is a square integrable
martingale starting at 0 with quadratic variations:

<Mtotal,n>t _ <Mm;n>t + <Mp,n>t + <Mm,n’MP,n>t

such that:

The quadratic variation of M™™ is

(Mm,n>t — <M0,m,n>t + <Ml,m,n>

..
with

(MO = J | V(@) |? pd" (d)ds,

(prmy, = j | s 1)) P s

Then for MP™ it is

(MP"), = <M07p7n>t + <Ml7p7n>t + <M2’p’n>t’
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with
<M07p7n>t B Jot fﬂh xS2xT ( (VngTR) (RTVng)
+ (Vyg" D)) (D Vyg) + (Vg™ D) (DIV,9) )" (d2)ds,
<Ml,p,n>t — J f X§2><I‘ (™ (-, (n,1,1) - 2)) (g(z + %el) — g(z)>2u§’"(dz)ds,

(M2em), - = JO JRers?ero B"((n,1,1) - 2)1[onr],[(10)nr]>Ro Ko (0)
x (9(©"(0,2)) + g(O©™(1 — 0, 2)) — g(2))* p&"(dz)dbds.

Finally the cross variation is

<Mm7n’MP,n>t — Mlmn Ml,pn>

((z+ —ej) — g(z)> T(dx) " (dz)ds.

4.5.2 The limit problem

We now recall our assumptions and make the following mean-field specific scaling

(H1) Let 7 and § be continuous non-negative function, uniformly bounded respec-
tively by 7 > 0 and 8 > 0, that is

7(z,2) <7Tand B(z) < B, Vrel,VzeNxS?xT.
Moreover, 7 belongs to Cl?’l’o’o(F x R* x §? x ).
(H2) Let ko : (0,1) — Ry is a symmetrical probability density function, i.e.
1
f ko(0)d0 = 1 and ko(8) = ko(1 — 0), V0 € (0, 1).
0

(H3) Let 7, 8, k¥ and R defined by Vo € T, V2 € N x §? x T and Vn € N,

Tn(x’ (’I’L, 17 1) : Z) T(ZL‘,Z),

/Bn((n7171)'z) = /8(2)7
kg(0) = ko(0),
R' = R,

(H4) The initial measure p converge in law and for the weak topology towards a
couple (uf, b)) of non-negative measure where u" is a deterministic finite measure
on I' and 4§ a finite random measure in Ms(R* x S? x I'), and, for some o > 2,

sup B ({5, 1)) < o0.

Remark 104. In order to facilitate the following computation, the scaling in (H3) is taken
with equalities for all n, but could be easily replaced by strong limit in n.



4 Polymer Under Flow, From Discrete to Continuous Models 265

Remark 105. Below we will state the limiting problem, using the same notation as for
the initial problem of subsection 4.4, in particular for p™,u?, etc... We hope that no
confusion will be made.

Under these assumptions we formally derive from eq. (4.32) our candidate limit problem
that is for any f € C2(T') and g € 61’2’2(}R+ x §? x T),

-

W) = ) f (W, Lo f) ds

j f W0 7(, ) (@) (do)ds,

(159 <MtaL g)ds
< O P
JJRHSQXF 17 2)) 5-g(2)ul- (dz)ds
j J )d@,u (dz)ds
IR+><S2><1"
p
+2-L JR+XSQ XFJO /8 ? k0(9)9(9T7n’y))d0M8— (dZ)dS

+ M.

(1t 9)
(4.33)

where M} = M?’p + M? " is a martingale with
P f Z [«/21) V,.9(Z%) -dBI A HY

+Vy9(Z)) - [\/ﬁ(fg — H] @ H]) + /2D H] ® Hg] dWS(p)j],
and

= j JNX@UXM (4(6(0. 7)) + (01 — 0, Z0)) — 9(Z0))

X 1u<,8j7 1]§N
S

« (Qg(ds, dj, d0, du) — E[Qx(ds, dj, df, du)]) .
Remark 106. The identification of the limit problem will be through the martingale prob-

lem associated to eq. (4.33), which we now state below. As this martingale problem is very
much similar to the one studies in paragraph 4.4.4, we omit the justification.

