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Abstract

Unravelling biological processes is dependent on the adequate modelling of regulatory
mechanisms that determine the timing and spatial patterns of gene expression. In the last
decade, a novel regulatory mechanism has been discovered and its biological importance
has been increasingly recognised. This mechanism is mediated by RNA molecules named
miRNAs that are the product of the maturation of non-coding gene transcripts and act post-
transcriptionally usually to dampen or abolish the expression of protein-coding genes.

Despite having eluded detection for such a long time, it is now clear that the elucidation
of the expression pattern of many genes cannot be achieved without incorporating the effects
of miRNA-mediated regulation.

The technical difficulties that the experimental detection of these regulators entailed
prompted the development of increasingly sophisticated computational approaches. Gene
finding strategies originally developed for coding genes cannot be applied since these non-
coding molecules are subject to very different sequence restraints and are too short to exhibit
statistical properties that can be easily distinguished from the background. As a result, com-
putational tools came to rely heavily on the identification of conserved sequences, distant
homologs and machine learning techniques.

Recent developments in sequencing technology have overcome some of the limitations of
earlier experimental approaches, but pose new computational challenges. At present, the
identification of new miRNA genes is therefore the result of the use of several approaches,
both computational and experimental.

In spite of the advancement that this research field has known in the last several years, we
are still not able to formally and rigourously characterise miRNA genes in order to identify
whichever sequence, structure or contextual requirements are needed to turn a DNA sequence
into a functional miRNA.

Efforts using computational algorithms towards the enumeration of the full set of miRNAs
of an organism have been limited by strong reliance on arguments of precursor conservation
and feature similarity. However, miRNA precursors may arise anew or be lost across the
evolutionary history of a species and a newly-sequenced genome may be evolutionarily too
distant from other genomes for an adequate comparative analysis. In addition, the learning
of intricate classification rules based purely on features shared by miRNA precursors that are
currently known may reflect a perpetuating identification bias rather than a sound means to
tell true miRNAs from other genomic stem-loops.

In this thesis, we present a strategy to sieve through the vast amount of stem-loops found
in metazoan genomes in search of pre-miRNAs, significantly reducing the set of candidates
while retaining most known miRNA precursors. Our approach relies on precursor properties
derived from the current knowledge of miRNA biogenesis, analysis of the precursor structure

and incorporation of information about the transcription potential of each candidate.



Our approach has been applied to the genomes of Drosophila melanogaster and Anophe-
les gambiae, which has allowed us to show that there is a strong bias amongst annotated
pre-miRNAs towards robust stem-loops in these genomes and to propose a scoring scheme
for precursor candidates which combines four robustness measures. Additionally, we have
identified several known pre-miRNA homologs in the newly-sequenced Anopheles darlingi
and shown that most are found amongst the top-scoring precursor candidates for that or-
ganism, with respect to the combined score. The structural analysis of our candidates and
the identification of the region of the structural space where known precursors are usually
found allowed us to eliminate several candidates, but also showed that there is a staggering
number of genomic stem-loops which seem to fulfil the stability, robustness and structural
requirements indicating that additional evidence is needed to identify functional precursors.
To this effect, we have introduced different strategies to evaluate the transcription potential
of the remaining candidates which vary according to the information which is available for

the dataset under study.

Keywords: miRNA, gene finding, single-genome, robustness, stability, secondary structure
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Resumo

A compreensdo dos processos bioldgicos estd dependente da modelacdo adequada dos
mecanismos reguladores que determinam os padroes temporais e espaciais da expressao génica.
Na ultima década, um novo mecanismo regulatério foi descoberto e a sua importancia tem sido
crescentemente reconhecida. Este mecanismo é mediado por moléculas de RNA designadas de
miRNAs que s@o o produto da maturagao de transcritos de genes nao-codificantes e actuam
de forma pés-transcricional de modo a, em geral, atenuar ou suprimir a expressao de genes
codificantes.

Apesar da sua existéncia nao ter sido detectada durante muito tempo, é hoje evidente que
a descrigao dos padroes de expressao de muitos genes nao pode ser feita sem incorporar os
efeitos da regulacao mediada por miRNAs.

As dificuldades técnicas associadas a deteccdo experimental destes reguladores levaram
ao desenvolvimento de abordagens computacionais cada vez mais sofisticadas. Estratégias de
procura de genes originalmente desenvolvidas para genes codificantes nao podem ser aplica-
das porques estas moléculas nao-codificantes estao sujeitas a constrangimentos ao nivel da
sequéncia de natureza muito diferente e sao demasiado curtas para exibirem propriedades
estatisticas que possam facilmente ser distinguidas das sequéncias circundantes. Daqui re-
sulta que as ferramentas computationais tenham acabado por depender da identificacao de
sequéncias conservadas, de sequéncias homdélogas distantes e do recurso a técnicas de apren-
dizagem.

Desenvolvimentos recentes no dominio da tecnologia de sequenciacao superaram algumas
das limitagoes das primeiras abordagens experimentais, mas introduzem novos desafios com-
putacionais. Actualmente, a identificagdo de novos genes de miRNA é o resultado da aplicagao
de diversas abordagens tanto computacionais como experimentais.

Apesar dos avangos que este dominio de investigacao conheceu nos tltimos anos, ainda nao
é possivel caracterizar genes de miRNA de um modo formal e rigoroso por forma a identificar
os requisitos ao nivel da sequéncia, da estrutura e do contexto genémico que sao necessarios
para transformar uma sequéncia de DNA num miRNA funcional.

Os esforgos computacionais desenvolvidos no sentido de enumerar o catdlogo completo de
miRNAs de um organismo tém sido limitados pela forte dependéncia que estes apresentam em
relacdo a argumentos de conservacao de precursores ou de semelhanca de caracteristicas. No
entanto, os precursores de miRNA podem surgir ou desaparecer no decurso da histéria evo-
lutiva de uma espécie e um genoma recém-sequenciado pode estar evolutivamente demasiado
distante de outro genoma para se proceder a uma analise comparativa adequada. Por outro
lado, a aprendizagem de regras de classificacao complexas baseadas apenas em caracteristicas
partilhadas por precursores de miRNA que sdo actualmente conhecidos pode reflectir antes
uma tendéncia para perpetuar um enviezamento quanto ao tipo de precursores identifica-

dos do que constituir efectivamente um forma de distinguir miRNAs de outras estruturas
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semelhantes presentes no genoma.

Nesta tese é apresentada uma estratégia para filtrar o vasto nimero de potenciais can-
didatos identificdveis em genomas animais, reduzindo significativamente o seu niimero muito
embora retendo a grande maioria dos precursores conhecidos. A abordagem usada apoia-se em
propriedades exibidas pelos precursores e que foram deduzidas a partir do actual conhecimento
do processo de biogénese dos miRNAs, na andlise da estrutura secundéria dos precursores e
na incorporacao de informacao sobre o potencial de transcricao de cada candidato.

A abordagem foi aplicada aos genomas de Drosophila melanogaster e Anopheles gambiae,
0 que permitiu mostrar que ha uma forte tendéncia da parte dos pre-miRNAs anotados no
sentido de apresentarem estruturas secundérias robustas e propor um esquema de classificacao
para candidatos que combina quatro medidas de robustez. Adicionalmente, foi possivel identi-
ficar varios homélogos de pre-miRNAs conhecidos no genoma do recém-sequenciado Anopheles
darlingi e mostrar que estes se encontram entre os candidatos melhor classificados naquele
organismo em relagdo a combinacado das medidas de robustez. A analise estrutural dos can-
didatos e a identificacdo da regiao do espaco das estruturas secundarias onde os precursores
conhecidos se encontram permitiu a eliminagao de muitos candidatos, mas permitiu também
observar que um grande ndmero de estruturas no genoma parece cumprir os requisitos de
estabilidade, robustez e de estrutura secundaria, ilustrando a necessidade de recorrer a meios
adicionais para identificar precursores funcionais. Para este efeito, foram introduzidas diver-
sas estratégias para avaliar o potencial de transcricao dos candidatos, que variam consoante

a informacao disponivel para o genoma em estudo.

Palavras-chave: miRNA, procura de genes, genoma unico, robustez, estabilidade, estru-

tura secundaria
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Résumé

La compréhension des processus biologiques est dépendente de la modélisation adéquate
des mécanismes de régulation qui déterminent la répartition spatiale et temporelle de I'ex-
pression génique. Au début de la derniére décennie, un nouveau mécanisme de régulation a
été découvert et son importance biologique a été de plus en plus reconnue. Ce mécanisme
est médié par des molécules d’ARN appelés miRNAs qui sont le produit de la maturation
de transcrits de genes non-codants et qui agissent d’une fagon post-transcriptionnelle afin
d’atténuer ou supprimer ’expression de genes codants.

Quoi qu’ils aient longtemps échappé a la détection il est maintenant évident que les va-
riations de I'expression de nombreux genes ne peuvent étre comprises sans intégrer les effets
de la régulation mediée par des miRNAs.

Les difficultés techniques de la détection expérimentale de ces régulateurs a suscité le
développement d’approches computationnelles de plus en plus sophistiquées. Les stratégies
initialement développées pour la recherche des genes codants ne peuvent pas étre appliquées
car ces molécules non codantes sont soumises a tres différentes restrictions au niveau de la
séquence et sont trop courtes pour présenter des propriétés statistiques peuvant étre facilement
distinguées de celles des séquences parmis lesquelles elles se trouvent. Par conséquent, les outils
de calcul comptent beaucoup sur I'identification des séquences conservées, sur les homologues
lointains et les techniques d’apprentissage automatique.

Les développements récents dans la technologie de séquencage ont réussi a surmonter
certaines des anciennes limites des approches expérimentales, mais posent de nouveaux défis
informatiques. A Theure actuelle, 'identification de nouveaux génes de miRNA est donc le
résultat de 'utilisation de plusieurs approches, a la fois computationelles et expérimentales.

Malgré I’avancement que ce domaine de recherche a connu dans les derniéres années, nous
ne sommes toujours pas capables de caractériser les genes de miRNA de facon formelle et
rigoureuse, de maniere a identifier les contraintes au niveau de la séquence, de la structure ou
du contexte génomique nécessaires a la formation de miRNAs fonctionnels.

L’utilisation d’algorithmes de calcul pour I’énumération de I’ensemble des miRNAs d’un
organisme est limitée par une forte dépendance sur des arguments de conservation de précurseurs
et de la similitude de caractéristiques. En effet, les précurseurs de miRNA peuvent apparaitre
de novo ou étre perdus au long de l'histoire évolutive d’une espece. De plus, un génome
récemment séquencé peut étre évolutivement trop éloigné d’autres génomes pour que l'on
puisse faire une analyse comparative adéquate. Finalement, 'apprentissage des regles de clas-
sification complexes en se basant uniquement sur des caractéristiques communes aux plusieurs
précurseurs de miRNA qui sont actuellement connus peut perpétuer un biais d’identification
plutét que de trouver vraiment un moyen de distinguer les miRNAs d’autres tiges-boucles
génomiques.

Dans cette these, nous présentons une stratégie pour filtrer la grande quantité de tiges-



boucles se trouvant dans les génomes de métazoaires, réduisant de maniere significative I’en-
semble des candidats, tout en conservant la plupart des précurseurs de miRNA connus. Notre
approche repose sur les propriétés des précurseurs provenant de I’état actuel des connaissances
de la biogenese des miRNAs, de I’analyse de la structure des précurseurs et de 'incorporation
d’informations sur le potentiel de transcription de chaque candidat.

Notre approche a été appliquée aux génomes de Drosophila melanogaster et Anopheles
gambiae ce qui nous a permis de montrer que dans ces génomes les pre-miRNAs annotés
ont tendance a correspondre aux tiges-boucles robustes et aussi & proposer un systéme de
notation des candidats qui combine quatre mesures de robustesse. Notamment, nous avons
identifié plusieurs homologues de pre-miRNAs connus dans le génome récemment séquencé
d’Anopheles darlingi et nous avons montré que la plupart se trouvent parmi les candidats
a plus haute notation (selon notre combinaison de mesures) pour cet organisme. L’analyse
structurelle de nos candidats et l'identification de la région de ’espace des structures ou se
trouvent généralement les précurseurs connus nous a permis d’éliminer plusieurs candidats,
mais a également montré qu’il existe un nombre impressionnant de tiges-boucles génomiques
qui semblent répondre aux exigences de stabilité, de robustesse et de structure. Ceci indique
que des méthodes supplémentaires sont nécessaires pour identifier les précurseurs fonctionnels.
Pour cela nous avons mis en place différentes stratégies pour évaluer le potentiel de trans-
cription des candidats restants qui varient en fonction des informations qui sont disponibles

pour les données analyseés.

Mots-clés : miRNA, recherche de geénes, génome isolé, robustesse, stabilité, structure se-

condaire
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Glossary

DNA

RNA
Prokaryotes
Eukaryotes
Chromatin

Nucleus
Cytosol
Aminoacid
Protein

Enzyme

Primary structure

Secondary structure

Stem-loop

Deoxyribonucleic acid molecule composed of two strands of nucleotides form-
ing a double helix. It is the carrier of genetic information necessary to all
cellular activities.

Ribonucleic acid molecule.

Organisms which lack a nuclear envelope.

Organisms in possession of a nuclear envelope.

Complex of DNA and proteins found in eukaryotic cells.

Organelle found in eukaryotic cells which contains most of their genetic mate-
rial.

Consists of the internal fluid of the cell where most of its metabolism occurs.
Molecule that contains an amino and a carboxylic acid functional group.
Organic compound consisting of aminoacids joined by peptide bonds. It is
essential to the structure and function of all living cells.

Biopolymer that catalyzes chemical reactions. Most enzymes are proteins
although some are made of RNA or DNA.

the sequence of nucleotides of a nucleic acid molecule.

the two-dimensional organisation of a nucleic acid molecule (usually RNA)
specifying which nucleotides are forming base-pairs with one another. A com-
mon representation of secondary structure is the dot-parenthesis notation.
Each unpaired nucleotide is represented by a dot ’.”, whereas a left-hand side
of a base-pair is represented by a left parenthesis '(’, and the right-hand side
of a base-pair is represented by a matching right parenthesis ) .

also called hairpin, is a single-strand RNA structure folded on itself giving
rise to a stem (a stack of base-pairs with possibly some intervening unpaired
nucleotides called bulges or inner loops) and a terminal loop (a string of un-
paired nucleotides at the middle portion of the sequence, flanked by both stem

arms).
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Chapter 1

Introduction

Despite a growing list of miRNAs, identified either by experimental assays or using cur-
rent computational tools, the goal of enumerating the full catalogue of miRNAs of any single
organism has proven to be difficult, requiring different approaches to identify a decreasing
number of novel regulators. A recent thorough experimental study of mammalian miRNAs
did find new regulators, but it also showed that several annotated sequences were likely not
miRNAs [24]. The difficulties are two-fold. On the one hand, purely experimental detec-
tion is limited to miRNAs which are expressed at relatively high levels and in broad cellular
types/conditions. Recent deep-sequencing techniques tackle these limitations but require ex-
tensive computational analyses [30]. On the other hand, computational miRNA gene finding
tools are strongly dependent on conservation criteria and other sequence/structure similari-
ties with previously identified miRNA precursors which limits their power to identify novel

miRNAs, particularly those which are not conserved [83].

Single-genome approaches are increasingly necessary given the fact that a growing num-
ber of genome sequencing projects are under way for which no evolutionarily close genome is
available and for which one cannot otherwise hope to thoroughly explore the miRNA land-

scape.

Considering that we have but rudimentary models of miRNA precursor evolution, which
makes it hard to interpret the biological significance of conservation data, and that we lack
a deep understanding of the structural requirements for efficient pre-miRNA processing, we
believe that if we are to increase our knowledge of the miRNA repertoire of an organism, our
efforts should privilege general properties that are known to characterise miRNA precursors.
These properties should not necessarily emerge from rules learnt from the detailed analysis of
previously known precursors, but should rather focus on features that, in principle, distinguish

pre-miRNAs for other hairpins.



1.1 Problem

From amidst the several problems in the field of miRNA-mediated gene regulation, this
thesis focus on the identification of miRNA precursors without recourse to conservation in-

formation by developing efficient and sensitive candidate extraction and evaluation methods.

From a computational biology perspective the pursuit of this objective entails the defini-

tion of a computational model to answer the question “What is a miRNA precursor?”.

In order to fulfil this goal the following objectives are to be achieved:

1. Specification of a computational model to identify pre-miRNAs, integrating our current

knowledge of miRNA biogenesis, and known characteristics of miRNA precursors.

2. Extraction of miRNA gene candidates using either an ab initio whole-genome approach
or a set of candidate transcripts from RNA extraction assays, using a method that is
both efficient and highly sensitive and which can serve as a starting point for several

filtering and ranking procedures.

3. Development of measures and statistical methods to evaluate the quality of the extracted
candidates and their putative biological function which are able to provide a series of
evidence-based arguments for the likelihood that a given candidate is a functional pre-
miRNA.

4. Integration of the developed algorithms in a support tool for research in functional

genomics.

1.2 Approach

The approach proposed in this thesis is based on a three-pillar evaluation of candidates

extracted from a single-genome, which is illustrated in Figure 1.1.

The first pillar refers to the combination of four measures of stability and robustness,
collectively called intrinsic measures. These measures purport to identify candidates that have
the features known to be a hallmark of miRNA precursors and refer to structural stability,
but also mutational and contextual robustness. The second pillar consists in the attempt to
characterise the region of the folding space that the cellular machinery involved in the miRNA
maturation pathway is likely to recognise. Finally, the third pillar concerns the integration of
transcription information to assess whether candidates are likely to be efficiently transcribed

which is, of course, a necessary condition for the precursor to ever arise.
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Figure 1.1: Diagram of the three-pillar candidate classification procedure

1.3 Contributions

The main contributions of this thesis refer to the development of an evidence-based com-
putational model to the identification of miRNA precursors in animal genomes. To this effect

we developed the following:

1. A genome-wide candidate extraction method, as well as a method to identify and sta-
tistically evaluate genome hits of transcripts originating from small RNA sequencing
assays, which can be used to either infer precursor candidates from those hits or iden-

tify ab initio candidates with transcriptional evidence.

2. A method to combine stability and robustness measures in order to evaluate precursor

candidates which was eventually published in BMC Genomics [84].

3. A method to represent RNA structures in a multidimensional space where relative dis-
tances reflect sequence/structural similarity as evaluated by existing structural cluster-
ing methods which allows the identification of a limited region of the multidimensional

space where miRNA precursors tend to occur.

4. The integration of the developed tools in a publicly accessible framework, allowing a

web-based exploration of the results

The developed methods have been applied to the genomes of Drosophila melanogaster,

Anopheles gambiae and, partially, to the newly-sequenced Anopheles darlings.



Additionally, we have contributed with the most recent survey on current tools for miRNA
gene finding and miRNA target identification which was published in Nucleid Acids Re-
search [83].

1.4 Thesis outline

This thesis is organized as follows:

Chapter 2 gives the necessary context to understand the biological questions addressed by
this thesis. The elementary notions of miRNA biology are presented with a special focus on

the aspects that are more relevant to the adopted approach.

Chapter 3 presents the current state of the art systematically describing and classifying in

broad families the existing approaches to computational miRNA gene finding.

Chapter 4 presents our single-genome approach to distinguishing pre-miRNAs from other
genomic hairpins including the whole-genome candidate extraction procedure, a set of stability
and robustness measures used to evaluate miRNA precursor candidates as well as the proce-
dure used to combine them into a single score, a vectorial representation of sequence/structure
features of precursor candidates which is used to identify the candidates most likely to ex-
hibit the structural requirements associated with pre-miRNAs, a few strategies to evaluate
the transcription potential of a given precursor candidate and a procedure to map sequenced
small RNAs back to the genome and, additionally, the CRAVELA framework is presented
with a discussion of implementation details and a presentation of the web-based tool used to

visualise the information produced by the procedures discussed in this chapter.

Chapter 5 describes and discusses the results obtained with our approach for the genomes

of Drosophila melanogaster, Anopheles gambiae, and Anopheles darlings.

Chapter 6 presents the final conclusions of this thesis, discusses future improvements and
new developments to the CRAVELA framework and elaborates on the current perspectives
for the research field on miRNA-mediated gene regulation in the context of computational

biology.



Chapter 2
Biological background

Not so long ago, in the 19th century, Darwin gave us an account of how such complicated
things like living beings can naturally occur, placing every extant organism in the same grand
family tree and uniting all Biology under the same theoretical framework. His ideas have been
enriched by many scientists since then, particularly with the rediscovery of Mendel’s work
and the characterization of DNA as a digital repository of information. This epistemological
revolution elicited a novel approach to Biology which would henceforth seek mechanistic and,
later, quantitative models rather than mere descriptions of the natural world.

Many researchers outside the field of Biology have been drawn to this area namely math-
ematicians, computer scientists, chemists, and physicists. This multidisciplinary trend is
explained not only by the increasing complexity and depth of the investigations in the life
sciences, but also by the fact that biological systems have proven to be a remarkably rich
field for the application of theoretical methods developed in the context of other disciplines.
On the other hand, Biology has also, on many occasions, served as an inspiration to novel
approaches to problems arising from its tributary sciences.

Since this work is at the crossroads of Computer Science and Biology, always privileging
the underlying biological questions, it is important to give enough detail about the biological
problems that both motivate and inform our investigations.

In this chapter, we present the key biological concepts behind the questions we purport to
address. First, we discuss basic notions of molecular biology and then we proceed to present

the central aspects of what is currently known about microRNA biogenesis and function.

