Exoplanet characterization using ground-based and space-based direct imaging: Application to the SPICES mission and the VLT/NaCo instrument

Anne-Lise Maire

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

Advisors: Anthony Boccaletti Vincent Coudé du Foresto

Oct. 16, 2012

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

Partenariat Haute résolution Angulaire Sol-Espace

Numerical simulations of the performance of the SPICES mission Analysis of VLT/NaCo imaging data Conclusions & Prospects

Outline

1

Context

- Exoplanets
- Physical and atmospheric characterization
- Direct imaging
- Numerical simulations of the performance of the SPICES mission
 - Context and objectives of the study
 - Simulation of the instrument concept
 - Performance in detection
 - Performance in characterization
- Analysis of VLT/NaCo imaging data
 - The VLT/NaCo instrument and the observing program
 - Data reduction
 - ADI sensitivity limits
 - SDI+ADI sensitivity limits
- Conclusions & Prospects
 - Conclusions
 - Prospects

Numerical simulations of the performance of the SPICES mission Analysis of VLT/NaCo imaging data Conclusions & Prospects Exoplanets Physical and atmospheric characteriza Direct imaging

Outline

Context

- Exoplanets
- Physical and atmospheric characterization
- Direct imaging
- 2 Numerical simulations of the performance of the SPICES mission
 - Context and objectives of the study
 - Simulation of the instrument concept
 - Performance in detection
 - Performance in characterization
- 3 Analysis of VLT/NaCo imaging data
 - The VLT/NaCo instrument and the observing program
 - Data reduction
 - ADI sensitivity limits
 - SDI+ADI sensitivity limits
 - Conclusions & Prospects
 - Conclusions
 - Prospects

Numerical simulations of the performance of the SPICES mission Analysis of VLT/NaCo imaging data Conclusions & Prospects Exoplanets Physical and atmospheric characterizatio Direct imaging

Why to study exoplanets?

Planetary formation and evolution

- $\bullet \ \ \text{Before exoplanets} \to \text{Solar System}$
- Since 1995 : hot Jupiters, eccentric planets, pulsar planets, planets in binary systems, super-Earths, etc
- Conditions of emergence and development of life
 - habitable zone, biosignatures (Kasting et al. 1993, Des Marais et al. 2002)

Numerical simulations of the performance of the SPICES mission Analysis of VLT/NaCo imaging data Conclusions & Prospects

Physical and atmospheric characterization Direct imaging

Exoplanets

Numerical simulations of the performance of the SPICES mission Analysis of VLT/NaCo imaging data Conclusions & Prospects

Physical and atmospheric characterization Direct imaging

Exoplanets

Numerical simulations of the performance of the SPICES mission Analysis of VLT/NaCo imaging data Conclusions & Prospects

Physical and atmospheric characterization Direct imaging

Exoplanets

Numerical simulations of the performance of the SPICES mission Analysis of VLT/NaCo imaging data Conclusions & Prospects

Physical and atmospheric characterization Direct imaging

Exoplanets

Numerical simulations of the performance of the SPICES mission Analysis of VLT/NaCo imaging data Conclusions & Prospects Exoplanets Physical and atmospheric characterizatio Direct imaging

Numerical simulations of the performance of the SPICES mission Analysis of VLT/NaCo imaging data Conclusions & Prospects

Outline

Exoplanets Physical and atmospheric characterization Direct imaging

Exoplanets

• Physical and atmospheric characterization

- Direct imaging
- 2 Numerical simulations of the performance of the SPICES mission
 - Context and objectives of the study
 - Simulation of the instrument concept
 - Performance in detection
 - Performance in characterization
- 3 Analysis of VLT/NaCo imaging data
 - The VLT/NaCo instrument and the observing program
 - Data reduction
 - ADI sensitivity limits
 - SDI+ADI sensitivity limits
 - Conclusions & Prospects
 - Conclusions
 - Prospects

Numerical simulations of the performance of the SPICES mission Analysis of VLT/NaCo imaging data Conclusions & Prospects Exoplanets Physical and atmospheric characterization Direct imaging