Before proving a convergence theorem to this limit problem we first need a result on
its well-posedness. It is the following lemma;:

Lemma 107. Let us assume (H1-H2) and pg € MET) x Mf (R x S?2 x I'). For any
T > 0, there exists at least one solution (pu)i=0 to the limit problem eq. (4.33) such that

1€ D0, T; MET) x ME(RY x S? x T)).
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Moreover, i remains a point process, that is i € Ms(R% x S?2xT) forall T <t >0,
and we have the following conservation, for any t = 0

(", 1) + (uf,r) = (ug', 1) + (g, ) ,

(where M™ denotes the cone of positive measures)

Proof. Let us consider an auxiliary problem: For any h = (f, g) € C2(T') XC;’O’O (R, xS%xT)
andt >0

WP = f) - j f (W, (. ) ()l (dr)ds
0T (4.34)

Whg) = (ig)+ f j (W7, 2)) Org(2) B (d2)ds
0 JRy xS$2xTI

This system involves, only, polymerization. We do not consider at this time spacial and
rotational motion for sake of simplicity.

We consider through this proof that ;¥ is given such that,
ug' € Mp(I') a non-negative measure,

and
NP

1o = D Sr gt i) € Ma(RE x % xT), with Rj >0, Hj e S?, ¥{ €T
j=1

where NP = (uf 1). Hence, a solution to the problem eq. (4.34) is given by a solution to

W py = ) - f j (W07, ) £ (@)™ (d)ds
(4.35)

Ri = R] J<:usv R >d5]_1 Np

p _ NP S
where i = >1;7 5(R§,H3,YOJ)‘

Let us defined S defined on C(0,T; Mp(I') x RN") such that (", (R});)i=o is given
by

G = ) - f j (W07, ) f (@)™ (d)ds

Rj

Rj+ f<us, SRDYds, j=1,..., N7

We equipped C(0,T; Mp(T) x RY") with the metric

deo := sup <9(u§”,u§”')+ sup IRf—Ri'I>
te(0,T") 1<j<NP

where

o™ ™) = sup f F@) (™ — pm™)(da).
FeC) (M), fl o <1

This metric makes C(0,T; Mp(I') x R*¥") a complete space. We are now in position to
state a Banach fixed point on S. We first considered the subset
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Kr = {(um, (R7);) € C°(0, T; Mp () x RNY),
Vt >0, py* is a non-negative measure and R{ > 0,

VA CBI), Vs <t, u"(4) < p(A),

Mt) ZRt_pO}

This subset is a non-empty set since the measure 0 together with the sequence Ri = po/N?
belongs to K. Moreover, S restricted to K remains into itself whenever T is small
enough, that is 5 : K7 — K7. Indeed, non-negativeness of " holds true when 7' is small
enough (depending on 7, pg and NP) and it is obvious that R’ remains positive, for all j.
The mass conservation is also obviously satisfied.

Now, let us take (u™, (R’);) and (™', (R’');) both in C(0,T; Mp(L') x R*N"), from
eq. (4.35), we get

. . t . t . .
‘Ri—lﬁ’séj‘<u?*—u?@TC,Zb>Mm—rf (i r (- Z0) —7(, Z8")) | ds. (4.36)
0 0

Moreover, for any f € CP(T)

[ — £ jfws%,,»ﬂmmmws

() f@)(ug* — pg")(dz)| ds.
(4.37)

The aim of the following is to bound each terms in eq. (4.36) and (4.37). For that, from
(H1) we remark that for any z € R%,

NP
(=@ )| = Y |r, 2 =@, 2
=1

R —RJ'|.

(4.38)

< NP||0,7|p» sup
1<j<NP

Then, from (H1) for any f € C)(T'), = — (&', 7(x,)) f(z) belongs to CJ(T) too, thus for
any f € C)(T) with | f]r» <1

L (W' (@) f@)(ug — p)(dw) < NPz o(ps pd). (4.39)

Hence, combining eq. (4.37), eq. (4.38) and eq. (4.39), there exists M depending on 7, pgy
and NP such that for all t > 0

t
o(uy"s 1) < ML < sup |R — RY|+ o uZ’ZuZ’”)) ds. (4.40)

I<j<NP

Now, from eq. (4.36) and (H1), there exists a constant still denoted by M (depending on
the same parameters) such that for all ¢ > 0
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sup
I<j<NP

. .y t . .
R! — R] ‘ < ML < sup |R] — RJ| + g(u?’,yg’l)> ds, (4.41)

