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RÉSUMÉ

Les méthodes classiques de compression d’image sont communément basées sur

des transformées fréquentielles telles que la transformée en Cosinus Discret (DCT) ou

encore la transformée discrète en ondelettes. Nous présentons dans ce document une

méthode originale basée sur une transformée combinatoire celle de Burrows-Wheeler

(BWT). Cette transformée est à la base d’un réagencement des données du fichier

servant d’entrée au codeur à proprement parler. Ainsi après utilisation de cette méthode

sur l’image originale, les probabilités pour que des caractères identiques initialement

éloignés les uns des autres se retrouvent côte à côte sont alors augmentées. Cette

technique est utilisée pour la compression de texte, comme le format BZIP2 qui est

actuellement l’un des formats offrant un des meilleurs taux de compression.

La chaîne originale de compression basée sur la transformée de Burrows-Wheeler

est composé de 3 étapes. La première étape est la transformée de Burrows-Wheeler

elle même qui réorganise les données de façon à regrouper certains échantillons de

valeurs identiques. Burrows et Wheeler conseillent d’utiliser un codage Move-To-

Front (MTF) qui va maximiser le nombre de caractères identiques et donc permettre

un codage entropique (EC) (principalement Huffman ou un codeur arithmétique). Ces

deux codages représentent les deux dernières étapes de la chaîne de compression.

Nous avons étudié l’état de l’art et fait des études empiriques de chaînes de com-

pression basées sur la transformée BWT pour la compression d’images sans perte. Les

données empiriques et les analyses approfondies se rapportant aux plusieurs variantes

de MTF et EC. En plus, contrairement à son utilisation pour la compression de texte,

et en raison de la nature 2D de l’image, la lecture des données apparaît importante.

Ainsi un prétraitement est utilisé lors de la lecture des données et améliore le taux de

compression. Nous avons comparé nos résultats avec les méthodes de compression

standards et en particulier JPEG 2000 et JPEG-LS. En moyenne le taux de com-
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pression obtenu avec la méthode proposée est supérieur à celui obtenu avec la norme

JPEG 2000 ou JPEG-LS.

Mots-clés : Transformé de Burrows-Wheeler, Compression sans perte et quasi sans

perte d’images.

xvi + 107

Réf. : 81 ; 1948-2011
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ABSTRACT

Common image compression standards are usually based on frequency transform such

as Discrete Cosine Transform or Wavelets. We present a different approach for loss-

less image compression, it is based on combinatorial transform. The main transform is

Burrows Wheeler Transform (BWT) which tends to reorder symbols according to their

following context. It becomes a promising compression approach based on context

modelling. BWT was initially applied for text compression software such as BZIP2;

nevertheless it has been recently applied to the image compression field. Compression

scheme based on Burrows Wheeler Transform is usually lossless; therefore we imple-

ment this algorithm in medical imaging in order to reconstruct every bit. Many vari-

ants of the three stages which form the original BWT-based compression scheme can

be found in the literature. We propose an analysis of the more recent methods and the

impact of their association. Then, we present several compression schemes based on

this transform which significantly improve the current standards such as JPEG2000

and JPEG-LS. In the final part, we present some open problems which are also further

research directions.

Keywords: Burrows-Wheeler Transform (BWT), lossless (nearly lossless) image

compression

xvi + 107

Ref. : 81 ; 1948-2011
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2

1.1 Background

Data compression is an old and eternally new research field. Maybe the first example

of data compression is stenography (or shorthand writing) which is a method that in-

creases speed and brevity of writing. Until recently, stenography was considered an

essential part of secretarial training as well as being useful for journalists. The earliest

known indication of shorthand system is from Ancient Greece, from mid-4th century

BC. More recently, example of data compression method is the Morse code invented

in 1838 for the use in telegraphy. It uses shorted codewords for more frequent letters:

for example, the letter E is coded by "." and T by "- ". Generally, data compression is

used in order to reduce expensive resources, such as storage memory or transmission

bandwidth. The Information Theory founded by Clause Shannon in 1949 gives very

elegant issues in data compression, but it does not give us any answer knowing how

much a file can be compressed by any method that is, what is its entropy. Its value de-

pends on the information source – more specifically, the statistical nature of the source.

It is possible to compress the source, in a lossless manner, with compression rate close

to the entropy rate. He has shown that it is mathematically impossible to do better than

entropy rate by using appropriate coding method [23, 64].

The data compression field remains forever as an open research domain: indeed,

given a particular input, it is computationally undecidable if a compression algorithm

is the best one for this particular input. Researchers are searching many algorithms and

data types. The best solution is to classify files and match the data type to the correct

algorithm.

Data compression domain is still an interesting topic also because of the number

of files/data keep growing exponentially. There are many examples of fast growing

digital data. The first example is in radiography and medical imaging. Hospitals and

clinical environments are rapidly moving toward computerization that means digitiza-

tion, processing, storage, and transmission of medical image. And there are two reason

why these data keep growing exponentially. Firstly, because of the growth of the pa-

tients that need to be scanned. Secondly, is the conversion of archived film medical

images. The second example of the growing digital data is in the oil and gas industry

that has been developing what’s known as the "digital oilfield", where sensors mon-

itoring activity at the point of exploration and the wellhead connect to information

system at headquarters and drive operation and exploration decisions in real time, that

means more data produce each day. And there are more applications that produce data

exponentially such as broadcast, media, entertainment, etc [30].
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Those digitized data have heightened the challenge for ways to manage and orga-

nize the data (compression, storage, and transmission). This purpose is emphasized,

for example, by non compression of raw image with size of 512 × 512 pixels, each

pixel is represented by 8 bits, contains 262 KB of data. Moreover, image size will be

tripled if the image is represented in color. Furthermore, if the image is composed for

a video that needs generally 25 frames per second for just a one second of color film,

requires approximately 19 megabytes of memory. So, a memory with 540 MB can

store only about 30 seconds of film. Thus, data compression process is really obvious

to represent data into small size possible, therefore less storage capacity will be needed

and data transmission will be faster than uncompressed data.

Modern data compression began in the late 1940s with the development of infor-

mation theory. Compression efficiency is the principal parameter of a compression

technique, but it is not sufficient by itself. It is simple to design a compression algo-

rithm that achieves a low bit rate, but the challenge is how to preserve the quality of

the reconstructed information at the same time. The two main criteria of measuring the

performance of data compression algorithm are compression efficiency and distortion

caused by the compression algorithm. The standard way to measure them is to fix a

certain bit rate and then compare the distortion caused by different methods.

The third feature of importance is the speed of the compression and decompression

process. In online applications the waiting times of the user are often critical factors.

In the extreme case, a compression algorithm is useless if its processing time causes

an intolerable delay in the image processing application. In an image archiving sys-

tem one can tolerate longer compression times if the compression can be done as a

background task. However, fast decompression is usually desired.

1.2 Scope and Objective

The general approach to data compression is the representation of the source in digi-

tal form with as few bits as possible. Source can be data, still images, speech, audio,

video or whatever signal needs to be stored and transmitted. In general, data compres-

sion model can be divided in three phases: removal or reduction in data redundancy,

reduction in entropy and entropy coding as seen in Figure 1.1.

Removal or reduction in data redundancy is typically achieved by transforming the

original data from one form or representation to another. Some of popular transforma-

tion techniques are Discrete Cosine Transform (DCT) and Discrete Wavelet Transfor-
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Figure 1.1: Data compression model [5].

mation (DWT). This step leads to the reduction of entropy.

Reduction in entropy phase is a non-reversible process. It is achieved by dropping

insignificant information in the transformed data by some quantization techniques.

Amount of quantization dictate the quality of the reconstructed data. Entropy of the

quantized data is less compared to the original one, hence more compression.

And the last phase is Entropy Coding (EC) which compress data efficiently. There

are some well-known of EC, such as Huffman, Arithmetic Coding (AC), etc.

Data compression can be classified in two category based on their controllability

which are lossless and lossy (see Figure 1.1). It concern the quality of a data after

decompression. Lossy compression (or irreversible) reconstructs a data in an approx-

imation of the original one. The information preserving property is usually required,

but not always compulsory for certain applications.

Lossless compression (or information preserving, or reversible) decompresses a

data which is identical with its original. There are some applications that need to

recover the essential or crucial information in it, such An expert in these fields needs to

process and analyze all of the information, for example in medical imaging, scientific

imaging, museums/art, machine vision, remote sensing (that is satellite imaging), etc,

therefore lossless method is needed to accomplish these applications.

Figure 1.1 and Table 1.1 shows that there are a few controllability of compressed
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Table 1.1: Current image compression standards [32].

Compression Method Type of Image Compression Ratio Controllability
G3 Fax Binary 1/2 - 10:1 Lossless Only
JBIG Binary 2-40:1 Lossless Only

JPEGa (Baseline) 8 Bit Grayscale and Color 5-25:1 lossy
Lossless JPEG 4-12 Bit Image Components 2-10:1 Lossless Only

JBIG-2 Binary 2-40:1 Lossy/Lossless
JPEG-LS 4-12 Bit Image Components 2-10:1 Lossless/Near Lossless
JPEG2000 ANY 2-200:1 Lossy/Lossless

a. JPEG defines four algorithms: sequential, progressive, hierarchical, and lossless, sequential and progressive are commonly
implemented, files compressed in the other algorithms, or with the QM-coder will not be decodeable by 99% of JPEG
applications.

image that concern of image quality after decompression. In general, controllability

can be classified in two; lossless and lossy. Lossy compression (or irreversible) recon-

structs an image in an approximation of the original one. The information preserving

property is usually required, but not always compulsory for certain applications. For

near-lossless of JPEG-LS is done by controlling the maximal error in pixel value,

thereby limiting the maximal elevation error in the reconstructed image. Sometimes

this mode is called controlled lossy mode. Meanwhile, The controllability of JPEG-

baseline is defined by four algorithm that based on its quantization table (Q-table),

and the mode of this method is always lossy. Lossless compression (or information

preserving, or reversible) decompresses an image which is identical with its original.

There are some applications that need to recover the essential or crucial information in

an image. An expert in these fields needs to process and analyze all of the information,

for example in medical imaging, scientific imaging, museums/art, machine vision, re-

mote sensing (that is satellite imaging), etc, therefore lossless method is needed to

accomplish these applications.

Prior data compression standards serve only a limited applications. Table 1.1 shows

some of current image compression standards for some type of images. For example

for binary images that less than 6 bit per pixel gets better compression performances

by JBIG or JBIG-2. This table also shows the range of compression ratios that

obviously depend on image controllability (lossless, lossy or near-lossless) and image

nature. Each compression method has the advantages and disadvantages. There does

not exist the best compression method that provides the best performance for any kind

of images. Table 1.1 shows that JPEG2000 can be implemented for any kind of

images, but it does not mean it obtains the best performance. Some image compression

methods were developed to fulfilled some requirements of certain applications and

certain types of images. Moreover, people keeps searching a suitable compression
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method for specific application or data type, such as medical imaging. The researches

are more focused to certain type of medical images. Since there are various modalities

of these images, such as computed radiography (CR), computed tomography (CT),

magnetic resonance imaging (MRI)s, etc, to provide the better performances. Thus, a

new image compression standard is useful to serve applications that have not provided

yet for by current standards, to cover some current needs with one common system,

and to provide full employment for image compression researchers.

This thesis analyzed other universal lossless data compression based on Burrows

Wheeler Transform (BWT). This transform was created by Burrows and Wheeler [18]

for text compression, such as BZIP2. Here, we analyze the implementation of this

transform in text compression and also in lossless and near-lossless image compres-

sion.

1.3 Research Overview

The traditional lossless image compression methods uses spatial correlations to model

image data. It can be done for gray scale images, moreover some methods have been

developed and they are more complex to improve compression performances. One of

them is done by converting the spatial domain of an image to frequency domain. It en-

codes the frequency coefficients to reduce image size, such JPEG2000 with Discrete

Wavelet Transform (DWT) that convert an image in small DWT coefficients. Mean-

while, target of spatial domain is pixels values its self. They work under principle of

pixel redundancy. These techniques are taken advantage of repeated values in consecu-

tive pixel positions. For instance, the Ziv-Lempel Algorithm which is used in Portable

Network Graphics (PNG).

Almost all of spatial methods are lossless. They have less computational cost and

easy to implement than frequency domain. For example Ziv-Lempel algorithms are

simple and have some nice asymptotic optimality properties. However, frequency do-

main usually have better compression rate than spatial domain since most of them are

used in lossy compression techniques.

The foundation of image compression is information theory, as laid down by the

likes of Shannon in the late 1940s [63]. The information theory states that information

of an event is:

I(e) = log
2

1

p(e)
(bits) (1.1)
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where p(e) is the probability of the event occurring. Therefore, information content of

event is directly proportional to our surprise at the event happening. A very unlikely

event carries a lot of information, while an event that is very probable carries little

information. Encoding an image can be thought of as recording a sequence of events,

where each event is the occurrence of a pixel value. If we have no model for an image,

we might assume that all pixel values are equally likely. Thus, for a greyscale image

with 256 grey levels, we would assume p(e) = 1/256 for all possible pixel values. The

apparent information required to record each pixel value is then log
2
256 = 8. Clearly,

this is no better than the raw data representation mentioned above. However, due to

the spatial smoothness common in images, we expect a given pixel to be much like the

one before it. If the given pixel value conforms to our expectation of being close to

the previous value, then little information is gained by the event of learning the current

pixel’s value. Consequentially, only a little information need be recorded, so that the

decoding process can reconstruct the pixel value.

This idea of using previous pixel values to lower the information content of the

current pixel’s encoding has gone under several names: Differential Pulse Code Mod-

ulation (DPCM), difference mapping and more generally predictive coding. From early

work in the 50s and 60s on television signal coding, to modern lossless image compres-

sion schemes, predictive coding has been widely used. The common theme has always

been to use previous data to predict the current pixel and then only the prediction er-

ror (or prediction residual) need be encoded. Predictive coding requires the notion of

a current pixel and past pixels and this implies a one-dimensional (1D) sequence of

pixels. However, image data is two-dimensional. To correct for this mismatch a 1D

path is needed that visits every pixel in the 2D image. By far the most common path

is raster-scan ordering, which starts at the top left of an image and works left to right,

top to bottom, over the whole image.

From the practical point of view the last but often not the least feature is complexity

of the algorithm itself, i.e. the ease of implementation. Reliability of the software often

highly depends on the complexity of the algorithm. Let us next examine how these

criteria can be measured.

Entropy and Symbol Coding

One way to get a quantitative measure of the benefits of prediction is to use entropy.

This commonly used measure of information content, again provided by Shannon, says

that for a collection of independent, identically distributed (i.i.d.) symbols x0, x1..., xi,
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each with a value in the range 0 ≤ j ≤ (N − 1), the average information content per

symbol is:

N−1
∑

j=0

p(xi = j) log
2

1

p(xi = j)
( bits) (1.2)

where p(xi = j) is the probability of a given symbol having value j. The i.i.d. as-

sumption implies a memoryless source model for the data. That is, it does not use

information based on preceding symbols (memory) to model the value of the current

symbol. Note that this assumption is almost never true at any stage in image coding,

however it is a useful simplifying model at this stage. Equation 1.2 shows that the

distribution of pixel values, the p(xi = j), that is important. It can be inferred that dis-

tributions that are nearly at (all symbols nearly equiprobable) have average information

measures approaching log
2
N , whereas sharply peaked distributions have much lower

entropies.

Figure 1.2 gives an example of this and shows that simple predictive coding pro-

duces a residual image with a sharply peaked distribution. The entropy of pixel values

of Figure 1.2(a) is close to the raw data size of 8 bits per pixel, otherwise in Fig-

ure 1.2(c), using the previous pixel value as predictor, the prediction errors (adjusted

for display) have a much lower entropy.

Having changed the distribution of symbols so that their entropy is reduced, it

remains to store them efficiently. An effective way to do this involves Variable Length

Codes (VLCs), where short codes are given to frequent symbols and longer codes

are given to infrequent symbols. In 1952 Huffman [36] described his algorithm for

producing optimal codes of integer length. However, in the late 1970s, researchers at

IBM succeeded in implementing Arithmetic Coding, which by removing the integer

length constraint allows more efficient symbol coding. Image compression schemes

tend to be innovative in the stages leading up to symbol coding. The final symbol

coding stage is generally implemented using traditional algorithms, such as Huffman

Coding.

Compression efficiency

The most obvious measure of the compression efficiency is the bit rate, which gives

the average number of bits per stored pixel of the image:
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(a) Without Prediction (b) Pixel Distribution (7.53 bits
per pixel)

(c) With Prediction (d) Pixel Distribution (5.10 bits
per pixel)

Figure 1.2: The benefit of prediction.

Bit Rate (BR) =
size of compressed file

size of uncompressed file
k (1.3)

where k is the number of bits per pixel in the original image. If the bit rate is very low,

compression ratio might be a more practical measure:

Compression Ratio (CR) =
size of uncompressed file

size of compressed file
(1.4)

The overhead information (header) of the files is ignored here. Sometimes the

space savings is given instead, which is defined as the reduction in size relative to the

original data size:
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space savings =

(

1 -
size of compressed file

size of uncompressed file

)

× 100% (1.5)

thus, data that compresses a 10 mega Bytes file into 2 mega bytes would yield a space

savings 0.8 that usually notated as a percentage, 80%.

1.4 Contribution

The major result of the thesis is the development of universal data compression us-

ing BWT that is commonly used as the main transform in text compression (such as

BZIP2). This transform is also working well in image compression, especially in

medical images.

The first part of this research is mainly concerned with lossless and nearly-lossless

medical image compression.

Many algorithms have been developed in the last decades. Different methods have

been defined to fulfilled the lossless image applications. Obviously, none of these

techniques suits all kind of images; image compression is still an open problem. Most

of the techniques are based on prediction, domain transform, and entropy coding. We

propose a new compression scheme based on combinatorial transform, the BWT. This

original approach does not propose any domain change (as with DCT or DWT), but a

modification of data order to improve coding results. This method enables to compete

with usual standards even more to improve their performances. We have applied with

success on medical images. A nearly-lossless version is also defined in this thesis.

The research of this thesis focuses on the following key point:

• BWT impact as an image compression transform.

• Impact of other coding to support BWT as its main algorithm in lossless image

compression

• Detail analysis of this method to image compression since it is usually used in

text compression

The compression results are compared with the existing image compression stan-

dard, such as JPEG, JPEG-LS and JPEG2000.
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1.5 Thesis Organization

The remainder of this thesis is organized as follows.

Chapter 2 presents image lossless image compression that have been developed

and used for lossless image compression applications, such as Lossless JPEG,

JPEG-LS, JPEG2000 and other lossless compression techniques.

Chapter 3 proposes a state of the art for some algorithms that form Burrows

Wheeler Compression Algorithm and some compression algorithms that have been

used as intermediate stages of Burrows Wheeler Compression Algorithm (BWCA)

chain.

Chapter 4 details simulations and results of some of BWCA chains, and also the

proposed methods for lossless and nearly-lossless medical image compression using

BWT as its main transform. The compression results are interesting since BWCA

proposed methods provide better CR than existing image compression standards.

Chapter 5 presents the conclusions of the thesis and also some future works. A

summary of the research objective, thesis contributions are presented. Future research

issues regarding further development of the framework are discussed.
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2.1 Introduction

Some of references divided lossless image compression method in two parts: Mod-

elling and Coding [76, 65, 73]. Penrose et al. [54, 51] add mapping stage before mod-

elling stage as seen in Figure 2.1. This stage is less correlated with the original data.

It can be a simple process such as replacing each pixel with the difference between

the current and previous pixel (difference mapping), although more complex mapping

often yield better results. It changes the statistical properties of the pixel data. This

makes data to be encoded closer to being independent, identically distributed (i.i.d.)

and therefore closes to the kind of data that can be efficiently coded by traditional

symbol coding techniques.

Figure 2.1: Basic model for lossless image compression [54, 51].

The modelling stage attempts to characterize the statistical properties of the

mapped image data. It attempts to provide accurate probability estimates to the coding

stage, and may even slightly alter the mapped data. By being mindful of higher order

correlations, the modelling stage can go beyond the memoryless source model and can

provide better compression than would be apparent from measuring the entropy of the

mapped image data.

The symbol coding stage aims to store the mapped pixel efficiently, making use

of probability estimates from the modelling stage. Symbol coders are also sometimes

called statistical coders (because they use source statistics for efficient representation)

and entropy coders (because they aim to represent data using no more storage than

allowed by the entropy of the data). Coding schemes take a sequence of symbols

from an input alphabet and produce codewords using an output alphabet. They aim to

produce a code with the minimum average codeword length. The decoding process can

be asymmetric with the encoding process, caused by the coding stage’s dependence on

the modelling stage.
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This chapter presents a survey of the literature relating to lossless greyscale im-

age compression. The literature in this field is quite extensive and it is impossible to

cover exhaustively due to space constraints. However, to ensure a reasonably thor-

ough coverage, what are considered to be good examples of all the major techniques

are discussed. In particular both the old and new JPEG standards for lossless image

compression are covered in some details.

2.2 Standards

2.2.1 Joint Photographic Experts Group (JPEG)

Joint photographic experts group (JPEG) is a standardization organization and also

named for its image compression standards for gray scale and color images. It is a very

well known standard, especially for lossy compression using Discrete Cosine Trans-

form (DCT), but its performance decreases in the lossless case. The technique used

is completely different between lossy and lossless. Lossless method uses predictor to

decrease data entropy (see Figure 2.2 and Figure 2.5).