Physical and atmospheric characterization

- Physical characterization
 - Mass, orbital period, eccentricity, inclination, radius, density
- Atmospheric characterization
 - $\bullet\,$ Spectrophotometry $\rightarrow\,$ temperature, molecules, vertical structure (clouds, hazes), escapement

Numerical simulations of the performance of the SPICES mission Analysis of VLT/NaCo imaging data Conclusions & Prospects Exoplanets Physical and atmospheric characterization Direct imaging

Outline

1) C

Context

- Exoplanets
- Physical and atmospheric characterization
- Direct imaging
- 2 Numerical simulations of the performance of the SPICES mission
 - Context and objectives of the study
 - Simulation of the instrument concept
 - Performance in detection
 - Performance in characterization
- 3 Analysis of VLT/NaCo imaging data
 - The VLT/NaCo instrument and the observing program
 - Data reduction
 - ADI sensitivity limits
 - SDI+ADI sensitivity limits
 - Conclusions & Prospects
 - Conclusions
 - Prospects

Numerical simulations of the performance of the SPICES mission Analysis of VLT/NaCo imaging data Conclusions & Prospects Exoplanets Physical and atmospheric characterization Direct imaging

Direct imaging

High contrast @ small angular separation

Numerical simulations of the performance of the SPICES mission Analysis of VLT/NaCo imaging data Conclusions & Prospects Exoplanets Physical and atmospheric characterization Direct imaging

Direct imaging

• High contrast @ small angular separation

Numerical simulations of the performance of the SPICES mission Analysis of VLT/NaCo imaging data Conclusions & Prospects Exoplanets Physical and atmospheric characterization Direct imaging

Photon noise

Coronagraphy

- amplitude coronagraphs, phase coronagraphs, apodizers, occultors
- → four-quadrant phase mask (Rouan et al. 2000)
- \rightarrow vortex coronagraph (Mawet et al. 2005)

Numerical simulations of the performance of the SPICES mission Analysis of VLT/NaCo imaging data Conclusions & Prospects Exoplanets Physical and atmospheric characterization Direct imaging

Photon noise

Coronagraphy

- amplitude coronagraphs, phase coronagraphs, apodizers, occultors
- → four-quadrant phase mask (Rouan et al. 2000)
- \rightarrow vortex coronagraph (Mawet et al. 2005)

Numerical simulations of the performance of the SPICES mission Analysis of VLT/NaCo imaging data Conclusions & Prospects Exoplanets Physical and atmospheric characterization Direct imaging

Speckle noise

- Downstream → Differential imaging (Racine et al. 1999, Kuhn et al. 2001, Sparks & Ford 2002, Marois et al. 2006, Baudoz et al. 2006)
- Upstream → Wavefront control (Babcock 1953, Malbet et al. 1995)

Context and objectives of the study Simulation of the instrument concept Performance in detection Performance in characterization

Outline

Context

- Exoplanets
- Physical and atmospheric characterization
- Direct imaging

Numerical simulations of the performance of the SPICES mission

Context and objectives of the study

- Simulation of the instrument concept
- Performance in detection
- Performance in characterization

3 Analysis of VLT/NaCo imaging data

- The VLT/NaCo instrument and the observing program
- Data reduction
- ADI sensitivity limits
- SDI+ADI sensitivity limits
- Conclusions & Prospects
 - Conclusions
 - Prospects

Context and objectives of the study Simulation of the instrument concept Performance in detection Performance in characterization

Context and objectives of the study

- SPICES (Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems)
 - 1.5-m visible coronagraph P.I. : A. Boccaletti
 - Proposal for ESA Cosmic Vision M3 in 2010
 - International consortium of 70 members
 - Spectro-polarimetric analysis of cold exoplanets and circumstellar disks $\gtrsim\!\!1$ zodi \rightarrow contrasts $10^{-9} {-} 10^{-10}$ @ ${\sim} 0.2''$
- Objectives of the study
 - Top-level requirements
 - Spectrometric performance

Context and objectives of the study Simulation of the instrument concept Performance in detection Performance in characterization

Study of performance

• 2 ways for addressing the problem Theoretical spectra

Models from Cahoy et al. (2010)

Context and objectives of the study Simulation of the instrument concept Performance in detection Performance in characterization

Study of performance

• 2 ways for addressing the problem Theoretical spectra

Cahoy et al. (2010)

Context and objectives of the study Simulation of the instrument concept Performance in detection Performance in characterization

Study of performance

 2 ways for addressing the problem Theoretical spectra

Cahoy et al. (2010)

Context and objectives of the study Simulation of the instrument concept Performance in detection Performance in characterization

Study of performance

• 2 ways for addressing the problem

Need to go beyond these two approaches !

