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Abstract

The overall goal of this thesis is to develop novel methods for the acquisition and the
processing of diffusion magnetic resonance images (MRI), to provide new insights
into the structure and anatomy of the brain white matter in vivo. Diffusion MRI is
a non-invasive technique that measures locally the diffusion of water molecules. The
latter are hindered by tissue structure, and therefore the characterization of water
molecules displacement gives information on the nature, orientation, microstruc-
ture of the underlying tissue. Because of the strong anisotropy observed in white
matter fiber tracts, this tool is most popular for the analysis of brain connectiv-
ity. One of the modality of acquisition and reconstruction, called diffusion tensor
imaging, is now an established tool in research and clinical applications, for the
detection of neural diseases and for pre-operative planning. Being model-based, the
diffusion tensor cannot describe complex intra-voxel configurations, with multiple
populations of fibers crossing. Since then, for a finer description of water molecules
displacement, model-free approaches have recently been proposed, aiming at over-
come the limitations of the diffusion tensor. Most of these techniques are still
extremely demanding in acquisition time, and involve challenging reconstruction
problems.

The first part of this thesis proceeds from a description of the tissue microstruc-
ture, and a physical explanation of the origin of acquired diffusion signal. We give
a review of the reconstruction methods and corresponding acquisition techniques in
diffusion MRI. Several reconstruction methods are presented, and are categorized
into model-based and model-free techniques. The first contribution of this thesis
is related to the parametric reconstruction of the diffusion signal in a continuous
basis of functions. We develop on a previous proposed method called Spherical
Polar Fourier basis, and propose a continuous basis with a significant reduction of
the dimension for the same power of description. We also derive the expression of
the Laplace regularization operator in this basis, for a better robustness to noise.
The second contribution is also related to the reconstruction of the diffusion signal,
and the orientation distribution function, with a special focus on clinical setting.
We propose a real-time reconstruction algorithm based on the Kalman filter to re-
construct the ODF in constant solid angle. We develop on top of the Kalman filter
a motion detection algorithm, based on a monitoring and statistical analysis of the
Kalman filter residuals. We are able to give a precise and sensitive motion detec-
tion, at no additional cost on the on-line acquisition system, as compared to systems
based on camera and computer vision. The two last contributions are related to the
acquisition methods in diffusion MRI, in particular for single and multiple g-shell
experiments. We first describe a geometric approach to generate angular uniform
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schemes, that offer optimal angular coverage per shell and as a whole. Then we
investigate on the link between the choice of a parametric basis of functions, and
the design of sampling protocols. We give explicit methods to generate sampling
schemes with minimal condition number, for the reconstruction in spherical har-
monics (in ¢g-ball imaging) and the reconstruction in the modified spherical polar
Fourier basis, proposed in this thesis. The conclusion of this approach is that the
sampling method should be driven by the physical constraints of the scanner, and
at the same time by the choice of a specific basis to represent the diffusion signal,
and with an overall uniform coverage of the space of sampling directions, for a good
rotational invariance. The new sampling schemes generated with this technique are
available for download from my web page.

Keywords diffusion MRI; acquisition sequence; g-space sampling; g-ball imaging;
regularized reconstruction; Laplace regularization; Kalman filtering; motion
detection.



Résumé (en frangais)

Le but général de cette these est de proposer de nouvelles méthodes d’acquisition et
de traitement du signal en imagerie par résonance magnétique (IRM) de diffusion,
dans le but d’ouvrir de nouvelles perspectives dans la reconstruction de la structure
de la matiere blanche in vivo. L'TRM de diffusion est une technique d’imagerie non
invasive qui mesure localement, en chaque voxel, la diffusion des molécules d’eau.
Le déplacement de ces dernieres étant contraint par la présence de tissus, le fait
de pouvoir caractériser la diffusion des molécules d’eau apporte des informations
sur la nature, l'orientation, la microstructure des tissus biologiques sous-jacents.
La forte anisotropie observée dans la matiere blanche fait de 'IRM de diffusion
un outil privilégié pour I’étude de la connectivité cérébrale. Une des premieres
techniques d’acquisition et de reconstruction, appelée IRM du tenseur de diffusion,
est maintenant utilisée de maniere routiniere en clinique, pour le diagnostique de
certaines maladies neurologiques, ou encore en planification préopératoire. L'TRM
du tenseur de diffusion repose sur un modele de diffusion gaussien cependant, qui est
limité quand il s’agit de décrire des configurations de tissus complexes a l'intérieur
d’un voxel, par exemple quand plusieurs faisceaux de fibres se croisent. Des lors,
on a cherché ces dernieres années a développer des techniques qui ne reposent pas
sur un modele a priori, afin de décrire de maniere plus précise le déplacement des
molécules d’eau, et dépasser les limitations du modele tensoriel. La plupart de ces
techniques, dites a haute résolution angulaire, sollicitent un temps d’acquisition
généralement long, et mettent en jeu des problemes de reconstruction non triviaux.

Dans la premiere partie de cette these, nous décrivons la structure microscopique
des tissus de la matiere blanche du cerveau, et présentons la physique de formation
des images en IRM de diffusion. Nous faisons un état de ’art des méthodes de recon-
struction, et des techniques d’acquisition proposées a ce jour. En ce qui concerne les
méthodes de reconstruction, nous faisons la distinction suivant qu’elles soient basées
sur un modele ou non. La premiere contribution de cette these est liée a la recon-
struction paramétrique du signal de diffusion dans une base de fonctions continues.
Cette contribution fait suite & une méthode proposée récemment, appelée trans-
formée de Fourier sphérique, et y apporte une modification pour une reconstruction
continue. Nous réduisons de facon significative la dimension de la base, tout en
décrivant aussi bien le signal de diffusion. Nous donnons également 1’expression de
l'opérateur de régularisation de Laplace en fonction des coefficients dans cette base,
afin de limiter I'impact du bruit sur la reconstruction. La seconde contribution est
également liée a la reconstruction du signal de diffusion, et a la fonction de dis-
tribution d’orientation, dans un contexte d’application clinique. Nous proposons
une méthode de reconstruction en temps réel basée sur le filtre de Kalman pour la



probabilité marginale de diffusion angulaire. Nous développons un algorithme pour
détecter les mouvements du patient, de fagon précise et avec une grande sensibilité,
et ce sans surcout, comparé aux systemes utilisant une camera et des algorithmes
de vision robotique. Les deux dernieres contributions présentées dans cette these
sont liées aux techniques d’acquisition en IRM de diffusion, en particulier pour
I’élaboration de schémas d’acquisition sur une ou plusieurs spheres dans ’espace de
Fourier. Nous présentons d’abord une méthode géométrique pour placer des points
dans l’espace de Fourier sur plusieurs spheres, en optimisant la couverture angulaire
sur chacune des sphéres, mais également de facon globale. Puis nous cherchons a
établir un lien entre le schéma d’acquisition et la base de fonctions utilisée pour
la reconstruction, et nous proposons en particulier une méthode pour élaborer un
protocole d’acquisition qui permette de minimiser le nombre de conditionnement,
pour la reconstruction dans la base des harmoniques sphériques, et dans la base de
Fourier sphérique modifiée, proposée dans cette these. En conclusion de cette étude
sur I'acquisition, nous pensons que 1’élaboration du schéma d’échantillonnage doit
étre motivée a la fois pour répondre aux contraintes physiques du scanner, et par
le choix de la base dans laquelle le signal sera reconstruit. Ces nouveaux schémas
d’échantillonnage sont disponibles au téléchargement sur mon site internet.

Keywords IRM de diffusion; séquence d’acquisition; échantillonnage dans I'espace
de Fourier; acquisition sphérique; reconstruction sous contrainte de régularité;
régularisation de Laplace; filtre de Kalman; détection de mouvement.
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16 CHAPTER 1. INTRODUCTION

Diffusion magnetic resonance imaging (diffusion MRI) was proposed in the mid
80’s [Le Bihan and Breton, 1985, Merboldt et al., 1985, Taylor and Bushell, 1985],
for the early diagnosis of certain neurological disorders. During the last thirty
years, diffusion MRI has gained maturity from methodological research contri-
butions and technical advance, and is now an established tool to character-
ize fine tissue structure, especially useful in the analysis of brain white matter
[Johansen-Berg and Behrens, 2009, Jones, 2010b]. At the same time, the quantity
of data collected during a diffusion MR, acquisition for a fine description of water
diffusion, the nature of the signal, render the design of diffusion MR sequence and
the reconstruction of diffusion characteristics extremely challenging, to cope with
practical limitations in a clinical environment.

Technically, diffusion MRI is based on a physical property of the MR signal to
be sensitive to the translational motion of water molecules. More precisely, a pair of
pulsed magnetic field gradients applied during the acquisition sequence attenuates
the spin echo signal [Stejskal and Tanner, 1965]. By acquiring several attenuated,
diffusion images weighted by different gradient orientations and strengths, one has
access to a fine characterization of water molecules motion. The rational behind this
study of water molecules motion, is that the displacement of particles is constrained
by the obstacles in their way. Thus characterizing the diffusion of water molecules
give valuable information on the tissue microstructure, at a much finer resolution
than conventional MRI.

The diffusion can be described by the probability of water molecules displace-
ment during a given observation time. In a free medium, a glass of water for in-
stance, this probability has an isotropic Gaussian distribution. One of the modality
of acquisition and reconstruction in diffusion MRI, called diffusion tensor imaging
(DTI) [Basser et al., 1994a,b], is based on an extension to this physical model of
diffusion in a free medium. It is indeed a multivariate Gaussian model, and the
diffusion tensor is proportional to the covariance matrix of this distribution. DTI
is now an established tool in research and clinical applications, for the detection of
neural diseases and for pre-operative planning. Describing the anisotropic diffusion
by a covariance matrix however, the diffusion tensor model cannot describe com-
plex intra-voxel configurations, with multiple populations of fibers crossing. This
has limited the application of fiber tractography, these algorithms that trace the
structural connectivity in brain white matter using the information from diffusion
MRI.

Since then, for a finer description of water molecules displacement, model-free
approaches have been proposed [Tuch et al., 2002, Tuch, 2004a], to overcome the
limitations of the diffusion tensor. These high angular resolution diffusion imag-
ing (HARDI) techniques can describe and discriminate several populations of fibers
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Parametric signal reconstruction

------------------------------------ > Chapter 4
diffusion weighted images Chapters 6, 7

Chapter 4 Y

Acquisition
Analytical estimation
Chapter 4
Chapter 7
i

¢ball  multiple é]—shell diffusion spectrum
imaging imaging imaging

Acquisition design orientation distribution function /

Chapter 5 ensemble average propagator field

Chapters 8, 9

Figure 1.1: The general pipeline in diffusion MRI, from acquisition design to the
reconstruction of local diffusion information. The corresponding chapters are indi-
cated; chapters in green present a review or state-of-the-art, while chapters in blue
present contributions.
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*Chapter 9. Experimental design in parametric g-space

Figure 1.2: Sketch of the chapters in this thesis.

within a voxel, and have provided a great tool to further develop fiber tractogra-
phy [Fillard et al., 2011]. Nonetheless, HARDI techniques restrict the information
gathered from diffusion MRI to the sole angular structure of diffusion. Naturally,
some research groups have investigated the interest of reconstructing the complete
probability of water molecules displacement, to exploit both radial and angular in-
formation [Wedeen et al., 2005, Assaf et al., 2008]. Most of these techniques are
still extremely demanding in acquisition time however, and involve complex re-
construction problems. This thesis addresses the challenges in both acquisition and
reconstruction raised by these new trends in the diffusion MRI community. We pro-
ceed to give the outline of this thesis, providing a brief summary of each chapter.
The general pipeline of acquisition and local diffusion model estimation is sketched
on Fig. 1.1, on which we refer to the Chapters focusing on on part or another in
the pipeline. We give a sketch of the progression to guide the reader through the
chapters on Fig. 1.2.

Chapter 3 introduces the main object of study in diffusion MRI. We give a brief
description of brain anatomy, with a special focus on brain white matter. Based on
an example of restricting geometric that mimics a pack of axonal fibers, we show on
a simulation how the motion of water molecules is affected by the impermeable walls
of the structure. This introduces the relation between water diffusion and tissue
microstructure, at the heart of diffusion MRI motivations in neurology. We also
introduce the main mathematical objects to describe the diffusion process, namely
the ensemble average propagator (EAP), and the orientation distribution function
(ODF).
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Chapter 4 presents the physics underlying the formation of diffusion weighted
images, and provides a state-of-the-art tour of reconstruction techniques. In par-
ticular, the pulse-gradient spin echo (PGSE) sequence is introduced, as well as the
related concept of g-space. The reconstruction techniques from the signal to the
diffusion characteristics are categorized into model-based techniques, and methods
independent of a model. Within the latter family, we present the spherical polar
Fourier transform, for which we propose an important modification in Chapter 6.

Chapter 5 presents different approaches to the design of acquisition sequences
in g-space, for the reconstruction of the diffusion tensor, the EAP or the ODF. We
distinguish acquisitions restricted on a sphere, called g-ball imaging, from other
approaches such as Cartesian sampling, called diffusion spectrum imaging, or in-
termediate sampling on few separate spheres, called multiple g-shell imaging. We
show how the different methods on sampling design are either purely geometrical,

either purely driven by the needs of a specific reconstruction algorithm.

Chapter 6 describes the first contribution of this thesis, on the parametric esti-
mation of the diffusion signal in ¢-space. We exhibit a major pitfall in the spherical
polar Fourier (SPF) basis originally introduced in Assemlal et al. [2009b], about the
continuity of the estimated signal. We show that the space of continuous functions
reconstructed in the SPF basis has a substantially reduced dimension, and we give
a basis for this subspace. In order to increase robustness to noise, we also derive a
Laplace regularization operator, expressed as a quadratic form in the coefficients of
the modified SPF basis. This results in a robust and fast parametric reconstruction

method of the signal in the g-space.

Chapter 7 is also dealing with signal reconstruction, with a particular focus in
clinical applications. We derive a real-time algorithm based on Kalman filter for the
estimation of the ODF calculated in constant solid angle. On top of the Kalman
filter, we design a motion detection algorithm, based on the monitoring of Kalman
filter residuals. We show on real and synthetic data that this method give a sensitive
and selective motion detection technique at no additional cost, when compared to
hardware device based on in-scanner camera and computer vision algorithms.

Chapter 8 presents a method to design angular uniform point sets on several
spheres in the g-space. By extending the electrostatic repulsion energy, originally
proposed to construct antipodally symmetric, uniform point sets on the sphere
[Jones et al., 1999a, Jansons and Alexander, 2003], we are able to construct point
sets that have optimal angular coverage when considered as a whole. At the same
time, the point sets also have optimal angular coverage on each sphere. We show
on Monte-Carlo simulation that the use of these point sets as sampling protocols
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in g-space significantly increases the angular resolution to reconstruct single fiber

orientation, and fiber crossing angle.

Chapter 9 answers the question of the optimal design of experiments in g-space
imaging, for the parametric reconstruction of the signal. We present a general
method to find sampling schemes leading to minimal condition number, and pos-
sibly to exact estimation and reconstruction methods. This is applied to the re-
construction in the spherical harmonic basis in ¢-ball imaging, as well as in the
modified SPF basis, in multiple g-shell imaging. As the sole constraint of minimal
condition number leads to possibly many optimal configurations, we also impose
that the sampling scheme have optimal angular coverage, based on the findings of
Chapter 8.

Chapter 10 gives a general conclusion of this thesis, and put the contributions
presented in this manuscript related to signal acquisition and reconstruction into
perspective. We also present the kind of future work we consider, from applications
of our contributions to a better understanding of tissue microstructure, to clinical
research and clinical applications.



CHAPTER 2

Introduction (en frangais)

21



22 CHAPTER 2. INTRODUCTION (EN FRANCAIS)

L’imagerie par résonance magnétique de diffusion (IRM de diffusion) est une tech-
nique inventée dans les années 1980 [Le Bihan and Breton, 1985, Merboldt et al.,
1985, Taylor and Bushell, 1985], qui a rapidement montré un grand potentiel
pour la détection précoce de certaines neuropathologies. Au cours des trente
derniéres années, une communauté grandissante de chercheurs s’est formée au-
tour de cette modalité, en proposant de nombreuses innovations méthodologiques
et technologiques. L’IRM de diffusion est maintenant un outil largement utilisé
en clinique et en recherche pour caractériser de maniere tres fine la structure
des tissus biologiques, et en particulier pour I’étude de la matiere blanche du
cerveau [Johansen-Berg and Behrens, 2009, Jones, 2010b]. Pour autant, la quantité
d’information collectée a I'occasion d’une acquisition en IRM de diffusion est a la
mesure de la complexité des tissus biologiques dans la matiere blanche que 1'on
souhaite caractériser. Lorsqu’il s’agit de mesurer finement la structure des tissus,
la préparation des protocoles d’acquisition et la reconstruction des caractéristiques
propres a la diffusion posent des problemes non triviaux, si I'on tient compte des
limitations en pratique, dans un environnement clinique.