JPEG standard includes four modes of operation; Sequential coding, Progressive

coding, Hierarchical coding and Lossless coding [37]. Sequential and progressive cod-

ing are generally used for lossy method.

Lossy baseline JPEG

Figure 2.2: DCT-based encoder simplified diagram [37, 74].

Figure 2.2 shows an simplified of JPEG encoding of lossy method. The lossy

baseline JPEG (sequential coding mode) is based on Discrete Cosine Transform (DCT)

(or fast DCT /FDCT). Firstly, the image is divided into small blocks of size 8×8, each
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containing 64 pixels. Three of these 8 × 8 groups are enlarged in this figure, showing

the values of the individual pixels, a single byte value between 0 and 255 as seen in

Figure 2.3. Then, each block is transformed by DCT or FDCT into a set of 64 values

referred to as DCT coefficients.

Figure 2.4 shows an example of JPEG encoding for one block. DCT-based en-

coders are always lossy, because roundoff errors are inevitable in DCT steps. The

deliberate suppression of some information produces irreversible loss and so the exact

original image can not be obtained. The left column shows three 8 × 8 pixel groups,

the same ones shown in Figure 2.3 for an eye part. The center column shows the DCT

spectra of these three groups. The third column shows the error in the uncompressed

pixel values resulting from using a finite number of bits to represent the spectrum.

The suppression deliberates information loss in the down sampling and quantiza-

tion steps, so it is not possible to obtain an original bits.

Figure 2.3: JPEG image division [67].

Entropy encoder such as Huffman coding or Arithmetic Coding is used as the last

part of this method to compressed the data efficiently. For details of this transforma-

tion, the reader is referred to Recommendation T.81 of ITU [37, 74].

Lossless baseline JPEG

The lossless coding mode is completely different form the lossy one. It uses predictor

method as seen in Figure 2.5 [43, 47, 50]. Figure 1.2 have shown the benefit of pre-
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Figure 2.4: Example of JPEG encoding [67].

dictor that can decreased the image entropy. Decoder of lossless compression scheme

must be able to produce the original image from compressed data by the encoder. To

ensure this, the encoder must only make predictions on the basis of pixels whose value

the decoder will already know. Therefore, if all past pixels have been losslessly de-

coded, the decoder’s next prediction will the same as that made by the encoder. Also

of importance, is that the encoder and decoder agree to the nature of the variable length

coding scheme to be used. This is easy when a fixed coding scheme is used, but if an

adaptive scheme is used, where the meaning of codes change over time, then the de-

coder must make the same adaptations. This can be achieved either by the encoder

making a decision based on future pixels and transmitted that change to the decoder

(forward adaptation) or by the encoder and decoder both making changes, in a prede-

fined way, based on the values of previous pixels (backward adaptation).

The predictor stages as seen in Figure 2.5 can be divided in three elements, which

are predictor itself, calculating predictor errors and modelling error distribution. There

are two JPEG lossless standards, which are Lossless JPEG and JPEG-LS.

Figure 2.5: Lossless encoder simplified diagram [37].

The first Lossless JPEG uses Predictive Lossless Coding of a 2D Differential Pulse

Code Modulation (DPCM) scheme. The basic premise is that the value of a pixel is

combined with the values of up to three neighboring pixels to form a predictor value.
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The predictor value is then subtracted from the original pixel value. When the entire

bitmap has been processed, the resulting predictors are compressed using either the

Huffman or the binary arithmetic entropy encoding [40].

Figure 2.6: Locations relative to the current pixel, X.

Lossless JPEG proceeds the image pixel by pixel in row-major order. The value

of the current pixel is predicted on the basis of the neighboring pixels that have al-

ready been coded (see Figure 2.6). There are three components of predictive mod-

elling which are prediction of current pixel value, calculating the prediction error and

modelling error distribution.

The prediction value of DPCM method is based on two of its neighboring pixels.

Current pixel value (x) is predicted on the basis of the pixels that have already been

coded (thus seen by the decoder too). Refer the neighboring pixels as in Figure 2.6,

thus a possible predictor could be:

x̄ =
(XW ) + (XN)

2
(2.1)

The prediction error is the difference between the original and the predicted pixel

values:

e = x− x̄ (2.2)

The prediction error is then coded instead of the original pixel value. The probabil-

ity distribution of the prediction errors are concentrated around zero while very large

positive, and very small negative errors are rare to appear, thus the distribution resem-

bles Gaussian normal distribution function where the only parameter is the variance of

the distribution, see Figure 2.7.

The prediction functions available in JPEG are given in Table 2.1. The predic-

tion errors are coded either by Huffman coding or arithmetic coding. The category of

prediction value is coded first, then followed by the binary representation of the value

within the corresponding category. Table 2.2 gives an simple example of seven input
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pixels.

Figure 2.7: Probability distribution function of the prediction errors.

Table 2.1: Predictor used in Lossless JPEG.

Mode Predictor Mode Predictor
0 Null 4 N + W - NW

1 W 5 W + (N - NW)/2

2 N 6 N + (W - NW)/2

3 NW 7 (N + W)/2

Table 2.2: Example of Lossless JPEG for the pixel sequence (10, 12, 10, 7, 8, 8, 12)
when using the prediction mode 1 (i.e. the predictor is the previous pixel value). The
predictor for the first pixel is zero.

Pixel 10 12 10 7 8 8 12
Prediction error 10 2 -2 -3 1 0 4
Category 4 2 2 2 1 0 3
Bit sequence 1011010 1110 1101 1100 101 0 100100

Although offering reasonable lossless compression, the performance of Lossless

JPEG was never widely used outside the research community. The main lesson to

be learnt from lossless JPEG is that global adaptations are insufficient for good com-

pression performance. This fact has spurred most researchers to look at more adaptive

methods. To advance upon simple schemes like Lossless JPEG, alternative methods

for prediction and error modelling are needed.

Most of the previous predictors are linear functions. However, images typically

contain non-linear structures. This has lead an effort to find good non-linear predictors.

One of the most widely reported predictor uses switching scheme, called Median

Adaptive Predictor (MAP). This methods is used by JPEG-LS.

The JPEG-LS is based on the LOCO-I algorithm. The method uses the same ideas

as the Lossless JPEG with the improvement of using context modelling and adaptive
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Figure 2.8: Block diagram of JPEG-LS [76].

correction of the predictor. The coding component is changed to Golomb codes with

an adaptive choice of the skewness parameter. The main structure of the JPEG-LS is

shown in Figure 2.8. The modelling part is divided in three components; prediction,

determination of context and probability model for the prediction errors [76].

The prediction process is quite different with the previous model of Lossless JPEG.

The next value (x) is predicted as based on the values of already coded in the neigh-

boring pixels. The three nearest pixels (denoted as W, N, NW), shown in Figure 2.8,

are used in the prediction as follows:

x̄ =











min(W,N) if NW ≥ max(W,N)

max(W,N) if NW ≤ min(W,N)

W +N −NW otherwise

(2.3)

The predictor tends to pick W in cases of an horizontal edge above the current

location, and N in cases of a vertical edge exists left of the current location. The third

choice (W + N − NW ) is based on the presumption that there is a smooth plane

around the pixel and uses this estimation as the prediction. This description of MAP

as a scheme for adapting to edge features, lead to it being called the Median Edge

Detection (MED) predictor in [75].

In order to avoid confusion, MED will be used to describe the specific predictor

described above, whereas MAP will be used for the concept of using the median value

from a set of predictors.

The prediction residual of Equation 2.2 is then input to the context modeler, which

will decide the appropriate statistical model to be used in the coding. The context is

determined by calculating the three gradient between four context pixels.

In order to help keep complexity low and reduce model cost, JPEG-LS uses a
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symbol coder that requires only a single parameter to describe an adaptive code. The

scheme used is Golomb-Rice (GR) coding (often known only as Rice coding) and the

parameter required is k. GR codes are a subset of the Huffman codes and have been

shown to be the optimal Huffman codes for symbols from a geometric distribution.

Golomb-Rice codes are generated as two parts; the first is made from the k least sig-

nificant bits of the input symbol and the latter is the remainder of the input symbol in

unary format. Some example of codes are given in Table 2.3. Selecting the correct k to

use when coding a prediction error is very important. The ideal value for k is strongly

related to the logarithm of the expected prediction error magnitude [75].

Table 2.3: Example of Golomb-Rice codes for three values of k. Note, bits constituting
the unary section of the code are shown in bold.

input Symbol for k=1 for k=2 for k=3
0 0 00 000
1 10 10 010
2 110 010 100
3 1110 110 110
4 11110 0110 0010
5 111110 1110 0110
6 1111110 01110 1010

JPEG-LS as one of lossless image compression still be one of the best methods.

But, it has some advantages and disadvantages that will be discussed more detail in

Section 2.4.

2.2.2 Joint Bi-level Image Experts Group (JBIG)

JBIG (Joint Bilevel Image Experts Group) is binary image compression standard that

is based on context-based compression where the image is compressed pixel by pixel.

The pixel combination of the neighboring pixels (given by the template) defines the

context, and in each context the probability distribution of the black and white pixels

are adaptively determined on the basis of the already coded pixel samples. The pixels

are then coded by arithmetic coding according to their probabilities. The arithmetic

coding component in JBIG is the QM-coder.

Binary images are a favorable source for context-based compression, since even a

relative large number of pixels in the template results to a reasonably small number of

contexts. The templates included in JBIG are shown in Figure 2.9.

The number of contexts in a 7-pixel template is 27 = 128, and in the 10-pixel
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model it is 210 = 1024, while a typical binary image of 1728× 1188 pixels consists of

over 2 million pixels. The larger is the template, the more accurate probability model

is possible to obtain. However, with a large template the adaptation to the image takes

longer; thus the size of the template cannot be arbitrary large.

Figure 2.9: JBIG sequential model template.

The emerging standard JBIG2 enhances the compression of text images using

pattern matching technique. The standard will have two encoding methods: pattern

matching and substitution, and soft pattern matching. The image is segmented into

pixel blocks containing connected black pixels using any segmentation technique. The

content of the blocks are matched to the library symbols. If an acceptable match

(within a given error marginal) is found, the index of the matching symbol is encoded.

In case of unacceptable match, the original bitmap is coded by a JBIG-style compres-

sor. The compressed file consists of bitmaps of the library symbols, location of the

extracted blocks as offsets, and the content of the pixel blocks.

The main application of this method is for image fax compression. Binary images

that less than 6 bpp obtain better compression performances by JBIG, more about this

results will be discussed in Section 2.4.

2.2.3 JPEG2000

JPEG2000 standards are developed for a new image coding standard for different type

of still images and with different image characteristics. The coding system is intended

for low bit-rate applications and exhibit rate distortion and subjective image quality

performance superior to existing standards [21].

The JPEG2000 compression engine (encoder and decoder) is illustrated in block

diagram form in Figure 2.10. the encoder, the discrete transform is first applied on the

source image data. The transform coefficients are then quantized and entropy coded

before forming the output code stream (bit stream). The decoder is the reverse of the
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encoder. The code stream is first entropy decoded, de-quantized, and inverse discrete

transformed, thus resulting in the reconstructed image data. Although this general

block diagram looks like the one for the conventional JPEG, there are radical differ-

ences in all of the processes of each block of the diagram.

Figure 2.10: The JPEG2000 encoding and decoding process [66].

At the core of the JPEG2000 structure is a new wavelet based compression

methodology that provides for a number of benefits over the Discrete Cosine Transfor-

mation (DCT) compression method, which was used in the JPEG lossy format. The

DCT compresses an image into 8× 8 blocks and places them consecutively in the file.

In this compression process, the blocks are compressed individually, without reference

to the adjoining blocks [60]. This results in “blockiness” associated with compressed

JPEG files. With high levels of compression, only the most important information is

used to convey the essentials of the image. However, much of the subtlety that makes

for a pleasing, continuous image is lost.

In contrast, wavelet compression converts the image into a series of wavelets that

can be stored more efficiently than pixel blocks. Although wavelets also have rough

edges, they are able to render pictures better by eliminating the ”blockiness" that is a

common feature of DCT compression. Not only does this make for smoother color

toning and clearer edges where there are sharp changes of color, it also gives smaller

file sizes than a JPEG image with the same level of compression.

This wavelet compression is accomplished through the use of the JPEG2000 en-

coder [21], which is pictured in Figure 2.10. This is similar to every other transform

based coding scheme. The transform is first applied on the source image data. The

transform coefficients are then quantized and entropy coded, before forming the out-

put. The decoder is just the reverse of the encoder. Unlike other coding schemes,

JPEG2000 can be both lossy and lossless. This depends on the wavelet transform and

the quantization applied.
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The JPEG2000 standard works on image tiles. The source image is partitioned

into rectangular non-overlapping blocks in a process called tiling. These tiles are com-

pressed independently as though they were entirely independent images. All opera-

tions, including component mixing, wavelet transform, quantization, and entropy cod-

ing, are performed independently on each different tile. The nominal tile dimensions

are powers of two, except for those on the boundaries of the image. Tiling is done to

reduce memory requirements, and since each tile is reconstructed independently, they

can be used to decode specific parts of the image, rather than the whole image. Each

tile can be thought of as an array of integers in sign-magnitude representation. This

array is then described in a number of bit planes. These bit planes are a sequence of

binary arrays with one bit from each coefficient of the integer array. The first bit plane

contains the most significant bit (MSB) of all the magnitudes. The second array con-

tains the next MSB of all the magnitudes, continuing in the fashion until the final array,

which consists of the least significant bits of all the magnitudes.

Before the forward discrete wavelet transform, or DWT, is applied to each tile, all

image tiles are DC level shifted by subtracting the same quantity, such as the compo-

nent depth, from each sample1. DC level shifting involves moving the image tile to

a desired bit plane, and is also used for region of interest coding, which is explained

later. This process is pictured in Figure 2.11.

Figure 2.11: Tiling, DC-level shifting, color transformation (optional) and DWT for
each image component [66].

Each tile component is then decomposed using the DWT into a series of decom-

position levels which each contain a number of subbands. These subbands contain

coefficients that describe the horizontal and vertical characteristics of the original tile

component. All of the wavelet transforms employing the JPEG2000 compression

method are fundamentally one-dimensional in nature [6]. Applying one-dimensional

transforms in the horizontal and vertical directions forms two-dimensional transforms.

This results in four smaller image blocks; one with low resolution, one with high verti-
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cal resolution and low horizontal resolution, one with low vertical resolution and high

horizontal resolution, and one with all high resolution. This process of applying the

one-dimensional filters in both directions is then repeated a number of times on the

low-resolution image block. This procedure is called dyadic decomposition and is pic-

tured in Figure 2.12. An example of dyadic decomposition1 into subbands with the

whole image treated as one tile is shown in Figure 2.13.

Figure 2.12: Dyadic decomposition.

Figure 2.13: Example of Dyadic decomposition.

To perform the forward DWT, a one-dimensional subband is decomposed into a

set of low-pass samples and a set of high-pass samples. Low-pass samples represent

a smaller low-resolution version of the original. The high-pass samples represent a

smaller residual version of the original; this is needed for a perfect reconstruction of

the original set from the low-pass set.

As mentioned earlier, both reversible integer-to-integer and nonreversible real-to-

real wavelet transforms can be used. Since lossless compression requires that no data

be lost due to rounding, a reversible wavelet transform that uses only rational filter

coefficients is used for this type of compression. In contrast, lossy compression al-

lows for some data to be lost in the compression process, and therefore nonreversible

wavelet transforms with non-rational filter coefficients can be used. In order to handle

filtering at signal boundaries, symmetric extension is used. Symmetric extension adds
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a mirror image of the signal to the outside of the boundaries so that large errors are

not introduced at the boundaries. The default irreversible transform is implemented

by means of the bi-orthogonal Daubechies 9-tap/7-tap filter. The Daubechies wavelet

family is one of the most important and widely used wavelet families. The analysis fil-

ter coefficients for the Daubechies 9-tap/7-tap filter [21], which are used for the dyadic

decomposition.

After transformation, all coefficients are quantized. This is the process by which

the coefficients are reduced in precision. Dividing the magnitude of each coefficient

by a quantization step size and rounding down accomplishes this. These step sizes can

be chosen in a way to achieve a given level of quality. This operation is lossy, unless

the coefficients are integers as produced by the reversible integer 5/3 wavelet, in which

case the quantization step size is essentially set to 1.0. In this case, no quantization is

done and all of the coefficients remain unchanged.

Following quantization, each subband is subjected to a packet partition [46]. Each

packet contains a successively improved resolution level on one tile. This way, the

image is divided into first a low quality approximation of the original, and sequen-

tially improves until it reaches its maximum quality level. Finally, code-blocks are

obtained by dividing each packet partition location into regular non-overlapping rect-

angles. These code-blocks are the fundamental entities used for the purpose of entropy

coding.

Entropy coding is performed independently on each code-block. This coding is

carried out as context-dependant binary arithmetic coding of bit planes. This arithmetic

coding is done through a process of scanning each bit plane in a series of three coding

passes. The decision as to which pass a given bit is coded in is made based on the

significance of that bit’s location and the significance of the neighboring locations. A

location is considered significant if a 1 has been coded for that location in the current

or previous bit plane [46].

The first pass in a new bit plane is called the significance propagation pass. A

bit is coded in this pass if its location is not significant, but at least one of its eight-

connected neighbors is significant. The second pass is the magnitude refinement pass.

In this pass, all bits from locations that became significant in a previous bit plane are

coded. The third and final pass is the clean-up pass, which takes care of any bits not

coded in the first two passes. After entropy coding, the image is ready to be stored as

a compressed version of the original image.

One significant feature of JPEG2000 is the possibility of defining regions of in-



27

terest in an image. These regions of interest are coded with better quality than the rest

of the image. This is done by scaling up, or DC shifting, the coefficients so that the

bits associated with the regions of interest are placed in higher bit-planes. During the

embedded coding process, these bits are then placed in the bit-stream before the part of

the image that is not of interest. This way, the region of interest will be decoded before

the rest of the image. Regardless of the scaling, a full decoding of the bit-stream results

in a reconstruction of the whole image with the highest possible resolution. However,

if the bit-stream is truncated, or the encoding process is terminated before the whole

image is fully encoded, the region of interest will have a higher fidelity than the rest of

the image.

Figure 2.14: The DWT structure.

The lossless compression efficiency of the reversible JPEG2000, JPEG-LS, loss-

less JPEG (L-JPEG), and PNG is reported in Table 2.4. It is seen that JPEG2000

performs equivalently to JPEG-LS in the case of the natural images, with the added

benefit of scalability. JPEG-LS, however, is advantageous in the case of the com-

pound image. Taking into account that JPEG-LS is significantly less complex than

JPEG2000, it is reasonable to use JPEG-LS for lossless compression. In such a case

though, the generality of JPEG2000 is sacrificed.

Table 2.4: Comparison results of a few lossless image compression techniques.

JPEG2000 JPEG-LS L-JPEG PNG

aerial2 1.47 1.51 1.43 1.48
bike 1.77 1.84 1.61 1.66
cafe 1.49 1.57 1.36 1.44
chart 2.60 2.82 2.00 2.41
cmpnd1 3.77 6.44 3.23 6.02
target 3.76 3.66 2.59 8.70
us 2.63 3.04 2.41 2.94
average 2.50 2.98 2.09 3.52
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Overall, the JPEG2000 standard offers the richest set of features in a very effi-

cient way and within a unified algorithm. However, this comes at a price of additional

complexity in comparison to JPEG and JPEG-LS. This might be perceived as a disad-

vantage for some applications, as was the case with JPEG when it was first introduced.

2.2.4 Graphics Interchange Format (GIF)

The first widely used standard for lossless image compression was the Graphics Inter-

change Format (GIF) standard invented by Compuserve. It is based on Welch’s popular

extension of the LZ78 coding scheme. GIF uses a color palette, that contains a max-

imum of 256 entries. Each entry specifies one color using a maximum of 8 bits for

each of red, green and blue. The color palette must be built prior to coding and is sent

along with the compressed data. Note that images with more than 256 colors cannot

be losslessly coded with GIF. The LZW coding is applied directly to the pixel data,

therefore there is no mapping stage. Due to the inherently adaptive nature of LZW, it

can be seen as combining the modelling and coding stages into one. LZW (and hence

GIF) works well for computer generated images (especially icons) which have a lot

of pixel sequences repeated exactly. However, for real pictures it performs less well.

This is due to the noise, inherent in any form of image capture, breaking the repeating

sequences of pixels that LZW depends on. Also, the limitation of 256 different pixel

values became a problem as cheaper memory made 24 bit images more popular.

2.2.5 Portable Network Graphics (PNG)

Portable Network Graphics (PNG) [58] is a WWW Consortium for coding of still im-

ages which has been elaborated as a patent free replacement for GIF, while incorpo-

rating more features than this last one. It is based on a predictive scheme and entropy

coding. The entropy coding uses the Deflate algorithm of the popular Zip file compres-

sion utility, which is based on LZ77 coupled with Huffman coding. PNG is capable

of lossless compression only and supports gray scale, palettes color and true color, an

optional alpha plane, interlacing and other features.
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2.3 Miscellaneous Techniques Based on predictive

methods

Predictive algorithm uses predictor function to guess the pixel intensities and then

we calculate the prediction errors, i.e., differences between actual and predicted pixel

intensities. Then, it encodes the sequence of prediction errors, which is called the

residuum. To calculate the predictor for a specific pixel we usually use intensities of

small number of already processed pixels neighboring it. Even using extremely simple

predictors, such as one that predicts that pixel intensity is identical to the one in its

left-hand side, results in a much better compression ratio, than without the prediction.

