Caractérisation des exoplanètes par imagerie depuis le sol et l'espace : Application à la mission SPICES et à l'instrument VLT/NaCo

Anne-Lise Maire

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

Directeurs de thèse : Anthony Boccaletti Vincent Coudé du Foresto

16 octobre 2012

Partenariat Haute résolution Angulaire Sol-Espace

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

Plan de la présentation

- Contexte
 - Les exoplanètes
 - Caractérisations physique et atmosphérique
 - Imagerie directe
- Simulations numériques des performances de la mission SPICES
 - Contexte et objectifs du travail
 - Simulation du concept instrumental
 - Performances en détection
 - Performances en caractérisation
- Analyse de données d'imagerie VLT/NaCo
 - L'instrument VLT/NaCo et le programme d'observation
 - Réduction des données
 - Limites de sensibilité ADI
 - Limites de sensibilité SDI+ADI
- Conclusions & Perspectives
 - Conclusions
 - Perspectives

Simulations numériques des performances de la mission SPICES Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives Les exoplanètes Caractérisations physique et atmosphérique magerie directe

Plan de la présentation

- Contexte
 - Les exoplanètes
 - Caractérisations physique et atmosphérique
 - Imagerie directe
- 2 Simulations numériques des performances de la mission SPICES
 - Contexte et objectifs du travail
 - Simulation du concept instrumental
 - Performances en détection
 - Performances en caractérisation
- 3 Analyse de données d'imagerie VLT/NaCo
 - L'instrument VLT/NaCo et le programme d'observation
 - Réduction des données
 - Limites de sensibilité ADI
 - Limites de sensibilité SDI+ADI
 - Conclusions & Perspectives
 - Conclusions
 - Perspectives

Simulations numériques des performances de la mission SPICES Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives Les exoplanètes Caractérisations physique et atmosphériq Imagerie directe

Plan de la présentation

Contexte

Les exoplanètes

- Caractérisations physique et atmosphérique
- Imagerie directe
- 2 Simulations numériques des performances de la mission SPICES
 - Contexte et objectifs du travail
 - Simulation du concept instrumental
 - Performances en détection
 - Performances en caractérisation
- 3 Analyse de données d'imagerie VLT/NaCo
 - L'instrument VLT/NaCo et le programme d'observation
 - Réduction des données
 - Limites de sensibilité ADI
 - Limites de sensibilité SDI+ADI
 - Conclusions & Perspectives
 - Conclusions
 - Perspectives

Simulations numériques des performances de la mission SPICES Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives Les exoplanètes

Pourquoi étudier les exoplanètes?

Formation et évolution planétaires

- Avant les exoplanètes → système solaire
- Depuis 1995 : Jupiters chauds, planètes en orbite excentrique, planètes autour de pulsars, planètes dans des systèmes binaires, super-Terres, etc

Simulations numériques des performances de la mission SPICES Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives Les exoplanètes Caractérisations physique et atmosphérique Imagerie directe

Pourquoi étudier les exoplanètes ?

Formation et évolution planétaires

- $\bullet~$ Avant les exoplanètes $\rightarrow~$ système solaire
- Depuis 1995 : Jupiters chauds, planètes en orbite excentrique, planètes autour de pulsars, planètes dans des systèmes binaires, super-Terres, etc
- Conditions d'apparition et de développement de la vie
 - zone habitable, biosignatures (Kasting et al. 1993, Des Marais et al. 2002)

Simulations numériques des performances de la mission SPICES Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives

Caractérisations physique et atmosphérique Imagerie directe

Les exoplanètes

Simulations numériques des performances de la mission SPICES Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives

Caractérisations physique et atmosphérique Imagerie directe

Les exoplanètes

Simulations numériques des performances de la mission SPICES Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives

Caractérisations physique et atmosphérique Imagerie directe

Les exoplanètes

Simulations numériques des performances de la mission SPICES Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives Les exoplanètes Caractérisations physique et atmosphérique Imagerie directe

Simulations numériques des performances de la mission SPICES Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives

Caractérisations physique et atmosphérique Imagerie directe

Les exoplanètes

Simulations numériques des performances de la mission SPICES Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives Les exoplanètes Caractérisations physique et atmosphérique Imagerie directe

Plan de la présentation

- Contexte
 - Les exoplanètes
 - Caractérisations physique et atmosphérique
 - Imagerie directe
- 2 Simulations numériques des performances de la mission SPICES
 - Contexte et objectifs du travail
 - Simulation du concept instrumental
 - Performances en détection
 - Performances en caractérisation
- 3 Analyse de données d'imagerie VLT/NaCo
 - L'instrument VLT/NaCo et le programme d'observation
 - Réduction des données
 - Limites de sensibilité ADI
 - Limites de sensibilité SDI+ADI
 - Conclusions & Perspectives
 - Conclusions
 - Perspectives

Simulations numériques des performances de la mission SPICES Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives Les exoplanètes Caractérisations physique et atmosphérique Imagerie directe