Le principe de 'TRM de diffusion repose sur une propriété physique du signal de
résonance magnétique d’étre modifié lorsque les particules sont en mouvement. Plus
précisément, lorsque des gradients de champ magnétiques sont appliqués pendant de
courts instants, et a un moment précis de la séquence d’acquisition, le signal d’écho
mesuré est atténué [Stejskal and Tanner, 1965]. En répétant ce type d’acquisition,
pour plusieurs gradients dans différentes directions et de différentes amplitudes, on
acquiére des images dites pondérées en diffusion, a partir desquelles on peut décrire
tres précisément le mouvement des molécules d’eau. La motivation principale de
I’étude de la diffusion moléculaire, est que le déplacement des molécules d’eau a sein
des tissus biologiques est contraint par les obstacles rencontrés. Ainsi, une analyse
quantitative de la diffusion des molécules d’eau renseigne sur la microstructure des
tissus sous-jacents, et ce a une résolution bien plus fine que ce que 'on observe en
IRM conventionnelle.

On peut décrire la diffusion grace a la densité de probabilité de déplacement des
molécules d’eau, pendant une durée d’observation donnée. Dans un milieu libre, un
verre d’eau par exemple, cette probabilité a une densité gaussienne, isotrope. Une
des méthodes d’acquisition et de reconstruction en IRM de diffusion, que ’on appelle
I'IRM du tenseur de diffusion [Basser et al., 1994a,b], se base sur une généralisation
de ce modele de diffusion gaussien dans un milieu libre. Le modele probabiliste est
un modele gaussien multivarié, et le tenseur de diffusion est proportionnel a la
matrice de covariance de cette distribution. L’IRM du tenseur de diffusion s’est
imposée comme une technique incontournable, aussi bien en recherche que pour
les applications cliniques, pour la détection de maladies neurologiques et pour la
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reconstruction paramétrique
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Figure 2.1: Schéma des différentes étapes en IRM de diffusion, depuis la préparation
de la séquence d’acquisition a la reconstruction des informations locales de diffusion.
Les chapitres qui traitent plus particulierement chacune de ces étapes sont indiqués ;
en vert, les chapitres d’état de I’art, et en bleu, les contributions.

planification pré-opératoire en neurochirurgie. Cependant, le fait de représenter
I’anisotropie de la diffusion par une matrice de covariance empéche de décrire des
configurations complexes, ou plusieurs populations de fibres se croisent a l'intérieur
d’un voxel. Cela a longtemps limité ’application a la trajectographie des fibres de
la matiéere blanche, cette famille de méthodes qui reconstruit la connectivité struc-
turelle dans la matiere blanche du cerveau, a 'aide des informations de diffusion
locales.

Etant donné ces limitations, plusieurs approches non basées sur un model on
été proposées [Tuch et al., 2002, Tuch, 2004a], afin de décrire plus précisément le
déplacement des molécules d’eau. Les méthodes dites a haute résolution angulaire
permettent de décrire la diffusion et de discriminer plusieurs populations de fibres
nerveuses au sein d’un méme voxel. Elle ont permis d’améliorer considérablement la
qualité des trajectographies de la matiere blanche [Fillard et al., 2011]. Et pourtant,
ces méthodes se limitent a une information strictement angulaire sur le phénomene
de diffusion, et donc en quelque sorte sous-exploitent I'information donnée par les
mesures pondérées en diffusion. C’est donc naturellement que plusieurs groupes de
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Figure 2.2: Schéma de lecture de la these.

recherche se sont penchés sur la reconstruction de la probabilité de déplacement
des molécules d’eau, afin d’exploiter a la fois 'information radiale et I'information
angulaire [Wedeen et al., 2005, Assaf et al., 2008]. Malheureusement, la plupart
de ces techniques sont tres couteuses en temps d’acquisition, et impliquent des
schémas de reconstruction complexes. Cette these s’intéresse aux problemes posés
a la fois par I'acquisition et la reconstruction, soulevés par cette nouvelle tendance
dans la communauté de 'IRM de diffusion. Nous poursuivons cette introduction
en détaillant le plan suivi dans le manuscrit. Les étapes dans le processus classique
d’acquisition sont représentées sur la Fig. 2.1, ou 'on a fait référence aux chapitres
correspondants dans cette thése. Nous présentons également un schéma de lecture
des différents chapitres sur la Fig. 2.2.

Chapitre 3 présente l'objet d’étude en IRM de diffusion : nous présentons
brievement ’anatomie du cerveau, et tout particulierement la matiere blanche.
Puis, a partir d'un exemple virtuel de géométrie de fibres, qui modélise un faisceau
de fibres dans la matiere blanche, nous montrons grace a une simulation comment
le mouvement des molécules d’eau est affecté par les obstacles que représentent
ces fibres. Cela montre la relation étroite entre la microstructure des tissus, et la
diffusion des molécules d’eau, qui est au coeur de la motivation de 'IRM de diffu-
sion en neurologie. Enfin nous présentons les outils mathématiques pour décrire le
processus de diffusion, a savoir le propagateur moyen, et la fonction de distribution
d’orientation.
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Chapitre 4 présente les principe physiques qui expliquent la formation des im-
ages de diffusion, et donne un état de I'art des méthodes de reconstruction. En
particulier, on présente la séquence a écho de spin et impulsion de gradients, ainsi
que la notion d’espace de Fourier en IRM de diffusion (g-space). Les méthodes
de reconstruction sont présentées et classées en deux catégories, suivant qu’elles
se basent sur un modele ou non. Parmi les méthodes qui ne dépendent pas d’un
modele particulier, nous présentons la transformation de Fourier sphérique, pour
laquelle nous proposons une modification importante dans le Chapitre 6.

Chapitre 5 présente différentes approches pour I’élaboration de séquences d’acquisition
dans espace de Fourier, pour reconstruire le tenseur de diffusion, le propagateur
moyen ou la fonction de distribution d’orientation. Nous faisons la distinction en-
tre acquisition sur une sphere (g-ball), des autres approches telles que I'acquisition
sur une grille cartésienne (diffusion spectrum imaging), ou encore une approche
intermédiaire, ou I’échantillonnage se fait sur quelques spheres concentriques (mul-
tiple q-shell). Ces méthodes permettant de générer des schémas d’acquisition sont
soit purement géométrique, soit liées a un algorithme de reconstruction particulier.

Chapitre 6 présente la premiere contribution de cette these, sur l'estimation
paramétrique du signal dans I’espace de Fourier. Une base de fonctions a récemment
été proposée [Assemlal et al., 2009b], permettant de modéliser le signal dans ’espace
R3 entier. Cependant, nous montrons que les fonctions de cette base ne sont pas
continues en zéro. Plus précisément, le sous-espace de fonctions représentées dans
cette base qui sont continues a une dimension significativement inférieure a I’espace
de départ. Nous proposons de caractériser ce sous-espace, et en proposons une base.
De plus, pour améliorer le comportement de ’estimation en présence de bruit, nous
proposons un opérateur de régularisation de Laplace. L’expression de cet opérateur
est calculée, et on montre qu’il s’écrit comme une forme quadratique des coefficients
dans la nouvelle base. Le probleme d’estimation sous contrainte de régularité a donc

une solution analytique, ce qui rend la méthode rapide et efficace.

Chapitre 7 est également une contribution sur la reconstruction, avec un point
de vue plus orienté vers 'application clinique. Nous présentons un algorithme en
temps réel basé sur le filtre de Kalman, pour 'estimation de la densité marginale
de distribution d’orientation. Basé sur le filtre de Kalman, nous développons un
algorithme de détection de mouvement, qui repose sur une analyse des résidus du
filtre de Kalman. Nous montrons dans une partie expérimentale, sur des données
réelles et des données synthétiques, que cette méthode donne une technique de
détection du mouvement a la fois sensible et sélective, sans surcott, comparé aux
méthodes basées sur une caméra et des algorithmes de vision par ordinateur.
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Chapitre 8 présente une méthode pour générer des ensembles de points sur
plusieurs spheres, pour l'acquisition dans l’espace de Fourier. En proposant
une extension de l'analogie électrostatique utilisée en g-ball [Jones et al., 1999a,
Jansons and Alexander, 2003], nous proposons une énergie faisant en sorte de
privilégier des configurations uniformes sur chacune des spheres, mais également
offrant une couverture angulaire optimale, globalement. Grace a des simulations de
Monte-Carlo, nous montrons que cette approche de I’échantillonnage dans I'espace
de Fourier permet de bien améliorer la résolution angulaire, qu’il s’agisse de recon-
struire une fibre ou plusieurs fibres dans un voxel.

Chapitre 9 s’intéresse a la question de I’échantillonnage optimal dans ’espace de
Fourier, pour l'estimation paramétrique du signal. Nous présentons une méthode
générale pour trouver des schémas d’échantillonnage qui ont un nombre de con-
ditionnement minimal, et qui permettent un reconstruction exacte dans une base
donnée. On applique cela a la base des harmoniques sphériques en g¢-ball, ainsi
que dans la base Fourier sphérique nouvellement proposée pour 1’élaboration de
protocoles sur plusieurs spheres. Etant donné qu’il existe généralement une in-
finités de protocoles d’acquisition ayant un nombre de conditionnement minimal, on
s’intéresse a celui qui a en plus la couverture angulaire optimale, grace a ’approche
présentée dans le Chapitre 8.

Chapitre 11 présente une conclusion générale de la these, et replace les con-
tributions liées a l'acquisition et a la reconstruction en perspective. Nous
présentons également les themes de recherche futurs que nous aimerions aborder, de
I’application de nos contributions a une meilleure compréhension de la microstruc-
ture des tissus, aux applications en clinique et en recherche clinique.
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Overview

What kind of information does diffusion MRI bring for the discovery of brain white
matter structures? How does the observation of water molecules displacement pro-
vide information on tissue microstructure, at a microscopic scale, several orders of
magnitude beyond conventional MRI resolution? What are the mathematical tools
developed to describe the diffusion process?

This introductory section first provides a quick overview of the anatomy of the
central nervous system, with a special focus on brain white matter, the gold applica-
tion of diffusion MRI. Then we present the close relation between microstructure and
water diffusion. In particular, we show on an illustrating example how the obser-
vation of a population of water molecules displacement within a restricted medium
informs on the configuration of the underlying geometry. Finally, we present the
mathematical and computational tools for a quantitative description and analysis

of the diffusion process.

Keywords brain anatomy; water diffusion; ensemble average propagator; orienta-
tion distribution function.

3.1 Introduction

At a temperature above the absolute zero, water molecules undergo a random mo-
tion due to thermal energy. Using special acquisition sequence, it is possible to get
information from this microscopic motion in MRI. The technique, known as Diffu-
sion MRI, originates in the mid 80’s [Le Bihan and Breton, 1985, Merboldt et al.,
1985, Taylor and Bushell, 1985]. Before describing the physical aspects of diffu-
sion MRI in the next chapter, we introduce here the close relation between water
molecules displacement and tissue microstructure.

We first briefly present some notions of brain anatomy, with a special focus
on white matter. Then we show how tissue geometry constrains the water diffu-
sion, and we present a synthetic example of fiber bundle. We introduce the main
mathematical concepts to quantify the diffusion process in diffusion MRI, namely
the Ensemble Average Propagator (EAP), the Orientation Distribution Function
(ODF) and some derived characteristics. Finally, we show some applications in the

study of brain structural connectivity mapping.

3.2 Anatomy of the central nervous system

The central nervous system (CNS) is constituted of the brain, protected by the
skull, and the spinal cord, protected by the vertebral column (see Fig. 3.1).
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brain

spinal cord

Figure 3.1: The central nervous system.

The brain is divided into two hemispheres. The superficial part of the brain is
called the cortex, and has several grooves on its surface called the sulci. The most
important sulci are the fissure of Rolando, the fissure of Sylvius and the parieto-
occipital sulcus. They divide each hemisphere into the frontal lobe, the parietal
lobe, the occipital lobe and the temporal lobe (see Fig. 3.2).

At a microscopic scale, the brain is made of hundreds of billions of cells called the
neurons. The bodies of neuronal cells form the grey matter. The myelinated axons,
which are connecting neurons together (see Fig. 3.3), are grouped into bundles, and
form the white matter. As visible on Fig. 3.4, the white matter occupies most of
the subcortical volume, and therefore plays an essential role in the brain function.

The function of white matter tracts is to route the messages from one population
of neurons to another. Therefore, being able to map the structure of brain white
matter has long been a key issue in the development of neurology. The first de-
tailed study of white matter was carried out in the nineteenth century [Golgi et al.,
2001, Ramon y Cajal, 1892]. It was made possible by the technological advance in
microscopy and staining. For a detailed history of brain anatomy, the interested
reader might take a look at the excellent related chapter in Wassermann [2010].

Since then, the development of diffusion tensor MRI [Basser et al., 1994a,b] and
recent developments in diffusion MRI have provided a unique tool for the non-
invasive, in vivo analysis of brain connectivity. Making the magnetic resonance
signal sensitive to the translational motion of water molecules, diffusion tensor MRI
infers the underlying tissue structure. In the next section, we show how the study
of water molecules displacement is related to the microstructure, and how it can be
characterized quantitatively to finally map the connections in the brain.
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Figure 3.2: The lobes and main sulci of the brain cortex. Adapted from Gray [1918]

Figure 3.3: Some important commissural fiber tracts, sagittal section. Reproduced
from Gray [1918]

Figure 3.4: (left) Coronal section and (right) sagittal section of a human brain, with
cell stain. Due to the cell stain, grey matter (cortex and basal ganglia) appears dark,
while the white matter appears clear. Reproduced from Welker et al..
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Figure 3.5: (left) Free Brownian motion of a water molecules. (right) A bundle of
white matter fibers, and water molecules trajectory within. We simulated here a
bundle of 19 fibers, each fiber has a 5 um radius, and we observe the trajectory of
100 water molecules, over 60 ms.

3.3 Structure and restricted diffusion

As seen in the previous section, the structure of white matter is essentially fibrous.
Due to the myeline sheath around the axons, the displacement of water molecules is
hindered by the fibers. Diffusion MRI is based on the hope that the study of water
molecules motion within the tissue could provide insights into the organization of
the fibers.

3.3.1 Free diffusion and restricted diffusion

In a free medium, the molecules undergo a Brownian motion, first described quan-
titatively in Einstein [1956]. In particular, the average square displacement during
the time interval 7 is related to the diffusion coefficient Dy

R2 = 6Dq. (3.1)

An example of Brownian motion in a free and a constrained medium is shown on
Fig. 3.5.

3.3.2 An example of geometry

In diffusion MRI, we observe a population of water molecules rather than a single
molecule. To show this, we consider again the example of extra-axonal diffusion,
on the synthetic fiber bundle presented on Fig. 3.5. We generated a population of
100000 water molecules, and simulated their Brownian motion within the sample.
The collision with fibers wall is considered. For a comparison, we also generated
the same population of particles, diffusing in an unconstrained medium. Results of
the simulation are depicted on Fig. 3.6.
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Figure 3.6: Displacement of 10000 water molecules over the diffusion time ¢ = 60 ms.
(left) unrestricted medium, and (right) within the population of fibers presented on
Fig. 3.5. The fibers axis is parallel to the z-axis.
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This model is not intended to be realistic, and beyond this model used for illus-
tration, we can cite here more realistic simulators [Yeh, 2011, Wang et al., 2012], and
in the context of diffusion MRI, the well-known Camino Toolkit Cook et al. [2006].
Anyway this experience reveals remarkable differences between the probability of
water molecules displacement in a constrained and an unconstrained medium (see
Fig. 3.6).

Slower diffusion We first notice that the molecules diffuse faster in an uncon-
strained medium than within a bundle of fibers. By quantifying the diffu-
sivity, we could be able to characterize the density of the underlying tissue
structure.

Anisotropic diffusion Besides, the diffusion of water molecules is preferred in the
direction of the fibers. Then by analyzing the anisotropy of water molecules,
and the principal directions of diffusion, it should be possible to infer the main
directions of the underlying structure in case of a fiber bundle.

Structure Last, in the plane perpendicular to the fibers, we clearly observe a
pattern, which could be related to the geometry of the fiber packing, and
then to the diameter of the fibers and the dimension of the extra-axonal
space [Assaf et al., 2008].

This simple experience illustrates the great potential of diffusion water molecules
reconstruction in the characterization of tissue microstructure. In the next section,
we present mathematical tools to quantify and analyse these observations.