Anne-Lise Maire

Context and objectives of the study Simulation of the instrument concept Performance in detection Performance in characterization

Outline

Context

- Exoplanets
- Physical and atmospheric characterization
- Direct imaging

Numerical simulations of the performance of the SPICES mission

Context and objectives of the study

Simulation of the instrument concept

- Performance in detection
- Performance in characterization

3 Analysis of VLT/NaCo imaging data

- The VLT/NaCo instrument and the observing program
- Data reduction
- ADI sensitivity limits
- SDI+ADI sensitivity limits
- Conclusions & Prospects
 - Conclusions
 - Prospects

Context and objectives of the study Simulation of the instrument concept Performance in detection Performance in characterization

The beginnings of SPICES...

Context and objectives of the study Simulation of the instrument concept Performance in detection Performance in characterization

The beginnings of SPICES...

Context and objectives of the study Simulation of the instrument concept Performance in detection Performance in characterization

Numerical model of the instrument

Maire, Galicher, et al. 2012

- Aberrations
- Chromaticity
- Planet(s)
- ✓ Zodiacal light
- Exo-zodiacal cloud (Zodipic library)
- Perfect estimation of aberrations
- Projection onto deformable mirror
- Photon noise
- Read-out noise
- Response of the detector pixels

Context and objectives of the study Simulation of the instrument concept Performance in detection Performance in characterization

Top-level requirements (contrasts 10⁻⁹–10⁻¹⁰ @ ~0.2")

Spectral deconvolution

Context and objectives of the study Simulation of the instrument concept Performance in detection Performance in characterization

Wavefront control +

Wavefront control?

differential imaging 10⁰ 10 Vortex MD64x64 + vorte: 10⁻² Deconvolution spectrale MD64x64 + vortex + SCC 10^{-2} 59 10-4 59 10-4 σ Contrast @ Contraste 10-6 10-6 10-8 10-8 10-9 10⁻⁹ 10-10 10⁻¹⁰ 10 20 30 40 10 20 30 40 Angular separation (λ/D) Separation angulaire (λ/D)

 Only combination vortex + deformable mirror + differential imaging satisfies SPICES' requirements

Context and objectives of the study Simulation of the instrument concept **Performance in detection** Performance in characterization

Outline

Context

- Exoplanets
- Physical and atmospheric characterization
- Direct imaging

Numerical simulations of the performance of the SPICES mission

- Context and objectives of the study
- Simulation of the instrument concept

• Performance in detection

• Performance in characterization

3 Analysis of VLT/NaCo imaging data

- The VLT/NaCo instrument and the observing program
- Data reduction
- ADI sensitivity limits
- SDI+ADI sensitivity limits
- Conclusions & Prospects
 - Conclusions
 - Prospects

Context Numerical simulations of the performance of the SPICES mission Conclusions & Prospects Performance in detection

Sensitivity to the intensity of the exo-zodiacal cloud

• Calibration exo-zodiacal cloud flux even for 1 zodi \rightarrow hypothesis perfect calibration (to the precision imposed by photon noise)

SPICES' targets → a few 10-zodi clouds

Context and objectives of the study Simulation of the instrument concept Performance in detection Performance in characterization

Thermal flux vs. reflected flux

- Thermal flux \rightarrow model \sim independent of star-planet separation
- Reflected flux \rightarrow structure depends on star-planet separation
- Planet models for discrete separations and a solar-type star \rightarrow flux conservation for other stellar types

• 1-AU Earth models \rightarrow flux \propto albedo/separation² between 1–3 AU

Context and objectives of the study Simulation of the instrument concept Performance in detection Performance in characterization