For typical grey scale images, the pixel intensity distribution is close to uniform. Pre-

diction error distribution is close to Laplacian, i.e., symmetrically exponential [6, 7,

8]. Therefore entropy of prediction errors is significantly smaller than entropy of pixel

intensities, making prediction errors easier to compress.

2.3.1 Simple fast and Adaptive Lossless Image Compression Algo-

rithm (SFALIC)

This method compresses continuous tone gray-scale images. The image is processed

in a raster-scan mode. It uses 9 set predictors. The 8 mode predictors are the same

with lossless JPEG as seen in Table 2.1. The last predictor mode is a bit more complex

that actually returns an average of mode 4 and mode 7. Predictors are calculated using

integer arithmetic.

The presented predictive and adaptive lossless image compression algorithm was

designed to achieve high compression speed. The prediction errors obtained using

simple linear predictor are encoded using codes adaptively selected from the modified

Golomb-Rice code family. As opposed to the unmodified Golomb-Rice codes, this

family limits the codeword length and allows coding of incompressible data without

expansion. Code selection is performed using a simple data model based on the model

known from FELICS algorithm. Since updating the data model, although fast as com-

pared to many other modelling methods, is the most complex element of the algorithm,

they apply the reduced model update frequency method that increases the compression

speed by a couple of hundred percent at the cost of worsening the compression ratio.

This method could probably be used for improving speed of other algorithms, in which

data modelling is a considerable factor in the overall algorithm time complexity [69].
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The main purpose of this method is reduced time complexity of others predictive

methods such as FELICS, inconsequence less performance than previous methods, see

Section 2.4.

2.3.2 Context based Adaptive Lossless Image Codec (CALIC)

Lossless JPEG and JPEG-LS are not the only coding that used predictor. There are

other contenders that used more complex predictor such as Context based Adaptive

Lossless Image Codec (CALIC). An optimal predictor is fined-tuned by adaptive ad-

justments of the prediction value. An optimal predictor would result in prediction error

equal zero on average, but this is not really important. There is a technique called bias

cancellation to detect and correct systematic bias in the predictor.

This idea of explicitly looking for edges in the image data was also used by Wu

in [79]. He uses the local horizontal and vertical image gradients, called Gradient

Adjusted Predictor (GAP), given by:

dh = |W −WW |+ |N −NW |+ |NE −N |
dv = |W −NW |+ |N −NN |+ |NE −NNE|

(2.4)

to help predict x:

if (dv − dh > 80)
x̄ = W
else if (dv = dh <= 80)
x̄ = N
else {
x̄ := (W +N)/2 + (NE −NW )/4
if (dv − dh > 32)

x̄ = (x̄+W )/2
else if (dv − dh > 8)

x̄ = (3x̄+W )/4
else if (dv − dh <= 32)

x̄ = (x̄+N)/2
else if (dv − dh <= 8)

x̄ = (3x̄+N)/4
}

// sharp horizontal edge

// sharp vertical edge

// assume smoothness first

// horizontal edge

// weak horizontal edge

// vertical edge

// weak vertical edge

(2.5)

By classifying edges as either strong, normal or weak, GAP does more modelling

than MED. This extra modelling gives GAP better performance than MED, although
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typically not by a large margin. The extra work also makes GAP more computationally

expensive. The use of MED in JPEG-LS indicates that in terms of a joint complexity-

performance judgment, MED has the upper hand.

GAP is used by CALIC which puts heavy emphasis on data modelling. It adapts the

prediction according to the local gradients, thereby using a non-linear predictor which

adapts to varying source statistics. The GAP classifies the gradient of the current pixel

x according to the estimated gradients in the neighborhood, which is wider than that

used in DPCM and choose the appropriate predictor according to the classification.

The prediction error is context modelled and entropy coded.

Furthermore, for coding process, there are CALIC-H which used Huffman Coding

and CALIC-A used Arithmetic Coding as the last stages. CALIC-A is relatively more

complex because it is using arithmetic entropy coder, but it provides better compres-

sion ratios.

2.3.3 Fast, Efficient, Lossless Image Compression System

(FELICS)

It is a very simple and fast lossless image compression algorithm by Howard and Vitter

that also using Golomb or Golomb-Rice codes for entropy coding [35]. Preceding by

raster-scan order, this method also uses predictor as modelling parts. It codes the

new pixels using the intensities of two nearest neighborhood of pixel (P ) that have

already coded as shown in Figure 2.15. Nearest neighbors N1 and N2 are used to

code the intensity of pixel P . The "range" used in making the in-range/out-of-range

decision is [min{N1, N2}; max{N1, N2}], and the "context" used for modelling the

probability distribution is N1 −N2. For points in the center of the image (shaded), the

predicting pixels are the pixels immediately to the left of and above P . Along the edges

adjustments must be made, but otherwise the calculations are the same. However, the

along top and left edges (pixel above and left of the new pixel) are needed to obtain

the smaller neighboring value L and the larger value H . The difference of these two

values will define ∆ as the prediction context of P to code parameter selection.

The idea of the coding algorithm is to use one bit to indicate whether P is in the

range from L to H , an additional bit if necessary to indicate whether it is above or

below the range, and a few bits, using a simple prefix code, to specify the exact value.

This method leads to good compression for two reasons: the two nearest neighbors

provide a good context for prediction, and the image model implied by the algorithm

closely matches the distributions found in real images. In addition, the method is very
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Figure 2.15: Example of FELICS prediction process [35].

fast, since it uses only single bits and simple prefix codes.

The intensities are generally distributed as shown in Figure 2.16. P lies in the range

[L,H] about half the time, requiring one bit to encode, and when P is out of range, the

above-range/below-range decision is symmetrical, so another one-bit code is appropri-

ate. In-range values of P are almost uniformly distributed, with a slight crest near the

middle of the range, so an adjusted binary encoding gives nearly optimal compression

when P is in range. The probability of out-of-range values falls off sharply, so when

P is out of range it is reasonable to use exponential prefix codes, i.e., Golomb codes or

the simpler Rice codes, to indicate how far out of range the value is. This distribution

clearly differs from the Laplace distribution commonly assumed in predictive image

coding, but it is consistent with the error modelling treatment.

Figure 2.16: Schematic probability distribution of intensity values for a given context
∆ = H − L [35].

2.3.4 TMW

Most of lossless image compression are basically used a few of well known meth-

ods, such as predictive coding, context based selection of predictor coefficients and a

fading-memory model for prediction error distributions.
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Meyer and Tischer present another lossless method for greyscale images. It con-

sists of two stages: Image analysis and Coding stage as seen in Figure 2.17. This

method uses several concepts such as the extraction of global image information, the

use of multiple predictors with blending in the probability domain and the use of un-

quantized predicted values.

Figure 2.17: TMW block diagram [48].

When applied to image compression, the first message part can be seen as describ-

ing characteristics of the image as global information. The second part of the message

contains purely local information about the values of individual pixels. Ideally, the

first part would capture the "essence" or "meaning" of the image, while the second

part would only contain information about the particular values of noise for each pixel.

While TMW does not yet achieve this ideal goal, it does constitute a significant step

in this direction. The last stage which here is coding process, TMW uses Arithmetic

Coding to do entropy coding.

The complexity of the model used in TMW makes it unsuitable for most practical

uses, the results achieved both for lossless and near lossless compression prove wrong

recent suggestions that image compression has reached its limits. It shows that signif-

icant redundancies exist in typical images that are not exploited by current practical

methods, and that exploitation of those redundancies is possible [49].
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2.3.5 Lossy to Lossless Image Compression based on Reversible

Integer DCT

Discrete Codine Transform (DCT) is used by JPEG standard for lossy image com-

pression, and this lossy standard can not be lossless because of the round of DCT pro-

cess. However, some authors have been proposed reversible integer DCT for lossless

mode. It employs an encoding technique different from JPEG. It uses the framework

of JPEG, and just converts DCT and color transform to be integer reversible. Integer

DCT is implemented by factoring the float DCT matrix into a series of elementary

reversible matrices and each of them is directly integer reversible. The integer DCT

integrates lossy and lossless schemes nicely, and it supports both lossy and lossless

compression by the same method. Experiments show that the performance of JPEG

with the integer reversible DCT is very close to that of the original standard JPEG for

lossy image coding, and more importantly, with integer DCT, it can compress images

losslessly.

2.3.6 Specifics lossless image compression methods

In order to achieve competitive compression, some authors create a specific methods

for certain applications. Specific algorithm generally performs better than do general-

purpose image-data compression algorithms. It exploits the nature of the image to suit

the compression methods.

The first example is CCSDS SZIP. It is a standard of the Consultative Commit-

tee for Space Data Systems used by space agencies for compressing scientific data

transmitted from satellites and other space instruments [5]. CCSDS SZIP is a very

fast predictive compression algorithm based on the extended-Rice algorithm, it uses

Golomb-Rice codes for entropy coding, and primarily was developed by Rice. CCSDS

SZIP does not employ an adaptive data model. The sequence of prediction errors is

divided into blocks. Each block is compressed using a two-pass algorithm. In the first

pass, it determines the best coding method for the whole block. In the second pass,

the marker output of the selected coding method as a side information along with pre-

diction errors encoded using this method. The coding methods include: Golomb-Rice

codes of a chosen rank; unary code for transformed pairs of prediction errors; fixed

length natural binary code if the block is found to be incompressible; signaling to the

decoder empty block if all prediction errors are zeroes.

Other specific lossless image compression is created for A Large Ion Collider Ex-
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periment (ALICE) at CERN. It is a lossless image compression for scientific imaging.

The experiment studied the collisions between heavy ions energies. The collisions took

place at the center of a set of several detectors, which designed to track and identify

the particles produced. The input data is generated by the Time Projection Cham-

ber (TPC) detector of the ALICE experiment at CERN. The algorithm is based on a

lossless source code modelling technique (the original TPC signal information) can be

reconstructed without errors at the decompression stage. The source model exploits

the temporal correlation that is present in the TPC data to reduce the entropy of the

source.

This technique is very specific for scientific imaging of ALICE project. It is mainly

based on an appropriate probability model for each data field. More precisely, specific

probability models for each sample in a bunch are developed. Such models intend to

capture both temporal correlation among samples and the characteristic shape of TPC

electrical pulses. For what concerns the time information, i.e. position of the bunches

they are not represented as an absolute value, but they are differentially coded using

the number of zero samples preceding the bunch. Finally, the bunch length is directly

entropy coded.

The SPIHT-compression technique (Set Partitioning in Hierarchical Trees) [10]

transforms the image to a multi-resolution representation by the wavelet transform or,

in the case of lossless compression, by the S transform. This transformation is similar

to the sub-band decomposition, but uses only integer operations. The S transform

scans the columns of the image and calculates for each successive pair of the pixels

the average and the difference. The averages are stored at the upper part of the image

(L), and the differences are stored at the lower part (H). The same is repeated for the

columns of l and h parts giving LL, LH , HL and LL images. At the next level the ll

block will be processed in the same way. This gives a multi resolution pyramid of the

image with reduced variance.

Other example of lossless application that used specific algorithm is in astrophys-

ical images. Astronomers often insist that they can accept only lossless compression

[40]. Lastri et al. proposed an advanced lossless DPCM scheme. This technique is

used in lossless-JPEG. They also proposed near-lossless compression based on the

astronomers needs. The results are compared with the existing lossless compression

standard such as JPEG-LS and JPEG2000. Otherwise, the proposed methods obtains

better compression for lossless and near-lossless compression [40].
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2.4 Compression performances

There are many applications for lossless images such as digital photography, museums

or art, publishing, scientific imaging, remote sensing, aerial survey, astronomy, GIS,

medical imaging, microscopy, machine vision, quality control, parts inspection, defect

tracing, CCTV and security, fingerprint or Forensic and remote operation. Each of

image has its own characteristics. Some authors have been developed such a specifics

methods to exploit image nature to obtain better compression performance. Some

authors also have been analyzed a few of lossless image compression for different type

of image [59, 68, 61, 77, 56]. Each technique has its advantages and disadvantages, for

example Santa Crus in [59] gives a summary of few of image compression techniques

as seen in Table 2.5.

Table 2.5: Functionality matrix. A "+" indicates that it is supported, the more "+" the
more efficiently or better it is supported. A "-" indicates that it is not supported [60].

JPEG2000 JPEG-LS JPEG PNG

lossless compression performance +++ ++++ + +++
lossy compression performance +++++ + +++ -
progressive bitstreams +++++ - ++ +
Region of Interest (ROI) coding +++ - - -
arbitrary shaped objects - - - -
random access ++ - - -
low complexity ++ +++++ +++++ +++
error resilience +++ ++ ++ +
non-iterative rate control +++ - - -
genericity +++ +++ ++ +++

Starosolski in [68] presents lossless image compression methods such as CALIC,

FELIC, JPEG-LS, JPEG2000, PNG, BZIP2, etc for several gray scale im-

ages. For natural images the universal compression algorithm BZIP2 obtains ratios

worse than CALIC by about 10%. For medical MR images, that all are of 16-bit

nominal depth, and that none of them actually contains pixels of more than 2000 lev-

els, ratio of BZIP2 is better than CALIC’s by over 40%. For Computed Radiography

(CR) and Ultrasound (US) images the best ratios were obtained by CALIC, however,

the compression ratio deterioration of MR and CT images is so high, that the average

compression ratio of the whole medical group, and of the whole normal group, is best

in case of the BZIP2. These are interesting results to dig in Burrows Wheeler Trans-

form (BWT) in lossless medical images. But, evaluation is performed on only few

images, it contains all only 84 images for groups natural and medical. Therefore, it



37

Table 2.6: Compression performances of natural and medical images for different com-
pression techniques [68].

Image Lossless JPEG JPEG
PNG SZIP CALIC-A CALIC-H SFALIC BZIP2

group JPEG -LS 2000

Natural 8.367 7.687 7.916 10.045 8.432 7.617 7.662 7.953 9.165
Big 7.668 7.083 7.185 9.451 7.773 6.962 7.059 7.274 8.36
Medium 8.446 7.71 7.955 10.079 8.403 7.623 7.699 8.009 9.113
Small 8.986 8.269 8.608 10.605 9.121 8.267 8.227 8.576 10.023
16bpp 12.327 11.776 11.998 13.836 12.459 11.748 11.622 11.867 14.059
12bpp 8.321 7.571 7.823 11.542 8.407 7.491 7.565 7.869 8.877
8bpp 4.451 3.715 3.927 4.756 4.431 3.613 3.797 4.123 4.56
Medical 7.427 6.734 6.891 8.073 7.396 6.651 6.761 7.165 5.181
cr 7.023 6.343 6.394 8.944 6.883 6.229 6.324 6.662 6.479
ct 8.509 7.838 8.044 9.381 8.806 7.759 7.84 8.266 5.577
mr 10.451 10.009 10.024 10.35 10.599 9.975 9.895 10.235 5.929
us 3.724 2.748 3.1 3.616 3.298 2.641 2.985 3.497 2.739
normal 7.83 7.143 7.33 8.918 7.84 7.065 7.147 7.503 6.889

needs further evaluation. More detail about these results can be seen in Table 2.6.

2.5 Summary

This chapter describes state of the arts of lossless image compression. We discussed the

standards and non-standards techniques, then pointed out that BWT which is used in

BZIP2 as text compression is also an interesting method to be applied in lossless image

compression. Nevertheless, these previous results need further analysis to evaluate

BWT implementation in lossless image compression.
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3.1 Introduction

In this chapter we describe Burrows Wheeler Compression Algorithm (BWCA) that

used BWT as its main transform. We present pre- and post-processing dedicated to

BWT. Furthermore, BWCA implementation in text and image application are detailed.

Different existing chains are presented and the compression results are discussed

3.2 BWT: What? Why? Where?

Data compression process can be divided in 3 parts, as shown in Figure 1.1. Each

part has been created and developed to improve compression performances. As stated

before, the very common transform for the first part of image compression scheme

is DCT or DWT. Here, we presented other transform that was originally used to text

compression, that is, Burrows Wheeler Transform (BWT).

BWT was introduced by Burrows and Wheeler in 1994 [18] as a transform in data

compression algorithm. It is based on block sorting technique and was created for text

compression software such as BZIP2, after then it is also applied to other fields such

as image [22, 13, 41, 78, 72] and DNA files [8, 55].

Figure 3.1: Original scheme of BWCA method.

In general, a typical BWT method compression consists of 3 stages as shown in

Figure 3.1 [18], where:

• BWT is the Burrows Wheeler Transform itself, that tends to group similar char-

acters together,

• GST is the Global Structure Transform, that transforms the local structure redun-

dancy of the output of BWT to global redundancy using a list of updated table.

It produces sequences of contiguous zeros,

• DC is an Data Coding,

and from now on we refer this scheme as Burrows-Wheeler Compression Algorithm

(BWCA).
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BWT as the main transforms of this method is a particular permutation of input

text which is usually followed by GST and Data Coding (DC). Commonly, DC in turn,

as the last part of this scheme, consists of 2 codings:

• a Run-level coding, followed by

• a statistical based compression, such as a dynamic Huffman or Arithmetic Cod-

ing (AC).

The first and second stages of BWCA chain can be seen as a performance booster

for statistical compressors.

(a) BWT input : a b r a c a d a b r a a b r a c a d a b r a

(b) BWT input (in HEXA) : 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61
(c) BWT output : 72 72 64 61 61 64 72 72 63 63 61 61 61 61 61 61 61 61 62 62 62 62
(d) GST output : 72 00 65 00 63 00 02 00 65 00 02 00 00 00 00 00 00 00 65 00 00 00
(e) RLE0 output : 74 00 67 00 65 00 02 00 67 00 02 00 00 00 67 00 00
(f) EC output : 00 0D 01 8D B3 FF 81 00 72 A8 E8 2B

Figure 3.2: Transformed data of the input string abracadabraabracadabra by
the different stages [4].

Figure 3.2 elucidates BWT chain example for input data

abracadabraabracadabra based on BWT original method in Figure 3.1.

The input data of the BWT stage is shown in Figure 3.2(a) and (b); Figure 3.2(b)

represent the input data in hexadecimal.

In the input data, rarely two consecutive symbols are the same (here only a unique

occurrence of aa appears) but, the BWT output contains many sequences of repeated

symbols and has a local structure, i.e., symbols with a similar context form small frag-

ments as seen in Figure 3.2(c) and so local redundancy emerges. Then, the GST stage

transforms the local structure of the BWT output to a global structure by using a rank-

ing scheme according to the last recently used symbols and produces sequences of

contiguous zeros which are displayed in Figure 3.2(d). There are some of GST algo-

rithm that have been proposed by some authors, and in this example a Move-To-Front

(MTF) algorithm is used. More detail about MTF and its variants will be discussed in

Section 3.4.

Furthermore, GST stage is followed by EC. As stated before, original scheme of

BWT used RLE (to remove symbol redundancies) and statistical coding (to maximize

the compression process). The data in Figure 3.2 (e) and (f) are obtained by using

Run Length Encoding zero (RLE0) of Wheelers and Arithmetic Coding (AC). The EC
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input in Figure 3.2 (f) does not include its header. Detail discussion about this stage

will be presented in Section 3.5.2.

More detail about each stage of Figure 3.2 will be discussed in the Section 3.3.

3.3 Burrows Wheeler Transform

Forward of BWT

BWT is one of data compression transforms which does not compress the data, but

it tends to regroups similar symbols and so, used as a preprocessing step for data

compression. Figure 3.3(a) and (b) show how the forward BWT works. In this ex-

ample, we use the same example of Figure 3.2. BWT makes all possible cyclic

rotations of the input data as seen in Figure 3.3(a). Then as explanation in [7], it

sorts the rotations in ascending order. The obtained matrix is represented in Fig-

ure 3.3(b). The position of original data is named primary index (equals to 4 in

our matrix). This information is required for the reconstruction process. The last

column (L) of this matrix and the primary index are the BWT output. As it can

seen in this example, from the input data abracadabraabracadabra or 61

62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 in hex-

adecimal gives the sequence of BWT output 72 72 64 64 61 61 72 72 63 63

61 61 61 61 61 61 61 61 62 62 62 62 which tends to groups similar input data

together. This small example shows the peculiar BWT output. There is a series of

eight symbols of 61, while only two consecutive symbols in the input.

As seen above, BWT is based on a sorting algorithm. Therefore, sorting becomes

the most important issue in BWT process. Sorting process is computationally intensive

and its performance becomes worst for homogen input data. There are several methods

to improve the performance of sorting process, but they do not influence BWT results.

Burrows and Wheeler themselves suggested suffix tree to improve sorting process [18].

Other authors suggest suffix array or their own sorting algorithm [39, 45, 29].

Figure 3.4 shows the relationship between BWT and suffix array for the same input

in Figure 3.3. We consider the input data is Im, then n is the length of Im, and so in

this example n = 22. Suffix array (SA) is constructed as followed. Figure 3.4(a) con-

sists of BWT input and its given suffix, then the BWT process sorts the suffixes data

in ascending order as seen in Figure 3.4(b) to get the suffixes array (SA). Here, we can

see the correlations between sorted rotations (the conventional of forward BWT in Fig-

ure 3.3(b)) and sorted suffix of Figure 3.4(b). These matrixes are similar. Figure 3.3(b)
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Position a b r a c a d a b r a a b r a c a d a b r a

1 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61
2 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61
3 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62
4 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72
5 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61
6 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63
7 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61
8 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64
9 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61

10 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62
11 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72
12 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61
13 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61
14 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62
15 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72
16 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61
17 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63
18 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61
19 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64
20 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61
21 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62
22 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72

(a) Rotated BWT input abracadabraabracadabra in HEX.