Caractérisations physique et atmosphérique

- Caractérisation physique
 - Masse, période orbitale, excentricité, inclinaison, rayon, densité
- Caractérisation atmosphérique
 - Spectro-photométrie → température, molécules, structure verticale (nuages, brumes), échappement

Soutenance de thèse

Anne-Lise Maire

Simulations numériques des performances de la mission SPICES Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives Les exoplanètes Caractérisations physique et atmosphérique Imagerie directe

Plan de la présentation

- Contexte
 - Les exoplanètes
 - Caractérisations physique et atmosphérique
 - Imagerie directe
- 2 Simulations numériques des performances de la mission SPICES
 - Contexte et objectifs du travail
 - Simulation du concept instrumental
 - Performances en détection
 - Performances en caractérisation
- 3 Analyse de données d'imagerie VLT/NaCo
 - L'instrument VLT/NaCo et le programme d'observation
 - Réduction des données
 - Limites de sensibilité ADI
 - Limites de sensibilité SDI+ADI
 - Conclusions & Perspectives
 - Conclusions
 - Perspectives

Simulations numériques des performances de la mission SPICES Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives Les exoplanètes Caractérisations physique et atmosphérique Imagerie directe

Imagerie directe

• Haut contraste à petite séparation angulaire

Simulations numériques des performances de la mission SPICES Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives Les exoplanètes Caractérisations physique et atmosphérique Imagerie directe

Imagerie directe

• Haut contraste à petite séparation angulaire

Simulations numériques des performances de la mission SPICES Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives Les exoplanètes Caractérisations physique et atmosphérique Imagerie directe

Bruit de photon

• Coronographie

- coronographes d'amplitude, coronographes de phase, apodiseurs, occulteurs
- → coronographe à quatre quadrants (Rouan et al. 2000)
- → coronographe vortex (Mawet et al. 2005)

Anne-Lise Maire Soutenance de thèse

Simulations numériques des performances de la mission SPICES Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives Les exoplanètes Caractérisations physique et atmosphérique Imagerie directe

Bruit de photon

• Coronographie

- coronographes d'amplitude, coronographes de phase, apodiseurs, occulteurs
- → coronographe à quatre quadrants (Rouan et al. 2000)
- → coronographe vortex (Mawet et al. 2005)

Anne-Lise Maire Soutenance de thèse

Simulations numériques des performances de la mission SPICES Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives Les exoplanètes Caractérisations physique et atmosphérique Imagerie directe

Bruit de photon

• Coronographie

- coronographes d'amplitude, coronographes de phase, apodiseurs, occulteurs
- → coronographe à quatre quadrants (Rouan et al. 2000)
- \rightarrow coronographe vortex (Mawet et al. 2005)

Résidus stellaires

Simulations numériques des performances de la mission SPICES Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives Les exoplanètes Caractérisations physique et atmosphérique Imagerie directe

Bruit de speckles

- Aval → Imagerie différentielle (Racine et al. 1999, Kuhn et al. 2001, Sparks & Ford 2002, Marois et al. 2006, Baudoz et al. 2006)
- Amont \rightarrow Contrôle de front d'onde (Babcock 1953, Malbet et al. 1995)

contrôle de front d'onde

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Plan de la présentation

- Contexte
 - Les exoplanètes
 - Caractérisations physique et atmosphérique
 - Imagerie directe
- Simulations numériques des performances de la mission SPICES
 - Contexte et objectifs du travail
 - Simulation du concept instrumental
 - Performances en détection
 - Performances en caractérisation
- 3 Analyse de données d'imagerie VLT/NaCo
 - L'instrument VLT/NaCo et le programme d'observation
 - Réduction des données
 - Limites de sensibilité ADI
 - Limites de sensibilité SDI+ADI
 - Conclusions & Perspectives
 - Conclusions
 - Perspectives

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Plan de la présentation

- Contexte
 - Les exoplanètes
 - Caractérisations physique et atmosphérique
 - Imagerie directe

Simulations numériques des performances de la mission SPICES

• Contexte et objectifs du travail

- Simulation du concept instrumental
- Performances en détection
- Performances en caractérisation
- 3 Analyse de données d'imagerie VLT/NaCo
 - L'instrument VLT/NaCo et le programme d'observation
 - Réduction des données
 - Limites de sensibilité ADI
 - Limites de sensibilité SDI+ADI
 - Conclusions & Perspectives
 - Conclusions
 - Perspectives

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Contexte et objectifs du travail

- SPICES (Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems)
 - Coronographe visible 1,5 m de diamètre P.I. : A. Boccaletti
 - Proposition ESA Cosmic Vision M3 en 2010
 - Consortium international 70 membres
 - Analyse spectro-polarimétrique exoplanètes froides et disques circumstellaires ≳1 zodi → contrastes 10⁻⁹−10⁻¹⁰ à ~0,2"
- Objectifs du travail
 - Spécifications hauts niveaux
 - Performances spectrométriques

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Étude des performances

• 2 manières d'aborder le problème Spectres théoriques

Modèles de Cahoy et al. (2010)

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Étude des performances

• 2 manières d'aborder le problème Spectres théoriques

Modèles de Cahoy et al. (2010)

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Étude des performances

• 2 manières d'aborder le problème Spectres théoriques

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Étude des performances

• 2 manières d'aborder le problème Spectres théoriques

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Étude des performances

Spectres théoriques

• 2 manières d'aborder le problème

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Étude des performances

• 2 manières d'aborder le problème

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Étude des performances

• 2 manières d'aborder le problème

Nécessaire de dépasser ces deux approches !