3.4 Quantitative description of diffusion characteristics

In this section, statistical tools are presented to describe the diffusion characteris-
tics, at the scale of a voxel.

3.4.1 Ensemble Average Propagator

In diffusion NMR and diffusion MRI, we measure the diffusion of a whole popula-
tion of water molecules within a sample or within a voxel, respectively. Formally,
the diffusion is a random process, and is characterized by the so-called Ensemble
Average Propagator (EAP), denoted by P throughout this manuscript. It is defined
as

P(rir) = / p(ro + r; 10, 7)dro, (3.2)
y

where p(ro+r; o, 7) is the probability that a molecule initially at ro moves to ro+r
over the diffusion time 7, and V is the volume of the voxel (or the volume of the
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sample in NRM). In a free medium, the EAP is simple and is given by the Gaussian
probability density function [Einstein, 1956, Callaghan, 1991b)]

2
P(r;7) = (47 Do7) %2 exp (—%) . (3.3)
The self-diffusion coefficient of water Dy is approximately 2.2- 1073 mm? s~! under
normal conditions of temperature and pressure.

When the diffusion is hindered by an underlying structure, the diffusion is more
complex, as shown on the example Fig. 3.6. The EAP is then closely related to the
structure. In the remaining of this thesis, the diffusion time 7 is omitted for the
sake of clarity, and the notation P(r) is retained.

The Gaussian assumption

The EAP in a free medium is an isotropic multivariate Gaussian, with covariance
given by Eq. 3.1. A natural generalization when one wants to capture anisotropy is
to extend this to anisotropic multivariate Gaussian. This is the model underlying
the Diffusion Tensor imaging [Basser et al., 1994a,b]. The diffusion EAP is given

: Plr) = ———ex <—$>. (3.4)

Jamr o]

The 3 x 3 positive matrix D is the so-called diffusion tensor.

Visualization

The EAP is a function from R? to R, and therefore cannot be represented on the
2D surface of this manuscript. Depending on the application, we shall represent
2D slices of this function as grey-scale images. Alternatively, the angular profile
P(r-u) for a given radius r can be rendered as a 3D surface. An example of both
visualizations is shown on Fig. 3.7, for the anisotropic Gaussian EAP.

In the case of diffusion tensor imaging, the diffusion tensor can be represented as
an ellipsoid, whose major axes correspond to the principal eigenvectors of the tensor.
An example of the image obtained from diffusion tensor imaging is reproduced on
Fig. 3.8.

3.4.2 Orientation Distribution Function

In the study of brain white matter connectivity, the angular aspect of the diffusion
probability is of utmost importance, as it reveals the directions of the underlying
bundles of axon. This information is captured by a spherical function, known as
the Orientation Distribution Function (ODF). This angular function was initially
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Figure 3.7: Gaussian EAP visualization, major axis is z-axis. (left) 2D slices, on
(top left) yz-plane and (bottom left) xy-plane. (right) angular profile, ro = 15 pum.

Figure 3.8: Diffusion tensors represented as ellipsoids, axial slice. The color codes
the fractional anisotropy (red: low anisotropy, blue: high anisotropy). Courtesy of
Lenglet [2006].
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(a) (b)

Figure 3.9: Illustration of the radial integration leading to (a) the ODF calculated in
constant solid angle [Tristan-Vega et al., 2009, Aganj et al., 2010a], and to (b) the
original ODF, 97, defined in Tuch [2004a], Reproduced from Aganj et al. [2010a].

defined [Tuch, 2004a] as the radial integration of the EAP, as

1 [e.e]

r(u) = —/ P(r-u)dr. (3.5)
Z Jo

Z is a normalization constant, so that ¢ integrates to 1 on the unit sphere. More

recently, the definition of the ODF was corrected to match the marginal angular

probability of diffusion [Tristdn-Vega et al., 2009, Aganj et al., 2010a]. The defini-

tion of this ODF, v, is

wwzémmwmﬂw. (3.6)

1 is also referred to as the ODF calculated in constant solid angle, as the factor 72
in the integration accounts for the Jacobian of the parameterization r = r - u. This
is illustrated on Fig. 3.9. In this thesis, unless explicitly stated, we use preferentially
the latter ODF, as it is a probability density function and needs not be normalized.
Moreover, it has intrinsically sharper peaks, which is important to detect the fiber
directions in brain white matter.

3.4.3 Scalar measurements

In order to present an information as concise as possible, it is important to de-
velop scalar measurements from the EAP and the ODF. This is an active field of
research, directed towards the search of new biomarkers, for the early detection of
neurological diseases. We present here three model-free quantities: the Mean Square
Displacement (MSD), the return-to-origin probability (RTO), and the Generalized
Fractional Anisotropy (GFA). We also present two popular scalar measurements in
the context of Gaussian diffusion assumption: the Fractional Anisotropy and Mean
Diffusivity.
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Figure 3.10: Diffusion tensors, represented as ellipsoids, for FA ranging from 0.0 to
0.6. The Mean Diffusivity is constant across the tensors.

Mean Square Displacement This is the mean square value of the ensemble av-
erage propagator. It is defined by

MSD = /RB P(r)]|r||*dr. (3.7)

Return-to-Origin probability The Return-to-Origin (RTO) probability [Hiirlimann et al.,
1995, Mitra et al., 1995] is the probability for a molecule to come back to its
starting position, once the diffusion time 7 is elapsed. It is defined as

RTO(7) = P(0; 7). (3.8)

The RTO is to be compared to the same quantity in free diffusion, which is
RTOq = (47Dy7)~3/2. The RTO quantifies, in general, how restricted the
molecules are in their motion.

Generalized Fractional Anisotropy The Generalized Fractional Anisotropy (GFA)
is defined as the normalized standard deviation of the orientation distribution
function [Tuch, 2004a]:

1/2

/ () — 1)%40
82

[ viupae

This index lies in the interval [0, 1], and measures how different the ODF is
from a uniform, isotropic diffusion (constant ODF on the sphere).

GFA =

(3.9)

In the case of Gaussian diffusion assumption, the diffusion tensor can be written

as
M 00
D=R"| 0 x» 0 [R, (3.10)
0 0 X

where R is a rotation matrix, and \; are the eigenvalues of the diffusion tensor. From
this decomposition, several rotational-invariant quantities of interest are defined
[Westin et al., 2002].
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Figure 3.11: (left) description of streamline tractography algorithm: from the prin-
cipal eigenvector of the diffusion tensor, we reconstruct the trajectory of white mat-
ter fibers. Reproduced from Poupon [1999]. (right) An example of fiber tracking
on the whole brain. Courtesy of Lenglet [2006].

Mean Diffusivity The Mean Diffusivity (MD) is defined as the average of the
eigenvalues of the diffusion tensor D:

1
MD = 3 Z Ai. (3.11)

The MD is linearly related to the MSD, through the generalization of Eq. 3.1
to isotropic Gaussian diffusion: MSD =2 MD 7.

Fractional Anisotropy The Fractional Anisotropy (FA) is another useful quan-
tity defined as the normalized standard deviation of the eigenvalues of the
diffusion tensor [Pierpaoli and Basser, 1999]. Formally,

3 1/2
33 (A — MD)?
FA = | = : (3.12)

3
23 N
=1

The FA ranges from 0 to 1, and characterized the anisotropy of the diffusion

tensor. The value 1.0 corresponds to a degenerate tensor, with at least one
vanishing eigenvalue. Various tensors, represented as ellipsoids, are depicted
on Fig. 3.10, for FA ranging from 0.0 to 0.6.

3.4.4 Application to the study of brain connectivity

Diffusion MRI maps the local anisotropy of water molecules diffusion. By inte-
grating the principal directions of diffusion over the whole white matter, one can
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Figure 3.12: Clustering of the cortico-spinal tract, using the Gaussian framework
in Wassermann et al. [2010]. Courtesy of D. Wassermann.

tract the connecting paths from one region of the brain to another. This process is
known as fiber tractography [Poupon, 1999, Mori et al., 1999, Basser et al., 2000].
A sketch of the streamline tractography method [Mori et al., 1999] and a result of
tractography are shown on Fig. 3.11.

Studying the results of fiber tractography requires appropriate treatment how-
ever. As shown on Fig. 3.11, the tractography algorithms on the whole brain usually
return a large population of fibers. Among this population, some fibers are more
relevant than others on an anatomical point of view. Since then, statistical tools
for the analysis of these large populations have been developed. An active field
of research is dedicated to the clustering of fibers on bundles, to recover the main
tracts in the brain white matter O’Donnell and Westin [2007], Wassermann et al.
[2010].

3.5 Conclusion

In this chapter, we have presented the main motivations for the observation of water
diffusion for its application to the study of brain anatomical connectivity. We have
seen how the presence of tissue boundary affects the motion of water. By observing
the motion of a population of water molecules within a tissue, it is possible to infer
the structure of the underlying structure.

In the next chapter, we present the physics of diffusion MRI. We show how
the MR signal is affected in the presence of spin motion. We introduce the main
challenges in acquisition, signal processing and reconstruction from the MR signal
measurement to the estimation of diffusion characteristics (EAP, ODF, and derived
quantitites) from the measurement of the MR signal.
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Overview

What are the main principles of nuclear magnetic resonance measurements, and
magnetic resonance images reconstruction? How can we measure water diffusion
through MRI? In this chapter, we present the basic principles of NMR, MRI and
diffusion MRI. Then we introduce state-of-the-art methods for the reconstruction
of diffusion characteristics presented in the previous chapter, from diffusion signal

measurements.

Keywords pulse gradient spin echo; diffusion gradient; orthogonal bases; ¢-ball
imaging; ¢-space sampling.

4.1 Physics of NMR, MRI and diffusion MRI

We first briefly present the physics underlying nuclear magnetic resonance (NMR)
and the construction of images in MRI. Then we introduce the pulsed-gradient
spin echo sequence (PGSE), and the resulting signal attenuation in presence of spin
displacement.

4.1.1 Magnetic spin and Larmor frequency

SY @ S

Yy A

Figure 4.1: Magnetic spin: (left) random orientation, (right) precession around the

magnetic field By at the Larmor frequency wy.

The principles of NRM were originally described in Bloch [1946], Purcell et al.
[1946], who both received the Nobel prize in 1952 for their major discovery. NMR
uses the property of magnetic spins immersed in a strong magnetic field By to align
their moment with the magnetic field. More precisely, the spins rotate about this
field at a speed called the Larmor frequency, wgy, proportional to the strength of
the magnetic field wy = v||By]| (see Fig. 4.1), where 7 is the gyromagnetic ratio.
The protons in water molecules do have a magnetic spin, and precisely, 80 percent
of the human body is made up of water. This explains why NMR principles has
been applied to the study of biological shortly after its discovery. The associated
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gyromagnetic ratio is 42.6 MHz - T~!, and therefore for a clinical 3 T scanner, the
Larmor frequency is 127.6 MHz.

By
RF excitation
Mo MWW~
T _
- B,
(a) At rest (b) Under a RF excitation

Figure 4.2: Net magnetization in presence of a strong magnetic field.

At resting state, the spins do not rotate in phase, and the transverse contribu-
tions of spins tends to cancel each other. The resulting magnetization, also known
as the net magnetization, M, is aligned with the magnetic field By (see Fig. 4.2).
However, when excited by a radio signal tuned at the Larmor frequency, material-
ized by a transverse magnetic field By, they begin to rotate in phase. As a result,
the net magnetization rotates at the same frequency, and begins to precess away
from the By axis (see Fig. 4.2). The angle of rotation 6 is known as the flip angle,
and depends on the duration and the shape of the radio frequency pulse.

4.1.2 From NMR to MRI

As already stated, the Larmor frequency wg depends on the strength of the magnetic
field. Hence by applying a magnetic field gradient, it is possible to encode the spatial
position of spins. Therefore, the position of the excited tissue from which the signal
originated can be deduced from the frequency. By changing the orientation of the
gradient, as in the simplified acquisition sequence sketched on Fig. 4.3, it is possible
to reconstruct a 3D image of the brain. This technique was first proposed in 1950
for one dimensional MRI [Carr, 2004], and has been extended later on to produce
3D images Lauterbur [1973].

4.1.3 Signal attenuation in presence of spin motion

As seen in Chapter 3, water molecules undergo a spontaneous motion due to thermal
energy. It is possible to quantify the spin motion using magnetic field gradients.
The first acquisition sequence dedicated to the measurement of spin motion is due
to Stejskal and Tanner [1965], sketched on Fig. 4.4.

The application of a magnetic field gradient before the 180° RF pulse introduces
a phase shift to the spins. If the spins had remained still during the time interval A,
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Repetition time (TR)

RF pulse

Slice selection

Line selection

Line readout

Free Induction Decay

Signal readout

Figure 4.3: A simplified MRI acquisition sequence. G, G, and G, denote the linear
magnetic field gradients applied to encode spatial position of spins.

therefore the application of the exact same gradient after the 180° RF pulse would
cancel the phase shift. However, due to diffusion, the spins that have moved in
the same direction as the gradient to not come exactly in phase, and the resulting
measured echo signal is attenuated.

In the general case, this attenuation depends on the shape and the duration of
the diffusion gradient pulse, and is difficult to express [Callaghan, 1991a]. Indeed,
water molecules also diffuse during the time interval J, corresponding to the ap-
plication of the diffusion gradient. However it is generally possible to use a first
assumption about the gradient pulse, called the narrow-pulse assumption:

0 < A. (4.1)
Under this assumption, we introduce the wavevector q:

y

=5 | g, (4.2)

a
where g(t) is the time-dependent magnetic field gradient applied during the time
interval 6. When the gradient pulse has a rectangular profile, the gradient g is
constant during the pulse, and this rewrites simply as q = (27)~'ydg.
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Figure 4.4: The Stejskal and Tanner acquisition sequence in MRI. Diffusion-specific

elements are depicted in blue. In particular, note the pair of so-called diffusion

gradient pulses, before and after the 180° RF pulse, separated by the diffusion time

A.



48 CHAPTER 4. SIGNAL AND DIFFUSION CHARACTERISTICS

The signal attenuation E(q), defined as the ratio S(q)/S(0), is related to the
ensemble average propagator (EAP) through a Fourier transform

E(q) = /R P(riA)e ™ Tdg, (4.3)

The wavevector q defines the reciprocal space, referred to as the g-space. By re-
peating the acquisition sketched on Fig. 4.4, for different direction and strength of
the diffusion gradient g, and possibly different gradient pulse duration 4, we acquire
different 3D images of the same object. Such images are called diffusion weighted
images. From a series of diffusion weighted images, which correspond to samples in
the g-space, we can reconstruct the ensemble average propagator, and its derived
characteristics introduced in Chapter 3. The next two sections give an overview of
reconstruction and acquisition methods, from ¢-space to water diffusion.

4.2 From MR signal attenuation to water diffusion

In this section, we show several methods exploiting the relation between the diffu-
sion signal attenuation and the ensemble average propagator (EAP) to reconstruct
diffusion characteristics. We present the discrete Fourier sampling and reconstruc-
tion (known as diffusion spectrum imaging), several model-based reconstruction
methods (in particular diffusion tensor imaging). Finally, we present some contin-
uous representations in orthonormal bases, in g-ball imaging and g-space imaging.

4.2.1 Diffusion Spectrum Imaging

Water diffusion and MR signal attenuation are linked through a Fourier trans-
form (see Eq. 4.3). The technique known as diffusion spectrum imaging (DSI)
[Wedeen et al., 2005] implements the reconstruction of the EAP from a dense sam-
pling of the g-space on a regular lattice, and discrete inverse Fourier transform (see
Fig. 4.5). The propagator P is therefore reconstructed on a discrete dual grid,
and can be interpolated to evaluate characteristics such as the orientation distribu-
tion function (ODF), the mean square displacement (MSD) or the return to origin
probability (RTO) (see Section 3.4). This method was applied successfully in brain
imaging, for the reconstruction of complex configurations of fibers, including fiber
crossing [Wedeen et al., 2005].

Under the apparent simplicity of the DSI technique, several drawbacks restrict
its application in a clinical context. First, in order to satisfy the Shannon-Nyquist
conditions, the sampling volume in ¢-space must be sufficiently large. More pre-
cisely, to reconstruct the propagator on a grid of spacing Arg, the maximum vector
length, qo, in reciprocal space should be proportional to 2/Arg. The resolution of
reconstructed EAP is therefore directly limited by hardware, as the limiting param-
eter for ¢ is the magnitude of the magnetic field gradient. Typical values in clinical
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Figure 4.5: g-space sampling in diffusion spectrum imaging (DSI), on a regular
8 x 8 x 8 Cartesian lattice.

Figure 4.6: Diffusion MRI is a 6D imaging modality. (top) Coordinate of the
wavevector in the g-space, (bottom) corresponding diffusion weighted image.

scanners are of the order of 100 mT -m~1.