I<j<NP

and thus combining eq. (4.40) and eq. (4.41), we get

sup
1<j<NP

. .7 t . .
R{ - R} ‘ +o(u", 1Y) < QMJ ( sup |R] — RY| + @(u?u?’)) ds. (4.42)
0

1<j<NP

Finally, when taking the sup r) in eq. (4.42), it follows that S is a contraction with T
small enough. Hence, there exists a unique solution to eq. (4.35). Since the choice of T’
depends only on 7, pg and NP, we are able to extend the solution on any interval [0, 7]
with T" > 0. It follows that there exists at least one solution to the weak formulation
eq. (4.34). O

The extension of this proof (for the existence) with space motion does not pose any
difficulties as long as each individual stochastic differential equation for polymers’ displace-
ment is well defined, and stay in a compact (which is ensured by boundary condition).
The existence of the whole stochastic process defined by eq. (4.33) follows then by similar
calculation of the paragraph 4.4.4 and moment estimates (see also [31, Prop 3.2] and [134,
Prop 2.2.5]). For strong unicity, we refer as well to [134, Prop 2.2.6].

Let us define the following generator, for any ¢ (1) = ¢({u, h)) with h € CZ(T) x
CoP2(Ry x S x T) and ¢ € C2(R),

LP¢p = Lodn + LY Op + LY dn, (4.43)

where L defined in lemma 95, and L{° is associated to the deterministic elongation process,
and reads

£on = o 1) (i (= (o) 10, 20 m) 202) )

and finally £ is associated to the (random) fragmentation process on continuous-size
polymer, and reads

1
ﬁgo(bh = J]R - L /B(Z) |:¢( <,U,, h> + g(@(07 Z)) + g(@(l - 9)7 Z) - g(Z)) - ¢( <N7 h> )]
+ X X
x k(0)dOuP (dz)
We have the analogous property of corollary 98 and proposition 99:

Proposition 108. Assume (HI-H2). Suppose jig € ME(T) x Ms(R* x S? xT'), such that
the second moment satisfies E( (1o, 1>2) < . Then

1. for any
¢ € C2(R,R) and h e C}(T) x CP*2(Ry x S? x T),

such that, for all p € M#E() x Ms(R* x S? x T')
|60 ()] + 1£50n] < C(1+ (u, 1)7),

2. Orif
¢: x> 2? and heCHT) x C;’2’2(R+ x §? x T),
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then the process

én(pe) — n (o) — L L% bn(115)ds

is a L' — (F})¢=0 martingale starting from 0. Moreover, with ¢ = Id, this martingale is
M = M?’p + M?’p defined in eq. (4.33) and is an L?> — (F})i=0 martingale starting from
0 with quadratic variations:

<Mp>t - <M0’p>t * <M27P>t
where
), = [ (s
+ (Vyg" D)) (D Vi) + (Vg™ D) (DIV,9) ) ib(d2)ds,

t 1
f j f B(2) (9(0(8,2)) + g(O(1 — 0, 2)) — g(2))? 2 (d=)dbds.
0 JR+xS2xT JO

(3t),

4.6 Convergence theorem

Now we are in position to state our main result, the convergence of the rescaled solu-
tions to the limit problem:

Theorem 109. Under assumptions (H1-Hj), let the sequence of process (™)n=1 given by
eq. (4.32) and the process p given by eq. (4.33). Then

pt s i D([0, %), w — Mp(T) x Mp(RY, x 82 x T)),
n—-+0o0
(convergence in law, where the measure space is equipped with the topology of weak con-
vergence)

Proof. The proof of the scaling result is similar as [58, 11]. We start with moment esti-
mates, that comes directly from the study of the discrete process below. Then we prove
that u™ is tight in Mp(I') x Mp(R% x S? x I') endowed with the topology of weak con-
vergence. We finally consider uniqueness of the limiting values of u™.

Step 1: Moment estimates Under our assumption,

supE | sup (,u?,1>2 < 40,
n te[0,T]

because similar estimates as in proposition 97 holds for uj* with a constant that does not
depends on n other than by E ((,ug, 1>2>.

Step 2: Tightness We first show that p" is tight in Mp(I') x Mp(Ry x S§? x T))
endowed with the vague topology. For this, we need two things [51, Thm 9.1]:
— prove that for all function h in a dense subset of C(T') x CJ(Ry x S? x T'), the
sequences (u", h) are tight in ]D)([O7 T, }R), for any T > 0;
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— prove that the following compact containment condition holds: VI' > 0,Ve >
0,3K. r compact subset of Mp(I') x Mp(R% x S? x I),

ian(un e K.r, forte [O,T]) >1—-c.