Sensitivity to stellar type

- G2 stars \leq 10 pc \rightarrow 24 G stars
- M0 stars \lesssim 7.5 pc \rightarrow \sim 100 M stars

(simbad.u-strasbg.fr)

Context and objectives of the study Simulation of the instrument concept Performance in detection Performance in characterization

Outline

Context

- Exoplanets
- Physical and atmospheric characterization
- Direct imaging

Numerical simulations of the performance of the SPICES mission

- Context and objectives of the study
- Simulation of the instrument concept
- Performance in detection

• Performance in characterization

- Analysis of VLT/NaCo imaging data
 - The VLT/NaCo instrument and the observing program
 - Data reduction
 - ADI sensitivity limits
 - SDI+ADI sensitivity limits
- Conclusions & Prospects
 - Conclusions
 - Prospects

Context and objectives of the study Simulation of the instrument concept Performance in detection Performance in characterization

Characterization criterion

 Signal-to-noise ratio for which differences between 2 planetary spectra detected @ N times the measured noise ? Jupiters
Super-Earths

Context and objectives of the study Simulation of the instrument concept Performance in detection Performance in characterization

Characterization criterion

Signal-to-noise ratio for which differences between 2 planetary spectra detected @ N times the measured noise ?

Planet	Parameter	SNR _r	
Jupiter	0.8/2 AU	15	
Jupiter 0.8 AU	metallicity $1/3 \times$	30	
Jupiter 2 AU	metallicity $1/3 \times$	30	
Jupiter 5 AU	metallicity $1/3 \times$	30	
Neptune	0.8/2 AU	15	
Neptune 0.8 AU	metallicity 10/30 $ imes$	30	
Neptune 2 AU	metallicity 10/30 $ imes$	25	
Forest Earth	0/50/100% clouds	25	
Ocean Earth	0/50/100% clouds	25	
Clear Earth	0/50/100% forests	12	
50% cloudy Earth	0/50/100% forests	30	
Cloudy Earth	0/50/100% forests	220	

Context and objectives of the study Simulation of the instrument concept Performance in detection Performance in characterization

Characterization criterion

• Signal-to-noise ratio for which differences between 2 planetary spectra detected @ N times the measured noise ?

Planet	Parameter	SNR _r	
Jupiter	0.8/2 AU	15	
Jupiter 2 AU	metallicity $1/3 \times$	30	
Neptune	0.8/2 AU	15	
Neptune 2 AU Forest Earth	metallicity $10/30 \times 0/50/100\%$ clouds	25 25	
50% cloudy Earth Cloudy Earth	0/50/100% forests 0/50/100% forests	30 220	

Context and objectives of the study Simulation of the instrument concept Performance in detection Performance in characterization

Gas giant planets

Measurements for all G2-star systems angularly separated

Context and objectives of the study Simulation of the instrument concept Performance in detection Performance in characterization

Ice giant planets

- Rayleigh scattering measured for all targets angularly separated
- Metallicity enhancement ≥3 analyzed for targets ≤6 pc

Numerical simulations of the performance of the SPICES mission Analysis of VLT/NaCo imaging data Conclusions & Prospects Simulation of the instrument conce Performance in detection Performance in characterization

Super-Earths @ 1 AU

- \bullet Clouds of forest planets \rightarrow all targets angularly separated
- Surface of 50%-cloudy planets \rightarrow distances \leq 4 pc

Context and objectives of the study Simulation of the instrument concept Performance in detection Performance in characterization

Potential targets

The VLT/NaCo instrument and the observing program Data reduction ADI sensitivity limits SDI+ADI sensitivity limits

Outline

- Context
 - Exoplanets
 - Physical and atmospheric characterization
 - Direct imaging
- 2 Numerical simulations of the performance of the SPICES mission
 - Context and objectives of the study
 - Simulation of the instrument concept
 - Performance in detection
 - Performance in characterization
 - Analysis of VLT/NaCo imaging data
 - The VLT/NaCo instrument and the observing program
 - Data reduction
 - ADI sensitivity limits
 - SDI+ADI sensitivity limits
 - Conclusions & Prospects
 - Conclusions
 - Prospects