An other (straightforward) limitation
is time: even with fast echo-planar imaging techniques, the acquisition of several
hundreds of diffusion weighted images (see Fig. 4.6), necessary in DSI, can take up
to one hour, which is not compatible with clinical use. Finally, the acquisition and
reconstruction on a Cartesian lattice has some computational advantages, but when
one wants to compute the orientation distribution function (ODF), only numerical
methods apply, and it is necessary to interpolate the EAP to compute the radial

integrations.

4.2.2 Model-based reconstruction

To overcome limitations of DSI, which is a model-free, direct reconstruction tech-
nique, several assumptions on the nature of the diffusion EAP have been made to
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simplify the problem. We present in this section the most popular approach, called
diffusion tensor imaging (DTI) [Basser et al., 1994a,b], as well as other related ap-
proaches.

Diffusion Tensor Imaging

The DTI technique assumes that the water molecules displacement has a multi-
variate Gaussian probability (see Section 3.4.1). Within this framework, the EAP
is fully described by the so-called diffusion tensor, D, which is a 3 x 3 symmetric,
positive matrix. The Fourier transform relating the signal attenuation to the propa-
gator (Eq. 4.3) reduces to the simple Stejskal-Tanner equation [Stejskal and Tanner,
1965],

E(q) = exp(—q"' Dq). (4.4)

Mathematically, the diffusion tensor is parameterized by its 6 independent co-
efficients. Given measurements of the diffusion signal attenuation in at least 6
independent positions in the g-space, the diffusion tensor can be estimated. Several
techniques have been proposed in the literature for the estimation of the diffu-
sion tensor. We describe below the first method originally proposed [Basser et al.,
1994a], based on linear least squares.

Linear Least Squares The Eq. 4.4 can be linearized, and rewrites

—log(E(q)) = ' Daq. (4.5)

Put in matrix form, given K measurements yr = — log(E(qy)), this is a classical
linear system

y = Hd, (4.6)

where H is the corresponding observation matrix, and d is the vector of coefficients
d = [DxxDyy Dy, Dyy Dy, Dy,]".

Since then, the 6 parameters of the diffusion tensor can be reconstructed by
linear least squares [Basser et al., 1994a],

d=MH'S"'H)"'HTS ly, (4.7)

where ¥ is the diagonal matrix with entries S = 07/S(qx)? It accounts for
the non-linear transform of Eq. 4.5, through first-order noise propagation. Under
this model of additive, Gaussian noise, this estimator is the unbiased estimator of
minimum variance [Kay, 1993].
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Figure 4.7: Rice distribution probability density function, for several values of the
SNR. At low SNR, the Rice distribution is not symmetric, and the noise adds a
positive shift to the signal. Estimation not taking into account this shift would

result into inevitable bias.

Noise model and non-linear estimation Beyond the simple linear least
squares, we could directly solve the non-linear least-squares version of Eq. 4.4.
The rational behind this method is that the least-squares solution is the maximum-
likelihood estimator, under the assumption that the measurements are corrupted by
Gaussian noise. For sufficiently large signal-to noise ratio (SNR), this assumption
is valid. However, when the SNR falls below 3 or 4, a more adapted noise model is
the Rician noise distribution (see Fig. 4.7) [Sijbers et al., 1998, Sijbers, 1998].

Several methods were proposed to cope with this noise model. Some methods
[Fillard et al., 2007, Basu et al., 2006, Landman et al., 2007] directly estimate the
diffusion tensor, with a data fit term corresponding to the likelihood of the Rician
distribution. Other methods propose to filter the diffusion weighted images prior to
estimation, either to remove Rician noise [Descoteaux et al., 2008] or to transform
the noise into a Gaussian, additive noise [Koay et al., 2009b]. These methods are
more general are they do not rely on the tensor model for the diffusion signal. This
is an active an important topic of research in diffusion MRI, as diffusion weighted
images have very low SNR and must be processed carefully.

Positivity constraint In diffusion tensor MRI, the object of interest is the dif-
fusion tensor. As it is proportional to the covariance matrix of the EAP, the es-
timated tensor should be positive-definite. Several methods were proposed to this
end, such as the log-Euclidean metrics [Fillard et al., 2007], the Riemannian frame-
work [Lenglet, 2006], or specific parameterizations [Landman et al., 2007].
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Extensions to the Gaussian model

The Gaussian diffusion model is limited to describe the diffusion for a single pre-
ferred orientation, and cannot accurately describe configurations with several pop-
ulations of fibers in a same voxel. Several groups have proposed to extend the
diffusion tensor model to better describe these configurations. Alexander et al.
[2002] propose a multi-tensor model, which is estimated in place of the diffu-
sion tensor whenever a significant distance to the Gaussian model is detected.
Other groups proposed to use higher order tensors to represent the diffusivity
[Ozarslan and Mareci, 2003], leading to a generalization of DTI. Jian et al. [2007]
propose to model the diffusion as a mixture of Wishart distributions.

Beyond these extensions to the diffusion tensor model, several studies have been
carried out to represent the diffusion signal, independently of a physical model of
diffusion. A tour of these methods is presented in the next section.

4.2.3 Model-free reconstruction methods

Several methods reconstruct the diffusion signal in a model-independent fashion,
and use the fundamental Fourier relation of Eq. 4.3 to reconstruct either the orien-
tation distribution function, or the full ensemble average propagator. We present
the methods that require samples on a shell (or ¢g-ball) in the ¢g-space, and methods
that do not rely on a specific acquisition scheme.

g-ball imaging

g-ball imaging is a technique proposed in Tuch [2004a] to reconstruct the orien-
tation distribution function ir. We recall (see Section 3.4.2) that the orientation
distribution function is defined as

Yo(u) = % /O " P(rwdr. (4.8)

The work in Tuch [2004a] shows that the ODF 1 can be approximated by the
Funk-Radon transform of the diffusion signal E restricted to a sphere of radius qq.
Formally,

vrlw) ~ 5 [ E@d(a™w(al] - wda, (19

where Z is a normalization constant.

Summary of advantages and limitations ¢-ball method

+ Reconstructs the ODF 7 from samples on a g-shell, instead of complete
g-space (as in DSI),

+ Model-free method,
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Figure 4.8: The spherical harmonic basis functions. Each line corresponds to orders
£ =0,2,4. The parameter m ranges from —¢ to /.

— Discrete method, requires inefficient numerical Funk-Radon transform,

— Reconstructs the ODF 41, not the marginal ODF .

Analytical ¢g-ball imaging The g-ball imaging technique [Tuch, 2004a] has been
improved, with the use of spherical harmonics functions to represent the signal
[Anderson, 2005, Hess et al., 2006, Descoteaux et al., 2007b]. The computation of
the Funk-Radon transform in Eq. 4.9 in the spherical harmonic basis is analytical,
therefore the computational cost in computing the ODF is reduced. Besides, this
also provides a convenient way to regularize the signal on the sphere through the
Laplace-Beltrami operator [Descoteaux et al., 2007b]. This regularization, minimiz-
ing the penalization | 52 (VpL,E)?, acts as a low-pass filter and removes oscillations
due to noise.

The signal E(qp - u) is approximated by the spherical harmonics basis, truncated
to order L,

L 14
Vvue&®  E(p-u)=Y > crmYom(u) (4.10)

The diffusion signal, F, is antipodally symmetric, and real as we generally mea-
sure the signal amplitude. Usually, we use a modified spherical harmonic basis,
adapted to real, symmetric functions [Descoteaux et al., 2007b]. These functions
are depicted on Fig. 4.8, for a truncation degree L = 4.
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Figure 4.9: Effect of Laplace-Beltrami regularization for the estimation of a g-ball
signal, in the spherical harmonic basis (single fiber, b = 3000 s-mm~!, SNR = 20,
K = 30 measurements). (top) top view, (bottom) side view. From left to right: A
weighting parameter increasing, from 0.0 to 0.01.

The mathematical expression of the spherical harmonics function is

|
- ;" (cos 9) cos(myp) for m < 0

(20 —m)
(L+m)!

Yim(9,0) = V(20 + 1) P (cos ) form =0
\/2(2@ +1)(( —m)

(L+m)!

|
- P;" (cos ) sin(mep) for m >0

When truncated up to order L, this SH basis has dimension R = (L+1)-(L+2)/2.
To ease matrix representation, we introduce a single index j to designate the spher-
ical harmonic function Y; = Y, [Descoteaux et al., 2006]. The correspondence is

givenby j = 1,2,..., Rwhen (¢/,m) = (0,0),(2,-2),(2,-1),...,(2,2),...,(L,—L),...

respectively.
The coefficients ¢; of the signal in spherical harmonic basis are estimated from
a series of measurements at points qq - ug, minimizing

U(c) = [ly = Bel[” + A" Le, (4.11)

where B is the spherical harmonics design matrix (B, ; = Yj(uy)), y is the vector of
observations (yx = E(qo - uy)) and c is the vector of spherical harmonic coefficients.
The matrix L is the Laplace-Beltrami operator in the spherical harmonic basis, and
is diagonal, since the spherical harmonics are eigenfunctions of Vy,. The entries of
this matrix are L; j = ¢2- (¢ + 1)2. The effect of Laplace-Beltrami regularization is
visible on Fig. 4.9. In particular, the choice of the weighting parameter A is critical,
and should be adapted on a per-voxel basis, as studied in Descoteaux et al. [2010].

From the coefficients ¢, describing the signal, the coefficients that represent the
ODF 4 are ¢’ = Pc, where P is the Funk-Radon operator in the spherical harmon-
ics basis. P is a diagonal matrix, with entries 27 FP(0), the Legendre polynomial of
degree { evaluated at 0.
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The ODF (as well as the EAP) are probability density functions, so they are
positive-valued. By analogy to the tools developed to constrain the tensor esti-
mation on the Riemannian manifold of positive matrices, some work have been
proposed recently to propose a similar framework for the ODF and the EAP
[Cheng et al., 2009, Goh et al., 2011].

Summary of advantages and limitations analytical ODF in ¢-ball
method

+ Fast estimation of the ¢-ball signal and ODF ),
+ Laplace-Beltrami improves robustness to noise,

— Reconstructs the ODF 4T, not the marginal ODF .

Real-time ODF computation The acquisition in high angular resolution diffu-
sion imaging is quite demanding, and the scan time can become an issue. It might
be interesting to get an online feedback on the quality of the reconstruction, to
take decision accordingly in case of patient discomfort or patient motion. In that
sense, an incremental reconstruction of the ODF has been proposed [Poupon et al.,
2008b, Deriche et al., 2009]. The solution is based on a Kalman filter, and exploits
the analytical joint estimation and regularization of the ODF [Descoteaux et al.,
2006], which involves only linear operations.

The reconstruction method in Deriche et al. [2009] implements an incremental
minimization of the energy in Eq. 4.11. The resulting Kalman filter is given by the
following system of equations,

cl0] = E|c]
Initialization P[0] = E[(c—c[0])(c—c[0])T]
P0] = (P[0]!+ AL)
(VK] = B[Pk — 1Bk + o2[K] (4.12)
gll] = Plk- ]B[k:]TV[k]
Update Plk] = (I-g[k|B[k])P[k—1]
vk = ylkl - Blklek — 1]
clk] = c[k—1]+ g[k]y[K]

As it is usually the case in discrete-time systems, the time index k is in square
brackets rather than subscript, which would have made the notations confusing.
The matrix P[k] is the estimate covariance, while the vector clk] is the current
estimate. The vector g[k| is usually referred to as the Kalman gain, while ~[k] is
the residual, or prediction error.
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Summary of advantages and limitations of real-time ODF method

+ Fast estimation of the g-ball signal compatible with real-time processing,
+ Incremental solution matches the exact, off-line, reconstruction,

— Reconstructs the ODF T, not the marginal ODF .

Marginal ODF in ¢-ball imaging As explained in Section 3.4.2, there are
two concurrent definitions of the orientation distribution function. While Tuch
originally proposed a solution to reconstruct the ODF ¢ in ¢-ball imaging [Tuch,
2004a], it was recently shown that the marginal ODF, also known as the ODF in
constant solid angle, could be reconstructed in g-ball imaging [Tristan-Vega et al.,
2009, Aganj et al., 2010b].
Under the assumption of a mono-exponential decay of the diffusion signal F,
the relation between F(q), and the ODF 1 is given by:
1 1
V)= e
where FRT denotes the Funk-Radon Transform, and Vg the Laplace-Beltrami op-
erator Aganj et al. [2010b)].
The work in Aganj et al. [2010b] also proposes to extend the reconstruction to

FRT {ViIn(—In E)} (u), (4.13)

acquisition on several concentric spheres in the ¢g-space. This kind of acquisition is
sometimes referred to as multiple g-shell imaging. This introduces the next section,
in which we present general methods to reconstruct the signal, independently of a
given acquisition protocol.

Summary of advantages and limitations of marginal ODF in ¢-ball
imaging
+ Analytical reconstruction of the signal, and the ODF,

— Assumes a mono-exponential (single shell) or multi-exponential decay,

— Multi-shell sampling requires same number and sampling directions on each

shell.

Continuous g-space imaging

We denote by continuous g-space imaging the techniques working with a continu-
ous representation of the signal F, and implement a continuous Fourier transform
to compute the EAP. We retain in this section only the model-free methods. The
advantage of these methods is their generality as they assume no underlying phys-
ical model of diffusion. Besides, these methods usually do not rely on a specific
acquisition strategy in the g-space. Several bases have been proposed to this end,
together with methods to reconstruct the EAP and the ODF.
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Diffusion propagator imaging An extension of the spherical harmonic basis
to the 3D space is the Laplace equation by part, as proposed in Descoteaux et al.
[2011]. The signal is decomposed as follows,

Blaw) = 3 | S + dum| Yim(w) (414)
lm
where Y, is the real, spherical harmonic function introduced above. From this
decomposition, the authors in Descoteaux et al. [2011] provide analytical formulae
for the EAP, the ODF and the return-to-origin probability. Yet, the choice of the
representation in Eq. 4.14 suffers from several drawbacks.
First, the signal reconstructed in this basis cannot be represented about zero,

t+1, Besides, the behaviour for large ¢ also is incompatible

due to the denominator ¢
with what is observed generally (E — 0 when ¢ — 00). Therefore, the approxima-
tion is valid only in the range [¢min, ¢max), Which is the volume comprised within
the innermost and outermost shells. In particular, there is no chance to extrapolate
the signal on the whole g-space. The Fourier transform in turn must be computed
on the same cropped volume, and this can introduce inaccuracies in the estima-
tion of the EAP. Other bases have been proposed, with a different radial profile,

compatible with signal extrapolation.

Summary of advantages and limitations of DPI

+ Model-free method,

+ Analytical reconstruction of the signal, the EAP and the ODF

— No regularization provided,

— Basis functions not adapted to extrapolate the signal to the whole g-space.
Simple harmonic oscillator The simple harmonic oscillator-based estimation
and reconstruction (SHORE) has originally been proposed for the reconstruction of
one dimensional g-space diffusion signal [Ozarslan et al., 2008]. Given a direction
ug in the g¢-space, the signal is decomposed in a basis of polynomial functions,

weighted by a Gaussian kernel. Formally, we have E(q-ug) = ), an®y(q), with
the basis function

D,,(q) = kp(u) exp(—27r2q2u2)L;1/2 (47T2q2u2), (4.15)

where u is a characteristic length, L, 12 the generalized Laguerre polynomial of
degree n chosen for orthogonality, and k,(u) a normalization constant,

() = ¢ | U (4.16)
I'(n+1/2)
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Figure 4.10: SHORE 1D basis functions, for n = 0, 1,2,5. The characteristic length
is set to u = 15 pm.

We plot several basis functions on Fig. 4.10. In particular, these functions behave
well when ¢ — oo. Besides, this basis was designed to capture non-monotonic radial
decay, as it is the case in most restricted geometries [C)zarslan et al., 2011].

This radial profile was further extended to represent the 3D signal [Ozarslan et al.,
2009], by using the spherical harmonics to capture angular information. The basis
functions in 3D are therefore

0+1/2
Py tm(q- 1) = o, (w) exp(—272¢2u?)g Ly * (202 0%0?) Y n (w). (4.17)

The original method did not explicitly provide analytical formulations for the
EAP and the ODF. They are however derived in Cheng et al. [2011].