For the tightness of (u", h), note that eq. (4.32) gives us (u",h) as the sum of process
with finite variation and a martingale. The advantage to prove tightness for (u™, h) rather
than p™ directly is to have a stochastic process at values in a finite-dimensional space. We
will then use Rebolledo criterion [79, Cor 2.3.3 p 41], together with Aldous criterion [76,
Theorem 4.5, page 356].

Let h = (f,g) € C*(T) x CZ(R% x S? x I'). We have

lim (g(z + %el) — g(Z)) n= Zi( );

n—0o0

and the limit is controlled, uniformly in n, by the second derivatives of g. Let us denotes
Vet og = 0,1, VPP i = 0,1,2 the finite variation part of (u",h), with analogy to
our martingale notation. Our assumption leads to the following estimates (note that all
constant are different and depend on bound of coefficients and test functions as mentioned)

VOl O uptsup (1)
[0,1]
VA< O(f ) sup (" 1) (WE 1)
(0.]
VIP™ < C(g,u)tsup (uP", 1)
[0.]
Vi< c@fﬂ%EW?ﬂw@@ﬂw7
|VtQ,p,n| < O(g, B)tsup (ub™ 1),
(0.]

which provides immediately, thanks to step 1,

sup E(sup | Vi" | ) < .
n t

Using that

n—a0

Jim 7 (g(z + %el) - g(z))2 0,
iy (g0 + o) = 9(2)) =0,

n—00
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we obtain similarly

c(f)
MO < t mn q
ey A
(M), < ({; )t?élﬁmm" D wg™ 1),
(MOPm), < Clg)sup (", 1)
[0.]
C ) m,n n
(MU < (i )t%}?m 1) (g™, 1)
t
(M*Pm) < Clg, B)tsup (uf™, 1),
[0.]
C(f, 9,7 m,n
iy | ST psup ) ).
oo

and so
sup E(sup | <Mt0ml’"> |) < 0.
n t t

Let 5 > O and let ((Sp,Ty) : n € N) be a sequence of couples of stopping times such
that S, < T and T,, < S, + 9. We prove in the same way

E(| Vg = V& |) <C(h,T)s,

and
E( | <Mtotal,n>

We proceed now to show that the compact containment condition holds. Recall that the
sets My (K) of measures with mass bounded by N and support included in a compact K
are compact. Taking K =T x S? x [0, R], then p™ is not in such compact either if

{3t, (i’ 1) = N},

- <Mtotal,n>sn 1) < C(h, T)s.

or
(3t, (W™, ry = R}.

The conservation of mass property shows that this last possibility does not occur for
sufficiently large R (given by the initial mass), while for the first possibility,

1
Pt (1) 2 N} < B (sup | (i 1) )

which is arbitrary small for large N.

Step 3: Identification of the limit Let us consider an adherence value i and the sub-
sequence (denoted again by) u™, such that p™ converges in law towards p in ]D)([O, T),w—
Mp(T) x Mp(R% x S? x I')). Let h € C}(T) x 62’2’2(]R+ x §2 x T'). For k € N*, let
0<ti <<ty <s<t<Tand gy o€ C(MpT) x Mp(R% x S? xT'),R). For
zeD([0,T], Mp(T) x Mp(R* x S? xI)), we define

U(e) = rlan ) outen) ) = (o) = [ 22
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where L% is the generator defined in eq. (4.43). Then | E(¥(p)) |[< A+ B + C, where

A=|E(¥(n) — E(¥ (1)) |,
B =| E(¥(n)) — E(o1(1) -+ sok(u?k)[Mfoml’” - Mﬁ"t“””]) .,

l7
C =| E(SOI(MZ)"'S%(MZ)[M;OM n M;total,n]) .

Since M is a martingale, C' = 0. By convergence in distribution, A converges to 0
when n — . And

B <o) | £ ) = £2 (. o],

which, from Taylor-Young formula, and moment estimates, goes to 0 as n — oo.
This proves that E(¥(u)) = 0 and hence (s, h) — (uo, h) — S(t) LP({pg,h)) is a martin-
gale.

Step 4: Conclusion In the step 3, we have identified the adherence values of the
sequence of processes ™ as the solutions p of the martingale problem associated with
the limit generator £*. We refer to similar argument as in [11, Prop 2.2] to show that
two processes of D([0,0), Mp(I') x Mp(R% x §? x I')) satisfying the martingale problem
associated with £ have the same distribution (see proposition 8).

O
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