Anne-Lise Maire

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Plan de la présentation

- Contexte
 - Les exoplanètes
 - Caractérisations physique et atmosphérique
 - Imagerie directe
- Simulations numériques des performances de la mission SPICES
 - Contexte et objectifs du travail

• Simulation du concept instrumental

- Performances en détection
- Performances en caractérisation
- 3 Analyse de données d'imagerie VLT/NaCo
 - L'instrument VLT/NaCo et le programme d'observation
 - Réduction des données
 - Limites de sensibilité ADI
 - Limites de sensibilité SDI+ADI
 - Conclusions & Perspectives
 - Conclusions
 - Perspectives

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Les débuts de SPICES...

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Les débuts de SPICES...

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Code de simulation instrumentale

- Aberrations
- Chromaticité
- Planète(s)
- ✓ Lumière zodiacale
- Nuage exozodiacal (librairie Zodipic)
- Estimation parfaite aberrations
- Projection miroir déformable
- Bruit de photon
- Bruit de lecture
- Réponse pixels détecteur

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Spécifications hauts niveaux (contrastes 10⁻⁹-10⁻¹⁰ à ~0,2")

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Système de contrôle de front d'onde?

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Système de contrôle de front d'onde?

 Seul couplage vortex + miroir déformable + imagerie différentielle vérifie contraintes SPICES

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Plan de la présentation

- Contexte
 - Les exoplanètes
 - Caractérisations physique et atmosphérique
 - Imagerie directe
- Simulations numériques des performances de la mission SPICES
 - Contexte et objectifs du travail
 - Simulation du concept instrumental

Performances en détection

- Performances en caractérisation
- 3 Analyse de données d'imagerie VLT/NaCo
 - L'instrument VLT/NaCo et le programme d'observation
 - Réduction des données
 - Limites de sensibilité ADI
 - Limites de sensibilité SDI+ADI
 - Conclusions & Perspectives
 - Conclusions
 - Perspectives

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Sensibilité à l'intensité du nuage exozodiacal

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Sensibilité à l'intensité du nuage exozodiacal

 Étalonnage flux nuage exozodiacal même pour 1 zodi → hypothèse étalonnage parfait (au bruit de photon près)

• Cibles SPICES \rightarrow nuages quelques 10 zodis

Contexte et objectifs du travail Simulation du concept instrumental **Performances en détection** Performances en caractérisation

Flux thermique vs. flux réfléchi

- Flux thermique \rightarrow modèle \sim indépendant séparation étoile-planète
- Flux réfléchi → structure dépend séparation étoile-planète
- Modèles planète pour séparations discrètes et étoile type solaire
 - \rightarrow conservation flux pour autres types stellaires

• Modèles Terre 1 UA \rightarrow flux \propto albédo/séparation^2 entre 1–3 UA

Contexte et objectifs du travail Simulation du concept instrumental **Performances en détection** Performances en caractérisation

Sensibilité au type stellaire

Maire et al. (2012)

- Étoiles $G2 \lesssim 10 \text{ pc} \rightarrow 24 \text{ étoiles } G$
- Étoiles M0 \lesssim 7,5 pc \rightarrow ~ 100 étoiles M

(simbad.u-strasbg.fr)

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Plan de la présentation

- Contexte
 - Les exoplanètes
 - Caractérisations physique et atmosphérique
 - Imagerie directe

Simulations numériques des performances de la mission SPICES

- Contexte et objectifs du travail
- Simulation du concept instrumental
- Performances en détection
- Performances en caractérisation
- 3 Analyse de données d'imagerie VLT/NaCo
 - L'instrument VLT/NaCo et le programme d'observation
 - Réduction des données
 - Limites de sensibilité ADI
 - Limites de sensibilité SDI+ADI
 - Conclusions & Perspectives
 - Conclusions
 - Perspectives

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Critère de caractérisation

• Rapport signal à bruit tel que différences entre 2 spectres planétaires détectées à N fois bruit de mesure ?