2.1 Fundamentals of molecular biology

2.1.1 Structure of nucleic acids

The field of molecular biology greatly benefited from the discovery of the three-dimensional
structure of DNA by Watson and Crick in 1953 [124]. The DNA molecule, present in all living
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cells, is the carrier of genetic information which is necessary to control cellular activities. This
information is passed down to each new generation almost flawlessly. DNA is composed of
two strands of nucleotides forming a double helix (Figure 2.1). A nucleotide is a molecule
formed by a pentose (deoxyribose in DNA), a phosphate group and a nitrogenous base. There
are four such nucleotides found in DNA, differing only on their nitrogenous base: Adenine
(A), Guanine (G), Cytosine (C) and Thymine (T).

The pentose sugar-phosphate links form the backbone of the DNA molecule and are lo-
cated in the exterior of the double helix. The two strands of DNA are kept together by
hydrogen bonds linking each pair of bases. In a complete helix, Adenine always pairs with
Thymine and Cytosine always pairs with Guanine. Because of this, the two strands are said
to be complementary (Figure 2.2). Each strand of DNA (and RNA) has two ends designated
5-end and 3’-end. The 5’-end refers to the end which has the fifth carbon of the pentose at
its terminus. Similarly, the 3’-end (or tail end) terminates at the hydroxyl group of the third

carbon of the pentose.

The information contained in DNA is represented by the specific sequence of nucleotides in
either strand (the sequence of nucleotides in the complementary strand can be inferred consid-
ering the base-pairing scheme discussed earlier). It is thus a digital repository of information

consisting of a text written with a four-letters alphabet.

Although DNA is structurally identical in all living cells, in prokaryotes consists of a single
circular molecule whereas in eukaryotes is found associated with several proteins to form a

complex named chromatin, which is located in the nucleus [26].

However, not all regions of DNA seem to carry information. Those regions which do
carry information are named genes and if the information is used to produce proteins these
are said to be coding regions. Genes are expressed as final products that generally consist
of proteins which can serve different purposes: they can form part of the cell wall, act as
catalytic components (enzymes) or influence the expression of genes and are, therefore, actors
in virtually all cellular activities. In eukaryotic cells it is common to find genes which contain
large amounts of noncoding regions. In these genes, coding regions named exons are separated
by noncoding regions named introns. Additionally, there are two regions at the 5’ and 3’ ends
of a transcribed gene that are also noncoding and are named 5" and 3’ UTR (untranslated
region), respectively.

RNA is another nucleic acid related to DNA. There are some important differences between
these two molecules. Firstly, unlike DNA, RNA is a single stranded molecule. The pentose
found in RNA is ribose and not deoxyribose (hence the name of the molecules) and the
nucleotide Thymine is substituted by Uracil (U) (Figure 2.3). Despite being a single stranded
molecule, RNA sometimes presents loops where homologous portions of the molecule self-
hybridize. Neither the different sugar nor the base substitution alter the base-pairing scheme

found in DNA, but additional non-canonical pairings are frequently observed, particularly
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G:U. In livings cells, one can always find larger quantities of RNA than of DNA and the
amount of RNA varies with changing metabolic conditions whereas the amount of DNA is
constant (in cells which are not in the process of cell division). This is consistent with the

fact that RNA is a fundamental intermediary in the expression of genetic information.

2.1.2 Gene expression

The central dogma of molecular biology [26] establishes a pathway for the flow of genetic
information: DNA — RNA — protein, i.e., from the DNA repository to the final products
of gene expression. The first process in which RNA molecules are synthesized from a DNA
template is called transcription. The RNA molecule thus obtained is called Messenger RNA
(mRNA). The subsequent process in which mRNA is used as a template for protein synthesis
is called translation.

In prokaryotes, transcription and translation occur almost simultaneously whereas in eu-
karyotes the two processes take place in different parts of the cell. In these organisms the
transition from transcription to translation involves the migration of mRNA from the nucleus
to the cytosol alongside with certain modifications to the mRNA molecule in a process called
maturation. Figure 2.4 shows a schematic representation of the different processes involved
in gene expression for both prokaryotes and eukaryotes.

The typical products of gene expression — proteins — consist of sequences of aminoacids.
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Proteins, as we mentioned earlier, have a central role in all cellular activities and their function
depends on their three-dimensional structure which, in turn, is derived from the specific linear

ordering of their constituent aminoacids.

The genes of an organism are not all simultaneously expressed. Their activation depends
on the current needs of the cell and is subjected to various regulatory mechanisms. One of
the most important mechanisms is the transcriptional regulation. Some of the noncoding
regions of DNA play a fundamental role in the regulation of transcription. These regions
(regulatory regions) contain small sequences of nucleotides, which are recognized by proteins
associated with the transcription machinery. The most common regulatory regions are located
upstream of the start of transcription and are called promoter regions or, in a broader sense,
cis-regulatory regions. The presence of these sequence motifs is essential for the efficient
binding of the cellular transcription machinery. Different motifs can play different roles in
gene expression. While some are critical for eliciting the start of transcription others recruit
proteins which act as activators or repressors.

RNA polymerase is responsible for the transcription process. This enzyme, when examined
in vitro, transcribes DNA into RNA but initiates at nonspecific sites on the DNA.

Transcriptional regulation in eukaryotes [26] is considerably complex. In fact, eukaryotes
use different types of RNA polymerase for different purposes. The most studied type which
is also responsible for transcribing most genes is RNA polymerase II (RNA pol II). This
type of RNA polymerase requires several general transcription factors to form a functional

transcription initiation complex.

The regulation of transcription in eukaryotes is primarily made at the level of initiation

11
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of transcription although it may be attenuated or stimulated at subsequent steps. Many
genes in eukaryotic cells are controlled by regulatory sequences located far upstream from
the transcription start site (sometimes over 10 000 nucleotides). These sequences, called
enhancers, were found to stimulate transcription and are binding sites for transcription factors
which are allowed to interact with the transcription machinery because the intervening DNA
can form loops (Figure 2.5). Interestingly, enhancers are active regardless of orientation with
respect to the direction of transcription and can be located either upstream or downstream
of the transcription start site. In addition to these regulatory mechanisms, eukaryotic cells
can also regulate transcription by modifying the state of condensation of chromatin.
However, during the last quarter of the 20th century, evidence was accumulating that

post-transcriptional regulation might be extremely important in eukaryotes.

2.2 MicroRNA biology

2.2.1 Discovery

Conventionally, post-transcriptional gene regulation had been considered to act upon the
stability of mRNA transcripts, modulating their half-life, by way of protein-RNA interactions.
Possible regulatory targets in eukaryotes were the 5’ cap or the length of the polyadenylated
tail, as these are common features of mRNA transcripts which delay their degradation in the
cytoplasm by exonucleolytic digestion.

New possibilities arose with the discovery of naturally occurring antisense RNA control,

also known as natural antisense transcription (NAT), which could act upon mRNA processing,

12



transport, translation and degradation!.

Antisense RNA control is not new. It has been known in prokaryotes since the 1980’s,
having been postulated back in the 1970’s [120]. Researchers also started to wonder whether
eukaryotes could have widespread antisense RNA control mechanisms, and indeed, in the
1990’s, some suggested this was the case [56, 117, 58], this being now an established fact [133].
These suggestions were based, among other things, on the fact that there were many enzymes
that seemed to detect the presence of double-stranded RNA (dsRNA) which is a hallmark of
antisense transcription.

In the final years of the last century, the phenomenon of RNA interference (RNAi) was
described as a mechanism that could provide anti-viral defense, modulation of transposition,
or regulation of gene expression [37, 10]. By this mechanism, the introduction of dsRNA in a
diverse group of organisms including the nematode, the fruit fly, fungi, and plants, originated
the inhibition of expression of cognate genes.

The discovery that small antisense RNAs of about 22 nucleotides in length, called small
interfering RNAs (siRNAs), are central to RNA interference suggested that tiny RNAs have
major regulatory roles in eukaryotes and that they may all share parts of their effector mech-
anism. RNAIi is an evolutionarily conserved genetic surveillance mechanism that triggers the
specific degradation of mRNAs in response to the presence of dsSRNA corresponding to the
target mRNA [4]. It is now understood that RNAi in animals, PTGS (Posttranscriptional
Gene Silencing) in plants and quelling in fungi are just different names for similar post-
transcriptional RNA silencing phenomena common to virtually all eukaryotes [137]. Archea
and bacteria lack the proteins known to be required for the RNA silencing pathways, so RNA
silencing is probably an eukaryotic innovation.

A novel post-transcriptional silencing process was discovered at the turn of the century.
It is elicited by tiny endogenous RNAs called microRNAs (miRNAs). MicroRNAs are a
large class of small non-coding RNA molecules that have early on been recognised to be
numerous and phylogenetically extensive [65, 63]. Many of these molecules originate from
non-coding genes which produce mature transcripts of ~22 nucleotides in length and are
thought to function primarily as antisense regulators of other RNAs [4]. A detailed history
of the discovery of these regulatory molecules is available in [60].

The initial members of the miRNA class of non-coding RNAs were lin-4 and let-7 of
Caenorhabditis elegans. They were termed heterochronic or small temporal RNAs [65, 63]
because all known instances seemed to be involved in controlling the timing of larval develop-
ment. Most known miRNAs are very well conserved in close species and some can be found

across very large taxonomic groups, notably let-7 of C. elegans [94].

INAT is a phenomenon observed in both prokaryotes and eukaryotes where a single gene locus is transcribed
in both directions yielding both a sense and antisense RNA species, the latter being usually untranslated. Some
of these antisense transcripts have been implicated in transcriptional and posttranscriptional regulation of gene
expression by way of mechanisms that have not been yet fully characterised.

13
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2.2.2 Biogenesis and function

MiRNA genes are frequently expressed individually, but many exist in clusters of 2-7
genes with small intervening sequences. Experimental results suggest that they are expressed
co-transcriptionally, which indicates that they are under control of common regulatory se-
quences [63, 67, 9].

Other miRNA genes are excised from the introns of protein-coding genes [75, 61], introns
and exons of non-coding genes [102], or even from the 3’ UTR of protein-coding genes [22]. In
mammalian genomes, it is also possible to find miRNAs in repetitive regions, and some studies
suggest that transposable elements may be involved in the creation of new miRNAs [112].

MicroRNA biogenesis in animals is a two-step process [67], as shown in Fig. 2.6. The
nascent transcript, which is several hundred nucleotides long, is called primary microRNA
(pri-miRNA). Although some miRNAs are transcribed by RNA pol III [17], most rely on RNA
pol II [68, 22|, therefore pri-miRNAs can be subject to elaborate transcriptional control.

In a first step, the primary transcript is processed in the nucleus by a multiprotein complex
(Microprocessor) containing an enzyme called Drosha [66] to give rise to the ~70-nucleotides
long miRNA stem-loop precursor (pre-miRNA) which is then exported to the cytoplasm.
Secondary structure, rather than primary sequence, seems to be a critical feature for Drosha

substrate recognition [27], however it is not known how this enzyme discriminates pre-miRNAs
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from the great variety of cellular RNA stem-loops. It is known, however, that efficient pro-
cessing by Drosha is dependent upon the presence of unstructured regions flanking the stem-
loop [38]. The nuclear export is elicited by a complex of Exportin 5 (Exp5) and Ran-GTP
which selectively binds pre-miRNAs while also protecting them from exonucleolytic diges-
tion [138, 80].

In the cytoplasm, a second step takes place where the pre-miRNA matures into a ~21-
nucleotides long miRNA:miRNA* duplex, with each strand originating from opposite arms of
the stem-loop. The cleavage is produced by the action of an enzyme called Dicer [47], which

recognises the double-stranded stem [141].

In general, the miRNA strand is then integrated in a ribonucleoprotein complex known
as the miRNA-induced silencing complex (miRISC) or miRNA-containing ribonucleoprotein
particles (miRNPs) and the miRNA* is degraded [63]. Sometimes both strands can be de-
tected [108], in which case the miRNA* designates the less predominant form of the mature
miRNA.

Studies have shown that the intermediate miRNA duplexes exhibit a biased internal strand
stability due not only to base-pair composition but also to structural features like mismatches
or bulges [53]. These destabilising elements are thought to facilitate unwinding of the duplex
and subsequent integration in the silencing complex. The strand that is less stable on its 5’
end is preferably loaded onto miRISC [57]. When both ends exhibit similar stability, each
strand is selected for integration with similar frequency [108]. Other studies, however, have

suggested the existence of additional strand selection determinants [76, 32].

MicroRNA biogenesis in plants follows a similar process, but the miRNAs seem to be
fully matured into a single stranded miRNA before being exported to the cytoplasm by an
homolog of Exp5 termed HASTY (HST) and integrated onto the silencing complex, which
partially explains why intermediate forms of plant miRNAs are only rarely detected [93, §].

All maturation steps of plant miRNAs are processed by Dicer-like proteins. The predicted
miRNA precursors in plants are much more variable in size than those of animals, ranging
from around 60 to a few hundred nucleotides, whereas those in animals are typically ~70-

nucleotides long [7].

Given the stepwise process by which miRNAs are matured, and hence the diverse op-
portunities of regulation at each step, one can expect to find regulatory mechanisms at this
level and, in fact, there is some evidence of post-transcriptional control of miRNA expres-
sion [27, 6, 79].

As mentioned, some miRNAs originate from the introns of other genes, usually being
located in the same strand, which suggests that they are transcribed with the host genes and
subsequently excised [75, 61, 102, 134]. Studies show that the expression of these miRNAs
and their host genes is coupled, indicating a possible mechanism by which a protein and a

miRNA are coordinately expressed [9, 8], presumably as part of a common biological process.
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However, some intronic miRNAs occur in antisense orientation and may thus be transcribed
under the influence of an independent promoter [27, 126].

An alternative pathway for intron-derived miRNAs has been recently identified in ani-
mals [104]. These introns, termed mirtrons, bypass Drosha processing and exhibit structural
features similar to those of pre-miRNAs, thus entering the miRNA biogenesis pathway at the
end of the first step. Unlike other intron-derived miRNAs which are excised from unspliced
transcripts [54], mirtrons are dependent on the splicing machinery for maturation.

MicroRNAs in animals are thought to act primarily as translational repressors by pairing
with specific partially-complementary 3’ UTR regulatory elements on mRNAs [59], although
target sites in the coding region and 5> UTR can also be functional [55, 81]. Another major
miRNA silencing mechanism in animals leads to target mRNA destabilisation through a
cleavage-independent process with a clear impact on transcript level [74, 96]. Some authors
have suggested that miRNAs may have either a negative or positive regulatory effect [4].
In fact, recent evidence indicates that positive transcriptional regulation can be produced
by miRNAs that target sites in promoter regions by an otherwise unknown mechanism [97].
Moreover, there are reports that in some circumstances and in certain cell-types, miRNAs
can also enhance translation [118].

Plant miRNAs, on the other hand, frequently cleave and thus induce immediate degrada-
tion of the target mRNAs and are often almost perfectly complementary to sites in the coding
region [98], as well as in the 3> UTR [99], and even in the 5" UTR [116]. However, some of
these target sites may only be present after mRNA maturation since they span intron/exon
boundaries [85]. It is also important to note that, a priori, nothing seems to prevent miRNAs
from regulating RNAs other than mRNAs. They may also bind and regulate non-coding
RNAs, perhaps even other miRNAs [4]. This possibility is illustrated by a study done with
Arabidopsis thaliana, which suggests that miRNAs may bind fake targets in other non-coding
RNAs thereby establishing a mechanism of negative regulation of miRNA activity [25].

Unsurprisingly, some large DNA viruses have evolved ways to explore the RNA silencing
machinery of the host by coding for miRNAs [95]. These viral miRNAs can be expressed either
individually or in clusters from pol IT or pol III promoters. Interestingly, these miRNAs show

no resemblance to other viral miRNAs, nor to the miRNAs of the host.
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Chapter 3

MiRNA gene finding

Large-scale experimental approaches to miRNA gene finding met with some difficulties
in the beginning, illustrated by the fact that these regulators escaped detection for so long.
The short length of miRNAs and their ability to act redundantly, or to have only a subtle
phenotypical impact imposes a limitation to the use of mutagenesis and other conventional
genetics techniques [4]. Direct cloning, on the other hand, may not detect miRNAs that have
very low expression levels or that are expressed only in specific conditions and cell-types. This
is partially mitigated by the use of deep-sequencing techniques which nevertheless require
extensive computational analyses to distinguish miRNAs from other non-coding RNAs of
similar size [30]. It is clear, therefore, that computational approaches are essential for a more
thorough catalogue of miRNA genes in sequenced genomes [75, 34].

Conventional in silico gene finding approaches are of limited use since miRNAs and non-
coding genes in general do not exhibit the characteristic statistical properties of coding regions
due to codon usage. The same can be said of homology-based searches in the absence of a
clear evolutionary model for these genes. Obtaining such a model is particularly difficult due
to the comparatively small size of the precursor and mature sequences.

The different characteristics of miRNAs in animals and plants have justified different

approaches and, therefore, we discuss the methods developed for the two cases separately.

3.1 Computational approaches to miRNA gene finding in an-

imals

Lee and Ambros [65] established the paradigm of what would become the typical strategy
for miRNA gene search. According to these authors, future miRNA genes ought to share some
features with lin-4 and let-7 of C. elegans, namely the expression of a mature RNA sequence of
the appropriate length (~22-nucleotides), which should have its origin in intergenic sequences

and be processed from a stem-loop precursor transcript of around 65-nucleotides in length.
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Furthermore, there should be extensive sequence similarity with orthologs in closely related

species.

These observations prompted the adoption of several criteria for the annotation of novel
miRNA genes [5]. First, expression criteria establish that new miRNA genes should be sup-
ported by experimental evidence that detects the ~22-nucleotides RNA transcript, or that
these small molecules should be found in ¢cDNA libraries. Second, at least one of the following
biogenesis criteria should be met: 1) the mature miRNA should be included in one arm of
a predicted minimum free energy fold-back precursor structure with extensive base-pairing
in the miRNA region which should not contain any large internal loops or bulges, especially
asymmetric bulges; 2) the fold-back structure should be phylogenetically conserved; and 3)
the precursor should be shown to accumulate in organisms with impaired Dicer function.

Expression criteria need not be met in the case of obvious homologs.

It is clear that expression criteria alone are not sufficient for a confident annotation since
they cannot distinguish miRNAs from other cellular RNAs with approximately the same size,
or from spurious degradation products of other RNAs. On the other hand, the fact that
expression evidence cannot be found does not necessarily exclude a candidate due to the

limitations of experimental methods.

Known microRNA precursors have a typical stem-loop secondary structure which is es-
sentially conserved amongst metazoa but heterogeneous within plants. Some of the first
miRNA gene searches were carried out considering both this typical secondary structure and
structure/sequence conservation between two closely related species (C. elegans and C. brig-
gsae) [65]. However, it soon became clear that there were much more conserved stem-loops
than miRNA genes, and additional criteria had to be put in place if we were to identify good
candidates [60].

Moreover, although a significant fraction of known miRNAs seems to be very well con-
served phylogenetically, this may reflect the bias of the search procedures used so far, which
privilege phylogenetic conservation in order to validate miRNA candidates. It may also il-
lustrate a general limitation of current computational approaches which can only predict
candidates which resemble previously identified miRNAs [21]. Furthermore, strong conserva-
tion may be a sign of the existence of multiple conserved target sites which would constitute
an overwhelming selective force against mutation. As more organisms are being analysed,
more miRNA genes are identified and an increasing number is shown to be lineage or species-
specific [11].

Despite the caveats, the annotation criteria have inspired most current computational
methods for miRNA gene finding. Therefore, many tools share the same overall strategy
but use different approaches to phylogenetic conservation, and different features to identify
good stem-loop candidates. These methods can thus be distinguished roughly by the way

they identify the initial candidate set, the structural criteria they use to further restrict
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precursor candidates, the conservation criteria they adopt and any additional filters they
may implement. We refer to these approaches as filter-based methods. Later approaches use
conventional machine learning methods that try to generalise from a positive set of previously
known miRNAs and a negative set of stem-loops presumed not to be miRNA precursors.
Target-centered approaches use a putative set of miRNA targets derived from conservation
analyses which are then used to seek new miRNAs. Mized approaches use a combination of
computational tools and high-throughput experimental procedures. Finally, homology-based
searches try to identify stem-loops similar to previously identified pre-miRNAs that may have

been missed by ab initio methods.

Initial set

Structural criteria

Conservation criteria

Additional filters

Grad et al. [34]

MIRSCAN [75]

Stem-loop structures in
repeats-masked inter-
genic regions

Folded structures iden-
tified sliding a 110-
nt window along the
genome

MFE, GC content,
matches, mismatches,
gaps and occurrence of
multi-loops

Number of bp, MFE,
no overlap with re-
peats, no skewed base
composition

Homologous stem-loops
transitively identified in
two additional genomes

Homologous stem-loops
identified in an additional
genome

Hairpins containing
short repeats or with
low quality structure
are eliminated

Log-odds score for sev-
eral features of the
miRNA region of the
stem-loop

Berezikov et al. [12]  Regions exhibiting a  Only highly probable Implicitly considered in the
typical conservation stable stem-loops are initial set
pattern identified  retained
using phylogenetic
shadowing
MIRSEEKER [61] Aligned non-coding  Metrics involving  Typical divergence pattern
non-annotated regions length of longest stem-
from two species arm, MFE, internal
loops, asymmetric
loops and bulges ap-
plied to  predicted
structures in aligned
regions

Table 3.1: Comparison of some filter-based approaches to miRNA gene finding in animals

3.1.1 Filter-based approaches

Early miRNA gene finding methods, summarised in Tab. 3.1, focused on the identification
of small high-quality sets of conserved miRNA candidates which would have a better chance
of being experimentally confirmed as true miRNAs. One of these methods, described in [34],
identified several new miRNAs in C. elegans. An initial candidate set of imperfect stem-loops
obtained from all repeats-masked intergenic regions of the genome of C. elegans was filtered
according to criteria that accounted for matches, mismatches and gaps on the stem region,
as well as GC content, MFE (minimum free energy) and the occurrence of multi-loops. The
cut-offs for these parameters were chosen to reflect the characteristics of previously known
miRNAs from the studied organism. Most of the filtering was achieved with the conservation
criterion that required homologous stem-loops on two additional genomes. It is interesting to

note that, from a universe of 61 known genes, only 29 out of 39 C. elegans miRNAs included
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in the initial set passed the structural criteria and not more than 6 miRNAs were conserved

in two additional genomes, illustrating the emphasis on specificity rather than sensitivity.