Position F L
11 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72
22 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72

8 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64
1 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61

12 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61
19 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64

4 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72
15 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72

6 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63
17 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63

9 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61
20 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61

2 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61
13 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61

5 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61
16 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61

7 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61
18 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61
10 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62
21 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62

3 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62
14 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 61 62

(b) Sorted BWT rotations.

Figure 3.3: The BWT forward.

will be exactly the same with Figure 3.4(b) if the added symbols to create the rotations

matrix of Figure 3.3(a) are ignored. For example the first line of Figure 3.3(b) was

placed in line 11 of the rotated original data, so the rotations matrix for this line starts

from the symbol 11th to 22th then added the symbols 1st to 10th to complete the sorted

rotations matrix. If the added symbols are omitted, this first line is equal to the first
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ID Suffixes
1 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61
2 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61
3 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61
4 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61
5 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61
6 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61
7 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61
8 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61
9 62 72 61 61 62 72 61 63 61 64 61 62 72 61

10 72 61 61 62 72 61 63 61 64 61 62 72 61
11 61 61 62 72 61 63 61 64 61 62 72 61
12 61 62 72 61 63 61 64 61 62 72 61
13 62 72 61 63 61 64 61 62 72 61
14 72 61 63 61 64 61 62 72 61
15 61 63 61 64 61 62 72 61
16 63 61 64 61 62 72 61
17 61 64 61 62 72 61
18 64 61 62 72 61
19 61 62 72 61
20 62 72 61
21 72 61
22 61

(a) Original data and its suffix.

SA Sorted suffixes
11 61 61 62 72 61 63 61 64 61 62 72 61
22 61

8 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61
1 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61

12 61 62 72 61 63 61 64 61 62 72 61
19 61 62 72 61

4 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61
15 61 63 61 64 61 62 72 61

6 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61
17 61 64 61 62 72 61

9 62 72 61 61 62 72 61 63 61 64 61 62 72 61
20 62 72 61

2 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61
13 62 72 61 63 61 64 61 62 72 61

5 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61
16 63 61 64 61 62 72 61

7 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61
18 64 61 62 72 61
10 72 61 61 62 72 61 63 61 64 61 62 72 61
21 72 61

3 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61
14 72 61 63 61 64 61 62 72 61

(b) Suffixes array and sorted suffixes.

Figure 3.4: Relationship between BWT and suffix arrays.

line of sorted suffixes (first line in the third column of Figure 3.4).

The obtained suffix array (SA) can compute BWT output using this formula :

L(i) =

{

Im[SA[i]− 1], if SA[i] 6= 1

Im[n], otherwise.
(3.1)
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Hence, it does not need to create the sorted rotations matrix to obtain BWT output

(Figure 3.3(a) and (b)). Nevertheless, suffix sorting algorithms that run in linear in the

worst case is still open. Figure 3.5 shows a few different methods for BWT computa-

tion [25]. We use the BWT of Yuta Mori that is based on SA-IS algorithm to construct

the BWT output [52]. It reduces processing time and decrease memory requirements.

Method
complexity

time space
Worst-case Avg-case Avg-case

Ukkonen’s suffix tree construc-
tion

O(n) O(n) -

McCreight’s suffix tree con-
struction

O(n) O(n) -

Kurtz-Balkenhol’s suffix tree
construction

O(n) O(n) 10n

Farach’s suffix tree construction O(n log n) O(n log n) -
Manber-Myers’s suffix array
construction

O(n log n) O(n log n) 8n

Sadakane’s suffix array con-
struction

O(n log n) O(n log n) 9n

Larson-Sadakane’s suffix array
construction

O(n log n) O(n log n) 8n

Itoh-Tanaka’s suffix array con-
struction

> O(n log n) O(n log n) 5n

Nong’s SA-IS O(n log n) O(n log n) 6n

Burrows-Wheeler’s sorting O(n2 log n) - -
Bentley-Sedgewick’s sorting O(n2) O(n log n) 5n+ stack

Sedward’s sorting O(n2 log n) - -

Figure 3.5: Different sorting algorithms used for BWT.

Reverse of BWT

The reverse BWT [28] is just principally another permutation of the original data.

Figure 3.6 shows how this process works. The second column of this figure is the BWT

output of the Figure 3.3. The third column (called here context) is obtained from the

second one by sorting its elements in ascending order. The link in the fourth column

refers to the position of the context in the input (the second column). For repeated

symbols the ith occurrence of a context symbol corresponds to the ith occurrence of

the same symbol in the data input. The process is started from position 4 (the primary

index) where the first value of the original data is placed. It refers to the context 61 (as
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Position input context link
1 72 61 04
2 72 61 05
3 64 61 11

→ 4 61 61 12←
5 61 61 13
6 64 61 14
7 72 61 15
8 72 61 16
9 63 61 17

10 63 61 18
11 61 62 19
12 61 62 20
13 61 62 21
14 61 62 22
15 61 63 09
16 61 63 10
17 61 64 03
18 61 64 06
19 62 72 01
20 62 72 02
21 62 72 07
22 62 72 08

Figure 3.6: The BWT inverse transform.

the first symbol of original data) and also refers to link 12, as a clue of next position

to the second of original data. So, the next position is 12 which refers to 62 and gives

the next link to the next output. Therefore each step gives the permuted pixel value as

output and will process the whole file, because of the cyclic rotations.

The reverse of BWT, that is reconstructing BWT output, is faster than BWT pro-

cess. This is one of BWT advantages, since normally the decompression process is

done more frequent than the compression.

3.4 Global Structure Transform

GST is the Global Structure Transform that is used as second stage in BWT original

methods, see Figure 3.1. It converts the output of BWT local structure redundancy to a

global redundancy using a ranking list. The interest of this transform is two-fold: runs

of similar symbols are changed into runs of zeros and the grey level image distribution

is modified in the sense that the probability of lower input values increase and simul-

taneously the probability of the higher values decrease. Therefore the Entropy Coding

is more efficient on the GST output. There are many variants of GST that can be

classified in two parts based on its alteration in subsection 3.4.1 and subsection 3.4.2.
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3.4.1 Move-To-Front (MTF) and its variants

Move-To-Front (MTF)

MTF maintains a list of all possible symbols (MTF list). The list order is modified

during the process. The list can be considered as a stack and used to obtain the output.

Each input value is coded with its rank in the list. This stack is then updated: the input

value is push at the top of the list. Therefore, the rank of this input symbol becomes

zero. Consequently, a run of N identical symbols is then coded with symbol followed

by N − 1 zeros. Figure 3.7 shows the forward of MTF transforms.

MTF list

a r r a d a d r r c a a a a a a a a b b b b
b a a r a d a d d r c c c c c c c c a a a a
c b b b r r r a a d r r r r r r r r c c c c
d c c c b b b b b a d d d d d d d d r r r r
r d d d c c c c c b b b b b b b b b d d d d

Input r r a d a d r r c c a a a a a a a a b b b b
Output 4 0 1 4 1 1 2 0 4 0 3 0 0 0 0 0 0 0 4 0 0 0

Figure 3.7: Forward of Move-To-Front.

The above example presents the output of BWT in Figure 3.3 in ASCII code. Nor-

mally, we use 256 symbols in MTF list, merely in Figure 3.7, since there are 5 input

symbols, therefore the presented MTF list is 5 to show the simple scheme assign of

MTF code. The first output 4 is obtained since the first input symbol is placed in the

fourth placed of the list, then the list is updated by moving the input symbol in the

first line. The second output is 0 because the input symbol is placed in front of the

list. Once a symbol is being processed the encoder updated its position in the MTF

list. This simple example shows that the runs of similar symbols of input stream be-

come runs of 0, which make it more appropriate for entropy coding (e.g., Huffman or

Arithmetic Coding).

The decoding is quite simple, and begins with the same table. It is enough to output

the symbol corresponding to the index and update the list passing this symbol in the

first position. The list evolves exactly as during the coding process.

The MTF output is dominated by zeros with many occurring in runs as shown in

Table 3.1, but there is a drawbacks of this transform. The most common symbol in

an alphabet is special. There are some symbols that have probability greater than 0.5,

otherwise others may have a probability of occurrence as low as zero [20]. Therefore,

moving all the input symbol in front of the list should be avoided as that inversion is

potentially more expensive than any other, it caused the most common symbol moved

away from the front of the list.
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File name 0 1 2 3 4 5 6 7 8 9 10
bib 83.39 4.29 1.98 1.45 1.12 0.92 0.80 0.72 0.66 0.57 0.45
book1 74.88 7.68 3.96 2.64 1.90 1.46 1.18 0.99 0.84 0.73 0.63
book2 80.41 6.28 2.96 1.88 1.38 1.05 0.86 0.73 0.61 0.52 0.45
geo 67.88 3.02 2.39 1.84 1.11 0.70 0.44 0.34 0.32 0.26 0.25
news 78.97 5.12 2.75 1.86 1.41 1.13 0.92 0.78 0.67 0.59 0.52
obj1 75.30 2.91 1.63 1.19 0.94 0.76 0.68 0.54 0.55 0.45 0.40
obj2 84.03 3.02 1.55 1.04 0.78 0.61 0.48 0.41 0.35 0.29 0.28
paper1 79.17 5.64 2.73 1.84 1.41 1.15 0.91 0.78 0.70 0.64 0.56
paper2 77.68 6.14 3.21 2.22 1.64 1.28 1.07 0.94 0.77 0.71 0.58
pic 93.70 1.44 0.66 0.45 0.35 0.30 0.26 0.23 0.21 0.18 0.17
progc 80.17 5.59 2.34 1.57 1.18 0.91 0.74 0.63 0.57 0.48 0.43
progl 86.43 4.33 1.95 1.12 0.82 0.64 0.52 0.48 0.36 0.32 0.26
progp 87.01 4.34 1.78 1.06 0.70 0.60 0.44 0.38 0.35 0.29 0.23
trans 89.62 2.91 1.29 0.81 0.64 0.49 0.42 0.39 0.30 0.29 0.21
Average 81.33 4.48 2.23 1.50 1.10 0.86 0.69 0.60 0.52 0.45 0.39

Table 3.1: Percentage share of the index frequencies of MTF output.

Move One From Front (M1FF) and Move One From Front 2 (M1FF2)

Balkenhol proposed the modification of MTF called Move One From Front (M1FF)

[15]. This algorithm changes the works of the list. It avoid to move the common

symbol away from the front list. It may mistakenly move the most common symbol

away from the front list but does so less often than MTF. The input symbol from the

second position in the list is moved to the first position; meanwhile the input from

higher positions is moved to the second position. Figure 3.8 shows how this transform

works.

MTF-1 list

a a r a a d d r r c c a a a a a a a a b b b
b r a r d a r d c r a c c c c c c c b a a a
c b b b r r a a d d r r r r r r r r c c c c
d c c c b b b b a a d d d d d d d d r r r r
r d d d c c c c b b b b b b b b b b d d d d

Input r r a d a d r r c c a a a a a a a a b b b b
Output 4 1 1 4 0 1 2 1 4 1 3 1 0 0 0 0 0 0 4 1 0 0

Figure 3.8: Forward of Move One From Front.

Furthermore, Balkenhol gives a modification of M1FF called Move One From

Front Two (M1FF2). The symbols from the second position is moved to the first po-

sition of the M1FF2 list only when the previous transformed symbol was at the first

position.

Both of M1FF and M1FF2 are better than MTF [20] in text compression. But

neither M1FF nor M1FF2 is easy to analyze. For M1FF, a symbol can become lodged

in the first position
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Time Stamp (TS) and Best x of 2x− 1

This algorithm was developed by Albers [9]. The deterministic version of this algo-

rithm is TimeStamp(0) or TS(0). While MTF use 256 symbols in its list, this transform

uses a double length list. So the list contains 512 symbols and each symbol occurs

twice. When the input data is processed, the position of an item is one plus the number

of double symbols in front of that input symbol. Then the list is updated by moving the

second symbol to the front. This method is also called “Best 2 of 3” algorithm based

on the Chapin’s algorithm called “Best x of 2x − 1” algorithm [19], because TS (0)

uses 2× 256 symbols in the list. Therefore, the list of a “Best x of 2x− 1” algorithm

contains x × 256 symbols. Here, we have tested a “Best x of 2x − 1” algorithm for

x = 3, 5, and 6 (called Bx3, Bx5 and Bx6, respectively for short) .

Time Stamp

a r r a d a d r r c c a a a a a a a b b b b
b a r r a d a d r r c c a a a a a a a b b b
c b a r r a d a d r r c c c c c c c a a a a
d c b a r r a d a d r r c c c c c c c a a a
r d c b a r r a d a d r r r r r r r c c c c
a r d c b b r r a d a d r r r r r r r c c c
b a a d c c b b b a d a d d d d d d r r r r
c b b b d d c c c b a d d d d d d d d r r r
d c c c b b b b b c b b b b b b b b d d d d
r d d d c c c c c b b b b b b b b b b d d d

Input r r a d a d r r c c a a a a a a a a b b b b
Output 5 1 2 5 2 3 3 3 5 5 4 3 0 0 0 0 0 0 5 5 0 0

Figure 3.9: Forward of Time Stamp or Best 2 of 3 Algorithm.

3.4.2 Frequency Counting Methods

Frequency counting methods improve MTF algorithms by basing the ranking of sym-

bols on their frequencies. There are several proposed methods that use frequency

counting technique, such as Inversion Frequency and Weighted Frequency Count

(WFC). It defines a function based on symbol frequencies and other technique also

uses the distance to the last occurrence of each symbol within a sliding window.

Inversion Frequencies (IF)

Several GST stages have been unveiled since the birth of the BWCA in 1994. Their

purpose is to produce an output sequence which is more compressible by the data

coding stage than the output sequence of the original MTF stage. One of these MTF

replacements is the algorithm from Arnavut and Magliveras [11], which they named

Inversion Frequencies (IF). This technique is not a List Update Algorithm (LUA). It
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encodes a BWT output as an inversion of a permutation of a multiset. Each element of

a multiset is paired with a frequency that indicates the number of element occurrences.

For example, for the multiset permutation M = [r, r, a, d, a, d, r, r, c, c, a, a, a, a, a, a,

a, a, b, b, b, b] as the alphabet output of BWT in Figure 3.2. We have S = (a, b, c, d,

r). Arnavut and Magliveras in [11] define the inversion frequency vector D = Dk for

M as follows:

1. D0 =<>.

2. Di = Di−1

⊙

Ti with Ti =< x1, x2, ...xfi > where

• the symbol “
⊙

" denotes catenation of data strings.

• x1 = position of the first occurrence of i in M .

• and for j > 1, xj = number of elements y in M , y > i occurring between

the (j − 1)st and jth occurrence of i in M .

A brief description of IF, with an above example is given in Table 3.2. The IF

output is D = D4=<2, 1, 5, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 8, 0, 3, 1, 0, 0, 4, 0>.

Table 3.2: Inversion Frequencies on a sample sequence.

i Ti Di

0 - <>

1 <2, 1, 5, 0, 0, 0, 0, 0, 0, 0> <2, 1, 5, 0, 0, 0, 0, 0, 0, 0>
2 <18, 0, 0, 0> <2, 1, 5, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0>
3 <8, 0> <2, 1, 5, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 8, 0>
4 <3, 1> <2, 1, 5, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 8, 0, 3, 1>
5 <0, 0, 4, 0> <2, 1, 5, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 8, 0, 3, 1, 0, 0, 4, 0>

The decoding process needs the knowledge of the multiset that described by F =

(f1, f2, ..., fk) and D. In this case, F=(10, 4, 2, 2, 4). Using vectors S, F and D, the

reconstruction the multiset M as follows:

• it first creates a vector M = |D|.

• it determines the elements of M from the ordered set S and F . S provides the

element of M and F is the number of each element. In this example, the first

element in S is a and the first value of F is 10. So, there are ten of a.

• D provides the location of the element. Hence, the first location is 2 for the first

element (a). Therefore, M = [_, _, a, _, _, _, ..., _].
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• the second position entry of D (D2) is 1, so there is one element which is greater

than a, between the first and second occurrence of a. Hence, the decoder in-

serts the second a in the second blank position next to the first a, so M =

[_, _, a, _, a, _, ..., _].

• the third entry of D (D3) is 5, so there are 5 elements between the second and

the third a, thus M = [_, _, a, _, a, _, _, _, __, a..., _].

• repeating the above procedure, the decoder can fully reconstruct M .

Arnavut’s empirical studies in [10] present that IF technique yields better compres-

sion gain than the recency ranking (MTF coder). Moreover, Abel in [4] compares the

share of the zeros of the file book1 of Calgary Corpus over the file position for both the

MTF stage output and for the IF stage output. The average share of zeros in the output

of IF is rising towards the end of the file until it reaches 100% at the end. In the output

of MTF, the average share of zeros fluctuates around 60%.

Weighted Frequency Count algorithm (WFC)

Another GST stage is the Weighted Frequency Count algorithm (WFC) presented by

[24]. The WFC is a representative of a List Update Algorithm (LUA) and is closer to

MTF than to IF. It replaces the input symbol with a corresponding ranking value. In

MTF process, a MTF list of alphabet symbol is updated upon each request of an input

symbol without taking the former frequency distribution of the input itself. Thus, it

might push more frequent symbols aside by less frequently used symbols leading to

sub-optimal compression ratios. WFC calculates the frequency distribution of input

symbols. It concerns the symbols frequencies and the distance of the last occurrences

of an input inside a sliding window. Each position inside the sliding window is as-

signed a weight. The weights of the closer distances are higher than the farther one.

The occurrences of each alphabet symbol weights inside the window are summed up

into a corresponding counter. The counter list is sorted in descending order. The

position 0 is given to the largest counter. The weighting and sorting have to be recal-

culated for every input symbol. Thus, the frequent symbols obtain lower index value.

However, the WFC process is more complex and high time consumption than the pre-

vious GST. So, Abel in [3] proposes Incremental Frequency Count (IFC) to reduce the

complexity of WFC. It also uses counters for symbols within a sliding window, but it

updates only once counter for each symbol processed.
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Beside the aforementioned algorithms, there have been other variants of GST, such

as Distance Coding (DC) from Binder, Wavelet trees of Foschini, sorted rank coding,

etc [4, 7].

3.5 Data Coding

There are two kind of Data Coding that Burrows and Wheeler use in their original

paper. First, they proposed Run Length Encoding Zeros (RLE0) after MTF, since

there are a lot of zeros. Thus, RLE0 codes only the symbol zero to reduce the data

size. The second algorithm is statistical coding which code a fixed number of source

symbols into a variable numbers of output symbols. The final succession of coded

output symbol with variable length will be on average smaller than that obtained with

fixed length of input symbols.

The length of each code word is not identical for all the symbols: the most frequent

symbols (those which appear most often) are coded with short code words, while the

most uncommon symbols receive longer binary codes.

3.5.1 Run-level coding

There are many type of Run-level coding that have been developed by some authors to

increase compression performance. As stated above, the original scheme of BWT used

Run Length Encoding Zero (RLE0) since GST stage produces runs of zeros. Some

authors developed their own RLE0 or other Run-level coding to improve compression

performance.

Run-level coding aims to shrinks long runs of same symbols. Long runs have an

important impact for the BWT and also statistical coding performances. The main

function of Run-level coding is to support the probability estimation of the next stage.

In order to improve the probability estimation of the DC stage, the common BWCA

schemes position Run-level coding stage directly in front of the DC stage. One com-

mon Run-level coding stage for BWT based compressors is the Zero Run Transforma-

tion (RLE0) from Wheeler.

Some authors suggested a Run-level coding before the BWT stage for speed op-

timization, but such a stage deteriorates the compression rate in general. Since there

are sorting algorithms now known which sort the runs of symbols practically in linear

time such as suffix array, there is no reason to use such a stage before the BWT [28].



53

Wheeler’s Run Length Encoding

Wheeler proposed RLE0 that code only the zero-runs. It extends the character set by

one value. Figure3.3 present an example of Wheeler’s run length coding.

Input stream length output code
x0y 1 x0y

x00y 2 x1y
x000y 3 x00y

x0000y 5 x10y
x0000000y 7 x000y

Table 3.3: Example of Wheeler’s RLE [28].

This coding never expand the input data. Symbol 0 is still coded with single 0,

while all longer runs are decreased in length by the coding. Symbol 0 and 1 are used

to represent the length of zeros.

Run Length Encoding 2 symbols

Gringeler had the idea to position the RLE stage directly after the BWT stage instead

of in front of the EC stage [2]. There are two reasons for the new order. Since the

length of RLE output is usually smaller than its input, the GST stage has to process

less symbols than the input of RLE. In addition, an RLE stage is usually faster than a

GST stage, so the whole compression process becomes faster. The second reason is

that the coding of the runs lowers the pressure of runs already at the GST stage and

that leads usually to a better compressible GST output sequence [2].