The VLT/NaCo instrument and the observing program Data reduction ADI sensitivity limits SDI+ADI sensitivity limits

The VLT/NaCo instrument

• NaCo $\rightarrow \geq 2001$

- Adaptive optics NAOS + IR camera CONICA
- Imaging, spectroscopy, etc + spectral filters
- Exoplanets :
 - ✓ four-quadrant phase mask (FQPM)
 - ✓ angular & spectral differential imaging (ADI & SDI)
 - \rightarrow modes combined in SPHERE (2013)

- 1 Detect young giant planets (\lesssim 200 Myr) around nearby stars (\lesssim 25 pc)
- 2 Prepare analysis and interpretation of SPHERE SDI data

The VLT/NaCo instrument and the observing program Data reduction ADI sensitivity limits SDI+ADI sensitivity limits

ADI (Marois et al. 2006)

- Differential imaging = subtract image of the star alone
- Angular = rotation of field of view

The VLT/NaCo instrument and the observing program Data reduction ADI sensitivity limits SDI+ADI sensitivity limits

SDI (Racine et al. 1999)

- Differential imaging = subtract image of the star alone
- Spectral = differences star-planet spectra \rightarrow planet = cold object \rightarrow CH₄ bands ${\sim}1.6\,\mu m$ for T ${\lesssim}$ 1300 K

The VLT/NaCo instrument and the observing program Data reduction ADI sensitivity limits SDI+ADI sensitivity limits

Why to combine FQPM+SDI+ADI?

Search for faint companions close to stars

- Photon noise → coronagraphy
- Speckle noise \rightarrow differential imaging
- ADI limitation : speckles non static
- One solution :
 - 1 SDI \rightarrow "fast" + "slow" speckles
 - 2 ADI \rightarrow "slow" speckles

-4x10⁻⁵ -2x10⁻⁵ 0 2x10⁻⁵ 4x10⁻⁵

3 - Search for close-in planets \rightarrow ${\sim}5\text{--}10$ AU

The VLT/NaCo instrument and the observing program Data reduction ADI sensitivity limits SDI+ADI sensitivity limits

Outline

Context

- Exoplanets
- Physical and atmospheric characterization
- Direct imaging
- 2 Numerical simulations of the performance of the SPICES mission
 - Context and objectives of the study
 - Simulation of the instrument concept
 - Performance in detection
 - Performance in characterization

Analysis of VLT/NaCo imaging data

The VLT/NaCo instrument and the observing program

Data reduction

- ADI sensitivity limits
- SDI+ADI sensitivity limits
- Conclusions & Prospects
 - Conclusions
 - Prospects

Analysis of VLT/NaCo imaging data

Conclusions & Prospects

Data reduction

Sample properties

Anne-Lise Maire

The VLT/NaCo instrument and the observing program Data reduction ADI sensitivity limits SDI+ADI sensitivity limits

Data reduction pipeline

Pre-processing

- Bad pixels
- Transmission optical elements
- Selection
- Co-addition
- Sky background
- Selection
- Separation λ
- Recentering

Differential imaging

- SDI algorithm
- ADI algorithm
- Detection levels
- Attenuation off-axis point sources

The VLT/NaCo instrument and the observing program Data reduction ADI sensitivity limits SDI+ADI sensitivity limits

Data reduction pipeline

- Pre-processing
 - Bad pixels
 - Transmission optical elements
 - Selection
 - Co-addition
 - Sky background
 - Selection
 - Separation λ
 - Recentering
- Differential imaging
 - SDI algorithm
 - ADI algorithm
 - Detection levels
 - Attenuation off-axis point sources

The VLT/NaCo instrument and the observing program Data reduction ADI sensitivity limits SDI+ADI sensitivity limits

Data reduction pipeline

Pre-processing

- Bad pixels
- Transmission optical elements
- Selection
- Co-addition
- Sky background
- Selection
- Separation λ
- Recentering

Differential imaging

- SDI algorithm
- ADI algorithm
- Detection levels
- Attenuation off-axis point sources