Another approach, also published in 2003, makes some improvements on sensitivity. This
method called MIRSCAN [75], produced an initial set of candidates by scanning the genome of
C. elegans with a sliding-window of 110 nucleotides. The regions were folded and filtered ac-
cording to more permissive structural criteria. Potential homologs were sought in C. briggsae
sequences and only conserved hairpins were retained, yielding a total of ~36 000 candidates.
With this procedure, 50 of the 53 miRNAs known at the time to be conserved in both species
were recovered. Using these 50 miRNAs and the background set of over 36 000 hairpins, the
authors developed a sophisticated log-odds scoring scheme that considered several features of
the mature miRNA portion of the stem-loop. All candidate hairpins were scored and ranked
according to this scheme. However, MIRSCAN was still not able to recover more than half of

the previously known C. elegans miRNAs from the top scoring candidates.

The authors would later improve this method with MIRSCANII [91] which, in addition to
the features considered by MIRSCAN, took into account the presence of conserved motifs and
blocks of sequence conservation up- and downstream of the predicted stem-loop precursors,
presumably involved in transcriptional regulation. The authors observed that independently
transcribed microRNA genes in C. elegans contained a well-conserved motif upstream of the
stem-loop, with respect to homologous sequences in C. briggsae, and used it as an additional

feature. Similar upstream motifs were found in H. sapiens, M. musculus, and D. melanogaster.

An approach described in [12] also considers conservation around the precursor region and
was used in the search for mammalian miRNAs. In this study, the authors could not identify
clearly conserved motifs in the flanking regions immediately adjacent to the pre-miRNA stem-
loops, but they were able to observe a distinctive pattern of diminishing conservation that

was used as a characteristic profile aiding the search for miRNA genes.

The method MIRSEEKER [61] represents the first attempt to identify conserved stem-loops
due to selection, and not as an artefact of considering genomes that are not sufficiently distant.
The authors aligned the non-annotated intergenic and intronic sequences of the genomes of
D. melanogaster and D. pseudoobscura. The conserved regions were then folded in order to
identify and score potential stem-loop structures. The evaluation of the hairpins considered
the length of the longest stem-arm and its MFE, as well as a set of metrics penalising internal
loops, particularly asymmetric loops and bulges. By analysing a reference set of known
miRNA genes of two drosophilid species, the authors derived a typical divergence pattern. In
general, divergence was observed in the terminal loop, or in either one of the stem arms. A
good miRNA candidate should exhibit a pattern such that divergence occurs in at most one
stem arm, and the mutation rate at the stem arm should not exceed that seen in the terminal
loop. This is justified by the fact that mutations in the terminal loop have a lesser impact

on pre-miRNA structure and identity and, consequently, its processing efficiency and target
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specificity, than mutations on the stem arm.

The methods described so far and variations thereof have been able to recover a sub-
stantial part of the known miRNAs and have been useful in identifying several new regula-
tors [6, 73, 105]. Some of these methods have benefited from a growing number of sequenced
species allowing more extensive and sophisticated studies of conservation patterns [106, 103].
However, they have failed to produce a set of rules capable of recovering all known miRNAs
without leading to too many false positives. Additionally, they are critically dependent on
conservation criteria to attain reasonable levels of specificity. This approach effectively pre-
vents the identification of non-conserved candidates, and makes several assumptions in the

absence of a clear evolutionary model for these structures.

3.1.2 Machine learning methods

One attempt to use a single-genome approach to miRNA gene finding was PROMIR [87].
The initial set of candidates are stem-loops that are present on human ESTSs, therefore re-
stricting the search to sequences with verified expression. Candidate stem-loops were filtered
using very permissive structural criteria concerning stem length, loop size and MFE. This
probabilistic method relies on an HMM (Hidden Markov Model) that models characteristics
of the stem portion of the stem-loop viewed as a paired sequence. These characteristics con-
cern the pattern of base-pairing and the location of the mature miRNA. The positive training
set consisted in all known human pre-miRNAs and the negative set corresponded to 1 000
extended stem-loops randomly extracted from the human genome. A stem-loop is found to
be a good pre-miRNA candidate if it contains a sequence with probability of being a mature
miRNA above a certain threshold. However, the candidate set was still too large and ad-
ditional filters had to be used, including the assessment of the statistical significance of the
predicted secondary structure, and the verification of a decaying conservation pattern in the
regions flanking the putative pre-miRNA by comparison to other vertebrate genomes, as done
in [12].

The first successful single-genome approach came from a method developed to identify
miRNAs in viral genomes [95]. Using conservation criteria in this case is not an option as
most viral pre-miRNAs show no detectable conservation with respect to either other viral
pre-miRNAs or to the precursors of the infected host. The method starts by identifying
robust stem-loops, i.e., stem-loops which retain the typical folding structure regardless of the
precise location of the start/end of the folded transcript. This is justified by the observation
that a pre-miRNA should be robust with respect to the genomic context where it lies. These
candidate stem-loops were then scored by an SVM (Support Vector Machine) classifier trained
on a set of positive examples derived from known human miRNA precursors and a set of
negative examples derived from mRNAs, tRNAs, rRNAs and random regions of the human

and viral genomes. The features considered included folding free energy, nucleotide count in
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the symmetrical stem, and number of A-U, G-C and G:U pairs in the predicted structure.
The authors forced the misclassification of positives to be eight times more penalising than

the misclassification of negatives, thus sacrificing sensitivity for higher specificity.

The same approach was then used to predict clustered pre-miRNAs in H. sapiens, M.
musculus, and Rattus norvegicus [109] following the observation that many animal miRNAs
indeed occur in clusters. The high false positive rate that the approach, in general, could entail
is partially mitigated by the fact that only regions close to previously identified miRNAs are
scanned, so it is reasonable to assume that these regions are indeed transcribed and can

represent instances of clustered miRNAs.

Another single-genome approach is HHMMIiR [52] which uses hierarchical hidden Markov
models to identify the sequence/structure characteristics of different portions of the pre-
miRNA hairpin (the terminal loop, the miRNA duplex, the remaining sequences of the miRNA
precursor, additional sequences pertaining to the pri-miRNA which happen to be included in
the extended stem-loop). The HHMMIiR model parameters are estimated by training over the
positive set of known human pre-miRNAs and the negative set of hairpins randomly extracted

from the coding regions.

Several other machine learning methods have been proposed to tackle the problem of iden-
tifying good miRNA candidates. SVMs have been a popular framework used to learn the dis-
tinctive characteristics of miRNAs. Most approaches use sets of features concerning sequence
composition [132, 41, 88], topological properties of the stem-loop [41, 88, 46], thermodynamic
stability [41, 88, 46], and sometimes other properties including entropy measures [88].

A somewhat different approach called MIRCOS-A [110] chains three different SVM classi-
fiers, each focusing on different features of the candidate stem-loops obtained from conserved
regions of vertebrate genomes. The aspects covered by each SVM concerned: 1) sequence
conservation; 2) secondary structure conservation; and 3) location and structure of the ma-
ture miRNA in the hairpin structure. By using a chained-filter approach the authors were
able to compute complex features for the SVMs downstream in the pipeline, which would
have been prohibitively time-consuming if applied to all the initial candidates.

An SVM method specifically designed to predict Drosha processing sites is described in
[40]. The classifier uses 11 features concerning sequence/structure properties in different re-
gions of the stem-loop. This method not only can serve as a pre-processing tool of miRNA
candidates as it can also generate additional features for precursor classifiers concerning met-

rics about the potential processing sites.

Other machine learning methods rely on Random Forests [49] (a method that uses a set
of tree-based classifiers combining sampling of training data with random feature selection),
a Naive Bayes classifier [136], or genetic programming [20].

The methods described in this section are natural approaches to the miRNA gene finding

problem. The latter is cast as a classification problem and powerful methods are used to
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generalise from positive and negative examples, as is customary. In this case, however, there
are a few questions raised by the positive and negative datasets adopted.

Negative datasets usually include randomly chosen stem-loops extracted from the genome,
under the assumption that there is a very low-density of pre-miRNAs and therefore there is a
small chance of a true miRNA precursor being recruited as a negative example. The number of
miRNAs in any given genome is still an open problem and consequently we cannot confidently
evaluate the impact of this assumption. Additionally, there may be many stem-loop structures
in the genome that would be able to enter the miRNA processing pathway but are not effi-
ciently transcribed, or are simply in the wrong genomic context. Since these machine learning
approaches do not usually incorporate any information regarding transcription potential or
genomic context, but rather concentrate on stem-loop features, they may be misclassifying
an important portion of the search space, despite the fact that cross-validation procedures
or validations with independent test sets have given very good measures of sensitivity and
specificity.

On the other hand, positive examples are recruited from miRNAs previously identified by
experimental procedures or other computational methods and these datasets are, therefore,
strongly biased towards highly-expressed and extensively conserved miRNAs. This questions
the critical assumption that the positive set is truly representative, as low-expression non-
conserved miRNAs may have features that are substantially different. Despite this, with a
growing number of miRNAs being identified, one can expect an increasingly better perfor-

mance from these methods.

3.1.3 Target-centered approaches

An innovative strategy to predict miRNA genes is described in [131]. The authors aligned
the 3> UTRs of several mammalian genomes and identified highly conserved short motifs
showing properties reminiscent of miRNA target seeds. Subsequently, the authors identified
hundreds of conserved and stable stem-loops containing conserved sequences complementary
to the short motifs previously identified, including several known miRNAs.

Target-centered approaches have the benefit of making few assumptions about the struc-
ture of miRNA precursors, but are dependent on the identification of highly-conserved motifs

in 3 UTRs which do not represent all the universe of possible targets.

3.1.4 Mixed approaches

Some approaches have combined high-throughput experimental methods with computa-
tional procedures in order to identify a wider range of miRNAs. These approaches can use
two different strategies: 1) identification of a great number of low-confidence precursor can-

didates subsequently subject to high-scale experimental verification; 2) extensive cloning of
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small RNAs that are then analysed with respect to their localisation in the genome and their
ability to form stem-loops in the genomic context of the identified locations.

A method called PALGRADE [11] followed the former strategy to identify several new
conserved and non-conserved miRNAs in H. sapiens. Thousands of candidate stem-loops
were selected based on a scoring scheme that considers thermodynamic stability and structural
features. The potential expression of this set of candidates was then tested in several tissues
with microRNA microarrays, and candidates with strong hybridisation signals were further
subjected to directed cloning and sequencing. This approach has substantially expanded the
catalogue of human miRNAs.

Methods following the second strategy usually consider the bulk of sequenced RNAs,
determine their genomic location and apply filters similar to those used by ab initio meth-
ods [86, 105, 62].

As noted before, these approaches cannot, however, detect low-expression or tissue-specific
miRNAs. Deep sequencing techniques have formidably expanded our ability to detect low-
abundance transcripts but have also presented new challenges. While raising the ability
to sequence rare miRNAs, other small transcripts are also amplified and more sophisticated
approaches are required to sieve out miRNA transcripts. A method called MIRDEEP [30] uses
a probabilistic model to assess the compatibility of the pattern of sequenced RNA transcripts
with properties of miRNA biogenesis. According to this model, a true miRNA precursor
should have a characteristic signature, with frequent sequence reads corresponding to the
mature region of the stem-loop, and less frequent reads corresponding to other parts of the

hairpin structure.

3.1.5 Homology-based searches

Homology-based approaches are a common way of detecting miRNAs that may have
been missed by ab initio predictors, and in fact many miRNA gene prediction approaches
incorporate an homology-based search as part of their protocol, in addition to the usual
search for orthologs which is an integral part of the conservation requirements.

Many homology searches are alignment-based methods and can be applied to the members
of the original candidate set that failed to pass some of the filters [34], or specifically directed to
regions surrounding known miRNAs in the hope of finding new members of a gene cluster [3].
Alternatively, these methods can be used to scan newly-sequenced genomes for homologs of
known miRNAs [23, 125, 89], or to further saturate miRNA gene predictions in previously
studied genomes [126].

However, alignment-based methods rely exclusively on sequence conservation. More sen-
sitive methods can be developed by considering structure conservation. An example is the
approach described in [69] which proposes a profile-based method using an RNA compari-

son tool named ERPIN [31] to account for sequence/structure conservation and was able to
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predict hundreds of new candidates from several different families of animal miRNAs. An
alternative example is MIRALIGN [122].

Another powerful strategy is the use of structure-based clustering. In this approach, a set
of candidate structures are clustered using a metric based on sequence/structure alignments.

Potential homologs are found in clusters with known miRNAs [128, 100].

3.2 Computational approaches to miRNA gene finding in plants

Strategies similar to those used in animals have been applied to the prediction of plant
miRNA genes. In this case, the problem is considerably more difficult due to the heterogeneous
nature of plant pre-miRNA stem-loops which vary greatly in size and structure. Consequently,
these methods rely more on the properties of the miRNA:miRNA* duplex within the variable
precursor, and it is also not surprising that much fewer approaches have been proposed for

plants than for animals.

3.2.1 Filter-based approaches

One of the first methods for identifying miRNAs in plants is described in [121]. The
authors proposed a workflow that began by identifying all potential hairpins in the intergenic
regions of A. thaliana. The hairpins were found by looking for imperfect inverted repeats of
21-nucleotides, representing the putative mature miRNA and corresponding star sequence,
that were separated by a distance within a given window. The candidate hairpins were then
filtered according to criteria concerning GC content and loop length. The putative miRNA
sequences were checked against the rice genome and only those showing high conservation
were retained. Finally, the remaining precursor candidates and their orthologs were folded to
validate the characteristic stem-loop secondary structure. This procedure suggested 83 new
and identified 12 previously known miRNAs. Amongst the miRNA candidates, 19 had their
expression experimentally verified, or were found in public databases of small RNAs.

A similar approach is described in [50]. The candidate sequences are folded using a
secondary structure prediction algorithm and given to a program called MIRCHECK. This
program receives a sequence/structure specification and the co-ordinates of a 20-mer within
the hairpin and uses a series of metrics concerning the number of unpaired nucleotides and
bulges in the miRNA mature regions and the length of the hairpin. Sequences overlapping
repetitive elements are eliminated, and a strong conservation criterion is applied retaining only
stem-loops where the mature miRNA appears in both genomes and exhibit high conservation
in both the miRNA and miRNA* sequence. Additionally, stem-loops are tested for robust
folding, indicating that their secondary structures do not change substantially in the presence
of flanking sequences. An additional filter consisted in searching for conserved near-perfect

complementary matches in the mRNAs of both genomes, presumably target sites for these
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miRNA candidates. With this method, the authors were able to identify 379 good miRNA
candidates in 228 unique loci, of which 23 had their expression experimentally verified.

A computational pipeline called MIRFINDER [15] identifies conserved hairpin structures
in the genomes of A. thaliana and O. sativa and subsequently applies several filters, based
on core features derived from known miRNAs. The features seen in the miRNA reference
set suggested that the mature miRNA should be part of a stable continuous helix with no
more than a few unpaired or G:U pairs in the miRNA region. The conservation requirements
included extensive conservation of the mature miRNA sequence and location in the same stem
arm. The authors observed that a large amount of sequences in both genomes could fold into
hairpin structures, so a randomisation test was setup to assess the statistical significance of
the predicted secondary structures. After applying filters for GC content and low complexity
sequences, a total of 91 potential miRNA genes were identified, of which 58 had at least one
nearly perfect target match.

The methods described so far make extensive use of conservation criteria and are therefore
unable to identify miRNAs with less obvious patterns of evolutionary conservation. Other
methods have taken advantage of the near-perfect complementarity observed between the
miRNA and corresponding target sites in plant mRNAs and were able to identify several

novel non-conserved plant miRNAs.

3.2.2 Target-centered approaches

A single-genome approach called FINDMIRNA [1] replaced the sieve of cross-species con-
servation of candidate stem-loops with the detection of potential targets within transcripts of
the same species. The algorithm starts by indexing all the 7-mers of the intergenic regions,
excluding repeats and low GC-content sequences. For each transcript, its overlapping 7-mers
are tentatively matched against the index previously computed. For each match, an ungapped
alignment of the surrounding areas is produced. The best length-normalised alignment score
of size 18 to 25 is marked as a potential miRNA. If the score is above a given threshold, a
dynamic programming algorithm is used to search for a complementary sequence in the vicin-
ity. A secondary structure prediction algorithm is used to verify the presence of a stem-loop
structure, and whether the length-normalised MFE is below a given threshold. An additional
filter is then used for higher specificity, which exploits the expected typical divergence pat-
tern of miRNA precursors of the same family, whose members have presumably arisen by
duplication events. Precursor candidates are put in the same family cluster if they target
the same transcript region. Clusters are then scored according to the degree of conservation
of the miRNA, miRNA*, and intervening sequence, using a scoring function that privileges
conservation of the miRNA sequence and penalises conservation in the intervening region.

A similar approach described in [78], unlike the previous method, does not require that

miRNAs be clustered into families. This method takes each mRNA and a genome-wide
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search is performed in order to identify regions of 20-27 nucleotides that match a portion
of the mRNA with at most 2 mismatches. These matches, termed micromatches, are then
used to identify miRNA candidates. The candidates are passed by six filters: 1) high sequence
complexity; 2) no overlap with annotated exons; 3) no overlap with repeat sequences; 4) stable
miRNA:mRNA duplex; 5) no more than 10 identical copies in the genome; 6) the putative
miRNA is contained in a stable precursor stem-loop structure exhibiting some typical features.
An additional sieve is then added that includes only miRNA candidates with more than one

target, which is thought to be typical of most plant miRNAs.

3.2.3 Homology-based searches

Upon the identification of an ever increasing number of plant miRNA genes in several
species, homology-based search methods begun to be developed seeking the complete enumer-
ation of miRNAs in model organisms [72, 28]. In general terms, these methods first identify
genome hits matching known miRNA mature sequences and then extract the genomic con-
text of such hits and align the candidates with their putative miRNA families followed by the
application of some criteria to determine a final list of candidate homologs. More recently,
these protocols have been adapted to search for new miRNAs by analysing EST (expressed
sequence tag) data [139].

3.2.4 Other approaches

Other methods for plant miRNA gene identification have been developed using a combi-
nation of high-throughput sequencing, filtering and machine learning approaches in similar

ways to those discussed for animal miRNA prediction [115].
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Chapter 4

Single-genome approach to miRNA
gene finding

In this chapter, we present a three-pillar approach to the identification of miRNA precur-
sors from a single genome which is illustrated by the schematisation in Figure 1.1.

We begin by presenting our candidate identification procedure which purports to identify
viable genomic hairpins which will be used as our initial candidate set. The most significant
contribution of this procedure is that it provides a means to avoid folding all the possible ge-
nomic windows under analysis by only considering those with locally maximal self-hybridising
potential. The gains in efficiency come from the fact that calculating this potential is less
computationally expensive than performing structural folding.

In the following section, we present a procedure to evaluate our set of candidates using
a number of robustness and stability measures collectively called intrinsic measures. These
measures have been shown to distinguish pre-miRNAs from other stem-loops but were never
before used in the context of ab initio miRNA gene finding. Each individual measure is justi-
fied by a sound biological argument but any one of those measures in isolation is not sufficiently
segregative. We present a procedure to combine those measures into a single combined score
(escore) which we later show to greatly improve over their individual performances.

In section 4.3 we present our strategy to perform a structural analysis of the candidates in
an attempt to identify those which resemble known precursors. First, we discuss the use of a
vectorial representation of the primary/secondary structure of the precursor candidates which
is able to capture information about key aspects of the hairpin, particularly the number and
scale of bulges, internal loops and other features which are known to compromise the recogni-
tion of the stem-loop by the appropriate cellular mechanisms. The empirical support for the
choice of this particular vectorial representation and the demonstration that it resembles the
results obtained with candidate samples using conventional structural clustering is presented
later, in chapter 5. The vectorial representations of the candidates are then submitted to

a principal components analysis procedure and mapped to the multidimensional principal
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components space. We proceed to detail how, on this transformed space, one can identify the
region most likely to contain candidates with the appropriate structural features and select
the candidates contained therein.

In section 4.4 we discuss strategies to address the need to assess the transcriptional po-
tential of a candidate precursor sequence. These strategies are dependent on the availability
of additional data, namely annotation or experimental data and consist of filtering out candi-
dates with annotation information inconsistent with being a pre-miRNA, the identification of
candidates with genomic locations close to previously identified pre-miRNAs and the mapping
of small sequences of RNA transcripts back to the genome.

Finally, in section 4.5 we introduce the framework that implements the methods described
in the previous sections. We provide details of the implementation, an overview of the pro-

cessing pipeline and a description of the web-based interface.

4.1 Efficient identification of candidate hairpins

The problem of identifying candidate stem-loop structures in a genome can be cast as the
problem of finding an imperfect palindrome with a central intervening sequence. Scanning
the entire genome of interest in an attempt to seek imperfect palindromes directly proved
to be computationally unfeasible, especially considering the irregular nature of these stem-
loop structures with potentially numerous and large bulges as well as non-canonical base
pairings. Existing methods to enumerate imperfect palindromes are inefficient [36] for our
purposes and usually require the specification of the number of gaps and their length, which
cannot be effectively estimated beforehand. Instead, we adopted a filtering approach using
a heuristic procedure which is based on the observation that a segment of a genome which,
upon transcription, may adopt a stem-loop conformation should exhibit a higher degree of
potential pairing between its two halves (if the midpoint of the segment falls within the region
corresponding to the terminal loop) than a segment that either does not contain a stem-loop
or only partially contains such a structure.