One of the example of this type is Run Length Encoding 2 symbols (RLE2). This

method is used by Lehman et al [41] in their BWT chain. RLE2 stage is placed after

BWT stage. So, this chain switch the RLE stage with GST stage. RLE2 stage coded

only runs of size 2 or more into 2 symbols. The length of the runs is placed in a separate

data stream and compressed directly using Arithmetic Coding. The separation of run

length information aims to avoid the interfere of the length of the runs and the main

data. Since the length of the runs is variable, it is not suited for GST stage. This

process eases the pressure of runs, and the effects of symbol statistics. Otherwise, the

short runs become a drawbacks of this method. It adds a cost since the runs should be

encoded with zero cost.
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3.5.2 Statistical Coding

Image compression schemes tend to be innovative in the mapping and modelling

stages. Whereas the coding stage of most image coders is generally based on a tra-

ditional coding technique. Probably the three most influential of these coding schemes

are Huffman Coding, Arithmetic Coding and the Lempel-Ziv based methods. All of

these schemes are documented in any good book on data compression, however due to

their importance, some of statistical coding methods will be discussed here.

Huffman code

This algorithm assigns a codeword to each symbol, so that the most frequent symbols

receive a shorter codeword. Each code have to be uniquely coded.

(a) (b)

Figure 3.10: Example of Huffman coding. (a) Histogram. (b) Data list.

Figure 3.11: Sample of Huffman tree.

A brief description of Huffman coding, with an input example is

“rradadrrccaaaaaaaabbbb" is given in Figure 3.10 and Figure 3.11. The origi-

nal data string length equals 176 bits for 8 bpc. Firstly, Huffman coder counts the
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amount of times each character appears as seen in Figure 3.10. Then, the following

steps are process repeatedly until there is only one node left:

• find the two lowest weights of nodes. In this case, c and d have the lowest

weights,

• create a parent node for these two nodes. The sum of the two node,

• remove the two nodes from the list and add the parent node.

The nodes with the highest weight will be near the top of tree and have shorter

codes, thus the symbol a in this example. We obtain finally the code value for each

symbol from the Huffman tree as described in Figure 3.11. The code can be read from

root or from the top. For this example, the code is read from the root. Hence, the code

a = 0, b = 10, c = 1101, d = 1100, and e = 111. Therefore, the compression bit string

are:

111 111 0 1100 0 1100 111 111 1101 1101 0 0 0 0 0 0 0 0 10 10 10 10.

The compression stream equals to 46 bits, or 73.864% of space savings.

There are several variants of Huffman coding, among them are Dynamic Huffman

(frequencies are calculated dynamically), Block-based Huffman (groups of symbols

are coded instead of single ones), Huffword (coded the words instead of symbols),

multi-Huffman, etc. Meanwhile, the previous example is a static Huffman coding.

Burrows and Wheeler used Huffman code in their proposed methods [18], because

it is simple. They suggested using Arithmetic Coding (AC) because this code is more

compressible but also complex than Huffman.

Arithmetic Coding

Arithmetic coding uses a probabilities of one-dimensional table. The idea is started by

looking for a proper way to encode a message without assigning a fixed binary code

to each symbol. So, all probabilities fall into the range [0, 1), while their sum equals

one in every case. This interval contains an infinite amount of real numbers, so it is

possible to encode every possible sequence to a number in [0, 1). We can divide the

interval according to the probability of the symbols. By iterating this step for each

symbol in the message, we can refine the interval to a unique result that represents the

message. Any number in this interval would be a valid code.

Let M be a model that assigns a probability PM (ai) to each symbol ai that appears

in the message. Now we can split the interval [0, 1) using these values since the sum
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always equals one. The size of the i− th sub-interval corresponds to the probability of

the symbol ai .

As the same input as Huffman in the previous section, let’s M as a model using

the alphabet A = a,b,c,d,r. The probabilities of the symbols as shown in Figure 3.10 as

follows:

PM(a)=0.455, PM(b)=0.182, PM(c)=0.091, PM(d)=0.091, PM(r)=0.182.

Now, the interval [0, 1) would be split as emphasized in Figure 3.12.

Figure 3.12: Creating an interval using given model.

The upper and lower bounds of the entire current are called interval high and low.

The bounds of the sub-intervals are calculated from the cumulative probabilities:

K(ak) =
k
∑

i=1

PM(ai) (3.2)

The values high and low change during the encoding process. Otherwise, the cu-

mulative probabilities remain constant and are used to update high and low. The subdi-

vision as described in Figure 3.12, depends on the model. However, for now we assume

that it is given by a constant table containing the cumulative probabilities K(ai). This

type of model also exists in real applications and is called static [16].

The coding process begins with the initialization of the interval I := [low, high)

by low = 0 and high = 1. When the first symbol s1 is read, the interval I can be resized

to a new interval I ′ according to the symbol. The boundaries of I ′ are also called low

and high. I ′ is used as the boundaries of s1 in the model. Then these boundaries are

calculated with the following equations.

low :=
k−1
∑

i=1

PM(ai) = K(ak − 1) (3.3)

high :=
k
∑

i=1

PM(ai) = K(ak) (3.4)
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Then, the new interval I ′ is set to [low, high). The sub-interval I ′ becomes larger

for more probable symbols s1 . The larger the interval the lower the number of frac-

tional places which results in shorter code words. All following numbers generated by

the next iterations will be located in the interval I ′ since it is used as base interval as

the previous process which is [0, 1) (see Table 3.4).

Table 3.4: Probability table.

Character Probability range
a 10/22 0.45 0.00 - 0.45
b 4/22 0.18 0.45 - 0.64
c 2/22 0.09 0.64 - 0.73
d 2/22 0.09 0.73 - 0.82
r 4/22 0.18 0.82 - 1.00

The process is proceeded by changing the scale and shift the boundaries to math a

new interval. Scaling is accomplished by a multiplication with high - low, the length

of the interval. Shifting is performed by adding low, based on the following equations.

low′ := low +

j−1
∑

i=1

PM(ai) · (high− low) = low +K(aj−1) · (high− low)); (3.5)

high′ := low +

j−1
∑

i=1

PM(ai) · (high− low) = low +K(aj) · (high− low)). (3.6)

Table 3.5 shows encoding process.

The next matter is the actual code. We have to specify the calculated interval. So we

could simply save the upper and lower bound, but this is rather inefficient. Knowing

that the whole interval is unique for this message, we can safely store only a single

value inside the interval.

The decoding process has to apply the encoder backwards. The value is given

and we can restore the original sequence S. We assume that the message length is

known and equals l. In the first iteration we compare output coding with each interval

I ′ = [K(ak − 1), K(ak)) to restore Table 3.5. It corresponds to the first symbol of the

sequence, s1 . To compute the next symbol, we have to modify the probability partition

in the same way we did while encoding:

low′ := low +K(ai − 1) · (high− low)), (3.7)
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Table 3.5: Low and high value.

New Character Low value High Value
0.0 1.0

r 0.82 1.00
r 0.9676 1.0000
a 0.9676 0.98218
d 0.9782434 0.9795556
a 0.9782434 0.97883389
d 0.9786744577 0.9787276018
r 0.978718035862 0.9787276018
r 0.97872587993116 0.9787276018
c 0.978726981927218 0.978727136895413
c 0.978727081106863 0.978727095054000
a 0.978727081106863 0.9787270873830750
a 0.978727081106863 0.978727083931158
a 0.978727081106863 0.978727082377796
a 0.978727081106863 0.978727081678783
a 0.978727081106863 0.978727081364227
a 0.978727081106863 0.978727081222677
a 0.978727081106863 0.978727081158979
a 0.978727081106863 0.978727081130315
b 0.978727081117416 0.978727081121872
b 0.978727081119422 0.978727081120268
b 0.978727081119802 0.978727081119963
b 0.978727081119875 0.978727081119905

high′ := low +K(ai) · (high− low)). (3.8)

Like Huffman, there are a dynamic version of Arithmetic Coding where frequen-

cies are calculated dynamically during the input reading.

3.6 BWT success : Text Compression

The researchers focused their attention since 1994 on improving compression ratio

achieved by Burrows Wheeler Compression Algorithm (BWCA). As seen in Fig-

ure 3.1, there are at least three main stages that have been improved by some authors.

This section presents a few of BWT methods that have been implemented in literatures.

3.6.1 BZIP2

BZIP2 is an open source text compression that uses BWT as its main transforms. It

uses a combination of different techniques to compress data in a lossless way. An

input file to be compressed is divided into fixed-size blocks that can be process in-

dependently. Figure 3.13 presents the operation principle of the sequential BZIP2

algorithm.
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Figure 3.13: BZIP2 principle method.

Bzip2 compresses large files in blocks. The block size affects both the compres-

sion ratio achieved, and the amount of memory needed for compression and decom-

pression. It specifies a block size to be 100 through 900 kilobytes respectively. Larger

block sizes give rapidly diminishing marginal returns. Most of the compression block

size is around 300 kilobytes.

The most complex problem in this algorithm is BWT itself. Therefore, some au-

thors proposed using Run Length Encoding. Otherwise, Seward as a creator of BZIP2

stated that run-length encoder which is the first of the compression transformations, is

entirely irrelevant. Its main purpose was to protect the sorting algorithm from the very

worst case input. Moreover, Gilchrist in [31] presents a parallel data compression with

BZIP2 to increase compression performance. The results show that a significant, near-

linear speedup is achieved by using parallel BZIP2 program on systems with multiple

processors, that will greatly reduce compression time for large amounts of data while

remaining fully compatible with the sequential version of BZIP2.

3.7 Innovative Works: Image Compression

BWCA has been implemented not only for text compression but also in image com-

pression. Some authors have been proposed their chain using BWT in image. The

compression results are commonly compared with the existing image compression

standard such Joint Picture Experts Group or JPEG (Lossless JPEG or JPEG-LS)

and Joint Picture Experts Group 2000 (JPEG2000). Both of these standards can be

implemented in lossy or lossless compression.

3.7.1 Lossy

Some authors have been implemented BWT in lossy image compression. Most of

authors added BWT in JPEG chain to improve JPEG performance.
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3.7.1.1 BWT based JPEG

Baik et al. in [14, 34] have been proposed an improvement of classic JPEG by adding

BWT stage. The authors proposed 2 different methods . Their first proposed method

performs BWT before applying Entropy Coding stage as shown in Figure 3.14. Adding

BWT process slows down the operation, meanwhile it increases the average compres-

sion ratio. However, not all of the tested images improve their compression perfor-

mances.

In their paper, Baik et al. present experimental results performed on 30 test im-

ages and analyzes the results. The 30 test images are those which are frequently

used in image processing and compression areas. They include a variety of images

(such as humans, scenes, animations) with a wide range of complexity. They imple-

mented the proposed method by integrating BWT and the entropy coding process into

PVRG-JPEG codec. Huffman coding is used in data coding stage.

Their proposed method increases the compression ratio for 15 images out of 30

test images. The highest performance ratio achieved for the proposed method is 88%,

which means that the proposed method reduces the file size by 12% compared with

JPEG. The average performance ratio of the 15 images is 35.3%. However, the pro-

posed method fails to compress further over JPEG for the other 15 images, which are

mostly complex images. The average performance ratio for the other 15 images is

low. The average performance ratio of the 30 images is 11%. Hence, in general, the

proposed method increases the compression ratio of images over JPEG.

Baik et al. improve their first proposed methods by adding “Degree Of Repeti-

tion” (DOR), see Figure 3.15. DOR analyzes the repetition data in order to avoid the

weakness of first methods.

Wisemann [78] combines DCT and BWT. DCT is used before BWT. The proposed

methods of Wisemann is shown in Figure 3.16.

A method enhances common JPEG standard compression efficiency by exploiting

the Burrows-Wheeler compression technique. As shown in Figure 3.16, the traditional

Huffman is changed by the Burrows-Wheeler compression. This paper also analyzes

the BWT block size impacts. Obviously, it influences the compression rates whereas

larger block provides better compression rates. The authors only tested a block size

from 100 KB to 900 KB. It determines that 900 KB block size gives the best perfor-

mance.

The overall result shows that high quality images are yield a better compression

ratio and also even a poor quality of a synthetic image can be compressed better. This
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Figure 3.14: The first proposed methods of Baiks [14].

Figure 3.15: The second proposed methods of Baik [34].

Figure 3.16: Wisemann proposed method [78].
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methods can also be applied in lossless compression by emitting the quantization pro-

cess.

3.7.2 Lossless

3.7.2.1 DWT and BWT

Guo in [33] has been proposed a waveform and image compression scheme by com-

bining Discrete Wavelet Transform (DWT) and Burrows Wheeler Transform (BWT).

BWT is used after DWT to improve the compression performance for many natural sig-

nals and images. This techniques significantly improve its compression performance

[33].

DWT ZigZag RLE BWT MTF EC- - - - - - -

Figure 3.17: Guo proposed scheme [33].

Guo’s method is shown in Figure 3.17. The image is first processed using wavelet

transform, then it is converted from 2D to 1D sequence by zigzag scan. This scheme

has been confirmed well compared with the embedded zerotree wavelet compression.

3.7.2.2 A Study of Scanning Paths for BWT Based Image Compression

[38] studies BWT performance on digital images by analyze the reordering of 2-

dimensional image data. BWT is a linear transformation that was created for text.

Therefore, a conversion of an image from 2D to 1-D is needed in order to apply it to

BWT. There are several method of image reordering or convert it from 2D to 1D. One

of the focus of this thesis is in finding efficient ways to linearize the data, and also ana-

lyzing block segmentation to exploit the spatial redundancies in pixel values present in

close neighborhood. The experimental results determine that linearized using the snake

scan at 32× 32 block size, and this phase improves compression performance. Other-

wise, the average compression result does not yield better than JPEG2000. There are

two rendered images that give better results than JPEG2000 among 10 image tested.

The proposed method is better than BWT classic or other text compression methods.
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3.7.2.3 The Impact of Lossless Image Compression to Radiographs.

Lehman et al. [41] present a BWCA methods implementing to radiographs. They mod-

ified BWCA original method by using Incremental Frequency Count (IFC) as MTF

alternating and also Run Length Encoding 2 symbols to change Run Length Encod-

ing zero in Original BWCA chain. Figure 3.16 shows the proposed method. They

proposed to put modified RLE after BWT. The modified RLE coded all runs of size 2

or more into 2 symbols and the length information is separated with data stream so it

does not disturb the main output stream. The next transform which is IFC (as variant

of MTF) adapt modified RLE to improve compression ratios. The last stage of this

method uses Arithmetic Coding that gives better compression result than Huffman.

Figure 3.18: Lehmann proposed methods [41].

Their overall results show that BWCA is slightly more effective that JPEG2000.

3.7.3 Nearly Lossless

3.7.3.1 Segmentation-Based Multilayer Diagnosis Lossless Medical Image Com-

pression

Bai proposed method [13] that has a segmentation process as its pre-processing. It

divides the image in 3 parts based on its diagnosis importance level; Primary region

of interest or ROI Layer (PRL) (all diagnostically important regions) and this part

may vary depending on different clinical studies; Normal ROI Layer (NRL) (unimpor-

tant regions which surround the PRL regions) and it may help the clinician to easily

observe and locate PRL within the original image, and evaluate possible interactions

with surrounding organs; Background Region Layer (BRL) (regions other than PRL

and NRL regions), this part mainly locate outside human body / organs and without

any diagnostic value. The proposed method can be seen in Figure 3.19. The primary

layer is processed using BWCA that has to be lossless, and the other part which is not

important is processed as lossy.

The disadvantage of this method is the nearly lossless. It needs some knowledge to

determine which the part of the image is not important to be saved. Otherwise, there
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Figure 3.19: Bai et al. proposed methods [13].

are some advantages of this methods. It has better compression ratios than lossless

methods, since it has been segmented in 3 parts, progressive transmission is a highly

desirable feature to send the most important part first for many image compression

applications, especially telemedicine.

3.8 Summary

BWT is originally dedicated to text compression but some authors also have been ap-

plied this algorithm to image compression. A few of authors proposed to combine it

with the existing image compression technique such as JPEG, others improve the per-

formance of BWT by adding pre- and/or post-processing stage. Best result is obtained

in the second solution. Therefore, each stage of BWCA chain should be dedicated and

optimized for certain application, thus here is in image compression. We will analysis

the impact of each algorithm in BWCA chain for image compression application.
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4.1 Introduction

This chapter explores the BWT in more detail. We explain why BWT can achieve high

compression. We examine some modifications in pre- and post-processing of BWT.

The modifications is started from BWT classical chain, then the updated algorithms

that have been proposed by some authors and that we propose. This chapter is began

with corpus that is commonly used by some authors in data compression, then some

corpus that have been implemented using BWCA.

4.2 Corpus

Data compression measurement in empirical experiments is the a amount of compres-

sion achieved on some set of files. Researchers also often report the speed of com-

pression, and the amount of primary memory required to perform the compression.

The speed and memory requirements can be different for the encoding and decoding

processes, and may depend on the file being compressed. This can result in a daunting

number of factors that need to be presented.

A number of authors have used the Canterbury Corpus (shown in Table 4.2) and its

predecessor, the Calgary Corpus (as seen in Table 4.1). Both of them consist of some

collections of typical files that usually use in the evaluation of lossless compression

methods.

Table 4.1: The Calgary Corpus.

No. Files Description Size (bytes)
1 BIB 725 bibliographic references 111,261
2 BOOK1 unformatted ASCII text 768,771
3 BOOK2 ASCII text in UNIX 610,856
4 GEO seismic data 102,400
5 NEWS USENET batch file 377,109
6 OBJ1 compilation of PROGP. 21,504
7 OBJ2 Macintosh exe. program 246,814
8 PAPER1 UNIX "troff" format 53,161
9 PAPER2 UNIX "troff" format 82,199

10 PIC 1728 x 2376 bitmap image 513,216
11 PROGC Source code in C 39,611
12 PROGL Source code in Lisp 71,646
13 PROGP Source code in Pascal 49,379
14 TRANS transcript of a terminal session. 93,695

There are 18 files of Calgary Corpus, though several empirical studies provide only

14 files. The four of less commonly used files version are text files in UNIX "troff"

format, PAPER3 through PAPER6 that obviously represented by other PAPER1 and

PAPER2. Meanwhile, the Canterbury Corpus consists of 11 files, and the explanation



67

Table 4.2: The Canterbury Corpus [12].

No. Files Abbrev. Category Size (bytes)
1 alice29.txt text English text 152089
2 asyoulik.txt play Shakespeare 125179
3 cp.html html HTML source 24603
4 fields.c Csrc C source 11150
5 grammar.lsp list LISP source 3721
6 kennedy.xls Excl Excel Spreadsheet 1029744
7 lcet10.txt tech Technical writing 426754
8 plrabn12.txt poem Poetry 481861
9 ptt5 fax CCITT test set 513216

10 sum SPRC SPARC Executable 38240
11 xargs.1 man GNU manual page 4227

of how the files were chosen, and why it is difficult to find typical files to represent

any compression method, can be found in [12]. Previously, compression software was

tested using a small subset of one or two non-standard files. This was a possible source

of bias to the experiments, as the data used may have caused the programs to exhibit

anomalous behavior.

These corpora have become de facto standards for lossless compression evaluation.

Moreover, the Calgary corpus is commonly used to test data compression programs.

Certainly both corpora have gained a great deal of support in the compression commu-

nity.

Figure 4.1: Example of tested images. Upper row: directly digital, lower row: secon-
darily captured. From left to right: Hand; Head; Pelvis; Chest, Frontal; Chest, Lateral.

Table 4.3: IRMA Corpus.

No. Image Category
Nb. of Size
Image smallest dim. biggest dim.

1 Hands primary 120 234434 251 x 934 3723270 1571 x 2370
2 Hands secondary 120 169880 310 x 548 2960920 1580 x 1874
3 Heads primary 120 1076400 920 x 1170 4037040 1680 x 2403
4 Heads secondary 120 1854504 1198 x 1548 9069966 2718 x 3337
5 Pelvis primary 120 1301760 1280 x 1017 5435486 2786 x 1951
6 Pelvis secondary 120 601026 919 x 654 13093760 3992 x 3280
7 Thoraces frontal primary 120 685500 914 x 750 8400232 2836 x 2962
8 Thoraces frontal secondary 120 5088864 2607 x 1952 7470000 3000 x 2490
9 Thoraces lateral primary 120 2186181 1347 x 1623 8219800 2920 x 2815
10 Thoraces lateral secondary 120 220580 538 x 410 7086540 2490 x 2846

The BWT compression method that we present, has been applied for lossless text
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compression area. Nevertheless, it can be applied successfully to image. The lossless

approach is obviously appropriate to medical image compression, which is expected

to be lossless. Therefore, a few medical images are used to analyzed the BWT im-

plementation. The experiments use medical images from IRMA (Image Retrieval in

Medical Applications) data-base [42] and Lukas Corpus [1]. IRMA data-base consists

1200 directly digital (image primary) and secondarily digitized (image secondarily) X-

ray films in Portable Network Graphics (PNG) and Tagged Image File Format (TIFF)

format, 8 bits per pixel (8 bpp), examples of images are shown in Figure 4.1. There

are 10 categories of IRMA data-base as seen in Table 4.3. Each category consists of

120 images. Image size is between 169 kilo bytes (in the Hand Secondary category)

till 1309 kilo bytes (in the Pelvis Secondary). These images are also used by Lehmann

in their BWCA modified [41].

Another medical image corpus is Lukas Corpus. This Corpus is used to evaluate

the practical performance of lossless compression algorithms in the medical imaging

field. We use 20 files of two dimensional 8 bit radiographs in TIF format. The file

sizes are between 1088 to 3752 kilo bytes.