2-step selection

1 - Adaptive optics loop (partially) open

2 - Flux statistics

The VLT/NaCo instrument and the observing program Data reduction ADI sensitivity limits SDI+ADI sensitivity limits

Data reduction pipeline

- Pre-processing
 - Bad pixels
 - Transmission optical elements
 - Selection
 - Co-addition
 - Sky background
 - Selection
 - Separation λ
 - Recentering
- Differential imaging
 - SDI algorithm
 - ADI algorithm
 - Detection levels
 - Attenuation off-axis point sources

Recentering criterion

- → Thresholding
- \rightarrow Calculation zone shape
- \rightarrow Telescope spiders

Data reduction

Data reduction pipeline

- Pre-processing
 - Bad pixels
 - Transmission optical elements
 - Selection
 - Co-addition
 - Sky background
 - Selection
 - Separation λ
 - Recentering
- Differential imaging
 - SDI algorithm
 - ADI algorithm
 - Detection levels
 - Attenuation off-axis point sources

The VLT/NaCo instrument and the observing program Data reduction ADI sensitivity limits SDI-ADI sensitivity limits

Outline

- Context
 - Exoplanets
 - Physical and atmospheric characterization
 - Direct imaging
- 2 Numerical simulations of the performance of the SPICES mission
 - Context and objectives of the study
 - Simulation of the instrument concept
 - Performance in detection
 - Performance in characterization

Analysis of VLT/NaCo imaging data

- The VLT/NaCo instrument and the observing program
- Data reduction
- ADI sensitivity limits
- SDI+ADI sensitivity limits
- Conclusions & Prospects
 - Conclusions
 - Prospects

Numerical simulations of the performance of the SPICES mission Analysis of VLT/NaCo imaging data

Conclusions & Prospects

The VLT/NaCo instrument and the observing program Data reduction ADI sensitivity limits SDI+ADI sensitivity limits

5- σ detection levels

ADI-attenuation corrected

The VLT/NaCo instrument and the observing program Data reduction ADI sensitivity limits SDI+ADI sensitivity limits

Effective temperature of detectable companions

BT-SETTL models (Allard & Freytag 2010)

 $T\,{<}\,1300$ K for all stars (0.3–1.5") ${\rightarrow}$ ok for SDI

Numerical simulations of the performance of the SPICES mission

Analysis of VLT/NaCo imaging data Conclusions & Prospects

The VLT/NaCo instrument and the observing program Data reduction ADI sensitivity limits

Mass of detectable companions

BT-SETTL models (Allard & Freytag 2010)

Context ical simulations of the performance of the SPICES mission Analysis of VLT/NaCo imaging data The VLT/NaCo instrument and the observing program Data reduction ADI sensitivity limits SDI+ADI sensitivity limits

Companion mass vs. separation

Conclusions & Prospects

The VLT/NaCo instrument and the observing program Data reduction ADI sensitivity limits SDI+ADI sensitivity limits

Outline

- Context
 - Exoplanets
 - Physical and atmospheric characterization
 - Direct imaging
- 2 Numerical simulations of the performance of the SPICES mission
 - Context and objectives of the study
 - Simulation of the instrument concept
 - Performance in detection
 - Performance in characterization

Analysis of VLT/NaCo imaging data

- The VLT/NaCo instrument and the observing program
- Data reduction
- ADI sensitivity limits

SDI+ADI sensitivity limits

- **Conclusions & Prospects**
 - Conclusions
 - Prospects

The VLT/NaCo instrument and the observing program Data reduction ADI sensitivity limits SDI+ADI sensitivity limits

Difficulties of the interpretation of SDI fluxes

$$F_{\rm SDI} = F_1 - F_2 \times \alpha \times \phi$$

(J. Rameau, Master thesis)

- F_1 : residual flux in image filter 1
- F_2 : residual flux in image filter 2
- $\boldsymbol{\alpha}$: intensity rescaling
- ϕ : attenuation due to spatial rescaling
 - Dependence on spectral properties of planets → synthetic planets for estimating sensitivity limits
 - $\bullet~$ SDI photometry for $M\gtrsim 10~M_J \rightarrow$ non applicable to all stars
 - Optimistic hypothesis $F_2 \ll F_1 \rightarrow \text{optimal performance}$