Let S be a string over an alphabet X, |S| denotes the length of the string, and S; denotes
the character on the i-th position of the string, with 0 < i < [S|, <§ denotes the reversed
string such that = Sis) - --S1. We denote by LS =5... S||s|/2) and RS = Shisi/21 -+ Sis)»
respectively, the left and right halves of string S so that S = L¥R® as illustrated in Figure 4.1.

Ls RS
|

S

Figure 4.1: Two halves of a split string
Let ® C X2 be the set of accepted pairings of characters in ¥. The set ® induces the
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predicate Fp : ¥* x ¥* +— {0,1} defined as follows: Fg(ac,b3) = 1 iff (a,b) € & A
(Fp(a,5) =1 V a=pf=c¢),witha,beX, a,f € X" and € being the empty string.
In order to consider acceptable RNA pairings, including all canonical pairs along with

G:U base-pairs (which is the most common wobble base-pair) we have

¢ = {(A7U)7 (UaA)7 (C,G), (G7C)7 (GaU)v (U7G)}

The best local alignment over a split string S' is calculated using a dynamic programming

matrix where each cell, H(i,7), is computed using the following recurrence:

@)

«—

i—1,7-1)+& ichb(LSia(R_Sj)

H(
@_1]_D & if Fo(LS;, RS;)
(
(

1
0 (4.1)

max

i—1,7)—
i,j—1) =

where &y, &1, and & represent the contribution to the alignment score of matches, mis-

H
H
H

matches, and gaps, respectively.

Using the Smith-Waterman algorithm [113] on a split string, S, one can determine the
best alignment in O(|S|?).

Consider a genome with & chromosomes, seen as a collection of sequences S = {C1,Co,...,Ck}.
The algorithm will slide a window of length w along each chromosome of the genome deter-
mining, for each position, the best local alignment under a model M = (&g, &1, &2).

Using the described sliding-window procedure, it is clear that the best alignments for all
windows in the genome can be computed in O(w?Y",(|Ci| — w + 1)).

An alignment A of two sequences S, S is a tuple (e1, e2,0) where 0 < ey < [S1],0 < ey <
S2], and o € {1, <, \}".

If A = (e1,e2,0) is a best local alignment of a split string, then:

o Vi,j H(i,j) < H(ey,e2), where H(i,7) is the value of the ith row, jth column of the

dynamic programming matrix of the Smith-Waterman algorithm.

e o represents a path from (e, e2) to a cell in the dynamic programming matrix containing
the value 0 such that if the k-th cell in the path is (ix, jx) and H (i, ji) # 0 then the
(k + 1)-th cell in the path is:

— (g — 1,5k — 1) if H(ig,jx) = H(ir, — 1, jr — 1) + &o and o ="
- (Zk - ]-a]k - 1) if H(Y’/ﬁ]k) = H(Zk - 1a]k - 1) _51 and O :\
— (ix — 1, &) if H(ig, jx) = H(ir — 1,jx) — &2 and o3, =+
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— (i, g — 1) if H(ix, jr) = H(ik, jr — 1) — &2 and o =1

The rationale of the procedure is to take the best alignment of the two halves of each
genome window considered and identify the windows where the pairing potential is locally
maximal with respect to a normalised score.

The normalised score for a best local alignment A = (e1, e2,0) of a split string is defined

as:

e1te2 (42)

2H (e1,e2) if
S(A): = jfeg+ey >0
0 otherwise

The adopted score not only normalises the score of the best alignment with respect to the
alignment length, but it also privileges a base pairing closer to the midpoint of the genome
window under consideration. We can now define what is a candidate position in the genome.

Consider a chromosome, C, of a given genome. Let S = C) ... Cpyy—1 be the sequence of
length w starting at position p of the said chromosome, and let A, be the best local alignment

in S. We have that S is a candidate sequence iff the normalised score is locally maximal at

S, ie.,
L3p:Y:p<p <p = s(Ap) <s(Ap) =s(Ay)
2.V ip>p>p = s(Ap) <s(Ap) =s(Ay)

having s(Ap) = 0 for every p < 0 or p > |C] —w + 1.

As several candidate positions may be identified in contiguous co-ordinates in the genome,
presumably for each window whose midpoint falls within the terminal loop portion of the
stem-loop, we aggregate them together in candidate regions as they will refer to the same
stem-loop structure.

Let Ré be a region of length [ > w starting at position p of a chromosome C of a
given genome. leo is a candidate region iff C),...,Cpii—y are candidate positions and
Cp-1,Cpti—w+1 are not.

We have chosen a window length of 200, which approximately corresponds to the length
of the largest annotated metazoan precursor sequence and is wide enough to accommodate
the vast majority of known animal pre-miRNAs, and we have adopted a scoring model such
that & = & = & = 1. The choice of parameters for the model is important since it may
affect the identity and number of candidate regions identified. Our scoring model was based
on three observations. First, most DNA alignment methods prefer a linear model for gaps
and an equal penalty for gaps and mismatches [114]. Second, miRNA precursors necessarily
exhibit gaps and mismatches when aligning their stem portion due to the ubiquitous yet small
bulges and inner loops which justifies that the penalty for a gap/mismatch be the same as the

contribution given by matches. Finally, small variations in the scoring model did not produce
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significantly different results, whereas more radical departures from the adopted model, such
as having mismatches or gaps negatively contributing to the alignment score more than twice
the contribution of a match, did have an impact on the sensitivity (data not shown).
Having identified the candidate regions, these are folded using RNAfold [45] with standard
parameters and the largest stem-loop structure contained therein is extracted and re-folded.
The final set of precursor candidates is made up of these refolded stem-loops after the elim-
ination of non-viable and redundant candidates. Candidates are deemed non-viable if they
exhibit a minimum free energy higher than -20 Kcal/mol or if they have one or both stem
arms shorter than 16 nucleotides because otherwise the structure would be too unstable or
not be long enough to accommodate a mature miRNA sequence. These filtering parameters
capture the vast majority of known pre-miRNAs while significantly reducing the number of
candidate stem-loops. The final list of candidates is subjected to an additional filtering step
in order to identify redundant candidate subsets. A subset of candidates is said to be re-
dundant if each member has identical terminal loop start/stop genomic positions although
the length of the stem arms may vary. In this case, the candidate (or a random element
of the subset of candidates) with the largest total sum of stem arm length is retained and
the remaining members of the subset are discarded. This procedure creates a small bias
towards larger stem-loop structures, but it avoids considering largely redundant sequences
or sequences missing key portions of the stem or even the putative mature sequence of a
possible precursor. This type of candidates, which are likely larger than the actual precursor
(if one happens to be contained therein), are usually referred to as extended stem-loops, and

correspond to the largest hairpin that can be folded in its genomic context.

4.2 Robustness and Stability Measures

The evaluation measures described in this section, which we collectively call intrinsic
measures, purport to assess whether the candidate precursors possess certain features that
have been shown to distinguish pre-miRNAs from other stem-loops and are related to the
stability and robustness of their secondary structure.

It was shown that miRNAs have an adjusted minimum free energy (AMFE) that is lower
than that of other stem-loop structures [140], i.e., when normalised for length, other genomic
stem-loops tend to be less stable than miRNA precursors. Similarly, it was established that
miRNA precursors tend to preserve roughly the same secondary structure in the face of varia-
tions in their genomic context [64], presumably as an evolved robustness to mutations in their
flanking sequences (Robustness to context). Likewise, it was shown that miRNA precursor
structures are usually also robust with respect to mutations (Robustness to mutations) [18],
possibly as a result of second-order evolutionary processes. To these three measures, we add

the requirement for Robustness of folding observing that a true miRNA precursor should fold
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into a stable stem-loop structure for the most part of the structures in the thermodynamic

ensemble where the molecule is found in physiological conditions.

From the combination of these four measures, it is possible to derive a single combined
score (cscore) for each precursor candidate and rank the stem-loops extracted from a given
genome. Our single score not only combines the information provided by each measure, but
it does so against a background of hairpins extracted from a random sequence with the same
dinucleotide distribution of the original genome. This procedure compensates for hairpin

robustness provided by genome composition alone.

We describe the details of the computation of the intrinsic measures for each candidate,

as well as the determination of the cscore, in the remainder of this section.

4.2.1 Adjusted MFE
The Adjusted MFE (AMFE) for a precursor p of length |p| is defined as:

MFE(p)

s1(p) = AMFE(p) = 100 o

(4.3)

This measure consists in normalising the minimum free energy of the structure under
study with respect to its length. The normalisation procedure is justified by the observation
that larger structures can have lower free energies due simply to the fact that they have
more opportunities to form base-pairs. GC content also plays a role in defining the lower
limit of free energy a structure can exhibit, but additional normalisation by GC content as
done in [140] using the MFEI (Minimum Free Energy Index) yields an ill-defined measure
for candidates from AT-rich regions which will sometimes have a GC content of zero. The
procedure used to calculate the cscore, described below, partially compensates for the absence

of this normalisation step.

4.2.2 Robustness of folding

This measure refers to the fraction of base-pairs that are preserved across a set of sub-
optimal structures and is implemented by RNAfold [45] as a measure of ensemble diver-
sity [130].

The value of this measure is the average base-pair distance (dp;,) between the optimal
(po) and each of the sub-optimal structures (p;) in the thermodynamic ensemble, weighted
by their probability. The base-pair distance is defined as the number of base-pairs present in
only one of the two structures being compared, i.e, the number of base-pairs that have to be
opened or closed to transform one structure into the other. The value of the robustness of

folding measure is given by the following formula:
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100 100 e~ AGI/KT

— (dbp) = H ZZ: dbp(p07pi)7 (4.4)

=2(p) =

where AG; is the i-th energy level, k is the Boltzmann constant, T is the temperature,
and Z = ", e 2Gi/*T i a normalising constant.

As shown in the formula, the computed value is normalised for a sequence with a length
of 100 nucleotides.

4.2.3 Robustness with respect to context

This measure is a modification of the Self-containment index [64] (SC index) and it eval-
uates the impact of genomic context variations in the secondary structure of the precursor

candidate, and can be summarised by this formula:

dy (p/c >p/ )
— : 1 _ 0 Ci 4
s3(p) = median, { A (4.5)

where dy is the Hamming distance, p’CO is the dot-parenthesis representation of the sec-
ondary structure of the precursor in its original genomic context, pr.. is the dot-parenthesis
representation of the secondary structure of the precursor folded in the i-th randomised ge-
nomic context with any mismatched parenthesis replaced by dots.

Given the large number of candidates and the need for computational efficiency, instead
of strictly preserving dinucleotide frequencies, as proposed in [64], we trained two single-state
first-order Markov chains with the up- and downstream genomic contexts of each candidate,
covering a length identical to the size of the candidate. The candidates are then re-folded in
100 random contexts generated according to the Markov models previously obtained. The
value of this measure is the median proportion of the original structure that is preserved in
each refolded candidate. The measure takes values between 0 (none of the original structure
is preserved in more than half of the randomised contexts) and 1 (the entire structure remains

intact in more than half of the randomised contexts).

4.2.4 Robustness with respect to mutations

The original formulation of a measure of mutational robustness was proposed in [18],
and it was shown to be a notable property of miRNA precursors. In order to compute the
value of this measure, for each candidate precursor, p, the entire 1-mutation neighbourhood,
{uil (p)}z‘:l,...,?)\pw is generated (i.e. the set of all sequences obtained from p by performing
all possible point mutations at each position so that each mutant differs from p by only one
nucleotide) and each mutant is folded. The value of this measure is the median base-pair
distance between the original and each mutant structure, normalised to a sequence with a

length of 100 nucleotides, summarised in the following formula:
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100

sa(p) = 7 median {dy, (p. i (p))} (4.6)

where p}(p) is the i-th 1-mutation of p (i.e. the i-th member of its 1-mutation neighbour-
hood), and dy, is the base-pair distance.

The authors who proposed the measures of robustness with respect to context and ro-
bustness with respect to mutations, discussed above, calculated their scores by averaging the
proportion of preserved structure and base-pair distance to each mutant, respectively. We,
instead, preferred the median of these values since it is a more robust centrality measure when

dealing with values originating from possibly non-Gaussian distributions.

4.2.5 Combining measures

In order to combine the measures described above into a single score, we determine the
significance of the value of the measures for each candidate against its empirical distribution
in a random genome with similar dinucleotide frequencies. To that effect, a single-state first-
order Markov chain is trained with the sequences of the genome whose candidates are to
be evaluated, which is then used to generate a single 5 Mb sequence. Precursor candidates
are extracted from these artificial genomes using the same procedures as the ones previously
described for the original genomes and each of these artificial candidates is evaluated using
the four robustness/stability measures. The use of empirical distributions for our measures
is justified by the fact that the underlying probability distribution is unknown.

The combined score (cscore) of a precursor candidate is given by the product of the
significance of each measure value against the corresponding empirical distribution in the
artificial genome, i.e., the proportion of candidates in the artificial genome which have worse
scores than the candidate under consideration. This notion of worse can either mean lower
or higher values, depending on the biological interpretation of the measure. For instance, a
worse value for the AMFE measure is, in fact, a higher value since it refers to less stable
structures. On the other hand, for the Robustness to context measure, worse values are lower,
since they refer to structures which are more poorly preserved in varying genomic contexts.

Let F; be the empirical cumulative probability function for the distribution of the i-th
evaluation measure on a randomised genome with the same statistical properties of the genome

of interest, then the cscore, s(p), for the candidate precursor p is

4

s(p) = HFi(Si(p)) (4.7)

i=1
The cscore thus varies between 0 (the candidate scores worse than all candidates in the ar-

tificial genome for at least one measure) and 1 (the candidate scores better than all candidates

in the artificial genome for all measures).
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4.3 Structural analysis

An important feature of pre-miRNAs that elicits their recognition by the miRNA-processing
machinery is their secondary structure. As we stated before, pre-miRNAs typically exhibit a
stem-loop structure with few internal loops or asymmetric bulges but the variety of structures
that are efficiently recognised has escaped any strict characterisation [77].

The intrinsic measures presented in section 4.2 can be used to identify and select robust
and stable stem-loop structures. However, the candidates thus identified are still impractically
numerous to be subjected to experimental confirmation (see Chapter 5), and there is no
guarantee that a robust and stable stem-loop meets the structural requirements of the enzymes
involved in miRNA maturation.

The most immediate approach to analysing the variety of pre-miRNAs in our candidate set
is to seek the identification of families amongst the precursor candidates. Albeit miRNAs have
been grouped into families according to their sequence similarity in the miRBase database [35],
this approach does not give enough insight as to the structural features that are important
for the recognition by the miRNA-processing machinery. Hence, the grouping has to be
performed according to sequence and structure. Various algorithmic approaches have been
introduced to determine structural similarities and to derive consensus structure patterns for
structural RNAs with low sequence identity [111, 42, 107, 33, 39, 82, 19, 43, 127, 14]. However,
all these approaches suffer from a high computational complexity, with a time requirement
typically between O(n*) and O(n%).

A first approach towards clustering of microRNAs has been achieved in [51], where the
sequence-structure alignment tool Foldalign [33, 39] was used to cluster 220 microRNAs into
structural classes. However, it is computationally unfeasible to cluster hundreds of thousands
of candidates using this approach.

In this section, we present a vectorial representation which purports to summarise the
structural and sequence features of each candidate, a method used to map the candidates
onto a multidimensional feature space, and we describe the procedure used to identify the
region of the feature space most likely to contain candidates with the appropriate structural
requirements. Additionally, we describe the procedures used in Chapter 5 to validate our
choice of vectorial representation and to demonstrate that it approximates the results of

conventional structural clustering.

4.3.1 Vectorial representation of primary/secondary structure

In this thesis, we use a vectorial representation for candidate precursors which summarises
key features of the primary/secondary structure of a given stem-loop. The representation we
chose, after considering several options and selecting the one that best matched the results

of conventional clustering (see Chapter 5), consists of a vector of normalised counts. In order
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(0,0,...,0,0.1,0,...,0,0.050,...,0,0.1,0, ...)

()

Figure 4.2: Example of a vectorial representation.
(a) The characteristics of a single position are determined, which include the nucleotide and
whether the previous, current and following positions in the secondary structure are left /right
paired, unpaired or located in the terminal loop. (b) Portions of the final vector illustrating
the counts. Each vector position refers to a particular nucleotide type and the neighbouring
pairing status, from (A,0,0,0) to (G, 3,3,3). (c) Portions of the normalized vector obtained
from (b), each position is divided by a constant such that the sum of all components is 1.

to build this vector, we use a sliding window of length 3 (a triplet) that scans the precursor
candidate. At each step, a position in the vector is incremented. The appropriate vector
position is mapped considering whether each nucleotide within the window and with respect
to the MFE structure is the left /right-hand side of a base-pair, an unpaired nucleotide on the
stem, or part of the terminal loop, and, additionally, which base is present at the midpoint of
the window. We have, thus, a vector with 256 positions. After scanning the entire precursor,

each position in the vector is normalised by dividing its counts by the length of the sequence.

Formally, the features used in our vectorial representation can be represented as a 4-
tuple («, ¢_1,Po,p+1) where o € {A,T,G,C} refers to a nucleotide in the sequence, each
¢; € {0,1,2,3} is a function indicating whether the structural position at coordinates i €
{—1,0,1} (with respect to the nucleotide «) is unpaired, left-paired, right-paired, or located
at the terminal loop. Fig. 4.2 gives an example of the vectorial representation for a particular

stem-loop.

A similar representation has already been used to represent feature vectors of RNA stem-
loops in the context of training a support-vector machine [132] and is amongst the represen-
tations we have evaluated. The representation we use here is richer than the one proposed by
the authors in the sense that it distinguishes the situation where a given position is the left or
right-hand side of a base-pair instead of simply being a paired position and it also represents
unpaired nucleotides in the stem region or the terminal loop differently. This way, information
about asymmetrical loops and bulges in the stem is captured by the vector counts, and the

number of nucleotides involved in the terminal loop is also accounted for.
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4.3.2 Feature space

The vectorial representation of hairpins used in the structural analysis of our precursor
candidates captures information about sequence/structure features but, in general, the di-
mensions of these feature vectors are not independent making it difficult to draw conclusions
from the analysis of the spatial distribution of the candidates in the vectorial space. Further-
more, all vectors will always have zero values in some dimensions as some combinations of

left /right-hand paired and unpaired nucleotides are not possible in actual RNA structures.

In order to reduce the number of dimensions of the feature space and to ensure that
the structures are represented in a space with linearly independent dimensions we perform
some modifications to the space defined by the vectorial representations. First, we readily
eliminate dimensions with zero variance. In practice, for a sufficiently large dataset, this will
only eliminate dimensions for which all vectors have value zero. On the remaining dimensions
we apply a scaling procedure to make sure each dimension exhibits unit variance and then
we perform a principal components analysis (PCA). The principal components thus obtained

become the dimensions of the feature space.

The representation of each candidate in this feature space, by itself, does not elicit the
identification of a region of interest corresponding to the portion of the multidimensional space
satisfying the necessary structural requirements. The identification of that region, which we
will call acceptance region, has to be seeded by some point or points referring to structures

which are known to pertain to the set of accepted hairpins.

If we assume that there is a single connected acceptance region, we can calculate the
centroid of the known precursor structures for a given dataset and use it as the seed to select
all the candidates inside a sphere centred at the calculated centroid and use the radius of the
sphere to define how conservative or how inclusive the selection should be. If, on the other
hand, we allow for an acceptance region with disconnected components, we can take the set
of points corresponding to the known precursor structures, P, and select every candidate, c,
such that

mind(c,p) <, r>0 (4.8)
peEP

where d(c, p) is the Euclidian distance between the representation of ¢, p € P in the feature
space. Any of these two approaches has the advantage of not requiring the specification of
negative examples which, lacking experimental confirmation, would arguably be arbitrary
and, in any event, would also likely be unrepresentative. On the other hand, by relying on
the prior identification of known precursors, our approaches are predicated on the assumption
that the acceptance region is not fragmented across the feature space but rather concentrated
in at most a small number of disconnected components and that the known precursors are

representative of the acceptance region. This last concern can be mitigated by the inclusion of
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precursors from other species in the seed set, under the additional assumption that structural

requirements for precursor hairpins are sufficiently similar across species.

4.3.3 Validation of the vectorial representations

Our approach to the structural analysis of candidate hairpins is based on the observation
that performing conventional structure-based clustering is unfeasible for a large set of hairpins
as the one we are faced with when analysing the stem-loops extracted from a genome-wide
scan. The solution we present in the previous sections assumes that the adopted vectorial
representation and the space transform operated by the PCA places the candidates distributed
in such a way that their relative distances reflect their structural similarities. In order to test
this assumption it is necessary to compare our approach to a conventional structural clustering
procedure, which is only possible if small samples of our candidate set are used. In Chapter 5

we present the results of the validation of our approach using the procedures discussed below.

4.3.3.1 Randomisation procedure

A randomisation procedure is used during the analysis of how well the distances in the
feature space match the results obtained for several samples of the candidate sets using a
conventional structural clustering method, in terms of the proportion of correctly assigned
cluster members. A member of a structural cluster is said to be correctly assigned if, upon
calculating the centroid of all the cluster members in the feature space, the centroid closer to
the structure under consideration is the one pertaining to its structural cluster rather than
the centroid of some other cluster. This procedure allows us to estimate the likelihood that
our values were obtained by chance or as a result of the particular way our candidates are

spatially distributed in the feature space.

To obtain the proportion of correctly assigned cluster members in the randomised version
of the samples, we keep each candidate in the same position of the feature space but we shuffle
their identities. So, in other words, we randomly select two candidates and we swap their
co-ordinates, repeating the process until all candidates have had their co-ordinates swapped.
After having performed the random swapping of candidates we re-calculate the centroids of
each cluster, but now in the shuffled space, and the resulting proportion of correctly assigned

cluster members.