4.3 Classic BWCA Versus Text and Image Compres-

sion Standards

The classic BWCA is described in Figure 3.1, and it was created for text compression.

In this scheme, Burrows and Wheeler propose using MTF as the second stage (GST

stage), then RLE zero and finally Huffman or Arithmetic Coding as the last stage. Our

first tested chain of BWCA uses MTF as a second stage, then a simple Run Length

Encoding zero (RLE0) and Arithmetic Coding as Data Coding stage (see Figure 4.2.

Figure 4.2: The first tested classic chain of BWCA.

This paragraph aims to compare the intrinsic performances of this classical chain

with the existing standards in the compression field especially on texts and images.

The compression performances of this classic chain with similar scheme based on

combinatorial transform are proposed in two simulations presented in Table 4.4 and

Table 4.5. These two tests are based on all the documents respectively available in
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Table 4.4: Comparison results of Canterbury Corpus using our BWCA classic chain
and BZIP2.

Files Orig. Size

Classic Chain of BWCA BZIP2
comp. comp.

bpc
Space comp. comp.

bpc
Space

size ratio savings size ratio savings
(CR) (%) (CR) (%)

alice29.txt 152089 47113 3.228 2.48 69.02 43202 3.520 2.27 71.59
asyoulik.txt 125179 43107 2.904 2.75 65.56 39569 3.164 2.53 68.39
cp.html 24603 8324 2.956 2.71 66.17 7624 3.227 2.48 69.01
fields.c 11150 3397 3.282 2.44 69.53 3039 3.669 2.18 72.74
grammar.lsp 3721 1453 2.561 3.12 60.95 1283 2.900 2.76 65.52
kennedy.xls 1029744 168825 6.099 1.31 83.61 130280 7.904 1.01 87.35
lcet10.txt 426754 117760 3.624 2.21 72.41 107706 3.962 2.02 74.76
plrabn12.txt 481861 158468 3.041 2.63 67.11 145577 3.310 2.42 69.79
ptt5 513216 54941 9.341 0.86 89.29 49759 10.314 0.78 90.30
sum 38240 13951 2.741 2.92 63.52 12909 2.962 2.70 66.24
xargs.1 4227 1933 2.187 3.66 54.27 1762 2.399 3.33 58.32
comp.

2810784 619272 3.815 2.462 69.22 542710 4.303 2.225 72.18
efficiency

Table 4.5: Compression performances of Calgary Corpus using classical BWCA,
BW94, and BZIP2.

Files Orig. Size

First Chain of BWCA BW94 BZIP2
comp. comp.

bpc
Space comp. comp.

bpc
Space comp. comp.

bpc
Space

size ratio savings size ratio savings size ratio savings
(C.R.) (%) (C.R.) (%) (C.R.) (%)

bib 111261 29957 3.714 2.15 73.08 28750 3.870 2.07 74.16 27467 4.051 1.97 75.31
book1 768771 252116 3.049 2.62 67.21 238989 3.217 2.49 68.91 232598 3.305 2.42 69.74
book2 610856 171137 3.569 2.24 71.98 162612 3.757 2.13 73.38 157443 3.880 2.06 74.23
geo 102400 63486 1.613 4.96 38.00 56974 1.797 4.45 44.36 56921 1.799 4.45 44.41
news 377109 128459 2.936 2.73 65.94 122175 3.087 2.59 67.60 118600 3.180 2.52 68.55
obj1 21504 11102 1.937 4.13 48.37 10694 2.011 3.98 50.27 10787 1.994 4.01 49.84
obj2 246814 82004 3.010 2.66 66.77 81337 3.034 2.64 67.05 76441 3.229 2.48 69.03
paper1 53161 18013 2.951 2.71 66.12 16965 3.134 2.55 68.09 16558 3.211 2.49 68.85
paper2 82199 27230 3.019 2.65 66.87 25832 3.182 2.51 68.57 25041 3.283 2.44 69.54
pic 513216 54941 9.341 0.86 89.29 53562 9.582 0.83 89.56 49759 10.314 0.78 90.30
progc 39611 13646 2.903 2.76 65.55 12786 3.098 2.58 67.72 12544 3.158 2.53 68.33
progl 71646 17393 4.119 1.94 75.72 16131 4.442 1.80 77.49 15579 4.599 1.74 78.26
progp 49379 11975 4.124 1.94 75.75 11043 4.472 1.79 77.64 10710 4.611 1.74 78.31
trans 93695 19839 4.723 1.69 78.83 18383 5.097 1.57 80.38 17899 5.235 1.53 80.90
Comp.

3141622 901298 3.643 2.57 67.82 856233 3.669 2.18 72.75 828347 3.793 2.11 73.63
efficiency

Table 4.6: Experimental results on Calgary Corpus using different BWCA chain.

Author Date Algorithm bpc
Fenwick 1995 Order-0 Arithmetic 2.520
Fenwick 1996 Structured Arithmetic 2.340
Deorowicz 2000 Arithmetic Context 2.270
Schindler (szip) 1996 Hierarchical Arithmetic 2.360
Balkenhol 1998 Cascaded Arithmetic 2.300
Balkenhol 1999 Cascaded Arithmetic 2.260
Seward (BZIP2) 2000 Huffman blocks 2.370
Burrows & Wheeler 1994 16000 Huffman blocks 2.430
Fenwick 2002 VL codes, 1000 blocks 2.570
Fenwick 1998 Sticky MTF, Structure Arithmetic 2.300
Deorowicz 2000 Weighted Frequency Count 2.250
Wirth, Moffat 2001 No MTF; PPM Context 2.350
Arnavut 2002 Inversion Ranks 2.300
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Canterbury and Calgary data-bases. A comparison of the results obtained with classic

BWCA chain and BZIP2 from Seward [62] is proposed in both corpus. Nevertheless,

the original Burrows and Wheeler’s results (BW94) [18] are only based on the Calgary

Corpus. The compression results of Table 4.4 ansd Table 4.5 are presented in three

different types of compression measurements which are:

• compression ratio (CR) as seen in Equation 1.3,

• average number of bits stored in bits per pixel (bpp) for an image and per char-

acter (bpc) for text (see Equation 1.4),

• size relative reduction based on its original data (see Equation 1.5),

as explained before in Section 1.3.

Results of BZIP2 and BW94 are better than our first simulation for both Canter-

bury and Calgary Corpus. All of these methods use BWT as its main transform. Nev-

ertheless, they use different data coding as explained in Section 3. Our classic BWCA

chain uses AC as the last stage, however BW94 and BZIP2 use Huffman Coding. As

stated in Section 3.5.2, generally AC obtains better CR than Huffman but often, as seen

in Table 4.4 and Table 4.5, are not systematically the case. And even though, BW94

and BZIP2 use the same coding, they do not give similar results. Some authors have

been working to improve compression efficiency of BWCA chain.

Table 4.6 regroups the performances of a few compression schemes that use BWT

as its main transform. The compared results have been based on Calgary Corpus. The

3rd column shows the main algorithm differences for each method. For example, by

improving Cascaded Arithmetic in 1999, Balkenhol obtains better compression ratio

than his previous tests in 1998. Otherwise, the best CR is obtained by Deorowicz by

changing MTF with Weighted Frequency Count (WFC). Therefore, this table high-

lights that all this studies mainly focuss on the last which are indeed crucial in the

resulted CR. Obviously, the two stages are going to be mainly consider to establish on

our scheme.

Our main idea at the start of this thesis was to apply these schemes designed for

text compression to images compression. Therefore, classic BWCA chain has also

been tested on the well known medical image data-base named IRMA and Lukas Cor-

pus. A sample of 100 images have been randomly extracted from these corpus for

the following compression as seen in Table 4.7 [72]. These results show that BWCA

method can also be implemented in some applications, not just text, but also in images.

Classic chain of BWCA can get better compression ratio than Lossless JPEG but



71

JPEG2000 and JPEG-LS are significantly better than classic scheme of BWCA. The

average compression ratio is

• 2.280 for Lossless JPEG,

• 2.978 for JPEG-LS,

• 2.923 for JPEG2000, and

• 2.516 for BWCA original scheme.

Table 4.7: Compression results using BWCA Classic chain for Lukas corpus[72].

Images
Size of Lossless JPEG JPEG-LS JPEG2000 BWCA org. sch.

raw images Comp. Size C.R Comp. Size C.R Comp. Size C.R Comp. Size C.R
Hand1 2 235 688 994 043 2.249 721114 3.100 746 812 2.994 921 077 2.427
Hand2 1 120 960 553 455 2.025 393690 2.847 404 790 2.769 503 559 2.226
Hand3 431 172 201 901 2.136 153269 2.813 157 759 2.733 201 396 2.141
Hand4 1 667 040 761 412 2.189 564838 2.951 573 070 2.909 608 922 2.738
Head1 1 515 533 760 802 1.992 592282 2.559 593 391 2.554 681 419 2.224
Head2 2 839 656 1 284 695 2.210 968504 2.932 966 688 2.938 1 119 363 2.537
Head3 2 788 500 1 179 829 2.363 937784 2.973 951 033 2.932 1 041 038 2.679
Head4 3 256 000 1 357 005 2.399 1177592 2.765 1 277 882 2.548 1 143 073 2.848
Pelvis1 3 239 730 1 877 742 1.725 1584479 2.045 1 589 535 2.038 1 770 899 1.829
Pelvis2 3 126 784 1 740 236 1.797 1486126 2.104 1 485 588 2.105 1 661 580 1.882
Pelvis3 1 076 768 506 967 2.124 421486 2.555 420 919 2.558 501 369 2.148
Pelvis4 7 036 956 3 374 061 2.086 3022968 2.328 3 230 414 2.178 2 267 335 3.104
Thorac Frontal1 3 713 600 2 046 205 1.815 1814835 2.046 1 830 742 2.028 2 011 249 1.846
Thorac Frontal2 3 405 076 1 806 522 1.885 1606460 2.120 1 611 065 2.114 1 780 515 1.912
Thorac frontal3 6 957 060 2 651 775 2.624 2018238 3.447 2 047 942 3.397 2 431 091 2.862
Thorac frontal4 7 006 860 3 027 914 2.314 2525286 2.775 2 543 669 2.755 2 607 353 2.687
Thorac litoral11 6 184 913 2 590 276 2.388 2094656 2.953 2 115 375 2.924 2 430 634 2.545
Thorac litoral12 2 186 181 1 227 943 1.780 1053219 2.076 1 053 533 2.075 1 170 793 1.867
Thorac litoral13 5 859 510 1 957 078 2.994 1379998 4.246 1 429 536 4.099 1 773 996 3.303
Thorac litoral14 220 580 112 457 1.961 91029 2.423 93 861 2.350 114 544 1.926
Av. 20 images 2.153 2.703 2.650 2.387
Av. 100 images 2.280 2.978 2.923 2.516

These tests show that BWCA performances are, in average (for the 20 or 100 im-

ages tested), between Lossless JPEG and JPEG2000. For 100 images tested, 10

images have better compression ratios than JPEG2000, meanwhile 22 images pro-

vide lower compression rate than Lossless JPEG. Even though, JPEG2000 per-

formances are always more performance than Lossless JPEG, for some images,

such as image Pelvis where the compression ratio using BWCA original is 3.104,

while JPEG2000 could get only 2.178. The difference of compression ratio between

JPEG2000 and BWCA original scheme in this image is quite significant, which is

0.926. These results can be consider as very promising for BWCA scheme. Since this

method was applied to text compression, therefore there are some of phases that we

must analyze to accommodate it into image compression. This original scheme has
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a few flaws. Employing RLE-0 is not effective to decrease data, because many con-

secutive characters still exist after RLE-0. Employing Move-To-Front (MTF) as one

of GST before RLE-0 could not reduce this phenomenon effectively, because MTF

transforms one string of symbols into another string of symbols of the same length

with different distribution. Otherwise, there are some MTF variants that have to be

considered to improve compression performance.

We tested all data of IRMA for a few of data compression standards which are

Lossless JPEG, JPEG-LS, JPEG2000 and classic BWCA chain (i.e using BWT

as its main transform) as shown in Table 4.8. Here, classic chain of BWCA obtains

better comparison ratios for one image category, which is Head secondary. Otherwise,

JPEG-LS obtains better compression ratios for 7 image categories and JPEG2000

in other 2 categories. These preliminary promising results have confirmed the poten-

tial interest of using combinatorial transforms into a image compression scheme. Our

strong believe has been confirmed with several publications at the time. Our inves-

tigation based on these preliminary results on image and our experience on the text

compression have conducted us to focus on not only in the different stages of coding

(statistical or not statistical), but also in pre- and post-processing of BWT.

Table 4.8: CR comparable results between classical BWCA and existing image stan-
dards for IRMA corpus.

Nb. JPEG JPEG JPEG BWCA The
No. Images of Lossless 2000 -Ls clasical best

Image (Matlab) (Jasper) (HP) chain Value
1 Hands primary 120 2.019 2.557 2.587 2.123 JPEG-LS

2 Hands secondary 120 2.379 3.134 3.209 2.693 JPEG-LS

3 Heads primary 120 2.188 2.970 2.939 2.496 JPEG2000

4 Heads secondary 120 2.245 2.575 2.665 2.936 BWCA
5 Pelvis primary 120 1.745 2.019 2.016 1.795 JPEG2000

6 Pelvis secondary 120 2.360 2.788 2.863 2.763 JPEG-LS

7 Thoraces frontal primary 120 2.048 2.383 2.396 2.035 JPEG-LS

8 Thoraces frontal secondary 120 2.612 3.394 3.456 2.982 JPEG-LS

9 Thoraces lateral primary 120 2.296 2.826 2.840 2.379 JPEG-LS

10 Thoraces lateral secondary 120 2.528 3.171 3.232 2.753 JPEG-LS

Av. comp. ratio 1200 2.242 2.782 2.820 2.496 JPEG-LS

4.4 Some of Pre-processing Impacts in BWCA

4.4.1 Image Block

Section 3.3 stated that BWT is based on a sorting algorithm. There are several methods

that have been proposed to improve BWT sorting process, but this improvement does

not influence the compression performance.
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BZIP2 is using block splitting to decrease time processing, we consider the impact

of this preprocessing on CR. Some authors stated that this input diminution influences

compression performances [18, 78], there will be fewer repetitions symbols. Burrows

and Wheeler in their original paper give an example of block size of file book1 of Cal-

gary Corpus as seen in Table 4.9. The compression efficiency decreases systematically

from 2.49 bpc for a block size 750 KB (the whole data) to 4.34 bpc for 1 KB of block

size.

Table 4.9: The effect of varying block size (N ) on compression of book1 from the
Calgary Corpus [18].

Block size or N book1
(bytes) (bpc)
1k 4.34
4k 3.86
16k 3.43
64k 3.00
256k 2.68
750k 2.49

Figure 4.3: Block size impact to compression efficiency in images [78]. Tests are
obtained with three JPEG parameters, which are 100, 95, and 90.

Figure 4.3 presents Wiseman’s [78] empirical studies. It shows also, for a few block

size (N) tests, that splitting a file into few blocks decreases compression performance.

The block size (size of chunks) tested was from 100 KB to 900 KB and was used

to the lossy compression methods. The compression obviously becomes better using
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larger block size of chunks. Otherwise, descending quality of image produces a lot

of zeroes and also decrease BWT performances, since fewer repetitions occur, this is

shown by parameter 90, 95 and 100 which are the JPEG image quality parameters, thus

the compression efficiency becomes poorer, therefore the compression performance

depends on image nature, Wiseman suggest to apply this method only for high quality

real life images.

Meanwhile, Lehmann stated in [41] that the block size ranges are generally from

1 MB to 10 MB and all blocks are processed separately. Our previous paper [72] also

present this studies. Alleviation of BWT input decreases its complexity, but also its

compression performances. Figure 4.4 shows an example of image that is split into 10

block. The size of image, for this example, is 512 × 512. Therefore, the image with

size 962 × 2324 is divided into 10 blocks images as seen in Figure 4.4. Each block is

processed separately. The detail results of each block is presented in Table 4.10. The

compression ratio for 10 blocks images is 2.131, meanwhile the compression ratio for

whole image is 2.427. So, the block size reduces the compression efficiency.

Figure 4.4: Example of an image divided into a small blocks.

Table 4.10: Results of image blocks in Figure 4.4.

Block dimension orig block size comp size C.R
1 512 × 512 262,144 98,309 2.667
2 450 × 512 230,400 69,222 3.328
3 512 × 512 262,144 140,923 1.860
4 450 × 512 230,400 113,890 2.023
5 512 × 512 262,144 135,903 1.929
6 450 × 512 230,400 129,343 1.781
7 512 × 512 262,144 130,594 2.007
8 450 × 512 230,400 109,198 2.110
9 512 × 276 141,312 71,461 1.977

10 450 × 276 124,200 50,119 2.478
2,235,688 1,048,962 2.131

The block size or the maximum amount of data to sort is also a varied parameter of

BWT. If computing resources are insufficient to sort all the data in one large block, the
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data can be split into multiple blocks. This process decreases compression efficiency.

However, different type of data should not be lumped into the same block as compres-

sion efficiency will decrease. An example is the Calgary Corpus. Higher compression

of the corpus is achieved by compressing each file separately rather than concatenated

together in one large block [20].

Time processing decreasing has shown in our paper [72], however the CR also

decreases. Nevertheless, Section 3.3 has been described a few BWT sorting improve-

ment. We propose using the Nongs method [52] that has been implemented by Yuta

Mori and provides better performance for BWT process. And based on our simula-

tion process, the worst time to compress a whole image is 3 ms for 8 MB image size.

Meanwhile, the decoding process is faster than coding. So, we do not consider image

block process for our next simulation.

4.4.2 Reordering

BWT method is used to compress two-dimensional images, but the input of BWT is

a one dimensional sequence. Thus, the image has to be converted from 2 dimensional

image into one dimensional sequence. This conversion is referred to as reordering or

scan path. Some coding, as Arithmetic Coding or BWT itself, depend on the relative

order of gray scale values, they are therefore sensitive to the reordering method used.

Figure 4.5: Block of quantised coefficients [57].

The optimum method of data reordering depends on the data distribution [57] and

the compression method. For example, in the DCT process, the reordering quantized

data is evenly distributed about the top left of the array (see Figure 4.5) to clustered the

non-zero values together. So, zigzag method is commonly used for “DC" coefficient.
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BWT is different approach. The reordering process is used for BWT input. Fig-

ure 4.6 shows several example of data reordering. For this small image, the most

convenient reordering method for BWT input is the first method (Left), because there

are repetition symbols. Nevertheless, the data distribution of the medical image tested

is unknown. Therefore, the empirical studies are needed to find the suitable technique

for these images using BWT.

Figure 4.6: 6 examples of data reordering.

(a) Left (b) Left-Right (c) Up-Down (d) Spiral (e) Zigzag

Figure 4.7: A few of reordering methods.

Some of the popular reordering schemes are given in Figure 4.7. We have tested

8 different methods; namely: scanning image from left to right (L), left to right then

right to left (LR), up to down then down to up (UD), zigzag (ZZ), spiral, divide image

into small blocks 8× 8, small blocks 8× 8 in zigzag, and small blocks 3× 3 in zigzag.

Figure 4.8: Method 1 of BWCA.

Our preliminary test uses BWT original method (Figure 4.7) and also adds differ-

ent image reordering methods to see this pre-processing impact in compression perfor-

mance, thus the scheme is modified as seen in Figure 4.8 (from now on, it is consider
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Table 4.11: Image compression ratios for different type of reordering methods [70, 71].

Image L LR UD Spiral ZZ 8×8 8×8ZZ 3×3zz
JPEG JPEG

-LS 2000

Hand1 2.372 2.366 2.547 2.536 2.257 2.204 2.262 2.336 3.100 2.994

Hand2 2.260 2.251 2.390 2.382 2.091 2.052 2.073 2.138 2.847 2.769

Hand3 2.114 2.123 2.253 2.221 1.991 1.933 1.994 2.049 2.813 2.733

Hand4 2.685 2.679 2.830 2.802 2.551 2.411 2.510 2.557 2.915 2.909

Head1 2.219 2.216 2.274 2.273 2.155 2.108 2.174 2.220 2.559 2.554

Head2 2.481 2.480 2.527 2.538 2.366 2.337 2.392 2.466 2.932 2.938

Head3 2.566 2.565 2.527 2.563 2.350 2.303 2.349 2.422 2.937 2.932

Head4 2.726 2.721 2.721 2.764 2.544 2.502 2.542 2.622 2.765 2.548

Pelvis1 1.808 1.808 1.842 1.835 1.760 1.750 1.782 1.814 2.045 2.038

Pelvis2 1.850 1.848 1.890 1.876 1.806 1.791 1.829 1.863 2.104 2.105

AV. 10 2.308 2.306 2.380 2.379 2.187 2.139 2.190 2.249 2.709 2.665

Av. 100 2.516 2.515 2.577 2.575 2.357 2.315 2.364 2.442 2.978 2.924

as the first proposed method (M1)). We use MTF as GST stage, simple Run Length

Encoding zero (RLE0) and Arithmetic Coding (AC) for EC stage. Table 4.11 shows

the results of these tests for 8 different reordering techniques. It shows that scan path

influences BWT methods performance. Image scan vertically (up-down) is slightly

better than spiral method. For 100 tested images, 49 images give better result using

this method, 47 images using scan image spiral. The worst value of compression ratios

are obtained using scan image in a block 8×8 (85 images), and 14 images using zigzag

mode, see Figure 4.7(c). This preprocessing stage can increase the compression ratios

around 4% than conventional scanning. In other words, the neighborhood of pixels

influences the permutation yields by the BWT.