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Critère de caractérisation

 Rapport signal à bruit tel que différences entre 2 spectres planétaires détectées à N fois bruit de mesure ?
N – 10

Planète	Paramètre	RSB _r	
Jupiter	0,8/2 UA	15	
Jupiter 0,8 UA	métallicité 1/3 \times	30	
Jupiter 2 UA	métallicité 1/3 $ imes$	30	
Jupiter 5 UA	métallicité 1/3 $ imes$	30	
Neptune	0,8/2 UA	15	
Neptune 0,8 UA	métallicité 10/30 $ imes$	30	
Neptune 2 UA	métallicité 10/30 $ imes$	25	
Terre couverte de forêts	0/50/100% nuages	25	
Terre couverte d'océans	0/50/100% nuages	25	
Terre sans nuages	0/50/100% forêts	12	
Terre nuageuse à 50%	0/50/100% forêts	30	
Terre nuageuse à 100%	0/50/100% forêts	220	

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Critère de caractérisation

 Rapport signal à bruit tel que différences entre 2 spectres planétaires détectées à N fois bruit de mesure ?
N – 10

	Planète	Paramètre	RSB _r
×	Jupiter	0,8/2 UA	15
	Jupiter 0,8 UA	métallicité 1/3 \times	30
×	Jupiter 2 UA	métallicité 1/3 $ imes$	30
	Jupiter 5 UA	métallicité 1/3 $ imes$	30
×	Neptune	0,8/2 UA	15
	Neptune 0,8 UA	métallicité 10/30 $ imes$	30
×	Neptune 2 UA	métallicité 10/30 $ imes$	25
×	Terre couverte de forêts	0/50/100% nuages	25
	Terre couverte d'océans	0/50/100% nuages	25
	Terre sans nuages	0/50/100% forêts	12
×	Terre nuageuse à 50%	0/50/100% forêts	30
	Terre nuageuse à 100%	0/50/100% forêts	220

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Planètes géantes gazeuses

Mesures pour tous systèmes étoiles G2 discernables angulairement

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Planètes géantes glacées

- Diffusion Rayleigh mesurable pour toutes cibles discernables angulairement
- Facteurs métallicité \geq 3 analysables pour cibles \leq 6 pc

Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Super-Terres

Maire et al. (2012)

- Nuages planètes forêts \rightarrow toutes cibles discernables angulairement
- Surface planètes 50% nuages \rightarrow distances \leq 4 pc

⁻planet/Fstar

Simulations numériques des performances de la mission SPICES Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives Contexte et objectifs du travail Simulation du concept instrumental Performances en détection Performances en caractérisation

Cibles potentielles

L'instrument VLT/NaCo et le programme d'observation Réduction des données Limites de sensibilité ADI Limites de sensibilité SDI+ADI

Plan de la présentation

- Contexte
 - Les exoplanètes
 - Caractérisations physique et atmosphérique
 - Imagerie directe
- 2 Simulations numériques des performances de la mission SPICES
 - Contexte et objectifs du travail
 - Simulation du concept instrumental
 - Performances en détection
 - Performances en caractérisation

Analyse de données d'imagerie VLT/NaCo

- L'instrument VLT/NaCo et le programme d'observation
- Réduction des données
- Limites de sensibilité ADI
- Limites de sensibilité SDI+ADI
- Conclusions & Perspectives
 - Conclusions
 - Perspectives

L'instrument VLT/NaCo et le programme d'observation Réduction des données Limites de sensibilité ADI Limites de sensibilité SDI+ADI

Plan de la présentation

- Contexte
 - Les exoplanètes
 - Caractérisations physique et atmosphérique
 - Imagerie directe
- 2 Simulations numériques des performances de la mission SPICES
 - Contexte et objectifs du travail
 - Simulation du concept instrumental
 - Performances en détection
 - Performances en caractérisation
- Analyse de données d'imagerie VLT/NaCo
 - L'instrument VLT/NaCo et le programme d'observation
 - Réduction des données
 - Limites de sensibilité ADI
 - Limites de sensibilité SDI+ADI
- Conclusions & Perspectives
 - Conclusions
 - Perspectives

L'instrument VLT/NaCo et le programme d'observation Réduction des données Limites de sensibilité ADI Limites de sensibilité SDI+ADI

L'instrument VLT/NaCo

- $\bullet \ NaCo \rightarrow depuis \ 2001$
 - Optique adaptative NAOS + caméra IR CONICA
 - Imagerie, spectroscopie, etc + filtres spectraux
 - Exoplanètes :
 - ✓ coronographe quatre quadrants (FQPM)
 - imagerie différentielle angulaire &
 - spectrale (ADI & SDI)
 - \rightarrow modes combinés dans SPHERE (2013)

L'instrument VLT/NaCo et le programme d'observation Réduction des données Limites de sensibilité ADI Limites de sensibilité SDI+ADI

L'instrument VLT/NaCo

- $\bullet \ \textbf{NaCo} \rightarrow \textbf{depuis 2001}$
 - Optique adaptative NAOS + caméra IR CONICA
 - Imagerie, spectroscopie, etc + filtres spectraux
 - Exoplanètes :
 - ✓ coronographe quatre quadrants (FQPM)
 - imagerie différentielle angulaire &
 - spectrale (ADI & SDI)
 - \rightarrow modes combinés dans SPHERE (2013)

- 1 Détecter planètes géantes jeunes (\lesssim 200 Ma) étoiles proches (\lesssim 25 pc)
- 2 Préparer analyse et interprétation données SDI SPHERE