The significance of the proportion of correctly assigned cluster members obtained in the
original feature space is determined by performing a two-sample Welch t-test using the original

values against the values in the shuffled space over several samples of the candidate set.
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4.3.3.2 Conventional structural clustering

In order to generate reliable partitions of a dataset, we apply a clustering procedure based
on RNA sequence-structure alignment. For this purpose we use LocARNA, which is one of the
fastest and most accurate tools for multiple RNA sequence alignment [127]. LocARNA performs
Sankoff-style simultaneous alignment and folding [107]. This approach generates high quality
alignments that take structural similarity into account. Notably, the structural information
is not required a priori but can be inferred, in parallel to the alignment process, based on an
RNA free energy model. LocARNA achieves its short run-times for pairwise alignment because
it needs to consider only significant base-pairs.

A hierarchical cluster tree is generated by applying an average-linkage clustering (UP-
GMA) to the matrix of pairwise LocARNA distances. This procedure in combination with
LocARNA was validated by a re-clustering of Rfam [127]. At high average recall, the Rfam

families were reproduced with good precision.

In the case of clustering miRNA candidates, we do not have any prior knowledge of
clusters. Therefore, we need to define a reasonable partitioning of the cluster tree into an
optimal number of clusters. For this purpose, we apply a variant of the Duda rule [29].
Under this rule, a subtree is reported as an optimal cluster if the sum-of-squared error for
two clusters is not significantly smaller than what would be expected by chance [51]. The
significance level can be controlled by k. The larger is the value of k, the larger the difference
of squared error allowed before a subtree is split into two clusters. In our case, the error of
a cluster is determined via the free energy of its consensus structure and the minimum free
energies of its individual sequences. The minimum free energy of single sequences is calculated
by RNAfold [45]. The consensus structure and energy is calculated by RNAalifold [44] based

on a multiple LocARNA alignment of the subtree.

4.4 Transcription potential

An essential condition for a given stem-loop to be a functional miRNA is that it is on an
adequate genomic context so that it is efficiently transcribed when needed. An hairpin may
otherwise fulfil all the requirements for effective recognition by the cellular miRNA-processing
machinery but if it is not appropriately transcribed it will never direct the silencing of a target

gene in a physiologically relevant manner.

From a computational biology perspective, the approaches to the determination of the
transcription potential of a precursor candidate are dependent on the available data, such as
genome annotation or experimental data from transcriptomics assays.

In this section, we discuss three approaches to evaluating transcription potential: anno-

tation data, genomic location and genome mapping of sequenced small RNAs.

43



4.4.1 Annotation data

Although not directly implicated in the assessment of the transcription potential, the
availability of annotation information can help us exclude candidates which may actually be
transcribed but whose corresponding transcripts are associated with other functional roles.
This includes candidates which overlap same-strand regions annotated as transfer RNAs (tR-~
NAs), ribosomal RNAs (rRNAs), transposable elements and other repeat sequences or ex-
ons of protein coding genes, since these regions are unlikely to contain functional miRNA
precursors despite the fact that they may otherwise mimic features usually associated with
pre-miRNAs.

On the other hand, annotation information can also help us identify intronic miRNAs
as well as mirtron candidates, both originating from introns in a splicing-independent and
-dependent manner, respectively. Candidates contained in introns are certainly transcribed

and by this criterion alone should be paid special attention.

4.4.2 Genomic clusters

When some pre-miRNAs are already known for a given organism it is possible to identify
a group of candidates which are more likely to be transcribed [109]. These refer to candidates
whose genome location falls near previously annotated miRNA precursors. This is based on
the observation that pre-miRNAs in animals tend to occur in tandem and be, occasionally,
simultaneously transcribed in a unique pri-miRNA containing several precursors. The most
obvious shortcoming of this approach is that it is limited to the identification of new members

of previously described miRNA genomic clusters.

4.4.3 Mapping sequenced small RNAs

Despite the limitations of the use of experimental data to systematically identify novel
miRNAs, due to the expression profiles of some of these regulators, which may be transcribed
only in particular tissues, physiological conditions or at very low-rates, but also as a result of
the persistence of biases in RNA sequencing techniques, they have been successfully used to
identify a great number of miRNAs.

In the following paragraphs, we describe our approach to mapping small RNA transcripts
to the genome. In this thesis, we use this procedure in order to validate the transcriptional
potential of pre-miRNA candidates, but it could easily be used to identify an initial set of

candidates by seeking to find an appropriate stem-loop surrounding the genome hit.

4.4.3.1 Genome localization

The objective of our method is to determine the most likely genome location of the se-

quenced RNA transcripts. To this effect, we use an approximate matching procedure reporting
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all hits with up to 2 errors. The choice of a tolerance of 2-nucleotide mismatches in order
to identify a hit is made to account for the possibility of sequencing errors or sequence edit
events. Only transcripts with a length between 16 to 27 nucleotides are considered, as these
capture all the known variability in size for mature miRNAs.

A transcript may have no genomic hits, in which case it may either be foreign RNA, the
result of a contamination, the sequencing process might have suffered more errors than our
tolerance or the transcript may have been extensively edited. In general, the most likely
genomic origin for a transcript corresponds to the best match. Considering, additionally,
that mature miRNAs are much more commonly sequenced in RNA sequencing assays than
any other portion of the intermediaries (notably, the pre-miRNA), the fact that a match falls
within the stem portion of a candidate stem-loop is an important indication as to whether
our transcript could be a bona fide miRNA.

For transcripts with genomic hits it is important to determine whether the number of hits
is statistically significant, given the expected the number of occurrences for the corresponding

sequence characteristics of both the transcript and the genomic context of the hits.

4.4.3.2 Statistical model for genome hits

The probability of occurrence of each word w, p(w), is determined in their genomic context
using a single-state first-order Markov chain, M. The Markov chain captures the background
distribution of nucleotides and dinucleotides despite the fact that we do not distinguish be-
tween annotated and non-annotated regions. This is mitigated by the choice of a context of
appropriate length.

The probability of occurrence of a word w, u(w) has to account for the fact that the
genome occurrences can have up to 2 mismatches and can occur in the reverse strand. Let
p™(w) be the probability of w according to the Markov chain M, let v, (w) be the e-mismatch
neighborhood of w, i.e., the set of all words with up to e mismatches of w and let w be the

reversed-complement of w, then:

pw)= > (") +pM(@) (4.9)
vEVe (w)

The expected number of occurrences of a word w in a given portion of the genome is
bounded by [.u(w) where [, is the size of the genomic context. The number of occurrences
can be modeled by a Poisson distribution X —~ Poisson(\) with parameter A = [ u(w). The
p-values determined for each sequence are obtained by calculating the probability of having
a higher number of occurrences given our distribution, Pr{X > N(w)}, where N(w) is the
actual number of occurrences.

This distribution is not exact, since the words we seek can only rarely overlap and therefore

each occurrence is not strictly independent of the others, as is assumed by our computation
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of the expected number of occurrences. As a result, the p-values of the exact distribution are
smaller than the ones we determine.

We recall that the null hypothesis in this case is that the hits occur by chance. By selecting
a significance level of 5% we should be able to sieve out most spurious hits. However, we have
to adjust our significance level due to the fact that we perform extensive multiple testing. To
that effect, we apply the Bonferroni correction whereby the adjusted significance level is £
where « is the baseline level (in our case, 5%) and N is the number of tests, which in our

case refers to the number of genome-wide hits of each sequence with up to e errors.

4.5 CRAVELA framework

The CRAVELA framework consists of the public tool for the analysis and presentation of
data regarding the identification and evaluation of miRNA precursor candidates in metazoan
genomes. This tool integrates most of the contributions that have been described in the
previous chapters.

This framework comprises three distinct aspects: 1) the database model where information

is represented and kept, 2) the processing pipeline, 3) the web-based presentation of the data.

4.5.1 Database model

organism chromosome precursor mature
&= id : int (11) &= id :int (11) = id :int (11) &= id :int (11)
genus : varchar (100) ¥ oid :int (11) * I cid :int (11) * | & pid :int (11) *
species : varchar (100) t name : varchar (100) sequence : varchar (1000) position : int (11)
revision : varchar (10) size :int (11) structure : varchar (1000) length : int (11)
shortname : varchar (50) j mfe : float T designation : varchar (100)
K start:int (11)
stop : int (11)

strand : enum
category : enum

M CIM GEM GEM RN CIN GEM

score : float
annotation marked : tinyint (4)
&= id :int (11) : Tl designation : varchar (100)
T pid :int (11) * L
start :int (11) -
stop :int (11)
T orientation : enum o)
coverage : float overlap -
T biotype : varchar (50) % kpid : int (11) * - e.vallfanon — measure
¥ class : enum pid : int (11) -y p'fj 3L a1 &= id : int (11)
name : varchar (100) ype : enum = mid : int (11) )._]—f UETDE v.archar (20)
description : varchar (500) % pc: float f value : float description : varchar (500)

Figure 4.3: Database ER model

Figure 4.3 shows the Entity-Relationship model of the database used in the CRAVELA
framework. The most important table is Precursor which represents both precursor can-
didates and annotated miRNAs. The genome location of each precursor is anchored on a
chromosome or a contig read represented by an entry on the Chromosome table. Each chro-
mosome is, in turn, associated with an entry on the Organism table. Each entry on this table

represents a single dataset. Associated with the main Precursor table we have the Mature
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table which represents the location of the mature transcript (when known) in the annotated
precursor sequence, the Overlap table which represents the superposition of candidates and
known precursors and the Evaluation table, which associates a value to each precursor ac-
cording to a measure described in the Measure table. Appropriate indices were created for
the most common update and selection operations, in order to speed up such tasks.
Additionally, the Precursor table allows for a master filter using the marked field so that
any group of precursor candidates may be discarded for the purposes of any portion of our
analysis based, for instance, on additional external information which may authoritatively

indicate that some candidates cannot possibly be pre-miRNAs.

4.5.2 Processing pipeline
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Figure 4.4: CRAVELA processing pipeline: extraction, evaluation and selection of stable and
robust candidates using a combination of measures
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Figure 4.4 shows the first portion of the CRAVELA processing pipeline that was described
in section 4.2. All the steps represented in the figure are implemented using PERL, except for
the procedure to combine all different measures into the cscore, which is implemented using R
scripts. The step which calculates intrinsic measures requires the use a computer cluster with
several cores due to the intensive computational needs which include folding several hundred

different versions of each of the few millions of candidates which are to be analysed.

Stable and
Robust candidates
Calculate Vectorial
Representation
Candidate vectors
Perform PCA

Principal
components
. Calculate acceptance region
known precursors location

Genome Structurally
Annotation Acceptable Candidates

Remove candidates
with inconsistent

Determine

annotation

Filtered candidates

Figure 4.5: CRAVELA processing pipeline: structural analysis and annotation filtering

Figure 4.5 illustrates the second portion of the pipeline showing all the steps involved
in evaluating both the structural requirements of the candidates and the consistency of the
annotation data with the possibility of a candidate being a miRNA precursor. All steps
are implemented using PERL programs except for the PCA calculations and the statistical
validation procedures which are done using R scripts.

The third portion of the pipeline consists in the assessment of the transcriptional potential
of each candidate, which ultimately depends on the additional information which might be
available and is, therefore, tailored to each dataset. Examples of types of data which can
be used for this purpose are deep sequencing data, EST data or small RNA libraries, each

requiring a specific type of specialised treatment.
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4.5.3 Web interface

The web interface, which is under active development, is a means to navigate the wealth of
data produced by the CRAVELA pipeline. At present, besides a presentation of the intrinsic

measures discussed in

section 4.2, it is possible to browse through the known precursors of

the listed organisms and compare them to the overlapping candidates, in terms of structure,
score, and genome location, as is illustrated in Figure 4.6.
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Figure 4.6: CRAVELA web interface: Example of a known precursor and best matching

candidate
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Chapter 5

Results and Discussion

In this chapter, we present and discuss the results obtained by applying our pipeline to
metazoan genomes, in particular, to the genomes of Drosophila melanogaster, a very well-
studied organism, for which many researchers believe most miRNAs have been identified thus
providing one of the most complete miRNA catalogues for a single organism, and Anopheles
gambiae, which is the main vector of malaria and where miRNAs are thought to play a role
in parasite resistance [129]. Additionally, some exploratory results are shown for the recently
sequenced genome of Anopheles darlingi, the principal vector of dengue and which is a species
close to A. gambiae, including the detection of clear pre-miRNA homologs.

We present the results obtained at each step of the processing pipeline, including the
enumeration of candidates, the evaluation using a combination of intrinsic measures, the
structural analysis, and the assessment of the transcriptional potential of our candidate set
for each organism, in particular, the use of a small RNA library from A. gambiae to identify
the most promising candidates. In addition, we present some results that justify certain
decisions that were made, particularly the parameters of our models and the way the secondary

structure of our precursor candidates is represented.

5.1 Data preparation

The genome sequences for the chromosomal arms X, 2R, 2L, 3R, 3L, and UNKN of A. gam-
biae (assembly AgamP3) were obtained from the Ensembl ftp site (ftp://ftp.ensemblgenomes.
org/pub/metazoa). Both the euchromatic and heterochromatic genomic sequences of Drosophila
melanogaster (release 5) were obtained from the BDGP project website (http://www.fruitfly.
org/sequence/releasebgenomic.shtml). All the sequences concerning known pre-miRNAs
and their respective mature sequences were recovered from the miRBase webserver (http:
//www.mirbase.org, release 13).

The Whole Genome Shotgun project of the newly-sequenced A. darlingi has been de-
posited at DDBJ/EMBL/GenBank under the accession ADMH00000000. The version de-
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scribed in this thesis is the first version, ADMH01000000. It consists of 18 629 contigs with
a total size of 173 473 443 nucleotides.

The small RNA library for A. gambiae was kindly made available by C. Brunel and
collaborators and it was produced in the context of a work published in [129].

The annotation data for both A. gambiae and D. melanogaster were obtained from En-
sEMBL, using their PERL APIs.

5.2 Enumeration of candidates

In order to evaluate the sensitivity of this procedure, it is necessary to assess whether
known precursors are found amongst the extracted candidates. The number of known precur-
sors and precursor candidates extracted from the datasets using the enumeration procedure

described in section 4.1 are shown in Table 5.1.

Dataset Positive Set Negative Set Overlapping Extracted candidates
A. gambiae 67 2 244 922 92 2 245 014
D. melanogaster 157 1316 105 200 1 316 305
A. darlingi 44 1 748 087 66 1748 153

Table 5.1: The number of elements in the positive and negative sets, the number of candidates
overlapping elements of the positive set and the total number of extracted candidates for each
dataset.

For A. darlingi, the positive set is the set of clear homologs to A. gambiae pre-miRNAs
whereas in all other datasets the positive set corresponds to the known precursors. In all
cases, the negative set consists in the presumptive non-precursor candidates which do not
overlap precursors in the positive set.

Annotated sequences may or may not include sequences flanking the pre-miRNAs because
the precise co-ordinates of the precursor hairpins are not always experimentally determined.
The stem-loops identified by our enumeration strategy are extended stem-loops in the sense
that they are the largest stem-loops contained in their local genomic contexts, and will there-
fore tend to be larger than precursor hairpins. In both cases, if the flanking sequences are
short with respect to the actual precursor, the impact on the candidate evaluation procedure
is likely to be modest.

Only very few known precursors are not matched by any candidate (1 out of 67 in A.
gambiae, and 6 out of 157 in D. melanogaster). Since the enumeration procedure can only
identify canonical stem-loops, some of these cases refer to multi-loop structures that share a
common stem but with relatively small secondary stem-loops which fail to pass the minimum
length criterion. Others are short structures which are filtered by the -20 kcal/mol stability
criterion (see description of the enumeration procedure in section 4.1).

Additionally, the vast majority of annotated precursors with known mature sequences has
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a best match which includes the mature sequence in one of its stem arms (59 out of 67 in
A. gambiae, and 134 out of 152 in D. melanogaster). It is worth to point out that in most
cases a best match noted as not including the mature sequence in the stem arm in fact only
misses the start or end of the mature sequence by a few nucleotides (beyond a 2-nucleotides

tolerance) because of a missed dangling end.

5.3 Robustness and stability measures

In order to separate the problem of correctly identifying candidate precursors with that of
assessing the performance of our evaluation measures, we take the known pre-miRNAs in each
dataset as the positive set, and the negative set is made of all the candidates which do not
overlap the co-ordinates of known precursors. The number of elements in the positive/negative
sets for each dataset is shown in Table 5.1.

The negative sets may include several yet unidentified precursors whose identification
would have an impact on our performance assessment. To mitigate this problem and to
assess the stability of the cut-off value for each measure as well as the combined score, and,
more importantly, to deal with the greatly uneven positive/negative set sizes, we have adopted
an undersampling procedure for the negative sets. In this procedure, we randomly extract

1 000 samples from the negative set each having the size of the positive set.

5.3.1 Performance of the combined score vs. individual measures

Figures 5.1 and 5.2 show the performance of the evaluation measures for the A. gam-
biae and D. melanogaster datasets, respectively. Table 5.2 summarises the sensitivity and

specificity values obtained for the cscore.

Dataset Avg Optimal Cut-off Sensitivity Specificity
A. gambiae 0.41 0.90 0.88
D. melanogaster 0.30 0.83 0.80
A. darlingi 0.32 0.89 0.84

Table 5.2: The average optimal cscore cut-off value for each dataset over the 1 000 samples,
alongside the average sensitivity and specificity values at each sample’s optimal cut-off.

The AMFE [140] measure performs best in the A. gambiae dataset. The fact that this
measure does not compensate for GC content, which has a significant impact on folding free
energy values, may explain the disparity of the results. The D. melanogaster dataset includes
both euchromatic and heterochromatic sequences with different GC content, the latter having
considerably lower values. The procedure used to combine the evaluation measures partially

compensates for the lack of GC content normalisation because the randomised dataset is
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Figure 5.1: ROC curves for the evaluation measures in the A. gambiae dataset.
The dashed lines indicate the true/false positive rates for the average optimal cut-off, i.e.,
the average cut-off value that maximises the difference between true and false positive rates
(TPR =TP/(TP + FN),FPR = FP/(FP + TN)). The negative sets consist of 1000 samples,
each of the size of the positive set, drawn from the non-overlapping candidates. The average
optimal cut-off value and the average AUC (area under the curve) value are also shown.

generated maintaining the same dinucleotide distribution of each of the original sequences.
Replacing the AMFE with a modified version of the MFEI [140] measure, which does com-
pensate for GC content (discussed in section 4.2), had no discernible impact on the combined

score (data not shown).

In both the A. gambiae and D. melanogaster datasets, the Robustness of folding and the
Robustness to contexrt measures have comparable performances in terms of average AUC,

which summarises the relation between the true/false positive rates across all possible cut-off
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D. melanogaster
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Figure 5.2: ROC curves for the evaluation measures in the D. melanogaster dataset.
The dashed lines indicate the true/false positive rates of the average optimal cut-off, i.e.,
the average cut-off value that maximises the difference between true and false positive rates
(TPR =TP/(TP + FN),FPR = FP/(FP + TN)). The negative sets consist of 1000 samples,
each of the size of the positive set, drawn from the non-overlapping candidates. The average
optimal cut-off value and the average AUC (area under the curve) value are also shown.

values for each of the samples of the negative set.

The Robustness to mutations measure performs well with the A. gambiae dataset but
the performance in the D. melanogaster dataset is negatively influenced by the presence of
several long inverted repeats (mainly due to the inclusion of heterochromatic sequences) that
are resilient to point mutations and thus attain a high score for this measure. These sequences

should not be summarily excluded as they can include true miRNA precursors.

The results for the combined score (cscore) for both datasets are shown in Figures 5.3, and
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5.4. In both cases, the cscore performs better than any individual measure in terms of average
AUC, which means that, in general, for the same false positive rate (FPR = FP/(FP + TN))
one can attain higher sensitivity (Sensitivity = TPR) or, conversely, for the same true positive
rate (TPR = TP/(TP+FN)) one can expect better specificity (Specificity = TN/(TN+FP) =
1 — FPR). The optimal cut-off in each sample is calculated with respect to the Youden
index [135], J, defined as max.{TPR(c) — FPR(c)}, i.e., the maximum difference between
the true positive rate (TPR) and the false positive rate (FPR) over all cut-off values, ¢, which
is a standard method to select the best sensitivity/specificity compromise in ROC curves.
The optimal cut-off value, ¢*, is therefore the cut-off for which J = TPR(c*) — FPR(c*).

If we take the average optimal cut-off value for the cscore on each dataset and discard
all candidates with a score below that cut-off, we obtain a reduced set of 328 829 candidates
for A. gambiae and 287 469 for D. melanogaster. If we further observe that many of these
candidates overlap and that it is very unlikely that two overlapping candidates are both true
miRNA precursors, we can eliminate all candidates whose genomic locations are overlapped
by other candidates with higher cscore, thus reducing the total number of candidates to
290 133 for A. gambiae and 240 751 for D. melanogaster. However, it is not clear that
we can safely discard these candidates because the actual boundaries of the transcription
unit harbouring the precursor rather than the cscore are the ultimate determinants of which
overlapping stem-loop will be available for processing. In fact, we have identified a few cases
of candidates overlapping known pre-miRNAs which have higher cscore than the precursors

themselves (data not shown).