Numerical simulations of the performance of the SPICES mission Analysis of VLT/NaCo imaging data

Conclusions & Prospects

The VLT/NaCo instrument and the observing program Data reduction ADI sensitivity limits SDI+ADI sensitivity limits

5- σ detection levels

46

Context Numerical simulations of the performance of the SPICES mission Analysis of VLT/NaCo instrum Data reduction Analysis of VLT/NaCo instrum Data reduction ADI sensitivity limits SDI+ADI sensitivity limits

The VLT/NaCo instrument and the observing program Data reduction ADI sensitivity limits SDI+ADI sensitivity limits

Effective temperature of detectable companions

47

Numerical simulations of the performance of the SPICES mission Analysis of VLT/NaCo imaging data

48

of VLT/NaCo imaging data Conclusions & Prospects SDI+ADI sensitivity limits

Mass of detectable companions

Anne-Lise Maire PhD defence

The VLT/NaCo instrument and the observing program Data reduction ADI sensitivity limits SDI+ADI sensitivity limits

Real performance of SDI+ADI processing

• SDI+ADI gain smaller wrt optimistic hypothesis

Conclusions

Numerical simulations of the performance of the SPICES mission Analysis of VLT/NaCo imaging data Conclusions & Prospects

Outline

- Context
 - Exoplanets
 - Physical and atmospheric characterization
 - Direct imaging
- 2 Numerical simulations of the performance of the SPICES mission
 - Context and objectives of the study
 - Simulation of the instrument concept
 - Performance in detection
 - Performance in characterization
- 3 Analysis of VLT/NaCo imaging data
 - The VLT/NaCo instrument and the observing program
 - Data reduction
 - ADI sensitivity limits
 - SDI+ADI sensitivity limits
 - Conclusions & Prospects
 - Conclusions
 - Prospects

Conclusions

• Science performance of the SPICES mission

Maire et al. (2012), A&A

- Top-level specifications of the critical subsystems
- Characterization performance : SNR = 25–30 for R = 50
 - Exoplanetology possible for ~300 planetary systems
 - Characterization Jupiters ~0.25–7 AU
 - Molecule CH₄, Rayleigh scattering, metallicity enhancement ≥3

Conclusions

- Characterization super-Earths ~0.25–2 AU
- Molecules H_2O , O_2 , O_3 + vegetation (\lesssim 50% clouds) + ocean

Analysis of VLT/NaCo FQPM+SDI+ADI imaging data

- No detections of companions
- Contribution to reduction pipeline
- ADI detection limits \rightarrow 10⁻⁴–10⁻⁵ @ 0.5–1" \rightarrow 25–10 M_J @ 5–10 AU
- SDI+ADI detection limits → need different analysis

Numerical simulations of the performance of the SPICES mission Analysis of VLT/NaCo imaging data Conclusions & Prospects Conclusions Prospects

Outline

Context

- Exoplanets
- Physical and atmospheric characterization
- Direct imaging
- 2 Numerical simulations of the performance of the SPICES mission
 - Context and objectives of the study
 - Simulation of the instrument concept
 - Performance in detection
 - Performance in characterization
- 3 Analysis of VLT/NaCo imaging data
 - The VLT/NaCo instrument and the observing program
 - Data reduction
 - ADI sensitivity limits
 - SDI+ADI sensitivity limits
 - Conclusions & Prospects
 - Conclusions
 - Prospects

Conte

Numerical simulations of the performance of the SPICES mission Analysis of VLT/NaCo imaging data Conclusions & Prospects

Prospects

• Space coronagraphic telescope

- Preparation next ESA calls for proposals (2013/2014?)
- Improvement numerical model of the instrument
- Other science cases (planet polarimetry, circumstellar disks)
- Other projects (TPF-C, 50-cm telescope Canada)
- Ground-based imaging instruments
 - SDI+ADI detection limits of all stars
 - Different ADI algorithms (LOCI, KLIP)
 - Statistical analysis \rightarrow constraints on properties of long-period planets

Prospects

Stars from SPHERE catalog

Merci

Thank you

Obrigada