L'instrument VLT/NaCo et le programme d'observation Réduction des données Limites de sensibilité ADI Limites de sensibilité SDI+ADI

ADI (Marois et al. 2006)

- Imagerie différentielle = soustraire image étoile seule
- Angulaire = rotation champ de vue

L'instrument VLT/NaCo et le programme d'observation Réduction des données Limites de sensibilité ADI Limites de sensibilité SDI+ADI

SDI (Racine et al. 1999)

- Imagerie différentielle = soustraire image étoile seule
- Spectrale = différences spectres étoile-planète \rightarrow planète = objet froid
 - ightarrow bandes CH₄ \sim 1,6 μ m pour T \lesssim 1300 K

Anne-Lise Maire

L'instrument VLT/NaCo et le programme d'observation Réduction des données Limites de sensibilité ADI Limites de sensibilité SDI+ADI

Pourquoi combiner FQPM+SDI+ADI?

- Chercher compagnons faibles proches d'étoiles
 - Bruit de photon → coronographie
 - Bruit de *speckles* → imagerie différentielle
 - Limitation ADI : speckles non statiques
 - Une solution :
 - 1 SDI → speckles "rapides" + "lents"
 - 2 ADI → speckles "lents"

L'instrument VLT/NaCo et le programme d'observation Réduction des données Limites de sensibilité ADI Limites de sensibilité SDI+ADI

Pourquoi combiner FQPM+SDI+ADI?

- Chercher compagnons faibles proches d'étoiles
 - Bruit de photon \rightarrow coronographie
 - Bruit de *speckles* → imagerie différentielle
 - Limitation ADI : speckles non statiques
 - Une solution :
 - 1 SDI → speckles "rapides" + "lents"
 - 2 ADI → speckles "lents"

3 - Rechercher planètes séparations proches $\rightarrow \sim 5\text{--}10$ UA

L'instrument VLT/NaCo et le programme d'observation Réduction des données Limites de sensibilité ADI Limites de sensibilité ADI

Plan de la présentation

- Contexte
 - Les exoplanètes
 - Caractérisations physique et atmosphérique
 - Imagerie directe
- 2 Simulations numériques des performances de la mission SPICES
 - Contexte et objectifs du travail
 - Simulation du concept instrumental
 - Performances en détection
 - Performances en caractérisation
- 3 Analyse de données d'imagerie VLT/NaCo
 - L'instrument VLT/NaCo et le programme d'observation

Réduction des données

- Limites de sensibilité ADI
- Limites de sensibilité SDI+ADI
- Conclusions & Perspectives
 - Conclusions
 - Perspectives

Simulations numériques des performances de la mission SPICES

Analyse de données d'imagerie VLT/NaCo

Conclusions & Perspectives

L'instrument VLT/NaCo et le programme d'observation Réduction des données Limites de sensibilité ADI Limites de sensibilité SDI+ADI

Propriétés des étoiles observées

L'instrument VLT/NaCo et le programme d'observation Réduction des données Limites de sensibilité ADI Limites de sensibilité SDI+ADI

Chaîne de réduction des données

- Pré-traitement
 - Pixels morts
 - Réponse éléments optiques
 - Sélection
 - Co-addition
 - Fond de ciel
 - Sélection
 - Séparation λ
 - Recentrage
- Imagerie différentielle
 - Algorithme SDI
 - Algorithme ADI
 - Niveau de détection
 - Atténuation points sources hors-axe

L'instrument VLT/NaCo et le programme d'observation Réduction des données Limites de sensibilité ADI Limites de sensibilité SDI+ADI

Chaîne de réduction des données

- Pré-traitement
 - Pixels morts
 - Réponse éléments optiques
 - Sélection
 - Co-addition
 - Fond de ciel
 - Sélection
 - Séparation λ
 - Recentrage
- Imagerie différentielle
 - Algorithme SDI
 - Algorithme ADI
 - Niveau de détection
 - Atténuation points sources hors-axe

L'instrument VLT/NaCo et le programme d'observation Réduction des données Limites de sensibilité ADI Limites de sensibilité SDI+ADI

Chaîne de réduction des données

- Pré-traitement
 - Pixels morts
 - Réponse éléments optiques
 - Sélection
 - Co-addition
 - Fond de ciel
 - Sélection
 - Séparation λ
 - Recentrage
- Imagerie différentielle
 - Algorithme SDI
 - Algorithme ADI
 - Niveau de détection
 - Atténuation points sources hors-axe

Sélection 2 étapes

- 1 Optique adaptative (semi-)ouverte
- 2 Statistique flux

L'instrument VLT/NaCo et le programme d'observation Réduction des données Limites de sensibilité ADI Limites de sensibilité SDI+ADI

Chaîne de réduction des données

- Pré-traitement
 - Pixels morts
 - Réponse éléments optiques
 - Sélection
 - Co-addition
 - Fond de ciel
 - Sélection
 - Séparation λ
 - Recentrage
- Imagerie différentielle
 - Algorithme SDI
 - Algorithme ADI
 - Niveau de détection
 - Atténuation points sources hors-axe