5.3.2 Performance comparison to other methods

Only a few classification methods can be readily compared to our combination of measures
due to both the lack of use of conservation information and the need to evaluate a large number
of candidates. Most methods, as we have shown in Chapter 3, either rely on conservation data
or simply take too much time to determine whether a given candidate is likely to be a miRNA,
making them unsuitable to classify millions of precursor candidates. TripletSVM [132] is a
fast and well-known binary classification method that uses a support vector machine (SVM)
to learn sequence/structure features of pre-miRNAs in order to distinguish them from other
genomic stem-loops. The feature vector used to train the SVM considers the pairing states
of every three nucleotides (triplet) plus the identity of the nucleotide at the middle. The
results presented here were obtained using the method with default parameters and the SVM
model provided by the authors. Being a binary classification method, TripletSVM cannot
be used to generate ROC curves for a direct comparison with our method. HHMMIiR [52]
is a sophisticated method based on hierarchical hidden-Markov models. This method tries
to learn the distinctive sequence/structure characteristics of different regions of the miRNA

precursor. HHMMIiR scores each candidate by calculating the ratio of the log-likelihoods
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generated by the positive and negative models (learnt from known pre-miRNAs and random
hairpins, respectively). Unlike with TripletSVM, the fact that HHMMiR can associate a score
with each candidate elicits a direct comparison with our approach using ROC curves. Like
before, the results presented for HHMMIiR were obtained using default parameters and the
maximum likelihood models provided by the authors.

The results presented in Figures 5.3 and 5.4 show the comparative performance of the
cscore, TripletSVM and HHMMiR. The graphs illustrate the fact that TripletSVM tends to
sacrifice sensitivity in order to obtain better specificity. In all datasets, the average perfor-

mance of cscore always outperforms the average performance attained by TripletSVM.
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Figure 5.3: ROC curves for the cscore and HHMMiR in the A. gambiae dataset.
The negative sets consist of 1000 samples, each of the size of the positive set, drawn from the
non-overlapping candidates. The dashed lines are the individual ROC curves for each sample.
The solid lines are the average ROC curves. The average AUC (area under the curve) values
are also shown. The green diamond represents the average performance of the TripletSVM
pre-miRNA classifier and the smaller green circles represent its performance on each sample.

The performances of the cscore and HHMMiR are quite similar in terms of average AUC.

The cscore slightly outperforms HHMMIiR for the A. gambiae dataset, whereas the reverse
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D. melanogaster
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Figure 5.4: ROC curves for the cscore and HHMMiR in the D. melanogaster dataset.
The negative sets consist of 1000 samples, each of the size of the positive set, drawn from the
non-overlapping candidates. The dashed lines are the individual ROC curves for each sample.
The solid lines are the average ROC curves. The average AUC (area under the curve) values
are also shown. The green diamond represents the average performance of the TripletSVM
pre-miRNA classifier and the smaller green circles represent its performance on each sample.

is seen in D. melanogaster. It is nonetheless surprising that a scoring scheme such as cscore,
which makes no prior assumptions about precursor stem-loops except that they ought to be
stable and robust, exhibits a performance comparable to a classifier that has been trained on

known pre-miRNAs and is capable of sophisticated modelling of precursor sequences.

Both TripletSVM and HHMMIR are supervised learning methods which rely on training
sets to produce a decision rule. In both cases, their ability to find novel miRNAs is dependent
on how representative positive and negative examples turn out to be. The results presented
here show that an approach that requires no prior training performs as well as the best of the

two methods.
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5.3.3 Exploration of precursor candidates in A. darling:

Our candidate enumeration and evaluation procedures were applied to the newly-sequenced
A. darlingi. A total of 1 748 153 precursor candidates were identified as shown in Table 5.1.
To test our approach on a non-annotated genome, we analyse the performance of our cscore
on three groups of candidates: those that are identified as homologs of known precursors from
A. gambiae, those that are conserved in both genomes (excluding the homologs), and those
which show low or no conservation (see section 5.3.4).

We found clear homologs of 44 A. gambiae pre-miRNAs supported by both high-quality
mutually best alignments and the observation that in all cases the mature sequence is perfectly
conserved. The list of homologs and the alignment of the mature sequence with the homol-
ogous precursors is shown in Appendix A. The number of homologs identified corresponds
to 67% of the pre-miRNAs known in A. gambiae, which is the closest sequenced genome to
that of A. darlingi. All remaining known precursors in A. gambiae except one, despite not
having clear homologous precursor sequences, do have identical mature sequences within the
stem-arm of a precursor candidate in A. darlingi, which could indicate homology through
conservation at a structural level. Additionally, we identified 7 855 precursor candidates
conserved in both genomes (see section 5.3.4).

Fig. 5.5 shows the analysis of the distribution of the cscore for the three groups of can-
didates. The median scores are 0.613, 0.034, and 0.033 for the homologs, conserved and
non-conserved candidates, respectively. The conserved and non-conserved stem-loops have
similar cscore distributions, but the scores for the set of homologs, however, are distinctively
higher. The fact that the score distribution for conserved and non-conserved candidates is
very similar reinforces the idea that conservation criteria alone are not sufficient to identify
good precursor candidates.

Figure 5.6 shows the ROC curve for the performance of the cscore in the A. darlingi dataset
using the pre-miRNA homologs as the positive set. The performances of TripletSVM and of
HHMMIR are also shown. The results replicate what was observed in the other datasets. The
cscore again outperforms TripletSVM and performs only slightly worse than HHMMIiR.

There are 305 681 candidates above the average optimal cut-off for the A. darlingi dataset,
which can be reduced to 248 970 by eliminating candidates overlapped by candidates with
higher scores. Of these, 422 are found amongst the list of candidates conserved with respect

to A. gambiae.

5.3.4 Identification of homologs and conserved stem-loops

Pre-miRNA homologs were found by performing a Blastn search and identifying a two-
way best alignment with respect to the set of known pre-miRNAs of A. gambiae and the set
of candidates from A. darlingi. Only homologous sequences that folded into stem-loops with

MFE < —20 Kcal/mol and with both stem arms longer than 16 nucleotides were considered
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Score distribution for A. darlingi candidates
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Figure 5.5: Cscore distribution in A. darlingi candidates broken down in homologs, conserved
and non-conserved.

homologous precursors. Conserved stem-loops were also determined by a two-way best align-
ment between the candidates of both genomes, restricted to alignments with E-value below

le — 20 and excluding all A. gambiae candidates that overlap known precursors.

5.4 Structural analysis

The computational search for novel miRNA precursors often involves some sort of struc-
tural analysis with the aim of identifying which type of structures are prone to being recognised
and processed by the cellular miRNA-maturation machinery. A natural way to tackle this
problem is to perform structural clustering over the candidate structures along with structures
known to be recognised as pre-miRNAs and to try to identify which clusters contain known
precursors and pay closer attention to candidates found therein. Given the large number
of candidate pre-miRNAs that were identified by our approach, even after applying several
stability and robustness filters, a conventional structural clustering approach is unfeasible.

In this section, we present the results of applying our method which represents candidate

structures in a feature space summarising key sequence/structures characteristics of each
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Figure 5.6: ROC curves for the cscore and HHMMIiR in the A. darling: dataset.
The positive set consists of 44 clear homologs to A. gambiae pre-miRNAs. The negative sets
consist of 1000 samples, each of the size of the positive set, drawn from the non-overlapping
candidates. The dashed lines are the individual ROC curves for each sample. The solid
lines are the average ROC curves. The average AUC (area under the curve) values are also
shown. The green diamond represents the average performance of the TripletSVM pre-miRNA
classifier and the smaller green circles represent its performance on each sample.

candidate. The results are shown for the two different approaches presented in section 4.3, the
first assuming a single connected acceptance region and the second allowing for an acceptance
region made up by smaller disconnected components. Additionally, we demonstrate that
proximity in this feature space is related to sequence/structure similarity, which justifies
the selection of candidates from the region populated by known pre-miRNAs as the best
candidates, and we compare several different representations of our candidates in order to

justify the adoption of the representation used throughout this section.

63



5.4.1 Structural similarity vs. proximity in the feature space

In order to assess the adequacy of our approach with respect to its ability to identify regions
of structural similarity in a way that resembles conventional sequence/structure clustering we
adopt the following procedure. We use LocARNA [128] to perform hierarchical structural clus-
tering over 100 samples of 1000 randomly chosen stem-loops drawn from the D. melanogaster
and A. gambiae datasets, always including the entire set of known miRNAs for each organ-
ism, and we determine the optimal partition into clusters applying a tree node evaluation
rule for various significance levels called k-levels (the details of this procedure are described
in section 4.3). For low values of k, the procedure produces clusters with highly similar struc-
tures. An increasing value of k allows for more dissimilar structures to be included in the
same cluster, therefore producing a lower number of clusters with an increasing number of
structures.

We then represent each structure from the samples using a vectorial representation sum-
marising sequence/structural features, in a effort to capture the key elements distinguishing
the various hairpins. These feature vectors contain, however, both interdependent dimen-
sions and dimensions with different variance. In order to obtain a linearly independent set of
dimensions, we perform a principal components analysis (PCA) over the vectorial represen-
tations mapping them to their principal components representation which we call the feature
space.

To determine whether our representation of the candidates in the feature space reflects
the structural clusters found by LocARNA for the different k-levels, we calculate the proportion
of correct assignments, which, we recall, measures the ratio of cluster members that are closer
to the centroid of their assigned cluster as opposed to a centroid of another cluster. The
cluster centroid is calculated by determining the average position of the cluster members each
dimension at a time. The distribution of this measure in our 100 samples is then compared to
its distribution in a randomised version of our spacial representation of the candidates, where
candidate positions are kept but candidate identities are shuffled.

The comparison with the randomised version of the spatial distribution of candidates
allows us to address the fact that some clusters have only one member and will therefore
always coincide with their cluster centroid and that variations in distance of a candidate to
its assigned cluster centroid for different k-levels, or even different vectorial representations,
may reflect, in part, the overall density of the candidates rather than a better evaluation of
structural similarity.

Table 5.3 shows that, for both datasets, a large proportion of cluster members are found
closer to their cluster centroid than to the centroid of any other cluster. For the most hetero-
geneous clusters which are obtained at k-level 0.90 the proportion of correctly assigned cluster
members is about two thirds, and it rises above 80% for the structurally more homogeneous

clusters obtained at k-level 0.00. The comparison with the randomised datasets shows that
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the results are statistically significant, i.e., these results are well above what one would hope

to obtain by chance or simply due to the way candidates are spatially distributed.

k-level A. gambiae D. melanogaster

Corr. assign.  p-value Avg. cl. size Corr. assign. p-value Avg. cl. size
0.00 83.60% 8.58e-87 3.05 82.10% 3.45e-125 3.29
0.10 82.50% 1.69e-87 3.33 81.24% 1.92e-120 3.54
0.20 81.21% 8.68e-84 3.70 80.01% 4.31e-113 3.89
0.30 79.30% 2.37e-76 4.27 78.24% 3.31e-108 4.44
0.40 77.09% 9.22e-65 5.31 76.08% 1.64e-96 5.44
0.50 74.12% 2.24e-55 7.61 72.80% 1.43e-84 7.54
0.60 71.23% 2.76e-42 12.09 69.45% 1.01e-61 11.44
0.70 68.70% 1.05e-31 17.24 67.41% 1.74e-54 15.32
0.80 68.14% 6.01e-26 19.52 66.07% 9.62e-44 17.77
0.90 67.37% 2.57e-22 21.08 65.72% 4.01e-37 20.09

Table 5.3: Evaluation of vectorial representations. For each k-level, the table shows the per-
centage of correct assignments in the datasets of A. gambiae and D. melanogaster, the p-value
of Welch’s two-sample t-test comparing the observed correct assignments with a randomised
version of each dataset shuffling the correspondence between candidates and their vectorial
representation, and the average number of cluster members.

5.4.2 Selecting the most adequate vectorial representation

The vectorial representation used above and in the remainder of this section was chosen
from a set of several different vectorial representations of the primary/secondary structure of
a given hairpin. The eight representations we considered differ on the amount of information
they represent and thus on their ability to distinguish the structural characteristics of different
stem-loops.

The first representation is called TRIPLETS. This representation consists of a vector of
normalised counts. To build this representation, a sliding window of length 3 is passed through
the structure. At each step, a count position in the vector is incremented. The appropriate
position in the vector is mapped considering whether each nucleotide in the window is paired
or unpaired in the MFE structure and which base is present at the midpoint of the window.
In the end, the counts on each position of the vector are divided by the length of the structure.
The vector has thus 32 positions.

The second representation is called TRIPLETB and is built in a way similar to that of
TRIPLETS, except that it distinguishes whether the paired nucleotide is in the 5" or 3’ stem
arm, i.e., whether it is the left /right-hand side of a base-pair. In this case, the vector has 108
positions.

The third representation is called TRIPLETL and it extends TRIPLETB by distinguishing
nucleotides at the terminal loop from other unpaired nucleotides. This mapping yields a
vector with 256 positions.

Three additional representations called QUINTUPLETS, QUINTUPLETB, and QUINTU-

PLETL are calculated in a way similar to those previously discussed except that they scan the
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structural information of five consecutive positions yielding vectors with 128, 972, and 4096

positions respectively.

Finally, three representations termed STRUCTURES, STRUCTUREB, and STRUCTUREL are
also similar to the first three representations but the identity of the nucleotide at the midpoint
is not considered. These representations, therefore, only include structural information and

give rise to vectors with 8, 27, and 64 positions, respectively.

These vectorial representations allow us to capture different types of information about
the sequence/structure of our candidates and position them across a hyperplane on a multidi-
mensional space. In order to use the Euclidian distance consistently as a measure of similarity
between these vectorial representations it is preferable to represent our candidates using a set
of independent and scaled dimensions. A straightforward way to guarantee these conditions

is to perform a Principal Components Analysis (PCA) as described in section 4.3.

To determine which of these representations better reflects the results of conventional
structural clustering we take the structural clusters obtained using LocARNA for 100 samples
of 1000 randomly chosen stem-loops from each of the datasets (D. melanogaster and A. gam-
biae). As described before, the optimal partition into clusters is done by performing a node
evaluation rule for various significance levels (k-levels) where low values for k& produce clusters
of highly similar structures and increasing values of k allow for increasingly heterogeneous

clusters.

After calculating the centroid of each LocARNA cluster on the principal components space
we can then calculate the rate of correct assignments. We repeat the procedure on a ran-
domised version of our samples in order to assess the statistical significance of our results
against a random background where the identity of each precursor is shuffled, thereby ran-
domising the position of a precursor on the principal components space, but preserving the
LocARNA cluster it belongs to. The statistical significance of the results is determined by
comparing the results obtained for the regular and randomised samples using Welch’s two-
sample t-test. In each case, the normality of both sets of results (regular and randomised) is
checked using the Kolmogorov-Smirnov test for a Gaussian distribution with the same mean

and variance of each sample.

In order to compare the results for all the considered vectorial representations across the
k-levels ranging from 0.0 to 0.9 we take the symmetric of the logarithm of the p-values of our
statistical test. The larger this value the more significant are the results. Tables 5.4 and 5.5

show these values for the A. gambiae and D. melanogaster datasets, respectively.

For low values of k£ (up to 0.4), in both datasets, TRIPLETL obtains the best results,
which means that, for mostly homogeneous clusters, this vectorial representation outperforms
all others. If we allow for more heterogeneous clusters (larger values of k), other vectorial
representations take the lead but in an inconsistent way, since we obtain different results on

both datasets or for different values of k.
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k
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TRIPLETS 2079 2049 1914 1654 147.3 108.1 839 634 56.2 52.5
TRIPLETB 198.2  199.8 191.3 174.1 1474 1258 957 71.3 58.1 49.7
TRIPLETL 251.9 242.3 224.0 197.0 180.0 157.2 117.8 83.5 659 60.7
QUINTUPLETS  140.0 149.2 146.4 134.6 116.5 89.4 55.8 43.0 377 325
QUINTUPLETB  139.2 140.2 1299 1209 1134 85.9 54.0 314 26.8 223
QuiNnTUuPLETL  105.3 105.7  97.8 94.0 91.4 80.0 58.8 38.7 34.0 30.3
STRUCTURES 14.3 12.8 12.8 12.4 12.7 10.0 8.4 7.9 7.8 8.3
STRUCTUREB 79.5 74.8 72.5 65.1 58.7 44.7 30.0 279 277 27.7
STRUCTUREL ~ 2134 2125 204.3 184.7 150.2 121.3 81.3 746 1739 733

Table 5.4: Table showing the -log(p-values) for the statistical significance of the correct as-
signment rate across all considered vectorial representations and k-levels for the A. gambiae
dataset

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TRIPLETS 266.1 256.7 2444 223.1 201.3 182.7 148.2 131.1 114.2 96.3
TRIPLETB 286.6  275.7 258.7 247.5 220.6 193.1 1404 123.8 99.1 83.8
TrIPLETL 322.1 302.3 279.5 253.9 2246 184.9 145.7 1259 101.0 &89.2
QUINTUPLETS ~ 229.7 222.2 217.3 2044 1745 139.1 113.2 103.2 90.3 78.8
QUINTUPLETB 2124 204.0 1954 179.0 162.3 129.6 95.8 72.2 56.1 50.1
QUINTUPLETL ~ 149.8 154.6 148.4 142.3 122.8 101.3 81.5 60.3 41.5 36.7
STRUCTURES 33.1 28.2 26.0 22.8 24.1 22.6 17.6 17.0 15.7 14.0
STRUCTUREB 113.3  107.7 102.4 97.8 93.6 79.8 53.6 43.1 38.4 32.1
STRUCTUREL 233.9 2204 211.9 206.4 187.2 162.0 114.0 99.5 95.8 85.4

Table 5.5: Table showing the -log(p-values) for the statistical significance of the correct assign-
ment rate across all considered vectorial representations and k-levels for the D. melanogaster
dataset

For the D. melanogaster dataset, the best vectorial representation for k& = 0.5 becomes
TRIPLETB and then TRIPLETS for k > 0.5, whereas for the A. gambiae dataset, the best
vectorial representation changes for £ > 0.7 to STRUCTUREL. In both cases, the transition is
to a vectorial representation encoding less information about the hairpins (either structural
information in the case of D. melanogaster or sequence information for A. gambiae), which is
consistent with clusters grouping increasingly heterogeneous hairpins.

The TRIPLETL representation emerges as the best choice, since it exhibits the best results
for the greater range of k levels and, even though it is outperformed by other representations
for the larger values of k, it maintains a very good relative performance.

It is interesting to note that all representations including quintuplets, although encoding
more structural information, fail to yield top performances. This might be explained, in
part, by the very large number of dimensions and also by the sparsity of the information
across the vectors (where most positions will have zeroes) and the implications it has on the
principal components analysis. On the representations that exclude sequence information, all
except the one distinguishing left/right-hand pairings and stem arm/terminal loop unpaired
positions have relatively poor performances, which underlines the importance of including

sequence information.
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5.4.3 Distribution of known pre-miRNAs in the feature space

Using the same samples from the datasets presented above, we can observe that despite
the fact that not all known precursors are grouped together in the same cluster by LocARNA at
any k-level (data not shown), they are however significantly close and restricted to a limited
portion of the feature space. In fact, if we take the centroid of the known precursors and
calculate the median distance of each known precursor to the centroid we obtain a value
which is much smaller than what would be expected by chance (p-value = 8.00e — 60 for
A. gambiae, p-value = 8.94e — 71 for D. melanogaster). Figures 5.7 and 5.8 illustrate this
observation in the the full datasets by showing that, in the three-dimensional space defined

by the first three principal components, known precursors populate the same limited region.

A. gambiae

candidate known

Annotation
® exon
intergenic
PC1 PC1 intron
*  miRNA
rBRNA
* repeat
¢ tRNA

Figure 5.7: The spatial distribution of candidates and known precursors across the three-
dimensional space defined by the first three principal components of the vectorial representa-
tion of the hairpins of A. gambiae

5.4.4 Identification of candidates structurally similar to known precursors

The results shown above suggest that known precursors tend to concentrate on a particular
region of the feature space. That region, however, is also densely populated by other precursor
candidates. Since the region where known precursors occur is inserted in an area of great
density it cannot be identified by a purely unsupervised approach. As we stated before,
this region can either be thought of as a single connected component or several disconnected

components. If we take the first possibility we can take the centroid of all known precursor

68



D. melanogaster

candidate known

Annotation
° exon
intergenic
intron
miRNA
ncRNA
pseudogene
rRNA
repeat
¢ snoRNA
* tRNA

PC1 PC1

Figure 5.8: The spatial distribution of candidates and known precursors across the three-
dimensional space defined by the first three principal components of the vectorial representa-
tion of the hairpins of D. melanogaster

co-ordinates and define a sphere around it with a varying radius. Then, all the structures

inside the sphere are deemed part of the acceptance region.

The trade-off between considering a large radius thus including the greatest possible num-
ber of known precursors and restricting the size of the sphere not to include too many can-
didates is better represented using a ROC curve. Figures 5.9 and 5.10 show the ROC curves
for A. gambiae and D. melanogaster, respectively. The figures also show the true/false posi-
tive rates for the optimal radius (calculated using the Youden index in order to identify the
optimal cut-off).

Since these results depend on the proper identification of the precursor-containing region
and that a reduced number of known precursors might hinder the calculation of an adequate
centroid, we studied the impact of using each known precursor as the centre of the sphere
instead of the centroid. These results are also shown in Figures 5.9 and 5.10. Unsurprisingly,
for those precursors which are farther from the centroid we obtain a poor performance. How-
ever, for most other precursors the results tend to approach those obtained using the centroid
and, in fact, some precursors outperform the centroid as the centre of the candidate selecting

sphere.

The results of this approach are relatively poor in light of the fact that we are evaluating
not its predictive power, but merely its ability to recover the same precursors which were used

to determine the centre of the sphere where interesting candidates presumably can be found.
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A. gambiae, AUC=0.79
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Figure 5.9: ROC curve for the distance to the centroid of known precursors for the A. gambiae
dataset (solid line). ROC curves for the distance to each known precursor (dashed lines).

The performance of this approach, which presupposes the existence of a single connected
acceptance region, justifies considering the competing possibility that the acceptance region
might, instead, be better represented by several disconnected components. In this new model
for the acceptance region, we take the co-ordinates of each known precursor and use them
to identify the closest candidates. This method, which we here refer to as MinDist, has the
advantage of allowing for different pre-miRNA structural classes to emerge around subsets of
known precursors. The number of candidates that are included in the acceptance region is

controlled by the maximum distance allowed to the closest pre-miRNA.