This result also shows that current BWT method improves its performance and it

is better than Lossless JPEG but still inferior than JPEG2000. For 100 images

tested, 91 images determine better CR than Lossless JPEG. This previous result

shows that using scan image up-down or spiral improves compression ratios. Therefore

our next tests will use spiral or up-down stage.

4.5 GST Impact

There are several transforms that can be used in GST stage. In Section 3.4 presents a

few of these algorithms. Burrows and Wheeler themselves proposed MTF as the sec-

ond stage of BWCA, and some variants of this stage have been developed to improve

BWCA performance. Furthermore, this section discuses more the efficiency of each

transform to the BWCA method. This empirical studies use BWCA chain in Figure 4.8

and scan image in spiral or up-down.
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Table 4.12 and Table 4.13 in the 2nd and the 3rd columns give the results of BWT

method for image compression without and with MTF. Here we can see that MTF

part is significant. The compression ratios decrease for 6 images. Nevertheless, using

scan image up-down, the average of compression ratios increase of approximately 3%

for 10 images presented and 4% for the total data-base. And for scan image spiral,

the compression ratio increases around 2% for 10 images and also 4% for total image

data-base.

Table 4.12: Comparative results of MTF and its variants using up-down reordering
[70].

Image no-MTF MTF M1FF M1FF2 Ts(0) Bx3 Bx5 Bx6 FC WFC AWFC IFC
Hand1 2.616 2.547 2.541 2.538 2.624 2.649 2.666 2.670 2.663 2.659 2.706 2.656
Hand2 2.196 2.390 2.387 2.387 2.449 2.466 2.476 2.477 2.470 2.484 2.513 2.475
Hand3 1.669 2.253 2.247 2.246 2.319 2.345 2.363 2.368 2.375 2.352 2.410 2.347
Hand4 2.589 2.830 2.825 2.824 2.920 2.939 2.946 2.945 2.938 2.979 3.000 2.954
Head1 2.251 2.274 2.263 2.262 2.329 2.349 2.364 2.367 2.357 2.348 2.400 2.359
Head2 2.561 2.527 2.518 2.518 2.590 2.613 2.632 2.637 2.631 2.611 2.672 2.614
Head3 2.554 2.527 2.52 2.519 2.606 2.632 2.650 2.654 2.646 2.645 2.695 2.635
Head4 2.751 2.721 2.714 2.714 2.801 2.824 2.841 2.843 2.832 2.857 2.902 2.839
Pelvis1 1.978 1.842 1.835 1.835 1.888 1.905 1.919 1.922 1.911 1.898 1.908 1.909
Pelvis2 2.026 1.890 1.881 1.880 1.936 1.952 1.966 1.969 1.961 1.951 1.950 1.960
Av.10 2.319 2.380 2.373 2.372 2.446 2.467 2.482 2.485 2.478 2.478 2.516 2.475
Av.100 2.475 2.577 2.570 2.570 2.654 2.679 2.696 2.699 2.694 2.694 2.724 2.687

Table 4.13: Comparative results of MTF and its variants using spiral reordering[70].

Image no-MTF MTF M1FF M1FF2 Ts(0) Bx3 Bx5 Bx6 FC WFC AWFC IFC
Hand1 2.616 2.536 2.530 2.527 2.614 2.639 2.657 2.662 2.655 2.648 2.701 2.646
Hand2 2.193 2.382 2.380 2.380 2.453 2.472 2.486 2.488 2.479 2.481 2.517 2.476
Hand3 1.657 2.221 2.214 2.214 2.284 2.307 2.326 2.330 2.338 2.319 2.375 2.312
Hand4 2.587 2.802 2.800 2.798 2.898 2.923 2.937 2.939 2.926 2.954 2.985 2.927
Head1 2.251 2.273 2.263 2.263 2.329 2.350 2.365 2.370 2.358 2.347 2.399 2.359
Head2 2.576 2.538 2.528 2.528 2.602 2.626 2.646 2.651 2.645 2.623 2.689 2.627
Head3 2.578 2.563 2.555 2.553 2.642 2.669 2.689 2.693 2.685 2.684 2.736 2.674
Head4 2.784 2.764 2.757 2.756 2.848 2.874 2.894 2.898 2.885 2.905 2.957 2.887
Pelvis1 1.974 1.835 1.828 1.828 1.882 1.899 1.913 1.917 1.905 1.892 1.902 1.903
Pelvis2 2.018 1.876 1.867 1.867 1.922 1.939 1.954 1.957 1.948 1.937 1.932 1.946
Av.10 2.323 2.379 2.372 2.371 2.447 2.470 2.487 2.491 2.482 2.479 2.519 2.476
Av.100 2.477 2.575 2.568 2.567 2.651 2.677 2.694 2.698 2.692 2.691 2.721 2.685

The results for second family of MTF (M1FF and M1FF2) do not increase BWCA

performance. The 4th and 5th columns of Table 4.12 and Table 4.13 determine these

results. Meanwhile, these results are better than BWCA chain without MTF. Therefore,

GST stage is really needed in BWCA method.

The GST step of Albers is called Time Stamp (TS) [9] provides better performances

than the previous GST. Then, Chapin has been improved this algorithm, called a “Best

x of 2x − 1” algorithm [19]. The results of these transforms are shown in 6th to 9th

columns of Table 4.12 and Table 4.13. The compression ratios using these transforms
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are better than those using MTF algorithm. The compression performance average

increases till 9% for a “Bx6” algorithm using image scan up-down for the whole tested

images.

Other variant of GST that is quite different because it has a computation process to

count the symbols ranking, called Frequency Counting (FC) and its variants, such as

WFC and AWFC. These transforms are more complex than previous GST and most of

them do not determine better compression ratios than a “Bx6”. It can be seen in the

10th and 11th columns of Table 4.12 and Table 4.13. The improvement compression

performance is obtained by a WFC modified called Advanced Weighted Frequency

Count (AWFC). It counts a weight of symbol distribution. It is more complex than

WFC, but it gives better compression ratios. These results can be seen in the 12th col-

umn of Table 4.12 and Table 4.13. Abel presents other GST method called Incremental

Frequency Count (IFC) [3]. It is quite similar to WFC, but it is less complex but more

performance than WFC. The results of these transform can be seen in 13th column in

the Table 4.12 and Table 4.13.

Table 4.12 and Table 4.13 show that AWFC is slightly better than a “Bx6". But

AWFC is more complex than a “Bx6" transform. It takes more time to count the

distance of symbol.

Figure 4.9: The “Best x of 2x− 1” analysis for x=3,4,5,...,16.

Furthermore, Figure 4.9 shows the performances of “Best x of 2x − 1" for x = 3
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to x = 16. The pick values of compression efficiency are for x = 9, x = 10 and x =

11. Otherwise, the different is not really significant. For simplifying the simulation,

“Bx11" and AWFC will be used in the next simulation to analyze the Entropy Coding

stage and to improve BWT performances.

4.6 Data Coding Impact

Data Coding (DC) is in charge of the compression process of BWCA chain. The

previous stage transforms the input data to enable compression improvement to be

obtained on the DC stage. The studies presented in the previous paragraphs enable

the number of these stages in charge of data transformation to be limited. Two pre-

processing have been selected: reordering (Up-down or Spiral), GST (Best x of 2x-1

for x=11 and AWFC). Moreover, in the following sections, we discuss about the impact

of the DC methods classically used into the BWCA compression scheme. Hence, we

focus on the impact of RLE and statistical coding.

4.6.1 Run Length Encoding Impact

Run Length Encoding (RLE) aims to shrink long runs GST results. Several RLE vari-

ants were described (see Section 3.5.1). We will review RLE of Lehmann et al. [41]

named Run length Encoding two Symbols (RLE2S) since it have been implemented

in medical image compression (see Section 3.7.2.3). RLE2S separates the data stream

and the runs so it does not interfere with the main data coding.

Figure 4.10: Example of Run Length Encoding two symbols (RLE2S) .

Two or more consecutive symbols are transformed in two symbols in the data

stream. The associated length is reported in a separated stream. If the symbol is not

repeated, therefore it is included in the data stream but nothing in the stream of the

runs as shown in Figure 4.10.

Schemes based on the state of the art approach slightly improved by including a

pre-processing (4% on both chains). These chains represented our reference schemes.

Thus, we combined Lehmann proposed method (see Figure 3.18) and our previous test
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of Figure 4.8. Figure 4.11 presents the new scheme using RLE2S and is consider as

the second method (M2). The 6th to 11th column of Table 4.14 presents compression

performances for both method (M1 and M2). RLE2S increases compression efficiency

systematically. The results of these two methods have a same tendency. CR improve-

ment for different GST are similar, which are:

• M1-Bx11 to M2-Bx11 is also around 6.34%,

• M1-AWFC to M2-AWFC is around 5.17%.

Figure 4.11: Second proposed method of BWCA (M2).

The best compression performances of M1 is obtained using AWFC as a GST stage,

meanwhile M2 is using Bx11. Nevertheless, the margin of CR for these two variants

of GST for the same chain (M1 or M2) are really minor, that is why we keep using

these two GST algorithms for following tests.

Figure 4.12: The third proposed method of BWCA (M3).

The RLE stage has been traditionally included in the BWCA schemes. This al-

gorithm has been proved [44] to increase the performances of the text compression

schemes based on the BWT. Lehmanm et al. have included this stage in their image

compression scheme to improve the CR. Nevertheless, as the chain has been modified

with the reordering stage, we test the impact of RLE on the chain by removing it (as

shown in Figure 4.12 and called the 3rd method or M3).
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Table 4.14: M1-M4 results for IRMA images using Spiral reordering.

Nb. JPEG JPEG Spi-Bwt-Gst-R0-Ac Spi-Bwt-Rl2s-Gst-Ac Spi-Bwt-Gst-__-Ac Spi-Bwt-Gst-__-ModAc
No. Image category of 2000 -Ls Bx11 AWFC Bx11 AWFC Bx11 AWFC Bx11 AWFC Best Value

Image (Jasper) (HP) M1 M2 M3 M4
1 Hands primary 120 2.557 2.587 2.341 2.356 2.463 2.461 2.502 2.471 2.544 2.506 JPEG-LS

2 Hands secondary 120 3.134 3.209 2.934 2.972 3.105 3.106 3.166 3.136 3.263 3.215 M4-Bx11
3 Heads primary 120 2.970 2.939 2.665 2.685 2.813 2.824 2.847 2.813 2.877 2.837 JPEG2000

4 Heads secondary 120 2.575 2.665 3.130 3.173 3.371 3.364 3.536 3.464 3.624 3.534 M4-Bx11
5 Pelvis primary 120 2.019 2.016 1.893 1.881 1.987 1.987 1.995 1.954 2.001 1.957 JPEG2000

6 Pelvis secondary 120 2.788 2.863 2.955 2.979 3.165 3.154 3.289 3.212 3.347 3.252 M4-Bx11
7 Thoraces frontal primary 120 2.383 2.396 2.174 2.201 2.310 2.308 2.330 2.312 2.345 2.322 JPEG-LS

8 Thoraces frontal secondary 120 3.394 3.456 3.191 3.241 3.407 3.387 3.484 3.427 3.529 3.469 M4-Bx11
9 Thoraces lateral primary 120 2.826 2.840 2.548 2.566 2.712 2.710 2.746 2.718 2.758 2.726 JPEG-LS

10 Thoraces lateral secondary 120 3.171 3.232 2.958 2.991 3.155 3.143 3.257 3.212 3.305 3.251 M4-Bx11
Av. comp. ratio 1200 2.782 2.820 2.679 2.705 2.849 2.844 2.915 2.872 2.959 2.907 M4-Bx11

Table 4.15: M1-M4 results for IRMA images using Ud-down reordering.

Nb. JPEG JPEG Spi-Bwt-Gst-R0-Ac Spi-Bwt-Rl2s-Gst-Ac Spi-Bwt-Gst-__-Ac Spi-Bwt-Gst-__-ModAc
No. Image category of 2000 -Ls Bx11 AWFC Bx11 AWFC Bx11 AWFC Bx11 AWFC Best Value

Image (Jasper) (HP) M1 M2 M3 M4
1 Hands primary 120 2.557 2.587 2.354 2.373 2.478 2.479 2.519 2.492 2.560 2.525 JPEG-LS

2 Hands secondary 120 3.134 3.209 2.940 2.979 3.112 3.114 3.172 3.144 3.270 3.222 M4-Bx11
3 Heads primary 120 2.970 2.939 2.647 2.669 2.793 2.795 2.826 2.794 2.857 2.818 JPEG2000

4 Heads secondary 120 2.575 2.665 3.083 3.132 3.318 3.317 3.473 3.413 3.567 3.484 M4-Bx11
5 Pelvis primary 120 2.019 2.016 1.893 1.881 1.986 1.986 1.995 1.954 1.999 1.955 JPEG2000

6 Pelvis secondary 120 2.788 2.863 2.941 2.968 3.148 3.139 3.269 3.197 3.330 3.237 M4-Bx11
7 Thoraces frontal primary 120 2.383 2.396 2.165 2.191 2.299 2.298 2.320 2.302 2.334 2.311 JPEG-LS

8 Thoraces frontal secondary 120 3.394 3.456 3.167 3.221 3.381 3.364 3.455 3.412 3.504 3.447 M4-Bx11
9 Thoraces lateral primary 120 2.826 2.840 2.541 2.559 2.704 2.702 2.739 2.710 2.749 2.718 JPEG-LS

10 Thoraces lateral secondary 120 3.171 3.232 2.959 2.994 3.155 3.145 3.257 3.214 3.308 3.254 M4-Bx11
Av. comp. ratio 1200 2.782 2.820 2.669 2.697 2.837 2.834 2.902 2.863 2.948 2.897 M4-Bx11
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The 10th and 11th columns of Table 4.14 present M3 results. These results are

better than two previous tests (M1 and M2). In average the performances of M3 in-

crease up to 8.83% and to 3.37% respectively compared with the M2 method and the

JPEG-LS standard. Moreover the CR improve compared to M2 method for each cat-

egories of the image data-base. This method provide ever better performances than the

JPEG2000 and JPEG-LS standards on four categories.

Table 4.15 presents also these methods (M1-M3) using Up-down reordering. How-

ever, these results are lower than spiral reordering technique. The results difference are

low. Nevertheless, the two reordering techniques provide better performance than the

existing compression standards.

The improvement have been obtained by including the reordering stage. This pre-

processing enables the 2D image nature to be considered. Nevertheless, each new

stage include in the scheme can modify the behavior of others ones. Therefore, the

suppression of RLE stage in the modified Lehmann’s scheme enables the performances

of this chain to be improved. We propose to focus on the EC stage in the following

paragraph.

4.6.2 Statistical Coding

Burrows and Wheeler suggest using Arithmetic Coding for the last step [18]. However,

we cannot use a simple arithmetic coder with a common order-n context. GST stage

increases the probability of lower input values (and so it decreases the probability of

the higher values). Our previous test have been confirmed it by comparing the classic

BWCA chain that uses AC with BZIP2 and BW94 that use Huffman Coding in the

last stage (see Section 4.3). Some authors have been stated that a specific AC should

be use [26, 27, 3].

The coding type of the GST output inside the EC stage has a strong influence

on the compression rate. It is not sufficient to compress the index stream just by a

simple arithmetic coder with a common order-n context. The index frequency of the

GST output has a nonlinear decay. Even after the use of an RLE2S stage, the index

0 is still the most common index symbol on average. As discussed by Fenwick [26],

a hierarchical coding model offers better compression results for skew distributions.

Similar to the model of Fenwick, this implementation uses a hierarchical coding model,

consisting of three levels, for the index stream of the GST output. The first level

encodes the most common indices, which range from 0 to 2, and which make up more

than 50% of the output indices. Larger indices are encoded by all three levels. If the
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current index is smaller than 3, the information encoded by the first level is sufficient

to uniquely decode the index and the following levels are not needed. If the index is

larger than or equal to 3, an escape symbol is output in the first level and the index is

categorized into seven disjoint groups. The third level handles the offset of the current

index in each group. In order to exploit the properties of the GST output indices in

an efficient manner, the first level uses three binary arithmetic coders instead of one

arithmetic coder with an alphabet of size of four.

Therefore, Fenwick proposes an Arithmetic Coder with hierarchical coding model

for this skew distribution. We also tested these coding and referred as M4 in Table 4.14.

M4 is respectively similar to the M3 scheme but using modified Arithmetic Coding.

Therefore, the first one uses a traditional AC and the second one, a modified AC.

Figure 4.13: The fourth proposed method of BWCA (M4).

The results presented in Table 4.14 show that M4 performances are slightly im-

proved in average and therefore to be considered. Average gain of M4 compared with

M3 is around 2%, meanwhile it is around 4% compared with M1. The average CR of

M4 using Bx11 is the best CR than other techniques. The compression performance is

improved with M4 compared to JPEG-LS and JPEG2000, 5 and 6% can respectively

be obtained. This significant result is obtained considering the average CR. Another

significant result can be observed with the detail analysis which consider particularly

each category of IRMA’s data-base.

Detailed analysis, the 1200 images of the data-base are split into 10 categories as

shown in Section 4.2. The Table 4.16 details the results obtained for M4-Bx11 method

for each categories. It also enables a comparison performance with JPEG-LS and

JPEG2000.

Table 4.16 presents the gain of each method for IRMA’s data-base. The 4th, 5th, and

6th columns are the number of the best result obtained by the corresponding method

(i.e. the head of the column), meanwhile the 7th, 8th, and 9th columns are the percent-

age of previous values.

For 1200 images, 565 images obtain better CR using JPEG-LS, 399 using M4-

Bx11, and 236 using JPEG2000, or in the percentage, we have:

• 19.67% of images give better CR using JPEG2000,
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Table 4.16: Results comparison of M4-Bx11, JPEG-LS and JPEG2000.

Nb. Best Value
No. Images category of M4- JPEG JPEG M4- JPEG JPEG

Image Bx11 2000 -LS Bx11 2000 -LS

1 Hands primary 120 15 29 76 12.50 24.17 63.33
2 Hands secondary 120 45 0 75 37.50 0.00 62.50
3 Heads primary 120 2 85 33 1.67 70.83 27.50
4 Heads secondary 120 108 0 12 90.00 0.00 10.00
5 Pelvis primary 120 4 69 47 3.33 57.50 39.17
6 Pelvis secondary 120 90 4 26 75.00 3.33 21.67
7 Thoraces frontal primary 120 1 26 93 0.83 21.67 77.50
8 Thoraces frontal secondary 120 73 0 47 60.83 0.00 39.17
9 Thoraces lateral primary 120 0 22 98 0.00 18.33 81.67

10 Thoraces lateral secondary 120 61 1 58 50.83 0.83 48.33
Total 1200 399 236 565 33.25 19.67 47.08
Total all 1200 images 100%

• 33.25% of images give better CR using M4-Bx11, and

• 47.08% of images give better CR using JPEG-LS.

The most favorable result for M4 is the 4th category (Head Secondary Image)

whereas 90% images obtain better CR than JPEG-LS and JPEG2000. But, M4-

Bx11 can not get better CR in Thoraces Lateral Primary category.

There are more images that give better CR using JPEG-LS than using M4-Bx11.

However, the best average CR for all IRMA’s data-base is obtained using M4-Bx11.

Table 4.17 is details these gains by presented the difference of CR between the best

method and M4-Bx11.

Table 4.17: Detail results of M4-Bx11.

Nb. Max. Loss Av. Loss Max Gain
No. Images category of of of of

Image M4-Bx11 M4-Bx11 M4-Bx11
1 Hands primary 120 0.251 0.055 0.082
2 Hands secondary 120 0.465 0.146 2.143
3 Heads primary 120 0.241 0.095 0.029
4 Heads secondary 120 0.301 0.018 2.053
5 Pelvis primary 120 0.069 0.021 0.063
6 Pelvis secondary 120 0.283 0.032 2.532
7 Thoraces frontal primary 120 0.189 0.054 0.010
8 Thoraces frontal secondary 120 0.282 0.043 0.948
9 Thoraces lateral primary 120 0.182 0.084 -0.001

10 Thoraces lateral secondary 120 0.432 0.092 1.589

The 4rd column represents maximum gap discrepancy of CR between JPEG2000

or JPEG-LS and M4-Bx11 of an image for each category, that is, the maximum among

the following two values:

• if the best CR is obtained by JPEG-LS, the difference of CR then between

JPEG-LS and M4-Bx11, or
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• if the best CR is obtained by JPEG2000, the difference of CR then between

JPEG2000 and M4-Bx11.

The maximum discrepancy is obtained by an image in the Hand Secondary cate-

gory which is 0.465. The detailed CR of this image for each technique are:

• JPEG2000 for 4.509,

• JPEG-LS for 4.617, and

• M4-Bx11 for 4.151.

Other values represent that M4-Bx11 lose values are not really significant. More-

over, the 6th column of Table 4.17 presents the maximum improvement value of M4-

Bx11 for an image in each category. It can reach to 2.532 for a Pelvis Secondary

image, where the detailed CR for each technique are:

• 2.015 for JPEG2000,

• 2.249 for JPEG-LS, and

• 4.781 for M4-Bx11.

The average CR for the category of this image is also large compared with other

standards (3.534 using M4-Bx11 and 2.665 for JPEG-LS).