Critères de recentrage

- \rightarrow Seuillage
- \rightarrow Forme zone de calcul
- \rightarrow Araignées télescope

L'instrument VLT/NaCo et le programme d'observation Réduction des données Limites de sensibilité ADI Limites de sensibilité SDI+ADI

Chaîne de réduction des données

- Pré-traitement
 - Pixels morts
 - Réponse éléments optiques
 - Sélection
 - Co-addition
 - Fond de ciel
 - Sélection
 - Séparation λ
 - Recentrage
- Imagerie différentielle
 - Algorithme SDI
 - Algorithme ADI
 - Niveau de détection
 - Atténuation points sources hors-axe

Algorithmes SDI

L'instrument VLT/NaCo et le programme d'observation Réduction des données Limites de sensibilité ADI Limites de sensibilité SDI+ADI

Plan de la présentation

- Contexte
 - Les exoplanètes
 - Caractérisations physique et atmosphérique
 - Imagerie directe
- 2 Simulations numériques des performances de la mission SPICES
 - Contexte et objectifs du travail
 - Simulation du concept instrumental
 - Performances en détection
 - Performances en caractérisation

Analyse de données d'imagerie VLT/NaCo

- L'instrument VLT/NaCo et le programme d'observation
- Réduction des données
- Limites de sensibilité ADI
- Limites de sensibilité SDI+ADI
- Conclusions & Perspectives
 - Conclusions
 - Perspectives

Simulations numériques des performances de la mission SPICES

Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives L'instrument VLT/NaCo et le programme d'observation Réduction des données Limites de sensibilité ADI Limites de sensibilité SDI+ADI

Niveaux de détection à 5 σ

Simulations numériques des performances de la mission SPICES

Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives L'instrument VLT/NaCo et le programme d'observatior Réduction des données Limites de sensibilité ADI Limites de sensibilité SDI+ADI

Température effective de compagnons détectables

Modèles BT-SETTL (Allard et al. 2010)

 $T\,{<}\,1300$ K pour toutes les étoiles (0,3–1,5") ${\rightarrow}$ intérêt SDI

Simulations numériques des performances de la mission SPICES

Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives L'instrument VLT/NaCo et le programme d'observation Réduction des données Limites de sensibilité ADI Limites de sensibilité SDI+ADI

Masse de compagnons détectables

Modèles BT-SETTL (Allard et al. 2010)

Simulations numériques des performances de la mission SPICES

Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives L'instrument VLT/NaCo et le programme d'observation Réduction des données Limites de sensibilité ADI Limites de sensibilité SDI+ADI

Masse de compagnons vs. séparation

L'instrument VLT/NaCo et le programme d'observation Réduction des données Limites de sensibilité ADI Limites de sensibilité SDI+ADI

Plan de la présentation

- Contexte
 - Les exoplanètes
 - Caractérisations physique et atmosphérique
 - Imagerie directe
- 2 Simulations numériques des performances de la mission SPICES
 - Contexte et objectifs du travail
 - Simulation du concept instrumental
 - Performances en détection
 - Performances en caractérisation

Analyse de données d'imagerie VLT/NaCo

- L'instrument VLT/NaCo et le programme d'observation
- Réduction des données
- Limites de sensibilité ADI
- Limites de sensibilité SDI+ADI
- **Conclusions & Perspectives**
 - Conclusions
 - Perspectives

Difficultés de l'interprétation des flux SDI

 $F_{\text{SDI}} = F_1 - F_2 \times \alpha \times \phi$ (J. Rameau, rapport de stage de Master 2)

- F₁ : flux résidus image filtre 1
- F2 : flux résidus image filtre 2
- α : Mise à l'échelle intensité
- ϕ : Atténuation mise à l'échelle spatiale
 - Dépendance propriétés spectrales planète → planètes synthétiques pour limites de sensibilité
Difficultés de l'interprétation des flux SDI

 $F_{\text{SDI}} = F_1 - F_2 \times \alpha \times \phi$ (J. Rameau, rapport de stage de Master 2)

- F₁ : flux résidus image filtre 1
- F2 : flux résidus image filtre 2
- α : Mise à l'échelle intensité
- ϕ : Atténuation mise à l'échelle spatiale
 - Dépendance propriétés spectrales planète → planètes synthétiques pour limites de sensibilité
 - Modèles photométrie SDI pour M \gtrsim 10 $M_J \rightarrow$ non applicable à toutes les étoiles
 - Hypothèse optimiste $F_2 << F_1 \rightarrow$ performances optimales

Analyse de données d'imagerie VLT/NaCo

Conclusions & Perspectives

Limites de sensibilité SDI+ADI

Niveaux de détection à 5 σ

Simulations numériques des performances de la mission SPICES

Analyse de données d'imagerie VLT/NaCo

Conclusions & Perspectives

L'instrument VLT/NaCo et le programme d'observation Réduction des données Limites de sensibilité ADI Limites de sensibilité SDI+ADI