The larger the permitted distance, the greater the chance of selecting a region that includes
all interesting candidates, but at the expense of enlarging the number of false positives. Again,
we use the Youden index to determine the best trade-off and identify the optimal cut-off for
this distance. However, in this approach, in order to estimate the optimal cut-off value, we
have to consider subsets of known precursors as reference and to calculate the true/false pos-

itive rate with respect to the remaining known precursors and other candidates. Figures 5.11
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D. melanogaster, AUC=0.77
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Figure 5.10: ROC curve for the distance to the centroid of known precursors for the D.
melanogaster dataset (solid line). ROC curves for the distance to each known precursor
(dashed lines)

and 5.12 show the ROC curves for A. gambiae and D. melanogaster, respectively, when us-
ing samples of 5%, 10%, 20%, and 50% of known precursors as reference and computing the
trade-off between the true/false positive rates with respect to the remaining precursors and an
equal number of sampled candidates. The figures show the ROC curves of 1000 such samples
as well as the average curve, computed as the average performance over all samples across
the full range of cut-off values. Additionally, the figures also show the average performance
of our method, computed as the average TPR and FPR across all samples for the optimal
cut-off on each sample (note that this may be significantly different from the optimal cut-off

calculated on the average ROC curve).

The optimal cut-off in each of these ROC curves can be interpreted as the best choice of
maximum distance allowed between a structure and the closest precursor so that the former
may be included in the acceptance region. We have observed that there is a log-linear relation

between the value of the average optimal cut-off and the proportion of known precursors that

71



A. gambiae

5% 10 %
o o
— — |
@ _| @ _|
L& o L o
s s
[} © [} ©
R Z o]
= =
S <« _| "AUC.=.0.72 g = |
o © : o ©
= 2
oo I .
o 7 o
B MinDist B MinDist
o _|# O TripletSVM o _| ¥ O TripletSVM
o o
T T T T T T T T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 1.0
False positive rate False positive rate
20 % 50 %
o o
S i S
@ _| @ _|
L o L o
g g
(] © o ©
2 oS 7 2 o 7
‘© 3 ‘@
g <« | AUC =0.74 g = |
o © o ©
= 2
) . L B
o o
B MinDist B MinDist
o _|E O TripletSVM o | O TripletSVM
o o
T T T T T T T T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 1.0
False positive rate False positive rate

Figure 5.11: ROC curves for the minimum distance (MinDist) to pre-miRNAs method and
the performance of TripletSVM over 4000 samples equally divided into 4 groups.

Each group uses 5%, 10%, 20% or 50% of the known precursors of A. gambiae to set up the
positive examples of the training set. The positive examples of the testing set are made up
by the remaining precursors. In both sets, the negative examples are samples of the set of
candidates. ROC curves for each individual sample are shown in dashed lines and the average
curve across the range of cutoff values is shown in a solid line. The red dot represents the
average performance of the MinDist method over all samples considering the optimal cutoff
for each sample. The green dots represent the performance of TripletSVM on each sample,
whereas the green diamond refers to its average performance.
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D. melanogaster
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Figure 5.12: ROC curves for the minimum distance to pre-miRNAs method and the perfor-
mance of TripletSVM over 4000 samples equally divided into 4 groups.

Each group uses 5%, 10%, 20% or 50% of the known precursors of D. melanogaster to set up
the positive examples of the training set. The positive examples of the testing set are made
up by the remaining precursors. In both sets, the negative examples are samples of the set of
candidates. ROC curves for each individual sample are shown in dashed lines and the average
curve across the range of cutoff values is shown in a solid line. The red dot represents the
average performance of the MinDist method over all samples considering the optimal cutoff
for each sample. The green dots represent the performance of TripletSVM on each sample,
whereas the green diamond refers to its average performance.
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is used as reference (R? = 0.998, for A. gambiae, and R? = 0.989, for D. melanogaster). Since
the best choice of cut-off cannot be directly determined for the entire set of known precursors,
we estimate it by extrapolating the log-linear model. The estimated optimal cut-off can be
interpreted as the best choice of maximum distance to include additional (yet unknown)
precursors with the least number of false positives.

Using the estimated optimal cut-offs, the acceptance regions include 23.5% (77 366) and
23.5% (67 619) of all candidates from the A. gambiae and D. melanogaster datasets, respec-
tively.

5.4.5 Performance comparison to other methods

As we have seen before, TripletSVM [132] is a classifier based on a support vector machine
that purports to determine whether a given stem-loop is a pre-miRNA. The features consid-
ered by this support vector machine are quite similar to those of the TRIPLETS vectorial
representation that is described above. It is also, to our knowledge, the only single-genome
method whose source code is made available and which includes the necessary routines to
re-train the model with new data. TripletSVM was trained using positive examples from
samples of known precursors and negative examples from samples from the candidate set.
Four groups of samples of different sizes were prepared for each dataset. Each sample group
was divided in training sets and testing sets both with the same number of positive and neg-
ative examples. Each sample group is made of 1000 samples. The positive examples in the
training set of each sample are a random subset of the known pre-miRNAs (either 5%, 10%,
20% or 50% of all known precursors) and the remaining pre-miRNAs make up the positive
examples of the corresponding testing set. The negative examples in both the training and
testing sets of each sample are random subsets of the candidates of the same size of the corre-
sponding positive examples. Our method uses only the positive examples in the training set
as a reference from which to compute the distance to the elements in the testing set, whereas
TripletSVM, for each sample, is trained using both the positive and negative examples of
the training set and is evaluated against the testing set. A graphical representation of the
performance of TripletSVM in each of the 4000 samples (evenly distributed between training
sets using 5%, 10%, 20%, and 50% of the annotated pre-miRNAs), as well as the average
performance in each group of samples, is shown in Figures 5.9 and 5.10. Table 5.6 shows the
sensitivity and specificity of TripletSVM and MinDist across training sets including a greater
range of varying proportions (from 5 to 95%) of known precursors.

In general, the average performance of TripletSVM is comparable to the average per-
formance of our method despite a tendency for having comparatively lower sensitivity and
higher specificity. However, two clear shortcomings are apparent. TripletSVM is markedly
less robust for small training sets than our method, which is manifest from the comparatively

poor performance on the 5% sample group in the A. gambiae dataset, and by the fact that the
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% known A. gambiae D. melanogaster

MinDist TripletSVM MinDist TripletSVM

Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.

5% 0.72 0.68 0.66 0.60 0.69 0.71 0.69 0.77
10 % 0.73 0.68 0.69 0.64 0.69 0.72 0.70 0.82
20 % 0.73 0.68 0.69 0.71 0.69 0.74 0.71 0.84
50 % 0.72 0.75 0.66 0.78 0.71 0.75 0.70 0.86
80 % 0.74 0.80 0.65 0.80 0.72 0.77 0.69 0.88
90 % 0.78 0.83 0.65 0.88 0.73 0.81 0.68 0.88
95 % 0.75 0.89 0.66 0.81 0.75 0.83 0.68 0.88

Table 5.6: Sensitivity (TPR) and Specificity (1 - FPR) of TripletSVM and MinDist computed
as the average performance across all samples for training sets whose positive examples consist
of a fraction of known pre-miRNAs in A. gambiae and D. melanogaster

smaller the training sets (in all datasets) the more variable the performance in each individual
sample. This variability is particularly visible in both 5% sample groups. TripletSVM also
bears the inconvenience of requiring negative examples which are inevitably chosen under the
assumption — however plausible and defensible — that miRNA precursors are rare with respect
to the overall number of candidates, but one cannot generally guarantee that hairpins which
would normally be processed by the miRNA-maturation pathway are not being included in
the negative training set. Our approach, despite assuming all candidates to be false positives
for the purposes of the performance evaluation, does not use this information to shape the
acceptance region.

The average performance of our method in the D. melanogaster dataset is slightly worse
than TripletSVM, possibly due to the inclusion of heterochromatic sequences in this dataset,
which introduce greater variability in terms of sequence/structure, and as a consequence, the
region where pre-miRNAs are found is more densely populated with candidates exhibiting
more regular features.

Unlike TripletSVM, our approach allows us to control the number of candidates we wish
to select by adjusting the cut-off level and therefore either privileging sensitivity or specificity.
Additionally, since it reflects sequence/structure similarity in a way comparable to conven-
tional structural clustering, our method offers a better interpretation of the decision rule that

is made when selecting candidates.

5.5 Transcription potential

The number of candidates obtained after our structural analysis (77 366 for A. gambiae,
and 67 619 for D. melanogaster), albeit considerably lower than the original candidate set (328
829 for A. gambiae, and 287 469 for D. melanogaster), is still quite numerous. A plausible
interpretation of these results is that, despite their structural similarity to known precursors,
the majority of these candidates are not pre-miRNAs due to other factors. Chiefly among

these is the fact that most remaining candidates are probably not efficiently transcribed or
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are playing different biological roles. This illustrates the often ignored distinction between
having an adequate secondary structure and actually being transcribed and processed.

In this section, we present the results concerning the assessment of the transcriptional
potential of the remaining candidates considering annotation data, potential genomic clusters

and experimental data.

5.5.1 Identification of candidates with viable annotation and forming po-

tential genomic clusters

A straightforward way to address the need to assess the transcriptional potential of the
candidates is the observation that many fall within regions that have been annotated. Ge-
nomic locations with no annotation or which have been annotated as introns may contain
miRNA precursors, but candidates which overlap regions annotated as exons, repeats or
other non-coding RNAs are very unlikely to contain pre-miRNAs. The variety of annotated
candidates (using the annotation data provided by EnsEMBL) present in our candidate sets
can be seen in Figures 5.7 and 5.8. If we filter out non-viable candidates by this criterion,
our candidate set is reduced to 44 210 for A. gambiae and 40 582 for D. melanogaster.

If we additionally restrict our search to putative miRNA cluster members, we can lower
the number of candidates by considering only those which are found in the vicinity of known
precursors. By selecting candidates with viable annotation and at a genomic distance not
greater than 50 kb [9] from known precursors, we reduce our candidate set to 439 for A.
gambiae and 1604 for D. melanogaster.

Using a single-genome approach it is difficult to further assess the transcriptional potential

of a precursor candidate in the absence of experimental data.

5.5.2 Using experimental data as evidence of transcription

In this thesis, we use the small RNA library done for A. gambiae by Brunel and collabo-
rators [129] against our reduced set of candidates (stable, robust, structurally close to known
pre-miRNAs and with viable annotation).

All the sequenced small RNAs (length between 16 and 27 nucleotides) were mapped to
the genome using an approximate matching procedure allowing up to 2 errors. The choice of
a tolerance of 2 mismatches accounts for the possibility of both sequencing errors and RNA
editing events.

Out of a total of 268 unique sequences, 253 had approximate matches in the genome of
A. gambiae totalling 29 470 hits. One sequence was responsible for 20 731 hits occurring in
973 variants (with up to two errors) but only 35 exact matches. Many of these matches were
to regions annotated as repeats rendering the sequence unlikely to originate from a miRNA

and justifying its exclusion from further consideration.
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The great number of hits and the 2-error tolerance justifies the need of a statistical vali-
dation procedure in order to distinguish spurious hits from statistically significant matches.
The statistical significance of the match is computed given the genomic context, the number
of errors of the match and the number of hits of a given sequence in each genomic context
against the corresponding expected number of observations (see section 4.4 for details).

The choice of the size of the genomic context to adopt is a non-trivial matter. We con-
sidered windows of sizes 50k, 200k, 500k, 1M, and 2M bases. Fig. 5.13 shows the pairwise

comparison of the p-values obtained for the different window sizes.
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Figure 5.13: Pairwise comparison of the p-values obtained for genome occurrences considering
genomic contexts of 50k, 100k, 200k, 1M, and 2M bases.

For a constant number of observed occurrences, the p-value of a hit should be proportional
to the size of the genomic context, provided that the statistical characteristics of the context
are stable. We do observe this general trend in Fig. 5.13, but we can also see that many hits
deviate from this theoretical behavior by keeping or even lowering the corresponding p-values
for increasing genomic context sizes. This can be due to either a non-constant number of
observed occurrences or to sudden changes in the statistical characteristics of the genomic
contexts under consideration.

Figs. 5.14 and 5.15 show the pairwise comparison of expected and actual number of occur-
rences, respectively, for several genomic context sizes. We can see that the number of observed
occurrences varies greatly with different context sizes, but the expected number of occurrences

varies almost linearly with context size amongst the larger contexts. We can therefore con-
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clude that the behavior seen on Fig. 5.13, which departs from what is theoretically predicted,
is largely due to non-homogeneous variation in the number of actual occurrences observed
in the genomic context and not to variation in the local statistical characteristics, at least
for larger contexts. In contexts of size above 500k base-pairs the subsequent evolution of
the expected number of occurrences is almost perfectly linear which means that the local
statistical characteristics of the genome do not vary much and therefore any context above
this length could be used. We have decided to use the p-values of the 2M base-pairs contexts
as the reference statistical assessment score because they exhibit a better resolution. To that
effect it suffices to notice that the p-values for the 500k and 1M base-pairs contexts vary
between 0-0.15 and 0-0.3, respectively, whereas the p-values for the 2M base-pairs contexts

vary between 0 and 0.6.
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Figure 5.14: Pairwise comparison of the expected number of occurrences considering genomic
contexts of 50k, 100k, 200k, 1M, and 2M bases.

A total of 75 candidates from the acceptance region in the feature space and with viable
annotation contain hits within their start/stop co-ordinates, but only 54 have statistically
significant hits and, amongst these, only 46 have hits on their stem arms, rather than on the
terminal loop. All these hits are 2-error matches against sequenced small RNAs except for
one which is a single-error match. In only 2 cases is the origin of the sequenced small RNA
not better explained by hits elsewhere in the genome, which are either exact matches or have
fewer mismatches. Table 5.7 identifies the A. gambiae candidates with most plausible direct

transcriptional evidence.
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Figure 5.15: Pairwise comparison of the observed number of occurrences considering genomic
contexts of 50k, 100k, 200k, 1M, and 2M bases.

Transcript sequence Hit sequence Errors Chr Strand Start:Stop
GTGGTGCTCCCTCGACC CTGCTGCTCCCTCGACC 2 2L + 10481374 : 10481468
CCAGTCGGTAGCGCTTA CCAGTCGTTAGCGCTTA 1 2L + 36469979 : 36470097

Table 5.7: A. gambiae precursor candidates with better transcriptional evidence.
The transcript sequence refers to the sequence present in the small RNA library and the hit
sequence is the actual sequence in the genome.
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Chapter 6

Conclusions and Perspectives

6.1 Conclusions

Common computational strategies to address the problem of miRNA gene discovery usu-
ally involve the identification of a set of candidates that are subsequently filtered by their
similarity to previously known pre-miRNAs and their degree of conservation in evolutionarily
close species. Although these approaches have vastly expanded the list of known miRNAs,
relying merely on our general knowledge of the miRNA silencing pathway and arguments
of similarity and conservation, they generally fail to integrate and use a growing amount
of knowledge about these regulators. More significantly, these methods have introduced a
strong bias favouring pre-miRNAs exhibiting extensive conservation and sharing a number
of features with previously identified precursors. To varying degrees, their ability to discover
non-conserved or non-canonical pre-miRNAs is therefore greatly reduced if not completely
suppressed. This is not to say that one expects pre-miRNA features to vary greatly, but
rather that the bias may not reveal the adequate learning set. The fact that most compu-
tational approaches to miRNA gene finding make extensive use of evolutionary conservation
illustrates our collective ignorance about the subtle rules presiding miRNA biogenesis. Since
the cell cannot use the filter of evolutionary conservation [8] to choose amongst all potential
stem-loops, we seem to be missing a significant part of the whole story. Additionally, if we
consider that many authors argue that the identification of well-conserved and phylogenet-
ically extensive miRNAs is reaching its saturation point, it is important to assess whether
non-conserved, presumably more exotic, miRNA precursors would be processed as such in
different organisms that may have small yet important differences in their miRNA-processing
pathways. The elucidation of this question is crucial to methods which try to generalise from
pre-miRNAs taken from several different species. Our efforts should therefore focus on the
need to establish more accurate models of candidate selection.

The approach developed in the context of this thesis purports to be able to draw from

heterogeneous sources of data and to offer a single-genome evidence-based tool to estimate

83



the likelihood that a given set of precursor candidates are indeed pre-miRNAs.

The search for the distinguishing characteristics of animal miRNA precursors is the central
problem tackled by this thesis. We began by observing that it had been already established
that pre-miRNAs have particularly low-energy structures compared to other RNAs, even
when corrected for size and GC content [16, 140]. Additionally, these stem-loops seemed to
be robust with respect to their genomic contexts, as should be expected for efficient Drosha
recognition. They were also stable in the sense that a similar base-pairing pattern persisted
for a set of sub-optimal structures making up the thermodynamic ensemble where the stem-
loop should be found most of the time. Mutational robustness was another property that
had been suggested for miRNA precursors [18], but it was most likely observed in ancient

well-conserved pre-miRNAs rather than more recent non-conserved precursor hairpins

We show that, by combining variations of these different robustness and stability mea-
sures, it is possible to obtain an unsupervised scoring scheme that outperforms any individual
measure, and performs at least as well as the best of two supervised approaches. The results
for our combination of measures show that there is a strong bias towards robust miRNA
precursors and that this information can be used to reduce the vast number of stem-loops
that are found in metazoan genomes. Nonetheless, given the number of precursor candi-
dates that remain after sieving through those which were identified in the three datasets
we have presented, it is not yet possible to claim that we are in the presence of a miRNA
gene finding method. We have, however, reduced the number of candidates by one order of
magnitude, without resorting to classic approaches and retaining most known pre-miRNAs in
each dataset. The main advantage of the adopted score is that it relies on intelligible criteria
based on arguments of biological plausibility. Over this reduced set of candidates, it was then

possible to perform a structural analysis of the set of candidate hairpins.

In the context of the structural analysis of our candidate set, we have presented an ap-
proach to evaluating the sequence/structure similarity of a very large number of structures
with an application to the identification of a reduced set of pre-miRNA candidates. In a
first step, we have demonstrated that our vectorial representation of RNA structures and
the Euclidian distance in the feature space consequently defined was comparable to the se-
quence/structure similarities identified by LocARNA- a conventional and efficient structural
clustering method. In a second step, we have observed that known pre-miRNAs tend to
populate a specific region of the feature space defined by our vectorial representation and
we used these known precursors to identify that region and to select candidates populating
it. We have shown that as little as 5% of known precursors could be used to identify such a
region and recover a substantial proportion of the remaining pre-miRNAs. The fact that this
region is very dense in terms of the number of precursor candidates it contains tells us that
a large number of genome loci have the potential to generate stable and robust structures

which present sequence/structure similarities to known pre-miRNAs. The use of annotation
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information helps to reduce the number of selected candidates but after this filtering step they
remain in the tens of thousands. Therefore, there is either an exceedingly large number of
pre-miRNAs in these datasets or, more plausibly, most of these candidates are not efficiently

transcribed but could otherwise be recognised as miRNA precursors.

The portion of the feature space selected by our structural analysis approach purports to
identify the region that includes all the structures which have the potential of being efficiently
recognised by the cellular miRNA-processing machinery. As we said, this does not mean that
all these structures are pre-miRNAs, but rather that they present a strong sequence/structure
similarity to known precursors. Unlike many machine learning approaches to the identification
of miRNA precursors that use features of the sequence and secondary structure to provide
a classifier, our approach does not need to postulate a set of negative examples. In fact,
we contend that if the purpose is to characterise the structures which have the potential of
being recognised by the enzymes involved in miRNA maturation one needs to reduce one’s
dependence on the positive set as well, since it will most likely not be representative. To this
effect, it suffices to observe that the set of recognisable structures is surely larger than the set
of all the pre-miRNAs contained in a genome and that these two sets are subject to different
evolutionary constraints. In our work, information about known precursors is used merely
to pinpoint a region of interest in our multidimensional representation of sequence/structure
features, rather than to learn the characteristics that distinguish pre-miRNAs from other

stem-loops and, in this sense, it is not a machine learning method.

It is therefore clear that there is a distinction between having a secondary structure
amenable to recognition and actually being a pre-miRNA. In practical terms, as we have seen,
the distinction is most probably due to whether a given structure is transcribed. To this effect,
it is important to have transcriptional data with which to determine whether a candidate could
actually be a miRNA precursor. Thus, our third and final contribution is a set of strategies
to incorporate an estimation of the transcription potential of each candidate since our results
warrant the conclusion that animal genomes contain a large amount of potential hairpins that
might enter the miRNA maturation pathway if only they were efficiently transcribed. Our
results here are, however, limited by the availability and quality of the data that serve as the
basis to assess the transcriptional potential. We have, nevertheless, provided a method to use
a library of small RNAs and we have indicated two novel miRNA predictions for A. gambiae
based on that information. We have also shown that, in the absence of transcriptional data,
one can limit the candidates to those occurring in the genomic vicinity of known precursors

and which could, therefore, be part of a miRNA cluster.
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6.2 Future improvements

As with most research projects, we can identify several instances in which further im-
provements can be introduced. In particular, the procedure used to combine the different
robustness and stability measures for each dataset relies on the measure distributions calcu-
lated for stem-loops extracted from artificial sequences generated with the same dinucleotide
distributions observed in the original genomes. As suggested by the relatively poorer results
obtained for the D. melanogaster dataset, which includes both euchromatic and heterochro-
matic sequences, genome heterogeneity may warrant the generation of multiple artificial se-
quences with their respective measure distributions in order to obtain a scoring scheme able
to cope with variations in sequence features for different regions of the genome. This presup-
poses the identification of isochores, i.e., broad regions of the genome with highly uniform
GC content. These measures, but also the structural analysis results, could also benefit from
breaking down the analysis of the candidate set into candidates located in intergenic regions,
introns, repetitive regions or regions containing protein-coding genes in the opposite strand,
since candidate precursors arising from these diverse locations will likely be subject to dif-
ferent evolutionary constraints and may therefore exhibit distinct stability, robustness and
structural characteristics.