However, the minimum value is -0.001 where M4-Bx11 can not provide better CR

compared with JPEG-LS and JPEG2000.

Moreover, the 5th column of Table 4.17 presents the difference average between

the maximum CR value and M4-Bx11 (in where M4-Bx11 method can not obtained

better performances). These values are low, in other words, the average lose value of

M4-Bx11 method for IRMA’s data-base is low.

Detailed information about these results are presented by Table 4.18. M4-Bx11 is

compared separately with JPEG-LS and then with JPEG2000.

Furthermore, the comparison of M4-Bx11 with each image compression standards

is presented in Table 4.18.

The 3th till 6th columns present CR comparison of M4-Bx11 and JPEG-LS. For

all IRMA Corpus, there are 787 images that provide better CR using JPEG-LS and

413 images using M4-Bx11. In percentage, 65.58% of images are obtained better CR

using JPEG-LS, so 34.42% using M4-Bx11. Contrarily, the average CR of JPEG-LS

for 1200 images is only 2.820 that is slightly lower than M4-Bx11 which is 2.959 (see
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Table 4.18: Results summary of M4-Bx11.

No. Image Category
M4-Bx11

JPEG
M4-Bx11

JPEG

compare -LS compare 2000

with Nb. of Image
CR CR

with Nb. of Image
CR CR

% num. % num.
1 Hands primary > J-LS 15.8 19 2.844 2.814 > J2K 37.5 45 2.829 2.789

< J-LS 84.2 101 2.488 2.544 < J2K 62.5 75 2.373 2.418
Total 100.0 120 2.544 2.587 Total 100.0 120 2.544 2.557

2 Hands secondary > J-LS 37.5 45 3.473 2.941 > J2K 45.0 54 3.446 2.936
< J-LS 62.5 75 3.137 3.370 < J2K 55.0 66 3.113 3.296
Total 100.0 120 3.263 3.209 Total 100.0 120 3.263 3.134

3 Heads primary > J-LS 1.7 2 3.033 3.013 > J2K 1.7 2 3.033 3.013
< J-LS 98.3 118 2.875 2.938 < J2K 98.3 118 2.875 2.969
Total 100.0 120 2.877 2.939 Total 100.0 120 2.877 2.970

4 Heads secondary > J-LS 90.0 108 3.672 2.586 > J2K 90.0 108 3.672 2.495
< J-LS 10.0 12 3.195 3.372 < J2K 10.0 12 3.195 3.297
Total 100.0 120 3.624 2.665 Total 100.0 120 3.624 2.575

5 Pelvis primary > J-LS 7.5 9 2.331 2.310 > J2K 3.3 4 2.647 2.637
< J-LS 92.5 111 1.974 1.992 < J2K 96.7 116 1.978 1.997
Total 100.0 120 2.001 2.016 Total 100.0 120 2.001 2.019

6 Pelvis secondary > J-LS 75.0 90 3.457 2.770 > J2K 81.7 98 3.450 2.744
< J-LS 25.0 30 3.015 3.143 < J2K 18.3 22 2.888 2.985
Total 100.0 120 3.347 2.863 Total 100.0 120 3.347 2.788

7 Thoraces frontal > J-LS 5.0 6 2.339 2.336 > J2K 1.7 2 2.257 2.253
primary < J-LS 95.0 114 2.345 2.400 < J2K 98.3 118 2.346 2.385

Total 100.0 120 2.345 2.396 Total 100.0 120 2.345 2.383
8 Thoraces frontal > J-LS 60.8 73 3.486 3.294 > J2K 76.7 92 3.492 3.294

secondary < J-LS 39.2 47 3.596 3.706 < J2K 23.3 28 3.649 3.724
Total 100.0 120 3.529 3.456 Total 100.0 120 3.529 3.394

9 Thoraces lateral > J-LS 0.0 0 0.000 0.000 > J2K 1.7 2 1.995 1.979
primary < J-LS 100.0 120 2.758 2.840 < J2K 98.3 118 2.771 2.840

Total 100.0 120 2.758 2.840 Total 100.0 120 2.758 2.826
10 Thoraces lateral > J-LS 50.8 61 3.416 3.092 > J2K 61.7 74 3.415 3.102

secondary < J-LS 49.2 59 3.190 3.377 < J2K 38.3 46 3.128 3.282
Total 100.0 120 3.305 3.232 Total 100.0 120 3.305 3.171

> J-LS 34.4 413 3.443 2.868 > J2K 40.1 481 3.425 2.869
IRMA Corpus < J-LS 65.6 787 2.705 2.795 < J2K 59.9 719 2.648 2.723

Total 100.0 1200 2.959 2.820 Total 100.0 1200 2.959 2.782
Nb.: number; num. : numerical.
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Table 4.14). Therefore, the 3rd column of Table 4.18 split number of image that provide

better and worsen CR between M4-Bx11 and JPEG-LS in the 4th column. The same

purpose is done for the 8th column result that compares M4-Bx11 and JPEG2000

results.

For the first category, M4-Bx11 gives better CR for only 19 images. And the

differences of CR for these images between M4-Bx11 and JPEG-LS is not really cru-

cial. For these 19 images, the improvement of M4-Bx11 is only 1.04% compared with

JPEG-LS. Meanwhile, M4-Bx11 performance decrease around 2% for the rest of im-

ages in this category. CR of M4-Bx11 for 101 images is 2.488, meantime JPEG-LS

is 2.544. Otherwise for all images in this category, JPEG-LS CR improves around

1.66%, which is really trivial. Differently with other category where M4-Bx11 perfor-

mances are significantly improved comparing with JPEG-LS. There are 5 categories

where M4-Bx11 provide better performances. And the improvement of M4-Bx11 for

a few secondary categories are really crucial. Especially for Heads and Pelvis Sec-

ondary categories. In Heads Secondary category, there are 108 images provide better

performances than JPEG-LS, where CR for:

• JPEG-LS is 2.586 and

• M4-Bx11 is 3.672.

CR differences for these images is around 1.086. In other words, M4-Bx11 improves

around 41.98% than JPEG-LS. Moreover, JPEG-LS performances for the rest of

images (12 images) in this category increase moderately. It is only 5.22% comparing

with the M4-Bx11 improvement, 41.98%. The results of Pelvis Secondary category is

close to Heads Secondary category. 75% of images in this category provide better CR

than JPEG-LS. And the CR differences between the two methods are really crucial,

around 25%. Nevertheless, the improvement of few images which give better CR using

JPEG-LS is only 4%.

Moreover, the margin for other categories where M4-Bx11 performances is lower

than JPEG-LS, is not really important. JPEG-LS can only improve around 7% for

75 images in the second category. Merely, better average CR for the whole images for

this category is provided by M4-Bx11.

This empirical analysis is continued by comparing M4-Bx11 with JPEG2000.

However, JPEG2000 results is less performance than JPEG-LS. The tendency of

JPEG2000 is close to JPEG-LS. Similarly with JPEG-LS results, there are more

images providing better CR using JPEG2000 than M4-Bx11. However, the average
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CR of M4-Bx11 is better than JPEG2000. Average CR of M4-Bx11 improves around

6.38% compared by JPEG2000. Average CR of all directly digital images provide

better CR using JPEG2000, nevertheless average CR for all secondary images give

better CR using M4-Bx11.

The difference of CR between the two methods are really significant for secondary

images and trivial for directly digital category as well. Figure 4.14 and Figure 4.15

present the gain in percent of M4-Bx11 comparing with JPEG-LS and JPEG2000

for each IRMA category.

M4-Bx11 that is based on combinatorial method provides much higher compres-

sion rate on some images. This fact has been observed on 40.08% of the tested images

comparing with JPEG-LS. For these images, the CR is in average 20% higher than

the JPEG-LS standard. Meanwhile, the other images (59.92%) provide a CR which

is only lower than 3.33%.

The proposed method is a completely different approach compared to JPEG-LS or

JPEG2000. Therefore, a significant improvement of CR is obtained on some images

comparison with these two standards. This improvement is highly correlated to the

image’s nature.

Figure 4.14: Gain percentage of M4-Bx11 and JPEG-LS.
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Figure 4.15: Gain percentage of M4-Bx11 and JPEG2000.

We consider developing an automatic image classification technique based on the

image features (as the image texture) to split the images in two classes: those which

provide the best results with the Burrows Wheeler compression scheme and those

where the standard JPEG2000 is more efficient.

Figure 4.16: Our proposed method of JPEG-LS and M4-Bx11 combination.

This classification is not compulsory. Indeed the association of our compression

scheme with a standard as JPEG-LS would represent a promising solution. A simple

specific codec which embeds the two algorithms is presented in Figure 4.16. In this
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codec, the two stream are compressed in parallel. The comparison is done on the size

of two compressed output. The final compressed stream is the smallest output. A

header is included to precise which method has been used.

4.7 Nearly Lossless BWCA Compression

Lossless compression techniques ensure complete data fidelity but with low compres-

sion ratios, while the lossy techniques aim to achieve much higher compression ratios

by allowing some acceptable degradation in the recovered image. However, the med-

ical professionals have been reluctant using lossy compression since any information

loss or error caused by compression process could influence clinical diagnostic deci-

sions and thus legal challenge could be raised. The medical community has therefore

instead relied on lossless compression methods, though efficient compression tech-

niques are highly needed for medical applications. The main purpose is to maximize

compression while maintaining clinical relevance.

A possible solution to the above dilemma is to offer hybrid compression schemes.

A general theme is to provide lossless compression for diagnostically important re-

gions (Regions of Interest or ROI), while allowing lossy compression for other regions

that are unimportant regions. Such hybrid compression can also be referred to region-

ally lossless coding or diagnosis lossless compression [13].

We also propose this technique (hybrid lossless and lossy method) to improve

BWCA compression efficiency. Some researchers have investigated and proposed var-

ious hybrid lossless and lossy medical image compression techniques [80, 13].The re-

sults of some proposed methods are different. The choice of ROI techniques will gives

different compression Ratios. It depends on segmentation process to improve image

compression performances. ROI process can be manual or automatic. The aim of ROI

depends on its applications, that can be a rough background-foreground distinction or

a more focused segmentation.

Our empirical aims to improve the compression efficiency. The segmentation

process as the pre-processing part of BWCA, is done by Open Computer Vision

(OpenCV).

OpenCV is developed by Intel as an open source computer programming library.

It supports vision computer applications that has many functions for capture, analysis

and manipulation of visual data.

We use OpenCV library to distinct the background and the foreground of an im-
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age. First process is to obtain the image background as seen in Figure 4.17. There are

some of OpenCV library for segmentation process. This process involves separating

an image into regions or contours depending on its applications. General region seg-

mentation is identifying by its common properties, such as intensity. A simple way to

segment such a region is through "thresholding" or separation of light and dark regions.

"Thresholding" creates binary images by turning all pixels below a threshold value to

zero and all pixels above that threshold to one.

a b c d e

Figure 4.17: The background segmentation process.

However, this process consider only the intensity. Therefore, the extraneous pix-

els that are part of the undesired region aren’t excluded. Hence, an ideal thresholding

are developed to allow the threshold itself smoothly vary across the image. There are

several types of thresholding functions in OpenCV. In this case the function deter-

mines the optimal threshold value using Otsu’s algorithm [53]. The function returns

the computed threshold value. Figure 4.17(b) shows the results of Otsu’s method. Un-

fortunately, there are still several holes in the segmented image. Image morphology is

commonly used to reduce these holes. It uses dilation and erosion process to reduce

the holes in the ROI and morphological closing and opening operation is used to get

rid of these holes as seen in Figure 4.18 and Figure 4.19. This process needs several

iterations to eliminate all the holes as seen Figure 4.17(c), (d), and (e).

Figure 4.18: Morphological closing operation: the downward outliers are eliminated
as a result [17].
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Figure 4.19: Morphological opening operation: the upward outliers are eliminated as
a result [17].

However, segmentation process is not effective for all of the image. It depends

on image nature. In this case, the segmentation aims to distinct background and fore-

ground of an image. Some images are not important to do the distinction since they

don’t have or only have limited background such as Chest Frontal and Lateral images

in Figure 4.1.

Table 4.19: Compression ratios of nearly-lossless using M4-Bx11.

Nearly-Lossless Lossless
No. Image M4- JPEG JPEG M4- JPEG JPEG

Bx11 2000 -LS Bx11 2000 -LS

1 Hands prim. 8.828 7.817 8.732 4.900 5.001 5.152
2 Hands sec. 7.175 6.053 6.800 3.721 2.222 2.325
3 Heads prim. 4.103 4.324 4.365 3.589 3.805 3.751
4 Heads sec. 3.269 3.528 3.674 2.391 2.651 2.693
5 Pelvis prim. 4.068 3.630 3.742 2.760 2.749 2.696
6 Pelvis sec. 12.222 10.893 11.257 4.781 2.015 2.249
7 Thoraces fr. prim. 2.690 2.641 2.687 2.350 2.351 2.340
8 Thoraces fr. sec. 4.146 4.329 4.441 3.814 4.017 4.096
9 Thoraces lat. prim. 3.157 3.245 3.318 2.896 3.020 3.078
10 Thoraces lat. sec. 3.341 3.685 3.827 2.923 3.237 3.356

Av. 10 5.300 5.014 5.284 3.412 3.107 3.174
Av. 20 4.962 4.737 4.943 3.277 2.839 2.895

The simulation results show that this technique improves BWCA compression ef-

ficiency systematically. It increases also CR of JPEG-LS and JPEG2000 as seen in

Table 4.19. This empirical studies use 20 images of IRMA data-base from 10 cate-

gories. From 20 tested images, 10 images obtain better CR using JPEG-LS, 9 images

using M4-Bx11, and only 1 image using JPEG2000. However, the CR difference

between BWCA and JPEG-LS are not significant. The tested images are taken from

the best and the the worst obtained CR of M4-Bx11 compare with JPEG2000 and

JPEG-LS from previous results.
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4.8 Bit Decomposition in BWCA

In Section 4.4.1 stated that BWT works better in a large file. Bai in [13] also stated that

BWT achieves much higher compression ratios for bi-level (binary) images, because

of symbol alphabets alleviation and repeated patterns. Therefore, we propose in this

section to study the effect of symbols reduction by focussing on the data-format and

arrangements.

The selected data-format aims to increase the redundancies. Mainly, it consists of

splitting the pixel, which is coded on one byte, into two or several blocks. Bit decom-

position is not just splitting the pixel’s dynamic, but also to consider the reordering of

different blocks. The data’s redundancy is therefore increasing, nevertheless the com-

pression effort must be higher as the input-file size is systematically larger. Several

simulations are done to analyze the bit decomposition impact in BWCA, such as split-

ting a byte into 2 blocks of 5 bits for MSB and 3 bits for LSB, splitting a byte into

4 blocks of 2 bits BWCA input, etc. Each obtained block is formatted in a byte by

pre-pending zeros. This data-expansion enables the algorithm programming to be sim-

plified. We present several empirical studies of these techniques, respectively named

T1 until T7.

The first simulation scheme T1 consists of splitting each byte (coding a pixel) into

two blocks of 4 bits each: the Most Significants Bits (MSB) and the Least Significants

Bits (LSB). As explained above, each block is extended with zeros, as described in the

Figure 4.20. The input data size of BWCA is therefore doubled. It is not surprising

that among the MSB, the redundancy is increasing since two adjacent pixels are often

similar. By contrast the LSB part contains small neighborhood changes, and on its own,

the content of this part can be considered as almost random information. Consequently,

the compression of each part do not provide the same contribution in the output file.

We have evaluate each contribution. The MSB part represents only in average 15% of

the output file. The compression of the MSB part is the crucial part of the encoding

with this data-arrangement.

The statistic of the input file provided to the arithmetic codec is obviously modified

by the new data-arrangement. Therefore the impact of the data-arrangement should be

analyzed according to the configuration of the arithmetic coding. For a fixed size of

the output format, usually (32 bits-integer, 64-bits integer or 32-bits float), the number

of symbols in the coded sequence alphabet, named D, enables the coding to data-

redundancy to be adjusted. Figure 4.21 shows the evolution of all the proposed meth-

ods in function of D. The MSB part, which is the crucial part, looks very similar to
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Figure 4.20: Method T1 with bit decomposition - MSB LSB processed separately.

the original image. Therefore, it is not surprising that the best performance is achieved

using the same arithmetic codec parameters (D=1) than the original chain which does

not used the bit decomposition. The general idea of the bit decomposition does not

permit to reach the performance of the original compression scheme using 8-bits pixel

as shown in the Figure 4.21. Nevertheless, we have extended this study. Indeed, this

kind of approach, and particularly the decomposition in binary blocks would allow low

level operations to be considered and therefore to propose hardware implementations.

Consequently, we propose some modifications of the data-arrangement to show that

the performance of the new approach can be improved.

Figure 4.21: Average CR for different of AC parameters.
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(a)

(b) (c)

(d) (e)

Figure 4.22: Four proposed methods by arranging MSB and LSB blocks.
(a) 4 bits decomposition by rearrange decomposition bit.
(b) T2: each LSB group is followed by its corresponding MSB group.
(c) T3: each MSB group is followed by its corresponding LSB group.
(d) T4: alternating LSB and MSB blocks, starting with LSB block.
(e) T5: alternating MSB and LSB blocks, starting with MSB block.

As we discussed earlier, in Section 4.4.1, the increasing of the image size enables,

depending of the image’s nature, better compression ratio to be obtained with BWCA

scheme. Therefore, we propose to regroup the MSB and LSB parts in one pointer as

an input of BWCA as depicted in the Figure 4.22. The MSB part can be followed by

the LSB part, or the order is permuted and hence the LSB is placed before the MSB

part. These two ways have been respectively implemented in methods T2 and T3 (see

Figure 4.22b and Figure 4.22c). The results of these two approaches are, as expected,

very similar.

Then, we propose to shuffle these data parts to improve the compression. The data-

redundancy between LSB and MSB can be more exploited by the BWT stage. The

principle of the two resulting methods named T4 and T5 is presented in Figure 4.22d

and Figure 4.22e. In these two approaches, a block MSB alternates with a LSB. In T4,

the input starts with a MSB block contrary to the T5 method where LSB precedes the

corresponding MSB block.
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By increasing D, the number of symbols in the coded sequence alphabet, the

data-redundancy is better exploited by the arithmetic coding. The compression per-

formances of the methods T2, T3, and particulary T4 and T5 are therefore increased

as shown in Figure 4.21.

Figure 4.23: T6: 4 bits image decomposition by separating MSB and LSB consecu-
tively. The two neighbor BWT output are combined into a byte.

Finally, the BWT stage regroups the similar symbols. After this stage the exten-

sion with the four zero in each sample can be suppressed. This elimination can occur

either before or after the GST stage. Two methods named T6 and T7 aim to realize this

operation as described in Figure 4.23 and Figure 4.24. The GST stage increases the

redundancy therefore we recommend to suppress the additional zeros after this stage.

The experimental results confirmed our assumption. The performance are increasing

significantly in comparison with the previous methods. The parameters of the arith-

metic codec should be considered to improve the compression ratio. We consider this

bit decomposition still as an open problem. Also an adapted arithmetic coding must be

considered in order to take advantage of data-structure. All of them need a deeper and

more accurate analysis and are promising research directions.
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Figure 4.24: T7: 4 bits image decomposition by separating MSB and LSB consecu-
tively. The two neighbor of GST output are combined into a byte.



Chapter 5

Conclusion and Perspectives

We presented the Burrows Wheeler Transform (BWT) state of the art in compression

field, which originally was used in text compression, and propose a lossless image

compression scheme based on this transform. We analyzed the impact of each stage of

this chain that has important role to improve compression performance.

The compression scheme used in text compression should be largely modified. We

should consider pre-processing, where this stage improves CR till 4%. Moreover, there

are a few improvements of BWT post-processing which allow us to improve the classic

chain of BWT.

On the 1200 IRMA medical images of the data-base, a substantial 5% improve-

ment of the average compression ratio has been obtained with the proposed method

compared to existing standards which are JPEG 2000 or JPEG-LS. Moreover, this

new approach based on combinatorial method provides much higher compression rate

on some images. For instance, comparing with JPEG-LS which is well-known as the

best lossless compression standard, 34.4% of images obtained better results using M4-

Bx11 and the CR in average is 20% higher than this standard. Meanwhile, the other

images (64.6%) provide an average CR which is only lower than 3.3%.

Therefore, the development of a specific codec, which embeds both algorithms

working in parallel, could be considered to improve the current lossless image codec.

The short compressed output file would be selected to be the final compressed bit-

stream.

We proposed also nearly-lossless compression technique. The segmentation pro-

cess is added as the pre-processing stage to obtain region of interest (ROI) of an image.

The ROI part as an important is compressed losslessly, meanwhile the unimportant part

(such as image background) is lossyly. This technique can doubled the compression

99
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efficiency that definitely depends on image nature and method’s segmentation.

There are others BWCA preprocessing steps that can increase compression per-

formances. One of them is the bit decomposition of each pixel. We presented a pre-

liminary study on it. However the corresponding results do not reach the previous

performances, and thus these techniques are an interesting method to be exploited.

Another open problem is to characterize images that are more likely to be effi-

ciently compressed using BWCA chain.

This studies described in this manuscript or document highlight some significant

improvement in lossless image compression. Moreover, some developments, as spe-

cific coding stage particularly the bit decomposition approach, represent some potential

improvements. With open problem still to be solved, the use of BWT in a compression

scheme is, from our concern, a promising research way to be continued.
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