Température effective de compagnons détectables

50

Anne-Lise Maire

Soutenance de thèse

Simulations numériques des performances de la mission SPICES

Analyse de données d'imagerie VLT/NaCo

Conclusions & Perspectives

L'instrument VLT/NaCo et le programme d'observation Réduction des données Limites de sensibilité ADI Limites de sensibilité SDI+ADI

Masse de compagnons détectables

Simulations numériques des performances de la mission SPICES

Analyse de données d'imagerie VLT/NaCo

Conclusions & Perspectives

L'instrument VLT/NaCo et le programme d'observation Réduction des données Limites de sensibilité ADI Limites de sensibilité SDI+ADI

Performances réelles du traitement SDI+ADI

Modèles DUSTY (Chabrier et al. 2000)

• Gain SDI+ADI plus faible qu'avec hypothèse optimiste

Conclusions Perspectives

Plan de la présentation

- Contexte
 - Les exoplanètes
 - Caractérisations physique et atmosphérique
 - Imagerie directe
- 2 Simulations numériques des performances de la mission SPICES
 - Contexte et objectifs du travail
 - Simulation du concept instrumental
 - Performances en détection
 - Performances en caractérisation
- 3 Analyse de données d'imagerie VLT/NaCo
 - L'instrument VLT/NaCo et le programme d'observation
 - Réduction des données
 - Limites de sensibilité ADI
 - Limites de sensibilité SDI+ADI
 - Conclusions & Perspectives
 - Conclusions
 - Perspectives

Plan de la présentation

- Contexte
 - Les exoplanètes
 - Caractérisations physique et atmosphérique
 - Imagerie directe
- 2 Simulations numériques des performances de la mission SPICES
 - Contexte et objectifs du travail
 - Simulation du concept instrumental
 - Performances en détection
 - Performances en caractérisation
- 3 Analyse de données d'imagerie VLT/NaCo
 - L'instrument VLT/NaCo et le programme d'observation
 - Réduction des données
 - Limites de sensibilité ADI
 - Limites de sensibilité SDI+ADI
 - Conclusions & Perspectives
 - Conclusions
 - Perspectives

Conclusions

• Performance scientifique mission SPICES

Maire et al. (2012), A&A

- Spécifications sous-systèmes critiques instrument
- Performances caractérisation : RSB = 25–30 pour R = 50
 - Exoplanétologie possible sur ~300 systèmes planétaires
 - Caractérisation Jupiters ~0,25–7 UA
 - Molécule CH₄, diffusion Rayleigh, facteurs métallicité ≥3
 - Caractérisation super-Terres ~0,25–2 UA
 - Molécules H₂O, O₂, O₃ + végétation (≲50% nuages) + océan

Analyse données imagerie FQPM+SDI+ADI VLT/NaCo

- Pas de planètes détectées
- Contribution sur code de réduction
- Limites de détection ADI \rightarrow $10^{-4} \text{--} 10^{-5}$ à 0,5–1 $^{\prime\prime}$ \rightarrow 30–20 M_{J} à 5–10 UA

Conclusions

Limites de détection SDI+ADI → besoin analyse différente

Plan de la présentation

- Contexte
 - Les exoplanètes
 - Caractérisations physique et atmosphérique
 - Imagerie directe
- 2 Simulations numériques des performances de la mission SPICES
 - Contexte et objectifs du travail
 - Simulation du concept instrumental
 - Performances en détection
 - Performances en caractérisation
- 3 Analyse de données d'imagerie VLT/NaCo
 - L'instrument VLT/NaCo et le programme d'observation
 - Réduction des données
 - Limites de sensibilité ADI
 - Limites de sensibilité SDI+ADI
 - Conclusions & Perspectives
 - Conclusions
 - Perspectives

Conclusions Perspectives

Perspectives

• Télescope coronographique spatial

- Préparation prochain appel d'offres ESA (2013/2014?)
- Amélioration code de simulation
- Autres objectifs scientifiques (polarimétrie planètes, disques circumstellaires)
- Autres projets (TPF-C, 50 cm Canada)
- Instruments imagerie sol
 - Niveaux détection SDI+ADI de toutes les étoiles
 - Différents algorithmes ADI (LOCI, KLIP)
 - Analyse statistique → contraintes propriétés planètes longue période
 - Étoiles catalogue SPHERE

Merci

Thank you

Obrigada

Conclusions Perspectives

Principe de la self-coherent camera (SCC)

Baudoz et al. (2006), Galicher et al. (2008, 2010)

Conclusions Perspectives

Estimation SCC aberrations et compagnons

Baudoz et al. (2006), Galicher et al. (2008, 2010)

Conclusions Perspectives

Performances imagerie différentielle SCC

62

Conclusions Perspectives

Déconvolution spectrale (Sparks & Ford 2002)

Simulations numériques des performances de la mission SPICES Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives Conclusions Perspectives