In addition, the CRAVELA framework, in particular its web interface, can be expanded
to allow for a more complete exploration of the data, plugging in the results of the structural
analysis and permitting the direct visualisation of potential miRNA genomic clusters identified
using our pipeline, as well as the information provided by the assessment of the transcriptional

potential of the candidate precursors.

6.3 Perspectives

Understanding the complexity of gene regulation, we now know, cannot be achieved with-
out integrating regulation at the post-transcriptional level, particularly miRNA-mediated
regulation. Identifying miRNA genes and their targets is a crucial task in determining the
biological role of these regulators and effectively modelling the expression of their target genes.

Future developments in the field of miRNA gene finding can probably benefit from the
insight provided by considering what is not a miRNA. Thus, a given locus in the genome
does not contain a viable miRNA if 1) it is not efficiently transcribed; 2) it does not contain
a stem-loop structure amenable to efficient processing by all participants in the miRNA
biogenesis pathway; 3) it cannot regulate a target gene in a physiologically relevant manner.
Most available methods for miRNA gene finding have focused on the second aspect and little
attention has been paid to the other two.

In the context of determining whether a locus is transcribed in an efficient manner, tran-

scription data are an invaluable resource, although the treatment of this information, as we
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have discussed earlier, poses its own challenges. A complementary approach to this problem
is to seek the identification of the primary miRNA (pri-miRNA) and its promoter region
(for miRNAs arising from their own transcription units), which could also contribute to un-
derstanding the transcriptional control behind the expression regulation of miRNA genes
themselves.

The discovery of whether a potential miRNA has target genes is dependent on the break-
throughs achieved in this area. The area of target prediction has received a new impetus with
the recent proposal of a thermodynamic model incorporating target accessibility. However,
seed matches constitute an important sieve to control false positives. The seed hypothesis,
adopted almost unanimously by current target prediction methods, was recently reinforced
with a study that obtained the structure of an important component of the silencing complex
bound to a DNA guide-strand, and which lays down the biochemical basis for the role of
seed sites [123]. However, at least some experimentally confirmed targets seem to violate the
seed rule by including mismatches or G:U pairs [71, 119]. The present scarcity of confidently
validated miRNA targets, establishing not only miRNA-target associations, but specifically
pinpointing the hybridisation sites, is the greatest obstacle not only to the development of
better prediction methods but also to the systematic assessment of the performance of current
tools. The increasing availability of degradome data could prove an essential contribution to
this effort, although it is generally limited to the identification of cleavage-sites in potential
targets, being unable to detect instances of cleavage-independent miRNA-mediated regula-
tion.

Target prediction becomes even more challenging with the discovery that RNA editing
is common in miRNAs [79, 13, 92]. This could substantially change the mature sequence
and, consequently, the specificity of its targets. Moreover, a study conducted on human
miRNA targets [101] shows that miRNAs tend to target genes with distinctively AT-rich 3’
UTR regions, even when these genes are located in GC-rich isochores, suggesting an unknown
function for this compositional bias. The authors argue that better knowledge of the back-
ground distribution of nucleotides in 3’ UTR regions may lead to improvements in miRNA
target predictions. Additionally, the study of preferred versus avoided motifs in accessible
regions with potential target sites could help elucidate the various evolutionary forces behind
miRNA target evolution.

The identification of miRNA-mediated regulatory models, constituted by a set of miRNAs
jointly regulating a set of target genes, and its integration in gene regulatory networks in
the ultimate goal of the research efforts developed in this area. The discovery and study of
these regulatory modules could benefit from a better understanding of the evolutionary forces
driving miRNA evolution, particularly the restrictions at the sequence, structure and genomic

context levels, but also the influence of the evolution of the regulatory network itself.
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Appendix A

Pre-miRNA homologs from A.

gambiae in A. darling:

Table A.1: Homologs to pre-miRNAs of A. gambiae identified

amongst the precursor candidates of A. darlingi

miRNA Contig Strand Start Stop Length E-value Identity
aga-mir-281 ctg7180000455710 F 12304 12396 93 6e-44 98.92
aga-mir-137 ctg7180000423045 F 24973 25062 90 3e-42 98.89
aga-mir-125 ctg7180000436522 R 30069 30161 93 2e-41 97.85
aga-mir-9c ctg7180000436657 F 27474 27563 90 8e-40 97.78
aga-mir-iab-4 ¢tg7180000409079 R 9295 9378 84 1e-38 98.81
aga-mir-278 ctg7180000393996 R 2139 2222 84 3e-36 98.81
aga-mir-8 ctg7180000296739 R 14269 14350 82 5e-35 97.56
aga-mir-957 ctg7180000502071 F 10129 10209 81 2e-34 97.53
aga-mir-1175 ¢tg7180000395096 R 20239 20316 78 le-32 97.44
aga-mir-305 ctg7180000409513 R 69 156 88 5e-32 95.51
aga-mir-9a ctg7180000394369 R 31986 32065 80 2e-31 97.50
aga-mir-79 ctg7180000436657 F 29361 29431 71 8e-31 98.59
aga-mir-263b  ¢tg7180000380439 F 18574 18666 93 8e-31 94.74
aga-mir-927 ctg7180000364658 R 2214 2301 88 le-29 94.32
aga-mir-1891 ¢tg7180000436657 F 69525 69616 92 5e-29 92.39
aga-mir-1000 c¢tg7180000409240 F 26262 26333 72 5e-29 97.22
aga-mir-929 ctg7180000436895 R 35399 35472 74 Te-28 95.95
aga-mir-993 ctg7180000380779 R 2989 3093 105 le-27 90.57

Continued on Next Page. ..
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miRNA Contig Strand Start Stop Length E-value Identity
aga-mir-307 ctg7180000501812 F 90845 90913 69 3e-27 97.10
aga-mir-7 ctg7180000456148 R 10858 10934 7 3e-27 94.81
aga-mir-283 ctg7180000394200 R 11363 11450 88 le-26 92.05
aga-mir-14 ctg7180000394624 F 29822 29905 84 1le-26 94.05
aga-mir-210 ctg7180000325517 R 378 447 70 le-25 95.71
aga-mir-92b ctg7180000502202 R 52014 52091 78 2e-25 93.59
aga-mir-190 ctg7180000409440 F 26813 26893 81 8e-25 93.83
aga-mir-184 ctg7180000395192 F 12643 12726 84 2e-24 94.05
aga-bantam ctg7180000380411 F 3920 4019 100 3e-24 93.07
aga-mir-263 ctg7180000422962 R 6187 6272 86 2e-22 95.35
aga-mir-277 ctg7180000436725 F 2857 2947 91 3e-21 90.11
aga-mir-124 ctg7180000394913 F 3659 3737 79 9e-21 90.36
aga-mir-10 ctg7180000299625 F 88710 88792 83 Te-19 89.16
aga-mir-13b ctg7180000296969 F 18851 18926 76 3e-18 92.21
aga-mir-988 ctg7180000423020 R 24356 24424 69 3e-18 92.86
aga-mir-276 ctg7180000394910 R 4307 4390 84 le-17 89.41
aga-mir-219 ctg7180000456051 R 64129 64209 81 4e-17 89.41
aga-mir-282 ctg7180000297228 F 31847 31926 80 6e-16 90.12
aga-mir-9b ctg7180000436657 F 29840 29918 79 4e-14 87.21
aga-mir-1890 ctg7180000297175 R 19896 19966 71 4e-14 90.14
aga-mir-317 ctg7180000381136 F 4237 4319 83 2e-12 86.90
aga-mir-275 ctg7180000409513 R 6089 6155 67 2e-12 89.71
aga-mir-87 ctg7180000358126 R 296 383 88 le-11 85.56
aga-mir-308 ctg7180000296848 R 3648 3718 71 le-11 88.73
aga-mir-279 ctg7180000436869 R 24027 24088 62 2e-09 88.89
aga-mir-92a ctg7180000502202 R 73930 73990 61 9e-09 88.52
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Table A.2: Alignment of mature miRNAs from A. gambiae
against precursor homologues identified amongst pre-miRNA

candidates from A. darlingi

miRNA Alignment Identity
! U
] 5 AUCGAAUGUGAAAAUAAAGAGAGCUAUCCGUCGACAGUAGGGAUAUAAUUCACUGUCAUGGAAUUGCUCUCUUUAUGUACAAUUCGAUAUUCA®
aga-mir-281 100.00
5/ UGUCAUGGAAUUGCUCUCUUUAUg/
! U
] % AAAACUUGGUUGGCCACGCGUAUUCUUGGGUUACUAACACACUAUUUAUGUUGUUAUUGCUUGAGAAUACACGUAGUUGACUAGUGUUGU>
aga-mir-137 100.00
5/ UAUUGCUUGAGAAUACACGUAGg/
! U
] % GUAUCUGCUGAUUCCCUGAGACCCUAACUUGUGACUAUCGUUACAAAGUUUCACAAGUUUUGAUCUCCGGUAUUAGCGGUUGAGAUGCGACGE”
aga-mir-125 100.00
5/ UCCCUGAGACCCUAACUUGUGAg/
! U
] 3 YUUCCGGCUGUGUCUUUGGUAUUCUAGCUGUAGAAUGUUGUUUUGAUUGUAAUAUCUCUAAAGCUUUAGUACCAGAGGUCCAACUGGGAA®
aga-mir-9c 100.00
5/ UCUUUGGUAUUCUAGCUGUAGA3/
! U
.. % GUGCCGCUUCAUGAACGUAUACUGAAUGUAUCCUGAGUGCUACUUAUCCGGUAUACCUUCAGUAUACGUAACAGGAGGCGACACS
aga-mir-iab-4 100.00
5/ ACGUAUACUGAAUGUAUCCUGAg/
! U
. % GGUACGGUACGGACGGACGAUAGUCUUCAACGACCGUUCACGUUUGACACGAGGUCGGUGGGACUUUCGUCCGUUUGUAAGGCCS
aga-mir-278 100.00
5/ UCGGUGGGACUUUCGUCCGUUUS/
! /
] % GUCUGUUCACAUCUUACCGGGCAGCAUUAGAUAUUUUAUCGGAUACUUCUAAUACUGUCAGGUAAAGAUGUCGUCCGAGCCC™
aga-mir-8 100.00
5/ UAAUACUGUCAGGUAAAGAUGUCS/
! /
) % ACUGCGGGCGUUAGUUUUGGGCGGGUUUUAGUGUAUUUCGAUGAGAAUUCUAUUGAAACCGUCCAAAACUGAGGCCGGCAGS
aga-mir-957 100.00
5/UGAAACCGUCCAAAACUGAGGCs/
!/ /
) % GAUAUGGAAUAAGUGGAGUAGUGGUCUCAUCGCUUAGUUUUAGAAAAGUGAGAUUCUACUUCUCCGACUUAAUUCAUA®
aga-mir-1175 100.00

5/UGAGAUUCUACUUCUCCGACUUAAg3/

Continued on Next Page. ..
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miRNA Alignment Identity
/ /
] 5 UUUGUCACAUGUCUAUUGUACUUCAUCAGGUGCUCUGGUGGAUUUCAGAAACCCGGCACAUGUUGGAGUACACUUAAUGUGCUGACAAS
aga-mir-305 100.00
5/ AUUGUACUUCAUCAGGUGCUCUG 3/
/ /
] % GUCAAUGUUCUCUUUGGUUAUCUAGCUGUAUGAGUGUAUUUAAAAACGUCAUAAAGCUAGCAUACCGAAGUUAAUAAUUGS
aga-mir-9a 100.00
5/ UCUUUGGUUAUCUAGCUGUAUGA 3/
/ /
] % GCUUUGGCGCUUUAGCUGUAUGAUAGAAUUUGAAGUAUUUCAUAAAGCUAGAUUACCAAAGCAUAGACGAAS
aga-mir-79 100.00
5/ UAAAGCUAGAUUACCAAAGCAU3/
/ U
] % UGACCAAUUAUGGACCUUGGCACUGGGAGAAUUCACAGUGAUCGUACAUUAUCGUUCUGUGGAUCUUUUCGUGCCAUCGUUCAAAUUUGGUGC
aga-mir-263b 100.00
5/ CUUGGCACUGGGAGAAUUCACS/
! /
] % GUUAAUGGUUCGUUUUAGAAUUCCUACGCUUUACCCGUUAAAUUAAAGUAGUGCGGCAAAGCGUUUGGAUUCUGAAACGAAACAUUAAS
aga-mir-927 100.00
5/ UUUAGAAUUCCUACGCUUUACC3/
! /
] 2 UCUUUUUCUGUCAUGUUGAGGAGUUAAUUUGCGUGUUUUUGCAUACGAUUAAACACGUCCAUUAACUCUGGUACAUGAUGGAAAAACCGAGC
aga-mir-1891 100.00
5/ UGAGGAGUUAAUUUGCGUGUUUU/
! /
] % GUCGAUGAUAUUGUCCUGUCACAGCAGUACUAUUUGCCUAGCUUACUGUUGUUUCGGGACAUUUCCAUCGAC™
aga-mir-1000 100.00
5/ AUAUUGUCCUGUCACAGCAGUS/
!/ /
] % UGGGAUUAAAUUGACUCUAGUAGGGAGUCCUUCCAUACGAGAGACUCCCUAACGGAGUCAGAUUGAUUCCGGUAS
aga-mir-929 100.00
5/ CUCCCUAACGGAGUCAGAUUGS/
! /
) 5" . . CGUGACCUACCCUGUAGUUCCGGGCUUUUGUGGGUUGAAAUACAAAAACAUGUAAAUUCAUAUUCUCUUAUCAGAAGCUCGUUUCUAUAGAGGUAUCUCA
aga-mir-993 100.00
5/ GAAGCUCGUUUCUAUAGAGGUAUCUS/
! /
] % UCUCUCGAUUACUCACUCAACCUGGGUGUGAUGCUUAUUUGAAUCAUCACAACCUCCUUGAGUGAGCGA™
aga-mir-307 100.00
5/ UCACAACCUCCUUGAGUGAG 3/
! /
] % UUGUAUGGAAGACUAGUGAUUUUGUUGUUUGGCUUAAGAUACUAACAAUAAAUCCCUUGUCUUUCUACAAAGAUUGC
aga-mir-7 100.00

5/ UGGAAGACUAGUGAUUUUGUUGU3/

Continued on Next Page. ..
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miRNA Alignment Identity
/ /
] 5 JUCGACUGAAAGGUAAAUAUCAGCUGGUAAUUCUAGGCUAUCUAAACUUCGUGCACCCCGGAAUUUCAGCUGAUAUCCACUUUUCCGU
aga-mir-283 100.00
5/ UAAAUAUCAGCUGGUAAUUCU3/
/ U
] % GCCCGAUAAGCCUGUGGGAGCGAGAUUAAGGCUUGCUGGUUAUCAAUUUGAACUUUAGUCAGUCUUUUUCUCUCUCCUAUCGGU
aga-mir-14 100.00
5/ UCAGUCUUUUUCUCUCUCCUAS/
/ U
) % CAUUGCAGCUGCUGACCACUGCACAAGAUUAGAAUAUGACUCUUGUGCGUGUGACAACGGCUAUUGUGGGS
aga-mir-210 100.00
5/ UUGUGCGUGUGACAACGGCUAg/
! /
] % GGGCUCCGEAUGUAGGGCGUGACUUGUGCAUAAUUUGCUGAUUUCCAAUGUCAAAUUGCACUUGUCCCGGCCUGCAGE
aga-mir-92b 100.00
5/ AAUUGCACUUGUCCCGGCCUGCs/
! !
] % YUUCGGUAAGAUAUGUUUGAUAUUCUUGGUUGUUAAAUUGUUCAAUUAUCACCCAGGAAUCAAACAUAUUAUUACUGUGACS
aga-mir-190 100.00
5/ AGAUAUGUUUGAUAUUCUUGGUUGS/
! U
] % GGUGCACUCGAACCCUUAUCAUUCUUUCGCCCCGUGUGCAUUGCGAACCGACUGGACGGAGAACUGAUAAGGGCCCGGGUCACCS
aga-mir-184 100.00
5/ UGGACGGAGAACUGAUAAGGGS/
! /
%' AAAUGUAAUCACAGAACCGGUUUUCAUUUUCGAUCUGACUUAUUCAUUUUACAACGAGUGAGAUCACUUUGAAAGCUGAUUUUGUACAGUUAACUCAACG
aga-bantam 100.00
5/ UGAGAUCACUUUGAAAGCUGAUU/
! /
] % CCCUGGUACAUGUAAUGGCACUGGAAGAAUUCACGGGAUUUGUUUCAAUACUCCCGUGUUCUCUUAGUGGCAUACCCAGUACAGGG™
aga-mir-263 100.00
5/ UGUAAUGGCACUGGAAGAAUUCACS/
! /
] % GUUUUGGGGUACGUGUCAGAAGUGCAUUUACAUCGGCAUUCCGCAGUUUGAGGUAUUUGUAAAUGCACUAUCUGGUACGACAUUCCAGAAU®
aga-mir-277 100.00
5/ UAAAUGCACUAUCUGGUACGACA3/
! U
] % CGUUUUUCUCCUGGUGUUCACUGUAGGCCUGUAUGUUACCUGAUUCCAUAAGGCACGCGGUGAAUGCCAAGAGCGAACG
aga-mir-124 100.00
5/ UAAGGCACGCGGUGAAUGCCAAGS/
! /
] % UUAUGUUCUACAUCUACCCUGUAGAUCCGAAUUUGUUUGAAAUUUAACAAGCGACAAAUUCGGUUCUAGAGAGGUUUGUGUGG
aga-mir-10 100.00

5/ ACCCUGUAGAUCCGAAUUUGUg/

Continued on Next Page. ..
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miRNA Alignment Identity
/ U
] % UCGUGGUCGGGUCGUAAAAAUGGUUGUGCUGUGUCGAUACUUACGAAAGUUCAUAUCACAGCCAUUUUGACGAGUU®
aga-mir-13b 100.00
5/ UAUCACAGCCAUUUUGACGAGU3/
/ /
] % CCGGUGUGUGCUUUGUGACAAUGAGAUUUUCAGUUGAAGUUCAUCCCCUUGUUGCAAACCUCACGCUGE™
aga-mir-988 100.00
5/ CCCCUUGUUGCAAACCUCACGC3/
/ U
] % GGUGAUUGCCAUCAGCGAGGUAUAGAGUUCCUACGUUGUUCAUAUGAAAUCUGUAGGAACUUCAUACCGUGCUCUUGGAUAGCCS
aga-mir-276 100.00
5/ UAGGAACUUCAUACCGUGCUCU3/
/ !
] % YUUCUAGCUCUGAUUGUCCAAACGCAAUUCUUGUUGAUACCAUUAGCUACUCAAGAGUUGUGACUGGACAUCCGUGGCUCGS
aga-mir-219 100.00
5/ UGAUUGUCCAAACGCAAUUCUUGS/
! /
] % CUAAUCUAGCCUCUCCUAGGCUUUGUCUGUAAAUGGUUUCACAAUCCAGACAUAGCCUGACAGAGGUUAGGUGAAAUCUGS
aga-mir-282 96.43
5/ AAUCUAGCCUCUUCUAGGCUUUGUCUGU 3/
! U
. % CACUUAUUGGGUCUUUGGUGAUUUUAGCUGUAUGUUAUUUCUUUCACAUAUAGCUUUAUCACCAAAAACCUAAUGUGUG
aga-mir-9b 95.65
5/ ACUUUGGUGAUUUUAGCUGUAUG 3/
! /
] % CAGAGCUAAUUGGAGCAUUUCUUGAAGAUAUAUUUUCUGCAAACUCAUGAAAUCUUUGAUUAGGUCUGGUU
aga-mir-1890 100.00
5/ UGAAAUCUUUGAUUAGGUCUS/
! /
. % CUCUGCCGCUGGGAUACACCUUGUGCUCGCUUUGCAAUUGAAAUACUCAAGUGAACACAUCUGGUGGUAUCUCAGUGGCCGRGS
aga-mir-317 100.00
5/ UGAACACAUCUGGUGGUAUCUCAGUS/
! /
. % CGCGCUAAGCAGGAACCGGGACUUGAUCCAUUUUGCAAACAGUCAGGUACCUGAAGUAGCGCGCGUUS
aga-mir-275 100.00
5/ UCAGGUACCUGAAGUAGCGCGCG 3/
!
. % GAUUGCUCCCGECCCAGCCUGAAAUUUGCUAAACCUGCUGCAUAUGAGGAAAAGGUGAGCAAAUAUUCAGGUGUGUCGAAGAGUGGUC
aga-mir-87 100.00
5/ GGUGAGCAAAUAUUCAGGUGUS/
! /
. % UGUUUCGCAGUAUAUUCUUGUGAGUUUGCUUCCUUUUUAUGGGCCAAAUCACAGGAGUAUACUGUGAGAUGS
aga-mir-308 100.00

5/ AAUCACAGGAGUAUACUGUGAG3/

Continued on Next Page. ..
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miRNA Alignment Identity
/ U
) % AAUGGGUGUGAAUCUAGUGCUUCACAUGUUUUUGCUACUGUGACUAGAUCCACACUCAUUAA®
aga-mir-279 100.00
5/ UGACUAGAUCCACACUCAUUAAg/
/ /
) % UCGGCUGGAUCAAGGGCAAAAUUGUGUUUUUGAUACCAAUAUUGCACUUGUCCCGGCCUAU®
aga-mir-92a 100.00

5/ UAUUGCACUUGUCCCGGCCUAUg/
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