Summary of advantages and limitations of SHORE

+ Model-free,

+ Analytical reconstruction of the signal,

— No regularization provided,

— No method to take into account E(0) = 1.
Spherical Polar Fourier basis In parallel to the work of Ozarslan et al., a
related basis has been proposed, called the spherical polar Fourier basis (SPF)
[Assemlal et al., 2009b]. This is an orthonormal basis, whose functions are defined

as the product of a radial and an angular function. The signal is decomposed as a
sum of functions: F(q) = Zn,é,m n,0.mBn.1,m(d), where

Bn,l,m(q : u) = Rn(Q)}/ﬁ,m(u)’ and Rn(Q) = Kn(()e_qQ/QCL}/Q <q<_2> ’ (4‘18)
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Figure 4.11: SPF functions B, 2 2, n = 0,1,2 (from left to right), plotted on the
plane z = 0. Strong discontinuities about the origin are visible.

The work has been further extended to provide a dual SPF basis (dSPF) to rep-
resent the EAP with the same coefficients [Cheng et al., 2010b], as well as close-form
formulae for the computation of the ODF v and the marginal ODF 1) [Cheng et al.,
2010a]. The SHORE basis we previously reviewed and the SPF basis are familiar,
yet show some differences. In particular, for the same radial truncation order N,
the SHORE basis will span a subspace of that spanned by the SPF basis.

We point out a drawback of SPF basis functions: as reported on Fig. 4.11, the
functions B,, ¢, are discontinuous about 0. While both the Laguerre polynomial
and the spherical harmonics are continuous functions on their respective domains,
the problem comes from the parameterization q = ¢-u. Indeed, the unit vector
u is not uniquely defined about the origin, and care must be taken when this
parameterization is used.

The SPF reconstruction method was proposed together with a regularization,
to increase the stability of the reconstruction in presence of noise [Assemlal et al.,
2009b]. The regularization acts directly on the coefficients, and the problem solved
is a penalized least squares,

U(a) = |ly — Ha|]> + ALa"La + Aya' Na, (4.19)

where y = [E(q1), ..., E(qk)] is the vector of measurements, H the matrix of ob-
servation in the SPF basis and a the vector of coefficients a,, ¢ ,,. The regularization
matrices L and N are diagonal matrices, with weights ¢?(¢ + 1)? and n?(n + 1)?,
which are supposed to act as angular and radial low-pass filters, respectively.

Summary of advantages and limitations of SPF method
+ Model-free method,

+ Analytical reconstruction of the signal (least squares estimate),
+ Analytical computation of EAP and ODF,

— Discontinuity about the origin,



60 CHAPTER 4. SIGNAL AND DIFFUSION CHARACTERISTICS

— No method to take into account E(0) = 1,

— Low-pass filters L and N defined empirically.

4.3 Summary of the chapter

We have presented a tour of reconstruction method in diffusion MRI, from the dif-
fusion signal in ¢-space to the reconstruction of diffusion characteristics. Several
challenges were presented throughout the chapter, in particular the practical limi-
tations in clinical settings, where the subjects are likely to move and can sometimes
difficulty remain still in the scanner for dozens of minutes. The works on incremen-
tal reconstruction [Poupon et al., 2008b, Deriche et al., 2009] provide an answer by
giving a real-time feedback on the reconstruction accuracy. We present in Chap-
ter 7 of this thesis an extension to this work for the reconstruction of the ODF in
constant solid angle, and the application to motion detection.

Besides, there is a growing interest for the development of techniques that permit
the reconstruction of the full ensemble average propagator. In this domain, the SPF
basis is a promising tool for the reconstruction of the signal in the whole g-space,
and the subsequent estimation of EAP and ODF. However, we have highlighted
some mathematical problems in the SPF basis, related to the continuity at the
origin, and the regularization proposed in Assemlal et al. [2009b]. We present in
Chapter 6 of this thesis a method for the reconstruction of a continuous signal, with

a classical Laplace regularization.
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Overview

Given the opportunity to acquire K samples in the ¢-space, how to arrange the
points for an accurate reconstruction? What is the best strategy in ¢-ball imaging?
We introduce the main methods and strategies for the acquisition of diffusion signal.
Throughout this chapter, we also introduce some important open questions and
challenges, some of which we address in this thesis.

Keywords pulse gradient spin echo; diffusion gradient; orthogonal bases; g-ball

imaging; g-space sampling.

5.1 Introduction

We have presented in the last chapter a guided tour of model-free reconstruction
methods in ¢-ball and g-space imaging. For all these methods, a constant is the
estimation of the signal, from discrete samples. The sampling strategy is critical
in diffusion MRI and applications, as the number of acquisitions is limited by the
scan time. Indeed, the acquisition one sample in the g-space corresponds to the
acquisition and reconstruction of the whole volume to be imaged, as illustrated on
Fig. 4.6. In this section, we present a list of the state-of-the-art sampling strategies
developed in diffusion MRI. We first present sampling on the sphere in diffusion
MRI, referred to as ¢g-ball imaging. Then we study the extensions to multiple shells
and beyond.

5.2 Acquisition in ¢-ball imaging

To introduce this section on acquisition on the sphere, we state three fundamental
requirements for the sampling in ¢-ball imaging. These are basic principles which
are helpful to compare state-of-the-art methods.

Antipodal symmetry Although the diffusion propagator P is not necessarily
symmetric, the diffusion attenuation signal measured in g-space is symmetric.
Therefore it is equivalent to measure E(q) and E(—q), and this symmetry
needs consideration to elaborate the sampling protocol.

As isotropic as possible Usually, there is no prior in the underlying tissue con-
sideration, and it is important to sample each direction equivalently. This is
to avoid any bias, introduced by a sampling with non isotropic density.

Information gathering and noise performance The signal is reconstructed
from discrete samples, in order to finally estimate the diffusion tensor, the
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&

Figure 5.1: Spherical caps packing, (left) for K = 12 the Fejes-T6th bound is
achieved: the centers of the spherical caps are the vertices of an inscribed icosa-

hedron; (right) for K = 40, suboptimal configuration provided by the electrostatic
energy minimization, as in Jones et al. [1999a].

EAP or the ODF. For a given number of measurements, the sampling strat-
egy should maximize the amount of information collected to reconstruct the
quantity of interest with best accuracy.

5.2.1 Geometrical constructions

The two above-mentioned properties have motivated the construction of sampling
scheme on a purely geometrical basis. We give a review of such in ¢-ball imaging.

Spherical caps packing

The problem of finding an arrangement of points ”evenly” distributed on the surface
of a sphere has a long history. One of the parameter of interest is the distance
between any two points, and in particular the minimum distance between any two
points.

Definition 1. Given a set of points ug,k = 1... K on the sphere, we call the radius
of this sequence the minimum distance d between any two points

d = min ||u; — uj|. (5.1)
i#j
Maximizing the radius d can be equivalently seen as looking for a packing of

non-overlapping spherical caps of maximal radius on the sphere. In 1943, the math-
ematician Fejes-T6th showed that an upper bound exists for the radius [Fejes-Téth,

1943]
K
d< \/4—080271-7. (5.2)
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Figure 5.2: Sphere tessellation from an icosahedron. From left to right: regular
icosahedron (12 vertices), two-fold tessellated icosahedron (42 vertices), 4-fold tes-
sellated icosahedron (162 vertices) and 8-fold tessellated icosahedron (642 vertices).

For instance for K = 12, this bound is sharp and the corresponding set is the
inscribed icosahedron, as in Fig. 5.1. However, the general case has not been solved
however.

Lines packing

The problem of spherical caps packing is to arrange points evenly on the surface
of the sphere. But in diffusion MRI, the measured signal E(q) has antipodal sym-
metry. Therefore, the problem of uniformly arrange the sampling directions also
should take into account this central symmetry. This problem has been extensively
studied too, and is known as lines packing in R? [Conway et al., 1996]. Surprisingly,
and to the best of our knowledge, the results in Conway et al. [1996] have never
been used for the design of acquisition schemes in g-ball imaging. We acknowledge
the library of such designs at the authors’ website.

Sphere tessellation

The tessellation of the sphere from an icosahedron is a geometric construction
of a triangular mesh of the sphere. It is useful in numerous applications such
as numerical analysis on the sphere [Sadourny et al., 1968], or computer graphics
[Snyder and Barr, 1987]. The construction, sketched on Fig. 5.3, consists in starting
from a regular polyhedron, usually the icosahedron, and subdivide each triangular
face into smaller faces. The new vertices are then projected onto the surface of the
sphere. By increasing the number of edge subdivisions d, it is possible to gener-
ate large collection of vertices (see Fig. 5.2), spread out on the surface of the unit
sphere. The set of vertices of the constructed tessellation is antipodally symmetric,
and therefore we can use the half of the points in diffusion MRI acquisition. In ¢-
ball imaging, a five-fold icosahedron has been used [Tuch, 2004a, Descoteaux et al.,
2007b] for the acquisition of diffusion attenuated signal.

There are two major drawbacks in this construction: first, it does not allow
point set construction of an arbitrary size. Indeed, if the edge of each triangle is
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Figure 5.3: Construction of the sphere tessellation, by four-fold subdivision of the
edges of a regular icosahedron. (left) The triangular face of the icosahedron is
divided into equilateral sub-triangles, (right) the created vertices are back-projected
onto the surface of the unit sphere.

Number of segments Number of vertices
d K(d)

12
42
92
162
252
362
492
642

0 N O Ot s W N

Table 5.1: Number of vertices of a d-fold tessellated icosahedron.

subdivided into d segments, the number of triangles is multiplied by d?, and the
number of resulting vertices K (d) is given in Table 5.1. We can show K(d) =
12410 (d* - 1).

The second drawback is related to the optimality, in terms of distance between
two adjacent points. The icosahedron is made of equilateral triangles, and as stated
above, it is an optimal configuration for the spherical caps packing problem, that
achieves the Fejes-Téth bound (see Fig. 5.1, left). When it is subdivided (see
Fig. 5.3, on the left), the sub-triangles are also equilateral triangles, all with the
same dimensions; but when the new vertices are projected back onto the surface of
the sphere, the triangles are deformed, and are no-longer equilateral.

Summary of advantages and limitations of sphere tessellation
+ Geometric construction, with rapid computation of vertex positions,

+ Antipodal symmetry,
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Figure 5.4: The colatitude angle, 9, and the longitude angle, ¢.

— No means to create such arrangement for an arbitrary number of points,

— No evidence of uniformity.

Circles of latitude

The author in Koay [2011] provide a sampling scheme with nearly uniform density
on the sphere. The unit sphere is usually parameterized by colatitude ¢ € [0, 7]
and longitude angles ¢ € [0,27]. Given a point u on the unit sphere, its Carte-
sian coordinates are [cos(¢) sin(¥) sin(p) sin(?) cos(¥)], as illustrated on Fig. 5.4. A
strategy consisting in creating a sampling scheme from a regular grid in the space
of parameters 19, ¢ would provide a poor scheme, with a strong concentration of
points about the poles, and a sparse density about the equator. Yet it is possible
to arrange the points on circles of latitude (¥ constant), with a clever choice of the
number of discretization steps, and the number of points on each line parallel to
the equator (see Fig. 5.5).

The construction in Koay [2011] arranges the points on circles parallel to the
equator, determined by a finite number of colatitude angles ¥;,7 = 1...n. On a
given line 4, the points are given by their longitudes ¢; ;,j = 1...k;. The number
of discretization steps n for ¢ is chosen so that the angular distance between two
consecutive latitude, Ad, equals the distance between two consecutive points on the
same latitude. Thus up to the choice of rounding functions, the number of latitude
circles, n, and the number of points on circle i, k;, are determined by the equations

n = %sin(%) (5.3)
k; = 2sin(t;)sin <%> (5.4)
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Figure 5.5: Point sets generated following the geometrical construction in Koay
[2011]. (from left to right) K = 25,75,125. The alignment of points on circles of
latitude is visible on these pictures.

The method is simple and fast, thus appreciated to generate efficiently sampling
protocols with a large number of points (up to K = 10° reported in the paper).
Yet this method does not optimize directly the angular distance between adjacent
points in general. Only the angular distance between points on a same latitude
line, and the angular distance between the supporting lines are considered, and this
might result in a suboptimal configuration. As reported by the author, this method
is best suited to large number of points and was designed with a primary focus on

computational efficiency.

Summary of advantages and limitations of sampling on circles of lat-
itude

+ Analytical geometric construction, with rapid computation of vertex positions,
+ Antipodal symmetry,

+ Construction for any number of points K,

+

Implemented in a free software, downloaded from the author’s website,

— Not best suited for small sample size K < 50,

— No evidence of uniformity.

Electrostatic repulsion

To construct a collection of K points evenly distributed on a sphere, one method
is to consider the points as electrostatic charges, repulsing each other, and to find
the configuration of minimal energy. This problem is called the Thomson problem,
after the physicist who originally studied this problem in his atom model [Thomson,
1904]. As the original formulation does not take into account the antipodal sym-
metry of diffusion attenuation signal, a slightly modified version of the energy was
proposed in Jones et al. [1999a], Jansons and Alexander [2003] for use in diffusion
MRI.


http://sites.google.com/site/cgkoay/pr
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Specifically, a set of K points ug is optimal if it minimizes the energy

> ! + ! (5.5)
s —wyl2 oy a2 '

Minimum-energy configurations are available in the distribution of the Camino
toolkit [Cook et al., 2006], up to K = 256 (see Fig. 5.6). One of the drawback
is that for a given K, there is no evidence that the minimum energy configuration
has maximum radius, as shown on Fig. 5.1.

Figure 5.6: Point sets minimizing the electrostatic repulsion energy [Jones et al.,
1999a, Jansons and Alexander, 2003]. (from left to right) K = 25,75,125.

Summary of advantages and limitations of electrostatic repulsion
+ Antipodal symmetry,
+ Construction for any number of points K,

+ Minimal energy configurations in the open-source Camino toolkit [Cook et al.,
2006] for K < 256,

— The energy minimization can take some time for large K,

— No evidence on uniformity.

Power-law repulsion

As a generalization of the electrostatic physical analogy, the power law of the

" and to the limit n — oo

repulsion energy can be increased from 772 to r~
[Papadakis et al., 2000]. Minimal configurations for this energy are supposedly
more uniform, as this problem for n — oo is equivalent to the Fejes-Toth problem
introduced above, which consists in finding K non-overlapping spherical caps of
maximum radius on a sphere [Tammes, 1930]. The minimization of this energy as
n increases becomes harder however, as a little change in the points configuration

results in a big change in the energy.
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Figure 5.7: (blue) Point sets minimizing the power-law r~™ repulsion, and (green)
minimizer of the electrostatic energy, used as initialization for the minimization of
power-law repulsion. K = 25 points, convergence obtained for n = 28.

We implemented this method, minimizin the cost function

1/n

-2 TR rnil N (5:5)
Hz—uaH R

As suggested in Papadakis et al. [2000], the minimizer of U, is taken as original
guess for Uy, 11, and n is increased until no significant change is reported. Solutions
for K =25 and K = 75 are plotted on Fig. 5.7.

Summary of advantages and limitations of power-law repulsion
+ When n — oo, equivalent to the spherical caps packing problem,

+ Antipodal symmetry,

+ Construction for any number of points K,

— Minimization numerically unstable as n increases,

— Cost function takes some time to minimize as K increases.

Comparison of geometrical methods

All the geometrical methods we have presented so far are designed with the objective
to uniformly arrange points on the sphere, with central symmetry. We implemented
these techniques, or downloaded optimal point sets for each method. We computed
the minimum distance between any two points, which is a good index of the uni-
formity of the scheme. Intuitively, the further away we can place any two points
on a sphere, the better the uniformity of the sampling scheme. Results for sample
size K from 6 to 100 are reported on Fig. 5.8. The method that gives best results
is the lines packing method [Conway et al., 1996]. We do not report the results of
Papadakis et al. [2000], as we were unable to properly minimize the energy they
propose.
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Figure 5.8: Comparison of the minimum distance between any two points for several
geometric methods. The method that give results closest to the Fejes-T6th bound
is the lines packing method [Conway et al., 1996].

5.2.2 Incremental acquisition

As seen several times in this thesis, the acquisition time can become long in diffusion
MRI. In a clinical scenario, the subject may feel uncomfortable, and request to
abort the scan before completion. If the diffusion encoding gradient sequence is
not properly arranged, the scanner operator might be unable to recover accurate
diffusion characteristics (diffusion tensor, ODF or EAP) from the aborted scan.
This issue has been addressed by several groups in research, for the design of g-ball

imaging sequence.

Optimal orientation of partial subsets

The method proposed in Dubois et al. [2005] minimizes the sum of energy interac-
tion, Ej; j, between any two points 7 and j, weighted by a factor «; ;. The weights
are designed so that the repulsion of orientations corresponding to acquisitions ad-
jacent in time is higher than the repulsion energy of two acquisitions separated in
time. They propose in particular to design the weights «; ; so that some subsets of
a given number of acquisition (6 and 15 in their examples) are created. The authors
provide two scenarios, with different formulae for the weights.