Erreur de pointage du télescope

Conclusions Perspectives

Bande et résolution spectrales

Simulations numériques des performances de la mission SPICES Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives

Conclusions Perspectives

Impact du bruit de lecture

Conclusions Perspectives

Critère de caractérisation

 Rapport signal à bruit tel que les différences entre deux spectres planétaires soient détectées à N σ ?

$$\textit{crit}_i = \text{mediane}_{\lambda} \left(\frac{|S(\lambda) - M_i(\lambda)|}{B(\lambda)} \right)$$

crit_i : critère *S* : spectre mesuré M_i : modèle d'indice *i*, *i* = 1,2,...,*N B* : bruit de mesure, *B* = *S*/RSB

$$\text{RSB}_{\text{r}} = \text{crit}_{i} \times \frac{1}{\text{mediane}_{\lambda}\left(\frac{|M_{1}(\lambda) - M_{2}(\lambda)|}{M_{1}(\lambda)}\right)}$$

Conclusions Perspectives

Critère de caractérisation

 Rapport signal à bruit tel que les différences entre deux spectres planétaires soient détectées à N σ ?

N = 1	10
--------------	----

Planète	Paramètre	RSB _r	Région spectrale
Jupiter	0,8/2 UA	15	
Jupiter 0,8 UA	métallicité 1/3 $ imes$	30	
Jupiter 2 UA	métallicité 1/3 $ imes$	30	bandes du CH ₄
Jupiter 5 UA	métallicité 1/3 \times	30	bandes du CH_4
Neptune	0,8/2 UA	15	
Neptune 0,8 UA	métallicité 10/30 $ imes$	30	
Neptune 2 UA	métallicité 10/30 $ imes$	25	bandes du CH_4
Terre couverte de forêts	0/50/100% nuages	25	bande bleu
Terre couverte d'océans	0/50/100% nuages	25	
Terre sans nuages	0/50/100% forêts	12	bande rouge
Terre nuageuse à 50%	0/50/100% forêts	30	bande rouge
Terre nuageuse à 100%	0/50/100% forêts	220	bande rouge

Simulations numériques des performances de la mission SPICES Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives Conclusions Perspectives

Angle de phase

Anne-Lise Maire

Conclusions Perspectives

Spectre vs. angle de phase

Simulations numériques des performances de la mission SPICES Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives Conclusions Perspectives

Relations masse-rayon théoriques

Grasset et al. (2009), Fortney et al. (2007)

Simulations numériques des performances de la mission SPICES Analyse de données d'imagerie VLT/NaCo Conclusions & Perspectives Conclusions Perspectives

Présentation des données

Nom	SpT	d	Âge	m _H	Date	Mode	$\Delta \theta$	Seeing
		(pc)	(Ma)		d'observation		(°)	('')
HIP 76829	F5	17,4	200^{+100}_{-50}	3,73	20-08-2010	ASDI-4 [†]	8	0,86
HIP 98470	F7	21,2	65,5	4,64	20-08-2010	ASDI-4	102	1,03
HIP 107350	G0	17,9	200^{+100}_{-50}	4,60	20-08-2010	ASDI-4	35	0,70
HIP 118008	K2	22,0	70^{+50}_{-20}	6,00	20-08-2010	ASDI	72	1,05
HD 10647	F9	17,4	4800 ⁺²²⁰⁰	4,40	20-08-2010	ASDI-4	48	0,92
HIP 76829	F5	17,4	200^{+100}_{-50}	3,73	21-08-2010	ASDI-4	15	0,83
HIP 102409	M1	9,9	12 ⁺³	4,83	21-08-2010	ASDI-4	26+18 [‡]	1,30
HIP 106231	K5-7	24,8	70^{+50}_{-20}	6,52	21-08-2010	ASDI-4	10	1,83
HIP 114046	M2	3,3	$30^{+29,9}_{-15}$	3,61	21-08-2010	ASDI-4	94	1,26
HIP 7576	G5	24,0	200^{+100}_{-50}	5,90	21-08-2010	ASDI-4	31	1,02
HIP 14555	K8	19,2	$52,6^{+52,7}_{-26,3}$	6,58	21-08-2010	ASDI-4	66	1,16
HIP 10602	B8	47,1	30^{+10}_{-5}	3,95	18-12-2010	ASDI-4	41	0,92
HIP 18859	F6	18,8	70^{+50}_{-20}	4,34	18-12-2010	ASDI-4	41	0,85
HD 31295	A0	35,7	120	4,52	19-12-2010	ASDI-4	32	1,40
HD 38678	A2	21,6	320^{+180}_{-120}	3,31	19-12-2010	ASDI	62	1,39
HIP 30314	G1	23,8	70^{+50}_{-20}	5,16	19-12-2010	ASDI-4	15	1,70
Fomalhaut	A4	7,7	430^{+50}_{-50}	0,94	09-10-2011	ASDI	155	0,85

: Mode champ de vue fixe par rapport au détecteur.

‡ : Étoile observée en deux séquences.