We believe that the difference between the extremal values of «; ; will reflect
how different from the isotropic case the created orientation set will be. However,
this trade-off between general uniformity and the uniformity of each subset is not
investigated. Besides, choosing the size of the subsets might depend on the ap-
plication. This work brings a new method to the community, but at the end of
the article, the reader is left with several unknowns, which makes it difficult to
reproduce.
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Summary of advantages and limitations of partial uniform subsets
method
+ Compatible with corrupted data to some extent,
+ A generalization of electrostatic repulsion,
+ Construction for any number of points K,
+ Construction for subsets with any size S,
— No general method to design the weights «; ;,
— Trade-off between uniformity of partial sets and uniformity of the sequence
as a whole to be investigated.
Optimal ordering of diffusion-weighted measurements

In a different approach, Cook et al. [2007] propose a method to find the best order-
ing of a sequence of acquisition gradient directions, so that any truncated version
of this sequence offers a quasi-optimal, uniform coverage of the sphere. Given a set
of acquisition directions ug, k = 1... K, this method seeks the best arrangement of

indices k;, i = 1... K, so that the following energy is minimized

K
Ecook(kn, . k) =Y B(ug,,...,ug,) /P2 (5.7)
P=6

The above energy is the sum of electrostatic energy of all the partial subsets of P
points, for 6 < P < K, weighted by 1/P2.

This method was reported to give similar results, compared to Dubois et al.
[2005]. The discrete minimization problem associated to this method is hard to
solve however, and has a complexity growing with K!. Hence Cook et al. [2007] use
the simulated annealing minimization method to solve their problem.

Summary of advantages and limitations of partial uniform subsets
method

+ Acquisition ordering compatible with corrupted data,
+ If the scan is completed, no difference with optimal acquisition,

+ Optimization implemented in the Camino open-source toolkit [Cook et al.,
2006],

— Problem hard to minimize,

— The total number of acquisitions must be known in advance.
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Incremental construction of acquisition sequence

The method in Deriche et al. [2009] is dedicated to the construction of acquisition
sequence, suited to the reconstruction using Kalman filter. The general algorithm
is incremental: given a set of K measurements, it gives a method to find the next,
K + 1-th measurement, and so forth. Formally, the construction of the point set
{ug,k =1... K} is implemented as in Algorithm 1.

Algorithm 1 Incremental construction of uniform point set, compatible with cor-
rupted acquisition and incremental reconstruction.

1: uy « [0,0,1]7T

2: for ke {2...K} do

1 1
3: i
TR (e * oew)

4: end for

Summary of advantages and limitations of incremental point set con-
struction

+ Acquisition ordering compatible with corrupted data,
+ Simple and efficient scheme for minimization,
+ The total number of measurements K must not be known in advance,

— The construction is slightly suboptimal, even when the scan is complete.

5.2.3 Experimental design for diffusion tensor reconstruction

In place of optimizing the experimental design based on purely geometrical con-
siderations and motivations, several groups have considered the optimization of
experimental design for diffusion tensor reconstruction (see Section 4.2.2 for a re-
view of the estimation methods). We present in this section a review of optimization
methods for acquisition scheme, taking into account the diffusion tensor estimation.

Acquisition design for minimum variance

The noise performance of the acquisition scheme is studied in Papadakis et al.
[1999], through the measure of total variance. This index of noise performance
is used to evaluate several schemes, which were designed on the sole basis of 6
non-collinear directions. This index is also used to to generate a new scheme by
minimization of this index. The total variance in this work is that of the linear

estimate of the diffusion tensor, as in Eq. 4.7. The total variance TV is defined as

TV(uy,...,u) = tr(H'H) ™!, (5.8)
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where H is the observation matrix. It is indeed a measure of the sum of the variances
of each tensor element estimate.

This work is important as it is one of the first approach beyond the common
non-collinearity requirement, and other geometrical approaches. However, as stated
by the authors themselves in Papadakis et al. [1999, 2000], the minimization of
this criterion leads to possibly infinitely many solutions, even when congruence by
rotation is considered. Therefore, this index can not be used as a unique criterion
to generate acquisition point sets.

Summary of advantages and limitations of the total tensor variance
criterion

+ A criterion which takes into account the reconstruction,

— This criterion is not suited to optimization to provide new sampling schemes.

Condition number in diffusion tensor estimation

Another measure of interest to evaluate the noise performance of an acquisition
scheme is the condition number of the associated observation matrix H. The condi-
tion number k is an upper bound for the ratio of the relative error on the measure-
ments, to the relative error on the tensor estimate. This index has been considered
in Skare et al. [2000], in this work the authors directly minimize the condition num-
ber associated to a set of gradient orientations ug, k = 1... K, using the downhill
simplex method.

This method provides new insights for the design of acquisition schemes, and
the approach is validated through Monte-Carlo experiments in Skare et al. [2000].
This study of mostly empirical however, in particular no study of existence and
uniqueness of the solution was carried out. However, as K increases, it is likely that
several different configurations (beyond trivial congruence by rotation, permutation,
symmetries, etc.) will lead to the same condition number.

Summary of advantages and limitations of the condition number min-
imization

+ A criterion which takes into account the reconstruction,

+ Provides acquisition schemes with lower condition number than conventional
schemes,

— No mathematical proof of uniqueness of the solution.
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Bayesian experimental design in diffusion tensor imaging

Generally, there is no assumption in experimental design for diffusion tensor imag-
ing. This is the reason why most studies on experimental design use uniform sam-
pling on the sphere, or general approaches on noise performance. Some groups
have proposed [Peng and Arfanakis, 2007, Yanasak et al., 2008, Gao et al., 2009]
to possibly incorporate a prior on the tensor characteristic, in the design of adapted
acquisition sequence. This is most relevant when imaging highly structured regions
of interest in the brain, or the spinal cord for instance.

The method in Peng and Arfanakis [2007] seeks a set of orientations to minimize
the variance of the estimated tensor fractional anisotropy (FA). The general algo-
rithm for optimization is the downhill simplex, and for each step the variance of the
estimated FA is estimated through Monte-Carlo simulations. It is shown that the
generated scheme (6 directions in their experiments) leads to a better reconstruc-
tion accuracy around the selected, preferred orientation. This is at the cost of a
loss of performance to reconstruct diffusion tensors oriented perpendicularly to this
selected orientation. It is however not clear that selecting only the FA is relevant for
the other quantities of interest in diffusion tensor imaging. In particular, they do
not show how the orientation estimation is improved or degraded using this adapted
scheme. Another drawback is the cost function, which requires Monte-Carlo to be
evaluated. The computational time might become very large, and therefore restrict

applications to a larger number of acquisitions K > 6.
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Figure 5.9: Non-uniform gradient directions, adapted to the measurement of a
diffusion signal corresponding to a fiber direction along the z axis, as constructed
in Yanasak et al. [2008]. (from left to right) dispersion angle AY = 10°,25°and 40°.

The method in [Yanasak et al., 2008] seeks a set of gradient directions that
maximizes the angular precision in principal tensor orientation estimate. Specifi-
cally, given a preferred orientation from the tissue structure of interest, they seek
a method that deforms a uniform set of gradient directions, trying to give more
importance to the acquisitions ”far away” from the preferred direction. More pre-
cisely, and without loss of generality, if the preferred orientation is along the z
axis, then they arrange gradient directions between two circles of latitude, centered
around vy, and of width Av (see Fig. 5.9). The intuition it that in this region of the
g-ball, the signal has maximum curvature, and also reasonable signal-to-noise ratio.
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Therefore the measurements from this portion of the g-ball are supposed to be most
informative. They optimize the two parameters 1y and A¥¢ through Monte-Carlo
simulations, to find the best reconstruction accuracy of the tensor orientations. The
results show improved angular precision in principal orientation estimation. This
method is mainly empirical, and by imposing a specific geometry for the solution,
they restrict the set of potentially optimal configurations. Besides, no method is
given to uniformly arrange these points within this spherical ring of interest.

The authors in Gao et al. [2009] minimize the trace of the covariance matrix
of the tensor parameters estimate, from a linear least squares minimization. They
consider a prior as a collection of tensors of interest; in their study only synthetic
tensor collections are provided, within a cone of angle 20° or several such cones,
and for a maximum of 100 tensors. This criterion is used to optimize both the
gradient directions, and other imaging parameters (such as pulse time §, diffusion
time A, etc.). We would like to point out an important weakness in their approach:
everything is based on the covariance of the non-weighted least squares estimate
d= (HTH)"'TTy, with the same notations as in Section 4.2.2. This is different
from the commonly used weighted least squares, as in Eq. 4.7, which accounts for
the log-transform of the signal, and indeed is the most commonly used linear method
for tensor estimation [Salvador et al., 2005, Basser et al., 1994a], because it is the
minimum-variance unbiased estimator [Kay, 1993]. In short, they use a suboptimal
estimator with respect to their noise model, and try to find the sampling strategy to
optimize the performance of this estimator. The results of their study are therefore
hardly reusable.

Summary of advantages and limitations of the Bayesian experimental
design in DTI

+ Construction of acquisition scheme adapted to region of interest,

+ Possibility to reduce the number of acquisitions for the same target recon-
struction accuracy,

— The scenario of use is not well defined,

— The distribution of tensors of interest is modelled by a set of tensors, which
makes the methods computationally inefficient,

— The methods use either empirical constructions, either minimization schemes
not compatible with large K, and therefore poorly reproducible.
5.2.4 Harmonic analysis and experimental design

We present in this section so-called sampling theorems on the sphere. Beyond the
diffusion tensor imaging technique, the spherical harmonic basis has proved useful
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Figure 5.10: Sampling on equiangular grids, for exact reconstruction of band-limited
functions at order L = 4. (left) the equiangular grid of K = (2L —1)? samples as in
citetdriscoll-healy:94, and (right) the equiangular grid of K = 2L% — 3L +2 samples,
as in McEwen and Wiaux [2011].

in the study of high angular resolution diffusion imaging, for the reconstruction
of the diffusion signal and the ODF. This is the reason why many groups have
converged to the use of the spherical harmonic basis in ¢g-ball imaging [Anderson,
2005, Hess et al., 2006, Descoteaux et al., 2006, 2007a], and in many other appli-
cations that handle functions and signals on the sphere. The dimension of the
modified, real SH basis for functions with antipodal symmetry, truncated to order
Lis R=(L+1)-(L+2)/2. On an algebraic point of view, we need at least R
measurements to estimate the spherical harmonic coefficients of a function. A ques-
tion of interest is that of the minimum number of acquisitions required for an exact
reconstruction of a band-limited function in the SH basis.

The SH basis can be seen as the equivalent to Fourier analysis on the sphere.
Recent studies [Shukowsky, 1986, Driscoll and Healy, 1994, McEwen and Wiaux,
2011] have emerged, providing sampling theorem on the sphere, similarly to the
well-known Shannon-Nyquist theorem on R™. Therefore, for a band limited
function at order L, an exact reconstruction is possible with (2L — 1)? samples
[Driscoll and Healy, 1994]. The samples are simply the nodes of an equiangular grid
(also called longitude-latitude sampling), as shown on Fig. 5.10. This construction
was recently improved, and it is shown in McEwen and Wiaux [2011] that exact
reconstruction is feasible with only 2L? — 3L 4 2. The use of this scheme has been
investigated for the application to diffusion signal measurements [Daducci et al.,
2011], for multiple-shell sampling protocols.

These equiangular grids for sampling provide theoretical background on the ex-
act reconstruction of band-limited signal. In addition, these equiangular sampling
schemes can be associated with fast Fourier transform algorithms, which is most
appreciated in applications where the truncation order L becomes large (several
thousands in McEwen and Wiaux [2011]). However, it is clear that these sampling
schemes are not uniform on the sphere, and therefore the reconstruction accuracy
might not be rotational invariant. Besides, there is no proof that the number of
samples given by these sampling theorems consists in a minimum for exact recon-
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struction. As the cost in diffusion MRI is clearly on acquisition time, rather than
on computational complexity, the price to pay for potentially many measurements
is to be investigated more closely.

Summary of advantages and limitations of the equiangular grid sam-
pling and theorem on the sphere

+ Construction of acquisition scheme leading to exact reconstruction for band-
limited signals,

+ Extremely simple computation of the sampling nodes (equiangular grid),
+ Well adapted to the reconstruction in SH basis, in ¢-ball imaging,
— The repartition of points on the sphere is not uniform,

— The number of measurements for the same result could be decreased if the
constraint of equiangular grid is relaxed.

5.3 Multiple g-shell acquisition

While the study of sampling on the sphere in diffusion MRI has received much
attention, it is only very recently that multiple g-shell acquisition and reconstruc-
tion techniques have been considered by several groups [Khachaturian et al., 2007,
Wu and Alexander, 2007, Assemlal et al., 2009b, Aganj et al., 2010a, Ye et al.,
2012]. The acquisition on several shells brings new challenges, and new questions
with respect to the placement of points. For a given number of acquisitions, how
many shells should be selected? How many points per shell should be selected? How
the points should be placed from one shell to another? In this section, we select
and present the studies that bring specific methods for multiple g-shell acquisition

design.

5.3.1 Geometrical method

In Ye et al. [2012], a geometric construction on concentric spheres is described.
Each sphere is associated with an inscribed polyhedron, whose vertices correspond
to the sampling points in ¢-space. In order to separate measurements directions
from one shell to another, the construction in this work is based on the concept
of dual polyhedra (see Fig. 5.11). From sample measurements on these interlaced
concentric spheres of the diffusion signal F in the g-space, the authors in Ye et al.
[2012] reconstruct the signal on a regular grid using interpolation, and then estimate
the EAP through discrete Fourier transform. The sampling method is shown to
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Figure 5.11: (left) icosidodecahedron and (right) its dual polyhedron, the rhombic
triacontahedron. The vertices of the dual polyhedron are at the centers of faces
of the original polyhedron (see blue, dashed lines). This geometric construction is
used to design multiple shell interlaced sampling in Ye et al. [2012]

improve the angular resolution with respect to radial sampling, where sample points
are aligned from one shell to another.

This sampling method however has several drawbacks. First, except for the
icosahedron (K = 12), the vertices of regular polyhedra are in general not uni-
formly spread on the surface of the sphere. Besides, the construction of a regular
polyhedron with an arbitrary number of vertices is not possible. Moreover, the
number of points per shell is also fixed by the number of vertices of the consid-
ered polyhedra, and cannot be tuned. This is a severe drawback, as it was shown
in Assemlal et al. [2009b] that this is an important parameter for the quality of
the reconstruction. Finally, the use of a pair of dual polyhedra provides a natural
construction for an experiment design on 2 shells. For a larger number of shells,
the authors propose to alternatively use one polyhedron and its dual. At the end,
shells number 1, 3, ... share the same sampling directions, and shells number 2,4, ...
a different set of directions. This is no much different from radial sampling.

Summary of advantages and limitations of the interlaced sampling
construction based on dual polyhedra.

+ The sampling directions covers the sphere more densely than radial sampling,
+ The angular resolution is improved,
— Construction not possible for an arbitrary sample size,

— Provides only two separate sets of directions, to share among possibly many
spheres,

— The number of points per shell cannot be finely tuned with respect to the
radius of each shell.
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5.3.2 Noise performance for parametric reconstruction

The acquisition design for multiple ¢-shell acquisition and parametric reconstruc-
tion has been recently studied in Assemlal et al. [2009a]. This study tries to find
the sampling strategy that minimizes the condition number of the regularized ob-
servation matrix, for the problem of parametric reconstruction of the signal. The
basis of interest is the spherical polar Fourier basis (SPF), that we reviewed in the
last chapter (see in particular Section 4.2.3). In Assemlal et al. [2009a], the authors
consider several possible strategies on how to chose the number of shells in g-space,
and the number of points per shell, given a total of K measurements. To reduce the
dimension of the configurations to explore, they impose the shell radii to be linearly
distributed between ¢uin and ¢max. The number of points per shell is considered as
a function of the shell radius, and is proportional to ¢%*. Possible values for alpha
in their study was {—2,—1,0,1,2}.

This is an interesting approach, as it is known that the condition number pro-
vides a good index of stability of the reconstruction. However the method to min-
imize the condition number is somehow disappointing: only a few predefined sam-
pling strategies are tested, with the hope that one of these strategies would provide
an optimal configuration. Besides, the angular aspect is omitted, and no particular
care is addressed to make the sampling directions different from one shell to another,
similarly as in Ye et al. [2012]. Finally, the authors chose to minimize the condition
number of the regularized matrix, that is the matrix HTH 4+ A\ L + AyN, where L
and N are angular and radial filters, respectively. Therefore the optimum strategy
would depend on the regularization weights, which is counter-intuitive. Similarly,
no study on the dependence on the choice of the scale factor ¢ of the SPF basis is
provided.

Summary of advantages and limitations of the optimal acquisition
strategy in parametric g-space imaging.

+ The sampling strategy is adapted to the reconstruction problem,

+ The condition number is reduced, as compared to naive approach,

— Angular coverage of the acquisition scheme is not investigated,

— No systematic method to minimize the condition number is provided,

— Effect of gnax not investigated.

5.4 Summary of the chapter

In this chapter, we have presented a review of state-of-the-art acquisition methods
and strategies developed in diffusion MRI. In the literature, different groups seem
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working on g-ball imaging seem to converge to the use of electrostatic-like repulsion
Jones et al. [1999a], Jansons and Alexander [2003], as it is the most flexible tool to
generate uniform point sets on the sphere, with antipodal symmetry. For multiple
shell acquisition, such a method has not been proposed yet, and we present in
Chapter 9 a general and flexible method for the construction of uniform point sets
on multiple shell.

Moreover, both for ¢-ball and g-space imaging, the approaches are either purely
geometrical, either purely driven to the best possible reconstruction of interest.
However we have seen for instance that the minimization of the condition number
[Skare et al., 2000] or the total variance [Papadakis et al., 1999] in diffusion tensor
imaging leads to non unique solution. In Chapter 9, we present a unifying frame-
work, that takes into account both the reconstruction problem, and the question of

angular uniformity.
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Overview

What are the parametric spaces of function to describe the diffusion signal in the
g-space? What kind of regularization can be proposed for a reconstruction ro-
bust to noise? In this chapter, we present a method for the reconstruction of the
diffusion attenuation in the whole g-space, with a special focus on continuity and
optimal regularization. We derive a modified Spherical Polar Fourier (mSPF) basis,
orthonormal and compatible with SPF (see Section 4.2.3), for the reconstruction
of a signal with continuity constraint. We also derive the expression of a Laplace
regularization operator in the basis, together with a method based on generalized
cross validation for the optimal choice of the parameter. Our method results in
a noticeable dimension reduction as compared with SPF. Tested on synthetic and
real data, the reconstruction with this method is more robust to noise and better

preserves fiber directions and crossings.

Keywords g¢-space imaging; parametric reconstruction; ensemble average propa-
gator; Laplace regularization; continuity constraint.

Organization of the chapter

We first shortly review the definition of the SPF basis, and we exhibit the sub-
space of continuous functions described in this basis, verifying E(0) = 1. We show
that this subspace is an affine subspace, and we provide a reconstruction method
through a novel basis, the mSPF basis, to directly estimate a signal with continuity
constraint. On the top of this method, we propose a Laplace regularization, which
is a classical operator in signal and image processing. Its expression in the mSPF
basis leads to a quadratic form of the coefficients, and can be efficiently added as
a penalization term to the least-squares estimation problem. Most mathematical
derivations are described in the appendices.

6.1 Introduction

In diffusion MRI, the acquisition and reconstruction of the signal attenuation on the
3D g-space allows reconstruction of the full probability of water molecules displace-
ment, known as the ensemble average propagator (EAP). The radial and angular
information contained in the EAP opens a wide range of applications, such as
the definition of new biomarkers [Cluskey and Ramsden, 2001, Piven et al., 1997],
or the characterization of axon diameters in the brain white matter [Assaf et al.,
2008, Ozarslan et al., 201 1]. The reconstruction techniques are based on the acqui-
sition of diffusion-sensitized MR signals, with the acquisition sequence described
in [Stejskal and Tanner, 1965], in which a pair of diffusion encoding magnetic field
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gradient are applied before and after the 180° pulse. There exists a Fourier relation
between the diffusion attenuation E(q) and the EAP

P(r) = , E(q)e ™ Td3q, (6.1)
R
where the wave vector q is directly related to the applied magnetic field gradient
pulse magnitude, direction, and duration.

The diffusion tensor [Basser et al., 1994b] is the first model historically pro-
posed to describe the EAP. Despite its wide acceptance into the research and
clinical communities, this model restricts the diffusion EAP within the family of
Gaussian probability density functions, and is limited for the description of com-
plex tissue structure. Since then, several models and methods were described
to extend the results of diffusion tensor, such as high angular resolution diffu-
sion imaging [Tuch, 2004a, Descoteaux et al., 2007b, Aganj et al., 2010a], or higher
order tensors [Ozarslan and Mareci, 2003]. Beyond these approaches, it is pos-
sible to reconstruct the model-free diffusion propagator, through Diffusion Spec-
trum Imaging (DSI) [Wedeen et al., 2005], Diffusion Propagator Imaging (DPI)
[Descoteaux et al., 2011], Diffusion Order Transform [Ozarslan et al., 2011] or re-
construction in Spherical Polar Fourier (SPF) basis [Assemlal et al., 2009b]. DSI
relies on the sampling of the diffusion signal on a regular Cartesian grid, and recon-
structs the EAP through fast Fourier transform. The main limitation of DSI is its
huge demand in acquisition time, and gradient pulse strength to fulfill the Nyquist
conditions [Callaghan, 1991b, Tuch, 2004a, Wedeen et al., 2005].

DPI [Descoteaux et al., 2011] is a more natural method to describe the diffusion
signal by a basis of functions solution to the 3D Laplace equation by parts. Though
this method enables analytical reconstruction of the diffusion propagator, it cannot
represent the diffusion signal in the whole g-space. Indeed, DPI represents the
signal using the 3D Laplace equation by part [Descoteaux et al., 2011]

Blgow) = 3[4 + dud] Vi), (62

Lm

where Y7, is the real, spherical harmonic function. The basis functions in DPI
diverge both for ¢ — 0 and ¢ — oo.

The SPF basis functions instead have a radial profile with a Gaussian-like decay,
which is similar to the commonly observed diffusion signal. Besides, it is possible to
recover the EAP [Cheng et al., 2010b] and the Orientation Distribution Function
(ODF) [Cheng et al., 2010a] from the coefficients of the signal reconstructed in the
SPF basis. The SPF basis is thus a unique, model-free approach for the recon-
struction of the full signal E, the estimation of EAP and its derived characteristics.
It has been introduced in [Assemlal et al., 2009b] together with a regularization
method to overcome ill-condition of the estimation problem.
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However, the definition of the 3D functions of the SPF basis makes use of the
parameterization q € R? = ¢-u, where ¢ € RT and u € §2. Near the origin, the
corresponding u is not unique, and we show in Section 6.2.1 that continuity problems
near the origin may arise if this parameterization is not used with care. Adding to
that, the regularization method introduced in [Assemlal et al., 2009b] is based on
a pair of empirical angular and radial low-pass filters. This regularization method
fully relies on the choice of the basis of functions. Besides, its implementation
requires to tune two separate regularization weights, which is impractical.

In this chapter, we present original and efficient solutions to solve all these im-
portant problems. First, we show that continuous functions reconstructed in the
classical SPF basis lie in an affine subspace which has a significantly reduced di-
mension. This means that the signal diffusion could be represented in this subspace
with less coefficients, leading to an estimation process with less measurements than
those required when representing the signal in the classical SPF basis. Second, we
propose a modified SPF (mSPF) basis, an orthonormal basis for this affine sub-
space, compatible with the SPF basis, but with reduced dimension and intrinsic
continuity near the origin. Thus, the signal reconstructed in the mSPF will sat-
isfy the important continuity constraint. Third, a Laplace regularization functional
in the mSPF basis is proposed and minimized for a robust reconstruction of the
diffusion signal. The method is analytical and ensures a fast implementation and re-
construction with continuity constraints. The Generalized Cross Validation method
is applied to find the unique optimal regularization weight between the regularity of
the solution and the data fit. Finally, synthetic and real data are used to illustrate
and validate the proposed method. In particular, better reconstruction results with
exact continuity constraints are obtained and illustrated in crossing fibers regions.

6.2 Theory

The Spherical Polar Fourier basis was recently introduced in [Assemlal et al., 2009b]
to reconstruct the diffusion signal in the complete 3D space. The functions B, p,
of this basis are defined as the product of a radial and an angular function

Bn,l,m(q : 11) = Rn(Q)Yi,m(u)' (6'3)

Y, is the real, symmetric spherical harmonic introduced in [Descoteaux et al.,
2006], and the radial function R, is reported below for the record

Ru(q) = knLY? (q—;> exp (—f> (6.4)

2 n!
= A\ B2+ 3/2) (6:5)
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where L%L/ % is the generalized Laguerre polynomial, and I' is the Gamma function
I'(z) = fooo t*~Le~tdt. We use Qn 1, to denote the linear space of functions spanned
by the truncated basis { By, jm,n < N, < L,|m| < l}. The choice of the scale factor
¢ can be related to the mean diffusivity of the measured data. Several strategies
were proposed in Assemlal et al. [2009b], here and throughout the experiments, we

retain
1
C - 87T2’7'D, (66)
where 7 is the diffusion time, and D is the mean diffusivity.
The SPF basis is orthonormal for the dot product
o) = [ Fastada (67

The construction of this basis was motivated by the need for a complete orthonor-
mal basis of antipodally symmetric and real functions. Besides, the radial profiles
R, have a quasi-Gaussian decay, so that even a low radial truncation order leads
to an accurate reconstruction and extrapolation beyond the sampling domain of
the diffusion weighted attenuation E(q). From the reconstruction of the signal in
this basis, we can estimate the EAP following Cheng et al. [2010b] and the ODF
following Cheng et al. [2010a].

However, a closer look at the functions B, ;,, near the origin reveals rapid
oscillations and a discontinuity. Moreover, by definition the value of the attenuation
FE is equal to 1 when q = 0, but there is nothing in the SPF basis to impose this.
In this chapter, we show that the subset of functions verifying these properties
of continuity and imposed value at the origin is an affine subspace of Qx . We
propose mSPF, an orthonormal basis for this subspace, and we give for convenience
the relation between this modified SPF (mSPF) basis and the SPF basis By, ;.
introduced in Assemlal et al. [2009Db].

We also derive the Laplacian regularization functional expression in the mSPF
basis, for a robust reconstruction of the diffusion signal. Indeed, the dimen-
sion of the basis grows rapidly with the angular and radial orders, and diffusion
weighted images have a very low SNR. For the reconstruction of a smooth func-
tion, the Laplacian operator is a commonly proposed approach for regularization
[Descoteaux et al., 2007b]. We derive the calculation of the Laplacian operator in
the mSPF basis. The method is analytical, which ensures a fast implementation
and reconstruction.

In this section, we use indifferently a notation with three indices for the bases
elements, such as B, ; ,,, or a notation with a simple index 4, convenient for matrix
notation. The link between both indexing systems is given by the functions n(i),
(i) and m(q).
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6.2.1 Continuity in Qy 1,

Theorem 1. A function f = Zn,l,m A 1,mBn.1,m of the SPF basis is continuous if
and only if
V1> 0,¥m| <1, anmRn(0) = 0. (6.8)
n

The proof of this theorem is detailed in Appendix 6.A. The linear constraint in
Eq. 6.8 imposes that the polynomial part of f;,, = >, an1mRy has no constant
term. This linear constraint can be imposed while estimating the coefficients by
constrained least squares estimation. Alternatively, we will derive a new basis of
functions to span the subspace of continuous functions. This approach greatly
simplifies the Laplace regularization formulation and implementation, as we show
in the next section.

In addition to this continuity constraint, we emphasize that the diffusion atten-
uation signal is defined as E(q) = S(q)/S(0), and therefore should verify

f(0) =1. (6.9)

The set of continuous functions in Qy ; verifying Eq. 6.9 is the solution of an
inhomogeneous linear equation, and therefore is an affine subspace of Q. This
affine space is fully characterized by an underlying linear subspace, and an origin. It
is underlain by Qg\,, 1. the kernel of the associated homogeneous equation f(0) = 0.
As for the origin of the affine subspace, we can choose any solution of Eq. 6.9. For
the sake of simplicity, we choose a simple Gaussian as the origin.

To sum up, any function f € Qy r verifying the continuity property, together
with the property f(0) =1 can be expressed as

2
f(q) =exp <—%> + Z T 1mCnim(Q), (6.10)
n,l,m

where {C), 1} is a basis of 99\7, 1» the subspace of continuous functions f in Qn y,
verifying f(0) = 0. In the remaining of this section, we give a construction for the
orthogonal basis {C}, jm}.

We first construct a basis of radial functions {F,,,n = 0... N}, expressed as

2 2 2
o= (£)en(£)

This verifies F},(0) = 0; the polynomials P, and the normalization constant x,, are
to determine, provided that the following orthogonality property is fulfilled

<Fnan>R3 = /OOO Fn(Q)Fp(Q)q2dq = 5n,p- (6'11)
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The substitution u = ¢%/¢ in Eq. 6.11 gives

oo 43/2 5/2 —u B
XnXm =5~ P (u)Py(u)u’ e du = oy, p. (6.12)
0

The generalized Laguerre polynomial L;:’L/ ? suits this orthogonality property. Finally
the modified radial basis functions are

¢ ¢\ _p
Fu(q) = xn?Liﬁ <?> e /%, (6.13)

and the normalization constant

2 n!
Xn = \/g3/2 T(n+7/2) (6.14)

The diffusion attenuation E(q)—exp(—||q||?/2¢) is reconstructed through the func-

tions

Cotn(a) = Falllall) Vi (ﬁ) | (6.15)

The family of functions {C}, jm, n =0...N —1,1=0...L, m = —l...1} is the
modified SPF (mSPF) basis, an orthonormal basis of (29\,7 I

The coefficients z,,;,, are estimated by minimization of the squared error crite-
rion ||y —Hx||?, where y is the vector of observations yx = E(qx)—exp(—||aqx||?/2¢)
measured at wave vectors qi. The observation matrix has entries

Hp i = Crga)i(),m() (di)-

This new space has a substantially reduced dimension: dim(Qy ) = (N +
1)- L(L + 1)/2, whereas dim(Q?V’L) = N-L(L + 1)/2. This dimension reduction
comes from the two systems of linear constraints of Eq. 6.8 (L(L 4+ 1)/2 — 1 equa-
tions), and Eq. 6.9 (1 equation). As an example, when the angular truncation order
L = 4 is used, the reconstruction in Q9V7 ;, requires 15 less coefficients, to represent
the same signal. This simplifies the implementation, reduces the demand in storage
capacity, and improves computational efficiency.

6.2.2 Link with the SPF basis

In this section we give the link between SPF and mSPF bases. This relation-
ship is useful as SPF [Assemlal et al., 2009b] is a now a state-of-the-art method
in diffusion MRI. We can therefore reconstruct the ensemble average propagator
(EAP) following Cheng et al. [2010b], the orientation distribution function (ODF')
following Cheng et al. [2010a], or the apparent fiber population dispersion follow-
ing Assemlal et al. [2011]. The SPF basis is built on Laguerre polynomials L?
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while we use L?L/ % in this chapter. Using the recurrence relations between Laguerre
polynomials detailed in [Abramowitz and Stegun, 1970, p. 783], we have:

n

Fle) =30 2 Rl - R ), (6.16)
i=0 T "

If the function f(q) = E(q) — exp(—||q||?/2¢) is expressed in this basis, f(q) =
> TnimCnim(a), then the coefficients a,,;,, of E in the SPF basis are obtained
by a = Mx + a’, where

3Xn()) . .
) <
ST n(i) < n(j)
Mij = 8019ty | — LX) n(i) = n(j) +1
Kn (i)
0 n(i) >n(j) +1

and a° = [V4r [k 00 ...|T, as exp(—||ql[*/2¢) = V4 /roBooo(q)-

M is the change-of-basis matrix from mSPF to SPF, two orthonormal bases.
Therefore, this matrix is orthogonal: the orthogonal projection of any function in
Q. 1, represented by its coefficients a in the SPF basis, onto the subspace Q9V7 1, has
coefficients x = MTa.

6.2.3 Laplace regularization in the mSPF basis

In this section, we propose to introduce a regularization term in the fitting proce-

dure. We choose as a regularization functional
Ux) = / |AEx(q)[* d’q, (6.17)
R3

where Ex(q) = exp(—||ak||?/2¢) + >, #:Ci(q) is the reconstructed signal. This
continuous operator is rotational invariant, and independent on the choice of a
specific basis. Besides, the Laplace operator was already applied successfully
for several applications ranging from natural image denoising [You and Kaveh,
2000, Chan and Shen, 2005] to the field of diffusion MRI, for signal reconstruction
[Descoteaux et al., 2007b, Koay et al., 2009b, Descoteaux et al., 2010].

We minimize ||y — Hx||? + A\U(x), where the observations are y, = F(qy) —
exp(—||ax|[?/2¢) and H is the observation matrix. In this section, we write the
Laplace penalization as a quadratic form

U(x) = (x = x0) " A(x = xq) + Up. (6.18)
Hence the penalized least squares has a unique minimum

x=x9+ (HH+ M) (y — Hx). (6.19)
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In what follows, we give explicit directions how to compute the matrix A and the
vector xg.
When Ex(q) —exp(—||qx||?/2¢) is expressed in the mSPF basis with coefficients

Ly
2
Ux) = /RS <Zm,~ACi(q)+Ae%2/2<> d3q (6.20)
i
2 | ACH(q) - Aellarll?/2643
+ Zx [ ACi(a)-Ae q

... (6.21)

The constant term is discarded since it plays no role in the minimization. Thus we
have the quadratic form of Eq. 6.18, where

Aij= | AGi(q)-AC)(q) d’q, (6.22)
and xg = A~ v, with
v = AC;(q) - A6*||Qk||2/24d3q (6.23)

RS

The Laplace operator A can be written in spherical coordinates, with the
Laplace-Beltrami operator Ay,

10
ACn,l,m(q u) = Xn (q—Qa—q(qQFé(q))Km(u)

0 A () (6:24)

Since the spherical harmonics are eigenfunctions of the Laplace-Beltrami operator
with eigenvalue —I(I + 1), we have
File) I+ 1)Fa(q)

ACy1,m(g ) = xn <F/{((J) +2 pa 2 )Yl,m(u) (6.25)

As the spherical harmonics form an orthonormal basis for the canonical dot product
on S2, the entries of the matrix A are

A= 5l(i),l(j)5m(i),m(j)/0 hi(q)hj(q) dg, (6.26)

where

1) (i) + 1)
hi = X <qF;L’(i) +2F) ) — —————F) | . (6.27)
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Similarly, the vector v has entries

e’} 3 2

¢ 3q q
i = 01().00m(i hi(g)- | = — — —— | dg. 6.28
v 1(3),0 (),0/0 (q) <C2 C)eXP< 2C> q ( )

The computation of the integrals in Eq. 6.26 and 6.28 is analytical and needs no
numerical integration. It is described in details in Appendix 6.B.

6.3 Material and methods

6.3.1 Optimal regularization parameters

We adopted the Generalized Cross Validation (GCV) algorithm [Craven and Wahba,
1985] to find the regularization weight A which guarantees the best balance between
the smoothness of the reconstruction, and the data fit. This algorithm, as well
as the L-curve method [Hansen, 2000], have already been applied successfully for
other applications in g-ball diffusion MRI [Koay et al., 2009b, Descoteaux et al.,
2010, 2007b]. The GCV method has the major advantage to be generalizable to
the situation where there is more than one \ parameter to optimize. It is the case
in [Assemlal et al., 2009b], where there are two regularization matrices N and L,
which act respectively as radial and angular low-pass filters, with corresponding
weights Ay and Agz.

The GCV method is based on a one-fold cross validation: among K samples,
we use K — 1 samples to fit the model parameters, and predict the K-th left-apart
sample. The process is repeated K times, and the mean prediction error is the
value we want to minimize. Fortunately, the mean prediction error, called the GCV

function, has a simple expression

[y —3l]?

GCV(\y) = K —Trsy) (6.29)
which makes this method very efficient. The matrix Sy = HHTH + AA)~'HT
is the smoother matrix, and y) = S,y. With the GCV method, it is possible to
adapt the regularization parameters to the data. However, there is no analytical
solution for the minimization of the GCV function and for computational efficiency,
we compute the optimal A\ parameters once. This choice is validated in the next

section, and results show it is indeed a good compromise.

6.3.2 Synthetic and real data

We simulate diffusion weighted measurements with a multi-compartment Gaussian

model
P

E(q) = Z wpexp(—277qT D,q), (6.30)
p=1
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where P € 1,2,3 is the number of compartments, w, is the relative compartment
size and D, the corresponding diffusion tensor. The diffusion weighted signal is cor-
rupted by Rician noise, with controlled variance parameter o. Using this diffusion
model locally, we created a synthetic diffusion field simulating a sin-shaped and a
straight fiber, crossing each other at 90°.

The wave vectors qi for synthesis are arranged on 3 shells, with the strategy
recently proposed in [Caruyer et al., 2011a,b]. In short, this method is a general-
ization of the electrostatic repulsion, introduced in [Jones et al., 1999b] for single
g-shell experiment design, to the multiple g-shell case.

The experiments on real data were carried out on the publicly available phantom
[Poupon et al., 2008a, Fillard et al., 2011] which served as the data for a tractogra-
phy contest, held at the DMFC MICCAI workshop, London (2009). The diffusion
signal was sampled on 3 g-shells, with b-values ranging from 650 to 2000 s-mm™2,
and 64 directions per shell.

For the experiments, we compare the diffusion signal, the ensemble aver-
age propagator (EAP) reconstructed from the SPF coefficients by the method
in [Cheng et al., 2010b], and the orientation distribution function (ODF) recon-
structed in constant solid angle, implementing the technique in [Cheng et al.,
2010a].

6.3.3 Exact and empirical continuity constraints

We presented in Section 6.2.1 a linear constraint to impose the continuity of the
reconstructed signal. An alternate solution proposed in [Cheng et al., 2010b] is to
artificially add P virtual data points qi,k = K + 1... P close to zero, verifying
E(qr) = 1. As P goes to infinity, it is possible to show that the solution of this
system tends to the exact solution [see Golub and Van Loan, 1983, pp. 410-412].
We study the convergence of this empirical continuity approach. As a measure of
discontinuity of the reconstructed signal E about 0, we define d(E) the difference
between extremal values of the set {lim,_ o+ E(qu),u € 8?}. We also compare the
relative difference between the solution cac of the least squares problem with ana-
lytical constraint, and the solution cgc(P) of the system with empirical constraint
with P virtual measurements.

6.4 Results and discussion

6.4.1 Continuity constraint

We compare the solution cyc and cgc(P), for a single Gaussian distribution. To
focus on the continuity constraint, we do not impose any other kind of regulariza-
tion. The signal is corrupted by Rician noise, with corresponding SNR = 25. An
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Ground truth No continuity Empirical constraint Strict continuity
signal constraint P=12 constraint
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Figure 6.1: Diffusion signal corresponding to a single fiber oriented along the x-
axis, reconstructed from 120 samples in the g-space. The signal is shown on the
(¢z, qy)-plane, and the grey levels correspond to signal range from 0.0 (white) to 1.0
(black). ¢ values are understood in mm~!. This illustrates the discontinuity at the
origin inherent to the SPF basis, and how the reconstruction in mSPF solves this

problem.

example of signal and its reconstruction is reported on Fig. 6.1.

We evaluate the difference of the signal reconstructed with exact continuity
constraint and with empirical constraint. We plot on Fig. 6.2 the relative squared
difference between the coefficients estimated with a strict continuity constraint, ¢ac,
and the coefficients estimated with an empirical continuity constraint, ¢gc. The
convergence is pretty fast, and P = 60 virtual measurements give good results. This
confirms the intuition in [Cheng et al., 2010b]; however the minimum number of
virtual measurements P for an acceptable accuracy heavily depends on the angular
order of the SPF basis, as reported on Fig. 6.2. This makes this empirical solution
impractical. Besides, discontinuity is not strictly imposed: as experimented and
reported on Fig. 6.3, the value of d(E) remains unacceptably high while we impose
the value on P = 150 virtual measurements.

6.4.2 Laplace regularization

Laplace regularization was implemented in the mSPF basis, and we compare it with
separate Laplace-Beltrami and radial low-pass filter, proposed in [Assemlal et al.,
2009b]. The GCV function is significantly lower for the optimal Laplace regulariza-
tion (Table 6.1). This result suggests that Laplace regularization is more suitable
than separate Laplace-Beltrami and radial low-pass filtering. Furthermore, the op-
timal Ay parameter does not vary much from one diffusion model to another. We

can therefore select a unique Ay parameter for the regularization of a whole volume.
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Figure 6.2: Relative difference between reconstruction with a strict continuity con-
straint, and reconstruction with a loose continuity constraint. Results on a synthetic
Gaussian diffusion signal, from K = 150 measurements on 3 ¢-shells, plus P virtual
measurements at q = 0, for various angular orders L of the SPF basis. Depending
on the radial order, the number of additional measurements needed for an accurate

reconstruction may become huge, and really impractical.
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Figure 6.3: Discontinuity, measured about the origin, of a synthetic Gaussian dif-
fusion signal, reconstructed from K measurements on 3 g¢-shells, plus P virtual
measurements at ¢ = 0. The discontinuity remains very high, even for a large
number of additional, virtual measurements (P = 150).
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1 fiber 2 fibers, 90° 2 fibers, 60°

AN, 40-1077,8.1-107 3.2-1077,1.2-107% 5.1-107%,5.5-1078

GCVY v 5.7-1071 3.4-1071 4.8-1071
AQ 1.6-1071 1.7-1071 2.4-1071
GCVY 5.3-1071 3.1-107¢ 4.2-1071

Table 6.1: Optimal A parameters and corresponding GCV minimum, for various
synthetic diffusion models. The sampling consists in 200 diffusion weighted mea-

—2. Radial and angular

surements on 3 g-shells, with a max b-value of 3000s - mm
orders were set to 5 and 6, respectively. 1st row: separate Laplace-Beltrami and

radial low-pass filter smoothing, 2nd row: Laplace regularization.

The regularization also impacts on the extrapolation capacity of the method.
Hardware limitations often restrict the sampling to a bounded region in the g-space.
Increasing the radial order of the mSPF basis will allow better signal reconstruction
within the sampled area of the g-space. It might however introduce undesirable
oscillations outside this area, as reported on Fig. 6.4, where the radial truncation
order was set to N = 5. Adding a regularization constraint greatly improves the
extrapolation of the diffusion signal. Laplace regularization performs slightly better
in this task, though a more complete study, involving real data and outside the scope
of this paper, should be carried out to further validate this.

We also compare the reconstruction with both regularization constraints on
our synthetic diffusion field in Fig. 6.5. Laplace regularization performs better in
crossing fiber regions, and the results show better directional coherence. Besides,
in isotropic regions, the reconstructed ODFs have a smoother profile than with
separate Laplace-Beltrami and radial filtering.

Similar results are obtained on the real data experiment, depicted on Fig. 6.6.
We have overlaid the ground truth fiber orientations, as provided by Fillard et al.
[2011]. The reconstruction results with optimal Laplace regularization show slighly
sharper EAP and ODF profiles. We acknowledge that the reconstruction of this
dataset was very challenging, due to the low anisotropy of the signal.

6.5 Conclusions

We have proposed a novel orthonormal basis for the reconstruction of the diffusion
signal in the complete 3D g-space, based on Gaussian-Laguerre functions. This
new method enables the reconstruction of a continuous signal, with known value
at the origin. This mathematical constraint results in a dimension reduction with
respect to the SPF basis, and a better reconstruction of the diffusion signal at the
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Figure 6.4: Reconstruction and extrapolation of a diffusion signal, for a Gaussian
diffusion model, from 120 measurements on 3 g-shells. We plot the reconstructed
(solid lines) and ground truth (dashed lines) radial profiles of the signal on se-
lected lines in the g-space. The maximum ¢ value of the sampling scheme was
set to 60mm ™!, the hatched area represents the no-sample area. We compare the
reconstruction without regularization, with separate Laplace-Beltrami and radial
filter, and with Laplace regularization. Laplace regularization performs better in
smoothing radial profiles, and we avoid oscillations outside the sampling area.

same sampling rate. This also greatly simplifies the reconstruction method, and
reduces the associated computational cost as the continuity constraint is naturally
imposed. The mSPF basis is presented with its linear relation to the SPF basis for
convenience, so that the methods of SPF imaging directly transpose to mSPF.
We also derive a regularization functional based on the Laplace operator, to-
gether with its analytical expression in the mSPF basis. This is shown to be mathe-
matically and practically better than separate Laplace-Beltrami and radial low-pass
filtering. The experiments on simulations and real data show good results, for the
reconstruction and extrapolation of the radial profile. The angular profile recon-
struction is more robust to noise, and better detection of fiber crossing is reported.

Summary of the contributions of this chapter

e Continuous signal representation in a modified Spherical Polar Fourier (SPF)
basis.

Dimension reduction with respect to conventional SPF basis.

Analytical Laplace regularization for a robust reconstruction.

Optimal regularization weight through generalized cross validation.
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Figure 6.5: Reconstruction of a diffusion propagator field, from 120 measurements
on 3 shells (max b-value was 3000s - mm~2). We compare the diffusion EAP profile
(top row) P(rou), for ro = 15um, and the diffusion ODF ¢ (u) (bottom row). Fiber
crossing are better resolved with Laplace regularization, and isotropic regions are
smoother.
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Figure 6.6: Diffusion ODF and EAP profiles reconstructed from the diffusion MRI
data of the fiber cup. Zooms on crossing regions A and B are displayed. Within
each block: EAP profile P(rgu), for ro = 17um (top row) and diffusion ODF recon-
structed in constant solid angle ¥ (u) (bottom row). The left column corresponds
to a reconstruction with separate angular and radial low-pass filters, while the right
column is the reconstruction with Laplace regularization. The EAP profiles and
ODF reconstructed with Laplace regularization are somehow sharper in crossing

regions.



100 CHAPTER 6. SIGNAL REGULARITY AND CONTINUITY

e Validation on simulations and real experimental data.

6.A Necessary and sufficient condition for continuity

In this appendix, we give a proof of Theorem 1, relative to the continuity of a

function f € Qy 1, expressed as a sum of SPF functions.

6.A.1 Necessary condition

A necessary condition for the continuity of the function f is that the restriction of
f to any line in R must be continuous about 0. For u € S? and ¢ € R, we note
fu(q) = f(qu) the restriction of f to the line of direction u.

Jim fu(0) = fu(0) = /(0 (6:31)
= Z an,l,mRn(O)}/l,m(u) = f(O) (6'32)
n,l,m
N
= ) (Z an,,,mRn(0)> Yim(u) = £(0). (6.33)
ly,m \n=0

Eq. 6.33 must hold for any u € S2. The left hand part is written as a sum of

spherical harmonic functions, while the right hand part does not depend on u.
The only constant function in the Spherical Harmonics basis is Yy 9. Hence all

the spherical harmonic coefficients in Eq. 6.33 must be zero, except for [ = m = 0.

N
V1> 0,¥ms. bt [m| <1, animBa(0) =0 (6.34)

n=0

6.A.2 Sufficient condition

Now we show that if the necessary condition in Eq. 6.34 is met, then the function
f is continuous about 0. We can write f as a finite sum of functions f;,, =
Y on OntmBnim- If we prove the continuity of f,,, for any 0 < [ < L and any
—1 < m <, then by linearity we prove the continuity of f.

The continuity of fog is direct, as the Gauss-Laguerre functions are continuous
and Y{q is constant. Next, we consider 0 < [ < L and —I < m < [. By continuity
of R, we can write Ve’ > 0,3a > 0 such that

N
gl <= | animBa(q)]| <€ (6.35)
n=0
This is true for € = €/||Y] n||oc. Besides,
Y,
Yu e $2, Fim(w] 1, (6.36)

[1¥2mlloo
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hence

Vue S% gl < a= (6.37)

N

YZ u €
> animBn(q) s (W)l < .
=0 Yimllo  [[Yimlloo

(6.38)

This proves the continuity of f; ,, about 0, and by linearity the continuity of f.

6.B Laplace regularization matrix

In this appendix, we derive the general expression of the Laplace regularization
matrix A in the mSPF basis. The entries of the matrix A are

A;j = 6l(z‘),l(j)5m(i),m(j)/0 hi(q)h;(q) dg, (6.39)

where
hz:Xn(z) < ,/()+2F,()

The function h; can be written as

2
hi(q) = Xn(i)% exp ( 2<> n(i) () <q< > : (6.41)

where G,,; = >, gZ’le is a polynomial. It is hard to express the coefficients

W) e

gZ’l in a compact form. Instead of manually deriving these coefficients, we compute
them using polynomial algebra facilities, provided in the SciPy library [Jones et al.,
2001] in Python™. The coefficients gg’l are algebraically computed on demand as
it involves simple operation on polynomials: derivation and addition. The first
coefficients are given in Table 6.B for convenience.

Hence the integrand h;(q)h;(¢q) can be written as

. . 2 2
hi(q)h;(q) = w exp (—%) T; (%) (6.42)

where T; ;(X) is the polynomial X G,y () (X )Gn(jy,1(j)(X)- The coefficients ai’j of
T} ; are simply obtained from the coefficients of G,,;y ;) and G,,(;)(;)- Therefore,
the entries of the regularization matrix are

o\ k
Ay = Xn(J Za / exp(—¢*/¢) <q?> dg

Xn(i) Xn(j)

f Zakﬂr (k+1/2). (6.43)
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